diff --git a/Dockerfile b/Dockerfile index c85fec6..64f9c8b 100644 --- a/Dockerfile +++ b/Dockerfile @@ -5,6 +5,7 @@ RUN pip install jupyterlab # Install additional packages RUN pip install plotly +RUN pip install fastbook # Set environment variables, etc. #ENV MY_ENV_VAR=myvalue diff --git a/docker-compose.yml b/docker-compose.yml deleted file mode 120000 index 1671abe..0000000 --- a/docker-compose.yml +++ /dev/null @@ -1 +0,0 @@ -my_build.docker-compose.yml \ No newline at end of file diff --git a/docker-compose.yml b/docker-compose.yml new file mode 100644 index 0000000..642ad9d --- /dev/null +++ b/docker-compose.yml @@ -0,0 +1,14 @@ +version: '3.8' + +services: + jupyter: + build: /opt/jupyter_gpu + image: cvtt/jupyter_gpu:v1.0.2 + container_name: cvtt_gpu_jupyter + runtime: nvidia + environment: + - JUPYTER_ENABLE_LAB=yes + volumes: + - ./notebooks:/workspace + ports: + - "8888:8888" diff --git a/my_build.docker-compose.yml b/my_build.docker-compose.yml deleted file mode 100644 index 9b3f0d4..0000000 --- a/my_build.docker-compose.yml +++ /dev/null @@ -1,13 +0,0 @@ -version: '3.8' - -services: - jupyter: - build: /opt/jupyter_pytorch - container_name: my_build_jupyter - runtime: nvidia - environment: - - JUPYTER_ENABLE_LAB=yes - volumes: - - ./notebooks:/workspace - ports: - - "8888:8888" diff --git a/notebooks/oleg/Education/fastai/01_intro.ipynb b/notebooks/oleg/Education/fastai/01_intro.ipynb new file mode 100644 index 0000000..21b0489 --- /dev/null +++ b/notebooks/oleg/Education/fastai/01_intro.ipynb @@ -0,0 +1,2914 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "qIcNtql01Q5W", + "tags": [] + }, + "outputs": [], + "source": [ + "#hide\n", + "! [ -e /content ] && pip install -Uqq fastbook\n", + "import fastbook\n", + "fastbook.setup_book()" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "Ro80Z21T1Q5b" + }, + "outputs": [], + "source": [ + "#hide\n", + "from fastbook import *" + ] + }, + { + "cell_type": "raw", + "metadata": { + "id": "0-RkXtIV1Q5c" + }, + "source": [ + "[[chapter_intro]]" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BBEly4RE1Q5d" + }, + "source": [ + "# Your Deep Learning Journey" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qfQABJBI1Q5f" + }, + "source": [ + "Hello, and thank you for letting us join you on your deep learning journey, however far along that you may be! In this chapter, we will tell you a little bit more about what to expect in this book, introduce the key concepts behind deep learning, and train our first models on different tasks. It doesn't matter if you don't come from a technical or a mathematical background (though it's okay if you do too!); we wrote this book to make deep learning accessible to as many people as possible." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Udn0WeIk1Q5g" + }, + "source": [ + "## Deep Learning Is for Everyone" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8rFQuMlv1Q5h" + }, + "source": [ + "A lot of people assume that you need all kinds of hard-to-find stuff to get great results with deep learning, but as you'll see in this book, those people are wrong. <> is a list of a few thing you *absolutely don't need* to do world-class deep learning.\n", + "\n", + "```asciidoc\n", + "[[myths]]\n", + ".What you don't need to do deep learning\n", + "[options=\"header\"]\n", + "|======\n", + "| Myth (don't need) | Truth\n", + "| Lots of math | Just high school math is sufficient\n", + "| Lots of data | We've seen record-breaking results with <50 items of data\n", + "| Lots of expensive computers | You can get what you need for state of the art work for free\n", + "|======\n", + "```\n", + "\n", + "Deep learning is a computer technique to extract and transform data–-with use cases ranging from human speech recognition to animal imagery classification–-by using multiple layers of neural networks. Each of these layers takes its inputs from previous layers and progressively refines them. The layers are trained by algorithms that minimize their errors and improve their accuracy. In this way, the network learns to perform a specified task. We will discuss training algorithms in detail in the next section." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "MVY6znz41Q5j" + }, + "source": [ + "Deep learning has power, flexibility, and simplicity. That's why we believe it should be applied across many disciplines. These include the social and physical sciences, the arts, medicine, finance, scientific research, and many more. To give a personal example, despite having no background in medicine, Jeremy started Enlitic, a company that uses deep learning algorithms to diagnose illness and disease. Within months of starting the company, it was announced that its algorithm could identify malignant tumors [more accurately than radiologists](https://www.nytimes.com/2016/02/29/technology/the-promise-of-artificial-intelligence-unfolds-in-small-steps.html).\n", + "\n", + "Here's a list of some of the thousands of tasks in different areas at which deep learning, or methods heavily using deep learning, is now the best in the world:\n", + "\n", + "- Natural language processing (NLP):: Answering questions; speech recognition; summarizing documents; classifying documents; finding names, dates, etc. in documents; searching for articles mentioning a concept\n", + "- Computer vision:: Satellite and drone imagery interpretation (e.g., for disaster resilience); face recognition; image captioning; reading traffic signs; locating pedestrians and vehicles in autonomous vehicles\n", + "- Medicine:: Finding anomalies in radiology images, including CT, MRI, and X-ray images; counting features in pathology slides; measuring features in ultrasounds; diagnosing diabetic retinopathy\n", + "- Biology:: Folding proteins; classifying proteins; many genomics tasks, such as tumor-normal sequencing and classifying clinically actionable genetic mutations; cell classification; analyzing protein/protein interactions\n", + "- Image generation:: Colorizing images; increasing image resolution; removing noise from images; converting images to art in the style of famous artists\n", + "- Recommendation systems:: Web search; product recommendations; home page layout\n", + "- Playing games:: Chess, Go, most Atari video games, and many real-time strategy games\n", + "- Robotics:: Handling objects that are challenging to locate (e.g., transparent, shiny, lacking texture) or hard to pick up\n", + "- Other applications:: Financial and logistical forecasting, text to speech, and much more..." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-I9n5IMf1Q5k" + }, + "source": [ + "What is remarkable is that deep learning has such varied application yet nearly all of deep learning is based on a single type of model, the neural network.\n", + "\n", + "But neural networks are not in fact completely new. In order to have a wider perspective on the field, it is worth it to start with a bit of history." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OMajKx0M1Q5k" + }, + "source": [ + "## Neural Networks: A Brief History" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uD_PupGp1Q5l" + }, + "source": [ + "In 1943 Warren McCulloch, a neurophysiologist, and Walter Pitts, a logician, teamed up to develop a mathematical model of an artificial neuron. In their [paper](https://link.springer.com/article/10.1007/BF02478259) \"A Logical Calculus of the Ideas Immanent in Nervous Activity\" they declared that:\n", + "\n", + "> : Because of the “all-or-none” character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rGSW16Ff1Q5l" + }, + "source": [ + "McCulloch and Pitts realized that a simplified model of a real neuron could be represented using simple addition and thresholding, as shown in <>. Pitts was self-taught, and by age 12, had received an offer to study at Cambridge University with the great Bertrand Russell. He did not take up this invitation, and indeed throughout his life did not accept any offers of advanced degrees or positions of authority. Most of his famous work was done while he was homeless. Despite his lack of an officially recognized position and increasing social isolation, his work with McCulloch was influential, and was taken up by a psychologist named Frank Rosenblatt." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GX9zKK1u1Q5l" + }, + "source": [ + "\"Natural" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kDdC2CtN1Q5m" + }, + "source": [ + "Rosenblatt further developed the artificial neuron to give it the ability to learn. Even more importantly, he worked on building the first device that actually used these principles, the Mark I Perceptron. In \"The Design of an Intelligent Automaton\" Rosenblatt wrote about this work: \"We are now about to witness the birth of such a machine–-a machine capable of perceiving, recognizing and identifying its surroundings without any human training or control.\" The perceptron was built, and was able to successfully recognize simple shapes.\n", + "\n", + "An MIT professor named Marvin Minsky (who was a grade behind Rosenblatt at the same high school!), along with Seymour Papert, wrote a book called _Perceptrons_ (MIT Press), about Rosenblatt's invention. They showed that a single layer of these devices was unable to learn some simple but critical mathematical functions (such as XOR). In the same book, they also showed that using multiple layers of the devices would allow these limitations to be addressed. Unfortunately, only the first of these insights was widely recognized. As a result, the global academic community nearly entirely gave up on neural networks for the next two decades." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I5VsJ_Bo1Q5m" + }, + "source": [ + "Perhaps the most pivotal work in neural networks in the last 50 years was the multi-volume *Parallel Distributed Processing* (PDP) by David Rumelhart, James McClellan, and the PDP Research Group, released in 1986 by MIT Press. Chapter 1 lays out a similar hope to that shown by Rosenblatt:\n", + "\n", + "> : People are smarter than today's computers because the brain employs a basic computational architecture that is more suited to deal with a central aspect of the natural information processing tasks that people are so good at. ...We will introduce a computational framework for modeling cognitive processes that seems… closer than other frameworks to the style of computation as it might be done by the brain.\n", + "\n", + "The premise that PDP is using here is that traditional computer programs work very differently to brains, and that might be why computer programs had been (at that point) so bad at doing things that brains find easy (such as recognizing objects in pictures). The authors claimed that the PDP approach was \"closer\n", + "than other frameworks\" to how the brain works, and therefore it might be better able to handle these kinds of tasks.\n", + "\n", + "In fact, the approach laid out in PDP is very similar to the approach used in today's neural networks. The book defined parallel distributed processing as requiring:\n", + "\n", + "1. A set of *processing units*\n", + "1. A *state of activation*\n", + "1. An *output function* for each unit\n", + "1. A *pattern of connectivity* among units\n", + "1. A *propagation rule* for propagating patterns of activities through the network of connectivities\n", + "1. An *activation rule* for combining the inputs impinging on a unit with the current state of that unit to produce an output for the unit\n", + "1. A *learning rule* whereby patterns of connectivity are modified by experience\n", + "1. An *environment* within which the system must operate\n", + "\n", + "We will see in this book that modern neural networks handle each of these requirements.\n", + "\n", + "In the 1980's most models were built with a second layer of neurons, thus avoiding the problem that had been identified by Minsky and Papert (this was their \"pattern of connectivity among units,\" to use the framework above). And indeed, neural networks were widely used during the '80s and '90s for real, practical projects. However, again a misunderstanding of the theoretical issues held back the field. In theory, adding just one extra layer of neurons was enough to allow any mathematical function to be approximated with these neural networks, but in practice such networks were often too big and too slow to be useful.\n", + "\n", + "Although researchers showed 30 years ago that to get practical good performance you need to use even more layers of neurons, it is only in the last decade that this principle has been more widely appreciated and applied. Neural networks are now finally living up to their potential, thanks to the use of more layers, coupled with the capacity to do so due to improvements in computer hardware, increases in data availability, and algorithmic tweaks that allow neural networks to be trained faster and more easily. We now have what Rosenblatt promised: \"a machine capable of perceiving, recognizing, and identifying its surroundings without any human training or control.\"\n", + "\n", + "This is what you will learn how to build in this book. But first, since we are going to be spending a lot of time together, let's get to know each other a bit…" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nISOkJjO1Q5m" + }, + "source": [ + "## Who We Are" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Nzvf7n081Q5n" + }, + "source": [ + "We are Sylvain and Jeremy, your guides on this journey. We hope that you will find us well suited for this position.\n", + "\n", + "Jeremy has been using and teaching machine learning for around 30 years. He started using neural networks 25 years ago. During this time, he has led many companies and projects that have machine learning at their core, including founding the first company to focus on deep learning and medicine, Enlitic, and taking on the role of President and Chief Scientist of the world's largest machine learning community, Kaggle. He is the co-founder, along with Dr. Rachel Thomas, of fast.ai, the organization that built the course this book is based on.\n", + "\n", + "From time to time you will hear directly from us, in sidebars like this one from Jeremy:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gtApTXIW1Q5n" + }, + "source": [ + "> J: Hi everybody, I'm Jeremy! You might be interested to know that I do not have any formal technical education. I completed a BA, with a major in philosophy, and didn't have great grades. I was much more interested in doing real projects, rather than theoretical studies, so I worked full time at a management consulting firm called McKinsey and Company throughout my university years. If you're somebody who would rather get their hands dirty building stuff than spend years learning abstract concepts, then you will understand where I am coming from! Look out for sidebars from me to find information most suited to people with a less mathematical or formal technical background—that is, people like me…" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rJGS0qoJ1Q5n" + }, + "source": [ + "Sylvain, on the other hand, knows a lot about formal technical education. In fact, he has written 10 math textbooks, covering the entire advanced French maths curriculum!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ft4zCttb1Q5n" + }, + "source": [ + "> S: Unlike Jeremy, I have not spent many years coding and applying machine learning algorithms. Rather, I recently came to the machine learning world, by watching Jeremy's fast.ai course videos. So, if you are somebody who has not opened a terminal and written commands at the command line, then you will understand where I am coming from! Look out for sidebars from me to find information most suited to people with a more mathematical or formal technical background, but less real-world coding experience—that is, people like me…" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UBedAraU1Q5o" + }, + "source": [ + "The fast.ai course has been studied by hundreds of thousands of students, from all walks of life, from all parts of the world. Sylvain stood out as the most impressive student of the course that Jeremy had ever seen, which led to him joining fast.ai, and then becoming the coauthor, along with Jeremy, of the fastai software library.\n", + "\n", + "All this means that between us you have the best of both worlds: the people who know more about the software than anybody else, because they wrote it; an expert on math, and an expert on coding and machine learning; and also people who understand both what it feels like to be a relative outsider in math, and a relative outsider in coding and machine learning.\n", + "\n", + "Anybody who has watched sports knows that if you have a two-person commentary team then you also need a third person to do \"special comments.\" Our special commentator is Alexis Gallagher. Alexis has a very diverse background: he has been a researcher in mathematical biology, a screenplay writer, an improv performer, a McKinsey consultant (like Jeremy!), a Swift coder, and a CTO." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "V5uZfb9y1Q5o" + }, + "source": [ + "> A: I've decided it's time for me to learn about this AI stuff! After all, I've tried pretty much everything else… But I don't really have a background in building machine learning models. Still… how hard can it be? I'm going to be learning throughout this book, just like you are. Look out for my sidebars for learning tips that I found helpful on my journey, and hopefully you will find helpful too." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IurjrNMx1Q5o" + }, + "source": [ + "## How to Learn Deep Learning" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TkJGIoyZ1Q5o" + }, + "source": [ + "Harvard professor David Perkins, who wrote _Making Learning Whole_ (Jossey-Bass), has much to say about teaching. The basic idea is to teach the *whole game*. That means that if you're teaching baseball, you first take people to a baseball game or get them to play it. You don't teach them how to wind twine to make a baseball from scratch, the physics of a parabola, or the coefficient of friction of a ball on a bat.\n", + "\n", + "Paul Lockhart, a Columbia math PhD, former Brown professor, and K-12 math teacher, imagines in the influential [essay](https://www.maa.org/external_archive/devlin/LockhartsLament.pdf) \"A Mathematician's Lament\" a nightmare world where music and art are taught the way math is taught. Children are not allowed to listen to or play music until they have spent over a decade mastering music notation and theory, spending classes transposing sheet music into a different key. In art class, students study colors and applicators, but aren't allowed to actually paint until college. Sound absurd? This is how math is taught–-we require students to spend years doing rote memorization and learning dry, disconnected *fundamentals* that we claim will pay off later, long after most of them quit the subject.\n", + "\n", + "Unfortunately, this is where many teaching resources on deep learning begin–-asking learners to follow along with the definition of the Hessian and theorems for the Taylor approximation of your loss functions, without ever giving examples of actual working code. We're not knocking calculus. We love calculus, and Sylvain has even taught it at the college level, but we don't think it's the best place to start when learning deep learning!\n", + "\n", + "In deep learning, it really helps if you have the motivation to fix your model to get it to do better. That's when you start learning the relevant theory. But you need to have the model in the first place. We teach almost everything through real examples. As we build out those examples, we go deeper and deeper, and we'll show you how to make your projects better and better. This means that you'll be gradually learning all the theoretical foundations you need, in context, in such a way that you'll see why it matters and how it works.\n", + "\n", + "So, here's our commitment to you. Throughout this book, we will follow these principles:\n", + "\n", + "- Teaching the *whole game*. We'll start by showing how to use a complete, working, very usable, state-of-the-art deep learning network to solve real-world problems, using simple, expressive tools. And then we'll gradually dig deeper and deeper into understanding how those tools are made, and how the tools that make those tools are made, and so on…\n", + "- Always teaching through examples. We'll ensure that there is a context and a purpose that you can understand intuitively, rather than starting with algebraic symbol manipulation.\n", + "- Simplifying as much as possible. We've spent years building tools and teaching methods that make previously complex topics very simple.\n", + "- Removing barriers. Deep learning has, until now, been a very exclusive game. We're breaking it open, and ensuring that everyone can play." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zeTRPRj21Q5p" + }, + "source": [ + "The hardest part of deep learning is artisanal: how do you know if you've got enough data, whether it is in the right format, if your model is training properly, and, if it's not, what you should do about it? That is why we believe in learning by doing. As with basic data science skills, with deep learning you only get better through practical experience. Trying to spend too much time on the theory can be counterproductive. The key is to just code and try to solve problems: the theory can come later, when you have context and motivation.\n", + "\n", + "There will be times when the journey will feel hard. Times where you feel stuck. Don't give up! Rewind through the book to find the last bit where you definitely weren't stuck, and then read slowly through from there to find the first thing that isn't clear. Then try some code experiments yourself, and Google around for more tutorials on whatever the issue you're stuck with is—often you'll find some different angle on the material might help it to click. Also, it's expected and normal to not understand everything (especially the code) on first reading. Trying to understand the material serially before proceeding can sometimes be hard. Sometimes things click into place after you get more context from parts down the road, from having a bigger picture. So if you do get stuck on a section, try moving on anyway and make a note to come back to it later.\n", + "\n", + "Remember, you don't need any particular academic background to succeed at deep learning. Many important breakthroughs are made in research and industry by folks without a PhD, such as [\"Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks\"](https://arxiv.org/abs/1511.06434)—one of the most influential papers of the last decade—with over 5,000 citations, which was written by Alec Radford when he was an undergraduate. Even at Tesla, where they're trying to solve the extremely tough challenge of making a self-driving car, CEO [Elon Musk says](https://twitter.com/elonmusk/status/1224089444963311616):\n", + "\n", + "> : A PhD is definitely not required. All that matters is a deep understanding of AI & ability to implement NNs in a way that is actually useful (latter point is what’s truly hard). Don’t care if you even graduated high school." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5BvX5VCZ1Q5p" + }, + "source": [ + "What you will need to do to succeed however is to apply what you learn in this book to a personal project, and always persevere." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nKc7SKdz1Q5p" + }, + "source": [ + "### Your Projects and Your Mindset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2Q8b7ubU1Q5p" + }, + "source": [ + "Whether you're excited to identify if plants are diseased from pictures of their leaves, auto-generate knitting patterns, diagnose TB from X-rays, or determine when a raccoon is using your cat door, we will get you using deep learning on your own problems (via pre-trained models from others) as quickly as possible, and then will progressively drill into more details. You'll learn how to use deep learning to solve your own problems at state-of-the-art accuracy within the first 30 minutes of the next chapter! (And feel free to skip straight there now if you're dying to get coding right away.) There is a pernicious myth out there that you need to have computing resources and datasets the size of those at Google to be able to do deep learning, but it's not true.\n", + "\n", + "So, what sorts of tasks make for good test cases? You could train your model to distinguish between Picasso and Monet paintings or to pick out pictures of your daughter instead of pictures of your son. It helps to focus on your hobbies and passions–-setting yourself four or five little projects rather than striving to solve a big, grand problem tends to work better when you're getting started. Since it is easy to get stuck, trying to be too ambitious too early can often backfire. Then, once you've got the basics mastered, aim to complete something you're really proud of!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IUqe3KD21Q5q" + }, + "source": [ + "> J: Deep learning can be set to work on almost any problem. For instance, my first startup was a company called FastMail, which provided enhanced email services when it launched in 1999 (and still does to this day). In 2002 I set it up to use a primitive form of deep learning, single-layer neural networks, to help categorize emails and stop customers from receiving spam." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mloWM6Wv1Q5q" + }, + "source": [ + "Common character traits in the people that do well at deep learning include playfulness and curiosity. The late physicist Richard Feynman is an example of someone who we'd expect to be great at deep learning: his development of an understanding of the movement of subatomic particles came from his amusement at how plates wobble when they spin in the air." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tIqpwIl01Q5q" + }, + "source": [ + "Let's now focus on what you will learn, starting with the software." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rf8oDDd61Q5r" + }, + "source": [ + "## The Software: PyTorch, fastai, and Jupyter" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Sc9udd-o1Q5r" + }, + "source": [ + "(And Why It Doesn't Matter)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DAr8REBm1Q5r" + }, + "source": [ + "We've completed hundreds of machine learning projects using dozens of different packages, and many different programming languages. At fast.ai, we have written courses using most of the main deep learning and machine learning packages used today. After PyTorch came out in 2017 we spent over a thousand hours testing it before deciding that we would use it for future courses, software development, and research. Since that time PyTorch has become the world's fastest-growing deep learning library and is already used for most research papers at top conferences. This is generally a leading indicator of usage in industry, because these are the papers that end up getting used in products and services commercially. We have found that PyTorch is the most flexible and expressive library for deep learning. It does not trade off speed for simplicity, but provides both.\n", + "\n", + "PyTorch works best as a low-level foundation library, providing the basic operations for higher-level functionality. The fastai library is the most popular library for adding this higher-level functionality on top of PyTorch. It's also particularly well suited to the purposes of this book, because it is unique in providing a deeply layered software architecture (there's even a [peer-reviewed academic paper](https://arxiv.org/abs/2002.04688) about this layered API). In this book, as we go deeper and deeper into the foundations of deep learning, we will also go deeper and deeper into the layers of fastai. This book covers version 2 of the fastai library, which is a from-scratch rewrite providing many unique features." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Rvhu0Wh61Q5r" + }, + "source": [ + "However, it doesn't really matter what software you learn, because it takes only a few days to learn to switch from one library to another. What really matters is learning the deep learning foundations and techniques properly. Our focus will be on using code that clearly expresses the concepts that you need to learn. Where we are teaching high-level concepts, we will use high-level fastai code. Where we are teaching low-level concepts, we will use low-level PyTorch, or even pure Python code.\n", + "\n", + "If it feels like new deep learning libraries are appearing at a rapid pace nowadays, then you need to be prepared for a much faster rate of change in the coming months and years. As more people enter the field, they will bring more skills and ideas, and try more things. You should assume that whatever specific libraries and software you learn today will be obsolete in a year or two. Just think about the number of changes in libraries and technology stacks that occur all the time in the world of web programming—a much more mature and slow-growing area than deep learning. We strongly believe that the focus in learning needs to be on understanding the underlying techniques and how to apply them in practice, and how to quickly build expertise in new tools and techniques as they are released." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Q0OXy51V1Q5s" + }, + "source": [ + "By the end of the book, you'll understand nearly all the code that's inside fastai (and much of PyTorch too), because in each chapter we'll be digging a level deeper to show you exactly what's going on as we build and train our models. This means that you'll have learned the most important best practices used in modern deep learning—not just how to use them, but how they really work and are implemented. If you want to use those approaches in another framework, you'll have the knowledge you need to do so if needed.\n", + "\n", + "Since the most important thing for learning deep learning is writing code and experimenting, it's important that you have a great platform for experimenting with code. The most popular programming experimentation platform is called Jupyter. This is what we will be using throughout this book. We will show you how you can use Jupyter to train and experiment with models and introspect every stage of the data pre-processing and model development pipeline. [Jupyter Notebook](https://jupyter.org/) is the most popular tool for doing data science in Python, for good reason. It is powerful, flexible, and easy to use. We think you will love it!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zu3AxH0y1Q5s" + }, + "source": [ + "Let's see it in practice and train our first model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TrP8uPxJ1Q5s" + }, + "source": [ + "## Your First Model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "J5nmoHRW1Q5s" + }, + "source": [ + "As we said before, we will teach you how to do things before we explain why they work. Following this top-down approach, we will begin by actually training an image classifier to recognize dogs and cats with almost 100% accuracy. To train this model and run our experiments, you will need to do some initial setup. Don't worry, it's not as hard as it looks." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FB2OUfyB1Q5y" + }, + "source": [ + "> s: Do not skip the setup part even if it looks intimidating at first, especially if you have little or no experience using things like a terminal or the command line. Most of that is actually not necessary and you will find that the easiest servers can be set up with just your usual web browser. It is crucial that you run your own experiments in parallel with this book in order to learn." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iyyKubWi1Q5y" + }, + "source": [ + "### Getting a GPU Deep Learning Server" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "07Y6y5qN1Q5y" + }, + "source": [ + "To do nearly everything in this book, you'll need access to a computer with an NVIDIA GPU (unfortunately other brands of GPU are not fully supported by the main deep learning libraries). However, we don't recommend you buy one; in fact, even if you already have one, we don't suggest you use it just yet! Setting up a computer takes time and energy, and you want all your energy to focus on deep learning right now. Therefore, we instead suggest you rent access to a computer that already has everything you need preinstalled and ready to go. Costs can be as little as US$0.25 per hour while you're using it, and some options are even free." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4IJWT--q1Q5z" + }, + "source": [ + "> jargon: Graphics Processing Unit (GPU): Also known as a _graphics card_. A special kind of processor in your computer that can handle thousands of single tasks at the same time, especially designed for displaying 3D environments on a computer for playing games. These same basic tasks are very similar to what neural networks do, such that GPUs can run neural networks hundreds of times faster than regular CPUs. All modern computers contain a GPU, but few contain the right kind of GPU necessary for deep learning." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wsn7r4HW1Q5z" + }, + "source": [ + "The best choice of GPU servers to use with this book will change over time, as companies come and go and prices change. We maintain a list of our recommended options on the [book's website](https://book.fast.ai/), so go there now and follow the instructions to get connected to a GPU deep learning server. Don't worry, it only takes about two minutes to get set up on most platforms, and many don't even require any payment, or even a credit card, to get started.\n", + "\n", + "> A: My two cents: heed this advice! If you like computers you will be tempted to set up your own box. Beware! It is feasible but surprisingly involved and distracting. There is a good reason this book is not titled, _Everything You Ever Wanted to Know About Ubuntu System Administration, NVIDIA Driver Installation, apt-get, conda, pip, and Jupyter Notebook Configuration_. That would be a book of its own. Having designed and deployed our production machine learning infrastructure at work, I can testify it has its satisfactions, but it is as unrelated to modeling as maintaining an airplane is to flying one.\n", + "\n", + "Each option shown on the website includes a tutorial; after completing the tutorial, you will end up with a screen looking like <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OCplhymJ1Q5z" + }, + "source": [ + "\"Initial" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "U4cd1dvo1Q50" + }, + "source": [ + "You are now ready to run your first Jupyter notebook!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0gGppQjk1Q50" + }, + "source": [ + "> jargon: Jupyter Notebook: A piece of software that allows you to include formatted text, code, images, videos, and much more, all within a single interactive document. Jupyter received the highest honor for software, the ACM Software System Award, thanks to its wide use and enormous impact in many academic fields and in industry. Jupyter Notebook is the software most widely used by data scientists for developing and interacting with deep learning models." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9_6utNzU1Q50" + }, + "source": [ + "### Running Your First Notebook" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3PcMgMRT1Q50" + }, + "source": [ + "The notebooks are labeled by chapter and then by notebook number, so that they are in the same order as they are presented in this book. So, the very first notebook you will see listed is the notebook that you need to use now. You will be using this notebook to train a model that can recognize dog and cat photos. To do this, you'll be downloading a _dataset_ of dog and cat photos, and using that to _train a model_. A dataset is simply a bunch of data—it could be images, emails, financial indicators, sounds, or anything else. There are many datasets made freely available that are suitable for training models. Many of these datasets are created by academics to help advance research, many are made available for competitions (there are competitions where data scientists can compete to see who has the most accurate model!), and some are by-products of other processes (such as financial filings)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IVGZ-9BE1Q51" + }, + "source": [ + "> note: Full and Stripped Notebooks: There are two folders containing different versions of the notebooks. The _full_ folder contains the exact notebooks used to create the book you're reading now, with all the prose and outputs. The _stripped_ version has the same headings and code cells, but all outputs and prose have been removed. After reading a section of the book, we recommend working through the stripped notebooks, with the book closed, and seeing if you can figure out what each cell will show before you execute it. Also try to recall what the code is demonstrating." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m5TUcmnw1Q51" + }, + "source": [ + "To open a notebook, just click on it. The notebook will open, and it will look something like <> (note that there may be slight differences in details across different platforms; you can ignore those differences)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ItOEi8br1Q51" + }, + "source": [ + "\"An" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UDlf3Fi21Q51" + }, + "source": [ + "A notebook consists of _cells_. There are two main types of cell:\n", + "\n", + "- Cells containing formatted text, images, and so forth. These use a format called *markdown*, which you will learn about soon.\n", + "- Cells containing code that can be executed, and outputs will appear immediately underneath (which could be plain text, tables, images, animations, sounds, or even interactive applications).\n", + "\n", + "Jupyter notebooks can be in one of two modes: edit mode or command mode. In edit mode typing on your keyboard enters the letters into the cell in the usual way. However, in command mode, you will not see any flashing cursor, and the keys on your keyboard will each have a special function.\n", + "\n", + "Before continuing, press the Escape key on your keyboard to switch to command mode (if you are already in command mode, this does nothing, so press it now just in case). To see a complete list of all of the functions available, press H; press Escape to remove this help screen. Notice that in command mode, unlike most programs, commands do not require you to hold down Control, Alt, or similar—you simply press the required letter key.\n", + "\n", + "You can make a copy of a cell by pressing C (the cell needs to be selected first, indicated with an outline around it; if it is not already selected, click on it once). Then press V to paste a copy of it." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "f1Othlq91Q52" + }, + "source": [ + "Click on the cell that begins with the line \"# CLICK ME\" to select it. The first character in that line indicates that what follows is a comment in Python, so it is ignored when executing the cell. The rest of the cell is, believe it or not, a complete system for creating and training a state-of-the-art model for recognizing cats versus dogs. So, let's train it now! To do so, just press Shift-Enter on your keyboard, or press the Play button on the toolbar. Then wait a few minutes while the following things happen:\n", + "\n", + "1. A dataset called the [Oxford-IIIT Pet Dataset](http://www.robots.ox.ac.uk/~vgg/data/pets/) that contains 7,349 images of cats and dogs from 37 different breeds will be downloaded from the fast.ai datasets collection to the GPU server you are using, and will then be extracted.\n", + "2. A *pretrained model* that has already been trained on 1.3 million images, using a competition-winning model will be downloaded from the internet.\n", + "3. The pretrained model will be *fine-tuned* using the latest advances in transfer learning, to create a model that is specially customized for recognizing dogs and cats.\n", + "\n", + "The first two steps only need to be run once on your GPU server. If you run the cell again, it will use the dataset and model that have already been downloaded, rather than downloading them again. Let's take a look at the contents of the cell, and the results (<>):" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "0qTR9Wzq1Q52", + "outputId": "ac46d403-1ffe-48d2-8cad-2413b65fe4c2" + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epochtrain_lossvalid_losserror_ratetime
00.1823000.0222470.00879614:36
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epochtrain_lossvalid_losserror_ratetime
00.0519400.0185310.00608922:46
" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#id first_training\n", + "#caption Results from the first training\n", + "# CLICK ME\n", + "from fastai.vision.all import untar_data, ImageDataLoaders, Resize, get_image_files, vision_learner, URLs, resnet34, error_rate\n", + "path = untar_data(URLs.PETS)/'images'\n", + "\n", + "def is_cat(x): return x[0].isupper()\n", + "dls = ImageDataLoaders.from_name_func(\n", + " path, get_image_files(path), valid_pct=0.2, seed=42,\n", + " label_func=is_cat, item_tfms=Resize(224))\n", + "\n", + "learn = vision_learner(dls, resnet34, metrics=error_rate)\n", + "learn.fine_tune(1)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m4_BoSCU1Q54" + }, + "source": [ + "You will probably not see exactly the same results that are in the book. There are a lot of sources of small random variation involved in training models. We generally see an error rate of well less than 0.02 in this example, however." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "seUEY1K61Q54" + }, + "source": [ + "> important: Training Time: Depending on your network speed, it might take a few minutes to download the pretrained model and dataset. Running `fine_tune` might take a minute or so. Often models in this book take a few minutes to train, as will your own models, so it's a good idea to come up with good techniques to make the most of this time. For instance, keep reading the next section while your model trains, or open up another notebook and use it for some coding experiments." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vW45GA6S1Q54" + }, + "source": [ + "### Sidebar: This Book Was Written in Jupyter Notebooks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HuRrB2wi1Q55" + }, + "source": [ + "We wrote this book using Jupyter notebooks, so for nearly every chart, table, and calculation in this book, we'll be showing you the exact code required to replicate it yourself. That's why very often in this book, you will see some code immediately followed by a table, a picture or just some text. If you go on the [book's website](https://book.fast.ai) you will find all the code, and you can try running and modifying every example yourself." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Gg8hdEGE1Q55" + }, + "source": [ + "You just saw how a cell that outputs a table looks inside the book. Here is an example of a cell that outputs text:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "id": "9Eyg4oei1Q55", + "outputId": "7c6206fb-409d-4003-d656-7bdde04b2ea7" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "1+1" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FwznOEub1Q56" + }, + "source": [ + "Jupyter will always print or show the result of the last line (if there is one). For instance, here is an example of a cell that outputs an image:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "id": "WeFGRjjS1Q56", + "outputId": "9430edb2-219f-4daa-fb6f-83cb0c945f64" + }, + "outputs": [ + { + "data": { + "image/jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCADAAJcDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwCCy13+ybGCzsrdEit0KxqTwueSfcnuaoXl9Nezme5bczHH0quibnPtT2Q4569q8x2cnPdvqdajZWIdyElpCdoOBSSSJtZiTillBTAIGPeql/crBbkAZJ4z2pNFpIyLifzJm5JAPXNMSdVdW5+pqDeSeo5Pem85xnj1qbHZ0OutWE0SMNxZugArUXR7oQecVG0clQeR+FWvDGlPFpkc8oIldQeR90elbUWYnIORnrXZDDe7zM5JHKBQY+DzTCmwj1q1fRCG+ljUYUuSPYVGxQJuYHAHrWEk0ToyA5Py7jn0pr4XgnL+gpoO4kjv1+lPWLIyOfeo1b1G7LQkgy3ynAI54qSQAccDn86EZUzxkimkNJySMdqtO2iFa+5WkckuMYwe1OiU7ucYx1NSGBkYkcjqRTeSMDgio5bsL2GvFlCFxntTAGUAEdalj5fJqU5UkFc+9PlC6Kjq2OPyNFWcq3BOKKfyF8yEA7sHjjjFNAI6kdasFQpHfPekcKrHAH/16duwrlbYXBZj3zk1galc75ioOQD6Vr3tz5UMmG+bb0965kL5ilixBz1qJNbG9KN3cXHmNuc8DtWz4a0oavrMcGAIIv3kuecgdvxNZMSFnCqu9m4Ar0fwzoy6FHLLfSbbqVQRGOSFz0+taYeHPNG03ZHVwoEzHtwqjg44zWdM2yYoc9ePatH7ZH5pCEhZAApxzuxx/Ks+7LPJGzKVbivXquKhY5XdysY+sKFvgdvBUVjSZdwgAx6Ct7X3WMwOD8xTpWPFFnLMQpPYda8efvSsgatqxFjCqTjn2p4jOOhGT1p+6KHOWHvmmjUIAcFlx9aq0VuRdslERZcbOc9c0gQqTk8ZqeEiSMPG6kNxjNRTAgYyeTV2SRL13GSkhCFwD3IqEodvy7vripAOcZ+tSBvlCK/HTAFQx2KwQEgYwfU9qlXa3ysQR0OKl2DgMSD6+tKm1MggHP6Umm9ilZEDRRqoZDnnBzRSkeYTjPXpRRYCAjIPqPU01m2g4BY1KynIAA46ntUboIwWHJHaizFdLc5XULk+ewzgE9DWe7lzgcemKs6qQ942OtGmQma4UYDKpG4egrNqyOtPTQ3vBOnG61lZJom8qMZ3ds16NfTRf2tHMqkkYUZH41l2WoWul2yLHtjVjjGO/rW5AoutpRkkLYIxWtKry6IiSbd2Q3LfaYhkKMOGXjkY5qRpFlkAZhu24z+VXxo87bQYyN3Q4p1xpUUDbVJaU8AYrRuT3I0Rg6jp6OVO4FlX5a5O+tLmKWTYdy44HQmuxNrcLqBSWMsY1BOOAM9AT61BcWJlLnKLgck9q5HGW60NbxejPMbu9mV2Rw6EHGCKriVyAxYnPpXaar4Rku5/Nt1yzjp/ePvVS08AXpANxdwxeqLliKcVKWxVoxQ7QGY6fknHPFXmxgkkEnqM1sWPhyC0gWLfJIo9eAa1ItPtIV/49oyD1yua66dGVrM5JWvdHJDccEYwOlMSNQzb2OT2Fa+r2sEFwkluhQOMlfesvahUNnkGlyWepm5DWbjIXANOOByR1oK4IBA+tTGJiu4YJHak4gmVmchgRnJop4j3ykjjb2opCIHUnOTx2qOXcIsk4NTnO7IOR7/zpJoy8JxtzjmrasiU7nCaiALx+ozV7TbWViJrc/vl7Afe/wDr03ULCVrtiGDZ9+a0LDTpkgJiLCQ44Brlb6HenaNzqND0z7QA1y37zGQhGMV3l9DaaT4Il1FIQLhV2q390nvXGaPazwKLkyFpwMPGeAw9h2NenWcVprWgS6deRHyZU2nP06j3rsowSd2jmnUb0R5z8PvifLe63BpOoh5bSZmjinlXDBgR37jkD2r1eaxgtriW5kO52+6COg9K8xHw8tPDWuW32Z4pkmmXEjE7kywJ46DpXqd0/wBonJXmMDaPQnvXTLltoYLnT1OSuYGM0oyQkj73Y9foPwqhc6XdQuJJU8tHwVj3ZOPU13ltYJuy65A7kcZqheWkk9xJPOjLCBtRema55Ub6s1jV1scoWR9oUYwMZ9Kc1g4dWYEof4h0p00Oy4IVTjP8VaUEh+yHem3HfPAqsNTXPqVUkyGKyRF3cgd81XuCgRgvGT17VM7rMFUSmX0C8D/69YGqX67zbxNlejMv8hXdUqRgrIhqyuzM1G4N1cOVH7tRtUnuKpqMpjaAO1TghVIIPsKjQBsknBrz2yRjqWTIXHPFR+a4OM4yO4zmpySCM/dxTDtJAYACkw0GqG28jminyxkgMnJ9KKmxSAQyOPlXC578U27iWGBT5ijP8J4qS5v2d9kS8+gqvDbmR98x3HPUngCm3fSJKXVnNakIIp91xKS4PCpHnA/Gug0OOG9i2q8isvZlxkfQmsfxLtjlXbMY2zyE+8a0vDtrDMqu8cSuTndLhmNYU4LnOiUvcOoVJIBHbM+RIwTIQ5wa9F06GOCGGKEkqi7WH97H9a4q50/dpxlQAlMONvAGPpW5pWuCKNBMvJUNu7H3z616cabZx8/Yoawn/E9dI/nePG7d82w/0rVstYW1xHcP8ijczDk81kzPc3nii4n02DzEZVDnHGcd61YNAlfdPevHBI38Ocj86ydJwfMdtRw5EYHjD4harpNu8lpAlqisgj81OoP8RJyAPpVbwF8Sr3xQrw6vaxEFyizQrwMevqPeu81XQtJ8RaeLHUo1dVA2MvDD6VnWXh/w/wCE7CaKzjJkkBXceW5+lauUXHY89Rs9GQXaKJnKcqe4qiTd3Fu9tBGozwc9qr2upGWRoWyzI+Dx2qTXtZbToljtFBkkGTu/hHrXPGoops6bXaRy3irVZ7HytNgm3Mq5ldDj8KyrK8yNrOST0AFR3UZuZJJHdmlc5J6c1SMElv03F+y4rglXk53Oz2MXDXc6KMFzkgUgj2tzyDVHT7t5DtcgMp5FaMkm9wRgCuunNSV0cc4NOzFEYCjOOe2aI4POOBgeufSkjg3PuJJz2NPPyZ3HGRWm5CdhXUQnBkBPsKKjRfNYg49eTRUtDTIoYI4Uwo+b1NNmJhiYAjPJ56VMiFn3HA571FfBTEenTrT5eVOxHNd6nnmoTST30g3F23HB7iuo8L6ffeYrl1ii6kMoO7696xrK0d9UfyyCQfvEZFd/ofm+SYnfL+wAx9KwoxvK51VJJRsjr9PNlPaNChKv/FHnj8PaiKzltcxOCYf4cDOKlsozbW6NjLnpuPJrfto2a3BIyxGTxxXsR2uebKVnoY9mospzNFyrfeAPStVb5JT8zdD93sfqKSayhGTtAJ64rGnJtZzgkqexqajTQRbbNG7Uyt51vP5QHBA7fhXNSX839pPBLIjrtzxwa0GuSyB0IDfddT39Kx7q3hMwuMHcO/pXNNp7GsV3KEcpt9QmmLPsbp9fQ1ka1qLXd+p3EYGMdq07x2lIVdrHnoawJF826DNEBj681xVlZNLqddHe4sQkY5HA/wBkUksW5gHJUdcDkmteGKMW4yDnHQ9KhuLdY1yG2k9gK5HTaOtTuYXFvcZKkrnkcVu2siygMm3PqaxLiMMQvykjuDn860dPceWBjkVth3aVjHELS5qhn3dFI781A5DszNjipd4SM7jgkdcVzWsa+ltuitjvlPBPYV2zkonJCLk9C5fatBpsYIO6Qn7gNFcfEZLq4YnLtjknmiuR1nc7I4aNtT0vy/3W7BwTx7VR1KIujLFzkcDNarsY12jOMdfeqbkAHv654/Ku97HnI5KytJ2vSMJlTyCK7GzkubUI22PYeuBWHPEttdxzeWwGcnBxXV2bQzRrjLcZwzCualCx0Snc2tMlkvP3hUkEYQmult5THDtJ5yRya5qwmETFY+AByAamuL3YgYlgegruVRRjqc0oOT0N2W6TyiWIBHHWsGdxI4K7ucjrkVm3OroBzneODTLO/wDtTSRRDDKMjjrWEq6bLjRsTszRSsGIyw6GqyFvNcSN+7ccAnvTpo7pyrsCrKelMuQo5OAOpXtUc7Zoooxru1MLyOu4HqBiqcQZpA5A4PORWpPMI22pkqOg649qjFqHw6YPqMVyVbyeh0QSLUMSmP7xJNZt4uJPljdz0OOa0ACq5yOO+elVJopGO7dnPXmk9UWjCliYtjdsY9iMYqNrsaYGcgye4NaNzblkZg2QPcispttwjxGPt94nisdYu6NLKSszIv8AWbq9yPP8uPHCL1/GqNvb+dIN2Qo6YHJNX4dOUysmRy3LY6+1bsWnokQKp8xHFa8zkF4w0RmQ6e0CggEZ7CiujtIGcbZFAwOKKtUJSVzB10maMkpZQuN2B69KesaiQErkKOc1FsBkG3/9dWmCRHBbIPX/AArvscNyjf24kBLR/KRkAGk0q8tYGMbckdVXt+NTXdxkkCPArnJ1lhuFkQqoPVn5AH09aPZ2d0JT6HoNrJgMwj2eg61JK53NE4zjBAPesyynAtQ3zBQPlz1/L3qe4eSRi/QhRz3olF2KUiZo0mfiNDjOc0tvGsUmQVHHas/zZY7hjkYYdPerMGwMCSVJ9aycPItTNLKlcsWPpVC/i8xAQ2No7jrVlblAxQLu/lUcwkb7wwnrjNEkVFmA77XIYEkcfSpEkG0FGJOfvelPuIXd5OEYBcg9Cais0LJtwB61xtPmsdCa5bl+NWaL94wbPpUMsQjXhGGe9XYoQVCkdPXpUkqAIVYZUdNvSt3DQhTOcuJNx8sNjPBIFZMsaCUqsj7u2TiuiuIoXGGC49fSsq4gCq2QCo9+R9K5pwZupaFCyQPM3y5kJ9K3orVo1BlC5/ujtVDSNqRP90sTnnrWyo3xkYyR3zXZQopRuzjrVG3YiZUt1wuCPQ0U4qHXngnsaK6bGBVUvGuTgEnJ9qWaQGM/MGHXng02TncAeccY96ozKzKcAnb1JpxQSaJJblZAoxzj9KrXJUoXGOBwSKiUYLEHIVTjApEg+3XJEn+oTG7PGfb6Vs3ZHOleWha0C8ma2Cht7KSetb0d4Sf3wxjn8a5uxha0v5QgIiJ+Ue1a+oMPspIGCFycVhCp3OiSsXJbpImL7l3EDjsBR/a0DbEklVD/AHcc151c3uqtMksCFw5wFPQV2mhWbmMG7kSaVwCwA6U6i7E05Jm+l+UjURwmQeuMU+K8+0N8jNHj7yEYqzFLCsLRuuAB+lUEntfOYxksa55ux0QB8mVvLJIx3FQwW+1genc06a78r5uGyaTzTKm9TjHvTjT6ic+hZaaKMfMxUHvzUBuAg/dMGyOh71XlkyCsgyuMjIqg7gMGViV6AntWc5O9jSJNdy4xlgPTA5+lZd9C0zxiByMEFgDkGpppd5Vo85B5XrVyxs3Ad3TA6gmphByZU6iSJRAqKkiwhSByccmpkUAg5z756f5xVgISAhXcGJANRtGI2XA78V2pWVjj63I3QsAMZb0xiinYkJLDg0UXCxUcqVBIJySc1XkiZwQo+U89avGEMPQkc44Jp2wBGCr2rWEdTCctNDFVOGUqWHQAdc1JaARySq6LiQ8N6GrT+XCxyODzUDN5mMJnjpit5QTVjCE5J3LDWzRgNkFSM7qW4uk+xNHDGHlYHkngVXVAMmQHGPug/wBKesZIwFCqRgcdKyjQs9TadfQwLm3mayOQAFUnCcE+1TeEJbq5tprrzPn3bcdse3tVrXLlLDSbidv+WcZ5/wA/Wn+CbOaDQoBcJteUbj6jPNZ4mysisNd3N5/OlwZJNgxzjqaRZlhVvKQ5H33birU1s7tlGHoOap6kdtv5ZfLtgZBxiuSMeaR2ylZaGbLdLK7OJSIxyN3c0keoLEi7gW353d8elX7fQTOoOCQPWp00vfAxC/LGccCnKtZ2SFGldcxgXGqYjG1Szehqok13PI4jiynb61of2UZ9SYmTai8EDqa37TTIUIGQg28AHJ/GnThz6y0M6k3F2iZ+lacNwlukbkZCjvWqYxhsgggdjUgiYvtRtqgevNLhY0IBUknlia3UUtEZ3vuOjGUj3D5R6CqcsIadgeMGrqvIM4J6bcAcVUYYmLyHLZ7dDxQUhpjMZLZJz680VYZEAO5QR6ZooFYzo2T5iW2knGD2oacMpROpOBkdaq/ayqkYC59O1PW8kGNqKNvcdvxre9jntfcZ5DF2Z+AR3HFMMUZJ2OAvTjr0qWJ3uJPnI2jgCllC9QeR0I9KtT7kuPYgG4qVJxz3FSMxCBVXrweKQZZscjPJqaCMlhliT1Bp+0RHs3cwPEMK3NgsOSfMnjT6/MK662hAVVTGxR+XFYE8KSTCeaQ7I5Mog6Ejua1LK/jkcIHB71w16kZSsdtCnKMTTEWBlmJIGeaz7qJrlGYZyjBlB9q0pMvaMwzgDrUUCkRrtB57nvV0opairM0NP1OCWFxIpicdm7/Sq32z928EKMqZJ3+tLGgDKfKDsKacnK5KjsM9qp04J3sCqScbEK28cQGF6889zU7DYxKjjHFNdstiM5AHAP60b9wCjoozgU7IBfMeTgEDjj3pAVClm5OOeehoXqNpAHrmnStHESA6ncPSkkgIoWyQQc5ycCmzjbINjYPfHT6VJEQpIcsdo5Oe9V5VLSbix78E96LASq5YZYYP04opyoJBg/Kw7eoooswujnF2o2GA29wT3+tTAsUVSoABzjPJ+tV4oy5ZmYELzgDrUzBY8c/KOPrXTynK5WFWQhuBgE8gVLIMgEAjp1FU2ZWIIO0nn04/yKlSWRkUFV5bmpaBSJRnewHBHfrxVyEKqqWHOMY/CqiKVySPlIzU4G/cSBwepo5Q5iG1gF0hTbzFkY+p60S6C0AXYD5hIJPpUqRbZQ6tsbbjINXFuHMOJJ/MBGMEVyzwybudcMQ0rFh1FtCIt5LsMAE02MHIQBmOMciqiSZ+VAEz97HOat72CqgJ3Hk8da1hDlViJz5nqStLtLKoyQNpB4/Go2kVEyTmQjgGgQboy3mbQCQS1V5YwZgdysB6HpVNMnmQrnaoCDDHOe9OVicEnDd+etPij2KeRkf5xTpIdr4CkHsQaXIw5h4kJ69RwMiopAEQYbDjkj1pu1iwB5xyKQk5Khfmx69frSUdS+ZWBDlyqnIx7UixKJAC3y9zinRRuX/jyCR/+qrKoRMVYbSOlXykOYhgcOVj5HUcUVJl4mL5JUetFHILmP/Z", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAJcAAADACAIAAACGdmZhAADRy0lEQVR4ATz917KsW5oe5qX3Zvrlti/XVSiYhtgEhRBAEOogxQNJ5AVIJ7oPRShCd6EThRihIx0gQroDglAHWpDguru6qqtq2+WmTe8z9bxjViNr1dxzZv75/2N89v3MGKNaqfzPv/z8/P/0f/w//G/+t3/nX/zf/883l6uffXW+2y7r9d5m1f7133z8m998vH2qHk+9U+VUPR2rlVO9Vmm16qv1fLWY1aqVSuVQr9db3c6pVt3v98fjsebd4+m431X3h3a1st/sNtP5drWqHg7VQ/W0P9Sq1XajeTqdDofDdrs9VSutbrfZbbd73cF4XGtUj5XTwQ2Oh0q9Vm82TrXG+uDWntCo+2K1cdof81vD7WvHY7VarVerHls3Gk8+uPiwP1SP+/rJeHzcajZbrbavePuwO7hro5Hfd7tFo7at1Y7liwZ0rByPzWZ9t9mcKhXz9f1ms3M8tRqtvq/sDgfDbrS7m+3e79Vavd5smX6uW29rp2O9WtntlsfjptWoNBreMJadKftWJcOvZVS7fbvZ6rZau+12tVzVmg3TOjZqm8oB+TKEnfda9VrtdNj70azXK8e9gVXQ/3Sq16s1k23090cUNYpj4+ZF87/77//ZP/mnf/z/+hf/t812fXF5vd4eKsfOalV59+7p66/v7h6MaYBW4dfJtA4GhnaGXUOMaq1SqYVtBnmqVCvGYyLYsK8hQuW0XKwPm61pHHf7/WbregzARcR2QyRuNpt7c8Ww3a66rWNqvdY81YgMKrqHm9TcuNFAFrf1OBPB3Aa2EQKEx7xmo+nijK7c1UCNpo4MrdphVyhzxNht1VPc+rj3ceWQx1cORrdu1qtunwFXq3i+2Wzcudk0lZZJt5qdU7WNA2HEMeM2gnarlb9NpFqPzO1ClkbDSAynvd+5LAKDyt73lDKZ3KBqelX3xpo6bYgol/mgYtPDcu/wMQpjMm5WM1nD61YQyR2PmfKxUl1v1qS5UL/e+O/++z/50U/6/9O/+n/+8MNvfvHTV6Z5e7fcLLf3D+sfvp/f3u0bzatapUHWQjx0dI/dbrXekChcNG6P8LbZVA0Vt565ekKtaMluRy731cOxieP1pnFgtVdUJP+tuEUlkz4W3a3v9rvdvlppkIz6MUzERQqV6wg+3ptahCealxvgXP5bC99N3huk2Rg9wS1yUQ3v0YRc7ffVPeblAu8e6saAua1yo8N2b2C5vWlGKP/AUX9ujgcP9n2flO8yObt2lwYRZfSukk/3KSKMp+FyxQArJn3aHnaRboTzPyMxy+2hySScjpTIR6bPIhHBzLVW9ziEOey3oXW16c2akZxOhNvFuVHEtE4Itxjq00y+2nj5arVc/nr2MHn1cnx7e//D10/rxXI2XS9Wlc26sT90O7V+tbavnPZugCqVw8njd5tto15tt9otRupZiCs047gpqtqk7qR4T8wP1VZrtVxvFhvWIV+vk9WY4ehXGQThzuhONClcPxJXVxBpJgVJKmxWAwmLbJthZpcJFpuCSc9TwzNaGjnD5PKPQfA3taN6Zaa+4xnuc2yEnmEsxrfr1VatEdHB2gob2Gg0m56+3bFIp/V250U5u81aq1lveXXaeYgx4GeEJozwRE+phQ7VzZ4xXh2O204T/dHcOEJ2Mh0m0cqD36rHOuOGHF4m7i7GQ2xN+FQ7EPpDxNf/G74STYgCh2VcRxHVSqUZjxADR0Ubm+W3j7ez81H/t79ZLyeT7WqNAfs92vWb7fHp0FztOBc8WPt+q95g/Fhzj+20O51WO6QJRU+8xH67ZznRyafmSPDqxnaoeH/DQO/3+FFvt5/JjR8he7223+7IiEHGyO0PCNcYdCqNZrXVMXRemMKvVpvd7kAE+DaGiFKxdrGisevxxJ4YYaZgMU/PnC5SG/o+/11oXz01aFD8ZyFumFEja9jdYNFiQRn4Vpx/TII5Mf8no95sd9Hteq1Vb/l6eWAUM4+OTFaaMXyRm8PxSAJ2+40nE3T+N2aMzWWquN+izW7bPGFD3WiPp72p4C02e/n+/ojOEULS5gZuyCYb8n/yJjG47tmMTzB5bGysF/ftevPh9jZacKw3WuN6pckUHKvtmPrKvtFunbZLs4qwMGXR6PApj8yIN/72z4y9TVZop5+EJIzd7tZLoObUbbVZsSjxekN7oyQZWZUiF0pQghi9TH+1apLjRotkNIvSkkves17vjIejm5vrbhfsWj1Nn3a7NXRCqPCnzkgxPzE6z8pphEXQn9UzsMBVMYkRaOP1n5hpQhg/RyCqvFQ1dKGXZrLdmj27W2t1e91Of7/Kd+Pm4vywrFA8DsqtkZ+R50/yjLjyeqa/2R45T4IRnMYe5FmcQQPEoj31Zrvd7cVXrzehZAZEmeNE6jXogbGsxK8XdeViqJxn5Io6qviYRubBgX7HU6N2pAV+thHEHerNznYbH2o6UZXIZqDHerWpblkk5s+AcgfQCz22sMEKoHVhKzTgJElfDNEWfTeL5XbFwKy5jma10Wm31uaEnIgRS1WNrXQTf243VUit1VxXjr3hoDPk9uvrzeF0qDLuZ+OLq6vrq8ur0WjUabc7N+3JfPLu3Xe3d++3Wzdk7SGmQBOM/NvJh10Iy+oYf0CoNwj8M3uDE1kPMO0ELrpntRmF2/M/XFwUIgMtpG3QmPCgvEJXPKszgyfiylYSx6BQclnjQ+hbtddpHw4r30J2MsqMMOFQfXxmcFmz1ojAr7a0EDc7bFWlzupUUB3MGnT6pypcD7rTZpjDjEyNUW56wy8I6D5lIJHZU53WblsQW3XfCmmxDpcOjCR+HquNXa22JUgE1rApUBE+v7MTZlIPZNr5v3doP9OB6CZVnFeMS3W7YZZiuA0wPoLRMRdmxk/m0IhyI3M9bFyX6CJv8kHr+aY1GrBB+03l889+Mhqcd7v9TqsLUS1dua112qNPP/kRmfn+7dcGiGHeJu0FZwX7hObROdYOA2OE8M/7hJsAuQXVh8woFiXYHXenbUz7mg6SfBJuesYWDO4L5Yvo6O7Mmxlx4G6PJf7PrMSMBHljIZMGjmcEbhBKBy7kC4cTHeZ2XeUv96CuGW8GGNr6BZfidOCd0wa7sAo9fGCQBL7IVJlEHm1S2MFmhiuNwzYfULDCJAzYsfBgY1yttw7sAgpQNbf17biu5ymWaWTkIimKmCEDpbl7RMj7BmdQ+ZapGJzb8SgwRcjrrdDef4kyWgbmiu5YsGY7Frjeru5OrWrr1SdvPn3zJXljjcBAYDb4lA1sNYeDwc2Lw2Q2eXz6sD3tmmxwcCqygga5eaQ+jzbfgkUqFCUaGcPOSefp+efP/XbDvOQbZawZHsuQr0fofJ2RpCU+zbNzu+hejGcRDt4MpyAAMSkx3qxXkQ1zT7RT73a6xbxRTYge6AuJYs38Jy+/FQ1iAczLBEKquP0wSDhXqXIwQfTlav/BmIbB+uIpX2TOxKVB0TEZeWhu6Ol5N8aH0JBxRKFDRc74KBiPaLg/vajU2m2BU8uTIhtU+IRPeQLOe8ewDaU4GJMSrQv5aTtaGl5CIhKKoA3G2CdsApNNsDeHWleAWLu+eoGFx0OTWkN2qE1kWzEsrd2OMV912sPXLz9/ePhIhTrdfnQuL7PxKEJ0wHJPN6KIu/dYwMK9sKdWYWp3RyF/VTzgQxQv0a4riEMtGlTIGfsZeYuiGFXhpMhTGG7U7ovQrFHcbuysJwXWEeTapgQM3U6vUWuxSiQBMPXI4u4LLGSUpEoY38iZH5iAdP65H5bEbhaD0cCF4vUT70Usw8IEVJ7OAEZrEkFB5OYcXZLXiFmTZDH2GseJ6LWEGhEe1CkCmdH6enwDaTVhlp2J73qwO7gE3l4tD+tN3CK4Rwv/oOtFosJDo04uJsQzfn7I/7YMzXLV646Xk9nr608/f/XZbsX+VVqdYQkS+JdoAV+I3JvNrt3uX1/d9Puj+ZIei4s4SCPILAExI6rFinE5RD/GluwaGEpAGfSS52ZauoMOOxOj55rIfLhlcihgsqySoCeagC3+lRdpCDQkd3EiyaogY7TXTGqgXNNcPM2sGM5KC0thkHDcO3xcHkV5SxhEPjwlpIj2ujDZAN6BZpIJb3hwxo5+RT5Mzvshp6EL3viKxE6stED0sMnMSUYtbg/FYzRgZffB5poYUfQOC8TWMAGeR5W3a2ko5AuCqtQPVXbVhM0pebU9dLpar1EHGQgef8NjS4WhcaQ9JjXi4jmskN+Dj5L2qW03hy9evLy+eMm0N2udZqcdFJYggUkgahFCgwVK0MWTB/3xdrfAWtoffpX8UTNRUAOZn8nu655mStIyZD/c4sthh1NlvSPB/DqtjfliadhGE0HOgMLoZZgeNSkawAVgCGlIkLkX1Ce94FrMFkL4DhO6WC3iempNTyIqcS+hC07W+R6eOlmkCJyZxDbjUiHIszBBee31CgI/ICiJNzXRai6MpLnavPHX6GHaEIPF28A2SJM4m0kpORKcMmRKipuxu/jTbAF17iIThjEyHUJO/pNuAnX1dkcktT5uMVbs686r2Ww1mx8lByJkxTwwV8Qq1ORNylu5PXGpiLB7g+72QCDqCbZr3a9+9g/Oz1+y2d3+xenIFNcWqxW5FpJXap6/NRQSsN7nnXZvXJ0/eureUI5HXlpuQQiCMrEmYEexkUD9YbdiJZgw34WZ4z9iyQlH4Ria5U0DiAS7A9vVosowMJZEvaO/dDCCx/UwU3XhB2oRsHa8bp0GYbrMWr9cIwDIHIPYizXYgW4U3VPCtJNbuxitwx3KjVKJJZ7DrLowlgsJhKSZBhjX3IJQMwTXF1vrPXfyeNqPvc8QnLRhPisX8x/MiVg16aJAXSqE7TWRBzTIqwtPwmCaHq8mYkuIeljteIDVZjGd7pdrX8OkyGBJi8h1GlF5rsf4KI/GRtCJuXi2gafd8fMv/6jVu5SoardGrdZItjxaUkVjJNtwyM02vjIOjIp0QbI8xLG4OppBmdEo7jz0qNWRILYMobab/WYNCLN7OFJECH/bzU6PTBihb7ouaMvkzQvmFRl6FqldCZEYDHE6+d2aUYgqyGW04xPJdpuikXmM8DiamW+BFInjY7aSeuYWK8c1EBMZBg5MvZjWg6CrPDJfNVBkz5OlSTcMK1lrNNfMUYAHBSlx6eG0jZlJJoJuw0NR0RhQUhThenbxie6rTQYHymrsthtjcZEP+XczNE8h4Xq9NmdTIrpV0b/nxNSI9NfbklCOxSBKQpE8Asd9bg40JBOKtWFYajBYayVl0+4g1Hh88aOvft6o91G7MxjWGx3CUtlsW20prcZSGmi7hGjJk+m5B5MW41JH3zVyIWTkzQ9qVRzESdKDVfMo5i9QYO/pKMBMFasZHxaMaWAlr8N2gprYuK+DCPEfPDMu+14MNrgXgyoR6emFWnL3lYabxt0++zbXZdaBM9Hx415y3eUoLnY3hkAkrHeZPHlKN8dg2siEsf4BoaFzSwRGTbCq8Qd0EwxJTDM/1YbDLiCUjyQyfi8+MOqVMLHegYzpE9JTVIkEnjYaGRPr02cuPnMuTPJKrQoRufK9gMEIRSVstFnlHbrMt5t+WBYLkWcgbfQwtwFxo8x1efAM+ue//Gm3Pe51ztqNfqs1JAywervTwj436jcAURmupexEo9lCKvLX63SE7fPFEm/ZKRN1a/+C3KvM6ZFgCvFLmA+lURyOQLTOcGZ04g7C4FsgPA0joNH6SFwxI9LWW8UQYiG9FG9gGDxaAj6sJUGMUq1Jb2PlqAI74KtRqtyr3hTq+T/mAHAGBQZiNbNK5F12SJoNvUJGYp0vx0gZungOY8V7xZ+x8b7uE27OUBhH5C61EjIli0C0DMTI3AFDAKudSpnXHn4gMrJiYXAJuzJM1EniJeH8s1J6B19Mh8iaCrVjM9kKI+vwUVBCCQqjuJkHMUXKxAxmgQKezsI1mu3lej8+v/rRj39RPXV6nYtee8Sjwa1QDGS5P6wqpx2FHPR7S/kwZgZvYiGq/cLGrfy8cqM5CSEYT2T2qKNQOq5BUmYHnR7BhC7Spk4SIiYo7Kkm8qhBiRHVQLNNsmKmid+SztV2kIMpGio8SG4kSxAs+hXatagSWtMHdC5yav5Y2PIekcXOpGbCWzAxNsK9/tZiJM7HTs+KRMtfR/o5u6OMmY8CYcjNM0QJ6SNY4YLRs4kBXFSvhDWudFN0ih/lPeS0UKLRAN5Ou4rCxSkmgdTnYW6h/IZGZpXSYBQ1ei7z6avL5fK0AR8CPQhcinAFGXo0EfFQZTwaSlaQO9bGJI+VdqcfHFdv/OjHP7+4eF2rXnUbo1I+a/Z6PRLK6Z4WMmRgKFwk7dDAotwiU6qBXmxUtCR675bmxswyUIyVoRI6dbTEjs1Gh6HiJRIo5zpGAo/JqFcoUlTCdEhz5NVPH4C7yMkpZhLiW+/vKxxhNAth6XV5YA0yKN+LBDcT5fiLBV9vVYnW0E0qQNid24eS/+kpfnkmpsflff/xmB08Rbjji0ihBIQvCE7MEsXwp02BAYBklPhNeWqsKEk8nIYHsDmC43GxCgjDSBE8Ngfd/lBB9ZiM3AOKIvqEv1LsMDoD2af6yJamqi3UMNvilATZkIC6RFIqccde1EKRu9aYPC3OLl7/5Gd/r1br99pnlWOT6rh7r89F1YSdveFo/7RUdukPaEmGuN+pJ5Pz2PNer/v0VOKwqIcEfjPlncoWY6KIAdcHfOPwUKaUfZixtjdiN10AJZWI35wJBCNPc5E079MNRHNPFX8D2oSUGEHS6eI+sCmFFNaFCTQxhKO/+Bq9CfBMnACXENlAQeJVqgjGz9whY3ImzxJUfmInYxDJCn3CMZkJg3RDFt0TmOQYXwLHgQrTk5AK/qxtTJJk+4tW8lIMhXuEVIZLKLaZa76aURTNi+z4/ZmXstNE47BVu0igyvmtl4vtYiXepo8J+X01jiaS7HOel4qiPl9I0Gez3Xy2BAy//OrnL158eTx22RLJd8/GJOGMBGdBSHHydeJHgALCEsJqraB8pEyNzC9Qa6ZIVtXkEOmgmkamiokJzg3+NMVQE8lMIc5JeA5GZPqe6AaKX8JpFyvZF9K7f/gYyqBmejeosiwhD3QAAsvUkD30Ce1hiJhAYh8CFgPHeChOih3pWcC0uzGErmS6fQsxDbvYudwDWY0ViFCvcjtgkWqVMDAOWLW92P5GRe5ZZJ3086mx2cH2HFn5X7BjPC1QwNKRo7ha7EwxJK/CaADvDxz1DqPKeWQoqlDGGKe/M8ASJcdLe7meS6GCKgetGDrUJEZCKIKbUGix2H36xd/5+//gv2i3zpUOW7XuapFgudUZEJFKfc+bz2ZL0thudTbLh7o0k++yhOGGIdKEvYeGeKFHkhzMKBIgCXaWKJ57xoLC47CQJEikZHyZmxygnHiUgx9tqMdV6R6pZseonzpHZVup6VyRIkgYmg8IEgbSmKgJ8LhPlsBA4t2SzzO+gsHjg/xOiPlt3MYET2EY9N1QJ6BLC5KxkQewLSRNhMpxRK39P8Wt8KegImKsjEAnVV4PdTW5dYD+QQSaBBHpLEqcElxIUS4keXFmuoAyf2+SoWcIGG/x/AoFgoNLQWCxXM0WuIl8eW5mIUzKy88MBgvRFWGKtY7Sx0+3+oPhH/3iH7z59CdqybVap1VvLo8LFYbKelXv9lq9bnVX6ff7egbWyxmkxZai/6l+aKVWFoPmfx7oiVBXPkGVPI6OcdEBHPGc+bxMwaUBgPWkPTiOY2LKzEyqmkPCl3o70gecxGsacioDZN7A3YFFoJl+CeFDOHwM1YkR+57yKtgogopBI74KyJEYRihxAnUG+o04CSPp9iTbjDHJgIK4jDqWCiNzB+GDh7NbFDs+UZ40xhtCrp+6NDPWjr0F0po9dUxTUO+Nt+asE/tymwWNBAoaTzw6ZpAiiu8lCf6sgrjoA5BVD8dBJW2zSY0GA6CJhLn+RXdJVphZADCDbra4j7WGKpZ48eblj3/8i1pVpq3SaQ92qy2ydLstgcBytTjttKMxSqhU2a7VKXVbyfwppkcKEaTOwMZAsp7RxNAuqDs5QlcEe3uwUbomE6dqTEPAihEmNNjXpFMhPu0YZuNCZtx3fSudc+1GrdtV6sE8fq8lJdlouyf04VHRRYYiDgwgDkYlLuZFI6kZucFxyhClz6cpB5u6Z5Eb4DCoyfPKw1CVULuPn3nDFzZg+Ro+TFxJt2h0OK6KJkvQqA165CxpIP9Lxi1dOqSOqhuTIUl25CtuVOpmFDHEelY+k4iUJwwq1AknDlCrlqxDoOwuQweRkCeSKJbghyLFxkaNzBMJcnMGLZlVMKFxcXF9ffXy6XEpZVPCOaHqRpjfGZ/Lo8uQGpaOLYCk2+utZ/cZADtLOCMawQudNDPVJdeicxERvSqyvBQzjPU0/yHi8XkhE7kk2M8tENEzHWal4w0pqpCkySSSNlDWnfiEjGrmxCA/vCQRvIkQSBYWFkS412WF2+6PCal8RVjIZeS8hOsYQab7niUXs157lte+noAtGqkwErWTJIgrp0U8OyJRzGhUNND/n2ecWW88hO3xDpLVj5IutOXI0LIG0gXMAZscF0LW0A+0N3xeQnqPekvnBqDjnW8lZfHMxcVieZhrPE2vjcDFkHybzSgA3axjQxvHvYS3YIi6dNvdQ73Fwq4PrUF/xJ+utPOkr2Pf6bYAHnNR8XILIqNK8PS0oiuNZn+xuvdRTKJbelAIm/6HIi7H537H6BIjv18aItuOOGnvZCflxxNNVZSF3ZuvRuPIJEoFyQTuSmFXWyGbUQbcUSswWsAXbUAMmh8YDm+gQKrquORfUgyeKkFHTqAK8y5GCIuE2u6hC1CU0+o12gPCdNLPlLaCg/JsKLJ5LgtTFdNJKT0c6bAD3Iun4gl+lGhThJtglxDKAkVcaIgob4XHgDXnLGsTl5PW2BgPfp7MUk5yG98Qx0zqIAf/cB72Sehp6JH7NJ2ae2o6gS1plvHbAU1KkG9wCH/siqEbzdl0sVsSEjLB7w0G/aE2uXprqM+wBVXIPWmd6nRwYLldT9fLnn4qBNf/u9u3Bu3J4xTioZHYGAeAYjF3DQ7ZVdEyPoLYNePY46R93GjCJYo3DAWi8xHYJyfMYwBTRhw7HJObBoa4SkytSs2jETgTwZY9Rb8kuzif2o42ECZzTwH/2JDxQNJMmdzAPcl55YvKr9FAFkggL1ptdrenupyEgGHtK/oKqkAvNlGSxJKhatLF8O2p3el6ijHgCxBONUVuYS+CB2T5NR7O4ArsZj54G6aSTVdV2G5IN5vJUuHucrnSCkJW4ylMhqhhVybAaOCuRMlqs55LnoqADD9ijbjUmKM47FKGCVBOyoJuBY1Uavhm/MuVAmHr4vrl+dVLtUlhfq/V7gGltLYJPG8ER/xvdVN5fHrq9wDvJMPE+J1ud7NaxDTTbCykJdEhv/tqxCf/hGIejAwx/UQpGbLwvLAUz81QnxgJeFYViuRKMuly9Ckpl9Q6hBRMllYO4w4qZVSQIcqeF5JGTPig1PtEbCUlV0AAZfDFNBUQCKoQByS1gqLrgAzfK+xgrFv1TryUZzHcPhebxSvxh9JhmmYaGq3is/m+ZKDc0iPDAgNlYYoHc3Wx4OYjLPc7wTZwhsSs+AyzOGwP7a5Jh7Ieg9U8gTyVGqWM02r5NJs+7teLdkJntXgGTKKBGSbOboUkgVciFzTGzeV82ez2G0rzh/Wp3fvspz+/+fQLld4lq0IzTvV2Ipfj4+ODYOrs+ubyfPz23Ww2mQ+6LDmbtRv0epWdMtPaKEBv74JgvVbay1A2iTetR0gl1WNIJKKmmwNUbPKEmJYqkpSA6clUxZfhCzMW3ujFjAD6PV2bynbuAiVQ2hhZmsb7B59UIcn2UfmSSXR5HpqwhykMM4r3ek5scXiRjfJyM34TLnM5nZHY0rjlplJPvuuSGLEiZqIyz2IscYYxDyRXzDGyQAoczwoLLM8beYnrUtbBe6hJrijJjm6342lEr2SIayR/oaCT/H86s3brlWJNR0osU0hoeNqtT3sEraAm8cbCSJZ7BzchVIAM6pksT5IosVKbzlfHdrV78eJHv/jjL37+y/ObV/325Xz2pKWAOyUaGXuzAaUtF0/Ds3G/27y7v1eqEjs8LSaDXjuZKXGuefORpRoBnzCnSrfE5bBee75MOFpZ/NFsdsWrGMkvPNMpWDxGlLABKhvKYqj0w4yKlTNalXNoNsaGLPY6Q35GmF0S+oINieKIZ5AUBYy0n9TIGf1nuvpJmZAB4/z0Ihle7EejQ9QSDeo6joiXyLx41YiYfCfyMRnL9cqzMJrx0C8h9ojqlGRQgimLLrocQRLajHm6Bw3DpXL3mlBIknZMVsctn6WUEAcDFAvJs1W1NwTN0+nlUZKM3sihwGCsTShDQIh5vhA0EN5RyuC6UI2GHCoaGmnr5ZvPv/z5H3/5iz+uNobT1VaWRmemgLOipNbY4gx4uN4tZ+8n7Y5a4pJRS+VDMbKhEXktdCIxRE8QxMEyp6WYJG+qsezI8mBLJUmCQbPX1WcprcRWGhC7ZHxxC0Xn2ODn6J/gi8Ej3aSsTLYwRz01PDB+NTJeJk19tLMep1hkM+qaXskS6ZuXi+lfyCMHWRiJGv50h0IWnbVKTcQFA7KUhYgYE6r5n9H5ndhIHiXZFnrGFZFL1jqikxmr/VGd8C+RRbIEZRGQb7pbfAAXUavTyOh6knMCv6gth8khAX3uI42zUZ0AKNcLuoIGh80K7CmySTCRwZjRq8QU/qAuhTg+IInMtSbTq1dv/uSf/vPrz3+6ObU/3C4+rFcXg+3ydr5fCCgWzXF9IzIqzR+PD3dv3lye9otWQwC6gZ1Hg85yMWEuMT6TxjN2hquQsuWb00JxEACKUyTy0cz6CbOGEZLzjFeMCMbQBYEaE1++26yX4t2Yk0SeVcmaGI+ioHD0sb3rVIZ19gfIxDpMQC1QxyDTMpIgwS0pp29jFYa5Pz5leEWBCv8SJAgfGHNkDgtFYW0SJmme7p5IR8FLbsJAelYcW7AtvJOCPNKSw3DbfWpV3TAELPBaCLXebNodpRdapssFKI1IiE3imr2FJGwC7BBAiM+4ldoMfRd5M5t6pPbrXWQJ2eNSY+LDu7iW5KLckJb4iTpUo/TId19/8WMF/Ur/fHq/XC13t+8fl931sK7tm9HbNAX+rGXrOBgMvv/ht99989dffvnp+ZBtkEvTxEyj5cHF7PSS7SEnMPJ6s5wr5bMTCIkVfa29neYTkV2Lr9s8ImIw1Jvg8S3530surDfpMtgt1os5Q4pyBukXXERK1EEyrqnbGwp/hmjYYCWUoWQ80pMfwya/8ZwYqugi8V7skNezCcUDXMTLMMP1GHXYyoPyg9S3KUkjn8AjbffxBoFHJT/eaHsUpYlGaAiUTuFHDTQsRFX6WcSDpiSdGRIQPnwRfzOrhMlMiy6VtJZ7+NPckvqVyYnYxA7otyTMcemGtT0Km9sEs53Opqg8WZe9ZHACsQlahCnfr+jwOfaHvZeffvX68y86g9FBmNGubdcfuNvBVef19XVPe0+jvj5tR/3L+XK22886neM3X//Fyxe9s7OB+23XVkMC9yeojaWXXVilRUuhWBaNCakbn2rjoNcp8nbabhZbsgWrVerCZAMyGsleFiUNHLC71p3VLBPhTItF5QpZTcKuukjD5RZwtVnjXDX49Nk3PgJvM63oTriYAJ/JzWPCLWUKLzwr+vMHRkaZPJpoJzeb6opQZP04iYLg2UG8l7vgD8d+2CyDYRLMBAbD32jNZUdL1byYB+wKhZMfS8Cb4USGYhLdx7+QnKhAL57qzrEi+SRjrSRZtVutSH+8utqqhoksoohXygzczLRZsKAaj4g7PqXRLviLtiZwG5+1BmfVWifLK5MZrF2M9ddUG93K1YsxC/Q4s64sWR/PvLkZrpYf55OPvfbeQtVGTSZs3+vX+yAYndovNaCYbnhTOY5G/e2y2ut2SdPTZMK0VVPeekb0uj5MKrY+qMKsZSiylHQXyB6UkV58b4eQVIp7cll8A/n1pPnxtGzULGQktAnY4pHxSZEEvUrbRCr21DN2L3ECKiKH370Q0J9YwsqJaFCbj+X8KFxvIBfBESbCSfE1RaS0NaFTBJ+7lcGjDe0kqylu/Ka3GQJMwmCtkcBWtNtYvYog5GE+9dAIQTiBv5oJi3OGxZI1dmGanS0nEb0W+w5gS6awwMnyokg67Iq4lPaCyAs7y9H1B9effXb+6k13eCYGOh46jePmoj/ghTe75d3j2/7Y49SXTvPHScp1sryNw/l597Cbrlee6ytGvlYJgTVUALRxkNNOV+54QyCFobwlFIU3AjMzra0or9V3bdOMRTMjhHCBFCXnF8OSLJ3ZZ66J92OukF+EUlEqiFtJ/vtwWODisdJFH7ECXSWigWoFXxAC9wwAamQtY64pLyT4T37xWRM8RG2DeKVORChaWm27VNtIiOG+uD/ioeRIKDGAHAn0/J8SGlH+TG4ldyEsRm5KKSbTsGK6n8NMxgb3IzJYhbe4yWELHhK+YJD4SiXJnxrBJGvkeXYpuVGyyLKeAHeNgyWcqRiU6blPYuiY52b7+tNPr968HozOxAA6+k2IVFJv9rHW3C13M+EA5ogpk4aOvq/bjZO+O0YacAG+RU4xZcctVx4QBp136myj3huBk6hxMZ+r243Hw7k1mKvlcbU+yni1s5yFa0XupKLnM1AS8/WHg+QaI30kY8k8xQIFeTOdyJZZifR54sNxebCmGiGTgicsiaMwifQieUaU7HjUAQ0x0jeLcPzhZzgaFCnn3m/JFyK6vxKwFFkwVULh/0x4ye6XpmZdEDIoxcwes9rwGaJGgoI/fOTL8EHFgOJR6Ypp+BR3SQCnaT7e9AmeGaJiBVxx3K9Vg8G5CCg+BchhmgRTg03DQpJNZTDe2wbpVgwqq29+GJvlQyU9SBxX60Vlax3lSorq/v6pN9LOUJs+3dOtLDtBRoZnv8MbGShiXkyDH1l9WXwemyNJN3CVBJe7D/qXULSYjfczH9X/9uPjfrtIQ2o0LQt6JLHMhTHcLeOHUgDKc2CNBL+iLvdG2kwczYzepYgbSN/NPEsmLUhU9ZlDZOvoOCIFVMRRBuezQ2Q8rMEyhI9dzVPC83xReqrfH1A4n/q5Xs11DTCPeZxbGVbq9ln/yBoJ5xnJfOL7saV4IeLOKkwkJhlujtRZ/pEpCrSSlKEAbcvPqE/8IAPjX9yfAikEz0yttwulIjDGA2U6mCgmB4QhaEFmSBY7I9zBZFBCKTPBu0mKS5utXk/aWgPx7rB5mt+2673H6TtcGQxq3379608/ezM6GywXKx7T9Jhc8d5iNusMxkiBMciufAZkROzQMaWfUuQnt8dBozfa7pbz+WOrN9Znvt5MlR/7o6RH4DLEeXyc3M2B641smv4rHU3eRj8otdvsp1fexMIrGsaJrqUgSHKwe2loamuzqmmEkEJv4SBUVOQ15KWurG4BeiE8KBHwSunBAvzzX44r44/x5nKXG5ArJQcJNR0JWI8FkYkk5MML4kTJi9FOTPgsUcIaT69UIk9sfwyFxQ9IAUHQEpCEACfukOAwqBgGEubL/oWfXgbXanR0OjP5i+WEOqYxkFg/V76K9BZfGlePkcjj2QYvd7LJ6E9SMFcvX6ndLxdzVQPCsdmbztTCgFSdjH8vB9QCHZKeTfhKz3GLwBlHDBQJl1lh0kRHRhNzotRYxMegBbC8QTI+eTwwRdOswOkLHMmzOQJdVKy3XD/NZTLX+5T9jiIUDamCPtKW3iaGJz2+/E+8lemGhDXNfJ0k8FT22POt+ZRW0VCegnklKysXs1lDfmtpFuUt3UU+pjdEHT2LFpJCkYNxGlHQAgLiDKMsxUelvCmJTb+SyYy5ZtQMxS2KK4w6E+DkT/LgIJk4Utzx8A56Ro1jFeF46Siwy8fFhpENL1KRUDD2oq2Q2FisjkvGCTjwFZJb7h6HSJrwHjs92hjon691+o1ed/jVlz96/aMfda4vYzHJO1ej+VAS15Lo5mk41JlBY1Fw19I3CMllIwWfponBEHyGHGm/q9eXm3WKWpWjxhj+mpQfcHb7iECmZ0q9Vr9d7x5aotracjGzYAQzrIDsC28Op+/fftjv7qIsqe6njQns3qyOlb7VTd2ogVlYsx1RMCmWjU/V1ETuIQxSQ6S5GzBMdYOArtHHZUJhlEo2AA5liIPz3D164T/F5EZhYtKRJ+NMLGF2xVbGAKB53sDxWEJ9dKFmkV63yl1CYXcyc6+Mh/rGNjROjH7KYUaSTl/6FWCTYnVu+sxEZPJNpbSE/6q33d5ysTxVrPkrlgC/IxphYXKAwVFZpEMa/c9rMBy/fvXJT3/8R1effWq3B9+RuJZQqe1qrSHYacYN0QG+yTmnDdjCHVB+o6udQYs9VIihnMYTyhfMZFKkWEhvUuIJ/mW3m29Ws+XmMB6dd/rDTFEzamfUDOIWYUazjZD1UF+SaAXWSlmSJFN7U4lR4olpcrcX9Q0sKVPutHqdZl/Jv1Xvoku0JZtehBcozid5Kc5wZrlH9JvcbNStow4KTK0uhUXYgpEZ8mYIG8oJ9HhaXjxu2MeFu9TSlhEpi9KO6B3LWNw0Cj9zOF7OcMOh+BmXKYyZXjKtOEQVdTZ6pK+mXcWFXpmKScW5+slkk8iCfjwoHY4ek2e5gOaIDHFcaU9at9MdDHqXl1eXl9eXF1f9UU8gG+ITMJBKEkRqk8R7s14f1EfTxYzdwiufEn5Qwjgj+gxsEsvCmVr70JbmwOder7/famhg2Zfq3uCKZVPBBMHkbEYzfahQZ6vW6bk4W53IrNsjCNnOhoOry7PpZJb21qQYKz0W03oMKJ6fUhKgisWrkF03Q9aGJ29r21TbXEMZm2fDsZZUXr4/GAwHQ8UywaN/y/Xi48e3t/cfyRhOFbqaYcwFstAw9+POMBIt0dwkaRV20j3Pp29GH8Uyf5SMgaM8CRZMPwHDM7l1yRAlL19PlRic4XolZIEQYyQb8rBInZtjSgRFbSBi4H+8VEkOIVaSbWq1SkMxzSxwjJ6seASAeCVQrQ9Gg08+++Tq8obpWG4Wh8dKsz/wOAUulepUzakIsvMjbWuuyCngJWe75qWCuyDrNASl1ZN1BsUIH9TDHvT6vY3oVTYNrM8KjaTg+P/h8Hw8Gjcao3BEULJfrPdLw8GHGBu5+Gb9xYsbYPTtu/f3j49UmL3gQq2G5CFiENvthIOxgsE5NfnTppRNV36+Vmv3Ox37Y2kx0bGO4Ol8SM4zDtXY0fKqUb28uhq/+962A7PlFGlUF6AzASGhzLTSHxSAW15UJGa2NEbDvYH6+CZxFFxSNC5jiJ6YetEkEiGaxRSWI42ZeSFZrBRQgGVUjwBzMTH7SToy3HFx4DEvvJavYYbSI/ac0wswJ36BLvEYGYGGBfETujMHFDG3JVa0SOXkcFyt5qvtMne2WwEMTYTqWijUzevT2cRo3cl3e92eCZAmVHT3SKnVU+Nz9QW4VD0ZudMxfzpZlyX9sJzNNiulD9th9HtyIZ3+2grxmN7GagfOWT7X2Wtb39hmCdDvXJyfUeHax48Y3r55sdBMoGCtuVO+XEJcG0dCiro9MK5vri+vr7r98cUnP2nYMcJ8soggMl20tC3f4v70mSQEfMXHV8U/n3725Wa7mVutp06uVqn0XVX4s9Sk0ep0qEcCProVbTVRqIfMlRRBcAKrv1VpNX+qRg+l3ZTixerwSqsjIrPEc0eytQngE3kLWIIOSQreu514lHxjyt9yPibN4qLnWEsPIV1DCfP0LIMgCCSE36LXtFOyEdpsZ1MaKO4wHPThm+VyrrtJqhuzwctnUGW2nJQRdONRtq1On3lnBjs8WUA0bfdoe8NV+4T3eBqNL7rdwcrqrbiQpMJni2mt0VGvlTkYnXUFq/roAaXJfPk0Xeuoo7BMxvDsPBsIGZrqsARssyHW6A2HP//lL1er5WS6sB3b+sPtabUdno/OLqSSxsMxzzoYX1ycX1y1u4he38rapM4cIBc7zzp6Utgpiw0KCI30hHJYAJjBIg8E0e72B8nVsbSYGTTP3SSvEudUPCh1pMeEn3hRSvAt/gCDE4YqWdEFKCDXst7EIualkq1OoGtSYMshDyLrDTkOQVjpBEj7FndAWNw0n5KLJAcinz6w9VisAqnRfBgkDm4JMcM5Ft4DYpgCOvf9PhdYtTBu+vR4c3mx169VTyJ7NpsJod3K6gsAot8d0A3JS48i45Z10AXszhTKbOk49+oBptPrSdrpsa/LHPhwvlqvdsdOb2SkZ2cXUMK///f/loE9O++Tsk7f8KWNG+PWOPWe3bo7GLJzTPBqMQVSkEmwqyZbUX7snbrjG7S7uKJ5L1zZ6Q4ZHMQulMUDhGDeGWYuptAmeROCzpMxS1w5m4FDWgcI2KZpxXQb6QL2KCi7h4rMasBM0hcRd+SUpKOZ5J0n5jCw0MWQN2dOq30fHIGbiisMrqW/OCULKgbCE/+zkIE7IBbUkguPlzRSohYnBbMEUVDnuFC3ptkUO71Gh/ZGq2/WecOlaSopyTqjipd2c8tzgCTr0M7PR5CD8oJk2Gw6Jf1e8+l0PptSNC3C3L0mkH4/URV8oDUJdrk4Hwvv++MhzrFy6/WKBtH1i4szQEBLhyqNOftotpz3R+eDfrdyuFDe+M1f/2o2rX7+5Y/Orl6xJTdXV+Lpjx91kadlZTQCX2qr6aMUeVdSuNNngVKRVhoacbNn3e4QOQRNKCX62GGhNvAta2w45JIHsPkj0cKy6Ij/p4aMKOrFFaGFlAGTxn/xOcGD7IxwM+yLFYw++CO9WOA4Agdf5IXu7lVguPUqfAc3gNY+DSd0eslN5HP/WBWNcwJ2kijcIkTgCNKUV2M+n7Kl+MdHswL+BeIk2CV6NN5nZfl38XxkQwHb1Uwo7sbaUkrBSayfLrEgDSAXeKFBMCrlWC2YLKbcCgAmb/Fw9y78mE/ihja7s7PrSk0wKS9PJ7rn5zeIaHFbQjul2/mCJAIGVsRZzLbWBrBLZI2ZUP3l6Iymgjoq97PZ6fMvf/l3/+7P98f1+9vvLfyJPKWprLJY88SWs+sPWiTSUgbf7/tgZa9XXyyP+8bl+FWjIZ10mC60RsgLy0nx2x3wLJC7UBCKCbkRJERmh4JsUF+Hpzyun4mFIuqoDUAhecQcj9E9YTunla0OdikG1ptlp7VoKRvqIqxwLR2PJOVKhiAxmrtvpDlUIkGzSAKOUOJ0Brv6D4JATEiZwNyNiASNTgirTMEUB96E/VFPnWK8HVNsMPp4CtuE/vQ/yY4IjjrUodvqasTQgk8Epk9Pd93mZ5+/kTFcLKzIByCB6wo/JLJKhjObg/ZoN1SHCrPltt0fSiVs3z/2RuMXZ1cdOF6HVQs4zI4otq0yFPU9S8gS6e1OTN/Nm89sS8Usv/sO22pfffFFuzfcL6Tuelwma0INYQKa0243V6sZr0KeWJThcGAQs/mCzbQj65KJFiWS2jAmaChG8tRUIIrlKpEGhxVnJQ5PhFdsV5EIyW39ibgYWZeYiS0TCFGyhCygAwyL7F50hiiLk1gXFIvFT3Rc9LLgSs6SBWIeuQyhSTyeDIjCeFYNeIqBZVs/XElCjJDpS+bwsAW6WeqCyPU4F6GRMIEggMjESIKsUjQUOkoMpstGGULSQfNNs4Uz3EBbVlO/BBHQCONpcRKxNE+zeed+8urVa7GFnTieHtakS8KaJ9Nc2RudnZ3ddHtng4tXrd45iCclU2kNf/Pt2/u//O3Vb3/79//h3/vyy68a2hd13VgGy6ZvWka20MZ5qA7Pr198/oVKRbvVn83n3969a/Sa/bOu2PFp8ihYsCmipamPT/ej4YDR+OHtt4x8CgEAx3BIQWRPJQQkjQmnHaea9TbbRzEkf0SZssA2jFC4yxKRenYWqx+1dI/4LPQ3JHpDMwBFdru4uewDAtzj3no7Zx8s17KWNyGbclPIkxIm7U9zFEork1rUBfOzSzrtECyOozpbzCwQo4XWYm83s2JhqXRMK+gS7SRHgbJ8vU2ClFGfPWR23R3BjSQnes2AcOgJ/3lEDy5W2xL+oCML93bJ5DPf5MFloBXepcBPCDIoLufsYizpbJ/cdi+MXGx+r49WLTAGyDrg3nigNzoxwaA1uOyNb24+/+n1zacayhvt4bvbx1//yz//9a9/ZaX3r3//Nz/52U//i3/8T1687te7WTZWaWzm7z9MluuLmxcvX75sDUY2DCXnq+09qzMY9yR7iD/GJk8rKdTnNQezxcOH9x9ZQUiDGLVbYFebzONNoDdAYosQ201SrIqMg0ua1YP0ucYFdkp2krgKapq7FUUchjKc35Gl5dxACq3Ywfuwi9YdzJBWeK643N193OzW1FIsKA2TkCr1j05iRAaT9aO1DDJVp0ABpPG4YV9FHzrnajEzvdc+Ka8hGsZx/XAKUMBm1tHFcosGWEcuDcTib13iBZqyPOohNaA5uIr+ccWmYv8XtoE+8OQJV8EqqQqW1K5ERpMP93uFJc9rbGuffPJqvphTkdOy0lA3bJ16/Qb980+ogM3C6iRsyHRvcHl9wxnaKUwI85u/+c3X3/zOhA3027fv/t1f/urD/fRP/+v/5kc//gqSEjB3BoOLFy9evbg6H41stYF4ADNunNnir35C8LuPj0lk7Q9ffP4loVyup3dfP6gWv3n5mnsB4XkfQirvzVqI8oVHCa6Gw80qRWWElTas2SS7jqO6UNIfH5jYlJKFFTsJp0RsTfsWAy+BBWlecMu4SvXK9A/0BtZ2Pb1/91YzCwfJR7FThJjSlXBMUTdANNoSj0gXmIP4yAB8eQn/+DTYBLFpslnCAPRdYF3q3t5ItK1h1Zc46KBKVUJfTnORWdvsVdEAu0qRJqXOgLIIhTnFIhlGOttNFpejvrjBgQbu8g1uqhmpMej3O33QgE1X5IRDBXNel+fn16Oz8x5lbHXWUiYnXS1a6trCDgmzb3/9+9/+/nfdYR/G+ff/8d8tlguD/L/8X/8Huyr/71/87y7PRwDH5cuXVy9uiisIkiuFMsWQ6jlkK1a0W+9yial9SbHR+Pe///37u7ezxerFy9f94ejp4dG42ZzmXmomyJHb8gicBY+ZUKyqN4aHQ0fXwHpDZsRNPcShf+rydlMBd2kiH8MngfncYOI7TBDSJQUgVbof9Cjc/rsf3qkaUiRADDrEEUQkPXmeInAKQ9EJlAx+pAf0s9hJOpPHxY/CdOJKleG80LifPiuVYr6W3sV0JEVXyOACPXAl7VSz6ItdsdasFE4Tabp5LqX+fLPf3RvzvNwuip1aGYX2viKQjexqo95Yg8oPb7//2c//SMT8u2++MWy6SkL4EsVF3Qm15kA0d0q6Q/KulbVH8ss6qG4/TpczhZ0/+5f/+tvvv58vFv/kn/6zX//5v/mf/vzf/NHf+wd/+s//MbsUWTlVVvOZp3p6ts5dzmAfRokvnzw9SmlenJ/Lkd0/Tp+mc8j28y+/HI+w8KHR3gBWXD3Ud1gmj++/GX3RQEmAbvdid+xOpoe1RF69w3EK5FvVLi8LapoifYodZEpLqIco4gIVvrSYQH27xam6srRkOrmbTazqQudAGP5D2YsR9Y8ddqf0RqBpoEhRSbqUN+KV4CD35KHARpREbm8m1HApjUoVAVpVF4sz5+VxBl98nB3OoLAi2ckesh+EAPOL7XVNTHhELuKbP72im8mOxZjjNnGM1hKz3WY4Gnnsd9999/L1q5//4hcfbh8MjCWF3BBtud5ZjpR8qAI/+1xtZIMxomykjcZ0Pr+7v/3h7dvbh4nH/vn/79/ZBOf24enP/vzf/OKXv/zkzTjoQx8NY2ilwXyauoe52rvdyrdO7zgc6XyERCAsMcOnX/34868+ZxSnj4+qEGySQwRY9antlOS3yB4JLWsZkCpriKMyld5wPDi3T1LDCjDmQhreijkRgWZPXhNqSELaTK06pojPm8wES1CzTban2C/fvf9OZMi3yUOJZ+gWtq8sQWbbkqjJutEoSKxxaqqegf7MsiQFcyZZ6ZfUG+CogpljHqUtiFy1yi+xESAYzce88KZwkaYkRM1NvV+ryvXJKWALtvnp0sLBCIWZ+06ijvSm5iP3ClpLEwBLm67Q6fzJAoGXL1+gCJ39/IsvXr755M1nn/GuD082V9ioCy9pQex3GgOxVtygtsMS2TttsV67uWf/8u/+/f/Vf/u/FqWh29/89vdff/ttZBuib8tXHYV1HHmpJlaYel9x//7wTNKGaj1MF/2zy0+/+pmqNJxiNcnGu6qco7PEAgnaUzhhxqPc1ewKuLDfvSBfFuLs4uzyRvqq2em3uxKnyo1ydtnAH4UitzLJmw23qcdoMX/a71ckQVYsQVnjMJ09LJZTIxVNESniyXcz3WSG3xJjiPwSaQRb8n7yOX94JUWVPA7aQi70nB5Hnb2481hErxjeZJVRWFEJ4tBf5hH+oSWnyMFa7AOONfVEbQ5r8/NglCKj+T65oe34bdI62BMlNTn8wGmCGuRBZhFfz+/68emh1bPSqXP/9MSZ1Zrdj/f3YIScNtA6vnkN+3G55gT068lIXuF4ZPdkcHBUikfA93j/+O7tO/Dn+vqatMKZ6O9R+rM3EaYjsGS7C5sTFGcvVdB1MdRe6w4FVfxivTtUzbfUGk4IWiERsm42nOuzCtJkWXvuhmnEpSx0LKUCkCd5BZajr8HQIhStYr6symEQtAkOhrvnFu0xAqv4yha5n+Fic1AH6BhyhSFinZbANDOGBzynP8lR0QcCnxVvoalbM0hMEpFHheKzol4xtcbElYY28g0cGqPsc8rjMujYn7LB0e/nSJRwQnUMUVmXEZ3EWEJauOIraYBLBi67fier45tZOSxatCKCBSh2m0GRF0BDlmu1WmBkf3huuxyraj778ie+9s133zHJbz75YqyImLR4tatSnw0Qam7mmZ9+/tk/+s//89uPHxn4pXbX3eHXf/nrX/z853/3Fz+HRSEauI4vNiHrpLfrJZlL9FsdZPPi3TalMxO3I1W7IaSXzlYU5AqW60djsHsTqiJbu6OvB24icEW1QyYhGFHTaRC9h98Yt4B8viZ92WQ320ANup3ZbPpwe7d4mijT9CEcjqF5Wu/m2+Oq0a1N5o8f7t7OV3O2jbhrdKV7uQ0nFQsZupXqPxUwC2YlpT/0NASKbzi5IGbTw0HD+MQQPa4vOSEF8egTlReehLc2rQ9E8Z47lKQwA2z3aoHCZlvS5IlnfRd+BX+Vv9GaN2SWSBN7m7gEmYXHCm6CO9g0sH3faWuw7JqzywQbVuGtt8vZX/3V51/85OXLV0oN6/12Onu6uLogKPw4/0SihzQScG63/tF/9if3dw+H3f97NLDp6ctOr/f6kzcXFxe/+uu/speYjiDWBHpezSYSqS2dxUWYk/1BAxMkep2+VhsBvd6Bnfzyenv3MHmYLHq6BzGw37OAj4kjfrEuoYV1Xk25GgVOBjYqhE6R4oHtmrSOKwvO54un2w8o4TvsRv/izKyTfK4fnuYP69MCkp1vJj/cfb9cTdldq2xRF6JzrygBdSzORXCtHYZ+qveV6iLTaDbsYPxqND3FD5gDRMg1SfOVTKlhor7Hx6oG60I5ecU6B6ZSnhQF2RJi1QpRrTjRRkH8At+ctcAlZE8qriCAuZSnWUKuSD57haMS1iXpJNRkr7rdlIWtPcBIKU/2lpw7P+X97cdf/J0//uqn17f3d3Jz79+3zi+uO/2unvx4W0pKv1fbVy9f/df//E8vzq7/8i9+I+u92q7mT0+kkvKNB8OyDiQAVakEV2z9RpC195NgoYu6IiPkl3ZvpMxDRLURLDaHmXM8FHWSsRmcDUdmiBaT6eNa7m615FoZnySHFQaV73ZLy/GqzW12neS2jrusWG9psAE9zKlpcZ0sI3OqdKgm6TkyvpPN07fvv5aLaQ17YE/8SnYriGQFbKA0Bcu2ADIwpc4U7wKe+KypUO5CvPSTaTej5AjCEblhbwaOeFHHhHsqt8WqGplvRy9LpG6sjUSpqxVPAV/Uk7Ldag4k+q73fXc2Du4RsWN9pIsSHbZYw511NuQknpLJjbAWGEya3NMK7truaaII//rNTbs/prh4/+Mf/1grw8e7WzBYGm7SfUygFVzczdNatTdvXt1cv/yT/+xPfvPr3/2H//gf3r3/8P772YuLi8szDFBjq08njzDUxdlVjIxtWTnDoefHwwtBs/UZOJ7FMDUgU+2Q4zgbn1vqp4pi3CuralCK5JYACYCjPBSS0Et94c1BaNEaHI8L6w5SRFOW6bbPRwOJ35ggKGg1L+HFCmrpjzrzw/T97dvpchIYpEmuqBdHSGuYw+BvPEqAht4anLxPOZ/93bOqMnlxdTGLvKH/JmGGhfB3vhP9Cxdx3dsJ3ZlYLpOy0vqN5j0pgyQ0YkkkSEPl9kBNecPWyCKYKvNNaQOaaop/cHRTstPKGgu7odSuVrWB9cAhhCdqcUqXkMYfm+PJMWbfnzPb7itWwCjN9kiapd8Yvnh9WW1dU6n5fNfvAqwfrEpMz0inU9cTc6x2hp1Phxcvb7o//eT8L/79X/zVX/31zdWFQzTkb212I61Vt9Wmct7aLvU9uNAEW93+TM79UB0PWQJIL9HV/OF2cv++22k7hcOqeIxd5ISdmH7/Z1jE9ZHvUKaqV1pGBeoDI0hnvcd2ipvVZ1K9VejW/Ou8GOhNi/TmyPmtexed+ebh+4/fPU3vlNB3i42F3dlrUk8rbUsosQU58Qr7gXOoIv4p/pkNLGudgAyCl5QuhVXzYdp1NgePZqkZnglVA0kSHEsD6KhSEoki4kKAHIzTShKADZ5Npp6Ut9gQCTa2WTDqDCZRI+mg8R5P2lvp3rSXGguUTp1QoEc3DdB3jV6nfnuYJDr1aPXOunYE2VYXm1NvMG45I6dqX0XZ3lOzp3PFiWoiVIvZnY4DA+i41xwT58767U7L3tAqrcfWaXLVOX466o7kEwZtvd33t+/4MS1uLL+eHt1yaWqrtaYKj6eqVVWdYQ/JNuuZSli/dbo8swa5Kw+gymCjwUmaFUlAbBESJXtVKMRr5DA4FQarCbMJa1MqWnhuuvxREkKTqfZVZnCNV4fp+Kx9cTVY7Wa3t9/dTz/s7FP2HLYTe309cW3oyWyyX5Ib7GQqtHaHIulyKQxe8EZqTOiPcNnfgRZm4Xk2IMC0ZM1yj5JfpSHBlFxtIkC+wl8C3I00KCFMt20iGJqGFMFIDGeWKpKBqG1SA2kwltx3GXFgschcFcUV+GyloAVNBuF4TG5bp4wWcLtpiJCyqDuWX8R08eK80ezp5oW4VDaFaVKvLMq19GkrQZsRxD/YxZrf0GMva+U0ornlqBN7BdC4KkS9vH98+/vmcrRczTm3YWew0XWwSGO/ENhiTuJ7PhhYpc7tyxHzX3zXsD4cDcd03KSW9gq0TJKKyAJY93QcWzqgfLm3dDrEznabCv97UBZa7djEZWTFyd3k46MM0GQqOpa5VSQ57Z0aUD07H9h292/+5lfvbt9ZKx8fRTHQLekuoCbYh/8pSBDGpWq8uOwpw1qwceKZNAVwR+F+qRoaubuk7JV9xHbYE4a5IaYF02SpEAbgIPcT5So1pthEl3oNe7QkamixPsmOIsoosDs5FinrPmwyY1z73ZLndT0gp4qhz2M9O94/Pab3bNXW+gS8nb+8ampe6p7RuP1Jsamyns4k3QYaWs6ZNRuTOsIpzR9WCM/rp/FXn8us8htyGlZksngerQMfKFw/3d9//8Pk3ceFSlPj4v0PvzmrvIJDTtvOfmXRK1qd1Lj0PM1W64uXL2QDSIdbkSoSzJGYLVEU/EpJaDBhhnBRPkU+Dd1pmX88h3CbRop7xVoKPHQdPh8NGwVczRfTCSityer8ErjdZkVd9fDtt7/6+tvffHz8yALa1iittHaFKFhTXid1BihATTy7Y5EzmdgwtzwwYoZdgT4JNhJL0EgpHy4Ry5giRKYbNAkpCiQFR1gOTXIai3RS+r4tyaCW3C9cTG8fx856aGGSwur1+IvpbFa6YJMWI7kJX1znLDd2QFwCxGeVhkAR+6wh2nX73fPh0PYmyh9z23udLPucY/RJPalzJl/CxngcM5WYert1lInw4uPtR3lvyjo6P59N04M7NMoo7CZV5en87e+/fvjhhxfjwcuffNLuqyrvV9M7xcX0Kg+u5bOUUMBEOaCzy8toJD9EAOtVVWyJHb4AUwVq3XZDwrsnIqIOzeZ8yqzOmO5kwskjqRYX7SV3BHg500Ru0J3m07lZauJKkoqdTx57RsC2u+k33/7Nr3/zFzJtcnINa2jRLrtDpAgBnpX28AAvaIR3CTJJA6AEdzibJHbkQJonr3Ai4CbF/dgE79A6GCml3URPCRRjGF2esALMZctKT2rK62rYf7gHLvLeyTPY35eVLE1UzIvbkWXmbqXCu7GPNIRlsERPGrvU8RYW+m51CCp6LlZzHO2dXfS6l63uUN/avsJCKmto/qgmW7afykBcnl9BGQ8PsMBuNB5++sknYvO0NLS73797/0lDtjxY0nFiusYvBqPW5eqcaRRozB+X21ltMNrXeroB07y4knux802lP3ZyURdxrBh+nMzkYP/iL/7i3Q8/RHtGQwmb1y9f/PRHPzobDQ1GkZrDrT0xWQIMNUO1pBSDT0mzS1qkWIbQUK7qCHOvBXk+fXTe62E/+ax/fjwuf3j329/85t8upo/2qCut6839kl1o6k8wfJY1oRzLCQFjVjgcm+n9/Ctti2IBegcMIHksH9fJzdn6KL0aASqsnfw500cog0pdUcwqLhAMX6S8fJp244htDGfRxcGwT3ltuq3mAaZIZHl2gDLRTva2BWCzX5Tf5YCrnI2FSXbf5VVHqIOpq7XYX6LSQiS9gqP+uA6RVhpCA/zo9FTBq0+TGWYqO4HFnOrr16+vb25kDm1n099sn0DMxVL1mOIPgaOL69Hp8O3j4/TufrOetgcd1dhhpzcYdXaLxbvVdyl0n40uP/20qc3wUHn74ekv/+ab//Ff/Zn2Q2usfvjuw//34S/X89m777/5yY+/+C//yf/iT/+X/9UXn30iJIyVAiwIvKwKFZBsS79g4Eg2QXFC3WZ22mMbK7N+vHu/WEywN5WY1u7jxx9++O6vF08foLHk4hmzQ1vpN/1ZVV08rayszhJqGzAEqYAb/FHKztwmUxvFASOyEUl4HC0FahjGKGmYnJx6MmrgnloBjfYJRgRyaz+U8OPatHWxWGFwAboRlNyqoYwvw2hC4kDKzixvbDYl5gKcO7Bm15Ftncr2cW/Jyny5XJSafm/c616M+hRR8MuLDnpD3Q1zaW2EHJ51h5cnbaJAVLPHGCj961qLQVHVU8WuV19oz375kn5MZgsU/fzLrz68fz+ZzMoCY9G2jMGBaQYZOz2F2Ioe+mRODifSQ3Sr1V5rONwudZa03r//8K//3a/+w69/Y+OPVy+vfv/r7//iP0IefxVFO2XlJtLYK+dP//l/+Yuf/mjc7wv81fyVc+UlmCGz1lOjMwiOgZbYIAcQAGvz2SPfMb4YXJwNri76p+Pdux9+//Dx+80SFFjA1k6fw069QLahz74pDLWWzETzwI0cjP8iZpZJcD+0yn+DRLJHbXAcahSC5PfnP2M7nyFeHGGxtSxzFEruRJugTpcuJypPSNypfdx9oGtu1ZDL18CUAqD8cvIIXE43oZOMR/a5FpRUd8tsYynoajeGDV2BTe8spMHuHh+f7u5XiyVQ3LQRhZMTzq5qDc0T9Vb/zOoP4ilvQlNbI0lq6QjmxFIpB+IuPUIT9909IHrQnnN59UKIANrwt0z6xna4Fd2+WgjUFGv9zkXNIYjV9kq22mY3INrm7Nvf/bY7Ovvzf/sfH9j0h8nLTz5rNzq37+9++Obtf/On/+2//f/8m2+++WuB/9XN6++/f/dnf/bng0775z/5MSvFmoloIQjFWqg7DWEJ1KiBhR3VzniAhsOByEWUMtAFKch6/+3Xd++/nz58bCUFo7Xp2OP7s9qEdtRP69NkOlFK1hGZVgLpMpylaqw0tElsaV4xjJ5BrFjePC34Ss4uhRqrRHBRgGQoMnbZxFh/TNpWbbaRCkFayuO+hM2JKRhinHKL+Fp+sZEO2hR9xB68c7HLQa1qG/xC59hR0RZObZragnFByn+3nq8fb2/nj4+z6YRy7FY7XKx3UF5pXfEsm4BdDy6U3MuevWUzg91e3DW3D9jjPRy13X1qjUS/fxyOx9oVP97dvbi+JmyO0h2fXdC537y7Wy+P551zE7Niyf6Suopshy6hbCWsQ0qOu7P33323hndOlc/f3MyX869/81eGKvA+rhck3CGIlGA2X+q1GZydr5abX/3lr3Ue8Ja2NedPSCgwE8FN9ljAQQvDmAQ+jcb4xcVw1NG2IJ5/eHj44ftvp3d30jka/dQEgdXdbBqQ0u4SvqO0cFrFeZw24VC9YQeBGmLPlyXpRRGjVx6L7nInkGo8FA7QKo9j02lf0cDIlHUJCh+gFg2WsQ6qdP/0ymbTBwzm0NlFVqs4CeC9O/B9+X9OjmC6SL3CT09mFVhL6yrvH94+PLwlREDAeDwQanKZkIsdFQfmWdd5V796ea0b2LI51BHcrB1p2lnLqqR7xfqKlp4fZ9hJOpOE4/nFuSbHh8kE2pQol4Z/epqeS3VeXmh1VRn+zV//Xlzyxc2LVLdztCZ/k1aXbGC2msvID+e92n6OAT/52S/OXrz+/Ks3/+O/+nMlhUGnenPR/xf/j/8B4frj0fWLV6wcLfnZT3/y6ctrMlfFJn0n8S7phNC2qvNLmS4rHnOCQ3o4rq7PVYvFvVYIPU4f7m7fff/tt5azD9L+BrqUlZ7pum9hxnyzhP26o3HZHkZ9Bk5CPGaU/SuBBNASExmokxQKLoOgQUBCHmZQp6HsH+7SLl/KV0rSNSGomISDRDH4K6UYAh4GMSBiwRKBMiAsKrAPbXosrJiuYDKgFOmZ0oiCxM368f5hubjjn8eXl5K3yg9MsqbfAF1+oUZL9Jv0Rfbvbn9IrbV5W2v9UG39uje+fPHqjaLr+OwMyjcLloDYPU6mtx9vzy5fkkGpKTD4fHw2e3zQ4zoaj51oy3sDZsv5bjHbv/zycwkaW3GsGtu5FYoppzDvDOusXd92L7svr/oXL4a98xfiwH/5Z/9a+u/li/Fx99rOjcrRn3/2OTqdn53//Oe/vBx1333zO2UtW3KQzgxIjigrDmSsKtoAehoGRP5WZnR7rOBcP8hy8jh5evv+nQyXQ3lRv1XZOR1CUEkbEFnPFIgiBIfxWE1LdCz5wuYs1ZcIY7eDnoJIqSiPLjXKHURdQ/ysheP7zClBfQohFINGpMcDIuBcE1rUtQvpyFfN9sRkeeRFKHRXeEGXSto+i+qRSM5JmCGv51EgGOHQ/5O1ZJQ30845ZjhRzhO0gH5k5Xml8jB9ePp4++7+wy3Qe3Y1thlt39mzL1+fXb1u98/q7axYOb+4gZ3lxQKy3Y3ZqDa+/u6H9uDy9adf9DpdACcr2c7OBRWPq7mNi85evv7s0y+++4vfPry9/+rlj4aX5+2T/Waczgci2YMlG52L4knReKRfxtomW6ms/+H/7Jeae6g65CKV4W255JdvPvvZz774J//oT37+009mD7ed2mb2eFtVrMkmn5F0STGNkgFMBJlYGl220bSnA0ZPK3ZomX58+OGb3WrSjIAD8vbp1vLDWyXZGe0h19CD7UiT4JTiBLQpU/qtgWLcwVp7LGtAi/WULU29m1tMPt73vbTSk06aKLqDf4hAYGwYBoMSicAjjhDDFLcwkgHIv1TqCEQW+zSmm42oT2SxmU8qtipZTGzQbc/L/Xq6nD5RWus9R71Ldo11bo01BlistJgsN7Pd9mE9f1w87qtr7nx7tJvUhWZRGqhMa+tBQZCNM/WI2KeWpEFWUlEXL+uN7pmQmzwRG+6CfdZletKs2u9BphzfGLrt6Gca2s347le/r73adF5ccmmtk9p12/FPYOHaroJ9G2P1hadix3q3LoP6kx9/pRzz8sXLb7751moSYOPLLz//5c9/+unrF73uqT2szjr7j7N3u3nN0lhmIV3YEoG7db9nkZTjV3rgGJ+UI/i2zqx7//DDd/e///p4/7ZdWTOfGskP67pUvpY4S0wYdnySBwr3rAtYWyW/hUbqnT6drHQ4gTacrFtUVC+nEBAp46gFNie+cJ2MZOq1uBUUSzFAirRpWazDLjoJJQEHsSx+k1Jnx0lSJskOGTHjYJQdLEiDjQadxC7h+7idP5EoqXWhidwxaENUAFeqrTynjzk5CXvSOBRY3m48Th5STqhSGY1tsNceXlwOLy+wytTWosOKBGNntjpe3VQtPTwbjN1K7uHh/oNVFY6Nvru7Dz+tMcZxMEP/m6Mc6icLbdh1BfrFZnfRG9oi9e3th8r8cdOrztt6CusX5zdn12daT6bTB9AY8AXNdEbpnByMxz/68Rdv3ryZz5WQhDS10XjAF0tPQkHk2m8gjZVcNhCwTp3B45FIuT2BE9k1+1IiK6L5ePvhu988vP96cf9xOZnoKh1djKU+0piiNZUlTVIzDVHARbwPq5iTMZJhX8pG2gizZ1Wj6E21Uns7W+bhxfal7UpcmhqFhGi6bCx6gcX6fbdhgZMNsEzfrm9pl2EfopYUz/39yt7yi1hPjfV2ZeWgSUr4LCcfGFKLYnQDSYhTxFKCOcgpd3pj1SqqvXJMiaSXdYvaRxm1pPuO2Ht5ceGwVrGIVRcg6P3vvxmOL0dXL86v3tzcfKJ1P63n3ZEdbAFgrsRWQ3xEIhyPtHPQfCGo0PLlQEo5Pm6FRWkPBm3gwwahx8O75XSR4216EgW3DEO/8elPP/vkK71YdZ3KZxdD9R6FYVJaMibEYAu0S4xcXo6TuQpOSE2BUJ5SFV7SCVgJHmEILHtTSIW1AAbHdTf1trNNagvb7bvvv//1X/6H9eTjoKWdojocjurZGWUFktAO0dLmsBNPM5Rd4UGvi7rZrnk6syCIWdXroSxnPkkuNDs5w1byHu8SDKhbJpaPBff//JTY0RJNkOCN5K6FsGuONiXiwOWsk0kLTyIQIhtk4E5CI8X1ZIsIyKmxnX4039Rh7CqwtrkBkykv0OIIxfCGjVJMP9XVnWHVi0EglnsxDudnY3ZE8f7DbKajrHd+aaXGAG7t9mVshXqNnhqu9Yg95lDTgZOEVIedbzKbLi1KFZTKpU+/+UHSAAJS77Iz2/5xo69NDuLY7jzomGttX128GL04a9Ze1fvNq1eXXK1akt4MtUzjUBwmFRxH6rB7Hf5ZCEEntHMaOUsHMGpJ0GIwe7rVPcA/wxIaX5vzVu9o9y72pWfb+pOTQE5t8fps8rRezHRX9FrVy1EPZj6BBlZ+iLLhMe4UcEqIkg4bMJVcMnRSWrw+igoa+KqajT+JcEOBFa0hgjXtt6iW7siNip/dxu8cHiATZgbwlOSpL0s9aL1I4TZ4KYhINcOsSFBy6GVOgImjI/n3ctwTtUqRHAS20sBo6Xin1wfNDRYCk63TDwaGs9QeggRCUX4Zp10v4XL/7of9aimzPTy7HF2+PH/x8uziUqQvQ0zDkgmXUYe60vAAxNhPvXF+fTNbfAedsiKc/93Hh5VYc18fDUd8+fK0+9XT9+8eHhtn45sfXVmQffXJ6/b5oHPetf+9kF+8yvhB2gwNtVZmdeMAJ2PbbRW0jI2V4chBc7gXcpgKbz++nz2qSDtQNXtvLvSxCaCrY7MlXKbJD0XIN5vHe/y+66vdcztSls5iWSw62IkmNFUHG3fMSaJBqHqihRZy+W7yJoTPhkYQtP23McbOvHYVwLjIVWIGOdSsg2aDKYuBhn3umsaA2AF/pG0ZHkrDJkcocZ6gwgr4Jl/G1eRUKS93YKDBC/v5lwyfljaJGHKsvOe0h2yof07I2GGKS8EsxZ6hVq2+2KxQ8HyUrcrvpg+T2/fTxwfmvqsj1PCEOtLG9w8rRyv0183+ebO/a29O/WGtP7jINspAF0dQb40vLivfvpW4fWGtr2VTnTNpBFZgv3rieM0Z1Rb748sXr/7oH/zx2YurSrfhXNw942XIPMyqgjcazixIlf1gIS5vbvByMp1K3vf1M7rQQien19pgabWZTiaWvQmiWIfkH52Z2GqDm45iO52GZFkWjj7FvzBZdq+a3M8nD2c8GjS4moGfksvKk+xgsgSeSGqsSiguiqkn2Wy49Irz2NWfWCn7ItFMF2wWeh527cGZJSYUKdkWdNJcSZKkG9xQprPEYG5LySI3OccjkX6SADQmJLPaKd4RmlXg9bcIxO9oFXCUsLHSIKYF9jRiQhl7hdp0YIDyKW/yjp6qChOeyglV0qh4//7tw91HuVHsV70TmLMtEjOP01l3mJ6Yi/bQjIiOZu+55YGH2ptPPrdWGyZgPgACa95Lm3wMxWjYPxucse/71WExW0hJDC6ueXbrNx6EouIc+Xpc1Ayz2naUfxVbKpXLmxez9WKinnyqgEKsG8gAV6URTOYW1o2x3apZpoKm1VGnvv576lPZy/zB29gRtyQm0D0F5Sea05K30LLRgVtXM3uv6pyibk6cQ1lxd1arp6oAoMTOITRHhaZBIzpWeJoS99EUmTzJVbtpUSCEbkNwcmTa8rCLiYcyOUDBR1Y4dfFBpsyfEv5urrval8PRbKikZpwXb5damJ2ehTQeJlcmYZQ4JRth2CQj1SE3lKnzT+93djiQPKC9pduQdGUd9kHUKBDaf3j7zftvf7d6ugVq2AmyDbasdqvkS+1MqhWOPMm4V6uD8ah/9oLXmS13b9+9JXvn15d63dVP9MDxxbb+10INARMrpkKny/DsbHRx/nHyzlkS9oyGx1uOMJptOxeqTBTFMii5Vk2mT51BZ3h+Pry40cULuCwmTw9P05QB20srPRmpuMakbG0x9IceJKbFseUbuwhKrxyrk6dprEqtsz5MLKaUfrRR4WL65F9Os9pN7BZnqyJWBPlitkqn9dxaMAV3Yi0CfrZe3S63adW7P7kpkkEsNLxIYaMv3uS0BISu6+nuHqqdJY8ZLaSHOtNT6SN3jZMYIxt9FgBVs20SyYstpep/ux0K/I/mLG12bJY1hPEih0kIicjHqJ/TY3Qo2QCRxRGjMDDyPSVdSxihicgd8LqarCb3ivG6DPtaF/Eb5FVgNdpYa22ok/vp/G++/r7e/fX1mx/9w3/8z7766Wev2gPUo9HsPKdrqP3sqtC4u719nD0R1aHV9fVuFmChlR6uy6v6pgcwTBfr7vkJyprPNo0ugyaQ6rAHh3VHd6u+hovLS3kWu7yvtB7VlFwsQp1SD/2G2cWPa97OmASZd+vNqaOvO1Xw4W4yn605viSeyPlxrunE3n2H5e7p/iOneNoubKUN7nHAWWyTKgRLlBRY9oZg0LIzgsgkfRhAO2PHRFJr/jV0sD+g4B5dNuJRTYaip5L/FCZiWI4P5wLFDOmP8780fJQEqSegMztajIQbs+LsvTE4RTn1GXY1kUhSLsFzwSekQC6wZ6/nQU/jmsspJZhn/TaCponkD/VnDm9jceZ8KZFx31NJZFGy8lsjMhsZgGhUsZbrrRZfS71ttD28fNHqdz68f3v98s3rTy9sg1FiO57nAI2yUcI1MC+9cMtZ9lEZaL0ye0XXShvM2XYc15DF+Ittvb1rdOta6x+WUzHz9XAwvr5q6XM9nCazlc3kkdVerTbGuGy05NZpBoMKCW9s/Dh7r7/Z7V9ovru8RFAUn/YeV51HbX4yDZZlLBhSiYP5ugqg76X9tQ9hR/wiIqIsl4A3sIEEaX/Q52iyfQF/pvyfwDoHT16Mz6ptQSLyprnWQQIiluAUNQuSzgBnryFfIckUm+cTmMbJcbKWubOv0TJsi/Lm9BNiQ/HKd4lJtjUSlMSzypXiq3sc1okXLDCRnaw3+qJv38BT3SM6UBQihDBuJ1YuReqKZTCaUhtHJy541q52tA1pzKblgOgOsOBiOF5Sq06JkjM7e3k1uvwEal0s5+/ev3v58s355U12KhKwpgFejGwvn3Y9K/1bOTovC1aoIuMaSE5rRudNnVMSmFzc+HJ4YunzeQ61eHxaSyjxUc5GJTztelNrD8BHC7rtAdojwWIyWczxV+p8lSQXQ7yAz9aSZ6PBaDM4n93fSkFdXsqQZRGUcqbktxN6WEJWWpotE0r/S/RNwYIiIArgQIcxA6x5do+qwEzuoDewS7z1xI42YEldxP3J6ogr8Dn5Bv3t6iFOLrL3fHxWEKl/fmGi41JJiQcG/suvpgeRkwU7xIB0TkpROx35iv7Rm2Qb8HRrR9m7+w+OSLKwNvlyViERSdapCuXZUL4qjX98ph5pPEdEYvB0v+xaAsHE23E6/QKER1lfVxQ/3Vf4tvPP9YuXzloYXjKl5/M1zPI0Za4Zino7zRy+dcpaNblOy1MXcydmxqU7SYyPtA+DTJ24QXOzxN3MFiBC7pVVYck66aew0AHG3s5AALGEXa8R04kkzfH4XMOSCiVtA2UqI7PFSGVRQRdoIveCxHsbVUmV9ewTeZ763MfbW/kq7Zfb5Xb+8LBbaFqcsrJUyuSTSoEGOEW4126gMSXwRAQupDyduDpbUpGb6NbSEoaDFPrzUQIoKPNubU5F49A4ewQcbC2bTSaGTGG7o8Gd/4ollppMW0tZ6Im53uPVMA+rsDPxWRYFkKXYa6hVjKSV+LhdqldPPr778O3XjVO7ttRDsnUeQ2fD85IGVj8WPqAYUOYM+VwOTS00G6Sdmkox24U6Y9n6Mv2zdTWNqmGdXb54/ebi+pWdaJqdQfzlMhsfUIJvf/e7xWx+/fIzaCGtmfXW2fCc7VBc3XeytQ93rZtNolgmytYvAIHRts+6Z70b7uVxPZf8BlpYCgGCZVVQnDVmQkzNBrfv35+NtThqrnGCoyQALuyFcPBpThRaLtj77vh62OytaOJJISWnQTXU/V0VTEGxZiJwHXpsoS0g6G7ap9v22bQnUDass9A4ShPG8YKOX5aZUH3UObCbPc2YPnorV22Jx/X4ilVlvbLPhy0AWk1Y3zPIciKGZqqGdoWwIwFWRELiTk/9Tle8m2yOiEJ215OyxtcmDp7IPokC6CZeL3ysHpZE6e2H+cfb5cd37dlMy1VCSGLHKMJFRExqIqUtba+xBwygmCH6bdEUJ6FMnFibN2LqoRWJVvu9yQ6PLoc3b7pnl5a6CYzJv38ey8hHTm1us/3+abZ58frLgfKrDqE46KR9r/tDqAEGcbHSh0PelE7YBB5DDSgnRBmMUnwcjsYYBSCIZNvstfVl8TfyF2xMVJavCrTQsWi3cG5TIMcmWeVBRFf3LaW0nDOVMXf7wkgDb/WaFqWGAb7D8CYRlNDAOzCPvBLGJXmc6DO4pK1tASQSmVlW4UogoqTVUtkvpWEZK3YlqS0TJ9xWhpSdiZlfMYZ9zSs12yxxX9AE2xeUwlviX2TAmT6gD8zE3qbxjmmMOlp/hy/sYLBosaILbubu9vDwuH543Cxm/ayrK3Y5XjEbSKd7J9mW8gp3c7Nk51DDJnB+caVr6Dh6eKolGSoZ7cGwObzsXVyO6cToQveNRKIQS8auLO20ckKoIFnV69lrpqs9rg4uG1g2tGTrguuS5xXuZ5cxnjDztl84UtioZI2PmUROzYJMk4BOs0+3rXChuVGaa2opt/6gFv8kbcSvkRor4iAEBsUSjvX909QRAsqidrrRZ/Tc/AzMBOjHQpW5cqPcPdwQIsfW+YeueiXsFYC4cZPEWAhns+SYvjyBp0i2WdxZE8BV7PBBGH2fAys2lv9AZgkDNPWU4M4k0dGQl8N1MshFyohGXIgK2H9YSuyiuuujYgmbYFzyhENbnZ9Pd08fP+wfn/RWQrf21eKrHNtEyA8WUqMZS8MYc5EIla+X//DesJpuEBEmQTLzsNYFiJ+GiMHo8qI5vFJp1WKX1o/+QC5WR2KkdSlxfBpoKrYPuHWbOaMl+TjrxwiLfxy2m6FrNuRvjdDMs3R3CJb4BGE640Kn4gJT0dU5j+davBaD/tVmsZ89PQCfK1BrOZfJlv8kYXBmWW4mFAODQHll8FbW6nkebW1ki7/p3LrfDcMze5rrQNCRAA340CVugOrsdirDTHuj7bwDeJ78gK4AgOSNeEcNlr7AMV6EXxZuPtEsvrSATM2Hqjpw0NA9knRkVGXdG8bEDgn0OPkU9QNwINWUOHix5MTTd8s0lnQwBbKfiG1SnG2wnN6+//jDN6vZk0iYuShrx9jrrFuPJEAogV6+mva6UDc/M+X081h8ofZi10hc9Cc9j+ajVGm4ni7mK2L5CF4rzfZvltubHbw20jU5X2hTsoEUWiQ9a1U2UIu+2h7YnLSyNxvnFxfFvOjGjlBqqSWXPQfxEedEUclUsAQ7p1/Yp1LKCZzMMnfYM3stClrozvX56PFBm4ierlk2hCcl2A+F9UcWhfeHspHYnyZpdpjNhI5NnMsBF2yLQ9izQUw8GIzlHIhJuNhlP+0kkxhdM6sr/Wkwboz4ZozlbiWS0MmbxFZJcgGIfKF5eUc202It+2tm9PBRdjPApmAOwm4wqvswB5JIu0VfQlrFhuy6jNn0ME1YohUEWs6FeZN3PyxuP3IAHJJrSYU+O/6t4RHFjIQn7ANQwHoE9Me2gC5xmJZKWB1nJxBM1bAlGpSd5EO6TjZ1PulBa8XkaO/vq/PXn3x6c/PSongOX1z14tUVI9fVhZcN9HKUerpc1D2NSXV6OLi5Pjdlblx1GFsjOBJ62t+k9Q2UZ5AU1hnmVPNN1dplx0DsknlWs63PJg8KIwKzh7sPN9c3+qy0Wcaa7TZsIGLzvpsaq2AuNt5hQZL9suGgWAVlab518fpRRt1eQM1+1VAT3cYOu43ONAghUkX+VGn649T9jET3nWqw86/TVZCMThx2ImzzAnIQqJlUahbIBWVC736RuwHqmCaJaCibbDJ8yammpsGOp4FUFhqIoUXidrtfeYPb4OUgLrR5fPduevtucvtOsq1vSyCFmWeG2zAfRjI1csUGgZr0IMtS5csZ89gB9sLOD9nvCtRAL8OBj9dsfFOeByJTfWr3z8/TdetkoOGQSOkEEE9wgJQb11QLqnYsk36Ih2FHa/ePD7yCc6IlkFkBQQVHF+FUiSGRjIB3ZUUg5KSBrUdME0OOurfPuq080dVChdNuou5xeQVSc/bnY00azTlLoYOhcpw+3nOBIhmb6gJQ6YhmbDiCbDFJ6kQnWsxxKxv02B1eWmM5e9pvJ4qztYrqBN7QcuclNPsKVNitXdr2ohEsSJK1EPCJqhCcPUwblZGr4ejY1RYbeO/Y2pSTsvttvFKhJ3IraqIsPXYBrxxnmn1+cxjp2bDPqJBTza7xl3x2FgWTubU9Dn74/W/sBWOFkw6uxK5xcCJdtgFDuGzBGUNFFNJYjPL0XtMqNAGGwY3kckOEBWSW9tnmVDYLOkB1oicy07lHpSyy0TVBvWQnZdWdVZo0UBrX8SkdQVyF0offGDS65kUAeDgInFAzG0knhyLxPNjwHL2K1czQ8pvkP0pPEApEgjUDxu3rBovqMGiTyePZ2GsEHEWIT21oFn0pq9UzoJJpACaMoWA8R3A65ldgiYtkR/OzLIMOrUWcr1AGEVKfsFgHsbJcmr+EsDRsMigZgdkliw5aGCuxoHRBfQJXdq7ABcIPGyFRUqYS46XGuJzLciMGcO6IgIwGTJRfQ9KY5aVTSmVKrcEWYbOCIlDGfX5/d/fDd1vrfnLmS3JBjIBJpfoojIgCqERG7CMsOPf8TzhRPvM5V8DnplONWkiwQzZGaZL8p4+zq+/FOTziNqDLefdCDOzG0+nTcHTeH154DqBg0Vi2DckJCtqJsxygRLIlexgPz74jS+Q8qCncofXoEVvDiRS8xwpkOzP5G50KdvJoJ5NN3rOMyOvx6RFbC0YnAKL4dnaDXy7bumnyylaEwZM5wi7aato6pYJXuA372Ohfzl6IWfgOqYiMLJAjsGwdqc1WfaQ6N06WOXEGZFCqVLFqFq9zfMniLVwiD4BtysZZuq6Wx69ntTx2gzPmKPflGHnWhY1j/jJb/KCl65mOmd2AtVxtGwbDyT/eT+8+Tu8/zu8f5HI41dyGpTQfZhFLBeOdZnfgDKcSNtBINGLMsAkLOe0y+ZA0EYVyTKXpgCJlHnt7iQYkf9jD/mhIc2Fi42RiVQycHkwVz69uDNeOMF0leWdbaM+ihWtLJ+YJm+Sps/ZHUc/yz2xERys9PLqd/By26JRjG9IcxlKhi2yLvw2MLZdCwj94k3zgt8XDnIqQ4+FxIoHry0TORKTVk2PUFqtsoaBoPJCRFVNg1crm/6Qk3FV7G4+vEHbnqPW0hgP0+obTT+Q5rLHanOt6g+RM/ELBirox8RlHAHtWZ7JwchFDPJ1Pn7aP2GlxcorJyYPLCCY1lkSpFmY6b+kHYyfcLlgUH7O1pYWYQZtV+dVFZT1f3t09fng7e7h34LNWaaNlsdCGJvGqteBk6YOWDJgDudNxJfRjSZGGe4b7sc0P08TDtIVkN/fUwaF9NEosPugfsxlXVUlonhVjs4tsEU5QepdDSyHGLhCckAyWIlkYRYiVko7DKjcO18jtQw7+PjtLxJKaiEQQUy9OT0soEIjOyEx7UpSFPSGIBOcQUOoJNoq1V152Ey1woKVaZXQIZd2Aq1LSzF3TwN/mMIkozyMRYucMXdLLiZxL4ZOOBg1dt1lOAPCxqk502AI+SZ4QLFtni1VkALJ5YyyT0RTKJC1NytLaGDsF59hHy3UKYUGgGbRrY1wSkblZwkdzCcJZL6m/pvJg3YAb0mHiNFyJYe4Q38XD/cOHt5P7e3+yEkQ15xvIpGCMSlZiOXt36ZjnFjwqDZZxAc8MK3k6FiRxTygb7Y3IMwFUOA0RxA5OCMCRHE4mhbsQ8tvhpyOY1+8o2svewXZbcQg48CNLTiN1Zs24Pw3NZAKxyItp8dCpPOymw/GoYptqS4TCh6R72dc0FArxWiUO0/vkC9wEmVnICaxNnq22q1y69VJJTRjNY3Hk4i5xfeqI9lKwl5Ug8jiEF3hWM3V66pZyxp8kHeW2jIKG+6YQ3MJ++dDsbdTxUax+zkJ14zRJ0FpRWMxVGpbId9GttL56DniWMjGuyHVYhM5/KVRKDZpOOmcSTeZ6mR47LnKUmMZCJi1jfWD62xxxt5s/3c3u3s2twNX48zQhbEOp/e6Atee/SShppm3UOqlrz2NhuQWGWuICcFR5NRjklRtUzVbQwTpgXTxkZYXklmyfbTAOq1TOd7PH2mbOl8YPL/YLzYdiwkPbr1ag6OSCzVRt5cCws4GiI9C+6VQndrlvJ9qOdp4cGGA/OB1jakaCi3gLPbgMPsFCIqsypI0TqFFKtJZ9zoYP2harA+34VaopY1VdgUVJBOrwdkSPUjXHaOdDfiyr6QMrqounx4/v7m3HKalUOan1ax+pOoR4t7ZvMWcscNWj4YQ/0Z6UwsqWCgHDQJCIMzvkl6w3BkJFXHNcGB+EE0lysUYCovgp5s4VTMzuoFuVz6GodIfOQA+6A7EQNTQv6cAlnR5rEUnlqPuXHh/2vNRs+nT7bnb/UUbNEXlaX4ed85gECNWyFM6Y6+SnQaEOO6/OL55ZasKMq5NDYduUluQpCBqhQ05+yC9Zp+PYUfE2QQgsTPNrDGw2FGBJViabln3J57W+PhG7XhFuXkxtTVCt19fWdjHQfzZnAbgldBY21HvDM/LvF5PJ4PLEBEt5AnlNjkmfgyw+NE/h48zij07yF2uJo2wMYak+GjkWgNrSCcBY+S1+1A0kOshmujcEoCjV79QnT3pbJ/2yqRsCmoeTUyiUzYBNim8GU5gaIXhMHOI30rapPqaJt5Rc6TAwn2OgmSeTgYqyX18cI4aC5hYFUhdhSVwCmwleBgDGK+SNuCeRRiJGihxcqBBX1RcpMNX0YhfXyeT+4wcuUKSRCDzZc6sG02UpHRxzbVln+kFxhAmDgQnOptW3j3LuhqNBN7QhJhR48HwYA3WshIg3yAuh/U3eWNQYFeHXHl9zwBiro52Bh5WRSikf6eF4VaDAujalnExnA00hrPsRX8da8b0JepZUE/eY9CUWiSKSKwQCYsBtXDVzJAkpzy7mO20bNgjYn5bivNRd6aftokpeyxFHOb4CsCSBjB25wlEM5QCD005bi/eqZ2fEBP6Uag7700jfcMbAQqvrfjPss59ZvSwAFceZAECSB8DvHCxz27FcHhe1zyMRH2/YXoHHKFJCa+7NUBGH5yP5mE41c6XwBiutEXM3GxeE0go9ljvBzwF6Vct558qP9layR74ss9O1fY89IiusC7CHyNYhqrudyU3CC/iQNIhHZSM2REM+kRCGPb/K4MI/vxTUEJvmdywhXtE7Dq87YN94RPFfaVmweN/ew6NaS1tFdhDq9ntoqQPK4ISzOaxEHydenOr2TORpsIxImymaBCxlZmFkcHhpLogHiXqx1IRXgzxQtkUzrYZ6LrkBrLf+wIGeNrWODzBImyN5Auaxo2l6FqLrVBMOMoL14aCr+FFobzq05zBfyNJl5QlMkQGAGAlGy7JCusYOsUaMjpC8FFoDPHLARYYbDCtiFJ9JdOhusKrK+k1ZX9U+WfuoCpVgzAXHJfxVr6WXyRxLuEhaJdFjTe4yR8vz9OkfhYrPBqO+vYbZhBwToimEUSAXqnFuRXHUgE86GBgPpOsNVXhzmnE8slgLkoANRFfsJ25FxS1p/1tvHI9V2us4ATFDT3Wo07DWSHpj+vBhu9pfjxJUWCljWxSimBOC5MHluLLFhTjJrsCHt2/fdQfjV5984ewD/rdri7H0wiYhQq5QhHLwlFjBXNBMbJDJrNnSIwbcRGx/IcQBYpRRxaJARCrozCalDhDuU8XaZjGVqMoCVTDO0Z1Z+QCVJD6MVTb77VoRTcyDPjZ3ow+JRS2EnE9hyRAcVfxLcTx7JeRB7IOxobZUUjZ/w0ShAeyZV3ClBd4RdITO7iUKkqmfeQUFiuJlI9aYh+001HVuKz0LjWqt0/tr/zU78rkRiyiRY4kPUCYeFQVimPv7Smx4MldHSShWz8Jgmz0rCpmUYFMS6bns6f5xh89GFc9SriuA6tm64SsVBsMkM3rtwalxXCgQN5diwpJHquuqtgGS7IRIVu+PrLCNiPhEYodnpNSdFYRGw2F/2N8lcE8dByNpX/o22ASIaevgZmdAA3CkcQMZW80aDlj6uoUV5iJgmJ690ufFMEpeqvQJNuE+hiOpmFbTCgVxXqI5iRB2V4slMbY4dqNw4ZRpCO6DR7Mir1+9uL//sFlMsli6otIrUGOX6ABehp2sRVyk8ADuYryJTFxKFNcFyd/QgxJ6wUCt0Tn+MwZcPE+BO3LOllWYFj+tI56mw9K1VVTTb7yqAk+Kio5aj/WkZdiHrQSPP0r0kLPeSmM/UsH0ASP8qqCN/Kcs2hUy6DCF7WTKURiz84o6lAZk0BQv8RVwNVAWKHxNazoBC0tpgJic5rFNc/XX42xc770cX7c6Q57bxaSHumA9TRjYbzHJ5J671Vtrm78jd1CBx1n+Y+ppdcpyMmnIcIQoZijMcBQLbZ4JlI0+9ElE9nKuNpxIWQQxdCWY35pCroJBBoiSkDqA2gYseaI8KFXQU7K3rthr+iRiubk8EysLvZkvq02st9poeBCt76FKFVq0lgtF9NwLYxLwaO19TlSmUzSdf0gkVSSZQJIMgQJKe8bqBmMlJ2CDAzjRlSyoOYGYUVLoqRQY0KFHpVITzMZSiC3hJ1oDpATnQBwrmrRzIEQiioxMHVFWloDS5p78hs0oY8F5jVSJvSJlhXl4SYz+058mg88WlJfis8PLLJ8aS35NrFAxOK7qsDo8PqrAKeOJGqFOZCr6UrdrrewHVyZ9Tb3lY7OovL4yFXaL5ze8LHh2ABiErsuyhCwJ3ED5wDACuoxBkjqQ2VWfEp8FrHqGbobkwdInqtAhMhN5pFIvlEROazIlHnoLoxPm29DHMozTwZuM9qMO/o/vr8b6npNzQCDSmRq7c1CJc3Zmgadi/UgbKfdgPEBn4Tm3yJThpg9Ff6np2x9O4keokx0a2Nhs7ohbfoWXJBwtPTMdt/IujpYwLybEpz3mZNClt09PCwMT5RF6gqPdgc51siGQ9XPeEKPFDSci4C1CMppadcB9ClPFWcecFj4GZT1bCe/4xZ946dmYyg4JlQl1duLZN6Fr7b+dbbfkunBrZFlToqvsFWvAqbGK/KN2VrWngi18zjTkPyWSg0GYCCrEmRD/sFDAhruRZcYkmJ7/ERhH4RO6YHsSHUVV5XiSJEv0I4ym9ZafLwJsShlZqEoadWOMbfTVd8RClpmxbwxku9cq3G3f335YLGeI6CXi5pIYLQ/l8bDU1530yo+lqVWRTiDCnu52+p1YNPyUW0BL7/iFDhYqBf8nrWn/pNQqdrW4zD1tVcVjCNPasd10tTYxmFrFFWpaYPkcbdMBakct142tntcwJzlykkMRSSeYDn8CfBm5tLnDMuoi6GmhWYIX8UiuyP9dgeHuSBH5kiJLMbDe9KdPlfT8CWQRRS7BaPudEeGXhBY24FdfRdWDGYRUZ7PCLwkakxebp50uxAlutg6EjRI5ID4DSk5YB00YzoSCx+AtvNSoYVMDmVeVW2UV1i29F6my0hA0VnTJ7ljU0YgBH+LvVBQyw+gpdoZkwqx1Kz2hbEBt6MSqlpPl0lYzneyGg46e9ZnFobwDHi6XUk/MAx3O/jSlVCGniU0iAbae0qRyZC9T6LdO50SXsi3cQUAQA8+BswHcedaaGmOMGnQFrmUT0gS0krkWDmTbSmVlKYqcHmiKbWtC0caSzbHF33VFag19G96h78iXURw4s1/AETYmsLb7VO7sBIvkIlmj8FMKsbA5iAMv45PLeja/UETM8z5G5nKwM86KGc4urmbCJkhAA8wknTRyFf2qJe19EomL9GKT3TrzPsKk+5KRClRIQjWIDl9hISUVvj27CsibaLZY26M/inNa12zfQjEdE4VAmzlcEdOX05yVqlMM090j/LZIXClB/GpdSeIXRBW8xlfU4WrqwP8rStgkDInhr2IOlsTXYLDQbf0iZY4dmiitcgJ8mdFWu68QLXcOFOfJpeOGPjGUdo7zlXhBG/1H+4Q1iJe3AnvCR+RAAO4vbih1EslaTYv7qozg/LhUIEUHWSYc7I/6XKDdduZ0UjbHuszA/JFssIiCJcNFDgXgIPBuo00qiTtUP+46Z5I7Xb2wTFRUNRpTXuZEvOlQCG3X4uIj2Q2Yin8HFxHR8FMvTxYtW6qm/Le0p9aD/WH31d66teFaYD/9n3EzHI0cTHllmvEX25IjSbIKm9gCsXmAgSOkhFxH9fyTFYSH7LUqMtWjoctyEYwWkdePIwwVwO6cjWrfYOvIhQl2RAtqLA38zh8ibGlmYbURlSTWG0qE7ILfgosE+RLrwf05rskIp4upwXI9MrO+5Fe+mrK4giCYCcTHGCS8ltbLJl91qmLJNV8b3GlVsOXpjLzPUM0lHO5znSuoBGVP4l9GRaFKscTOhUgk6JDPdtRna2NreZbKnpD2Nbf5rLDP2i7fZDBpGQiV5K0wQQUN2uFeuErCxLIlqWM30LAaVC+NyYJDT0y6oSQksJavBkNgXU490VIO/atbvQ+/q4yjq2yNuTEY69VseNSUr4WX3HlhYva5VD8lpnY7iDJYEiBL2x4gHF/GbcTa7NgoD5UmmIh4QU16slpNdhpEKYZ8WjWl4MSRxlbCWXc/9Gzssak3dXHquO4SAZ8W44NPOgSywii6r8kqy5jYw8RW7rORAU4JjHjS4CTfk0CXcnLaot2xbOBE/jj1jkCIGhMjuRZemzVSnk3OLUDVnBlrFlyFMF4jAk1vdKKAnAntk9NRtNnbjNNSeQBnwgis2L+O70g9sagp+7Qb6YSR1dUmmRqC5WnMyjoVClkUkYasAygiNiX/oL8VUenmBUmzed58r6e+bWcXDGdsGPZIUBivbRAAST1Me7USXZCuIS6X071gP9yGP4cpUPfPBfmbh1v777FjPlHTdLfNeshwC/gvLm90n+lwIc9Gpv7GzgukEUUuPuUnH2BUQIvUc3KiCBooTdSz4QAchn8OIJK0SV+FtwxSYjPhRIE6BVj2PbSbHK7YLmyGMPkHaNRtfUFWlR0LuEsuM/BNa4tcwWY1FdCIRxnMbtlzw/2Js6YYAQqWUSvTZ9fSJgvJGiylzuASns9XU/eMmhRdA8XiSTTuivmKYVP7S/rGgh1LM7NOFZoVF0XR3Ze2JArn24oTpdJJ0dhFxxwZQibdNNMVkwS4PXFZF7yXqWI66RoVtA2yNRB+US1OmyTJNTYCTnbjGnfZsZ8a+tObbKFRMCWGGDvN53asspcikcuQf4HKkp8C6rYPj4oKlwoj3T6KcJnMF3XAYH6e+iIAngHn4QMaSxC7B5GD2SwOUGYCVeKERDODeOocRo7Hp8EwPtI3vDWunbMZogKuIpEZ88LalnjK3YR0cYCMo3KvtCGoBVUqacmZiu3Tix3ASXFNzQzjNg3Rk9gcP/0g61kaPze7bAWs0dFOdJBiRD7pbd7RTBgbz2brdU2hSHTXALPQWn4sjBUBAF90FzON3BgSKpTagc4capV75btemj8qD/qD9a2NnCqY1LQMN7NnJrAjccrIjLHZo4c0X/hB2KXbsNBzTCGnJniZvp9E1S8G9RxmhIsm/bwaQYNN0CFNB/ysv5kxRBYey2ABx0zt1fULqwAsPjP9q8szsb50NBKhWVb4uxfBL3YeIMgCMjWZCNLJOgr+WUBkZ80EJ81mtzdGYb+Mz5C1JHIpTjY092ZcAANJ82B+/0u3i3lASgZRq2oNYWyF96yWJC9p0NKHvgt1ZuUSFCBJaWtNIt59UEk7keQFZ0boAikKTHJjOqS5iGlJkw1dZqM8BlFzSjOUKDVv5LRJEko8SipjXVwUE2euHgLHI2nGmQIGplPBjMCWicnhJvcmWUNW+Eg2lfymqEAtW87k6qMJYyt5rPvYignJaj4tZrtEzBlXNkeK6wgX8cxvuGUGqOCnCeN9AS+2/1SSEMw5qornBTrAIpmRtB6xWbauclKlTAFAIerWw8gJCbRTBNOuYYcJViLMlF1KYJFf3P2Zw3Kh+lw4A2+eLBzrETGC2R1dMew8ZJsa4FwamYQ48KoCpM8z7OTF3TKhAeZhKvIBSpia7llHHeuCsa9MqzMwL7AIQSMRNBi8LmlF72Nisnn2I2KCGLiwgq2z/tWOyAnZ0RAbGa9u24LUWCOhKvOZ1X9p89HWm9PTyY0/nzvSrRPh8LWRJ9KCybdbe9GJNAIywl0wkdU1zHwMMqWgoho4BFZ78lJYaNeOox0RbVku6e90FbsyAeSOOUifgVo2XMjT63dNFM2YeSUbLvh1S7zEUczz0wsLTdv8CaxarSeRotQ0Mwa/ytgetRHAF91mf3Z8Il+SWcgiGJazPL9onZ2NcS1Rh/yS7ChDr2ZDMK0sStYxUgtMyQClHBoqJHHnTXqL7R6q+objjsOLiZLsZE9KtE9zs4lVDo0rPt1v0krK2gC/faGJT6ezSDhUUtJlOa65hEdm8QzyEs6xeUUhQgbCGQnKqMpcEwWRHs456YXs8kBh2FK0gopFBfTTsAhUmJuV46RUrCDMEoly8f7R8ZUJerRsHAjN5FFE+Y8UIys0gQ+1CUAyvDaMYbNBdi5SOJh6pZkfs9G0zZm58hyXzM9jtZiC3JMVIJ8XV+j38oznn9gpzDAJL+rPrppdxClZwSKFjr0r/QnPMEHWuTc6hzRsEsz42A3B8G9uXufsvO6I/7u/vSMrAnCcA83kIpJHys4CcUlujjy0QtCSgUrb20Ru57wAG447QQkil1tHkGMH7MbkHGcXCxYJQEzQOdTnOYCCJBSNOW+QS9NYLxh8UIgwm4i8V0o+TgZcbokSdiXrnaxP0D+RBuW8yxKYO4FezOdUUJGGjATmeAr+RpUlXpKeS4jmpC1KbflKxFs0nTRSCEoK5JxK8uvZHNtJlS4jlI0jdZ6p0TMtyQ+bPqL5KmGIewvOpnDOYFEZAO7lbuyrzk0yPClTgbLUGYaOJdf8l85/XCMGMZ7UztD9bVASuLl9eXnTi61h4i0Y92iXlJF14CLAizwnLQPFyLhZWm4hTbfnOPXV2zsnadpi0dIq3NUmyvSnfwiNitkiwiiOMpDOguHPJ/5UBU3CjY0kh2oJDv0i7umTk7FNpJxuicyW8AVGJnUpbKCVJBwBCWZ2E2NqGR1LK0rUa9he8YAs7bGTM7bSv7CEL0WUy+VMq4USIB4Vv2nGecSzBTJOBLFFKJFwj+TdBU+McwnJkkySKkq8wlXJu6yFI7Q6Ge50/Zqqex6cbl/xlKwmt4xLa0gIwRL4luEbGPAEiAIclrWLbO2EX2sNeooX2jW5SYBRmwtDKGDN/g7FBph/0hlNDRDhIhHDPMM1VabMsJ5fRDizD+ol9cnVuiRM5IZgNHJea1qeKypPw6XGmNPm7uFhOv1OHDiyNUqjretN3v/Vq1eCMO1vBUyyxnwoiKsEJq2Dc9KO+rV0FEJnyinF4CXmzVlL/DCrRXnED/hokEbpH7vEQlBoPGR/jIhUICQGIJE/vPNMwZhPc/et1I2inhqoLIUrrMpETUQaQByQLBodh8HAfiFsehIs6ephJ7cS7FxQCHQVr5rD7MRuZBLWMJYYa6MlSSkmWJ8bwxRIg9NmSv6oXWlncbXUrmJhQwIqSdTSpEOS15qJFDLSZ5uTf2VwNAlQEfMSadgfg0bGZWSa8fTaPoih5/oztX5amE9KYyoKGIXR+NNM/MTa59onyxrdS1cCbNUU1wR/oV82QkxGcrpcsLiQMurEqq13QAGJI2vB5lrvODDWPGVVe0H0DEIakwux6waw7s3UQyOk3NAGVayiVSeFfKI+rD2TxogQc2xzGhCJDk8N1piSbApMS37BoNw7GTE65rvBb24Krey22NbcNyRTPJo6+kvPqYRAEn8E0AjkUIAX+U6bDGRRD+3BC2jO7g1KmJ7jS2EZhnumzcfEDrHNWrI8BlnJDNvIwqbcBgWSXeamZHYSKhBkeA60EMH7D3eQU8BzGkVnYL1Eq2cv+W42k6kq2VLsZ2vL/JiVRwZYuRmCcJQxA3Ki+FTM5x9wjQu8sMGb5u5TQs3bGFMxAHCdMC5YkTfIWItu6olhjpNTzErx/f3D/by+GA/O5MhthdqzY8rFGbVWjrSU1dQLqjSC3J8SehDYxOsAytEwZSzdi7uNphndYuICCWWENlLmCGUZZruzgRV0k3xGGoWJ+n95ftG1JEM+iCExkTght2SwRNx25EMLMn6wp+TUZUTAdq0J4TnPtOfwdY7CTVxMGZO602Yp3KbjOCmSxur11uaILImypUYZyaPErg4tnkXuabuNTjgxwwiosGlclm4IJWM59RtUYyqbm71EAF9A1mxhs+KSHAI0OLt2rJM1XsQP89g5jiT2peQWktH2vxJQYI6pcefYlFnEZjpwOjmHAB7vJrQzFuSExQu0E9WQa9hKy4MuUFSMFvoOErKJ6UnQRFM8lriYfT4cz+yUejZGI49lI9zZSR24JGnHblE19382CFJPgXOslMU0itJsK2InKjra7BgTEBDpMBoESA0mSmY0iSPZuVQbiKf28BxZjVWBPuwBk1pm5PnhMuudOFgdRQ2yUhUy0y/3zEapg55GIaucbG2T+lB/SD8Mz2Ux+VE5R0IuZVlt3+fOsqkoq5yQLdjSzxknjLwGGsEpHtg2LJVDX4ON08WwAIwqCafcFE0arWFtW5vZdJmmeUqas+wlezY6u7bqX9N8hCmhEdfOL2bDK7TOM6gl0ItAMDZTG6cUSG/SSasEWaHCZoO9vl/IhA6JIAlRDDpn4PRI5wCJpdgZGD1wDiFKsC1fUtdZGklF0hig5CPuJ5P51cuX5zdX0ftKRXtVzLycHK9zUi8qcQJlSe8TPRA5HaqqXM3sJ2Aw4mD6GUmBQ6IqwdPRCtuIpcSwsraebmUc7IfUcnrvst+1KdrbA6AHrjk8VE6aJm2G2UILrNPajkBpKD7tBBDSVEz5c0qFvMDDESuzl+UA64qxMwrwwliz2qhs+QCLhX+RfsSwz4cWS0tFl9FCBsyCqZSWatY3s+piLZLCYoFEAc1a/Oo1Sz8j0Ek2w2QJqEgoSsUd7qU4IGfppwYbRmQzy3Rml20RzZoPklNKhp6SN9uYFOfXaJd90Luhpp2jBj1fI+CQEGBgCm6kyhks4OyNeKkseE0vF0/Op7bGUve6arM2ZbP+m9//3oK0Tz/57ObmxdBOGzbnFw8cHN2WpoziXZlovir7OsOUZVmPlKkbOIKaa2rYgeY4nRkeQRLJsHhAJqBCPmib9iPTYfrJJ6xTxCZKGmOS5k9TlfhIs2eMiPeRP3YXxeD45tuPt0pr40Fv1GtqhlRK4BNE6/pk5DvVfUTZLLQE2EEhIagH8ioGMgkGHpNX8dz02PFhTce1QEDYb6lHOfUggkK+DE9sjhPJS9iQpnmyiygx2hwwoNUZ947UbkawWhXGo+QJ5MMNxH6TNmcn2ZaBCrMAVI1nrCDFlzFVamMOyH6aTeMRWbsoBAWm+FA108eeMpFYSO186iNJbSw0FQ9QbkU03QrWMxTPKrvfER1qNJTtIQwCs8KymljHudIqgbe3d47UGJ1dRQOTm2yzNMFBLo4Nl9G38qK1VSuOZeAmzVjWrgeRW64Vqx6/FHieVa8U034BUlayuAwrCUreW0pMtkFHYknlJ02RGaJyMGQiMXh9QNA1Y6EFbRIi5Zbcj/5ChVIlwSStdKtmVSWnD3Qkec37BqbayFs0ZVPIYCV6T4aZSYafzoY49maOHs4ch2aEJiR5JGvI6rLL+GTCkbtmG9aczRZGP+x2xC0CbQs/QUTIILG13k0eAhUqoE2CSP/cEF+S8EKu/DOhKpVCC5Pkd9XbxILZb8VnxgL5IA2OlSA44IXGlDCRpLMHXDv0zE8kH4MMGaM+ASaDnCcatQthQsqbV5+MbI9Yb3/9zbdqrS9evtEJh0ZaAXHOSlUVIvaQhJYimRSyHa1iGmIbFBThJBAhtj2BmrGaMOkRT/NTcpCO3BReGpPpEShYyy+kNg5TX1HyLAxl07u4TMXQGjJBnX7H1rWWSujzt+y7po9qO6/cJ0UlrWVLpOwmipHZl4U7UUsnVUcxmTVssAlTEP/Dt+t92jnww3k+KRjDAtY8sbcl5IjNZQ5PbLqHIy9lMDJVeH/a0cXmzqyu/Q+lkwmXxfIamsB4Op/CRTGtnuJiU8NCv2ObCXoVdkRQaCtvZl4ZEVAXOJMarC598W9iZxT3XgFswDd411L5Tk4vSwXsKZMQLAFpWqRjSvRlGApgR4V56tVsRgTFN9//8EHp+rPPvzR0OSlgAASY6oi2GV3XAeFdkQeuxvfw/iA3NIT41ZxKoTXILNCuKCvKxzsiB5NKGpbHdGHhlsEE3zM0Ea+kYHJNiW3kHaUdU1kvJ+Wp61rywDuqqZiSwNLNs3tQ9UwxB4mFltFO3NIdU4q2dJgq+Gk7GDqg4xfzkItU4QqFEW36FBZJrSYZJnfIckY5ZpaQC/CBxWImrlAl6LSdGWNrlS5shJJKTGwk1wi95uOEEiJSQ/ZbmGcunuGFo15Y8/xLfmbHxphUFjQYEpRydTBbyeNoLTRw43SSiK+ls9W49Zc6oo9P7abfgqo8wyQI3zSBGvb+sErbqnOzmh3tXwsbP3FErxzo5biTxdKwlJySfeVrlYudfRTIw90Nrb3hEamKUchNAGwMQ0kTs4hQPE4FBwcwUtlkBvAsicZNU76iuDveClFJZUyDoC+OkBmWx1ZyO9qdDqFNWgQjxW1/v+i8KYBIFNo6lbGWTCnzJNtUSeV90hYa2+7+iIhzxDUYykklwkBnlh1gXRmG1AwY26ODzJZ2tQr2lkMQZxh3mocU6ZbWEtj8vcMvuBMz4bIYCfZQUhNuTkrd7vvOgZm2BmCX/vpAUC+MfNY/oNqdn32cd8wxK6Q4XZO1XwrMZ0c9/BTHimDwxsjInQahqBkaSb5aYaXZOQHBKnu04JLHaxq2XZcQ3hfdl/VptS2rArwjVTjfrWrGY3h/+7vf3VxdXd+oVEjzmtEJpiY36TnWx2yPwlLcYbgAAdOT91EMSFQM4Nl6zEUJS2h5zI8haZpKLF58HzKhsukF9vPtmAxqcSRoILsRexODpkYlBHRzydL57Cma0KxbUys6yZ5Lo4ZDNvUQsgqoK43X1+dVyoGowQFpWCRPzCSAnIrAsTKZT+ELZpcF8mLDQnHCJv1Vs3aAlZFI0FmpeqqVW/VKmUSa2nYyUbWJSodlZd3e9csbsH6+PTmXMFt1NPf95tHBSIZKTIk+npF7v3iZiFe4KHpxcok4pLS9CWtU2OuOXTZ7BhtB0cXKNQoLEoQyjoONP6cG/K23syY79kSUQyrpaFAEdy77LvJTzY99tVSir5hzOnzz7ddOphqN+zp62QhCrkEoBCYONnID2EocNHdwAjL3BjEvzla0Fmy+vrq+0pOIEDoNTQo7qDUNSERUdI6g+YWcqmMYK7dEzGONk/BmasUVO+g8RtGIs1aF+1ckGUymD1y8UlhKS0e7BqqsNY61dgAldKNdlthKxHeG0Jg5MrfJ3qcmHd3nUparBYeniU3VSdeFc6kAf1NXhuGeLNEShE0nD4v5LECIl06oaxLbh9tbm/NSGBR0AHLdEqTeuO88iWNjtk5/v/YJviNyk7X1U8l0o2RITMo8sNbPsQxzPeecP+ulmnhoJIRmshTwWDYtuBTfzGkO60vVBBpcYFn9FeYCNsy3+TI7tooQX/Lwi9QulBAV2OPVzNipEfOnB4l87dH9B/HKPrtp2gRnpsv7vKwO3kkNCBweHu9uXtzQp/v7e6nznMEOCWbEEJ+maZADDSQw908OURBfKzvY6YCuWuYPmi6XoRDj1mypqHiHm6MbrDUrZadQHhEXR6Ldcr1cNW9kSkljbg7218xJK06t5ivkddWA4r+5Zwn3WHG2mespyhAmGgBEZSsIb8lN4gcLj1uVPjprC23YglVDGb/ofUPFABLAVI1GY5bWptZkd+p0gvqm5mCjetshQLakXlgNZ+vDJL97a81yMPPf4hpsI6z+ZJPc0ONZ06wJhCUYfpc5wEvMyL54i4zzHUn9BuExUX/YmRruiY4yaxB8srMmmBzjMvWIQLt03PpPVmgmYE+Qq7s1cWUUTYbRGaf7fc8E7AzDJZEY+W3Gm9mzLy2PhjWuZZTtlwoQqvRetC5tHZAlDNqrD9t+ThByGR7FbQPOJcS3QQh0ZSESB3e0E9V8OhXumLOIgqNn7gSKFJQSqGOCJoOBgBiu4VdlDlLTtIw1gVcUmO1NtxKIn0GSVLyMeY59Ki/4Dxn0jsQ1wlO4yDGVNN9eLYBggEMSFsIwibOwWyWcbuyO0nRCRLb3xc0LdRtbFy7kzGG6siemXBzEYJ0IIjzNZgOGOUn0vAwLlXzRrHO/gsltjczDBr2V8ejdFSIAheSQecQU+xUGg6mwaPoGZCGusC4lziR9zEPSS+uzkhPrh7/sigRlYmC9EO4gFpb0SCbMPNTz3FjXCaHRnjMhaypWk4d7zss5fznOdrEZX1xYKgd+GJnNx3UXSDhLBfBA2V9hZRdXW8TNtR+zWslCJHsKVyftgNj8ps4aE0at9z+8NdSRXvnBIGl6U7P8R9QLAvDWMc4JHXm3jRPLpVWdIiNKUM1m4GL2nFCQ8AnFTYCoJ4uJUexMKEY3E8swz0mAsD2RA3aS1OrbdkKWnSaYT5xpWeaN/8C5PBC6GB5FAElIHP9q21+badtZ32ltDonh5HR4GphMxnq+iPcW2hd0Q5X94qc7PCulCKLcDcupBzHeNxzVZHBgAxOKaqTYMIgmrddhQx19U2s6q6GAlgVkckhml9AzsxX2EVL4iORwToJU13sFjSRXBlwQ0MiAvm/uxHa0ojSWOr5F++l6rj/Gpi6OZI1yP00Inw1YJIin0zkHw3/SEGkQTXaeTZn6mgvERcxU2gULmA6Vj3cPt2ydFZR6LR7v7u1ppJdOo0V2wenQ5IT5Ce10CTnDxzGdErO1ilaF+q6T3R+4zKTjE4FBUVJfpJnMJj+at2EmEu6nqSVHRMUpZcIibBehKR2fUq9A07TjOkLONC39UhdyEyofYcgO8Q5ERJ9U/yFctlAHJSzoiFx/EFEFS04k+p1UDo/ohq5Hwed3/F5+ifBI4CBFFnnhRPxMJDAxignA+lRXcYjPJ7duTQINNBZH9jPgJZyLoTA6qhAp1i3HWKd715j9Tx7J+lg4DXrT8KDUbicIqWRlBwpxNh7KUgL5lCu3UntbrQIwSV+rq2YUV8af28dc9WG9nhHz056/jaliqO0aMJ87XS9nxKU4JqeouM1/qs7uHd1miwjauVhPpZeygmB0sIGEgeKJop+MhQZrhOX1pShYZic9ULQSqiTFkFlrWctpIO5KG6sqqfSBhYxSpoEozbQoyKiZMenxJ52nBJnJytG+tDmJJ3v4Umxf8hSBQG1DQ2AHrWJ9m8Ta2R9TdA0OLy/5RB4INYyTTcY0j8GzZ7bFRj6j0xgDY1QPt605+kn9c8dyURYf2aPJph+Ltd4teg0aQbEYyKWkw7PbExTrD2FRKT+oJIvCMcCutgCFMdCd0qagwI1A8zm9h6rkxBCnTVZyBN+yW930rl7yx1m7k10OS/tvlngmJ7+xMtSaRfl7GzDJI1bA/d30cSYTSYRm07kDG8wJPP/2m9/RSPmC99O79fpmfHENGjixyEnzpD2rSo8HB98cBq2J3Ml+XhPGbmoHrTwCmLLGiBbJ5enToeOQf0m9OSyWl4HIASB+kTHiIPE4JoNFsjOq7ic0yOHWq6VkdXrx9Fv7rfT18FsJeG2+qlMtqMAqHr0ylpa7sNob9h8sups8toaDtTOoTjZ56mfL1WZ/NLpMO+rhKKLq9HUzn1Yqz+tGoH41iwLcyo7OZNrv+AUD4qLXKs2owIsqbEte1c5fOTk4Sp8yk8OTsjBf+Ez/4psAQsM3n7jGdFszkKSJErAPu/ZWWsWluMhdAUV85fT+zhFka2cafHjXrh+GNEVaMDaFTSNVbhAxI1zSF2lFZB6USYCoNQQvyMl+dB/e3yGFpkj7APGLBisZOZ3Nr25eXoyHjYPlsHPbkjnvYXB2ZaNrYsceCToczmdTPqJpazjaKVkYr2XPJU25sgC2us/WTvjETgrNA2FiGC3q9EOQms6MgDK1TfY1yZzDKdvGV466bvk4hQe7KGW7qMxYYzuzo1kZAkpZgGsNZeIvY9+oR9yJLFGjnrXjU8fzjtJH1h1qLZffUJbSYxUDAD64gR6sHCcFoacrGLdoJ/5FR0txzTs4Gg3ln1na4gJMQGsRVwjKM3FijRgcdonbi8nxEpLDtcZLcP1V/qXCRq38npxWWiKci2HwcoMBOauVQ4Gk4z7/9HWW16+c3PQ4m+1aFpJ1bJVvPOw0jCX25g8c1mXbzDgeRlpW1Brwjx/o2ZKQbd8vGdoX1xcfPnwkVzqsLEwcONytc57jzaTFHTef7SGyewLhc1crCpRyRAu23uC9SlBOVRxArmgF3GKKBFBQu/qQcVC4gtiB5MQGSRckmBCKMK2i5UivPYRA30G66+xstHo/f0g/v2nHs5R9rQIUCLpsP+aVqDsbG85RW8BH2gk/vwcmsGdSFCUEgMwYjhIt5EkC2vhYzYfCOFYB82ied3wbR83OK0pQ1LSgDn/IIR8srndbVt0AkqSDpoTORkHOAlHcTVnA5ySFc5f2JK4JXzHZyi4mMF0B2uecFU5ChXrS1EAJPbgY9l9fX5z2y3c/TKf2JWdFQQiLMehMcgj8RbSTyCIZbU+mXY5sd5gsD9+9+95HQKNM3quXN/cPjx/ffm+/Pra6VVcuJoYOixkXUMd3Jtkq/0jSUBDDLIdJXnGWqBMhuq0BoSHNgf7W5qTiE/HjUmlO8AmXWf6DAqZmbsWWJjVDRQQy9EJslZLSQYWo8fLlC/IKlJoPKpXkczQQJxDHy01ZQqacB6f1WmzSzaGzMN3fepj6ugRwnE1LKTHnJy+YEl+mNbSFKeRTig5FBYkCMfQnLcRUr1zmBzvGW2e3ARLuaIayd5obcbT2Kcp1lvlYUpQ5RE1ME2pFBLYcx2lndDMpifRol1STZQ/V0aAnigA1b87HNxdjq2V1VM463UUJd0wDwwQ83BJ/V+xVhkpCSghfc5AV+f1w7zi2jlMS3314VF2Uf7JT5lkOe69fn59dXd7I1C3Xu1Fb7mwgURe1K1jaqA0RCLMQV3Ja3M2bktxAlIP0RfJlq41Nz0w/5oA3IebOfyvGAeXgG/2SYllu/g/91oVeds201IRqGqbVRUvUdiCzJsYc5hcEblawNJgHVSRcYVhhobOLi0Pl6ePj0+cjZ/ZcauMXosIbMiMx5miaEpi/tOnSsIPNUhLoUxJmIStVE/g+21UeMfpcbClVx+9wsggbyUszJ29BAGg9maaFBDPZtbK5dngMMCnJxm1m7waeRVhu4B6XVyLBpNXpl9ze7GniqAMbeZ85WbPVGA9011sZAvFpNkrhiftgtQTorAeiQEbUj8uxKoJg0un7h9u1XkbLw7jndVup+fF+CXS/Fi2/ePGzH/0IyuUAVFCEV0bMaylVoSxRr1fchb6JGUwtVlMzspUq/ih+UGwk2S1HmJNUQCruTzyqey/qY2lZ0A6E6MXNsL0QLU93xH2jXUiG5aCALiUsbiW5aRpsl+nn6qOH2bqePSmMiJ0h/c4NkgWfOsvAYiNbNRsNFcQ8j8nKxzSdIC0nSOEEBRybLXWdRAt7ipEM5fHxkSHFwjKsyDR10vHj9sHLjBkukiS8UUthZ2JNeKbYz5Scg0HYWx8YEfFja0k+36MC5/TX/gBuAKYNwvot6AD6eHp8pL5vXr+8Go+yiRshFTBYdKIWU9YXsluxPHLEFQZWHJKcPXXPc9IPLc+jt73PveQILFZbs74Gnl73Rz/+yU++/PLm+mo2mZihNegsIlsUFAAUCDM2a9tSeiIj7CEC8upx9TS9S2upLFq1Dg5JEqS7usd3ZZW2jIP2u0QYSeVHL02SAU5lngxoqim5WY/BMGBUjG1DY+RASpMiN55uJ221J0OPWUpctMJFwQNT6URWTl52xsfaCbAt8DHRVl8aB5hDE8gPOoKCTV8c5TRR9Bja3rH4P9pCU+iPJ1KVcCygOR8GgBLE/Cr5xDnIbEQhsDXGlt/SnoGcfJjQiPKB37STzoKIs4XSTsIs3wuQkmhBx9NSfUMwDVyMe+PxcOTmgJIefHE2N3Bmg7WS16H7CgNUOLl01ii1lUBD/6LsBbjK6Y3OLySCDHFouWSl8sXrV28+eUNBnp6enpuMUVzHJPEkwrEtlqxKS0+cAZOljUJV64FsAuLkK+BEdU9+06Zteq7VtWik6ijfWhxTGuclldlivCSjibwDpskysxbL5AGo6RcwBzWJtoAWnwko02RnS0GzoyZ0VsXDJPsjnca7Su0mf8oikKGm5pBenxLwiNrdACupRrUO+U4ihRplcYcgR9LV/hx9feTmWADNHxQxbq4gVb9QMEDW05CAWQ5qSgqutJmio18ZPOZU25A/Y2Yh7pSM9DQ1Tk5+T6ZIg1RjZaWEHEenB1zYgjFr89PpznUrF3fkWhg2tVe3jGTqzlB2sxQzvoUZlqMwuCwU5laT2QqOMiygUZl5IHhgMOCUHm+131wMVCEmOMCXWsd9Nh54puoKLgYnUmRqcXCy8qql8c5eRB5lj5z5g/46sitNm11G3Ko41Gz4CLHljOUkLniCgumqMk80UAarb19oRqPgcQJsmwSpHuzxnAJAzUjTiVqWzfMF2HhvvWQ5PsY6eARkgRY26mAtQTqL9FhXS6DGWt3VcSAq/xg3DKWO6n04jj5RLIGNjfPTmhUITUDNDy+lEfweL2bz3YJaY78SGyRHzkqicFr6ZZ/ZFF+IXc3aMG046Jk9M4ycn9T8ZAkPg265hDqmnpfQsNGCkJhTY+3Yrs9xuraEzKhsNcqZRMUZBELAmRMDRZeu6JJMcVxB9JS/pLvS+wWUbQeD5Wi8PzUvhFMso/4liTCXf/vdd8NWbdRuzZ/upYWajc+c3McOBp6bRLJF9nSwP78N1ZKElj2XOt+tBRv2LspRZM5qJRzZkYs1gBfTWgCNmEL22NTlQ48YcxUopHMHoRSdlqfcJ/qX6mG841I4HXdn6FkjwbtWK4kpnwG9SftqJIDbVCvSARVwSfPR1sIV+zypRid8szY21TjZkaLocZAyOxrGIC7gP/yTLXnWPLIC0eCLP/3yrIsmbRRJv6Q1I4Vo0WpCCHwnqylBHA4ayxloQQMbwgMlud/qZvtVjTbwiaTzyYk63BIzQZo0J1ScEZ4GxvSF27BfCWhQ0z+IdymEyPMGGmUpB7qVpYuZd8EfjKSMcFJ+gcE5yXQ0PNV6183uSHPt4lh9evg4u38/v//wD3/xs8fHu69/+6tPX714fLhtdJpniIQShve8JyM0IjK1gSouOqsgZX51AGvxWLKxoxTgUtWzyVTrlg25ROI6E7NcbVvZ2OeczWCGgz24L/EAIFZR1RM8KYbsHGZRgD9FBdmBCoZAgUWODTIwfDZCU48ENiGQAxWPmrsoLhf27Ew/PJeXYD8F5FAuREZf3MpIAVEHNjBPoAiZkjM3AAx7RlnY4YaEX9xC6uHVmHQpTXvOpcnOk9kw4RIcximmtzhNCaF3waKMXronpQ+yPi39d6CrubEpHBw7pdYxGDtk74zdAOYky2OfbQQR6qWWCzVTOvVeXGT4sUlvkpsnLCUOfJUsMJwyGHKAPI2HJV5kj5xOPJ31gn5zfjR7+/r168nk6S9/92vbJ51eXis5AaX391aw2lZEe6dSftVpEMoIfGLCgUju6eL8LGMODIAdsqzHIixEI4XZwTyLZxVWxRtyszpfYoaIuREimZ2hSPC2iT5kmw9S+0WytGNRPLMjw7K2+jAl2mL4rdajsbAe6ynAohN6HaQuB5ev33zOEgXmlOjYMcc8DpSlecIeR4AFc4VttEvQQqz9af0s9XiOMYwHvWJ0yitSAvoy/7Zdwj5Gxbdi6LP31nNRLfsQZ394IRezWbdXuI3Cl9kdT996J9tO8It9+Y50nzu/e6NAY0VbeGhPQkizUnOK5pl0ha5UgheZrKCy0keSQiQoqb0gQsKcimRd84cOKBsgbD88Lb6/nUzW26f5t87yXbNsuh27vUsbOy4e/vLf/evGdvXik0/JyLA/poaz+cedm3WTX4UvZMLA36hgfwCaMNwNaTkbcag12ovdCacaEdj5pr0+s0ACkSKuEgdcFa3w6dHWY1S3c/fx/XLepkIUFADGXtPIMltbIKvll7YanQmi5LkddGzEul1Ca7ASmii22uNUmN5s2of1+uXLz6QMpX83DhSCRD0vW4cZVY5y2zQEXXYPnuOc2EYSRaZweGnPxda0aKHB4xlKEh5q5uXWDKytsAN+xBwlsgRt0i5MZymyTWpkHOFR3yt9mzHjrCA/AKcBIFRNXpHeQ8X47S8L8hAgLQnUVLFuMLYbyLuHp/3ZCCaXvLWjiZ6+UCO9Sfq7smKdbDnrkFUk3U/z9eNs4Ryo94/LOSlPb01Nl0K24JbzT+h6+O7rd4v17NV4KNRDZ9nTQ3OleuhGejkIi9V9g2ZXMROe6AwHegOodHBkOp1W95P7yWJamhWGwg8bIXNYVNS3/XTuwGzmINsZsRkjMOHRe7+a6Y1jewTLIk/XudUT3Gi9YxbOLXppTFJ+ztbWupBbUhkaCeoOte/sNNE1+1ZE94dXBd0k3UrSFHYMFBBmGYMy4WDaRwhkB0XMqcny5Ts+7Nl+Pmuhn3hJL9wCF7ETX/GLbfStgtFpvjVwNhCZzVkhKpXqWbAvOnM60SRpFFG/LkPfYi7ckxTHbmh1cY6l7gr2J71J2UMHxlSgenKO+ul44zjxngSAE0TsPaS4CHfwGwLxCkyUiI6H2RyW00fZDUunlG5G56Dv9vzy3EqXxFJDs5qp57LedhUSfE0Pc0Y4ra0sJfScy4Q6NoTLAnkKnjhRpGgpCPIvJ5LwHFDK/G2HhDEPzdU0Vb911hv5gmahqi65yWHJHFh2Vj06l/J2uxKlHJ5OaeExQXBVS5CIYzN/itVn5UWowUByTp2KcrHsX6+P1tBFDkboyPUqVJ/RB80bEAD/ypklKWMPW/mXQPQgFJqE7NTaL9SNfKvvpLBlU6ECUGnhMxexje55+TPKEIxYUTLkEwzHlitrrKKOfj6vypZz46O46t5ohO28lIiVkHN7jEt2W02Xs0xAjHLqPd3sg4fLKc2wJ6POdmknodPaoGBjlog6gZh2SdI5AWNgfhK2VoafDgvVQkciNkeMZKM5nS0sg+NyMiSrHDriXBm10/nl1bv5Hfc8OGck43KyqFK6IyUJIz35GwYxJe6Dr+K52E8nRhg9pwVcAGjav52A+/iktC5ar/d7fCZvtP747oGG2aynpdt78bTISjVmczvbzdGd1UoFX66N21tNQEwgAL5WDksLcvYX7qlyJbmf0FAU1tY2POyNpTrwT+i5UaVxzgYXpQkqyf7sdkgmCoMoVhbXob+wmwqiqwqgz0UUiA/LYJhP/YKj3onpFa6IbuMqpQm5U7mbbSwqdeZJhLk8P78yf3zIDhNxKjYfS+9twXhAhbaZdITCw9wwebajhviGYDAsnBHtDVbrOTh89WizeP1L1eP5SPUeDNN251jLnHUgaaIQTKGlhsVbitWwplblxCPDBjgo7gG/1ZWStWt1Lq9uvv3tX3Bdl5dX3mLLECXpq6Q2ZH8121kLD1QnZZE6maYC++G1LfDQ6JXkppnCZ1L2SivSiHYf9N5ifrtZTRTRRPiB76otdMlBN73mFo5RKygrmcUtMKqEa7OyUWkklByDAdvMqGLX2bNrOBiL/N+T+Z2RE9+GYzsy0RKuThuyFBDERSNVyBL0ifAgtyDSOD2cS25IW1rZdJ+7FU66CNu88IymekmxPbMwXITWEi1RKt02jcbZ6ByfbTzPvIFBsu/xWwRAkIuFnpGojHNMQRHd2WBk4VY5QbUl9SOph8ALfHb+t9d2bXyOt5eihG15x/V+9jC3yUvJrINFKq2UXUY8kYc9W/s5AIydBWmJ86nirDXmej0XDcgOduVADYyk23KV4NMg8VC1ZneDLIvjWbVWiAhEPoHKNjpii6PKje7YeFgzu47zGgTLCOwQOwKlJV726/l+PavsFzrjTAcssPGB3sY8yDJVRXlnV+ZOTJat155sKli6PuXfQaS+9TicYHd81RiOmdfO4IwyJK+a5U6ccU724ErdwT/dy8kwWAZrT5wwDI8MguhEeux4wMWVpFr98vIcGoeDvY9z4Vb5BY+w0GDoq18oZWLu1ElyDQtrH8oe/UpYQbsD+meebgdwdTt2yQU0JjGR1g01bnsEK9RVyXgB8cdgUWEWwAl6kq4FoynWduyb2MuXq6cZT6mfkd1Xo9GlqmGoa98IoaqsUKrXMiDZH8fS8OmUZFrSTirAKSYoGxUeS93V7lVJ3ImhhShcEL8ua5pFI8ROCigCx/5aLxBKCsJDPu9pbjc48mdlAf/LfestIUuNqq0urY+QCdSImupBzhfT5W39ilqPc3Z9j+dFLRtgJz86y+l/OvDEyixEp38xvOyPX+jeSXdCI6AAgEH0WFFSqpiVgnMOM2P2kILqkO8Yj1jLwM6EeqGiNafkkPEU768ys0SWf8igFj1MrrzcIHjVO36GhpiaNTKETkFEEwDNJTlZLZZGRtUTnOPzGIlwseE0bnnLngFSH1EHX4dm5MAVVF+tkIxoiUujbdpG5NIoc4gCrIPoxuz5Yl0WCC9QPARiG/eHuRPdda11dTBwuAdtRcRX2MhiCypW8xU/PZ/OHu/uXpz1iAIIz4QiAZ6lSJLSQXJKsgbkjExnE80kS00opUSZNvSFiWpZ1GZLzcOoXx8KB3wj9YWT+Km0jWdlBc/mK24N0CpvGnPxgVKNcml2uLbQws73oFSfIe1dvKy2BsB2T0ceXMfFbPc6EAVaa8vj59MSMTsmBJI0DJSQL5JJsrm83qIFL8dBMp7wUrrZEsCgxF7d5O72nlY/29JoHfqMRr5FRHDOy1dMP9qfzX1s/xNLlpYr8w06ddKxchIPlaYpJy4BMpGC3FHNhbkWYDAa6XgK5rXKAUDTbXJcyg+AnVvpO2/IcIjVpnM7LW4ZSBLiPj37xBu2mldp7gOIzQvL+VhpPLpIJggaBCedmqgme5bGwztuooSDVv+tUB+thXHwhLP5PJQgJ8mUtcHZNrDoPGdHKKUI9e+daWayS4qeiPPLceBk89iurbSpN+xmn35QxXc/TD9GmZkeDQZEotgz22nIdEEltqFy1jx7OxpfvRxdf9IZXYmDRM82opKCHxNDSziKl2F+DA/n0jBQcSBXNxSW+uAX7IhshZqEciIUGY1kQ7n1Z7sm0WtSKIVbUJBfmC7Mw0U6gjLPXMQOkwzepwqFrw1MkAUIcFVaC8AoKQZ1u/Ro4kosqlStdI8GFozGZ26/AF0Gp4zukKXrKsWQOolivFkMG2zEJeRcCOvfBwbsxTSzfEmNspe5t2BJDhO4soiLT7S5RDdj9ZSIRxqTQpEE10/b5bz3+vJ8rGDpyKNpSwgjtkgpwBzZICpp7KkhWBJkXGoNmqxP1Y68ORS/VPq3CY4TTgcDR+Z2ZOaECEobzv+2GkfDoD1CrbsUizQlpMZkWgCmWki2AM92//K45uuHV598dfXmK/smysx5JlbZzNTm0CO9ko2uFBfLKxpBSiaAGsVvo11pMCclCOcMFTV2XtJ94w4gosIMjGRpFH6Vv6I3hVWY5yasMLUjBN7085lz4jSDREDzb7jK05CBI07rWrtDtGkktvo+IfIBbFXafHnRXJifNuFjSJ+tVkpYslvrHMskoHEFm28XzFJTRxccywRkndnthJi0S3gjRIhBYFfzinnRY87LijjLpugESZN446jo/3D3kal7eXP15uWLLoQoExl8/oezZ4BRDj41/pY2yVKHjXWF0TrWIjgEKOvn+AK5XhDLGsim3aSbFkNolWNY7YWEPOBjwuJ6XaOUMFzqF/8i0VmdVl1XOy/7V73xVa093Oxy+A1/YVFfgFjs8Km1X5Iac19sdX8dWF3US9yRuICOxfnKrmOcPINAk+TSoiRrrRFYzV2cOIKGZMlj1RY7DC/2eOGZu5QuQ4NJ4I+jLLAklY8oJVokWlAZSq9XwoRAXKEhbmBUNM0t+erNyrqU5M6SPBRoyz/LIitcpz1ZGIvgGjcImgQTx76aLTSWxPpSMsfeaXwhHdmhril7TBKFzfTVgAiLNk0Q1VNMiPBLEmmixm8jiTc97N+9/W56+/HzT9789KsvrGnhH1gPp6Im8UF6DaKYIA+TI2LtsSTpBZkJYXFS0mw2jwu3WfIZBAqE0WTud0j7JTThHCkTdY6gmZpzP9i9SLjivV33UtapzCcb24A1umcW+hJrUNmCA6cOxw+vZpq6ZBZhJMYAmUJ6Uh6AKpFdurZ0fuqXQPUsS8Yu3jy+TdJJJO65eVqQa5IYEXsCUIJ4JCIF7BNGhBcJHbIyPnLv6gSH0n47p2TALClzx2HGJssAZiF4VMrLHTlNFkelTvY3tV8d4slbssKeHZOb5ymsWPZFanQ+MLlHkXZQqNHAXYxMybOni1VEqkhmBYbp2TfJ1vKewmh45HMYlA6G5KawUxvHbjGZ3t9CO7/4yU8/e/1Guk12C4TTkZBELxEU7Ks8y5UBF6kWheyoRCSht4keZGzUDEj9HfesqUuGqN8eNmv92snWDgn9hBPV48Rcj85QtEXP2DE83Nau4nAvDVBzxZxae7Q9WsnljIReaXIiEuvcWrZIk84hvl+VOq2CuU8KDASQ8UN2K5cI7mrJz6FPCdjSgy9JkuKr5hMSkAQnNBFlUyewKavVohvUCxJMrhR6KUgtqsZDlxUdK0fpRONTQ6nqw9O0T5mV0lLSRAhilL4Q92NhGAHnoWQhSOKQ3NFsBe0uIDgykZgBJdIbNHx4mnNvot6sJIm67mxsmcJUoK3mzNQWMJ5nnTtsRs9e2f+RcOEkp+LlKURdtkOX0mW/c/f9x9N28eLlix9/+sXYwTgCX8g2BfEUs2LqJY+CnmIBfd2ppNQhxOSKWjZRoCEgTHX14QReXl92zkfX1+Nuy1ExupytFfA1FikLHLLCeHz5otkdH2uO6pG7EoBpwdw9Luad8ZUTXYuVk2tWTxXu1LKiFVxtSxvV5mmKYLuiUtlGAWQpUR16sVbPWQgW0/x4eoQic6z6s0oRsGBVGCqtvoehVRhSd3rFi08jTpb2sVi0I8FBToNNaj7ZuvRm5qSAZMM9KOqKEJSZOJAQv0m2JaiOIXY3yT0WkHmk4YzwfD9XPuQgWRbzd2oZ09fXk0oyUrCkpZmQsN8xeiwzj5V6TbOxnT6vjOTTEZoo8cBxYozhc08qmfB1YI6rBC8c4STN//LmxdXllU4fyy1TT45jjpNXJBRoMZdu45mxw7H6ibTZU1bCvCmFwXBHJW/XG44u9VIxCPwaA5PdLfewgYV9vWbX5t39arMrX66vW1F84uT4rVNVhuqebBkfWYoSOJSwNdYP3fCOo6HOmXF66zgfwgqYoAICugQns2Fj1BR5TTcxonkzbbFnULV3maukPVKPk4SzTAF4IanGHdOLVtiRMBm/CWpNz602IfPi+QJ+zD+8y+cJv9zUtJMBKZaXrUNvOW7qbS0gdUwqR6IHuWU1NHLD8qMRvbUBC2jKMls/TMLdmnzkfIes4KWB2qICyHCu2BYUyWYgSfAXuYkrSo0imRSUF+hk1OFH9eziEpZAr+yFFqNpvLH5pm20WIirEU611pJtKTC6YnXoRJXEUY8JfAfct/KfXK+0tABdeZkX0xrjkAfWr9Ietvr2uxvYjBuCvJcimC40GYnxry+v5drTqWzcYJIWj6JEbsoRPbMq5LOOVfcOfAC+2DAjqz9lcGzEZ1FRKrj5ZpyTNv50DbqHxcUYnA2pmNSwM+6Jvqrr4DHNwbBOtaPb6HHypCpJKeF7tjKSqbiWyDa4IMYYk6k/vholwWGHix9ONKBeQR6y6BfwYMGWC6qTrssyDwk839VakbJnDqG22ydbzzFluYqzbbJdc73xNJ1RdrKaENP1QciBEicASN+m5R9cP8RZtveIh7fkLPEWOQk+QjpL47r9kQ9QJN0OyVEAQeReN52ECNsOyPhPDq7PBWbGQkZspUocWN4eKm7sK7Pl5v5p0TwHa/rOddykI0ZBLXbJqiWLOdanJt02Cem/nYn2x7mpddJdIiX+y5KXWC1yw+MkGEi2kwU0YyKrqdr0yVWGbh1FqhlhjCmYFB6kU1AtARFpX26YXQ5M3B3c1pc4eIKLTkIRKBBozxNrVZjL80Rm1uSUp5UkJVoWIdZWA+ZkPW1BoEGuHhbBsUtLwCee5xQQJY/UFMNyOnJ07jDh0wBGlWV90cytUcQyHv8zatqIrB5Fw+T2gB92n80x82BIXyggjdCw2GmLKFuC4Jk/KTsrYcGMzRpRByAcjc/IIeMRAcieeyQBl/lkhiL0QiPTSZTv+LSczkHn5HwIlMyMY+9S+Wx2bJA0+3D3qK4waNWuzmzkAkAKMe2EvxF/LA+bpwdlqwlau5euNc6VXRAypxYXbILOEKNHEpJgEaYIJ7xvXmVS0QScwwWURBxQHHc1bSvlI0jxTu4WxIAEhYWB65ABtTY31zBFQSXWnDQHngcp5eNsEIwD0PSazoWM3GT6P6LgDdlFspAknFFxLfYNL32PMCunVCoVdl/MgVsYYyM6+u6AzkBW2G+94iZVhYpBl/SQku3KFRFPPY84hX9BWHt5qVTFyID9dYv1SxkQU/UHcDIyT1ygOSsp8hmPT0+xA/qZdWCkTEO3BQwiyfS+o3pBEYWOweUxcBEtmLCoHhMMIiKcJlkdGiyPxipWYTQ644bgr4nTxJV/P31lyZIWZR4t+/NtK/fz7ZO2HLs89ez0KjnA7DLnTgToKlUapGEUw5d+6HhidkXiIvKavib+u2S0CTEih+WxFURNkcRikORFiXq2VsEPf+K3m5ADmv38leIiC77ODvdZs2Zlpz3Q8SJtDNpY+33qiHQMpm5NIDSKlGeVTDmhcFOcT7yRcjF/FsiI0xgrki3TUWe1qNoxLTnMDuLHB0pDa61jn7MmSTjVN61sfWR6iJ51fpXD1dU57+6SZk/3TdbLiTiN3izcBAaPAlm9lXYABjzGEVspNZygDgD4nOmMM7KcfiJHjt08oJ0HrEUljMnCE1hWiLUNvGaqnOYjCshWJ7FClxcDH7ru8uoquS8rGw/7jw8z8NYSAMDWTDUWOfrWJoiXL18XwxZ/hr4eJdcC2aUYHXiC+pwYwUGtWgL/bi9qQJSDFVLvlVpjz/BHqO4nscYATi4zYBxafbk8T8Ryd8NwTyHsyOEnsug9oxU4pzCJRHZy39TX/BGmultMqLBUGkGvMwHnIdNoCHmmZuuQ1SSg+RgH3MVWEJBIivDLrRgYWVAwX/Z9bw1pCJdQ2hWW2pimYu9G1CbalWcB04wbA5gbeUyucSPwsmM/Ax0op5Ad7JSbH+TB8rYTTnDHQ+0zUDKxeiGzhNGJMGdOnRUjJjeYxxH9cMpQiYKabYaZf2wQ6vtvfDtNZl3rGm8GmI2wvpo13OXcqEGvky+cDreT2WS1tBSBGrEZ/cH5+DyUQsvED45kyIa8vtipHzY8Bf3GJM/1k9zjoov9JFZYi0hSr6nfFQ2LW+AaswQ7ilGMEsYBSVFllPRdthfeKKFzcqTe5FCKoY6zN6SSGAjLszzwb0EoRy3ysJiAEU+oC9bo9qaOLGHuEhMQ8hAEGdEIvMXN7Y7uEk7m8vLCG3d39xwReJPFOulchdRFTZWh+ntK85XJdMqAi4hKgVREmMQu05N42woVu4Ppb3XuJUNKU+zh4ejP6KedFLITrjCc/9fQptnbIhcR/s3lBewEyxY4BlrEByFN9Fm8zxNk+uTH5zrepSaQiqjrL3MpZYI71kTECU4M+BY0swF+DjtaZgBJZTh0x8nhaw54aJWal9bFHMKtxhgIQlzT7ZQt530jls2MfB136RwW4ofdQahjQtUTFEiQYiddiSt4SQ+Ql5lNMgPdwR82s+y6sc8p3qQ/btU1EU1pakaOfxOT0B5WuVqdracu8KzoLpmAe7NleYGlWCYu8c2wkAWnmYpQZf0qJtvgIFjDGutuh+hJKLdpDYZ42f1E3lfcUbZbZeJoHzNjmorss+mCy9SvDGF7MIFIf5xFWNYA6JVjeAUtlrwwegTBsTnkgdwtqf3BMCfTJ0edCg3ffXw7ub/98Rdv0nqJi6I8gQgJkvdKjGX7B2LAIiFApsuZIgGvYZmjfI1uLe1IsrPAEDBL8HgxyqxrC+wAjbBdLNxvNa4uL54eHmaLWVlzHxunkUVrbxCUnJlNxpV8s/wNjEzUyLXJZvmHYBj2rGdST8JMHGJv81M6RvCaDo9UM+BcsTxuUhlSiOSMfDHasIesrBpqNlT0CxpbIGaCHDtZiVSBfvKfUjxCVAVebo4zcggnIGRMii7DkYOQxDZr6JPkWNA4mUyM3l5lWOtesJPBwD2T6YquGiPkZ7VYyavlTCTlGgIC66CpL3LKlb6Sb7CLzJJaIEunwzDoi2VjmsQqCMrC2rHfyI6SHZrAilFKVKn+13m8u/3w9lvNaJ++fvnq5ip0TUoJt7PGRZBIoSLd2c3PInVRQ2J93CzDK/u0UpouDlL7OAX6xD4rGJFoCprl8HqWiHzOl1W+am17DrRcSMSLgMxFhdIQ2SK2AVz1xOli4fbEmoejfPQMb9CXN0FKncuGI/gjIN73cg1LyD09q6/rUYkSQ5OCxZh36N2G/s4/4+WKkqGe++OijUUk+CANlsc83Qp3jcME01gRrQPV0/lHrpmJxv3dA3xIpMFZYmwZuVkaiPGpzZIa2XV4AAZk/6X+SJD0WwCmlIHKgE2X+n3D1eYLDdNmI+h37B+p2X+GCIqlxhoEks3kHDsFxwhYqIduPss85fuDjZGfYSEFVGjyeF8/rM/6rYvXZ6MuwM3dQTZoiJfVHa4YezZdlDZirBg930tyIIkQvwcdymgkWysAChYzPULFxGkekJnMMauLpMHzd9r4dISilM4Jo2JImV/KU/qmYvkVK+yMhl+mwN2AcmgKBBsNr8GcEA7ZuWJEMUIEjoXgAkybFeoCQmT3FUOAlXQMsSNMO8Ugc5gg0BiNhq5HBMUMEgndOV07yciyyBfzuDxCTGL4i0B2+qTRxKwpuxAILKEA6dQ7VOfS8zKAWp6KIuM4mV2csO2J9PDHZohwPJlbcB6sC8lla3Us0l1bMdocgW2ljmJWFoQimoMNcxl8mFl1lxnTdKtYA2Bq4Bx2ht4nZQrcmIkz+mNWlZmm8E8/Oxv2mruVzR3sGUEY1exgRP9NHREy4KdYF84D07CV+sg8QzeYUtEDFewjVOeFia1AG/bCv+NiNbcayNTY2PVsok7LYADlyMQwBtmRbdghB39ZwQsJCxmPIlqDz0YBOGZRvzn2B7FSkIWva4NczGt6AQyHbdBKy0SUFcskDFNkH20/wPzpGlOwkUenl2RCEMLcCgYZtmdA6/uQC7A9XawYOYOxnQguSvkRFuKulgIQAW+d7hl7ThrM1zl22fiASIJX4DZDrkEs3pkvJVQlmPNIokpO81M5Xx5MeV+H6FCZqOdKq2rYIqRJ9G1P/unU97HQ3KgpvWB0EgIm+qCBW75NkZc3Q2s8UF5mdZmQpJVUzuwZ1XC0Il7B/yttTrwTRkAl5q4VSJGfx4N9aIM1XRlqORGAkj7DCipp7FmOdFwm+8MoMR6pMjpKmiEAF/y/KDfflBsovEAlMto50ceHjBwQm6ZA/ceBlPqjR76FPdb1xRvRifKn7wJuTM18swQl6UPJoyZCdyOZcWQhxO6Vno5hv+zbm6UXhMA/OXYjExXCazq+jQ0EYRDi/GJZVKgtNwkkN2J9+myk6wu8WoP/zKtCY5yqa+wCYv7JJNVrD/cPxpE2Jzu2LBaPT4+j8cAogfOEcL7XBG3sNQeUp3kSUnPEGsjMtpGv+ImSqWLrI9oFiBsZOKdO6U/q4qEWA5ANY2I08iYSJwXDduakv4ECrnXnCsq2gl1NpT2Ip/ZU6g3tj4bnAXQ2P2VCFLk1MzmKQueO/fBt7aAVOA+Ae1L0IaDYpfsFJ3hDj39OZYSRwYQqNnbRzMEM+MF7GaohuZg/87vppHJFHsogvZkADof+dl6uwZIyETRNHo7t5iYgWJPyoox47/6Kr6K72WTmGguXn29OHxFNGwTrrrfVn7TSBcBL1KUcVWqoKImAzw+ldEShtATEUHuzcX5+7gHSMSSLBFrtzbOYnWERD8JtT8yz8zPLU1zF3LMUpKbEI+YZavE0mbMUX5G+WJCER+Ba2nt8ZJLP06agvkg8A6xKnyCqoV0utrA7MtR8XKja7bOhjQUMy7n2P1EtyWfT0qVYb6s94ejltSjYnt4xzja9EL/wytng4FRz4JFlkrp5vGNLVm4KQmONkx8oPW0mZYZYwwxAGTpGcJHgR/bLYIQNhPh58Nhmlkhl6SZyE4TUA7KpPCwgNyLbts/RKRSWUDJUa5uPFhTEvMtd6o+r00I7c+xXupDENpLvu/3b+x8AkYvLC6SGRA3MgKigoYL+/ojCPTcR8ZKsgsE9C4XDlEw0O7QwjpqLytL8MJBw7naSEHwDFsjUAe4GpubA3llmbtLS3AbMipo5bWRR6T7+kVr3z4Ys0BSUqCjhE8RKwJYGV5zjD9w2frQ0Bbkt3htWrH6i02BzBo8+SinI3w+azTP5C+VXSQPn2jcGeqHAZR0PMaCaf5ezh7tdY9YcDc/sWqQdRp0QL/WI6CiULpCe4HA4eKGMOIcqMOcIxAQbHI6ybYZN4Jg/RIzpzMgTzhukS/DOn67BLPUxFpMEu0bSWKMjMU30yYylP7dlasmLE4bsmi88o9y2eEg6jJ1BSbTCzjBe42td2/GIcLO9PprOpj4NRqXw5dBlA/BLadH1fNxPGyNx9+WY/cTKaUlF+wLdraitNmQO2RnJFjyhjHCLfl3wbL9dYapIXai0EuUpZlUhrqG5oYm7B3qllzlLeAwXOfhU3FGdyCYsAfT4bD3mVkMDsfAVSxvhYagBh6MYOWMgvstzyAbDE9mBCbm5jtR1ij7ZdNUZvOuF2VihS3/s1gQx2G93MZ17mCH3CaRdwZMIAjzT45qeSSdOG4nR0iTTimeKr0IOKh/ZKUpmOoYK06MKJuFiCBrylIxJwQc0lJienY8pjEUegBg6ApxCSpe5PkYIt/RulV2mE8QzZu7Cwnqe2r1EhFiuWrWTqIQV6kIGUMj6uE4aqpmOfQ5aBYMdZkVlToS8KWik1s+4kCHUscWBWnXfrnts7WjYNUqf2r6lMT4/5zcR1+a5vJ2T4vWTmIxxGxj1pKZYqMQa+XIyDc2RJ0nhNwFvrGuMUxQumKqYAnShgkVUaxcXF6TSg0cmrz27XrMXiqN/3QGRwVfG2JtYpC3eYkH9qKryelPSfSbRaSZkRgdrZW05vCNL4DWWQD3w6ekOtTgJTIyVE58xQUp2QWzIm1146JdBEsmYdWC9rO4UELmQfSMBzzTCZb8gtJGzpfjrJx7wNdgsEcrIsKacE06jjAtcj3+InidRcVISPc6sp0+yV8mLRiapdfK94WmyFRnMwTEjrvTdfE7mElEIeLL1LW469UD3rBNlWSyI1zVADkvIcbFzTGc4Clyp1xI7M5XTgFloveCdI6TvNIyDjUSgwnr9lHTa0TnkuYK7LvtTcQJ/SDzjVtxvET52yihBbeYGEHDzItuMAMn1K73Mfqp6q0U4Orf1EgIrnPlqb+MEBBViWz4ve2EtnP5fdXWJzdGF41Yn+OYYBYrW7w3xHntDscbcMkusbfWGii7Z5Lc50N10/zBld5uiAoQkAKxLgQCEyT9y6R3DY5MIAejPQxuha4lgDFXRRXKMT88BfidnesROPV/w/JErn02uL+IQp+Cnd5hHNEEI9zFrCCXgPhD9D3eQhiSF7qyI7RYgW/jtdtJkO2uN5I6d+eETTWTZQoMhFym6QGOcVmGUEpYs1qvpQqExY8KpHBZvVbK/6D6ZMpbJdGarekxVuHcZ8K30LEXJ9arA4hv0ggqYhcE8mgnqta/pMg2YS3xrPpHPKGTar/wzLHYJISyPkx9P3iAwOu42mCoHr2Xb57K0Q5qraQ+ZBJet3smROW2LjFrDprZBe4z01CTM04osJdx2b9joDpxbLnKxfEKRiqlxjIU4F3eFaXQxeSllWP0GbtcVFIhS9GbGvqHv42QiM1WwFbtFgHn6vCicF+p7x1SYKdiLmGdqzx5SkMm1lC2vzQspEcSn4WfkmZeMrS4bkcRRpDcdzmfPgO2+JTut7eMjd62ZkznNnhyiqOzeDlOrVDtMVpoMuC1b1h32ORsq2SIrPnEkdRtrJQkSQVGaxyal11RUeTFGIyaxpNLZBDCk1C87DomVG9CwyXdRPwGAVEWgsA7ORC+mJa0gdxYdN+fcs5jsZ7qgBWMFtri5OJrjUyEOR7MtenAsj+vL62r248FrKvfxYX55aQXZ2DG21isis7OCArWrTcvweQNu0mG1g/GFowpPkjj2BGm0J4vNZL70DD7SyZ5Iy0AhpVkhLkXMABpNhTYJJnNLGi7YhLlLqONlqMSXL/MLs1neQeA95EBV/Y33WcwetRSzpGMiYMgfWOhvWeZEmekN1aOBzCFIOuWi6bhVWuP145dfbD8vXChbLztek5Vyfc++aUVPck8iIWeb5Hg02z24LU7LZdo40N0QDceS+hxEzHR4UTAj9xH7yDy7hRw/ASRljmSAZ2k0WVU8VswzM2PKTxlgV7MYASuO2iANMSwZN0ErLxRxf4yUXmcQ/OkjnPOmJ+J0aMeHSxRxtjYPrjmvcX0mBBxdVver9Egddml9tMxFf4a2luqu1T9Ytdixc0bPwkd7zDbJ2e3j02K9t9WfIdCNgGWXWnLFSDqFKrttBGM76jTin2YUODYRZfEMyVUadJCLORfY4s9wi72hsJEE2hvCeWGZj8qn4T22BsN6s3yGLqFJrFbEmg0HqLCTHYOGHx8fKBa4LKL3BXOneZZIuxsiMGh0MafLeVyRLTPRn6bcDG+SfraNQS7oBEstxOyX/FGuJ0tBnua8tOmczYesPJBfiLNMa6ag1BVsLCciX4MvAV14gghZn4eMlqU5VC0EwEWKTkR9hUHDKsuyPIRZoG0wDo8tI8EksEFEwITd0ID9Sio7/ZGv3j1M1VI+/+QF/2xcHV087a46YH0HDu1gNbuIcheVZk96yqm6j1O9MvEwjgMYnp9BtiQZ6RK2log2GwIMpCvTFOcN1VGnswxGAwPGRYMop9vkiJOn+WNQrFfggFfLftdRR0aP5WAqofFS1zXHCHE5n4XBwOrgX5KaDfOCshDQxQ439acORNZGigdu5+NQD1wyc1KfNI67aIWRSmXz7ZyAFiXflHa5oLAgH1gyzXfEsdfHZZ2xJM8FNpx3xk4EJ61zNh+UQNHGedg/TGZtJUZxkhyNtV8yJK4SFbkj+2nzOjvF7CwgamWDqmPFXoOcnPY3bk6vEevPGrBnRJMjwyyahKop17L3fitnWkkySLmSXJy2bk8ygJu06A5DRcjfvX+ot2xfO2Lm11WgsXtq2302hzMR5OWiLg/y9uk9y4ACkp/j8RU5lcSZzKbJ/WQzlOqwRxylUZzitFreSh6leQcobQ8VMSyxTFed3KNYpGZbVbSSUDo6FlOPmEbTdF63D5aRiJFTE5OdMjzF4rXze7Q8KfLQrzRKpTYgo5+V2Vy0JSvZ5JBSrTlIIkgSpdFDlEqdP7eTl3Sd7drFf5LQx26ICL2XRYZO00Ij4WAyIQSFebA8tzdKwi3KqZXIrqqSTZpgy1ZMWBnZAXKfzQhtO7+46A3O9eNYC+y71DT+pdS4o+86Ie2fZc4tmwhonQ4LYH06qEUq8KGb1nIbSsKGhZE+inV10XahzbJP9hNTRvwTjcvWSq9DbgFjJI68CB7Npj+2XefdxCaoLRs+d9sLe+nJd/CrmlLsomRN6v+/pHtRamoJAigaJSRAiAmo//9/gqGUCgQVcO2G4t4SODkz0+/3LNbp/1SqCPbVnv1AntzfH2jv59cnl5eLzOEPfJPJPHrl9OeIGDkyhqya0zzJ5VqIiQZKjf/uuP4vFIjNsVGH0y4lBeB+UnaBL33XrGRE+b7AVgIxBfnwWe3u1JktsdU8Ke8VMyMMF2gkiuXgVlciUb6oZosajo1hDFWQqCWovBUnqCwgr6htJiEKse0RnobGNI4OtN2IiB9BDcw/KuqWhktjbY5R8b7R0yTel2XiFJCTchP6sbA3Mlc9nJdGckzEYeTnTIfghTWNcsGd8ClAw3z+CspdsCaa42wN5kGLDsjhyoglAIgLyINkYjkYoMHRAN4FTODy6O6MXxIf782DR/BJEV319bESLLaz3Q6ZvPeA97tizvRGgR53KgpM2gomwBMJwrRWni7yQUmKnsWKeZuMdIaLbYQz9sKlJkvdsa4wEomkCFNFtAMIgQmTNy2OYlKnmufwg2Y2isOcquz1broUjtBNToxKUCjgKuP2Jo2Jyt3w8ab7LPTUZg7EzlkNgvsDP38+avlwwEo4WTnFma1KcrDsMBhw2li4qJAzJW0VEjeIYFgHczz4+/r9m426t9RvBCmoSet5jhTygP/81VccQCcz7dQgeMAYa+F2BsVMRbYMixQdWNtR/TJ05lrIq5UZRvo624znyiqu7jYuZCCgXRTKbEjNCiytX+uLqwyxTAjziUVY3MdUFk7n5NucxxFYlRwDFOlHU7Y7p0500kxRbnHBTGvAQSWIEkUjFMBxb1AvUYendksTiYyneblNlqnk17FwAewhZhoaLr0zwqrQkM3fABgKSMauMCkj3w98fxGAwnsJGpGpqDLnK3UKVY9vR5uV+MQS3CoufCA7X337vrWerLWQjvdsVJCoahd/mjoBBISkhyviK2GBuC6jWDWMkJ4cETqxDC8E8heL/c0th+FwOOSeXFzc3f0AW8ktm4IPqLMV+0tfTq5PENJvRBBEjCoN7XRFsHz1PPIkszN2CkCDIyJFCjk6H/FVMPrnYKa3b9hCY8x2vQVrrmfgslFw643sGp8pg/LcHohV6UFkhP5Ya97/gUiRfdNEd7u96j+299QnUzyq1Fna+E8/0MK4eqBxHMe7FrGNjUzvY9ToA8+yB1tKDs2JkPgrhUNJoaTiQcUuXE9R6ARQCOrj8UnG1YwyhyNB8ZY/Eft8fz/FqyUP7JTLK9OkL87NU2WBgIoVMStWlbq/rNcOnXPgaC+anllOrX4wYm8pgbzBKv5FF/RwWXrUIyX4lxt05vYTc76iiJ1eIbJBbXAUJlxfRm6w68MQM/UJJ247oYgKoB9XKyvabjdqXJEM0GM9yGPUi+0RCA4mFkoSOgl5Y2G2FqIm2RP6plq+vPDoWWUoBJgYhLF0LrIHWNJmCBRmZDJMX81K1hDNmuRGFEV+fddBjhjxhcsZqBnd/35D6FHJ2dhqz4t3Z0x6IbCClzGoQ1jKFdjYmkIwjGEuMumPdA/QfHLFoW59HhRZHIG9MguwEel/KlaAu5bPXar4F23CAK2B5ZQY2H3JRdE1rmoltmK2Y1gIrpxTnyKaugoSlNOJtzLV7f7uILAPxjbmIFSgvnEOAIdyZLylOouRABABL/GVghjStaYYTldZw7WYa6tWagAvRfcJf1YTmPqGAKBDGh6BIR2faIT42v67JIOEOtmv+MEHeXvUCeGGbukPWIA50phfYX95yELDANwwUjgq4IAnHD6B6xD1lMT76dGiiwUI8Y1N2gN3gmRDQECcSC836aPpJ4qtGM3pBTuSrKmApFPKgutinkVST5cSu7pyjdNuf0MuIURU+vDzAUsSLfxLCAc1H1UVR3ISibaH6iR4a8Nz4wkWPImg0mHJmN3+lhmqjsyACU4XBwmjOygm41Rvcc+zi8Qusu+7m93glGYtqZfJY2FnNFGX+9sFuRjU+33SxpAszrN5hi5GpptY0xMcDF8ICnBQucPDUbEb2AIpCyAkALyhVAqS5iQmFVPCvivnI0yZTaANkcwcvAy3lJmf+WqNnVkJeTDo9VVDp2ihfdLSDkziCYGJ3jMTnN2ZVAvECt6mthwy0DKAImirYG4fNQ6eq+1V9kCuuUwORHxEHZCpFQIvLIOQ7UDjoYKi/VoFXv3bkwjqRbmO0rq+ioihMBwr7G8t9EoC4VqwomZEzNEYuYqkBwuVgzIzICwlZITp9RUEA5QCarSK2hKfM6HEnjtswpferaOWPcfIoJR+u1rZ2goA1s0bZoZh0x4kaRLUWglSPTBHf3k7bBONcgN4I680e1oH2VLgjMsPjh6mIKAWjY4YIinO/gNhiUXqh7zOpgAAAABJRU5ErkJggg==", + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "img = PILImage.create(image_cat())\n", + "img.to_thumb(192)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lTQruXQK1Q56" + }, + "source": [ + "### End sidebar" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oWgen3iu1Q57" + }, + "source": [ + "So, how do we know if this model is any good? In the last column of the table you can see the error rate, which is the proportion of images that were incorrectly identified. The error rate serves as our metric—our measure of model quality, chosen to be intuitive and comprehensible. As you can see, the model is nearly perfect, even though the training time was only a few seconds (not including the one-time downloading of the dataset and the pretrained model). In fact, the accuracy you've achieved already is far better than anybody had ever achieved just 10 years ago!\n", + "\n", + "Finally, let's check that this model actually works. Go and get a photo of a dog, or a cat; if you don't have one handy, just search Google Images and download an image that you find there. Now execute the cell with `uploader` defined. It will output a button you can click, so you can select the image you want to classify:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "referenced_widgets": [ + "2aada8621093499db32f532303c17c1e" + ] + }, + "id": "14kHaONz1Q57", + "outputId": "9c58d00c-692a-4e9f-e91b-4ae85bc4064f" + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "0a9542f72d264fd493bd8b0bf3349da5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "FileUpload(value={}, description='Upload')" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#hide_output\n", + "uploader = widgets.FileUpload()\n", + "uploader" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ny8csD2t1Q57" + }, + "source": [ + "\"An" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1OuHTBrE1Q58" + }, + "source": [ + "Now you can pass the uploaded file to the model. Make sure that it is a clear photo of a single dog or a cat, and not a line drawing, cartoon, or similar. The notebook will tell you whether it thinks it is a dog or a cat, and how confident it is. Hopefully, you'll find that your model did a great job:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "hide_input": false, + "id": "7Naeojlu1Q58" + }, + "outputs": [], + "source": [ + "#hide\n", + "# For the book, we can't actually click an upload button, so we fake it\n", + "uploader = SimpleNamespace(data = ['images/chapter1_cat_example.jpg'])" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "xcR10iFU1Q58", + "outputId": "f70b5bcd-ebe8-41f4-89b8-19d89d6990b0" + }, + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'images/chapter1_cat_example.jpg'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[10], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m img \u001b[38;5;241m=\u001b[39m \u001b[43mPILImage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate\u001b[49m\u001b[43m(\u001b[49m\u001b[43muploader\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdata\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2\u001b[0m is_cat,_,probs \u001b[38;5;241m=\u001b[39m learn\u001b[38;5;241m.\u001b[39mpredict(img)\n\u001b[1;32m 3\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIs this a cat?: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mis_cat\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/.pyenv/python3.10-venv/lib/python3.10/site-packages/fastai/vision/core.py:125\u001b[0m, in \u001b[0;36mPILBase.create\u001b[0;34m(cls, fn, **kwargs)\u001b[0m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fn,\u001b[38;5;28mbytes\u001b[39m): fn \u001b[38;5;241m=\u001b[39m io\u001b[38;5;241m.\u001b[39mBytesIO(fn)\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(fn,Image\u001b[38;5;241m.\u001b[39mImage): \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(fn)\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(\u001b[43mload_image\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mmerge\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_open_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m)\n", + "File \u001b[0;32m~/.pyenv/python3.10-venv/lib/python3.10/site-packages/fastai/vision/core.py:98\u001b[0m, in \u001b[0;36mload_image\u001b[0;34m(fn, mode)\u001b[0m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mload_image\u001b[39m(fn, mode\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m):\n\u001b[1;32m 97\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mOpen and load a `PIL.Image` and convert to `mode`\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m---> 98\u001b[0m im \u001b[38;5;241m=\u001b[39m \u001b[43mImage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 99\u001b[0m im\u001b[38;5;241m.\u001b[39mload()\n\u001b[1;32m 100\u001b[0m im \u001b[38;5;241m=\u001b[39m im\u001b[38;5;241m.\u001b[39m_new(im\u001b[38;5;241m.\u001b[39mim)\n", + "File \u001b[0;32m~/.pyenv/python3.10-venv/lib/python3.10/site-packages/PIL/Image.py:3218\u001b[0m, in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m 3215\u001b[0m filename \u001b[38;5;241m=\u001b[39m fp\n\u001b[1;32m 3217\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m filename:\n\u001b[0;32m-> 3218\u001b[0m fp \u001b[38;5;241m=\u001b[39m \u001b[43mbuiltins\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mopen\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mrb\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3219\u001b[0m exclusive_fp \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 3221\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'images/chapter1_cat_example.jpg'" + ] + } + ], + "source": [ + "img = PILImage.create(uploader.data[0])\n", + "is_cat,_,probs = learn.predict(img)\n", + "print(f\"Is this a cat?: {is_cat}.\")\n", + "print(f\"Probability it's a cat: {probs[1].item():.6f}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xGtn2Isr1Q59" + }, + "source": [ + "Congratulations on your first classifier!\n", + "\n", + "But what does this mean? What did you actually do? In order to explain this, let's zoom out again to take in the big picture." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5GVgmGj31Q59" + }, + "source": [ + "### What Is Machine Learning?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "imVsviD81Q59" + }, + "source": [ + "Your classifier is a deep learning model. As was already mentioned, deep learning models use neural networks, which originally date from the 1950s and have become powerful very recently thanks to recent advancements.\n", + "\n", + "Another key piece of context is that deep learning is just a modern area in the more general discipline of *machine learning*. To understand the essence of what you did when you trained your own classification model, you don't need to understand deep learning. It is enough to see how your model and your training process are examples of the concepts that apply to machine learning in general.\n", + "\n", + "So in this section, we will describe what machine learning is. We will look at the key concepts, and show how they can be traced back to the original essay that introduced them.\n", + "\n", + "*Machine learning* is, like regular programming, a way to get computers to complete a specific task. But how would we use regular programming to do what we just did in the last section: recognize dogs versus cats in photos? We would have to write down for the computer the exact steps necessary to complete the task.\n", + "\n", + "Normally, it's easy enough for us to write down the steps to complete a task when we're writing a program. We just think about the steps we'd take if we had to do the task by hand, and then we translate them into code. For instance, we can write a function that sorts a list. In general, we'd write a function that looks something like <> (where *inputs* might be an unsorted list, and *results* a sorted list)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "hide_input": false, + "id": "FMAc0lQs1Q5-", + "outputId": "886d99d7-e747-43d5-a284-77d28b578e13" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "G\n", + "\n", + "\n", + "\n", + "program\n", + "\n", + "\n", + "\n", + "\n", + "program\n", + "\n", + "\n", + "\n", + "results\n", + "\n", + "results\n", + "\n", + "\n", + "\n", + "program->results\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "inputs\n", + "\n", + "inputs\n", + "\n", + "\n", + "\n", + "inputs->program\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#hide_input\n", + "#caption A traditional program\n", + "#id basic_program\n", + "#alt Pipeline inputs, program, results\n", + "gv('''program[shape=box3d width=1 height=0.7]\n", + "inputs->program->results''')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4kXBj62W1Q5-" + }, + "source": [ + "But for recognizing objects in a photo that's a bit tricky; what *are* the steps we take when we recognize an object in a picture? We really don't know, since it all happens in our brain without us being consciously aware of it!\n", + "\n", + "Right back at the dawn of computing, in 1949, an IBM researcher named Arthur Samuel started working on a different way to get computers to complete tasks, which he called *machine learning*. In his classic 1962 essay \"Artificial Intelligence: A Frontier of Automation\", he wrote:" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WTJWzzd61Q5-" + }, + "source": [ + "> : Programming a computer for such computations is, at best, a difficult task, not primarily because of any inherent complexity in the computer itself but, rather, because of the need to spell out every minute step of the process in the most exasperating detail. Computers, as any programmer will tell you, are giant morons, not giant brains." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nAPWK2tl1Q5_" + }, + "source": [ + "His basic idea was this: instead of telling the computer the exact steps required to solve a problem, show it examples of the problem to solve, and let it figure out how to solve it itself. This turned out to be very effective: by 1961 his checkers-playing program had learned so much that it beat the Connecticut state champion! Here's how he described his idea (from the same essay as above):" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m3N55NaW1Q5_" + }, + "source": [ + "> : Suppose we arrange for some automatic means of testing the effectiveness of any current weight assignment in terms of actual performance and provide a mechanism for altering the weight assignment so as to maximize the performance. We need not go into the details of such a procedure to see that it could be made entirely automatic and to see that a machine so programmed would \"learn\" from its experience." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "blKna3331Q5_" + }, + "source": [ + "There are a number of powerful concepts embedded in this short statement:\n", + "\n", + "- The idea of a \"weight assignment\"\n", + "- The fact that every weight assignment has some \"actual performance\"\n", + "- The requirement that there be an \"automatic means\" of testing that performance, \n", + "- The need for a \"mechanism\" (i.e., another automatic process) for improving the performance by changing the weight assignments\n", + "\n", + "Let us take these concepts one by one, in order to understand how they fit together in practice. First, we need to understand what Samuel means by a *weight assignment*.\n", + "\n", + "Weights are just variables, and a weight assignment is a particular choice of values for those variables. The program's inputs are values that it processes in order to produce its results—for instance, taking image pixels as inputs, and returning the classification \"dog\" as a result. The program's weight assignments are other values that define how the program will operate.\n", + "\n", + "Since they will affect the program they are in a sense another kind of input, so we will update our basic picture in <> and replace it with <> in order to take this into account." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "hide_input": true, + "id": "A4MkCfGo1Q6A", + "outputId": "39ca6c9d-70a0-40f4-f558-9b49032c960f" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "G\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "results\n", + "\n", + "results\n", + "\n", + "\n", + "\n", + "model->results\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "inputs\n", + "\n", + "inputs\n", + "\n", + "\n", + "\n", + "inputs->model\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "weights\n", + "\n", + "weights\n", + "\n", + "\n", + "\n", + "weights->model\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#hide_input\n", + "#caption A program using weight assignment\n", + "#id weight_assignment\n", + "gv('''model[shape=box3d width=1 height=0.7]\n", + "inputs->model->results; weights->model''')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GV3A45ov1Q6A" + }, + "source": [ + "We've changed the name of our box from *program* to *model*. This is to follow modern terminology and to reflect that the *model* is a special kind of program: it's one that can do *many different things*, depending on the *weights*. It can be implemented in many different ways. For instance, in Samuel's checkers program, different values of the weights would result in different checkers-playing strategies.\n", + "\n", + "(By the way, what Samuel called \"weights\" are most generally referred to as model *parameters* these days, in case you have encountered that term. The term *weights* is reserved for a particular type of model parameter.)\n", + "\n", + "Next, Samuel said we need an *automatic means of testing the effectiveness of any current weight assignment in terms of actual performance*. In the case of his checkers program, the \"actual performance\" of a model would be how well it plays. And you could automatically test the performance of two models by setting them to play against each other, and seeing which one usually wins.\n", + "\n", + "Finally, he says we need *a mechanism for altering the weight assignment so as to maximize the performance*. For instance, we could look at the difference in weights between the winning model and the losing model, and adjust the weights a little further in the winning direction.\n", + "\n", + "We can now see why he said that such a procedure *could be made entirely automatic and... a machine so programmed would \"learn\" from its experience*. Learning would become entirely automatic when the adjustment of the weights was also automatic—when instead of us improving a model by adjusting its weights manually, we relied on an automated mechanism that produced adjustments based on performance.\n", + "\n", + "<> shows the full picture of Samuel's idea of training a machine learning model." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "hide_input": true, + "id": "6GQxqBcu1Q6B", + "outputId": "478b31c6-02a2-474d-9172-57a05cf0aa8b" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "G\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "results\n", + "\n", + "results\n", + "\n", + "\n", + "\n", + "model->results\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "inputs\n", + "\n", + "inputs\n", + "\n", + "\n", + "\n", + "inputs->model\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "performance\n", + "\n", + "performance\n", + "\n", + "\n", + "\n", + "results->performance\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "weights\n", + "\n", + "weights\n", + "\n", + "\n", + "\n", + "weights->model\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "performance->weights\n", + "\n", + "\n", + "update\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#hide_input\n", + "#caption Training a machine learning model\n", + "#id training_loop\n", + "#alt The basic training loop\n", + "gv('''ordering=in\n", + "model[shape=box3d width=1 height=0.7]\n", + "inputs->model->results; weights->model; results->performance\n", + "performance->weights[constraint=false label=update]''')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N2rgyUMX1Q6B" + }, + "source": [ + "Notice the distinction between the model's *results* (e.g., the moves in a checkers game) and its *performance* (e.g., whether it wins the game, or how quickly it wins).\n", + "\n", + "Also note that once the model is trained—that is, once we've chosen our final, best, favorite weight assignment—then we can think of the weights as being *part of the model*, since we're not varying them any more.\n", + "\n", + "Therefore, actually *using* a model after it's trained looks like <>." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "hide_input": true, + "id": "YlS6YdKh1Q6B", + "outputId": "46eed303-ac9e-475d-ec33-a916953bf1d9" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "G\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "results\n", + "\n", + "results\n", + "\n", + "\n", + "\n", + "model->results\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "inputs\n", + "\n", + "inputs\n", + "\n", + "\n", + "\n", + "inputs->model\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#hide_input\n", + "#caption Using a trained model as a program\n", + "#id using_model\n", + "gv('''model[shape=box3d width=1 height=0.7]\n", + "inputs->model->results''')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ig8VzQjo1Q6C" + }, + "source": [ + "This looks identical to our original diagram in <>, just with the word *program* replaced with *model*. This is an important insight: *a trained model can be treated just like a regular computer program*." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yPn9ff821Q6C" + }, + "source": [ + "> jargon: Machine Learning: The training of programs developed by allowing a computer to learn from its experience, rather than through manually coding the individual steps." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jbixdiqF1Q6C" + }, + "source": [ + "### What Is a Neural Network?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VlQYab481Q6C" + }, + "source": [ + "It's not too hard to imagine what the model might look like for a checkers program. There might be a range of checkers strategies encoded, and some kind of search mechanism, and then the weights could vary how strategies are selected, what parts of the board are focused on during a search, and so forth. But it's not at all obvious what the model might look like for an image recognition program, or for understanding text, or for many other interesting problems we might imagine.\n", + "\n", + "What we would like is some kind of function that is so flexible that it could be used to solve any given problem, just by varying its weights. Amazingly enough, this function actually exists! It's the neural network, which we already discussed. That is, if you regard a neural network as a mathematical function, it turns out to be a function which is extremely flexible depending on its weights. A mathematical proof called the *universal approximation theorem* shows that this function can solve any problem to any level of accuracy, in theory. The fact that neural networks are so flexible means that, in practice, they are often a suitable kind of model, and you can focus your effort on the process of training them—that is, of finding good weight assignments.