# Example 4.1: Buy-on-Gap Model on SPX Stocks import numpy as np import pandas as pd #import matplotlib.pyplot as plt #import statsmodels.formula.api as sm #import statsmodels.tsa.stattools as ts #import statsmodels.tsa.vector_ar.vecm as vm topN=10 # Max number of positions entryZscore=1 lookback=20 # for MA op=pd.read_csv('inputDataOHLCDaily_20120424_op.csv') hi=pd.read_csv('inputDataOHLCDaily_20120424_hi.csv') lo=pd.read_csv('inputDataOHLCDaily_20120424_lo.csv') cl=pd.read_csv('inputDataOHLCDaily_20120424_cl.csv') stocks=pd.read_csv('inputDataOHLCDaily_20120424_stocks.csv') op['Var1']=pd.to_datetime(op['Var1'], format='%Y%m%d').dt.date # remove HH:MM:SS op.columns=np.insert(stocks.values, 0, 'Date') op.set_index('Date', inplace=True) hi['Var1']=pd.to_datetime(hi['Var1'], format='%Y%m%d').dt.date # remove HH:MM:SS hi.columns=np.insert(stocks.values, 0, 'Date') hi.set_index('Date', inplace=True) lo['Var1']=pd.to_datetime(lo['Var1'], format='%Y%m%d').dt.date # remove HH:MM:SS lo.columns=np.insert(stocks.values, 0, 'Date') lo.set_index('Date', inplace=True) cl['Var1']=pd.to_datetime(cl['Var1'], format='%Y%m%d').dt.date # remove HH:MM:SS cl.columns=np.insert(stocks.values, 0, 'Date') cl.set_index('Date', inplace=True) stdretC2C90d=cl.pct_change().rolling(90).std().shift(1) buyPrice=lo.shift()*(1-entryZscore*stdretC2C90d) retGap=(op-lo.shift())/lo.shift() ma=cl.rolling(lookback).mean() positionsTable=np.zeros(retGap.shape) for t in np.arange(1, cl.shape[0]): hasData=np.where(np.isfinite(retGap.iloc[t, :]) & (op.iloc[t, :] < buyPrice.iloc[t, :]).values & (op.iloc[t, :] > ma.iloc[t, :]).values) hasData=hasData[0] if len(hasData)>0: idxSort=np.argsort(retGap.iloc[t, hasData]) positionsTable[t, hasData[idxSort.values[np.arange(-np.min((topN, len(idxSort))),0)]]]=1 retO2C=(cl-op)/op pnl=np.sum(positionsTable*retO2C, axis=1) # daily P&L of the strategy ret=pnl/topN (np.cumprod(1+ret)-1).plot() print('APR=%f Sharpe=%f' % (np.prod(1+ret)**(252/len(ret))-1, np.sqrt(252)*np.mean(ret)/np.std(ret)))