# Using the CADF test for cointegration import numpy as np import pandas as pd #import matplotlib.pyplot as plt import statsmodels.formula.api as sm import statsmodels.tsa.stattools as ts import statsmodels.tsa.vector_ar.vecm as vm df=pd.read_csv('inputData_EWA_EWC_IGE.csv') df['Date']=pd.to_datetime(df['Date'], format='%Y%m%d').dt.date # remove HH:MM:SS df.set_index('Date', inplace=True) df.plot() df.plot.scatter(x='EWA', y='EWC') results=sm.ols(formula="EWC ~ EWA", data=df[['EWA', 'EWC']]).fit() print(results.params) hedgeRatio=results.params[1] print('hedgeRatio=%f' % hedgeRatio) pd.DataFrame((df['EWC']-hedgeRatio*df['EWA'])).plot() # cadf test coint_t, pvalue, crit_value=ts.coint(df['EWA'], df['EWC']) print('t-statistic=%f' % coint_t) print('pvalue=%f' % pvalue) print(crit_value) # Johansen test result=vm.coint_johansen(df[['EWA', 'EWC']].values, det_order=0, k_ar_diff=1) print(result.lr1) print(result.cvt) print(result.lr2) print(result.cvm) # Add IGE for Johansen test result=vm.coint_johansen(df.values, det_order=0, k_ar_diff=1) print(result.lr1) print(result.cvt) print(result.lr2) print(result.cvm) print(result.eig) # eigenvalues print(result.evec) # eigenvectors yport=pd.DataFrame(np.dot(df.values, result.evec[:, 0])) # (net) market value of portfolio ylag=yport.shift() deltaY=yport-ylag df2=pd.concat([ylag, deltaY], axis=1) df2.columns=['ylag', 'deltaY'] regress_results=sm.ols(formula="deltaY ~ ylag", data=df2).fit() # Note this can deal with NaN in top row print(regress_results.params) halflife=-np.log(2)/regress_results.params['ylag'] print('halflife=%f days' % halflife) # Apply a simple linear mean reversion strategy to EWA-EWC-IGE lookback=np.round(halflife).astype(int) # setting lookback to the halflife found above numUnits =-(yport-yport.rolling(lookback).mean())/yport.rolling(lookback).std() # capital invested in portfolio in dollars. movingAvg and movingStd are functions from epchan.com/book2 positions=pd.DataFrame(np.dot(numUnits.values, np.expand_dims(result.evec[:, 0], axis=1).T)*df.values) # results.evec(:, 1)' can be viewed as the capital allocation, while positions is the dollar capital in each ETF. pnl=np.sum((positions.shift().values)*(df.pct_change().values), axis=1) # daily P&L of the strategy ret=pnl/np.sum(np.abs(positions.shift()), axis=1) pd.DataFrame((np.cumprod(1+ret)-1)).plot() print('APR=%f Sharpe=%f' % (np.prod(1+ret)**(252/len(ret))-1, np.sqrt(252)*np.mean(ret)/np.std(ret))) # APR=0.125739 Sharpe=1.391310