\n", + "\n", + "But what about that process? One could imagine that you might need to find a new \"mechanism\" for automatically updating weights for every problem. This would be laborious. What we'd like here as well is a completely general way to update the weights of a neural network, to make it improve at any given task. Conveniently, this also exists!\n", + "\n", + "This is called *stochastic gradient descent* (SGD). We'll see how neural networks and SGD work in detail in <>, as well as explaining the universal approximation theorem. For now, however, we will instead use Samuel's own words: *We need not go into the details of such a procedure to see that it could be made entirely automatic and to see that a machine so programmed would \"learn\" from its experience.*" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-GsviKST1Q6D" + }, + "source": [ + "> J: Don't worry, neither SGD nor neural nets are mathematically complex. Both nearly entirely rely on addition and multiplication to do their work (but they do a _lot_ of addition and multiplication!). The main reaction we hear from students when they see the details is: \"Is that all it is?\"" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RUWzIl6V1Q6D" + }, + "source": [ + "In other words, to recap, a neural network is a particular kind of machine learning model, which fits right in to Samuel's original conception. Neural networks are special because they are highly flexible, which means they can solve an unusually wide range of problems just by finding the right weights. This is powerful, because stochastic gradient descent provides us a way to find those weight values automatically.\n", + "\n", + "Having zoomed out, let's now zoom back in and revisit our image classification problem using Samuel's framework.\n", + "\n", + "Our inputs are the images. Our weights are the weights in the neural net. Our model is a neural net. Our results are the values that are calculated by the neural net, like \"dog\" or \"cat.\"\n", + "\n", + "What about the next piece, an *automatic means of testing the effectiveness of any current weight assignment in terms of actual performance*? Determining \"actual performance\" is easy enough: we can simply define our model's performance as its accuracy at predicting the correct answers.\n", + "\n", + "Putting this all together, and assuming that SGD is our mechanism for updating the weight assignments, we can see how our image classifier is a machine learning model, much like Samuel envisioned." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ww6T9lJI1Q6D" + }, + "source": [ + "### A Bit of Deep Learning Jargon" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YpJoeiWL1Q6E" + }, + "source": [ + "Samuel was working in the 1960s, and since then terminology has changed. Here is the modern deep learning terminology for all the pieces we have discussed:\n", + "\n", + "- The functional form of the *model* is called its *architecture* (but be careful—sometimes people use *model* as a synonym of *architecture*, so this can get confusing).\n", + "- The *weights* are called *parameters*.\n", + "- The *predictions* are calculated from the *independent variable*, which is the *data* not including the *labels*.\n", + "- The *results* of the model are called *predictions*.\n", + "- The measure of *performance* is called the *loss*.\n", + "- The loss depends not only on the predictions, but also the correct *labels* (also known as *targets* or the *dependent variable*); e.g., \"dog\" or \"cat.\"\n", + "\n", + "After making these changes, our diagram in <> looks like <>." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "hide_input": true, + "id": "VMD8iKbu1Q6E", + "outputId": "87934d0e-91cc-4ca0-e1f8-a2ee53c715ec" + }, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "G\n", + "\n", + "\n", + "\n", + "model\n", + "\n", + "\n", + "\n", + "\n", + "architecture\n", + "\n", + "\n", + "\n", + "predictions\n", + "\n", + "predictions\n", + "\n", + "\n", + "\n", + "model->predictions\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "inputs\n", + "\n", + "inputs\n", + "\n", + "\n", + "\n", + "inputs->model\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "loss\n", + "\n", + "loss\n", + "\n", + "\n", + "\n", + "predictions->loss\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "parameters\n", + "\n", + "parameters\n", + "\n", + "\n", + "\n", + "parameters->model\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "labels\n", + "\n", + "labels\n", + "\n", + "\n", + "\n", + "labels->loss\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "loss->parameters\n", + "\n", + "\n", + "update\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#hide_input\n", + "#caption Detailed training loop\n", + "#id detailed_loop\n", + "gv('''ordering=in\n", + "model[shape=box3d width=1 height=0.7 label=architecture]\n", + "inputs->model->predictions; parameters->model; labels->loss; predictions->loss\n", + "loss->parameters[constraint=false label=update]''')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fjM5Pi9T1Q6E" + }, + "source": [ + "### Limitations Inherent To Machine Learning\n", + "\n", + "From this picture we can now see some fundamental things about training a deep learning model:\n", + "\n", + "- A model cannot be created without data.\n", + "- A model can only learn to operate on the patterns seen in the input data used to train it.\n", + "- This learning approach only creates *predictions*, not recommended *actions*.\n", + "- It's not enough to just have examples of input data; we need *labels* for that data too (e.g., pictures of dogs and cats aren't enough to train a model; we need a label for each one, saying which ones are dogs, and which are cats).\n", + "\n", + "Generally speaking, we've seen that most organizations that say they don't have enough data, actually mean they don't have enough *labeled* data. If any organization is interested in doing something in practice with a model, then presumably they have some inputs they plan to run their model against. And presumably they've been doing that some other way for a while (e.g., manually, or with some heuristic program), so they have data from those processes! For instance, a radiology practice will almost certainly have an archive of medical scans (since they need to be able to check how their patients are progressing over time), but those scans may not have structured labels containing a list of diagnoses or interventions (since radiologists generally create free-text natural language reports, not structured data). We'll be discussing labeling approaches a lot in this book, because it's such an important issue in practice.\n", + "\n", + "Since these kinds of machine learning models can only make *predictions* (i.e., attempt to replicate labels), this can result in a significant gap between organizational goals and model capabilities. For instance, in this book you'll learn how to create a *recommendation system* that can predict what products a user might purchase. This is often used in e-commerce, such as to customize products shown on a home page by showing the highest-ranked items. But such a model is generally created by looking at a user and their buying history (*inputs*) and what they went on to buy or look at (*labels*), which means that the model is likely to tell you about products the user already has or already knows about, rather than new products that they are most likely to be interested in hearing about. That's very different to what, say, an expert at your local bookseller might do, where they ask questions to figure out your taste, and then tell you about authors or series that you've never heard of before." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1gXCtXq71Q6F" + }, + "source": [ + "Another critical insight comes from considering how a model interacts with its environment. This can create *feedback loops*, as described here:\n", + "\n", + "- A *predictive policing* model is created based on where arrests have been made in the past. In practice, this is not actually predicting crime, but rather predicting arrests, and is therefore partially simply reflecting biases in existing policing processes.\n", + "- Law enforcement officers then might use that model to decide where to focus their police activity, resulting in increased arrests in those areas.\n", + "- Data on these additional arrests would then be fed back in to retrain future versions of the model.\n", + "\n", + "This is a *positive feedback loop*, where the more the model is used, the more biased the data becomes, making the model even more biased, and so forth.\n", + "\n", + "Feedback loops can also create problems in commercial settings. For instance, a video recommendation system might be biased toward recommending content consumed by the biggest watchers of video (e.g., conspiracy theorists and extremists tend to watch more online video content than the average), resulting in those users increasing their video consumption, resulting in more of those kinds of videos being recommended. We'll consider this topic more in detail in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eP9NONJ41Q6F" + }, + "source": [ + "Now that you have seen the base of the theory, let's go back to our code example and see in detail how the code corresponds to the process we just described." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BE6qPbus1Q6F" + }, + "source": [ + "### How Our Image Recognizer Works" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FLCeAIST1Q6F" + }, + "source": [ + "Let's see just how our image recognizer code maps to these ideas. We'll put each line into a separate cell, and look at what each one is doing (we won't explain every detail of every parameter yet, but will give a description of the important bits; full details will come later in the book)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RlTrN-s61Q6G" + }, + "source": [ + "The first line imports all of the fastai.vision library.\n", + "\n", + "```python\n", + "from fastai.vision.all import *\n", + "```\n", + "\n", + "This gives us all of the functions and classes we will need to create a wide variety of computer vision models." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DwYB0_2r1Q6G" + }, + "source": [ + "> J: A lot of Python coders recommend avoiding importing a whole library like this (using the `import *` syntax), because in large software projects it can cause problems. However, for interactive work such as in a Jupyter notebook, it works great. The fastai library is specially designed to support this kind of interactive use, and it will only import the necessary pieces into your environment." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZtDo_ko71Q6G" + }, + "source": [ + "The second line downloads a standard dataset from the [fast.ai datasets collection](https://course.fast.ai/datasets) (if not previously downloaded) to your server, extracts it (if not previously extracted), and returns a `Path` object with the extracted location:\n", + "\n", + "```python\n", + "path = untar_data(URLs.PETS)/'images'\n", + "```\n", + "\n", + "> S: Throughout my time studying at fast.ai, and even still today, I've learned a lot about productive coding practices. The fastai library and fast.ai notebooks are full of great little tips that have helped make me a better programmer. For instance, notice that the fastai library doesn't just return a string containing the path to the dataset, but a `Path` object. This is a really useful class from the Python 3 standard library that makes accessing files and directories much easier. If you haven't come across it before, be sure to check out its documentation or a tutorial and try it out. Note that the https://book.fast.ai[website] contains links to recommended tutorials for each chapter. I'll keep letting you know about little coding tips I've found useful as we come across them." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "u7llNwRu1Q6G" + }, + "source": [ + "In the third line we define a function, `is_cat`, which labels cats based on a filename rule provided by the dataset creators:\n", + "```python\n", + "def is_cat(x): return x[0].isupper()\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bf0jNyea1Q6H" + }, + "source": [ + "We use that function in the fourth line, which tells fastai what kind of dataset we have and how it is structured:\n", + "\n", + "```python\n", + "dls = ImageDataLoaders.from_name_func(\n", + " path, get_image_files(path), valid_pct=0.2, seed=42,\n", + " label_func=is_cat, item_tfms=Resize(224))\n", + "```\n", + "\n", + "There are various different classes for different kinds of deep learning datasets and problems—here we're using `ImageDataLoaders`. The first part of the class name will generally be the type of data you have, such as image, or text.\n", + "\n", + "The other important piece of information that we have to tell fastai is how to get the labels from the dataset. Computer vision datasets are normally structured in such a way that the label for an image is part of the filename, or path—most commonly the parent folder name. fastai comes with a number of standardized labeling methods, and ways to write your own. Here we're telling fastai to use the `is_cat` function we just defined.\n", + "\n", + "Finally, we define the `Transform`s that we need. A `Transform` contains code that is applied automatically during training; fastai includes many predefined `Transform`s, and adding new ones is as simple as creating a Python function. There are two kinds: `item_tfms` are applied to each item (in this case, each item is resized to a 224-pixel square), while `batch_tfms` are applied to a *batch* of items at a time using the GPU, so they're particularly fast (we'll see many examples of these throughout this book).\n", + "\n", + "Why 224 pixels? This is the standard size for historical reasons (old pretrained models require this size exactly), but you can pass pretty much anything. If you increase the size, you'll often get a model with better results (since it will be able to focus on more details), but at the price of speed and memory consumption; the opposite is true if you decrease the size." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IJBLCm7l1Q6H" + }, + "source": [ + "> Note: Classification and Regression: _classification_ and _regression_ have very specific meanings in machine learning. These are the two main types of model that we will be investigating in this book. A classification model is one which attempts to predict a class, or category. That is, it's predicting from a number of discrete possibilities, such as \"dog\" or \"cat.\" A regression model is one which attempts to predict one or more numeric quantities, such as a temperature or a location. Sometimes people use the word _regression_ to refer to a particular kind of model called a _linear regression model_; this is a bad practice, and we won't be using that terminology in this book!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F3-VZaNR1Q6H" + }, + "source": [ + "The Pet dataset contains 7,390 pictures of dogs and cats, consisting of 37 different breeds. Each image is labeled using its filename: for instance the file *great\\_pyrenees\\_173.jpg* is the 173rd example of an image of a Great Pyrenees breed dog in the dataset. The filenames start with an uppercase letter if the image is a cat, and a lowercase letter otherwise. We have to tell fastai how to get labels from the filenames, which we do by calling `from_name_func` (which means that labels can be extracted using a function applied to the filename), and passing `is_cat`, which returns `x[0].isupper()`, which evaluates to `True` if the first letter is uppercase (i.e., it's a cat).\n", + "\n", + "The most important parameter to mention here is `valid_pct=0.2`. This tells fastai to hold out 20% of the data and *not use it for training the model at all*. This 20% of the data is called the *validation set*; the remaining 80% is called the *training set*. The validation set is used to measure the accuracy of the model. By default, the 20% that is held out is selected randomly. The parameter `seed=42` sets the *random seed* to the same value every time we run this code, which means we get the same validation set every time we run it—this way, if we change our model and retrain it, we know that any differences are due to the changes to the model, not due to having a different random validation set.\n", + "\n", + "fastai will *always* show you your model's accuracy using *only* the validation set, *never* the training set. This is absolutely critical, because if you train a large enough model for a long enough time, it will eventually memorize the label of every item in your dataset! The result will not actually be a useful model, because what we care about is how well our model works on *previously unseen images*. That is always our goal when creating a model: for it to be useful on data that the model only sees in the future, after it has been trained.\n", + "\n", + "Even when your model has not fully memorized all your data, earlier on in training it may have memorized certain parts of it. As a result, the longer you train for, the better your accuracy will get on the training set; the validation set accuracy will also improve for a while, but eventually it will start getting worse as the model starts to memorize the training set, rather than finding generalizable underlying patterns in the data. When this happens, we say that the model is *overfitting*.\n", + "\n", + "<> shows what happens when you overfit, using a simplified example where we have just one parameter, and some randomly generated data based on the function `x**2`. As you can see, although the predictions in the overfit model are accurate for data near the observed data points, they are way off when outside of that range." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ox5vHa5n1Q6I" + }, + "source": [ + "\"Example" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "oFWjXspe1Q6I" + }, + "source": [ + "**Overfitting is the single most important and challenging issue** when training for all machine learning practitioners, and all algorithms. As you will see, it is very easy to create a model that does a great job at making predictions on the exact data it has been trained on, but it is much harder to make accurate predictions on data the model has never seen before. And of course, this is the data that will actually matter in practice. For instance, if you create a handwritten digit classifier (as we will very soon!) and use it to recognize numbers written on checks, then you are never going to see any of the numbers that the model was trained on—checks will have slightly different variations of writing to deal with. You will learn many methods to avoid overfitting in this book. However, you should only use those methods after you have confirmed that overfitting is actually occurring (i.e., you have actually observed the validation accuracy getting worse during training). We often see practitioners using over-fitting avoidance techniques even when they have enough data that they didn't need to do so, ending up with a model that may be less accurate than what they could have achieved." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BUrS1Rb71Q6I" + }, + "source": [ + "> important: Validation Set: When you train a model, you must _always_ have both a training set and a validation set, and must measure the accuracy of your model only on the validation set. If you train for too long, with not enough data, you will see the accuracy of your model start to get worse; this is called _overfitting_. fastai defaults `valid_pct` to `0.2`, so even if you forget, fastai will create a validation set for you!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bsWd1sa01Q6J" + }, + "source": [ + "The fifth line of the code training our image recognizer tells fastai to create a *convolutional neural network* (CNN) and specifies what *architecture* to use (i.e. what kind of model to create), what data we want to train it on, and what *metric* to use:\n", + "\n", + "```python\n", + "learn = vision_learner(dls, resnet34, metrics=error_rate)\n", + "```\n", + "\n", + "Why a CNN? It's the current state-of-the-art approach to creating computer vision models. We'll be learning all about how CNNs work in this book. Their structure is inspired by how the human vision system works.\n", + "\n", + "There are many different architectures in fastai, which we will introduce in this book (as well as discussing how to create your own). Most of the time, however, picking an architecture isn't a very important part of the deep learning process. It's something that academics love to talk about, but in practice it is unlikely to be something you need to spend much time on. There are some standard architectures that work most of the time, and in this case we're using one called _ResNet_ that we'll be talking a lot about during the book; it is both fast and accurate for many datasets and problems. The `34` in `resnet34` refers to the number of layers in this variant of the architecture (other options are `18`, `50`, `101`, and `152`). Models using architectures with more layers take longer to train, and are more prone to overfitting (i.e. you can't train them for as many epochs before the accuracy on the validation set starts getting worse). On the other hand, when using more data, they can be quite a bit more accurate.\n", + "\n", + "What is a metric? A *metric* is a function that measures the quality of the model's predictions using the validation set, and will be printed at the end of each *epoch*. In this case, we're using `error_rate`, which is a function provided by fastai that does just what it says: tells you what percentage of images in the validation set are being classified incorrectly. Another common metric for classification is `accuracy` (which is just `1.0 - error_rate`). fastai provides many more, which will be discussed throughout this book.\n", + "\n", + "The concept of a metric may remind you of *loss*, but there is an important distinction. The entire purpose of loss is to define a \"measure of performance\" that the training system can use to update weights automatically. In other words, a good choice for loss is a choice that is easy for stochastic gradient descent to use. But a metric is defined for human consumption, so a good metric is one that is easy for you to understand, and that hews as closely as possible to what you want the model to do. At times, you might decide that the loss function is a suitable metric, but that is not necessarily the case." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9a0Qeey11Q6J" + }, + "source": [ + "`vision_learner` also has a parameter `pretrained`, which defaults to `True` (so it's used in this case, even though we haven't specified it), which sets the weights in your model to values that have already been trained by experts to recognize a thousand different categories across 1.3 million photos (using the famous [*ImageNet* dataset](http://www.image-net.org/)). A model that has weights that have already been trained on some other dataset is called a *pretrained model*. You should nearly always use a pretrained model, because it means that your model, before you've even shown it any of your data, is already very capable. And, as you'll see, in a deep learning model many of these capabilities are things you'll need, almost regardless of the details of your project. For instance, parts of pretrained models will handle edge, gradient, and color detection, which are needed for many tasks.\n", + "\n", + "When using a pretrained model, `vision_learner` will remove the last layer, since that is always specifically customized to the original training task (i.e. ImageNet dataset classification), and replace it with one or more new layers with randomized weights, of an appropriate size for the dataset you are working with. This last part of the model is known as the *head*.\n", + "\n", + "Using pretrained models is the *most* important method we have to allow us to train more accurate models, more quickly, with less data, and less time and money. You might think that would mean that using pretrained models would be the most studied area in academic deep learning... but you'd be very, very wrong! The importance of pretrained models is generally not recognized or discussed in most courses, books, or software library features, and is rarely considered in academic papers. As we write this at the start of 2020, things are just starting to change, but it's likely to take a while. So be careful: most people you speak to will probably greatly underestimate what you can do in deep learning with few resources, because they probably won't deeply understand how to use pretrained models.\n", + "\n", + "Using a pretrained model for a task different to what it was originally trained for is known as *transfer learning*. Unfortunately, because transfer learning is so under-studied, few domains have pretrained models available. For instance, there are currently few pretrained models available in medicine, making transfer learning challenging to use in that domain. In addition, it is not yet well understood how to use transfer learning for tasks such as time series analysis." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6ux-vQE31Q6J" + }, + "source": [ + "> jargon: Transfer learning: Using a pretrained model for a task different to what it was originally trained for." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UOxiQCTR1Q6K" + }, + "source": [ + "The sixth line of our code tells fastai how to *fit* the model:\n", + "\n", + "```python\n", + "learn.fine_tune(1)\n", + "```\n", + "\n", + "As we've discussed, the architecture only describes a *template* for a mathematical function; it doesn't actually do anything until we provide values for the millions of parameters it contains.\n", + "\n", + "This is the key to deep learning—determining how to fit the parameters of a model to get it to solve your problem. In order to fit a model, we have to provide at least one piece of information: how many times to look at each image (known as number of *epochs*). The number of epochs you select will largely depend on how much time you have available, and how long you find it takes in practice to fit your model. If you select a number that is too small, you can always train for more epochs later.\n", + "\n", + "But why is the method called `fine_tune`, and not `fit`? fastai actually *does* have a method called `fit`, which does indeed fit a model (i.e. look at images in the training set multiple times, each time updating the parameters to make the predictions closer and closer to the target labels). But in this case, we've started with a pretrained model, and we don't want to throw away all those capabilities that it already has. As you'll learn in this book, there are some important tricks to adapt a pretrained model for a new dataset—a process called *fine-tuning*." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LKnIJroZ1Q6K" + }, + "source": [ + "> jargon: Fine-tuning: A transfer learning technique where the parameters of a pretrained model are updated by training for additional epochs using a different task to that used for pretraining." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1pPZ-NeW1Q6K" + }, + "source": [ + "When you use the `fine_tune` method, fastai will use these tricks for you. There are a few parameters you can set (which we'll discuss later), but in the default form shown here, it does two steps:\n", + "\n", + "1. Use one epoch to fit just those parts of the model necessary to get the new random head to work correctly with your dataset.\n", + "1. Use the number of epochs requested when calling the method to fit the entire model, updating the weights of the later layers (especially the head) faster than the earlier layers (which, as we'll see, generally don't require many changes from the pretrained weights).\n", + "\n", + "The *head* of a model is the part that is newly added to be specific to the new dataset. An *epoch* is one complete pass through the dataset. After calling `fit`, the results after each epoch are printed, showing the epoch number, the training and validation set losses (the \"measure of performance\" used for training the model), and any *metrics* you've requested (error rate, in this case)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ry2277_A1Q6L" + }, + "source": [ + "So, with all this code our model learned to recognize cats and dogs just from labeled examples. But how did it do it?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zrnFakL51Q6L" + }, + "source": [ + "### What Our Image Recognizer Learned" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bapl61r61Q6L" + }, + "source": [ + "At this stage we have an image recognizer that is working very well, but we have no idea what it is actually doing! Although many people complain that deep learning results in impenetrable \"black box\" models (that is, something that gives predictions but that no one can understand), this really couldn't be further from the truth. There is a vast body of research showing how to deeply inspect deep learning models, and get rich insights from them. Having said that, all kinds of machine learning models (including deep learning, and traditional statistical models) can be challenging to fully understand, especially when considering how they will behave when coming across data that is very different to the data used to train them. We'll be discussing this issue throughout this book.\n", + "\n", + "In 2013 a PhD student, Matt Zeiler, and his supervisor, Rob Fergus, published the paper [\"Visualizing and Understanding Convolutional Networks\"](https://arxiv.org/pdf/1311.2901.pdf), which showed how to visualize the neural network weights learned in each layer of a model. They carefully analyzed the model that won the 2012 ImageNet competition, and used this analysis to greatly improve the model, such that they were able to go on to win the 2013 competition! <> is the picture that they published of the first layer's weights." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qbdEpvAB1Q6L" + }, + "source": [ + "\"Activations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IAkZAac81Q6M" + }, + "source": [ + "This picture requires some explanation. For each layer, the image part with the light gray background shows the reconstructed weights pictures, and the larger section at the bottom shows the parts of the training images that most strongly matched each set of weights. For layer 1, what we can see is that the model has discovered weights that represent diagonal, horizontal, and vertical edges, as well as various different gradients. (Note that for each layer only a subset of the features are shown; in practice there are thousands across all of the layers.) These are the basic building blocks that the model has learned for computer vision. They have been widely analyzed by neuroscientists and computer vision researchers, and it turns out that these learned building blocks are very similar to the basic visual machinery in the human eye, as well as the handcrafted computer vision features that were developed prior to the days of deep learning. The next layer is represented in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ku8YnjV-1Q6M" + }, + "source": [ + "\"Activations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0przqjB71Q6M" + }, + "source": [ + "For layer 2, there are nine examples of weight reconstructions for each of the features found by the model. We can see that the model has learned to create feature detectors that look for corners, repeating lines, circles, and other simple patterns. These are built from the basic building blocks developed in the first layer. For each of these, the right-hand side of the picture shows small patches from actual images which these features most closely match. For instance, the particular pattern in row 2, column 1 matches the gradients and textures associated with sunsets.\n", + "\n", + "<> shows the image from the paper showing the results of reconstructing the features of layer 3." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-IkwZEsh1Q6M" + }, + "source": [ + "\"Activations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YTQm9PVB1Q6N" + }, + "source": [ + "As you can see by looking at the righthand side of this picture, the features are now able to identify and match with higher-level semantic components, such as car wheels, text, and flower petals. Using these components, layers four and five can identify even higher-level concepts, as shown in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "htrH4LGg1Q6N" + }, + "source": [ + "\"Activations" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ifyL0K4H1Q6N" + }, + "source": [ + "This article was studying an older model called *AlexNet* that only contained five layers. Networks developed since then can have hundreds of layers—so you can imagine how rich the features developed by these models can be!\n", + "\n", + "When we fine-tuned our pretrained model earlier, we adapted what those last layers focus on (flowers, humans, animals) to specialize on the cats versus dogs problem. More generally, we could specialize such a pretrained model on many different tasks. Let's have a look at some examples." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LUQ8a-yv1Q6N" + }, + "source": [ + "### Image Recognizers Can Tackle Non-Image Tasks" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Px8yy7qm1Q6O" + }, + "source": [ + "An image recognizer can, as its name suggests, only recognize images. But a lot of things can be represented as images, which means that an image recogniser can learn to complete many tasks.\n", + "\n", + "For instance, a sound can be converted to a spectrogram, which is a chart that shows the amount of each frequency at each time in an audio file. Fast.ai student Ethan Sutin used this approach to easily beat the published accuracy of a state-of-the-art [environmental sound detection model](https://medium.com/@etown/great-results-on-audio-classification-with-fastai-library-ccaf906c5f52) using a dataset of 8,732 urban sounds. fastai's `show_batch` clearly shows how each different sound has a quite distinctive spectrogram, as you can see in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7Ua-zTzf1Q6O" + }, + "source": [ + "\"show_batch" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mSy6_n9C1Q6O" + }, + "source": [ + "A time series can easily be converted into an image by simply plotting the time series on a graph. However, it is often a good idea to try to represent your data in a way that makes it as easy as possible to pull out the most important components. In a time series, things like seasonality and anomalies are most likely to be of interest. There are various transformations available for time series data. For instance, fast.ai student Ignacio Oguiza created images from a time series dataset for olive oil classification, using a technique called Gramian Angular Difference Field (GADF); you can see the result in <>. He then fed those images to an image classification model just like the one you see in this chapter. His results, despite having only 30 training set images, were well over 90% accurate, and close to the state of the art." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BhA6HlBf1Q6P" + }, + "source": [ + "\"Converting" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Pm6k6o1x1Q6P" + }, + "source": [ + "Another interesting fast.ai student project example comes from Gleb Esman. He was working on fraud detection at Splunk, using a dataset of users' mouse movements and mouse clicks. He turned these into pictures by drawing an image where the position, speed, and acceleration of the mouse pointer was displayed using coloured lines, and the clicks were displayed using [small colored circles](https://www.splunk.com/en_us/blog/security/deep-learning-with-splunk-and-tensorflow-for-security-catching-the-fraudster-in-neural-networks-with-behavioral-biometrics.html), as shown in <>. He then fed this into an image recognition model just like the one we've used in this chapter, and it worked so well that it led to a patent for this approach to fraud analytics!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rdO7AAmQ1Q6P" + }, + "source": [ + "\"Converting" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "N8yZx5931Q6P" + }, + "source": [ + "Another example comes from the paper [\"Malware Classification with Deep Convolutional Neural Networks\"](https://ieeexplore.ieee.org/abstract/document/8328749) by Mahmoud Kalash et al., which explains that \"the malware binary file is divided into 8-bit sequences which are then converted to equivalent decimal values. This decimal vector is reshaped and a gray-scale image is generated that represents the malware sample,\" like in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PfY8xlTg1Q6Q" + }, + "source": [ + "\"Malware" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "fbiJG6Ki1Q6Q" + }, + "source": [ + "The authors then show \"pictures\" generated through this process of malware in different categories, as shown in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xv7oQvhK1Q6Q" + }, + "source": [ + "\"Malware" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cvMPwQT41Q6Q" + }, + "source": [ + "As you can see, the different types of malware look very distinctive to the human eye. The model the researchers trained based on this image representation was more accurate at malware classification than any previous approach shown in the academic literature. This suggests a good rule of thumb for converting a dataset into an image representation: if the human eye can recognize categories from the images, then a deep learning model should be able to do so too.\n", + "\n", + "In general, you'll find that a small number of general approaches in deep learning can go a long way, if you're a bit creative in how you represent your data! You shouldn't think of approaches like the ones described here as \"hacky workarounds,\" because actually they often (as here) beat previously state-of-the-art results. These really are the right ways to think about these problem domains." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YvA5BEha1Q6R" + }, + "source": [ + "### Jargon Recap" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6rejwYFS1Q6R" + }, + "source": [ + "We just covered a lot of information so let's recap briefly, <> provides a handy vocabulary.\n", + "\n", + "```asciidoc\n", + "[[dljargon]]\n", + ".Deep learning vocabulary\n", + "[options=\"header\"]\n", + "|=====\n", + "| Term | Meaning\n", + "|Label | The data that we're trying to predict, such as \"dog\" or \"cat\"\n", + "|Architecture | The _template_ of the model that we're trying to fit; the actual mathematical function that we're passing the input data and parameters to\n", + "|Model | The combination of the architecture with a particular set of parameters\n", + "|Parameters | The values in the model that change what task it can do, and are updated through model training\n", + "|Fit | Update the parameters of the model such that the predictions of the model using the input data match the target labels\n", + "|Train | A synonym for _fit_\n", + "|Pretrained model | A model that has already been trained, generally using a large dataset, and will be fine-tuned\n", + "|Fine-tune | Update a pretrained model for a different task\n", + "|Epoch | One complete pass through the input data\n", + "|Loss | A measure of how good the model is, chosen to drive training via SGD\n", + "|Metric | A measurement of how good the model is, using the validation set, chosen for human consumption\n", + "|Validation set | A set of data held out from training, used only for measuring how good the model is\n", + "|Training set | The data used for fitting the model; does not include any data from the validation set\n", + "|Overfitting | Training a model in such a way that it _remembers_ specific features of the input data, rather than generalizing well to data not seen during training\n", + "|CNN | Convolutional neural network; a type of neural network that works particularly well for computer vision tasks\n", + "|=====\n", + "```" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "lwYloTXe1Q6R" + }, + "source": [ + "With this vocabulary in hand, we are now in a position to bring together all the key concepts introduced so far. Take a moment to review those definitions and read the following summary. If you can follow the explanation, then you're well equipped to understand the discussions to come.\n", + "\n", + "*Machine learning* is a discipline where we define a program not by writing it entirely ourselves, but by learning from data. *Deep learning* is a specialty within machine learning that uses *neural networks* with multiple *layers*. *Image classification* is a representative example (also known as *image recognition*). We start with *labeled data*; that is, a set of images where we have assigned a *label* to each image indicating what it represents. Our goal is to produce a program, called a *model*, which, given a new image, will make an accurate *prediction* regarding what that new image represents.\n", + "\n", + "Every model starts with a choice of *architecture*, a general template for how that kind of model works internally. The process of *training* (or *fitting*) the model is the process of finding a set of *parameter values* (or *weights*) that specialize that general architecture into a model that works well for our particular kind of data. In order to define how well a model does on a single prediction, we need to define a *loss function*, which determines how we score a prediction as good or bad.\n", + "\n", + "To make the training process go faster, we might start with a *pretrained model*—a model that has already been trained on someone else's data. We can then adapt it to our data by training it a bit more on our data, a process called *fine-tuning*.\n", + "\n", + "When we train a model, a key concern is to ensure that our model *generalizes*—that is, that it learns general lessons from our data which also apply to new items it will encounter, so that it can make good predictions on those items. The risk is that if we train our model badly, instead of learning general lessons it effectively memorizes what it has already seen, and then it will make poor predictions about new images. Such a failure is called *overfitting*. In order to avoid this, we always divide our data into two parts, the *training set* and the *validation set*. We train the model by showing it only the training set and then we evaluate how well the model is doing by seeing how well it performs on items from the validation set. In this way, we check if the lessons the model learns from the training set are lessons that generalize to the validation set. In order for a person to assess how well the model is doing on the validation set overall, we define a *metric*. During the training process, when the model has seen every item in the training set, we call that an *epoch*.\n", + "\n", + "All these concepts apply to machine learning in general. That is, they apply to all sorts of schemes for defining a model by training it with data. What makes deep learning distinctive is a particular class of architectures: the architectures based on *neural networks*. In particular, tasks like image classification rely heavily on *convolutional neural networks*, which we will discuss shortly." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pK6UqPS21Q6R" + }, + "source": [ + "## Deep Learning Is Not Just for Image Classification" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "9LCsJ6Np1Q6V" + }, + "source": [ + "Deep learning's effectiveness for classifying images has been widely discussed in recent years, even showing _superhuman_ results on complex tasks like recognizing malignant tumors in CT scans. But it can do a lot more than this, as we will show here.\n", + "\n", + "For instance, let's talk about something that is critically important for autonomous vehicles: localizing objects in a picture. If a self-driving car doesn't know where a pedestrian is, then it doesn't know how to avoid one! Creating a model that can recognize the content of every individual pixel in an image is called *segmentation*. Here is how we can train a segmentation model with fastai, using a subset of the [*Camvid* dataset](http://www0.cs.ucl.ac.uk/staff/G.Brostow/papers/Brostow_2009-PRL.pdf) from the paper \"Semantic Object Classes in Video: A High-Definition Ground Truth Database\" by Gabruel J. Brostow, Julien Fauqueur, and Roberto Cipolla:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MILBOduZ1Q6V", + "outputId": "416de996-00b6-4640-ef38-4aa477a6028a" + }, + "outputs": [], + "source": [ + "path = untar_data(URLs.CAMVID_TINY)\n", + "dls = SegmentationDataLoaders.from_label_func(\n", + " path, bs=8, fnames = get_image_files(path/\"images\"),\n", + " label_func = lambda o: path/'labels'/f'{o.stem}_P{o.suffix}',\n", + " codes = np.loadtxt(path/'codes.txt', dtype=str)\n", + ")\n", + "\n", + "learn = unet_learner(dls, resnet34)\n", + "learn.fine_tune(8)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-NixF5-g1Q6V" + }, + "source": [ + "We are not even going to walk through this code line by line, because it is nearly identical to our previous example! (Although we will be doing a deep dive into segmentation models in <>, along with all of the other models that we are briefly introducing in this chapter, and many, many more.)\n", + "\n", + "We can visualize how well it achieved its task, by asking the model to color-code each pixel of an image. As you can see, it nearly perfectly classifies every pixel in every object. For instance, notice that all of the cars are overlaid with the same color and all of the trees are overlaid with the same color (in each pair of images, the lefthand image is the ground truth label and the right is the prediction from the model):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "y3W2bxRW1Q6W", + "outputId": "56cc584a-9810-4f89-c42b-4d07de62f33c" + }, + "outputs": [], + "source": [ + "learn.show_results(max_n=6, figsize=(7,8))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7WYnB8uH1Q6W" + }, + "source": [ + "One other area where deep learning has dramatically improved in the last couple of years is natural language processing (NLP). Computers can now generate text, translate automatically from one language to another, analyze comments, label words in sentences, and much more. Here is all of the code necessary to train a model that can classify the sentiment of a movie review better than anything that existed in the world just five years ago:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "zeXAjp7M1Q6W", + "outputId": "b7e60b66-af07-4edd-ddac-e0838009c014" + }, + "outputs": [], + "source": [ + "from fastai.text.all import *\n", + "\n", + "dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')\n", + "learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)\n", + "learn.fine_tune(4, 1e-2)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bW-IOkCG1Q6X" + }, + "source": [ + "#clean\n", + "If you hit a \"CUDA out of memory error\" after running this cell, click on the menu Kernel, then restart. Instead of executing the cell above, copy and paste the following code in it:\n", + "\n", + "```\n", + "from fastai.text.all import *\n", + "\n", + "dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test', bs=32)\n", + "learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)\n", + "learn.fine_tune(4, 1e-2)\n", + "```\n", + "\n", + "This reduces the batch size to 32 (we will explain this later). If you keep hitting the same error, change 32 to 16." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZzdTKSBd1Q6X" + }, + "source": [ + "This model is using the [\"IMDb Large Movie Review dataset\"](https://ai.stanford.edu/~ang/papers/acl11-WordVectorsSentimentAnalysis.pdf) from the paper \"Learning Word Vectors for Sentiment Analysis\" by Andrew Maas et al. It works well with movie reviews of many thousands of words, but let's test it out on a very short one to see how it does its thing:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ZkjxU99F1Q6X", + "outputId": "4c1a1894-d7db-4972-ebd9-d621143b5c40" + }, + "outputs": [], + "source": [ + "learn.predict(\"I really liked that movie!\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jeASs6FP1Q6Y" + }, + "source": [ + "Here we can see the model has considered the review to be positive. The second part of the result is the index of \"pos\" in our data vocabulary and the last part is the probabilities attributed to each class (99.6% for \"pos\" and 0.4% for \"neg\").\n", + "\n", + "Now it's your turn! Write your own mini movie review, or copy one from the internet, and you can see what this model thinks about it." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "f9WnTx681Q6Y" + }, + "source": [ + "### Sidebar: The Order Matters" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hORohVdI1Q6Y" + }, + "source": [ + "In a Jupyter notebook, the order in which you execute each cell is very important. It's not like Excel, where everything gets updated as soon as you type something anywhere—it has an inner state that gets updated each time you execute a cell. For instance, when you run the first cell of the notebook (with the \"CLICK ME\" comment), you create an object called `learn` that contains a model and data for an image classification problem. If we were to run the cell just shown in the text (the one that predicts if a review is good or not) straight after, we would get an error as this `learn` object does not contain a text classification model. This cell needs to be run after the one containing:\n", + "\n", + "```python\n", + "from fastai.text.all import *\n", + "\n", + "dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')\n", + "learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5,\n", + " metrics=accuracy)\n", + "learn.fine_tune(4, 1e-2)\n", + "```\n", + "\n", + "The outputs themselves can be deceiving, because they include the results of the last time the cell was executed; if you change the code inside a cell without executing it, the old (misleading) results will remain.\n", + "\n", + "Except when we mention it explicitly, the notebooks provided on the [book website](https://book.fast.ai/) are meant to be run in order, from top to bottom. In general, when experimenting, you will find yourself executing cells in any order to go fast (which is a super neat feature of Jupyter Notebook), but once you have explored and arrived at the final version of your code, make sure you can run the cells of your notebooks in order (your future self won't necessarily remember the convoluted path you took otherwise!).\n", + "\n", + "In command mode, pressing `0` twice will restart the *kernel* (which is the engine powering your notebook). This will wipe your state clean and make it as if you had just started in the notebook. Choose Run All Above from the Cell menu to run all cells above the point where you are. We have found this to be very useful when developing the fastai library." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BwkKCSAr1Q6Y" + }, + "source": [ + "### End sidebar" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "neWHmR2I1Q6Z" + }, + "source": [ + "If you ever have any questions about a fastai method, you should use the function `doc`, passing it the method name:\n", + "\n", + "```python\n", + "doc(learn.predict)\n", + "```\n", + "\n", + "This will make a small window pop up with content like this:\n", + "\n", + "" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4FgiNbHy1Q6Z" + }, + "source": [ + "A brief one-line explanation is provided by `doc`. The \"Show in docs\" link takes you to the full documentation, where you'll find all the details and lots of examples. Also, most of fastai's methods are just a handful of lines, so you can click the \"source\" link to see exactly what's going on behind the scenes.\n", + "\n", + "Let's move on to something much less sexy, but perhaps significantly more widely commercially useful: building models from plain *tabular* data." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qIuKYOGX1Q6Z" + }, + "source": [ + "> jargon: Tabular: Data that is in the form of a table, such as from a spreadsheet, database, or CSV file. A tabular model is a model that tries to predict one column of a table based on information in other columns of the table." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F35IUNf21Q6a" + }, + "source": [ + "It turns out that looks very similar too. Here is the code necessary to train a model that will predict whether a person is a high-income earner, based on their socioeconomic background:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8dGKd0J91Q6a" + }, + "outputs": [], + "source": [ + "from fastai.tabular.all import *\n", + "path = untar_data(URLs.ADULT_SAMPLE)\n", + "\n", + "dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, y_names=\"salary\",\n", + " cat_names = ['workclass', 'education', 'marital-status', 'occupation',\n", + " 'relationship', 'race'],\n", + " cont_names = ['age', 'fnlwgt', 'education-num'],\n", + " procs = [Categorify, FillMissing, Normalize])\n", + "\n", + "learn = tabular_learner(dls, metrics=accuracy)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "S8eLughc1Q6a" + }, + "source": [ + "As you see, we had to tell fastai which columns are *categorical* (that is, contain values that are one of a discrete set of choices, such as `occupation`) and which are *continuous* (that is, contain a number that represents a quantity, such as `age`).\n", + "\n", + "There is no pretrained model available for this task (in general, pretrained models are not widely available for any tabular modeling tasks, although some organizations have created them for internal use), so we don't use `fine_tune` in this case. Instead we use `fit_one_cycle`, the most commonly used method for training fastai models *from scratch* (i.e. without transfer learning):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "YzfnyrRU1Q6a", + "outputId": "693a7117-d7d6-41b2-fff8-180ee27067a2" + }, + "outputs": [], + "source": [ + "learn.fit_one_cycle(3)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "3PASYpBN1Q6b" + }, + "source": [ + "This model is using the [*Adult* dataset](http://robotics.stanford.edu/~ronnyk/nbtree.pdf), from the paper \"Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid\" by Rob Kohavi, which contains some demographic data about individuals (like their education, marital status, race, sex, and whether or not they have an annual income greater than \\$50k). The model is over 80\\% accurate, and took around 30 seconds to train." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kwLdBZIs1Q6b" + }, + "source": [ + "Let's look at one more. Recommendation systems are very important, particularly in e-commerce. Companies like Amazon and Netflix try hard to recommend products or movies that users might like. Here's how to train a model that will predict movies people might like, based on their previous viewing habits, using the [MovieLens dataset](https://doi.org/10.1145/2827872):" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "0Fz0s0CG1Q6b", + "outputId": "cc204075-d6c7-402b-e548-b36f9920dced" + }, + "outputs": [], + "source": [ + "from fastai.collab import *\n", + "path = untar_data(URLs.ML_SAMPLE)\n", + "dls = CollabDataLoaders.from_csv(path/'ratings.csv')\n", + "learn = collab_learner(dls, y_range=(0.5,5.5))\n", + "learn.fine_tune(10)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qkzLa6Rs1Q6b" + }, + "source": [ + "This model is predicting movie ratings on a scale of 0.5 to 5.0 to within around 0.6 average error. Since we're predicting a continuous number, rather than a category, we have to tell fastai what range our target has, using the `y_range` parameter.\n", + "\n", + "Although we're not actually using a pretrained model (for the same reason that we didn't for the tabular model), this example shows that fastai lets us use `fine_tune` anyway in this case (you'll learn how and why this works in <>). Sometimes it's best to experiment with `fine_tune` versus `fit_one_cycle` to see which works best for your dataset.\n", + "\n", + "We can use the same `show_results` call we saw earlier to view a few examples of user and movie IDs, actual ratings, and predictions:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Z6KzLEUR1Q6c", + "outputId": "32b5bf4f-d5a2-425f-fbd4-ff347abde6af" + }, + "outputs": [], + "source": [ + "learn.show_results()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LG7bZGyB1Q6c" + }, + "source": [ + "### Sidebar: Datasets: Food for Models" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SZDCfb-M1Q6c" + }, + "source": [ + "You’ve already seen quite a few models in this section, each one trained using a different dataset to do a different task. In machine learning and deep learning, we can’t do anything without data. So, the people that create datasets for us to train our models on are the (often underappreciated) heroes. Some of the most useful and important datasets are those that become important *academic baselines*; that is, datasets that are widely studied by researchers and used to compare algorithmic changes. Some of these become household names (at least, among households that train models!), such as MNIST, CIFAR-10, and ImageNet.\n", + "\n", + "The datasets used in this book have been selected because they provide great examples of the kinds of data that you are likely to encounter, and the academic literature has many examples of model results using these datasets to which you can compare your work.\n", + "\n", + "Most datasets used in this book took the creators a lot of work to build. For instance, later in the book we’ll be showing you how to create a model that can translate between French and English. The key input to this is a French/English parallel text corpus prepared back in 2009 by Professor Chris Callison-Burch of the University of Pennsylvania. This dataset contains over 20 million sentence pairs in French and English. He built the dataset in a really clever way: by crawling millions of Canadian web pages (which are often multilingual) and then using a set of simple heuristics to transform URLs of French content onto URLs pointing to the same content in English.\n", + "\n", + "As you look at datasets throughout this book, think about where they might have come from, and how they might have been curated. Then think about what kinds of interesting datasets you could create for your own projects. (We’ll even take you step by step through the process of creating your own image dataset soon.)\n", + "\n", + "fast.ai has spent a lot of time creating cut-down versions of popular datasets that are specially designed to support rapid prototyping and experimentation, and to be easier to learn with. In this book we will often start by using one of the cut-down versions and later scale up to the full-size version (just as we're doing in this chapter!). In fact, this is how the world’s top practitioners do their modeling in practice; they do most of their experimentation and prototyping with subsets of their data, and only use the full dataset when they have a good understanding of what they have to do." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2I2H9w3m1Q6d" + }, + "source": [ + "### End sidebar" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "W7MZdHIn1Q6d" + }, + "source": [ + "Each of the models we trained showed a training and validation loss. A good validation set is one of the most important pieces of the training process. Let's see why and learn how to create one." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F67U8e9h1Q6d" + }, + "source": [ + "## Validation Sets and Test Sets" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FP-8pNmf1Q6e" + }, + "source": [ + "As we've discussed, the goal of a model is to make predictions about data. But the model training process is fundamentally dumb. If we trained a model with all our data, and then evaluated the model using that same data, we would not be able to tell how well our model can perform on data it hasn’t seen. Without this very valuable piece of information to guide us in training our model, there is a very good chance it would become good at making predictions about that data but would perform poorly on new data.\n", + "\n", + "To avoid this, our first step was to split our dataset into two sets: the *training set* (which our model sees in training) and the *validation set*, also known as the *development set* (which is used only for evaluation). This lets us test that the model learns lessons from the training data that generalize to new data, the validation data.\n", + "\n", + "One way to understand this situation is that, in a sense, we don't want our model to get good results by \"cheating.\" If it makes an accurate prediction for a data item, that should be because it has learned characteristics of that kind of item, and not because the model has been shaped by *actually having seen that particular item*.\n", + "\n", + "Splitting off our validation data means our model never sees it in training and so is completely untainted by it, and is not cheating in any way. Right?\n", + "\n", + "In fact, not necessarily. The situation is more subtle. This is because in realistic scenarios we rarely build a model just by training its weight parameters once. Instead, we are likely to explore many versions of a model through various modeling choices regarding network architecture, learning rates, data augmentation strategies, and other factors we will discuss in upcoming chapters. Many of these choices can be described as choices of *hyperparameters*. The word reflects that they are parameters about parameters, since they are the higher-level choices that govern the meaning of the weight parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WPWCGzF11Q6e" + }, + "source": [ + "The problem is that even though the ordinary training process is only looking at predictions on the training data when it learns values for the weight parameters, the same is not true of us. We, as modelers, are evaluating the model by looking at predictions on the validation data when we decide to explore new hyperparameter values! So subsequent versions of the model are, indirectly, shaped by us having seen the validation data. Just as the automatic training process is in danger of overfitting the training data, we are in danger of overfitting the validation data through human trial and error and exploration.\n", + "\n", + "The solution to this conundrum is to introduce another level of even more highly reserved data, the *test set*. Just as we hold back the validation data from the training process, we must hold back the test set data even from ourselves. It cannot be used to improve the model; it can only be used to evaluate the model at the very end of our efforts. In effect, we define a hierarchy of cuts of our data, based on how fully we want to hide it from training and modeling processes: training data is fully exposed, the validation data is less exposed, and test data is totally hidden. This hierarchy parallels the different kinds of modeling and evaluation processes themselves—the automatic training process with back propagation, the more manual process of trying different hyper-parameters between training sessions, and the assessment of our final result.\n", + "\n", + "The test and validation sets should have enough data to ensure that you get a good estimate of your accuracy. If you're creating a cat detector, for instance, you generally want at least 30 cats in your validation set. That means that if you have a dataset with thousands of items, using the default 20% validation set size may be more than you need. On the other hand, if you have lots of data, using some of it for validation probably doesn't have any downsides.\n", + "\n", + "Having two levels of \"reserved data\"—a validation set and a test set, with one level representing data that you are virtually hiding from yourself—may seem a bit extreme. But the reason it is often necessary is because models tend to gravitate toward the simplest way to do good predictions (memorization), and we as fallible humans tend to gravitate toward fooling ourselves about how well our models are performing. The discipline of the test set helps us keep ourselves intellectually honest. That doesn't mean we *always* need a separate test set—if you have very little data, you may need to just have a validation set—but generally it's best to use one if at all possible.\n", + "\n", + "This same discipline can be critical if you intend to hire a third party to perform modeling work on your behalf. A third party might not understand your requirements accurately, or their incentives might even encourage them to misunderstand them. A good test set can greatly mitigate these risks and let you evaluate whether their work solves your actual problem.\n", + "\n", + "To put it bluntly, if you're a senior decision maker in your organization (or you're advising senior decision makers), the most important takeaway is this: if you ensure that you really understand what test and validation sets are and why they're important, then you'll avoid the single biggest source of failures we've seen when organizations decide to use AI. For instance, if you're considering bringing in an external vendor or service, make sure that you hold out some test data that the vendor *never gets to see*. Then *you* check their model on your test data, using a metric that *you* choose based on what actually matters to you in practice, and *you* decide what level of performance is adequate. (It's also a good idea for you to try out some simple baseline yourself, so you know what a really simple model can achieve. Often it'll turn out that your simple model performs just as well as one produced by an external \"expert\"!)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zZ7LBuWw1Q6e" + }, + "source": [ + "### Use Judgment in Defining Test Sets" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "akKvEfA61Q6f" + }, + "source": [ + "To do a good job of defining a validation set (and possibly a test set), you will sometimes want to do more than just randomly grab a fraction of your original dataset. Remember: a key property of the validation and test sets is that they must be representative of the new data you will see in the future. This may sound like an impossible order! By definition, you haven’t seen this data yet. But you usually still do know some things.\n", + "\n", + "It's instructive to look at a few example cases. Many of these examples come from predictive modeling competitions on the [Kaggle](https://www.kaggle.com/) platform, which is a good representation of problems and methods you might see in practice.\n", + "\n", + "One case might be if you are looking at time series data. For a time series, choosing a random subset of the data will be both too easy (you can look at the data both before and after the dates you are trying to predict) and not representative of most business use cases (where you are using historical data to build a model for use in the future). If your data includes the date and you are building a model to use in the future, you will want to choose a continuous section with the latest dates as your validation set (for instance, the last two weeks or last month of available data).\n", + "\n", + "Suppose you want to split the time series data in <> into training and validation sets." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "yLJO1nnE1Q6f" + }, + "source": [ + "\"A" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "O7ky4NIf1Q6f" + }, + "source": [ + "A random subset is a poor choice (too easy to fill in the gaps, and not indicative of what you'll need in production), as we can see in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qn2yScx41Q6g" + }, + "source": [ + "\"Random" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "67qCuN7M1Q6g" + }, + "source": [ + "Instead, use the earlier data as your training set (and the later data for the validation set), as shown in <>." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YGyDEMrZ1Q6g" + }, + "source": [ + "\"Training" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "TrKkm15D1Q6g" + }, + "source": [ + "For example, Kaggle had a competition to [predict the sales in a chain of Ecuadorian grocery stores](https://www.kaggle.com/c/favorita-grocery-sales-forecasting). Kaggle's training data ran from Jan 1 2013 to Aug 15 2017, and the test data spanned Aug 16 2017 to Aug 31 2017. That way, the competition organizer ensured that entrants were making predictions for a time period that was *in the future*, from the perspective of their model. This is similar to the way quant hedge fund traders do *back-testing* to check whether their models are predictive of future periods, based on past data." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7hoqzx5D1Q6h" + }, + "source": [ + "A second common case is when you can easily anticipate ways the data you will be making predictions for in production may be *qualitatively different* from the data you have to train your model with.\n", + "\n", + "In the Kaggle [distracted driver competition](https://www.kaggle.com/c/state-farm-distracted-driver-detection), the independent variables are pictures of drivers at the wheel of a car, and the dependent variables are categories such as texting, eating, or safely looking ahead. Lots of pictures are of the same drivers in different positions, as we can see in <>. If you were an insurance company building a model from this data, note that you would be most interested in how the model performs on drivers it hasn't seen before (since you would likely have training data only for a small group of people). In recognition of this, the test data for the competition consists of images of people that don't appear in the training set." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cTXwSqE01Q6h" + }, + "source": [ + "\"Two" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "bu2VbelM1Q6h" + }, + "source": [ + "If you put one of the images in <> in your training set and one in the validation set, your model will have an easy time making a prediction for the one in the validation set, so it will seem to be performing better than it would on new people. Another perspective is that if you used all the people in training your model, your model might be overfitting to particularities of those specific people, and not just learning the states (texting, eating, etc.).\n", + "\n", + "A similar dynamic was at work in the [Kaggle fisheries competition](https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring) to identify the species of fish caught by fishing boats in order to reduce illegal fishing of endangered populations. The test set consisted of boats that didn't appear in the training data. This means that you'd want your validation set to include boats that are not in the training set.\n", + "\n", + "Sometimes it may not be clear how your validation data will differ. For instance, for a problem using satellite imagery, you'd need to gather more information on whether the training set just contained certain geographic locations, or if it came from geographically scattered data." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1hytx-mu1Q6h" + }, + "source": [ + "Now that you have gotten a taste of how to build a model, you can decide what you want to dig into next." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EOi7Rk901Q6i" + }, + "source": [ + "## A _Choose Your Own Adventure_ moment" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mYQUwqz71Q6i" + }, + "source": [ + "If you would like to learn more about how to use deep learning models in practice, including how to identify and fix errors, create a real working web application, and avoid your model causing unexpected harm to your organization or society more generally, then keep reading the next two chapters. If you would like to start learning the foundations of how deep learning works under the hood, skip to <>. (Did you ever read _Choose Your Own Adventure_ books as a kid? Well, this is kind of like that… except with more deep learning than that book series contained.)\n", + "\n", + "You will need to read all these chapters to progress further in the book, but it is totally up to you which order you read them in. They don't depend on each other. If you skip ahead to <>, we will remind you at the end to come back and read the chapters you skipped over before you go any further." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Ucd0uLOK1Q6i" + }, + "source": [ + "## Questionnaire" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GAogU-Vz1Q6i" + }, + "source": [ + "It can be hard to know in pages and pages of prose what the key things are that you really need to focus on and remember. So, we've prepared a list of questions and suggested steps to complete at the end of each chapter. All the answers are in the text of the chapter, so if you're not sure about anything here, reread that part of the text and make sure you understand it. Answers to all these questions are also available on the [book's website](https://book.fast.ai). You can also visit [the forums](https://forums.fast.ai) if you get stuck to get help from other folks studying this material.\n", + "\n", + "For more questions, including detailed answers and links to the video timeline, have a look at Radek Osmulski's [aiquizzes](http://aiquizzes.com/howto)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "OT6p20H31Q6j" + }, + "source": [ + "1. Do you need these for deep learning?\n", + "\n", + " - Lots of math T / F\n", + " - Lots of data T / F\n", + " - Lots of expensive computers T / F\n", + " - A PhD T / F\n", + " \n", + "1. Name five areas where deep learning is now the best in the world.\n", + "1. What was the name of the first device that was based on the principle of the artificial neuron?\n", + "1. Based on the book of the same name, what are the requirements for parallel distributed processing (PDP)?\n", + "1. What were the two theoretical misunderstandings that held back the field of neural networks?\n", + "1. What is a GPU?\n", + "1. Open a notebook and execute a cell containing: `1+1`. What happens?\n", + "1. Follow through each cell of the stripped version of the notebook for this chapter. Before executing each cell, guess what will happen.\n", + "1. Complete the Jupyter Notebook online appendix.\n", + "1. Why is it hard to use a traditional computer program to recognize images in a photo?\n", + "1. What did Samuel mean by \"weight assignment\"?\n", + "1. What term do we normally use in deep learning for what Samuel called \"weights\"?\n", + "1. Draw a picture that summarizes Samuel's view of a machine learning model.\n", + "1. Why is it hard to understand why a deep learning model makes a particular prediction?\n", + "1. What is the name of the theorem that shows that a neural network can solve any mathematical problem to any level of accuracy?\n", + "1. What do you need in order to train a model?\n", + "1. How could a feedback loop impact the rollout of a predictive policing model?\n", + "1. Do we always have to use 224×224-pixel images with the cat recognition model?\n", + "1. What is the difference between classification and regression?\n", + "1. What is a validation set? What is a test set? Why do we need them?\n", + "1. What will fastai do if you don't provide a validation set?\n", + "1. Can we always use a random sample for a validation set? Why or why not?\n", + "1. What is overfitting? Provide an example.\n", + "1. What is a metric? How does it differ from \"loss\"?\n", + "1. How can pretrained models help?\n", + "1. What is the \"head\" of a model?\n", + "1. What kinds of features do the early layers of a CNN find? How about the later layers?\n", + "1. Are image models only useful for photos?\n", + "1. What is an \"architecture\"?\n", + "1. What is segmentation?\n", + "1. What is `y_range` used for? When do we need it?\n", + "1. What are \"hyperparameters\"?\n", + "1. What's the best way to avoid failures when using AI in an organization?" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "LXVhCzpy1Q6j" + }, + "source": [ + "### Further Research" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "uZ0c1gvM1Q6j" + }, + "source": [ + "Each chapter also has a \"Further Research\" section that poses questions that aren't fully answered in the text, or gives more advanced assignments. Answers to these questions aren't on the book's website; you'll need to do your own research!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dVeJculb1Q6j" + }, + "source": [ + "1. Why is a GPU useful for deep learning? How is a CPU different, and why is it less effective for deep learning?\n", + "1. Try to think of three areas where feedback loops might impact the use of machine learning. See if you can find documented examples of that happening in practice." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "buyaTl8P1Q6k" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [ + { + "file_id": "https://github.com/fastai/fastbook/blob/master/01_intro.ipynb", + "timestamp": 1712447637757 + } + ] + }, + "jupytext": { + "split_at_heading": true + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/oleg/Education/fastai/02_production.ipynb b/notebooks/oleg/Education/fastai/02_production.ipynb new file mode 100644 index 0000000..9005428 --- /dev/null +++ b/notebooks/oleg/Education/fastai/02_production.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":1,"metadata":{"id":"xBd99nOa1Xri"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":2,"metadata":{"id":"hXM-0pTd1Xrn"},"outputs":[],"source":["#hide\n","from fastbook import *\n","from fastai.vision.widgets import *"]},{"cell_type":"raw","metadata":{"id":"ixPSO-o_1Xro"},"source":["[[chapter_production]]"]},{"cell_type":"markdown","metadata":{"id":"DBR58SFo1Xrp"},"source":["# From Model to Production"]},{"cell_type":"markdown","metadata":{"id":"FoJZBU951Xrr"},"source":["The six lines of code we saw in <> are just one small part of the process of using deep learning in practice. In this chapter, we're going to use a computer vision example to look at the end-to-end process of creating a deep learning application. More specifically, we're going to build a bear classifier! In the process, we'll discuss the capabilities and constraints of deep learning, explore how to create datasets, look at possible gotchas when using deep learning in practice, and more. Many of the key points will apply equally well to other deep learning problems, such as those in <>. If you work through a problem similar in key respects to our example problems, we expect you to get excellent results with little code, quickly.\n","\n","Let's start with how you should frame your problem."]},{"cell_type":"markdown","metadata":{"id":"chsy9r521Xrs"},"source":["## The Practice of Deep Learning"]},{"cell_type":"markdown","metadata":{"id":"sLzjnT8x1Xrv"},"source":["We've seen that deep learning can solve a lot of challenging problems quickly and with little code. As a beginner, there's a sweet spot of problems that are similar enough to our example problems that you can very quickly get extremely useful results. However, deep learning isn't magic! The same 6 lines of code won't work for every problem anyone can think of today. Underestimating the constraints and overestimating the capabilities of deep learning may lead to frustratingly poor results, at least until you gain some experience and can solve the problems that arise. Conversely, overestimating the constraints and underestimating the capabilities of deep learning may mean you do not attempt a solvable problem because you talk yourself out of it.\n","\n","We often talk to people who underestimate both the constraints and the capabilities of deep learning. Both of these can be problems: underestimating the capabilities means that you might not even try things that could be very beneficial, and underestimating the constraints might mean that you fail to consider and react to important issues.\n","\n","The best thing to do is to keep an open mind. If you remain open to the possibility that deep learning might solve part of your problem with less data or complexity than you expect, then it is possible to design a process where you can find the specific capabilities and constraints related to your particular problem as you work through the process. This doesn't mean making any risky bets — we will show you how you can gradually roll out models so that they don't create significant risks, and can even backtest them prior to putting them in production."]},{"cell_type":"markdown","metadata":{"id":"YiRnPd1d1Xrw"},"source":["### Starting Your Project"]},{"cell_type":"markdown","metadata":{"id":"cKbhz9Q31Xrx"},"source":["So where should you start your deep learning journey? The most important thing is to ensure that you have some project to work on—it is only through working on your own projects that you will get real experience building and using models. When selecting a project, the most important consideration is data availability. Regardless of whether you are doing a project just for your own learning or for practical application in your organization, you want something where you can get started quickly. We have seen many students, researchers, and industry practitioners waste months or years while they attempt to find their perfect dataset. The goal is not to find the \"perfect\" dataset or project, but just to get started and iterate from there.\n","\n","If you take this approach, then you will be on your third iteration of learning and improving while the perfectionists are still in the planning stages!\n","\n","We also suggest that you iterate from end to end in your project; that is, don't spend months fine-tuning your model, or polishing the perfect GUI, or labelling the perfect dataset… Instead, complete every step as well as you can in a reasonable amount of time, all the way to the end. For instance, if your final goal is an application that runs on a mobile phone, then that should be what you have after each iteration. But perhaps in the early iterations you take some shortcuts, for instance by doing all of the processing on a remote server, and using a simple responsive web application. By completing the project end to end, you will see where the trickiest bits are, and which bits make the biggest difference to the final result."]},{"cell_type":"markdown","metadata":{"id":"Z5wWXoCk1Xrx"},"source":["As you work through this book, we suggest that you complete lots of small experiments, by running and adjusting the notebooks we provide, at the same time that you gradually develop your own projects. That way, you will be getting experience with all of the tools and techniques that we're explaining, as we discuss them.\n","\n","> s: To make the most of this book, take the time to experiment between each chapter, be it on your own project or by exploring the notebooks we provide. Then try rewriting those notebooks from scratch on a new dataset. It's only by practicing (and failing) a lot that you will get an intuition of how to train a model. \n","\n","By using the end-to-end iteration approach you will also get a better understanding of how much data you really need. For instance, you may find you can only easily get 200 labeled data items, and you can't really know until you try whether that's enough to get the performance you need for your application to work well in practice.\n","\n","In an organizational context you will be able to show your colleagues that your idea can really work by showing them a real working prototype. We have repeatedly observed that this is the secret to getting good organizational buy-in for a project."]},{"cell_type":"markdown","metadata":{"id":"7Bzl_6OQ1Xry"},"source":["Since it is easiest to get started on a project where you already have data available, that means it's probably easiest to get started on a project related to something you are already doing, because you already have data about things that you are doing. For instance, if you work in the music business, you may have access to many recordings. If you work as a radiologist, you probably have access to lots of medical images. If you are interested in wildlife preservation, you may have access to lots of images of wildlife.\n","\n","Sometimes, you have to get a bit creative. Maybe you can find some previous machine learning project, such as a Kaggle competition, that is related to your field of interest. Sometimes, you have to compromise. Maybe you can't find the exact data you need for the precise project you have in mind; but you might be able to find something from a similar domain, or measured in a different way, tackling a slightly different problem. Working on these kinds of similar projects will still give you a good understanding of the overall process, and may help you identify other shortcuts, data sources, and so forth.\n","\n","Especially when you are just starting out with deep learning, it's not a good idea to branch out into very different areas, to places that deep learning has not been applied to before. That's because if your model does not work at first, you will not know whether it is because you have made a mistake, or if the very problem you are trying to solve is simply not solvable with deep learning. And you won't know where to look to get help. Therefore, it is best at first to start with something where you can find an example online where somebody has had good results with something that is at least somewhat similar to what you are trying to achieve, or where you can convert your data into a format similar to what someone else has used before (such as creating an image from your data). Let's have a look at the state of deep learning, just so you know what kinds of things deep learning is good at right now."]},{"cell_type":"markdown","metadata":{"id":"StPq3mZt1Xry"},"source":["### The State of Deep Learning"]},{"cell_type":"markdown","metadata":{"id":"vcpbkZJw1Xrz"},"source":["Let's start by considering whether deep learning can be any good at the problem you are looking to work on. This section provides a summary of the state of deep learning at the start of 2020. However, things move very fast, and by the time you read this some of these constraints may no longer exist. We will try to keep the [book's website](https://book.fast.ai/) up-to-date; in addition, a Google search for \"what can AI do now\" is likely to provide current information."]},{"cell_type":"markdown","metadata":{"id":"v8bqNa4n1Xrz"},"source":["#### Computer vision"]},{"cell_type":"markdown","metadata":{"id":"kaQZLKqq1Xrz"},"source":["There are many domains in which deep learning has not been used to analyze images yet, but those where it has been tried have nearly universally shown that computers can recognize what items are in an image at least as well as people can—even specially trained people, such as radiologists. This is known as *object recognition*. Deep learning is also good at recognizing where objects in an image are, and can highlight their locations and name each found object. This is known as *object detection* (there is also a variant of this that we saw in <>, where every pixel is categorized based on what kind of object it is part of—this is called *segmentation*). Deep learning algorithms are generally not good at recognizing images that are significantly different in structure or style to those used to train the model. For instance, if there were no black-and-white images in the training data, the model may do poorly on black-and-white images. Similarly, if the training data did not contain hand-drawn images, then the model will probably do poorly on hand-drawn images. There is no general way to check what types of images are missing in your training set, but we will show in this chapter some ways to try to recognize when unexpected image types arise in the data when the model is being used in production (this is known as checking for *out-of-domain* data).\n","\n","One major challenge for object detection systems is that image labelling can be slow and expensive. There is a lot of work at the moment going into tools to try to make this labelling faster and easier, and to require fewer handcrafted labels to train accurate object detection models. One approach that is particularly helpful is to synthetically generate variations of input images, such as by rotating them or changing their brightness and contrast; this is called *data augmentation* and also works well for text and other types of models. We will be discussing it in detail in this chapter.\n","\n","Another point to consider is that although your problem might not look like a computer vision problem, it might be possible with a little imagination to turn it into one. For instance, if what you are trying to classify are sounds, you might try converting the sounds into images of their acoustic waveforms and then training a model on those images."]},{"cell_type":"markdown","metadata":{"id":"ysQKrUoW1Xrz"},"source":["#### Text (natural language processing)"]},{"cell_type":"markdown","metadata":{"id":"W6As-3M11Xr0"},"source":["Computers are very good at classifying both short and long documents based on categories such as spam or not spam, sentiment (e.g., is the review positive or negative), author, source website, and so forth. We are not aware of any rigorous work done in this area to compare them to humans, but anecdotally it seems to us that deep learning performance is similar to human performance on these tasks. Deep learning is also very good at generating context-appropriate text, such as replies to social media posts, and imitating a particular author's style. It's good at making this content compelling to humans too—in fact, even more compelling than human-generated text. However, deep learning is currently not good at generating *correct* responses! We don't currently have a reliable way to, for instance, combine a knowledge base of medical information with a deep learning model for generating medically correct natural language responses. This is very dangerous, because it is so easy to create content that appears to a layman to be compelling, but actually is entirely incorrect.\n","\n","Another concern is that context-appropriate, highly compelling responses on social media could be used at massive scale—thousands of times greater than any troll farm previously seen—to spread disinformation, create unrest, and encourage conflict. As a rule of thumb, text generation models will always be technologically a bit ahead of models recognizing automatically generated text. For instance, it is possible to use a model that can recognize artificially generated content to actually improve the generator that creates that content, until the classification model is no longer able to complete its task.\n","\n","Despite these issues, deep learning has many applications in NLP: it can be used to translate text from one language to another, summarize long documents into something that can be digested more quickly, find all mentions of a concept of interest, and more. Unfortunately, the translation or summary could well include completely incorrect information! However, the performance is already good enough that many people are using these systems—for instance, Google's online translation system (and every other online service we are aware of) is based on deep learning."]},{"cell_type":"markdown","metadata":{"id":"DbbFzJ961Xr0"},"source":["#### Combining text and images"]},{"cell_type":"markdown","metadata":{"id":"kMQADe8B1Xr0"},"source":["The ability of deep learning to combine text and images into a single model is, generally, far better than most people intuitively expect. For example, a deep learning model can be trained on input images with output captions written in English, and can learn to generate surprisingly appropriate captions automatically for new images! But again, we have the same warning that we discussed in the previous section: there is no guarantee that these captions will actually be correct.\n","\n","Because of this serious issue, we generally recommend that deep learning be used not as an entirely automated process, but as part of a process in which the model and a human user interact closely. This can potentially make humans orders of magnitude more productive than they would be with entirely manual methods, and actually result in more accurate processes than using a human alone. For instance, an automatic system can be used to identify potential stroke victims directly from CT scans, and send a high-priority alert to have those scans looked at quickly. There is only a three-hour window to treat strokes, so this fast feedback loop could save lives. At the same time, however, all scans could continue to be sent to radiologists in the usual way, so there would be no reduction in human input. Other deep learning models could automatically measure items seen on the scans, and insert those measurements into reports, warning the radiologists about findings that they may have missed, and telling them about other cases that might be relevant."]},{"cell_type":"markdown","metadata":{"id":"p5MDv0H11Xr1"},"source":["#### Tabular data"]},{"cell_type":"markdown","metadata":{"id":"8E-anri51Xr1"},"source":["For analyzing time series and tabular data, deep learning has recently been making great strides. However, deep learning is generally used as part of an ensemble of multiple types of model. If you already have a system that is using random forests or gradient boosting machines (popular tabular modeling tools that you will learn about soon), then switching to or adding deep learning may not result in any dramatic improvement. Deep learning does greatly increase the variety of columns that you can include—for example, columns containing natural language (book titles, reviews, etc.), and high-cardinality categorical columns (i.e., something that contains a large number of discrete choices, such as zip code or product ID). On the down side, deep learning models generally take longer to train than random forests or gradient boosting machines, although this is changing thanks to libraries such as [RAPIDS](https://rapids.ai/), which provides GPU acceleration for the whole modeling pipeline. We cover the pros and cons of all these methods in detail in <>."]},{"cell_type":"markdown","metadata":{"id":"pnk4ScNg1Xr1"},"source":["#### Recommendation systems"]},{"cell_type":"markdown","metadata":{"id":"rXLg7rvr1Xr1"},"source":["Recommendation systems are really just a special type of tabular data. In particular, they generally have a high-cardinality categorical variable representing users, and another one representing products (or something similar). A company like Amazon represents every purchase that has ever been made by its customers as a giant sparse matrix, with customers as the rows and products as the columns. Once they have the data in this format, data scientists apply some form of collaborative filtering to *fill in the matrix*. For example, if customer A buys products 1 and 10, and customer B buys products 1, 2, 4, and 10, the engine will recommend that A buy 2 and 4. Because deep learning models are good at handling high-cardinality categorical variables, they are quite good at handling recommendation systems. They particularly come into their own, just like for tabular data, when combining these variables with other kinds of data, such as natural language or images. They can also do a good job of combining all of these types of information with additional metadata represented as tables, such as user information, previous transactions, and so forth.\n","\n","However, nearly all machine learning approaches have the downside that they only tell you what products a particular user might like, rather than what recommendations would be helpful for a user. Many kinds of recommendations for products a user might like may not be at all helpful—for instance, if the user is already familiar with the products, or if they are simply different packagings of products they have already purchased (such as a boxed set of novels, when they already have each of the items in that set). Jeremy likes reading books by Terry Pratchett, and for a while Amazon was recommending nothing but Terry Pratchett books to him (see <>), which really wasn't helpful because he already was aware of these books!"]},{"cell_type":"markdown","metadata":{"id":"5rKQERYz1Xr2"},"source":["\"Terry"]},{"cell_type":"markdown","metadata":{"id":"66f_2Wcx1Xr2"},"source":["#### Other data types"]},{"cell_type":"markdown","metadata":{"id":"DSxP9tD01Xr2"},"source":["Often you will find that domain-specific data types fit very nicely into existing categories. For instance, protein chains look a lot like natural language documents, in that they are long sequences of discrete tokens with complex relationships and meaning throughout the sequence. And indeed, it does turn out that using NLP deep learning methods is the current state-of-the-art approach for many types of protein analysis. As another example, sounds can be represented as spectrograms, which can be treated as images; standard deep learning approaches for images turn out to work really well on spectrograms."]},{"cell_type":"markdown","metadata":{"id":"RFZ__-6v1Xr2"},"source":["### The Drivetrain Approach"]},{"cell_type":"markdown","metadata":{"id":"OddA72ZS1Xr2"},"source":["There are many accurate models that are of no use to anyone, and many inaccurate models that are highly useful. To ensure that your modeling work is useful in practice, you need to consider how your work will be used. In 2012 Jeremy, along with Margit Zwemer and Mike Loukides, introduced a method called *the Drivetrain Approach* for thinking about this issue."]},{"cell_type":"markdown","metadata":{"id":"krdtxfxU1Xr3"},"source":["The Drivetrain Approach, illustrated in <>, was described in detail in [\"Designing Great Data Products\"](https://www.oreilly.com/radar/drivetrain-approach-data-products/). The basic idea is to start with considering your objective, then think about what actions you can take to meet that objective and what data you have (or can acquire) that can help, and then build a model that you can use to determine the best actions to take to get the best results in terms of your objective."]},{"cell_type":"markdown","metadata":{"id":"J0_vtaBO1Xr3"},"source":[""]},{"cell_type":"markdown","metadata":{"id":"7cLocdwW1Xr3"},"source":["Consider a model in an autonomous vehicle: you want to help a car drive safely from point A to point B without human intervention. Great predictive modeling is an important part of the solution, but it doesn't stand on its own; as products become more sophisticated, it disappears into the plumbing. Someone using a self-driving car is completely unaware of the hundreds (if not thousands) of models and the petabytes of data that make it work. But as data scientists build increasingly sophisticated products, they need a systematic design approach.\n","\n","We use data not just to generate more data (in the form of predictions), but to produce *actionable outcomes*. That is the goal of the Drivetrain Approach. Start by defining a clear *objective*. For instance, Google, when creating their first search engine, considered \"What is the user’s main objective in typing in a search query?\" This led them to their objective, which was to \"show the most relevant search result.\" The next step is to consider what *levers* you can pull (i.e., what actions you can take) to better achieve that objective. In Google's case, that was the ranking of the search results. The third step was to consider what new *data* they would need to produce such a ranking; they realized that the implicit information regarding which pages linked to which other pages could be used for this purpose. Only after these first three steps do we begin thinking about building the predictive *models*. Our objective and available levers, what data we already have and what additional data we will need to collect, determine the models we can build. The models will take both the levers and any uncontrollable variables as their inputs; the outputs from the models can be combined to predict the final state for our objective."]},{"cell_type":"markdown","metadata":{"id":"X4tvBzPl1Xr3"},"source":["Let's consider another example: recommendation systems. The *objective* of a recommendation engine is to drive additional sales by surprising and delighting the customer with recommendations of items they would not have purchased without the recommendation. The *lever* is the ranking of the recommendations. New *data* must be collected to generate recommendations that will *cause new sales*. This will require conducting many randomized experiments in order to collect data about a wide range of recommendations for a wide range of customers. This is a step that few organizations take; but without it, you don't have the information you need to actually optimize recommendations based on your true objective (more sales!).\n","\n","Finally, you could build two *models* for purchase probabilities, conditional on seeing or not seeing a recommendation. The difference between these two probabilities is a utility function for a given recommendation to a customer. It will be low in cases where the algorithm recommends a familiar book that the customer has already rejected (both components are small) or a book that they would have bought even without the recommendation (both components are large and cancel each other out).\n","\n","As you can see, in practice often the practical implementation of your models will require a lot more than just training a model! You'll often need to run experiments to collect more data, and consider how to incorporate your models into the overall system you're developing. Speaking of data, let's now focus on how to find data for your project."]},{"cell_type":"markdown","metadata":{"id":"EQ2gIcl81Xr4"},"source":["## Gathering Data"]},{"cell_type":"markdown","metadata":{"id":"qy4JumiI1Xr4"},"source":["For many types of projects, you may be able to find all the data you need online. The project we'll be completing in this chapter is a *bear detector*. It will discriminate between three types of bear: grizzly, black, and teddy bears. There are many images on the internet of each type of bear that we can use. We just need a way to find them and download them. We've provided a tool you can use for this purpose, so you can follow along with this chapter and create your own image recognition application for whatever kinds of objects you're interested in. In the fast.ai course, thousands of students have presented their work in the course forums, displaying everything from hummingbird varieties in Trinidad to bus types in Panama—one student even created an application that would help his fiancée recognize his 16 cousins during Christmas vacation!"]},{"cell_type":"markdown","metadata":{"id":"ZeQC5XUg1Xr4"},"source":["At the time of writing, Bing Image Search is the best option we know of for finding and downloading images. It's free for up to 1,000 queries per month, and each query can download up to 150 images. However, something better might have come along between when we wrote this and when you're reading the book, so be sure to check out the [book's website](https://book.fast.ai/) for our current recommendation."]},{"cell_type":"markdown","metadata":{"id":"i4hs0NCN1Xr5"},"source":["> important: Keeping in Touch With the Latest Services: Services that can be used for creating datasets come and go all the time, and their features, interfaces, and pricing change regularly too. In this section, we'll show how to use the Bing Image Search API available at the time this book was written. We'll be providing more options and more up to date information on the [book's website](https://book.fast.ai/), so be sure to have a look there now to get the most current information on how to download images from the web to create a dataset for deep learning."]},{"cell_type":"markdown","metadata":{"id":"7insUKOf1Xr5"},"source":["# clean\n","To download images with Bing Image Search, sign up at [Microsoft Azure](https://azure.microsoft.com/en-us/services/cognitive-services/bing-web-search-api/) for a free account. You will be given a key, which you can copy and enter in a cell as follows (replacing 'XXX' with your key and executing it):"]},{"cell_type":"code","execution_count":3,"metadata":{"id":"o9Ryr68u1Xr5"},"outputs":[],"source":["key = os.environ.get('AZURE_SEARCH_KEY', '7abaad513db84a0ba26d2064d5494231')"]},{"cell_type":"markdown","metadata":{"id":"KU7GjTYE1Xr6"},"source":["Or, if you're comfortable at the command line, you can set it in your terminal with:\n","\n"," export AZURE_SEARCH_KEY=your_key_here\n","\n","and then restart Jupyter Notebook, and use the above line without editing it.\n","\n","Once you've set `key`, you can use `search_images_bing`. This function is provided by the small `utils` class included with the notebooks online. If you're not sure where a function is defined, you can just type it in your notebook to find out:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IlL32cVK1XsE","outputId":"8caf4991-2ced-40e2-e8b6-ba231757616d"},"outputs":[{"data":{"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["search_images_bing"]},{"cell_type":"code","execution_count":5,"metadata":{"id":"IFsuS17G1XsH","outputId":"989b1887-07a3-4f06-e0c6-0e84e30d60c7"},"outputs":[{"data":{"text/plain":["150"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["results = search_images_bing(key, 'grizzly bear')\n","ims = results.attrgot('contentUrl')\n","len(ims)"]},{"cell_type":"markdown","metadata":{"id":"7Xoud0Ve1XsJ"},"source":["We've successfully downloaded the URLs of 150 grizzly bears (or, at least, images that Bing Image Search finds for that search term).\n","\n","**NB**: there's no way to be sure exactly what images a search like this will find. The results can change over time. We've heard of at least one case of a community member who found some unpleasant pictures of dead bears in their search results. You'll receive whatever images are found by the web search engine. If you're running this at work, or with kids, etc, then be cautious before you display the downloaded images.\n","\n","Let's look at one:"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"pndQK0ud1XsJ"},"outputs":[],"source":["#hide\n","ims = ['http://3.bp.blogspot.com/-S1scRCkI3vY/UHzV2kucsPI/AAAAAAAAA-k/YQ5UzHEm9Ss/s1600/Grizzly%2BBear%2BWildlife.jpg']"]},{"cell_type":"code","execution_count":6,"metadata":{"id":"BnZLwcKW1XsK"},"outputs":[{"data":{"text/html":["\n","\n"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","
\n"," \n"," 100.96% [335872/332689 00:00<00:00]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["Path('images/grizzly.jpg')"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["dest = 'images/grizzly.jpg'\n","download_url(ims[0], dest)"]},{"cell_type":"code","execution_count":7,"metadata":{"id":"yyAoCPpQ1XsL","outputId":"6c02066d-47d2-41b1-8a65-a0f4e9b0ee2c"},"outputs":[{"data":{"image/jpeg":"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCABVAIADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDGgZ1S5hU/LkHGeKrzEwTybeYz0qzCIzdMsvCyrgKO3NQNBuv5ISS7YwoQZzTYFPJUqT0I9Ka0zAgCtSSytbRI3vJ23dDHGBkfX0qzDcaVEodbaNie8g3fzrGVeMTeFCb1MObzHgQ7sAMDV2KRGdc9FGBiuntdRsyoYxQGPgbVjFak1z4YmgBuLKHdjl4xtYfiKz+sxfQ1dCSOBuSxLAE4H+NUY4yk0ilueHH4/wD6q6G91HQYL0pZ20s47+a5IH4ADNZ02qoZ1aONFHRQiqpx6dKHXXRAqDe4sEzwMFY/Q1h+IYna5EwDYccnPGRXZ2euRW0TyRCRmPG1nBGPUZqa80e28WaNJLYJ5OpQZkESqAs4HXj1+lKOITdmrBOi1G55xYlxMIi+Ax4z2NbbwsGyxBHtWIq+XOvJyG/KrZldiSrEHvzXQmc7R31kDDYwIRztFJDIr+YV/wCejKc/XmoLMSG3gWV2Zgq7jRYq0dmZWBw0rH9TTKuY2p6VNby7o4zJCTkFR0+tZuc7Riu5cqVBPes8aHA1+JQT5Z5MYFIDFs7v7ZcARnEiRkD3P+TW0k1tpkTMWHnEYaVjz+HpWBps0VvCGEeZDkkgYJHas/VtQJPzkc5A3c/5NZVJN+6i6UUlzMparqjXF7I6SEJ780z+0yUGG7YA7ViTOTMQARU0aOxVO9R7NWL9o7nQQ6jcSKqjJx1C9qsS6kxcQxltuNpbHajTNDuJLH7QV2hjwd2DitZ7Oztog0oQlAdzdB/npWdlc15nYx7eGaZEeSQIM5RiM8Z6+4rUt9KZYmee6i3jAkQ4Ygcn8DjH8qxpZ/LvFMKmVFbcQBnA7gGug8P2YuLi5udjxxo4eTzFOWPOF9hSkrCTL2leHL24hjeKBVhkOUNzMq7x22g8niux0SeGwlBLgNGMMqLjB9K881S7udZkVpi9pDb5AdDj5e2B6+1dtolu0emEu5j8wcO43SuexJPT6VEoX1Q1PozB8V+EoLrVvt+lXECW9y26SNzjY59Mdiazh4A1qM5Y2sjKNxiScGTHfC/0r0WHTrZViF9A/msucngZ+lYraFLpWpLfabe3NzErlntZWyQT3z3AraFSS3MpQj0MDeyRAg1ain22EcW0Yxk57kmqsqZeQPkMCeBVqBSLWbJwfLPX8q6jAa8qkAbiDnpT47ooxJPTjPrWe6DPXP4805EUPuDEk9+aYrnNXlyIZJmTAQfKPw4rnrgyM6mQHjkAj1rT1ppBcyRKuMO34c1m3N62xYgfl7msrGt9LFSSEiVAB1wTXSaZaK7pIwDbgPvcAknArFtpFDgPy2cj3rasmKlNpOAuQT64ak1cE0jqjciC3Z2GExhQnc49PxrmtSu/N8qFpWDbskYznPbPrWgJT9kaViBtJwWGeetczcyNNe7kGEJxuYVCiW5aG5p0kKi4Mp2rEw68fQk+5PSuqsBHY6Z5ZYAzhZG3Nyx4yf5CuJXYgjdVByyuwPQkd8fnWwupxhYpJOYm+SXHVWGDj+VTKI1IeGkm8RStIgMMIZmQjCgjgcVuP4sZRHDDak7xtjYDOMfSuMn1BotVuTK67GJClc8qTkda6TQLZpLy2njkRoFOSmeQfSmkktRXuzorzWtY063hvLu2kdNnz452j3/Oqcvit7lFkt0aOUDduPbuBiui1XVtPvLF7KSdFmcbQp9elee28LtemwUq90x5A6g/4Ck42QJ3Zu68QLmK4T5ftEKyEdskc49qhtgZI8uygAdT3rQuLOJpI42bPkoEX+vP1rPmZWLRh1Cg469TXRD4Vc55fE7AkTjacA+tOW1Z/UADOMVPbH92MY69zU6S7VwxBPT3qxHn/iK2EOozqBjnoffvXMFFaXG7cM+uOldz45s2WZLhQSGXBAHT8a4C4JR8hcA8jNSkU3pcmRgt0e6g8c1tR3GxABjK4P4cGuZjm2yZ5xWlaXPmZU9lI/ChoSkdO1w0+nIqkBcncAM1zdzKUkyB+JBFbMTMmlBsZ3MSTmseQmaFy2SM4GahLU0b0LsF7FdCTna6jge1Rf2k9tM52kwuAHjzjJHf2NY0YkjnHlnBzV198ozuDYOGP0p8pPM2b1/JbalbxyxjA2/eX7wPfIrpvCOqQaVN5c6/uHUAuq559a8vNxLFcbo3KleARW9Y+LpIYPIvLOK5i7kfK35ipcH0Gqi6nZS6TDL4ie/lvIGtDIJG8uTJYA5AA7VuaTZW9tcS6h8rXFySS/TH0rzweIEv7lbWztFtbdj82Tlm/GvQ7XElpbMxwwQcU9ZSSYaKLaNQzA8tgj1qkUt5LnhY9xGTwMkU0pIQ4O0LggMOo4qlDaJHdDbNuZVXJLcsOa0MzXBt4jtIA79KkEcLDcApzWFeCUSNtdmJOcdeKvWm9YEDEqxxwaaEQ6vbC/spIGQbiuRn1ryLU7RoHKMm0qTmvdJdJ1BW2tY3Ib08pv8ACuM174e+IbueW4ttGu5U68Jg5PseTRJa3CL0seV7KljBjKmulbwJ4pEpQeHNTJXqPszf4VNpvgDxVqs32e30K9VgQrNNEY1X6lsUCIIysujRqpPy561jhChIYk+g6V7hpPwImSziXUdcVZQPmW3g3D6ZJH8q0l+A+jlX87V713LZDKqLhe4xg/nSUS+ZWPnhY/3i56dea6rQdDW9geaZ1WMggKeOa9am+Aeisv7nV79CO7qjD+QqNvhJqdjA0VlfW1xHjADgo39RTsTc+fJdvnyKBwGIzSLEMZ/HFd3efB/xpBPKRpHnLkkGOeM5/WuU1DSb/SbprbULOa1nHWOZCp/XrSsBDpyE3se3jDDvXrMPlQxgM+SoAI3cA4rjvA3h7+3PElnZswSPPmSMf7o7V75B8NfD6SSSOs8wk52tIcA4xkYoS1uNysrHk0+uvnbGo24Oc1mw6tLPegHYSRj7vPFe7D4e+Fvl/wCJUny/9NH5+vPNOj+HnhSJ98ejxK3XId8/zp2JueTQTLKrAswA4z0q0l0MBVcPzgetel3Xw38NXLlxaSwsepincf1rMb4RaCc4vNTB9fPBx/47TC539FFFAgooooAKKKKACiiigArP1fQ9L161+zapYw3UXYSLkr7g9R+FFFAHFzfCTRbTzp9Mubq1YjIVj5ir34zz+tYen+LNU0FpdMjaKdI3OHlU5/nRRSemqLjruamn+LdY1bV7a2E8dupbB2JkH6g16TGrKoDPuPc4xRRTT0FJJMfRRRQSf//Z","image/png":"iVBORw0KGgoAAAANSUhEUgAAAIAAAABVCAIAAAAOr3sAAABQ7ElEQVR4AeXd2bOu+XUX9nee5z3vfebTp9Xd6la3JCwPcjwAjsEGUoZUUrlIZahKqnKb4n/hJiG5SEhIAmEIBSEBEigMyICNpJZa6unMe37necxnPcd2ueAGh4ukYPfR0T7vft/n+f3W8F1rfdf6PTv9n/7H/9lwNGi1m6end1rN9nK5PL+8GAz6uUx2vlhsNstyoZjN5guFwnK9Wi7X48kwm8mk0qndzp9dOp3OpLPxfSqVzWZy/kunMqlUerPZrJe5bMabs+lMNpf1o/VqNZpNRrN5OZ9zwWqlUi6VlvPZbDb3uUKx6G2pdGa32xZLpcV0vpjNi4XcZDZfb+IO3dG4Nx68dXp3EQtZlQsuk8ln0oVcPl/IV4ql7Xaby+Vc1rKWy9V2s/mtj7/rnbPFfDwZrbfbTHqXtxzbKfuqpPOFzWpjedVSsVSurVO71XY7n8+sehdvtsFVKVd8dOfBgwf3XW2z3aTtPG1L2XRqe35+nstkarVaerfL5LLFcuXZi6e+sj6ZTu/Wm9VysdpsiSgdL2SzxYLL+kfWT3fpxWqRS6dy5LfebPr9YTr9er1ek956ucx4V4YgdpvVepFKFUsZWyJLIiZQr+eyWZ9KpVL5XN57t9tQhh/6frNapdI7CvBSJpVZrdabTCZHqNnUdD7tDgfz1bLUaOWzOTp2NfdKZdNEuN1RIT1lJ6PJZrulrfV2k1ntprNZJp1ZbjaL1Xy724xm4zcC2mzXmW12syYUMkkvvHWXWu+26Vna8nK5/Gy5Gk0mk+nY6jau5b9UamOxu+VkOkl39lt75eli6e7bbWyUXtK7LVHRolcybIq4U+Sz8sFMPrdb290ym3UV9mAtm4xNpO3SAqxkdbx/2Ov1BsMBy7OIzDqbjYuEZGJv6Qy726VTVLmYzUgsXyoynny5VPYSk1mvV7lsgX6ZBxtlmsxnvV1T3pZ8/b0Nk0/e7Fv7TWUzG3afYi+ZjBVQLLmnUlu6dOMVO2G8yatpH0jtRtOJ/2MXjD2dpZ7VfD7P01DWNkK71OGOqXVqs7XF7Wy2sNHQFNMJg1jZUGgtm94Q1tpbQgH+zyazubyLz5cLItqRYjrX2evMl/PdahWfSNmF/7Z0vE1tB4PeZr0ulqteWaatJ8fCeYC9+MMTd9wlmyfBXD5HMuyjVC7l87klf836KeHnLMat6IAWiIWaW/XmcDxK7rOldD8uF0tWuAk9ZZerJTuwGNdMha6zmYJL5nIhN2/abGekPp9PxpMytVTKZEfSrrtacgzGvFquVoE39GCJ220YeKIWf2/XGz/1xuk8NLdY+gZ6rFe0u94stutcrlAqlK0pZJfOUJI3WEP4QDZTrFhqiQQtidroxiXdhxRCg6lUqQCQ8vDEisvFIvcn8lQmxxytnCIXS+5K0SnusgQ7s+nx/lG9WqewcMJMymV4Nqvx0fCI1ZqvxHoCKDIE6Ha2vFwteIAfeSMLL1LlltNnVkB57hb8gQPQGdkVwsRTKdIhOdI6ODjstDukEb4DG1JbcvCekMN6yaPAoKumLdION+sAXAIgi8V8ziLCtVgu58pkA93ozc1IJZVerYQENr4LxIW+NpOgfbyBDiyZf2T4B4lTA8WEpuIHie1brm8K+Vy9Wi3m8+5owztWst3F/1wFjMzmlOGrXBYP4tb2yLTfaKJeqcDqxZI5U1oCd7utWOI9C94b1rBY2ySnYMXsg8ADOZO4EgZj7/FC8tMU13dnca1WqQaQpiIIsUNrYwhvFBPvzmTcgiOHYrf2RmibHZ2nUuPxOIAtNkiDG16QE4oqlYePHjcaDa+EAsgXAKbs0QJ9LBbEOsRakJTLCkmcoFDw4djAeg18yMjiptOpC+/v7/OPsOz1YrGgslCAfXjPG6GEEBMvIVAbtEKOYK85BpOgilu+MaVEiSl+VSqUrCJimjfHZ4XBtLA6HgwZQegsVmpfAZ32H6JL74qFYqlYrFUrq/WK7q3QRUjZ8vwEtvI5Gw7/XYIpGwrYHIsfYe6BbYk6cxyO9fAh3rNNZzh7Np9vdY4KpVK1Umu19opgOkHUWMl646OiuhVYsNvF2pI/ZDWeTgjSS5FhBOQHygsM1WLlna+812q1w2yFpc06eVtiESyOChM8D2PdrjJuFnsQfwgl+bHlVUplwDObTi2+Xm/k8gXuCIHdPrG9DCG9MVUChEsMyfZkBtTN7LzN5pmA/0gikUCCdLl84tZZPsV2ODRDiL3xUPpjTKGPcJzlYvHGwUjOqzZCEIngoNNmmTgiGboc+y9kc7VKidsRt8DLUiyEMoqFfK1WrVf9sGSPcetstlQqFeR1YSARF+EJv7fGVqMF1L2jWm2UymUqemO/xbzLFMIEWHGgyMKlAFMqlx2MB/P5NGyXUFdLNw3hcqvNGjS99/a7bz16XG82C/mi9ccVwnaZRhiOjWbF9Wxe5GHbQAowxdcbJXur94iTLkwi4SmMFIaECsL97GFOdhsXJfmdq7KCEF5yHclVyDG54cYOwyDtMbKAXXq2TZOgC5HRFr5wBEsnEbbpM+TrfVJIFhtXS6eqxeJMpNlwrHy70Ty/uuoOhnutdghZSgamXGSbq1fq8itXWG434/msQAp5cSJ7dnomNsyWi0qhxHvYBckmyMhGlmLRqN8tV2rDFH9gXRnvCWmJ2bsVR282GhRn4zzSq9QdFkwaEtblQvrjp/wV1tvfGzggDAK23zsnd/baewyiN+i/Pn9tD97vNjZuj/QdTkl4dkqpLiW7rteyk+lURCktRcQyBUA6KyVx75kuFu5HUiG/raiWimRzCxDCh+g/Qz9LGwiISGV2PKlWKTeq/i6VirTI4VqQ2kd36exsvuz1+vIcsJ4kWKKjq6cpI/QfkbkgHLEJSmIt8vT9Tuv0sFUpZM4Oy0y0mE83qyIzMEmXK3v5YqlQbTbbze5t99mr7svXXbAp0atWa5l+L+wum2PDoeok51rJ1MhxNpWPpzar0aBHLByQRq0C0rutcBeKIeDEOXmqb2BNklsQeMicB9O0GCO1CawL2Pe3n0kOsyD3+OCoPxgMRkNv9vOI+IoRqAMHy5Uq9NytJNARYSpiQC6/XACfuISoHya/3RSLBcsBIdBT9gAOaE8pQUYu5L2+fIQ4mgc1Ijrdb5cK6UoOjqd4fZFHyya9zQrIVyQvVwv19nSVGo7nw8ns6YuL84ub2YRPz+SkERVCCawi3WpW3z972KpmS+E/w6/W90a318XCLSlK55f9JdhR0u0qxerhwen+W7nF8KC+e/cbB70P7nzv896nn720xIDPbDqiXcRDcojwyMDBCiXMZ2Pik/2JsEAiCZc7SRc7/fjTeYTEJDDYIi1AmExmMJ5FBKMa8ocfhON16BTITAFh5+H4m10GbpUK+ccPH332/NloOExwwUoYdP5grwP2IiEnF/uFyIvlvNPpZAMAI6BRuNjBJEWZQi7qFF4iVIY7UCJ38Ho+J2k5bhROWsVqIdfIbwrZbTEPRSLJzwDQzHoyWiymk7L8R3qblkMWS9UyFRyV61kxOZdj6LeD6dOX5y9fXzEVf/KZ3d3D+nGrst/IL4c3vfNnq/lsMBhfd/uT2QJGj6bL47Oj43sPX19eT2Rxk3VhsZkM+vNRd7ea87e9k7Nf/sn3z04P/spf/7tQiBoCPWEx2dsVywon802KIumGJIiSOIVbkCOYQ1jVrOK/kW1GqprJAijukSvVV+PbxPTD9OhJNcSsWWdUM/4ZbhCpGBPPlCPSVMrVe2d3Pl98uphLcPMW0qzXH91/kJt7IZIo2uR2kY8eHhwVCnleHOFusbQs/iomi3hMYTyZRaJWKkGKvWIkhvcO6weVbGk9XE166aVUUmjPTHmPAEVDSVTIl0rC1G6z2Cwrynyb3c4nKoPtbMoV+IQ1HdVLJ197tP7gLXYwGfa6z3686L5ej3svn99OJmGhV+dX24g2uXqz1BtMjs/OcmnF8Oq9t++FDW5FptJsOmYuvp0uZpuXL86K5Z/96keHx7/2Z/6b9ZeffhnS4vtRl0fqEuAW+X5YsfgNf1g6BfDunPAWOU8Ewjd5BOlwTa+RcKFY2exu2B9fpU2rT3PvbJabgaoorblY+IJ/8rZwBbcQwB4/fPz02ZebdaoR3z+EN7n5bMKK2eV8sZLnuYliOiphTgfJlCEF0ivV61Vl0Hq5Uc5Vy8WDvf1qtdIuZfOTm+L6Zns76Sn/MplSuRo+kmRWEa8jWSLe9G42iawoU1JerhbjaX89zY5r7U6kepFELXAyNJqSGm7W3nHz8sX508/6vf54vGBNnU7LpqizP5gpBaMAyRW617fgm+u+enleqxQ7e610ffv61cVqOgY0ComQdPrTfLny4dvf+C/+k3/vz/zZv/jiyy98lJFG0hVIvWOtvD1HrjIOil8tI0fi/Ss4w6JRTNLfEqETpE8RM+igR2BRQKeEgYVXqZxWs6loJF228YgaUQWrmbgd247sBpSfntxptff6/X69IjiWZfc5EdCbKtXqLg3ud37Ge+r37t05O5HWK4KBG+PdbIrT0XI0mZWKhU69etwo7pV3/Wfff/b0CxGbI0QkTKVqVf60zeTySjHrsFg/yFdL3FldXSiWV5PJ5dPbakvF3gzwHfRIE6ujirWx7QpHMh0PZ/3rK/TUy4sb8gnGLZ/D6UTtns0vaNKCZjN5SCmbGg3HUoPrmw0Et6XeaHZzO5QstmtFdmn91caX6Wzhg7e/+e/8sT/4X/9Xl8v5nHXyTGJJdrfhWypM/47QGLjJgYMrpFomRKCs08+idKIHEk++B1XqNRsslIsUtR6P0S8h6OWqUCTuiF/sV3xykUguuElCvVBhq9HgbWiJsM7QUiwnwcTNZrqOgDYcDjGjOEx6hp5UsF0vqxU5dfHJcesoN8uMBov+Znhjs6PE4qUBkU+pgC3SEmX44ZtZDOhmr1MN3kBg2qnL11PJ2GS6w25MB9s0VaErIGBqJv0ajXnuaDTv9oY9Wf1qc7Jf6k/mt5+fV8uyrPXRXqNWzl/eTFRf4pA7WiFBwjQmNpkuKsVss8Y0S+xmOF68OO/lS69tpL5/8u2Pnjz9wz/7V/+3v8loOV1ARES+QAiBdZeJ4p/VeyVPdZGRy+g3kiomnNjTRjJhUwJ1UBrpdCnPOyqVen2xmDFiSMQ7mZGfohlcyzv9iKqUeHQQkBQZDUNldUl4AGISlHqtKk9mNRJbhX1xG3nOze31cDig8bj0bleqlO/cOX18UKtKHV9dT0ejyEAU26iY9fzyumvdjUa9mS2ncUELmWgShISyVGZ5u92vF9bb1GyqeFjkS9XlbDJDD2/WhUo1AiKIWojtdJZaTEei8e0oGGcJ5mi+OujU54LFfJnKZ19eD+DkTNY2G7UblXatctkdy+vuHHc+f3HTrHGy4G1G0ynlHR+0ynkUXO7V68vm4dM7H5z9iV/9hV//h//48vyCrQOUUIEYkBR4iinrkWICbMpDEwBSFl2tVqNkyWQ5ubDAsCPnLhTKlZIIKfvO8pX5LF8oyhg3LrpZZOB0Jk/uPl4qlgOKFTdZdBzVh1sFsAethQvZ5SJZTbhJyghKOL3DZoh0grO0JypkK8rm3npw9v5pa9e/HN1ezoTIXlcipiKB0HM0xXIDmhAyi+V0uQiDDuzf7SbzZb5U5vHLbXY7W6S2qPllZjwlo0XwIqlWpigzA8KtdpUXDAfDBAGyp6fNq1uZ07w/xlCtOu2666hVssXiZDpjNQfN1nA0e3nZg1C1Uv66O6rWK616eTpjSxvIcAAn9xQFtVqjUajWIxouJqedwz/6Sz/zZ//b/9m+QIm0A6yHSRJEYvJWEnGUBnguWUOTTBo8KjDYPSMjChA4n82j3EEUFvI+K/nZlVJvqmIWCQbYMbOSRrqQUpr5U2eoWxmx0e0oZ7L5ULBoP58tisWFxfALVlerl5uNztXF1WwxJX4qspn3Hpx+cNzc9s5H/cFQ0j5bdAeTi9tB1IZZFOuqqm2RR1tmcJi9IcVs2KKF2pW/Qe14IpQCnRVt+T+BwWYqjTrvni53c0R/KGd51Qsf8Za7pVKrXtIN6Y2E2ahceByN12uV0Wx5fNjpNOt3O+XPXt7wAHwPg2q2VfU7yCTlqFeKzXa9c9BmqmGkUdntJv2rar78h372J/+pNs0/+4Q15jO5hHQJwpJwsEBJuUV/wQAyI7QFQ6IOPwcbriNcwSCrtSroUETvJrVFChLSlXKHkwSxtonUPZt1ZXQTNgJaRTniMrmMhtJmEp7k7d4UjlUp5Eep7XQ2poBBrzcc9rC+zWZzv918597B3WZhPbweSP2mi/lqNxhOxnjk1Wai9t8FrTZbYDdTs8J2VsiOJBDY+OwaCuTlE1nYMoscfKs4yE5Xm7wbbnZLwlrvere9TpjtSnLfH0zSuaJomCmkXt0MI36WCuzw1Wguq7gdziS/so7hYtdY7V68unig7iiXDjqZ3mTRqFf6o3nloM6im816o16u16MIl8UjMMDxepOaSvZnw1Z970/+yi++fnXZv+2LBFmRnVEn6CzaASXiFVmJm2igPAAhPLkIafleSCRDsOyz2GKJ6WA8YuZURJ7wJWIv/14Goa0GEHrdQdLAs6mhgkwMrjtQCAUmH82NRyN5mTWucaw7Og+nw50KpQ9ODx/ta1hMJ9e37oD6x3tlUsVbAgwmZDtcKMoBSboHibKrCgvchlY1VKJe22wHcw63bOru5IPElbQwCnSMTTRrlUIufX41/vxVt1qQQaeQRAelzHC26Y5mlVJQ3powd45bn5/3nnentUoewT1epx7ePawUsj/89FKp/PBs796R1umq2QjSfzQas/flfNGDAtGRUEWmm03uni8phWpVctYN+9pXn/zan/ilP/fn/vJ4MiZ6lkpqkIdMuDQLFjxBDXuv12qES3pqAIADW4EEmc5nYVWddlvnT1o1GY19iuxVv4JwBEbi5fqR3AAGDhVNC0IXZelPsCfNuKNQA7Mzs/Fit9bQ8LNKsULJNPHgzulJebfqXQ7FJuKfywJdcgv+b7gCCLdcuBkrTsm5LWC23mm8lEhzk+outvJEP5XHw6CjdpVTDwNfli0Joiild7jbaDGtUziozfPu6OzkIEfm21S9WuGWM5ZoO4XS4zuH9t+97t7Mtl9/58F5d/LWnc7DeyfnF5dnx+2b65sfv+y+dUdeNhJ73bpaKd47O8iVSu2jo1anxWlQ4LliaT7u2lexssuV0r/8c9/s9vp/4S//TSGw1ah5c384UHUKm77UWjTFUSEMcyQ4khUqfJwioJn1sDuvTIbjaHIlORXMIAtlREIzZBVQC6nFdiPahjcoceDtZBTAVRRZqXyJqcnJeyWdUhtuhbh1N3o86DTfPWpIM0nMLbmPTA0mEPrVTRfqTuer8TwyrWo+aSRs1hMaiVSLkjfWIO8czDeNUqZSLPQmq6v+TKhMAGTzuju9c+Bu+R8/u2Y142XQL6KC4LHDuOZzwL5QqfzBn/7g9bPnr2+H7z06buQzIOxOra7wvntcPDg85Li53VwKCwpt+6I7yhbKjz/6oNbq7Lfr2eUwv1u09/Zlz9PJcDXNN1otPFM2exNVbL1dbu7/2h/68KCeuXn9+t7JAWnejNfznRp7L1es6MEORtPv/9Z34bsEPoQtpfjt3DEjj/A9VyZWyyD9aKhGMybPV6JqSqWmGwBVj57SMjVbzqGNqJ/wRdHBZcmKTkGEveYm82nU3+AnvVv2FkeHx7VC4bRSnXcvpVkuF7m8Km80QrT3BoOL6+5ikxossAoAZzdX2WpkrpSUyFGxV/aWmjB7y5UGLDDj6bJuQi7LP8rZ9FG7xirk7+Px9HoYPJdKZbpa16plplesNbbjobLXkp6/vmnWq5NN6tXF7bBSaiHajvevbwb3H94D1Ox3v1p4/rJ7M5jxhv37b//kH/oVaXAJdhVLvevL3/o7f2329EKDOZdaQF4FHlOOmn63m6X7kl3I8v5Btp8qDQav8rXWN99778F735ATiZrWV+0cv/y3vv1X/8pf713eYnEJmG/YkVQGQsv0bcmCqQYuAZykZkCAR6cPKycGrLor7/BT7ADRExYeSbzMlKJRT2g0F5EmerqaoFGVaQSWg/jcTHFjqrMgN9brUSh5JfD2h6rOyWC6XBmpWAq0IXSIIU5SnxRayJU5YCuIG8QFYOWio+td6AOe1ChkJEvFWlk1IMx26pXI9dLpalU/quj76xuQN/7G+0/evXd48fr1+c3k4VHj8qo7XxX2WtXu7e33P/niB58/e3jnsFHYXl5OOc02W/yJX/iltz/66f7t1W/83e/cXp0/euvJnbv37rz91d/6B3+vnNsWM5tqvZHK69hsxoNZ/4sXePbO/r6EnyUM+qOXz18+fFJvtDqff/xbNzc3l5eXnODw6Pj9b/7ML//KL/3F/+F/lbuDHUVUtBMCwgOMA+uD7MilhBdSiHpet2umQIjBlgiymckccbJGm4SCRIQgj3LgxMcAV1SsrlPmcUFbKIK2zZYqMltYa+p7Z1q+iaufzRfwUdav32qkZL7R8hZlRSQJkEEacra8nW6ylG3NQhL1CkrSPyuV7YoFYgRQ7U2WLT+Ve2RS8lQrw8/ttWqTBZ3C+xw/8Kd72/tkOc9t5y9eX8+nE2mST7949nwwnF5cD4bz9WmruGuUmMW9s6NtubF/ePjy6dPnn3/yW//knygev//dj08O97/63lfs4fnzZ6d3DrLVZrneRuLmq6lstTW6uR6qFbcYiNRgMGsd7M1mk+/9g//7+etr5tAghEb1+vWXn+bSJ+/+RK1enY4nVGC6QhrC/q1TMMYekDv52DDUR66hMj/79PNgTLVsWHAw2Ck1RCY7joRTv2QjM5xFLA6GLYoDaSuUQnwXjg4P6xI3BjsblnIGCnZDrqEXzGrGOp+QJKtmprHLxXoSOZYgSWgbXjZbb4LDC89MLWTIUdmHdhQCAWxRv4jtYQXeLHktpbeqgr1OQ+fj0cO9yWR+M5pzPpkP5akmr66uL66uT/cb793tvLqd8DNlDSf+wdPzZ93ZT71zR4XLV5AShyeHb7377vX5+XiVe31x8fTVBe7hqFX57qcvv3z6Em9x/8HJ+9/4qFLvoC6Gr17PRwPMeaHaKEb7aLeYDlB1Dx6ejIaTv/N3vvPp86t6rf6VhyfX5xfjyaRUqrTvDXQzRwqeyHHkjtEvY3KMneSS0AqchIMIAlJOf43GY96czqeTd+7UpxIPhqwzOkdDTmYkCakqxsKSxjjI3hjYoNVWs1nazrPjQa4Y7V+lPxeDG8oQVAg9S/4Bt3sXclnVE2C0LNInWaIHapJnyiVuGOpVSwYvWmZKYl/STgSZfDnawAVlGyq1UGs2Fa5PHh2oYNGrM2Nbs0mtXOwuZhc3AwQP/mc8mZ+eHFQrpcyPXn7jyfEH91rd/kgWUBbmWs3L88uucF9o4Lq0fcj3cjgfzdbPbwbvvvPgnXffltRNRy+SDGRyfnFR0jF/+y2CaFUrdx88qDSaMrJq//bdaebZ4O8Z6fmnP36u4nv/4UmhVJn2e8gFqWdeCSN5DDcO0ikm6KIZHi3GwCLDSIuFliybVTS4l3ihWSg4F0FfTJgFByS9aTUbfiQrhVARPBgudZDbaDy6t+tkxr1CgiWkRj94aSm2DHSzMmJnwsCooirvDQbKioRtuK89uRNXqSqZscCwhx6KOo6rdaOYqUc2n5tt0m91Gg3OtSxiL8l9OF0edeq+P713ly1RbbMu+9y2Oo0vPn/aTWbubLI3nUKS5WwxGEw+eHxWLmReXI2QlqlC+ejsQW+wWExGz1/dFhttE4+Kj045n2mUjvfrbz86Oznah+9cJ1+s7WnPnh2jHW4vLnr97v2vfJArViNty5W468Gdzh99+M63f/7nv/Pr//A3f/O7z794Bgll+jfnrzBkMgWWxDutpF4oMS+JP9Nm9VJPEo9Wag55E/QK1l6jUNokMAp/GiDiYoxNBtuqUFcQyXK1OEkyGjBMH5u2jp6hZGbUR43PlTDR+UwqBzIWQhcriYpFeNGMizhMyFxBTiyii+V0wi1g/WyOPshh9gSnmoogtRnN11yq2ah2JyvEMuzVC9MxODw66LRa6nOXHMaATczNaA6/uO1Jjt9+dKd7c/P6Zsi9Zb0vLrqPH569uuwphHBBp0d7X/+pnxZjFrNx93L0xbNXqexVsVw87DR02B/c6dy/d5LKFD//8hUm6b33P7p3/yH2OzoxuOXczmBMpVbrdfsZhp2PcTGjowhu8fOP/PE/8bVvfP0f//rf779+fv369Sp1vdo27DpLehpexeASYvhDSr5cyecbtRqYAE1ICaWzzjdxoXDMxgQukTFjjD5NTLsWYqIq9+ZHPCgpOaSYRl9yWVRE7+LVboFV0UDYjqdCr5a/IEqByWhkBFujADuFh9kg8AJ8EB+zqOQzFaLVjRF1Q89pjqdVzt6FID3jUqW6Vy8/uH90tt++OL/hOlLmvf0DOTwUuxmMeBlyZziaaFwLPPhOwfb55UAk0b/n83piF8MvxCI5wkGj+OG3flKMWerrptKfPT3HC7IyxeuD0/ajh3fg5uvr8Wo9kiA9evf9h0/eqVWr49FkvRnJpgnDn97t1c3lVa5YlyPWmm1LBuFSVZWH1sjXv/nNT0v57/3m9+48eII/SM9ngasSRDEtWm+SHmYTDR3yJWUxT9+/3+sCW6mSDs6WqCvoiiT1ZMyUF7Rd0NHEG8mijwoqWicGmRBWmzlQneLomPCbjEqKVSlp+WVveotxMo7MY8azGEAzujWS4BM5OMymKnltuVSFCriIrDRZGvyxmGqkoFuecPfO8XvvPNkslp0l5VlWrIPVDCZqusX+XicYEdVQb9Lc7xjR+vTlBTPv9saqyk6l8OVlr5TflVAr2TSkmm90/wvzxfT6umunH3zlvv6MMvvJg9ODveanX756/rpbbra//e2v3z07NTKI9GFGs3Evl9m0D++A4GZ7Tyrcux3xXmmJFMX/j3q9Sq1snLfRrN9/+50wBRa7KWg+WzRAiBrLKg3uRaGp8iqIC0TJ0LnBbDp7E429gyg0+pIyFjabW9ldXV95V+iG8iSlQcpJSRfRkKlrdrB1vpHnRBpJMb0kp5X48wPIQ6QvBkbMJPK5Rjmkj9q0kjCAgJ8U4MUvQH9UWgTfXNqgRKNaqOYQ4vkHD+/fOTudjc3mLJp7e9PpeNrrrycTH0XqdVq1y6tro4xMki0PJ9PRdNZpVPvDaatelVG0GtVmo3yy38JefPHFl6DrzsmhcDce9hjSXrOmJteWenDQZhEvz68n8zUQ++D9948O9llusKtrfSaz1dNms3H21ldNui1n43Kpuq5DkqBZOEWuWMwUSsPBKHK75XRvr/W1n/yp4c3V+nJSyqVmq6i0xD8oJmd39+hvBeOeEo/VTAPdn/kiTJCjrLaGCOmcEUMXEqbkYqaYFMzmEqUPlelkxqd0C3Jmx/Y6e/PLlwpk/44uvCmz+ZwwOIcwzYRvxgtQUBcnshlF7uV0UZLC8lqRYLcbrTaVYr5ZrU7mWgFMZX283+Km9WJ4xunpAWSc6nZtVs1OW1lhugAmwCpdE2YkVuH1aAU/iiTB0DUrYWDpcvbwaH+L5NvsDhsxTvH06Yv+ZHn28C134XqT2Sp0X6lmK/rYXd79+mJw1Yvm1MnpMUaQvNQhIFEeYhfyLoFXQJM7Q475ZBrJeJayigk5mWLSZMLyhv0Bcty01sHpve3mBVr/y5sZbgraGOfnvwHBEQXDlNmh5sDyQtcVxxjtFfZv4kMklSPFXKb0FCkAx2BvJt9s1QwMSFJpELLk9vf2jOK9mk4Lpfx4ar5uU8tkLvsj4MDjyLw/NZWfapQKDSntemvuTKA3xar5m8QCkTwt/eeI0QgyBSRnEGIMc5eK9Xrt5Ows1o1izJUUMVe9G4wOvb286llirV7n2qnV/PamDyqhga77XjUcUg9Z+gFtLrq3rfrpd3/0rJzeNA0QZovoaw2F4XC6t985PGh/+umXN9v158+7cdds8e6Dh2+/9UhdkaSIpsDdpSINdJ/JePjs8wmnFD9vr29ES/GpXGvL7EnHHZEzGs6EqCM97N8iyjpHZ6+v+4YOeQn5BifsPWKhYyaCVdLwYuJEAV5QgXJ+Py5kk3b8Ct1thgLWFhQBSB0RQ6YbIGasBHKZcDTuup2NOQrKsN8fSA21XCKRD/2meqOx3Ab5RAFyo+BoTBHLc1Mb4UD2xeZDbJmMXEWgacqCmaJsrFY5O9rPlGvzxbZcYVmK5qXZKyXvSbvz7Mc/NgmBeBloKSymnz57dTNZHtRLnLtcIRLtvcVkuT4uFa9fXX7w5K7C0i3UbhpzyhGoV2wi6IyLFbvdodkI0fvZ1QD4fuXhnXarabzeoFG50V5MxybHS9VqqVp7+fzF7e2NREHrlPtOhgM7bO0fzVJlriJhC2TOaFQFozkcTXvX59fnl1/7ZvGtJ4+eXjqcM8w6D2JWTY6nBjJmt8maveFhCGp/R2KpK74lliA+FbkxzbBaluFGzNbLUTQPhlFKx6Qde4gAHiMy9K+aeH11y/1H04Xek06B3HQ4C07Nl1SVoFSzMrD5bluRca63QiLdsDm3NshB7nsINaG1pGe7OWw3t5lC93YAu5eztDRFf7O5V4/pVa0JyUcq07u4aoPjxVwDZbEZaDEfNCt5pfl2MxpPB7vcyXIloTw5PLi4uJY4PXnyqFnI3oxXdx7sLadDLHf3RpyeTRROq81Bq35921cgsksyqrWKOJmR1mlv0DnYW20uLy5M8pj9VE8OVbx2vVhuL7940erMsbfVUmbRv9k7OsyV61dXOlLdi4tb7tP49Eff+vlfePftu93p5+gL0B4ukJJzQc5lSlYLTEPiKWCPiOM+yjAB1uvQgoDyzsNo42y2i+2G64EktW3CsGo/IGArlfGgp95SS6CCX90MjB240wy5ViwgbqSeMhYwRmlxTATlnYtqi9Inbka3/rnW7nDpdLNUMYjRqJR55U1/bLif1szX0W6jURMAWnv7Q1XfZPrs8lY2ZYBjtNmdamshVjeSt9x+veiQz7Pe9Oe+9cHJXkuO9PL1Jb/HsQhBIlO90cRNKYDl9by+mcldXV0x26CdJOyZ9LX8slRZXVySx22fv/sUYiXmBOJk0nq+1ywTh2b6F09fo3HxBMVCOZqXEGZ3vcsNnj993qkXqrX67fX1bbc7T4a9CtFK5IisEe6ngZjUF8XNXUQka+O5TkQFg52slejDOZIiTntIMAi+Orhq4xSmjQr8JcZSUzEzOMYlYCfwBO1GVfF9SULmW6IJh1MQ5JwnSSl3oXZdBSgvMisXdVwkQpVYO+Z51RKXkCHL9Z2mAqX28qr7/sM7OsCuw7SPjg6E0/Vi2r3p3w4dPkjhjfWYpyZ+ZjOtrmDIMyU02Yvu2NpZ8fOrgTyqVi2OxpPDdoOkzNm22/WXF7dnp0fDq3NtHaTh2MBENj/T6ktl3350D5AMZ9Nu17XHlrHYaTy80HB658GpKelqudTeO94/2I/5u/mX3eHkdjgejBf89Z1Hd4sXi/5o5Mweo0RMEubaaR8V9nRUNIMUw/7h9hEzVkC7DG3kclgjVMVeu5Uc8IvxOmaKfmvUG97pi9LoDCKxacSGWEIx2sUaxZGKivIymkAxWKW/OMROrikcwq713PF5MbvJ++T+Md6VyxfLkqxtdpo2t4RlQ+0U2O8uCfkqYYbMPLmLMNUdT5El1Xo9DHAyUW3daDmPJwxQfXB+3X191Zc3FiplFBBCIkyPOeY3V7eDXb7w7a8++sFnz5xAzCoMs2bNj2aaUEv01KIvZSyljHjZo3kseuq0m8racRyqtE51jiQwh8edbtWfu/Pb4d1O9cmjB0+UZhLB2eKrk4WTjs+vh9fTiYKWPa538D2KJrPd5vmi6mSV8zniT7J+gQ3G/0Bx6B3ZeYwpRvMpDpEte/2B1wvm6Mgtjg4GT2MdSqFaqWxiPj4oieIBAkKxCDwE+dx8MjFDC78ww9oM8sX+ZIogMpF4//79Pn78+kZuZdaVUEU5SZXLoh+Akh6XIzZxG2YA2pL5Usm7Wumq209qk7nBtb1mVQ4oWmBPFI2CwclRCYF6dXmhgy8kVtbri95QYfz2vWMjhbbfHc+3w9E3v/p2fzz9jU+eNer1j75y1xudpHn56uqybwxt2u9PitVMq9M+PNhnloPRZP+gHu2+9e71YHTbHTh62c51OtXd20e10TT/8PTg4dnBRx++394/nA76lU7r61//6M6dO5UffzlZ/LBayJt7ue1N8eTUZq4MCytRSRLrTa1Wwv4Cfa9EOiTHyyXHLoIijaE5ABhDKEHPRABlyGQIKGK2PZ0pqGoroTRCZ+t0Fn1KCTtESxjPdMxMRC2OR5zKTykWqM0mE033Ozp2wTmn9TroEOlvVARkgfxOPj9bb3OFmO6ykihvMYIS/NXu+eXth195oJgyA4MOyqfVTRP1am88L9ewQcWbbl8+ZYbsejB296Btt+mL/lgHH+MIrORWEonf+MEXqsGvv/u4lsv2rm5uNpvrwdRQ3MFe+/r8qlTdoXSkFe1m7dVN76o/PgLZMYxjFcFd8vdqMXvcLKkt7p9pE7RqjWalXvMzW3fiSVDda90cNYUwo2MBGOK5rqqCErWGOzOzev785d6JhCAoUPZBiGYgzSUqOLwi55aWy9kFGAgCtnRt/FctlYM98w7CxP6iVMiVJE2MJy1lDs2yczJhV2PCIEmpmugwZoZJWNsPlrQ6e0Ye+ldXahnj/DEIuJFjGf/aUS8Y4Q1y2enAiHi0AVDFvEGE4UXdXo+sX13dPrxz5iOi8Z2zI5VMd+ogQkUXDdPkxN5kaRqjjBSUWQmP1L/fqDVr1Y+/eCW0fPjw9M7RXjkb5yZv+iOvp/JlAYkv+6NY/s0ffC4AH3Va0NaJjO5wah3YBflUkn847rCIKTW0c60KoMnESDb2YDHsKZKciGjIxXfpfm+ITHf9RrMx6HeXasfUYldOX11eVWLCq5rLD4Ej4I4gDG6Cq9+KcEF90ltyGhKTY7KQjUdlQWQbY5M5ruPoFM9WdkQRmmSspif8PIeMCjBK0n5xz5suu8NsIVvUzudvqdSg1x2tdrfdW+wm71L3Y32sw2EFS+BW9RJnNG+8KWMjFAsxDJzWNRNcqQp3365WHVyN6NdqGIDkoavZfOgU4MwkZCHyLISAYKb5M12Yc8MuyJ0Eoclo2qTACvLH0Nxgr9Xwp6eSWVNl5c7poQxBH9QcioXCRofaXl5cK8HicE85jfIweDKdmsJb77fblMtu7RQtkSTPxOhEdKXVqKsZzy9ul7PpXqulHBOiHGFIZdfK0fuHnYPT09t5esB3YxRU48ix6rXTBMHnCBZi26Av0ZRTEJd0DJ0nABCR6ULhkMK0FLAhaiGkn6yJ24neoR8UiKkBfqpikDwE57ZSYa0UunxHBKZmIPfy8jVoSysTI7XiOoGMLLClV0gZjlQu1+o4Y2veEhWJIoXF5XLm3NBE4hV0QpZFTVTIm05npJ02ZjN7ceOYALzYDcB6OtWslHbj9OP7xl0XUS45BzOcSVjx3mS559T1dKpEMkFkarH18Oj4YO/F68sXVz0tTyZU1y5IKfq5x8pIM2wMakrJN14MMsPE73fma5irQ8kK93QMYAmw1Wq5spi+EEwpEjYKc5hIdJbtQOnO4eHH56ZZV3fPTsAzs8UyBBGk+F9glebkG/sVGnFEcs3FkjTihcjV9ZSCyxOa2WuAo/cFzRxpjAN9sgZTxtEjluSOTFwsV+pmIuQlST8z4+Q94dO2DIBT6y3KiCjA2FoUgBmjcIiiVBTc+tETvQAmtmpFmjEDgZSoNgfHjWzWxKDDLaKW0R0RW5l9q9nPIVQh2w026e5eW03FycwfbvNRc0aPw8wEUrJY1BG6u9d0gO3i1S0IQJzMXl7ws3Ix/9nF7WHV0RySE/uzm3lIKE6oGe8dDBG2jUY1BfBWktXiytjrLl2qN0r50qR/a+t7nVa7LhBVUNyk6rMYtflmhmSuG0JdGV7aIlaBNdtnthqSJOlkth4j1+dwbxBR2BZUowRzriYI7LSpGW7BDwwPyXOcufRBZs2AoiZARfgxu8fajWJu00ewmPjFKQVbcE+GjAACD7tdxdYi6Atg+l9x8KU71V00n7KT9kyNO2Ilc7nhZNBpOEDiLrSbm8tGQ+f6LbtWu63RNDR+vhheXN7Qk0yA97VihnAFK4mP8gfj6eHB3pcvrw467U1+54wf91fxps6vnVuCt/6gGg2GttvNb3z1SW8wsiYNa8CkGI4RzlxhNRi02/ekjyym8eC0WlMoslznE7TYssVG7tV5V54K4NLFsgMge/ttxn5r4kzKUNS5mzUqxePDo6O794ZOvzC0DPZwGv4dBHuRlNk4UUgXPerE/EKY2kKXxLtDqsIAU0OBuR2xmA4Cz1SlQIPcgFea429LjYdD+Fix6IQ4XBM/0yoRDjJZriAGew8x6Zo5X6AZkJwcJwC2frtet4WmbA6K8BgBs8TqdKryxtD0eiPGSmbKtDufH9eq69n0WsauSjL3pIGnuW8wLQ7m5vsah+HyW0nOCYPJZR2stJHMKp4HYXmUip/44qL7tQdHrf7k2e3kejBpDcb6pqI6NF1oUyXPOrkdr/CvploH3W6nenp69yzSuq1BVX2tFL80aPj9y+eXQ34eTHs+Nf/wtHJ4fDpAv98ipKfGPQu7xeM7bz946xGO+uZSEh/El0CaJN4BqiAEwRmIktOYmyJQQ+9KVy9tFtlSJVIAj2IRqInZbdRNMTABrOJRLEY0MA/hS829fVnSYNIHTBIDDKQLgHlHnvUmQxIuAS232eC3IvuU8sfTUlRrNsZreAZrEBNsU/Ir2LJB6oRFghZHk6vQ/GG7Pr69oUv5QsxZoJNS6aO9JkOAosIAYrnbGyjShW7adRH4VJOfJlPz4o/JsC+fDo47DYN7FHhtQZIQsk1naEsdYHJmspqIdOP5wpGrNGoIui0OtQGEdROKinfQ9/3X41e3M91JU0B+zCSb+YcHrc4nX7w6vxled3u13Oajt04ePn6r1Ni7Gm+jR5UceCeWSCuNqHgyhWb0sG8sEa5xXx7A8HaYbjgRNHQQ0/yAx8akqV6MaJrSsp0rXDFGqDgv+ZMb9W6DCIykzvlYOXgcO1avenhCRFezES4Gq/B8vAb++BSGXa3hZToTX+LQt+gccYM+mvWakoQ591VGjapk2duUxwoOgSg7Qa0KDYpc3IssbXs5nPLbCG5QLZ89atXD5+JP6NvfqKakvbbVLMJafPby6uc+evKE3X15bTSsGM8zMmwamfH2dmg23riFNFpvJ9esZiZC1+rt433JpR2Wa01PsHn26hlHvHj5ZaOzj/S/vbm6fnD3wUl7tpicX19JLI7btUcP71VarZXhAqZz1LKaoPuJCE+cHGNKOi2Zm6sre7EvmT66gUhBikMM0In0WGRYtdqw6OQFjQSDJk8qpJ1t4pBK121uNBpwHDMj3J/8iNeug2xNBJ8ctti4NsMhR9ggldKgpz/R0edFcOkTmTp1Cu6jonDd5VImOJgMd41gIGjI/jdOWwwMAS0Y+9F+C4fZHS6HcYZqJ8EFsRJW3qDEk8DxX/4nSQ9PWce51yjLCnEm6/Nnr+3zm0/uMTUi8eiPqmAq4YkZkOyPnl9Tv/mpqkOcbaN40rRsTfA5vUvt6M/SWpxMv3717OWLp+82O3iwm6vXlKdWUFLUK4V6ZvvhV5/ce+vxbJOfbHKxVV/W535qV3btRsRcKjX1Vuo1T68BPVyftDVsKQYO+MSbCpcO4DDtqKyEb28LPHS1MLgQTe7g9H6GE80/A9qsWLgEvDoWw9nsjbtRprCQK+Ymi52CS6bWG+kmRqrA1dwOwSBsECth0SJDpL3EguEhDlKnIk6zSpDghr4RqMBx4uWJtJNMkwOj6BtG/z3qTDPcCYOyxhrCH2mYLr7UBSsYp4xHs0+eXnjWlqpWsoSWeHJnH79dN3c2nXZqJUodLoKkcnpAeTIbT7740admQQ7v3l9u0Prjtqca1Jvvvv8RtySor7z7gTH3q4svSOXJ2d7jO0eP3/lKvn443FRM3Uti2Rc1+jtExwuQKvZrTMTcZ7FC+vgbLsIMHNaM6jfCLFuKvFe4AEx0Eme8aSiyT61KIgvFRuGKTOIO4J2hof+YCXOgCZ9BpdUcZDXIG3RbDkVWNvvBC8xL02Yw3yhv3FycA+EiFCaLtRQ3iVx0ve6hnpO5Po8keHF5I1Ya3lFt20V/HMPb9GS5sl8ppv5wD4wL3cgA9Xou5wRBJaY9dJGwG1QJReMEvVd+4+MvBrPZyUGzrs+RL6FLsd9KobPD9mnHIc4S6Whyqy3kZre33dV0GOeJyhWM8WzoNJnmj9K3a+Tp3kHz/nHbqJaRPf2czv7etrR3sygtNkZjw5BgvAnJyH6gIkgJajOUQS9ha6QTCZ/ZoRC4LyDhnXZGSAEkib1TBZNNCAw0GBVQtwRIfpTlTTEY2GS2wVavje64tANvrjdO2sLCqf24AGKxrhDH4MSzjVJZapN4oPRyEAxhV2TgAA2Iqyos3jfq5avu7dl+S3vSAL/7tcv1WiFtzllz3yEy8fiWKgLNYvQRiwf/6BvcmIbjK7hDhkfdpsT0SsPxIvRsv/vZy2cX3Z/+4InxabJOsA25boqteGoOxTyS05iGyfL55joF3xrXV43j++X9O6nylQEPnFtFS7PTefj4cWXvSE+weXxYqzfKe6eDVdGp/FwB/CQAGrOzQSuxFaELhebVSK3NUuG+POEt0iISCgPhssHXRakWIZIO/IwylGCMOpzJW2NA1jUVSTQHssP9WXBkZcECORQfwSRrV/4JfQ2yBMYJA+g9MTFxRm9wPXDGhvUl2i2jgtXL21v69nFsmiv7hAALh/X65MxWqIcimhkmZP1ylfDpeNgMjst0nwvv5JruqgSvVda3nq/FQYOEddBjPYqp46xqN7w4bZpP827+N2cf/8R7j47aDSmTGQf2ZidSzbODNp2NZEGo1jjhs56M5/eeTI5Pzr7xjW9psnWvrjw/5b0P3ttuBv/o//o/PTWiXK63ju72tx5RQpLwOcwX7oftSsFjEiLGqMAvGJLdEV6YefKQJf6q+yIRkREJXTYSzbGgDnbMm7hFaI7PI+lFnqbwIsyonL1VZymTL0uRvMOd1ENcRBuiP3NmJp5ZoVYlA+ADOmgb3FOdV7xPBAZHbgN1bFgWFu2LN8MAeUNHi3BYLN5i2UZdRjZsDSkVw2A6FxJAIGmqEhmMrdhPIGc8kWLjKNDz86tHZ4dWjzGHS7oUDYdD1ypGAoqVuKDu+cdPXxUKD08O9277gxt1hswtJhWcDfO8sLmHMDE/xNOPfvwZmuHB48ftw6P3npxctBwHLS5mly9/9H2HemS7jiBWzC0VqkwOriVph3KWXYYti49vvvMtTLJsd6fv6QxkrEzehUgoP45RGptbGvdjO+oGEkZSGRKt1OocgIyhdaw+UbKjO8XW4VHv9qbXvYneS0RtJ+gkMgmKxeFMoX8HlA0tIZR610hXNhhD7iQu87IQKZVhOmQE5fMGdxXsaZj5BShC/MGoLlelzmJuvdw2q/GISeWSN+CCluusiOFEsyVxHZeVS+jXD3fbTmvK7kDUXqPqQp7TUVcuZndT5GIhORidz/Vu+9/94edHh3uS1PtHewPzTJOph34c7rU1AHwW9odnU+Rw8I9+/dcFSFSy8BbPfDFp7zitEJreRh9bn3U6sbbuXJ8yvhy1kFAyOJErztGRe6BO0JvSS+98+eqVh8TFafqsQxU4RbsgFSlTNAbCvAxc4v/mC+ECSYg+xDf4CdVGHCBfVwdt0dvUVZgvHQugaqVvMEkOOWLE4+j3+rw3ku3FE3g8/5IfRtRVgUZKwG+YJy5P1s/pFVPKA+ka15XCel+gTb7TNiAUI3gr5B1s4Sp55KCx1pWW/DS1cuSYwt1wy/yImQm8uB7cP2ipouQNZweIoLWRGicGeIn4oRMo0sg+6fAHnz03SKE/f+9k71T6u4vaFSy2nLfJ5ZR448364uqSm4lSHnu1Kxc6nbZHKdwMJlevL957dNbsdGabjGACAIynsxfYI5J6hiMEt1H2TkTgw8I8m5KGbOf65sak12w89m4jp8WsPSpi50wwqH/Vb0w3R9MaWDkYkjVFnjyggDlCuIgBntIVp5lz2SHyKymbSV8WJeswEBaMcwQ9mueNSKGtkRje75KAmJ8SgWPIoM3wVavZslvMxBvSw6eSj3kSBvONs75Qxg0V9QpXsJ5oLzw8OI8YnzIGy9PDvWnXnW9HrHNL4gNQu8y3KpplS5+NSCa4IYS5Wjxha4fCE8meX1zf9IcH7fpb906wIk5GtjudUh7pX7y+usnQStB1Wccf656X0W49c161P+a44NfsLdkrccGgBJWA5DYxuRBPaApNREgIY8uNx7fnF+cYPGZrO54we31zVas1TY+BCs/bMGmZQHc8DA2nKYHEU9i7c5yyKIWOti5hkl5MsFC4/Eeg9m7CAXGqag8K60VjkxZUxyJqfrlbKaMsi7wAhSjjOtDAxkO+cQZzyXC4Iej35BWpr08Z8wWv3iAyG40xWS0d8HMUKh8SRGyJKaHtmYxyNoK2mdXIpg2BmQfNmkz1eegElLzH+hwO0hem8giPsRi0VUQgWqEDB7f9jfFWWD2ZrY9m28ePHjROGvsnp9NBl81RHaqkN138+NXNx9//1DlDU082ip/JlDNRrkuSJmOZIZuAIcAU5WDAgfhhDqMaefaVuOpIT90RhVacPHMItxxPJSAuWmFJcVQ4gQcYAx6ALaWLZwKDvQgT3AiTEmfEYJK5pXpLEDOo/Ca+ZYlV8IlQm0qbkEiaP5G/g3mXozMmCsgkjGycOjytgG7wnO0ajmmj2QJkeS0Fu6JiHHBNxx7MEX031UP0c/AkYfYOh+5a5VLX1RLcU1PqsbII8tVgx4D2xoJYFCKKRJlujBvC0TjqHgGNAkR1N6U2f5ClGBS9HT0fQw/N5vn3Pnux3249fnT/QGPLs7XS2U+ePv/BDz9//vy5Z4VUDmMGdTLFH84L7TTL1Y1hHKoKthYFjdH16ZxPR+IXBpqWrdqRGpwFGrzQuoCBEaeVXUxRsRxhkE8j7IRrT46xskyzFS17kmDlFGUfpBjjEti1zvGJqKLrtL29kftzN+UWWKB/IuIqHhITQBR+T3PiGfQQVMKJrGhidhQicYI1D4gvHwRYhB8W6gEw+n+rdRfRqA0fPpVWZAUEbdIsYq9Rv+qNXFeX3yWpB0zyXoYsw2LkwdAm2ys4WLwNvtoLibO6RTAiYf6JskMFEZ9oIWgqGYGQ5sATSf2T7358dnrSaTUh4Y+/+ILJyAT3nBi0PB1WhG7UpfhgOZsIrH+iAuVk6ZlOpwNifA4JYRhx/+Bg/5AExSG0PgzPF+hGeko48RVr9bTJRsNHfBCDs8TFyh7VE6t4bA+fiI9HEk8BUZKJLZ6K53xe0NwGHTTFjBS6jirJVSNZx3UmRTi3ifgdwBjxnqWraLyTJUIrqUJ/PGlquESPG2qCUSxNhFCpmTeoo5XRqrarwXS0ULV5Elz+djCyIDuxS6GIzYB1b1bxUjAVIg/Qogo3Cai6jNSFYiYCf6lQokFSb+yDO/ppIoHIIOmAPpyZC9yYGqSIh61EMe7UCq5CThYTBUW2JDhH3iZcCmlkgmiKYz8WEv/Y39vXb/KihFIsJbEojBJSEuAEI4RcUUjGRo1Qe9ZnnYyZfzz4EOiyx4AJkown9lKVtXGRmEzzt31ATxNUDK6RPNaWcUXQ1O+tVnzIu0P6iYJJJPnPy/EWy5UGAwCXj/YKqsBZTfAXz9WJYjiSh0xWsxBQSrx5uzcMpwbK8pgT5o8mQqBGByLxAO7hs65mK1yeF8afeEJaHondHU9cTQtX89JDvdzVTa3791ifVUVgYI5vXky8NgJX+GtAsypBOclveZh7kZlMOgVPdCj5QWC816MmIvuwTqUMu4/UOufxOg0fHA89KnCmqPFTpkOmUe4EuCdaJ1yTVA6VDkf2zwR9GXktJTxOZFSquUg/AlFi9k2uSTf1vc69t9599fkn+rFKutvRtN5sWKY3cUkmb1m85nc3FnuMTdlDMBOJvqJOpgQQXK2sI66F2j0OK9QQ90tIXRtCfRie6Cdxghm4EMkaj6AYDizwkih74bMSKoScPud4I3gsrUebQqeeiBR3zktFWiWZ3np4DLHHkzQtgA4i+wpT4+ahklho6CXshoQjKUge98ZIx/PcgfgRILlVRkaEIf0wVwht1bHPcCuWRNB+6E7aIQprBfdmc3l14QxIs91h7JgFJ3Ldgx95l0dcNetN9mRELooPaVmhpELmENESILrkoSqR1Ft+sVpv7afmoz5+SumATXxzJtK7lS1iHD+JqJs4uA+7QXh9LMzWYpkWa32MRl8Xh5NBTbNl50zQ5SxCLiF9dr7RQ73xCgq3TLZZLmFrMAosCCLZGGsSXiJM2AgO2pxK0sPhjtViqRGBOKoWwYH74X1JOqdASqRsJaRuCipWGTCGNYmEKnQvVoXHhiOrQkXv5LXAmelUGS666yAFibF11CppfiWCVx1FounCmBSwE+YbjYG0111K8mXBjrHsul3RVTgwBwWLeC+8AvdV6OQJSp5cKYbHFKlJ58iDXEI8tjyPIYjwhW7Op3PtQ4/nWAxur8yC+LwxTYyNU8Tx/9FMD39jy0RM3hQb7hGxLpZqNaFIV/MQ7FxBvxp+EjwL9UP7DVYG2+xRUp4wsp6To5g2mAIw5FZgZ4J7Gb/hgZhCvZJFA9hq7ahWPHOiiDSVxU8Wc0tHR0MiwZ8qM0ZCgoqJjMuxQyskLPDFNb0Uu1MoxHxxWL00L55hkkmJA/gGAZ97YVIdWtqk87fmfDOONTRkzhJ2KwcwEQiin+XBWFPiZiE2TxJB4Wjf1mqHh4fk4jVhzCuJ34ezKaFnc0N4PebSwUiTvswqdC8XJv1wVvdImlM7z2xQhsbhW0txSOfF6ysbaVbK3sct3Z4gGFby8fjG5ezNx1mWv2OjYWpJeEFdKXMRnCHKWD4qR2Mv8DebgYTrZV6/ZTiZiy3yWh5GuWCZyIAPeUl/7Sc6C0mwktVBOReCSPg4Qmm0O85bGx1TczDAuHny2IY3C2O0Ph7CI2nWos1ktYEcLhxmk1zYzSMHE4SESbiQr2rgrKpw3oOAuHKMJPuShgKIIL7ejDIIBpOxJ5sO44qZjFFtMokIwR/jLnYhvTciUvG6/7gBYHMYX97u9ERST8TRabqy34gVhGep3sGDGNze8WnvhvR3nsgGChgILyFle4i6K0rf+Kcv77E/u4lL0Kor6h+DGrUFN/NW7a1czlMW5ZdMtOp3B+zmAyenIVqMisaDvCwc3GE4pBkICZEucFYCbhg/PMF1g4dhYHzG3+ZqG616Y88zX1We1TFJjEZuJOBH6RDqDrSJMx1c0HeJmEJYriTwMn8FPBcJJYW+3Cs8PqY5C41C3f+7J59N1BcNcQMoDH48Hl3dXEEWab8mB3ckBxrqds2w38Y4eK1muAKr4E7M500eQyOgyYklYTfRpeEoz8IrewSEZIBJ5MwDLYPfVANFJQzDopPECCrOfDnWFIfc5CdcMu4nOiX7eSN9+JNsMBDStmPZyMBkbMuNfdbDiCCYOYhtuqPQT0JTaFHqptgegKkQK9BgCYbpYoJJchbeBkwCmTANcfybg4c16ROUS0dnHr3Zbu0fwy0S5DghifDAYORJ1wUTQ4zkjfo5l8k4gcHyeDMilWxNAdg+C2BXoolZEBEwmrQKoLygGAqnVLIhd21L6X88OcPj6pJxcXQW5CRZPpVkeRL4EjJBvyTooHxxOB7KwmtV34dbWA+taq1xJl2KKM2krfErZVbqDsVsHD8S29yeHOudztm9+yZz4SPoIFFXsQfWB6nDOsJ3/R81x04pIzomNuS/JBqzYljBe8UWN8fUv77u3ek02QCcs8P9Zvbi1lxm1gHjiDNR2Uml1vEIh/DIyA3BqasFUAKKhJgTCRw/2js8Pjw+0UyPQ8+zsiFbgecNHoYsrCTaIFG0Ey+7iatJBQtB5cuALVysTaSf0+1jB+gN+zFQk0NVTmNuTBoV1Wvy6OxeHyOzhjOsntmwCDoPxsMzACeTJMOUDcfs/l67zRRwGLJ5vCyknYcY2G6keSzbxhPLiCSLxWgw6TmCjcAKaxABrDgAb7d28t/MqPNd/dUQ4xiGteK/Rhoge5CufIForDtCbLQZAo0giQSGXuDNG6u0e9JxaNtIlF+GhBTyPB94cj4cW4TDkMa+yILIiUxmH04aOSI7M6rEL0LlFOQF1wURTnsRvUqfHANgOaj5osQQbIHXUYDPUSlLUPTFNWLTvw01VO4VIG2FEWYFnrhZxkRMvmwaA4FM7MpBD48z3A6fxTJ3CAiSbfgnTlMbhnHFwAuUjFun+Aa80rA2OOqznp8ANEwL2BoXIStEaLTDYwzLYwKrwrgAJVkKWsLoaBTGRihRsZ4jwWXSBYnR2cPHPqgUROVbpcDH79yNU5O9b0g/bN4KQhjsLjaczFWHcySQZTNqb7+eyHuZswxkY1zLghSx+vvoKqdrbAIJI1/S3HUYlOjZvhPSYVYuHtBDzZGRy+S4ulxQbWmq0Ucc/eUxyRIiaFtIAkJWF0AfuBqe4Ed+FuqkC0shxUiQkyTNCyzJXAHD6t9evzq/vHN2x16kV1btd2Qom9lowENMnc5gUWJt8fgYTwEkBkm2XDU8Npszlks5aouo5xKOJJr38R/uzUoDRVZa/WsHF6tW6D1Bd0ResfFSmf3ZvXV71gxQU+ZzIXBAE76YZFhmhKWQrHXYMLsIt6eJ6AXGdgnMD+nC9dmzVwQu7+8PxwznjdHZRqCtHcos5QPZbA0fkPyGGUJy8iCQLH49gOdPeCFyIbZkSf5Wo4Q1OtiO/h72GFdiCvGKLytL1hJTCYk+CCJclUl6h0job5Yv8suUIJ5mVrZsFo11Lnqj5evXL8x4uTdWGTj7KLT2ZE8XF+5YAPuz2wnSHibHOPconaqHYyW9++T3UW31/eOZC8k8lrXRjeIgdLBYqB56Xf0C495RPEOZmOGRqyVlbiLlePaGYirS0ziqk/Mgq6nCxwRuvVySEIELSEInsTqJP36VD8dJkug+ey0KwSjK6Tp+GRWtJLAQaYwri8nwQWZVK5VIMGqIKNwjoSJXmhBPaT2Ce6JXcgxsicnJIoxiZ7QbPgJ+YiAjBopIM9F9fMifsJ/wygR3EnR9E73cnp/GzmPuRiURzwmh6LrvPKJNfehx72x/btA8KIdqa//i1eeN+t677z+qt9vnr14Izt2bK2b+1rsfOmkIpVgDduj4+EQ/3MFifAYgkh/vci9H/R7siqohirWY6wpS0kPMVvHsIF/G7PlKRBFyDB0moYyEI8pad6HgWTo1N1jMNAJNVhGzNDHKm98utcPoEvkk+40ZvPidRj5sk27sOoRnYwrds/19nF0cEDMLsVzUKman5zeDobkHmP747MGXX35WiFjJbEUjE6++WWm3BlwqWvySK9xRvWYHw1Gf0gKOdEOBERNmQOExcoMALKmYNdhUvJRgTiSn9EG6kUfEF+IR+6T9lzhr9oOvf+vwwRPnxU5OLmuN+unJ6Xtf/6mD0zufffzP7j164qCsQClZAKcgHtJqgfFsDk8msWv1eprmjApE9smQVTzOCF5cXpkF9kzEi4vz58+e9btd4oqVYPhn03Rp0DRNbc30k8g9fsEEuAgrV50VzfG1nNNk4NbKyg3nsF81GYVGshihgwEnyJpsNyJxsnM7hAOYHxbJxgME9SnLteOz48PDI0ZydHRYrDZkRM+fPvv2L/7ML/2RX/7bf+Nvy0Y6QTrGb8xBYDg9qbU06HuQ+tXVxevuzYW5LXiAKZlMRpbsNBxEFPmKpakxmHBZ96MAoonk3mXCPqIis1TGHrEpNBHzL0hDl4iEIn18dv+dP/Dzb334Ex4QJI9wkhKqt1pNgjr49s8EI2JTu52HmzIEx1Fiy15xIZtz8ZBoBPaKgcTkFjzNdRq1yr2z4zeC8Te7pUIroALLEat0pRic09xOTXo9rhkYlCCGUOWgeala7+zthRNt+uoo2aoDoRZNujTl20gYOUHIWvQLe3ddOesb2LFvwnry1ld+7Y/98Z/92W8/ePRIAunUVdztX/j61V/7o//Ca7/nBSXFeOYpfk/9+oMvvvTgK79kg5cJS+zR2kPmlpG0hgKGIinwV+TLVhy8TGIoQiMQV/oSqwUrEY5Ozr71C7/64N0Pa/VSp+URGGCqboW8mDDDWCOaMq0AtBAwkcem/eiNjo0NxjrfeNzvWfE//y2hOTLyO69GUuexRf6OgwbMWUJMXnZi1XQAua3VQSptsouLSw/xkNiaPksUlBCHImES1ugjWDGLtLiEiQtVRoPMcyaK/8G//6f+yz/9p49Pjn7nxv9v/99p5Hr5ra888ieV+kXAM+yP+ceL58+/50nQH3/PpKeHgMNZQKrI9HxURDUO0JaEC0HCkiySNTueSENAMpw9XXj85N2vfvNbAB+KvLH00GQIPhHpG78JBdsgpbqMLYSdU8bvbibZevzTj33/u6//y3yT/vN//q8u4tm7I2aLBnUJmkgK1ahiPLrH6MBb73xw8er6k08+gb9Sgo9/8LFnyshQgwIxvlitUM/NbZdEnGvwi2k+/PAbf+Cb3/roGx998ye+rlz6l1nHv+J7/IrWYX8IeYHdaBhPovzOd77zG9/5B599+UMdXhRLWFUkaWmknseRJvy5I+bFP/bv/od/6j/6z5vNN79zIeTLVMNffIU0Qx3xbTgFn0pe/52/wsV+/xL/nU//9v+HZ2Ekdest3XCrlwGrVhG60Ulq3SxnSP+5z4jezr5ZkSzJYSj5CT7s6sqh/lvXOdhvv/v+O//cR/4/+efNVe+v/eW/9hf+/H//xRc/RGBiX0UyQCoFECTIda9e/bf/+J/81h/+FY+qVBQ1G82Ar6AdQ+rJH7ATvgCQ4vV/QQH/6vsKBfyrX+X/z1fwZIS/9L/8pf/pf/zvXrz4AuiQflhYTC5tTzrNJ4/v5+JXj+05C1Zptt7/1i+e3T1NkppIrN58UQFgoQCh8Y1DvKHgQ02/86bfL/L8zrWT2PK7//jX+Jvbq+7/8Tf+1t/63//655//qDvsSlFkkE/und27ey8OH5pbrtYUU3/g5371W7/4i/IdRJS4xuQ9CPiNkAHY0NDdYFhvGTUy5xeB2hskNW9gP4n8v28R/uvvAb9XJHpTn//oi7//9379h9//Z5evnt453fOUcONASiTJMeveOzr5xs//kYdfeYdK5KMxkRq/xsG47uLi5fln//Tve7LJ/t2Hpw+fNPePO/sHCn44XfQUdEfvkxDx+3WFf7MU8LvK0Pbs3XavL66fq0Q+/+zVy6dpJ/3ilwHFiILf/uCYjcfPFBI2F2TJC0G1hAo1p4l+/72vex7j3Yf3iZ7aMKSBTcnX797iX/Kbf0MV8Hulox68Or/89ONPfvTxd89fPp0sxsbWDWf5H8wPeksGlcxWYQ1K9cMPf/Jn3/naVzutcpTCIfdIkt4kqb9f8/fx/wcmI4AroHDqSQAAAABJRU5ErkJggg==","text/plain":[""]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["im = Image.open(dest)\n","im.to_thumb(128,128)"]},{"cell_type":"markdown","metadata":{"id":"mU-a-D5c1XsN"},"source":["This seems to have worked nicely, so let's use fastai's `download_images` to download all the URLs for each of our search terms. We'll put each in a separate folder:"]},{"cell_type":"code","execution_count":8,"metadata":{"id":"9PN6KaGi1XsN"},"outputs":[],"source":["bear_types = 'grizzly','black','teddy'\n","path = Path('bears')"]},{"cell_type":"code","execution_count":9,"metadata":{"id":"nCVlrTtl1XsO","outputId":"d5bd6614-04f1-4567-e204-7c18d10af8fc"},"outputs":[],"source":["if not path.exists():\n"," path.mkdir()\n"," for o in bear_types:\n"," dest = (path/o)\n"," dest.mkdir(exist_ok=True)\n"," results = search_images_bing(key, f'{o} bear')\n"," download_images(dest, urls=results.attrgot('contentUrl'))"]},{"cell_type":"markdown","metadata":{"id":"YPgYxkWT1XsP"},"source":["Our folder has image files, as we'd expect:"]},{"cell_type":"code","execution_count":11,"metadata":{"id":"0ybvBiS51XsQ","outputId":"bde10eae-f614-4ce0-c2e2-486dc014a66c"},"outputs":[{"name":"stdout","output_type":"stream","text":["bears\n"]},{"data":{"text/plain":["(#417) [Path('bears/grizzly/2b75fa33-46fc-4bee-9a7c-076c0b826f8b.jpg'),Path('bears/grizzly/547c10d2-a4a9-4917-ac77-911ddda36f52.jpg'),Path('bears/grizzly/f111ba22-e9eb-4dd3-b2f4-2d622a1562b8.jpg'),Path('bears/grizzly/f0b29cee-3b52-45ba-b809-afa08526c9a3.jpg'),Path('bears/grizzly/c831218b-d698-4f3c-b334-485599522f41.jpg'),Path('bears/grizzly/4b27242e-91b1-4d25-b5e7-7b5e9c0a7285.jpg'),Path('bears/grizzly/9a208823-91fc-4da6-b5ad-d7f7aa454248.jpg'),Path('bears/grizzly/006b2ab0-6110-40c4-9509-f6d9f0807a63.jpg'),Path('bears/grizzly/78eaceaa-38bc-4f75-b808-da8534b26d93.jpg'),Path('bears/grizzly/6d58150b-1597-4faa-acd4-a2bb51d51a8c.jpg')...]"]},"execution_count":11,"metadata":{},"output_type":"execute_result"}],"source":["print(path)\n","fns = get_image_files(path)\n","fns"]},{"cell_type":"markdown","metadata":{"id":"DU0gBnq61XsR"},"source":["> j: I just love this about working in Jupyter notebooks! It's so easy to gradually build what I want, and check my work every step of the way. I make a _lot_ of mistakes, so this is really helpful to me..."]