# Example 4.2: Arbitrage between SPY and Its Component Stocks import numpy as np import pandas as pd #import matplotlib.pyplot as plt #import statsmodels.formula.api as sm #import statsmodels.tsa.stattools as ts import statsmodels.tsa.vector_ar.vecm as vm # Stocks cl=pd.read_csv('inputDataOHLCDaily_20120424_cl.csv') stocks=pd.read_csv('inputDataOHLCDaily_20120424_stocks.csv') cl['Var1']=pd.to_datetime(cl['Var1'], format='%Y%m%d').dt.date # remove HH:MM:SS cl.columns=np.insert(stocks.values, 0, 'Date') cl.set_index('Date', inplace=True) # ETFs cl_etf=pd.read_csv('inputData_ETF_cl.csv') etfs=pd.read_csv('inputData_ETF_stocks.csv') cl_etf['Var1']=pd.to_datetime(cl_etf['Var1'], format='%Y%m%d').dt.date # remove HH:MM:SS cl_etf.columns=np.insert(etfs.values, 0, 'Date') cl_etf.set_index('Date', inplace=True) # Merge on common dates df=pd.merge(cl, cl_etf, how='inner', on='Date') cl_stocks=df[cl.columns] cl_etf=df[cl_etf.columns] # Use SPY only cl_etf=cl_etf['SPY'] # This turns cl_etf into Series trainDataIdx=df.index[(df.index > pd.datetime(2007, 1, 1).date()) & (df.index <= pd.datetime(2007, 12, 31).date())] testDataIdx =df.index[df.index > pd.datetime(2007, 12, 31).date()] isCoint=np.full(stocks.shape[1], False) for s in range(stocks.shape[1]): # Combine the two time series into a matrix y2 for input into Johansen test y2=pd.concat([cl_stocks.loc[trainDataIdx].iloc[:, s], cl_etf.loc[trainDataIdx]], axis=1) y2=y2.loc[y2.notnull().all(axis=1),] if (y2.shape[0] > 250): # Johansen test result=vm.coint_johansen(y2.values, det_order=0, k_ar_diff=1) if (result.lr1[0] > result.cvt[0,0]): isCoint[s]=True print(isCoint.sum()) yN=cl_stocks.loc[trainDataIdx, isCoint] logMktVal_long=np.sum(np.log(yN), axis=1) # The net market value of the long-only portfolio is same as the "spread" # Confirm that the portfolio cointegrates with SPY ytest=pd.concat([logMktVal_long, np.log(cl_etf.loc[trainDataIdx])], axis=1) result=vm.coint_johansen(ytest, det_order=0, k_ar_diff=1) print(result.lr1) print(result.cvt) print(result.lr2) print(result.cvm) #Apply linear mean-reversion model on test set yNplus=pd.concat([cl_stocks.loc[testDataIdx, isCoint], pd.DataFrame(cl_etf.loc[testDataIdx])], axis=1) # Array of stock and ETF prices weights=np.column_stack((np.full((testDataIdx.shape[0], isCoint.sum()), result.evec[0,0]), np.full((testDataIdx.shape[0], 1), result.evec[1, 0]))) # Array of log market value of stocks and ETF's logMktVal=np.sum(weights*np.log(yNplus), axis=1) # Log market value of long-short portfolio lookback=5 numUnits =-(logMktVal-logMktVal.rolling(lookback).mean())/logMktVal.rolling(lookback).std() # capital invested in portfolio in dollars. movingAvg and movingStd are functions from epchan.com/book2 positions=pd.DataFrame(np.expand_dims(numUnits, axis=1)*weights)# results.evec(:, 1)' can be viewed as the capital allocation, while positions is the dollar capital in each ETF. pnl=np.sum((positions.shift().values)*(np.log(yNplus)-np.log(yNplus.shift()).values), axis=1) # daily P&L of the strategy ret=pd.DataFrame(pnl.values/np.sum(np.abs(positions.shift()), axis=1).values) (np.cumprod(1+ret)-1).plot() print('APR=%f Sharpe=%f' % (np.prod(1+ret)**(252/len(ret))-1, np.sqrt(252)*np.mean(ret)/np.std(ret)))