# Trading Price Spread import numpy as np import pandas as pd #import matplotlib.pyplot as plt import statsmodels.formula.api as sm import statsmodels.tsa.stattools as ts #import statsmodels.tsa.vector_ar.vecm as vm df=pd.read_csv('inputData_GLD_USO.csv') df['Date']=pd.to_datetime(df['Date'], format='%Y%m%d').dt.date # remove HH:MM:SS df.set_index('Date', inplace=True) lookback=20 hedgeRatio=np.full(df.shape[0], np.nan) for t in np.arange(lookback, len(hedgeRatio)): regress_results=sm.ols(formula="USO ~ GLD", data=df[(t-lookback):t]).fit() # Note this can deal with NaN in top row hedgeRatio[t-1]=regress_results.params[1] yport=np.sum(ts.add_constant(-hedgeRatio)[:, [1,0]]*df, axis=1) yport.plot() # Apply a simple linear mean reversion strategy to GLD-USO numUnits =-(yport-yport.rolling(lookback).mean())/yport.rolling(lookback).std() # capital invested in portfolio in dollars. movingAvg and movingStd are functions from epchan.com/book2 positions=pd.DataFrame(np.tile(numUnits.values, [2, 1]).T * ts.add_constant(-hedgeRatio)[:, [1,0]] *df.values) # results.evec(:, 1)' can be viewed as the capital allocation, while positions is the dollar capital in each ETF. pnl=np.sum((positions.shift().values)*(df.pct_change().values), axis=1) # daily P&L of the strategy ret=pnl/np.sum(np.abs(positions.shift()), axis=1) pd.DataFrame((np.cumprod(1+ret)-1)).plot() print('APR=%f Sharpe=%f' % (np.prod(1+ret)**(252/len(ret))-1, np.sqrt(252)*np.mean(ret)/np.std(ret)))