},{"cell_type":"markdown","metadata":{"id":"mBS6ZPWz1XsR"},"source":["Often when we download files from the internet, there are a few that are corrupt. Let's check:"]},{"cell_type":"code","execution_count":13,"metadata":{"id":"YBgP0bLh1XsS","outputId":"bbe77b68-7036-4b74-91d3-300bbd627d12"},"outputs":[{"data":{"text/plain":["14"]},"execution_count":13,"metadata":{},"output_type":"execute_result"}],"source":["failed = verify_images(fns)\n","failed\n","len(failed)"]},{"cell_type":"markdown","metadata":{"id":"7BzTTjtn1XsT"},"source":["To remove all the failed images, you can use `unlink` on each of them. Note that, like most fastai functions that return a collection, `verify_images` returns an object of type `L`, which includes the `map` method. This calls the passed function on each element of the collection:"]},{"cell_type":"code","execution_count":16,"metadata":{"id":"-2Y50p4s1XsU"},"outputs":[{"data":{"text/plain":["fastcore.foundation.L"]},"execution_count":16,"metadata":{},"output_type":"execute_result"}],"source":["failed.map(Path.unlink);\n"]},{"cell_type":"markdown","metadata":{"id":"9lPM7cuF1XsU"},"source":["### Sidebar: Getting Help in Jupyter Notebooks"]},{"cell_type":"markdown","metadata":{"id":"GfAcg7pj1XsV"},"source":["Jupyter notebooks are great for experimenting and immediately seeing the results of each function, but there is also a lot of functionality to help you figure out how to use different functions, or even directly look at their source code. For instance, if you type in a cell:\n","```\n","??verify_images\n","```\n","a window will pop up with:\n","```\n","Signature: verify_images(fns)\n","Source: \n","def verify_images(fns):\n"," \"Find images in `fns` that can't be opened\"\n"," return L(fns[i] for i,o in\n"," enumerate(parallel(verify_image, fns)) if not o)\n","File: ~/git/fastai/fastai/vision/utils.py\n","Type: function\n","```\n","This tells us what argument the function accepts (`fns`), then shows us the source code and the file it comes from. Looking at that source code, we can see it applies the function `verify_image` in parallel and only keeps the image files for which the result of that function is `False`, which is consistent with the doc string: it finds the images in `fns` that can't be opened.\n","\n","Here are some other features that are very useful in Jupyter notebooks:\n","\n","- At any point, if you don't remember the exact spelling of a function or argument name, you can press Tab to get autocompletion suggestions.\n","- When inside the parentheses of a function, pressing Shift and Tab simultaneously will display a window with the signature of the function and a short description. Pressing these keys twice will expand the documentation, and pressing them three times will open a full window with the same information at the bottom of your screen.\n","- In a cell, typing `?func_name` and executing will open a window with the signature of the function and a short description.\n","- In a cell, typing `??func_name` and executing will open a window with the signature of the function, a short description, and the source code.\n","- If you are using the fastai library, we added a `doc` function for you: executing `doc(func_name)` in a cell will open a window with the signature of the function, a short description and links to the source code on GitHub and the full documentation of the function in the [library docs](https://docs.fast.ai).\n","- Unrelated to the documentation but still very useful: to get help at any point if you get an error, type `%debug` in the next cell and execute to open the [Python debugger](https://docs.python.org/3/library/pdb.html), which will let you inspect the content of every variable."]},{"cell_type":"markdown","metadata":{"id":"OOKBvyTs1XsW"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"WmQcTUkh1XsW"},"source":["One thing to be aware of in this process: as we discussed in <>, models can only reflect the data used to train them. And the world is full of biased data, which ends up reflected in, for example, Bing Image Search (which we used to create our dataset). For instance, let's say you were interested in creating an app that could help users figure out whether they had healthy skin, so you trained a model on the results of searches for (say) \"healthy skin.\" <> shows you the kinds of results you would get."]},{"cell_type":"markdown","metadata":{"id":"OgiBJ2GG1XsX"},"source":[""]},{"cell_type":"markdown","metadata":{"id":"IX9RS1U91XsX"},"source":["With this as your training data, you would end up not with a healthy skin detector, but a *young white woman touching her face* detector! Be sure to think carefully about the types of data that you might expect to see in practice in your application, and check carefully to ensure that all these types are reflected in your model's source data. footnote:[Thanks to Deb Raji, who came up with the \"healthy skin\" example. See her paper [\"Actionable Auditing: Investigating the Impact of Publicly Naming Biased Performance Results of Commercial AI Products\"](https://dl.acm.org/doi/10.1145/3306618.3314244) for more fascinating insights into model bias.]"]},{"cell_type":"markdown","metadata":{"id":"flkjrh3U1XsY"},"source":["Now that we have downloaded some data, we need to assemble it in a format suitable for model training. In fastai, that means creating an object called `DataLoaders`."]},{"cell_type":"markdown","metadata":{"id":"0p98OfuZ1XsY"},"source":["## From Data to DataLoaders"]},{"cell_type":"markdown","metadata":{"id":"7JLfZe6C1XsZ"},"source":["`DataLoaders` is a thin class that just stores whatever `DataLoader` objects you pass to it, and makes them available as `train` and `valid`. Although it's a very simple class, it's very important in fastai: it provides the data for your model. The key functionality in `DataLoaders` is provided with just these four lines of code (it has some other minor functionality we'll skip over for now):\n","\n","```python\n","class DataLoaders(GetAttr):\n"," def __init__(self, *loaders): self.loaders = loaders\n"," def __getitem__(self, i): return self.loaders[i]\n"," train,valid = add_props(lambda i,self: self[i])\n","```"]},{"cell_type":"markdown","metadata":{"id":"-bJ5CdgO1Xsa"},"source":["> jargon: DataLoaders: A fastai class that stores multiple `DataLoader` objects you pass to it, normally a `train` and a `valid`, although it's possible to have as many as you like. The first two are made available as properties."]},{"cell_type":"markdown","metadata":{"id":"jsAnfR711Xsb"},"source":["Later in the book you'll also learn about the `Dataset` and `Datasets` classes, which have the same relationship.\n","\n","To turn our downloaded data into a `DataLoaders` object we need to tell fastai at least four things:\n","\n","- What kinds of data we are working with\n","- How to get the list of items\n","- How to label these items\n","- How to create the validation set\n","\n","So far we have seen a number of *factory methods* for particular combinations of these things, which are convenient when you have an application and data structure that happen to fit into those predefined methods. For when you don't, fastai has an extremely flexible system called the *data block API*. With this API you can fully customize every stage of the creation of your `DataLoaders`. Here is what we need to create a `DataLoaders` for the dataset that we just downloaded:"]},{"cell_type":"code","execution_count":17,"metadata":{"id":"k0rB-HKC1Xsb"},"outputs":[],"source":["bears = DataBlock(\n"," blocks=(ImageBlock, CategoryBlock),\n"," get_items=get_image_files,\n"," splitter=RandomSplitter(valid_pct=0.2, seed=42),\n"," get_y=parent_label,\n"," item_tfms=Resize(128))"]},{"cell_type":"code","execution_count":18,"metadata":{},"outputs":[{"data":{"text/plain":[""]},"execution_count":18,"metadata":{},"output_type":"execute_result"}],"source":["bears"]},{"cell_type":"markdown","metadata":{"id":"yP_m8GY_1Xsc"},"source":["Let's look at each of these arguments in turn. First we provide a tuple where we specify what types we want for the independent and dependent variables:\n","\n","```python\n","blocks=(ImageBlock, CategoryBlock)\n","```\n","\n","The *independent variable* is the thing we are using to make predictions from, and the *dependent variable* is our target. In this case, our independent variables are images, and our dependent variables are the categories (type of bear) for each image. We will see many other types of block in the rest of this book.\n","\n","For this `DataLoaders` our underlying items will be file paths. We have to tell fastai how to get a list of those files. The `get_image_files` function takes a path, and returns a list of all of the images in that path (recursively, by default):\n","\n","```python\n","get_items=get_image_files\n","```\n","\n","Often, datasets that you download will already have a validation set defined. Sometimes this is done by placing the images for the training and validation sets into different folders. Sometimes it is done by providing a CSV file in which each filename is listed along with which dataset it should be in. There are many ways that this can be done, and fastai provides a very general approach that allows you to use one of its predefined classes for this, or to write your own. In this case, however, we simply want to split our training and validation sets randomly. However, we would like to have the same training/validation split each time we run this notebook, so we fix the random seed (computers don't really know how to create random numbers at all, but simply create lists of numbers that look random; if you provide the same starting point for that list each time—called the *seed*—then you will get the exact same list each time):\n","\n","\n","```python\n","splitter=RandomSplitter(valid_pct=0.2, seed=42)\n","```"]},{"cell_type":"markdown","metadata":{"id":"KdPM4deI1Xsd"},"source":["The independent variable is often referred to as `x` and the dependent variable is often referred to as `y`. Here, we are telling fastai what function to call to create the labels in our dataset:\n","\n","```python\n","get_y=parent_label\n","```\n","\n","`parent_label` is a function provided by fastai that simply gets the name of the folder a file is in. Because we put each of our bear images into folders based on the type of bear, this is going to give us the labels that we need.\n","\n","Our images are all different sizes, and this is a problem for deep learning: we don't feed the model one image at a time but several of them (what we call a *mini-batch*). To group them in a big array (usually called a *tensor*) that is going to go through our model, they all need to be of the same size. So, we need to add a transform which will resize these images to the same size. *Item transforms* are pieces of code that run on each individual item, whether it be an image, category, or so forth. fastai includes many predefined transforms; we use the `Resize` transform here:\n","\n","```python\n","item_tfms=Resize(128)\n","```\n","\n","This command has given us a `DataBlock` object. This is like a *template* for creating a `DataLoaders`. We still need to tell fastai the actual source of our data—in this case, the path where the images can be found:"]},{"cell_type":"code","execution_count":19,"metadata":{"id":"bBBVOZ1W1Xsd"},"outputs":[],"source":["dls = bears.dataloaders(path)"]},{"cell_type":"markdown","metadata":{"id":"ohhuoAHo1Xse"},"source":["A `DataLoaders` includes validation and training `DataLoader`s. `DataLoader` is a class that provides batches of a few items at a time to the GPU. We'll be learning a lot more about this class in the next chapter. When you loop through a `DataLoader` fastai will give you 64 (by default) items at a time, all stacked up into a single tensor. We can take a look at a few of those items by calling the `show_batch` method on a `DataLoader`:"]},{"cell_type":"code","execution_count":20,"metadata":{"id":"y0eg8Q2o1Xse","outputId":"df78975b-8553-412f-b632-59532ec39883"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA7YAAAD1CAYAAABk3mnHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9ebB1W1XfD3/GnHOtvfc55+luA1xsgIjEgIoajA2oVIipUhAxxsKopSQqGtQE3yRGUla8JJVfYmmoqKmoBLsyYlKaRiFI0Niglu1rn0heDP2VC7d7mnPO3mutOed4/xhjrn2e28ADotzLb41b+z7Pc87ee3WzGd8xvuM7RFWVxRZbbLHFFltsscUWW2yxxRZ7hFr4YJ/AYosttthiiy222GKLLbbYYov9aWwBtosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Btosttthiiy222GKLLbbYYos9om0Bto9ge8ELXoCI8Ja3vOWGP/P4xz+exz/+8X9m57TYYh9q9pa3vAUR4QUveMENvf+HfuiHEBF+6Id+6M/0vM7a7bffjojwC7/wC39ux1xssf+3mIjwzGc+88/8OMs8XmyxP1tb5vKHvi3A9gNs76sTvNhiiy222GKLLbbYYostttifztIH+wQWW2yxxRZbbLHFHq72R3/0RxwcHHywT2OxxRb7U9oylz/0bQG2iy222GKLLbbYYg9hH/MxH/PBPoXFFlvsA2DLXP7Qt4WK/AG022+/nSc84QkA/PAP/zAiMr/O1tv9j//xP/jcz/1cbrnlFlarFR/1UR/FP/pH/4jLly8/6Pf+7M/+LJ/xGZ/B4eEhN910E8973vN4wxve8JDnoar823/7b3nKU57Cer3mwz7sw/j6r/96rly58oD3ft/3fR8iwktf+tIH/a4777yTruv4uI/7uBu/EYst9iFqb3jDG3je857HTTfdxOHhIc94xjN43eted0Of/fmf/3le+MIX8uQnP5nz58+z2Wz42I/9WF760pey2+0e9DOlFL73e7+Xpz/96Vy4cIHNZsMTn/hEvuqrvoo3vvGN7/WYb3vb23jKU55C3/f8yI/8yPt0rYst9kg1VeU7v/M7efKTn/yAPfD+OhNna+Jf+9rX8sxnPpMLFy4gIvN77l+X9wu/8AvX7e8P9mq1dc985jPf4/veU73ffffdx8HBAR/1UR+Fqj7oez7v8z4PEeG3fuu3/jS3bLHFHpa2zOXF3ldbMrYfQHvmM5/J5cuX+c7v/E6e+tSn8rznPW/+3Sd8wicA8NKXvpTbb7+dm266iec85zk86lGP4vd///f5ju/4Dl7zmtfwq7/6q5w/f37+3E/8xE/w/Oc/n77vef7zn89tt93GL//yL/Npn/ZpfPzHf/yDnseLX/xivuu7vovbbruNF77whXRdx0/+5E/y67/+64zjSN/383u/9Eu/lG/6pm/i+7//+/mWb/kWYozXfdcP/MAPkHPma77maz5wN2qxxR6B9uY3v5lP+7RP4+M+7uP4mq/5Gt75znfyn/7Tf+JzPudzeOUrX8nzn//89/j5b/u2b+MNb3gDn/7pn86zn/1sdrsdv/Irv8Ltt9/OL/zCL/CzP/uz182/cRx5znOew8/8zM/wER/xEXzJl3wJ58+f5y1veQv/9b/+V57xjGfw0R/90Q95vN/7vd/jcz/3c7l27Rqvec1r+Gt/7a99wO7FYos9nO3rvu7r+J7v+R4e+9jH8sIXvpC+7/mpn/opfuM3foNpmui67gGf+Ymf+Ale+9rX8jmf8zl87dd+LW9961sf8vsf//jH863f+q0P+Pk0TbzsZS9jt9vNdMcXvOAFD+rw/tIv/RI/93M/9x5pkZcuXeKLv/iL+cEf/EF+9md/ls/+7M++7vdvf/vb+emf/mn+8l/+yzztaU97yO9ZbLFHqi1zebH32XSxD6i9+c1vVkC/4iu+4gG/+7mf+zkF9NM+7dP0vvvuu+53P/iDP6iAvvjFL55/du3aNb3ppps0paS/+Zu/ed37X/ziFyuggL75zW+ef/4rv/IrCuhHfdRH6T333DP/fLvd6qd+6qcqoI973OOu+66v+7qvU0Bf9apXXffzWqs+4QlP0IODA718+fL7diMWW+xDxNqcBvQf/sN/eN3vfvM3f1NTSnrx4kW9cuWKqu7n8g/+4A9e997/+3//r9ZaH/D93/It36KA/sf/+B+v+/lLXvISBfTzPu/zdLfbXfe73W6n7373u+d/f+u3fqsC+vM///OqqvozP/Mzev78eb3tttv0d3/3d9/fS19ssUecvf71r1dAn/SkJ123zw7DoJ/xGZ/xgD2wzVcR0Z/+6Z9+0O8E9LM+67Pe67G/4iu+4gH7+IPZ7/3e7+m5c+f0lltu0T/+4z+ef37/eaxqawygX/iFX/iA72nvf/nLX/5ez22xxR5ptszlxd4fW4DtB9jeE7B93vOep4D+4R/+4YN+9hM+4RP01ltvnf/9H/7Df1BAv/zLv/wB7718+bJeuHDhAcD2q77qqxTQH/iBH3jAZ37+53/+QYHtH/7hHyqgz3nOc677+Wtf+1oF9G//7b/9Hq54scU+tK3N6QsXLujVq1cf8Pu2Af7QD/2Qqj40sH0ou+eeex4wz3LOeuHCBd1sNnrHHXe81+84u4n+yI/8iHZdp3/pL/0lfetb33pjF7nYYh8i9pVf+ZUK6A//8A8/4He//Mu//JDO8POe97yH/M4bcYZf+tKXKqCf//mfr6WUh3zfHXfcoR/+4R+u6/Vaf+VXfuW63z2YM6yq+rSnPU1TSvrOd75z/lnOWT/8wz9cz507p9euXXuP57bYYo9EW+byYu+PLTW2f472q7/6q3Rdx4//+I9z++23P+A1jiN33XUX99xzDwC//du/DcBnfdZnPeC7Lly4MNObz9p7+swznvGMB1CNAZ7ylKfwmZ/5mfz0T/80b3/72+efv/zlLwfga7/2a9/3i11ssQ8x+6RP+iTOnTv3gJ83atLv/M7vvMfPn5yc8P/8P/8Pn/zJn8yFCxcIISAi3HzzzQDccccd83vf8IY3cOXKFT7+4z+exz72sTd8jt/5nd/Jl3/5l/Mpn/Ip/Mqv/Aof+ZEfecOfXWyxDwVr8/AZz3jGA373qZ/6qaT04BVYf+Wv/JX3+5g/+qM/yrd+67fytKc9jVe+8pWE8OCu1fHxMc95znO44447+KEf+iE+/dM//Ya+/0UvehE5Z37gB35g/tlrXvMa3vGOd/BlX/ZlHB0dvd/nvthiD1db5vJi748tNbZ/jnbPPfeQc35IoaZmx8fH3HzzzbPY06Mf/egHfd9jHvOYB/zsPX0mpcQtt9zyoN/1ohe9iNe//vW84hWv4KUvfSl33nknP/VTP8UnfMIn/KkWicUW+1Cx9zYPH0ycrdk0TfzVv/pX+Y3f+A0+9mM/luc///nceuutc33QS1/6UoZhmN/fhOQ+7MM+7H06x9e//vWoKs961rO4dOnS+/TZxRb7ULD3tAfGGOdA0v3twfbTG7Ff/MVf5O/8nb/D4x73OF796lc/ZJ1dKYXnP//5/M7v/A7/8l/+y/dak3/WvviLv5h/8A/+Af/+3/97vvmbv5kQwhx4XvQvFvtQtWUuL/b+2JKx/XO0CxcucOnSJdQo4A/5etzjHje/H+Bd73rXg37fnXfe+aDHeKjP5Jy5++67H/S7/sbf+Bs8+tGP5vu///sppSyiUYstdj97b/Owzb0Hs5/8yZ/kN37jN3jBC17AH/zBH/Dyl7+cf/Ev/gW33377g86xixcvAtdncW/Evv/7v59P+ZRP4aUvfSn/9J/+0/fps4st9qFgTXzxweZrKWVmRN3fziqn3qi94Q1v4Au+4AvYbDa85jWvecjgF8A3fMM38JrXvIav/uqv5pu/+Zvfp+NsNhte8IIX8Ja3vIXXve51s9DMp3zKp/DUpz71fT7vxRZ7JNgylxd7f2wBth9ga1TfUsoDfvepn/qp3Hffffyv//W/bui7PumTPgmwKNL97cqVK/zu7/7u+/SZX/7lX37Q8wLouo6v+qqv4o477uBVr3oVr3jFKzg6OuJLv/RLb+hcF1vsQ91++7d/m2vXrj3g560VwCd+4ic+5Gf/+I//GLAA0v3twebqx3zMx3Dx4kV+//d/nz/5kz+54XO8ePEiP/MzP8NnfMZn8M//+T/nm77pm274s4st9qFgbR7+8i//8gN+92u/9mvknD8gx7nrrrt49rOfzfHxMf/5P/9nnvzkJz/ke//1v/7XfM/3fA9//a//df7dv/t379fx/u7f/buICN/3fd83B6CXwPNiH8q2zOXF3h9bgO0H2C5duoSI8La3ve0Bv/vGb/xGAL76q7/6QZ3Vk5MTfu3Xfm3+9+d//udz6dIlXvnKVz6gr9Xtt9/+oNTHF7zgBQD8i3/xL7j33nvnn+92O17ykpe8x3N/4QtfSIyRr//6r+fNb34zX/IlX/KgNYWLLfb/Rrty5Qr/7J/9s+t+9lu/9Vv86I/+KBcuXOALvuALHvKzrddeA8HN3vSmN/GP//E/fsD7Y4y86EUvYrvd8rVf+7XX0ZSBuR7/wezcuXO89rWv5VnPehbf/u3fzt//+3//Bq5uscU+NOzLv/zLAdsDz+6R4zjyT/7JP/mAHGO32/Hc5z6XN73pTXzf930fz3rWsx7yvf/lv/wXvumbvomP+7iP48d//Mcfsi7wvdlHf/RH86xnPYtXv/rVfO/3fi8XL17ki7/4i9/fS1hssYe9LXN5sffHlhrbD7AdHR3xKZ/yKfzSL/0SX/qlX8qTnvQkYow897nP5VnPehb/6l/9K17ykpfw0R/90Xzu534uT3jCEzg+Puatb30rv/iLv8gznvEMXvva187f9fKXv5znP//5fMZnfMZ1fWz/8A//kM/8zM/k9a9//XXHf/rTn843fMM38N3f/d187Md+LH/zb/7NuY/tpUuXuO222x7y3D/yIz+SZz/72fzUT/0UsPD9F1vsrH3mZ34mr3jFK/j1X/91nv70p899bGutfN/3fd91/afvb5/3eZ/HE5/4RF72spfxB3/wB3ziJ34ib3vb23j1q1/Ns5/97AcNhH3rt34rv/7rv86rXvUqnvSkJ/Gc5zyHc+fO8fa3v53Xve51fPu3f/scyLq/HRwc8OpXv5ov/MIv5Lu+67vY7XZ87/d+7/tF0VpssUeSfdZnfRYvfOELefnLX85TnvIUvvALv5Cu63jVq17FhQsXeOxjH/uQgjA3at/1Xd/Fr/3ar/EX/sJf4K1vfSu33377A97zghe8gMc//vF82Zd9GbVWPvmTP5mXvexlD3jf4x//+Iecx/e3F73oRfzsz/4s73rXu/iGb/gGNpvNn+o6Flvs4WzLXF7s/bIPmh7zh7C98Y1v1Oc85zl60003qYg8oPXHL/3SL+kXfdEX6W233aZd1+ktt9yiT33qU/Ubv/EbH9CvVlX1da97nT796U/XzWajFy9e1Oc+97n6R3/0R3ObkbPtflSt/+x3f/d368d8zMdo3/d622236Yte9CK9fPmyPu5xj3tAu5+z9t/+239TQJ/2tKd9gO7GYos9su1sC6///b//tz73uc/Vixcv6maz0U//9E/X1772tde9/6Ha/bztbW/TL/mSL9HHPvaxul6v9clPfrJ+27d9m07T9JAtCKZp0u/+7u/WT/7kT9bDw0M9ODjQJz7xifrVX/3V+sY3vnF+30O1FhiGQb/gC75gPv/31LpgscU+VKyUoi972cv0L/7Fv/iAPfDo6Eif+tSnzu+9kfZc95+fbb69p1ebi+/tfQ/2vfefx81yznrLLbe8x7aBiy32oWTLXF7sfTVRVf3Aw+XFHql2++2389KXvpRXvOIVfOVXfuUH+3QWW2yxxRZb7ANib3zjG3nSk57EF3/xF/NjP/ZjH+zTeZ/tTW96E0984hN5+tOfzi/90i99sE9nscU+aLbM5cUeypYa28Vmu3btGt/7vd/LTTfdxN/6W3/rg306iy222GKLLfY+25133kmt9bqfnZ6e8uIXvxjgPdbDP5ztO77jO1BVvv7rv/6DfSqLLfbnYstcXux9taXGdjH++3//7/z2b/82r3rVq3jXu97Fd3zHdzxk/67FFltsscUWezjbv/k3/4Yf+7Ef45nPfCa33XYbd955J//zf/5P3vGOd/A5n/M5fNEXfdEH+xRv2N72trfxyle+kje+8Y384A/+IE996lMfUee/2GJ/Glvm8mLvqy3AdjF+/Md/nB/+4R/m0Y9+NC95yUtm9ebFFltsscUWe6TZZ3/2Z/N7v/d7vO51r+Pee+8lpcSTnvQk/t7f+3u8+MUvfkSJqL3pTW/iJS95CQcHB3z2Z3823/M93/OnFsxZbLFHii1zebH31ZYa28UWW2yxxRZbbLHFFltsscUe0baEChZbbLHFFltsscUWW2yxxRZ7RNsCbBdbbLHFFltsscUWW2yxxRZ7RNsCbBdbbLHFFltsscUWW2yxxRZ7RNsNi0e97o1b3nav8L/eCW+7G04H2I2BUpVaYcjCbge7HWx3ypRhzNBFiBHWK6gKpQrbEyFnKBM87hblqIcDEa4dw3YHV67BNMA4KLuTiTIVdBzR6RjVEXqIF86Rzh9x4dEd0gU0Cn2oBFEC9j3DCNurIyEKXR+QFKhVGbYTqgFESMmwvQCBigQIUelCJAQhdnaLqirXroxUBUWIAiiUDLETYhJWB4HpZGK4NjFevQYhEA8P6Q97QgqUIVNqoGogJvu8KqQAIUDfR4oq1c8lqBJUOb57II+ZMk7QryElQqhIDPZhScQAKSmrTSAmIfbCcFqZRiVFte7RAiXYdQeBGABVxtMCFbQKtfiFSUFU7RzthCAoNStalDopqwsr0jqyOohUraBK6iCJ0lHRqnZdK2Ecoaqw2gggqAr33TVBENJB4twFoUuC1spwUhl3yjAJsRP6tSAIqjDWQM5KqTaWBBABiXYPUwAtEEU5OhRisvE3jnatQWwsdhEOV9D1EJMyqhKCkCL0UegirDslin0mhIBgt+bKaWWYYDvAtSuFa/dsectvvpXp6jF1uyO/+a9/gKbnn419/yv/P8QoxBjoU0eMiRR7gnQEiYTQE6Ujho4UEyFEYojE4PcbKGUil8zp9oRpGtmNO4a8I9fMWEcIgoiQ+hUxBmIMhFQQqSgF1YxqYaonlDpQysg0TdSi5FKt3TkA9j0IxBAJIZFCIkpv5yqR5Oe7Tges4po+rlmnI1Lo6eOamBIikSgdYgPZnqfgVwOgqFZqzZRaGMuWqewY8paT3X3s8gnH431s81WmumPiFCWjZCDTerTrfNYQRAgIIezHaQCfV7UdltompwZs9bK7HGmfU1QLqpVSJ6oWqlamWikVcgUJdo32vGxuSzsnrQiKYHNXETvdGhASgZ5Vd4GUNqz7C6zSISmtWaUNMSa/74EggRQiQeyZBAKiAakRIc3nrepH9rWsil2viI25rl8RY0fXrUn9ESGtSasjQkiE2BFCh4SASHyAsEaThFDV+QVq7SDmMaNnnsRZk/nPJjgi7Vr8OGd/DnDzzTe/9wn1QbJ/8HV/G1BEIEWbnzFGYrQx16fo91Goxe5RKZVcKrUqORdKLWgpFL9/9szE/tRC9fGZi1KrUqoy5WLfdbYFR7U9stZK1nrdPEAgEPwcA33fk1KiS4mY7BnHGG1sBSFE8bkDWjO1FnKeGKeJnAvDMDBNlalU1J+liMzHVLDvkUAMkTYw2vti9DGlSvF7YvemzO/rUpjnbfviFCJtIueqaG3jzva+9iwkQIqJGCNdl+i7bv57kABi90r9fpVcKKUy5cyYC6UquRS7335u7W6KCBICMUVSiqSUWHW93b8USSkgQQihrTWAVn+e9txVlUkrNRcfB9mOc2ZslOrvRQGZz1d9rsQY0VIIMbJerQkxoKpsj69SzUmiakGA6Gu3hEBKka7vSClRs61pYNfZHKJabcxVn/8hBFLqfB8QNNjcrGfWgFLKfD/ndcHXWAF+5JU//oGZdH9G9l3/4/n0XWLTJ0JSKoVdyYwlUjQR4hFd7OlixypW898SrGIiEkgaKHkkl4GhXGYoJ5zmq/TxwPZ17dmVjqlGFGXdTWy6iYkNpXaMtadKoiLkmpmGkWka0WGgT4HDVcdmvSKEQNZqfr8qMSQSgUQg5JFAJaVMCVCAk4xvfIFOQSqQxfY7Gx2MtZC1EtNI7EZiP0CX7VmTyEWoGhBZzT5zKad0UTlcB5IAKuQcqDmiNbDqovs4Qq0J1YjS0YVEDAFhAs1URnY5M2XYDYHdkMlaST2kGIgpkEsmiF3X0XpDFzqS9Ox2mXHInJ6ezvtS13Xm76RAiLYe5AK1CqUEdjsFFSKRFGyNST3EFJAojKWnqlCqz2EJdJLQqmiFcaqMtTCUTFpV+giHqwhlQrWQpwmRBBKpNdraWUaQjITKqofDrmMdOzbhHCqJSmIop1TN5pfViaqZkR2ZiawjMSQUoZZIrUIgcrjaEII53rtsuAiETgMBIdVAJBsm69x/i4lJYagTx8MxJ7tTxsnW9raUdnHDuo+cW3ccdCMpVvpemYgUiXzhx/zoe51PNwxsz62FgzWsVkKfYJyAWgkIEqCLyihQK8QgaIRSDVSlKEQRasUcsazkyYDtNMEkMAHjKAwDjKMyjco4VMo0oTnbG/OA6AR9Mqc0BHKBlCBFOw9V2A3VJ4NQfUGtEubNVzpH2di51mqbhwSxzSoXNuc7uj4SOyEXRbMBXqr4HuafT8HBkwIVxSY8mJOqFXKuBBQCtimpoS+tBsJKLWiAHIRCQAVW64BmRYdC8Q0odB3aRUiR0PWo2vFCNI+5ihI6Ia2E1ZFQJVBDJUYxp7hURM2pFXFHLkBaiy8Ywnic/b5ATAkFxl1BohCSEHuoWSnRbkHNFRxgIkKXQEqlToXtzgBnEZvAMRrIBaEW6PpIrjBlJWchRWWzEWINRFFGbUgg2DkH6FNbKGwMCbYARF8ng2ALLzb+KPa8cjaAGxN0K2HVwWajrHoIUag7IQboEmw6A76rJORsG20QJQb7/nVvTtQwKikJXS+kdaCcCNd3W3t4Wq1b1DeIQI9qAgopFAgdgYQEJQYhpUQMiT72tiGIIBLIeSKVCa22yZY6MpYCOlHrzqaHBEIWAz8E87JsZwMM2Jrjmik1U8pELZUyVRpIEgehIQiIGihsuxtqcxZzBEYdkGrnF8uAqlpAxPZVwMBsEHPSDbwYCABABAmRCCQ6h0dK7g8gVLKekmuiaiQrdnxDiHZdWu35t3PD75cGB4I2fkSY1w9ViH45Wtt1tTe1P91BRVCKBwjDHni4TyiixJARhUj7qFJt4TOHryqq5ljYc3EAXCtSKpSChra5RUQrgQ6Idv/FQIc00K1hPrfmdNvyuA8YGLhWEFBRik727wrUjlgESkdQCA3Qa+TBxCLPah02h785tMzX/GDWHKkzPznzZlV9j/9+ONrBwYbmTsRg47gFbAysywwGJFSbS7YNobR7B0XPPC/xAN7ZOYbOz0LVxrCKjVeLOdnCK6XNhzOwdj6XcAakJPq+Z71aETsDu13qHNgGP5YiVEoOlJIJQeYA0CQZCb6UnLF2rXPgJQgS2kg1J7GBsjYmpRZEhFLOBjvMnzBw7NdBIIogzSfPlSoghBks0q68zWef03ugxf2H4PwZbWCXfXhsH7hpy4WPyQbaNKC10j5llx8IIhbkkHb+nAG39kqq1GQBijwFSmngugFbvS5wUfw6YtfNz7DkbGNDFK0ZVFmtVu6EK6VMduc84BLEnkcthalWW0PmZ6W0W+QLyjxjbb3Z36vr/jwDbs+uDc0fEXjYz2OAUpQiyhQgiaBE2wuL+TOUDMkCiVHNP1OFTjxw0O4lgdFvpIUeE4GOQIdo8BtXEc0ERpIc2D6N+cv2qYRIBSqFQlYh12DgUG38qY8nrWrzQaFqRCWgNZC1kKmMVRGxBE0EQg1IDYju52X044qkOeGiBNvXa/Rn6+4DgVADaELUEjItjFaKUKtADdQi8/hSD9iVWjwYS9uWqNj7RZW28qGKFiyAojZuofi4DqgEwxYVnydtjQzmE1cltWTQ/cymr/q8jb7exv2+KmLX5LEyFQWKnXNVarEgTqkFyVAI1AKxCqGtOe0/xwe2YNsvS6nkEMnS1i9ogeGidR8MkuDjxl1wDx4AHnhSpkkJ0fYGnZ9hsHXMcVSiEEXpJSDJgq9IQEXpY2Invl+xn7NaFS0CNZpvqhZ0TSESJd7QfLphYHtyXDk9EbY7YTsEhqlF15SiGBDdwriFYQqUtmEWmFC2uaIhUEWYBigFahZOT4EMkmA3WMZ3t4VpLOQxo9MIeUTzKSIjkhRZbUirxGqt3HqzQIJJC12wTXZKieMTYcqOX6sipdCtbZDW7Jt7VYaTUwN7CFDdOROy2oLd98JwUhl2hfE028TRgJbJoi2blU1QEUqB0CXWFyK7EDxyKWiu1OIPXyd3QisEQ1rFM5B1VCRWiDCNBg7LWFCKZSRTgl7QoJRxQkQ9wxzpVoHNYbLMdIDdYItBTEK/CnbekzCdGjCtuaC1IFoR6jy48ukACDV26AokBlLyzGcCSRY9qxuLPIcIdJDcCZAK61Xi4EIinVaK2sKWOvuefmMZ14pyeCQGbP0Z5YxN0qis10AX5oxBmSNCHgyYoEz2jAhi2aislMEWqBgFLZg/HiF25sBkArGD1IMGtc1PhD4ZQAsIxfGXZOhiIPpiVFV9XIs5M1VJEVbrxNHN56mnI/l0vNEp9UGzFBSRYtG0OiISoe6oHCKskLgiCqQU6Ps1Xezp05oUOs9cC6VOlJJJsaPvT0mxo5JBKrtSfFG1LD01Qg4z+EIKyoRqptSRXEamMjBNo2UOJvVgiRBCJMSIxGiZWvagLYj93cCiojqRC7by5koMiRJ3pHJg2WdZEyQY8A3BncCIxugOFjTnMUgiBQOtq7QCMrmsyaUHmchTwGbO9SbashxtY5G9849njfDj+GdUHGyKAda98ybuC7ujo0KuybNMStHgm2slBCVQ6bTSYQt7DOKbdyGr2meyQg3uSZvzYPijonVCw87OhwyxoiSKdjb5NVFRJFjmSRTLcquBhpYNb85qvc6RFwe2QhHL5tSyo44Q4kASJYaRENfEtCKERIw9wYMTe9PZya/1LIg6A6YeYDfm2DbH+JHgCANcPH/+DKixP2utZ8AUzjBScq0zcKg4ayeaQ4zInPE2v9edVWQGj2F2LpVayj5TSWiP1gNEkVjxAK99tjmYLWu5Wa/pVwZs+5Vnbztnh4iQBHecK9M0kHNmnIwtJQjjVIgqVMr1oLIB7WSZwQakwcF1m4syx5Xm38UYzgQFoOsaQMSDQMzXqWLZYFXQTizjWi1b0gBW9TUp14qUbMFukTNzQ+csaskWdB6nwuTfVUpjkLi32rLSWs2nKFDIaK2kGMyfiXE/hsP+WKI6B4eD2t5bseyrqhKDAdtaK12pPm5kBrPqgFskcHThggHTcUCqJRhitEy2AuoZZi2VnKeZURHmiB7z2LSdup2vBdeKn98McNv3+t9tQfP56fdGUUrO8x6dUrLn3tbisw/7YWq1QKYCBSVa4AgHSi354QkYUiB5EL6UasBClOpBYks4RTo5pEtHtscVC2CKVpQBrSO1ZM+Ed2TMZ2/BF3G2Q5EeVKjFAKsEMZIg0fxLAhEh+rrfYFXVYHMijx64gC4kPL5pz1OVII0JFkhdJKSOFHoG3VJrsXHpyQmJ6kEjIWgiaiTNx4OxyAxuRQJd8wM9GaXF7i8BaqmoCpVk31WVSCEoSFFyrmgJaF+RWDx4I5QsBLVVNNdKVkV8/iUiWmxvlZgItTqsUA/iKlIzFKglMCGUkIgpEaIlA4MoGiA4ayFXJddCr5AUOlWyFlDDFEWUknHfNbBOERFLjm1zNWZGVV83CmRlFLuPHUqQQpBKLplcM6WM81oYpaMSCETL5Gq1rLBaBroOcWbhiPTmRwYL0tSqlKlgHndhVaDvKn0X6HoD4QmhDwGNEZIFcWqBBnNtDHUEKnkohiHig0QLHsRuGNjuRmU3CsMkTMWyZrnsI5MBy8x2yahxWu3iBdtwyqRoVGpwUOCO3JRhFGFU+3sultEtuVJLQzADlC2yEqRPyGpF6CIhQkj2ErVsHgq1yJwZscW90Ul93koLbdgxZspbm9TBHNZSzRms/qAEi6ooluWT4JtkBS1qtK9g1OTQJTT76PTV2Vg3PqEb4zAJlOARL3McgtqC5YEKJJkTKbai4GEhy6LGgLMBCAFqsUlUfD4ZUDeHIEQHgGqgUHNBaiV1zBQquw0eWa3mLEtsIRXLkImfp7qjqsi8oQZRUgqkXliJUdW1VDt2FFQECYok6A8CqUIsOlOJ8bVV1f+tHsBNMq8PFtFRKKDxei/lrKvbnLeU2kSxz0/ZFnn1Z9MrnmW3DbOxotoXVdkHvapT793XIEQhpkB/sCKuOiTdWETpg2nmCFWPtmeCVo9Y9ghppl6HEEmxI8aOGHv7u0SjupVICLbYgWXP+nFD0UI3dUw6WaawDWI1Kg0zsC1ULWjJ9sqFWovR3EtFqgebFItqCnP08CywDeIbtk+wSqaoLafqVDjFmAuWzYm2AEcDtlUqUY2t0WiCZ82yru1lWZxYbR1odCpt2VWCBaHMKzuTPTwLmGZv37OC8z8dZLaBZxu2uOt33VxrP9MwvyeiGHGj0gjNwSOsQjVntkWijedHqO17QWMBKdQyUqOgFUqJDlwbTdAZOgASEcXZLkIXHZBrtYXEz3meSGcdVHXKZ7FzCjWjoaNGdaAVfH61YIjMd2i+o7oHuO0ePzgglfv9+d6tZWsf7p3wVqsVbZxAmem0RZ2WqRj9VPfA1hGDr8NxD0idyikKlUpQIAQDGepBGP+CGGysA/O8AIu0I9UzF/beBrD2VNlE33f0XUfXdUZLjsnoqQ8CbG0ABIoqXWfOaIyZUC0LpJaymedSO5bR3vYZ4pQ68jg8MLM3B7RahpsZ0LaMbaDNdZ3BmbT537LRxe5Ho8KKl/zYz8wRJhdbN6RRva8HtrnUPQW4BRJagKEdE+YghlZjY5ScCSKUEm2flWDOfDhLyN+ff5tN4s/p/vfDSgmEqHpmntmzXnWJEgTRYuvMDGz3Y6A6CMs57J1qtzaeLIPmi0KLqLTrC+7viAEp8ecyn7i2j7T7cJZ+bJmz2IBtNRj/cDdtSaJSyVmcgcccVKjFsqdCJTurInlmrwUqailzNs8AZJz3O5Xie0srA7KgK0TLxFZoJSSztZuuBharj4UQxIOmlhMOKp7Vs/1IbWMAZyxa4FabQw7BM73oHBoW35ttD4sIBorsEdf5mbc4hbGNWtCz2v+9PK1WoagQ1TKrqo1l2dxYX+fcJxcsY7v/PjFqfCiQhSRKDb4XazudPcMgBMt4i/q8q/7wxOoBai2GIYqitZj/WBSINn+ruk9tWEXcd7AEamMj2dNKQUlaCC1Q6ddbpRrOQQlSiRKIwYLeSqFSPKghxpoVZzSKIsHniZdlhOB3QoIz5IL7+JxJ8EhDoaBe+hTshtS6L0kRD/9LUbufoSA1zfceHAYFG0cWq7L7aRlyGwmBQNLowfP3bjcMbK/u1F6nBnKHEcad00CDcrCCvoODg8DlYxgmy+5Gn3hTLTPYagyXmISdZ+laxnYcLVur0+SFtieQt5CvEi7cTDg6gkvnkLUiPewKrCMcrIR1b8But7MMZAhC6rBaws5px2r0o5ILNVvkg66DvkdytuvpLftaR1uky2QTa7Xp7DmK1TSBRYnqVNBJSf2K9qQtkyqeTfSH4QswatkwTQHtQFYJrcI42BCqpTKqg9HUkQ4bqApQKlIKko2anFaJmAxQlp2SR9/MVtHBrm0WIQhdFxijUifLaOloIZKus7o8SWI0bQkggbybyLmSYrIspYpRmEq140SvscuRUiuRyuE5y7hKSpw7Z4tKGWEcrG5gKhBiIHXQnxcPRFRyNuATEMZcGYYKQS3j3JvTnKvVtZZGVy0OIoNljkM0J6NmLOqVhH4N6zVMU2SclO0OLl+xRSxGOHeobFaWkIrBgjOpOKU5wEmxBeXcmpnGNWSlVKsbLRVSnzi4uOHk3IrdSX+jU+qDZoedj9M62gYiNg8SEzH0pBhJqaPrVqS4IiV7dbGfa6Vicvq+JEJcIaEjayGNK6pUduMxUx2wBbkAdb+QRatlrTpSp4GaR7RMlgkq1ageBezBgkhEpBJ1H+UT96UCBqT2WVKj0I0UYk1ozeRciNKRJRNDZ5lcrxkNIZijIEZRDMGAu92fRt3VOXjS6va6GMkt80n0hb8SzmQRW+wK9j4Z829xcMv8U8McevaH+9+JnslayP6LFKIEVkFJodJJJWJOvzij286wWFDIY4WaxRwSUUiVGiwQUcZCdrp4UXu+EhJdWhFDoqZMifb3KB25KKU4oAjJad5hjpTV+crs/CtqwKvaGLBgYaKvStcd0tXq5SwFFEKo96t/3QPU+wPPBwJbe/+DAd73lpV9RFCRDw9pjn0uI6VYGUkpxpbI7ujmUhizTb7YGBBeiB1iMNKfZ9pqKUbvVyWq0wDdCTWmQETFgp61BR8wZ6Zky66ge4e8ZU27rmO9XtP3PZvNhtVqxWq1ou97z+Ra3WV04KU+RgxwZqoKIfakfmLKZR/kyRPVaZGNZty374qRGCPnzp3n3PlzvOvOP2EcR0ouZwDdnracGl1WIASdA+IxzOEcCwjIGWYCYT7+NE7zPW+hKdTZFaUwZd2vLWpOZ67Vs0c6Z01hH7gTJ0g2quJZq1rRYqVbtTaGTLX6V61z5nKm+85XIbYmN/ZIvD4YexaU7wO8nv0tmU6EftM7NdtATohpni/VwW3xDGOeMrmWme5YqwVbNBu9s57RVJBWZy1GpcaBbctYA2dLmqnV0zzth6p0yTJJApSc8dLph7d5qZgBztr4xXPdYSmZWgMlR5IGJAY6CZRsgY4dhZInSh4Yy4gxciPsRy4wgWRK2VHVqHa5JEqN/szENRHKPDcQ83ss8FJsPsdAjMlAMxYgDVUNsM4BqbYO4OtHQVMrVxFqzT4Hi423IMTQG3XesK8xwDQiTLQyP9W9HxHV8qQNrGqp1GK06SklRAOpyD6h5HfDxmywGvOiBN+pA4EQJkQ8QKDG9FxhbMNgETdL1Dk1WRDLeitIOxaBWvYZ7GnKvg5nY3UUQWtCyRZYLJE+B9SDci3YNge/akWj18gGqFIZSmUsUDRQEqhYoCnrxDoFkkRSgKIFGLy0SBFZUYohkkkKRMv0tnloc9PWirmaqMLZAFjbE3KZLCAQDXCjGFPDA3QFW0NFYKBaBr9kSu5QVYapkrPN/c61XIiBkn2NrdXKDtWyt1ETVij23u2GgW111G5RAYuGjdkQfxD1SICJQuVsA2ndY6VnRag1UkKkSjABE7UBNrVs6ATjDvKgaB7RaQfjKQxXIe+g7NCpOE1R58zFlJWUrgv4kbMtAiCkLoJW8lTJvgiseqF2iVojgxoqElXqlJEkJElM1bIbdazkIVMni96ELpJWidTb8RkUlRYdtOyoFfabM15zsYxoEKRG8Hs37czZDyES12HObqgVPKG5QM1WX7TuEK9RzbstZRjRIkg6oOSIeCYWFabTkVIUmVZztLzs9hvldDpRJqv/CylZlK2LFHeo49qc9FL2maiSayMZGlU6F+rO6iFDDFQOiUnQAMdXM9tTIV4rHFzsadodDRwMgz8kUbTEOXtuGWpFMSGwuIpsdxXJMO4qsffzEaFbeR3fJF43K8S0d0TFEcUwWHRsdwqSArlYXa4W5gEjIuQslvkXCFLpk9JFYdXZeAali0Y7Tl7Mm6VFMqF2gc2FnqNbz8MN1gB8MG29Wns0MM81qxIiMVmGu4tCF6OBwGg1tiG4qE/L2FaQUOmigga0U9ar80hIFCpdt2IqO6aycye1IJqBipaJknfkMjCOW6+vLU6Pt3kXCHNGNghEMcG25NHiGBrFlxavdsdAfO5XF4EqXLl8hWFXGQdzoLvUcXhwwMFmzflzB6y7jhiiO4LR6dZNPMfOnapeo9TAlVNv1WkFLv4kbaOlZZGBUqnitdpesHIdHXL+izQf0jObjcrcMhh2XxpFr2oheAZWgs41qq0eR9sNcrCpLcKviaodOXtmI1iAhmJBiDIMMNq1g0X8jw4rMSa2IYPuCBJZ9YdMU2GaClw0wRxjv3TuoKbZwa+6B7a5TpQ6MYyntg8QWK+Vvsus+kLtIaWMAl3qUbVzCBLmNb455e5+sad4tzvZ3ubPS94zmL1/lvaRkLHtup4WzGECCOYo4EJjRS3w4MFju2dijqQGC1A58CFaxF6L0c2UPVUe1VkspmqldxCFhtkZmqZMiYWcC6HmmWrbgG3f9/R9z6rv6Vf9/O++7zybm7wO04G2egYYbA2KHZdufRRV4c1//P/j2vE1wnZLnOKc1UidfUff9y52ZtdbS2Z7cuK16C3z0F71TCaUPZANLQPMnPm1dTD42G6goWVfK6XfZ8wmz1qWki1g5xn02VERvLwiol5kv886t9KePZ2YlsVxAJezO5Au/JVzJpdCSnY/c+5JqcyZcgPGe5jDPDN9nWmZZmmB8ECc55tXH7rj3TLZKbqgXPKAoJwR8JqBemGaMlM2UT6jWpvjK2I+RBVxoQHLYc010j51W8CvzfOiTcfERH0kgHRt3w2gDlicWn5/AbqHo0VfG1vG37nslov0+1A1ozVQS2fbTYEiFRXL5tZaqDT6qWXmZJgQgVoGqrTyg4ikiMZELh5HFpnZcFWM9Vhdy0SxDN9UHKgEpRMLgERJzKVFM9NALPvoWdMmJlfU2BAhKFUcwDuICkDRatk6NWprJJ4pp8me7azzulBroGgwGjQQpcxlZDUHMoFBArifkwSoxZIatGSRX7cNrpkSpg7SKWr3og1GP9vQtCWq446WyazGhKvZM8XBNHrGUphcS8TKgPB9PVByJbe1WSwIgFrNcKl2DA2KRftb4LuaBk+AkiuSDENMxeqgpwyabIb3UZg8uxsaA42A1oL6vzuablEhRVv/NGDBRWmRpJatNxp6zvv9NziLoFZFiwclxZipTryiRrGXWJnDOCrjZF+9XiU6Fylte2+l+sgQq2smUm8Qst4wsNUzi02j6ahfSEEJJXhkqQkNiNd9WZY2xBYFNPA3FyJjz2rIewoyJUMZDdBOp/b3OlFzRnIxwQeS026geX1zqtxrL4RGz2UGTjEJ/do2vVphTNg5qVOGKkht9S9+fVOljhUtQmrZg/Zny0eozA8ZaUBW7OEmz97OrhgMOyt8t0LkdpMVSkVLoeYR8oTmEemDq54qWjI1T4CJx0ip1Oo1NkAZiwHR0IEv7Fp0BghlKE5XdmpyiGhs1LFKl6Jdd/ZFqnoEzusWtSo6FXQ7odNETQntIxz0ECPDoMikyABhpUbLliauBTWLRamrEgkeGW+g1jesJnwR1GpPsgcPAqirZqbeVORicFGo2OiZNswMTyg6mu5Y7HWmkdTGcBFhyk1B0oIDLVKmaln14uOoVEjRNtbGNs6lOT7QrSPr82urZX6YW991TvtNNtcw6pw5b2LgUQJRogO95ri0l28ANRBCJUYl1RVd2qAIa50sKpoTMmFKvoxodQpUzdQ8UvNImSZK9U05ezS2YoPVnetAA7gyv6K0QJYtgDb3J6v/VrG69SkznA68886rHF+bODkp9F1P33WcP3+OC+cPmfJFLhxu6LuOVb+yrE2IGH23Uik0RWLDqbZhgaBqdUf2c2ccOGiVOcurRgPzjCU4wJLmWrIHU+3/whzosvfvf9/EcASQrKhUx67+czVQrxoaU9LWxrqn4ldNlJoo2epbYoxWVoIL9ni0epqMThZczTBGozRZVDpysI6Mo2XEjw7XFLWyji4ZNRqZdZnNaWnAtmRyntgNO6evBpSOWgUlEELv123UVKsDtMCZeH2oYMD9egC7B7RzhgmZgcTZ9z0YaH0kZGnPWoim4KdAKMX22zkA4OKFXgNtkOYsrd6eqwEVo5ypKhpsvEO7bXafSnHHWyudtO+L5ClTcyHIyBSyjc8ic6bBBK0iXerovJa26xIpxRl0xRj3806E4IGiRmEUUUKInL9wERA2mwNTSC6W7WkOdeo7V3pv2cNWk1qZptHB4z770DIiFmva032b6NYMbL0sI3oALHp2oWV/5u/qGpXYgG3J2TLEMhklsOwF66SVPZwdwzTfCjrPHoez2VPwIKEyDgYWcxaGcTKw53Ty4kymWpUYq2dq3CVv4x8PADuwtXGkNDVqwbJaQcLe1xEru4m+T8Qz2fiWGd6bZeVKKaRgtXG5VGLITM4iqNVAbXW3SNEZpNj56n6NZL5dXj7hgj2GaHxF9HFffc2mzekPxGz7s7W51IlGEXam31zc7dlcLTMlWJvPGmyfqi4WZMDfGXJOUaWaAxOCgU0Jligoav67KaGfDfjsjwGGs0sLcHk9vrFtou3A0mqjzfengdsW/GEvXIaPu0aUbytx9fpxc+d9LQhWOyxaKZo9iGXzp6pRj4NYwNlCTT6WnT6dqyBVCVpd8M6OKBKM1eSDS0XBVYz969z/pZVyY0Fs2b90/6cxVLw6XI2xIGIAsOkNFc/0ts9Z55NqNOWglADJvwst1GrCUHY9lVYW1JJEWurMgFU6VAJFowc8TIwV1xPRYOypoI254SWhXm8bxcQhNSSCKwyWfTW+3zNATNwvVOAMxd/2aZmDZGj1bK19rgUPrHZcG9Qx7RwVZGV6J51Ekgiluuq9L8I+26n6AaYiN0DbBeFoI0QHHbvJlInbSeasTLltGF47Wqz9Tp4somuOjJ1s19swKUChGJ1qPIbdNdheheGy/VYEdtfMudkesr6w5uK5nos3ucADcLqtTCOIBrpkoG46zQbSJrxOtmE0EwkihnnkpnWHoExjRkOaNxSJCekTdapkBC1K3Hkt3a5SJ4tIabVIWhFrWaIKeEuDlMRbx3h06ainZIuo5+1gDt4AdXsK4w7Nl+cpXycrui/SUUOPrCKsE0iglolpSuQgTMWiY4hRk9ueWHIxZeei6DBCVUrJdJuOECPVy+IkBHINpo64LdSTE5h2hLKjbu+ibu+jjCd2P7oDQi1ov2asH0HoH0M4OG/tj4KQkrizjNGOPQOnAsMOTk8V3WajGmLnItEWq/UKViu49XxkGJXj08rVE2Ua7H6FKKx6U+lO0Vr85GKVNBWZYwWqgTpZ5DEPdk9igNi5A5PsOH0HB5tGx7Bx2wU46iGsHUgFAxBaW2TfMrinvmh1KXD+pkM2h5sbnVIfNFutO9v8c+9OgCJEgguudNFfKdJJR5KORIdYhAY8jKJim6rVf0NXCxISVYQUe3IeSHHFVE6Z8illKtYmqO7I045pHJi2I7kUE2LwSGxA5prslqkUwZ0pb1OFR1Sp84Y56WjrUBEuv1u5566BN//xFd5xx91cO96yPR5oyrGHR0dcunSe2x5zMx/9hA/n5ksX+PDH3MJm1dElc44KxTbTWChMlgHzOTtMkWmK5CnNmZBgES1a/V2p2Zz7NPn+p9ToZQqhjVeP0NLGVQNkc+zPgzBgQUFHxAgSzSnH1zWq0bDM6zBwgDvHY+7I1USCdmNk2EWowealJsZdJgis+p5hVMapcPnyzgTEVhHTlItsR4tUhxA42Dh1slYO1p1nEHsunLd2PbWMc3Yl1zyHCoaxMOaJk5NprtOZ1oGhG+n7LarCqss0Bc4YO0LvYd99ynYezw/mt4o/k7NBhLOO9/0VkB+51vYoV/PuKkgk5orKCMNArTtSlyzD4jTdRtuNKRJjcFFvC2TWpozJPqhS6+y2etDJREWMZpfZjaNRTnNmytNc7wsyZ2zX65VnbTu6zvbEPllJR0rRa37FWSTMGd/qmc/L995lJS9JODzc0HXRWoP52cbUBJ/CTHc19lad28Go1vlnTTVdohUTxGCvvT4HrpsRnbYdrU1V7PYBgTNZVRHx9yRCSmy3W+69926maXIat92PVgcs7RlEr9/3c29+VssUiwO/1r2hlMIwjIyjtUjbDSPjZM/A2vZYS6RhHOdz2mdBWxZW6PuOEEwI0H9ktPCYPGDsdc9xf32pc3AUgrF6YqRLaa5Pbs/CAsTdnM2fpkwulXHKjNle4qJVJef5mTcHugVVmuJ5+3Ur4bfr6WZ6tQZLVORSmUoDZvm6OfJwtugsIQNZto+EGK00TZVRMiBeM2rwF9r89Jc0qJioNZCnQKSji5G+P6AGA84Ey3SXYsKNJjXS7+d3y+BXp6t7xKUITFKJKnTaAmB7ANySR1IjrTx+H4mw0gioxOgMxeCIx+iAluFvcDcljGYsBCaUQpmMgWfA1nyDnBp919pcJp/3xqYSmtCvBQOKZXMFViFZPa6aMJdrwgLmf8TYMTOYzwJ8xcQPxf/0zVlaMCKqsT/ZxySshWKhyRBr8OwKvYHgYk0DVa3EsUohVzWWQ7HRu9OJKpmcqpU/VqEUwyA5C30nREmWuVUDgEULIVRS7OiCdYKpWd2/8M4hRMNqEgnJi6o60FjZ5h0tG2TrQyvZEF87q4+Vs4F55ujI2VnXaOdK8ZaFECQRpKdqNlGu3taSDhPI1ODlmtLo8HafbsRuGNheWitXV3DQV05Go4B2URgnG9jZa2tEDCgUT/I1SlGtSs1N8dT6l0qy/ocCHukc0Tqg+Rrka1CugQ52ArGbI/SRkT51rNdetCx2M0OwnqR9LwZkxdq+lmBZnfFkMJXm0FNSMmlyxei/2SIiUs35DmujKDd6o+J1nK4QnE8HNBemnVKDNUudcvVMo8z17nO9iggrL7+srWbirEPlwR/REc3HcPmtUAeTNJ/uQbsD6M6DrJDQQ1zNrXvIBScRWvsdVWuTpBCCS7RHn3ShtzrdwRYZKtbbpu1sgkXde0G2itYRjt8JJ38Cp3fRyYDEFVKOmMYRTWt01aEXDqmrNXnIaJeQmNDBaOLRhZ8Ey66maFnBXATJtrgVsZ61rfxTVQkR+hUcxcDgwL+cKpqFkmE7VQO2CUJn62d1cKDAlK1WujjAJpqiX9V9ZLHqPvAWo2l5pehCZHPstEWkTL0ajPdv+KIxFywr368e/rSnthmKK/Ch+2ucMxUuphTCXjhpT+vcIy7FaCJg/W8DkBqdikhXG32moGVrlFi1rEatrp6sXrfiEYmiFq2XOUpdHfwVZlBNmSPLxV9TGRkGZbutvPktW+65a8sdd1zh3nuvMgwjedz3qZxyYRwHdqenjMPELTddZJoKj7rlHOcOVpQyMuaRoYykVUDJjGXLUEfGWtiNld2uMg6tDs8z3V6Pp9WE9kqBzSbNQneps0soocyAtYplWXGFb7ykwZ8WiG1kRqpof3fQT4UgXrcqUNQj/0A1j0FpasqBYaycnAS2WwiqdJ26mJo9490QGKbKOMK9lydTsd0ExmznO07FlzPh+OTYxH5i4O7LW/ouE1Mhpo5Vbw7MXJc+Df6c4HQ3MU0Tw24kiql6xrij5WXyuCNowNowAF1FU+fxYSXENDsazUnf/13nf89DtQUoHyR181BZ2kdC9lbPzEVb59WcYfVsQK7EWCzTGBMhRtL96k+j19mK11GdVZo+A/3nbJCJwPg7qswZsU4t2xejZQiqNrrpHtj2/cqFo5IJRs3Zv+B1lO1oOge0Ygw+FwJarM3Bqu+JEui7jlx8HYD92qXWB1aK15W7c6a6B4bVCy9TbH10w5yBPLO8WSBcFan+nVhmoSkBN4DbWpJZDaKB1r6LHB6smXJTMm8tbsJe3Colp/41UNtKLYK3cPIyJ3Vti2JZUDuHRNdN9lyniZAiwzA5AG4iL/u2PWfJ+oKQ8+QZYfVzF0JIHpxLTgGPptrqvzfFVJkFmoyaHebew3sxrj0AUQ/EhWB3tJVIaFVqrNSU5jNrHA97AOpZqj1Ft/r6pqiVw/i1qDhDC68VnbURPiBT7c/cJFhgNCKWso/GdEAs+BmnbP60KEUsQKgSPUhqAUCdFXkCaCTQEdTa9yVZmcqCFLQeu+/SmE7MAoEypwdagCHMc9huePOdrFWfMTwqRWVuGxYc0AoWuCkAxcSEqKahIrWxBMBq/ow1JjXZ8c8ESdBkLE1NM2hqzKlaje67DwpZ0q2xdWwIGINBazWlYqwNafH1rlRFg7GdIqYhEP2eNvEzE2liVo6e20sGCM7SkyAENfZjxViqIoFIImQIUsiEWag0uOPZ2iGKBoqLJU2eKa6+Fk4F16cwHzQ7CzU4eBcNFmqMkSb+hjj1GAPrlpufQApIpdI1ThpJzG+JwTLPpgMo7uOdnUTmdwQ1oSqZ19Z9qYDdB9lnwHG9Ea3UMlkZn2faU0hUAiItYxQR6Wj056YvV9SSH9wgtL1xYLtRLm/hcKXct7V0dJc8uuk32miC0HfGDR8bqPDFrRanseaBkGzxFDUCgdVjTGgdoB776wR09BDdyi46BCITq66yWftS7YM9BK+37T0DLMIqWGQll0qednZeFTgIhmIUS+mPXjBfCnUaWacVkqzGFi9uD8nAV0pC3u4o20wegM0GVpFprKjY5GrF9yEGp3HDyjCl1SFbDt4SYGJNj01YYoJyjF5+M0zHUHewvRX6I9g8Cjl4FKwvgJxj9uOy0QNLVXsQQB4molrEA7HsV+xBajTRLA9DqVZvWN8ISHa74ypY7U8d4fhP4NrbYHsnqwMQ3SCcI5+c2HNZrajHtyD9OfLOM4ApMI2BvofNwR7Ypmg4uouBMVsth2YhB+gU+s2e4q6qJO/LezKagzKcGE26VGtWHZM98815A+9VlC4GH1Pe89bZH+K9YVrdiEXW9nVBMdj5rfu2OLaNUdzB8YBNWzighZatTVEwheqHu1ldmdVOnKW5Btk7h8EDNMH7IgYHtWeBhLug9m+vrYyYMrrdtkitXlermRw6TPG27utX2dMCiwuIGfXUlIqrNpqVL8wavPbT4a23iCiqjGXk5DRz5XLhTW+6l3vvPuXud11j2O0scyoylykMw8DpyQn33XMfV66dcvNNFy1yJY9G9Ygpn3I6DJwOOzYHttDmuqMwkjVzOlZOTyq7U1M6TQnWvTl9qlajvt218opI15sIWhC8fiW0oWX1O/48ZmqiEVv8OoM7awI1zEqIBmzNIajZIrd1Ys5aa03+3kAVaxe0G5Rr15TTUyVqJnXKMNY5gBHE6nPGCe65L7NaCWNOnOw8t5yr06FB60TfJ1arjtSdsOp7VqtK6jo2ubDquxlMHO9s7c0qHB9bC5c6DfSdBaZi9MCoCnkcLPs8WSuSANRu7WPOMnvtzsicgdIHgN2zcZi5b7d7TG3MnaWSnrWHO6gFGxfQ9l0PxMZE0GrANhZCSsRaZzDb9f1MHU0pmRBMcDq96hxsbU5Kuy8zBQ61Wj+1Na+1sZmBrddmVjUSW8sMd66CbDXuiRSj1/Hvqb92TXtgE1q2sQqiVlOKVtb9ipo6asu+0jIyvqc5VTJXr3OfMwsWTGu1n4Ls6ZkpeObnfvd4BgzKHFiTbPW8yBwgCKGxxMTXLRMxOjzYkLMJsTWRNUE8ExoN2KYzPX6jl+HEMK/B6pkwE6CyrLhggDNne4ZpsiwxEshToUwTk9e6NfDfnnF7pmmKvmcFV6yOdJ25oS0QElMidf0MspsgZTxTv9rKWFr9nbVeA5FyJhjqdXvsW6RplXlMtfseYB/snAPQLRhRyVJo+0+s+yCWitHx1etLBbGWST6qHu4WnCoafSO2+ndrn1KBGKszbnRmvqgHoL0ts89RK0OxBjwdoh1Be5IcoVK8JCh5DanfHVWnATdwu6eut0BM6y5it7tRogHtzC9SW9vn6St+DURrj+Mli2hFs7Wkk/mcbf5GVaRaBayU/TOTGh2gd5jCr1GWzV1X1FFMwOZOJ4rBLvAQiEMEK2NE61z3W7WawFKNdESSJAhKCtEWOKmoTn6OtqZwhmIbgkvDitOjPQhY/ZkSIkk6awuUJ68TdXV3BFxjov1XipARZ5TugzhjxbqlqJdHFk8E+HegxqCJLgRn12a+qWik9cGodZh1PgqmrVO1EqS38q5gzFnI3qPe93r2Y8X2aWMtyowj9nMxNN8mWT2zqu9UWqlltHGrkSAdKXZeTjWZbyiNUukBrVYQpiDOWLkRu2Fgey4VLq3hUeeE+3aRqQonW2W1skxVnJhFKqLYN/cJ8mSwIPYddTJgW8YBLREVZRw6wKXEVz3EhKTHwOkGThJcw2jBm5sI528mHB7QX4zEA2utcrq1iSEKY7aB0GpTVp2w3VbKoOyOywy6AiP9uZ606RAR8mCUhvF4sEU39GSFYCiG2JmYUd9bPaZEYYwBXSVWhx2yWqExMZxOlJ33lOw6QhK6zoZZrlbrWYupIJ672JsKcR8Zh0rNSjdVxst3ka+9Cbn2RqLuSFKo0ztRIkV7dP0odHUT8uhPRDeXkNU5pwNibYNKRiSQDg6pLtTQrVd0nbBeR6rYosBh8Po2iIdxBoGWPq2EbD1OazmF4zthukKUzOM/4laODlYcrtb80f95N5ePL3N898RQK3LXXeR4gbraUA8OYX1IXfdENlbXnCy6VHKjYIIkIa5WXu9h6slhZQvGnfdN82a/25pIdp727aRSF4mdknoX9Hd6uTrlIyVzJKpHu8CUtzsHrkFg1SnrXtg44O4TnDv0DG1Rcm5RP3O+U4Tt2Bw/6IKpwvUbZlGNh7tNeYfogOiISHYq7Zmal3mD3DuZFln1GtgZDLSIr2AiQ73X+Fn2UjRRk9UMVVVCPiXkCdhQyrGLnzQqsdMdbQIyN0AvFpSSWBjLjioTNYzgi2dVZcqFKVcuXx15x5t3vP1NO97xlvs4PRk4Pd3Oz6ppBBhF0TLAQYT77r2X7ekp2+3IyemW2x5zMwcHyul2y7XTU1LnddipGr1YbbG9djxxcjySp8J61XHufKKU0e9N4Oq1gd1QOHfYs95EDg4C548SsYOQIgSjJad1IqRqffr8XrdIsWBCdNlbodUcTczCQWzAGp2XEim5cPXyYG3TMtTSmWhfCXN0epwqu61lm3fHJ8QQ6Ncd3crKEmIwFdNpyly+b6RfKZsTr4UPweiePhZ2pwP9umO17jk+zXRdpE+Rq9cGDjcrzp9fsRsmhiFz9aQyFbXyhFJIoXJurdSVtePKFTqnpjJdth62aU2URCDQdwNR1fpSS27oFZE0Z+6bE902d/y572NQZzJWZwDuI0Eo6sFNXCCwifsE68OoE6KQvNa0s01oBpntz9SlGdhYdsMFjtzmLqMNYNCooZFaK5mK5EZRtvMIAUiuaCvCqu9JKbJer+3YMdLFcAYcef1UW08AsRi+rxuYIxmDdSKY15s9TbVlJZuqcOtpCkouwTMP+/UthJZDsPGhGIMklzBnHee6WaxesarTdLtKXWHBgWjlG9aDN87AFjGHOSXrRFAa4GqOqDRgmwhdouuiBxhM2yA4KLAnbKqq1fdkPCPc2iWC3QMJwYGtrQMlF6Zsdci7wcs9ste14o5qtee76jpSMjGv9WpN33d0fU9Mfo1zVtoytm09PQsYvcGYJSvc8W9ix9ZyyrP47qyjLjbngHkuOdY2r69nTEyTr7uulK1tvzgLgB3ED9NAzoVpmmbF6Ye9dQkTlhUDtp69SilCEDYa9sKkntW34JRRwlGl1NHGs0abo2qMw0kLO60mJhQigYRg/Uupxam6kwM1q7eM2rRXmlCc+fH+lF1bpzBJprXUMZqwMpVscwE82GUKvUr2eWhq4Pi8DbWYXoDXrkcxP9nFeAgaCHSs0ppcJ6RkK3d0JXaNBaISSiUWq2XXYD0sZ1BraRXH3eYDV6zsohT1lpZiwloqJG39hIvntVpGcs/AjDGSghI8OWcJJGOfjjmbnl/FA1eJlNaEcbSgfnFtoqCkGLw8o2PybGapilUve5WrWqlWreOciknRg3HBlepVvQTRa8+9BrdUvA9yZpomV0wO0KjBVAvseb/PKgXRSO99FVW93lVbAiRAtASmSXcFw3wYmA4h4g2YPFi+V9VuGgSBjl6ab63kKbs6tkJMRvUOwXw+/0xjld2I3TCwPejhcC2c35hzH0QhmFNim4MwoUxq9HGjv3o9XDibDQrGyQOjAI+jZXQrNpBTMP5p3UA9gmlEiNCtIPVI7CCYcItl7RzIePYNByGmvGciMoiQ+oiuLJUU14muE2K0TUuCWJPlPho4bAtyrdZWxDMntVYf/MLqoIda6VaJrJFcxZSMHUKF3qKttdq9UqdlG73KBkfFFc2qGtUin8LuHvT0XUg5YbOCc4c9MQbGqXDv5SvoDrSM6PGdFnF2oRVTZLXrkBiNPun793plr8ONCVmpWsuPXPZ4uGUeW320tQQakbIzanTZQR3Znp6QyKykIDoRmGC8hp5eRnUDBxuqJAgjkjaUbOpnFggzkFmm1qfYqN2hi7REYC3MmRclkLOQRy8yr5ZUS36+fQddJ3SdQjCnrLQsArKvlQpA3deChNDo0DqDuhSt3U9Tl26fMyBkmbcUbKy0SYyc6Y8c98d7uFupI+hkvQglU22qWr3zDGpdHXV+VaO2inoUU8+88Khd20CcVCWJIJ2/egSrwYQVIj0wUnScxRUU9slg9572daaWlRWtSM0ELyMoThEcxsLleyfuu3vgvrt37E5HptE2UnGq0tnI4/4xWR3eMAxcvXKVd7/7XhS4+eaNAdvjU+8Xbe2hcrUsc+oCJyeZ05PCNGbyFJBgCqC1KiKRa9cyw5DREqw92hiYhslqzjfR4EBUNlmIXSD1SuztzGqBPJmDHqJT6iuUSUwZswp5h22cTvErJXDtmjCOlXFSarFzySXOoCTnwjhUhqGwPcmEYJTp1SSEZDXoOWfylBlHy6yrZiSoCfP0pkNQa2V7OppGQFGqmkBMioEQOnZDYSyV09ORYcicbK0OPtdKFKVPQsKCVCkKKWM1k2miTCfEMJJS5tzhefpuZRtbbVR0HxtnBstZBd6WNtD9QvIAcLsXlWl02kcguJWWTQmWSKxCE3PDBdVijPt6Ugdtwam/4g5ao6jeX1m63RvwO+rrZ22lRXXfumV+Dxil0GsEu64jdYmu6x3YBlc0v579sQco1+fXwpk0vLgjEc6cZalOa5xraNunG2D28xJzuFJSSkkz8E1xL6hkKuQ2vjzpS67VAJoD6hBaC6VK9OvXs+fotaYi0bJPM/iEWV5SnNKbgulvdGkG+lHOOG9ns9CeTd+LXu2P2wIKEZtDjWlDEEK22tbmz5Taapjb5ij7QEdKntlPcwnVdfcQ2wvFFlJzXdX2dfTMex0JFW/7sVdwrjO4toxumIGPdXbwLKH7Ins1Y0HC5OPDfUiFnKfrs7uqlFoIMZBLIYbo1O0by/J8MM0CGT7GLV3qWW4TUeoi1GTsgYiPWWFmrATx3s3NWZVgYNOBERSfNXUWYoR9cHqONniwLElCJZFicVp78Yev/qyNwhtqBrykUAJ4f/qiOrfuChibTb2MyMoM/LtQqvc2N8pwK85VB6DaLodO7PcVo+S3TL5WExkSLT5xjY6ttBK7+S57VtBK1kxrx/yK4KhNdD/3PIrmH5UHCFgaDjP6MYiLHcvMAtT5fhlnPjT8Qz0TNDN6uHg5QMSyvkGtl28z71Br91CrqTyfKVewkqxKbE/RokS+XgO+ZiPe5tDFt+xzln0PocXKBJFIFzvL8tdC9kz3PG9bOQL2XbHtx+I+IoBEgrhKtCtB5+wZeoRAnoOauRSmWIjRWGRqnCO/ZmcOcL/H+R7shoHthXPCqQRuLZF0pw2CkGxBTVXmLie5WM2WTxG6aEru1tLVIgKh25gy6jRhak9Y+jn2ECK6WnmUNtIKz4kriCtUOsvkOODZ7YJnfYTN2gbfOFZ2g0lJg5BS5PBiZOfAZbWJyCpSA5xuPUodhHS0QtUzddsdWgt9H62fmMJ2O5H6yCoGzt1yQJeE1ClXr0E9UVMwVhAsuqwSGKdKHw2QqVrL3BiFMcO0q5weT/QxQh3Rq3ehl98Kl/8voZ5y8fxFHv+Rj+bcQceVa6f8wf9+K6fDvdR8Alcu+Gw/RKSz+9etrK9tH1kdJaJa1OfwEI4OlIvnKpu1Tbjjk8I2w1CEK9miY9IZPbhka0cUxq0JeU1X0HxCqae8/c2nHB703HTxgClPiFRCPqVu7wNWhM1jrc3BONmGV4VxUIviJ9AMu9PKuM0EzMFPrXUuvi75vFh1kd0OtqfVaBJYzbT4/dysjfbaJWGarP3UVGzBtZBwmOtny5lURIpW79xHIYgB7C4GizJrZRyDZW8jhGCLw25nsumrpKwiczYhOCVFOj2zqT+8bchbjGpigYkgkESJTETJRC1UzVbU7xsXFHdY7TuqA4dZcKaeUewj2HiSaIBWWq/cNTAR5BCRQ5DKpDuy9zxUD37NSpzBlHDbEtDk9KnMRKNSKsOYOTktvOPNW975ji33vPuUYTdSazVn0dXTdebAKSm5Q+0L6zROXCtXeNvb38nlqycM+bFst1uuHh+3VAKCATMJwtG5NcMuM+wy05jpV0IuI9vtiFYTXjk5HRiGzDAEuk7pO2OLdKvAuQsbSi1IUC5e6lhthH4t9JvgfULFWCauYdBSj8PY7lHk5ComqFEKXWcL/9XLwm6n7HbZlGyrAd44O4l1btGzO50s6DdYgDDGapS3bHV802jZrzzZ8VNKlLU/i1LZnowMYyENmdOt04KDMBZhve5ZXx44OZnY7TLUaD0stbBaRVZ9gBpJ0cB0lzJ9r/S9orqzTHK/4ujoPCn1HB2eR5kIouRpHzUvpc6ALDnFVmul+YeqTXxH5ywYtN9dPy8eCfTjs9YCxXZdtn5FzCmJsRJTN8/NcqaZ51kFW7s1Z2+EjbM9kNnXN87flbOpVnobl1avqsqc2Wxtd/rVygBT17sC8p4SfpYKuQdrZ05jdrgFaWJN4X5Rewe14Qxwd1jvNWn70pFGwZ4Bk5oyRXOY9lTrlr1WptzaiLWgaCDGwjhZhmuMyQFFqz/1V5csg6wjVcr+mnDcEsUYQC6eZe2JWouifWC9ZAODpVgGsrTexJ6NzaXOAY4YoNPOAHeCmCMlJ69NM3GeGKpTFB1IO6DtOquB7rp+Brfq9MXsa3MgINqAEXP2ruBOsYrTxU0V1gSjMsNkvYMN5Bav45a5/MFqeT3YEfY/n5+1QrSeiYRkytQoDLsTD0aoDwUbn/20smBnP7Abrezh4W6xa6KMHYgFYsx3sXuw6q19ZEChGKgCC6CEAEl6UhwpcSJEKNWpp54hDSF7UDp76xqbrFontDp7L9o4sWDDiiDG+Jmy++pnaKBFTAmZMvh7jf2h1dratF7mgrE3NARU7LmJNjq5evKnOoSzGl5xTZx5KRBLkK1iZ5o6RRnG0YO2hdol/7oM6m2BGnWuOZaKDVIfLUWVSZUxVzKQ4jyKfO55pwY1QBeR/TwXE7FMBGLLHuFMMJiTa8bsVmqwhJfFmrzVDtaiSfBEAx1RehBjYxjkaxC5/S0AiUghSKGLewZO9aBOrqZC3pICilGWrZwCQjB2SYqBrFazPtZM6aoHqCzIEgW6lJBqtZzWqsjLDD2YmppYnwid2DqbZ2DrQTMphFbJ68C21mr1tn7vLGkx+YIixJWxMkoNqFqHCgnWBi7cf9N+CLthYNtJ5cJa+ciLyofdFEGE7SCMI0bbBboErM1ZnArsJqwIukJMkHpMrS1bTZhmo0IAHrpXQyxkEOc0d8l4ddMJjCsIBdE1XVI2a0CU3QDHp8qYbVPINTDmyjAZ3tcqkAJZTdGr2ySyBBOS2lkRplA5OOpREbIGovTUqVBzthsaKuN2gmyqueGwIxpzmqNzlhENrCmTUHOgW4mpxpZqmYwkpA5Xe4U+BPJYKUPmdHcM26vo3X9EvfxOGK6iqtx3+Zg8TXzYo8+Tc2HdJ4YSyKwJ525FVhuLdKnQdZHNoXDLrYlz5yKPeVTgqFMOEtx8TjnslfNrZZXMUd6OcDrBblIu7yZ2JXCaA3fcawrEdxHZDmvydMjYXyBQjAoldl/vubJjKJC1o6xuRm7+KLjwkYRLT7AFTKA7OnSlXaFsC0XEm3sH1pvOBrkGhlP1DDpIVPIoTjW2x99f8OBFxYIm+10ViUr0bFrK9rNx9Myti0sEgfVqr3pcs43ZtPI4UFCGXFklTKXTN42p7sXJVh10UYnR+wkXi8kMo2XSvKXkIwLZTtMAWE17EKMvdVJIOhJrRwgTIU6EMpHChMURC/v2A2aNClhdht42Ap2fldGJI9QE2hHYEKUSw0iXBkqNpDRS2VJ0RKhOPY9GeU3B6Obu/DWKMlnJ4syCWrh2tXDffZk73nLC5Xt3DLvRgE4M3p7CHNVhzFyX5XBHOJ+J6J+eHFNq5ejCRYZx5OR0IufRItvVMg8ShN3W6H4tAjmOMA6nVjOu1uLIKISFaTwxcZpoi3RMgWvXrDZQBC7fN7HaRNbrxPqoRTArmgMlK6fH27nNz+SpJMECUOb8FqK3R8glMOyEYaeMw9aHY5jBjNa9o1wmp4AFoU5GlRzVsyAesMhO7wsI2hViTA6UDDTnyRTWax4NfKTItWsju20hhoFhMKGoPHm9pdcFDjth3DH3hl6velKsxDiAQAyRVT9w8cIVix6n9Zz5SbHzwEfgwrnzVtu7XkG1vuESXCtVMKaBg759z1K5bpq+pxZAD2ezeaYzEGjWIupIQIO1ujD6KswhZ8+WFmXf6scvX90zu7+qcPszT6MDrTy3bQFmUDdnafuOvjeg1Hm/2hD39bw4WN5buwa1bJM/qzmYphi7aU6q6AyWpmlitxvI0zQrAtvPdl7iYAAwpMTK+7cLgCuX16b26LeoVgtiTbnMGb/VZkPsemLXsRsGaq2sVmsedelmjo6O2J1cc7otXLz0aKZx4N573812GJjGARPIsZZpXa6WnZjKXqU6JRdZ8dq/XMg5s93tyMVohNXn7jgMFgxUJaTorLNobDBnEMXUzdTjEK2PaZws84kYFTimxGazYb1es16tWa1Wc0302f6vLdvaslgtC2cqqdHWiBB9HNp7pmki58w4TYzzODLFWstCWg0iLRjQ1LElesY4ekzR/C9byvbMqPV6zdxkxsdrLRUJkZhNbKm1nny4W4oBK+cJTnMUWhdPwPuwRkhKxXUHireE8dZYrX7cwEAT9rJsbdVTpx1YCy7F9oJ2/yqFTnD/TA2QSHFKsTEkLeijLqBk4SORvUBcC1qVooTgNezehCcAEuM+8xasfjXU7BTVQglWYiIaqLMi8l7nI0bQAFWsjVWrpy61WBmd94lVdZq1WBbYMs7M+y0i7rtG20+jZ0TF9yiELkabg1XRkk3wrFhZUFQ1UIvrA+DaHViWWkXogp+shlb0QJXWUtEznth12WPxNkqxYpH7M+2RZmc3UEujRIO1YQygSvHxLkHdh7JMp40jg+sCDoYtGJc9U1tKZazZfHYvh4ghkNLKstFB2JUd4NpANnrMT5PgvkdEanAhLByG23gWrQjFaoAdG6DBWTGW1TahNKFotYRZsHIuE0aLRvfWPOurvNf5dKMTLwisApzvlEtr5dpKWCejHddiAk0hmIhK17mKsAvvAl6j5QJJUZB6hoqk6oXajYOf9+kV8dxMHZE8QI6IrI16E5VVh6upKrV4Wq9tiJ5Raj24rEDBL6aJChWLS0apVgcQ/HSioMUGUus/SbX314w3rLfj9b3SJRinSB4DdQrEzjNMbSACrfjelGQtjKRVKUNGdzs4uQzjKVInQBjHzJWaOdqk9g222IeeuDlH3GyI68Q6RA4OIhdvCdz2aOHCeeHDHq2c65TDDm4+qmySctRXK6xXGGpgO1mm5tqucJorp5NwFOG+jXAogWus2HVHbK89ChkiMvXmxDZFWwRkTVzdSrjwKOTSowgXLvjjNKdZAMZMbTSyKJZd6iMyNBAAqers15Rq4yq44nHfeU2hU5EL5vR40sYjYfaMejXaZlssDNiK1/faWGh9EhtAAGMZxEb58YhbUHWqhwFs6zFoUUap/j7PMJtzvI8yPpytlIx6RlakWD2GYMEkiveVdcl/r2tSVyjGtjnmsGTL3F6nXtkyPLhASAA1tbsgPTGsiemQpErqNnOti4Yy13HFZBmNWWk0WKTTA81zG5lSTQX55Grm6uWB7ak5U+YfODVW9nRTwQSpGuXNnqXMIH0cRyrCycmOqRSmSdntRmuL1JRRnRbZxhgSWnk7rXedZbLa/cteN2fzIURhnOocjR9HZbWtbNfKZrC6pilngnbUAifHeXbmSxtwjW6llj2V9mxissbnY2XYNWX0dv88guvOcXP2DRzbGGitXpqX3zJ1bWOuXitTS53bKIhCkTL3cR92EzmaY2NZpkweMzEmkq/Dtdh5J6emlhoIocz9iWOMjLly9fjEav3CipydAhpM1Kbve/rUoaoWNPDyF2sFoT427VqaEvgeu579u9n9Ae7DHejmUmZBNOsH7s8LuK7ZgtMVr89S654up2ee+wxydQa2+yxhy+SPs5BRa6MDzFRWC9a78NPZLOaZbGs7z0auqf5qgFfEY2ixqbNHb0GiNC6sgtOC7VyGcWQaR3a7gdEzdWMDcqoGHGWfIRVAi3gUdE+RbcyQVhcWPKt47sJFBNvbpikjYu1XNodHHJ2/xDjuqA76W1Yo58I4WmsevERBxAK1MUZSdmAbIynts8ctYDUD29YTN9vcm8Zh1qnoxZRvLQjrAlgSiGrf0/WFUpUulzmIIQIpdcS5t7C9zipmz9nvUs6s6zbJRaGEvXpsUStlaWuceHAuF6MiT62+tzLTOP3R2xVLU9+3ml4RA7ziIMpqrnUWnsLXCJXgwFaQamDLQA/eb9j7cj7MLYZW82b11SpC0Ejrn94y5SkINRqNqd0RPVMvau8/o9hNcdGubPu2tHXujA/qe3ij28bQ9vi6p9yGBlc4U4ffwJfrVfhYsOz7WfFN/LtlHptNTyKGYOKQQKWAhjMZXR8Pnqs0X07nln9VnJlRlSrmrxQPUkUPruBZxqoWKKheK5vVXqXVh4o4yLL7n2LyDCizho0WQaoLLar783M62NctMMV2F5FUl/UVDyDavWBmpgXPAjswaE/DBaacKWKjwu+/e1+6D/jZ/DMKdiwuHiYRofMgguzZajRs1OqiDbxbiVAlET3JLVZrTSIGWzdnEbH5WeCaAF4GKY6/kPk/aEPAzimKtVFVB6zeSMj1FlrywstLYM9KIhrL97pA6EPbDQNbCHQqHFb48E5hXbm8Fu6pwjGWsZDg4KCJrUSlZMuyDaFleJTQR2rsDMhkVzoZT03JWQtSx7bt+uirkCdq3CIlENMlcybVMmnjAGWqxmZOQrcyuelehJNrI4WAxkS/MSd3HJQ82rlJhlUfWK8CFKunEYmmlJwLtbVaDBDSyiZvgeMrlXEtXLgIhwemEF0JBBWiCsPWhIrGbRt01my5VrwHVmVwxWhS8r5dPhDEaA5g6qZ/8u5TVE0CvKQN0l+gv+kxXLzlZm665SIfezM85oLwF26L3HIBDtaFg81EI7f0qZKC0gWrXzB6kS1+AoSmcqlwnDtOc+DeIXHvvZc4PT7i8rsuMJ5cY9iecPeVY65eO+We+67wrssTO11TLjyR/rGPJV28RFqtGHaV3bEwXhsp25F85Zh04RzpcM3BgdEuV72w3Vq7qNMtSPKgA0q2+AZdb5PXlIqtCL2KcpJNcdvqC1scwxSmV2KTODvQaOtq3zMvBMEXpRStiXUQZTdaffF2EDa9CUltViDVNu/1mtnha+sQAkk8qghzAf/D3cZxa4smHkkToQah6kTViT5Zb8EaMiUUJNnf0TCLYzV8tVdiVAfCnsUtDohdyVe0I4YDNEZWnW1VqdsgAcbpKuN0jVxOsc1U6WJycQwT0EgucGNiCE5B8qXh8t0Td71zx+XLp4yD1VQdrHtjSviCqcC6C5zmnddh2XUItqiWWhmmieD0vnvvuYfUrQip4+T4FK2VPiVyMUc5DxkJJnYhziAwJVNbUluGC8/0tvDW3PPy1LJHEgLDLnGamnqs04pyRnXrG0acnUthTy2dAUNMlMl75nad94Ys7HY7VNVEhPDNKkXLuGUT/QgOUsUdmNbGZF9/iW24LbKcoXjvUov+26ZTazEK2Gg9R1tQS9UpXVOmRHtfCILGQMmF0c/rdCjeOsAqalKKrDcTXbyTd991mVzfzma9YtV3nJ6ecv7cOR7z6Ecx5cxmveb80TkODw4s87TemCNFPIvkPABlF/QImKbv1bbb7bzxJwciLcvWHKImrAMtuNocI2ZqccsW3L9+U1Vn8DqNo9Veez26gd3maBhNHf/+qjqvu41eag6xWkCwOaAOHtsq3daMsw+n73ti6lkfHnF85TJ5mvaJVQfeU54Yx5HLV64wDAPb7ZbstN3qjmgIgdWZ+dKo+bNKryq5lvmcxtEEl8Zx4uKlm7l06Sae9lc+jTvueBv/54/+0Md4IKaOm255DDffcivXrt7rxz/lbW/+v0zTyOnpNU5PT406nJ1ShDjgsvWp1R93fTc7jqjXqJbCdrcz4D4M83WN02hjPAQ2ZUPXKauVBXwsMGjCYapq9YfB1sApBn9m6tn0jsPDA1b9yoSjVv3cxqcFKnOemBywN9ZHLaZ4GoP3w00dEhyUYiCmFG9NUm1vbcyYGL2WUD2T5m1bzLFNM7htg7YF4OZAKu46e2mMOsCQ6k8zGhhMMZFi56JdD2/rU2/BEIDgrEBJc623kF2UVcDZF7XYHp5VoWRqnVCdAB/fIREFAyxRIHiSJlgNo9XFAp4MCDWSYqQPnQceJ6QWI8AmoXibuaz2GcCYfAiVgSTGTLQ9sPkCpnJciVaOZ+4AwSOYUoJRTqsJLtl+bJAsBW/HhQVubfwpvQjrGIlVGLJCsXPLjVmimT6VOfBsGhACkihaUVGy94KtBLoUkWT1yEksEHy46t3XqZwOJ9Rs7UqlpBkoZhEQa+GFB1I7SUiMrGNnHRGqWlCrGPvT2nFaEHDVrUiho09rYux8c8pUCrlOnsluteae0Xcac8bgUsT0eXIZUTIhDfRqIybGW0F6KpGSJ+uQoAaaSzQNjxZ8mqYRqcZ8tPVH0M5LHHDxODXfJc4+r4vdWRhh1hOYVZExAG4gvCeGSB+T0xsjWltFMEgM7pgrtbaSNyFJtGSSiPVMn6Ybmk83DmzVslWrBB9+UVl1Qi7wtiuBu08EvapMRWY6sHjkx/qKukJtG9hFjLJXrT+czVLmAkvNZ2RnwRa8riMdHZCODombjhojYzYq1W40SvQmeUamKDkrU7a2M6kL9L2QxOpnx601BK7V1HFLMaXQ4gNdxfpyQUSS3fRgoSyLLtcWEXcn1f+16WEalHEsbAer+4TKahOsH+uRsN3CuPP4mUb6wxWTCBrOE2/5CPJ0L5p3MF0zTlHskM0RKSU2fceFWx/L0aVb+Ygn38yttxxx66WOx1/InF8rN5/LrNfiaozqNbYmLhMCRC/Yt2hymTdR0b0jlFLhsFYOV5VbkjJeEsabD6hTouYjrpzeyulu5OrpjruvTuxK4rS7lXF9xJQiQ1VOd8rxRrmSYNxEpvWa7kJHOgiszuGZe8uCShBislpKUykWstfJ5qIk549s1lbXMFZlqGoJ/iBGH+5MfKj195JgFPG+Y45GxthYA4qoRSa76BlfW6HnCbs9VXIyJrwmpQQlV7E9Rez8cjaFWcUmYRRh9HN4uFujlCmWVatikUURCFJdeK1avUYdkSIE8QasDg4swip7x7k5o2oTZK+qjEfjEzH04M29e6mEkhDJdCnRpxVTuQZMBPIsMNNqz+Q6JVTP6lejOm9PK6fHZU/ykDPKkTHMNSat3hqMaijsaY0SXD3WHfHdbstaAuuuAyzrOo7tvqnPH1Mgb3UuaKTUcb4V1YHaPsrYoo92m0Ip3qonz/WDU3K5fjWaqd3vfYYqCHtgK8WP7+rStVJHO34T1kBNvr8JXlhLpeZ0FK+vqq4kHElpH5m1+mN3Yr0n7ZRHWv/hPI3mSAsOdFvmz+pZgwTPKCjqWSwR25xqCZgomcdzc9yDaGdKTHkiSqDrtuSirPqOPkWmaeL0dIcC912+ynq95uZLl7h04QJHR4fccssttgGneF2GcK/8vY+OP1gboEeKDePoGRULGMzijIBlZJjBwByoaGBnfv7OGvLMRnGmRlOgbVnanLPV1jq4NdqjpflbprhlLhpwba8m7tTmQft5Lc0RbfOk1e073UxN8XzMmVwL29NTA9NnHtE0TUzjyHbYcXp6yjROntncR/fnlkNpn5G0r9cz7TPqTK3O2Wm/DvqnaeJ0t+Xuu9/NlSuXGYaBrkvOTthx17vvZBwHTk5O7NjF1otpGr2e3WqRx3Gy+w2gMtMSu96AbT/ua4DFmRRWR1hnIaapVKNtenSiamHKBQmFVAqps2BZSp0xVdCZLl5rNQprLVStc5a291fLuIc2/4uVbswZ+2LMkfbcAlB93YpYL9smdqQilnEFo28XV8evdc5azxlAcAbWPsig1QCD7d+VOu8ztq6qNzreZ3TMpwjJ6jwr1u86pkJ6REzpZNcq15+stY/bV+w1X8Wy/zaHoRLCRKkjuYzU2nvgPszzXkXnOTprYpRCrQ6ea6Cq1TRGv594ftC6HER7Gv5sjLpfKHUihJb5rDMQ0plmapuuiaW2IJbRhJEzgnayz/JpNZxg+SCbS4jRi0MIJIn00oFYSZI45TWG5GuaMPneh5ifoOoBEPEs98yqt/ETRFwXS2xuehlTqoE0CUH0ut6tVd2n8HnYAsddHwkhIZKAbFEdzjDf1J5iCJBSpE+JLnamku4iUDYE9rJfVatnzc2PwsFi0da6sq3FE6mMlKzkHOg9eNAFa+ujVJIWy9b6M8wlMwwTp3TUCN2qw7W8qGGiyEQO2TLXfq+id75oPXLxzLyqosGSeOr6OpaFL2jJPt4sAG59u3svX3ABLK+xJbTWg4m+60khkqKQu/PkabzB2fQ+WBBTt33UeWHd2WagAikEtoNyPDij2B9ymLNpRiFtKNwTGS6F6mC2OmKsWF8crxFCraYtxJ7+3AHp3AFp3VFDYCwQijBl6xvZvNbiSp2l2kLXdYG+s7hCrpU8Wm2CRZqFmo26N40eyYoQeueHR7V6vyiQ/IHPuHt/TMFaxZRRybkyZgNAiNKvYL0R1mtht1VrLwQggW5tfcCIh3T6GDh+J2U4JojVs8VuzfriLXTrFYdHaz7iCU/g1kfdwpP/0nkefannURcitxxk+qj0saI+mIMwA9uz6sAtY2FJ6L2TB54ljSYRfkihrDzaQk9wWsPp1DPkyi4XLh9P7LJwpW64MkROp8CVXeXarnJ1o7xbYBgCu3NruvPRe+PiQQfxumwTzZlqy6Ji5QSl1cfYvV31XmMxGUAPmEpxF4U+wuTYStSViqMB2xY3EXBl10ajEProaN5T1610dzvaON70RqkJHvkjWZ/aVgQ/Ta6A7QsjPqQf7mb9z7yWgxb1bjRrbwKuhVIzpU62yNQJkW52VpoCpqMo9H5/ergUaGtBNGBLo/yoU1wKKURy7JlKQHVEGGwDEQejjclwNrtkmg7UGhh2le1pdrGGloVt4ihCzmcVRaFl7OzfPl9wp8ivbRgHulVvaxjmbE+lmvOGGCUZo0zp7CyrRUbVaunmYzTgr1jtmC91Ug2Y6jzoheKZFmDOoolnUMUQ+0xTVNmr+TYnfBz3C3+rX9RqjmYVfFPT2XlsVLa2PljGxI/VYo7VWphVVauxqUZjLsXqciSI9dp0UJjPANsGyNu5FAmU7DROBzWKEqpTiQmWDQsweZQ5xsg0FbpkLVVUldHbA4QQWfU9wzCSp4mcJ86dO0eMia506BnVSK+yYsZ7OOCdOV1mjxSF5GmaDMDHSqmBRm9zb8OphuZ3BN+MJcjsZJVS5wXSGBAtk7rvf2r9Q70mO2djMdV9IGXf49LnKG1e6fXA1k3hDNBqNbwNaCvX010VJqMTTzkzjSOtjr89nmkcGcaR7XbLbrfzMeDZZNW5pZD1mU0ehIoG4LHR2VSeiwP5YZzmlkFNWXc37Ljr7ndz9eoVppzp+x5BGIeBe++5m3HYsT3dkstk3zNlpqnMdeG2X+T5vmndq3j3pRBjJOd8XTumtn4YvfJMHameHb9nAgVOSQhOpWxB25ySr50VPChWap6B7NlXjPv1h8IcmCtz+ZHVseZcrJ5QIRS1bIsLLRI8wCK2DqYuELOXLlH2lPQGunAgI3iv0/sBW/bK2+KKvIZrK8GzJSGc2cei9U4NMZoI1sN/KqOaaM1d5qcrVo98/fuMYdYAvwWkCoGJUqa5VMzaGQaaeFIDSfuglgVMLHhqfqxqQNX6qaoDuAZsm0CdjQULnKqLK7VWTi1wbM/eMpNhBta0augza7GaPzF3Ldjz0208eCsryRCyzRnpXIM5WbscbYESIUqiyARq3QvEx6KeqUNuIpDq1Mnr/pP9sUOrM/VSmcbKa6+sriNSAWc8xdBUvgMSA6U2yv0e2O5rjA1XxBRIwduuSXCxKvNj2zOzWmYrm4qSUG8/VrD129oHWQ631olcoGTDLlZ9KSQJVmOvgqgHNLH2hVOeGBiRFDhINseqYK2cYiEHe+bWdcaUuoMEr/T2oLtnyAxZGK6wgIJ31NB9sLRSCHjPbl+PRYLRk8WExqyPc0ffb0ixYxVX5DhS+xsTgnufgC3YWrTpoU/C+QN43GOEqwP8nzsqb7wr8MZ3C/nEFGp1CpZ5yzBVQcX6IWoeIVtNFoOipcJUZodX+mCbWi2Qt3QHPRc+7FGc//CbSIdrTiebFtsdRj1Jyk23Rp9gMIyWHUidcHTkDaSLtcqoReh74eAo0K8Cqz6xPcmcXgtcvmckdMLBxY5ubU7u8ZXiGSiBAv0qsLmYGMcJ0QzZndIoFCrdJnC+i8jKejbmnIjJQNrVK8rVeyeu3ZdZbRLdKrCKgYNzkRAOSI96POXiBo4/hlv0Xdx8GHjU+Y7HPOE2zh2tuOlczy0XV5zbRC4cKX2a6FImScuCxjmAYE3tZY5auf8+K8yiDTTYxLEahH1EMFEN+NEcVnM6D2LhgEqQzKPOQ6liAhvVGohfHdXqFyocn8DJAHcfw71T5eow8ZY7J951F9x1jzJpYHUhcvGxvdU206JC1hKpd3AqYrLsEqCLQiwVmay/sGZlrELXK10Hhx0cjzBmGAcLblSFg030aKBvGsEQUJcgYEGIPsLalZtjhNVKXEhK2WajPWuTZ/bocq2gQYkC6yR01+9DD0srxcElRi82uiCY2EJmnAaC7GwTib1j/w7ozH+JaQ4YNKdwFj9wL+JMbsxpLAFJEKu1JUgxobqm9h2lnKPUgVovooygA1oHVDO5TpYdqpWxDF7rWtEajS6VAydX77b+reMI2GK+Wff0q46+77h2smO3G7ly+dSc81K9LsTrvWLEaJctMwCoWC8931pUlTxNhOIZKsSdCouoJk3GUPHMV5zZJtj64SC15FaLjP9eyGcc7pptUzSRJduAxNt3CGK1sOpZDHRWEaVlyHWfyei7ft5QWy1sjNFUqEv2ZxMts4mdZ82ZkGwtqe68qLaoa52zNswOkqnk7mP8DmKr6z56tsVqJJVarJ+eKAYeHBil3LkTFsh5AuweDtuRfWsYsxgT1463XL5yjc1mQ+oSd7zzXTzhIz+Cxzz6Vrq+58L5C5QLFyCIK/SuSSn69VrZx1lA1mwGtZaG/EBOuw+4nZ4eW9AphLlnLdIyfuFMRktmBxNhPxY9q9HoxzNF2DOyuRRXNO4YJwNsRT2gEmU+dpCWDbWsnznBFtjKebKMv99mVeaWL8XB8x7UNse7gT9zCMWFlbpkveq2u52NMbVs6jAO7LY7dtvTuRUPni2S1sM3RkJKJl4lbV627JPRdQ8Oj9jutmx3O5vTKXHTzbei2L36w9/7bUwNtOPw6Bxd15Fr5r577uL0+Cqp73xeQAvv28GiZ6cKtY7kfKaUwIQbiH4/5nrbpvbt8yPEQOqS1ac3CrnPwb63HrSr9YpVv/Lv2Nczp9SdGcqtTVOxjG2ybK3V18Y9lb0FpNp9DAGpgTyN++x8CPsMy4O8Uojz8zw42Mw1yw3UphnEN1aOr7PtPboHQtX3baM5e6Av2H4efM2f53JIxlBLHR2CpPfZzf1zt9PB/GPTALFOBeq1rqoWxGrrbVujcs6EWAiilDg5rd/az0Q6kqypIQB5FkezwJJvE0E4WFtiKBcDtaU2ZWtLfCQHqiEkxmD9UCdn2vgOZAVNKgyleikeBqCQuTZ6D2vb3ukMMa/fjdFgknobBFUv2SuZKiOhZutxHpIx7moklGoCtNF0T1arnihWynQ8TTbnUqAULxFrwVvxvb0NY6x/bcTHX83uj07EUKxMEddxkQbKba9qpRf4T2uoSMhWNuelXJoM66QYSNVqiTUUVEYqyiS9g/NI0ExgQshIyB7Sr+CCaikk0AT0DONAqRO5tACEgprY3ZiFvj9G1dgiqpYdXcUOZUfVCa2Zxqw73e0oEdbpHH2ysr5QAlkDOUSmantmlDQDW5mfqu8natXSuVZvVwju1ZOCBcdTB1MeUax+OegaavQMtJJVGVxjKIhweHDEul8jhxdtoly/XT+kvU8zvu31Fp2wesZzwdRiH3epMroY0U7heBBO1DNkYR9hNO+nnnnpvIDNKQILLSEo/aZnfX7N4S1H9AcdoQ90Wuc9Y5rsfTGY02d7tVGMWz2+VLsbIapv8IHUWQRk2BXKZOcSIoQkxM6yiKiyS1ar2dTItLZ2OBNFlF2E1EvDthQHddAilpY9DKqM20KYMhsyl3plsw4cHQU2h4EuwaqPxIvnSGPk1q7j0ka5+SBw82MOWa87zm0Sm01nyr2dxUZmxoVHaqOrRoa6z7ggTpf2bG0bHC2Ty5lFzzYOo+glr3cU2X+2875UbQyoQkkt4i2kmJ1aBOd7GCa4sFEelQvHo3AYAzcl5WJU3nH3hE6R6RTSQYdEWyRaZt+oNlajPRU7184pxrUATn0JLibQxnwKVsdhyrkWgepCy0idea9aeE4Ej07aMVa97qmwPs5az1tlP2ylRZ1cPj9KE1l4eNvJridG6NJkKF5trItMIJGpDMQyEEpPqhNIsibqIdMEEWyK7mmN6hnaFo1tC60TfsFpG40Sa0rFplhYJFA1WR2MjqiuqGVnysJl56JB2Vo6TZVxsnZeU1Z2u8K1a4Xt1jIs9gzbwJbZkbbsSZ4DG2dbXYAlJ/YqhPuxpGq1WiVkxlqpnBVJsPcaSFQrKfC16Toqdt0767XU648jQmjUK/+cNAXKshfhil6TZzootlbWaj2wJwfjDRjYeupR9jna7tfTHE81alnLeuItOGbas1ZqsdYJqO6VIfEsrDaKtT13iY0OFpwe1dom+DWIOUBU62MNRmm0NTJYyxjvkVzbMVFynhAMnLZQSYxet1vtmcaUSDFx732XSSlx7tw5truRk+3WaplWK86fP0ffr0gx0TnQtozZg4Db+ck+vG3KwyxAYs7P9cD2bGYsILTs+oPV1V4v/ubtKRoWFmwPCBYcaRmdMK+RwZ3TRv8GG7+ZIkYzxX0Hreq1r3odsG20PgtungW2xmqotWUlYBxHxDe3nCdKNuXyRpmtno1FLJDW2BqWHXQaXtXrrt2UVTPTOM33pdbKMGytDrQW8jix3hxweHRk91z3NajWl9YyhClGp2QY82POap8Ffrrfh7W6crHXtcqZtUE8+9l8GAlhBraNaj1TiB0ot+du5QQ6g8dSWtmEZecaLTtEy5q1wEcTfQlBPOsZ0ZpAmY87i4N5XW0887JziGdYHx6ciEpsz6Z9fwvatcye7lkoxih5ILC1nsSWLAg+7qsPHml7dAsKhHDDLUI+mDYW93/FRMdCUEj7di/F502prbWWjduAtXBK4or/arWzll3Vec2utYUeBWpwAcZCn+qZNdC0L2oV72svltV0QOg7hrOvvHSl6UrU4ACruj/qpW8B0H3A2PY4MSGm0IIRTVjK8/O12ArjDIAm+jjXnwM4nX7OGMO8psfg7TPFNS407P2T5hpwZq9UKylD7H2KUjQDpsWRiObQqiW4FDtGxATOCsEDzdUC8VIRLUy1krXRjy2IniIuYoXtdRSyjgRN7PWLvdBL6uwLI+172iD3Pd3981Yp2fraikBlolaxpBAORltgTAu1ZkSr+a/FglhZC6KRpG1OmugTrldhwW6ZE1DWA7d1xmhiYnK9GOCMI4QYkt9bEHHWoM/f9mqsA9VCiBNVV8RkgfW2Drw3ex+A7f0ddtssN9H6em5urnQoq6AcZ7j7NHj9a2Aq13+20Y6lZvwx0+gl7g35A1QOLh5yeMshFx5r0XcFVklcEQ2Oj63HaehMg8p8JbEes8GAke0h1vM0+ASOKaBVuHLPBFpMdc5BbUjKemXjZ9sHdrWixURNalZ2ubK7OthmXwOhC9QQOVoHSobtADl776lQTU23wnSc6UvmsJ943FHm/FHg5guBm27u2GwC5w6Ew3DAJqy55dx5DmPmKE70vYPjCKNCRjgtHWMxUYaCR9Uk0Tn9ICh7qoTArGTrADeG4CqK3g7CJ4gBOohB6UMhUekExNX1kji9UQPR1QaVOtdMd8kpLwHqJlIrPPa8tUCYqvDER/XccYvyjpsrv/D/PeHylLh2n7JaR9IqOiXZxkkp9jyHCWvdJLDulM3Kzm87WLAidUY5BQO8UaALkH2TQ7EolK8FKdovxsmy1jqDYlvUDla4Q+F/AuvOQa6qtxIycNYlZrqqSbg//O3eaxsO1nDuYAeafVG2PnNVxPrchoSGQCxHKB1GBxoJqPdu8ztW2zhTz+x5kEgswITTBEyw1uqI0EStEW1y8zWh2qPaoUxUHch5BdPElBO70erTpkkYh8puV7lyArtd5urVE+67L3NyPLaomznRiNeEFnbbke12ILuSaRSj6vWeBZq0QGntg2xMt4VRFbp+NWeZhDMKs+50Gb3QMsnNwWz/bmBb1YBqmZ1mi9QYJRcPoDTn3jUI/PilVugUIdkG7hnMWq2faB0HJKQzO/b+VgQJRK/bxZ9HiMk28WrK5TF1Rg+GfaZEMyVP+/pHBxVCmJUnwdXhBYL03o+yw0RMbA1vtcISAo1m2gjqijsj2JzaByO8zrO6+rKyr38WW1unyWopd7udZ2RXvOuuexmz9W/dbO5jvV5xsNlw7uiQx9ZHc3BwQN+vWCv77OKD1dg2T+Rh7hBnB7bWc7TMKLT1GWzKts0dbHS2Pai7HiDtr90cquStY1pvyeApj9C2EtohXXgstXYtBmZynhwk41F9DwyX/XFzy5h6P1b186i11eR6Fiq7CJwHqlrZSJ5Ge+WRXPN1DhZACa0fpQecMEGsdr0z66AUTk+3TNNIrVYvXrJy9fJ96DxGApvNAZduutnBcEXLXjVaayWtIqv1xuZSEE5Pji3Y47Tj6OyQs9ZahejZcEoQJNo61eZ1rPu2S3P5gep1asbBqZ2zP8xeWd7E6ZLPzX2/YbuZ4hRiHys4qMUEvBowbwE1A6vOvkkdMVnGN3UOsD2r0+5znAXJaKTY+VKlIaEzc1C11THeb3zSAgA2VqIPwixnyyccBAdrP/JI2JOHyfZMwerdzVfJc6C8tZ6apolZG1qELhoA6MTppSqIdKgGnycOWEtwxXlTHS5VGEuhT7YnOn+JRke2ffKM1+/zP0qgFAvgSFC6JIgGtEamycsKoxA7K21C7GyLChXLzOHgmdqCKDL7W22/UO9sS/KSQGl6CeJA2btzkCkKUasB7hiIxQJLKmpZyepzTmZOogd9bBwXKpFqCtvSyiEywbOMfUxGvx/zXIfchZ4YOkQCJRamMjGWHUMZaZzsWq2lTfUYVhBjulaE4lT9SmWsO4QOCcmzoAXF+r+2XsbzrNHWBKpdh+nJ/P+p+7MmSbbkShf7dO9tZu4x5HSGqlMFNKrQ6AE9XLmkCB8ofOEb/y1/BIWk8JFC6Uve7oupAXRVnTpDDhHh7mZ7UD6o7m0eeQqNAzTu7SyripOZ4RHuNuxBdenStWIwtegUg3nDR6hks8+pmZkFkQTRgMOshdY2hMAcIjWYEveqrnAbjDEVgq0PofYebHUHBV9ftVE0W/VecWBEnSoNXVzUdJZMnMyzPae423NRrC/e9oJMqRu5nGjAWiJN3g+bwh9z/AM5Gh7sO2rWQccAzEvk55/Dizs43Al/+w7+p98ofy3Kh2TJxAcfW5sYnm9Bn72DmI+L7XxbgSSEKXL7+QtuP7thOlqvXK2QSxcdUPJmgVXyynEMcFmF06WipTEtyenQjcMhuFcqTABNyc2KVlQlTrOJpzSYcIlxhWmOxASleVW4QDyaQnJJM0WMwvFwUtbV1JBrbqQJ7u7g86PyYmp89bnyxTHw5jjxk3uzKppTI02bD0plCvZ1WBpLVJYohGQDZmsz3z9NfFgj350jBUNGUnLEPARE9oqTjL/BTgLBqpNqirhCI0odiLwlFwEksoRm5xIrx1k5TMrdoiRRo9wG/z21uWdrhw7Uy+tGMFmSUVU5HDe+uFX+xU/h56+P/NlvhP/Xn1UenjbWLTHdJU+IOg3ZxtyW7dyXCebZDMsJlVzhnJv3RdgoDQFLxg8Ki42wZd6RyRAM3Z0SY381H7nGWqzPN9KYxRJY8SCqCwzkYgnx8dgFqISg3jv8e9Bk++tfKa9eCSnNpHimixtouVBaRSWyteoeb7csCdSV72Ko1ACBhOC+sh4kmzl1Fz+wTdrGEgNx7YeGAFrNV5hI1USu9pyfTifefVh5OF34zW8fOJ0LW66IFtZL5nTKPD1trJcLDw/f8+7tg/dcivfFWMBl1YTA4eYIIbJtfn4wgmjEJOtFAnITKbmO/rtaCtu6EuNEjMn6BUdFt0NFvhE6RKnaiNGqIYPy6VWIFINXZ+w3u5VCr/h3hVmLznZl5eoU3hIDh2VBglVoaumBQBdh6hu/DWsTmqpIhZRc7TQlWrDzEFlGsjOK0KPSB6HmrgvhVDbxsVLGbh1CssTZs3Bt1e8Mz6p6Jghk86aTmHpPZWvCRPLPwejKntx0JdW+roHNRQlCCYHVK5bLUogxmGKvttFT+ub1G17c3fH+wwOvXr/m9vaGz9+84Xg4cjiYf2cP+i2w8iSLZ4Y5n+TRE0/7sufRAYWuMN1z1ehqtZ4O9vKpaRLoFQDjyZ8FYgHVDGpikUoEjVd3ZqeIGyNVQbMBMz5cup3DdR+40fF7ANtPZQ86dawnVkkV+nrhw6yBBotB0hRQIk2TVUCa06D9/KILj6CVXFYEMYaFy6JXXEugrtR6wSrEOvYdAzcNJYoSSLOBqLU08ADUAKZAqZFtw5N5IW8rEkxR1qoeEzFAicH9Nu3ie+KZUrAgNdrvRPd8l2DzS5tVV5r2BLf3v/e9z1sHOqjodoRdwbp/dVbJAOi8eqPN+tyutUPA9rcuuIXv7fiaFkJkSomUriq24Yot4M9M1K3JtA2xSnoVj/78d6AEGErw1xYfdr5X+4ivr2Og45oD9vj38/jEj620AUbUIq53Ye10IgYg5trYiiWyikAweqr1f+po69ha9OTsQlJj4EVttt9LsPvVZlpbCGEmSOBmKbQweS/6QkJJWGytzoCLErwvVekUI9EOHoizibwX1Vl05qHrcjrSmSQLWmxPqKUYoDvGlI286MnZNEemcEMMSgq2FjRVctus8hecLeS+sXYu1ndtievmIEgiMNH3yM6GQKFpHsmWREWiCy+GRohKT/triEiYkDCzxBuPC4I5JWRlLUrOrjshATQZUND2a0tilHMhOt3ZWxQkUDxhrWDx92wxl4x1EW8N0rFeBw9OrZBn64Z5wkYqkeYJdBRnWNIorVDahkjDarFi8z4qLYJOAVIwujSFWrMzI+w5rt1PszWzWfL1tvclD7YWxj5QtWLgIr6eyeSjPvj9V9PT8JE8p8XYP7HSeKLWzFZdW+BHTuUfndj+YHHwOOqatnKYbVH+A1dk/vZReTx5pVNhW2C9aO9n96BXnbU7jeCnI/eIEOaJMMcRfIH1rvYYbqcwOLVWjTZcslKzIT+dytJcYErwhMSBD39GzrGHVpSy2YYhQczes2NLlhkSYkKiZdSKmEVNVbYsJiVezGJnEeGzg/LFjfIvbipf3DU+u1FeHdugt9pirjbQxBaFeXIExs8xN+GcA+8vkbfnyPvVEBbEpNFDENLOLfZz9d4q7XjwntgG1bEwmf+cgQ7VFddULGhMolyicGnKodrGdEjKzdSYQtsfVa8SoVd7zJ5kq9r9jdpYItwuSikJFfjNW/jzx8rjBnULqCukpV4NFesLicErsrNRzZfJKoEW4DtRse8O6our2NcYsuN+WwU2F3v2KXkggNPHg42rPmJikDG+BrUkyggqInZuO9Hq0z0eHgrzDFuenDJm86S2aolquaBhgjAzFxNzSmEjyISqENVoqZ6CjSC5e+6hfX7vga/FMVfUP1fIq14hqa1wzhun85m37x/59u0DD08Xvv7tI5etUrL5rG1b4XLJnJ5ObOuZp8cn8pbRtgMXXcTBkuluVL/3joEtptVR8BDFE08XbKlG/bIgvAfBzwWFtKN60kW02ui57gnS+Fk8GevB8hWCO+Zov4+yv79e3dNWC2ikTZXmNO4hTDW+/HN7xq4DWmII6EwTvSfaKjvPE09L8u2sg9Mer9f5npD3nvhOJQxeJdqve9/MEdlpy/QeZQX18SYQ6siNR2Jryrm22Le2I7WqagFWCH4OBmJcLquth2+tumt0xEgtlSkJuSnny2qCQHd75SulyDRNI6FH27jaT/mYpl3Buld27PY7cOKVHb/F9qzV6ILDdBgXU/G1ulPibXzqWFeNEWOfMSiNHoXacOnJUvN2n/2n6a97D0ffk/s+5ZvS/rPY/tTE+8bAz9nX374W9xggeoKrcVRqwcZ8SrPTEwG1qnYIwu3dHTFEHp8e0FooRbxKZoGhjLXLgZ8QmOcDt7c33N7dcnr8YAJuDQ+gLeHo9GsbswURdeqvA1tqInPSq0jaQQGncg/v7h202HEEC8aD9yB2VsbQFtbmSSr7vGZPENXVzHvF1s4Zr44HWitWSfPn266C6L6+SBDT7uiqxFdV3udr/PO1sr/H89YVHZN+rGPO7rHfaz/4fPu+ePXe93yv7PbY5/rzfx+SWrCp0ZkstfXKuAHHgiUUXdeiPx+7LXK13vu4wPoVaytQZVSCDZvsv9c/q1kvrbtNdpAv6FU7kfS3dxp4n/9NuBZgCh4T2J6gvs5fx1vuZRqjt+WAtkJvQRnxfDTwyMSFXMQp+LqjjSYVxaqKIarFYbGvhRGridr/euJoMVzyOE7cR3WnBCsVFWMl+oYL7g1u/c4eE3bAXNJO+e+5ieBVc2cHOg15b/lovk5b3N/62uaVbUWH0CMSdvakdJZNF0kdyJAXpGSIZfqTACKqacThXUds/3sw6x0MsKzIM+aGAYeNqiYg2udnCOLaH9ZWpbJ/nx5zKQ6s2vM3zL8ROzvnav/waMzBNvHcKkKzlHutStPi4oiuHfEjjn+yrnqRgCX6yi9fwV2CtlnA/9tHZYpCy0rO8H4SqIlWxBsiFSRCvdigmhYfbEpVoWpv3rYbd1kb0wRpgtvj3svaitGHyqVSs5XMy7aSUmBZEhH7rFqV+RamCc5zZSvGC69rQUuAmnibG2ES4mFifWisp0o4mDVNmoSGJbbxYMJD7aRs1RefBlIrU2ncZ+XfvQ78888a//LlhSVVpqSuWmcTvideXdbb6AVuSdCUmuFpi/zt+8hfvo28u0TCFJiSUWG1OvXYJ1RHvcI+fmyANQsoLRkz9E3VSA+ddtGaiXDVFsl9ASwJzjZYXyzKq0Plq/vMZ7fV63hX62vYN92Pj4jZsFWs6vuHP8nc30U+fzXxf/1/bPzld/DtqpQp0abIMkGaYV7MWkoU6gJxhiVCugkcinDJJhiGQoyBbbNkVxDmKTClwNNmi0dMLgrlwcealS3D4QBzFJZJWGYLhPauPrMhEsXRN/tddYp9iFZ9Dyj594D39Pa7R1JcePHylmnaiOlCVa/W0ggbZBVyE6b0iFaIzNCiI6eGKPeqh6gJeFzlV1eoulMM1S01SuF8NoGWLWcXfLFKwvcP73n77gO//vpbvvv+PefzxtPjBXyxniZDolutXM7vyXllW89u7WHnFV2IIuIeaxKpxWhEOZdxgiFWswTYMsfD7H65Qouuvla916ZWE2zANpdnlUN5XpUwSqNtbIMG6tX8ntSGMSm9wiHCHONgNAzhIhi/34O1Wivrlt3+o45kT2K0tQ1GtRlhqE0Gr2JP08Tt7R22mVlQMyrp3tcKSs0btWRimhDvbQyeSNfamN0UutQ6+q2mabJnM1QQe6CKBSNOIRIRQrLgvouCKdBKuUp4d1p4rVYZqm0H6Wqv4l4nthK5RKG2zPl8cmqkJauX9cyWL3zz/XuOy4GHhyfevHrJy5f33N4cOSwLt7c3HJbFqv0xEMe9/3SP22M35w5jzLRB1Wof/bTff3ztkz2JHbnnWMP3PaSnTbAH0COZHiAINC1jrbxOQsbr4omyVNvbu9hc//HQx7nse1U/maskZU+iZMw5ey0wT8v1RxNC4PbuhfnwZhNkiSGR5oV//a//DXe39/zlX/wnvvvuN7x7W4ihOnWOAQaBzfMQI28++5IvvviKn/z05/zVn//PxiRRCMFp4FocDLNAoIM50Vk9gmWqoUYmwrgHwXsNYwzet9qBuZ6w9isyMAj1HjxMOMiqoKZcWopdt0ZXbFeurJqcZg3ea6d7kus9zbXWAVz0BLErZe/igM8WepqGcZqKDtbMqDSx06YbjPaGgWQBg2kwsA0Z3+/VXK6Ggza1rN8HsfXo2yeOnuoxSn4PDrW+59a8so21YkkNSFByNd9x8Qq5qoHyQa1aKzho0TqPoLpqbi/+BLILJ5aw0dxu5/H0yBSFu8PMlMwyJ6XgbYGuTN0TUyJBlIwQWrB2oiy2/4TAYbJxY/Flc1BnNoq7BmAx+npKaBMq1huvDsgIuC3XzOzr8JRgjhNRgjmSYNVVJpsvcxMOy8KcFoIckJAhGkPJmvas8ipSmNPsPcGRIo0WlBajxzIVlYvPRdt/xPJD21mjoCkwz67LEWUXR6R54mtsT9SBBGw9KS5SZ0ro9v5BLDE3cChg0DlXGiCROEViFGu9rNXdLNz1RSsSOljsbQXBxFyDlV3ROttSId5m6dcyy0xKwozYeMkKl0rFqNAqUEXZWqHUC6WeiWkvGpRmasrFQWdEmEPypBqboD1OVhuduV6QKCRNiLP9XK7LYs7QhuVXkGgVe51Zz7bfl7IxzctoOfz7jn98Ynv1/tIXIaelTqHx8gC//CLwodjC/v7U+DALyyykJdmDnSOtOid7w5KikqAaTREapbmqWXWl22zV1DkKcwjowXqu1g3WcyFvjbw26mY0x5C8kV4D5wcTnYjSyPMMc6AWNxOO5v06zcLhRijZel9KViRCuhGW446mXjxRmmOwQN8f0bY28ll5VZ/46gD/h58k/viF8pNj5XZemaLREawI1JFt37jVKVChI2xG1zpvkQ8n5Tfv4OEsXIrJdvcG7disUk7qiLw/l2CIW+8ptcXSG82nYBNXlWZsfgQltzD8YPc9QUZCtxUo1YyT75ZeydxlzI1Q1q9rD/qvx0sMTpVryotF+Pkb+D/+68BPv1H+b3+58ZQCq0S2lYE+T5NV0Z42O6llEuuF9UCte/b1PsXahJa9wpuUc9aBXh1WHBG005oTdiO9Z7g2u4dTss8cKJd6ihW8F7MZHiO4INXviSryw7sPCDeAEGThcBNIs6Fztsw0RzkzOW8kMiUWoljVUNS8JKWZ2qeRTxgUZG24zYW1AGRXWD2dLjw+nfjNb7/l3fsPnC8r62pKx00bp/OF8/nC+/ePnM5nV22NxGRiVwpGS1nPrJez9dVtJprR/Tw7CmiCKGEI4uy9rb1K12kfcD5vtknO1t1iKuoWposEYprtwuSjqu14h/49F6dRMz+/puX1BDMC0swCZUyJIHTx/J7cNvpaEJ7bpajZDJTS7Rx6GOpBv1cyei9ujIlpXliOR+Z54ebmhffDVMw2wGjOrQh7CSggafaE1vuQXCk36AajSuhUqB7oCnQKce+RHYmIC85YQN1vp31m854euz4Pj1VHb1LfUPdk2SnerThdVtG6UbPQVSHn+QDHI08PD2yXC6fHE9M0M00zHx4feXF3x/39HX/w1U949fIexHwfQxAiYTyDT/lY5j4u+3+MStYP8VW9r8FXmIxdmeJRW9grtlc/Ic+qqHuiN3xDO+jiCWk/F7n+HfZecVXba6cra76eLPXzucp1MIXU/bVdtG3Pi7qORGuyf5PxC6Rg/pdW/TAwaZoTU7TgO8jGnODmmDgc7uhU9J7w9Q80cEhZLx/4/hultc32jyVica5VyO/v3/DixWseH96yrhf0abOWDioizfY+Z2lYD+kOelnRxBNNLJHxhjb7XmtjfdArHRKrHDk1umG9cK7Y3gGxppbuIHt/po0JF4NpVhRoNfvneWLbk9K2q66PCmpwD3StplIbool1iVB7qdnPoSun2ljpj+h6zu+jT67GUK8UdUsymq8xQdyf3PqXRxUIT5IVF6L8tOdwP0ST0XrpHp7eb+igQS0bqFUJl2U2kFULQh5rrSmCq4OLAmJAIwpNhEIxIbdoar+TCK1aUrrMM1O02EZxyqX0Z+dYCkCzim20/jhPZHp91H6nh0DXAJH5HM90z9gpRIJWJCQahaYFtDEH4ZAm5pQGSzP4tC99nAikaUKaxZExJsLowQVVsb7vEJHJQAGAJIU5eAIYrFKpKsjkld+Qh6DVzua0Pd3YH+YgEKNAqJS20WoeXtgxzAT1udbq6DtFvGoerKCDNALZqq8E0MnXTfqUdoDHtQAQn+dmEYRXeGuz+1aquVsEiUY3TzMhzDSdHQQyZlTzxDqFiAThmCZjtwZTIi4t0ILQWqblQouNqpmmldjXawWh7OuUGvurSIEoRIkeQgihWSsIagKhKJRaiGEyMcw4I2QEJU3dRQG0ZcAE54JM9J7yGBJTj8X+nuOfpmLbS+o+7kJQjrPwxb3ykyfITfn1u8DbBeZJmJdAi0JQpdRgIkEBagTNAd0a0gKiDWto94W3ulR5VZP8RiEa9bdkWFcom1GQW7HkI8Rg74GQNxOJEoGy2iZYq6t1hkBMJkc9Ly7+VKFlG0RxhtRlsKOYdxtWoU7ubRlyQ2pDtsaLlPnJDH/yWvjJsfJyrsxTIYmZmUufrWOjvl7UseDN/7cVeNqEt09wyrA1073rv9/x0558jfdRRpIMPTEADUZtCY6QDPqWmqKzuy/tSal2lBTO7lN8k4RcLbkO12NAehD1O5CV55dMEuWQlHCr/MufB5ZZ+Q+/MWQ4NyUXW2Rqteq6ImxFB2X8MHXRoqsP6Beqat7GQU16vO5BENX6mXU2kTEThb1KTno74dXJDiCZq0q4sWeGIl0KY3n/pI/L6eJVl4lXrw9UFW7CbMIJWI9kqI0qlVoqNdThY9io1N4NIkZptPhYPOiBWhqny8a2Zp7OG7kWtlJ4eHji/YcH/vpvf8O3337P6WxV217hy6VRcmW7bJRmm+syHz25itZzWTLbdiHn1aoQ1WkSI6jxueTUzNrtiHxnvk50LbESslrlEMHoVti4qi0SauU6mbXDP+86Cr96ScUC9k7bC1cKtb+r50th9NlptZ4kvFIpMHqBxs/7NUgM+3iTjpbbfA5qyuYhRuI0MS8H5uVAmhaMClpBglWzENQr1IggcUKkITrSEhpCKEZP6rSjgFOr+27cA9WrQCv0OeGfJ64g2eeN9iS2B+ojcO632c6hA1d74uvBdveiboVWDBDd1oIgpHnifDqxhkiIF+uJSol1W3l/fOD25obFG+3v7o7cHI9GR489UP60j5TSDqx0UOHZGrtLBo7xc31/xwYiO7DQ/6s7TAl9H/HnLvu42xPSKzBzRGlwxSv1cxHrl/UqUrU+Ep9KHyc6/ncfWj9IbNXs3LQZ1ff6QnvPeQze0R73eTilgLaNWswYPcVmLJ04eWK7Kyt3OqMlyUrNZ54eMiLVemJxLQ5PbA/Lwv2LV+TtRKubUzK7k4AltgFLRlW7hsOexFki1ueC3S/x6+lBpF1hG7e5V3elB9LqMPVgPlhPs9L2fbonnSKoFqfC9r1030ev56fqrtjcuUy72FxzBfXoz3ZPju19OoDx0bP9HYclSJ0KfnW4pG0THWuTOvOsp1Pj+tWuJ+yT4dM+PKkN9LlxldjSx4kloSkttsZmRTUbJTT1NbfL8IgLIXVtA/OatfFiIEsSKFhCFEMyoCa0XVytAxxNvfJnSXbw39EAAbcfQkYCuj833x88OYzuV2oyUv5+IVLx3lhtzDFwnE3YEdlbWBo+XsQTZRevkrYDvHbOdsQQkRSJk1jLoFNhp1CJwXxdDdwJtFiRUL1y29v4wtji8bTdWl7EY3ez7sp1o6qARsQ7VkGdwWIxR1cjjipEqUClah36FSOG6DE7jHWgz/l+YSGKXWWyfVZrQ0s/S7PYMgeFmVyS/57FtM3fswPFc5p8LjViVAOpBOv/x3WQ6OPHnoOOdYSRO6haH7+IeC+1P6PQ1ZQxQS8xRplpAUVCmCwuQIhRvZuiGkPX9xKjltseHcTcD37M8d+Q2KrfSuNM76GlgERSVF5G5U+/rPz0hXBzMLn3S1XWVUADc4RLscS2bYmn08zlXDl9Z4t5DJHD3ZHpGCjqvacJjkeripxPoAkuF+X9h0a7CK14s3aYBlOFCDILk8600tgumUsJRAms2a8jCKsKrUC4KNtqCXNVISYlxMbDUyHOgemQwKukYTKP1VZgfaxMa+ZF2/g//6vIL79U/uRnF+4OjcNk9MSeTMqznihPCH0D6EiXnVfgnBOPl8jbB7iIUMV63FqxBPWw2J+bQUCIwOT9zkGdskKnz5tS29OFoejbge6e+F6DCM2rt82VgHvscBOdet2gxb6x9k3JJ9OYj9eBKlgaZOjRJEqKK3/05czdbeD7LfH//LPC//zrTEoHq8ZGo38nV4ZOTql4fGpctsZ5a2Z2HYVUrV82JVgWdQEOuFOr6j+emok/AS+WwDJZBblUGUrRYL0Am9N4gk/YVpRa7OGkaD3Ay+y9wLP7O19VTD7VY11XalO2rdLaS+5fLPz0519w++LEfNgI6YJKwvzFnBbYuu9l3kEDkZFQiQjrurJtmYcPJ/7zX/+a337zlt98+87zk8DlvHE5r7x7954PH96zbZvT3wqtVubDkZQm5vnAPC9DmES1UfOFxw8PtLpRy0bezN4jb9l6PlQptTBNphy8FduocjFLkQ5yaTUlYeu7TMxTNDENwSu19VkQ3TfFHiA8yzDx3v1ejXTVVvHEuovlTD2oiLsNxzWtEhjV2aC4eFEb/TrA8KU0ERr/9L7ZSRdmsY2nW/h0MZcUIofjLdO8sK4r85SY0uICKwmiIbctZ9bzU2/+HfTEpmYXIDGSDpOrqTvtWRu06udlqFFTt6Xoa1vQUaE2hsUehARV90e9sp24SrzEg2lpXfWz0688wa3VP6ZS8hnNpqVQc6BeJp4um1fqEvNyIE6JUlYePjwwTwvLHLmsF9IcmSfXedCDz/t/mvn2v9aRQtynoB9j7GL3Vtl7nPBwZV+OOxC39+j6DgQ0pO2sBku6XC21085Gtb6Hnv6EvUXBBC+uAIv+ToqBHCE6nd42hkFh79VBcGqwZ7beKx/jZLZZzTx3TUzHVTkVrq224jTTVXyndLAeuRj5+ld/hrZGyWem0Eg3Mykd/Bb08pRS96HmgXUFqdwejzYHaqEVowcHydT8yOXpOy6nt+TtgpBJUpxqd53YOWW8o7T0W62emO73E9gB46CjAtpfiGKq48OJvien2vEKS6wb++/J1UeqRlopNudtsR7JCp4ocqWkPVbA5mtSDDSNZulV9/M1sefeXnF1iTvqMU51ACVXgPhOO7QHKx4PId3TW1yx2s/36tn3c/3U2wnGUfxPAQlxOIQYc8js6lIMRJlILFYVrBv5UhA2ZsmUCkUD2RXGQ4BaKkkgHSJztPimJUPuaxPr9XbRsyjF2q9as9i3CarJl3UlpMX3i+j8IrV1vydMrmmSoq8B3qNKc92E2O1rFGpGtHBYEmb1V2ilcZgiN0tiidZWsOaL++Y2arTUX0jE4PR799U245wNlQ3CRgqmFn+YD9yEgmqhrk8krUQ1Ro+K9djWHljGZPO7cxgboIHEgRASUWYmt1bL9cJWN0rNtGqsUMFa5hpYzhGspDah1hqFILV5ddoq8MIegPcIOjhYplrRWlnLZQBFcEMKkTlFSouUokiZCNUBYISYklePD6D2uTSLD7KuJAc2agjUajGS9RgLlcbmlf8QE1PC/MPZqJrJ5Yx2RTG5NR0OgaxP1GJCl1M6EMLMcTqiJBrC2SvctWbCnIhxJqaZVjZUYY6RisUBmzarlAsEbwM7xMAxHTj8b1Gx3dNZT9MdcugLX1C4nYTa4G5ufH4n/Oy1cJusIgLwsCo5C2WTkYRoWYhBmKNwvBWm2dEgA0OcQmtrriVctgqYQBRYFtw3/IaWgFaxHjqElUhTow9Pszjia1fSqnJ5qmY/oRZsarVAuJw3RCfkMDldCbQ0ahGj8TxeeDkX/uB14xdfCF+9qdwsmSVZIjQQ54+EMhwXZfc7YjxYQ+xM8a1lpWDUgZ4YC3hlk5HUioC4GEHn/AdxIaUrqmypA6gfz2xQu5RBSc4ZWhUXxlHEE7govSem71oetFw3bnF9rf2D+ofuFaEpNe4W+MUb4a9uK79Nlb95FMgTxQUKltmS8ao6/Dw7yq1Yhfey2sXHINzdBjqYp2pqx4cJst+j7EhXitZf2x/PdYC9h35OTa+N5E36cc/rUEzJb5745I9SCkggxMLTw4lWza/t7kk53CRu7o+0w0w4TJQilOB0NjcM7+IoPfBp1V7/9W++4eHDiW++fcvXX7/l7btHvv72O09QJ/JWWS8r79+/53w+UUse59SrmTGmYR0hKHm7UEs1VeBitOVOi+tWEHsgK3QPzG2zSWEetsUTVg+OeiXUx28MNgpra1T3jkUEtg2AKImS8x5g08dUT1CfC/iMZGBUKHrgrvtE8zHZ14RO+TMF0+53y0BspQevAxhzCu5IWuyIrhAZYiRNE9M0MS+zo6TW32qobDULI/iIctsr3Gal0nvrovtSBrHqmIxrcFVEV1vV2oYKZH8mQhjVxfElPQnzvzejRI5s0oPU3WKkOnXzKrkdlV2rglXd+3JL3tjCGYlu6aONHMST7kibAAIPTycOD4+8ffeBu5tbcimUXFhm9yP9hI/hjzrWYPUkob/eE1zofZnqSpTgtLIxF/ZfdHUHC1r3pXqMvd5b3iu49mH7Ot+rHYZhtqux0FNbfBN3v1PYx3NrRof19b31ZFfVt5UukuI0+Oi2Yc2q9GM++Iae5uP4/JQWuqBSLZkmZiPVAaPj7SvQRisbpW4D1OlTuGnnULlHp9/2EAXUmD9lO/H0ALVc0JbNEk97qwxcrw0/PPaK6YCJ9ep3uKJ8dx/LDjAIDEcEf6Z9qzVAulcAe6316tHhdn+EUWAXnMnmc9yC5uv1DK9Ei1Nouw2Jn55enYDqzuCSvnbs8cs1g+A6DX1WhfeEW60Hxu5PrwpfXW8fQx8LWH3qR2sO0A2wqEMRpkJfSvV1TjzObWi1P7u+hVWpLRnu76CtYWzQfe+xOYLr1wjSzOPYmGpW5TWWpH3RQKoi0WJUEXWRUxnrMzi1P4g5Aox4Fq8kN3LO3n8tQEGkjEJPINGoVowJ1p+LWExVHNSsrQ8DZz2KModIijNCBG1IUGJU1B1SuoCcSKRRkFKQpqQAThZmipMJVqU4qLcasrMdPDahA517rqGK7Vleye42eA33SRc7x6b7WG3VIK2suAK5aQ+g1SjAVcba1ufC8BcHAhmNipBIEggxEeZoBSJvC6NNtBoNFFEDA1prqNhYklAIoRrTtXaWZrPxIMk0PJpV+YNavdQ0PQqlZI/vk6//VoUPOmF6zhWIiJi1jxJpMCzptFW6x3W3TEObM3CtqjvFCRWldlFbtTFnzjfXK8TfffzDE9t9Pb/6xp7E6EevHiK0SblLlS/vI0WhvIFclTXDd09iPqWrPXgJAcKRlJTDBLd35onVQv+kq8VPGeqlPXnRZjxaicGCpFbQGNEiTIv12q7B0BEFloPRmE1sSGmlcb7YBJMQTAI7N1oulJMZsQtCc4uZtmG/vzXk4YnPv4Q//TLwi58E3ryo3CwbU4wjGfr4Ttnf2+9chNUXHvN6DGipFK1kCU6xlmfJLLCrn1UHn/xpRGfsaNy3D4VhXj4mkVORqxoduRRYN4a2TAogKhytf34Eqh3m2BfP6wTgdw+lnUappNi4WeCXr4U/vy/8+pD5s//SqJOSije13wjHY6B6j64IYyFrntg+ngwlW2bhs9c2UboQzZQUWQzJbArb1qjVEMbjbd/EdVRrpMlQ8O6BTW3KPLukvV6PdPMr/n1IbHO2PqoYIqdHZVsz66Vye3/geDPx+ZcH9D4SNLEuWE96KmNRReSZuuK2Zc6nlb/4y7/mm2/e8jf/5RuenlbO541vv/2WKc0sywFtyrZtfHj/jlqMghxESNNkSViarA9ynkgh0GrhdH4i5+y2AG2AD73/vH0UxHSxk8tqSXMuhZwzpSe2Hhh3kbXg/Kmm9rN1mIDvlOUowfwDn/W66lCK3ROMHth3tkLzxR960NrFIZCrxMOD+tYKOdfxuX9XEBzctqcU8+2k7fSpGBMh2dfsie2yzKNfKU4JrUbpXtfNpqt/vn2WC5C0xno5u6JqHf3C5v0qA4hQVzTsGxRepR4JqFp/xBznsT733LUby5tuUH+Gwfkc/fdtjJVafvCcn2kTgH+2gQJ5A5oyLYupLLpqb6sFqZN9Tgg8PD6Spombb99xmBfWy0p9mbm9PbIsPw4d/u91BFfr7oJknTul/X7gFV0FqKjanb3CWoC+d+wJ8ljTr4BWH7BD/XpX87bvy3V5eyTL7M/VF4uep+lVr4d4H3oHM3K+SnrcQsx3Sb/u4EqlSkqzB84b0dkMJkhmc/VwuLX1SpUpTShKLZks3i4gk1Vj4sSLN1+irZLXJy6XB1rdLXlwkKmppxvFegKD6ECLJQhlO1G2E82ptzF0ftJ+TYjsiUw/tKci/Z+y33p/tlc3+OpvHRq2//ZPiS6shgfnzd0ObAnb30s8Ibbn1Z5/hKvsihgVUaX3veueeneAw6m0zw6/d656MPb78Tvs62QfF88S207OuL4nwVrTxvmJJV57Hq1XVdu/C0D49I4uBKgOHFlyXsEdA2z/sUpuLRV1xoI2v3t9WqtSyl6xDjSr/tXmllmWwPb4rnpiVmukNav+43tAa4FSC9IgNDHWjTiVVUx7RiQ4E8Ho0yEGphStBUhtvLRmQo2qGy0amKWeBA3XAiZqyJ6MtjEWY2yIz6VSvVc3RCaPp1OAFBdEAlu9EA11QrsHtypzmo32GhrtckFLJgUfG60wBWOKTfPCVldKywbsti6EyNCrkc570L6GmXWPAQqmQ6FitNneBijR9yysKFCakL2SGoKQohrI3NQqpU4Nx/JS+72uaI65WBBgkgAxsCzBgAeaVdLbRKuJWiz+iCEMxk6TQtCNQPV4x1oKraMrUMUAhOoOHzEynmGrprkiLhqYwNgFkkBm0AJNEEm+plqjhiju3x1pIZgVowQHzY1x0xNwkUCcZhM+k23QzYVKDG7R+SOOf5IeW+t1sL+N73k1LobGzaT86eeBP3rZOBfhqQnfPym/eqv85jHwcIGv35sQyIt74XyB2wXujkpMjUuFb0+mGFerTUobUj5afEENUSFBW93bauoce6vyGWVRiEuguM3LcRYohbpma6bfCuvDhTQvyJQImtAWUJ3Q0CgrXL45sT5uNIXH4wFtlUkrf3Jb+FdfRf6Hfw6vbi8cU2PC/MCsa2tPKHe603USeNVvMx403M6ZFwfh85vA0/vCusG2BaYlkpbI3PYGe/EJXSojaEwe13WQdyTCrW+g+8TrPbZrgW1l+PZWr4wfUuE+KD+9s+pnvEr8fvcWch0cXY+Z598NUZlC5f6+8Kd/ZMp5//G38NASmyYuKxDhrqj1Q00goXGfEkuEpxNcVjXLpVVpWXl6KObxm2DzgHpeDFl3QVy2FVZVApUUfDFswaq4SUh+D826y25grbtY0jT54ipwf4A3d3/fbPnvf2jdaAFqsenfaiVvF7Z14XGeuTzdMR8Sy3HiszeROZ2Z0lvubhdubmZ++uUr5iURY+Dh6cx3333gV3/zDf/hP/wFb7//wLv3j2amXSqn04kYIueUWA4ztRSjjA76XWSaJ443tyw3N6SYTLVVM61u5O3Mtm3UUk04gQ5g6UhiadcBb/TeDk+OwCvGRndRR2huDpMFhSpkbWi18+3JbQjCJOJK2M/BmUGTbJ1aZaO5VmOd+IURXFmsVBOSSpLGBtPPGTrly5PyXjEeM0RMsGKa3EtyV2LuvTtmRG/9c+J2DWkyqo9IoORKShUhInN02mKitRM5F3LJRjVsjZILOW/W+4hTlPAqcrP+2GFzID2xrbSSx5qsVzdM1RgxMplNCSJu52NJaMA8pIuLV5kYSLCKQr+1AnjC2r1+e2JlVk7iqG9DmgJW9duaCQcxTYRZ0GaG9QIUEUQb794Jp/OFt+8+8KvffM2rF3f8yS/+gC+/eMPL+097Mku8+eg7du098LJ+tr62h5EcdaEoz1oMpGp7orInUXuf93XiOzIQn284oKLXibAa4LB/po17ixV6YhMcMcVbrQSIhDDTP2pepvF+Ju4ViGGmtmwWWGEygAplSgkRjNauNrZimodFR5pmcsk8PXygHm885PekFKXlCyEmDscXTnfO1LJ5ktHGlFWFmjzopT6rTnZLim6Vcy2OdZ26qov6jPsz8K4eI+x0aC8+23t37YBaB5i9U32tZcCeVaTTPtVZLPYlO0B0BWjsz3m/luh4hCpm/9FX1B2bezburCdQxnlJ6GC3ul6K/5YzolKcBui8szCustsr6x/7VRlChX2FvC4V9P+qx6O9NeT34aiYYr+oxRoATcxqpbVMKW2w6U6bietkgDgZuEJ19W9vjVPQ1qw1St3LODgMEtXmalS0RVSM/DpF2ydLvow4NHpPqQAEA2OCCPNk/b6t2e82hBhXYjDniVYEqinn52q2epucSS1QCUxSSREXrFqs3atWE1WjkdUArdoKpVVqU0qNEBKRmZgWJgkkiSzpiIjwtD5QQ6KmjZOeqFrJ5UxskTlElriQY6ZpYZoT1EKt3qZHYAqJXK0iaRRh24vP+YkUI8cwM8UjIkalrXVkIfaM6krNpl+S5lsbi9LBO0vmagTYoDVTmSYMn21txaqscbJ1LbnXgWsg2DxeTR+kmJBUFPuyNoDI01lMkCYFTpeLgSQJYnLLwzhTujhUyZbX6ELJlaxi4oM1IM3iKKmKZmPJlVYtVuird6r2+cGeh7XwFeY0DauiWldqK0jdbI0OiS782GqhlhXIVHW9COn9o9a/PUujiSchOo37/fcd/3R2P2OJll0dFdvAgsDtDEtq3Dc4qTAF835toiwJLpsZdy+TUI/w+lb5/N7oZW/P8GFVVkfhSjVrDwnWT9maJVgaBWkCcyAuQkiOJvtaWdWR5inQt5jq8vw1F0IT96Yzyo+4T1cPpNJk9MiyVmpRQyOKEIoySeOnnwe+uIeXx8pEda9YruHEsUlZReL5qrv3g8gzOtE8NW4OgTcv4NvHxrkVti2RxdSMjZ6Fq5TiaJLfkx3cvNogdwrxYL740RfPZ61s/jSDKC+O8OKo3C2u8Di2mOfvs2+6fPQXf/H6cx0EEazf9eWd8NM3kc/vKrrCO20m1DHQI2/d6lhwsOQ9elLfe3Oy+xUNZ7NdY6DfZVMB1K6EbPdDr6+Jjph5LhK636H9REqwTHB/A5/dwOe3fPJHD3Sq0RS819IehqF8kXmb2FZbfE0crfHheOZ4NIGV43FimiLffPue7759z6/+9hu++/YdDw8nTqfzSEJqKWgwYZEYrVIxJG1EHOG1vtponFRarYaMeu9tc+Eq82/sKp3dhmLvGTQRl15JVLpXbReOSsGYDkHg9mDKkrm2q3YGvNrYaHi/rIgHhB9VWLgKRqVTBHf6baezd8ZCF2/o1eCriTH+qsCe1MrVetBHo1xVtnr7gvfY+s82p08ai8WST4BWG0hBV1djVqWUbF+5OIW4UWqmlmz91Di1ypNBGYlLT47xzd/pyKo7fHdV0e9Vr/5sWt2rcGEEUNZrJOxsZO+e83vtlZhumdBfc5Cup20q/Tz2qgVOpYRGV+W0cVbY1m3vM1Il58Krl/fMy/S8CvkJHiLX23cfT82/sGcwXrZ71Z/TM5VBnPao16ueHV3MpicdjU7lFwtCglO9Q9rndT+/Z/9u/QmNV/cgxT7Y6PK777gILJP/fHObMVdIDCK0EG09FvN/naMluc3T+IAwzRMmVBIIaWISQZcDLU4uqINTjo2BFYOQ5oUkzeh80YCYps0VZ/sctc02peSK4c3FoqLPOW896J692vcej5KaXI3VfV+6igDGvektFEMlHfHnuSfFnbo5KqNdnRRLove+/h4g68AnuEps9SqxDNpbHXChGwv2bRztQ+h69PXnZnM9gTNRxn4v+7l2wS0VvYofdb8ZPKtzG3BnMf6z/Jer+2rn1leOqyT+kz9sfTIasK/Z0m3dXAyrmTDUVgqCxcYdlhktGKUNQZ9RMfV90BJHZ7rR5/D4ZKueNUW0mpgT7vNKBwt6z7K5RMQgiHpVTiIxVLO+cvDD4ipT8m50FV/vBE06mCYm6hZBF1sz1HRgFGv9as7O6vdFpPvIJqYwMccDIKSQnfIuiKyoVkrb7wficUEfY8E9obF7VJwyXas6AOR9qdWEoFINxKmLxSVCsGuwarvRfLWV0SPdPWk1WFXXwKbJr3Gji4UZQNusOu29uaYIbJyvXrXqKtB0gKknmGKSn4D1uldb/Uq1+bW1jSUsnmwmVK11UnqfIp1GjfWsq+w+tH7vXK8b8XuF69BEBSEQxc0xxSqyUaxdw6r5ZiXalWZFDCxvau1Lfe5biuStBDSQ5u2OfR0ttLa3r/3Xjn94YvtRIvT8JX2WrHiYQpDGFJU5mMjCQWCSRGDiMMO7k2Ur76bKJcPtLPzhZ8IvPxcuWfnP38NvHxpvT8JFhcuq3MxKTMJygBCUy6rIBC1EwjQzLdZTe3moiEZCSNRgKKJZxBr9bj1v5LWQT5myWQBnktUJkQk0IMG4+/MykdfC5bGiIbkn18yyFV4E5d/94cI/+2zjbl6ZakMKtGgS2j7LCY5iXisN9gpIp0qOTc4X75vFHvsf/0x4/65QTsI3m/lJ5ewCV5MMiqyI9cRqUGIQoyWL3aeWLJkDSOqqgSPh9QTOxhR+m3xjrURRfvlT+PlL5c1dJl75aPVA/MduIupjqScExpO2b76+tyT0T34K4V3j4UPhxYuJaTHKhNEM7YTFg+OBOktjPhhMedkMzJhURgzVqngF2gAX69+2TcLu+b7gWzuabQ65exQH6/nuQcrxYIn+L74Q/vgz+PLTLvIAlrzVUoCVprslS6mFIJGcN+Z5YV4ObJsFya0adTgl4Te/fcf9/cJhifzFn/+KD++eePvdex4+fDAxp1pGhUCbCQlpCOTNnnUMwYAEEaZp4nC44eZ4C+oqzNUoSa14wlWv1D1bs2pw3Sm7nd4bPDBOKdK0ubjURvPKYEiJwzJxmBIvbxbWUnk8b6hUB4LCWN467TiEMJI/rsaI9gG831Wf0+7x26uJYn2/tVOnu58reNJrG2oXfBr9i90jFxe08kA0pmTUy2Km6b2HqHOr85bRXBACy3yg9w/WWlxReqP35F1Ws1QqxQGEaont8LQs7vt7FUGKBGRxASj31DQKlAXavaIbbND0yNrWuRiYUqKWjao67kEgMM+T9+b6fcc8qYd3rbohfNO9LxMLiAPGrJBoa9BWGEJavQocWoXoe1H33K2Z9aJI2JB1pZTMZV1ZDjMqsOXCJ32Ea6p0GxVSuVKoHoc/h56Y9OfamQLqI9+G/V4T0xBc1dRp/F3Zui+QYYYQDTi8SjbEP086qAFUt8J4dlJehQsBDkuy/aphYyooc7Rqn9Zq6uitUvLqCa5VfEMKTHHCJFwC4grIMQSON8cB5ADUeWKSly4UI0bzLNbDmFHSNLMcFpgFaqHViVIKpTXOm9mW5WLjOk0Hbl9+xno+GePl/H6v2BKcHXJ176/Oo6s2Xot5jed0tawYzb5TuHtC20VV9ufYcQbGs7G+NrFggNbMK1yCos16/zp1HXhGK++/3ym9nd4+QLe9RH117juIIg5+TPMB1UpebU6PtmAsqW0te35hicbQNri+F9eHYMkt4dlLe/LrTI40gwRjhlwBm5/0IXtMaAJ8Zn9ie6mt5yaQqKxbBsyaaWrWj1oKbFvlsnaRMlAcXEbJuXmhJXC4mYkSTH0W+9xaK9u2Iq3Y3NPJ9RSct+PJjI2T0RTg43AihokQGyKZpqsVH+pOsW3g1T5YS0AX6788qL8PiRBuBzOnDEaWVaCr70kSxbye40SMM3M4MMUbBGEOkDXRNAIXhmpxbdSgtChkNQ/Y6sltiMl0a1ohr8qW82gDqmp2VueyEZtAhKhHJpkJTM7OqpRy9uSrAHmsd9rEwSBzoIgyWxudgLCNNUrwYkwQ5oKxzqaI2QI1uhByjzm6G4GB587K8b7zEGayRkp2FlQrFN1IkzkCBFkoNZnwGjsIteVqQEkTQrWWTXXQSYOSovnPZgK505prg64i7RRpCXZNSSAFo0ZXCa7r4cl5WH3PKQzVNGHERybQ2pBQR8GuebW6lB+XX/zjKrYfLzhcA3IdluvLZg899sU5inA7Cyk2Xh6E073y+aK8P8Fa4YsXkde3ymd3jbdPyuPZTlQ1osDtjavXBuvTReHuRnhSE1KiJcpaKA+Z/O5EmCbCcUHTBEEpATM3VmjZSvghTLSwWh/ZPDHfGBWgdVEML72IQJwDzoWlqfLypvHVofLz1/ByqWhptGKUKxJdARxcwh3Fq8IdpfA72L8v7FVBMa/Y40H46o1w+Wfw+hb+3/858z4rD5tSNRCTUOZASLapJFGzFhCj9vU4YHIfW1PM630IfYAzaJemEGuDLYny8k55faz88eeFl4eOzO2b4O/i/OzqhL+7Ot1VE1tz6pjCIqChorPw7/9ZoobK37xfOcZESnY/16ycVzv3LQuXFe5mR+qDBUmK0TpDjC5AgAkhiCW8pdj4fHkLhxm60btFDUAwQ2tt1mD/7mRJ3TxZkhuD3d8XN8pP7+HffQmvl8ZtVGD5R02r/62OHjvtG6leBWFC3i6s08R8mahlM6XiySq1JStvv1v5/ttHas385te/YVs38rqRc/b3c1xATKzoueAMV/x1qzDmvLJezraAedJGssCkVKcifWS7Y2j03k/YkeRSCpfLhcNhceqBV2AVWnBxo9g4rRuXXHg8b1Q1i4M129/BKIXTlDgcFs7n9XeMX+y++dy1+eMVYVdvxe+xel+b0gWgupiMjmRj7zvr86YNYZsOhJWakSyj4m5JpFEPY0iWHC9WYTZLpMvwsU3J3quUMpDR0kxUq+RsTBV1FN2rSEZH7ontDloKleZJ6hAf8tftvS15Sn6tZntkINsyB8q293qOHkG14Ke1MIJcoyl7YputMo1rH+BViGkgunEk5KkLEeEtIF61TWLPpboIWWsVJCLBBMs2sfP85rt31KZ8+/2H/9ap9r/qoaHXawD6uOqJKkYvh2fJgqHhPu7E9pvmLAVPVek+FNoqo1IoDKXtKUVSEOYpEaKpVtZaxnwkJHolGLXkTFXdws82wy62FrDKz5KEKKbEvJ0+jCpLkeZeqw3UAv681dF7ZmIkRr+/vblzoGyhi4ev64VWMiVn1s3sUHqg3FTJpTDPs1P3E1IrNa/Q8gjMY4xMMTDNCZUJJVBkYlpuePX5V3x495bL0yMPDjb1SKhJNDGWrujta9iwqqL/aE/NfO/x712lmOzZq88X8fVaGVXWoPiGbs/MhG9AWkD9vu978di56euYiAyVYTuhNp6fXK0DY3ztE/6qSt3GXLZERrFK2f5Z++fZue+9tx/l+FfslDGExcc64iKintCOxam3SIAp2bsQ0Sd+RHGeRdAh3mNWeE55F+jPpWx9P2ieAHSSeMR60ZKn/pGcH2jSWGLyIkJkkhkI3uphiuINU+0PMRG0mHZNKZYkNdiakqZEjFatzdVApiC2Z0QSggGGtWVys+S0VBdkrKDFGZItE11k6LYJoWZXv+8rUEIpVHVfeW+JQRu1RXJJ5Hgg0MitETQjCLlWNoVNhabJQKsNSg6kkGA6IHEzunezfnvVhuiMNih+zrV1xo8gRKcfC5AoTaGayrmKUYy7YGVDkTBZsWu5g2KtfUWtlz+lxZSDgwJWODMGEYRQicHsslRnlGgxD3Z/raJtyWFQHWuiiu0DSqVJI7NS9UDTxav8Jha65c1A/3gkhBsk4a1RkdosSRFRYrdfaoG1VWsjaqatgySW6ZZJFNVIbUILjUpBa18RGtO8QOos0plJJqIe2cqFLT9R6snil9ro8tG1BoqD7Dlbj3VKlTRXK0ayoGrA/Y85/smoyGPa9cXPF5uunGprrw3cgDC5bcsSldukzKq8XCBX4YtXwu1iVdlWlRcLHCcZfPNp8pI40F04pihjAVOEtjX0UtBcaUSY+kAQWtDRk1qrukhQdA56MG57cipzp3Wp7AFo5/yq9Sbd3sCbW3hxaCzRssJWoXmTSk9WFfW+Vkag7LndM1D32UaDmyoL3B3gy9cW8P3t94X6IJyz0DbQZg3ioZgwTgv4ogNp6kJLzgYQF5OKjIrIoCfrfh612oZ2mJTXx8aXLxqvbgrH1IPJ5wjH31Wt1Y9e7yDICGgVuq9CACZpLFH46nXkr982FlGkqiP5VggqBQ+A7ZoWH8kp2Se21vc8u7mt2gbdPHlvvid77uNiAvv3wXuV/XtrVmvYR6zapObDezPDy4PyxQ0cgzL9Hmyi+IKOzwfFK7gddBFXDS1mpK1LY4pxADFPTyvr5cTlcuL9uwe0dvqRjgpcu1Lo3JFFgJ0q3OeBVQ03UuqiGS5eoZ1W266S8I+u5NmcUbOZKTCV5BXjvaLbacCiOiovW7EqklWBr2xC4m6Zsyu6yu8A9foJ9AQg0Om/z8+PcT+Giql/zyq7P/S37Z8ZQqB6QFzdbN5v3n59o5ocgDYAAhPq0OHb29zOSL1aZCrM7gesSiDuwfdVpUP8+aqqF2KjqTqOHtdrAr8nrU4T7aCZARCGNKu6tZE9OaL3SjQY9yE4CDrulfQg1nvvPPm1vl4d49f8ce1nr+3CxfOGXLNRy5uFTSEaa6aVTA6Bp9MZRDid1x+Mt0/qcLR/ADs+tnrlVl0UqH8fGHOp12ibWG82tLF/dzGvRhiYrgmHRVKaSMEV9lGkOVBSMsMaKuH7qXma6thjhOAVpiBCir1P2tUu64bWQrmcR4CZpDktzsZra411LWNAaS3GEIiRFCdQ68UVVYiBRqPmTMkb53N2lXTrFautsebC8XDkcDwwpYkQlHhF1y1FTcwuRZZlIcSEpEANiWlKLDGwxECLgSiuWOv7g1Uuo4MDzfc7p5V6Aoj2YW1p7L59DPhxJG/09E2w2EOVLvCEYvNx+OL29xO3mLY5Z2VTHfPVjn0N00E99znk+/wuGIczO65AL1UsMBa67yV9X1fodhbqa+9I6EcCvY/PkeILhODMCmd+jNWx7yXSBTllP5c+YP+OWOSTPfz0u7e3MY76GtwIcWcJlWrrcCnK5P2ydrWdgh0cGLFEEqe0NgfvA8nr+hGsdsmAo52KanGZ7YlF7TMlNMAEhko1anIM6iKi5kWrGPPLktKrdbmBNqF5oluqUqpTYKVYUqh7f7jtBB/7iRc/32LzuiklVGI1RfSmVlmuTnfWFsyxoUBLAkwg9qWkfR9U2/MKdYhedXaCEIneA9xB5OZgtPr1dp/o1pTuzxrTTFSnPZeCaQek/Uv6VzDANmQ0mDd5bZFaxWNRNfVjid5n2JDq60RraLCoudHseWkxOrIa4Kg4zboWUjN3FZEJiQtCg+brgkRjNklAg9HLW+7Cc87iFGsvMBeJQCs+Vr2NZcQkaqAAqoTorRkuNFnr2XyStTPXbH1UFWpr5FbJdSNIQ6USUJIIKZg4VWe8/X3HP2lie32MpNb/NRYc+oCxYwrKtMDt3Hu/QKT4viW8OghfvRD+zU/h/Vl5PDeWKbBlZct20biK1+VJWTe3/LlkpBSm+xtIgkalrRebYAS0ZUPywwTRUfvjLSBkBCkQacwLbr2hdPqyFqWeCqJCipGffhn5xZczN4eT0Zw1sBZbcKZJDRXrFdr+4PGBgmWbKs16hEWQIIPsEWPc1Vil8sUb5dWd8uq28h9/VfmPv0r8xfcL62boMLGZGXQw6nGIMB09yIxC8ipt9K/rZFZ9Qw5iTK1QK8fU+MVr+KMvCj97nbmdi/liDTrQ372B6NWr10nvdVJfFHIxdDkAi4MJSZQ/+Bz++rvGm1T57TcZnZUXb+zTk5rAlfhivc5mtXN/G3l8ypRqfQe5CVKVp7MBKW0JLDPMKuQGD2fl4Ul589LulwRlazKMsoPNeZoP32hrCyEqhwQ/OcBPj3AXy2iY/9SPYqgASHVaptnq9ARQVSkhsEW717UcrRckTVRtPDx84PT0gfX8RC6bBb0xMR+sUt1aJW9GoY3xqlI7QAMZlHywymDeLojMIwEx6uyuhPsMtdedNly0ugKpvSRqvUZ5e/JkuLqXqwV0MQgpBXLtdGYTjCp1f48QglnkpOAUaKu0pJRGpbSfyOg5uk4srgZBp/rA3mpgv+kU+iBMIYzgtB/W75lBhBgnAk7ncSN0Cb1/rLFuF3LJQzgKESQmF2tyJHq7GKXUf6eDZz3w6NIweVsddNjvt3jAuPecKta3Z4b1UcQDI3/P1q2VvAdSA1MQRCtltUQlBVPlHqrWre1yOWo7h4mD2PemGEcVbyTJwZKYGPZnEMRoy9HVF1OIpBiYkiBa0FKN2t6sb1JCp3G7mm4unE9nLufLJz+Xp2ke4y0lVwSuu3dna3tvZfDqbr/f9L2otwyMedbGz/bxGgRCjNwcDtweD5THt+TLE5d3b1kvF1otRKe711aZb1+Q5iPp5h7iZHvrvBiNWYQklRTNzs+sShq1rJyeHrmcTrx7+8iWN0rJTLG3mghzSmhT3n14YDksLPNMrcVYCVNg2zK1Nk6XEzfLwuxq6xICIc2E2Cjrxnfv3rGuF7aceTpvpOCCc82obykFoiGklFyYp8Q8Jb787A03x4Xb48zxcIOuH3j39lfu895opye2bNRmFbPcivMBZfLKUx76D2W9eHtCHahLjIK2KzYLHi31nO16fWijq3ys21Y03dsgBiiBmEiQiqsjezDa9rm/r2FXOadEX7sD8+GGeTlwczzy9PTAu3ffeqLlEJJaEo0L5tkJ7Ylvo4Nlxc/XKMXWX2mV4h44mwigfWYpmW29WCCsPQUzsESk9/r32NLvjd+56D2+vxc9tjkbGOR94gDo7hUe6foSuFewr4XRaOWWJAa0eZMmvR1jB0VaE0oWaAlChwP2arAirii/uVJuoGk1q8cKG5lQFTRRRtflyjxFDgcT+KltY91Oth4FLzY1QbIgOZi4n/Y2ItN5CN6q1EQIcvBE8mDV42q5QJCNeS7E2EipoaFSpZARyraZrWWcPJGzhAkVammcLxto5HaxaqhIAz3SmngFuVKlkoFSrM/Z9jUTnTvMtj7Mc0JidVptM+/3ppRs7XF5A2EipZkQFmI0d12Kqz9LZJpmoJGniRQX25/ChMrZY36bgJakG2AQWfw9lSgFzYpmRmsOCKVVSitmU0ai6ezxiFdEW6VUY1AICXSxHtcmNLV+XoKSUiQwETSim4F/pTbWlgnBBb+SMQO0eHtJzZ6kywCZW1Nyhglj9aSwUKUinKyYJsGXighET2wtAc91RSWDroR5IYSFKd1RyyPlv3diC9cIm/+t91Nev97BNQnjR68V+lJsvDzCn/5U+M/fNS6r8G2LjiSIs3xlVBeDNqvsxWgl7GOyzxC1qqDP43outFIQp7ppioaGiECcaNm7iA6BpkIrXafQ7Ek0V0SVqRXul8Krm0qSYqbR3eNWTZ56Rk2Bjv3y2/Ut6QFkU2OSKJ48Xh/W7B2CJcuvXiq/VOV4VI7HzNunytcPlYcc2DS4l6XRvIpYgitRmZ0iEOOOAQ8LEiyZn6JyTMoXL03E6xdfVN7cFg6x0vVm90q2/9GT1euN5Kqi6i8yIlPtQbBt5pdswlyzU8hCUJakvDzAT15EfvNt41KU6VY4Lnb+bVOK3z+TSbdKfJVAC9AKeLe6UWdEmBX3YNv34I5KTRHmya4uilUstqJsxTxwOxAwx8bdrHx1D1/cwasbNRqJRKdyfdpHc46aYEq+vRra6bAhurJuSqRpJsRoxtmXE7kUTk8f2NazVQRFmFJinmcXh1La6mg+e+LUAT2wpG5Mfoy+VodfqpBCIG+FVuoeiGPJbA+mmnaxsTCoQ3Uon3WRpV6ZEooqFwdteiKbXZgil+qUqWrm5n79rSnruvr9MjQ158y18ifsa1qQPeka195/agSbHk54tdxeC/t8uEp+uwKwIdW7TJuCSwb7WukoP2r2VaMCcv0+PZGpbVRNgyekzyrhghdprpNzGX9GTyRjDMzz7EHoLtJSqz1L9XVl9NzEyJQC0xRRzc/0Bfo6oTQ0dKEQb9twa4GxL/jzt2XEAJIYAlNMFE8fTBOjJ2nuj9zXHCAM2JBxL2IMFiQGTK3R+/M+5cO8gT1xFV+3IhYExbALz7RmVQEgxED3YASlOZXxCrIY799BpiBCTEIKCnVle3zP6fEDb7/92nvYLelYt8yWC01+a0nQ3R2H45H5cOTuzZfIvPhaYX0wJRdadi+5lllPT2a3VG1vribx6iejyOLAWXW7k7pXXpvCeTNKYozCdnPksJjN2Dwnq7qKsqTA/XGGuhkAXjNPlws5V+vXDVZJnufFxo42WGZCm7g8fWA7Bz4EQSXSVCgNX/siISVqWTmfV06XDQjENBHS5GNcmeeFlBIUB5GJthf5fOwKh012VgvXa4qDTno154ZOcKcei+/BfW2QHmRcIdl0xXO1+99h6i4QJ/JMbPHF8Z77F6+Ypok1V3cJ2FkaO9jUE83xjr72N0+sPZlSoy93v9QgbmkoLuolQq7OvCKh7Ofd940gkSbP9QjsI9u4BttrPv3ENvT7Q48d/fl4NdDAXnUqK2NN1LFvWCxl7VY9uTBRVEKj1GBxD/4MHMdV7TuLsSOrQtV4lUBjP9zBr4Dr5Ju2QgzBfFVV3Efc4t80JaIIoRUmNZBxcxBFesLr+3jpjCwgSEVDNfYFAZEjQkXExJU6YNMZKRotwROPy0OBqI0wz6gWcp5t7WdnfHS/WYigkaJK1WZFlmyvTVMwQDTOKHtlVVwMqdRqIFS11FNJFAePKHDOxSrXveXA55/FFeaRnsQ0CwILVY1BtOXs1GHLDVJIbo/TnIFpYpxNzOLM4QirgDeYJqMISzPhz9agSec1BQOk+9yofZ1QB8QCKS0UNesnEaPC11qRWAjN2QPNrIyi7G1EBl3ZXMwlo00gCSGaCKNW67VGAzEeCKH36TKAdulV8Q7+O7vFPsP0dUr5cXvyj05s94WF8Zh+3G9dI2n9fa6/01fA3Y6gI4eo9TK+OCp/8mXgZ3+jvHsU3l8iNVlQJo5u2Dm5SpwqEqM1Yc+RLmqinsEEhHZqtFIRqncni6H5ruhlk8zeT5tbvKj1eaUpUiKImvrx7VR5cagkMTVXo1sAKuQciKF5n8roJqE59bcF30T8dgS/Jd1fttON7GWjccWo3N1agvvmhRKk8KvvhbwVLnkil8hGIEahRrsOieqMIPt+8v3Lgt1Kpxl1dbabUPnqVeDLl/DzN4UlVubQ9qfXdzSuEparpFb9hfHnWH2vEh1kZPhrseD+fvHnKFbNv1sCX94H9DfK1hprhsMhEJK9T2uW1JbiFaag1qwe+nnZDlC8V6BPlCCWyBqSacteCLDMVv0XsWryVpRclCkYXTmIcoiNlwv87B6+uIVXx+YLHo6QftrHSGKDmBLiVQIoQUhTIqXENE2keSYEs6m5rGe2deXy9EhrRj2MyRbpZVnsPWph85tsYP11xXVXGpSwU1S78q42qwLGIGTvwejJheA9liNQ8sQ2OqrcewX9s7twE7gRu6O3rVUuWxjJPUDxxLapMgXzajUKcmPbTPxqF4Oye3itYD4o9n0e24X/ILHt0Z8FITpsV8JYyD++VzZLau3rpNO4/TrN6LxPPrvGvkFYv2/0l3SoPddaSNEQ1977apvbOFH7owNQV+ffK/PT5L2Ws1km9fO3BLnQitDfsitepmQ9y/M0+Xy1xGaaJr8mzBKmVbZcxjjpSbqEulOXB0DiSZ17J/Zk+BpY6Emfra+2ZkQf7/29gydv4shEq5WybS6e9ekeMdr2bWNOx96S5tn8jEuhlkzRQvcetON6bO6gRf/qllTDz1tgSkJsBc0Xzg/veHj3lm9/+/VQBK61crpsnNfMZW0s88SLF7e8fnHHzf0d8zQhN7fE5UCcFqN9bxfy+WR0Yhrr+cS2ZVdCL9632612qqsiW1VJa0WL9YyLWGL78LShasmr1krJB3MvqLOxkFCWJNwfZ7Y1kjOglcv5xONp9Z7BrmlxMDAmKolGovL0aD2325ZZi823JpGX97fcHA+8ePOKWjOX9cL7dw9OTQwshwMx2roWb+5IywEt3r/sQisBpwz36mVIFor3zLY/uY+SNvsZfFJYgmF5bG8/Eo8vOvhxnSDiye2+hvXPkwAyEmVhWo7c3r/yNfeDW5T5/i6mLmtU8zDWujHn7Mw8BMejtKt4SAXRaAG4mASYiPia1UEEPEENY942/7lwnYEPUE49oddnYM2negQaFUG9j/y6HURdAKqURsltB/RSBwR1gAaGhZrOQi3VHAa0UoqN6+j3suEFBxeGUzUNkoagaqBu7QG2V9ql04mt/m4ARXTwRR3U9mTJQA5BWiFhVegnX6NCV/4V2zNMXMhiuRBMJdcEAgVYEFkRrcTY8MZqixkwml9z8bE5JkvoWiSmCW0zeZ7HvtjjjFYrOlUTeCNQW6A2oTZz0mjNvdZDIIYJmAaoKljrhbYKVawHVRKQqJrMF7gql5xdBdrP2dEfsyMMVqkVM/yJMtF0Qluh5I0tV9YN0pRQSZgdUgcSIlWMeq1t8z3OAWVVlhSRCgVTtkaGPJwztsqz/VHRsV4QhBCsWmsAhI2tqgVpxWJrNevUoF0RmjFWO/Mpl0wTCJJICkGFVkzfQFWIYaavQVm3Z4mtSNwzzT5tHbSpvQXxRxz/wMS2ozv/kKNn2DK+fvgO+/c7Ra8vhUGFY4SfvoR/83O7d7+9GDrQVCju23UpjeUYSBOcT+ZHW2ojFvV+2WjuBBGOh8B0c4vmSkrmI1mrcPq+IFUJaSJ5Evf0EKibUrNSdSMuiXgMTLeQSmN5OnE7WU/wRKd0wVasR8BADgGx9+gVloZRhgMBDT2w9MDf+0Ovq6B947oGBlJq3MXM//AnkX++Bv7NHwt//qvCN+8bf/7bxsOaOJVA3cT2gyhc2l757Xf+EBt3B+XVjfLHXwqf3Tb+8KXy+j5zmJUUK1FsGbh+Zu1q9OnfMSyGl+G4hueviZfQu0FDU7UubG3MQXl9q/zyJ8Kb30Joyv1ncHdrlfBpClxWExDLRZw2Cuo9YMvBRt+6wt3RKnuPJ6Msx6gskxCT9eWqQlFhq/bzqhBW3yeDcHcr3Car1P7bz+EPXsOf/gzuZ6twNxLq9exP/TAxCkMQkyc/4Up0ZEoTx7t7bm7vkTiTt43Hx/ecnx7I20re1p5nWRKYIjEGpw+WIcxifTNOf2xG5XU0xYIW/7xKAYUpYCIUYSKFQEuR5At1r/AlT2JMCKny4ensG2p7NsRq9YRYXFVYrcc2RRm2Ij1Rqy6oE2Mc1OnqNOjmdD1VdSVFq/CBEGM/j3x1b20Cj8oFDJXovYrqielVpaFbGoziioMyHcWszVSL+yEi3h9rAU4HA4OYyITSqNmER6x/tr+l0Py887YZCGhIgJ0/OPW6uShP8i/7nRiMEppSZDkc/J6rC0E4sj5NJCaWeWKaEpPfVxPbCyMIy02hGIW/J6QpCEXElThdpT1gQhVe1Q+uaKvqn5WMEp2So70erDVVq76iJLf1su3UE3+CAQI5s7VHSIttrDF5FfLTrtgCnsy3MadFhG3bCMGQecXGeR//4NV6DNwJLrQV/PmGEJhjH5d7j/IcKuV04fzwlv/vf/xPfPPtd/z6N98MQCnnbImEwHoxZDCGwJevb7i/PfDlb78hTQvzsvAnv/gZy+HAPM9oMcGQy/lkiuqlkM9nSq3DFkqxIPxy3gAs+dXGmqMHjoLkypa9ahADHx7PnE4X5vTAMs8cDjOvXr4YQXXNG/ly4bKuXC4XTifr/YohsiTrI8sC785nHpaZKUa2XDivhafLRlMDwO7vjnz55gUv72853t0SJXA8HPm2PXK+rJwvF25vDszTxGGeiNKgdhaI9dbXAkUN7DkcDgb2zMaUkZSQGGgSKES20pw+2RCnqVrl0xe/gbxhF+p9Rb33P4z9uKKhILXSqgeXXWAiyPD+NVAp8v7De87rBW2N8+nJk9Te0+miUyJUuqCZerOS/be5NaFKdJsjcKUyS2L7g2EaWY9EE8VRtYLD0DrwJCFKT372BA96ouVFlYE0ftrHJGaHs5ZK0WCSI6jrH5gtSi6VUprZGor1vdY5wWSME22NXBqxV+IR5mlGKGzbRpxsvxMXImrN9mNBvdpvbD6tC1ozNRdadGGkqkzJbHbAbDGbKonZ6M+aaKXQNIMUmlo1M68rSZQkcHOTWGvlKZvysjZbKwxYDMzxQJQbZrknyS2qSq4VVWNqxOBOICWzrk/MqZhoooOSxfd5kTB6Zcd+0GwfznmjlI1z7NY/AbOvExLKptaqcjlXZlv4iMkqnaWuqF4M8M6dGTQxTTdMLZBSNRHN2risl6FxECMoBWW1Fpko5smNkblDmEjcIjIzJXUdjYq6n+6UjqAFq7YmohRENlLIrqVh4Ds0YoqmCtsqsTZKadTLSsVVnj3GCNIgWIIcQ0Bc5605MBSC2TA2NfO0OSTmJByXmdyqg+1KaZvRnxVSiGhInE9PFtu8fEmaK4HGeVvJ9UKpGxNesfcYDFUHH/xZaQCNIDOiCVqglmq5Xv5xc/kfQUUeUdeP+MmO1tl/xyI0orePTvIaneyBGOKIMXxxL7w/C69uGq0FShXUgBNL+Fx92FhXFjzX7GiUB3sSxCpvx4Qupq5cMpCN/oo2tBV6WX33tTK7ik6ZDhjtObRidCLLzgwZHdfgiEZTb/Lu1+hIqgcb0quy0l/WEYgIbSipMlBL6HRIEbVKqp9aKYGXN41lEr5/qjxclHcrrFU4N0GrJfgpKIekLBN8ftt4fau8uVP+8I3y4qC8vq3cTBYQeuf/viGxB+fj0T17hteP9IcJ7cfVArC4WnV/Hxstdh33t8oyK6ko0tQqqth9jQHmni818+eKEx74OmURS2DVA4hseRTLvI/S6urHW95FL2pTS6AjvFzUfGpvlF+8Ub68h/vF+sRkbJ6/Y0x/sseOZEsIQxzK0PmFNC/EaeZ8vrBdzpyfHlnXiykWs/dxmUWNC6T4fQOroomOAU3zvscxEp4ldN4kL7PfPl/0PDgWQL3ykFJgTqaOrtpcUdAWw1rbD1ankXh5kmqouPrvQOf07iJXMiqve4DUE759gPb37IqsP7i7fi/F37v/Tg/Ue5/uqPzq/of4/dmR1fbsc/dqsY57aNVX9j4d9p9vtVs6yagEXwtD2bKyJ/CD7qidot48yLWfVV9v2zjn3sOpXiW29+7jQ2K07yjW32qDzl/3SmnrQekYRPuz7F0P/nmddtsrO0PQr2/a0c8F/Jni66kL+DjNE7Eqti/diEQPthlJ9Kd9iP/fEogBjjo1V3wQ27XZ8x8iJ1yJsQnPxn5wIcVe6RZt0DJ5sz7Yt+8/8Pb9Aw9PF6NHughTDzBrGTs3KcJWjCWQ0sQ0z9wfE7c3R25ub7g5Ho3uq2YvVXJmy3kIx3U/7FwrOduDXNfMrBNTS5hHqkAoVOdobpuiQaghWOIXArFELutqVPNWOJ0vPJ0vPDxdeDytPJ02SqtM0QJuKz4ol8vKulnF+3TJrLly2YorxTdSinx4fAKUL7ZMc89cCcYmWaZkQay49ouzAQYbIUTrb1NjTrUcjOYZQGQygS2wNpoUiBIozQL+6v1xtcqYu6NtILgSvYNTcj33URP6Ud9n/f73+ScuxtXHgYgJu6zr6qyPisRE9CC4j62+vnTQc5c2s/UlqNNHHdzsIP+o1Ii1UA2aAGHYjWjtO1Ybi9AeE8mYt716CD2G6Mntp33UVqxi2KAxeSjcdQ68nKFGLw5SaSLgsanZF9ar/akNrZQurwUyqrTFq3smtuwsqB5b+iZuIFXwHnwxWrKr/Yvu1XjxoLVV83C12NmFGLFxg9gcTXNAIxQCUawMgAopHJjjkTd3X7JMdxymV0iYqS3zeAmcSyN7ZZBWDHitjSrmmhCaxx/OPgPIpZGrkltf45uBZiVTykqqXVgpupBSIMbJwHdtVpDqhSkqrWVyvpjIE82q2WpWosn3nxgSQYyJoXR/W3t2w24Lq5p2bYG+4wvmt22iT77nXs2tvieLJ39BIikkml9rj0AmUVKwgl1rJuLViumVlBhs/xWzkqpOTQxWmkWxyq+GPh7Eqr5qqtJTjBymA2290LRRfC/pxSgDEBrrZq1T87oSp5Um4o4ThaYV2V0Ah/CZilfU/dmqx5jUMCrBqBjK/SOOH1+x1etaYe9d6P/6rx+7FHt/iG7mO/IbX/xGNeN6gRJUrMviZ68sMP7qv1RasyodTajFkOUSML5/59nWRj4LJEESxJABIRJZbmwRVUAutmTOSX2ByKgspqDcxTWakg6zywmD1Eao1b5aNMN17SGGi0Kp9Slctf5dJbY7pdCECtUo/35LmveJoabSuCeU44mMRT3QmJMlYfcHS27/5U8r37xXvn+A//Rr+O1T4NePkVJNh+wmwBe3ypvbxr/+mfL5C+WzF437qRJDs57Rnmn3ATiyzj34/PuEGbpAyQ9+Vvt/DNs10a29qmIKbY1lhpcvIodDI52EsjYuGggR2JQpCTeLsGUHApqYwmbYKcVB9qqsSve5NIsoCDRl975suM+x3fslYf20x8YvP4c/+hz+5SvlMAlTYlS67Jp+D3ZQdhChU3ejCPOyjJ7Gw80d83JE4sTD+19zOT3y9PBhLMQxdYN0S+p6tbcDOyLWnyvCoEM19w8FqF3IRo1ebglHI4SbZ6InEqx/V+l9tsqcIsscKW6i3nt8gzS0ZU8afwik9N/v/UWtaRcZBIx61+nLwYU1gqOKnUK3G8Xrs/dNKY2/7+JROoLJ4BWVpvs8qLWi0dcCufo5YO8Z25PLnihfH53arWqy/P7mqO5rg91oRsXVkjxrlejUbuvB9Tl9BUT1z9XWA2ZbM602q2yleu+ReQsShIj1g0kPkF3xuTlQhFpQpjEQSUQP3KsnMN3iQLxffoBdPUbWrqrdk/zdXskM563Hslfkg98n+3yvbMbJ1zOn+rnKalSvbLc9GPikjw5+DMXxfUxaUOXzSEwMSdWq+NdiUcETIAMDOrU77aADCk1o2aqq79+95dvv3/Pdu0ceT3n0p59zHWttHDZEQmmNx4v14pttTqRuF+7vb3j98o4//qM/ZEqJqI1cNqugbhd61a7mQi6V02V1RWer8B7rkWWZqfnii3wkxMUS21WpKZnISZiIbWIGHp5OqH/O2w+PvP/wxDffP/D4dOHpZArY0xQoc2VbAW3kWiiOuz2eiquTw/2tRTXnywVtmXXb+Op8YZoPFiBHQZaJm8NsQo5iQpNa7fOrJ7Z2/w2gFqBmhRpBG5M05kmMhinKPM9cpkRu4j18bqkSIvsa5yBdNMGbPv+ujwGeIyBu29cqTdweSwLB2zGuRceMmWKgSUrzoAAblXkMSXpbk7B/bh0Syc97+ndhMwdWYtxbM4AO2HQYVjU8W39jkCudEhfo2/uQbN36PdiXt+3CinDRK7ZEYKyDdACiFYjJ2tK3QjlY3Ltu4smWKYJL75v0xMrqkYGCcrlsNIHqvqOWeCmQUakGjopRbFvLaBW0BreVccBLlaAOMjYf02Wj6UZVa/ETB5sbhSKNu7uJCIQQB9tPiBzTS14cvuBPvvj3HOcXLOmeRuOST3z9fub7E17IanbdxcZSbc3YKcy+xudRYDrnxro1zptattEK27qyrie28kRIvcVBmJeJGCPzPNN0IUYhbybCYj66F0pZuayPxOT9zq66jAYmMVA0xYkY2hiLzcXhVCo5BerkCGqriDavUTUHaSaEQKvm75sSV3PX96pWPbMICJGUZtNIKTaHRWCRSpgwR5cGWSpaN7bNxlKrd5ZgtkJpm6nJS/QWBCVnU5dtzvyyQp39zBInbqZbtq2R20bRSmmNqm7tB2hV1q1Z33R8pIXIoVm/MZIJUhxsMMGzMFm1nGAgRS6baR/RbE8qbmHVk9z2wyLC7zr+AVTkPenyaeb9oP/1xKb/9PN/abfKQ/nhotO/PypKGCD3+Z1V8P4v/zby//mrxv/015n/3/tEK5bM5NX8YwNKmATrqoloLeha0LlRc+D8VJmLEhMstxPLbM5Z2xKRIojM5EsmN6hE58MpZb0gLcG8UC5W8Y8Kj5vw4RJ4OkBKVmVaSyWqkDJIUFJTYjIRkyBK7AGbYkJV0e5pN3AOntDvPHjHgZyvPwLda3wACM02xBdHOMyBn7wWfvJ55Nsn+NU75W+/25iT8K/+WeLLF5kXh8rLQ2GerCoeo/6Acjxy0OsPA1CvgHSa5cfPsW+gqs82vutnXDSw1mDN8UFJ0SrY2vptdyRYA60E1ke4vYMwCaeTMs9waN2vF+YZThdYi3Baxa9Ladk0Mmqx9wW4bDst/jhb5XeeYQlmH/TiAH/8JXz5Av74Dby+gZcHs/UJoacuejW+r//+aR9NGzUbYDNNRhk9Hu/M83S54Xw58e77b/nw7lvytplQVAwuGjQRYxriUqqN8/lk4y8EjsdbBE8a6uq2WQzl1hjNs4zqhu+yAz2oBcYtNKKacbnJ6qsHx07fqxlFOB4XD64Nse6WI+AJ5FUQb4eMYMpoQYHDMpGiqZjuwJI6qyKybnkooO20zq7Ot1duP54D4xODjGu7FsNq1TbBaZr3UeMV1l5m3M/dR9pVtVZ7X1uMV8moCfnsK6ch9sMmCCFOk+kMiN+b2mmruvsFq7oSYxj3y6x94vgKVxJ3rRXvOypuKaSomjJldNuz7vdX/d5FV0aWIEg0anYMkZKNSqWqngAAYhQucVVGEx1RikJoMEsyQTwRF5gwenS1sM0qe76WlrJZL1mvmIVowmdklEIuzfuyf8ze9t/32HvxOgjQvMr5vCo/zzPg4Iw/n1a90h+E2grd3goMCAmeZATvjMx55XR6YEmB45w4Ret7CgEOc3RwoveEM8Zhbcqvv3vkZknMU+T944m748LLuxsO88ztzWLBnZqtWAzJvTzN7kG1suWNFG1n2nJGT0ZJDiPOqaa9IMGcJKLBy0nUegxz4bRdOF8ufP/uPV9/+56HpzPvHi5c1syWK1MK1ArbtrE4EGSJsJKbCcL0Nai1Ss6ND3Xj5otX3N0e+fyz16R5QUPgu7dvOV828mb0REFZlmkANepsg+h98lFgce9u1UYokZYjmgriTDKCFb9CU1KpREksMZFu72gImyuLgnp/YBysCQOYOxvDwC3EKn11JMa+NokxblK0/veUEtvWfcqz7+Gy49tXoGBKcQfmOjClnZXmw2JEkzuj5Zp5MRJmBWkVV6raga++1nn/qYggHdjrSaCPisDvR8V2vRQ2IEsXxEum6P1sT/FCj7felJptjbU+M4RuG9cIwdS9Rd3/1IHgUsQcC2hkrbQUXHAOarHvnTYll0jR4HGYkktlSQwWlokB2bPNJbtl3xlls0JN8xxBFv9Ho9YLEiJTTNR6IMjMq5vP+Or253x+/JKXeSHVRgonJCRmjYTpC+JcmDTx28tm+g1N3HpIR+IY1Ojw6kl3q9WEtkrfZwJLTBRxBd51NZEyZpgs/u5jvYO9XdiwFeutX9fCpPZ8iKbN0epKjDMgBjzlvn/ia6FVr6OYRksMBdGK5A2VhRQN8KqaaE3Qlmzva2W0eHWhrWfAs0CKM6KBIurgUuF8eTSQTJStLajANE3U2lgvG4+PJ2rdaJqZ5kJCCPEqXqpO/cc/xrffETtnoeZAzcKlFNu3g2BNCLbmTHGito0PDw80VQ6XhTRFpgni3GnFyroVwtSQaK2iFqMUjkdzUpAmULyXfppJUfmxKes/uMf2+jsjr/07F47f/UJPWXtdYyQE2l+19+/BXX+rOcE9yh+9hnfvlfcflL/4daNIgEmQzZO7aIiFgm1yVdFSIJlsed5MgMnEklxUKQlxSo5gRVNlrb4RVEW00XLxKowZTpdqdjJrEdYslCojcasuSFQq5OJ4YxBToBQZlSKPu2x/6HQa6X1gVnm0RcID67jfq74JXT+TDgnEYL2zyxSIEzaoBPJamSbh56+Fz+4at0tlCY3uYyvXbyX7c/9BjNe/cZVEfPy8P/qRH+bFiFNjXHEYQ5X6jlndnqD/2bw6r9Xui6o9z1KVKXmaqVZ9XTebiKXf4mIbeq3GbJRgz0j8vi8J5gnmpNzNcD/DVy+UP3qjfPkC/uCVcpzEFndXHuz3R/r9+j05VPfqGOLVvBCYpplpXkze/Xzh6eED23oZgXCQTj8O7vO6V/xKyQNh9G8DjCBoCCv1l3wsDOoaeL+eBelBBPUNyWfhoCVfC0XFECihIa1bCMnoF6pXSaSdS3BV3+B9mZYsLfNkVaYQdmpNr6QAWy6GfmtPLp/T6PrR+xWfExP2fzwHeFywRTtV7Hoe8Tsm3H7jdrqwB4JX7//x7+2Jpyd7OPLZKUhcT87rRJpefnEArb9mY8caBWr/EegKntW+tMM+QySri+oVivYqgiH3AUswextHCM1E9a6vQ3YQaqd4Y0HeUPkVm9iiu8CW39rh7apO2zOYEInOtBETvlL1/rHfg0KPdOXcq/nQ1ERjtNOurypXfcy1oZZcoTkVHDVxFnQEU9JLsDR/X+vV6wwmmyt9ue7j92oM9+evjafzRl8ram0eFDbevf9Aq0cTn1Obc1Py/rfhouB9gPg4ao1cCq0p0xz3Oag7zbWPa/Hqda8GP53OvPvwyIfHE0/njctlY/PexeDjyS95jPutqvtuGngacL9s32+mFDkcFm6OB+I80SRwd3NERDjrxlq3ETT2Cmd1GzLnuuxBZcMFnzJduXxKgtY2mA21YeJTISEtsRyPaJhIksg9cRajlNuavFd0ryv6qtNIQvWjud+twwzsSIRYia6KalBHe7ZO7PtCYtcSsOfXRjZ/tRayr03P9oggV+dkP6mqpgsAiCeyo2rbn3u7fp89bd7T50/7qNUdgMX8YwPB/WE/iq0Uutc7WtkXYKummk5J873aEgQbWwbaaDMRqqqVXAu0gKQA3ad+WELta+tgLfr+YkDXDhi3Wqlqvukq1QWlvEBRepyNVZsFRMz+ZQ43vFrecBfuONaZej6jXGghEuJEQ4iiTDUyk8ziyvsvOwjTtNCt8IyL6WtICLSYqGk29ZNgNP4UIi1EmpqGQhCvgqvtA7CH1E27foENXbsXDiY77bYWJW9W+TRbm+h6EbvGRq3WA1trJVBBC9oyhOTijV4EoLd1BbqAqrGWTO2/A5j9hCzWSqS4gAaaZmo907y9qmE99jEGo4qrsuZMqxnVQpr3WGyA4GNSjhfsvXzdrsXYXrVCzuaSkrzoFgQTxIqRUEzr4XI5o9o4ykyKESH2zkYT9nNF/kYd1O0QTXCqgyjG6BMkpL3N8+85/tF2P/+tcXzfskIPtv6u970KaAJwiMovX1XmXwg/uRf+7DeV70/KWc3bdgW7qhggK+3JKYplRdtCK8qpVObZFu0pCUWh1cB8f2cPrShSjArbskKrtJJp64akRpgTxhtOrDXxdBIeH5T60iaiYOp1IShb8EbtftHJHpZRAXda3Z7f22guwQP1iCsoG3wSMPrIOPpbizf++wJUShn9MYsony2RF68n87GNwpd3hTm1q4DBgwft91y4Fk8ZlkAfBfPPAQ8Zz3DQIX+QEPsffYNX2EpliQY20KtuTalNrDe4Rs7ZAARcbCMEZVns7UrBe7mUp014OJlLxJxs7d8KrHkMJ+bFKu2tws0Chxk+u7PK7jzBP3sFX90r//6rxk/vK3eLoW24FHkL8QfX8/t0GLpa2EomYcrH6XDDcnNLDInf/PVf8/T4ntPpYfQgBgnmC5nSeP6qjfVyotN8TeSCDijuCYiv0F15uKkFtqrq6sO2EW5bRhQmiUwxEKIvbsZ5IoXAumZO59VprXY9rdiC2+dS6EE5SvbziNHQ2MU9KQ+HeQRPs1OJL9lVWIFlmk2KX4JZgdQ6FGCBK2GlbkEk/n1XIlbv06wdWd7tbYb6bOv3rSEfMV9Gr9y41+wVRA86ehB/jW9ZgsgIdvrsLC4w0YPaWgLzfBjn0j9EWx3rUdNqXO0QjB5UhVYjNVvQnWLaAbcr4KLWMsAKkckEoZqNF6Ma2/k1tR6oJsoUklO/G0kFKJRcba3zyln1ACulXll3mzetbCGP/j2jjVtV4zhZNTalyNbMFqHlZmAZgrRMCPZshJ16nNI0VKU/1WNeFnJeyXkd9kStWi9Zc/p4X4u7/3EIgZI3ukBYTyhKtGqtVYkAJqYYvOWuUbaNdcucLoX3jxfeP555OG1Wy1Ullz3Ruabjl6IUsD5QIOdCU1hzZV0zf/W3X/Pm5R0//eKN2eakyP3NzFYqay6cTqu3pETUvae1GdWtSCGmA8krG9ZYbH32wWBTVCt5raynE4/nCx8ez3z/7pGn08ply6zrZnZhqqxrJcXAPEUuW6Z7SZY6CBtQDdJ5qoV5iry4XXj54pbP37zg5jARphlC5I//6Oc8Pl347u17PrwPrOtKKdW0B0Ign1ZSCCyzCYO0Unh8OhvAG4QWMvHRGF4v745MUzKVVPCk38D2CBylcLi5Y7l/TQ4zVQIbJsakLhrVgfDe2lBKceunRqsWBlqisK9DnVJem/XYz3NAWKju/c1QrO+MjmtLM8afQX9YOR2p2r6kjf8O6rT/SsDCpuZAg/ja0cG2ccjOYNmT5k8/qYW99SwAlYxOEIN7rnpPZ1crb80YLUIhRKuuN1/Pqgq1bJ4EJGJItGaV13W139vmTCmZdbvAnFgOEzLfkLDEbJqsBaDmzFY327eb0koFCimZp62NRPekLVaRRcxzuBVj7uSHlZtj4vYmEbHPrzReHl5xv7zhF/d/QP3+wsOHX/Pw7q2FyDEiYUZiJN0cyPOGxA2p1eIBEqWtNDISVlIqRJlZYmKRxERkubmjHqxn+XQ6AZVE5DgdmUJjrY+WJItCPdNypkyLAa+1uq2fxSpzjAYixTBiwECklcy2FdYtsyxHbm/vuJkXX3kEjQVobHqiaURpZj3UrNc+CgRtrOcnaqw0mZjSBGS0wRwhhUatJ6vON7PwkaqQG8t0ZIoz080thUbRzFqb+dlqA52JKiyLomzU1jhtGVNXNuHPFE2FHBeqMtsys1racsY0SApb2UArk0ysW2Pd4OnpYiyZJSDRWj9u0swhZrIUtrWg+siWT8R0xzIdSBzMcUbd0lQN/NzqhkghSHXpMyvOtez5TK0QI5L+ianIv+v4OKb/MUvIqNp0NIpejdxJnT3w6Qhf71UbC18QXt4qfyDK//6Xwl99D3/2XSMlEwDSKoSmpqa6KVoCgnHYXW6YnCGsSvzQyGslr411i+ar1KU4EbRaIzRhYlQltjMhTBYwMHG6CB9OsOU0FiLcQ+qyNVJwLC2Yla5EG0TqVal+Y0xe3ZF191QMwSjTImC0d0+0PXsQGAH4yHJh73v0/4oaNU+zKQ9rbbRg3lh7K0ynKfme1JHvfu8dOdx7XOTZn7sAlu4/zu8qfej4dpeIv/Z1vz56L7VifWDTwaiNQcREolTRZj22pcFWhFLsHCR2iXtG4hDEEtllhvtbuJlhmczS4eWkfHGn/O++gi/ulK/uGsepa1nsSfvzkfzDsf2pH03N33OeZ1599gXH23tuX77hdDqzXi48Pb5n20wBs6sEi9PTrCrKswDpmiI2RIrA/gz+L3EE/boqcJW8hU5LFQtJtX9m8t5UNTpQCMLtzcLTaSWXyrYZBTkEs5Ppida25RHcpxRJMXI8zBxmo0OmZPOzVFfPdaXRTkme3coGhDAls99SxrmHPm/p9Ds7334fOhV0nys+JrvOgHTRK0v4umLtc2Go/f70HjOrSjGqIuMeEpwev78WQxyIZxzUSt3XGE9s4KoKcBVpdkr0/hrUIMMOSXTvKa7aBcWi92gKhymNintH/Vut5jGOocB5y9Qg4LS7vZK902EVq5p3D8I1m18pagBZC9bNJ9H60lJMZm+mbkuhVmfq1cNROVIL2muzYCCFuI/fED55T+p1vbiYTEClWeBPTyy92uAVL9oO9ox5rG1cb6+4gT13DULUaDYPrRIpRBFinGmjTQTvOXUP6THPLV68XjNLs55s7aJFvlV9eFpJKfHqxYpqI5VoNmMSSPNMdiXeKbqFGzqEqmKw/TmkwMGVsYMEphg4HmemKRm+nU005vR0Zl1X63dNgeRCiugOhPTqWPN51nvDVa2PLHoV1cZZ5LDMpGSVz6fHE9NSCdNE0MrtITF98ZplCpxPZ96+e29rQivcHY3yWLbV+s9UmaYwwIhcChVLCB9PyjQllmUez8nWOkEU1vOTVd+1EqYDMc4cDzdomK0vMqaxxu1rNIRm4lqa9mptbW0sPX0lCqqjbQEMPItpGpWjYR8ne2JrnphpBKU/iADUR4YyxqgtTX3ds9+IUdz7s9KCgTODidP3kn6+V/uUgaoyxvenfuScTdhQbO3pa+PQJ/H50kXNrJJYqSWSs9ljtTpbxS91P9Aw7o/IZH3UtdHVuEUCpVTyBvmSKUclRdzippjnea0WtDYr0EgohJCpdWPLsLSGYMyAWtXbETJlg5oDWtQKy263aMnhzG264VYWytsnvv2br3n79dth/3Y4HEhpIk0ThwDqQlNJI1utBqBHs/up1cTeCI26TJB8zBRrd7psmcfLk8coCXFxp1IaEjLd39v2KFsXUwcEamOrK9NxQcQ8Yn3bscQrCXML5NoQCtpWDvMNEJxVYYzE3W7OQRuJIIkUZ2KYOOWLMVgkUjXT1HqVLYcQtvM6rM/mcCA2ITVIJKYwk6Yb3j69Zysb4k4SUQStiZortV7G/NamJp4brCpcOxCq5sW9zJO3jAUenwwML97jL6pcmgnHpQQ0y5dKAfMGugLJey7h/bRBFfGNQ13kcZomNApVGmUtxFCRuM//XqVuzQoxQnyuafNfOf7hie2I7PeEzNDunpA+e/XvPD5Oap9jdvYT8oP38o0zCDeLEqLyr38uEOHrk9FuS7EyeUBMha9gdCsSaEcT1R7Gag8rr5V8KbaBNczfVrxO3yqK/16I9u+yWQldAk0T563xdFZyDcTqi7N2mq1wiMaxj0mdWrurUI5kEDzrFQ8mhRCU5jSxrtwPPSFsexARjQrwnHa5V3rGjW3QqiWF2ndtubr//WeHWFUPAD/aRK6eoHH7Zf8M7T/+/D33J9wHjWEHJsi4B/tcXUN/r+YSnyEIy2LF+BCsiqpqnsCXbAntll1Aoif9waq5MXpQh/XTHha4O8BxVpaI9SXP8NWd8s/fwKsbuO1UDXk+Cnd0hmeHfPyNT/awRDDFxIvXbzje3jMdbnj/9i2P79+yXk5GCxF2ERnZVYP3QKT3kNRnQju2aHqQrTLu07Wvaoj7+O9J3qj0jC9wWMsSz1JNFXlKXC4bWa0S2SsFy2SCVYoFs0Z+MEujKSUOy8xhSSyTJXwFHQG6dQYY2j+5Ny8+T0IMSNyThv5nD0KvKwQjgWt7ktgFIK7v/5607iJeqh64XDMiPkqMO+okHjx2GvN15XUkttFEaMy6x0GD6/nlwhU9ue7zZuR9zZIlEfN2BZuzfaNu4h62HtSEgFuqRZL3K+3rkNOY1awfxNewhpm0B+8JjMGetbKPvb5BdlpccQ/QgCW22oQVSGrU9dlBXfXBoKj93FVC1de3dhU4Shfs4Mo+5RM+8rb6HnnVo3g1fbhK4juIoWqVOAlG69vHjYzE0BddRAtSM7RMpDrKPw22jTpQ1doVpGqY5aDxj61FDURS3b3QRYTTZWNZJi6rVUhmB4mWeWZKpsRpVXqzv6jNqqgB1+lQs6GbXfwqROGwJI5LMuE5beaM4EIzpRRSDCTXC+jaFeDzEMWqFHaWVRlJrlwnT8Hm1zzN3pcsnM8XqipTs8rMFCPH4w1aK1MInM8n8rbRmrLM1ke8uQp0EGFe5ivQ0K63AZfNksOmRntOyTykUdPhGAAHjXnJxGkhTYEWAoopfVcNVNEB9sF168T+FT5q3+hj55ph0tef6L8/7N8cEOpJ0zTNDqTlZ8vfAOjG2OzJ8b4ujjHt46RJML9T1G2OeqDh66JcrXtePe7n8emntdjz7X6U2Hq3bWUAnl3x2FwA+trURrW0FKt0GTsp7fupdvkoE/DrrT7gYoWt0EqzxLqaHZtItN+rbahZG2lKrXUvFFSz9+02s5hjbyWqrZI3oWaz6tPGEFwWrH/4EBcWTazvHvn+62/5zd9+TUgTy+HA7U1lmSfmZSYsieism1lmNqonyCajJGNfKdSWQRISE6FZNXmrmXPe3PKuskyNFN1eTitChm4bpYkYZoKDKTlXSs00negxUwd/FWtXmqZIoyBSaTWTFruvuVRSsPgihqt9muDAQiSECQmJvGayOc+i0qi6Abvlz7Ztgw2XJiVhVleJyCSJKVoSnnNmmqzqKjGS171V7DqOoO8PHlcZu3M2VluMzKnbVjq7rjYT4AWyNkKYXPQxeL+3QNr1t0dSuw9TpOlgY9oSYgWBGnxvrxXBC23Ejoyizluutewh4Y84/tEV2xHb+4rvS/8V1vYPCQp8wfRb8/Fv2r3pO6S9+xQgzcL/6V8Gfv4Gbg/K/10av34rfP2dEDE/vm0T2hZoW8bE1AISI5dzhVPlrN44HhMhTihKUUVzRquiWsCb8uN8NH+v7Yy2jYqZDX9/afz6sXGqExSjASSscf3tI8zi4kixocFb3KILQYV9ODB6vUxgyiaYmUeL9/aIq8a2Fsad0dZI0kwwI36cdfkTCaZ0GKL5ai1RiFIJ2tAaTKDiGRiiz/78QRV2oCq/41F/lNT+4Gl7oJA3oWSrHkciLoxM99OTJkSFSeDmAJcAt7dWxW1NeTgz+jfEXQKi+rVFoyLHaH1Rt0enQ1XlOJtQ1s2sTNH+/pObxr/6qfA//qH1Hk8JWhB6GHZtXfD7fqQozIcjx9sX/Oznv6Ap/Je/+Svef/dbTk+PqDZXMJ2ZJjfMVhP3CcEkgzpN53rRvE7IYu9hDcF6K5uyzBbobNvmwia2sMZopuW1VqPqwBhiXcHYVPS8r8aDs2lK3BJcxdE8anv/3roZpciuNzJNkWWyTUAkcFpXrzgZuh0FbqbJFFp77zDe645VP5eDiUTYopzoKsnbZv2DgiXUPUjsFQyjK/dqLqMnuScUe7W2A0L29y7kYz2NhnQitlHGlMZaOdTV/ZmMpDtcCfC5d6klt71CfOXV6uBkCEbp3BNzscnF/ljGhiViQURIzi4RR4vtteKibggGIthF+X7h7+djp9ZiVFOEy+ViAayYfn5ryrquwx85HSIdZ6+tUdTue4zWM93ULQNK4eawEF3kLLfVrrtTZ5o67S2YUEdKFtTJ74cfdasf+SeDi5/Y0YOBIOLP0wJcAETMLzXsIkYDXJBGlEpbH0gtE9T2iZskvDwu3N/cclkLT6vR8Kq2Z+NWxv8Y8mKdHq5qKuwVJaOct0Z62vjV1++4vVk4HmbevDRQ5BDh9f0NuRTO68TWlCVXPi+Ndd0ouRAkukoooEoS4cXNkZisT7g2E607LDa3EeF47AwIq4S6Q7Wdf7+fWP9wLvtrLQbr8cQE9OZ55uZ4g2rgshYeTmfmUpinjSimlr4cCoc5MMUbYjBWzGVdKetGTJE5TSBCLpWHx/Pw2b6ZLcltKp4oFD48XTgeFqY5WeWqgVYliXJcDOyppRLThaWuhDQjaebw4g01LuRwIIeuvP58fO/rRx1/V69Ut+bgofZExtow7l++orXK2++/ZViSeXK5s0wcZA52d0eyKWIVRAeqru/+M8G6UcGsxBa9emvBbrta9yTsoEO88t/dq7af9mEspYhIQjTSqvL0dLE8V2E7Z4KYh+1hdiurkmjVVMBz3pA5EGbh9nBrQkVYOxxVqdg8LQrnNTOnwPFww6zmSFBW8wmtk+8bTRAN3M4TrVXmWDlGYXbm05oDjcq6XlBdXe37idoutJppLe6FCRE0BVqAGCIpzEwq1MvKn/8vf8l/+euv+fabt6T5hilNLPN7vvjsJYdl4XI583n4ktvlnn/x2ee8z4+8Wz+wtUdiUm6Oicu2UaolsZeqSKzEOYFG2Ox6WoOLFvPinWZSmMilsG1nljgZy2E5MqcbG6w1cKJR9UJpKz2erd5CpfPEnCJxMpXoUpTzeeUwZWKsNF2JsrHESjhEYlCiK0wHhBQPNIy9IhHOlyce1zMSGnMK3CyRm8MRVTidLgimA/Ly7jU3YeZGEuFi9mjvTt9wPn2gtI1lsRahSOJUNtq2sp7PpHQgiFBxITZVIgaunS6V1C0yTQlu1PG0QVHBGK+R3OCYhHmK3N3ekqu1tSxpMfuhpm6R2mh114A4P5yJCnNMxLggWOOPNl/jqlckVFnmg8UTqaHlCbTS2ooURdp/dRqN45+gx7ZD/L3i5q/+iLXkBymYjDDso5/g6vv9vQMB5WY2cZ9/+3Ph4WJKth8elA2lqQeVYSgLjMmm5meMVEXSXnVsagtia9tAFzoEHVOgYUgoruypapvzh0vjvCVSF53xWLC2wDlbYElspKjE4KX50MwTbFAV9qBefZApEMXDhCpeYDWlWAsXjIZWHYUJPf9SebZBtapu7K7WK9ecohs+flRefb+mD+v+xw7mPn9dn/39KhneCZvSNgABAABJREFUn9o4rz5mqlParOLfP7dTGK5+ll55NZEoo4cJmm1DixNIhVBBpr2ia4mt/d4cjdcv4up0AtKMvn6I8NVr4YsX8OLIsAsZh1xfn3x89b/z35/y8fr1vW0ih3vytrFtG+fHB0rOo28qxOiBr0+BazEa8WcsnfJux8d/DyGYGmsPQLBxPc+GDtriVkfgIWKyFFvJ1tMi4oJDzSmX1qe7bsWnpHBcJvNqU6tq5GL9XxKEJLa8zfPEPNn7jepfdeGbK1DuWhyrlEKXrAnBfB3jWOeuKqZyXZmVQb8DuEZJrYIRxvdb88/9CPwJPoH3KoYMj8L+Pv05BN+Ahi+4Qgy9b+GqL1AgShznrBqMDdLA0FUFf7724/beg6ale0U4hH1OPqf7XQfLDlCqWsUXRpCMJ722Jqj7KSpbWT3tEqoDK8syu3BZ3T/fEzW0Vwf8fbX31wam5uJUow86mY1InIgqhAoE0xfo/shdyG6vrevHj+aTO0JwxFyv3ItFxjw0T8Tr/dWrskPoJw5Ll54MBAkE2m4tUjZohbwV6mbqvsfDxHGZmVO0SlHYq4ACz55Vf+a9x1JGomPn0tQoyk+XdczP46EQYjZP0+oejKUMMallnkwNVyFIpCqct+KAinJZV0Lpyry2gMWUOBwmYrVWnOMyuU/5aoGY9PGMA25258IogeP3zr4O88Qyz6QUuawbD4/CPE0clol5nggoKZkI5fHmhhgDN4fFvHprMZqmI0RBTD8gLLN7VxqgZoBeNQqkmlVSaZV2aa4jYInbxftdYxByKUxutSapEOJmVfDpyDRVCJNXPyN77fwaBt/bAazcYKAhDU9qe5zXyNvF1yiPqfoe7n2U3TFj7+Vm/K6Jjv3utpTBDroSkuqMk3FuutuUqTKANaNpL4iIs4jk6io/3SNNM+rPpXi/LWrWRYMh5eq4QQLaNVgc6G21mR80Vu034SB8/6wuKKd+vxoxTra+qvXs5nKxZ6BYK57anUtWIiaFZkwb9Qqd2B5SW/PkpEIwgTM00jTSiEhUajBgs6hab3DJlHVFL4WnpxMIHI4HVCJNG6fL5f9P3p89SZJl6Z3Y79xFVc3MPZbMrL26QaAxwIDkUAiKcPjGeRkR/tnzhAcKKcKZkWnMoMFBN9C1dOUSGeHuZqZ6Vz6cc9UssqqrsgvdmExQRTwj0sMWXe5yzvm+831cLmPtb5QtIblx7BEXH5n9xNoWVUP2FQmRLIWSrkgP9KZ9otE7lgmmqFZevasftfPC5CYDiYrtlbaf9KJotaGmIo1cNnrrapXWFZBSGEZV/1tRXZ6SVS/G02ht0xyiF3VKMX0c1yGYHaL60ArQaFX9dbtknEwIJ4LXXtcYFkWcMaTWKVKb2saaNj48P5PqSpNKK06R/wYtl110zosoSsxQidbCW66KDNdSyVLYciLM2ns7zVF7d1tjmY9MPjD7SBSlysc4KXu0V0KY8D7izPYo+IjvntC1lSGnRtoqaa7Ms6LWe27SgK4xVy2VeQIXBBcd1fWbdoLpF32r+fR3noG/ne/AnWHzt7P/+d0f+e3f6fZEaAqdH74SXh+1wvDJQ+d/+evOU3fkqpLnrQhaELCgrGqlk2qWB93dKZ5qwFCtF0a67JYI3sRsqvU00fWhnlPl/bVzTo7JC9OOyGoCek7qH+ZCIfqq1NgG4pRO7W/Z6H4XmohRQDodQyiKBZYawSjiK43W/G507GFHgav1VKgAnFVHc7dBBNGze8bJKFDsfrVyKwLsWak9p1G82DO+fvf7EdDfwsOd/vBRr60+n92eoDdbUIwO3uSj5NZ7tUyKsasuYwfZNKmdZqgZutNrslvAEiEERWyjKFUyoCiQ67pZRzrHAP+7z4Qfv+k8HrphGh+T5O8r+vvPfjnf9RD44+PHP/6U7g40f+L88sz1fOby9EQtigApnUkTW1UPHFROQwT7iFDkzh9Vfot6KiIs87z73p2vKx0VvXFy69XdE0Wv6OuasxYsDO0tRenOhymQSuPlunGYI1MIHJdIaY1cG9cts+VCzkV7ZZ32ZR9mowuKWfWYJtJOKuo3CTTnPOIdNZc9tRFRimz38tF9HEridPbgK4Rbcl9K3pFP5zwx3kRaNFmthrCOpPUWVN4rRNe73j9dZ28FBk1ibmrMLkSrG/W9P2skLiNRHSetLhoa6FQ9MQtUnbIf/KTn2MotwNw9dkdSOxAYW7daM0EKsUAY+/1vB7FNdP6rlYIGH4JSMuPkOR4PrFcNnlWUS8/biaP1amqTdg10TYjxlBbwojYKIUZFYp2xVboz0Lgh0lSoQrRXVJPjthevvknJ/K4dwQcqlVaMTm1Jv1gvqLJ92p6QgOwJ7fgzDkE4xjMFqQnXm1qtlI2eN9ZzIq8rvVVOh5nLYWaeIilXatNi7X0CPWjR4xg9vXoOGlw5owTmUnm5JrQ3TZiWrMkXQuiZWgvrmsAHuqiKudIkdfzl2kl1Y/a65zlDhpxzRKM0hxA4HRdSUV/c06LP+cN0pZRKyrfEa++f7yZkI7f9f6irHg8zx2UmhsDlurFt6qF5WCbmeQIawTuWeCXEwOIXDsvMlhIpZzYpKBJRtVgTRt+qzpWX1Og1Qy08HE1RVDxfvf/AlhJCZYoTIQTWdaUWT++VaOJ4WlzXAsbcK3E5Eg8JmY5UF8EfUHqqzikLKfbiAoCz9p1itg1dq4k6T1rlcn667fK2jvSRsLZObXf6DHcobOumnD7mGWqtNiKR+7aUvW/XXufxlpz1b6wp7AKBh8MJEM4vL9xbXn2Xj3k5mFhZp6Y6KgU2h8SCev2d9tRrPIOt87od6GtKLkhwWhyxolDJdS8G0TWpWQ4Hejf7s573NaBXVUtTZWZH8JqMVetsKEXnjhOvSs5Ufb9vCpS4SOmR3r2BLkIyFmOrlZY3tnzFXRznlzM+eF69fmTdGtu2sV5XXs6OUmYUTd7oW+ZQHcflkbfTJ5zrC6lvrP0Zx8wmmTWBawLNESTS48SRmcMlAcKWqial3hP9AR8y4gulignvFYroPlTqFUg4V0mpmPpxx3sVuJskKvDUNPYsWcipk3JT31w2etuQXpnnRancXS0Mo/Mc40llmYzxVmumlJXKZjHsA9HPiHjmSX2ye2u4roivF0eqhct65auv3+EnwQehZqWQOwm0rUGpeBxhsLXoBCcK9oRILkDXmKm3zmXtzKeF4IX5MKvtXa08Lg9MYWLxkdZ0TE1xAtGe9xgPRKf2cHNcmEMjEomipqs5XUmhsq2VKSrlvpsgWauC4MlZadHLoirWKkjXQSrO6X79sRXp3378R4lH3R/3gf8/9DGqwhocN7WeDo1/8RN4exQ+PDv+n39R+be/apzdnQ9UsYY6QyholZrOiI8QJnyxXloR7cvt5g/ZdFHdzhe7UFNC7ZXeN9at8AK8ezoQEY4+kC3Qe3xQOlPKnTVB8Q7vGjGo6pf3nR60b+JeMRVDlurofTOTbGfVcbUn0WpaEUWku9OJPSriqoZntD816rIkofNybYocm5Jo76O/767Q0DUx3/vQLJjGqu72qlvyCgyk2Ep++8Dodg9vgjmdnB21ud0rURgVx2GXpEh6axqoTVE4LFDsUb55FGJQZHaTYd6t9koCzMHuRdeAz1tfrnRhCvDmofOPP4OfvYV//uPGw7RjUbfp8zsG9NjM5e7/+K2/f3eP//a//W/4D3/9JX/+b37B11++43q5Gm1RCNan6kSpjCMgHsmTCjVp9WCfh7YI3Se21XbBWis+BOI04VJW4QBudjvzPO1eb84Nlc5GSpXei228hdaUXpxzUTXTlInek3Jm3YomR+XmcXg8LIrUzvNedKtdz905xzIUb0XIKd3QVYEu1stXb1RrEcc0zTrPWidtqwUTQpymjwIwRX0U+xsKtbVV6lath1MPnSZi1dhxjMS23hDmWwXRgj79v2bCGT44owMrstxbp6IiD2C2C9x6Bb0lNeJuqFFr654ID5uPvs/tGyIHNzQeUcp5jFGFTqwfRvMsgV4JVhQIptzZu8OZmE2vTQWapNO70phjDJyOJ4J31FLY0kbasqqw2nhLOe+V3mFrg9h1OYcTzxQ9s/ndXlPimq5WYNG1Rwl4XT2KNSqmN7f3kP2n2cn+4457hoRYX6FSkQ31q3VvF2hm3q0FKFV8DiEQo3pSjzEoWJtfEcr6TE2Vuma++uILns4rH84rdJhi4DBHtcLqnV6Nun83VvpHgTk29zSpnafAMinqOwXPskTmw4E4RXLrXNZCrp3ZV0qpnNdECG0fS8F7ehQuW0bEFDRRJLBVRW+VgdGprVC3zBwcXjyORo6e1iJvXh33YP26lV3zwY3igNwK28F7phiY56AoKJ3rutKMENZa4+F44OG4sMye7ITrlriWyjzPfPrpW0rRhGHdVraUSTkRpwUQzutFkw+0bUOCICFwfr5Y0d0RBKbjzOm0EOOM94FtvQLq60xtavvx/r0WLbyn54J/OePCO/y84OKMP70mLK8gzGTczmpQsadiFNOxNrTdbWF4zALUVixJ1aJ521+rxemRWI+imKKo+Q6pHUl03+vkIg7frfVLZC+YDXYKIz7i48LTre3D7/vTPM98X/bk0zJRTTU+pUynsxjVFRHqw6RCpr0wz+odL06TKGy/8KLtah8+fGCZI/50IBi2SM0EVLzQi/YzDiwDcbZXaOL1GDyPhwPFz6T+Qu2ZtRa8jyCOmjLrJbHmxuH4huYDpQm5OnCBMB1I1au1Ys+sreGK0C8brhd8haf+hLwI796/8PjwwOEws25PeNeYp8CW1Lvz9HDQ5Vk6rmRCibZPvCVReGkL0p9xLuFmxxAunuXAIp5l8vRHz3W6cr488TgHDlFwfqLFTp5hzZkRspaUqK1wXZ/Q0reCQ7WoSJK4QGBm8Q8sBCbn+eztT8yXtSGTp7tClplL+pLczlzXK1507QnTQZXKEZ6vL6wlU0QBrnlypKLsjTgcB6xwkVPSloxppadCZeXD9YWX9cJLyvRU8QGIMzRto7xeO7kCOLZakNaIaPvF4lVQ07uC0GklUXEWi0203jgsID3gmYlBUd4ujRBmnJs4Ngi2x8zTieBUtOrxYSbEA1TBoQW8l+2ZGDy9BYI/gPPklugtQc1EqWRbS1QIU/vEY4hWqHDEEM0z+A8ffz+J7UcormUz/bf//duFCvc42e94h+z/uasQayD+MMNnD53/8medz9/D8xVeLl2pAsHRmqIwvVXr7VJlud4cUot5x7obuZwONdPtNrU+RCWsqdMGnio+wvnaSAelM7euGVUMoxdE6bMaZIshGTqbnNOLcL91zWKIjXLLVQTGqqqDLuvULqOPRd/v+e5dRVQ/S03MlXKXEuRZ+0ubBQaqfLcTifckdSSiv/NZdU1Yv/nI9xz4G3j8TnHq5mOFELz2FAtWRBi1B4TShdSGWqBRre1cohftkfVQxuOQIVxy8xp1on2lXpS6PDlVRn59FH74Cn78uvO4dEXarajw0ZC7hx5+K5Ht33Jcf3eOw+GEDx+UfpISxaTtRUbB6Caq4pzZ8ewx9EBr2Z+js/eMwgwMIZab6qyz3qzmboWQTsc7b72nVsHvOs6bFaCabfbDHmigt6Vr4ol0Uqrm76iJX/BOhWeCyuc3s7mR0V/pHDZc9rGk12LKy20kpHoesiejY30wuw0MnXI3FPNjhGCgDrcxPxIM7Fu/SVsevx+/G2wJua842T3WBNOr+vHoK2MILozz1nVo9LLeChGBTtmLfM75/YF6H/S5tKpqu7evBG69w87fPETFBOf0427I3H6PZNCPZbdXuRdhHr6ZIQRDzLqKd5SqSq0DvRmBrTXbjLt2fy9GtVeZNyh9PWeCVZTvV6R299ldGq1ZF6p8D2a1JV0OFYP6yEcUTRJcqzTXtLfKDvcNCrL3N/q8iGov9Kb3LpdGzoXzdeV8XblcVxUT6WKibN5YFU0TKzsvBzfaKmNdGYjo6Md2TEFtIsb5DJGibPMkCOY7roOpw531nI4lcxNjjwv6cCnuuwVebcMGSF/lnfrDHubIdY6sWyGVG8vBu9t4U49KR/SeeY4clsnovkIuNtdEWFNWf28RkLgjj7VdybloAczQzGWZLGEeIk66Z9VmDJlW9jHcuvXXU5mmQPA3MZremwaMdsV1CKz1alTroAlea/TSae2CK8WSZK+WQX4iThNhXtSKaVtJ2/WjwtYoCB4Pp73YeL48Wb/Dbe26obaYsI8mUyOGuJ9Wu27HXv1mXys/ilzsOQxEmX183yrn6rfrCSHqO604wd3nfJcPcYJUwHped2DA0NoYnPaqthtm5b2/Jbbeip4IJSeKg1pmDtOkiJ3b1GmjK4DQ731oO4ADY2dFOnMIIJH36UKtognSWCdRVtvobhcniJ/oMtFpeB8waNjACV1nc9a4W3JibRtyFS7nlRgnQowqfCRCcDpOphhMf0PXkW4GqlIbwQWQwOIONN/UthDPYFHNMtMlMBEoMyxuZpbIYVKWZ5dgNnOCJ2k7UyuWbGnr01DZ0HGpMU6QwOQmHvwjJzexuMghPGqvc260AFUKKwteiomaXoFb7Nt6p/RKMsvFbgBM8A66JzoVX1RrvA5uaNmYWBiF3EXXBdH1fM2ZnCupeGUz1k7NjdLEQKKquj1xCIvZuENpysrL0M2vkWnd410gBDGmWbFWxsYSAuI8wc80ssZ4pWsvoMUc3qmwnlgxOxRTdBfz3XUOt/fWdxMF9XQmYpgJ3tY5P4EUAjo2/D6nf//x94bY6umNP4VBFR4379seAgbl/+1sak1Jbe7cZc2TwKdH+G/+SxWoeHPqfP1c+BrozVN6VYnw0u4WDet1a2qO3sVBRL+hF8gXqBP4SYN7EU18o/rYSqnUrbG1zlfvG28X6K+14doLRN9wUQHiXh0VNRummGdcAGkqZ64bLpbAaQ9Ms8S206F0m7gyNFh0E6TtEcNIToIzM3k3KNZKWXRe+2wvF6XqOukQIfrO5G/nAVqB7b+DlicGg94nBr/zOe0V+/tBYPTKLqS14p3n9BAI1p8xNGt67xQRrh2eitqMDKuIYRDt6EQHUxCybXy1Y0myflbwqsJ6iPrvjc7jg/DqIPzpZ50/+yH8/K1wCFZO6VgigPUu/m3j9OMN/ft0fPHuzIenlW0tew8jGAXV6QIy+pVCDHsgAzfa8aCeQUecN/+1W5AyFASzJSapVmJQ25xcivbBVsH7Sk6ZnDPe+lNb1XGhtR/1t922bJuCLe7mD7um7W4ICoufmKZJkaigKGYbVkSDkoAGymqw/jHakIsKPK3bhiZnWj3tov293npcay1me3PnAWkm7AD3PbHILQmupVjiPqxWvnncgrlbseGWuLEjUZ5lPhjF2tua2G2hUTaK835vupcR2PtAjBM+BFoaSIz2eBH0mQZLbEtVr8LWyn5uze6jD1F9cOHu361gZZ6pMYS7YsftWrctM9RxByIeYyRO+lNrJQ+v5aRqsCHOewITvG7626aCYjreRiHDM4VAMKQo10IqjVy1P8o7p4I9re/jiW6buxRFJDp3lOvv+CEOb/R377zRwIGuAU93apUCt0RiBDY6J7QnqluC4gSCOHoVmgjnXDhfNz5cVj48X3n/fCWVqr1kPlirgdIUpRR7HtbKEG7fveuk732CWoA6HYxmq815WsQYftdN+/FdiByDWW30RlkLpSprJ9duKK7f974hxuYFDl7I1lYEGFNLLS+IjlenRQstOHK7icME73Z0eJrVfmQKcFhmjseDJvKlWsFEE+bNLMbWrZDrrLTgKUDKXK8bL5eN0/HA6TDz0x/9kNoaa0o8P72ooqmD50sl5ca6JfXcDuqV3UTRDO81rti2jZSSJZsLtSlTKY/1rGxsWdVl37x9ize16fVyQdaNtq4c80Y8HJkfP+Fhfs3x7SfkBi/nZ67Xl1tiijDPC/N84B/9o39CTpmXl2d+8YtNE3FriRK4MT2s0H47NF0dff6gyed9J/utIAOja2KgsLc44ptzUt+vKN7MPB+4Xl9ovX5Eb/6uH601RcqzUu+rIdrNK2vKBy0ktiqsW0IEovdENwrxQdtQnKPmTBEh58zx1RsckFdTWO4FKLRWSFX7cXT8C60Xeqv4FnicF5blyKV8YE3Cuomq13vBR2GZZqL31Nq0v/I44fNGaxnVRFAPV2X26BqfUqEXaCs8t5X+Au++ftK5nDs//cGjOXbIbvUWQ2QKkeA8JWWcbHhxUAUfAo/TA4f5SO2VNSfdi3ojOk2+xEUe/CsVznos0BO9Za71Pd2ZQGgolJq5bGfO7YXaNReordJ6xcmEC4HgJo7+xEN84OfLT3k9n3iIR07za1RJXygeci88lwtfXx55Wb/g6fJL1prYWgbpFAovZWVtmdTqLsI++cDRB5b5wOQi17TSUGHDEDy9mn1fr7bueZZp4vHxxOXrC1veuGZYfGT2QT15Sye3Bs6Q2uWgLFGatZ51pslxXrMmyZPQ5EppBT89ECYHBFJeyaWRErw5TUwhMMVZQbyW+fD0gncQo6OaKJUeOpm9n7U1KASm+QFE2FqHdAYHh8PENAVq7ZyWV1pAnIVOptcElV19+9scf6+JrSIWA7O9LVJ6/OEkQL7xqm/+/+23AysbXbM3REBc5xAa/+QHusH++X9o/Hpx/M3suc4Tea2sH6CjlD3KplWyXoBoiJ2wKxtVrdp0aSAT4JFmSkS9gZlfVzpP58Jl8+QacL7oXRgS9l3taHwTCI5qSoyj0tq0OVYRsAbO25JvjdoD4bpVW25p/6gEIc2Qs64+0gNqEUNxKDjpNIGcYSsNV7QPrjct2PkRSFsQMZLXsUXc099GoPTR05Fvok+G2ljfUm+dXIQt6QYXAyyxItIMQbEeyCo0GpfU+OKl0Jz2geWi516aKmPXqht6qdqX613nOLldQKp17WPQHkeIofP21PnsofNnP4DPTo1THDJB3DZCzaruyjPfHIHfh+3ydx9/9Yuv+PC04qN6MNZSyNyCCFUOxibvnZCIJQHuLrjoretcAKMxm8+gUd5z1sUT4DDPZpER977RWm8ejbkYxVQwbz5VDwbMd1bFFxpaPR3BQLdS2jJP2vt2OHBYDnTppJz3jXsXHnLOPFgdLngmmTTJrZXrlshZE5wQNQl0hoINRWFNXjslZxXcskMQ65lVAZNa8y42McROdC43o3Tbu2Qksvtd3ZEJQXsld7sebgEgdk4+BEqr2scToyqHdq2C9971vlqFntbIOe30bq3Yd/V+tTnvhypiH8mpqJCPPckYtGfZTh+4WfSIC3iruDvnzWLiht7nXHbUehQyYNCf1VZoPItkNGHnvAbmdgbFLKbaWA/djcYcTa16a5U1KYpfqloWqAq2fl9tjVJN8bZroWKobfvg6a7fouvv6OGMaj5aPwYCrb1JJoPVtV/a9XpjwhgqOc1KgVXaO+zrnulNlFq4XFc+PJ159/7Cy2Xlct1oaNFmnmaS2WrpnuF2RpH3Ysiw0/3D7rtDmGfP8RB5OC7GrPDMc2Ceo7UoBA0qW6N1h8MRwoS2JjRkdtStgQmYONH9pYsWw5uoj2Spjev15uGIqDdxF51TuM7i4VSF2j3nSyKJWq/4u8TWSye4zqvHo/XrjvXJWihkUK214ByD+Srb/piyjrVULrx7eiZ4x/unM8fDxMNxZpk8c3CUKSLOsW6Zbd1uz6srgn1dE+IDMeizGX6kWogSDUJd1ALd1ne2wvP5zGGZOSwL8xR3hDlnTUxjKVxbo6aVtrzSIqMP+3ol0qzVRP0ta6ts6YoIyhBwXd0Vxtiy674xWdB5LI5oftW9s6/t49/3ffWuJcsbWn5PP/5tlku3NTnZeG53ccn3o/iccyGVan2gHqGRS9H5ZDoj3XRHalX7SOlaNKV31i0TouB8J9CIosWbZPtTd9Yvjoq11bGniwm45WwFPs/sZ2hC3jK1aKHz8WFmS0KuldwTczgwTRO5RCREXAjkojTRLh1V1q/aIjPWpipI82qp4zxMwun1g1pXOeHV67cEKzinnIARb2qym0tTS7bmkGwMLOnq9uEiIR50T2vVCvNqqTP1qho0HvOJzRz60dqOoNaNIomlHZjlwOqveCKpXMhlJfiI6xHXFj6ZP+ExnPhUTsTN0a8rf/P+y9uaepwJ88TD6xMuvOJ0AMo7fAGqCkj1Wkm17r3MtVXE6Rw72Py4blc2Y4ZO04F5mphdoPdKNobMbIntJ96z5QuXTa3OXFOV5ly7Mm5K4/RqYV5m5mNk215Y1xU3BWrTNauZOJM6omqBU3rXft4hzU2lu0ZzDfHCaTlwWCZKyTznpD3KKZNqMu0c86XtjXV90WJ6n9lSRrynNqF1T5egat9RhbGcW5h8IDpP7ouOe4HuZsTFbzWf/p4TWxhY1khKb2not3337fV/F5Lnntiiye2nD0Jp8I8+0xTw0oRWVcUsh0btKriEC1ALtGLJl1XArF+FsZC2pnAq5v/Xm6qfaMRPa43LVlizozRh6uNjbqhnKf12kXLD/EZQMfxlnSgaOeiHY3PDPu8bee2e9Cqco1+sFCKhWdCsCXb7qKo9PAGbMjp3+9pBFxvlg7ERiriPvvMj0FLG73/Hs77LBHVDU79ZDQQ6wVedVNY316ou4gVYS+dp63SjdY3H0uqt/iDVVGb7EBQTgjErSzXfQ2cWPzO8OXU+fej86AEe5k70/WbnawO3f/PcGffj/s/v5/HheWVNiriEECgh7PTE8XN7nqDJlzNk9x6J/1ggZtByvQwkTjepZnOoBK2iR1MdHfQ071XwpKPqv64JOZc9+VCUybjy3VvBolGrisV0k7MNwe3iKT54o0EnawtwO2thrFHs7AdvfqiKipRS8HFiCE0MdU7n/E6JdqLfPZDjMX8b7FTaIaIihl4385T9WC1Z76Pd7bubaQU7u/fDH/Ie+bBZjsg+bNVb0jlcx4LTevtou99Ky2z7d2qAOmjFNwXigdC75mAggaLKyyP5/XjFlj2hGtTQnU5tCW4d6LmxA1obwjyOXVSrqxdiaUprG/RjsTFWTCFy72m2/lIxRfpm42Z4f7berbihdPeMWRK04elo6Hqv2kPYHR8vbt/NY7QJDBm0W1Hx1oeoxxD50r/fP4OO0v1h7BPcxgpKr7tumfM1sW5Ziz7GKfZ+iE4NFoHghtiiDCqvjmNaU295UfGnOapdRrQf/Z2ikyOQbWKSGDhVSe8ADScNyYoI6fgAzFdex4FeV22KYI4ikV6WtQ6gQWbowhQby9yYY7D52fRaRPZe2+Dh4TgbAiWsfdsLVK3piqIJmIYJY+4Pm7JUqornGZrcm/Dm8cjkHcvskeCIwe+WZslQOXt8pvred/shpSk2EBUIc+IIQYsJvTuogW7jP+VMCJ7Z+jD3+2HidbV3kn9vTIVI61hBAqVB9iGECaUkck7kksDJXuAaa7yzAH9PbPdxZUJ+ZmHSe2fbRrxh8MQ39hIM+f+4xaVxYwzd5qcmFhWRxPDblREHfcfnMYy1UQtw3VBLVe9nTwx7E+jqRyugyv7Oxlippg2gjEcvClKo6i26n1jbQm2J0vS5Sx+swGIAhqrht6Leoa02xDvmeVHabLuxjaIPSAt05+nOIWjhg+72giGMYhrQ9TXeq3WMi8LD44noI9M0czgcid5Dr7hVrPg7mSCip4+fIQHaRfs4vUe69lY3qXSxmKE5vATc6KNynkqgSaQS9xOsMlFcUiVeF5jaghPPls+kciX6gO+BUGbehkeObiGkTt02ti3xm1/+mmb37/h44PBw4rPpJxzmSAgn3vuJ1LLa/Vi/utXGEVTsSUwMTO2sdM4mtFA8xcUKzJDWC61UeinEacF5x+SCggVNlaCHCNko6JbaVPBqCrgg1LWwlZWlRiBYW9JwRbBWIxFV2e4jjlNmXxf1DG40YnBEAi3AxUOvyoCr5jgxFPChU1vW68yq3C4jvbLk3TmY4sQcIrV6BI/0AC1Ab5YUTfrzLY5/gMQWuz3/qRAt2QO7Ic1fa+A0w49fwf/j/yz8D78A/r+NPz87VvHgF91ke4e80Oq691qpNUlSLn8DMFiwAWEEg5Veld5HqVALrRe+ehE+XB3XMrHMTvsfGJsSvGyCS4J3wvHoVRHZN2rTYDgWpdmpLlSxwd4syxSg7SJM4u+QGwzxgb16PpJq6faZIqY0e0teZXD7ulJ4qWD1PX2fMlu4EQCGh+j93f+9j4ZbxoghI56cIK1wfIB56uBUcKY3IVtiW4rwvs58tQW+3KKqvrlb0m/rAinDlrBeExUB6WahFKPDNUdHmKbOaYG3J/ivfir8+LHzJ6+K9m/cRhLgdhvejy50f82urf29Pdz0QKiOOGWWwwEXHC6q+JMXUU/RpuI+tWacE5Z50STSlDxHoCzMe5KVtqToWVRRmhj0fo2+WO3/aZR8ZVlmpknprtYiymlS0YJifWLi9FxGshPN93GOE6WqkNTLFXIpdLQijSgld8s3QSjnA8555vlAKZls/p4qCpG1SmybgfaomRp5b7agN0vsoWSla83TpGqTru4CUcWEjFSA4YZkqS+hJlo3peL7ZPabo+kmMPWRUIqM9FHfo8hrZttWQtAquLN/rTRy2kw4yBQxRYWuxuY6EJfg4073UyuIm8XGuJbaxRD0xBS1ILIXgTqI16ShO6eifG0oreriXHLaq9ohBFt7LPhtnVLyrhRttQy9DiuMIJjStWc+mHiZQM5ZzelLZt0aWdzen5RLvaGyIrSqn7oZ/VmnuNuTMqvhEINHfsfc/64d0RD50Rag480bui8WlFghxgoj3kdSMhSzNUVfWzXVbLX3qDlTS8fPb2juK3JznLfEltWjPeItWC27XkXwbi8UjYJ0rXlH31QwKjJFzzIFgld0/vT6yDwFpkl7dXMqnC9Ze+6miVItSHadN69PBA/Pz89qM4HSrQE6jeVwIEavNONWlJ7YGvM8sywLTy8X3RO9t35q7WX1rjMHeP36QLx6Xs4Dxe5475inwGmZ+JMffoI4R+2d6/nKlnQ9PF9VgOXxYaYFR++eLWdSrfiS1SPZKc156BFcryt0TWZ++PaBwxw5HmYuLiEiLEvY+0b91ojR678bkntYJpsjjafnM/MUOR4WfK8277RnTQt6gZQLH56fmZ0wx8DpcMBPk3nEdi7nF/L5yo8eP8NF7ZcszvQRnBZDLpcX/vKv/q3e796I00yM057U/lZRe9TxRZjnmXma+eSTH5BzIefEu6+/snF7z1a5HaOX/yNl5D7U4s3WplUrLlQrNAwdFD2BIXr1XT+c6FxOOen+BERtEKfXrsI6TfVbDoeDuWSoSBCt41qBarFOcEQPQbr2SosD78m90mrhnCrNZyQkDnGh1U5OidYdFXi5XunJ0RKUXpA5MgVHWSZC1faCyQVCg+mwkKOQ9rjI0XoAPMNhI2dtL5pdIISJQzgS68TkIn/2T/8xx/nAMs2cZlUZjzHwqnbEBeblpKJy88RyOBKmhRgP6mQiDvGKJvYK7Vr2QkarlSZCk7oDSS50dcQQh7RRfAPhQJeF03Qiu6q0f8kmwlTwCFIbPTWuXz6zvpz591/+Fe/fP/P09MJ/+MUXlKYRqXONT94+8i//5b/gx3/2pyxvDjSceq2Xxnp5AbPwOcwLDeHpRXU9HFV9Ybuj4Ki54lyHuTIvM148X374imQ+2PWx4sXRcmNLiVY6oXty78p23BIpV3KrKnh3mLjUxLVvZFnJrRL8QvCRobgtHaILzD7gSqFtmbp1tuszhU4Pni29QOucvGeOjsmBE2VdglLktcykFlDQOb325AwpJ67rFRcipVdC8IibCaERLK64bgkpjdaEliLgmecZ5ydE/jdDbMfR/5a/f5t33Xfo/qHDlEPlDuEV7TE9xMafftp53uDL586vftMpK2xivTTGU9fm7AY1jQwZatG+nJbRSSpQ8i3ZkWAVzQlCpeO5drhUOCcVJlJVYUuDBEJ05NxJCSR6Yu/MhmKKMqso1WgAYrYIvuODVT3xep52jXvgzEAz2PvQ1OfOmvs1X0MCeyIrQ9ilY+fJXgkEVQ9t9qImQ8bdmrfvwAylLfTbE7t/bB2we9C5obWlKZreRagIW5Xd4meoIRcRvl49H1bHOWnFnA65aiJbq9JP1ZNL+4XpnRoEF9AKvtMEvVnuEDycJng9wWNUquVAsPXQjaHfnf83R6He7+/+Rvn7jmlaoDVazqwXtXTxXnsUR29sqVkVLJXwyUAGwSnN0FAZOnuFj2EJ40Urd6Xt1EhvKnwDxRuUeueUYpxzYfZDCEm9Kp0I1Eo278khUKWIoBCj50EWrptW6b2ppXoTj9JExQb+UHIWp16vVKva+FuS49R3V3tz9FpqrTgfdLu0ivVQBx+jYJxT6zffS8F6GRn9tobg3KEfg7Z5E0Gx2WfI94j2buNxTDpNfGst+696YxcOUnrxDR0eysF7QcaeVUeD+0rZr0PFlRRhGX3CHbFqviWXpqg8epdv38feJO8Qurg9+RnvV2ph2BFWGErW4wydilhYYWmI1gxhpGC9lkNIw4k2OCpyZCiPCG3sC4Z3jHPXIVU/tsGRsU5b4FyrPcPvdnK7C7uZjc5HC9dYcO+ez6DG7q/nntaphYvaUQXO9cr55YmX5yfO55ed/l2N5llbZ0vaa9u6erZK1ZJMbdpjqQmtCjFpT5aisyrcFJinYOiqUmbb6P7pqBVfbkRptzaWrkhA8EEVkn3HEfRZVsgNfEf9OZuj18q2rRo01qb2crVrLyE2xLruabOpPKtafyEl7RlVhVJNEqfgmeYJFzyn06yoSEt4b5t4F2rtpFzM91p7v50I4oXDMpOS9iF730i5cLluvMxK+w0x6LrnhHc5KePE+vrxgkQQpr1YNcrsRVRUMmd/U6aXW/m1lOGB6VSxPDc6K3OXXYdAKRWVl68/xy9H3PGR4MMuENdsLMneiuQ4PbxCsH7fnHTeYCipjTXvPdM027rs2bZtL5aNwsx4tt88dtG5fY28ve6mUXDPTrhLaG2ct+9JYhviBKmQS2fLGSddFbybCl56W+fott+Yd/tkqPkcD4ZoOrat7PfEjfLHQPBK17HtMs6vRNH+eifqkbylxteXF2Kb8C1QatG+2qLFrlqNeSS6B255Y6udzVWwIoXzUdftvb1M96Dg6y5QNE8Lx/nAHCZO81F7dgViCKaRccCHibCc8MYoC3HCSUDE7/EqRRPK3hot5Z0tMoJZ8UMDQteOai04Q7TNeb2vQ1nduWDhumj8kgr5emG9rjx/eOH9lx94eT7z6998zudfPvHhw5nzull8JMSgBfJf/upvOH36Bn/wdCLYT20btRVSPeObJu/q/wriOiVrIu5QESnvPYt3Fhvpvam1kDPGONU2rcfTA7025qnRuwpJheC1Fadbco/tA17wEvAhEuPEHI8s89MuMDgAHlqmpsx2zpzPF5oDd4i0+oHqN66uI31mjp5CYavqWCHWNqXjVYXKQjQxrF53W0kVxhrie4r2N4TaFBQoVWmX2krTcLXtrIQ/OJ/+3mbmOO6AiL8rutXv/rzLnX7PG0aKYdD3gBYFFU8KjZ+8hUuCD+fO//zYWc/w5DA4v+GCozkBGr0U3RBi0IS2WmJrAT0l7VcjXixojiq6QmbthXMRXjYoVavfGuBpUhijY8uNtXRc0qAkGOVXpFNlsLyMDuA7vsI8aF57ZVMn7XitH716vZsa5S0/H+I1OMF2WlRryp5NGwn4XdyM7dM4qnSaiPryAmbBzeAXOlSgyULJPRjUoAGlRbVuhvOQi65FpYv2zHehVzGvXUVrQSh43q2e96vjkjRxFemW2Br9S8BFCAE1dRalr4jdH3F9CP3R0f7bw9R5mOAU7kbmHgTcBbi/Y2QOpU349mP6u3jEOEGrtDkRQ6CWoPRSr4ltccmElDLej6tuNuYGLdftSZRaKWnyiiUSeSTG3RLOEInB1MXvghIvmiC10piPRjsDiJ0gyooIVWmpY8kdveZelF6DCKVoX5zzN3XdYRWFediC9gF2J0Y3dIh4RWFBRbDmGR/bnozW1kwA3RCC3vaxPw6lJ1rlfFB6R/KOIVvdFnLug7ibFYYeQ3DKEIp+T6Ibf7uNTxW6MXuNoGO/6RcYMqznuQe64mzp0AWiNVQo4y7R8SHsifmg8vYuDHsIt1MDHbUO645mtEbM09Qb41tRuWrjaPQ3q2qmcPM8N7qyVeCGsrQg+jxN6diPwoeY1U+vDN/W3v1eiNLza3d7iH53CH6nNfdSTG1Zx8Vo8VBa3j3q810+Bn3T1mTRpHzYO9mgs2TWiiu7YvZ9gmtUTunQtQd721aeP7zn/PLM5XI26yujcJso3Pma9qLBZIUFh4nR2Z4XvCLoy6Q0Oe+Vdh6iZ1mGDyK0XtUOygqeIwETX81PVXsLtefcmxBJp3VtYdCeskbsnmmO1GrWFetGrkpdLqbHkHI1iywhiFObiigcF71HacuWpCkSHb3ShIN3LHPkcFw4nRZybWy5GoLdjWLYyAK+CwQlZyIq+HSYJ0pubLXgW4Wiz+j5rMW9w2FmmSNLDLx/vlBSJpfKYVm0BifKviq1cb4Y6k6niqMUtcHS1wp7+NeV0eLM7q860XMshSae2GGalN7n6Ly8+w3x9JqHacEvE86E6cQSxJufNLx+fIs4x8vLM3I9k3NWJky7FdVinDidHm39bFyvlz3xHQrGOv7uLc9sOIt89OetKNi/8W/uI8S3343370tiq/3y+myTJbZzENVbGYVOq38aGYPWlGI6B/Vqz12LO7logtdRVXERlAU1ei5zAyk42TjFA6oerkjsVgrn88bRdRan+6rLgi+JkjU5rhTVIHCw5ZVrr1zIHGdTox+sEVfsPJUVUnohEsF35mnhFB95PJ54mI8sUe2MQlBa8sPjG8K04ObTvncKjlZVl0MFnpr1UysqVFMimMI6rWmChcCg0dZK3lbKUCgPXqmuXq9FuhDdpGBQq+Stk6+Jy5cfeHl65jdffMHnX77nw/OZv/rVF/z68yfef7hwOC1WfBXmScUHf/Wrz/nxn/6U45sDzQW6RJBA60oPTy0TGng3MU8nxHWgUbIKwsXgzJ7SMztLbH1gnmZyyZA3utN1PLrI7BcLus8UU5+Oltimpm0bvVdqr5rYeo+ze31cDsyTU5Ep3YgRtDWrpMR6uXJ5vtCCMPkKkin+woPrRH/Cu5nSM1tNPG8bU1QFZC8BaZrbBC9k0XFQS9a+cenKgnWap3RRYKnRkK7CXSPedq0hUqxw/oePf0DE9o87Ror0bY/7V95L/WjcLETp/PxTx8NBhUr+zS/hv3Pw61/Byws435GCBr9FTeKFqK0CI4lUKALK9VYJD6L9ueLsT89WVr58Fv7d55VPTpGH5pmD4qxCZwqVwwI4uCarIDePd93oUCrfDVrhdV2tfEABJ28CU4IaEHVLTrvXpA/Vw7gtfl1/X7pSKzWJDbTmWJNwSkKTZgH3rV+vw96/2sXRXTWrIK18731Tdp+b6PdanWcPjBlotVXicxG+eA/dmWdeUXEdTORJhRGESuRSPX/5Tvjy7OkSeXrpNkm7IV2dsjVqdyCO46L3aIrW69jhmiywdXDZOuvUqVa7cIMGaSxvFf752wsq32cV5G8evasv2vV81s0vRJbF0XrZkdpSiwqU2OhVqslN0KM1FebRqqhneND2jhqEO0ecp/33tVZ81wRlNsrxx0IgQkrFvEg9HhMNmQVflQLpHdSstgHOBIMOy4T3jmw0SVBhl1Kv4Dzi4+6LqLQ7pTYrkgUg+KAo7RRniikbb9fzTrGLcbZgYlDfVMl53AtQVV2ct6RdkV+sUp3z+XfmSdX8H0OMVixAac30vSily9jNw1H3nrFBlFvC0hO1FKQk+3TZvYKdc8zTjPPaJ63U8GbzQOlcupmovH5rugGmlM1GxpsVmvYgiVc0fEvJ0GVNxHtTBbpauq0JSqXys1KMRo/tCHxzTlZOUvR4F8HThevOlxZLoitlFOrsvrhB1yvawwPQQqB0Vd9GhsdyVHVJ51hmYUuJLeVdxGwUEXpXKvvw5vwuH9W8ffW89wx2V7scyt+tq/cgdFot1FZMnCAxTwsxxltRQDrT42u6D7jnF1xckKDqlymruFpKShtPufD64cQyRYITtlxJWQM77x3LEjnN0fwSR98yxKj/f/OrHoJgGlQdlkWRHhrX65XeJpZpYkuZLJ2cMrVgnzEKIEIphW3rPD8rtdk5z7wstNbZMhQ8qTWezxuvXx+1v9c1FYdxwrQEjsfAYfFc1pmSKyVpwQwRttpZuhC959M3r+g4vnh/3QueoxeydiE6Tymdy/WFEHQcK9ugE6Pj5XxR1kkIbNvKw3Fhjp7w9hWHw8xPfvApTy9nnp5fyNuGiCNME61ngne8/eS1tkKUSiu6pr2cz6zbemM3eLNLEagSqSFwOixAJ62r2bw1KwZGQvS8fz6zrYn1euH1z/6MeHjQYlLX5zFE/GqrpLwpwoVYkip7C8ZIPqdp5vHxNS/PT5SSuFwvu5r8PB/QolYj27mwj2WsONl31s849oLqvuf0u3/DdBC0j1Gthn47af6uHZdSuOTMNW17QShGhw+imMod6PDy8qJrXc08zgd8dMRDoKRKzRWswBtC5xgLwam11tOlc1mFq3fMXliCQMuIgylEjnNgmTrrNSDFmwgkVFfZ0sZla5TeCaFRWiY3QdxMLStrOuO6KhH3Hsk5m/6E24VJnQQmWXh9eMur4xtez6/5ZH7LFCLRR6KfEM1y8GEBvF6TKX3XXNhSIqVkRXNdURTMEZYpKkpfVfVZ2WeR1pOyhlrB9cbkhSAqeEbLlPVqxbhKj8oIujx94KvPf8O7z7/g/fsnztfE+5eV37x/4evnK//uF19xTVVtkBZ9QLVknOucrxkvnZ//2Zcc3kTyQ1PiZ3U8HE+ksvK0ZkpeqVKIYdaWOD+zuInJTxznA19/+JqcV1YE14QYFx7nI/M08fj4SNvOTOJ4nI9cn3Q/u5aVlIvWzKSDNMR1LpeLxnReCwwNIbaO741jVK9ZejURRduja2dNlZfrxtPLCqGx+AtTdPgYKcWr3zATl2vivFYuWwHviQ48BecKzqk3bW4Olx35ZYPYmQ6RME24qAmAtAlxE9OkQbnOea9FtVRsj3K/Y/b89vEPltiK/MfWvP+Id3ducKOdhKAT+M0R/umPNCb6xeewXUxht2gPiriJ7gyR7U3NsGvWHxHL2Iwv3Js1NUdDQVRpsbbK+QpfvId3z7P64548oavghTOkxAeQrB+1ZmHympxGLzt1uGNUCxThlK6q4EPZVdqgGwNtVO471XX1h0R7aqUrLcz0dYYTCKlCSsLkLWEVQPpOMUHutuqunyNNgz67DIbnHNb7IR3tR+BGU9X7KeTs2DJsGVMntvh0FxHS5+cE1ipciuP9FdaiiGxO9wHcjZ5UG6TSKc3hutoVjXwaN2igdn6okvIOthsF9DbS7kjG3xh+/bd/9b09StqoJVv/qD5D54x60+pOMXUmEgOKaHkZCrTB6G11/3dNENoNzJRR9evay1or1Vn/l7/1kO7K2l2flQ1egvUJhuDVY25Y7bhxXqMqr4UW5wUKpqqsSJwXR5hmPY/eqaUoFcmUzkGTI2+2NPtnGqLsQBWYvd/RxmqsniJlt/oZ4juISjLtFLja9mSfPgIydP4Mep3cWCf74BsJv2iRxt/Z9gxa1T1qMY6uNxFxd4Irdk2tFnofib2hL8EoY24UKiqlZO1XG/dg0L/7fmo0e9a1FLs392JjXRcYQ51DMLTVxoxSgOvtvtjRrLe59f7RXOutaa+UJZnitCCgwfv+pQyLF33W43HoBrnTGS2N1lt7xzAwNF7fY6+T29j/rh43tfIb8i3774eC+K14pCyggGkp23vEgklb/e6oO0OFe0SQimbrve5WOIlmRQHaNhP1I/d2gBCCKQvLTowJw5sS25NsnHXXUTpv20HoISi2pWxsAahFdSl605aHUYxqVefcNSY6k1pk4HbmRR1CT85aKSwxyraGjFaCxQpyOVdWyeAcpXYu141ljpSyqG1FDOY9qUqG960Wo13Be7cLmfXeLWkxRklTy6DiVFBlTYXruuk9Cl7p0cvMiqqMpmyFjC7klPfEVvZnZD7crquSaFdUz8WgVFT7Pu+cWn5ZQYrWaOi6qDYnmfzywnJ+QVzk+Po1KSVyyR8lkjknnLsxPjSRuM050Pm8rle2tKoKsyW+upbVPQn+aEzbz7BOuy+AfpOaPJLc+0MBuxEE8Fvr5HfxGBZ4pVYtzvthuSfghJatPUJurSYDvRrzqtJMk8BAHjE0zEPwBUHX7WHFNQchhtGdZvaQout7q0KrolZgzhDXWsi944P2rjYKHQ+t0JtaXUlvysgzESFdUwSPZ/aeQ1w4zScO84FlPjDPB7Vp8+Zv2rG405nwmjoP1FLJWW0Bt6QCZiMWdBit2IAZZ2uZ81qs70YHlD563DXGr0UZWOl6hl51LGdt9zs/feD9u/d88cVXfPX+hcuaebpocntes7JGoqM72FLZvW8VZdXfbdtG2jb6YYgT6rIWnGOJkW0Xn0s4Ji0adwWTsokbNtuT07YqWo0yXo7zgSamBUJnq4VrSVxTondtHVSRJ9UKKGWI42os3HDUOsRqO1OMSHOEMONdRCTo+7tQmvl1U4mlISGYN3JHqNSaua5Xtq1T6yiACyIVcfZTdQ/pld1JwkUFFbs4Sm7QPL15aukmKKnML6HRisPjkW9p+fP3lNj+biTr264nfwgH+9uoJEMwiT5CltuHdTsBEUcUwUnjv/oT+MGjVlRfXuCaHV++8+APuBigV3ot9JJhu9LLpn21viFhgl70p2UNDLRpFWTSiIvM+w9COnt+8mpie+vw00Qk4zGlXtGALISm/RRrp0ehB5iDBegClkJSEVVQqx1q3ykKoL1LTpS+JYY65qL9NkOVDAALIsTolaXA81n7TYPoRHSuI74p9PrNokjv2qdkC4YieP0ORVLUhC74Lrv6pb0VcFxWx5ossQ0wu6oKihYk2V6Hl85aha9Xx+fPcEVpxqWL9l11FcByXr3dWuuc18bDUQOkTmeadGz4ADkpfZneiB4eZ24ewEO9kxHo3Y+z7/5m+Mce15dnat6gD0sN7ZkZi2gtKl4RglbjQQOkYHSYaZpwknURM6GeLW377RPrDXEirNtq1h0qHkXrVljQQXYftNRqSUxv+FmpPd45XNlBOkto2IWYrtum34mhmWbNFYLHTzPHh1fklCg5cb28fERlGcnNNB0QgZw3pSqVbOuJqQMaIu0ESBpAhhD2pDDlIdLUaKUwPHHbCLbvki7LIfa+YxFR64U2GBO3++2c0EV7i8b9ynn01crN7mVPivW9Ieh7sECmtkJd0214W4A0LQdVlfWeUldTNcx7En46PTL6fV3XPmdNfIsh0ZnQ0c1GbvXEVosiYGFimtVT2Ilnk0TKhZSTbqguMOwZ6vAuNUupMTbKjq43M4oXSi5qx+JNPbdbL+JI0nu3goW377l56baRBHdNsIKPKlhmtOrxbBAxYZLv7jGS+ZFEfVRMvkegjR0hYklomOhdhcBGeqlC3moQ3nOil4y28mkBYxRbalMxw+AUIZnnieA1EAsxECc4WlGzG3LrnSqlh+jx/pbQOoTonbXpxJ3qfNnS3lYgonP95eVC50AISqUa1Oh1q7t6ei3FhM/UDm6aIsE5E6SDLWs/8OEwqTWZc2ypW7FLE64QPMdl5rjMlNp48hvXa2bdKl9/eMF7pX0GE5U6LoGctSB3mCZSqeSiQWkInsNh5uv3Lypw1xqHw8wUPSEcWdfE+bzSgvrxPq+J1huHy5UffPqaefL4+IALK+fLxtcfzizzDL3z7sMHLVC1rqJR1svc+436qQUgYYqBMuwELlfmaeL1q0ddh60YltNGbg2RmVYq55cn/Lsv6eL40c//lJfzM+2qTJ9RtFrXMyLePMcHwqLqrYNBUEvhiy9+bUiQMXosaR0tF9orzp6Ij+R5vEassDXYJ2ON9LYfjULfQHdH8jcKYN+HY72qL3GuhXmZzLd2KPZDbWnXfnB3+gjdEsGKUvG3UpR23BuI7utdKkgylXAhxiOHKfC4BObZ0aWRa7ZiU2PbNnqZkOY4vjpSfebarmxlpfSmY1CyJrwFet+QrvtGbY11q2xbJWddS6PzRBd5tZx4fXjN29MbHo+vOE2PzPHINE0EryJBYOBLKrRSSCmxrat5miequRas62rr9Y0xVPe9qbIsWrjx4aZF4xCWRe37akuktLGuK+XlGXolRi2a11Z599U7Pv/iK375N1/xN++euWyFp2tmK50ujk/evuaaG2sqfPnF1zrunAp+Ra+aAeu2cb1eaQ/BEEkt+k7OMR8feZarrRdXXAwEF+lAqk3tfkpGeiMX0WRPVpqfOJ5OPByP+Hkhl8TL+QMf0oXzdSWlqwpFRUduw2dahSahM/lJbaK6UJsWorwTTscjBXDLkRgf8D5SaBQmEoFUG0KhlIKjE71XgVynAnxPz89sydPbgRACMTogaS+3qwY6aM17S4nSK9UnJpcRr0XEZdafSidEFabz0anrSclW/PjfCLGV/ecPpau/ffQ/4l2WWw0HAm7Y2qjWqfANvjP1ymcPwn/9Z44v3wmnBf7Vv4bz2VElIsyQuya0rWiPbdeKh+FSUBM9bzDN1kfm9Gl1oK1U8Vwl8O/+unO5LByWR05zZPINNxgx0i241IXpvHY2sytYps4U2YNP7u+lbehaZRGjYQjBjyqJVnNr67TuTJBYkwkRwAu5QmpwScJ1E6KH6FVuXKy6J05pvcOD1ylYpVRnpwhsv7vNupEoqlM7RltUifDaYKvwfGnkAqfZMfkODXJyN+TA6fNfa+Avvgr8r+89L83RvdM+ZEOHa4V5FuZZOCyQiibLa1Ll6ew7a9Z7oSCcsET4wWvh5592/umPO68OMAX79/9889e/9egWCI5eHNdVXZauAk3TNFNK2eX+AYZ/6wgy4L7XVs3jvQURrWkCpp9harwx2vcWXGbvRR3lhIFAjk2odUUPaF0RWzpOFWl2pK62yrrlnd1QK/RaSKkwS8RHQx4tCVyWo1bBUeEl5wI+TpbQF7b1agk4u72OiMfp4KQZEts6SoG1RKl3Db7Ttu3JRDGa8LinHx123e2m1jb+4Q5ZhEFBHt6QHTSIdAMhHYnN+Gtn9KWK6Dox2BPe/PEEMVpuxJlXZc1pF3uqtSg106uXqPdq7bOlTYOLdVVPWdHPcd56XrtSY9O6WpAdWZYDyzwTQiClyugpdi6qanHOunaiFdqBcA+kmY4JlXl8cJaIOiZDoFqHkhsdIU7Lvu9k65+9BbtaSa5mfTGKgFpM03uoSbH2YAcflMb8O/r+vktHSlr5VnEf803vGH3cEVzYUd1StZDYWlUVTPEEPxPChPfB7D5U+IUw4WJnOT7y+OYN27bx/sMzHd0nFImB4IVoz2WZ457MiLENBMccvaFAdVe1L7WCuL2I23pXKxHbCuZZCxT7GtHZkfyx7ZRS2ZLO9WaCU0M9/bKqxVdMhSVGnW/idsHBGKP2Gzb1hGx1aDHouuZ9NSE6xydvjmxH9YLstbFtieeXM68eDrRl5s3jgS/eaeLrRRGhOSpyW2vjciks88QyT5RSua7JkF9Vkz8c1Au4XFZlfT0stLbwkMpeYJlioEyV4OByOUOHV6cD58vKumZFbW39HUuKt/vaaufpvOo5iDC7SZ9PU+TFOR07auPReP/0jo7D+cCHL3/DejlzWmb84aQq1TJiDV0bte9v0X58m7vNeo1V6VwVkEf7hzdxK+c8Dw+vzCMTLtczramF1PDZ3nvtxeK43oDhKX4vGsU+D7wfFljsSe33ocd2XVfU031mCpFge9yYA06c2jPWbOi/3ptR/D1EVSduReglGRrvWdOV5AqNxLVE1uJ4Om9M4pFD4xDF6h2ZXFS4cV0zoAWHD5dMi5W2KKXU9U6qmSMB76B5VQve1socDggeadCtF9YZc2oJkc8eP+WTh0/47PEHvD684eAPeBwtFRKFoW8CQsuKqI6kVr3WvbW7sPuV11rZtk33x6otGIgCGs2rndxkRSzvnKG/SRkEadP35kQtmQ8fLqzbypYTz0/PvH8+U/DkpgXm0+LxRcGmjnA5n3l6uZBLtudgDJUYCJOnSmNrWRWRW2YtmZY2YhQeDrPSzLvGSi1d2XoFwqhGshwWZY0Zmt9qYesbzsSi5mXBiePszszLbCKpK9MkzEE4HSIXgZdrYi9yp2zCfk6R3Jp4uaiIYhSPk4nJH5njjHuInErgoTj8+ydbT9StpUvhmj6wzCeCn5mC0Eont6JWqIYsTzGohZPzbFvCz41OobmOhKjsOrC4zhPDRM/NrH6c9lk7xRer9SF/m+Pvntj+njVCDMW7Jbff9rgLcP8O7/pmMHw7D7n7+/gG3VSXCX70Gv7xj+GchP/lF0ATcnHUrD5Z4x1K0XKGSLgbTavW299NcENag7rRUIWwr58g+s6X7w+0R8dhdkxB7EqbiUbpzaqt07uwZVWRHLY8WtnWrXwkwd0EYhR4Ugr0UPfFJtw4rfH5w3GnV+0jVVqSKjCX0vfiAF273cwK1/RfFBHqw6N5Vw+9u7FyJz41aNCiC2apcMna49Q6RKO76N46QlEdVKU7vl4Dv3lx/OpZWKsl1Q2jeFpg4xR1nSY9ndpFE+rcKakTmvrjxkmp1nOEhwM8HuH1qTN5rW7fj5nebz2X/7kfg25ch5ka3CnX6oao0u3jWevMvK+KA3uAAyrk5K2aVqt58hVNDIagUxf9/9r73g9pdRd618S1WzFmWFXd2zWMpWf0VoGO4d1uAndT5x1vGEGOaL/XruackiZMPihN1+ixol9wd7e0n0xv3LDsGQlPM8Gktt/PkayPZFQ/4WMq3e2T2ZkKO9o9Elu5iYbsxTnYz//GVrlD7fqYjncfePec9L0eHyLexLX02fexAOyfNxDOcf5K485m4WJIur+pR99o143dpsSEPDR4vY0nTeyVikhvtjYPKvjtGpFbUhtj1DVRVPUYG1+t394zkv96h/qM2z38lKHv9+9WwBjFUb1HHbEK/3f7uEenlA5vSTomHAA7IosVAqDR3UgWPEO8bJ9jIrrnqQiBFn+Mqu9Ef8Tp9wan4m/OiVpm2fgRGsP3OXjVhBi94c2ozM6bnoPYnmbFsoEG7uqmtoFJH+JRKgzZrMVB1we91mbMB+3BV0E4Lx6xTdXybaUgd7S9xjml7nbzOu5acPJWxJ3mYAyRzuW8Umrjum68Oi1EL5yWiffek8QKWaL3pMK+Xk7Wt1dK263PhoK5iJ5La4113dgmzxQ9qVSC0z7SYNTR4IX1quvU8TCp8F/sd2ucG9uzrTn6t+Gj61OhhEC0hEAVqe/aQsCQHUcQRykrApw/fMXRlK339ok+1hVVPRaz61Kl9raDDPu+anvrYLk454lBCyxjzXBDm8DunVr36WcoY1oLdqPgN/zCP8pvR8Lbu+45+mF/TzPuH+6otleGXVF4xNMGEnSjCDdlryhYYdePWqzMIVBCZ2VoHzhK0bUht0bpynzLRQsPtEaw+E41BTwVoRRtaas0ZddItfYShZ5qG4l1B9G9L+dCMxpqH20ltVNF7bWCCxzmI8fpxHE6MoWZIEF7U4fuwshZRMVEa2l7UkvvO2KvbUEapzdbE27q8LoPKs29ITia83reBhn2Xik578X7khJ5W3l5eeZ8vZBSYt029cB2zpiAsjNKclMbpHVLpG1jL0jv+4iyCbvTZKxR1fN+j2UMhELXrNoatSRcr+C0z9gjOD9rgappYb/S9+K6KlCrw0DwEzEq9btUtVmMQdXhU2nG6VJ14lq7WvJ5jfBrK2xZvxfntIWhaXzfUIRLXQw80lQeUOdbI7crU5+BGS/qUNLcyEKMleaE4DsQiFFZPaU1nNc9oMtIgk0Q0HtKEROV7eNx0kVoqBDVtzn+XhFb20L/6OPvktT+oePjxQ7ojiYO8XA6dP7rf+74kx/C+w+FP/8r+Dep8+EsdDz4CeID2gi70eNRf7dd7z7U4E0n0BOQoK6AJp7vns68rDNfXRL//Oef8IM3B378wwlnXP9mC1fwaoDcWufpAqkKU4GHQyf6ivfa//PRxTS1zcGhXru905z+KZYwd2DXTBgbP1pJ632IOWkleqC1CmxbH2PvezDdRKldXbv094DjhrDfApfeR6Ip5CKk0jlvhWUKLFGMl2/0ZUtq1XXL8VQd//1XkX/9wfHvn+G6NWLsakHRNHlVYVc9symMPhRICbYVXp7g9NiZZuHg4O3J8dkr4bPHzJtj5xAHFXlPK4DfJiL/53zk9UpOGyWp0FDrw3KFPXBh3+xuqNVICEopZtuiojy7bL4dIXILfIxOFaNXE/FauZwvrCmpBcCdZ2iqlaBC9xSjzdPb6IZlt3fZK2f6l7Ijfd1oSZ7DcmSa5j25FRzz6WSXpmOq1UpJm6qh927Uax3HOWVKzYbQXvYA66Y2rEeHXUynDpuYvZqmAVatN0sbtePQaxhFAWAXghuJxkBZvQ/E6SayUo0KOFQvNShpWrz6aHO/FYzsZABPCJMFsGWncjkX9mvVOakKij4edLyUynW70spAPMX6eP3IkGj9iogqrJ6OB6WrWwJRmori7eipBRfjBmrMa5sm5qnqFTWalsn6DaNS9bJShnNRcSsfItBZ142BxN4XqXZ/3jb6T9kLLogKEI2AqRsamcu626Z9lw/vnRUUNYDTsa9JqICJtwjB6T36XevbKFSpAuVY0xXdvDw/8fz8wtPzWfs/t8S6arIzBc80LQSvxdCakvYFeoegRS4f/K4+XWqlbBqYxxg+urcjmR7RQzPEp1P2ooUPjpeXC+Lg9YNej7O5LmixI2Xzk5YGqHjNFCbbZcYzd3S8jm8nPD6cEDRBvl6v5n/c1OoGVTWeDxpslqyMk/cfXnhYIlPw/Oj1iZIyT5Pnupoq8LiLzuHcdOspR/fG3KBeV5RN4ZjngAApabDsnfByvjDHwBQ8r968AXEcliuX86r3MxceHo68eRv5+qv3BCfMwSFxQpWdkwYHmgGypaz0zaZ9uMF1sKLT4XCgiYAEvPM63y8XjqcT0cHLuy+VJQK45URrUGohhJkYI2/evNnn5tfvv0ZwZsdm41H8XoiMcdrXD/2VBvzzPDNNM599+kPeff0lLy8feHp6otZsSYruSSOBGUj+PajxEYI7kOX/+Gn2n+QotdlYiDhXx2MDtNWi5KLMgqYK9FqUG8luY/YBvwQW13h5ORuwoYlJ7yYy1h0iEXHq7V1rxfWq8Wjt1KI2bLVP5CpIK1y50KlIbPv6oaBIo5oQ3bZdeX46cwgnnAukDRVeK51SVo7+RPQLc3xkmR5Z4gmHFqdbKmRLMpup0YsI3k22tvW9AOmcY4oRL45t23Tn9I15Ptmzr3txpfaKCvmrYnjJyqLC/FanKVji5fni6QPPTx/4/PPf7G1Dy3LAhch89EzLxGW78PlXT7x7vrDmQjaauwqkDXXvrkJVAtMiuKODo1B6onQVt3w4nYgRkEquRf2uU1MWqOtM85EYZibbezsOFxe8voU5TkzTQi5asBIXefXwKb2fieFK8GqRFlzn1YOntme+frlSetmBQBBcH0mt7rrzMkGHsq28yAvrqjTqp/OF5/MZEYg+MuPxkhCppPbC3I6EesJ1Z3ZokRAUmAvMxN6IXdvayiJsJyGVDbQjhtwLSONwOHFYDhzmA7VsyuJZL9Cq9U+L0uq/ZZT+Rye2t3r+7RffzCX/+E/+xm/uUY5vVt8sAdPey9+mp+hLZBSD0fRZeHVQytT//f/oeHvsvFo6/+8/F17Ojq1OELsuCrUjYUL8RK+z9iDJphVtJyBeKzoiJopjwbgUcu08PVf+wy8Lz09H8D/gtAQOU6Q6wdHwohV0RRqES+psRYUelthZoiKMO7XW9Rs6alXnamCLt2qxfOPhaKgq+noxQe0BoOwbxm/dVnYIqGv/oibI7oYCjGHWMTREN5tiDefJ1Lmn4FSJzstd768F0QJNHF+cA59fHP/mb+DLVchV8LGDExXPEkVvg9fqd+2wZa3kLlEnPV7YvAY5IygJDpbQ+dFD45OlM0vH7dew5x7/f3UM30JNxMZm2fcArJrK5kfvsXmlfY9Gx72rtnk8u1+r/Yzk13u30+oUWJS9J3UXchHZqcwlFzM81znd7PyC88ZmMFl4m9c2tDW5NSG1nJNSbbt6BDpDGHtVtDqnbRd96t1+l/OeFDDmcS1Gcbz1e2LfNe5Lx8Qr/LxXbkGtblrv1qPInY9tt+BPkbFB7R3tBXpO6tepiYrcCcLZvLN1z6adoRSyb8wjKNDqsDMFcKHco5n7LBiqwxq8uKbFraG6XFvdUV1dX5wha7J/j1r8OJwEpbOKM2QgWTGkmfhMpWYTqLIxoojErbAykk1xNk8N0eod88ataH90uJ2DXikjex3FgRiDJXkaNLXeqVX7jYBd1ZreKfXuHLzbdQK+q8c03YK/fcO/r9fJ6EHTebX/WgbC2awH68bCGMVKFwKn1284fv2O5eV5Z/rU1lksKMxG/VUxk6giUU7Mzkm/r3pDdKP/qI+8t862WVAnhg6gCYwWf7RI0az1pjf9f+mQUrP+Upv+JgQ16Ik7St9VcGmMfaULDv0H3fdGCwatUQzJqqVwmJSCv0Tz9kY4HiZq9SZkJ+ZPq5ZjU1K6fbOTdWGg4V6TBisgWFjJQJlqLRoEesfxMOO9Mim2LZsgjWdOidZgXhZ8jKRSua6ZrbS74hLk1vCl6Dc48/00u7ZaCqVofxu9WSuO3ut5nrSQ0BrRlNRLd3qPU8KvV7bzM845Zq89iuL1GbXWSCkbDdIxVG2dA+m6HngXmeJkFiNun6+qegyIJkmlVK7Xq6nemjpr73dr2cd9t/dJrQpXDfS2j4H+vSlWe6/tMs5PCBkno/jX8c7x+tUjacuqVN8yatGje1epmdIr87SwRI/rmlherwmRgveNKYJ3HSed0zxzmicOc0S89ss/nk4s0xEHHOKKGIrqfFDXDXTuY+xA3eLMXlEcMQZqr7QKtQh5LaTNxCknRfSCC/tPL03jiGKJbc70bsUI8VpsGkU7K0xe12Rxr44F59htu0QgxGgioyoO2ZvaAml82tiuV22zc2gvbtfifZxnluOR0+MjOWv7VKpanmo4xAW6eHLrttcLx2lY/CgbZIgvTsHxcJr58U8/5fAYIWoLRvTC7B2HJeJco/ZMNmX582XFhU6IwqvTKw7TzGE5cV0Tjc5hnneWWCDgiQQiW0o475XNFCZC6HQCpSWdT6aHME2zCXDq2h2naH2wneg0Tl7CDG5iQ9iSCtmlnFg3VVt2Tn25PZ1eE6123Bzo3VOr13lu8Uz0nslHDtPMHCCaVYunEgQyiji3lnXMO/Ul7z2T0nVvtxSBWlZFmPFU3LeuNv9HIbYfLSLcaMi/7/i2C803E1iLFW074uP/7gvabyvkffNDxDKx49SYPPzLP1PJfwf85S+F1j05WW+Sc0gvKiLiPeIi3amR8D1itGfNzmll2ODSUgslr/wmFc7nlYdXD3z69oj4wNSDJbV135gaqkzbDVEqRttqEYJXdWBnXysjs+1aixaPGihbX+leaJDbdespd1s09P0fJ8EjIuBukxj3Vc+PNpLaPXqwwGpPB3YKcq16ElMQotegArhLqjXhzgi/efH89QfHv/9SWJ1QvSNMlpQ31P5IxNSMu/VldZZJmAJ0D82j4lpyS7+D08LA22PncW5EGVJVt/P9vcfYI8f1fksqxHf9UNS+WoDVbJEfAUbeEYZx3NNfh3DLsEpqXQdXqbfPGXTC4G90Ry2EyP79O4XYxubwbi2lkMx4fYphT5T3soqwI/Vj6mmQ1fdxXUomVK1MhxgtANRrriUb5U6D4jbUB3M2USi3IwO9VbNIUVrUQArG31WkLBhCFT9iilQRLYQ5Tcbupsy+XjkL5P03LZN6xzsTqBKhSTeRONmRYwMlxwMapRoGLVkptXK7/yKUVvcqv5dRiOtqAcMoTimNutWsfV2WhIr13o3mdB0PmhQMitjoiQWnVK4x3oz+2Ox+qtjGQEs9xUzbd6EuU8UeW0yzQINhDSSj/2zUGm7X2a0gp+cT7vYM0cXn7hk5W5MGfQ7RJGOIe32Xj+EDutOIBztgV/zm9vz3Qp7s10xXZL61W2KrBSsQ7zk8PLAcFk18uN1nFWhSj8tmzIE4BaJ51gbrc1TKnLNzvSvI9MaWCjlXU9l3OItERtI5KPlt6Fv0W0Ke082iad+BxdD50efSjZZcKuJUiG2OYQ+CxxxLOeve2Dq1aRtFKUqRH3Y8gpZh5ymg/rhtp2XjPdGowlqA0nGk98jR+2gP2ieqKbNiPZOaSHuJTHsSDakUlMnUOOQM4pmmSXtUnWPLhW491odlpiHm9T0Uw4MFvLqWZayXOauKy7rpflzNNqxaUSwMGjjaE1dr1R7561kRs4c3GuTGwKDI5pwN0R1zEPb91e7z6XQimASvrrc3BW/EaaxUFDUfPbltxHJ3Qcr9WNei1hCXulFz99jwe1SxDk7UjixOtDrOXxkyzgmPDw9c3aoARu14aXgPnUppRa2YYmBys/aSts6WMjFUvGsEr8KcTjrHKXKYI/MUta0Ex+lwYAoz0mGOM7Ulas+I9yi7re639r5cUK3gOU1Rx2uDWh0lFfJm/ZatEZ0z+6mAJ6h2h1GNh7o3mM+4v42bMc97b6yrMiZFtOiLjK2o78XI6tUap9ZR+O0mLlhZt+vuo917sHWgE2JkWmYOpyOyJlIqbJcrHacsR8SKbxovBPEs87zvVbnqddRWmabA6TTz2Q9fs5w8EprScY1RMUUVA0u5G5OlcFlX4gSIZ/GOQ4wcp5nrOWlh/hCpAk0arntC9/geWNMVFxphingfUR01b4rxzTQFNLG9pIvqjfhInALzNBGlEqUTEOYwI26i0blsiVQKrWvinUvFiVfgDNMjqF1ZF91Rmq4Xuq5pG0N0jjlMZq0ErWVMrQQnSs9ureCD7rfea2Kry9NtD9AWMUEk0iXctYr+gfn0R8/EEef/ETWxP4Zy3LlL6mCv+rmxed+/dkwIMAqc3Sg774FGBtf52dvKq8XzL34emH3lz/8S/tX/2Hn/PrGtZuycr1BWJF21i7lXyJsGST5Cy9CVtkwzTyjppmjTuOaVtH3gf/yf3vMnP/8ZP/3xj/nJDx4IhkY6p5xyEJzXpO1p9TyvzSpsnRg689Q5TJUYGssEavPTuVa9lloa89R18gbb5Mee4BTRdW5CCtRecB5iHEiZ9RdVzV1bgxisn+3uGRRbcPb6fu/a4N6VZpWqMew7LLPHiXr0jicwksqBADwlzy9fJv67vxB+8V74zbNnfhTmoyHQXvuOi7GqYoQQVO0ueqsgNUXBQoTDUQwxtuSta7Vcuf6OaL0FrQt+v7Rb6Pu7jr/7aP1uH8/PT9SSwJKjZot+yVmRy5KVcu6c0XmUXldbx9HpwzhbFF31IVBqNLRBqZ6lbKiSbTTkVnuqnPMshwMiqqbcW7lVO03opTFolB3zJtFzELUwEIyu2A2Z8IJzHefGRqlIKwLTcgARamvk7crl5YVtvTLNqgzbaianZDQoFbYRE+cYyb0YFSaEsfZ07m0tRjKs53VL7keA3eoQ2/K7xYwm4YXWHd6Sd4BBnhMnxGk2MZRmNeghyKIJovYMa7CQ0rZTugb6Oy8HfAjEOJHSSs1ZkaOiCHWq9lrndi/d3obibGIIZbXeVWzKud3zcwg8qT2B7Il5MCXi2ht5zTv66r3bE9kbOgsqCqfJboiRaD/i1F/XGbVa7VrYC357YiO6n8TpsBdzay2aeIRgKIMlLaXcejnH92NFYHdD9j8Oj7+7xzxrP6IG9DpeS5G9Z20cgjJd9n5oK2Q5Sx57v/Wtd5oKlZRCvrzQcjLvR0dbJrxXJkKuim4eDwvTPPH48MjBiozXVQsiuTpl06Bjal0LqZQdRXFeDP139hx1rF3XdU/I52nSIpaIsi1ap3R2ex8VpOo2P1UsppayJ+KtVno12n4TQhhtCJnWNalbpsgSI9PsKI6bCA0dF4MhxoowVLMuc/EVPmrQP3rNu+iaGZxjClGTvlqJXq3ScnUsNv63LRG8zhdVuRWeLyunZUImT8qj4KCKuT4EXAg8PpwIIfLhwxNpS+SUqDlpcD7PPJwCPnim6Kg1UUtnOcw0D66K0h87XFaY5pkqna/ePxFjJIRI6U2ZMM6RStrXwCaBVD3L68xpfuDV4xvt6UEp4MGe5fH4oAI6ITD8aS+XiymPV1qxhAOIbqwZjlxVjf/55ZnWKs5HTqfXVlxsSmtvTZG9O3bCYI/c1eR3ZsxNfOr7sINXvOscFkcpwajB3WzXAp+8fcMHeSKnhO8aC3uAGIjThJsCWRqtF378ox9zSRvP6xXn1O7metloORAJfHaYOUZPMJ9TLWdCb5pIdYEikIHavcZ4zWm80Bqlai+4o/F03qjNczwcVHrGlH+d68QgLHHi7esTn336htNhYQ5R1xzbZ1Ladp/aZT7szKNRzLxer8oMMxX3kQgPtDSEwNBmXLe+6zwM1WTnhpDj6BPWFpoQZiu+jX5bZfSkXLimxJoz25ZZt8zXHy5ct404w+vpwAioxZgcZdWYG3H88Cev+PGfvOXtP3nDdEw4l6ALk2u4CdJ2pom2DqZSWLeNl/Mzh+rwElkcTL3RLxu+OqIETv7Elt6T1o1pmZm645FAul4pvnGWRJBHDnHiWbz2gtH58OFMp3M4HMm90qg4CcQwK7rvNbGdRDjME+JnpAvP1zPremE+REIU4uSoWWMg71UPqFa14Gw946omzY5A7A5y075in6lNxS59uPWOR+9prlNcJoSmvbeh0LKyqYJ7JPjIHKOu0bVyua5Mj6/M+/oPH98+sb0vnqGblez/P0KA372AfDNA+DsntgNt5IbO6O/vEqbfsXgNRci9Wj+S2j3Z1QBymeGtwP/pzxzLDJfs+PP/tfLuvWOTsgeoIgFCpPtJxSGohjYVra6ZybGqaVaNvm2itQbXy8bX7yJOGof5pxzmiWWK+L6HWnp3RCt4rWuQeE2KTm5F1T3nqYMzlUmD+VvT+m7Pgm9CRP1yh2fr7QZiaMtI9W9PZ1Sm6UJDUHEnq6LfVbmH2I+BPeon2LQ9vaNI2hBnGuNjJLvNvqN1x0sVPr96/t3Xjs/PwodN6E5NyWMUvGf3BStNg55cLABCWKaBQGjCK05/3/MI5lSsKgZFjYO7jUe5+/MPD7+P79T3h+D0u49tW9XD1jYqRWmL9YK2PajcG6/pOx1YY57RB2r/jAqFDYRI7WkUtQlGbdOeSa22aYDtqbWStivUYqIybQ9uhyfuvRBQ6x1XNUkanqdKe2y4OyGd3jvOBxMuctSiXmvbeqX1ivOe4IPa4OS+z29NNj8WvFLFWEUsq9Ech0hMu8t+RrHsPiPax4tVMp0JKinIqRUDEaNbWoFmF16SYIUpKwb1DnYv9DPdjubqvdIEsLeq6MlO/e7kolSvZtL/zaxA6Cae49VG5yNhMEOO9OlyR7sav+EWOO5X2817UMdWqwWnDUXjFtMBH1RBdyB/gPmd+j1BHmhXswxFz7lbb5ehB9zskQaCrL2NY2z2G/pxR5O/HbfZP5BMFaGy2/0dn+djDR8I2736tqDsBGzeNNFe2GFhdCsQj+emwWNvFWkNaZVeEr1mes0Ef0fjNeWTJkqTdOLIpWhzSrX+bbS/Uu7YIDutdG/9FJCRcOtZa4vBrUd6JKh9iCd2FYYpZYi92SbT+l4UqsYYQZoJtugaXn1DqhbBbp+lCXpyeq9q6bQubLnhfGVNZV9XUql7r/YtIHKqhuqj2aUY7dnYLV7ABbcnDGrF05mnuCO2Q8hK9zVoXchDeE/UB1ecI8jNPmn3YY5RE3lbG3KpihIboulE7bFq1cJkaU2pqq0hpdJRUajxGTdGjaK3zdaFUiqkzPn5WZ9Nb4TlhAsBHyaqK6h2RkWY1X/caMPLsjBNE+JErT6MMVJt/QHtR+7eq52U7T/R+10sxzuhi+1BXddLqzpyh7Iw2i9GoX5fr78HR++VXBI1Fyv46u91Xx1JWMF17B6ZRoKoau9WGrTM4XiiOc81F2DDOc9hPlC2idACs/d4lIZbbClVQTOPdKH1TCob65ZMKBC8TARXCa4p+04Uec+57RTRZgypZY5ct6LtgcGQ6KDqGdKg5UzaEiUVRWG7FR8GG06gFPOstViltaq2fSb4tBfMnTMhyo7zYz6b4r7tBep524hObI0T0rbpPuGU8RCCWp6VpjHk89NFxd6q7vnReQ7zzGVN5FKNbcJeyJ8mx+Np4Yc/fsunP3qFW4DQ6K6Y4FQn907rWUksk45bJ54lzsxRmINXMMl1XFUFaui00rVdvgulai+yaxAZLR1X3LQgBIJz6lc9WoushWMK+oxOh4U5RoLzIJnaG6l2trxpHhImQ/iruRsold05pS0fl4DEAEF742mZVjNRtCDse0e6Kuw3qVooawVXhUIBb4rW0sEJyhjKuiko4QTvtEVTx72ivDGYoNouHPT7j2+d2I4wZ4QCt4T2G4vGN+KG8a6P3/2Hk9uhbPfRd979jATwo9dzW8RGUjuyl357oZ5PH8JF4AKcQuf/9n9w/OzHnuMr4dIc/LLwwXf1ta0FYYEi9ATb2lS1rVboyXy8dEFSZSftZem1IpbypVL44vOV5+evOBxm3r5+w6dvF6U4iG2C0hA6c4DaHKU61m0E041SPUvtEArBd4IfFPDOVtWvL3iYeme2+2SMtZGD6HdZb1prGHJ5/2ygdY80VUj2BpV3zHOzKy2yV01+U3HK4e+dJTZ8dIRg95l+ox6jCGoTR8XxRY781YvwP/zG8Zuz41qEODumRZgP4zw1sZWiSs5r6gRTfXs4siskh6gJvQSoF50nU4A5ag/uITqiv6nS9Y+u9/dsfHeV4G/86nt7rOvFao7YRpFJSfsOBazHzTqhR7JodEUxmtvwYB2qpL0763N3zNNsY+2mWu4s+EYE1zvzPGi3DRIaVLYbxXDQlFMpO3UWS6oHRdQ5R4wTzt7nW9uTkjhHU9L1pLKpZ931BRcicZ6I0wypkxX63ZOeUpSSO/llRxCHdc/92oJo20Btzdbktl8r8HGSLQ4fApPRlwBobb/eUsuOJsagQjVu0nvVRaCxIxdj/HpTdBaEXHWt0WCu0fdqsgYsZb1q0NE7LjhTaCwEF/AuEKPaOw3P0u49o6SBaHAd3B0yIuMSbBbJLSnuDVJWpIfWCF57L3vru9pinHRl8t7tAXWYZlVFtELIUKEcSXutlZQGZc3uMcYqsNPS4qMG5L13RfjstZ3b3nCjSg4BLmVveOvrbR16vVPX/q4eve9J1LA2GYhzgZvaaO8UOq47gvT9tSOhHb3a3fYr1xuuVVxNtLzS8kaMkLOQBUuk1X4lOFXwvF6uZKM7tqb0vmWJmihW7V8dSaEWokdfejA1aizJEbPuUhVTZSsMpU4dc8oIGd7Y+v3iutGQ9b29Vfqgmdt6X6vRZV3bXQegk63VgGb3ozsuW6W0RFxWYtS1bktZ1dW9Zy/jigroTbHqvdhVwPUV0TlrUdLqdS2NJp1piqRcWNds7BTdh7WgosgR6Jgspe6+4EGU1uicKQjHyOV81rW6Ndat4Fwzb8qFMAW16mrKdMi142UI2mVag4fjQed/rYT5QLeed0VMOrkopbtsmfdfv+Nyfub8/kuOb39AXI4cH19bkN9tLW0470kpEULg4eGBeZ5trasmFFRIVQuIbS9miYEBOh7jNO9tIkKnm12D9t62fYEaBbOP5+uIB/koTvyuHk6UabKuV0ouCJ3gYVxHq5rorVvWWEcE6Y0hudfFc02FnBo/+ewnNOd5WVdK0TH5+vEVkgNbCyzOQS9agEpawCslEf1EcJ7WNtbtwsv5SvRHlhBwMhFjw0snBKXI19bJudMEutdkNDjPq8fINScq3PpgfcB1B7VT6pX1spG2zPVyVv/rGLWobIXctF3Zto31embbNJkcYpa9FY7HI3CLX6ATJy1CF+vbHYnttiWEzrREY6l1RWBjYF4irx4f6L1zOhy00CaeX//qS1uz1JvWTcpIe7lsXNfM08vQ3tC15NNPHvj0kwf+9J/8iE9+fETmBr7QSaSaDJhSJpMEp4rgeIKbeHV8ZJ4bh4MwT0JA9y7XOp1GThXpjiCelDZKyFAas1NE8+n6RHRHglNATBPvqxX/FWdbpkCIwptHFfhShZ9KqpmWC+76TJwy0Z+YQqXFjnNXgq+EUAm+MsfAm4eZ4ieqVK4100vCVc/ijre8zCj0TTLbSDIa5J6R2NSuD6AHclP16V6rit1aYutMB1ok4LxnWdT2U1r+VvPpWye2g3r4d1kjxoYCfEv3od9/DAsQ527iIL/7TDUg3JPb33VIB9HB9pLgeYPPPwjvznAOwj/6pxOvfzxxXWe9EmlaqG7a8P7yIXN5Snzxi2fO7z6wvZzZ3j9BzfRWELQK0XtBeoJekKaqi9cV/u2fv+ftpz/h+Wf/BZ9+9hPm6UB0gpOIF918QPsYYxyy91UXkgodv/u5+mCv7Y1cG04aMTfm0okRls4untF61TYz6aQqXJJwMBPrYauAoJ56TWmhQ1RFn6lWlGuD86a9tKWgva5RCJOz5nxQyxgLZmyDaXg+bIF3a+Bf/bXwm7Pjby6ODUd1GpTMDUJVxHaI4YSgE/SaOtuqH1hxLFPjMHUOs/pydXGaDAd48wBvHoS3D/D6IBwi0Bq/RdO3IsrH+PV/voeiLIrEq+qxZ55no3JqslpbpQ/kA4c3irxSXT29Kw2o3d0w7fFTg/dq1cYwer386MnSnk0fFaE7Pb42Kxbtfa05s11V3U8rr3UPmLzu9AxvXOgfBe8jcRn9bbU11vUC0gkxMC8H4rxoH1MyWXGcqakq+nM4nggxcjw97krDw8Kijl4ao/DeErxm9iS3Hj9FfkUrL04RZBeCbWiKspb1sgsqtapoUA9aaGm973Sqdke/C0H77GKIO5rRLEluhnb03qgl72hFLXkf2L1aS4f3zJOK1cQQaEVpyiIQgtkg3SlTiyV9tE7KV6MHOquae0pOltyyI+/OaSGs6uBAfGB2ERgoXsFFb3uLiVEZFV3RgEo3NcduIiWK1lcLfvW89H5nvdeCzvGx79yNT7Wj6gzBE+dUqTsExzR45kArXWmyf18T7h/o2IsJd0j7mAe9d+1VtN6vURBqcd4T29rM5srYEc5QwNPhQMuO7anxcDoin72htczT85n3T2e+/nDWogzwcr2ybonXDwsya//WNGkPaa9G3W2NSqP2SmmNKUT1iY2eXHWMlNRwvg3wlWY9r61rwhv8oOiDeKee1gyUHl0fvI6hUrwmtgwEUhPxHaYFVAQnME3aM1tqtTHjtQhdK7hOTop2ApwvmzJAYqCiLTsdyDVTajJxO0VGaqnajzdF1i0p2wNN5MTpHup8YJ4drg6F8mb9gIWH47z3217WTK7QRMXz4mTf0xvSdW1TBXpHSupJfThEckr0VpmXhWDjPkZF0b2r2ksunacPT0xRe3xzbeCGmrgWDbo4ttqodeXh7Y/oznHNjadf/QrvPcfTA/PpARciabtyenzNw+ukPbsxakJvysaj3aXXqohNg+4cN6bMnR8gt1pa2jZdJ63ff2gzDL0PseJBt/usx41x9F0/Dstk7g8aAzk6PgamEJlDQGrVXkgfyWlV54oIHi2kzGGiegFRFmEIE6eHV7z/+on1Wvnqiwuhf8ISZz5cL5oUSyGfL2ijS+GzNwfiBGU7c10vPK0rIXY2JnqE4xw4TIFXrw5seWVNm1L/LZY+HVS86s0p8v7ZsaahAyDWty7UXLikM+fzaoltAlZ6h1/l35gv8kQthZwST0/Puz1Rq5UQHDHeCtuIMkl8cIRwYjAJB2qbs6r79t44T4EQPcFai2IUpqvj3Vfa811r4+vnMy/nq8UVOm6mECmie7q3XtMgHR+0Fer1q5mf/fQT/tk/+zk/+skPOL0N+HDhks9s9YlrrdR2gH7ktETEa4/p6+MjD9Mr3GuHcxvOZ3zwtAqpddZiBZ4CMR4IceLD+YlrTry7nHlYIrFVWCs+NnwwYMKrPd7pNHG5Zi6XK4fYmaIwTZ20beRckagiZBIcYQr4INS6cTjANMN1/ZrgGrPryBQ4+E6g4sNiHsFnfPT46pnw0IxtE7L2/s6eIUb4cl3JvVDIHOaTjokMqVlfdi5I6kjyiGRwmoOUrnv5HB2Oqlar3+L49omtfPzn3b/8ztffY61/vI3P+FIdrOPTVNjo48+8oSmKCtzOAXZzt7vXbbWTaueri/B+hQ9X4YsXeNmESxeWV443Cxyr369ZUU5Flg6PmctThi5ME1w+eD6kF8raqFtipyX3Am0guldaTfReOD91RCphmvFh5nR8xXF5IAbRSvN+ygrZj17WcWWlmFBLsOKB9H0NF0y8ic7UOt0NsR1NYEvR8aG+uaYibB7Eey1fRP0OGSIPA7E1JK+Z7LuhsarsaG03WEA56N4YXaYLl+z4/MXxyxfHL74WPiRhq2L2t6aS3E3EpDPaLXakudtn9wabMRhq0THhvRBit8RW7Fw0QMpVgyW9wJvoCBbO3HxBf/+I1LHV93O6++N7c4yeas3ctPjg/U1gpnWlOFmNg91PsjeGQvYIPvcq+UiKYUciFfHVwNbVZtRDuHkZOiKKFLWugizSoYayW5WUuu1zFka88zF6ev8zHmAzmvUusoQJE9lPRZPFsU6JCDFEpkl7BmOcdgTTe09rjtbK/p33ybTS4uSj81HFZQ24BmLrXLitWwNmYCBYSp0cCXPHekIHPVTu+nm9VjFLKlbBHhQ9Q0zQ3sJqyf9YLwdtU+k9N7/QgQIP78Pd37ePVg53uzYTm1HvyaiUIjFKe2u7ii0iOx1dE0kQU1TWeEHvjxMYlPdBNxd7fuPnBrvc09/HmBsFqb6jgOKdMkusmro//7ti6BCo2v/0Xim74z7u6rnf3cObsBFi4lp2/tX6X2utOxtARdIsATKhn5Hkj7Ha5W4DQdcB53TsLvPEuqVba0HrOLMbwijJ3pBEb2ts69XEx9reOqD/wo7M/FY1cZAC5D7W6PsY1bfaGN4L3Ld9CivMNGM5DDGq+6+4L3irR/RQeZe9qKS0yk5KlRD1O2vV+VW9zRdrsUBsjlnBQH3iFWURsefROjEYIi0aFugSMOYme+FvsFP6+KzaQArrmpgmr8Fr8LQyvIm1gCamJgs35LR3R84F750KK1oSqUwyu7e2jneEUrVAPsS4dG5686k2Vo09o8vlss/VNSXEB3LaLLEK+BgVPEibJvSmqzDUjkfVSfZgVa/D4fZ9vxuKXtsdYmfrfLO9YKxnH0edYjHD96NcfZw9WR8ziUzvKsJJB9cFaR0vqvydku45DvWHjS4SJBKlq5ibteXM04TSw3UMetFSzzUlPJ0onbUkOg0X2r72DaRvlHoqXXvqe6NLwMeA62Gnsus6WwlztDGm6/qYx61VclYdi9odJO1rTVvm/dOZdU2knEjbyjxFTqcFj2oFXC4XjT27gkriPL4LuZT9iYfgCD2oNkBre8/uSG5TVlouNFwxwUYnxOJM5bzsQWa702GQcQEMNlQneMccA3nSJHuaPD/96Rt+9vNP+enPPuP161dMR6H5TE+DEqx6MeIChzjRXSNRid7h8cx+NvaKAgCleVo3G8OuTMUpOIuhIZfCVTZeH14xu84iM5N4XBdyrurXa3PQOft/wcQkVCiylMwUbmspVmxvpeBCxXnIuTP5RgsdH2EWFEkV9b9uTdk9SFMdHatHNdfVUqonXQOcRzYQ14cDFaBjfbSC1JDxTfB4jSdQ+LaYyvscouoQfcs9+e/Vx/Z3HX8v9TJLnLgruA50QneAu8TV/vsRVnvPVelQu+Pz584XZ/jvfwHvV+F5c8qIFIcEBw9wEDiME7hLlnvvPLyaKLnz6c9f8eHrH/L89ZW/+v8Enn79a55/fbbO6oIjIe2Ccj6eoSc6hby+8H77iqd3f83z+w+8fvszfv4n/3uOy8QcAyWYCbmpGDsHQRrR35KwWjtp6xR/o0BqX65SoWJuBN85FJV6916pTCnB5aoGz1sRpKtynncmSGCXPFr1PELtjto8FwsWvWvgYPLC4uEYGzE0cIGKozSnrcYdTcod5Cr823eBP/8bx//8G/gyeboX4qRJqHgxsS/IRftjwZYVewQiShvUXiy4bMLzWbissCyd16/hOAlT1H3z+aradr96D/LYeP3mljzcp6Ty0f/9/uPe1P77UhG+P3wMtFaoOZNLtt5OTXLg47XjFgCCuACiEvi13vpRZRSenMeNhNiCtd679sbkTJwWYpxYlqMG5QJt2Le0SpdGCLNOPBdwKWlPSRv9o22ff9ifzn1clVc7l0raNkKIeC/qM9saiFoSVfPMUxXornRm5zgsB5bDgRAirXWymaq7fbyM/j6tJu/iUjLM4lWgYSS33k+4EFgOh52iWPJ2C9AA71TqvBst27tbr2TOJsAVJkNMPfPhtKOwKelnacGh7Ytjtw2x1WLBtyeYeBOjN3cUMZpa8iAgXhGaME1aab+r9Cg9tOzfKQgSxSjV1dDjSlU1PE3mnWoElFqJ1msLSlkbyEofiFszFXnr0xozcohw+RD25zwsILzdp1GQi0HRZ6Ijpcx1zXtSDjY+rbDifVTrMEuwbyr0Jg6EU0GQ7/Dx8PBaE7HWuF7OlJz3PjSl4w2PyEHLc3svnXpLT5ZgaqFJC4ddBV3SRqmQqwZWWpTRCvw8TUxB13QBghdevVo0ubUkcwSYKVfr74QRLOYyEEp7Jk7AResJ1c9sXUX/9PGPAlq3YptRr6UT5KaQ3ntBBaciQ3VOg3oTvrP1rdaqWgGWFA9kpgOldVLKbFtSmw4nPDwsinRaHxmt4Z0j+sA0azCKJblKta2c14wgRN9IxXpNJ+vB7bA1VRxdt8wcVAvAe9ORqI1tG8JuwhyFlFQQ59WDMkpOpwOXy0paG7npXIh+YpmsUNg0ZnCu88UXX/H61YkffPoG5z05Z15eNtv3HcvhABLIXa0+tAhSmZejFkF8YDR8vrw8EaaZOC1czmdNWkrh+fwrcs7EEPjh9Yzvhce3n0Jv1K4sG++9JjdFvUYbQ83W36zPvM5PjPpdi+5TumYqW2ZQt4G9UOf9rCPD3SQqRzH8+3D88NXEZgy6fElspXDdMsfJ0ZyjR/URPR6PpMtZUfmwcJoeWKYjiztACLiWKSUhIfBwPPGV7V3TEiipkNLK03llFsfRe7aUwTWmo6MWoXhPa5P6qkfPfJrxUShUCpBxVIHuJ4ie7ldayrS8EY4Rh6mWWy4lvZK2lZfnJ7bTpkjxqgWjl/PKv/6Lf8/ffP6Odx+eCa7w6mHhh58+8vp01CIajjnOhBBxpmreemczhhCAL47gVTCwtbr7pFez0xm8wVw722Wl5IwPwmGJPBxmork3zNPEMut6NZmye+2VLWtfeGmd4yEyR89x8rx9deTtmxP/l//rP+Ozn3zKD3/2A6bXD1TJPG+ZfvaU3JnniSgzUQ68OS3knni/nVm77t3RzyzLgWmWG4uBRiqZ2gqpVpyLOFEtm60mXnJj/uSHxHAkIoR4ZGuNp6czTVbEZXxYwDmq6xQnFISUKyltpJw4Hk840XW9Fk1qa79yOHkVaT0eST6z+AJhxrWAG4BWbTyfn1hcZ3GOhz7jxeGjpwZoUsnpmfn4hmmZyWVhyw6fHcHLXrTJaSOXwqVfePBO2w9CAROcPV/P9N6YpwPeLziJf+scuj/+zojt7ztGJbbf/f8fG/LfVEJv/0UGeri/aNRpP0J1buesQHhDPS+/vgrnBL957vyHr4V3F/j87CnNUdHo6N4jbQ9m76/H0IjuOuIhLsLhVQB/4Af/xZ8QjwtuOnL+5V9St2dI2aqoILJY/0q2c++0cuXDV3/BevmSvG18+unPeHz8hOPjgza0e9EKmXR6U3TFo0FFNw8fRWL196Vp9blUKGgP7C7sg6oDlwqpBWTTf5ucIzoIvu3qzE1ZmrY6OVzX++mj9bR6pVONAn8FE+a4E8CwomxtjncfGu9eOv+vv1z59Uvk82tgFY/zRr2J2ieliKCe47oqyuc9bJsKHWxJhYPonVZH57czyxmx6+umyglbgVSFXz9VjrHzc4RpHzW35GsfM9+o7n9jRHErnezv/gMj+bt31KpCDGm97hRcnNsDPFB0M3q3Vy9xVknfkclG25MTU7utqvbnhJt3pFUDd+9M+27ou0BTnFRxt5ZCzontelWRoFbxweOtUIOxJbSKd0NHFfATctYEtnVFDmuxRTwVeodpmTUhXFeafcbhdNIEUMTsemzQC4aietsobwJWnbZf02AKtNYpuewFNWfXFeNMDKp6XGvWgM4SwIFuDiseRY+s53bV4E/0Qg0587t4RM3JFiN9/d5/24e4l8r8I0aVts+PcaLWkbA7Q8ZkDya9155BZz3UY3iXbdsLDHsf5x1F2nkHJlrjLXkGlF5eVXvAudEL2vfi0o7glO2G0gK3UpOFqWZF1UwQSYU/vAbCdv5iGz+oFcFycKybUsK9V1V0RKva0nWtlG5JeW9WrNHr7Q2j0393j8PxpMmA8yzzkXW98vXX7yhm1yAu4ELHI7uQkLYRDNXxvCtVxxDprVDLxsvzVRPbdEWkE0NgXmaWbeOwzKZmWti2xGGOBBNEs8GnqGCFXoaHZFchlqbIZe8QvPZ7ihubkxCDFmBiUM/bZt6qihT2nXq4e153IYaxt/FRZVKp5EJzt2KI+maD4LWIykCVBmPC5r2LQLGe1UwXtZFrVZimwDJNKspUCud1Zct5Vw/PparXqH12rY0YNcy6rsXcCrw1Qagv9ECXa+t7y1CunSn6vYXDe888HUBUnKtYcjcE10R0rmnhRr09e1M/0w5sKfPh6czbT14T4sS0HGilUHrj5bLRyXTMesw5ujjWtFF7YjXxytrhKB6fC35LfHh+QQTCcmDbVtK2Mb99S22V6+UMAmFeCIcHaI04zRyPJ5gn6OxFS91Luq1rt5aCuvc831pOVLG97qi7YC1IuwvZsJgz26/vSeF5CYoiTk7IDzPPF/j8wzPbpO4PXIU1VdakFNmO9q6v140mwmld2TZt3XFOTDTUU0umt8w0R0rRpPC+6Nx72+dAzgknneIqTBDwHI9HpbhKYZoDcfKUpq4JPgrLIVI81AyTARS5bsTZceiR7VrZtsQ1bCr65yacC9TauK6FX/7NOz5/94EPz2cOk7LJ0mOjHVWbYp4njsuiPbhtrCEaA4wRQND59XK+2DqgRfdSdd/XAl9hTRul6F5+OERC9DQwP3S37+Xz7Hn9+kQqanXzcJxVeK3CZp6718sLn7xaePvmwGdvHnl9PDB7R0C9m+dw5M3xRyzhgIRKLw5qwXFFWGn9hZQbtXr6PBPcA4dwoOPoruDdRmvPlJK4rC+komybVDYER5XG9Xqhx0hAW4S0aKTUYu8iIXZcqnRJ9B6hCYGJ2anK+MSiMU3tECviO5N3dNR5YZ6jrZuFOUxIi1ADz6WQUuNy3pgfXrPMC4d+ALNCU2S9MzlP+P9R92c9kmRLnif2k7OoqpkvEZF5t7pVM8UZTIMgSAJ84PcHAXJAEOADCQ6GMz3s7lpu3TUzNnczU9WzCB9Ejprn7Wp2Vk8PK8sKcSvSw93cTO3oOSLy31DEXbJjgO5DfDvD4501FhSNoFHooRmgFgMiOzD0Ux3C9KPup//MiK3rW/2//tMpyMcTHM/6jz3Vm/72zdb1dt5v/907bFX4/gofr/C3H+E3n4XPN6EQ7miVcGQKHQgoA/9V9M+RYYfVpyWgknn3Fx/oXShF2L98D1R6feXIfpXZkV9Bae6EWLi9/pF9vdDbjKgjnTGS58nywbJpioahkwmNPWYHa+4DzXWT/u/e1KLe9Pk1Cq7vQayp3QusO7QopDYuADY5iooGQQmWdyVKDmqNbVKaCsPmuHVDW9OIC0IpXdgbXDf4+4+d33/q/Ot/qLw0uKpAbhYg3yG77kGBVu1sM7qjhZdfL43W7LUfDZhYUzM0S4OJWr14Woscjf+XFa6FH3yGtnbu6B/6Y9brvSD6l/pojujs++7GLQOnF6ethqNIMBMG01mBozp90G/xxnK43nbbueJoDI2uN6i24gibOdxa8ZI8ZiLnjE6dtCdH7AtdO2mazPDBmx7RO+UFxsDNipi3Dsq2IbuVf2v++yO9bYf2LOXMNE1mKjMaTP98+2hiVV3b1Y8ibPzeoynFrkPzEPXgzcZ4XyFEa8qG8/RB2dU37+MNJagrTe1QFo/WGZRZex6jA4+azZq9+/MYImfxH1Zse3yJWK7rMOOy5zZE90BMRnSR/07V+wDhQNlkIF/1vu+KHPfSyPgcNDTtapRlbFAwfkhHcdsKre4HnXo0tsYINndoc163WKAY7qKMEMRpsNG1uQMJtDy9UOyX5Rit+QZ2hn7KkG453qP9XglDlvDTLohHHFRK2VgDEsiXV7jdfO1Eb2oj02QI/HBB76poreZg7megXRJl33bavqPYACEl+/kpZ+ac2HJkZFnbICT4fRGPay/NtVPejNTW2NxlFAkHEhudgUSwoWR/62g97j/VA6ULQ+uNIbYhjDt2jFjs77avmU/y0Ti5uVnwpthWgNcLwn2gclDzMHfiTak1kGMmSGDK2ZvWxuV6Yyv1KLibI7bGMLDBUIqWob2WaoaMb70nxp6jQ0pgn233AXqIY+AU3XCquGFdJwh+r4djnwrxPgyyBsiep7bObd14p8OAL/vn0s1EyH/16WQD/tCbIeYNrrdKaRYDFOeV2Duxd9Ztw0y1jMFS952unX3bub5eUG3kWjnFzB6TDySejnorVBuc9mboWmuNrd73lDErGRKL8fnjn+loboRhoGmb8rF3cc8E/6k/RNSbUeFhzjaQGEPM1lj3na10zwY3qZCoUmqFvdiwozZqa6RmRZFKO86rlLzZP1BsBR/WCu6H0A086LFDNA3vNGVCtPM+JdtDu1Y6tqbzZPT3QCUmA1habeRkQ6Dr60bZK3tyhpOAhETrG3tpfH658OVy4+W2IRop1eowOz8jyzyxLBM5J2qp9GqMhlKL73F2r1Y6rW5jRkaKpusuzTKzLVbnyqD+pxydoWP7/hhKgTW3p2UitUipjdbz0djmPVJLILHz9Djx7nHm8bSw5ERUiN0G4lNYeJw/MMeZLjcKO7XviG6gG9o3eq8mD9FGlEAKE6puhkdBnJJb6kbpdl/0XkkIDXNDjr0zTcOc0V2yjW9kJqvZavUgPkgjkeNEJBI0mAxlDKwFphRpumMZs5MzKDpziogmtEWods6W0gkEpjwxM9NKtxhJ30ymEM1pWc33J4rSZDDv7vfpYM5owJrb0B0daYRgkk5hZzjm/5jHf3Yq8v8S87FhHvKjn1lGQAusLfDxAr//rPzf/p3y6Sa81EgjeP6iHM1REA5tR9P737uaXuttNmD39dDUtKhxEp6+jYTpA9M3T6Tzmcsf/sTnf/s/0C/fo2X197JjtOQLSkHMv5LWLnz98j9wu/yW3/3DM9/+8n/L44df8PztX/CkZ3JKTCL0bnSviNqNpMrkVuYhjQIYQkrHmCGnYSwC3Wl8707xiO3ZirIWoWsy3n8UpkmYsjkq59iZsMaWaNe3duhtaB8U1IpgqYbaSmh8fon84XPj//nvrvyb3298fGlcqlObUkLbTMM0R+VmjrGSMlvC0Nt9Nb2PdvZi5jPL0xMdR7jC/aatFS5XoTfl4SykJOzVqNJbAjRZU8RdfP5Dp1uf8P5L4S79z3js2+bxL+qHkTcJMTpiYIWqOg23d6WVSohjI7KyzKg6IIOSG4aD9tBWWgOV0kQarsBiP19qoW2GSCZ3/Hx89y1d4ak0Pn/6I9t6Zd0euXz5wnq9oL1aHvE8H1N9Q3HVqXf2tSEVbL1bxmLKhOh6RN9CUs6knB2lNVR2rxt08wu8XJzaWQoxOFpb/1y/Zr+3lHLo1HKeSNPEw8OTPb87/7ZS2NfNfgdGQR4oo7128cbLBycajsL1fH60QkWVfbsce2FzMxXUm5xklMFpOTEvJytYa4Gym86mKyUYNbWPrNcQmecTyafettc1emmElH0Ash3v2yZF3szX+/3TXPM0ioYYrckZLtDzMoOYP/xejZq+bRtmhahHPIrqPeKptWY0cY3uA2CGO9Hpq9ZUmUN3TpnX65V935nyZCYfMSO+P8w5HqyE3m82kezB9Wj29mKaD5Ms7YaC/9Qfll1bQJRpnvj5L36FhMjl9ZV925jmiWU58Rd/8WtK2fn+uz/x6dP37Pv6ZvgkPvwAmU4sHzL0htSN2+c/Ua5fmcDjOXZ3Sw28fzrz7nEmxcDr5YIwEYM1K6U2ruvOy3Vjr42yVdfpGa18SgmRjAQlRWHKnkctHKwjwAdqYwiBD33aUcCWhhntBNDmSJY208rnbAhQaERp3PZyNEt1aJJbsZieYLo9OxPFzwnTqO6lQW3soXM6zSwPC0VN0rCXnZevr1yuOyO6mpDNJM6b9ClPxBB5PJ/5+nrhelt9sNzR1i2H1KUCl+uVvTSenx6RkFACcTJq6HXdsCA+ZZkCSrSzUEdcmpuudeW6bSyz7bvmDm/7/PVygxDYa2PfLL9zL9Uy44Pw+no7UIHHx2d3wE+0XgwhvF5ZzoH5dKaruWF///H/wzQlUhR+9w+/5WMUlhz5q7/6S56++Rmn5w8mP0D5/OUjy3JmnmajZ88Ly7IAsG0bf/jDH2zQ1YxSGpwNlPPkhjiPiAi1Fn77u9/43ls4nX5J743L5eUw9zNKdedfQmP79y8gvSG98riceSeRv1h35jkRxSJcSrUG9vmUOUfheYaX0OihkVB2LfS+09pkn2+7MU8LU0xMYlTb1oQQr2izKJYUGzFHphnSZCZEaS7ovlu8lXxrg8+QrdHqlX2v7LUbq2DOCN3Wn9oZnGZhwtgzpcKqhVe9se0bc57JLKylct0LXQxsyQnO59kp89/w65+/53yaOJ0yIyFlFdOHbtr5+npBEeblzOuXr9y2nY8fvxgrQ+Fn7x9IyQYoX76+su4b19uVeZ6Y58nZPJ0vuvIqV6uVVUm+F8Qgpg2NgS9fvlJKZdtcQiHw9HTmm/fv+ObDM6FHdIN+6RAqMUeepmcelhOdwrV9xxZeWeUrtX6i9iuJjVmgh8AclUSx/bZ01r1SdOP0EIlVKL2ybiuldpYIe+v0uvE9f6Kcz/z8m3c2GER59/jIVi7UeuPxnJmWM3n5QN3tvJ+nyBQXeutcXl8QUdMod2Ei8TSded2Lsca6NdXb9srz9OyDvZlcb+QeeXo88+585t1yZmFmD4Wt7Yjncz/NC+a/sTOruVmXVqm90OnUXghJmEI2tF86IoWcBKTTa+FhTgSJJP/vzX1O/mOPf3Jj+49vEQMbveOk/9Rnkzf/C46IYC69chRVf/aTOua0oyExbdlWMTprF76/wJ++wj98gk9X4VKE5l2s2BjDBquOcpqilTfGKXeTnGMCiqGdvbuFfhFahb0IGgLTOfH4y/eEFCj7zu33mfr6FS03tDtXlxWRgbQMeLhS6wtdd758+hu28sp1feX19ZlpWjgvD5zmE9NkNuUJsWyuGgwUrjoy0w3F9cPf0Co3nxL7eog65uu0KI54CjmZzfyUjS5mQLZaA6oRLRxIKf4zrdnPd4ValG2vXNfC3/z2le++7PzNby98fm2sm6I4lzlGiJs3KELfVnqIhDwh0T4X3VcrsHqjEZBkk18NxjvqLdAnyArTbE2N6kBxLCbIwUNKE24Vvu6BhwlSUFKwzUyOpSUMAtN9Kf6H1/NAbvU/+p0/rccwV4AxzVa/ZuZIeR/geMapT5NjTG6GNKJYzC1c/Gfn2Qs0kYMuluJAAP0ZY2SaJkIzV98A1rQRqPWumzfzpkYtm2c3Ov/dr3Zp7R8H1HxYU5zSVvaNPC/ElN6grso0LeaSq8q+r9Ra2LcbfV4c1TRk9bhnvLgq20prw6HXGs8Ex+Brms29ME8zaHd0vNzjdsI9y3c4j2opDIolI4u0DydiMzXSNoyknK57UHPv78maM0NGeuvUYnrLPlyNRSy7t7cfFHwDWQfoZT+oQt0R0u7mLt2doaM4ouvNqz3EEd9ImkyzLG6CMzRvZmZkVPTmzzvo6hLuTIDjPY0/RhPgkImE8SfYUEM9p7N2DkaMm5yBPe9eKyHEHyB0Iz91vAe1yZ+7BOtPviAekVvj78P5+JtvvuXx4ZFtW8l5YponHh4e2dYb0zTd1x3OzoiJg5IugsZMb4W9bOy1s+3dqOB+/i3zQopGLzfqqjiyY8OXbatsezFdWlOqR7U56ZHhj9CaUUjRu7EZ4MMHHyYrR7P51hxtyIUUQy57N/R2fJj3mCjoLk25P3znFo+fa4o0vQ9suvPORJFgNOquLpcRYxCpmqnT63WjlD7Stg4X6N4bU06cTzO1Npp0MpEUhHlKrOt+ZPveto2YIufTzJSjsb52y4WN7hA8KqtaLI4MmQ7E+W0GaIhGS5QwGDJyv2/8Egex7Np9K85wuH9PcylAV9O4xqi07nRpu7AMB5M8ZUot3K5Xtlth005tlSVF6pydvjwGp3qgqWNv2fedUozuOM8nYrRooG1bKWVn3VbUB3g5JVJKnE6ngyljFHWTbLy+fgVcP63qRoRyUJh/6o8eTL/ee0e2Aq3zcFqISSDc17wC7x4WzlE5x8qtqWmPrxdDtqSjWryp7CzLTA6J1mywIEGJyVI3Qu+cTzMxB/IUSMkwh5ggRiVGH5oRiLFRo7k193A/cwxciMhs2cUxeKPaA6U6SyJ6TTZo8/0e9TfnyMNpIkf4xbfv+eXPPvDLn3/DN988MqWA6mATiHsimEZ/3QvbXtk/v/L59cZ1K3z9ejtSNLZaOM0T59PEViwJJKXsw+RwSAeMpWJMMOiUqgflGb/e1WuN4K8/xcD5lHl6fuLx8emIFRQVY8t2kC4IBi5ps1CynBd6XQh0AiunWUAy8xQQadS2su+NvRS2tlJY6cFMLW+rDaRbnA/AqjlfM8bA2hq7p01ETfQWCaJMER7mBJNF/ISoThduaLEmPMfoDAABjURZ7BgdmbHSDHENZkg1pcAyJd4/nTmfJqYshGa9R85CSIGQBEL3+NLOFKHbLBkJBhw2YMkRVSFFPIquoz7ERMUc9N1fqGnnx97KP7qx/fMj/tC2/lk5/59SCgjHmfKmyLBnU8EX3f3fBu10fA/eBCOW4/qywuauv3/7Pfzhi/Cbj/DlBo1AnIMxmY6m9odNirNrj5vkiLF40193lcOefTVQBKtPhbQEHn/xTJwX9jZTN6Mz6Ov3/uY6SAJtfv3ckVaU3ld6X/ny6W94vXwifvnI+dMH5uWB53c/5/ndB06nM4/hgYlgmbBuy9/U5AaDjhyCNSyqgRiU5NRpcQfkoU9LGhwtGY2tkpNpiEdDUjXQe6A1+/kQrUQxulaidvv9l7Xy6UvnD9/v/Hf/00c+f73x+csr3alyyGQ7XxAkTUdTo2r/3qcZcfoVZUV7NW5yniBN9JDt50KkxkzvtvlMePMUXE+X8Amcra21wWsRPm2RRmeOcMpKAtMPj/U1dNwMSv0d/f8PrXN587V/Cc3toMEOR1zFdVl+3WsZE29z6hMfZMSQD0RrZMfqmNLGyOn0YJTGXillozVDawf1ScQOh/n0QOrWcPV9g2DIQy3VUT0h5QnVRrwKUaJrPpPTCt2AxPh6Npl9g7RrV/a+o0DaJx5DJKbMflutyFFY5pMVp3Vn327snpnXWiflyYsw03kYHT4yLbPH2tiwKLg+MbmDcG3NjLGyaWv3/UqtpslprYFgB6A3sDGZQFBa8yLdNaiqqDfTImZIo4crqNMdi2lXx4Y0zKdCnIziW+s9IkO7UaLF4jaGw2jOtvAtoiQw8mLHfludOv3WAdqcEN2wJSWjETl6H1Iiz/Mx3KDWw7BHvcnft90cMl0LHclIiL4nuXZuNLS+voyj1N1oyPS9o7kdsQyWZeijKR+yHW6vasO2mO408jGskBEJ0t1ZmuacDuWwVf6JPpJrt4Fj/YsIp9MJwRCwUYxNeUK1e3Hn7tS9cZiJ+VoOEhA6dYdLaaxbNW2oGuKqCsuy0Hu1oVMytsU8z4z4qetqcRKWN+vNrTeOZlAnjswPN943DzHHfvvjw2VvqA8JymiQBGeVKEGMXRR8WD3WsqGz7Y0pGRwOxurMrG5rPk8Tg9aMD3TFM19rVcvzRN280GjKr5fNaKM+IO1uWLNrh9PM08OJfS++79gQ4DQnbr4XqSq3rZBS5HzKTNnMH/fd9LI5h2OoE0XYfCgZQsYCjXjzvroPEvHortGw3rX00RvzJIlXbsceOnS5htSYQcy6FWI0J1zbNt8OF9SkUu6Qvm0rdd/NDGae6G2h+DDDDJ3sug7ta2uNy+XVXGBrMTO3lHh+fuZyCaxrMFaPa/BFMjFGluV0oLljwFdr5cuXT8SYmKbJ9inpBA022Os/LiLkn/PRYzRCb2iU20pGeFpOqFTUA3mGX8W7xxPn2Jn0ysutUnqlvr6iUyBMxopp3ej/784nptBpZcfi0YyeGkRJXXl8WAhTQLO5f8ekliyR7E+tO6p+NiSMSho5zoMAFum3WM0VghKjknsgVWcIYhE0MUZCCkgNdDWDp9OcEGb6KfOXv/wZf/nLn/HrX/6M908LQuPl9YvVeMrBKhqN7deXK3/8+IXvX65ct2rAiZq151oKzw8LP+uPdn/7sDweg3drao99xQdheymU0rjebu4BMswHXec+z8xT5t3zieenZ56enux5Q0JUCN7YUkGisypKR0JiSidqK66tXzmdLClhngP0SqmdbS+sZWftN3bdQCLLdAYKrW702TJgu5iLvQYbZlkzXAnuSdLFYvRSUM55+G0Ebnun7Sb/oTZiMpdn9ZGvtogwuzHjCog1p97YTikxp2jszuWBxylbY6vdPvcp2GechBYaUTpJlDli6yYZCNmw4zXGYHuEKlEshqyon+VqNOccAkJ5Q5v+jz/+CYjtP16y/6fOtOUf+fthET4WnD//yIszDQVuBG2GT6YDMXODj9fIx4vy//qN8vXWuRVFYnatp6CzK0i9oX17KNxfiB5o8GhoYrBJ1NvGNiW7uecMp2RU2OvV3IavV+V6Faomlm8+8PDrvybOD7z8zQvsN/NxD9leiGaQhcO9Uz0qKJ7sPe4b7ePf8SrKpz8mclrIeeH5/S95eP7Aw9N7np7eM00TpyUzb24mFYM7LSrTrASFpBC6HdaxGP3DIoPGG1Z6E0oPbBqQasX9aOKNin93mlxvlW1vfP164fPLhZfLyh8+vfB667zcOtfNioteio+xAoTugyAxNDYkCMn6/ABQrZ6UCGkGMWc33zXte3MipGgueQkzCBEhRLHixgHh82SOkinBp1crlj5erGiZE/z6OfC/+tD52YPyFDEntoijPsp/SHP7wzVv87Nw4Ps//YcECGq6RXFDltoaKtWah5gP5LQOLecYHnmjP1AePKYnxkh0Wihxor42tG7s+8o0z8zTicd3780VOc/0nui9sbVmqHBMhJytWCnFhleSCHEiJHMeLY7M1WKGFN2RCe13/eRAKHqrNKnUvRCIRImUfbU1Mi00d2u8vL5wvbwYVU6NEjxPEx8+fENrlVoKospeCq8vL6gK07zw/PyBvRil9rQsd8fhmBy1ulL27SisJAg55oPNi7j2vTfP3MQWqKO6U84EiV68Oy1WO+vtemhU7L0OzaEVtja0cG1VbwQRYjS3Su1KrWZsE0dsS7CBWmvFkdJ2NHl1xHAEcbMtPZyCrTmIjjQHck5Hw6TN6KD0MWFVatltUqy+fsToFCN6pnqBLCKmtx49zBuEdcTJmNPvGwMxbCg3EEe8ORexuAWH020gEYQQzQ140K5FrTEylM/2+WE8+C/h8Y81tyLC6Xw+/t57Z993LpcL1+uV2+3Kuq821IqRlAK9W5u/X7/y+vkz//Z//O+5vr7Qys7z04IAp9Ni1LxaqQ3ODxMpCuvnldfLjdttc/PCxr5X1tIOMz+6D4uSFWXC0LZ1Wt8J0RprI5GooyQe/SLijbWt61GUBkdsk5sMNhVatXMsxkoM8cjDvTfUneyZsykKuyP6xc98643tsN/XahEk58iUkkkLhqN6bUwpUvcC2tirDfnOp4nuWt7rbT1qma+vq8WhJGE5nQmxeYSPsT2+//4r757PLPNEb/Y6b9cbz+eZeUrMc2aekzfEwuW2GZ24u6FQU9LkcSYaj4FPP87sxpR3UrLMy2HCaPdyIk+Z2pVWd15eVyQ8kZKxY8Y6e3l94bRvFv2ioK2xrStPz++IMfLdH35LyhNxWrhebywvr2yvL3z49mdMy2JMGhV6NGSm9cpeNl5evjLPM+/ffyDnbEaArR3DteGqfrlcWdfVaK3zYkya5vpdlyQ0ZwtZ/njjbv/50330XgkhsMyJ7z5ekdZhLjw/ZOY5cppNWvL6UnlYMqfY6ZuQg50j23ZzkrrQuhkYnaaJ8zKTo1LjzrZVo+mfIWxK3Mx8SloipkQVqw0JnZyFZQrUuhFidoNHYxAsc2LG7t2vl82YQaVR2pWUlKfHCQnPzDnz9Jg5pUCc7DWmFtEOpW4IjW+fF87nb3h8fOR//7/5V7x7fuT90wOZRq+2VhS7F758fbH9vjVa61y2nd9994nLXikdQpiMwdMaH79e2LadfS88LZkpB8usVrs+85ycaRiZcqLXyvV64/X1xrruXK83YpSjmVWgOnNgnjJRGk+nhXJaQG3oHkKyRAJ8yKXQpNF2Z2JJIsszGmZKj8QMEpRGZd0q29rYO1QKKjeu21dEI8/zA0tqMHWkX1ENVAJlErbY+VquvGwbl1J4LY3OClLY9xVRkyNNaSGmDGmj6EqpNwexGkE31lbYW2DvjSYFCYWHaUXkSko7vb3SiMAzeUT65YkUGr1fCCrMMTHnE7dQaNEGIaWbjj82JWtFqexqg+yczNBR6exrI+fOPCkU2w973al1hyhMSayu/5FH8j+psb0zswZKKse//fjHPYDhQML8kBuTQMcC77/L/6t0qF14cSOgtZrx0VbhusKfXoRPV/g3f1AqZnp0WgQVobsmU/zl+tlpRcybt6DH67i/7/Efb1/ReM2G5tgXpwy1CaVaXyZBkBiJ50fSXgkPz3SMwmVNbQetqI4md1S9ziPXjmih9dX+rQgtbJR4RRX2feV2u3C73ZjnmdPpzCklUoqk08KUTGuqKRCxgcCgFgf/79itKZPgRkxDRrh7bpmqT9x98r4X28T2yvVqdJCvL1deLlcut42PrytbEdYW6ZL+PdBDBjbqvCgd1zhG70iTodmSIAYkRiR7pyqWUZkWC9qeTuFYi0fjFYTaldiFOd0/17UMhF647qYFfb0ZZX0t8OsnmDNkN+Uaw40frsV78XhfzYO+/P/bT/mn9bgXwuIF3n1y2Rh0zh/c814QBlVEorvSBqelulmSZ8QaPSahqTs90mz6DQTrbnyk96bk7esRDlTW9I+GiKac6WpaVgntoN8dxkZuqnZQdXv392PPZ1+vxJQJBy15oAF4ZqNFoORpJk8zoQY/SDsihm7lyVxKQ0pEf42Dom3XURg0yIGuDqTicOpUe89d290U6w26YuZTniPbzZXQzCHumlpDlN4iMv559e6mO51Bbw4Sjg3vHoUhDI2wDvqhv96BmI48TXteu74xhuP2HStp3CuHyYv/HsLY0940XmJMAXxIxrEGDAU3T6A36Lu+MQ066KfjR/W+mmWYAeHUMi8a/PoHf6+iclBmVdSji2zfOH7r2LR+4vSLH5h6/VlT++d/wPWXZTcWQbMTcuiUjX1jpmSXr194/fqJ9XJhW1d6LeyzONsgOFUb196JDz/7gb62bnTc4mj6W0r326a1q/kmiEBp1WafYnrrIGO9cD94BQ73G/88W29mouhMnRBs2I1WWjOK30hFiDEdT3MYDo3rMxpqrAYRZyK0Y58wKmRKts81Xzci414+bkpjbaVB/VcbIil0rUarl2SuzRHbU3Kid3Vq8JA8Cb02KoYipRQ5BYvh0G6/L5d6DBh66+x7Y7hc194PkKD7fdbEDXJEEM/UlhBQp++OQeEdvW1HqgHY89xuK4REXlZOpwfzKPDroe43EGIku3Z3uO+jd1mHOqVw7Fu271RaSweVeLBD9Cgg7PvW9WYOzKUcxmY+13PfgrtplK23g4v1k36EYLFZOUamJaO1oLEi0ZIxuhiPUH2ooQhdjEKsDWRT87po+Lqy+rQ2SyDA0T0JkHJEqg0rWuuHoUz1wVZMQspCqoHdWQVjTQyzpuAUeT0+u2IDVb9hh8RpmgIpCCHYULVRUS8yYwy8e/fEt99+wzcfPvCLX/yM8zJzmmekFXpMnLqdk7U10u1mBnbzzLIszNPq8Xj9cAN/cwSZ4VNtdE1+vvhQ1u/XWo0OTwweZWeDcxA3URRfY87I6mZE1buyroV13Vk38+EYQ9UQBOliRqgCKp2gCVUrrmOMZAJz7Ea7DZWt3+6pBlS/jiMVQRGt5NjoqdGwIVQIkRY6VRp7LzQtGDnZhzlSge6AS0fLbntGNJlekE4XqxWaKp0CEglptqF0qKjezORKN2pbibrQ2AiYFlmDsXtUC2CDmZgyu3nzGeCkihz7uvsYtW6DzWBntA1XhRCttoOGaqWru813AcnHOv4xj38yYntvPH/49X/KY2g///xx/3D9DFNTvKoXV9cKLxv8T38Sfv8V/viifPwCrzfh41f4w2ejH0PgV98GvnmOlkvrN/Q4I9WRXkNJvAl98+7uaIH/r47j7v5vjL/7eRaisJxBspBmmy6vqmw3JTw9kkJievlrSsrU4ULbO1p31Ox+7ZX1AL3AMJlSxcN0gEDvhdZ29v3Cl8+/R0IiTe/I84nl/MzT8zPL+YGHn/3SN4mJFhMpCTG9Cc5ukIptqNROzBhyWyq1NPa1cFmLZe2tlW0rbFvh6+cX1tvK9Xrhet0o1Uxg+lCvhQxpgXSGlJCo3sj7pyoZcZ2sJisoxNFZSRnNM5BBEjInZErEZdAV7UZYFmGaA+8/QC2dfbMM1GEAtRVDmXMKRLVFftnU92/htx9tIKIKv/0k/BffCP/Hv4ZvHpRvHjpLHMMXu+b/Eg7Gf9rD15pYlJSIIOrRK+r279ybrHEvDtffWcTDxAPzdDqaq2meEGDfd+Y8MbnjsWD3e9lW6h4oTn8UhKpKap0gzbVrNr2u+0qrZngwzbNT6jsilrma9gKtMeJbmwejjRxJy+vsXjgVarP3l2Q2U6Rtt0Y9CLObl4QYOT89s5weiGkycxfwDNzAPJ+ZlwUR4Xa9IBJtDuOOn4jQnT4XRMyVuZY3zcVoeu16moGXNasxJlIwZDqlREyZst5oTmW+U3MH4ula3YMSbU3HQCvMcTYeja2hF0ZVHK+hVrMfj7F4Y9uMJuzIsf0CLxT8WoUfCBk7lhJtDVMIgZCU9NbGXzvahTxlK1qLDxRp4NpFs2ENXsRFwkjTPhyo7X4ctOZx/ij3hhfkcLLurdmErukR5SQheJNr/nfqxVdv1Z/DaKKOD3jz89O+7982tmCF2/163Bv/8ejaTTdbNlorTHnifDrz+PDIul6p2852u/Cn3/2Gl6+fXQdt2aH7bfUhWDw05vOUEHlrEhdY5pnX20rtylYtw9TOBatJrCf1wrJbHAxgVMpuBmRTToQc74ZmQHfnUBvZB8peoBvF3AYpCkEtr1mgVtO9Fm8SkcB5WY44oTgG02IRIyn5mvJGNiXz6G+tsG6VsBe+eX7kNE+cTjPrulKqvTpDhJ1mLaZ7nXOyYWBTJm/et82cRtM0sdcO7k9wnk8oxtToXVk3aw4ti7jw9fWGSuDx6dnuj+QFon3olP2FW6m8XFbW1e5DQmSezAjSSBj2Gc2TxfrE1I+hxu4MrJ1qTWmeOJ1g3c2MKMYJFdsHX19XmgZinnh+/y0SM/PpgcvrC9t65cuXL5xKRQms68btduP28kLbNphmcpportVPacKaIGOgtN643W62/9fCtg/NpKCaqNUoz9u20nwgaVFKhuaOta9+h4u42+9gnvyEH3kyg7tlyugvni3vfH0lzBVJZprU2kbvhbWOQWjm9DCzqLDXq8lvSiPNyViNvfHl8oUYldOCm6UG0jzR93Zkd2tTeoO9gXSLu1maUlXYr+r1bbTovQitF4JnWrdWaX2n951pSWQ3DtyLUcSXJZIVRBp72SkUyLZvz3Pmr/7ql/z1X/81f/GrX/H+8dEYN+Bne2c6P1D3lVI21nW11yuRrRnD5I9PnyHcWEujEz0/XZnETSnDPVEgpeRDK9szt32j7Z3o1OR9r4SQmJaJ+fRggI8o54cHSm30y42Xlxe2vTJPN06nKylnHh8uLHOltwltxn4Rdb+HoMzyQFcfSgeIoRHiQg87lZ21NoIkcurU+gUwo6XeOgEhaGVOhTgX1iruhJ9oUtiADUFDJ6RO1EqtO90/oxwgSWC7fkFC4unDB+YU2KfIZXPArCoaOznPPDw9277dC02/UNpX9vLCrS1oSKR+scY2mgxS1cygmmZSCEzTYq9nYJYIQZRIQIMSQ6BtlRYUSYLg0UBLJgRFpVL76gyyjSqYzwjdavwfyb740Y3t/en+EVzqXgNxBzjHYXtvGg9w7c0EdpQOI+ZBsU27NXNa+7ILXzb4+6+B334Rvr8I/+5PgY+vwueL8N0nZVuV9QYhdZYF/stfRd49BJZJeIssH9Rm+yyNmiYg3akDb6bD+uYF6v3le1GGN1FGz9U2JkRmKqUop3NwIb5yfQls00zb/oKbdFoX+n5Bm4W4i088aKs9mXSQCUioZNxhwzHBbtO34yp3attot0rZVm7Xz8SUSd/9jhwTOSYeHs+kaSLNM9N0MnSNcNeyRaMIqBa2ywtl39muK1txU5YurmdRMwRQY01WAqoTLcnx4WuYsC45u54KoxTrGBBU7g1jBrW4H5ri40JGLIyI5UxSgwG4WVjO8bAw165Mk3I6GeU4Rps2IhwW4jnCMgkPOZB8gPEwB5Iol0340yvcqqH/35w7P3+Av/5WeZrh3Qly8Enz+D8bbjIW9x3lGevsx02U/jkfpvd0NAcsnxYxEx5v5oYbpZn7iNONjfoV3e03xODNRSTFfNBOh/EaEljOZ3MinDLXqxcqYpoPo5EVK0RE2Pfd9VCeWRkDTQNTPJFmo/tu6xWAaSpIbZYd+7aw7+7q3O33d5RSfM2pfU8UodMNfTk/WPMZIsv5wfUy4dDFdjBjuSjkMLuRk+XA4kZa1Q/hoXkdxjIgbuoTXR9lWZMjc3nQfy0GI5KzOUC21qnVkDLtzRAizPQhhngYJ4kX0ymNe81+dmTemrbN975quYf3QR0Eice/N2/IaylvGkrT/scQSdM8SBYHsSSmO1J9TKwl3M2lCDS76Igk8PROqN4EuAu0Di2WfUZdh7FZvxc60ap503MONPtu9NSGTuS4/bwgC+M9CvjeiXZHv4eNLfY1Pw9yNrpZjiMG66f5eNu47rsNUMYaOlgIjAGxaW9//eu/5HQ6U2t9Y3wSuF2+GvsgJE6P7yi18913X450gBEFhBpDwc4+Zb3tNrhU14/nQL/0oyF5+zDPRjmGMAB7KfchtiMe05SYcySn5MMapYBR/z06aGi/x72HdqY9oMkRy5FlXgZzITCnSJJEksCSbf8KbgAXa+d6s4a/10KcZlL0c3e3/SMnc1avtRHdldt+l5llTfN8sEe2bbf7J0Q3xQOCIcCUeqBdpTZEip9ZhlZHgdOU6DnSlonbWoGVZbowZaPvnU7uEhwC216pKmy7oaR05XTK7PuQV0RSTEx55nLbKbUTc2KeJqYJPlfb82tXWrF/37ZqwwGxgXhtlgW679vAtKn9b+kKl8uF9XajbLvrpu1eLPvG5etXft8by7ywbxvP3/7cPnsZGfQuZUjmHH273VzXGHh+/uBD0bvZUO+Vbb/Re2OaJnfcj77+rWFKKdszi1JrJYSffmM7p2hRilKZolr+pyin1A0d0wzS2Vrhu8srj3PinOGUEqLwuhdiUnIQijbM0TdTdEUdGBkIeZDA3pV12ykaiTmx5ExpQFFCmjg/RNLcKb2TpkCeJzcmtTq91e4ROGYwNs+JkCZHzc07otPorZCnM0/LA4+PZ05xJvbIh/fv+fAsPD++4927Zx6WB2JenAEi9LLSe7XPVCMRy9J+Asu7TpHTlLhdLqTff+LrZeO2NxqNjplSTTkwJcHcnBulGINRBFqz2Kytm3SnlMrlsh7HQYrm0j5FYStmkrecJmJ4Quic50iKNgi73W4mW6oFeVjQbs79EgMpROLk/gNqDtYqjRyyyf00cJZn9lgoFCTsxGY/e5mrG99tqNyQuHPOZ6CB7lyvF1pJLPGZeTlxipESGjpHYKLVlY1CY0ODEIMN6lIILHlinVbTVM9AvJGnQkwbSXegEqOwB2O7Vl1pbEBDorN0GKZSCrrTNVBrJM0RCYkiO8OxKGD7rpAJ68uhlx0+CNnTOdT7Acv1LpRgzvRBoVGdufAff/zTzKN+5AD73vr+Iz7J47zTt8/5hlKoRsQtDbZN+d2r8KdL4F9/J/z9J+HjRfjNR+Hlan++/whth16UD++Nt/30GJgnIUU5mtqBunY1/HNodCLc6Qu8qYvwgvZNo2sFmP29+c/0fv/TvMntatrVnKEvpr9FEvXdE+36jnrb2LvTNrqrzY8u25s+MdQSyQzzlIGWG4oyUFwOPVur1QKcQ0Bur0eReXk9EaeZOJ9Z5kdiSKQQDndclWawf9tZL1+cPrS6GySoJA63UTHKJiFBmtAgVnTir12GyDUZVUHsYGIceKG7Vna4dwV/z/5HgtO1fArfu03vBGskCMdwpDeT3uZJOC9yZCI29UbUJ7Yx2I0TfKIyJbuBtgI3p7IDfL3ZmgoivD8rVeEhK3NU5igj4piRZPsDit2xrH/aKA+8KYjFnfCEA/U6boABs/r3xRg9k9V0pDENQyejIceYfF1aQ3fkvYZAztmK6eJmRE4HDSEiavmIHTw8vTnK1w6UUqLlcU7z6aBThhhdL36Mxtzl2P6rd/XhhhtfdGvmw0E9dMs2b85iTCzLGdsohj5L3xRgvrZqc0MmM6mwRnQ0tk6RfkMPDeJN7RukygyR7ihKOqJBRp5ldxdlpxMen4O72I7GdhQrjqqP6yCjeRj07xFNpOYCPj7XA1UFN/7xJoGxFY1ptxlFCaPpHDIMo7FLvOfW+qsCeXsK+NfdnX00vcSRse2b8tiAD9aOHE1JCMnft8eJdTOI0eM1t2PQ9IOW6qCfybGc75Tp/uYV2rcGp5HmlMheIP9UH1a0u67Zz87W2kEbfLs/iZi75tPTO0daOg8Pj66P23y9GTIzzQt5XkwGEs1gawxyj3PKhzfS66HlPmwi+tBv3tfuQe+VH6L+ZlRnBSLhTpk/huByl3iMjNi9DIdwp5r751lH1m20OJ/WLPMSzACl1koKoN2MVYIY9XM4+vfenT1VEZkPGUVKtq5yMj14KRWj4CnJncEHrX8s+labOdBijbn44He4xY88VmNTdET0B+s+xmBjIFVut51tr1yuN/piBlPTZHtvSollmQ0h3yt7tX1rxCbVWsnZIgmRQKuFIqZ/Tt5MhhB9QGTXbGTKOjfEG0t1d1hrFm/XG6UZtbo1oyCXUu4sNqA3oyJfXpUvnz8RYuDh6ZkwLWYwF5N/1I7Ytsa+F6Ype4bpcqyTYz8mMW1majNN5nYfHekeje2QdXWtx3X+qT8sCEI907RbMkWKnEIiSQQ1mnWnc9tXUpxZ5tmajG5rN6PkAE26l1JCsYmU7dN90D8BbPDTVAnazXCsGXqWQrT4yNiZczliJA2Rssiu4bPSekfiuPbe1JL9rDInHIvzSuScSCEh1fT/STLfvP+GZZ6Z0nTEDYoIWt1kbJhM+r4TY2TOmYfTzPZ44pt3j3z6eqMWX7tqqylHMeNQf6+K7ReWZnAHuiwju7HXZgyFdmc7TSnQk9UqC8q8TKQl2+ApCzkGgpj/BvjIdrZBYW+d0OxMjNlqgC5mlGRaaCVqRHsiYYwIDYqK+z8EWPKVIpVOQaVAqEyTur6/0vVGa4nSMrNk/1x3YjDj2Fa8lvCzUcWMPcURV7O3EWIWyy2ODdhBLYb0SCAQM/tqVBoVGYwq8XoCRalHDxHljETodHrox9AYuQMloncpltVlb3rFrn6mu3GaBmrfbTDwIw0d/zPn2N7pPcdjDMVHFyvQ3/Ckj3/rnVbVXIYl8Yev5mT83/67wO+/BP7u+8DrKuxFKCpsO+wbbJuQUZ5Pyr/6LyPfvBO+efbGRoUm4girUppPm3yzPPpI7u6wRy0g9/9/NK6OyvnLPZDLUi28uRZFj/BbN1sKwvJg1Nk5nZjTXzCfn/n4N4F6e/H3nyBUO5F7ARqEyV+gU5N7h1rQURToqAQxuvWgOuLU332ntY2ihf21QpjReAaZvfTsDIoWyfjrhuAOTQb2GkJCwsS98cxocD3s6dl+ViaHsb24GWT6IdhFjsYY8KbWG/jwpkmO0d+SI+jVXHI1mHZIY+RWlTQH4hSoox6OYgh5NIQ2+oA2O0I7EPURHTGbfJfW4MsVbjdYi/Cn18jf5cD/+4+Nhxl++Q7+628jv3xS/pufwyl2Zi9WfGn/+4vlXwBie3yW3ahyEXHjp7fTcc8mHdrDOH7OCodpOTOfTuSYXDfbCSk65aYfrr3XywtTTkhIPD69o9bC5XYx/V1taG1vJkqZ3iq17Lx+NUMno7dmYkqcljNg5jAvL1czVfLiOcbIw8PJY24aL68XpilzPj8Yoler6WZiInrx07TSa+X9+28sLzVF1uvVDKMQCJEYJ8paDGltmx203RtPL9r3fSPFxHI6g2tr1dGS8TCnSm98CbzVjk55OujC7QjDhGk2lHTb1qPJTT5ckDA0g3Igj4Zw4qiP0Xp7b9TSPL7o3tyHEI1WHSz2Rds4+AfKHIgxHxENtjda4T7yd4NTnYVgTeBozPs941cdgRfXtR4Oy2IGZL14FFJt9CCm4Sa4oVEiZotoSNPsr0Gp247SfEgg9xU9Gnx5s9dgx65Ra0w9b2smOjLkxZ5APjJxIyOW6af8+PTpM6fTiYeHB1K6v15DtsYZZ0Vp00ZMied37zk/PNJa47be+PTpOz59+p62b6QYmeaZ5bTQyplffvvM7TV4/Erz5qehzZqcddttv42B5ZQppZozbmueE8vhQtp6O5gLA1EGZb1e7HW+eV9l35inbBmZ3lSVUni93ky3OQayTo+PIRCDUD0+J3b1LFx1jax/5hdl3xO1NkpXpmni8fHktM1OLRvSm0VT9EbrQkwTyxKZUuTp6YyI8uoynCCBp/PC9fEBCHz/5cU0gNNErVa+9mQZu2OAtN42Wms8Pp6Zc2B+98iXL6+U4tqygbJjnhalmklbqY3f/vEjv/jmmfNpAjo5RXJO/OoXH7iuO8syG6Wy+KRWbADWVSw/UjvnZUZRvvv0wnOza5CmZGZNRd2V2Sh/FsGTCSlz2zZabSynkxnpvX7l+t1KTIl37z+wriv7tvnxLyQBaWo64QC//bu/5cvHj8ynRz784lc8vHvk6ek9+77z+vrK6+sLtezs+87T0zOn05nn5/fsZWddbzycH8g5sywnHp7eU2slxsjtemVdr5xPZx/oJCRYzu2XLx/HZfjpP3qxOqVA7pVlCvzqw7c8ykQk8akLn152pk8v7PVGVSGfH9EkdGcl5AlOZ2BWCpUNQ3FDNCfkTkMrJI/3meZM2YyyXNvKXioKTKdMFDNWe34wvI3aaKG55Kx5jJfFae175fW18PzNO3KegYmcm0WCra8suRP9fkeElDPz6ZEcZ+Z5NtZINJkDmJSk7jv7duXl5TO9ufb/9dUGy62xbzeidH71s3e8vFyRbvF2LQhdTRITgt73wmADy2WZmKaEyN0Do7WIhOr0ac/k7e3oFXo3yYqWG08PZ5Y58/y4ME8zOUe2dUVbsyikttBqoGw7UouZuJZu9VWKgHkUeGtAFGGMT0WEKZxZkrJI43reWOsVlRuEjUDldIZt3SnlxuNTIMUOUtjqFS3w/cc/ME2RZcm8e3wkoGjbKK3StHOrFyvVo5JSJ02RPGVHYRvb/sq27/ReDcyRxdITeqNq5bV8JYonH2R15FXZy45Ei4SMPNBQdjaQhopyKwoa0C6ErITeKP1m0UASkF7Jkgy48uEiFCd1VbbdtIM/1sfmf0Zjq/f/Hc3hQBD9S+r90ZjIj96n+8+MDNGusNXAl5vyusHvLsofXoTffE782++F71+E774GLN7LTKBqUdevKM9n5dffBj68CzycfEqs1kCbcYQ6beL+qsMYMA/Eijth7dDT/vCtvokkEnDL8wYWtSOwqzh1wKjOvWPGDk63j3NgfppRhO36K9aXE+unCNsNWoGaXV/bjM7rr0UaWLN7R3UlxDsFM/jH2NW+bzxEbDEROTKNtHqBaHQVSG+GDhHiPN6kNawhGh16FIvj7yG4K2qCONlrG1CJ00iNMo03534dPWLimM5LRFKGPDPsjCWay61oP3r74NMeDeIGMUptwr5bkfTqTe2U7PqDobTbplyjzZ5H9I8h+bBM8LIpXZTLLuwd9g4XAl825fMNrkX540XQqPzyUfj5Gc7BScddjors3tL+9E/RsdKHUchAVQZCNfJKh8FSc+3lMIXK7mQbY+Lh6cmmb625iUjlihKTNcjCOPgu0EdcjZpZgAhV7/rR2I2SHNNEnmcrylyD2vZG2W6WC9uq6X26FWRdO9qUUs1Ru7/RHooo2ioSo2XMjrw5fNjR9WjUyr4dOuMQgh2opVBdd2p6Ip8gt35ctxStYeaYxspBDT5QS9Vj8nxE8/g9YDKGfnw2wRvL4EVucFOuewvnplLHlDOYMY3qQTcTEWKKaDUt771hNXTdDL2iD8LuOs3oeZExGmIZgt2L47VLv0fu3P0QvHEY71YcMemVEaMgbugSRJim6XDDtcmsWgxNstcWUnbq+z2KRsSGJncUcqDVCurGRnalbe8fTTQj47f7eTP2UBviDITbqHM2DK1tNOY/7Xs5pbcZ0fdGFvxscvR2/Hd3BG+sj2E4uK0rX25XrtuNl1r4+Ic/cHn5ysfvvud2u1GdijdQ/cvrza8tpPPsdO/oqz+yTBNCBUbEjpLCiJTzF+8DTPW1AxZNF3z4XVqjrR2wuKtt27ltxQyNvKlFHXk4mAVGZT5kOj7sab7nCGYYU1unqbA05XxeaLUZ2tgqMSjL5Do5sUifgTbllBzVNK06Yvftw8NCiJGX22p7gdiwyNgGkdoslSCnSMEcoy/XGzln5jxx5MKPgamqFdmtU0o/6Pa9d663FehM+YEUbfMIQAqReZo4nxZC2L25DcdrRCJJgv/dhkq3tZjuN8YDYbhtG7Xa6N/M4+y+UTUU/OX1SqmF/YgwC8deixqNX8Te4/V2pfYJZKbUSkP4+PEjy9M7nlRZ5vmIrGqtOMqqjHzplBLbvrFtG/M0IyJs20YtdgZs28bmZlJTtiZjUPHtXjhsIH/yj+bRaCGYUZSqsK6VOQUkwpJnTnPivGRyDsQUvIwSehAINug45UhcAq9NeF0LRSvRabi9WQ1opkZ6sOBkmMC5Q776sFRVfV914yPsflq33XwlYiRPE/XWbLBShJAi5zyh1TKIH84zWeJhBjfkKhItFiZOE5ISOoanvaGtHCZ3vSmttkNvPhzJS7M8dhUzqFoWowY317KmYIP6MBg+wfCTrp3aK+oMAGMgNN8rbd203lnXnc0N6SwhwFgep2ki50gHdm8WzUwzHC7eMQjNf45qaSQ92tBUIwb4uF5UqTRtNHYqGy3uZghlmS8EUSo2gMoxM6dMmCB2Jbgc77q/skQIMfHwMLmkwaYkIiYdGc7mMZqmWIGpJq81kkcTuQ662fqb5URMmVlm6u0zhsFujolEJgk0NXPZ0CGHQCQ54nePG+2IacSrS0f8/NVeCUwkCcwxEgmIQo7D78C8CkIQk3MMptWPePz4xvbPnlB9AqM6cFq8qONAYBR7w+Y8YIjnW8QUlKSWmfZlD/zhFT5e4F9/3/nDi/Dbr4G//yK8XoSvV2sSVc3t1qhGnWXqvH8Ufv3LyPNjYBo9ngyUzpvaeg9pj9aX2jHS8UaNww33ABffILQoh+nVoKQqngsn0MR6u4pQsMWoKgfSC0rKQn4w86T19nM0TmxbM6pv3a2ZbTv0hsaEi085RgXNHUVHYzkqhZCse5aGqDmOAeAaH7o3rV5w2p9qCMYQjfrziuTDrMuaWG9efTHe/+7o3dgx3h4gwypa/EKNxrZjI8ngr791b6aTGU2FBGIxPjGbJXgQc2weWrsDMVelNaHuinThglrIc3SHSoEpB25i9JzTLEzJmt8OTk+GEOx1r1UpKpRuDprDJfLWhY+rspxsAViEkLnNmaO2GI2MH16Cn/Zj0DvjUdSjehTKTTtBqhsuWdRMaZVhuBPTZDOJYJSiADaxTNFzWzfSZNE9280Kpcv1anpp5NBtyaDoYtqpppNreM2Z2JrN3bMVG+vt6jEu7lTo+lRzMuxUn1yN+37Qfs37KVjGqjdlY+A2CilEqPt+FOxIoLedsu80N3mqvR3N1UAmATe38uxlFd+4hwPyWBuDEfHGBEoG/fhehGfPGU1pFMgcKLPAoS0cBlC2/mT0c47mOuUnRESGkZbtBZYXaSZVoxhVNwUzFNY01Clmp57boV17I2j3QYB9bnXf8akgg6IqxzWwhnVQjW0Q4M1qTLTW2fcVayyx15QyMU+kPDGyL+PYt8A1wmMF49cvcmxX9maMJeQHeXf9JQO1ZRS890bQDGcM2VKn9fUA8Uc6MP5zPcb9+nYtvX0c9Fg4iq51Xck5u2Zs4XQ6U/aNT9//nm29cbl85bvvv+Py5QufP35k3Ux3//R4ZhjIfX15pXdlmjOPp9n149bYBuks84QhE7vThi2qqekQcdyHIlYqjDHyGDjY692LmZOVWrneVmp1hGDce2oDatSzpsP9fhquckdD74yEEjq1K7j5jSldmsd9NTOry9HMUdRMIPH9Jsbo68PceEdtsSyzoVAfnQ0lAdNz2+Bw5PUuk2vTunJbLa4sBW9Q1O8bv2f2YvVNq+YI231Ac1s3RJSnxxO9h+MejmIa4GVZrCnayzEAr2U/sqW7G+GFmFi3Qm/daffWzI8YteBIldIsGsgBiNfL1ZrUbkOT+CYySOGui3ZGQFfT80pXOoGvX7/yzW2l13YwJFSVdb0y6OppSFy84R4u3raOjfZsuuaNfVupZTd5VRpDSg4JxVvWzE/50ftwqzbTsg7c9saihYgyLQtLjpzmzDQZ+ki469IlKDkGlpzJS2TbOqUXdyZvlALqbiGKxW0R1AEKi4Yc+0cb26iqNT1W7RBRmje20xIN+c2Z27qzFdgrTN2+Vqrt7efTjLR0eF+ISyfCaKgnMwbVEFzC3+m1uESi+oDUzrDyJle9NjuPlU7KgXkyI8fgcoIhXYnuKm0kQ9P9VvfmGFBcPbKh77XlVqrTZ40i3pplWD89LEw1UXt3iYFF0fTYD+PK6B4XvXvz3KGHas3tHNGg1tg6tdbIwpVGoeiVKo2i1thGa52Y0sQyBTKZmIUsoNIs93a/EKZMDnA+Z7RVA8fUZB4xJGDDBsjHccqUrd4WvDHvw2XdzkOREzF1Qpxp21cHznaaCEESMJlfUbc+r2sgaKI3QKyxHYy/1gp73dn3jWl+tCaqGZKfRJgG20qVFA11b12YkjOrtNmg4EceyT+6sRUv0u7mRcJOYPWM2Msq3IqwVtiKh913azYQ07AURzA3RzZ7Ux6XSOnCb7/C7z4Ln17hd18ilw1eV3ve4heqe3B7XUGkk2Ljv/mryIenwPtHy9jqarS/PpraTdG9oWtjUiWL8jzBOQdSgL1bM1O6cCuNItCy0OeIxkAV19WqD1q8sVXvjCVgDRXWn6kfAI/VtLXbDtcb7AVuq3X2IcLp3YkmkVQn6m1Fa4F9RbdXqDfUqUmCI5yxmSNkSPYE+eSLt0FZodkv1MOGUo1+LMGbXsvawul39MwhuJDOPWLHo4cQ/1pwOnKE8EazPBDc0UOns+lqDwdnsd8Voof++s+1cqwoQ2+9tOnV/h5Mm9tjIGclZZiyNV7a7Jrmxfrm2gzgLgXWm4WPp0nIs2cadit29gC/+wzTZChtCkqO8HQyLfRphuLGX1ffoE13ZYfHZbfi6+OL8Lv38H/4K3hIyil0puT6GDV04R5m9dN9TMsJwQ6Z4AOqXi0PEYHaihVVrgEFwHWfNexo7zYdT4Hb9QJq1OOnd0+EGJjPj6bB6d0BelsHwSm4WgtoJeWJp8dvuV5eWW9X2r4hKZOW2Q6maMOg5fRACIH9dHVjKuX6NRKjOSdfb1eLEBrsjGp6wVIKX7984d37D5afOxnlVzCEQ0NHQ2dbN9cIW4EsantXKTvr7ULdi3t+C9Nsz7Hv29FQDUR1aFFVzZRCxAj/6odxHw0kow8cGt3qTocT8zJ7MVeJUc2p+eHJohJqswlsioSQydMMKtRiwewiQp4m+7gUtvWGqnJ+eAJHkEZky3gRo/Cb8mJGVG+oziFn08MEIXbxpnzoOgXS5I2If6+jzK1WM0o4KMHCtNj0N03JTG1CY/KGXkSY8sxhyGcQNtobkm2NhhhNDwmEUI44ojFsaHUfPAQ7VKMN1EQi2oMj7Y7cig0dR0Mrvie35mYlY6D2E59ULcv8g2b2zwcmRuNtbNvGp0+f2LaV2+3Gw8Mjy+lEyhMPD0/M08zXz987gi+09hu2bWddd26b5Q9POdlwUc1zNqXIw+lkLIlb5/n5icenB6YcWebMl5cL676zFWvMzNhqsgGG67FHxNAojgSn0QfxYrayFRti9y7EFMxdszd68yKYYWUEKRl628ZwAjiQejgKajNqi8QkbN40X65Xo9DmRJoW1HWb0FnmEw/nRxAotXK77czzRBShqlD2Qq2Nbz48se+WKpCnyRHyZs7SChc33np+ylxvG70pLy8rz88PKMrL65WhhX+9rjyeT7x7eubL61f2vbCu29FMv7ze2HPyfNvF9JLNDPGmOXOqC3vZzQl+NlZWrztVXUctQqu7G9INuZVQqhm2ZZf6qJhWN4TANE18eP+O27ryer0ayyIEXl9fLfM6CMRISJGUM7U1YlckZM7Pz6arnB+4vL7y+9/8PTHY3vTw/I4PH76xoWm8l6StNVLOvHt+h4iwrje+fPliBod+Ho19LXhm+O12PWaJMebDDf6n/sjJInGUnTiJNSMp81pu7LXzzZKYU+PpIfIwR8tkpdJEkJhYHs9Mizl+hwRx7/RemHIyIyRp7mVhQ6iUJ5YzXHfPhg6BkfxT1ajLORt40UunrgUQtFe2spOWhEQhauF0DnyQEyKV3ovvq1ZDxXgipxNZTn6nGuhwenhknh9gOhnwoxBdHtcVbh4zNs0TI+6nNmNWlH2n9EaphbXsIEqeAk9PM3PL1Kbs+06MgWnKzJNFYIYY7BxtlV6NRjmYTTGZPCmE+1ovrVOq8vmyc90ra62ElLjuja12Hk4nTsvMw2lCgg3gbut6GEsOX5zWCyl2Yut2jgbMxdi1zDFHUogUmdizUNiRvoF0qgZKF6aYyESkKZlIzBkJE7ewcdl34gQxmz47JohiwznVQEHoRCQqy5LtHG/KWc6Wh1thZ6X1G2VXSp1BEqqP0De6VqYJknSWpA5yQIgzsWfoUDel9UBVYZgzlr17PSSsZTMUvhWmYIZopzhjtPZObRBkJxA4nyJTPzGVwJSqsbImc+P/sbfyP6Gx7QfodquBtcHXIrzu1sy+3MxZdqtQmpnzoKYvwRd6U2iqlC7UCqUI4auyVfjji/DpYtE9X29w2+C6Cetmjcu+QdmUVi2T8PGsPD0I756E89noBupvvJY+mDXE2om1k1SZI0xReEywRGt6arD8rtrhpFBQNpRd7WtX17R2b87pSnW00JCdu+i5u+Dd6yefetkaN5MjoDpAGsV56jOhBzQ1cxQOES0TEsxRLNDQGnDP/uPTQO6GTRrcYCqOgtWaYobRk4+eFLEmFYVWzPhJ3LFUkhlDhdmbXf/Z8ffxvfcF8WcLRKw6HOMgW/mup3U0a/zcqBcd+TnckENE3M3VnlKOp4qDJuMTnWgO/2aHLuZWPKD0t0BxiNbkVlWkicV7ZfvW0mzzFTuPGeCO6aft892qILvy/UXIwT7P57PwfoH3E7xbYI7KyQti+ZF25P+cj7s7on0E+LU7amS1go5Blx1f8olqLTtl39jWlX1fDwfA0cRYbqMQFfRkulEzIzGkpb1FLUMgTRNZO+16Y2A4A5EbhWiITqEFCEKZF1rvlqOII+xtxIWNFzvoqPYzKU9GdVTLkzs0r9bNIBoONGgvm1OhHKUFRIZpAkdzN5q5gRBYZMfYG9zh0dd7EGuwBlp1n2CbdjYnQ1MHGmvOxsF/1mhM3en5w4BHxCbkY9qfcj6u8Wg6o0QGPdNw0Pu1wa+zoX+RNFkEh/2OeExRByJzvOZjqej9cx3Xu3mGMKa5MUMm1+UQUa1H8Xk45B5ory8jXG4xGBreqNix4kZ6fv1R0BDcuMpeaxh6GFF6UCLR533qDIu3G5ij5g57q3QvsX7aje0/htLCHQ090Ms3Xzck1MzXStmPjOjndx/oXbleLm7KVFn3Qj0Q3+6acvVBtbLtXjLFQJ4mH34noBODOPIpd3MmNcQ1+poPcq8ThsqGMZTuirPUbf3EQErREU8zcTNzd0esxMRE4+/aPa6nm4FbShBDPr5/fN9t3dhKMYo21jSu+2iX9Yj/ab1ZzVKbRQw5U6IqLo9odo38fhjUSwk2BFB/TymKGzYZC6L1zrZbRM88JYpTpUs1DfNAkIPgMg5zLJ7SQJwMxQ3BtOEmNxhxVXbqp5T8Hh5HpNjQiEGeMuS31HrIOPaiEI1S3Vsz1kyriGdZz460hYH2+b7RuiFrIQSWeWJeFp7ef+Cbn/2C5XQmTxPr7UavG+8/PBFT4qzPtochB4JrmbUrgjDPJ2q1xqr3bnRnjJaMN0oOvVidOeqkEH0t/We+8f4XeJxPM/Rqn0sQr1sioUfP5O6kqEwJzqfkiQQdDcZasWis7swDpbsUwAANOwNMLhDcK8ZAjZTV2FNeB2u3SJZJIAalu/kSzpCsvaMyzMaqaXe71fLD9LG1drAUUs5EtRzn1hs9dELKdAnGkNuNWtx7JwU1M7rWTcqnhsCOfeO4J/1eqL3bmh1D2xSZwvBaCX5m+3poEGs49PZt6Gi7klpy0trwX/B71llXtv6V21a5rAUIREn0ZhTZabKomxBM6pL33e8BNzCVwJSz/cH1rJhBoURBs7rJZITQERxQEiV2vFC1iNIkVrPEYGd0joHHh4WQBAnG8IwxMEWhVXEpZiCGiRD9MPCBsnnOWk5J7c6u6t30xETaCDBRJckwXy3ci3bb+4ME2lroYp7UAZeP4dgbZuRG6IQMg4kZAgam2I6JSVciuMWWpacZI3LUqz9WHfRPoCJbnmwl8P0W+bwKf/dZ+HTD0NWbIbJlBKjjehkvkmRcC69d9l25rcL3Xxq3rXO5RUoTWheKwroZwnndYN9hfe20zVb7FBrPH4S//Fngmw/BTYKUXqDtyv7Vwt6DwiKdhwhPWTifzf57iY6yDcjFkZVaAqV3rrXyospNA6Ub/7wJvgAMNdyraTlbsxvHmE/3gOgoRnONLifNEeIktE0pmxVXEoSQMioWlSJZ6XlB6oZuVzu4tKP1wRvbgqn9qy9OsYY2uE4nKvQZGz9UoziPBli7rbIRdBzLAayqGHXMmuPFUOE4EN3x4fkdMf4MsFZ93BHwDv6uGzwa2h+4Hydv/o6xKqR8NFtHLz2wzy4UR2kD2MaRLfonZR8SB2uFuuHbFvsTDUmfJyEnK6pqV7QJ02xTs73eNdA52WW1+8wa5Y6w+2X/7jWwV/i0KpsKP39Q/upd4C+fjAGQZpgih/PyT/kx6CHj47Iv2udkTYQX+qKEPAyKDHnU3tn3ndvtBjGyrjeW5czp/GBrzQ+FEJI3XZHb5cL1dTMmhR98tTVC7zQR0rwQcqZsqzUd3XbUQHBTA9f0YvQlyYnpZChqvl3t/u39CEofb2es1XHwTcvZpxbVIot6Q6q4pjuau2SrdG3cHKmttdK9AQ5OjdOuR6OdUjoaSHEKEp4bCVZUNyrDzdicQ/thymRIsTBNM9kjkMwUxyj5grjDajAnc19fQcJxCE/T7I6ShrS23tBaid2cjAft+K3j8mhAxVHmPJneLeXJDjY1t2Yz7ihe1Jo2LwwjqNFgKlZQdSsCgmuwweJncs6kPPvwoZluypklozjuTus6zMpkUDo9n7ZVhi881ZHvMUxAiExHUyFqxh/ig5OgNl0Usn9+vn/CocTo+J6FFdUy9rWf9GO0Lz98qA4k3L5nDD8s1srWoCDcrjdO5xPzPPPzX/4aFD5+9x3ajKp3WXdboyE46mrP3zEn3NvLhVHcgLBtmSUnohiz4Lwk1s3uj62aVrS2Sh6mYz7XpAtB7/rSXvWYzg8ztJCyocZBUI1s206p1sykaIiHob3WaAWUFgCGXj0RJFshV6sbyMHL5cK+74dj8lYatW9GxxVYpkCtO2W7scaFdavcNou+UXwd++u+FafLASOSL4TAnK2xvVxX+8TcGRSBpp2vLxemnPjZN8+83nZaL+xlo5TC9frKf/HrX8A8EULk9XJl2ytTDqAR7Y3Xy5XT6cTT4yO3rVDKYGV18OZiDKhsMOAxOIJ5D+RkUT7bfmjT170zeQPVamHfd8urb40UhPOyWPqAiOWVTwkV+Pr580F7f3x85PH5Hb/89V/xV3/9XzHPCx//9EdePv6Bz9ev/OzbD0zTQv9GzbzPP5Oh79y2jWmaOJ1O3G5XSimEEHl6fCbnxOfPXzy3u9vn674fre+MyDVzef6p38fwzbsn1vXK5VqI0c6RmDNZOhPN1VrKkjtPDxkVYxgSIoINRFu7sPaV0JsN5sJgbwSyRJrMNCJ7dZ8ICUyLEianzFdreul2jqRk5mXq0/5y2ynaYc6G7PbK09n8W/YNSu30agyRUisBmOYFaQFKZ6s7U+zEaWZXYd8be7l5WoK5d0c6icau3iy4p4bpabEBdAzUXSm1mamZKurSmxiFEXu2l8L1ZoZzUm1PNElPoDZz8d73cgylY7SGHYFpisQWSFFZN6tZLmtjet0p1UCs23VjmYwqm5PFSV7lQgiBnCcmN8WKAU7LwsPpZK+NTAqJJZ0IU4IZEguJnUAkyUYMV6J2SwYr1fYl7cRT91LaTr05CT8/P3IpK6VbVF9KgTknXrYh/xCmvBCD06K7sWXb1ti7cFPo3gmKWuRXU2UrnSim8w3Rhsa9bgY7iKCY/0CUwHataCjUsBO7+dYY39QHE7IjydyqQ2yHC7hKQYcvkNNg28DwBhfc6xzx1/djHj+6sf3dl8zXAt9v8HcfAy8bfN4CWzMn460GpwGb7lSw5g7XSoUoBiQyXCiF82IH3F6MrnvbYN2VP35W1lV5uSjrFequ1Gsjtsaclb/+y8Rf/CLws2/j4b4npZMunakp30xwSoEpBZaYzFQoC3G2Yn4Y9opCVEGiQFS7AXvnvQZeinJpSt82Wsr0JbGfLEqmHw2t/SlVzB25+NeaUgrUAtvN3l/3iUjwQ205h8NK++urUnY7iEM8o21CU/QoiwZttifbr6bFxRG1EKxRjd4YErxo80zc0alp8B/xiUsIkB+s8wsB0XhvlKM5IZvbMceQ4tALynAeHQ2uIam03ZrcsBj92WlJR1MLHCNiiXZz0lEJd722N7ODjjalaIgLHjwQYZrEplNibyc507npvczzqEprULGXkIIc3zDcrJv4oKIrxSQuLDPsq0X9mPGWFU9VhWuFtgl/+1H4eAl8/6L85qy8W+C//lb55UPn3aw8/tib6p/p8XS22JzezI4fNVuAEOz9jkEdPuONMZLmzDQZ+lZbI6aJmNMRc9NqpcZh9OMoqwSaNIJEokTbILHhRS+VrXbK3swVMZkdfmuNsr/avRGswd72K811N4hpWLfdXDhrrW7s1Nm2nRHIDl7MxkTKM2maIXhGbKm8vH61+U5yR0Z/X80lElrfRN84Epun6WgiW+tuhCG04YTsiEprlbJvhxZ2NN7qlMzo+lUbGJjhSnBDJ3FzNGnNBjkhEKfo9OPAvg/n8EDZtzFdck2to+ut00uxhX4MpWzIeM8LDQfF0Kb9huap7Iw4oUObijkk27N47rTf+8OI7H4QcZhUiQRSNh1ddyrw0EUHMcfmpo0m/UActFlm5jDYGo0zCNGvE+EN3f/QUg7327v++UBufMI8ZmxjEi+qbkph36NOs9Fuh/k/Aob+pB6jgR0DjvF6t81M0JblwT/fwLKcXS8dPWNV7rTlEDmdHvjZL35FSonvf/f35jr6u98ZmtKaoTOuxTS9W6NUM6wRNW1mrZUtBX7xzTPTPPPwYAOv27bz/acXNjdE6tptaCW2bsYweEh+BmMBsRzJ4Xw8z5ZfmVPmdotsez0Q4ClFppz9/jfTG1R4ONvXp2li2zpbabzcsL1AjbJYSjEX4xxotbOVCigpCMuUaLWz743SLqbP6xaXY0O8zLoVe18o4vFevXU/ByNpssZyK07jVzPem8Q0gPtm2v5PX16Z55nH84mt7JRSKa3z/eev1uDNC++eHhEwFDfaXrjujRAKc145L5kUHc10VP3lxbJhc4yUVhAJzNOM1kKple8+fTHKakr0WijVkLAwW0ZllHDs86jRq7e9YGa8QsuFk5xIOXE6+dmiylp2ruvK5Xbj++8/klPiy/d/YL+9Itp5ePeB08MTIQQul1dqLcYmkMDIObZ13pmmidYqKQqvL19sZKljACuOEprPyMgSrvU+mPypP6YpUmpGQ0aipVBs2862XsnaeHpMTDny+HBCxQx44hTYtRkwW6HvhV1vPH7r9xEcxqK31VgaGoR9N2q/hsTymAnZaLo5z0Q1nbR2Zd9tv44xMJ8CRQOhdV4FqzG1c1qUIIHaJsqL5cbX1i1X2JE7uvuR9EJqlcte+c3f/DteXjZevt5IyTT/z88P5GjMuP32hUjj3SkhvaDNjOOKm0hdbzfWbacp5pTuQ+1hghWjkCVxYmErlVobr6/rwWaJQQxVxhrkELzKlDsbyyIihSUHa6LXyr41y9gtnefTjACvrzeWOXFaEpLiPQbQ7wONwm1dqaWwbivzNPHwcLbBfJmYdCKmxBwDGjopzOQ4EdpGjApLQ9eVvVWmuYOu7O2K6EIkskiC2CkBbrXRiCb7dM8IxKRXOQJ9P2Q8IVQz0uzCef6WEHdCf0G6N+9lg1AgOPKPItKJoqhUWn9FQ0VkYp4aSQpNN1dkBxoT2itdK6dp+JN0YjgjWCRaDBWR6kkjzXoQLApoL4UwPSIESivW2/Dj7uUf3dj+w9fAl1350wq/+yJcC1yKXTzTyHDEX2jAJ5LmemzF6MDoLAXJ+h7lNAeyW+LnBFOG6+YThdJhF7MWj505d84L/OxD4OkhcJqE0JTYlLQruStZ4GkWlskOxSm6sUSCkPQADsUd4kTFY1kN6hZ1kxZvHh96p6j90WSN9FuqVBtoX4M9qjVMzZr64kBpb6ZbOOjJWPMlWGB0cFS3R0ASGu1DttGF7VqC0ZG1nw7+/qD+Spw4qMPdrbJrBFbQHRzet8qn+oGbbdOLEXo4GD1HlM8ww/kBWgtIPOSyB6Lx1pTKLiqM5lYcCfZfIBIO5P5OUfYnFI5e2QYAOHLj/yxCyjKGOHfIRThuCKOl2pMNKrj6tXaFB9UvRfa3J0HcmMtTbTANXmtY9ls3ev1IXvqy4v8m1Goa3GlyCleDX77/sXfVP8/jtCzUWii72vBkfHYeKSPqShyBOUdSNFfQeZmtwRLTbKjYv8VgRXItxQvp6JlsvIn3sEPC2L6B4pQp91xEsEzD1jutFOZ5PtaeKfu704L6QZcbKOmIDzGU1CgyNui5r61BVW5v3BWHgcX4d7sE3Yv5fkdfkKNxjO4YHKNdL1UzL1P8Z3u1jLk+3FvVC/WhV7bXNNDIEdsTHJUezeEozkT0oAlLwDLyxsflV+ftdRoOx8L9vmm9v7lhxluSN7TM+2f09mHNpX1v8EbIbvHRcNpE1b8Fv8EZWsYQkhsL4Z+bX9s+KJ72uTLuQ38N/bh+7XitIUR7b2KF1AFU+tq9U9D9/+l4P/c/x48Nep32QzmB4J+jX7c3+85P9aFjom3/dTS4vd+bfLA91wYH41vtMxsDoDG/FO73Adg1H3T8QRE1pH78u60bBUqpzvSI1NbJIZJy4nwSb1xu7tx93/J/EFF3NLXqTe7YrYe0xMxxcjKjGHVNbutm1mKuxdHPjSEPMl3uNE3M00RvmxmdOKNgUF6HVKL6WujWNSFOITaGnjlKV894HYinIvdIIR/QWoM7TCfvZ1uK0c4VNS1s0EDsgVrKYYgzgzv3x2Mwtu5G/1ummeSI1KBzg9Ui4z3EbAZtgxESQqPU/aBgbnuxjM5pPpDjrRh7S0I4nqe0RqoNFXPgNbNGGwaNxnWwLGqziBSN93zew7wPkxuUfaeWwu12oaw3RBvX1wvz6cLiaOzhvt/tc5/n07F3Rqei55xYt9UGi2EyeusYYPlCPqK6ug0Zjcb8U384xdZ9OhTTGFvEg11ro4Cb43j3+rRphy6IO9HapMhic1RtOBMFtI776c2+ESMhqtFh8QGuGkPKZAuYZlZd7oXYsF/UjZ7UXHajmVl1P3+a3jPTR649Lu/YSuHT11f+9u/+gY8fX3h5uTFPFvvz7v0z85Q4TYmyfiVJpz1OzNGuSPWB2l4q67aze27yyLc22ZExRQ+TRX+/vXcbhDkbYJpGrJXvNR2k9zf31b1mmSc31ezQtkqtyl4ae25MNVJKISWh94CQjnPsfqaKDcSqpSq0XsnZ9keBQ98rCCmYGV8I0PRku2NWq5cQH9xUOtXPQaOqJxn6ZTsHO153+P5udZYe921TBbFBWySS0pkUM0kLNUPA9jtChVjhDZNyqM6am9WKdnIKJj3TyqiiWx8SqE4K3Q3wOkHue7xoQ6jOdnVpCgCVrhtdZ0Qjve+omjfLj3n86Mb2//Q3pq19LbBXcaRS6TqKKoz6EASGoY5wOAy/nSoLd/nl4lrJx0dnCTb4xfvA5dJ4eYHvPyvrrXO9wIenzOOD8ItfJZJA1E54bUwNzg2+eUgsMzy8wzYHtYbFXbdJeE0jGGvSD9JR0HUPbg4SmQVC6Hy4Vr5uzfKzHhZa8uJcrEmO4vreBNM8ml45/n9zb6eyw3qD11e4XpUvXzu9GH06uDsYWagERAMhP6C1o7XCtpl5VJ78zY0utCFa3XbZpsMQbDPcrhAuEMydzk9nUAs3J2T7Q7xfFC+4Vfw2CCPmR99A3en4XrQwEJ3DiMqNgvDp4FHshshdoWuFtqb4pqftdk8ijtja4MPBFnxPhRgPzUVTTCeAxT8NVLd1+027vnn5ww0uwg27ZMvJgOmoZtNlG6DpcrUK1xtk7L7eKuRqQwzbTO2l3YqQb/DHC/ziQXi3KP+7X//Yu+qf5/H+3TPbunHhwnYrd1Sm7YgqSc2FOifhF88LKZmhWFoy0zzz85/9gte1spbOfHqki1B75/b6AoJlx3a16JiYjaroFCJxE6L1dqW1yvv5ZBPd3Sz4ezPq0RLORtNtjTwvpGmmld30vWVnOT/RqukzbpeLHRrtvukd93RXyrqzhxvb9ZV96IKTxRWElM3x1zen1hq1FD80+9EKGtIcDVnNE9OUKdvGXoqh02oHwbbeqKWgXgA3d6V8G6kzTJJyNm3UaTHHWW3VDOR7MxS4VhJwOj9S607bLXKpd8v87p4NGnO231OLT80CcVqQZojFfr16Yxz8ELW1m/No0tPhRAxqmbaOQA1nV3/h6HCH7v0YiqhiLtYeHxZiPijOvXd6abTNYpm6dnPKbY3WCsNMpNVysFl6v0dNiWuYo+e0amuQ7o14r46KjyZIrJA219t4RCaZ5tf+qAbXiAWP8LbRydAaqvqQ8+0g4Cf4aG1ooeXQNIcwEHMbJg5X8EGbX5aZZTnZ94uxMQTYblf++Nt/4H/87/87fvP3v+HTp6/EOFOaIYfv3lmGdO2KYsOY0ykf9922F7J/Rp8+vzDPmYeHE1NOnIDHk3k3hGj3VIjhiJGSbnRzgEFzu2dMVkNOSY7MZpbZmCNTsoYpJYu6SdHpyBFUG0hnWeZDu/7lslu94oU7jvLvpbFtxZs+i7lCLU4Lb6xa71yuK/tue8OoZULcWOaFeYqUhmtkq2VaI2hrrGsjBmGeJi63jW2vfPvhHabpNXdfbYaU1WqDsWkwHVrn9bbS+06KN3KyJmKeFm80xtAWQ6DK7usi2HvJirKyV/uMbutKykY/nqfMlCa+vF5Zt8q2G+pZamMthSY3cm7EB2t4azMjLDBHbnUJEDHa4L4Ozb6xBELMzMuZD99+a3vqtnK9XLl8+cx2u/B//7/+n/nVX/4V/9W/+l/z7S9+RZ5nTsuJT58+s64rHz4kH5Q2UkpM08TD4yMqOJ0+sL5euFxe8V+MhMDj4zsfQEbabWO9Xf//dUv+Jz+27cpaGquNeM1tujVEkpt7NaaYeT7PXPYrrRdaXdFcUez8nXogtAntszNkNnNRDjaYIGEaSFHIFs3T64pWNdafnxFNBe3R9eOFVDtxb2y3wtaVNkeC59hqs7iblBN7a6gGHhqMOq5rs1rOelu+fHnhf/r7L/y3/5f/B3/8w0dqayyLZcI+Pj7y9PTEN998oNUrOSrfPkV+9vTAwzLZEGbfud5ufH55MblAymx7M2fmbT+u5xgstW6I7l4rl3Vzl+hO3oScAjkmDgmKNpMMhoD4KL0CT08npslozBf1GkGVtRbCpjzVmak26IY8p2Hk6O7zAOvtxvV2IwXltEzkZBra1grQiC0RciLHGWJGZbKQFFY2fSEFZauVr/snVCoSjeUkXndIsJ7IxWQojU4Ddbac2vVvKMXvZQk3cp6I6UyYzsSgnOjENrOFwp8uOy1cCeFGPNmAJPTCKVu82doh9kDsiYdsbsh1rwgTaGfbGiFWQqzkWMhBfaDfTAJIhF5o3Ew+0K2xnaeJoIUYryiB3iO17y5R+8+M2L7s5s5VmyFeRq2Vw2RHB1Cnak5top6vNabGHHE5o8SQsSV7cxMcPUsRlinCWcjBDCBaD8zR/m2ujdSU3JSzBKYsnB2lTdElqPLGwTeMYd4oLDmmwaP3ujdY1nmHoKQkvH9KSKmE1uhaKRooRLoM57f7+9HjuXFnxtFzKjEr5wjTLDw+CadTY78J60WZF3OWftmFtqtN19SQzZCyNXz9nt13f+1GDWBrPlkWawKjGnqesrkQt+3Q29AWvyYjFtq7w/F3q5TQQUke0QUjQDsku7ZBrJsfKOmgD8VoEz9J1omOXtYppNZoug2/2lAgRaNoG2IQSK6fjdNAs8es0RjZMWIxCX4lWsfpyW8E5uNz8Wa1N5OlZ0fmQblVy7QNYkyBfRczKiuwFaPFV4RUYboDI2zRUMYYYEsQm3LpwtYD391+4jAPsDhdTK7iTVcl0lmSUcDBXKJrh+v1RldzZpyWmWmeUaIPPZI5fvrBqn7H9VrQEFEJNC1OPzVNjo/wvVmGdb2YU2pIRoXtIGKh59Fz8gbaPqQOiDmRtmZTy5QTKSeb9qsZu5l7sCIxWf5s9eGU2+pps3upquuixSiCxbVkZvgydKxiiPU0HU6gtdUDhRGgFAuVL5s13gMVtvX3djOWgyWQ54UpT4RoGa10qM0bK6c+p+h072p0KjOP8lgenw6XsvswyFAa3Fhqa4aK3/dbu71TmrzozUbVTvmgpta2W5SBm+kYFd/3aZ/E4891b/usATDUx4ZVA3EobszTajkQueaGESHdzbgOpNp/jzjyknK2xtapzebm7T+Do28SCMTDpItuDbhJRu7XXl2Pd3dJFZ8cm4Po8dkwEO+f9r38NoN6PGy9hjvrJYgzt32gIUopFsGV8kTvCdVwmBm9vL7w/efPfP7yhdu+u6mI8PHzK1OyLNfkjbNF3tiAoFZDAczsxc7F2jqnORKnyPPjGQkbcStspR3UWDt6O6UVkwGoHm7srd/NJxEOFF+6x9MEM1YyxDYy5+TIniB0QoB5nqkNSul2JgMhBVbXAV5vJhlAxGjV8sOIGMHkC7sbK+218Xrbefdk5+htK3QdJlyTFdK1026buS/HQJpnYgzU2g5U5btPX1jmzMNpsTXclNu2c15mUoxmkuneFefThCqsW0F1oCGW4RvjcJi295ZTRIIyT4l9N6T23fOj5QD7ngrCdd2pHh94Op9Mj1q7IaB+L9ZqTey6mrZ5mSder/VwzNfgutaUzBU9Brbb1c4U7Ty/+0BMNgjft531dmNdVy63K7fLhdfLjettOwZdqLkin0821FzXKy8vn9nLxq//4i+tsT0/sCwnixO6rdyuF4v8cYp1TJnT6YygbOtqOef/Atyjbvtu68bR7yhmvrY7TZ6QfcMVM8oLkTlnNm3UDkSLCGoa6O5UGyhk8dz51Ckh0hHSlJAuiAp5OtGAmxrq37H7L4ZgRmdACkaDLrFT1Pbu3iu978b6a+IxTJXe4bZuZOmECL3vvkcnJAS2vfKHP37m0+cXvnx9pbfG9WJU+T999z3n04nn52een0+clgQto7VxXTLnZT4o59a4mvxo34v9brU9DxHX5ZoZnMoweQwkoImYJ0RTWlCTAoXg8XoO2u0FwQb8IqudaW8YXJZn3SgNcywPShQl5UisxrZIvl++e/dMniYeg5gsckpvMsgd2VUb+ofi8owWCHl21lshhUhNQmhC6Y26b5aUyUTsJ9srRoySgGpHpPugXN10qXMru7McGkkuSCiECKU82LqaZrJ4ZGi/IaE5Km/xd6KVKdlgs5dMCAuRmShuqnvEGFmKTYiGyNZ6c9+bBLIBkd7NQCtIQrVQu2XiTtH2vjkBUlE6iUKn2sDyRzx+dGN7q+IN5r2pvTdz9mGIOFUlQPfoHQ6K6GiADO38geekV12DohQwTeScA1NSd7c12FWaktZGrsrUlMdshlCnHLDEDtPy9jcNq2Bft4LLaQdveq63r+FtIxYjPJwSFaPGra5HrNhNMGRl3Rtl+/vb62TInmLvIWUhZ2Fe7LqsFnxLzEKowkUDUptROBw9DQPU7O5iqveba7B9tTlq2xXiQJPdlKk3tATo6nSVyX88GayvbQTt2qHrzSsx3xtbbRwxQ8E0bhLFXJR/cOFMN6wjWuj+Ut/8Ge2oHP9kC94/ny6HNNeThsjxvu5qcUMuMJ1UN6dto2iNj06PIUP3YrpXr4+8d1c18yjE6DrJBzCt+fCmmhmdFlvrcYLqFLdSB6qsFN9MY4e9CTn8tIthMLOh3fWoB9ULZYrBwrEFqLZ+L7fVHToL035ingshZqb5TJ4WYtrpCGXQjtRiU2JthvqLDWSGhlUVo77kCdOhFHOrJhyIZgzRInu6BZMfNElgUF1NW9uPBige1D0AN6xrd+1rH1Tg0Zg51VepaIu+J4XD/TOlYbjEoUPNyQ5nxZxQA36Q+nu37L1C87y9e2at0bEGZXpoXFPKbuxiBkedbjEEGOqYXP/b3hhumeYpkVKw8Hg1LZnl34qbWblf6rgJ3jyGA3LOM/NyOgLax0GtdT8Q0zH+s6GlDwT8Oe4P/ff+jFba0J/dhhAj6kjH/f/Dxkx7vz+HDHOz+zUY+YfibpF3banYUMIbYnvmzgBo3zYpVjy34/fDYNb0I5fTvjqa95/2vXwg6cdjDJHfNra+Rsd+KzbMqq3acGncD05Dvd5uXG5Xrutq6IaO+JmN8zwRQ2RK6ci9FHtSH/Jac9vcsbSODNgYOJ9mR3ttHw+ug4Po95hp3oYXxaCxqtcM4nIHHYZIKVqtr/e8ytOS3D05uGmjMM8Lt7XY0IsxXDVK5LrZnzEAsMzkIU23azZMiEJrBypqGZc+AKwdaLQIIWaP3VFqr6SoxHDPgm79btj4crnQ9cQyu/Fb62xrZZmyHYj4jBlhnjKtdta1kKJQRSi1mY5YHJn3+iMGM6mbpkGHVk6nE6rKtm8HpXwbjUCM5DyhWml0Dko4xhyh3s3Gppzs62qobpxsr5FhzhUHhbYfUT0pZ0YetzFg7XMutbHXfrhA9266oRCMJo0Evnz5yMvLF76+fOHdu3dIeOLx4QlznrcmUMTOm33fzGBPO60WRHFac//JSwoANr8Otg+rG0jZZ9vVGw0f5g3t9pQy++50Wul0sfrThh8NO1UjEZOWVV/T0dMzpENO2c7C3fKqm9dFxr6w5jYEIRMJYbfaSpvL4sw/w5zo75T+fd/Js9VpI8ZxmALWUvn65ZXbbWPbi7GMcBlXaczzzMvrK63/jPqwMMeFoJ29mOnpMXiMxkw8BqetH/d3CEItI0bGsnjHuSVi8XG1GUtHg3m0DHr/yLYuxV3DA7AObxyvUXw9KYM52CjN0OStVGIzjXoMhZwS54cHqzGnzJSCm2v+2VCyK9Jg2EHbsZWQYJT7INlkXzE5wNiouvqdvzDIjQdSrQ2RxiGVsJBSd5Hudg7KhojJtlqriGYgESWRpCLaCNIdeApO7OykKOQYqXVGJBM0EUOlhw5itZb64ETcyLa31ajTUREpvq49iSFEat1QbZZso+bHIlEwb+XmhoR3YOI/9vjxje3uDYLXBII5qlan3Q5qpgi0eC9zbBpqwG1KmNmTL85u1+leuLZAb1BuyrYr226oXVQIXZFrJRblXYVTDpyWQJrHBF89vsYKEnFNiXVOwKDN+OvSN6YV4puGDNcr30AQJU3wiC3GysZXmbhpOsyjtjqex/SWw1BqH+ZSDXoNxr71BasdbrfAelFeX5vFIGGZv2EK9GCImSFUSorZtS2Kut91dJ2YqLJ1Q3lpECazfO6qsG9otUMJ34wGVZF8wl6UmtPymCwYvwqSZYkCqO7HP3UFSQHmmZitgOpN3+Tn9uOGNbdiew8HnfiYeoF0s0RPvtkIQhMoe2ffOqrC6RSYPXO4VOV2qfSixCgsT2aggco9O7mq8f2DTUi0WvO5VUNraTAtRjceMb0KdkM1SPaC7eYIoG4M1iajLGuCmgxVK83y3mKAOYLmQIs/9o7653vk5YGpdubzxuvrV1ukNIbu4bap0aL2xvcvF5uQAnNTblvhtu4kz6TM82J01jwZfS4l6jKx7dubIgXSFCk3s/avdef5/bekKbPevpKi0WVulxuAIf4Y2lnLbmvH0ZdWIxWjubZa2W7WMHV/7Yba278HsQynmCIpx+OADSmS0slNrxqoUHvj+voZVWWaZ06nszesiiSbkIc8cbtczNm4N+ZpIufE6/XKvm3cLpdDWwu4KZUNSawAdFQ1JaY8HZNV1WHiNLFtF/DGt9XiuXvtyICLIWHb/RjU2S1cHR1O2QQXprszTZExEowWlefJHJCnmTxlgm2MNNcmt+qN5Qi39INcwtBYGpo76L+DKiyOEg8dJtqodWffbuzbdgwgJGTA0JkB4IMX5NG1xD4EiCmZW2qMSHRtv1O0TbPrNG8dOmbbI2ut/m+d6BNxDjOocLx2tNPKjoJR0Ucz3Jtbq/+0K+J7FJceekwwTXaM9+m9fe/9vTw/P7uRYTTUPgRK2dj2lZcvX3h4sBzqTx8/eRNscoWYEg/nsxmCtM5627ndVnM4dySw987324XTPKEdHuYTYQ6clsXuLdfAWhMrh3Rpyomu5d4AeeEXxcyL7lp9kKAsU2KenV4fDLlc3FxqztnojyHwcDrz9XVF+4XTlKit8bKvXK6bNbW+JkQMCQle/EqwwfXn1xtE0+Kbu3cjxMwfP12cXpzNSKs0LrfCPGeWJVOr3du328acE1O2wVhrJrnpXfn6euHl9cqvfvGBFAOvL6+8XlZucWeaLCd3mCi2aEOd1ju3vfF6+8zTw5mH80KKkXOHeTL0N8VIeDRTq9KU9bbRWidly51urVP3bnKLUtj2nb02amlvCm73qMAkAVGEoKZvjyGiU/DM63isxZwn3r3/YEOCEPnFr37NNz//JU/v3/OLX/0KFL58/p5/+Lu/4bs//o5vfvZzTo/Phu5XMwCcnIZeamFdd0Nze2e9rUx5hgfYtpVt2/j48XtqrZxOZ681jbr+8vUL0zTz/PzBDKTeSFR+qo9bDTT3VNjKaukNWkmTreMrG0iFFNi3SCAx5Uy7Nfa9cFlvnFshhu4xUjZYrbuVc+q2K1Uwp92qUDtbvVpDnCNbseSI1h2tjTbEyj0Q1UxGVY0qn6dOjsqUOtoDVnaaIdu2bjzNs7mYo+SgzLGx15VeN4TK06Oxxkx3fWNbd3O0VmNBfP3yBdrOu1Pi47byNULQxvm8cD4vnM4nlI396w0kEpKYnEqshtyqsq6Fy2V9c5XtvDLJWiAFuydP02T5z9PE5bayl0JD3ZAuUUtxJtUwPrT99PyYeXzKfPjmTLTIGPZSrVaQYMake+Fvf/NbTnPmPGe+eX6g90hr5di/W2vkmMlpYlIDBZsoZWsmv8sL0/wLYjyjORPbV2r/RCtf0FAwVHNCe2DrldZ2emtMIdK6cFsLjyclxQ69kCME/9zQgtbPIN+gwLYLs4iZeElhSsoyR7JGRDu9uTeACPMUqKXT+0YOtj4LlRQWJGRO84keLnT9CuEVkYgwEzRBT+x74GFRcspoEYvkE4swEu/XrutKV+W8/Jlp5H/k8aMb2/qmIQlypx+7E7g3iN7Yej5Sl2E5DkHNhCdESCMGp/oiEX9O1wPN3Sz/626dPwI5dGY19O6UhDkYYnF00IchkRdmb1Ce4+/HhJ+jYLvDxhyIEXBvkDHa6xwiuTWiqpkSqC3cYU3dFWoRqiN+666G/O2W2dsbqLsja1f2Iuw35Xb1ybRAjX3UfAddVv2G7FjhHqJdZHX0EYU4JSSaZncYo4QQ0BBtaqPYBQqCJJveaZ7fdPb3CbEZXwx0xH6XpIGaWfOsbiwlCC41dj2tF1s+YQ+jsfUPwRpIv+autdSm1F2PKaLKMKOx52tVWTdlnqwImk82ebKG2mfVNjQ/TFy7N9kRcz7uuO65392sCb74fQ2bEabpSnOyz27KQiv+KQxAafyM6qGhVjeYEv89P/VH2TY3LGkHVdXype3vtRtaNs8Jeb1yp+7bxRpUW5FAWm+mpU2ZPJm731QWYszEmGhnn/aJ3Pn5WGh56GJaMV9LaZqPKJpu7hQH+gT4Yd1QNTMbSdBSOqaUx1RqOAKJh69Hdyp1Co76ATg+z4FQKhZPkFIiDjRL8YZKLRjeTVBGbMpwQG61cjgh9nawTwAPKbfZauvNqVvNdKbeiA80ufuE0PHN4z4IIZDITpXEjLo853ZkxUoQpz83j0oJhJyJy2yT6hCPpjYmiz5RbNhlgwGf6PjmHoZjuXAYdrU6HItHdMKb9T7QU7H7Y2gkBxX7MCaSfjSv46G93yf7jsCnnMwJ2dkx+NCglv3IPhxrU/Xuhtp7PUy7Gnd3Y5tfqg/YhrTDCseYE4NyHbnHRvyUH8Nh+v467UC7G5fYV39wruH6SEfrVDv7Vvj9P/yW7//0Pfu+G1uiDVTcfjZGW6O3bTvQ8bGvH2uy2dRWUUIo3LaNy2oeD3N2TagYfR/ceE2CS0SiUXUH68j3peSFjjkyGxqbUyBnp0JjQ8qUIymFI+82R/vvPGWWpfOwV6YUbBC8mkFRkOBRRYN+Ga2wb5VltnVcu7LtlRB2ohu7zDnxWiq1dvbamT2GqHhjmJLRo9WzJ3vrtGADNkOB7DlG9u2+m7nRMk+2FzUb6ElKRt1DDxabSKALXmd0+50S2Evl5XLlNCc0D6aSx+bsO7Wao6wbi9i94br/HsyhtLZuYXzqcohoUSYpmCtyHawKrz0suqtblMrphAiH43vOJiG5XS783d/8O06nMzEI63rjy5cvvL5eyMm+7/LynvL+G/rJGDrV2Sl5ypz1gZQS83LyjO97E/38/I6cM6fTiY+fPlLcBTm5wd88z+Rp+gFr46f6aG7CqhgKGWIgzAshKiF01n2zTNiYEcl2TrtsxSkNB9qorSEKOSayTCQSTVyagUl1elUoSlChi7q5UTfpQQ/QDWkfO8ugn7fW2ftOjp61DpibQSdHsWGVdM/hNcAiCiQRusAcA+cpMSVrnrSLGaXlRGTE7gRarTYsvt2IoaM5WOmAnWMiI4MeTxfB2ACt06vFFNXqOmCsJ0iDXYWbXNGsGQ3iZ58cQ2l15sle6zEw1YYnuvifrOSlE6aGNDNhNZaRDbLE2RSWt2z+BE1NEhdjckM2M5Xq0YwVxYdopOhRdNZTiC6EHJjixilm+hzZQkOlGUWXxjAd81wkFENPWzf9MHh8T1BCUFq3YX9EjbGoyrY15myobAqdJEoOEAmkMBHnZ6JYPdN0pWmkaTDTKS2UvpP8d3W1818pBLGvWW2RkZ6JMtt54UyFKMFABJeDNH8eUJreGXA/5vGjG9sRpxJGA6ne0N1rVUdWrNi31dE9GB2kmWg9inrep9M58b9Hb+JUiQ0onbI19t0ot1OC5yQsSZimSBjhg+3+u0cRRrQoDnsN4+ujReTNgc8dSZSBOMLgKYt3jkl8YluF6I6eFaWqN63dKCB7sQZpxBfVMtBnb6i2UVBZoVhWZbuYFkiDIYGjmZbh7KhjcGA3muRg5kYG51rjvUS0BWqwgxI19Fm8ubWN3cwcwjSZAdOU782a621VLCDbmtXRHEA4TX6YWaySMeDFdBrY0EJ9QmFB0QFJciC2zUVXqmpUdLch78U2i9KU7iHhRGveQ3LqSnUqWIqkJJwfI6V0htHYoK7RZZzZptXqeMMj3oha01m70YbFXTVHI1wL5GBa25yc+qzCrvZcx7Uaa8wb4tY48nO7QvkXgNhuq0flFDPvMUqNNbZNTVubp4k5ZdKXF1o3uusYQrViMRGttUMrklIijsZ2O5PTREoTHS82vTjC3Y1ruSHSeTw/u65OSVmoUqjb7Y1JSXa0SSn1dpgx5cnMJLpTbwc9YzTCXd1pPU/EZMhCrcOgqqFOKQYcgTQEazmdDRkemnR1hKMWttWQ2dYsomh32m6pm/98YOT0jpxMFSHFZMjXoCirXc9Y7bWHFA76ch+bp1pou/jAKMZk3nCq1FKpZSeHmRSCmd2M5n+4Q/Zu+uOUWB4WSjENaZ5PRNfDlXX1zcsHStoPh3DUsnoHKmyRL/1ezApI9MPbu3hDuoa53EBWh7vxQFU7d9fkwEDFjZ5qn2GIye73aTrMN3rZTc/dGmXbnD7sEyq8QfeBk7aB4nowPHeXXDvD5BigWHNjzILRKM4p+f774w7Rf65Hc7fiO8UdTC/7Q4QW/PYAbz7SMbTc18LteuFv/s2/4fe//S3rulM3o9OPAYeqWuPZGq/Xq+uixJBUdxi2ZqQe7I4xfJyyUQjfPS6WY+2OwMq9mBQCmhIlGvV5UOxRb2xTZJ5M5zcl+5NzIufIVpr5cuT/L3V/1mRJluT5YT89i5nd6+4RkVlL9/QyACigAOQLv/83oOCBIhSCApAzIMCZrpqurtwi3P1es7MpH1SP3agGRSZBzIAxtyU6KyN9sfUcVf1v0d2AJxU329csmW0oow2WKIga0gzGqEgp0jxKJCWL8doPM28KEuhq2tehg22xrNVtzby+Hxy1sZfGp5crS7b4oRgjOQ22NaHB9uw+OqEb+hrEoka2NVOrUGiufQ1cryv7vVB7ox7Fhts5MocVZsIT6EMoNTIGlNJZPLPzKIXny8rmQ/sxLGLDMn9No59z8IdB3XPAZFKt23GKhJP9knxollLiKAe1t0eys5oL/nzP5vOSUmZZNrbLho7B559/4g//8G/ZtovtFQKff/qJt9cvtONAgI8fPnD81V/zNIwt072AvWxXH3zC0/WZZbHGP4TEtmW2baOUwzW2lp9aSgHEckSXzY3Uvu0BFdjM14AipRzVI3giKQ1ElPuxs4maKVewvNmjdKN8EpCQUZrVLb0TBNacWcJGCgnVhvbiw8bIaDBKZ83WANXefA9SdCSjhfu6YvtVPxlORy2sGXSY025knJpg24btHbahSCOHQBYrHrYUeL6uLDmQglJFzbmcjHhKRgiTXq68vb2ZWRzZ2aLm2vwYYs//6UBIN3p7LYPajIo8mCZ7wS1/bB0abdAwZ9/U7N2fnauq0XZrs+/TAb0N/zn+J3XSRZClQM3QVn/+M9fLatIl4Ivf46HGNM4EYs4n06q3RpdGC9Xo9HkhERzss4Y4jY3QN9ZNCeFCvlz43A+q3qi6Y1E63sw4KNW10N34zhrCTgodCQMJSiO5V0whi127fS+8JEuRyXGQgyXNJAksMXPNzxCMzlzHnToyY0QSnTYqte8kNZOnMSp9VAaVNXusZB/2vOrKEjKMwcBp7SGQJBJDog33UMEG3rW7/vxX6uV/dWM7H6DBA3ipzRA1e7lMWzI6cAwWUZ4W5WOEDfuzYBcpz1roK1OnIGKNE0rIg30d3EbjVo2Wd82JJfnNbobECQ7OuD4yihjFNLqmV4weLPME5vrmCzeAc2CNgvP1uTLr2kHMEJfIlYX3HdLRGTGdjW1tdk1aNbSrD2vWUwRZLGsVIH0wQ6oYTSdx+9z56Y+Dn3/cqQPC8xOCLWRmmBSweZgVXOaUKI90HSwWKYaBhEFOA6md0fVsDEiB8PTkTqdmcBNz4vqUCcEKzXs3MbeGSNzcXErVXLhQ57vbZCxfsjWCrZOyOMISCMn1tbMYFNMfqRqlVwTw6eAYPmwgOoyipGw66hSFtAoxCxIGvQm1mJN0ysL1WSzSAH/uuqGly2rOf7U+FLzxKwPn5O5PdQyoxvxfV3uOowhPm0/zJqXaNVTiMibF2QaLD2HUKKbRn8EUHGX7tmthwIZEmkCT0NbEiIMwjL4domVa9iGUruRlpfXBUQr0ZgW/OkqxbXx6utB651asUbbGUznkjojR65acrcANQsqZ7elKTpklZXozN9JSq+fnGWUhpQWw57g3K57MyU9YLg/EUWojhIRIdMMnz0pFGMHuU05mlKSYIUqr5WyuYky+jgTW7cK6bCx5o4k3kI5g1VrYd9tA5pAMHgOoMWzSPl3W7XmJ3uC65tVR6eiGTZPCO/BpfZ95roa4pWS6tSjpbIqtgLSA8+hIt6pvFmK63dYqbRRiNlfzfT9OGtX9/e1Esa3ZxAZkwY45xgAjMgRHoC1KofV66tVM7zijcbxJ9WZJValH8ZgNQ7FjTHav5tcBVljXs8FNy8KyXVm3q6O5hjh3Zxa0WqyxRk0P7feg+3FNdErx4aF2MzjpNtnPKZ9ZwFlH/B8AAQAASURBVBYfYpTN9fJk0Sju4GxxBoI66vutf+ZGL1P/xWDu/SbVtAVwTMmPz4As/qryP/6r/57/9//w/+S/+T//N3x+/cLr2+tJ5f/u+9/y488/UN+tQMwpsW0XatntPVwyIRiN9F6OM6bF6PBQjsbtVogSKc0iYvDhWHTKYFc994wYI1mh9XY26+sSSROxzZG8BHKWMzJi6uuX5AwTcfOXMSwL2pkYtj/x1YDbNHbNjaF6HzxdEpIGuSu1NkQTz89Xai28vu2UvVnBHoQPTyvrEmm/3AztFHi+rqjC7X5w2bLtR60R4hMpZ9/HjWk2joMYhMuS7Bp8NXmQKORlpQ/ly9udTx9fHJU3wUCIgZfLZlpmH+JYQx243W+UdrBtmSDKkgKvtzviA4KcbV0NYk3QURuvr+82jA6BNjwaR2Hfd/NhGNVdkc0gaO6v57MXzeRI3t8px41jXTj2lffPkdatcbdsZXu/JmPo7fnKzc2f1nWhHHeeXl64XK58+vSJp6cnmsez1VoppVDKwfX6RPBhfPDjfr+9+u/Qk7a+rAv3+51Sjv9Yr99/sE/v03RnuIGjcru/sq5CisZgqtXen716PRIA6cSkrFtG94PSBmHYIOqSIqGbv0qnEpOSk3BvZhJYy86SMlFgCdBnHe3sirJX0hIYpdNuhxs2dl/PB7VBjpmRjNq7bZZKAW7SGRSROyG8kNKGLpnlIlyeEtsWyWvgXrpr4h/GbdNscij+/igE5U8/feb1tnP5/MZ+3Gm1UUtl3xu92XteS+Mojbe3d8u37WauIkEI3SQPKUY0BGprlFIt01bVhzvjHFKXatFCOAiXTu8CA4GK2jUbKUHDwZFsa+xlMdleCGzbetKXJQQ6UN1/IIAPa+yeH/cbx75DsMFGB26lGJKbAi+/+cDT83d8/zGwtCdu/Wd+KX+gDBsWrqtJ+WpROosxS7GBdZAZ0xdhCG1U0rKwbRut2rDj0MZIHXJFZCfFxJoXtsUig1qPdL3RKTTdabrQNNH3g1o7vSu3oyEU0I62ar4EPSPSCKGxLDuKScJiWAihE+QLEgoiFeXZ6p+YaGq1xG23uvJXAra/vrEVZjMlD7TM6Z+WRzmIw9qwrMoa4CUKHyOsAVax6WvyTY2A01enLs5prWrUIpIgSyQadMoSH46tbU6SsY06MBG5ebRz2uSNyhxkOK3Zik/f5EUf9Nf53cqDbuU/H4wKlMTiUGTSeMaD5noCviKn6VNYZllrL3t0D6bWMddW6YZsNJDm1O2opIRpH3B6q1ihkpM1gCownN4RgsAISITkzW5TOSsZHRFtnV4ErTbNC6gVCMHstFUDKgF1A4jRDbEJoohnx4pAzgFNSsoTwreNVuIDNThnCGLPh1GDDfqRoOc9DdGNYERJi5mJLMmyakMCgtCw56w2nyIfPjAIcj6PitqCOmR6aQB27dwk76RFnyNnR+PmcYZgE8jx9bMxJtLj5+F0IdOHWWOrzjoY4evn79v+JG02VFoiY8uMDlH7SWt9fnmmNLhX5fn6jEigjeGOt9b8pmh62iX54AUAYzMY6mjTT9WHo66ZfRndpl0uZmQybDo7+jBjAZzOrvhmPs0lDKGa5kPDg8Zba573ihu0dDde+OcIYTzzJTkpR27ANtFDm5L5uhL+kk7bH5C94MfiRfKMJhn9a6qMnFKBmZ1nTZ5HAri2cRaI59fEwKTpmlYtoEFOGk6f2KNbA8tjZA1MjasXB6Pb+4+h1yd1y49wNjgKZiyHvytxajfHQ6s7z3/+DJmmMfH8Y7d5PCjfylnIi/9+0x+dR4tEp2/lbNRjy2o5D/AR/eOmFP7z1Zkz5n7sBl36MI9Cp7NxOIvf4JR09UZe3MBr6oPNmd3Woa7hLwYY3/rnkeUMvmKdz8g0OprP1HxORqvs72+8fv6F97cv3N/fOI7dmQLRtHnqz5qaedLXlcV8zvpc+HzQIt49965nzMx+FGrtD3bXvFNDv3pOrDg7jcYcaYnBaIQxiGumTzDZBxn4u2eHYZp0lzaJbaJzICNiBjOTCj3plSfzB3GnYd9zQ3DTHdy8TehBWNfANIGbx5JScuTamsBpgmV/7DyC708pBOboerR+7kfzfYwpoa4vLdWGM6M3kiPSISRH+fyYgzX/OC18uAFRzsmfCzNsSsnW6mnsJSLUPqzuApDgsobgOaTWXIwxpVDxfM9mEyPOgGitEtz4r4VGx1DAUgpvb+ZNEEVsGNU7OQZuyzuvr18MEa6F/X47tYe2XgZUkzettuZ+TUcspXC73Xh9/XKitdfLs9c1Zl53lK91lt/oZw431AeAAQhf55+7W3jp1hQRSIRTIhJTtBi0+HAoHwJhEV8NOurr4lAg4JnH9m5EgZTMmTfKI398ot3mRmzeCilFV/vYHooPIlPEzavwvXEQQkfE1odBhwjrZeFyzVzeM7e7UMo4I6rw/UuxPa/1TvBG/vX9zlEK77e7DzQV7YNSurECcQR0zPdvPFz8hzOvgh3LY+DszsmeDHwOipK9I9WpzEGEIcY+U6zONumM9Ssa7d2OLocwVF3R1n39Vejqhmedo9hANlqh6fRbX8cYdLpR7xFo+pC7lURsK0tfuYbfg2aOcNjwSTs5NkboNDxPVvxZ8lGeQ+rw1bMj4qZ9Q0AWb1iNDmoeBpGAedjUAiwwghXPA/MIQo/TdM9Q2UGO5kAdJTKGtZp9KCH5cFEDQ82h2yr5bgkV+pfDWhvc6yM+9ld8fj1iq7jjLyf91gyRrChatPMEPAMfFqMMWwSPPfDeA52F0RAY7o48p5ST5Ty6IZZrEtbFm1Ydszey7/dN7ZQTq+shdU5/1XOXBu5ZbrnVXgOmJFNaep7fuUM9WIgMv7gSbGKxomxA8PMfOgtEa46cceE0IgjB7KtjAEnzGgq3V+VoRhPqpTCaIEclroGUA9cPwYTwKtRjNtuD62b/fTRreO18HW0eg/zJ3IhbgyFWKLSGmUXsg+H0w14rz59WtqfE+mExqnQ3GnXrNvXZLgvJwrEYZTDq4LI4mpqE2+EbdgrnorwmCMkazW0IrQxuXzqt2oIQV4jJCpQleZMihsamJFzXr+5JFKpPEe+/qNO5lfUqpIVHhe430IpVMTMrNVfjLIamgjtxOkXaeupZcNuzOGztIQWzNseLRAG3gLfGvCVvtouyXoTJhv2V79z/3z+5H2xJCS8LH5crqp1AR0ImpIXnj7/jaMKtKKqZz+/vpPUnhqNmOQaWFMhzMKG2kU5dtk7bcbVJpKrFeYymcOyGGkrgcm3EvJzNx2ya1yBm4lAKt/cb0Z0ZW3eH42HUYHVxe2sF0DMXU30RNh2mobwhRhuAJVtQ7seOqr03IeVT59rHQLpt2K1V9v3OqBXVTo6JhjXutR5n3EYp5WxsZ8EefBI4umnbpsNvzgs5Z7b1Ysepg16Oc1KcgxUVwYs6054LuJa4t+7SimmKZEXu1Lq2Vk+Eo9bqw4pI9jzPvG5E/x23fWdqp61oxNFcy0683++OVtevzuvRLC7L4m6oybJ0W6PX4o2nbdYEp8q6G6s6mpBSIOfMpE3FSWt21HE64M4/p8FMq/R6+Eb89WY9P17IhECQRHJ9d3S6vDVdybNx7dhtQNLtOYtucpVsQPitf+zazZXHaHreh3mDIOflsYbIdszRB/XYzTyrNdacuKfA6I232zutKzZdHMRgOk/tltOcs7lQm7Nwofdh7AOmU/IcrijHYQjgDz99tvfFm7tJlzcNnGU+LjESh1L93VYfWwbMsT15Y2vPBif7p2hDRztpyK11Sqt+HW5s68q2rKZ9nXnIasOtvVZmBnDt5jScnT4tMQCdZTG0mD4ozUz1inspWJFvzXLKC0Mr9MrbzQzTCIGjWK7k83VFaAjdzbTsGlT33RhdPXJHyYttcH0or7f9HOis2aKOLls4nd7NDT1yWRfTYHpTsLomc1tX3m47b2+7mXwK1NrMPC4lox53Rcawe+tGWQNrZksr58Dier3a+tu7mSnO4VNvdB3I+nweN1gESBvK7bZTjsK6ZlQNESm1su8Hb29vtuaFwNvrL+z7jZgz23Z1KnE0tszo7n6v51Dul8+f+dOf/sgf/vhvaK2SUuZ/91/8V6zbynHcud9v3O/3/4hv4H/Aj3GRzbMiQ74EtO+GrAWhNqFW4WBzE77sGciDNQnpkogs3N4KRZR7EH77O2MJ0jq9FUrvlGoU/afrExtmhKgNZM0MEjpWjEUJ67YYPVqNtdN1sK6LgTLJareB9QExBdNoD2tsRTpLroTQ6Nq4lRtNEk/fX/nuty90bRzlnR/3ndv7jik5TbYkURgjULNY7NRhEVV4POHT5eoa4GD0ad/H5gDGhsEe5+bPYm+23sQYeLpuvncG16BafV2cnh8V0xx3o+wbWKZsSyb7OhdTIC52LYNm9Lrw8vzEuqws28qX1zv7UUleCzE6W8vEKORUWJK5uC8pEUgG3Ik1f613ICASycGSC2JIpBoJe0bfN15e/jPW/DuiPPNZf+QY7yCvdO4UOoJR/5dkz5UOAxxMPjSHcIXWD8rxG2pfiek7jvYjYxwMWQkxk2Im6DvlgM8/w+W7SNwSKSq7s6kk7IgEcszsxViny9YJIdH6hbdyZYzC0ICkAURGj0jNJmmhE6UZU3V0b8jt3vahbKt3kL9yS/7VjW0pTvGZ5jsoQZXLUC4o/2KFp4hltfoGGpPFqAT8mOaOOzdeHkipz30AGx1K9H8L2MR1WIyPQ5gm/h7w3gN7G7wdjaMM18MNcgqsOfJ33ycua2Cbom+nP6Mg3Rth70p8CIGEaXLi6LE31DEEowB6rMlEiX3+cJ6YfD3pV9NgqkK9W8PZGxw7HDVQWFBHREdpNKJt6j+BpICkSBuOzgSzYp9i+NnVPxypjXaAwAiTzmcNd4xCzJFx3ZjxN/uI1NtjITLtgJKBkMULPVgvgXAVd0OzSXNX5bJa8y3BNmbFm0jB6VEgWdgukRJwOqK948V7gBgt7shOYGpI/B5gx52mC3FVSrHFq1drKNUh11p8s3Mtkw26/GsF+m506hgFsut36+NxFGwAY4ZSpv3VPjMg7V734tm3yf+9+cwvC+7Mz38C3lH87W9fLE8tKmXPtggtiUqmaeBWosVB9EIIg8uW+f3vfsuYxkHDDJNqLby/vp/RHvO5NP1JPBuenBeWvBhyMTqjVW7vN0opLNvGNCt7en4+Le3NzKITQqTWw+zofcKqCvvtnVoO7rcbvVeG9q/WEPvM5WZGhuAIkIRgObbBkBEJjzy5PhraFNHA6BVbdDqjN0o9rHlVZVmyN0mc2lqbUBslP8VILdWaMS/IFOXp6YVlWcl5xfTGphmbiGSa+kcgLqsv7sMmw8BozRvQbMcuHnPk2ZGtFWswW7d74M2qhIgSjEro02UrgM1saTqH9jFO2cJRDo9V6p5HaQZeZs4SXd/p6O6wa2QRG464hal59rXcF6S8rObQvCwn+muDO0eQSvXnpPmsUY0S3s3tOObFdP2u/TZdczWkcQ5X7Aj+UgPuTfZp0DUGvRd/RmzQRVe0F7RX/jJ/+Nv72LnNZvXBCgB79m3o6UZA/1xnKECINLWokVILZT849oN9L4SU+P7TJ97f3yjl4JKNdmzGkfaz5lAXcJ24DT/5KnJgmiP9/OXNtPYxcLksXh8krjlZc1q70cxVPYbI3qclJ3L0+B4f5MxzHEN5vx0+SDOjp5yiZdl3M2NpvfPy/ER4CSyLaXVDjKYuE4vXS8kYY600NCokH4J54xyDWJMbMzHDMpT33bKA21A6EEbjn2bzHoXi2rwkkdvtTi3Vh4HuNpsXijvC5pRofXC7H4YKq/L+fjdH5CUZpbKN0yG4Nms8p8nS6/s7MLiumRj03PT3Yhmf25q5H9NAqjpi2yk3Q1vOoZNizBxsfcku7TD/L7vRk8YZQrRsXzMAsQY0Rkox2nJsnbxEhse/dNfoxxD80ZBTP38claM0IPD7v/4bmru5LzkbS4jAuprWdl0XG6iFwHFYs6sIL88f2A+7zvf7HVX4+ecfH1FC3/zH/Se0YX2U8PY22JKnZURD9ks7GBwQlILltYp2Yo5s10FO8PnHjsbItq0c94OalBJnqqOc4JDEYEZuQxgyTBYjid6Do6adWhqUxmjDKd5G06/d8oHf90RrQunC7T4ozez3njZbh1Mc9LFTyhd+/FKox0rnhfVp8FIi+36llk6vylB7X5YYnTIcyIvJACWadjjHTI6r73tQS6fs1e+znvT8o1WrzYd6jBK2HqVE7KBj92ZTmV46OpTSGwMlRENIwdz5PUTHG3l1zw5lvzf2rZCbkLCmNeXE5XKhVAOdRodWCq12bu83Ugo8XS/oqmhOLGnxjPqHl0E5GuWwgXheFnK2vbPVitytnsmyEvPKx/VvWS7PHLxz5x8J6TOyvnL0SEShDwQbTq1r9gAdc0WeKSu9TV17RnWjlEbtb6hGi/GqF8oR+PwK8mReNCMYym0yhsGCsIQAzajKzjNApHNdN0pb2OtAeAcs/qz2FY3C0xYZbVDL4LKsDAat74RozfK25pPV9ms+v7qxrc0Rve40FJSEcmHwIvB9Eq4ZtsRZUap4ofkV0vqoNh80T3Da3tkQCswIntlY+Ltv/1R6M83Bl3vnfW/8/H6wH7st3rWzLBvruvC0PqEIS+akAYnMH4gJI6dO13tTOY+V03Yade0GapLe2djqYyL+P/9YUTER3VKhFdMl16K06pS3tCCq4EYnqkIpShzmoDbRY0HoVRG1mNnJmT0zHeF8UFWFSawUb9CjmIOyRWLgk1o5G0wJRoHWuZknQ1fzwmNa7oON0WxCh4D6tZszglnXzMzYlA1F7d2a8dbN4Kn5dY7nDcapHXpSh2cU07paAdya/64J2c8lp/kPUTPoQLCFyYZV5vTrk94oHqUU/NjD1H05AuLTSvz6KUKYKLijBfN8e7PvddbnVxSCb/fz3YcLS4Q1QVkNyblcr+wjcjSh/rwjVLQ3UgpscWENyY2DLBz8zSfu91J9CCR+pebGKacxz9QwihtSNKcQ99Gdjm6NbfNJg+XJGp1VxJqv3tqJNilYM9Yqx74jcyI1/6sfz3yJfU8DH/rIuergRbLTcYOFkJkjs1H/zhgZtWMWXD+fsqEofTrTegMXHkiqmWL1r95PK+bMECt89cBEp02N07DDLqFdG/2K8mXNuTshhxmx0v1Yu1OzrYj0N+scHCCGUo0wwNFqWzOcRs1EX8w52ppGezGnGZ/yFQX5NNrAkXS/Z3ORVXkctl/ric7GmM3MLthab8Ycc+0ytHZSUk0P+tXgxAvxwTiZEn/55ys0258/0zN7lJBTsObPtebaqFlGhZsDnG8bsZ3GUSEI0/jq671o0u3xHRt4NL8K0+is9W568tZo1d5L0fRAN8cwN/25E+njHffLzNRXD9fIzwXS2BXK7a6no3FIwR1x7X3oXdHSz30uenSQMNxhWFxSMotQ7N1TZT8KM1tyW/J5XYaj8HupLEvzIZk7tQZclvSg3QYRj1sZqHrz5RQ9c3eNqLvE2pDg8EGdrR1DoLfCkhOr+CaKeLFta0CtjRQSISQ3qup2nkHAC3K/rJTayDmyhGjmmr6uzCK9+9eaI3Kl1Ewbg8Q0PRMf8nf35ggM9DT3Gmq5oc2EgPbc4/nBasXqdHOPpwGlDzb8pRPLNPJ6Sc71ZSKPy+pxgV9JNII3trNhCNHo0zYAVNbtQvRhVYp+NiqeZy6s63o+9/ZrbY9Z19W1+L4vHMJxHKdD8jf/UaNvCtNcVKhHYAli8YrYOt17p1P8HQyM0cxxNgRCtjz6MUxTmUOmVdvDavBBlMt25sIZg4ETYVh+vCBfSaocee96yjeCPvx0mgyOorSu1AFHNeAFrP60tcnp4BVuh9IrRNnIq7BdAuuayNneB4hECeSQWFJ29swgZ4vz6U1ZUmLNmVLmINc08pZba0hndfbA3A1Odo/XABoBfw+s77DGYqiZFA3MLTogRCyHe659s58RCS5HU8u8HZ0wHj2LOXebXKDs9dwn9734gM9coFFhWxUYlhwjcuYB9z4IwaMAY7B1ySOtpFTikUkk8vKCxECWhdFv9Njoo9CHoDKIoZ3XIqVoTM+uvs5FdOTT8HdJQi1C64HeA0NN0jlGpnXhKDZAjGOCeuEcDESBLQZu4QCtuI+tPYsSad3Nxaj27OqDLi7Rauna4SLR78cw6VKI5LSeg+1f8/nVb/zbu70YHcja2YLyV1n5mw0+LvCSzMmW6LGYXzV/JnbkbBy//pz1J/OF8O9rQLVfKDNTxjtKLfD21vj5l8a//te/UF9f0dcfyPIH4G6C6+vfcbv8Ff+Xz3/Hv/wXF/7r//zCNShpVo3+9s78KUVpbpIUnX5rDflsoAzRiygUi5Ewn6FH4zqP3yQRs1Ozl30MQ2l12DD6/t7Y74NaBcmJlIWckpkTJaH3hzGT+MvZyuBogxaVZUvEZChur5OCYfSJMawsyMGaWe3WKCZvREMQltXpuF7oT6e35EgvIkyTtej/TYKtAUEDmUBt+jAEMW8gSrVz7c3icYPYdCctQhjiD7stjL1C7KYVXlbLiT0vGtOUB5q7Jxs1Bo/Y8f3TmxL180rJdMiI0cUtjkppPhBoAMtgJGEdsKiSUV5e5IyxerYIU+43e2CHPpyRdfjk06/JI8LENRb/CTS2f/2771nCYA2DXiIxZy6f/opjBO5lUPs/cj92aj347tMLEjOSFts8WuP1yxfq6JTWrVnwBVmiO205QmeTfDeSqYV2mIlHjPGMBtqenhjuuHh7fzsLmdGtQA7u+ptipNdqcgQRrs8fWNYLKS3UetBa5Xa7/YXOeX5vb5Vy7G4KZBteXld7r0rhKIUYI9vTFTtsZb/fDTHs/Yz1EVWePnwg54XRlFJ2Wi+EGFjigqwrpZgWrA4zkgpuArGuG5frlevzMyFE1M9PwGh/3jx347sTU6S14s+vN42qnhscPTJFHBHbDbUe49G0h/B4Nr3vD97oSZjrgG3Oj6ihxn5/54yKCUbBjMEab0RIy+aNeTRltWLDgKOeqHoMCUUNvXV6doyZmDIpLeQlOy07n8dimSG21sa0AgF6P5v0EIWcNkIMHO6KPJFha17T2azOZyzExxDhoTcFvCA8Y0C8iWlOuQ4YshTSt10QPzJHrZA89WTYpTyOYtE3+XEes7HtvfHLD3/i9vqZeuzsx0Eplle7LDa0+cc//sPpsl12Y/CkGHjaFnc8BU3BmFy1ot2Kxctlo7tLbXddqunQbV/QMVjXlcvlYUTZerP7KJGYIyKu08qBJAPo/lxaQVFq52jm0hxj5LKtrFvm6bLy8cMTtTRqbfz85QuIsB/1fA9EcJdgdU23sRRQEM/urMVQ0ttReXH675fXd0IQcowsOSIYY2BulGZQp9yPxtO6MLpSRmFJEWHw9n5jTc/kLbopDVyfVr6874wxTiaECNyPwn40bveDTy/PrMvC02Xjy9uN1gb7UXl5eeZ6ufLLly+U1nm77SctWdTRuG3lOpTtfrhBGudFaCjV6dBznfjn0c3mFxK8gBXGpDANkwZMB94+nFK+LODZt8/Pz9TaOPZCTrZPpBCJeSXmxOWy8fLywm9++1tqa3z58oUff/iBT58+8fz8AcEa3lIrT0/Xc4AyP9frlU8fP6I6+PM//ZGUGpfNPBtijHz3/Xc8v3zicnn6j/H6/Qf96CiE0FkWoR/GGKJvRDKBTis3Gzr1ytETSCWkSgjvhNBpI3L4u0QIrGnh0/LM5+Pd6MdJvDZsrCETvAbTKEb/legDY3uXzXV8tfrKJYgxBLYkpOfIbYc+Kl/eC71H9gJHCVbr0lHUakkq+3Hwyyu08ddW5IXB5Xmllc7t/iOlmpv6ui7WNI9KaZ2kNgRLMbMuC4s/A6jw8y8/su+N/WjeCBp62nqnDSsWbc/7ChlTe2Yt9uExmJ7MHJn1vhiLyVgbwpIvrv3sZ6RYCIkQzMm5tMaoQrlHXp4O32sCMS08PW2U4yDlQAwrx35n9MHr286+V5acTqR0XZNHmNq1m3VwLTsh2HFdr6sN+nSgR2eMQFQhZivoX+JfEcgQFo72arGKAsFpviFEH06AcKWPZ+5HoNyfLAs8vXPcX9nLG/d6cHSoI0L/QCMQFpcFDUH7FWQQY2dUIeTM0/rM++2NXju3+2DbLNlgDKPRv78HlvzR3uMBg0LXxvu90poyeuDo3byGQmZNiSCRzJUQ7gwtv+p9+tU7t6qYLfYYfMrKh6j8dVZekrCGOQH2duRU+Pp0V77+94kAGBpm8kfbcZwKTx/GM+/DmhH1hgKfkO5tsB+FcrtzefsTy9sv6Oc/o/ITnYMRGtIFrTu38MLnC/z4eWHJkRRMOjQpybPXtt5kNrSGIkwIQDwK6Ey2mC8Ks5CQv2jOg3/vbHKdPe00XKM87K+FcvPrGt21bUlIBonz59kUdNZfIYoVmtEF62ou1MPdhyVYU54wVNJUT+Y8CTil0V94db3cbMR8gjfwKdZXkztxtEkw8qTpKuWkAU/DpuFATXA98Wnqk6Z7sF3HBY8CGkaxSf4nusTOsoHtXgxMOxujul4gUHxKODqna3FXsSmiO3NGN1w2Oor9exA3Ikn+3wOkbOj3UeY9M+31sipPT4qOQO+GVDuQx7zdRuV0/W3TxzDgG/98/+kjMiphHLTQyOvGx++/56iD5ah8+vDE+35w2wuFCCG443ggEFnXhXSzAmxZFnueovOl/EWwJiaxrOuJ7h2INyNmdhGTGZHkZWENgdYNMTr2w3SOwTRzQ2zcrM0HCUDKNsEv+50xAkONHqfBmhtDOezBbLXYv68r04wgRkfv/OFV0VO3a1FaU89rLr8P9Hiah9mkURFiWgxh9LiT7jpgGxhZLlvKmW27AJxT17mh5hAfJjNjGMtCvRmLnEineFUq7ojWm//OWt3YQz33Mriu2H7vermSczYTiBB8PRrnQKC1ubHLaWpl1+4xpFji+kBx7KvPNcFQ3OgIfXazKRsK2H1OLNszeVlY1gs5LT5EekR1IdHR8c40/cLXGuDUajc/5+GmXnZBpwHRRLvtGZwo83D6/Hkd/ainiaB/0VzugYnyf9uI7Ty+k3rtU+7/ef7ubH7ti6br5/OHT3z6zW/5zefPrOvKuh5sdaOquluwa7SDxVHhkpXqdFnzZWjMbHbBpCZjzPgsc7YMzooIU4/v2Y2tVmcehL9ovoOIa9EjS1DolVGmCYsNZ/D3cV0y67rw8nzl5fnJIoCOQgyRZVn48PJCTok1J0op1uzpg6Z8ruXeNJk2frAsZroUBFptXmwGWh+8l8MHMsKyrOzFcpUvazrPM2ePQRrDkyQUarOG2qOFUBtYRxHTgq/J1g81lLgPQ6FqbQxHmi1qyVCqWhs1N9bV3qejNGo107buzzti32NUfGsU9et6C9cg2nT2RN5rq+c6A5zDIWO1WH2kcLIcggTGiab7fQyJlIR1XbhsGz03LtcLl+uV9Xrl6emJDx8/8Nvf/Y68rNTa+PGHH2ytSqYVnmup6hxcp/PZt/xfQ3Pn2ppTZt18+CaGdv/zt+Fb/IhH5qS4ILEzOqZBPtQHj4NWO6M2AhViIEUBOkMtWYCR6C16xFxkWzKfm2WA7mVY7E7MbCHTR6Q1oUVFVKldaDJjPe25vl5XjtvNEN1gjJYgJvNbsvWHtXSGBsYwRp+ZISlLCKyOwvYRqB0kZwN4+g1SI+ThEkVFxanYw3wp1m0hL4Gnp5XshmWlFG9UhVrNoftw6vtJQx5m3iYanOVgEVmI197+qDcf2PXeHmwrPFVluh9jvjrzE30tjCE4CjwY6iyQYd8TY3I51UMSk5fMaNUiw9bFjbiGNdAMlxQEUhc/R4tSS1Mm5fv4TH1A1dmTM991J6wmH8zrE6t2ugp3jQQKIReyeMqthrMHEYE+Avey0Jo5zcOBsqPYGjfUs3xrpVYYvaLj8AflyZrsBEO/J0ik9syQxQfVA4vfsKjFMWyvHz0YUy8s1F6ozWKJJvOttG6D07xS606nEaWZxjj+ujzN/wUjadPUxjH4Pg6+y/D7DEt0pEs5XZKDN0+n1vRr9Ja5VuqjsYVzYjjUEE5rUgb0cH5/AG9sO7Uc9OPG8/4n+u0n+vufKRwoFY27cWXbjUP+nrenhR8+P/O7jwHyzM7lbFy/pkw7COEbnZ5UN+8xHwjzV0jIV//vPD/xRWIMPOPUtKhgRg37a6EWQcjgdumSQbIbGulX180LvBiEtFhjBtPR0Uwn5nFmz5HNweglMhT6pGPYzwqAx0OdOmf8GB+ouqOUOP3Ef/6QeVg6vZWIEnwo4RTeyFmQzoFAmEw2HOlMchZawad7UVzzNy+iN9gSIAYrmpY0jxvuFdfNGqo7hjXFX6Om5nTsWt0IKVpTG4N/r2d27YUT/Q0RlgWuF2uee4Pi73IH3/AfhzjGpODYBPRb/3z38QOt7NRDidJYr1c+fPrEXirpfvDp5crtfnA7Kj+9N2vevLEVgXVZTrOfdTHzp+iOnDYQGSzrSlwWlnVx6mmygqtV00OG4I6XSs5WjOyHIRe9FeJ68U3Gjvkv0Hn/ntm8huncF6art3rGpmVlzsZ2WX0CjSEH9pwHhqtBZlyRjuEb+fAGsFgDnj1iqHtz5cVgTMmycN2IZrhxVfQNDqzAX5YVvJmzOByjcce8+HOkJ33U9GhTM6rnoqJnoSZOJfUmcroQe361eHGz5IX1ciUFy3MMEoyqNTq1HWeM0KRGp+xmEWHq7uwaGFJs59NcWzf1tUFB3TFbYuTYbyfSGuPKsm5sTx9Y143tcvUBZaeWnclclDgD5e2/6YxVmmuAo0LTOGxSpk+9ZR9eTDz00tZPqTfEj8Y2x8xZ4XjTZUZn4UQ7J4r7LX+GP6eTWjyfoQmqnR0bj6bW/rciIVpj+/1vefvyhXVbWY6VrXVo3fbRocRs17TW6kPnccZiAO76qaS5PwY5BzYxTFdesUGR2lBrOo3XFlh0IwYb2E7ztRSEy2o5pUEbvcB+7L4GOHU42Hmuq6Einz4+8/z8BDp4/fKFy+ViOr2cydGM7m73wzSiw7X+fXzl5i8PGYAaaj0N5Vozd99tXamtc9vNBCl483zbC6V1LtvDADOm6IxcW11QdXq/NfXXZbN6RywSTKMiUbgXQ49jDBZLN8xZOqnpc3Oyr3+73TlqJZbCZVus0auN6lo9Q6NtfczO8IgxcBwuLxBO2vHMDIYZVTZjiiLTgGxSfvFifTK15nNIGEQNc6H2qxB8L114er4y+vBm9jueXl64Pj3z4eMHfvO735kxVyn88Oc/8/z8wrpdbH3ROcy0Zv/rxnY/dvoYxJi5XK6EEOm9siyTrhzP6J9v/SM6CBJJwfSkdVi27FH8nZ6NbWuE2BDJpDAb/8reJkU9GIU2BrYlIYfS2uConbyIU3kXjiL0ams5KK1DE8s3sIHRwvVypdzvJ2pvOa/DYoMMtqNUXwfcfyUJMCwzeonWGnZV6jAUYXTYqxtCLkrMniASFKaZ4jAjv2WJXK/ruS+WUs8ByzSCKnU2tl5r98dQGWxQZXWEmNOvs3qq72EWX4TXEDNf3WnUeGOr6r3AlDKEE+m1IXsiDEGdLZGmKaE/u3lJNB1o66yrU3p9PZ3yABv2cVLwU47kZMkTM9N4RtXZ8GzW9I1eG5lM1EBKV5YBYyQ2DUQ5SOkghTvmwBN8eGz9TR9CrYnRBY2D2dgODiQk3zs7vVZqHYxxoOMwfW6LpMXYdGNYJ1G7MLRYl6EDSKgKrZvhYxBFRzJj27BQy8HwWirnSE6RUjuZQF4zrd9gdEaspLiSwq9rWX91Y/uUBusYPEXlX67wIQsvm9C6nNE/w5tEok1rQ3xsuLYaGpVI4qPvCa4ZOQj8eBt8OQZ//mKTx1L7CZEFIk9rJArU+87fPxf+D58O/q//+o+86zsNN1UBZFRSfUeC8kE+o+XKj798YvxNIqgShpwOzROFUwzZDOLooTvd8mBXWvkbg5kw3QxRflxBd3g+Vyr/W+V0Z+sF3n9p3D5Xbp87kjLL84IsLvJU059OdHDGHag32DHbwlPNX5sYsaDsJGdT1919WIOi1VAnE98HIuLW5oZ+VacR5cW0AL2fvQkEtQUhWFaXGc8aIinBmsnh1P0YHkxzPWno01DJmsNSjMKQFrc114k0q7+sRkFdl2DXUR/XUATWbdqpA0nIDaTIBJWsAOhKOWBUc6FeFzlzL7c0my6nbAfQAKEJRQxJTFFYkg0H5ubcBWqAnib6C8vqem3R8/m/v8HxGHB/45+O0Anaefr+9yzXZ+LlmTUfSIp89+nCbb/zdltoRLoa9aa6DiqkldtRqd2am+4F0rJZ8xN8QioIWiosgnhTpET6qBzHneNQc+hVSCK8f37l2O+U/c79/e2klpZqiMiHlw8s28p22YzVgBVNtRymwZWHGrXW6vEUyZFTM2+yOKJBXmczOaj7bvmB3tjFGA0NKZVaCnk1dDiGgNDRNhjNY7p6P6cbIu6SKkbzs+GQia9rKxzH7hTouYlbY2XZs+bsaigOlNKJKZz64dYqo3VvHmxSNKm0aVlOVHmMYf4Clye2bTujOOrU72G0z9assbaYlEH0XN1wFqVQW/FWKJDz5sMMJQSjXI5Wz0FDSNFLWWGkTBRhzYnL0wvr9kS8PJsL7nEwGGdRcdbBVa3xGcOKPIQk6TSoGH2gvdHqgenRsEGL/1+K6dz8w9mkGAtAMdbHVGjboOIxipwOoLM50z6jrb59+sU01JiRSL01dBZmwfYQQ7dsYRZRkmsn96NSa/MMTfmLn3k6zzrTKDi1vbaBiDVeObheVY2+HZIjHr6pSggPaQt8tbnYM1dL5Qg3G5ikhe1yMXQ1Gi1xWROtQhnVB86uix4+DFsDz8/Ctq08P1+4HwdHKfz8yxsvrXPdVr7/9InLurIuC798uSFiiIWoNd7r5eKN3SDoMP1bilTP0l1ywtR2lsuZU+C6Zsqw/SyHSIrmwHrf7/Z1Iki4e6Fs2kBi4Om6osD9qHRV1iVxXTMvTxdKaby+32jVaNb3ehBD4LqtlvMtwpIiFgcuXC8XjqNyux/85uMHcjancaMjB7Zl4TgG0Lg+XckhcsmZu+7mkzD0jDm0AYlp0edaN6PWYrQorjAn2zKzRvXU2w5xJ/EQaaUwdd9/+Lf/lsv1yve//S3/1X/9f+Tp6Ymc11Mm8f/61/+KLz//xD/+w78hulHYd5++Y3GWx+bOt3PQ3vvMETUE6I9//AdbN1X567/+G5a8sq42PLTc88aybOSU/7d8Jf9//Og5FJg1WlggbTaYGXegDcJRWT4kBkLZDZkbGkC7vfchkpaEJKFTKTSOUXjfbyQNRCJPy0rcPrBtHzjqZ/owk8Q+zMAtpWjJB8H2b23t9BzpvXN7O2ijMOjUYYPrlBZkRvs4xVK1cz8q95q490TRZuwqIG6BLW38l/+nv+Xpu5/54U+fef3hzYwbB1yflZw6tb6dvjSlTUjFpCbJPQDOgeRQG+CEeNbi2pXu9bOZDXamHwFMnwLfAwJkHwCJCNFBoLl+WfNszbKqsZHWLfD8YUFviVISfQhtCJlI9XxskchQoXRjmprrr3oSwqDUnRgXQsy21sSABuheJwRJ9GH3R0RJw6QalyWYFEzEc0ADbR9QM9IufLdc0dzRrVBpNMlUUeqoSG9AR0ekV2d0pE7txWtm4f198LIFclwYcRBW2F4Smt5pdBg3Qs/Awqi/Y4zGGG+8lZUylC4J2p04CjBYF3eh1s+MvtHHlaorhMjLtSKeTX6/L6QOIxyW7ECnjUEc4mZy//7Pr25sFwbXoHwS5RotV1bVLbUdFVPFnS/5amo339tpK+NGUV4y9WEP7A/vnR9fC6/3Ylq70UA7l8tGiAZv155pImxJ2WLlEnZGu9H7Tp8xH57Vpb0hrZLkIGh12tqwHMzO48E/J4IyARz7BCxn96y87IvVXRDP/u38/n/2795ATcSvNzjelfuXxv1zMQpD8CbZF+7Zz8ED9T2pxGKoo9H0Jq3WmrAGaDMdqjUZYtRNF/2Hr/izj5fUsqFUlDTUu3ZHrjH9xV9k03pTWJs11OHEjRxJ9+s0EY9T6+gnFF2fK37sEicCj5lKOerQu7ohl8Gjlt1rxas6/U2xCXt0ozJFT5pxjnb9TfelJ1U5+uwg+PBF/P42tYU0z6gPp4E7c4yjQu1Kr0KrZrq1TgQ7gHQ4yY36ON9v+TMQNEZk2ViePpIvT0hajJ4sSqAS6SRRdFR6F6p2jmqNbceosyFEo4z5+xNCcrqaI2dwNm+IT0WJsC7WqAxDJ2op3EM0FCgE0rJAsRiCMSZyKRYt43Tn3rpPkB2hPBHGWfyaGQNedD3QOB+kyDSl6t4cDMbpHKuuq52Zdu4+K5O6bO7Aito6odN8aiKGj4ffVrxwFoqIG+Fgrra4y/gUcKtaDu/o3c5X5DRxQdULbHnoZUVOk5/YulOWLDpgLisz8ghAe3fdYzvPeyIic215TJTcYOpEix/NxRnHM89UpmHTjG5KRMnk5UJaNyYNRXyij8cPTM6O+oL59Vp6mtrMP/j9lHAuy/Pdm1m1J4KrikwhPoYk6pgTe1/nxAyKooiZGvkzYjF0luv9LX++dnv9C1qyL0T2yMw8ZqNth/Cgj/ZmA47apvPd19PYRxM5n2IzUTOaMpj7vKg1tva82fcbHV4ee/6JeGDPkc6vVHcBtn1rWReQSF7i6WAM0Fv0ddl4QmOo551HJJj5TPChbe+gXkgO5DSvS9GKtxSjG5bZ73+YHfnwI1hjez+cTeFo52Rw2Ho2r++MyTIkZ+ZCdjWpzNwQR3/IFuZWbNfVG5EYrXA8EaOI6S7mfbbCu7mUKAbxGBzTPu5HATJL3s7bN7rVKurXWEJg21ZyuhmLRR/v2nxu5vBC1ZD5+d7HWdfhudoDcAd49Yi1+e71/vi+IDZM7MP/e5hsD3NnPu7maC8CT9tCQHl/f+Pz5194+flnPqqQF3PVn5Etw7W8toYNl1JU0A+klLhen3zAp8RuZn/TaOtb/sQ4ExiUmTkbGIRgBntVIRDIIbPETCFQjuoGe50Up4RDT18Bo7lW+qiIDNoYHNWor3mxYeVR31C6y8QmkieodkYvjF7Q0Yy9hD3bpTWjDovLBT35ZHy1XgyMeguGwNbeOZplq0Z/PiQFLp8WPh4bpMbzJSJ9EAdc1s0YE1W5vTfKbhFe3dkiMSVSN6q5q8/svUadWu/vgR+TzGfH18npNTDj0kIMZ5Nr3zvA99kYJ6/R6NwxCCIWaQPWEA9PADA2lqGcZmg1CEFPVLk2N2dUW/eCwD7f52jnHwiMxXXrDfrYz4x3i/ATwmHIzJRsieopj4gjkDUjkuxZGoEQn4nSQQpJ7taijYF2Ad8jxpj5v8bebK27Q3akVDG37phMHuhmZ613ujZ0LCxEYuz0Uai9o8GylglWa4UQWHLkfR80bXSp6EhIiOT0ZPWeDm/wB6NXG2Z5DBNSPSHm3//51Y3tRTsfI/xVVp6zORXWJmgXxmxssabBtzV7gPC/nP+cbsfWVlEGfL4P/tU/HHz5+ReO91cu/Y9ccuW6dv7++78irFf28Mwf3jZKT/zmo3AdB+yv7Ld39uOgOmVg6CNPUkNhkTvCHdWCYDS47nbqIngeLL4giBeqhkzOolwYxj/3gOVjDCvuvRO1cHc72+ENoKr97F6h3A1JfP1h8P7jwe3zO/L0hOSEZGG0/qBwn03A1CGbhlOCaUFbfXxtTtHMBrzI7N7QjaFGu2jWsKbxaFAnTU1dkyACyemPpmGx4qVWJWIvfwrT9MnOJSVDY0Ocx2kF8TR4mhTs5gtKCsKSAqjQhp7fp0DrJioPwZaO43D03/hbrJvRj89rOh6DiJQnlcPoJgnhGmDfjaJ9VLcgj8LiGl1BzBUvCSG7mZTC0xLIlnHuzbZyHPD+rtRqUUN7UWqD7cnOIcpDZ5hkPubffmfbJSL5QtqurJ9+T14vSMpIMdoH5R0ZO1EadX/nVgb3Avdj0IYyQuQoBUWIMZPEsg+neY3CGfKuWMYlYjrckCJrXGzN6J372yv7vrPvB2ndTG+7LfRS6M2ceRffuNb1YhtZV/bdKCzMY0hK72+MPizr1Y9lGgvFmHzDmoHsgTGqmT3pg2uhvjEd+w3F0IFTd4ojFE5PNP1L9EEZZ3EnvhZNiYMEozTu+0EtZuhzuWx2PtGmscN1HDqancOkc4fAdrkSY6CW6RZrG8uSFzvHYMZzYwynHEdjWpyIK8Rs2tjaHjmzwxt3vEBXtbi0IFPf/HDdVdxETbuh1WOAm0Wd07Jo0QCSEhElxYW4XQjLZo2VKCEFj4TpTiXGUTRvsp26OX0ZbFj4MPgI0XRbwDSeZWqZTf+nHkulj6GEPKjM6s2gDUmEQCeHwHWxibcCbUSqs5C+5c8cvABMx/AZPTWb3hDsuk7HcXMot3veWuVw87RzgAHMpg2gjYZ43Jw9A1acmbbciiNRy7YGYMC6bd68WXYm6lFy7lY4+hx2iZkoOb9hWRdyDizrle2SuawZFcvWDSmC9PNZiHExqmVaramcshwVlvXqX28sEdN5B5ac3bjMCtihw1zVHeFPi+dKLokvb7s3kol0NXphKXeaX9s5JCul2pApRbprwMdwrweXFO2lEoLwMq42AIrxzKImRHM8TZFlydQBg0Z0qqLFgOBrlyNqMfCUjLYXnJaswPPTxZMbxB2W7X7eSyXEwMePL7y+3xgYatPnz4bTqNI0uupNid3zlLwJIBBTRpuhPTkmRA0Fs0l1pDQzsFIJvFw2Qk7c9ztfXl+ppbLfbxzHTi07t7fPTJ37xw9/RVoW9uPgz//0ZyRkhgY+uFnfbE6nsWAfnZwzx37j2O/s+86ybMSYgTlcFPbdft+3/smLZzzLsKHG6EQdRFmQGCh9sErimi8s6wWtg/240/uBSCVfC6qJPhLrupJypo/BUQ9qO8jZGtLW4GmrpNWYDp9fAzoCEl0zh+0noxeOo9L7HW1WU1cdVIx+HJPVQKZTNxZHb91NxJSuB1VhkU7XQW2Dt/eDGBeeL6sNnRIsz5HfXK58/OvE9UgkDSwaiD3TCnz5ufDjD+98+XJwK58pZVDK4MPFhiYpRWr1JjF4bJzoudePMWj1UZfMgd0cAIqYRntmYBvgbLnMMUdCTmxLJogiag7j1sjaz3wYT9k+2VrnoFpjWDszVaC7L0GtnVIqx313inGwZ1uMqagOTG3r3HyU4zj4+PEjOdm7ZF4klWMpnK7BebWIrryQQiTHFSSh2mkF0vYdLWSCwMFn4hB6GWiPhBGorSPSbPAxrKcrtVFrprfA+80SXGKK9pioEhEDO4DEwrIIly0zPt+p9UDjYNsiKWX2crO+IWU+v0FpncYdid+RwkKOkUGhjcq6LkDx9zxb3V8OjrYTpP6q9+lXN7Z/n+E5Kh+zb4rdmhKvi7AUFmv0oj6Ke/WGL8gjlmYiGSD8w587P30++Kd//In8/m/Y2i88fb8Rnj7Sn1/4Yf1ghUlt/Oe/OXheK3+9Bb78m5/5x3/7jxy7oUhEj6tQQ1JGUjTY9GEJwpaFFO1lZML8ww2SvPE+3XYdbQ1uODTUIOi9Kp/vwj+9wy7BotbHo+lSOM2EWneZ7wFlh3Io7bCiEAayGJ1kvzU7foElT3E4hjgLEIT1EonJqBExWZOQYkCCU5eHIBqIQWkMj9kRz6+BY+8TAmG9iheA8YwAStHOo/mESNV+5mggQznawKy+xBEzoyZPMG6sOJ0Nts0QqNH13DRRi3oQLAuWiZi4azNR6O6mPNRsw2OaBS3sO6fl/fgKKh8DR5HEkVw944mkQanCsgpPV/jwbFREVWtmh5irtaieWmNP/qENQIR1C7y9mrsziuVcKty+DGKCnAFvZmJUUvzKjOsb/mzPNt3O60JaLki0PFSwwcr1+YVP1azXf/jyzvBJr47DtC0E6Dal7a2ZQYpaERhjJOeF0nZvIl3LorbxxZjYrheuT8+s20aOiVIOarF4oVJtmh98kW/dvic6BWXmrE4kZiIkXZUQzcTCcmo9ZqebnlCCmSqlZSWtpotRHYZ6dIvkaNUomTEmc9IUe1eCyLkh1uOg9WaOkk5znZrcmAxF0a/0qjFFgtj1nfqd4IHrbQxEzR21lkY57qzLRl6sqdwuV2LKTnm2Yd3ozZHyheyDFDOKWa3xbJ02GqNZDIoE21gsTkWppdFbNV1L617QRqZxQ8rJr1dAg+n5cogMBr12juN+NsOM8Zg0i0fwjM66XWyIETMCtONOa8e5V8yM2NGNIaAip/lW85ghHR31PEujEtu6MtHbyRcJTJRW/N9n4zCLc9NbRQmG8GGDjhBNU7WtTyTXe7dmA4WmPlH/ChH9Vj9fOyMDTiPtfntMtwiWYWrvZj6R6aenJ6MlD8eHFHczLt5wclLVrRAcJ7KJF429N2NGLNELR8x4SAJE4fnjd6gO3j7/TA7OqsnLif4WR5LFG9jR6xmhlXImtICGZLF407n4L4YeFoHXR2dvgz6EQaT2SOiBqpGsQndq9DSyisEj7HL2bGrXK8dEiIv9PaY/r6WAD32K6xVDmPpPH6qIJRKkFE+UB5TaH1Ejb+93ZCijDa7XhVIq73Mo7S7pSwqIJErL7vY6HE3zQUPrZm63iceGQClmWvd+L3z/4cWHYO2MxWkYy8wQLDP2e9meuN3ulFItN7YPmtZzWGQTb/ueWXjPAd3JDgjhfKbkBALc5ClGvv/+t4YyeY7t4f/cto3r09UaChEzDlOlHIVyFP7wD/+Wz58/8367s20b27by8dN3fPj4gcvlb92cJ/L73/2el+cXjmMnxUyKiVoLr69v1FporfL29oV9v/3HfxH/V36Uwwczgy0LskQCictqWb6fxYd9MfBp24hx8MPa+fzlDbSxfqfQTI7wdH1miRaXozIY2l1LaoynoyubNqBYlmg76HVnSCaE5FnD7oUhhZADy7ZR605T+znrFkkJjt7pRTmOzr06i4pB68X2VdlJIXFdhZ8+HwQCS3qyZ1sVSiMG2K6RLScWIqtENjWN+SUkyl45djMKs4slXw3UzIxIZ83tA67+NSPBUdjebQ80n4XoRlBeQzi4k2Qy+8LZs5RSWJfI89PGZbWs2h4aa+6IDo7SWSRwebogautvrYW319tpcDbZL+/3wyKpKqw+6Kt18Pp2534vLHkxhuBQfvv9h3N4ZV4fzVgQA2ptvL79hGBu7B9ePrIt5kYfUkZiwtJqO304Mpov5OUTz/pEipVjebWGuw20HY5AbwSpxNC5XhJK4PUdbrcNIbBd4BI+kFOhHANlobPCuHOQuAXh81vhXguXF5MuxSA8XXA2W0T7yuhTYrDbEKpvrCFy3RbuIzCGSUZ6sjpf2D0P+9e9T7+6sX1JsAVDtBSDqrsX+j5QnGuvNYZiTZHO5+pcm/VR4Cj88j745a3R28GihSgN3a6M6wf06RNv8YL0AeXOJwx5e46NX46d18/v9Oa/I9qioEOdJuFmTdEsw5ccXCQOEp2+4PRb5vF3Q1mGGiYwFJKbFQ0R7hVuVXhvgZY8dUz/8nzGAO3i9GOlVWjVGrpebLKkITg6ILRqCIWI0E/TKNuBputwmDSVIU7nkwe1cL644lNX9HyY7O+VXo2SbMf3iLUx2qh3p2GObmdjC6MpBKMre5DgSUvuY5zZrSEawjmpHzr8XuhUtcnpmOyD7PO5sLXarpcVO4/oIftVjrCfN0oYzRaJ7tfB7r0fvGslYhRCMyR3mkVFL8hEfTgpciLj0Ycv00pLAuQsPqlzevcc4hRvsAekBUJUUsAGJyed9dv9xLyYqcpqeifATkiN6pqXhcu28nItPK2Z2pS9VvbIyQiYwyl7prqbjdhmYuYKhkK21mzC2K0gS8miXvQyHMkxhEEd8u+tUUtxJ0O7liGYi57Z85sx03RRHXj26yzwZdIMYTbqEqbLrxfFjuydRLw5THK0FjopZXu2BEcT9UQyjNok/oz7H/+lJ2WWaWwVDQF1p8W5WtoQzChngrjmtbGuRunOOZ8GXX08nIJNVzvPdZ6lmbSIH/9pjjPfNXWa9rDGuLdmCKqaTGG6Bxu6HE/aYEg2UIgh0Gs7v9cvmnk7TZRefZ1QNZQ8JdMBeyZub+0c/uGIMUMZ0u1aOoI83AzrzOYd0ywjnQ2t/U6nZH/l3DpXxIAwAgTP6p0yBSG64246jULWZbHzBWRM+qczUL4a0H6Ln0mlm882PK7N10Nk0JOxI+czI6cJSinFnTldpzubF9+4TznBP/u9Ru22gtsygu3+GP3O9hdCQFRoXYnBGsqYLGd2Rl4pjhL57570ZNwkSnyvHINT6zf3GsFozLXbPjH8GVYJDCLN65SuPJ5r3NgqGQWwqTLcB2MMp/w6pV5VLT7EH3vLptbTd+Pr+mGM8aA6+18+DDSVVjt9HedgyApg+8KJ7MRg+aQ5eWHqFD6dtc3cg/rjd1kcj2XfDlXSZDBMeYA69uoDIPUB0NfPzPB7OYaea+ZD1qGE4ZFjzuywZ8mp2zF5AqsPPkS84bVGSt2cLsRge8vlYqaCjpTnFHl7/WIFf++8vb5Sa+P55RPHtrIvy2kwNovMGIJ5CIg5JddqdNl93ynFoqtq3U820Lf+6aMibky4LGYMlYKZManvyypK18GWIp3AZVn4rHj+8qNuS2n1mD1z/VZRdHSL7YuR6uZtQwtjNLr/wTWe00tijAOhIWLslhgD0d2Go9dVo7ge3+nftv64UZwqSCOIseGCMx+DOLigBoDEZEBNwKm/IbComz49JZ6umfdLJsdIDRERH+4AOYXzHZra76Ff7e7zMZe563rt6YNcEavhw1CTnvieH3iYSFnUnWl61yWRUqCJTFmrU3ftl8yBnaob5FX3sWCCZwbWdH/XgrvYmtu/YjQPQJSP7XrKDrrHDs73TlWoxQ2oeqcu22l0FeeQ1yNlRutuIBHNzJEVEXjOC1V26rhxhG59kyYb/obIutg724bQuxmxhSEsspEkmGZaI10zwa996ZGjKqUNLrMOkkDKC2hGR2YMMxEjgo6GDqG3C+saWROUJrbfy0oflT6zxYf6Nfr3f351Y/ucbGNowUoHPUPa7fkNYrRQxZFP73anX8Q55cMXZtdr/rufKvdb4a8+VurT76ny1/zw6W+ITxvL88pQOOrg58/P/FAqv1sLHz/+xOcfbvzy4zvmHipGeWkHHSukc8iEnMiXK5enC8/PC0u2XEaSuKTNNJOtD0Ogmx2jGZBYw7IoLNkaqH96gz/vgc8j2JToq40NMNOnBq1BrdYA1RuUN6i7Ut6rTZ7XDQ3B9Mld0RgZIvRizVGKsG7pLNItzsYQNGuClY1BzuLnzhkzY9EqypZhOnSNCr0Z5ZchXkjYkCKEQB1CyGacFIBaBvt90EsnAHkLrjtT+11+/+yklb16E6zmXjzGbEa98UyYo5qxVgxlDcpoM8rHBghdbeo2P9dLRLtSy+DYrdDKi/D+2jmOQe2RvAWWi3gsitK7+AKp5CSoBkqF2wFbhsti9yyKGW8F7H8vgXNa18VfugUuqzIK9vtdXN07qBugrVnZovDxhb9oNr7lT3Ar6CGRyPDGw7Q0IQjrtvJhdHJQvrx+5OlykLPlwN5Lp4zAba/c92oREt00pL0dNCm0VqxwHYNSj5Oqn1J2FLVz3G9u+tStsG7NKO+9o61xdKMwP314MYfSELi9vfsmH3wjNzpld8rE3AAedH5hWRJ5SUahacUaNO3UEJxVYJtJECEu9v2jdvK6nJq3ehRaN3dkc0KNVGng7u3LYjFCvXWOY3fanMd0DQjZQwMcgVZVYrTjHjocpXK6V2tIiCwhMQg2VPPoHO3DhwmKjsbRirM3jH73iE4IINFmUSc914rSVuvphJxyQqJrU9WkApOZAcK6XPxaKv1+t4xdmtOyA2DUckJ0DWdCYvZzV1pxCqAafdWaTDlZMTZMGO7i2r0Z7+fmzQzOnnvJY+xkRXJK9vsRjzHxwhpv6MWKPENn7foHgTWnMzN0EDysfkYJdadADTfv+HY/8Sv794nO2TDJGxh/J1Kapk0T0TD6WD0OfvnlZ/70p3/kl9dX7vc7pVkTYqkKARVzRw7o2RkvaZoJeT5xDKT16prmQT0O04qNxJfPzvgo/fSFEDEK/XDGRBDLmx4D9qPx+razXp540mBMmBSIMbmTuBU3rXdCbaRocSOd6VVhg7notPhbESQGMzdL2V2/I9ft4s1u4jgOjlrOIdxtv7PkhZySGZ510yeu64Y5dzcv/m1gO5y1cZQKbu7UR7XIlTVDm+wBZcmJy2U5XU3LaA+/ikmJDnC5XJCjWPEbI93Xn5hM6PX5bWdbM+uSWFdDwPdSebvtbOvCZV3dP6Aj7qScjAJGKQdvv7zTzixnNcQc9ybwZnE006iOECyZdNKwZ9PsngJLEo5yMKoNomIILMvCsd89aijw4eWF6/WZdV358PEjl+uVf/eHf6AeO/XYKftBLQchBu63d/Zj5/fHnZwjIay8/fITSwy0Wr0pMeqdmV4l3t/vtHan90bOyyk9iCmxrNv/Ju/j/5rPvr8hXZAW2UJEUiAH6PtOG9ZUtt55qzeekpDTwu+eIz/9lLh1GM1MLMMQYrqCCKXvSM7EkaAcPowRbrc7a37jum3U/k4bFTMpMhbDdRFrONpucp9ue/u6RmcTHAg2KN2PqfXvhNCNSt07WSAFJQe1mKGQeFltiMhoWO62UZkvSyQvwTLhw7BkiaHEEPn0aaO1Zy5r4pdfCsK7DYgaIMK2JfbSoI5Tfzsz1yf4cw7IPSrmMQx0B34GGuSxnoqwrYuxf3yPsjz6qVMPHENYV+GyGYuy3jv3L298WBM5+mAnZcYCr69v3g+J+w90ajUwQDVw2a5Mz4pSG6VWbnd4WizG7DfffeR+v/P+/k7Oi+mLUzJZgCO5nz9/5pZufPz4kTQslnXB5EnUBtGashgWLuPCxsJ6/Wtu5TNv458YSakCWgshLOSsvLw0i0iNts8mjVxIXIYQRuHz+JnjWNjrheWyMDRxtMTRF+ow0yzT/QnPl2daDex7oJdGb92kKe5/dL8vXFdhu8D7myAhsW4XYgm0nilHRX348Ws+v7qx7SM60iWOXnmDJGpTVYyf3r3hUZ9KhDnZ9L11onS9Kvu9s+/KXgP1cuWeIi1lLt9fCUsiLNb8ocL1A/z0ubO/Cv/QMz9/CRw3hyoZ1gCNTtPOCMMhuswerjzlladrekxSvWYC060SzHI85ZkHaB2riLiGxFRAf34bfKni5jm4yZE3amoGUa1Ccy1mK1ALlGNQd3OB7DIYwTRys4Aw2pxZZVuylTI0EoIS0iNTcei08LdpTykQmhKy0WxTgBG9DuxmIGHUITufnCEv1iAaZdum7XmN56RKBFIOPL3AA4Y3Pn5rSnJa9lCjEKJAm/bqsO9Kb4N6DNO95sAlu5W6KKN4jFCDkLzYmvVjh3ZvNMypeAyP6MmBazY0vNZxTtxyskYahX6YI67pE6whST4bmD4egKEA7iZrWkV1A5QHypHcnU3d9Gt0ZcmW17V2eH9vVpz3YJMkDCkwkOrb72zPwkRkUgwQDyQfItAb2iqjHJTjYL/feX29cxQL0W7NkK0Y44n4Tr2mhGD09pxPVLMPo8dPjW1IZsxjJjIPdOEoj4Z4mGOKuw4vBIluImKuxvtxd61r536/U4s56BliHFnXC5fLhafnF2Iyw4Pj2DnjAroPYmKy34ENeaaZVCmHa3Mjh8cQzY9NxrsVer1z9OoNw6QUcjbFIoExrODT8XgQx9yAVU8naY16ojA2nW+ITt29LZ7au+XQdo9fAHtQHT4a3ZyVZwTSfFftxj8Qvvk6mMGMTdiHKsUdkqPISdG03N1+3htFGKIINkkVONGXuWYyjCUSok2Lsi5+X/tZcM8GclJaDdFV3zOsOFCfaE8quh8100TLUKzOqAW34yEuC3jmJtikt3mMgt0PiznQENwIyT5nUYSeQ8H/FD4P07QZa2RNb59eE3OoLA8GQe+Vn3/6kV9+/onPX77Yf4+TSWT3YZqsTbRmPj/iSIYVacYQOtwcQXXQqzkKBzdNEoz6H5NRpoq/YxMdBMtdpYIyaGNFMbq9BKMCxxjN3E3VTRkdOe2gYo2v+nsS3CFbfGhbOxxdqEPoGGo4RJGulFoBdSfVxz0frfn+LNQ+6ECsxU3jcP8AY6tMxsN8vlQtomvGkS1r9m1U0JhQSbZvzfvXhw3iYqSURuvDkLcQ2LbFKYiChOVEVUcIpqEszd2WTVfaeuco1dcNf0/gQWX0ghg5ToT6ERflDts4mqZWp0zTtklFjhI8gxzXMJrXQUqJJWeerheenp5sOLAsLj15YbtcQC2Xl/udbbsgWM64eJRQmwZ4eeGXX36m1kqtlQ9P2ylRMErpQ1MJwrZdaK368NFkJgKnRORb/0wfkT7MZ0S6cglGpOq9M8pB1EbOgffbDdKFl/XC02VDpdLbnagmGzGtZ+PL7RUVc6wPIwEWy3JU5Xbb+Rw/c7vd6TpIyeRUQSwVZD929vsXa2qGOYLj4IbqoBWjrB2HJ3bEyMvV5Fx9VwMKCES5ACtDFzdYG+z7jS4LnUDXRmk2TOmtMoKSJLKqaY7zGnj6FOkkLptwvwfuOdLUHIKXdZpCDiRAkkdNNt+whwOynHuyVWw4g8f2uxgDSwqms8+JJQZSjNRWTa7n+elEIQchhUgMyrKI1fi9WgRVGFyWzbw+ur0vEyH2TokSzNtDu8V0xeDGbM54CAHe7jsKXC6GsKaUeX2723u2rL7/mgngrd+ZWcPrurFuKzxdiTGyLIkqhzNFhKABNJFKINfMohsf1k+0UKgpcesGVrRmNHKJmW1bSSqEONj3CqUyBI4G9wK/fUkkr6vaCAxNhLDQeuQ4hL4sHEfl7f2gD3etDraOM5xt4l4OYwSP9roS20BHIIUb6+VCCMuvep9+dWM7hjCpqMM1qeIFgMlp7O8mVcb+hQcdYKKbAqKD0ZTjGBxFOZqws3EsK2Nb+Phhc/QBZFhxcn2GP/5ZeH8X/iSR/T1Sj/mDTQvUvLE1RDBBWCiyInnlcrE8PWXSaQ3NcOkdwbUlijXlY/gBiyGle4ef78rbMHv7aaY0mymdDbBTj2s146hWoR4Wt9BamwMMfxEtk9ayu4Ta7ALqGGdhFuODQoFw0qmHN64NuCQ7lxyVHp0a4VTo4YlJM681Z7sxtXVrLsSae3OP84IyCSkLM8y5VZCqaLem22/tmWlL15MuXatSD6XuSnCNzqb4ZN6n290KS5N1ThdPL8xrN349NkHetkDKwpI9gqB4jR9OCTEMa6aN4hGsCY2mqT6fOzif34Bt+lNzOymiJt63nzsAuiHRfRi6GwOsAvvdgrlFv7oWagV8TN9+Y2ujW0Mc0OHNvZ6OnbabVrRV6lHY94P3253SlTZw+nxkZh469GY/GpweZjmQtRYQ08NMXWxMVgDiDsLBaX+1m+lPcJqjsT9mzurMcbPN9TgOQ56GUg6jn7X2MHKwOJCN7XJBgjXYpRSWZbWYgNG9OYo0DPkU5xcq5mCs7ohX6zTeeWTTDW/SdHQzZPKmdpoYTSTKjJHM9n/0bg3aXBcnrS6mUwowKbI2i/LGQs6hszWHCo1w6m7tnL/+mbaJxugRR717gxKsIA+TRm5IknjzgQ60gwSL/elOIx6tnuYXjwXeJR+qTnMMZ4F/0nX8ibBjccf2oedwwpgddn+7H+N0nZ7FiEj0+5SY2bTWwztN8tTrthNRNK2kxY/05o60Z2MrTAf3MR7RaUEewwb9T+AVnp9JN54O191jaozaK+faNj+TEt9b55effuTz58+8vb/ZfwumT54/d+rRxF2Bp2uw0fQCKWd8wker9Xwf5j4irj+JwfIdTU8j1OaQvarFueAu4zaTseG4BELybMZsJlBdHIkerql3DuA87jizlE1vBBJoI1C6EJtljXcVa+50WOzU7pm7bkBlV2tScwcpppMG3IM4ZVhOJ9LpiSGCDaUcSTQX6HAWzjb/ddM6cYq1X+fOTDowZ+fWXJ4UhBwNdRGx8zyHcCpO/XRXZhFzgx6dWu2YluTZs3h91MZJCbZ7rL7/zaHuXEvmwFlNTuYDS3GJCWDXOgqqzV2PjT645cy2XbhcrqZ7TQvLeiFli4Upx8F+7LRWzW3WBykpZ3rvtLujvDnz9vZ23oc1yfmMyXR10+DHH1jX9TxXMN8EAzCEeEZdfLufFAYtRBpCLWo+NasPcYZCL6SorClw2++kNbI9PXNZF+pY0H53yq/JLdqovN9vjISzcuy5HMOYe/tRyemdUg4HCpIPKCGGQe+FY7/xfPlAigb8zFrK1l1713vDUfPB0xpIQOnGgIsCgQV0oY9EiMJotg9rjGbQyiOKrrWGRGFLw3NOA3EVtqsZ1W5rYF0iS4rUYqyolDznXWd+d+DrbUrHOPcNRFxnHGit2MAuCGvOLlVRlmSU4yVFtjWxLol9t0p/GiziAFOUQBTzdZGgtFE5ekWDkCWdyQ/R64Ag4fSTMG8PG5jV1pCcnFHBKbHZD6s79v0wBDlG7vtBjNYvRNfej97Z9x3UhmutmZxnSQFZV7Y1G9lQFVH3pdBAr5B6IOnC05LosbIH5Wgd+qD3iI6IaLbcblWCNkrpKJ2+BU8OUTOtFFvbx4jW2MpCbeb/09rGUQb33Rg2ttfbdTXGVqMPM4Y0lkoghoUoG0OGIc3rlWW5/rr36Ve/eQEkuCX+WQhx0htmwWEFk/3v6I2YzEZh2mOLibjbUO418stduf2o/O6/WPnwu5UUDA0cAEHJC4QPgbwK+5vwb34YLG+d1MdZnJTRuLVK1YYK1MsTmn5D2Czs+8OWGANaV5IIs2/FBwDn+dgAgegduTTlp9fOn98Gf26J6ic23OyonTGWQjus8WoHlGKIbXlXjtc77Sg2PVsXwrbCkoxijCMOChIzS4Z1CXz3W9tAuzdrwRFK1Ki+R7EOTDF67oyzicHQ4uOAuASi4pobJaTBJZs+obaHdrE2y808js71EklJyNnDs8X+97oFeoef/t2dVi3+RpbFGoGuxGUQshC3SJTgaJTpP243iDMi4ZToKeWY3xNYVzHaQ16pRWgV9r1zH8OQ8M0K/JBgeYqEBreffaER2J5tYm/vpEK3SVr0TOKQIS6QrxDd+GiNj4mLilHjW4OPz0JYYNtsOnkcyu0mPH0Qrs+BT39lFPk+YFmMRv0VGPfNfyYqKGJUxSCRuCRaudHVEIxpg3/fd263O/v9zr264UNM3I8796OZIYoELtfL2TilnH1hwPIWy8FxHCwpsC2Zl+sTw82qVBvhMOOCsV5OJ+QZ5bD/eDu1ZWZWYkhk6/WkMU+0SgRHAdWmn35D6mFN73G/2wR62Vg821B1kIZRpK1QhybimtCOqhWXBIshmmHlx/3divG5cXqhm/PqU9JsU0lvNKcO8unlIzkn8jKzayFno+9aKPws0vMkufBVJ4yOTuuFe7u5EVBEIsRodO11u3jD6k2hQBb1IdVAwt0m5rVQj8ORjUGKmZgyy3b16wLluBtFulVreueC77bmecYoydwDJvqmWBwCdC9GWyleFAxyXiBZVrBRxoPR4/0+Dndu7t2GD+IaHaPbBmqv54Bj6jxjXk5EUUOyoqEc1hQ4BRnXJ2tI5j7rEXCo8WRq2bFM34W/nIh9m5856Ol9UMrumq7iLp9e5J/DAmsI931HtfH6+Rf+u//7f8sf//APfPnyxai9IXO9ZGppjGE02HXNjjQMdxiPXC9PNjhaFl5/+YlSOnnJjBHNCKk9EOSjNFtnirJ7w72t2cybRE75EgitN2s4dSAxkNaV2DvLUljWDHoxpoTYELM1Ze+VvC1Gm08LilgGLVZQyYjUArdeOb4cfH4zZ/LiRjc5R99jH94VMQTu+2F69VJBgjmNpgQ6aNJZL5awcNRXd1QNLJ7BrgjazIk4xURcDLF9u+8cRyUifPjuCTOkmvmNyu1m9OW0ZV53lwxMHbPf88maEB463+n+vS4Lr+87Y1Rqa4x1IWMJCVO3a6hmPYdU6kXl1P0+mkP4ejgVJJBSOqUeIoFliV89Z/aPVgrHfiBA3q6w7/z00498+flnUs602kjZYpdmFBSq/Mv/4n+PqvJv/83/xFEO9qOQUmLf74xWWHLk6f3G6/uNj5+MjrnvuzUhS/ahhFJr4DgK1fcQwya+/UlV72+oboSQqUWR3tljQfKVvGQ+LpkcGjl0fnz9GWkHiwRSHjxJIrPyFK9c0jOtN/ZaeK87I5pRaGvuK6JYkxlWlmXj+mQRTKUV8hJZ10ipb6jupNzZouU7S4AjRoIzjJYlEUQpPtTMIfIpVHJQxnNgi7s1QuOJURPlEFQsw7y2QU5P9qwvF2q/cas7o8ESMlEWnp9+yxoCe/3CvRyUVvnw4YXaEqVGji+vNsTZbTCec0DbHPaYF8f8xK/2JueXeV61RYWtizVlATNSzTHw/HzhelnY1kSM3YZNbRqnKdfLRo4V0eY1izFI+vBYoqOdTDS7v2bqGJcMQVjW5WS0tD7I6TFgMuO8RHfX+s9fvqDPz/Y9KVNq43bf+fB8JefEtl2MeeZUZrjTWyVGYe3V4nmunvEbBemADAId0e7sgCeGNHQ0VipdoGkldNBuCHeMnXVptPeV1hZ63WjNnp/eKhIXgiws+ULQTAiZ97fCl9a4LlDHYCyVtPnAMglD3k0ryU7vkVIS2j/SR+I2nD2WMm1UcjhcP/zv//z6xtZrNO1ulY1v/cOaRPFJ66SGzM9QHNlSuhjVcVfhbShfBpQgjJyIT4F8yeQlnD/f30NDWYNRVyUKr6/CtQiXbk6+TQd1mK24IdsB5IqmD3z3dGFbEznYsQ2fOJ3w7OP0zt9nFBb7ujaUt33w47tSVWgimCvbCWz5VA1aEUbVM+anV6VXp/CJEraFsBrFOm/BI2P01CQHhadLYFshr9Z0hSH2cKkJ7Vuxl1YdYbLihtOciQAhKMviBSeGRocoxBQM1W12xtOQQ5vTBvHJrWsDcRS7O+V6qFGLwabLtRvNWYBehulqY3xQEP2YerOEYREfHHQMmQuOeLu5Uwh2DCGaeVdsj+eqVtwESsiLR/1U00n2/qAliVrz3DscajpkzUJbbBo+NznhkW2LQBm4cYHa745wvcDHjzZc+PFHi2wKcSBOwzIHbPt9uo+TEcA3PiGe7r0hyImcnFFFxk9jtEYphXlGqmbwEDH4vw0Lht+a3eSQHrE6y3Lx9UK5Y0ZjrfVzWmo6WUNkayunc3IMybXils83ejPn7zZRW6HJg9479YLzY8fpxklOcZ1N3sMAyr4wpolawGjxLyjQ9n0PRDMEfzgVpyC302FR/TxRo2M9sihto1H0RA3MOCud7pR5sanfpCoZZVC/oorbolWL6Xb1PC7ORj8kcz0+EU7wnynWoPkAY9RGG65JdkrV1NcZAhWRGM8GMgg+cXajp7N5DafeaF0WsseO7NW0veF0SRYvNu1nWAMbEYwmqsopwxAVpKtffxA1anYMgalhCd7Uno2azHbINiY7fduIHvff6SrnA2IsgeHPiIE6eqKOAUctHZmM3zh0O8+z926xVX5PW3MTIafGTqrp1FDWWrjf7/z440+8vb87fVnORgfg1KH5JqLjYQo0G8CUEykvNsQc7kLu32uURXz4oP4e2MB4rsPdDaPmpiuATlRUjE2RgjM8gjg7CpBIUxu0HmOwa+HWb8RFH2Z4IsAA6ec9Lq/vvN8MoZoa2doaZyGgjwFS8FpFdb5TtsfPRlxdf6TMRACLHulDH0wKdTqvsx10dMpxoL3xugby1H77nhT9equjdH9BfFDQ3k8Hf8u0t//Ye6eFSOoPcztjU33VmMZADEYdV9QzM/vJOpr3/587bE869dcZ0TiwMTPFY4xnPu2UG4ze2e/v/pwOXtHz2cl5MWOpr585EbbLhb/9+3/Jzz/9yNvbG/v9BjosOQGhj8799sbLywtBYMmmNx6eZ956436/se+7GZCNdh7Xt/6R0AlhGJCTF7IoMmwoNPNik0OqPTZCqAwKS7J7UQ8IKZPjSm2V0ipHbwRsyGwRVR2GrakSEimuJCkMsfUvuiRv399RqrP7LMxFg8W9NA1mHOuGKWu2pThKZ42DFGD3tScHodXMXuB9r0jijLkaziwxCZgNkYMPjy7blZw3giqFWbM78ydEcowsMVLU4nPm4DiI1dl2PcWfUUOxp6u7MQsniyicyGvwIme+61E4r/2yJQPR6jjN63JKMBqtKDos5zbIoJSKjEGWRIzT+O5hMNVdLjVNz9QZT6pQazdmC+ImU/YeH6WxF6Mqphx9DYfabTAcYzjXZluzjQFTajEzXMx0NyLIkk5g8qxW3WNDRibqRpYL2VFSY5YoOQ5SGBA6EhdHYZ3BMQa9DUS7+YKImZDVFm2oJoOQA4GESKY75TgG8xNAlVYHrQdqFUZRQlLiOkghoCSqitci/4HjfmZRqF0IcbosyrkXDAy1nIUjOOXLahoEaAJV4IsKX5rw44AjBzQJl98m1ud4Tj356ufOQi5lMzn6/B5gN3pRHZ3SG/uoNB0OuUdafCEvv+HDh2eergs56NnIjSEnQmvN13nQfrIQo20A96b8fFP+9DqoV4tEmAZC3eN8+jAa73D68fxnL6ZFUAYkSM8bkgXJwvXZNqcUhNpsA1wEPr4I14ufN4o/S7Sq7LfO8d7pbbBcgyGqQb8aKNiFCsGQxBMtr1gMTrZ4nVIUwiNvVwxOtyxC9UKkuT5PcBTUNtu8JaMuj0D9qaBNCTnRdi8UxSjIMT02rV6HFxqmc+h90KvalAofjGDXPPsxpwRpmZu86d+H2t8tixlSpZyoRalFYeC6SWW4C3S7dfIWyFskZTMBm+if18Cmww1402p06sk0WBbh978LpKz8+YfOsRst+/LyQHgH1hyXw5r81r/tphYwAzWxKTy1GEIigKNb6LCctP0guMO2SOCSXVMbMhIHcVGIi208YhqQlBcuTx9sIHE6rRrLIOXs9NBqehCU47hZYTKUEFeLw/AGbIzOEhdHpZo5Z/smcOaafjWNVXDnX6NkDnd61v5wHTXzl8ESs1fSgqZIb1Bb9+mj/WzTmCnJDVusaW4n/XVyhLvr8XLMPjBwzd/csCUQU7KMuZRdmxxZ1tUb/W6TcOAo3ZtRQ277GOzlcGMetYKaYEOglIg5sy6rn69RfGfYfN5W10wqpb75sGKnlUJvXyHzIRrtM6+kxbJzRYRRKpwuqLMYSIRoesnrZeW6GdXpx9fisWWBmC3mRx3pFe0+TEl+XRwd8sJmaPdhVDODOW9OrK+XuUyfZXognf8uMp11H8NKy+e0QYVFLYkhyMHpyb2dDsC2D9jivSUr1jUII4ZzzfpWP70bRby1xr7fUFVyzrRWkd7J18UHed6cqunAj6Pw/n7jTz/+yOv7uzmah4gyaN0aPRGcys7pBJzwYoxJx7NnWARq2c9ByBxg4t970nVVsdQed3nFInLm7ptTJBLsOVJ7LnPOpP2OhHDus8n1+b0L76XRdqVpZd2asQ7W5atrZGhCKwdtf6Pcb4A5Y1uu5OEPl7v/Ygc/3UrPQb0aldiWqklV9v3NUcx1XZzy2z09wtDSXj0/uXf2UripGes8X1Y+PG1W74h5NMx99ozV8cHx6VwMTu0Ork+3CC/7uuDpBL5OeFM+9dDmTGqF6jSH+trUE/89c6gRxDIyo0xmRjgbf/WB31w/SjckPGDSh9Eb97u5EYcQKccdEctO1XWDsdoxDHNtbb3xsq787d/9Hf/v/+l/hH/8R758/gXVTE7GTNExePvymd/85jeEcGXbNkqplNJIOVJr5cvrZ2cl2Dke+25ymG/8E6LtgTHCx7wRUeg7gcEQobRBjJCDQO4QKsjOZTEG4u1dYUuktHHUyr0Ujta4iDUhc+CLCqqGrOV0IfKZoOaKacQk5f32mXU52FbgcAmKBKoOyhDaMHOpSOOS4zkY3AyM5FYhJ2NF3d4T7/eDL++Fp5cFa6rDub+vSwStQCPGzLauvDy/sMiG9OZ1sDmFMwYBIafAmo3qeysDc3LGEj7cMiFGOZvgyQ4Ywwbak2ExJRspmKxsjAHOvIoyB1ODy3OGoYwyCM0GYjklShfqrqhmROz+vB8HtEDPF9JQQrCB/cDd2/dCCJDdEHPWLq009qPw4cOzDbOrGbd1gaM20m6Z9JenK6qD2oKxEgyRYo3ZTduyD207ey3UYWvONUTyiMi2soRhQ1y1aM0UIgw/L3lmkUaLSh4rMTRC6CzBNM2DgaSEaKLugdF3VDu9NIiBjhBkQRgcRegokgZ5zQwWpGzUpkhQM8p16d5RO7Vm9j3Qjk6isyRjT/URUY3W2PZf53D+682jqjeYg1ND8/g8sty8WjzNowhWdNy68lMZfG7KPQtVA8cCv/k7My56fhHSYm67Ij7hwBrIuUBPNOR9V5ZDWA4LCN5H5V0PiEZJ255+z/jt35N/+5/xd3994fvnZC6PIgwVRnlsvDKn/eHRgAsgXdnL4P/xx84f34TPPRlS6gh1r1PYD73YP+vuetod7m8HvRTq/kZ+XslbZn1aTJcWjKOfok0tjmpmCJdVaAPedtv8U1SWpE5rNh3p5ckQE5KYLrdDnpIisezVgC1QLmmiDkcmVRhJ0KSErBQ/h9lMCkJvHmMkHjEkloHXvTm4XozC2Ts860KrylHsXJLzc0MwMwQziYFWA8s1EXOgq71UhGnWpfSm3EpHsO/bLuaSl5OYVrm5q26EJSjjDkRrRFOaejJFijXt5odkSFCrNulfFnMwLocJ/40Gjj2k3QTwImbANc2mIsK2Cc9PyrZ1Q6uicN+9uVLTg9pzB8h0lP22PzFmv9/eEKhtqjIaooOUV5Z143LZeL6ulAH/QoVl3QgSKQ1+fD8Yt8riVtLB6boEmyjmxcLCf/v7hdcvn/n8GWotRq2TYaHqY9BH9c0WRjMHVQQ3iuonGmKDsmm4ZgYRswCMrp1srVkhPoxqYHFW6bRp773TqsUJGWqbyGmhj0LzhtrC2Q19IkUkiNE0Hc2sb5/Z77sjg2a8JGKGEDMaAwbF3TtjylyvFzezscnxV1WkfU/rDNSywIProULgOO60WiwD1s2bmIMZzOBGJTDyRLjs+qeUrSFIiTY6+3Hndnun7rtPjIdv6k5Dj5EcMykkUpimS5gGynV8Maxnc06w67K3jpZGw+5HDEa9JEZUIKBk2dCxkPJm7rQhnlpMbe0scCSCsp7N6+jNz90MOLo6vdQ3B8svHjj95IyDQpXabarrXBKjsKdsTUCtlNOt2c4ziJIksK4LIQi3o6L67RvO3O8HpRzs+x2A5G6ZYHv17XYjJ08CQDmOwuvrKz/+8Gd+/PEHYkpcr8/EkHi/vZk7tGGrTI8H9QYupeT5o0+8v77auhciv/39X4EO/vTv/mDDxGYxF2dsj7+Llufs2eutW966BKtDncFhmmvl9e3GfhSGKnl7YSmdZblyuRqTJAa4N2WvnZ9fqw3UJXC7H0bJXVePH7Ipfy3muMvM6zyzktUb6kCWQMU1+pgkwEwdJxMjGitsouROB44iHt1hw0BRGxC33k0DbD/QqNWSiCOiQ7nd7rRWKKWQl8UMa5IZc07NmWKPaKsVAf8au8fb9YLFm3Ru77uzXzzGCyBGSu2MruTNdPUkZVlXYmkcXz4/TBvBB51CXtfTBGr4OgHjzKK1vGHluO9megX05qY6mHt2mw77KZ+DEdPfC8dRzrWyVc++7p0//uEfuO87Hz59Yrlc+e63v2O9XExGgAMjpVD33TwDcJYWtofs7zu1Ntb1YmuwwtPTlZ9aZd8b3/pnTZXLEngOT+TDcvVaz2gKtGBZra11ahiGBEpF+zvXvNAk8PNYWeKVbbnyw8/v1FqQIBaDhO2RbcBQi8pL2RzHF/dc6X0QR2HUzudffuF6GehVWMcK3QwWi+vSc0okManM0EpkkMMgxysQfThig50//PjOL29Krcp+P0gpsa4Xjr0zRuX2PoirsC6ZS7zwtG5cc+a4vaHNXPjd3t8o9MPir2yvMXOnMZkizYZLIVrjKSIElbOgs9gizj141hLm62Ivw5Iz65ZZlsWGDdL4/d88Qx/cvux8+aeD/WiUckHTIGbTAAcV6lV4/dEGW63t5BQtxkisjmltkPNfDkxV9YwEQpX9OFgWW8NSjDbEigZE9THM70OEdVk8ccLztYetEbf7zYeSxqixIVdjvDWWEdm++8QYBVE3f3PJzhYuSEhkNQh+kZW4Ksg7Im+kZLr1fceiv9SQ7KUnq+lljlAtuqipAjZkVR2UA243+PJZuB3CZYWXizJYTM6pC6/vg/22c70YutRHQoaZg23rE8vSSXH8qvfp1yO2w6aA6qut6v/8a+b9Ou+bWkPUVPm5DD535U1NwzaCmQdtydCHZZ30X0eHvfr7CzqOX7rW8T82ySqjU3FzmpDh8j3b83dcPnzgZYtcsovf/UfoKbA9D/P86QGjB+/H4O2u/OkLfKlC0UDo1vANnW65ZtI0/9mbumGU0ko/sx8RzwsVa2jFG8lJUQjTKEusoe1uhS44c8SGMizZ6MQShM6kQFsGX3BKUxD7eSmoOz9bPq4OpQ5DbI09YA/q6OomTLYZ+CyHNvAFFMjyWDzc9VcU0haQZAZW0uW8kMnje4Ij5CqwrEJMZiwgtk4hHrskPtEfqnbt3BDgZALK4z4NxfLeRDgf8a9uoMhkjRodc4iceqxWhdZ8CMA0KbFvbd2HAT5UcbNlcoZthaeLTSoHYuiS94M6MN702bB8+40t8NWL5ZxzVY+U+apICcK6JF6uMEJGQmao8H4MlqOT02BZbKoSU6QqVhA7ZSimZPchOf20qCNGw8O2O8iM7zEzpKEWKP81gjAHZyF6/mg01FfkkS87C6ivqZQyH4hzXQrni9ebNUoa3LigTa2M0df8wQSZKL/6pLmdRke4Yc+DevkoZGFunEbNRR7yDWO76Enj+Tond8aoGHNinM2aUQzH2dydVGX7YWau5HdzGr3Mn9Hn+fV+rtuTeviY8Pl1Uv3/urbPTN4Yk+Vwz3XQfQvORjklc71m6l0jquNE6y26pKL9JLkzupgrrh+X+vHYIHXmkw//O/nLv/NByEkNVb8nfu8nNc3yyQcM02FPaqV64xXcyAbmmtrp4z+RdxnOQYahYJNyXN2NO1Dqwfv7Oz/++Qd+/PEHPn/+fNJdbRhk12nqaOeA6Hwuw8NRe/QHs8GKRBtmDXVn+r/489jH1d3m+1ebup5f9dCS1taorVPbIC0r63ZhvVyNbTDZJThDpg0zZVIr9oMj8pYdbe9oa4VWK5GZfznOdzpGW1ckREsS8POYKLMd+8PwTNVYIvrVOfiJmATHTRJLtQjB2rqZ73jjqAJD7PlqDXYpdCzLNYXsecL9NGsbQC0ecUNCXYsXYrLhkB/DmOsFnGj4GObhIX1Aq6jTH7MPP8L5vI/zXhg9MzAzjue5nxISeeQN233zTPsx/S584De6UZ99bTyLwjkE8Eg01GRK9/uN/PqFX375xZBfCVyuV5NUhICMZtnreTkp0CYfsXd+6oaXdT0lGzmvLMtKXf8TQGyxujPHYfTiYJE+zbianknqiRKAPf+FIAspBJawksJCkMRRDmo3FtF8RGOIjGA1fIoRGNReUAyJy9GovDLU0juyMHpiRnt237wmNX0aELVm6GaUB/E9TLPG1vhybxw1YKZAhkJu2WIcew+eJIHd72VlSQkRpWtFtfmQ1QfA/eGpEBxtjWG+W3YNUzKzuc0jsIaDRha143W/b3XR9+faDIwxB+1wGjgaODTYLhGGMGriVQ7aGBxHJcggqqUXdFWaekzcEGNh+YDYXKq7MSuIRDUUbfFYqvn+SRA3xAyIG/RNFqE6I3EuO5MtO3woMYfRtVSr/4dQjkKI5s8Teqf7sUovjB7OgcUYlgxi/pXCgh0X6SNdhMFkQDX6SNRiCQJdTNKWsyHmitKHDautglxOtl4tyn4ot7uZ+C2LMU9qhVIDowtNGiKNMKM7WyeGSpBu9yp04q+cN/8vaGznOyLnpHt8VQSNMad7Htfg31e68l4H/+pLg6dEuCQuT/4UYk0ZcJ6Ms9TsI54Fif88/29tCM1zWd/2wkFjD50lLSR5Rp//S37/+7/hr/7mO77bguWVRvspKtYUTvMc4mQvWFMTRFkZ/OHnwR9+gf/+zzCWAEskFPHf7wj21Ng2QwhH+6ppHN4IpkgX08GyV64vifUSz+vXVS2HVcxR2BVBxGDazlas8VzXwOVFuO3K0cycqnsOZ3UL6RznS2tZuDPSqAqUCve9s2yR3mG/C/XQ86GebqUhBH8QBzlDyoYki1OzxF8yUPJFSAphsbgd7WpOjElIi+niFGiKN0Dwfhe6557OkbQhrzY9KrfGrXdiUNLFGullAdzhczCMOiJw3Ocq75v7sMVhudiit1zgflOOw2KXjkPYi9CSoWOhWRMuQGnq1G1/PvzPZTVb97/9F8ovb/B6E0IPNtD4uoLz5/Ubl9cCoK0Z0og3Bq61bPWg7Tf2ty/U446OxoenlZfnK3+/Xfnxy523uxm0bdvCdUTCypmbqkdjEMjLahb6IXC73WhTT4M5W9723QyMejuR0JSyuVGPcTaY06U2iBBz5nr9cDYk9/2NVi0Pr5bDJoPgZk7WhM1hkq3ahjhbAxAppRgqHwLH/f2cmh77jdoKoIZ8Luvj/r5jGrmzmTLasw1TjLafgumIU052DVKka7ehVx9cLxe/FlBnjJDrw1VtIBXGRFSNQthD9pxo/Qtn6RhXQsxIXCzrNwrHcRiVVjFdbauMUs/BVIgBxaa1rR42UFCIS0explOGxyX4UEGCOUWmHElLBLGCB8TpnN0ozCmT8sqaDZ0zD7dBV0dYol2Xthu9bmARAU0qP7+9cWp+vVFqPvwYU/RvB3W6TZ4NFxNZtL87zWIEX+/VKNWivroaPTzEaI6cQfw+mQ6rdTM9qmdY97f5mSZROWeu1yszm9HomZVaClUHN2386U//jh/+6Z/4H/71v2LfDd3aS+Pt/Z3b7d0cu2PicrmgQynl4H6/M92WIxY0rs3Ru9Z5f3s7B2RfXt9s4GOLsOvKDTGfUgJj7wvdC2TBaY7Y/myokbI0NWO6e+E/e3oi5sj377/nfn+3BnWynXzI2mvlqPV8T8N78AGSnDUJwHXNXw2dbD+LMZKXzRD9/kotzQ3PHk1iLZW5XYlf74Htmd0HAhICKvGUF73dmuXZt8bLZlr0OJtFf7+HDvZauZfKuixc14X3+8F+HJTm+bm9e7Z1MMdRIp1IrMMo1q1SvDjtXcnZdNVteFSgBMvpPQ4IN9Z140lh+fLG9OfY7/eziZ2DpdYbpTjzQQJLzuamPMzXpB4WBWdsN0OoUSXlx2BFMMlJSoaqGYXaHaKd/i7BhqClFH75+Sf+u//2/8bT8wuXy4VtXblen3h+eaGVnZeXF377139jxl2O/s4GuZSDlDMfPnykX56YXgmfPn7P9fryH/U9/A/xGTVSe+M+XlnTyhoXtvzMMSr3VlmzafrG8IGgKBoPBk9EyXy6PnGNF+IIfH57pUonbhFVIUhkyZu9bxFyTPRR+PL6Dv1GFLhsKzmalMCMkjJ0Mzi1FVPISzKtpTR6j/5sGuNhSYmjGsU052DmVcfgn76AspHThTDurCHx6dkzohWenxL3clBb4/uXT1zzQtGdKgWJgyVEhnZ6tfeh9+n87n4rUYyQNZQkgyUH1kvmw8sT5Si8lVemnnbNi8XKjWHvqTsgh2E1xmUzNuKUX8UUSIuQV3P8DgN+WXbqUfnpyxsXhMuifHm/cdyU1x3uNaEtkEM4k1ZGV/ajcr8fpOKxQmviw3N0QzbT5yePFtQg5NzdU8ZYVa11emtcrwGl03o9B5OjdzRbXbQfxmhpAcr+C+u68PzyxJJAEhxt57gNOA5yvNJoPhwzOjnVaM1rynzanihcOVj54f0fbJgVnvnltbDvFU2ddIGXp0xOg1IL93vjvt/oITJkddnh4PW98/lL54fPg3sLLObTyee3zvu908vK82WwXuzaCMJ+b6RQCbGfRlfw6/bkX28exVdDt4mQTG3n2Yn+f6j7ryZZsiTPE/vpYWbuHuTeZEW7e8nQheAB2JV9hwjwsSHABwBkMYslMz3TO82qKivJJRFOzOwwPKge86ieFdlcwQKT7SU3MytuhIe5kXNU9c9sk9I9AxHh47nyaWt8zjAjzEEnlloWyY5cKrXzjq68fenfQa1GlS2KEuTayL3pRuki07s/Iz3/msM3f8Evv37kN1+6nWb7tv/o9qZ6DIoOj4nyujVel8a/+UPj9y/CisHhZXxendYOKnLLit7WAtutktdCWQu9beA77nCEoNbm4r3RKkwHKoDr1KofutRuf38/0A7QIPdOWRrbpr/Xi6LQvZtzcu5cK8xJ6SWTd6YHuscP5U0fMtUGq57Sj4WrqRZW2zo9YSkKaRIOk+qZatXs4WpouRm8IU0diJ3o10pVJ+FpDrggTNEGITYQGPVPjEpNU1dXRWOc73+im3RBm+tmzXRDm13v1a1ZUVMx0w4bOITR4AvDoDdG6K5zucE8K9rrK8RuVEQ3ii3N5ioNfOtMQZsEH3U6ebl0ctZ7Vc+tThLbLbNtnjD9/CmMtOEGWxkuaK0WWtnoNeOkI+LpEoHVJp+aU+kE5snzLDNp6izVs1VYSkfirIi2aPbbLWc+ffqgcTzryrpc2baN5XZjW5d7NIm/odmzs4aPR3NiteFQKRutVm7LZUfrhoa25mKTYHVnFO+RYDrXEJjnE61dzdDM7yhPLUWbr9j2RlO1l3ejqrEu9XqPUqml3pEed49GEdPVeh8JMZKmSZuwYgVJbaa/y7Smso1S3hoz2ZT2NJnJik2+G+Rt3X/nfDza5L7iUyCmxOFwsOMYIzptKFdrBLZl0ZzXWjQyoyql8k5J1gbaD+TK0OFWMuIcKSUr/oMiw84jog7m6lKtxQVos+y6NvcSErXr8K1ueXdD1YbXkCuB5oQQ4x31UZsLJEQGnbQZUqRDZW2cpGvMmND3LNA7a8jWkG6IbEcHOQhedQOKmBvFpYpqEHpHhwXSuFu4/zxfw4RMqfhm6iSGnosQo+fH73/k+z9+y1/+m/+BH3/8kT/8/nfWTAo+zdrkbivBBx4eHvnlL3/Fx48fVDZQM99/9x2vry/ksrKuOlQpWwGpnD+/ME8TPtwRXm2Q72vgXbI0pEpmjoaYeVC93/9er9myrHz//Q+EmPjVL39JmiKn53e8+/IrrlNiu7zgfVVm1e3Csm6smxV69judDdJC1GMOweO8avyqU0fu8bx409Z672m+DhIEoA7yUpsyz0RjaaZpppU32c5WD22lKIvC0BY1zSvkqqy0GBzFhtHjdzgnrFuhrxufz6p3bnQ2c0SutakmuTe2rgO3La9sWddpJ5p32yx1IFlSQc51eD/upaAOsNVp/Hg8GvukKcrvmvkTWMzDYHwAJVc6Czlbxrath9rT6xrXsZg2TOLh/W7M1XoleI37iTHen1F0z/VvDPVKKVwvZ9bbFSfC0/MTrVWen59I06RrBHcd8NDfztNMbZXz+ayInnOa5ekccfr5m0d1meiiSGrwlRDUgCmjjUpwCkysa8P5QkgwnwKfrxnXAgf/qEOYWvh8O9N8ZwoTh8PBPBM8zekgqdCpNXNeb8y+40PkcHig5LYPfDWeZkQACSkGqtiQUQrYOtNbJ4TEw+nAti20msE5ls3tZkBiNe/D/MhhDqSUWLZCrpXLulJ7pXsFRLo01WubW7+0Qs6FLWdz71bJxYwyhGoz9HCwDoxtEVOE3olhxG85a4Y1cicMEynsOfRaZw7jw23LHFNkntSYsdXGuhaci4Tg2GohbxW3aPQjDlxoqnvNDglOBwlNNcDV2B61i5rAroWcX/HOMU+zDr2cmAdE5XK50GokRo87HnYG0u227vtzzkWH8x5aUDbbNM/qdEzds99vtwVZoEfHXJ32HlsjHGZUNdvY8kqgEWpCJdcOt83EcNJ4wPyj1uDDnI+6g1OCeuoEaaTaiVHXh3VdqC3TqFyWlctauWVjZhbhdvOcL3BdO/M001yg9Kw521Vp2Q8nZ31OpLaVsi4/6Xn6X+WKPCB8RWoHVWxM9oexCXsepjh4vVU+r42b90QYYk+bhr55sEcTN1grNmgdSIbSbq25LFokKhrQ6E7wYSI8/IL0/Cse33/J89OBdydzO0ObpkG1G5+n752jXaoGywYfPjf+8Bn+eNa8SNfVnXg4WfX2pxTkkrVZ3NZKWfTkd7tJXQpg6KmPd/1aq90Wh7322o9lrwU0zNJc4ZTCVaui2Io06s1eLay+VFAsxRpR+0ylGLpr2betdFppOHd3E93NwXq/bzheiEGjhPRaCGVru5mUE6U2R9TUKQSlGLRVhfbjKjunv18Nt/qu1x2NsTOnYzrmmKafrZq8wnsdQOhw436vWCSoUTL0GBWBNvqoUbSjUw1sF9iy5o7hlBbdOwS5N7WtKVXCORSNHtfHafO8rux5i02sSa+dnBtNtHD5ub+6NbYyGtveoarVe++GrjrVp7rg94fPidrhz5NXjXSAUAK33Cw/2lM7bKWy5ZV1Wbhdz5Scd22r/lnJWZvVt0WKiJCAGKIhs9imUpTukxXBGzqyYYhxpx8rpWnQZoMPhDDh/cbImAVFhlqtNF93t1d9juquKRR3dzhWraD+3t1ZmUHPVTM07zRHc5is6HEPjWHf6Y21VNW7gTWXqmF1EtTwwrS4CHYPK81v0JpDSvq+uVnBHvYMyD74YkZdXteVmpWGWYs2tM1MpnYKrr2vFpdGmb4vkXjnCSHhvbkle3V81kgjbWq892yrDhh622hDluDa7tJajRrXjU6nz3DfzdeVrq2IBN3uP6+GMY37Ae1GZ2gTN1wqGTuKWGSS3ClcoMOr/eXC7oAtTixaTnbNoAZs//xf2kQNoyMbsOybhxZxt9uV77/7I3/7N3/Nx48f+fDhg54jHzg+PKk+sjUdNjvHPB94en5HKdrYvnz+zOXi9gzRQZHttbEu6tbtwzBB0fvO4+347gPK8fcK8PlRTuz/NOiPjuZGn89nfvzxRz5+/MDj0wPTPDOfHpTieDvjnNIHR3xNztmcyvU99+GoJBtcWbyMYJTzux6+GdLvvLP7W8wx2/KozcDM9bu8oOS8G2VZ9UNtlbJLbZwZ0thgp48G2BrbjjqRWnNQWuVyW8wwrVOsqR3UaOkqURqfs9RGCl71wfOk1FDRHMsOZOUp7MwLpS7asNgJKUZjafU7JVnu5wS51wTVkHXnzbW13+UfvWtjIUaz1ibB4WMwNHWszeam7lTvLXJvQvR6uZ3mvK2L1VmNEDzH45H09dekNL25+fUcO5OLhBCom7pOYxneiVnXJ37+z3Nj+HM0xDWcGFNJnNKxBVrpLEvDW2HSEW5bw7XO0xTpqL/ANa8qX2uOB3ckBa8/77R2v7VOqZWtbAQnGhsUEnm56tBq309l3xs9Xod9ovBCH1IQwLtAjDO3ZaH2hkhjq4lcHJo1rA/JPB2YUjD3b32PXArdqbNvR+MEe61srZuhog5hh0uwHpdGxXQg5cDiPF5sCDka2xig6dBmMExHFrQON/U58F4BM7F+xXm9F3MugMo7xDlaaZQ8fFaAqkOhXCq9K0Q2KNilNXxRhpF36nkznkG6Pie9wXVdLapoooyNEHsGig6ueg+UZANk0SirMRTrwxBzf46wz6vvpX4L3eQNHV81TaJUrWFb7zTRXbhUZbz45vU+bEBRh2PPAVqCVm1o2HCukFtWWWcb6yQKTPmGVGXS0CuC0tK3WpVJIroT1OrJRdm3coia8TsGjG3ons19GGeGj/8buyL7PUO1GUrW6c0opbZhqL4Juj0Q4jp//Fz4YenINzOD19CbjHOvF0b+9HfZYHfU23vTtm6NvFX8ttHLQq5XqhTcdGL+4jfEb/73PHzzK/7lP3nkqwczY7CmVqpY3WMjhorSOUxz6Tx8Ond+92Pjv/l3je+2ibU7JGqDtacC2J9itOOywrJAXivLx1fa+om+fcJ/8Q3Oz+oQHB0xOd5/YdE8TRs8F9hpVePYLN+duo1CHfIYonpH92pe1czYolWlZuuDe0cbi23MvcPtahc7dnN8bfiW6bnRBFyYCEGMRqQ/50UIUY9rufbdVbjhqE1M8K2N5FohekeYwc8wT45w6PSsU/zr2ZOzOiGv12zXX8giTJNj0iGzPdcyvIx2FMiJfc7SuF0reQuESekMY9gRg+npmha/vcLtpk2x87ox0CwT1wFV6FWYAkQvTL6z5MZt64TJEZNwOKoGoBdtdmvVCUu5VX34g2PNutg7SawXges/uJl/hq91PROs8B+6wk7H1UqvVWk7UzQjlqgZsFtBQmarndwDl2vmuupDUUvBtY31fGPdCtd14bosrNvGsixU063mslHKZmiQGgjp74beGtfL2dDdhRATw5BOG0rTodjp/ZOG1t6jlkJ3OkV6eHzi+PBEmmaWbcH1RqjVjB3MQArVJo5zsNwuaBxF5HB6NAfjwNIuZoagxg3jGGJMBB+pY8F3ijLndWVbFgb9Wrw2as55St606Y6K7nY6t5tGKwTniXHWaedy5Xq+0Fvj4fSgkxZnKKNAnCY1gglBNWne9K01ULaFst72QUBplWW5qa7Y9LGKjE9MkxoCxThpc1+KNtchEE8Pu8FUGA7MxyNxmhUlrGWPMEpJke5ckqJZrVG2631gJkLtnXUrJj/xuh2Uza4vgB5bbeVu6md/nLn7dc072Yuv1opmUqdE3/9nZg00nOXbdhtWYJyU2rVgCl4za2vrtKxO0c6nn0h4+o/72rZsg566ayNjjORcyaUizrNtmdfXV36waJ+O00gKqYS4MM8zIRz47o/f8fr6yh9+/wf+y//6v+YUHvibf//vtCBNExnhcJg5PT6wrgt5yztN1gfPNE+qvd2KoedaAwzUQEQolj98enyg5MJ6u7EZ3dsHR6tqNOJ6Y1lWXl9f+Vf/7X/H+/fv+M1vf0VME+n4THMfwYH3lRA9rjjV24wuE8yjQpkIhylyOkzUPIyHhtHJYH9kXBVFeVC36bYqUpotdzUmR26az369vOqgzzmOh4nzbWXLhrCWyipO3V69Oim3rh4P177uQ51WIEZ1N/bBk3Pl+09nDnMkeEctbS/mq1Huw9CBi+paa9dIKgmRFCMpJkoulFrxYsZZRlP2TpuBNE2Ib7jrhg+KwF3LXd/e+t3+sFSN7Rl+CSKeXu+DCpUa6T4/mBvB0PthfjUc4gf1Olc1KKRVMzhSR/bHp2ddi/HqzN3abpSV0sRXX33D49MjDw/H3aXe+8C6qoHa8B9w4ljzyrYpnX6eD0zp7pL9c32t600dYJ1Q6o0qQD9yDInkHB/dC2dXyFJpfYIS8MvM1iLBJcIhsa0b12Xlum2E1Dn0zjQ/cZgcs3dcbpUtV5L3lKqMlGXx6mT9YCZgpSA003RqjJ/zEQmB3DWLNNfG+XxlWzaeDo8EZvIaoCd6F7a2kTcozfPwOFOyozfHN19+QYiN3M4subGWTpr8Tgl+uXwiiCc5z/nligfSQ0KcaWdDoJYGxjIQEVoqrNFTqw5YDTbi6fmRsm6wZbZ1swgu9gE6vXI8OB4eIx8+VWrtbKWrN410ai4UY1PNc2RtnXXN6lXYRdfE3tjWTDdNrJrM6RDo5ZaJzhGc4+k4WcSVGlx675nnmctyI9fCx8uZGCIxeI4GJAUR8qbmqyFsllmvBoAxOuYpElKydUx2748YPNGLMblmelf2B1LfeM006lZY8kp1hewW9ReohZ6L5tGGSF4yrTSqF3ybiALeTzw9RFJc+e7Dj5QtsklgTRO5Zda8Ebwz2U9ljpa8IF3lhb6TYuV48Bwe4HSeoEdEEt47QnIcZoGYcMw0vmcrmcbEsi7kcvtJz9NP19hSFaVt1niYAZMz9EGcUTI7JiTX781bI29qJNSxhmXE7YA2dB39h9wL14EIt3Y3KMlmGpUk4yWDK/jpAf/wFfGL/5Svvn7Pl18d+frBMQXd5LpVRztlevxit6vEoCmd9/c/Nn7/ET6uXvNq31j+N0OnMUni3tgWLK+20VoBL7g54Q8zMk1I8NqsCmxLteNx+OTUxMhB0zGYOkLbqRhpE02skW2dWux4ZIBoSlXcEQw6tYleGzuXgpCzohzea7yGZr2WnbJl/C2d5AfuRhfmEFyzZtQ6DwRnWmQYPA4x28Jaoa3WkDs1rmgVfUDrGIbc5/Rjgi1eb4JujfqQfXZdQ1Tz6pWgmJLedyVr8zpYA/6gKKLSk7WhcB5tKrwOWTSE2yZGTaN7gui57g5cFJL9GwfXFaLopH4+CKcHx7pUfnxZaaXTVzt252jmBnunavx8X/l6Ae9wMdg9ohzxrlfMMuD0f8kHQuuE1JCUyblyuWVqEKjCUmHznUBhubxwua1cloU153t8TjV34zY0kKMZHS2p3gs6pe9vKLV915bUPYuw7xRd3qCno5B2RjvU+/9usCSii31no7eq00PL6t0MQR7ZciEoLU7sxlazlLrTnUScRvWINlveu/0zDNR36IdFHK1UQ5BHxI8QQnoTG7I/SmzbqgPEYa5iRawaxdiz6e907VGgD2pLzdveWNc88oCroU/jXChzRDXAg86qTsfOkBTsGjlxdk6Smuxo0rROzQ1BqeP7jf5da3uDFtlz3hqlK2oshoiK02Kq5EypxWjmOrHXXMA394dFNzm7L7otxNFZQR2DIorNso27utY2aQzhe+96XMoYGf+tiJizxUd/ptj5/rm3t8pY2HaquudwYC/yxWl+5bKqhm3kfTqvqNu6ruar4HdjrVKKxVJ51mVlWzfVmFZlAHRe9pxcUH1mb415Pu6sjGabkujNZMcq+z26u4DaMTLukfGxnGOrleuycL5ccd6Tfogcjw96f9rGKaIFnjIwOrm4HbWOIRCC5+nhoO6tJUMbudaK8jlnSL0xP1QiU+15UKaFnTJdG7xmIHcntKprSrNnVOnVikZ7F4gpUGvRhreq7CdYIzj0uq11Sq5EDXSm940yKIvDjMt+zntHiupwLSLkokOC2hrrlo0RpWvJ+HzZ6MyCNpWNhsuqF9ZYEJVzDA0sdlx1uD8PWrIt2J2+e6mo47u3Z1z2IdTbQeloPrz3TNOEV3SEVgqtV3LOiG8EcazrQmuV2a6HiGM6HPFeqZl6WziNLAKLuFq43W72s3pspaibemuN5itTmnhTbf5sX7fbjTA1anD0noGIUGkItevaWSlUqYhEOgFkgu4QAlOaKfVMlQVxRVFBKrlsxODwkzZWrXtKU5px8Im6aSqFIpQN5xohWF5rU1OfjgIpeKPKbkBT7/AYA2/ziVuB67rt9d18SDBFhIhIIefM59uVW9aEktlZnjFQyooLUesP16wlaAyz2mFkNpgZqpX1ZojWCCHjgyd6dfWW2nY2wliGRgvgnOP5/cRv/vyB9S8zy63S2n1vxJ6Z2goxBVppxBDpXdcu8TZoRcGPVjploKBd2atrrmTR6K8YNbZq1CT3FBn9mVxU+3sIOmiVNwP0Uqvuzd0pVRxPCIK3oWxryhjT4WGlN2OLdRs4RTXkGnm5y7qxXjqFQA+VGldO4pEuhB4MWNTaq6MOx050wN1oBPFEF5lC0r28K+28NEetjnVrbKWSGzwdIoeoPxtdIYbK49FxOmiMmPcR7+rO4tSariAScS7QWtImwE3QjsZK+19+/eTGViMaZG+mend7A6Mw/jgoNTtqaKZnyep0O9lNNSjFYD9nC6e4++I46rRm087WtGnaTFt7cllFxa7ip3eEx1+Rvvon/OIX7/nFVzNfHTXiprZ7p9z7na4K4+bW6UxrnVzgb7+vfPsqvJSAn2SnJPVxPBWbbGhTVKtQsmpQailARaLHhSPudMDFqBEXUg2ZsWLXOaaT6ksHbbs1a2w7uKaUXn242B2Qa1bkXJwuCnU4O8p96a7V7efZe8GhzfeQ7rqOaW3KXtT2/bQMFE8pBV0cFbVqz1l/8PhgG/igmDmj69JtGgQp6vGPxS1v/d5Aj0JARoFqCIyMAlgXidbQhRRtrl3QBnQWz2rHk20zBiFOel5CdDsVwDkQbzpeJ2pv7+/5vTV3arC4BqeuzR5t6EuF69KJThHd56Pw9CjUTfjx7xbaWmhbQVLUhjYekOj4R8B6Il/PEAOeCTG7Mt9H86RDKUzzFkLYm9CwFdYtk7fPtNCRBofW2bZGFG1sz+cr50WdA+v+/A5XUW1O7q6+98ZHBvUNbW7HoEOpd8OpedB/3b7W9HFPAeLVndmHwVHXghTs+odkaH7di6B10yawlGz3TyKGZI2tgG1uw1lYnEZMTfNdZ+e9MyOHprRpo0v7rnrCLa/qNBuCISZqmDWozcMfWAS2ZUTRDCdSdir0cE2OSZA07c+sxk83cxVfydvCutx2uq0aXKkmCXffWEMcVKs34e5WSA6ak3PaJPiY/qTZB82rrbUaCqPH4nygSx6qjXtza9Si0jvea6wOXRRhsga8lqrH2o1i7DSDF5SOLftvHq7IhZCSosnBUywPvFpjrNTTNm4EK0TY3aH1vwvShCqCH9Z9/R5z83N+6WOgyNe2babx9vtgYug8123bG/jRaLTeWDc1Fdrdw20mF4LmMS+3xRCxrMwJayTGJFNEv6e1xpdffcm2riz+Ri6rsRVMw4LuO4PRNSJfxGh6NnXWdUYECZ7SGtdl4bqsRhVvPD9lUgyIBG1unXCclFJbqz5rvWtzeTxOzCnyeJzZloXlutj56jt1Fu91oEHfke9x3kaub7cHs8uQ3mjdk4sWjiNFYAyJvdchUEwB2XToVE0iMKON3Vhja23k1pkeDmDxR1rgVcvs1eHLFAIxeFIMTCm8YbF0Sm0sa8ZJYV2FlJIONOjmLF32CK/SBLet4AJT0iiOWishBhsOqHxIo0nKPtiSvYbqVBoOtzvK6kMljJg2Z80/7d7YKsV9JoRILYXcOo2i+cm9I07zZlutRK/6JNXIHhDnbViiTBUfow4GSubz589cbxeW5WZonTZA6klgsW1mJvhzfy23G4lOmQKtZzoFpNC6qNsu2tg2qTRmukScm2w9DKRp5ppfaH4Bn61GdKzbqnKyoBE/FYF1yEkmSt9oVdkfgYrzGifkQFltFj+1UXFBtfEKsKjplw6Q9JmIIZJ757oq8uIcnI4J7454N9NZWbYbn16ubH3C+aA6XjGqfdvoHsQpOul7R6tfz+5tY/u2f7OWabxdJwWVTkVjMPRSbU0YtHrLz3a6rz2/n/mL//yJP3yrDvHbplKEQb9WWnEmJE+vGqGnw6dqAzYAR8lDjjYGUuh1K7pvu944dPN2sOdJRrNjA71aKo0CBx3cDGnEcErW56gZyyEQq2MSrQGKGf+JRSJVtDZe1o1pnniaEiPiqHU1XTtfMlvpMDWYKylqlOPY8TrmAdLHcC8gFOgbXhzReeYwUZyubbUKpaox7Lo0bqXgauX5EJiTp1dPdELyjceHwOmgztrq7QFrMdmWpWK47nESaHWiE/D+oE1g/WkF9k9vbIsitiMIXETD7b1Yc+MaLgkBRXSlCb7BicqlVD798Ya4hE8BP/fd3GEkVlgtjQjWNBoaak0aQF8aXAvHdkZ8oB++InzzL3n8xTf85j/7Df/5r2bePzhtDu0G7uY66oLca5yuH9yhG9MfPjZ+90Pl3/0g3KojTprDOGKHWrOG1nS1tcC6aEObl41ye6XlRd2IphlO72mihhHT0e+bdy7DsdVotl0PInoh2B4xGtBalO677fnBotmsgi0C9vNNHX2HKyIyjEOscffw8CT7986zFrDPXz5xXdiNkBSg7pzPmY5DfCBNjRBgOoRdj3O7Nmt8Bu1DL8581KbydqnUAL0Ix4OQJkiTaopqVQSlD9ExmpG75r7rZdMk9AS9dW6rNkW9qPmTM+S1oueq7fRy2FYtVoLb6y7T73Y1E/K2WNnP2urBlo0R0PR3hAR5NcOtBbqHHpTp5ujMseL7hVI3deNyB2CClBQV/kfQ2KoMo7JsN1zLSK/4Xsl51UZjWZGQdDAjxbqThpRKaJVDhLJW1rrxlDyhdXyG5f3E59j44bXz7ecz59tKznfjjoH0DAfuXcYAO2KbzSSiGTJbyzBoeWNuIqKmTLDrWsaU33s1O2qobq20Qtk2SsnE01GzeJ0n3s4YjWHPpnQuKLU2KiVxWxe2beF2uVhjyU5PrmXkY26Ic7a5Tpo5Kfc8SKXg1Z1Sd3p4VHME7nq94L1FWUwgWjRG71hNT5drhqJI5mBWYGiRIkaB3nUTHRm84v2eI1pb0YLcHJWbbb7OOVJMPJye9sGBOCHFg6LC/j5h9j7hgydMUVH4dcP1qDKRQWdxgnhH76q31QamG/XQ6CgItW6qKZJ7fJI2tToQcJjNU62q2+2NXgvD9bg1XTwFa/oVv2BdN0WpStZiyShlWJ7xKCb0HDVDZMf51EZGG5HN1sOfO9KjMU8xJl5fz7S2sG2bDUQaLy+f+P77P7IsiyIY1nhdrldaafvgsfWGGGo/H2b+7b/519RS+PDjR41hGrrSWqklc3x4oPfGcr3x+PzM4XjY5QVDHz1ipkK4ZzenkHYU2TkhuIBHEeaSV6ZZjdPSlDgcjsyHg2oCl8z5+gO5dE7HE1+8eyaIQ3zk6ani3JVaGt6K0nmaeDjORO94/fyqw6t1U2aFXVLnHdLVECagDevIQ1fpjxaVzqtxTM+VNEViDKrfW1ZLPgiGXDZDhCu1Zc6vCyKdwxTZrEDMpZFSYvae1+vCVipLtQGtgQPNhrsDudWDVfRbPBQbcNXemaIW21vOZNPjpk217OIgFx0u1lrsszhOMWl80umR/O0fWXNVE7igk55luSlrpii7rEs3TSQo3TKYk31U1+SdDaMu+Ds+L8MQsrNtC9eL0i+fnt+zDt3i509qyFevePdAE8dyuyqzplb++q/+LY8PD7x/947v/vgH9UnwkWnS9XNdV5bbjcv1vDMXrtcr7949k2IyJGxjy+v/n5/L//Wvh9NEio7SN67bWY0MsyOlA9055vnEvGWmRSNjlP0T8Q0ijrycyfmV3F5JUffPNTcutyu9V46TkNKB+ZC4bo0tV17OKw+T/l7YNM+9Zttn1TcmHWeyOHIplFul9qwU7xSYjgnvO10alc5WKuel8Okl8/yQmKbA08MBiqOXwvnlI9etsG7qNBw89Ko1nfdqfOZF3aF7G47cwYbVwtoK2QbHSs3VgUVKtk85j4+emCLJebL1Iq1YjGTJeN9w3lGl83K78ePnq46ZtEjf9+TqG4hTz5CszIslV25b4bpkSitMR8chOk6Hmdo7Io3SFnLuSA3Mkw4fWi2spVKuN4JoZu80JaXee4fUorFEtXHbMsEL0cNX7w+kyeM83C4bt0Vd0qUKaylEdBh1OZ95PAoxRJZlVQPMVkkpci2F87rwqz8/McVImIV4SMTZcV106HFI6qMRmPBd7Yp7rYjPYP2KJ9JFGallrZRcFeUOjR6hP3haL2ytspbGunWVA24rc6ocJkeIhRgbTooOXTLkWvfUhBTgMDtqVf8CjZn5NUjChcBhujKnnxbd9dOpyL2BiaRlxwpsit6tIROL0xnDXwePx8BS4YdbZrt41oNnirLTc8dL4W92tPZuZqQ1Ud7MSTh3pHWIJ3ryHL/6Bc9fv+PrL2aOB69ay4EK2huP+mRQdh3gnU7kzwv88Nr5/SdYqqPiDIF8cxzVKLLjXBcom17cmjd1QKYocuc9eM3vHGjVeLUGBKVvyyDIdMDcHLuyorVgK8qHz6WPgbYaSDqbfu+otxgiZrWjU7dlBRz0fUMY2mY1edINxxPpNNXxY9JePRZDK6pF4fRw/yx50ca2G9VMbFIQq4rqnXXm9+OBEAXXdYIXgm24RYtoSme9VaVmG/VQrDkN1YYaXenFXRSx9jYUKHZRRe6urMhAtZXi0Rn3lAV9NN4Yzow84q7OdqiZgBoG6/1W+0C9tSFzXRtcGTfnm+LDeVFjqp/5qxo6SRN625Beab2+mbp7XHC4oDTP3hu1NFpZVIdYNnzPJFeYksM1oU6OXz5PzKGrM+PVc3XCNkxT+kDK+o7gDtO5t4Y3Y4JZzJF3UJMHZXdUe8N0RIc+O868ryG7PtcKwZH685ZtoM+20XTF6SAM+xmjE484n+Gq6LwaoIw4idYGCu2UwjUMlmySPJqMECNTmm0ivH9UnIjFHSVCTDt6PQy86I2WG8PwSXxgRB6Ne1BzRbNGANg5Hsj4+GVuN7YyxJa+F6n7Qmxol/cBbw38oH/1mmm90qWpBq53shidsqkBFiK44PZrq8dhWbxvGts+cNiOuVu3fdjRW+PNkkkzvUG3pmFk++pbCSMOSIvYTCn3DGR5c6IH5XY8sIPlLLbYt97uDBL6jmr/vF+GYtS6D4Q0Jkvvhx++/5YPP/7A9XJm17u+edZ21NQJj0/PPDw88v79F6zrxros93vRBXwMeo5hNwKbDzPv3r/jeDzx4w9/ZEQPtaa5jt10qMrG2DUz+3Vp5qw73LljDEzTxPsvvuT0+MjxeOLT58/kvJGzs2grNTfZcmVbNnJW+vlwBxanOmPpnVaLNtylMCjIgskTxsJtNQuDDyBaaGOavL35b8Nwzu97zlhflLnm9nu+lgJdda4+2pRV7lvFnZ2ig/u11DeXRW/M+8hvoEDOUKThqix75nBb191gJ8a4o03jM7emKKsOfDUCqItlaxpbYnC+hiEeVs+pO3zf15TxntXWPzDvj/F3ZVCoG9nOnUYHKYq/Gbtg2zZjnLX9GPX3NFrNJmFayTlRa2ZbV/K2mnFgtHstMc8znb7Tkb3fiHFimidinJnnmemt6dTP9CXOU1pn2TKvbWVzQvYrTz4RvdLbp9g4TY3aIYROa4XgPEGg9syaV27LjRh0RCew6ypvS8Y5lRj0XtRE0BrEGKFL3vfZCnTRZ0kNfXStVmq7Ii3KTPD7dcMJW7HEiBbwPpFCInk1Ysq56Pps7AVnmssYvCm49HkVp6CUphyw15Ri9xjCLpsZz5E+f2K+IH7XyuvgT4ctmp2stasH4j4sUtDLBb3PnbH7Rp3gndv3cxcjpXVtxlonNgWFmtUfyHBUF2N22fM59hHBUODKVosayolKpErLem7H2kgjzJAOxnhDjz/XjpSOK5pLq8yzSqma8uB9IFfNAG9d6zy/CbclElY4tmj322DQiMks+54zLiP73fw8pCs6r8V3IPiOd/XtEsoosHaTLNj3aqiIVIQMfVMGbnGsW9bEi1aIfiYF9bxxXenItd+oZUbEI2nC9SMw/6Tn6Sc3ttXgdyeObtCn6lO1EfEugeuGkiqliAa//mZmmgt/9ZcXrslT8BzniCTw8a6Rk3rfc3uzRmo8mLlzO3fKtdHXDjVQT7+mPRz4xT/9M379deSf/Dowe2cmJfo+zlBgbDavzbfSLKLvlNL4/Q+N/+mP8JffAbPf6UzKphnUWGhFqNmQvK2xXTdq2Wj1BmQkNEgzBG1q9Xp2bmtlhGt3IEkjBnBikRbdNKy9sw03UYRlvTere1EPdHQhkK60YY2w1cmqM10QXZ2LnQfXZdfWdueIk369dSF2vQNaFTyd0DuvXY26oFPXrn+X9BjLVllfDLl3IHtcT0WTFBzzST8TrXNdFfGdJ1HnYS+kANvSWC6NNAcKnVutpDla/m0nJv3eSUSzALPSnEUENzki5gy46bnq4lTnZxSC6aA0veu1mou0Y7BTW9e82qEj3rK6NaNJCqQA3lgCvWjDWxrkYE1wE5zFOYiPIAHE47wajIT0829sl9tVhfpeVBTdLS/WeZz3TA+TLuZBizil126U5YVtuVGXjdgUoZ+PE0twpO55nx75fEn0XrgsC1sp3LZMKbr47i6f+4Knr7fuqaOg2zZ1T/NvCkY6+7/FGBW16mYB+kwpLbHuTWXO272ZLTqQEKyYqo2W6+5m3NH8RnVsHlEvps21tSDFYLFBFloO0LUJLiWrhtZocSlNu3twnBLTPCvt1hyatbHwHA4PxGkmpsmmlarp1T6+U7bVGlaY5mDZdroBYE3Nsl6tsct7sziozE0a3nKFNT9SixZttAOl6HRci9qoLsgh4hBy1Ql9qTZBHxu9c3oOqjGEyqaoUFRjl951nd2bf9PPDIfj3psZTG0m49CNtOZx3ruZwtsApCnNu7ehv9XpV255b0dHpMKUlErrXN+feXXwtKbECWKaoT23O5d9ODIKEv8zb2ydU4nQstyMMqyo6eX8wvVy5m//+t/xw3ff88MPP+jn9s4YFAI4RDoxRqZp4p/803/BL3/5S/78L/6C//Zf/Su++/ZbYgxWsImaQ7VGX1eutyuHw4FvvvkFf/4X/wnH05GPn74nGeWtNb2GStPXiJh11a8NPZ46omZatXU9eA6HA09Pj/zzf/HPeXr/BceHJ/7tv/1LlmWh1cLxeCSGQGmdz69nXj590tiwUmjNtKghEGLQqIm8KSWf0UzKTo21ESo41eoiA23UgZ5Gcdm92nSt2NZN2Qsh2vfrMy+i90wT2LZCyU2ZQ16pxTqEcTRxyrIwCVFD6E5Ys8anRG8b+uiz0aZhKxviOgcSpQ0HZ7/7AeSihlGto0My79nypkEewwDLNMe6n3XasnG+Xni9aBaxd04dWpPG8QyTm7c0ZLo6P/d8Z86IiPof9E53Tt3xmz7bixV3o/Hd8qYMrduNdVko5e6aPAZLTiCvq62/yrpQ5o4Wwb1mpvRsHgeex4dHWm98+vyJZblxOJx4fn5inmceH56Z5wMx/PzNo0oLbHXjUhZuWCYrkZCOPCUhOM/jLATXWLuntMyynnkMDxqt1FZermc+fH7hMAu9O1oLuB5oxfHysuIJzKkpFa2uiuQeZmLoUDWaJbeiA4ngcVNUjxWrn1WTv6kpksl+brcLIarZ4LLCsglejszpkeN8YPLCWi5cLp/ZCNSuWnVHITjheEog2ixfXq6qQ50O6qniBR/tTxCg4YPDuyGPGkVxU3bErGwrH+M+dAlmKliaOTBrX23mSoHjKTEdAsvS6K5YL4MBJI6UdNgmdOZTp/QPLLkSXKB3T6vCdcngVJLjvNaAUgMxRWIItsdY9Je5qZ/XBUSb36fTI7d+ZamVGBLiKk0q8bERD8J6rTRRluaa1aW8ODjZOlKbxjQJwtPDE7V2rmXler3pMxUch49C8YnTL05qrCcmIWyNbatsYcOJx4sygMYz50TjoJIP1JDwaaIVp5474tW/JnZFxqzX1drSqbMzOsCAhdZXal0p+Yi0SsmN6+1CbY3nd4mH2fEwKQu4sJDrK5dtBR54iL8hcMAR/4Nn53/u9dPjfsoKLkG4C5GdjAYBy2nUyUIXNUPwwPOxM0Xhv/zPZ75fOp9frnz3bz2StElxSW/alBzzpIiri+wxEL1rM3l96bAIrgZup694+MWRp18e+ae/Tjw/OMKYRiKm0bOTHA3dbON4wUvjx9fGx9fO/+uvGx82TwuB6J2aFZlhVWvaWNVNj2FdOnWr1DVTls/0niGCTDMSPX5OuuHZ5GO4/yoVTocauTQu18Y8G8TvhNuiVNiGNlJDV+wcTEFY1zHBdRoX0jRLdORvxqQoWLdIHS3GxQTmbyJyWmfbVD87wp0NuCNXdVSOD8GyXdVtuSGst06vQqs21GgNtoWQJp10GeW75k62+0EQ/V3OMmF19I2lHOE79KzXTHog3zrV60KlTpFaFHT7U0VseqeQtQBztJij1pQS71UnG83Hqc2OZRNyEZar0aqTmV2BGWKpYZZOjWG5wRz080+TXouBgkvwhINwfH8EHyh1pbsAeHpttFJpTvi5C217WXVRxrPezhYBU8ElnAs8PRzxXYczvaqb8XK9cb5cWZaVdc3MKTBPiePDTCyCTwdu5zMFz+lwI4azTV4tzsJiRbQvvSPpgE0JYbBBhkZwFFL6rXd0XG+lMUB4g5rbS6n41thu647c56LUYTUX6XuT40QNmrZ1MTdeIaXZkK9ixyXGPtDCsbZOiqpb7b0RQiRNM9N8MA1wM9qyNUnWEPs6zoE2idqho+jSqgH3rTVqyVyvmkM79G6D0YAIzkdiUufoVgu5BkorhtTo6lnNcTbEsK+HMSVzaNSsXTXK6HvMUBexBln1b9ViHUaEjvhgLBrNyhxGUt5HumgDgA0v6qaRMbVpPtiILmEvktt+T8Cd3VKtqFW9tQ7rnH1+8WrG1eg4y98bCLGaHmnOqE7OGx3tvHMdtCp/N4aAHeF2ohmlwTlSdDsD6ef8enl54Xa7crtdFcEKgZI3zi8vfPz4Ix9++MDr6yvruup90pXimpIiXc4Jx+OJh4dH/vk/+xcg8Iff/55v//B7Pn78iPNuf25LLoQYeX5+Jk0zv/jFL/k//pf/Fc/vnsl54zDPlG2l1o3pMO3NTM53JAi0QXLGAmlNmQzz4cBXX33Dr3/7G969e8e7L77AOXW8PZ0eOB7VROjd8zt1fV4XRfZr5ZM1tc51XNSom/PLK9EryjDP855NrcWlRrPZk8SWiyYCBKf6cESHKcYgUBaPNszbltVkx62UqiZ7h+Nxz4bWGkMFTgNNUp8QffhK6/Rc8EYLdqKDnm7zaAWJ6z9czpR9MRZMi7s6HA5qkof5GNifUjICpJjUUMpiY/SWF7ZtZc2Zrb6wruvOZhhu0WOY5rzfn9V7LvAYQuoaHGyNFbEhV1NHa40jUn2jN72ys01XUVg1i0N0/YxB82udCIc02brsmdOED6rjf//ll3z9zS/44quvmKeDaslnWJaFshaeHp949/y8mwk5k3h8/vyZy+XCP/2nf/H/24fx/8uXD+9wcqMheEn4PiEtIm4ihJn3yVmNVvnudTHwIHNyM8kHel8IvjFPgdNxZs2d87VZIrgHPHT1SDjOUGqkNo/4SK4bl5crk4fWA7Xp78qts7nG1jrLtuk6IpWnx4kYIsF5jrNjjonggnlHOI6nRJwecSGxtYXcMwUdfCjav+Dxqk8XT6mZWhqlKnOqWSyNE8gtsubCljXnnl5ZV/NPGFCyrd+HFHFBjyMXpQvjhNw0GQBDxWvWlIfWISYdSFUHBIcE3ed9gDQ5DidnTBjZPSa8MzO00LQmSF6HVKWpF0xQKR8eujMjPa+pB+u2qvGcMRtq0wiiRtehkDc9dBDNxa4Ff3R0ryZO0h1dLVC10HVQQ+NSbixlY8sN7xyPjw/4200RVAfX84YLlVLm3TzRB6N/Ar02KoXsNpXudU/OK64XpBeymJO+qGZWeuDptHLpN5Zt5fWSWUvlto34JMdp9swRotNo0eg7c4IUda1ZNvVQkd45TRtTaOZH9IktV85nuOZMl4UaAr6/w3P6Sc/TT25sc+nE2PGmXdJ5p25SOliv2pShxQcGoE1Jc0N//UWATwXOjfPaaUXoxVE3oXtBkoOtU6LDz47utGFqZtCkzZVS5Xh44PD+wLsvD7w7eY42kHtTDwM29BxD9z6oilpQfTh3vv3U+fYFshMNVHZ7zbU7P1ejBJcCeW20XKjbRisLUJAYkKgOyC5p0cfuO9J3d1/coC4pfTKavMvxxlDLvXFgxqYqNkFq+2fSz2GxjygLZDie9bsd/6BayBtactMGXWyyMgpsA0QU5TU3aU1VE2jqbDyQZL3WDUrB9YDD7ei87lWd5nQjLRWlOW+2cNjv0hw9o0DYFF2z0cYQQvbNXp2UrQkt7I27k44EoGgzLyJm49GNWopqVqrqiIsZ6NhZo1tB4LwV7IzmR52SdQovuyvmQIPxDj9FXGrgCzLymXZdyh2J/Lm+RCkVgCjClzej/jZ8iLRmBga1U4sWIuu6sCwby1ootZMM7cAFJDhcCohfEZ/NcEp2De1ONRsPJrBzQf+D5nY0rtbavP2Z8XfInS4z0NydTPfm7RnuwvrSDSpbsW3396AFWqH9toAb7z/eUM1htMjtpdpDKPSuCHFMyYo9j/S6b4R6j7n9oe7WsA8HxuB0Ge7NclW7Tne3dVU0tXdDvgZNWKnC6roM0u5IlHOO7hxdHE0sNzSE/TOEoBPZ0RTvi4gZHPRxHPa5bcCNmJmWiN8HE4MapswYyyG0Irm3utPdmsG6wxDnbWPb7aoOGqL+VduvyfhbZLhEDlqPobG1GmIERMzUJtr9UZXi1u7vpz4R3p7pu2GZc6jW2XtSUArmz7yvVaR20bgTzVTMLMuN6/XC9XLmdrvtKK46dSqCPtl9GmPkcDhwOMx477ndrvzww/d8/vyJ2/WyI51iiHeIkTQlHp+e+eYXv+Qv/pP/lN4bry+fdwZF6+pUSlQEfVtXWwdkp7uxr7Y6aDk9PPKr3/yGX/zyVzw+Pho1T1keh8PBBk2Jd++/IMXIti6st6tqN68XQJvGkYOacyZ4NWnzMdigWQegSkkse2Nbqg6TXDOGAG2XNoAxfJwDY46MXOZSKs47krg394muqX9qjnd/jlST28zTwtaw8bMyBF7352rIlRyyPy+D9hxMMz0G1Iw/Rr9MKbHljGSjctonbrbOLcub3N9uTtHDcGkcz041viO398+mbBp1QbZr2zRz+m7Uw/0eEl0D6xsjvPE9zmmz4M3tvdn96gxFFhHmedbonknlHIg6ofvsd3OqwT4YkhfobNvGbeQd/oxfIRx1iMhNaa/dIW0Y9QlTDJrL7iPxclOGnsDBK/vw1jPBw5wix+mAo7L6jZEd7CSBxaDFoMBIqcqwKLWz5UqwWqbjlXpcK90rm0td6xv4ri7Lth9JF0NQ7foF0fxgr9TAUrKx6bxR/m0IZfWp3mdizVCkd0cp6JqjVZpRbpWRsUmn92z3vBbLg44cgrdhsUUXme5sd0LH4qyasjWVQcYeITecjrUs6AqSJDEPDr0WY49Vvb4e31u2mT2wWtpoWYxnSDrQ42ndMln1eW7o94qX3axOxCsKGzunWcA3RYRsQNSAbk6vLqkHUquVdhMO84E5TnuOrQ4SV2POFXJu5NxoLaiRbFcjuyIV1wu+KbKj8gtdrVusuKg1U/COFnR4dssbNGHdGktprLmZaa9GnmlqjknZGnY8usapj4C26ckXvCt6bbla/FJgqwtNhL5d8G3C9f+NzaN+yBPPHr4KQ7yri6W31WtdM9VQoCiWQegcPWij8E2Ar99Hek9cl8aydi6XxmW9i84/XjufinBLifkxcnrW0N7rufH6Upmj5zg5vvom8ue/DPzmK0+05jejDbITbLppN+hbM6HSWbfOD587/89/D3/zQXjJkXn2zGlMK5V6nDfVuW6r6ntzbuTrhV42qAv0Kzh1bJNwwCULNmY0lkaP21QTIQIhKc0Jrzpk7yFMMHuL6MHQ4grXZbxVJ026CXrRDlSkK/JoXXu7ZvVuAcuQ+gcmSXZkvQvnz7pphsPQBozmQFvCkqvqS4uaTiBCOCYtLlunXY0SuCyU5Ag9kB4SNYsi2xu40AlR3bERbSw1QlI/9PHZkd4L589FNQvNESZ98Bs22d70M9QuOljYYNs6rRcOszovx6TZmD033QQ69FUoruESPD54aKqhPZ/NbMbYAKDnOdAJHg6TNrG1dF5vOgx7PIxJt56zUiF3WJuQsYnDsLWuFvn0Ux+o/4ivGMczIXTx5No5f/7M6TATp5lWkjUhlbzdyDlzWzZeLgtbaZweH2jpyOJm6tWxVuGahesaOedAFsetNq6GcKijpdGNZX9CAG2iemMvRETuDe69WLu/tFDq+wBqvIbmDIHSGtuyIXhC0FiehuqwSs5UaxY7muu83DRv1YdANArz9XLZGyzQsPM0ax6d8wG1pPc4Q0jTNHE6nhCnGts0P7DcbuRVm2hn9OtqVOllWemt4p3ji69+YceuBWypjWVZNLKnFKXwp4n5eOTp6R0xTYQ0KxpaCnnTjK2YJoIPpmnKJKMPI0qFEoQ0H/aYn9YVcXVOrfS65YhZeU6aJl1LBDSE3opsdOhQ+4ZD9Y3i/W5wlw3B6jsaOwqGOi7W3tCOS70j+poLtt8Lzjkr7IfGuhk9fSDTWuB570kxEeOEC1HvlKasGOe6DgfLZgyMQA9BBf+iTax3ojnAzuMd6hjvf97Mi8v5zPV24/X1zKePn7heL3z48Tsu51du1yvLstjzp/q1oev0wTNPidPpSGuN19cX/u//t/8r66qN4vn1hdaUbjfPM2GeyblwOBx4fveOf/rP/wW/+vVv+OYXv+IPf/gd5/OFT59eWRZlR0Tn8FNgmo9cL2dKzjsFbzh1O+/xIfLlV0pn/j/9n/8v3G43pSfv+vVGigkfAofDkXfv3jHPs1GWn3n/5Zc4hJfPn3n5+JG1bPTa8D5o5m0MZBkTM+G6Xc0Aq/6JRwUDORq/25zOJXgoTem/taozsumIl9tCMRMeZwyiQTFzIqSkzLZmRhMdZS7VpuaHWmwOXZ8+W0p9H41hMzq9w2bNnK8Lz08PzNPElA6qVTUJgDTdg46nE6fTkePpSC6FZdnUjRWV9DyEaFKt/GYQOFpQRVDuC2vfm8bRiEYbkul6qQ7cy+U6Pryt8c7it/Seq6XsqPttWRCBGDxLXsjmlv7r3/wZDw8PHOaJP/7+77heXui1cJy+5OHhEdAGQ7WaOjw5nY6EEDk9nP7Evfn19YWct73hOZ5+GsrzH/N1Oj1zPVdu508cU8NLJ3TIW+Z22zjMnuAnvDhOYeVIIfnGFw8R8ZFvry88HRNTesecvmCJheCuFB5AEuKPNK6sZeV4ajymE8eHRz6/aHyNc9PeLCZ/ohZ1av7y9ETujVo2i5vCvFKE6J0al1ahNsfjw3tiEdpVJYu1NC7nSu+RNCfqthK94zDPTPNRUwoa0D2OxMPpxLZsvHy+8PSgRpwa03g3d6q1kLe8PzMjIs47x5QS1QZA1+tNEdnw1tUbxuCp5s7lNfPDdxeQRkjgIkDTKMeaCT4yzyMKTM20YtCGrdOV/p8LJXcalVazGr4Wp+CMXVsvKgf03jHPiW0rXG+ryqMcbGXDT4E5nritG7lCao7yY+Wwdh7fCy5V3NRhVa+DVgqFRpzg9E3U41grP/7tC1sr5FY10SMGNao6BMKxcT6f+fQxc/lYSeHE9KDMu/PtSiRzmIDgSYJJKTTz1iXopas5pgtG2fZMIdKk8bJdtYe7ZLbqFLk/Bho3zsvG5VZZt8paOo8PDvC0GvG+EX3Fh0xtN9b1hkilVg8ESlfPlutrhXoBMxX7X3r95Mb23/6Q+PKhs0nj6eBITvWizZySax8xKp0iyjX3QScQuiGY9rILj4fAMXUeD+qmVrtjrZ6XW+eydn7/2rluhdfvGn5OtNJ5mjsP0niM8NuvI++OjmAoSKs69enNiiGa6ih1aK8oXmt8eqn8+Nr513+Ab18dtyqqD3CiludFG5u8dpZVG9u8qO6r1QzbWU9szxrzEibkMNOJtNzobrdg2B+64TalHz2pCQSO2oRcBbIaRIFScG1v06FP03gM5yA4YUpCK7oNxSAaebPpBGoKcDo6WnOUKnxeOmXRTTQEyyYVtxeIvXpqMVMMo3VKx9yfG3WpVJzCMZtN2USb7OYC1R1wc8RFT3CNZk7WriuFKbduWjxwvtGbTui8E1KCOerwgNwpW9sdK8vWaEbncl7p1ExeXd+xrLAKTWsOOmYG5SE4pQ/7YKwCmwh7B8eDLi7Bd5Zt9wahmanULNp8dxHWqzay2lfdu6dauwa/r6o3xvSQqt3rpnf+6ez+/1ivMB0Yxj6CTmCfnx45zBMxxt08qbdKqY11q5wvN1prxOB5/+6Rykzuie9fMre18npTtOhyvfHtxxu3rYFT7bHrQuhO3VcFe97uSOvbAYwWdvdjtV7vT17/8P+/eQNabeS+UUum1nSf7PZBhVVUQcTt5gbDwMS1Rs4rdMjbYijXQEvFEJ6K6xYTY7Qk8ZGYtOmtZoRUNqUwhxjw4o1eXC3aptBrJsZEShOH48mavc5yPVPyyrYue17tPB84nE5Kc46R7pzltRbT09a9CW+lWFOpVMBhEDQ0x+rUrIW2s4gAb5FfiEojvFEHnfOI1z/gd5Rmp3ZuWjzWXih1M5S23pEe8aqpHciryO6Ke0fk36DivBlujPuij+ZY71UdYFiEQ6ukGKF3QvDE6PHBGCQdXe+sOY4WTdSG0VVXYzIf9LPqPdlUT++8ugb/zKdU55cXPnz8yLfffstyU6T2h+//yO16Zd1WltuVzRzBa22mj/ZczmeW243b9bIXfeuqzee23VkCtaN686ZunENXOc0zMWl01ocfvueP3/6Bdd3oHXMM10zi2tpu3KSUd0XavDVs3ge++eYXfPPNLzgcj7tWtJq+3XnP+y++JKWJ4/FoyLK6Wx+OR57ff8mvfvPnnB4+Ms8z5+uVLW8stwVBzW5yLoZmNDO5NLohpvvc9HM326/UiKuQRH9PfwPbq55Uc4HH8fkYrYmFy+tZGRiiOnQwT5Jxv1uTK2bIpNFUSg13ttC1qlrvLsMxPZCCp7WqRW+BNHke371jXRaW5cbtdlOGGcVo51q8b3lcd1G395RI8xGcR8Ks7KnrlW1ZtH7qhmDBnS0hQvDeKNVKM9tNhiwWrJZiKBdW8Iple9uwuXdut5vR4dX9NoSgv6t1RDxPT8+cTie29UZME8fTIzEEjqcHTg+PhKgymd7RSDPG79FB4lu+zjSl3ZH+MLfdg+Hn/OpFoAWcTAwmHaJZ017geDwSvA4aJnOVnkXdqWt3XBcoRMRFStO/nyYgBwsxq9ReVFqUMz5UUuyIVKCq2VppGFURF1QbnYs+1zEEKnrfa5yeNnZWXdtcQyUrKTikXum1Ep2j2vA/Ru0J5jmQK9TScMlpRnpITNPE4q/0ttg11fvPWx3ovFP3chH6yEoX05tHXf9b3qh10wgsH5jmSZ+11gG3M3Gcc6TZ8/gUeZcjfoKtZMS8XOaj5/gQOT1O5tqvWa7HQ4RSWTI078B56tYhdII35iG69jl7PlqrPDwkjT6KietNOF81gg2nspo4R2bvuPVOr5W8qTkUDs7nhkRhenKsV4s5cp4tZwqZXK+I1TB4x5YrrS48Hid1re5KmfZem3efBJ/UR8BXR20VXz2lVxZWgrG5XHM48YQY6NIQqcYI61C1ztH6uu/mXDk3am/q6yOJUhdq7Zwvg63qyVlMwuqYUiQGR8ci+JpT+vkWuC2Jy61rTFlYSRZZ9VNeP7kK//efIpfa1Ko2OE6x46TirHMtfXQCFhQuZm5h9ckoVgSliOrNJfioF692uC2aHdr/buP3nysfP1f8oyc44d0Mz7HzNAm/fOeZo+ARaIZOcnf00gXWsriKERpa44fPld99gP/h98K1QxXhGASH3CN8CpSlsyxGV7hlelnobYV8VtRBOpJOkBJuVjF2s8Db4YimPLmO1EbLm25aweHwNOm05im1m+5Jj9mHQSkUoygbB18wOpYivXSdmG1rY1sbkU4KwvOjNrVrhpcblE31qcwNHx0hKi0AROnIRSOCahsuzWJWpZ2WqzaYDnpuBA/iOzEJzQfERyR5NUpzVXV1RYXjvbIbZHRzvBu8DO+FGCBNEGf08+RBb5fdLEssDNxHoyqXYQLzJtu4KdI8JHMhwHxg11Nr46b33DzbeXWQLxrp4ExfqAWMoX4m0ndVNc9ve65a1cgsrzrF6nXTDyBeLe39iDH6eb9cmukl08sNoRG8Y348kSbNKr2sI1pFC51qWYm6OQUeHk5cc2JdPR/OL7xeFj6/3shl43pb+f7zwlo64nTjRTziNCpkoAC0umtf3zav+u83lIs3Bct/+PrTJhjUsAazux8aOauu9kZ2uKN2uNNUW6NJNcpM2yf+OvVPdKPAKH3JqJlmohTSRIwT3kdq00agZZ0qOx+YQjIn0Gz6XrVYjzExzUfSdDBtf1UDJTOBSmkmxsTj4zPT8UhME83kCrUWM80x2q99tlI2M1HqlhNox/g2m3c0fnsD6/6ksQ2GXIo1Hz5qELs6P3tkW/Q6GorSdsqpivnVnMfttO57c2oIWWc/t2N4MBD7/qaBHdTSobMdx+68ejh0Gt4KWB/cm1zusekoVUdEC3t1T9eBAIaKicRdc1tLoVEpwSvt82fOv3h9/cyHH77n93//d9RalEr8/Xcst9uuyy6Wv1xqY0RZ3G5XemvcnN+NshajLNeR/YkO+Yo1RyNmqZvJnNJKC58+feLDjz+aKZnqyPKW94xovbcMvRAtaDQCSO+tr776mi++/PJP4juGuZoTz/O790qXPh7x1mRu28Y0H3lEqL/cmA8H1aW9vLDcboh7YbvdKLkoOlvbvjd7G/A6pwPYZV2NndRIU1KacW241vFv7fOdw/VRwK04VHMXgprLIPD68qp1jVfdqdh2Opzde2d/JoY8o7W25wbTKqWrV4lzmvEYQmCakzbft5VcO6U5DsfTnlv8+eMnqjSqiJruoUOdbdN10KFU6pgm4nQghMR81Axp6ULPmcqQQ2HO5IMuPrSFXVFhI0+o+d4o3Jtte3pu1bfAKwUcXZfWVV2RR3b24XDQLOCin3c+HJmmmdvlrMd3MBRuPjDPen1l3B+GrG9BdZd3QzJDleNEjFjO7j+OVytAd4qctm2nxa/bAr2xbBNTckRxpODVCMpPuBDUQ2R1SNTBVW1KKU5JKM0p1VcatVcalVwyzhe8s2aFpnnCGGOmVb2GoVNbpndPjIFaVkCvyzDkEyKYMzBd94ToBMqN1jPBHXSt7kKMnhgdh2liO2dFWsUx+UD0njRHHIVWPHTHkBs5b4insxpOIDdz0XZCCmHP091yo7bMuq6kCUI8ArrfjKd57C0xOU6Pgcca6L7yeoF27UiB6eA5nAKHU+TlVlTuRuB4iEitbOdsUizNoPVOKboiOjivNgzsosDNw4PnOAt+TlS6mty2ihTdZUJSZLUuG3lt5K0xDGnOZ/DJkx4d8n3fh9VqhrWxtoWgCzbikprbLhtHW8+a7a2IykJ9cvik9OExiG+tQav0pvr30AJ0IVpWcWOYuQlV+u4j5OhWMzdK1UgzUORJRPXarcLtNlh1jlqU7ejFEVIkRQ8s9OZoOLYtsqyB2xJZro3ShHRYmWJSv5Cf8PrJje3HPPHysfE3nxpfzhvvpsZ/9q7y1RFOSfWSXu62OUNhMaZPvQu9Ak2MimOUt1W54707XOucYudf/NnE86nxGAu/+7zycHD8y99EHlIgBW2QatOL69/uPTIKp24dtTZt333u/N0P8P/4K+HTTViIxCgkKxLXonmxry+KxJVlo5dCLwVZXujL7+nbByRNMD/C8T3+cFQL6jSZI2Gne3MdcihluHcInhBmhK5pSU7zrmgaUbPUTuvO6HCd6LX5mmeld9QG0UOKnZQgHCNi+tV+UU3nwxGmyRFnrzpk0SmKn8fC4KxRVERzaIDbZvle/d4gHA6qWfHN0ZZGzx28NpGtokL26GBSp2EvXTf9pNlbh4Oj1MaW9WFqTU23YtTFqfjOmvU8hIPS1uPaWC469T09hT2YulujK9KZZ6WmpGDNL53cUVPiAFEZ3mqTHtSJuhZHzkLeVPcdvNJw76Efds9a7yMobf50tMFC6/r9DrYNemkqwl2u9OUGy6L37hBn05E6Ac8/9bH6j/MKMy1n8u1Gz5pxyHRi7RZx1HTDCd7hZyEFT5qC0pkk8sOLcMmV81b4++9e+PT5zA8fXzhMnnXLfPh8xjnH+6dHfv3LB5ZSua6Fzx8/sC43rtfrroO6o3UCbxqJf4ja/sOvvf3/432WZQFgRIwM5+dlK5RsttdmJFeKIqeKkGimaSlVQ9UNzh9amsPpgZgmpnmmW6MUfdgnyo+PT4rM9K6RFK0ZEphw4ricP1NqJVcdioUQCOnIw+MjaZoppdjwrYJ4Yjrw+PSe0+MTKc0c5yPNXITXZaE1LdilW6ZlrZQ91qTifcTHxDwfNRJjOrxBRq2BFNvszdxFjaQUYXE+Kl13TIxElKKIskuW65VSlK2g6gK3jyA60ERR0bpmpSOa/8LQD2ksUaHkbIVv3xkEfcQncS9AxI7bx8niZKoNTpPJ3p02JajHw6Zdu6JtZtyXnFP6cQfpjWXdWPNKMT0b4nXwgTY7AndJy8/09a//9b/mfH7l5fUz5/OrGp05dm+Fkk1n1nlzPpUaVxkup5EYu5o/lcKyLBrlJtqkijmGO+coJfPp00f+6q/+ksv5lcM0Mc2J919+weEwM9D25XYz5FXRT22OtOgW56hN5R8hOL7+5huenp/58OEDmzEA9pil3nl6euJ40kxbdcvVSJuYEtNhprfKdDzx+P4LPv74I+fzC3/89vfcrje2dWWNkZpX6rbinGbxbqUwHw+IOENrdYCnkV9CCMroqE0Rs2meiTGYQUwxoyM1GPOtcb1p8yGmzR1soKFvHOtUjNEa2k42J3AnnmVZ8F7RixAjxKh6/qCa72medY/1N3IpnC8X/u53v+f9u3c8PD2D+4Pd65bDmwvX64W8bdRSwffdVTjGyOPTE++//Jp3z+94+fSJv/w3/yM5b5RSOM0HSq0stxu9VdV7iuaDihOW5abNrQ0lEXDB7/dX9FH1sqZ1r1XzvoeEoeXKelsBx5/99s/JpXB5PfNXf/mv8U44WhNfa8F7x2v0fEqenm9QN7a8MR2U1ixo3ZktO/xOl45/Egfzj+G13W70Wgkusm0L3XViLNxyY6uFh+VEE6/JFiHgJNL8E5c6sRRBAjhRz5PGDaTQJRPSEYfqW1tTCU3O6uhd25XkIR48z3Kii5rs3T6dORwmjscTrqiWb/aOVr3F9ATyVmlVeD49sm0bnz6/8vT8nuCgby+I2xDX6FL2rPPj40GbYiB4dbg9xQfmoJLC5fpHfM88Hjy0Sf18OvvwI6ZAjAXvHLe80lDGTZoDc4q0uoFUxHVuyw2Cw0VnjsIqgzEyEd17bmthKwWfCtOx8/g88VqcZqwnoSUosZM/Q80OIfD06Ji845yh2/vHCGn2xDkgfgzKQWwYs+QbnUpMHTc51uaHLQu1qRQzbjoYPD7NbIvWEufzhaUU+nfw/pvI4RhJh8C2Vm5L59DVGExtFLUeKq0bvduxZTPH9FBeNyYaT234bajRY+/qbLxuG9IChykpUOMClAFG2pC5N0pZwKs86PH0xLWKXR9NTslrY5oy0VWSn8nZKeXY3XRP8Y4UH9SpPDhC9BpdJYlcIyUnXq4bl4vj5cVzeAg43+lknMv81Jb1Jze24oRSHVsVpAXy1km1cfCNOYCnIt3TzYFtaGl0PRt5k/pH3lJI+2hgxiRfT+Rpcnz1HKi9ckjCQ4Tk9Wdq3YfxO1qHXVix93U2UfjxtfOHT/A3H+A1ezY0b1Qnp2Io3F1HW7NSBqVkKCu9nOnlAvUK/oDEiByO2iE5v0+CnKgB1Z1OqTQNNZsx4ygwF16xRVmbxd51AmqMHly/m0U5J3hvlvetIxVc7wSvVJN6FOajwyfHWkzH0zVKyZu+uDWsqeuIV3R6WYdZBiAyvGMsOgi6E+JkVG9jFY3eYwi/kU5z+qcjJn7viIcoukBoTTqMhIDS2az4UrQX5tkxgkBG3FKr3abHmG7LqEcB6qZGTTYkpjMck8d9YaiUU8ftENnp1nRr/NGmfkxjahFwHWfh2LwpULRJsmGMNOiaU7ij31ieWu/3lfNn/LpcF9q6Kercq7IIWud629hyoZZNNT4ODinQBWKckOlE6YFl2Xi9FT5fCstWuG2F27LhXVJ0xxyHnRceHw6ErYCsXLxjGyjcP2hqxzxKAVtF4u/jh/sl1b+W/Wtv65a3GWrODQMgsbD7rI7IpZhrZ1YH4TfHcqfRdtPpRVJKHI4Pu2uw3l5GtTM6jfNKh211oLyNWjrShebqbt6jU+Jk+ZNx19WWYuiuiNKPQyclc/kdWbL2vkNKoAwYZwwVO5YQ6bUQQtJGPM2EqP89qN+9151VogZWA2VRtFOLVqEb9bTZulVK3VH8bV33SCFzJqCa3AJQmlgfpCy9UKOxVnTZDKX6PfppfLY+MjUNSVbg9U4f07XKIzi8qI4/WKal6qtAat9pzqNJdk6jawTdR1pre0wJXZElxn40TK1+5jXx93/8lmVduV4v3GxYxKDd2TnXUyl/gqArTbZTi5kZ2dQ+hMjjU2JZV3XCHg/cQCGdGqXdrmdeXz/z6dNHNXWJiixWy1EW55TCLg7nBt28IXilEfZm6/89CuNyPjMeeTU/0kHSfDgSfLRm7UatlWTxW8550nxQZo8PlFzwIVDt/dbbjRcnlC1SYuT6+oIz7eq4b2MMln3cdqp1iGZ+Z8+ashoCcU6wLjbk0WOtxfIou94/YnTr4VzqXKCHhrRGNhMtcbKb2TgxhBQ1OFRkGXwM5nQdFfG2tXHct+u60lGX9jGu2vMNRXTYPpgPNpgYz33r6jcAat71xZdfsaxqNFZyNqTorieeDwc1xRPhcjnvevhW1INjrIdqahXUSC8Etrwh0oyFpuyQkBI4oVS9VsNM7na9aBJBetb1oVZaU0bKaJoBWzf0ptzNd5qYe73ea955/DC5+5N95uf7OsyeLTvaqsMOjbpx5HZHw0a6RYwRCNTuWIoCMz4kHNGeucUSNpoa9bROzeYaitB7olVPlcZkWfUez1IKpTdCtOxpMyYTNPd1jhHn1fnbO9TgSoKZQc2KGPZC8JuxFrwBEwoUeJO9OBeIQRB0CNLNSbvVFZGufydhr6e8TybbqXhfxuaHWK8QzMhq3XRoNdIBkK6pK8mrB04RYyNopOUYNrdeUKNBr4h2xZreTu3CumZaxtzMOzXoeZWg3jAhVdIE0+wIQSzZ4N6MiNfIyNumbNdq6x/D5wR9XrcNTu8fwAnLsiLB0bonr+wodpzNc6YWfa6DR6pHhs7fhk6t6vAW6cToITdk0+SS3o1Na8PyWqvJdxrX20o6bUgITFWoyE79pus1FA9t7CXiCC4yxYh3G61mgtPhQ6s36IKTRAqrrpGt05veG9OUcK4iviM9UNtELSprFSdMk2NKIE6zg+lYFOn/8usnN7YxCFtXqu7nNXK9Na6fKt88NL44NqJstBZpbVJITJTming729CapzVR7WtXoxG6ozWNm6lN9r5gjo5ff+l5Ojhch4OITX6G2go66lw2GEODghyDZifVBn/9g/75yz9C94FgSGPXFGozJdI/ZbPFumYoC+Qb5BdtanuGaUaOj7inL8A7mgDVnAq9qHV4rYqcGJ3Kh0ia1Bm1GP3VeYCqC1WxhdcJylhWZLJ3RSq9g+CHy7BShL10Hp4VWUzRczp4aoeXBcbinuaBksJ67Uyxczo6eu2sG1y3bp4Z5iZsdI9uDXcXYT4pkrxubxqMCi03tpsGsDvX8UE1AiE5Sle6QwqOeql6nkVzr3RTxqhpnbkrNfnxUZAYdFImQsl674TQd1dkseZHNzJtHLwhNA2QaMZhovdcd/q10GFysKg8RJt8c/XOazPhgZqEhQhRNGu3I2z5PiyJ5jXjfEetyootJNpN70yBfwR6no8/foK6ImVj8rpg5Zz5+PnK62Wh5JUglegb33z5jpgSPszIdIIeWGvl4+uN7z9eWLbCuhWWLTMn1ZJ6EUpvSNfGNq4btMIHGUOfPy02BpKE6dHa6Cr+Z+sR2SlKVrf/6d8aa0P13boBljJcna+2gVaLm2Cnuw7NmL6pUuYOhyOnhwcOxyc6Q+809CFi0QIRfDDjCMtg7aZNlGI6V2wI55hPJ6X2YTo86ZS8kmIiRNXgYBmrwSt9dsvbDh8qQip4i90BUTqX06iytm1WBMzEELQZD1ELnN7oteC9GiPVnu1aYJRcj3g0picXQ9UVzR7Us7Zlo0A3Siv0pm6ZztA9MX3qfn2dGax1NeCpNdMM7d0b3VqhD51ww7mgiJWLYA1nCHcHVhkGT9IJVlTHOOFaw7XGWo1W1a2JEqVit6ZZ7KdZzadab2wdLaB6ZWhyRwP/c+9sf/e3f6NFWmuGvmqDGlM0l2p0bTJmzWhsgw87zRg6rWus1enhgef3X/Dx4wdDMse1UZaBZp3Ccr3y8vKZ7777I2ma9uzYUjbV70UdxhSvSN7IcBwyIVCUP6ZI65V1W7her0zzAR/ijiq+e/8lp9MjtRZeXl74+PETtRYeHh7UAM17DgdlJcSg+avH04nHp2deXj5xPZ+1KFoXyrqyXF+hGJWyVURU7ymiWrV1zbpfz5Mi3YU9rkZNio5wFpbbYoMDNVNZto3WO4cp7vT/2lGPgRBwjt0wzvvR3GsX31Dt75DYjEFOSjrUSuYQvUuGnOZCb9tGB3yMWDm1DxS0sbWYMm+Zo8PFVoRcNn744XvTljt+/ds/43a7cr2e+f3v/n6P24oxMU0zD09PpKRO+X//u7+jVc3Czjnv7xHMkC6myJQSU0yUl6z1XtDs7RAip8dHbsttb0SH7GO93Yz6/azPprmq0/tu2IfI7rIuVbTJJeC943q92GBTHaGHHOwfS2P7/DxxuapjbQqJGBwxes1TLujXJxVqTGmi9cC2CpfcWIsjThNSI1I9zp8pXXaJW++N7XbBJ61TaTO9a5338AARZQfkcwUy06zyjrK1fcAdnCPEWfNlDbDBeQSvJkJzQh1tM1PaCOEBSCxrU5qsgO9CkEBKR22UUNCn5kzOC61uhOCYRLXC2P6QwgGZDxzmjUvcDLPQ9S2YzMb7wPV2ZmuZtRaaNCSAnxzxGIlrpCw6OK1mCJdrYcuZbJF04vQZ23JnWQu3pVGa53xdcbXzFAHX8E6HfjEF0sExHTLTQTieHDF507VWA3kEP3m21vl0zkSnkU0umGTRCTjPtlVaKcx//ksIHrme8VuCUsmr0HKA5jmctNHONeOCx0WN/guug6jDuw4KNFa098Y0RWVXmXQRq7urrcvblpn8TC3w+nLGzYmK1QTNABsPPnWSC7iog4HeCg5H8hPHeSZdFnpdSa6SHOQ14/wzwR84ThdyVo+aWjoyOU7HA7W90nuBHsjFseZEd544dZ6dxbWiJl2tq8fQT3n95MbWef3m5gQytEX4+FL5qz+ogdF/9Z9GRdXYuORGw9G38GZ6KXuxUIohnDLQSm3atmbdOiYYd07DfRus9U5UbM6MILpTRE/GMVpjRufDZ/h47vyrv65cqidMQQ2s0N9Zq1GBN1hXo5reA2yhXBWt3T5qdu/hS+ThF8jxCYlBp0FO8LOn5kKvjXw+gxkueaPDaLpEhwCHaaAIyk0nV7ataBxHE/LNaY5mFE4PNqHtHRd1CiQOjsdACmrI5GZ1Br6sarFdmugiQsf5qg+9ODY7nzHB6+eOel84QjSkNleb/ohNWJSekA7aGPtc1bSpdIKh8UE6tIqrndCUzllbYH7WTeVP6sIOKXXN1NXnj1qEpTWmBPODg9UmTTahjSIEp8OOXAzZppObToDT5DhEZ1FMnZr1exR0sinYSydn/ftclJY6RXg4gH8Q2jtP9JZ56wZa2OhVKeDrqtTkFuE4w+HoCD7x8otHzh8jr+UCYdZf6iLDLOPn/rq8fLZnsRAeIrUKHz6u/O6PL5wvN54OnnkKxJC4LI66dG5lo/jPFBy3pfD77z/yd99+ZNkyy7qybhvff1RaXy6Nz9crW8lcc91zBRHV1/nooQwEDytkhk2XncCfcB4Hpvs/h9xezhdEPPPpCRgF9bD+N2MU7nS1YXgUkhbJp4dHpmkipZlSNLKk14LEaOiVFrw+BIRKLRvX65lt23b6J0kzb+M020fqSvGx6INt3bRpSwdyrWz1Rt5Ui+aTN82z0yzbmg0l1WloCB4kGLra9nVlZLl673CmKx3omziHT7PpbpS6xmj+OzqM67CVQq0Zp7MvHJ6trrRaqNkKCwdeRtNsjuZdfQnamPEYGkpvlLzuuuCa78h2M5TKGUUNNEbAeW9snKGhNTMfMB0Y4IQ4J9OVcY8P69UQakPAnBX9pvd7XTdKMxdsM6FqudBscvY2q/Pn/OpDp25O2908BcZ5H1TuQe11hpxN04SO7swIzLSzedu4Xi4mo2nkdb2jfSP+yKjvr58/8W/+x/+Or775BfN84Ld/9hd8/923/PjD91zOF2VGtM7T4wnnnFJbB7bY1GV1uV74H//f/w1Pz+94/OJrfv3rB56fn3n/7gue373n6fmduqBmjabR404cDgdr1BzFPpN3gdo6LiRimpW6/H4jTRMvn37k5cMPPD2/M7q26oBrKSx9gaauwpI8jUbZFt2/LGKEVinrwuIgr9vuwup8YE4THSFXvX80z7bQTaPeRTS6sIlKIFq+sy/GHSa2NpSi6JN4xCeaixQJ3JYr26YVndj+vtwWzq9nkjW249lwTp/9TieYzjSGqG7SxyO9NbZl4Xy57YjLNM/crleul+sbXwI4nE7EFHl9+awsl3LX2fWmmt4mHdeb0Vv12X04PfL+i/dcrldqU5fsGBOH44l/8s/+GdfrlXVZNJqnZK0xgjdWWsMb1dyJ8Pj8jod37zicHpmPD6TpwPV6pZRCCJZZ6xw//PiDDsXEK8vmcLC4k38cr9fPP4J0nh4Tr+fPlNbwvigS6x2lZ3JxbMXTibTu2FpjLZ0160IdWBDZ+Pzpe5rrSAxUi3lZ1wuzPScxvsNRCRSOXmVrRQrTwUM44MqB5VZZl8at3DjMBx6eT1TRQayQVefrAk4SGYz5dSMEYTp+wXIVavV8/XxCjYEalQB4enUcjRVX1hccjeC1Z1DPsYYnKvuhJV63zuV14dPHG7db1jXeqUZznmfE8mnPy0qhqmGq99rEA4/PJ0Qc108aNSKi6LUPwuEY8RzwS+Z6q/igWMVy3chbUSPV3BQJi5l0UJ3ymleii8Qp4Zwiza1BmgKHg4PS+PLrI49PB7744qgGqlL59sczzXfmx2Tvq8yyfM2sOXO9LmwlUwSK6fKjD7x8UiO8f/lffEk8bJR207hLr71G8hVco7PhYiDiybmwlszr5crzF5H5FDk8Brxo/3E8RPw0oov0+ZsnPWelFDYvqCuQp2+N6htyE5WD0ug902qm9czD5Hk+BN4dI3MqRK9XW7s/z+Ppgc+vL1zWM22NZCm89sThqNR6zwJ+xfcNXKJ1TwlRc4d7JcbGdek65P8Jr5/85PdalGpgyEAHchE+vHamIHxaA++OnSkpzZPalEqC0DGKsphpyzB8UphGzYB6pzUZLBijPen3NCxLFewv74WT4Rh7EdK6Oit//9r54+fGx5tormqSHdlt1r8OyWStihB2E1BLr4rQkrXwmw7qSjQ/QJo1t1O6CezVUbkXRTPwHiHeJzIyavS+00LofRdd73RhFMHutSOh7zmv1TSm9rGVyuzZNzPvlOY7aumO3rTeq44pOtXoeuPtFst9dc6Ade3DaeM4rUHw3mkcURi0TsuiteYxJqEX1b85vc3NQABjS3ZDzPTrWlz23Wm0N9mp0CJK82jO7h27zmIX+k19rFpup8XCQNxELKe2Q5BBDVZ2gSLFWD1lkyb73JPpgp2Zl6lREsMYUKkPRT+fTIqcyyTEOeBTQFxAYgIf6OLu7OSf+et6W4zdAKWpQ/Hn1xuv15XrLTMFtw9SWBu1C0sT1p4pXVhz5XJbOV+u3KyRE4Ha2k7BqVVD0D99fiGmRDLHYMRMPboiOe2NsRDAzke0l4wb/+23vPnSf9jU6vNSSt6jfXY35F53dHY3K2p3avROO7QoEo3Bkd1QZzS/HXVfFteQVillo2Sl8Q1Dlb0zknvzLfaFfYDS+67jVNfZcqcle7c7Cr81WLp/bgGcyQecmfQNpHroBrR9EQcjEzKEoL+rNejWsDhR+m7vJsXQBvR+opWavD8Ugz2B2xsfPEhrO7I8DPuG/qQWc3A2CrPSfwd9Sna6mhbnRhXtDRlIk3M2gOg7ZdSJmbU5b+isuSva+9+bO/cn904zZog4h7xBjodOUZz7E+r7z/W1m+nt8of7Zx1OxI7BZHF7k6tUW20mRgbw0GpvRkMe3NdBk+1N0UVQlLKUwvV6JaaJcsrMh1nvg85uQtVqB3ueFJ3VZ6jawt975XJ+JcTI85ffcDgceHx45PlZHXKnKXG5WOa0CClFENmb2hHx1TtayNuwiaD7VwiR4+mRbV1Y5jPHxyd9bn3gdj2zrZuZbA3zxqBITrGJjiEgwVvxZy7yfh9sDRru3VW89bGWGMUe3XfqqFXsXn/7EqONt1YRQ6IHE6gjRhe0tcfQ3dIry3LjfI7Q9fo621xb18EVdn40f3jmeDrhvSeXSt42G/qo6VouWVFgkww5UUQ9xkSx+LDNhm4DrR5I6L4+mUNybZU7SvrWJE6LlOPxxPFwpHfV34YY8HZPtt6Zp4kUtTl9eHpmOhzNYEvzp9d1Zd0WYoi7Y/31dkXQxnrIJPbh2j+CV2sLPnjieCZpNCoxCEH0Hi+GJo4hHjtDzXLR2XB9peSV7r1KZNB61ovlpovdz3RidwSDgppUojqE0sXTtkyTTBNluejw0ujdLWuknR+RaEp99d4po00nYAjCYUoqC0SdhGtTir/3uv+WmvFem7u2G6VaekKHjqOUxrY11i2Tszrbi611ezZybyy5gOt0L7Y/6D46zxM1N9bzhg+O0JRyrOe9qycEtpVYnTq8H+6D9k6nkGb7iuu4oEi3N9Mo6ByOgV7gdHA8v5s4niLTwVNRw6sqHYLj8JRYL4WWTWZYG3nN5KK5vXi3J8qAGsWq+6rOxl1CKc2944LDuaaMrSGJCA5p2jvlnGkE09s6EM1zdzLyqZ2Z36o5qMqulFVZe6P0Si8NbwBS33O4QWuohrf4pyl6vIFS84RJLmBKE3MKHKbOFCqewrYuHOdAEJUVOSrRFboL1Kb7flsHdTrsdf1Pef3kxraezzQfIR60ERUBF/jDp8rHa6cfT/zv/lz4L76AGC+4pbCeF2qNNAKFmehVI9lrpSEoX3Qs3lhjpA1PtUIrN206y9bwGAUwiuYSOmj+Li1p0llL53cfOv/mD5Xffeq0mFCwqNumK+SsCG3OSkEtudG2AqUgNSN1pbcruIw8f4k8fYU8vIP5AT950sExXKdL6wgF2kbPWY/fjIzE6QNAtRLOeZy5zvW24cVxfAgUPKUJ+aYLmtA5mi50LexNqwCtQhYoRQhO/ww33951eupdZ57gELqaA5hQPVsmb2udaaoaWN8hPjmWRbjdIC/NzKtUk+UFTodAO3RKb5xfdLGNh0hdnTnjebbqqM2xrUNTI0xHoXXhdu0jree+UNCIk17L2jpThDnqNCjnTslw3WDoKVsHMdv4Usw8C3Xhwwm3tROcaHj4aCiiNuTNMsVq6+QCn646gHl/UHOkECF0zcmtK+RNH/w56X+30ulHr2BbELpzdOchRMLxhIRAbZWaGz3//DvbHz5eiNEzT5Hl0FiWlb/73R+5LoXS4GWJvC4ZIXN8RCfgcySXxi13PrwuvF4X1m3h06dX5hR5dzqodqo1brdKSoHcKq8vr2ZGI8yzIpcxBqMDNjW4sYZYa+m7VmS/V97WgW8A3fHlP13s9H1aLWzbjevrJ7Z1UbrbutAsGH3orwCjW+ovkvFPpxsHb2izbRRorbHdFqVnWl5jLWqU4wQLeveID+A818uZEAJxSlaAqBtoSsl0ZoVtXdUcB21Ch8mMc6ofc9wRN9UNA5jTbfREb7uy6Rha6+TaCMERp0R0QTVOPoA10UOLiXdENNbser2S86pUxqZcfEENh5TVEWyTtwETQunYZMwZ5VlprHsjW6saorT7xEgEdWu1fOvRKOtGWQ3daxo94HXA0OoYVqwaXxISTbzGkqEmIcr+UZ2ut0xhN5o9rQQ1fsnWkrZte9M9mpPug9E67w3xz/E19FG1NY2dcqphG3Fd0ZkOCoz2pveIot/mYN87pRSjtm+GhAVrJBPLulBzxtuABOmEdWNoOX//939HSomvf/EN18vFrrkasNVaWdaVRGQ+HvYGelsXnED0QoiJ+Xji629+ya9/89vdTEqNp1ZFghxMU8R7XT9qHdpwbdSrVDWC6/fn2lvjG2JiOp44lvfMhwdrjAOfPnzP9fIKaEPZW6M7pX6ui6IC6va9cDweSWnSOBCwQarGU2x5w8dASPEegwXsMWJNHeXH1+dJDdA+fVSdrni7z1qD0okp2ZBA9s84BnP7sXbdYz99/Kh0a9ToyyeniHDt5G3TNSdE0jzz9MUXfPPLX7GVwuVysQZUafrzrNTm6+1muntIk5rOTdMMB7R2KsoW0WxrXX3vgymAvmcgj8ipagPGZblxu14p5b/nn/3zf8mf/fmfc7m8qNRpXcjrtrMHHh6f+eKLL/j1b3/LYZ44zDPivUoHto3X1xcu14vlWWvDfFtvzNPEw+lgVMxiQ55/HI1tSpaHLDqQH1jXfJhJ/sC6JNZNyLXy/qD65Og9p0mZLT+eb3QU8QqgjEk8yWdwlYgamogIB1+ZRJhchHql1EKhktKBRCTiiHPlIIWOZTq3QvCaZ3xdNCt6DjOHg5owSatM80zpmZfXC605gnMc50QwJ2MuK6UVKst+X+fthguTad2zRoM69elpzZO3xnIr3G5ap2tk3ogZglwqt3Uh18Lr5cZ0TMpi6KpvP0wT754f8Xg+ffdKjIrw51IoufHyeeNaLrrXS8QFtc+ZJkcMJrUb9TUbz++FUiOnp858DKTJkaaAjxu4jV/99gHPgXdPz9xuhdut8Nf//nu2Wsm9w+yZHma+eHxPWSrrebNhc+Ny21hLQ4InHGYkLOZJ0cnG7vz2uzO3W2XrG7f1hscRIrbuNfJW8C6otwyBXjVre1k20topLXJbKtdzIZdArJ7e4Hpb8T3wdHhUtsMU6evKVrNi4F19emSDVB0SISbPVnX4KaURRDikhMhC8p3ffC18vnTWrZKmJ76Ola+fFw4psebGD58+EJ6/ZAoTAU88eEIUtrqQa2fZZlpxbMb49cau/Cmvn9zY3v7+3+GOz/inrxF/QDr4dKDnhbU0/uZD5Fo7f/2h8S4EYodQOl88duaYOYSiiOzqwE0oZolOGrpQ6r25dcHvtLJeh86y7c6aXYTieOM42OgOPi7Cx2vnv/9D48erY0WYzQ0Y+m4UtVyFddP/LmtWXW3OSNmgLvT8SpcKISLvvkFOT2oYZSZIJZuFdu9ml+3AJ+SgNusdzcNVup+hi5aXGpIQzSk5V2HZHNtN0dmQhMPBcZi1WS+lUVbVV3in8TjZpl61CVWE4swluGoUifeKLB4mTwpKv21d3UxrgeODGV4J5KpNZQM11WidXrAF0O0aDfGy6ywGoupFyNlTq35fv0HfrHi04n9OAUR7+7x1SpZdYyz+T5Fz55SGklInBKGmzjVDlw7O6FFNm9tt0VyxfrCYD+/oGTKd89bM10sICXyUPaYBGxCMLFz5CMsMMelipqhP53zV33ecPME7gus7tXpMLlVT26jbitSqU79yz/D8Ob9qbcSUCGnmw+eV8+XGx9eskVBJI0DayKV2ieYmakh8/vTK59cbv/vuA99/+Mzn84UtrzjpLJtnrebcu2XKMLBx7I3QW13VyBQdk3XgDUo2ws3forf6338C7vLmr4C7DlvIeUNEOLtXizuxgrsNBGEgdTqVFSxb0/SC3qI2gg+KxBqKVXKmd9XQ1lqQotROcWYONU13xNQpzXU/3t5Zb1dGDl0XdfKtJduxNVyMVpSbi6yITrD3N1H0prZMiOpkHNOsBbIzQxUAL4h4xDsaopQeGtLu2be1qA4IEcSGC847opsJrVHzbWeYpFnpqzlblFJXozURZ5RWjR3qezOrtOlmTfTQ8gLmtCq7TgqgtaJoO3ckVxta/czFYpBaHZRMM8IpBawpGVTtcQ+IqHOqDrXuSL24zuBuOxuItj7csHUNcCHgfua2yN7o/VKrDv4sjskZKtJNC+n3EEOH+KASGud4fHpkyD9K0XXLObuWoNez6/1Uala6rhusCGuSXaDWyg/ff8/xcORXv/4t8/yB2+3G5XLGW7TPnikMvP/iC+Z55uF05OtvfsWXX3/Db/7szzgcNZpDm1pFENd13X9fMyOd2/Wyo7ZgtDmLK2pmDtOrmkHVWgkhcXp41rFJ79Z0F2JKgNizXInTQff3UvE+0Grl8vrKw+Mj05T4aK7uPti+2ZR63+19u+2XTUTlByL0kqGrOZUTi6qxbF8A0YmtDmJC4HBUB+jL5ayyDTdpzu1AW1DznsNh3hlm9c374f2bFVMHG6U1jcZDuFyvXG83Os2GOZoxmfOKd2KxLpq3ncvGfDzwq1/9FoBtW+noIKT1vLPIdE03p3JrQNdtYxhX6UlptJK5nF/5/rs/4r3n3ft3PDw+aTYxwrrcdN0omeV6Ja8bs8k5gg1txHmOpwfEe9ZlIaVESpHn3pmmxMPpxDTN1hwNZsvP/+Wk0Lvf81IV9HTU5ikS6H1CWtGIzZqVxSeCo2hUT6+MnOGUIt15mnccpoxIpYZG9zPiEo/RcfBKB365Xcklc10b0xyIwXE8BNPWBppolvIUJ6vJ1bDs6SAcUmbbPkILxBhRIzpoBWJIpDghMqkp2bbqEI5M4cI0zYiDWjfW3CndUVu2/deTl6bRigVatyGV0YQRdUYfLJRarfFbM2EKWmvYHieiudvrqv0Dorpz11Uje5hnLi9mchUEFxoudqZjIkyKcpbW6FuF3Mi/qGqOOmvz6H1nOphruHdssbPdNv72bz/y+lq5Xis/fljUyyY55lOEEOiuc3h3IqaZhpBbZy2VLWdiCKQ50USZGcl5ZZZV4ftvV6Zj4PnLE617PR/dK0OEhoRAq0IvzdgVjkojV82ZdchuTFa7Wv2KV9CGClvOhJzBa93sMTbPpl/rRfX6PgrTAa6rJrPEkDj4ytNxJsxXDofGPDVyrvheCTh1eZ+CNb7w/j2kSXBuYkpPBN/wXtmy0qG7TIkzQYRbrWr6GH/a8/yTG9v84Q+EbcNJgoMAAfGBlj2lwY8Xx+vW+d0n+NXRc3RwlE5MFR8qDz5bppZ1NaNFagptt+ppddzEzqa77FqXMe1V1BW80YfpBne3zqeb4/tz5+8/64PSLepBREvXphGXitaumDbTzKLq+PdGb4uemRjg8IzMByQm+qbB86Wotf9ARsR5o8w5O94RU4NxCYyCKJpVGydPmgQpQhahrw1cJ0RHipDi3SCH1vcwas3bbdQqO/1Q3fJsKFAxGobaanujEYs3CrBojJCe72r0UWGtqLa3KZ13nOvWMNpY38EgPysNO3jYsg4klgyhdSqadaezxkYMRrNKer5rBpeMpiKKpI7mVovkATpZ0ey0CHUepX6j90PPnbqpeVVPisy2YkPv2qiTorA+6XkUr4utoO+fDTi6XvSyx6RM87EHL5tSRJODedJJUWvguxYLGgrv98JlpzHudM2f96sPaArPp/PG+byx5M5p8tbUqbmRUg+Ual3xXG4rn1/PfPf9Bz5frlyXlVYKxTnWUriuWUO6a6XUu4FQt1+qFKtBW2s77e1tuzq0Yvc2diAD9nUZx//mZ+x73BuanxbHG27VYvBOe743s2+1tSMeYmR9yqAyOc3gFdABSR1Oys3o74151kLK+2b6VqVnFcuXHcfUe98bbpcSHVH0w9gp2O8fESvqZjtKR2v6mpmnVdVfIaqxccGMj0pWirAoQ0Tknjmox6ANKF2NgcwXF6vOrem2TOaW6XLXHncr+nVJHq7k6rjbm9GwS6a/oW73NqjB41KaQ+qg+w4THaN06NCtg517OmbIt+3GMePcIGLXo6uzec1mKKONkJpN2R6BDl3offdkuN8z9rvHOWpiG8/PvCge97vIjsoOeq501c+KFXJY1I4Lfqe6z35muS2s62roqD5T1e7vWqtJZtjvY+kYZVA1pq2pydLtduN4OPLw8KiuwSJseX3TWMiuDVf97DPvv3jPl19+w/v3X/L+iy+JSR1+a1UEcVkWtm1j5DCPpnTbtr2xHSZGOed7s2hoULUm1/nAfDhZxnpj21YOVWm5zYy3Ss6k+cBwIA4xGr0y8Pis5klr3mxfMnpx7Ww740SZWMrsFuZpsgYvK1plBLW+s1NMq9q7Nbfsa4/33jTTZrIVg9Uw3YzaHNM0U7Z1X2P2nFx3HxaJwct93CvO7eZ5+qwp2r/cqmUHG626ddPL62c7PTyQpqTH1sJOfXem7eqt74jRyAfOluO9ywCMrrwuNz5/+ogPgYfHB2UDfXEgbxu365nr+ZXeOnldTQ7RNc/Xa4QQzivzR9TwcJpmjqcjMQRi1EblDZdnb35+7i+x66HzAZNTNaFWW18lINLwPWsx0zDzpoYThYm6UdAn01e10JlSxUmhOqE5By5wSo6jFw5eeF0yta1sGXxU5sacRJslhCIabTeHSDa3+RQ809RIfuN2W4AjwU/kPjJTheDVo0PQZn1bs1F+C1U2xEVNDWhZTVHxWjc6BWbWpkajtXW6WCKBJVNA34e+HaXf1vom75y+M1l674QUiVM0U9T7AN17R0qm5UWzmCV0fIQ4eXxQnV6196dWahN8FHwMey5vTA4XlMlQWuO2ZH74YePlc+V2bVxvmTB7kgizC+AcpTfm00wNnXytZmalaHSYDFxAkwV0XXe04nj9pM37w9PM9apaetEcUWWJOU8t0EsjRq/0ZGy4dY/52GnLrQ82qcax5lIopeJKVZmO10lmqZq526tTh2svxIiZVXV8DyQfOc0T8RiYD5UU1bRWDXYtfjF6altwrvEQIIaOc4UQv8BJQPB4KXRpNK/NLE3Yaic6of3EjvUnN7bl/Afq9QPbh9/hnn6DzE+441dmue0gdzYCW3e8fAbXCgH42Dy/et/4P/y28XCovPOF+VDZiuOyamzQlh09J6QGzRSsTRsFhOTYC9omMgbt6qicK9KF29L54Vr5V39wfLg6lh5JzvSTnTuimdW0qDcNVa5Zp9pSCpQNygXaDVhhfm/djtByRmoBNOxauhCSNy2W7DW263c9aG1qzNKd6CTIm7FRAHzntmp27raZQUuAw0Enm8tW8SEwTcLjs6Nmrealdz5+KGxr5+Epkrtja45t0wUhBsvHErhsnakr0pqLxrk4OsdZm78Pn7IiQzi9hqIT4UkZY9RWdPojsGQdJCjNsBO8Npl5U81uy5WHU+DhyXO7djWtcnbRRLNzrxdgLCYThAlyVnOnvFUm07DWprpeETgeoE6OWhtTUDpL65CiZ10c55fKtuiG4Dw6BCiNZfH4JOC1wXVeKOZw3Dvqetyh5MqtOZZV2IrGIcVkTVSDy00NBnzQZpj/D3V/1iRLtuX3Yb+1J3ePiMw8Q9WpO/UIgADbCBB4k1GkzPSsj6svoCdKRlEyE0wUAaIBEA30nepWnSEzI9x9D0sPa2/PrCZEFmSUUO1meevcHCN82Hut9Z8aBK/cf2V0/KfPO/nzF8s8lpcBxk/9mKInbxu/v678+rsbCrx7957L4onBsefK/cMDd2/esOfMViqPt5WPn5/49rvP/Pq3v+9RLkoKAUFZ143bulmDu25H8zfQDMC0Ix1Ns0KL3qW+QmZfnT559X+GfhT6z0j/nJg+BcXcYLHfv++5/86BmI4m6+UZfc1hHnoau2WVum9otc2gZCukT+fL0Vztq/TNNuAk4INjOZ1HH3XoEQUlxUTZd65PTzjvDo1xcOZYSoxHQwLmxBrShGij1cx+fTpoiT5MiDMtVkiTUXW7gcpAicUJ4sc6pJQ9o1VfGmIxGjFdR2MN94Y2PfJ4UaXlvccFzT3ux1xkR4Mo3b3ZiTdPhZzJ+438yhVZe5zboFAjrmsllZZfRS61F5zJhgSeECf2fesGQtuhFfVh6DmNbTKGJiP6KITUC1pPLZvJBOpuDaAI6kK/zt2jQMQm18HuLxEhOkdyP+1n+Xq9HuyHlKbuVsqBZGo3DxN5ca1N82wNAtY8hOA5LYtF3jiHj4Gac39ORiEo5rbbmQ55Nxqtc55ts+a1qfK73/2Ox6cn5mkyo7Ba2Tajr8YQePv1V7x7944/+fO/xy9/9Uf86Z/9OefzGVVrjFuzprWUwqdPn/j48SMA87zw7t1XxqAI4ZXG1vaG2uUFNmCy9573jX3fCdEcoJ3zSFOarweCGGPi7s171vXKervy5csjzgkxpp772Tjd3xOmCRcjX//85+zrjfX6dPzdrTfU2hplW9n3TNkr02K5wM+3G8Mkbdt2REzVuH/8ROvMh+YHQgd/+PZbvA9Ms1GWl9MJ6df6y+fPjHVyW1dDdLsEwfwnGsGZPncgtCLC27fvePv2LXcP99y/eeDzp0/8s8dHxNlzu26rNSIxmTFWsHO+rhv52295fvpvGZm20j0AQojEaBtpztsxDIShsW4H1V3pUWRq+b2///Z3fPf9d3z5/Ik/+dM/4x/+o3/Mr/74T9m3lb/+q3/NH373W7bbFe9gSpHT6cTpfMGFyOPz1WojZpx7IsTIPM1czufj73/58gVVy0CGvx2orZZulFm7NK4paGH1iRiE92/vOXWUtdQVNFCCY54dYYJNhedrYd8K08WDrzR54uFi0X377nnc7Bl7f7ngaqHtKz40khrbXFxFqcyLNXUxwbVkpDVqvRHj3OVGhVw/Qbsh/oL3hqp/+miRLg/3d3gJJlWRwjRlprDz/JQRGs0Z2mrDGKPipjkwpTMpgA+Ki9XceEshTQu6QDKw87ivhiN8azvBFz58dUai7wMwWG+Zjx+feP/hLdMSuK23blIGueSDdu+9MctcUqbZvGPYFfE29i3VqM/TvBjToUGahQ8fHnj/9Zky/5rna+PTp8w/+3+srM+elO4pxbS3IUAryu258CCeWpXvv//ELz98Q5DIX/0PvzFGUoNt23GTIC2YHjc6Lm/vucqN/bqyXa84Fe7uJsLU9cfZ+gUbEm8GLuyNmHo/QKXSKGoa+OvzypfPmXWNVC/IbUWKIFXQYvIKfB8Oiw2aa22ww+0ZSnb4JviYiZMSFw/VM7nE+8sJjTMpOpbkKcHqcHWFClxz6OyQxpImnBY8GfzOlis5K5Pb8D5ymeHpeaVkIYmSFuBH7sn/AbZxJhpnf6I9/R7ZHtH9GWQGP+GCBz8DM81FmhpF4PefG1tuSK68m3fezMof/xy8r6SpMPtKDlBLRL3lc/kwmctvBcXTsE7fgFsrd4M3as/n1fHxCv/mI3y8CmsRUhSiM33ouMlrNV1mbYDKcdFsotmQlqHewFWYzrjFjKJUMVMUtSZN/KspJH2P7AiS8x0NVYP7ETOXAisyW7NGtlbTEJesFvHTOhrqR8auI002GTrMGjpJL02OEMym/bopZWuYRlmQBlI4zlMp3TSq2v3QB/cg9KywPs0t/Y30zzEmb50iZUin0S6UQce1BlerWaM3BYInRaM/B2fOwqr2ty1Llh6tAWAFeC0W6uzEQV+4arPJXAiGkrYgeBmonBkR46xoztk+vDeUpTnItdEylOwt77ZfN7tKdh1MstQHJc1o2t0fBO/MTKo0pTRrto8cXzXKeFo8y32iPTZK3Tuf2jSVP/XjuveIKlHOpwnEsSwTaXJ4L2QaEsxt9vZ84/F55Q+fnvj45Znn24o4e76ck56zaihP6XRPA+YEtBsvoZ1OKEdjO6ipR28pMgA9y3bUPiaQkb9omo4QHSk5Sq79e6RromGaRyEPPCsheO7uJsury4V1ddZwthda7N88BtITXyF5cZoIwQxY1uuzUYZDsHiekKg97sOpNdnaG65aimlkijXHeduY5hnxAR9ivxdfkE1apalRj7VV00r2WCI69XagKj5akxJCxIeXSDUUo1FP5tLdaiO72unUFUEtj69vECMXU2xScDQG1uR3wxYYkwBEbIDm5MWheOR4HtFB6HHNj2vrjn8ecSK1lpeRRn++D/oi0Dr12GI/mqG4B0o5mACDyq4dwbPm+Zjka8Myxa1pH02YjPsLk4a4OfWIm77Gif7kqcjivL0POfB8amuEbhTmQzjiqXzPEW3N1lobCtmQJQTfKcPCyFPWg2UAFfNuGMfLs1txLw8qOe+sNzH37EGDdpYzuSwzd3cP3L95xzQtxJBwXdP62ojobzYhFhWUud2emefFTA/9C7259GBD732nINeOwu7s+0Yu5cigNjMto/i7EBnOiT4Mc6XOjOqoY6uV2nNx276biU6IzOe7jqgqS0eRW9NOt3zJhsw507qbtNHcn23fL60jq6Ynf3nPPUtbFbcL27pyu60sy4mRA9+607c5nb+gpiKvnp3eyNv7DKZ9bI3Pnz/z8PBAShNv373n+vzEeruR9/0wmdpzRhyGVvXrv67XY6EWhoOxY16WjkDb+mGa5siUJtI0cb1ej2iwMcBqtRJDYJoSdw9vOJ/vSGlinpe+dofD5bu1SkyJ+zdvCKYvsgxjLH7q7Zs3OOfJOfP0/HyMQXPODAOjl4+f9tG6cWUpQk9qOmLZxDlKc6wqtCJsRfGxEb3p1KM45mRpF1kUH838sbCjmPO+D+B2y4ydoyGGu244lxEplKzEqXYTImvqnELEHOilOWuPamXdvhDmZ2LcCPGESqNKsRrOCXOPmfQOvGvQNuCKSWpsQD3Q1cspmUbdO2IQnNRXOnIlRKEGoQaP+PaytrfSzVUbMQngyKVSizl1a4N9L3z5/MRXP39LnMwl2YxQHXf3M+dTJEQoe6FoYZ4jIVitWpN0FpTRlOk1Y4xnYnKclsqWCx8/fWH+ekel4gKGsap0Y87KXq0+b/3eFzXDm5IruRRrIJ0ebKZalVwqZDO1Ei+oN3O8CtTq2Ffl9riTzhPOKeuejUWFomJ7b1PQYMzKdPKczsJ8EixOxu6vXCpJPSkFbo8bmjGDqM50qa3iOwuovqrbc85IVrJuVDKKxXoGH5jCQjy/IaRM8IUUd2pr7PlqAz6dydlBUGKAFOzaS7PBem2RLA3VgrRMa10WpzD5Rkw/jhH5oxtbcQ5tBa07+ryBeHj+PZLeIOkOpgUXHc5NtBhQ52gq/PZT5duPlb/+TeObu8Y3d8pyL9yfK+dl437aKLuybwFIiETmSdmycN1grxEk2CRy0BGxnFpQvn2GX3+Gf/472Ho25P3INMWopkZBtkbZYvmkU6nsRgGbHNFuECLu9AZ3ekBCpNYNulsbrjGcQAfDWHpjrKrWPKl0LZIctFpp1lyX/qFWLVCLNbfDQdk2BhOtT3NvPFVo6qwxBqYzBKc83AFPmNU73RyqKm2D4uy9DqfRyfdpV+oLXBOmyQYFw1hJe+dr5wTa3ulGPf8weNM4NBG8mJaXqmhutK1SMxCUu3fJFgcnXJ97cRuUmGyD17VBM0TUWS/KurY+qHD2fvsmHs0zBnCHmzFOiSL4BFPyXG9wu0EIgjZH80p5rt1AQ3oXqyyXaH/QielzWy8KBsJWzZXbGlt73bka1bu0F0o7WD7wdPKc305sv1NqzbBtaJgteOsnfjxtlSkK59nz5n4ggPE43w5MZtCEx+ed7z4+81e/+QN/+PiF220lBk+MZtTV8DY1LPnQzb6gaWJRWH+zcO0VyEvjw4FIwrgu9qR7F7oTuFnzn86By33i9ryZqRew3hqtCaezRWyB6YjTFHh4u3DbNrYVnp6N/tFeZVGJvH4dncJY6gsqBEzLQoiJlBauz0/kUkzbNc3EOPG43dBqDUYpQ+fHUWRrL85z3klp6o6jE4ppgbQUtFr2tUkxLPN15L0OWu1wIA4xMk0z07xYRmR3htUu2fA+Mk0XfG9kNpfJcjMNqn8xpaE16mhQcCA93qQP01rwuGGB3wtE6TQz70zXZJSvQW+2RcqWxr65jmnFgb9bfMLIkT0GF4d+UI7rX7NFDA2XXiddZ/eKgls7Cg99j+pOj02tcdYegzMaX3HucPEehlzBB+bguNEoxc6JY7hA/HQP70egQh9+Kodm3XwR4ktj683vwCinXePsXhrbEG1/NXddZ8VtP49jGjjO+4juG+dVOte2FGNJDLq99w4hkFLk0jNy37z9ipRmEHfoaAUOtsJrU6gY44HgPj092lCluwaL2Ott3R72cPvusTS3241tXQ1djpghllme4jVYXrQz3bZznpgmzi70Bsxc1atAjYGtv4YYIyEG5nmhFjOKizFSqiGytWQrvEWMbrtvSDT2QSumab/dNjQXK+7HM/WqmdfenO/bxvX5iveBN2/fHuZRAx0WQNW/NJzyMhRH5Mjfdd4f6PF3f/iO0+lMiJGvv/6GT33teHp8NNRsmljX1V6Ie5Fw5Lwfz2BMieA8LnnO50tH5ddDApBS4v7hgfuHB37z179mU3vNee+52LUSY+RyuePrDz/j4e1bG8CEhMu1S5PqMRxJ08S7r77CG++xS6nsvjvNM8/Pz1x7VNHYY7z3pjNVo0ePeuKnfIxkjmIepj3nOeGdufPnanGO1ypAY54dbybl7MxjZJ7gehPWPpQQV1FdaZpp2LPoxHhWU3S0UsnthvM7SGHfXxrbhoJrOK9M1L6uWBrCnjeer59Ywg2ZKtFVihZzN+4+KXMy5pvFtFeUDdVH6xkkIC4ZA0Dg4TKjYuLZ4BS0Uutq11Isn7xFT+3u14hpQ62xtftzOZmsZf20WxIGxmDYt8KnT09dE+sJyRiKwXvevT9zeZgIEbZ1p2pmuQ+EIMQktNTXL/FGBy/WXE7pwnxKnE83nq+PfHq68ouH3Rysk+BDsz4oKLlV1lyJLhx6fFEDoFqubPuG+oq9fVsDSlUkV8peejY1VDE35SJKLZ712vjy/cYv3iS8NmrbaPjek/ShsgjERlwcl0tkngunkw08bDjuyLmAJJY58ZivlK0Sam9s0c76sPW9qL121Nl6sBV2v5G1UlVx1Z67c4hc7gI+ZZr7Qpoqjcy2P6EkVBfy7vH9PpxSILiAthvaEk0Te7++UjaaLjT1FG2cfeU0/7gg2x+P2CrQaWXQOk3gmVZvsH6Lbt/D3Te4+58R7n9Bk0D2AVVHaZ5rgX/7vfDbj5F/84fM5SS8uXf8xa8uzKHx9HTj4T7w5iHwT/7Rhdta+PR547/7y53bVjvyao2PeOGWhWsW/p+/LzxVz41kRj/exhG1DXdUm4Dl3I2XqtE9LN5FDWkrGdqG3F2Q+YR7+MoysARcmF+ok61ZJp2BmT1exnTBrSp7NjSIhlGcaQgNWkacsLw947rZUe7am2UBP9l0yMfu9Jbhy5M5Hhtr0TbwXM2ZrALfPtp7CZOw6Jj2YRpchbz2/NemPDwEa9IapLmjJmLmU7WbBNUMZVXCZM6mLpjz6o4ypRHDJHhRyxgOFuIUIkznmecn2HYhBZs+Ncy4KW/K48dCiGKLxlsoVSjF6G1mCuDx0FGB3sRWo2qPyCGwHvW2KsmbtXiYbbFYt0pI0SjE3pyMS4Zy65e2QCuN5ey4exCe10pRsaFGl+HdnmyaOE+O02LnJOyGGivm0DwDU7L4pCnacGBkmuoRvfKjn6j/aIekMzuNvFZiaDYx88L12Qwe8IHPT9+xbr/j999/4fPjM7/7w/fcNnPpO50jvmuiH5821r1wXTPbVvpiyIuT8P9Ec3x0Owda53vDllKfYIUQAAEAAElEQVToNbQCPa84ek6XxHKKPLybefMu8P7ryHrbzTHxqnz6aPT80yVheYuVOJ04nQIffr7w6Xvh+mzaseenne1WiSoHjfM4L13L4pwnhgkfozUECmXb2K83St5xIqQ0dwSsG7do13iXxsgUHTpTazYEHxJxngkpWeNWLNOy7ebyG5cJF6dOs/TIPKPayOtm6IsPpLQYBVOEfdvwOcMUcd4Q9nQ5E0JEVC1zs1l8QIoJYmDdtx7XshOwyZIH09KIhb2bu2tm3zaLCHKm9wErUkV8R9YbFduESt46KvVymMmMrd0ysoOFF9rx0Oj1XcX0/WN6rf1b5IhxCTFag+JDZ6SUrhuyxq1UNYMV77o5lk19bRhgzAT6/jUiSpzzGNVlrG+G4BrF86f9MDsf7J6AAxFHbTA0DAKHxMRA8H6+u0NvK/k4B1NMFgOTM9M02c+v0k1YmkXG9HzRp8duyDaM0UR6swmoDSidmMHghz/6I968fcuf/umfc7l74HS+8LOf/5zz+cxpWQ5Dr6Z6NK0Al8uFGGN36c6s68rtdiPnbGZDUhnXUjrTwCndyXgzzS3K2zdv+qAGYojWqGE5ys7bIJxsHg0OcL1ZDCHYYES70t+NQbNpT8etqrngfbT9xwVGrFa9VPY9k9JmA/Zaes76MyI3G4CNyC8Z1Mp2sAqMDl5Zbzd+/e/+LSV3F2UwuYHIoZ/znUVm9/JA1E2h57zj3VdfHyj0vlks2Xp9tpgO55lPJ5xz9hrVzEGCD93cp7KtN47IpWmyxr8W1k4fV4U0TaQYeXgwQ6jz6Z5f/NLz9PTEt7//HcEHaik87p8s01jh29//ltv1ie/+8C1vHh4w0z+ji07LTOrGUaqw7/kwbUwxAsrtdjvQpdJsqNFK4XQ+M1ylbfv56Te26wq5NNbu0q449lI4n5UUwZUdrxtOVq7FHO+rZlozxOs0BT67Rmsbz3vBuysij1S/IC3SaiBUR1Tlun1Lblfwz2ZuhiOEM3UP3Cp8V59Zlol5TkzBDEL3Eml5p+kO5C7Ds6/d8s7z/hmJzkCNIP1e9Ia+ti+09gmVC00reVWmJZA8TC5zW4U9O6Y3ozkTlhhAA8JMC4lNvA2rtr0zHjxOGuIbMUVQ4emx4GfBJ0dMgYaw3goNQ7HPdye0Kt7Du68sTmy9FZ6+ZBqN84MxftIkyDLAEoUmTFPimw/v2Xfh+XbjX/+PvyWzI7Hwbvc0tWFaSI2wwfV2RcXhkzMfH8ypPW+7WQwprOtOC8r5fCbEJ3s+c6VuFdXcGS+OQiVTydJISSyVxMPp3ChaSE873k+UZjRx88VxuCTEi7C8h/OpMs+VGq4QBUlKmARxlVJu1JopRdHsyRlC6ahT97fwk603t1smXjPRVdpd7jpdjGXqE6c0cUoJwsbj/kTZvVGX3c1qfYno8jVTzASXkZ5tLAgpKhIat/xAaQWRHZ8swrNsgLsCtx/1PP0HNLavFgc1yB2MioYUdPuM+kBzHjffIeGEk5nWqQNVPa0FcoP9S+VxVZ42JTnHHGBbHXeb8LApX/2+kPfC01PjN99XbqvRE0Zj65zjVoRrcXz/7MnOo8kdNMTawQNVaEW6wRIvH41u4NAs2kcLiCLTCZlmJAQzLoJe3Bh1S+mUG9etbDoNSXv2qRYr2kW74VOrSDPLdNfdSWl94+mv1fkX+lVrHLmWtUHzEOm9skLJ9vubH06/0t/nC/pEd2t0OKNAVjPJEgeuKnsxFLYqve2WXuSBqJqRjc3kO8YiZIswpqo1dkeRJN30yQnT0mnXIseb8D3jl/4epAFeDvTadzTHO8F3W3XvgfbiwTQo3M5G1NRikyTXsL85/GGM64oLQpo8zikFZ4bK6JFTi1oGr/PCXuUgKtm0297xsBV3rg8ZxQzOBhnLO3NuTkkIk8cnT9s6Dfmgcv50j9U82lEaqXZaulcerzvbblrE67rzfNv4/vMT15vF5YhWvFNiGLRHJdfSDQfKkWNr3kztKIZ+cH/2YzyrCl2z5TldJlAOzZxzwnIK3L1JnO8Sb99PPLwJPLwNnM6OnBu3a0O8Y1sb0zmSN2HflDQ7llPgdOfYdxPb55xQFdAey9Ubb+3Ndu0F2jQvpHmxzdkJJe/dwGjkM7567vrzqjrWlPH/X6PUrhfRRkF23jTvrUeQhRgJMRGiPVz2uwrugJPt3pb+tYFwD/Mc+tDJDKOsSK6lF3q9YLacW3sABi2q9lVtjCu1r2nWlHeTmb5WaG827R2ZptmiCGp3rO9/Z3y0ho4IFn1BP4dr+mgkD/Sel3XQnJZ1LI6dAWXUWue9YamKORnbD/YlR4/frV1vMCir1jzYO9B+wYbZykhadwfde+wlP+3GFl4QTh9sjxrvS9Xez/F9HRl0Q4ty3J92X4UQetP20nCNnxzPcMPu6xjMWVmq60ZEdITWE0Lg/u6uR4TNfPj5L3h485avPnzDspyY54W7uzumaSKGQB7rRn3JPs3dhXz8ztba8V+jHr+wDkYDr/36m46zx0K1yul8BsZA5tU17fffWP/t5+VoksdrCSH0AY0hua2bsBj93zTs4sw9NMR4XAPnPCFop37b+5hPlVrNlPF6fe7eFuNebrTSjueBvjbVYgMma7JbN+d5WVdfvy9r5F7WnRiM2TEvo3G1pn8YR3rviV2j2jqyaewPGyyaiZq9l3memeaJu7t7St65rbeeA9zd3J3H9wn0MP8ajADnHClOaGusN0NW933j6csnWjW5QQyOaZo4nS+UvFFL4uHNG5bT2dzRj2HXkIhIvz6eNE22pnbEfkoTMabjuv9tyLLN2a53lD4EVPNpMNf6hrYNYcdLeZFFUTAzQMskNepvZ2WIWvSh8+aKjjC5Eai2o2Rwubt7C46Ak4RIIO+lI94YwioO6eZOIpbjDIMluFtCh5rXgmJgicd+rmmlUY99AZTgIHolekNowZ7F4Ay5bWJRPzRLGQmdqTP2ueDMrMnqZ3tHo/YIAiE63GsvndosPSBGmrMaJs3BEFyHsTBRtNl+KlFMYRlsf5qXxBwS0+zZsnmJrFtGfcUHpfReojbzehFn6QHiEiE68iv5B69qBqNce9IU8VG6vK6ZAV1tB5tGvHTKMkgzM1UjMFREGiG99A22lukLA6A2cqtkzXiF0oKBME6IkyNE8/9hDO26d4ANjF+ZyXYMyOSUDd0L/rh23Wh0mFhhNYn2ta41EDETM1xmnmei77GBGmjqDnack4a2biIoGXEN5+1Ddeid/5eP/yCN7euPUUfYlxqtPKNPmbZ9JsWILF/hzr9AxXI/xdmYQgVyreQbfHlu/PVvdiu4xOOTElPhv/7nn4hOCCif/9DYd6MXlWa4QSTQvKe5wO30Br8oy2LNigJbp5qqCm3vNORietZajXZKrWjNsH8ByUh0yOUNkiJ4OrfcWtpRMOVqrnEhRuowhFhz3wCE6k3XK6JoM06J7sWaOYGmQsn22kK/WTWYacDg8A9KQlZ78GtzvREXWlFycTgvzHNHZ3Nl31/QDa3WBbvQevNtiyZihjLPq2lzctdxmE7BioPgletqUH/0dGtu4bZB22wDf3vfbxwPFv5jAv7TxVCO77/0ptZL12wq2x7YNkNRvTpy6zbumCFWDPb3UlROk7xQtulNfetxPE3RrKylkUW4LN7WeIV97aYXSTjfR5qaBrk1K1L2zRrznIXzxaMiXFdr2muD0+SJyfS4wRlKnJKZSpXeHFszYU32NMHdnePT/UTNlbw704j/LdDYfvv9lwPJCd2gQ13kt98/8unzE+ue2fadddt5fn7GiZpuZjItc/Bw3QvXvXDroekl107nNpfdQf+SQffu8T8ipto+chqdIfYxBb75+QURy0Led6O7v/va8/arxOUh8Pb9wjQ55tl0n60p61a5e7Ox70ZnuD0JtychLUJKjmUBlcC0OuYlEdNOjJmxgEmfENcKt2vl7v4dy+mOu4cH08HsO+v1+dCKDcO4vG+Qkm3G2K+zDVT6Ql+PBtS7SJxm0rwQghVpra9lznvuHu5xPiLOc3t+pBRDVId+rpZKdA6ngbyvpgkMM6fTuRestTMHjDLUaiXrjsO0TK0U9lfZsK1a5EjTQf3t0ySF1vau9+10aBq4NsaYgFL2/aBIH01sLyBrq7SWu4FMftEGjusNL81sMw3R0PXbGuWPAZM4i/kYDTvdIGs4u5ZSbQKlXat4oMrGKLJIusmaB4ziqPpqYqbNnPVpeLHMX9uc5YdTmJ/wMYr2FCdDarsBU2vVTL3QXkC5btw32WCjNWpxxrzCMc9GUWvauN5WGy6NpslZ7uNotE6L6SFrrdxuN8tZdobmnU4n/vzv/h3evn3Hz775OfPpzLwsvH//gXmeSVPi7nI5XE1Lvz+3be/NiPDlyyPDzA2sAZum6dBd7ns93IMH1XSUIoYwroex1pu3b4+Gz3Rj7aBXm2laNp3vYYg2ngcbsMQ4H7r53LLlVZfM4hYzmCp9I1W4v7+Q993o1X2tG4ZXIkJMMyEkYkx8+vg9IMRoHgClZGpdj0GB9kZfm0WbaI86Gp4FAY5rkNLU/92Onwc4nS+8ffuey919Xys3lpAIcbX1xXtiMsMo0yTvnJYTOZvb7XFvpYk/+uM/4cOHbzifTzw9fuG77/7AX/7lX3K7GYJykhPOea63G9u+8/z8xLIsxzr25u07nDca4/X6xLre+PZ3v+Hu7g5phYf7ey6XC3/8Z3/Gp+8u5LzzZ3/3H/Dm7TvibDFQCtAarY2mxgz9zpexoAzt8dAHD63uT7+xvV4zp9S4myvXWzNqKRNKpWqG/TMhFHwsBLfgIohkWl1pEnBBmKKwTIFad1IMnE8PnIPH9wFi8KafxxVUMk129gK5OCAyTWe8D1yvj5YYUqEy2TAYq/nMz2Wyn62Fdf9C4YRzwQbdxcw4U1zwbiLXZ2M0SmLv8q+7xXGZDWB5WhviKinBku4QF2jNURRadVAdkw/kEAghMqVGnY0p6KMSJ+HL48btWhBnoMZy8mxFaHujba03mYF5TpScEadMZ8908qS5f75WpDmreb2DyREWG4h//fN3JIE4FT4/fc/j82oMkOSIvV4dfg62Dyt5K8TLRIiBihDEk3wgOKF1NpoV/JV4hjAbutuavQ7BM83R4ttSJCRPjRhDJEbmsyPLTnOV+eyNnYge9cC6FdZbRX2jhY1bXjktjmmJlOZxznO6iyyXSFoiEgPqCrkPpfzuME9IT4TOTjVTxest42Tj7r7iWyBphBIo2bGWSsoVaRUtpQ8WKirFdNu+cjl9QDCnZZrDj4GjWspELd2dvmVEMsE3UjSA8rr+uOfpxze2vSAVZ/C89DLpB8MwVbRslO//ClmekFrx83ucn9FgUT/axLihYgWFde2mU2W3L/3+d7U3LMq+8pJl2wlxmxbU1f6xAZ6bq5TYiyIxTas1QhanUatSsx5TVykb1BXqIy5FJM2w3dCakZZgmcwoioZqR4qnZI35kRunJhjP3dVzb/g5EGdDGpoL1JEh6B15MzF2EDka59JAa0dsDxqewf5b5WhaRRQvA3VutF0puVhYdd84B00aTEs7iSM0m4KY2klMM0dHtcWaxm340yRHQC2PdS00gZA8aXJHDu561V6zyzGRyQVuUXGu9Yfczol30hdHfyDDT18aDUHV0YppcafgcVOF2DevXsd6b035tiqPq02zTydH3vqDFpRlVtoFSkePU3RdS20ojO+xTDZ1hNvNFmzxinaDquhgDgMx0m4yYA2svJpUtarsO0zRdCynu8jl/T2NyPPTF1yckPDT19j+u9/9wZrJGInB6Pvff37i8fnKbd347tNnBGvyz6doz6Ioud7IRUnBmbFBN/DSLjh/YSB0Z/OutzU6Xx++ONcpjb6/hgDSEA93bz3zEpjmwPOjUQwf3il3b0xbu5yNduW6+ZFTWII5ONaqNBFOS2S7FKa5Tzhp+Ag5Ox5jAyLTEpjnF/RmWxvb2vjyfcU5i42xiWchd7QWtUl1a30NQfpaMrJtXyi6x3vt95zrz7o92oMJ4VA16tzz0+NBs+tTgK43B3GOtMw2XquF4OJxDvoIGxcCMXUkeM+mq6oFH60BcU0tgF7Bh0BsJpkoJXdXYRurNjXXxNqNq6xoN9nCaPRe8mhtBxhRJ/XIr819WBEQd4jkGZEkrRktSxj0VTEDn1faWTMOEaPa9kluYyCRLzEuiqKjsejZjyLYhFuw6+GCva99t6ZWW9fwGmthmpKtExSS9924bODYP+1DW+00benn1oybnDMEZxiBGdLij/ijNtD43gg0tQFO6ZnAsT9TIGbI0lqXC9idW+uL4VGakiF593d88+FnfPjmG/7Bf/oX3N3f83D/hlwKIo7T+Uya0oHS0um8QwrguwldKZV1XY8BxECSRzM+pA1Ds1bbGFJxIO2Xu3trxnM5NMUicjAunPOoH9EkdGMt4fn5yTTXoXG9PltB1qBUo4fmkimlHHTtodl2Pf5taOFNVmFf37aVECIueOZTsMav7Oy76edLLvZsAvM8HywQv7huSmWDClXtBlntKLqsYTMmyWA2HBpl77jc3fHw9i0pRvZcDjTazwspRUrXOO85W5GZ4XQ60drCspz47vvvLEe4KZ8+fcKJ4/OnwPPzE58+fUS19Sgi312fN5o2TsvJnJ2niZILz8/P3N2Zcd7l/t7MrErGOeHh4Q0fvvl5R92VhzdvuLu74ER4//UHQog2RByDJh1slRfGyuEC3ixNY7Bpjlzj/4kc5qd3nM5wiY37VHnyjiyCp6E1W62kM5mEuGTZ8RXAd0SsEjQwB7hbItsGS4BT8FC/w4lytzyg60QrnnorVHW0BuuW2XbzKvA+EOOED1dqqazXjfnSPRcc7GtlL9XqYl/BbygN5yLJK7nMiAQKwlYWmia8bCYPFOGWFe+VOQ0PnEAIC85ZZJF3FmnknCdMkVYd+yqUXVmvlaenK0rmfFd7KsmIc7K9/v5hIS2B0CO5VBt7zuTrjUDiPDk2Fw0F95mqSi4dmeyspZQ8cYqkNJPm2XT1qbJebzx++kTFhuiqwukUuHsbuD/bjr9P8NFtgPngjGAQP1vhXrXifDqYSnm3/fV8VzndJd59dUGGeVYx/x/nbO9cFsfsI7sUqjQ+3jbiHhFv9ayOffZVX7ZtBYlK3IV5MbO+lGajgUa4tUxVjzqQ5NGobG1lV8uepVRqdlQXSGLNcHMwTYGwNJzkPjhv7FdjwaVTpOQbjg3nbzgxpp+2ineV6Cut3lActQVKEVwVJkYEEZSyYYvg3Ad+lZyTmanJ9KOepx9vHjUKG8y184UzY59lmIy0Sr19wSm4sCA+4WioJCuixDJYGR8Mel3PMmzw/NQ5o6pQR7E3/pSi2i37neL2THMZDXazmcZFj1xTyoDElTaohFrRuiLlZo5tEmxi0SrSMwzFWYHkoLv7CuLGhPhFL+ac0Jz2Hr3hpHV9jgOBOgoKsQbb959xBtIyslw7cMRRFpv/Dq1pL46taRiFdSmlZ9oq0Q/EqAMf/dSZV4ZYce8wJ1vp1OPWG9v+b/ri4D1os+GA9MInOEcRO/dmbNCR74527lnIPQ5IeuZrrVClZ+G2TnluUHMzlMaZqZcL4CLd2El7wTqobdCy0S/2bBSMeRm6BztXzllMzwB0YndfrtqbLPeK3VUHDdrOqff2O72zSB/tv/YgZqrd15bL+3J+g7drGCLEORKmioSASwkJ6cc+Uv/Rjk+PTxYCnhIphk7zruYeXArreiMER4oWKzOSZFoVkK7NiB5fhD0rW2dKkEu/d60AtubXKEHNjXvStLTTEgnRsyyx67oay8VxvnNc7gJptmf+/FA5XTzz4i0vTpwJAzqtajiDqpproPdCTI6UOiJXlJB8z6xWaguEBOe7kZctXJ8yt+fGfnUmWyi1o6bdkRcOtBl9yZQ23X/tpjk9NuC4d9oxpTn0tlrNOK3/3fG1gfAgpu80Ax//6jnoVuHaukFHz9odaKa+QkMHhbEWgi+9SXtpCoPN762B7GtsUzncTXPO1EEhbmNhkIPuOSiftnu2Yz206JJOO+7UX1ynX0FvmPWgETpxPzAMMiOkfohao+rDS7PfKeOjaD3ihDryjYwBgg1apFc7tsnroXuWgdL36XBwDi/maJ2iufhqk57V+9NGbVVf2u8xaD3o793QadyRgwk0nGnrQSG3/44mQFXxwRH6lErZ0UJ31X/JWR0N1BQslubtu3d887Of8Ytf/Ipvfv4LTqczp9OZ527q47tRkTjX74V20I0HnXboNXPej8+9fq8/uO5qBWltw1Xw5YgxHuivZe4OI6x+fzpHrXLQ76zOtEZSRRBnBXEpBdFuZjTo9q+ovgd1vj8jQx8ozvVEhnY81yJmBoTwYjDXC5Sq5pLsQzr056HHLrXcbODQr6FzRslm1AqNg0miYIyHTrucT2dOlwveB3yP8vLdhCeEmbzvBO+ZpvmIbZrnxdZs4POXL5bxWwrbZhrn67VxvV15fn625zYEnHRH6lIPwpKIEHumd2uGzvjSY0mcEFvEiXC+XLi/f6CpIdMpTaTU823Pl268N4ZXNjS182boo+uASz9BDGOp1/fM34ZjmpTkjaI7eXtPg9EGtkaXTves7WoUYn21Jms5QAKqkrwjiA2RmmuGLKpDq++mi6ZrzLkzX6jdPd0d12zf8wuLQUx2V6sSghmfVTXtnHNWR9XmgUBVR24BkcAiRvTFQQrGqgwBW9IRnCyEYIyZMYaz5yeYj4QopSj7Vtj3nRgr89IwopQ9390TlBAt61g6cGTzS/PQCeq5OyfcWs0IyVVwCmIMRu0b3KgfpjnY7/MOXKNo5XF9xjlrJC1LWjifje0CFpcVYsb71mnhepg1QbP+o7srOieU0kAKtRXS5Lncz2zr3nPW+zhX7X5PsctNdoc65bZX9mwmTHqsMeBC9zqgWX/QzXONVdolOWMgXbtsCAVnkUcFNbMqbAitxUwlfTR+ZmvN9odog4Vh0lv2QgmBWgx4wzfEFZACFERNjuRFaS3TNFCaM5DMcaTIqEKr2SpuCfa9rR2mv8ZC+l8+fjxi2yl30vTQEfZexxaP1gsQFFpB1y/UvCK375B0xi9f4+MdGk5UZ+YfKOA78jO62oODbsWu3e2DOjT+bUWjVEHXqzVmGqllAu/xzqPFkEWtHbHTUWx2M6f1I5Qn8DsunXFTMOQzRtx5Il0iPhitMBdDJdtuEyI/HkGxB7r5juJkwc8Bn7wVkL3iatWocdGZ67B6qEFoTahFoEfSBG96WNu43LFoNTHDqNynI1qVet0IUyDOkRiMBnK7ta6nUB4fK2l2xGT0lHkSzrPRjXNWPj/v9rPeMydzaG654hFzUnu38PTUyPaHoZlRVo+lsigMb8WTo7Gtxs8/XSwgOu+GltUqrNurzUUdUoHWqLkg1VF8wBW7sd1ubsjBW9QPDjTA01WOZn1e7J677sK2KeumzCebBjrX3aZ3e5jjZEHSJYwCehTpZvY1XHotCkopVS1P1wul09cEmL3wvDZum6IXT0owzXC7FW63gorHpRm/nH70I/Uf6/ju0xeCt6Z1mhbQxro9M/cIgTdnQ8NDUBobPgnLfeDh3YVp8cQ420LrhefHxsePG7/9zY1vv30k54ZPgfWWyXtl71R8MDlAmiJ3b09Mc2SaPV9/ZVEUTRvvv3HMC0xLZj6bFjCEQEq+Oz127SM2wOKgtkpvqCAGh54CtinUQ4dem+KDcHmw0PtpGVpDYb1Gnj439jXz8fvMer2yf7sd5g0xxY7W74BR4JbLmW29cXt6Zr1dzUBmSdbodadQ7eiK94GYMq0VYkw4H4hxMdqSyIEQWxFmJngxJkOzUfZ1xYdEiDNpmojzzHw6MUUzcrk+PxuyDIZSlZ1WNvanR0MwfIA+zGnZ3GhrLQfSDDb1r62yb6s14GpxP94bIjLQLmt1bY0pZT+aZtFmGvkYOzLYJ3f0eWezyB4rhhPeedMU9yJU4NDIpXk5nOdLfXE9Vsytt9TeSNdy7AtKhZAQ8bYfBBPKlx65ZOi6udJJe3FIplOhA4FlMkZA+1uC2Bqt3D6GAZsd3TiR1l2R/UGv3fedbV0NKW29GcY8IVo12thpXqw5nCbWLVv8BMo8Tyyz3bc2a2h8/c03XO7v+errb3j/7ivevHlr/hjtuRu9GGLrnDsGQPZvK1RTSkeTfLvlQ585Glv7eXlBn2Vo4180uaOBGc3ieE5jjD/QS7+4Z8sRxzOiYQRjMwz453y5Nzfmx889Y7LiQ2TQApzz3cDGHXFApVZzMg0e3V9e37atuGwMmbIX8p6tycXuw4Op5eSQbgzqt5l82TkIEphSApFDQ9z6QG/oeM0ROPH23Tu+/voDX73/QIwT4qzRcGKDHe/FhkUp8fWHnwFCyZWvvvmGabK4nloL3//hO377298SOivk48fvWdcbuZQev2T3wratKI2vvv5w0J5DmrncOb755meUmnl8XNnXlWmamKaZn//yl7x7/56vfvYNb9++Y55mtnVlmReW+WSDL+cRF477IMRgha7CFOMoCn9wDP+GF7r6T/9JPk+Kq8K6RdtLxLMTSWkhhZnPV6FkoFoMTi2VbS9MPuEauJJNq+gdb+/PiFRK3nl6znitzOXGdlNaiZxcNGOueGbfnthzIcUN1R3FNNfreuO2rmzlTHBYEapjiOBZ18BGZJkjzk2dkWS+G7UJ0StBGjGAaAXduV/OIAknnttuUhjvAxbtqKB7H1a47qhu+8zT88Z3n3a2/co8w+Xesa47pcJeTcseo/D9d5nzvbKEyN0yQ4WrW3lIyoc3gT/6+mf81a8f+f5xZVkqp1PkcomcLxP7ZrE1PhjNWVvBuL+Qa0F9I905rk+