diff --git a/tensorflow/notebooks/leo/LSTM_All_Crypto_01.ipynb b/tensorflow/notebooks/leo/LSTM_All_Crypto_01.ipynb index 6e18e1c..fa93227 100644 --- a/tensorflow/notebooks/leo/LSTM_All_Crypto_01.ipynb +++ b/tensorflow/notebooks/leo/LSTM_All_Crypto_01.ipynb @@ -344,16 +344,108 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 143, "id": "a7c8b332-cd4a-455f-b7cf-381aec15c456", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " date close_ltc volume_ltc vwap_ltc\n", + "0 1-0-0 0.8317 110.056253 0.831662\n", + "1 1-0-1 0.8312 176.868598 0.831441\n", + "2 1-0-2 0.8315 52.367396 0.831319\n" + ] + } + ], + "source": [ + "# LTC\n", + "df_concat_ltc = df_concat[df_concat['instrument_id'] == 'PAIR-LTC-USD']\n", + "\n", + "# Reset Index\n", + "df_concat_ltc = df_concat_ltc.reset_index(drop = True)\n", + "\n", + "# Rename Vars\n", + "df_concat_ltc['close_ltc'] = df_concat_ltc['close']/100.00\n", + "df_concat_ltc['volume_ltc'] = df_concat_ltc['volume']\n", + "df_concat_ltc['vwap_ltc'] = df_concat_ltc['vwap']/100.00\n", + "\n", + "df_concat_ltc = df_concat_ltc.drop('close', axis = 1)\n", + "df_concat_ltc = df_concat_ltc.drop('volume', axis = 1)\n", + "df_concat_ltc = df_concat_ltc.drop('vwap', axis = 1)\n", + "df_concat_ltc = df_concat_ltc.drop('instrument_id', axis = 1)\n", + "\n", + "print (df_concat_ltc.head(3))" + ] + }, + { + "cell_type": "code", + "execution_count": 148, + "id": "0a27972a-f457-4ca5-8530-d6c87c7d9d91", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " date close_eth volume_eth vwap_eth\n", + "0 1-0-0 0.376204 37.497964 0.376108\n", + "1 1-0-1 0.375942 11.703305 0.376013\n", + "2 1-0-2 0.376096 145.335061 0.376016\n" + ] + } + ], + "source": [ + "# ETH\n", + "df_concat_eth = df_concat[df_concat['instrument_id'] == 'PAIR-ETH-USD']\n", + "\n", + "# Reset Index\n", + "df_concat_eth = df_concat_eth.reset_index(drop = True)\n", + "\n", + "# Rename Vars\n", + "df_concat_eth['close_eth'] = df_concat_eth['close']/10000.00\n", + "df_concat_eth['volume_eth'] = df_concat_eth['volume']\n", + "df_concat_eth['vwap_eth'] = df_concat_eth['vwap']/10000.00\n", + "\n", + "df_concat_eth = df_concat_eth.drop('close', axis = 1)\n", + "df_concat_eth = df_concat_eth.drop('volume', axis = 1)\n", + "df_concat_eth = df_concat_eth.drop('vwap', axis = 1)\n", + "df_concat_eth = df_concat_eth.drop('instrument_id', axis = 1)\n", + "\n", + "print (df_concat_eth.head(3))" + ] }, { "cell_type": "code", "execution_count": null, - "id": "0a27972a-f457-4ca5-8530-d6c87c7d9d91", + "id": "e94efeb3-eeeb-467b-9493-b305a3bf1a52", + "metadata": {}, + "outputs": [], + "source": [ + "# XRP\n", + "df_concat_ltc = df_concat[df_concat['instrument_id'] == 'PAIR-LTC-USD']\n", + "\n", + "# Reset Index\n", + "df_concat_ltc = df_concat_ltc.reset_index(drop = True)\n", + "\n", + "# Rename Vars\n", + "df_concat_ltc['close_ltc'] = df_concat_ltc['close']/100.00\n", + "df_concat_ltc['volume_ltc'] = df_concat_ltc['volume']\n", + "df_concat_ltc['vwap_ltc'] = df_concat_ltc['vwap']/100.00\n", + "\n", + "df_concat_ltc = df_concat_ltc.drop('close', axis = 1)\n", + "df_concat_ltc = df_concat_ltc.drop('volume', axis = 1)\n", + "df_concat_ltc = df_concat_ltc.drop('vwap', axis = 1)\n", + "df_concat_ltc = df_concat_ltc.drop('instrument_id', axis = 1)\n", + "\n", + "print (df_concat_ltc.head(3))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "97a4fe65-b999-4459-b21e-8c1f0c20a25e", "metadata": {}, "outputs": [], "source": []