ZWmA5eZYzLOfG+dSZm0TefTUhrZKfK3EBiQaUFFFqKzxvN2IInOfAly83bnvl05fMaZ65/OLE73+7U1RpwZprQVifr8xvYFmUKUVyq1z3jX13JG/xh1UCqp67d4G8Xrk9XdHSAb4K21bxV+Xxy8bjHyq3z422R8KibLmxayFLRQM036i+kFtlXzPupoSLR1xDc+bsgrmUu854Wk5cS6VsO9vmKcWaGRsWGG3ZBQOQaA4hU6vwtC7kesO6m4jr/d+ed8D2YWRGRago62oRpj/m+NGNrXbxtllojm3fGk4BGAuI8ec4XGKLQfNVPcTNQkjDGeciLkacM4vimu0CtL7ZmtPQK2R4/O4+weqfhLpD8ZBX63rU9FwMs58+ibF4glHY7KAbkJHljMxn3LLQcKg32rFRXswZbbySNj6P8AKz2kRGnRB61EveKpaYZ5OuEEB0TCMMJQ09J85Jp//VxnpTU/87oUk9oi9qs0259qaWpt0Z1FOqsG1WQXpvkyo6TTQGc1AL0RDS3PTIolWMJtzQFwOr0N1OVcl77RNBYVutYfT9Ujix/LTSQfeAkJsiTdjWRilCsdqC1tSa93HNWsUnRwjOsnfFEFQylpUlpj92nQKcm7LvzU53hbI3nLPfddsapdjkr1VDCNVbDMm+m66WNhAcewlFOZyOEcjFiqIUXc877oZXzlw9934e4mJFj/PjXrAZiWi1hXuYC+0/Ttz+H/MoZbcBA44UbcE5L4452uBDBHDQXEOCI56Fu/ee+7eReQ7M6YUSPM+NtAhhFqZLY98si3VbPdta+fxpo1Ub4mx7ZZ4Db94m5iWQJsfpYTxHjjQZhR5etKriDAkZZmtD8zcoSIgwDNkAhlyhNe2RbZZr5xyE4Do1WkhTp4w3IW8FkU6pLYWSC95Fo5V7x97NbEqneUrXYbamh3OqLQyK7xPFQdm1JtwcmfO2GQVXwbndpo8dqRrGPlM3QvHe23RXIU5zL6I9vptMhThZvls1xK20gbi1PqK1IRwdOaK/Hh3mJM0WI+0I1EBvneuIyFjex5LeEV7T/lkExOEofSzRvUnun29N+hZhz7UhudYQyEFRt6vmoE/q5Rhg2NdsYmzXtNK0055b6w6XXRMlw4nzxWTLGuVOl6oFpMekNMshjjHZNRSbJpeqL+u53YX/P3oC/9c5LD+057H3AbN2oyVxvXFRNX+Hfp+a43U9aK4wtNEjD9j2GieOu8uFr74+k+aZ+/sH5nlmXqz5KMVcf+/fPDDPC8vpzPlyZjmdqJ3lMLJeoQ8i2oseeziSl1eVit1rL3ptVT0aX/v6DxG41/8e9+1A50NHiEdD/Nr93CiKG9u29Z+VziSJR2UxsjQPczlG1JCtITFFnHiGqSTY/eacI/hA0b2vGcO9WdjXjXmeef/VV4hiUoBaud6uhoru65HRO/TEtT/fg2nVU6WPxl96vM/wKzAddeLN23cspzMhJkZ28TRNR92m+qJTrrUyTRMPbx7sdwPiPMty4uGtfe10OhNC6Ghw6ufUzo/3L7Sobds7wud58+YNOWeen5749Pn7g35sg7XG45fP3N1dmFLitCzM82KmYn04pn14MuK5rOzqcVZjzRk3Tj9+YFbo3IE4/tSPEDO5WGRPJpHVcbs2vNvJSVCdoBuxpO5JMoinjUapmYb5Nzhv1SfqiH6Cmnm+ZrybLfUidJajFlzPwT2fA+KGL0I97q/bbWdOidNsMY424hrGYoHWZpAJUct7rs3YGKWuVF8Qv0IrtOZYd6VpwbnCVgqK7XfNeZoaS2T4wtiQzZBqF5Q0w+kshGR/w3kldOr/82eTLA50NAQlLYE9D+mjDey/+nrmt99/pn5e2TahZHNeBruPah8aeK/Y7K5QykZjw4XK+S5xfbZaICXzYEnJ4XzFDEYrp4tjuzbEF/zUCDOcY9fAdhQ5Bcebu4Xr043a46/mBZagPOxCrkIWx+lsyPl2LYh4fBCmC/iqSK3dFdsGZk48op5pdqQpEmMETH4QY8D72s0oTXoRfCC/qqPEKy4o0j9cgCiRlrtP0DhHrVKKSVTi6KekMc0R8Wa0WYvDlUBtoTNSG1V3RLwBD85Ay1KVvdr6vGeIUnFkRE0THVyPOkX6Xe47mv0jnqcf/+j1IqlTQmwxqRwcWgmvGs+ROSvGV81qDVnZIEy4ueGnCyktTGKNbb4J+y4Ww3JsJq+RvoG6YpP/8flq2XHk1ZKVETT0aY8YBYID6e382ZZBLb9L5vfIckKm5aWP1vH3jDYxHISr0qdWHLpYEaMCWB4itNzIeyXGF11d7Bq7LXcqcQWfxuLc0D3T9kbJDb9E3ORpNFywzK3DlKcw4AnEe3OcrrBtrVMoPL43qdpt14O3/yLaEch+OpyZUgnD/dfOl3fQcqVce3cnQt6M4uuDnRyjpY0NsCO4WZCibJtpcUseWYf93ukFjrSCaSscvnYkr0LL5nTsHCzphWaqnYY85gh5b6Ro73FdRwiJo5aesRlNe7Xvje1mL1DFUFsr2kYxYK8/d5ME74xqa9FAoGaIa+hvg7rYOQpjE+33go1w7L5qudDkR46U/iMerRZTlfSm0AfPaUk9WF0pPZusCrgF0p3j8t5zvjdU65x6c4KwnJTp5JjuhHRurGthXxv7GthWo+/lXShZgMyyRN6+S30BFpa7ZtnKQTBT4OH02Ydb/SEaQypxL43PD1xO+72mahSug/nRmzJhPAeuL7B9Q2uDKkQvts0gRoJDiYiYVu8Ijad79SsHhVOQo9By7lhw7OgNq7ZG3jectzxGV3N3tzTdbgiuZ0kmM9oTaN3hbZrPNkRB8CESQsL7RN53M7ZpjdYRHBVMUqHmGNn6/x/rp33Di8yAZsWSMgZtdo6ajGa4r7nSh4XdNK8107oeaNi4t3rTYkNOdxj1iAfnjE0zYnSGGzvYMMXomIFBIe5/2K5T//5aX4p91Apw123MB0OGEZ/S4z8MuW9GDROgmc7Sh0hTo0lVsRxwRImuD8v+FlCRTbM9PmFNm7iAd87uB8Y1K0YvzDu0183sC538hRJs/71cLnzzi1/y9v1X/PKXf8TUzZ8+f/rEtm3cbhtxmvDezve8LKQpsa0vjes4LA/V6L0HtVYsTmgMV/4mKqtqEUCDpvzDJviHzcxA6cbXhiOvCEcE2OvXsu87+74diK73Fvbe2sv9O+jHrx2SzbjIsqSduB+QzMwd2B2RRaMxc+KhKdu6Mk8TKSa0NrZ1ZdtW1m1DW2a7raSU8CH0YbchxQfVuQ+ghB45KK6vh/2jU4PTNPHw8IZ5WfDBMjS9d8eaZ5KDboTnHKVWi+tJkXXfqF2CMM0L3nt+/rOfs3dDwdCvRwiBz58/YzTz1OUgdLpoJCaL/sk58/njRz5/6Zrc4Nl3c9J/enpi3zZiH+jN88yyLMZqcd05vmnXf1oBPthswsugQ/XVM3DcH8fN8YPl+Kd6+JC5qfBldbgYqTi29YZzmVIMNBGpCNWMPR10qqINrNSedXPgp7vZWmNbKzzfMvcXzNAzrjTJVC0m3/Ke5RT74Gk4kpv0YF0zXhz+bsIFbN+g0Zqtt60tIBPOpb722+Cx1JVSPSo3EMtnv+1jSJEpav4ANqBNqMaDZmo+CplSHU0jIcG0wOnO4Z0NN10wjw3fXGcICs4ZKysEmE6e56tJfrSv/W/fJWJq1LaybbEbuQ6dckO057x6xTullUIplaorPjROS7R7UJuhxElIySNihm5NK8vJsZ6t2fVJCQv4k6N4R1ZPzpUUHG/vFv7we4vkTJPVUaepUapjL7A1x7w46t5QSq8jgpn8FYVSaa1YDe+isb/UExLEFIgpkNUG8TEFfNhHyEDXUjvqrse6aVLH3tT2Jtf5aCxGah8sWc2QSzZZQZdXKZVpWqhqmde1LLjiKRJp1datnIuBboCINbY2ALHGdS+KuEKUHdGCwxGdkKujdlq2RZS4/w9P0A+PH9/Ytn5W+oeKIq077CAHPbnDK/Y58eBjF1KeIMxITKRl4t27wK9+KfxX/9mJt6dG2xL/6q82fv27zH//PzzzeG083spL1IR1ky8N9Ti0WoAr+UAcTR19rGyMCle0Qd1g/94cgMIM8x3NR5SGP4XO91bUCUWB3OOCelPoRQkih6uwi/3mq6Y3SJOwXBzr1eJ59t3clFFFnScmT4oOrpuZP62ZVoOhioBTwaudYydiC1gUCkJBuyGLISdUW8y8D6Zd8KYVFbHXGlwlOGVJviMsHFD+2zdmzW7uwWJUyKqcLoKfHf6ceHxuNkmZHIdyxR+1MbU1coPnVShVaE6YTo68Nlqx3GGPkoIhYaoNCQEabKt2zbLRgKU3tV5h90oUISQrt71XtpuhdjEJKQgxCm/v4XmFpxtcnyshNE4FhgOok2ZNVbFzwrC2j820tambffQGdrzJx0dl2+zWTskx9dt8mcDN1trEiGXenlOfqD2jLUP5kbZt/xGPt3eJ4E2bHKNNHy93lcubibR4qlRUzFwrJmea1anfVyPOp+slq5qeIk5w/95zrube3bJSsnK5Szw/Nh4fK9t64nwOvH07cXlopKnRvE0HZSQ6wL+/EBEOpBakmy11jS22gdWezylqmsnRVNXRaGHfO3Ij7U8Zo2KahfO94/nJU7LiJHV0t3WWoEP8yFKN+BjwMRBjIIQ7hpZumE296GANgbHYBndsEGDxVs57tDdnZg6DPddtTGmNEtoJ2NAdauv1udP5M7fb7fi9bVuPE1a6jh4U7ZmljWDDLRF8img1rb601w2y/VucFdgW6WZ08dKdDltnwYyr5l+hpfbnrcF0Aw1mNKU2FR+XOYTI4cpM/51dD9uqGZUA3WjHYqeo1abOKb0YVI0M3dGAt7HxdyqyFpPRiCMtZ3PfVMUp4J3FMnSUDLHJ8E+9Hp5S6g2YonXr95c1MCEmdJr7fmn7xdDTjjfmg6d2BZBPY3+HljNNYZrP/PGf/B3+6E/+hOV0ZmizxAXLlr3d2HM+hg1rR3KHXjOGeDgC3263I4d2HCLCNE84L0fjKSIdbbDjcrkAsG2buQOrHvThWusxZFcMHVVtpMm0rLWWg8lg8VO9AxXtTWri+fmZGF/yZFM0muZopFszY61aCsH3+Cm1RAKJjjRPzL5Horx01lzu70n7ZiwEZ1E7X758Yd+sof7+u+8MZavFDFJ6Ll7p5m2CnYc5LNQ9H6+n9Pc86Jo+BDPji+a2/P6rr3h484avv/kZ07TYsLc3tKWYkVMpmW3bSclqCUN0bEDBk5lmPX75TK2Vy90D/+V/+V/x+9/9ju/+8AdijDw9PfP09ER4fsKHwM9+/nP2fae2SgyB+4cH3rx5y3SaCTnw1YcPiLd7oObCvMxM08Qyz5xOC3/49lu++vobYkycL3d2H3cUPXgHXTuJ2Cq49XvutpbDPOplUDlcr3/qT+8Pj5VClmC+BKIkL0ynhfk0EYJnyzs+WC20bk9UaQSEwozD4fCdDSOo7L0J3u3ew3Ndd9487MyzsNUv3Co8Z89tt030tkeCX3HsRGam5HFTZNsLpW58/FLZ9htVK8QTPjm8eKZwb3thCKg0clH2olR13HLly62gxSQw674iIsxRWHzFuQZ6QyTh/WSmh22n1itVjdJ6y45wnrj7OvDwuGBbUUG0kTfh+Quc5oR3Svm8cf8QePfVxOdVDzZirTt5X6n7DeczaVZOF3MSf/py4/P39r7eXgI+NJwrUISyNbatkutOEyFLYLl4ggPpumRtFa2OdW98eVrZriaFeXiX2KOyU7mcA+RGoeGCRRj+4quZ734b8WSWSfBhR1zj7XvPdVPKc2ErK6U0JDZcKLjQSHcbUiq6WdZx3htPrRGTo+bIx4839iyEObGtm7FXo3A6B84X4eGtp63K+lS55UbMBpwdfhmiFKcUgJZRNUPNy31CnLLvhVu5UdaMr5VaN1oR1M3ktfB8uxHnRlqUME80OeFEUbUc77JXCAVpnvPcYF/IVXi+PaGpQtxQHE4C0c+UWowV2Yd2Yyj+v3T8B7gi+0OkPJpYlRfzj6MsPZpfE/8SJnMH8uaKmObEr34586ufJ/7B3w38k78PDydBS+TDO/j2O8+7e/h3v934q98ov/3Dyp5rp/u8Jocd3S49QwjKaoVOOvfvGN/dN/eyQrlCfsJGKdE2+pJtGuGnI2c1O5u+irruU2TogWpHJXpxz67U3eIxvHPGbBD3gozSqbCK0ZGL2uLQNU7BmREPOFQaEox66Zyhp91QGSfKvnXTJ+3Oxb0Ra+LsowH5FdrVs3jjoJf2wOme32xItAozvRlpwxjJZhIhdhpoF5+rdvKLgDol79b47ps7kPzDdKsD+M5Zc1i9nQebbGmPJjCEbVCFxSsuMRg39OEs0+SIcWTR2nX3TpiS0cSrKjVbk75t43uwc9peaMOoNe9SW6cUS98shMrRb1gzVJV1w1BEzJ06Bfv+GLVPnxQJHhfCYd7B34JogYe7mZiEaRLiZLm+88kzXzw+OQp65OeF2M0e4GAyaLOm16gpw6G29aGKsSTUG0r+5q1nSo1pcuyrI83msp2S5a+VPv8yOqUcKKF0ZOIHpI3xRMnL0+/gQHRHzt4L86xP9HsciCGrr8xGetF/+Nj15tm58ILIiGUlvhjG2HXe95Et2dGCjpaVkcHZm3A3UOVupDRMdOx4cZr33uIMHK6/T3egsymkg77b+vNfj2zdQu0U6eG4PHSvyIvWsrViCHMrpiG1m9UK62yxPIfJ0jBkOiBvjlif1yZDx03xN6l+8rLympyh/57eVBwIt75cV+lNbas2+T5c5/v3lLLb+W61uyX7YzB2rO/9bwhKq+X4/sHwcT4QnMeFHoNTLRNy3G3j0S3N3rP+xCmM0zQdLr2u025/4K6N9LW20Eo2pJ3uHkzfPd1IpIfBiNDOIrj2Jgjt7sR9OBH7syEI02wozG29HX93nmf7deN5e4XADlR4IJtTSogTQtcKj+OIj3qdW9ivx2hmVLUbz8mre2n8vK1LprHuxk+lWwM6OZBje3YctZpJXusNbi2V0hHmWs0Y7bXJW20TriOK0g107L3Z32+1HVEXToZTcmK9rWzranTcYrr7Qdk2k8kfXmNVG0C45iitN/L0uDRnDWCaJpblzN3dPT/7+S94eHjD27fvOjOpI8h9ADKGBq/pvMtyYpjLpWQZkk4cwXnmZbEBlbdhyeVyb2XPvnM6nwkxcjpfuLv33SiwHY7Rnz5+BB05uAsgPJdHnLOYofdffc08Wd5xmmZC1zCPR7o1yyj3h3a87y+jb9WX+2Q0ssoPP/cTf4SPY88NFZiWbqgj3dTSVcz919aoqlbqIsY2K6WZKQ9YBqjaAMNLw4vFKuZM9/01QudWGms2QGPIBrcMnmz1WvB43we7CLWpOew6847Rvu6qCkjDnIz7Ki59He00/XWrBOzrNohWgldiMLlDk4iTCBpodceyySulNHIRSvPgEy455nOi7JmawTWhVUG8J04OnLLsig96aNZdgDSb9Mz3GiNG066m2aJ6YrI93WQ53RQ0OLQ0RKpJJTsrEycscyThaFsjecW7ynDRR6wZb02ZZk9zjtL9RY62CMy0yitp8kzF90SBisZGjM6SPGQYMlqMJa6hVFyw6xpVDlOoVrF9c/gTEAkxMUkgTobAHtnHYlK9261Sqg3SZQylx6BdDehqpeLU0G5CQ5xCa4gfNZMx99Q5ai2HIWHeujGXd/gp4nzE7R5VG2xbhFVBtWdzN3NV32vDeTvXKs66PdefY16MX3/M8eM1tl0/aph1N3+CF3rwOITe/HpwExIWxE9IvOd8F3j74Pkv/smFv/g7kf/NP0r8ydeFeWpAoJbAtsO/+LcX/u//9JH/+r+B/9P/5SNlXWn51hnOApJ6Uz1QYqwo3p4BD/Objhw4GAmM2iyzNn+B/RMsAZEJ8opWh+6CaAHxVO0aYS9wCbho/xassczd9Vcr6Fpp+460hveT/UyEgi0mzgto7O52UPfaNUjKlITTORGWZHFAWPNaq+lMYxBSgBRtcdpvjbzZtLjt5lZJhVzNYSkkR662hEXfwAkuCikoU7QGd9utKW/OsXf/kHmiOwYr9EKnKaTJNKW103Nb6SZLqhBh/VRZV9h2h++8fAQkCG4C9T3OZzFnXK2Wd7rvjZoh79qnM6apJYDlVBu6WquZBl3u4bwqe7brLH1jv5wdIUGataPjsK3DJdcKfe0IYyliBa5WI/Q7wTXHNHskQuuLru8oYGvwdIW509Fzbpwnwc9CWkCcofj4iMSGuIj0Rvqnfnzz4cK8BM73ielkcycXG0V79MTxJtzLYqxYg9hpO2Nok1sz86fWOrO20+KCRUudEuR7Gwzk3TYAH+3DhSMa/UVbr6O2OyqXozl9aYxskzryTntdq077YKFR++8a+ZQAh55koDy9MBZnTWBtCuLxITCfFrQ2aim4lKww7LEarTWenx4NzezPG31gs243UJjmkxW04jpd3yi205yQ3jiM9lycJ6aJlCYYgwLvmdJCTIk5zcRkplO3242Sd/b9xpZNo9da6QU2hE57bt3MyZDSZihvydRc7Bkaw61ayV1r+JrSJ4B0rabgbePlNc14DDHcoYc+zG/6bxhDONNytn6tbPMUupmP9mmx2LXSTlkVEXwMXSOv7NutN93KtEy2GSOHHgwB1Q4/NqHmkQUMwzQuTbM5tQZPLTs1Z+Jkhbxhz51OWWzSf5gK/ESP0+nM2pukmKbDdZhe3OI8Oe/s20buTVmMCfHB4qRawekYXOjBCnBdd/nt73/Hp+++5+mrL9y/eWDE5ozomZTS0cR+99333VG78vbNG/OMWNcf0HqH6yoix8+ez6deQNPv7XJob2utXK9Xa8x6Q8crmjGY9AfhByZRQ2uuqsegqTWL1hnfe7vd2PetZ/BaY2sxRo7SG/Xb9cq+7ij2u9bbDXpTPk3zMdD33miVQjcsco7b9cq2bWzrhsyGmt7d3/P45Qu325Wad3Nez3tnRTR86EBB/1/tQ4lpMt2Sa683l5eM4dPpwtt37/n5L37Fn//53+H+/p67uzu2fWfPNhjQrlUN/drmko/rsyxnbrcr6+3GNJ+Y55mHhween55QVb7//hO32wY4Ht68A3GGoCcbxp0vd3z48A3LsvD45TPr7cbtduW3v/4NKU18+PAN8zQjCJ++/45YjPb6i1/+ktNpYYqRu7v7bljVjiJ73wspxa4DNvMovOtJDnoMaI41pm8EI3d47A1/G5rb67UxBbh7iFw/23syGe1m27FLlOqoxbEVb3Y7WyN5yxtPXgGjKguNIAZKXK993w2eKmrGQ5vwuDa+3IoZnWng+abMbIRYOc+CSx4JCReF69p4+lJZzgvOe7Kac3mphabPKAmcUjSQmyM3R/JmpHi9Vi5zYZ4bYXd410ixMAfbGysXnCxoixQtKNbYbnslFyHXSBWFKJwfTqzXne0qRAXwpFOkFfC18sYJ4hvPewYJxCScL455sWF68MqyBC6XxHKC80W4ewikFGibUrI9HzEG9rXgfCOk1mlhJmG6v1uQuZGfN5ZJST6D2nqa0sKnvFObcjo5qkaQcAxfnWtIl0rddGc6eRYN3NYrKVSmpPgY8aXXMKXSmtXhuEKl4qMBAYjndnUmrcN1vw8zrQx40uRJdxPhVHCx2EijmRPz09PK588ZOHEwPp3DOYtgbM2x50bdN8vvDUJ1O+pBU8FPQkgeHyZ8nPAp8Zx3aqk4p+azArjgmJZASInrzdNaZc8FmtGLS93JeSIXG2a7YntRiI7mhKyK+oMrSt4bt+3HFdg/HrH16WVz6UXFmLUPp7ReRZjW1QUkzFzOC5dT4k9/deYf/t3Af/LHgf/8LzzvHoSv3xZSat39UsjArSrfft75zfdXfv3dJ/brd+h2hXxjtIv9Vdh0L96DTCAL5KuNafITMp2RMNmUVjKwIVGQeELufoW/XCBNVJzRekuhfnnEpise0gIhsN8E2SyiJszxBfksZpMtziFTd/cMRu+tpYPaPSvP+YpDkRjweLx4UhLmRbi7E9bcjYczRkOukJwtAtBYZs88G4Lz9FhZb3DtXaA06ZdEu4uznZs0O+7uHHdnx5Sq2bVrw3lBunZsHiZK9Ic3WkN3TAWdNae6Y4huUaZoN9pttUzbvBuiLCLQ4Pqp9MgUjCqJUh6VMFmTGr0JwUtpoMFiiEx2aFrLaHpLCaDd/GqKwt29smWjUm9FyY+mvZVegL5/79l2+PJktOWa7Y2YkQVQe46fd6jr7paYg7NiE/eQjJLqRQ4Tgvuz6ZQfnxutKc83eLizWBDngLbT8o12+4JiC9lP/fjf/+/+MeoaKpXH9RNb3bjt69G4yiv9uOs0bMEa21arTVF77E1p7chhPNxFRQgjlsfDHIV26s7bqhRtaBgU1VfHQIThpZuG3vzogThVEZw2FDmyYsEQNv3hL7Pr35+KI2sSYx40GlUr11vl+bnw+KWgrRdSnf7XOkIJdG15RBTWslk8SO0DJOfwweN7PmVrFR0ITI++scbgBVGzjFBlcmYJM8LVnfO4mA4UQzpFWWvDi0eiObbX5yeKVorWAY0ijRezu7wxTK9K3mklU2w6ZOdA9dBFWaPqDDnu5i1VKyWXrpvZzRyklI7E2fsZMV7SI57GEMLQsno0qzZn7AyYoXdUxbtXKI3dRP062d8YU2Cl05bFdZS1vgw6ZGSS2vsK3ppqCsQUjbYcHDH09zWcllXQ5qhicWWp55niHO1vQTVse4tnWhZ8tPiUVo0621qDHg2jXfvpnMf7QEpGw9u37nRdK6Xrar23+6iWzOOXjf/xX/4Laik8vH/HPM+EjvhZHnUiJstlvL+/P5pYMyUy/XXujaVzpkutpVBqIYZ46ElddwKe0oR3/kCFX8cBDdRDocta7I4JMRzPnmI05T3vHRE1VHY0PuPezHlHUILv6e5iA5J5XlBVHh+/8Pz8xLZvpBh7TFA7flctmW1bj3UBsCzkaEZX2pTn5yf2fSfvmcvFjJeu1yuKWgN3br2xTbAa+2M02dARVWfa32lZABtWxJ6Tvm0rQxt8vtzx5s07vv76Gy53D6RpptSGiCclT4qpM0fMiM0O5be//Q3Pz1dCCJxOZ6ZpppTC6bTw5uENKU3s28anLx/58ukzt+vVzrcX3r57Z+dRhOA9Xz5/4vHzZ263q10n1W6G5YgxoDQSyldff83pcuHucse79++5u1w4n864jtaGmA7Tr4Hs2xyts0y6/nd4E/hglGzt2jvFtPwWvdjf6d8CWvLzF0FPkC4NlUapwu0ZpJjUp3bzHNVArRYFl2tlr9WQRTEzJScO1xIxOJbk+KRfUFd5c29I+9Oz8mWDz9fCp+ed83kiBXOqPaUnppBZixBcOIaxWEnKl+fdGAKzJ+/PtLohSwQqtUHOC3sRSnNENQOlNN0IseK62aS51nv27BAJIJlWn4AbKRqFGoTt1tiysDfpLCPHfDHmUsBTV2WaEvGrB7btxr7trNmzZmVfC+f7QAxwuSgxVILLOIyK7FJDgulTbzc1GVod7CCr60KC/Za57jeuqzEMLpeJ0+w5LcL9VxMabzS/c9WeLiCNsOy4oETv2W+NlhVqI2+F27px9/6e+TKRHVQnRnHOjeAj55Pn7mGhkJFWaNmGgW/fR6tXRPGh0bLVXSEm6g7Xx0LKKzTh7uKhgGsVd+eRpFRfWGtFN/jymNmLSS21m/VqU8qu1B7ZiTPGXtZi7unBI8HSLVSUrdyoWyFtFb0V9Jqo1Rg96hu5p9Y4n7G81UZ0sZvwC7c1kJuwtWo5w61RERtiRcGxozWz644L3fARe8/5lVfC/9zxH9DY9m81zujL53sWLRI6SmuFV4iReZ751c9mvnoT+Yu/M/Gf/z3Pf/LHjj//Vc/tCoam7cV0kl8eC5++VP7VXz3x698+8fHjM6VsqGasVBswaekfNp3CLQbOltU6o3w1/oGTbhRVQCqSIuICbgq4xTgKTQX2zdw+S+kroyLeNLOtdluVUeiIHEzrbnWBthfDGMUAr4ONLTZJszgS3ynGwnz2LIswnyE/mbuvoV32gBldo0ffdCQ0VXM49kUsJNu5ri9sr+gW1siFJKYBna05NCrS0SMA+ir6BkbWXzXpAPnYDIxG7UQJDlIw4t6+6pEtFbo3VGuQb8VY1s1yvFpT1r2Q1BGSIMn+Rh11qfRL5e0WGy64rbtam9zYMm19swex2LNi7tLJ8mTnJL34hY2hmTIUy2zHWy+azWmN0awpFp/UFI1yNHLed9e7SNej0iNZjh7C0N1uiKV5Q6VhWUY/7ePDh3tyy+xlZyfQ9sJWXNfqNJyOpYQjI876zFemM/15qK9cTA9Erm+wXmRwKuzecs3Q/mYajoH6HoXHqz72aFYPUM9uMBUxGrQOxJNX/+XV79E+rZfj+X3VAjPQYGvAGjkP924r/u3vdk3xoEg6cAOt7k24/Z6u+x2IUS/sDuOlV+dmNGzix+t8iTIZDZwT6a6uEedDp3eZ66IeebGt60gtIscid6BJHS19NwzqZktHM9dRcNrx2gb6Ogpl5zzivaEnKIcJXP8+32nR3ttkrI0HeayBag2/ds2jnQdBDkT4ZW0Z6MxwSH7t9mpNQnfvVV7coo8/pcf6NZrasT5bTu5o5obe2YawrS+Ex/N/sI5eGuzjnvsJH4aij0K+Szw6/bVVo4ONdzDou+6VE6bRr/XQSw/9uuvntOTM508fOZ3OlJyRZSHF2JHNkWFq924I4YUC2g8f/NGsGZW5D0D7gBHoa4q8rB2dYvw64se+TV99/8vfeZEI9CFXv5dGdNGBGL/6/jKeF5Gu8R73iSfnYm7JyjEIKHWYx2kftMCR3TzQYdyBIKIvcUTOv8QwjRiikBKx1P5ahRB7A48xLmwf7sMI73usjplqOvGHad04r5afGQ+XY0Oz9WgOUx/ueB96TWLPyLKcKLUeKL1vI+fXGsupM1UMiXaEGAjBE0IwN9uuC/bOk/dhDJaP1zAv5pa9nE6kmmi1siwL87JwOp+Z54V5ObGcL6YrFnN1DmHEU704GssAUvTVOFTGGJ9Xn7PPCw4zRf5pP8PjqNXQNwRcqNDMEMm8BgWVTtlUzClWRy1iebLDN0EQnNpQ2YuCmHYzTY6WK7lUbltj3Q0YOOPMHMpXgq84b80yrVksWh8Gqxb2UsFBnKDb63VDvi4jaZXW3Kv12Jpuu0Qveh/bym386t1Ok4aKI2KyETg8DRmRPyINn4Bqjru3vSDOkUJCWa1+80LLVssZMCG9fq44l0E3xFVc0I4Mdyf12gf6XTJor7/RKDTNlNZwOuJrjM1ztwQ2EXbpLxZjCjpv5yVNjpAVV20/V23kXIjJ4aIx3QbbzTkxivQUSJMnRsvBbcVMYefZs1dnXhwOjKasZizroOS9v0fH6Rxom6NmoHuXdAuSXuvo4RkUvCDO9mvLFdde8CnqmkmYxNGcYs6u9r1N7bzYNc+0+vIMKsYWcwq4QTVWwNt9gsUtluYoVXstY/eGSLRz2DKqUEvfw3TUTV1m+SOOH9/YBgs8BwFvU04V1yE2D5IMLe0T/3f3gb/3q8T/4b+a+Ht/HPj7fy7cnxqnqfQHAWoRHm+eT0/KP/+3hf/bP/3EX/7LR/7p//Wv+fz5xuPjapTCsEC670tYg/oM67ewfTJasTtBfG+vs63GRy83Q13bao6ZISEP73ApWmPbI+uoQsVRswLb0ZGOgtrj8cnjJ0dz/YFVIcRuBOOEupXOce+nqLsg2yOplC3TSiMUpQZPTY63i+AnoYhjK8K+9+IXRVxjmZXTJJwWo/nuRcmlmWu0eNQZdSlGT5RKSEKawSWjD88O7s5wf7IGszbYi3BdB09duJyUKb5QOsGSk3RT1l2R7tXlnWW2Bm+0hOu18fG7gk8JHx3BC7cNc8P9tEFH+tLdRFPlesvU5roe1fQA2oDu7hcinO7ARzOg2iqUBuc+P2lVua2GDrcKe4OqwjVD3K1xl7M12qNhMSMve5+twVoaLtp1y4yewr6uzRaR4h1lckiygcI8d+8zrywnDuvxrRuHTUFIKFELWq6dOfBifPJTPTJXtrpz21b2bGiB931jFOvsR/7roHKNeXhrptHoed89XOc1hXW4Zlve8yhNG+a0OPSVo1yx3fnltf1w2ZKjwWhYwLkDW3wxrXeVLsS2zwwc9gcF7/i7MPSb/U9jRWktilYhxYkqE60FalZaM82P4tDWNXe5F5RuprSdSukosEBtli1ZG0KlNHMllmYLrffGanEhEJ0ZzjgRpmlCFfZtNT2dhxTNGEbEGszatUf79Zm6G/K6b1dqKeSyHxpc02tYQTeMrGprVvCIw6UJ7YW66WmMujd0gCHZa2lVceoILkBQqhuGfEqIyX62x5LUUik1Hw1H7Rmc4+iX66AGDi2o9y9orfTg9oHWSTdCajW/6CydaapaLmYuE7xtfoAnGBW9P/9WgC/9Hug/7kzm0Eq2O9Z7o6L3wUSpnS6Lo+oIjvrpHuu6WhHvhNv1dtDuD4fjPgwwBN4zVvkR1wS9MD4aFMcUAw5v8UB15/On743lUiunaeGr91/zdH2mlBe68KAO/00n4+N5a4qFwtl1jtEa8Vw2WE3TKk4OdPnfe9b1h3rbob9dt5UYA7Msh0HUYASMrOs6JqmM4q7QSsGJcL67t0zPEI8IoOv1mcvdfUdyS6d77/iONtf+7MirxhvgRVOvxDSZvCBaZnPOmefnZ8R5Tufuct5RR5GZ1hp+z8zz3BvsnTH0+ubDz0mzuRY/Pj6y3roJzzwzzzMxRvK+89133/Lhwze9QQz9HIhlTfpgcYTyMlx49/4987Icpl4ll4NC/fnzF07LiWVe+PD1B372zc8Qgeen56MIPp9P3Xla+PTxe56fnvj22z6Eco5/+A//MefzmYeHN0z9fY0hDMC8XAhxtkYf0z6PSKExaBu1SRN3OK6PjckMowbtuGfS98HM2GR++rwLO6Yp9FQLYb7ckM3xvCfmUyItntIapSRKSex76ZrVl3fXui+AOEeQhqeg9YYLnwHFhYXb1ritle++39graEu4auyfORTEezNNrRHUISqc44UtN1Rv5PKM+IbzjmlKOALLEmniKA1a20GbDVCkAoWcheg8xQXUJYxIU7ltH9FWWKaMCxPORcz01d5LTA4Jtv/sWahF8TQm73HzibI/09T0sutaUN2oAhIdMThOp8CNAC4wL1emubBlQ5FDUvayU5NlqpdivYgjoj3Cb88rjR0XM+oqTSIVz6enR7I0vp5PtFDAW2ManA0mTCOqxvy7Cq7Acgo8O0tF8MGaxi9r5uPnG/u68fUvI3d3kcs5MM2OeRaWk+cPv7esXnGOKUZcTHhvecOlFE53oQ9n7ZxPKfDmFzPPH4WnT/BpXwleOQdPCpHkzbB1329crzu//OUD8+Joal4DRSv4SHU2wMjSCALFOdRX66vqjg8VH5U0QVkrxWd7Zpt5eeRq+4smx6YZciGrDem9B93amKcjXfoV/USKmeDNFXnQpqsOnwDHNDn0RwJHP76xjSb+N4jNiN5i4rweuRBJyTPNnj/7hePPfub5L/4i8I//vvDhfeXtxSy0S4XPV+HLTfjuEf75v9n57R8K/+xfr/y7f7vxhz80vtvP5DChl2KIrJgOTXuMEFJgewf7E2xGH1YMWhPXoF6hBjMKmhY0RPBTp2ZB24tRBOjGGQrEhPi3vfDu0xlnqGirwGbF5VhUD30HSuuNq6QE4s0puaiF3u+DWmjItg+WfSUIpQhbVW43QyFdADBE1wU1z61oTsxOFLRRmz+axDA54uQ4pYF4Wri098LkG8OjRtW0sXuG26bkKqDClCwPTZ2hka32JqEpszOzJGvwzX25IWxZaM1cCBuOWoV9a2w3tYxZP4xCjNPf+rSFXNFcqVJQ8agEYrCidtu7OxuGAJat5/VWb5FFQfpmqQwZncUAmS5Yq3J11lAlJ9RuSlRbRwKa4nyDruWyTEBBsyEcVuU1yq5sK+AsM0zBJoFqrs9j2JGxYn2vEOfIcpkIKfaJ6g+LnZ/i8XT9SC6VvWSa7oA5FDptqLPYJbyg6rrrsNGzx0baWkONKECTgbsOCbxFIMlh9CbHIvaymLkDcbNz312KX0/X3auGuutmtTX0cDOzH6+86r6xRR54xUQ4WmhbR0bvI5iXpJibeAiK9419r5bhnFs3j9mNcmxc4F6Ywb6vh8lR6AyWptqprKYltHPXo2W60UJM84ESaTMje9fD6LVnkvqQiPPZtPS1kMvKETfUi7vWqjFAgiPExHhjrp/j1wZP0qfKSjec8d09E+3ntB7n79BP9wYUPN4mfB0dtBNbe+PauumPue7aBPZwodaXgUcciFIIHe3vjIyB6GLnWF5/frgUo4eZ10BwZbyXUQDjqfqCENuhB63Re/+iX1ZlOIY5GZrUStWKc0Ly/ife0vajKbUN599OJX5F3XTiiGli6trFWitl34/YnBfkU6wgdY5pnmg5247aUdi873z++JH7+wdqfXc8pgc62u8FcfY3Le6jknMm77k3oHs3AKuWJ+3HM9FdsrvB23iuj7f4akByvF4RMzPTkVvbyPuOSUqEmBJkKP39wljz7RzFGOlyrr6XGwpZWyGlxOVy6VToytPT3pu3CUkTpRaLu/AB7wwtHYZ0aRgzDfM4sOFUv1dj7G7q3hNcMMOVUlnX2+EYPhrFUjIilol7ubvjdD7z8OaB8+cvpqmOf0bed/aceXp6BGww8fnLJ5TGPM+9mew5ts6GeEMnDZDSjIgzyvG+2yBMFe+coanzbMyM7mwtAvN8OjTLhqwacyMG08k6/4Lovn33niklUpqY5pkQuvN7N6ob8VDWhLfjGg/k9jCKaiPKretn4dXeIh1lHj87LizjJv1BA/hTPVT6fZxL90TwlAZ7zqjbEWkECaQpGO3dNxsg4fo5gFIbWi07dq+ZpBsuFhzmOr7typaV5D2hD7KnlImevu5GGo7gZ0QitQlN/SFPs+st1KzMcSJFj8pg5FS8GGNIXDYZWitE16UC3tFaBszvwMwnC8iNIQnJuSN2LuCCQhFyzYZISyUgZjAqnuV8QWRhPiXWZ2HflBicGQM6h1JxvjGfHH4SXIQQGtMsLM1xzWZwKt6wOY9F9zhRXGu4w4jRE6fuy6DFzKKkWRPozFQtemODORznu4WaK4qhqeqVEJS7O498SFzOjTQ3fGrcv42UTZlTI3bH65ILtVkD6uK4lUdqAuYSLJWUhJisTh5DDucddw8z+7bRHneWyTOdu444eqJXTj7w5u2Mq4FvfnZhmj0hNtJk9rxFzUhVFRv8ilI003zCe0W0kCZIsxj6HRthVuY7hy8gVdj3TEHZiydG+vqq3csEtKcO1GZRmg1LsVD1OBdp+D6kgdJZDD4pKekrD4//+eNHN7YS5jFuPzS0ziVcsOn9lAKXs+P+4viLvwv/6R8L/9t/7PnFh8ZpVpwU1iysm/Dr7x2//yL81R/gv/nvKn/9u8y/+Fc7z18a201QLhAVkjVz0otFkWjoiXfI/Naya2/foyVbnm1vXqGhUhBXkGk2fXDPj1QwfaxawdTfHRIi4s3YxXrIauipWBNVm2l7jp03jOlSRbdsjZiLSATV3nAVaLlreZwNjV2PltBmCRVrg23vhlF92viSTUd3xKM/aHq4/Drv8dFc3dLSp5Qo0Y/s2v7a6brZCrnAVuy/2kwLrNF+Xy4WTxSCTVyThyXagnnLSlG76UsRqhpKuzVH7Tm6eWvHe6V1RF6xYt05NA+93Y5666gHe3Hfzb2vYRSs7VqpeyNGJSRHiN6afTGTJ6zHoGRD+6Qqm1NCEKboSNGa3HXv+m/pLm5im59p/UyHq8UuhEuGUuWs+GFa3Uz7LaKUanxrBzZNapZ7GadAWox6n7M/9Kk/5eO6PnbtZUNbtzkTM1GSZouHU1B5aWzdgXyOJtU0Hz+gBPevj0htm6YP9sMLhUxELDPOXDFGK/PSlI7faMB7z1/FOmkdPVz/qW4aMijrw0131DJ6IIXy0tgeL1fwYhuK90Yx0mbxN610x+HuJksvqkOw95XL3vvpl8LJ5Aauy5LkMCL0nVIoLlgGbS8UR96u/Q7fc/ys+HQhUfZbj+a4GrW0KTGmo2n0IxYjWh6rajW39HGuX52L429hP4N6cwyWzhLpF1c73Vv69N+y/UYD2XXAXTdpyO6IUhkFzgs1vfuEMyjOPlgshNHpDFu3DFNrUsZ1Go1tq+W4J1xHoA4jIqzJHWi5iDOXO33RbgvgxPchg0PriP4Z98OIaGldd2tZeyG97As/9aNWc+sdw9ZhxASACKFrave9o/c1294EHbHXo4EYiFmpFW09XkFsjxtI3qDxjuPQro57X4Tc9aI5Z3LXuZZSyXmjtUpMkRQjLnXEHDmeY8Aoga+eqXH8TQrya2OqUuvhQG5NarUIq/79zjlaKfY8ek/zfTh2DHt6bEyMnE5maDX0weZYblrSYWwmYk2axQbZPTro2BU91gWjBQu+I9lpmo7IsDEheHp8MrrzkDyoDcy99wQfudzdc7m78P79V4QQqa3x7u1bvnz+zOcvn/ny+RM5b2zbyu12JaaAiOnL7frZM9pcw0s4njEbNplbc4yRfY89jkuYOto87gm7naS/x/YyaBOjc8cYWU5GbZ6miWVZuLu/t0ZaYV4WQgjdnOblfA2E9tgj9GVNdc7Z+mJzD0au7b9v6jQcqV//fP/C/7eP1v9fj6rG9inZKJq5mMFOLgWVineNOVWm4KC5fm/4PiQ2XXdRi5TRdiNoobodH2xwXIrVNjkb8BGdybtSsCxbxdM0IRoJfqJqoDZHa0Jt5hQfgtVhmhs+RWJIwNYZIIqT1tfaLpGhICEY6OIFVaO6NboeUxTYgQnUakCjx7pOr1HKXrrLsUPo3gsukOaAczPzyRMnCFH7gNp1Q6yCuMa0OHyyxtb7RgpCSsKqXaoSzMhSMOaf7/uhpQyYo6np+I29QY9CLNh6YyjkGK6bOWRxlbxrb85sCHE+Oab3idNJ8dESJC73nrpHpribHM8Ze8Y8LD0hdbGjWC558DbIRJSUTMJQs3YJog2d53MgTDuEyjJH5pPnfA6k5AhOmXBcLg1XA+/ezYhXqmY7f9Vq2yrdTNE7VIoBer4hQZFmaRYhAmKfc5MSF4FifY80S7HJVc0gVBwhdBAQRcUZNRoDKsYj3ZpDCV2GaP45dbchbZDW01z/V25suXw4KGRTElJ03J0S7x8cby7C3/8j+KMP8Mcf4B/8SeX+ory5L6j3ZHVcr45/8Rv4l7+B/+P/OfP7T8K3XzyfbzM5zxQutDPoySrPFwSnI2qt9mK2F2D0mf+w7C17b2AtO1emyZrVKVmjalkx1hz2ItnMJLqOTDBjpd4A+dYOTdiwzZdRuPX8GEWsiZOIejEq4jYoWR6qQHXUvINWJCjeLfgp8uVLN51JjlaVmpV9d6ROg/38qNRqD1rwUKtR73wQQjV0NwajGVO1SxhMY5Cr6QaD70hWMfSU5pBik7Bau8GKwt6jd1p3IHUelmh9RClGC27qQB23W7bfpUK1cQspgD8J2mzC1aqZTdXmkabEtLCXJ4vXKDZdlc5PbM2wvacne7DNkMnjxPHx+0ZMyrzAuzeChN6MNxP8+1Ipq4W9hw8nxDkyQnGO6kDCKL4Ficma+yuE2AuIjnK4GFgePOIVvJ27602oRTgtdv63CpdZWBYr8BFYixJmz3SKTKdEe6q0ERT8Ez6e1qejkHg5elEp1oiNwsA5oxMHkd4w6LEQ0ema/ansH731Ha6/Eo6vjK9aQ2moLlrNERelde670qyh7b/XdSTStYbU3tn2An402MeL7/91owtvvPrb0gkJai7Y/Uvm1qo9+L6QpZgWuAeTO28FVq2F59sTID3+IpohkThDKiuENFkRmYtRWxGWeSEEK2abVlrpplNqiO3mHd43m/7iKdvOl+//QEzmsm7DNtPWtj5c88HZEKI3tzShqhjFqpZO2+wDg96E2vFSdA/9lBsmQ6i971JopVJy60U2HR0zA4exNqvaBmWNstjr6ZN9uw4W1eH6oISuCx7mRgNxs+Gw6Xrd6zzKUg4jK+AHRkg2FLN4EoB1s/gUrZXmWs/59JYBLGakVfZsA0tv+bfOB7RrkPO+Er0gEjrX4KfPvKAPTPwP6JuO0nKnJrreYBpa2tpAavv9MH7GO7Q28p75/OULKRhNHhyn84WHt2+5f/OACnz8+JF5WRhU4NZ6Qd7zV2u1hvZomBlad7vGVuREQ5KX5UDgq3aWjmJURnrEwyvE9rhnUEO2OjU4dMM+u0/1MI8qpfyAsTEyd9uI6RIzjSolH9rTF42qFYreD2OlieA9j0+PrNvKeI6mabZ81vqaIWFNsneBaTLk0/ZV3wdZjtPpdKwJ33/8nm1bjVrerKH96sM3TNNMSonTcjpel7GHKnPPYp6WE7fbjZgiDw8PvH33hnmeaLXy/PzEuq7EaI3m+ewPza8qhzlXSp4QIilNh4EWDG2gmuZ4UIL785dS7PeRmWqZ1jfyy1/+6ohRenp8YnShPgytezqo6uPjhWLePQqaaSoHil3Ky/BkMBNE6Nf3Zdm3n//hOOpvR1sLz9dCnRw4z22F2gIaAuvekL2BZrhUptg4J+kytEhtDlVHFceWMyVnzrOyBM8UFqJz0IS8zmY2VQq5XlmCyd2Cg6qe2+qpeiKFhdPlHbXY83O9rTxfN67XR375s7dMwXN9vNJ2yN3AT0Vo3ZuiW/ZSW0TVISkSvPnpzNG0lbUGti3QaiWpDbpCnFg3j9dK8tUMD0tj3xshzt2ErBHkjOfc9Zlw4xk3V9JZmB4VPyt+Ur7/bsORuZwzYbL0jEuKUCr5WQmTmTPOy4nLg6dslTivTNOFeTa378zGre7E2OuX3lSqV3ZRphBw0UPd2Padp20jV0Pab7eGD4klBMTtPLyD8zeJXM2V1TtHuAu0ql1Ha0i2C4F5Ei6XyIefBwRbK+JS8TFTW7a4xEvEuUorMC+eGECo3LYr053nmz95g58TaXacLp6y33A05jhxOj0jZeN8NvR5zRV1N0slCRNpMoDwdn0kYGBXSp0NGgTnLRd+3Ta8RsRHbrpSpVDDxpt35k9U6kbSCAS87w2sKj4GgjiCggsGEj1dG083M9Mq+5XgA8t8Yitds5t5Scb4EcePbmz/+JuJKTlOi+frt8L5JLy/D7y/g/sz/NHX8NW98v5e+fpBickK24/P8LjBv/u98N//W+EvfwP/+tvAl6vwuDrTLTrMrAlD4OgmH/Ym2qvGllFRY6Ww2oPUIohF5qgY1W7weIfgm148v57gibz8LlTRmkGN2w+WyeXEmkhxapOmZoZS+GDoqjpK6dNELdbclf7aFKNQ1446dVqdSs9KxDj44kwXmzeLwUENNRv0YZEX9FO7i5mKTUdqgU2NyjB59wJ1Yc3rVgTfzOhoimaGZINqm5BdV3t/raPS0kbBb8Vqw5AbqmlVS5FuGtUvSVNari/FcneSqn3yZU0I6A9diJChver1Y90r6sHPI29NqWqRMU2NSu2xucWgePrepJSsrI+FsntKky5WhykaEt266ZM2RYvSRHrRYt/bB/f2udAHHNjP3lYbHtbGIMKTJhBRpNp1qOrw84zcbph/4E/7KC3bkEh78dKbVuno7N9E6Bz9+2ze1hF5e+9uUE6tUsaQ14HXDpMa+mMmR9Op/R71MprTdgysXrkDQS9wx79phhIOOXvTMfmFURjZxLXjpTJ+38v/Fcb/vEw6fRDSpMTUWQkFVB1ejTIzENtBbYsxEQfi4EPPomwH9X40HCFE4jSbeYuzwvZAUnlpRqSjbb6zRozmP9Cx/j0oJe99Qt4Oerg0b5Pe3mC0TuEdWaPemSP5aDRfQecMkybUCgUvQu2NqlZzIB1DjPFzL+isHtfsKOrH72VMvF+o01IFKc40uC/f/FKI2i+yJuFoaPq5H9o6hnbSvprLMJrIx5ByGAEZxbEXxEPDALyyS+2vbZhpeBR3GHUd981P9IjTxMjPdq4Pb0TYthe68aBijz1hGH6haqhAp8xXpMdID+M9Q2zff/jAz37xSx7evrOmB8jZkHRDZLM1s8X+ZjmGKhx/dwyHREynPQyiSn7RZRsy34fWWrt5jDLmZHYN2/Hf417oVHKLmrABE/DyXMnfZIFo15zzQlGXF8rzaxo7YMZMPXu69WcxhPgKjTXkczT60hvA6INFUvVG1nlhWRZKLp3GG20NiYZ8tdpoSZlSIsbEPC9M08Q0zcffKaXgvCd2ZNnoysK8zAf6+dL8OYYZWGt2razJtfdjhkCv4rv6veI7in+cj2YMkhHl5Pr7HuY/rWsSx/UupXC9PnN9NhQ6+MC8LOS8H+dpXB9zybX/vp6xDmrtKzntwRAx2rE7GmL3aq86rnG/zvz7/v0TPUR6NEyXpDQ8pSkpOPMiaACeUo026p19V22OpmZYmEtl3zNTdJRq9V+QAOrIwzhfMCAgVHJTAglrAyZKNd8EX2ofvHZDutbYS+4IvSd6e85yMUS0Ylm3tRUUW0fXrUsfmrLmglB53nZ7XU0pxeEIJg1Uew/OO5DaM1FLf06ttnBqdRyhp38EOqhUCJOQFiFOlbgIYRbiY8ZRSEmpakyT4APJN6KHImK1qa+cLsruzVhLZUFcoNGOmnAM2Vzf21WUre2E5vFqfhlRGk5tyNBU0W4uG1CcqwaaONBiQIDTyjKZK7sLiZTa4cPrg1hD2kwORhAb5IslFg/JiYgSPHQfXJxX9pLBG9ji58U0vd2qUxBinAhhJ4RC8IY+R1XS5AyH80qYOsMMGwQYiNfZXR3h1ZbxzbwKKIWMULVSWyaGgnR0tQdCdElnNcaPWBIO4sywTPUwF8x1uDML4MllMDbkiCz7McePbmz/sz+deLhzfP3W8ff/VHj/IPz8K7ohlHKOEFzDS0NCo6rpMX/9EX79Cf7bv3T8v/6N8K9/K/z1R2fcaTxTFAJq2sutYb5GcqCkwEsRddj6dvc07Y2RdAdktZOvTRB9MZ7p/2Bo8w5zARXT5A7TjVzMaMol2ui4nA5PLGoM1Cpmp+1dR3qEthbaXiA3tAovlqd2Q/Y38eISSm9/ujuZG3mJt2rurBVC8pQKa6caNBxVxTbAYo1vLdILjYpOwml5cfV0YudYizIDMQqnJDxN9p58tUzbXOD+zhq3MpDffsoMCHL44Cg9HLnfxxQ7VWhV8nMhpEDoRlLWSHZd8HDmNEchpAkiDWkZrZM9uE66KY8ynyJFlEpDJdjDrLBnC6UOwTTHvlMVihpo//R9xk+NWKSj2cLDSXoB1Z0/q0KxRkiDEOdAzt21zSS4pCjHdGnb4Jrpi4IN7Las3EuPOFKhCOzN45cF97hj1Jqf9lGqUYJ6C8goKEfUyWiyjua2D3gaPVtRBoVUTX/JYDdYUzvaIYeiHU1pA39VwYsHsWB5kW4s1Se/x2GWiP3oDVxvrrRxRAwpr7+PI9bipdCR3p/Y/9Pu/n08KWIB6CHCsjT2zVyz9wz0HGztsTW8oiAOBCc4h09zjxfZrckQQVJkmk9dX3ayQtogpaPBputunY+m2fOeOM+AmKFF3hnOo0ZVhnX7YgWDVubQc0WxTUNbMxp1q6hWfM8K9M7z/6buz5okx5Y8T+ynZwFgZu6xZeatW1W9DHth8wNQKHzi1+ALvwc/HCl8pQhfSQp7Y5MzU9tdMmNzNwNwFuWD6oFZ3O7pSZI1UlFWEpVxw93NYcDBgar+tzBP7qKOo2Q2FBw623HubKG7PohyLwq9GRoN/kFBvV+wo/kclFQcEeu90msZE7VjQBCTm9kcJjz2Hq0UG7SEwdzxB5q4RMMHTyhs235Hcn12lqINFFJO9lDWSu/V1kEYNEVzrm2901r3AZcVlc011WNA9r2+TqczezQacgyjGbDrM1Cz8ZomG5jkPJk7uCqSLAomx0QJwfS6nlesEkhp4i//6T/nX/7P/w0//vRnIEKtlW3fD6RzNLZb2RwlNR2diBA1+vDZNJMhj4bE0d3txqCSm7bO7tHe72hddkR+MAoem67RINseX60p47FxMirl+N9jCNBaMxpnsJggQwn7N+89cqbnefZGUA5X43leGA26IZ52jKVWUjDqe/b4muHGHELkfDpzw3KHg9/7ptU1I7VpEt6+e8dpMSOsnDJTnqiONBc/tyklpmli226odnNNjqZjrLWakcx8YuRT9t6NRl6rH7tFZ43Pa7rndKCu4996H9m3lfV2Y11Xb36tJlCfWB5mZSLcbjc+/vIzv/zyR3prLKczP/7mN+xlJ5fJh9k+7Aj4dY++Z41a784eG41vrXpck3Hex/DGNPb2Uu2Pj4Nv/v49v3L2AUaISEyGzJfOskTyJIiaOeteGk8nCLETXN/aup3Psje2rVCWRK5C2QOTRLQH9mrPZRVlLwWJjdg6MydEJkROlJYoqsi2krB+qqNUbWzN7nPtkTwF9lIsaiicQT2KpTeEyDQlSqvse2M7mQfNum18et2o1dboaRJyzG4IZo1tnCJoobXd9pVunhVBjalVW2MK1syNxha1ZlY1Mp8r80XICyyXgtCYJ9jrxlaM1j9nOE/CKgqho6Hy/K5xjZXXLztdLyCWqdulm7LR5RLJh/4qytp2pj4xKSx5ojVhks6t2xoM0SVZas7RYHK+1ix5AimcZtPoxyRILBAqEiBlYTlFCNZv9K4ePxeAjIj6fm9N+tOTAW+Ksu470zQzLYl8OqEUWl8xanZknhZyXtnjToyW660CyznTsxox/GRu61Oe2G87ZW0udTIAsvYNdCcFRWul74WdbPGAdUOmaokYcSZE0wATzZBwq5VOQEOiizBNBaEz1QTBMuTRQO8BeqTU3Ywc1Q0N/77jfv73/zvLhZon5enczEZ7shMagrnbiqOUhcTXLfC3nyL/x/+r8h9/B//2byKfvgov12C87G6I30BecDezpNCKO9U69dgAnKHBUQSzvHfhxR1NaH0II+lUaAlZhrlDQGK6IzXeNwfmu2bPpwGiSis2fVJ3MiUGDufyjqGKoge6FCJInAhY49XbbkW+JFArOkO0XNxGo2z2eUKC6WQoZ2zFijYV9t2L0mjc+FqVL58qFJiDEHOgRzkmHxItCkj84VA8tkcRpkU4TXA5wbziLnji8TVuy+6ZsRINKX7d9DB32itUtQfS5RxYV7XjN2EAKvazOcF2G/bfwW9ooaGkOaMxomlG60bfN5szBFvktBsaoISTaTsJ9L7RWuBaI52hcxKuXwtl7fSYqT2aEcFto9dg6FpopAS5LYQUmKKQBVqAFoU0J+P+JyVhFOq2uxZ6DqbxrUotcMyBO2wv9iD5+gucTsKbtxY90lvk+S/e0Uqhle+figxYg+LDF7Fu7EAjk5sLGYLrhcPR2NrtFn0wpI9InirIQMjc7TYoQ3F7R1SF6Eg8DsqIr2NVy6rtGg6amYge0VoDvfk2imU0i/ex/dAEP1Y2Eoy2qwFEvalRJaRGnhvn58b1Vglrd21RP6h3GhMxdU6nMzFFc0FXm4WW26sjG0KcJyREpvlCztmKxdPpOPa63Vwk75mNKTPPJyZ3UZWA5VvWq+1lvdNbYVtXStlIKRBDJmm2B7zYHjkSvmMwcw0luH7NaIbqKKXqnUpem2kOgwz6sDoFbKeUeuhyDc23qInmk3vlwD8fUPBhHDf+WFOrvXkhbWh7nm1PfoyaiSH53tVd+yuuOb4jw6PvDsH26lrdXEqNPm/mNIlpXpwp4KZC7gIsRr2xwctYfL72opgJl6FxkdI2d6b9fl/n8wVVuF6v3K43cp748cefbOAUA+t6Y9tWtm3lcrkwTZNl0YbJzmUwCnItG6fz4kVbYNt2BJjnzPnyzOXybNfJm9nr9eqNz6AgVzdT82GXx2UN9FZEyGk6kFlr0PB/93zLEA5TtV6dbSDNTdbuaGrXuw5zNLbd3chtnZqu2Jquxr7vRzM21qkqLKcz8zw7Qtm9+dsNOdYHXepDEz00po8IOBiS2ntj3TZyyobW+uZ1mJ21Rq3G2BIRStm53a7se+F8uvBs1Smg3G5Xvn79YojtMvO7v/sd27qybivn85nT6cxf/uVfcrtdvdkM3sAqt9sKKjw/v7X7RwTBjqHslevrlVoqy+nEtm0HKyTnfDd4i4EUo91foSEsZiqVIrXUg7Y9snxHkxlCYFkWTqcTp9OJ9XY7qM+msd4N9VWLpLFM78DdxVmPczQQ/HGdp0mcltwORkDvzYchQ1euRzPMN0PS73tABZDTifMp8fwms7fItin6pdJaYVuVKS3OTOoQmtXdTgDqTdmbmX+VvXB93dAaEE1IWIDARuS13LhtV4o0pAfCngmSURXWtRAXG4aWthLiBGEyWQPWqHWpNBGQyqfXL7zeVsL0AzFbfWyDNGtw7Rgr19eVJVutqNrMk2XvnOYTeYpcns+owXvEWOl697YRzBVZyChmlNW0U9qNPC9Q4XqrKDuSdt58aMQlEqfEOxb2tbPeGp83hWvnl+snpnTmw/PMx1cztypFePN+5nRqTMvOco6knJjYqdJdSxsNKKMwL7BMgdMymakpnV4jc5z56c3C+vmKUhCphBbcTLSybo1baZxyImaYFyHligRla4WgZnYVgkkRTqfZUhCqyRCLdmjC7M0ijuPFJLz/0RrrWoXyJZKnzHKaySerh7d9hX4zZ/y4cXoOhLBQ2Ow8J2FaMj2Ctmj63UkIpwWR1fxmqNjYAkKYkChM806lobpDSVjDsdPFGIG9mWbWvI0m61WiyZXoJmHo804InZCNNQAzWi8EyaQ0k2KBZhFrMcZ7TNz/yOtXN7b/9M/ETnrQ48R2f1IoOliIdODLTfj9F+Hf/074T7+H//aPwh++CNseKN2ap+BN8FF8qmvg1Bm7GMLRsffVg5Pkm9bIkGD8R4HozVyD5uVewWOJXCfrRhGSHgp3E/khcVi9duru+XRN/YM6DbgpWsw9VsSgOzUu8kOFh38IowscBWCIpm3dlT5sGbXTY+cQtIo10r0dde3Rr4OSsiHFeRaKQvHpZmvCXkbYh9GGzYTMRfGeWTsKgxjMZMpQLHMJ7l0o/rt6E4ojMtpt8xwUgRDGjMGKQ6NSCyEJWuxahYcHS4iQ5gRTp1cxZLsou/eAh5ELnbr59EAsloMYaDURYqDlABlatWOpDF2veKPT6Xs3S/AKa26k1A00VzvOmIMNIcQnzX7qu2I651Upu9HNDaSzdaZ7PxqCTW1i1rtNDmMOnN5MvJ4n0jL92lvqH+x10O30UMS6BECPf7Ps4gPndHyXo8EYr/sy8NJCuUcAqf0Z2tyj+XTkzrDGgauK7ynjPvf3l0cqshzHrX9arOjDcR0fahyzfIP2aRCk2xQWkzUZaju5c5/vNjiiMX5/DOnIi9zqdkd4juLXslJDSAetb7ic3qMoLKrLCvnkRjLpQG56r5YBq82ar7E4tfs1cYRLcPq3HoxZZdxL40KFAzXSNvJ37WqMLMHgl0MdxVPP5uzdtc86isWB0Opxiu+DBLFm1EaBfi/qMYSwS2A5dgNxQcY10OPdxs8cRl/jNwUrcqzQ5WG4cb+GI6czxHvc0f3PsVU9LJd+fx//nYO6Oa7ro77ze3wNjaMhtI0QrEmZpkzvizUSrbnpjqHaokrKjhKmRNm2A+2UEB2pdRpeDNR95fb6wratB7I5NNxHhmu35nIMyg5jsQeH6u7Ozfb9/Vij6hmc4U9p3/KQ74wPkgdzS9WYJfddiWPo5Y1jEEGdavyY4Tvox+Pfv2mMXcM7Gls7jPtAaNCPBwp6vzfuh91boypHA2zGU7Yf3DWjhRiDN7c3TsuJEI1+vG0r+17Zd4th2/aNT7/8zO1247be2J6eKU87Hz58OLTMy3JytoUc90FKE/c76K5nfYzSkYdzfPz7w/k/6NyeLdt7Ps4x3Bv/x/exZtxiiAw9Dr6PGg1xrI1v1/H9PIfHug55+HpwhHc8Z+5vcjgh6/GkeZxn8ie/7rt8pZDdeMlqYBEhR2PKtW4D1CRANFnZsE/xebSb4pkpaq2dmpTWgzMgoWHOwipmuBdiIsSJ2hOtBfYKuZo2sjelSaCJUDXS1a6jycMaaKP69WxdkX5nR3SEUm0I0Xqj9EYKVm/WJhZb1LymVZMNjvsbacgDAyuI2DASi70Ty160zzTWBkpp1qRK6P4cF6bFTPDqC2wtshb4uhbkMCFSZ+XAvGRSnGgaSZPd3ykGkieLpBBdamgO7hLM5Cr4mms64usSIhswBqmBoOaKXnxoLLM9lhXPjlWl9mbGW2qGkCEkcpiJcSNqhx7sedwVkhxrXNWPJYdjH8rJHMpTzj4cagQxlqLQqb3aGpoCezNeagyjRlHgPjQx00uTSY7dXQcLpfdD8tS10R3ok2j5t6jLQJwpAwazS0iGwIubR6K4Qyi2UxljVsRAyOgpFOr9Wfh7z7ENRg+ttbNVpXahtECOnSnB24t9W23Cv/2d8P/4G+H/9H8X/tPfRT69CrfdKyhHdzUIzYtKsGiWowCJuK03Rh1Vm04MJ1TUf8jgJMALk5AgdpruxhstDS1fralNCQ2JkDLhvBCSGA+8BqdRCnnyMr5CXatBlZvvKNEyE9u6015Xr5sDIU9QdnOXlUB3dNcPypqqIKhEJBvFue2mBROnwe1bRXqjbwVhsQKjCv3BKAmU8wULfk5mavR6hZer8vI1sBbl59JZcjg0CFMW5ginJZIClAavV6Ou5Ig5tU2Q58S+w7oqXz/ulCqgiderObTNWai7clvhtGRC6OSJg7KXciAugThHdLMJR1CwXC+YZuG0uIC8gbQJqZ0//nGzzS1nkExvnfVlh+Z6ueYC15zpLZCXSL64BVwMtCqe6/Ogye5qJl7A11KQtkOrhMuJtGTSKRn1sHbarR2C9BAStSjXVzVyQIA8OcO9K+VlI8/JzlU3uioinE64a/PC7eOZ/fb9a2zvT/o7VW7sL3QfDASxfE+b6RyNhoNn3uzqQVvXPgoevwzu4k2/u90adnDXQwWDyog+rzKSTqfyWOhahMO96Lpv7I8Vy1Heitnu3/WR7ugcvBqIAfVYEtvsIc22/8RZ7MHeR7yWZbSqNkQCOU3kNLl27mZ5td3QKKNUOo9fBG2FkJNRhnr1iB2bpoIgMXA6na1RTpkoQNvZbyutV0K/N1eiwpxnppRhOAl3c4K1xWv0ziPLEDeIEaOI9XrXPQ49r52x7rRx2Gv16B5zg1Z3rB65fo+v0QBGwQeGsFenTXujMK6JoeTJ/2vxSqMhO47naB5Aezc3Xr/2w7DQXJHt+1rZj2I4OSJkaJ89oPd9OwYtKVoeY6sWHwSNELMVgsOBEhy5c6+EZsZE+p03tq+vL6zb5k6a1jC9vr4we9RLa8XWr1MV6R2pjdPTM8vpxOnyxJfPn3h9eXG3arvWkxtuCY3f/81/S9teeX73luV0IU+TU7etsRsNzbgZVZVt3eyfxGjhqLJtt6OxsZgS2weKx9oY08Bo8+2Bbjaax+YTfpO4yMEkudNVH+nsejSxspwYrtvTNPl6CofT77quh2Z8fIzHpnY0v0PPORrAfd+PDN/h+I0IdS8ex5PN+Oly4XJ5Ptb558+f+Pz5M+/evWPfd7bt5lm8E2/fvOPLl8+GStbG6+sr27byhz/8nvV24+ba1fX2ht/82W88Vmfip9/8BGqRLqbNXe4mUA/MFhHhzfMbo1/753h0KIZhKDWayfuwMEQzK0oxUUoxFOjhNejRb968sWugxtQZv6MUi0i6DwQ8YrB3H5TLw/ket6/Hu90/wXGc6s3yN8Dsn/x3fN8/htecJqQ31tedlzXQNZJTNkZFa6yrEBZhijDF4O78FnEjmKFYCA0R04qmZrmrLUQUobASpsoEqE6clhNPlye+XoXShNIdcOnGONS+UuJKZac0y0Iuqkhtpv2SwJRnUpoIIaHddLy1C1Uz1/WVVlamUAghQQxc98ZelL3BrTRCihQmGzLSSRb4CICosbpimlCZIczk08Uayabu1Gzz+OutsK+F3hrpokyLMLfMeots+45OExIrf/2l8uEsTFl9/09oF86XMxDJp415zkgwSn5uSq6dOWdK6dS6s7dGbsbuCzS0BWrPSJqQmOncaFpZi5JTJsaTDQXaV2rYTB8tnXXdOIbSyXqiKQmnNJHiQpYL6640rYSipjXthZ7VmU5gw7wAGii1UZtwOV2Yzxem5cynrx9BNtNEi7FYvq4rIhGy8OWlkJMwTViT7Zn0cCKEycC7BCFHrA0NBISt7HRWertZ8kuNDlKZnripAWVRcMPbCe3Z3LgF0NXiksStR8WiPm2PTOT5RIz22XMyw0FQQqyE+PdMRf4//EdzvFUCn2+Gtt124XkWnhbl3/ylsO3K1yv8n/89/NXP8N/9QbhtVtAOo0zAUE8f0g8DARGj26paoTYK3z5g2zAu5EDnxEEgMTSju7JPIrIs7pbczM62NqgbZDHNZlfU8mXMHlxs6hdnnwFPibZNVIG+btQvV+rXm5ld1IbuFj4NgkbTcYlAvDwjMSExUMuOUBHc6VMxxGjs2q2a5rZZ4WxVoCE3kiyzKgQ1tNjP05TErOA7hCSse2dbLUQ5RKMCm173jmiJwHU199XeYV0brQlfBfa9M03Cu3fCXpWtKutu+j4wY6reLXs4iXI5WTSKILBEbi/FHy6KaqQ20wOnGIgC+2bF9r4ZPS17lzRNQl4i6SVh9Xa3CYcEwqyI2HeWLd6frh361lm1UjXQOui2It0bMmyXs+ta70hStf/d15WKoiHSvdjr1eNCJBwPYaKh4RJAg22iIpAvZp0+nSKpKzmb7neqVlDtKpSW6CH/2lvqH+yl/6UKAI7JWS0+mRMrOkIUSN4BOHobLNPGDKIY9OHHWftdB2nmRE6TxXS4SY75BGYWYk2t4NPo+9jWUcphhvL4GXwoge0VUcKBaA5E0Sz53Tk4BrrD0IboCAmbzNZon/N0iZRduL1WQrWYglKGBjW4hrBQym7ISDSqjUXHRKNl+TBE4n0i3Wql6k7QkX2X0OZRBl3vkgzUHh8+vVc1aqbEZDTlfTd0tBs9qXePJfKJ/cj6tflOPeALyww1BMlcLKF4UQ+W2WsaWbhTx+0hEiXQjhb4XnQCR1PQaj1g0eG6Gx4q5K7qNCbTDsFgpBhSVmt1z4JASCOSRN3cR/yBK/5z1hiPwYr118FRN5/8unNya4W7Adexeg79oEVauf5sIILOIPkW9/n+XiJYbM7ThSnfI1lsTxZO80K6WMTS9fWV1hqv65X+GdbthooVxBIC19vK0NSnlDifLvz5P/lLliyc5szXTz9Ty85yeWPXzH+XOhMj5ckyv7uSklN5tR+N4NgZerjHEtmz3yz5BHuuN0umPpBodYTwcMLmzloYn/cwn5LR8Pjv9fu/dvXIIbvfUjKzt1or+74zTRPzNFFKOc7teH4qpp3Fm/jgCIQEG6CFfvfQiCHSo8sXYiK6QZRR2oVpyjw9PflnEHprbOvKf/wP/45lObGuK5fLE6fTiZ9+82eUsrNvG9t1tb2nFH744Ufef/iBd+9+4HQ+sSwnfvObPwPM1CvF5KinnSeS3RsWF2IFuwRxlL253wJOEzV9MA8NaW+dfd0sm7oPR+SJPJmB1tByP2p053nhdDrzen0B7qZUhr7cddLfDiT82h7f44OuB+bF/WX7TDr00QPptWEdg93xX2x1v9NXm6ndJCBlVzR08gKnc0I10utsKGFQ5jkxZZsGJ6DEzpfrjojVYq01UI+UQryB2FAKEhrv3r8lBRsUttpRjw+KQx8eQWWjq5k91RZoNbDvJn+j7b43C8PrRoINXynK7br78z4c16X1SG2B2rr7uUCpyrbb88d8Osxtd+j3IZGiUmqhVmXtkOPElGZEDJFc953Sdmrf6a1Suw9xJRlAli2mciuBr2vkPHdiKrRmFGxkMr27CNP0lmk6E0JmK9tx33QfgNrxWCZrlEaWSJJkqLfOdD1R+qu7T8+EtCCymMmVRt87zNm81WY1iVirYgauPAAIypQyookcArdgze0y5SNOSSzRmK7GEowhcrk8QTRt6rZeCaGRZgjRMquHe3WIgdTOQKch5iTfQGKkOYp8WhJtifQaPfXB2LpDulGpRhMeKSwpMi9nenffB4/2K62BVssjVm/MsTpj3wUpBt5JaE5jbhbH6UwsUEpZkVCxvut//PWrG9v/29+5jkHglxdlLeao+3ZR3pwgTsLrTfn80vl3fyv88Uvgyy0YaieWi6pOM6kPVEgf+FtUjRg4Le6KfEwMrZ/1WAkvGu2JdxTPjv1bUxzcOrcFdIuDWwuhQYtos98TFCR77mRQR4nN/SxNCVpnv21mZlI7fbg4dkB3BEWbZ4kN2mEyGFqs78XMaSyzNcTRbz9QGJtN2wnWUOPB5IFuqJWfdAed2au7AMfIvtuCmiQQnR4xTscjYr9Xo9zWDqVYs7pulmmWd+V0Movy2g2Jb2q4mDV/dr3iDHly98KETYmCo1vJfmtX2+yiQApiDVJTM7RpnRajHVj0wOwpGMW3Om3bkSxzxxPjq+CNUTdqW9GKRncPrDuG80UH6PTO3xa484wbffd/i9mpnu4CG72IdV5PiKYvkGCa0o7RJnKO5FNgOolprcN9WTUxpkI3S7tfe0v9g730mPb9D3xNx5AIh6y9KfCN2BXro8UFhmnUKERHY8nxOwbpWbGKRYdnlb8/D/fzMKt6pMNxf8dvGnPhjuAEue8bMC6pHMXo2Gzs+WGfgXB3yI7RGBHzye7VYW5iOnQrpkZUSO/DFMLvt3G8XoBXrceaUke4WqukmO1YY7JZnT44k2o3Pc84Y8M8KXRrkj1bzxDsu5bsniPr9CC/DUo1rWSI0T6rNy7jGlhGr+0/rVjxfmgDRaBbbA4heMNrbqsjtxDxPcJ1sXaeHpuCB2ojD9THOOKAhiGQ/8yBzg5BhR7GUgcF9fj7t4jSOA+WO+oB72IOnOprZKyJ+1pXji0Wa75l0DWA790VGSxGJWUfsGBaaQlO8D+cdWdvojau2wa3V2orzMvZnEclUBUrk4INJecp8+OPvyFIIYpS9409z8Sp+B6ArRNvQsyYTGnezAJo636N5H5N9d7YjozXcZ7vNPY7HfwOpD6sE3lYY6rHvWUDSkPyDNm14xgshOboZIzRhhp9SA14aMA53ncMOfqIAYjRMp7VnulBRnSOD3JGw+75tsP52EynDDGe59njpUzPW2vll1/+SEqZp8sT4bd/zlN8Y+7F0Qxcnp6fUVVK2Xn3/gMffviRp+c3XC4Xj/F5Au4uwarKvu/foKAjc3dcmz72ijaMQ8ZdgO3pPpw7zsO4EMf7Bco+jL3af/Z7smfjqg8SBt3xkeY/jm+g7nb6h2zjQS/LHUW3f7O9+FhniiO7io85H547g0f0fb/KbvushnCwSEIwB2DL841EOkGMIZdMkmzPUjoM13dxyj7Do8DOXeu7D/lgXhZExSV/dnZSEkQSEAjBspi7NnfbdyxmONK67MBuL72/R4zU2in7Rgh6mPmp6y37cPkFWsOzdTuINbYxdEMGm3tfOGrReqVUpVahT4EgE8qoZ02Xa3Ee3nRpQzEzIpI1UU2FrQWaKip3to55gRj9NaWLpRKECOVee9g+dDfVDMHqgSiBFAJIRCXRmFGZUKl0nVAmkOwRffbzXQXpdi4j1q/0dpe+oWMw3IgSIApJIq1ERG04NWJHTVtuEoHBWM3TROlQq0W8xdDRKRI9lrDpqIMiIWdwA8XaPTU0meN17c0YrkEsUWHcRb7fg8ka3UaH1iFhqQ5HnSd2vs3d+jHeTxjO57XY/d0A0W7DGbo5NDc59oXWBmvm7xmx/b/8P83xNkfYilgUyk357/0G/Hd/Yw8BBdbNNKw/voFWfBLhtamKsG3WYO0bPim3/6YciMkaCrptrMlZhd2NhlUhtGaNZu1IyqMCtagf/GbzIpDkXPMu0CtaoK3BC9rAhvfDATfPsAuczhNhspyp8rLTLNkaiRFJCV2/HDpa5gWZJuKbs1E5WyNNkzW4U+ZyMcrveYLXL43r18oeEkgmBKGURpeAzLPdzE1ptxt9SUicSCkwL/B8slib29fO5z9OqBeJbz6IGwl09s02n3kSyg5XVcKZARLbIvXY37W4Li4oaQrELMyn4KbTSrkqdeu8XhtvPhhiuRYlBSGdhKQzdCXNyrV0o8DkaJSDJARJlNrZN+v+2q2zNUXU0KPzOXDTyucvV2LKKEKvZgqFBCg3QrKMM3Xtc98K8RSJopT1FUkzMi3E85MVMOt6DBQIHaSBFvovP9PzQji/g+ViU4IUUA/0JkZiNrR2seSoB6qlGjUmQUxKXvxh2qEUQ7RtqSWW8/xrb6l/uJcXAnrkQo/YHfuyNQPedAQz+lAxDfWo+UUDEaFJ8+/stB5Na/GApI0mSkRJvfs5NQBYRe79qkJwejfi4elyn8Rbv+20wLG5+o+PYvyIfRBcYO7/Y+jqH+iKyekvrVt2bY/K6QTryRkGE8QmxK6wWXGw7Suh2r5xWs4cuuBaLEIqNrSko2ArvaHVnPyOGWVKxDwxLSfmaSJIYNt3atmprRMfyjDTT1kDWfbdYxIqUdTUESlBx0zO1HWOvpmKCotnwMacD0qiui6mdcvzFIUkgfl8YdC9t331eI9O04Ho+BgjxEP/1w/3APx327k1rbFp2c2tNZInQ3RSNO1Ta5297oRg0+PldGLE9JhRkUJv1OE07Q3EcCq2989H4VuLNemqiuSMuoushEgUc+XtHkdxUB5jNHqrPz9qLcbDCdFkFn9/d9z/JK9SquXBzic+fDhzPl/48aefrHEqO7/87vcsixkQnU8nPn/+wl4qt+urmQyFyOlkOasffvitDT20MmnleRYuofD0029Znp5tlBVcD/egLx2Iv+IxeN5Qjpxye9naGQhS104M5lLa3IUZHinA9yiaQXsutRxNqMYxgIHb9Uqthb3sNt2XO9qojhrtZTcTKde6ztN0HNn5fDKn520/NMmtNfZ9s+NRcxAeVPXgrKtHpNGJCodZHAhv3rxhWU48Pz1zvb5+k6ubc3ZUyQzqTqcTrTX+6q/+33z69AvTPKMKb9685d279/yLf/WvKWXn48eP/M/+m3/Ju/cfePf+3bG/fvzlF5c5TDw9PR0N5pEz3IZpFejaHWnHnWfboQFOKVmz7g27GUsFpunZUTNzxLZ+ypkwFbZtOwYNe7F8wmmaOJ/PAO4abcjX9XY1d9tp4rQsDN3y8CD4H0JpH3XN1bO87X3vemH7+X4MP8bK+8fw+qu/+sLzu8yHn56YnwqETpPd9zzIs5CD1d8hGhBCFzQ0Go11212a4kNT1/iVUtjqxqdfPlM2EM2cZsxwTExfas1mZF+NilqbgUwNWzchmKwNr49BkFit0Y4Nc3AGerSUjK2QpopEe95rNXYgNRElEJfMXja0b9z2IUNQarK0k94tFUQk2mcrnXUPlK5c18ZnWUnpYhTtTclLYD4byzFGTEcaZus5ovvJpMB8yuSlkeZGYKOUyJdb4Pn0TAgT82QDpFYqtXSPs7RzqJJYThcIePzRxnkySV8CkxpNM0+nD4ic2bdECDOomawlgWU+8eVlNZPa1jnPE1HsnHZ/tpW6AiO7eXZH645lkHeSmBdOr0DMdCYqJ2JOBInsrXHbVm7bDdWbAw8+DA/W/w99L8EiNZsKmqJ54SyYC/a+075UpBerIZINU1JWsma6NqY8mRGhTnxeoZCpzDSuhrq/VGJQJDWEjdasQTXXYRuclN2HXDmY2WBv5Cy0CNIbKZqLu/bB2ir8mtevbmwtGNxRKi9ykjvotia8XO/oxRgCOmjqP29fHQ+H7AbFZlpkUTKti4F0zQuloa89tLX2/1IGDXYxhv2IHmNkrLAb+ttskw61EYA1SJsS5tmoiTbOoaOkyf7bm1oeazcUIc4ZiYGYzVxDJdKyuuOh2CQ3BGoxkxY7URgCHJWclGkW5tnpvRqITd1lVtAo9Cb282KTqnlJTHMgJKO8KpCkU9wlDbcBpyl1F1K2yJJpsn67bMo0NNtqU6F9V8rW6FWJIixzJHlmb9mVvYgFekebA0Q3yKqt2xSoC6XadR5zA8IDUtehVi8+Alye7FhfgyHsvQu6FsqmrCEZ+zh7FEmMdr6LOlKrVrEL0PMdZQzZYkwcZRtjwe4PM5kcnQJvbm0KyqDDacMhZcgJyYayHzduMnQ8Rlgy5rjs6Obok3K8o4KHXBE4nbNpCL7z19HUqmleUdyT7W6aBGakNDJuu6Nxg96ngQMVsZ+zAYCDaYZi+t/veMxAXmztB/+3b1BZb+QeMw6PxhZ84mlmRsc1CYZujpifYaRiKG10Gq/p94Y2WDE6rx2aTYZjNF31sgjPzyYxKJt95qbGLDAtp+XYjute3Tyuar+jU8Ix5EI70U2l5mk2i/8Y0d5o7phuDWk/EEZVMyizZsPvB/Rwd7V8wWrkBHHX19BptdwZL8EQVglxGK7a/uvN/jTZEOZAq3Q0LQ+I2LEextoZxzLer3sj+mAKo2pDijiQuTtSNBA+gBSzI9zhQN4FTCowkBn/txCCkww74ll+fnKOZ8MjUqguTbFmh7sxEOprzQcu909215uPAcF3/nrz5o3rYtuDProd2Fttjc0bDRSWaeLHD+/4Xd3Z9p1t25hSQqbMkoTL8zNv3r+nr1dyBGlXQr0R2kycn30dBS/CDG20BjbaGo93wz1DTQYKanvvkH30Zn8fzdN43Wmq9UDlbe/p7q5sn6t7/AYH0mf3tiFd6iggBzJoTs2jcfOm136hDwEK+76zrrfD7bmU3YYrEph6Nyf03hgxPQNNNJ1xfNB521BunmZHsOrRsD8aV5kmdeZ8ubBvG7WUOwNDO602Xl6+UmvhJ/kzUs58+PADz2/ecD6fQJXiNGBDZ60wjDEcZnTjZY8+pbmLtWp/0Cx319DbnpuyZeHuZT/20bEfwdDi6vFzlo97PX5+vd2O50LOk9E4u+1/EsY1vhtPjYZ1nJ/HdXCXU8k3fx+Ifmt31JeDOTTu21EP/iN4IAPn07M3j0JtV1or7KVYfYmwLAnmSAqDuj88FCql610KpHfktavSSqEMbXrMiGZuayFPNogp3ryFMIjbtq5bbZReIY3rJZRS7Xnbd6bUMPl8o/mA/+VaWXcbctdWUa1sWt2P1RDFFAIhZaOn0mndGVVDeucFQxL/jHpH5c1sqYJ2ZPeoL2ysFsQkEHJIG6Ox73InyE5MHQmV0iq3rfs5tHzdFCMpzqQ4U8rmEXBmbRljQkLx/a7QcqSpO/Ino9hqL2goh89ODJlperL6FEPLY2xINECwN0VbY5ntcwaBFAJpRONgfUMt1Yy9dmX3aNDWxr4IeO9Uqul2oxhwJWLDCKuz7P26g3tdzdjrWDAIMU4sJzPg0lSoa6M0uKSTIYo92AVwoMFqEPcV0GCCpWAyz6KJ3ibQ5jTiiIO3hGBNeVNLvYFIiBMSOhoSrTT20ojRIj/3OnSG4s+ehMjfM2IbMSRnb3oU/3O2RVcbbJu7b7oUKwZwnxRU9OhVAJ/SGQ20d+9jCmi1Das20Kr00o8pkTpdUVDiJNCN5uwMOv+6H+woWIIgKaLNGk/KbnBsq0hOHhCt7nystL07PF6JS7IHgpgxUpJMPk8oQutC3ZPpLyuo0xPr3gydqc0Isl0hdlIQpgTzbM0dIfhChdoCBENQy6shjBKV8zkRsyHf227646CNvZjRjU0QjFJdNs/UXYQYjBr78trNRbiLLb7a2dfOvhajiMXA+W3idE687tb07rvy/m0k+HuEaDeJUZRN27sXrIgBpsmoxaV1N4KAvqsv6s6bp+TXt1sUTzFtc1ntvjpdIpID6bTYOmkdrupusM1Oigg9NaP5ihBiNkF6UKMsuz2gRYRAmCIhZEBpezFHbPEGJwQr9lOAHNGckBQIKZCyZ+S6cVlMMM9++uwjMyKRJ9djitd0YDdquiR0+VYz9D2+ercmUpG7LlY9B9Rn3BoGTVO9+VWiDxeC3NtDcURXQmDYmY9N9942/EmTIL7p2m1nmWeuqycoBG+i5d6sqkIPihvtIchdnuCat2HQYvetHKZDo7G1KbbR04X+QD30fSVhsRIneH6TKXvl9Ys/7t1UKCZrxtI0HT9r2j1rLGLM5iroWn6auRLGkEl5YplmYh6xJnYvophHgKoXBE7vDWbWEMIo/ECIXvzf/yBmgx+4DxtSDBwaM9eRglGgzK0awjR/YyKjvVP7Xd/2eL0GqXh4vIvPIOwY2tGIAO5sjTW4IRBTMnoX9v3WFATyoKIeQxX7xc3zKe0h7eMUuTvdjjzSg8LtBzmuf3NE5xgyOOVzoObmbGeTOPHfPfTdhnwbpfOO8H+frw8/fOD19cqXz19prZiuatsI0RDnrexHTq/0zpQTP354z+fPn60pqgV6I6CcIvz47g3/5F/8C24vX+n7FW5/gHKFfSae3xM8+1W5a1aHlnVQy2yGKG4G2Rm6+N7vzay0B1r6w2ugtI802oHCtTacm8X3j3t26hie9OpZi47mKnrEDaWUyCkxjKBG41RKYds2tn3l+vrygHIWf/+Eaif1xLatjPisO9IYDsQzusGS6UxnGwrXwmNTaE7B0Y2fFp6enlmvV0o0CUJK1iRXLVyvL7y8fOF0OvHmzTt++PEnLucL8zQbSr1vh4nV+F0hCNM0czqdv7k3uiq9Vkelq6Oe9/M7zpFMzk7ZVuZ5JhxUTEPlzR25m2eAv9+63o6G/nq7ummOnafWDBmOMfoe5IW5utbuQJTvDe2f/v2RIn6nL4s7gY+4oPvP3L0Y7vTm7/31/PSWtFTANKOlblxvhVatOeitEBGWyWRY+JCo9I3S1AiJ+PM0JJTo9fruBm1CShMw8bpuLAgSM1vpoEIKMlLoAHtO7HslB79GHfruCC4bU4acA53mTKLOl6+bmQiFyZkPBWnFqMzdzKYsrz3RQwI6rZmm19hJ8dCupxhAA7VEH27hjV0zV/Zq1zlNPMSMcQzahESMarE1FFJsiOxse6UVa1IChUAz7XmaiOHMro3eitXYRM+Cx5vZgoGtw8ypmX9L3+ltp0eLh5OQmeeI4l/T3Ywqo1Dce8vkkNhniJiJU7KGFJRIZ98LtQe2Xdn8+1uzwf9g3ltggtGrrUCLhKCk6AOpMbD1+rj1gDY1ZSbmC5DSxHKC2gt7L5Ta2ApczgntFW0y+lpicGd47H5vzSSMBKFLpLSEtkwgMkcI4mvGa7LgaSJdXXzo6G1RG+iV2pk1GCreOyF0Y4DF5OyuO0vsv/b61Y3tH/66WPmnMJ0D02yI3MnfQdXSamqFrUBTpVS1yVAw3WbZ7euHoxdQfZOLvrh7EpKbEalGu2m7uMmQNb6lNUMkJBgqqtjF8kpZWzNalKMApBnOEd1uhgKWlf7yBV0T8c07CJEeA+uLGU71VkjZ4f1LJmfTXeYlMtiT+55pRSlro22Wa6kKmgP07HmmgjZ4+VSou3C5ZPLskrVrv2t0akdDg1o5v0+cnyJ5dhSkCNROUeXjtdObFcWNRkiQIyy5s2ThnCOfv3T20l3j2nm9mmZjXeHr10BZM0Kn5XZMf6TDflO+fOmU207OgekciZNwfheJlwtdhLUo22qrMmrn6a057v38N4oP0pAmbKWx3wrzeUG78vqlEmJEu0CBbSu0z4Xt7QwSgeSicrMX130106dgNJm+d3p1inFOXHtyY5qE8TgqenuxBuc003u0RuS2o62CCtOf/1PyMpEvJ4wuIEb/9nUYRQ9tcFfYm/JaTDMsmB4lRTvfw5GwEkwe4mtiWgIxfP8PUY7cP4YF0P3R759lFAcqDw3jgYz6N6k4UuIIqwpHNNCYoqtTYeAB5vfLhg8N1P5BwmiehhbXG6hRzHRDkW2Id2+1EGumoqP3KkaZNYnCaHxdI4M1ZE3t0IJagyW9oxGWkx13muIRCxWCDT4kZc5Pz+RpJuRM3TejCLdGTJHpdCJloxdHcedWVZ6f35KnhTwv1vSJmxVJsugf7H4aLtIhRvK0WLasKvtejMKNsr2+GFLbjKY7kLpDY6vmOkuIBKd+KsP9VAkxoaUijtLQLW6lgzuEN3KOxLQQkumDatmdlmkNobouunqxa/O/6I2LNZMxRKZ5YV7OpMmMK1RtijkiO0J4WIfqOsjix4UtjIN+uHcOw6GHe0x9vcWUDLHszRFr0wnuZbOivJWjidc60H7xItsWY29jE7uHEH3Pr//l/+p/zd/81V/xH/7dvwURail8+vQR/HoPWmjUxMvLld4K9MJvfvMj/2T6S958+MD79x94frrQP/0NZ17h5//Ij3/+ryH9xHr7AYv26GRHbXyATpTIMi8Pja1rJ93EKanFTgzqeJj9blU1J2K9D1B6twbzGJCAPRtjYF23b1BdcGTPi9m9764DHAWPHrmyemhvTdt3Op3p3Qyb9n3znN1+0GzHZyhlUEAVVUNFDaVtTo1u7nw8Mc8T1+uLD4aU9+8/8P7DD99odkdEUIyRZTkxTXbeXl5eAOVnX9Nnz9YNMVKmyTOC7fheXr5QWyXFyNPTMylno3SndFB+Lb7LzMP2fTsGB601brdXXl9fuN2uDEfyaZ5JKXNaTtSys96Usq+UUrler5yWCykncr4bOqGRvRTWdWXfd2+Qzaiu1h20o2rncpoyzT1IppwOZBv02E/G/f1oJjX2+z+NXBovQ4HbNwOKu0YXcl6OQUNrdwf27/n17scLRTd2bYR4YoqZlM0ECpINRmNAW4A2ISky5UjOO1ttaLABdOuBdVO0V1LqlL5irv6mgRVJvKwrWSMSLJIJhTRlSjHzvRwwp18WZ7mYeeN286FQX5nSxDJFWgmoGoshZYEUiNPM9doszSNHYyPWwGkxlLSsqxmUSmBvmaSQ6D5QNLS1VnsOKwmVCqEbmzEYWri+dJp22IXTnOh5YlmUFGdCmGk12ddRluVMDIHb/gVtO0k6nRNVDYXWoU8GWo+UZr/fABTx/cTM3w4JtwjmqlLp9cbegv1cO9OJSMpMcQLNrLeMSmErjXX1iK5sLKvoUZxzDixTIMpAZisxnBHgdr1RpEFQtmpaZBt2dxtkpYWUDZCq7EgQ8jQjYaN3ZduxoieYZ0WvVsPPMRFCJkTrV2oP7GXithW23dhqNi2xOFG7HYUghu6+Xr/akKE3VDM4SHmaZ6KjEV02mhbmYIZQ2iOCrccQ4fJ0JsTEy8tGSZ2WlClORGkkseuiike2ZuRXPpR/dWMbVqO99Q61JyiBKUB2iWu1UoIYhNnfNShHQea16B1t4U5rxs7XkDMi6Y7+Gl0SN6ux96kEL6L9YdndjGZQlrs7J48iDD+LyR1r1Z2Ia0VvVzRPkDLdUWHtQq9KCJ0ubqQSxIzWxNZ2b1YU9Ww3YGg2JRmGQt11qqLQSmO7wuvLcIIcgnGjYrRqugLxCKKj6FeMUtftXJTmn1gdMXSkyfA3GTUZUexYVaGUTko2GOhqWWIjl3fdIe52/qMxcy3DLPoELNl5r2rg6W40f6NOJJvctw69Ymh3VYIOGlq36BztlLUTUkMkEqdIWwt9L5Q1WqZxHJMnOXJGNYB4rJP6MAIU1UzvyfTUzY0/gL5v1tREgZCPBSWSrdA6nYlLJi3Zmmcss/fOJHZdaL972zxS6sc2ayZddn2kj6bM30Ps+L/7lw5EA+ycwsEYPBBPbM17kTGQkj95I0fbBqI2sE+4Y3z+/yVwHyNwpxGpk8i8uR2N7tCvMqJ7Hn79oBva+zI2lUP/g9+vx4ZzP4zj74I14mE0xDHSYidFNefv48ft7yFYWLyhM+FAGoaZFHDQFE3zawYrMUam5WxIb8xoLdaM9eqDJfVD9SFBNHTTivdhcHM3eBl6xEEv9M7sjmA9NPEHT75z0J0ljO8d18+vHXpo9qOYjlCc7RDFjV/wfN0HlEyk0Qc67sV78Gij6J/lGIqoFbmPTfK4LtrdNKS54+7RjDsdGxiUOHmgko4Hy3H/Mdyk7wXz+Psw5v/PaI7g0/f27bn9Brb+/l7v3r3n5csXni6Xh4drNH10a9+Y9iznsyERdeM8T8zLwrs3z3z48IE3b99SciepG8y0Qkwz8+WtsQrUrsigkY7B1nhvuNPZpXvj4kY2YwghTju+59/CoJU9Iu92O/se5JuBCAfKeTeSA9u7HAHkkb762GTb/tacXjyiZ0q1c1RaPbTpd0r+nX1wp87CiKkyWuI+DtCQnGbrd1lOnNYb5Xwm50xMyQq/pn5d7BhHPM7lcuH5+Q21Vk6nE6fFmrLr9WauyKUwz5NH7URrdFsl5bu+/NuoHjdhFI4IsG1buV2v3K6vrOsNBZcuiJ9vi0QaKLz9sUif2iK13nN/baO1azI+w7Ish0SitcIwdxpJQ8mjusb9OAZbpRSG4ZYZWzkyNIafD+jtHcEHHvbAcb3t+8Y1s33i0ajqe381Ch3Tq4ZgRj+SG2hCiASZiEH9eWAD40HtP+4xf27bf51+6uckiJCzZ1WvDbeHMlq/Ckpims82yGobTc1BF2cP+UZr9XgX87voTjXF8knF6YK1Wg0NQ6/tkiIxn4NSivuSJPaizNma41F/Bzj07Sa5sYbJ2Ebi68xrzw5TivSUaXSvGc00sA1kMGRCaNQaKcbItc/WYS+d1+sKmng6PwPW/LuHPwwAzesPW1NYRI0fX9dG10JjR3VGNdBc7mcDOouXq61Sj+zYu8u734W+3TU31grHZ2zdMmLHMG8MmUaJM1zQTZZSXB4mh2SidXEDW0seOXKfsf5qZAo3DZQabcBcO7U0M1PUATSOStkG0bXXYx0ZAGD1seUxBxsMEpxhMKh2x8budZwz9rz+SeI0aZc5Do8RW8OBFH9d6sivbmzfrDt7aWx7Z309UXOEGzw/B6ZZzNUqGIXgsozwYo4w5lK7Sx7FhOLNjaWaPZSGBiNgzaM2c8pSAY3Wqww3rZKwL3Yzf+7iE5RozZFKoO2DAjEmfgHyDDGbkG59gbrRPv4eWS7I6RmdFsMfYqbuHW0jsgPIgSw2jQ7d0SkRwhytIQXePhs12gblCW2dtlde/li53hp/h3J5SiznSNk7pWCTkd0+Wzpnqiq3XVkiFotUO4PqtZeAqSeUeQqmp6rqaEOn7MIUxbS1wO3W2TeTk3aNpCnw+lVoJVBb4OMXYWvKu7eGVKUceH21gGaC0TJR5XoT1lvnelUuC8xz4HQJ7FUpuwKBcivUtRLVokuaKkSjfNZbPYzB5ueZ3nb215X2GiArTB5VAa5ttugU0ysXKDdk/WpPrn1CQzJKoiTSlAkkWF9sfTSFeUZSRubJcotTIl0m0iTECeZoQ4e+qwdtG7o96PtzNvr7Vm04IwFysPOYohpdVY1SUoo/UAMo5nr3vb/EH1jD2Am4GzkNqWuwYvWIt3AaoDUZf2Lu4X1kHO8x/vHYsoNF2IxG0Zvpjj2YWvAH4WhM++irxTXtckQ6ydFEyuOvuTfqviHqKIQk+Ne8JRTrgIdL8BgdhiiQhX2vxNAgdEJoRn3xxnZZTlZcI5R9p7ohjD2Q7FGYg8V7xZhY5okpT5ye3vhQqbMXi/gK3Gm/IQRmpzBKcLpkb5SyGgo5vAG8iBMRz8UNNvg6mnshTVZMh2TFhqEihTZQLPSuLcYa4ZQPi016SkRHwOq2u3O0NesWD9LswRnNlGpoEiWkg344EPJAdKTWDjGmSAiJuu9OJytHE1MdNbvn7do6TXli6CmHXk+PwYY1sndkbIz4xKmSmzXj3dA3M8t3Pb4PViTaOeylwNBIE2263L7vxvbtu3e8fPnCjz/8QJ5mFNhq5dPHj/TeuFwsXF4E/uwvfov2zrpeCW1nSpG3l4Uff3jP+5/+HPnzP+f66Xd8/rv/xO3rJ6auPP3mvzmKt9HQjXUYYyTkdAwfbMjhw+DeoCnDYAhsdY14nVKMwvztgAGG4Q14AdlM05eC6blGA2coy/3ajGHP0P6CIR7q1V/3Rvfl5QutNbbNUV415HUwTGKM36CEAXw4ND4B3mQHStmt+dvWu462w5dksofTcuJyufB0OrkRW+H6enVnWTtf0zTzww8/oRiqOk0Tl7OhS58+feL19ZXr7crbd++Zppl5mgk+VMt+7kcuMP4eAOI6uG3bWNeVL58/sW0r23o7aKnTlI/9PSWP89iraQd7p/XGbX09GqPz+cKyLOD7+OR061pnQoR933193UjJTLRsb4tM0/RAyXYKN53b7Xo0tSInXPDGPbrnPvQY1/7+ukdAjfcdPzPo5gPV/cfQ2L5uHxlW/DkspNTIuTtAI0x5odWdVjd6dwMhEzf6s9V8J0JQptniCCXYvYPaoG+ZMzFN/PJFzblXdg9xE5DM27fPxCD84e/+2nJPJdL6bueTQIgTUSOqGe0T2mdEZmLIoIkYG3upvFxvZkgcsvmReK3cJVJ643XbzbMjVOQ6M+eFZc70vtm+K9ZU9R5oRLaiRsfd+pH+YXRgc0ZelkwnWtrK8OzpzZvbjoQFCYLKQtFK0UKVid4CWht/84dPvHvqLPOPSMjEqCh3g7mckoMo3SWBQpfJ9c2dpo1GofUVuKCtsd0aQSdiUlJa2LfGXjZa7YRo94908+TpEmitm8eO7pQSWW/QqOwluA+RoS599IcKiB79Um2Vpo29mBQgx0xKk0kEVZniTEg+WBbcR8JoxLpXyx9ukX2L1AKtdPbVIksNNZ1RHxiY506jsxPCYjV0McDnNAsRa5jV44UaHaQeCQRyOCN1k3ESjDknkRYxU+ColhATbF1rt+uw/Epv1l/d2P5v/zdCrZlS4OMtstXA2pTLRQg58IdVKUGo7pyqWPNg4c+QdmFrULoYbVBM21p243v3MRVxRIwgPmHX+2DfhygZa1hpLpttkKot9CYjfXEcBF4I4ZBOwDi8Z+uWm11Y3X5B3rxDphmdzzaHaIps9aAU3hpoqeitQl7Mmj1B6J2A8hoTXcxaPAVMED8FlueZujXWz4W+KbevjX2tHpPRCVM2LWDKxvlvnVkie1Ouq/Pi1bj+eTLt8uWt0TtGfI9iObfzZFOO11snuwZa/JhyE9aXQHUr9tY7t62TrpHTIjw/m6tdbbDemjndYQHeqhBUWb9utBJRmdi2Sqs27dMY0AB13Z02kNi/VITuDXqlZ5BloueZ+IxRhkWMdqzeVabJnK5jRHe/hqVCmOzv0b6GN7atK31bYTqT58TpwxPxvJgpVIxGJ4lirs/JGAbG8BTCPpglSo6BnMzoKyZrzrcxePF11LA1d705Xdkjtawoe/jefySv0Q8hfs+6rpbIgfrFOBDbOzICd9RLh3Ug9lC9mwCJtx2OIIzaAwZQ6BNLo970hy8MhM96WfWH7/idduTiaHFwUwIZDfiB5MrD3+Hbab8exxe9cROHfOcMfQqcT5WX2VDX4AO38V/bRUwPE6J9vuzZtDllUs7mCnq5MM2LDdpao5ZyFIqt3hvm+TQhKLsW1tvN4kRE7udYon/ufnc+VqMABzfzObSMtbK3yr5ZEPto/0QtcVhyMqRajWqFmzfhNOZeizFgHs2Wgp2xIJEUZnCH2tqaHZdYnIDR/7Jr8wXT/ibb24BDGOTmYLhbc/fGcwweQjQ9dIjJpsxHUyEHen5AEw9ygrEua9msCVYbIowVIz79sAzA4yfAKdVhZOa1yhGn9B2/JAR++rPfcLmcD8fsl+srb9+/Z1tXANbXF9bXF0IvXJ7f8K/+zb+ml0IvG9uXP1D3K2X9yvL0jtPb3xDyCYCQ8rGXBRkRcPf733Jgb0fTkHN26q7979HEqk/bh3Z2DINgXL47hT3nezbqGOgMTerMHcEz2rIbEDlLITnyN4ym1JGUlPLxb9vNcptjCoevxlhPQQJl343Wz33/CAeSe6fIigj7vqGKZ7MWBHj3/j3L6UxKkT/88Q+8vL6w7zuv11e2beXLly8MBGjfN5Zl4XQy5+QQotGQfWD3008Tl6cr1+uVd+8+WGM7L+ANuDWVd2OqsVeMz5JiYp4teuPTL4XtduXr1y+03kwWpBYTdD6dCRK4rlduV2u87wiqORm/Xl+53a6klFhOZzsH6EN8h5KyDfwMJeIYUqkqr9eXQ3a1LLMPqAKDZmjU6aGrNoOukW88WCB3Y7F+6IRBD8rxYyScbY/tGD78KZX9e3ypVquDeyAlG+S1fTXWT0jESc0MKSTfwziAm+E/E6KS5m4mPA3qa+c0qdXa2tj2G1IrEpS9NL6+rKhcaL3x6eVnlidhyTPzmwvrVtn3zVhpvdN6YZovtChcXwO1ZFqZCefoz6dIitFy6fduWllPxui9sm2FSqJrJKSZFGwPKPvKtnbWmJjfWPRmFKEHq8xKS9TeKE15vW4+ULEewjSZRvENCUqdaN09I4i0XtlK4euLkhPk/JbeM70XumZaC7QWKD1SHX3OeSakiWm/0Hs56PVCNQpuixSNXDXyWaA0tRhLG6eSgtKCDUVbc+YXM1DQbrVBjgaooGopIFoJyXqfmMw0MUTlequUmsjzgrQARGIoDDJWDEJOkfPpzOvN3OFHJnyvJhvsaqhD6kpSmLLVBB1Bi/VMe6kG1HRDaOYUmCXxl29n9gq3anuGCHTM52crcNuC+9KYlHRKjTmtZv5LpjPTu5ni3qQSmIBswwnpRCk2OO/DKKuivXrSDZ6UY4y6WrolxvzK169ubP8X/9Qa0FoDH1+V2975clWWBYhGY11F2aObzngRulZlb9ak5iZsTSjYxKFF0zYqRqNVn0Tog4bKxOT+eoy9E38TdQrzmAY0ayiNzuqIBji3d6BC1nipgsTZaK612J/oKIe/vVSbZAqBvjf6XmmvlfiU3JgKQq1WaIdgDsfhPlWRbpl3Bj8X6m5ufmX33Ynm5jZuq56EOQqnWQ7RdmtWxE1ZyLkzzXA6QalCSIH9Zjq59pBLZpNR9RggO79BzbBLmyNnfh7XXZknzxQWmw7te6dGM+ippv8mirJvVsxK6my3jqrlXIVoJkzVp6cigeZUBtFm50bts6tgETsFr3Mb2lzDHbI3WtHRNr+Lk5v1xEzM0fJuJYHrecK8MJ0mlrcni2pKwTLAosVUiVvBx+SNLUKPNrAQhPNka3jKRtc0+oaw++CkNTtXXa3Pbu4QbSzWB42qN17f8+uxXv+muR33VYCR2SZjLeNFrS+vYf4x6HlgzoSKFcIyaDjYxNZ+dMCqo8v1Jtnfz9BHaySl4/ICdRdk7uiyH7gdtjfQB0I7qLWDZvet8+0xpWBMqsXjSWyvmRK01JlSt0lkkIPyMz73iELCf38Kd6pe9EJsmmZynkl5cufJe3YjIvfi2d+/dTPFqOWePTuOfNC7DcXqPFIiHxEvwN3HR5F7XFwvOgWJiWg4JyGlY+Psw0VMvdHrw1l4uGFjKPhR5I/7/I52RW9i4zB4knAMGw485XHyI/xn6L/F+FihKg9aykFHtOvrFmfjmoz/6wOtqcc5ejQYGmtYj0mpMzK4ryUQb3yN9vY9v7p25tOJ0+lEraapjdNETIlt2wnAdZ54TRZ5czotfPjhR4tC2m583L8iwT+vBOJ0Yo4Tre7fDAtgXH8fKSmYodNoIjmaju6od6uGhnaG9tuKlz7YB8f7GnXZzvv42Xo0riM7s9aCNBsGdY+LGo1VkHs27rjevXdoRoWW/mBUJYZmIp6tGUcjFahS7/ue3NG/cPxbOO7z0bTFaGwGsHzQaZ5IKbGuKyLC7XbjdruyrSuvLy8+IBr7FZxOC8tyInojOnTGaZmPqKzL5ULOM/OyWO6sHdlx731Lx703gNagDgfx8fHlm/NlTfrOvm1s20Zr9xzoqNbYVqe2hxLufgrCN8ZcIxIpuJa+NaN8d9clJzcNaj25ZlmsyXaZQ7UpOr2XQ9IhIZLdaXrsD8ONezS2Y+9RHcMIW0/qz5mxNr/3l/jjcNQavSvUQp4yksZ9xbHWRgazz3eNyukSq1oNtNDamRMMt+Faim14GMNvV5vEt17Z9o29nIlJISoqpiBNJBtEjvtGhd4jvUV6j8deLNjXU4zkGIhilFs0uPFmdwaMuBGQPWdqbdRWjL6sFt8E9kzu7oo8zBRr7cTYvQGzAtv0sc3quW7MRpGIajBz1lLZnBGWYkbkRAgTvVs9aUvDak3bSyBghkq1dmhCDP4ZxXN2NZqWuQLSPecVA2ekMSA5278E1YiQCXEi593dj++DdzNgHAAVjDKp1EaplmoQSRh194HePWqdGA4gcVzbjtKq2jP4oE3bYQZPhyi7D/x2y6tU7F6aYiQIvDslrnuh65CZ4YMoMTS9Rt+/zXjVsovtHBhVftQsSinW9Ef357At6z6Msn/oWETnfT8zF2b7bCJuvvsrXr+6sf3LdzcreKPQQ6Q0eL11eou0GviL28ytR9YeBvuPEISPm/K6wx9fIrcm3Jryh2vnJnYzBgK1CrebT6DUNare92Xvb0LyFJ121wQGgWm2qVVrwrzIMcm6vSr7Tdlvg86hQx/ui1CAhJ7fIvVk0O9e0HqF0uG0QAxoULbXG9vnAtvNp2OJKRgVC4Xy5TO9VOL73yJLROaALpjp09fCZbbP8fbHme3W2NZGkGwbxF7Ym5AW4XSB3/428f69MEXl51+EvSivq6GIb98EpmxZUnHuaBJIQqmdbYfXn3G3YCxP1l1+UxrO1Ra7E7BC43SOTHPgl1+KLU8Rvnzt7Juyr54XKoJGOGXhaQn8/g+d/RVuXyoijTQFTj9AlEzLga+rF6c50V5e0LrT65Xl+QPpnNj3K22vtNKgefsRBN3M5KnrQGIEaRYZQT7B6eIIYubyFJnmgewoIXbiZHFM8ZRs+iWQgjJna1j3YvdPCLZmbNp7b+zOCz5Jc82uKnMXrtEa2WF61n1Da9WWTAzGpH5aIMTuDUbge34NDbE9Hozqaw8Kf3iKmEY0WFattQP9QE+BO2LS69HmHUWTPwSjRIIYQojrcgwgC3TpzogVL3xd4uibl0SPiHpo3I4H+GiUhEOvEkPwYmg0W48/M+KBuhXaozsXLJ84RFALpJPFrPOnHJgSTKkSk5hOVZVt2zzeaug3MXMKd4wlmLPp8/NbGvZwGu7I4nEhzts2dAPYXmzaerjUpmRZ2d2HByN3tlf29dVQclNk2SDBr1LAspQJFnGVp8Wms60ekxmJ2VDlEFGx9+61UprlINZaLJfXqcIwhhxu3OdRPEhgmvKBsmZnnYSQSHm2zyniU9hGzLOtOKc1dO1mSlXvmssRC2S6V0UfNJn09kCxjva1aje1yD0ipffuJhXeDPv6yPPkmkNHuLrRoSQE9wy4o8PWJH//pjPX6+3IAz3Nibl3Us5cLk+msY2RVgu17Pz+d3/jxmaR6XzmfHnmdHn2JscoZhb3kj1vloMZcGdK2HBAgt+zfTQjjdu637Na/R6MEinVzLvMTdgfRqMhTDYQsj1AWNcb+77TWz3icEQ2ai2GdgqIWJTOcEJ12PTQfI/1c72+Wt4y/RjCnU8nP95uDrEibOvqw45OzpPl4eZ0NK4M3aoXkeZ6PBFj8vUlZJfSpJw4nQwJnaYJVNm2G7frlfW28vrV8mxVlVY7OU3kPPP09OTNWWfEm2S/DqfTiZRmc1GeMttm9+jLy/WhmXdNXRSnBCvrejXta4hcnp7J08Tz8xtgzIqNhny7vvK3f/PX5Gki5YnajDbd+t3NeSCmvTeu16++77cDaQ8h8Pz89rimpTT2srM6ayCmSGmF2iuyGuI+3jPGRM4Twxxw31c7Nh8O6nxi5NwOirFplevxuw0lHmssfNO0p/SPI7prniduu7Bvndo7oh2tO5dzQOcI68qUE3POqFNTa7UBXIpwWgKxmuvuy9WZjEV5OgV8QzSXXa10tWcLvdPqq9F6W+GXT418nUAmUCHGhaflyWefjd5mtg4xnugkagcRi1cMYkke8ySc85ntahT9vTQ63eJr1IzcYph9l20E93yorVCKeefEKN7QDqaioXYpGmWzNdNbxmiU69MSWebgDeVE18y+C/tqLA3pkZZt6PH27RtOy4kvL5UR97MsC3lKdFbqakyMU5opqkjrPF2e2crKXq/kZBIliQurFraivH9K9Ga6+9o3alMkTJSyU4oNX1I+MZ9mppQJuiOyE7J9tl71GP51jaZ17XBdN2rtnKaFnAy5TzGSUyd7XraKciuFvVRqa8QQKK1SSkex+9OczF3VF5TzNJPnxMf1RmmN216I0faY09NE1sbUdn77JHy5gWinqLsjt06KGdWFPT4jTGg3L4eAoq0SpZpUKXRqU2pTdC9oSkju3DZ1ejkspwmJmRB3shjKX/pobiEGW9+izYYz9dfdT7+6sU0m7nQ0tIEoObi+KylzLjQqVeWYiAeEny7CWgMfT51bD1xb4D98FD5twi8rIGIRNgq1uli63Zvc4i7W2RsOBPaqx8Sze9yKdSM4lcGal2HK0pvF3Zioz4FSkh+nZSjZmcj2IG8NKQVt0YY5o7NOk3U5ZaV+bqbjXBbwSJGYxcyQAgMvImCc9jomzbVaEzxnLG/MCl0Jlqe6VXi5KnO2yVuKwnnBOOfBsmRbgfLVssP2CnUP1F0pt2Yua8keclks0FvV4oK2Tdmu5qQapgBqHaB22He43kxTHJKioaE+SOit0UNEoxDnCZrhOClbg7kshua3KaB1cjQlsNdIK9GE+m4M0XdFt0bfdkTDfULhoyrtxTJtJZIXv3kByYYKTzlyugjTJEgSb2whT+EY/qSE6xgsazmGgeobrXIMiFK4r7V9VTZHwU6z5X5aPpplLgeBdbOc3hgCkty0y/NPUfVo3O8b5QGn+o/16YZNXcY6H9lqjrQOYFU5msw7OuMTcf8m8UFVCpEU3AWT5HuUaRfNIEoZ7XBzqoYO5zM1hgF012T0476XID7lwyer5kI9aIim0x9F6HByxlFnmwgKf2JUgx+/o6cpQs/K+dx5fpN4fZdZ10rdR/6lHeMonhBxHb5R3/O0kMbm42hB7Z3q5hGiSgyBOSfqiOyRYPuHCNqqI5XYSddGLauhJt50hhCIeSIFATHdqsGV3YpHR8mjuJgj3Ke54UA0vGlsjeqUvYG2jezbeTEdnz4Ie0IUCGO4KA/nzo19DhTVGuIkZn6i3njWuhtFuJsL5reRPerHpkcRC+PeTT5p/nZoMZrgI/t2nDf/uhlYCW0g2R47M+iUg/o5fJDvYK4Vg9/1q6tfv3ogktkbxzaQnRgJmnl6++GhCbDPmtJ8dznHimUZ9FK16KlWK13VMwl5uDb9MGNSRmyL0U8PTR2WrwtwUAocRevOxBhAqvq1UaczDyrrMDNqzdyuQ7DojewI4IE+jpzaEN2sCEcImw09eqOZmYWxF5wVkFOyIQZ6ILFb2Sm7aQsNIbO1s23rgdqmZPdGq81Rb4vISSlbfEhOfr5gOVlzpth5Q+H5zVvmZWbbN0518UFBO67NOF3DRdi0wduhRd+27ZtzH7z5+/r166FnfffuPeeTmVMNxkgpO7VVtm1lvd1Y1xt//Pn3PD294en5+QEZhTE0MnfhO4qufi9BpQ2PlJQPw7Lq16077TkE0/sOI67oRnPN43piSszTcmj0oxtJFR9cqarlhsMxmBp06egUyYHM6nDxFY57Yjhzf8+v3/75D3z6Wqi/bLzebojCkmePShPW3YZIUQK9RWMkHgij/bsqtCoEjSQ6QRo5BHLsEIW6q1FUN2doCJ57LcSYWdedUhpPz+nYX2tp5DxxWp7o7ZkgynLqdC3ctg2XAKN01u1qlNJ9ZZ4Tp2Vi65CZmLXx6aW4p04ghIkgzopimCT6YyzYwMj2q0SIlk4R/f42A0L/XjXvh+5u5eKaIXGkUjBkuRZhRTnNnRQ6MSRIj/IlBWk8Op+rdnN/X87mJqw+HFYDWFQDgYaSgOrynYJ2IYbEtjdqdd2z2DqPcTImJ3Zek+tIQ9ztPTTRm9BrIHR758lZhracLZYxJzPcaq3z+csXH2g1Ztdlj6HueB7WajXxohMxGqtEws3NW22A0NUavC5CFShaIHTmbE/HICa5CnkmN6X2FSSD2LA8iO0LMVlf05v1Hb0ryffNKWdkd3BBFCQjIZOnyQxla2Xfqz3zszEjYxev376VHf3XXr8+xzaqN2CgwU5elGYLTmA+VRyAOehDglAlUjTww9xZe+S1RV5qIiZYUaqKN2zYHVqtwcXfwfYx44cfJUc3yNYKNvtnL4lAnHs+jYUQqFWRiulpm0BVL5596jumxhKgV6g3i8SIHcSaK6PDZkMRW6W97NbYhmS6tWwGNGGwZ736Sq49bQLqBR29mauxC/s7HMXFttsFb5MY1VhgWfCGzLJktQra5cieFQKtdLZbI+VImoT55OhWwAK8m1EP9rVAV6Yp+TkLWCacsm3mdpxQwmbZtMORWR0mT0uCag++tATyLEyTfY+55SWfKELfExI6tRu9WFUtumevsFvmoJ1X01PYyTNahERIxqOBYDTnmIR5FqaTkCch5OPLTFnuk/AMKVnz6wkwuGQHEcV9Yqyp6dCqstWR5dvpz6Zzkeg6SoGuZkxVixJnd8eOQ6NlN2/Azvf3/kreKQpG07P1p4c5lDEpvNg/KF0PtC5HEs2Ex6aGyKAEu3twsIYrEKGL06gMve0oQbsZjLkT5DemW6rHMekwbBs3OfY7xz2WQri76smD2RXh2K+Gs576VEvGpuF/xJt4ce1mVjifG5enxJu3ia+fEjdg30aDKAfdlmBNbYimCU3TTMyzMR28UB8UzaZmUGbDkERVw1w1DBfDMLBvZ+Z0Q2vrTt03j8IxXV92HbqESEwzvRe0N8rm+kV3pLRHqFOSMKTVzm+ne55lcWqfYnm7I+Ip54leDRkd8pKYwvHgRO/OyY9utcp9HhJTJABl32i9sJfd11X3vaV7Eyz3fXwUz637sMLMdhDhT9nBoyYxBPb+HuJfDDbFsSztbr8z5YQRrzxfb5zzx8b2+6+Fj3M0ELAxbIlOyRjGZhICp8sbxocazctB+Ra539sD4eydvWyHw/IyLwfyORzBt3U7HFkfDXuGlnkg34AVmUNvq/fTK4O10TnQ+YEIDrr9+DuDltg7IQemnA99pYiZoI0s2dZswFNqYcRg3ZqF3geJB7XYGiZbz9M00VW9uNpB1bXDJhP4/PmzH7M37r2zy25Fb7fCvuwbW0pc8hND9z7PEylFxjhNRLhcnonRtLY2IIgHSjwYJ0M/ap/f2RRuiLTvG8Up2yM3VoLw+vr10CCflhPzPHM6nex+VLit1yP/dt93rtcrnz9/IoTAvMwP68HubWPCmAGoNfjfUs/HuV3XG8310N0b3xjN2Mga4+aRSj4YFjHjLi94tSvzPBvKnBIiwrqtx3ow07qxX3uGqTd9djy2zizv2Gu2h9Hl9/56/+ENTW58uTW+vAAqpGWyGJcI21apzUyGmjeBePMSxNiRqIE4gcmfeZUk5mdD8KFu72zbboOqaHRVgg1qtn1FpPD85mIsJyyfNsXEFBe6XEBhOd2ou+3lrQMRmijrZgNY3VfOz2+MWbEr2b1xvly/0LseEVAE8zYJodhTygkY4PcYg4Vhhkvm3WC1opMpnAnmDDLPjLdrHhh5tr0ZHVpbY987OTdEEjEaAHTM3LDGtPdKLZVB+52nBcWi41rrmGFh8v8OxokzgVqBHojB8thLqY6YBiARLXgX6bsb4g3aoNOcuzW2rUIYTWwYTMzxzLUeR9XYml9fX62uQZliP06iDERCDTUNKgiZINm9QwzoCdFYt6p2zjuBprD1CqJMKVC6uNFcIqWJpJ2tZMxkKxNjdgdl75m86TbduBCn6HnBydhzTjcWSRZvmBN7MVlMqc01u0Z57l0ezEd/XYH96+N+XHMkGsyJt3VOUsnJNIxRTI8Fbk2NT/5jRyXwZracpK0FrtvMKUVKt2lpdNQwBqHGMSi/F0lgD8Namn2fCCmqIxb3B2UMo1yH7A23SCD7tc7BJ9Fb4/pqcH1rER1ujOp613hBy81hzBWNXsTGZOZF57dQNju2skM8Q4tsX1+RFAlT5vzTzPwUWD5krmujd3iaFuolUm+VXY1SUQJsmzmiff19Zb8I0xJ4vkS6W25/eDOhIrzuFrtTXZu6bbDucMDcRUfsFL3CvpquIU6uY9IDrrZmIVkm6xQNmdQO57PdDtMc+OXvOmt1yncKLOdAnCwWqXVB6G7v7ciaKoGdNCfynEmnE3Wf2V4W9peN9vJC3W5jQUG1xjEv+WgQ8mmCaUJyIs0jMsUHHIqjFOaoPXSzNhxXYlCmBZ5OnjXrD+Q+mljrybi+dmeeB0qxqZI22LfOdlPKh868CPPJ3KD3rfPyaUcxG/h5UZt3JCEna55fRZmikP8RNLbTEM4ix6S3C6ZtF2C41o0T5n/X+y1+6A+9RLb1JJZfmsJECkZPiUzHPZmIFi0QoLZGc4pLoBnVxLUhwz1PXQeuvqcEjFZljy2LpUn+O02zYg8ia7Dtnh6RWI4BwyAjaz8KTUORvThORmf77U9GRc6p8+VzRT+bLl58jzmfzqQ0EVNGBafUzUz5RJDEdR0Zyso0nxEfIG3XK3VrbK+vzOcn0mTv0faNuhXwQr421yPSCXSWeUbmEx27J1KyWJdadratHsW/tk6eJ/JyIk5m1ELZhoUX1OJMB6FqYGSYjdw5Q6MTwqOhU/AHqVGXS7eCOgTT4pgW0FDe4NSe7oO8Xg0FXG8v1uSoZW0eGK0PMfKDjX/zTFHcG0AQwmQNhvZuOeW9+X/18FwYjXzvjRCyxU+IoZrF0baBAuAa3Hu4EMc5DF4t6q/U8/xDvbayoVs/mpvHpnYUW5bVWg2dxS5x4456/alr7D3WybTKFjtTDs3o+DntRh+sWzsa3UO/zJAqWGZsG7pRR1mtccGe3T4ED8Pd2mUMRmsu1GouuTlnv2bWxAwDIe3dJCoh8fT8hq7Kum00//mPH/9o9FpnS3EgQdYAf3j/I/O8kHPi8+fPB2vhfDr5vhK53l4opbsG1u9Pf6/TcubNG6Ph/vzH31Nr5Xa7cb1eSTmzLIuZPtH59PEXltOJZZlpzbI8e1crboGXl6+GPMfE5XJhyhPTNPln7YfTc9cxzDCn6Gk22nMpuxtwmXP0XjZeXr7w5fMnvnz5zM+//GxNyjTx/PyWkBLTMpOnCcUQ6ev1FcQdSJfFkeli26SqN6d4Y7rb9+bZIpT23Qa8QZwWbIj6lCcv7m0dDNp7TPlA3Fuv1Ba9QTOWy/X6ehTT67qTU7LjDl4XpEjf2+F0bbRL+3zmkD5YBv/T3od/H6+//ePfUgossxB8nwsI5yWzLJF5Kljsj1C7ElonNPNoCaqW5arWQfY1+n008fLlC4TKdDYvlVI7ZeuUXtnYUI2EpPRgPy/Ay8uVZepMeURjrdzWynm2GLCfPizcro1aMntVMyzsja1slG2nvKzksFBK4Loqp/OJ5Xzmtz+8Za+d2168CYXzFJjSSo4b6NXPRrTiVCOogQypWaxWTpbeYXtNAMy0ziQo4gPLzrV29tYpmtFiNUDE6r1eq63bydb/NClE+Lqu0Ewy1XsjivmG9NrRGoEnlBu1K9frRs4TOc3seyNIZ5kyve2YOjly643a1Lxf5pnTaTYzrXaj3jY3tVNinM2Ai0irQqsCPTClgDZhv67MSyCgkDgMopIEk7NuleYaVE1CDsZsvPVA7bCtjarGbFxr5+zSH2UwsSIh+nCMQO+B0gK/+9yYc2SOiZyCsbVU2EujaXUJwQwysW/NgbSZ2qJ50Ox2LVOYOM9GYe4edaMdo9xHiElItdsQRhM5RkJoQLEaQgPChJCQX9my/urGVg5oW4+pdgwcF39MPVSHE5ifM6cABqcFosqPS2fvgddqSNjXiOmGgU2M7es1lv23g+nc71ENBtwoeXInNUd07bjcLMnZx+LNTYziRXlg7pGYhbrbdKTXMbcPBFGaNgvDVgWtaK1IbUZbjhm6R2R0NeK3owaoGk2kT0eTGaIJoE8nQaYIT8LrBttmRf5eFarSitJ307SKJnoX0x9vjj53N9JB7QGYhRnPoGxKc7qgOOWpNiBAWa0o792JnQqqkbK5RbzYRChF1yP7RChFMy7NUyAtiiRDPAKBmD1ap3eur5ZRi8K2m8V610bzwjDPkfpitK0D5QmBdE7kU2J+M6OO2IZs+kKGIZWfOzN5MfrvlMWigyY3g0qmowzB/u4yQ/ZmKHQpSnQKZleom13vWG0t5aCcF9AZ2kmQyZHYqsS9E7aOrrYOAp3nWcgxkE6J666UYg54Fbtpv/fXMNKxKBYzHmi2Z/kfv0/A1jPcBwt6Hx45+58xGQ+SvLnNpJityWXyIlaJ6lQSH1yFscF2azqro25DZm203wN/G3xpCG5+NIwU8EAhGRmOwRkTYx/y+0IN+T3MiLD9yrD2R0fnYFqhU+bpaWJeNqYbNjkO0T5jtCianGdruoM5AxsLwBrTMV013ZqzXFJC1I7ZzFZsYjw+c8cNURy1sLbPtKsiwengTuf0Asj0lMnM1PJEmmemeXH9naHT4jDk2L/tn+2XShCbfHOnguoYZuigO5oqiq6MuJ9BMzTKd7wbviEm61IzJtGhbfVrqX4vglMoxzUav+9AFP16juy445h8JPFgwGH5nb5SDjq6eFPVDVWX4GY1jowfKOXdfmEYislB8/h+Xx8//nwg5yll1525+RZizZxHJF3OtkZDCAdyhqOOw5AHX1vDFK7W4ohtv8etqG9x/j37vntzbBvG3RDFGrFtN9TtQHHVkNnhljyQDlE51pOSOAzpDh2lrX17vkdbG8EK0N4atTbiemWYIXWnUe9lM6qiU33x+797EbPtu0sKlFL3O2IKaLD4olIKpexsm2lGh2GSDUriQaE9nc9s2wbbRnVteSmF5+c3zPPM23fvGJTjWgtDrjQo3UZ1Fr9OjpoG4Xp7NTp2rQRnlw26sYiy3q7W7O6We2uI7s7LC6zrjRACr68v3G6vxJipjmqOhn+aZkD8WtYBoyPb5uY+zTJ53ZTizoywYWd1ecSxz0o4ms+7MdSd9h/DMIgbz0p11/id2+1qGnq1902uZbZhH5SyEYIhYANZtoa7HNTjEMS/fqfVf++vjx+/ktOJ03ThzdOJVnfQm1Fsm0nSrDq9PwPFPTFQiBqJbrQjYn4l9GBNhIbDcEmcUdV6oLd7DVCbo7co21ZI0dI37JSqIZncCDrcrpuvXnes7l4DWdIXTSOKoa29Q90rKlYTzPN9GD2L5dCmGKjlahRjTy/pGuz92rBmGKaLdo0l2qC8tIJUYZqdlofVoCMHFrU1N02JFO2+ra1gSX5uHAVstaNVkQ5LyjhJ0s56EFIKJq/ondaFvnfPYjZ0cZoCKVREG51CoB9NzNCGT7PtZykn8HzrwXgbNOsgwT1OlKYu3+t61Gxg+2ZTzz2OAZVuXw+jH7OBHy3Q1eSAqrBuO9tseuX7efWaMNq5qN1q5s835dJAp0ic/OkqwT2QxAbEYv4kI2aVYIBd8+s46jEJycHJSumRpvZ8bapHbTQQ+tRH8Vn87lCGkebfOxX5eKkVR6Jq2ja7xx5e918tMjRP1pRENTOi3146OarbRAsfV9DutLBgutru1NbevOh4oB3UphSPbHg7m7A8BtcI4Xrg7ppOLMzZjscLoBy4ZKcSXZV9g7JBG9qMiOEktUGa4fYF9g2tBaYZORn1+Ghq94LKUDVnCOLUm8gahRSEKcLTWVjmyJQDHz93vr7apZMVj8RRtIJUJWEC8r1GPn8186hlNqJADkqY4p2amw3BXHOnbI5KVagpoA3W1TatWqCrua3Wmrheza0si+Wz5tQtz9VsaMjZKLenN4EwK+RG2+3GMS2p5ZZ9/HknzwshZl5fhRA68VoJ+U4f3qVTtflk3m6i5f0zy3Pm+afFrrna9R60xKbusxOAYOjwMpnmNUVYPKvNKC1ulJVdJ9lhuykvL53bFdOD48OLHYIqkxcuOSn/7AdzxE1B+LtPsJbOVjtSO6Eq12oTl6Sd334QLqfM5UPgP/6u87Uo9QpX1zzDrwzb+gd6JW9srRDwGaeYt2CXMfwYTc2gepkm8dHhNvgwCYCDgpxJcbYctZhIZKTjtArbDyQI0roxO7o1sh2lOOojIu7Ai9GY8UZXMdMlzJgqyv2/gXuzK45Iy+i+xdrWgRQOUH1Q5jg+hml7out1L2fLgTtfbqw3H/ak2VCnmM352KPBxGnRiqGmdV09+zfStpt9/A7TNJFCZI6ZeiDRzXVSQsMeVHma6M2idwylzYQQaXU7DIF6M+2gtsY0OzKUJtI0kXKmeOyNXWd/yHpDN1gMg/aoYnuwPSwNWR2NvzUEY9Jo2YgSAyE/RMIkyytQkWG8iXSlbTu1bsfaE9dqqEHDpmH06kyb0clwFM6aKbsmjzm+0H2fdnoyuMnPiIOPR+HdakGBlPPR1N7jjUCG1tupkyICDWtYvn2wfXevv/7r/85YEQ+RJyGEw4zHImmsaBpU22maWdebaSB96NFVuV6vZiT20ATu+353+44jZqRTWkPEZCvr7UatQwsdjqin3i2KoxYrTsxwxKjJe90PC7fR7GgfDsOmxx7UfDMDMsftUkxzmXN27aFnK5fCvm30bojm7Xa7a0L1ce3eh0JNjblxvb3Qe2GqkzWlmNZ2mCOBmVpt28rXly/uXrzwdDoRxHNvvdd4enq2xlPE6gVHls/nM8tyYpomfvn5D7y8fGHfNlIy46R9W2mufx2osu13Nqz98vWT0YtbY55P1ti1hvaG9sRn1zYXjxNrvXtj+xUROJ3O3G63g1beWnEDOjsty3Ki1upmT3aOWod1az5Yijw9PbMsya/PYb+HamfbKss8ex62XSsb+hlV2AYC6s26GbWlnG344k1+b9X+9G4DQhHTjjs1Ori0Y11XUrI1Wcp+rPuR9S0C+z6crKN/3u8/7ud3f/uZn35I/Pj2hPxo99WXz1fKbkj0NE/jCUeI0YEIZ0ohdDIxNmLoGNIltGbeDSIWfTM8EqYpsasBKSFlUKGUTinDsbwx54As0Sn0wwPjSldlX1/pdUE4E8KEeGNSm1A7VEl0MZrqlA1kuV5XJAsxZ06nmcvljUUXlWK6TQl82X/25w3WQPVAdWlirYppD10u4hKXqpG17lSU8yW6jMao66UZYhqDDUnPTwt5joQAdV2JcbjsLrbe907zeM83l4vLDh34iYEkkY6xYEqH7VaopZHiTDxBlMgczT2kSjGHYIXWFvZ9o1OJeSEFe77L6oMLaaRgJpYi0VmKkRidOeO0c5RDE9y70rXSNBKnidDMSCwGZ8AhREk0CQgZxSjOL683TrkRyQxPydYgzW7kJ4HSlOve+Lkpu/vnPMdAyNaojsY2TROq2ZtmH0b0ZAMFR2btQSwgmb12tnVnKwtVAxoirSpFKuJSgxwnivoQnTHQFt+W5FfbXvx/39j66zHT7b/28ufqMWnJAu+fdpal83zuPE+RX1bhfYr87dUMpf5WO1txUykxBDMlgR2kiF3oYIV279aIpgjkgUT5lKdaAHHrHDl8MAxCbSG9/zPsgd2UXz46RXWHHm2TVsn2gMtn+PrJ7IWvX62j0m7c4Jid1ztDbXQRXj7u5CVzepooEWpUrpMP0vxapwyXJ2G7GkrEBCrK1kETXBbh6X3gerWDnxZlmm26VJohjTHA6RzoLXC7ZmoxVFKC0YVbB22dtu+U60rvyQruHA3SDkpMpjPd124RNgGmyYykUrZVst0q5XNl3wwh37NSbtYsl80npNFMASwioMNqNMoihaqRcHkiLtlR2UiYE+EspBkukxWor68MHxzTI1rbxdsn001PszkXiwha1SN67PubmsFTK9bIv7x06s0Q1yyGyr59hn/xzwPPJ+HNAoFGip1/9k6ZsjUVf/iirEXZ9sYS7Ub+739vqEOKkX/158IyK2nZ+KtflNsGWgJ/+7Py8ev3XQwDTE4RC4ixC7Cm1nC0gWh0eg/W6PRB/73fXz6vH92RNSIhk+LElBamZA1cIpomv3XUne3Mcy7Qg6I9HiZUJXTXlXakmZ5u7I2CuSWm4HRnj9kIEg+0NkafZIfR3GJGR2Ibvfbuwy3X1Oowk3o4OYfQJ5Bj4ukEv/lhIfTG+qIgJ0KYOT29OaI+sqOn3U1ZBoKUT2diSlS1pjKIDfaqKrTdtK290fcbI15nIK0WP9DoNBqdWm7QlbbvDKpodwQ0TxMEi1Kfppk4ZcuV1E5Q0OxmLmqU7y4YQlWqUzSLXU0fVHSfwFvUXh8jXTfvGQ9Aofa7ozHdHYZTZrjQN/cSmMJip9bPbyv7gdRZI6WMbFkBpmVhPNTUTcqkD2RWHNGxTN+Qs+3falowM8LwuKLaWeYThhIPRFiP4UBvBef0YHpLo0Z2byi+9xzb5qYppr20a9W1MSKwHt18a9nIOTPNs5sQVfZtPxqHYrwxv7nvn/v+jBc3Zoyu7VSaKCEmppDcpMt+cjcxOgFMC+7PWmuYLBpvYPbGWLC1lad83FNj6DLPJzNkyjOtFm+ETA8eQqDuG0GE8/l8HHfOmXW9Gcq6d1+zgeqazpxn0/eLDbEGpR9gmBJZ8di4Xl/dCKkyTZlaG19fvvD6+pUpTzw9PVNKAoy1NM9mCPN6U1q1pup2e6XsG5+/fGTbrnZuxCI3tFe2ujnircyL3Ssff/kj1+sL1+vZjikmNAT2stqQIg3n5sr11pyh1e6wgg8mOxw08qenZ4//CQe6CerUb6GU4RFizRN9GH2ZhnbbN3JM9mzQdgwypvnkMgB7dW3UutFbsT3DI30Uc/KNPqhIU4Jmulir52wfle7Dbz+OGBNv3ry19+79iDDa992HA/nh84yM5SGXCN987Xt9ff3ceVqUXgM/fnjHy0vkd3/313QV5i3xZ789k1Mmx8RlMWfcKWHxSU7r3PfGthZSDqScmcNM6UrtjbUqKWZy8pirVtmlGVNRBtJqVOa9QNcFZCKG4vVx5XI6A7Cuw3wqUYtFI/aW7E9XGkrpSu6N0zTR9pW9rASFTiVkWNdXUsgsaSakMzlGYj4DheZ1gmXjLsTYiamSpzNoY992ep9oXdgaaI8kAnsPpG4g1xQTOeqxF+JO0tdbY9+FHCMdZS+ru5xH195bXF1tZq4lUYgTxCqEKj6UDcf56kEOyYvSEHNWxVj61qBuBaR3YuvkWeipMwUhp9mkmurxcijZExNSFhrJ7plQjDY9B4p+sQQD3UEjVQNdZpoW0MZWjRYtNFQWkyXN7/n4pZpzctnYVpjFno/S1Zl3ldqtdr7ujeuuyBTINbAU4ambH4uRbs3Y9rrufr7iHVAgYvplk0u9XF+5bQUJhd6VWjqVyTxr6Kx7pffAJS/kXBGpbDS6VrQbUyEFpewFiOivvJf/f25s4f7g/8+pHk45c1rPt05/TnnFjC1+WJQsgdoMNYohcFtNs3hVYe/ql1x8wq60KgzzpxEL1NXBmQEAHNQojgeuDGaxXxxUCfnuYjyteuS2DjYHIkiyaVlPM7Qd2mbfwAOdyk1phq6urQnpSglCyNbR7wXCDojHx3ixltJozPxxH6GipATLDEexKX4u/CYdxkkhjALXCvvu1GvtY8JhtOG2u1GLU4bUz11rSqtQdz/G6OY8Pjyo7m7WPOpXxLRB+9bppdOrPZRlDA8coevdSQQCxGwN9TKZe1GK9ORoXe9EF/HHdKeFR71raJfZGtuYRkyPbcaC6WNbl2NS1EuHCmdR8gJ5gkvsXE7K+7fwL3+jvD0JlxkClRQ6f/FGSclygU8Z9mLRJudsU5mnqVnzloV/9gPkpISgnJMFVkuLfJgjH79+/w/RNMyKcAO2oYl3hoOxAG1tNr9vh7Px6D7urAycFiXHZH0UE8PF1vj4HM68OCIf1LSdsQdSdxMRbMg0pL0HR1dG3qzTX8d/H42LRhE+uu9Roz9O1rzg97LaqLnjVyn3Bs9RaojM08SydJaT0HVBZCLmydbeA4PFtjf7jDF5LEieLG7HjavMGdmKxVorrVd62f2X302pOmNvte/ttR5/OKiyI1opHudUXe/ee8P0G/3Y8+yzG0ZpuiRHObhfW18JY3phx8CdBiXe1Cp6uBr3rh7PZBNfGc8D1YcJs+3i4zjsWMZ1djRfLJ4gepZ4Gzwpb0gHGmhraRTw9891oMF6H1YYXYpv4mFas6a293r8XolyoIQSgjOqv+/G1pp+AMuDHOi6UdrkkJUIRuFMKZKnyRqu3qmlHA61d9OicFz/odkdf4Z5z+TnUtxfwdDbzKCR997oPZrhpA/cB5VYtZvhD7auDJ0Lh5bS9g1biAdDREwT3gW7frXaug5yaGzHehnN8tDCdl9Dgg1RYnS9riPWZTetmxUQTnlu1Z5LrbKtV6PKHbVMPxDGVgvZHXxrLcQ4HQ3l459926ihsO+raSeDm9zZqXF02TGKYIV4rTuxRtPSpXwguINGnmM45Ebbtvt9FY6c2zvZwM6RGdXYsY5BxaDpDrp3PLTy7p4tY3/z27B3utzzoTnca8fQiPvfu43kpAendDv1WO8O2lLcgKr3Y8AiY6/2wYU1JeqO+GYAqC6nurs0O+XYkXmjgduxj1ih7/3VWmDbO6+vG6dlZjh99w61BYJMpJDJySnHwWOYcLMurfQutAb73iF2pgiDBqlq3gImFzGnidYbaZzv7swYGfWlIaaBe9FswxjozRF0kXv92BSRyY9b/Lj7PZ+9VaIUpDsbrDc6gdIaqbu8IGTz2nDnA+DY1yVEoms0tQ8jS9/XnUoc3EkiYO8Xg+nzo7ibeuvsKrQmpFMwyVA152JVA2FiyAhGxx3P13thO55r3nMcfYk4EHB/VtXS6N3YcLXbXtYx9DqG7uCWsc/U84S1d0K2AX6MgdhAo9WZIYgxSash6jpkSB1qDzRNoGKsSK2I36ci1hwq0LqxoiydQI7aPPgA22Q7jrp32JuwN9j9Go/PZ12BrbMUsbSU4GsHUzMjvn5V2Kty3dzrZCRt+Im0e9hpzcnMuGLd0BZ85Oz+P9oPGdavef3/1dgCx4b/X/gKj83t/YBGkdPJofPjufFmCbw7Ke9OiT9e4UTg5yv88qp8ukEFeoQpGk1ZojWFqpFSlLKbHnJeDNmdky1kjUqahv7W1qc20Gha0FrhdcPovBNc3iZSNkpw31xzJBBTQNJE7e/Q7YauQDfhq5zOtgp6NydltYKya6HESH/N5MuMnjKv88ReIb1CrYFSYN06KVt+01bc/TfCtXaiwtMs/PQs7Hvn938srFugVIEO8ySECW6uYR7mOk3htg5dpN0YdGgrsDhlsFY6liG8FkWJqCZ6t0XRurC3ju6gt+aOsxZ63RXLkdx3tDYLgqYSmkDfnD7soeohwLQQlhlipHpxq9WsHUSUdIV5VospShwW8tMEp0V4vkTONsimtIEs2XXdr/BazL1PfEGfQueU4C9/A3/xDn7zHPjw1JiSskzKh6dCClCrENmI0rgsXtwGzCl4NF3BMkN/fKqEFJGcDNlVhdJ4k3e/2RP//IeJvd5NcL7XVwzeB9kz7xtNq5nG3AsfK3TvG8qxrfjAaBjtSBDjJnvAthzvqYbY0lCfZrbRiCDEHslBLB9blb0GdB8utv6LorMBslEio+u9Rqbtown8OL6hWxnN2vFhBdCRTTk+06Dd2p+GIf7rJtxuEZFnpjnw9DbbVNqdnfe608qOtE4OkSllJM9IjEzLE9OyEFPk63q1SJ1t4/r1hd4KoRd6s4IsZXNHF7WhAyJmquOiZ62Vst6M1inBIjFCJoiFtoeIZ98GuhS2splDerVsu22vpukNQs6RdTNXVLDGL+YZ3BCqNMvYPhAf7RiX3C54jMkcjttAe50+OE2Iu+WPIlai6ZRQaJ5niqq7lkYajeBcgUOrGA29663Ryj2nFsxXIKbo7JvupBlbm8npbGA6HkP4zSm2q2mc7Bp39m11KqZ6tJWShEOrTTL08Xt/td7cefOB8puNIh9C4NPHXwzlfKD4hxCYptndLRNxMjR1mpbjGuhxre9Oy9O0+ODKTHvAGoihnbVhrRk2zbO568b4kAcrHI2meqGsqszzcuisH5vQ2u6mQLVacbyud4rx+L7T6USrjdvtxlasSRXweKzq+k4Ao72ezhfeTROtFeq+8fHTR/uqiKsl7g0pmCFZ968vy9l17cbM2NeVsm1HHu+U53t8iNybQVFx6uxGdPMmcCmIWIRcc+ZCitkd1i0nelkWtm3omBv7bjrfKc+Uatrfdb0yTQuXyxu+3l5ptZDcpT3GTExmlDVNE7XuXvBG1+n65wxCzulAq/Ghpz0VIgMosVs4PGjScRM3o4+neI/lMf1hYHJHbdMm2wBk2258+fyChGhZvpdni2lSXHPX/VjMo6DU/WiIo+sku0c5VV8To4Hdi+mX52m2GJRfy1/8B3ylaebr68a//3/9NSqdmIQ3P3yg7DsCxHAmp8icAzEU95ZIpLCgWm2YibETf/f7z0y58PZZmecT6hRRCQshJW71xm3v3Ladd+cne6/eLJJSAEnUGrjdrEYPft9rmwChbAb0hKCcT1BrY71tLPMTeRLWdae1jWtdKdvVrl+vZMSo0ZjWFlG+3F5oRBbFNbMJwYylmqolAUgkpsQ0LdQSKHsADd7QW3RPToHzlJmjEoEcEykpKe3M2dhS+2bNv4hwXiZKbeylEFi9zmukSdwUyuRriWbgmSd9HJrtjrFlemcvFiGUY0N6p9TO7dbYamLvgWKbH9IqrQVacNkXNkS2tVxQraSLDSCUiPaGdGiTEpOxn3opNsRQS0CorbKWDsHkJ7FHgmx2fFoIstLKlb00Sun0XdlKY8nurhyFPAXWutPUfm+tgdYiV+1kEeYg3DbLps1u8BZCYN+EHi35hcln+qqu3Ta9d22wFdiqcFoSTyczBdMmZnzlzLMQJ6YpIQgv9RNNN3oZngi4v8KvH1D9+sb24T2PaYlPH8emZv2tz/8fuvLjRx0FGgOQJB2yklU8+DjxdomIzjxPgXMU5km4Nbh2KEnJftJKcdSzdUcUXHuHN0yBo6gaC9MlKAcaOZjE4CJqjFG8XIzu1oq5FY+JlWRzQCUE2L5Yl9wUyZO9adkMMiEjYUYwgflOoe3dioWBsorRhMtuVGAzQlF3h4W2KqsKX5rQ3wTK3rh9qaybLTwJWHROUk7vTzY1wTSiEmFHScEKhZChJWFk3mhT9FbJzzNTtgDw2gOlwu2lmLV3cFTLHHfswdQ7ba2O9kAvq0/PkuVIBkjSkBSJk+V6qgS6CGQrMuMYcqjRiGMUsxbfLWYlBTEbenDK8UBjbXpTdqWunV6A0skCU4DfXAyBfX8JvL8ELlPnh6ny/tx4njtT3g5DhHO29Rc6pNjv00/t9NpI0ZquoZlEzVk6RIshGtNwTYLW7DenEFNjlu//ITqaWrtd9WhSAQZ0aW2gZanZtfdpgzhDwO3auzy84cO/q09dzYHYmtqmbrIm5sZscRLmbkwIRI2koqQQ3Va/o3HkVAohuavqKNp8EhvgmKh2hvnNmLJijSxK6M700OB7mA5wAIu9itRqhfptFV5eIl+/Rn75WFlX050bIgmteHOkNgkesT4AEiwLrtEJKbFfr5R9Zd9uaNtQp8oFp2jO2ai3ihX0+CRcfTrQuxJDIkyRaZoNrXZqJSgxRySYG3G9bfRa0Vpo0T6nSHQltRXuISamecSL4Nmjvo+GiPbqzaD9t+MTejWTljqaWo8VUe3EgViLOOXZkJzSumtnh24yMpDx3ofdv9Ncw3BAbwcCk/J0aCkl2O7etfqwIjzEybibcnct8TG5sedSiJFWNnqrB/oM6s10PCJTDBXmMPL4nl85Jlv73VFM7J6te3FEvTLMHPEmqzab9NeUuFyeiDEyz/P9vgqRnCcfeOQDxU0pHUVd7+2OvXuznKcJOGEu1L4Hijyg+n6d/GeGiiq5M+5A8gYlvzvNvemoLayAEqejjSHJOJYYhaTpjt61Bi6NGbmUKQZ36H5l31Zq2d2RWA4WUuvukj/QfUcKBiKkGLo4ZaPcd630YgjIaOJVlWU5Gd02poOppmpSgXme/fPZZ3737j1gqM+8LLbuevM8SEjRUOzeA8Ok6Xy+GBI2mthgmsOcMzEE+xl3oc7Zok1MdmEa3hgiGoMnSiiqhqQNBkhK+ajbghhK3XojT8ux/vZ9O9bBMIMaiHlK+UB+zZwKR7IKpHjo2Q8yjRVFtFIPw7N9u5L8WPoxnIEQmjVj0WrP3kzPPfTlaaBmbUSfff+vujcKjeu18te//8rT84kffvyR7fUr2mwQL7gpUjX6qMQRITLYUeZJoMyUJrysUP3+N+SsO0PtTvfvrXkKge2rTcx3pBZh34X0/2nvz38kSa58X+xzbHGPiMyq6maTw7nDu7z3tD1IgADhAfr//xBBEN6bO3NnOCS7lowIdzM7Rz+cYx5ZTc5MU7qCqoE0spFZmZGxuNtylu+yRmfWhDYs0ByVPpJ3eSWTxBWcX15uHomXfMTjNblQkKm4nozB1hPLaXW7HUYITwEqwRf2Daur0nqndaWrsKzVu41tB4VMYqkuZOqCoTbBQDydF8wS+xaoJVW23uK8EIRMTl6Ism50GVHQ8yRhLwUpdpwHghefEk6HWhdHVY7uFCCX8ZmCp0AxR0xaCH5FL1PUYHiMsqk7ieQ45yW5arWZMoaw753e3Os3p6lt44rFQ6ENpfXBbWuUmsnFC07aPemp1fc722/YEMZQ7ntjH0LDXR9Egy64OYpH0gkz7/Dve+MuwjVDtwU1R8YVEdZceP98QTlhVI/4zBWlLfKM0btT2XB05TISaiWEpdzVJpEQy6j6dfR9eBYQlBa0UVI5aAc/Z/zsxNZeqb3OwGR+/9i4Z1IrR1ftz5u5/jhvgRtVHP5b8Rb9pRZurYR1T0YLvHSQ3TP/lmYn0gOtlL16IoRnaXRvcgTrmqNTG/HObAIlEYZ41xYczjrtz8rin3eUSGzUOwMS3A5/4s1xuep/KLlEF8CXtIR9hfXmcF0F+9wDqgm1TiEs/MDKRsrqCrECDNhVkJFIRem7sr8M9t0ntRT19nVWlvcziAv+aXJrI7856iI7WabEneeqqtTs3eq0ZPYmsMMVxcaEHIfqXklMeTrdNnR4AGB9J7xOXJXNQJJ557OENVBsim78GvFmJE85ScAgnLMgyZWOZ3V46nCMYQ/S+DBsU2w3ihqnBZ6r8B+e4cOT8NvvjN+8N55W413qXGrnlAfG7lzsklgiM9VkLmKWHnNWh/khIlDSQw02FQ8uJL/qX6bkQZZOSJeSfgGJ7exUIq/KTkeii0NJowsjKflmfMBxPIF1j1nfbP1ayMwjohbpcFB10BOHih/Ec/saJ9Rsk7gRt4YiYBmRQIqE55ocnYwUgZwH1bOSF69qzv3TeJ3Is/0xRnRBjSlC4cbkMGXuMV/S93vi5Zr49Dnz5QsB3fED29BDAV34GuYKIKbo7ompjELfN9q+0fY7B4FcPektOVHy4rC/CFxAQjXwkXinSGKW5XQc3qrDb0cuASGD0RzarG1H1gUke4Bp6mG5OueQGdQOxTRwFMKjW8P0331AtdU8WZqCLGNMwbyoPMf/dKoqqx6CMJgdge4IkR9XiY6gbFIfhKMDgUAqfq9tVrZDQGJO0aluDXYI6swNxHgFfp5wpikKFPjKHPYqU5AohfpoDu7Qtzxyyp7cZQ2EjHcYx6t7BByJocbP5r326RpXL5JEzKAupCg0TL769Fj2IDQUedMsAohb+RRfnxOJMOFjFt27HGs2B4zR62SzSjiTWkO1o+qFxhb8b5hCU1GUUokAMMShIMThQjk1OY8+S0ZkHIVRERw9EUJKbgszgxRliuS97ipPnvcYjUm3qNF5dNVvvy7OdfYkfl3WsKOb/r3+X04pgrN63KPL0zMpCqt1cXu0HogKEaGWHK+v0URIYT1UGKNC3BcQailYDv/ZXIKj6mJ47lgequvZVWe9bfTYv5wKkKi1HMFbir3Juh3dZr/2Pg8m5/5QKA9OcLJ8cJbdc/nhR4xNVI8c+5kL5XhneuhwmHhxWkLvI+LbKLxJokoNeLRfx0NwLJcDzTCFBL/14V17ow3448cNcuXvfndGxob1STfzOHKgYc8WF44JmXX+p+SKmdCH8zsnb3pCUScyppR0QN+PYm+8H1UXbZLTjKhdOdkLU9WTHyYFyYsU+7ahJNZ84rDlCy654gikbkIbAuIIm5Kde6+mbiVKFHOjQ/pQNxZyqoBrnqBzHWZyMUr2w94vSeK8VlSFd+clVM1hNzsoil4M8GKZBXR9iJL6QEiMkdCcQoyKeI++n7rCsnBXC1qRPRAMKZofRZERJ2IkHoJ6M8w8n2jN4Y+OUvIjqTmH0O1yWke7cSopCvgBz9d54jm8uI+BZO/uMvtww8irRKGxY5EvdVW6edvBDoqmRuyUyBZuEymz7UobidYVNZ9bmMQenliWTNdC1+xxi0ZRYnZ+ghriVKT5Xzg7SDTh8H066p5xpgfUW9Wtrczn6eTt/pzxV0GRZ7JqxwqQuEkcLifyk68/eQb/IPMs45HEDOucyqDmzv/0A/z6XeXvvl/4314SnzaHJv/ho/L5avzjF3PegQlPazoC2Bp4dEyjXS4M/BB8hUw8JsTo5p3f7J3D13Ab8M7n+pQYzcWVMng3tSRI76E1uH7yu5CU+t2vvDs8DFlKiK244IuOQb82VwHNiTECnz+Efgv4U/fkS7JQnwqjFPodPv7o6mv7dYCEGAdE9b3Rv++MluhN+dX3wrp6F/N6Na+6LUYuCjJIqbOeCj/88Mx3PyTOF/+ct5vw8gW2l0xvfoi14P6l8xm9K7ZtjE9/9MNprkTJnijXTFor5fnsamfikEEzn+jiOTaYIsnIYuiukBN5wcV88GR6OkucqydeY/jfrmJ8h/LdB+XdYvyP/zHz/gnen40SIlBrbTyVwZKUJTfvgsts4Dg3Zc7lWvBgLInzOoMDWmaSFrA2h9+VCNtnfuRw1Jy8aznMK6jfuuAMEPfNjsB/dhmipngolrpaMTgYm+gWEGT2V08X/IrJ84QIktOgWwuxEQ8C/bmNqtWDzmRITRHAuS9b2o3SvVvSML+uOVFriEZlPxAT4qbgcaxYvNdmzj2Z71HM+byquFjCkRT5Rtt6it+5GEcfheuXM58+dv74p43bzSuROT+8XddlDVhkZ7QWJuPrARncbjf2u8MGvZtirPUUgioBvVnXsPVZ2NuNbb+7L666sJPY8DtSvPOTUmJrm0NnE5zOJ0iJZqD77vxb9duTSkZimabsh4eLT2lAWiyCZzc7Igoyh0Q/KbiFXqDofffgNZUjKVB1waZSCiVXJDjVaoTK652yVMq6Qn9FWZlCUARXOjuPuY/mis/RcUx1wSSjuJ1B7z04hBGIH1xio4+dg6Nb6zGnR3QoR+8HvLusp4DoKOtpYSmVdVk5P52RBLfbzaFs33hi62rEQi0LckpRXEtcr1/Ytjvb/RbK3Ss55wPGezqd3YM5Fz7++CO/3zfvBoWQWK0LtS6cL+9Y1zPLsvL8/n1A9Lxgm0IwxIsxg/v9hWVZqLX63BVHWJSUIDi6xwjLOhXY9/thzTOtttzX1BOTeyjqHh66IuTi3NPeHdI6IfG9OzfWrSy8I5pq4nQ6U2vFtB9dPR2hIDz8jHHoegJTOh68+ueMYrBwJPiT21+qd72nGNe2bwdi4PL0fPzt7D5jg+3+gtngf/gf/vfht5q53m8HF3FZXCzr/bsPLLWyLgu5JLZt58ePP7qidXD2JehDYo8Od8krLrp1Cts9o9Y8t2XO0Z0/X555uX7xjm8oFLuontNPXNnYu645C2d9cjGXstL7TtvvnM9rqJcvbPsW92SwRld68r69+PHw3+5tY/TNi8fZ78d+n1ZH6ZhfE1FQSjl8g1PO7PfNu2eBKpsJx6zA1VrJlrmNfngof+ujN6Gra83crsKPaefv/9d/4v2TclnA9EaPINuSgSbWUh12Fvuh9sHog/fvzuRyYl2f+Pjlxq6DmqB1JSuc1oXl+8SHdydX52/Gx0+NvvnZ/HS5kMRh3uvqENfRjdvVxfbqcqEuFUmVSU8oqbDvXxjm1KNijSJGWVa2TbnvkOUEydVxdRipZr7/8IFhO6ob2utRfEmyBkLHxd32vbvbxa6kgVPBcuJ0KnRcMKk1I1fXSXl3rqypUAb8yx83hu6YuhewWxw5JeZ0Lti2hU5Loluim2BlRUoiza7meMwhScJpObFZo0unj5sndgKpGDXB6SLsOWFNGNs4OPl9HxEvw9aa83sR6jKoy+Dz/YbYAuPE9ebn+akkp8VFk276RK+nFVJ18dK+YSqUNXmRPGdqKSDuT5zEtQ1O55ML1PbGsjh6SoBLXdCykqVSP7xjOy38wz+9eI4aQm4EymnbjX0Mbj258v10sYm6QV4qOScua+V8do/68eNnzGA3p1tNdfmXFy/C7u2OSI4ue2bfhOu18fwUdp/MJszPW8t/Ncf2sUnMWuurLPUvJrU/DfSjEjr/bP5ddPKyGKfcsGpklEHmXc2cUuZi8LkCAz5t8LnhCsLqAVkO/1JBDquGfXAEglZhhHpoSqDJlXW/ul72+p2GtHhy4WOSkBV0ZCwZmozRFu9YZof2RB8dV0jzi1FPbjTdX0aoQAoWfnQ5idt6DLftoHjlu66eSOkwWhNXfltXVItXX1QCGlDw+NkYbfBShPUkPJ0S6+qVjsMXEr+mWZRSzWGCmyfSrUfnfI1K+e6dZgPo0ZFJmXFcI4MgiUerwAWhcvHkSP3onffVlDjIvAGcs3tdpeyiTTlHNT1gFKgniznDKQsfTvBhgf+wwK9WeL8Yf/PrwXkxTtWFu5IoJXdOyc21S5qQOB7iFGmKqgScJ7oG0xZiCpUQ2P9DSEd+Mt+jNOapoFvBTEGfb32MCT+OJNMk4Luza+2X35Pa+H52FF99+li3clTr5/+iHBHPNQ4VzREMa3VDIUAZkskyFXWFKolERbJzbCREYkiClEie02P/8OKaf5IR0MGBMtLsdhrJJgR5xgETUikhd1/o3dXJ77t7uPUu3G6T8hCdLNID+ihhC5RXhyGZV51HwJ2m1+W0nJjQaC+Q4L3f7AdL63dUR/hvhycozilNAiaeZE7u2eR6kxx6NNrur0lUW0uoRYc1h4upaJw+4yhOJJkdTd+EzaaYwzggoW755BVmw7DwvvQ1NIWWEooGa8GOLqokr4B4ZzYzJ9cU+5lewzYLIRZBTdj4kJ17PAWqHp6UIVA0Gq/PF/c2zUGPMSZc1UyxMY5DWkd3aLa49Yh3ar1rK0kYrbGUGt2Eb3d41/AhAmahgHqIhoRYEGYBV43VaTBGo+2C2Zx3IdIhU0QoU2txrQoGrW1xTLuf43Fo2oSCh4p3UIVc8wHmgXrwo+L+zbU5xUGkhLJmJFiGosmFVMbQr5SQU07RCcwsdaFLAzU0PToELjz0Gtbsc2569h7JZuxpFnEJAqXMRDx+M8WSiNYLzmWutVJqRjXH51uOor9Em0ZEWBZPAA5EhxgvLx9RvUQCHII9gGl3IZ7ZIWtKtsIYjSQWtUNj2+5Hkn0+nQ+uqRejiQ47zu3D/+3qxGFnNPojVon1OdELUWIOteFAYMTeKuqiW4r7WadI9pe6eEEhuy/usq7UGv6zk+c90RVJQFN0Zo2k4yt0RIp1N5Nah1Mv8dtAhYzpxRxroVZyfohjTR9thzx/25QC8B4JklxMLWVUjS9fblSMNPAkMcS9VF1HZaI0J21jrjTVRrKCJA1V6tBuiePT3bkSBC3E73WmqiEKZjXEmlyYzePY8CbFz41aHSKesjA25XZv3LdODxE2yRr7yqOIvO9R1F4Ge9upRXg6n13vZYbhR/eeCDwSYqHzoW4xel5d4EkluWVed+vA1h0YmFMgOcy5r2LdC5lCCGXaMYf9mmU/bqTQIiboikNrQ7eGJGHfZ8c5myVTxNDhBfJJm0hJKdkQOmIJ7S5UJWgU8Iye5Cg8pSRR7HbhpmT+n455BpfjnPb4w/UlSnKv4MvpRGsN75dGV3+47ZVkheSfPScgZ1IKGscYDgHuUdCO5t9SM0JlKYmlZJZafF5mL9INE7qlUDTOgSIJBWc1+q7UmsjnhTHpDxFPhKWNoydTJotzmLt2jBEhSkIorPVCOmxULRLgqZnwb4//j8SjhNmZkZ/8/NGF/resgKZK8uuceP5bzDhJo5TBOe0sufKyZt7lyvc58fmcSJb4/Q2WO/xxE0fJqtvnTOXGPOdj84Mo5YAfh5BSLy4qQvfXPppQ4nyE+T7VBMl+GGQBLLmCsTjk8bafjsB72mhIGhDtf3Kinhc/tPd2XCdCGKEkGJtLfqsqKSfKUlkvlbErexuM7knl+ZJpbaoYK0rBJHG7RiLWPbi8NOHDc2JNmVSFly+eZCSUZIMMpKzcd0MbwdXwI76uGR3GvQ+0e7dGqlEkkWulS37ctOQiMGI4LDdnRs6uwDziHh9wY782NfgQOfulz9ktfHLxAkTvBk2jewbLKjwt8JuL8DfPwv/lN8KvL8bTYix1kMVV4CzeVGJQxGGXKTqO/vbkmJMa3ak856iA2zUQXOdZ1HA1Rpmt/Am1wgP92XnIQmDf/2xJfJNjSAD2DvEk91ONs4PBNFmX+M+5slNBWA8J8sc6T6Fs6stvPAI1wrLmSGxdSGpgYBnFkz8HMniyVrKQ1Dd+wp7GkhdgiO8fY0KKA4aM+yUP9YQddQCxhhDTbEObBWpjuKfztiU+fjQ+fXGbp1qN6w32Br1NuGPClXTDQmRZXfU4Od+1b9vBey3hGVpK5Xp7QQIKlKPzmsWTiaHKtl2ZHp4teKJCeK+m5MqNAS/NkkEyaTmj4mIqY9uORDan6kri2Tu1vXfatqPW/VpMeI150qCROIIfbiPgvONV4A8cHOKpEAtwqGymFLzaUCyNhZACHqvqXSP0AQWWr9aK+83OpCHXOlvNXmALqKfZhLg7vKrvu/MQA24o4tzrlJx7ZrxKbnWQq++5o91jnmVK9W64d6ic96X7zrqU8NH9dseyrJ6gNvefnTBOVRd8cW6jX4OUEiV5Ff96faHvHVNX3F2W5SEClhLrsrIsK+fTA/beI7FNIt4VtEhqZzEiefA2UEpZI6COgmEksEdyGEme4HQUxBVRXw8L6KKWEvw4976VgPKmqeBLJHFqWPC5vJvstIbee0BSH6gd1fEoNsWrcRRkjFIy63r2TtVo/hwTRhuluVIv1KVEcSuBOQx7Fn29q+owzdNpDfix0Pad3ht/+tO/0McH6rp8hYTrfXcIo7iw4y5CLs4ddj9pxXRwv70cPrjP79+hZrTuUOmpvKw2lYW9sDvFmICje29RlJMQpTuvp/i9slRXY96bCzf10UMJdzwKobH/+2MrOtQ9bJc1PkPjfreDozt9ZyXngDK7qE7Ksyv0UNWfAmdux+Jrcdr9uO/u9egGr8sasOtXKshmB83gWx+tQV5cgCyVhJp6YmsGXagZWAo5FcYsysYxPGclACaMtgd9o4fWTBQtiheObtdYy1E8QaGWzDIEUVAtSJnxdLh/iNHjnC1BPTgtlZy88HS97Vxv3ZO75L6oVkOQLco+97v7pK9nRzc4Yu6ZrnKUjATP6myKhFp2tWJAbPj7jIJpN42ilyeI255I4tSy1t0DPtFBPbGVUFuPU+RIbqezQpKK9uHJWTdGxUvwPsm8oGy4fgRCkUQhs2v2ora5UrwApTif2dRpTKLD5RL77sWl7OrMFloUOVCjhzwBHAVmV3v3hatjFvgkNBEqjBMvL34tCHXm3oX7NkgF0iIPtImEjREjrNOEfZ8KxIApS3Htk9OSOS2FtS4Ri/h76WSaDm672wcmKdSa0eEFhT4GkEmyYrZ7kXlEQD+8wzWFMr3hpHTtgVoxxjiTpHI5vSPLi8eAKG10uv68ItV/35P75wb1r3gVr9LaxzCoDEoy8jJ4ronvl87+Trj3xG/OF/63H41/+CT8wy3zsgsf74+AfBYGEg43dWgc0S0Q8hlq8gl3L/7Ks4LvHAaOoD2LRVcn7GCSUGri/N3C2H0T3Vt0fu4D6Ru0Q5LYuafv35GWBate4UpZsCRRgVXK6pCfgR8WXY3tFtCbJfPDh0zJzgHuwysy+z05dEWFXN2wu1aHUmkyPt1cSQ0R9qa0pljv9O3G7Z74A0aPgymVQi6JXDP7Puhbp1vHxuYXb09Q3EfP0urVq1SQ05PDJC/JccOLy3sffb3ozK7rA6VqZkiGuiZq9eSziFJik75k47uL8FyF52pcFnh3Mv7jd4Pvn5S/fWq8P3XWOsJWZHYO/KtEN/CAHr9KvOZsyxL9g1hgRFfKk9o0jwiHhR/dyH9tysf8iQq5/SuP+5bGA7jr89N/JsfvvBocHdBZHDBFJTgniK8Xg8nhzCk7xCThVc3ZXZi2MzQc7uoea34UZ4ZlEjUqra7sK2SSZT8otNNVXUUw4saBRXLuEGNjwmCCC6dGY8Qe45z+FJVpHYJo8I824+U2eLnuXG/wx98rtzu0kaj1FmWSjFrzoL0rp/NCLgt+3Arb3rhfX5i2Gcv5FEUcYd8b+7YzTB+V4tYYZtzHw7e1Fvdq9K7hiaGDvTfMkpvTj06pC+u5+kGQM5ayH9YGuSyBkEg8Pz/5WghO7VwLtaye+NZ6dEBH74gZSY2uHWWg6uJQOkZ0TjyoMbVXRYy5LlJ0XI/eFqbdFw4SBQG/FqYhliVCKs4jtGGRwDxUaN3Oxw/JfbuhPexLinhXTjX8SIV6Pj+QGETQPi0JxGGL9/uOBHfReZyeoJRSOa0r63KilIWSV+p68kBt2ZCSffP6hscf/vDPcS87vfUj+VGbIkbefUwpcb/fju6umHd7379/H1wgYbvfHkJcyQPrbb971ze7eFdHsVDvzDPhiLnr8GZX4J183t69Mz654pPbP9WWc86viiquZKzq+PmchVHi96XCekIi+SmR5GDmvrElYHc8eUJUK233hPS+3R4dx96PpGdd1xA2KtzvV7btFrBAH3202Ns14lpBJOyIsvuZp8gSHaIdgSV+xlWbooLORQX1xy2FuhRMjX3f+P0//zcXxBmD7X6n1HJwkQ9/3zq7lr52DbfJGsMwa/zTP/8T0xZlqeVIClvr7NHBXRaHlNbqqsdmidP5/Ggy4Ne/RYHNvW2dqqCYJ5m1si7nSI4tumJ+9u37fsCDi3jQ7fBho5QKsgFKKQv15EJt09/79b3RSH5z+FF7EaId86ZGp9zMuFwubhMTyA4vTKfgThdPEkNs61sf7tW8UJfKejq5T60MSum+biy0W6SQcXGf+wYLLtZj6n7uJSlLNdQS15cbDC9sDDXq5YlcVmp13um97YzrRjJzHreG7dTwM249VYZ+CiqHCyVBIecTa33iHB7T62os6w5c6U358nnnJGfIhZRWTzbFuN129iHI4gijrTWeLispa3Qr7yAbJe+YVRAXPtOgAZn5Ptf3jtcu/fDpXelDac29a3vxIo91t/MSXFyuytSiiIR7VruKi/GYuir3bFxMpIiIx9wSvHgdg9v9C918rZ2fnlhqw+ROqTUq704taLvReyYzSGJIUtcFiUbLzFXMHgXho7iTUzQSEjoSQwWIsxMPhnJSTmfv6jqcvbnXgOA+z2acKsE9z2DBr87Z/dzDKrOPgUgn1UZeVqpkTmeHMHfb2HshZyjmor19CFgFvOufQ7MDBq35mv3xZWffOn1XyrJGl78cGhDAcQ6QR6ACNZAIhVLO3NsX0uistUZBQH/eevrvvD6/ylD/Erfh0e3l9QOP7tHrX4pARkkCWTpLFpYs7M/NObYkNCX+lKA14XNziIZ5yy0O0/n9DMz8kArkaWwa3sQ41GIjWHP0YEjTTIhRvDFJQqpQTwUVkO483PnH1mcHYzC2hpGQmh3iUTy0T+IetrqGyjGFFIT+3tzGI1dhPUFOXnk/LX79liWx9/CdTe5pW/LkQobnb8yBPoJSZsk3gwH3m/uIeTdTSTWRavYNrGkIYjh80fY7Q6ubI6urPDmcMbmg1lKQ6oI0U09GIqnNBVdfC4h+AUoVJMFoSkr++1OCtcB3K/zqIrw/Ce+qcVmM51X57bPy7qRcymDJgyoPISI7uo+PoNb3iEeX9jjczB6d1+NGc9z4xyFoTH/Fv3Qu/hkiQXjMj298zPDtSEbiWj0E1V+zGR7FAw9xwv82nmv+VRQ1IwCc98Bin/b7MwsRfnu8CAHhvxXwGrcWCFVFM0xjzoVICOFf/fo9zn/Nzu1D7Tg+QSAviE3ZurDtcL8LX67w8sW43Y3rdbDtLrKhY8dVIF4r70bxQo1O925nbBRJQllb4qoYDA07jZgrJpMTbLHv+PWZEMz575mU6bDjsx38M/GkY+w7SQOOhxzCTERV2sYUcQpIXyjdSk6hKtyPdYB4AG46+U0pRNLGAcOcxZ0UMOLZkUUkoK8TyjyOmTE563O2uepwjhmYjjs4oY++Aae4dspojSPuVjmStqmuPHmbs9RylGzUvp4h0fUafQ+e4KNL62gBL8540dAckRPff8tjKlL7/RdQOc4pePBDj84criPgPHVPTCfPPqUcUNhIAgOy676+Mwjz9dqig+er2OfNzSDnFjDeh5DB6/10lgEfgjPhWRtrdyrrIgn3eBdy0Ec+MgAASopJREFU9k6nr4lXQkARMzz29dh7kvsgT27n0Hp0sV8LvE0F6IdXr1vITGjmTIhEXKF9XmcXsUtH8nkgAo678nV5U4jrZpCSQ24lqrwOi96cHzwG23ZHtR4c3pmstraTc+a0niKhHcdzmhn77pzmnHN0wXPo0zk9Qe2h2j4DSvvJOTjjHtVZ4uRYy5JzdNYTtZQD1XRwaBGHrYocCXh5xXP31/M56Jz86gUTm77HvudMoa5SHuKAOadX90IOISof5ehC6Sy8BWTQzKKY/Us4kQkOXcQgzKJGcaRhdlGzKFMieTk4jwcqhQTJkJwodQl/U47ii47uOiLJUIpLOlpGA4abpLBUyKa0V2/H90Nfn5NmIFIOhFDK2S3GTovTbMLNwB04MkPDVxxPFK174tMK7F24t52iSkr9WNMWMd1xpsclUjO6GbsphYIFteKw4gnYsG8pBjYwG5EQQREXTFNLj7zA7Djn/dqWQPuloxHjgMzsnWAL7+jWvKibSqCoUsTFXgw2QpwxirYzxsp5il0JWzIIio/74KbjjHeaT6xjHDnnTSMnaKpFUI9DnCUq2K05Cm2Ye9AOMWTXKIJZiNdKFBlTFKpz6GM8mjMmIIWjat11BDzbYh5mb9BpwqY37dQ1GoOhcL3vjKbomBaiRmuOqonm8rHHpVwiiXfNhiSKSmYMR++tNVBZP3M5/XdNbOeL/rsFskDDhaqLf30UDo9ns5lWijkvlMGSYH0P79fK370vfPhT4r9+TLS78Omz0bqQz5keqyGn6ECpQyhSEk8mg3I2q6wiDgWQJGQzWrcQUPOWlZiQQoDFRBgCkhOn9yfSXend2LaM3r2Czr5jYaMx7ruLJ5+EsiysVbg1h9+eLimMlxPLcG6FDrjfjLpCXZVl8eTgfus8fVi8kkLidofbzXcch1UatXhHOEdFawzYN6G17FWwnLyzfQUCJobujk6cOHLXX0WGwFDG/iNjGim1W3QzDBEXr7G0HJYdGiTcVOC0Qs3CuYIs3nU5XQRrhm7Klz9tXKpw+bDw2wrfX+B/91vhu2fh+QQfLsa5DC6181SVmpWaOkW6Jz1zIXqJDTDvFgZ59nVS+9MlMQOs6BmRJD8OlldV7Bkc/qUD8giqZBZAvu1AeI5uU92QODUioXiV6HBcGbfK8bxwJipzbQoO4RZSthBgi0JAXLaUJlc5zo5IYvLcpHRAntAVD05LzkiqGM5pT30jjcYI6PdU1QYXuvrq9ItxoB7N17mYcze2a2K7C59ehPtdeHkRrl8GbTPuNz841Yy230kR4LodVKEs1SGwTWmjBZ8zU6vDEN2eI3ilwGYOaZJQDQ2Ki3fMDN8ncKsEU0Vb9wpZQPFmMG4S3qLm9iJt39m3jSXgRZIzZa2kUhk2fH8N6KAYLOuJul5AMnvb6WOn9ebv1SyEevYIetUFa3Jm63dGa4zWA3Hh8NLJOa5rdfirDcxSBOreoZ/rcuaG2oFSySdBhh/IpsFNlwSy+HXKyb0Pu/uMSvXur7YHN/J8OjsE+kgswBhT6JjenXs3E+6chFyLe3jinZ6lVJZSSPg9syR8+fIFTMmm6Pbti85MWHsSCah6Y/KkwSjVRXda65H0uM1LKQt1WSj15IqequTsHbM2WtT5IvHMhWkvZbhgYe83hwS3dsC177cbU5/gfD5zOp14en52YSsJDm/MawtF8tfdWv88qwub4fyvQWJZjK9vgwaMdkKD57b90NUwvGBKSZzTeiR0uUUhRNJRsOmjIylzOl2OJOAo2kUgOrs0B4sxYL0gjNExG8d+M9EQPjxwHM3nu6o6FzUEuFTNPYj71yrWx5kz1Wb3jZwy+3kHwu97bwdaYSoCqw7n2sV5V5ca0F/fj3rz38+E04uR6eiCluzemV0H0/YkpcTpdJlXJHi3/rolP2gJ8zMti8MWS3X7qPt943a7MWLPWJcluJkZ6c33tZzIy/k4j+d9rYfd1Cxy5K8S20fRRMKbXY45eMyZmbx862PGw0YkoEBZSLWQq4ZWhePRSn3vPPgCKp99/yXUeBdhZfEEYtupZUFNud2ao/HGoLHShivk1sV1LZZceFpdpO/LfqWU6JAO9ZhXhd4tUIYFkYIQ/rKnhef3T6znT2iUGEs9QS5sTdm7+6O7wJ+rAbcF2hBeti+UpGTpFLEoTCSGhd2PusDS6E5HuLfOvQ1O2bvxFFDZndqUCzkg1DmBiiLSSGVQDJacEFlQ8yR1nhUZT0glV3JSsgSKSpRkSpHiSICcuKqytc6XbScVJedBktXP9VSjaWBAxayHsG7ETymzntwqqFS4bT2QUp1hRlOjpoRRIFWkeFGvA90EGYlufsYPa4yxIwIltSiyK9etYRTMCtc9Ic3Ym2J4l/t8Sgf0eaosQyHZgpmftc0iOSoR4+XE1hspQV0FAtq+nNxOqXdFxeP/UjNj3Omj89E4kH0DYx+N675xPp9I6vZRlhwhsqwV9ju9h55DgjSEvTnv/zktjiRJfx6H/6XxV9j92J99/9OulU0Z1QRgX/3ueMzrCNQIYL0QWMHI/OPbKAT4VNFZfGcpyrMMUhE+7IPbgN9+SGwmfN6Fq+djUfUlOpezu0IkrN7lXBehdRct8gPJK7Apud1I272C71U0f38WBO35XpdLYjG/6aNUOiv32wuQyeXsNid9B62I+cIRM0aD24t7s7oqb8ToalhT94DNifvNu5x1ce9OFPZhXp3pxqkKWWAbLmpTkrAucL+5TVDG5dBTnTBbh0LTWkT9S3Qn81EJlkh4LF7Ps5CAGraOWmd59w6y+MZzEybPvla3EVqKshS33klhpWQ7LGosSfm7D/Dds/Cf/lb44b3x/mT83fedp5NyWoyndbjxtQyWMqHbPjGOfCySJtXJG+Woes4pNosmf+mAO35yJMBxYMqj2vk6qX39HK/n94N99e0fokFzIOlD7j9F8mQCyQbJXD1Y8ohG4gwwH8mtIi7FziDjcPgDZsOcMh7MZlLMqUfRYPZs1bwSGL0nRDJZHlY1IoWcmndbR49KbFgE6OwyaVQKozuj4+jg0gs6hP0G+93Y7/D5k3HfhJeb0PbE6PPeiVd9CSuekh8QSe2zqYgN5/VhHcuLf04Tmrr6ros5OOx9EIqzQxF1CL0Y0Y2Y6Fm/roMJj+fYb1RdrVaCP6OmXlCaVzNgkUWEUhb6vnuXJyWHb+bKPVRLt+3uXWODkh2CpPsenJdMykvMe/cjteGm81m8G90teJFeXo31d8iQRWD6sBSR4Eqt5+fwi81xBgiyZJj+lAF/Hc1VpjFjWU8u8GEOiy+LBzN1PTs0vLWoMlvAFX0ul7IeStzTRuV+u1LEA+91ObOU4iIZUXToinO91BfI5Jx+y+Pp+Sn2N2OxitnK+XTGf+R8zX1viDT3XcUTr1zCng55dBRw24j7toUYCLR2j27fieX5XUCNX3uzxp6nioTXqSdpO/f7Cy/Xz4eKcmvOeQNYVu/uOBTZxdLGUKciHAiZ2CN0wspnoedVlzregQZk9XI+I8G3nZ14KM4NBQi15lrrAbGe18TG4H6/xt5hB+S3N/c9RlxBf6nr4TWrOti3G4RwSts2JltQ1YvRr/Etnnjuhz805ufGUgvUQg2fxpQS23Z3D8+9U3OhLguXy4Xr9crozZO46KTX9EgAl2X9qht9dJWjC8iER/eArg9lJL9//r778VyGkEThdmPac335/Mm7PsEndvqBUaon0W2vhxJ3Eg+AT6cTNfu6F4LfO22aTAAlVyKpcZg0EF1bmGgV9/Idx9w4Cn/mKIRJcJmFhQek+9vv2q7nlVy8wHBaz5QCwt3VYq2TLkbGyGZ8ut59v0/G6bwjuZOLUZfMyTJLPTHtXe5b47432vVG3wYiDU0aYoTGZV2pUTStpTq/9fY50IfK6VTBFO1KLXNtdtq4sbUB1eludV347rsPnC+DTCKbF0ndCs/bcxOdMXonpRMppfA5byid9TSRN49iV0ruz2qm7Lc7ezf2IZSAXnsxo8bcLuTs3rYptXBSSJxWVzdOlkgtMUaO0nxAkP3KesErXDSmGF7vnZISgltgpZxJpZDW9eCdS1cywl69q5zFOd/nU2EfxktPLKVwWgtPF+ffqjVycRqQWhTtO+jYsZJJNmh9oH2QBfrIJIXWlK6uWdKa86etmsfgsT/20Y9iAOYWgDmbc6bT1LhwnrR1X021VoxMG7C3ztBGG35WlLIgtEOgzmHimWV5QnVzt4vItdxCyvV+tr2744Ipfb+TRL0AlTxZdS5w0EfN2PbOtu3s293F4OSZZBfQ5km3uC7Izxn/X6giP/79dXLLIyj7syB/Pu7oxXJAC2c7G47E+Kd/5Vmub7ZVlFNSLqvyfBa+f0587kLahLaDjYAQz2TRCPsZOyp6gndp+3glimMOmUw5OkL6CMOPd/LqW5J3HRIRxFp4O33OIWle0TacPG1Ooh7dob6Iw0W0e7t+dIsDz2Y2j6mEYp6wrsIUvxk6N3CLmx0wqdfJVlgaTagor/gmnhhGApddFtzltn1DEnPjbpmdugn9sldV9lc8AZodnNqZWC8FajHW1Y6bYEN4zsa7avztRfjVB+F3v4HvnuFpNX793DnVwVKU0+JKxwn3/3vMqUen9JhP80czCplZAfOwnAnZ/P3XlfkHzEC+fp5/YzyupT2uybef1z6QCLjJuSf1AX8xonOqD6GEKAZNt7YZoDyuZvL7JEThwRNh3wfEnyOk4uf1mSnDI7l1hESOapFI9qqw5FgKQtEtHveA4dnxdfpgKhZ+j6YBU2owunC7wRbJ7e0K983YNj80fFr7+shIwKxSdBbGq4DbP8BD0VceQWRKaGv0PuIwSRFoa1gxdE9s4+/nuv2q6yzh5TeT3QkfEgl1cQ+4DxXqVzC9Y3eNiSivVIv7uNPaTovuT4lOnzBfw+dBlnx0szTUj01d7GLe10MpcxY4jSMBnYvAiOJJVOBnIpNTelgjJE8OZuFMVUPtNCxHamIMP7BFjJwrqToX2efPQzFx+ntOyLfFnE1RBNPevUtZKjnXUFvNWPICjb+Onxc6lD48sf+Wx3o6Hff6Abr0fdLM2LYb27ZT9p0l+Jl7b3ENJkJlJgPjuO4i+vjZVxDeeK1Z4DU9+FIa3/e+kxL03rzTGHzY1pp3N9U4nU4u2lXLAasdww5Lq9cqtjlNDn8Krqw+3ufchWw4dHoZJHPUwEMFPwrFOhVLUwg+hecuTgVQmUJnGmqhj6QphYaA4AldKdWLqWKMgBYbMNJ+xBWzKD8TM5hfLZSaY25JOjjHE6IrIq+UhD0hyK+SVBdgk+P587EHpLAHKkcH1a+PHXslZoi6gOJUPD8gygbmDLdj3ZoI7DvTn3ffNw+Ky4Ri+98vy+rWebK75Y+qdwtjDnmH247PZBYUDAkKxTF/HwnuYS/Ho8g8u9MCB9rAxfaMA+4aibzleuzL3/pY14UU1mm1VFLyLqlqBP4S5yQOAU8ImtwiJoemhVO/XkGFc6bplTRcfGgMA1MsP9AOOc4BxnCkVPZ41mPH4Xu9ScR2c1IP1BpdjTxcJwMKy7KSkhdB+3ZDe9CP4hzIoS1zUFvE9113RZgq2zHvIvUkOaJRQufm4IQqlOP8yxwgBwmfe+lOEUxQF0GGF+EnL9fMQAWxgCDH2S8mR7PEw4w412TSrCYqINND/NFGpw8Xg1L161RKcqHU6g20yQ/3pLuz9+50xux2op4ku9iVWKdI7IuzyBZrWIMi09XojUMsS23C/h/wfgtqiljYoGKIaKyp8I+XKET71fMibyTGGs4HKeeAYoY2hxkqrs0j4jDoWQyddE5weymPW4y9DVIySg6a0VTyN7dabM1hyvvewTpCoaRCk8XvxV8ZV///RPZxQv5/dqHs33vTM3CbbWiFpEqVzq9OiZrhtBbySfj9Vbj+AcYGTV0CvI8gPHdPgJYhviiwIxiXCB7dXmfAiMAsPw6oro6UKllYK5DcUBvzTfVyNsolkb4/gT6z3zr9HiJH6uJNXz4ZXz43Ul2pS+J09kUwbPD55RbJNZzenaknoVzCV8ubGJxXkOJKvMvim5AlQmSi0jal78a+Gfvuqq5tCMO8Su8mnh3a3W1BlsryfPaA2hL7y925fV2hbWA7RLIbss9QVuT8Hq1nLFfvhLuMLkXi+qyJywWW4qrGL793b6b//KHwH38l/Mfv4f/4N5nzBZZ3gzU3lqw8leZKx7EAZ2Aw/WhjOjySSntU9R/TZSa0X08xefX9Vz/4yUT1v57P8QvIVP/K0aaacxz6mYzgdhuESqmNgdLdR1R9/r5OtozJjZzBrm+eOcfPI09TomIeyfS8mkdRy5xPN+LgTQA5kcjI5K4kF00aNuhsNMXncCQvR5clura9+cExwhB87JW2Cx//VHj5PLhfBy/X7rL+I+wRJFHryrqeyLk6fDqS2fWUyeI+untzkZ2ckkN8lxXK4p/IOuN6pfcRUGo/lLbNeXRj31kjoF9Oq5uNC+x7i7/3zoOaBxWt3UHg3ZNDOnMqfHn5jHRPntfzxTsnUXNGB9dPH6nLytO7D0dVz3SEFrUh2XmLJS9utSWwmHOnVZW+345gt+87NjwIrRUPcgesJ+/GzM7LCAEjfR2wm9uULecn6rKiozmsLSgNYjhE84DRdOKGUOvJod010+47aQzvEhaHKvdtPwIzICq/jWU9kUuhjXjfEfQmgVpXSj1Ft/Jh0daYnruPLnjXB3rmWx7v3r1z4aRaqbm6kMvpfGxnY3S2bWPf3Pfzvt349OnjcZ7mnNk3hyrfbi+s64nf/e53roI7XPzkfL5Qa+V2+0L/3BmjRxHM79uk8pSyMv0Vp7p279tXCdDozbuczUVWlmU9tleRRJ7FlSLs+862b5xPF5Il14iYhTSZ6t3G5P6O4KhOqzo5PqMHd4bx3Xe/8k6tCLfbi3sw9nF0cLftTm8b+34/4MC9uXBbKdURVHZn35vD27Pb3CDBL68L4OJaKRI253Pn40zyvdDY9v0IRkvwFM/ny+GJOyHeroreuW9X9t0/3wxCk/he6x10T+JPJ1djd1ViOa69e8zu4QVtfo80xbXr9O4BxkysJRJtt2nZo4Dh86mUwul0Oj6TGXz+8okxBm1v1GVhXU/uF6wu4HM6nQMOzxHU1rqE+vaT748xb/16uyCYB/TOlZyqq3OLmXw+1cHt5olAC7oCyKGo/K2rmwP86lcfmBza01pBO9uu1POJdTVKca90BHJN0Uh5zTnvzizrxn3fKGVlzf7Za+z32w6tD4bcqEthXYsXDYGEslQXU+vvv+Pz7YXrfmXo6qKQJVHNaRuSFZXmkNUmbLtwvQmj4932ktiH0dvglGFZKusl04vQhoeKIh4b7A2en068Pwsrn+LzJDZZMSkgGSmegHZzzqV1o20dy0ZaF5bwTR3aPRmOwNFw6sT55EUf08S/7IO9D0ZTsgG1hgqwq5tvQx191wYk58bq6EgWUqoIjhjDiucKw0jmFl1tJIY6DLpkoS7C0uToVBaBpayAsOnNXR4M+q70vYF1siRGSYgu3gDTKTESWMCw6hHECx8pMUjedBAjZz9jXUfI50dKcDo5/LmIJ41m3tCSZqh27tcrlhbK8s7jLMsg1YskFOd5J+jWeLluDB3UyxMqhbxk+nYFZgy4kLPDonN2NKmL4nF0XN3W8EopZ8Qyn67K/arsd+X9+cT5dObd+YTY3UMEiY7xzzyU/8oV//WT/rRb+9VjDMxed7/+9TG5Ff6Po2fGa4EDj7YsKsUOI0gY5+zVkrNkKpDNVfmqGCPhXNiA0Zh6FWhXw3LUaRIBsXBuazfos3prHuDkIlERctLz6AG3TJ7rJYskLAjcJlCeVidw39oReNtQrwilhFj4PloORVchlZW5a6fFFWIRPMlQhynuexC+a9jVZLg3DZW3IGWbUAS0G+Nu6GaIJUpNvvGP8cD+oy5Bnrw7hjbvKiXHzVuIOhyp4nIhrWfk6dlVkiNDlNDVXSrUnMhitE2RZvSm/IcLfPdB+D//jfLDB+NX74zffKfUVSgnoUhzTkNysr8QAgZz/sx5MfeteD9H5y9+efSt5oNfJbh/tiRmW+nolj3+bnZCHv6FEv9/9XyPqe6J2y+kY9uio2FmwU3C7YriAnhQpg7dseQbPPJ1BfO4RjNdta/u23HZxk9eXCQSWvz1piczsXlLBC/ZuY6+zn1xlVSwNNCUGeJ+bjotToYG/2/Qh9JbonfYm7BdlbYLL1dhb4Wh2Tn2EVjmNKuXAa8L78XZuXFuR2KMEhzgSkrFobF1YYtgagwXgXEY9PBuEQ69AnPj8lIcylRywHrUIcllcS5jqd7x1Rv1dCbl5F9xNcdcMrkWzs8Oi8SUfr/FwTc7MIPR7rFvhGhM9yTSYcSd0aMjEN3afd9Cbn8cCWoWQRb/rKkkpjCRqRs29Tb5mLPIFJ81ukcpEd3qCPQlI6n4/hOLJweMWudiEgKWbIzt7nDoOGcc+j2OhScpH2qqLgDlXcjRdpIkh5LX6rUaCw/hUjwYCHGTbg4R761Fp9cYo0dh5tvu9DxdzsE7dN5sTq54eRSAbXA+nzifT+gYtHbhfD57kGfGtm+M9cQYnffvPjgM8nQ6gt1cvAuTU2K7b4f1TWsbY7jiric83iV9dCa/Vj4Gn5NYPs76nKb67xQwSUcn2b9fXnXzAskUe49zbO3g7U5awuHni3pnJjoTc0u+3W4HJ/l+v9N7o41ObaHS2wLCN2Zn0RxarULr3lEpARedn1F1OhW4+vHcMxwGrwwVRnnYoR2FwLyQDhRRZihs205r0QFXQ8T5+6f17H+leiheI4QicGKp69GlPzi1rwLAKdI1u8IWtjiHt2zw+Z1rHddbLRSUE+u6RGLcj9dIKYXSssdK+y50eST0mEUhQw/+8OT9OjrjUZDovZHzGvuDxH6bj8KpzbMiRCtTqGwzu75hfaJm5FIPKHJKgRT5BXRsl6W4Toqqa1WUQuJMSt35tcOTu5wyZpmpDjI59U7nUHIRckDvt10Z2pBsvHu+IAy4K20b4b3q/E0XLxrc2w4ZTuczXRQL3QxJAagfrr689/C3TQA+d/bWQNxr+LCCSk7DgUkTS5QqrGUhV+8W9tbBMlmyw1mn9c+r94ckLEsUHv2cZQcrJeDBs5M6cN0IV/214UVf7/KHU0PyxHNysQW3nSk5UUsiSYl4vbuTgcPXfN7ZwOW2HkiOQgj2RJFPA+boXVuh1OikJ6HEXmXzGh2FulAyMW+sJRSrrqJsYgd3fMbCs8nnQoyOOvEE5UGE88f6fpyS+bwoBjKYgoFTLHLGtCKuAaShUzOa65y03skyIlZxMb3Wje3zjbQUcp3z0rvqXqOeYlU5iq9nTDuq3Q/jFLzf5F1bCQSJqt8jSYpqQ7VhPM6Wn8sO+vkc29mC+erS/eQxP82mZ0By/PgnnTW/moFCfmxWxAEwRQ+O15oJyITomXHKg56ElUQxcdVdEjXBSLDHc8+/NYMWYlAzqC/Fq3+NyJ2THIHvGK7s6x5YLtDUm5FKJhVcrGi+d/HuKRnyZSEFb2+q/dHVVYQFRBVR8Uao4UptJZNC6SaVHNouhrWABZPYdjBJnEKkJ4mw7SF0dYg3OUxDG4y7Bo7eKFXY9qmoOCf3YOxGLorkCqN5p0f0kVGC/wwhlRNpPZMuZ3ry53Be5OwiC6X4ven3UMhbBr/7deI/f0j83/7T4HIZnM7K09k3YsmCiBtM+/M5sC5FohS+Ml8luHMWPXTH5Ehu/yyh/WmyKa/m8fxywDFmkux/eCjsvtoAHlm2PZZDzC/56Wt9g6N1PcQTauaw0TmumMxgSEnhG6Y8dpQHrPtVmm+Pq56I5j7HUvYVEp1bX+cBNQohGYuEUmUEfG1g4vy0FAFqTgWVzhAXQDNThkYgGNL8vaujM1pi3+F2F26fjX03bjfQ7kqNzqV3JMIU4fFkPaA+++bQ3daoxXlro2cul7MnlyVUIHOm3W8R8E/4oCeRx2Y8uqtHLtV9ViP47MM7WJfTmbws5Lr44b03ZBfK6UQu1Q+bPrCubgm0LJyeLgjJxZ22u3OLMe8qhZDQ6J2hIYg1vOPu/rkjrtuDgzb6fiSJo/seUXIi13hf4p2WmWia+vV+RAow4cuu6PjqtYbzXpN4F15tcvuFkiopZbQFR3ZW23Wwb9vxs0SOPWhOUV/vE6I1/TENQUc/4Jjr4pxhU3Uf25SxlBjiZkhDoxDSe8xDRRm+B9ljD/kWx/m8Hsmjw2ODm3goxA+WZWVZFi/SjsHlciEl79R8+vTxgHGWQ6jHnzvnwvnydFzX0abAUed6/cS2b1yvX4418uXLl+N9mXll/qE0bDgEMh9nylSknoUNh/NPKLJQciQrgRiYEGSzwbbtX933eNUj8ZpJ3iyezc7i7XY/AsPZhWy903InRzLmCR6eoJqFlUhDxNVca+1Hl9qh9I64mMHz3BtVo/AS/LOUnKIzu8frujz2B3NOWu/bAd0dQ4+O7ym8ZVsPOHdwor0QUFgXR4yMoUxbuwlXhkQpDwHEHBBjZmKL8+tm8jlF63pvr+bWQs6dnDut7UxIdyn12DcnUqOUfOznU43a34/bEE61Y5ERRYBIVJhz2QseU5XW3zWhKD9RezoF9w/Bw/RqD3p93v9SOLZ1ydAHo43DTqrmC2rXQCcEZDZlh89Gs0a9A+Mxo2jAkb3A2vbdfyWZy9P58BLW2/0oZAyITljn1nYkC8/vnzkxsGTkPNEPCZPCQOgtHC+Gn9+OcmwYUbSYDankKCsMUjSlSi6czivFhWa8EGqLF9pD42DG3UPdPUSKeKCepyuB0saOYKiuXkBNM7HNSOwLmibcOc754u8hTZHYHIltFmoWluy5wxC49cF04Jn7YkIpYV2EhZdsymj3ONgTW6dOSTiC5CJHp9ItrKI5wExjHrBsM3E6YvL9MolC4qAYvi4czjV4kFACZfGITSUeaCAaHHVwFwo59lQPyyYi1kXxJs+4lYrY8MSWEIxcHMHXh3G731htZZEadlFO4zkcHu3Bp12XRN83tq0xBYON4TEmIQNrQa8Uizhsd02feP/eBPl5AfZfl9h+9b1FF4G42K83jynDkv6Vru5XT3x8nSJPkuWR8P4kyZiBseC8q7V45Kxm/G4TihhfXip/VOHTEHo2NAttBtrAknxxbgE5S5lDwn7uprk4aC6U+dFwx7ic4fKDcN8d5rztIOrejqk4jErMSGsin4x8uqC7BYRoPVIBhx8o95edfHZFQG072nfMOo01qtNudeKcs4X7U6UsBlldGKYktrtXddYK990OOMT+ZTDunaVkVzjLEpyzKBi07t2pW2OkiuTFA1MbmIX8ugpIwfoV6/cja0n5PbU6B2cM4XwurCs8PQljV15+7Kzbne+f4P/+d4X/5X9q/O4H5W++G5QySCW63EgsrpkswfQ5DRah35T0SL3s9bSJRfz1dJ98olc3/fEFbPIM5NhcvBM5X23iEB/FFjPCmDv9xcT4KLr8Asa+Oy+nZFjCIWZqcojM1f3gST4+l5MQvUPi5+kSVqeYHcEGzL3VOR3Td2rqis7qpOFS7vPvOwN0RyyTpFDMqHU+1oswpuPwyJwQur67Mt99a2zd2Drcb4W2Z+7XzHYvtCa0LQWPUqnriaQWCr0BZ20brfmH7ZHojTF8H9aC5BN7QAXrSbDWUIztdkfVFSen72ot5RDOqMvq8yq6Tb3v3F52SnLLGUkrvRv72ECnqmp2OLZ5J0fUhZrWJRRHgevLF7R3ELdv6EMZ7RqJtQa/ycW4mIGiRpejQGvRGfIS8ryRLLVCdNHCOyEErjiKWBrV5DEa2uxYEmVZYj15glmqH3plrR6QbHdG35haBw3QSICcu2tuy2PqwWpyj8p23x1GmlKY23d6C3/LCMDVBhpiHyl7B3dZK7Uklix09cDM8A5x6412uwaPFIeymfJa5fZbHrfr9ehKPT+73Pa+bXz+/Il9uyMIp/OZ8/kSXTkPQM/nJ3IuvHv3dCQat+uN6/WFTx//xH3zBPB0Ph/2LN9//2tOpzPP52eWZeF2+8K+3dm3a6hztkAHGPvWfS8NDqWZHpY1pVTef/ge8MDqer35/p/S8fhSyoE0eN2pmH/T+37wznREImfQ9o2phH0kNJIjMEwRT6TYwxMpL5Rg9Tt8en4GcGVR54JNW43eO/f7Bnw+Ejp/T1MszZPznDPregJ1JWKvxzQmj3l2SmaneQZrs3uNeIFtcnufLk+YOaWh9d056tExkpSodTmSQk9yvWiWk6sPT3gxCKOHBRkPTrqvHe94u7hVFBeP/Xxybt3fd+4NM+E5EC/pYZFiEJZa2ZP42DdG3wP1kijhJZxSjvN3nsvze3/eWstx5puFENnQ4DwmpufnjAM1Ovrfuvjb18MLiSm5UnkfDlHfbn5fajEW86KE718hXDQ6yXZMXjwiTwmR5mcHmf0+UM2YCHW58KFWxvjM3jdu9xvn0+qwei18uu7cdsVqRRJx39zLmFgzRmJvg3VxXuoYg73v3NuOpAoRXSaZSZ+68nwqIMow2LZBToUlZZ4viVNSpN/QvtO10bSxbZVuiY6yxPw6LSvWDGvKfbujw4sceankDFWUkgztDRmQMZYsXM1Fke5fOltLqAjn00IpiVwiKdVO35sXlVR9nYhgKVFZXagqCU/nSsrCXY3b7t72Q6EB9wZ7c2eSZSE0AWCpmafTwofnC0kGTWEfI7R2PFYYCUZK7JsXy8Rgjb2vZqFIQlTorXuTQaCuZ2BlyIINt8bL68lpmB3uWyclWE5G093jdg1BWMEFbYfTvpalQq5Y5FU5wVpCVX9smO6YZE5c8H6cC85p3+hbIy3vcAyskBSyeXOtBsVk3wfb1rnfGudTpValqTGa+8yvOXFF6a3z8aVz6oqlRKklkESV3m6Mvv+s1fTzochHl+bVj5hJayQSr/JXgeNgOn4mD+L4VwnvT1tqwdF9ldXGE36dYMf9oSTlVDrfnweK8OOTIGEyrha52BBXVY38Y4rVtBG3w9yn2fMhgfDusuiozvfRs1djc/JO19xxXxWIXbGugK6Zelno9y0y49gcjucf6GihzOnCM9o3zDqdEVVPiQQjPCLFA3RLhmRDigtE5WSkDvs2PAit+fCibTuIzipfXF8v1Xmy0DeHBqjBtFGYiS3mQlJm/v5rRQL+kRevpFVNLKvz8FQNulLa4D++E373HfyX3xi//jB4/zRYFieRy1TBjvt5FJkMZtvzz8sh9pe/99Itr2eH3zvngslXc/fRYf8aJfCvPPf817zP82a/GvL6Qd94MAx+jwTDwhvZAhZ2qIdHxWx2SV59+GOuMyvjR7vVsD+7Jzz+7gjkHnMaPKCcnTdVt/jo0uhj97WU0oFcHsOtavpo9OgwtBD66R32Xrhvxn2H+7XQW2FvC0NzFC28+2tpFk0mxD66/WYBEZrJpURg5VYYKYU6WgoebHQkRvNg84D2iXjwGXvYo8Iqwfv0a+c2KtVhzr3Tx/TyE+e/yGMNpDjkZle0t4YGR3DCsGf32hkRHuz50kiHCiviEDCvdusxX93WZark4utp+uKmhB2iTtNPLwJ6pmDdA7irUY6asE/EA2oNtWEXvXpcl/lc3kUYTFE8V0HV6DrI0aV7FKMe71+VI9lJh/flFCJy+whScsjbhDfbAcpiduse3N1vfyH37gkXe3vMuz7YNxfwybnQ+2DbtlCHtlDGvnnS4VAlBFf/XpbK+ezwZsOik+e8yh//9AeWZWFZlnjOG1++fOZ+v9K6Q2iniNv0uIVHwft1YorZ0V3IKToc8ugiHAJDE4Z0dCuOXoc/J3zdEY7X9mQtHWvOX3dyM91tYD2dPeFL2REOffBy3Zn0p/PpDCKU7U5v3ukS4Uje5VVn5GvxTH8dU8Ud5MTf21GwsWOuP0TaPFDN+dGxHqqYJiwre9u88Bf0CHiIZ82zxxPHdMRhMu3rDBcBisR2drUNh/yluO7zs7iarrzqWmu8pr9QHw/V5ENIRzLLsni3NT8SfpUoGiaJc933XI2EdFnWgwc7xcx634+/r6G0nHMJYSrfN0zTYaYxk+ApPpqTd/28YTjPmW9/LbuVnQshjUF0S13ESYcyzIWEepwdqiEgGgVlg4NK0rsxekHHgg5HHbSxu3ZBgtNphabo3qOIImEX6Xzr261RF0cySqAGJwR+0gAxhwp7Z9Xj6WSKENx387jaJEUsXsLb+LEXiMBSEksxalZkuNrv0KAV6XBYLClsyiqluCjjRCb03lmWcnDC86Syxf0vJVO83+jF3eTNicOaEKLwLqj2g0rgQXLm9f6VA3VRk1BFaCnRk9Hg1bk0cws9EtsSYoWuxG4I06c5aFskxFKcyS4We78Pcnc60ALHuWyTciQOFzaZ8YujpMTK3DI9X4hI93XRbG4aXtCVo0hGAmM4DNs8Ts/ie8WMlWc4mIAqTgeVMcKtIva7V82Q2QDx+er/HSPOCxgeVgUEem+KZOM0jKfTQl38/qs09M+4bX95/BUcWzs2fYk7PbsyR/g1A/+40XNCzEn2+DyP5PYvbToWQaUJx4brQ37y+CmCA2tVfvt+53l1CfvLS+UP90IuwscXQJ2o3rqEeIJPwK5+Y918a+Ys7tllvhqOQMoLpa4Qej4JS4Ed8epFvKMkQnU8NCKZ9v2Z7XZnOAkWC25XSgq9Y2ND7wYktA903DHd2e5GGJMxDaSTJvr+2Bm8Y5uR5Ny5URptcz6kPK3OqcO4Xbsfsms6dKAY5srMqrDfsNQhd0/AI7E9hKpHXPNc4fKMnM+kpbCcHWpRkhDIaW4vg9o6l9H5X/5z4b/8jfB/+i+DHz4MLifnexxrKzqEx3gVyc859phY83PPQGU+7tFZnNNpdgSHiXflHrMSCBub+Fv/Zgb9s1r+6qVfvw979cK/4GHqmIpZ1VYRdCiTI6tCHDBhCTGTWISpyj3XrgYqw5/4AcV73NaZKGps+BKbm7xKavz99OCSG7hv3IFn8ce15sq+e9vcj7UP9+bbhdET21643uDlCrcvGdUF5QJ4xTrnTg5jpn3zqj9jICH+5IIMUwWWo5vg8E1X0E119e4XU6iq0UJsR9XFmQxBu/uIpuyWNikJuWb6Fl6VeSEvqwul5My+bbTbzYOzurCeT0zl44wdqqBttOAY7YzeGH1wn6qlplgf5FpZlzU6HUazQd9d3ElSBh58lnmolWWN2zXo++ZwyxR2OCk5miTgw7PYp2GrcnRLVWO9Ecl5JpWMJLhfX47A6BTcYeB4/tE1EozdD8io0mv3LlqSciT1CkcCOrSDagToPum8EzRhsJk+jK0NTmfvatHbcY+HE4EZeJFRZ2I8D65vePTutlL7vvHjx4+IiIsZwcHXHmbct82TVXOhkNb83+fzE0WXgzdaa+Hp6ekoEJgpP/74J758+cLf//3/C0+oZpDifoOzA3hYfM39O8RYchRoctj1gHvHl+jMlgklFgKF8XVBbXZ/UqgiE10rIaDsuUSB5rEvT9XknKethHPvp0+sSuK78/c8PT1zeXrmfrtyu165Xj8xbUm+/9X31FK4Xq98+fKFbduCouSd25wmeiA/9gwsaBEN1eLdW0keOKsy+ubvjyjCxH9DNa7Xwwd89IGJYpJp+8ZM4CZXtgYHGRFKXY7EYe6r07fYjPB/9kB29MnHlNh3Hd5XSnCii+A8vMQYOzqUbYu9JviwyFS5zUfh6HQ6uZXWugbP1ot1Kt2L9xFYaw57LxGenp6pdeHp6RnwxP3z589H8r2sK7UurMuJcwoKSHBoXGNh8q19T3f7tGkR9IgxH77C3+7ofe473iVLIiw5u57BcO5tG4OtexJmChY8VHf5yCG41tn2jmlFh/NiRze+fLk5LaFmnt+dSRuYaMwRY3QX8xNRStk4XzLns9PKvNgUjRWLfdkSY3i8NoYcCZLZwJoLFGW841mK02fOSQ5FXBGHn55K5lwHl0W5a6fpoKl7xQ5NSNEDIruuC705zSQXty/btkY5LUgUV0rukdw6/Hc5FUZYtu894yq86RB0c5piqMDbRpvz6ZVlVkrBuBFjEUMlUJ8pMTJscQ8fSS1Mez8dULPbXdVSkGxkCmWpFBXoA7WEjhxrFbQZ1hprdvHVFefWyzBshLaI+xw6kjH7fu+fpgZCBYZufg4fe7F/j0wesz1iAHEapfNad3SEiGvS4MFOuDCOSAXnMdNBB7rfcHRMjjDRY8YRGa2a0FUYr1SofQwQDdi2UwpudxeqOlviu9OF0+pWkkO67/s/Y/z1cnGvk1vg8d1PHsOrXIHXCcljk/lXIcqvO7lH3uzQt6MqwKyS+AOWItQyOBcl0fju2fhxM77/VPjnz8J/Le7z+nKHa/fXyMmx9a2N8PiCCbkIBJwHcS1ktvugWeJKQgMK4xxdf3zJD8GjnMEqlMVcNWzPsO9M03vtDutQA23RXh8ClhBWzKJyaXhCmTNUX8AiEgIsgu1AUkYSRDOmDvnZ75u3o7tC27G+Y8P96GYZxfoGukHfkNRgFP834sn0mNCuhFzewfmZ8v0H1svK5Tlzfuf+ukuB3pTRFPad3zwZ/4fvEv/zf2r89jvluyfvqGcxkjyqx18njz+ZQnja9PiBb5xy1DbsqwerZZpmbq3y+a7sw7hbwsQP+5MNFjG3iKqdmpVFfFMA4qsdRZev3tB8qRm0ffvn5L85HjG7BzuavIsaCBe6zAqxHnYvprggy5yTxOWIqnGPpDWZxKY1O38cjze1V5dSjgr1425PFIMhXRjmlUOia7vtO3vbuW8bLy+NtsP9iiewI/Nyq9zucLsZ15fwYbXrIeplaiieALZtKr+OKEvj8N2A912e3/kbVVxNPGdyQOowozvZnZIXem7xHCMgsE60d7/OTM8uhpJzwbpQi3A6XdzfGnNYlXZqFk6X9+RlZTldGPuGhTcvyfeNy/nC6I22b17R1rlv+UHn/LTiCV2PjwVIKiTxivwUckplPPbXnDGUsTdImSIuUmVHIeLB3+nD+Ym1rkhAfuk7iB/AOcfhKWDdedCeWEXhM4XaNZG6mDHanb7vLvxUK8nssGjJAYc2VRS3/bFh3kUe3gHOuR4Tu+TwNcRN4FMSxAq9KaaDXE9kGyQdtO3q+/q+h73PFOX49sf3P/xwFFd6dyja9Pp8zd2afCxfvZVt39j3xu32R5a6UpeFp6cnt6NYl4MbK3jX9t379zy/e+bQU0gBhWw7+32LhFEOTuV8/ckTnTHCXPvrcgpV5OUQOwI5OqPA8b4PGxozEDvUkC2CLC+MzS6qw2JrdRixducOOvzfOdQ5lxDUOrOsK23fuN2uXG+fvWOjjgb5l9//o8/ZSAiXKnz/q18HkkLYt8a23fn48ccHxDg6xp5E+pzPZSZ/ntA/P7/nfL44N7k32rYd3TAdblGS4jOs64nz+cIPP/w64MSJ+3Zj2ibN/XRZVqYf+fV2RXWQyKFovTiXuDVa26jLM5jReud2faHtd1rfXEm5euIwE9geBTtwa6kpGvVQUt6jyzccHmxe6FrXM3U5xWfux3sWES7nJ9bTiXVZ0aHs24YglOpdhRyFAjVjXVaWxZXqpzVYazsW57Spw3F1DLZxjyBeHjD1eS9+AcXo664sC5xqdg95HAG/bcreOuW0B9WtkOjeyctnavY4tJliUjAZ3gWM4kK27EdDH3x6+czQG5frE6fLwvt33x+Unh0vPtgYfPr4CWRxb+Li0POcK30Q5HFHLO3DEDX2XWmbcWdHSFQSWTxunBGcU+16FMECsZEshNc8dgW/Z30Mtr0xLFGLxwo5ZU7rif3ekXyn1nN0dnvMQcVkIZVEqYoUT4JqrWx4zJZKRoZDLbN4wS0xGGMPkSb1ok7SyLJARBl6p+NJmeigoKx10EUYXVhD7TsFQmL2S4oISxbKeeG0VAQXvRxxTtUlhwL8oO24qrQm2nC/2paMyynzw5L97STnUDslLnPbOyoNqYNcHUm2t0G3B+3LE9hD3jOahY8Y13/jFDC6oVnZ75u7DLCR6NQEOVeWWlhrYSzQRJ32GD2nourc5ZyRmhDNaHc9o9EfEmI1B8VKBe1Q18l5VqQYZMHwa3C7hY2SJrrujKbRbPz3x8/n2B5dGR6NU3n1g7l32Fdf5oPiOX7yXD8Zf5bo/vQ1v366x68CojKhhu9Wr+illNm6sXf48Q7VkVcBbeOoMIsBAdmQpFCyd0Oz49G1e8XVhgdWTfxm5Kjsz9a/B/IBs05QinA+C/dzwnqi7TtCR/Bg0GT2DSNhJ/hwBg5wiA8bwTbxWnGx/LXiInhH34MRM/NulFq037wqMrlvAKFp7run+WcTUUx9c/KdNbq39YQsK5wvyLq47YZXGEiOTvaFbXAuxq8u8Lsf4Id3gw8X5VQGOUjic8rIUaTg8Z6OjEkeRY3jpj+KJXNezGVpBnuHW0v88Zb5fBe2DpsIGvzCkwqnZFySQzlO6obVE3Dw0xLLQ0xqzu3Xj/h6/r7+1y9BqEKOjY1HkMCEuoClCZe1Azb7ev3PLfGr3H92dWMNPO7Oq9/H33/1XuLeWvzSBCQOLF/bIRqAeCDYXfBl35XtDtdrQYebrr9ccYurPT24bTZ4DdmbEOuppmwTriO88r503qK/ATvW30EhiOBdHJbBnECzSyQpYa9gTJ5s+n9TNKeUBRs7aj265Q97ilRcyIdQUldTJk928uNnx8c7rlG5F6EcnUq3rZnX1IuRIV4Ra24a0h+3xHhwbmNhTXjVXIN6dNPCxy6UiF8nUDMx1ICdEh20WTjyivFjzZtOH9WAApsXIMQCIi1Bo5jV9fkebHayxRP/gB+noHwgU9QmhZWbC4b52/vJdSTWhAgpeafbfjpZv7Hh3MoRBaLEA0bN0cXUOFuGuuevqHG/36PTu7PU7bBlWZYaXbI1Kvw5gtrCEgJGIu69aGaM6hZUo494jQnltiPZ8eH3KMU9mtDTHBzMuZHkbAdneKrd9lDxH2OQiyesM7E1c7js6O0ohosIy1K9SDImtHDEAZkCnlgOmPyw6MbkFEl9IkcXegwvAPu08G6h+x8XULcvelTulOlPO31553zOxdf8sq5cLk88Pb1z1Mm2cQP27c6IfSrNDldZOJ/PXJ6e+PDdd+ERmrnfb27b01qIvBl1XWLtKrfrF0cwVL8Op9PJr11OpGTO/QVqd30NEej9Hvthd+uhnFlqpZUS8NbOuq6hBi20tsf7eHx+DZG4KUI1u6SuON5DgEvotVFHxUzZ9wdXetFQdg4Y+xQUm8k0+FYyFYAtCpXE/jQLIqrpaHjMQssvIbFt3cglSkcputJDQ9ju1dfuyrwPVWJHMHgoL7hP6UTFCVaEPALyqoPenHvpdnNr/E3CFnF/UjwOdmV/AcbBw0896HfDpl4VaBTFJQWX3B6mBxYWfJOmE93GR94Qnqj6gPg79P2B8DpiDwul9TwpJnG2GY/E1vAzOuV4nUn9y5gYKgkluW+5CiWgr67UC+SpBxIkV3GTvDHUmfiSyeIw4JqMktxMwundcsxFp/uF0nskezmE40bArV04KR0xQ0rzRMxHgazjiaNTa9wv1oGv00XCkW4kQ4q/B7XkP5vJzdyf7BHvHcnPkTxEpz2EwHpvtL2R8zjmU07JudhJqMV5wIPBiBxkUgPmcWyvEE9z9aXkCNMcn9spAynoZjP2j91UoQ8Ly0bXxLBoUv+c8Vcntg7Xg9m2mjwrSK+C+ld93JmfzG7N3GTEYXt/cUxirFhcsfiToyLyOm3OAX15TKxa4GyGyWCkys3gnzZves4LlyMQ0+ETqibh9rJ5LLtkzu9X8hI8FVWsDRd2atD3BLaQquFWfEImofeYbAanM1xW+M2HzJmVz3+Cf/z8ggXkLl/eIyR0T0G69w7DIeTS/LCW6H74tQy+S0xupspkKOZhc0H7h3T1PMH6hjFCjUxePV8Duj/XcFg0uBotGe9g5YI8/Zr07nvk3TtyqfRufPrTxq6F0yWxLonTYtQKz1n4n39j/F9/Z/z6WXlaB+fUyGYkj3lmnPMYcnz8P88w5ySac8de/9Q73l3hnz4lfv8i/D/+RRi2esWyOh9QcRuoRZRzHvyHffDhJJRnqGJkUeZlI3Jq+Sqglz97N0dYfsznbz+hPYbg8PWD1/A4JMDCu/TPk9rJVc4h8iNyCOI+4jsD57NG4WVu9vb17XN+S/rqOmosYEnCrh0x39w9CRH2vbHvnfs2uF2V2zXx6U+Zlxvsu3L9skGI1hxCBknIIa4iCmXaA3VFJaOilLDjkFwP2bLe+uFtl5cFw7y70l211IaS8iBlQ81tb1IqlHIKu5rBaDt9M05lDf6Lsl4uXsm2yZvNaBbycqKkTM6V0Tvb9eo+smbkWgMiKHz+8hFtDesd674X1FpCgAXWXA+F6L0PJCfqMrd5ASsRMLl6s81iQnyuqX5rpuTRSblCKgenuLctkvBKrstxqE14YyoLeSZZew/ukMQ26mqrudRDGdrGFNAZrlQZ4lNEQJqL8/ltokzUGPcQjZKMLEvsgd7JzbkwoQcubrWhmtzjuzcSwppxuNvo3Pa76yuUhYwnMHU9ewCiP7M8/P+noR36HirBxwJ0UbBp2zQTjT1g/Pf7jdvtFlxnQmxGHv6lkhzGviy8e/eOZVlIOdHaOJKuB291JnD+fnJ0M8/ns3fRto1tv4eKsHA+X1jXlfV0Ot5Lu+9R2HgIMD09O883p0xrWzz2znfffWBZ1ujCARi9Ne73G19ePtObf6ZSMi+fPzrE+P4FES8yzy7JUhfnp++J0/mJda189+ED9/v9EE7a9o2277x8+eRqsqPz449/pJZKLcvRtaxLQVUCTRBKv2MEr9QvzHo6cz4/8etf/5Z3777jcvGO7cvLFz59/BP/8F//V7QPF+d6fsd6WjmfL5zPF54uz/zww99EYnnCgkd/u72wR+c95UJvO/frldE2hiqn9+94frpwuTzH/V/Z9yW495laF77//lfs+8Y//uPfH9ZNv/3bv+Vyeeb9u/dH8rrvG6f17N2v/c7HH//I73//3/j86ZPzvGV2STv3+81fb9+C8qWRjHrifr1e6a1zv92Q4E1Oz9tZTFmWhbrMtezFuAfXMYUydJxJYSfySF4ffOwenfoJQf+WR+tK7t5hLtkt0a7tzt4HXWH0TGvGtg2KdDRB0kEujSIKVHI+UU3CAKYDHakFKfC0CakW9pbYOp4AmYtE1QyX84Xbp0+MvDms/NQxbkgelJJYq0N4QejN0VliHlCnsrjXu3NEnEgZRYht3xlm7L0h5sU1T6D83Buq3PdOtoZad8pA74hmt70ZSmudnOLcSO6tOtQpKgbsrWHJaK3QS/jlWkJwa6RdlU2N+4BteJeVm3Je4XwSdDiHnSxIdlfYTmeE/kjfG6l6we1UEppgG7D1EGjkUTxpO7QEvQpFMlILOa+oCnvbuOonBneUOzktgXBYsOHiijlHk0EHyAg6UPEkM1kofeLNJ1JcywF95gqJWZlOwqsCgDH58weCZ2oOoKB3hhWaZS987p1cgaykZJTkVkoixlIFI9OuRseL+KdcD/G4SXtI4nDlnN0WNFHJIqynQq2Gc2sLpSS2dj+KHocuxkiM7v+JZXpPIRj274+fndhOUQbDwgOTI8G0CFxmIvDYhB5v4igOHP/gqOp5riVfZwwzSz3+LY+o+KsCXHQBTI7Dbspx9wE/3ozPm3fwNHnCFrkqpu7vBMIgQS0IRiriptD5AcNL4qpuZJDqYizWlE2VZa1ejdmcq4AKdnHE3VKFDx8KWZQ//UNif9np9zukBZuKxyW7apxlMO+uouujemQNLB3VTL9g5UhwZ9d5wqHAzaUxQ1D0qIakV9dtJrdRmEgJxPlIs3tFOSF1oTy/pzydyJcIcPed9uWK6RnbC9vJN8+ajb97L/z2nfLhPCipH8JTs6MnIl/5vVrcq0mCRzwgmMWQr7uCj/dueKKwj8RLS/w//1D40zXz8Z6PCqPuXpH3woMT/2/VOYxbUtat8IHGWTol6XxDD6ixztltj+v+1Xx+nWXbLya5dc5I8LkO26jZBfGN9bHG/Ga5T3FsknMKJk9mJE0RJr+/KTZdxCXrU0DQk/iBOJPO43K93g8E0NB+TNEFwjfkrg949JyyqTjUdW/CtjvMNic4hcfi63meUj6gUSm5AmBiHGgInQUhEWpdg+8mLtpiyt492SUL6IRednI5MRVOW9viekb3wXBhBSk+D4tD+e4v1zCWj2R2DLcNyT7XJBWW1ROFXFNAPx2aPDtD4Os0l+XwrB3R7TQx0uK81D0gzSAsdaWp23aMtjE3XQubkd770U3zW+N70NDu3RsNL1yCvxb/pYB2PeCvIbSVU3SFOsaEGro1kQS88HEOeLfiUDsuvsepaohXARLQ1jgAU5nd4XZ04h32HF6EoSQzzJBcMBFue2fwgI0KXuhcanWuUryv9I2v5w/ff+ew0b29Wq4e0Js653CEgvj1+oURPOzb9SXgy/14rkMNdHSWurqadV1ZT2dXyWZCx52n23s/Ck06Rqjt+x5/vV498euN1huSEs9P77hcLjw9vWNdV7btRhKh7e1YbyU6m7WWw1pq+tTe71f++EejlMJS14Mrpt0hwW3f4p4lUiqcTie385DhEOvTifPTOw+kcnHotjZE1BOrdeHXZT32pPt253Z94b/949/z5ctHtvsNYk6pepFNUuLDh++4Xa+0feO+bYAGiqlGV9gpBDk7tNg/y51tu3G7fuF6/YLDMyHlzLbf2ZsrWztHuPKHP/6Ry9Mz3//qB+8yj84f/vDPtLZ74tZ7rBFPyEUS15cXnp4+sJ7UO/KmtBaq07lwPj+Ti9sRtd744x//hY8f/8THH//onF5zX97WGh9//BOn0xPLsmI2eLleud3u0Yn10uPpdD4+s6pzvycFLSUhF99Ps7hQmQuU+R7Se2PaE+Us9LGy6MK6XhDxPbLU6nNKB1sIeuXw8Zx79CyejuF7VdsdmdB/AYmthmDXGOr8T/yMmXxEv5YFcAXrrsp9v1NX5zwTKvz+PK9pCL4ve8dSXUSPQuuD630Ld4REzQWhIAxOS6csg7wadVFqHuQ8wkbMw6IS6AsPiN1rtxQ/MyRHAXIounnMkMV4XitDleuumLr41TBlH51MOxpPJcF5EQaCZt//9z4oJFpTejPu97AukoFmjwdaG/SKI7i6Q54tJboZQ43WE617wlQEyhCWIZglnFeuc5tzoaPuxdQkgzV0bJak2DCKDTKQLc7OI7EJAbbujaUiiZISW3e7sNv2BZOdVNth/eld5egSp9nMSwH3dw/6kQfJTy3XfVUXzXRRRLfXxCCnBSmDpJ3TaUKkOdxdgCPG80TXz3fJjrAbe3NKxBhorqSSqBWMna5uBdhHoqvQNdNNUZS9DVLYje1NGQMSictpYV0r19vNi9jqvGATGEdeEF7D2KEzMGOvuYdMOLpY/Vnr6a/i2H6lZPz4KUe35+gEPgKcrx726uvsir3+lXx18eHRLvfvZf78X3v9+JMcHSg147ob9240dSihBHx2BFQxVQ/ZCR9ZTF0MNBjjeiS2TAa5+2pN4Z0BuXjwtN19cpUMNgQxhzucLxnTwrIK/aVj244uEXTZ5BsUjOBDAJIKXnVTsIkBAWSKbbzqJM4JoLNX74Rtmd8feNuv791XTdOp1jyLCSmS7XIin8+U00JZEtumaO+M+x13/YL9nqiLwGL86iJ8OMFlUbIMBJ0osEdX7/ULe00iih52qCceN/TP7renWf74QRvCvSX+6XPi4z1zG5mavRvYO68SW/cdzihLL9CM73bjXAanEgnN6+thj/c0J6IcV+31xPzljemLNhU4v17T9mffy/G9eQUwKoGO9oykVji2oFncEpJzqhnHs3ylkh7PexQ+eNz2iVwY8XqHkmjwfZ3r54mt+026Sqx3kNMh/GDHaxC7eyRdEodK4khsLV7YOzz1KOT1fo+kzkVyfG+Q6N4OyuqCOyO6HoL5eT/hP6qIKuAUB3Sw73dqcYGfVCojYGaqEoFcIUtAJivs+40RHtOzm+43IgRTDLAprORFilQyOgb71tDeSQinevIkJnh3UZbERnfYmFkIPj3M5AnxCrUHV0bidWZi61181xyYCylNo3ARtPeAeOdIEPw96piK64HykYdifo5AyZNU30QmX1FE4t65GBYyoc9CxhN6CwVZQxjaKUH/aH248jdxHQPF4r6c+VBh/sbzWp7fPTM9nCHWjhG8VGNZlgMSvEQnPJXi3Mq2s923A1o+micx274darU5exK5riulLLilVac1CWEUPUSZ0qs1et9u0blUhg1qLcjze5bFO5HraY1iR/NgLGcul+coJiXcq3bzzk3Mh+mX6499OhSEdXTavtPb7oFpdvES7/gJfb9zOp+5PL/ju+9/7aJ0vfHl80em92xdKk+XZ96//+7g/G73O1++fObLpx/Ztyttv8fak0jsd2pduJyfGG0ELDjwHsmtbmbyPbukpdTjs2zb3f+734/iC0nYmweW+74ddJAvLy+8f/9ddNYzvTf++Z/+0RO4MbjfbxH3hDpxqdzv90j2AvXQH57VKRXnrp5PgHG9vvDlyydU9Ui06+LWLfu+8+nTR1rrrOuZlPzauA+w33uDA+INE1Y6PBCV4AyXqZjsCfxEmMCEDHvy6boAjz0fkcOyaHZeW2vs2/0ohBC2M5Nrve/OEdy2K3t4i3/7w5tFU41/FmVnsfgoFkY/1nSAuchfzoDl6L29ioVlFpjxPdicSgeeQG97dxqZRHLnpjbUklzWpRq5uHhQkqBrgH+V2N/JrrBs3p1LgZ4ZYyA2VVK8e3heMr0L266BvnGxpaaDjCeP4EimJdB2u1hYG7lHrcOOjX3384is0EGy0Luiw23NxnCRUMOvqas+hzeuplBydpjrrNT7vJuz0hNvUyMn/3w5qzunmHkiHiWH13GLQ5IFHTNHFrIImPth79sdS401+7x/iOqaN3lenZ9e6Jj+uB7bR0rKsOSCXtjRCHKEWvbkuCSWmnDdjekC8Uqw94i5ZpNA3E1F9VCGNnvAqVvfj+s61Y27Ji8+ILRuJPH40CHEYUG6VM6nhbbdaWM2KuL6Hs047/DO9+Fx5UPoasY5khL5EMX5t4fYL4GA8Dbextt4G2/jbbyNt/E23sbbeBtv4238KyP9+w95G2/jbbyNt/E23sbbeBtv4228jbfxNr7d8ZbYvo238Tbextt4G2/jbbyNt/E23sbb+EWPt8T2bbyNt/E23sbbeBtv4228jbfxNt7GL3q8JbZv4228jbfxNt7G23gbb+NtvI238TZ+0eMtsX0bb+NtvI238Tbextt4G2/jbbyNt/GLHm+J7dt4G2/jbbyNt/E23sbbeBtv4228jV/0eEts38bbeBtv4228jbfxNt7G23gbb+Nt/KLHW2L7Nt7G23gbb+NtvI238Tbextt4G2/jFz3eEtu38Tbextt4G2/jbbyNt/E23sbbeBu/6PH/BuXRbixYVF/7AAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["dls.valid.show_batch(max_n=4, nrows=1)"]},{"cell_type":"markdown","metadata":{"id":"5HuBI7Ic1Xsf"},"source":["By default `Resize` *crops* the images to fit a square shape of the size requested, using the full width or height. This can result in losing some important details. Alternatively, you can ask fastai to pad the images with zeros (black), or squish/stretch them:"]},{"cell_type":"code","execution_count":21,"metadata":{"id":"mLmWI0GV1Xsg","outputId":"7d947cdb-44d7-4cd8-d3b2-3f7669a980f5"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA7YAAAD1CAYAAABk3mnHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7Bt2VXfh3/GnHOtvfe571YLaPGQMKAQBBYmYB4SoIqCqwCBhYlLBCisxCATGWK5kmCUcoVWUk7sMqECpAIoPMsxjgs7MYgIWRCDeZR5OBgMNspPQo/Wq5/3de45e6+15pzj98cYc+19H93qbrXQbXmNrt33nH32XnvtteZjfMf4ju8QVVUWW2yxxRZbbLHFFltsscUWW+xZauGjfQKLLbbYYosttthiiy222GKLLfbh2AJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsF1tsscUWW2yxxRZbbLHFFntW2wJsn8X26le/GhHh3e9+95N+zwte8AJe8IIXfMTOabHFPtbs3e9+NyLCq1/96if1+p/8yZ9ERPjJn/zJj+h5Hdr999+PiPArv/Irf2Kfudhi/66YiPCyl73sI/45yzxebLGPrC1z+WPfFmD7DNtTdYIXW2yxxRZbbLHFFltsscUW+/AsfbRPYLHFFltsscUWW+xutT/6oz/i6Ojoo30aiy222Idpy1z+2LcF2C622GKLLbbYYos9jn3mZ37mR/sUFltssWfAlrn8sW8LFfkZtPvvv59P/dRPBeCnfuqnEJH5cVhv90//6T/lq77qq7j33ntZrVZ82qd9Gv/1f/1fc/Xq1Tse95d+6Zf40i/9Us6cOcM999zDK1/5St72trc97nmoKv/L//K/8KIXvYj1es0nfuIn8h3f8R1cu3btttf+yI/8CCLCG97whjse68EHH6TrOj7ncz7nyV+IxRb7GLW3ve1tvPKVr+See+7hzJkzvPSlL+Wtb33rk3rvL//yL/Oa17yGz/qsz+L8+fNsNhs++7M/mze84Q3sdrs7vqeUwg//8A/zkpe8hAsXLrDZbPj0T/90vvVbv5W3v/3tH/IzH3jgAV70ohfR9z1/7+/9vaf0XRdb7Nlqqsr3f//381mf9Vm37YG36kwc1sS/5S1v4WUvexkXLlxARObX3FqX9yu/8is37e93erTaupe97GVP+Lonqve7cuUKR0dHfNqnfRqqesfXfM3XfA0iwr/8l//yw7lkiy12V9oylxd7qrZkbJ9Be9nLXsbVq1f5/u//fl784hfzyle+cv7b537u5wLwhje8gfvvv5977rmHV7ziFXzcx30c//pf/2u+93u/lze/+c38i3/xLzh//vz8vn/0j/4Rr3rVq+j7nle96lXcd999/Pqv/zpf/MVfzJ/+03/6jufxute9jh/4gR/gvvvu4zWveQ1d1/GzP/uz/NZv/RbjONL3/fzab/qmb+K7vuu7+LEf+zH+5t/8m8QYbzrWj//4j5Nz5q/8lb/yzF2oxRZ7Ftq73vUuvviLv5jP+ZzP4a/8lb/CBz/4Qf7hP/yHfOVXfiU//dM/zate9aonfP/f+Tt/h7e97W18yZd8CV/91V/NbrfjN37jN7j//vv5lV/5FX7pl37ppvk3jiOveMUr+MVf/EU++ZM/mW/8xm/k/PnzvPvd7+b/+r/+L1760pfyGZ/xGY/7eb//+7/PV33VV3F8fMyb3/xm/qP/6D96xq7FYovdzfZX/+pf5Yd+6Id43vOex2te8xr6vufnfu7n+O3f/m2maaLrutve84/+0T/iLW95C1/5lV/Jt3/7t/Oe97zncY//ghe8gO/5nu+57flpmvi+7/s+drvdTHd89atffUeH99d+7df4Z//snz0hLfLSpUt8wzd8Az/xEz/BL/3SL/EVX/EVN/39ve99L7/wC7/Af/Af/Ad8/ud//uMeZ7HFnq22zOXFnrLpYs+ovetd71JA/9Jf+ku3/e2f/bN/poB+8Rd/sV65cuWmv/3ET/yEAvq6171ufu74+FjvueceTSnp7/zO79z0+te97nUKKKDvete75ud/4zd+QwH9tE/7NH3sscfm57fbrX7RF32RAvr85z//pmP91b/6VxXQN73pTTc9X2vVT/3UT9WjoyO9evXqU7sQiy32MWJtTgP6X/1X/9VNf/ud3/kdTSnpxYsX9dq1a6q6n8s/8RM/cdNr//iP/1hrrbcd/2/+zb+pgP4f/8f/cdPzr3/96xXQr/mar9HdbnfT33a7nT788MPz79/zPd+jgP7yL/+yqqr+4i/+op4/f17vu+8+/b3f+72n+9UXW+xZZ7/6q7+qgL7whS+8aZ8dhkG/9Eu/9LY9sM1XEdFf+IVfuOMxAf3yL//yD/nZf+kv/aXb9vE72e///u/ruXPn9N5779V3vOMd8/O3zmNVW2MA/fqv//rbjtNe/8Y3vvFDnttiiz3bbJnLiz0dW4DtM2xPBGxf+cpXKqB/+Id/eMf3fu7nfq4+97nPnX//3//3/10B/ZZv+ZbbXnv16lW9cOHCbcD2W7/1WxXQH//xH7/tPb/8y798R2D7h3/4hwroK17xipuef8tb3qKA/qf/6X/6BN94scU+tq3N6QsXLuj169dv+3vbAH/yJ39SVR8f2D6ePfbYY7fNs5yzXrhwQTebjb7//e//kMc43ET/3t/7e9p1nf77//6/r+95z3ue3JdcbLGPEfvLf/kvK6A/9VM/ddvffv3Xf/1xneFXvvKVj3vMJ+MMv+ENb1BA//yf//NaSnnc173//e/XT/qkT9L1eq2/8Ru/cdPf7uQMq6p+/ud/vqaU9IMf/OD8XM5ZP+mTPknPnTunx8fHT3huiy32bLRlLi/2dGypsf0TtH/xL/4FXdfxMz/zM9x///23PcZx5JFHHuGxxx4D4Hd/93cB+PIv//LbjnXhwoWZ3nxoT/Sel770pbdRjQFe9KIX8WVf9mX8wi/8Au9973vn59/4xjcC8O3f/u1P/csuttjHmH3e530e586du+35Rk36V//qXz3h+09OTvgf/of/gS/4gi/gwoULhBAQEZ7znOcA8P73v39+7dve9jauXbvGn/7Tf5rnPe95T/ocv//7v59v+ZZv4Qu/8Av5jd/4DT7lUz7lSb93scU+FqzNw5e+9KW3/e2LvuiLSOnOFVh/9s/+2af9mX//7/99vud7vofP//zP56d/+qcJ4c6u1Y0bN3jFK17B+9//fn7yJ3+SL/mSL3lSx3/ta19Lzpkf//Efn59785vfzPve9z6++Zu/mbNnzz7tc19ssbvVlrm82NOxpcb2T9Aee+wxcs6PK9TU7MaNGzznOc+ZxZ4+/uM//o6v+4RP+ITbnnui96SUuPfee+94rNe+9rX86q/+Kj/6oz/KG97wBh588EF+7ud+js/93M/9sBaJxRb7WLEPNQ/vJM7WbJom/sP/8D/kt3/7t/nsz/5sXvWqV/Hc5z53rg96wxvewDAM8+ubkNwnfuInPqVz/NVf/VVUlZe//OVcunTpKb13scU+FuyJ9sAY4xxIutXutJ8+Gfvn//yf85/9Z/8Zz3/+8/n5n//5x62zK6Xwqle9in/1r/4V/+P/+D9+yJr8Q/uGb/gG/sv/8r/kf/vf/je++7u/mxDCHHhe9C8W+1i1ZS4v9nRsydj+CdqFCxe4dOkSahTwx308//nPn18P8NBDD93xeA8++OAdP+Px3pNz5tFHH73jsf7CX/gLfPzHfzw/9mM/RillEY1abLFb7EPNwzb37mQ/+7M/y2//9m/z6le/mj/4gz/gjW98I3/rb/0t7r///jvOsYsXLwI3Z3GfjP3Yj/0YX/iFX8gb3vAG/tv/9r99Su9dbLGPBWvii3ear6WUmRF1qx0qpz5Ze9vb3sbXfd3XsdlsePOb3/y4wS+A7/zO7+TNb34z3/Zt38Z3f/d3P6XP2Ww2vPrVr+bd7343b33rW2ehmS/8wi/kxS9+8VM+78UWezbYMpcXezq2ANtn2BrVt5Ry29++6Iu+iCtXrvBv/s2/eVLH+rzP+zzAoki32rVr1/i93/u9p/SeX//1X7/jeQF0Xce3fuu38v73v583velN/OiP/ihnz57lm77pm57UuS622Me6/e7v/i7Hx8e3Pd9aAfyZP/NnHve973jHOwALIN1qd5qrn/mZn8nFixf51//6X/OBD3zgSZ/jxYsX+cVf/EW+9Eu/lP/+v//v+a7v+q4n/d7FFvtYsDYPf/3Xf/22v/3mb/4mOedn5HMeeeQRvvqrv5obN27wj//xP+azPuuzHve1/9P/9D/xQz/0Q/y5P/fn+F//1//1aX3ef/6f/+eICD/yIz8yB6CXwPNiH8u2zOXFno4twPYZtkuXLiEiPPDAA7f97a//9b8OwLd927fd0Vk9OTnhN3/zN+ff//yf//NcunSJn/7pn76tr9X9999/R+rjq1/9agD+1t/6W1y+fHl+frfb8frXv/4Jz/01r3kNMUa+4zu+g3e961184zd+4x1rChdb7N9Fu3btGv/df/ff3fTcv/yX/5K///f/PhcuXODrvu7rHve9rddeA8HN3vnOd/I3/sbfuO31MUZe+9rXst1u+fZv//abaMrAXI9/Jzt37hxvectbePnLX87f/bt/l7/21/7ak/h2iy32sWHf8i3fAtgeeLhHjuPIf/Pf/DfPyGfsdju+9mu/lne+8538yI/8CC9/+csf97X/5//5f/Jd3/VdfM7nfA4/8zM/87h1gR/KPuMzPoOXv/zl/PzP/zw//MM/zMWLF/mGb/iGp/sVFlvsrrdlLi/2dGypsX2G7ezZs3zhF34hv/Zrv8Y3fdM38cIXvpAYI1/7tV/Ly1/+cv723/7bvP71r+czPuMz+Kqv+io+9VM/lRs3bvCe97yHf/7P/zkvfelLectb3jIf641vfCOvetWr+NIv/dKb+tj+4R/+IV/2ZV/Gr/7qr970+S95yUv4zu/8Tn7wB3+Qz/7sz+Y//o//47mP7aVLl7jvvvse99w/5VM+ha/+6q/m537u54CF77/YYof2ZV/2Zfzoj/4ov/Vbv8VLXvKSuY9trZUf+ZEfuan/9K32NV/zNXz6p3863/d938cf/MEf8Gf+zJ/hgQce4Od//uf56q/+6jsGwr7ne76H3/qt3+JNb3oTL3zhC3nFK17BuXPneO9738tb3/pW/u7f/btzIOtWOzo64ud//uf5+q//en7gB36A3W7HD//wDz8titZiiz2b7Mu//Mt5zWtewxvf+EZe9KIX8fVf//V0Xceb3vQmLly4wPOe97zHFYR5svYDP/AD/OZv/iZ/6k/9Kd7znvdw//333/aaV7/61bzgBS/gm7/5m6m18gVf8AV83/d9322ve8ELXvC48/hWe+1rX8sv/dIv8dBDD/Gd3/mdbDabD+t7LLbY3WzLXF7sadlHTY/5Y9je/va36yte8Qq95557VERua/3xa7/2a/oX/+Jf1Pvuu0+7rtN7771XX/ziF+tf/+t//bZ+taqqb33rW/UlL3mJbjYbvXjxon7t136t/tEf/dHcZuSw3Y+q9Z/9wR/8Qf3Mz/xM7fte77vvPn3ta1+rV69e1ec///m3tfs5tH/yT/6JAvr5n//5z9DVWGyxZ7cdtvD6t//23+rXfu3X6sWLF3Wz2eiXfMmX6Fve8pabXv947X4eeOAB/cZv/EZ93vOep+v1Wj/rsz5L/87f+Ts6TdPjtiCYpkl/8Ad/UL/gC75Az5w5o0dHR/rpn/7p+m3f9m369re/fX7d47UWGIZBv+7rvm4+/ydqXbDYYh8rVkrR7/u+79N/79/7927bA8+ePasvfvGL59c+mfZct87PNt+e6NHm4od63Z2Oe+s8bpZz1nvvvfcJ2wYuttjHki1zebGnaqKq+szD5cWerXb//ffzhje8gR/90R/lL//lv/zRPp3FFltsscUWe0bs7W9/Oy984Qv5hm/4Bv7BP/gHH+3Tecr2zne+k0//9E/nJS95Cb/2a7/20T6dxRb7qNkylxd7PFtqbBeb7fj4mB/+4R/mnnvu4T/5T/6Tj/bpLLbYYosttthTtgcffJBa603PnZ6e8rrXvQ7gCevh72b73u/9XlSV7/iO7/hon8pii/2J2DKXF3uqttTYLsb//X//3/zu7/4ub3rTm3jooYf43u/93sft37XYYosttthid7P9z//z/8w/+Af/gJe97GXcd999PPjgg/w//8//w/ve9z6+8iu/kr/4F//iR/sUn7Q98MAD/PRP/zRvf/vb+Ymf+Ale/OIXP6vOf7HFPhxb5vJiT9UWYLsYP/MzP8NP/dRP8fEf//G8/vWvn9WbF1tsscUWW+zZZl/xFV/B7//+7/PWt76Vy5cvk1LihS98If/Ff/Ff8LrXve5ZJaL2zne+k9e//vUcHR3xFV/xFfzQD/3Qhy2Ys9hizxZb5vJiT9WWGtvFFltsscUWW2yxxRZbbLHFntW2hAoWW2yxxRZbbLHFFltsscUWe1bbAmwXW2yxxRZbbLHFFltsscUWe1bbAmwXW2yxxRZbbLHFFltsscUWe1bbkxaPunpj+5E8j4++3anSWBQBAkqrT38my9Stq3Pwfz86BfB3KrF+usX4h8d6NhX0f7gmfveEigBnzpz5aJ/SE9r/945/66MtEGNAJCAiVC1ULWzHU3KemMpIrYpIIsUVXVwRQiKGjiAy32PVQi2ZPA3kPDEOJ0zjKbUOKFuCQAhCngrjNHFysuP4xpZhnBjrCGFCwshqlem6wLrv6LsjYuhIYUMX16TY0Sf/XGC7O2EYdxyfXON0OmXSDEFIXSJ1idhPQKHoyDhdI5eBYdhRiqJVEQIhBEKM9HFNDB1dWLNOZ1ilDef7e1mlI9bpiC5uCCESJLnQgwCVUjK5TtwYr3A6XuP66SNc3n2Aodxg0Gsodg7q40KAFKJdDwFRRVRRVVQDWgWIBIQggtYJ1cJUR8ZSyFVRekIIpBSJQREUKFAVKlAjUTakcIZzR/ex6s5ytLpE362IIdGnRJRAkEgsHUIEjSj29qKKBBCB1foM3eqIfnWOfnMPIa2IaU2MaR4zbc7XWlGt1pZBARS9aVEV+y/Y+9rjVuEMVSXngZwHdrtjrh8/wPb0ER577N+ym64zlC2FSkWxBhDF1mgJSIgIQqWtrQq1HsxPBbX3lQq1KkOuTLkyToXdONh4J9LHSAqR737tP3lmJ98zaH/t274Zgl3TXCu5KMOQyVNGVen7jvWqY7PqOXumJ8VAFwOgNhhDIIZAlEDX29gOIVBKpdRKzpVxnCilUFSpVSlF2Y0jtVaqKgHx6w8pRVIM9H0kxkAXI6UqtSjjlMm5kEuhTBO1Ha8qVXU+/+yvbcfXiv29lHk8BQl0KZJS4mizIcZE1/nYjoEYo40CrQzDlmGYGIaB02FCFURsz0VA/Pu39UyCkILYedVKzgVVG2l9iuYHKMRgk6Qq1FLQqqhWQrC1brXq6bqO9WpFSokQxI5XCqUUtrvRxl0u5Jyp1dYBiZEYAqvVir7vWHUd/aojBCFGkAqoUmqhVLtP0zSRc2HKhWks/jnV1hVsXgefa/1qhWDzbBoHaslorcQQSCGwWq8IIRCDUEqZ53StoCpI1xFDIqaEBlt9aq2UUvx1FfW1wP5q46N9P/ycUGUqlVoLJWeKny8oqn5crXQpsep7NuuelCLrVU/fJ2KMdj9QRCp5GMilME2F3VTJFXtkO69/+I9/9k9wZj51+6d/9GoiSkQpuaNqosSeXZ0otZIQUlR76I4xC8e7yOkUKDUgvaARSMrZtZjPSmUaAzZ8hZwLJVd2W8iaKZop046qFSp0oaNLkXNn1hT/b1tWBFnTpyPWHXRRWHcdsYLUwun4CEM5ZVdO6OQsVTu2ecW6G4lRKazJ2jNpxzANlGli2m05v1nRd5GUfI1QWIWeVAtRJ4iFInBaIUpAVAiTgAaUwKgZiSNpfYr0GQ1KLh2qHWik1oE+VY560BLQGtDS0SdbH1R73897EiNVM7sycHKqDJOSKaQkxCQEGVl1iXPrNeMOprFw48bW1poQ6FcRBFRgGAIlC5oDKZp/1a8jhUjWhCIECSQSebJ5eloG1ith1SmhDr7mBUoVqlaq7lh3sOoC96wuoiQqgbGcUutIqTt2uqWQkRCo1R5nVmeAQCGiatewr4FOKjEoqe/IKKNWHj1+jN04sBtGAh1djDznbM+6L6y7yhAiBfMP0IKIIqIEFYQAZYNoh+gatFI1s83XyGyQcMS9F15IYIfU69zQRyBE+tVFzsVPhtrxvof+iN10wphH+tVziCnRp0DNj0KdCPScP3ouR+vz/Lk/9Tc+5HxaVJFvsT0c05t+/1iFac8kAP13Cczebs8eDbYWfxCBWvFFysGANlDA/JVm4HAAZm82h20NERFQd/pwEKJVqRSUgoSKuAOYJKIyoaKUuiNkIYeRGASRCqzsdTGx6tbmfEsANVC33QWYsoFoBQkdIVQkF1QyVSdqzdSaKWWiZnOWg0Q78xD8S9vxKpmpjkxlIEoiS0eQzq6Jf3eZ/w3EkOhiT5/WrPs13dSRNRIKKBW17cCOL+IgSwzYCohf9FoVlT0EQwKCA06N5kCrgQCRSkCxb6BoLdTSgG3wg1aoBa0ZrSOq/n0digTdg21Ce96sUux+6EioiVwHQhmJEkCSA1JzdG08mdNaHQy0sXXz+MDd3FvHoh5cT3suhOBgZcW6O4v2O/ruDLkOTHVHbsdUP3mYN2488AGgNgD99ipR2hXYD9cUAhqhVDUgJhXUgz3h7l7P1qseCUKIkTFXplzIuVJL8ACDB2ZFCMGAjQUWbAxL3APbFCMhRmKMhFAIxcZVSnZ/oprzWaISYrA1RASf5ARRB1+BGPDPEoIqBCXECKWiClVl/36p/n6xY4iPER/CbY7IQZjExl8kxUjf9/Nj3XWzs1nr4bxXpikTpFAd1Av7wEpbU9rvMQakFKqIjx0bBym2gIx9hoE6JatStbZl5OChMyhuz7UwaFUP/ejNj32gq84LdTuvlAIBux61RkqtVK0GQlMhTZkogVKUWOxvCkiMBD/ndjIqiqSEhkCt2cZBCKhWX6uDz8tw0/5g163doJvn/xzYFnN22xpHu3+q1GKg115rISjx8bk/Hv5a5uPvdgNdl4gxEaOBtl2eiP4Z424k52LB0mKBq6wt4Hb37821tl1X5z24VqUWMeDq111EQSJZlMzBmltsLxMNFiRF0SrU0vZhnffzqgb6x6KUUuZNP1AJOVAyVBEqgTxVQiiIFpIEggo1Vjo8IKQgKggRIXmgtCJkT9kECz0qCAnbFRNFDXxpDagWu0cO6EQ7ShUylbFW+oDtdUXm6xARkEgMPW3nVj8XNBA1IBW0VkoVtApahBps71VsfogWCz0rtnd6EJpqe4oFfStaI7W0oJ+P+arowRZxk1+lCv7+ECJVA1SxAJEHo0up/rCxrkEIB2tHc8jMB9A52EebS/67SCSQZr9NLZ5LzjZvq691KOScfQwpfepJPkktuBcO9k4xn0EFtJKwYKHWTKH6uqZAIuC+iia0BrvPGuniGaAD6czPJCCaPFlSAWHMW+q0Zbu7asE4BNGVj+Pq1zDY9ymFaZqe1HxagO0dbZ8/DX8CgOXuX3YXeyK7k8N+t5v6ZtMcL3EP0hwU4dAX2GfYzOGHvTMj0pzUCBIRSUhIiEQIgVpAtIIUas0olRChX0VCFKpHMSFQ9ZgoGakVraC1ENJZuhTp+xXrzXliiEQHlCl1TGViKCfkumNUzySVaou3xSMp08hURsZxh2agCF3qAMuCRLFHELHscx0ZxhtosUx0LWrZ49hTQ5qd6uaUWba3Z5XWrGJHqZGh7B21OVSgs2vo/+nsJIbA7PA257dI9AU9URpYkUrQSkel88NnLdQCNUOoEUJFqqLTgEqArqMWpdJTA4Tgm40WRCAQLeXmmWjEMiaZipaBOioaemIt9C3XH9THws2O+X41e/yQYHM0Hy9IEiRCUFJas1qdQykcHd1L1pGx7pC6O/gsufP8mzPJ6qPdxnVwUIOYg5SiOf+lVjTa2NJq2at4l1fqdKuOGCMxJWIuhHFiGDNZMoL6uG6gwZ05+wFBSGoZ9yq6D6hgDm3VSpkzqn5XJZC6QNevCGJsh30mvLpzaVk4FHLBM592fAmRECEcjJeKrw9V5mPVWuYxEgyFEiTctFbFGOm6ns1mw3q1Yr1Zs+pXdt8Ech7JZTKQViBPhRgN8VT2YyfG5BnKFrjDroNYJjxGcxxFoOuMSRHatVLzhQ1IK8M4zNO8VEVKZczZvruzGyxjW5kOM9ierTSH2sdjzuRgAYc9MNszHaKfX9VqbJtSLOsaLbua5yCTsD5zxsBkyZ6ZtqOVXKilUPLoYNRQqDnH4k61nU9tcSSZX2HeM3hgztZdv3TGxDhYD2YQj1pGPQRWIVBKYRoHi4n6LK5VjTky2jjOJRMDMCnb01MDPsky21VsTudSmHJmmCam0iBzfIJg7N1lw1SIQBRfq6hkqgc0hUltL83Y+j2VwqCZIRuIByVJJAWo2QKiVChqQahKtRhStQFaizIVZcoBtBKAqBYmHCf7oYpQiq2NtVaSB2ZXxYLUQY2pEEh04YgUOnIRUN+MRG1+aTTwK8H8AjrQBOoBtWrnaODJAHZWqGoZ5uKsshb0EiDFiMRAFxKjnqI5U3P1QB6gHUErkcJUhVLskTzwpbbwoFSKemC0doSaCVooYwG1ORGiDfWSmddDW/sskCAl+onZnGhfP9fgADEhQAxKrmKMhlqIVUnaAtOBEoRVsMCgiHJalKlWas3kCpIDQ1aCFARjvymVlCJCjxCpOhqLo2Z0NxrDLvoeoDbnB81EKWiIxBQJKdKHSImBHCNa3TupkZqFgpBCBISJbOPHg2+qtsd00qEqlJzn96fuiCAdhN4CIJII4YhaodaRmq8ag24S0NGvZ0cXzxFCJMqIxILIZHtUDUxTflLzaQG2t1kLuzSX6dbsw4d11Fuekzs+//Q+4BCJPIWTeLKHP/j5joe/Q4bm30V7NgQp9kPl1rPd00ebmyntNxGnAe+dtJvGHHiWKxJCMlqoRvCI7JwlEANxKTmVFZmd4lKCZyInAhOBzmnMkRgNWMaQiCHO0cpVf0TXrUllx5RHd7LNszFHu5ij7JQ7LWpeWo2Iqm3o7igGaZmFStGRjEUxIys0uHcfdU+z82CAbdr7TE6jNlbEI54yX/ibZvyc+fB/5CBqP/90kMXVQJBKlErQ4g62EjAqmRbxyK+isaJlQkuilMEcClVS8A05BFDLXlr0NBx8pp1yccel5orkHSqBUFZISD4mmN9Raxs3eocFs2Vkb35+Hxg5CJDAwbWMxNiT0pquO0NMG2LoQUdaZL0BguaWy8HlvHmEN/jrYxm7P11KiChKAp0opVJzteDJXe4QhxgJTneraiDdSgsakG128zWyp9QzFg5uPVsYPBNh9GAHtsUzf8HmSwqJEI0KHEUsiKSFUjO1ZHPGHBjnUvZZT7HscmhZwWrUXU/sWFZdcZBpmSvBAJadl2cXolHxU5fou46u7+g7y9rGGEhYNl6ykNJE6gopZUKYPDNTPLAhBgY9E3iYVZyvcWiZXCFEsQAY+zkdsMxGrXY9jYrrAReFUioixcBntQxZbpkap+2Cg8F51VXUwURx4BuCeCZOHDw6BZwAwTIbMYb5c4Ma9VkQ+i6BVmqQg6yzGLCthTwFd1R1Hgu1tpINLLCAoHPmX/CY1n4faA8PQhjYN3Cg6PzafWbaXkdQNBl1PQT7TqUamLJhatdoLt/wyMHsm/l9avuS0cntfENMB6+4u22fVVXPKLZgwAFroAr2T5izjHav7ACW9bT3MF9ze6/6PJozjWrzq7bMIP7aquRckChoaH+38VhipAbPJKOUFsQCC/54dh/KfHzL4FrG1E8JEQd8Ps1CMOAbNM67HZ6xq1XRRrFhHyYRzzAGiYh29oea58CLqM0Owde3KpQqlinWMINW30LdJ3CgqtUYUMEy4d1M6tJ5jwohINWyibQMufq18fIL1ALRjY3FwTygFgQliLEP7BwDKpYFjuJ/Ew8WqmV7S1VwZosFunVeW8XHSsXWolwLUQNR3K9TIVfzFyqVsRZSFVK18w8OYFXbdbOgSqlC0ujzLwLFRme1u6UakBT850rJdo9j6vZJDt/jRTpU1WjweYuUDinRAleSCLoipY2XlASiKqKFWiopJlsznoQtwPZWm6NCH5mq18Pl+BkFthwu8rfD0MNn9m7z4bvucCQL3d7+J5+kt77zo1UnfDdYnZ2Su9/a5nDr4JtBLC1CGi3SK+KbyEHGtv2nOrvLIRjdtXY9SVcgFWrvi3YhiEAMhAqrVfDI3n7zLVMHOiEUIiORnhQjXero0oqUVnTRarxEIhI6ppI5k0/QAPl0D2y1gpIpdaROI5onLPysRtuSjhCVhNCJGH3SsxOoMtWthWlrgZhIYaKPhRomggRK6swZDhbxpjrFGZnr1UoNVKI5Z222KzcNkj0A8/+kBQx0Dk8bjciu1SpAJ0qkzBTNiEIRag4wQoiV2E2UvGWSSkhCLpUYe1DoUqXECjUTQ8fKsysqDdxabi/XbIEAVap0dLUiskIIaFRzSOSJR33Ljj7uWDwAt8DsnMZglLa+W4MWVutL9OMNumlL1B3UTFEDDOYkC6LhYP1uV/VgbDdA4E5YkEC/Ok9RoS/KdrclTyPD7oTooP9uthA9axoiKRm47fuO3W4gY+CgeFS9BaYO2dVG07QMqgSZneRSYCqVsZS5xtY+L5KArguEmOi6nr6LNq81M00D0wTjlCnV6nPHXFEVnysRSUIXgmcKCyGYU1ekEKJR/ao77aoNDNprGr256zo2mzWbzYajoyNWqxXr9ZrVakUQI/Ab4E9MRSkIRSGNoznktVim26nMm82Gvl+hWhjHke3pKcAB5dlAVwxq64QYgBQJWMmAjZTUdeScydmYKQpMuZKLZRmqKpMD1ZLLPPaT4Out7MetVkqeGFBiCpb1CVZHGYJTkts4CI1FEy1Q0OakNsBn9y72yejMEpweaQGIacqeQc5M1e6d5mzslgoSomf+A3IAjBVb4rUYpdN2QaeId53V8NaWEbO9otXihlDdQRerJV4lUgykEO2eVWU1TdSSKSVDrQQRUoys+kRKkSD+fQGqXx+UToGQ6NZn5gDKs8Fq87cEL0vZ740QKepJ8pD857APLDRwW29e8xQDOoqBVi0OtGqdfwb1LKddq2mabC2NBkhLDahmptAREXIEoRB0sqyhFdjTdg5ldN8gUUq0bGk1tYnmTpZqgWwUm4uSiOoXoWBg2Oe/VkWjBava/YxEX8eT++oJ4dQCTo4pVQOWerZ1bdLIVCOxBNsznJaMOlOqOqU6OGgvShktkGZ1q81nElLqqBPUIlAiVSpZi8+jSikgamtjX4rX3ke/LhZw75IBxDhltAZyEQYqvRowC1h2tmqmlo4igZyrV3yJU6HrLX63Xy8PoklbG3ytL1SqGKNtW7LVbmsgZ/tu69QZy6sGC3IUQCK9dCAt8GAaJRaZ6FB6L9ey7PIwZEQiKa0JoUPofa2LpGBBtqw78jhBVWJdse57KudRucDR0SVSFGIc6OUCAf8oLWirT/gQtgDbZqKzIyPykYRovmAdwNCnZHrorj3OUfXmN4wVhknYjkLO5kCLKKMvOFPx5JPAKhllIgXIpdUeKJuVsO6gqE2sGD3ipvapXRSSv89jZrec4LMB8n249swGKj5idhihbdFvkTnaacnJACEhWj0DG+bsBcic1XEkOP9NBFQ7tK4887DzyH/xSKoiKVBm7CYzmCxhhdYMZTc7nl2KVlflolVWQ2v0mq7CqjvD0eoiCmQdKGWg1hHqaMIK044yDJQyUscM1eqELFNrjy4w03+yC2iVquRcORknrjx2DTSy6jbce89Fzmw2nDtzRIomYlLJdt7aUKtFi1GPVOoB7bhaBqs4mJhvhGdEFIvIGuLwMIMGQrFofMCyMWLhdHNcqtXhlhooxSjhsYptslXYTqekWElxYtwIMWSCDAiJVbeiosS4QoK9t2CAaCw7cp7IeaJoYtVXgqyBSKfQpZU59tIysvZ1bs2itOyYfdWbZ8gdBec8HWT3uSelwqo/x3p1nimfsi1XfRjr7AiK7vNdeGbHEupe+zifmczARIGcd+QKU3HRqpqtbpE4B3HuVmt17KJ60/fDs9/TVBjCSBClS0rfRfqVMR5sLNa5dsuAo2KlsGJCTlk9e9aupTqNrA3Z4HPTHMg9CLXavlKg1hYmNhqi1bB21FiJMbsHCsbYMKDVb9bz5wzDYBkkkZl22/c9fdex6nv6vqPrOrouGa0xBK9Mhxgi680Zhmlit9sxTpk4DHRdR+qMxr3qey8rqE7N3dfK4mNoZnV4tjKGQEq9M0n2WcE+Z3LJTDkzTZNlQ3Oe75WBWKM3kxIh+HHjXr+gZWqHcbI1aJo4PYXUJUpVy0q7uFO7440C3sC/AcDGqjDadogWbOs6u18xev1+rSb4N05MU2Y3TeSSGUQofj6h6h4EzFNMZw0FqKRoQQAJwbNJZf9ibRkpy0CL2LgQUUjRdAqSCYCtuw5f6pimyUSySoZi9yJFEzqLIfo83gOzWCuxi1YfHCLrzVlj6zwLgK1E2/tqyZ6BTKhE11VoL2r3PFrYJEREKhJ0ZgpFsTpRz9tREbTpNcw+mAVspVZ7P9jYFquVL5otE2nQCvAyoroXkFMKaGHSanW8tRLDYGymAMSABtvni7NC1Od0qaY8kUMlV2MjSIzgzK7qiFxcmGiuSQ9YwIe9IKCJMRngDjIaU0QLeA1v1eSrD1CglMBIIGohus5ECxLlehAVDZioVhbbxz3gjzNbLDNrYytny6BnKmPJZBdbCyRiieQJUqdIMMCrxUuFtCBYgNnytkIJkbEaYNZkYzuFlntuTDkhEOkkUoMgoQUUbC1tWge52GgJ7AME1AotSBCFKhbrnybL/K5TdL0FC/MHEX+xBS5oOTF17RB6oCdIj0ohhEJlgmq1yFTzrZTMHNXXES0DUx1InEMI9OkSRS5QOcd2e4LIRJQTNsnENLNaQDE8yXDzv+PA9mb4JZ4leTqQ88kAmpahvQnU3vGNevsJ7DHE/IpG8Wlotjk4qjAVe3NVOBnheAdXT4VptAEsQdllIRdhzLg/pGx6c/S7CGPBi77hnjNwbg1ZG5XUNif1ubLuDBQfdU4ZcsqptCzJnTK/d/7l7rKD027j48AV9//Lba+9m21eID20aaetN/3dBJrMIbMIv4vBCMC+tqsBE8WzZmJOU40J1USInS1qGqke1Y9RZuzW6jTRSNAOLQnFHNQUzJmMnmGwWrcIIRKqZSZTXNF3R2TNrKezjCIWMa07tBbKNJrqZi7UqbpwULTg1UEWy5w2NSCEbb6704ntsfLAA9cpRVj3G6ZcuHThLCkGVl1HlxIqhaKZVnOiTr1SDVAjqFflKQY6pM7T1gIB+xj7LEYh/oqAiYIEq32VRm1un4EH7KtRrHIxhy9HYSpWVzeWgS4JMVayJqvRkYkYekpVUhfpxStKPVpdqEx5YpwGxnEghFMH9ztSXBMkkmLn4HV//jPIxYHqnCXdU46b3fo77T3+rwVTbAx13Ya+O0PfnSGG3hgAZFSYqeAzmVNwN8FBtQ3kdlYHq41SyjQHMXI1R1q1iYLcxesSXj/chMKQvRPstyOXwjhZPfQwBiAR0p6KrTOoNXwpwcRbTJFTZ4CnelB7OlMj7XeRQHAKbAgZEaeeUWf6Ib4uGBA0x0lrpR7UYQrqYkhKJ1i2xNkCIRg4zLUgGH28S4mULHOX3BmL0bORqItgRfr1htRlUupYrdeAkmMk9b0HztJ8l2dVX9V5TrYASZjXChdycvpyir3PYei6jlwKXSnsdltynmZqoOA1u/5pUQxMpGhZyBYAqq6arHjme3KQ7BkPVXFFdBd6EcFKCZw6bKmoA7X7QPTrk2Jg1XceXHDpOYWcw148SkCyWOBNlSpCjDoLQR0KRFEq2iiT0b5bgxu3gsmbRbLMP6jVqOfmiBu1ve+bGBB0yWpwc03gtOgYTW1Wgs91tQwYqNVU1mAlEyGxXvdez3j3A1ukc9+iAgkloRoOBIOYQYWYzBMzLR1juARXSJ9ztNp4QG3Vs/1ln3Wr+/HttekByFaA6h/mANmDEwZOjVlkJTsuKjcHGS0IImKB2lL9bNpa0oKxKEVNfXx/fr61zet181WYr4GPdBpbrCoG8AGRBHW0fbg6GPa91/It1SjJ7o9WvDwKEx5Uq8iZkzy1iUTN5UQtOLt/VLXShSpKEfOPi5ZZO8BYCnjGdk/xD/O4LV5X3wLbJjQ1VhPsExFScFVobcCWmdUUAmgoHuT2NcvXqXlozWPH/JvZjw2+cyiUYt9RkqnZRwJjzbSCByW020vbb+xvaf8Q8+caNilGyrDSY93T042qXkzMM4BKJMSzFF1TaiKPpwg7otwgJBOrHIuSYkeQJwdZP2aB7YdySfbQ8laY8kx9+s3ZO73l3w/17vZqPfiZ6m0qtE1aiypti4kMqAg3RuFkEN532bK0uxHed1V48KrwnkdgN0SPttsmafOk0dCU2IayO3dBlKN15VOeK3zCJShYcXsfrRC+VNjlytk1nF3DC58L51b2uPdcZZVgk2QfNZODyMG8xN76vT/y9vQw6F5iZf/bs8+sXou5Lgzdb27m9LooENZ8Jkg0zcPQ6MlC1AiKiQm0bdOzuTEmaupRUZJuTEWvTgSd5vudokfefDEUEho7tPTo1CPBsqFdCHQxkUJHlLawJd9nEiGt6Vdn0SCUOpGmjmEUdvUYrRN53DFuB/KUmUq1GtNoG1tE50i1OeIjuRamUjm+rjzwrhu88/93jT9+x4OMYyZI4AUv+ETu+4R7+aLPexHPuXiWC2c3FB0pMpFlImdlmoRhl6zetUa6kOYBV2UAqRArEoFgQhyOwQ7oiPhAa3Vj0TK8HiGfiqnbKoGiHVMWximwG3tvEyCMOTFOyvGNHX2fCSkRUzXwESLn1hvOnslA4Py5nhQNUGTN5Jo5GQaGYWTYDeTpGuO6EMMGERPeSqlH4uw23HmsNS9hHh9mT6RUOteCSiDEjoSy7s8zbXZUCse7R0CFUqZZ4MlqhML+s/DVJRgwo9z8CX4SrrSs5FLJ3nYEHNje5SyT0+1IqzWrau15hmE0QSKtjHmi1MyUrZXXuk9MZWKz6pxeZ2IipVRjQqSO1AshrWiMjZCAYGUE+0xfy+SYa1wxBkSIidQpq/VZkIGxKL0aEOzW1vYmxmDBoFa766Ck1bYrQAwmdpYrXdcx5cw4jkzThKqSUs96vWa96um6SN8F+i6QOsuyG7YzmmbJI3mcmIaBc2fPsFmvqJUZHFlww8DkMLQMZjYgJRCirQ+xObwhWEuelKwFWdfP62aM0TLBqePylcesxdB2a7WuIsTYEZMzUaIF7lIUuhTnjHR2SvDqxgm7YWQ7DJzuRmopbE+3DMPgolZN6diArngdXd91dBLZBLs2IQYLAEQT6lmvPOMb98GmUhJTnxnHibBLpGkCEXIIBgq1zsB2Bv5VKcGCnlF6C9ipMEze9keb4qvTM2vxmsC9451StDZNXc9qvbYs/NoEwCQIpeR9sMHHfDTqAChev21+S/CsdxDzKex6C3G1srKGu9y09lbjCUDvgWBnTMylLL6eNkFavOZS1YXDrKSm1pFGT67VA8fGmrcOA6mStRJrIaFWkpECiUBswpHB3qChGihhos6kZuyYYh6CqS9H0nqFxZ0zhB1WCjRhivx78TeAGkwsaVKln6Eu+4xwtfMHYzdprZQgVqoT9sGTnK1USEVMcbeYToJWIQvkbKUnIWLqztg4NYGlihRlJclYJl7Xq4q3jtP5Oiu2hRSBKg50xeetMDMyJIjre5QZfOfRwz0iTDlbULZWtl52VaoHaIAYNnZNNYEUJBQ2Kc0JUtV9o7s+dZYVj5B1smCUM0vAgDVzUMTGybyjKb4uuTo0yVdxW6e6EC0TL746e8AIElIDogVhAO2oJHI1fzCEFQRrmzfUTMkTQWFiYKrQd03PwfbkKokia0q4wLXjU64dXyWULV0srPrMFAAtbIetK9g/uT35Lge2Hxp+yJP4+fHf26KPT+19t9o+tnvzUVr0cv8a/9tMHbt5oNk/9rdcYKwwZsucDpNw9VQ5HYUhw25qIguBq1uTb2/F8WMRHjmB7Q52Izx6Ha6dCI9dg3Hci7TMoPIgMj8rzzVHO8CqD5wOwvsv4xHC/be1CFtks4ZND49cg7MrOLdSPu5i4OxKufcMXFrDmQTneuvFFoOC06Fa9urmy9ecz6dxQ56E3RposOugt/29ejZjKjD4vRCFVVLOraxGrIkg3Qx77167KSuGjzndZ9Ds+WA0pQa2ZC8cFTCRgxoCUvwIB7V8c49SiYTQoTGZiFHjGLXH/Np91kbExCIkHHyuZ43359Wus9EbY1iRYqVLR5Q6UsIOG6GNLmTOT84K3iqi1ZFa1UmZ6UW5TAxj4aGHd3zwg9f4wAeucuP41DZQgQ988GF2u4FLFy7wgk96LspFxnxKlYKGzEke2OWJkxt1bi206jyQUGzDDCmwWmMshlCpEgzsBr8muBPpvW2r7ZwEsb53UoTJM7SqgVI7bmyFYYDtidJ3wtgJIQbGsXL9eqXvKyFWQrTeuiKBfEaYsiAtQNCZ4znmibFkjk9Gch4peSSlHSkmpnHHmLYEIqv+yFVJW63hncbZQbbP7fEytXsq8vwsrdY7pRVdt2GVz7Lqz1HrxDSdeAS5RbHnt81rijQhFZF55LVzsM19L/ihLVrYzv0uB7bDbpwz202YaBxH71dpNFgN5siNA6BGW0QLyVv2tJYTIpVUgdDRxRXS2ss4QGzMm5axDI2OQ7vHLcPuSpvFwJ8426Pve2/XEmel31oO7og775YtV4pUiihdzvM61VrsdF3vfV5762cbA2Gu/QSwrJEipgQcoEuRM5uNCTd5vSZAKdmYHboXmiulGFAPgZjCnIHyEzVhLb9m2l7n2d+YEiEG1qvVzFiycg8TU0ldIqZI7+IoLWMLBvTHcSJPkwtGWTCrVANxxe+rUkz52r9v531yQzS1d8Ep4nGf0Y4ObGMwNfpDkbEm3KYKvQuFlVLp/N4feApUB6i1GEVZq1pZiQfHJxfemgNEutdhiN5uqo2fvl+xWvVs1mvWq40B21Vnvb4D1JJQrwNui0ITzalaqSOugF/nDHUT0BJMqCzF5IyCu9umHD2bZs1TFKsLL9V8u2oEawsIaPDkxmFSwFrFBIzZAIpo8LIio70iCtGEG7saKDGg2NhJMXmJizXuEUOC2H110SqvzwytF7Y63FYTcIqyMaDHAGo92JtfwUwf9gypeNsxbD2qakrqxR8zy0OCZ4StN3EbqMWPTY00dpOoC1ZqnLOsWmWm0SfXVgDzk8UzmClYxrRUo60EAklWqBQXhGs1wn6tLcJA0DADP1o7rZxQMXEm9esp2P2iyFxiUasyqF2PXGy9avX6IRhXuJVEmieT7bihGlVbhCTJs7y1OeI0dlLT3xC/T/P63DA5QM0G0glE8aCgqAfRk63R7tuV6h0UXHjLkmJhRjClOo0cA/wmmmVUcxEL1lVRanB2BYFIIrAC7dmOA8cnx1y9fp2LK6NBl1IZstNGi/uBh/2VnsA+CsD2TkhF7vi3A1focY82Q4lbfaJbfn469uQwVQOxs2t+yxtvBrczINT9u/ZZU2Z6xXY0CvGNIXA8wPWd8sBl4coJ3BiEa1s8Yyo8fE0YJ6MUdb05ZKcZTrewG5STE8ijMg6Q855CfNMF8vOxqLRTJ4R5w3zkmlGnYsA3dvs5Ruh7e3QdvOsROFopZ9bwCZeEi0fKp1yCT71YufdIiWeUo64SO6sxFAn7iTZfssNIw53yorc+8+TRb6PQNduvle2+7O9VVaN05wonA1zbwvFgYnkX1kp/sbLubMKrtPbqd7/NtFCwQEXDmQd/F2QWJbkt2CG2qAXVeXjXtvCxF1Zp/Ui1dtRgWVYb38U2UQHxRdDAlnNXgs5tStrnNZC7n+xWO4QkA7YBUjqiKwMlbu24fl7mHCklG70uiHoU2qPR/nOulSmPbIeJD3zwGh/44FUeeugKw3aYMxUPP/Qox8cnHB2dJUVYrwPb8RiViqTKoANDztw4LpTR2haVjdUbTpNaxqqHGBJBCxJtsyJ4SNadVUGoJczRcH+GXAo1B8qo5JyMNlo6Tnyunx5nuk5ZrWzuDiNcu1bo+0iMFQlGjxSEKQfGbPSnfrVmvSqEENh625hrxwMmwz/RdQMxdIzjji6eEiSidUJroEq8qefrTdNX9oGUea18omztDG5bICXMtbZdOqLvR1bdOXLeEUMypSO/OvuD7OevB9BtUaM5eep+ma+9jV7X6hR9nEm4u2fzbjfYdQphzmxN4+SZZ2slY3Q6YfAxb2H/zjJ2GACpRZFgvUtDKnQrLCsYPHOAO1d+34K3axHvW23ZXUFCC554C6KUZvqxAdturp2nAR5fi1rvVhMg8bWAQtd18/xPyc6lX61YrQwUdWlfW7t3I6o7cUYvjEEgRc4cHVmmxjN9WivjUCkYg6PRVmt10RXB1XodGHmmUqV63a9lyq3HbKLru3nNWq86B63BHFyE1PWkLhn1P5lOQOu7S1VKLqQ4MMZk4DvavJqyMk4TQ6lMxfryznRpgd4p2V1vmSejh1s7tJQSXQr+WdYipQHx9rUMfNtd7so+c6Y1Hfzdsj+lupJyLsRiID82eqmaOFbOVmN4uC+39Tt5xjrGaKJfqxWbzRGb9Ya+Sw5svYa4ZprYTpu/AvP4HpsAl5979Oy0rxwQDNTP9+8utmlqNHoLdjRgm9VbN6kB2yiB4H1Za72ZFGqBPKVBMAO7rnKNqfBKMGBrYkiWSRWx6xYa9hWQaMwEEdfDEFyxV42l4z6DCTRZH9UgGzsXFVS3KHtav0FgD5R7wMZuabb9t2aMhmvfOUpwdetoautqGdbg31EcyFHqgR8TESKBOPt1tTIrmScxn8GS2ZFs4hT0nkkuVQmx93aCK2rNVLIz22S+DkEAp+0HDy5Ia3UoCbA63w4B9bpQNXGoVj8+J6+dqqzakgbR+gVHa7MDwcA6kwFtcQEqhOjAtmq5ef9rgd6GL2hBycMQlZouiFjIIbYMNcWUjGM3+2pVrTzJqq7F10HHLGKfkGu5qbxM/PrnWd18oEqhxuqiWIGOnsgadMXJsOX6jetcu36ZC5cuQDDBS80mMNWHSNRAepLB5o9KxvbJnFq7/HfHknT7GetN/8pNz935lfZzE94Yi4kzDRkePIEbA1y+IZzshNMRHrwhXD6Gh68ru0EYS+DGFDg9VYYJdgNW8xiEsUmnV+XcGSElmCrstjDuYNxWSq7ksVJDZ8O97iM3Me1lAowCZj3Ogke+Y28TrSahpn3ObSr22I0QoxKjcvWq0iWh64T3PCSseji3geddCnzcWeVzPyHzyZci911Uzh45HStASl6Te4dr/uQDFLfegcd7p84PcQd3yEJRIXtm9nSER47hjx+BR28IDx3D6STsMpxNcO9Z4U89N/Ap9wTOreFc2gPwS+ee9Al/dMyDF6iDVHesrPIu7CXVPdrbVD8bEGiZiBYJrb5xVc+6RO/7KOGARhs7JCcq2ai7ZTRFvBAc0BYoW0QHAhOKqezteVfu4Hj7h71wVUKkJwahi0eUNJLKiMgGpZ/FbxrFySL+kEtlKhNTFVr7j1KVa8cDly+P/PEfXeHRR26w2+1mUK9VGceRUgrv/ON30yUYSyWkAaVQyBCs7cnx6cSwK5SsnD0r5AzDZDWN6z7ynHuF9VEi9RBXldgrsbNm7a1nTc6BWoQ8RjQHq2nLMOwyJ8cTw9BRSmTKge1QGIfC9Ss7i8j3ia5X8lQ4OR7oVhBjout0phcen0xsNjuuXh/YjZX1qkOCcP1GZjtYpHS9qpxZW31fmbaQr1HPd9QinD9zcY6+z2UGrjAzR+Td6zgUjzqszf5Q4zTESBWItafrjqhaObN5LloL43idXG/MSomH4aqAB0QAtOXoD2e+/ycuu+Gbt6r1gwxSb0bod6FdvX7jJoYE4PQ875Gai2Uu614NOUhFdbL2Cqgro+K0VUAiMfV0fU/Xr2j0NWnz27Nve7G4MAexNNo1DlMhpcR6vbHPdCAVU3Ra7L6+czbFsxzVeiHq5HPBa1NjInV2nDNnztD1Btr61CjFzOq34lS9oILESBciSYVe7TsY+MqUnF2deXIn24BiaxljdaDVRVq9JU42ld+ut2xav6pItJrb1aqfx7yEjQPAfmaypG5F13fElOi76GJUYRaMmgZvRySBcRrn3WyqSjd1lo3d7axf684UnrUqWZUoga5b0fcrur7RvtN83fc1dw0CRdqMsQyo7X8mVBQsg9c3lkwTjjLPvhQbW3ulYxeH0spq1Zsa9jiyGyZyrrN6enBF65ULfm026zn7fubMEX1KJm42M4T2NHXYz+9hHBmnibAbvMVUmUupVJUUkjvXraXU3eFFPpGNYyUGzx621k7V+hlPLpxlK5bN6dp6iIbo5RbqNe3iYm5mUj0jSnZ2mWVPQzB18xh7aB0PQvWAkwPbYPXZijIWneuwu9SZ0FUtmGhcoJbAuFNbQ7oI0cBNLRO2/juzoPh6RDWAiq9ZTAaiazVtiID7EoFiX9DYAt6BoGIK5V3v+5kEgkaSdzsodXRWiMNDFUKtloCQ6KBxH2DTNlbUmGaJSBUxRlKwIBbgQmzWmsj6LVd2OYM0LZKOIAYaq7OEVr1RhrMIIds9bDRtU2JWTxq5AxwUSRVx1erGMqla6bqCiq9vkkACGSWFntbCx9ZnoetcbdrBqx/czg+YppGmqh3VOtTnqZA6qCGSpWNywbdVip7oguqibgTPlBMYp8EQu4s8iLfuakkjSx5kYKLqjiDCmf4cqmcYpsjDj36A68fHjMNACDbeSylstyMBoT86IoZI91GjIusdfrk5mD4vVPtnboaJcEvU/xk9wTvb47lZj6defNMZ6+HzOgPHdp9zUXKFXVa2o7Cb4PopbCfhxk55+ES4MQhXT4STwWjGl0+Fa6dw9QSmyagQQ1XGHUwZ8mQZBTFmAGDRFFfQ3kvDg7MUxLNBc7zGpFbEI2D7RInTJ/b3wP1+a/3RufBI3IN0G4gWxZkqlKKMWZis/IEbW6NAXz2GmANXtvDoFu45J1aD28HFM7DulE3XhCpaLLJVFHhk8nEGwyyGNP8+B/QMHlXmiSn++jEruwl2GaNujwZoTwfL0D56A957Wbi6Fa5sDfBOBc70wvWdsivKtZ1wbq2c6zzSKcJnPv9xBtNdY4fzzCOfzSFrz7OP5LfsxuE1bq+ds6jqUX2aCILe/EmNCiCNIpxRsgMddWA7IUwELZbBVKcC6V7102Rg2wbcwK1HNiUh0iHSI67Wp6S5Jn0f1rYVaI5EVqMZ56qcnkxcvzZy4/rAuDOl47067n4jPj095crVY848coXVRqgUpjJZBlYrw5gZBwO2tWZKgXEyVcSht1Y5myHQr6DbQL8R+nVwNUa1xvTFsrZ5EqPdZaAK21O4cQy7XaEUyFkZp8w0Fk5PMjEF0gT9FCi5sNsVcsnEpHbMpuZYLYucC6z6FatVpircOC0MY6WLSsm+f5Ep00jNp6R4SpB+pm2KZGvHIIKo12FqC0YYQGh0x8cDtbf2tN0P0AY0gilje+a2S0cWyJAtKuXmreZgPTRhKQMsbbg0IZL92PTNGA8qyH6M3802jOM8B2egibi6sAFQ1Nb/qq5GWhXJ1tM0+JrtIX2fy40uagJFrea7UWor6vWn4QDctsy66TfEmOxq6v5+mlrvgfpvm4+0PXQvMFP9PGdhK1q2zwSjuq532q/VkO7v7cH6X5kpewZy7MOkmlJsrdVoeNLWqwagre7T6mplf14t+DFfw0KMZW5fM2ezg2WaIhEpB2Bbwl7oqvNMol+PFqRrAcKbWl95NhgseN15tnmUtjv6/Y/e6zsZmLXvResCY+dGW8/dC/O1vRRjgmSvt97fszirLDc6tohRNmMqGMVSKXmage2+BZX5LJAtE+Ygvu8jq1Wi7zvWa1OnNmXr5Fn+zoGt+Yl7f3HvccVaCV63bJmn1j/YeJ6aXEHVWyM9G9r9aLWSmHqQ5azaMudqzos2VfLWM9kDMYe+qXqpUPNDm+iT5nkclya2JTIDW5uMplKu2hgYNqdTVPqo+4BDm/tNOV5aSdveZ4M2r8t850JIEIx6ryhNEb19lxD2M7iqsbdmIaQgrbQaDd6D+0BKqoHkGAKRyC7j1+sgQKnFMr1OscYzuNX77tbm3+wR2fxrYx5FMap2UCFjmVx1EGBJAJnvR2MbhAAqnm1nluzyVweilLnEw/wdnI7u607VmfXRrm7VJkAZiJJIIVGlY6qTr6vBhTejBzdd/KkJZ/q1sfEF6rJ2KsV63arS+v1CozYb6J+p7VVMJ0SaONSBnzbvuz5GA0ioSCieYU7EsEF1RZDOVOBLtnuOMd0yhVw9SyzOEvrIA9vHg4JmzYc8fO3hKe2d6JuPc9tRb3WCDjyXJz6Dp2NtKb3ZbmHV3GbK7AvZ69VAUK7KMCnHOzwLCw9eg4eOAw88DFdP4ZHrcDqaMvEwGHDKrnZaijuz7bi1ULPg4rLu0wvSO3U4GtVYZ3qEGuU3u3OirsmoikidhXOsGTXgm/LNtE93NopNxei940SsJQSidB1QBa2Wga4VyJVc2rYkXL1qSsoPPBy59yLce1H4xHvg/BouHSkv/ATl3rPKJ53PdNEiWPMS4eDF4AvIPiC5vy2zIu3++VyVbRaGYjXLKcI6QRJlKnBlCw9eh8duwL95v/DosfDIdbi+FXajcH0LYw2mryoYDU2FrocPXIN3XlbOrl0NuscXf/gLf/YJB9lH3VQbELAsvc6pNZ9XB3NurpESOdgkDxx/X/Ch0ePaXFAHuy3vKmiIaLW2A7lmah2Y2BGCZ2Z1R/CMLWSQ7DVdeY7Mi6eLa2mZWxdOQxA6hBUia2CDsAHW1jNNsw2eKGgUi4qLCVMEz/jlXLhyeeDhD+44vrZjHPKsmqyYaETbI3e7HY88coVc4dyFMxStDNMwqyrGEMhToRTldBsoRcmT1aPFGLhxXDhzrmO1CmzOCmfOR86cC0gM5KmyPVGauFupgeG0MA1WxzJslRvHldPTnfcCjLMAzumN0TJjnTJ25lgPu0wclRAjeW3Kq7VWtruJlCaObxSqWruNcVSmyTa8zSYw7IQ82L8pFVIqaO3QGq3umJFaFQnFaxLT7ADXao7uHCxxAPJErX8OQa14QM6YKe641xXr/hx52rLqLjLtrtNaCczAlNafUJ02vw+PVYV6ENzT5jyLBVgOz1XkCRb9u8BOt9sZ2M6tboK3CKl1ztwIDhZRpmyOawiWs2trfYyJ0HrNNjXdEObjNqpvUwEVf+8MbkN0Ny3Q9QY+GvCDw9r9FtiQtkQYOJoBovVVHUfrrVpdnVlCJHVGZ+68XjelvShQe6+2QJc4eSDu6zrthV5CcQCXTKdGLJPKQbC3vcJBRlFjepRiDJMQsrfJmehSRHUFDWS24N5knyXuT8fYaMBxHmt7YGm1aLlko5GrIsFa9JhTF2dQshsGZ17sAX/f90Z3Tp21Dpm/nIk/RRETfsECvqYSWxhG60c6ThOjt0iwwEby8zWwGlyJWDGfKCVTHZ7G3bw3TNNENw7W07cCwWokgwtWrdeJzbpjverYbHpiZ+fcrawveEydZ7KbD2kBGGDOLk2lEkLZB6lrJY+TzWURYiwO9KsPs7t7HgNUHaFkU9evVqOZa7V9rxYvC7C5kxsDKVeff8GHfAvgWOscrS0wrCYoRbAgTvV7LIE+rq2eFijFmEeQ5qBP9PrkTa9QmgaLBxmlEkJn+zHYHiCCSLaWPKponebAYYydU147xil7oBoqhRyELuxxQlULKocQSSHMgkOKzUOleCmSlSyor90pBoIkTkYDXyW74BQKmjEeoq8bIYAoORfLjNaK9WSw91Z/tLmTQqALpv4tagGxFnxDrUShiazh36EiiBZaV4egDZz6fXJV8TbPsteqBoftVa3GOgbLBrfg71QLNSmRQBc6KmtEA7tp8BFla3oUu37WvkkobZ9T0zjI2erlcwv8SWFcZdf+iEA0WrhiyszSzUkMVevtbT3QJ7tetRgY1n1JGk49D1EJ0ejdQkfUs0g9Qw4d02TBhRQBzdQCQx6ZqtGkNSQT/UwfcWDbLt/N/972N9HH/fuHtNnxaVvQTdD4pn9vXrrM0ZaD5+8EWB/3Y5/Ec+1oNsisD+KVU+HyifDoMbz3CpyMgWuDcPlYubGDx47h5BROtnB8XJhUyIi3WRCmwQvL1aMWPvHnptvBsqfoYZofQsbmSBTrqeWZ1JKtrjAPHvWrlrHB/94iuaIGFkM0Z9qi1NJ8D3tfLUZL2BWr00mBfm3vG/L+Gofojqi1xPSNx9Ulg7Cr8MiJcpzh0WOhi9BH4ffeUzm/gU99TuATLsClM0If1EGjzG2I1tEAagz2r8yLloHX7QhXtoHjEd53XHn0hrU5GiahT8KZFRSncn/gsvLYMVzfwrVt4HRn2eWpiQUos5pgio2Cqwxbm9DbAXaD2PlEpU9CepIT76NpWg/mpFNGoU03ryNrQNVBX0HJuQnJNJeDOQBhlKTqTmDLqPqmqrZRV3BlvQ6kRynkPAITQkZ0ACbQkZo6Oh1JZfKWLLZwhhpmkG0ZFBd8qcVElmqA2hHlDDHs6PqLxGFn/fJkInaB1O2FcVCrYatV2Q6Fy48OPPrBHXmyTTp1ndGAap1BRLtgu92Oq1ePKWLAcjdsKZ5JWK362Snvumibh2dEEDhNkZMTo1f2q8TRucTR2URMNm+HbSX7eZWqLkRV0QI5V8ZJODneUYsSJPo5tr6ZFi2tdaQ1tDcxmoyEOItphUkpyYDz9Ws7QggMw2hrDELOPcMOtqfCmTNqyqppIMQ1VSOPPPYY1tolsN4csVmvOXfuPBq9Z+KcIvJM/sEi2kDubWPzANzu/+ziVMHaq/TdWdarkaOjLeN4DRXI0wm31uNLECgz6ZhGbfGz8V8NDIeA1bZ5jM+A7lOeWn+i1uZbC1aGIJD2QSerg7V53oBpcR2eoFjQIVp7h5Q6Ey3BBJWmLK5AqXQkxNvihODrInvArFoR2ctOh5BAqlG6Y9kHMIKr7xedQW2bWzOoy5lhGJgmA4woXo9p9al938805OgCWOpqu239AqfeicxDsNV8llKYcmY37BiHgRsnpwzDwDiOxuoJkdX6yOCbVhOXUlszG+DMubDeHCExMkwTxI60PsP67IW9LgCVfHrC6empBQpCJDu7IqVM17nrpbaOTNPI6enWSh38Gtg+6vWyvj9bECl6n1uLbq/WKxNgWq9ZHdQy40A8l8mDDlC6QozRFGHdQd0NE+Nk9F4TsomklrFrGew56GGOda1WJ0cUwnpla3utiKvmm/L0QAne9z4pKQmrFazWsFopfW/Px8TcI7iN28bwkTaYPc9ln2Ety0JIDnQaq8cGZaUiKqzEy0/ufiYyMbQMZCXXTFZllzNT2VFqpQsb5sh+NdCqTsm1Pqbi+2ErD6qmSOzAXsVqWKm+h6OmZRF83fARYn5mooFggCBKFy07accu7p+2VkrBxdpGW2cdbGISQFhgCxMMVUWSCZ3WKq54rEQqSSan0FqwxwsbPICWCKFHySQpjNMEUij42NZowQzXh4mhUoutZTmol2KU+WGCWLbYq3/vQjXgL045rsYaowhShFBbFwVzjK26WOg96CDA1NgpIViveQ/kHZa92AoVaAJX0nwotb7VQQL0gvXPNd8rhUCMIERqFYZaONLqwDZB2CAaCeF4ZijEFEkSiWI97g03pNmPsbpoPycv+yAZHTzXyfcPQSSS82T119HuvWDdGYpUAtXLWOwqWv1w8Jr+avpeUggyIWGH6A6tkaKwiSuk33DpzCWORdjuKlPZmbjWmAndWbrUQ0hk2ZclfCh7GsB2f+DD/KZw6w+3P3forhgcucVzOMi2zUmfxh9D5+xQU0ncv+UOHojTnW4Dtk/FWdHD77qP/CkNgMI4wfVBORnhg9ct4/fwdXjno8LxTrg6BC4fK6c7uHoDxp0yDsq4tQUpdIHodyFPzNQwaehTQV0ghdC+kzRmilnx2HKxgvPme1u7EX/dfCHaRRbPQHpkuzq9ocr+7zJ/cbT44EdNIKQKXS9z9HcOlHufRBwECgZwjf1hQkx1xGjAg9ODBR47Ec70cGMXuHwKzzkDfVA2vXB2I5xbwyrCmc7oy12Co5WVc3TBKDrDBFe3wvuuCo9t4Z2XhYevC1dOrBVKF2HTm0LodgcPXlajhA/M/Xx34+FYsZqREJWaTCgrRKNuZjGKuWIiWgjeK/Qu94YxZ8as9TvbzybdTzxaWwcVEK+1QIQ408CYVfbCPGz2C3nlcODBvBWEDpEOvKG6VgOzohnIKIUoGZF91FRdBKrV3N4kONPOs4L1rYsEWRHjmpSOiGlF0skFWcIsCGM0bLHIZVHGsXJ6kjm5MVm20SPWBvIt8xc8JFurMk0Z2e3oBqvX227HGdg2cAgWIW+tL4rP5Wk0kZUYA6lXE4gZrU69FJhGJY91BqxgEdNa8OgyjLvsNWTVRbKspqh4zRReS7MXRgrWc68eBC8QRAq77WhiU8NIi6LFLphzkEGJpGStBI42W1LqefTyVad5Bs6ft89fr9YzhbVF3jygPdth5vaQEWBj8+CFB/vBXM8ZrAY0dRtW3TlSd4ZSR3LZYo6U96+9bdAf7gXqQ75RHe2cglPq5GANvavtMPDr9K9DZfMY98AgtACW+Ld2ynH0tlo2J7z0oxZKCUZfD1557+P6MKC770lqz96kbD1fwzAHt0FdOKUFGqx3bfFspSk6Z3a7HTlb/9ZwQM8JYZ85bJmq1iKojbGWPQnR1FwDDn619ZS0ANM4jOyGkd1uZ4BumpxG3ASIGh1UrQ4Zb08ESIisNhtCCEzj4NnkFf1qY+ySPFG0GoAeD1oyVaOJd103rwMobLeDAdvtjmn01mQ5u2Pa2Zoldn+63gJ6qesIng3vnc7b93sqcqPgVr++JvElczCitWhStRq+KVem7GJjBM9p7eec0YstK19VrUbS7zkxWa/KoMQCsRQTx5MD+nmwkiV7VP+3sBcPdP2EeUyZVI2BuX3kVX1MyXzslhnyCeuAGNlTzOvTS6v8iZrFncxxr1h/WAvmmnCSgcM2vyzj1qZ9bWsszNdPnbVhwWRbF03oyQBMA7Y4WBB30qrS1JFATG09oJ6Zc0E29Y4CcxuiFgRr9GETiaIp0s/nbt+1BQ3F2TQWc7IsaWOKtLmsakJSBAvEqdh+LKWVEhWTipJDPWmrv8VrrlubqarVW+BYthGsXKHt7Y1XK56djSLeJtyykKGdULsHYoygLpjo1SFduHVyuEl4zmFtbRGYGRE1Krf3xPXP23d/gH2WyUVmnUZst9Eox5E07/tWg2zCVY0ubkHO4DM/EsSAbfTEGhhTQsHneKNWB1dFFlKdgOrXxfyIKtX1Vmz+FUxIlFAd0HqNrWbQERhQTYx5pIsTWlecWR2R845SBqZs7c2mqbLpxGqJfd3JTw7XPr2MrbtrwIcv7nR4nuqDo8mcF6fyVt8IY7Ls2MbrGQ+bEH+oY384FtzZt6iLHXeXCze2wnseDfz+++GBy8IDl11Ft8DlEwNa2wzDFJkynJ6aUmodK3V0FdmsTG2QO2WuLUyilaAVpskiY6V4Q70AyQdsMHU7zaCTero/0K8iqdGLwZU/KzHYYCzFwCoVQh/QXChjoQzuAYpRmyUIuDqepGBF/dG49U1duTS5ODHaRAgVyRb4s75psx9pVOnJFt8hOYU6wMkkPCbCB64G+gSdZ49XPWzWwoUNrDq1Hrlrayn0/OfAx52D554zoHr1FN59Ff7fd8OD14RHrya2gwFZ+/4WjDjdQslCKfvMd55aLVVzvDBgK1YjMfVikeWWJRZhEltgYrDZcPpMDbiPsJUyYnQik3W/PdrjdGNtPQQbOLEMqSCz8+RbpTt8YQ+I2zEAWyUSIaxBIiqB6ErEqsFod2XnwLYgFMaaQScXeDEastZCDSYU3zLCtA281YtoAO1I6SyrvnLmaKLowDh1DONVUjKl0tR1JlyFiaFMI5weK9eujFy7sqUqc+/HIJFJMwN53iCqqmWWcqE/Ok/Ome3Jtl0J8lBmR3lKe3GTWvJ8TcbBa5hWmd0ucXw9YXUGuOql061LnoW4Gou8Yqq4Wg0ct+veWr2UaLW24pmXthjW7CIctZBSQKsyjZUT9bZV/gEiQjclajaQPQzVaWZQS+T4eMeVqzu6lOi7xCd/8idy8cIFaq3cc+keNgqp62n1T6r19o36YIU+rCs8/HmPVsyhDSHRdWsPZsAwHRPiyqK8up2dLTsmzAu2/94i5+ILUohWN6Vq47fFfFoZ1t1s1r/UTjPGJtCzB342dve1s+YbqQHZIKz6RJ+StczpOgfCSnEKcK0m5JRioivZqc7BA6KzKw1YXa3RTQ+yFC1I5ufY6mYP61KNbVFNbGi3YxpHttvtHATqus6pbu14WGBJdRbKqrXasQ/UjqMmUhIkdeRpZBqNvZBzZjvsuHr9mNPtKTeOj+dzWa/X9NFAHOD0KCH75+yGgdV6w7nz5/mkT34B4zjwznf8f3T9ijPnLnB09izXrjzGlcuPsd2dsNttuXFyw9saCTGYaFKXOvpVP9cv74aBcZw4OT1lHAamnCm1mPJzhTNH3mM4pTmLuh0GajHa6ma9ZrPesF5vWG82MwV9GAbPgk+z4nMu3h98FlUyf2XKFlyrQBQlKRQVogom0JfmIIO0kKWDk+A+RlAgKSknFwlLTDH7XKuev1P37yo5Q9BiFaEqhNCRVBxYB1I8DD01NVjQaLStlHoXzKrE1DngiM1xsf2t6+z3u9xS3JcFlDo57X0il8nGulRisACUBVhMIG8GVDHMgARVA8ZSXLW2guY5adGlbk46zOBUTGU3hkoRPIsYcbY7MVTLImAZW5jQOhm4i0IMiZQKIdh8DyE6iPN6Z7U+uYppTsQ50eHML61UHUmhM+XsED0QZVRWDUCysTGPJS3kPLEOybsoFBtPWliFyBTUipoy9h4tWB2xeOtBcYVpCxqHkFBvAbHpe2qdyAWbZ9muVXF6t4dTSBJIqxW5VIZxcj/F5lbfrehjTwiJKlB1ItfsZQDBAw2BrIWgFalKYUesGSGT4r2IdNaiMzssDmVOWOWcmZyKTDgE0pWgkKTxNFqQ0WCtU6nowpooAU3JzkWA2MaSiXzhLI3tdJ1UJiRlqMUYPxqtXFILcSVIjAZix4xdMKvnBaHkgRq21HgDwnXGPHB89X3c0DVJLnHp6Bx9FI76nsceeYfRw4kcYXuOUbKF+iSR7ZMGtsEJXLAHteL/+1D7/xyvbc6VmnDJmMWAlwgSKsc72I7K5RvCdoLtGLh2aoJEtULXG530OWcsg3emN9pCwIqd+2QOS62WPUvRePt7IO4ujzIvxvP5H36Jg15JUluGCK6PcDyakNAfPwiPXlfe9XDgvZfhyollIS3QKFw/sR60w6ReK+F1qkEIvSmrtU0/zKnROaROqZ49rdJ8EgiWEQytEbe26HuLmO972iFeo1srefJMb21fWDyL2jKq1jeq3SCtFqVuIA+tRiv24m2RvayDiC3KzWm02iQ7vzK5/tvQoqxKSK1mrp0fc72XeN2jorbgqZDVVJ93o5KisOpgnZRVB4/dEM5vlHNrsVYnAzx2Cu99RLh6Q7h2HBhHy4SXorPQTp6YnZkGuKuruSEztgDUm2+DlkAOLbLaBrWQ+zpno/eDaPMhZsRH10rJtnF4WOqwRyN4UNKfD9IoTtZwPKAk39CMhopHLhtUcSBV9nOt1eQEBFVzkLSOlDIxTT0ld9QaER1vCpiF4A5QMQXBUl1hsUVInQ51GN61mqxECmtqKqxXA6VeokuRLlqWIIiSPPtg996crHFQ8lSdjse8GbTMjWWXbZzG4FQt8dr3kk0Qy+dQKWV29u15j67XMo+d6lmz6kqweYwtGDwLHNkk9AHpfzMBm6Ye6/Fev9i1mgAIWklp5QJK3uSe6tk4V7RsojqKXUcRywSIReDLNFmbebX63BZfjiGw243cOBntuiaLUF0/PmG3taBJvVBZbzYGFn2ezeybxwlIHrbcmgHuQVZy3pxDR4yFrtuwXl9CEYbpBtN0lVxPUR3ahZvHdFur2q82TizLoFi0v6AezLo5eHu32qrf1zM3cZ8GbK3uNllg0rPdAIgFdmII9OuOLgZSCNbCQ9QyREWgRu+dmq1evPZe5xUPxrC6Mx6I0YWDyl6oSds1F+YA0iGwbeC11MIwjgetirKLGO3ZGbVWivrD3w8YCGxsiFqduVEIkwHxKdt4z9NkQZw8cXp6yun21CnA03wN99lO+47VA0VWe2rnFqbMMI5cu36Nkm09Oj094fq1K8SgnJ6ekkthnLI9xsw0tnk60HUmmLTOqzkAkbO1ZjIKoD2aGmosxcann18LGK5XK1dNN/DfdR1915macZBZRbXUbODINQmCs1RCNNqwiDukKZlqbN0HoDwpQ8XXjxawrPughWKgoNEWY6zeyzcRu45Ysimba4ZqcKzUwlSg1BMkdISYvbyop+8E7QXtWiBLkOZ6+rrZAlyp6+n77N8zWTYqJIuoN0bCYaDiLjaZV5vqtYr4ONf9Cubz3BySiMRIBg9idYhThK33dECqyUjVpiKmtoaueqsFt6Sa1U9q0TmaV6W6lFDLsqpnOP0MtWCt3kZKyQjJ6ePVQbRlHm0+eq9TaflUwxIxCKKBXK1/dNHsXCxvHefZT0JwETirxcUVgRt7xBgGSg1KVVP5larW4xWj8baE/1QcSEi1FnrevkirsRlSSN73XGjtzlIInrlUgrY2Vlb21qWO5EmfWQTT/coWWGy9u6Fl2ff7mQUSW3ugxroaXdE+03fWe7cTITr4naoxvaapMsYjglYGbK7nmO3rEU1Y9mAltu+KtRDUCl6+ZcljJaVuruNX1yXoup4uJrqQiCRERkIcKXlrV1ajj0Uhl0zwgHH1/T0GEw4zNuVElRHiiHQDU66cbI8Z6zWSRM6uz7OKPf3RBS5rAIoBdVoGPJpf08iGH8KePLDde/M2sD7E6/WWXw7BbS7KdrJ+rESvSYnwyA24cgrvvwzHg1F5Hz0OjAVKMQXRVQfPuyA85wxcPBI2a3PPY4UzayvEzlnZrAKrDo6SDezoS0fLPHVRXGJb56i3fS/b4FtAWmtTQ4RHbwQePoH3XoXfeQc8eEV44BHh2gmMk3JupaQEoRNOtgZ0p6kBULwuRWzdtSppWh+2Vqdoy4daM+diNXUhegAgRbrO+8cG70E4R89tQna90UWyK2PmbDV76uAttkb2B9/dboxlK4LYItcaM9s1qO4g4QVoN2EJYjTQ3ihmvjR4dsgD3xioT2urtbHIpG2fli3B6ExiEcga1Bc+y4Kfisy0iVZfe+WGsOqEPinDqExOJb58HbY7sf69kz+yKbxO1hjOFxibJVZO3MRjdM7atPFq1FKlDRSpOvfOy0Nx5lPLjDy5+fTRNOsTGYgNwd7mwO8DVw0MWD2N3d9S0py9E+8bJNI2Z3eQ654A1vqzSYyoGnjLYQUM7HaRWuz5FPY1FDnYnC7VoqSlTtQ6mTOm5uzNQlY+hxqwNUe7p6OgnKXWC5Z9DdaTVWSCBlirgdVahMmDIFa3uu+d29qc7GleVhNWW7isllk4oZ1PdXEWDdGAQnttqwVzgDfXC+dIDntFYVOJbHTpctN9KbW6sI7Nz33I0bJVdVb57Q+Go43rVpNca4bigYnDjKqvDaqBMjW1UxOHgj043W4Hum5H8hrNECOnpzvyWLhw7hxdl7h0qSK1ZYJbClTn7fYwO3urcNTNlOQ9QLVgSyTGntQVVv0FVGE93oNSqFm9LrLMDIz9dVb2lCzx8R3mMXfr3L2TevPdZH2fLAhxC7AVaSAjtujMnJ0D6yWaYrBa1WD7oKF571uYBeupHCle52mKt05xbYJQMAPppJFQG6huPC6Za3uBPaDN+YCCPBljYnJQmw3s7kXq9kE3Y4zUmcarCqP3NLVHnTOTYIB1KjZPmmDaNFlmdLcbGD2jGWOcM4zGYgk2p501lrPV5eZcCNEo0tevX5uDQbvtluPr10gpMA2D0533j3Gc/DtBlzOdZ5mjtz5qTJjqAah6+HBPulGkG7Dte2stVLyFTucCUnbPgdo0CDzLVE0kJgUT4EtzjMmBrfceVu/PiziwFQMHeCa8UcjbOhA8wJ58zKkfK/g1jSkh0TI7TeCxqIvfZFuLQ6ykmEhRQZM5sRKIyYNqMK8ZLVB62Du4avESEBfYSa70K/t6x7vd9nHMxkBi3k9aratPZf+eEFIA981iSLNDZurkVuMZaL5sI5UKXeppFG71pEf1+mg7B/PBLNvWrl1ziix4KprRmtFanGYe5vfi97iUOgMfKxGSOWAYfbwUwUUgD+peD/yKRjYyz6NRsm1/rgLUfcqq1mw5qYC168H2NieS+cPHcXUGi3++OIjCA70WGLEgIBWvwvX9VUGz0sXO1bcDuWYH9n4PxITiLIgYUS3WzKEFW9vYBK83betW9mBUYdWZX5VCILTKhTqRiwfM+krExK6KFA+IBUIweazD8h71cpDqgT/VfYmTYsE8q6NP1v4xBFJa03drVmntvYlPgWtk2flYEO8nLJRc0GhgvTan0SnIFRinCZVMSJmYrBf3bjhlrKckWdPHNefWG9bdylo8YeC6UbuDiJ/Dk3OwP+J9bPXg32lShqy8/7rwwWPhjy8HjkcTOwpErm6tzcrptN/MJlcVDEG4fmrHefikOScwZSFne926szqiUipnVsK6g7NrYRVhlZTzG6Hz+o5LR8r5NXziRTjTm6rtpjNVswCMJbIr8OhJ4L1X4H1X4bfeITx8LDx0Ha7tkn32JCaqpHB6zZzHqsq4c7pVqcwp10bbaUIJUYze6zhLIgSv0+zmmrh9nz5FWXViQLIqluqHmidsERCL1Igi1WoSgsJwOqLFnf91IkRhtTEALsB44hvqvqzXIvtdcgELa+PgW6yB2KlCybb4BQOx6urKLfITWgsQ8cWiKuoLUVtDGnKqdcaN1rLIDu+N5ed9ysUB7P5fPcaBrr3R6AqWkc3VRXiGyjgq+aTQpC01jwYWtIFVcREBFxdoIDYEiB0SbXP2HYDYFoQgMwiWaBFAufv3UFvYpZhK8QGgMDCgtC8lsFf3rMUcnCqMMaJAUrVIsfji0yK+tfXi29ec4NRnSEQJnIwnHF+F3/2dq6SuslqveP4nn9J1FZGMSCbIxJQHprwjxoEuTxYlTGmm9jbVTz1oDxBjR89mrh3sItR6nlw21LpFdcc47ch5ZCgjWiIlTwzbzLArTMPEZt2zWVuPxdPHrjEVyziI0+uhZXI9g2S9LTyL6pufKjFW69s5Z/Tt+u7pmAYOYkrE2FFT8qmiriAptCoxMSSB1saKaHSvFoVzQOuUJHNEQaIFyao2Rotdr8p+fjantXi0OYTAtp7MACP2K5tjtTKN41x/3F475sxms+GRR69wtNmQc+Hs2bP0/Zqu71itN/Y9b8me3ApuD/89BLqHr5+dd+Boc4GUeqt73J1nN13jdPt+pnzKlE98ntu9acHZgPg63xRe9/tNW+WsBvHunsznzh/NWa19LWOjpTdn0L5baC09BLree5ym6NRBGzdG6XXqqgepbE8RprGbay1LNhXq4PciSCClbs6OhUaLbtQ4sXtq9WN7oGWA1rIsIQZTgtUCoa0Y1h+2UXDVwdAw+D5VdQa2Vs7QwGDL6Crd2NMoz9M4Mk0TpycnnJ6cMI0juRZ6EVOIjtHXcR+DgtWyThMhFGLX0a16+lXPgx94PyklnvOc55Jz5uTkBjF5ywwHErYZJooO5KKzRkHbW1Kt1GTOsXrAYYX1oK3VanH7vme1MkEoywKZy7ZarZyWWuzvvVE45QDEtbV3rqsHtKnrHNYrezAwpY7stXTR16QgNp5KLtbX00sVVB1cqO31JmoFzNnUjn69oaCsy8gwmH5CiD0K5FrZ7nZAIkRYdb1TjzsLBnIAuEPrw9sEQcU+JyWS9iAWgGi1zqlbW9adFhy8u+cxGHutUa2tDM+YjUTz61JnqrKIZeeCJPp+QxitVV2S5L6HjaOgAtHZWVKIxYBBJLKW3vRasMBIUZhUKZO3wCpGPY5SwUtisrODLDA7kcKAkEETgY4oK+bGjO7MSRBWfaBqoGqcM6MdoMmAZ60moFoqFAJTtbHVVZ3zKKYVYWVG4v3FYwim6+TuStFKZiRZXxlCTVizBaVbmZ88lWC+ei3kam1wQrAAQnBF5uC+TKkjIoWUFGo40E5p+7iXaEmhhkwNhRpcw0OVKgUNE0WEIisLHJM9qG77TIyJIAktgSmraxqoX++RXE5dS+eMnSuRXS6UajX422FCa0IilGLjfaqJHqwPMQ74qc4GseQP3iopRrVMeS2UmlASWiK7kiko3dBxZnMO3ZzzdaID7a2ECWUqph8gIXKyO0UipM5UY0NIhOSlU6UyFYEciFNEY6LkRC0rkMSEcHl7mRgvsO7OcPHcebbDwDAV8/+DiczlPFlA/knYkwa2TycRpZ4cK9V6s54McDIID1wRHrwhfPC6qQbnIlCFk0HZZXt9CJCCiaUEsRNtoGs7KtlrWU92kLMwTqawG8T6L60S9BFWSUhWkspRxyyScX4tHPXwCeeV8xs4vxbuuyjWS3UFD19Trp4Kf/wQfOAqPHQsvP1BawFzfSfkPcfKGzkDHq0oJVgTZdn3XWp4oaqa5HeQeYoc5gVaFUGIzLSH5rRqqRZhK7YQVKdelckzqsnotlWsFY8a5iSGfZ4kRFco7KRR7YndPilSavMDLVJvwNYowgGZwa8xWzyi7grKLfveor2NrtTCeHYlrG4jZx9TLVmQodEAG2PE6mLVxWt0xpopeZF7y+A6+LXD7X/enDH6ep6UIUIeYBqMAmr1Jp7BQfzcExKsELdRvBuolc7qBQIm5GEfZjTxIBC74DXFT2Oi/AlbLhPgFCbtmCmDMGcEWvShgVa7jXV+vwUhdHZe9w5VyxYerBn7hJu5WpIYh8LJyci1q1skVLoV3HtvYKNC31nLCwkTYxnoy0iqE0Wz0a1qtuhuy6LODYXaxgQEE0YIrAgcUWsghkypiVISu0GYcmAahe22cHIDrl81YbeWJVFlpiMWl5ONTlEyNccWgW0AMaI6etBpH3E3Nqht04rXzVYDw+Y/e8BHbL1TbNyLB4ZsczNHnRpo4k+zmmKbSGIsh8P2JqasXmi1sw14q1aL6IeAxESjkJnSpn35PANNkGL1xXP/RNTrOu0YJyenc9uERy9fIXUdR2fPcu7sWY6Ojjgvga7r7Bo6a+Qma+wBveW5+UedR5R4pDsESHGFAqt6jkohxEQtAyLXUcRqwms20RDsWrcAmo3rm6ns7T+Zq8fvXjtzxkoeZmGtOTPre2+e5j1TmNM91lqilVV4wJC6/+7tHWBhAKtJs2vYqOwWQBG0NiEnRTWaOqnux0XQ/YLYgjkGPNUzBh6IbWtpYG4RJT7fmqJ+dZVinD7YBNysXKHM7KVZcK3dz7le2ESiLEuc95lMf7QFq60rtZVBOD26VgPismvUQ6vVt1pAO1aXOmKKDLvdvt7Zr0ULZJVaibVaZoR9tguXO2ivbW18LHi0Z1oF7xUNSg0y9/O9WaDH7rNlcRPSAJEDWnuP9SoWaft8INQ4v78F4X0VmK+J+uauIRD82pUDqqmxOdvndKTUoXWFqgXlLEBaqRqxOs5gwFR0DlhWZ8pRTf5J27qOMqvtI6ayHwy4hJgIqSM6rRKtzmB4Ot7rn6zN7apwYSOFKNF6dLsgk112Z8bJfm225JgxWULAAKkkVF3Uy7Nfob2Glvny4IQfJxfLzksADRV1Fl0pTVjM91kxHYwoFS8E9OMF0IBIdAq703PnUjvLwEVhr7gcAkEt4C1q7KZMJbovOINacJ9N9kFisfGhoa3TB4F0DzpXF6QS8eBe3QfwbcmfHZ/9+idQNSPBKNnqgR8hkIL5S0WtxdBUM1JszVF09rftVCuVQtGphSwwYa0WcGyBaN/XRF2gFNMVYEJ1RHXjUVlFNSPUvfK1B9HtmkTEmZet6lBRr+u1emfbum3P62Jw/wkLGNBaQ2VnyW0JIRPDCEUJZFLYUZlAJqpMc8mWAU4LvATEg2bWrWG+vhW0BGpJlBoNawRFKJQ6MuSOXYZV39bU0b4zNgeqVAp79f0nsmcmY6sH/xw4yFWFYVKGycSUHj0RLm+FdzwKj20DD90IHA/C1GiAxdRGRZQ+QZ/soEkgqg8YYBiV09Eyu1dvGLCdcqt/3NMd2h49+y4N3AXokpKScnYt3HPGVHg/9wXCpbPCc87DH7wH3vuo8pv/H1w7MQCtatI2FVifcSGhiNWjByGuExTQCaQmxBXlrOzNAKhWUzWTlTu77q/afHVadXO+AkD1qIeiY+vLJVZ37NSrMpmzl9ZNrt2AY3KZ89SByYpHQlJSB6uVvaYq9CvLQoUoTJNTcWNzLSzyF6P1uM3ep7ZJngMuUOPfx+drE/uwKJ0P7gCiJnTVgLfdD3W6MtbuxJOrLYqGqhf72xjoegO3EkytWP0YQUzwp/lSR0d+bTWwvaacnsC1qzBNYf7s2WIgdIGQbg5EtO8WLFE4Lzw+woi+kHUrrN77WQBsp7wDTMmuJqN+cHDvblIin8Et0ByKaYcNSssiKCbewLzZtuhIo3y7eYZcJLI9nTi+dsq1azeYitVw3/dJK1SEEDKVAZXAbtrS9Tti2THVCRXrNAfOIqiVlpWzGFLwY3TmSAVhCpVaE1Vhyh2j9gwT7IbEbhu4drVw9Ro89FBme1pmYFqqKZtafV3xvp6W6crT5EEA36BbJtHHPNjmqHhLJBHbPJogVzF6pG0qkVDtXEtuzq+6kxtNLsP7+O5JUeakiJhwUHN6AraBt9YcAi4yUxyIe6bYlSS7zlq5tJpzdWeyYpe11apVB7alVqpH74PTNkMM6I3KMIxMU+b9H3yY3TiRq/Jx9z6HSxcvWF3heg3cTA3cU05nBLbP3M7RluZaO4jzY8QopG5jdXUihJjopzPmFA4blGgKi7ol0Jq/y55m3jCcB0fUlT6rWB3Y3e4QX7hwZgZzM7B1sTNV2O5ODuoh3UJrn+EOlIvIqDuR4i0wUJ3HrISA4uJtVeeouYigITg48vFQI1Ic0EUHTf7R9QBINmZIq3+jqXNGoZM0Hz+kPahrFPNcOAC2ZQa2jWpYvTQAVXIxcF+LiTHmPFLyOAPVph9Qapn1HUreZ5SHcWRs4lMOrIdhx2a1YbVa0XXJ6tuc8py6js1mw3Z7SsyTj9PoAW31oJVv+mL7S0ye4dZIKIHWnqtRpE2ROLiPIDMN15KpwWtaPcLqcz56CycTlOv9u1aSi1B1nSso+zoRiXZvtMEID/7IXrG1qUq3ORsc3Eqxev02zNT3jEZHXvVrglRqjZR66uteBVYowQBNDdQgc7ayNEbOrZrG2rQOKkWFSrAel9j8N3DrGX7vey7c3fMY8DZtdo88MssqdVg5SwVx1Xu1YB1ifk5xJp5UcTq3OaQWLHJdCzE/SaqxUIIaoDFpNFuLa1WmYow3ESXFSo3mh87CSGqBqBQt42drR0JrIOd9vX2QZNw3rbZ+YOPUQK8B2+K3xFhcHTWYGFGtgbFUut7WpiqZSqCq8ZaktppLLy3UjGqHijnjM0uhuqicWl/eGdhqnkuqWjyzBUxqLSjJc7GZECopBrJaD1pIRuMOwhQyWUemOkE1qn2pan5Qa5NBpWhmqqPfZZ2vm/mPzn7AaN8S1H1MC0oVtd7DQvN71AS7gC6aJkRWJaNED2pIseBRrsa5qRSmmufseJ19JqXvomGNoN7q04OD1QQ7h+E6qscU7ShTIQGbFOj7CcJIDde8lhdqnSwJpZluZllEB/G+t9eAlkgtHbUEcsHRVAZ2nEzQDSNHm44ATIO6z1lmUJt5hjO2T8rmwHdlqMLVCd72sPDoDXj/5cDx1upqr++EscBYrKfrMCrHJ/v4eNfBqrNFbpUM+7X6yTHDjcEywLsJjrdGOa1tpmiLxpuJMA9gy/zhg3wPgt8dlC7CH747cPYI7jkvPHzNWsF84NE6148KBsCmCXSAmITYR3MysXqBWpzSW00SO0QQL38IoYFRRXfQ+Ph0CaJN3HGojB79Ee8Jq9k/X2FyGm7Bo10pEFdeL+FzSkQh7mNCaWWCEjEJKVlUaNUbUGsArusErZFhVMqkTDureWiUKlV3dGtt9fumhBaElMI+k3sgQT47qyhd76JXfattYy+Kxf6llX22ul3LVt/aRKdEZK/IKKZq2sXaEhJzNUiXYNUFugQXzsBuq5w9D48+VhkGyCWguTr4xqnKWG++xkn3a6gFshroTmkfNFS1RdpqsXhWtPvZDlcpZQ1qGQZEiRodkJoQUltwwehMVS1TU7SaA+gKgQq2odaEukNqmQ7rP1vLMEfYRaNtpBK4dvUajz16md1uYJgyinLlcocAmzXmfCrIcA2JZ1BZ0Xen1CombmCEG9T63yDqDSykZacs04QIopmssB13XLlauHx9yzsfuMFuNzLuBq5cPuX4+AYPfeAxttuRRsWzjEnHarUiBFM8bIN3teoJuRjFMLsIA8Hr62zxdZxGniZvwB5npz6IR3XVWxNQ7bsgnl2yOpgYI/1mY2uQR2gb1bGq7ksb4j5L0eaFCY1YGMBqb8tMW1Z3wq1MoN68Xrpra/gmQ1bfgCx6n4sBW8sECZKFkkemZFTPBx96mBunp1w5vsF9H/dc7n3OPRRVLl64yD2XLtHoxCHInppBC4r4PWusiAMBoXZRZc5O2dYdPPgUQyKnI6JE+u4sXTqLaGCYjhnGx6g6AMXWyDlwU/f1R7Sou28Qd7nmzIWLF9Fq9aWNQicSXKeAuUbRwMAe1Lcayhj2WYNSm3I3rLTVrTVIIPO4bcrjgq/H7VJFmNt8oKABqgVYPCpmbAv1umsfZfuMYKXvAl3q5s+dM5SiqE62F3jJSnFa8zSVg/NqX6eac6YVqcGDTVb6EyJ0q8hKI9F9JCtZEEoZ0WpBoqoFpVDKgOpkWarQ9hxIfSR56ZMFjez943AKFNTFVFZdpK5McXqK/r2C0CXrpZ0iDmwDEXVqZEW8p+e+VYY5rCbKk21trcUDVQ4Mqwu6iMzX1vrQdqiaY9ylfs4C77PhB/3Jm6BMY8Nog7lmNwXAwD+rBbLbHLb9OqWIsDJwlBOlToxT5+dZUd8PJERi6Iix837KYf4s0zg4OPacYS9MpVCy0SyNPmpaDGNugR7mjPndbkPJqGfoRAohRI5WG+pUmKr1dI4hzo/gIlw5m8pvu5bWl9R7jnqPcetk40wZl0JqjCfXBoVqAHYqlmlNFboKqfea6FK9B7u6uJPVh+VqbB/NO1ZRSUEIaYXoijanSxBCwYIqIkStEFvbHgeB6qDYdxpny1tATS1rGqWn6nQgLGdBgBihi8JqdUQSA9NZt1SKMfDa2qitTMNo8QZ4wxzUU7IBZBONsYxtULQEb42zYpU2WM/eLdM0uvic1bbSFJ4FEFNyVqmUkA3UIVYL7yDEEm7VWS+2LvTJ1oYgHSrBMvHRj6MmtNU+Q6OiCUjBzr0WB5mV3IJ7bS8XK0tUKtlZV31NzEJxPh5KtW4OnSQLGklmLBONMTVOAZGCysR2vEqXJmI8RWKAanPRSqQgxCPUg+AWUKiULFASpQSvux9BAjEM7PLEteGUjz86x5lNz4YjrlVrX6ga6dN5+vTk/OunDGz1Cf5QPdMwZDie4MGt8L5r8NAxfPCqcDrAbhSGgl9IAwq5WGscaHEO304FU8bFQN3pzlSGb2zt39YL1eSv93B2FrZpp9bOLe+zAXPJufprRZkIrLdwdQfHW1PaHSZz8BrXf/6uk/pANi9JBao0miCe82/nxbyhcZDJNFqcLRYteiv+M7p/NEfWNhlz/GYaWbBMbMs8NNCY4v5eWZN3B+LeU9acSz8XcdBdIXmjaS2BUmW+T/g1ipjP4nsXe+pTGwhy03Xae8z+moPnWrRe/D3z2ApCUPaxmWoLc6Naue9i0UuxSV6yHCyGB5Fm/279ei+6lbOwG2A3wLiDPCqai4sImeNMaEqhbYPcC21ZnfB+JtjX8ijcTB+/e20Yb4BWUkiUeuRRUKfO1kqteWY5AK5S6g8XA1CPBoZidVeqBStqEbRUShkpNaNldEoQzFkgDWy3W05Pt+RSyNNEqYXT08qZM1g9DqYyPOQdq7yjywO5TAQmAoXQoistO6wuPCWNttSEaswpGKeRqze2PPLYCY9cPubhh28wDpkyZa5dO+X0xinb7c57PvpGMNcItsXfa7lq9frEYL3tDkZDo4rRnhWh1uIUwn327JA2uG9b1tYkByMlO82ntVzSeVIr6g3g7VgpmfgD81z13K422rKtpaKN0u9U0bmOtK2L/h383FETnWlKh7VY+6Gq/h1oY0fmzOHJyYlRuGul7wxwX7x8BRBWfU8I0ZVckwck5qtnp69x7zwfZnPbObG/hkEiBIjaQXI6eHeWRpvc9RcxYLYlN+r3PHb2c0Ln713NuWkMlLvY1us1rR0UMGcybPtpKp26v58w11OKtO9nfysluGCRHWned9yMRVN97TNga6DBPjfEg3Eknpk4GFP2fLV561F8C25q27o8KLjPyMwbhuzv2byH0PpaNzozB3uLfbY3QLH3eR0ywQQUuy7ODK8Qja5rLBbLdIr0TFPi9OTY22nZOhA8Y3p0tGG9XtOlwKSYO65W/5anFizy+khvx9UiJcayCHP9coujgFCb7+L7ra0HTt+W4CUMTaiuAcSWTbeHyD4QAQ2ImA/Tjj2PiQMAO9/0Q1CrLbzZ9l1fi5pTcCCs1wZM87FCCBCVTjv7jsXaiZVqTq6Bo9aeKllP5cY08bmnt5zLHmgbu6+4erQgeBURFO+5LGFubXW3WzmYbKo2T2OMhGxzrfUhtwSJAZ6289gwmb3U/b30AJPJoHgd/gGIseyvzjRV9etXdD8mo/vOTQDVYlT2Wa3tkylwZ5JYRrgNBVuyi9UDJ5n7m7cyEqNGyyxA1Mol4sEcwP2FoE3UrZoj76MgBpkznCkmxKmq6syTGJv+QOvfCrjfbWKkQg1CU1tAPGMuxbKRQee1owVJxOftvFe3Odr6BNMC174uNfVlxNuh2f3IXnY5772Cs1PafbTAxOwriFgLN4VSo7Um8qWpOFgXadwjF+/y+X+4lRkecj0Nkdn/aF6LHPo+ZKNlS2PIFffl7NwjlSgTMboGR6kgGcTptv5aofk0WHmKGoWdtoar6aeoAkHppKPfnGEqmSkEYlgj4sJyT8KeRsb29iYI7fexKLsJ3ntFeOhEePsVeOdl4dpWOD71Gzl3ClC/wE2VzYP3GLiY/HFSoRRhGJXtFsYBTk90FmzxMh3AwIg1MW/0JTwKYZ9bSnM8K9SMiEWUpItGeepgAh47EcbJPjd2EIM1qEYDNdpGWyeMYqyFmr01QOxnx6v1HJ9KcTqVb67JFnvNtqnHzvrDmpCUkDbJtj8NlKJMuXjPWChjJfaRmAKp94XIyfSqINVrYUXpkszAN6a9E9pgWFHfXB0olmwDr+shpkD0LGwpyrjD6kc7SNHAW84wjtX6SuWbUa62og2YQa5l1W3MW5S4AdCbfFVawEwCpBjnrG2ILnZg/aG9dY+9dkowDJZJXa8a4Pdr4479xbNwdE6495LwnEswDMq165XHHs0cX69ce3hEc8UvDKRIXPfEo57YBzabtqgrw06detIi8BBco6be5VkegGs3PsBmdR4opG5FVwtd1+ZTZRpMbKz1q7T2DBO7siNjtSWhBGIO5DoSQ6QLiVXct5fJebB2Pnnr9VAQwso2FxWuX7vO1avXKDUzDFvGYcfVK+fZHAWKbijcgFrIwykpnRDChqHfol3EKNDmlMYDsAe4b6Zsh4Hdbsf142NOT29wuj3lfQ89xPs+8DAPP3KF61dPaXVou+0xw25LHgfUnaIUIlEsCp4na99hFLqRVCJn09qc1hZAcafLQHy9yTHLxYCtxmjlBWobafRJkDzCuYcfDZxXdMoMcedzxOeNev2S18XFGNkcHdH1q3nTAaBkapmYxjIL+kgRBzdemtCoeuqeTftc1b3oVCmMrVYAqzlWPEDWLn+x9wWJXD++ym7Yst3tCALjZHXH167dYBwnnnvvjqPNhgvnz5GieD/h9v0VrVaQgYiDFzNpEb/Zw/I1TM2hiiFRg2UvQ+yIcY1qZTecRQSGScjlBuho94t9fZM5dza2LVg5o4271s6dOTcD29qAq+xrz2tZ3ZxdAw/a2KJ7OG6LNlpunSnahyAmV1fvrha8auJQ0dtANcd3n1lv981YCIKgQWddBIVGqGAf/WyvbHW7MmcdGsBtoNtokFYYZHs6sNf3s97ic+BnH+gsFRQhxQ7oEISuX5FST84Tm03PpXuey9kz59jttuy2V+l7oeQDenQIfPInfSJ9v0Jr5uTEWnSoZmqBrBnL8lbLJnUeWG7dAQRSCu6QCyKzEzN/J3FavDp9Wr3coqk/1/L/p+5PnyTZkutO8Kd3MXP3iMx8+Zba0CBBNslumfk0IjP//3/QIzItpAibbAFAAIWqektmxuJuZnfR+aB6zTwLGOLVCGeQsJKoFxkR7m7LXfSoHj2n0D3F2KrRE0OQvcqJstOj9/58uwP0btZLg0q+W5oNKvJIrDllWu4S1fcg+Mg7OdtkB7b2mTuQEfGKeDQNDe9vxtVYRaLZpjhtOyVjc4wkW/XEzTivlFxgalko1VSqx9gJIYyaAsNy5Y8F677Ew8K4gEiyoH/EkQ7KtLMzSyR4K07njkVgr+vuaGGq5hXRib0FbyQMmiUiS+tspbqwmVXFcMHSjtJkgF5bcE3syJNjnkw2b+Jm4k3dXh+AFipNKst24zIHLvOZFD0GVTn2PgyktdqOpIY7f4QBKpnpWJ9XKdBLMWEw4JQzpxzddm4CLdbGk4ytMPdAzjP0QIiV2AuRRgyVmBI5BioRa7lQJGy2XkTTuDAw6RZpOdKDr2vjWfjTsyKdKxuLtd8F6wvyNVloIuYXHoQpwrJ2844edEexZ2tU6oDKhEi2mDgEIsL08JZa1LzlMaZnoxszjs3PuYE00ylBSBLdxsgGWu8Wu269kCSTPf4YgN/GVyARzXO6FaackC60ZjgIyQTeEoOxLE6XbOyZrSNhQxFaKzvDM3nStHQhtmTPg+RrSYG2kKcHTnmmAg/ziV+8/TUzkZXAKuLJlz9Gn//48ScB25G7O/57/zvlWoQPr/Cfvg/8/lX42yfh95/gdRFeFzF12moDICU4TUJrUDb7ap4xqmoAdgkGEFtzO5dNaVVppe304B0Nawcxg+XWLVuCT0zFNrlebcPIsXJ+UKZJmC+RLgYI55Pletfhe1otVdWaGcDTqqn/Flfx1QGcveH/NNRPwXbZca8ExCqme0AVDXDmyUM6GYDfMu7Ssfd0mwzBFFkN+HfqKntyoG7+0BFy7g5kPZuuynazAa3N0ywoIUJwQA1GIVb3lR3ZPDxg6M0p1U5XwSslKfp5NyBYVShHr/DqMUaaz1vleJ6gxHJkvdxT3ejKyTJpFlf6OQhot4SDawXZtu7vVxski6E4zdbHEeMQpLjPOCo5W3B1mgOPl8T1qnx/gpcPCy8/LaxPxcZLmumPF/ppYv4qkqZATEL1LBzaqJtRmYlCnyMxy586rf7/fvz04e94OL+CdlI+MeuFrkZ37a2z3q6mkFiGSIfRoZa+0Kj0oB6YBXKbjbYriRpnotcAa9vorVLq1TKIKsQwAwHtgXVd2LbDX7H3zscPV06nEx++PTE/LMRsIhWlFko1O5AolUpxWpXbA3Rb8LatsZbGUiq/+8MPfPj4ib/7+9+z3G7mPfn8wqePz7y8XhFJO+Vt2xa27UatBt5EgmVCUQd5dn47xVjhel0H9YGgZaSX9+DvHtju1YVWvTfOstLVbU0I7Kq2tXdnHoiLQuD9dt5DKTL2QO9hy5wvj5zODw5sLTnRqvvUhoiK9cj21lBdGARTq7Z5oq4ZdfOzKo2GPbjehbI8uBy0VsUWbe0WZve6sd2EXo1O9/HjJ7atstwKnz498/T0zP/6H/4t33z9nseHM9F7h0T6HhCrV4K63gVzTp/9Ixy0/yOYmhzDU3D87nx6RxCh9SvIQqjQypOrgquLWwzRG1unh2jelw5sc5psbMbk980BnAedGvvYVPze3Qdjdq3jebc+KL1931fUe7G7dlIbgoBWndirl8PmheO9jshAGUPGQIrNkbvf7uPPzkj2vWVnx4yAbN9Xx34VTEF8VKQ9gWnngYFatTErfq3dK1NTwiuGo0oCEhspBk5zYJ4CURopdh4vk/Xnd91bBRCht4VarF8vBGXKRit+8/jIw8M7fvzht6yrJc89TvSq9khAKIgpzA6xOjp3th/3yTFrg6ituqWHVWlHT5Cq+Ve26sCWAfAtWaHDHgl7diF4pbdHqtxVBLkXzrtPiAy2ktw9WxAfG02gB68Y7lXV4+92sTpMbFCNPsJBNR992qMYYb1+tY1U1lGk0N6pxdaqUlZvd6ke8NpzNiEfmwvDwulLP2pVYrRCR1cDllstdBVCSGTvGx4aCwIwKv7dWD29uQK0RAfGQ03f2sDG7OsuElSbsmzVaLRqvc4mjpn2CpuBNRBpTDnauK0rvZv3bGtu04MLzInYmAqN5O0hOQVytkBRhyhf76DGzAtin2nr99id7BBPWEZvcyJENCVL0AZhyok5J1KILqhkYDum5PG5iVmNiZ6ztTt1OikoOTYmZ+YROjE2ZF83nQIdp72Vr+lqY7A1O38STTeLecUtNFEChaquGi53a92d+FGIEFXd/sYYGCYAFkkBimasf9jTfTEw5xM1KFGcZYNS6oJSQBrRUw0wkpKYPkj2uyn3bgrVc1HJ2TOdGJwdouLV0Qga3f1C6S7WZ5oKmRhmUpxQApqi/deTerUWtIoVQTQaQ8DPSUSYYrKEaYcskUt+y9vLt8ynC+fpLef5GwLK0hq/ffnEWtY9yfVPHT87AtcRtP0RuPVwB1VYKnxa4G+fhD+8Cn94CXx8gesK1xtsm/XK9m5+tIKpgG4ObB1HUruRKoqNQFpzC5hq/Za6g1pF+j7N7SQaDPU2Zcjc+5Ru3TehxsM5cH4QpkugqlAV4mS0aNzLslUL2sxPtrtsnNNWfeNs/dhQQzIwrQgSfCh7Rfou1jJqSBo9r2GnGo4+IVXxz7XM2kC9QYShWqrNg4YOdbEgsIsgDlCj03lDFLbV7lkvWBlclJCEkG2zHWJBqva+6kB/F+ASz4bixVnwyqoYDWLY3IgJVVki4dgGZQfMgGf+R8/wuO6ognjGHcVk7hN7VTrgi1YDbWKoNvB5hQqzfmIalQnuRqmfixhNmwg5CdMceXhQtNo51Fun/LhQCygVbYJunZomwiURT0YFYVDAinlndvFgvH35/TzPLz+g2slp5nJ+v/9cO/TaWNZX6lqpi1WwOp1KYek3q9hGJVXLwtc7YNvDRJDgWVijEpd6s4AZMXU9ItoTpWy+OegeUF9fVp6fE09PkXc5kcXmVGteqfB+wi42Sa3XWs27tHY+Pb1yXTZebwt/87d/zx9+/Im//Ou/ZV3Mr7KUxrqu1NI4Xx78opVSVmope1DoS50HhyNw9l4uFzRZSyMEy26m0HwT+JzNct9zdlCUHQw4FWtsiNY/Hs3EXdhB3AEY2HvFdhXFEAgxkeczeZrJeULpHnB7QIi42FmwDH49NobR9mCbXN/9SfF7wN4n74ItflPGPJL9114V6g11KqaqUreZ6+vV7vtWWdaVbSv88rtvOM2TPUuns47+btXmANPGzP0H/XF1774SiYirslrvr6JkhTk/oNqY6xtqewItaL1a64hXE/e3GO8z6Of3VJIv8IjuVxnCneUT476MvdHW8EGd8z/Yr3VU6EIPO3DoDgxGUkcxKvq42917ue7VmM2zcFT7YKy4RwHXEgj45/ppMKjCCEefcBiCU8rouf6jbAYanPLInTq6g7I+zkHx6pVTtFu34CoC/aANIqMFKFrvqxiYFK2c5rx/Zq91vwfiYBOsumSJHmWeJh4fHvj4Qbx9xWIOGZNmB9vehoSdt4zrGPoaohgNEZ8XLpbUDUyajKXPXwXtQu9lULj259fVWUij1cd7du1EhmLwAWx37/rPVrJjbsi+p4pXzdQS1d3Wvx3YqjoQu0926N248ao/BvJlJCC007vYvdFjrTORQhvbWzFV696KJxsG2LdPqcNPHOix/YsAttoVl4gAbNxu9+KCMe8JySMmO5ap1pWoELq42rbsjIhdLd0DUWV4HCul+fzHfW81EFwL2Mam+L1MpJgJdEpffE3ovi9Yv6yKtym5LY+RXqL3c5squkWvsse1LmdlySxGZZljPIjve247FUVIwVSYkwinFJlT2PvER9NOiPEO2LLfi5RMUKtLIQpM0pyO6GzHWPFm1P1eHz7hI64ZCuwCGgcCQsSFIn0vO6pV/qzUBaMYbCFjcqbo8UUbNGCraNeWMTEr2d8jp2S+810J6v20bUNC9xlZ2YUQ/ZOaF6pG9T8GLGGs1WakJxJFjJmqXkkabWMi0eeQiXmNNd36jjMi2dWgDdyaIr0l7ulW6TX6sZ2hhTjGphg5vSlMnKc3PJ6/RXImpQdCnHgIEGRDuukWtDKEuP77x59QWhqqd/pHP7eJsZTOTzf4mxfh9y/wwwv8+AQ/fIDXV+XTD+qKn52HtxGdBK1wuynbJry+glOvrZqIG3N7GX9M1F1xrFbQTkhGUVDP2Kgqba1oKVAqulx9kDXSlDk9Zt5/98jX32XOF2vorirULqxV6U2JXdGl0K6V8rKy9+m46qkFn+5Jh2cgEXp1mhagoR1zoxvoXBbbQEWU+aTUKvQVrEHeVQCbAfa6VboGdEz4ADHLvplLt422V/P2812LzWl0y5T2PtyYM/SO1mr9KFGYU96VjdtqJylqAUyIQp6ii1dB3HsFLEOGJyCMLoZvlhzn5rtfHD621otv19dtsVGbV3uwPARPdv6+KuXKiDt2YCwCktQWRa9siVnIWtN+t4p2s9wA8yzOLFZycAspMZVKo4FYtfjP/yLzzbdv+O43J/6P0nj9aWH58Ayl0Z4mnp7OxDkTT4nH95GYbBHrzQRMystCc5YAPP78afXPcPzw4W+4Lc+UbSVPJy7tK7q+p9dKLZWnpw/cnhduL4sJJQRFc+dWr6ZKFzsSrAdlnjIpZnLMpB4x7cARSFuA2BVUhSATwoRwoZT16APzPtnlduOn7wNw4i/+3SNv3imXt1cTdHE/vdYLtd8QF0lB4enphY+fXvjf/p//mefXhdfrysePz7w8v/DDjz9QygYK03yyr2myHpeysC1XtpsJQdRiIglBzJe1qW00IyxrXZnEFcJx0NurzS/pd4JE+LWP7zyg3QNXwGl3I3spYgIyrswFjArP6LkZ1NHjPWOIpJiYphOC0dXSZLYaXYXr87MFEzIqcUKcLh5IYr3U3p83qiz21Lpv6PHYHu8moK16YpvNCJZ24FuomwmQbSkbjTttJjpVCstt5de//JYQhF/94hs4ndEciVIZPtK9FyQkQpxAsgd2HvjfJatgJDHZ1xxT3XT7Dwm0/mCZ5r7S+82CpL5R2wIjIBgaBC50dN/j92UfLsykuheXFRfRU0XuhDZ2L/T7hVc7bkB1sGOiAWVFvcLvwkJ3oGW3ntm/jhyAw0jHMZ4QGYDJx/AAGsYAGCDLe8F8XOMgd2i3yljkwRIo4x0kHgmOHeAe47Jrd8p99PijGY13V0Y1PqcEo4GGoKzLJ5pXpd5cMiG4yMzOaLD7KKKknPb+8kCllVdurwHaStBCCo0Y+t1awHGjPAwfI9pAjAM0UYJ/iY6/EVPrRs1OEHV5DoHe6LX63bcHMpL/fdwvwRSIQ0C07n3zIzHPPv/3UbP/dDzjcDcvVALdQYc6o6K3YaWiOyNG9U6ojk7vBkxN6EwI/fCaNQBi610YPt4iXB7eICI0VVpZzXYpmABaDIlbufkaFmh1o7dGqdWoyP8SrArA1+JC6ytKohAszohWtWQkQi2IQrwPVIGtlh24iEyoVloTEyeLgRBnallptdFKZSuj3Q5Pjtkee1jqWIxW62rjSANBE6KN7VYgN2J0Kq1XISVZfDVNQg0uUNWiJZ7bZjZbGmgtuqhbhHAyv2IEDUYHjsHcLSTYejaSnqKWSJmi9R+nIFxSZI4ZIXCt1QCbBFP5xlruOtXnVmOOk+2rqRBaQVohJ6f0pmjVrWACbfg5TuFk959G7Zt7ZifrT7ZbYx6uASbF4vdWEE2Ii9G5zhXSO6qVtS3AjBCZJ6PlVjqxdqJEomSinFG1eLu1DdFCC8kYit2YkLUrS1WmyVobpBcXl2uIPFjcooW1VWKIzPNbkpod03WtBElWkZbKUKz20UgnkMJECsI5zfRWqaym1SHBEwxKLQ00EiWRYqJg+/KyKlMTYvf4RcX6t9Vozuc0QzXV/V++/3N++e1/4Ov3/4ofnv+a1+WFv/30iT/76i3nmPjm8oBe3h5OCf/E8ScAW8v4jqVvvP1YrzeF50348SpWFBQ4T/B4Ngz47FllrUpfre+1KlZ9w21e1BbZWnXP3JgqoNOLB4e9O2fZSoB707vKSF+2vXpALwYmE+SHRLpkQg7kJORkHrravP+3QF2V9bXRNqdghAGxLTgXSyG5DoQvAt7CIv4ju1NHxWWAf9uf7A/raj0uxt5xYNs8y96dBu0N8JLwfjqOCKIb0A7ZvS/HBuciF8Sw98qh9nqZIkktLaiuJGp0CMubiYj5uQZ7HuK+tDEc2frBDAuyMzG5S+Oiu6jBMUaGHlYQq/CiviFPd7QTj4W6V+ityVyPZ9vHxu9/H+wcUrIvOyeTSw9RkKgerB4+vlvTnRYt2PmPa9EOKQce3mZ+8eePPF8SP0lguwVaVbQY0NFWuWrY+yfK1i1g2izTt/cjfcFHrSvrduO6PHNbXgjBsrG1bJR14+n5B16eXnl9utoYiILMga0ZFVliR1JHQmcr1ouaQiI2YwlEgezeimFn34mBWpmI0lAtoN0AZTWabK2Vdd14fb7x4/fCtkXgxCkkahKv8Jn4CGLtAett46//5rf8/g8f+Ou/+S23ZWNdK6/Pr9xuN26vL6iqK5+6omQMbOuNVjfqHcA2Cr6tKaU0z6DKbnExxnAY096FN0op3qt6zDkLfP26fX4c4ie+FoyhMhJyu+Knf55XPYL3iPVxDqMXLWe37TjsQEopBmZHta03igt/oWr9vJ597kORuPcduA5AOPyAd0auA9dj3e+f3bf9ghxYdFXKtprBvSp1S95rl3h6fuXj0zMfPj6hbzuX08SUFBFXq5SGqPfxjp1WBw3PPwP2a9wXhs/AVnBxENu4UzqR4pkWF0KYCH1U/u39R7VQOa7nc1LcF3jcUVx0ZD2GvY7ofj8MJNhEtEqDZ/R1VGxhT5zYt55QHLRuo8eoZXVNzdr/7D6hMH42vrH9aACdg0IpLodvWNpfp2rUShlUZEdSnti16/JrHQINqAGr/Ul5H3CrDMsx63e3gD/kYOcRxau6BnxDTISQCCHvFyBqYg/JfVGDBLbtulOfhyWYUfjG/VJaWVhvClTT5YhyFz/cJ73083uungsYohd+bwVsX/Gr7OItCv140bDc2I1tZNS77HmZ76j9veCic9a0OU5m75XfEzoD9I5ntucOjueswZX0RTy5b2uKjjHWj9WiMkSt2u75G8brxhceYTpI1n6on2+r99x7fzHaEO/NGgq5KUbyfCEsmGLttuCqn3zxh+8pe/JkZPQ9puutO+A3gdKA7i0tHaHWdoAT1CuywEhcdaE1oTfxZJXbTgoI3lvbORI+nvxsOqziTIPDvKw9uYNrE3ibigax8YvHcSKIWnXWuiNsbDRn0Q/Lnih4bGtJNRM4tUnV1BiTUEnueUroJAmmwDx6cVGQ6udkybPoldYokU7fvbtDEHKe7PZqJ/laGUJEUoJgloh7Qn5vSekcW521F/XereDlE8g8ho0BOqQaVJu36ygSj3UHNbGnHDI5BiKZJN2auTRB80KWQFfzw62tGKhtQuvBwa0Qu60DtR2e24MCIJIMhInFQOLAdghImpaBJTmDBJInlJq3t6gYy9HMSTxRKEIgGlaheTrNCl2TXOhicbvoSGIOJe5AlBnCTI4TMjVCSDw+Xkg50mgs6xN1ucGt8N3jhUu+8N2b91R1D+yfcfwJVGT9o3/bbBzr4NoDn1b44cWAbQzw9mwDOAv8OCkUyzTo0mlNKGroJApME2xFzeN0HdSUkSE0WlovLiOmw0PL6A9Kp2n0jO9AQQ3LTFcTZTol5rczkwPblIQc3TetKetmwLYsyvLcqRtoF0LOjEokpUEINvjj3X2pGC1a+rEh+2us4mzCD8f2A2WxvjyrZnrPS/Xs7KD4R6dlBAMXIRmFGbFLixJQIm2YqjM2fLtnbYNezc5CkjWu692ztPf093W6SMi+nvrEREwwqjvILN5OGBxYjrV3iBjA6JW2v5c9y3gcAwunPOLR0U9rk6dualRgsR5sddExwAN4i7BDMD/i0+yLjYCM63ERKvOdtUW8NqhlUEbglJ2yHcziKAS4PEZ+/W/fcnk3U2rg0/eN9trRVtGt0Teo13vY7hcXcLPlLx/Ytl7ZysL19sx1eTa7hZTY1hvbsvDx+Q88fXzi6dOL389IOk9U3VAaIXZC7kg0lWxb5IKJ4XUDtqeTqd5OKSF7yGWS+Tl2TOa9sW2Wye2tQahs68bL0yvf/y5yu57I6cwpJ04ZaqlEKZZdFmFdKx8+fuK//J9/zX/7m9/z1//t99Rq/ffr7UbZNm7XF/I0mZBIyi5MErguL7Rq/VmmBn3QbTvWlzKqJwYULaAf494o9G6BsG2+QYTPwN6gae69cuN/evSyOfnSFWdNaOoAG56AGTZBd9XJlDNTnshTdo9pCwzLut4JwLgtxrq4wIqiOdvmJqMXcyQB/TUu5hSdujbA7dF7O+iFuGo6+2ehYvt7tzW5rMsOvMpmu3yIiU/Pz5w+nPj+xw+eXDojJ7HAjGJgJpjvcJLo/cZGwRLG53n1W71/UGXvQdvvqwQTt4gTOZ1J6URrZ2KYzYJByw6wQhBCt3WuNacv/oMy25d1qFhvbd+FvWy9ZazL/s1Q87TnZz1YNgY5ArUBfXSMSU9iOyV0r+iLusDJHSwTvKI6TmyAvuCKpw7A9kEt+/lZYO1JkdFnyaD+OaDdgfORPBnJjTAgn9j+r9ppxcWW6J/1xYqMsZv2c2y9ktK8A1jrpS+mzBoCp/OjBcEh8PqsTrPzBEE3X1sXg0eC0OuNpd4QTDjqsJoZSa1xixy8IDtIHTHV58cBJEMITkUec9Lutd2f/pm66Xh2JjLnSbIBbBFXVB8tQxY9D/Bsz8D69z5rrrhr6xKxIP4+1rHTuQO2d1fRd9FQV1VFLRyWACH5+x4UZnvbY/1cRsXftQoUT5Tv/buNnDJvHh4I0llEub5UhgXOF398xqjwdd4BBmrJ1bH/aO/Wd6m6KwiXUvb0Tpbumg7QRYlqSf5RMBBNe6HF5oQLVnVXwB/tAQpl90Cv1NxsVIy9Ql2LpttYMO0o3xsYir+B3kfxpTvz6gC2MepO5e8STKg1KjEYq67XYS+HWUWGowUoBgjRxzeKxEav0LqxLyyJHX3dOmwaJZg6Pw46x7ZhDKgJYnAKf7M5IJa00h3YHrT43s1dYm8LcC/iiis+B0ybRwPahRRsZe2qXnTrBKxHWCQS1WwLezuYIB1o0qAXaizUKtQWaD1Ru1XA+wDaWundtEuiO6bEEBE1hkQIHo+p2UENjQRTM+4kL1IECRQt9gzU1jJUCaHZuJRA6MkEF1tjkMoVOM9vUAlUKmYN1Oz6NaA9ksKEyMyUTsypklPizeOZmGBrC9flI9v1lfq6snz7ZzzGM7989+fc2srW/gdTkfs/+MnYZGwe1g2ur/DTJxOIEsyP9nIxMPav/3XgdhXWRbktFhRVFTNbH6AkYJW2YL5w3SR+fdFUEyhQhbVYZVOxjKijmH2T7mpvljNhesvlq8zbbyfef5uZsgG4NxeYopqyrULb4Pm50wqEHJhzAv/c5kVibaNPSOjFg8Gu6LpAKahbxUjyLIWILdrd/C9lnghiC1QLVkqUOSKLgX715mLZfVS9wjmUhbvQq9+rOsQw1D7TAdxopWq1k7J9xlrU/bCMlgs2kKcMeYKQXTI9fb6tDtBqMYctoNvmQcqYtB70jvFhMu44JfjuvcJYVMYdvBtFIy4eY6mZWfgeb0XPUfjm253WcUpwmuBysneqwKbCphCbMAfLRWhxhncXaht9PnDdTOwqBeGUzDN5ynD6RebxbeD8LvO7v154+qHww1/d0FJNiGNQ5YLZFRACkmfIAU1fPu1JnEKylY1PTz+wloWtvVK3lbKtPL3+gZfllaVcKUszX98tGsgNELMSeydEQ4FBvC+nRScZKGsTUhKm5H6JIZLDiRQm6J0QClMWzucTglIEtlJpItSaeP74xHpbaJvy9AHevGn87m3h/fsHvv32LdMU+fTphf/0H/+K//gf/5Lf//5Hnp5e9g1XUKsEayOmxDRPzCf7LPpGWW67H6v27tVSZai9HtQ45TRPyGT9RSlaAH9dLTNaSkXCDFiv3ViDuovKADvIRQw4GaUK74GzNejYKG0xFBFCSgRLZRswCWL9eG6PITEhRHppxMn6hFqrbNtmFYvFxFVq2XZ6ZgHzqrtLuOHWSMM4fvRktWJV9QEXfbndhdjw6kzv3Txtx2LhCYJSbnZPIrSakbCxhcDf/fZ3PL+8sm4r/9f/8G/4za++ZfruK4I0RDe6FhOmyCZQYf3LHpyOind3kYshiy+CDBEMkb2/cFTGhEgMMzGeCPFM6I3QO8KV4Z9oej6mjtzlUFf9Uo+x1bUBcGCn83r+HM+4+R46tByCsw3Ms9Q0GPt+iweUUsTJUXvHG6CY7cKoDvr/jbKlweYdQOmo9MIuBAYOoEX23x1111FxNxZCSNlBsCd9ndngQgfIkELewXNAgrVHBLHxGsPhIY2Pjxyja1ZUYkjWqz6dKKVwvV1pkgw8iBCTjcGHh3e0Wiwh5ome1g92xNgXbX+tHhTqfl8Yvcvofq+PJwkDMAJHywK+djh4h6GU7DZrfVjbjM++W4NcgO5YE9nPRccTHfNl/I0D+hg5/EI9PmOA6bvUB/uZ29F9LuLV2QPMexTnlaFxJlM6cTpfbP1tlXW9ergjO6hTgdYtoLVESXdwLvRWrO+uF2ppvD6bZoK2yvmUOJ0vzPP5vzeNvpAjIiETU6dWS0SZZoIVPW63SspKykItjSRCjkogoyrc1pXalNQaZyJWUYy2xgdY6gq1It2cQDpirLeW6BooDWqv1MEk8K2hFPdL1s5Sm7MQEoqpD9fahx6pgdygBsiCWuzaIxIiOUZ6Lfv4MoKRsQlyTCSJVA2E0MnJglxVpXZl9eRzSJEpwBSi2e2JYvRga2GprZjCcg/E6cIcM6c4m8hVL6DV32tDmS3hF43uTQg0Rnud9RubRkghciWlTE4X7yvtFK3WrlA2ZLrslR6JCYNVG0GsaqyxoD1QeyTH2WKQBl3M17v1ZJTgEOlrpGmgajQQJ8Jpnui+Qq7rQmuR2jKtKb1HgkZzJcASb3YfKqesJDI5nRGqxW4hUtpGa9W6OlF6r9S2EWimP+PrQvSqMrqR45mACa+KFoTAFGcakS6WsBCdkPaGX7/7f3Cav6K0yNPL73i5/sDL8p8J2slamcM3BJlp+cSby8Q8WWLg6fo9r/UH1rYiaeL8+JY4f43GR3pf+enlD/x0/cj/7Tf/9Gz60+RbLV1+/FuV0s2D9vsn+PEZnq6wWgKQoLAU2BpGUUhAhl6gqlCqUOsQUHGGsU8SdFCM9xwn0kyFSHpjb2f0TLGKZSzQ7iqAtiHEOZBPmfkxc36I5CSErgcNNVjWaFBYrWgRjLIxwKwxXez7UTXwpnvvlgf0oELv6DNgvXd9v1+qAyD7RhQEcTAUhoBAEGI6eneNWmv7RYieju+DVsTeaxqT7NWVYycSsnRSFlIWsldJexem2V+TB6WDu16t8b3dE/udkrMBzOOpHN9YYO7hich+j+EAtgNYixxDSXVvLbbJ2gYlxjc22FlTCPu5zidLnsSobNUDtJFvkUGhPKq1Vo0Rp1Crq/dii48xqsgJQoJ8ijy+E97/ohOj8PLDSnlt1KVDnCFEJPoCGyOSJ3oKLtzwZR+HxQu2cJeFrSRa3Sh1o2kBqUiwTK0N6UqQsAuXKUpwkKY+B2VQ9enUrm6HdQSWQ5lRZQWaPYM7Ooy6gJGpDxvIe00LIQRKUbZlY90qtTVyFj59euG3v/2Bjx+feH25sm3bXhWKXr0BE4xIMfvv2l2V1lWfe9/pcbvQiAd7gzIXg3ByRWMTBm8eq46gWo+eYT8GHfkoVHmdS43CxRCm2jtZj2oIXrkaAGIkeSSOSsvxOb13tJrlRa2FWjeneNsG1qr30jKSVW5m7VRkoxOyn9u9x+6Yy9GTITug0dFeMYJ0pzEftZe7gN9Bsz/fZbkhQfjxp498+PTM48OZ9+8eiKESMJq6WX6Z+mlQD5bv7usQ9FIOQDbWYWB/rnv1GryCHglhIoaZLtVBWtmv9e5D9gr5F3sMSq/4vdiRpo8zr1KOcWfP1766UwQH8GltAJ3PCdjd11+jsw1AMmCo7XFWdR0AdmzgY1hYkHSMcfYJsc8LTIMiuJaGZ7i9MpA8zhrpbYxJsX/OAamGRUwMplAcg7o4kVVPutP1QwhMKRElWMLDfWxTzpRglbAq1hvXulGVJUSSzLQYaMGsUroqtIhkSyHUst7dZwgjW4uPwb3Myogd93MfPxSf//3ut6ZXYHRdYfT6mpDdIRp9bJD7mjMUkhnPwK5tJClsuMhezbcK7Gin+aO2Grn/jx7nv3/umGPHWBM4YrjhIXUXOSji/f5eCZRGlP5H77kj/f3+jJGmfUMdsIhF9rS6oL0idGPlJbOC+dKP+3p6HzRdCRxtap0elB5Hy0yn0Ujee1ubVTJDZxdm0i5U7Wjo0Kslo1VpUfdk1YiZWt/TXrZOqyUpRhtO7+ZLPiq9xvZQhtI44z26x+HeNqcMWnp1z3I5qp/j+fucjJqsIiiftwa1bsKRW3WLPKyfU9wRwULwsf+OJFAihokcT4RulfsYJrR1o1dzF7s69dCmjK1h3cdt653SCoRI8uSSjfECmNjhEKnSbsDWmCbp2L99STPnD5/jCsNTfsy1IFbp7t1oxrXaXOgZdy+JVNeF6d0p2iq7tSgCYbCm9iofe2uHxfDGkB09/LaWenwgLgS2JwmN4RP8A0Ssr5raUTV/aJUxbr3QVpUoZ+b0jvP8aErb4cTTywdL0m+NJBckTEwpc5nfME+ZTqOWlbVsngiZOctXFBWWsjGvn7itn7htn37WfPr/2pdkVCuvG3y8Cv/bf1P+8+/h7z8KZAOaTYXraorGa4F1E0pVbg1KUdYr9HYsYh4fmeBBa2jtri2hiHYTTlAlqmWsYgwwmcBSI1CGmFJZkRQJKXKaE6dz5HyKnCbb8MaeaBYkJjD0GKCKUKp5oi7Ppi7arotTArCLGFLa1oQKkozXGsw8WHtFawWGPQcDYUEzunFDvarrk3qOMEWY4x4M5zl5vNwdiIn/3Cx6aoTQD/GJmDBJdQx4Mo2ARJixxvKUhWl21ov3M+z7hsWdHP7Hd0GsY2kRIZ/sb2sFa9uzEGO067Wi7t0no7A53g7gri/X/i2+QW5AL1btr1V36rHnOOxavBUnT0Zdf/eVEw+7cN08U3gXldUyxBPs3wODpOTUQwQXl2YK8M4Tb5MvJOeHwK//9Zmvvpm4flz5+LvGS4F4eUDShOSJ89ksgGI0an29P4Ev9AghEUgmDtQrtW6sZTHVOS1I7MRJyC3StmbZdFxIphu9vfVGaEaFsuGfDLiOioUaeKxdSWLG4jFbgNpicsDR7uJwq7I1rVA29yjeUO2UVplfT/yAcj4/8Xd/nwnSeHl+5S//69/x9OkT67LSNqPb2r5iDz3GwDzNzPNMrxvaTU1zANmunVKr+0M2vz8211o3kB2xnuG3D2dXkuxcVwNDoyJhG+s/lKK3IKDvdFDBN4DuKXEdAjeB4SsLPt8R95/zQBOIaQIsIXFycFdroa2Lbf5lpZRiX5tZLg1gC3YumUHYPd53zEP8+xAs6BihZU5p70uku/qlR0UOtQlYv1QXu3DL/luuOQYDvfTGcruat68Efvfte/KUePfugSl1UigEsd7cENtdsuAADINi3Xv7jDYX9AD9++973a1swPweU3zA2/KI4YnWyo6JBbEWD6emf8lHiAO03jGqxlyS0b8oO7Dpav14zTUrqlMER88cDGGoIzk3AsCUMjuNngFbIMiwIbExoNpdF0MPXKKK+9f5e45kw2BAWVJMwwAuyd83oZI+H5s4rbIfYxqx4G3KRk+MwBQ7UdQ2Kbe66rgqaDQJuyiBlCamKZuADNBi5JRmo1KqsmxWPQgxkUjG0tgyr2ultA6hczq/RULk5dP3exKlDWGIPTli12vV2jtEb3dx/9m49yGM+EC8nG2g9khcWzvXoKHLZ0kNf3sRhu/woUx8/Ef2gNeUTK3nHE9CVfZ23/stTT7/7x8nwAh5/2VD0WD7x96kS/ijt2vU7cVOSpU8CvD7Xdsn5v4Z6tdTt5ddG8DYMlb1HSHXlAJTDuR/ASwqD3vpTSibsX10DoyCQWsdiZ0wlK61Ulol5Al1qnJPAhIZfrSq5hLRaXQpZIEkbu7hMmRVm4kgdfax27VZi57qXrUfatRRIHQoaiq8tY2KfKe2Tg2B1gIyWTJ4q53WVmo10TPruUy0sYqIsygQksxIqITQbE9zJlFtldIarQtBMnOOBJncKSPSvEJZW99734ePeY4Xv9KNICvai/Wh9kNPIzoM6mLVYW3WAlebUvGkd0hkhBAnIg2pCzbCiyXvuuGQEGdLyjGZxoMAofkabBXikZwRYS8GhJ11gSUqamDdFAmdKdteKSHRixyJiOq6F9qhBVQgh0QbccZgkWCxRwyQw/i3CbENFWXrp7SEWmvmqkAwUKvSQDYHto2yVbRHcnq0pBjm3V1LoVxvrLXyoJG383ecp/e8e7PQe+DD81/y4bmTwxtCyIQp8O78LafpxMftJzpXSn/hYf6Kc/6Kt9MveS031vJqjNrbJ27b7WfNpz8Z2FoQB1uFn17gL38SfvsR/tPfB356NQ/WVoUGFGs/Y6twuxntuDabhK1CK+0AsxxZBq3Wqpik83ju5CjWXB2S019n8Ib0ZVG38djQlxe0NxNJOifiORMv0YBjEF5vFmAlUZoLIy0bXBd4XeD11fsQOkY1ri4g5cFfCwKYV65E29AlRveYBInmldudR2uCFYnsQkyEYHQNF6UZu0LKlmKtzQa1OoozKmMg5ZH9dOqzxYc7mES6/bscVGnLEMkOBMV7H2oZINUtf2ztdLlupxej+3mY6lm3TJOIiX85zTg6SA0oMQok6MlISiJDBMBA39jf74Hy2Gv3QEcgZoje69YrTtuUfWMLQUnRwBR9VPnt8yXak6rF6eOrEzjks52SaRITnZrY6dmPZ5gnO4e12KJXij0njcK3f/GITBPMlRAekFH1cmJVzrZlT59t21/mEaNlPM1cO+3iRGDPJU/J+yQbXYymW3pz5WrPHvdOCJ2YLBLRZhk/K8sfSqfQ6a7YG0IgpsiUEzEWkM62rYfgkQ+I7p5utUAr7uF42ricLyw386t9ef7A7frK89OL2dvoEZRbL5IHcyF4MLruMvxDwKQ5aDJROg+6R3a6ur+kZ7JbE2qr3LbGVhvrtu1AOOcMyu5z+w/vd9gFKO4KrTuItdjzyADZNVifT2/qvXM2aZJb2fTeeX3+RIiR0/mBITpVu28wpVhFuPf9fkKHZlVR0UQavWweWFj3g1HzUxBI8ViTaXsfj2WGuwUrQ0lrZMZwAqqYHUPENl6zKKiUWqFltHduKfN3v/uBZats68pXbyfevcm8e7RE5DTv2N/vjOWGDdRYgLeDTwlekT8qGl2NpmaB0eaBTCCFExoaxEYMF0JoBLkSxCgGo7a4+4t+oUdOk8/DuIuDWa+xU2i9lzo4+0AccEprBI0muiJC8J47cfYE2D1v3ZryRpUPnEK4i0fZnjYou+LjZwRU9izsXLtTsUaQHvaJcFR4gwu8zQ40U4xeJQIdaoGIVyLF7EnE5noKwhwV6YXy+swy6gjtSFoZwDL2wePjI/M0k85CXTt1W7ndVmptbLUbaBVhOp3IqaBRKG6/EoC3s4HuGibOD+9BIn29GlW5NdRtyno3sTsdFRbfAHexLZGdZSIciVkd4i+ebJGhPGy/NPDirxr3efQkM+6ojHaIO0EiTzYMKrH6s1EPgO+rx+P87L/+M7379c4quetrD2FnSVhvrwHnz2jLPl5iOJIlxiiRYx0eH+GAYNSZJcS9mic0jIGgOxrWu3uIBnJQknzZ8xiM3Tiwv+k7NGpVUjQwsnWF2unBx75X8JvvV1bdDdQW2Kqv5xqp1XxHm5i4ZQ/QJRlNXcR9kZuPH91V0q1SeSdkiFlyNlFS767LIpZ86kNzwWjJZvindLF9w1ryIkENUNZS2XS0cykFu/gUowmGaqC0QmnNFYiNBFm1MiXYmnCqGyael1xYyWNG93QurVKkUWkev3RKt/vTaqC3yXtg1ZR6fX1rrdPUEvJKJJB9hkVqrwgTiCeUxDxuc77Y5zcIYcIiwUTwRFTMZReoa7405hh3/bcwmFvSaRSaVMxruEODrRRrrQgRyQ8egwsSGtIjbdiVdnvfnE5meSeBLlZxHmyYkCNzPqFkuiilbmz16vF+oDbYykLvjZw3QlJSzKaBoo0YYdHm8bzsVfVaG0/Pr3z/97/lYZ55/upX1O/+L+T8a0J4w7fv/g05z+TpRO9PFpOUTtKZxInaCmghh8ZpOhEIXLcbnz79YErPjxGN8HD6efPpTwC2OhJnNFXWBh9u8Nsn+JuPwh+e4bZBKUI3yje1m8l2qwao6g5ExPxoO4z8r6E1QK3CM0fhHIW3p4C1ihptSEVo2Ot7xTKypaNLQZcVpRPnMzEF0hxJs1EgO8K2GT3JxfQQMZr0Vqx3tGwDLMpBNb6jwA3ghAseECyIsGoVXnVRhlrlyIbGORiFODgwrA7WvF/mUID0jUQHfcGDBadwtt73QG8oIauLcygKw4FIjJLQxejDth8Nqva4JPM961FA1IKVNLZJf+LKvmhps/cZz613680d1OW9d3ZXi9ajr9biH7zY4lSJfUjZ9fjPdtrGfZpeXVfyLqsVxKXqx7mEQXO1sabdBKgGadpvixfPDbhb7K5k79XN2YBzqeq0GrsvEoSH9xPLLbJujbYk8Ox/acebx4D3fn3ZRxDreR0UvBiH8ii+WFsVOrVgfdrNn7v6WBhBa1fXufC+xwFswxFo2POyTTgmtwbKEyl1YhxZ2fvKnAU5VmVUWq1emYLTNPvm2fn44Zl1uVGGRU8wiqUFuoMeaYcB2UqPgb3a58HRDl6OUzbxh1p9bFlyZART1W0kqvfQgQHUnRo8cB5HV+IuILVnc0YQOsbkCOEOAGJKhQ70dVCSvY/RJ02pBWnBgz0H5WoV2l6tcjFoi0bLNvCpnhSUkP2Udb9XR+bY1W/9vgS564f0qsm9Jc5OpNOjuhL9jMfv7DlYYNYkUErh6emFjpCCUsoDQR44T2dyOsbEfm89Cdb9eoaVjP3uqDr2HfQ6Hbk3arfnZUm8yPDgsy9j28jxxBiVki/5GP3XOHA1JW3fh+SOhjz2lT6YAVYhDNF8cMdoHWrbJvznbCn8Pgyl7BB24GxY52g9GZ8bh3CQZWhtrx3z20HM3syiB7C19SGQYrCu4N5sMccCS0mZwemz8WVViBTEkp3uLVuWxSt5HVEbc3UAWyCFwJQnogRaTubqgbIsC9tWWdbCum0QAg+1UZMB595H5SRweXggJJhyYoq2viUxIr6pl49qugXqtpcei5KO/Qo5LHtEjrVVj50reOAtiAfDFoTu3av3wJhRpVdjL7uq61gDB7D2F46VG8aP7703fQMX/17uzm9Az9EPDexrnLtV3v2bfwTYBgu+BxhRG5NWuPD10JNoVqUdYzl47NBN5KePMTUA8bEm7fvB8aMv9lBP/HSPsQiW1JTorF6PxVrt7nh5tLQMXQZVKyDUES852GpdaaJGS/Zkr6JoZBcqHPuD3I2p3u57xIU2WpAYiS4Dg4NuPGI4XJwoqFq17wjkbE/vndoDiBV5ihrzYd9vOjTtdHU/dsNUtve3vlOTbQ1KmITlEHRxai0DoI6KtAvQ3mEQCREJk5+/7VJNu1Wq/Z6GoSfgtmIWH9izsCZiiDHb3G4mrBQwVpwp8xvmgIjGSPHEzd7y1HX3G+/q1XUH9yMRZUn/CSEiMoGM+XXMUVVTkFZPJIUYKN3mXdMGGmyO4dTkkIhhocmGUfk9GdHVq98FiYVpJJOcoi3inZn73ii+HimlbLy8fuLT01+T4itvHmfOXZiyMuW3nOf3lL7wcm3UutD7Cs4uaL0iYiJV0UU4l/WF59sz9MLDlDmdM1P6eZD1T6zY2sh93eCHK/zXj4G/fgr8/Qs8vSpPL8rLtfPwPhq2EwMJaxHWYguNdqirUS4k2Gar1lyJNBui374L/OJ94ldfzwQCt1X5/ifl5amx3DqvL4VWvRezdrTZJqzFJP3zmwdOb2amx8zlUSAKy6JIU6YM50fhttrgtYAYG1wjM9SGoEvYpXtFIAUzD7f9wTZXuqLVha7UKhg5xx0Elq1Zc7qKTzDrfZB0F0Ti5xCEkIJ5s909GcEXtYJdd7cBHJNVHtVfTwPJXnX1yqt2oRR/dijS7iocYhtJysbjVwW9HxE+eHM26nEtSm0+oL0qFvxzWh8qeE6vjnbNRq/RPctfy1FtTs7AGp5cPgy8ugfJ1Y61WbZQ2eMaVODjKzsaebgMejF79qxXB9dBmE7WP5sny/rsYDZBjsr5ZDSo7ErUvQskoXTrRXt8E+CXiXlW/uo/F7QrUzb/SwXWevT8fulHiomcJ+Z85nK6eA+ZUF1MPU2BrpGOkDUiTZAqSLVNaVQ+BcCzurbgVavQu+WUhEBOmZwm5nzizcN3nOcLD6dH3r/7xPXVrAnwRbnWAghRE9u27TQz0Y7Wymm+UFtl2VZenj6aImkwcRdQtnVl9LUAI+Y3INsKiolpjOrwCIbMdsIDBb+e63VlULAe5mmf7+r9uM0pWMGF3vbC4R082o+7APE+UYb/OyVrOxg0qiFKA2H/ewPgneV2NaVDk/tGga1sHDZDnmWnW3LgbkMawbO9Zd+TUYYBmv/O1mSatx5hQWiVtp9fFL+m6DRW1JMlI+9t4ZH1Ohr1U9tm59e6i5dFWms8PT1xvd24vjyxbe9J4RseHyIxZaZtZZoLcfRDy6gMWMX282CZ/Xl19eCnNUozu6OtrvRmIlr2LCNCIoWZFk5kOdH0tq8n41q/9MMSoRyARRn/uEu2yP5fU9gPh9p+GPTcdABbr/JvZd3ZGaMCPKqqI1nTPdMawjFWx76h4+ewsx9UlVQro1In4/REeDifyTHA9SPL80eWlycflwGJmentN8TpTJgvxDwTQ+CclYgSRXn98MT19YUffvzoljCd05So1VsKkimEakrcrjejGLZKnoy5QhC2Wvjw8SMfn5+ppREIBpojZquFWaz8T7/6jofLmce3bygvP1Gaoq83ylpYtkqczVs6kIkhWSsHFnMYONjpTrtImez3zYHrAKyuKXHYjgRUE71bD+aohu+GSmJZ1hAzIWbevX3H9frC8/PHHbSG/cbDnphU85gd8DBEU1ANMZGS+fn27rTuVjymvW+hEDzsJWhHYzg+7057Yk+KEGBUU0emnk6ezsSYKdviY0Tdm9rHtY8t8ST1fcWXPaFgcUe8o9V/yUfZNlqohFgpLSK9UUvhHDspgDQHZ01NJ2YkjGAHa7UZy0rS0Yc9wGb1PdAs0IZAoq3B2qxqOGh1QXyvU1OIHwkqMMp3ThbDdqKP08NWUtX0aaK6crrYXO/dktSlBXoPNveAGK2qukkzzYNeQDaabnSaJYgaSBXzY2+NVoUtLLQwEcKESLZWn34lxmaWOrHRZOPWBVr0JKjsrVTb2sg5MOfZhKLUAPamHgUpCOaikNK0i121ZoJZ26bUamAxhGl0CxBjgmDCXzklUjjiEfVbHCSSwhlChd7pdehBWELdFI8jNj+MGm5LQUQ1WxJClBQSLQq9JWo3YdNNKjkLSQyMGo24WV9tN2r6aPMIYSaEYon1ZM+yA6UXSltp9UZIF07hQq83rP8+YuKD0ZPBeJGkE1MmZ2Et3/Nye+L7Tx+Q+DfE+Gu+e/t/Bzlxmf8VWxOaPrG+fs9tA0Kh9RspwiWdaH3l+vrE9z9+pNZEDIEPS+fbuXIaCYF/4vgTgG2jNlg35b/8Xvjda+Avfwp8XIydfblYObyLgQMVoyIjh9dUq16trepg1CwspCtBO28uwsMc+NU3iTkF1k2camxAOMRAnuD8kIzu3GC9Wg9VLwshdeIpcno7c3qTyRdTPKtN2VaTv+4NPjRlq0a5SDmyLcq6jsZzD+iS0MWatX0lNeNdjky5TVxlbz73TI45DLg4RzeP3NFsHwKkJNaKgtOpgi1SbWRx1UGZBx/W/yAQgimFdgOaI2mWsg1aFfefDbZh6vhMHcGy0XjvK6g247qf58jCgYFiHyTRrjanA6BaVWbkR2XP31UHsQNsazeF5t3/To6savEKch/7sd9ndaArI1C2AqkdvsCImtZndFpyUHUxDRfI8n12iKPEEPYKcsMSGWs5QuN81+4ZgwfvltykdWUrcDqBvIU3X8FyVcqtosNm4tjTv/gjxkSOmTmfjLYSknH/pUFTeppI3TKmtQ56aTSakipotDBKi4t/RAJWkQ0hEnNEgiWN5ikzT2fO0wOPj7/gNF24zBfevY28vkamaWLdyl6BA+wB+fcxRWJOxJyorbCuK7frK701RGCeJ9QrvnhG9b56qjgdV63HR8cG7gFT8MqosQAsUO9dKf2wglkH1RllKZVS294jeljxeBDqFYb7Y59ROqocOLhzxsYf9WV3ywZh/pVevdiBhHpPzf5hu2+tVTzks08+aPj2uTGamErKcadQ995pxe5PCIGcIlOKdo0Aav6zSrPsr4y57CBZPUaXQIpGDRv6ryIGBIairW2E9rMgQnUaOtr58HHi4Tzx5jGhKpwvb71qa7YtnSFSYcB9F7PaA94BDA4/4NbM+6/UFe0b9DpSkgboJBElE4MH7upZtzuK7Jd6SDCLjlHNV6xKLR6gjrEo3ZKdh8DKGKve9+3sjR20NquGJO2mbsrBPgoxktIQRsGYEF4hGpg654lhhTMWbhGzndOuxq2EvTpk+5FVXaUXXj/9yPOnD7w8faSWQq2dtSpv3n3g9PDIu29/wfnxDdPpDMXVyevGen1lWxZ6Mzr+8LEfwkhBjEXWWmMpjZQi5eHC+XzmdJqJAaYonKfEk3ZqWXl9XTE1UVMnnVLkNEWenz6yXF/46cMHGgEkkucT67Lycl2oT8/eqpTdM9M2nuhzNganFgdT3/aaGwdrxTty1fb7wcjY6cYiIAbmulpV296nexItMqVMms5cHt9Taqe1jztGCXh7xL5WdX+vuw2suzI1iYat+V0tmTbUj0XE/GxHlgwbk65ixKi4hs8EN+wc9rYqHSwMS9hnyUicQUxg0O5OGDpkB12+WaJRh13ZeGMxgBu8/esfJBO/wGOrnZSUyRlvqrDV6u0elmjqQQx0FSVIxUxlmjNwFIJZeVnhwyjwVuG0aq35lHYTgiQSNBkrTYeIkw3Eqs3BVNvXURMWiy4CqztI682Swa01KpUWTAB0CBqpf1nyNOznaqKUSiudLvZ19nnQuyVdA5B62+uxY2vr2t0WrxF7I8bZq5nZk6tqa40YHTogoJHYE1POds90JKlt7elqFjrVK96inSlmUpxJYtVMwajUttdHY6R2ZanF2nTUrHpETFMkSbQERM+0Wo3tV719UTLmu9vofdsT7TavTBdGOgzvV9vdjhYPoUNI9hyJaC/OTGqEHozlMe5X7+Z/DdRqYrniz0UkktOM5x2tku2Bz87Q60KlWxtgjuZDKxE0enHMAuWUM6fzIyKGyZb6Av1HQgu8Lr8D3qD6AJzM1ilvLL3RtoXSrvRQQZSuV6qu1H6jtIneE7UGqmO+n3P8ST62W4WXBf7r9/D3z/C3r2LVNoXzZcgqAcFpx8MbzdeXBmgbil4+QJr1X+UAXz0IX78J/OJ9ZF3h9Qqfnm3yCFgf5WxKtLUOVWXQstLaRpiVdInMbzLTJZJP4lY+nW1p5BypCNfX7rQkZTpbT2b1/tQBpobZcHVSvFVEu2WPR3Jyr2iwR69DGcxglwHSWo0SHJzelxJItpvVW/Bg9KD+gWUbrWfQeloVsSqplSZoqvtnxuQ/24GtnU/z8xZ/fnQlZFvwYzhAn8gIeg6/WNR4/NhdIQW7//dUW0EZu814zq2x90+px+fr4vQa3F4o2jm2AQb07h76OWv3tw5CSLovaq250qVaUiF5MNJ8EuL3wBI7uicVxv42HqNVftiZV1Nn7zHMya+t46qaJnaWJ1OUe/zK7tftuVrwosNfjp2+9yUfMZpvbc4TU5ytxzZYP4wtaL6paSVu1i8bCCQZz0qtoquR3gtCQshMk/V2xJy8/0Y4zTPn+YHL6Q2PD98x5zOnfObtG+HlxYDp9XrjoCke4FSCkHIi5YmYM7VWtm1lub3SuwWm0zRRtnWnFBtYtOsceHFQV8fA2n34OCoX6gm45lXppq6yKsJW275525JllKiUAylG69HVA8j9w6KsDTKfFYxE0NG/+vkxNhT2v8T7oGVP+zYxKik6gjtbp5LTNPEg+D71NKpu5oGbrErlYKcbrcPXp0jOh9chAinaehYcQPub7nNKsLUpxmh/M+b2+FJTaPWc28gFunWKBUdPT1d+mDNfvc3EmHn/1ebV9VGFVlfxtLX7qAjKvoaNn++Ut2ZWBrVtaNsQGkHSfk+s13zQkhMiDUvVjoD6yz0MSN6BEx1jx3sm5UiIHMnNw4JlUEXtuVnFNgyPWk+ijGf9jwFbO8Qow560QCBPs/XtbRy3UQIdA7eBuIPuQalLQYg0tBVePv3Ex59+5NPHD2zLxrJVnl5Xvv7qI2/evCFFIQfQFOhU+rZSlivr7Wo+zs1aGXovvh77PRBB6VRVtrIgtgm5jgZczpkswnmKBDqtFj49P3vCR3g8n7jMmaiZp082xm5rRWIm5Ylf/voXbOvC9Xp1QByYTyceLo+klIFoMYy4FVMIaEh3a4OvX93TQqPqhiV9ldFyIyb859czLGH2wFjxClIipon5/Eh8eXEWmu3ZxlAxQaqxQhgd86Ami7rtiSTYq3MOauS4r+D9kmMDl6G07iDZezEluP+nn6NK3UFt9+S9gXMX5ZS0r9P3ub8YsyX8FbqW/T11v4lu1xZM4POenvylHlu1QZgTgAGtUhulNCR4j7hGOmZHFqShUqFXdm9Y7YhWeo/g/qKDhlu7MRtUzAc4kAjYfhawmGp0Qtv+3/d1d+x9gNlrHsuCg1ujSNfQrPVQu/nU6vG3do7RtgXfw6yA03eF3kFpNXcCi++iNqKGIbLswKdTu7U8GIV5jL/JBM/ElaRF0aAWs6uQMO93UwAaistqLQQqNA1WMHPm4RQCKWSCQ+t9jHWARNNOaY2lFMRFlIZgbAqR6InDqhOtdUrZaD26f+xswFYqaPXkvI6lkoQOPSdGomNvJ/I5ZgU2Yx+puGCiDi2Mkaj3RG+z9bwIpNQZNu2mCj8DxkI82gdkj8UNXJuzgVkYzeah3iOSlBAseA4pczpfCOFK74213lB5IsTIbf0BdUHRab4Qg5Cmytpf2cqN0q+4zY2P8ZWmC7VZ0ai2bImH+vP25J8NbBvw4yr8nz8K/6/fwQ+vcOvKlJwmE4XTyYLZT88myvTpxq6Y2yu0TakbXr0LXh3rPMzwb36Z+Ppd5DwFPj3B7QbLAqcMZPNw1ap47G2ToFtFRy8zpHdcfn0iXRJVIhSrIDcj7BOjUrZOXRvXD1fbrKIQf/nI5ZKY32e2VVk2eHntOzUWHJ31Zgstsgs2iXiWozVw0KoDsItPgNboLaBJiJdIF6tqZh98bevU1QbzfBZitkzqeivUtbBeK+l8sk1wpzv6otGscpsyHpxjyo8NSjULozxBSmqD9SQGzoLRgEemeGwog6U8dtrkNN6ULKvaGtyulgCIQYiTWe3k7JUUD6ZGxbVuR/FjANdW8Qz4+FvdgWcIEM4w+4JY90y1n1JX2tp48zYyT8J6bdQVlmr0Y/Gsv8XVLv4UTZ25NwPqzbMvIRgDwPomlTkb02BySnZtUIqbenttofj9/uaXkctD5zQrf/jbF7ZX6PMF6YGev3zqUwxmwp1DIsdkgUIyulnTyhYza8yEaFYC9EDkxCU/2kIvQinPlHplKwsxzkz5kfPDV8Q0EVNimAekGJnzhfP8hrePv2SKJ+Z04pv3Z8o28+7tA+u62terK/86PTLEyHw6c3p4Q55OfPrwg1Vl1oUU722CBpWHHbTeg8lWrfLYa0UUchCyi5wgcD5lWu9s5aju2N5rQffWKyLCGoMpscNeiQCrWo2Kim1Md0Ee+KZgAGzQBvtdpDbEffbzBhNhGbTFEDywsLYG2zyjq/la4BGCVVfqHXVsp4gBKWdiMMA6T6YEO9RQtRTyPBGD+QqnZIGC9fs0W9/Aq/OjoO60Sg90U7TnFVMga/K+Rkvpa4UhtCYS0Fp9bTbhoVGB+vDxiet1IWUToL88XDid3rD34/kG/8ekCHHLiAGjbTxYxaLUhVIWtnKFviB0C7JxkCBxT8yY9JtX8ven9+Ueo/rau/V+995pte1JAEsoW3B1H9uP6xq9jp+JIWBjTxBi7DsTwn7vr3fgZerefa8QjWNb721v7hIcnrgVrJ83xOhzXYhB6deP3J4/8b//p//Cjx8+8vHTE6XU3S/zt99/5HKa+PTpI+/fv+fdu7f86z//NSImSLndrmzrSlkXqyR3E70byedSqo9rE6BBAk+vV9Zt4/k58923X3mytlO2jWVZuN5uO9AX7dxuyodPyro2Su3c1s5X7x559/aBt+/e0Lv1Cj+/frS1pRYinSnbfFPvUVZV8jxxOp+RPIFEWpjYfN6omOeoOjthVEcZopUhErUjY91r7rHu61KImdo619uNv/27/2YsFxv1Fivg4jWMzn3LNvc7xof6moLY+REEVfOt7OOzELwj2l6jzeM7770VbM4Hp1b6vSQIXTcD5QTaYMto5eX1Srgtti95onBvgRJ48/V35Gnm44ff09aFXtdDCLCP9iMDF5aS/fKB7e1WocMUD22GWhubbHRp3G4bRNOHMSXhRouNVgyQtGZCUlIboQkinYitB7U3Si2QvLrWvJVIO1G9J5RO8t7NUkaiwZxBajXRvyAdktFQu6iz2WzexztRLzsCaARMxd8YI9HAtu+XPkosBlRFXdnXAFCFVqilEPPMnKOxLLtSNiGEDDEzz49ELgCoZresgdvtxpQgniYvF/u+bdlAlO5jpnqskoETIhlB2bbNVaaNEdG10NqNWie6BnK+IJuB7K0UF4gMmFO8xcfB/zfFE1sQQui0LiCREGbQSNdADBXtqzFM3PklqBJqRJtpOuuc7RqkIaGPTkOM/WFgWWLkkk9WOCJQ3BGgtJWmRj9vOSMxoTGwlBWoe8+2tYZin9MDIhl6cEyTQSKTnDgl27tTOBOiiTBe1xs5ZR7evkVbZ9WF8nrjdArMMdP1yrIsvN5+z9ePvyHnC+8ev+K6ray18Hr7we1II03OzkLZDD9IozNR9czWf5561M8GtssmPN2EP7wKrwWWZtXaMIp43YSY1gZbNwXkAQ7Hvhi8PzK5sJFK4BIDb87w/m1kTrLjyODZqzDA40BhOBBzGkTXjkQhP8yEyax3au3kyYLQFMSyFTVQN/XeuGBvHA3oDHpB76Ctm3ohYV9Ud3/AsfH75of/PVF8szqAmP2pZc+tdBroG95YCq0claNebbFvCVt4uPu8IZbgQj17UHfH3a/VVonesc8CaulHJs+rUYRxfkZNC2oiAE0tWeL6Vp7R1T2WaW1QTpSy2XNogBQD82WWPahvw75JoXlvbzCmli9u7EmngF/PKM/iPbneP938+e6ZJLUPbkWpYsIKYkV0e70HLa40ZVUKARPOAsQozDVYnmu034y3Hr0qI5AZvl8jU464YqpYX/LljZDTRtVGfa2ENtGzmzV/wYcBoyEglUlxsn4sIlGrZ/1MVTZnoy3N4YHH03tynIgI65YodaKUlZhOzNMjp8vXxGjA1gRButku5Avz9MicH8npRI4zDxflzWPhcjkx5fhZ6GFUHgMzeZoBM4pfb1dKsd5X87gcANK+YvQqRu++yXD0ng4hEvsAqyz6bErJ+3jkmFPj2IMlUe9AHoD2vgo0Mi/2NTK3x/sdfz/GmvajMvIPUdQAxQ5Q/b9g/TaiQ7BjfK5VLIzKeN/ha78fVDKV/Ux9f5c9gQDRe+ZtI7WKilf0QjAA7GBpZ0T5uYrovjFaz6bd/+TXvz8HX0e7gw1i83MJe2ZZFZ6eb1xOM5+eXvj264XTaTUQ7+fV9/vva9mgP4pTtkbV0kVGWi+0Xqxiq9UqWWIB7xjrdkEOvhnj6stOUg3LKktuHLRBowf7HOijaiH7urZTtsPdeFB1mvtR8Za758f4m9728XUPkO+R87CYMRTrgGfMQ9TE4BzgxWh2PkHMTuR2u/Hh6YWPT688vSzeBmBzZi2NUhs/fXyyALdsvL1MnM8n5nk22nktbhVi92LbLFmFKtPkth5Aw6hNq7jomcC6FlQb27bwclt4ua683laraIeAeSzbWvJ6K3uMk3IipchtWWlile/kdn4xyE7LHp7YMuiSATRFcrJ7MSVLKoQYoDhoaDa+hzhXjMnFX4Kvg/beJkIleyU8OHVLFdZ1Mz/eYD/b16/gbUmeuFW1XnlUnS0VdxBtm7gnSDxuGOCke/ww5qMdYR9zKrKz90D2JJyZqaip5mvw8TQoz0antNqCta55doTWTfhSJFk/bppYb6/W1tA3Y4O4tdXwc/3Sj+p2NkfRxzYKC418TvaOtM6U7bl1p2H3Lm7NY/FQCME8nAM7O7I3WwdUXLw0mWJ2Cq4mX53GrO5B71uOjBWid7o0elPvPfdIVI/5M9aKqkrYRZGiAfF9L/NrdK9dS3bZWtGd8jYqe+pCUSF2YghkDRajIlzyex7md3z18BsQUyyu7YWqmHRU111nYWxY1mKkbG1oTlRENrprUKjMFhOREC9idVVa3egUOoXWo8fP0caxxD0JjtO/bX471xf3ypDCgSmcUulJvugJmNElH0RJoXMTTy5UoVXDJV29cgyH7sRdginHg/246hD/ssKgFac6cVohRmqrgOtXWPrMVbYH9dwArnaBnixRITNB65EksxTnaM8mpkjHLJ26GvNCiNRmIDV0JemVpIKQmVJGOdm98WRLimdj8EQQKb5vGbOmtZ+3J/9sYPv8Cj++wN98DNyaC/R083213hW3zFlMSKc4SOg+L4xWaItfjHj/Kby/RN5f4LuvIq9XWFarAOQEcxLWzUSTtg0PbIwqUFzJuNZKnIT57Ywko+iWrfDwkDnPgekcKCWwLsr1pVgGbzIQLNF8tuJqvQfbBmXttLURk1EK1JX3VO05WkLTUXxrtK0gpxPEzFCY89WY0WSgTUA7tUE6J5gS27XtA7BXm9ibCq2N/lvzrYrzUFQcA9QrMHNk+G1uqy1cdGjBFppWlSrYCWsyr9XkgWkC3e3mLDDexUQ8WnEGl1U0N/eWrcq2YgrJVQ2vi1rlNuHqzbrHOFJtboRJiZP3ZA2lYq/iBg92zObQqMPrVSkr0A8F1OSWKSkKy7VTCzy88b02YhPQQUBMI+Ei1CIGsNWX1WBVV1Xr+x7VY8UEsEoVcjoq0rbgWuW2VMvi1A4k4fIucjqvlNcbLz9u9NMjIZ+BNz93Wv2zHMHtZGJM5DST04mUZxqNppU+KMkCokqSicfpK95dvmNKZwKwrme27YXWKynNzPMb5vlrglOba9/ovdK1ktPZgO/81oBtOiFyolThq7cXfvohfTZuECHnTJpm5vOFbSts25WX50/QjSI8gDm+wAYJTNPkgjCNGOMeiNfWPdA/xnfOVkGQYBL5gtFta7Nekt4GHZC9KunQkmEpNICq+8TvwaFR9ToppaPCu997t0Tb7Y0sQDkqawcQOA5bHxSsKkO76+m1fro9ABn/P8CdV22t3xGiRhPqGpUNEWKyDdryQYGmnouTsYGLWZh9DosZ4BKGEnW4uzfsVCwcQO4g1r0moysVtw5aCj1PqMKHD1diCLx9M/OrX/yCh8uJWi/sgREW5IcQwAPiHUtxVBIHqK1tMxXGerWgSQIpZqIkai97EkbV3s86EM2j+Us+tm3b2Qq1FgtQulJb2UHUQS8ec96eP1jSMO2VF9O5+HzcDdDK/jnj+0Pp+xiD9+N5FG6Sq1hWB5pg7AHxJEpMyZMllXW58fryzE8fn/n0fOP5ZeW22bgNwcDlujXm6ZnbWnh+fWUKynffvOc3v/oFrRZK2dhqcfpk5/X1tq8Jl4eZEKy6G/IJCRGtXjGOkeu6UsrG6+sLP3184adPr3x4ujElE5DaFrtPpXaebiZyMedMzgshCM8vV/LpTMwzD5cT+L6FKq3YWI/BLJOiWJ9qCxCnQI7ClDqZzEbgRYTaotH8/DlEtww5LJm675kdqJbgwfbxmCerho25r0LOu4m9vafP/0Dw4LwT4l2bhicPiV65BRDbr0dPrDBUeMdaEBzswEjO7+GQf3IQU+JfWU2plmBfOqq83ntsg4khZjaSZ8u2oQQkZE4no3l/0u/p+kpdt33d6R4T/Es4qjZjsJBtHXXP+D3nr8YGbNp5OE2gjbXYvtb8y7tR3KrNkiqtWzGnV0WDVWRrMyvNmOCSE9TGWhtNN6p21ga62/EY0LLkkPnZl9ViV0um2M43rMMUa92R0r144PR12pFY7YFejTVADKMOQW8VKPS+gTOFSqvMUyOlwFlsv48Evn34c75++DX/0/t/z9pWrtsz1+UT1wbqvtVNOqWaKBWu0rbUzlI6Ex1YgYXYEiF2Qrr4ni20NiESqK2zlqtR3qWh3c7BBKUiMZjwo4lhdWpdvD2tMpSNhRl0A03eEmfZ4aFin0PycR+JKqTQmUPlGqAhXDelbjM1RUovnkCO5jFMowcbJFEic5wAtXPpN0s6EazIWDtLLWhKmKTXBmpWSAR2YNtqpZVGJEAT+9KE9gk4gV49NhfEq7u9WKwkEav0qgKVIBNCYt2uUGES4cwTURutR075RIzveH49k+SVpIWUIjVbAmeTDaETHdi6SP4/efxsYHttwrUKi/O+hRFA2KSrFbZF2RZ4uRoI2OqB8ayqaxFgdHBLhK8ehTcnA663BW6LVXuHcu5tNRC7rLL/bF2cIlEaKhsSIzKdUK2IKudzICVbUJ+fLZPVKsgUMaPixhBzSiFQuqCbPXgJnYcHSCcjpC23zvaq1KrMUyJnU9i9vWy0AjEpOhlNp94KWvUo3SOIJtDiSrL4hDagayJPgZDN63U6j+DAPGDFDbclmFVPrX0PFGsbWSIx8S0H0tH2EiTH3TNrvXWvlivnB6dS74Evhz8eWN9vvzPs7k4hr571wwB/jNAXW0y3RY1C7foQIQohweWkpAzTpNbuIkaX3pbK8lo9sDFbpjI0WxTmSZgTXFe1iaPBrJ2AeJK9AqwpeNXeFoDWXVSrHkF/jJBPbsXjWdCUvec5dKJY//ApCXMcVeujshajUbVqVVNRjgKX5P3Iyi/+4pH5otx++J72+tFAL7/5udPqn+VIcSKnE3O+cJoeyGkmppmq1aTe0+KUskLsF6Z05vH0NY8P3zKlE9ItYMtTptaNlE7M01tO56+JO7At9F6pfSPFEzmdmfyzDEifaBr49//u3/P8fOP3f/gBcO/HtnA+X5jyRJDIcv3Ay9MnWik2XlImT5kQA9u2OQ1oNsAk5s+Xk4k6lTKAsIHDUTGJMXiiw0MwMXGYPoI1EXrrOwgQrxakZNWZy3lm9KOoB9FbrwQJn/WDwRA7GdkeBwocIDh6/6wqVpm4y7QCthh6BWT4846q2KA8K0oPtu7hAGX3pxTrjQzRs8yeabaclvWJtGI+xZt4f6lCbdX6GVNEYiYQoHqQYpkhF4HCzt87tUK06kJvLjaF9SV3F58KKXvP4EppSgPzt2uFujY+PUWgM8+Z3/zqAzklzucTItGy3RKRHo2WieyAGl8Fzbu20HuBvqF9o7Ybtb7a90AMiSiR4uJSleYWE4ALDX3Z9doxfvTzn6HWC+sqsgZsxQGRATitTtMtxXu/CiGsn7EMPmccAPiYUt2TFzFan7aImD2Wn0+th+p4dpl4s+8aAkHN5lHOfo5CEqi1UMrKnA1IhgA5hc/2o66NH59urFvldltptXFbNqZsTC3xsTuyHfXOx/a6sF/TJIUUFVJGvOr08vLK08sLv//hR377+488Xxeut40SLaFaolULa1O20ghBmHKg1ELTia+/eUeaTmhIfPz0bAqnW6PE6OtCIAZzPTglsfWxCFpnz/gL0m4EFS4aIc9wfmTtvu96MlKcldK9emx+18kEhjBga4JVtodty3UQufYqWXBldVNatmpOuGeRcNyr4OcvYuuiYr32pjmgaHPWA3fJPsQT3VZLun/P0iqlFbateguJ0vvR4jEquiGYDUjvylZX+9zQeXp6IsUrta7kNBHTxPX1SikbpVoFK4gwCoX3HJYv9QgxHnsRO9/BEn/e61q1uyCUrY9WwbPnX6pV2AbgMXpfpZbq4nw2Frqad2nCQPRpvqBRqOD+zdWUc6OtkXe55l1jwqIt64EWsaRTTtFAnxdntq0TmqAZWuzU2Flrpza9Y2C6oKOzw9Z1QXWl92LFHTU67FDrTuHEnB44p3f82fnPeBPfMV1Xsgi5n/hm+o5+a9zqCqyoitkChW7svW6Ctb1aZVG8Ml5rQd3X29ZLX9cclG9bQ7G+VEsQCyGcEBdLxPfj1jbWxfxWQ99cSya5pkNCeyBENWHSuwRxkEgIE0lg6xvFNSGqw+/WOtdl8WrwSsyJnIM/+5Fksner7ujVEcdH1mKXQqaIcrstSLR5dTkb06mXZkDX4AYxdtIMSQNxVMHE+tV7FxfNsjE2xMeMRav0XixZCYZ7fK2qdWEic4qZXl5Zt1c+lr/n3Td/QT6d+Obd/8K2/Q21/p45RnQS3j9eOInRsU8xI7XQ2svPmk8/G9jeW7Lc76VD8axUq7bVCsUtc/b2HCvMG9Hrj6KFbOxhtuKvq9bf2Pz72ypenR0UVWVdK0MZM50gn4XpYtVjBUIy6svwp7VnYJsDESQK3PnA9m5WNjh1MmcHTrhSnA9C8Uz1Ticy7XNCCi4+oyAeDO+BJ0YbxrJfo5oi+L1RRhrTqR/393dsEh4P63ivceOdZjPoIJ5dYwQlOii9ne408Do5FU1whX27tkH3Gho7zUEsHdo6AIcScrQY218zxoP+0bgIYlXOnJQcda9OWxWwo7VTFbRbD6yJ9oBWNaASIWbxG2ZqgOP+DRZAba487edhwNZnuFgVOQk74B5FwYADW7wGpAfY6DpoWbYJOCnIaDvILt7RrM2F+SEzP0xIUqs61S9fPSqFTAoTMWTy3feDDp5CpsVE7ImQlCnNzNMD03Rhiid7flgGUwikdCbnM1M+G7BNidg3Wq+EFolhIsVprzjEmAkCp1PjF9/9krdv3jBNaa+worKDsFor27qyrgsDmJqvrT3Q1ppXFuzaRv/eOMb0slyS7hT+6OpFQWQP0AYAHr83UZkDDOcUyTnuqsEdG3fmB3p8DspOzRrB3v353IOR/VfjRPXz4BJGr6+XJPUfg1uWYBJV72Xzyu3+OSNU8nWwu5fvLltpNFYBNB1UXlN+jk77M3uwEIKv5nfXK0e9+P7a9u/VQUnHgG6ImIBH9UBJ9lrs6OtalsLTy8qHT69cLmfev1/IKVtg70yLYTWBv86ArdCb9Wj1XjHp1Ip2ExPqfXO12UoL0YXChojNWMPGYvWP3Oov6DjUjY3B0MPexcig6cs+3qMDo+A0XRsH5nHJDlaD99eyg+JBnzvokCqK0eoGmAl7ssUSsAfIHefXnYq7iwGBJ2zN71GxoHEofN8/j/skkCpmpyM23oMID+eZ5+eXvW0hulp0808aiuu1Vqfzxp3NMNqKtDe2WrneFp6er1xvC8tSqNXWI6NPWl956SZMpgSvmth5nE8zaZ4hJE7zxKKdbTVA3/yibV+2RA8Vq3CtG6glU6xv3SqXMUVzJIgJHcA4JiwJ1vf7nXqmS6AH8yC+p3ibwFoCbQwS+ajcx7tKrNy1KoxjB6l3bBKbe2bZNZQmFbxdiLsFzcahL4T+wEfLlu7sNt3/LuxxzrAPsspX3wGeVf7EEzJmX9ObEmpl2zZqbdZn6gOl9X9czO9LPIZi/lB+tjTh8AF3YS+Pc0ytvt/NDUtC2j5otG3BaKqj+DTa3lSdjRQa2hvDDTlgb96b0mu3ONIV0ceM3dsa9s0qeOIUQgx0p1KbwE8jNAPb3eg/Jmq0rxPmZz4KPiDee2vtI8H3QnGHBIvBAqd45s30lqlGQquU/gQpo3SmHok9OnsPn/emHO15I3JItNi9B9aElyzm6L5XyGfPZP/yn1lC2fqEh/px90Rv6832VQHpFZWOCanpnmAJMsRaTaBzBM0hRIgTQSerwlPwgB7E9+ICeRouJ3Y+Y3qJZy5aszafruZGYv3mzmDw99m2lRA659PZWhybe+B6W0Z0pWNpY4Dh68RY59XnWXOPbfZO9qEnIhKcbj7uoyXnhchWVpZWeV6unN/+gjRlpvQO7R/p/QkBcgxcppnYhd6CKXi7PdvPOX6+eJTqTrerHa9MHaJBt8UEo0o9Km8BXLnOwGvKJlzU2lHt7SqUBi+rsm4GVpbNgOy6wMvrQTvudUNbQ+tGesjkN5mv/mzm9Chc3gSeP0bKppQWeL7a5hFFneiiNKJv6N5P3oSyQgqKqaspIdlgNaCtrLdGL5XQG9sNaglsm2UukIjMEyF5djkmtqvRILSXfeTFczYQLOqTW1z9zoC1dusbXVsjZfN9LJstJiKK1hEwsFc+pTuK30W0hDyLW2LYgOqb0jezcMHFkm4JYhNyh1YDvSplGUmDvlMLTYHZJktdbBIqSlJo4irAIsgkzLO9dwhHb/Sc4TRbtmiORntrDdYVpNvAfXkGXZTbalmT3tQEw94o8yXy8GieVQrWW1uV69VU3xBh64NZJWylGzj2cR8Ch7BZUNpqozVioJ3gCs0KdFP7nrJ523aPa43aY95tlsEEVFmK7gE5eUZmJTy+R2Q11Zsv/JjjA3O8MMczUzyR4owE66EQiTTOVpXrBWLiND1wOb/jfH7LFGdXgbbM5iqvRkWeHjjND8Q0E1LeacilLogkYsikZF9mCxQID5F/9z//B/7yr/6at2//D1Sb930EUp6RmPjwww+8vjyzrStTTntA1lr15JSpDcLYOCwyKC6i07r6BiqsSyXOEzEHTlPeN+1lLf73vsl4lUKd0ppzIOfEw+VEzsmrv9imAJymmSBuA1Sd8htHz+oBtM3L76Agj0qtHZ8DgWEBphbx7xvZkBaJe3+P0nultUPV+BDVsuAnxBE0dFQtIGwpUsQ3JbG+V+sjZO9PVB2KmpBTIhDMQD2C0nZgPwL73jtbqXvrTe8wJSEH4bp1Klbt6gwz9o7EREzJA1mvJiuUrfHp08p/+avf8/S68HA58/bNAw8X87g0iqZtmKNyPsCoAaRCaxvaF+jWW7sDXApt9A+NTPMOnATr1fCGtS/50COJmfK0/3g8/xHRC/qZ96ylVQtlW6nVlKcHHTdPk+8Dh4L2eC3BWA7qmhRE/FkEer9ahbJWE2nyo7u4jHlJN6/oRnIzJdApJ6/CK2XbuN5WPr0svF43lrVRvCVgJLJQpa8GXlqz8ZZz5PGS+fUvvmWeJ94+zLxcTck8JzGmUavUJqYGn6I3hlpcoK1S1s7zdeHp6YWnlxu3ZWXbKrU2p9sJG22fD2Bg8Ebj/bszl/PEm4czp8sDMc+UrfL09MwPP/64P6quZk+XYuB6vdp7hMi6bkw58+bxfCwHvXHpG6ekPLz5lhYzK8n6XRnVkaFWqzvQ3deQQQHtndP5bHYstTp4DHvSYh8jcc8M+tga/7mLoLF1h0FXvgMpcKxbgykgctdTKDYuc85WYe4mbBT8+0NbBGJKVgkTvAeeHdiJ3rdxCOu2ulr+ZusbgDRPUBdTPP+Z3pf/nEdZKy2ZPodoIypAYIrJ2m6kM5Spb+tCkE50Ua4GvC4LOQdS95gpiVGSnRrea6P5bejOfGh9Q3slAFk669iDSt17vfd2Fu/nRboVfQS6BmqvBDXLmd6j+byuhRyaWTF2a72Lkoh0ai9u8ebtYhRra9RA6zOqtm6vxkYmbObbG5MQmXg3veM351/x+tvf87JW2rYRpxOkRH3saN+8v1qhF0IvxBSZw8Q5zpwe31Kasq03iwsEpHT/e1dUV0ueaIzoPQ0fo/X31qhVmPKZaZop3eLj7T4tpN3U4qls5QZamVJEYieIKfWbIwxIC0xxJuUHpCaK3lh7JLRMVMjTavirNqaTj2cxnQiVQJTA1hXtlWVriCZUI+ttI0XhHCJzSEjo9NpZlytNhfdvB6sUu2dqSvAaGlE6ne6tPBN5miCIXXvrlNrp640oEzknznlGtbOUBdSr2E1pNEKoTCLQC2trfFwat7Lx0+2F0+P3SFAe5gdy/A6mQK8fiBL46uEBPQdqjTy/TDwvH1hu/4MrtlsXqlezxtrnopfDBcfjilFRdLVbAQnKnGX/fanQm9Cq+eJGhVnNY2nd4HqFbbXe0fXWqaXR1orWG/SCRufqh+TvF3i9ukBBsCqdyZwLpVj2JwbMq1NxcSgZ7D6rUPZDAEm9SpsQLueEZnFTZ/XFVveb0Lv5zCEQp0SskFalLqsFHWkiZLEqcgPpXpsY6oP7vqF7P15TrCqitnlur4VW3Wtyyk4B9CZVUToRbYJUIWa8FxXrYx3PQ8b9t+dS68iiYouVxRa4mhPsYi+AqNOXbMKqP/NwSh4AWUZfsKA3iGUztsV6iHTCqdOehEqGFOXmfTNJOD1Y1e1cx0nZ60P0iit2/iFb70lXGyujLdFY2UJMNvaiA9vk/Uwa9uKSBdsJzhPMs1V2G3xWEY6i++uD35txOza//tpGNs98xaQVpG4/d0r9sx0pmkJuGA3KTmGyBS4QNBNCJsYJ6CYIFd0WJUyWSQ4TIcyILBhFNBIcpKQ80Zq4YIH7ve6iJX6I0eEul0cu5xPn2Tzo5vnE+fEdxMRWCtfXZ3ot1vN8V6nt7l1bykgkDOGUf6iBudMqR+YlyJ5NBCXFQO+dZe12nSYC4Fn/zmmemOfM43liiKaUalWLLIGUzQA+RKfqetLDqs731azDFsiitHsAqgz7mr1XkSMzi1fg9vso7oWp6hlyD/xRF1I6Knq9N6vm9kZvnnnSvgMWo26nvY/dxrVlyU2AZ0Nk2iu0IZgO6ugbVK92azchkinHndmCui7AHR2kVqcoaTSP2xZsvcGDLk/ix3Xih5+e6V35m99+z5/9qpNSYJ6UQZUf1fvRomHVCxeL6huwEqSQg9CCidSUNlK0HdW4U7rM7mQYoAwhly/32LP1Ik4vP3rnzZ/WxoQlHuw1qkqMjdbuRM/u3ovRix7casuTDtFVxEUCoxbaW2fbln1M7mwmYa+6jh3IeshlH+NDzVxaQ2hEqTY1Q9x7vLtytAL43g7GltmaVYVQuC6F59eV94sJPc3TRAqBKRuI3Tajz6GdEIUpBnIyv+bH8+T3RtnWhVqKn0fwinKnYvEBuEiPmgp4dIZHdkX5dV0JMTEjfPV4IQWzs3p9faXWakKWtbAVA7hdTc36thpAjUHIU3LRy0ivG+vLJ84hEqcz59MjPSQDM509IQGjr3nYYtlq0FVdJVadXpl9Ez7Ww1EZvbdAGxUm5ahYMZJgLnQ1aLOmPzIYHM6mCeN5O8hScNnFvTcXIOd8VBH16Msewn/+L2P5pGn/Xc6TrbVAjRWJJiw31tcQnQUwxKf+BRytdWptlG1DmlnzzDGZxR6+uvt+VGr14kGmmIywJU5ap0mzNgRMS6N0Yyostw0lErvQVKjReqPXshG60ZNrPWjL3c9HLXPpz9QqkK0pUjvR7/XB8ogonujwvv66VWqB3pwR5olaUWN8iKxGb22R7O4bVlVUaJBbQLoQVJjTTKxCf1747V//HX1rTNPE6dJIp4zMeb9XQ/wSadS4khHSNLHUylYbT9crKVSmZO0KxoYwNXfB2GJdFa3Fx6PtF9EZk10LKczMSRCPdZx0CQgB65tVAsv2SumFrhtBjW1QSrVP0sCkEzlmpjjxur6ABKZ8Zg2C0KwQ4wGoiNO4a2OaZ6/SB7bNrIckdpIIQRKqVkXvzV/odkqGK4DeLd4LrtKhSmmGlzQMX/ROq5VQI0GVpo2owiSRKU2cYmKKET1d6AjXUkFNYKu1aI9cFBUXJO3C1oxZMeUZ1UYpC7duQLrrTEyP5Jw5Tw+8LIvZ9mlwZubPSzb/bGBb1IDt/rYesHSvfjLayPRo11crFBIDJuevh3pbLQ5si2nIZjHAu23CsijbqpRVKUull0pfV2g3oLh78eyfaRtd26zQHaKJBhUvz7et04OgyX4nIzN/d5IddkrwIF/kaNnHPEV6FlMEbsUWEI7+q2ENoipIsp7RmANt8VxnFMS/HLHu1FccrInfM/EGbu1KcloAXalrpW3NAHkPVlAIQDA7G3VEFjo7XTZmE03q3fqDBmbtDgJpTl9WdQGAQ9jGnuGxJYjg13B3vW0kLdjFEvEAymi+JjbVjfe7CzbNZ7sXQc2fVgVCFqaz2QoBlKVTVti8V9aqVzaYQhZa1d3qyAIy3SvMIdpFhgDJq6whHBR4ESFnA73TpEyTgeGt6c6YGlc+QG3wcxhPLfjYGjor4lZPQoefSZX45zyGPPwe/A7FS5sJ1qMXIhKSX1tCYjDwKt6bIgnBaHFjxRUXqglh+A8qLUQPbO9BwlFVOJ1OnM8nzucZUxOdefvVV/RuWdNtXVAPtkewCezVilEhPXoC73u9DmrxIXZznK9PXAPNYrYDKUcT3aiVIeg0T5nTlJmnZD2hzdaMJKZ+GmJAYviMIj0qFUHCLuYzAtGDrnsEkvdB5b1gj2EDp5XK6Cf1dSMYBAu9H+/riZYdQINRzFw1ywKe0UcefO6OnrvghZmjx9cUE/n83B1MfQbYu0DwLttg1YKRx9ivT7H1du/Hs3PXYMGxMcG8ji72/J+fF0D4w/cfeHw48fh49vWsWrVVXZnaKCQeN20m9tELoitBvBq99+LqXt1RB1Bd7yngAZfP+6KPHdQ6JW73mY2ZXfhn5yWM5EnfK2v3oPagHB99lSakEndgK/vY9OfZO60UWhhJpWM9Vo8Fere1MUo6aK97RU9Am2tEbK694eqgerSYAHsf9zjr1pSilkZfS+N12VjWjZwic7YkjWoiJzt3HPigSgpCjkJOgfNkAWxrjVqKMxdkb0tQNdBhcy7sY0WGH20I+33a1kJKGylEzqcZOLE8PlC2BbQRRFibVYFPc9pdHUqxCniKweeWGbG3WllbZZ4yiU6aJrrMdEnekTCeMf9o8szoxZa0G8+8t7qvNXsva4y78Nj9OjSsyY5x8nkldvzNELIbSa/9yxVj1XvXD2qn/bnRqkey3Sjd4+M85wiYtVmM1jMcYyQ7i4AghFAQiR6Hun+u70myJ6i+fHhrxRUDWal560uwOND2BLzeoEZ99YqqVN8LPKk3mBRjnzOgaOrgxmI354Cm5oZRS0G6UmoxyzD3fOxd0XowhWzfcGHSZq0xqp0wHSKm4773nQJuOhW9jap+MHzW3c6Gjoiv44Mq3cdcVOhCVCsPBwI5ZEJRyrrww+9/pJXGw5s3vFFh1hPnN5EQhSTJYmzHg9obGioh2L2rrXDdVqZolGsD4tZehZiuRwzGCmvaSNFAYfdYQTDgH8QKKBFjQUaRY+SJiQgpsJYbTStKJdLp3RgGKRj7K0okYV+9dUimgxLEKOX3z2BP3tbO6RRJLu6oOLsqsMctJoYoB9gZ06ubWCut73M5SNj75lPa0wMMinVozYBtN/ySRJhCJLlmwJwmttRJMjOEGFXNosgwV7XkYLdWGIApZ9BOrSs0Fy0lEOKZIDOn/IaXpdK0+nj9I+2R/87xs4HtuhiNdC3CVowq29aRh1OSVzijHg93zNi+Ka8vnR4DXQLrVZ0SHPj4CdYkbBlenoXbzQSf6lZpW0GXV6grbC/IJMiUkIc3pEsmn+Dh0ei5GpQ5Wpb9tsBWbLI1yT4AzWZAgz2YqNaLUG6rS9onojar2vVAmoxmm2dYb0odZTodl2W8/ZCydXap0nskTJH5XaAHEzZSjELb3Qheu3P5AUJAU6I1V+TtING9xoLTc6tlXSULcZ6GChK9HMFpPBnN+zR7wGIsO+IpErIyTYEh9b1coW5efW4VU268K2QVtw6I2Svapg5slVMTutqzQCbkxlCLDmLU49MknE+BpfkmpkrOFkSfzsFpVMpX33nmWdkr/qfJ7KByUJJTjkdFFhVyMLGqsjo1O1jglLIFxT145iHaeeZgvb4jgaEKkm3kq59/jMLk6qA7zhsg11qZLYuFLbyHsh2cZkHfTLz/8/d80sZr+RcAbCUe4PWukqp0Ru/HYQY++ieHHUBFsEW/1s1pwGIVsv11R7Jjj59VLWs/mrg92DqfL/zyl7/if/63/5b//T/+F0K+8M23v+Rv/+oveXn6RNdOdjuNGIZnW+CwaIGxoU7TZIu3V4XGcV8hwoHZ2GztC0QCl3ny5FbnVqqJcIjRcKP30dZmFZtpnkjRFvZdpTdGTueTfYRYn19x8D2CupTsXD6nEfpViOxBgoiJUgGuHCsevBwVkkGJlmAbvwUVd4GrDEVKD44YKWUXgInZhbdsHHSFokpDrM1ggFhVF/9RitMZRyVXx7niok2LVdJjEBLKeZ7IKbmdhAWdlgyIptIqZiVSq42trh5wA3W5UULkKsJf/rcfCDHS6Pz5b96Ts3mgJ9G9wuaZVXpfsZ6eRqQg0tAYqCGiPVDE1mGled/tiKHNhP4YU1/2MU/nHWxYFSsS02BW2Hp7X7VvvVLKtrNcQhjMIWGeZ1JK5HyAYuvBPMDTsG9qLaGuWmo2Qwcg2imu2H53f5hvrQPmEEgxElmRXqAtnILyMCUeTiduSyFsBelHcH08YVtGqlrCfNkaTy8rP3x4odTGPE3MOXGezJMyhkTImZenF6IngXMIzDEyZWtPKgLTlLl0G6VPryuldlKKezVztDY0VdrwbY6JlCZiSLxeFwMotXJuxkr45t0FmnnirssCJCQI1+tKDIHzlKkOWD48v3IqlSkbFXeK1ssf0ytTrcxtY36zIdMFpnc0CTTxnmHGOTYHB30Heq1BypPRJstKa5WybUcmgqHPIS50Y8e2bTvNeLA7oovyxe5VLReJG0dKh/CTjJ68cV6+BhmAHWsSIOKtKybCt6/TPmbyLoY1WASTj01LQNZamabzvqZu22oslVHN/h814f5/eIgkUojMKbItKyINmTyJHIxCT7OKbcRo9utaifnMlCN5quA9o/asbJ6U3qmefOjeQtCDF2pqo5SVXitPr6/UHmgaiWRqVROeGlTz1pmSsS56baytEeLGm4dgquEBNik0OmttXE6BnDKhG5gtRekaCEQuOdG0E6Nwnk+U3tm6clteKfWFbbvRW0Y00kerZhCmkLm93Lj+/pnf/eF7Sumcnm78Yll5+/aRh7cXvv36a75580t+f/t7JFTyBLeyoFixq8cAKdBE6VHQHDwcV5pWLnlims5mt7O+sGw3a2VQ8wOe0+Q2oYXWG1vZQDayFB5nIdHM6sgMh+kor+uTtd+ExsP5K3qPrGvjMr/hnE58JSfqVrm9PlG2hYiQ50wvxdogGZGYfdWqlNY5dSGkQEzGNOoqdEwgyITtJo+ZssVFvdOrP/veKGsh50DMmdqdIdNAu/XwhWiDqOtGWa2AZmWKmdEGtdWVrSshXLx7x1wPOoEYviWFRBRY1g9EPZH1QiaQJKBpQrVT6kqnc12vrGXh6/e/IaU3hPQ1nRdqL2ylsdXG9j+6x3apZuOzeRXQZO8xbroeoCAlCBWiKlOy5ncVV4zW+1jUANjaLANBhdti9NO6brRto28LLJ+grVCuyPQAYYIpE+ZInMwPNwYlG5Wf3uDqGa4QrPfUixB093tN0c9FhD7KeSJG3bXin4knbQq9sS2NujazufEHnsxkieYZKhTiAGJxiCzZQhJHMDtKxaNM4KBNXCSpNmvYltapWtHWzd5jVH1DoNfiPUOgcVTM1AeuKQ4rwJRM/Eah+DPqCn1raFF0t8ARV1+29Fac0z5JaO0ui2ojPwA0TKVYOxoDQU6Ic35r6WxeXSLvpdx9Dx3qx70ZoLTWYxfpEqeEC3a9jkQNw4iDI6OkxejAKUCMZvFjSUp7fQh2i6tXfQe1rXe43WALypqhNGFyG6qRlcwuld99dghwynaOY3EJtj7So5DnwOPXZ+r1kb1M9QUfFsCA0dibVU1UaX2j9kJrxXubmokOaDOVvlZMcGH8ewBbEXI1r9GYMqaK4sDYJ98AtaPPU3WIhQhfv/+af/Wv/oLvvvvG+vQ3s+0YlNVhWQIHedKodHLXOxjcSsM2X+utPUCXYJUWUzXt1Db6hvqeQbSKbDPavFoiZ4oWOAY5FLiPDKpRQIc6eQijQmG/t6muxBT3bPTIZMcY92Dv8P3013mV43ORKcuq2lVZZVXlrt92TyceFlmOsL0y5s/ee+AYFWCvnB5Z/6OqIuLTvpttAn7vc4pWwZORvpRDnKQrtZnQRI7DK9ntFLQRO/TdAsgvrnfQslfDiB581Y1WNkoIvL6u/PDjMzEH3r3JXM6B06mDNGNqdNmzUarrno6xPkJ8gxffp2S3svKVxe+x7uvgZ8nZL/TYadieVDHgaJWcIXh2JHM8WSF3Amluc6WqTFN2tfHJ+7ddvMf/9p5JwGCrjEr8mEO+yEdPTHijIDAUfSPJK25hnIcay0W3Ba0b4tT/KScfYx7WeQLFly3/tyV1FLPguS6FlBLX1Ta3GALNx232CrRg/fdrMfnQZbEgTtWArVlhdeYpsZXqbACf04Oqpa7kHIzNEUSotfP0/Er1RFarlTxNnM8GPFqLbKsLsIlZk4FZ3YiaOn+cMr031rXBBNoarQrzFL3qqsSUSb2RQ0bE1EqH7zSwn69lpZXerYcO7Sa21E2cC6zPkmbVlfFox2zQ/R4fibaRINyr7T52+l0lfpqmfQ8clVyj+bvQEAe9ue0tARgYdoA/3ssSgZak6d36+E2jIe3jqYVEiJUQkvXalo3owj7jvP8l7Mkwkk1HP6f2bsl3giVXaz+uCaOZ0rpZs7l43r52CRh7yYLAFIQpRlJMdLH2IIXdFmutDZw6G0JAmgkbjdhZ1YUbh/XPSKS4zVDHRRhd1d/m+UTURoxt34/E52Vylhv92INMcdjaBVq3imcLYtoMauwQXZW6FGJOtG7P+3ZbyDnStsKDPjCnB9r5G5ps9LBR97aLSIqBKXu7RrCETg4TSvd2RBdW1IpqQbWy1VG+MzaJqNALVLFYJsQVpVnxDOt9nuJEIFLVGUSY+JC1iUCMlSCJ6CDvtm28XF9pbUMk0DZB3Sg74nuYKNnnQm9KKZUQA/M5E1Mk98x5vjDHSJJoiuFBTLgzZPtekq+5sG1jTRmMDWuXrMWuVLLhAvU2DvPJDrvNZ6urrWAJJuk0ba5AryamK9YSE0UxLWlv2xPDF611+roRWucyZ3+eC7fbyilf6D0Sw0ykUpYrvVb+2I7u/9Px8+1+CixlAFvrcdyq+kKkZhodhGmCWGxiRTVacO9Q413P0l1AtXSjnG4V6g3a0qnLim5XWF/g+qMBW10B9205ZWSOxNkyLzkI86TkYAQy9R7aGISUDbDSjJYsUcinUTQSak7g2rc6LGWCZZi0dDY1OexWbDCEACkH5rMtQLfFq6od8iyjZdG9IS3blSbjsTdGnK/UW9s35zhZtUSvHYqJarRijf3SK+Hh4lRQQZeNvrpiWjrZIxwUjg2Wp43eFDkP6qbZ9QxQ1tdKLwptcGxlbyJVlHRJDoCVXkysC2koFZVGLC6ZvlqmVmJCwldwnokktFZaEbYSuXwVXPJ/UMnce7jZuLmcDKSmu6pVqb6pRYxKpV7gFu9kVasepySIK2on853fq1HNueWtK1QrtBPYJ25ZPHCPwnKBefKEjNjkm6KB2z4HMz13cG/+tv7MAkzZ/MHySXjz3QOtKfF8+rlT6p/tuPdg7dpQ3UxIrS+772drBeuxgKaVra3Utpr6XRdqWdnKajQ7OmXKtLaa7USfvDpnC+dIjnRtBG2eTbeNS0T49tvv+Pf9f+E3v/kNf/jxE0+vV7Z1odXi9hi22eodEBwB1qBKju+nnMkxsmxWSY7BjMhH/3z1ZE1vDv669RIFER4vM+3W6MXoP1aNiVZhlGD4q1ugFjqW2ZBgwSIGbNERyB0gNqW0gwBTcTYRFbOy6C4odTyfIQzT/T20q83/UT0T8WpJ8+fp3rFYoq/3ZhZnWDBiYlteMZGDShhG0KcHuNspYWoZPsWSAMvN7GCm0+i3Hn2tgNh9HSJMgxotk/Vdh5Q92VlNOFAsgG4u4AOCerXWboOtV20L1Gh2Ma8vE7/7wydu28YvvjnR3hntTGMhiDlh7rYiWtg9XLGqpobREjMsk/CKkQPgPWPFno85av5f5jGSOvv432mgh2DZqHAaKAwMSnsM1hs6QMk8z6ScmabZFXUtOSEe2fbPAoo/oiSDsw/Yq3qh2zkMGu8QfYspW/XNVnNCaUgr9OVK21Z6q1zOE6cpk0ZfLhZbyHjC48F4wgKgtMbLbUNC5PlqlcYchXXdXLzS51zr3LYGshnFLrhndkrMs4Gy1i3Q2krdk6UjSSZqH5+itSEY5VgopfLTx2e2rVAuhfWWeHy88PhwYcqJFVR61QABAABJREFU2tL+PjEI+XwyEZvSnL4fOJ9mnl9fWEshubXQ2o1RVWsBul16WTnFBPkB0olCusuLWYbW7psDkC5or2xroXNHWfZX9D56YoN5nSr78xbfU+9p6oNSfniFO4MkCJfzw07tbnV4Q94lWPbPV6AcyTtPpoXwOR3aWASTj6PgjAILsFNyhdvWSNGqZ62blVT3RMuYE1/6ob0jxL1HHVUTW3MXjyknUm3EqM7OCfQm7lc62lyCgTVx2rA0bMx05hSZnZFR1fVSGAWqzlZNv0BiJAXrGd3HvK8B4ky1Xm3uova5DbW+3doskaRKSraWKI0UN8CAQwAkBnKwvam6YnIQobhgX0yB2iKqkRagMiqMq+GDW+Hk8+56XbnersQIbd2YW+Sr8MB0mVj0xmt/Ytug0ZAemZIll3KeiLF5PD/TezNR0N5cUG+j64ZSLNEkkZQn1KnRvQhFrOc0sBKDkoIarViEU5jNgrI1etuoWiF0YsimzZE60du6ggjLuvDp+QmyiWeWoOhWrd9a3Ps6WPtEbc3m87aacG2+kCfzP357eWuUaFWmaSYQmPJMJNJSYA6TqVS3wrrY9U9TtKR9tWdbxTVjZn/uKKGpjzqhdKjaqSxEzO89hO5U+mJWQJJIYWjwWMxjQ8baI7QrZav02okp8XCa6a2xbQuv11dO04XWhCRnklTW60/UVvgsUPrvHD8b2H53MU/Zrx+UrZnPKh2uq/XGLtsw+TacNIp8Va1athaoa6UWRV12X1IkzIYoVm20Wuhlg+0HWJ7h9gTrJzuBOKF1g7KQtlfezGfefxM5XWTvgzRlXJiyZ46joeu2WvBYXhejm5eM5myKZ0nQ0um1ETo2OZeVcDo7Rc5RUQiQ1ZSporJ+upr/0wYaEsTE+v+m7k+aJcmyO0/sd+6gqmbvPZ9iyEwkEkBWoykssqSbLVx0LyjSC+644qclRbjikiJskZZekF0o1Aggh8iM8OENZqZ6h8PFOVfNPIDuSlSBVQ5L8YwId3/vmalevfec85/WTsjWeFWnEYYpESfTuR4nR2O68uLUPkHpDnCJCnr+CKeP9Pd/aQ19L/T7d9bE5nu6HJAww/0bNJg5Re9YDplCW4sjq4KmRIjRs+2wpjsGAiasD8GQYDL2GQVbdGA0vXJGT0+Ex7+in3+Hru9JB5CYmcPC6eVMCxPl0y+Qn/wSXn3FZetGF9JAed9IWTjcBbLTnRNQN9guUF/UUbxKnCw2aZoNec8JXt/ZOmoKn57MaKyeO73Z1CxirtdRIE12oHcxypzlqblLt7u4B2+CdThA+jUJySjF0SOApmTmW4tFtVlBn0YBZ0Md1Ne5F+kpJd5+e8/rd8c/9JH6z/ZSCl1Xarsg1ezxG53SCk0rtdukclCTS4ULj2SZKGEl9shlezEaSl3p0giXwFqefagzZnPmInilnSWHPG2DGNmOyzTx1du3/Jd//ku6/lv+6q/+Ba2UvUgWb76u799eVtxcUVuUvYi2bLhgSFRPPon1g2szRKV1O4i3YvTadStc1kptnZwjy7JwHIOKgVR4w9lq8+cFSi2mKwI//NQt9QdaGXzqfaU/b9u2dx23zeQtrdN/sH3m3lERUpx3ZCzshIgrhBVzNjMmZB8AXBGLa7MdJBi9DdDeKLVakZ9uEBk/jGyKbtTRu2Xxz1fNrMKvTdv5vPj3juQps7bGejq73MLcJw39FWK2IgPYKYjqB2kHNDbKevamyUyLSm3883/5HT/5duHP5I5X94WcKjGs1qArSG/m8i3ZkCKMGivSEOkE6W5o4c9vwDI8g+3Dew7mF47YpmT3OYSxFgaS0lznZnR4dSp560OvZc1JSmkfwORsDeeUZ5LTPseAxdCgv3tSHuKVqjxiWkbW8siPRSGlxDTNpJxMW2kHIdREbbC+XPjw4RMfPz6RY2TKyVFTcyLWgSX6ch6Di3memKdMzpllWUh54lw6UIhBOV9WYrSYo+GQaPRKo+zKcArvdrRrEJYUuTvOlKaEeKJWH3S5Fl8kME2JZc7M2bSwp7PvLT5A2qbI2iprU6YUaVV5fnlxdA1KNaOrFA2x7bXx6dNGyoH744H7hwfWy4X1cjazs3Wjt0othSmfmM9n0vGBeHgg3X+NxozGZHtaa9S62jN1o39FR73QXE/pOFaIu+ETsCN0t/usqQXTdXASP3caHoOymDNRzYW7j8ZXh6bdPnzoRlEWZ7SZ4ZOZQ419uXtjZ3tLuxnYyA1imwjRypcgQqmFPGe2y2WnKI+hxRf/ap1W7GwybwZrKFNQYugUVdeFR6gBbUppBiJ0zNOgtWbGf5OZPgYpiG5EaUyzIFRaNc8EFWPYbSpUIsRsDugh+XDUWUuTOR2XEFmWSBClblYTK3B6eUHnmbxMiJFtbGAlThf00KKI8Gqe0d5Yq1J7oXSLFqpFaQWmfKAzUTUhNdObsLXCea2gwsQT9bGzfapmbpcEwbJ9Le5IidrJtfFqfkVmQXuk5UDTQo4BwkSLwum+IRRSqOTpQKeTUzW359a4rE/U6s9cdTlTXriL98xh4pt3M0Wh0TmLUPoL6/bs09MICc5l5Vw2YxeqjUqD1/+1Vi4dmhQCG4+XM8/rRltXchIOW+Ry7mxVqDqRvbmdY2KTjrZKaxeTUXFgmYQWIlGseQ5EDos1uUuayCEy5ca3X3e27cXQ1tiJYSGlA2xP0C1Gyl62Z4p2zNwvEbugpdJDootQ1eiXQbnmMAeToAQgSiIoiAYO82tqMa+mS+usa+PleUVFyFPm1cMrYpg4TA883B1JEZ6e3tO0mTFuL+SgJmj+A15/8BP/elHeHODtET5djFKakpKbFfbVY34GDWI0twEcqXXr8KZoaaYhVS8mcJG5dHoEktNjk0D1UXqeIE0QMyGqGQBla6ZbM/fE8R72l7g2MriJkQ577Y5MjKtvky9/4ypiRihN3UlU3QXQiqMQZac/iVij1EMw6lypNv30KMndPVCs6YrRDwxR8mSUAnW0souadmJ9T3/+LTz+OxKFHDtxPdHLxPoyI+EeTXeQFOIBjcsNmS64RbVN7CKWFRZiICXT4TKZq3BbdVQI6OxOzSqMjCbVbo5c9QV9/g1y+i2s783FbZrJ8x11fWLr0SZX82IPbJ/RaUJbp+aJNpmhFo52qkItULdBkXNqQhAihsRqdNR2zJzVT2WnJY8Cx2jIYlNMbzL3Bsiv+cBkxgS3d2/w/esHhT5H2ZvkOQspWHM90BuAIcK3d+MueOLgeRJS8C/4wl+tV5oWmhakXUADVTulb15UWCFr7YVNYFeEtD5Rw0bUzFoulLrSeiE0pbeNVldqStSadxMgy4hzxJZiTqNiwxZCtEGKXml2IJRtY+ivbs2fxvBlvwNiTdRAHoe7bRu0yb0fviIAQ2tklMHm9LXqf94pxVDqZZl2tHbQLIdZk7jRSWttR4Fts/vc+flK47Sm4/bPul+T0fTf/vrx1+/otDcO4DZfA0lSdiR2NBUS4h4nFEKw/c1XsjjiOwYG3RH1venx99kcgbWPFveGd29YRoMNHjOmjgYOSnhwardNlroXt6ZvFULv4GYc6pppETfz2nV6/h57p9XOtjXefzyTM7x+nZiyHbwhFwbVfUcDFaOTEewz0qy5dURY3AxFsH1ob3RlsDe+7Mb2Gqdy84yoISA7Wnc7MPEmd6fux+gjER8GhSv74YrI9h3d/ts/fwwIzSAkDkp0iAyTqnEFY4weCRd3WQG+3rQr61Y4nzfO581QfzFEOQZDKrve7gWjsRXX6hpVMwx5UOtUR+UJI9PSrkhnoPX7ruAEw+tQJQhMKTJPiSknVE1vP9ZkjJHDMjHnTE7R94DOWiqXtZDTipKdgfDC3WEBgWWZKdUYEKVYOEhvRkNGjYqZ82QUTb8GMQQfSCi91atL9bZBsMigNN9Z8z4d2arRcLft4mdT4HA4midCMTbO+Nyj9tgZNWMQ9rca2+tXfLbWuM7MxtoxiYUjc7jZS3czGX/2fcOwmkrUKZpesdpmifSrlMJ+EH7mG407xrQb2ok44ulDzZSSI+14Y5v/wx+y/0Sv3dPC13YMgSlnUnTKbjVmi4jVc+p01K66M+RbN6Om8ezbEM/2thitCewd1K9pEDdow56LMTRiH2TZ8CGAD4ZGHWuUZVXT22pqiAo5JHo0hte+d4g7CmtnCcF8UFqk9EobpZqKGcelRCOjffrs/K69U6pyqRvl3FjPhcM0E4KwzNncz7PLY9Tke7GbJncJR1qqtF6NbRcmugTeLBUoCBshXeh0QmhsbaXUbffgMPlQJIXEHGYe0ivu8pHD4Z7SlaqNT61yroGTrowStKkZgdVuA+PgdH8zUnO/DB/0+tVCgrBtRtqdkhlEtSY0OhPiJnj4OlFUKkhBKS7NswbeCuhEitnjsayuHQCMtuyZ940YJ1Kc9ucop2iSlGgGfCNWNOjYo5q5F4fAzsDdGV5WjwcfquaYiR6phmRUOlU7W4e1ds4X29tba2jrREnM+cCSJ6Iol8sL4sOxPEW6RvQP7Gz/4Mb25686EoRVAu8vytogZjgITF0s97VY/mz0mgeTmdKqkLPQt0gXz3JE0VroJfiD5pOOY4b8GtYE5wyP/mf5Drl/RzgcjIEzG8L3fDKXNvWDD9+sa/O80j4ObjzXS8mhEydFMpQqZsIQrI9DBY3JintHJEKEkOwmxmyfhaOZRqUpsNZEKXB6f7JFAOSHg2/chsg0HM32zeb4EKndqEh0oDZa+cT69C/ov/8Lwoe/5P6YePf6wMx3XM6F3/7+iZUjGh/g+b+Gh5/D/c8ckUgQJmv2cmSeHIEMlePdxOEQeLgTYrJGYlsDpSlVhTUEqgq1Cetm02x6RdoJtg/w4S+gfET6C8tx4T4uvDlc6J/e87Q1yne/o5ye0OPP0Ps/peYD23wgPLwlLjO9RfLi1MEOZe3U1afgOTAdJttYO5TNNNAtwuPZqMOt2hqiu7u2VcCeLwop2w5ZuzlujyNZRPYmlm7Dj1bEllgybW5OSorCkh2MD8rdYk14YMQUmZ48OZ1xKCJV1GKVMNOsK/nvy35t/YI2IbRMl4qKULyxtabWNJtW+mygnbW8sF5ORDKzHKnFGkMtZwKZ3gJle7LGIXiTgDJCz4OaCYYGnz4F00VBYNtOnM8vPD6dOZ3N3GQMjkII7vga9gYMBFULIk/BbvAovWrrqFNRVWErxfMz+46qipoxxlYqWzH7/a6Wow1GX94n/RJ2gyQ/mUyX2xqltD2eIARzKBzun3BtPGop3gOOygHQqyGT/6d/jQ9xGBRjM2PJebYsOQwdlVatofCvifHqOhv8+4W4jHrQws27XYcQI2maGMUt/hPV3/PYQ7et7DrgmOz7195ZS6G1bnq3EMx0ztHAgQRm1/+3rh6vw/5zBnWxt0LQuF8TEUPFDvNETBMpZyRNyN4U2eH6u9+fjJ2jRtHT10pMFaEg2LBB9vzLMzbiA5UNqCDVmmEUlX799GJmSvb1X/5zHFwHO4YIcrO27B+NQSvtjoKhI24njeXs6yfvze3tJ782tfpZgzua43HtYnS3dV+Hptsc57EPh0WuaxUbMvcgbL3zfCl8fDnz6fnMuhmt8jDPnC/FBlC9k91EDUC0m1YtCDlH7pZpX4dbqf4+IofD7NEl1VgDTb3hNCRJtBNRpgBrrb5fdY5zoqvy6v7I88vKulXmbFTYaZp4uD8wpUhORlmuzUrUl9PF9kU9kkrjfNkotXI8zPzi5z/l6fmFl5czon3ff5bJHX+DoV30xvn0QgyBeZ5ZSzM34145HO8QHwyW84l2OTHlxGGK3D38hNPWuGwb63pG1TSpv/jFLzmfT3x6/MBaLkjvDNrqj+cVI3N2sB8+/zPXdf8d1N6BoA7ddu3dhmu+j48BSSfszdcebSZX13yNZgy4a8B9nY0M3hACr1+9JueJ9x9+2PfYl/MLw/Xavld0acq0uy9/ya/uE/uUI7UpOSZe3R1JmDTtU61oN9bBNM1o66zedOAuw1oqrXTXIRpDJdh0mOBDhu5a3CiBFBOtVGpvNsb2P2+tOqW0EdT2iZj9vgnMeULVJF+6tZ0heDfP9BRZN5Mx1e5Mm9DRXjkGAY30EHhqwtaUPEEOloMbpsWQwG4DIukWqddqZ2uNl/PK+XHl9GHlmzeRZc588+6BmDLLMptJYe+0dSPmjWmaeDO9YZ6PJvuhknxfOL55Q+8bva+c2ycalSad58sj5/bMJ70yVqZ84JiOvJve8if3v+Dt8oaH5S1doNL53fktH8+/5ofnxks901HObePSCltzuUPITDFSWqFrNCZaM1i808jZ9qoP5w8QhKNEajO2XEMIy9F0xL2hNGJSJDY0FBpnYp6RILycnslBydGcxFupvJzPbI4q2dqwCC2JiZwPTPMdcn4kkniYj6R4R44Tx1mgXuhcKN2b2lIomugxIin7kNiMCUVgWTJNqyHG8x2ZQpBqLY5Wzr1zbnDeOo9PF+iFZc700pjyzDwfeVgWaiu8nD6Q5jsUeP36gfOls27/wBrb+1n5iYDEzvdPwhyEWoTzClsdEyBrFohCbYbqamc3laoZWg3oPJlerhbjig5akrhYslvRxrzA4d75nytaTpic5I6R1Xq3wGWFpxc8T9UKk1KUUpRaXI+XAuE4EUSZj8ldi5Vy7oh2knTmu4jiOV+r8b+1NLS5q3Ct1ohPmcMxkbPYW8QatsecTafbheC62a1aVEkUa67HAY8G9FxZnwu6FvTyhH7/F7Tv/xU8/YrQC2VrPD0rgQVtnRTM2EJFSccj+TiRj8JdNirt64fImzeJwyHw5k1gDqY7vj9WDhMcZ8jRDrO1WB5r7XBpSulQWuD9CV7OysdH4fSwsH16xaq/QNd7qM9EseiQjyfYwj26JNL9N4Sv/wx59UfI/c/pRDOtmGaEQH1a6Wsm5ECco4XUHyKlGF5QNnGKMJCUbTMaccyGfudkm7d2KMs1dio7ZXlKNh2uHZIvqeFLIdi8ZMpujNM7KdiEcApCcFOsbQy6fO10b2KD2GADTLwfA+Rg63st7PrqmAZa8oc+Uf/5Xlu72BypBjomiK+uj+jakTA5ewF634yq1wrSTohGznIwuqtC1OKGTIl1e6JTvFm2aaT2RiATZUKjEEM117w4O3ITeP/hPb/9/e/5/Q+feDlt5JRpZUUFUs47cqfe8A5EKjoiEdxJrF5WiwjSznE54OADOZuet7ZqDbk3siLeGBv/iNqMujbnxPGweCOn7vPmFN0YicCUMpd1o5RCzjPBsyyN9tldE1d2YCreIKjDOGVkQA4zJ5vIK6ZtFHdDDjtSFdzOVkLYg+NVlVo2WqtIv7Ykg6oJgCrTNNlnDoGUJ6fa7i30TmftPuEdTbDA3jyBUagGkmsFoyHkCk5DDx7ZAqd1taLfC2mckrg7Wtdq8zhvzGIw3WIaBfKODMk+TJBaoQeeni78ms43X92DBO4O7Aisf2jQRtDN9vQOXTc6BRszOnKLex2gxiBQm2zDlz+i2tG1rvQwzD3kBm27Qd/G5ALZ0f0BiBmrxxyQ9yGRDp34tYkdMxdDayCEz513wRrLFMyVlRBQjVwjaGRfB+P7jkb04+OJx+czT6fL/kzc0k+DM4+Co8MB0wk/HBeO88SUEvfHxfS9wdAbxBxBh7tFiGLYvbjpmwi1Q6hWqIzBTojZqMYauTtsNsDqzSnNVnccl7Sjk93XdApGF0zR7sFWGqVtPL6cmXJi2yrLFDnMGXThfNl4capw68p5M+PH5sXuMk8cUuK4RFrrlE3ZSiEE4c187zGBynZ6HtN3ynRPU/Gm0RtGMXdWy8pNaDKEdbBGdpMwzPxJYaeQiy00oyo7yj8a2+tQru96/7H+fDXsQ5EdbQy27wY1Z/3d5X0AszeGgN2R3IHAjmilsS5iDPTWqM2asdba7uIrQEo2nPzHQEU2G5hGqZt5mIDVx2LDqNoqrVs26bqu/oyP7GqQZg3wcCovpXCRdR8gxBDdMxnOlwqpETRT/Hp17TSP8ajdUjp6h1IHm8lc+oMY3bh1+xW0IWrDzwbgw37FakvxgZggRGxo0ZuS4kQTZS0rOSZrlpO5JXcm6OVmfQldzWMiTzPLXSDNE8vhwLvX92yl2NmqloRRGsQqu4HeIRzRCE0LMdjgLaP00OgUDnqkuwRrmmZOcqD2xqW8sJUzs9xzn17x7fw1dyXSLy/8+tPvSVMiTon7tzPEA226p1HYWjcDztbQ1pwVaM/keb0gkkhp9mjaTi2NnBIPd0ceLgvifjK1dXoT0iERMmjsXLaTyRw9AUTdX8In3CANDR1i52F+oG0bL22jrqslD7RG10LXSrlUQrIc4KaCSGKZYYoLKc5EcSbrGPpKoWNeK00jIrOhs61Qzp8AeyZTzASZmHJGitHfz3XjtBVOl42imWZTMhtQEkmIfd007WsKgdP6ggJzgnRYuJv/gRHbKcL9ZDvdHz0YEvpyFj4F4VzgtEIJEKrlY8mgOShm3JEwGm8UJCVrAKUaKjpgudA9k7XudDrSBGyIFiQ0Quj7Rgx2iIhYZirIbiLUujni9qaEhOl/5kgUCCka26KBVjUUNXRSjE5nDfQaHOWreNYM2gwt7MHeW8hCmqy5EpTWA70IvdphYpbpJhI3yuyYb19Rml6Vvla4bOjpEdYXpK1eSAZqAxVzvDwcD0SO6HRk+eqOw8PM4SHydoaHo/D1W+HrrwN3d4F3r5UlKHNQ7mZlzsohmcBd1dyoS7OCb62N0oWtwfcvgeez8P0DPB0y6+s7zvGn9HVBywuXtVCqTZp1VjZmtvlnyNc/QV59jRxf21Bja0YdaPb5pAekWfbniBZQxS3KudJg5KrvkGjobc5joVohsnXT3cZw29hCdChVAWkY7T34puosYVXTrYzBSBRD8Nx82hCEom4OZYhvEHaPrd1ry9HhwZgKQfb18aW/TJOyUVvEeaxGQR4NH/hGZjE+vVdaXd1JOxC1eupaRNx5s/dCqRdUGhqayQq0o70Rw0IOB4JmNNifQ0e6NbaPT5/4/ffveT6tbKVbHEhKXkxaM7i/rOr+rPUYxdsoqpojtGMzGC6xyKAPD82vF0tcXRljMFZDSpGRuz2azvEadFswHZjM1+zGPiJ8XIvrMKYVjvtBrTfFvl3rm+/ObfNxa3wyaKRBBHHaZXdtaodrHrYMY62B4OEOuUAYhlty/bn7oSg3CJ96A3KlfxoTpl3RWf/78DkiN97rVooVnd1dz7nSYa0hMwOScW2vOciuEVZFuhXvKmZW10JFNLKtyqN2Hp8WjodE7cPYze+XKuZWUQeoQXeXS7cYxOJ9BgX65gHxtfKlU5FvmZpDnxwIN43FjxqQse69eb3qra/3bXzf/XvuS3Ssy+vsrncfOji6cV1M+Nq60uh/bD5lf1N8TXUua+GyFtZSb34me3Ea3GRlOLob4hSYc7K4k2S6XBuq+FrGs7cjdj9D382fxHWlHR/mGNfZm97gshhcvxspxZupYG7Ih9lMjE6XwtDOq/q6ERs2NEdlL+tm6Os08dXrO+a7mWXKtKacQ/Ezy4ZdxZuarkYLRN0ZWITeTBZRfI8ZQ4leN+rlxOXxA7ye0JgRifvwwNBqi9MJPpgbJk22JVyzLA+HI13dA2A8ATf7xK2mejSlY88AaO1Kl1QHLLreGLtxM3DDHdz7/hXXAaJ9uH2Ycf0l+/UOEmhULOLMBix9mOTdfM1Oc/6SXx7NVms108wQ0NbMAwWu54V6s6lYgQT+yJleXG58HMybwPf5YHF5uv893C37KlXo3ajHNtjE0MQ25GDDOEfNLKrjDCjfn2/2cUR2CvrVRdnrumZ1tBkQmvFqkECOkRYiXQOmRxyFnO0v6sO3PAfCXWReFpbDwt3dHeFyMUlSNJdwo6tG0ID0YHE3YqyxoIHQTfOr0umSyZro2mhsEJVIpGjhEhe2eGLhyJ0ceWBBX0wu8d2vfsu0ZObDzE/u/phJAkuaiSUgNLrrIseuOv5ZaiEEyPmAirGKSmvkEGwPSwmrImWPAc3R6IBdOq1vPmh3tozvN9KdFdGr1Vh0c2PXyJaEcm7XDGvpqDRKK5RazPPCUx1ysgYzhZEFnK2YFvzrzIirKcTuskZVSrkQQ2JKFhcXPb6qE9AulGrJCrUZsRoJhJSJ4JTlq0xF+2ZDaYGt2HDmMM3upv+Htax/r1HWHKzJ+O/+qPH4Tvinbzt//RT44ST8298rH8/Cx4vZQQdvStYNikDK1tjagePOU7ihg3ab3uug5a7XWrK5qcn9geXre9L9HfndgZYDz7YOdxp0cMTNShvTysRZiMkQwTAleu2cn7edwnK/CL1ag/ny/YqGQJyyNeEp0lN2+o1NM4elyLraA7/M4sihCfvLpmwXOJ06EpSYYT7CNMHxAE+flOdntakKgcOrA3VJsCXS8Z9SZqV/eMWhvGdKgXnOzF99xbzM/Oww8c1Pv+X129f88S9/zttXM28fJr45VJasHGcl5bJrR82V2ilOwfNX2dkrXhSJTat9CNG7zbdrD9S60NtMq2/AzTZOa2CtlfO28XSqrC1y4p6LzGxkXmrivCmnM3z4ULlclJdzRw+dngMbnXUTts1CniUKcZF92pejeMPotOJs1/arB89K653H585lM2p5zh7zhDrV25Enp52acYXff1FbI/7Zp6T2e76H9m7r6Ols1OLXD0qL/v0EMlZUtQZbUS5bhz2sGrZ+O63+cl+9VSrKFrptIvjU3Z4a+zti22tt1tj2WsxNuwtFC0ls8wshm75sa/RQCSWgq+xIr4iQ4pEp3tPmjRwmpjRRa8ZQVOFvfvMb/uJf/4qtB0KeWY4HQhK6G0+1Zjbv0zx7PE81PY0fF72ZTGKZJ0oIlCKU2kjRIjyGE+6Ush/msK6ruU2mSE7JjFZQUkzu1tisIUWI2RwYzcV4NGfWsA26krRmwfcekzDlTHEDk4EmiBRujXWC8FlDwY+OQVfBIYgZWfRmFv6OWlQ3WkHVtY2GhuVkurKBjsQY/e8aJTM7imHxR2AaRjVfgTi0Wu3GIEaptXjh7cgMRok2hDUzzdmQgq2wbhuCFWCtubszI8+ym1bYKY8WUC9+lNuB3VXR1ihbMx2Ro8xdO6l35nlGG7QivP/QiCnw7TeJw1yZcgcqfegCveFrWm1I4/m2thEqITh6vFNnTY98Swn/Ul9XFFT2gr5qvTYq3kDsn0VtEHNLDB/DxObW8WY61ffvr75/mmzA1uXQeo1GoutV/ydibuKG4nZnZYC4gKP17ggsnpOcUSbWBpuvrz1/uVsesqqJMq1wMwRqmZNH7Zge9v5uIojpsNe1k+eZPBndLsaAEJEX068RItOyMOeIrRWhBVt7GuzQ7J5pf1wil3VyZkQlx8hxzvzR129Q4Fffvee5NdatIJLIMVBT47Ktt1MHam18enxhjsFSHJaZnBt5cpfyIOQpsdVG34w5sm4V0Qt3d3Y/U8qEaHF8j8/P3M0Tx2kiT5nWG8+PH3l4+Jopz9ScPWO485vf/vX+HEzzzDB02pe3mBZ1yjPv3n7Ntm18/PThs+Hb+Ci7UR+yN1DD3bjvmcOOQtfqw5RurBbfn0b+b2iJ7tnKOp5/hJitsam10GplXS+A1Se1Fx6fP5nDdrDytbcb/alxb72h9SzOv82c/uJeUSZ671xKJ3XIjppKji4tWe0vyrjuiuV+2/4Va0FEmXIkegRajJG1F9NTxgPHg5l4XtZCCtYwij9r21pYwoKqcFl9qAkMIWzXRs6ZiJj7Z2+7rl7U6ogu2aU5ELdKaIUl29C8aeXp5QXtylYL6ZiRmGl9YkmZKSXWKG4MGoCIYs9zdERhmheWtwuHZeHt4YElT9wvC6/eZGLK3L9+y+F4x3w4kPL9zkJpxSOuWjd9qIDEaAyjgEfFRSQcmPNEn97y9d23qG7QC+HSWJ/OPP7mPf/2b37N+/ef+Df/7jfECIfDxH8f/zviWyE8TGxbM6lODcQ4EWJgK4/0BpsotVqfkIJw7o2tbqyXF4tikkBrA1gIrFuhqXA/RZp0LlqJrKgYzRgsYnQiUstK3xrlfKJP7jLR7kCb6VzdHC55TSAKlEbTjct6vkqIsg3lSq30kggyIcGGEJID3J3pl0LtEJlo2uyzVTMpkx6JHMhhRjSS40zXQF8vhKDME4Q+WYrBK+GYEsdpYloONBFKKXzcPpl565T58HKhtMoqhXfHOx7mwx/0PP09GlsrI4PAcRaPToBX9/C0wR/dd757En77CH/1CV42eLpYXErrsvewEsx6XrvDXdUWnLZRYIDlatrfnw6J6Zi4//pIfvVAmCfUo4Vag3Xr1KbMs+wocfOHMSX2DFnb+Aypm2YzNAriulpHeRGjlE4HYV5sIvLM1WxioEJBhLYVSoM12WE2/szGzIoky2+aEkyTGAV47Uy18orG/Wz60Hl25JDEpO+QP/5zwvlrXoVHjhmOU+D+zT15zixz5vjwiulw4O71wQ73HAhTRqMh5r7FE7pNccSBi6tZCvswLOAH1jAu8PusjnznDJIUmRNGBoO7ZhljtUXW0qld2EgUhaqNc9koDUrtPJ8s3ueyQomNAjxuyscn5dMT/PaHztoDm2TyHDzSBEeHxBEVR99dt50jLNmKInVKGgg5OjPA73Ft0Ko1nooyJzd7CsMYxs2/gmWzdTUNbQoKs+7N0EBpFbuWCuay7NVhiuKIrjJFd2T+wl/a22Df0kZxq+ArB3tYvaj1Z3UgbYNZ1sU1uGLmBqV3i8Sq18mi0kkhkWOnJXuIcsi0tBDjhBBYi3C+nLlsjZQmsruy9t5oIpZd5g1RcJQlym2OqtFfQNhcy5pz8umf3cMxWQ45mdmLZsqU98Zg6ESPy+yFuZlG2RTdKFB23SIS7FnRbsjyNI/1qm7y4lRb2BHh0a/uOrLhguxjpls30oFW7vfKETYzbLL13Hu/OrsOyqjfPcWNllr1pkJufpZdq9FMd286W+8Ebz20OgVRZG9QLM6I/T2OoWCKiRQjMVrsVRBl5AizLyk7N2IwR+mBEilX5FrEqXhN9u9LMKbKuBTajdalwQy/gn+fD59WCJ3ffDfx7dfwcC+kaA9oR50mB10ryshT/JFOZ6DS/p8xjLv3ZT/LgypsTQa+LuqNydi1se0+1Ni21Q3BbGAymuA8zjiu9G/7IfZ7eLM/UDB8CKpeGMZ40yjtDfFA9MaQwVBN0+eZTOH8cuL08sz5fKI4wm+a/sJWGymG/W2I4AMqQ2hzDOSczDcCdhSpdt3z4DuupnUNaHMqpHpBkvNEb43iiGPtlq6AX59lyixTMt1sa6RokRuHeQKB+7uF81b9Og8/BtPcxyhMSVj9+pdaOa8b0zmyLLNFEMVIcY+QecoIOAWxUYoNXo+qu0GeGc5Aj9HepxaOebYILYXt9GjOsMvDft9BCCnuGurWG+vlst+XEAJ5mpjytHsOjJzPK5V4XP/P9ydQeh+DB/a/P4Z3g6atKrsO3PYP21eGEZ36MxlCIOZke4A68r0P0657Blz/zBr1K1I5mCTj98OPn/cv8BWTy2k8VqUrlGLnZhA3EupGFzbUzWrptlZj7bRKkEjKca9HRHQffA4/kCljTYqo74tKc1DDXM0TpV5Ajc2SfJ61RwT6eTklq9VMaucrwoejpaiZJsXAHCdzVa6d57oaO87CUmka9rOstcb5fLaM3TCMGsM+IGuqBIkcliNv5le8ObxiTpllmlgOD6RpZj4+EPNEijY0712Mnl2KxynpdZ+vmzVl2va+ICQzWbWWbbL0hEvl4+/f8/jhkd/8zXf8y3/zKz58eubj4zMpCcfLxPffv+cuHcj3RhU3WcGZkEFC3od72jpZJqYQWWKkZatBzsEYTykkXt3du8Z5s7pG7VR33rIZQklCmFhZ9/2/bivbeeN8OhM9gWCdF+hC1Y1zWSnVdO8Ef6alWbRoLQa0KQzmwGe5w86sEOmELITimugQCGH2oTqO3DeTXbopaHQ0tgvGhonR0WDQxU0Fpwzpmlm+djUgSc32MUinaqX2lTIcx/49r79fY+uw95JhTsLDIvxEoKry+LbzN++Ff/eDfdcfTvZAbCUY1z6ARNNMWpHSTTw9mto+Gttxwpp5wXKcOb478u7PviLMGYJwPgNije3pYrz/aTZufW8G/gacqpotf9KMOQUJSp6FabZW7VxH9IMSolFWp4Nw/2APcfE4o9Z0RxhCEOqlUkS55EBaBJKQoxWHxh932lKEwwRZFH2pzBRSKvzkPnBchPu7wP19YJoiy/yaqR2ZtPBuOfMwKQ+TcnefSNkyAAuJpoGth31DKiJUhK0bhUqaG8h4v2o+KKO0vTmkfPMLN458Ip52GCBLt3wun/7FoBxHc783P0YnHtTLrVoRrAK1WcG7rrD2xqV2fvfS+d0Pynex0z8WPpXIx60T5xkJ0G4aAX9LtA5bUyTAIRutOmK62PFgJ6chahSkKiXA2hzzUmFy5BW5moj1PnS05uSWgpKjNbghuOPy/sD6hqg3VGkR/7vu6ueB31/6q3eb6Grrbp7jtEGC/Xffg0Po6k3tjxpbdQp5x/VprdKxyXvtxWifNKa4UGM3g7daSHGi5wM5mi35eRXO64W1dGKayXkipezGStCp3jQ2EkNrFXfkYMRvKFDPF9N4pOufiwjamkcX2LQ0CNR58kKh2xQaczq1DdyMNZBA96gvBYLatE2D0sWiLaYQvfDSHQm5NdgZ+uDxXvoQI6pd372R8MnJZ8YsoyEQ3SnHeLB5aHb1BWyx7l/ihQNKSnEvtq9F7JVK2PpVk0ZItj/0m4M+RtuWu1HaxvZsA4Nouq1gja1lE48hwcitZL8OyVHx1nX/XgPBRZUxChCBWrNR8NyAahRN2s3xcjfdEuHj44XaG68eAocDHA6BEJrRs9QmyIp6QTgalu5oxfVSj7ZWwJ/hL7uphRtEFWe4dKWUgiYlqtH8x7prrkMsZfNcZ/bhj8iV+q03w5W9CUGc5TJQMaPI2sDIpoVX07FBQVVvTPr+exKt2e5OQe+1cD69cDq9cDmfjOHQGrU01mJxUjnaz+99rElhmmxAlZM1tiGGHYFs3Qp18fqi3zTrMUVit+zM7vTGNGW2dTP9mZr53GVr5GSfffFYn1JNtxhjIKfAPBlr4v5u4eWyuXbQPmutjZyNl5b3uDKLEjxfjJb81RvLf8wpsZUN1JBnVAliDXBrgVJ8OOAD9t7GsMDQ3do6ca67z8D68khS5XD/1uodb2wtV3Qh58nYG3XEOLFnxeY82eDDh3a3Tep4/VhuMNaOrTVH9/pYj9aI9d6MchqCo84N6WHPum21uufBGKhFz65tFhdnP3mvT4wpYJrUvXkeBmm9+ntySUXrNGn/f30O/yFew8OgtY7GwR5rtBzRMKJ8Aq1fh1UhRdp5o3qm4TIlJtcji3ONqze2HbU0kSgkcXd61d0voak6PT9SirnHB1Gy2jBZxz4gVhctUySlQDtt9lyKDxpUKVXRWolR0NnWbGmdl211FqFCKfQeLF5TGo3GabsQUiDP17z27pT+puaae5iPvJ7f8mZ5IEeL+Xp4/RXTckDywbadDtvW9vOiV8s/jSK+B4H2Qqsbta6mwY7RBubOnkgE1nOjPZ75+Kvv+N3v3/Nv/vrX/PN/9Ws+PV2QGJhy5LxVvv/+A/1eeaNvUCKtC5dyMbFWhGlKmE+JkmNgDpE5Rmo2hJvoNOuUOMSJdbvwfNoszk0FQ6bUTMByJodMCjOlbPszV7eN7Xz2xtZSL9Z1QYiUDue6Uooy5ZkQvD5xqVgvFbLVuNZK+oDq5ryUXm1NJJMjBDV9dwwzIUzEWJFeUS3mjCyGnKRpQWIy81wBkUhy48Je1aIQRxZoCIhabCnuP2KePp0uzRrb+oc9y39PVb3sD5WIFbbmawrv7iP3C/zyW/hnz/DdM/zFd8pf/r7zw7Pw3afADxk+BNgeoTexiXwKSEimrS3FO9DRmQp3P3nH3VcLhzcTtVms0GVzF8boB6u6wYtrB+raaVun106I5tYlQZjyFRHMs73xtTTLud101+Lp1qkvRm/Mc9wd48Q8s2ko8WCNWM2JS4V2srdeq30MSuGY4Sdv4J/+FH5y1/nTw5n7qXPMnbvZqJIpOlVYAFGPnFHTC3n8DAKXFvjhPPGrx8zjFtncZdZy3dygK1pDOgrBkYU2NFXjoBKsWTUBdCdIRYLpK3pPRh3A9ciiJEb4tHI/KXdT5/XcuV8sjmhM+lVh2ptJh4oBvbvqaf+sd7afK1tRvv+vA999FP7yN43/6dcnfngOfJJMi9Eo4S6VEIGnk7Im08EeZyEdhFKVrZk2uLnRzdDuisKclLspEIMYNdGb0JzwB0/Zqplo5WTXqKn6VBNS6Pt6P6QrsH+qtt7mKTD5/ZsilKo7W+BLf+06zxZciiqG2am4wY43Xk6thevwA0Cl0tTy9YaxrDmOmgnV0JG3eKGERokbJWaSRDY3BFGNfHhOfHzpXMqVbgu4jt40KbXVXTM0EMdajXJpWlxrjuZ59iLQsxnFpp0Na6LK1ghihlHLNBl6022fEIFDzqzFKLuXdUOiLYQUrsZjxroMzId7shf368WmeBZBYaYRW2+ElAwzG/qRGFlPJ9Mj2lXcp+ZjGm46s9vIlas7Y/fsyaEfy65FntzhuLtOOsRoTvNiLs3VM4ElCOKO74PONoYVrZqT9JS90fFrbN/z+oyDF1Uifl8aodq+s2up/FpVp6KGaE6evds0vmzXxrQ2czvt3gcLUFJzzZSC09lzSv4ZO1OMe25eK8q2dp6eG6dL5LwFG6CKF2ejiUZ3zwfGBFw/RyeFURB+6era66u2htZG2bYrNVQbGn0Y52d1rcWM1baNddu8Cej7gOJw6KScmab+2XDFGtcr0r8jtogPuEZz3W+Q2isDKIQMKKWuxlQISozZ9tKYSMd74vIMcTYG1Fp4Pp1NP5siczapQ1flsExMOXI3zz5ktn28VeWsdc9HztNM7ZW+dco2oQ2K023seiilVITOccnWmMdE3WxYupXGYZ7IKZjcIsLxmJina7RY7TDnyJvX9/z+42k3ygE7YU+n1TW4rpXTzun5TNlWLpcL37x5YDlMvHv7ilLf7zEfFrcRiNNkDV+r/PDhAzFYDMeUs2uJjy5lsOc7KeQp8fzxPXK+kO7fQcrWrHij11q1aA8st9gM7mCaZnczFrZ1JcTIPB8YBnK1lr2ZvW1sk++9u2HZzsAY52bwwfHYz4IPyzrbtlJrceMiH4TINS6olI1ajeK8R1C5CdIYoljjW2yfcto1OAokwfbi3pDty3+aW2/EoIZuaccDPRyZxQzZaqeVzcCZKXH3cOR0OqPazMAvYExB1+XWUqnFAKPaVoTJ/CMmpfTK1gpNOuaJ3Nh6pSEUbUwRcnJNs2HlnM8nosBySIQUCTlYjGOCKXcO2Zh61c07bbhYmVLibrkjtgrVENRajM661caUCl0CpZ4MYeyBbRvDFxANJBIPyyve3L3l3d03vJrvXQuaiXGht0gvG9u2sW3Fr4sNmuaUfCAVr4ktVOiVaFanSGuUl0oQY/Y8XU78/te/4btf/5q/+e49v//wzL/5zXt+/cML561xWGbksvFyqfzqN9+jD8LxF3dEiUwpM8/JzCqrMi/35DAZ1bg0tFbOz8/EaeE4LfTXb5gRkgovny6sm2f8YoPg8+UMXZBirdFh6qS5ulFY8Li0xulSeHp6YemmN65lRnvmtArnrdGaMM3JKMPSCS1AV1rbOL5brMHvieQ0RVWgNbR2WqlsbJzrM1tZ6D2gqRNkJkump4shzXXlEDe7L27QiAiXbaUaddSMoGIi3k1oL/SgvKwnDod7jsuBp22haeWldR5ePYB01raSs/kU/SGvP7ix/VwLxk5lgmHGYJEpU7RMuBydGgS8Opi+s1ehFHg+BHoCJtDupjs10LZoAcBbtwc6guSMJDt89il/G46oQoqyayNbgVaVuiqtuHFUN21vFKGWa3ZhmwKkkYEr1sgNF0ZRagFE6d2uZHCdqj+tVjQEBxVwVnVR2qZQlDep8NWi/Pkb4b94rXx73/nju8JdVkO880BN2acu6hEG5vh3vdaXIpw34XePwg/PgacS6GIbWIhCbq5p3h/agRaNItTvmRePAaPMykCMFNM7KbQ2THPCjlDanN1oUS9b52EKaG8sU3Uq71gTtglb7TjWy/UPFWUClqS0yWjah6kTJVAVfvvU+ddPjccKp6LUJmi6mk21oKzFEFfBJvjWVDmSKKDRIWplnzCK01G1eZ/W7X7m4BPIMIpa9mJh/FL//RjEDQp1/1SDFZC8WY7+c77813iP12dahOs92+lnA571yZ0MhNG+h3l31v2vNR2Nbd2bFBkLTs20oougPVB7pPXIx8eJl5P481tsQj+QAkaRfH3fY6KvjkTcopGGTlqRMFyDuflIrXckXh14Teav3JgJj59CUyVJIKZs76PfOH+6Xb62ujde4lEnlpVt5hj7VFwxenK/NgJj4MRNY7XfGmFvbhXs53AtKG2t2tcqenPN7OvG36ut7pEdw10ZLz5H/IuORg97TznnnTRTenXaNLu5iPozYJ/HUBRVpx5h+7M1k9ematC/Bo2tew7juJ/7DfKHeCDf4sMq7UKr1Y3cDPGTIIjaOqil8fJSeXoW7u6EeRYbYmEO7sp+eRjLXMZTIOOd3TwScv3XL/ml/sH2zzYQ1ps1NbSVI+N5DB16G7RGHE20/NMWIzmMPNi6bxUjvufa2HKzx8N1v2C/t/jeO4Y+xl7wNUp3icz1/o+MacXuc0qGxiYRN3FKni0d9n09yjCUsl/KoN/a99k8Wz4Gdify1jqbKtqDxe2pfb7mlPvx3BmCa4OkKWfujjOt+jBrK4QoTsU3dlbAI82w80VV2bbmjZbdm+YRf+d1M3TKs3K7Yj4Fvj9spV7R7m4u/YrtWy0GSm1MOZJ2zavtA61WkI319MLy8JqUM7WYuVLvFssxkFbLG1aGaZGq778Mvex1b739563B01gL133tuiZG4zua07F389m+7pIi/7N5XnZWyRjG3dKfB5I0JBfjl+57yTX+agxX/zH4XmgfEpDr7xnTsCMI05SZgEldlsXVzBIZg0H/Dx21SbjZ73UfIEjQfb8NEkjBnvlbOc3tcFV9s7yuB70ZFtr+gnRCbOaSi0UoGtXemGyG6Hak29C5jOGqNtMKE1GtaBdogVabsby6NUFzyhznI4f5yDwv5PlgQycxVk9vnW0rrOvKtm6s59OuP2bKJpepQoqj8TdEOoD5E/RK2c4EqaCV08szHz584Pffv+d3P3ziw9OF81ptuBIx/bv7BK3bRinVYky7fc/ZxKqeGGBIqEqk9mIaVlkJRCQmjvPRDHRr5VI2jwTqdNr+bIYwhjUCagZ2OWajJmOmW7W7EVUfg6VO18q6dnoLmI9E33/ZFtyoulFrMoqyKCEmQkimYZdh3KVIN/lla76OxN4LjauUSc0wLAWYJRERS5bwRn3o+kIIhJyp1TwvRlIBNMuu7Z3SK7N7h0StyO05/e95/Uf5oDu+4BfRHrYYhDcH5X6Gb+6Vd3ed3z3D3WyTl9LgfErmjCYTWw1GK9k667lQtkp5TubwKUCcUInWgPqvXtSKkwjzJKyb8PKibOdOL2porWt2NQky27SwrDZKktbZYiBOkVo8aDgJkiAkQ+wuJxPBa/Apc7KHN+ZAzIHqNNhptgZfFdraYa2ktfLn36782Vvlv/0T4advOg+HxuvDtvPPJchtz3ct7OS6uSmmT346J757CvyLX8NTi2yaSJ7FmhJkb9ScZWGbXrSYm+AB234sjFaW5oex/axRvJvGqHeLzHEgbKcWdbe4fjV3Tqvy+hCYghoFd3wcNyW4fi6ub8qr7IAhxtOx82oJ/Oxt50+/Dfzmo/L/+P8U/uWHzvkcOfdImgV8M2ldOK0GuxSneBsftl8b2yGE9WKlj2Dpbmj/Vm3wkoJwdzTzqRDM2Xegufv69gba1rX1d+r0ZfoYEFiE0pQhx9sQ7S/3dSWPjefWtbXegO7NrLss4kONHnDnXdn/Xh16Jz8ULZj8JvqhWRRJ7w3txZzuxFxNtxL47e8PfPwUuZwDZb1Qy7YjioMCLVhA/CiQppz3APURRyC+AduUtJLdDTOGsD9atZoZDU61NYMF93VUdQTSnoOuEHJmOd5xen6iuZGJFei22dbSqNvm8oRISJbPaY2y7DTf4vEMNpSrjmrYEE3GJIXRgHUipgcMHk5eS7UM6BD3Q2EU/aBs62U/aJbjvRfXhiTb9ZpdXxeo3Q2tqhvp2M1DMPf2w7LQWjfaZHM9Zsezwu35teGNIeM6qPxqDc1An62ZuRaoY+ATJHjzPIxnfLmNAYEzLuiKtroPl7ZWiNOBGIIhOahHNSmbKt9/v3J/b3roh4dIzo0U++5E3W8GbYK7345N67PTcgwP9LMi88t8XYds0dfKuOafOc8OdL4DrnEde7Q9Z2YOhgghJpZDNpS3lL0xobn+8UeuuDFcXcvDfp6wDxPE12vOC2NqEyS4BMm9NrT74Mj28RQT05RZZjdIiTDP2QYjIh4LFcwUEjxiwuQHzZvOgTqfThvTFM3ZuFZK6VwuBbAUhGWZ7WtDYBsI5pKN0tw6ZVtJ2WiCb17d83LaeHpeeXqxwvn16zumFFimiLi+rvfOcjDK7/lUuDtahNWgYdfe+fRyRkXJOXA4LEisPJ0ePbqm8/j4bC6pU7L4oN7RrXikUOC8bqR0IKbMlOznrpfVc9wLzx9+4HD/msNy5NP6wcwfY6cUa7CHU7Cq0ddL2SjVTN+6RmQLu0Z/MEbGehtr69rcxh0dMxZAcLO8K5I7CpuUktEfe9sRY8BZHRMPD6/d9KrSmg0HhzGadqVq38vb4TvQvfkbzIIYPe/4Zujzxb/a5oWFuVuafEJZt0qPwv3dASZBsvLx8cnrxWEKJHQsEqdrILhnwpxMp9ybRdB1H+xIHEZ9SpZofgXzjKrs7AiTj4TPGICAN2nGQNBuMYFNmzOEKorR/w/5YPnKM0ypE6SwroWkgSXPnHkxMz+6M8QE+oYSaBoopVOK7daHaeHVfOD18TX3hwcOyx3zckcQSzdpa6FuhfPLC+u6sq7Gihh7VyuT71mNZU7kbJrQKUWmFClto24XXh4/koMxRj9++sTvfv+ev/7Ne/7d7z5yKZ3ShLuj5VN/9/v3pCSIJLatWAJAqWhtBOAuL9AvbN1kNhWhq7DWQhhnW4E0Lbz76iu27cSlVR7XM7179qs2u87bxhRnJEZ6CwRJzDlzjBYxGOOBzhNFI6U2A25QcrTa4eV0prc7Z3o1JDSE6s91pXBBzkosETlH8nwgZ7i7v7N6L3ammKm1U14StbDX0DSTf4SoftZaY5ujcJ8WS0iplnW8/0+t/punmVM3Jo9p7jcbPqRAqcJWO51kHgkyGRD3Bz7Q/9EBX2MuNhpc726IQTlk5c/eKt/cwZI639wp/+W3wtM/gUuB86Z8Otu/n86Bj48zp/PE+SWRI8xZeP11JkxCE2viUHNYBqjFevx1VUpxs7at01ejvNnY1DS8vcM0BbQJ20VYi+ki8xxorqHVDuXS+fRcfMISkBy9wDa6V54T8/1EOVdrpGqyoq115qcTf/pG+fM/gv/jn3e+ftX42dvK3SxMyQ7gXb41UNr9//XzRhf2KY9IMjfac+dcKpcOaQ6kLKQkTNXRxoE8OpI8amajFA99sP1ebT7xu6EQwjWfbKtGq27N0PDeBO1CCpX70DlEM2oS2W86cD1I/teW325Vroa8L6nx7Rvl7mAI/P/wrwv/8682/oe/ilxiZrvMlDthWSC/9kmhmO62d4tr6l2oVbi8GB04CLx+5aL2AMldlmdPlgIbXHQfChwmzKu7OVUZrHkd+hHFLcvtgRbvA8dwIUTl/k65m/+eD9B/hteYgo/J9hiy6EC4dm2F+hwOEO97Ra79r6/bPdhddddWDUysCwTtVO2gbmwRlLUFLmviw0dYixmHjWYWsKYaHHEwJ+fbKb0EMX2nZxT2rpwvF1B7zmpvPnZL+/q2WsfNldQpcNiAp3XlshUbZilUFdJkiFbKkwW762zmCwqlrru2Nki2Yh2fnDskOLJXWy27lincPBh+DuypDWCNnwzU0q9jTkbntO/pVGS5aq1SSm4YFMlp2gcD165NUFGaNi7n05ifOZPBtIPzZNrkw3zgsm6eSxro3eiQXI8lZzCEG8dpezbEzaOsoDT9sjkwKhcfUAznXCGQc/SiCTQnBq67ozK9mzu9F8i0Qtugx0wIaacZa+9sl8KHHyJC5tuvEnd3lcPRpBT79ZaABtvH9gmiuL5cdL8h17nwl97Z+iCU4QbrpitiiOauy8Yn5DGSXNcVW6U2YehjU572ZifniWmaePXqDU+Pn9zYaTXEr9UbVE5ooTF0uEOukFJmf/57NbQXc/SNITLcWImJPB9Zjvc8vHrg/vGZ1iq5WME5zKGMJOVu2kFs/5XrYN0MiswwUIE8px3hcAALwAvQ5vEWtk89vZyZp8mc0R1Bjjoc0Du1WtElwDwl7u9mpnly07XGFKyByClyPq+OUtnQC4TjYaGUStFKyskbW+XT0wshwPEwk7JJFmJ0XWV1yQVCb2bUF3xou5ZCU2WeJxv6qdoUW5s935eNqhdkqxyOd8Zsk7Cvi5wmR4696G+VUlY37qruqD5xPD5cG1URSt1M/7mbgSmQ9ucZxGuQa8TObuzkEQw7Ld6/x4hxEsGQZ+ByOe0NiZnXGcOgFKMla7sG6rXWHG3zvcJ/9v39AzFaXNy2rpSbBvpLfQWaPTEa2Gq1uuVg7IQpB9Ixk3Xmvk+U7QNNlVoM/UPF6PZFEWlMav/MuVK3Qmu2jprXdF0HMgdTyEjILMw8nkzXntJE9H03xrj7GjRPHwjB6LZpSuRgSFrrcC6FtcDLFknSyFJJkm1/Ls004b0Za2EptFBpvYJMhGADHcTieXrbnFmXuF9e8e7hFe/uvuJuuidJpFwujIe7rJVW6r5GYjBmg3YzzFtbNXZnEmroiEbmOZtkSBuXywtls4b48fTEup55/+EDHz49Uzp2popCD/zw6ZnzZUW1ESRb/RGFLp3SC5dSLBs3qp+5ne3yYh4WwdgZ0pXSGnU9k3snytdmxJgm5sNCbxDp1q+oIZ29VuuB8mTmb2UjpAM5LUzzA4eHwrEJ8v134HGKWzvTNdrgq3VD1YMNlmMI5EkozXTYXWzYnqNF9UQSQbLJ1KKf7TqT4wMSOkIkhUBtZhwqpaFBzRhKTEMoGHuu9kKasg1CMHBQosUtSRLowRI5dKxNY8ydykZ43piisGSxhlz6/9pjtL/+gxvb65F/U6n5eF3xAwJ4mIQ5KpfXBk+/PSiXCqcNHs/w/Uk5rcLHFzgswstJWF9lDpNwv8ByJ2wdfriohal7JaROvRhozLU584m7oyFGsRW0g2QvnKLQVNDmBwYuom5Aa7S1ETzDVIMVk9rU0GDp1Eujrp4RFowbEnrjbSj80VH586+EP/1KeXVs3M+VKYVrPIlcr9kw/ri9hrdFwzgsUrRIm2PqPK0dqeYw3FqgJnd9DeNgcfRWr4jcaGxjsMNzMCB3s6NrTz1Mqn3SYpthKdYAosoxWR7u3dTNOvxmGdw2szJAPbmZmn72F7CcLKeGL1MnRuFPvhJ++KScT8pf/I3y0iPrqrTZXFOHTq4NyafVZgQVqFCrXKmKXD9rEGsgopg4XR2Z9vpr9NlXlFntTQ7Etrn9futKTm6whefoZjjOytsjvPrD3Mj/s76MtjcKYNmn3eo3UW8uyGdzC/9XKzTtr/TRnQ3az+3aVnZjNkVpTtOjd7ZqjuaXFZsyO/3klqIGbnbEyLa8mtMM913xcOjer0ZKwamvqhiiPIp7cT2rv+/x/F2puzYlVzXq4jDBsVB33QccvXe0XBGMgYpJdYdPp/ENt8cdfdZh9/R3jX3Ger3eF3v+5XNKteheTO47ngRrGgZCqj+KnbpBToY2WST6PcfoQ8F0SEPDpqNp3AvT63WyJilYQb43GPrZPeo36wC4NrmDNhpkd09GhpzBn7bxWbUjktjdpGGnZ9pzH/xnGypxuXRenjuncyBPgUWvdMQdSvQFPNb8+P0f783s3/nLfd2+v9FcfK6BNSbK0BKbsZo1C/uzKFcEb+iWU0rM88Lx7n43O6v1yqS41VvaGh05pb4XjDOYcf+dpoo3tPggfDRcwdZviNec2LibLw7fe+zfZUhozPxvGH0N8rHC7piOyP6cm0Z/0Olt8KJN2Ep16qvp0ePY8MZaHVRbN6/KIZKysK3VjJx6NzOpnDifLJIl+M8Vsfe/ro6CxbjTwdetsG6FrVR/bjFtm+8lKaV9OQYfVIDtTzijorXm5kxOM8UidmoH9Mx2fmE7PxOOD4x6IiVD42ltl1aMrUIYjWnyxtCyYlMMO8OiNYvI6h2Gydzt68drw/bqz5/BcW+MtWK/H1Padb5jMBZCcn1u9J/ZGHrPXdu9I8I+5IvRTbIy27ZalNA/AthWtIMau6g1GzBLvPqoSMRyQlnIIbi+8nPvg96V2hqTO+nugXhq+2P3sw3cYyQE0nhWsp2zOOsj+H4/2Ii9GbNjbJMpRKaYXIrmbKmulK7UHvfnLPgZOmonG/BuNjiSERVmv5qjLUH8/TZrj3KcOOQjSz6Q3VG3ehOLCrU0evVzgetwJYQwkrxtTXXo3RkI7Vo31Fqo1fwHnp5fOJ2eeX45WaZ2CHvSylYr62oa3nF0iGDNWVDLd+0d3U1EbeC/tc2awWA+ICJ6dTffa5NISuZM3kMnaCPFSI3qkXkN6YJqMxCnWT1r7JuAxRVFhsxD6B5vB1Ei40gwg8dIikLKzRMsmjEdg9HEo8QdDbdLPPbqSAwLnRUQMwvrjdJMNhSTGWpKSP4+PPOWZmsYlz06MKR0P8fHuWBnlWLSrdIKm6+3JQfAGAF/yOs/GrEdr6uPqheVjKkqLAl++Ub5s1emISkIT5vw/hT54dR5vMCvflA+nmAtZg707Sv46WvlvCl/9R7+n/9C+HiJXLpwKdbopWRNn0X/KEUDLQl10j2GpZzMEIcurNUOq3SwTbd1aKVTL4V22ZAyNEUCTO78ZTc1BGU+zvTSOb9frbGSSCnCsRRex43/838V+OVPCr/8aeXtVJkEoganrtth4BRz9GZzHoXsbqm+HwB2bd/eV6YcCQT++b9Z+e2HwK8/JkpItJjIBxPwJxdX703sTUM7kNqcvBEMwxGYvUFE2FHM1g0R7+7qkkNjCp3/7U87P3vV+LN3jXm66i7/zjUxmluUHxfan7+M6jpFeH2E/+afRP70m8jTCf7VB+UvPzUOSyZPQq3Kij/YQThMymEKTN200ZdiugdUeXxqTFMgZyt8YrD1Uis2H1W7DimYmVUQQ/vibTOMXY9z8XURbNo01vb9EV4flF9+Az9/De+O/5EP0n+C1+R02uhF5d5IsBNM9797Xa/si0QYa1R9rehezhqZSlxva67KXYx6UrQTsebs5aw8vcBpDaScmZeJx7pRt83Q2a77QWUogf2EQenN7oycsmtsemcq1Yc7toGWUjmfL/v02YWXRl/q/fqs++fqTqtBlCVny7RFiNPsDSas5zO1VdfpRojKuq47VX+guGAGNdXjLOwlNzpdPF7hqom15WWGWGmaryhwq0M2jrQRmfN5sSZOTaiOkuDXDezBr17Iam/2c5M1tkHj3shM00xVc7Yc1/nzotBpoNNEzmZaZYZEhVI6V3qxf503rMIYRtl7T66z6x3XY2JNcoxISHRJ3lRDiJa5G6PRiTuuuY9CmgbKi9NGAy8v8MMHK5Tv7xcIl+uUd1zmK23m5jdvPueOSP3d+9qX8rLngr1xDcHuT0yGpPUotNqQ1neqcp4WN+apcD7v9zfl7O64mbu7e+7vH3j31de8evWK8+mFf/kv/zmXy4VSCjhTJ3DVjgKI2P0bIWzs45Gro7ZN5S16AxW2deNyvvD0cuZ0Xs20DSWQzbSttc8YJmD0uuqOx3eH6eY88bVQwfKKbcCpvXmUlMW4pRTZNtfKroUYEiPPWL2wmqbZtIGa2bbN86mFOUemKfN+teby9HLmfk7kcORyvrjhjzoyre4EDqV11noxc6hoGZXny8rL6cwyZUIILMvCy8miVt68ekUtlW3dWOYZxR2vvYH49Hyyj61OLw1W3A5q7pQnyumJl4+Jh8O9Dzk6h+MdIQTW9bLXH/O0EIM1sjFlYsx+P4WUM2/fvOXDxx94enp0wydr2q/IqmcV77dheFeEm6NkNF8djREzrRwDODXdZJ64v3/gdHpiXa14DjGRkb3RNkO7a1TQ2MMNiZpYliN3d/eEEDidX1jXC5fL+R/60fsHf5mZm9B7dEAg+NnWjDFTLkzzkZQz0pVemxmkdQDTjWo3R/Hl/shxStwvM4d55ayVbS1ot+iVOQZaSGjMRLV9pOtwsO7kmM2YNVw16a1UxIdavTfmmLjLC5/C2Vg1YdDwQVz3aht8M48ETbRW6a2wsdJdTqK443MpnM9nRDotZ0NhmxByJ4WFebo3tkE3icTlfKbvRp3xugdGo/23WhkZ6aZY6bs5ZW0d1rF/VlKys+nT0yO/+e47Xl6eLTIoBKZl5un8Ax8+vfDdh2eTQIqZr9kZVsh3EZlhYzPjwhCJCdfT2wAr5ZlpUoLMBEloSs70mChFSWnmuCy8etho5YTWyGEpdC4Wg4Q5mkzaKS2xlQy90OqK6Ec+PX7i+eVEJJPEGAC1r2aqS2bKtjcnyWSBSTCGZC2EqhAt4utwWIhYFON2fjGH8hjRYFFBU1rYusmyTqcTW4fSbdh1yJnDMplEIswQAlUaKxuSBDFLEmOoBaXLhkghiHKY7l0vbfrqUjcu5cRxypChy8am9cro+/e8/kEa27GfXY+w2z8MvvdY42A8bOFhsqiUh1lZK/z02DlvUJtwmIX7WXlYlJdNyQH+ze+gfK9cBI6HcEWLmum7lhQo2nxSFKirPYi4XX6Xjm7+bkV8QmZTHG0AEXVZUvDCL2QhTv53hm50TC8Q0IBU5af38IsH4U+/qrw7dqR36ma1UgxKo5t0YswbBirmlyp4RpWBovrZJFSCHcaHWfnp2w4Nfva28/X7zg+nxodz43mNlDWwyrXpMoqgUX3jFD5rbPemNvj01KevthfdvC9VclBe3ytvDo3Xx8Yv31UeZuPvjzYHuCmmP7//o0DmR5NVm6ZbodP6KMKViHDMHT0K/80vMzFXfv/c6WugaiBFc0EW7HqVTVizcJjsbS+zxzl0KA2SzYVYVxt2kGWPQerqpl+KBUcHuw5dzDDBimlDsV9WQ2pzsvcdg7ku//QBfvKg/NOvGq8W4ZD/w5+j/1Sv4Rq5m0NwM2jBJrPKtVARHbi1q3HDPgumO4WqB2uJzajl+r2afm4oon5ttxpZt4S6r/qtbq97E2Y6rPrZurGJdqdUM1jYjcF0xNuYdrVVoy630cj5kKXWijHR+37wqc0rbGCIOR8Xd0dWzJHXtK6rGbQ4vXjXBToyW0vdi4OhKxMRpmm2R0qNPjaiSUZblbMVtsNoZ48z0rEf3DxXN9cJBZwa1nrf9bDooAy6Y2n3oqU1bz6u9z2EYAZ9EmiOJJViE+xWN2suQ9h/fhhGOAwUGJBIiBjjZSRpiw2aDD2ze0Y3Q5CB5tTWSdEn6ymBRBQ3lpKrNrf37sXzFUGotbGeL0SnvRoa3VnXwO9/30lZuH9I3B+Du+fbtRv7xi0ye72uuvezfTimfMGvNoYc3WMT/DgfuscR5SMysj6xotid7GMIVmx2a8RympjnBXG6cK2dlDKH4x1fffWtmaRsG6Wuu8Y9xrQ70e9MD3xtOxVYfE0bgtF2wz9UmZaF+XBkmo0i29VM/Vq36Li7w0SO0WNzbN1HyUzOEFDtlKIWyyUjX/lKccf3+FbVz3lDgodmH7Xc2FDrNRtbDBlpzQZVW7GBUApi9OgYWJZs+0cIluWtnkXqzAwJto5HXM14Xloz+vDxuBAksJXKZduI0VBSJFC78vRy8muIZYI6XXzo6i2TuHCOVyQ+5cnjXuzebOuFeHqhbythEkJO1iSpIypiuaUpCdN0sKGa70UxDCqx7AONdjM0swFWuxlqOCVZbKh4vQFjNYz6oJFiIqfMNC/Uuu2NZ2uNy+VsmcE6vl680W4g3ZxlW7W6L0Rz/0YZcoVSC58+fUQEzqcXG+D8I3iV1ojdLXh2zTn0ICiWexoFpPfdME27kLKxiTTgZ5LF/swJQ+58sFirUbZFlGWK9BDRmFlSopfOqW6G4sWAxIkoFVFzXw77ZLL42d5M3pWMjtpaY10ry2T7efI4rGXKTFPeNXE9daoqVQvG8OhjM0bFaM+GjlbKVi22s1t9n0JEejCWRKnUrdp+JmGXm/Re6YM15cOz4BTkUWdaM6psdbW/3ws5R1pt5GliOR6p2ilbM9MssVhNdfZFytmebSBnYZkTr98eOd5PhKAsOZncRRqlVdZtYysb8zRzP89IH+7gAdFMIKENNFqdGsJEY6NUtQmsn8tTFFK2iKEpJXLISJxQAi8nGwhupRJDtjXUGyaus19RzIfgkBeWKKSgJKmWf6HVjLQkApXeN1AbLouabCt4v5PiZH5RaqkHzWuU0RfFkJyJZY14p9GlgievRAYbwIyiYuyWk9ttYIp0p6cr85whVhqNc3mBNICyf//rD25sf/z9/q5Ztnz2B7YpOUGQoZ8SURJG9ZszvF5sof30Tnd92zKzx8u8bEprwp+8Vb57Up7P3rwUow5qN4w4R98+FXNa3hRqJfp70qC0OgqXgLRiGwjD4CQa/SMIxIyksOfadosJ21ErCRG6beCxNb69U/70Hfz0dWPJZk5ViiIq9ARdbBocxmHMLTVrHAj2++I0hpEbCFZ0zwL5Xlmicn4Nx6nyqw+JSKc+Zy7NnGbraNyRq77UM2AleGSUI5c2bVdvbK2pE6wZThFy6BySOTr/9HXlm4fGt/fVslu5Xu/rofVjhMdrix81tv6XUbWCoLrTmqDMCebQCbPyv/mjxKez8j//TeP7rZl79SI7oLJ1o0lvvnfGCDlfEcbenOSiphk2Pa6vkdGYjSbeG33TMtkvAp6XB2s1He3k1yxHuJ+Vn9zDz18rf/K677ScL/01CrjPDGbwplbVEZXb53a0FLa2olyzWbvBHOZ2q8oQkYt2pF0LGnNXtFNWRdhaZCsRkQwMg6dBG7TmsHv25tDCjuKltY6INbwhGEqhmMNjjEZda14c7WvS77PleTYzTou2kHcEevQ2qjuFGJ8C92ZmJ61Z81pqZZgZqHZHheoeTdS7acRiMl3jWP+9GSViUJBMIxt3KuhAX2K4OgeP58e+IFwX+Lg/fu219yHyRdWR4Rt0Q3t36qfJNMb0Ivrm0LvpEGutu35tRHQMM5iwF//2PA0ldhDL97UkdntvhrK5uYnaISlyO9jy6+v5iYqZvakaXZwYdsQgRd/A9gbB9HPZJ/VdsX1ZOu8/KMe7wMtXkcNisUHBUcarl/94jbXll3if0n75xjOjuezaiZZgviP540xDgWj3SnwdhWFcJiPGyqb1OU/My5EQPMO5d3K2tfn6zTs3GSqcT0/279vGcLAd9N7uz+8+APN7PdDWITUYDXmcJvI8M03XgtHup9Eqc4p7Mbe7BKfICHF6OVVjF6lpBmMIZgSpOLriz3PVfWBiDWncXcG7U3vjNKoUH8Rg1KUhLwg+ME4xME1DF2vIbFI11EwHDdkO8e5vYjcz6qYHTp7RXEpj3So5e5PiQMDL6cKU3TG5dySOKKC4o7elVi6rMrvjYYzJ/1y4NDO2K/FM3zZCmqxZ7fa5zNk9OsPL2Bd5Mp21DSjH/tlZN8/57dcHxJB3S70cQ3/b3JVb+dFg9uxrtnfLzE2ZV69es64Xp1VXeuvOfhmOzD54CzbkC3rrwjwGbleDAsUGly8vT9bklu0z6vyX/KoelYdTc9WR+C4GqmS/Br01N3SyOigmi6PqKKqFro2cLGZJ1OLtEK7NnihzjvSQ6CFyt2RqaGzJ8kdjdMaHP6c5R0feDXGDuje2IZqjcmuNUirHWZ0VZ8yGZcreeBvFfA0ZDY3a9ynyft6OIauxpiq1NFoFlRHRl2zA3tTo9h7tFUKwuh3bx4ZePKUx5HOjSM8t72qTrlaL+0cUINN7s+i8ZWFqlXV7sSZbvfcOQs6ReZ6QENhqI2dhnhP3rxeWQyaETg7BpVemV95KYSvGQjnkiVIC5kGUAGNh4rI4CUqIGcRM8AaYoKiln+RIzomcEilkQpqoHU6Xlc3ZYTEkhOLKMKcpq9UTUQJTymasKRDl5POn5t4nDZFK7/aejO1i61LjBIR93zIG1o0rdrC+KEreT9imjS7N9gMx5o0Z55pvgVIJHsnXte7D/6bW2E5zhmia5a2tJBGTHP4Br78HYruf+H/4l2DNHAwcV27+3b+rUwXmEJj8T+MoNoG7SfnlV8r/9f8g3E+Nv/hO+B//JvKyCmsJFuEy3G4FcvDGJURIQlqixQZFkNoQMRpzPXV6bXYYeUHVNsv1DAh9a0gzJ9K6KrWYf5vESFwysjZCrRy3M794rfz5TzrHtBHUnJmfVyV7JuTSOjH6zR8TNNQpwUKP3ZvRQKCb9tSvdRQ7eO26N+YF5hke7uCf/LGylsbvnyqfToHvPgV+9T7weAn88JLYSqCo0C/dGo4g5El2xHYc4lNoHLIZKH1113lYlG/uO9++hodFeXvXmFNjCs01SHYvP+9T9bN/jpWyT3hvivNBJzB0Rmg98OliDn5f3SlBhSTK1/eNP/828t/+MvJ//8vG8wrxfuLuKKQInEy7sW7wEpSUlJRcYSCAKE0DNNlpMq2pmT0FZc7i0R9C6cqchHm2PNpa4eUC1d1EHw5wnOF+Uv74ofOTB/gn38Afv+mGYIexzr/8Q9TklTcoqh8wvXWnN1WfhAYfDFkxYe1sIMvVNKTj27OYlXzrnUInqPVYVoxc4ziM6SCcX6KZxOXZTBy2M+fziW292H9fLOdw3da9GRJ34wVr1kJshtSMZrRcSHk4BSamCW+QzfxoNGOtdVLwAm4MZcTpblbVWRHgCMa2bdRt5fTywl50jIgdHSZP9iwnIl2ESiN6wzpQ3b4fBHZNFKNA1WYSjdDVJ55mJFHK6hTbjZTtM1VHTlptLMcjYdB6mzfW3mzEFH2qb86u3Zv3NM039OcRs5HcsdmGCaPI8NVhf8/NupbD4pRhu7ZDN6VNgUBMszvdKvj66E135F0YQ6hASm66FYzA3h3hMmQBLFy+UAVqScQ8E9OE7Z7WpOh6ZshFjG6WUA18OEx89zDx6j47CtEc7B7DxX31++/LzlDAh49f+ut8Pu/MBhGjX7fWmOfFr+3VhMyk5up0TqMiV8997L1xvLvn9Zt3vHv3leXMhuDZtbZWzK3WGsCcM+t65uXpkz/3PvzxAUqtA021yJdhFjhYHHZ2dHqvlPVM2S6IKvOUOMwzZdtMPhAjDw9HphSJ0tnKiJnqnFdDLPsYzrimpvfO+XzxPcCo/sMsrjWj+qTkpoLqOrHW/KyClJSmkVZXgsBxngxJ9UHAmKB2XYGAxEwadODRzAc7XwRFk4Akf46LMyaE81ZQUWISLltFEVKeWOaZ2pQP5/dcWmHbAm/evLaiThThipqW1tC1k6fCpCavac2c6rfNDDBbF16theU+8/rhDcaKEIJE7u9MYrFtK8OkaXOWRxAhpkhrwvlyRgnM84HkcWCCP6vKPvD0nZSRKw62b4/mfwwtWzOdf0oJdOZ4uON8fnGX42tTi38/wBlshgZ1pz6mlDkcjsSUeHl53rNsSyn+NfHqkPyFv2qLtBYcAAFUOV0upGx7eduULpWqq7Fv3IArTf75pJLThLbE82VFJTDPwyBSQDpIQ2jMOdOIVDHWpERzoo3Bh/dz8hQALD882rVsJzd0StGGjll4/eY1L5cz7fJMKS/QlCNwDIElBghDmiI0OhUoRMQz9nqtXM4XWqnGBlJLrwiixBx5+/qOh7sjx8OCIDZgLsWHRdYgDhbVtp7Zto1SNk6n7mss7vuGsQ6Kr8FCFDMrtXgvS0UYTtvndePp5cLTywWlMk2B16+PiEQHYzoPrxa+/uaO+69nlgchUumYk3FpjXVdOV/OlHKB8sCknV4NZc4hUza7J8cFLuuZy1aZwgFNmc3lJBY1NjMlGwYdlgPHlDmmTJgnzqWxPp0hKGmKtDUiBHoXtkujV0Oxc7T+qK4bbZoIzm4zR3khJiXEBmIGeIHAYb4zJ/naSDGborOq1RwiXNaVkIWQAnd3R47LxJIXTIxSUb2YCTCRLAYkdEm2dwaISREfwKsE0IKqUPsK0plSZI6T2VBpI8qG2QX/+19/OGI7qFkiN3Phvxu5vf7+2Or2UKAd9fzs7/rhJJ997UDVDI19c4T/4lshRuHjqvz+ET48w8tZPCvKHlBRCDcIq5lnKNKNpR7EHuJwMF5+TJHehdaEto7my6a7HWFbreFtRY1OHPaajUAn9o0kkWSONJ75JbRmm3optnmoqjUUY54RrlNPGEDMOAxs2uzkzr9t0IChk4soOXZUlOOiHGfl4dA5rYEPL8q5BNYqvBTh0oRTFaoKEeF+gsOkzEl5mBrHGe5m5e1ROU7Km0Pn1RGWrBxyJ4rZeKvf1lukdtytHyMcnzW7+2E1qkrdv8YH6Z8tJgGSdO5m4Zs3gcPUOfkgo5vPAiMWK4gbAzQDjDpXJBhAHZ1WVcvhUrt+KdnUUG2U56ZZOpY5AtxPMCXl1QyvD/brj+86b+/gp6+EVwtMQ5TLjz7EF/r6vKm9NmejSLZC2SfvIXj0ljcljCbVKKZmCmAuLk0tQqY6tV1Ebv7+QLPFzA9qoFbLYdxKoawXozmW4g6MhowOl11g13ZJuJpfjcl9cNRwNJPRc2wXwfQ4ntvaHS2trSPd/jmazFGAiSOYA9UqZfNiLO5F1ygEVbtNzbt6Ee1ZgGVjj64ZT7Y6SyNYMznQwoFC967EKV0ZHPswyH5DuP09m5Rak932ou76DI6IHbfi56rfv91+x/CpNQtTF0dsFCGmjNG5TDMZvFEAAxZqtQa7VS9kx/fH3/LNM7+/LxkngaFfo6HQrozM3NvrMv699460hoihyFpB+0bOE+4eZ2igdnoVzhfl8ROczhaXkvMYilw//9ABIzdPrY5d+MtvbNf17M9tBQnE6to2hZabOf22gdhf41hqrdRWfF0Xe4b8mUkp7wZDVw8IfIBiaMM8L6DKls/7WrzSnqH3YEMS9QFU0L253ReCI7zazKFQerW9PA4auz3PtTZETc6jjtj3z9aKmyvFYXrG7m481pYNTAwBDiJ0R6DQQakFEJoYkhCdKaCilGrXDlUuW4UYCcl0eskNYkKQ/fqJDBmHP69pjPaBnP1++Hsa+sURwzIGTd70DUlDrT64CIOx4F4APqGpzfbJWKsN+jADLhTXAT/7UCiTD3e7ucvMbEMqMfpoCIHLtlmzT9/vp+DoqBfa6vdRvU66PfPs8ZUdmbdb/bkMSbXTWuFyPrl0Y2SBB6OpD7HAvteO9yIM8xuNChMsy4FpsigCa3B8kNe771fXeKov+RXkGlE0no3eG6jtvaU2emgUKmbuJYia0Y8EIWZl7Y2indKbCYSiid906O3U6eM9oO6iXbM958n3dsHMlEbE0jiHuuuZBdlNGGuHkCZCqmZslSY7m4vxR+h2NhgjKdBaodTC1hvL7Pmk2WoEM3Tyoa9Y8knA6vMYAkGFVizWZ71cGCZniEWVlVI4nc7uH1C8Ro6+H9letDOuPE5KokCI1FIQUQ7zzP3dHarw/Q+P+zmfU6I2Zbts7lVha//ufuGrbx+ICxAbnUIpzdrbpAyH55AbUwqkYFGTtinZ+wpAVEFap8tGDIudYf06CM4pMk+ZZbLIm9Yra1XmqQKNGCopGiLfkzDlyJwTTZs1hJiJV1DLi61a0NbMpCrCNCWaFFRNBCtO47b6Lhi7E3u2p5iYp0zrhXWzn6m9W+xlCOaoLM3i/3ZvlH6VoaoNthSIKfjARehsjCg6wYEI3MwKpRMR4o9bx//F1x/c2HpJ4BvalbKj+8T773r5Zjb+88ZoaPzbrQvmCHwf9FA7uSw66GGBf/Zz4adv4NKVf/lb5d+qsJ6F4sWKJHtfISvdhcrbpn6jGiFXZDKqxbxkoy5NgVaUuirtRZ2C1NxgRmxSVo3iF5drARZVCb0jbUP6DGqxQYPm2XqHCttmsTjZnkECniub7HM3/7ByU9CJKA1v1sQWwI553xSDIp2UhLcZ3tD52dtAbYFaO+dL5fkSOF0Cv30Uvj8FfvMY+HgKpCD80QN889B5fez85FXlflHuF0PIY1BS6Df31Q7Q0YTbrRmN6W0BeAN5XP8iI8Pyx1NYa91tApbidT2pX48gnbuD8NOv4P6oPJ+6U1FwWo4biDn3vjejxjasuClVvIiAKZpjcqnsP2+e4Nals1aleLh0DDCJ8u2DDVX+5LXykwfl63v4yaEzJ0O/r4fmyHP88g9RK1Y/b26NCma/GhbpoSGSdMRtjKbFDqIoYW9yQrDBUUOgNUq3/w7eRAUxGsxV5yrULVJL5HiXWdsT6/mZ9XKxWBFHlHpv12m/HyaIuUMOzaU5GJvBkMS4U1/F/RCnaTYzgs3jSlwXu+2sAbwRDntBH3pHMQquIJRtRbUzzTNlM8rTQHp67xyPy94IdL0iQLda27Hkg1N7p2XxAmZMig2pnKflOvjzImd3gPaicFwH08526raNNteLP2v6a/X4g5x21Fz2hvP6jLbeKGVD8KLRz948zQxrxIF+BQkedWINkgXTd0eqjD49noSmt432ePkz4oemba1jSPD5GrUGgb1JNuZKJRBQOl2qRcBE8WmXelEQOZ/ghx/g8dEQ2+Nd859s+9q4Vl6tcd2T/J/yt974F/c6n18MjWwVEWcHOOqe84QuizWxte7usN311q01Lutl1y9boWhNTnZq67pefCl6dI7LDJbljiCBsl3258pcVj1LdujPW7VzLEZH59wdHAzV753QCtIL9ELEmsUWr9S582VjEyFKZ17sOau172eKUWoDKWbTzWKeCN7zMeLBam3U2vYmdG8QbxHCYEiSZTbbGrysZWcgPJ03Yz6EQDEDB9COhEQIhm71IQWAXdo04o1ShNN5c/2/nU3Fdby2tm29xyDM07xr3det0rypyBr9M7qGTT1qi0agIMl4b1POFB8+PX78aCZv5xdeffNHxDyZ14Hek6eZGBPzPJsZXK0Ud4nN02T7bYx7HjR4o9O9qBVr1O33wUdln63T2wH3MB9qrfL49HH/OqMp2v5tJkq3RnTdmxRr2kNMZDeLOt7dczzeEVPyjPDG8/MjrbbdKf7KPvlyXylZ5I04jdsYPoUgpnHdSqPFQgmRlGeSdmL3rPYoTBG2daWWQsmRKorG4GvEimFVu2e0SmuBrUXWqROwbPjoA8x1vaC9EkwMb+flthG7mr4XM17dupLTREyW735YDoQutDoRsJqibUoMmZQjWz2zlsKlNpb7hSkFppTYamVrnVq7n+/CPAd7tpMPsbtQLmfW88r5dGFZFov/JFG2C+fzhcfHJ29eG9NklF07P2wN2V7oWvFeLS4uKNulkXPi4eHOUd7MX/31d6BW7xymiW1rnE6F57P5TjzcT7x+e8cf/eIr4gE0VWq/cN4aDXUH4cSczcV6mTIpKsGRdm2GVneJJDXNW9fNIgZ78wxx67SWHLlbZpbDjHJha5bHHecD0JlzcVChESbhsESOS+ZUN6Q3pqAEmvFBpbD2ao21VEIS5ilzahdr2FtDejOJAezSLtFOlECOE3fHBYmN1gulVVq1n5F96JTFGmlVW3utV4JaTdi109iICKknd7rHmu2uaBMiYYdCQ0weHJR2z44/6Hn6Qx+8H29Xht78h5Xxg7CpN7/zd/4cLxaHxf/rAxwn5f/yT5W/+Sn8zXvl//Y/Ct+/BN6fI+8/2WkWZwgSqUUoJ3VXuQ2RSFHlsRSOD4F5CcyL/fgeIN0dCc1Q3rp2WlXq1sE1Nr0UJCYkTTQN1C5ozXz/KfDdUfhqjkxJidHosWbrbZOonIwqED3/NTRvxoNRL0zbezVg6NEaAQkQat8f0BDD9br4NbKCzQyignZyUGRSliz0e+GbN3DZAs/nxF99DzEJv/zjyHFuzLlzyBbdE4O994Gp3KKy46D/fPp5pZz9rfUyKgu9fr2/3f3VJbI14WVVpmgU9LirPS0Qe2uBS4tXTeYajD6TrSDtHcpmzZUCW4HzCrVfKddN4NRv6XGYVXoXcram9/5gyPT9rPzirfD2oPz8deebB+V+hvsZpmQZt1Hifu0/n1f/43h1NRQkyEAO2g1y4PmjwRs1xKWNkR2xJVgRgmkjg3YIjYi7TfvEdLyu1lMmG3h5gW0LtBropVDWje1yMQQvBppGpnnep4G9mfkb2P0rtSGSzAnU0demBUr1DM68o4cxJO5fvbFp8XpB5OQNdNnR365myiYyonmUkAJ0mwanbA1vStkPHNPg5cmchJfDEbTTamUr276BqQ+DjPZ81aKEaNb++FT+sp53d+DWle6B79qsGZuX447OjmuivRslC9PDWa8o5CkT3CCqB99XVPwaqmW5DvfLKRt6UivNDYQ6syECiDnc+s8b8Q8dRw96M10QwTVMRpkQs4C/dhZYExmjrx4RlmXehwldFG2dUjebyLpb93UB2ddMefKsu06pqz3AIVLKRmjVDY86PSYkJra18/Sp8q/+RePxGzPwOh4rKXeg+AT6+vSKr1OA9o8ArQVrbMe+3Fr3ZtPQi5zNsXqgpsWdfVutrou375FSJqbMxw/vAbtOYziyrnaPY9Qd/TAgcMTzzEiopllrV4qYUZYr63rZC6M+TT68sOFSjIGcEiEnDsvM11+9YV0vBFF+u36yYrdWlimyzK5tc2O7kUGtCssyoYibp9l76OrSEzUqtPWsgdCvjIKQDNEsnmnOHlnmTBTPUDW67UDNYC2duFZO58I8Ke3BtGS1m8GKZaw7O6Wb3Cm4eU6rbhQXjW4UgmlmW1fWWnm52IAqpeCsjoCSzBBHLaLJdLaJu2RubaJWpPemtIDti9GclzFgCA2ZdeuUT0+ct78m5kxejmzr6uZdBzpG1za0rrKzOER8jx8IrQ1Stm3dUT17irwu2RHwgfE4kOHDtGFoF0Pc3Zd7t2uBQuvXzNnh+n1tpJtrZq+GVYN6PE/Lzd/DomPG4OofwfN8d3fHnBvz1Oj94tCRXy+U490dT6VzWU9IUJZlZr57gGhr9OmHH3h5PvNyPtMjHA6CykLKiZwr7WIuwSEEYy+WSl0v1GViShPznCwvNwrnzf0UJDKFSA0mN2qlodKYlokcEnOcoAeX/SycTh8JXZi553QxiUN5Krx7cyDLwrqeOV02HmsjXQLEmTevHuBypl5WH+xG7o8zpXR6F69DbE85n184v2ycni98+Phkz3EQ6rpRSuXx8dl1ysr93YE1WON/OM4+MOlcLhfWdeVyeXEkNDGnSAzw+Piey7qZO/u20rrTmd1pOQZhTpGUA3/8R2/4+c+/4ic/+5opPbH2Cy/lIyKvySETo/DVw8Trg5JkZZkzTWB1A7uFbHsnwnkzo8qAUcGTiGlps+1tvW2ImDxsKxspBFKOII0YGsdDpfZnaIWcDixJmNJET51QI7MPo4mNNG30YFK99XQiBWGeAqeLDeu1NDMVkkLT1U0II+aGO/brI5KFtZ5JbQaE4zIxZdO7B8nuJ7SxthPncqEPja2aOV7vna30mzrO9w2BlIILznDn84ZWSHFiCX9Ytf33d0Ue7sD+a0zT95fc/uNvv4lbTO/zdtYIznvD683bbSdk1H7hmwczljpm5V//TPjNo3J4NCTvJcB6ETQBGqg3BbF2K7Fbs2ZIREnRjCVqMZTGerFrFIXuSIC/r9bRXhFM01V65PEsfHiGS7HNPI2vV+HU1HUhXDNxvXkceY7Xqh8vyO3vjvyyMMydIm4q5ZfcRfO2CfX9eppO2cB7xAyjlhhZQuDxCWKyWJopN3Ls7nCsu7vcMCa4PRBGo/rjJvamd/3sN/VH58nnf8feaVNobhxFdHdo/2I70Oy6NfXWPVzjjMQ/2yAONv+ZtVkU0HAuHsMXry1ATWM9fi1JmTO8WjpvD8rXd8ovv4J3R+VnD8rro7Jka2rDGDro55/jR1eDL/3VtTlINVxnR9Fx0484StpDR7o5bAM3H/mGDixiEznZifZ7EWNXZAjfLVdzW5XW7P7uaNmgGfvXWrPkG/IO8g1Ghzu86tUxeOyLhmA5PVisAE9iha22TkqFGj3MHZuIjs/52Xse/+4GUrcxXGDfL+eJaV6I0Y1toiLlpojbh0Ljv53O63mh2m6aK1+bRvOzZl7AGr0Yd1Oqa4Gobu7kd8Opm8GNOuxrr3l+VzdTQ4dGNI8OYylANex7rgSb9tkAZ9CeFdpA/a5Uw89fuqPLljtpa2WnEoa4U5qvu/04U+yzW+GPG0nZOrnVrttn6YgGrvFJYlRl3AW6dWrpfPrUSSnw4YPds0NwhsfNUha/fvg9+1vO/l/oy5pJfyZ6R8XMc2KtjmzmvbEFrmi+mudCTpM3qIlSVtbLmcvlzPF4tGa0N7ZNibGzLE5LFXwfHsMnK5ibo2VtsAhc8927mClJGFRkf6ZcE6v+vnLOuzFKDIGOGy7eRP2Yi+nNfvXZqri+9meCK1o4nt9hmGjzHmserzR9+zp7BMZe43WIKluxtWT5sd3pyjdfK+woscp1bxWXNOyMJ3eqxq/A0P1bPqYzYWzqvSN447O03g2FmSa0DTbUkPSIPT9G8/KlMZr86jnv1e756YKiHHslpEjasiP+bUdLpRvtf2hoUZwy2nZ01H7ukKRc78ZwPrc1ExjaOLu2ZgjlF+Dm74+7dt0zYewlVyr9cL8f+3OrddeUS4QUs/+5yxP+ETzPKQVnn5lMJWI0zJ31FAMUpw/XgkogJHaWUame09zUa1QbCozM8VsZimMo/svqqpSEKQfmHDhtlgwwEjICNohoXvCnkO2XJJo3yzFEY980pewMiUrpG7VkO2O713wY46CpEpINIglmSgWWVx28trPBtg3kahHO5wufHl/4+PgM2pmyWIRgh3XbfC+HUqs1vbWaTjl6rFA148dtq25CVWmTNbY5GjJe9xgp3VdOEJhyJMfA4Tjxi59/xTffvOX16wdqeEG6IZTZ99MQlJ6NHTmn4MhkpLqJ3zBd7GpSgiiRRWbrr8a+sZ/DXPfxsZ9hA2oJjZyUKZnRnVQM+CH49eweWwaWO2rPuxgK5lFq+LDcXOuRjkg3FLgbaGECxmAa6xiJmgjRhhrmxwASLD5JmK2bU/vvrpXhxjKAO8UlW9q8tmA/6wm6l4WMfyoOqPwDI7Y/ft02qLcK2r8vevVjve7/0ndQuZYbOcNP3ijfvIKvHuCv38P/9NeN//cS+M0H4a+/swlTBUoUWsvmDOl5toTA6Vk5v3Re3nvu5LjgXWm10YshCdoKYDS7mBa0VXo5o45WFMn85lMjSue//OlM7ZU5FSKBUuDxBNqEw2xT5uTIJL6gfqyfHddBghu2uDOzJAiTIzAMurZdLUNbgTjow970aWfs66KBJBB1/FJCt4UPcu0AO9Y9f7aq7Pd1L7xHJ37bsN4Wnn9Hs3vzZ/ZPi+3ZiumXQzajot7GNwCaXbvWhDQFFoS719fvU4t/1ACl2cCiVht+5ACz05Sj044DIB2WyWKPjgdrWucEP3vV+C++hv/9T+Hnb82d2YbectNUXRHa2zX7j+1V7SI7XcSLFW6f5bAXjr0NNLAbVcoLOtspzSJesc160H87jmKMqAt3CjTaHJxPEfsjj6nwqIsYze3cqJU/3sD8RptixJyRu5iuPsienNmq0anv7l8RYiblie5rKKZGnoy+t5aVEdcDICo0d1pWMMqSPx/dtfPiCIUQOCxHDsc75vng5iv2HHVHr1ot++E1rgMI03zYcx8HJTSnyZEO3SN+VDspz0RzOqNvRqfWXQttTWkIFkEQkmUTjzVq9L20u92CFdzretmvaB8Ozq3thWbrbmqH3ESVYPueNy27L8DeAqq7KlqRNE+W8deGLTle/MS4R5p0vbKHAZKbbPVeCGG2v+P1Reudy7oRUiaEdG1c1A9j994P2B5fN9M3xxh5fBTKppRW+af/LPDtt4H7FNyIR/fPN55pBVRMU/7Fl8NjmBSCmSfJuPe6o42jIDoc7xE/33oztsLx+Gr/zOt65nR65uPH99zfP5DzZIYsm+Wd5pzcdEkQFcI8kdIbyjJTysbzyxOX84lSNratsK2Wb2wOqjagyjeGTjAo8GZO0hBUIhIjyzwz9Kb3x5mcrNAtbl611b4jg6VWM3T0An+MSEJkNwwcrxjs+9jxawOcwzLvjfIwyWutjfk9ANUHJafN6NxTthw4W3NCTpkazFCl9W4OpfW6eqYYCMBWx3AKYg5G59waksXvU+dwONhzLMH8IsRYQua4r1zOZ3Opvj+ybZ2iPtAOgS6GqklQM1kLGSRxuVx8bQi9mo/By/nML/7kj3n77h15smvXHGE2sy2jrdpze2XAfOaB4KZ39rJaZQy1xvY9GlurCVzSNZzWa90P0FtpxIj4qrV5hnXaDa4GcybGxLqePZu0AoujS2E3t7FGuOy09S/7ZU7905SobSYhHOeFOVoxX3uju9Dq06dPdEnko/Duq2/MaLCCdtM4Zg3EboPFlCI5JVYXSorAnANmczgxT9l1rMrrYyQx0Vrg+bRy2Sp9s4SEKU20kIkC9/MDh3RklplVKikEcspItvf5vJ7RS0dLp1Apm9Kq0JmQGMi5oxGqNFpQNCXIM62drVnz+q+3TlkvXC4XLvlC3JQfPjzy7/7d7/j//uW/BRpfv1n46vUDx2VhmQ6m502R0orVjwpyGvr0mxxksOb2fCbnwJwjb+4WUorMCFPKrJvJEEqrxAhvHxZe3y98/fUr/k///X/FVz//lrt3d/z2+QOhZbIkXs0LISZqvFgygwh3xzssykwo9WJne1dqM0njVgqvj0fu5okP24XnrXM+rfRu+0ALga01ZFPbB1xvWrcLMXXmY0R6pkZBJaFig7KX9cSsnTu5Z04ZibC2M9PxnjhntnXa0wJqMdZHTRvTtKCps9UXRIxhepzfAIlaOw07ZyVFlnlhmWZCOgEWh0g4mHRNO4FulPau9k8Rc+TWRusr1Ydn9Ml7DAdUfEiY3OukeQ/GPzQV+ceva+tz247a1Hv0Vv9rr7/dHOh1kxvf7QYh0c/+zWgSIcK7e2VKRlP+4686v/4A/6+/EP76d4HffRTOFwEVShMfGirKeHg6Wlc8J8CCg2FHQ/BoDtuduVZhYqTLIcB//1KJKL97vOPdXeD1ITJHLwol8LzC2oQ7TLuagpoLWVBC7BY9IlwPZhGPdOrUFghNCBVC9QifHT2y6XMJSg1QnHo4vtcw2Oj2UTELfDNJuqyyT+662kRHuxd03riqT+huXQqvSO6PERTd779yc632e3ezRrykvGzWkIoq0W0vzFDEi95u+iRUmDIcxLS2zZHcLjbhzEnZNkd/q72fIHBcBh1ZWbyxjdhkLie4nzvf3sO7O/jf/Rx+cq/85JWjs4HrfR/Nwnj//tuiPx7D/GM4QGGrzVQMAjgqZsNZX1PjPqr5zwaxaaTEhgYhdDOgGLlUfeBc3pD1Xqn+yx5rz5GtyroGnh4DvVnjsRwWnnOiC2YiVYtFb7iJDOJxMKKo52vCQJ2F0D0ix6MKhktra50QKpoieZrITEZL1E5tlZzzjlxesw5HgenNbSls2wZi6FXdNiQIeZ7sZ8dkz2qI9KaOJF+RWvGxY62NGCz2xyI9xFwnXVu36wVFKHXjusDsXdWy0dxMYiClQQJ5mkz76NQ+8YiWgfpEbyRSSob0MNAd9e/r/67s97yVFbR5kwzDxKRuF4YL8lgjEgwx1W6xLEGChbn7tUw5I35dDIU19Ijq2cc69jJ2F1YhGe1YTXtsJkQKBGJXm1Bni1wQif65zLgCvxatlL2xm6eFVQIf38NvfmVmfn/yi2RsldRdNirOqvFW16Mhvnjk1qarCI7KYM7IKWXyNPPq9VvW9czlcqJ6BMY8H9BujcG7d9+w1UIthbu7e5blyP3Da6Zp8oFI8wbmxxKUgdpaZmJI0ddaRgm8vJxQhBCzUc38a5s3dfM8o71Q15XL6YWyreRsuZfrNFlkzVivYmdaSAEppq1urbPVRuvK1CCEbhQ+N6lJMeyoo0WDDedm02mlkRAj7EZRvXdatdzqPpjw40wWb1oV1lJ5frmQBiMkBC7rxlrrbk7Xqpn+4GvbzGtsjXcffpVqz9Fwno4xsSwZxdZ9iEJoRrseA0P156djrq0hBNI0m5RjrehqSG4AzuvKpa6UHghz8/2ZHblqtbKtG5fzhZenT/u9uTs+gMAeEaZmxmQDE3YZw9B2q7NngliOYEx5r0GGKRTYftxbvcoeemfo2O19DfaBMgz8UsqoKtu2+ZDNzgz7uSOr25pmQ7ur7/11R3cHk+BLf4W+EUhc2QMm+jHdoQ381NG0h4c7tgaXeuHDhw+IRO7v7wmYkeXXd4k5A3U1Ro5rZHufgMzhMHvzbwMxm4kpOQqHJLw9Zsq2cjpX1m1FEdbSd4bQum7k8woh0YMBQUZbVyT4+bfjIjbgLK3Qow1KDtPMvCh5iqj0PcpmWRI5ByR0crbh+rZatI+de5HTufC794/87v2TRS4ezDAvpcjd3TKIBazb5hfW3XuDDTOLa+1fzhe2bWMrhVcPiyGqwRDFGISH+4WUAss8cXdnsT2n84VXx8xXrw+8OR44psRE4G56Y0OJaHews1H0mVqV2iJzeocwXK9P1LbxdH5CWyEBq0RaTmhKVpN0r5mSsSZ66UQmJslkZ0ZoV2KGFBWhG4BDJMnEpZgGtxVFYmA5LFCtvs8iBmqpg2FYRzTi2AigsaOu9xaxNUdcrSeJAaXS1Zy5m8cganZjXpRJrBYou8FoJyaPZAz/P+7+rEuSLMnzw35yF1U1c/eIyLWqppfp6R4OSBwc8I1v5AM/ML8AH/mCQx4QhyQGwACD7pleasklMsIXM1W9i/BB5Kp5VFdPZzUHnCzYOZ6R4eFuiy73ish/61azqdCIpFAJYuaHEgKiWBKCGvJ/jgtBBa0RNP1ovfzv39j+zob1Nrkfc/xPEDv55I9/8Kn07/3td7yYjSex/5qD75LhszO8u1f+2Tt4vhiq2DpcrjZh7lUMhfUqXrtCb9S9ILFDTIQEgwJk5hbeYQ0O+IC1xKY/dgNXXrZCUnj/DHMM3OXA5MhqjEJpFrIcN9tUU+jkrobYRouosdgNLyBG/ywAjkw1ITZxh0kOHZoIlh/pkMVofE1+OKaWfuycXqIqbJsNBFLUYUJoEz19dTb1Vb7oOCt6K9iPM3WcbD/v/jsHevz3zq+jd8XOkS/hjiCOWB5xrZRQmtHQJ4FpMje+2iF1a0KnyZ68B/9qRh1ZkqNPYqjsoN9MEeasvFvgZ2+Un7+FP//KnI8f5tdvdFy4r6/D26e4Ud70d/77T/XRWjfigtwGGEOzNpqW0agOd1CkO62/U7UTeieIbWZuMMqRY6lDq9vM5EuwoPmulALrxa6tGIPn3Im7FtYjFmbc/eKOt778HmO0gxrvA6dDi+8GR4zJX+/EOLuuNZlGpZhutkml11dFu/V23kip01krcTJDpVqtOQjRBwDuEDoa2lEIHveDD4G0d8SNTKI7Kw8q30BwxrBq6NqiG1eBodAD0R0onenzzIVyUFKtOeUo4qPTOkdm7SdX6TB28gM9hmqG3vpRDuGgKg8zr9FkCuaWPeiAQjwoqgPFCdH8DKXr4Sg9DGEO+0F/3aH/iv4c2joHnanfqNAW82GDBUN+jUXw+tEdSeraSTFDgZdL4PvvjTr65RcROSvpiFm7Peyak1fv8af7UL1R5oY0AzgGBdM00xydrbWYiVuwBiTnyVgN1wu7BJbTiXk+cXe+c1RVjkbxU4NAjsFpjIGeDIE31Kiyl2JFijcmRhsd17Ciwa5fVUw7WitoJ6d05LaOIkt4tfQ6Gj3ybfdqZjPabd9MHismIja9PPYS9T1TjuL2cC7GKbRi60yrryQZrzZhldt6WGtj3ZQ71xyLGBK77rshu69ohEHEJBC+Fr1+WHOnHlfkBlgpueuqDbtbsMG1nWEbBHUF6cpeGtNscSe1beYz0LpJF/Ds9V3ZK0T1jGiskR+Z29u6sl4ubJcXZ7csdu6j5cPWWo8GeAzsdKDb2HCtqTWsmm7DuTGsOujfIVHL7nnBZiTTf6uxPdaw8fvexNZSqaXYOuIwcH/VXNtZfMW8kU9py6MJ/qk/onTECzH5LVr3kF6ANRun0wkpjetL4eXyjJC4X84s80SiczcZS00PY7SRxWzXfsqBrmY0ervBhguusORADiYvsig62EojOSup1WpU31IgB3O2bs0iqQ7Nl2vW7co1imuwIU2aEimP3Gf7TCF6Zm6y343JwJzRNPdmWr69NJ5eVp6vG8tksTYxRqacOC3ZkP5mw2sFRAO1NL/XbW+orXK5bmz7zl4Ly2li9uvaJG2dec4gWNNdO/seiaHz5jzxcJ45TRNTiEQNnNK9G64qrVwoWtHuZkw9k0LCtJF2P7feKPsK2ugiFutXF7TNxgRRW49S7C5JxJJXQja/OvXscmd9MlyHE8whUbRDsUMfJDDnib2Z9CqJJ577cT9qpyBHa6Wi3tiaKZ1IBXZvPhNmRGbr9sF6c5AnYQZjY0AzhiYhuMRLcBkSBA3OnGlAxXxcAkMmVVtD++yNfMD8D2651f+hxz8Zsf1dD99jGWrPY+p5+9d/9CEooyf/D6mdbuWRleEpwi/ewNd3yl98Af/dLxv/068D/5f/qvPNB+G7jxPbS6Vune3FcrA0CI1Grw1qQXfb9CUm6MUgwPUKcUJDpiYLVUYm07Bog9rYNuVx6/zPf7MTW+DdKRKCxRyclmYOzV3YVqHG4M1uJTiFOGczbcoqHl+Dux87lXEfRagZURgvPnIbJ3gap7iBlFgjaP8/Fho/J8EoUD98cAS3KSQlB8sAjjIKisHR5xP09dh4hl74d50hvf3a68LEqutOqcJehe2q5CQ8nAM5WNzIOOxNYUP4UOBvX6DmSNBBFTPX41OCKduXFg/T7pAmoxGPOAYR5X6OptGOyucPhtL+b38G/+IL5at75WG5IZjGB/U/f0dx6+3gpx/2D+ixVc+p9exdB0bw9vT4OcWOM3R6aKhUSxDtwe3+ldx3CNCls7ed0jZq22jdAtBVMVRHOr0J25p4ucDpNJHyzL5Z4VS2lbrvxpTAGx3Xo7ZhaNJuGYt9FJ/aRgnMMCGJMTIvCwiUUliWhZwSdw9fkecTy+kO6KzXF9bWmN39U0eTd5xza47mYEVhBdOUxKGzs6/np0dHLoe7cTsQw94tdD1PM6fzHYJRrfdt89fwgtzd1KNTdnOejkiggZ703pnmhZTSEXPTWjejKXAXSzPMmZfT7Ty2Tt0NIbYb1/VuRzEYiCm4K6b4sCGwrh6f4NqlgRgPJGbKs6FW2dHhFAkxsW+byS6m2WQUXhSPY6a+4aY8cQwIuWk39+ImMf5ZeldKrQf6oL169Ihft2rDGsLQaGUrp3pjLxuhJ5ou/PJvd374Xggy88d/lPlnP4/kuXDIYQ6Nvze3P+2+ln03cw9N1lANLfK+r+RpIqZEKRbrs20bdSp2npyuOS8z+74Cytdf/9zyb/NErYVaKyKwLAswBqa31x6NxRhUmBPpxJs3b3l6fKK1RhD48qsv6b3zt3/z7xlOuq0b9T2e7rmPkXZ9YX1fOZ/P1NKY4gfyFJlypLdCwyIvrmvhct14fL6y125r00mYRNyRU4hhaPC9kvCmUuk08cIK2zNFTTdnWaeR2rZDU7vX5oMUj+JqRqtrDda9M8+dqjbU2/ad62Xl8cnu6RATc85+n2ZerldqrzZkwBDlppiRG1ZvaIjstSGuibs7TU47hFo7tSnFY30kmnawK0hoXNZyFJfl8YWUEuf7O7TbSrZvGzHPpHnmm998Q6uFFIW6Xfl4PllCRJpI84nL5ZlpmpnnmXfvPrPm8NtvWbcr1Z3TU4ycT++YppltX/n1r395MEO2ffVmVtxteeHdu8/59je/opZiDUe19aq36kO46KZ8dpyX052b8i0WbbJdjaURvWZxh+9a60E/HsPB4SdwW3/b0fT+lB+n80RKrgcLljXc1LTo5nocSb0TW2eZH8gFmhZ++d0P7PsLWlYeTve8u/uCvr6HpgQ1l+/QhYQnGUgw+rYGiBPVNdoxdD4UuOwQijLnmS/fmHZyK5VWC++myJwEiR2hglZqxVH4xt10IktnnwJl3ehSiKGTciPPDUk7aESZCO4kvu8vlEHLTUqMdk+lJJSobKWxbTvrtrFLp7g2N+XA+TTzxbu3/PzLL/jszR3zHM11eTN0tXalS+Kbb9+zbTtBlfNpIsfA9z98RFEkwt25Eyh8Uz8SzKLQBnLYgOp6eaG6keOb+zNvH+5hF3RVQlLenj+nyoltmnm6/B1aL0hdyWKD7NgKpTfWXckzVFEu20avtm5/vOzcOSCWciK3xBQy5zcZDZWcK6c8k+PE9nJFpBOCssiJII2iK7XtiHbuspJzIPfEQz9zn0+cltmYTdpZcvbI0kLshdotdze49DFFiKkRQjFNa4AUAmW/EqIh6bLvSC+kuJFjYIrB6e9YOka42KCQRhBDia/UI4N8Tp7a0M0NufWd1i8EXYjMnpnb2XUlyZmonrMgP35D/o/a2I5y/9YO/H6aWzl+9x+yhRg/hT/7qykheFNolN8/+syQ0f/j/075d9/Cv/218De/irwEoWxjmKSENNNrtemW2Gan1Buvtfl0IgpGQR4OxQOm4qBsfv9c+HDNXEo2MwAxyucQie9FbDAhwjxFd5vsNLUNuVa5UUMchbWXGVX3bWIbY//kmNlfvCEL1upKF7pYI2wsPXVXS2sAW7fmRBqmR/DjNxq30Q/Lq/zH4OjP0EEcr3ucnU/ekZ/PG2LUmrDtwrqLGyYYHXsYAtUm9Aa1Bx5L4vs18usXm5qHgOtoldqwDb4plDF9B4JFKyXPqR0U25ThNMH9rPzFV/DlnfJnn3W+OMM5K9GnMCOHeCAEv/1pjmPDbyO1fziP2nxKeoASfv+86tUPevKhHRVUmumUW6WJa8+ctqmi7HU3ylH3/LLhCq7Qu9C6DVWU5I1Q8uzanVbG79lNNQxj8Onl4dTrBkmtGxU5pXg4jQ7HTcQyWEMQNKk75pozcJDRNEZSMPfQdhgnjNtsGLrcMtcGSioi0JX1ejmGRgMtjk517v4eB503pImcJ3vfZXdKl30W5Ea5Hr3UGB4djYDHAfV2owiPyXnrnRED1LxhxJFryx50rfTIKHY6mYTgzsfB0d9sxxxATYpRS/EYEj/H6O0cea757XMYG2TzmIJBfVQdQlonrMvQ4Y0C1D5vnqI76AaLQejui+gOz7eCFXftHqNNP1/jmCr0ybc11YOGWNkQAluIvH8vPNwLbx6EOTVi9Nw+XEvN6+HGT/exrisxBEosB91VFfaUyXs2rZQjVyJmNHM63/H8+JHWGtfrlZQn3kwz02x6bhFh34tTP5VpMgr/awrYb8e3gE3hczbq+1dffXU0vHd39+Zc7S7DgDeSciDJhcC6N4vZAXPNDpCj0CwQkW0vlNpMZ/vKeK653AZHCG2t0k/kN3BTFCm2sIUonrVobAuOaCo9vmfMileacsHvRxyhGMyjxrYbglGbPU+OJl8oxc163KClNhvETbPFuBz5093WumEQIzEeJoW2tlnDLmKu9GYQaU3hOO9BhKZKaZ11s0zbpjeTmBgTijWE23Wj78k/7xji2GeuraKbWoRaCJxOJ6MednNNTiGRcmaaJs+hNe2+eSOMoXg4nLIvlxe2fXMn+mEiphR3dTdmSD+Q7X1bHRXcjb7cGtM08n2zsXoOtovSXyGP43pUNbfkgf781B+7w/GxW76xIBBHJvtt6DmlxDIvhroG5duPzxa51hutVzo21JTU0dBeIWdjeGpNs/qe07wORkzn3iSwNXOUzimZXjvYfnx/SsxJWLUirUDZ6Nmq9eCGRSKu7EtWX6Q5M02RmCBlpdROqcVNQ42iPthXU7b4l5gg50DZQbX6kCSAkydTEt7dn/jszR0///oL3r295+48ccSOYcOmp8vGx8vON98/su2FiPD5mzPnJVt8VjDDRauH1Y3vbM+9rJv/3RaX7OyT+/t7Y7WESECQjlFrCZ4rPBPDQmBhmQJKRtkpDbbaqLrSxJgVHXfwxrfT4MMMwSQlsSEx8PbuhBC8aLf83RScNQUEmRF5QbQZQJYCS08gE6eYCcFYoY0A7vEjQT0GCKqa7lpVSGHQjyFKIgXIQaz2kMaUIdVODo0l20AEtXX5kHPoo+lho2UnCxZJBt3dkkc8nemBodL1Sq+d3tQHPGqeQBIIasyQvW5cy++6e/7+4z9yY8vRdx5xNPa3H/Wr/zQMbBSEg/4COSk/f9t5d1JyVP67X8G0KC9XW3C3S6RXpwzlBfpKr9VvcC/Kvak1BxNvYsUQBrvDondqjiKq8u3Lzs8vkectcJ5tatlNN20IZIXWgxueRJLTkEvzG9YnztbYjilK8KiM29EcG/QnYKhBKkaz8g29D/TXf0bE6Auqt83fFjZxw5+bhxTg1Gj/corzayLA8bzKrbn9rfzHkfxhDYBQq7BtcF2FuwchZ0WiTd97l1tj2wLvr4lvXiK/eg7gx7NUo7PWZgYgWm2BPNDmoEwZcjLTrdrEYx/gvChfPCj/6iv42YPyz+5dm+DH10Da4Ojd67ZVb5/3DxipHY/a3O2y3xw7BUiHBRNeZPRb9Il2ujSPfTAX7jBc/vwaK22n9nIUtaNQMpRGaC3Qu0VYxGyI0r5dKV703Bpbjmbm0Mi5/kWCRcJIt+nzlLNF3IRAKduhsU05ObpqG1BXcRRKLPNSRtEQqcMwpcM4r0OHZlRJv/adHqy9s16erXmN8UAKkiO5tpEkRjZozKY/DMGKhjaQF9fFKgdkfhT8dvz9ffn76M30pWOmNAq3EINRPdVimvDGtXue6GhUrYhu5mbo+a8hmD4y5WTFjyMdrVbK7rvIgEb9mhiNBNzoayBOATOHR/G1b5hdjbU5+vkAGzQo9vtpmmx2iGLut8P1Lh4MlUFfHNTvqGZschwru1AJmjmWxG6WK9o7IqbN/eG98PaN8OYNvLsPjkYOd2V3zH3tHvQTfWzblRGd0lo/jkuIrrPNhoxIiCzLwjQt3N+/4fvvvqG2yvPzE+8++5yHh7eGiMnQK+5+bbWjWR2DhddNwkH/H/eG///iGc3jZy8XO+/d85+PfFEJ1OuF1pTLVil+PSzLbIM36UhQaqls285em1Fuu400xJkbt4GUrc6t4zIEa5S1j3G77WWdTpbojaohsuqfZ5gFKo78DnMTscHwcDAe+0B3s6hts/qh1cZeKuclY9L9RopCCrZulNKoXTmdJtd1m3ZRYyCQKK179IdJcjpO4wc3YHm1XodgemT/7LY/djO93HYzj/KBtgimUxbToD4/PdGWyRpjboM1UNqIagqRaZo4n+88a7tRqxmz5ZzNxCns9N65rhdCCCzzYsOpHg6DKRFxY7HiOnpzeS2uhR/r57jjzChqRdZhOpeOwWLOE711Go1BNTdR4m3dtGuzH4ZTv02l/yk+9qYwUjpaNc1yGtFw5nBtjW3kPM80MmFOzN98z7puTrsupul8uEdDoejF1u7R3IZICKPkN0pfr04xl2bmYxK41GIGSjERQqdGyxG+P08sUSmXDWkbFOhDqzuAnwAxVch2zE/nmXm2mMuUIXRjD9UqpOi0cQCEacqHJ0rOBkYAfg3Y2hSDMOfA52/v+frzt/zRz7/is7cLUzZt/xh0rtvO+49P/M1v3vPdR2N4JInU3nl3f2LJ1tTGEYvlwMrY9x+fLl5vgPgg5+584v7hgbu7O6stEEKD0II3nhDDQtJKlBPL7LF7ulNbYyuFXV9oCCEuRs9WpUlAAxCgaqN7YxtDJUVhmRe2vbNvDW2VEJLHeVk/E2QhYGtUCMaCPGkiTzOTJCKdPLlSP3WL1RSX53UIHXsPCJGOUY/VWFUiJBGKGOsuJ8jRqNCk28C81EptjVB3c+aPkemUUWvbjboOHrNZUYEYs8X9aSXwQimduoGcJggWexQJztBrbG0f+Wz/6OM/fmP7W4/fF9UyKfTvU1RYASVgLGH/bo6QZvhXv4Cv3wr/+T8L/Oc/g7/6Nfzf/3vhb/6u8fGxoTlBi2gL6LbZE6QMbbXmtm62QfQOreAwBKQ7O0sIyAkNnQ974a/eKxIr//s/zTycIudZrIEA5hm2AnsVPrwYzJ/TcEpW5qSvND+CBGsoszu/+rph0/cGI7ZAxsBSTKthPHmjhKtYLmOQhkRBZaJr4LoL5w3yiENCURmUZjuGQ4OhoR/v5RNPJf/RGMZ5NhWkgZ9jwgHSrcEsDX54NoqYIUqdArQuDGBHq7Br4qUl/utfJv72OfFSE7VYXELpN31UqdbAThnO93acUlDXQJoOt7ob71rgbYeHDF+e4fOTkGN8hYz7VPy4Dv/+lfm6wf1DftQ+jAHcpEwGOm907+Da1K6WbWjFnn9+cfMoN7fwuSVBhKKWm2nN1G3wAVZobBu0njmfPyOETKuNjz984PL8zL4ZJXI82tBPSfrEkClgG1JKwXWAmTyZ1nTbrsQk5Dxxvru3Yrt3o1tJQGJEe6XjxjZeMJZqBhWqHNEIRrN0xKZb7mbMie16Yd831nXl7u6e0+nM+Xy2xX3fKMVMTqZp9ubVaLoWMWDZfogSUx4QkJnN+GOaZpt24gYutVD2DStchz7X0NShHbN61Lpda77NXKuNZrbd0A37eVssQhzmUqZN6nTo3tC3dkyzbY01PWfO2U2fRkOrjkyVA+XvEYLaNFh9Ah6j79yYY/bRnYvSCZQy08Q0SIYO2jCi62g4fNiBIVOq3Q2Rsr9PHzgqBNeeajfzDOkBtNI2RWvlSZW/kcTzc+S8JN4+NO7v2ic39h/CPS5xNup6SDTdbI+yUQFKAEnMy5nT6Y77+wfu7t9YpnPvPD5+4N/8m/+WP/nTP+cXvxBSmo/m1ZxnEzFNR2M79O+tWbM7moibkeEYymAFtCNEl5cL+75zubxY9qk2M49qRrv95b//S55++J733/6aJdsGXnsjR4vqurxcWbedl5crl62wl85eDFGSYI7BrSulNF50P9gP42HyFDVXbzXkOvt6p6q8XLZjyNRfuf2LG+NttdkQDwi1W5M6zaYHFGilmoYc0yOmFMjTQutKc/O86sPvaVnoWHF2uazMU+a0zO4EG7g739F7otXO02VzSngj53gU7LV1pMEmoFJILgcKQQgp0bbVmFjKwbYp/YVTq97IFGKMvHn3OfSKIlyeXnh48445J2uyAdXG9fpC75W7uzvu7+7Jvk7EmOhVeSkvbNvGspyO4VX0NdUK3sK67lyvzwd6S1Onx9vQbAwXwQ3xshloqdrlPM8Ty7Iwzydj7cRES4Yy11DJeSalzOXy/EkD27uZTv2hNLaSM/M8cX+eqY8fEe3sdNbSidqIGa5t5dpW7pZ3xJQ5TTPneWGfN2gbRr3byecvaT2yr5sPvDoxi+lWo3texIBGc8rVVijlkd5PWBaludDvpfL1l/dIiKwbLDkyRzccbYWinR4DcVqI05klmyniSy3EZJvBda3Md4ElmHov1I5qIcaZlBNznlHsPT4/X+h9p+vG+fQZOUVOZzMr2spG2q/E0Hl3v/Cf/fmf8NUXn/MXf/GnxF7Qbg1f7Y/0F6MhX9aNbz98ZK3m1bL3xvvHZ/ZS+OrNiTwF23vqRI4JCRPrfmG9rvzw4dHuqRhu/hz7zlfvHrhfFhsYqg2rtJqRUu2AZgJn5vg1mnZUGs+XF9baqFpZyxPaI0uIVCkGKMXESuG5bTztO2vb2NpK3p6RBku4N98SqQQK4sa1T2tFohK0ErgQZaeXC6FNTD0Ss5DpiG6cpoke4JIKDRt+ZbUGtgnMk1fwvTu4prT9+dXQy2uldkHYSaEiKfB4WXlZL5xOJgeZBRob4gNpekEpzhTtJmVrjaSNRcwgK4ROzk9cH698/PjMW5k8/i0i7gtUqUioxPjjINv/SI3t3184RG5N7T9WJPxuDOx3/9brRepm+qKf/rIjlQQ4uRtnCnD5IzMIqkWYFH41Cd89CvREb5OhM6ihtK1YnozH/ThvyKaDrfn3kjVpAipK7YXH586vQuPL88Rn98LnbxJztNzdEIx20PECsCmtyyE8FzWt7WHwySsgtNvX0NCCuyyKN5Ni/9bUEdtXSDYo0typUKF2Yd+Fu8WmMdYg+1RXRqPnqIXoQQERb5hv27//XLeDLsqnja3PAHoT9gqlmitpjEa51mYZtb2NmAoxpHaLvN8iv34OPO5Oq6xmGlWqkqI3+QbxOKV6TJzFaMViLpZWEDtiOyufnY2SPCVeOUj//Wvxd11+n3zu33l1/mE8urMpggxmhRVmBlgaHaypIQftVUNvjHRx+kgHAlWd5oQYtebQTKo3vGPoItRq956quHNoZ1svlH03ChCvhwyDImjmFegNIVLtPtGMllcbop/jRBroUh8ojBMx/LodCLLpdy1zbugpdTRRyo1Ord6cufi9o/760el4MzlnahUKhZQnQjDjjKH/siHArckbtMHxGU1P+sr4CqMoDvrx6wZCxE10XIP6GukdeZtd+810o3vmpH8WeXUR345PH3ctr28I77s5flGiRw349eMNuI7mAcCjotpx/O1Y2OdzRNmbZO+Lwc1NCEOKcVvAX5vViH/OcY1qMJQyDNMV/3ACR76oXaaDMmvIbS2N6zWQnwJPz5CzcD7fpnU365af9l2esjWjMUSsjrQC0XTmCUXIeeZ8viemTO/Ky8uzR7Y0tm07moxSdkddA7fYlHAMWfaym9nQuvHmzVs3hfJ265PGQY77fVyTg8I6rrMglknb9pXL8xOXl2f2bSPJxDDnRAyBHPTU5khpOxAePaKxENAQKK17cxUcAbydRRUxd2ftqNjwc9CSrYntIEYPDtH2RPUbzGYwwwzRsh6jo0jje8fQU+Qw5Tte3P8egrtW+z3X/b7ZSzUERoJneHZSLOzFInh0L8dx7T4kL7URk7lBj+te1YZNXaGWZiYwKmylEKeZpVY/n0IpO2gnlmaa+FrdhG2cS3HX034MOccgTd2UyRzsd1KK9O7HOpipXGfIRmxAmDyCJw55RhCjaQeLK7MlxgYqw8UajAZ9d39PDMnQ8b0cg67xXobEYlDGzf1+oEl/GI3t7fMHUhLLKNbm106gtmZRK85gCr6n2GAr4MsnEszMTFHkcMUPTJM56AYZrARDb5MIVStFd1BjtExzorXBBuoec+ehasHQenVWhPia2rs75Uq3gWdwUKVb3dYUYhJnx3HziTnWbPF9yl14nV2RkmBO6MZIyjnx8HDmFz//mi8+e8f9/QNaN3q1JnFeN3LOLPNs7u4SranSW93dWv9kaW+tme/LXoxRUX3vjo7oijEcr+vOuu2sW6GU6vFWIMkRTg0EJiLCFDpNIo0N1R3La7XjhCpJGjE0JIJEpUunaKXTvI6qB8SnpRBUzTNGGoo10kRMPyY7vW+IbjTdEA0Ewq1O68Uc7IOxk0ZBFby8p3ckq6+Tao0zHVVzxDYvgETXQKk7qhWDyxqt7+YfoJGE11So7fUyvtpxDvyIWw2j5m9hl3g7+kXtjcDEKS0EdYd7rXTdUd1/1O30Hx2xHUqcUfz8PrWB3n7r93oI7hY8mjjv8mx2LdzNcMqdz8+dyx/Df/lngf/rF8K//neR/9u/Fp7CQpXJ3A/Ljm4vsK+G1rrNvBXFV6g7lA1oaMhYIWcUvt433l8Dj99HtuczX38+86/++T1vTmZwlCPHRiix06qybh3UmtveYZlMIyre6AaFvR8flBDtgpySoUshWP7rKAj2qkdtOmiJBJCmaBFKNbfEHx4DUwhoVXJ0BC90u9GCNdijkwsYPcRnBJ8UfSJiGYSOwBylpbrur8PehJerUJu5GMcAE522jSczKLgjPNfEv/0+85cfE3/10Qy+0gx7t65c1ZrUaQqcT8Jelb0oL6sbRolTXiLW/IqZSL05wddv4S9+Bg+Ln4sgB+r0qn37X/2jM2zZxpnstpD1bgZd3RDTpjcqcnCtm3ox2xlRTPaczkbl6EkcvUlxtAnCvgr7tbNfd2hXVDuXpye27eqOwtbUhmjL0tC4itOpRpcqQFysoZymieQopdxZVmeMge16Qdy8gWj5fqAeObF73M9MLTMpW5zFvlcvhCxD0fSlA3kRgkeXxBg5391xurtnubvz2rUjEplP9/Te7PW9URhZolYQmvvnQR/tZpdv9GjPd2zWdPRq9OzgxlLG4rDCsPfm2Xx4k2gbcGsNKeZiWMp2vO5wKU8xujxBDw0uKJNTUfF7WYDqw4feO/KKWj30qIHboADxRsIHSvhgZKzo2qtrmvzqkZsBnqiaMU0KRhH35qRJgmqux/oqW/twVBUxapaEg9oahvZIbDHo2i3DOyX/dXHzrsjlInz7na1rn78LTvMcI5mf/sOyaT0uJs2MCJQQb/ruZTnz7t0XvFxeeHl55rvvvuHy8kLvejh011q5XJ7JeWaaF2MNiPioS6itcblc+OGH9/zwww/8+Z//S86nMzn//fJhOB4bkm/vxxoSKzinPDFNE+vLleeP73l+/MD15ZneKvt+G04EGVE4wyzRkgVqN0bSOD9dQSUQ0sS2XkGVZQp+Ldj512D5tfte3D24gijZc39qt2ZwnhZyiuRotYOZ2KRjuGRROZWt7KQcmadkejDBKeB+b3JDrYN3G+q5jjkbvbQU0+5ve2HbrcktDU5TImfh1IzS3ErjcV0RCcxO1Qxi5ySm5Bm0NkyqrZFTBum8PF+dkSK8vKyEvHCqjZQXtq3y/vvvLQbsrnO5XNnXK33fCNNs66YM1kRn2zbW7Xrkxg7X+XW70tWyZuVWGAAQ1GoyuybGwM5+IMZECMLLyyMi3ti+euQ0E6NpxN+8ecPbt28ppfLy8szz868sY9wjfbZ9pa9K8XgXCcJyOpt3SbPG9g/h0T0zPUZhykITaK0QYiTmmWt5MRlWU1LIiETWUu0+CZYfa87WiR+eHpnmzOnuzHx+IYTCLDDnTooNZch0zn5GCte+opj3xNu3Z/bcKGuFuKNUWi/sHTKJ8/mOct2N5QTUVl0WYRpr0/8GuoiBEd1q2DRFcsO9ZaJT7CvD8b71jRBhmidf3zvzLIAZrwHc352IP/uKf/kv/wVv7u85zTPaTvRWSVM2HX6pfPHZZzxddt7evUevlRI6PahLcGyfNU8HodQKvdJ2Hwj1wN39G1Iyl36rMXdeLlc+Pl2Y5pnLywX6BHNGoiJRSTIjGgkyEePMyhO7JpNUiAIrquZTkkJhToUehJSgh8KuV6tZtYIUiw+STrk+EeaZKQY0NCqWknBe3liSS9jYtmdaXVn1ZL8Xsx1DrXQ2prhYCgW2xo4BI9qOa0+iRQa1Vmywri80jTSyNZat03dLOuh0Wtuo/UrpO73PSJyZcjZ2SwAJDaEStJlOV30o7fBe60KWznCrjkmZ5giizGniy7vPKdfK1nZUC629UNv6o+6n37+xfbVO/HbjOrrvf0pr+uOw3d96KzqmqJ8+i/3ltbfpmCQK8wS/+Az+z/8l/Bd/qvzZ1/CXvxT+6pfC//TvEpeLsvUFbQpxgbpCPkHMyF5tYuLifpGASoS2g1boVzpK6fCr9y98eE5888PCl29OPJwnfv71Ayd3e4zi2G2w3Kqu8OECabOmcpo6OXam1EnhhphacwG7uumTWJMWo/05Ig8OtEXEmloGOGIo0VY6e+3sVRl5iIgY5z6ANtfW+mlRgR48ZuhQ4t6wdvU8VBuCC00DterhnmvTSDGkFNvEBZOTd4GP18CHLfDffpv5m5fAN9fAczHDqOQ3geJaHD8WKdnXMgu9GsD+fIX5ZM3tvMAX94HP7uBf/qzyZ58rX98rc/Yw+XC7eF7H3fyv/TEoan55+Lkfdvf9MBZrzSaJEsRZAaZlMrfRPsA2rDW25leCTeEVrABVW0RVhaYLGs7M53taqZR9pZT1QGuPBinIcU/Ye7Tznj3CJqdkVEk3aDoQ6Jg4nRaWZaEUa4hzygzdXHVDnBgCeZ4Z9Op127zAvxlZjEZxIKqhGx1xypnu6Mo8Lxa34dPikIKZ2XT78K11mlpzPmKMrJmA5g7K/Wg6jfY0jFGCcDN+44bmBpFjuCAxgeonzzMQU0NtqyPX6sVkeKWFDIScPQLGG0Ix1sTQEqfUkD7QVx9WOfVRgJBMlxvFKGZdTWP7ajTLDbkaWmtraqM3J3POpOg6X88gzTlZ1nZpQKRrPIYMgFO/lFoLSD0GmtN8Ik+T63eCGxa5Q3UthGGQFSK9w7Y1fvUre4/vPsu8uW+k7Ei4/lNGrP//fSzL+UBYxwCj1sK8nIjRHJFba1yul4Najypv377zKbihLfu+8fIinE4wz8ttD3HmQ+uNfduBYLnA2+bDhPNxqq2hbbTWSckRXzeUur+/50/+5M+YppkYI9v1BTMsmwl5gbjS9dnjaoSQLJ94vRQflPle/skgLRzvU7seWdQxBuYcj9gg7TulWAxR86iPUgo5+bWsUJoexms5zkwRJCU3YjJTvF4r+ZwYcSZRbuYt41Fr9YGe0SdjiCSJB0tjxN3UVhGUHCLzlKlu0Pb4eKHfzcxTZF4m5lKZt8rLZvd3KcXokSJuotTY98I8z9Ta2PbdEKdmUUjBG/R129DHR2o3Z+V1Xdn2YtdNazx9+IEP3505LzNfTgshTXRJTJOtsdtmbsjzfCLFieG/sJcVeiBN+dOpsA/vzYCM2z7r63kM5iz/8PDOpBoxfjIECWJrVO/1kH1c1yvrekUPNKkf6+qQTsAYGljWSc75QJx/6o+HZTIqPt2uLTcnKa2xSjM6bMhkug8kC/TE+TTT+on9+gM5dpbUudZG7ybVOp8aYVLyHTzcVVIqNrgLDUJFMVOk02lm18TehEhlzp0JWLKybZ3SCo/bShfl7uRtQ20kNX1cD2JIqwAyEOYGpIMlOE0TTSt350qeEiFFa9SqDSHSZHtPyhO9DTMjOC0zd8uZUz/xcH5LDjNv7t4yzzNxzvR9teOWzen9/v7MH//sc1qtvP/+I/rtRy5rodE4JWGOYp4MDQi251aUSytcLiulNKLYOjJPkbv7O+YpMacTUwpIb7y8XIbggzxbpE+aZqpWmlRqLIfE4JTMHThI55xNttR1JWXLYW71wrZXAleWuwdChjglWt/QXoihEcgIkTRFJHbi1Ml5R6Lpo0NQmihVd5JUk9jhDYIUR4CFnLFMWyCnidJ30N3vOyFksdizDrUXRBuiDeOFNkQTMRmr5Fo2JFTmrERpJOkkCdbbhE5nJUglBWXOGGPPjUvNS2NHVIhEopyZc6XMlS4bSsHA5UbTahKy1ijlx2VS/5MR2wNCPh7DKXb8++t/+ccfr8g8r77593/z1k69oqf9vVf8h9602VmnCH/6lfLFgznsvlngPAnrNfLDR+UHmdik0/ZohX3KEBNS4+EmN3A+JwaiVFts1NCvl6uwboGX65X1svFwXpAYeTjP3J0mltk2xygjI88YzqFZxEBRYYpixkjRaMxGUzbEtqs1EZ5dYGiX0z3CmC4EQIXhMv36cBoiN4xYbkdXhompOj3ZUZhBOVYvtG++wHq8/pDNjfzZ2uw1u0JOHI7Pxn6wI1dUWHvgl0+Rb14C/+O3ke9r4LkJGiCqoc1Ddx0ONyxrbsdz7gqtKq0b5RmBSQ3ZfjgJX94rn52Vu8kQXHl9of7Ioe6NpPWH/vjtD6yv7qlhKmYDCQ1KVB8ihZs77qCD2aXi96JfgzcV9JhyjWsmg0ykPFE2M6ipHskAt2v4dz0EOSIl0jAuGVNfvUXGjIgJ1Stgulr6LW6mexQPYlmveZqPCJ8xEOIVWmRA8Q0pDt5gRo/zgIFa2rschk+AI6VDc3xDL8AGCANh8w9oxZzTvo738rqpDeHVIQ3Hc9m5cHrRQQ/W40uCHBEvg+YnTmE93KdfLebDSVNC8DtdTPB2fAY3I3lF4w7a0GYjjhuFeUyHwWzX9dUwckSCxCMv1b4iU85ehJvT8+0QiR8njCGj3ZkhNqxpKRN6PK5NQ4itaK67GWmpU721Q6/K05Nydyc8PQmnJRDTGM7+9Dkcw5AshGgRXJ4zbPmx6Wjk1u1qVDRHyc/newDWbWVkxg4HbhiDJBuqtNYO5Ms0kJM3aPa97rQ200mOAectciXEyDTNfPbZF4eWcr082fv3e3m4MSswNqPuyOprDe9A3AcbaXx/ZNseG9Bx8dl1UVtjLxZhNJxOzQDKpTnNv+f0fVUlBRvkBB8mo50giUFlGvdZHRFkIRxDmyBgxE07FsO5WbD7sncloojvid3z4i/rRs7mvbHkiSlnlmUiPgWa3sySVAJRsXukNpY0aN8cn80rNN9rO9u6WcauiEk/fMinai7El5dnnj5+5LOvf05I2Q2bbIC97zs5ey52TNDtesl5oqvlSg/3c0OPx9pm18aQAdjtO9CySE7ZGTrhGM7ZgMJ+3iiihXVd2ffN6ew3w5rB6Bm/O9yYa3H0VoYx3E9/xz7NmexusGN4ctDVVckxYgTTaPeFWuM35WT5tdGawBuzzhg5S1ZyhpMIU+5IqPQeUa1IL6ibqNlQ0VySRZuBJSFwyolragamtMbeKvdhOqq/EJTuNal4ATDu5bEvdb9ucwrkHJmn7nT/QQ92N3F8Xw6Z3m3QGoMxK6acyD1znu44z/c2JEvuk+H3W/e9JabIeZl5OC+8ezjz3ccXWmlUNY18DF7PvLo2bQ3prHtl3wuC0HpENXG+O9l7mCYmz+UupVBLpuWEVoUEQSNJxpBPSZroZLIkNE50CkuejM7LdvOoaMUBoI7IQpBO9Bxg1Y5KQ6UhuOFjMr20hIqIYrGcds00pzJ3Xhl4Uq1BJVocWrCiXIcUD/XXGraOgKo9j1ocEBpcYlEc0FOPL2vEcEsVMA8MQ9ubVr9GjE3ZpFuzf8RxmJxNCASZSbGTUmPvZlxo670ea8vvo5f/JzW2XvsdF/fv8xhz8H9KyfD6dcdz/Pb34FVR9+rn9DV/CVhmWCb4P/0X8H/4V8LLGvh//A+Jf/t3kf/qv8/893+V+PBxZ3vyqkorMgWQTJdMl+oLTwTdvKndTD/WjX9etVMvnfXR3Az/+m8zX37+BZ9//hl/+sc/57RY0PNQAwliG1jtvOy3N5/EFpCUlPPcmXLndOpuw65sYhdTCp05iTnQJSybMgKuBRIsNkUqdIz3biY8dhOouv8IFu9iSPGrDlA99mXUD8PwqYsb/Nj5tQxSXIdlGrhRUHfliCF4acI3l8D/9H3kv/nryLcvwmOJnB8C89nyaEMwswKt4uHON22eOro8RUiLNc8picUqYbTkHJU5dX72Rvj8DEvQ43McySk/qrt9fdX9r+DxOzJ6O3Y+S1eP8tFjCKtBj4brJjj4dMg0hhujJxiLpF3dEeQMcgIJrNvK5eWFsm60YjSX4/c7bs4AqpXDjXUgjSFxfnjjRRZe3BS26zPtdEJCYF4WajPH0l5tkYwpsF6uRln0Rnme74ghIyQQc2YcCGaeZ3OL9U0jxGhoSxAeHt5Q9kItZuykqtTS2PeVkZ04DJcMQS703WNEBhTtxya6I6hl4PaDfjma25TzgWKMTezIbByuqn5upmmyYsKzZs0hN7nhj9GixfWT4RWK2715GZpWVSugh96pd8vxk2iIecyZPJ/djbPR2VDsYrnpG8fgS13LKAdaG6PHw6ThuNt9CGfNVxJlzpni+ql1LYbsxkhOpruh6lF8t9rpdaeg1HnGvT453z/YsGEvtO1KRcjL2RuTzOUZvvu28z8vsCx2PE65OXXsp3+vGyqaKHs7hhu13iK3Xi5PXNcLX339c/KUWZZ33N09EELgul65u7vjdDqxLHeklGmtmbGLF3C1mIGRDYzMmA3w8w7btgHK3d2J0XS+RshEhGme+fpnP+f5+YmX52cen5+Q3piXhTcPd4S2065PZuLWG2WvxwBqmSJSK8VNjUSC70vuRIrnaNaCAEWg1cI0mUnS5bpyXXeu20arzdHOQHUXacWiKFpXni8Xmg/Z3vl1CT6swVy3p5yZ7jLzbNFe373/SBDhfJr5zftHcycNAt3ZITGwrTsK3J0XizhBKNXQ156NDVFqZ/34TIrWIMQIp2XifD5xuWys207rhsRa0dnZnFqtko5rIUZbHzIZxfJyU85c15UfPn4wAytHf+nd9lZVHj98oNWdL//oT/js7oEvvvySx8ePbNvKy+WZt2/ecU53AOR5YpkX7u7fGJpfdjMGa40pz2z7lXW9+FDPmlBxds08L4dhVPL4obFWwWj8b9rY2gqXywvLshxDls3ztbdtfcV48RpHlMeP783kKkUfgP4v7pH6//Pjs3d3ttf1QnbmT8Hc82NKLEuglsZWCy/lCZEJlYVlnpB4x/rwwDxbDuzdPNtgulVOp84pCw95BunUemWv1Vl1QHoAdkxc1Ak0dC88nBJvzwufne7J8szffX9FQ6NJQ5MQciA3Ic/WxBQqKeEbvrnwaom0rVHbTqnKlIUpBR7OmUqjVaVKNZZBaTw/7cxLJk6LsfGkE/bN/GeCuQMv04nTfLJ9wyeo27qyrReenz6wXi5s60rZr0wJvv7iDd9895FeClsQi6dBgYmYIqfTQkxW22xBmPcODKmADQ+ohWkKfP7mzMP9zDwl1nVlmRJLTezrSmyNVDtxzse6EbDadUIIYSbFyJvTlWvtrPXJam8C6JWULPP9sn6wNbCtfPZmIYVE2a9U2UA6IVdShjwnuq70atnwSCLEhdYbW9vo/eLuxTb8OudK0oAle+5UGqV3qhSIFSjW+GIMLemWZWtDB4gSITQ0RvZmg4h13ehusCXDvJGCSrX+p23EmEli+/nadtbtQs6v6w6hh8icH8ipkdJK23ZCL0f+OMHoyreK8h9//Og7PrzKMh0POaZwrx6vaoFBmRuTw3/gx37U42iivR7/7Yb29fsatFgFRmrDJ42+WiRA7fCyC5dNeN6Bc+T+S+Wf/0WiniKPzzPb1TZyUUX0AW0VrRv7JpRdeXmq7JdIWTeuH17oe6W3DbQOWAB1UfheGz/079meZ/bL19zdveHNmy+4v/+MKS9MeTZtjm/YPqCmakeaozzAVoXSAylbA2tTSSVK51rs7ymaVjcnaxBlTOC7HuaZWwlcNvWJ7+042/8Y8hG6mwz5TKaNOhWlVENe6TbIjp6XNRyD2oHgOc0RKD3ytAc+bpF//xj4/hr4u+fAN2vguQqFQBPMrGegM8E0s62bhnj3eCQVYYrKNAbpQEhCFmvI709wt8B5hnMWo5iN0Tm3wcg/3td+Ooz5fYc5P7VHFyV45JMtGD7ZG8MJ7zCH1tIGHtYQjSnazWAHXh9ARZwaLN60RdBE1wn0TJATU7bm0a65YTLlhhgyMvuiN5OB5q6DpZjraUxm2jTNMzkmcyOuO3gu3PV6tc+DvEIQ1CbeMRlivO+UfWdfr/aTblTTLUvE0SjXHcd45NZZE+v/rk7TVaMh1lIO9GDEhIQ4spTHccKLOW/kMSRs0PsGVZhgephxLsYgYiCeA1XrvhgaemfF48jiGyjt5Ki0iHgGrN/v3kwe59C1wHgzmmKkqtIcBQwhkqbZaeDh5kasHA2psVlsSNbaMMvqBJc7jOgUJNDVIoJeI9ohRHZ3WK5Oj0ohkmS3AZkaCitBEKcsqxr6J8Eo1K029/hT8mSawDzP6OYGRLXSUiVUo1XtK/zwXefxKTFNkSUN446fNoVx2y60lgFDusZARcLQaleysxKmnFnm02EkFWPk3Wef+7XaD/Oo147Ho0Edw82BqncfUmgfbtccQ4sDRX3lwm2ROpbBPC8zUQKX9YX15Ynvvv2W58ePPD1fsDidztPTC1MyKqxN86PnSLoXgB43FAfXRD2mSczRfNvNjfP5srLvhd02K2IUMjfN+hgAtN6P4RoI5/PJ3KCLXXfD9AYxnXsMkRhuMUeIcF5my+I93LzlaNBUldVR0zDkGgp7bRSPHuxqbrQ5Be48DijFwLLMNIV6XW/Deh1rLebs7OtBLdX3+GCoXVeeXy6s28a278TJ0TaPGautcV3NkV4FXp5fuH9r9OZlmQFl37dDw16K0ZJLqE43rVzXiw3kMPOn2tIxrLKIIDsXA1HNziioUg82SfPnGmZmg2Zs1+wdqkYVn+eFp6dHtn0DjDqf88S2r7YOhcA0zagqMZmJ2mAK/JQftVpzCb6W54jMwyDzZvwnEs3RX4whgHRihPP5xN3SOU2waoKmNDUMrWtAwoLIYDUY46LUSggdxdz391JoVckh0LWZ5n02Kdx5ydaIudxNvWs7z5naoGyNUIrXE7cIOzN2DD7wMoZEeLW3Da05MVJ7IGqk47rUCHFOzp4yI7uQIiEnCJEuwKCi10Jz5/big7Cudmyy18lba7ehrqPaTRu9vva/sPe97ZVaoZTAPIUj7353ucGEOCPGrltDpjupu6lTdLMoGlV3StgosqFaDIRKkSVb7GBSM0msbSPmSAidScQZk3biDcTqzDkhyQCtAT7UHkjpjpAatT6jVJrs1qZ2i8ZEh3SiHlXIXq6UbmZdUbwJD4EeOhpMTmisKkFUsH3mYjKnrpgpVkI1EsMEWintBTAPAxVFu9UE3QfvMWVjaoSbp4WtZJkQEjkmQkqWA65C6ZXSqteqiZTmH3U//R6Nrb+B/0DD/PfL/UHo+qe2AnI8y638GoXe69L6U5rtWPQPmiwDxfXvd7g2YWvw3UV42uB5gy0H8lvh5zHQzpnnFfZywig2vrJoR1vj+lxZXyo/fHPl+X3g+hToa6L0zQXoO9or9HIguq1feF4rL9J5efw1dw9f8u7LP+arr4TT+Q135+jCb3MHtZpVbIFy0WHrgRjNBXhqQp7E6HMY1CX+XkNQ5qxMSZlVjgUJ1APuYSvCyyrIfHOvHYMRFWuC7XuDdC3UfiPprfvIwYUlw5xvSNNr6nNzN92mwvMu/Po58uuXyP/7m8iHTfhQApfN6MsEa2pdZ+7PcaO3bIUjwFxFydFQ2WU2tNYmfUY3X2aYsxl3pShE+YQkyzBQMiRgGIT9I5ekvmpyj5vyD+thaByjf+FTxHU0ufaN8c+HO+0nQO9tYWLk/nrTZ3QoQwy1T9Bn0AWRmRRHY+T399GojcbWNZ/BzIS0m9FaLbshVL1ZVMBicQfrFkgluqEIrOtm121MpJwYmiyYbHqfzWyktsK+WYEUvGkfBblprq3Ri9HzahFfT27FaleMwlirm5oMs6Zum7AbuKhPaY7j+qrwvzXL3RBipwYP5+RWy6ufE9cx3xoJM7QymqB5CVghFGJ0g5n5KO5eO5+Kv5fjugBDfv2cJNe+gZLSZJvScvKhxHCydGxW3PXUtRGjULDG1n0JfJEZBkG2djS668kM1TFxmGKDxyDB8r7DGGQa3Yng/sxarRwMN5p1q40eFOlK3Qppykzz7Prl4lmFjRArIWT2DR5/6Dw9Zc4neHs/9pyfemO7Hkj6QTsXudHWsYZ/mW1ouiwn7h/eMCJbvvrqZzw9PfFyeaGU4k1CvtHz+o1mO9Zg+/96vOYwNgM+Qd3Gn82jpmqtpJSY/Vos+84PP7zn+++/5/L0zPV6dTMq5en5wv15YZoSYHFG8zRx3azAae0mArpJH8bD78lSqa3zcl1tmNHU6HiuXxT3rbDBiKGErQ53b2Evlez3XpLhLQH4sTU3arm5Q4uwLDOlNErpZvyttz1Qu7Ku7jzt61xXQ4tLcVq3NratkFM8TI9iCEzTxF4bl+vhG3obQiJcrxspBqacqLVZ0en7ZVflulpTu5fCeTAnvLFurVuTKCAxcrlcqaU49XK2OmHbjsFYH47IpVgDUQrr9eou0ek4NiLBvBpap5R6MG7QgE63NTalhDi93a6Txr5vhsiuG0LgdLqzgaNYHNpAnFNMTNPM+Xx3M+hTOczPrIFJx73wU36Uurl+OpDiZDVcH9KrQccEy4y1+6KrgjQkwOm0cJ47p6lTSvThNbRu7DgIvkZ3YKU3pZZOnIy6Wlz73bswJx8OVWx4JbDMmRzMQG0ADRKFZZq47IXWramMwfZdxQz/5JD0DFNB36/Urs2tVpO0hEAnOi3f7tEkQpy8sXUDuRAjIWV0SChatS/PeTf6ujW2TdVZiVYXytZtj4nWoA+6rLoXxchVB2wQhtWb59mM4gYDzBpNl3qM9AFVpFboIEn8Gre9r1OpYWMPF+iW55piZEoTSSKZaIOnUohicTvyqrG9sZxgyhENCuJxjL3TemKKMzEoLTzZa0rxoYbFodKF4Ca39pzKXle7hlzOFwXLrQ1yNLYxGtNNmw3xa7se1HIoR48VBUQate90fGAVJ7rakHnsJSaTmY49hhExSiKI1TA5RSavx0pvFGdwSAik9KnR3D/0+F+Eo/EpOvGPgGE/4iFwRNwcG8VBNw6ffH9MXG7vRGlN2KvwzTM8b8p3F+E3j/BxFT5sgaoWW9LATZIC+Z3y1l/9oNnq7Wnf7p1W4ed/oVyvjfXa+O7v/piPv/7Ax19+x9Mv/4Z2faRdnqBfES0YiltQLVyef8n18ht++Pbf8Mu/+pxpecubd3/G23c/4/7uHXdvPydPmZytOJegRI1o6KhgOXUN2q5kNUQ9SLcLWa1ojK5BjS83dD0ItCZcNhf0J3izRJsIeXTQOODmuGY3WcQiYYbMKEYlzYGk5jienRbdfVNtAnuN7BUuq/LdY+OHl86//mXju6vy/aZc3Q1ZYiOkwTEObLvNLrM0WyiDsO2V1gzxNbaYWlHtkOuywOkEb98Ycly78u1Hixn6eIUv5s6ff6G8/RlMI7cV+aSw/zENqo8PXiGWt0bhD+XhDFmcyeNTc/s3A/J0TIcAXFv9Wz0tr35+fFfgtUjWJnQTdV9o9UxdrdDJJyWnxJQn+yWxHMmUZx84BFrdvfiph0PxcNsF5Xp5Bjraimn1ppnppHQ3EhEc7UtClIXejSo8pobnu3t6t/zF6+WZ6+WFy8uLPaejVaXsqAif5689OiBQg7gex6a0IQjbtrHvO9u2kacJotEhR2MZnXJXW7VNx2FGebWgBM+THYSCFMcm77qhmAgh0dWQ05EtCrAsd9yiE6zJjFHIkyFzMWWCn2CtrwLO/XnTNJsGVQEM3UwpUXtnkuh0ZisWDzOtEIh5IoVIyIrsm1HC6+6NrhxGc92nu72L5X2qSRRaK4TQ3VjDNEPRdcSKxbNMKZJjYnq4p3jRPs+TUfU8/sI252Dyi+DDR3e33rcVEZju7+EsZrJTdmMAbFdH2wOlCn/973fWK7x7MNOUnH7a9/W6PlP2yLa+ME0nluXMl198bZrEsrHvljE6zwuff/YlKZvh0GDviOeGLvPCRjf925yP4VbO4UBvL5cLYGvx4+Mj8zzzs5+NnNtbc/v60Xvn/fv3bPuGduWzzz/ndDrx9t1nbOuVjx/es++V67oZaqgzMYjp2DDn35zvmKeJ05K5bBa3cdl2cp6MEi8BjsHV7VFKZa8dIfg+qPTaj/eZgunoW9Nj2Rq5lTFFmnV97PtOmjMxZZRIioZ8q9qAFYTWLIv97nxi2wpBGrGZkda6bkw5QzRkNedITnbv9mYMgrvzma7K49OTFc+18fh0xXrBkddtxbXs/Ri61VrAHVK7RFqP1tRi6Hr16eubh3su1xWuVzv/fqrGZ62tczefOb/5gtrg+emJ3/zd3/Dm8y94+/YNDw9vgDGwsKig5+dHnp6fjfbeKjnb0HDfi7OzBnIt1OoVYfBolVLoak17F0FTJ+WZlCdynmmtsl6vfPfdN3z8+IHvv/+Wu/sHpmnm7nxPb93ZPYaa7aVwPt0dQ7ObE/KnDMOf8qO1K6pGr7NBaiBKQJtQtBL2jb1bysQ0nW2NrCtabd3O00yaCylXkprCMmrgslnu8xQr96eJOWdOwZqh6ypcnz6Sps79mzMhLNQakbZb6GwUnvdnqlbuF+t8UgxoDMQpu9TLQBgRDG0LtnannKEpm4MotVltbcOgQLsUeunUVknBNLf398agGXEwiOlabQ8VM2maF+JyZ0ylboPsUs0wLSbLvC+lsNed0iyKZl4yd32hi9/jIbibuEktym667hQjIp0QzHhsq42tNt4/X2nANGW+ksQ9ifMSKbVx3VZSjjZoNi6DRWs2JaTIFBfO+cEdmKFKoxFoHgwUiUx5IWiEsBEnkxjmcBu2q5hkZ8oBaqJoZa+2vltO9wltGZHGsuDP3ozR1QPN+UetQ3PZRa2w1c09LSbPlm+0/mzmnDEQ9Q6kI2HobBWV6g10h/pM0AekT8xpIsdGkt2iowikfKZUjEHmQ44kCcSG3CkuVF3ptbIDrUboE3dzJgdBdKcUZS+2dpR940W3H3U//ejGdiwQ//BW79NEkU8mqP+U0sCK5VeowoEKjUr79rzHBNP/bm6ZuOjeaLuXHR6v8MuP8LwLH3fhh6twLXCpvrhiKOHooM0kyW7GIbfS0aULkMKBcEYCOSTOX5iTKTkRMuxPj6zvF+rzD/T9Cm1D+wYa0b4hrdFbQfUDpez0Hij7Ey+nN5wvXzPNZ6bTHfMymVtojMzJaBEpR7LKwZu3acsw8DADJ/D37O7GIni2nekdkscP1W5oqtGZfSLn53PEuHS18xrUGx1Rt++2iVDr4zwIpZvb8ofnzsva+eGp8N1j5/Ha+ev3wnNJvLRES5O7IkJIHuAbIloDNcHeyzG1KhW6BDTONgkXM93wX6FmM43admWZ/Eaohipfk/C0CS8bXKs1pkkM2R1xIwPDlf/gNfvpLjl+S3/nv/50H2YEAwfTQQ1dMIT2VWM6brejUOnHIGnMP/A8vQOuhVc3inqIuVALlL3QmqGLtRh1CBl6OaiqxxBr0HS1j2vXxwiq1GJIa84ZluVAUaZ5pmAUSW1GpzFKWiKo2ut5sTcawSDBiyprRFvtn9AHtXfEM2+jo8jSby2+mdPUw4zFnn0gqPGghQZ37fzkKvHPNJra7LEX4oZAHMM7ZWSLxpButKxuDZykGyPmNhlN5DzxOqJHXx3Hgc723mmuyQSIOXsT7dx/HzqIx5aMcw421R9FNo4ChRjxEa3TEYMvkp9uNcNUZBh7SeRAccRp2iiImBOthGTZtK0P6NaOtE9njEId/bq8DSLNB2E0AT71FzfFkhEdBNIjz8/KPMPjE3DvJhg/4Udvg0JXEUmkVA69ea+mFa2lcL288PHjD05P7jbUmWe+//4bWjWDqX3fSDmzbatnicqBoNXaDnrnbceF4/i/uqZfD5gHA0S7oXatGnJ3Pt8zLyeCRKPyOeLRusmdunoW5xWu82axGxiSMeJ1TH3lJk+DSfFbQ29USYPGiLJr9yJc/F4KpNjpabgw2j2bnBp7II61GzImypSN8l2qoUplLzezvWqIMmIDL1U5Xs/ANqE1G5ylGClqx6U2azanbFnDRp0ulJpptR3vCVVDm1RcBmA1zmv6d3PUkjgQlkEnNy22Uaft/JgOszEtJx7efsYXX/8M7aZhfXn6wMO7z8zZOcVD32qmZNZQ5JSsfsC17j74Oq7PIXsClzKEG+oWzbxurJMjKilIZZ4myjyTkjEtTufzgaqrdk6ns1OeK9M0M88zp8V+xtbi/uoa+G1E/6f5OPSp4PuCOOJvg8RdV5oKtsb5YCoEet9prRNd7hVCJAWhRzXww59nGJTd7l73gunVqKeqTDmRQqRsxa6zFB2dFaYMRBsGaQi2BwhYtqhRT4drfxt+NqHbsi9WIwaDRpCAOdvX7jIdu2dMVqdoa/Qg1kA7Qtd6hxBpKqwjiq9XQm3UrocR6lgXbD1xQyYfDJ2W2a9PGyipYym1NmcvtGNQGmIg+nPutXHdKk+XwjKt0GGZp2O4pEAaJoyIRYaFRJYJYkaTogF66Cxs7A101AvSCXRyiiwx04Kh3jkGupuvDuM/BpjVlaLqvhh48oKBU1kG06ge6SEh2FHp2GC4dZM1Wq58sH/vZgClWvz6GHs9zgozKnQMlT7eiAV9uqmZb8tRCH1Uf3pbq3uhawISxhoARNFuBnu2B0RETL8fSYgait7brZ78sR3lj25sf/vpfjcBc0QK//4lfrhVx/ZMBzpj3x6RHjA2MNfRDu2ZX9C1G624NKE04fsX+O5Z+NUH4a/fw7VBi8PdGKckcOPgijfF4934ax/xI/5legGhAlUETcLy2Yl4v3D6+eecf/Yzrj888+Gvf8Pz3/17ytMH+vUR2oq2FXgE3UE3Sl0pdWPdHvn4Q0RCYjn/gun8BfP9V9w/2LTytNxxWk5M08TpfGJqkTwFoyRLYBJDacXRtXETD4raKGljhHmyCx4wqnPHJ9ImEcgins/lBZ43P9XuRaodfPteFWoL1KaspXHZGs+XnX//yyvvH3f+9psXHlc1GjEH5GviX4IR26I53JEnQ5cEKKvp73qjS0RSJt09oNE0FnFT8iTkCfopUCq8XMz0SrLQKuwR1gTPW+RxUz6synlSoy+jJOnEcb35TTxuxr/fsL4q4D656m/f+0Nobr2fcHdA3KQJa/BdECqvG1VMUx38nhPRo6CVEOxmCXA4Tb1ahFQthmlbYb2urofpbNcLxXVSMUYkRqfBmlbcGqeAdtPb+rqO6XJ21vVKnidCzJ7bGTidMoKhpbU0aLZZ5WWxy2lb7eN1CBKdridM80JtlZgsIqXWm0szGLXK0EnT6HasgBiOnHt57TJqdKeUzO11mCTc6HB2g6qODcMC76d5NrT3eNEATldWR9ckBEOLMCdJ7UZLEsw1dWh7h1lUnubjdXs3Ey6jIKo3g7Zx1GJRAKZPW9ztWeh9d0R/LJIDQbINvLZ6ZHyCFdsSM6rm4hhUgYS47nPQr8fVMZpiwYqirl6gVHs/MQQb2HlOMSFYvMEYPMCtwPLmKIoArh0WG1b23tmuV+I0O+1KDip3oxuSHISnJzsnv/nO9qP0E5fmqbsgGyXYUIOX58ejCQkibOuVfdtMg4hpmv/oj/45y3LiN7/5O6OGxeRa8c48z7x5eEMIwZCPvdBa5+HhDZa5bOhcGo7YR3MLNwrybY8ezuWtrez7zjTNPLx5x8cf3ttr1GpNLELtzbwvmmtkdSUEmHPiNJlEZ5oicTUaYusdyfY6bo1qzY1V9EQRQ3WjadRE+0Gxj97YzjkRBHISUpx9MG9UZGNZdK67ob9gv1vLzrqbPGh9MSRbgWtph7YW4TBJ6p1Dj7zvhdY7n729p2lhvzRby3LifF7Ytp1yqZymxDwlyjyRU6QkWx+HpjeKN45NwWZgRhH2Ir2HyN7MOKa1SgzCyZkY476orbKXwP3DW372iz/ij//sz/n+V3/D9eWJxx8SX/3iT3wtS4dEwyJ0KjFG7u7uaa1xvV68qg3HdTCaatNjB6b5REwWv5WzI/1izz29kkrUEDif7wDh4eGe+/u3fPb5l/zw/juGqd67zz4H4MOH99zd3XF3d8+7t59Ta+X5+Zl93w/t+B9C1A/AMidad5aO03ZbU1LrSKuU+kIPCUnzcawlJGq5sJfCnATB7sslKtApamYkSqKrUd+N8l2saeoRakVDp+zKeU7INPNYVoLr7VNSMt3qxewoQvBrSJVSn33+KUTJBCJds6/NlTwDMZh+djS8Ar02+u4NrHYfGolf040asHijKdOrxQ31kFibcnnZ2DfTvk+hHkZwzddDhCPzem82PE8p8ZAntrJTq2VRRweLSq0HpTi663nKwdsBYd0qQuXD40posF93pil5zKZwuW5GLc7JaqRlZppmlnwizomQJoJY9rDGjVAMfezRonSQyDIFpjjzWHZDp1PkUkB7YJ4zAadal2ZGc11t71Kl9p1Wo8lvpGOIdyHkjiRggh4K1a+p0hu1V2JWYuhWb4Xqv6tor2iXo7EF6wEkNIjGdlI1DbHVMDbMNgAiesyYOTSbv45S25XGhAKR5s1toneTLOx9RzUS4sL5fI/oxLY1H75Zdyfh5qXzjz1+DyqybSZwK3f/qdrZUeIdTYC8+n9cPzmm7jYfoIshcqUZhfhShGsR1h32olx3+HAxVO6bJ2vexKlFWxPWJmzBEVU5gBvq6/dyFM+/3cjfbLEP+qY3xSFYg9ArTpu1jS2cZxKJ+3AmnN+yPX7k5e/+kn55j26P0DOWfVtQdf2bQqcAnev2wlYbz5dnPnynLuLOluUZE/Ppnmk+Mc0nltMDOU+cloklT2bucpqZUiAlYVmSTbuj8/YFIuLxQd7gBvv+Xjo2tLEbx3RSbrrSO2WvNA/BXtdCKY3LdWfdC1upXLbKVoVrFS5boBSbAFePgSCkY+Inw/ZYEuTmDSu0HrGOekJSQKIX0zGg2bK8LLPMDDLsyy6skKEHq3NOJ5gn+5y/flTWKnx3EdZimaR3E/zx28AXd8rP72HOpksOx/Uor6+OV1fop9eGtRY/fpr0n/pxTNfglhF5tOV+gdNNWy1ydP2jYA3HAMBQDg8c8zvVbp5b86Dse+XpcWW/CrUG6r6x71d6L8ynhSlP5Jh4ef5AKwWtI67B7s/gDILT6XxM/edkrsmtNafZWgMcxChcxISqsl2vVnBLoLTGcD+rzQwnym60pW29HuYltRSn2orTeCMdy4NszuMe0RvduEB2LGNknuej0Ta0yhGYfafVsSnYdRIkHnq01+7EIoJEo2EBrg313xOOydrwDRi0+uHePBqNkQ8cQ2RwMOyVbQMTN4jDUe3oyDG4vpKAeqwGaSDmFt5u0w9HX0KytwXgU1btpq80bbFHE4lNeoeWacQ0iSg5J3o3g508TdZ4IL6pNaYUj8XZGCKGNtkhMX/c3hoVyHmya7VDrcUa2CnT983QuhgPJE24GZaFMFMa/N0vVys0pp92ZztN09FADirocIiNAbbtyrycWZYT1+vF2TvC9Wruv09P7y0GpjV+8Ys/5eOHj3z4+JF/8Wd/zjwv7LtRykAOmUnvyjzPiASu1wsiZ0Qyqjfa577vhGAazdPpjuB6NNMGCsvpzOdffs0//7O/4F//N/81L8/PXC9Xy0gMRiMe853rdUNUOc9nPnv3hodqOtnLVtnLzegMdb1sd0aKm57MnhufUyQFHC0NTNlQUEG4W6J7WiT2BpfNnEZ7t6ig5sc0hXhoYmFFtZtbs6qjzC5SEcu3jzEwpci+m2bc7i9z8y7FBmGnJbMVczxe5pnzMjtDIdqgeNs5n89on1jmmZfrRmnNQjKiDbuuVzfVizYoUF/DDxPA3im+P1tcWuJ0PlHVZE3XbeXx+Yn3798bsv/uLaf7NyDCtq28/+HZ1igJlh0aI8sy8cMPHwyl9optUHxa72bg1pQUE3fnszm7+8YaD/aJmetZ0eqZ2HGhlJ2cd87nO0IQLpcXH1ye+frrX9gQzBkhb9685c3D21exVO1guRhwMRzaf9qPaYLSYNux6Kpuf7ZSCb2Ss7Nm0mCjBLTb/RQjvLmHuyVyyhN132nBrr0XydSmbFtliZ1Ep3Zzy+7auVsSkirarog4oyHOdCJ77bzsK4qyTJkaOp3Oro1QGmGvpLqZhlcitVk11Eg0FVqITJN1Ixrj4amhqkxTJ9K4diWGQoyNlAOlCOumlGIodNPGrpXeCr/67gc+/PBrvv/+wrIsTDlxd0qE8kLQwn1qrPtOqZXrurLum+0RTk0PwVgRMQbqpbOtjZe6IzhjxBlKIRgtOcfIaXJgpytPzytztPv6el1hycRgQ58mxhD8+PjIuhqaq6LMbSHdZ+Z4hiB0niB1Sr7Sg+WwVwpRMpnIKdl7qFi2tiDkEMHTIUxTLSQmzvM7Wi+8XNXAnwYMRoZ0VC/O5ImADakbEaMCd3IsB6Bo8JKRlk3OqOwdxCOmlAvKjortpwEhyYQEY7LFHIx1hTroZw7JqOlpUxQigFjyBKrUciVIcoryiVLUjR8jMU4sp4XzEuh65WX9wMhq/zGP3wOx/ftolf35Dy0av6PI97pssJf+3m/6gqRwmERcK5QOlwqXHdYifPciPK3C8yY8X0zgva7wtBmn/2kXpizkJExToIuB5qNuh1u0yXib0jFRNgZa/c5PNBpeNTrr616Awc6IEJKQ5uCtQaY3kGmiXJ8oCXgWet2MjtB269pVUW1G3VRzNmxU6CvofrRPg1qYL8/k6USaTiynCynPzPPC4q6l+bxYblgKnE4mwI8pHJt54NaIhzga2446XazVbq5r3WIdqje3uze2e2lsW2Uvncu6se1mJnEpndIDpScaVmgZzOul7zHOd7SmCyqfXqwjKoQQcf6ZmRBEs5mPUyBlIS/BpkyiTJOFT+fsvXJwmYibZu1VeDIWCc+rIdRzgrXAh6uwVbiblPOsnLJl3aZo9XwQtQX/9V0gt6vceo1BY/7pN7cir77G34+pjv8MgPyWLcsrM5SB1IyWnmC0YzsgemOLYtfNtlVqMRS9VzEKPkpOmXlemKeJul+Nnlcd/XE0L/k1f5qMrpumTJjMhGqYPlieWvLP47mSrVH3cphTtN5G+8egvXbPmR2sBvucBwTNoNf1Zs6RozkY6PFBx8UHaR4xIchhntR6M0TxlbHUaFIH7XjE1owLKsgtKzMEN1Z7RfO7/a9Teo9m+ZX51u2nj0GNMopdPRpsa1ziQc9urfM6smg02zgyalTETnB3w2NN92N6u87CuJJ8zVcz1wgCw0zGh4aKoVpdIXbT+xtyYU1803AMBcaxf62rFDEEswEp6fG6vTVacAQzWINi+ZnHKmPHoRsNrezC06Py/BJ4ePhpF8QxZsZ9mNNEniaW5WSNla+x0zSR82R6rD4Glc2Nyma21fJBY0zmyruubPvuzaj6+jmafzOLGgOXw0DNnX7HqR+ZomBIiap6zEtimI5ZPeX7gloz1NXc2uE2rDH3VqMrn3zgcZonStMjQ9Ze02mbuPPqGNwFdxaeEq0mR7dNx2sGdpBzNCS2C33viNMhzfW0GxFFICRzL+29s+/mutpqvfFTfMgwDFXGuRl3RE7J7yuP3cK0sLqrm8B0HzDZfWMobD8GkDHG43u1K4lE9Nft2o2xNgxwWvM4vtsaNejewQscOTYBWyv3bWNbV67XiZeXF9b1CiLs++aNrQ3bTPObjrUNwnFtSYzHGtc85sfiyuysH3TkMFzxh2FfRzHWwdhFYzRn5X1fj4FBOoY3N7lFzplS9uO6HrmXeM30h5BjK0Gg+RrrhWY/9kDToGpQNFQfBhpSFpzJM02BnAYTwcaYQQMiCYLT0aVakxbG9aXjf1EqhvR1uhub2fDQXjunaNf76z2zWROjr+63w1rUNwUJckjMxmv23okMGYl/fixRozZx53A91jBVpfbKb95/z29+/civfvWe+/s3nJaZtw9nkq5MocFdpO47tTU2d0Jvbno0hrGDddmaORxvW3Fmjt0fYUgJfDAfRZhzpharJcpYj2r1wQLHmgawbsYWmJfMtM8WOVUt7STLzCQnulbmPLHrhU6lS7dcazJRBpXah77Yuew+TAdzl4/BtLmtRTZZj4GyMSwdYaX7sCIimPt172F0WKRg/253XAe9NY6KrSmidp+LXx8i9vwRuyYGIity651sLbeazJIM4rE/qL8fVUV0tz1FIjGeaDUajd0DUEVMspGCDbUDnpbxIx7/JCryq9Llk5/5XcvHDQ36pK88/nX8u1286jRg5borl2vn330Qvn0R/t37wG+ehMer8OvHwOPFmtofPkArNgX9/DN48yD8yc/NXTgkN4TyV2k6TunBuCSMnktAX2W8v37D3ZGRsXmpHsCPnciGc92hByFOcPcgLCfYFmU63bNvZ+a3d7z85lsu337H+uE7tKywX6AUg3zbZnAjRk+wrwSutYBuhhCts18e4fJoxzAsjM56ZFOGnM3CO4hRGfJMyCemfDq0EOr6NmvoG6qVfX2mlUrZdqrTrTvhQEB6j65JDpBnEBscjLOpMhtVZdCNAVL+9AKK2brO1zzwMBk1eT4z6IV2B0XXOEZiDsx3kTyZKdByB9MUmGbhvJhmOMZbkwmGUk8ZYrIi+WWDdQ/sVfnlCn/1rR2jrx7gzaK8O3V+8VZ5syhfPsC7xRrdh8n0XOG4gH/Lift3XPs/1Yd44xSD+KEeHyqaiQo+a/kky3Mgtl54BnwCaw1t7w7IHa9hi52oaVvXtbMXqLtpY7pY4zNNJ+7uHzifzkjbuQiU9UqvO9obUTt308l0VOfM+f6B+zdv2HWiSbAJ8na1osc1XyEGpEdarezb1bSmEXqttsiH5DRdayiTa8/W64V92w4XYu1Kq51yudJTNEMoH7IMVKJ50S0CgURImehGU+IRQH3fzDW51EPP2rsVoCKBZVkQEUMcWyUQiXBoyoamDTFDHY4RS0C1UcvmDqAWx/IJDdmbckaj69TEgTwP2nSIRi9rTam76SG3faN30xS2Vo51sjWjdIbgSaKjQRnTXxHU0XMGBVsd2XJzDit8q29h6iiYfcZSiiNr5kTZhmbnWIf9uhuvjbEs2niv0aN/giHgVXdWsaiZnG8mW12V0spY2Ow4psC+Rd69yaSfeExI9ni4GBLzYvfRL/7oT8m+3n748N6p9YW3n31BKYXL5YJi8U1/8qf/gu+/+4bHxw+8efvOsk0RSmmk1JhHtFM0naU54iamKR9Nrbnf2iBB3L9huOMO6qo1IK4NFyj7yvff/IZ/+2/+B56fL5TW6YjlJofosT62ktS2s27K07M1OilF7k4Txa+LmILp7dqr/RmL0RE6yxTc8CkzgtdDsGLV9LeNec6knPj4vEOwIq+5vvhy3a24ioEk455ULtfrK93pYC5k9/Ywo8UulgHZuoIE7k4Lw+F27B3RnT5VlZfLFU6ToRjp1uDVZvTlMSzoXbleN3Kt5GyU5a1UXi4bmyO20leSx1+V6mZCKft+HSjNmHExJs73D0TXzr5cLlwvzzy+/5aUEl/87Oec7h64rhu1rhaDFALzZHFAFmO0crm8UGtlPt0dedPb9kLvE+gdpZmTdiY5LdM+v61vnX0XQmgECWz7ZnngbjTVWmM5nSll4/Hxg6+dxjrZ95Xrmnl8+sDuTvcji3hck/8w+PLTefR2G4yMq78LSDQ/kXiC1otJThzhm/LM4qyNk9+rEiM5CaUCTZjymaATd1PhfNpZpgo9cLkYIrjVRqAQcqG2K/TA2k3WJqo0sWt/mTP7Wn0AUTzjPtDbYg1IEJacgYBWJSYbmphZWSIk08cO3WTcGr00qkKqNjwNYk3UVhtpCm7lUFHp7PvG//O//n/xN3/9LX/7N7/hzZs33N8/8NXXX7FMnbtZ+POfPVhNo8rj8zPrbqyOddvZ9+JD0RGRtbLuO9dtZ0pDbx9RumlEg0KKhCicTxMlNV6aUZvXPRz7VYrJUh6SDcceHz+y7ZZWYnuN5QgHScz5jKQvzcE4dX5YP7K3HY1mrtTprkMeHhM2dRAfHtbeUVlJaSHmmSW9odWdGpW1XiltJ8ydOUZyFLoIlk07Ezo0NdlRDwViYZ70QKp7q6gawh0k+hBqp2uk90iU6uX4hKHBZsq570Jpldp3B0Mqa93Q3skIBB9mBhtca69eNxY6L/47mWm6M2mVJmeSNVp7IoeJKQjSghlx/bi0n3+qxvaG5NhmIkeTd3xfR9E77tzbv/dwe6Yk9v1LEZ6uhsp+vwo/vCjvXwJ/+Z3w4SJ88zHwvFpEzVqNrrDtSqBzdwef3Qe++AxOi3B/Mj0OwfSjw8Sg+TRCxO2pHS0YQMl4f+q9lh6N7VE/2e9jsLq+Qrz6b62dMiZWUQiTZYPJ5ydS+pLl4Y6nb9+wv7ywffyIbldoFeqK9h20WlOLv0DbTOjfmjd948XU/5vGQXcKVUV6oTpmXFYgTkhc3HxGOISRImjIjs6pX+Cd1gR1L2Qk2XEJVrDiRYhMZ29iJ//ebQJso/7bJIuB9vUGnm0G+DQvwbR4s5uRZEhtcBOOEIeLJ7RiBW3vpj2s1TScvVkTm9Ktzi4JalUuK/R7c/BL4YaunWd4XpV1V7YfAnOG0xT4y++VKcJ5Vr56gLdn5c8+hy/Oyucn5WHC9YPezOPIj3/np/6IUbyxDT5ptRug047s6fGB9HCQviE0g+ImcpuojgGVYDSXGFzXRqNXpW5K3Tt1NxOQacqkEJiikEVc52ZohfbGFLxxCpGuzYqnbTe9W+vM53cQM1Vu8TS93ib2I39VRI4YHtPKW8Gb52lwqg+a/TBWGc8hIbq7aTVgyZv00AfKYY1rigkJpudLyYyXdNCTg7mIlrKbvrjVAymNMRBzIuVs917vB3IaY6JUm/56B8wYQYRgxh7rWo/zEbyxn5ezW+on1/62wzgJDNU0sNgpgF4g6hgulmKb39DOSiCmW0wRqodmOHkDM9BcISAp+3H2taTb8/dWDCnm1hyou18OdE7BdJLBF9zhluyaM+12/ozq5A3tkH6EhIhrjspuAwaxhdwMBStxj4d5wjC7OfTBIRqa5gXLhw83Q5uf6uNA2V9lqQKs20qrjXVbj58jWBF2Ws5M00IQ4epOx/N0YmTTTtPElPOra3mwBl7H+gxjoKGh7Lc4KRlGI2bsN1xqa63Hc4QU2fadD4+PPF+vxvgpFUGpMTIl289Ulb1yaK+bWhzF+bSwV2X4iDW/L0qrrjkbDIxXSGpXltmQetObWi5niuo02cCH5+LmKp3LulOL0+5eGUAN/eg+DGyArXSkKvOcKK1TmjJP4UA5jYHVeLpcDDGNpuU3BCIc8T7GjupueDOydl2r2229mOfZhz/2WbdSEY8vCDFBqY6eFkI23TsCvSmldfKSkWhGbGW3dSEmkwEYWntFtJuJ1LbTSiOliZRsGPfLX/4dd3d3vHv3jrdvP2OeV7777htK2VjX1Zr0FqnCka384cP3psvOiWmeSNmyLNf1euzF85JprfHdd7/h5eWJdb3w8vJMzpl5WQ5Ds71sn6C963qllMLLyxO1GmtMdczFk3kQ/MRN4ABKHSg14CZLPZpGurRC2qvJQLRS6opIdqf6gBIpLTJFocdO10rtyl6F1gvQqG6iZw3DRrcgWpq/lmq3YyeF3qIDCjY06mowXUiR0M3cb8Rf9p4g2GAxhwgSKERL6oggRCrijvZWd89RSDHTuqBl5Pfae6vVUkbOabbj0He/fwLvf3jihw+PfHx84nJZmZePfHh85Ksv7nl7v/AwwXlOTMmkQ8asKG4IBYjTu5uCM6ViiNRikXMhC9EHn6UYa3H3uqT5YtNap7TKuu1c10QMwlYryzxzdzpxPp1IKTjl2RtEFaQKbEIgI2Eiks2MUpWtXdCgZBFUjA1j8jozgmuYLra0gnC17qsHtC+IRrJEdlXztYhKijClQNMFUTODNGS9m1mTWDpL70YzR2z90x7o7Yp6dF+S7jivsdU6goaAEYWEII0QKqEHQrBrQoIx7Gx7Lig7Y9jdFGr12upAgd37gBd622mlIxpQrdT9I6JnclROp2Qyjh8JIf14ja2OZlaPBrA5ctkVarMSaSCZw5FORhE1EE2ghuMpyZgr78cVvn8WPl7hbx/h22fhmyfh330rPF+Fj8+wF3ueGEGbaUcesvL2Tvj5V8K7h2DoXHg1ve2OxI6IDSwT0YppuzmHVrgOKpNAw26EHtxYyWmWo4gej1fyzkPu6b9qX8GoyQSjjqX0wHS+ozEj0zN7y2i6QC1I3dG2QS/+jHbDU6MhutRbYxvjrdv2jVt74+Di12q/Ow6AFCRUDq20NhcJRwiGvN4aU/9Ekr3BTt4EBG6ca4E0W8OcTvZzIn4QBscZb5S8SVesgR98hm4LjOTkz+UodbIJX5R+sFhulDMrquhCKeMc27/FeHMXdO8dalW2CFOyaKMcDdkNwWjLuipbhcdqTUgMFt0gWFP9s3fw+b2yqfIn1a6LIEq2U2rNm9gnZAxKfuKPGOzwJzfS4UDBbLJ/OPD9FmKLjuZ2LDC3f5dX3w9+ekPw73dDK8veqMUaqDknuw+j+PtxPau7Aadg5i8xCte9sdbKWhqlKZ3A23giZKWH6FExZjqk3pA1NSqrRQD0w/n69fu3fkpeGfDczE9G4T6cg0fz3p0uO6jFvXeiU8CMcmfI6EEPVqW5A7RpRKyJHLEDJhEwtAThyOsTCT5Jbfa+bn2L0fDizdAJ8Ocy5G64Gu+OfPbhMuwNLI4MvBpDHo1tKTu1uumKo1sybibsI8WYjEExqKWjQXR6HL3T5eZMqqruAulLwNE0d6MeeuE0YKxDI6e3Ar+5AY+6Ic1oiIMP1IL4YK1b3IO6uYr4NdjGgILBxItHsyJmNIA2i5gqKjw/JyT+xAtiEXeVN7pnDNHp1LvljJbdXW0TMSRSyszziWEitu8bYOZlg9Z9yyJ9dV6xtbF3DiRW3ODtRmfn+LtFW9waQrxwth+1e6zUyuV6YSuF3Z2XC1ZMnKbJrlsfoDeF6nRaEJYps0z1iPk4yL5iNM1Bh79Rnu1rnjIh2vs6nTI5R6YkHscVgOejcd12M5FLI8bD18SjAXUnVsGuZ2sQLYKqtE6KnRTV3YuV2htl24/hXeumpYtAioEu3WOD1Iq/8bZ13NvW4OZs61mI4TC8adnX7fCq+W6NHtVJUfb91jvTcFR3U6ve1RkbwYdrrsmt3TNxm9/rtt58+PAe1c6bN28+8TywGB+jtVuR66Oz3lnXC0MDPGQiw6FbUcSRqdYbHz6+N+bMvrlDt0lVxIfhN2duW/v2fUf1yr6v5rDtzvdCIKVh0vcTv4+B6vILa2wtJimEwKad3u1a72qsutp2UqzH0A8N1BbMBFTNG8XMuzDXY2l+/xjS3dpO1+ToZfASsVNjQ6le34tv+WYbqYIx58SaEpWxZ9j9HcCHKJ4cEEe2qVKbNZSlQg7CnMIxbEM3r8vtWmi9UXZQJqzZNUZN752XlyvX68a27VwuF+JL4uVyJcVOoPHxOaJ9QZfs+zpHRJz6htG66+LtMGMmebb3joGvIK6XN+bF2Mrx9ahrp/bGXivrviNluIRnzks2/X5KR81qjRFQgJhMT55Mnxs0UPcdISExW+qI3Oos0WEQZYZPyfNp0Yz2E/RAck+F7pGbMVhtJz0bWg500Rs4pw10NxBNBDB2l2KsMcaw9xXo11qxcx2imcoGY5YK3tweRlLmEN1V6bWgmlHE93kbsNlxVpcgNjvP/WK1URt1ZqOWC6LB6OBTeEVP/8cfP76x7Y2msCt8WIWXKry/mp71WoSXFfYulD5qIHuDYRRkMnStajLlquxF2XfYK3xw3exlg8er/fmy2te+w3pR6t6gK3NSPn8Hn38u/MkvIudJOE+gFViVfe+ukBOm1skokyjzJOQoLAJTNAfNQX3uPlWqqqzauabALsJH7A5tYuYUvb+iHesNzVW1nu24CdQaiNldhrtCEQgnIabIw9dvCKczJb+jbNUMVUqDckHrBvtmhZ12tF2tsa1OWbbdboyijQut480Vu3DxJnZYJPuNaTZpfnGPkyPZN3Z3KpbhfOcN7NG0vroeBG96/f/zDHG21Ww8hruWm9f4heR/+puS4J2W/azESEiCJLNoHyZ8U/KNsnXyHIhpaKmEiLDv4z0Z8zlEO0dTFnqAb5688c1wmiBHWJI13jnbuyoV1tX0tt21o08F5kflbz92Pj/D53fwv/mq827pfHHqfHGCc1bezTDF0eD+tB/nyY+bgNFZrWgt3e6H10OxozBs2PXWOxorGqyzP9BSFPFIjBhuAwTtFXSjlguPH1daDTaBv79nniaWZSHljARhWs6kdTXjJ2wj3rfOh+eV57VQVblslcu28/H5Ss4z8+nEcjqRpkzt1RCsILS2E1Pi7s3PjfrcGnXz5krMfh5sM2KyTWy9OMVXTM9m2hQOE7og8WjKtm1DUfKUmabJi8VE2TbXl5hBTC2Ffd/ovbl5io9AgoWV2zTVUMIgwaajrbJuRr9S7aQ4MRxBGx4QT3SDBjMRmpeFPM32XsTpJr57jw3HmDXd6cX9MPMBDpOo7Xq1JtoLm94UGsRkG3KMybNLE8kjD3rv1H13l97uGZ3dqFHi7cVojrV/uoZ19QIjHhuFuGndtheWJR9mMeIxVeZYaawRc/s0OlUKExoxHLor27aS8+QU2E51IdgcJmvgix/LlAnL4sOKTt0bjz/Afh2Uxp/mQ1VJKXF/f88vfvEnAHz//TfM83IMaUq16Jif/eyPOJ1OnE4ny4XuppfLAhqD5ZH2bi63lwu9dabZPr+IWHZwa0czNR6vC7ihHQ8huVbyhvTe398fkxkreBqtVqacSSnyVHZO8x3TbIjFvhfWzRrv2jqlXJnzTCDwcFq4WyaidJ5eNqqAOGWyqzWIpjPHNexCiHC+yxbFkSLnU2ZKkWUyGr4inL595OW6s66rIaLdjNcaeqx9W21c9kbKmbZX3n98Zs7mvLw/OcI4WV5wDMFiNTDZz/Pzlfu7E1Ey27YTQ0CzZTXHGIlLZCvVUdjAeZnpXfj8XWCZIm/u77huFu9iGlfQrlyvV2v+W/dGzofGvfnMyNaz7Nr7FBOn05m7853lCn/xJT/7+md8/vkXLPPEtl4p+0Z0EzZRpZbKtpmjrJnsVeDKuq6s6+qav5nL5YXz+Y7z+Z6Hhzd+bdziylTNeOdyufoxtvWu7IV1vfKb3/yKWgralbu7e+7v3vDF51+z7oWcJ96++4z1eqHshVItO7v3xjzfEfaNshW23ZD2u5jZ9+uR9/2TfkgxLax0RGbzq+DGViAmcHOsrgVVd7IXo8+uXQnVUkkKiR4axEpIVjM+b5X7UyWlwlZfLEqqL8ZQaRu9bWQ1jWZzv4GKkBNobvSwUglUtX1nb9Zg36kNHTsGNCBCC7DvnVqtHt0VNhWrPUMih0gSq1CNYm+DoKNWbnpIooyRX5BmNeD5NPP27QMfPjzZGr8X1suFl6h8l22AGuRMnibS7sO04Np0Os/Xjet1o9buGI7pNlOMLPNyyE+abjb4D5G9NGcACKe7xP1d5v7tYrn2zWjXL9eNl+vKl2/vOPnadLBYVEjzTJxn9tLoKRGWd5zTzwkx89xXeoCihcCZWjtbKWi1QcLerLlJ0tx7otB5pvY7glrduaiBcKl5SoSIlfpq57cBXTLz9MCuP1D1iRCuVkNoOKyBh45VRKjqJp5AEh+2NWVbNwP/ujfRMRJ7JIrliofUaVxZy4XaAFnI8Q111AJEVDoaAr1X0J1tfw/cM+V7tuJu0UDZr+zVfHh6r69kBv/hx49ubP/yfWBt8FKxDNgqfFyFa4W9CWsx2m8bGjwcpwv6Cdow8mK1W/FRUAqgUYhZmBRygVSUhBI7pK5k7SzJkJzP3gqfvRXe3gv3EWZVpl2JzaxsUtKjcE89kMR+b5qsh5qC5ZiKYPBs8FiIFMwmHGEFtg5hr+wSKCmwZ1s4TCD9qrH1iVCNcsQC9ebTXeSo5wy98nUsBtIUWe4mCJFWlZY7WiO9nVBvbOkN6mLNa93NbEqbv3m9jXUxsNQaiYa03RHcYwTEwcNDbg3lcLwa3Os4cXSTQwM7mtpXdDf8mXC0w5dhDit4xLS04/ll2IffUKLjOUO4PbcX8DGY+deRxRWdrpqDP61NSqJ/DBtZW6M6kPo+kHas8Rrfj35vpGDX42sgOpoBnWkNu0C0uVQQG9q8FGt63y7CF6fAu0U5Z+WLE7yZ7f/fPPzYu+o/zSN7tmMUKzRUBVGhiTmOjrnlyDIGcWOoMaGyA6l0ght/jWmagNOQbcahfnqD2HS9Nde0hsCUJ86nE5IyGgKbo6Dghg8KiuWohtDAUU/Lw30ipiulbJSykeeZ1l3TF5NT3m34E2MiSLR70g2cgtgG3bvFogR3/TxQPEdPx+ZkZlM3pHo0FTJNps3xnOdaq0etQPVogcMJeSCLjmK21ogHRdrjKawqd/MKe97eOiEFhoMv/jq2idh7TNNMytMx6T38U+BAzWC4DuoYTx/N5Pi9AznmZl4lYoW5RGtAzeDGto7em+uHy3GMDnfS3nFfZMKB3jZvOmxYcOjWX9//DKqhUKrFEPTWDcUPQspGvVQRahcjiYi+Qt49Y7d11CPLbLl0syMdU3g9zH9iTTfTm9rZ1+jX+0/3kfJ0RErt+0Zrnev1xVHTeBuYhOB0/DGAsfOY3YW7+1BDUWi362Df/XzH6FmP+snXeO6B2o9r7PXfh9HPuI967/zw/j1Pj0/sWzmuR/F/M+TWagPBjGSUTtXOddtIMdDamWGgE2LwkaxR4HoIaLLc5iBCjpGcgtOO7c+YBlMiMk35GPBMKRLAdYHBrynAWQIhC6V1cypebNjUO2ylEaoNpmLUG7ozDF0EpxwHUMu9jr5ntloheQapuO9BD1R3Xy6psG3Fm0JHtn2NGUyS6giyoXJj/fLzYu+EYRpXS/HXFmYfhL08PvIt8PL8zPv376n7Ris7l8sL+/6W6LT0nDN3d29YlrPnzybmeebzzz9HgMslse07OU/uiH0C5DCiE/FBiFcLMUTW9cplNcp8a437+7fGJOjKF19+xds37zid7ij16biu5mkhhkh53o5hTM5CyhP392/Y37+nlsp1vToD5aff2KboSSC9e4M7XK/FTKXUmAUpcnhb9N7GLN8YARXQwL4ba8D2YkPiajGNZcekarbvOy1UhJwXCB4L1Cv9qP266z+VzmzXlzrLUeXYS1NIRMl0hFq71bPVat6mlp0qIUAcuvzqg7J6yG2idFJwB90gRx0RRKjBHM5zEkKAKSdG3mytNnTZt0yrJ6tnJDrbhwONNdMnpVQbhN4YeraW7aVwbP6KI73NGm0cB0qBmDuSG4FElMRpWRha8aGxJwRfzyqbbj5jDki2elzJxOWBKXTO6QM1rHQpr+qekQnt51kaQWw3FbHaqreGqLEGkyoqkONMjlbb7bo5m9GkWdWb+94bnQpxt0pPM+qZYfY5bX82bf5AqYe/RXek3t273UlZYvLjEdlao/WKiNHWOx0RM4azuiaBNnq3tQGtdBoiZ0KMJnlsVoOPY4D2Y438UffTj73x/j+/jrwU+GETPlxN63rdHUhW40/jE5DszlwJIMrrmsXfnNWcMapD18pdtMazuiNq6B0tSg1Y1lLonLNyXoQ/+ePE/Uk4z0KukEpnaspJYIrC/cm9i4KheUHEezW9gZAqB3XY6EmAuvOtWITQWjpxLVw1sBK4LokuzizwwvHWxBqdpHWxHrRaL1oGkgsW3eTM4BAgT4G7O1C1DFY6tD4jXaEVtHXT1ZaCtAp1MzS3j3DncXYiQkBDRLq/wH5BymrRKTZJ8G7P6Qf55JpW6+oO4x/xhjaOKB5/kbGCyg1ZwacqfvC84Y4W5xOiPf/oGnl9Efh7D7xqltXrbFvQUghM6farQcwAapr8pbFG4fCoauP9qy3ag4I+en8ZGwfs3gTn7tpoH77E6KXZbkbO247peBUagUuFD5vyuAl3E3y2wH1WTln58g38/L7xblH+s1/82LvqP81jSjbICBJNV9Fdw8yteQpY3AvHQCAcTS7eFKia5ttAfTu24scx+jnDja1jNK1rLUJfzC1wnifuzme6iGliy27Ow5iRnHhTGlMiT7C3ashi2VmvRm/b1wvzdibPC63BsizM84xqs/fcCyEuSAoeW2WF/JSzO5zWgx43MiLhRlGNKXov39FWGQYuqJLzzDTPztZo1FLM7KQa5bW2QmvFzU5GI2B5lKUW0+i2eDS0rZpZVAgB8c9tm2Nxh0uLqsEbMkORA2kyM6yYsutXOSjP9pp+7tQ2SfqNhm2DJHMpNM1kPQD7RD6KSXU6d4yRmDIxRXozk6myb5S9HAX00Of2wSQ53oltUDFNBHdLTT70qC5ROFxzfeBVqm18aCdlM0qapglFaN2MNjq2hpdaUddygm2uhyTmoIXp0RCAHA15TAnBG/Oys4dI/23jhJ/YI0+zOXBL4Pn5mVoL18sLvXc3JOpubmKa1pRt8RxU92U5HUZi22bsgCbD2MsYDtNk8TPDwOxGbfczqsNE6tggHK399Ngdecqt8c2vf837799zva6mb+v9oLPuYOdLTRpQ6n64bL5cVyty2y2vMrp0AVUfMOmxVcUAc7a4nykZomsRM/YVUyBPpidGhCmbe2et7dBxtj7ifmBKiVob13XnNOejQVv3inZlmRK5dSuEg32Q7lr7FALLlOkopVZSTvRa3Wk9gRu2pBjowQzaSjV318t1NfMurPje9mKRSMNPoDr1tPfbEDkYJZQxSOvu7N460bj4hmqlzA/ff8/7779HUcq2QatIrzx9/Mi7d5+RkuVsN9dhW+SPNbpTzizzjGCyD56ezeV+XjgtZ8BZA7s1r9m1h9FzwGstbNtqe3mIfPH511zXK6qdn//ijzgtZ+Zp4enl4s0ULKeF3jNPz48GHlTb/Kc8M9294YcfPlgGs+eL9x+J8vynfORodWPxJgaCGRX6cCIQyDEby8edo2srjLqp1p1NJ1qD67XSXWYXQ3QX4+Kuxo2uFdVoDWtTYgpM85lC9vrV0DQADdbKDI171+B4iulp6Ra3N8WJFGaKWoxLrWqzZYxiXlvzgbMNrEx3b7GR3d0BbThliSbRa/LktUOPwnmOTNkGTtOUjj26tcq2YY1t6978jT3Ejm9XZd8tA9ackrFj5w1id/mZDUajkdTacNgWjqogRmRqSKoEFnLI3N+dDh8BxNBridGQ9lJppR7DpkBGWqCXRApvCVPmfnrhqt9x1Y/WeGKNeXcpYe/VqeeNqqM5hG13unTqpN5BYEkzUxRSgMu+OgNP2LvVVEql9WKof9ptre0JFWvOA54AIjZIU1Wa6CExve3l2P7vzsdoQsgEbNBQm+3D7VjLozfMECWhVKvRa8O0uEqQTkjWP/Qm7FWPOh/tBBF+rKHjj25s/5tfRWq3rK3S7IO2bnrE0dwZEKj0bGipBq9rxPscb3jHlidA9ncwK+hkN/ckwrYI6/+Xuj9rliRL8vywn57FzNz93lgys7KqGg3MYAbCIYR8oQje+A34ofnAJ76TAEgBuqdnqa4lKysj4l53N7OzKB9Uj/nNnhFMQqaHE+MlUZkZccMX82PnqOp/e4b2vQHkaCd1JSk8S2fuwrzCyaew02QNdQxCTG+G7eN9mAjgYOiNs/dn8ovjNyFl5RKFv84T11K41o2fWmUNiXvIaHg0teqv8Tja/aV9IjRHoMNZhd6s0b1ele0OUkGeHQ2sgbIZYtD7fHTO4vCj+i+v1BjeqH2to358UIF7MWF+q4b0voWSEaMc4915GxNNdaQ2IWl5g746kudUSg0Bkjm+HQ/XyRBHZuWgL4ubcY0GFw6uNnZ9UsZpmpZ1G4JaBFHyCJ+HNxbbqqQ8miV7lmK1ul3zNzdfrRB2tYEBZiw1TRhVxn6b7H38nKHsvr6LNbWvd4i7Wh7iBdPoZqEVuGV43ZQpGeV2foGnHJkT/N/++196V/3neSRf5wI/y3WOQdAgtBB8gueOfMhQQhxrTrzRsa/NGuJjABEgRLfsb3B5inz/24l//S8z+2YuwPNyYVou5t6bMxqE26efKJPwNCdw1sVyOqNfbtR+P6zoY+qcn84gfmiWnVob+26F+DTNLOeF0/nMU4qUsjNyVS3uwGIBmg9mQsrGLonZaZSBPpBNj9hCjYKT8nToWVOeyNPCXipdG6XsThXrRG8GR6zOKP6tAYjEqNYguhuxOEorwfSrFmFRvFC3A2zohAeaNIY2pVb0fjNTp7HxK/58pr0aSPIYiKkPNkbDYdewHIc6R3EA0JmXJ1K2OBmAXiu1rEcTa9ot1x2r7VOt2UQ4iBCnEbGjLKeLUxNxytHI1LX7OKXHDS/HlizknMjTZNRRlcMQBPVCRex7Cb2iKYIOUzyLEhm7jiJWNIZALXfQRllX0jRhuX9qSAlv9rev8HG7vtCXk5uX2YAErBkL3TI+Y0iEYEVg75VtW3l9eaVWzzRNhsC/f/+ReZrY94kf//IDArz/8C3n85l5Xti27UBvDQGurtHFNbrjIB1aXPuvt6yB2+sLn3/6kf/n/+P/zh/+8Ed++OEHYs7My9ma1ph9/RoSE3LivhnaEWOilM66FdYyBiY+sPBDPMRA1EjrnRwtwz1PiZwjOY8hTiCnZFrXEC3OJKhr2x8DkNbqITOyCBVxLxEFGj/+5YUQhMuS6TelaienePzdgK1nCfL4d/FR4Ru0W1Nir52owpSHMyv+vmzYtu0brUVSjjYcbNUigXzI9Xq/UlqjdIsqAsxoqBklfC/NhgO9Q0zU3ri+fgEtrDnRm7LvO9u+U9aVIGY+89333wPKf/1P/ilP797z7t077ncza9q21VDvaO7je9lZ1xvrdidPEwT46fNfbAjSH4yVUivffvsdT8/PBnKEwLptfPPxG0SEL18+c7k8GXV6OnHfC59fXrmtK5MzUs6u7f30019Y1zvrtnF5Mt3y6/XqTJvA7X59rJGv/KG7Hvtu74a4xBTJUyZK4zQ1MzpLnjZABXZrYkQoWhBsiHFEPgUhhImgAboNlUsyIEVDMLlXCIRkRn69mcYalNYsez0nDDTRzN4MwJLgAFEwQCQiJHc0tgEkrPdCqZ3zJCQMUUwhIiqUvcLhVCxoj9DVh93C+WQ1oQ3IGzkFdJk4nTPTZJna0/QwRMKHbVsp/PTllarG0CylcL+t1tDujfW+sq4b67Yb4BYiOUQ0ur9ErYeJnvWkpm2OjjamaEBVEaVJobQdqYnmLKE8ZXKAnKJppns/UifKttFrQ+6ZirK2xmmbmS7v+fWv/0/8pf4rtPyem1QIho+riDfJY4goNHU5UJq4C5hOaCVJN3lTCGa2WSu73m3w02DbM60JIVhueet4hnAjxJ0k7xCxuCdxGWNKkbXsrGUHbICaUrChRQdIRKIx//oOXQkk6AHRiZxPxlAjMAUDkXbEI00FSCYFESUG5b411vXKHIsfvQspBaPgb3cCEyn8spb1Fze2n7cHQjmKCnMaNsS2d0CMG1/FYPFBIx00MIPN/Zfai4+4nbeF2kBxkygtYWY9EVITUleWLmSFjDCLNdE5Gp3DdDWPYt1QPLxBs6nL8fv/vg3G/zlceJdoVI6AsNHp2rj3SCfYdKs+KMm92fWoTdibs4irS8q60aQHutv7mz9v/TBAMi8Vc1NWteyygKBqpixvN+kHtlQtU6zp0diqmiaOVh9aNp9siwTI0wPFLeXNEwZraOOMiKFVEv11HX09Gtvw9qp5sxT8OcQKlHHdR07Og80pj5c8iv6fDx0MfbVNJgzQV3/+irYm/VA4pko+5LF7AoHhv+rrA9QHjh7xZi23mGGR+FPkEbkAAQAASURBVHMJPrhQJRWoYg34SCbpCltzeuQO92zr8Gt/DHTFkDGOa2+mT+bU6T2Ugesdo2pr9ybjkVM7Yn3C+Fl/jjCeMyjLIrx/HzlfrJhcnL5rhgLdXjdGclSWFHhaJqQbFfd0eWJvgaqB19vdnbKjoSxwGDypgrqLqWD3T0zJ4nbag15s974fYscE282dnI4pxy5hj/BY6EdRejTzGE2368jK85+jMzIv3xb9Dxfe5HQ+K04fz/swlarNDgG75YXR5al98IdJzps94XgtHT9uf2egwlZfOiof4+GaergrB0vUw9eBmUeJoaveDOqIIfLnNKphO+jUh/nTaMJdqzSa9xCi0ezE7n0cpe5OcR9N9ZBOHKtVBhV7jFfwPUntZ9V/WtzxMvJw+ebxGQdCGGIkxXxQmMe3NN7rV85EPq65qmlBJQfm5UyeDNkxfbGxeYo7gxurYDNzqd38Hoxi+nysPTPZkqOJFTEZQfL835+jtRxNm44154+3lGTLRy7s28rry2du1xf2bUUlHnm0Nu/UYz323nyAa881UB7Tpw7LRysaOmr7VgSp9diHopj5yKCwGZPgketaqjEFDkq1GzB1p08aSBMOF//xvLV1czs9fCaGdMCa3xSc8v5mj01uGjWef7yumaFZVnQ8TLvsteIYCA82g19PM83yz4SdRa0pUZQRq9RV0WYU0HGXeDHmaKkNtFut3O53Q9D3jRiElhP325X7/ca2ryzlfAz1wJoGawKMuXO/33h9fTl0s+ZDsJrLeiu+FoX7/cb5fOFyeWKZbQh5uTwxz4sjbxvPz8/My0KphW3duK+rDd1E2DYbpsRhXueNYDwGAvs/kEsMNsHX/ai1e8SeHJFoJseyCJQcAyk2gjvV2gbfjsxaFDMIwii2TU0Kl4IZcgYxs7BS1enqA3AYQ8khmfE3JGrFOY3eI12DGabh+IZLSbqxUa2OCiOGybw2QnCaLELC2RJhnDcPGvSxlWN1XsrWvJoJGWZiKTCfMtOcyFkoe3OjM6WHYGBFqVzvK80b2946rRhKW2o70g+6KjRootSgx33U1BmS/t/297plo0c5zoRR3kb/TOAnVTenGmnmxiyaINqZ2umoVotG9BtWSiDUzKwzJ3llj4VSP1OloLLzoFE+GttDSkOnqyFm3evnIJ6zreoxp0rX5kkpRj0X95AXErWZ1CmJyetsn3Ja6fhG3hbD4n2Lf4aAmWbmYLFpo9kLkjwxJhGCmY9NEmnBpEc24IvEOBPkdngAxIMl0407GCa69Mfw+3Hq/wcfv7ixXesoovDCzy73oN6OjTgI7CvWxEVlTmNxwyydHMy05whA5tFPgS3U0wa3e0funR1DmC4ZLmJobk7h0YDAYe4rUb0618O84tC0ys+b2aMRevs7oyb0m02C6YSfFjOoqttGa8Ln2tgxfVepUL3BrzuUZr+37tCK/97wc2qP1+lqhlivn5vRsRD6ZGs5jqYOQxphrK9AnOKhL/VVRkwBbUorritTsGDugLbkDZ/dwBIiEhNymv05lbYVO4DD22UjR3Esp3BM4K1+DKjYtPboLqMcja4MUaVf17fFdvdhuyp+4VzHpFZED32J+E1UVKkVlkXMRCoHL+bwZt1dq/27HhPHIZ6vKi5gf2P+pQ+DKaneY3fbx+eM26VDn8xQqqsxuM3NwN6vMReEWPVY9/ckB7r89T9spwrjYAnQfNKdNaIaoAefIKgjtt1E/9ItI/loVFyzztsG2V2NU+fDO5hz4Fe/OnF7zeRwYUoB6Y263w/d2zko0xJ5/uZMQAkpM12+ZTptnF9W7rvlqQZHR7qqOQ0CR8uqSm2V8mL6vSnP5HlxdCoZZbg27pvps4x6eqXWwr4aKixhxJc9mj3Bmm8b1Nh91DFkpdRCKwMR9b3G9TWDMjjQytbN6TfnmSlb9mBv1WQHOgo2uxdMjwYtGK1n5O72Vg1x7g0JgSXOFp+UJtPF9IZq8+/WG9tmUUPgyFZM5Dw7kmc3paGiE3gDmZO5O1rObx4fzBpZj00wgyzL6R0xULa6xF3gk3+meLirqoTHeeF6P9VgFDneDBeRh78dhrZpiNTmQUUSDtdjuh4DRjAEMyZzAx0+ANo7VQuyReZ5IU2ZZbnYeqnFpv/eFPuE7j/1Tfgf9ThcUYHT6UKMidP5iWVZTBdb6jFcqa3CjjUb1SjytVbYbNCRsuktLfrG7pWBnNVauV6vTNMEnF0v+6YeOH49UP7hgjua2hAEbY1WNqdSmjna9V48hi+4+VhDpmT3zqF1dXZJr+x75dPnV05zYsoek6OGNJkJXWcvhcFwOJzfsfPBHL93YvJhT++kuDuDQA7afvUiGDx71QcxKQXmKbNtxSJVtk5T+3zhkA6Y1ih2O+JyEDenmex+aY1aHhKIUiq9Nu7bbnRml4o8Xm8hRdNGT9NE2iqfXr4cxmwqRsmvrR+O5cGd1lvvzPNszqrNHGItw/6hw2+q7Hvhfrvb/R1sCL+XwrZtrOvN9Hv3K6fTxR2Ld56ejNZ5vV35459+zx//+Huent5RyoXeKjdvjG+3Fz5+/JYggT/88Q/H5/71998zzxPfffsdrTVutyt/+OPvOV+eWJYz//Z3/4ZtN43syPn+9JPyzYcPh+Y3RCumJ6fV325XUk6InMx92gdvX/tjK+3B/JNi+u8AYZ4gBZYJRDZENnYPYYFug0l3zLaoqc48J7a9sW2VKc1ECUwxU6tw9+G0qkIwOmnvhVbudKkokycUOKlPCrVXalV2mu252FmYZmW/KkENcZtiR6mUuhGnRMyRTAMiogllIsVAzsEc0OmkJISkkMwXGRFStqhHkU4IxvypMvH88cLzp4XLD4mffnyhlk6USNJkg+873LeNEIQpGSMpypsoLR4glDW5Sm3KabYByXA6V7XyupRGLR20eFa1uaon1+afZWGRk0lmSmPbCglrgmst1GliSol4ORtgE7ANQQI5JHJPpDqR9w88JSFO72j971j7FzqfzALHC1svw6xRbZXCRu+/QklsLTGlblTlrdGAKhGmgGqhtRXIBOnE0BDJSD/zut4I0SJ8ak9EqczRk1c0HmBATrZ/9g576d72ClEic8qcpgRUJJojd8ongrMOwOqQpzgjKVAnSy5RZmZ9Ty0vdN3IMdOnGZHFpEUEcl4o7W7nu1ijrr+QRfXLc2z1gdj2oS/1GB1RWOhMAhP2K0dYonBKxpNPgk1txM1+RBwms4YrRKM9EgSdOxcR3idHLbDmdnh42uXiAdt1jCNQ7U8VfUS6gGXJIjDQD+FA7jq+YkQIo6JqfiFFLSRbAhKFc8rcG5xK5+prdK94CLscTZu9XwjeJJ2NvXe0qKqwFfsA90+V23UzZPF8Mm1BNAmsYg18b/a5RIRptobM6Pc2oZHjyzHRNYpbv2cg02s2mkmxuAwRIWaYZsuo3LcHLtJGJnFz6niAOI15r5KjT9zEi0g/pAa6EQ+aijUGvVmGaes2DEnZroGoEBa/JkGJORCisGQxFnOwz9m6odruL0HMprX1wZ+tSzGNitFHjvAHj67xutYYn+bmpiBDLO0B7jnq0Xhb1Iw9/9hcerfvOXhakfqEfJpM55t9cba305Ov9dHDgbiCHoOUeACTfq+oELo1IRqUJtXmZjYEJkTT8AQ3ehDGcMtRkuPpPEtQLNri/enEaZrMTTREQqvE0vn1hxOhBaRnK8w08mmLRNkIAb779ltaLbS6G+JTClupRqsKln9pVOQF7VYUv3z5zLzs5Gni8vTOikrPdm1uJLWtFhdx/fKZUk239KDL247yQEwcvQk2dW6tWP5aL2aIUY0+nJNdF1t/jyFPKYUYvbFK5qjc1XIku3bXFEdCmpC2HSjlKPBbLXZo1h0kkARCSIYuudZMe6PU3dEMixl5ROwIh5nPmwZ8aBbfvl7O85Gza/ea+vWvnuG7g6rlZ2LmL73sbtph73cYzyRHT4wu2+kiJISull8ao1GdQhg/Ix6nZY3JnK3hKKUSYraBRG+eqw3H4utK6+WY7R5IHNbQDzR8zN4KikQLf09T9kiRcYp83Q8RoRa7F56fPxwDCQmREDNTzKibDOXZdM05T/TeKSVS+9U0jMvJXHYxJG6abBBkJkVWSCQfcjxybaNrKec3v/92LOH6UnkYgVkpa/mp27pzv6+kvJgTai0kj6ow8v34kDZ46bVhGrjAy3Wl1MQ0RU7LbAZaydxLFQyFjua3YcM3Wx61NVoxJ9XWO1OOB1vAGAzy5nMOrbkjxaURs8kzggROpxOlmstqVRvIf3q9uflNINSIULhy593TQk6BIH6f9u6RPlaw5uhre/Us39bJMbHthfu6cTmdnSrp2dgCtbRjgLBVa2oROSL7pmWh7DutNhuedfvzXuoBwpRSzGVUrNC31x2MikQpldaU9++/JWX7jrObP4lEpmk+DIBynjidztRS+PLlM7U1W1vzxLt374xKvpvcoZSNfTfWQG2N2+3Gtq5s28rT0zPLPBNDYN/Wozn+8OFbUkosy2KDB292LSvY9sXmMogUk7NslBDaQdH/qh/BBpu9Y80HlRRMK9uB+1qYciWnSqMiWqi6EzS5M0bwc8qkUypqunosNpG+0vqGSnFvG6OhtgadBq0gwdBWoyEDDaaLnYWt7TSKGxt1zqkzxU59dc+GFtjqTsGHCP7d5CR+JllNinC4smtXmna2rXG7K0+nxH2D11vnlEe008br+sLtWiEllrPw4ePMT3+ZKZsh0qcpkXJkWsLhrZNCpNXOttkwrNbGWnaLsWp2/wURWlQOzwk1tFC71f2ogTTC4ww/TN1KQ7MSUuB0WgihUouy3m+gnbpHwlMgLLYvjQisWi2CbZpmW7N7YHtdieeZp+U72rJzazOhFGNG9UZgf+heN/eKEUP0VTOlLuRo62ffM1UqJRSCYVrEoORk0UmVz4hUUoSUng1pxajJhIGqJdAEuhqzLs60LlSfvETXy4o+PEk6VqvveyfGi+mi1bw3em9I7gQdyRIbTQulrgTJxHAmpzO1Wi6vYrKKUjdqu1Oa0db3qRND4Zc8fnFj29pwA3YefgfpENXQ2EtQFoEFWEQMmQ1wGrpX72PD2Jm9ORq96aAuiiqahMmfp5WfT827QunWMLWuh3PWoL8odrMkN4tYcmKaxPLbsNeU8R7ePAZ17s25bDdk5KBLTDEySSc3o8gZf108f44H6CuHHNViWQcd2ylGqkpV0yCinV4brQqxGq+e4I60bmpkqLM4tcPNkny6p28MTkIH1DaE0IRBDegteYxFR4uhNjGJNbY5HBk1ZshiCGhrNlkJ0agho9CfcjT6EaZrs2ir0UwO4TkPhFSw+F3UBPrR0BfUDDVk6Juyvd55kaMxRkzPjbiRU9fj+oIPlvw3BtvIOP1wGFS9+ZqHm1t3R278/RPMoEC7LbDh6Cs6lolb2jt1HHBanP1ZGh5c7QCsvurHyJ6zJanHej0a28MsIRBHY9uVQLd7NirDOyIGRyvCIOYO5OYNgoNn/UZDIJY8MWXTuaWYSEHJNN6fZ7KYTi5OJ7YG1x83YjSnxHfPT9Sys2+Rl9cXQ1Vc4gB4YxQdBTXaTinFdXsPnWkfWajd0MfW3QSp7NbgjefTMcR4oJAHq03sgDeWgFNxHQIRMGbEQJskHDRYVaPmPFDMRMAoijKK7IN3/6Y5899rzUynWuvE5N+jN2PdWRk6UFU3jKnebIsXvVbIR2M6Dcrn8aHHtRxNaSam7AhP8/unH9o5fJChGsy4blwnf1+GhI0MyqG3s3XXJVglxyNvczQSgtLFzP9GI16b5flFjELVhshWfvbWj8aYo6nyP/frOH5v0I9FHlmwIp7BN5ysv/KHDWdW07uKRU6pGw7EEC3jt3ePa7LvY2oziJDKxjTPzPPJkHQ1ZMMoyIbUil//gbyPxhY4NKDj9/W4Zg/X6SExAh+MHIMlo8JO09iJfn70ju91sAC0d2fWWMasUfAS0zwZMyQE1AUn0WnoMQ7E34vSZrTEdRsxUoJgqCM0d5geLJRgA3yGk7ZR/+xsGc3f+Fx4LVLQbMVe79agmo5wZhi/hVCx4fZAhzrJ813tzDRacorWjBY3lDP632AH+b/7fVRdM3eMFfx+6cNMaxTn+rhHdKwd1F3GbY+X7NFDKTn10dyGc04+EBreGeFYM2CxaTlPbOtKKTvreufd83tysii3Vo1NNgZNA0XvrbHvO7f7jVoLp9PpiJAa0WSt1oOumFJy/X47zhdwavShu/Zczzfv72t/HINmBdUG6m6z9qeU2omxk8X3XW223jXQJRDFHDRVFYnizaj5Pqh0kpbH3/EGWII1SOMeM6mRydN6M9NMBv21V5PsYOceCSwRwaN5VNibUj0WZuzlIRhgFPCtnsGEss8axGqpvTT2akDRvqvfe6AU9rJy3wVJZ9IE02x5zvROcnZJToEpG1ATndFYMZ3suhUzYivF93Z7TevlOtI52A/VZQoquIyBo74RcfllM0lET3ZD2R5ozK6RPU9rLNNMim4K6ZKeWhoarT8Z0p22Vxsm9sR5+oBSWNtP5GDDBNFijWSwon+8/7Fv1h4PenltiSpmeDcKYMHiTbV3Sr8fg15hAqnHdyIHWv2QWUVJ1m/URhdBiFa3izH6gkQsciq6DFO5LJaLW7u55mrrvgbsvjemXDXmTIzEuBBlQciYW7cxzuiV2gut10eP9wuHVL+4sX15GUHpkOlMonyIyrcJniN8M9uENKUhDPaL5/ugvmloOS75o2lk/I3xc0GRqCSxJsiYt6YZ0aZcXxuv18of/3hlu91ZX76g/Se67pTeCfNH4vyOd7/6Nb/+buavf72wnGyaFRPImNIMWE+Mahm8URuN0dE8qcUBzAJT6U7hMffc/mbvlPFXwyi4xbQTaqhjt++L60vj+kW5loguT4RuG8XQCG+rvY+Q8M3FXJdlVTMRmOxGkWimR3psQn7aBtPnDHA8JWGaI8hkn9W/ky5ujhExwx/vzi2ux97LPMmBcAz6km12vvkcjfubSN1mB2mIQr6Y3XxvhrTX4tpisQY7mymkmTgtB3PQptnd0NAo9ne2HbrH+SZHSVUs63hcf3NTFqMsjoZ0NSQ5BIGskMywK85KyGbwFaKgGW6rWdXbAMsa5dKgXmG7cqQgAbTSydmpdj4I+dofvY8B06PQCcE17yKOuLrjriaGLtFSB7rZsftgxdwL7TAxAoZdr0GTFEyjlhO8u0RKSMx54jQvLMuJ95czc+zMsfNxUXKoJNnIl++4Ffi0/p7XrVCBD9MT67ry8nrlL58/U1on9o4kMzAJXgzVWmi1EFNicsqpCHz5/IkRzZVCsimjwmm5mIssyu16ZXcd10DAWhlU4OB6+I66pquHbjRkd0SeTycGXTimSNIMmOtv642YMvOy8PTuvZn+uCYOEUR9+ObTytYMNcqTU4a1s+3rsbm/Yf76+xMG2Kyts60Wei7BTGmssUukZAZMpsFz0b8b9NV9ddfiQMpWrKacKa1CC7YfNbt5B8qnmEOnxUZM3ixaQZxismIYQbvfI1gRXXrxwUgwB8pBcXYn2YBAzOYVIEJtlvGZ8qNJb9UahSOayAeWNmio7sTo1zcYE0D9cD2ifkJgnqbHjS1KID46ra/2EWi9spWdP/zh3zDPJ57ffaDWjWmaOZ+eyHlyKn72xjaYs3SrTPMC2F4+4pvkYDMUbtdXluXEPM8sy+yacJs6ttbY1pVpmpyabOf+kEkLppHLeWhGlfv1ldfPP7GNXGfcAKsrrXaS1w/vzrOfN4F1K4AwTROlWfNSqhXpvVUbjuVOSnYQRwnEaWKKkKMaCiVme3dbC7VZQ7nME0+XhSkn1s2otf3QxPejPumtG4Xe12hzyvvmUoachFrtQ0fPwy1NCVJR7QQZ91hEjoQIayald3c/Nl3kh+cnbnd73ienL+6lsZWdieRMj4m5mgRhuJDX3g4W3aOp8MGDT12tXvG9SwxhiWIshvP5zHrfyOnGPM3M88T5cub89ESaJj799BO/+v57LpdnM9NRZZrUBx6Rjx8+8MP5zOvrRC2FZTnx9PyO5+f3gLDe70aTP534za9/y1/95r/iN7/5K5bTia4v1Fq4Xl8Rge++/Z6Usl2Dp3dM08Lzc2FZzvb7wH1bqb29YYpUfvrpz6YrT5Znfgy3wAaOX/kjTclqp6Jor8YApDBymAnuYixWQIpEYrDBZQAu85lSV/ayEbwBiCLcbjciladlJ8ZKzI29mFuuhulxfiDeSDeWHJAWkW6U1N42armz9TudnZh3ahfLJQ3G2pqIfKmwi0LoDN+NKPEYPttAUxDJWIxf4MNlpqH02rjdGre7sG7ig8VGqTfWEtlqYLq8Q1Kg1M7BAqN5dE9kni9Mk2VV//jjF+73ndf7xrpWSmmse3HvHDnAld4UScHZVwNtBuu61e99Y2GkGDAjvsi6F1bZyLpzWiqKkufEskzs2871ege5spVCzsEG+RLduFMpZUN1IaBI7bApKoFZn2lULty597+g/Y6EzRvrSJBEr5G1Z1JsaC/cyytTvlst0c9036NVZ98QVqYYQZQv2wspT0hM7FtEYoZpMrNMKdxEyUndANTMLWOI0K7Gqk2zG14GM2QNF1J8RtUc47d148PTxVzc95UlTqAml6pEYh/7UAW9M6czU5xoOlOr1fEadnIUlmVC6o4UZc4mE5zyL7yffumNp02JqmRVvsmdS4RvM1yC5cJOirldNVsZB2LztjhQR0x98QRVo/+qNTxbV2qDrZozcCsdcXvxY5PqyrZV+r6S64r86V8hX14JX15o+oriFI3lmT6/46cWkfaeEBP/9feRNDvF9g0tWQV3fPWH6HEAPYATGzuNPlzb0I6Orh3v4P1Qx6einZ8ZEtetU9bOy48blj8fibN1QzGqUWaD0I8LNUwrXCDuXhLqN6ZNzAYa9Pj5EJza7VfOhg3HTNdpfv4dvRk4jL8wBg7O7jsmd8dXIQ+d9aFn5tGQig8jcNQrdJuCpQM1wqaEwbOzcLTVJ2n9CCi3v5+zaRemyfOtulOKg73YoZ/tZjg13oeOry48Jm/4oKHpY2ntZVxjmCf787J3LNfNnxujmx9Nodh1aQ3WVUkJ14993Q+3OPDv/nE/MpDWYPqJKJHo+Wa9C4Hu8UjRKFI+zRyZcw/Qb/zP7xeBmALv38+scYJdCJ4tPWeYxQYLT5cTSSpBhdO7Z3ITPrx74eVeuBeLFcgpMeVMija1jcE46xIjy7KQs+W57ttAlALTZPmd7MXRWuvspYozDiKJoQV9xIEYWttpvYIkOxThQBNq61Btktia5bn2bkwMiz8zhKP3zRrqbjTJ5KZR3RHjoes7Zqxir9/RA32zaJ2R82vT5JQSecrMy+lo7LZ19WgWb1ai0UaDU6hjnniYMHEYsOxlowNJMsv5iWk+MS0nRN4go8CRjW0bnZtH9SOqiK5+nXzCrd1SwOBArd9gcm9YFOYmkFIkajwQBGN6NEq1xra1akFUYmj3uH/HfW/3+nCnbRzGYq4hHkVNTImcMrrvhqhjdD5CMLnFfwFIz4HEh0BKE9O8cLk8m2PxtvHh/bcspxPzvJjZR7A1s4f9+Lv4AGo5LfTW2ff9wX5xF+TRmFp0imnEtP/7THn0DatmNBX+J6qczhfeffiGp8sTL6cX5nmmbrub5QSjlzdlryOnzRox43wocSCFwTNmu72n8R6DT3FTDMxTIAfQegeMPTDM0HLOLMtkGk3BTIyy6WaTD68sk7I/5ARibqdBcIMka5AHBViCaf6HoczQfo4Ynt676eBj9F/O+lKhlEY4MkHFNHu1ueuwZdpCJZj1N49MYHXqpA+aj4Fz97UPQ8/a/b4c6Jw18OZSm1JmniZOp5mn52culwvvP37kw7ffcbpc+PzpE5enJ5bT6aCm23VRR/nVHNNPZ3pXG3Y4smtaex+IkPnuV79hXk6UUtl2i+VZ5pmPHz8SQuD5+d0xKLlcnkhpM8MoP8hTSo8GRLHvNSX2MSwRYd822ytqOdg0X/uj9uxI1mDP6PG+JYhJU2TDGOXWNAaU6pEsxkao7KUyu0dAjJG9rxhkE20dVkPBtE9e1zgjxhkPONuxNdOZb6uZD7XSkFC9meyUZvv2xITEQMqBWqx2m6PJiCCaF0kXavfovhA80sro0in6ZxVD+7RbLZFDMPPYHlFJECO1bmiohORovqMsp3limq0B1d7Zd9O576Wy7YW9tEMzHxjSKT9z1Q3k1Nzkj71E3DhR5MHiOJhX3X19fH8MxiyKyQZWvTfyFL0utbOxCW6CO9l9nZPXzWYO20sD3ZEYyOHEwjcsdIIkJGwIfpYBrQdqicTQUHYUj3LqSisbohtBdoLakF2ioD242eSEavQhc8MiRidqVxsAukRSozo7wq5LjhZvVrCzxob3uzXbYSb0CWEHHbFwYLRld7offZwqSYwxpiGSQybGTKvDaG/UjsGMMxmypkhOmdP8j+yKLN7ULr3xmwjvM3w7yQHhN2NH0PrjgBkRc4/JGZbR6oYfghKGi1cX7ntnrcp1q9TaqaUTfJYE4Zh2bOvOUu/M7YXw498SfnohfXoFNrpUutxgOaHzM6/9OzoBnS785kPglMUpOZ6n5U2rvm3CFeLPqKweOxHUe1dxTdybRl3l0cgx6EJOXfAmrFelrJ3tWnn9y0YnIjkRsi2++MazRAa1edSQNrR7ZO6O6+lv2Hssr47lcKml6+EMetSUAsERZesLXFfbOYyz3pTZxzRYwDXHHPrk0byoXwMbFowcPzkqGxlRT04z1mSo67jgAftetA89rj6uBYbaithQouxm6nTfObTSZuClZvCsjsybizyKxfwMKvdo5Brj8ypb9cMiCHmy3yu7yRZLs0lS9SZjvKb4c7QG6wapvqHzftWPcAwv5Pg+1Wc0QlCjNsWQiCYmtQPVEssgmct0YLjxYU3BqHMPx2v7Zwh2gL1/N5OYuP4kPs1VpgiTKFngfFqIoUEVLu+emZrw8d2FH7/cmW4FgtCiTT9TSuSWIduXITEyL4tne04cjqrBHH1DjEejIz6gsT5ID/3nMGga9EprmBramu0P4YH+WcNmhXdv9qvVoecSLwBN79hdvqHedIUjMmW3AjPGY6w23NhDjGbAJ9YsWg6lOTcHL5zNQGUiT2YENzJvh/vxcLEdLr8ikWk+HTRic3m0wrO2AmoT6uX8xHJ+Imebwlab+vi5ZKYlb4uv6prbQftLxGMtWHH2QMB8gRzDQ0P4jfphVMM3/M5uk/DeGgWLCqnVHOBjzCSxRgN3jzfEyj6PmeW5N6TqY8jCoDZbdFBzV9w+mgAJx3r42mmMrVVbkzEduaGXyzNfPv9Eq5V5njmdzpxOZ7atEIIPebB9rrWHKdkyLwdV/9AlixxGZkYLNQOnwWQYw5SHS7I1W49hMMfvi8ByvvDuw0culydOpxPTPHEr1WqBKB5D4Y2tQ782clA/0+x1UwwMM4laGyl1ZyvY/T7nxGnOpCBsZcWGeKYNiyny9HR2bbDRAeeczflY7xa30x8RNTGGwwxvyslSH8pYM9ZQjCFha80HSdboIp7/6UX1KOpzDBRPPbBzyyUNOR6Gb6VWRJLdg635dW2IZ8Da998905c3Ta0yMjWHdth013q8Z4GDuTIa5XmZuNQL7z+85+n5Hd9+9z3v3n9kmhc+/fQTHz585Onpma7q6yEcA4+HxvYCyGHUJ1hTfWTXxmhDOBH2fePl9QsxJo9/W4gxcT6djxzMy8ViwVTNlXs8d+t2PS3mKhBTZnXjvxwz275aju22jhX4/4e78T/uUXpGu+W02542ZCtWNKU0ISRvRPEGU93g7NHYllrI2czHYjQWjmo39/Gu0Kq/jiVx9B4IYeRId5BGCjOVRm2VdbcCtpeGTM3WNu4y3CHJbI1dCrTdVOM5RqQleo/svVO6AQ/zZJna0dl/PeDNme0ZZkJrkTU5BKIovSdUMhojhQ2NjTQHzM252c/nwDwn11o3d383He1eTF/bunoOM8Bj2NOdsn1EcEWr3VOKRB7pDoN9Znq1QEgWfZOSM8UCxyAqpUjKVg81Ncfp6vXiaTYmVJry0dgKoNXMGPM8keLMEj+wSEUIaHx1fXMFOq0Le4ksU8VcIh6N7V42kmyEuCP6RJSJEBZ6331A3w9XZtTilroPHgAbDPvaiinawFkb0zyhLlFL7oexsSESEZkIMjshd2MwTC26cyKNxBvf06MEHyJHckzEkCi92mBaXDePOKjpv1BSmpmn+RfdT7+4sf2vYuU5KN9E5cMSDXlDaNU2aNN4WBeSszUy3qDbvwTAHWiPPwN+ujZebpV//Yc72+uP1O2VFDbSFEhz4v2Hd+Y2qIldMzEEfvMM8/UvxPVP/O3r7yjr6k5xRl/otQAN0cqZH4lt4b6+R6zkghq8UPcIV29+QvCaPALZqb55TIqVtnfuu/KlwdqFonZzdp+Yjs97IHzVmrBttX/ePzVun67cX1ZqWghzIk2JoeNRdft0YBSDiNGRzRGRg4YYQ7CsrxTYN2vA+t4p1ZChgqLVYNOYR4thTneC0Xpbs1DkeZHjPdt3Y2HOKTsVWnBjLGHdTA+X3cFZvFnUaptEirYWTHdsN4sZhllmbetmqBUS6OSmTN3s6alwu78FSzopC9Nk62oMCro35MtpoMZKbIIkccqyetaWMk0wTcLTSQ5ZdcfWY49w7+Za/bxYI5zcsErVmufXV2XboBRhK0qp+EZuVGhxOjb1jab4K38EsuvShBg7InagCWYCJpq8sR30XtuQ0GhMhOCMBLVrf3xk14Jbsp3tD8MGRkRZTgnahdQ/8HQ6c5oyk0CO0d2kbfI/P12YL0/Epnx4f+L954XbWtjVUDqix5OExN4aeZrMDdTHYDiK1Vrldr2Tvai6325s9ztl29jLTs6ZeZ6JJ0N0bUinTkvqRM9lHZst/om0Kft+c02eaREVzKAHhd5QR8S0jygKdUSqulty8SbY4wC6aXtKtZiETjhQtRGRMKaZISRinlnOz6SU2ffdXqu1w7xKgjClfCA4SCSERMrzoZc1lNSKcnMkFC6Xd8R5MarSvrshSzOGim9OIdgGrt2aYe1e8PhkNXmMkBjkzbBhUudKuveWOWl7xxnc8MXQUzP/W2Jk2zb2Unm53q2g9QlbnhIpB9I0YYMEM5UQfTTrIpbPCxidWe07TCPvNyQPg2/UtZD77NrCdpwJX/PjfH7mfLnw/v0Hzudn5mk5mkYUL0w622ZGPdaIdm73G61VUsr+y/ScIsI8z9xuN4bhztDFHtnNKTkrwWmucCCEzdF7ce8HlUhx99+Ugpm97fWg89r94Rs6cjCbSjNmj7FG+jFwjGJD7midOWCUtlp2ynqzbOwp8XyejuHE5sMrVeXpciJPmcvTia1U7tsGvfHx/XuelhNl1+MzpezZ1iKH3KL1Zs1xTtaMt87u818Bz8FslBq5oI7MBndOb+zVmrF4ClzXnVIb93W3mgG4rYWcTDJwva70xRxqb9h5n1Mmot7ABfZdKaUZc0mMEpqSRWlZs2kurhJc/+6o/ThfW61svfP50xd+85vf8uv/82+4PD+z3u78+MOf+NuXT+QU+PbDB5Y5s5xP5Gn2YUeg98663vn9H37HPJ/49a9/y+VyOZgZg8YYYzo01aubRJkO90rOE61XpvlERhzZnpiY+MtPf6HUndoKHz58YDmdeH5+x8vrF0opx2Bvnhcb5nVjHIzB3WAYfO0DKoBSg90zDeZjY/T9qwfm6QnVmd4XCp2gSqeCBgRlXTd63QlaaXWlNWv8LqcFtFF6QXcDlZb5guqZprN5QYQCstl9izWAKookIWdje9RyJ6ZAR9hcZpa8+dEIhcJWVjqVmgLL8p4Yz1z3V7RbznuKwdLEi5mkocrtfkdThaTEdEGOM9gcve+lc6udW+tIjDx9d2aaF15eV66f7+wvK9NcCQHWW6F47XcMTuEYwE3u0k5TejD5w4i8ArvkyWU7U7ReIZoVsWuRTXqVJ+F8zua4PHoftWHPVtoRJWha6M5WCziANAABVXxfFVK06xhjNnS6CnKHj/NvqPmZfSrcu7I1BXbQhJCBG10be1H6YudtngVJisZKa1e0XxD5QN9eTcrTM6I3RDbmRai9UFql8p4YzkzzO2qNlE3ovRKjmZiFZj1YzLavQidnJcaKyE5tGYgs84UQMgEhh0yQTFChVrG/E9UknyGw5IUUOr2vlNK5r53Xm/J0mm0o0jL3zVzkRezc2dvj+/rfevzixvZjgnOAc/SDBTcaGi66/nHxBskghPG3ffcfk13sX2uHHz41vlwLt/udfd3ptdIvE33K9CVzSwsQ2IuQAiyxc5ZKvV+5/vQTdd/ovSIRs8LWRpfmtNJOSOKW+WZAE6LpUu39cKCi6lOlLnYoB3WUEZx2KnxZ4fMqfC5C6ZYI1cdwGdxIxinHzZrmssJ+g7Ip60tlu3dK6ZADypga+VXSQYEeBZ81BPIGpX3chWNagP25gsTg8Sd6oJKjA9HjwhsF5M0T2f8PmnUY18P0RRyZxUJrXnzwGAhYvd/pTk0RrKmtVR8oyNCk+vMe5lDYzZ7CyAK1nDUcWQnBv5d2gIC2boprZ8PjMx5URMb1e/y7ufda4xoPpBabrvs0PoVhcqYuu7b1Qjek3fjR9n7KppZNnLCiIQrZHaT/HXbeV/gYekzTsbkBhzxyO8X1L8FNR3RU+ceienxIm2IOsxgfdiAHHfVYXyJoz4hMzNPs5lFOC0qRmAOSEmGayecLMU10LUQqQStoZVsrW1W2aplpISYrgIM1mOGgrdhz2nfhRg8Hhc4Nb1pw5DM5Tdi1rr4vPGj3D4OSriBukNNVrVgUORrUoT3xUvpojB5mDfbQ3in7zogXkaGNdfRXJDNMl1T1ME4RYGqmLUvJKaK+gfU3jYWTepyqZd/SyJNVb9wPcyTBJqTubBun2YYHAuo514fplf5839DjucVNJMQnuI7kufxgfGb/aTfkMCOxodPvXa1aGuYQwZvdUFzb3w7Tkd7toLVG2dfaQe+QN/voY+2NtTD2wtGMWYFuEQqhWYyNfYPy1Xe2MUamPLEsZ6ZpPsyvcsoohuip7mYu5C6ypezUUnx4IIfD9jwvrlNLXK9XStnZy87lfDnQjeiuwb0PpsYwluk/ayC0q88QDK0czeGg6z8o6XaNRw559z2kNTcUDDwQdh882bfsRauE47vcSyFPDcFigMzY6I1MRpWcIznHg3bZ+mOvG2yBGGzfGNTeICDJ9opSG+RAEkOMx7332OP8/Ts6NAogO3bFmz07eOIwYEGONVlbtyguX3gjt3fK2T71oB4rTFNm3StIOWjhJmFSaEZZTF7fHLnVjsSP99S1IypmYuUDprLvbOud+/2KaKOlyH2eeH195eXlhfcfRsnoOvVuzcGU7XteFmOEdEeyTRc8HwyAWiu1BCrj0slhQjWGeGP/SM5ECCFyuVws6igNx2Me+50qy7z4PV253a8eSbQ96PNf+eOwXhzaINPH2eC8uYmmX6Pu50XT7iNkPSI3gyq9FRtsyUDd4N5XBksxSKQTwenCSj2YFr5zM/S2ErJ7bqTjfit7JcduzZpH4TWP6mpU9ho4+XARHvvyOBdb292MzRgHhI50Q3vHHtC1OS27O8W6MUkiToH5XeTb3154fs7068IpzYgGXj8Xei/svRz7RgiBHkyuJ+Lzed+X3hoEhjByu93YrHckhkNmFaMcEghjDgZnqBrt2ZBPu++ruzGL2EBqL/Uw7mu9E1rDCvWIBNj2jew1RRA705ImApFER+SJJobamjZVwM0Tq1pkUW9CD0LtwdNdhgEiIAlhRgnUvh1ZsimaZMpM5CxKL4SzDda70rRBc+p1U3/djOUZ2EA+uiu5ui+GUbmH0Yw+UlYYObrmyh5EyDGDFKsxuiFXlvBSvG5IVh90sXg2/fkg4n/r8Ysb299meaBuGsylz+GpUe+OYrB100iG0cT41ANsfXe15mfblf/17wuvt5Wn8IpKQ6eJ8t1vaOeFelpYEcraua6F96HwTSpclpU//Pknfv83f2TfXE+WYW/VHE61IikTssB8Yj7PfHyeTHeTgn1qNeQliNOEDWgBLDVIilMoJ9BkRf/ffxZ+fxd+vwZaNDc6l73YQVGs4avVNJu1wH5TtiuUe+P+eaM0zwLLiY6gW/McOtcRRRNup2gNK2KuxKNhPPYIf83W7ecEiGrvWVWYBoqvZrY1Gr/eHzrTENwN2DNokwxahBcsxcPkq/H6u4aDtrzvo2iG3RtQxoCgGvIEkZissTw2ZdfbjaZ0aDRrFVpTtqKuh1WWaNekFD2GBwD3a/ffC8RJiNPQ81qREZPlI4cqpCykaBTmKZmms42mJZpOKAaY/PMHb3xTUM6L8IKaa143PXhQWF8MlUhZOJ2VOcDT5DFE/wWYR5mhj13jIEMrF2wqCUfRGhw9E9wsSj2g4h8U/DYIER9sBHeyDY6QB6Ovd6hlhrZwmhfmnCxrLkDMmWmZCdNCOj0xf/iG6EU35U7f79Ttxk+fCmu1yWVTCDGRYzomCiGko1GcptmK2b6w3Y2mlhaLkdBpIu3ZG8RsVKXaCMEOYlXTjtrg5oE+K8N93e8LR0l7r9ZQTNNRaHtNaW6IxwDeiofWO/fbjfP55A1ldMSh0ko1dMbpkb0bdTqGiKbu1Cc7JLXZJFxiNLfkOrJ07TutxZr1EM04iBDMaKZVZ7VwNLEx2fUI0+I1iAejj2nduH/Vteb+OY1RklzGMdyb9bg24t9Hb82alWhRLJZnmNiqHcwjviP6MCWGjHj0Ueo+pHBzn1qbff5uhW0Qm3Z3Ha/b/Rr44ObNQh1DieoNVkoJbZW9FeoOGqPJZUT+4TL/6h7WjGWmaSGniRgeTYeAxb1016JhxVrvnWm2BgHgen1hXe98//1fcT7PnM9n/vLjn1nXGz99+pEYfss0LdTazOfAqeJjiAiDAl8fAyCfbKsa3dnqRDNhK7uZNPmtYPeUqr9Pu+KlNnCn4OTfoUW44L4R/lr+FlpvtE3J886kkXnJhGBshZiGFrTbMG3ksg05hg9QYopmRJWiIStroTW1hno2TfxtXRFJLHOkavUzdUzxbU0bAG1runXLFe1iA9COIsHYbjllcuqkWNn7o/mKrR+Fc9fOuheezmei65p7s8Hr+Xxi3Stx29mdMYJY8x2CEjWRkhJUyCHZXh8ejAg9Bl8dicK2b3z+/ImybWzrjevLF5Z5QpgotfH502d++NMPnC/PjCJE+qOgrbVQdpOviLiuvfeDigwP5My+fHXWzMQ8n8w92vW56oPF0+nM6XwhRItyG3u7AHRlqxv7vlNK5cP7947Ybvz5z3/i9frC9XqltvJfRGNr2mprNI+wqw7SAloDq6Wmg1bEr2fvHQ9fcnqpyelavSMhMseJSKRWeKmFnCx/3pIjrEBUEqqWaZ2nTgx+f42BssxICOQ4gTt1r+tOmDtMRrtF7KxWsfr7ugvPgunMNTD8Fh4Mixu1VWrvhj7HTnBKfuueQKE7DTMA3MrOfQvkZSHOQjoL/+S//4ZU4VwTrIH9pvzrf/mZ3l643xsSXY4WhO6MS5WHJvlgpHh9Y8aHj4Fxrw2JRn2fk5tH5WDsNoyO32tnL420F9OiNjubSulcr5ufq4Flnsy1WIWTM7WCFFQzvTde+GImjcly1UOamJKZLvUOsX+ks9Kko3VFW0A6llvcu7s0CwVh3QJZAlOWI7YUInM4ETRR2kYIwZyNAalmrNVDJIZsv59MV9277U1aPcKTCP2EqLmOa+ikkMkh+kDaWD1BjEVgru7WEC9yRqmgu9Uv4myWfkN1h74QEDcLHiyrGdUxoAy03tiGS+x/4PGLG1sQbwDlAZ/JA2GM4rE3Hn3j9HGbHgxkze49onS2vfP5qvz5BV7XxHZ+Zvn4kfk5c/rmAjGg0bjBkhVS4o+/gz9elfinQP172L84fVcbtTSubadoZdcG8QPM38HpW+bn9/zqm5kgZpUdbDBvqIBrTV3D7g0mx8ELyl9unS+b8r98gddmM4da7XoMCrZ2qLtSd6i75dTW3dDa7ctG2Sp7KdZELhMhiSOJRi3qarbdKZkr2fkpHDrVoeMVOGhElgtmBdi0GOI4u3twqzblk+7dbxTEMwLnyYq7+2YTKQ1A9Clz7eQcCBnO2bV5KCP+p1ZlvxVDqTt0n+CJvsmulUgrdi3ACovRLAFotcaXDSQaGh2zT8aSHHV0rfCyKzEatT0nN6PpSsxGNyyr0ovaZ402j2wKmmzjyRnfqH3jj0KaIXVr4FP04tcugbk2V1gmyz/WDcTR6FqFKQunk7BVK+xUICZFIuYQFy1n92t/pPDI8bSNegyorPAImCOyV54Mg5+mY4DwxmrtWJA2NbSp3Yh0wND0KtQiUM8kOXNZZpJnADRwHWzg/Pye5XImTSfoOyFGnp6eeH565el1Jfx0R93IgtbotbKW3V18I5VyuA9LiEzzwvPzO1CluaGO6VTdBMsbHVGLCMmz5baGbSAbfl1CIqZsG/G+UUuhluKmKOb2OX5233dHJSqDAvnQ7nZSml1j+xDUj2zd1jqn84WUZ9c8VUZMjyEVUJpTZx2JGO7DpdjrtlJMhxcDKZm2WLyBB3MoNZdWizdRywhjWk6EGNFu2ZLaGq3UBxrnaMi2bfRRLA4kdyBG8kDYEHXzHVtncZncHTtx9qiV1jt7qyjNVp1Pf2szE5T7WkznFKIZ7/ietxdzqh0oNSEwT/PR2CIFbY8M1kGjcLGIr091rdnQZ58pZbOmWeSxvr/ih6oV8q8vn6nLZt+1hOOdt+6unjHx8eO39Na4Xl9dX5o9g7RQym5I3UD0BOZ55ttvv+Pp+Zl5nhiOwQOtHY+HwcpoePUNLbn6+jfqd54y0zxbid77kZM7DN0ORoAbq9UCOnv8Uu+k2dy6ewuEQ7ftKEmr9FYfdHl3La8ajxgLuyZmCrgVG44lIrUHarczxWoZy5YNBnfa/ZoyEspB7e69HsZQQ3ePBEtc8KFIdwbG/b4RsKx1tFN9b0wxME3JdZL4PmCf63ya7Pk9IidGp/+HcAwRU55YzlD1asOBWr0IjMQlOaL6hsUxmB/do06CfScfPnxkytORsX2+XCybU+1+eX195Xe/+7dcb9bwfvz2W77/9a/5+M23nM8Xfvvbv7JcXoXb7ca63rmvd2K0+9L2sEfkmT2E2+3VZBRd+fDhI8tisVPbZg3r6v/c941f//o3ZkpFfKyx3ti3jfV+491f/zVBrEH/u78rrPcb+77aWs9f/6E8YuYMQRdit6rkNM/IlNiYaM3YEqXu9GiDyKJWf9UmaK8EVW5FyUmY50zfNnrdaG0nSkGlWL2mxRD5nlDtNNmRuALKJHCaAmG2PVujUFPgNE+kZvUQ2N6epwW3lURv5gROWOh0mu6UthnLABwFrkTZCZNrM3sipUDIyrp1th3WopTWmXtlShuiE9Izplm3tIv5FJg1cGmZ+RQpS+fHP2Y+ZacH9o6o3ce12LlQWjNDRt/du59fU8rWhGN7qjG+BLAzL58WlilxPmWWqdjQCffciOY8XUpj3ywZoeyVdWtMUyI04cuXG9tcOS2Ny8Wc6HOMB8p7v63cWREJfPtNJGclOFKpsdF7JKd3nCXxLs2svbC2QmcmSiPnSO+BvQS2dWLKnTk4GIX4MNtqhm0rLLkzZavz9j1BC6DFmIeykJLFQu2lUnujtpVaIlM8c8m/RcIrws6SIznNRAlM0UC+qp1As++qN2pXtAkldDN91MTeNjtHQjSJECCaLPN4hhTv1nw7dXxcp21bafUfubEdE9qhTYWDXeCIrf+H/6wVwAOthe7lyzBrulXlpSobQgmJkheWy0x4nohzRgNvnkNIS2DTyLYFfncTphdIq2lBS+/sPl2odLokWn5G5m84X545nRcus5vBeLN9TOPDsKaCAUbpgPK7ZWp9vnd+uMFPW2BDaCGYptUbMNdEUzZrZuumbLs1d+XWKJsX40EIOSJTJE1y0HBb6wcDb8owZWGa5aDrDmdlGe9b7Vr6ucOg7YrY32/B0d3us/tuSGKMypTtfW/7oEoOOpmhqT1akzrMlxBDbFFzMD6unC82NejKGttoInprfH2VVKUWe32jozqK3Ef+GUaNTt68H5N8E7QrVv+PAhnF6OX+OgeVREbUhDVYgxfdBZpAbZ6PGcQdmGF2xNa/eqc5mvYvRHNHXmbYZlsHCc9idXq2Od/i9LlBSf/acZ5RjIIcaK3wQGB+XtAPSq0y3Kr1aHbtBzzWSh97xEFHHr1vtzxq0YlIJqdwON4azTaQciRNEzFNSIi23oFpnjgvE5clk5OQPVLABi7q1JRAD6YbLdWmzzEZnVfffI5Wi7v3KiHbrHtEQQyjk0HLxovc4I3ag856fOyjUItxAh4mFGbM4ldu/BPA3Y7fmu5Y0fnI143umDz+HB9e2dckrsdVutaDSni4Mjej60abJDFyW43Sa4Vlr158uDEPPrQYzXZv5pzZvSAeTW13vfGg7R7mU37/Pa7R45468o3FjDbyQMVyNgZKqf9wufmQUGk09lqZozf2MdBEoQ/N46MQGdm4ZmqkPE4ieCzCf3ATDNR9IGUx0lrwIaMjjnzdD2M/NfZ9M1PB5kaLjlJ3haRGJeyteobsY1hRdtN32mevbPtG65X1fqNr5+ny7DE31RlaOpbjcVkH3e8t7Rse98fbnx2nR6nNWBIj/B3X2vpgJLyhLY4orME4Mpqiv+5AW/w+G5+rtU6cYLhdj8SAYZpSfUBvw8lIJxhlzq+d6d4G88DZXN7QK8Mw6mEI58fA0cDJUQvp42ztw62YRwPter5B9R7Xrb1ZeP6W7R4d95dd6ePX4zOaCdXbM137YJmoDx0t77T55zm0u+5DsMwzI5O8bCu17GzryvXlBRROpzM5Z96/fwcoKWVOpzPrakOhfd/Zto1tXZEgzoyAZTFK8YM+3C0jOxobI+d8ILtjX9z3nfV+477eqbXacM/XWggBPNO7lp2c8iErsOcYZl2ZKU//eDfdf6LHsdePGhobNKeYCExsdXzbpvVWqcYUIoFCc+Mp7WZClIJgzrIWCdNroUm1GKreUTX0Q47zyTKDuwQ0TLYunDFn0i1ldnT2GPgKhGAGhWZs5M8lps9sbbfnVOzTiGKuqNV8IqKbM4VBU7dUlAdFuBOlE2VQdK2PUDXfmIjVqHMSkkbO58w0mca89+b3mO8lOiQPVhcedYE+zq7HSW01yQCSRn0yT8lQb6f8qxeNrXVqKU59N9S2D1lisP3OHKUD+16IImQf3o19pLsmp2wbAXGDOMt0RYQoMzkKlxiReEPjCzuJ7p4WI+NWeyRoJuMxYENKOOSRzfaoGLLVwY6imyO2eW5EN8HoOqE103tEewaZSfKE6grSSDETxRDaHO06PyQYzp7qRjNuhy41+Pmuxohx2rLF0AmalCj9OMdlnOkib/bV//DjFze244uyiaA+qED+OiGMwvZRqXQUmi33tSmvTbkq3AKsTbgq8O3MSYTzB+H8HJgXOTbzYRaEAgHmU6BeA3/3d8KHn4R3N+F1K2x9464O1ceELN9Q3v13yHf/jH/6T3/N9+8zT7O9v9IwrrFyuCCHN297kGUEozz+mx8bf/sZfn+D/RRMK9OFuruGdoNWrCksjtaWFe63StsL5X5HckCmwPLhyXJ9o3C+RC/QYNttjhQyLLMZ6Sh2nWOwpqruUG79aNhitkigjps0iaG202IfxZiHdgjWHdcRuatwAVZo1cyq2pthRd2UJkIPMLLYK4982uU52UJtsF0brUIj0EqHrROqmVrlGadpwn6LpMltx4FW7Xrl8bw2dkSAHCFnsWzYGGhNWTdl20wTdlogT4JEYT4NTbNtMrXYc7e128ADJeRg+k3MBKxf/PqI5ee6+S2vHl0aoqG3U7bXkhB490X5H/+nwr4Hagto8Ma223fUmzpbQcjTPxRDf4UPeQwKHjRbMPj+gW517TaQ0qHFeFDCx/AHMOpmx5olEcs/Pgq8Siuw34XMRA6ZNAYUCOd55nJaOJ/OhJS9Wm/0ZhPl5bTw7fsLfS/8+dOdT7kQYmHbGrsY4tPaaodSbwfqcZJIK4X79ZVt3azpbMX1MMq7pydUuyOvju4U02+EOOK3LFLINJ5m+NSqFc8j97O5FmfozYz66yZXWLG53m8/bwDheO3mzaIeRfJwH1YvVPqD9gvElA638OC28701Q5GH/kTEdWjmzhrTKBgrHGHvlv2Lt7emp/fvuA3jCz2a2loNCT8W0BuqrtG4LA6gYxv3KPJTykbzFMg5MedM1+D6qgdls/WKaiD0aLFJYtcoTHbgTTGy1p1WKikvD4qzNnqFvt7dRGzEKPWDKj3e6zDfaqUct0Jr3QxuQuK0XEDVokMeBhFf7WOaF4IEStlAzKRsNEoPxkECVf7Nv/lXVhC7TimlxL5tXJ6eeX73K7Zt48vrJ16+fOLHH//E5fLM//A//F/58c9/4nq9cr68I3u+sRW0NqwwPZWX3G+a26HrjG5e1Fpjva+8vrzw6dMnrjejI4YYiGpaUju3hJzs3hGUNJ0Mla2FdbNpfauFJQdCjr4U/e+oUKpyXQt5MZOwgRQ2p7sHbP8+tIN5opK4V6PsxzQxexZzqY11293waCN7g1T7obEimKCN4URsBbE59fqiMxOp9Ijo6QcLI7JIoFRFZMRk2Htd93po8O9O3z55Dp0AOSX2/ZXPn1/Yh6zgzeStVYtBasEciEdhmLLtsdv9TsgTMQitbkyXE+/ff+BX3/8aRKj7zp//8PemwS6Wady08xv+ilo2rl8+077/tbkfh0CtjXVdD1o6CC8vX6zRXVe+//63nM+mk13XO7UW/uk//ef+94V5Wg6t7UCoX758dqOpYsObEOkKy+lMzJkf//xHa7y31ZvhZt/TlDlfnhB+riv+mh92BlTolexGiBHzjxAN7Peb08knen+la2cXmNPZRzuFrZoxYiGRjoJ2RTEUvew7OVWmtCI9o3oixwkJSsqBve7se0dYmCbLst+rSVyqVp5yYkkmC8D3XcJ0yJTsYLIc8m27oa1R2waSCCGRgzXPe91IWO00RfOuL7WzF0ODc+jkEJikk4Kw5MSes52HYlFBJtNTard7epLAX//2ievrzpcvhS9XM8NMKaLaPClAj/0CHvsUMuLMmjVawcwJnVTmJmWWUTsvZuJqcUIFrZUUMiI+MPRaFBFv6pSYJ1pT7veVz59v9CflNM/c77Zul2XxIVTn5eULtVp+ceyRw0k4TCRmfjV9z6v+RKrCZ26oZKZpZs4gKpQQWeTEuS983l9pmpEwUXujdGgaCbIwpWiFfd+p5Q6p0btpeEM2+WCIz8Riemstz1Df0XiG/JmQKkkWYrBc22kGaqXuFcQjqGqDCtKFrVViaMTY0T4G9wF0JtCZZzWUq2CUepyVkmzgvsyZ0xzI+R/ZFbm5kZA6VQIGeogvkgc28pgqKnvtrK3z+11pU0AnQZPQEsSsvHeq6ryIG0D5s/gEtTdH7dQnEhpYd1h3Ydrhdd3ZKWzSSOdnwuk906/+Bd/89X/Lh+9/w2/eZ57OpvVEjD7aXOeJQBCbSAnW0KgqVOX3Xzp/ucH/50/C5yZcu6Cr8fVVrVlsDZo3uL3CvnbK1imbst83QzjEaHMkN0RIQpqH85t93pjfTLMbdn1FSeIxFt2oS/MiVG8wx/QaNUS0N9Ckh4nR5PE4I/SiFWVbTQdaK+ybWIOpoBPgN6Fb41m802w/n2Z7Hx21cHexPiafIqmrGUk57TmbSamjrNE/l1M7RFh3dc2dHr/3eBgdWjDEt/tGlLJdHBG3bFfTknTPsx1umg/LdkGSkLLlBCqGrK8bvF6N1pzd5yepIUwW92Ma8t1SG4gCyxKAzve/ilzvFjFU66OxjU5r194IKT4mI1/xY0R3mAHAWIePRsWQLLXrrZ2mgyr4Zqisj58eKCXYdA1vIETGPRwoa+SUJ6YwMefgOg1hOc3Mp4XptCCeIYc2gscUSCu0fWPbVu7rxr5bnqvzqE2v4hPfmCeQiop9FxLDgXR0YC/FPhcPdCWlfDSF63Znd6pxyhPTPLOcz26iIAcaMtDoMZEs7sRZSvFBwWiyi6Nk1kzGkLxRtQmthED0w3UwGmyarI4aeoM7nNrwP/Om86B/tnagGANF7q1RpZpDcFZHhD2SZ8DhPKj4MqhwweKejLq1H7rd4oZDwJFLZ82LXRNjTJgjvZmHeXHvezjJKJS1i5uE9GNiLWLFwyjszWAH0E73ez1FN/hptiYts7aZ6YRAL/tBzW51f3xOv2pNO6F3CJZleBh6jbNK+4E+ZBFq2SwK6Ct+rOv9aFgWtWFLi5GURiazre2y7+z73abxKVH2lVqE9b6yl53X1xfevf/oZj2zz5Yq99uVlBJPT0/My4mc03G/DfOntwObQSd+bOmGslrDGrjfbnz69JMVy9pNblRs3Y3s14HehBA8M7YYDb4Wb1QdTRWPrnlDb6210Goyf49oGc8xBMQRy9o7SUHCkALYAKoTKc08QVRMkrDV7fhch0lUb48ingfS0Pob4yPXLgYJSDINu3iOX0rR3MUHgtxtnzV02AdlbeSSdnKI5BRp1eKuUgjmQuto7Hj9g2F2TJrGNbHvyO5rzzVtO4owTRPn84XT6cSynDmdnjidL8ZowwZo4U2G8UBRP3/6xJwzHz+8p9d2nAspZeYZStmPJnPkiMcU+PLlJ67XF+bZhlLJ9eGqnfvt7k2osG3bz4ZTpRbW7X4cN8Ngr9VGKdVQ3fXOv/y7v7Hvola0wzwthJAc/fv6h1TmZ2CIq8ShoTXNqgD37c6UdqbJmkNF2DUgvRKDSWlUO3tt9GTncE6BVYwrabwEwSQfyfbu0AlhR0IhJlvjDWi70gLuHGx+DFFNngKBy7IQxIZkUYTSK/eyGRuJRG3Cbd3ZQ2XdKznDFBO97WgvxtZyGWNXpZZK6ZXeIjkKp0VYophJGzOGzWIU7BBQjdxLp4kZYbVodfXlfeB8CSyT8HozJDjGgSwLmVGPOrMCDs12FCGnwJQjOQbmnMjDMArbZ4JYfnwUiAnaWmnrxpIEbWbkFVIkSGMPYudUc9smP+fXfSdvkdoa216c9RF8sNHZ151tMybN0/OzO8FD8P4n1cjUZ07hQksfuffIul/psZMElvOEsnNfd/YKiDAdkYMBdKL1mVITdd3YS6CTMBdqQ3lj9zjBeDLpVigQT9ACt9uNfKmkYHro6BKOVkzmRS/W24i/dg5EDbT7TgiNKTaanFDpiKygBaWDZDMf65UkCYjHPmJgSkKPLu0//PjlVOTumyTeWDHQVD+8BocUjimmAF9ujZei/Nui5BDIc2COHJTQ82Q/GcJoXH7+ur3LY1NTQ0vLboZCe1HupVKkU3IgLR9Iz9+zfP/P+e63v+U333/gm0ske3TPYFu6LMsaPxkHNLbkm1K2xu9/Un7/An/3U6SnAMkCg8eBVItTbos1ja3C7rTjfa+UraBiQc4axRyLxRrFnOVBV1SOSJ3qdAH6MBMw46JRLKQJtASjvfZHf9Gr2hQao9HiFIwxeFD1xm61ZrI1pez6cDIOZjPfh9hcDVEdFUpeOPSS47js4nmvKKGaSYVgVGijrEL2LC91SqKqNY1jcUR/s34PoB021/r2bn83JKNFD2ORpmbiJPpAkbVz2LGDoa4hCNMilOoUjG5I9X2FNuPmQ+YcadpFt3ZH2LvdPikIKcNJAh8+GGp536FVNzjo0KJPJwKEXR80gK/4cURyqB70nO6FqrxBDFE93Au7PtYrB8Jvq2G4mo7Hw9hFQIVeA3WPnGNiTpE8XPmS5SdOy0xeZitsRbzJ8pxctQibsm2uuTKzhMFc8AXsCJK5wXYs6mQUZiMbtg5DKJEjD1bEYnX2fWffVjPcaRbUnvJkWaeOlg5aMkeUTT8QsOEEOnIXTQtcKLVYkTcoyDpif6wwQJIbdTm9TnhzLf36DqqM4AMx+64GHbe5zs8Or3oMLmjWYPbevUGttl/bKjhe5S3SM5A+wSbOwz3YKH56NB6IowmDxtWrywCaRe1grph9ZHD6bdK6MQAO6iT2uWJMJsmozeLVvI0e0hEJkRg6MXp2Yxc7EF3P03k4saoHZNue5VRN/yzi8oaAHMXGWMvDOTZHp+7Kkb32VT5GYzuilmKstBhRnVAyKZpuci87rdWD5j6aj33fnMYceffuo2X75pnkjIVtW8kpM88LeTo5otZRDY+94Hg4rV7b0di+mX2Bwv1+48vnz0aHxpqtsdgHShei5836mVGLDYib0/vMmTkfa2MgmPDQXXa1xiy5AZsyzm1be0kiIWS/jxNdA6UL4kPlmBLIfrwvM1nSo/BRL9wORNDXavS8aBiu88aMIERU7HPZ++vHHtv93o0C3fMaR+5txgxWWm9IhequrfbZfb8+KPlesPt/DIaHyKgfRr7zfjAs5nlhmRdSmogp2yCkVt+L5DB7kxBtoN2V15cXni8XarF9TYcDs++1Y7+QIUPw7/V6ezHU+XRhWU6E5YTRTzvbujFlM416efnsTsiB2iyXddu3Y2iifejCjX1TW6XWnd///u89higaCyMm+zyt/js15df4CCOukjEgEWsqou1ltWxEsT1Wu0U89RaJdCQa8qmqzsowvNZouPa8ATMlE7Po4chQjRUJlRA6PUToVgv1ZjVg8yIrSrfBqCSWeaLV1aRkYvXEVnYIweqyArsWKkJpjRiN9tr7bo2PdBuog3mutOEs3Jli4N0iTFGJYo2YuNFbbQVV35tKRUNgjoGWgBRYzrCcAvMUD8bY8PqQYO2xHv2K75nBTNRCDExuaGmNbbQmNw1dn7dVEojBIi/33mh7IasNrI1WbfdjjMYOHUaS+Pm+V/PaqbVaFnBTuy5eyLZq2v2ckuncUzokF6gQq5A1MYeFHp/93JvtukaY5wRtZ9sNoQ1xoJ+WWQyZ1jJ7yZR9p7bhMFMP1Lp7nxNlJoadGGZCnGgtsO0rslj2uHkfWBnW6u7U+AJ0RrReToGEcL8VgnaSNGK40MUsKFUrSkdwrXerlmjh2QSW4IDfG2Io7y94/OLGNsSh4RiZp9ZkjiLJFrhNDaM3VxoCf/P7nR83Zf/uzJNTk5qCvKG/Khybj9dMx6FYK24OAde7cr934rrRthtrvbJH4PSRyzd/zYd//n/hw3e/4r/757/im+fE0xK9wRN3FNajWVNVgqNS1uDC3//U+dNn5X/9vfLDmrg3YQ8BLaDF/vo430ZjW4vl1NatsX35Qi9XenslvvuGME2E5URIQszC5Z1HJHRrLsObuBk9rrNdO6NBWNNXvAHd9dHQEkDd4t3ouPZeympN+7aJUyzgfn0UIbU0eul0d20LIubOFB43pWB033k2M4y2WYOeBNrj+LQmXK0RyUtgmiBOHGZT6pm6tRjFsTVlfW3+XoRwUqZJWE6mJ+5d6BJBH4WI+DQiiG2226aU2gnJnNl6s9fIWcy9Prl2DqVUM+CaolO0RVnvSq/CHoV1gyVDTvYztcFaOvfqxl7VtSpdiLNNOHvtbF+qIeSitPWhfySB/LKB0n/Wx9BiNtSt4R/3It6TqjdQtY2JGUdTe0xMxH4jiA06BlJnRY2599Ym1DKxrzNtEro0ervb4aKZZXrPvCxMy8UQiRiIOSIym7u5v99Sdu7XO2tp7A1eX1czmFjMTTAGQ2itg2qc5omcF6blTPEia9pn9n2jlI0//v7fMKgFMg7nbXUDFteVus50X83I6nS+HOiNBAiOZmo1xHSaJkNvmpmadO1Od0ykmJjyZMhhCEzzzLycjoiW4L+SOxibEs4a5HVdjzzIKWeGO6j6DjHPZtrSdeV2e/GhgHB+ekePjbp7xEtv1tRFixtJ8tAN2702wu13tDXPAn08em/0trupFUg23YOIud+CZQ1KMjrEtu8es6CuZfSYrm66nlY21JuDIIkRNG/NKvb5xOjUiEU4ZZT73XXC0pFo6INNB8f+3n1AI8ZE0Ubvuzk2hgS9EyfT3rWBLKVkhaRCzIlpOZGn5T/VLfiP8vjzD39vrrLLiev1xdaaR6TM88L33y9s+8rt9sqHD98yzQvzfOIvP/1ArZWP7799GJn5CZRS5vtf/ZVT3iPz6WLPtyw/ayws1ikeusfWqrEdavmZFtKGqpVtXfn9737Hv/67f8m67kBgns9sq+m78pRsz02Rd88fTA9fNiqdFiIidi/WZtmXm5uLnJd0eFOW1kjN2BxxuEXPE60ArVCax7RNkRAXiInaO7VHQhHqdefLdWNfN0fwbUAaxe6DUvY3aHJwQ6yFshlbIE/JkUYO1DzEaLRFAdSvIf2xh2IDtzE8G9mXgiG5U06sW6G0BtuKyszQIvRRiA4tvOoxlACMOTN09sE1tMvipmsmrbip+ZRcr1f+/MOfDlfYGITL+YnT5R1pOnG9vrJtK7frC6/XJ16uN2rrjhIbDV5C8KGaIao5G00xJRumtNaYpoVlOTEvJ/785x+O63m/Gz35p09/8QK78/LlkxmM9cbr9dWucUr89OkT+74zL4sjzgvX66sPXez9GEr32Cu/9seCkPJMPp0hGpK9lpsNV6Pw3YfZz+AK7LQq7Fvk/HEyinw39CtQjF6sldv9hmJ60TwpITViquaV4ud4oiBY89zb5vrQ9+buizItiRis1vq0f6ZqtKFInBj+4k07W6vULtQa2Hc4nWemFOj7Rk6RlANdNwIbSxonl2lJT8vCwsS6Ce8m+G6BU9iNOVTOPujZQBMpZGJO3MsN0YTkC9N0IZO4Xn8i5cS7d8/88NNqfw8bloWmB7NCFZLH0yGmd80psiwzSZQcA6fTzLIk5ilyf70ZNTdEHyJ6Hn2p1CLc20OPawM4JeVk7I6jeLLvWVUptfLyeiUEQyFfb3dO88TiUhoQXl9fmZeJRWeWebIhURSgEVSJPbFwpkpjkXdI30AqMRdngS20W6P3RAuWTWlDpoXbHfatcj4pkgN5npHQyLHR6o1WnwkSKd18DE65I6lRQ6W2DU2FRmFvUEqDniltBamIVLS80tX2Qo370dP1vrGXOy93H0qcQFxPqwRaNUNB1Iw6p5QQSQ4gwN7UfDZ+weN/h8bWwkTVG9rRXQUZlEZvSnUUyT4dqWbFv90a0wnyEknjZwcNzPedR5HF0di0bg1Hqcq+KXVrnHQlRYW8kN79E6b3H/nw2/+Gv/rrX/Ph4zu+ezdx8tzaB/zxQDCNmmMant6V+668bvAvf1B+vMKf18CtCdWF14YUeyPp9KGy4chnp6w7dTexvEYM4pwzMiXiHO2AjOYqHIMe01DnAB6N4nCHEn+frZvbrhlU2WY0migdTbb/HH7DNm9WlQcqbc2KvUbKhqDKOZiDMOKxN0YpqMVofj3YAGK8prqjxRGNpOMZOVC+rkbNFsaEmBHHhgO+bOFBDx4IjkmWDFEfyC7DBMPXQ7TBN3ly1nPrVDeJsmvgU6b4QIBF/FrHgWqoDxFsOKMFNr9+mn3xBqPa1wJ993xbseddZriclNc/3enFp9VDqJtssvhfAGBrgdeYutKJBBwgq08HVTlcZlV/VocxFunbIZSBjcFzzcbELdBrgjYT9AQMzXRlTpEYLFsyRZuqGqopx/QSp6IMrWkQSD4NWubJDitgmk6GRsjYN/phOa9O5zJqnGlSzQ3WjZ584mPF1DDWcAMo//dBG7ZiyU2YmhyvdfRTCGizRuoNBW7E80gINkwLhgannEnZTK7s+/BClJEd7REo6s7KKT4MZORB9cW1k0Y17j5gMDqmSDymcardkM8Y3Z14Rok0guuKFarReXGkZrQ8hxEQiUOj5Nm6huS6plcf6+dtdi3uSK/DuVYbNocwr8zBCJA3+9fhLqs200Xk0D/b+jQkgYA30D6hf2NNbpRnm6Qaql7RHt9oou0TDO2jKmi1rMDHDvd1PvZ9s/UrFh+jYrpt+/qs6bShgyFbut5Ns7hvvn7S4eyNum42T+R58UHK45e5pJsUBRpHVrHfo7Xunon7iP0xqqmdsfu+c73deHl9PfTbwMGoGPTA4IOmGCOBiVYLoevBL1CgtnGId2POjGGTjPPahzcpP5pAAnuzvUX7RlwSITnque+Asr3euK27rbOxv73hTzyM9vzt61iHQzqgx7p8GylSSkFbZN1mhhHKYF28eXoG+hzAmAaqlFJ/tkeByy58rzzWvO9L4od+OK5lOPZpwfevwcKojQas9xu1bOybUdGHVnueZlI68d3336N/sgGFoWvWFFvOqDqqbevgfr95BM9+aPKDRHKeiLEzTzPLcuJ0OtNbPdzb1211N+SNUqqzZmxtSoDWjHEyT0OXZNFAl8sTpXwETEu8rqvtuwrdQYujsPyKH6c5W50RnH1CNy1pMK+Rec5+DYQpGyuoFDnQ3VatQU1JLRpJoPXiuciZaTpD2BExLWvQRuid8wwSOyrqni5KTIHsw9XjWAtCD3a+TCFaldDtex/u4OOcMIMiG8QG7gSx/qD3HemFIN0lbYGqZioV6MxRmFy1l2JECayrATsPlk8z3R8miZinmRgzosHqTBGiuCmbBEcUDVBqAw0XIR+yB4vkSdFkQcHvE8EQ75QD0xKZnC1BF7TZXdqcKh9DJPgQ1nxI7H6N0aRpzQG0EdNea2fdd5bFWQ7a3UE4kEJ0NaBatE2CsHWmPPuAxoYCgUDQiagzOS4EbxBjqBbJ2U2PHrrt/9rNhdnYPIoGGwojVqssbshaW6dVk0HGBQeZApYFE4iSH4Ck7vZ5a7Hnw651b2q04topfj63GsxfKAh73VBJEMydPwQ7Vyx5pVO3ypQb+RIMACEyTROIDal/yeN/h8a2GLzcTSsFQhArNkfjZtloo1AAKqTeSbWxfdmZThNpEVIabplOF8OakHET9T7iZaDqoJEq+71T740nrkgS9PyO+Tf/Le++/46/+md/zb/46xPvz5HzFEwr8CZrDxmHkbtt+clUq/Lj587f/0X5f/1BuLXIHtKxum2Aqg/asUfCbGunlU7Zdtp6o9UNYkPmiXB6tkifHImL0UWgs2390HeG2TTF48QZh6VRHB0V7maGYei4NZc5G217NJ0DHbX32VHMZbA2tbgbbwgHlWFZfPHNiXU3t2BlHJBQ1u6Np7A3NUpuFNMGDU2r4IXIQCuV2gM02Da3mp+UlECjIZsBQ5XX7I2k+sTZJzFxoMURo1+D55nZ54pZiGKc/W1XQ/KbFXUitj4k2DAjvmnoid7YxrHmRpFglJneoXh0U57EXKWLDVLuN0jJTKs+nIXLGajKD+0Vve/0rRgUnCdYLMT8vwSjitLqmKmgOoq4ccCIy6X1KNCOxvbtw3qVx3BKfbuVSCAezW3dJmhnslxAgw+DKtOzBYTP02hsu5nR+BczHB61taPBjDEyh8AcExuJvULpsJyfiCk75VXcbVWM2lJ3atmtmQ/DSOZBu6n1kXMo4aEnGy7D2oZDozXzMRl9su31MFayFsgLaEd6B+INVkwO2nOI9jmmaSZPsyE7OSHDrIlHsWDGWG5IlRIpT8f1DkCeTNBeHGmuZbf9zeNJYp7MXXEMCvy95JSZp8y7pwu1w61YLMz4nEbFtMNTurmMCdC7Ge8AZqKnHNcresH8oJSMRnVUCnbtay3QK0GUOQX2bodX7f0oJqIP2fBrgdO8DCkTc4JW9bizbgYfbmgYJDBNs71+79TerKkFQ6oQukfdSKhk1/a2NoIglLpXRBIj/uprfZSyOa1VPfdQ2bab0ep8fQ0X7X1baa1xu70wzSejg6ZIitmQeTHNdk7Z3bnD4VobnEY0jKMexlQ4Gq7ekJimfKz1hz6zs64bL6+vfH55weewtrbD4/scHZjSTUqQEvu2ovJzLqmxu3zQ6k2u0fciw3U/xkTy+6MjZnBYoWjl9vrKdDJNfs7ZaOe1cn/5wn6/P2i0w+Fz7JOuZ+1v1r0Znw238Gh5vN1+fyDc614oIfC6ZJZ5YsrRULM3NH3x5zQJkruS9s62FXDEbJhO2ffksVXhIUnAv5Ux/DKE6edrOASrjWoptGDu9HVbjwHD8/MzOWc0Z/Z9Zzmd+Ku//q8PLWt3CnDZN9ODir2PViqlVF5evngDZg71KSXOpzPzbOyHZVm4nJ+4XC7c71dnGMx8efnC/X5lXe8ep9SNZeBuyebqXcj52Zr6HpjnmffvP1jmd0huVrWZd0g3muOQUHztj3enGe2F3jar54DmLJ2YElnEZAVEzsGj36oc92bdVwTLml5y9qHrTp4DEhdOPVDbldavln+sjYzFvsSoFO1YtLUwkZmw5qDKIEgrGsyoaUmNvQe6RmrrlNYovZkcjEGvT6Q4I9oQmqOcqzVI4oCNBkqDHBoxVOYkTMkbynim9sD1ruwVavf13ypNOkGa6WpPZ1KYkGYtH95gTjGyid3zQ66BWMMcg8XTGFXeZUsuB5DjqDfGRspi+a5iQ2WTQgsiyZ3kq8UB+iCwtofPgDFXhLoVO0mig2HSWLfCNC9WW6OU3qAK05IN3BE1l3qpkDPiZqoDNApiRotJT8zxjIbiqKtrdoP1DA1MC69K10jTmZQ7IVl+MFJpvZCzHEa1eVeyKtNFaD1SagQtiAqB9gCgdbP6ag/E5QyIvUYzj4BaOhuVKp1eZgNFJbG3lU6n9oVlnmzdBQcv9852a5yXifPi9GkRTsuJUiu1/yPH/bR9I4REDBN49mFwpNbAx0AfDmPYtCcE+D/89cxv187ffG7crzvbvdIv5pArrn2VYFzw5A0IMXgraE3bdlc+/dipnzpyE9r8gdP333D+EPnNP/uG9+9nfvVx5mlJ5GBmSabhEadQ2zcx0GVBeb11Xu/K//fvOz/chB/vkR1zERxoqdGorNFpFfZVaaXT9sq+vpquTDpkCEtCZqM3EZLVd1XRam684u2tdEV6Y/JohhiEbTP6UlW8ILbpxagJa2l+oAq9eX5YskI6CLTwSF1UdzdVv2EQi8fAp0UhGSoqORp1uJubL90ovcmQfyQoWg0V7VHozSYx5V4Nve2QTglJYnm0As2bbgX2Autm6yNnb4Cjkiel35WymqnWvsN+U3uOYDriPLl+dzeX41qUXW2Tmc6BOXTyGDZ0uy6HIWyA5WwNfS3WNJfdhnwpmgY4xDeoeMXjgGAqhjgnseY6qv291mHbTQMVU+L0NIHCvQKSgfQz1+mv/XGvjdANUe/RCqE0bmSGEZD97Ghe4DEM6nA0w9E1HGggkoiS3CQpoZrp60dCS0wpMc8TKQRSED68mzifJzu480SeFmLKSB/5WQ3xSIjTMvPuaeGvfvWOvQmNyL3eEFES4aA/Xy4Xa2Z7ZdtX9qqO0JoGthYrkEeGJ4NZYCe60YaCPl6f4NFDSquNfdsBC6xvXry2Wj2I3owsjgzbw7DEGuxBFzydz4aUpXRoW0fzrKqWidwa+3aj7KvH7Njrx1hJeSLEgbSZG+n1eqW4eVIM9mcpJpIXvtoHwi7kaUaiobT32gGPC/BrgGJRSdGjb1qhlUJL6XiPZd8cvSkHatVaYfzHYyCijhoHQ3gcMQ1iw6acMqV0tJnrbRSsIYo26evVmgYRRfJw5BXSNBkTqNSjkLdDf+iJMOpltmwzaY3eN6zZ7miwaXvfy4GSE6xQERHOp4u7iK7/qW/F/6jHPJ+YppnldOaf/bN/Qa2Vv/vb/5mcIiLK6+sX7vcbrRa2bcUiOAqXy6+4XJ6JMXG5PHE6nSjNUFhzhz4TY+RyeToGQWboMxCZdhRupRiC9/Ly4u6h2deDOdRqq6zbyg9/+j37vpO9mTyMud7QPqbJaJWlVM7vn3j3/J5adu56o22b5VDqIwJIRdhKY3gE9K7EVLitO51Emk7Mp7PFzuwbr7fKWiqv20baCjFl5mnxbOvKdnuhbnfqvtNbRVDmHN1PwaMsvKisvdPlwcoQFf9Mvn929YGq0YlR5fPLK6UuzJPRS2uz9V3qYFrghV4izxP7Xti23V3K7Z7ZSyN2gRAZ2bVvH6fLmRSTDxV8fwrBpQhW1DTTEFkmpAZzr3Tw2HKqbZj4pX2ia+f19ZXT5Ynf/NV/Rd13TvPk16gdrIxSTcudp5nUjUrLemOYdD09vbeG3BvV4MO9lBLTNJtr9rby+vrlYNfMLtdYppkQTeoRY6L3RtlWXl++oL2TYuY3v/4rTqczZd+4Xl/9ORJd25u9+Ot9pKmhbUPDF6I+09RQgayY+VCcoFvTG2snB+U8B4LYELj1O8MgSHtAtVDblZwXJEROyzvu649oN3ff0DOhNRJGYW5tJ8XIFDMfl4xUoHVesYSJpkqMtpam2CAs1DA/aPBdzejU51OmhbfIxCQNaRuvr1dyENJ8YSud0r3RFGN+Ztk8p3hCxJqjH78Ubt2a4DlnWq/sa2V5njjliSVlWtnppblLvmdex2FQFgklkLOwnBY7K7D67pghxSH6ww1EA/M0sZwip0tgypm2Ktvnjfxkutz5ZLW0qnJfN2Kw17K63QAY7cYoaa0RojV959NCSoGY5GC7pGSa6N4at/Vuc2DpiGtR+3UlXwJJA7FPNuyvjTlcrOaI31Mi9BCs2ez2neUpgQYCbzwGHCSEjvTAugd6j0zO/nrZINEIYaX1DRFlyhORRtFgjNWmiHQ0madB6wL9GxSh9eJaaCVooRaoBGKb6KK0nqkUShcoHSWQG0i8+1lv+4KEmW3rhvznaKg0N9IvtL34xY3t59Wcdk9zN2RHfKrhCIKOYoYBl1nxezlb/Mv3rfPaYO16mMNQXRfZxRZaNTpqkWATHTEEeF+V/WahxTFFTt888e7bmedvZ7799sLTOXCebUEqOPXMmilnUHlxavESW1V++Kx8uiq/+wQvVbhWK6g6cmh6ezPDobabodG+NnqptFJpZQUaZEFiRnJEslGf9KBpQa8eTu2UmCaGTqcxpQV39X1Qk6ww4LjOYA35iBELYDQ+pz4FOjiNxNi54qjqA6UeM8tWoQd1UxVvpP3PxqY0uuDujmdK5Igj6WrNc+3oFCCYo2urRmFO2SZFXUYcjv0amm8J7kg8DUqzHp8VBg1djmsmxr4wPa83oIIcz9saUEejZUOEaF5fhIzH1DjV0K9N85tDnSMtmHzeaCKP6+H9CkE8zxBzxZYYzenSQ7190Tmy+PUforWrh7zYYET9Opvedhip+R+Mx1vunV8hW9KO7BGI+CGFU2FapJfJaLvOERTBNDcpe3yIo7shHMMG6A9tpHZSFJY58fHdiXsxA68pJ5rYCE0HbTYmgmsDW2tvDJMcgW6eUepfsGkEvUhWiw4Y+9jBR3L0wy7Bw8ipOspTW/VoBhha0+FsOl5n3NoDXTlonN5oHWZYQPCs6Ie53JsMNwlIdLdSR4+MVlgfhjTHNRz/8kCbzdDJY34k+P0px3VzXocNGEKAXmkCdLt2oD9Hans/loQVuOqfd2jdGMAew/XxiFzA0TnluKbefR/fxyCgquKmO26igVGxQxiD1PF92lOMmJ+xPsWp4PBmAOgXqvfu78Vd4QN+Hb5+5kXOkw9IxpDT4hBSyoSYjAKrhsYPYyYRMTOoPJumOyWmaUGcQjwQoEFBHgOT3pNfx3/3fQwUd9CfH5mtjfX2yvX1lR/+9Edut6sh437QhDhMXmyMLc4csiZsUIv9PuDnuNs45xu+FlGqKrV2031JJCZzNu+90mqhq1Htyj6Q5d2dfT3/s9YjFkTEnFKRhDod+PE+/L7Uf3C/Hecn3vwrvJHslFrZSvG1mQzVqKOxVWz+PLlrs63t8fnNasXef6eZIaWj6OZs74OkEMxr4M3+oYo1x26uZrKyNwZTwbAuM4EblP1OxXTTLy9fUMWc4nNmmZJFa4WHa3J3re80zTyypcdgPT0u0JsvMR5abIzWrOrO2/a8pe7EGmnJjKDG+sjZzo5tvR/a4uenZ8vITg9Du2maPLf56zaBA6OvS2hmYNkUbUAXM33C3IgHDddyiYfsqgENVYtLM9qoya5SHO7x5j0hfs9Fl26E0BFPEeh+rgtKCt201jGxtp2u4rK1frCFUkhImMwA6TAqs7Vow307v62Gtc/QqrE5dBrAlXqmvd0hYydXzFG4dOFelObnQk6B2JUmwXSx0SIztTaUdpxLh2O4uCmjn73zkq336Go2DmJ1Y3xTe8QgpBT8XLQ0j2WJbK1xrYXWEq0LVTtN/bN3v86I+b+IGGINh8RuvC+RYVooP3uvxv5QP6oVUdunkI7MSvOhpPoQDu0EFTKJczizxzNVKpu+GJJcmrFM8Prbv6emxkSRYhGsexmSQKv3WjPnaMSMKGNoB3gp8rPKj9YcyRcDfboGk4moAQNoo6kNWqzHs19NoznXi61X69ceDutBEkL0Ot1esbk0Mf77DqB/z+MXN7b/059nPl7gt6HztEAOlkMavADe9p2uASUS49hgLZM1nwL/x+fs+lShDqpx6VSxBb6r8roq1w3+8AorgQ2D2FpR2rVxPglPzxP/5Le/5tv3kY9PgewxGWUXR5+sYQxRGUxf6Ih0Xm6NT1f4mz/B3/wo/OUuLoYP5BzYq7+vHdbVmpyyddq+02ulrVd0OEllRZLANCHLZHRUecOBVQyJaN3jOiDNmaKBqoGQlewoZo+2oHO0xssaLL/FRUnZ6MBLNlqBoEwn04HWomQqOQmXOdhN14WXHWhO1Up6FB+vX2yh5CV4hiQHHcr2Njvc2m5mACqBuFgPF4IyJdcUVUPUogpzhH1TSoOaIhI5nJ6DGzyF6HqRkHh6D3OG1y+VvcB9D5aD5Y1rK+rdFkZJlGC09GZ6hdMysm7tGrVqeWeWdwmx20DgsjiCM6ZUwa7vXh5mZSnZr8vss5YO19W+i3cXDrt47HKya6CERAuNg1/dBF13z/vtwC/L2vrP9dhbI3To0XKZo+uPo2/0Q998dCUAjMLuTWXiCFsgkCQRSQQSkUApmbrPlG2ibJY1GKOiZJbscSQpE/JCiImgQq8V6U5DboVWdvbbK0k6z+eZf7Kc+ctL4Y+fVi6XhVDs+6gk9MjTtK2wbIVtu3O/vRrKGYxK1Eo9chanaWKal4M2V8srtVjhEIOHnosaVdgbpVatiVxvV7b1xr5vR4EWQ6LsmztJPg4txPQ20zz5IdDQZmwGo2c/DNUms6smxkTBir6U3a02zUzLye6L3n3IVmxC44dlc6qHdGvuw0DbvQhOOSHBfvVu0+o0zSzThLgT6SE0qkJDCCrcbq923RT2zXOBtR3T+kF1lsfpB4yBXbe3CBzB92LnQPVB4WOK5VpcTKcVckToTkWsRj8mYxFiE73Xw2U6eMxFrTtB0+MQFiFPk+lrvZmN0TSIpRpNTsa0C2G93xEJTNPpH+Fu+0/3WJYzqlBK5e///t8SY+J0eceynEhpslzVlLk8vePidH3LFXaKsURSmszkxyf2bzMee29uCGVmYfM8H1muo5E1N+bolFBrLL58eaUWy3/91//yf+XPf/6Bv/2b/4Uvr1dut9XzaIV5OVlmcG82dGqG0u/rxu16RUKwvNt99wbJaNUj0iUc5wPgY5C9Nu5bgWgGYJd371FtlO1uAwC1iJjmDukhvh4DkMkDts2xPbup2ExvN0pfbTjeraBVh3tG7nRXNZdw/51120gtHpndoyVet51SKnI+U2rlum7cNxtAxBiROKGh03Rn3wvFmwFzCo/spSK1IVmJKXI+n7ivmxvZWHwI7iIdYjzCMeqQKhx7pGmKQlfQQsrJWDtin6n53bNtO//qb/+W53fvuVye+O67b7lcTjw/PTGfzsSY7Lk9Q/H9hw9H7vXl6R29d8q+8eXlJ1prPD29Z64LU5/JKVlT2y2KLKbAr3/9VzTX8P75hz+wLGeent7xzcdvyXmiK3z88B2n5c7f/u3/wvVmplb/zX/zTym1YK70NiQ7nS/s+0opv4y++J/zcV0rywRPp8zebYhBC/RWbPjCRi0vlP2F235HJROniMgGrdPaTu/mmRCCycBiDGxtpjZlL5/dPTmh/WaDmxCMsidWG/XdELk63TnPT5zziX0t5shd3fEa65PnNIOc+fPnO6VX95CICEqfldp21m1HsOY2BfWoK7y2C4QoXBZ3560BMZ4nDbjvhdsGtxLJ0XJkn0/ZkGuvCeecDTVt/bF/tH5ERgaxPiUFhRB4ejpRN8tCJ8hh0Jq8NgWYszfMzkZLWThfMlp39tZYN6WvCved6ybcqzCpubRrU6631QffmfPpZPnuzvDaizkexw69jcbNmtpajZmVkxz1jyosLfHx/UKpO+sKcvcuM4GUTo6R9/EdNXe2MPHH22duq/JybRRRlgzTrHy63tgqtDRBMePQ1+LRg8DL1QzrevOEiQitrITUCKHYme2s00AEjWzFI4SCNae1C7Ut1LaCNkIvtL7QWqTv5mpMFFqzXmmeFnfubtTeKd0o7bNkRFwi1Du9Fr7c7pyyMMV/5Bzbv/l8Yr4qf/NT593UOafGt3njV8+BpwmPWvCJnCqarPGzptuKne45uCkG44JPoKLHROhpMu3kx4vwZYXP987Lvht18XtYQmSKwodLZE6mzdKh+RzZuo5ojnzOl6vy+db54Yvyuz/Dyyr8tAZuxdBZEaEUYdvgduvU2mlboe2VXit9u6LbT2h5RdME04LMZ8J5gZSQnK2oVkHTMFMButG1BB5oVOCYYGkXtt2yVavTF+YF14EaqjnqwxyNRjvPILMXu5OwaqfuynkJTFk4nYPrcuHezBzI+mwzUUoJsjh9t5nbcammc7WHo94B+pigK2jF0DFR4hQgCT1FxJvYR5yAZ87KMGIR10vrYXZhcR1QEfI5IAU0+kQZyLO71fmMIODZv5ObRyVDZlsHXIsSsnhja1TjGLojC9YkBEzXHYNdE602Ee0dghoq3ZyaEqMwTbZ3NLUIoBDGEKrT9ka93mi3DbabvYZEUKeltww8/9Lb6j/Lo3d1MLYTJIJCFfusNrEdqO14jMn/UNvY9gYB0WS6WokEDUdh3EugbxFqp+476/1KjjAHYc7O8vBNq2wr2js5BwI2MOmtoK0YXdeHRVpNm2nobWKp8LILuwqlKdfrC7frK/frlfV+ZVtX1tsdiZaNuJzORg2Ms6NZnfvt1ZyfmxngCOrmE8lQ5TwbG8HpyCPvbyAevTWi03RbLW7UYBSaEAydtGbCkOR+NFDhuG+axwQdzqKO/A/UJiXL5MzzRIjRzZQ6+3an7ht132llN1SqN5KYE+k4rLs3ONbQJGKcCCmR84SZPVQrLFzGIT71GRqdJnoYDFnupsX5NI+A614kD6r6wzfB7lXRftCuu5qxz7jnFEeig9+HjKgx0JAsQ7jjDbwZ7am49T9vmDG90Xo80N7uAyfxAcWYDjt85UyUR0EDnZSmw6BDtf0cIvwKH+/ff/TP3TktJ8sSnZbDuGy9vzqTIR+a22mePTopsSwn8jQbNR4x5/H7zXTQGDsKHbrOcW+LoWcytJ3uxpvGf5ux0XXf+PFPf+R//h//3/zxD7/nT3/6o4WOOHr49PTMhw8fePfumdfXF37/u99Ri1GA921n33emvTz2HB/8DI3ZmB+Ps3XcL63D589f+PHPP3A5L1zevae3wr7eELF75Hp9PZBja16HWdLZqEa4gyo+9HMDH9FmMh6VgyVidY3R70trxznUuhKcaiw+oLIG2ArwteymTWzt0OW11nm9Xtn3ndNiBmgpukmcmPfB4HqgSgxmyrTvFY1udtdNT46a8ZTRs+MDiR2yhIC7FsfDRM0i08wFN/i+E/zPX19f2LeVKVsE0Yf3Hw4WWkzm1q6q3G/3x9DS78WcIqrtsa5iYPKMYfy7s5ztzjyfeC1f2PaN++3qsT6Vy/mJlCejsyfb3/ayHR4Jw4vgdDrz41/+xP1+Y9vXgynytT+2aihp7ye0Z1AbGimF1jt7ndlro/ROdWRWC2S5I1RUCzEtpJjpbCCBNL3j9cUZAb0SpCKxkXJFWoYa2VpHAzSZ6SSCZEK0xI4YzVBIm3K7NmLqhGhShKcoZAKv640iHc2wJFuz2bNzt9Y5JRtCtmI1gxnEefwjgsjDrHE+mQnSWgqNyFYivZlUaXKGV9VGaZU8BTQoTYubQ1b2WuxeQo+Egq0Uwrr5a0FK1rT2oj6EGlRkq2NzDkzZIr5E/n/U/UmTLFmW34n9zh10MHP3916MmVkTgAIaYLPZpAiFG7JJES644ZZLfkx+DQq5gHSTaKDZVZVVmZER8SYfzFT1DoeLc1TNIwESAekCKqApnu/F88lMVe/Vc85/MrmMRfJYvF2tFSnNWQad2kGqIe1BbH2pKtet0vpCSpXzbJ4PtVWulys6ZPLdTK2NPUpvJzwZG0tQr3977zYkKxCyknQ+jGy7VPAa1q59R+vsDq+gYg/SmGAYoYjysq0WvynwshqrJMTA5epsHUm7tpTaCma3IdS2+PNaD6PWqitRrP4z7kwy3XUX0MioM60O1BpBGq11lrVxrcIeHxKdGZPGE8gVKEgweV9vZv4FloSSwkCQ/G+tnX/X8bMb2w9rQlajEd+lyjkqz9nysfQEU2oG6yPHjdpV/EFhdIjuHiY5em7tbkSCNRljEHqCMQcG6aQGuiljVH59FxmSNzDJDUbctVh2gM+bOOPn24L8eO384bPydx+Uv3kvXIqw9uAolaHNpcBWlMtLN5rxVmBb0LbB8hG2H6E+wfmdoR1jRqYJSRmJyZuym/mVIRK+aGQ3jrFJ1yFlVCvgtmLnKQQ31032NSntgwA99AoxGnLrkjBKNBe9IZsmNWQhqf2eFG/659Zv+lIzUXHN6J5XprcXHqM/9dwVz4gROwELQhLoHm7tk3LtHfFONET7Otnp1crhigx7U2pFcUhCEsM3l8VuhJQ4aIJ7ASPBUOsQLQO4eoyQ1dWm0Y7JUeWoR9Gz66StfPZX4PeLOJXMSLROAXHaSnIXgWryab+gPqRQPYTX0sy23N5kNVHva/ruL/TYJ9p9d6QWj2HZG3g/Z3tzu//ba0Mke5929nbTqJ3AaUOAgNZolPZaLI+yjpgbrp3fjhoSV0wPloI5u4beD9OowwQlBgQrHMecuJsDocCqu8SgsiyXQxu5bRtl2yilQDU0JOcBSYNFCkWhlE4p25FDu2vQdjRqz0IMYTtoR9L2xme/uaw4Rm+FpWllw+HUG/emYG+4/Pz6TWd0WKc97mvKDDjMlOq1O62IFdjmmLpZU1t9qu/axz078pbRisduWGObcjKkbpicgln8dQWj2jv6qhhy0PcGIkSbwLu7dOf2HuGGBfldcKDcezOyU8X2r2o7K9xvGsN2hQOBDuFwp+47Ei239dVdlwg+rNHOngVquuZmDbXe9ON+8x6/D25slhit8LIs4Ff3+i/0OJ3u3PW5MQ7W2E7TiW1bPJt5Jck+UIyugXWNdrBYIKNuWkyQZX42G/qgJDVmRTryWXf98i0j0mj1vudykzG0Wnl+euT3v/sdv//973h8/EweZ6O5Y69nnk+kbE+ZPS9W265dbz/Rjx7X4vi9O3Bja2+/03pXrteFz58f+fz5M199/SVpGD1WywYWZdsoe2Mrhrjs/hv7Q9waxO6vzX0pxNMVRWzfd0M09GYkJSKI3kymug91dGcgqQ19N0c56x7Xo1YvbK5Fj9EkG9mbS3D9oK+v6OcspXRE+uzmePS9Ud5jsW6MrO5IgDXsTlt2OoUcJnfehfu57r2zrQu1bK7V7uSc/fOwU/2DBGs8B6PI79R1idZwWv5sNV2lm/jYOpWfGAT2bvty2RFoxCjFPoDE6ca1OtIdgtOqhXEc/Z6Gy+X5uDa/9MNMyAJdE/SIqO1FqitNG7WZMVFVpalppGzb3BA2kGYeHymgVDoZZaK2F4/n8mebKjE2H3QYy07VB05Eu7OCOeyKQBJLeiib17gqdJSTzbBYykaPSsyRIXkNoJVrdddsCfS+D0Fh90EIssvc9n1bSSlDt+xiDdHjJAMxWlMrEl23qiSxeqR2a2ybD/h2R+yU4vERRG6OySlCCNRej3MYfZhpDCbz+emOdNhgp/q+F81p2k1Ljf2jRzMdd4MZf7atW6W2zjSO7PTibbM4nt6haPM9R299ErYug8RD9lFK9esfkN5Q983oasizEJCWCTIasKKDDwyMIi0EQhJC25+JRnDfqu0zQxRqE2+Q082byN83gjOjohmE9R0MamZUKbcna1OhaUDUXK1bSzY0V2NltF7Y2uB7h5JwZFwyUEAaKtHQ4e4u9x1K6ww90/rPa1l/dmObktJUKC3wYQ18WJW/+Vz58Knz63fKf/2PAg+jch4a180iU9pSfIEZRRm/tfdpyOuHZWlQuhxc6iln/uQr4d29oSVBFZpH/3SlaadpYM7cCiivYZoqP35SPjwr//L3yrUJq0Zwx9yxQ61Gb71eYVuhbEpZNrQVpKywfkTrC6w/whCQ+Q3y7k8J5zvi3f2tMQ+CbEaF0O3q6EMkJDfGSoFhNGOhHPea1jIjS1XqZhqo3uHyCMPYSEPg/v4WiZN8iNKBuLsqB2V4I+hD5LLCpsJ1xalPynxujCmQo3C5CMMgnGZ4+tzZbJWTRkM7dwRPxQcRIqSYOU3WUPdm+YG9405LCpsVH52OhoamZLrT4IUUAsVdlNVebwz23+sKpXp+7CC8eRMIgzg/3wYSO3WRpvSiaLKbfK22QYYAY3SL8K40R37BHOsUzLXaKcy1GmpdA5xG04GEAMNggwMDc+z1JbH7d9msKx8S3M8Qz8IwRD5/NfISlaetEYfZjDzEhPocwRS/7EMd/Wo+lOiOMjgJCr/7flIUyKEXM0Vt0OiGURFzkbX7p7YGGgk6GKWmFXqrJLFBWOv1iBKqbaP2gmwQGU1HE6LFEdBIMXB/NzOOIyFeGUpnnkA/FbTaAOry+MLz5crnT59Z14V1XahlpbZiTQo2+Xx++mz6wmHgdRzH0WS+Oi95GBmGiWGc2FxnaJS2jFGNqqOpmWk8GW1zXdgdhHPKR7GnavTd7bpYgx7iQXUUdj25oWi1eAFXG3nMhyY3vGpsVU3f27ZC2W7FJhIsSuN0x+l0h6IECZaXmwZSHjjd3ZGH0XRq0bLmSq1sW7HIATebEdkLKzt3B+XSbgR7+PkDzjZeNxQK4XjKqTbX89qH9kbv9fA8UC2Ho2wpRiMMIXoDAlCpdQVtFrfgRlQq2bRNjnTvjYihcNVcfhVond4LexSK9ctyaLp3Zkkgmd47umaQn0x4frHHl19+4xrZfFCJe+vUWmit8vz8eNzDEowC33rj/v4NwziRnZLce2MYRk7zmXEY2Ta7321vcL2pu+Lt6yAEc16u1ZDAbdusiAyB1jpbqSzryvPLC88vL6ylIckKobJVPn78xFYqX375jt2NeRzHo5ECK+hidJZD18Mkbo8EsngLz4mtDZFGEDML+ru/+x1rsSarFEXymZg++/ozrZfPXUkpMo0ZUY+iAmOlqDXCIQWyJrZi91KIgYLd361UqwUkcl2LoQyHjn1/plmDHv3+EoHPT1fAdIDN2UrHAExMSztOE/P5ZEVsVy9wbcCTsplMDeqOrzhLCkdVfB33EI6fa+fOEKHsmd9HlJlX0dUjz1rZmLSZs3aMiGfrjuPI3d0d7778ksHlC0c0WbfCeV2ubOtiKKvn+d7dvbGhOeIuxtZE73psdST/ennh5eXJcmkxBCvnbMV5sNiPPXP86emRh4e3vH3zjnW9klLi7v6Bf/bP/kuW6wt/+3d/w8vLI8ty/U+0Iv8nHNrMKLUkcshmaqfKVjdoG5smNhqrKttmtN2YA61eULmScyHnTkzCdV0t73mJLNsLXc2UJ3Sh1U5OhW29sr5A1QEiaLAhs4rS2or2gvTGXR64pkKjQ58RSbQ+UTWQpHFZr4QRTiFznu+sltBKbLbXb1tC3I5Eu6HDiF3TALzUZg3gWtHziHHqCmsNbD2Sh8T93Zm7eWbri0VwYg1kqYXPL4/oWqAoQ8yuObfBTY6RKRu634CUAlPORAk8t6djiD2O7jVCQwXW1k3njA8KXg2ebFglPti3Af3TdWMIifMYyMNwDJyu20bpjU/PF6YUmHOg1s4aGi/Xld2teXYnZAFnJASmIVqkYQKVjdY8irMUSxpJHdkCSQbyEGARWhKSTMyDICGxPhbaJqzrSKtm9JiCMiYDsJ6iuWKfZ4hiiQsqA+ME89TppdNlZWsbtS/em5nm2pJTJtPZdksXaDWwLMqYZ7efEdatcF0aY3KPADqXZUPpLBGmmBlzYJ7Eh29qrARpltDhA73ndSPKTVrx7zt+dmO7/fB3EEc0n1AG25AY+PG5sDVFxom3Z3iYIWhFuhJ6ZR6NpjQkuxkUQTXR9y5UrGCqVajdNKJ77AbYndTd+MlOlU03jNKgpqsN1phdNlgqvH9SPrzA41V4qZbA1DGDqt6FbYOyGfC2Xht167TS0LJBW6G8oCyQOkxfGDo7TDDfI8NoU05Hh1X3e/w2tjgAmf0VH8Nm8Rxbw7pso8cjLyA0R1aTMpqhp03UmhoCLNCbUI5fZ99vOllfdMGySecJpgzJXZ53Om1MYihk6KRdY+sgZK1qRYBAyrecr2kWVE270groCPMp2N/VnKGKBhrB6b22CYyjX9tiJ8S9K45jN7hqCjmZ1iF586tNuRYbZtyAFh9uWFVhZmP+ydL9dQejLJufiqO5e7iyGol2LUpokIdgxXkwitfe3lzX3fxGXEK7U1GEIQtpyoShuoHUri3B405+7or6Bzz01WXY0Vi9OYt2ny5ascQfFfhuNU8gqBlH4VE3+8bUKtCCBaxXo4OxPwdCICR3Tq2N7Xpxl8BA25TQAz1FejeDBIIQUyYHuFMhrBW9bMxZuEaFtrK8PPL8dGG9vrBVa/p+MqXfCz7VA3U+UNrdLIpjkR5UKbv/zQm7uU6++feZOYw4fTV407Zb/fvk01do7fVAHmly0I2yWDNFaa8abTNisXVjjsspvaLfeF5tXRdzg/TXtReuu35yRx/F31Nyp2QJyRHwZBNz8aJWbmZyO1IWomcnVtMldzfGOuKDtHturX1nDIGck6FQr5yRBVtPexQKfu6gOw3LYp32zF4Dt80Uq5bNpvApEII3snHHhQVxbbU4orYbzNiPMkq4Q3s+AXdcee9qHEVrrdq1CLsGwtGLX/AR3DBtH1oI0GNnmkwbPIwjOY8MgxlFSTRackq3xgJgd+021DoxDKav3WNXeldifD0EunFw9mu1rgutJW+AxQvPHZE0VkOtpjHrzaiCtmfafW+6d7uqrdmgY6dR96h0XQi725/64EPcIRn8flJ/nijXdePp+YUfP7wnekVqUVfJmtjQ6ApDSpzmkXlI0G9u5rcGsx5rOoT9XhKSuFGlvNozg+0VKSWj3YpRmoMP8GvrDMkM9nrf9tEhe9yeRdt4w6fWyO6OqzsiXF2PH1NBNTj7JPhQxvc0OK5nwPW/cqOT23JwBFqMrp9TNtfhYFFAe1YtEhiqoawhusFcMITfXmMx+vRqcU/V9awSxCPTKuu68OWXX5HzdLyG18ZWIQTO5ztHYc3ELOeB+/t0uCbXVhx5FJdVZU6nO+7O99zd3XMn9wx5YD6deHl+4sm/b55/ba71v/BDMJTW0PaGdmdUqQEOPXQaja6VWjtBOi121q0TQ2ceg5t5JXI6sW6Vy/KIhurPPo+wdGSyd6O+r6sx50I2A1C7ZzdDA6ViVmX2u4WBQCKwP2MEDcXSSzogZjSUciCUhDTzrFHxnFzxOqsKPcth5rkPLWK0CCF6ZilQWuB8njweq3N5WXedoSOz9gwx87mbXMoMSb0xdaaKSdrsGRjltoeIwOmUnRGYuC7mXdOxmkXEqPzxMGi7eba0pm40q9Aroso8jTaU8HVmvU2lhWS1MhxrWZ2VNY5WsO78qt7VYoRESASGPbKtNOrzs0X/TELqA0H8dXmdKkSiGMsmheQO7YFaDKFdtsKYTco5BGXMgdMcaEUdWbeBnaHz2fqvBtpHu4cOplqn64iyolJJcfFnbsA0psH7o+69iRlulb5Rqyt7FYtEjY7+OlCwm2mqKA1nF1R7ftSfuZR/dmO7fvfXhOmBePclOtyZpXjIvH/ufHhW3jPx7l744k55kxZSr+Ta+Opt4zzBELwDVJsKmIuWhR53oJZI7UpXE5WrT/WbGzDV0o9CUY7Ju9J9ON+D8nERPl7gX/1eeVxgqcI4xaPn7NUauOUazOyoKGVt9FKgVqSu0K5QnyGskCPy5hvC6Q7GyV57ujVC1rR60ezNrafk2oJ1VzIrau3fU8TzZQOlChqFalprgnRyNoOmKRnSaIuom3Y4eo5uf+0aLEeObetKTCBBOc3BqduG9lbPBY7JaAapdzNj8unLshjC2R3ZjKMPIQSm0ZyPEaVsplmNwSaHvVsW8GW1DUvbfpmVebbCcA3KuthrT+YP4AU3h1NljJbVN+ddIwfrZ3svEmygsU/Z22qDjpbV309g26wxiag3SpAnIUQnzAb1fC1z1Q0OThOMDp2DI3Yol8UoN9PgYdPY9YkZQg6kKRPHCjEdTYHdYO0/C9qTP9/s2Bvbbtesh5sD7o3GpY7+iQ9nLJB8d0OWXeuOX8+i5N0Br2z03o4hjAQh5MEb28r6siBTIkmib43WA02TIb2OFIaUyBKIOSNhoZbKnGEMndA2lssTL09PLGs5Ynhu10F+8l6sn1E3xLk1k/s0SuRG69tprzFFYjVKk8XcuNmJ03ttZqJeBHd7SKfI7ky6O4buk9/Yo5k4RSuExZs3owPfEKtaCtKs2bhRwDu9VrbVTFFareZC7dTC5IW1Uf12lK3ZAz4mu2aOou5OyniRfgw4HLWJKq8a23IgycEgV28CdlRP3VEyUV3XZohf93W+N+/WBIS9yGq7K23FFfBOfWpOfzS6Ya/u3hyjrWmPPNrzUm2V75RYjntWjqHjTSO6Dx61dUIyGnyt1a/l3uzLgWL9Yg9nB8WUHdWyvXOaTlb4lztyykbBd/0rTh/es5WPPFaP9NljpFoLnktbDjRuXy/7QHYH60GNJVHt+8dxPJqe5o1WjJFSy40h0ucD3d2Nj2oxDaYilFpBVu7u7nwf0ENvJZ6XaTNuPZA9GwiZMcqybTy/XPnhxx85zTOncXRk2JAQFRse3Z1mJi/0rpfNf5cbU8ER4QOeY+tvPKZ9bSlb7dB83Uc739r3rOxuXhTgjW3yxlW8CTXtoelOk0U1BUM61q3QVRkHM+yqrbuDMsi6EfJghXpKxNaJMVL7rlm0/7a11H3dRF8H5vUhPryzXG1HzD0iqNRKLNZI1q0QJx+G+T4UQnAmV+XTp4/uQG86WjOJjI7kr3z8+CMPDw/M83Qg/68ZMyKB8/keEeHz40eC0+RzHo9GuLVCbRu7TGQYBt68ecv9/Rvu7h44nc6M48jpdOLH9D2KMg4zX3z1NQ8Pb/9jrsK/lyNoZhdP2pDUzZpEDQQKna6VRrGmTQJdG3VrpKi8uY+IJtBMTpllfeRy+cQ4ZzMK9KJV8D3YP7YVYoMhBFrbMACioFpQGrU3qjZrrCUgJGLIhGSsRMLmbt2gVBAzKAzB96NeUTXn5uixlFrN6LUFA5qCmAOzSXpM57mUSke4uzsxDMaEe1lWUo6MU0Z32yNx87+AARd+X+01QIzJsrnhcM22mnwfdAunc2KcAykr/YObUEl3ZlK352awYbYma8br1j2uS72ONgajRVKxj11BlbrTzLntl703aqk2AOrZt5hgbMHWKZs9LwciUxjpvdG2xtPjSpoigyRO4c619QYaNUCi1WVRAjnYMKN1oVRl3ZTrWnlzVoYUGKKZS52mwLUbEdOixbx+0tH6PKKdsG5rXoJRqLVNdApdVrJerenXATyqCmfP2JAGmjZKCzeJhJr8JyVvbEMg52yNr7j2u+7rIdNqoYaf53D+sxvb8sP/xzqrkJHhAeKI5DPIAHHgOQWuy8z3TxNaI9Ib0jbenTt3Y+fXdytvpsrD2PizXzVSsiykgU6t8GmLJDISImOezATJLc87gZjjDQQFgja0ND60wOdF+f1j57uXxLUFqmvVhozR131y1DZDhssKZcWMomqFsiDbFeojhA5jIJy+McX1MKIEpLpzZw00IjjV2DnJoEoarTBVNQ67UZF39NAavoo3AQVqM/SYbjTl+T4SQzcYPwrjIMxnixzCp0vbajf8/Tly3eC6wnXdUVlrsLoIjxejXUdnx9qPVN482D36+NwJ0RDW6+pFSoLxZHzp0jqSrLmtzSjOIVpzF8Veb8AmV3WpjCkyDIE0BKKjxvvGMU+g3bTMCdfDjjbFWbfOy0tjnhI539BlETifXWfc/b1h53CaoBahLp1SlOVqky/U3OWujgjNDzfKWthRdttXaA0uz8py6Ug0U+uc7U/tZnj1VBp3Z6ORF4eXoyjvvpmJyajslz98oF1X04QeF/uXfex6NPaGlptGzKZx4VUjaBu8MYhss44SSMEmg6I3Z1B1VP56MWe/UAvX9YIqTNNITE7RIxhNuHXSoGgrsFU0jLQirHVFy5XeCut1IWWLL5HWiLoxxs4ohfvc+M194OU+E0riX39+PMxYStljEW5NbvVCzfI8+2Gosje8YOyPvanpqpRqOi8JgWGa0eXqaKQV0zElo3WtK9u6mPYMKNt2xOGYpjAhyWJrUsqc5jNDzodpVEqJlIeDHryVlbLz8b0xU3yi79FJXffmTY5GJYZIck0SXmDmYTStcEyknNFeKasV7PsQqrbiCGmBvbGu29HY7mitNtMeqjfY6q7EUaACUsSzMD06Saxh3ZtWQ++dYiS4Ph9rzHxwIlopvRxDEWNa2D3Ze0OqElJCU/YBvp3Do+iOllOrzTVM2q1xFo+FSmYC0mslhtEJB0pplQgMw2Smar/wtfzw8JZhGJjG+aABx2iIvITAfD4bu8Ib9R2V330A9vPVe+fl5ck1uuOBqJkh1GgIoVOWW6uEsGfV7uvHrsGyrJTyTIzC+/c/8PHje8uEHEe2Usx52veTWgrXy4XHT5/YttUeLv56UsyM08Q0jX7tjFJvdHs3fHJK7R7xp2p0nZgS9w/3RqFNiR/ef+bdWyEPM+N8R+3C3elKjAVF+OJ+Zr2uvDy/WLyGj6aPewkOhGvfE3pXBqcV2xrsiDRaK7ReWLaOt8BHQS0IW9l4WTZjXtHoOKIb3JciuDRE7Xu6WoNe3KwGEWrtjhjDfJoZ5zOfni+kDiqB9vJyaFGbP0hlbyYxdD1IIOVs71UMoSm+Nz7c3x+obykVVSGnleYGXL+nMw6ZL7/62gdWynK9crk8s24rrVXGcWKez6QUEBk4n8+2p62bSw2En6K2yvl8RkR4eXnh3duzmdW9Ys/U1khpYFkW7u7uOJ/v+K/+5/+LV6wFa7rXdSFI4Hy645/+03/hg5xXNLFf6BFbIKVKYgU5E2NgjAvXrdLLRq+OdrVqKJc3+NIzQTt9g9N8zzh+zeNy9TSHKzmdUM08XzspFlJcHQEzJNiczIPVylJNIqdXXrZnkx7l2YwX0xkJliN8yhn6yrZdiamw9c5labxcr0wT5OGO2q+spXLOEaQa4l6MKh1CprbO5mj+lALjNNG0s5bK82KshJQid1OmrleXAxk4FjSQvbY1ZHF3OI+Hfj1IshxpCdyfT2gQ7ueTDWNKpbiEAhrP60oLkTnEw7clJYvuLM32n8taeLosZAGZAue7iae00HUjx+QsUuG62XA9OntjTJF1WR2FLdy/GcgZQvS8+yqsrR3voTfLdF63lbxFppaYauB0jqQhUftm9VdORMm2L7YK3TS5lkxhGT7LtRAyDJPRe80xvrFV023Hofq2m8zIqrv/kbgPSJuQeCLKTIzf08Nm7zcZuPWyjaguiKyU+kxXIcUzJmHqXNbPNB19sGK1UETIScxnpymiNpgv1fqxWitbUUIaGdNw1CAxRKJkl1D8+4+f3dhqW9EqoIuhm3FA8uVobCuNtt1T1zt6nL3By+hFuWydVjqfM9wNsAFDtpytu2yGEZ+fOykpKSWmU0aa+g0VqE1oxMNV+XBFBD71xOMm/HAJfF6FqkLMctAemufRVvf2qfWWa6pdPdi1oLpZfE9KyDwi8wlJ2d0PvdP6SWv96tyoP1iPx5n9ozajdDYBIrRk7k2K0KrSm/rUwg0qktEyzLjIUcDgRa2jmOpT9xvjVW+om5qxUnemoIMfTvPFnKgF0zmE16/fqd/6igZ+NDw28ZFur8VYeoYM4w6LrVq+qwqEjGsc9nNvSCnYRhSj7HMAp3WIXYLW3YhJDjMrEacRh1e0jmYIbkpCmgRWQ4xDdLdKzKhgp1cfTq3J0N2Uxaege8HC/sR3J0jT/prm1GcWIlTF7eFhHAPzOXF6yGzvlU5Fa7Uw3PCzl9Q/2HEYaXlzi7MjlE7bF5YXHLu2BDE9GNHNCthNRrxIxu6t2pVlUQKN2Ez7hpj5U4jp0J61ZlrbRCUhJDU9ujolQz32Z8/fjEEotfh0amGMjdOgvDtHvrjLrEsmRZtMtt2Q5SfIrR077XGnqr7OkrOC1tb5fo5UrdA8KK4+BAhuFGHFvjXQR2aqhKNpRtVzRV1bi3oTm499JXlO455JesvLtMHcLUe3u/Ny9RgdnIIcDqTZUExbB1F246nsQ4dKKav9UGCnTqjogSjr4bjm94NTu7t/rh+sBP+76+puRoA7Cru7ieuBwu6FNPtX6iuDqZ0iid1n3bM8D1QZbza6WkTFvsGpHg3R/gNenxv8uu36XB/ts+/lOyW5a7dh7F5wv/qaX+oRHbU2JHun8+XjHO86ablBq/4JW+/FEVIwJsLuppxSPO45cfOp1+cScDTSkhB2V9tts4ifWlY+fnjPx48faL0flGfBGtHz+Y77hwfevvmC737/e6M6p3RkyCowzRNv3rzh+vLssUWRXuya7DTh/XX4X0gpMZ9mvv7mWzemgVo2QxoR1q1axq3eNMP7sKSWeux1B7ptJ+DVx6673c3dwk9ei4gc5jYSXt8/t6FC77uz/O0u3P0G1N+PAEOKFjHoMVb4M3o3f/IzYWiZu6uyryfXEO/vb/++3tuxs5nZmidZ7M8BlHWzIYS5DHdCsGGEOcM3ailmWueU4xgj4zhRmxmOlWI5yaf5xDhOh8N7Thn5dwyKbiwAow6fz3eOesWDyZWiSUFEgr+25r93foUgx6NRSSkBE2/fRtZtO9yYf8lHDoEkhrRVjT4sakTH9Ks3WDZzlGPf5LhvEimODGmmtUe6NlK0WJbehVaLufb6rR2igDMmD+DF64DrWghtRevAXZ6JUZiHQEU91cOeJbUXJDSClYuU0kixkZNp1W0vyQYu9ebSM6tnm/aDXbDTy5Vb3RbCQAqJSGdtxhgSNcDEBiaG3LXmWblRXknQbEjk9uD29dGyb4s/T3cnbcBrWvFIyu7L1d30QzgkKqV1QgtuXOrywODa+F3a4c+f0hohx5+YxxIgZiVkG051dSpz74eZ6b4XGOBU6NK5LhvD3eCyr33/aWi4aert+5UUIg2jdbOz1Q42ol1fXO2Kbob2VgMaVIVxzObwDGy6GAW5RVK4Q3UButeKoD2iJGuMm5jXTWt03/uquomZM2z2UeFRf4oi4g7T/dZDsd/XbjQqarVWQEjy8+RB/2FVuLp1+rr90SM/0D7PxPkdnL4gfvlP0HyihhOPKzxelO8/REIvBCrT/7AyZjhNnV+/ieRobmGnc+furvHwq9EmVFr5/eedxipuM20F29YDaxf++jqySaYPE0M03apgdU9V6OXW1JbiP6fujrmKlBVtC+iKPJyQaSKczRzKx6RHUaCO2kqUvQq2Dzc7qnv91tWya7vZ/TeauaQOyRpWQKvR8VIyB9UQbw9SFeG6enxO9QdYt2bYMjNh6Ua52gOxD93EZpvFgrgOAO4fEsNgAHTymEqN0Qy+sKgla4bltvl4XFLvWL4v1rdNo20gKZkQPaswTIlahNbEburAsVltqiyLbUIpCeNJ2Ioh1SHtLYQgTZHY3HlOdtDINp1gH7XBsppeKEfh/j7y+GT5Vym7OYYK4drNKbdYJm5vSsydeQ4Mo9Cz6Qm25pmZ6l+XbHM5TfhUHUfAYa2OWKudA+4i7auR5Q+RvgTKovxxE/VLPUKIB+q3o5XdxDDeFFkz0VwXKnBku4lEgqaDiAy7rg1QYSvK50+NnjeyRK6lk3JkCImQRkIaUMTcP+tCXxcYBQZxN2/cpt4GDdM8EbJRarblM7280JZH7vLAFGFOI9t1JmnlX/0+U0rl4jmKr7WDe0HeWjvcS3lFh7P5kDuZ970A06OxpWOUmGp7YEzZmuTFKNMgDMN4GMTsRioAMWfTimVzCw0xOmJirykPRruLOdPrxp7L2ruHvfskSFvler1QNkNEg/ggIO7NoZlXiBd5eRjc1TmwrlejSi9OrY7pVYHsFO3+CsX2AnwvZFv1rMBa2Wlgr8PixfN429q9OTBEge73hjjl7CcPZzNus4zO3eFY3HgrGMVzW+m97hwD9sZmHyLs7Zp2CN6QVWdsxGjouYRIHueDrtaKFUl7MWU9soKYHi20SpD+i0d6DKV3jb+jtJbjaQ1iqxWNEQ3RzVD2AU5wlPbFnbKNJty3zqW/HM6yu77RDLrUG9wbvX1vMHYd5fV64fn5mR+//44/fPc7fvvXf8W2roDv52Ka9D/5sz/n229/xa9+9Wtenp9pvYLgOt1G18bDmwf+7C/+gt/+9f9I10Zeh0Ofux+qSnNWiXblfDfzxZdf8C/+y/+Sy7Kybhsvz48M2RrbD58eWa5XSm3HOl3WjW1babWgbipmJio7W2KXJWCOhx3oStkKISbymG2f0UZKZoxVSyUMu541enKD7S7F5QgpvF577gTdd7mVkHKitEqpzcy/EIsks42W7hKlHiqX64VWTe4RYkAkG23Um+nWbhp+cUMptNN7PdZ5SYlUMqXa69+KMTqMCeV7QgPfCGmtkHNmHCdDaF/OZty3XLm7u+fh4Q135wdEhLv7+5/swa/X1T4gCSEwzzPT9CfHvy/LYoyEaUIV1nXl0+dPBzV7HEenP1c345OjqR1Hi1l7fPrM5fLyH2sJ/r0dd6NJClKArSfMY2I1hDAYO89MuqzQN5lbo2jD9s6RnM6Mw5nr8kitK0M+UWs2k9K6EYLJCPIUEM30NkLtpuHt5ufSqrJcFl4kMcfEP757x5AC787Cc6mW4CGVtRRKWYnSICSUxLZ0gm4MIVhUH51hzLRyNeZPEHowEKSUTu3t1pzrPhgXthKZz2eGlKBfqXVl3YxRkJMwTxHYjmHrmIUUzPk3RosT1R6O4ecwWHOaUvABrzF6mntZDFNiOiWGUZDYQTriLKphHBiGkTQ0SjOJVWuwuMGeRCENmRQsa7eUDVXlUjbmNJH858SIAW5zJyTrS0qzQdBSOuYDDJp90ETg5bKwFGX4pOS7MzEPZgLYbYjYUiPGZmu+C0GVMQ/WpzUfbESja5pxnPjguBOC0tsztQysq0cKhcj5PjAlJUnjqf5oDJk2cEpvaH0CKrXs+25CdQQaq2uil1IJoSNBKVJoDHQiwaE4xWQYYNGfIRZCUPMekYjEYB4tdFpbmAdrnNeXQGZgkOFnraf/gMbWC4nXxk4cgz5oG/36Ed1e6NszMtzD6SvC8AaCh5CGQNeBa4d1qbwswtNj8wliJCSLqflXf2027b11Xl5ssR2UQrULrwhdAtd0D8MEc6Jla/piwAXPoBUPbjbt32HiUi5QV9h+RHIygyhHO0Sb0x8NPTXbaaFLvKW5+NRC6NAVaaC1k4ZAmiJlE3NIbBwPzLLd3HglWhNZVKAK0oS819iKm0V5k+7RQQfQghLUAp17V4gRxSi7rRoCkZKFPaeEnwgrKVu1BnxZ1K+HNSMdiMkibkSV2Jrr4AKahXVTdLUGsA6gE8a578pW7HfuZlDqiHjAbMR7SHYNG2zPeDMpaDUKY86RNHajOfv5UYzy3JoZfa3uHDkNYjQaNSr1MCinUZFk2Wtp5+w3WJppZa0QsMZ3LeLB5Pa79hnFEMMRVWQ/Byxzd1dB2blbujINkAfh3ZeZl2/fQBr41F+Iw4Skn7fw/iEPQyR8HexNBjbNEx/kNJ8eqtPYG9CDZ4GyZ0iLT+OM/r4VZV0ivc3ocII8c//OtFkpDQynN4ScuG6VZbnStgtVFnIYGF2XVnujtIXWuplhnITYzBn38vzE5eXC5bry5u3EEDNpzNx9XphfCtHRuB1BNVTi1ft22F9foYCvv0B96mnrJ3mD2txp1grgHRU54mBUD2fe1vRwO7YID1vQ03z2rMzgjaYcTuiqOMWxQdHj96zXiw11UnJtYCIPg2kZnT3S/cEdXJuSdgOYmMynADO/2ZsQFEearfEOpGOo2x0JLttibufdtC2W4de86TUqqjoVWXSf5O2/xxDe6XT2DOBA35wiE62wlxCcIixM48CQghX5XmSo57aFFBlmW6RGeS7c0NfBKe17c2tGK0F3fXRk19uqWDFTt5Xk9NQ5DWzbag1NsQYl5tEbmMiNXP/LbmzN4GlhKxs5D+SUYbT7wZrc5F9n0VBHYyvhuMf3GKlpnNy0aTMdWgjuVJ1IrkPeB0WvqfvreqWUSnHncAE+fvzAp48fuV6urNtG60rOmdM8M00T//gf/RMU+OH777kuF8pWKLWQcmaeZ77+9lf85V/+U/7iH/0F73/4Pet6cQMXY0KUUm0NBRvCpZSZ5ol//Jf/jC++/JLpdEIlkvLAw/29mTKlxNOnT6BK3TY3xbvlRefBhmKtNSvcnDKf0k3C0h3hsQgQpWmli63lMUa2dT0Q3IMJQHfHZkPGxIcotSuvNiG731SNPhnl0MPuQ8fo7sC1msmaaue6vNCXxU2aHLH1vb1rN4RHIL7SVKecfSDpg6reTCLiUFd1RNTYDf7qfI/bNdjz6cSXX33F6WyU4b4snOYT8zSRv/r6cG//m9/+j4gIp/Md59P5uK92lM7uRTlkCPt/78Z+4zi6Dtuo0ptrsnZTM4APH37k8fETf/Zn/4hpsiZbVdm2jffvf+RyubBu63+U9ff3edzNE0qhI7b/qmlSDcQy89XlCsvSGJLFuUi/kEInhswQv4UWKOtntuUT9M48nPnh44WtVcZhQ4J52GylE8RSB0I0Q7X5fEZDMwkP74lMBBkY80RMjWkotMcrpTVOMrOEisbO3TQZUFEC1k4kUhROUyZGZS2NXpRWrRasAYp21m2l9Mo82bNtSJEhDWypEXMgj2diFEp/pqLWENdCx1gHtSh0JRKoLleR0lD34liv/XgG23M37o86M7tSpfgaPCIvoyBJkBxI3erhmNzAC7mtgSRIUiRZzcjgKKTlR7qUzdZ9V9ezx0hIkaYbQiNMtjf0HpCYMJukxqeXJ5IkxjxxmicIjeVSKWuhnna2EYAYYo4YUlXMoLJNjZgj0zAxDRObbrxcV5atU5sw5UD2hJIxg8QGYqkVSGfKC8KF1jYuS3N9t0CeoAeCDEhabNhVA7UONlTrm/n1dNhcZ9850RioWCKCiBuH1ooSiCETw2asEGzoFjCvgdbVKOO9U2vn/cdGdmbazzl+fmMr1uTh08e9wbR/wGGvDe2FfjEkVBD72jRBmF7lE0HXQOv2BmxPD75hKz9+LOzzzN44YGmcOqOdw7GUOdu0QkZUrXAKIrfGtmHT6tbdmtq6XSkXM4piQ1IijIPRkGP0gtLycvfcVZo7K+/Uo9v95UZETg4K1jB1R2A7rzQlff86sWIBb/Kqt+o7xI8cDfSOiRki40OortB2514ljji9DOsud9A/7sgpTs2Wg87S9mgd/2oRkGRGAtKVuBfuXZ1ObAVS3QcHHTc4MHrw/nNso7AmMOxDAefT9w5UdW2ybShE4/XjVGZVnILsRlMNtqpsm53bYZDjgWvZaDYsEH9dORsqb/QMyygLwVB6fOGF6LRHd5oWgZR9WOLXAP/93Ski5i7n5y7Zz01jJM8Dae6QNsgjMow/e0n9gx17hbU3evy0Adxrrn4UsOKOtY6b7SZwWMHb8RSoEqk1IeGMhgniQJ52DVQmpoEOXJeV63WhbQsaV+ZBaC16odncSKaa7mUcPdO2sK4ra6lsrUOIPogazAk4RYzKdNNtvXrD3PA+27sOivXx+Z/0uAeia+vFYlJ25APloBn/5LSKoZRHRA92jg05NUpnOEyMOBqEA3X0przVSisbyaMDgqO8O+34aFyc3bGbUO3o2x6Lotxeq9gLNEQPbyCD+D6LodGeFdn8TzNtUEcKrEjY6arse5K/ehuCeE5eCK/Og8enOFq0U41CEFI0Mx9nWtr6UzO0E4zFYqirmdLte6BER3738wiHCzNwFDHW9tgXtNaIaoOb3bXWNJL91vAjry/G/n+/2OMwPutmXLTrUE3HaOdn18nvVGPguAd3Vs1Pkdg9VkpesR72wfLrxlaPryllY9t8ILMuXF6euV6v5pJbbWCRUmYYR6Z5JsXM5frCx48fWFfTZeJU4mk+8c033/Lll1/x5s1bu5dxeYvrqM18BJcQKDll7u4f+Pqbb3nz7h05j7QOMSXmaWIcRoacOd/dU2vh6jrU3QPC4rf0yJDdm0dEzLzQJ8rHI19s37P7qpN2t2T2e1R+chu1fZ/Yb2B+Cg7sNPzdvTiG6BKk3SRSXq0pQR21btXMffZrrM7w8ILqYE6Jsz6C7xn2zXtut78w/7pdwmGvKxyGdPs+ZchXZhxnp8HHV2tdmKYJi4QqvFxerHEdxgPd1z9aV/ue+bqx3e+xPQ7Ihn23vPHX92CthWVZKKX4MM32oFI2Pn58z7Jc2bb/DKjIKVBaoFePQNKOtJuPQoqmp9QWkLwPpjcL0pRI4ExvStkuiDZjVEmitSd6K0xTNx7WLjsTo8uLZ7KGYHKY3isa0pGjG0IkRyHHxBCtRp2iOw8D8zBajdqjGUZJMqAgm3HZVjhqwK43E6HmKQLRfSFiTASJloyRhBgHRPaMWMwvwutZ29fCcZu/TjsAv4dUj2fCHgG0D/F/WidwuBvvQwQJ6oweJcS9BxGnGosvl1dNwD4AYmcTeZKLM4fMZMvq29rU6uzYD1BAMRaoCGzXDQIMqqRk+4p2kwbUWqkNpJs3TtVKIBK1+R5tfU7ItqZyNAbGVjpbhdoN+BHRwyTPWre9l+jEUICF1lcznNWFFi4MWgxRxmWgInQitSdqHQjBmlWRSNMGPbhJcDz8MQJ2Hlu3axB0b1rawaYSOPKtUTcOro21VK6lMm63bPP/f8fPb2zjHyFRxl1j13O9Ek7aTVYuyOffwsv3SMiQzpBOkCbCeEfKI8Np5s2USFqpq/JybaxrZ12boQKyz5j9//13QncNKPDS0PWKroU63UPKhprtxXfHOq3erdvSCu0C23vQBbl/IN49EE735oYZhZCFNAVSFvIQ2YqJm3uJB1UId46VKKj5MJjxjJ+alN01DnPqFcVRMaeU7JqZprRLRatpDsJocKGKHg/zvalsxR9GXaEZ6htSNGMnp+vGbI157802pCSc5uBGUhZsXYFWQKItxHH0QrdDnE2rKk1ZVluIuzmTA9iGsgZztatq9N/r1YykwLXMG66vwZA9zwUUVdIQSUNga90QYwwhjMUW391stOks5jbXS2e1iGDGUcnmK8HnRzWaeRMG+qFx2NbGsnTWBYZZyKM193bHBGRPpFDcqh3XgditEhT6YO9zXa1oOM2JWo2NZhs3TCPgJjWG4Af6fyC7/x/k8KIJYBdr70TFY6rZd90Dx7myj71ks6a4qVK1s6lyXWd6v+P85jeWVykBkc4wjZymES2Fl+uFj+/fc3n+TK8Lb8aGaCWHzt3diGk3YVtezM17Huhto5bC88vC1pQWB176SC8DTws8tcSiietWzOwBb378Qbdv+n/cuNzKq31/gZ16aC7Ats/0ZkZDWq3p7r1R6maFXYisq+UkHtECMdlDzTU6lsFrD8V1MfQgxcj1avmz5/OZkDIpD1xenillo5SN6Xxmms/c3T3QezdTjBDIw+gFp9Ox1OjMKWe/hgJYgRQ9GoNkxmamQ3fE1R+rqorWhtY9W8v3c5ti2nS2myHN0dCKHDJ9VfxZYIYfKWWPQYIQKiEo27agMQGj0Y/DjuQncgyEwYqL1jragk0k1WhuQSKkbEiqdtQZA3uDoF4oIYpKZjqfjTYPlLLehhO1IAItJQiREDPsmbbgk1BQR9x5RXv9JR6tczhR2+AoE1ImONvAvsYbz7Id9PbkDUlKu2FXoDWbso/TzDDc4qWs4bdnXa3VchZfIWy9d8pW+PjhIx8+vOfTxw98/PiBi2tjS9kQCczTxDQN5BT5l//y/8nl5cLz8xPrstgzaBi5O93x5u1b/vk//xfcuYnR5XJlXS0/dj6d/B7kcNYMEnjz9gv+6X/xL/gn/+yfM88nrtcrwzABcD6fubu/5+7ujuX6wvff/Y715cLL5YXWlDwM0Cu9CXpdzNSmmLtrCDZo0WbO3IQ9reFGU9faWEr1BtTulxSC0x5tftj6rehVH07Z3NvowSlZLEepjWmaGcbRXVsBhXk+W/ZrDGxbQdUM2azxuA3yVHcXZ38dyRyTjeVgjW0rburmiLQN3Hd/iXjELmmvpHjiNJ/5+le/4cP333F5fmLMvyHF6M1rRULk7v7haKz3RvN6vTBPEyklTtNIDGJ1y667PxqOcNM7+7EPMNZ1ZVmWn6CuQYSH+wfO5zPDMPDFF19zOt15TEjj+fmZZbny+PiJf/3f/3fGCCgb8H/5e117f99HKYaqXZYbLX1ZO01WiPDu7ktKg63BMEZoC8t6YYyJQKKXgUt7QeXK/fwla21c18KQVnLamLLpSzsG2OQoDDGwXSwf9XK5AncEGQww8KbOdLOBaTxxHy8oylfnzMdNiTUy5C9ZNrgMnR4eCFFp+szpNDNp5Mf3K2YZNKCtui60IkGJYp4rKQVSjKhGUhp4uM8OgDVKSUC3bNdTZhhGRCI5ntwVekOHYiBF8GeVpxbsBpFmqhhuMYB6k2VA4HKppEE4PewDf6Pbh9BIubNVe+alKHRt5uNRbD8srUOtdFEkJFK2er1eN6jGaJvv7+m9cd0KfG6c7mA8q9WhQdha4XQXGE6Rqo2yrnx+Ue5OE8OQOL8ZKHXl0+eFl8fIeBo4R7iw0DOkPJp7sPTDm8h07YnQI7XA87WxdeXhbmKrVz4/bzy9wJCFeQ4eE9hQvVLqilBRRpaqXEqhyEeGEJiHRgqdjlB0ZinCtggTnZQmxuGO0ler9+VE64HarYnV2mh95XK9Aokxz2xlZUiVIY/mf1StLtljyErbKHSG+5GLbpTLzxtS/QcgtpnduGhHevaqeKcvHkNIcbqiJCSNEAdCvmM6jYzzyLffjHzxxcBvvs38xVeRKSVajTw9N15eGn/3feX79yt/+GHlh48LtTRU25Gt6b+EowBTQ4qtOzm5gU88vgowNKheoC3mfpwU4gR5tHfRCpItp80oHdjDToNNXHU3rNpF3hxTzO5hsGGUA+ndVquLesOoyqrWOAMiNgUX1ITaIaDZ+bevjDZSEHJShmyI47UaAtGxxlW60GuHnozGO8WjAwmYBnaIpmWOwc0/xSbQ93fhQFmbitOHDfEUBDQiFrFJqOGG4uGTrahsS6dUWDahGtv5oFzZUMLO2ThAv3VGQKcVPzcNF7AbDT0HpSWhBaNRhyCMkxAWpas5WqfZDLHuT8JalKVA3YzeVZq9JtVgBimrYLGc/ga0EaKhvxpfBdf7l6DKunIwBfap91bsnI4J5sE1xlHIUyJPZtiiraHllz8dVl+rt9Wknj28TzX34Yvd9/4lt7X/CilrXSmqbL2zLAGtkYSHiesNFemq6LawXq+8XC4sy4q2QmyFN3eDDTZyhm5ZeOfT7JT0fpvabYWQMufzzNoS163x3YcLP3y48OPjSlebGFo8jk96fRh2cAr+CGX9t0+OIwFOybNvv0167Ut2s6VCoxgF0ddtbZ0oti9GdyEWpxSiypAHQ4VKMUquiFOVzdxoNzo5ne44n+8Zp9lzAh1R7f7RzHTB0JLo2nubsO/oiUVoWQMTstF3Y4iUaoYqtayG0LpuWHxYsaM8nb0I7ceAw5BfP0+4Bjh6HADqk38z3tAdaQqRGKxpNpMtc5y0+C1rnpMY+lVbo/p0X0JEneIaUzZKFzathl1z1g8k2pADu3nDkBny4BFNzWiMfu92taFhztkaJd8D/BLRarOc1194/uW2Le5W3P0es+apNWuCrGG9oVz7tV3X6yuNbD5QN9mRk/v7gzJaazlQNlXLdNyNk1JKtGq679//3W+tsf38kfc//MD1crG4n2qb/OVyoZbiaHllXTeW5XqsgSLiNHclDQPbtvHy/MK2FtOGO5K66+J2hD3FxN3dHd988y15GI/rO80nhmHg4eGecRzJeeDtF1/SWuPl6YkPHz+wXK9GR+/q2nmn9Q+DIc39dd41xGT3g81xfC/oSh5t0FSLNSHqGj3jN97iKYyWGCCJeYSrrbkhW2RY6w1JmZQnpnGgts71Ymhkd8p0baaJHKaTOYOL8Px8YVtXH7p1dgO84Gt/N3zrvbuXwn4tdx3uLf5slzQINkiY5rO7VJtR03w6m+Y3BGrZfA8Kvl6sIR3HySN5jEo8DMM+M3LDsf0s2rEj0gC75na/Z/fB4J67O2STW+z3p8WFJD59+sD1euX5+ckHg4WUB95O8/Gzf8lHKc3lUtGcuFVp3RqmgJDUkwhCpFX7t5xGppzJcaSHatKqkAkk6vLE49NnJFYrKdVi3BqeMww+yDMEz+QcOCnS/Re0c70uBMkMQ2TMGTxqrWunVkEZCBFyVrYOqp2tFsY0eDxgd2+Kyl5xdi0mx2M3Et3dwY+RLK0viA/hNDQ6nexyBLpwnmzItQYlRdPz7sObXbKwF+g5mQHldVnoId6m985YyTkwzZE3X2QuS6M1GGNkGKMBW1czrZrnRIsdCQ5mAGb02tzwVPnibqZ14fli+1DtyjBnehHa2lkXJSTrDSQLodrXrWWjbY1CpfdA24RpGMjZrk9M9vUdQ8t7U0orBI0WzcWeYwyIGzh5vb0PjFvvQKJUQ6lL2dmtzp7KQgiF1hKtCZdLtsa1FaZ5pRNpTRnkhEg041c3h7WoqWDmk1Kt5uteP2HXWr2+2B2+1DOIJRhy3yXQNDCmTOmdtSsSMlGVIScIjbo//P89x893RZZ8K2p351d9jafuBa84ImTUhDRMhDwwTnc83GfePGT++V8O/PlvBv75Xyb+xZ/Ceez0lvj0ufHpsfHf/ZuNf/U/VNrS+fThSjMXIFygAhJ23MBOUgtQr5YrCjCc3KUz4m0gqg36Av0C9Qmme2SwxlZF6HVzp19bFFUDrfiGGGzygjiaKbcJqXboxeGtwZ3UstA3p+c1n0IoN1qTGEISgpKSQhpAhLZrF33BpwhDUlK20Oi6miZXHfrt3uU2DQQiMh0Xw2i5wdyn51EPBKN5Luv5JJ5he0PneoNhsNPa3ZU5VqBCqda84g5nHdi2zrbBWqJNor2xfY2zBzGXYXX6AWrFv2luTbNsEmC1omCEXpUeoQdDWsfRjLTM3drev2ANL9FiQ7bF7Mq3oj6QsJ9bt/2Bar/bcQwkQhgCaTDqeOkeIC6GOKs7Pk+zNde1KkMShgTjrgWOkIdEHpINLlp5/bz+xR6786grbP01q9v6GDzb+168KbAPZJz+77pF1EwEWuuU1lkX2ySn1J16br+lq1rO23JhvV65XK8Wh9MKUla2cqJjzrX79jGfJhsoOB2re8GTxpF5nnm5BB4vhT98eOb9pwsfny0yxJrJ7lTDftCBYKdu2iGvB3F2Vm5/c63oTlfcKU2Ob7LnRFoR2Q/0NqVkBjBOCYwpkbMtKHX4JcdMo7LY9MUKt2n2gtyLOQlM55n5dCYN4+Fo2t2saacL741sTqNRlQ+asjjDwl2RHdELMRGTZQDuP8fMoYoV3H5v7OvEKFs7NXEfCrz6UNsT98Y27EVuNPqIDba88Y7hOH8SgkWTtH6Y4UgUalOLYPMdREI4kOKUB0OoxIYd+1Ra9VVhLHbvGgIVDbVTBTaKU4/3IYtFxghR7J7vXgztqFccBtdO/3KPdV0IMZKjOcb2dqMLm342WUHTbk6WIK4vNlRtvz7jNB/I7zxZI/i6ydhRv5TSkTcbQqDWyuVy4Q/f/Z6Pn97z+PiZzx8/UEq1ptAZFMv1yna9shsa1WafN/afUF3j3dxhe102Xp6eDuaE9k7ZtqOx3em1KSVOpzPvvvjSjYPs7hynibu7M2/evj2cxu8f3tG7crm80CXw9PTI9v5Hf592diymI9LbashZbW6UYiaP+Dnc7z3VGzLaWnEHdTs3nX7ra9Xo8sk180GtAe30IyKsrd0am5SZTyeWZSGGPU/Ych5baxACeZzI42Sa1+mzESt8ELcPIXY09Ghs282pXXxCJW4k1XzAlYfRfCpiZppmxmG0IXseGFUZpvkY1tVWkSq0mgk5H7/PHItHzuf9rSvrakOO1uptOAbHMGY/9gb8MM/bGS/B9pVpmlzjbHviniv+6dNHPn/+xA8/fu/a8MCbh7c8PDxwms9/vwvvP8JRaqcRnEFilN+Orz2im0V59FFtBBGGZBrYlEZ6KJ44kaFmalVeLs/c3Tejr6uZj3U8l1nVu1jAETJrbAXReDS2y7KSEpx6NGdrBQnJXI2bQMjO1FFKMd1o7Y1Rmw8jOqL+ERzU0XaT0Xiv0x3NN5lqp/cVupKCOfp32X0v7FzMwwxaEVmIEpCGGxaKsQN8zRLEBzhQ62qySG7PfntOC8MUeHiX+PBRWBfIMZCHQMouhYjCNEYWdq383thCVSV4lNk4WQ0fog1upStpSEYDL4HrtRMGKD0iSQiDvfetFquJtBlYsNkQy569QkgQMi7Xs9qq1EYQM8PMMZGCIc4q/fDl4aiddjDN4jtRi8xMIdCb7aMp2lih1kgpwvWaWZtQe0XnDcTykGO4RyVb79CMLi4Yfb23Btk8NNRd2HEfDMcF2fX8RpXsBFFSCFRMYpRTpDcBGiLum5SiS6F+XoH98xHb6Z7jSh6aknCgs0hyPmwk5sQ8Jd69Gfkv/tHEt19k/vLPR/7iV8KvvxZ+9Y0wj8I0WnO4FuH9Z3gsjfeXjd//8IkfPjzx6fGRunxEtx3e805OC9IWtK12tWWCeA+9wHoPfUOmeyRPh2sn0pFTQuIDMT8QxgFJkaaBvm3otlFeXnyKlCBPSEq0MhCzOa6FvE9Ebkw9BEIKNr3owcKnsc+HiNOGjd4jKZOCubY9vEmMkzCdhJcXcx4u3Z0OG5wHo7uOA8yzNZrTFHh6hmXpXF0DEb3YS4MyjHaGgsA0BL54CDychXGo7NEt6+ZNLMKc/TXerixNoVTlZVVcJsHWhBwNVRkHK54+fepcL9B7IETzh6kNytNiTY2aLXvtnU+fKnHMhBR8AzTDKdVASjBNQho8wsdZ5KWb+3VOME7KQ1G2Yg3qdYXLBvHirqpJ+OKLRG3wclUuz2oO0nJDJ8vSkCjE0aZCikAX6gbN27xxEk6zaTxSEuZJOc8WlXS5WtGwVuG0o+kRklRCX+jXj8Bg64B//LOX1T/Use8PvdvszDSO+5RvlxXgDzI89DseeWKqlaaVrTWW0rmsnY+fVsoWSCEzz3cMw0RMYiYr68rTp09s68q2mdtnq5Xn5cqvvv2SNJ7QkKCbo19lsCmyFnLK5Bj59lffUHRg7SPff7ryw8cX/va7jzw+v7BsG998+ZatCWtTvv/uO9Z1oTTPv+N1Ey//P8/LXkSO04yhHrs+3xqsWwFezeSjNYuqGEem8x3jOHqWbGSaZnIeWJfFhmLR3Ilba2ivh+PiriXrrXM635NS4nz3YO+/dZaX58O8ab1e7IEtMM9vyXmw2Av25tsMrPbs3xASkkc6pl3brs9s20rZzK121wo1tSKqlfVo/mqxDDlD7YzSoR6JIxjlMu45vMH0O0NONIlmNkYwd0kS2ZG67TCn6QS10PgShHagOq6PAhBz0e1i+bmSMzFHWrHXY9uvIbTq+3BIhtZ3VXOpT4Nl57Vqr1v3qCZvZFL2BsXvDUeoX1M6f6nH3/3tXxGjDU9mj1d5ePOOeT4zjhP395Ndv7JRj2geG0bEkMjR33vvfPr4nnGaeXh4y7pu5kXgjVR3PdzpdGKeZtQNelSVD+/f893vfsf79z/y8vLMsiwHO0J3rSZWLtRmzIB5mu05qjdae4yRWgsvz0/8j//Dv+H+/sHoy/NELSvrtRwOuKpOV3VTmGEYOJ1Ojq7adRyHgdPpbDRZRyof3r4heQB7Hkc+f/pEb43lJbNGkz603l0TO5kBzFYOgKdWlxeIm1Z0PdgA0VkeB2MgRHaGm3CTHVW1gbbFalhhP7jLb2udl8uV0jpvHu4Pw83WDb3bna5tkNR4+/YND2+/QHvn48cP/PB9ZXBH9Ov1Qk75YIgcDW0QN1SE5DFRxgKx/WNbVs53d3z59ddcnl94/PyR7eWzI8bC88cfWb7+il438t29Ubmxa7u7G+8fN3TWTpe6r8buYg2JPX7ttcZ2N8Paf16MkdPpRIyG/v7N3/wVHz++5/HzR0rx7Nz5zDBM/Mlv/pS/+qt/zfWyMuTMr3/9J3z77W/+E6zG/2lHbdVMRgkEKYhswII2a0qui7naB4FEZ4qBh/lEincgiYu+QB/omvj04fcs2wvTAK1lajPTzzAm8pBJ0XbnphsaklGNM1zWTq3Qm8fxUHheFiQJpzqS04CQeNGZygjSiaGjWpFeGEdrfGqN3nQpd1kgDOgIn9Yn036mbMM2sDWgCe2JdTU6cZJA080aezoxJ1LMQCanmSndMYgCFU3VTSPF4nicUt/cgybGQHAwqdGASlVnKbTGVjvXpbDVQBwawySMc0RX6NHmUqp7CkeAJsggDBPkwWMv1RiNtSt59GHvEKiLIYylFFIUpruRp+cnrtfKp8+FHGfSFFivnaRCINK1HprkUoR1g5dLId4bc7Nrt2ujjej+F4TXvh02OFBtzPPMog3Wx2MfTzE4OzMRQvdBplH5c+oomev6zHXZKDUTkzJMFsujnkef4xcgE63aEKmUlZzf+B6/mRlkCMbCiwE0kFTpoQIrcx6oPVIbbBtsWRinCfFBTu3NvZcEumUePz5tnE6Wb/5zjp/f2A5n9o5ODnTgZhwwDsnoCmPgi3eRdw+RP/8280//LPPl28ivv4483MF5FpYKTxtsH5UPj8rzRfnD+8r3P1Q+fqr81d/B958ST22iTQ+Q2iu0AKBCvSJt8X9KINlzRBv0FdXB8o+SNeAiwRDdIGgSNAZ3zMQeIDEjee9aDY5TEXadrnbQbXcwAe02alJcn9axDFCxyVFvoG5ahToVuTUkRmIKh6C8qlCaaUXtMSAGzUejBY+j0ZFtUGuLRiUQkv2cnMSKyizkDARDGIesDIMyZDdxcgRzK9aAquKN2V7PWeMbcOMmUSQZorEWoz+pN/O9C3VzV9wuprOsbjBVDTFBOxrNFcZcrRsSGi00Wg9GG/W7r/VOkpu4vjfYsDzAIQnZr4u9DztfzR1vU1Rzfp6M7hkc6SbdqLZWy92KVKMdCr3e0CcJai5vPvkLBgugyuGKt6OJzd39YlTyEBnH6IZadh/80o8daTzotQcaubd8ejtvAMitYHHWhqqPmdQQoVI6z08X1mtFqGznyjidmOaJIQtDigTfKzo25au106vRx2tTlmVDutHu1q3SOlyvF6Yk5BhIw0SpiW2LvCyVl6WwrG5Qo2qakiTE7pPgfWr76jBAY0csOP7840Hg63zKWjfqZtmN3V2Gbxm5FvOzx17s+2FwirA4Ze7QtfnfYzKX05gtNkgxmmLO7mos4UCKZX+hIZDcrMO08RMpDaQ8HNcTume2RkIwMXpzEyDciKVsqxfhN5pld42cXdvb690/ug/nUJvu7+9R3MgqkojR3Jm129S6+YRYQiQ5zUyPxsHPe+/edN9YMLtp2e7GetyFwfaBGwLffBLsWGS0yANVu8ebo7T4a2CfG8uuG+W4P2IwOca+F+5o3C/52LaFnIyWWUpBJHC9vLj+cSMEYVkuXK8Xj5LZ0e14UIn3c7vV4gYrHEjtui6UstJ7YxxnR8m6+z40tnXl04cPvP/he16en7guV7Z1Pc6pys1EKQab5u87TXI2Q3Gn2/0rVTvPz0/knBlydq2VMQB2Ouo+2AneECOuue22N+VhYJxmxnFi28rBdhAx5PF8vuPhzVs/Xxeec+IlBnrdTC9Xm1Nd9/3h9nt3Q50QDSEvpb0yNdrvd1ur+xDFXpevM2fB1Gb0u5QcVVV/RnvzjjMQ9JX0S9XW555N3LpR98dp4ny+Y32zcL1e6cXO7ziZWdeyLgeSHxyljTGSB4/VKvbvhllEjwwSz7AuRLU01R0Ju7E2bnXDLsHZfQZ+4hz/6lC9ZWHvkWd74/1TU71Xe4T/3d53PIz4rtcXajP69TSfnfoK83RiyCNffvk103y6aeh/wUdthgrGJATtEBpZqu3hGrzYNwO4cYgM0ZATkYQS6O1K1Y5KYh4MzCnNIh3351R01Nuov81kH81WX21XYjTqa63BGWnhYEupmhmbklhXoeNImmyoiLWMzpJCw7EWT6PQNqHqbtpp93LyZixFf3a4o/KebRqjIBqo3ZBqEfNEyNGeM70tCJUs6u7fQo8DKTVSuj0jokTXuJvxobhJTMjmgNqLedvU3j12rKM01qKs1eqS/dkUI2QRZLDYyJzteh0MxYAZW3rtoP7sac0ZNCkShgQByqYMoyHM18uOLEfvS8QR2UrYlKEYcKS+B+yGflutBClsW/Fs3wDdJYdBDnpyjtnykLUSjtl+9FrfTMZyDG6Wmmk60FUYhojEjqTOzpLVfWAZlCSJGIQoypBN8rCVzWpnVYvM864mRUeK6QwpIE3YSjdg8XDKtbqjuEmWqWc8uaVCbs4g/RnHz25sZX5nN0uIxGxFak4D45gYcuTdQ+DtfeDdm8B/9Y/hz7+F//ovA7/6ypCvIJ1PL/D5Bf5ffw0/PMF3n4R/89vGh8+N33238fnTyvVSKWtE9QTM8PDWX8DuqOli0bp4XM+zm/c0iKNxcGVD9Gqaz+nO0eTkn7ML2/ZCDgz1HTIyufMo4kWeO/hisT29rMdNHKIVBardIi26on3AcmSwSJoKfeu3m6k3ZAzEwS5kqXBt8HLpBuoGIQbj80vqpEGYJmsy90KvaaAhxDEzjGb8NA/W9IbQSVm8ubOmNu6GVh1KEV6uahrUDnMGyfZ+WrfmNCVrhHOCjKARtmLFpyK2qVXoJaCYw2rdKnUzQb1Yt3Mgf+p/lsvmTX6BNCBpIGf7sq108hiRDnVR6moNz3xtpMF0Dtn2PHAA3JyScVdApd6rueklYRisLqiORvcOEq0Y6jbGM510abRq4p84GQV5XYOFmEcz/SjNUOxGIAVDiLcG3Qcc0ylzd58ZhmC66p+pAfiHPF5rrlT3Ah9+whE7DrkVcz7MArufzZy7U5qZvn36+JmXR2g1cHf/wnS64+HtVzzcnxnGE+M4Q+tceKG0RnEd21Yb61p4fHwhh0pSZb2srFvl48fPPJwTd/PA3RcPdA1cGzxdKs8vG+tmObK7A3aKkUGCDzLUi9O9ez1a9uPfX9ddr4vYw8kcZVsXy2hcl6Po2htbCcLpdPIm/mz7kBeIEiIqluDWm+mMdkOpPI7kaSKlTG2F6NrUYZheFYXGUDnMVUQYxtkaSwLTfLImOCR2qvMOj5kRXjId0npxTXCjeS5trYVezdhHYnYaq02GtFWb+jp6rv7aDcEOB301xGBNdNi1vGb+0ZsZLxW1KLcgkZyja6g6S9XDdbar0TWbI0rWf3sT4PTLuBemfi7xgWRrbSfJ297q96d9rlLqZhotIMTsD3QfXIqANtpmtMUUMiqNtu/V/LvWwi/rqGUzB11wE6eNp/aZ6/WFmDLbeuW6XLhcngFDYFNMvHn4wgYQKTtFPdC0+UDFfnarhcfPH1kWu3e+/vY3h3nUPM9o71xeXvjD73/H3/32b3h8/MS2mnNtyvkwSULtcZ1ipO9uxtqZh4nT+Z6np0dDYbtp5ATl6fHRBkVO0Rdv8myQrkDz4YoQs+k6r8sFQiTngYe7e+7u7plPd3z69JHWijfnEykP3N092PPPm56P80QaEuvLk1M/rbDGhyb2+937wuUOeRyotZoj77ax3ytxH+BFy7fdB4W021Ct9866bgyebx2CeWM0VaQ3Ym8cuhgRdumHukHi7ny+bSvPz08M48T9m0DMib/727+hlI08ZIvZubvj48cPB+NEXIs/TCPTNCIilLoRkrlqp9EGa92jn1ot5GBRbOp0dHF9c9dG7+ZgWqvtwya9uCGvx5Dj+NMb2767d8tPvnbXwx77rw9Z9j1QRDidzmZG50XzrueNMdJq5c2bt+Rh5M///J8QU2LPE/8lH2tVxihMKZi2VCstNZoMdM3UXindWFLneSZJoBPoYuZK2p6pdaOT+fKh83wNbC2zrK41jZByIGfPcC1YzFZvDKmRU+U0nMnDSK2BnOxDVx80gqUa9MildDqD7fc0FNvn6+KRXyFCs+fDmxNcUS61+mDEmrYhmg/AEANBsmk0mVA2kAtjjDRNsEV73hAY8kyKAykIZVmJsjFmCJpAIjLM5KGSh81ZOThTyKVQvVs9HCHNyTKli0UM1lYptdB6oWnn+QWuy8haPA9cGzF0csrESRnnwjAKQ/YhabDG8rLavdZFfbAXqE0ZQyDNI2ka6Booq5LOiRRsHUmMxCnRtwKh03rjum50IsOWqDV4c3uLMSrrRq9CvlyIkyAka/7wyDAgSWTKI0k6nQ3RQpCBEJIZv2KxcEN2hk7PNJ0gJO5O0KhUKkjyer/T+kbQyJgGhhhpKTCNA1vZ6NdmiSgRUmgWwadWm/cKosqUjc79dLVc5K7BPHncIXkrK6WZ4zIh0elmnLYZLfvnHD+7sf0//TffMI3CeY58+U44TfDmLnCehXmAd2fhNCnnSXlr5sSkAX77CB+/C/zVHyJ/8z387r3wb/6uc1mF6xYoNVsodJ1Yh04LHU4+3bcnwSuK5CtE6SdOx3qrzPcHwTDCMCC7w+NeifsPMd1CBMzm1gLUzYQjRKMCgNVAe75qS5nuRkfiBikCVMKhA2qb3ecdccgw0kuBXs2FGAtPfXrpBwqzR/RsFzM2sueGHP2hUUqE2s3qP3Q9qNCtCcvaGAY4j17Qq014Lpu5DI+ipCjcTZHrakZS2p1yfIGU9aASv27LmliYNtFuytqE61KpxbJlcVvzeq02DcyCjMm0ckUP1mcckjdT3YKYe0PaRt88tDYITx83YoTxZOYIvSlPz0LKnWEUziefIgYsiHdTYlPq1li3yvYSiDmSTskfkDCP4hNJu5C9KrqZxsHC3F3X3JU8RvIo5NGa5VqET598FmKsM2v2k9qwIcGWBO2RliZOX3+BfnihPf/yM/NC8zgBbwjtH+GgI+zkO4+m2jWbZl5h0/KmoKJUlNKUZW08Pb3w/FhpxWjg0gvv1ytlfUvvX/BmNHru/b3R+5Z45fP1wuWy8fnzM1Ea0yCchsAPHy8sy0YvjSWZ2dCPv79wLcLTqvzNdz/w8fMzT5fF8s5a5fHywjCNDG42cpgYORW5/9HQ4YbI8Ef/rk6xKU5JvdEJj6/phjjknM38KUZaWQnRKNuGhnV6LSzXF/Zojfl8R0yJmBOKOJLWHMmpNreLgZQT22rosNX1Zi7VHTWKMRwIuG0j7oaOmXWpBMqRR9sJTs/tdUNQUoyEfLoh796oqxtb1Wrv3xpbM7nZUb4YrXiPyezge1c0BJRgkW4+VdZWDFUIkdrt92sIiFRDVpvHbQWBXu09pERZ18P9Pfj3x2Fkz9YNMZIZEBFzq973/t5oTp+OIUCraLAssJCTa2iVbXk53od45qbEyOCxJsUpp7/04/PTB+KLZUTnPJHzwPl0d2hBf/e7v3YH5MS6Xh1xjDw9PzEMIyklvvrqW86ne6M6FmtmX54e7XHZGqWsPgSwXMGrXg3lWxceP3/i8fMHnp8+m9bRUct9aBFjJDq6Pw4DIQa7txyV3FbLEbZi2Pac3jovT48IsC4L9w9vUIXHT5+NqZQz4zzaoKg3tuXC+x++41//v/9b/sl/8T/j7dt3/Omf/ulB6TeUNhPCwJAH018TmOaKxMi3MZkh0TiyPH1m9eiY6+XKtm00l9PsOuWd3VJWK5QlBLIzI0ozRK3XTkiZ3VSzVmeV9H6g2La1CiFmSjeTr+ZUylbN3Xfb3OgnerayyOFynlOibBvFB7O1FK7L1fw8JDBOIy+Xy+Fn0Dy+a+c4pFqZ5y8Yx4FluZLSwDiO/PpP/tS104WXp0c2p/zncWKaRk4PbzndvWGa79iWlVVWYohcLoaenuYzd3d3NjhxpA/w4aixW3rPzq4K7Pr41w2t6YKV3i8Hmrtn1w7DwP39W+b5zLt3X3O9Xvzj6treiV1W8OnTR56fP3NdLvxv/tf/y/+0i/M/8Ni6oWktwEMGciLHE8+Xga0kNAoRY9jZuCWjzFy2BXQh6IXARpTEEDrzaKZqyqPdV9mQQtyhlpCQNFBX8yTZtk7mSgyNlDpdKqXbc0JF2arFXjaFpTSjzGrjcv1AF6WHwLZa7TPOiRysaR2yDT8amUkjdVO2y8r0MDEMmRAgh0QKmVKTsxUTXU3H/fY03VJEMKMV0UqInehxjTEYkrwsjetL4fKyATsrYWBrhdIqpfvwO0fuHk4Igd7UXKKHwN3dxDB1QvJondI947aAFOLQCGQboIpFhA1T4M2bxP39zFdf39Nj5boUPm+d2DtaYL1uJmccIlWtttUrpCEyz4l5FfJs9bNmaEmIWWjaqB1CHBjmxHwXmCbLw42uxTdDuUbt1fqDqyKzIj3Q2kKgcRoC59Hy4hMbKc0IE9vlI71cWF8iU7wjZiWnC5obNSi1TxZB1YW1AUEJSWjtmS6FzInzODNEyHlCRRmGAKETo3J3jpRSuW6dx+eNxMY4wTx1YhEexbwwDKHu1of50Ew0QEtIyISopDhYvdT+nhvb/9W/mKzonIUv3sI8wv1ZOE/KPMDbk5nq5Gho1rXCjy/Cv/5D4LvPwr/5XeBvf4Q/fBR+94OweWBzjtah9RDQpC4g3/m+ex6pU1Ne88P2v3vBeFBkfFMjJlTiH/HJXNMTblQF8YnCzsPcXXL3Igifuu7ZkOLGTeqi7r25PV6LAQEcmZ+4W2U38bz14sq22us1Lx4r8vpWbedKwlaMprA50Ny6ZcKGoCSfvuFud7UpsXnh7bC+ilCavR+bxgjZZdDu7WIFMzf9S+hGlTJE20gEDqQYOtcUVXHHPq93ur32kCAmz/pVgfCKQpkDqUc0qGkUsAF463t+lulxNNwycrWbo5zluhm9OEU7J60prXZ6N5pz3ZS+NUJWmhrtK0QYQjLDjN3h2G6BIwbGrpAefdwu4Tb2uFGid0aqdqVmqMleX85CH11DkBLzuzPbWig/M2frH/LYC6vd6AR8zcku8ffBkj9E2RFMRxsPytiOI6gPOLwZKltnWS4I0PRC9/zpeD8TxGjk+88KwYZC61q4LhEhkmPk5bJxXTaiqg1eRFloXDblee08vVy5XNdjetl657qslN4pPs3Yf8frjNN//2EbwREZUO0BfstvvVHsjgxGL8q6609VDJWhmsvrjlTJLn0Q/7vaeosBd68111nRnQK2OzvuCLLphXYa8D7EC9HQFkR+Ujz3Wr1grnbP70H24EiYI8HuIL3TkXd0+dgDsf3jhmT7QEDkZuJEtMYWJwb7nrzfP3rbYK052KmR0e857ZhkxF4PTjcVp88ZYqOHeUSI9vBqfu8dr6V3f92OAKvd6BLc8Kyr5yIHm1Z6vBNiVD0Fz9njP+Ce+Yc5TIfY3aipOSVzRqqtiZeXJ4Y8MgwjV9dmG6UvHLE99/dvrCnd82hfUYnFp6c7ZVkx9KyUjWVZeHr6zNWdhffh0fFchYOyHmMk5kxszQbAbvhTy2avCZOv9NZpUs0UK1jk0jAa9f5gSIiZyJi3iF3fWjaW64WcXVd7d39op1OyezxEey3Kbf3EmJimmWk+MZ/OnO/uSU6Pbh7n11tDakNc62jfG3xv5PhvCBZFtQ+IvAHuPnR5fV6OuaEPVFyWa/dvsPd6vVydXm7Xek/dDjGSBmvESzP93utBnLmOCzkPtie3ffBzQ053U71bJqw/71SPgUdriTwMRvEWmObJUPDzHcNoZnXX9Upr9vsu1wutVYY8/MRwbGfH7PeGmZCZLOC1W/HryB/7+v6Tz1uj29m2zQfXiYeHdwzD6NFOH/19j8f7u14vbNvmfgK/8CPi5qLNzOBCp3VhiAnVTA+QJDDqzqowpGurG9oXplSJQcnSSLETungDphCVlALNGUpWlb76vOJATkNoznay3NsYbc8uVY/a0MxTzayz1Q0NgpIIVBvWiBkR5SCI7rK6xBghxM4qDoS410EMgRwjqjd2mDaIIXKeRpMtdatz1Y1ggxitWKTvjxRq6dTSqGVHMzgGlVtrhyt5cl3+NjRS2o7v78czB9ifZN4DhKCECWKVm0P3GDmdAlkn5tPAdIpcakWjMMwDvdiwr5Z2mLaqgyTqbsJN99gfjmJzJ6dqu9VX4ANgN2JSXg2EfKDdtEO1Zvz2/FWP5wz0aOan5pifmIdAikrQYrIJlCF0JHdahGsJdKINobuZtFpvsBIUAicbKqSMiIEewwDFZS85GALbu0UJhmigWo6BWq3+VBUbfHT1HkedoWVNibr+0fLs7Wt+zvGzG9v/6/85+ensFHWToQ5D6uQE92erR2qF//77yN+8D/w//irwL/8m8MOj8PHZEL/eBZI1UzstAMSMfQYsQ7Tc+pDenS7Y9RWc6GfYxsrHF4ujuForum1QFBU3O4nR6cgRiZkwBCRA7AeZzYXgQOss22qZbx00DmhMaDPqgl6ruZwFm7hqNUemECPSLSuS3lEJRo9G0SAQM9sibNueCWn3copOpV4qOg4ombKKCeF9ymbGEco8BeJZmCZh2ZTrqmxrYFXXAMQbCBxjQBPMY7SpSrxpfM6nwDiYMVLOtnFtBZ5fOlvDBw9ewGOagK0q05AIKGVt7Lo+CUIaAnmIPD+7aN81Rsb8E+bTRHTtcegVauXxsdHR2wOwda6f2rEj9bpRY2BNie06kXJknoXlUqlF2TRDNSpav15tA752VK0gKPNI0N10zJGmMR23T3dtNArbC7QtUDdrlm0j8dtNoS+VkAIxB7rAfIJ3XwrjbLTwr//pVx6d/MvX8/hMDLgVTGC0FME2yuBd7+6GutNND0t55DZXUm9x1Sg0a9n48OkDIXxiXSvD9wPTNPHVF1/Z1P88EbEBw2megMBlqSCL5dZp5tPjC5dlI8XMpRbyAPPdxHVtfHpaeX55YdtW5iFTotpURpTL5cLj09MRCZFzoropAXA0Osfx79gnTY9TKdvKcn1mXa+HqVT7o8LVUNfmenwFj/IqpbLjp933hhgTpWyGlu8oTAhEzLRqW1fyOBKCO8buQ7X9/8UiavAmdzenGceRXQPTarN1B7TthVJWtvXqP0uNOgwYI0TcNMyaiNYq1Y2lerVNONgGdQx4bGpnpZHp5xutboaGYdp5o+7bJF2OQYixSYI41blZ9qzhENG9EZzWpd1RaCuuY7SJnJDor5gsIVjx3B3d7ZjBW6sbPVnx3FtBiIQ4eGumx72rrqeXfVDQ+9Gg/TtvjF/YEeNwGJoB5CEzjiO7q6zF/TSW5cpyvYJASpnLy7M9q8RMpMpaeH5+pOwo/e72IIE3b94xzmej2DqqulwvfPr4gd/+9V/z+fGRdfNIphAdPemu35KDSn77fksJ0L7RXXumCsuyQO9Ub7qX65UQP/Hw8MCyLI4euxP4XSKkSNYB0cowTUynM7/61a/51a9/zf3DPeu6UkrhdJqP4VcMkeaGNPs6DiGS8kAeZ7789Z86W8FybK+XF8Z5Zismm6iepxuioyTVBl77/ZRTpvq9rb0dOrmcMykn2qU7XX5vUu28wE7D291OOx/fv3dPg2g/S62xnk4n5tMdX3zzLZ8+fmL5/Jnebf9Yl4WOElJkmk/GvqiV5XpxKrTVFKg5f3/6+IGY4jGo4PmZr7/+ljdv3/LlV1/z8vREEGFdLnzx9Tf85je/4euvv+Z0PtN64+npiXVdD9q/ORE/sEs1dn37rg3GV9/rWDLgGBLuf9/Xnoih07v7dq2V9+8/Ul0P/ubNW0IInE7n417famVbrtSyUUrl/v4tX3zx1X+K5fg/6TjdZ3JQgmxM6QK6ci0bp/ktUz/xqT8zpoykAV02Sq1srfK8PCP6zN2pMKfKmIQcC7o1rmug6+rPDWModo3GnBVFEkSxqKkY1CMMO2vxYQyBYZyRkLks8DB3Ygycpsjj5fUzygY95wkcOeCchDEKtaxIiEzDhI6BGjtbrOa5gdCqMAyZ0zCQIy61i9StEELk/jSzbsXeb9p8CNeQ0BFpIJWuhdaUZWls2+65YWZv1+vC83qhakOj3U/zOLFMjbo21mEz75m18vHjxUyvojKM4ZD1BWmkSTnNA/Ux2pBhEN58kbi/j9yNX/L5c+G7PzzyuKxoiDx880BkZZWN5boxdHUaa6TXRt8qnx9XllJYSmRqA6Hvax0UG5h34LoWllUYVihbp0dAOiMWdzaOI53OWjeiCKlC6jaMDg2onRQikhPv7quZp2rk7WxNm2ojhcYQhPMYkWQ+J++fBN0StRnVex+U1XAlSifKlwg+eKlCCsrDqfHxeTMT3RoN8W57GgyoRFIYiKL0WilbpOTAunaWa+V6qdzf3yFE6yddhzuNd2xlpba/5xzb/9t/G1zyEVmKUpqwbBZHMybl1++MyrpV+KvvA++fAn/7IfB4MRvxadjpBDjV1DSN+yZvej1nC/v6AEWqTziCHG5Auk8kTHDlSJMaShtALLfHOu1tgd7QtXj4aEKD5yRGcaG5F/Bu7S09MvSBXgLtutFfVtrz6nRjpxI0o/T1kPbRLck1KzZMtuJMEqQ8EIK6MF+o1SYZPtL16TBoGuy1ixBaIzQxbspoLrzjoFyunbJB65GtmBlUjrgmyK6BNFuQmm3SstbOVoEuXBebFGlT28wi3D3Y+ahd2ZrTdzvUxWN5qhIGYR68eB/g/i5Qlm6G01mQBCqdcbACPIqYw7MjKkcjJRDHRD5HCpVSjE7sHTBN7OFvjrAVsw6ItK1DVa6lHchQv1zs8xKQZA2u1graUFHaKrRmNPBWKpIH4nxCXYenAhKMikgwM7EuQp5uqNTOGCAn0mANvNKNxtzt3jY0IyHDRD7/8jW2t0xWOUxDxPUgYS9GohUY8bWeUgwZjMGdG/2axhSY53g8CBRYS6F35fKyEuNCyle2UhlHa3Lf3t0xD4kpRDpmhDCT2Yry6alwKZ2texh9TPSQWGrn0/MLv/vuA0/PL9Y89sZaG2upqO8vXc3x8IZI7JPm4/84EIzbX4Fbw78b8CzXyxH90/sNkQFD+LI7EIujvK3u0RqVlJPRZvNgGpoY3Xa/U7aVGBNRI625Rlb2JssGCTs7pNZCCqaFSXseF26sFCwA3VyC1R2D1QrcYLEdOvSjSVZ/b9o7RHGEthiq7Do8O19ymMgEEXdltQ340MXVjd5Ne2vFbDvQPytsrbk0RKjfTvQ+8a/lkBKigejZsoo6/dMmJ536quG8OTnvE367pJ2Qbo+z/XUba8cpy3vU2o4Iayel4Rg6NLWQe9XKHp30Sz7u7t4c0U+Dm5eFlBg8js+m3fZex2H0Bk9JQ7Y1jRmjff78wYxpug1ETiej8cacePvmS06nM/bgtb3iel34/PkTf/u3f8v1ekUxExjE9uKu4rEdFpET9giYaSQG8e9RX2PlYEOYFlIP078cAlsppJT55ttfu17Woo2Mkhv54t07vvrmW/7kz/6Cu4cHRxmbDYpc+1pKdTOtcKB+x5Cq7+6pibuHdzSP3bi+fTZUtJQDUe1OFRYJPD19ZltXQgoWUdUtZ1c8rTMcqI+ZmO00fzPPsWFUSkbXzclQuGmafago5BR8PynooTHH2VKNUk0TaCwZazIU9dGkZUSe7+6IMfL8/GSD8d7RV/9rvflwJyDNBlsfvKF+98UXvHn7jjxkPv5ocoT1uiDcBpzz6URMiW3buM8PDEPm/v6BnMfjHlVvyMXfu/g98scRP6//vje3tZmDNCJGK3ck53Kxe/5yefGM4sy2rVyuC08vz4yD0c6/ffuOaZoYPE7pl3yo2KBujI0gL5jWdGPIgEbiGv3eANJohjub+VEE8VjIaKhtiILS2NrCbvA65oFEommk0N3LxZInJAjjYFKrILthoaGDXTOhJwST/Yl0Ih1xicuQkoFTqREH09dKGHkYIoMon16uNMloUObpRGuBGMWkCcFcgKexMMTu+s7mqF0iSKYWoWyNUgs9uQmaNnppRPeRaVuntIoV/4auxhSOdVtLo/RGmJw1EcT2wGRSpZR9wKRGhZYEwxQt7URgLRua7HlpplrCOBkbdK2d3/72M58fKx8+rDBG8hyQHBnOI2jk+flqEZeqhzcLwOXFUO+7L2ZCiha1FMxMpuoeVmpyJd2ZpAZkQhRq6YRuEWlhnzyXDppIIZKyErsQtsT9PKCxcJqvtl+1xpgjxstciNmevcN4Aiq9V+bU0Wb5spdwA0RUqw/TXoiiTDmQY8AetYUhNbo7RdvzGrR2jyoSRPaoUyG60WWtnVJMHikhkiQyJtMnd1UkJnTbqPXvGbH9v/+1IZwhwHUVSoVlgxyVKcFvHs3Zdynwu/eByyI8XU3wLMDgBowKFFGa2Ena97emYjCw9wW7UZCHax4ILjtlxz99FDnsMD0c+bW92cO9VQ8n9QIsGbIakqAHgqG3IglIY6IH0KXQii0ke3HWAJg7lD0YJZr+LcYdQt83BtuI8pjM4XgQ1uuubfQNvO/ZsgIpOd1QiJjw+qgFg33/5dKp1R18q7kIz9kXHIIxqJxe0kyTu1VFGxazs/bDvTgGQ3njGO1BpxxuZILQa6dunbYpU7KbtzanMg82DdJuk+eCL8boLs3Rrm07RN9O11QgBuIQyDOoNOpWbUHvh7yiNO4P6mp27VoaYchG+SwrEjISTfcgrm/aaeut+vSkFvp6RZrpqjQOpgkMnnkWghUPjt4kp24b+NpBzSU5jxZHxFFM+6lWo2DHYWA4/WfS2Hqntzdy+3BnLzr2FbabtOzut0FcNydeQomdw3GMDMM+5RS2agjLspo+RRbLaMs5M44zQ4gkmTnNhtjsplulKdetUZqh3zEla1hiZm2d58uV9x8/sawLrRm15bpVttrcvdHZDa0dbobHbiE3l9Zbm7TjCP7fr76mtcq2rU4T9izQfqMhB9mjLaL9nMMAyQqvmGxosgfHi2vH9jgZ4ZXLKxw/c6f77teqd3eTFTFKjniR7BTasr82teLUHv52Pk1rbCwL9JZLu8/kjRmxux/79/np2FE9gZ+K7/3FtWbUx8OQq+vR1KqqUzRhpx2L2Kr20YnraLt3AXavpRjpZKQ1VKufz04/aNC3gpjjwWk0KTnOnWPcPp1SMIPBeNQU/s36k3OO5z2qqu9Wr37XL/CYRkcje2MYJ0e3zYDMTN4MAVB/TrVucUsx3QZU2jvbdj0GfNFzYYfRtOr3D2+YpvlonOiWn/v8/Mz79+9Z1tV13+JUOSFq9GfgjbobYySQnXEnx/O7HVRZN6lRG2BKCMTWKVux6KKHey7XC9tmX5tSZppGvvn1b/j6m1/x7a9+wzTPHhtkJldGtx69ga6+1rpHBu17haGJIUSm+WwuwDFxd/9Aypl13fz+3GmcNjDp2lzDa0M8a2rV0wPs2WLDJ3f99bxmo4DJsbbU5QehB8+H9Tl5lFesBo6hlx07umlDKosgs6HA/lzqvZNyYhwmPyfhBgA4erJnZO76ZnOkfmQ+zZRSON/dMwyZ5fJsNfNmTtvBUfhhGI/1dXd3x7QPV0L4t1BYm9spKcV/q6n9dzkgA7fM4qCvGluQxeqBddsOF+ZazcX76emR9PYdcZ55+/Yd0zgdOcG/5MMo8kqODWFF2QihkaPVknHj2LNDSEbF7YXErbGNoROkIZJR6bRejsY2xmjPbgK1mgdJirZnRhFiVJO5+Brfm5De7V62UqhCd4DLgaMUgzvnNoa8+8NE5kHIODNDoGvkPAW6y9WGwairHSHHSgzm6g6d3vFYwWimrdVy1zUW9li7ptWsZEOg0l/RiNX7FPNO6brLGDq42amym7xZ47rLFATPgI8Qs2XHqii12sBAJRJzQJIBHMu1UWrnxx8vPD11Hp8q09tAGAWikKYM1fPa9yG7YEzPEChrR4IyztnOEeaVofTDW8MGUBwN0J5cggi9N1q3eC8NJm1qWtHuddpuYaOBecxIyoyjjd6quuxJFGRzzG8ixgeT6QgMUSlBXR15Y1KYZKnS6kpM0T6iQDDWVAzqPkN2COIpJnYHWz6tK4EkgPp1bpZAE3z4FZOt85upnPzs1JGf3dj+9vf7g8cvejDnresGnxW+f7Qaxag0VljMw236WrvRinvHco4Ge5HOIrOsrWafLxWPygGJhvQ2741EjUIhTvhuTW6fx39Z6755CzJNUANaBMqGrgu6XgjjSB8yRWd2Sl8t1Qu9ynDK5iB4nsl39oDK095wCWV7Q6vmBNzdwEHdiEibQvdQ4gbToMwn4c1b2LbAtgaWzd5r65GyKmVT1ouaID3A6SSuP1OuLxZiXLKyXGFbhXW1gl1EDdHNgWmEZevUYj8r9AA1EDWwbcrLpXN9MfQjR+WLL0amObFc4bp0lkU5TWaeFZIwDNYgb1ujaIAWWC52xwbgdG8bxctzMQ+vqvTSISqkzrsvM73D4ye7eL0p2+NKvQgvSchzhhzsGokj8V3RUtHekHJFYmanSoqAeqRHkE72gGfEdHMECHNAmOzeKOUoo0O2TSlG4JQMBXTreAlisQvJppYx2sc0cBRrNtk29+nTKMeQ5nXW9BdfzegXw89dUv9gR/OCJnjYsnjBY0isNw/7+5ObjjSETIwDKSRS7KTYiJKYBmXMgV//5o5pzAw/LLw8b1yvG+tqlL3aGpd1JZXKtha+frg3O+/uryGb6cd1rXx4XHi4OzHkxDRlpvMdMQ/89rsPfPj8zB9++ODZqrBshafL1ehKjv6AkYD3Y2cJ23/sf7xqlJyaLHprcqzQAEs5NrrO0TB6kWYbWKOs66E9nuYZsCIw5UxMiZSy0x+b50Y2R2yjNXM5450YMSVDaZfrUXimPFisTxqQYDELRCOMtt4pi5k8oWpRCGpT3G6brhkuJUONpVcfAkHAtC11W6mlHrmTEi2HN+Vk1Khqe4b454zu21iXiwW7O520aze9vUR3dI20thkdWDiGJNFz7mK0YVkOwpgCIu64KJZ1GNNIq+XQKSo3toEZ+XghoKZvDmIuzeMwEWJgrRt5cPRIm5nOOf0Wfw/bupFSh2E4dHy9rqbbf1Vk/xKPPIyuje2Hvvvu/Ibz+d60js4e2LWptRYu1xeW6wug3N8/HCiuhMiQR+b5jruHe8Zx4nw6+1BZWbeFbdtYt5X3P3zPD3/4jh9/+I51LW60UsjD4OwkwwzpkPNAGrK5rW6KVGNt9G5NYF2tyTR03dkW20YpheW6ELNlF3btrOtiTtAC33z9Db/+kz/hf/d/+D/y9t073rx56xFFK8/Pz3z+/JlSCt9882tAyDk5W0IPE6JxHD3j15xRUTwjFr74+tds28rj4ydqtVzFvYEPQfgyf0stG5cXM3mqtR3ryLJt7c+8bdRqOrvyZNrd1jvt8cmo49PEl198QVfl04ePdM+rHcfsTXcwLbw3g/PpxP2bN3z7619bzVKLZQe7/CAliw97fnqmbMUREUNjrNivNzDBr31Qq2kkRB6fPlsUTK38b/+b/z0PD2948/DA5fkRbZXTPDNNoxngpURyRPY0n5nnmVI2RGygMY6jUzmPTfcnze5rM7992PDaDXnf/zTc/j3GaAO01jx+xhqXnLObTplUIgbLvgV+kqf7Sz0EJYXCMC70dQFtnIaR89AQWfi0rqwq1Cr0ltFWSfpCSpUhCw/zcDQGxeU2YzY5R3AGYw4JlZGnxUCAKBshmLSltUItgaCJUnyooA05bdzPcDcPRvlVGKfIUJSi5g+RUiUPK1O2IUzrlSlCRhkmDu+D+RRNqhIa0s2LJKRG10dKW4jpz457cRoyQ46kXBnqirBSQ3AJX2E+jeQEw2j1RUiQp0AecPDBWEG1NU6zUXqLCNtaICxmJijGGLH4S6sNh9G0y0sGgulWQ0rmj6PCF18+EIdA1+/5w3cL3/22sD6fKcUkBrUYkLOWyjxNpGDmc2UrrMuKBiWOiTFObOsLKDy8HdhqZ90aWhMqheIZzh2oWti2xHqFl0slj4pGiDWBCqUUqxvEooVsD4KQG6lBCpm7OBJyY84PhJYJXSndY8b6xpsYCNLYtKJtA7WhYK6BHDqjbDQVqkZCNx+QVlfO08D5FFAK29a5ronePHqIfbCsrLUdEaRbL5Ru8UalVsDe65AieRrIKFUtiWVrhaKBlE5I3Idw//7jZze296WYwLdBL8lg+Ww8egmwdYPNe4A8WJ0WxQrMrrA1qKImYMckpW2n+Fi9QYw7p91MFDRiTl96i+VQMCzeG1up3sf2V3o/ZyEbnCYYH9hR3d5Bndq2bUa9C5ZbW9twoHC1WHwOCuRAyEKcoiGtHZBETErNilZDavJg4cetdTcoctSydJYXo36AUySqTab2pCJb5P4RQOJuda/2dUDdoBVD2fLAMb0I4tNxIjn4z2h2tmrtFoJcoLbAugW0dVoSLgtm6OQmUili0zx3jgxJyASSn+N6UdpmeXaSxY1boGzCtraDLiwCIRodRFVZn4trqQMxmRamb82GGkR6s8mZdvHC2ZuGYAUzZYW6WWEbk02pgrhba0PYDJGNgsiAJDuJkQhpRMjENBOHRJ5GwmiIbdVwFNtB9NbYpptOGY4ZievCjdFuwxoxDH//fAq3h/gv+Ki9WfOBm0g4ChGcLRAkuPeZD4fcFXlHJ2NMxJBJIZOc1i0S+M2v7rk/zYzDhd/97pFSKsPgbICut+UYxULGWzdtfTKnv+LTqdM8OsUsEVKmaaBsjR8/PPF8WQC1KAKFurubeSO7oxhB90YIRwusWT/QD7FhRh4iKdk1q0VdQ2y62ZQspqa/eGxFaY7w4r9rL3Y9vzEPB1sgD4Nt6qqG+Lr+uJV66FnFi0mL1ekHFXhnloBNnlPK5DyQXTcsQW7oZlfoG93RKMtjDYg2oggazYV9R4GDuEmSwpFTu5+kHRPwRt+yQfcB2u0+se9T9pnsH+dPRjeH2c2ozNDmpqdLMRq7ogVjf4gzBhzR2qUIImLZ42osE5ssiTvKqg8s6jG8souj1FZIks3R01+fhMgOeLWOD3Eie9xViNEMHgRqSKCFnz0e/gc65vnO9d+bGTip8vj4ydbv1AmSbJDgQ4qRiWk+m0s3yv3d/SuWw+0etgzgRgyGftZmsTbqkpJtXQ73YOUWh7OvvZiTZylGRybDMa0/4mrEht5HE6P7fMlzM3cJQRBC2bhczFk8xMAwDJzOZ+7uH6ygQ0wX++rYKbDbthxDp50Ga+jrHruzUjZDPFO06J2YEl2VmDvDNBNq+/9S96dbsmRJdib2yRlU1czc/Y4RmTU1UEBh6Gaj+xX4JnxlDj/IXiRAoFFdlZWZMdx73d1U9QzCHyJHzW5UFhC5VrMRqbE8rg82qKmeQUT2lr2Nulzv5m4IxDxxujwwL6O9YLfe21J5eX2hlkqaEq8vxi4RF8vR4/yaKxZ3jLCV2Lbhkz0svjjmg4p5iYYYWa9XUko8Pb3h+csXK+q5mJj4KlVKoRZjcERviajVFMcV5Xw+EWKy3lxvXBcsCX54fGI5nZnm2VgiasnO6XJmXk7EZL19VpzDqKIvdm1yzkxTZqgT34qHX3vbjv747r3AI3Ed9y97i8d4LIwk1XQ98uR2STFyOp2pvfG0vuF0PpnAlQzW1y+7QAWQxXUtaKRk48TYPa90GhJ2pEW0R1+WCjkVpsmsGQORjtmnCApB3SLRVAwClRQ9Fu5madi6Ja+9w7oWptl8o1uRY99HAq0HXjahdCVjDhU5KTkb+hdiJ4RCCOb6YTVaswGCgg3iZIKi2smpmxWmKnV/JaSVFHeEZj3vQZgnYcrqSO7mKPZkOQLR/Z87YPRoESGmgNWA1Is2lhiIw1GtCdtW6AJP54mYbC+9XDLLKVJLRTBF35S9F14F7SaIdT6dWGunaGG6VBQDVZoOAU0QB7Z6VTTf2m9a7+zFtXlE/PpbItxLB22E0Cjc2gXCDHmG82MgzUDgmKfBgbhDaBJDcjvWxlNrpbJjRBHhPJ9Ic+Q0ddQFJbUJ6p7DKZpqMt7P3zv2fReaCik2xBNbQoAenYljOj3XWr1VIzorxOIFMREPjjANuG6dvQhNh6PDiDntmgZsjSjNPG33HtBQjgLszzl+dmL7re7UrpQCrwV6DMQO57MZ+z4DTQI9CKPVSfvonTVkMTShCBaEYYjs6KsN4wOC935ZohMrHB2acksoBnYvQQnN4PrWBmoc3KYCj5ii82eTn1SFfUVLobVnxL2JasMCwRCQreNMPxNCyoGQIagipUNK9OQCSU0QVU5nM4OuzRcpVXppbF8q22tn24ybn6dA3Zpb7DRaF5RAnCxZDsmD/9odObB+ztKC9dMGYVqEVqE3o48ENTR78oSsYurBtSibWFJbe2DbIr0JqcGXV6vunc+WuMwTXF9skw1gfrBJmHrk5VVZr42s3WjISzRbn6rse2B7KdS1GoUQK3LUGhE65bqTJkymfMnUl8r+utuaFzLEiRFUW8V8TNNsyrL7BtuLBQVpou6uZioR0YJotb9HS8ZDDlZVyYkQzWYiX2byJOTZrqGqct193AGoq00nq/gpVqyJvrFaW4M6zdqKMuoTFvCCgiPCv/Cj9oax5oNL5nvSepfYMlj1DLEP/4qRmCZSLaSYTbURC4r/6i9PbGvncp55edn4/GUlT4nufeTiFfuY4tEnJjHYuEiJbV9JMfD0OLsVQERjMnryVvnN737ky/MVs2pKtKbsq4kJ/LTSP3qfB0I7gmr/LSkl5iVxfsgsi/3++toOhGPfC9McmebE7ohlCb5QM5Iqo++FEEhTZj6dWV9NfTbPsyW0Q1m5dVeCNb/HgdCGEGjVe1tbo1cL3FBrjQgheqA4k6f5SNJiiMzzyRZ7FWo1JBjtxG7WO9bi6gPcK4hGubUWh7XsRyKNp4eKP0e7UZQPilcYp0yvFnyPn2X4bKpV54Nx3BwxvPXlGrqi5BiJotCqrbFBj+CD8a+PFUmR1gPaitPExuZin6e2hjSOe9u108tuKNV089QMwZQ3AfpenMI4sW+rFWFjJmABUk0Z7Q34ZSM958uTJYEvX9i2lX03lfBRfJjniyUHIRhVOU/M03IgfJfL5Ug0WmtOU2+8vr7cqG/eB/v6+kqKiRQT+7axb6vR6YMlgxI6inlUjusdfc0YPqWWuCRSit4/rUfy0dT2MBhvbcEarVJ25Wp6++ScOJ9PPDw+8fD4lt6V3Smp8zwfyVFwevu6Xn3+TEdyG4LZ69Raub5e2badWio5ZVvf8uT9nYnldD7YDLtf41qq9SAnQ6KDz42hplxbQ7//PaUU5lrYt0oJ5aDojsS2t0ZRS0CtqJDZ9pVh0TXUV4MnGChmIxQCnz9/YcoTb9+94/vvfo/50VZC9So/5nPcHfnJc2JeTqxXoXfroXt4fCTnie9KPdD9EIRlOfHh4zfM88mE2yQYA6RXzg8PLOczMWVOwYrUUeDVVZxBOZ/P5JwYKvL3SO1oUwDbM1T1EIYa42YEwMu8uIVUP/qjW622J/n9zsmS22makWgerUaJNqaGwB2F+5d7mMmFoYw5B6SraZz0Z7pcvSiTQU2gTLQyTzuXqZOTEDSCuqq7M/nmZPTOAAStpDDiK0O2a280raZ3sxeW0EgSqNWtE92LvfTA5xVyU07AY7Ae8NnDaQkVCZvNLUlew6ioFlR3A6IM4kKCMKXG7oyZdfvCFFdC7PRefZ0OnBYTsgpaEVmBFTC15ZQSIQWQhqqNOQmR7Ikt0qndiskhdC+wGkhU153aO+//7B3JvdWf3sycz8K2XsHb+vLs8YIGtAkxTDw8vOXH337PrlfevjPLoZSNftvUivXSgjEXa6cF19EJpl+zlYomtfg8NNPDEahrRXNDQqNLp4sXuhaYL8LT+8h8ss/W8fg8CGspqDrNFzVhRfCCWaOkjdYD9JlLvrAsC/Oi1Poje13ROlmupJGcIlMSmlb2bjmWDKqzCjna+tuaopIhJI/bLOat6+4CfYkavMXBeNcIegMnO7yupvlTewNJR6tWB9Dm4GGnVNhqpTRo7D7Wfl7K+rMT2//L/3m1k0NYtVOa8Lp2r4oHPm2RnUBxhTSwxey1KGsTPr0Grg3WBj/syrVgXrbBenP3av2glSOuQtXRR8Fu6kBfOh4ICYuOZNYUmXs32ui+RupuDdYj4LKmWbvYpIjGBv2EtorsBdqrwXV5opKsYtU7bd3ZpPOiOzjdNp5PluGEYIlXb6xPb7DMJzBngabUazdFOheZeP3sQW4PJvldOpITMQvLm8DbJ7ichdMiPH9pfL81arPq2eM5klMnJZjOpjJdazR1twL7p0ZKLuAjhqjnaD0YPRggkZP10gJHM/r3Pxpd43KyALVsyv7cPLERQzaBJQhfvregMXzKgFErp/OMXDItB9ZPtsClENk/b2gr9LIS3yRIkbJZZdmUSzyIl+oUE0GH8ESMCOZfqhKRnK1fME3Mi1Gvre/TpdjDiZAj+TITpuhIBeRkVSUVZwN48gqw7f72mFVVjJCiSdyrswxcn+g2xoDn640yH3Dq8gnrd/m5E+q/4VG7BaGETnK6yEhso987BDPNDuZfa0hGJqaJnBb6ZMHTsl9viGWcOE8dofMf/5P1latb+6QcD9SwqxryqsLbNw/M10qMlRSzFXmqUnpFaZS28v2nF3788spvfvd7Wq+kyXvleuPlemUrzQURRn8nB90Obol5zkP2XLk8zbx9N/PNr068/WB9Kt/9dqe1QOvC+ho4nRPnSwZpvHwO1now/CzBfWSjUV8lUraNVotfz2hBmNPmerOgrLlHas6zB3H2+5QS03wh5sXQjW59GBIiIVuAJ/tmCFKMxJip1RKvQT/sThumd6KABvtc27q64rUHmC66ZCIQN1uf0a93LL5+IW/2TnaMKquEieiCd7XdbIRq6+CiOSEYXdgCc09WHDkLAsn7v/I0WXDQm/XVSIPQUO+3jyM47c3p2t4a04xOGb04NkTRjn48vacE2T07PSwGNqsy5QkR82VtR9BtCfQvnX3xt3/7H3xMFT5+/DNCCOb3qVBa5935gZQzKUVrIUgTp9OJvRjV93q99daCFSiMxTATJLCuG6CkmHj75g0DcRt2LillCLb/LzEexWc7nMlwIPHqFlrNqeuN2irzPJty87YbxTUGrvJ6CDvZ3DUU6nw+8fj4yL/9P/2P/OrXf8HHj9/y/v07stOfU0o+zzOPj4/knE2oyimuNqQtebNiMpRWyFNiXmZPuBsFaNMEIVB6I+WRLFuSVpt5Ww+0exSh0rSQVJl6Z398YwrLpbBeKxDY9qHoKXcsCfjy+ZMlpmW34pSM/So6uu02Ydp5eLjw5t1bltOFfd14fbl6sTFZi4mzH1JK1LLTemdebE/dN0uaQ4w8PDzw+PSWKc/0pry+vHB9feHl5ZnnL1/4h9/8PahyOp1I3rc42iyGSNyUbSOtnszX5n36Xb144EhaHMmqfkULHlTkWzvDDVkdBYrohQCvoJFy5nK5HFZXOeFtE5N91jyxb5uf45Nfv1/2PAaYUkZkZas7hAJuMbfWKxUI4UJSo6D2rROksExXTmdDZnMS+q60Aq0a6JNDZ5ktXuuKtVzEyrS4HoXAtjb2VamrkltnTt3aylBUOg9JyaGRvRhSuxUjBnPty8uVpFdENmp/IElgkpWuG50dkUBvgb0EXl4L85Q4zYmmgdobnd3vb+R1u0KopDkRQkVEqXWl6ytIodfMlGBJyl4ShE6c4DRlJhI9JXrbWNcCanFZnoTnL0ppJqpV1TRtpjkxnzLLOTEvEyF0Xj5XpodMTIFp9kSyw+VyIYTA737/zD/87gtVVuaPhdp2VBoqE12g0Uk9M7zgW4xI9+J176zbzmRkJioK0UCsaerI0uixsb3cWp7iCaYnOH/TiMuOEolZQRqt7ZTSQC1m2lojqlk17bVzvXbaQ0UxRssynViyonpFPfeYckN1QvS9FXUJpASiE0Ykd12KhAmatYjWhOSESKalSJXA3oW97og0phgIXVHX0zB7Qru/TRt7U/a9slW47pHLaUE1oZro0uih0w+bH0N9FStgp5gOpuF/7fjZie2v33qToYhVGSu8vFpVEwLvilJUMDAfR/2E1wZ7Ez4vkWsT1i787ZfA5134wYGhrQAbB+22D5M4PEB12plbbllSK06DcEGr5sVBdTshGAGtoQQ6aAK+uRkiHOj9DppyCwu6orVZDtxNNKprR3o1da/SaSpISkhKR3+bbs2TblCnpRq92m5PElDtpjIsgS6OknRviu5e2YABnSACUxZXcD4KtweNuVYohYP+kLP15sbJmuA9rLDHV0NhelOnNFpyW4tSklKy/SwRdDe0t3Vb5KbJFrIY3WaE2/kZFSbQgtJWTzhjpKrQvTlcMZ/C2kyh2CB2NXQ8BsLhY9lhqLHmBBq9LGjXLKbIvATS5H5cwagwMQVCCqQlkf2zR+/ni+EuKHdYQNVA/BHDo9CrWS3IZNzsIHKIfLWi1gfeIUWnk3dH7zB9srv++l/0cX+ag54aPJAy1NZM2UXUlaPljs5pPTsxZmKqpJgQUU9sTcJ/maOJSc1x5A93dFVHgapbM9TGWhp5r2Snw7TuaqK983Ld+P2PX/j0/EqtBZFOirCVTvFgaigNd5/f/smOpCy6rcb5Mh3B05u3E2/fz7z7OPP2vYs6dfOPLlWJqXE6Ry6XyMOXjHa4vnbzRe62Ts3zzLycSDlbpdzVT2V8UL3lh6M31GjdiZQHVRmnZyZSmiwxG48dSIejoofI0biHQ6zKVWVNsX0gsHL8rbdBifLXUutRHaIaQ7G1q3nYyt0g/iokdIhWQkSwKlHwxMgEqXwt7ffo6098j30+iX/uw9tSHLMNlhjb5Rt2RCbYd3iDNquED5qz+kaqPgFHEmP9g65DoJ5QO+uga3MbAj+vQX1VKwqKBL6yhfoFHtv6yhhkwdEYU9420bO9bEcRQqv1Oa9bvAmM9W7ljgD9uP+VvewHDXmgn9lp9s1tbtroAZNBG/f+/MEO8GPcW/FkEsETSBuTN8Xy27jOOSO1WkAf7b0fLifef/jA27fv+ObbX/P+/Qee3rxhmReM9IiWAAEAAElEQVTE0TzgKNDc01rvqa7HXByoQCnM0+zr2G2+3R+29tkcta9IbcPVoB+U6mlKPo+EFI1GGySyLCejdsdbuFUdecQR24Fqj/VprGPjnAfyOM8Ly3Ii54lWKkGMmj3uTQzWnKOqXtTIvHv3nlJ2rtfrcW2CtzG05ijZlNF+4np9pdXCy5fPfDmd0N74+PE9U45MOVrRwz2l8Xs70PIYI701ck4He+Z26E9+5lZECnL8/E8JSY1rkVI6+mjHPR9skBszRI+C4r3v+i/5iCEDwfs9R9tToOlO0UYImYztASUoMTRy7kf8G4Y+BhbURKxNcM5WKNkLGC3X1M9HARBnRlosqURRopjzRFfBWCumaaLub4tWb2nxtRynskogIaTQEamGBncBjQTJHt8rIhYz3O9nvStNi9V0VUDMt9TU/k0xIwcTPA1BTSQrQIoJ7VYAjhL9GlibkQRL5secj9H2FqO0mqhdSoE0RWKGWocgZiDPkZQNkUxLRHvn9Xql1EaL1kZlRVoXT/Q1LqbAEK4abKeQjXJrPtjWHiLOpJIAEjshKZLVUxF1X9fuTiWFSS3WjllwEoUrpLsie7e9MgXLo0pphw6FdEeeMQ2MIaoZormOBFlAdtutBcBadJRmcXcY8YMeORhAl04jUNUYmnb9M0HWAVQz2prUC1PjUC8wqHp7iFou1nws9ttbek7W0WAtqj/n+NmJ7XkyBS/75N0EA0IjRWvaT2E/znh0JgkBjVYL2Epg75GtBf4fv534+9fA//dL5LtX4XWH56shaLXCuo4EVI7PJWqU5iE4FcWCxKNHGbupjscyTeaZuu/R0bZOxBCkVowW3JpCS2jIkI7bhfSCrptNYtxrdVyI5ijB5xcbXctMmGdLcNeCtE7oibAEo01cItUz1VOITFelpk6XRK3CHk2tuDcoa+MlBmoT2imwb2au/PRope/SlG2HvsN1hW1TV4kUS7a3arz3HHh4YyhrsBvBvnWuL4312QzOp5QJ0STPe69sq9kYnS8ByRYk7j8qdVOgEWejQzx8mC3ZVTlUlZe5gQq9R1LIRi1IkfW60EqjvEZ6NRpIWa8WaDcPblMknidINtHj1CBHJCWTXI839GVYg8yLJfl5NoB9oNQCCJ3z4qisOMrf/Tr4Enl9NZZAr0IptojsQN07+9Z5eISUhTSbf28tyvrSKFWoTTidulGek9Enuir9GeYs5PTL30QBTxXkUEdNEkjD2kciiKLWqH1YXIRoPa8xZlK2BT1PGVRJTj1swJQjDw+Zx6dMU+tBGTFK70ot5mUXS+V1L4TrTsPGawrCnE0QaN12/u4fvuPLywvrtjKnfgh7fX4trHs1pLa6dcf4bDIScXE0MLKcMr/680dqsXP5i7+eefdh4uOvTlwuVoW+PE28Xivb3nn+BPMcmJdA6SemJdOKqyp6S8ZyesNyemSaF/Ztp+yvR1QyqJ3DxgcvEKRoAjvz+cGSKoXldDahqZh4ef7EsD1JeYEk5vc5J6Z5gWCBW6m7LU/dkNHajAlRy6D0Cares9v7oUqomDhebxbgtGq9v7UVR7z9+RK+GiuW04YjCRcRk+BnbLBOCQ92viJqNH6rnjlN2iZjb5VAJ6V4FFVElRSSUZnq5omH0by8VGjKjyJu42JnNnr0mosnjcJcVzOG7+o9+2IlfEmmkNq6FdmG0n/wRN1Ej5q1uvzC+RfadgbbYtuupGR78b5fKWUliHC5PHK5PFphVoTPn01FNsZETtkLjmancb2+8uXLJwCWeea0LIQwEzzoHonHtq1su6kFi8qxO8aUSDGybxujOmtsjkDMI1A14aZBIb7uu4l0BdhLIVTh4XJm33fEFZwfHh/4q7/6K/7mb/4V7z985Jtv/5y3b9/y8PjggkWFtdYDSR5Ua7AkeVj8JKfqjB7iWiqvz6/Ep8SyBCNLdnVGVT8sw6KvfykFcq6klCneKy8hWG9Z6OTzgyE12qzIFyJ5Eh5rJ4TIj9//aMUsMGTdi1DJiwemntxvyuUafcr0I3m8PDxyeXjDgfoKXMqDCyeZ8Na+F9Z95/HhicfHR/7mb/6G737/O/72b/8zLy8vhtYBz8+fGT2s07xwOl14vb7QWuP7737L6TRzWma+/fWfkWJgnjJPbz+QpwkJN+Xjy/nC5fJg0/SOajyS6PvEMnxVhPgq1j0ea8WJW9EDIDh6H6fpYOUcr4MVFVs1xDi6DsG2b5a8/Pww97/ZkeNMaZmtBJiswHuZM5+vr2xt5TJ3JulEidQNYuycZw5gRCQjDFs3a7vIc2SaC02V2gKild6LCYsmQzOTRJooRYRalSSNc6rsIVMItF6cgVm8rQt6XYlksms35JQ5zw+cSCSELJ0ijdKMSYhMLLOh7KVC00yQTgqNlDKNxt4Kqiu9qfusuvq/Xmka6NJ5WDwRoJOzIfXzNFM7RInMITPHypwbejJqryS3owPmWShX/YpJkHNiPkeWWRCdnIUVmB4y82y2UVOG9WXnh+8+eWEuUJr3wQaAjoREWhLzaSZlR1LE2Vmn4Bah6sr1YsBZghA7pEaYFJkcuOpKKZ3rqxnShh9eEHngsizMcyZPiWnONIzpuO7m256iJeZ7bfS1MF86NCG0RCnWQhmi+2xrJcZOigs5nlGMSh1wUd/mLBHpxFSpxQAqY191Go0qnaKBrAmiWZrG0MlhRWm+RnSa+lomHYmdnAKlQqkBkUQImd4t79mrgxY6ElxxhlyjBesN/znHz57xNmmE4M3KQWEKRt0MoY/YzZNQq+JIMKRNRYips6iJFv2PH+HPt8hfPCp/9xz4tAm//SL8uAovO/yYhkryrZdRRw+tWlLSMIrtcgoH7XQkuCHITT6a0X9rvZUotByIswlDhaCmYt6UdRtIRqbttqmhbhXUiokY+dXAJfLZV7RV1PsRJCe0JLYJ+hRgtsp/DMLTA6S3E1Ei1y2wbfDyKjx/atSi1F3ZpKNVOGcTP0iTDQK60WhzdEa12uecFzEvrzose62yI0EtQd4tOStbZ79Wr5qbP9n1qrRemZJRBqQr66uhLIHInCEFJc9CzCax3lUZFg5aGnXr/PClEeIEIbKvYmMleAO6CnmKbNV6C8M0Ee0EyXNmOkXOT5bAqgi1GW3RvPssYU3REOPoqHXOlgBZkqPEOFQTDd1JYovIthutuhX1sWpU7G+iJa45YNVNUT4+6HFLX0qjdkvIaEot8J023BmCv/hoVJV0inz3xQzNtQqvW2C7CvDLthcwu4BoIgzBvnJMtx7bA7MLllgM9MDT4RCGt631eg7LjIGC1Fo5nwLv3k4sS2TDjMXxRM/QCguIX15Xo+hfV0vgPIASlG0vfPfpE1GUeQoInS5WnDBxK/88UcDpPuJ/MBQicTrPpCyczpGPfzYBlpx982eBy4NRkVKy1fLhKTCdMqV0zufoC7WJTkyTS9DHQO/K5x8qvQe6Ng+o70SYunrSWI3ayw29ONBxwX8P+2pqryEGR98cDcUUwFMMx/NSnkwcopmVw5FUBKsKl3ALDEvZHGHbDx2kgZqCuHepJbnG4DBq8eHX29uB+I1kFgG5o+l27S7249X1ZpVxCQIxMvw/zZPahCFyjuQQycGCMMT7rtVo8sF7gM1L1ypUpmVhr29KyHp4C9v5OrOgmzfjDZH2Ik4MR0+jCVuLe1/b2I3BPYZd6boWp5X/go+//ut/A9g9XderoRopHxY6+/ZqQn9eVIkhommy3lgRrq8vlrypiX7UWo9eZtWv17BB6Uwp8uHDR7NVCYG9ujduMuXVrsYY8nrzoSrfezeBNBdZMj9atQCtd0q5FSZaM7rsEiMfPn7kz/78z/l3/9P/zK9//eeczhcrDC0LIUY296SF0Y7UuV6vt57rfmNz9G5iV0NBO6Zo3ree/A7kOKaMeJ82CqVZ+9C6Xm1Ot3oIZ0XiITolIRBSIo7rIULMmZfnZ1o3oSp83uecEbetG+uFFfG9PNu79yU7AypF5tOJeTkxLzNlL5xOZ06nBTA09/W6cnl8JO8763ffsa5Xem/8/d/9HV++fObl5cWFvuB6vVovrCOgrTaadN68eWtsEeDh4ZHLw4XLwwNv3jwdlMzeO7hA5uiLHfuvxWveFuFz+d76BwYKrcc9uk9ux+ND0APB1tGD5kjbfYFCGIEv5BR5fHz0IldgypMx44YQxi/40G4lhpgsaU1JSOGEvgT2vTOnzSjbMTLlk+/frk2iQu8J0WpFmFghqMeI1VmQN0ZKa7jQJqTsvut0llPllJQHOq/DcaJVKoktLAQtRJ8nJr6XOOeJJQayFJYASQOhniistGaWTNNsBaZSmms9NLQ2L+IISkXDRsrNklgWSj8hKDm80KLQRLHa2GSzLgRvHYOQI1IDZXdf7L7y8GjF3FLhdMqkZsUzHfOq7CRRY1lIpWNCWsELWA+PJ/I0E+PEd7/7jvV1ZauF5TQxnzNvH4X9s3JNHsmEbq4DsVstl2AaIgKPbxaur4V1tVYDa5uAdLKc5HmrLJPHox4X9a6UvZN3ELKJdSZL9hGlR6G6GFfRiha7dmmamUJwjZLNigvXwl4yoTYmWRGK78UbaKD1hdrFXFScqdOqofa1qBfLIyLGze6uo4PT0iuwqYGS2oRTXKxnOidCMBZbqRXtlSSN5CBG15FTFFTSsU4vOSLeG2695b5na78nA/0Xjz8isfU12WlkouqKlupqbnePswfefW8JiKkfCt+eK+esnLMwJ+XTKiwhcJ4Cnzx33HZhr8ruWfsNnrZBzqAUjfd1oSdx6ulAvmOTo8dqUHMtOLPqz5zwKi1oVLO8rdDVTMtVoxeJOgcUPWjeY5Xwv6u4r23v1DVhhs+OCIgt2tMcmLJYgC6QGsR8zHdr5K/qgluWgN3JunD8NFR8RZgXWxhjDMOuF3yTwanKZe/UzYyTLbE1CrKIkv3lu3rPr3A01otgPY0YKtYHIz0Eem3U0nl9qaaEGYNZOuAIiQx7jwMWISSnMkZDavM5sLyJGJAibJtTEtWR+WBU59Pi6GxWE0EQK67EiNNTbgPQkHkbH0mNMrKIMgVlyfDhDHMSlgRBGjl0/vytqbvFAL97NhXpUhtRoVXlSfvBCvhn3wrzEsinzt9NjetmatU/Pgde1l82ygPcgiXvqY1iVcqAI50DIfPJdZ8MiQdeX6uMOt3EAxpTxhTOp8g8RaNxBzUxt0H39PF23cwOY4uB2iopRpbZJL9rLez7ymlOVo10NI4Ep26B47pWpHm7gRVnbeNNgZwjp/NEnoTTJfDwNpjxewxcHgPLyYTcTPzFEPiQOnnq3odtAkLnoh5wB3IOR9Hs9QW2a6MF61MVbnNvUAONDhcZQlO3f10pWHGkVJAmh/ftoPuOynIId4saTrfEqrtdD11gDiqz3vwtD+ruuFP+v9HLMwSwBt+l4hY7hxK20XftPfQYO9pvNK+hbDteS43DzvBQ7b2ZR6L33KZoFj94YksI9M4hrHWvhqriPQPA6JG08XjHi/JroWL7khVDnXLn+4K6HVFrap8nxK9aEQ5K9xGY/7LFoz5+82sG9faHH39Pa4Ymas/+OYaolnohygozI+k3xeNC650UM2jnUFGON5o4jLYeGx9Pb9/y9PTGgtW23tG41cf1fRzgrCu/njoCIy+a5JQIXV2pWjxgtaJZSokPHz/w7a9+xZ/9+V/w5u17o+C6bdZRJLt779baIcZ0U931se5tNb03D+yFyZXGFX6yxsFYAHtXWm/suwWmrbfDVgw49jn71hM9T/aCmTXaeuDjSUTI8+TtH4Gy7cd4tvf2ueWo5aBVz8uJaZqsp74ZihuDsJ1Wts3sw/KykFLm0ydjfmzbxpcvX3h9faXWeiShQ0V6CF81vy+mvG734XK5cLlcmJeFy8MjT09Px5qlXtAKX40N/hHtd4zPWxJ7c7jwRzAEx8Zz7/8VHYqzVoAST27ts4cjSRaPr+Z5PhLZP5X+WvCi3Wi5C7ZnSAz0Lq4d0wHze81xYazVtw3HqapiMXnHxJgkdO+ouF3/255t9pKqSlYlT0qOnVwtMUgex3cVSo+kvhsTRgNBzIJyiokUlKCNoM3eqxlXVr39jUmP8YEa49EXe/wdLKkMYGJIidYTXUzl37UITfFfI71PpBBulOQYaSFQisUeSrF2tNapzdw5uuuF+OAlB2VKwrJkywvuttcQYJqj9+xH1rKxlo3aG6cMyxI4nRLznMi5EkVp0fSACD5OxcSxEGU5ZWqtbNv4zB5Xz/bZ9tpJLZD0tnYoBra1ivXEqu2pXdtR2O9+f5pTjJVAi2YdGFLwUKEbK6sOL21HyaQTxKx2VDt78wJ24rAkwxPs1vWrFkTLuzq4TkHHxLFUYQdOKTl92Xdx5dAmCZggq0UbVgxvvRoby2POGCCpGInzKKCP9qafd/xxHI0xh2yG3H7tK9UfWkTUE7RxWNN5YcqFx2Xj15dA6cJzyfz+mvhhDfz77xLfv8J3z8IPG+xqArrFk87XVdzzVilVqV0J3STCRyLUxJDNhokmJUd9vT3DrVqEdDIEMCeYdqXscH32vt0aaA3CnBE9U14uaN0NGm3e33QIowh0Q3d1ha019hC5RiHNiTRH+jZZJS7exK723ZLXmK0HyXql4LV0Tid4uAjLbJTZH77fWfdAawHVZqbcSRGZiElID5HqyPb1ahsy3ZR8S1W2zw0mr5fUCjWhEtjpLpoT2FwN2vQmbPFbX4ziQjd/3K6dTqNvq6MxgRCL9buy2+RM0X02hRoT8mCiN0dRANAs1Ahr6TydrB9ZkqHPI6mdJ0tqLycbcqV6wNoV3W3Agy0qU4TzJDxMnVNS3r3tvDt1nubOeSpMWVlm5f2DqRAapb0SpXOeo1HtRXndzGIqiiDB6GLb3g+K9ZytZ1q8V1RVoQeuW2IvAXj6o6bV/+GH4MFBJsVstKXg4i+OeHbEZeQ70uWrYP8oJwnuy2rJS+2Nve5c940QO6cl8OYxoq1RdhP/H4t+18pWoH4uR39Qb9aHNk8T2q5EaTYuUiVNgTffZi6PmYenmRAiz58L/5//9yc+fdp4vRau10KtFihNS+byMPP+45nzY+T8ILz5IORsCP88W5JqlNqRtEEO1p8zTSaF37tbAjzA0zsXgiiCSOI3f1v4/MMrdS+AUXQb7Qhkay3s28Y8L9RaKPtGCBspZwSYFlMXBaPOalWrEofoPVbmgXs+Pxyo0PXllVILpWxodZqVmDo7qpRtZfTObuurs05u/ayHUJRafx2qhyWLnQfghamc5qNvEw8sg9s7DXq50ZDVVVNtg1CdOBIatzHSVtDgfdreLnGagyWtWK9mLxVadTX9fpe3WjvLoIOWUu1cciKJ91AW8+41ALYZTTYEoioROGwCutJbsUBKLbFtXdnV2xYccQ8xI79wifO/+Mu/dkS+cr48UepOrZVlnpnyxHJ6YKzhpt5rRatt21yJthz0XbvtFrCcT2dynjmdTkdhI2cbp6rKv/ibf02Ikf/4H/49//k//y3b+sIoq4gkC7a9QCaYUMm2rYd41A1Jh4fLGSSw7pVpmsjJVMDPDw88PD7yL/7mX/P27TtCNCGobdvMjscpp6M/1ZBE61fd9/0Y7yOhAm6sCvAktX8Vu9wS5JtSL3hxQDKn84Xr+sr2uhGcwTBE90COPl4JwZVYoW07tRR6707hlSPhVTVrjqbdUVKjdSKYkJQY6yGmxOly4dtf/4qHhydOy5mUJmd9dC6Xi9GqH59489b8fBX49OOPbOvKtm9HgS0mbyMIWL9wSpzmhZeXZ15entnXxsPDAx+++Zb/7q//mvfvP7BMM/M0M02z6Qmoz08RCM7O8OOG4HKgzvu+Hz244NoYIt6rbei30eOHwKAcrzP0E9Z1dRbOdIzJ0+l03K+DUcJNHPKnPbq/5OPl+ROSXwlzRaWYKBE76y68XhMPC8QpckpQl0qpyl4LEe/ZpJLiRhBTCd5qZ62V2YujOcCUrI/n6SHRMGuV08msexTMjz5A27Oxd8JEzjO1B15W5SRGXy1NQBMxCJfzgvbGulW0bkRtzPIAUyLJRGvP1vbSdpsXwLoVzM/TEvJWM3vvLEsygaJu4E6mk3MjZKFrsl5gDbQemRCiKFmUHiNF4Mvzxl5XCJsrCAMBSmnUClPOTDGQg/IXH2deHiLTFHh6hBAKW98gCSEoiGnroKBZ0aT0HeaTcnnoPDzAm7eRtk18+T2kLmzRC3goiAn5KZ03H0wYsTaxhDt0ulbmB9PE2WtlISExMT0szJdAno1l1Yq1xz1/2Wmb8vIszL3BVGku6FOl0fdKAGaN1BZREXIOrvVjSXYpjdQCIo0UCkFNVGzXzpe1H3natlVzG4hG826Ki/BGYhRzWj1AD/uqWk1+SoR1g1Qsx8fj+N4EWkSqELoJrS5TpGpja4VlzkgSpAVojSzC2/PMpwJ7r1zXwpKDo9r/9eNnJ7ZDud3vtcU+ci8QYJ/2Jnby1bPHI44rIUASa5jOKqTUybHyZgksKfPjNfLDNfC7a+C1Cs9FeFlhLfADylaNjz32LQG3wrG+1GDq58PlwgbWEPiJQMU23NV6LVuyalEflN8lEJshuaiiXeg6oTWgU0S3aIlsqwzzWTmgArUGUF/0O0Ip8PJjJUYTNJJgg6qORM2rkjEGJAnDq1eL8BKhlcbzl0aptoETlC7NzK5dMVhbN0ubADKbL6fRTqAcHu9ma3NeAqdLYJrtYpUyhHPsuuxrdcsLtZ7XZuh0+fJiFX8RtFZDZkioi8iEyU1gPeFXQKNVnM1/E8SFiQZGpN0KCFaVw9TiUKZklGOw6uEkymPqTGoL2vkJ5ghzMuQ9R+U8dR4mZY6dx1w5ZWVJypSqU5HhNNl59G5U0xiEFNQrh8opOyoJDEWoyVEzGbR38N4W7z3rtiAu8y+f9iSSEGxABLGe2ijxKFwN5K072i3Sj2RJHeIypM+S3O4/11Yp/oV0UoY3b000ouzKvjdUB9JrSVbVxrFUqII2yJ1lVlK0RJRknm4P7yOPj5mnp0yUyLIIaz1z/i7w/JL48mPk+tpY185yzjw8ZJ7eRi5vhPlkNPYQ1LUCOObnELi5rW/qiIyNgeQCcANNLcF7VZsp0kpKQDuQAsHRQafQfdVn5ohFKbspCougwahdMVmgGcRQlBAjIWdPfsUTuJ1uPl/I2GC6s0ZGv4ajpOIbTfdEw5JOPSw07gN5C/rHhuVCYp4cdFXvs7bf45VVpbu3efNcxvqwxSnSJrTV0F6dtmg09q54MqxuSWRrrxJcZKh5gi3mXCJeTPPzG9YxYSAW472dpt6P8an0Wmgi9JT83OQYe6V3T0osAB8XVFu3ax//uLrv/9HHvZJ1683Rys29PRu1etEoRI40M0RLUFKmVqMtt95dWbvRWiHnmZRuiQJ83S+ZUmaeZpZlIcYwTsaCwH5DZyyxMTq3MQfqkeyM5HaeJs6XB958+Ia3b98yzRNlL6RsVjpPb95yOp/JOR/U1OAJbblDbMcp3CevRzHnJwnOfRJ7L2A2rmdr3q+rRiluvSG9sw3GBZByNjpzHDZpN8qtBHHqs1F25/nEw6Py9t079n07ku/xWiOBNuXvIWAjRwyVUmSaZy6XJ09MA/M0+3rs/q8psSwnhl3O5fJADNHeby+unBwPJN/YJYakvn33ntoqX758NmS67Ly8PBNDZFkWU0ZOGUQcyTlqFwwLDL1RQWwaYec0emP/0DUfa9Dt+t/m9rhPwz/9/nGHIJTexKbu483beBjWb7/8PdkYgfaVgiJSed5fjAbfsdisQW3W+heiFdZHUVh1xUQczZpJce2Bpo7mCmbtAogeTJ/k6G2rxq7pCGsL7M3eL2wFMC0EE5YacVI7UFbrv480b4OLU6eHivTKPAcXO7I2kt5MaXyegrEmUXoPoJmukyeuldpWamgQTEej1E7tVwgNkQ64e4YzMLoKMVvYPS0YUt0tvhn81WkyDZTeYZlMITnPzYCirj6WFcS0PFQrtW1Ms1CLsL6Y64gVxCvTBKdzIORKDpBPmfqqRAlcloyqsWGW8ygKJ6aLAQFlbeRZmGdosXmLgJKnaCrt8wRxWNyNMR+Poo4ESzsECFmhC8FFd3u3XubJRVdz8gJuVXpL1uLZGiGaBRM0SrOYo5axXzeiLNaWpl4kELPTFNefCCFjNPjuY06oIVni6+1LsGFq2p2mEZVMaRsNISeLPZXAXowRKgGz7ZRI7tYXTitEB5Kk/by5/Efs3K4oyG0TGb+7y3TtkU5B+qeOoRxqNj5KBiY652wVmTdL53lPfNoyv7kqz3vgu9fApxflZYXQ7HevQdidSqbdEpsb7dfOoatS1SktDZoxcY+FcN/shlvw6h8jQJ5tMe2e3PYm9BjRlug1Q0poKfTrC6SMpEiY8oEmmjs2zhYxGsDr2ixAFiFOltb1LvTqPW2t0rO4ilqi74FdxGglrVPWIaogSLIJXanEi8nxt6KkqKRsHrQbYlaxAdY06GGWzC1L4Hw2P1xJgX0XwgrXF1s8y9bp3mMmmpCiUCr1yzNDEMeGQESiYXxEkDlDCKgnTqOqO4odVniwHhqF28RpZlqdkw9uMdqwM5iZBc5ReSOdh9A5p8437wOXWTlPyhyVKXVOU+OcO1PoTLESxIRswkEzGYEYaNBDtVq9AqJqze3icNEIiWLyyrwPHAV6UCJWaOjAFL9mJ/xSD8HprndU5ChfJywMhNa9PTmChObB0U0caSSC1b3xqm+sMSlv3yVK6azrjaIqEkyArOuhJKxq9ygF8z4+LRNTDkioaIa4wOVt5OEx8fSQiRJYToGelOkEX75Epkn4/EMDqZwvmctj4s27yOlJmWZPasXH6oBo75LbQ5n1QLD8IdGSKBHr97y3x2mtEZP31Lbq9LhBEbOvG737Vgip1UzSQ7QFSUIg5WTJs9Niwkh0Y3a0y4SiTPyhf5VA3Nol+pHYWlJrSbZ/nEP52PoSb4ltcyViI6FYAjQoUXQ9rpFFrR6Q+PpqyC9ItORcnPbW3JtXWzPUFFdjHYlts/VaxBVznb7ce6H598FvhG2e4zz9muqtFWVcWwuqPeD1hN0KEKYsKh4IVr93xMTRxzfolM1VM3/h4lEjCStlPxDYUnazv5HAxkpKEzmLJ6aGiOVs/r4xWr9o643z6UytlX1fTYQq3Gicg1Y/gqoYHVU9nex+39EM8QIG2DxqnrT1NlpZXMXcEf/hxfpv/vv/nl/9+tecTid+/OETzQsZ8zw72heo1RJjs7IpB9V/zMVxriN5Gl9jng6xpeOLW/I7ntu7K/f7HIt5Qrqhi/eFoKGOHIN4Icr0PJBbn2g3SwHm2ay9nt68seSxNcpuNiciYugII+EeW+ZQQecoJJwvDwcyOeWJ2gq1diCQYmJZFkPKgxiN+HymtcZvf/tbmtss7cUS6uAJaYyRd+/f8fLyxdd5K5Ss11dCEKacPbG1eT3WEov9xNTIlQPC8RUP0KMF6f663d+jUYS4vwfG+hiiY14sH+q7A80djz+KLffD7whIj3H7p0JHHvPHJB8ar9uL+bFidpilmvaMhH6ovd8S23q3lt7aTKx324p3pnx+Kwg0Vaf3Cr0aC7ADaxOKGmk1bsV7fiMxmB6JaqdLQ7RZEo4huHu3GDpmpXjPap6iuXlIx9ZxpSosSzruW+8GgnSdDOTojdpXS5ZCpbTOVjpb2UmpknLH0KnAoPh3FfKsTLMwLSbKJH2QXm08zbOQkrE9cxZyV1I2NHdYko1NMAa1Qn3t5FnIu43plI1hOb6fTxBSI08wvUlcWycSuSyZUgOlwXK2In+ekvXG7lC2Tp4D8wl2bUfBOGbTpMkuDhWCiVWZL3g8qMoHduQgHjEQXHW+qTEJm/vEpuTJZ1V6SbQqZpWllsRDoza37jJVVYRGdM0VKyy70GMCipjektwK7r1XlEgVpUf1lqMx7qrt3RrozBTdaIor7idQcdDDUWN350gI0q1AEjHnFLmzC/svHX98Sfqr4udPFgz5x7/6wy9wx5ZWXEbcAs+gjbdp5SnCrxb4q6fI3iPXkrgWWHfh7z/N/OZZ+d2L8A/XyOsOXzabiMfrioWSWSGo9fCkxZGBDnsUShXW1eXvsanSGYuzf6AR7ARlWeRACkKL9DLz+ikZrXlUNXqBuqH71Ta6oKTLiZAzPRiUH6Kg0RbsKSjlWWhuM6KSGDYaYFTqOUfCnAgXCybVkd7WZnqf2bbRbwAvLzbhnh4saU2z8OVzp5Zu53bd6C2yLSeuq1hvgaOphGGv0dh3V4bWTqxG+wokS1hx1G86ISkRl4icZ2TKNO9b69WFJaKYHZBY70cO2KKSrFc6BnXUtZOD1eHOE5winLNympXLAn/xtvP2pPzlm8rTXFlSJ6WbV5bh4iZLn0YiO9B8kSNIGMWOwTi4AXXNegrHZIavNt17ldjbwOWwnLLq45/IoYCK99QawyG7eq0hkUah6VpNKc8LmdqqIWC93ISHxobZR7A6hFCUEJWP3yTO58CHj9OBzJcVfvvblefnwufP1RLaKDycEtMUOJ2UN+8D8zmSHyYku730LEeQ0+kQLKl9+23i/Aae3iR++H3jh+8a0zTx9Dbw8VsIk5qH6T+Rp1hPq1PP1cTuVJ1u620xI6cDG8vnsykmT7PNHQHrkc2urCgwLQsSI4fKcTIarl/54/VyTO7Rlui1mGLtdGKaZkLKbPtmCWJth6Kxtkp3WjC9Gm1RlZAjWq262Wuxe9E7e90NIW/FBINaOyr5RkXmQJO7um1QG4ifOzSrondqz+abW9DaSNN8JPRDF19bcy/fckP2uBUQtqbG2glGyawd1Cv2TY0i3kaFVu1zjAB6sAssWb9tSgEIKZNzImdLPtDOen2GYD6YMWUvXKiLdkXSNFP3zQsGphTf9l92j62pQ5vS5lSLoVsiZoGhyqdP31vylTJv3743W5sU2Xf37HUK+RALMhRPuZzP7itq72PiH4W6GT03ijAvJ/7lv/kf+Iff/Z7r9Uot5dg45/l83ONWhwqnmzbFhAYTRVMg5pmHxzf8q3/9b5mWxT5DmlhX6xs1H+aNfdsPFgGYqvBBQ46B5KjE8LM9nU6HKNTou4V7ER09ivS1V3rt9uV9sNav26m1MU2ZnCdeXp4Nbdl3F5lJME3M58XEoIa1lcDD4xN1L+zbzufPn3h9eeXzp0+s65X9TvAqug82KK0UdjWl6zxlUs4sy4n3Hz7y/sNHHl3oCuC6XllXo2ZbQJy5PD6ybau1f4XIP/vv/hmPT0/83/9v/1e+//472ved88PDkQx9/PZbnp6euDw+8uGbbww9LoV5nnn75gkRYS87y8kszSQI8zQxGC57NWX1oThtom+3uehT9Ej0R+Fg/Du8a0eh/AgevehxQ3QNtT4EIkcC4krftzVlvPddwe9PJKmN8YGYlJQ2RF7o2ngtOyEJ85zYSmEtibVaXFOacC3WtmZgTvS1G1My9utTRqKfAlU7pXVeVxPH7GoKtADzAmSlhQ5OW15SZrlE70dvNF3Zm9L0YjGwBIgNkYZg9mldGyF+Yd8LL7uylYCGRugrS5xd60DZtisNRSWT04UUJ5bpDTFiXqYEttb59NzZNmNGTVkdGNoI4S0A+/7CWmDrgflpZnkJnPYMpZiQqk6cThsalPND4tOzFZJaWdFeCNF80VuBLz9unN8F8pIQKq3ubFunSkGy8vCYMW/dynpVrtfG9VrIi6CzECaQaLo3H95k6Im1VHLeSFmYZvj+y0bVTkiduFTiuTO1RutmJ1i3ZCK2GOpJMmbl+UGYo/Jda4Qm1BpM00eEgse7UTg/JUgra12Z2g4tUNnYnzth7cgcaMwEOdPqK0RTSs7pwc6hrEQx5qQlthbvmCAkxNTQ3cR5k3RyiKQsBOk0VbYWCBNA48uXH7muO6WYt+5ela3dNIP60C3qwT3kbS5vuxK0U+tO3wvSKnOcCeqKwj/j+KMT2z9E6/nq57vH3Sqhx7Nvj7g90F/n9hrRBam8p5tFO0vsPGQoc2AOwsMceXcOnF1N+Xdf4PMOe4fhxKj+djKQF990JGJCNkCJcqyHQzWOgUZzV8Rh0GjlEIKSIOTLRGgDLFGQZsFZ2e2JAfpeDtXOEAIpByrqfS7QXCAqaHRRKxN2GgmTGcT7AMs2wGoNlAK1GAVD/FyDI8+D6ty7et8hfjXt+221gahACN1VTAOtmIqwVqNR0RtdX83aQ8Qyao/yJUVkcpnimByptWQppZtq8TKPp3hiGw3dpDfmJDyeAw+LIbSPs/I4wSkrl0k5ZUNkPz4qD7PyzaVynipTdNQNda9ZK0kI3WmTOJIgvrmOTdOf5tVNGWNwIHbjd/6YcJfRfEVrG8X/MXB9Y/16dvwyD3V6521i+sKIj8MDX7wDNpWjj1O7011Vb1aft4rSrWDgRYzlHA4UULvQd+sJPS8BMwiykfn0YCrK58fAw5tMWgRZQKIe1UnweRZGn5daT5UGwgV6GfTqxOliQ1OjfwBu53j77HL834eLu+Y5Yu9FkPFYHZhEUOu5jkanEdSNzO21a2tOBzZ1ZEUPlHxUXw9qnVjlMqUM9ON764uMRjOtxZKEO6qlrU+GlA+xma7dH1tuqqK+kKlvJuOxyJgd3C7uHepxa53TI1Cq2v3yKa0Vq7IGFyQ55oc9trUCapTpmOIh/2+NBuItIjYUrc/Q19cQDhXEcX/Uke+AmAHQeJzexPTG5zzG7fjfCKpbNd/V4GJhLpwzkGQDrO5Evn7edPpvdozrFUNinhcvjgRSMrXd4VEahojO3ToWJEDC7HqOhKPf1sB7BoMOMTLzx50H4puiUYZzptXqdNd0PMccDKoL/5i6JZ7g4oWdWgq13Ki4MaVD0CnniXW92lobRjHo/pzMPzunbOrK9WurmXsK6kBv7wWZYDAYus+xetDqvvLq7YkQnGVRTSG5FEsegheuerdilnq1Zcy9mOJBF6+lHO9xHzcd1zolDz1c1X2euFwe+PbbX/P+wweenp6MTs+NEj4+pzBEmYScO/O8HOvH+XxhXVeur1dO5xN5yiyzUYxFAs/Pz6jC6XTitdtz3759x+XywLKcvLVgoKn34lqMZdK/7gqbPg/5+qG3sXt3D/wi2IN9vn4dVd7Wu8N72ZPr++ePwsz9+ODud7/kI+TR0TbYJJ29dVR9NxZHKBEXf4PqWgSKFR/N172z1c7enOLr6/xNeKjaWon/SYPfJ28NwfZsDjV1a9FouL98U0rzFVyVWhtBO6HZ+Yioa2109oKhdE3RVpiyrUtdhc1FYUP0bNDjRsTEArVH80htY10yYasQXSlfx7xr1GYOIMSZNAWmU6IjtGoI7bTg7bxqWjTZCuQxwTSZoGvhNg+NMWGxJNJAIOXAdM5M0YAAcLZlF/IU6CkcIBjBYoGYXNtHzfYnpgGAOZU8NkL0QnofLKZmsbooaQrk2e7B0epVhdTcr9fj7TYKvkEhdfuKBsqoDLTWX6MIZIs3WlPwz2jzFgoGAoh9epdcsZbGoB5L+WHMNo+HsFiw0w9GbOnmKNGajdlRKLyxKvSIo1WNOSAIe1FSMEq3vf2tfernesv//B7bf2Jx+GqBUrnR1OX2nH9UNbt/LeWWeY6HBQ7LkYmOCsx4J7LCN+fKX9XMS0n8hx+E33wO/AcJ/K8/Wi/uFc/JjgRVvRqAQ/sC3QZvKUa9NbPgr04K1CoTxr5xVeUj0hckCqe8OP3YfFDbqjTp9BfrRZUYqc8rxEI6Q1wm5inSyw1VjN5vIDkcAibbi9nszCdhmtU5/8rjG5uMTWG9wrYqU7JFqRQISY7qStuVfetmeVMFxMSiqkL9YqIu9O4Lmwu56G2w4fRo3a5UX1jZrxAFkUzIb5ApoTnDsB7pY8GAKcGUlMtsiQheCcooU1fmtfCUA3/+LvPhAR5Pyl+87TycOqdJuSydKTSm0JiTV5FCNyW8u23SQnZDxUTuAoWxUDGooDZRjw1xjFFPLu6T2vtCyB+aA1/1TfqIGUjwL/6o3TcPgyMFPZBbMPXBpEL1XopIIOECRb3Rq9FGRpAafBEUvUsYgvelRuF0EpYzzHMmSWQi8/aS+PKlclmSect25c2bE+eHxNPHCaZCl8bWC8iwYrr1BhmlaVCYhZwC80VYcuLtG4xaPymSmulU+I2RsUBx+8e7O/1fy7SG3p/2EWTZhtdV3XIIU/bOQsSQh+7U3dYa27Yy4N593wghOsXTEo1pngnJ0d5gyUjOM9obOU0sy4lluSACLy/P1LIZfbFVL8x4b5R2SiuU1XtvMZXlWvaR+RhqKeJJzO2+DXVsPMFDB6JlRaIQ85EMDRXUVivBTaLLvmEWSAnvuXDRJ7MKamUzaloU8rwgDPrhSGotCRBXxcU36xQTIp5EY/R1ZSQ3do2Ds0FQsx3RZgUX+3yN4eR+X77oxShRpOwFhoSEerSHVH+GUdt++RNZMbXjHJOhk83GWoyGns3zsIKBaZqIvoHFmLzwGI4EtBSzY4shWm900EONe1DVa93ZtpUcTbyplUKKiWla2PednDN5mgzt7J19r5TdbA7maTkKkL15UUWE19cXXp6/8Pr8wnI6EWNkmiZOpzMxRn74/nvAelqLCz61ZsXLIMIyz8zLwum8sG07tdQD7a21HgjnkdiqHgyx0edZmyHRg95sauzbnd+ljcf1ej2Ukfet0Vpy3+BiceUhJAXr69UQznm23anZtail0F2d2M7BeuskBKa83MQQo3A6X3j34SP/8l+ZgNbjm7eUUuxeuOBSKTPbap8VCSx+3bIj7i8vVx4f31CrodYPT0+cz2c+fPjA5x9/4Pp65Tc//Oi+xWe+fP5Mzolvvv0VHz5+w+PjE8N+xNpPOLQDuiuhjvaK3gfDxfUYfJya9oiN2FH8uu+j9Qqb779ONfbn3qya+tEikpM/Jgz22Nfz4l4U7E+ivxYI50qgIaGzlUKpha00aoOugSlOzpwxf/I2EqFqxbo4Tax1ZS2V11KpDapGpJn6vuCsNIr35wJdiJKcnWD2MsTA5RyNEVjNFaD3yN4zvQWadrat2b4aO+hGUAhN2NUSmLU0XrfOdXNP2t7QsrFcTIG4EtlfBdR8ZLUZC0y50smUPln7m1bT4AidGDtzroR4Isaz0ZfpdG2UUtlroAUlLpHTQ2bvAe1COQXOIr5PNmLG7IkydCJnmVguwp4Cr7Oti+Gg+no/cwjkOfA4R3K+EmOzwrRa0WtehBojhQFuKC0oIYu5arTdaMQpWguWdlJWQjJbzBQSpQQXq7X9MURhPkfms9Cp7Lv1qW4rzKfsa3yiddj3xqydHgSNhZA7YbaWk7Z7AcC1N8oO8xSJOfH66sysbgJuFu+pJ6bGqFQPDMpm4EIKxmoDT8Jbhx4Iql5DaQcIYYWJ6C4zxhRbtx1xPQ87HCwBRiR23RunLJznTDKkgW3f6VqA/39RkfkvJKxwE5niHy84/ojbA8a3Zn779fPuIpIbbc+yI9HOIpUYlb98Uh6mxMMycTlHfn8V/vOziUxtBU9cTRXY5K4d/fREd8q3z2Fxu9LKDQFozTjsQSwQMxEliI5C9kF7jabcy2OGHvg0mW9suRbYd7R0+r6zflb2a0ODqbKmJSIOXZTXyvBkS0smJoEoXK+G3qYolNVuP+GmGtwt0iNkt8yoQFfWa7cNeLdrl+aF2k1yWHt1+5RImrMT9iP1uhki182SwbxUXCEOQWJC8oSczjDN9JiswrRbL8s0wZKF8zmQUmeKmEpx75yC8pdvAm/PnTcn5ZsznE6dy2PhnBtTVB6mRoqdFL1CJ45UhzEGbkI2Y7O04OxIPxiIMh4EcxtxX43Cf+oI98/Qf+oVvn4t/eqbX/jRTSCnt2ZBXYBOcqaEBcodE45qvZGCWz+pLYLmB2lq0UGiVUKtpnur+3hie8QtwQLpFCNzzPzq1xO/+kb4l3/1a0QmQpiYlkxh51qf+bx+YasbgXpDgD2oaq3RZSjzqtHMI0wSzO9gMYpVF6V9VZiAUSU8kLnW3NdACYQ7f1wPMAVGCVKw59XSePlSKJttzrUVS7hb9x5TzLfVP7xZ5XhSKcmDMu+x1zvKHRDyTJxmYjJlYdR69Fot1Lof9FjrUzZV0bpv1N0SW1Ovtv6qnCazDYqBbTW6aNmLF3tMqAbvuRoV0Vbqcd8G4ifBVBZHcmmXUA9kydomPOjFbCAkQA9CzslphMETXis63irO40v9XIyeSq9oLZaI+kYxvoth+BgGujNjQoikKXhxyXrJWhvFQxfmckSzlPG5rJhXu9LWKzFNxDzTSjvG7S/52Lar0WHzxJTnG3rq4kz3arXjuO87tKTPbNPUC6ojEbhHFVXVxtIi5DRxOV+MjeA8SAmBaVmInrTs22bJiA7BMFOzbbXSq97UgyWwvr7y4/ff85/+w79nXmamefEiUGLKE2/evDn6Ls1r2D5bjIHamifT2Witna9aRr7qnfXe0BgtqFOMQnsoRDez7DLhqOpJve0zA3Xei1O/80QpG72Z0FIqhkTNy2J+sLWy7Zv1vR7FhcjpckFSIuzWCz32ijxNphSe0lieUO2czxfevnvPw8Mb5uUMwDIvNp6DBfatNf7uf/s7YopM80JK1gM9zzO///3v+Pz5M+vrKyEG3r57RwiBVgu//YffeL+zsUAkmAXRh48f+fjxGz58/Mjbt+84nS1RHtYndj19LDlo4DCzfYn34+voA8KK5to9hv0arb5nlBhUFo83GP3ZiprCrKqzXcJXr9EPJtEYv19vwn8KiG2VZ+BK7DtFK0WbKR/vGEp3CtSm7KUSaSZWqdFZhCb2tJXAuge+rIZiltbIKZKCsd7Makupxfbm0yXSrt3s+HYTUa1JOL3p7LWzrq7gK5YSB4+p9mYCVzFA1IlIJ8bGPJtl2OuqfHntvJRKigtzKpzmK7Un20/jxLZ31toN7dWVSKH34LF6JseOhE5KxUBFjbRmLgWtNSS+IFKJQdk2Zd1sz0sTLOeI7JEQJkI60z8V1q1zXTsinXlWYihE6cRc6RJpvVLWxnwxh4SQoK2Fa1lpnLlMgW8uMyk3eii8aEVSIZ8q55BZS2ffXYwpBMIc6cEiopwz0xJJOSFtIwDnSyRlS9p7D7Qq1E3B157lnEgXIczmsCKqhooTHNkdc8caSXroaBQ0NyoFLSvXVelbonksJEGPwm9QIchEbWK50lZpBGKylrRAd3aKzevaGpGAEA3qUGErGxKVRiJimgi1dWoz9DqECdENWiWoxRbrqixD8AYOMa66GVAQgolOisCSG0sSrjHwEq2k/XNbC34+YnssYPa9BWr2Rvf//vT46e9HL4QMzO0uzx0Iw5Hrom5YDgMxGe8fgyGNj55gKoEvRZAIP+4yxGxNuBhAldr82V2canBbkyUIw6d2IG9fJSthoHtGlR5p1JH2OM1h9GROjzMazOCYvTj6qVSsAToko+E18Q2i6SEiZW8e0B7oRdmqJbY9RbbU6V2QBNoNvi/Vu6TEKMyqFtDvq0mF9wKoWdVIabfPdZx9c0QzHCgTtLvv1b8HYkZSRuYTpGTUab3roU1CjkqiM9M5B+X9rLyPjaes/PX7zrtL581F+fZJyTPkpZNDI4qJPol7pIUwkCWvbI97BUfgOehX4344FMAgJA6Bma/w3fvx9tUg98fKGJ1/QFHz/p7fv8RAa/8ENlG79W750pv3iDcgI2J2DJFIUkvSYhh9x0OUoh3rwYHY3qPdwlF8sL1QDpEm66ETppRIElnimRRPxDQjKfFarrTnlVgCoQeC01Pkzru6dfOA7l4dDWLnkFwtEASVTtUx97++Nc52c7rrEDbpoF/dUR9nchtso4jS1dTMXQirH0IdjdDDjQI3XuUn9MlxEoOaLHJ77ej99RLigXoMH1ht1l9rDAPcRqEe1Vj6UDl0JN0FoDi8J53O672KquGYQzoQEb8ONwEsfD6Ncx4tGnq7NuOC3j7xLemNFmjfrqz3zynHHLU5F24vEXwDlWouasfFHNTtu+s2Ngu/zsLY7G9T8kCnD7q0Jb5B1enRVrk2Cm/0av3XwfMv8WhePGmh0VO3YMWRwJ9SPQd99T7Zs8PQiRgiXfttK9ZbT6QVg6OvDSYcZaJR4Zg7Q/ioe2KnYy+XsSdaIecYO9iw7K2xbyuffvjeBY6io6Q2Rg2ZsPeI8Ya+RVOkseRzfB4ZPbbRk2F8hRjFz6EU7vQhBiLo/rp680wdvs4pJfN1dGE4YiKIK6kiRxHpJqp0+3w2t2wEHsl9H8ywG0MsT5Ml8vPsSuK2xuZsnrUxmeVWEDuf6Em/iJ3/NE+EGo7c0O7RZEl8NFG6lBPL6QQorVReX18ASxRPlzOXhwcuDw+cz2fevHvHyf1r8zReJ975wt6z225xmf14Y0fZp+QPfv/1GNRjT5K7tfNoRZD7x47v9TZO/XzGmD0IWb/w+Xt/qGzATqBRulK8B9ZzdnrrnvSBhIqoiz56vFmq+hdstTs9F4Rggj9j71ELZkefdHV2RasCUejB9lrT2JDj2jYFRnvbPRqPt+jRiNHQ9a2YPeJelXMSYlRSqBZjqJIk0rpSayelZmZuoYPY/qW9Q3SGJnogzs2400gvtue7iNYYDhaDQ5iFll01RxLyzEAriFFISQmheAG2HWNtMC/tsDnYez0YHilaa1MPmKBiNNQ1KxQFKfY8RY/Ce1cl58g0RVK2oo1g6schWkw0AlRVE1dNCaZZ0KhotO3NugJvrjMWG3SDm0TRoEZSCh2VZueuzWOcepsnMtwtAMl0lFpNKdri4oRIQWQINQ6aqp3kjf1oMWPThnSLvbQrxZ0SbL9NHgt6Cax3SjFd3R7MDWKw+prc5v3Q2+guJhUHuoUhuj/n+OMS25/8PD7ufZI77tAIcf4x7eQfHwLHgBpBkQTM91DGexjKdJtQjUjnzdRYQmGRnd4WnlKibZnvYuDzFvi+w6sqvdrgG/3Ku/fFtj4AGbkVC10C/fisfaAFZmK9LHaLW4NtB+l69L/GYBN5fn9GZuPEt+JCOy15P57Qd2XfCuW5EebZPmHDPBZ7pUrFSYceOARimnj9lExyO4IkCxz33ZrqpwzrZoM55kB5abStICpIzIQssBltj4bRjHulvKwQJyROpoTsie2gqoKgdYNekPkdcpqIbx4Is3EOkpp8enY1ZkqjfWk8zY1fPSr/07vA//CXlV+/bXx8sgAlBuuXOMZAuA1so8YyxJQ54Lr7Su9P/rXGab29wrAh8DHVuOvb0VthYiQUR5gXTFxqpK9HUK3YdfxDm/ZxMr/8pHYcTZXSTaBC6Sw5E6N7HRKZrNxC7bdP3HujSaW24gnOrZ8xIE66GCieuJIpR+HIC75Hf2xH6LKjKUIKFC2UeqXWneC9s/knxaPuvX71iE312FwPtEbvlIjHkLirRijDemL0m9roaD8JkCxXulVBRgJrYyq5yFOitw2a0Wz33ZCYINmDiRuFDhFCc2l/IE2ZlCamaUYQ6hBqcere1jZaLVy/fGG7vri4kSXyGiK1mLgOjmSElP262geNaQIPfq3/UoySmjISoom/NFPTHf6i90dK2RgaIaLd+oSPBXlUC8bhxYUh6CKipGkypgUQxK+d2Do6/G9vSE2yIKs1z1OFFCMindahdGxsxmwbHd4jJgGRDs3Gp+KUek+4Qxh5t7p1FV4kMbGTtJyMjuoiQ0adjtaf+Cdg99NapXAL/K0QYuN2yvnYtwc9GW5iPrVWUpo8mVejqv8k+R19lUMFGNSRb0Pvyr6zrasFcY5sGpo7FJSNfn/MHf+KMTHnRKXSW+G7735HipE3T4Nu237iJStHkgq+Xweh90YpTlW9uw6j1nLYWnWl7CYgFXu0dor2k9aVo2jV3FPXvGs/ffpEa423795Tys66Xl1gTo/kfVxXkhFALk+PjgA3E7eaMvNyOoph2RNTkcCynDidTnz4+NEQ1nUFlClPlH23+dkbKS1MUzaV5HnxIo3y7v1776F9NSGv2jidznz8+A3v3783QSmfq9M0sV6v/Obv/45tvSIh8Bd/+Vc8PD5yuVwIYlTw8+XMcj4zTZMp4nqhIcitJ3sUmQ/9Cu72axtAd19/mBI8Xuv+HoyRfNxxFZZlOe7tGMfNWy/ut92D3XMHiPxJHOGVJIVFOq+bMqxeJVp8ue870k3/8925kUImpcBptgLTD5+vXK8b162wrkpRpam1WAQxJE2xffE0z47INtZtpexmR/k4Z+Y5kKZKqkrqndPjiaaJbU/QDXyAftzSJIpwRfUzIRvy+3wNvF6VvQXeXMSS75ioBLJkUjrT9YXeDbyYUmZOyVgSVYHd9+5OKZEYZ4JEXuszohvCK+f8hLWpQJ4CGgI0jB01QXs1odYYre+zocynbJaYCUL6ghBAraDXesOCgwDd9uKuO8RCVVhr4/PzK29CIUwmBJmy9esq1kubmyBiCfF1L6y77asPDzPTEpEUHUDAn5uIyZBO8STvNGemEMkt84krjca0JPRqwNc0C7YtNao2SwiTUDCXhC4FiZUYKykrPTdCbLRm4pEtwU61/tqwgDjrLdg+n1IghU6gsBV1o4JAmtR+L7dC4fCjRoSH88xWGu26s7WdhtGpU1KT4ImW8u/GkbcqwZKIyTSHtnWnFFNzrqXQSmQK82EBFFJkL536v7vdz8jyuVs0vloz5KvNFfUExSVVB3V0BIwjnuF4LF+9pirWUusBrCI/BVQYvXA5Cg8z/EXYeXtqnFPh+zXzaU/8w0vkhxf43Rf4+0+WiO7lliC3bgmldqNFWJx4n9iaHU9zmovpoQgpG9oRGF5rt+pVDEJa1PoX2oLWnT0KWrqtVMHKMNo7vbpRPGKJe6ugjVJ3z7gDGpNVt1VpdK9+Gz8f6X7zhS11F9CwJLtvDd07WiqEAinSilGuDM6yZFXLC4QVCdbvcFRDe73dqJwhnQlv35LOZ6ZTZLoEYhKyU7VFlb4W3iblm4fO//xnnW/fdP7Zt5Vfv6s8njpT7hy2KyMr4vb9Xf5hY2pA7/qTDUrvv1V6F0qLrDWwVStYtLvKvOk5K1k6czSZ+hxcgOqux7u7ZL1+9R5j7Pov78frT874T+IQExVoKpTWCaGx1sKUJqI2S4IIJElo5Qgom3akd5KHl3+oUCX++2HJIHe0E7Cr1bXTfC2QKlSU2HZqV9ZS6H0HaQeldVQIBzozrELUq7Qi99jfT5YI7ubyvaWLRb1OuzeEv6ltbgMROPIjBn5vSoExCDHZNal1p5aNWqxHL7nJca3tK3EiGOuDeOK0kJMlmYaIG1Ib84QC63al1vVIOGOISJqOnhdBoYwk3Ol9UaAZ6tF1JBheaEjJeoLGPegmmnNDiPpRqIhx2AwlD+DvhHjEE0g1r1f8tULw9TBGDl9dLIg30Z5+JMYj4dhLI+WZ4Ki3oWYYfRoT+LC+GkOjxR3flRua17uVJERuvb0aTaEhBLHinQhIpEdBNNo65wlP3Vave3Rar550Ca3udPdg/SUfI7kdFfla28GWqM3Uewe1N+oYmzfv18GEMdVgPV7zvgd0JApj/Wu9HYFgzpZovX75fGQYghCDUWPH6+3r9a730VgDOU9GqQLW65VtXSnbZiKEdwnPwZIohVIK67ab7ZVW8jSToqG3x5qtt2uj/cBsj4BMq41lYxN4v7DTs2MMB+1WgiV0yzIz1FBtfGTOp1tAnJNRoVOMxhDpSvJ2jtY6y2K9w8u8sK6rJ6s3EbhlOXO5XPjmV7/iyftoh3XT68sznz/9SAiB5TSjOh33XrCg83J5IPk5DDug03I6xsT5fDnWiZRMaVkxqm+MgW++/RWn5cS8zD5Woie02YsZHPN4xHB/KFf9g2jpqDBI+Mqe6+sx5gmtKt19eRkgCaOAcbNwGqKP2vvd3nK3x4w4c8Sdfwp7s+5ARaWw90BR8zrsd2tvd8ZJ650cA+fTRI4ztUPdPoN2YjQlYhP5U2pshKasu7qfrIkYSbOYqfZOVWFvvjeIUkqlNCgN4r4SwsySMhCsx9ILwK0rr/srMVwJYUVJdA20pszJ3DByLBZPyYRIRkm0bhm7ec1akp5zRLUhdJI06DuE6mJ0Ni4sFqwIO70Zy9DaSRoqnaY7IpkQI/PpRJ8yvSWmyRxQUgz05vFqghyEUwqsaj/HHEx7IIDF19aqJwpIp/RmlnY5kBIspxkk8uMny3OmCd68CaQoLCfl4THQSyRF32FaR5LNJdOlqCCdlAMtKT0peQoEDfRFOYdImAJPb6Dnhs7wNJ9dVEqJ2fIXo4krXTqkRsydmCGkTpiV06OwvVjuUNx6L4UE2oykGUxoS1WIPaJEQ36xsFsEpmDWUCm4lkbv1O7E5BBIIdFDYIkKagX3nIeArDNw3D/ZOxoo1ZXn/QsxdokgSBKqOuOr+zYRxDVS/uvHHy0eNfKcr4Vz9AjevqKMjCcwkFc9EoQ/DN7KwNC+BgT0p4+7oxHjokJRmabK09I5JXi3wuddOM/CKZkS2w9XU27Tcl8TNB/bVhvBEWF19t4479aVXkxZTJugGpgdUQxqOi5hIBlHHuiVKjLl1Taj/UtBiH7mhjD25lkY4swLl8Mvu79wAk32cDwgd1Gb0feKW9WYX5GFrq2JwRy109fdAuJ4QyhpIK2gbTf/FTE1OlrxHTNaeRCQPMM0I+cL4fGBMFv/7zQLeRLOMybe0pR6bbyflX/xTvl3f9n55qnz8V3jtFRyst6MUen9ar8ZqL5/HfHJPzUIVI7HdYW1BNYa+LQmrrvd5yJhpCdMdDKdOcDjpMyxI9nV6cLdPjqG7PGW8vXbjz/qT89oBHW//EPERY4UaldC6+zNhBoyRv8IwfoeB1XmRtXr3jt3q0qNgHHcNUNPnRY5KvFyoyF2NdqEqrBrIdAI3elUrVlwg/sPB2FIyd37CHdVK0h4cjukgg6AwD4p4qJXJsjaj/l5PLA35xaZX/Q4zyMeY1DtBiXa2hjMvsb68UyB2FkZ4/x6RYKJFCFyjOvRkxqTCUAMmvehXhtMzKOUjbpv1v+mWOKbTGjGKFLtSONVRwHxnuHia7ELUYQYrIVBxJNlp1/2u/YHDwRDjLbxBoF+Q6rBUPFB2wopHiqzFtQGH1vDM/RGAR4UanzsDcTQeok5Ek0PZX19cE0FewCjV2QkRxbEm7iYeAFMvY8XD7LVEzANuHKtEIIJCmlrJrLlhRjzZ1S6mAfjL/0Y9ipGzzcktNb9UNy2XtFEjB5UYeNsKPZaItcdFR+WPLa333ps7xlXNmdbG0q8OK09mt3PGMc+563v1Xq1yr5/vcaLjclB+bVEzr7yPN+NKfHP11wVtLCuq1lB9GoqwSLWAuDXZQQ/tx60kTR5y0Hn6J8d7z+OQYMeCOJQZ7bXu7rwls3b3jvbvjua6fT+ri68ZRQ+VeuRHyJW87JQ9p19c/9ugdPpzMPDI+/efTi8efd95Yfvv+OH7793W5/16C8eqt2jeDgS5/GeANM03+KjOCjj7RDnGvc2hMDT01vmefIiRXK2jRVDxNlr41qMwnnvtxjtBnj8ZID6uucT8fj10Vfr13vcYxMxGv3vzri5y4/HvnQ8vrXjDz+l2Y+v8POYi//ND+2FHipKoarQNKKSUTU/V4LHMiHStKESmLIlIdow7YVgmiSlRpriSJ21v20ocxjaBre53OkeB8hBxa/VEo3SA2EvTDkyTXh/szIE/VrvrH0jxZ2cK4HoCa+Qo5gwUqyIZLpmkIwSXT1ZvBcbQrC9sOuKoIYKawVsvB5jHrDCptlMDcZDpxkBWE1ALUggzwvaE9oDeRJSEUhCq5YrhGQ9wpMKezOxtjQFUrR8YvQuS0wmtEWnUSHMvj8qOSf3Wy9IgJRhegikGJhnpZ8DWiMpWpTUuhKTaRLEmCx+ESVFpQ7KdhKkQ5vhlBJpFs4X6NIgwXQ2MbpOs9bHBlWELoqKIrHbZ8s4VVoJZ0jVqMBNK4prfPgerRKMdq6u9Oy6F/0o7pstZwqWyA5V7o4zfLx1KIqQJVLu5l6M4tc0HOKBNn+tl7a1oUrvPushWnFchIoXGjswYq+faav5sxPbUTUSxNmpPw3rv17dRhBofxTnet8ea0jLbcP8w8rJloDZDnpHAv3qrW+oQPDJ/O4MIVbmKbBq4LUGllVIkxDq/TNtAGu0c9xeXVk3NaZzJiRTH44dqC5ao2I0D+e7S1Cm2SD1/QvkCeYiTG/g4QS/fh/49unM65fMf/x/fsf2/Jn6UomnD77YBzPYNZdlcFSMklE3T0YUUZvs2nyFl3QHYga8mIX58A2etSJN0Xq19xL8Ob5h9GKlEMVRlt1QXAlImkFMKCp/82vC44VwXuhE2r7z5dMz6+uZ+RRJHxPnSbksyr/6l4F/+a7xb7/pfPu4cZoal9hICqGNYXPbsI4b4Uj+ncfI3WYod7unLchjGLzugec98P/6zcSPa+SHa/bgOXg/iHgZQUmxk2Pj40Pjce78xaXxdtk550ZioLeM1o6j5/qr476icozT+7//SaS2gAUne7Nl8nXfmaYNIh7Q3BLTrp2qQ81WyNoO2rGhN5XaC00L3bVlLYexiudhn+KMiFKs6muV92I9AooH5+opli269yIu2X12LQAf6M/4ErQHULv3QrQF2YPHUQYRhdAhqBJ6R7qAz+tjFfNbGI71KRzvEsJNzCxII4gjiv73dV8RhORIkhUITKirt0ZI5qMKUFv16xdISUkC6/XlCN48grS1NFqg17XT98a2XTmsf/ykTVF4YYhD1W7CMGXbPGjBPUVvBchRdBhIT4yBKALqz3NV0jgEoBhByfjE9hXjQHOGzY8Sp3zMqVabbVo50epOwwKL6tZNNxEZt7NAXZHa1bU90B2FEVNeTNZrHYAQkYqjCY3WCnUTUrrrle0VAszLkxcVG19+/B4E4jwjTm17fX0hTpmYf9lU5MeHJ8CXIE9UbireOJKL399bj+RAgRKGhogXan5qkXMTeRK3orLCSXVPZHBF4VYcWXGkuDakNXKtLlhzQydHslNb43pdCQh5mnj34QMSAnspxDv/2W3bqM3Qy1qbswMsoR6U3uGRfO8NaxR9DjaCBeyWTKaYjiKd2fYYdbpumyXY+840z0gIjkxzxBjzPDNNXqjed7Z9P4o3rfXjWgNMs/Ujb+sKCJfLA9u2sW4bnz9/Yp4XHh8feXp8yzzPnE8nrtcrpRS6PhCjWR+9+/Ce02lhvb7SmzLNM/NyOhJQ1Xz01U6TFQWCiFG6+51oVsjUVkkp8+7dO/fTrXz69AMPDw88PDyyLMtBO+6uQRCCXcdaoRRLKoa/tBVB+EcJ5P2uOMp6B5zgLIB7xLbBTdDPi4jB/ZjHHis/eYdDF0ECkmwdG1RpYzKMAs7Pm0//LY99swSxpZVWhFojpSZKtTmmLcKSycvE63VnrRvP5Xvq2uk10it0MSJer6atECVS3PGjuJJyTMrLWujd+6aDJ3JB2F00T2RmrYldE/V1p03mTHE+Z1LEko7OoRdzOSXO8yO6Z1Rhb5Up76Ro7Xc7J/b2wHx6pDfz0e69EoElnqAK29oIOficTpTdVI1DjKRgidD1JSGaiJqIIdMlUhk2XBZLx2QtGOiFslf27cp0hhPCLhXddoLsnM6JtTb6cyfND0xz5PJUWC7KvCjLcmLVRKqF6oXfLorGRJfAvr1y3RvX3RBviTBPnTePwfpNgXwxqvO8dLpEIpkP3z4iRC6XE2G6ElMxO8wG0oTWK3GaefhmIS6zOQqkHZmMobkApVW2WshLR3s08blWybkxzRAnJcZObVa0bxTCeSdrQWPzwq6tnzEGYspMk3sjbwCFa9oJcrLCaTN5qEAmsND7ldYbwuxrrLLW6uG6sKTZhKp6Z8mBx1Mmiq29zUMGK2xjDCqJlFI9HhJi6LQYCD1ySRMhCEs1NlL/mfXmPwqxvVXQ1JOL++Wr3yp04//3qK7eXuen/bocz/kqYziSZwcp/a31DzzjuFoIrhaclKqNc+icRJiBKZiHakxCLZ7kGavX6Gq+QRKgVQvoBqorUQjZMXQxsSf1JKhltUA5cldhvgGxp7P1is0PM/W6sZcrEj7D4dQrt68QHamYrWrlSqGKelPZ3fUZ2Iwv5La6raANU631z6ZDCOruOSLQm3uTGtavvVhiGyL0RDhdCMuZeLkQZhP3aVunlU7bG7JWgirXT/D2Lbyd4Z+/7/z6qfO0VKboPRmqR5JoIld6s10RODJ0b8o/7vB90qh3n91frrTI96+R33yO/N2nzPMeeC0jABcP4D2xdfQvjEVy62QVojSSdFdcsxc/BMvu3l7uRttPKVX3x0/z3F/iYcGtHtX27ohPbc3My9W9Aj1RGd6OIURL0ryeB8HUk7XTXEhg0FTvq+bd/63d6YzSjp4+fHwcNiB2hjYVwBSZxZMbn1sd883rR8FH/D6PGqPdr4AQBatkKi5wdfce2L0cPpAjsRW59eseVDax0MxQKrx3xD3xYiB0r/Bi6GlOJrATHDkDC+TyPJPyNJZRn4pOQx69i3pHt+5KqbtXkA1tre5RC4OeNxCjm7iCAMF7Jo/Y0AenjmAfu78DVTFgpdN87eij3/Vu4jWTYwTU1Nz9eg3EdQS8I+i2/LzdXXI9VEyD4EGyJ9uu0ty72XkFHJXqQHDBsm7qyz0mu68hIHqjuFqBY4hjCBKS93vauYhC2TanOxsdtavSSiHnxRI3bVbv+4WjtoM+KzJsZpSq9ShADBXbA0kNwSmr1RkG/UbDPQrE2PWSW2vR1wguWBHlHtkMJEckUUv4ahH2ffc+aaMmSxztCZbYKOYDu5wv/Nmf/yXnywMhWpBTqtNxq/WY7mX3MaKeaBs6Ofqq70UqR0Iz5tEQhPIzt88bbj2yiHvsMmpJt57Pe+sYkOOaDuEuo/86WiojhTMkbFzvlhvoTYhqUjifH1jmmfPJRJpSTLTej6S41ELKJih1vKpTUw3R3RhCcCOhDyEwTZOtu71Thi+v9/l298S2ORl4eXlm21ZjTsTIvCxjuBx75bEVegBr39t6fVNJVkxw7qst+rbeHI+xOSq+pujx8030LMR89O61VunuHTwtp6+yZ0t8o8WhcnuvUeD5Kj76EzjKvtFygVDRng0502jUXvXkvyuldUqzqLT0QiurJYvX/eh/3Hc1qu0k1NKhKxGBCNHXWdsXAlO2sVV2TEvBV96uBgyklJGQ6Gq6CUNTsPXBfnBLoqFY3L1toJmjRmKh9Ujvgeg2XYoVjHpXYpiAsQeP6KLS3M5nr53ezP/5uik5YAUP9/RFqwslWSuKeKwhSUx4sil5tjYqyw8sJm26I0TmlNhFCVFZztaWZXVio3KLuH6ICzQ17SQVcsimJt/V2QUmRGXtgULQzjIHoiRSMiaXKpzO2QrwJtcPYsrWKcE0WSweghKzkCezR0I3W2MQkhr7sokBdWhA5oQWo1CrNFQrTQu0hvZA7Y2mBaVa3BUtFq7drraKMRejBKqPNzpW4Mbip+SobJIMbTcWc7jZBLZu4ritd4yUaeBDikpOlsuNGdnHvEfN3UCiu11Yobs5G6hlYx7Y2LM9JPxBtOkfH38cFfmrNeTrBNOS0Dtaz916MsCHu1f7yc9yQNTH644rNtYm/QPL1JFI3zYuS2KEKVoT90U6Z4RTDywCaxTyZEmnGq3bTIwFZDK5fRGo+35sfCFEJAdisJ6u3nRkBCaA430802wTABFTsPOvy8mk/M9vT6w/fkLLK61WJJ1gemT0/+DVTONyztAjuHUPHgiMnBRpx+e1ILND3ZH2akIvRko/An3LcO98az1xOSh+WqCtUK/ecDARlgvx4Q3x4YJ4I20rhVY6WpW+VkrtvNTOfAp881b4m4+dd0vlPBVXrvYePt/MBlJ33Mtxn71I8NPjq2KG6HHaHeFaIn//OfG//Dbzd58ypZkSXhgvfLQF+mYqCmKS+J9zR1vgFCun0DA8wt/njoZ+JLOMPdOT2p/MgXH8NNH9RR4H4t2PhaYM658WaaNq7gt310ZxWqMFiu12y1Rp2qi9ULvRmVvvNFVXBXQfQlWzGBJ7+6OQ4IUV2yTHqAgHzW4ExiG4EjD2uNDxokzzpFboWFHIXiUMQitqfgG+qd6S13F7e+tf3c/b+1nQPoaS/Wybu7HzxVghOdG7tzJE9xb13kORcHiLWr/e2RJen8iC+anGlEmTeRVaL//uQsfKur44Qiyujml0xeSqw+YRO/qP/Z516/G9qbXegj0rIgw1SE8ygyVGrVUXlbOqnIRo/bleKOqtHn3PhnTZBm0Bt3mb5jRUVBNoNTpwsNl1jwqqRLMZGuPJJ5nRkkah0NZDU5+2z9VRglYanRADSqTuu18D79dVLGFJ2ftxoxeklOvrCylbgSHGhNZK2QtzXg5NiFZ2dP9lz+V1XUkxuT9yPJIylUHZDEdCO+jlOU+01igY/fcmzmS9Ukg8EouBkANfJbaDrnv4MgfzzB3FjefnZxcXUs6nM9HnQ3A7hyiWfNZWiTnx8PjEX//Nv+bN23eklFjXjVJ2St3Zdku8inu/DgrzUMWurUITP38rCtXDamssL65YPhTMnZY9+jytECdHMavrrZ9z0CDxfWt8VVfFm6b5615URoJnr2fJbPYtzGKIHOHh4ZFpMr/q7CJl67qRcyJP2VDwaGiMtQsoMVrxoLXG9XpleGOPxDaldKDJtVZk29HWWdf1UCe/rXHww/ff8fLyjIgF0ZeHB2858PvktL9+x7a7p/uO740lZn3xt+I5x+OGd7aNM7l73k286145OzjAsG/PlG2lbCt5Xrjtybjl0aBYGxtlFEh/evwp7MllM6EgcqNr8sQy0DTQfC+rTdm2Qq2ObGsHVmoTPj9vTB46rtfAtDgzYu/0qmaXI5BmQWLCaMiBebZi1r734x6oeIKrwjRP3i8u1hMrNh5q64aeaaOWQC2BXo210LonozQWybSeKBqIpRCjJbOlVXozimun3RgW6t603V7ndTdP+LIXti1wmYV5aD+giLhycTdwaaj7h2hhXOwwnzuERtBGTBXRRqlXQpg4z8KzNkLunB4adS+WTEnz5NbaDUVAI6Y0rMIpzrxYfxMxqK+5zYoQConKeU5MUyLlTsVovudzpjY5lIPBkrUpKWGBsjejE2cTnBNRemmkmMkhEdtmJxSF6WTU4HzK7K9mh3MktX2jN6VXYW+N3nYkVKYY7dpEqFWp2uliQlM0S2wV8T7om2juLEIgkpihrWhV4hx8zpuS8bBLi9qMzCyQUidlS6A9ovDvbKwmiaRj78Ko854Ldg2UJlSPV6NrDf2c44/mWv3hGtiRbf3jv4wT0T+8wPzBetrdL/UPPe7IMv7JE2KOnRzgr542ziHyJjaQid+8BP6jCJ8UXoHrai8SBHrmcLppW6PXasHzaSFMEa0N3Sv9uhFSQoMJO1UDSb3S6f2+c6AUeH61SkRvQk8TnJ/gqaOffo+WelSYrNs7OFooHAjrQFRHEhq8j8bFUgwyNphftKP7q/XJok5xzt6na0kAuhrteDxGFTMxK6DWzE4UJCVkOcFyolebuBpNjTVOiRBmpClz6HwzKX/zBv7te3hKhUmaVdI63vvQPeC2hGMg69wFCveix8c9/8nPnvPQFNYG//73E//p+8Tf/5hY94iqBTvdnxvuh+V4rS5sxSi13+/C//qc+VwD87Hp34StkgdhUZRz6pxiZ4kwey/LfQ/QKL786Ry+ZHXrzVCg9MbeC3vdiB44Fi2U3mwB7Fa1vF1Opbk6X9VG7e1AfUsrlFpNedf7MEM3ZKmHQOwDvfHyoPbDW1q8imVVuuBJnc2t1i2R8vbPo8hmM8F/4cGSIERcAUAEjVaFvuNhABbISuN4Ln5vLadSEEemohitJ3bmUyVNlZDaLfANkTlPTj/G1KPBfTZnpunEfL5Yn2obSFNgWk4sy5lpXtjWFxOQa4V9faG1anRLy6+pauIPgFGd411vnyOmA3EZ9mHVkVdVo9/2++BP8AKG9zG1ZglRskTIUF2fFx48onfjHptnpdQjUcjTfAT6vVuwQRhevh7gSiDGidFXp2pMmhgTwWnk1oZh611MQHPxiWDI9fX5k302R7HxcSaj59ED5tEvWPaN3qqpMTcPjGIiusBSbw0a5GlhW1+tb/QXfGz7Tg2NeEcZtsPWXCus3JDHouVA1FPKh4+tHVY8iG63MyjgXy9wHEldLY19L5a8xcjrdSVFEx46nU7sZef6ejURqWniNE/jXZiimHy+swymeWE+nVGUvey8vj5bka0WV/S1uXrQgrn5orYh0hYsiRTEVZidJVLbkZSFo0jVj97w0cMH/UAFUkyesMYj+W+t0Wo7xtJAq2/jvHuhwZ4/KrCjaKa98fzy2XrlJXJaTpRa+O773yOYT+t3v/89b96+43w6Mc2TtS6EyL4XcjY7qpE3ruvmAjSOjKfk/cC3kG5ZlqMXeNDPS9ktkc2JaZ5ofbG5o0bp7K2jSY/xYKBEPxJQkUjytzhsQ8aY83/Fx8kR72l3C6h7b2QfVWJFF2NvdPZ9cz/eTJ4WQkykaSbn2YpvnhhbTVSP9Z+Bvv/kaK25Hskv/TAkTgOsO2ytU4N5va67MgWzsBGNDLmCbGYa6B64bokaKzF2GoG9Kq/Pyqgktyb0VSlNuTyO+Egt0apQqq2JKQbevTuTXjvy2iilIipMEURMNb7WSK2NWjq9rpZcpQQhs/XOa10NXSTz5VVQKWh4ZdIJ0cnmr3Q0dIpuPL9eWfeddx+fTNCyDjZRY10rrQmqidaFEDPLeXK9CWu7O5h4LWNoMMS5gTaaVuZzIc6NKUSen2fKHvnu9crTqfK0RGMeBnh4StRqTKg8Qa6Qk1LFRLmWk+lchBCY08SSYWuRqrvH+LCtjR7hdBEkVbp09loNKIqRaY5ogW2DKBmzOCrkGeZJ2LeISkJCImcFqZR2JU2JSSK6iVk9qZAnQ4Tnc4IevU3RmbMxk6edisLWUKlAcWbdRCdAnA1UoFkLmQQkZqRPCJkpZqpWalfylFwYszPNkSp4j6YVOajuSySR0qN54Oqrqd6Ls60IqCTWWqxwNgWmOTBP6VhrREzzqDdrK9t6pHSh7I0QOkH+d0Zs4S4xvVtYBDl62I5q2vi67bPHcw/KmNytRSPGdDTsJv7wkxOQu214POdYy3QwXQCbtAFlSY2HCd5f4Jtzonbh+13Zi9A6XDcOmo2zGeyrKVoVakFTRoMnl717P2o8rkH3Mk3dLQ5rDWqxcyheRdMm1CZoSJAXS2QVtO/Q9tvtkHiDkhgX8e7CDuTlqIQajdg+/0iEjxt2f/cYm86RMI8+xeNDj8ROCNOMTBPkbKJS4yXcgN0muDIn+PigfDh33i2dLNXazh056K6E1j0x+er8vrq1crt/4+/h7qOMBzqwV6rw/UvgyzWwFquGHVfKX+NrGuXt0nUsQVqb8OMWKR2mqIhaQi6tEIMp+wl2/75I5zIFzjnwZg7kqMwuPPXV6/8JHKbC3VHpx5Cy0WBV0tor6vTG7sUTu7aOg94FEINtcPTQDlpy754MW3+b9pEQeV8UigQ91LSH0uIgC4uPUQPpR9cVR1DjugsMeiJ4Yos/fqBLiAu7+b9yW27ulg57Db37vdo6NNYZCWIFH1fNjsnoS0Muf5zD0Z92jHNxmnEkpnhUxX25s2A0Gf3OwMLO0Trg83XQTG+f9FYQAu8t9DV2WFUFDEkZfbj3tPDjcCqNnf8NVblHUG4YN8f5jCVpUFbvk56RZCA3MRId9+pYt3woOL1uIKyi3Ypzfl59vLJwoGe2+Vnfdi2F4UPaavG77UJbMdyokseZ3+49qmhvpnrpFclR1zAFx/DV0vFLPGQwEO7uafA+9PH3n4rqtN6OMWqiQi5EJDdK+9czJNzlC45GSjjsfMbfeu/0YPS/nDOqShmsJ9Wj31ycpicxInGUaJT19YXycCHEaL1Wrd2tKRYU3QTMuBvThrbei03dJzi3x/HVtRhD+hBuu/uK8Z6h0A+WwVfX+Y4WO1BCVaNhdunuQWtJ8LZtVgxopsZPslaFWiv7vrFvK9frle+/+z2gtPrEu/SW8JUfbXQxLo+7wvBzvp3/PaI+EPjuz6u1Uvut5zR4waFrR6+2ct6u+Vej7A+gtEOEzJgV94+/lUmOi3NcO+udH37ZaloDvn6OApoVECpHoSVEJN0o4aJy0L7HOx75s44Wudtc6Hx93365R7OivydmtZu3Z1P8Z2hVaNWUfcfwa00pteNOVlakFmMR7qsedmsKB2ij6vTaEEjZrvM0KXUTxn/Bi8qldI/hRjI8YnZToG/NenebFz0bRm2VkEACew0QbG3vvdJEUBKuonBjeLWOdgMcavN+dW1mE+eSMbWrCRuFZKil7yd2XgGiJYQc676NPROF7OR5Qq72ztciLJNfL++xN60cs7ULMRBiN2s5/8y2rdnaqJoQGUr9g04f6UM4EVtrdYhgys0yLTS737d9SY5itBVv4jE38OfjVOg69k8LUJCgxGG0wkBD9Zh3XdtBN7Z4f7xfPCwYRWxQqDMiJUQbiSEQekAIHud2WjdALLhqro75p7fX7s0YeTE2Wt+o2ghivck2RqOfez9iia4Wv3X1FMvHQu/GerXx0Q1J/xnHH6+O4QGUx2xW9eYIbbilF3L3eP7x4uI/9rvkVjliLf/deFX/g+jRjmnI0VjI717/LklGTfHxNCsfAvx3a2POwlUtsAwRvlyh7Mq+Gb3WcjylV4Xa0esVsJ7aMBlVLUQIU7Qb20CbeS2uOgLgQE5Kb+Zpt1arQqzPjVozpAtcPsL+CutnF0yaQS5Gtg/J6bB+l4mHcblzk/3zeZlI65G04Y3hBw+3V/s7IyG/23pUbgmtqo+uSpgD6eEJuZzhtNiHCKNYYZM5xMAUI28u8O/+eeOffbjyzXknd6B2WlSCeN+ETwp0UFAHZd0LGSOpvRsX4qd296tjgWktsG+Bv/8OfnwVWotE/9ux3/0kn729iKulClxrYH2x5GoOkOpO2l+Q6w9MofF0hmsVShNet8j58sTD5ZF//jHw9tT49rKTuCvO/IkcvRuNs2NUUhWhI1Q1kYm9FmKIRFfAFazXNcdIColIvPmRjj49FxRprRny2yqlVbMd8MTGLGWCzzETQ8iMzeI2NAXMa1nVFMcIyGgX9OVb7pKk4VHsr8494msqizfxIdNb/slYGXPneHex4pon2hICREGjBe5BhTSL758d1XqQJ2KwAL6V1SjGIR4J4Ejcgotq2UaXmOfZEtF9M1aII605Tahr3ZtyYHNLItt8Goq2RnPF2UPcyfueS9kN0WT0sfbjM0p00/s2ENORNATCneepMSluQfyhdB0CKU836pfTXqPDOd12J1/XrRcSD34G2tb7bfyAGL3tEB8TUhKCBy4xWv+WqBJSMruXagU9eqPVnRFwT2kh5Uyap6MHM4SISkBCInlQRW/Wp30/GEIgTRO5Fn7pPbY55+O63yc2XwmD+XHQP7UzVEijC7vZQI8HnXdcs5EMjrU6OCU858g0LSynk6PBpgheS6O3wOl8ITk9P4qF6/M0s5xOxJR5+fLjUaCJEfb1lf/8H/4Xck68ef/x1g87Pk9XWi8HOtcYRRsl50zXRq3qKH04YgkdwaUnt8Hv831yG0OEBMOSalBlTZ24uhKxryc+JwbSG0IwlNNZBMsy06oxVp7enJjnhdPpzKdPP/L6+mrXKnaSKsuyGBJcGt///ju+fPnM7377D4aq1sr7D+8PQacQEsuyME2Lr2t27+dlOZSMh/AbXugYMZO44BVYrz5YUrssCyHAvC2HBkA5CkVWaGptJMG3cXVLfIdwldJ7PQqGfllvhbbe71o9hFYLtey03nh4fPsVgjv6ga/XV0QC5/PF+5Qj1+sLeDI8L4u1EHgh4T62vBc/iyESjyL+L/sQMRvHoInaI6UJTYbNpLLtcEWI3QSJYrL99vmlcr0K19VHvOsO1NIpe2d28aU03YqiUA8xsWkKtBg4LcG8c5vy+rxTW0Q0mtWlBlqEJGbho00oUalSXZPD+rc1NDQ28iws+UQME6/rdISiu9NsiY0uxnhcqyk85zwjkmlVDLHeXhEqJG+9qZ21wFo7e4dJO0GaFSIxASJJJ2KekThTq1Aq7LXzeq1I6Lx9l5BPUIryaU3kHHhopvCbUmA5T0Zpp0FI5ART9tgEQzalG7Ky15niRdnSAkEyaTr7XOrUVtir7TPzI5xiYppPpCrEZjF7a+p7NQ4eWfSSYmZZLqztld4rISSqmoPKXkx/QpzpJAKEdoindQHtDe07tVxpbab2MyOFbggSEjFORAx0jbFQqyuIBOO5RRFCVAKBqJEuhardOhZ79/Oc/Kqoa614H34za6lp6qztymvZmdJbCkJvYhZ/oSNsoIXeAntp7A1KN1ZB6dB6ZPV7WEuj9x3Y+TnHH9lj+3UEL3fVvKNyNnpt/3/U/euOJFt2pYt9c13MzD0i8rL3riLZxWafPn3UgCT0GwkC9GR6BL2IIEGAcH6cbjXZxSJZrNqXzIwIdzdbl6kfcy4zj10EehMi1EkvRGXujAi/2GWtOeYYc4yByTgWuPuO4v3m+6bbOvpLCnuky2CIHQ9p4K0p8z+5bhnTYE6hnYXCX7yPzJNSJFCbHeQfZ5MJ1x4s6sHrsdCyMQd9MbApLhOOkTBlx4NjEbUNpRcgBkQDtRhgurlstddR59nsEXmxBbdu9v57MzlwEwei4WgSDCpTbFHbj5FY3pS96QJ1ZTA9AwWKdD833YHwAATdAbG7IWtBKPZZQoLp7CBE0dKIUyB6nFDbKr0Uzk8z5yj8+qGzxA6tUwvEZB2y1sxgpmq33M8wmhd+7oelf+hmmsP99XE0Oca5HJfFdQ18uUa+XJVrUWpTO+4M8M1bsCLHRSIA3aQ5WzWLcSSwxkhUIWomSib1G+uXL9x++HvWl8/89P0Xzh++4/Hjr5D/+B+5vo/MMfA0Wxf+Dkd/9Y9arSvZRf24s7M5pak57oVOD8mNAAJziEwhM+1Ov4MdHO2s4Yprw/+t62Ew4UWN+PzGGKW1WNJ+KFu7vD1talJnG74w6cpohAS3o1dtu/N1YO9/oWLpVjEMzGLsqxXa3pF1VuAojMxkw7rZI7okIFHQMLrYwgh+n5bAco4Eqfv5N1MesYzIyYyLYrL5wjFqYAx22dmxum27A3PwNUYAkgGPtuluiDRybYfpElihGpPFB9Rto7VCryY7dSy5nyfnlsDPU3fAO4xh9gZCMIDbreI0TwAxAxxxXfQwqel9rDl2Xvfn8vuY4XzMYIx9ftN/wc6Iva/e7XxaVFowwy+xtU+D7nN5BJvF27MsXWFgc8gmYw0lkrLJoqMEiycY15b7QQRMilrr5mxioFWT2YR8ZIZ+jY/TcvJGxLFXvAGrdw/x/SB5dutwFd4NoMJ4jrE+v91gd5OqYGBmnmc+fPyG0/nMPC88PLrk3BsR8zQxffzItq5oV56/fKb1zrQsbNUMjKIqv/r1X/Du3RM5R7Zt5XJ9ZUTMAC639fLJGyAhCBYO4ABTxn18qDbUi05zF7dr777WeGNi6eCnNgN2EoTNJbtTzlCr59N2X9u6zSNzAP/9GAYrOs0IzqKVTqcTAJfLhe+//yPr9cacZ1LOfPvdd6h2cs48f/nCx4/f8t2vf82v/+wvePfuHU+PT978P+aLY4gs8+zMMtRavMHQXC4ofk1XmwUWc54OMZjjd4x7/BAiTHm6m9PWN/XaYH/Hfmz39qjXjmuDvTnt3gTjqttVA7ZnREweH9XOlM0hZ6qbgx2O1j424U239XazqKJl8V5Wo5Rypxw4wPfOzO8Ex/9v99n/Px7rFikxolP0JrFSibQWaTVBg+fXwvXSOJ8a86zkRbleGy+vwlpMQdSBy614fRrQNpGDkqQQkjOM0qm1U3pnWfxeaBA001VYrys9WLPm4XEmBcuvnefEMlnCxLY1tlC9+TcRQqRahiR5Ct50y3BVkEQMCRFrRFr2u6Ia2ELwppFzxT5mNGY37VoOxlg3pVRYN+siG7Ctu+O/tpWqZvMcw5muK1vdqN1UhK031BUTtxK4FWWtzeezIyEsvu90ugSXvY772xQQOSSSJDZmi0lSM2cKIRPUjLYCNj88RGqDcQZlihOaE30JIDdEhtlmopPIaSZGa0TVbaNrZU4zhEwnkpYTrRTKVjCliq1tKVuxYx4L3RuT3aNMYZrdDyHaXlt6RTV6vSWU4qoAcXZXYI6+pjZrXjU1bBNTIvVo45VuWNb6gZ0eH86krOSsxO2KSCWIxQVBJk3Bzlvz8bZBJHYD1SLNRljSRMfVWXXdG+G/5PHPdEVmd4z9eSE/Frp7IHIfpvtPy0H07pns78PNcGC3uye1nxpYz3/n52TZuCFUjucOQcko7xZb5J9L5x/mwOckpMBB5Ychd8T+UYGcwYeb8Q62xGhzpx0r2DxPk91wxXJkW1NadWlIu+8uqkmRU0PSZO5l7jCnHh9igEs49LgHq3DICWxxwAHCPjcLvpGM0HpnatXnTUa1q4PtHV/dwLObR3UC2pROtcI8HhJKrcaeZIGH3Emo/WxVxCUSBp7MSGiAWe4aHMNAp/fRKfo50Di6uQchL1zXwMstci3CVnfcY912L1nH7+1o2B9mIGQftTUvoATMqM7MPZIEkiZ6XVkvG+unL3z++9+yXS5st5WHP/t3TPnE67vAkmzR/IUz7V/FwxwLcQQYDsK+d5f8tKMwwQBDCjbkH4cTHnjnEJPsIvtltUvP9u4+dvnu50F2tKXKiKP9JwoQj9VScSAjd8ZeAREHe7CD2/Guh4Ox/eqxZplLskcIObjZgbb6J5ZjHRDxCAlntoc7c4zmiJznEUek/tnbUUCP9yMGlPdYG3BA5vdpt5micX8HEQPTYjFp/Y5RVGdAWmtetEJOxxraWqGWQitlf33lKMDHGjsMpIYxzTAH9DdsxzdG61B7VWuFtUmYbLk7ZOYGnMbrqRep4Xh9X6nHKMqu4tHjPaImidYuu9fA+HnLtmtvjmlwFndcD6MRASYzbrWS8nwUuvvlN2D+6JTanHVA3bCrHa/5FT/yboyV/D0DRFQPZ/Ljc8sbdvfIcT1igN6OCw0A47+9AxR7vpgS5/MD0zyTp4ml38nxHQylEHgBtnXjer0Ss/tIYJdKEJyVfGSaZ4sVK4WUJw7wZDK40K0RB9bIsWu6H82nIXPzN9z1uK73pqgOM7t29+9mgrZnOutbh+X76K19XQPofZfd288fIFCQI+rLQWtrjcvrK9fXVz5//mQRO0/veHh84vzwQK2Vh4dH3n/4wMeP3/Du3Xse/Xv3bGbw4vQ4Z4c7NphUU2TcW34MA8TByMfbfg2klOg+i53GrP4dsI379S9va7v9Oun7MRo/d18Z7k1PX2/HddRCILgJz2hUjF+9dzlXP1fja7zv8f5atbpkHPf9de+u038FmBaArQRqju4g7BLkJmiPoNFBXePaKykJKdveVqoxkIpJlqUKZe02PCTR9neBiY00KckVKq1D2aBWJxc6aA9oE1oYjV1lWiKBQMJYzZQwVV9wiZI/RITeRnSWrZ0BI15sfMkAS1cDmF0j2qE2sx0Lbto3YgTva/6uZmZkv6uUqkSftwxeAygei9QLNMvdbe7OrNIheBa7dbdpNZgMelxrCCqRFGYkdLTXvSmGz38GCUSxODyViMpkbsdsqEa6WgMVz/oeZfuo+9XXjBRhStbmsfXaHKqRTIgzNmozmjqNMPmIIsHi8rrn0fo13npzWXHY+zgquMrT5PlBktVP4m1C7XQNA6nZ+GSDHkajWN5MKPZuySFdGyEmogie6rf7d9iSY4Z6eQLCikhGxKTNavIPW1e00ypudGmgGDfwsxhF25+j+zB0oNbusU7//cc/C9gOcxD8TQrwdjNkX2D/qd8fZ3rYyO8mEPvPGzDcJSbo0amUYF4i+9PbSTK25756Zge+tnGZA2IUIYXGFIV3s/Iuw0NU1guUVdGi6HqcHOsiBXSa6a1C3YzJUXubQ74jIYNbqiNKTEKa7CYOIuQszElptfH97UargCSjklRhfoL1xUAmm0uHBd2Z2bHiH4zX/llbta/tpztK2DvvYwYBkzLuzoTjaqUj3RnbXi02RYA0Qzqj8cEikeqGbhfCaUKWiflhQU8zWpovJmYwUJNSRSli84FBO92TizThDnp+vrwbaOyL7hu0nefxvuE+tmdkCFcSf/cp8LefAs9ronbf6GigZnrj/ih+M+1Ha2CD+yN4zAiqLey1RctRzA/U8wdOeWH68Hs+//Aj5fLK59tvefdX/4klR/748MhZKmHqTMmP35+0fL6+x1oqIQox3Tu7WWeuopb3FkB9TjH5rFMcM5VedKgqkUiXbj8zVAZ6rBf3LQq5A5M2TzJe2wcaPLYH7LpBbXOyIhIkBQPRAZcE2/1Q+xF3jSoilgUtozHk11ggeCGEdS7vOp4mVdTdrGq4mRlzGR3YYsxfDEyT2fPPcyfNZr7R104tGyFEcppAPTtToEsmRSHUapLGIOR5YZ4WYojUYrEmoxwTgW0r9NaQbu8/xmBOvdoRhTlnL0Bso9Da6bUSJZDmxZaIVrndbvv6jAqlFmN1/Ryh6gYuNgecciIll6Q6+zpNEyOvc7C8e5dLIHg272BrQWm1uDw5A9Y0CTI2ssZWtn0tH2DZhCXdNzJjhmNMTKeF4k0zM5AKxHnhUl8NlMZMysZEhmjndSsWidJTQqbFZOCCMc4etWZ1S2QaRhqqtM3Z2/C138tCCIfRERirMfJJVc0IbHcwdnMnAyp23QzTofEwpu5wzx3HoDXd1+FxfS6nE+fzIw8PT4Q08/79e56enmw9bpWy3jh//sLz8zO//fQ3SDIrt2+/+5UxxwGepsD7hxN/9lf/MyHaNdaaAxrtx76FjwQM8BzSfm0A/jN9Xz9aa/TWWdd1b1BVTG57ubzsdYXN8tl90GojurPw5Fm6ZdvYto1SK+vtxjAj0zH3Go5GbIrZlU2Jp3fvEIF1Xe9yYTsxBVJO/Lff/lfyNDPPJ37zm7/km2+/4/HpHf/23/4VHz9+w+l0ovfO589feP/+PdOU6T25wVOjWD6Ln7N2zOHugNdmqOfeuV6ve9OhVjNhKaX4fH/ifD77uqj7WjGA735oYQf9A/jfuzH/fLzILk+LeBqg2faAYOe2VdZ1RXulFt2BevXs3T1mzo3hpmnZ38+6rTbyspXdBfrnM8bHLfK138P2eF5n5pS4lMkzZy0yao4TYQp8urxQG2YQ1CfAwFrIE3kOfIzG3NdW6T3siRxRQWvn779s/NlfCR+nwDenidcm3DallIkUAlHgp+eNssGv/vJEyBWSMbAxReacTRliuI3aG6W4R0EwZd/LyyuldOqWie+FeUosS6BVDnZO7NzGIGiw8JYYGyGMBoagzfYY1OuQ6ukgoVMbXG+b5e/GMV9qe/PttrE1pfZGSkKrNxrK+X0kxWCbi3tlZInkSYlzo60rpQbW8kCKJ6IItfxErZ3aurlIB6H6hR2CS5d5oAbh9aJot2gqmrGX1/XGPCVSCvSu1LKyxUCtpgiy8QUfoeoBDTMaTogs1N4pt8/0fvMe7GFsqqI0gRoCYbJr5PW2kkMjRzi5iZdKJ8eJUjJbD/RwNiPJejNvkFDpOsw4J9bSrUES3ERPhCVEuw57sGxyMTPOlA2L1K60avPRMZi3hYbI4/lMSMKXywVtZ4vrU7twDNUFRJJJmbuvSWKNmCiRngyX3NYrTWZah5wTly+V1+fXX3Q//XJg63/u5iOKs6LjMRaVoz9v/+2lmo4+7V0hK/uKuXdP7/9bdRgOeRzPAA7df9efcjzzUWjdg+vBFRjQsXKmM8XAKQunyToVtZq+uzf7jOJZihJs3k6HpoBDduTWLgYcm+ncJQohGWgrRblcYJVGK426dVMZ7wezovUK27M9d5psswoBqcf7HxuYDnmN/QfUFakruj3b+wqzA+TR8Rotl3p3Eg14Sq/QHUh37xgMNCEmV7GGlUBTejHgSrA5QemNsq1cRPnjM5wDLEHMVKcrsStCQNTY1LHvSffYlfvLwc+JZdLtFIGBbT+lWwvcauCH68w/vmR+vFkXazezuAPB/jfP9RqFEHcSKXvO5tl73B/WYVzWA1USMT4STx/5y3/3G/q20TtImLyzOho2d+zkv4J99JCKKprUGLJxqYhvQgzTBft8o4n1ls0Zpk6DDRoZwm8f494cbRozbDlqDvWG0cgcVhU3lLKu472q7HitYB1JcYfFYznAoao/3wCog7VwgB0Gawj0uxZSCPv3DYAGgiRfl9XZaTt20wTLKTBNke1qLEJwpUXOkxfn/u/OjJrsPpi5jDv3DrZoMKgiajPj/tmRY7I4Ru+AynCDHVJB63rmaWKMiIxIkjf+Awwdh7GaJjV2EONg5w3L5+tfjLbQjvlL+664NHWA3Lfn/M352Btq+xthn7u1VzdQGoyFVXdwDS5Ftfi1w511RCptW7FOddNjlnkvcL34FiFq86XFzP7GfR+zz+o1v/i101sluIHQ1/0IjPzjGG3OMiUcsEV6rwz58HCVHcfPGiVpZ8HGw0DLcLs91rWddVDdGTQR4f2HD3zz7Tf87u/+wWbAe9vB6bYVA1c5My8ur6uFKcL79+/48M1HHieYEoTu7HpMu7RdfQ+xJfmIdBnvE29435uidTe0sXvbzFPG6MJYt4a09mB37focsmbthyLicr2wrSullj22K6WMYCZji57sfYSwz7tmd6O+Z31TMhfieV6Y581LFJNlPn/5zOl05v2Hbyz+J2dKKW7M07ndJlKy1x1rW6llV0yUspFzIkZT1iDD1MUbdtGAwpF/a42qaZ72Wsbum/tz/laODMfxOv60u/xoUB/gd9w6x75qyrWg2HocEzG1/dyFcV5DcPdnY7xiTBaP5l4FVt4NtY7+yXu6B7X7uvevANymuFA18rIl1lIp1VIGEpEkEUikCCGNBg8ogVo7vQun08K6Ql/H8XBLlWYy4x4zDat1y9YpJVA2oVUbY5lyIKe2E0pbLbSyohqZp0z2NA5FnOkcfK3VQXWMyChAoDSF2qkt7Ptwb90UfN2d+hV6VBvlCgbMt61xvcJWC0IjrIXeswEhsaa0TZ+Efb+KEpBmTUrL+m1s5YZq8Ya115/epE4ZtN1QKlspaM+IzK6ymJzRts8aYvA1xVnjbmyu2twhIpmcF2q90erF3p/aXKgJVAJpAPDQATvGa1Fy6kbkqLHtVJDYfZ8bChjdG3yqYk1uIjkLjUrpxtjHbI0C3NhvxLDhSrPao+/7HcFqlOA6Q+0QQ6ZFpXZXvwmUwRCN+V8nAmzfh5QsV7m1ZpGAarVCKY3QzUDX9iHLz65uZpWqkqIwT/OdR4CRIiqeeQ52bqJlOYvXBaX8izO248+jI++f2gqYe+nvn/z9eIjVDvan9H3l27MN9e3P20VsQG1I2w7wur8FK45HZoyzCPt79z/38WxtLClynuBhga2axXpvBmyN0GwgSpgTooFh1yXBOqEWumF3jI7veeEcktBXZWsGbrU2emnUdYAExTKFbrC+oLdPxppODyaBlmDA0y/sffBN3x53yiuyXaDezLo7v/cfUwe4LhfRypjBsv9uSFvt93qxgxwnew7MQt1sdrwt4CO8Jjswp7pEodxuvHb4h08LH6bAYxampkRR2jCbwuZZJRpIslBre2c2XnE0M8RdAEXC3QVnN9OtJD6vid/+NPP7l8xPt+gFvhfQXujgC1kQSK4mV4HJYniPjZZRzx//OJopNPFRZCGHE9PpA3/57/+Kvt2otfP7tKBEf48uue7q/YS31+/X+NiBrc9ERMFOu4M3A7a+sLoSgT4W13uZsS3Kb8Ft2JtNXsPYa3lTwRqmcgBd07Hs50JV7Brodp/E/bnEzKEGsJFgzucOcH9+3O28+/OOQn7MwAUv4McmOSRVDmYlhh3YWkfaNlRCp3Z740GUnOF0EqYpEqNLHz17NeVM2dTVEuprxPhMwuyznybhsqxX9eJzgA87bsGNujpdhRAnQuhoqLshFjF4TM9R9ICzUfcL4egOMDrFh1xzFOIx2pQxuKpGgt9nBmiaM85vpalyXC/34HY0yhxkqCtG7KMdebZ480xkzMIaW1e3Tp5tjS3bym6Kg4GyaVrIebWmlo8+2M5j5xnYI3xqH2mQxmKLS5ySy62HT5QCvVcIcY+f+lofA7QOYHuYSAWf9T7cZefZJNnjmA+w9YbdYgDbO7l6HyMK9191b2Z8+OYj19uFv/3d37nL70aMiVIK19uNOVi0zOm0GOBsjTkK33x4x1/9T/8T25d/NAagrsTlkZiSjUrsF9LR4B5GOsPvY7gC7602B2OllL3B1l3+R2BXHwSf4zR3+NEEU1I+cmJLtTm26/XC7XZzI7ZieZLZjoE1E6xJFUZMUJ78WB97wZhpnZfFvrbN54Xtvvjy+RO9d/78z3/DNFlc2OVyceOqzvVyYZpnhss3asCj1M1iNTo7ME8xeZ7lIZ2O4R7Y3gBrgMVkTNZQ0P0c1A5GdjzeStv3t0KtzcoWX0OsUSJ7cW4GhO7BIJ3h/hq8iaH9eJ3BblsTrROT5fqO1xpgO8jYf7HG3z+x7+7ry13j5mt9pLjQNfCyCmuxiJjWujOICZFEjD52sjcugo26deW8zNYMrFb3+WSbJXuopVx0qjkor52yQStCKxFCJs+JabJRkM7KtlXWeqO3CW2B82yvB4GqBd/OUDVgW2r1JABfr5vn07YEarV3uwO2rRoIlt5YsjU0LN4LrrdGoyI0lEqU7Gub70N+HYYgxGCzo5Zzbi77tTa29YaETkpWvxi4NRCfktWxBmw3VCcCjRQTMUx7zQruLN7Mzbl2MKNIoXf7PRByPtF7o2gbFTdbVc4qvsdYY9guQ5M/rwVAidHfm3vfRBoEdZdjvxfVs4G7ELoZOuWcqKy0YmAvB9AwSB43knNfoC5KVdvPMmNMy9WwWD2YYrYmWWv7bHCpnd09fw8ZtLUiBCWlDqvnCGveXYGs2WyTkebiHWm9WPNDbb47hsA0zft6JyFg5klC8vq/1IKQvY505vtfWorc7p5v4Ks3a8ne8RsdYccZvkHZaNxgtcTbPeO7Y2van2z/Q7UjfoF0n6cKjujfoBTe/vqfsmdKlsIpNb5ZlD9/CjQV3p8DL1cLK5acjKbv7ABUYoDWUQnEJZE8e6m/FJuzVTVkIJG4ZJNbdWW9VbSZRNlqyYDkGW6f4PYTfPkbWD/D9XtkfTYgGjIShn7XEbaOTX6Hmf5pBOnFEKe4/CCc4M4iRUIGMWv1N4dYO9JXaBf7fQTiCY0PUM9ApX3/Hn3/V+j0iM4nH0QO9HUjJCVMgfnDEyqN//ff3zgnYYoTS9oYfI12pQdFezik0aJocIlb8rxKMc85HEyGEUODsNbAy5r5f/7uxA/XzB+vC1VsqjWlu/lQd9G1OVmbmbYRIQMi6nJVhZ0t3BlDNbv6YTXeavcCvPDteeWbqfJv/uwDz7fM59vEvL3nYYGPYSX1Zi7Q8qdX8df6iM5gBBXGSMUAtgY+/TrTTqNRukl/JdicSxp0lw4uZBSZBoLe3nh36g2c/RszrqJoOwxLrCvoV/txyRsavjMJGZJmQZHq0Ra4xGX8bwdc3pDZ/+3tSMVYpNVfVIMbRSW/iBzcIta8Cy7TmaIwz4H55C7p0Yqw0/mBmLJtcN5om+fF3mMQzsuZPC8s5weQaBAzROtSxsTkPxskUKrJk9fthVaKSc2KOSHGKIS0IGP+n2CscHWJsV+NKUUeHh8tGmcHzsf5GbE4KWdSnsjLeTduUmflRITaNmdYjU1V7yRH74IzQKeM8RJ7WI5kt2bC3hwd+Lo5SB4/fYBTmyUu1CJ75MrBNlr0xe1mMucYE6GP2S21zvUo0EtDtVGuK3k26XZt1SQ6uu25rTDkuUKYFhShfeVNKtXO7XbhdnslJWNl37177zEzEREPusTnUn8GTI54l6MxdC/n3EeGBDN8cTOi5JLi1jvffvcrBOG//uf/Qu/K9fXiecrGNn66XNHe+NW33/D+m+94fPfEd+fIu8eJqXzi/OvfQMy0UbB2W8NDmsyB1d9b00bqxq5b86HvINYewrauO/DRuxnb8Xn2umXMdalJppsXXLO7Gm/rynW9Ulza2fyrlkqr3d2DTTFRSmGeT6SY+PzpJ7755lty/tYaaQ5oY0we/zNxvVx5fX1lWpaDCcWu/B9+/IPl13YDf/M83QG9bmMN/pm//+EPJjfv3edwZ3OY3m67+iXnRHDp+VY2rrfbfh/1Vuz+k8A8LX6MDun5kBqP4/9zQAs4c99prTAUeTFmZ5cTpdj5aN4EiC59525HCCER0uTqLHO2PjZma8wNBng4tKsWay5GVwj5jKIt4WMFsb0cGeMvX/tDaapsPXDbbHZWgZeyQi+0YA0Leud2NaCjUcl5IYZEr0opsG02alRbQmRyAZ+SJvFjZbtiEku1eH25ULcNdGY6PZDmCQ0wzZ08R4SFnBIiGWH28bqKRANN11VRN42yRpE3kWh0bTQH1k0j0qPVgdFAWq02NjGFxBwjQiSkSF4ErTeT9/bhi2IZmtVr3dbNgAwCrUcDolH3CJtWrKbcNmGeMhKFLHkHaClNNF15WVdKe2Dqur+eEGgtoD0gRMDWmKEc0V4p2ytFE41IzAtZjVmu65Vau9cY1jhdpmjjTdp2hcm6FpBGRpmSpYzkOBFzsLpIG6qR1jvX9bhKMgGNEQmJcsuspbFu5nUTMRm3MRWd1+srW5lodSHkiZASSTKSNgjVYteC+eEs5xOxQaPsY4Mh2OxuFyHFhSSQiQbgmzG/ora/r7fCnISH2dc18Sa+GpklUei1s5WNOc++djdu19W8MprVXkg0uXOARQI9JSqBHDo5B3L+Zc3mfzZjO8Co+uK5A8w7oDtkKcbK6pufub9AZDd8uYcE/oMHkeaAeJhOjM7R+FneLLr75nX352ASDCQrSSKTdGbpJMRO8ND9iyDR5ZlY4dc9vEtyIE6BtAjx6tjTKEZDSyHSu0AZuFRcDWwLUtiucP0JXv+Avv4RKS+wvUDbw3RxOgn2SB+fQR6uWffHSge72r14HP2iASITSGJEo9wDW7Qg/cqQKSsN0Qq6WnH/8gd0/gYkw+QSaQ5zrxADeYnQ4fOnxqdL4NNF+IvHQA4W8aOidKxj1Bs0MTAT1AuW4K28u/MF6iaqvsF2gS42v6lCq8rWoeKzlA7jtXl33J3sdhztF98dAWw32g5qTcLZXFas3bpmOTYe541fP1Q+zI3Tkrn2GWkzqdni9HIT5hioCeZ05I197Y/JmRpxaZjshmK4nMQk5KNr3hQ2gVDNiVjGJiSHkRT4U6iPGez35oFPuTvuA4KqmBu57L8HlrF73yC7K272e310HQ8m+BBGyw6nD1MDrABiQO234JvR6PAGxb6Ayd3nkAP8xGgu4TE64HIWwmIUTL40ivDx7ykl8rS4OY7Lmsa6xDBmOubmtJmdouyf4ygyh0waEZt53Rl1+zwGfiNdrQERxyyhM1jG9A0FSjJgm7I1Jzw2Zcg7B4NjUjNjX2Rf8wfQ9caFd42tmXR0nKOv38f/+WcZHci75xufT7oDXCo02WXGISaGsUyII7otIi4V687gaO8W52Joxtlmv+4GYKoOrtGd5fOO7D/JAn1Nj1I2BiNmki/dZas7c++fY8wnHjPQ7M1iVXXZ+v1Dufe8uN1uO8Dr3ZnNXknRomgezmdjFRQu1yuCXX/TvCAoU4R37x55//EDH55OzKGjrRLzhOSZIVXt2ncm9o0EtmOSPHkLbI1VvJefHzOg+HsYucSdtrdODka677PmFr9TjZ2t5U8Yy/Fexn2g/XAkriHSW+N2O7NuK+eH837shzQ658zpdObp6R2LR/CMeJ/Buo9/Gwz8OG84WN+2lXVduV4vO9O5nJZdgt3byIyFrpnU085EhxCYpomhvGmt7uzqKA7GcRnXgwFrAb/ne9c35+aoR8Y97bnSbZyjRm8GBpo09yYZPgsHWzzyUS0ebbS13QLwrvzZ48fcOGx/H3fvZx8L8nX+X0NmwcHOKb1bfmfHa8fWUY2MQrpWRaJil74dx3uZvupR1yAGDFMSYrSGSUpCz8I0OQD1jnaIVn82hnO6EmSy5uXQO/rxH+Dlvt6RIAauREA8Q1VN5priRK+bAbb9PULvZpClGn3MxgpC7cbgBUneLIfaqs1ihkjXhKqbK6odi9Zc1eHPa3JpoWmieUzfYJpTzKgmti40FUpTXq8rMZhMFjd2Emn7pWXZqn5ste7KIiNVrEkz0iCOCsNqq64daVBb9/dpM8e7es737O41v6A7FrCZ1OANGkXV8357sOerjRaFFkH9HHUfw1AaIjaWZ7f6kJQDTiAJ5i8yzLFGY+i+WkoxWWwUgdqam3yND6nWZIuZHN0jybFJCJi3SBimdp1hENlaoZQNadFUOmqMPGJeJlOKaDLnlqidlAN5/mWGjv8MYOuDvwMgjAJlZGug+w0FjvVGYYqbu+yNswF2f7bg7M/pS1JwkIwt6ruLrvZdH34sbPsbtZK323se76vvBzQQeye1Sm4QVyW2TlAlJZdUBrFBfRUkefxDU8IciKfA9CBsL4JWt5+2AT46NuReN4VuVvwSFW3VLOi+/CPy6W/g+XfI+hNC8y1lflNV34eM61230f7VPodBu7TPoYoq6MZhxtXe/BZ75+FOCq3Vf64j7Qo9QE3Qnu08Th+AiMx/7idEXXJtBhj5HOlF+XSp/P5z4hwj//5DJEtnij4KjeUOBjddpntsUMTndcd53y8AW4D8vccOJ4HfPHYm6bxcCs+vyvM2NkQ3+/FrKgYIJRCC/93nJREZKpk311utthi2YnO+kcaHU+WbqfAfvrvwl+9vPEyF65aJm3WIp9BZN/jtD5HbdeZpanz3UMipEcLXXQwDPM7LvpEKdu1LU8TDgIMG+0Js0ZRG6ZVOJ3dzNs1hcgCg+6XV1LrOd1vdDjB33tZ3NRnNC8kw7OmRfVEdC4cEXBI8zuP+JLYABiHq0bjYOeSRjYu9J7qvRaMY2ptj/ViG/BpRsQ1RvOJy6OXXlxm7TSmTYzUpUeg+cxKJ0Rbwunl0CHiX2+frHh4JIVFqp5XNpLIi5JhIPpfbaqFuN5Mnd91nTwdwDCkZIBDPkax1Z1cAB61hn60r22bsc7dCJoWI5AGkja2NMfs8q+yvp11tDrc1uw6azVbGaIVukLBLUwcgNuCfHCisuxxynA12YOEzt11MNryDUSXkjHQBjwSwnPCOhmgyUjUNfZBGzMmjlITk/158Rre3TpqsSVB6pa4bAuTTyebHVSlbtdnEHPeVcewXX/vjejUjDQlCQdg2k8suy9mdkvvOdp9OC8OkbzQPpinvAP96ve4gdwDGdbu6XD5Qto0xX5+yg2TtRAnM88K3335jTUyF3//+H2jNGg6njx+JQWjrhXdPj3zz4R1/8Vf/M+vzD7z+8DvOIZHyAmk+5ME+YhAl7nml/oIefYPLajebjeZoLI2HdmuOLcvi/4AXiew1RPNs6LH6XC6vJqdeV7ZaXLo8JPfHLPLwFsDBcK3HuME0z0zzzMcPHwEotXC7rQjC4+MT33zzLQ8PDybNrpVtW3l9vSAh8v79e3LOe1NqMJ/7HGnvvLw88/r6yuvLszfYomfuNmqpnqvreeLVfv/x6R0xRk6nBXhHLRtbWSnFmNYYDfgOqXod87vdmiTWxLMVcEi7j0YCe57teIz3c18TlrLt72s01myW1kYcpsmY3tNy2l21B9y+b8ZYmWTnI6a0NwNHc8r8IoYjbbhrpH3dD3VQo+6EqC242siBeusQA0Eia1kxl98D/DejGnfGvXXYSmcJkZwC8wRT7kxZOZ1s7lPo3Eol5ECaA02bEwRmfjhNkUDeSz/6MHc81E4pdVIWYjLyQcUiRjp2Xqsqy3zi6eE9n3642f3m97ipsDLCBDoT48nqxVroxWq7PE8ophS7bhuhKakHaptI0a6NUprFAJVIqUqpVr+3Dp1A1YmEQFczPOoQ4pnWVrZqbsZ9U/7xhy9M6RseTgvI5DWEJ16oqYRaC1SBpsXArVa2W0FRQpioxdSfe6Z0UweCCtK5rY11syQQbV6GjGtU+5FTKzaaMxRVwf04aJ4XW9XmpAu0rVFESCJ0DMT31kEaEtQCWNKoXUzt2MFHQd0/pTfokCSYY7Kvn8FVass8MUUhqVhCafNmvADSKbVzmiamKXBp1VybtZAj6JSYUmeLDQ2mQtWu9LZxvZlkeivF/IkQYjYMNk+ZOCUq8EplWSLt4ZdF8P1iYMtdB+zo0OEdHP/PpodmWWR3Eh2/NkZgOX7bNohRr47FUv3/BkjGC5+xQGnDDM0H7xN20Pun7xXvWIhp7AmEHPiuGwX/v/uVsm7KD587JYIkyLOgPdEaXK4OyJpSXwtSI9RIqZ0eID+5oYOatj85k2mNF7UuzUuFayPVM/nh35Me/pwlFnJUcrSLbthb790hvO7r6lFB1sUbQps6Lo6uDuJ9pmZ84QYa2IarowO/M8AdcVCLFi+iq7nqEWhM9NcviE7Iw3tjbWNCpwXJ+GJjnaOeMj+siekl8OO2QHA5MIc5TK02ZzCaFUg3wxfvjRjgNGDfdOBoA+Apdv7sfeNhSYS0kFLn+9eItEqURqJSm9+w3eZGuofwdO96WZyPyZNTMPnpLDbAnyI8vu88zJ13c+PjY+E8Nd6fN5bJmPxpCpwW5d983HgtwlaE6xWenwNfngP/+Jz55iHwNH/9m+gcxAXr1pQaCzh30q1RuFg8hl2DihWCOWVfcLFOfK9U/2pu+jEKQd27l960Qfe5XQmyZ9ZJMOOCASq9QQwRJAWCXzu4yZjus1mNGBwouwHB6CaKWFtI1bqo9rRmSFPvZIAM1jccbMRhpsIOkgGTUmNOn1NWlkktty+piTYYvw/D3CnniWVeOJ8fvJizaITBrqSc6HS2Vmnr5ute8Gac7s6tw8ip98Z2u4B/3qAYkJVACIlh/b+V1TcRG0UIQczxuwLVGEpzu85u0DJMiJzF2e9J6wLjbGl0c5xWirsZOoPsa7SByuYSxaE8ubsvdABcfBNVprw4MDYwQzAlTQuDxej7kh4IXvwKxWcGgwRO5wfyckK3G2XbaLUg2mi9sq43Rm6xbBshmextDNcGidS2+YbbdhOxr/mxzyr67OVoftxuV8D2owEWt+2IeRls3HCUNWncymEQ1f2+NwMv8OZ0b9RWWViMyfOv5eHM//4//SfWtbBuheV8Zr1dWa+vZDdN+vjN/wL1Cr1Y0fL4EZkW4vyABFOQjNiI3owx1K6Wz6zW6V/X1Q2quhk6leJNFWvSZM8dbvUAeAPYquI/7xm0ORNjYN3MKRtgvV4Zc+ahV1On3M0bW4lh1YaBOZfjNpM/Lw9nYoxs28YPP3xP753beuN2vQFm5jZNE09PTyzL4p+1cjo/EmPk/fuPNvsao8dcHI7LIQRvKCitbbw+P5NyYppnm+lFeHl5uXMqjry83ui9cds2u1bEmCJgP1a1Vm7rjd23IDwAiRBs1rxWy0o9YqIOoG1g1QDsyEY2Jco4/p4cIYNgsOss+PqU0sbI415Xe/7X11f3QrAM4Ziys9ZHzA++hk/L6e5u8KZsjF6bjPf4TzPvX91DfJxq7cQmpG6GqYFkwHVr1BypRC63xjnabOd1S/QKMVVyhrMkTovvHzVwOgXmSXh8Cjw8VJZFua03LpfIy0tyhSKEaPOexn4GytbRtnGaRxNiGA0NJliRYIaptcPlqsxJIUCXlaKR1hOtV0pfWdsFmTPasxlLSYdgjrvaE2gGb0hHSYQ+mFvYOjQNpCnbPdc2akn0KITJiI0q4hm3jXVtNJ1ovVNaoZRISIFEZqvKVpVw68AEfKT3hUaitIhKIsSJaX6ktE7vlsOqGtkKfFkjSxd0sgSPOHxHEESS/X5ITMHUSOZgrqSsxOSzyD2T80xMxVh0aeSUmKeJer3YmqKVdRMgIkt0/BLoFUoxuXlrkCTy8ZQ5zcbABxlOxoZdEMMXUyzEALVmeusUHHxrJAWP3OzH+AFi40MxQoomN+/euJCYzJU6JPLayaWx2bwaSuO2mQz9NLljTx+y7MCUZQfuycWpHbtvOxaLGiY7X2Q4LYmmkG5XzqdEkOUX3U7/rLifn6HSvXM5CmSTDOlQMNkHjRwykoE97yTI+7+5/OsNdh5/VZBgUqVRFFnV1fc/dXc9HOYX4zn0rkD1jkCAJSuPc+ebs3J2J1+CgeXouZBSgevxPnpVWujUaAAKwU4C3Rddu3hzsngEAGm652POeWHJE/P0nseTuUEuE0yzM0+E/XgMGYpl4frsZ/OBfaCqgY3WbKGxBafvssSuA9hiBfQObP3AOGi0v29oq/RWzEq/d7bW2UKkaUek29xEFFQiIY7uroOQnLj0wKc18FoS59xoPVh+rZrjoaoDcxWbpfJurlGzd82NHQD5ufPzd0pKkM6vW+DLzeZw17URtRK1IJNLLMQkGr0Hmvq8svgmEcxQKrkT3xI7c1ampHw4dR7nzrtT4/1DJafOlNvospiLW7bN+aEVbkV4ScK6JS5deL4ZU7W1rx/YpmDnYLDidkWIs+eDZbWvISWt2o3VdbakS/OcVSuCB0AZBcUolNRB595mUo7cZ3UJsQxpsi8bYz3w5nAYDsX4r3kXewCmYSgVxUXIHtc1+tk7Y+gzQIFOk/trbgBhA7S75JUBbnVvqo6fiyGSopITZsASfbZvv7cceLg0OXmMyNucZgf1ggPBauoOwIz12ecA94xNhmvtAHqyA9QQHRTeNR9HUb7Li8KYhR7mW9Hlmvlght8oafSujYl7AMgOYodc/KC9h2tu3xnre9mi7lcbfv3cM/x3R0UcPEjfRzmOszWeztQwdqqdnfHfqwLq/gQDbI/cv+4GWCFyrJMajZ32BXY4L3/Nj91IZ58X98/XzJ3YpMPOkskhlS/FjAmNubXnqrUwJJzNZ6lxoKko0ZnyEcMT9LgfQwx8/PY7breV280chNfrhdvrhGpjmme++e5X3J5/pJWbnaMpM+fZlFdvrjfZwe2Y08Wbs1vZ/N8sAqb7bOxwOR5mQYMxNKaw7MelteZrjlgWvYP8fT3yYxhTIvVGF2sIGSsa9us9SHAmFTeZMeXVNE27IZdJtxvX25XL68WA73JinmfmeWGaZj8HppSI0XKB95EL7u6ZvY7xGfA7qfYw1my9e8zTMJ+bXFLt13rwdS2IFaRz3tfurViUYQhxB4F2yIIDT3ccD4F5Grm96rJ0U7wMsvzNve7Xl12fx7pn11mj1mO8oo9RIFWKP09rjZwbvU8GGhzYpmRM1mCzD0b3aLKFHQTzZr39Wh/G5Qh0r1G92Wqya49I6hbPUrtSVUCi/5tZPsVk5E3ONm8bJDBNgXkRlhnmLKQI69a53oTLVcmWSueeDSbXtXzSbkZvqbs506FmGTX1yB9u3Rjl7PE1lWIRfN2Ml0pbWWvEsKp1q22EZDgmW1YvMsyWoIrNle+jYoo5fjtxY8zvkOeO8RIbj6htaDA6qo2uwYkhM9WrrVG8gRXTGYNBkV0dKSZVDuJuJGGsg7D1gDTB6CwjisYe1gnEkNHYSDJm/fG9267N2jpN1WfOjYG3BqWv4/7zXe3zgezGmnYOzGHY3IEDKcA8dU7ZcIddTIaBanWpf8ZSFGTM76obeQUnxdy4aez00u/OscUqKS7xtoLMfY8O35N7IqA5kZa9GRI6vr4Y9hI384quELT9dszKs9c1hJHGYCaiOQdU8y+6n34xsDWvp4Fo/eD5B9j19kPdWrGOzjBiCpa95KeHsYvYAmwHMMbd8sizaR2yjs9ud76BSQGRsanr8Zx7BRb9RIWjmsZ1+HS2ZuHgKcK7OTP1RnspVOnEU4YlMSx0Y1RIJkOoBLoG38x8FiQJOWe7AKZOcvDUfqrI2kkrPGRzpfx4SjyehIcTfPOusZzgfBbODxZ8PSXLE/ORlp1xbc1BZIFWx41+zJJUzxjsnTtgawP6qm5d7jfHOIF2Pdkx024uda12rmvnuimfL/DHL4FXTdzenWjRFqbWrAOUEm4NHpmfHrjdKj9dGz+8Bk4h8n4KZGeaJBhADYwTuXuo7leED1X6dTGACUccSW9kOr85dd79m8JzTfxv309sJdDaxL/7tvK0ND4+NHJo7p53FKbKuFfMnS4EJcTucyTqN9zPaqz9l2UcNRTlNFXOJ+VXT8pffMi83iL/5feRv/9p4qefIv+nX3pT/Q965GBRR7UP0y7dD5BIgO5uergIQ5XSG1T7uVKKzzwrqpXSjMnpzs4FCWSPzujqsTxDTmUXHOCmcHdNjZ7wOJ1h1mQLYZRIRByYWrh4dVksmMuyhMAUE6LR8p6bb3QmOvViGeuiKnSau2fLfs9FIHvxH+QuAkOGLNWLOASJiSVH2tyZ8kqOxvwYwyXU1ljmmWmaLRs3ZdK0mKS2dS+EfVaxFuq6UrfVZuDElBq1FVotlOsrA5pGzKVQYiY5U6OtktJkRizRN+9SKKVQ3TkVO/IOFMRY1+ESmSfydGJkTA4VjeXeVWM+RZBgc3/dAYdq99eM1OomPl2o1VnirsaMhoCZYVghYJ5u1sQzyZIxgxITIXSbpx2uvaWYcGoYhyEo5ta7J4N5QTuacnkec2F2zEKILMuZsg2GqZoPgs8hNbECzGbHBQLENJoEX+/j9eWZaZqd/bL5NFvmR2MgYe6dhwkYGJs35qCE4FJ5c5/svUPdWzmHBF6GPNSKreazf8Xjlt69e8f5ITEvC3mafB9qfP70IwDnh3fM88muAzF2L8foPVYHITpGgYKzx5X1dvHonTHrpjSfrTaZ7NHQWdeVVp2xdAnz6+vzfix0NCxSZM6TrzvKVgpbLXtUVnBDpd47tRkwTDmzrqYOEMRUKy6BHSB6XhYeHh44nx88+7ZwvVz4/OkTIsLD+YlvvvnGcmOD7EXhPKvPv2a7hqslEljGcKa2atLK1sh55unde1dl2Pr0+fOng233duU90369vO7NsJQz87ywzIvHrlS2rfi+2Lher/vnmqbFxrJKIUT3D3hvrLE1DSwrecihVYVpSns2sqpFp+Scaa046B7jC93jk8xgyyTYsrO6g3G3XF04nR72xts0Tbspl4HnAWDtvojmGrnLpnP+ZcXw/9CHGtuWcqLnDalKaRGJmR4CymautdrpQanauV4rt9VmPyUK55PtSfmTkjYhBeHxXeZ8htNSmLMBiB+/CF++CF+e4cMHY0uXeUbEmjI/frERFNFCiInZ94vRuA4ocw6UOfFyxfb1BsvUkN4pVakj4qW80PqN6/qZaTqTYuRh/kCMpoi8PttIXcfA0TIF5H3kQqSUztrr3gztko1tEnPnry3Qe7ampANQkYbNjgZi6IRJyNHGGnqbKFthvW7UUHh8WHg6vee6QgyBZU6oVlq5kkSY00SdTrymia5GWm2uVAyCg+SV1n1t6bbO0WekfCEm67farLEZaN3WQmvBCZZAToEpRxCltOqzt9bUE/CmBkAkuDN2V+W2bSynhTko73rnPDVC7Lx0rHkVJwILQSZXsnWESojmStyb3/stct2AZLn3KTVXzeGMrZKiUqvSxdIyiPO+1/SmtKqkkMjRlF/qOO3hjLG3WKyReSsbexuTkBerWbQJpsv2NrQqXUCTebqoH/ucI/oLIesvB7a1+YYpbvp0dDm19xF9eozccnRQ6XinQBz5d3+uwcZ4rTs6bt6tUpHdVEDUGFsR0HD3M2q0dh8AG0GGCzAmdzS2WWkEmtoA97XA55vwN5+FH7dAS5F66/TQWG8WPN2dPQx5mLoIMVkXTLuDsAj0Rq9KfdWd1VmKOZWdT8pThlOGbx6Eh7NwPsGH99FzMIXTEkhRyMmL7GAXp3Mu3s0EGr6BOZPjXc4BbG2Q/phVcwdxM5CB/Wd21qsPzKi00qmlMa+dZQPJUCQStsRlFVpUkwXWzSTmJVr/oDfa5Qa3jUDjup5YT9CboPvV5eB1XBeKx3vYv3XF8+1Gx3cArfHrYgZeAKLMoSKx8R++6VzXwLoFrmtiLfCyGet6mjqPJyWHTgwmvBU5GLLRVEF8ngF+xjz5Qw/gdXBN9mFUlJiVSZUP7yJ/eAmUfXbz632YMdC4N3W/Jy2v1Zoo1lvwhoo3P8zcRWlaqd1NRYYURw/2KAebgDcjAgMzotb5t+tvGC5xt+iyL6hBj9zq0bkeBTD0/foehYyB0EiKkdCjm19FuloBULUdtjEeuWOL1ZijtQIzuXNxdHOonRUZjZgxz44XIQmmqfP4lLldOnm2MHpVfP7LQF+cZpNUSqBrpXY3bkl2DAs+JpHz3sXrvVC2G73WA+T5DKuqgXvrKAtN+t506a1Sy+aFrTGyKU9uLmVrqDVnFVz6K8cNQUrpmKmt1VixO0v8nS1G3ejlOE4HQBnssD2nx8OCs0JhbByIOTBay9YbcphpFrbOo2Nc4WCee6tmOoY5UUv06BBVSq3gTdI8z2y3q33UkJgXy9xdb1d7DmcjJSjNC6vBLhnb/HNDpa/rIQFq23h+qeSYdlYt5WymWeLd/+5NBcZeeDQP7VrSfS7RZPttv5/Bmj9wGE3prrhRJ3aVNq7TmAzIBKFXYTk/7sWKzXCb1F2Vvbjq3kAZ76m2tsuJx/cNFL1l3sZconRFg+6qpWPmdcx0QgideT7Z/RCDNwTGrOZGKoVS1n3/zvkwVXo4n6mtst5u+2vXUrwXKCZxdvl09XsmpcQ8z/THB4bZznK2OedhOGXg1l2PMYfYWgq1FbZ1tTiMeeb18goKOSWW05nH6Yl5ntm2G+u68sP336MYA5U9PqNzMG212Pk8TK+U15h3F3Hx66S1xlUuzn4p87yRUmaeRwayydxjTG6+Y+MMR/a136ODgdlB9jAdOyTNYI29sXYMpnuA3gFIVUeNF/ffHYyTudkPxvetc/M+m/qvgK0F0G6s/ZIztXjqgwil2/0Yk8Xl1FKtBtFAbUKpnVobpSo5CVM2JY7dsjYv2XzPNWohEcJCiK6oakItsK6NaX6wfevTjV4T9KPZZecwkoYIDrG9w/NRzXSpoGp7R22+F3RoPhKxzItda61xmh/RmJmXDehspXKiU1rleiukHEhpIuqEroVeLUs2EEhh1ACyn/cgwWfBDeAZ6zwYU2f1w3A5jtTSKZuwbZ0QJhvlCWLAmOpO0d2aLmn2hnBAwmR1DzYKqLX6OJa9zjzbaE+I2cyOEkhYUQK9mSlnFJgTe0M9JzNkWreb5+qO9Tp4fQ9oIoaZHjffVwNj9rj4HpYCJBHzqMgLa1lA7F61pXWMTxgmyCnTBoMeshN5hZtHm7Uc6HEQqHkfZ+hijs69Wz1jI5BC75XWN2rbbE9VPdQze+PNMFnMidM52cyyKrW78aVYTOHIML9sG7U2rteN3itBf9lYwS+XIg8gMubxYSAk+6r3jKl/W42x9V+zCAwdwNY31zjaA2Mx9FkyBlvCDmJxl90xq2t1zwFKRn7ueB4Bk7E5KukY2GsdrlV43gK/+wKfS6BFm7GS0gm3juTB9hqwZbLnSEnIkxnIqCqUTq+NXjv96oBOlUH8Ps3w4aScZ+XbJ+F8Fk5neHoScoZpDszZzBlyxLXrJhnaGwTqkMqP7wC73cFpbc68Ooi1Av4g4hzj76zVcN5z01VahboJdYWYIGaoBC4tUkJEn6FHpUeT8akviAPY9uuGXm9E6Wz1RG0+w6lvWdl7+XHHMrlwGZjC8CQ4ri3/XYRdRogomUqKcE7KdYq8XhN//VNi7cLnW6RpoKgyL4Uouh/Xoe3/uR2XDjD95iF3Ly/3/8KQ0nd/PyHCMgdXHfwMGH+1j6OwHUBknBvtSh/FrMreIBmyViuITOIzQN9gw6MEUjAnO3MwFXx4DomdLmbeMMy/R6PMXm64aAePyjkkymOdGUVMHxLWUZxKsAD3EAkaiJq86HWwtJuqmZSph/sWBT6iYM8TRXYWWNyYTOk0Z7h8W7d7NgcenxKvL42UzSpfEXJKFloeDVjKABq+/rXWyOkIvZdoNvf2GS0bbphLzR4VEpxVq7VC3Q5Q6sy1Na4qrdadpQ0SkDTRW3HH78ONWcLRsFPY8+9arfRaDfztcT1+r4wIFVWCz9rujZ+xazLObeDu9O/A8U3jcXwPdsMR7c2bKENx4S0+teZod7pWtRGysUMSoxslNah2/tI0UdabKQZC9BnFzrraHNPo4AxnZvG5SRHZDau+5kcINre5lY0S0t5kOJ8fwLNV9/xgdP8zyLG37YDHrwkd50CPeXP1Ams8V/dOZBj3JHgMkLF1MVhURpfONC87YB4Zu4DLR/s+A2nsnYGbIakdZmXH+9P9czOa3WOT45AgD7ZvfLYxIjDeX4rJAKCE/XwHEZvZ988U92za6MdE2U7rfhxfX495VgOrjXU9nKOneUYkAydSsvnBeZ5QlK2sjMzvEBuTx19YpNJGa5XL5cKYK79cXlFVcjK58jzPrvZQtq3w6t+f5mzscjKzGd9035xju0eUeH1xIy5hmuZ9TdLVpfn+89M0syzLLn++3W4WX5S6eWbsplq+NzgrO0iG7k28EQl0MNWBaUoOUtvOshpbb8D2dDr5910OLbIbVd1fE+M57r8P/7rAraqtxXkKxBSIGojA1gwkhiiUomy3hnid0dxld4Dbp0czeoqiI4Fyd+m1h2AgZnZjTQOHtSq3W+N0NvVOiBvaI2iyhqMq1a8b7SDBIHIYQBkhu+qtdpOQt9Itkic4sAVEzBiptWbgTxamOSBcLVZLHdiuV94vs6mBJLN1oWoxU6YwYhy3vbgdKo/RJAoh0BhGeexN3QOJRGpt1Apl60yLS2rdw6NrpdUVUSGFSE4z1GqzomLrrG1fCt1cUXu33Nd5tiieEH2tSdAxJ3CTTpsZVQ53NiIhsG6NmysVYMz923lrbugVJBFCMbVGcGCLUr1ZGYIRASlFG/VYJlQtA9nW+7gTY6hY5nWz5xGPk4rRPDzMQM6k4riqx/ZvRale30dfn5uZtmlDdaP3YsexG2CvtbFnow9gmyLzaWG9dUIZUVE2tzzqCxHhthW2UlnXQgqNIL9sT/7FwDasg+GCIQk202FzthWfLVQxox78x8LdPeXrLEPG3PeT5j8ixgqH3VjGmB9jd2RHs9FcWox9GPhDoPscyVjTx/+ps26KuBV54FYTn2+Rv/2h8/2Xjdu12Exmgf5FIXViCpwfbfZAAqzmxcJ2g3ot9HVDv7wQ/X8f84lzhocMDydYMjye4Nsn4WGBp0dlOkGe4TSbDXZ2bbxp2e/n+0b5jMXi4CDQL/fdFl4hDNmldmTIjkcdjzUl1EFl9yzh5ix6bbYYmew0UJtSGmwq1sxojaQFmTJ6img6+XsYbFxAzu/o1xMTjeXbhfndynQu5BCJHkFkC4y7Y3ef89NqUvLQDACNscEBJMM9a9b2c70fBK2cU+PhXHg/Vc+8jfz0Gvn+s/DXf//APHeWWfnVx8bD1HiaN5astvjv5jDmEPjfe3h7gSaB1qE24Q/Pmc+XyN/+MVNX5bvl6y6GAW5b2RseQ8Y5oHtX2yyDNThp6uI2Z1MGGPYSkyCJFDuBSKDSQmciUH0Wrw/3Wxpd8PlttVxcXyzxa8l8LW2hbWHcs93iiBi5lPi1HVzyIkTJVqzGmajG2iaMsY3e4StqcmkNvm55njJuyBQwYBzvvnZQzRDP32+QkZwSKUb+/NczdVP+8PuNViFq5PHh3W60NOUFNHC7rWa448X99XZFRJhPD/SiVtRuK9orWjdO0wxibGTTTtk2Smm+sSUkJlsbK4gOOzD7+WBog8E0B4locOCnBl6yz6oNprh1y5ws5Uar29sWjbMs3U19TJocbTOrPttvnQZX2QyZZqGXag2B/Vzja4f6ZhlJ2Tbd1jvNbBcJcbEz4I6ndh0YY2vXbdyl0LY+DkZdvPiOpPfJDHJuq7/fQJ5mk4qWYmxDTPY++jHzPY7T1/yIMYOMeCb3um+NdVuprZJcLrssZzf3soYSewOYvVE1GiH7PSnHbJfi0ULuNn25mfFETG42BlyurztwFMx1uNbmIFr27j3+Hsdr1VYopXK5vLoDs712LdVBb91N1IoD3m1d/bXj/vr7auZ7/uay85wTqiYXvl5fbaY8RMubjpFtW3l5+czL68sb+e679x+ZZ2Nd13VFtfHw8ECtFgdkhkY2w/vg5k+tmUnZ8/MX5nLaVQzbZkGUFiOiHtlzI+fMvCycT2cEcQMvm/MeUuMggZyizcS1xqdPP9J75x9+/w+cTsvO6tZa2LaNdV2JMXA+n1yuG3cTsdY6MZls+Pn5eQeCU8pWSEc3XRIsu3u40ItFrfRiucl2j0eenp6cVR3Zvp1pmjy6yOY/jyLZpOQmS7ajPMylus8Hxxg5n8/knPdGCy4xzd7Aunemru4GX2tl27Zdpjw5az0Y3H8NwLbd4LIWNlbmICxTIubOrRrgm5aJsto5XpaIdKEXF+mK79PedPz4NJO96SDB9vopTnbMupKnxDzBaQK0s62dHz/dKPqTxb4FTxUQ4d3jTBTxGVWrF3NQcowsc+Y8Zfqm6Na4vDaqNkqB27VRq8VWSQ5ICsb2h06g8OnzTE5n3j2+o5VM78Jta1zXjdttJTXLRJaQeVg+8nBOfLlsROlMQVnmz6Rs5pEEix80J2LQ1rDc3UjvPr+r1gCuTdlqYNuMfV7mxrx0U3HMia13tBRr2LlfkOpE70Kpm2EPIlPuRG1kaWRuQAJfV1JsaF2RfVY1OaMJOWS0BeptJZ+6G0wVtDa0BNpWSdEk2Zdi42KrKlvtNtpH9zU/EyTRu/Jyg4dso5EpWzOz1M6UJ/O6aaBq62ApQiCTgt3Ddh/KThR2IIVEix1ldfBqTLegoJVGc7Jg2ptWS8pMuZGnC8tka3EkUIt54eSUmHqgqtj1N2celhnpG610pmDjbyEGnh4mzqeJKQdKj9CVOSVyUm9q/Pcf/wxX5CE7YkerMuZA9TCNUR2F41gTB21o3E4fP8NbObPTL1Zwip2/7n8XwbrD0bINza1QHaT672FATQRid9mp11IqmMSSsFPvW7ML5+r23No7IRnClGRgNmWYZgPDA1JqN6AoWyOVTkZYUmCOgaeTcp7gYYbzSZgneDwp7x8MyJ7PQp6FPME8meRxSpYrFsKYHfYvjq/9EN0xi4KBbZtJdHlYN5/jvYltrXIf2scZsOMcyVEL+ovaYjaGu4ODv+gdihYFYnB1rhWkgqIJtHa0wfO1c1vUu0DBZ1jlaIrsVIE3vPphEDWw086kqc/njm++uR5xjazdlFPEOoi9oRpYaiAW3Qv/ly+wJuE1J+as7o4spOgymtT9+OvukmkvI84SCdW/tmqLRanCyy2wbvAQKnnppH8Frsi77G9IIhjNBPu7saHOztg3vQvP3miwDr4ViRHo0hGxDl4k7PMiTavfgNCSErpLuDUSiCZXdqA83oldO74XiTAc00ancbzT4I2qGBIxZHKcCN3cgaMEN4QTSveOcfcGSpCjT9RxWZY30sT60KPBtF+L4Ebtfq9J9JmewPmUOS2VPAVSElDrfMdkxjBW4FreXPS10uaHswM72ZsMIcZ9/QzBjKBUTfLUndmIMREnK1rN3dwfqjBaYmOt2Nk6y+scndDhYjqiMgar1lrx7qmf62CxG6NIVx1Fty8qfkwGczuOlb+h/doKMR5r2R3LFu4Y3/04jw6KGwfZ6wcrFNQk0Lp35D3DOx5SoiGXNhYk+T6wusQWbziMRkndb4ORr9fdyfstsv/6Hi+vzz5yYoy6/OwN7+7W6M6CHUX+W1ZrNLd2AypnxcZ8rR2rvv+7SZY7rV1c8mtZrGPuVXv3OXOT/4K6wshBkP+9tsHYbjsYUYazcbFuv9EyBnSrzY+P920Mh7fZ/HpNo+Hjao59PjjY1HUpG3Kzz7XerlxvV2rdTKHgR6eUQgiRkiKlGsAejtKlFLZiUVZmQBMt5zGlXQrdWyNPE6fT2UCluwQPk67B7sIY2VBuVwONA3Bum91j67oaC1abHYNuIF29eXDIcYe5l7Cudq5jSjayILZPDnOpnTEOgeM+9WN4x8IaWL/u7FcfzSU/jiO3trrc8H6dOAC1zeKCvb6x+oltHTnM9pzRZexvP4+95pi7HnFB4zGuxVKKy0nta4ySHIqFr/shMiKaKnGyGcwleWpGZF+jbdQjmVKv1r3OBWdwq9VEKQbO50xVm40RjdZsxmIrh8+IvzqtK5fLRsrKw/yOTSuFanGSzoaKjw0GsT0zNlff+PVjY3Dj2rHCu3WBZmt6KRXJihmdF3pf6f3FV/iw11lNhaYB6cHgVLd7+XQ6kwSmADneiGGja4M+gDe7UlHM8YlWI00tNlKkHwx2sDi8GCL05iNSidKsoTJ5vYMoIWRLZeidrVhTeJnsfspRSVK97ja2swcbC8BVI8P4ciiWejf3Xz/xO1sp1sNl+L6IN4K7BkpprHEjiQNuXyc6wq10LmsgiBmEqQ4xko99dB/l62IjlCGARErr1B4sHsjrIcFUE+lnxon7va826mMX3aDfYMqQY0covj8HWldKs2bKnOza6BhDLYg/n5FKwWItiDGw5MyUrF6IQZiTkB4iqmPe+r//+OUztqo+P6tI8+u2D7gHRV2m4JvQuAnGVqtqeaZvTGPv/n44mboy2UHG6DJ3xQEWntEE49lHKLFtwp4rGc31UqLaPFY3YKtEOplLjTyXwFo6xv4r8WTZOyEnczvNwnI2G/HqYdjaFL118q2Se+d9nvjwEHmYI+8eLf5jmc0Qap7g4SScZ2XKYrEg2Z1UcyAFG2zPUb1Itk9jH+0AsUcd6B06B3OCMbsa/cILIMMlWe5ucryQh10WCCZTGXjWySuXCkEKagPuQZmCstl9QYthr/Jz9qy5Hmg323j/+EPh10mp7yNhMrlmFNkLjf28i71PCda0GCav46MbXO8uU1XLMb3rze+174iXoZECPM7CeQ50hLUmLlvgugX+8FNmU6GQiP6+5iic5s6cO8sCKXb73OFoKJh0XbjVzG0LrEV4ubh8uwgTnSV2/vK88TBVlvT1RwuUWnzzT3fgVnYc1LqpMNq+0gkWlKU7oBXJDiaPOalajSVpsbCVYqYnLlHpHaJHt8QE0hOigUTc5/tg3MOBJtgXLrkfrWn2t+QAMBLDRI4TU1zMNMhHG1SsaZKaAVtTNvhn7QM9GlsbsDndOEAxvrF5xuowuuq7yYEByhSF83nidK7MS2S7JegTOU/EPFuzTGyuqLrpkhnYJJZkJkedtq95KdvMgxXNGUXZ1qtH6FTO5xNpWsink0k1W9k38f1xB04M+Ll0vJsE2Ax3EkQDfoiDzt6p22bGT940kHjMADrVYr+/F8S+Xo0mF8eqPAA841pDrYhw+YYVZa7KUZ999nMbGJse7rVgwFWl+cywFd2tWobgJHn08WwuWAI9dP981r2rtdg+kjITkBBK0x38qDZz927sgP9rfvzwwx+Bu2ZTdFOk/WH7YozsoPbnOaTdQcQbhqsr2o0J09FYhB1YqOJMWeHl5QvbtrqcNO2s7QB4Hz9+e8TwuPP37bb6PGpxNvNnMmU9zu0hQRU2ZwUBpNnPbq14MWb3s7G++PqWXe7rzSCfH1/L6sC0ueS3GfDSsdcK63bb1SZmVNf3z7RtK5fLhRCEx4cnm+1LkRiSxxEZAM05891331HLxtVjPGyNNLBYa2TE1/TeeX39Qs6TSQQlUIrlPG4+Z7au6+4EPHJht209zm2zcQk63LD9PefOw/nBj6ubtImwTDMpZTMSG6uvA97o0UnDAOv5+YvP0R5OxKp9VwaEchi7HWtX23Nyx8y2qtKqvZ+4JG63606IGLCNDOdukeCJD840R7sGt21jnhd/P9bEMkn7Su+e9+kxMuOa+FeAawnSKb1xXQuTzCSBx6x8yVD6qJvd50HtuqmlQAquiojUButq42YpRR7zzMvrzZa/nqi1UxXOp0CM6mo697gR4eV1I0fl13/1wKs0Lt2aPSKJlILHezkpoJaFi6yMSrSrSSVTcgmyuBNxsdibdTNw93CKCBWVG+v2SpBHAg8G2IeLMRnFlUTFAl8f379nSokcBOorqNL7iuKkQzW/GBRCDFSFSqI0CF2IsbthWie6+ZypA2yd6dpZS6OKsiw+e4iSUqZRka5cXwsB5WGOTGnERxY2lN5MKYLANCXodo+mLGZoiY+rdVMwj6Zh681jdCwnNgVFpBFkxrLqo6nseuWUw654IERarTzflCUYoTOfMVmwCJKSIQRNtGastRrLByhraWxVaJhSM7jXTAzJTaqP2tDiHhutF0KcCRJpZHBX59MMU66gN0KY6ZpZS2erpgA950DytaVgbsy1+PhDN7PXEIScIud5JicBOjnAPAUez4mX28qt/gtLkb1WtIvGwdFg/hSPr3UkELxrt9sb+3n4kwVGDsAF7C6XqINaZJ/pVfDsRXX5ov+ohr07P6RwEvDcS5NFq0APShHhWgN/vET+738P/+0TcM48TJHlu5ndxozIiJO8bULblF6Uh6rMQTmfO+enxCyRp6A8zMbOvn9SlhlOszKflJzhtAjLFEnRtO+WXaueO2kLQI7tYCrGHrPXVMeMY7s7Pn18cf93dWMgDIAHm0mrtY/yc5/BpTutb+ukWb13Y4BSUJI0gtoFC5XPFb58bvxIpNLpbGxByVPk9P7MvCRI8Nc/vJBD4LTM/B9/3Xg3Vx7Terzx8f86jIHcGXdnW+xzgLM5Y0baXIXMOMx/X/U4FtKPmWwNVoBPsZEzvDsJ7x8CrQdqH0P3Qm2Rsgn1Jnz6bAuz4tfOaEo5Qxj8zWXg16mSsjI/NObQiUGZsuWpfuW1sD2igb4u3WRH2MyOOhhs7jBmhiSB4GDwYECcqQ2JFOd9tiXH2bv3N0RuhBqQ6jOxHl+j2KITXCoUe9hn6SK+mEqgijnotS5UrIvbuWOV1MysJERymMhxIaeFoCZZ7dWdYFEmj+aIEu/WKltfgn+OGJINFAyTkhi9KWnstWEjV4oM9KZAh2VKPJ0nvvt4QuuJ1maWh/d7o6qsN5+txQGedbFKL5Smlknrpkt5mozdpVHWqzUKSjFWLgY0BCRFYp6IsdIKFI9B6L1T+2bmHbXuDK3u7zkQszUzhumNhO6zknZMYowmQ1SoZXM5uWe7CjujMgylRHQ3/3Nu1ZtQCrXuc7jmvF5oxcxCLDoku4Qal5LcRwdYNzi4PFWxmSDU57aDsc7aK70q3bvQIyaIEFGxrrOEyHQ6U16foRVimgnTjEwz2+fNmg2t0KJJZ0Ma+a5f91jBb37z75zJqyR3lQ1B9rnV1sx1NiVjNQeAH2BqmP+Yi2Y8rhMMGM7zvCsXBvs3nFGNBSsM0yFzrz3YN1srIrUVZ1CDx88UMwcZH0LZJaQithaVavtFTJk8Wde2tWIFfPC5cQHVZk0RN2HKybJpU0wuic1M0+zMss+M907ya9yUZn03bBIdc/WHI/ZWVlsj4shn3ShlRTCzxe+//wMfPnzgdDpzPj0y5YzIietV6b3y5fNPrOuF1jaT+NWNhgGP1jovL1+otXihnXdpX07JxhPa21nSWu3YPj4+OUMZnbm12byM3d8hDBn0tjOWSreG2xgr6JVSbVxkFNmmwhJj9cTl6LtKhZ2Rjx5jBtaISCntpoTFZdExBlpve/6wNaoCl+urHUMHsdM07W7yO+Pt8mSw9b7U1WaPX1/58OEjp9OZaVrYthvX64XL9WV3hh/X3z4C9WaG6et83F42Wm+INrbSyDGS4sLjqaCx8dOL7nsIoSOxI9muo0RAauS8LJzPE9qUrQReb43znM3Gxo2mSi/EtbHeOuvayVMkxYmnhxM/fH+jVDjPC+vlQu9wvQqnc+Ldw5nTLDZbHSKXrbJVU4rMSyIvM6/VRg4iwi12kE7blBZAY6A1k8MGiTYGI9YrHRVWq5HWIq0lajfmcoqw1o2+FeayEFiIaWbKj2hX6vaK5RkkV0hVEI/0qcqtCVsTYg/MIVjjO0QCUJryeuucT5ZH22pDwgQx0zUZox261YMtgAY65mCsIWD28Q1tSm/WWLiulQ7uQG2qrkBjiGdisnXFVDZKp7K1SukTVbONBWpF2Qg5kdJMYKa1lbVVMpMb1wpbK6y1ca3KrUamGozdCsZg315NoWaSY3PNn6aJ2/pKXStTrGxd6T2ylWZN+ryQ2obKYFYV7dXrIKxuR4wNjgtBbjAAO8qtVLaWqb2x1o3L2ugN/vLbR163wI834cdXa14gmVI3bhvUoizRki1STHQ667YRJZCT8u1jRUTR25/eO//U45+RY8vejd/rIA4gMj60fX8gXmNph0pN92qQY2ND9ue9+/Z41fEdBzC6G0eN2wFnclRx919BHOwgQhMrjIsKzxr5UiK/ew787kf4/bM5JYdJ3EXS6HLtwlbNk6UVCFVJrfMkyikoj6nzOAtzxByPJ7uQnx4NCC4zTAvkLMzZZcfRslBzsI5McIOoGJQUBrTgcFsO7J+9+2cLdwz57misw5Dm8L0bgHc0H8a5UAwcdxW6Nwg0mjSEbi7GqbmjaLfsM4CnpVGvQqlKXDGXWbdVpynzo5kbECKvn+GHi/C7T8Jv3tmM7RKE5Bro4UC808dydJAGmLIDcIgOZLz/bvTyKL4GsD1ykcfv2YVo83N2LGPo1gns0S3VhU06azUnY4uB8ZnlO3mkOLA1QwZjs5dUyZ6Dm4PanHA8XJ6/9of7ARijedd7UmdBuzslG5AbnXi5u0ntT8tPTXvhpxIcYDRqt9m42lwWK96hxLrDyedizBVZaaJEHezTXU/MHZK7HPNz9vIDaMsxjx8C0ruxrON6w7q3sdum1nS06JxluDOdGIX1mDveL0//7yENOq7VsQbacZjnhWleKMXMokRdnqfWcAoxElIyPDxMFXqjbBtBTJK4NxlUfTZtzCjLG5fhjhljvQVfh0x0NAD0Zxel3DF3+xzpzrYYyGA//+Np1Q+5B6nXdrzuflysOLbxENl/fjQquraddba3JDtA8U6mXwtxP8/3W4GE4FIppQ3FSoy0Xnc2aD89Y910dhIRgrN3XezYS0yuKopIO5y2e7Dzde+w+rU+RCwuIqdscT8+l7mbqzmzZiYgejSLHdSqm0CJG3KNDv19Lu6Q4x/GYEO1cbhgt9Z8xtLm6oe7MUBr2w6EhjR1SIaHo+74Si7b7xwGZDEkRlbqyIA+HHh1d4IOMZlhWwiuEDr8GYzZMbnh2DRGBq4O+a5HcI3MaWsMFCqY+7czK8Udx8ds8u125XqdbEURA5ndzZpaLcZKNgd1AmNsSxyQ2msbK2bnbjhS49LUtivjTNKPO7KnnWXfnWGHtNiPVW/uBe8st8phCAbeuOlmPhOCyTLH8aj+GcWvs7tdwP/NPov686jXH+2O3YZEbTaT3H1NSrs5DbYehvBmrRlGULVW1nXdr8Pqply325V1Pflntxnpdbvtr9l8fRmNj0F2fO2P3iwqcp7dOMoJlhQbU1KiWHPKZqANFNmX1U9jXhKFecl2B93GvTrWA7v8a+2WULA3oYyt024s/7pVq4NCpKsgJGP344hFjJgZkj0XYnJphspJIkpxZ1t8hAe0R5cMj13WOqKj8WCjiYEQJyym8nDVNbOi0bxtlpE6PjPYPhTMPNIyj4+6Gbe6ir62xeCzrR22rTNPdnxqbRDtPVcVEqPR7u/OmySDTLLrv9Oam3Sp5dTGxu5PgO/lJt8ejK1CBBut6Zbc0KA0oas3ZvTQJ1ozvjMSKGz8bvjhjN81Vekw+FKBUhx7xbB7C4lEWhfWoggjj8J/L9hcc4xObnD3uQc1powzR2Oo96ymqd22CIuSxF3vDQuep0gZKrk7P5vuOMZqyWBmfaLU3rhu5tOTUOjmqr4n7fx3Hv9Mxlb3t6X3X+os7j5zOzbC/ZrbN8j7xzhgdgk403r3vXEk91O8EwtKYnT17SZz3m8H2KUOU6TIly3y4zXxv11PfL8G/tsz/N3vKy9XZX4/M50COQu4U/D46kWJRXmSyqM0frV0lqwss/J0FpYsPLnUeJngfIrkDPMsTJPNcE7BnFNDcMdjcbmvk8MGusJePOxglKNAHMdzsNKqeJdozIn5TIpCC+YCawSQO8LGIakdxwWXKgjRZdBE6NEGvntRYjNZdRRFm7OSEnl+NoezLQQqNoN5vTTO7yI5R2rK/N1L5/Ol8M1D5laF6X1hiY0p2MzI3ujo3gWTMRRvi/bPqPs/vRDHeb5/7DO8b7+5Kw2CeciFgN0oCidwNDfmEu13Rm08sDeYO/C+ho6bvPucgYTdkEj+9J19dY8+LPsHsPXPpb5xNp+vtXtJQbuZMeFsuo4ZdstnjSOyImIARpTkwJa646I7MGqsSpREVKEFk3bLKL6tStzlub3bfJVtZPb9wBj2sT9GbBPBCjmNlbEEZ4kQYC6ZVo0FIZiTbsyZOJlhxjC6QdiNqfoAWQMgjtlSPzRN4boGal+Y5pnTeSasQmkb1IL0Tk4TaV7Iy5kqUMrK8+dP1NuFXosXfImYrAin2z1XV5N2xzybsVwQQjLp8lYusK5mOtEaY9ZJHcylmCi1oNJczl1d7iu7jLTUam7NCiFmlwUHWjc35hCTgWppPpPrTNA+CmLFqXkfFDveDiRUFUKwO8UZt/GVUnJHyANEdSybV9wMqHdlqx4RIoEcss3hjPitGAgpel6qSVeTG3MpmKsz1dxtXXo9zQsCXF6ebQNPmTydLSJp2xidqVYbIYfdqfVrfXz//T/y+PjEhw/fAuzApndjVYrP0g8AFEL0WJWRn2xxLwq7M21KcTdxEsTlnFZYaTU2cdjzq1o0z1YKt+vrvmbM84lSNi6vz2hvSAjW9JlmpmliPp9JMXsclgE0i9WYGLm0Brw9t7oZoLRZXdkBtIFV9fft0kHtHlHV9uu8NZM9x7smz3W9mhy6bPtMLMDp/MDD+YEfv/zEut7s2hrxG94EQmRnV7ftyk8/FZ6/JJsnvnv/MURaKYDux3SAB3U31ZSCRVYh3G4rZqhk84jtvvnka+hyeiDE6JJg+77N6vY3506Vw1TN/7+DKTtUjW31hnKrFUnZxglEKNvK9frMMp/JaWLK094w69pppaHbbs7hTQubFx7+DYI9T6nFnJSd6Z2myRIf0H1euPk9fuTP2nnbyroD5TGPHELg5eWZdV1ZlhvremPdVo9ysnEYm+fV4738K2hShQAfHjO/fp+5vJrPRGmmIFpS5zQ3onTqZpJQgtp2SDAH4wbbbeMihW+//RUhKs+vBa0Wu7LRIAZimijbhqq5Z6fcQQrb9mq1YVX+29/9gWWJzA9n6I2UZqY8E0NxYLsgYg2cz58vxKCm7PPIMSSxlY11a5zTTMWaJ12N1bzd1IwaQ6SVYHUtAGb69HA+s11fTeGzXulioztCovZO2a5IaCQHi3bb2/GIKZPzTNn8nhVlihNzDCRgilaj0wqtdl63zjz7uBtmCleSKZOm0EnSHHxZrT08YcqmxNTo0rhtylrVgFttxAi1WlxTRGitkmNknkwJGhRKt321Y82r662xlY6kE8kbTNSNpkqpCSnVxqCWsjcEy9bYNqVUuG4WbbluGyE0yA5sEWSyOiaIYZCtwHW1fGkb5Qo0FCSQ85nczeejVscW9wQjYDXYGDXKpLhwK6YKrRooGqktsm1KrYGssATlp9Z5vhj9hkDTYqMTAufzwuk0sZwS17ZxXVd+en5miplbVs7txqdt47X8sgi+fwawvedbecNYcPedYa3/T4FY9nyt+yc6OoD3wPSuEWPFawgHEFZjSVSjSxyDs22yA+3nlnmukf/8x8gP18gfLpEfeuDahZet0xCSx+zUCuVFqWU/Z5xaZxLl49R5Sp1zhvezGgM7B54eTX78dFLOizBlYVkiOUGejKlNAlls5iDE4Xp8fKbxZwxHV3x8RvU81KO/YQfI9jnFPAGsk3CfEVVVdoMrdeOFrtbVbQpBlNSB6nOMXdHQbaB/gOoIXQIq1jmeCywFttx5jEIvwu0mtDki2NA6HU8diaw3y+D8f/yXxO/eCd//eubffmh8PHXeL82yZaXb5xYliDvFSvdZY+8ihqMQOS6kP71+jh+5uxr17lsyuoN3F5/c/fLArHcvNfbC0TULYrPae79KBQ1+3QGtCaXJ2xnyr/Shu0EBtspigGHPOvWZ1y6KuRS78dvognaz/qf3N2fHrsCOSttZYWsiq7EwftiTDIZV3AnZz4t3fxHb6MdaIFEQjWZkITj47b5SCxrGJuHsHc2iecSk/pI8/mW2jN3eIj2yF9Hjz+DXo6JU2r7AmcnU6NwB6iZ4TaDA5y+Jz1+E11fo3Tquva4GAHtDdfWZYTF347JR1gu9rtA707QYcPS4GZs7CzZvq0qeF/a4Ign02qnbleDy5TGXLGIRPFa8GnPW/TXHmaqtOfsxALF3ld11uuvBEI0oFRFj5O0ecRMiZ93Ui+i9fFb2HFoZLrd65NsGieRhMpQNLAvQNfj9xW42FF0GbuvhkJ6PhtiYlw77HPToB6aU0GbssMUcVZqziMFl52N+VkIgqDGGHlxlZmLehPyaHz/88EebURU4nR5BsUJ/vbpJTzbGZjcJup+P9h5KG/FdR4TKAMj3DsnjPO5SZhFOpxPn6wltjeuIW1Kllo1Wy74Ia2+st6tJgGViysYwx5iZlpMzusY4AzvIDDEyuWN3xxafwRDfbwAj6mMYifVqWdEj8meft7mT+kQHfdptvrwNtrRVB+mWA2ujVt2j8drbGgSL4LHZ0cJNh7Q78HB+8P1Lye5OLSLWXPGmmjooNcysTHjTQUxiWmszmbTPkQcJ5JxIOQI2vmTj9V4bqcmsh3+CMZaeca13LL0M2fFhtDSui4MxdoVIsOct1RoAtR/GXTGmnc0ejH8acvXeTR6eXSaerYkxeTYtepTLqpaN3nplKytDCSAi5Dzt72uw9nZdC5fXF2s69M623azgF3GQO7Ko/6SC+CofHx4z3z1l/uL9zH/+dGUtjdSUvMASbb0LYjVrSLZGpWHI0/HccY+UEXzvC7zehFaN7ZO5I5720buZX6Y9ziViBlbKH3+48KtfP/Hw7kzqK1OOtjd4lF1IgkE286vp1ZRuecLq3Kw7LzMUhU1tvrpHM3mySRah9eS1rq25vTZutRHF5+41G4NHpGoiEYgBtBcaiqg1vWvvuzFbcGAYJTBlISYISYk5cz5FlM71ohQ1UBllMR1WM/ZUtbJtlTBhjWStVrekSExWHzQ66o70+EgfKgQfW9LWKdpNmh3MXyQmpRST5qZoQLyDmyw11mJKQFEbp8pJEW20utFrtSps39s6rSdaV3oPbLWzFuiaSdKIwaTpTRNd/Vy5O3ztToK1w/k8EGwOeFxP3tCzSy8SkxmWbQUmBlM9YtUMRCuBhg0ehxjJOaCrDRQ/Xy+8XIXrDcI80Tus6xEDlucEMVB6ZwoJSYmYZ4tR7XB6OPHcgfLL7qd/hivyPZC9//eBMlxCiL6RIt0bEwwE+3MQAey/I/r2d3Y51Bg6HewkARzYdmfUqjuqlSr8WBM/rIn/9Q/wx4vwx6uwJXZ5ISEQs73nWmCrStus2J+DcJbOWZRfpcbDDKdJeVzMBGpaAk8PME/K4xlOszBNwSTHSUgJlmxuwhkb3Q1BiO5KNAy2hq467h9tGB04Q/izwzQYXtW92Tqa1AzXaRnPUX0h6pYb2lXMLRqXLKhQ/Pk12iwu6kyvmJygVwPJUxKmpMxROSVhLUIoQk9h3Jlok92uuyJspfE3f4BPr0JvAbqwPpmUbEkWUJ2jRTslv/GtzztYT7+mjsvvDtQesojRQhnyxcPA5jhyb0VUB+N2f13Km3+4A7769p/t3ZlEp/XA2qB25VrgWgzcfvUPb6qEABK8m+EHeACoAVTGmbB7zBQAbYDfwcz5lzkpd0Y8x/hdY4IN2N5naI51wNy9fSnZ7w0/p3shxv6DJslVZ2xlB8+qNv3dtVFNKGMF3JhnnzyntgYk4gZzYTdICkFQcZZouJmp4ybXaY97VL2R1pvw+hq4XAK3FXofF4q6rE9RbfRS6C4brGWjVzNpEoyttZzbYCyNF32Dfck5+b+7bqY1Wtl83vyQ9Cp2fDuK9sPErPe789HbLu8acmIROeZxh3zMi2EY+XUDCHjckIrNsY6CGRw4uEsvIByM53it4HKjlJI7ttrrh26yqI5Ly/1n+5BEqXpfarSaZB838RV1f4h4FBSg3Zxu7TJy+XzcJQs2R+jZmtbhP47n166+eH39ggjkKe9SxNfXF7bNjJGWxRyJgwRn1IQQKiFk4F5KfNcI6X03f9pNqXwWcl9+/RpJKZFTJicDOHag3QHYwafjYZ/5PtYMk68295mIfk4AtXtvSIlTzj7v7tLabq7KQw4t99dEN2DbJCDevKnNACrRf99fX4CRzUiw8z1umVLMYGOw1d3j8O5zUbVbNKHF11gEVvUYKntfj7vXSAjB2dTDLT3GaKMatVI2M5lRbxiMLNpaCpuM+srvnZy8yeTroO9nBm5lB6k5T/Q+jrnAMG9qzdfTYwQjDlm+g3vwpqev091/r3r00t7G8iZ47Mc6kvPkgNrl0e50fMzmpmNcwo/PWCfteJT93A/lSc7ZZnT9NQZw2bYbQ9l3SBTtNW1m3CSnX/ltDMD7h8zTKfOYE2Vr3FZlFmGeXQ3ZxONcgjfe/N6UOH7AGlWj/4mt4bUK22bAd3JjzCSHc27vtqcZUDUi5PVl491HhZCYosXPqKsjukAcBIEERJLXigGJYoa5etS7QoA27vdRZ7qBEgaGdHfXtfWnbA1bosTBc3fiyqSFRtKOvVgO8Dwi5yS4IWpgSiOZA2IMnCZD2+W2mWWj1yRBbITRALzamjgUeX79xGD1wqiDED8PEfN48YaN7aM2uifaSUlJzcYZS2mIiilED0jDiLpLvR9pMF5taq/GbAJ7TOERZ4Jg8Yql4+fSZNcpebRQ9aY8lkgxiLKmQlBb+8J+/N0TpTuBoTb6FGIwkymFTkd0uJ2PdQVUhOY+F0ECEhM9CFqV13XltgVKC0yaUW37aIpiZro2hoKZWnZr0reyogp5moixoPwLM7bwdn14W74LP189dsZr7/i+/U3xQjoMoHv3pOFurk+I0E1uMdgxK6TsRNWeKCpsPfDpFvl8C/zn7yO/fcn8/kX467/50UBiSszvhbQklqfEcjYm6uVL5XaF7SY8CLzLyp+fO+9n5ZyUb+bG6RSYZ+Hhyf48zcLpFJgynE8wL5ZHm5wJi8HArdlmsxdvcifDHfSCHh/77hj5nKdjhqB2wBQIyQ/UJHshObThqtYJU9zBuo95Otu0e4O62SZSaqf4xr+VzhaFzZmKZDUQUpWgnZZhyUqdlMclsK3K6dp5ebnSU+e6Jvj2kfndwoc/n+l9om0PfPm7H3n5/pXf/ec/8v96mvnwOPEf/8M7/s03iT//JvDdSTjlzsNUWJIxNLln73CZZNYOlRwsbmyHFr57PhkBUkOClcZvr9VxHVkhq/cXmi/Ad6/if43u0myLW1dh9fmQ1oVLFS4FfrrCb3+AH547f/37G19uynVT/i//Z77qR4p2XdqXbTSWv+rzm2PRHHWTI9DajBm4hcoUN1K8suQFjWa8VLXQtLK1K1vbKK1Qu0vqFIuEChCl03ulifoG1TB5VdvP22CIYQBr3BfBb6C7sOoBdWyu1zr/pVUzj4uZKU1AYBKBLRKrsgUspiNbXIfNdxpL3QSKdmsYBYgNyzhVPBdOWTehtUQpmc+fhdcXpazH1TVNmYIiTZGQ6b1SXp4ZMTlTmnxeTnwut7BtN3MfVOPIh/FSrytpykjM3NaCegfZiUoroLu5H7farDs/gKyzVK0O9kqopdBbY5qyMcUE6pD6JfO/Nsly3YFeismYt9oMhAczqRuyz96G82k3aWWwz9kd0Ii7PkpUluXENGXOD6ddSiwh7QZht81n8oIwSXK8owTP7u2iPgdYPG/YRy0aKJ3aLga65pnqBly2gVolYcW3rZNjbdYY9wkIweTIVX/ZJvo/6rHebrRauV1feH1+Zl5OPDw8cTqd9p8JLrFf15V1XXl9hXleTIaY8g7yhhkYgsuVvdHpc22Dde/NGN1tq7w+P/P68sK6ru7maz/z5ctPFivjxRWD5VVYbyu//emv3Q2z8/D4jmU58fTuI48PT+R5tmaT3+bFXX9jiDvAned5b3ArNos+cnatUDUZ7GA6RYQUI6tH9ay3656PC2boltPE9JD9qKmZPLVxDMUzMu1aDG5WFYLJiM2lN/Dy+mqgQoRpMrVFa4VahZzP/OVf/pU3WQwEx5iY8sxpmVHtvLy+crm87o2J6H27FM3gK6XD+C2KOOsduZWbVUo+o2xmXMvO3EGguylViImuFiGU0+RMt94plIy1a637Me7UuhGCME8TKVtTBI5mhX3fpKXJZdgSLPs2h8zpZJm+o6bLOe/NkjEvXUvdG3DbZutTyDbvPE0Tl+tlv4bMad1ndVujNct51W7y49rKft1v20r1fOKv+fF/+M17Lq8rv/2HZ/4/f7dSVfi3f5F41ErQzu1aSSny4ZvEtARSDNAip/MME9TXCyEKrUdqEXrzvm+0puj3P1z4Li9M50zKlRB9jOxVkS6Uc6BVG8XbVuHL540pfeEvf2WjQKU2NgR14mY4hi8nc8AVZtZmMV6hw7v3j7x/B1IDz5eNftnIaSZnIU8OSDtAMtASFnqB1jq32w26eZokEhsRjYlSO6dl4vFhNkfoXqFOiEyggbJVq29LI3VTSE5TAjU3/ClF0jlxSsrLp08UbV5XWrN1SZnS3Fw0ZiQFQrIs4LEG5Jwd2BYkKDHD6RxpN+HWO71tVOn0JqxbtWtzrvRgNc3tZkz6nKPXMmFvDpYaoK+EYPPWU4rU7kDeFSbNjd5yiDzMM1kUeVJ6eQVsb66t0DblcmtsVdmKS5FD4HSy0YKIJTwECUxTpnd7/tt2Y10b66aUWs03YFIfi7BrphT7XOstuBpA0Zh2f42BaVIKzLM1kf/4euO5Tch8omlF1d3qk5vdYjPTISSmeYYYmUpnvW6INpKsiDvX/5LHLwa2Xy62yatCjoEYzAhp72qPaJ57BmxHccd/76BOBmDZv8veDNQx1Gwdmq6BqtFmZjvUpqwtsPbAl23iUuDLTfnDs/C8wj+8Kp+68FwTW36wOVYPBOsI68WLsK6U105sgYcu/OokvJuVb5bO+5OxtB/OsJxgnuHp0RjbeRaWySTGywzTZLKQNJh9w9F7fI6f750FuPvI+0XwtlHgXJnsvdG7v/vx9GMrd+ytDanr/ZMcHS0HtykGelNSVVK1QfKUArkqU4WclFKts3drsImg1eQs2pSnk7Jt8LAI67Oy3Qr9pwtb3+iXCWlPxDmRckKmCaZCjTPPG5Tngvy3T3z/Y+a37zK/en/mae58PHc+PGBzylNgzoGcxBldk0/HYFlXYYzi6mCEnBvSe2Ox/Sj5NTugz37h7dfywZB7R0st3sfmkQO3omxV+HJVXtfO6wo/XAKvG3y6dP74qfNyU/74EljVrMy/9keMIzfZZ+hU0Oj82uiaYXE7pr62Y6y4bKY2tlpYt0idirMBkaKbA9uNrW22wPZqUkcvjoc5SeuWSWY4bxgeeaNGBrA1Q4aG9zKGSZgcX8f8lDOj2jC+tti8KNAlEgULL/fXVFFjbJMc4N3voa5qkiTxbn+3DrNJIYXWAusauV4D1ytcr7Buukskre6yohcRWrHPesy/qcl7vNjbcx4HmyRu3NFNfhuyrVtDoiRiapOIeLfUne66ATWv7z22xTqwbxjkwW5IcKbbZI3HHLE3I30cgvGesULJfk/MZdaL3/vPPjq2gyXG55LED3VId1ELDsq7N5/cn9Vf17vkXswTJwjJihqc4QrBGDd3SRZ3Sh73fr9730b6qP29VpNzhcOnQO7UBK12n3f8eh+Duas+Q5Ni4unp3T6XWO4K+pyzz6IaUDAmVwxEuDnTcAMPYZiYHSNF4syqgdWE9k6NieSMpWxWKA1zsOHKm5Jd81txNlULw71ZsbzNEGSX5YYaiXFypm0wrDDojWMl97VC+/5699nKY9+1PNqwG1ihnZaMzds7Z+gO4EXYGcXx+cfzpzjt1/totMZk7KqByTw2FG/CBqbptO/Vt/WVlM1FHvVGVNuodagjjMXufWRWB1I6sa63/RwMYGvmUbJ/3uFsnZytTCl5Ae7P6VkDIXi81jy7i7CNP9RWTD7ur9G9qSHadxBvn3HelQ8WOWS11HhNYxGtOWSYVfdzYHO0iXHq7lUBuh83jxTyHNoB1vM+5zvmijshJptjjMo8L3a91XZcJc78h698Vh6grI2Xa+PHl0Z3RUXp6myb1TqmCoBZojcO45t70lhHoValNVf9xYREY+lDDHtsz3DptZ020cm+V9v62Jpyu63criAaSSHTQiS6meNeO/WG0fYYT7jvzX2/N82QLSMhu4P5aGh77Rbsfb1eTQJ8uxVLa4g2ClBdujzcst9Uy+O9YPtVABBlnhMV2NTiPEuA2jrSm2OQQ5k2GudWGNhXa6Za1KHoiJbiEUtHm9WITg4TQgcs2UG67Su16t6oESd9m3qUIla023iNuS7nnFh0opfmTUQodZg4BR/ZCd6kDbRmu2QMlrpSsRgkiRGVQOvCVqvFlCIeZwRoAt2OPS+quxPZWlJa2X82hdlG8BS2YnVcaZVSh3s6nmrQSSGjIaJB3XAPHmfLA9Yc+dvnQh219mDEm4PZJIgmayhgx2jENglWn66bspXG9i89Y/vDl22/mB/mxBQD5xxNC2+fcM/sHe6d46IzUx1x4OFgVx2d7EDDY23MApUhUegkqgqbBtYSqN2KyC+rmUL9/XXm00X5x8+Vv/8JXgtsdORBYErow5OFSWeQZIXe9blQbx2tSijKOQcec+Q3J+FpgQ9n5enRBuI/vAssC0wzvD9BzlgWbTQgm2ebqY2e3WX7grvx+t8Z9/rYKAfAukP5d/W571WjyJdDork/XLIrx9yzontu536I/RXHcTXJg7my1Q1yU1qP5GoXWm1KWQulKnOAqyprBG3BOmgIt83mSV+vwuUZdGts189sl2fKYtldp4+P5G8eictEr51wfuS2XbleV376/Ik8LUzziW+/m/lwVv78qfIX3waezsLHp8B5CSxT5JwjOShT7EzSHOCKXxmyy1pFIPXgktED7Iz/P4ogP67ePBkLoqpQe9xBbemwVXi5CZ+vjdeb8o+fOn98bvzw0vnbnzKvq/J8bdxeK60LfTohy4K8yZH8Oh8xGYiNwzDpDimKiE9veaNqzIKL7QUKlFpZt0IkUOqKaqJrYNOVqoW13SjVCqXarHDW5rMnYnMeJmdt42WcaRk6quHy7Up3tfc0ylkfz9kLZFtClK5mGNTUgK1tdh2VDFE8czdZl5BmUt4ou9pI9X4myILW7eYJFvDehdZM3nW5ZD5/EZ6fletV2bZOrQ0Rc33NeSKmCWJnvd2ssHarf8XAZgjGANVt3aV5MIqxZIZGCHlZ/HesORBDMAdYn3Mp27Zf+0Fs7rW70+1wPx7mN63WYyXxtaX1imXZ/gzYhgNMqGvcYsrsjpCqR7HpjG9M5pJt2bodMwPoVkyLreoxJmLOxpw6sF2bzRAmhFcbpEUVZ4GsIO5hoktCmqk29mIYsdnZlAkxU4s7NDN+RohxAjXJaAieHez5pWNfG9FCNr9UHTB+vY+URn6pSXqnyYBtcUMk9XlUVTXTpmnm4eFMGO7DLkkvxfaMGCNTnvb1czhjCp4agHtd9Ib0Tpsmpmmygu6CO32XO2AbdrBjDt/Vi/DIcJpc5tlzbrsD22ANUfau4w6ShrhGnS0ajTBjNd2nAQNMsdm8Yb0VokYkWPEYAruEbjCyIze3x6FwauidRabt58I8LW5EtfnMpzWFYzRQOU/GgI/aJufI6fRgsVqivLx85uHxHfN8ttfojd6LN2J8/r1unt9bmecTy3I+3tNo0jhQGC6xdPWEhcg8zT4vG9nqZkW2Nw7tsxhAzSmR82zqC+BybSaTHOsHA9jqDppjiMyzReqMZkFthXW9kpJdO6PBMJhjYM/fHe9rrBt0dmA7mgk2m3eUpeIbkF1ntpZdr1daK2ZIZTainJazXbPDRddnLg/1yNf9eHnd+PxS+f61wzQRRSi9sxWgC1Giy3Q75qBtc2kxRJOdxuTd30D17NDaMVlnSq5OMsLAzp/X6aogiS4TtVsdGLPNbl5vhculEUgsWegRmkfejEq2t4qGCNIP07kgZjLXQXo3VjAFCJNvLWNWHUTtM0wp8qlu3NbK5VZYpkySgCQD6pt21lKoftMO4mekZKiCkIhSTQl1iqy1cytlX99KrWTUVbzuGI6P7oB7PJh3T6nq6kdrnAbfF+PedA/eZIIgpk5ptRC9Bimt7WSJe97RwPeb4PeW7T/BmeUQJm71BmpAfivdUmVCtzVMxKPLjHSJwWqBZU4UtSZPCJFGpKiwlm5rcLQsYVtSkwNjU4WJuo5JxBv6m0VidmFKJ4IUVBu3rVJ7ZauNFF2dimMatagggimftDVyhI8nWHJEt8R//Wyjoqix8q0Gz4v3/G9Nu6tzLabEMNWkAdvr2rmtjXX7Fwa2/9f/2x8ZxiyPJ+FhTnz77sT7x8xpDpzPljeUEsx58jy5QIx9H4UbmviKm6RgXZTWofTArZol9LVPWDRL4PWirEV52SrXTdkavGzKpSWuPVMWO5FbX1gF+qTE2KhF6esNbgZgqoKUlaTKO4GHyRjCDx8DD4vyuDR+9cFyZx8eAo+PgXmGh3NgzgZoz7MHMmdjNkNQQrJh9uDzrwFnFu1qwezSbVN5a0ZyD778X47GiRv4yOHqCxwaXB/29l86WEpxqx/YEbI/NMpeuKsCE3Q1effmw+Talb4F2wy3TmlmrPX6qtyucLsKP3wSvrzAv/2LwO9/9cCXL5l//MfIl9uN662w/tfvKfNPvJwy8viIxEB+mJBv3kOMRK1uyR74sSo/fnrlr3/3mal+IenGkjZOD0/MpzPn5cRpyTycJh5ONpdwzsKSsZnf3E22HCHn7pE8Zj0fA0w+O2zzR6NRoLsV+VY619UaJT9+adzWxmWtXJoxtZ8vnZcvL9xuhZcrbC2w9UiZ/gydHtDTN+gHK5yDZjsn/c1J/iofKRqDGV3SJm7ck4IZodCMsax0dhJLQGUwgI1rMbncnCyTLsfowLaytRu1Ne9cVteJmpN5p0MP1pkMoM7I7e9Fdqspm2NWm+kw5lX3Zk10EB5j2M0ZQjTDA6QhMjbAjk26CzHNtsmryeSaf9cA9OgiO2Pb+u7KatEAQmuRl9fO5aL8/vdXnp+F10uEcKZVA7bzNDtDEGjbSm3FsmnxMYFed3Zm3a4GVMXkkAbMms3btGZGMzES8gTakG5gO6SJaVnQsoKKOVYmK3aupfjMu7nVjtkzcyL1eWJwUDs6j17Gu/Ntj2YoM8yr1MPZ7UIILmU26YR2i+ZInkMafMZmkN1700TN1GPKwd1xF1Je0BAYIe1HRMuKmVMYowqRgqC9MOa4wUG8r2kRcRb2YPJGLIJ2y9ZMweTQCkgMRE2oHPFH62YuuEEirVRnob/eR9nKPrf66dOPvL6+8P3333M6ncxgJ4QdGHx5/kKKieVkc7ejr7ptlnu8nBZrNOxsvhwsbTgYNVWTpd3WlR9++COfP//E7Xbldrt4Bmv1yBUDQ7fb1Quqzvn8wDRNVM+TVZ8rk1aQJJRypffiEsJMTBOn5UxMZjbWHKwr6gSuSQPHwxidYYI1gcJ5OR2RQMEiJaKYuRPoLsvdymrP742Qx4dHVDuXy7M3UdiNTgzQOgMeDpZU5tkUAt3WMAP0GznbvVlr4fOnH1H9kfW2Hkyyg755mm0+WZWtVLbywsvLq2f8eh1TzRkje7xTTIklDrdon5VWoVerFVKKLPnsTSsDAd3jmVKereht3c387D1IOGaau6/30c31WvN8cIkueT/x9PhkzSxXoMSUmZeFIWcfx0yCAzB/jGvKLjdrXK7r7VBoOGObc0bwkQsRlnmh5+nN73f/e/AM4jH7N4D01/74X/++sJXOpWaWxWqIUm0+MqE8nDKXa6WVSq3JGgmTNSN7U7ZVSSETJbGtsK6d67VByOSUOZ8XghgTmcWl/K2Tp0CeJqb5xDxbpFWPM/PcmedOCBsW6RLpmmgtUCuoWjZqjDO1CXXdrJmRMik/UbZAqZXr5crIvY57rao0T0vIcSanM8t8Yp4VCcXcdDef15xmaq3cSuPT89XkrTkw5YZoRVlBMiEklmUxl/NiWdnNt7daTUVg0TMFqjo+EZIDVLXOHqRoSiXF6xdjpFtrbGtxBhTytJCyEVqq192BPQZTc4TgqSUKEEeLzJqnWORR0LTXAubDo7QpUquNfZVqe2yIwcwzCdA76uktUAmSmE/RFJW9UFr1ekn8HJmaqWun18aXy4aWCh1Ok2VPt9oIabamlBqb0UUpJOgVqTYq1rpSSqRPAQmZ03RG+4qwMU0zSqNq45yFxwn+wzv44Sf4YRMq/9/23uZJciTJ8vupmQFw98jM+uia4fRyltc980wRXvjH80zhmaelyExvd1dnxZc7YB/Kg6oZEJHZMzkrQjJLxK0lO7M8POBwA2CmT/XpezMSTkxyIVCYp8R5/kjD2JFVlev6ysvtSpgeCA7Yn5+VW1b+5bfES57Q0Vv8b49vBrZLMGpL1YA0pRZhuynXYM3WrVVSMjuXNRXbQIKQkoG8iAWqBmxdqRdrsC4KW1WuRVib8OoiUE0D16uyFngtsDUDqNcGNxKb7NSXRYQ5WGZmTkYX0AoE86NKIkzVVIofkvDxpJxm4ccPwuUElxP88NEqs6ezcL7IALNzUlIyGnKMEKIrlgUhRCVIVxHEgaUOGs6xdmp/O6DtVRHgDY1b7cHv1knHIQfM1LPX77pGdxD87nfVq7/H14N2ekJXTRQ0mNiTTmaXVBssk7KdI9smLGf44Sr88AP8+CHx/AS//KB8foq8XDOfX28m7x4UjRUNrjgZA5oSkuZxelvLVCK1LtzWGWkwx8CkM2lLLFdhnoXTYv7AU2wssXGKjRSVJbahNp2S0bAjulPlYwW1+u4AtlTrIWqwbcq6wZrht+fKulXWrbGSyEV5uWVuLxt5Ldw2oWqkAnTq3imSvDIfG4TWrB/6Ox/JwaRV0Ty73oIpDGtjIo6A5OByBBgEMuBXEbWejNoiNXUqcmVrm20szapJOH3cCR1eaQDUsoTRs0ISD2JhskuIDUaCJyYMgHo1UQYbdTAkdhujwxHEzOStJzOQrAw5xFKOkmU6KpJ+xzSFIrQNXl5M/fjluXK9BtYVQsyjjcKovY3SdAAwUxR0L8HBJgjj/MSrzzgdVsRogx1c1Gqgli6qE/Z+caPuzUOhGMqYrz4/MUYPXk3ToDNEegLMeme8Gt76PWHqkTu933tmYVROume0YNXdLuiD6jgHESCYsE0XqgnuGV69v7Z7LI7MuU2kL1f2PXtwZJV5m+uu2AsOcpsCZuS+y2XZJGjzCj3R/Zr9d7tIX+eLNfXmZUbF6XsdRt/v94iBslysGjlNs1VLHdxuW6ZG75nuYmm9UtbvAa/wiry9nh2ADYqu09mrezH3ftpdF8N5SR3UYPPbxZOMFWH2FbVVpAWSeoXQvWLtNhVu1xsxRQM3b9aiLtLUvZBxelzvmatoUub5NNgdomr3QNqTyCYSY80Om99jVuGPqHbada+UdrG0fV5C6OJN/rz5Pdr38Vqq02ktcVRKpbbGuq2DmhtKsc9rzXpGWxtWTPYcdNulMD5n9JvSQaADv7G2At4LPHmvvuDAxe/1aZpsbdJsuSc8weYK7VW6J6312A9KsoRxT3QRo/269zVeB2uCsff29x5ArTCe1DffDcb6V0rg/aPY71GH62gXDmJnC8S4i9t97+NxhVJgzY04uagZ3kKmwpR6kcjWUnARPO971+rsvBZo1Vr2dCgpJx4eFubJikx9zUPtnu4WVdKr7YhX9vvz5QBJzBJOqajbHMY0WXLYypGjXceKJoqSiNFa24iCBF/re2UrGmgOwdoa0mRsALpXrnY/22YtULmw5kwIhSiV3vDSdw5jWzWKmm54T1xqv/eaFees/1iIGn0qvP0xGJtEXJjR9hlrYcrd/1fMc76ruQ5BSXSsCylCdbuc3g4De5WgDZvJ4ArR6vPqLLVmSf3OwozSbdvi+IyenewyMwoU35fx9x6FfVpT1s0S38Fp7SLNrv8hkWnvbVSPC6taPI2KU7Bt7wzBaOSdzdHA1vKgzNGsTrcKrxvARAonZnngVq8Wh8lkcxyUIKuJZJVMK9X6m93KqVbldTV9EwnfBlm/Gdj+b//zL0YDzhj9wKkkPRrUayWLUlCuGIWuJ0FCsA+yuEFoGHWxaiRX455vDV6KsFbhCUwhU4TWLKtOClweEpICH6eJGqyaGZpCbUipzFSSNBYKcwpMMfCQ4DQHLktgmSdTLD7BaVamqFxmoxJPszCfcX9Eu5AxwJIaKZqPq/m8eaU2dHC694lIB6p+GxsoEHDZfemZS6cMjGpr6HWNzr83yofqqMt6sN77dQ/bu3Y6wJGWjD9symH/8OPsQa+iBBXSYQPSYfvTASHwEWi2KKzNVJVzVvIm5DXx/NuJp9+U5xflv/5r5ukl8/iceXyt3NbG42vmmm9kVer8QNFKVVPbq6cTpf0j+fyTndckrBq4qvBrbmgWeA5QblA3QnmBsppvploAJGFXMY0KofdySBkgAEBagU6NVZM7by43b5Vx8Wb6ZJTJVqFEUhMewkRpds/qZn0VaS5cEkyizGQmhagAP37rY/X/y1jcK7QHowFXBwYg2jPQClILhX4/WOW00Swwa42CJUemFJiXAFgv16bbYGKog9qoQpTu1+wZRNwvOiZatGqt9Oeq9yoL0LtspW9fexqnsyPGOt/vA2dMRLA+EFUXgEiEMNFKYq0bXa15gDH/sop4AA+1CHkVXh6Fv/4aeH6B3/5mFf9cFeGVGCz4bq1YBrKZ9cY0J1KcjGJTG6X23kUhRZ9YNWW3Wor3yGC9pwKtVbbblaBGv58uFwhC9pS3hMA8XcilDIplay4UI2pevSmS10pVtzDRDqS7oqFd076pgtslOLUsEAhpsqChbH78QreAC8l8YsHmsQNPpRlAihYMpbRXhFpTXq9XcLXNop4SVB1CRlNK+wbu203DztfwcnTAIcSQRk93xDbDljFqLdj8Vmih+RybSJgWB3LRPCObZwxTTGYj9R0PcQBmvdyWMNKqrLcrJWfrIQ/Rg1df59xXFiClyf1QDXS01ii1jH69NCUHNIF5nq29YDMPWUUHvTR5RTXnDdlWS2QeAIVVFmdiWkhpsf7l2qgto8XA9uyPQm2N1+sLOWfiuvLX7a/EICynhR9/+JF5XsZ3EjGrj77vBpm83c+eW5HINC3el1a9J7z5ngF9t5zn5LoDPQjGK9fC+fQwgOMYXrXuVWkTWKrj3rWv3VPOVu1Up/yWUsmlUHIZSauu2H3z/iXbm+qYv1qLA8nJeiRDYF0zQ6wt2toznRa34LB1fUonUpqG3VDoQb4q7aRevQ+86qudb21OJ7b7Izotfeh5iJgC9qgyp0Ms4ruJ/2cblmGM6insvdfgySQYrAOwJFzOeVC9zTao0O2SYozGylHv9+d4rMM9J8KyWLXve2deADzXyLpWrq8rnz4txmyJ7sndlGWJLHNjnrvKtTGsWrlRtwoaqSXYOlktySdiQnApCj99+AGVKyplJPCsdSURQhqZYUXd8cDpxrGhYu4jcfpAnALKC4RsbLzTCbIiuavcCuvWyDVQmZnnwGkKLHPkxoZIodQOhEHVgW1MLJeF0+uJ0/lESgsEq1qaIJhR5de8cc1CkMwcC3OM1LG3ZtaSueViPcMENHhAG7xdQc0bPabGREJl8b3QQJuEhEhiSs78w1qYNpTrZp8hAnFeaBpQa+oaEXVIkTRHlgXrVy2+7zrIlhS8uAdBzfIrlwoU0GJtcBXWrGzVik0xVi5nMfGrKA5Yk1klAUWbx0+BrWzWrieRMMU9tg32fL+8Xok0okCtK6dlIqSJKLZPp3BC9UqphaJmZ5R0Yg7BBLA0+Pe2HuHgonYpLOZLGzJLhDmYttfn18afnhsSLpzTD1zSH/hr/tUKnc3YFUgjhkekbVAyLdv5hTihWGLj+VaZZmtt+ZbxzcD2f/lf/+DZIx3qJHLgyWqvPqB06xik94IyAJu9I9AFopruGZxCpBLImhzi2SQ2CWgMGONG0bB51r0DR3tIAi7rHeLYqLry6+SV1RC6eE7PRgUHQRBTF26pQwQqIEMKv1eCwIFtX8h7FvL4mtsgqfYtbq8OgGVK7EhKiB2wtv27qBoqYN9U5E3WUgbiGFx38ao4jM0VDtlRP489eO/X6ACC++vqGaQdKQNYAAJOzTTtgPxToORGycp/uU3kmihl4bYJucK6wa1Gthq4VVN/y8XoE60odWtc80Ku8FrMQidXyLVRmlAqlO3kfTk/D+piG+IiJn8QHNgmB7q5ZooGq/63YPZLokyh+r/hYVaWpOC+uVECy2wZ4ih12AWo+vdtUFgM/M0rp0WJUZmlGj32TQT0fY4l7TSukR3vYAchBjNQt+tcrfqlXcLJKzx+D92yjh5YiZY5LarWr+PKwkHtWa6erUQ9cYX52yHNKnghEhRT5ZVoWVVtSDR6nXTLABjg0Hr8dVCmezZTWhiPW/MKnmUZEzEsLBMg0VQGi+2yxjxx/8tSx/XOV2G7Co+PytNT4/XVaGJN7TOTV0S0NbovqyWyPNAQq8CUUjw/ZJYovW0gRfF7rP8xsFuzJ6vGs8qoONsls81lK5ntdrP+RjCBqabWh+e9ZtJ8mhnLlc2N9uqKjShGbU5pInowaaBnP28JkZgEarUAN6VhxVJbG9YzDd/dqJyniWWamacFkUhVsQCn2O+pmF/hqAH7tXIFPkQmy1pjbB6hiw4xkgoiSqg4rdkYCVZN3DUegsKSEtl2F26brR9daXX0c/Y+4e94SAy4Ug8ikWVZ+PGnXwZN1gTMus3MQnIV3uVk4LD3IdYuyiLdLibtgi+HpG2KCWarSs4pscwL0zzx+vrCy8sT0zyh55P12ubCbb0x6OW9f9nv8VwK19sVEZjnmWmamecPdsw02T6vynqzfrWcr9SyOc3U71mB0+kE4ArH3bRiv262Jxp7YlT3tDLPs2kM+L0VQiRnB5AO1FVNlbnkzSnWu+XMvCwkV0TOTmPOxZgb7wVuyrY5HdB/d5pY5nnsXbeb0W/P5zPrtlqvfnCvbzHqviUQ9usBDoq999Z6pUsPFxykr+SQeX5+cqFAA7ZBrM1Am5qdUghcTmemGKzi7H69MVrFLyZvEhSGMjV0wOrg089Ju/ybx1Zg/epgsVEpOkCqHcPWnskD1qZtBK/S/9/jPGsZKIzCQau7faMtlO7J3AV4Guu6fve98gDXa6EWBRKluvfpFFnmxHkKlBD44SEBCy+leT95cmXexvlhotWIaDJGrQrzHL2w1JCwoVS6cu40CcsSUMzHuniCKaWExBMpWby7lRspwdaUp+uNtAUulw1Qpinw8HCiVqM4//Vvv1lv6q0YsxNPjk2RlAJ1vRJjM4VxxfZ0yZR6Y8uWdD5fLvz0EySt3gJUR8Ja6boOah7lUk0jA6MSh+CtdUXR0Cvblq4N/btRCBTOp4DkgBRrTYAILdEOxaNuhRbCbMmcaWJrxjSRdSWfze3B9AtgSnC+LJxmmKZMjMbcKnVFyNAmcrY9LCBIsd3utlUsgrJiQHUKdHYrcE2gJ9t3QzSAHDSgYorXt+0KmJigtSKAaCClk1W7S7V7QGDLpo+AViIrDTv/UKyKW7Vaa8a2sZwWuhZNl2LRFhAmhIiSTTCwKVveQIxBmVJgq8r/+S8b//U35XGd+PTxnxASpW2c5xNK5fn2ysPpg1mEKoSQWOLCrAuzzMxTIv78wJYTjy8Fpbht3b8/vhnY/vN/PtPhUVel9VgRgBZgvKGDId9KHCnZj/p7Ougan6BOPzz+8cplv3Et9W4gWvqJhHEscDDqjczigXQQrL/VN0Or/PTA/ZBx9CA5OJ+0g+ZeehfaDmx9MZU+IVhRs1ODxL/sLgqzf1mHl/QMY5Bw6GX0pIFn0WF/0KwPZZ+vI7DtF0aGVdL+SW2f9GGzpD0q96DvDajt16O/93Duafy0f7z/buvBeT+bSK5GJSk1sm1KLnB9NWPwUgIm5qq0AtcS2KrwuEbWYr3UuXqjfIUth0HLqdUA0U6NayStB2BrZ7CWQm7ub1ytCj9HOMdKCsoSGp9OlfOsXok3lbl5MuW+tE+sgTGnTRankITQmFIzanrcK+rf+4hH/1HpCSe7Vyy+D+M5kEHVdSknf/i7wm5BoYIGq46qB5LjT1NLZI2Qh6Hc24WaHNc6UDQaWadEhSCekLJFf181FBNq2mnHA9iKsT3GO3UnlwiRICa0UEMjSTJ7I1cJ7IIsrTZaNaG09SbcrmaNcLsq67pTcsSVZG1Z0V3gRixrKg4ghoiTb5glZ2OFCBATfcVRHY/avqppf/4P3p3qWdgmntEutFqYYhoiz0GCWSr1ishIXtjftSe41OGk+PfxPrURMALdtxicouv9rSEmQprQ2nyu9ch0s/VPlTgn9+9M2Jpk/s+1KVrtGWrqrIDW10zbxF16cszHzlzxdbMrzwchqJhoir2RVk0KLXgiUA9rpgjju/firHhiotPzvudxVAQXBx3n85kYp9HLlZIp1M/TyT1BF85ns6fZtkwQoXqfc2+PmZJRUVNMg9HgP7JksSvyppRYVwOnpW72vIoxHfK2+vx1Knkzapl0EGrXePheuyBU36ObNq8+dibC7o3aadOg5GyiQeadbOtGkDjAU6cKN99n7d/VQF4wL9l+H/Q57dZCKNQY0ew+rqXs950c/H1bdCBVacHFnDos65XEZudgVXIDqZZYKGPP2OMEF5ALLqwzT3bt5sV+rPv3Bxe+cppzBwFRoTXrx103A84x+jMbApP7Gk9lHkAyxmR2YezUa3qo5fFHGHtcX1e8uuznXr1X3s7del2PFdMu+BhD9NYBj5E8qTTaGXwGR0TSMME/v08U30CcmWNnZPeRUcdtXTGxr+9b3RygFSsI7VRLmwNTj7fXlilwOTW2axmMhZ57mxah5WDAw3KBDLvuABLUafK2p6YI82RtgdZW4H7LkxDiRIwm9Nd08KXIpfr19LJTMMu8EBOxWYtM08a2GeA0Wyzvaw+BEb2KuTIYsDXrnFIjiimXn84ndFuNXt6qHSd22rlddpsh2xP74hQczNbqe4fu99FIeAdBA8yTKfAXr5CJ83lFezsNIzliRArbG3tPqPXzW2xhjBUTjJ3SxDThMYvd67VWRK0nuNboMUBAWnMG0i4q25N2Fi8IvU1wxDsh+efaotx1ipJYJVfFigm1YSrUfW31haE6wxW1wsPS2VraqC04adiDogAANUFJREFU3dqesSjJBT0LfY+xObcquzpDr6q1AsTURXWFnBt/emw8rUJuiVP6SGmFtdyY00LVwrW6D7W3qI52FUlMYtoB88PCmgMvtxu13PZCzL8zvhnYTu7x9kXQ5f8IPWjqYG9ERP6+HkD5BZHxliPA9d/vjV1iDzxN0Zr7sz5uGIHBLe9VX+i9Jn0j9Bv1bbnTFkERa/71Ewh7DPXuvZ7xPVQ2dur6fv6h+Ymg49z699nnpIP9HUKaXPghEHel6VFpeDdXb8aOyy1w783VhwsV371ZlOOL+4JzCKr3b26n2jezdjj1nkEbtFHFaOEOxBexzVOk7XTQEbnvKrcWc1asR0THiYw+R88K02OfvgD0M9QO6N9+h9YSXYCruvZNUJMgt0Wk9yHouHdMuTXsyYkBVDxgF8YN0hda+z2/fm8n8LscPWCtZvzp1ELsGXBefH+WtQOjnlBCkbBL2ZdmFdFacXEIu2tLFyRz4IBAxgCfCC7apC5E0YObhhIdzCa6oEhMalXXuquD9qtvStmW4VZlf85kb1Lv8vi1iNtIJJIENCo1ndhKpWmn8RqoLWsmV2HLgcfHhZcn+Ot/q7xezT5AJDLNZ6bJKFNRhBgEbWaxMqWFtJwJMfLy/OjLQiDn1fqOt435ciZNyefH7+mufIxwOZ0B4eX52SiAKRl116njZoFRyWUzOn5KxDRbtlqEvF2ppZiYRjMVSIlGYQshcL3dBqgwlebIdDq7xUImhm674gJUgimp+o3fqcCtWIWnAw4JHnCX7EnFRIgnJE5onMhqYhFFra1BmzDFYEFoza4iK0wiRCYPyKr7lDooPTR/NzXhiT5qLh2FGaURu15N7Bjrb9dRjfKMlVWCeuIgCJKS9Vt9x6ODzf4slLLx+fNfDdiGMIDtNE2cTqfRP/n6YsI+Wyl7b1Xqya5GSg+2Lgah5Waqy0HG8+GfDmAiQUE4nReW+cQ8L6QYTfBlXXl5eXL/3OcBWHO+sSwzP/zwiS1vBDGP1JfnR34rv473mfhPtymKrOtKFwQylWWzCIre+zlNsyWlowWeCl65tvPdWh5B4+vr6wBdwWOK8+VhgO2nx88W1IbI9fWFdb2irfe4G/AtxXrC5mm2iuMhcRK7uJQnclSVdevqwC50U4prkyRaazw//TamtvfVpRQ5LTPTPHM6XUYlaV1Xo357Iqi1wrrmvQ92Ng/XWourEkfmeXYg2ti2z+YnG9PePyvi7DEDAR8+BCRBKco0Le73LW7btCtuW8XYKtqbV6dDCFzOHyyYrpW8bZg698I8LzDNnlCw9X/brArYBc/sOvRYyiytulVcT2jjgLgn2lqzZxnw+oAyef/g9z6W5KBJhdM5MkeARpwm5tOC1EBab1BWPpxOxMmSKksKJhYmQp0i2hKTGNigKhoDBCXOE9LMUG2aApwEacLjzeK3koXz+cL5nGg6IZoRMtN8Jk2eNJRIF0U1akJl2zISgt/vE6KFbc3MJ7fr0UaMiWWeuLRluBaYzkciBmhS2NqN29rYNisa5GZAfEqRy2VhUrXiGZZUvpxOLDESqWxhBp0gJVTSSIaFYMwLhl8tY6/99BAJr5DXTMlWgJkW7ysOgjRr67AeV6um2lZhnx8wnZbWTItnStZaNMVA6v3wwdqJ1muhhI0SApIXaweKvVBmsX9nqKoUQmzME+ZGQuB0Eua0a/m0VslroaWztceRSGL7rgjkslHWipyguYVe15mphyTlJLMlmrQQxLRTXq6VSOAyTXw8LRYwh40QMiko58msn0QCTW+UapTpyMZpFn65QAmRtQQ+XwvIxGk5M8ULuT5zyyv/8OEPIIG4XYDqsYZrMgXhYb5wOS18OM9kmbiumc/6zNputHb9pufpm4FtrxaO7OLhZ8oB8B2BmB7f2DOY7MCWw89k/3v/HDkUZEcjqsmU+2eNEgl7tUOw9U3hYFeyn2UPvvvxepwcRnbrLVpsHdD2wFk6PQt6cmcUj999rS++/yFrJe/eewRsAIPRfZjpcQ7sYAoHgBwX8OM/x/veTffx45UhFHSs28rx98d/vz2cnZd/H6+siIhVwvp3Vp8jenbs3Xc/AlX/nd7+CDquUQeuRwCpiIs2yTip/vb+79b2y3EMV/XNp3pipCdY+iz1a/NmPr98EPT9C9/pGGqV7ACzuiCW1VfDmxkxefudOt+HorRDNkHaDlr1eAFgVE1HpdYKG05XdvXwanTCFHsGz7O+zSmD7t3W9kwL4NUqYVD9/Fvan8YQYjMlVlOV6zS/FBLZAU6p1stjthvCusLtBi8vcL2K9bSoZS+jW/Voq+TtZveVq/5Gr65UlFIKOZsvZfdgRJUwTRA7XdoqmiEkNu+9C26NIcDlwwenBQdK2cBp3vRKTbaKlmgz8YVa0VqMYloq0tQsVUQGYCi12Pqi6gEq4EGrxGSCGa2CV3C73Q/0/r/25vr2+2oEpGI9TSl6tj5Zn2ElUJoJDpU+L+igw5WyjeparZXkKtPV1bVVzfLLTkR7V4zblniyI/R2DGemAFV6YsaqOKhLp/dbBSzhIGK9a9UpW9/x+Of/8X8yoOaJiZQSD5ePzpQwW5QYA8s8k6KLgtSCzI2UJublTGdGWK+n0cq6i0GMQsCazY69TeZR7G0KmokRajURs17NNUAamCYDgB8/fCTnjVwy59lUvCfv5+w9vOt6o+TM7fZKzhtb3sj+PIh0KqGMlak1cbBuALIrQRs42lewWttI5B37Vgfjx+/Zdd3o/rfX2837zBM5F2MJuTooUkGupDRRZ7eXCoFcTGG61kpsZgPUUq90QEoLItafll11uzUXuLJTNRotOijhaZqGT+5QFxZTLYfJKeOJLlLT5yo6YO3Pe++FDn5vQ3N3gkM/b4imhI7RqTtLI4Y01KT3aK9Tvp0FF91Gxqv0toZZr3YMpsTenAKpbnXU91RtSq3buB7juvRsK2r9kb4WTYb62NZ1sGFitORA3jIpmmha9LLlMX75Xscffv7IVqy157SYAM8ihRS7KrlZXebc6AqVplwfCARiNhVcUy7OlNzIa2Wa+vMVPXlrdOSqylrMtiaFiXk+A9aHv2W75ikEur966GJSAbr/qlFPC03tvOY5UasQX823vdbKBqwlMJXAvJxQsktPWW9qrhCbEJuYLocChCHwV2kj5l+WmRBNKE80gZpfay2mMtw8oasCJRd3y0iYFamtayoeh5ipuYm/qrjYqCVYRQJFnV8m4rCwEXVXD4fiMY2a5VfCqtzSW5HYY1U86atKcjvAo/J31xSxFpxe2d4xRowKUq0CrZPFWmL95gRhYoa62p7qLMfSIF8t4Z2SWfCY/qR6T6y3eQX8Oja0WetAD9ZVC0Jvv4CUhA+XwJyMaVaboiEiycT/ltS4TI3Pm1CzWrEzJO/HV87LmZQiD6eP1NbYSvHPVy7LTGoz2ddiUeUcE4t8gJDZtt+QYHou3zK+Gdgeq6zvwY9FmztweBNbwhcA92sLzah4dUDbf6WDiN7m8R4s+mvW43aItfymioFRaevAIziPWHtV6pD965QD8JtTQDw4Guf9Dti++a7+z0Nh8s3r4yvpATgd5rN//2PMuE/fPvNfX6yPE/729X7t3l62d9fwa0MO1OaBJ/pMykCY4l7F/T6xR/UwOcoOfg/fZZyxi9cceNWHf7+7377yneVw7IGpDtizA+H38/Z3FRPlK7N5QMpyeMNbnP79b6J9WDBk1bOqbRcq68Jj9P60vaI9AhnpiZcdwWpPBPmx38/tvsjbn6pGRW2+2Es1SvheFLJ7JAQh6K5+iu4bh4ww6+292a+DqtF1VXrvmAVsUUwYIgz/VqPR1VIopVIKbKvw+gqvr7CtgabRv38bNL1aCuvVqoUhRFJ8sI1umthyZsvZe++cQtcMPMU0Q7DzElVCSkzLicoNCcFoh8WqjefTYomnpuYb7BPU3Ay+lYK4J0ltHdjW0TspmAKqhEDO2QVVypjETinUZoGMMCESzStSBIlp8L8URo97IO4L4NikA3hQkFJkSsmCs2gZ7EL34quUnMdzbf6T1u9JtyZrzWnRkZZXunqyhF21u1WTsOpBNqgpXvs9iCvaEv1exmhTrd81su82tZmwSkrJ3/P31pzvY/zxj//svZWZnDdijHx4+MS6rWzbyvX6Yq0Vs/WQGt2sEgJWCTxf6D7W19dXey7pNG2355g6ONkraSkZe6u1ynp7QdVEY0JIfrxGiPa+5WRVwlaV6/WFbduIP/409tDT6eyJoHlYdfz2+CvX6wvX6ytPT49DiCh1/93eTys4gItDCGv0dkoXRisjaWKUWAN/3VbHrr+LKnnV0EDu6qBuB6A516FwaorJhVoaKRmNe9gYKUQtxGhgo/e3TtNk91+DtWavPprHcK+Ylpq9ar4Lcw2RpVYZ+52Y5kj0SvVQDG+d5h3ce1jI2QB7jKaQ3GKgtjL2xOrn3NRFLdE9eYVyFOuy9QG6GnVfkkM0AbOJ2Y8rXi2XUY1ptbBu61gHR7JUjd3R/DrlnP1a9YBFOZ8fvHc8mQq8dGBrFVy7ppVtW5HZ7eCijJax7338/OMDr6sSrpV5gRQaixp4FTlSYBtxdtG+YD7KQYJV2msAiU6/tkRM0kCQiZQE00yp5HKltspWG42EhIlpPgEmOpVrsQp/mlC9GiW227iJJdI6sI2x0Eoj5+IMInOoMMZrJQNbKaxFeDifUQkufBjRFshVmKvQkit2K57wsOi0qMUZ5tM9EYP33TJBM+Xh6gK0nakEuJ+2GKh1bR2RPW4tzTxexZ0CYjSwNkebz7YdW5t0/xPE7YB2XZoQhZCUmOSgsbGXQtR1b1ozgB2HO4Hd3SGEoRsx+rLwLTWAhF7ZrZ6Y2HULIDDJTG0brSqleJ9uE27bam0oaTZs5IJdMUTSFCFvlgAUO751CVjbmbWIZILHhdaiYeA2eGK5NEwQK84kzLXklCr6GqnFtFVCNM2CEOE8nXiQj8zxxFayg3hPvKRE0pnCxJav0JRFIhJ/oMhGyYW0YNoe3zC+GdimuAcCHWrZ9TWKpom74GD/8OG+eGoHA29ALm/e1xfKN+HEsMI5AuJD3+qxmhj2fG4IvUdsh296OKSdt/f9+WfE96ugn25wcZdBUR4fvd+Ahy/5xei/d8w17N+xz6l4Zkze/twf9P0FYac2HybOg7PwfgYFRim5n9/IhB7eK/tbjkPe/Ze8g5j9dhBc5+XNd9wpu2+Q4rthgWfYD/SVcewvFk8qvZnuQ5X9a3vZXtzWd6/3476vzsi7W3X/vWEDIl/+7PcwtpJp3t9Y1W15VCndcEUtU1rV6Cn95/uzbyC2He4fwfoj36cu7J4M/uzLqNz2KgpuNVPtVUQDc1Tvs9S34sgH4SptO3B+A2y9B7ipukCV+KU1gYMYV6M5h+jiY0ZnzMVA6OtaWNfKy3Pg+jpxfZnI14lSLKMapgXRRsmVppvRgrJ7L4ZE3iariAI524JcnFobvJJigKuwvVZE4Hx5oJZGbTdqMQEG68sxNcUYAmXLuz9fzZS8ekVRIFglS+h9zRY4Rs/qhsmarfQwkwAl9+poNIVjD0Jt3WvUsqHNqrUDTLZiAhYhUjdTZI0xUDdTukjRADHglMuZ05yoMplfudMSay1UrW7TobSye4R2mk5t3QDIko2i1jfXSle27RUEhVqRaBu+zZHZpqRp9oB+NuBcCxvFobAY4yD4HOadqtqrSt/zOF8+8fL8xOvrIyJGE//46Sduf/kTt3Vj2zIx3Dy7b9Yuy3yilIZI5nT2eUXoHq3DW1XieNwtsVVB7PnuvaEvL888Pn4m59UUNaNRlv/2618QCSzzQppmZx8kE1lZFkqpPD098vnzXwElxsTl8oE//PwLy+nEx/YDtWRenn9D1UDOuhau7i9ZWzG132kizEbpvd2uhGggMIQw9s0glrCozmDwrDA5W4UwxL0XvtudGFBII3Btan1wJmbpbIPy6jHJs+1DzrLoKsSTJFqzc2/9HncQ1nye+1ppwNbsl1anD+8iVhOn5eRMCLzKfay0VgOjHnytq7U6VBdQE3pPc6/kWuUzHfr6LfHh89bMemg+n4cq+jEXPITyRMmbWUwFryCLGDipXkUNmJXblCIpnrxtolgfZl5HQaHPR0qReTrRFm8jC9a7rIpT5U1VutQbqsrr63UkLFp7IufM7XbzynQcFf7fw4inC5cJphOczwHyyvrrjZqVTeBWlRaEaXEa/iRWrZuS772wuXf5KSVOSyDEiTKJtfh0C5sQEJ3N8moCaqCFidwgYK1JplRrWgU1N0vQ4J7yrdHIiN4Ao6iiiVYja1Zam/j0ww88Pj2x5Q1dJm7ZKonpshCj9aIOvZRm1VZtWCK4NEuwsMeP3SWgFGVeAg9zJLaMslFKZtsmikZkMQeCZZq46RVRq7bN84RZwbsobIDnVbmVRq6N5SwkB0y1rChKzRuEiMTIIpEpwcfLzGtdKa2Si7IV2DJMiyVWUgicFmuHuGXrkRUCaU5oidQizCLMITAFITenOodElBllNteEavvSWswTd9bmcyRoLYhO1qPu2oFpxGuFtRVL1IWEbtnjp3ngsqhWJECF19XE5pYlkEsGDSSUp82S3/Np4jxHTqfk2KSxTEppmdKU1T2VW1VCsuf4ukHB2FCnByEl86t/OC0WBWrhLy//F0+3K39+fuXT+cQyCYs+83gtPL02JJxI7QdqjVT9la3dSEmoxYD7t4z/EBXZ/uH/t2OpUTHtJZk3i8l47QCavrbWdPGOkUHv2Y7+GWF8dOfMSv+F/u4jTpPDWUi32NhPqvcQhv2gO/h5Czu/MgcDqo3jvDkH/+lQhO7emocj9rk4Toke5lgPPxy0af9FwZrve2B//GbCu/k/Hq/PT5/jUVZ+n284AJZxgm9BzLvDGyCXwxypvn2f9DnZx/G7j9tVvvaOccnfvOV99fXf3sTeAf7DJ/jV/8qx9p9YpUj2zz0kAg630O9ilFqGsNMOHqDf+Y22V7fGPXaorkv/sz97o71czKO6D8v2wW5ctfdt96prz9s0B6sGLJQWel9+F0A4vr/3s/mLHoV3UTYTr3KKs4Co0V17H2ds2Smx26Agb7WRs7DlyPUaua0TOS+o00VMgGP3S+x+nkaZdtVSV+zoVNuSrYIqZpwH9Ptnv3FCiO7VlxGvIIuaHQOCV5HzsD1o1agpIXZqZmdVOHUM27138aMObA/Pk/qaqpaJBqsAIDIUjkdQK9AFqJpXnMddoc3FLNqo7CsuL+AA1ZKHlh0XFwiiH8uvl/pCb7/j7oSdDtkOwlSq3qfde0z2a25D9j1hANO+SYXD7/nLPXjSzjjhcGN+30Hxut5Yt3X4voYQeXl9MZEXEev/lkAulZhObhcz74wlGLTPnLNXCGfzN41GW+19jp163teB3mtrVdHGbb15r6sMdeHg3oahBkIow1vXqJET5/PFe+ZhXa98/vwrKSW2beXp6ZHr9XX0h3fmgbAnuHsipINxG/2+8jGSumAX/KA07uuHLedW/bceXeFyuQDCdruZAmsIXB5O5JxZ19tgOcC7WKO3G9BAu7JqoXsEd42ADhBRKEUGsFVvVeDwXfXwb1sj7bmpPYE1xG1wII5br3Sl8l5ldep2iizLyUG8+db3Rbn4NE0yjyp4P/8QzELHklmR5lZH+/Pi+ia2FBlDoBhTJvh7g+xqzkfVcRlrGM4I8NrRmzXAr+2gZTPAt6q/BmzbaucSootVfd/PMYAEE/2bBaakVhWcklfJba+tquYUURRJldZsD4gCqmWEc6qWfD9NgWv0e7s1X+f7Gu3VXbXKmyVu9jVU1VwLLEYwdlVTRpuCXY/mDCCz78lboal5mqYUneHkFONiolLT1EhpF+IE8dYkEzay9pG6F8ekO5zYfwfBKcNG++otBlUbc18LnLqPOOsnmjq00Oh+0Lt3b3BND0vmNu33mlVGEavkahCmaA4rUcQqybqz2sAKY5Y4Ul/zOrMzGmU6q6nxizL3vbMLO9oD6vtkt2+zBPEukMVoCbLQwaqro5NWdA9IbRmznbRmOrMN3QU7q7eDGdPO1vMQjTGXK6gn/FKKUFfbY8Qd4rUNUd7+GDcVs+0TgWCVYJWM6koun4lBEGms5TO3snLLmRQKrQWCFHIrFK0s8QEF1qEmfWMS22fKNyabvx3YhneLg8cK6hfka+8ZFdoeCPbyfMcMR0TYqd0eXPTa6w5mDoBwvDh+eNhYvoYu9O3aJv38ZT9P/9yvBfIy1NXeVo2RHRjrOMexU4KYum6/EftUjXj+TQC1g4QBM0bgfqA96/59RLAFffzeQUSJfQ779zkOQb3ZYA8S9tl6O1VfjgOK8+B39Awc5ubN0C9/Ww7fOfRZGvP5JdQ+/sd+PeWLY78fbzrAPYjfv26/Pl9y94/0RvUJ38HtAeQfZWB/B+NWTODI6MBONztcu6J10In3O6v3PPUNp187E+cSoGJgrAcY+6yH4WEL0CluqBLciByMrtjCAUBVW0SrundmV+A+AFvtzfS6JyBMZIQBskxt2QRItrjacxmF0ipb2djKxpoLa1ZuW+K6Bp6ehJwXcrnY3RGU2DJNCzjo6+tWDNMQ6AnzjA5gmynbapRWf06t/8+el4apgKY0UdcbZbuxnD9YZdcBOarkdR0U4m1bCUDEPWFF2ErGTW8tWBDrb5No1LLWlBZ2Ma1ehQruIddaM+ju5uylbGhVTqfTsJSpxTb8Vsobdb2mriDt9EKtFsR2wYLaIBdlXqL3KVnWvKEG+MXpgv28nT5p1Xyrshm9GavW1kqc0zj+SDT0XRsLaCsZbWVs6M2z985JG/SSgCm3as1v1y/kyz3vOxufP//Ktt5Y11e6AE9pbShbXz58pOTMthU+fFyY5hOn08UEk4I9S9krmbf1xul0Zp5PLMtlAMUOKs2f1St/DmrN7zbSqvK3Xz8PIZ9pSqC9Z87WGrRxOp1RXZjnMx8+fOByORsovl7585//xK9//TObiwzlvFo/ed/rAkZpC5HENOagVxqnabKkjwPIDuQMdMp4r52L/7KzFfoxynYDtd7Un3/6mRAif/v1L+a3S+OXX/7A9Xrl8VFcqdmerRg6uOprUjkIvTTaoB23Ub0NUxyn0poBCfU+xk63TdPkPbaztzkkB6ymXNp6+07r1jwRa4W2vv683cjbNpSrw+jbNbrwPM0QoylYu+hUDa4gfDpzOi3EmHh+fj5834+cTierSic791x231nzlBZoZulkjJbC6bR47zVs28a2bczLyarlPWj3PWaKJvqzbjdU67AxG1uPr/XWe9zVgQO325WcV56eruTs1eTw++ixtSqcIkmZQiEkYb6c6ZaXGswe7XorbJvSJFKK2n0SItotlcSA4hwDS4oUGBZz3am81kbVSCNRakGKsm3FFPpHEtB29toatZmFjgk1mkikYhT2261QslJK5PaaUSKnM0zzREhC2arRhXPl+pppixIu1ge6qxebuGNr2DpTK6j1DhOjr/dC1UqKwpQCp8mS1PVWyKVStHLyKn1PzCn4Wjc5hbaQQiRoYi4ztQZyiub7GkCptJZNoFEwFk8w+0NRs4ecg5BDYIURW1ii2Xq6UzTabWImlkJslVIitcJtVSYHZmc1xljTTslXw9EhIdEVld1isfuRmwvCrhuB979q20hSITSLYj1GmkNEaLRtxb1I/bph3vHNVdK9fURESZPRunMVWkgET3RWvTkCaqhaC9GUApME1H2Tm/oxRdGgZAqqV7Rlnm9PTJOQJrjmF6658ppB2yvbJsSwUFpFg7JMJyQKT+WJM1fQzEmUtVVXbf/3xzcDWzMi19FDMnBNcCAaeqC7Zxs7WOyrkufG3wEAX9QG2Hzzk3dDHBju1U/ZD3H4x6HSpF0Njf1cJIzzG+Dbz10O59tfHe9uA8KOCZAvgLT/zOclyPufH6ekV6981uRYJ+xzIQMQh/6DHe8i0vsRPKjr14W9llO9HqrHyfX7YxRYd7Tp8zZmdL8mHXS++0ryZr44qEHv37Y/uzLO73ivwHtBqfdV6B2H6qgYvvmhV7i6QJWyv2dcfwfcR9A1INibL7V/92MV/R2mO56svf47AbabC/aoJ0lMzCDaxuZZQIeyyJsbzt6vxg1iJ6ZbBq96PkNVh0ereZr25MHIcPm90Knq1sYg/uxaEChDPMI218YBD4/DVPq92oUP9g3HAM9O+avayHUzEaGtA9vMy+vK7Vp5fgrcrjO3NfH6AnlTSn51kaJGqYW8bl7RZGw483IyxeKUkJQQNWXeECIhzYj0rHFXq7WT7HTEXDMS4DTPnB8+GBAr2TY5QNQEeLS5Mrtnda33STCDeFOBlTjtQWIxJfkUI0XVbRtkVDxDTGbn5HYYEoLTtQIyCRqseiqI0ZZbNWse5S17RRTNxb+TVa7DsPWx3mTTZQrEeUavzwaQm6k0I5GQcDpotHbeWqB0Zo3Ti12Vt9RCaJYZl2T3rR4YJSlOzFNALjPXrVo/YevVZwXxLH+FabmACurnB11ITb58zr+z8fL8NKppKVklToA5zaRp5nw+s60b67ry8PCRZVm4XC6D/p1zHomVX/7hH63XdZrZNutnLiXT6zgW/MWDVZg9a6fz2VgK0e6dnuBA3Ic1WvW95o2Xl1deXl754ZMyLwvL6UzqFkVT5Hb7iVIKIQjburJuN1ppzrToargdoBpoPV8+jN7L2ntc+/6vlkTLObNtqwGtagFxkGg9mAS6FVetjZQC5/MZwBWFr+Ttxrat/OXP/wpAFOUP//APiERKqTw+fuZ2uw3wZ3+66FXgfH4gxrOJG+XNBd7KoMv+/PMfOJ0ufPj4kW29uVqyCT7FlFjXFQjM08T5fEYQtu022C2Pj79Ri72/VvOaLtuGiDDPM5eHy6F/1davbdtY5jMxzqCNLRut8+OHT4AlB7d1I8RqVVhnmyynkylCe9W1K1ObSrVT1Yd6towk5M3FuNb1xu12Zd1WluXkQMR7jENinhenfptGwLau3NYr82xg+nQ6k4sppz89PZmHcC2czx8Ao3WnNFFK4fnlhWlYjH3fYzfD6fZN5v8dUjABP4nMy8LloVDDhkZhzZXSEjEGTssJdc2DUjxWdXYLYLRXt81qdUUrBCbbwxVKa6zVVL/PJ6/Et8a62t60brBEU8ae5hNFDRwj2avmAdHGelv5/PmvfPrpA8v5QgiFzAa68fp6RVFOF0XCNGLV0hpahG31inRtTExe4cOBLhCcudOCe8S74napFIwSP8WJOjdinF252zQYCJE4B2IwW8iQG5KCve7iZlozSqELz9mOae0/NGWSwpyU3GDaolvhWFwzxch5MR0LRNEgpDnRUG7XTC2Qs/LazMc3JiGZ7AaSsfmUikwT5mprtdjRzDfiXd/nNNPKRlVlu61MWkiinKcJsD33+XWzkCg0E1FT0BAoqmhpox+4t/UGy5ijASrClu2ca2loFTsGYbQNfZgjUie0znx+Xskot1QhGABuLRMnYZrUKrI01lzZFPOwz5CboFX59ddHiIGQEpfF9vbH6zM1CZpBZGWKQmP+pufpP1axVXsE0UM9zZFPBw87xtkzpTBefPea+oMlEHp5/Q2M+dqZfPVoA6A54hvn09P58gZGOYiUQffTHljLDoz628P4Nop5XukOmr44v3fAd+fyvn3L+EsPk9YR0nGWehP7EVAdYGE/j/GrTqnzubXspvoxB3oYdKEBBO2reRX4LXjrVKuRTvgalvefaf+scHxdRjDfv+4BQ7+ZkzdT8u4jjtfkDTp1L9YBnI+0wgHWxtR+5Zr1Cfl7X+u4sHx5uQ7I+evH/s5GbTsADH6/x7DbnzQ6He7dRen/efSHO0xMB8p9ffCX/e/9pu+00/5jGcfq/9cDU1d87XQdP4f3903/2P34/b93gpt6gFVbhSqEmimtkWshb5V1Va6vgder+dbmDUr2fk4PkLuqstEFrX9m+NhG+/dQ8+zo2wGBZVzDALPWTtB75TarHCWnzqllZY1FuVeCwMUrXHCh9S8uXvHxda3Pfqdv9iSGHuZeQvD+SpBQGWyUpp6sPKxADmQ6/UzZlc+P1wUY1UJTcbXPNLEwFwgLjDka1imh+4JaT1OrzfeUvk6zr1ueRLHeaSHF4FuSgy2BKUVO08xpEv7lz5/JrY1+q2OlX1VJh3tVfJ9oYy/4vp9mA6AGLkKIhHGf4PdX8ISKVTE6DRicSlz6vmL9nILZ5ORtG5RZe4wEjdEEedydYBdOiQOctGD9pGU8a+pKy5X1tu59rRI55UxtjWVZUFViSszziZSqVxYjMUXrZW/qlb88AFN01fAOimK08ydawqmvH7WWcY45Z0o1sBRCMMojaj24TovvIkv90vcKUFc0F/Be+f6Z3XdVoduFNbME6zZF59OFaZ6ptXK9wupzG2NkWWY+PHzg4eEjP/z0sylCb9YfHfwZzZtRzVNKLMvJK586nufr9YXaunXQZGJtgz0GyzyzbivX19dxDYZ6c2xfiDb1f6/rOvysbZ3wypGLbTVniPTKdat2beyaN3pqfazjfg1rdbGq4R2+7wedeQDK7frC9fbK9frKNK1M00wp1dS188bj429e2c/U2j2Ck1FhY7ckwbz+vvMhY6XugYVafBb7Oh2IU2JeZlJtiIst1TrRkpBiMgGkKOA9mqUHctKdCPq6Z6C5W+CA269VC6DOIuPeKsUs+UppJFFSs7OFZAnbYNfYngmLP/OWfX1PxCTo1NznfGUXJPOkrdvcGcPWNTgscHfK7J4gMUG4sN9v/Y/u95HtIwlkL8SZE4PvaRJRqairk5sNTk/fm45ABwVKpak5BQRVUmik4PRb8fNtFjgHCczJkvg9ZhHp4l9xxKDFBbJMhEoG47M1NbVo12lsI7DvsQuHmNfaEbRZAqzkQgpm9xO9iTiolRY6e25YVcogJROD+SALwVsJBQ6Sia363l3F0K52fGD9vmHskTvW6zGJ+jwg1XUMGrVltpqpLXm7Wm89UrZtZVompmD9zIBbNAZX7N8IAdI3QtZvB7aTbWojiDxUuI7/6pB3BLzKm6qmBVDHX3LKl1PD7PgyjrcHzscg+wD85O1PRmA7wGEXwdDxs2Mlb4jTqG0CbwDkAbD5oUwhuTkgPvzsGAJ9BSN9dfRK6w4z9mD/7ft0vH//NPnyux+je/+93XpFLZukHXjuWW874pi4fxecvfmuf/dn7fBCMFXr928+HqRPevfv6FHx4cgddtl1+xL9dvGy/rnjgcYv85cT+83f9d+9pPItb/o+Rl+6OqCdQmB2VUtFrarpkk4yln/c+B46E2BXo/2yoV/HZfRsw1gt1ds5hN4fZ9dBIXTlQaDft+4PpO5rZ72bOCWKEQN0M3aO9wBvL0lDya1SUWoO5ueYC9db5flF+MtfAk+PlXWtaLUNKYZEmkw8QbYVTUaXnlKyzdGkBO07C+R1tXMFoy1rI6WLnVRrSFMDG/M8zjdGs+2IMZKvt1EFmXzTWK8vaCmIwryc6Am5tZg5c5wiRlmDpqaqqtpMddjpihIn21hrdiAzDU/hoLGvkjsFvVVaDUjoKo3+sCjIyCXL6H+LTgkkBA+GA9azZNTtsFWamOhMaXbMeVk8CHEqVIyeWc7Wk52msRqFmAitQgu22wpo6BsjtFIp1XxzLx9+4D/9Dz/xz//0E3/73/8P8qsbuzesYlEyrXriZNocYHvbgQts/B4e5Zfr6wBwpRSmMhGDC7/UwuvtxYMRQeRnTLnXohUB9zVVr84VbrcbLy9PlLyRUuLTDz8exKUMxBSpTNPESF514Zdbv++UbesCS5nb7YV1XXl8/M17PpU/TX8aYPPTpx+Y54WTV0lNdTn4MwAQSCkwzw/my1oKW86cLxeW5US3u7q+vgAG/i6XywgAc974tJw4nc7u37rx/PxIHtZCLwYM68o0RVISUhS30Zn44x//E1s2UP789MS6XllvV54ePzu4Togo0xQJbmXTVYbn+cQPP/7MH//4nzmdzmzbyp/+5f9mW2+cljPn85mPnz7xyy//yIcPn/jx51+GMvjT06Pbd1SePv/VqOXnhfPlwcTQpjQqZcsy8/LyzG+Pf+Of/vifOJ0upBhcvdyuyV/+8t+4Xa8jAVRK5uXlmfV22xNX2nh5ebYq6e3G5bKasvUyczqdWeb5EKb0fl8QItEDZICggRbMeqf72/Z7o1a16vS02zPZXNu9uG43Hh8/8/LywuPj37her9Y3PirQpwGqt+02aOQfP145nU48XD5wOj0wzxdCWnh9fWFb1/+Pn8z/jiGMAkJPloaQSGEGSYQMy2kmJKFObmFVKmVr1BCZ50hp5sfamTdrzYSw0ItHtWzUVoipIqFaNd7thGqFrehgAFZPVOQKocC6KkE3RMXYQyEg4WQgRE348fLB4vhbCUhIqCaW08wkkTlEIDMvFQnZRMJa4HYD1UAjkuaT8WRLgwpVK9utuGWcE2GLkJtw3TZqNf0KQ8XV6efBBRqttaliis05C6X6XqORWwtcq3AtQhRlisocR6kbEGvTKgUmSCLMU2QSE0XDj1+yJ1hDIiwzW9lMXElfEQmkJCzLiW1VYmwgBZL393bqoQSzBfa+fQuPhM4rtnaroxBrdRG7lVxMMC5OlZgUpZKcfl8INNvg8SNhffa2voW0sCxKmoWYkid9s9+QgVoDpdjfUU2B2bQ6Vqoq11yMBdAm5iUxpUBKkAk0beRSsB5pWx/zLbNtmTVDaZEYZ87nhSiNl+uNh4fIx0skzZmoJxb9iVqutlblR9J0YpmWb3qcvp2jcfSO/QqoO9KD90jPI0wd9wo9eHjzXnn7z/3fO41wLwm8+evNJ/P2nW9f9eDX4oC2//AoYCD7y288Ymn7dwmdohb7bHzx2QaoLBDUUd48wFIHexbOuWuoHn9mZz8qYHSgcJCI7YvgKLHam47zYsfTUbXu1GCjZryddD1sWF+H11/HbV97zUKeQ8+qhMP1f/t7X1wrD6K75czb31B6r8BOGX+Hlg8H7B/55hz/LVT+Hx2/h+j3K8O1wB0gmqLlFNPwq90re3b/BMzrreEYVfzJDOLZ1Z4h0vGc9XtRFReCanviwTN/w1pLLbnTPaRHtQH2CqifeRgK5hgVVTq8NpApUhlCRfSMqB2naa8iGMis3qumHVhLNcPxTZjiYmqfLurSwILYUBFpppjo9icxTgbYSrZEkiiUhohVlUp28QZRGrbphCiUraDavCKkbNn9daP5STan87TqFdUQTYCqVyddoGW7bfb91TY51CpCtVhJLobgGVRXIMXbM9To+zF0WGvec/s90NB6eKTEmSxi68fobyYgcafuDsEhrE+6tUCNeyJOPbk2T3N3ETqszZ55R0jp4Kk51l8coCrazJYJ8SDbEy8pwHkSPp0inx4Wamtci+LRg90XwT7T+nyt17J6H2kXHvneH+/oVPgUovuexgEURCBv65iT33771exfBKObh8Dl4QM9gWTV98ZyMhCYYrSe2P5h6s+NWmImOONpmmZOtXrfplfvnDbcWjVgkVd+/vkXtm11iydGZXNZTizLiYeHj2Mvy8X8a7et2+c0Xl9f7fuoMk0Ty3zi08cfhvL4ljaW5TSEjTo99uX5yWjNtxshJus5Xm+mAk2zvvigzHPihx9/PlT8hGkKfPz0s/d9w2+ff+Vvv/6ZP//5XxFpo5Lc6a9P6zqqNEYNT+PZzjnz+vrM5pT+2iqv11du65XXl1cuDx/4p5dXSwa1wq9//csQjNvWG/O8sNxunC8fvdolTGlmmmenBwcenz7z/PTItt5YTidu1xulZKY02XXY1iHstSwJsGq1EAZIn1IHzGKe0s36Ds1eJPCx32cSeH19otgDOJ5Rs58yD+Lb7ZVaTHG+awuAcD5dWNRUklttlLJxOl0QMS/gXDxJgrFHpmkibxuqjVo3fvzxF+Z5IZdCLVZlvlweWJYz58sHPn78RIwTHz5Vblfru/3eR2vZ1v2QaASrTBKhWmUvOkCoKJfz4hoUfZ333ndszQpRqGogsLMNrSppKeoQI1Gj+68GF6YKViFVW0s7pW+ItmKJ4CJmOWe+5A6kEQRfWzzmzaXAVojT5JXJyDQJ82wqwlEqaLd4dCBMRkJkmhOare1Fa2FJwpwCq+8PtTW2WkyULMA8QVWh+zGXAutayLXSpJJzJWcDaN0BpVQoVSg1kENAaEzePkgw4UmtpjfC2eKNWRqJShwVYo91mjiLIvByXcl1JXMjTvOo1uIOD62qWxRZVbfRKLU7VCiTBksSTUKdItJjHqCzlcBF2rTY8WojzCbcV7u4VIDcAo2GFltDazHK+2mamObI7bo6rhAXwOr7nzgNfOfSmTBgtwWLtNZYtXqLijGfYlRCDNAiTZV161TwRowTBKhUJCwmejYn4hRJQBr3IeR6ZStX1udCCLproJT8zSSq/5CPLRyA5zuE8CWohSP98CsHPPzriFZ3ABuOYHq8S9/9urz7+8sxbsD+6wfAOEDi8fu9O+KBKeM/cBrika53+B2lU2HfA7PjDBk669Vska9O0puipWGIIzoMO2XucJJy5FeP8313XH/9q3fKjhr/+8a7xAcwEiNffNTX/j2A0buEhb6/V/7+aeq//5bvP3L9f3U4bUdM5c8osh0cHJIxfov0tRl64qbfcgewM35zf1IHnbG9XRJGEknE6fDqdgQy+vaP5zrWGDEAHMJ+Szmx1x/lner71YSXl5J7YN3VXe1AlVrVZPmjDP/Jcdc5dVaaCb1Ip9DGOPoACbJ/jguj1HxDcEer/lyKVXRbNTCRsykezykSYiKlSM6v7r1rQNAUPgNGxbX5alUp2+bUO7PwwWnD3UaDAWwt+OzXztNdZvEzAI5RkAZ49mu40449IeFACORtxbPzATq49b9bMDGPoZrslE+ae29KV+m1ExOEFHe/2v1K92vpx+1UNSyBgguczFE4z8JlmXhdM7davEdbXbzK7rFWq/cWRT9WDxL/ztr4HY0YTVBonmbv93aquwclza1VmiqvL8/22lC49aqBf8UQEiFGpnlhit1DddoTESPh4ZZAITqAtvsizfNuwTUSFAYcs3s5X6+vbOs6qK5525imxSq2p7Mdq7mHaoOSjfFQamFdV7fNYvixns8Pfi4GnB4ePpoAkvcSqqoLCmVKLkzzTKvVADLNK4ATIo0UIz/99AcHdN2uKvDh4yfOp8vwy83byt9+/fOocDa1vlMQHn31C4d+5G7vZf26BjS7GmpejVL79PjE5fIwFKtbK/zlL38ib9b32u1+cs5+/J5Qi8zzwrTM3NYrImJU5rKhqFdfN87nM6sL0NUu2DbaJtQpiYHkVeDgSrG9r7nWzDTPTHW2z/X2gd6zC3tSKufMbb1yu115fX1xcL4NPQKjzBrob2q2S7fbK03tutZmdPaeJA0Sdv9iFwa7XC58+PADpVbWm/U/W4LkzLJcOJ8/MM8zEFhPt3E9v+dh/sC9xcTU/I/ANkyutquNeZ7QFobgaq1di2BPGCNHtXxfHx3cSghIDIRmPfDj87S/r8ep/j+xfbWpJYN7H7x4uwn+np7OVJRSG9RKbcksZrBkkUlRKKEpzem53Yaot9LEYKKDPVaYorCkwJa78n4zkTy1Z3iKQvAEem1Gn86lkWtFY6OUSq2B2iLBt4uqrvbcXLhKLJkwBJnw3l8PD4JAElcfHqB2F6MTtffUksl1o1KGiGIPh/u+a0rT1kVr38eKzj2h2xXOp+S/dLxP+v7k+68leE13IwTTC3BGMVUDVRUt6vusJyNTZJkSt2vfRbuy876/9zWmg9ue4LA9INAI5CZI3NWXTZexxyhmz1Q9ngxuB2a2kXYPxhRM9A67D8d10Y1cNl5uz0zzRKlmy9Ra+WI+/t4QfVsWu4/7uI/7uI/7uI/7uI/7uI/7uI/7+F2NLz1O7uM+7uM+7uM+7uM+7uM+7uM+7uM+fkfjDmzv4z7u4z7u4z7u4z7u4z7u4z7u43c97sD2Pu7jPu7jPu7jPu7jPu7jPu7jPn7X4w5s7+M+7uM+7uM+7uM+7uM+7uM+7uN3Pe7A9j7u4z7u4z7u4z7u4z7u4z7u4z5+1+MObO/jPu7jPu7jPu7jPu7jPu7jPu7jdz3uwPY+7uM+7uM+7uM+7uM+7uM+7uM+ftfjDmzv4z7u4z7u4z7u4z7u4z7u4z7u43c97sD2Pu7jPu7jPu7jPu7jPu7jPu7jPn7X4/8B1MabVwMRd4QAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["bears = bears.new(item_tfms=Resize(128, ResizeMethod.Squish))\n","dls = bears.dataloaders(path)\n","dls.valid.show_batch(max_n=4, nrows=1)"]},{"cell_type":"code","execution_count":22,"metadata":{"id":"-CTbvcmd1Xsg","outputId":"decd6ace-6bc3-48c2-e9c7-a587875502e8"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA7YAAAD1CAYAAABk3mnHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7BtWVnfD3+eMcacc62997l00w00oGBAoiCiBoMKKBViqhREjLEgaimJigY1wUpiJGWF7uT1l/jTUFHzRiAoWEZMSnMRCBIkXriU1xfFK0kjTTfd9PXc9m2tOecY43n/eMaca58+53SfhkZOH8e3a/fZl7XmmmuuOS7f5/k+30dUVamoqKioqKioqKioqKioeITCfbpPoKKioqKioqKioqKioqLik0ElthUVFRUVFRUVFRUVFRWPaFRiW1FRUVFRUVFRUVFRUfGIRiW2FRUVFRUVFRUVFRUVFY9oVGJbUVFRUVFRUVFRUVFR8YhGJbYVFRUVFRUVFRUVFRUVj2hUYltRUVFRUVFRUVFRUVHxiEYlthUVFRUVFRUVFRUVFRWPaFRiW1FRUVFRUVFRUVFRUfGIRiW2j2C8/OUvR0T46Ec/etnPedKTnsSTnvSkT9k5VVRcbfjoRz+KiPDyl7/8sh7/5je/GRHhzW9+86f0vI7ixhtvRET49V//9b+w16yo+MsCEeH5z3/+p/x16jiuqPjUoo7lqx+V2D7MeKib4IqKioqKioqKioqKiopPDuHTfQIVFRUVFRUVFVcq/uzP/oytra1P92lUVFR8kqhj+epHJbYVFRUVFRUVFZfA53zO53y6T6GiouJhQB3LVz+qFPlhxI033shnfdZnAfAzP/MziMj8dbTe7n/9r//FV3/1V3PdddfRdR1PfvKT+af/9J9y9uzZix733e9+N8973vPY3t7m2muv5SUveQkf+tCHLnkeqsq///f/nqc//eksFgse//jH8z3f8z2cO3fugse+/vWvR0S46aabLnqsu+66i6ZpeMYznnH5F6Ki4irFhz70IV7ykpdw7bXXsr29zXOf+1ze9a53XdZzf+3Xfo1XvOIVPO1pT+P48eMsl0s+7/M+j5tuuon1en3R56SUeN3rXsdznvMcTpw4wXK55ClPeQrf/u3fzs033/ygr3nbbbfx9Kc/nbZt+dmf/dmH9F4rKh6pUFV+7Md+jKc97WkXrIH395k4WhP/zne+k+c///mcOHECEZkfc/+6vF//9V8/b32/2NdUW/f85z//AR/3QPV+Z86cYWtriyc/+cmo6kUf8zVf8zWICL/3e7/3yVyyioorEnUsVzxU1Iztw4jnP//5nD17lh/7sR/jmc98Ji95yUvmv33BF3wBADfddBM33ngj1157LS960Yt49KMfzR/+4R/yoz/6o7zjHe/gN3/zNzl+/Pj8vF/8xV/kpS99KW3b8tKXvpQbbriB973vfXzpl34pn//5n3/R83jVq17Fj//4j3PDDTfwile8gqZp+KVf+iV++7d/m2EYaNt2fuw3fdM38f3f//381E/9FD/4gz+I9/68Y/30T/80MUa+8zu/8+G7UBUVj0DccsstfOmXfinPeMYz+M7v/E7uvPNO/st/+S981Vd9FW95y1t46Utf+oDP/+Ef/mE+9KEP8WVf9mW88IUvZL1e8/73v58bb7yRX//1X+fd7373eeNvGAZe9KIX8Su/8it8xmd8Bt/4jd/I8ePH+ehHP8p//+//nec+97l89md/9iVf74Mf/CBf/dVfzd7eHu94xzv4m3/zbz5s16Ki4krGd3/3d/OTP/mTPO5xj+MVr3gFbdvy1re+ld/5nd9hHEeaprngOb/4i7/IO9/5Tr7qq76K7/qu7+LWW2+95PGf9KQn8ZrXvOaC34/jyGtf+1rW6/Usd3z5y19+0Q3ve9/7Xn71V3/1AWWR11xzDS972ct405vexLvf/W6+8iu/8ry/f+xjH+OXf/mX+Wt/7a/xrGc965LHqah4pKKO5YqHDK14WHHLLbcooN/6rd96wd9+9Vd/VQH90i/9Uj1z5sx5f3vTm96kgL7qVa+af7e3t6fXXnuthhD0d3/3d897/Kte9SoFFNBbbrll/v373/9+BfTJT36ynjp1av79arXSL/mSL1FAn/jEJ553rO/+7u9WQN/2tred9/ucs37WZ32Wbm1t6dmzZx/ahaiouEowjWlA/8k/+Sfn/e13f/d3NYSgJ0+e1HPnzqnqZiy/6U1vOu+xf/7nf6455wuO/4M/+IMK6H/+z//5vN+/+tWvVkC/5mu+Rtfr9Xl/W6/Xes8998w/v+Y1r1FAf+3Xfk1VVX/lV35Fjx8/rjfccIP+wR/8wSf61isqHnF4z3veo4A+9alPPW+d7ften/e8512wBk7jVUT0l3/5ly96TEC/4iu+4kFf+1u/9VsvWMcvhg9+8IN67Ngxve666/TDH/7w/Pv7j2NVm2MA/fqv//oLjjM9/g1veMODnltFxSMNdSxXfCKoxPZhxgMR25e85CUK6B//8R9f9Llf8AVfoNdff/3883/6T/9JAf2Wb/mWCx579uxZPXHixAXE9tu//dsV0J/+6Z++4Dm/9mu/dlFi+8d//McK6Ite9KLzfv/Od75TAf17f+/vPcA7rqi4ujGN6RMnTuju7u4Ff58WwDe/+c2qemlieymcOnXqgnEWY9QTJ07ocrnUO+6440GPcXQR/dmf/VltmkY/93M/V2+99dbLe5MVFVcJvu3bvk0B/Zmf+ZkL/va+973vkpvhl7zkJZc85uVshm+66SYF9Gu/9ms1pXTJx91xxx36hCc8QReLhb7//e8/728X2wyrqj7rWc/SEILeeeed8+9ijPqEJzxBjx07pnt7ew94bhUVj0TUsVzxiaDW2P4F4jd/8zdpmoZf+IVf4MYbb7zgaxgG7r33Xk6dOgXABz7wAQC+4iu+4oJjnThxYpY3H8UDPee5z33uBVJjgKc//el8+Zd/Ob/8y7/Mxz72sfn3b3jDGwD4ru/6rof+ZisqrjJ80Rd9EceOHbvg95M06fd///cf8PkHBwf8P//P/8MXf/EXc+LECZxziAiPetSjALjjjjvmx37oQx/i3LlzfP7nfz6Pe9zjLvscf+zHfoxv+ZZv4dnPfjbvf//7+czP/MzLfm5FxdWAaRw+97nPveBvX/IlX0IIF6/A+ut//a9/wq/5cz/3c7zmNa/hWc96Fm95y1tw7uJbq/39fV70ohdxxx138OY3v5kv+7Ivu6zjv/KVryTGyE//9E/Pv3vHO97B7bffzjd/8zezs7PzCZ97RcWVijqWKz4R1Brbv0CcOnWKGOMljZom7O/v86hHPWo2e3rMYx5z0cc99rGPveB3D/ScEALXXXfdRY/1yle+kve85z288Y1v5KabbuKuu+7irW99K1/wBV/wSU0SFRVXCx5sHF7MnG3COI78jb/xN/id3/kdPu/zPo+XvvSlXH/99XN90E033UTf9/PjJyO5xz/+8Q/pHN/znvegqrzgBS/gmmuueUjPrai4GvBAa6D3fg4k3R8XW08vB7/xG7/B3//7f58nPvGJvP3tb79knV1KiZe+9KX8/u//Pv/6X//rB63JP4qXvexl/ON//I/5j//xP/IDP/ADOOfmwHP1v6i4WlHHcsUngpqx/QvEiRMnuOaaa1CTgF/y64lPfOL8eIC77777ose76667Lvoal3pOjJH77rvvosf623/7b/OYxzyGn/qpnyKlVE2jKiruhwcbh9PYuxh+6Zd+id/5nd/h5S9/OX/0R3/EG97wBn7oh36IG2+88aJj7OTJk8D5WdzLwU/91E/x7Gc/m5tuuol/8S/+xUN6bkXF1YDJfPFi4zWlNCui7o+jzqmXiw996EN83dd9Hcvlkne84x2XDH4BfO/3fi/veMc7+I7v+A5+4Ad+4CG9znK55OUvfzkf/ehHede73jUbzTz72c/mmc985kM+74qKRwLqWK74RFCJ7cOMSeqbUrrgb1/yJV/CmTNn+JM/+ZPLOtYXfdEXARZFuj/OnTvHH/zBHzyk57zvfe+76HkBNE3Dt3/7t3PHHXfwtre9jTe+8Y3s7OzwTd/0TZd1rhUVVzs+8IEPsLe3d8Hvp1YAX/iFX3jJ5374wx8GLIB0f1xsrH7O53wOJ0+e5A//8A/5+Mc/ftnnePLkSX7lV36F5z3vefyrf/Wv+P7v//7Lfm5FxdWAaRy+733vu+Bvv/Vbv0WM8WF5nXvvvZcXvvCF7O/v81//63/laU972iUf+2//7b/lJ3/yJ/lbf+tv8R/+w3/4hF7vH/yDf4CI8PrXv34OQNfAc8XVjDqWKz4RVGL7MOOaa65BRLjtttsu+Nv3fd/3AfAd3/EdF92sHhwc8Fu/9Vvzz1/7tV/LNddcw1ve8pYL+lrdeOONF5U+vvzlLwfgh37ohzh9+vT8+/V6zatf/eoHPPdXvOIVeO/5nu/5Hm655Ra+8Ru/8aI1hRUVfxlx7tw5/uW//Jfn/e73fu/3+Lmf+zlOnDjB133d113yuVOvvYkET/jIRz7CP/tn/+yCx3vveeUrX8lqteK7vuu7zpMpA3M9/sVw7Ngx3vnOd/KCF7yAH/mRH+Ef/aN/dBnvrqLi6sC3fMu3ALYGHl0jh2Hgn//zf/6wvMZ6vebFL34xH/nIR3j961/PC17wgks+9r/9t//G93//9/OMZzyDX/iFX7hkXeCD4bM/+7N5wQtewNvf/nZe97rXcfLkSV72spd9om+houKKRx3LFZ8Iao3tw4ydnR2e/exn8973vpdv+qZv4qlPfSree1784hfzghe8gH/zb/4Nr371q/nsz/5svvqrv5rP+qzPYn9/n1tvvZXf+I3f4LnPfS7vfOc752O94Q1v4KUvfSnPe97zzutj+8d//Md8+Zd/Oe95z3vOe/3nPOc5fO/3fi8/8RM/wed93ufxd/7O35n72F5zzTXccMMNlzz3z/zMz+SFL3whb33rW4Gq96+oOIov//Iv541vfCO//du/zXOe85y5j23Omde//vXn9Z++P77ma76GpzzlKbz2ta/lj/7oj/jCL/xCbrvtNt7+9rfzwhe+8KKBsNe85jX89m//Nm9729t46lOfyote9CKOHTvGxz72Md71rnfxIz/yI3Mg6/7Y2tri7W9/O1//9V/Pj//4j7Ner3nd6173CUm0KioeSfiKr/gKXvGKV/CGN7yBpz/96Xz91389TdPwtre9jRMnTvC4xz3ukoYwl4sf//Ef57d+67f4K3/lr3Drrbdy4403XvCYl7/85TzpSU/im7/5m8k588Vf/MW89rWvveBxT3rSky45ju+PV77ylbz73e/m7rvv5nu/93tZLpef1PuoqLiSUcdyxSeET5sf81WMm2++WV/0ohfptddeqyJyQeuP9773vfoN3/ANesMNN2jTNHrdddfpM5/5TP2+7/u+C/rVqqq+613v0uc85zm6XC715MmT+uIXv1j/7M/+bG4zcrTdj6r1n/2Jn/gJ/ZzP+Rxt21ZvuOEGfeUrX6lnz57VJz7xiRe0+zmK//E//ocC+qxnPethuhoVFY9sHG3h9ad/+qf64he/WE+ePKnL5VK/7Mu+TN/5znee9/hLtfu57bbb9Bu/8Rv1cY97nC4WC33a056mP/zDP6zjOF6yBcE4jvoTP/ET+sVf/MW6vb2tW1tb+pSnPEW/4zu+Q2+++eb5cZdqLdD3vX7d133dfP4P1LqgouJqQUpJX/va1+pf/at/9YI1cGdnR5/5zGfOj72c9lz3H5/TeHugr2ksPtjjLnbc+4/jCTFGve666x6wbWBFxdWEOpYrHipEVfXhp8sVj1TceOON3HTTTbzxjW/k277t2z7dp1NRUVFRUfGw4Oabb+apT30qL3vZy/j5n//5T/fpPGR85CMf4SlPeQrPec5zeO973/vpPp2Kik8b6liuuBRqjW3FjL29PV73utdx7bXX8nf/7t/9dJ9ORUVFRUXFQ8Zdd91Fzvm83x0eHvKqV70K4AHr4a9k/OiP/iiqyvd8z/d8uk+louIvBHUsVzxU1BrbCv7n//yffOADH+Btb3sbd999Nz/6oz96yf5dFRUVFRUVVzL+3b/7d/z8z/88z3/+87nhhhu46667+N//+39z++2381Vf9VV8wzd8w6f7FC8bt912G295y1u4+eabedOb3sQzn/nMR9T5V1R8MqhjueKhohLbCn7hF36Bn/mZn+Exj3kMr371q2f35oqKioqKikcavvIrv5IPfvCDvOtd7+L06dOEEHjqU5/KP/yH/5BXvepVjygTtY985CO8+tWvZmtri6/8yq/kJ3/yJz9pw5yKikcK6liueKioNbYVFRUVFRUVFRUVFRUVj2jUUEFFRUVFRUVFRUVFRUXFIxqV2FZUVFRUVFRUVFRUVFQ8olGJbUVFRUVFRUVFRUVFRcUjGpdtHvVIKdDuuo7HP+EJfPf3/iNe+KKv4frrr/+LL84+WrUsigNEFAEu5yra04WMoJf1jAc41pES6kfKZwiQU+T2227lrW/9Jf6///7fc9999zGO46f7tC4LV3rZ+iPpPqio+HTiSh7LdRxXVFweruRxDHUsV1RcLi5nLFdX5E8hZKaol0doPyXnUCfMioqKioqKioqKioqrHFWK/CmGkdorO1p4RaNeuoqKioqKioqKioqKB0HN2H6KcTRreznQ+/17+c944F9dFuSCbyoqKioqKioqKioqKq54VGL7qcQnwA8V5rrah8JPj1bjbp6fzz8ZLY+YNOoXaKSvHEKrCBnIMl2TioqKioqKioqKioqKi6MS208FxDTeAjz0EteJlF76ifcvnnbk+dFjhjEpu4dCVEgZ+ig4gcYrXhQnEBw0QfFeERGcCMEJwZnR1eZ0Pp1k99NZnVxRUVFRUVFRUVFR8UhBJbYPO/Q8Re8D0bKLZSGPZmwtw3oku8om2aqq9heFjKIKKQsHAxwOcOcZGJMQs3IwCN5BFxQvEDxsNbDslKZRBCO0rYedDoJXvDPjKdG/SJJ7xMH5U/xKFRUVFRUVFRUVFRVXDyqx/SRwMfI1mUU9NGIms9z20s+cGS2qhbQmNeKalLOHwu2n4Zb7HHedE/7gFiEmIWXL2trBrfXQslOecF3mUccD2wsjyU2AroFnPh6u34HHncwsPXiRomLevKtPlHQ+mJx4Y7QlM2mvGuSKioqKioqKioqKigdDJbYPiAtZlVzi36PPmRKbD0JRj5BYOZ/DHflGFbIqMVsm9vQhHKzh3j1YjcLhAHu9cDAIpw8cd5yCM3vC7Xcbsc2ZUmmriIJ30DbCYe/YPiW0jb1628Kig8M1XH8MnnS98MQTyjUL5eRSrRfwUYnyJ0hvZwJfMsGFb3M4QkqgWdlqM41LVGZbUVFRUVFRUVFRUXE5qMQWuBR5ur+F00xD70dcH4ziPRA1y+ou+ihVJav9dojK4QD37gsfuU+4Zw8+fLewu4LdtePcIYzZMWbh1BnlcAUHu0YUc96coANCA84Lp/cF58CJSY4XC1gu4J495brjcOe+I39GJp3IHGuyPU+OvGO5v9vz0atw8XesagR+el+qSlKISTh7COtRySM8+nhmp4toJbUVFRUVFRUVFRUVFZeBSmy5lKRYHxbrovOpmZyXrb0YbUtZyRnOreG+A7hzF269z3PPHvzfO5VTB479tXD6HCSFhOBQnBO8h/09ZVgrcVSyOhT7vVjql7jOiBO0c/ggOG/kd0zKwVo5OIQ7F8Jt9zruPi181qOEr/pc4dod4fjSMrumTpYHuTbTuzv6KNNEpwxDgt013LMn/N+74U/vEg56YbtVnn4DfOZJZTwLe4eFnFeOW1FRUVFRUVFRUVFxCfzlI7ZH9b5y1HdX5++Q8ytdHyq5vT8Hu7/k+OgDFCUlq4NdRWV3BXtruP0M3Lsn3Lkr3HFaOHMAt52Cgx76AQ72i7eUgyaA99CoyXqndyJi8uNN7Wo5FwVNigQxklosnFXt2CkrUYVbgzCOjs84CY89CdcdE244memC0gYj1MrRTG55R6qzuVVWiNkywwCrUTlzIJw5hDvPCXfvCn9+r/DR08I6wnZrRle7K4/sOu7as+dXXltRUVFRUVFRUVFRcSn8JSG298+bni8zdkzy4qPiV524r/0k8FAprh6hlHoRZjbVz65GOBiUu3bhQ3cLt51y/P/+HCOAB8JqgJggjpCzoknJw0RsBb9lxDFnEA++gZQEyVoyteXUnUMKCc2FbAZfiLDY1zgoMcIwKv/3EO445diLjiddD5/5KOXLn6Jcu6WcdBmPZW6n52/et6JZ59ZDe4Nj0RjZvfMcfOhO+D93Of7oY3D20HHmwJHKc5sg3L3r2OqE5tBxx52O1WgEuaKioqKioqKioqKi4mL4S0BsLX95VFZsHPUBO8Ue+S6f9+yNM7C14rnQCOpSRzo/WbyOyplDuP2M8Kd3wt27jlvuhbtPw5k95fS+mquxOsahENqcjSCrkrVIgTNoEpIKmhxDr6RRSWNGk0C2tLQRV7U6V7VjMVqmt932M7t3XpAia3ZeiFj2+NwKbrkH7jojPOEa+OxHK9duwVYLJxfmqNx48E7pRzjohT+71+qCP3ZaaL0jJrjlTuWus8K954R794Qxm6TaN+Ac9FGJCnsrCGvH2ZVUKXJFRUVFRUVFRUVFxQPiqiW250uJj9TLHuktO2UZ759RVYSsxZE3K+LuX086CXuP1Mw+UI9X3dDfXNrv3LcPd56Dm++GP/m4cNc54ZZ7hLPnMocHEJMWmbCSRoyIapq1xlreiDgjtKqQVNFsD5FJlpwt7axYna0WzbEWp2X10CwK4RWruT0qT84YyexH2F0JWc20KiZ4zHHY6YRH7wjHlrDVKFsdVgO8D//3HpMbf/Q+wSPEKNx6p3LuQNhbCYd9+TwctKp4v/lQogNZw7pmaysqKioqKioqKioqHgRXLbGFor4tX5frXFw8lliPRkCHaNnIthFaJ/eT3J7/78UPrHOuF5TVoJxdwds/6LjttPCRe4V79xwHvXB2H1b7yrhOEMtRRY1ka0ZSgmGw7xuPeI/4wJAzPniahaMJDu/s6VmUXM43D4nUp0IkHRI84gW8kVVNUtoCgTONMYJlU2OEodTxHg6eW0/BB27NHNuC7Q4ee1J5wjXw6GPwuY+Fu3bh5nvg1//Mc2pX2NuHfg1xFNa9kBPkZOTY2iMpqQMfILSgEUYHeR/WKyHnixttVVRUVFRUVFRUVFRUwFVKbCfjJFe8h4XzCemEqZfqmGDMSsbqOU/tK3ftmkvv7lo4sXQcWwo3nBQ6rzROCV7xTliE0jJnyuGKzEZJM7ISs3LvAdx8F3z4Hvjdm4Vzazjolb0Dq7MdR0HF4RogZEQtz+xU0SyoU6TpcAJNW96dCM45nJ2EyZAzZBVw07koqDMJcjJdr5bsrRaHYwRzVwbIMKyVJA5x4NtCzbUkVBU73sok1X0S9tfKx88K9+wqZw+Vu8/BfaeF3QPh4ACGdSZGJcVs1924+nwuYxaiE+IKXAAnCT2MDOt00frkioqKioqKioqKioqKCVclsYUj5Fbub2x0/jdZlT7C4QgjcHYFt52GP78Xzh4Kpw881+7ANTvCWmGrgaVX2mBfJxeOIIqXjRlTcEXKWzTAKVum9vYzwh/dAb9/K/zp7ZYZboJyuLK61HEs5x6ckXFlcq1CcyaJxzcO54W2dWRVclZzJRaTS6espAhkq5EV2ZyH1emWNz6xRSnmTyVzaq+FkVDUjuFlJu7ZQyw56DxYZvtwgL2VsGiUO88K60HZO4Rze8LhClYH1oIoxSKnnhypdWPjrNkjYhli8YpIQtaROCQ750puKyoqKioqKioqKiougaub2D7A3xVIWdhdKR8+BTefcty979nrhdMHJkFOpR5295xw2y588ONCikqMZobUNcqjdoSTC9jplOt2MjccVx5/Urh+W3FOSer4P/cIt5xy/PcPCB8/a6ZJB72ShkzsoV+P5KSogvPezJs6Vxi50DQg4tFsxk7OQQhCSoAq3lHMsASKazIqhIUQWiGudeLH+MYjIkhw5Awalf5wnE2pKNlf18jcAkgdqBOTRSdIEfpsp+cEQgOHHrwT7vNKzkJMSj9mxkFZ7Sd0HSEmNI/FzEpRjebU7AMqLeIcXqMZXpGP1EOXeueKioqKioqKioqKioqL4Koltg8ExYjreoS7doWP7wp3nBPu2nUcDrDfTxlf8KWNTlbYX8EwCv0gBJ9pnHB6V9hqlC7AiS3Ho4/BDSfgrz5WaTysI/zeLcIt98Kt98DeIPTRTJmyCNlhdsDm/jQbP23sqiwjK6KoAzSjCZIKKWZyUgiljU/hws5ZBtZ7q1vVYFnYlCwLbMTWnKEsaSrlRS3Dq1h215fTygnIkJ1xTlUzwZLSJDdG8I05KWtjZy0idIsibY7CWoUoDk3BztMJIkXH7Tyua4ywi5S/Zfzo6TvH4ExyXbltRUVFRUVFRUVFRcXF8JeG2B6t08zA4aCcW8Gf3yfcctpx2xnH3buOYYQYM4vSvmYRjNSOCU7vKqtBWPWCF2/y3FSIIUoIcHypXLOjfMXnCl0wkvxrf6jcdq+wuwbfWmsbvBRzK8FlgajWPEgLuS3nanJqc0jOZHK0/jijWj1tTorvmmIEZaR2yraGoAQvSCuIWLWxRozAhkmeDCS3cUIu10qT1cIKQhocaarV3VzRck0VEaFtLXPrXZFjB6E5Lui2srOEU+I5PPCk1Bhx9Q5pN7ZeoS3mUY1lfh2JMDZwb+DwgqLlioqKioqKioqKioqKDf7SEFsAFMYM+xH+4C7h1jPC/7nTcW5tJlFnd5WxSJB1C3IAyXCwhoMezuxCP5gxcUlWlrpWy4iKwBmB2wXuO+1MQuzg9nuV/cNMGsH1ychn68kIqRgoOVFoTBqsKZEPIwSTDK/6bCTaCVLqTUWMHIZGcMEVt2OFxrKuTVvIZoAUIDaC955+lcl5SstaRlU6KVlhIaVyfCdGwoMQ2skga8rm2nuOY3mslznb610h12IuyqET2mMOBZpd5cxZLLIwuUWXGui8Kb0thlaQBssGV1RUVFRUVFRUVFRUPBCuemJ7tDozKfQRTh3Ax/eE288J9xwI/Shm3hSVIQoxCe1Y1MGjsneoHKzg8MAeE8dCBDFSFpNJc+1/9qrihRAEF2DVMxNYLa1uRCxDqyrmDmy81UhdyY5Ox58ZZfFaQo3UUoydEEEcOGfZU+cgFGmwc5RP2V4njq5kmc1cyl6YTT3reX1+Zf7Z/KnsL67Ilicy6tyU/bW631k2XZ7XdcKxHbte614Z+0wcFB0VcZbitXMHzUIub1YjJrWuEuSKioqKioqKioqKigfAXwJiWyS4wGq0ljt/+HH40N3CHeccZw8t2zpnIZPV3nJoRLNfw/6ecniorA+n1jOOtvM4ZxLeIUJKisYR76EJQiKQFdIgqHc0Yv1t8qDkQYlxREXILqAl85kdRpgbO65rBN86Gu8gwzgqMdpjm6U36ltcoZyDpoHQCq7023WFsLpAMUZWOox8jiP4YAS1PzSSnfT8OtYU1doGqcmEfTmO85bF9d7IclZIybKrGqHtQBd2TadM72MeLVx/LbQhcd9dA6d3I+MIrguEY0vaheA8DL2SEmhWXCzfV2JbUVFRUVFRUVFRUfEAuGqJreX8CqlVI7a7PdyzDzff5/j4WcepPTi7axlI52AYrMZ23cPY20GGtdKvlHEorFfNKjgpZMlocQoGZatLdEtPtyX4hRDL89No/WN1GMmjmtw4K+o9BEG1EFm3cT1uGkF8qXtVKb1fi4kUlknWbA7EqiY5dg5yb+eSh9LqyJlU2MyjOEIULXuMFIJaEqPebXrW5lKDOw5KHO0auWCPD4117lGFmIQULUCgeTomtA3FjErxTmk7uOExjkY8rUvc/eFd0sozrhKLRy9g4fEIOWbSOJLGRBzzBZ9tRUVFRUVFRUVFRUXFUVy1xPaIoJapk83hCGfXwp17wul94dw+7O5nQjCjqGGAYdzU0GpWht5qSXM0pidTG9ioKJlUUpbOwfKYstiCxY4jeevzmpOSYiKPGe1jqaFVNMuRtjalb44ymzi54BAxaq7ZyHOeXYwhx/K7mElqEt4QxHh3VuJhxnkjtc47e07eXBrnNlfKe5P/qpp5EwhZgahzSyDFXs8XXbQ4qz/OKuSk5CQzqU1pkl7b1VfsfYUAx4870uDIo+OUDuReSL0j7XgcVntMTOgQyUMkx1RI/af4dqmoqKioqKioqKioeMTiKiW2U2GqmwlRVuX0yqTI9+7CPfcqp88qB3uZxUJYLITdXSVmIQLB2XEUa6NDECTp3Hc19yM6jHCwj3OZphOuve4k3XagXXj2B4hDQg9Hxt01achzjaplMT1kQUZAEipCjNb+xzmQkgVGldRHk0onh/OW1U0KeYzkMaJZSeIY9zy+9WbGFCNhEQhOyKMWsyalWXpcAOfBeWcZ4am4FlCx7LEPlPpfI625yINTIfwxUWp1FZBCoi2j6xxQpN1q3YgIXvDOapSPnQgstjznbl9w7u6Bsx8/x0FSwrJl+9ELXMy4MdLft0feXaOpFCFXVFRUVFRUVFRUVFRcBFcpsT0fEyU6GGEVjWh1jbJo4CAqeYBU6lKlmBbF8qycsaxhyohm6+dKQnNGNUEecZ0nLDyhcXhvBDEOSuwhDQrqobTbEVeys7m4RB1xiJr6w6Iw9qm0/snkIZVes4I0ZkgFgnOeHIx8zvbC5Zi+C7jGIV6sfU4xmPKdSZ2dL9elmE1NTy88FaZ/nODUjKlACEBOQhyVpDr3wrWXVtrGMrM+mBxZirR5KPWykxmW93Di0UtydOyfyeSUGFcjq9NKzkrKEbXi5cppKyoqKioqKioqKioeEH8JiG0hjaLsD8J6FLoGtpcw9srZrBCNgHonJr1N2cygipxWY0JTwk/1rUnN2lgTQiJ0Lc12Q2gtA6pqNbpjr6QREI8L3loCeeuFI5JLzSwz6dWiFc4COWUjzylDNMtk13ojqs30Oh7VYFLrbCQzJ3MXDosw1+g2reCDfYnT4qBsJcM5lwyxMxI6EWuK+lco0mhvLssAKZYAQDLJsuaJLCuLFlwQfMkKi/lesRrsWFudWKskUa69YYucHKfujqx3M2k9cNiXB2pidqaqzLaioqKioqKioqKi4gFwVRJbxciUdaOxws+cYHUI67XxpmPHjOgNo7LqjfCmWBKprvAqKQZUWnrLpmxsLYTSv9UTrjnGNZ+x4MSjGk6ccKQkVqfbKyk52u12NmFKMZOTmUflwzWSs5E879HS/FWCR5xDvYMIxGwtfZwzAqxGrCVtDJ9CWzLBmokl9RqCEVEflOVOIbYey/pih5vch8VZHXIW8IVH5lTIbnnpyZk4RUhZibkQcBEypW+tg60FZFEijqQwJDgcpvpepU+wDMKi8Vz7KId3wpiE2/9kl8Oz0dr7SEB8ALcNfoF1262oqKioqKioqKioqLg4rkpiexSKkpKwGuDcIeweQh+FMRlv1CCkURizEayc1IhsznN/WUkJyRknWkyRhazZpL1toFsGFktP8JYd9hl86WErhZzOPXGSmUGZzLg4QakYE5/a96ggzmTEGnwxlLLeteJLz9pCclXN/MncroRQ+s02nRA8c6bWamqP9qQt18dtzLWO6pA3WVwjrNNrpWIyZUZWUuTMJj0OjYCz3rw5l/Y/upE4C2KkvHzfLaFbek5c13DftmdYJcYh4JvGDK+kJQVvHlsVFRUVFRUVFVcZ5NO8xzlSgfYpfY0JfxGvVbeNDx2fus9oOtr91ZeX+v0nh6ue2KKw6uHePbj1FNx+Ds4MsLcysrsfPatBOVxDHAqBS0ou9Z0SM0ETnkzTBjJmLhVjwgWlbRsWrWPROpyDUD6o5TFBndKvM3E1kHprHpsnVhmKRjdnVCbvZjHHZE34ziONx3Wm/xWxrKxvrC2QC64QZAgtgJTHmGx4sbCWPJP78VTO6yZSK+Ab+3forbZ3alskIoSwIcDebybeYYCclRiLSrj0tV0sleUCkgoxwRghJSltlOyYiMm9hxFWARad0Cw819/Qce+jAjHC/v6CbrkgtB6Ne/T7DXE64YqKioqKioqKqwjOy3k7HL3fTxMu/ttPElPZ2SW3WA+293qwM9k8X+/3zi5+/E916dkDvZ9P1Wt/svvXB6PqD3Tel/vaelmv9NBxdP9+/nnKkZtO9YGv/UM5p6ua2KrCeoSP78Kffhzu2xf2eqGP0A/2NY4QR2ufo0WaqwkWTmm9cvyYw3uPE8fQK+vDyMH+CucSLgTCsiEirAczTx4j9CMcHEC/UnLMcxufVByV8Z6mOXKSJUPbdN5ky2o9bOfpLVstbtM6q5EVI6HWAkjnulpxjmZhN0BORYo9ZWqPSIpzaR9kUmsgG+F15ZxccTE+4kU11/FOtbjeaUl5gzjFHb1xC8HuBzPbElWcMyn0cssyu4tGicmuTcqwfd0WySt6T4O4YOcjQvbQTwntioqKigoAnvG5T51XexMBafE8sHnVeUfwHu8dTXAWED26OyjqHkHw3pUylVJ6o0pWJaU8fz/9PsY0/zxtx52Acw7nzEDRiX0/HysXI0QtPdxNInTeeedinphztnVJtZTb2N+Pbors+IJ3DhFX1iQL7rri7I8qOSdSzqRkXxdsnURwyGZTLzIrjKbznl7XOVcC0KY4Mm8MNnU6Zb22YLC3axFs72Br6HQdlJiSrcO6+Z2pm6QElv3mejpXPqvCQI58Hvb8bMfKeT6Onbe95iTEEhGaprHNpEIcR3LOpa2gvW7btrhyk+TS9H4+BlanJU4QcfO9Z6ek530VCdj8kU1XSI58P59vuQ7Ta804cg+3TWP3r5teXwjeT80c0Zzmzyumcl3KdXiwDfOVgJd9x+eXxIOSk0NxqPPEnFBsf+Wc4kRxmkgZhuhMZYiYuk9AndIGSj8PUyual4uQUp6TEpBRMjnF+Z7xzuOc0DW+/FWJ2uDE46XBO0uqBOeQDGhmzIekPBDzgKNF8cQcCN4UjVkdiifjiSmiOZFjZBF86crhNiV12PjyGk35Bwxqc9K0D1a1my5qRiThwoB4NbGjertuCJoj3kHrNypI1WkOFFQDIg4nHiGhJGKODOPkV7rxohFJeOfoQiAl87EZhlj2xuZ5A/YeUiytMrO9jnNSjFo9mc0c6/Dz+B9zJHgI3moAbTyJtQRFUR0JQQhOWPhFKY90JB1RTWQdiYxkSucVdaBCE1rASgVVHYIQ1OFEbS5xzuZ4zayGFTEnUkzluji2WkfwineZUdyRkITdW9OcKSpGNNQDvszbiTGvyTSItGwvrkM0otozcgji8L5jEa5BNLB3eIohrolpxPmuzHsezQeIZkQCXbNNE7rLGk9XN7EtNZ3nVvDxXWFvLawHYVQzTorFdNcW02lCBqew1cLSO44tBMWj6ojrhKQM6wFZOqthbR1ZhTHC6GFMyjAK46BGmOfesSX16T3iPK7ZLKaajCyGLhBn8yZ7oq3Pm0zs/M6KpFmz1bw6Jzi0DGCKpNreSzi6cOtEbm0joVA2BCY7hkmGrPOEokeeg8p8U7sSfyvrZOHoMr/dFC37jUIbjPB6B01QumbzGSnQ7bQsk3Kw69HsoVTWijty7hUVFRUVADzhhseUiCXFSd6ChSmaVX1oPG0INE1g0Xl8IX8Ge54ThytESsSIQ0pGQFPORmJTto3utBEbohGHsuEWLKjrvcN5R+MngusK0Z6IXCblPPcm1/mYRQU0HT+mmVhOm+6kCmrE1CF47/He0zYB54y8G5ksZLcsdDGOxBgZx0hfjmvr1bROlQ2obH4WJzPZyimXFUoJxT1RUFzpk5eFubQIzXPZUBsCPnhC0xTyXboepEzOmWGMdn2TfU2lQOKMmDdNwIdACJ4QSqDXUSIYkDTNpDimSE4b8m7nPZ31JhsnInRtZ+eCMvaDkVfJRpzE0S0766AgRmw1T4GNsg/xAZnJdvHmYEOqs9UoWdDjCKGcyaWq7REUuxeKQWbWPN8T9jh7q8Hbtei6luC9EX5vBKX1Ydq2k1Mkl+s5xEzWUgFWAjNXOp7xxY/FoXiBnIwEZdcw5kTSTCjE1jvFMzJGWA2OPjqSCq4R4zNOWXZlj0YmjTJ31EjR7o9xmO6fRE7DvI8MPuC9Y7trSJJJKENucdIQfEfrheCgCQGXFcmZdTzHmNeMaY2XBaqBdWppm4h3StaWRCBqYEwDOUbSMLDdNQTvcMFT4nC0eBy5ENtMElhnmecYiZb5U3VEjeAioe0hJHBKygEIKI6cBxoHiwYjiOrQ5AmhBNyyEXbnAg4jiEMeWa2tlWXSjPNTZ49I6z3LtrNuJzGzXg/z3NG0VuOnwDCIeZ4mR3B2n4ZWyHiShpnYejw52Ry7ziNtsD2ykT8baymJBR90oA1CGxw7zTbgUHWMuSdrJOeBgTUZM8bRbNdo0SxAHLlcM0FosseLlVW64EkoUTO7qz2GODIMI04CXhzHl4E2ZNqQGcRKAm0sFW4yBcQQJLegAbQpgbfIkA7JdCALTu48AdEB9JC1nkOdEJpttvxjcNpw6mzHelwxxIGmOYb3nuA9ms6BRhwNW4sTdO3WZY2nq5LYCoqouQqfPoS7D4Q79hz3ns0cDopbeoaojFGIQ4nQKJBGAsoywJOf0LHVOs6cVU6fiuztjqwPMnnI5EFoT7a0Wy3LLU/OwnoNQSanYSXH8pVBfQNO8Vj9KSpoNLIq3gJKAGnMZZCbFHgSKPtG5rY5mizbOvY6DzyLpNo/KRlhjeN08wntQmjbsnhPkWEsS50VmmU5dtEWZ52CsXa+s0RbLcOds72um6LpCClbptqLfXUOVuW6+ha2doRlByd2YGuhLFt73BQUOH5NwDm47+NlI6HlulRSW1FRUXEBPu9zn2wkw3uGlBnHyP5hzzCM5JTpmsBy0bJcdmwvG0JwhFCs7UVsY1kyn00TjCyGQIyJlDLDkBjHkZynDK2tTTHa2qLOIapzdsiVjI4rWUfvhFQyieOYGMdIjPbvRFqTWhYppUTMSkrKehhJuXhRMJFeOwewzFLXtjRN4PixYzRNQ9d1dE2LLxljTSMpJ1arQ9brntVqzcFqmI9BOUdXSLgrpH76NxfSFS29BUDXyCbDLc4yNLlktbOS0jhnRqfz67pmzpJO7zOlzOG6J6bEMCZijCUjvclEt11L27YsupbFosN7Z4aQ08qcE0lLMCOOpJiIY2Qc0xzgmALXoWntLcOcjUUzKSY7TopzS0DnXXmPjinsnKK9lqrgQ2vXaTK8hJIRt8BFLgQfVSt7ms+3XKO80V5lyuc+ms3nRECnoMaYLFMWQiA4C74sFwu6zgi/w8i+Qxn6nhgj/RCttaBaWdSUCb7S8bQvun4mtuTWMpyupY82LjyTGSh4eoaU2e+V9coRsyABXOPwjWNrYYRfNDEOpgJUUTRGNCYOV9DnSJ8iMa6hmJh2rqHxnp3lAnVKQjmMDpGW4LfZahxtELY6T4vDa+ZgvWDIPb32BNkmZc/BKCyblWUg3TX0GhiSzVFxHFmvVhxftHTB0bZ+Tiq10uBUcZqJEolkDlKmdULAEUa7LwVhlIyERFiMJN+TJTNEcASEgOZI4zPLLjOOjpwdOTYsGlOvqHocAecCkhOqmagjh2sLjPRxxDfevtxIGzzbXWelhWNitVrhxePF0S2M2GaBobcSvDQIwTV471nuBJLa5zRm2/97HBot0LefRpatsGiFjmEWOvRJSJqJuqb1Shsc13YnC2lwrNIBqhGRxKADiUSWNCfsWr/E2Y1hqhYVGDOBiBdla7kEJ6gT7t0/xWrsOVytQQPeBa7bXrJolEWT0cYRyQx5JOtYglAZT4OjwbMNOaApWBCBjMpAokFdx/Gtz8QxInrIbv4Y6qDtTtDqNegoLO+5l5hbsjqWyydaoDJESGchj5CF7e4EXbu8rPF0VRJbgJiV1aB85CzctScMWeg6ITvrUTtFJTWXrGLKOFW2Onj0cRs8wyjECD54uqVFvKKO5HGk29qi3fY4b4ZIMSppLNHlXLKbYlKalDcSIoFNlB0gKTnP07+11TmSnZ0DJFmLWVOJtBeJsQ9FGlV+d1T+44qUAjUybGZOdg5eTG5cVEr2FDWCClpcnEuE5qh+iE321nlKpNckNB6lmbK/Al0HOQsU8p2wfrZNtKytD3YeEiC20HXKYiuzPjQy7fOkla7s9uHE8ePHH/Dvm6j50Q2BzEU4l/o0NpHxSbq2ef7cI7n87bzo/HTMSdoiR+uNLvlq8+mdJ1/j/rVCev553e8o57+jzcZVpkjRkc3ZRc8B0CPZBp16hMnlbabEDvOAx3+AZ5732KN/k0k2WN7T0b9cLmSScMh0jIc6Du93/1zus867j0p2T1M52sO0SdXz/tkE08rPclTlcoWi7VrLVgaPTxnvPWPM5JSJqrOs1YtlMV3JIExQ1Da8071e0g6KM9KhOpMnVSt1EXF0i7bIbAN+GquaymdkWV4KSR2LTFbF4XzAlx50U4ZPioTUOYdLmSiZmJKVzZShlHNGkmVtBSGEQNe2dF3H9tYWbdexWHR0bWdESCCmkRRjuQYeVTHCk00CbJlZR9u2lln1gUnOlPMmKLz5giZssrvT/DCJq3JWxuhnwi7OiG9MGYj2nrWQxJQseJAzqiYfLA0L5i/NJhON0ZFSKPdisDEtVqZjJT5GhlLJooYmb9RY5fqFtmPKUXsv8709kdE4jky53UkWOhtoqqJ+GhiCDyYfdd5tVFrlXkFNZeW8xztHzmkOpCuTrNI+ayn3ZPCe4CO+EGqHBQuywjDGzXmXgDmaEPUWUHHlU5BNMGVD3gXvmyOy6Csbk1CPbPe4hYpMhEyhEGD3WvKZSLL/1D5ryUbwmXd0bs6O27HykamzzHXZ9qpo2aJRkhelREzd1G3RpN7RObw4chaTveZonzGCd61JRwUkjiBFFisNoh6m+VQczgXby6rdA6awEBpKoCwrCUyWm5MRuWKmStk7+GAtNJvQgnhUoxEn0/kh+CKhVkbstaJ6Eh6vRvLESSmhs3XO5QYvCS+JnHtIJu92LcwGr2XeaJrGSgRxOA1kptKAWEr9hIhDRWZfWOcF0VLqkSONy3jJ+BwBR8qO7MA7JQgksQ9pjJGMI2VTITgxSfpUsuG9x2mwz1kziClsLDAkBAnzZ5s0k00PgEvRyH1R7TTOsWwbNAccHrA5K2ahlQawLDooWTKaTM0KAe/bco2N+CNC03aIaxHX2Rh2AS9bMCqJgXU8WxKKgbYRvC7ILFgsThK84P2I1wZRU9o0vsO7y6OsVyWxtQUFVoNyy31wzyEMCt3CiG0aNsvSRGw1K40oW63j+pOecRD6EWISfPAslo5xyGhyRJ9ptjzN0hyLYzRiu4o67/9VywLkrY2QgklzSv0phVSbZHjOj9KVfrFzhraQUltAdd5/uDBJhk2iMkmgpolcnC1iFlQ1WVWMVs/gpET+puB9SY9OhFXVWgqNJVMb2rIhnneBRnxDY8dXFO9scgxmeYwKNI0R26JGJmcYIjQR2iQsgs5tgtoAYwuLLctGD9OTrvw16RGH66+/fkMip/9vohsl0l8kZeXvG4Ikm+DMUejRurkMmuefJ2K1qbfLs6xR2dRrWHupabPiNud25GSnn+YaszwR5GlsHCUk02Ytza89/Xbz3qfXtAXOyfTlyzkcIXVH2bdOx84lo5VJGklaslGSOXrz3p+ob2r1Ng+7/3nNxPko6ZqDC5cmtrZc2wbC6mXCfE3meqUj381v534n68Raj1ldnd98/hdhfBfK/S4eQrg/LmYeYZ9VLtd2KHWS/RxAuOTRLx1/uPiPyrwhmTbz0x8398SVCx8syxpCQFxGEZpmpO8H4Mjdc95ns/l+rsMUy7pNgzBlJWXb4I6TtBksaxSEpm0JIdA2bcn6guZITCb7zaknqpG3IVlAwjIHAe8AEVzO5JRm2a+TjJAQEWLys/RV1eoEZ2lrkU23bcNi0bFcLukWHYvFgkVnxNYDMQ52Lhg1ygqrfoQotgn2Duc8TdPQtA0hNFgWMzIMQ7lCMtfKOic03kiTn+cDI82FD+MGN5NFxMjZGK0eUkhkmAltLJJklDnIPhFoQUotIkQRYhMKEfWI1yMkTvCiCGF+biCUsbwJCjdtydhKJnhfstK+kPzMOFh2O6dELHLxlLJdu9Lo3mLT094ExGlpM68Ts0dzxvlCsIMnjrkEMTd12rncZ06ExnsUwXuhbU0GG0SIyYIpzWDEKedkJF42lM++jsxmUwbeTYF2j2/bI2vYlY2ktj/MahTWxiSl9tzNUlJbKwOxkIh0xGMlJ8V7u++cUuT0UtTrFlnWoi4w6boFn8CuXy7BjHGMSLBNnJXpJTRHWtfggRSVSCJrNBm8mES9rMxALOu/N1KbnfnXlPvRpMJ2bEFKba/HlwQOkiH72QsmT+S8SPFV1bKlzuMlEBVETUo4BVAkC6K2DqKZnIWYHCk5knjLDAM4CwpoFjT50rFDrTWnKk4dwQtZyj48T+V7wfbK5XkqmYzVqKaYiRFErUwxJsV5q2udxkNKkc4bsRWN5ORIOFLYBKu8s0CckuZ99JgywYmR15RRsWw+YkEBpXgVYHNZcDZHaFkHxpRAEiIJYiKo1d1qtiRVF5pyHex3KTmiQKuhzNHZPmOdykWsftqFQELJeWQYI4KnCQucMym7JfUc3rVkMjH1xHRowY1sZQaOJZkd2mYb74XgehrpcGVPOn02l4OrktgKsD8Kdx86bj4FB1EZs9K2wpjhcBfWA1YoXlrSOHE85qTnxJZj2TnGtf2ta5lrSH0Qmp0lsuPQxYIojtwracikIXNw6pDFsYbtEx3twjEOwu6ubdDI2QhsiTjpbGShaJx3U2UiEhhLHauDdgs0ZYbDETFbZDRNhiFAW8wpErSt4AM0LQRnxHM6PIXUTkH7dW+Dte0EcfZHLZnaONpjSnvdGaGx69C2NvFqBpLSlOL3/T1lMpiIEVQUF4Q4WGYahDZATFo2HEaSxwx44dpHC+N6ZL03MgyJGB8ZEddHEv71//v/mTcFUqLnTpzV3GimH9ekFIk5FnMRbxFZXzJELsyET7DNT86RlEZSGhmHFTGuyWkEhvk+tgk/slr3Jpkc7TVwo9WxtIngHW0TyqQY8K4zSY8EmjC9Lgz9imHsOVwfsI62kcYx16W5kFAiqiNjOiClgWEY5po+y3oYiQ0lEhhcS+uXNK5jpz1J6xe0fkHwHSIeh5+zBFYfGEk5shr3WY/77K/PsDvcy5BXDHoAjEzdtIEStTQxoZMS6ELLYl2iXUwbGECjSaTyWDac2CLi/EwoLDOcN5NBcni3wMuSrcV1tGHJoj1G8A3eeRofysbY4XODRfb9TOwsumzZkLZdEJolTbtFWBzH+c09MGdz2QQsJkI6jdfzCNURUnz/r6MwIjPa5zUecrB/F+v1WXZ3P0IfDxhTbwso04Y1l+tp2USmCPm0odU0B0Ommr+M3QMpW0Yt5swwKmO0+0O0mC45x5WMRNm8xolA2P0zzaurfiDlxBBHVEfa1tMtGtoQijQ2z+vfOETLqIbG6sGSWmB3tM2vOOtPrkkJyeppxTW0bWPGU2TGoUfoWUskaaYflVTmfNcEXLB7d+GkZCTNooaSPpqkrBFby3JS1us1Y4wM40hMRnzbtmV7e5vlcsnOzrbJkIt014mYr0QIZFV2TlzDMEb6dQ/uNvq+J8ZEaC0o0PhmHtPDMJKQ2YgJwIvVDAdvPdenOmIzWQoE38xjYa4hVmW1PiSW857jJeJouoYWWC4toOudETwpkZmJYK7WRszHYWAcR5wPdF1HU673lOWSaQ4o5NE7C8R3RTI8GVFZDbKjLTW/3m/G/PQ6wziyGkbGGFkPA3mMc2Z9001BmSJISZQsNn+51siXToEvtTrkRC4B81wy1dHaJzoBTXOQYntrSdMElq0Z3ijKGGORbqeyMTYSHMKRsVnmndR4Iww5k8WCFl23PQdPr3i4bTRHNA8IVquqWL171HLNVcyUyDXYrFZIioPWNyXLZYGbKeCQ1CrhnQSQ0TKqGhFNOI04l0yN4D0N4FFiHpA0RTDMvComIaWWKGKGq4yoDgwpkdWkt00w06fQCOI96jxDsr1dLsmSVPato2bIjjZlFs4RXANMJM72lVLmjlSWSWskYvXYQrBYdhacWxCkJYqS8kDOEU0WwImpZZoVNStDCmQcPg+oy3if8OrMmCqVIIktiaZCGBNd11C0CIXIKqhDdQoMJZIooyiraPOUquKTI6tjvc6ExvbOY8xoMqVKdgNCgliIdxaS78jJMYyCNFYLuwgeybb/yCmDmr9A51vUJQjGL3KRlHtn5mPjaBOPVzF1SLZMsYQMHqKffA4yfQ+oY9kGujbgcYzZsu5ZBNWurKctkntEE+gIdECHyDZOIs4JMVvNshuhKWqU6A4tyO6AvCbFQ9ZxjbhtWlnSdU+gTy0xBs7tnsbJQOMOWXjbL/Up4l0o3gYPjquS2AKsRtjrYRUdQxSiYoMsSamDtQXde4UgqAg727BsbQJxYtKXVPaLmku9hhN8E+bsQNNavWxEUDGTqZzBpY1UUoTZVKmEOee62klyIgp5zGQvc99WsbnfZD+l4FRV5z47WqKyqZBQk/kAlBrdMje5vIlzTIm5GK29UYxKiiUD7EuNbiqvG8rcZgcvWePiuDwaOWWKNJZaYTFDNnu/vmwkyyaSErWbCTkWsTOXNnu/PohJk1zPsF6RhqHy2ocZT3jCZzDlXicy4Jz1Zs6a6Edzp4tpJGctRMoI3mS4MGUWgLIpTcQ4lIzHIXE8JKUe1RUiZqqSom1s1uuB/cOBMaZCbAdERrw/JHhoGqENS7xvacIx2rBFExYsmkWRAjrW/QHDuGbv4Cx76136tCaLGbz4EPCNRY6zDgwxE5Nj3ReFRKYQdEfwgSYsjdj6jsYtaFzLdrND55d0YUnjt8xQwYVC6ix7a3VuifW4x2rcZ3/dcGYdWcfAOmVUPFb4UKSNamYos2GNltGvimZXyK3JttyUtdHEGEfGbNF5FXOlbENxJp+yxlHLZiDgpSP4BdvLJW2zxVZnboLeBdpgkjEnHpcbrGqvyJgofarLeGzajhA6QrNFszyJDwtCWOJ9g4jn/Ez85MhadiEXpFQvJLaubE7PJ7dKSrEEIg45OFiyXp/hzJmew/4M63GPUdORTKvdW54NsTWqX85lqvdjk+1XKZmQDGOpR+zHzDAOZePgaNyVT2z7fiibBY+qZQOHMc5ZQ6tlNYlwcGqZUBK5OMxOBC5nEBfwoaXJgngjKM55nG+Y5K+WWSnGEMXh04KYRrKcC/iQCU1HyoIrzqgijqbrivGPp3G+BMNmp0QoG6ysSi7ZpxxL67kY8SEYwcEk2IuuY9F1tG2gaTxNIW9OnI0rKWuMM1Kam8DO9jZt25BiLiTbxlnWKXtq81gqG1NTE1mt8FQ7vNEL23UPweropozplFPw3jHGkTD0s4Gk96G4+jrLpHgheCE4X+THZgQVY8L7FcMw0o8Dw2gL5ziOpJxng6lpDvZekFL60LYOh5vPayK0oZhrdW2DKxJgGwxKjJ7BWy0rzuPHEURIzs+BKnstCyihJSuYjNg6JgsniFOQpcisLTtlAVP7OFxRmQneh1KH3LHoFrRtYNl1c8A0FkOoPEnWKDXcJdKeirO0ajbVANCW7J6UIIKVZPwFDMZPEjkFpg2WI6B4klqNetRpEzrtxUxam1Xm0TNJ5B1AjrPKZ1YWTU92ZY+lhQ+pfR7Bm0TXT/tRZ/e4l6JqZFOzbdvO6T+xjHLyOOs7iZMI0s8GdJP6Yhrngu23VaSYhhWF1xxwVCaDFVck/EbSdQ5pTqqwlDJGxzGyW+TLlmkWcpKyx8TUDeXapZJJHXMqY08sCOemLHJTyCJzdnkOUc9r2RTwA6U4PIvVlyYtAVcFTUJ2QnJG7nPOSM70MZnDdbLzYlJaFTtmkSLpde28189TSFeFRoKRTimS0PIZT5J+u9Zl70FhDEeGg2oyR211lGKIklUNBOdJKRbDqCm4IDj1JG1QlZIhDmTxluTSzdqgFBVQSpaJdmub16WMV0rgQhqydIzZc7Dq2V8f0oniXST5takBsDXaP4Rg81VJbFXhoIfTB0KfhCGZPv2gh8OhRJCw+7NthewFycq1xzytE9IIwYMGZdUXC+9kk7a0EBZmae0ls7PdsBuVcQRZLMjeyLOkTEqYll9krnUlJjQl1NuNNM1MmtWKycVumGmAmci/SG18kT9oabuDyUzSapr4FLIjt7MBs5k8WZmGXRuKXXmv9KsSkY+WVfWtnadlQMrvAqUYuJDvDGMP6wOTqAlWe5Sc4Dqhac1+Pom5MecM4yjlgm9Sx9P+VybDEY/ZtnvBh5E2rNjfP0dcr4qJSGW3DxdOnrz2vLV+kzlTMok+9sQ0EKMFFZwLtM0WwXU4ZxPX/fcKqpkUR2IcGYYtxmGfGFfk7LAlIZWsbmAxtHRbcbMJokdZk7XHSaQJkaaJBN+y6JZsLU6yaHfYXp4glKhdPxzS94ec3etodhOHfTYDCy9mshLMWTur4EdhSKCi5FEhQ+OtTqZtW5qmw7uGxneIa/Di6UTpfKYLShcCXppiBtEUx9dS84TSx44+LtgehLC/z+Go7MVVIVcwR3SwunZfSN10BADNZnChWrKoIuagmjL9GPCTdFEyXcgsm8zkA5SSmVbkKEj2BBdovGd7CV0Dy6XSNLaZ7Zq2ZMAbJDc4CSYVklCIbSa7Qm69w/tA8EK7LMSn2aJplqXWZUNsOUokz8vEChy5W46S2YncXiBtVrtXYhxYHS5Y9ydYdGt2Dxr2V451XpVMxCYb48smaKqXymVzoXkSo6pd94mMI/OCHZPSx8QwNKSkaIIg7oontnt7q7nu1TLdmX4YZpOmfhjMrX8UUhxpG8diCGwtWnypV0vzfdXStJFuITSLBuc9oQ24YHWKc9ZbBOfN4EGK42bG4QVrfwcsFgISiKlslbynW3Q0TWP1rFOLj7xZDyibVS0EyNQdqZhZRWLJ2CLQNI1JkLuWRdvQNp628UghmGguNbPW0kY041CuOXnCnIML01SUNI4Mw8A4Fsl7jJYhFTNS8l7Od5O2i1BIhb23tutmx94Qgr3frmEcR9aF2FrmtDGX5OBpgxHOpmRfUXMh7kuGdtEdsO571v2a3f0V45iI48i4Xs98ZVLNtI05BVvgoGTuQkPXNma8FCZy62lCKO2fpiyxGTi1Y8MYE843DOOI94HUJianZ+bAVS7ZV1v/50A1JoE8pJ/riHNScsm45rLpbtowtzBaLBZ0bcvW1pKd7S3aNrDoOlOaiZSgzPmuxta2xuTJh/1QXidB2fRO87LgEL8JPFzpGIam+JUo6gqxzVajPiQjIc6baZlTMWlqntzCi1N4yY6lPJb9oENyMCWOi0bEghmJTgEYV2TsbWgIiSL3BAkO8Y5p66gxk6XUZ5YNpZZsMDlAbglyvBDi3rLGxLmm3YhZwkzmTPmEg6wJ1WiZUFx5z1P7KQseRbXPe2AiZ2olP0X1J+phCtTmiEZXMsS2dw8+IA4al5myrik7tNQIi7P7KyaQJiDiafwSNJrEOEPK1k1Fp7ruefxPYWuHF4+4NYito75knDV5kggJYUjRgj7J3OFFMzHqvC46CSVQZllXRPESSNrb9ZRElgwCrWvBJUYpO7J5ni5y/HnfYbR/aok2LcemqNMSGGlxYjsAH9oSvB5BEwkb71OJlmV+7SC5JPOGaPxA8SZLT5kxJaLEEkXuaXImqIUHHJ6GFmGbrFvsj8o9Z89y+swZHntsi7YB32RWKSI5l9IFMzy8HFydxBYjl32yutFUWvD0a2W9VlYrt5HRZqVxEIJJgzSbTHndm3X3/gqGtTIOmRgHI3viCQ2IE1YrSqTH4RpFnRBziQ4FYes4rPaVHKH1vkz2NrDSmMlDwno/iRVJJyGNiniPb4XQuvm1nPOb2sIkln2K4CWVm1VIxel48sKIcZpUADUZSUoQ1zpLPvJorYnoM6E1mfFiG9rGIjzDQUS8lDoMkxO0nTCIZQqkARqBABnHGE3mPUupl8X8wUFwJltuwxR9LY8JWm5eh/YtTgOnb74PHc6hOkWkKh4uHK1nnDasIgpitRAOq4fLmq3o320yIuA2DphMvSylTIYTcbF6q3GMaO5RHXAuA8Wh29niYwuERzWQ4h7oCkePdwPBt3RtoGs7um6brjtGcJY59X5JE7ZR8WQndOtz7K3vQ7EMFcls8Md0wDgcWDa5H0rYVawGK5v8alEM26w9gWW5hqyM/ZqDfMCwOoujoQkLjm1v0bUty8XCFiBnCyQpI2r1QsF5W+Q0lCC8K9cJpKg1VOxUJtmeDc+pNhfAWfsGBLKnrGW0kq1boCYTRKiWoJgQB0EHhwZFmsToDsjjyDCOhHBYAgXbeN8ZsdWGJjQs2iXiLDOXxdnmlZLx620juxxG2naHraXVBwXfWYZnzoXa/XSUxlq2ZJOpvdR9qLoxOrJpzLJpIQhddwxxjmPHHm/hEXHE9V1ItrpA1UyxCjnvXATLaGXR+fr6EpF2JbMLQisdMYALGSf9LMv04soxr1ycOn2OqT3N5GKbi7Q0Ffdh5yAnu8dScmQ1h+KpxVsuRjGhcSAtoXMsQktoWpq2neXbwmRmUyShzjadkyzd+9IsXTw+QctGUSROjtSy2sbNEn+bSf1o1j/GiGpEshrBxjJSXSEuy61lCUgFusaIkpb71m7DjC/18T54nA9mMJWXxek4EZNlttdqCoGxqJ5EitxYNg7CJsctS+iYyIw0jdK2mdC0LARCY6TMe/s8do5tkVJia+hsjRRHaFuTEjeBtvS39ZMsO2eGYZxdrlNKRqxDQF0gjpFhiKz63loXDcNsHqM0dGJlAl27oOs6QtPiQ4MLAd84M/mass1YZsWmnimr5uasqjhH27S47ohRlUzKCp2v4WQuM2W4NWe2hoFhNFnzej0QY8LNGW2haUx63DYNi8WCpm3pOlOXNE2g7VoLkhTSbQH1owEQYRyN/PdjnFsSmUFZqfN1vijV3EZBcoWj7xNOEt4lQmMFFjHBOCpjKpk4StZSJmm3zu8VsLGm4EVmRaAU+V3SiHclry4JF6CTQOcXs/pGsumEHVLMmsyJ240WtJhUBk3TgpokGBqyelLyxFFwWZBQzJ7A2glh80cbArlIahEjdQKkbF1YRRbEYpAkWP1o8H7TeiuPswrAa8b7htY1JXhpq0DjW4LA4WBtjGKMBLV2Vj4lNDSomInU1Ks3lbrdmJIFfsQRtLGgnSTzsJlk/b6YQHlfzPUy69EMtMR5nGtNnZaiZSdRFq3JsrM4HEpSa9Gk2c/lSFObMi0fog+ZWJzhx7RRtziXi5+H0rkGXCDjab2VaayTkUCbcz1BbB8n2H4ru1zW6MR6GCx4lCOiDQLEHPGN0DjPiJB0IOVI9qYG9WW/k/I4K7tEhD4e2j4kbQzxZAp+WGSEzIi6AU1rnBN22mtBTzDEBR+/52Ps7u6xXh3ijrWgwjBE+n7EIZzY2rEytfCXmNiCJQhT3iQyUy7y2zjJAQBLENoH5o8+ThgG6Ael72HozelLvLWuCZ0t1llhHLQ0dGaOpBa/BbNv95NEqWxsS48956wB8yyZgxLtmqbvMhlPxqSUfYNOyR+d3ZKl1L2oWGZZ1IiqyGQ+YBEWG+iQoxL74lpXsr6UQ1JepwlW00BZsFRdMTSwLJTzls3VcnImITHnY7uG5vA8kVuHzvW905o1bxbUHhOm1144mqVnqrnYXN2KhxM6kSKYSadFccU2ijJFEY+2wzDyYPXi5d6ViRjbhtBrQ9YWJZOzmQWYe2Is6gFnwRAtN4M2gJJcg+YBMjPRDEUubDWiLd4bsZ3qubp2h0V3nAyMeUXMvUmgS61NGnvSMJDiQBqj1eQU90WHbQLMcdNkO1ONzzhE+kOhPxR2zyRQRxMWXHvyBNtbS647ecJq3ppA1tHc0lMuylcxaXExwBAtEW4oZiwW5XVSSK4qm5zY5p9JNyTiLNpOIWel1iqXwZdTMXmIQhosgipA78wVNq9XhJDxPtKPgnPRehNKQ9d2gNA0IM6TndVaJ82sY2+11nEk05ocyC0BjzYleyfKUffkCVOwpLyBByS2U49PmOZHoJhfhdChmum6E3TDPou0YjWenTNE55Ho6Uum76bJRuaMeTny/FgVKVmKsuk/som/UJdwZWG1Xs/n66fNqbOMVsom29Uy/6esSMq40YK9Jl2kRPmnuXwKQkx9aIvRUIn223xt5HEa75trLrZBduB8IBRiq9k2PyGEWcpsknFl2n3bGp2LvFLnWtU0ERYs0x/a1rK1iyWhaTa1luVjsvOzd2HjCws4FwWEK8cW2ciPp/sol/vQFUnuRGxlWomVTWuinBEXcKVm1NRfjlAk3q5clhgtO0Mhtk3pKRxCQ9P42V05aQSOGOqpbshw8KWe1yPiScXqeChy4fJAxBcjrGBGWM6VOqQyV09155Y9nvrSlveV1Mh+afNk63HJPjszz7E5qARDSsaWWSlghnk5Z/M4GKwGMCe7t2w/ZBLirgssplZGi4Wdc9fRdq1dn7YQW9iMY9HZGIc5O7xRf0znY7WA1n/UlXvV51y8Pa5smGoiIaT5fjSTMct4+yDzWLYSAp3NROd5rni4SNlE2piaekYP5FJiZ3NuMfwMDSLWX1XTiJasZpHS2ecflDZkW3tk80WegonlPssZ3Dxiiv1DnKcIq5EUVH3ZD9hamXMmogRXgrpikmPL7FGCVFNHkTKnkRBKWxlNmAeGES9cQMYByKVPc5n71WTLk1RWyz4n5WT7V9U5iFaKKxBNmyy22LlMPZ8tK7RZc2Dj2zHtpRQjmmqOa3MA0oJCDlGHL4+xYH8hgrOyqMzdmxUNxWS+JXxLkEDjWhClT325o4q8HJsjpz3BdJ2mgLjV9FsGVQB1mTEp4iHhmGiwnZcr8+FUZsA09Vtdcy79qOdQRgkdlKAMEkEGVAYcLd4tEF2Q6BiHWOaRbCQ4wZgjY7TECtKULP/ljeWrktgeXawmGUHKWK1t3GyGwAq6p5ulj0DJNu4fwmoF585l8jiARk48sWNxTFieEHb3Sk/Xvkji8hHXtCT4xpbYJJDHROozazLiHeIDvhWEhMZIGiIguGU7b65w5loZ14q05soG1p9Ws0mRjbWCX9gmPyYsA6zKgCdlhwvQ75dG86msdaqkIeGC1VNJsCbSoXMsWzPMWjQZ0WyLUxb6QYvZVsK3QrcdWO6Y2VS/yqzWAr3gwsZ8qluU8Vlcp1WsjjeOcOghNErQicTYPZuyWhP4dgHLHWgWzDNjxcMCJ2XSVS0LTNlITX0cp8lXLPPofCjGQ7a5MuprC1NM+fyMm3iaptTk+WCyoRiIIybBJyHeCOvEdWbO0yws0xo7q9fzga4YobS+sxpfZ+6qUibttlN2gKbdwYeGfjhHP5xjtT5A05phtc/68JAxRsYxWz2bt0ipF0ze4tRcZbUn5cgQE6dOJW7/6D4f/fAuH7vtPuJomYDH3XA91113DV/0jM/hMded4NqT28TckxlJbqAfEv0I61WwgFcONM7cFlGIMiI+4xs16b0z6/yyIymb6TInOQAzq3HZgabSHsyV1iLWeD1pYLV29L2wPjSZY9d6DnvLmO/ur2nbBucbfLPCXFQ9O8slO1sLrj05cOL4cXOGBcY8MuZUDL56xqFne3tgsTiGZmE7JrpuGy8OfGOyVuSiI9SVWq3740IX5aPY1DNKs7CMnD7asq6ho48HrPtzaDrL5EpbrtSRqcLm5YmQ2e165DzLxm+IB4wpM6RMX/qnophHwGUaVXy6cLBaMdHRUEijD5slfarnlsISUhb6aK3wpnZvjS8mSm1LaExGO2+eU6ZpGpPZtg3THJznxu+UoMRk+2Ab4a7zZM20xTBo+oCOEpGJvE1EdpYbx0jf94wxFmKoeO9Lhm9J13Ust7aK5LdkqYsRVS6RUoW5hs/5sqEspGyKB4+jvc7hek3fD/TDiHhP5z3dYmHb0pzLZqsY3qQp25sI3YKYlYPViu2dY6jztIutI8u3klcH9Hu7UDbCWpwYp1tfsP1C368ZhpHVasU4mGnUul9bJt45uq6laaDtFN80ZoBVsryqatdkuWRra5vl1pb1zfXB4t4xMpY9j5NNv+KYZQ5ar/sVwziaeVbKc+2wfXmaJuCm+mAsc5+z4q2/IKnUdGq2OuB137Ner8lZcH4g64rQWD3x1lZga9mw6Bq6RWOyx9DQNCVo6QOhEKppHpDNgDXynMElisS4ZNyHsWQExNaH0utYgeZTMPYeboiMgJm8xTQSNXEYI0PsSZrxskTK3BVjLLL5PGcSbc9rEmUp7W9ijiRGkmQyEdQXL4do94OHrmlw0gKO7KyND2LmKpMvjACuy+RkJQcZNUXLHKRypW9jX4hOgrKmZTWi5QQa3wKmaFoPFvSy6cGcwl0bSr0vpDQW+mc1+Vb6oKiYKeQ4jkX1NBTS6wniCcGUJKvB9q5xzET8LLOdaneLTQ3JOValTjshNFOg0IEkC8hLVnw2stROqrUMlDLDRszdm5znMiPzPZjKKxLWfkjmTJBa2gvBFKPOeZzAMFiG2zfWa1dViFlpvSeU/VfKsMoji6aldYGF6wjOM9CximubFwQa15rppvhyLLueTqy9EDqgpWQylh7cPkAfR7I4cC2CmYXmOJI8NKErxlHRzLY0MQ9IoqnXCuV2DiRMc3DC+wHvD1E5LGZdCzp/DMeSne5YkWYnxnhIzspqiPj2GMEvUNcSyz7tcnDVEduy3FKaB2w28JM2A1tMfNm3KFZgnqY+ryOs18r6UOlXmXS4RnOPuEjWlpgdQ3RMvaSGwWpQtES/p8V/yuIGga6zm3LstUScFC19tHzj0XFEUVwjpdZgkznY9FNXNCXi4Wg1scXAyiQkgvNC02I3jBmn2WRXIrQiJeJZ6lXFlc1lzqW1CXNWKCelX08GHII05jTpBZbHS6ZDs02SgHgpdQsWlKFkdIO3WmUnJvUOHpYLax80txoSywwHZ6cm43R9FMnm3lfx8MKMY+xfLe02UAts2n3gLAib7b4+r0dg+buq9S1OedroJHA6Z76cs8is9RJs8Lkl5hXm2GjW/FKInEVcyuCThLg8S9SdmzL9jg3lK9FWpubxW6h6umYs+x9l3Z9G1ZssM2VStHICDQJYlDbpSMw9XhXK/bt/OLC/P/Jnf7LPnbfvceftu+zvrawtgsI4jtx36gxDP/JZT7yBJzzuOjK9mfLISK/7DLFndzUSB4uGLjozlEvRxmDTeLaPeUKnuGAEV0K2Vh5Hkp8plbYIozPn25SJY+mnPSTG0aRdKXsOV0o/KIe7idAobWPy0nHM7O0NVrMSMt7a0SHA1tbA9taaM7sDj74u0bYNiLDqI/0Y6fuIk4iXEc3OekvrgjR6thaJrrFm6QKI89N38/m7aX6aJZCGKWt2FOc5JE+heRGEgAOasGSxOIGiHFs+Fi+BnEZy7OcbVUr2QqcbGdvoZRQtfUUnk5tJnjwFQKc2J2YaZJlo3JWtEpnqjWwj5uesmHOWYfPOzddV3CazMDn8do0Fq0LJ9lmtZyaOw2zak6LVWzYpFsMiOWLms2k9Y7L8TYZz09eZ+XVjaZqZ0/ntX1JKDONopG6MrNerTabKGbEKTZhvKnFSDMB0NsqayO20dkx9exvnyaUmczJnWvc9u+fOsV6vOTg4MJOiQuJdaZ80uTTrkazZuh8s2LbY4pprr0c1c+7MaXCeZrGk6Rb0/Yr+8JB+7FmvVuzu7ZVaYiEEyziHEGYHZ0GMyI8jB6sVQ1/k8HEkNA1N29K2HT7YexFn5nhDjKRoGY7lcovlYsn29haLxcLOX4Q4jiaJzLHM8UpXanzHlErWyaSuQ8wM0bLGXhXxUx2xuV+7IwFBVBGxjJGIZf1gClaJud+GTNO0RpTLxlZL2isj5bMDLeZ6qlbKEoJCaPBq9cs6zx22b1Fn0XHnA03oaEIktclq/zBSh7c2Z8FbjTjuyq+xDZOSHyNrMQtjLAaOqkBXVBSmqCkWTxbcLBn7aW9pV8uMINX6/qAaS4ZeaEI7q1JswbTOB84FHJnspgy9N+MjUZw3M0QLZCWyDqgOaE5FTRBwPuOcresZ2xTnkkF2KoQSKIwa8R5y6cQwtfvK2hsRK3ORKrbHdKYWVD/dC44hWZlUTiOtWDsu8Wr19JrpvCMqpLK3t76uESSWPb8rJtMKRVngXMOkLuralqSZlAfL1CRwyVr6qBQVBo4gnu3OE1NmjAktPZq8c7ShpfOtKczE6olTTrM5lpXLeLKYtJiUULXAt2omuBNkAhGHlLUpi9WU5wSD75AseAK5sesipYwHteTBlHnGTbGGYlKpzlRb3sqypGlsnfCC9y04603rpcHJgtTvQlbGvAbNOIWcXKkvNpWEiMMHR4oRu2CRyUU9jmtEDnFuD3XnGGPP7t6dtLqN6HGOd9t0Tui7Bav9O4gpEbOjbe0a254tQ/pLLEWeNjAZmKTI988QmIROZhtyHU2CnEfoB+j7zLBO5H4NMkCTi9JjIgVl83lEcjulAowvlsywh9B4fCjSpElPAyVC4ubPak4QTIqMQm6n3rQaE6lPVpurbpNtLXzaF2KcM2QnRWoqheaXe6wsEK783RapidBoWUOsL+9kfOkaNxPbxY6QI4xrnYm8+OIaVy66c5ssrJ8ISiG6bQsuaOlnaJfMFwIjeZOwBpCpdcikmap42DCtadMCtzGIKcQUi/xMNXWbDA0zIZ16NW82scU4CD+TW6vDC2Q3RYFNRkS2Ju62GUklCjggGkEm+VAJwsz3hE6B+82GGY+TztpmhG1SHgl5QKQF9cXV0MZjSkaSs9NSpzKRW3tjY8ocHA6cOdtz6y1nuO/ufU7dt29S/CL/Wq3WnDu3yzhahiihiBtRrPYuu5GYE/urkbE3Qr21FcyBcbQTb1shRk+3BN8ovlV8m/FtCTiV9xnjRGw9Woitjpl+nVgdajE7cqToWPWZYcjsn4u2CW6haRzjmNjfG60NmJ+IrY2rxTKxXA7sHY5kdXSdLewHh5H1kMjJjKoWXTJFyAjkXcgtZOH4sWtKFqE4PE8OueLOy0oxf35SPk+5YD6+8AYtGy/ZSJLbvI2qslxcS86Rvt9lTGY+Mr9WuUfNc6/IbRFS6SF4tPRjkq7ODsulxtMVLaNc6cQ2hHlsTNkTVwidE8GHTX9TxM8XyHtHcI6m2xBbH3zJbmdiHJGcSTkR45ThSzNZ1LLJkjKBCJQSgZJpk/O7DZZPfUNAY5rlxpML8TCODIXgrdYry8DmiWzaNn6SFFpAwmrajXROxynENueN7NkHYioZnmzv7XC1Yu/ggPVqxeHh4aw4CU1jNa4h2HskYYY2kbHULIsLhKalWy5LOx/bKEshfillVuue1eqA9XrF4Wpl9agZxFnLshCsB+9U4jGM1mLncLUq7YjMdKfN9rm1rcP7xjKx5TNerNfEYO7Si65jsejouo6264rCQRkHM1ca42gkvdS/hRxIlGAEFtDLedMBYg5OlODhpibXop02bubRVgxpSsAxY2UPIZlxU4jmsi2xeAjYXJIUxqjmCqsQsi+fX9mIh5IF1MnwTUAmZZGfs8pGnhPijMyLa8r3RU5fWkxd6Zj2k4KScrRa0zRafSNgezZMHVMCpF7MlEjEWR2zmvRzCgBv/BomcmufaAjNPC9Inv5eAtoiiChT+7QssnEZn9yoc0QZ0VLzKoDzHud0cx8UEj1n0fFW+6uKMNX4u2JApmX9lJIJNvWNxZtdUV9A8hMZt41jVkv2BGezuFU4mNKwcR7rJS1zuZURo0Jss5/XJc0WvJ9NxgTrluAdoxM7Zk44LbJ2wcirb/BOCK5BiHNbKtT211Z6YGaTZnNgwQbzrrPrK6jJoXVqx9MTQrSAgd+xkgex0ilRSCRiNMOpMSQ8nugs4JOdK8e1vbyfpM/W46mct8z7J4dlgJ1v8L5DiqJE/HScycXesR7XpkrTiNkFgpQ+x6aM0vm+SaW2WFwqY9aCbCI9LqyhWTHGyO7+GRo9RUDZ6rZp/Q5bbcve2dsYY0QJOMywCimBtnR5a/JVSWyNmBlBHUfrp5qTGjkDKJs0zcoYrXWNJuGMQB5gfxcO93rieo2uT+N2OvxWx2JLWGzDchvW6020rMz7luQaE2mMdoM0Fl00Ob4VVs85ZTVCKE3AJat7zSOlJkeh8cQkxCR4So1JVsueOm/RTw+uEZqlKwXt0AZv8uA+Mx5mUp/xEjdsoDjS+cYV5zuxovZgk+ZiYf+q09JWwH4OrQUAmgDqoHEw5lKQHiGvlLEvE2+50JoFgsm9nbPzJZjcIYTNZG6RuU3Cu2k9y+2GxfElea+l5mwfbmzuQ6tRO5JZgWnHb98WmQ4aSWWDYBuiaaG1VPu0uQTBuY276dSpMosju4AWQ6Ux9eS8JucDI7YkyCuEAWFF662/o0sjY+zxbo13oy1eubhtTptjBcXjZImXiBfFcS0iGWSfyClGkm2UgoPgUS8k1PrwDSZb7cfERz9ywB23rbj9ljOMQ7T5wjmz2S/F6Dkl7rv3XlLO3HnPWXaOb5M00Q/r2VDBeUcajQy3rVn6j6O17PFeWHSBxVagbR3dlmNrx7HcsfGYkjKs0uwFkFIiDiY9IynDoKxWyuH+ASlZliKV+rjVYW/Os02YN+hDPyBusA3xcjlnopxbEUKg6VruuW8gBM84JMbRsmmLRWDRwlYnbG9FQljTNvtcf13PNScP2d46UQzDgmWXmoauW1g2yvuZNFqudBNpPdom6MEw19xqS8s2Ip4TO08guA7NsJdvJY4H5DQWAqcblQFCOkKip5rcOBEksUb2xjoyzutcE+qd2kbtCsa112zP2dhJJrqpe52S1jJnISgb3qaxXqiLNsyBRwAlMaYVaeiLasgyIU7cXLfpvJulyCI2F1g7MJMGm5lN2bTJpqWTQsmc5nnsxmRZx1xqV/uhL+7HcWJY8/EB62M7DshaZmWGtTfaZFXnAEVxPg6NuTrnnM1VeBw5PDxgf2+Poch+p3u3bbtSV2oZzann9RAj/WgBK5eNKH7kwzfjvWdra5u93XOkcWB9eFDen5me9H0sY7Uv8lGlbRozSVq1pee2uYtP9b5m2mN1cFIWyNAEmtbq4X3w+CZg7ZwGckosl0sWiyXL5bKQX2EcR7JmYk5zG6ucdW5J4hUjq87R+ID4Bt9EYoolMxigZEyjmtxXsjC1/1GdAu8CYk7LzjkzvERpVFlsbaNOGDUyjMUvwwdrjZgS5w52QQLOL2hDT/ALll2k6zJNk1iUrK0/WrYClrFtGtrSDDi0jalAXMCFlhBacNYCZgr0XOkwEYT9l5MSk6kLMrkEWyzxPAXbvG/oQmvBUqBzLSJWS9c0nlgke+ZKnHG51HOKZ6fbtuCjYGqgBMNobVkUh/qMF8W7BNlhrfwiG/f7iJc1MJo82Xsat0BZFRWg1aMnTQQfzJgsB0t6AA1qfaaBteailomMWowLFYJKqa/FyvlE59cXV9Qq2fbHKRuJGnSwzLAX2txAhiEn2tYDmTENxJhJaWTMwtStJMdopVHBSnSsdjfhvamtJs8PsP2QSfy1mEqBeAvMa0xzbb5vzI/HFFngNONyBMYSoPOExoy0NAdiWpOimWb6caQfRny3RnB4WRLE4cgMcU0/RNbryEK3iI0z9+ekJK8MOZgZrpuE62pydFVitnJCqzUu0uFiLBaaMK8RQ/ENaFB82CJ0W2y7FrRH2CXnwZQWLuFKNvrw8ACcmgK1zPsSiiIqZQ77SKOJRCJooh+E/YMVTg5x0rA/HPCo7WOcXC45t9xhPQ4MsfTl9oIPzjxTUrys8XRVEtup3nSMRWKczMzIzCFM9mGmSps9fAZWA+ReS6b2EO0PYTwEaZAmGJH00DQw9GUDe+SG916Kdtxqf7Rkg1PUeVPsvJFQLQFo5yZbdSOStmBL0SCX2onRbPc1jqU/LOgwmq02jjwmNFoj5amNQx6yWbQnxYdCoqVkp7MiMeJU0ahmHb8IeNcwDoI2QuimYSElo1WclqHsj2R+j5QJIngIQYuBSLmuJZMbi9R7z1mLpa41KVJ0kAJ0R6Q4PghN51mc3CKeaVlv0uEVDwNSitPWd96cTBzD1o7NIpKn1hiaGUdXfpY5FeeEEtyR2aRjkgPmsgGy4G2JpmtG3AJxZiUfc0R1gDwg2gMjwmjmTzrSRJPTpWLNPxnBzK8xZYGKSYhqQLQhuB2aMLDormWIA4gjup4meHML9H6u44ql7vBwlThzeuDUvWvG0epxmhDIUz8LzcUYxjaih4crFFf6uEVWq0OLVIoZN0zmTn1jgbUYTYYkAuvgaQ9tcWsXgcWeZ7H0iLda/XHIpUa3tGRJRpLJVjc0jInDg8ECdi7MpGHoR3z0pKSEkMocZIPQHFfjnA1zTubo71l/gPeOOBqhBkh5wThAvxbWvc6ZvqwN6z7TNrfPdXE7x46xtVxybOcY29vbpWbOI+qYzEqO4vweuBf/25Hf2NwtHu9b2nablEa2t3rGcZ/BNayHs5ikPc0zhTIt7mzubyhmPxs1wKQwySUjMSWgLjiNKwwnTh4r3+n5xLacuBHE8pAjxHYyXfLB4d1UcmKLoalmc1mHzDAkYw6sKQuSHLlsLkTAJxtH2jRINqffqe2O1Y1tLuTUpsXqYS0QlnUiySb/dh6CTuFnSquaae2K5XObMrPKOMZCkjc1p9N8gCo+jpu5IibGODAMPbHMK7OJlJo+38xa0qzoiHEsLtOW9UxxpO+tBZ1zluVNOTGMPcPQW3udkqWZvqR8kc0YKCYzNZrkhd67OeOITO1scmnVEwq53wQKvHelnVlD9q4Esfxck2vLs5RWXYnoAyIZl9V6fHurmQ3ez47FzlnWPqQwB0Km15zqZ6dWO2gx9BJ7PZdtbtmY4JUev01Dkzu6uEBcaeuik3mnlqxZkRmWbGVMSkgZ543wzLnWacnRPJP0PGWSfVNIRsA3LT605XzK/uoyDWc+nYjJ3Py1mEepWv27tZxRkGRLULmXTcHg0GLCJOpKn3WHk0iQADQYHTJ38cnYyJeepTYnmpw0Z2uDmVBI4F22OlOxtk7jEIsLsuJcApfKM1tUrU2PK1k+ATKOrNZtQLJ105jqTJ2z7K+pBhxKKKotT06mnPLOApQiuUjXKbJkC2zbmmBzlE1W5xtbaXFt1iKztm2zEKffZ8usTP11p57oU3AhYZLg4Iz8O+cx1+UGFYjW8Z0xDVDIuVLmBC2u1JLIRCJDUQuZVLs4DZR1blP/L6J4b3MgMtUPe4S2qGAyOY/l6ipRM6MqbUkeWG9ZZ3uGSUVnRVIUhXQxf82gxW/ElYobMbI7qWiiZmI6BNYoh+SYcUQCa1RHVAYiPY5tRBbE1FtAw64SIlaGlqN9BqbUgewdKTak6BgTOEmIWIeDwxEaN7JctjbHrYvxluYShJ7FrA+Kq5LYZoWYhSFuCNU4UiI9QhMgTfr/QtJUYH9QtM+M65G82of1Poz7wA40AQkWibFyH51JmLmhKqETKDeWpIxmsezHuMn2+OAIraNfqW32pUQjHIRgtScU6aTti4W0jmiKoAOuRGR17CEsIHvi2ibClAXflollyGSbqaAVy84GIa1GNEViXGOG3pk0ZiRvk/wOaxXa7PCdRZJVrdftVCM7ExUHGgux1Q3pba1ryJFNAgyjyZdVYRhguYTFAhbBWv90DdAercc1mdzOdTuMpxYlS8Bmk1bxSSHFwRa5shBORCLnKSJbNo/ZamcVRZMRVV8kPH5eKJklPbgN4ZwkgUWUUjJAbYk+C0lt8xiTkuKanA4RHZGp520YyTqwiCMxDkQ/ksOIkWmrIz9aW2dSOyB7oCP443QNbG1FRh3wY2AYd0svNDNRcbbCMqbEMCh7u5nT9645dfeKlEzO1DZh7rebdTQzLTEivFqtGMYIzYIYI4f7+7PswDaPvrzfVIwyLFtVNBtFJje1AQk0rUekvFYyMqxqGaCpTrWsSWRVVocrM1Nxfv7cUkwk5wkpkYPffLZqm4RRYqk3tNo3iVIcCbM5vc+kxTaGa2fStKYZZ1fz9QBnd1fs7Q8WrQ+Bxz72MZw4ftzae4iDJbRti4pJRs8nrxduNO/f+uUCiLP6QqBtd8pN5xjjGucXDLlH82qz0ZkPtvmx5GltgyFTzbipbkJ5czr/fpMduVLxqEedmInc3AdxkoIDq9VqJqzTPTcFCJyzTeXkv5CTlnq4IjFWLChQ1sc8SeVUiyFUqdWXKSMWbQPpHJLKfe82G10mwpin40yyScpHKbhgdXjOF3KG0ASPD2ZEktKIaiTGvsxN1rooTfNAyeJa7Z1lb2V0c3YXxXptjz0pjWUO0nnjhRSp+pFg2VjmnxRHVCmqi0jXdjjvaLuWrJYVnepi264zAln62obJ0KvcTlmnRiNTVtqyJROJnWTV09jyc9ZSyrxdnJsdqLpiCDVJEMvnXB4DUzseI9Ghac1RujEC7guxDUHnevPpGrpyv+RpPGYzz5qy4t77IlMtqoBpnIlJs0PT0GHHCsGR80jMhxvJOAtELWOVsyMVuWHMGUmZUO6zo6Nw+qw0Z9vDibc6UgTxAecbXDBJuQUfLtIn+wrEMI5AJJeyCsSzaKwEJWEeFNaayZWxY+zHvB8Eya70UbanZzHKmphK6CgdAQRfjISyFjKqtvb30QILUOTkXvEeYkys+sHk/5JpAjhfvGUIpGxuvkGsFWbx+SUBjadk6G0u8GJkN3kLOvpsMr6sitNAzkJMmbYrwUeXyNmTMc8OEmTJbGTxpraxoF5xMwc0WyDKMt6NSY3Fw5Hfu6nvHmVV0IhiGUfVEecTjQhRPU4CIg1ds0Cc0LuBIa0Z01haC5qk3zkIJcCoLplRnfZMSSrnzN/Hwq4TTXNz0q1tJjWjI+qAWXkuS4cKJecBUTMLjEV23crkdeAsOJAnIz0rp0jWWHB2fp7GXxOaeb6XEsxMmkqv70gfd4nZ0SdHjnbHLZzQtUZsR+4jyIB3O6Rs9wdZaf12KUsJICMZC8jnBCl6iC1xdIzRFbmyqfRC34M2HN/q6EJLyNajF4zYqmNaMR4UVyWx9QLbLVyzVI5v26DuB8vgRvuMi8sh9HvjhkCKJ+eeNO7C+h7oD4CMz2uavOKaY1s0nZbicMvcdp3S742kPjFm631l9WhmE+6SRYXMEViI/Ug6TMQccI0HbxWw4qFdFM29KuvD0tg6gp6+BV2dhdU95O3roDsGy8fYQBwcMU0D2xbxqW2QuGJOE8LcSDbHNbp/Cu7+QzoOCAysU4s+6jMZ018hbZ9kTC3JebYWFl0bV9CX3knN0tG1wnIJWwtzkD51RpFkEbHGq5nqhUkmAuPaMrjeMUuRu0ZYNta/dtHYBCiUOh8B8cLOySXrHZNf6bjJKlZ8coixnzdTzK1PYJPPsunDUyKrOTOUrKlFwvPsmGl1Isx29ZQFMxYpIQpOPMEtcK4DzSRdkiKsBuXWWwQIONdy4niPd6XlQcnuLNqBENaIOyD4basTdRDL66Bplh5qzibdcS2L7gQhdDTNgkW3JKZ9xvEUMCDEEhk345o0CsMa9s/C/m7k8GCg8Y628bRtMGfK2YXUrPvNxMMW/XHoi6vrUIx1LNA0ySidnyM9JYo8kf9CNIphjQ9Ghqds96bhjC2Ago2NnAqBzZaRVcnzvBFTNHl59jjXbWpesxHqOPb2vJxxyZVMiJDiWF6gOFw7N/fYUzU3VjCCsLe3ogmerr3LNt3ec/31d7Kzs8O1J0/yuU99Ctdf9yge//gnWOa21BoxLb5HNppTve0DEVsjWnm+Vm2zKBv8BgW2hutp2uOsh9OMcY8xnrE+e3lgktgfeUWTuFFaNpTATMb6AFIktpsa7ysXj77+0ahaLSxFZj2RWlXl2PZyc211ynLITOpL7w9QJeokvdVNIGD6VrUYa033bukIXGp5pRCZ8izAXP4FsdZUMz9WsivnI2qmNFPmXszsxFIyU/bZcj8iinPjkSw/lu0t2QV77zo30rDXSkz5w4mcU85hoZ4QulmNYrWgDao9jV+w3NqhCQ1D3zP0e6haPeeUCXXO8ajrr6frliwXDX1vNXEprRmGbPddHnGidK1lVmN0xHaTTW0aI+whWKulIoBCmJQvJTMG5NQTScBGch3H9RwciJHyeJjqhW1za9cgBGsBBkoTzDjMnlEIrGz8NqasN6pmaDNHhmz+SvP8VgIgmONqytnKpaYgglCChxbAS7Ezuem4mAMcomX9cN4CgS7M7si2luisRJnOd7qPVYUhJsZxJI4lGOcizo0g6zlzt1HmXNlYp4RIntUTXoRlaEzRlG2d8U6KNLNBCNYMUY2gCa2Vt2WIurYMnDOyCMb2nHdMIaNJRTfGOCd/UnTE7EhZiLm0+cGCuHEKdKkHLVk0hJitXVXWQ7oSIGzVan+zgEpP2wS2Fo5FYwRT1NSJotDgrS1eyrjS2zkE61TgvIKDxjX4Ug8a05oxKqprHMqi8cUEL7DVdjgSWSPJ9whK64XgLXPtXMTliJcMbsC7lsYHsviZRIvvkSCYOkutDWA2Z+DQdGaUJuA0oglyTOAyqZQNWs1xtrpfZ2QMn9FiBLnozLgrOLEuI1kZhzRncpsQzM2ejGoL0uCDfe4OYWdrizgoKQixyH1TgJRX5kgspoLJmhiHks13QuPNANbmchvbfYqm1HDmeG/Btmj7Ft+gEoCBfhwJriEDQyz7eBFiFJwb8O6AxZYnRivbULdCJQFLyBlJildLsg29o/ONqVqztUoUVogcoHlhmefQcqzd4fHHruWcwiiO3DalXPHy1uSrktgKsGyUY0voDpQmCCEYqZ2kZ0b+tBRs2+SdvU30eEo9ngCNtRYJpT+dWvZ3ur4iWH+8sgi4IstMZZOkyQq7BXMunvZLDuwmG1LRpIvJAsomwAcgZjRGWN2NO7yPdriHpAdof4ysDroTaHusMEGrwwjOpMdtW9xUc0ZbkylnAckDOu7D3scJ4ZBWRpMG7LekdoesDRq1FI3bOY/Dpu+vNFKigtNiyLzuFcPCYoCzQc6Y4si4NcEbkW0LoQ2zr8kmW+Kc0HaO0LgrvevGIw4xDbbpE1d6hE1uxjpvWqYPcBZzqtWHSs6MbsAeYLK2yaxiyvC4aZM9vWBZFM0EICMKcRQODxL33G21Os4nQhC6BkKw+g9kpI9rmrTGp54xDWX7GuZSgllGqCWkJGLOin5hPecEvIuk1DEGIecVKfes+rW5j44jq5Wwf6DsnlXWK6tltdYnlj2aannBiINzJQM9ZYjypqZv2ohpOTfnUpFW2vWZiK09x66i9x7NRuYngpDU+rdNEs2ZnIgpRFIqNXly/lg7Gs+cHEwpxDCXjJVtektfurJRzyVSn8umw2XHKD2T7M0XCXpWJQ5Wrxv8epZGppzY3jvg4GDFiePHiCnTtAuWW0sWXcfW9rZJI4P1+jwqGbN7RI+8j1LDt/lp3tCC4FzAB2vjseiO41xD0mRuseOSde8Y0yHEQ2Iu7uqT9FiNWGzu2KOkV48Q2sI0rmAsF8tZ0juZvxVDB8vuNGFmpzPJYzLUoigA7N5qNM4Zu2lOP1pSYEGUvJkfRMr4muosN27IR8f9nMYrf/M6JUns8dPcrgAliyNTT17ud29P/dpLlsGJfZ7mDstsEmNjTzb30OZ/5GzzUBN0PlfnQ5H2QtsIy4X1g/Uus+gCwRfZ7HTviD2mbb21JvFWA+hItrFvAmOvtll1OveBdf6oxNr2E9Y/vLQhUex7Mk7yfGfmHBHMPziV+mQLVGULEOSSMYpuPscps25z0aYXvKo5tNvjlTxlNNX2QUknYjttIs8P8EyqHlQti4IdQ0vgacoETkEQEesVjveFtDUmZ5eM4Mt8WgKAzpUygCmLXjZsc5BjUxpjbtpm2DPVVlvgLJW9WCG2wc9tia5kpKzlfmBWTuTyntykfJDJ1GcaNDqPCVMrmFqQ4mqAZkStXM38UsqalW0/F5MyjJNM1Zd7cGozY8qFlNX+RnFdR+3eEwtGGUmya54cuOzITsueAlDbk3YNs2fBNBfZnkCsBQ0WlHbz502ZVyhZ4FACtMFa0QCUriKTu7v3vtzHZoDkRAnZZPaiNq8EH1AptZsOGq/FedvqYZ3PZoQ0BziZFRMmm05sgoVsSH5ZjB1qexyScYCjKGu5+dZYCyFQkp8yrKYw8EVVk7QFNqUBItA1LR7FOl9bB4CYrVUURMSnco7Wi964hkm45/mr3GSpjBMvUxmEmnBdLRnnnZ89KpwXXKasN1LGZZgD1SHYHidTvCnEkgaaKM7NFkxJCpots+wllLGaaJzQhQXL7jih6Wj9NtvhGCAMwF5OFii5zDX5qiO2RoyUa7eUx53M/J8DpU/Qx03vqlEhZGFqe6ExkmMkT65oO0uIx2FoLfOxs4NbLhmig2TSXHNTxm4cMXLmG4vQJBGGGMwQKqWZ8PlGCG3A4xmT+/+z9ydNsmVJfif20zPca2Y+vCmmnGpCAehCAxQ2m01KL5oCrvmFueKiVxThguwmhY2hgarKysyY3/Pn7jbcewblQvVc80gMVd0oUKKy8qa8jAh/7m5mdzhHVf8TZemsTwvpdjY0tSlpMp79dIi0S6HWI+3xf2I6f82n0xOnj5VLy5SHr9HX/wBe/QnEPXHKTDlys1N2e3j3JlJroDTlWYWlwHntSDvB8gGef8n+tnOYOrFVju8Xnj8e4TMh3L6lOT0o5Eg5e7EbA7EFN+ZS6otc4OAbdZ7EHf1eXJRwvThTNurxnJWb2bx8BLbGOWLGVD3CPBsq/sIP5ffH38KxrEdSnEDVNJL6wvESK5rYFmrHb91aX7GFtCaLrZin/WYeM7xQbePqm0Ohe5o6WmG6qseHha9+/cS//J++oXazi4/TxP1d4/52pXSlqBIuDxB3dEnEdEdWpblz2nA7Vue5mw+WaQxzjKjO9D7T+kTvC7XfcVmeOS8nvj8/cLksXM4X3j8UHj/CX/1F4fGhUkpjv5s2fdzq+ZqGtBjtr7iVqKqizpiIMbGcL5vBQcX+uZvnrSAeqEjv3XVVSk8R1QzdjWSwz9WixR7kFOnNnFIHWqGKaRlxpNw30egFjBl84U1Op7v5R6W4zsb1jCkhYdqcbo1OZIOwVtetGUrJisyuysV1ixuVPQjPxyM5Z/b7A60r795+w5fffs+n797y5vUrfvKTn3A4HLg53JDzC1MhxZtb7/KxybZsKNsP0VyLJEjujGpmH/N0xzzfsqyfUuqF59M3XNYHTpf3dP0K6pnej1ZwiLrrpje3eh3mGApx1Q/+2Bed3XwAcO0b2xDCGng/Z6NA82O0hmMyOxoRYz7oRmPbpAR+Xrr/Pf7fMIY84cXvvv7erfnhxZR9TGK4IoYvGyfxgUcgvTj1V4flTS8NXlCOz/DSC8C16C9fF9maeGuIAqpp+3t7fqxp2O0yNwfLZp5S4JO3h+0tjqEUCLsZQrBsuzkDRHJU7m4P3L96R1kebe8PjZytoYeXqDaYaV5HW90+46Bqi4zYqUhvixXr1fW3airA8Xt6M7phoVHK9fzaOqO2Ttl0kd4LIQRamyghXM/pi+v6Hyoex300hg5o8Ka2+mDjOuz77d8h2NpEzASELsNoMBBD3JoYcKaaNrS3bWhiEUz2mZZ18Ya20Ko1t7X27U6qrV6lXyFe3W5/xEeriiQlJMuTrSinYp4qMWamPAHGgFC2fp+QrI6tpRHd+IiQAHMBHyZkMUY/p/YslwqXVTldKl0dteuZ0AOR5DNu9SxpG4btpkygsZ4faVpRqZRWGfaArZszceyREIvpngnkKOwmqG1hZK+rwblEzNsFHZGSRn8erBKLr8mMNOIQK1EzVYOj2rM1exINWW6mxUw5ExVaN0YA3dg+u7xnlhmlmJepFELMBkaFRsgVnCkxGv2chnO8UvrZNKh9MCsyvZu3hu27uDv1Qu8RDWaaNUyJBUPmwan8QZBokopaO1HMXT7HhLY92iONYCbhQbjJN9SkLLFTC9TeuawnY7SERgzFEFuMrq5q3gS2lgRyzCCZ0KH1o+vyJwfVTFdca6M1IcRkdQmd3bRDW2ctF/cJEXK8IcWJFCYDFIJ57LR+QVS5LBdCyYQSST3Q1DTOqrau7fK8mVndxj2f3P6Ud29/QWFlDjNTuOU+R9bWuHz8wFrLBjD8dcfvXGML9tDfzcrnt8rP7+2mOi8DsVVKgx6VFjEXr9aMPbUujooEC1tVhcsC2gjamDOULpRmNuKtYTm2yeiGMUdqAy2deTYTpnUFmtJrp3Ql3UTyPnLIUFc4z9k1KTatC9G49vW5UB4/Ur//En36hr6+Z+k2AYkSSVNkd4gcXgk/+zzx+j7xxWeBt7fKzVx5c1MpzejWT0V5WoQPJ/jVNHG6veO0/ozQntG2UJsiN18w3/0RvP0c8sEWy3MjVpsuq171fa2Z23R2PUBOtpggwmGnTnEx+rcEfKGygjKKTQwH/UWiaZZjYMtRXYpPhoUfFGW/P/52jg+Pv2LOBw67ezf9MrqoacW7hd133RBFo5CtLG2hubXh6jEga1tIIZJCIseMIFusRuuVWs425QOnthgZ6rtvv+Orr77hfD5zWVZar3z91Vtqhd0+Q68UPdPO71GZaT2SwytqMgZGkIkX8Ax0R53Nhs2owbWyLGfW9cxaLjw8f+S79x94ePjIN98/UoqhpI+PR47HE999/Z7LZTUDiJDcjCM6vdMK6VKN0pujow1dN/0hiEekWBM8Sruyrma8lMaEEkcy8CB1lyA4XdgyHk0n2GMghNkbC4/a8D8iI2YhWMxHTBsKZQ2CnZvWC9EjubR3N/zCPp9rIK/a1L45lMdgjawVyNakW2ySFeKDnglGcU4pUcrKr3/9ax4eHvj2+w98+uk73rx+zfuPT7x5/ZpP373l1f090zQxzxPOatoaok4lYNmTXW2g8hIxEsVizuSK4kR35E1xpvVCTjPL+ob9/I4p3bCsT5yX76jtCdXV0IFRBcv2qWlqKFiIbnH/I6+HRTJDD2//PeihbGvnxqIIQ2tq19JyTce59T/+fUZrB5XRZKiZIqIbAjsQFfEX2tbpl0MIHL1DndHgY5JRlQv+3tUb8OAFUty+Tzc2yRVZ35BjKyd/eFLU708d97Lr8RylsMa3bWhk177RYEeMTKDQSyOo8ubV6022sa5Ds8z2XhVDP1Fzka2XR551hX4hhYYkVxLrGO/p1gDacUVmFUO3VF+e445IYYxiQjQkL7j3gQ30xAaJPviy3yVIV2eTuaGaKkJ0VK7iXn9spI7x09eLOVpwXn55rC/qRmWtuRkRXPXTLykXjEGRI61uziWYRluDlaEq1/tj6IkHWqV5ttfonbouWz5udDZcK4UQEmnasSxK1ZXL+URKGY1/B8pcsfujt0JXGyDrGBwi9OZIGwHtlUAnhkbytfyyrt7EJGL2rOCORysqhESr3bxKhqFqM+Mm3Jm3V2tOO1aX2dCr2t7TOrtoT+t6qUjuENUd9F2zmdkanKJizRGB2sQjvprRnFtAui+wIZGC618FZzh4ugZQ1WK2QB0EqaTUSWKO7nMU5mhPUKXQu1JVyDIhQTzLNaB0YuoWyxUy07RDekHqSoyGTrWUidMMQS21odoSmUK2e5G2MSZ6M/p9aw1ytL02QPQ9tjZbd4IoaDXjqxbceb+xtgWTdFizmVJGQyBrJ3aj6dKyoeci7itQyLhnULXzuHZhbcbQDECvC71Vl2i8chNaC1MCIecdUS1u67ysxGCDBdUFUHIwBkXD8oqtiojscqJLpUi3mkGsRtKOX58IGklkdumAaqAsYYuT6hpNR98jiQMxzNxMN+ySEiXx6etPubv/lHl3z9PHP+dSPvC0CH/46U/Zz7f88Sd/zFILpf/NMlL+Djzx/+uOXYZXM3x+q1yK8nA091NVSB4BFIIXSYObNSzNfUpoD4G6kciVJux1tGmSmtEaLHJBkKrQOjGZnXqMwW5+N3wBCCmwPygt26K1ruKFJE7XMR1dXyv9ckZaQdTMElJO5Lwjvz7w6t3Mm08j/+gXgU/eCD//At4dOjdZud91ajf09GlRHi/C+5NwXxNP+xue2hecnz+yLhfCSSn3n1Jef0a7vaNrpixj8m/ujLXZQjneX2uGqKYohGwLWQemSQnOIKoN0394QxvCS4RWfdAgREdqh+RtTPm37f461P/98bdwPD5/zX6+Azo57+i5kWRCmxkxlXVxtoFTzXpjbSuXttBoRuXxYU7VhSSJHCItzjYxVrPUb61S6tmaI5QeJvBctaenJx4fHymlsCwXSil8+FDIk/D2XSKkahmHciKnEyGcWMoFNIHmraDBsgV8WKI0tWfzfF64LAvPz89cLieW9cL3Dx/4+tv3fP/hIx8ezHgJheenJy7nE89PR9PG4zERsuF6oPhGZpS75NQ6CbJRjwcdsvcfugCbm2vy5tEbDcTNtkbkkmxlJEMz7IV7awk2tMi/hWuBaZE9MzlPxnwYyFk31EOb0y6lWzKnI2fDkGZ0eeq0iUGrNiO87ijR9e8GDTp4Y4l65mKzxvrhwwdO5zPH04VlXXk+nmhdOR5PW2zEzWFPDHceEC8MjbCim1GGyhV123CoF5Ou4eZ6bYgyvTfTdMcdMe7Q3khhB1pZSqd1AV2syXmxqAxXzI6t9/ia/mM+VKI3Wtem6YqqXRFQcTdUMAaRfYMZmnXdftLXWG+zZAwWdWtoZdyRYejq7futIJVtqfav2v/rMHi5NknbdRQQ+tYMj4ZmIHjiz4h9prA9U+PZQMe9cqXqmftx8aZ9uKK+yFb26zzOWO+NlEzXKcHu39YsWxURdjc3xGTsjeVyzfDdHJhVnWxg+5X2hbJY45GCIWrbTua6RPuPa9t4NbAZ13Kcw+tkd8gsXg61BtNg5M+PFl/9Z/t2Zfu4wvZ7dFwX/34fyum4BmZHi27mNuP9X/dnv8Hs+3rdPld/gfS/uFM9A1X87/p1LfToQvXzMSjNItb0XgcnNuDQpvS6mswjTngLBzREAikKNZh+u/eCcTD/DmiZxloz2Aei/t4BFXO/x/ebptvzGcQ+fSnVmxDIwUy4erN1tUWFBq2CNjWX4m4GqqaZNWfqYcCo4jIXfeHW3M0ZPeBGc9HWhuoO16qKeiKHM55RhNajyQJcD9+7DUJEbaAaorrm24bHMag7MgerGxrb/iPJqPsxuHxAnClpUxuUap9bzbgoyjUqrIs3y2IsgXmaDMzqhWgf36K0UoZg64Iysn+v46Jtju7Gmq13ElevBlsvgzX14rKP4YUxZj1q8gFVaxKjpM0LIzSLWNKW6c2cpUMwCRNaqVI8BjRSe9wGBbEby0WdydB7I4ogJGc8VpAxXLds4rV4jSPirtbdUydsEBh1MARMo9vU3LLFJSjRTb96d48fTQiZ/fwGIXNuNojoFCScoWfQRJIJ4swu7xHppJi5v70nTzNdoNQLdVnQc6e2zwgSeX14zalcWFr5Gz1Ov7ON7RTgflL+uz9o/ME9fLKH/+HX8P1RDLFtQqu41jZcR1S1mIi2V0Q68+3M/HrH9HrPpQWbUDXcgt2osjnZplrOFVGLrrk8Fdt088j1G5tcoKzK9EYgG9r58dG0Crt9YL3YFExSIt+/Iqefo8d/wLR+5HZuvPvsE16/e8M//a/+Cb/44paff37DF686U2rk3MjiPlHxxbS1W8FfOyz/eKLVz6nrP+d06ZyXxtePhee+51Fv+PY48fGofPNt4ySdBeFxUSpGT5TpxTnOsJ+Nuf187qzFBgrNjaJCHBuv2AIUYHIfK1F4Ptl/y96zbrEiYdPzspVBvz/+Fo9/+8v/BzeHt7y+/4LSFna7W3bTnbkL18bx8ZlyWSmXAiIW9yGFcztbYxu7ac6jMOWJGCI5ZDKZKIHkzXDXRm0Xt6KHGHbYdDjz8PCBp8dnm+DXyrpc+NVffuB8OqDc88nnwrxvxF5I4Yxw4jKfzYShCSEujkpCWS038uuv33O8rBwvC1999R0fPnzkV7/5inW5mMlT7Rbd0TrTtANAtXF8fs+6XFgXa3hMQ+sUz2b0v9Iq67qiqsQazQ3Z144s1wy4oS+zQtqewLbpFpwiFQxp6N0KERuKGfI6EGEJriRUKMXog9dIF3s2ojuw3r1+y25/4wZNUEullEpdrQAkNkJyat+6vmi6rwhcrStbhvb28MXNlKuWdfsZK6y9dFYbhrTe0BiJNB4fCilllpszx+MzX32145e//A23t7e8ef2K/+0/+zN+8sWn/KN/8EfspokUPZTC4y60r9ZktAwe7xTiiAbht1YEb4ZiwCRW6tS9PfN8y5RmlvWJ3XzD8/nXrOUj6/q9ISO9mvNx9xbAmyMzzwjXYvPHekikS3cnXwB7Jm3VFHe1dU2euEkX4kWZekQOP6DvCrLdy+N7dSB9ZgxhA9/RQL+IGVIGktq9iNvGlAxUeWCW9lr+72PQI+OPZ7mGSEzXEkUcLW1hNK3e2Bq0ZLFAKBomUnTKuQyjMPmBZjEnjyLqzcyjYiLmbA6w62pxJci1gQoRPdyYq3Jdt5zbMegCc5uXrdEOG617+9RbQ/7bF/LaQG7nXgcyoS9+53A/79Q6BmqNgWq+vFvH8N0o5f/ua71sICUMnaBe0dKQNvr5S/B18GLG7vzDQYZ/1ZvY7rTpjqLNz4NLUwYZIoWZaZoZsUtlvVijb1O77U5ZT8ft/Gh3o7Ba6NWyLUUr0gt9rQStJGnc7CL7/Z5p3v/2Cf/RHeropcSGNnsG5mm3IabLcSFNmZyNHhxRUoMQ9iiB59ORPFWmOrHTZOewR2qxQTRBiN2SanMOVMUR8oj2wNqhdMtaVhxYEWUtl20YEaKQAmiINF83ltIYc9ASzfSqNbH5swgj3EboBC12//hzbpE4lZwyWSaaJmJsxFh8wNRZK1zKQuuVXY/sp8CUA3O+tWFHt3xpi9FaqC1TWyDNd+zizE0ys7LaC4JyrgtrXznIztauGEjZ4jgqpke1yI9E74tFBfZGZmaXbwlhtoF7u9DqhVYWcr6HEFCjXAIVLZ4HHUBDsb2tRWLa+fOAOTdrpffIFBJZAqVmyhopl8ylLojAzX4HUdAuHE9Heo+0PlGaDQ7oOzOq6mb+VFuhtMIum/PxlG8JwSSROQajhPfVDFtDp/eFVs906WQ3swUhSkModL2Q40SQyjQ71VIDc7ylSaeJMwF6pNcDP/ns/8jt/lNCvOX59B3H8wfK1/9v5PIdqHBInxBkIu1nXt/eME0Zlc7Hyzc8ffwVva/kPHOYX1HSKy7MTO3Ew/O3vD8/wp/89c/T72xjK7g78sEGUvNkC/SvH5T/iUApcFkG4mD0AEs67tAbUZQ8R1799I78ek86REq1+BoJsgn8c5ZtWjrPYk5pzTZVSTDfBi7nTqtqYFVr1EUpJZuLoZs+iZpXVZKGSOP+FcxvA3O4Y//Zn3HDiU8Pjddv77i5u+GTn7zi7nZi3kVqsBDY3mDF3tdATUE9bwzMqRVSVPYTHPYW2nx/n7j0zKUrHy+V8wIfP1WeWuNpUf7im843R+HhIuhu8unr0E9Z8ZCDwa7RhrBGd/TNVQSmaJTkFExHYQZR1tgblcouxUCFYzStbRxD6x95jfl36Xg+vje6XlPm+ZZDPVN3q0dhFB4+fOD8fOZyPNsGFIGkLH2h0yB2YrpqNKMEkiSSu6VGruwDuBqABCZEMoG9uXOruVq2WuitspwvPD4IX/06U6pwuEncvRJSTySUZbci2UPU1ZwUL+eVr77+noeHJ375y6+5LIXLWnj48Mjz85Hvvv9+azTztGPoAtflbE6mvVLWlVYqzaMsQreQctOSuCunT25tCjtoY65Lk3VrOrW/MJfw4xq5o9vfvQQ0XhqjbLo4BoLlGiEZruDqLqKRKZv2amTGIuEFzdKmzq1WSi0ef2LOpaM5dhoJw1W6O03ZDFxsaKBiA6fqNOmXBa6O+JahUeji57S7vjDQW6Ou9vqtVlqtfPn1NyjKq7tbXt/fst9NTBFshF4hREQSMe6QmBFJIME0W8PgDK4a0FFu+3kOHn8E0PIBVKnzhdqO1ky1M5UFWECaF/KCEcquSO6PPSYkpoz0TpORL+1Y3WhOYri6lWPInErYCs6hjbMoLm+eNs2suhmTRS1Yg8zoXK43gt+bwDZwUdcwKANYuuo30Ssj4KqxtXYrim0cMV0zVg0GYbwwKAT1hm40YpiscIqANvq6EJyGK44ODidQEdugZGeRPDlmoufttlKgNqQ0cPpuDMEoxf5herBs6zlZAkJTIc8HEOH54/sNyVUEFdPtGKrurI6XF3B8tM39/HoPv7TOGoMJi05y1LyP5v6KRopwfQYE9wAIEPQ6sML/9QUONVyRr9ppMATU38f2GLx4Hl5SA7b36/cGA53q9tI/aH/D9m+mnwzWlKqNEnJ8eY78eo2FRxy19lmGagFpIG74Iw10JWL/HXJkyoEp/bif43EYGiiUYrE6PY9nSo1NVTtV+vZcNl93exNnEAqtG/VXsMa2tGKhP7KSREkoKonmg5vauyOQMAadtoabkVirfbsv1rXTghKqItHM27QPFkG3THQxyVrA1pmKukuvBQA1tT2qgd8OnkkcIMiESMXyVM29v7VGq43SDPEVsQisKZpxETq5uWP15IKKOspo92LyRhWUidbK1hAGzF9ikwqIedJ0qrG/ugFR1ee/TbG1wz/vuD9TmOgSqF2IeUKoCItFKwlINKM0M8+05y5FsUGqCiNyB0ClmjdxC9RqJkDrWpimQEgzymwyyC6b8a2MwaRADokYfK2VKwtCfViUQiBIttfHwIemJxRbT2uL1LYa6ywWkG7fqzY8irF5xFpwQM+lAK1yOR05fjzz9ubfUuuRV7c/Y0oZOXzKF+/+Cc/nr3k63xOjsfaSCIf8mt008Vg+oLqinJmnGxJ7Aju+P37g6fzIeshcygmR5W/0LP3ONrZg9Ki7vXCzh8/uldaUuxm+ucDTMXAc95labpo23UadISvTHHn103tkN6EpcrnYlCpEaMXWW9OfAgrTHGjFNtAQhTQJN7dG+xg+sr11tDXWNZGSU5izcfPn2JhjZS+FP3wj3N8FXt0deJv+Ma+mxs/uCzc3EyknLswUNTrJqUeCiutX7bOb+YQVgkmabyTCFMyKPCVlvzPDnU9em2FL751LNbreWoWHc+PDsbEvEIuwngKrZLrdl45qGQ3K4nrcFVrMba4WtmyvHK2pjl44x2CNa/KGd2zko1FOPji7Nki/P/62juP5o+Uzlsb+8IraFrpWyrqwLhe+//ANTx+fzEwsCpICYRepfUWlE2KzGKnYzV1QgtFpKohaYzvlaLl6L/SQgUyQmRzu6M2067UWb7Ib67Lw/FFoNVLWW27uE9ozWQJZlPO0wOxOYkFYlsL775/4F//6z/nNl9/y53/+G9bVTBjWy8K6LByPT0bfnyZevc7kyVwyl/Pzhr60WmjVtLEAXcTMHEwgshnTmDmEbUoNM22pNulicxfeDHeu6McVARubDFtBeo0w0W1K3b3xNaf0sEUAbfo+zKgq54k8TeScfZO3GKDNnMoHFWsZOZw2wR0xLdYL2SCvNy9gIp5zGrYNd2tMVC3uyd4w3bWMw9ERNZ1fbQpirWNvjVaKOa7WSvHGtqvy+v7Oiqi7A7e7iEhBMJaAhEzvncjB3Og3V1DYTIzc3RkcSQrXcxqCoRY57ey89HtKOdrmXZ4MjVRFZLVBWhCaa7GusTb/2R/F/6RjNLYhBDPM8fc7qNmDinxtRDto9OZWYVDoRlvlZmnWnCpoY0QCheixIXJF5Laf8TV/c7p+YeTkre72DIkqzbM6B/18a2VcUxijGbTFEDxmCEfTzb0z6MjX7jaQcIfTKXSkw9o9RVMVuhlD1tq2xjbFyCTB74+8UeHLstBrR4sNYVSENE3e4FqzG+1DE1JCQ6KFzO7mDYRIOV9sPauVJoKITWltACPbwGqgkXZm3GnW/+Ll4Ggc12sYr/VKsNZkrDfbUOFFhIC50Drc2nUbftiSE/y82zu4osaj+dUX19Xf2zZcY7tvDHwL1/ceEmDNSmB8f9iQ+a0NFkzbB6hWAqYZDvFK3f53tn0fQJnjtdJqsTonqg8NfLgTDKUnWlP7d6KxHUgpUNaOhE5rNvgXrKvq0q2J94altgqx+fkwCm5Xa7BEA0EDZYWqhqpNwRrIHsT+KYE6surb1Wm8YSkApY4oMXuL69oIomS1sZgNGMLGCiitk4IZQwmRKIMebI1X1GbPfwusiskMohJVkQ5T8kg5ArU3ajN2VW3WNK+lGigzBx/SmVtzG6ht9yxr3IBxc3j298jkSGs1AzlJhJC3bNSuxphqdGqDrsYt6Aqti7kI+4CvXxdb4pBYdSWEGSER5LxRkWOyWJ0aEtWF7TkGN3aDMNgM43yhPqCw+3kNkNIMmr2xNYCN3javiNHYhphIokblxu6T5mhRRIhi8UdIoulKaQutWs4u2P2wFvNHybJ6nrHpulUrKSmXXuhtNE9Wd/TeOZ3OfPvdkbd3/5LePrCbhDz9lH1+zefpnsP5FdPxQKkPtLoSqezSHbu046F8QKmIXNhNnyDs0Br57uP30AutJkKC+Dd8ln9nG9trUWmZURKEf/Zz+OkbeHUD//c9/JuvlfMjPK3C8ykiafaCs5HmTLqZ2b/es1TT5G4DZoVysViQU+mkbKhrOFhgdim+0DalXZpNbjxuiJxAEucS0BVaU25D59Obzv/pTyp/eLvy2b7w+mY0fcrs2Z1zjrw/Jx4umf/5ww6NAYm2cAenXW1SDXsknTcP4GYPRGs8ovJ6btzOnZ/eLeRsH8xiEAzdfXMj/OIN/PEnyr/5KvBvv1H+r//qzOOSOKXMUK8sKxwm09se10GB8gl6tKF+TK5p9mlx9wFBcIZbDvaaVZUpCRKFczYzjR+OuX9//Kce1ijBsi68//gVp8sjx4stNnVdef/8HefzmXM5s56rxTocBUmmlw6pE2MnRCteTCeSXWOBG1vo5hY+nC/ntCPFiV06QqikrExzprcJtLMsK4taY7euJ/K3mQ/f3nJ3XzkcLux3H7m/2/HmzYGYhKfHI//6X/6Sv/rlVzw8PPH8fNrQoiDDFXRlnm/Y7fZMOSPaaGXh/PzoESa6OWuW1owm7IXa0NROKbGfMrtkmpSuytNlMQr1Wq5NbRvUzYEoeMEpRpMMTk/eivXRoI0L8wKZEnDdn6HgA7gITtG0+JBssQBroUWj0y7LmbIWyrqyLhcv6tfNTbC34tl1wae0Y1zfvWh2lCoGWi1GXQtCi/beA7bB25CuelGjFokgppXv7my6Xqz4jqK0mkCsafzzv/hLvv7mO77+9jv+yT/6E372k0/5g59+QgqVIKuhLjEzzfdMEiEJIU7AQLvbVbOlA0l2jc/W/FrT2x09E8mkdKD3Sp7eQplAJ4qsNOkIq5X3vkl3CtJ+wOH80R1hMHWCtymbvjsMcJPOC4WhN6UheYM4GlkJhGhGaTFG18I1Si1ou1JULf7KHELFKeJbjmy4NiMhxO0+30yD3GBtUNcdS9hwQxHYzRNJoD19z/njI+fj80ZnbSrs716T5wPz3SumbAPeKXSCNkQrl6cjl/OJh/cf6HVFtTGl4EZsZjYkbo5yOi3knLk97Jh3MzmbPvt0uvDw8YkPHx9ZSqXVvuWHjkHdlCKfvH3FPE2kaeb8+J6ugqyFclk4LSuIDRC6RJzD4qk+9rSPbGuVYJnffh5wBoK2gbboFtUi21DBHd/dUG4Yu+GFN2KFgOV4T7x+9Ybj8ZGHh+8ZtOItVmVcCTEUsDcvdHQg/gGJ2ej5Eq5RQ73ZPeaMkiBXtFnVGrOBRIuM5nwUpYPlJo6mmzP0MBKbdjfElCnLeUOaxU3uxD6+zSxiuGp6h3GWs1zsnsPv1R//cbmsxNjIyRyLRRrLZSXPjWQWtluzGeMIhcKkcd2aYHPqqahEhIa0Rq0GtKxaaVSLm+kVSTOSImttHnnbEfecGDFsrdXNYVpVkRLtOZgwGY1Gek+OrFYm6dQg1BJIU/TYR1uDLWquU5qhkWsbCQyZVWzPvd1bxJ+yoCx0bcSuxGIJHF1MSrQWONOJIRPkBgkzIWSkL6TUjNERCoWFUwfRYdrobC8Cy9LJMZDTDu2WSb+qsuiZajxhksyeK2vsSlBaVc+uh7VGWo9omHyA0yxtInbmaccUk+l6w7IxRkq1gc6c7yFW6PaZeuustbO2ldpH9rDF7lQfjFm7trMrL908NQjQM6UVaq+IFlIWUppozYYWhQJEggbWtTNNMzFFklO+eyiEaBrnprC2ldIuFDlzCHsmOVDWk7suD11twOK6sHMaOxJXkMrH5/+Zrr+kxn+NhJ8Qwqe82f9TOjP7+U+Q8IGVE+fLB44LlH7mUh4IsXBIma5HTqcH3r8/sq7i9djEm/vA7fQ308v/zja24xiTzCCwz/B6D3/4RvnyY2cpwp/fQLsE6proEdoaaNKQKSDJuCCq0H14XZstJnW1m9zWd2u+2moC/d7FGTmWFaduDhFcpL5R3Lqia+eT+8rPD40/eV352V3l3b6zn9gQ1xh0m4ifVuHhGHg4B0IKxCSU7ppW/zNKjOibRxDXVqkw8viimHnTUoVPbwKTWDMyJEsAUZXszfXP3lrO2B990/n1sXM6d1oM1MA23bIN8d/fiFZLBDBkd5vuvzDm8tcVZEN0p2SC/20a/Z/3Vvl7cxj1LngBajSeUhd6Wy0TTRoSGyEr4rltXc10AqBXpwU1JYnnoA3/BDEKXm9Op/JGqQenD5GQ0C3jMb40SRpFrzdiDcqy0lunlsb5tLLfTZxPC8fTmVZXnp+P/OY33/Lw8MTpeNp0oNcCcKCm9rmNJtzobmw1ojPMqXOYwvjU2ifArdk8N4owZ4sU0KZOe7KfCVtB94JENxCP7XDEA5wWdW1qN6fk8eQKV0qoDmqsF8SbG6tSa/Hvt4JOgXW9UNZiU9eybhTg0QCizWjLMZpjI7rRPEapO1AwDeI5oZBi2CI0RlM+Pot/+hcI77VIH5FPYEyVysrpeKTVRkyR33x9Z0Mu6exnYT8rc+7krIRUSb0T/Pzo9tqu7e0j1sDf9xZ7MxrbZkWXR1yAICERwx6NZp4Uwo4Qmhc8ssUyaHeE5Md8bPDeuAID9W9XlC24s3C4sgK2zE/XdUsIni8ciTHQe9j03xpeNLYhXhtbv7dbsyIYrn1LSJ6f2/qVsaqGEltM1Iv7zZ/PIWfRuvLh++94+vjA8+NH08R3pTTl5vaJeb/nzbtP2N/csNvvyXOk06FV1vOJ9XxmXS60uqK9UYNsw5eUPGRdAmux56C3yq4U5mnaYrVEG+ty4XS+8HxcXKsrzHMmx8CUAlrXzXAqpExIid1+T1lW1svKpRiTw5gVxqjQ3tkeDsWyNp3CNJ6a7utC9+ZC0c3AJWBInPWkvmliayybPt5fQN03RBKEjJJo/UoDHtr1bW3UzgvRkt9Ydr6CZDMq87xaFR+Xy1jvrYm33/XiPbjESBDXZb+IqkG259hQKiviVTuxC9LFEblrPTPeVZ4sPm1dz9Aanas5j+lzX9DqJYzH40d9LGtjSlaD2eDfDKFqtHiYWqrdE9E1xtJAKtrrZmZEq4CgQQlU8LWv9U7p3dhW0pEaCDTiYDUoLkywtXTVurFhNnd+zy9OUehJ6YKj524e1ceeeKVFi8fl4GtO7y8i+prXpMEs+7oYJRox6jKxozRjpIjF3VTA2DeN2oI/Q4nAhNHUJwJGn229EUKlSTZ0WTAJT4hEiaaPF0yyILisINCar39aiSlYUys2rrWseXXatjV4tTdWmyps7EVBXKIVXd4ioMVNnWzAPWjXSvWhZNvqCdFGkOaUZ+s9BrPFcSHvez1fmAi9bOuLbIsMtjZ2M58lBFbphJiREC32D5M4jPzkYUQ4aqHxTLVmr5RiIoVACxEhWw0hNlCLKTHvd6gW1nrh+dwIcSamwD59oOuB1mZfU2ZyvqN0aHVhrU8QjDHW9UzrK2t9Yq2ZKIm1BWrPHvX41x+/+42t/5+oIbd3M/zDTzunouyz8C9/FQiSCDmxXszK/PKYkdQhR5o70vVm6FNpwvmkLCfT2In/bjqU7jFAGknZKqR1VZrTY1J2PWkQQlC0dNKy8me3K//4XeWfflK53XV2+WVR7EiLQmmBbz8Kv/ooPKyBnGGaoCobYpvTFbVNmx2+P4QN1mJS4trgQeA2wx++FsIshmyP4tsrVlVll5SfvYG3t533587/8OvGr/+t0GKmiHApYhrb7m/XURIrRI3yuCy2YN8PJDoMquX1n9KNqpzEGom4s8zbH7uHy9+1w+ioEznOXpwJrVeUhoZOni0GQGJD1k5tSvUN0gxTbFMVaYRkk9mg0S6gCBp1QwN7U5KaVk7EQs7nOZFyIYRKKYvTkQ0lAqXr4u6tyun4xPl4w2634/buNR/em5nVw4dvWc5nzqejIYfdTEmGXnIUzSm6JqY36np+0TzXrTl9+QexHOpSVt+0OwljEOQYWGtlLRZBMOiVKVvsSllHownXAo+N4jmmRgNJuz7jL4pB/3oI7sA6Fhf/epyiTVZb43x6MsOpdc/IoB1xQ7WUjSLUamHQ9BoWVUSKxOzLv+gWtRWD6+Cjq6V1aCJtI+w6NI7miKn+tkXV9buG0I51N4p9f5RO74VWV1o1Y6vaFSXw9XcPfPPdd3z69oZP3x749M3E4QAxV/LUCLHbL1PbqHurbjZTx1YPTqcUX7PMsbLZJLutLGVxKllkSrfWIGgkx5PTJs94a4sQbHixGfj8OI9BWVenovV2HciM6WQIwdFBO17qv42uHNykKW8GZSFaESpOrR+3Z/A8zOE0OijHRoW8DgFiTBuCMQYzIqP/vr6vGOw1xiBTzx85n574N//qX/H+wwc+fnxkWQuldi5r5WY3c7Pf8Ue/+ILXb9/y6tUr8idvMSSlcjoeWZeFuly2NWW8ryCBVq1Zr2pGihA4nSb2s/158+oetLPLgd5Wzqcj33z34Ci0cLOfycEMdL788htq6xwvlbvbG+5uDvzpn/4Bl7VzvlS+/vZ7RITDbsfdzQ3ZvQFG7jNiud05J9fiRFQiazffC0ZzYWpEW8MkEBhDyWD64eDxXGLsBbwQDRLpJDqRtXVW1wzaL7PfM4rgF2MRmhtUbc0zkU4GorU+0unS6KF77zom0y/XMpc1jNtOzKV2M7hyKnsrK51GVdMv2rAK+tqsueXFz9jNCwq3h9ekPNEev6evK72vjgo6Y0Htvo5xokvkpQ75x3ocT4W+s9oIzMH7shYyhSqNy7lAVCTj+1ylykJvZsbYm0WrtG7OtoGGUGmlUXtnbWb6GIJCKSQN0BOikQBEbSR3QH8sbRv01lqotVFLAyI5BdoUCGJDl1Y7w2Cu1kYVfw8qSB9UYB8UNjaDSpy11MUG2o1O39uwpGu1xr03qIUpTMQQKO5kXyusXSAl5rgn6N72MI6IBAST32gMpGlmmEVETFOv2WqT1jvUhsaEkqh9ptdE7521KNM+ECfLcTUWy0qrCe1CSgd0PVFa53i5EKNneouxVKaUiBrNjIo99JMbVwoxJFI82DNOQQVqX+jV5RUCMVQuqpt+Wlujd2OTDk05zgYJMZnUXIaGVrAsr452G+J3AhUx5lS0aKGlVgf9Mj1WK9/ARmgaoEe0BbceCgiBPO/YRagaEN2RQ0dT47gG0rzj/nVC+kfWvvBwPDLvnpmZOa5fUZbE5RJ4ffsTUtxxe3PDWr9jXY+clu9IyeJXOyutF5qeKDXTJFNaZq0zS8l/o+fpd76xheusTzHKbsZQ20NWPvxv4LsneP8kfPkh8PEp8+13gXmCPME8uaeUN4VrUcoKrZiuICYbjIYkFB3FAtTizkldzbFMAK2EZBSfGuBdqvzR/cJ//YeVP/y0c7PrxlTeumXdCpQxU6sVyqIcj500C1MTJo8uGnpV07R63I5c0dDW4XyxjNnLAq8mOHhR8R9uHu0vYlD2Wfkvf250mL/4TeHfPMMxJfb7QBl5aXRKMXrybhZCMtlNFHOHLfUFPdyNosSnUqi9lxhNoxt3sJvtc8l/8P39/vhfeuQ8MeUDu+mew+6V0VuTUFowR+D9bMP+aPduakpzUzQrpBvKChSjo2tEerAIoGB0PYI1GVNKzHnHbtrz9v4zdtOBw3zDzz5/QPoj/2r6QFmLaUKLN4bBI7IwKllrhVIjl8uZUlYulzOn46NRDafsFOCGXtqGhrxE92srSIU5hw3BHJrRYZQ0NG/NG6LNjEdhioZsR1HOa2OtlWU1LWhK6QfNQnC345fvYITNjy9dEVZ7xk0fe33UW3MDqc00BsZgYFkXBt1OxAuFy+WK7gg+FOibYRRylSPEGMk5klNkStnRLHOmFiCFaBStGKjjRHqmrEhnrUbXHvE4fhptM45iTbP6miuBFEyTHGqxj98VidGK8t55+PDA89MzHx8+8P6Tez5+9opaXvHqVSOkPXm+J8S2ZfMZONW214er5GRoYw2lsOu4rCulnrmUI72d0W7O9YFAlMwU92hvlHhBm+dHtrZNrX/Mx3Dp7u5abcyDkdNqBa4EIbQR6xA8nuqK2ipCVIFSt8g6futjK+o0Z4t+MjMq/14wVPhFKOrqmZqq6lFWvEB9ICVHfIOQcrY9is7z6cjDh+/55a+/5sPDI4/PJy6lbYjQx7gwTSfOa+H+6++5u9nz3WdvefPqjk/fvmK9nLgsK6fL2Zy6W+N8vjAMzuZ5GvMRJBhqob36e7PNaC0rz8/P/NVvvufh8ci3D8+WsxmF4/G0DRFOS7ViOQZOS+Gyrnxx+gyJmd3OGmXtNugp68WbaovYspxsQepCaCs3twdzZp4CqwZKF87RkS81FFewwjmm5NFNTu/2YU1v9jnUr0fyiKKuwuPTE3UtxLxjM6Ly67fpov16Bb2ue2PQEd2ox4be5oiqVKfsC0GxZtLXXvehRnCDHEwDitdHQSMShKrFzIQ0bS67SDb0tpvGetCMm6ORIoHz0si90XoizTPTPnB6fqStC2s5E5INrTRGi7z5O1A7lN7IblYk/oeOxe5hDKjeK70FbvdWtrc69irLNUU61ETskRg7OXizWTu1NULuEDu1mrFWnBqHaYamlHOh9ZXaG+eKvQ9xKrl2e07U8r/XiyKzRVmKy45GpJgiLK3Tl05oAiFZveByAjM9Cu5RE/weBejUdUW50PqZkIpd91pJUyDFyK2ae/kkE39w/w+5m9/w5vATGsraFn7zGHmuHzjXR2qz9yyyksUMW3rvnNbGsjZyMH8FWJw1MRNiJuWJRPR9M1J757I82X0fKq1NoJkQd4SYidGGvb1Y6O0yWy4vbSEwg0yEcGs2fbpafTvYWD6EyXFCmhuqaiFIJ6ULS4hohfMZLilA73Qu5p0Qgj3zQA9mkBUlsYvZ9kKUY13d5DaYb0lTPj4fubTOfr8DuTA8NjwVm455Z9C7mWtVbyp0BzEhHBC9IB26Z2LThLYCHeIUEHZAcNNB0wZfLh+RGpk1smsR0YlFZnbzzCRvqf0dIo9IP7Hb3UCPnA+B0FfQ7mwepVz+Zs/T34vGFsAiLsSbJ+F+Nsv4P/uJ8v09fH+EaYYPN0KKidu9aUBPwLrAwnU6vv3O7Z9eqKo1z6LQS3MzKoHkjW3raDP6RQ5wuK384q7y+V3l7Y3n3r1Acey1ruhtEGEKMAWlrQ1T0Ro1IkQhJ4jNmkOSmQQMerIVhFAalGpTrzgrc1RzKf7B2fJBwIvP6lFjvLvtfHYHP71TfvlsugALXrapq+dq05zlYoYEAwGy5lrHJjZoBTpoED51ioY834iyn5Twwzf3++M/8UgxkVNmzjNTNtTW7PsgdAH1KYObk/QG2m2CZ3d7p/cLXU3HFsjEsCNNO9NapmgT1ABTntjlPfv5hrvbz5nznsN04M2rxPkUmefM+TImtddm028eRzptNLUsF5blwvl8pKy2IaU0UxmmKD9EQHV8it6ulMkXaNagDeH3ZsHz9lTprVzRAi/6TkBxwyiLAXHn1h8sDHJdaxjmPbx4X2zUzkEvkq3JfdFT+GZvbo1489s9E9cyPYeJTxtIDbYOvKScDh3vMPmJMRqdKEZH1hQVjwKCDZELIRDGQ4mtmarDCOvqRmtL6lhnDJFvvTOgXNPS2eTKzuVwqrVmdWmNRQLrupj+S+D2EFAJ3NycORwWcpodnfXrOQr6MRQgbEgt6BYd0lqz6IO6stYL2hbQarmDtlIbW0eyacQ3PaTaIvXbHd6P7Gjt6sA9HLev71k2EoCC3+xOzxz3RrP7RgN0Xb2xDdvtKj/Yi/zcdtdXudgxhEFLvpqm9Vauj4RBUD5Mcq3eQPlfMCsEbGh1PvN8PPF8uvB8XllK2x6tII2lWGzFsiycjkc3hyrc7hO1rGZE5/rr1sxwxmQHlaZmNmUDKTNXqkBNkVICxzOczxc+PHzkw+ORx6cTx9NCTtaQ1pWNFn1aKiLCbsqkFNjNGREh58SUJnbzZGZ0/swaRVNQb2xNBt0QFJ1tvUw90DSiKmQ66lPh7vRpc0NP29oxWBq9N1qI9OCNrQgpTz7jU2pZramO5i5+jfQJ24BsXK+AI/Rc14yh6YfBzADUhJ4jx3ewZXxFRUVssOL3nm73ZNiyh7u66REBHc+dXJs7cJOoDqU68h5gWQtdhdo6SZLTKoXaoXZLhAgYnbmLvLiPf7yHsYfCtsbKyKb22aKdh2t+MqjbI9ggrzT1gafQfS0MyQxTuzsqa3CUtVd6MLRmcqp+005t1UybqiIhbWu9Pf9mrrp5EDijAx+mxjjes1CqQuhEFXryeg+ug5puLA/0yvRR7DlRLY7WuY9CUyKNGIRMZoo79umGu/CKO3nFrR5oqiwa2HHg0k9oS/S2gjRqrwSpBOLm76KEcVLBAgyNwRO6D3sGK0X8eS+oViR2H7gLSdQo0jFv9UFvZkYpQQi9YDIAtWfFrJvcvRtguKU7xVeSKwtWhOrxPMZ8GutYCAKhEmIkiplPjaz3wTWSLfsYanVwIAAa0a6cLwshRZTGPNs+p7VjynoH4bQhdKsFxx8SqOXQancKuq8F4nm3RvIwPTxk+9waMCrzYgMXAlqfaCQuGtnnT4k5Mad7el9RFnIQ5hQ5zBOUFdQG7b111v73PMf233eIT/gVMzs6ZOWf/0njYRE+XAI/uVceTsL3P4U/+MSasP/bv1TWCzx22wynDG1nND21lRTFbNYlBrQ2+lqpjxcEIU2zUxFBNVAupi94PTd+8Unl//DHlXe7woxCj0bNcPThuvkY/SlF5RdvLav2L36zcFomLqfM/sYch3O6xuqUfKX8xnDduMpqtX0S5Sf3lV+8bhyymVO9rOPs+6/0svFX+9z5g3fCf/dnkb88KV+erSRfm0CFV/vI1KHWTimG9E2+2cVgVvDaTXPbohpaABR/qRzhsINXe+WPZ3h6ZcZSP/6t6e/OkaIXX9Oew3RDTBMhZRrmhrfWI0s5sZYTKT0jGpnjDTfTa3KciALL+kSpR2pZSWlmmm6Z92+IyaJnTNNp97Chw7e8vv2cnHZMaSbFJ/a77/nis7+kt8blfHYTI2MOxckMS3aHW9K0R0Lkw3dfUZYLdV1IORFjIqVErYb4DuqkaZCud0wtFdQmkQErqKcUN0RuzonaGmsp1Io7BNvPisBlGc65wafU4iilaVFbLVdaqBdnLxERRp+rbC6+9JFxiWtd2V5wFK7b34fgNG0vBOT6e0eBG5zW2dXcjNmanPE7TBuZc2aaJqYpe2Nr1F5DZ2C3mzcNpXbTKdIbIUBUG3C1zmYIol4shGgu2Dmb8cVAD0dTa3YnruuuK9pNXTTUlmXNrMvK9+8fOV3OfP7pidYh552VIo4SKnj+ov1cjKPovg4uVaG1ao3ScmSpT5yXj2g7I9pIIb3AlCJCQpgQ9oaMccEUXT/uVWdzGsYcklXVrtELd+hxqqJf0xAC67pSi6GMrS3boCXEsDEQbAiSbFDlBjxXbbMNFDRP7GajMC/rYghSM6fz4SodnQY9mk1Vdd2pOZXHYJKZIBgT43Si1Lo5obYXZmygrFVZa+N4XtjlyPuHZx4enmjrmTevXxFT4maXOV+MsWBxXZVSCqVaUTjPHskRFYmCtkIrnaenJz58fOJXX3/Pt++fOV8Ky1pJUdz8Tahdqf3q9o927m4yKQc+//Q10/5ASBOtVo7HE4+Pjh6BUbtQIoFeVpZVkLDQyso0JQ77nbe6kCSwO9yyO9zTpgMaEjWYpnc8X93PqRl+XTX/iHikBtv5bs5UGfdF9KHcaEbtIrEN2MYxmsKtsY0RqWbyU0eTowrN16XRDHus1DZMwVre6PdX104bsSyIUd/8u1IyV2xE6EUs7qWOLFXl8fnR7vHe6f0JVWVZlu29RDqRRi/VHd4jP/ajjaYRQ0itLookCUTPmu0qFJTT5Ux0Fs4w/Dmez0blTMEclJOtvbVaXE6vjRrs+q61kAhUAulwg3nBW6ROLY26VNIEMZumeuxttn92zL3XaO61N8+VjdQ10SqcSiVfzE03zJEmAtkidqobLtaKXRstxq7RwGU5oXqhdzNb0q6EFaZUCVHJ6ZZ382d8tv8p83ul1fe8r98Spz09CYcp8Vwz2qyW0Vap9ZldFrJk5pgJ0559mOl19cGmcqlna1zDAj2hwVgSTbsNbxxJD4plw7dKTRDCxGHaUWmsxWL11nWFCLmfIUZEE60W6JBCIsRCCI3ajI4tXQkq5LQnpsipJIqeuegRTRPSBIkL56WwlJWbm04Sc7wez5iNFY3ZcF6qDWc1cDktxChMu5kpJtbeOZ8v1L5wXiJffPoKmlBXpagzA0Ilhk7MFutEV1oV0pwNwa7G2Cy1oWVhlkSWyJxmelMu7UKezFOgt+RpCIWIIj0iPfH947dcauH95chP+Efc3b3l1f4fsNZbSvuW0BcOKbF/c0O97bQWOV8OXE7PnJaPf6Pn6e9FY7sxZBil0aACWsN4Oxld7r/8XLkU5bTC6xt4XoR/8aXy8Bh4n4RWvIgQg8VbUaQ0G+5Hm/5s0GUw7aLkyEhKqH3MVeAnd43PbpTbqSHdflfPV+t+xSZCo0ANQQhReXWrhKD8s58XfvUIv3lSzk8mrI0xME22R+Qs5GR5ugNFNaqRssvKF68bP3tT+eyu/YCGPExhBhVvnDczBLBiap+En75WPjsEThWOa2Zt0Kq4Tq2TstG2u4ovYvZ72jC6cgRY/Z8uCSQna2p/eq/8JHVeTdcJ/++Pv50jxdkazLxjN92S0kzMk1HDer0iKoItumHmZnrL3f4dU7RGY10fWcsztY7G9o7d/p01ySEyguW7NnLcMeUb9rvX5LQjp5kQDig7/sEf/yHLsvLw8MBAhGqt3Oz2RgvKM8vlxLosXI7P4KhLStkc+lonSDS6Op7j2rsZVqnpgcddbHWWUedySoxpc5BAVDVasyPFfYvdGWjVQCCNIjdNkRDDVkC23qm1WdO7vZ54wyjXc+ooRH/R2L6MqWF7vSsI3F6gwaOFs2n+i4JUbeocJTNo1qORGIN3+xi27vUX0/INl/NnvLi2tNTmbIuE9ObaNZdY+AkNW76pIaeESIjqJ9tG9b1Z5mJHTDMY1WIeCDRVOkLMbs7RK99+95FWOyklbm7uzd10RBoN9Mqpb+LIkg3h7DxaREShtdXyEOuFUo60eoReiGIaxCCB0hZKX+z9OYLEMPj4kS86Qa5U0hTii/stbtRRuOqd7ejbM+I4ig9Rr66zlvVs+vSYLIJnZJ127UhzQZdapNQG+bE5K2wNsNmyXBFCcArj+JlWME1otfxRCZTqrKKO6bgBdKCc9rXL2hytUh6OF7758EzKE/vdxDxPzDkSyJSS6L2xFnEaNYYIRCHnyN1hckp153I+s66ryRMYCHU3bVq3Z7cpVFXTB9vdx5Qn5jyxroUYC1ECn7y+42bOTEk4nU6WkY09k7VWgja7Ml15OnXSEizOJPswQQKrGCI931RCni0vNwQIicpksopu13qc7zE4s0HEQMiF7NK0LfIHtmGYBDeG0x+2tVd0cDS41/srxOg/Z4PEcX+FaA7Jpp32oQbCZlA3qO49ME3uJuv3lc8uroM7kQ2lTnn2eyeS8uQDfzZH+9bH++0+QPAhergOgH7MR2udVq2J17oQScxpxxTwIWlAm937pRQ0WkoGBPAs2dY7Wm3QoV5Y1a6U2lhOC6qR2ANVhRKU0jvrekG6spSLmVVVi8zqtVPU3Hrp9lzHYOZTrXaKNELvNvwK4tc62p5bGskf1rpWWom0FtzXAEKzxj1IJwXPlW1CjAeTHZXFUki6kJt9voiwS3tSCbTLhb/811+hpTPliZubW9JuIrzN5BDZhx2tLQwugPYCUcg5E5tC7RyXCyk0puR7Eh3VMyIHJGRSzKg2Sl234WDvap41Ar2vpJTISQgdiELzutbW0QRYDXK8fGRthaaL9Q69cz4VUkgkIplMDplI4rlDCIlpuuGygIg5Ig/0XrC4q1I685yIwRgLa+mUZqyoFJIbZNkeZs2xoardr20PipZmtY9LFoamWpI9x4jlD9e6GqtNlaqN0IUkiSlEsgSiwH7aoypcSoMudARts5nK2TiF2iPaOkvp1N7JMdPayrIc0SI2WOkzs0xMaWK/O/CkT+bvouYVsNT1b/Q8/b1obOG6r6tvWsqg0kV2AeYEh7dmXtDUaL0fTspP7uBXe3PoPddrodC7aQ6DI7Y0Rd1B1XpnC5s350P74kAWgsCnN8rbfWcfO1ot87U3p0n6wzFs0UR0iwm43Stz6vzDL2y693yG00moGljEtBYhmT44J5ze7Bo4lJupc5M7P39T+eyu8vrQtgJo05S9pDL6eett0Ig7OQqf3Cpv943358Djqmg057RTgCl7dlw1VKc2c2hm1D+wLRYDU7JkDSVFeL1XPr9V3orpoH/f1/7tHilOpDgxpR27vCflHSFNJK1GU6KgYpPZJIE5HXi1f8f94fOtsV2WHWvZW2Mbd0zzHfvDJ8Q4EaJly5l74UqKEznt2c13FkGRdkyzQpj4g1/8gq++/oa/ysEmwdppHVLKTNOMSGC5nDk+P7IuZ1KKjjaaTsu0VyAhksQW/d5scw+9vyiwr81tECtq7Zn0oHMVcorUamYXTYHevam8FuYxmoHObp4Yv3BQnJqMonE0HOEHdL+XR/foE/htI6nr4UwlW2yGptaLNPtZR1MQ1/OpmXh5h3ot6NzpkOtzbS7Xbrjlf8fY3DYzkE5MA6XWregck8IRzj6iQ3RQESWYSckL+mrrnabQtCMqTnM2+mD38zhQvYeHI60pMSU++/QtKQbubg6knMwoQzzsPnrcgI4mzjReln9YaH1B22IIQL1Q6hFtqyPAiSDRv7d6Y4sXhIbbxt9Cr35shw1MrIFIKSOOrqaYthifMdEY+byjsWpx5Nddf5e5YYetKck5e7xU2FgEQYdjr98jzalhem1q/Qv+eqPxvuo0h3ZTAHr1ActK0O4RMEZTbR137nyhUwc3UlSPu4Hn88rD04n72z1BYDdNZqKSI3NOFKfxGepnDqs5ClMUdpNHE7VuhnHNaI+DLmzUzVEtqN/DI19dfC3J5JxZL6vT/AN3+4kpBcS6BFZHFBfPjMaTClStUQlBqK2x383knEgh2qBnvTAFCH1PTILkDD64aGJO4GFo3keDqK6J1jG08LUrGWI2nrPgucEhRs/adUbbGKgN7bEf27Xrfbsn+tbY2g9Fv1+GptuW0fG7fQ3GnXtl8jvlKi8YcW3j65bjnclO20op2VDT1/9aqjF2VLbX2dxc/w5VDeoeFr0ZNTQGZQoTaZzXINDMebfUYiPOKRn1dAwrvYYK3gyDUWlr7ayr+bsgRs+2AU03hLF3lnVlrR4bpMFpx3UbeNia6Y2thagSeidNYRsyQDCTxtrQnBECWutmvopTVoOqWZEJhGCyp9ZsLzdEd6WWAN3voW6eCFOYCWelPp/56ldfUtfG/nDD61cXDjcHXh3eMO0jN/lA0QtIJcpwfm7m9WBCVi6lMCVzeb6qSxdEdmZgGqIzRwrRr4G65E+6MYIC3eIoUXpQUhDfgQLi0hZVOC9PeDquGTX1ZgO0FJCQyN7gBjctJFgMUZBiNO2Xz4OYsVgtyn5ne3NyVkzrnRqsmY1DVqOADn6S7fG9dXrpaK0Qs639KogP52MI5oAu/eqqXJP9fQPpgaSBJLLJh+Y8U5sSZX0RZzgjanVW76uh4d1MJ7tanm6rK+typEug9ErtZmQ4pwP76RWnSwNZqN2kB8VZJ3/d8Tva2L4MnvgPfQc//HsxUwuw4jeivNkr/92fwnFRPp6UXzehV7tXAgIxEg8RibawS2243I/1oigBitFMFHcUBebQ+cndyptdgd64XOx7JjNHxLXuhOgbfe+WEakBqOQk/OHP4O2bzj/5w8b/+JeNrz5G/vy7xOkYqSKEKZC8sT2kzuu98uld589+0vjktvOzt4U5dnfCc72fjimvnZKrRs9iHWoXlpqImJHUL17BsSh/8b0yZyFlcz9WL0aamwnUbihZENjt7DN2YxbSVDktwpSVu0n5p58r//QL5RevO8fvfEHhZQn2++M/9biZXnHI9+zTHbMjtiEmqjbbzIIVLlEETXv20x33N59xd/iEHPeG4uY963rL5fKRlGZ2u3sOh9ekvLMMtV48RuiCSCSGTJpma3LzbNTYNPNf/+/+Gz48PPDll3/Fr3/9JQRh3h/I+xtU4duvfsPlbJTnnBPZ9aGtF2ozN9SXN8eY9tc2HJa90VShrI04ZTevGT+mnM+rGWxUo+2FENFk9KKlFPbzzDQlbvdmVa+O6FpXFZhzNi2fKrWZoU9K0c20rpRAQ2mvGt+rPlG3YnQ0ji8byEHD/OHPjN+tL4rVfkXdfN0ARSVY5I/TRHNeyCk66mSvFYPTEzEdsaEgQ2+slgEclZigUy1XsTX7zL0TnS96VCXFsA34ohjIVJvppdamJvQPgbiu5sYbM3EbiyvrZeGxe0h9/ze8ffstj8czn3/ymjev75mmiSgWORBi4IpO2u+ozQqS1le0PyL9SKAgWmi6Utsw4DKjr951a2y7ukGBmvvkj/nY7fZbs5FcAjAopi+bUXS4JVdKMfaPsXsyvVtjt9vtrUGbph+YBf37Bi7NjbzsfhqxWHWjuIKdxxgGY8BeL2drSPI0u2EU5P5MLAt6eSKUC1PovHl1S2nmhFy9SBpN5ItRjoGAIqyl8/B0IYaPPN2sNBUOszWYKUb2ux0hZZ6fz6BwWZoVjSjLkrZn6u5mb1m12QyhFLgs10Kqu5Y02MuSYuDmsCenRG3Kr778jtvDjsNhZjdl5nnmze0NQRvnc+bx6Whlb/AYFbUmMiWjYqvCx6cjqsphNxuq6o3vPM/sT4/sDx9J85797VtqmGhhoroL9Q8aW2XTG1fqhrrHYGiKsa/MiT70tl3rYQhmdPMrrX3cTzElH4Ipvc9mPNf7xoaZppkh1RiGdj/Q+8OWizqGkvZ6zeNl2ou6Q5mnHWEfjZkTgtOUjV4cU6RVuwdrK9RSWZYLqxupyXjffydiFcSy3vPE5XKyJr1GY8AEYb+fWelWY6rVi5eLIqmj3fOo/emI7mwuwfdzKlMQdjGRYhqjV2rrLOtCLZWH5yMSdmhITDGytuGEbNeL3snZ7qE+jJm6kMYwpEOtheLXI+eZw35P10qKtp/QIRE4TJkozZyrJRGDEiMs65Hez6h0mpoTdwmwALk3DuvK44eFD19VzsvCulQens+cTyfu7g7c3e/57PCOw6tXPPITCgsrZx4vR6PZksnzxD524vOZEDsywS7s6dopbQy+IYZGYaX3M8tqutoQIvvJDejWhYVGbQsSjwiNw07JVDKZfbpBie6a/JHmMUTvXv0CutBKZD/t2cWJuzDz8PCRx6cnFs6kKRA10U4VXToTljwRgzKnyLJ2lqVyzAu7Hcy3M3nJqAg3u1tyiESEQ1mJIuyniSQJ7ZVJZqgrvVaen1Z2u8RuP29reVmMpUcPzHuPbesrvUQ2kr8GOsJyORKbEjNM8RWlNNraWNVkRzm+JYXAFJSlPKNdid0GyqpitPXnI0tauLs98Hx64Pn8xLp+Afe3vLm9J4YLQYXnxw+s68Vj+/7643e0sbVjIB6GDdixIbfe1uqLr256Ep/hxGDI5M/fwB9/orx/Mkdkr2fNta6DiE2z8hy2orLVa9yGNl/Qg0VfCJ3oNAmP4DP9TjONlAS1PCcERH3qbVPljc4V4DDb6/7xZ5X7g3Izw/dn5VgCD6uyn0xL/MV9482h8+ld5yf3ndtdt2D7F5vOKL7tvP1Wk+vI7cjjHWfsdq/c7q4nW7tRJVHozRDc6yJqG+XUncoh9ruzwJyVL+6UdwflH37S+ewWbic4u4Pj74+/3SMFo7AEz7MdTpkOym1FjrmommnJQIAMpTPaqSErbJTdK6qZGIGgXdOG6l1bj+t0//b2nk/eveOLLz7ncPhzmkZu7l/bJrkW1uUCKDFZxmaIoyF5ET2EPXNDz3c9ZHM9ls3J97ombFQ9/8wphu2zVC/2okSmKTHnRE7RSEvKtXlwxCP0btTkZFPSEI2qeH2OBmqBNVWMk/HDog8Z03a2AdF2PV4UL9emw7SR27WDDSnd1jdVjw4ydLkHm9oHonOnwqaN6wz97ChCO9WvLfrifMsL86LxGu50PGWjIwa8yXV97HWU8FtjRzX9s/q8W7whXy6Zjx+P9A6//NV3RtfrnTevb7xpMRrY0PSNw/ICK6qVwIUoVtg1CXQRbDo/EK5wvYfRF+f/x88Tid7Uj0Y1BH/OrrSh7XttcGL/fm2G03bfTdPkje1s6K8M5M71df1aULyMoxr7keqVnZBSco31oDxbQ5RzdsRt2ui+YTVH8/V85nQ8cj6dzYDJ/6ylvdCiX7Xlds1tGG364ehDVOW8NG88haVWLCcZl0gYDa62RgxGZZVkTt05Ci2ZXvBmN9Ga8nRcNv1jDGb0ggRbE6bk7sdmaPTx6UhtjVIr6y6zKxWL5uq8pIYbJdkohttdpoa4yAuEVXszl9rFUJDWzCsgl0LqCnmPppm4u0Fihph9IGVxZPj9PE2T7+GGclsT2bb7oWtw+rDYYEf5rWsu2z5uhb/tF8Gbz9i7GeZIYJrmayPrVOaXzS2+tmi/Sq5MBxwMHXeUuKshwRIsFmqgwCnljUlgZmeJmDqpJ2qqLtmKV0lKTD+Iu/qxHgMZZeyjYlGNHnNsztzjOccGkuYF0cwUDVx6AkzZni2pCNUov1kshk27K1i8Luvmb1IVcgibY2/wIU6KY+8WH8B0tA05CJR1JZBs8IlRhrsYahyiIJoIYsPcfQwgkarJ4p0wFNRlu8YWsYgRpBqVtqKsrVqMVj1TnxrlYzHwKYrvCd44q5JU2GlE8j1FChdmeo00GlMI5BCZA5wOhSCVKZkJZKexNCWSoHdKWWhtRXulNdMDx7DjkG6ZJHF3a5IAgrCK0PqF2k+om+gJgdIsQQFXztswz3c+CfSmVK0sEriUldO6sOiF3AOQKUulrvZ8ZgJJAilEVrF9trXVmGVhZpoCIsn8AMSyeudpbzZsIRGDpSHc7m9p9WIoLAmRTIwzFBv62bpsaG+Mg9XVLMHEHfcbiTb2/2jJCNmMmSEYA9VYOubHEqWbAWSLRoNXpVSLRdOwknLiZr9DCKSQbfiiyul8ojc15L57v/I33JJ/RxvbK41Wvbj87RpFwOyox/e/9AVWK/BCUN7dCn/6OawN/vWXnWURnu35hGaxPrE3JCnzfSImIUShXgptdVSjWCkXZ3G9QrPquGE5UWobUCmKuuGTvUdvDmS0391NLOzvc+qkBP/Fz2FZlT/7Secvvot8+xT4/3yZeHsDb+/gn/688Oam8+62M0WjNo+CZTSvP3TUxDela7PLCIkPZvQmKHcH5e6mE7CpYW9CjhiXv1qsEGJfKz6cnWdHpLB1fIrKJwfln/5E+dm98k8+U+ZJts3zx15c/l08cjSqW3TLbE9iMAMChiOyQW2joeojm1CvzoitWUSPSHCzKGcuDM2NhK1QEn8FdcdaEVv8bm5u+eLzL/gHf/zH/L/+h/8vjcT9u8/58pd/yfHpibJeyJMVwzaBd2Oj1jeUEkbRe9UWjvt2mEiJyGZ2pHgj0y1GAWxTnXMyzWfvrGvxZjkaYpsjKSXXyhlFzop0W4TNPMnE9GbmZEjgoMe91LsN/VjXgeD+u9fo+myq6xyvzqQ/GMSJDSrYmujmiIihKGMnGEUljjb3oJC8MYrBjWRwLaz+kB7cmjeeQ2dk76MOWpCY2QYN1g69Z1IUchA0RSSYXseyBtXR0oBEo6d0oBdz0h1DA+2m/3kksFwMlV/WwmVdiOkd8yxMaei+/DrLGAiYWzdYfi7SIAVai6hGSlCPr2hXp05lo99bzMWV6v1jPUwn7m7Uw6jsCvFbkeUmLL02d9BVb4YjeTIqqAC73c7o//OOGEdj21/QUfUH97COrFCuOvIQvMn0IVL3uA7FhliTN81mRqVW1a6BWjvPz0ceHh55/PhETpF5yuzmzFKqo5uDem3NoKEqwjxl5il5s2MOws8Xk0GkKJRWbMgiIDFAg9IqpVaidFpZCZIRpydrCrQceXVrRmLvP55ZXGuYXIYQY2S/y8xT5ma/o/XO6bRQa2NZCutSuOwTU75wPC/cHPbbVjbOS3U9nKG/NkQotTHNiZxtmGbmi5XzsrKsK+eToq0yTWfy6Zm025PmPVP6CSEF4nzDWitSYV0vDG+A3bzbzNR6q9RmUT2t2h6/DeiGQdu253vdEYI53sowxbP14nqYeV0IkZwnW+Nbe9HYXv0K6Fd/gRCHJEM3czNzMh+MgL69PkB0evy8322GWeSBDtu9lnMir6vTWhs5ZV+Xf9yHxTWZ+eHIeDaGkmXPxqbkaHKZoMkGjlWpajTsqK437g3YI9IJUgg0UujMu4Dg0VniTjMSWBWqCpXI7AaD0jtVLL4xTdHX5EROPtRoBnKoCufLicAOTU6nDXZdo9MaxB2wRZXXKaEaOGvnqZhjs0o3ckwT8j7TtSF9RordX0Ur52JmdLE8sj401g+Fw27HJMnNFO0eC3RS70xF2e/uKUE5cUOYJ2qvFksUJ5SA3E+oFoQV0plGY+2NtS6UurCuR2qz+6i3SAyJKdzwOr/jNt9wuL2nqlK08VATp/Ke43KyNdaZPktdOZeVEJxxKWGoCwGhVHNbPmrhuFw4lcJxOTOlQK+F5dxMfywzE4EUAjlGopjbem1nSyCQmXkWcjSENUogysR+d4d0SKqklAih8+b+DWU9U+sC0olhT04H4IKokmMw0EOSSSl6QZpgSJvSS6HFTAuG+NOrbdo+GAtJETeSy3EmidHX5+mOpXSW2jn3zmUpPH44Ap1pzrx789be8xQ4zBOBxsfH7w0k6cHyX8LL1Jj/+PHjf+L/VxyjoTX04Sro/g8dtsH0rbndUFwRYuz8w09ND/vld/Avvgz8jzXQSmCh0y5KL+aOfDkFdvtATkLezSBKO6sVhrXT107DboDvHwNvdoFLEZoqKSopGaU3JyF2c1LuFXoyilDPTk8OmH4X7OaUSI6N2xn+9HPhp68Db3aZ+3u4u4FP75vpCeRF0aMv6ukNkR0fXrnW23bmShPW7r8DozwtTVhqpK4DLTD9UcE0s2uzn1385EeTUXLIyqsD/OPPOj9/rfzjzzs/eQWHSdgNustwgX3x5/fH384RvNjvFNZmrsddoLTF6MN9pfdC04qIslbhuLwnEMlxR+iR8/mJ5XzkeH4k14xSyfMOlUIIPnFHUS0bAyC0CI5IGDJhw4tf/OIX7HeZX/7qN/zVb77hl7/+jvPxmVoWUo4bPRhvELuq6wCFaUSUOFUxp8yUEkuxuJ6c0hY2D8JaG6U2czL2pm0tZpg15cSyWkFk7qkz05TJOW2NU4gBPCh+vH+LFBk05rzR7GJQGw4ER7+0b81gCIGggmpw5NMb2TY0tNZ8b1RQwTaOaJNxRhODK0s36miyKXaz7Efx1xoT7c38JZgxkAGYSqOb99N4r+Au06a5ra4D3M2z0Rn1hU+BmvmJ+rAsdmtm93miEyhNUYlObYTSbahAU8Qdk7uu/jtNR0evRBEu2qnrBW2NZVn46psHHp+fePd24ovPZm52RnWLwZtsVaRXZyNEQtqbSV1spGia6WRml3YdHc2TAHEzsLHwkR87g1H8nPICXQUsxsfvkTG47I6moy90kB4XZfEwmRizaZf54cBzMxBisB8SQZQe4mYwJN2HFWKFESh9o0N3f53gSFTcMMCqyroWvnn/yJffPvDw8ZllqQjCfp65LIUihtTnlKy5xVzPowi3+5mb3czdYeZmP5OSsQWszA3sd5mhLVbalScQzFG0KcTW3NTF9rYQEjd7G5R98rby+HTishRSDI4mZ96+vjXpksKyNqo2JMB5uSDSUXacl8KHp5Od35R4++qO2/2eGOC0rCxLsfiNYKY7a2tItXO+1memFJmnyfN2G2tZOa8VDYF5Nkpha4WKkg/3JDqab0wiFRMxmvHbZ1/8jMv5yOPTA6UVzwm3oZBypRmLCNkNnTYHZbvRtsbXTNzkB7reYVA3BubjBzejKLVrpT48khAIajE+wQeMIZgeNyAkIl2EHjoxmGSi1EIIgTxl7u/uSTnz9Pjga3tnuZzckbv64FTY7WamaSan/J/5SfxPP+zubDQsYz0Q2MfIFI0pU9aF2syJmG1gYINBAaRXtFTq2imHAyFUYrB7MYawmct1BdZGTJEpBFqplFZpdIrnhBfXMtbW6NEHmgp9NU7NFK9DW2nN9ZdKTgmN0MNKp7O2ipBIQZGu7MXy0FcVgswgnWUt5DAzzxM6H2gk1gan8xl147laYKmdpSqlmoMvIXHYT7z67ECrzXTpaaI3WJfKnJo5pE+37KZb35sqIVjk1eu7T+k0lErhRNdG08pxfeRST8SeWeqJUi+k6cBNvOHt9I43ckdaI5enCzlFbnLgkzd/yLHe8iEFPqwfqaqc15OlLLTmWe6JKSaezkdEzBVe3F69tMpunogxsD4c8WWZZbXGNuzACBnKeXmi9kZI3RQzQYCFHGc6wvFypEfIMfLq9o5WCpfjM+fjZXNGt+g8c8DODZSMEol54s3NPTnekMLEYRK0XmhcqD3QKbS2sOiJJhHJ2dkfhafTB1RhnrMzZHbc7u+I7QJt5VwLp7XyvBSWmlgqnNZOaBVpQmyQ5xskRQ4p0nvlvK6sgGrn1asd2gPaD3+j5+l3srGFHzZlW9N2/dIPmiX9rX+/0l9t8z1MitzCn34O56J8+QjrGXoVFo+w6V2oK5Rok66+0TSvU3PDxISqwvMFTouwVmFke63rtZhStY1ButHtLFrAjKFMh6uOfKo7nhkH/5CFSOfNPnC3g9sd7JLRrsIofPTF+XgxnDWq8aAf/xBIMrMskGQ/rI506ItJ+vh1rZuMTl2GGNyZOSfYJeVuVt4c4I/eKj97rfz8tXK/N2T3eiWuZiG/P/52j+5aw9YXSo0QbKxT2kLtZqSjalstTiMShaCJJDNJM5fLiXU9U8oFpFFqoJQjIRoF0Nsc+hClKwjJTY7MXddoR4GcIoebAze3t+T8geVy2WiuMRqyHIIZQzl/DfDpnRc+4gjoQEauxZoZGRm1TjfTpurRJG00tlhBWYpNted5Ik8WjWN5m/ba7vcHjmRplQ1RGtTt3kfn5MegHhMRadvz9wMK8vZsXp/RlxrH4O6ghpRceSYCiPYXn9dWLX3x91sROiiDP2hsrjTc8TyP1x1DhOsQbCDN6sifjK9uDBn7ltHkuHkJnsHon7J3o8O1bll9IDZ5doZK8KRZBqpezWzj+TnSOnz1daLUHSEWPn2r7ObGnFdGzJH0hmIZoGZeIUADaUhoiHT/oz7QtG9RUYvdU1t9/m6sQH6tGHuMI/nb8MPvta5bMWp3Bghhu14v76nr8FN/8BrjPh4sKBtOXSn2Y7hkTYoafc015p7rNJYCv29xpLJzPK+cLutGuwVcExrQ6O/WTZ2CiKEXITAnkwnMnicbwnAdN8p9iBkwJ08JygDiQ0yW+Sz2RNv9Kdv+HyPkrNzsze14NEs5BnZT4tXdnhACl0thKY3e1NeTaJrP2kAsV7XWRkqRw24myUSOiV02uvayyvbcgg+IFEegrEAN0Scv2LNXnX6p6tTGcqGviXp+hjAZ9TDGDY3FWRIDUbXB1lVGEPzvQgzM857eO2V94T66PdOyIatDDrLdX76WjUHHVX6hlpH9Qiow6Osms+pc7zJ7nZgiUSOtm8v8VRoz1jd/zrf7e+QWX9kF470mR9h/7IfgpkCte66rfcaAm/i0Ru+W99udTddh+/dgzp4bE0LHHj6GDiFafSUQi8feuWvvYF9psuemVteA+/DRBmROURfZUBFRM5MTBkMoMJh9pXV6aSbv8eFDcz2+epJBCBa1FUMgxUQN9vmiZkQWKyCHk69NSshTJN1O3Bxuud3NvL6/pXUbKu/2Hg0YJ0zNmwmaiWM/1GpGgwSysI0SsgbLcpdGTMIsM7pX1nKklDOxTmSdmM7CZTnRl8bD+4+kHMlz5vP5c6aUOKQ9H9cntFt2eus+0JcRLYcNaCLsptmYUyhLK37fB3JMG1uo9U7rlthCgB46VVcUo2GrGFodRFFtTqG+oBpBMnFWd5L3jOJqw20Jds261z8WR2ZrwDRZpm6UwS3uBBnJJB2iSSYaEHWHaqRroFX/DC5Fi5It3kizsQuarYUdtRzrEAkpkUQ2Fk8ICYmJ3ld6rwjNWCaq7JM/yy/Wkf/Y8Tvb2F4Pd4xjNLP6H/nOvn3/OBTb5G5m5Z//F/DuTiF0/vtLQKtwiZHabIG5XIR1UU6egdi7UldfbL2A09ZoTfn2Cd7dBM5rRJs1pRFFm9I8skcGxQ5rDvMEcbbmloAXZyC5bjoIQ8cCCYiqhGYaX0UZGeijYLE9wM+Kjqn/FbEZ3a1iZgW1KvP4Hf6zMQi3t+B52xtK3rswJcgZDrO5Tk8J3t4pP3ml/OJN57/9I3i9h9101Qter8Xvj/9cx7k9G3JYOlFPjlw0Sls9LiJD8GJZC6qNZ+181G+JJCb2tIrRgdsF1USKjfP5W1p7ovU701DjRQ2RSKKHSgiZXmdqmJ1eGzkdH3l8+sD50rhcKuv5vE3xpzw0dIEm7cW0xaYmOeWtUOq1s9ZqlD7PtzDKn5XTg97WW+dyWak+4a/VdHxPx+amVok3+72hWCm6VMCNcWrzzL/GsqxU1xCaI2224l/stUZj1ErbCn48msOKsPYDBsXLUZKIWPHtSElOk1FH5UWT6gHVvTdD77xR3TRR0RBZB/V8HTJ0LufJisQXTYyxlu09IrCuxZslsYLYUZdlLbTe3aHYVszaDGULMTDlyfTIiuX7tXYtQl0rqP6hNQwNrtHcYjQqUkyZkJLlZkYromtpnM+Ff/Nv3/PVNxNffbPnn/3Zjrdv4N2bCyIF8SYrqAXKazMmjmm6zkBBpHiCbkeC69I6Nn1ToQseOP/j1uap35dCMCpjH2630RE2NxpTvHg187C2NaIw4pqadNDmA4nrfajdm/yQNqROPI+1v9BDhuBFkziV3CUHwQ0EcffQ0YSMYngtynnpPB4Xns8L59Vclls3rWhO1/cjLh2aYmI/Z3Y5cdhNHHaZwz57EQ2XtTmaJeCGOTF04tmyU4VImmfyFCFYhEXrChJw/gAESDny6nZnMV4irOvq+tvMzz97AwJffvvA+bKw9mbZ7CnSe2R1hoMCl4sVZ7U0Pnl9x+u7Pfd3hjyUUvD6l5wj62rO9MA2eHt1b7muMk2omrvz8+nELmfmZEOgejlzvnzJIU6E+YZ5mm2NUeXbb79y1FU43N5Z41rsPI991jTWEzc3d5RSeH5++q3BGy+uvw/EXApSK76mVXfMxVkrhWFoleJ1nc4eIxVborZKKcv2OmYyNhNDdGOjYpFS/mY7jefjow8zLd6teo74GJsEZ55sngw//r6WGGd675wvjQzk1lnWyhwnRJK5gDcbXhmF1WrTdTXgJLVKQNhNwRNqjepeekU0ssuJm5vAnGBZVlvqXHXUurKulUO2huN0XsDD2Yg28OsoU5osbq6tlksqBrKYFK2iJFpXLhXCeSVGuN0FWjCt6Yf1CF2NFnzYM6VIUzOEzDFSXc40NJ5ga5Z0a5jm/Z67T2+5e3vH2/09c8rsp4l5d0ueZnY39+YRkGdEpm3ta2uBPmLHvG7GaNDQiRj1NqTAbbpBJ+Wntz/1gdGZ5/dPPD888u1vvubP/+I3PDw88fV3H8hZ2O8n/vn/+b9h99lE+nRPa5gcYW1I2pNComsxxoWvM0ki+5w41sqqjePyxC5mppA4zHtzQ1eTS1QV7qZIj41FGpOshJTYpYkilQhkAstyplwKp+dn0lTIc+H1nAElxOpmm86WCLb2trKw1jPn8zMgni8e0Ca03rhcAkkmYkhE6UgWJF7op0rtENXZHT1yKReCCHNQstyQ455IIMU9Kpn1fKQTiRGmMJveuwX2KXGYJubdgSZQeud8eSRH2M+ZcjxSWiXsMrf7Pbcun/nrjt/5xtaWOivSh7GR0Wuu33Ml9Y3/1itCMb4WAnf7zj/8wrStxyP860n4fz4FWnFd22pZjK03QnanwjbsxgfYZAYO74+Nh6PwfA7skm0GTxfTMs5NmSbT08YwqDtCX5WkrolLbiYjykW9FhVrVovrW2tVSr1OU0175zqa/hKJwYpMvFj6rSK7q6G1rdmU3gErxBvbwx6qI0Ui/rqr06qjmVzNEXZZeXuAP36n/KMv4G5vje9wmh2Hv8MXeYK/P/42j7VeUDpItyBxrLFtvdtoJ0wWPyBK78UbwgKeRRf6TPD/JYHQEsvaCSflsmbC8uA0H2tEU5hJYcec70hhYooTMUyImMPeX/7qG/7iV1/z/vHCWoX9fo8Ea9hS8HsVdRTCYR5xg6IwGkajwI5iyzIrRx6nFe9TDqxrZR3IYLCojilnKyqWhZRc25QTEo3jICFfkVBxE6YQUK3UUsnzTJCBKjs1j+E6ekVzr2iSU5K9mBs5t6oDuZHr18NAT40+HVz/GFN23bOhcRoUccZFkECY0macFURILW3vzeJJkj3vXX3ya/dG69eYDxGbFIsPw1o3iloblNZ01XZO4J9tIOLK2i1br/nvGpq7PooMqhUUQMdNkMLI5bShhGpBWiduRjedmBKno6EAf/WlcFlt0jxPQkqOwvrwzZl83rwYvV6pMKbdGP3OpB3R1+nRTP24157eDd3pXamlOmpVnRIfSEk31NYGOIXLcrFGYKPdGj14nvdm8OQ0/O3wYed4znrojrIPnfoPmx9Vcyr/bQpz025GJNJJMfpeA2spXJaV82VhWSvnpWwDFVVlN2Vqi4hUc/L2wUf2mIucLdqoNGWt1ZlEFjPSVDnU2e7f0I390YNnTislKLubiV4t8qlUoVZvKKbIlIRwsM85TZHjMTClyJSCUx8j797ccXb3ZsEYDmttmyY4xLA9F8+nCwG1BnmaiCFwf3vg8flMl06OEZmNWVKd2r+WwvF0ctZKIHYlaYRpR20KNGRZkZiQCMfvvybMN+ze/dRMlxxpH/rnlHytO583uc8w9YohcT6fUVXmed6e5ZfXdzSnVwO/ob8OP0BuX64FXbvFnXRbw63h7psmdNwvhrLmq1xChhna9f4bJnbdXb5rLRbZVcdgp25odWuG+LT+kj7z4zwGEal3G6zV7lnO1eKncKPEWt3ILEam3Wxa0GKN0zTNdi2jGffZMND0mC0XYshMGXJqdDFjsqqdhuWMuwcySynEoOToiDHW5pZi0TdzgmmyYcvzpRKTkGMnRcvBXZaONndk9sFviInLWhFn4LR0oQXhUgthMhPL59Npm6u2bikirRv9GRVuplveTO/4ZPqEV7s7pphNejQdiCmbflaVdbkOS1TZmvDB/LIlsaJq91B0n5G2dstpp6N94fHDex6//56vvvqe9w9P/OrL7/nL37zn+XShtU4MMM+JP//LX/NOXvP29WsEc/1tXNAqgKG6VqtAVCEpSCnsYiLuhN4LO7FMWGqn1NW8SzxaqJRlG1DHlJhSZkrZBz5Wr1/OK8fnMx8/PjHtL+zbkcskaI+cl8bTpVAb7OaJQCeKEpqipVJOC+ngaKgaVZsQnGWjSO1oKzQtrKyoWVIhQYhhTwx7eha0r9S+sM+dHDpBGylNEIJJwLTRxDLAwxwIkol0iIFVCzFZfu2pZLo0QuscdpPR70NHQx3En7/2+J1vbF8eLykvqmx96w+xQkcwfqvzFWDOwmd3ymGGf/FTZS3wr/5KaIvlzPeiaGtoK9tv1N7ZRrJxUGeU46XxfAmc1sw0wo9rIJZB6eskVUhihZqYY6GqIrGT1NGSYJE55hBoL1WrFzsVmyJ39Wm3I7Av/myd/tiU/p0T5TTk7tN7/7neXa8hFv4uYqhtHH8UpqTkZGjtLsMhw7sb5YtXys/fKLvs+WyjqpbrWR+Fpby4DL8//naO2oqd69pBbRpuMRFGzVM12mgXdYfZRqsrWkG7QL+Ye12IhJBN81EbunRCCegqdC10OhEhxT053dBbI4VMj7Ohm0RKFb59/y2/+vJbTkujE5jmmY7FiUCn14o23QY5qn0reLaIikGBfFGEAb9FX7TGs/XuG5xpFKMYXar2RorRdHoWVEl3ig4bunl9rXFzbjQ5xOlTw2BnGKX4PtGNFqhqeYXyWzTQ63+/+J0v0BHUmCCGlAr0ayE5RnjDuCqG6K65bpzjjrC9dzeSCIZSbT85nusrZdVcmMffWYFqOXJ+3p1ubG7Ug+Zq9Lemlp3YVDdXWkNxBr0Qcz/2+85Kp7h9XmOJdKdYuZ73xTlfsDy8776fQDJv30Tub8UZm83vk2th3rppqIyR4IWuvHBnloGve+Hz29PPH+FhjAhQrjRMQ8zs87WBlIts+sNSVqfWNn+OIsOYLDm1NL64f3+7sQ0hoMGuxxgyDefbMah5aTa1acS3N23P0LivWvMM2dqcQdG4LMUcYENgyokYja465UROgcOct+c6xZGn6s2g2hC6N/uZ6vdbHK9rPQKlNm8mgiH6rgW3BrkzT6bnnXPisLfXQ5Xo9/swlru92TFPiXPyLFiMqqdA6Pa66uh0qY3nk33ez96uzPPEbpo4Bsu4JUAkItI95sjc2Zdl9fzsZDUB7j2p9i+1NTPxksDl6SOyFvL9O+K0M0OtsSbERM4z3V2Tm3tgpJQ3Oce6LsaUmWZCsNzf4YQOP1yfrlFAL3XZL53T3WRssMD8mepqUo1hEtW6DUCvMVVhMyAcbu0v19jtdVxOMpgD1yZ8DAotl3VQ9H/Mh+CmJmoynq44HfgqJwlgZkmY4/A0J5BuCH+7It5bSaV2b9Bt/ROJBpYkH/6+dEgWgxAaFve2pQlsq6JdLwRCDuRs5omyNswwyo1JR5yd2x0H1PfqYPru1hH3bKjBjNxaqtY0rScIgZTHgNrqTpFAlMhhuuHu5p7Xh7fczTee7pBJaUaCyVTKamkK5/OFYVI2xcF6Ct7cAmJRm9oqGqMBTr0QpKHaKMuJx6+/5ZvffMWvfvMt33888lfffuTX3zxxXquzQJT5Evnu+wfy28x9uQdn+liKiTmyZ5m2bHChEbqitRDiRA6J/X5PVkgKSzCmiflr2M5s9GXzFGnBMkFzCsQ+6oO4DeROpwsqKzEt1HKg98RS4FIsU3yeoyPW3Wr52qmspJ1lzrbmDB1Gc2tDBbs9OyuNrhEYz2gmEEnhTNNCoxKC5TBHUWIwGnvtjYpRnnMMhOAMm7aiYu7QUSb7mgMYazftNBIouoJ0G0r/DY6/d43tsNjnP4IGis8kXs7sB505RXizV/4v/5Xyp58r7x+Ff/lL4evvIqcHM4nSXmkXHb/M4FOFlveATZifTwuPz/DwBLezkhLEBrVYSLP2Ts7QJ5i8cVSBi2eLxejNn2CFtmCmU27Z3zucF8uYTHNnSsrkRd/4YNfC+YdT92uRZ996WYEGE+IIAdQmfGzw1HzAo4a0TgFaNCr1lFxXm+HNHby7hf/2T+EP3io/faWuJ/53r8JQaP7YEZO/q4e2QtdG1WJRPjKy/sYwxiZjDdsY1SmOvXWf4gWaFlQjkUxtwqJCL1Zs117panETOWZynMlpxxwmUkjMaSJHMyx4OgW+/PbEtw8XYt4x7Q7s9gcIQq2F9WIRGq1WpnlyhMkKqSBiLo5OkW3i+qwUmVLeok/MOEZtE5kmdimRgyE3fQyegMN+prqBhrgOJEokpGxT61odeQUNkX3MTHvTo131pt4sOUoiPv00RDdQyuoF8GgaFF5oHbdCjuvAR4F1WRzxyFv0UvAoBjOBug7Neu9UqaS8N+RYu7MpIimnrbg3oxVbI0SMeJuiemZetKLfYzPaaHjViqe4faahvUtGR2U0N6YXwxvg3ZRpvbNiaKE6ulVqJbTmhZwVqirBkOk0Q7cmlS70Ii75km0I9+vfHHn4mChlz5/8EXz6SWI3nwlDQ9usaBmZvIamD42pbOcdv3oigiS2Z+HHfqijGVvOaIzboAfs2vdmn785gqFd/WsNwWjEIcYNJbmbD8QY7flbV3c2vuq4hzZb1WIwhjv3y3Hw4DxFsftumvI2DEkxg+eWpjyRZ0Oagruap003a5nVgnJ70A1x2WcbPMVohMURi0Iwynnv1bXu8Ph0ZsqRnAPny0oplo97OXePmBmFVuBcig2w58m0sc2e7ZwD9zc77m93XBaTSzw8HjkcZt68urHM2im5aZcdg72xXJZtwJRTorROO1348vsHXt0eePf6lrvbA8ta+O7h2TNZO8/H85bD29rqwzlDemtu5Gnidr9jnmayxyst5xPnVennlUv9t3z2iz/m9s2B4+VMw3V4ABhTxQaBnVLM3GXkylqkzoTt6AraNpT1pdbWmuV4ZdIwNJ+DlZKvgzdf0wyxrY4WD0Tf1u2cJ+7u7rfBWszJdO8+kFO1hsjuPd3Wi2GMJ2KSiXne27X1AeJvDzt/lEdd3Egl0rRRVazJrA1JgXfv7rmpkVMJfPf+4ufzGqvTqlB7oBifkyidKQu92LCrrD7MyIKkjvSG9MYuTkwhMWmkVGNQqEBIkTwFYg5UVbT50EwUxFFcwZFeQaUieQVVWhcO08wuR+52nSk3olTWpRBVmGOm9jOrVkqvNA0ond7OZhCkmcupUqpJJV7dvubd4Yafvfs5b3fveD2/YcoWD4MG6lKoZeVyPrOuK6UULu7T0Xu3PHmBIOoO6hZ9k2IgBeF8fqKUleX5Ce0Lra58ePjAr379Db/69Td8/eHIpSrnauZqVYWHj89MOdJ2mefjmdP5zLIs1MXysV/vDxyXlaWZFKeq1ejaK6EV1nWhizXln3/2GaVcWJYLH5YTvS6IVLoUM2k9C1kn4pRYieyyrVm3h9fkaWaaXiG50EPjshbyrAQNhHChVOHpqdLqHiQRUiMlZ92o11jlCc2FtSQul0zOO3IOHG5ukWZDinm30krkcj5Si2mGpxjRJtTqWl41bD+Fzi4Lr9KB0pSLu1qrdrqDVylFprznvBi40nqht4XeIE8TpSqPy4W7EMgSjRL9v4BF9feosf0hJvsfbmr/fafOmz+GEBzu9/DTN8r//k+VyyKsRVieE7TuqK1PrjyoVlUg9G0yVlvnUoTHi1IaTD6dqtWLBtf7mEGAIRE/1E1fdVISBIKinhtr+4gVzl3NyMlE/bpRlseiOOIT7JeNjeZac/culOIxP1GpXahVWGrgaQ08FTfJ6naGfAhMitbUDp3tJ3fw09fw01ed+90Ar8dVuL7u76nH//84fIHYNvxR5vuTMcQ3qsiI8VFrFK58fmvOqvpET3VD50qzQliAHjs1OIU1WMzQGs3wqbfIV99n3n9sXJZGWRdaLVtRjF7NbgZiaoviNX/ThlVXZGlD6Xo3/aZzvKwQ6hu9dyA9TYTOMBzBYi1UKbWRJsv17O7iawWaNXQEgWoIoEWcRKMHV+jNniAJfUOIlU7r18IPXgyWXjSwJsWXTScJ2EBBbA1QN9TYegkcTW2jMY7b76tu6DBoQ+JoSRsUwa7XZk/NhG6ejM7VVVlLpbeB4A5q4RWl69qtuhkI3LgGYwV5iTr71D7FSHPax4ZQjx/2P613VDxGDUA6vV5JSGE08mq6xcsZvv9+5e7WmqxPPwmk1Imh0UP3dVB/QGMag0JhvP8XrJEXKPqP+TCEiuv98OK+EX9etJvkIMRom/1sDtq1Gk1zoNUpJdM9uhv4PO/I08TlfGJZFp6eHuzexR2QAYNvfAjkh2W6R19N9MoKwr5PJG73ybapSTQWgjvr52joSvas4rFHxRh9WGXrUWsWrTfyDAYx6vpMOVIdcASlbQOO3uw5OJ0X5il7czgM6a735aC19q5MOXHYReZszp+1Vnpr7OdE2U88H8/+uQaqafTHVodBkrM4BJ5PF1IMHPZmUBfdRK8Uo9XOU7ZHSK9GeOCotDTOl8XPU/Rhtu/1ZTXkRBLnxw+uzZ39mYVpmhEJWxPb2mA22Pszj4FsFEJHWXfzzOVyZi0Wf/LD6319xgdbRFU3F+Uro8SfMxn3g8eY9U4PgZwSOU/EmOl9vTJPYkKTXjOzx1CQq8Z3+ABEd22+ubklhMi6nln6sjk8/5gP7RU0omrsoY6av4DfTlNUYpqY5x0fH4SqFrWnCsMLoLVOKdVYDmIeC0EsdaOURm8WtxOCWPRMjOQQbZA4Qa0mqTMzHxtgCQK900q1mtYv/RQTU56Ywkr0RrfUxlqV0rOZRGonolYCN6E0Nz5rnTWs1NjcuNCU7aUUFFuHaum0ChIDu3Tgfv+Ku90dc5wRFcplsbugiyWO1L4xBWIIRqv1GKDhu9C105rHbWqiB6ii1LZS1oXj6cTp+SPLcuZ4OnK6rDQJXErjeKk8XxqndWUtzRt8+yOToFEp3Tw3uiOVHWNc1OVEiJkUJ3LwyJ/utTogGkhxQidhvzvQqsVrzdOE4o1xL9CU5IODUgWNCW1CqdBU6GJZtkHMw6D2hd6jsUx8qY0heNxjYJ7NuK90RaUZWp6SmT4RjVWmgoaxRmdyPNC1gIpJCdTqGgmNEIWUZ6Lrwi0lpbLqSkiB0M2sLKSARFCphGiLdnSGnDoLrfbGpVyYQkQjTNG8Ta5Wc//x4+9RY+uHjGn9v//YNqDt31/+xXXCf5iUL17Bf/uPO189BB5OwvffTtAUrY1WFxOm9oZWR0mD6/NQajOH5Y/nTmlGPWid/x97f9Yky5bdd2K/tQd3j4gczjn33pqIAoogm2SzZWqZ6YUfWM9615NaeqBkpheauo0NEg2AAFhVdzxDZkaE+x71sNb2yCoCYEkGCrcK5WVZN885OUT4sPda6z+xZXV/Fd8pDXUTC5jbrDWjbjSvhpZaKakbvIA5pUE3ZMZoJl2RXicd5zueW4E8ml2rF/UcdNXS5uyY5oYL2thuRU2vPm6ep+SoDUo1PYPoR/CKNMcohAA/eOj89G3nx/fdEGgrHrtw2/bGo/7747/lIeh0bXjE6PW3ZmQMY15RiqSb8567fT22WWTTLzVrSGprivLaz6ylodEDG83rYudcR3Ck5PnPXx748Cmwbo60rZScXtHKrHCxn9VbQ6z43jMSrbG+fY02sNUNZ1Vv/ZKigzF6gnOG9La9qerWVWqjDKlU/OzwcaFu615UOTOycl4jqaRawe0DPkaaNJohWmIa25rqrZk0etlrtHOnkKCv06EIqBgS0iyiQ+jmND6GUtagNV3yR9zRKDKzZQzHEPGidOpWbhmT+yDAzO28BI6HhVyqGldck6H1Rqm2zuFG8dXBF11sTepGHcMQYtlR6FHUqhGYrk2vR40j/gUw/WdDRCN/EHNgt6/ytWix36HlytY6330Hh8NMx3N/75kpEOr+O1qH3kfTPdZx7HXdGtlxKX4b1qHhSqszBLcjaC6MrOdqFjJCQPXLwQecD5RS9vsEQ7p8CIQQWZYDp9Mdj2/ecrmcuV7OXK9nUk4qDzB07EYPRacEtn+8zpsd4wSlm5tr+BioWcEkVjQN19spiGZ2mo7WOUVuQtBCv5Vi6LLGwdyGanonDZM2bWw7zlVrbF8hf1XpsJfrZveFG8QNbZOlK8MhQK2ZWhthlj27+tN5o1SVSZymgBxnXs6XX0G0dZAjGiE2hmrGjrlcV6VVXyeCoafzFLlcrrRamZfDHhPofdD9vVVK04LfXVfT+3qTAugdm1OimCb98uk7hMbxBz9BDb+EeVpUk5zTq/Nh948YWhtmprioV4hzHA+LDq2bDUN2My97PzLWInvfw/XY+31C3vc87bG2aybtWH80b1Yp0cX2IqU4a3MlUmydM9oxr9yXuTFkYpw4Hu8s57awbdtvhca2NzOE6oFaO000G12cUlKjaxxiRMKJX3ih5kbasm3DRlOtjd4T90cddgSnusnSGzkVWp2U3SH6bHUXiOr+RKyOl8uV1joxTJr5OoZ8vdJKNY28FohTiJymhU9+NZmJRumlAqU5KyO6aiibZeUWaLWykukxq8Fkh47qcVPKY/OgZJXSuQ6HeOTh8Ia7+Z6pa429rasNNQDzRmhtmDT6nekx1iWsga6l7YP40pV2jDTStnG5Xvjm2+84n18MeCpIjKTSuKyJT89XtqyEWh0gdsR3wuIgNlJPajxHR7yi2akUtrIS4kyPjelwQnAKQjVr5jp4N+GmyOl4Ty1qKDsvK7XD1jbFsWpjQmvyVDrCgeogpUpp0ETwLpo3TSG3ldonvByIXvuGKIHJQ/SdZQEphV4S3VfwQbXTphNuue7sMO8F1yNTuCPzomtRKaSmbscimpW8TAecV2d2gNLzrbGtTv0ygmiGNVkbYrDs3KHTVxfnNW/MQdfiySsLsPTfTGX7j6+x3Y+/vXD5L5ra1//WFaQQgdMC//oncP0fhT96J/yfPlS+eQ8fi6etWfn7rUAtdmNmcBNIoLuZpw3+7JvOTz5TeuAhqFto6fDpEom+McfOFCz02ndCVMOW6LVBcA4zTIHuhGoOdgWgelyDuhaNOgBqs0K6NVw1JBZrdkU1RFblk5KQiuOanLke60LyafN8eY589RL45sXzlNHC2MEUhTipE3LrUKWTm3AI8DhjOgctYGp/fZ7/rrP+++Pv85hC1BBv7/ZJGWLsAEZ8h2l5LGy8vxp4ONt8dHDSDMmritob6tas0Mw0c6hUJNgJeGlc18DlEvjy2yO1ReIcOH98T83J6K9aQMcQ6a1Set8n9K01tcV3bqcTtta4XlZiiMQY7RZvXNbtpjlyDqk6xS2WHTtQilIr12va9XGTi9ZECvNyQL/ylUlP2aANk6hOaZmSiyLO1pAXo8nlnHTdAHVn2o8bkjkaMG2SFf3dkZ9Jr49OqAdTQ/Yf4UcUkHOaebkbvDU0HUj2vMf1elEjGadRS93cmQ8HzRKcpoXaNjBcpLZGM3QHazxCCASLWOl2PXLR69/svKsuFlswG+u22TvsuzGM97KjQjFG1NnZq84bdd2NU1Td2HDpbjcao/M3Te52KXz1peNy7ixL4N3bzru3HY/qyce5GlM8uf3h1Vxhn6Gz3/Tf4yOnbM+fuXn7wDw7fFc6sosR5xQh8eOZbGPg46g5k0um1cpiEoDT3R3H0z3TvOB94PHxDQ8Pj4Q4k+3rt+uZUjI5bYq07kOZ0Sg1u7UdToINN6zNrUVBfkP8/TwRl1kp8s7M2qwh3Sjc352Ygif6W8wJ0d2GaKXqUDU3GDm6+FfNFuSsVMzdLCloWqoit50tFVpTepwL2pSVNgZ6OrSlNaJ3zFNgmiKldWNvOY7LjPeO5VPUIRAaJ9SaMj+w5k/dlbuuh8tErZ3n89X0f4F5Uu+BTub5+QVnjf0YqMVpImgmHtuaeH45k9PKfT4Soz6706T5mKlkLp8+0HJmuntkOt4zLSdtYjt4F5knsSb2sOunh6zBiaimqHd1Qa96ZYaeFoaGW2PbxlBCH8dfXeP0Gb1RlGOcOByO3N8/ktPGy/mFUjId2PL2K7neTjw+RpwrexNbct5pps7Z8K9ZvFLJvH//jTb5hjD/NhxrbkioLL2oK27z5NJJHTzCUTS/tqWEt/uuV2FaZsIEPTeqmUgdJ6Wrzr4xhUDOZdfVe/G8OU40N9PczGmeqLny3FZiFObmWMIBSAhJs4BjZAoTPV0U7aQSgmNeIqdlIVWN6TrNhegdx+i4Xybul5n5MFnkl9CCkNlItWJ5b/TaKKmQUXlLaY1t21jPG60K00Gpy8fpiOuemhtlu7KuK5qPrHFevXdKSZSUKLsZmdK0fVB7wpQypTWNIqoV7S4r0xT1PvEOYqTHyJqubKWRSuNaCrlpTvXd3QFESLlyPHjuHyZ+/LO33H0x433m7hBo4uiSuG4rT+cLKW189viOdw8LteggT59zhydAghYbzcG83JE2WMuK8xEXKnXbiJNjniOn48QxRo4hItOB3IRvvvvI08uLsTgWXO+QK7UKrXpogcnp0PIYDxqd4+DgdT/Nkgm+Eb3gXaYXMSZaRSXaghNFYZd45EUupJpo1037Agdx9oQ4s0yR6CJqDZmoroCvOJ9VlhIi4nWYIFKJURvbLhu1V3r3bOUKUjidIi5sNMmc81nXjt8wqOAfUWN7a5rk1cd/+a+/iiUAN+ogr6aS1sgdJ+EP3iml51/8FByOy9VTrt6a2mzIbQfsc4l0H9i2zvtPnW8/LQRxfHbnKVYAl9zVbMZ0Ld4KzS5CGwNRhCBmNNDVQU2suCwNWgG64xChWyNMZ6R5GCDXhzZc4zysgm4drqtQLI+2VaFkzdx92RxfnT3X4shNKE0RWhFRV1X76MKu2ztOcJxGFMmrYyCFr//q/4er+/vjNz+CVzrtMAwZTdMw32g7xdFUVoI67tq9PyJCwIYXqAGQk35D6sak3lgD0tXkDPTZuW5wvjpy1gZLxGmuWqm7nnenmg1kVsz8qTacNKWzi99vn4EOOnNSrqOQd1osuz60ltp8ySi6HBbXa8U/I1+x70gYXYvyYQQzNGejqBpU3VrLXuDvNF9RrZpur79+KIXuZoTlFP0dzrGA2zWyA/kyZF24vQesh6x1v446bBB9PX0YUNkaZpCvDh38jkQPw5LW2v6zdjRTsNcW1NnQeUO5RjNoyMyvUa0FRfTpw9xq/5G39+1Hhpkbb03vS0PTdzzV/m53vjZaZOudbdX74tvvFDVcDpHjoeLca6Ouv+l4TZFkP5ff94Vo28wgxRrb4gMDhfch4J3bz9OgnA5Hbo1mMTfZ3l8htfcsy4EQNC5LdeJwPJ72eKzgPTmtXLHrZwOafaBTkp3JX0V2rVvRfzG5AE03GDHGgXduN2ECoxU6p1Q6GQ7DY/Cw/zj2Bkpex9Wxn48xgAExfwrZh1+7OZKtheIEmroce9PK0hWZCGNgM366WF5q74TgFSHu3aj/0F7JHvR9d0OXhst4JSWNylqi/iwfgjYitVFQDbzq9G83ZG3djNwqU4qoo7o39FUbyZwzsm5slyvOkgkjcwABAABJREFUTYSYqDnTvDfkzhIWLOLMe6/uFmPdckoN1POjjsUhvH5G2jjzjIdlnPthaDdQ3V83uYO+R6D5fWhxoxUP34Rul0Ub6lemZQghTntDrsPDvl/TYVwWfFQny+/50btnhGiLMaVKLTRxtOY06qdXCmXf56iOYIMYXCP1okhnb7Ru8hPRgawOijXLOzqhDKTQ5EWD0q5r842e7p3DIcqAck4z0+1yNxF1z06QcrW6wLEEz+SdOdKrgaQ4QeU4Sn0NXYe5I/Ugm6O5TW81O9WJ6uNDJPpAL42aGmVL1FINSey7u/a2XpWxUPLOjtgprr3pEM+G5rXkHcxxJvEJwTPPEynPfHq+KE23lP0eEzE20QC27hbefX5ieYzERYC8MxKa0+z23tSdJ0hndsLasH1XPQ2Ejm+ia7IrBOcp4l49B3qNpxg1q9tMpDrqLSC9UetGJyOuEYM393ivCP6rAZ3yH5Qt0ZrWPd4LsYvluxcgI3ikO7xYsgvKIhNx6pkSAqWaGaUNm0JYVE7gZ7yol3bvhdGU6LnWy9taAi8aIeQaDqGR6FRlz/QMUvFe37vrDilitcXvEdu/8diX4L+laLmRYf/2qsYM73XBDcI//UHni3v48G/gfzp4vn1xbNdFEdu8mgBVRdJCAImQPZetk547f3onvFxn3B/MarEunS1XcunkrEZMgyZZbRLVOkTUxZbK3txijfGWO9uqpgKz6yoYD0pB1lgNCK6Ds/RecVr06ppKrvCyKi36NAMZSnGsCF+/eP79N4GXLLumNkbHFCE16Elp1XGGEOBuEd6eGu/uMGOT31tD/UMeMfh9E4JRZnTTX1aamYyoRYB+JjLopKKGSkY3681RpJpxALiuNNtedFGtve24WLfNUMTxcgl8eo7UPuO7Fi2lZJ26WnZhLWay8IpKplEyGu2gzd8tYkcNZXRRV7qt6ULBqNROdaNNm2LvlZasDZuaPA3KbSmKGojzhBj1tVwTpWZaLZoD2YehSaLWSkqZ2ureQHijfcZo5lOtaUh5u5mwOFEjl6HTBaXlhDjtTUvRS6BXwgm96s9w3jOs+UvTqIteb9p7/WFQirfXBWKvaRSKYlopbVKF83XVMPdaKCXpQMBQYLHXGmPU89V1mluavJqWaRGMqI5rFAR9FBV79SKa6Re8NfORjg7G+t4ss+diOvGIx2KWNDeXbVXk2e7Nba3UIvynv2ik5PFx5sc/qsyTIkvDrK5ZQzTWn1/vd4VBa/1+r1AvL0+7Kyyi9PV1vbIsB2LUXNJBGdP7eQxhNHP0ul535+RpXjidHnj75nPipPFWOqTRa3U63e1DpcOysK0XhG4MBY0fAW1o1q3tjrWIIpYqCRjuyWjzWgslXanpimuFKQjTFNnWpEWps3VGFEFwTiOqWm3UYmgoI1Yn7BTYOpgjaJOnz7OuGzv939a2Yu9RB1FCrV5JEV1NYIL3WmT2zmXLdHFICORaiM6DsygdxNzGbzdWM9RaDL2tIZCyxmWlohnK3jtWo2Auh8Y0BQ51Jq2KNqZccT5qzLJ31KLnsLbOlgu5dEKcVL9YKuIjXVR1mbPSEcP7j9Si0hPBaN/OcTgc8UFLQEWDIy/nl30Nc84hXimmzgei88Rp2YcSpSSTDbx+noYfwc0ZeRzjmii1u3C5nndkTbXMbl9nwN2ahIbSseXWQItUfAgcjicOhyMvL590gFMK66pRRlEsA919zydUgHOzrkN2r7Va2bYrTRa6F9a1UF0iO9HM9ObwPeKiaWZjhZZprfCSNlyM3PlJCzoKdI1OozsC3vTmmTKpBGSagzZNVEpL9FoQNHKy0Xfpkg6fhCKQgMPdA329ki+N6DecaBO2CLheybniXSAGz1YuXHPhWht3PTA5YXZac1zXpOgiulcvi9Yfp9PCYZ6JPlK2jXRJrOfV9sxIp7FtV/MBeCbnTC2FEFS6ME3RhqFqkpazIbotMwXPYQ4UY5XNU+T+/h4Rzy++eq8xZJdVI8dK4/mycblqJvUyeb744QP/7F/8gOPnARcLrV9Jm+3XXehNcHgWH1iCY/adYg7/TnQY06RzqMJzWUn9SoyPePq+VzpxHOeZu+OBw2Eyg8ZGqZnoKr5XvLsSozaDoXjN+J4bKWekOAIHXK/4XqhtYzMZSnMFH4XDNLFxoZPodSN0Nc2co/oOaPau+ncEFzidFsQ3zpez5hf3zmm+0zzacCBSNW6qbggVJ42gp4RGI5cXNf0LwTKmhdIz1KGxHUN0mMKMx9NLJbiMc793RdbDmjUb9rPHO/yNX/pKg/V3/sAbgtAxdGDu/B//OUjvHAL8X/5t4L3MPG8nnf72CtvLXoSBPlylbvzFzxMfPs2k9JYfvD3ycDcRUPpyKp36oq7Gp7kSoyLF2fQJtYFMgu860ehGhaoZ28z1Z7Sug8vQoA8TIO9przYLNdgRy1C7FcjKbHCUDn/yIfJnT4H/+MGxorRp0R9FiMrmKFl4OXfuvTCf4GdfdD6/69zNeq7697te/J0/9o1eZEcpSy3kmqmtUHthOJhG53FmX68EKM/koxZsIuA02iX6mbUUjacoBe17lKeigxRFY+iQi+NyjlwvE8u8sF2vrJcz55dnsuls07rtdvl9DGzajV4EjtaFXJrpXQw38B7x6rzqwkSYJkW2qtL8a7XG2AmlNpJkNTlh0GG1EBY30AzHul60UQZoo6gr1tiiofC9aUZkN3OMtNHH4KBbUdcsq9G0jOOow3GSzLwc7Hd7i8PQRtvba0kp7Yi2ujXLTkntZnI1MiuVQtyR+moosTsoWxkqpo/OajQ1hWAorBDjrLcJ4FwwymTc75tkDVMpA/HSQYBGV2gDqwZT2PABEEPgLIN0rLmjGdG6rhoK1KA7etM8PucsZzAARYcLU5y18d7RvIK8BL79RnfGGCYe7huPj1nzEG2oxkBoDdFAZB/OdJvKf8/7Wl5enrA+cUevt21jS5u6w1oTouwCQy1r3YccThwuBpz3PD9/VFO1EHh88wbnPNu2MeJXJmt2tX+N9H7gcHwgp6tliI571VxYc2bbVm06ndJoB2LfsdgcJwTnWKbAmzd3XC5nhMa32YyNWiOlisSOj24v9nKpRq1HTZbE7c8aKBlBHc9foaSDKgtAs0bc/Cz0iwwNsLG1NeJbNh1fh37JJuURzufEPAXa/a1aCM5T+iuDkw70kc2sr8l7vyPD4xtzbZAK7nzVJi4oamuYJzUXpHcy0GPAecfpuNCaMsAGvbuK5TmIUyM7i+Rbt0z59MT5uhLef9ChlvM8vHnDcjiynO6Y24HJDIlaq9RhiieiA7Rug3UzzCol7YMPRYtN12wPl0Z3jfNuDSu3GDHn/G1NRWw97Dt1eDcNHFeslb1uUBQr7k1wa43jcscYl0+TRhrt+kr5nj/IwOl0ZJk6h6VzXZM9H4p6BhHmZeFcOtd0obaCuMjxeCIuKgf5+M23XM6bUnSlkxehuRkfNT6nrFVlZ04ZQFIKPW20BYLXSKvjIVBr43kdVHAhojK0jFdKvnSOfmZ2M5Nb6Ogau0xHan6iVh1kny+brj3PmbePR8L9wrpuXFLmpRYkLRAij4/3rNtGS5lSM1P03B0m8lbt+dU1q6TMeXvi5Wnl6eOF5/MF6MyTV9lLbVyvicGJmueoaLN3LMukbMKaua4rKSXSdtX1JzjmXd6nevjrulFStnrDWe2ia9VpFuYl8rOffcG/+td/xE//+HPi9ETqK9fyCe8e8S4gofPu/oG75Y45VA7zDM6xFR1cLD4ChdaFdVNU+CATVME1XYu8C+qJQzKfgEKtmmShUocN5wr3p4zIhSQF5ol5EqYw0/oZT2fpuse5UHHhClOkO0epKtNagud6LbRSdU0hg3PketXn1zkFXnvAy8zxcMJFT+0JRIdkp8UTI9Ar3kWNOWsbqV5Yy0anWP2Iun7XDikzT94c7G9NbQyeZr3VIPn0KoQws/j5N3qefmcbW/mV/4529VdzUf+ry92vdWA3Q5H/YsRP8MIP3sA//zGsa+dP/szhWmA7LxqXUPRm2R1De6X3Qm8bn55Vr3ScDEkRz/3B22QbWmpqPiGd2lX4HcVonnSC7juqjwWD8zGnRDV0aQ59aNCmVrroVEncyGHWBrZpkVmKmj5pNriwVeFShL/8GPj5i+fj5gxJhl1fY9rfVrRBpkN08PaoVOTJ7+/+983tP+jRUOsw2G3YDR0cja0zV8HbFEfxWyeyZyaO5laz6hqlo+ZorTFykwcqqd+rGu+chJQ8OXuWxdNrtYY2U2ox/dRA98YxHI8HOqD3b22v3XXHhzaGrmMFkGZE91Z2eK60tj/Fzg/K8UCIRkGm93WrGovjnDqVY03CMIoJUYt21aRUnFOUbLi07iYn/bXJSdzPvaJpNyOgge72dqMy36iMg+Y8tNBimrRB0en7abCXuv/e1wOsQTWkj4GWInfBeVvlnGUN23V8lSupa4qZdJnWDbBzaPo8Yc8SfV2QDnTcGf252Wam1G8zxdtPhDVjdi3UaduKMuegNbx4mtNzVO37chIu58aHD50P7x00WGbPPHejJb+mM41zY3tD7zr4+y1Yn3JKYM9XMWoeiKHaWrDWVneq7a/fh/N8UIqrU5fcnBJb2mzIIvvARUSRVDDGDXr/LssBkU71mZxF97hm8UI2QFIa6cjTZV9zxFuZ05WCvCwzh2ViXeMe1QKKmus8RLQpr7oXDnfjfVzdzS1Z2Cn/zYZ2nbFH3ZpbpVNaBvOra32TPehPUVq+3aNWgIbo1DV9yAV6N9aT/oxBVxzMAHHDtxa9Pq+ewyERqK2Rctn15+Isw3Vcs31ooFrSefZKTzU0qtZGkUan7r4ZrWszvaVMKhXWdZc9NNGIlVIS4m9SiN39vXW6qG55X1D6jc6+R3P1EQEWtbawd4gTVH87aOjjfNxMC8d92XrfDbDgtVZ3vyo7K6d3iFFlE+0Vuhm8Dl4QmKZp1+m+jhX6Ph8xemKAGDrJay7xoAELOsztxdDUbsZOTocm6mvQdwd719UJeLCYnLtN6cQaZS8db2u7c1q/LtGRJ8+aG8mQOr1B9TWqbE0ZW/o/zX92ou7VNY3r29SLolRy3zgtkX6cVBPfGlWwxA8hxIivzWJlMl5gDqotL+j1q6VSciVtiZeXC99++MSX33yH9M7p4FmmSHBOXZT3etTkAPbMa/yWDkNTSlzWFVsCOEyeGIQ5eNXu17oj0yGo8/gcA8sU8F64u1v4o59+zo9/9Bmff/6Wa7hSq5o7RufV9NEVlhgIXribjTkgzrw9OqEaVRk1efRBtcRZjU5suG7O1H2AcbeBsf4x43xljo0cC65XXAUfHM5psy/SmIINbV2ju6JsKw/dNb2HvAPzSGm9qJEUldrTnkEMoj0DneADUYL+HmPIxWC09l7xsuDoVDqtF2pPuhaA0Y61sRnDSWVm3KxjzS7O1ndnfZBYXu5vJrL9nW1sgf3GdWMq/zd+hRWf9jd/01d5uX31GPSPKIP9ewXmCP/qD+GPfyTczZF/96fC//n/1vnw7Zn1UqF7cyXNtJ6gbdBWcs48r40/efqSp6cf8sXnn/Ev/ulPmYLacm9JF6n358YcOlPsvHvIxNiJoVFq17zYGeIkYEWDFNXdej/0RF2nul3fVK6jqBwfuqM4M4FyTpfV3IX//Bz460+e/+lPI6s43NGpVskpwitoPzBP7GY9wQuT7zwusARdUP+2hnY8ur8NbqS/7Ueu2SgiwfJJm+nn6p532aTipOK9UgCDNXwyUAiUluJcpNLIvRJFaCVrDA55pzTTnE39GyXBx/ee61nIm+cwd2pO5PWKOKXhVxpxiuZwrFRL80amobpvhqtwV+2bswV/OH1rfIka6sR5ptVKWq84d2HlyvWqE1/nnIXXN0Jkn/prsTyKc08ISvXUiIWC94F5OTAvB3PzU3rner3QewKsSIZXbqtCmGZCCMRpUnfXWugMfZHpgnNm27adink4LkahypYBqaYbab3uzfXQXUWbaHbY9XPex72BVURGm+I4RS1Sc6ajdE6NetBpd5w8Zt/IaDHyK1qr9YGvDv0675TmmSr7GjkoxyJqgrE7pzotnm6IjFgou2hDMVZdGVqpTqlKW3LOkzvWBHhaDbSiBcTlpZCz4395rjw+Cj/748CPfwL3D51p2njNzXnV8u//+21AbOkFwYMERdKtqfWmmTwc79i2K7Ve1VU4Bm1mUU3tZ5//iHVTBCN4zzIfrPFhN3y7XjUP8nCYdwTPe8H7icNhIaeTGqSVwsvzEy8vz6zpSQvbrtTF1mFLaddUzvNCb5l0vbKeX0jbig+RaZ45LAdOh1UHR3QOi+VOBs8lF1KpXFMmm2lUKt3kB4EQ1SE4eKcmeGYS95ry76QTHOC0uZ8Oy26qpSQMbZz9cIA3eUJpkNZEtliRGJTBEJwn1aqvp3c208zSx17qcKMO7VjklzW80hFXda2yZaebB0CIYf/6YIaLHXVxVobYhA8ekcC2bqRSuaROnDreN3KDLUPuDlc/6kioq86ttcq2reTtwuPjI7VmDncPHE4P3J3uAB2IjGa6lLI38CUraqT09ryj9PMkuBAJxgjRXlZlCU4cuaoPQclVjTA7r4ydxCiGr+LabKCng4W6D0m8D9AtvaG1fT0rLuv9L8MdeDTg5dXQ7/t7eBLReaYYKG0m4FjijBe9YVLd1HHXVXxw1FI4v3yH2w6IBOblRG8we88XB8cchJa2fUhSTGIk0nm4iyw5sMSIm9R937vOm5Pn4DrHEPjqwwvvLxuX85WOMqNodj/XSM9C2TrdqdmVtEYIUHrjkpNq0kql9EJOhS0Xqne4RQ2rpiO4WdRcKDoCE9O0EQK6FwdlTl3OF66XK2tYmUrkl9985H/+93/Bv//TvyQG4Wc/fstPf/SON/cn3jzc237buW4roMPUbbMGzXVy0ZzbT88aX5Vz4s3jidNh4ouHk8adTcK7N/cs68Z1SxwPCylnHh9mHk8Tn72759/8m/8dd5+/Ybpf+JAzS5k5hFmd+qVw4YVLa/TqeTz9EUKgNkep35DKytaE1hIReKnC53f3PMwnvksbPXVKVnZME3VB7k1w1TOb27BOMxTJ9QEejhHmQDycuKTMJem1OwXP8RhpGbp0Ws+6dk2RlAwRw+IRW6f6Qg+V7gulZ6QplfhufoMwU6qoTKk1mocYA3OMCBuORmiVyIN5X1zworF73mlmupdKRGOnSs9A0tfFzWOjVI1Nyq1x9EccjpYDsvhfMa/7u47fycZWJ7JdkaRRwIwJ4NhkMH0qf3f9MlSI42fcpq2GrHAr7mqHSxGeE8jJ8fDDyD//145PnwJpK1BOpGtlu2Y+fPmR7bmyfsz0eqW3TG0rH789U6+/ZAmJh/vPeHj8jCl4+622QfTO8yUwz51pglQboXTWAofWMW8IctGPVCzA3gpDEfBNNPuqQ8r2XkUb4w5UE5iX5vjyHPmP7z1/8dHzlB09Cgcne65uaXDZtJB1Yj8/CIcZjotwmATvfu0s/42Fo/7l972e/G0/tmK0ELkhemU3bDFEwabzhYZrVTcw5+hOcM3QIVFXwmaIyShKaiuUmk2/Bt0rPbXRWTfH00fVsgUfmJfZaHdqAlFKoeRiNvMW3cFAEG5TfW3OdIoooijbGMQM9oECOsI0LQgwxdlyXt0rVHiYyrAXcjqZrpRcKDkZOtypdVVUc5pw3jOZi+loNmu7Id830ystaEcm4zTNiJPdvKeZMcsoBqvpXxR4joj3r7627A2lOKUbDiRTkZ5bhqR3HnHKAFFaYqO3Ss5a6HU6OWVFPJoOLwSUYg1054zerGYbrWaGsdgozJ0V/b01gtdrFbxXA5JutOc+TEhGg6oZ3s6msR29vM6aYY0sCoZk3dDg1jsiFRFvObZ6rdW9dgzN7J5Nye7DCi3Qm+Ov/rKRsuPNW+GHPwzMUyNG1Vrr0ig70rY3ur+hA+M/1JHSijpsqhYK0PzzWshZ6cg5J1JSR+q5L8zLSVE6cUzTDKI00IeHB6ZpYV6OjKio3rshtdGGJ7/6+4dWfGTkHg5HjZIxZ9LWKsthobfGhw8fYJB0RRAX8BHi4U7fy/WFZZ5Jc2KeIoI2oM6QwtY0i3PdCperRtrUDr0P85OG2qO8Yik1jFbeb3u96KsQ1FTOBZVadOdtyGToV9NOU3bUVv9cSuFybdyd3I7UXjfV3l23TM5q1DXFYNrxodvXaKBBt8OkGq1BV/G4No9Nn80YHL0pDZ/+msqvCEopdTflUbp0B6o+W94TJ8hVKN1BX5EQcSHw9PxMyZmcN4ITtuuF5XTCh4kQZ8q87GtJXGY6nfV6Jdk1HWjWshzw7kTKmY8f3+uz2v0tO9tQwhgih8PRHIrrbrpXqjrI6+1wG2e31m3tcmaAowZnez4zunaWWig573Ekv56nOyj4v8pm+f4ewes5GwBpG/ep06iV4BzBNYKHh9MdqQqydj6er5S8MokaLR2nO6agUqAxo5UOMly8zcQJARc0qlFj7yqXCmtzpN6ZYuThoIOuXNVE6WHyTB4g02uil0Bx7Nd0CTOeSgqO5lXvG50QYsfHisSMVEeXtrN3SkkW3dWZZs2ulqCft9Y4Z4ueq4Xade9IRbXph2Xi3ZtHPn/3hse7A/MU9d9z4XJdSbmSa+N82cxwEmbTJD+/nE2S0ViWipPCk7sq66PrMEXBGfXlCN5xd5h59+aOt48PRAK+Cj7DvX/DLJHJe1J5JreC1EwUUd8P9H5PpeNiQejkhplewbl07qdInSLO6WA4uMjhqGwlH2cOcSL6QNuy2mp4YXJqENhNQw2VaYKCoxC4awvHsHCYJzbRmKIYHUFAyATMABMdJPSuZlziCzghOEP2pVPbipNOjAFfEo5E9Jng3C1JpSizpHDRuKBeEOkEgcZNShA1hgWPB9noPVPbFWkRaRNuz+LNeA54IFuvUv+xm0eN5nZkcfVf+9ebnvbv/iFy+/RXvnq48xnQolPpAk8bfHsR8uRZ3sIf/XcTL5eZnLUNvjxnLk+J3jLPspGfOzVt9LrSyxMvHxPrixCnyPZFRcIdD8eDauzEkZtSGM4rFKCI4M0lNvpGlaa0gCCkAqnAlh3BdZxTR0kRKKKNeO1w3YTg1Nl4iLxLF1oVLln4i4+eP33v+fOPnnMVYhAWufWlpXZyBZcgOJgmRW6naFm2RmkeZ+5vvloD4ZLfo7b/jY9kKKTWHhatYg2INraKQLauDota9Ffw1Sh/FV6nJ9u9oN+jdObSVLOr4FdTM4He2TbP87OnV6do6jThvFIny2hsayHItKOQgiK5zXz9wChzIntOLdzohjBuTr2vYpwUbUIGHkdO625SBTcKYm/NKEJYpEnCx1kLpbyp4ZSf6EGdZ51z5NJ3CtPrDN59iGbaOh8iQYUobJtp1Jre8YM2pRuqORWbE2opmWbaNjWUsCYyqDFGNVdcJ1oMOKNij9c3jL4GfXnPoO03mp4bLq61mOv6DS1ptVAtX7g2c0kWh+uKwiuCYtmJdi276PmRYexla3BtN1rhoB2CuW8a/ct7j7ROxhymO0arcohrzD68on1qkebNUbQ31QsPpEn6kVJgTVCacL4Ix2OAu0rwg4Y+7h89HYOu+l/bHv6hj5S2XatYjfbdEEpJ5Dwxzcsr1KrvkVBjeCFO82tDiLx99zkhTHgfuF4vRk23QmY37mGnCO+fi9433nvmZSHEuMexANzf3ysj6fmFUtU1VBtbbVTCvNBqVjpbjMzzRIxBc9C9o9as15RGytU0cHnPrR3azmB6mt67oaJDtqAT6CZ6DzY6Ym6kTswt23SpiOoyBzV/NLaq/1YEubbGdSscD4vFo3XWLXG+rmxbMbQQi+pRml4yx14dpNnuZutW29cpYySYBCP4QAvOIjtuNF5nQskyYoS6I+W2I9ytNJxrVDy1aYpBq52A4OLE2eJHak5QlCnzw5/8hGk5UosisSFgQzjTJpZKztkkGZUQ1RthnhfWbeX9+2/32KnWm2nyzL01qDFVx7wElO9I751tuwIYa8YGga0TwqSslhjNxC6zzId9fa828MrlhtLehoOy3wcDUf5VScv383A6xdF91NbKRkNEh5NhN/yEZTmRqqP7zrcfn7lcVyR4luOJ07IQe0LciLMAWsd1TA7kdAd0IEF9KnrVQe7a4FLFtOCRu0UpraWpLv949CxeSJLpNdPyRglisoBG8JOidrGTfcPVip8cIXZcaLhQrLaI9rxBqdky3jsxmmO560zRUTJ7ZF6t1epVHa4uS+Th7sgX797y+dtH7k+6R6+brj2XdeV8Tbysma+/eyKljAPe3B05LJH1et0bxJQVVXzpqw68aPsepQMaHYBOU+Th7o6Hu5M59XZchlO81zidDi9to/UV6Y3oHOr7Ws1wsmrTOHwIzK3+0gtbPlDbYmZ0Yrrnar4HM14i0h3X84Z43a+jBEQapTvUl6IQI0zdUXrgJIvqoedI7QosKPujI70QqRQapVdiUNAgeNQh2WltFZ0OGFvR3xvjjK8bnsTkM17UQRnz92hFG1txji4FRzNZxHC/V38F5zyBQJZKJdH6BeoBqR0flLAskvF0fFemXrV69Dc5fmcb27/t+K82s3/Ld3WbDo/mi71Ehg8X+HQV/pcv4Zuz49uLsHZHQYiPwsPDDbl5yAsldx5+dMf7Xzzx8//whm//1/+Z7eNKyxu9r+Qt84v/9P/iw9d/wS/++s/4w5/9H7i7f8f92zfEEAhOJxe5diRpji3dcW7CZQtmEtDJRagaGUX06oLsoiKt3qnbsnedOOtkRqODHFvWhvbPv6z84mPl3/5V4WxkAzd3pMLlAnnTTXzdFP0WgZzg7g4eH+DjGabQ+Q9fdX586rxZIDAox3/bMUYI3/8p62/rcdkUsXGvtJugANXQP+n9qi5+oAOi1DrOFUKvhBrwEggu7zz0a7mSayKXjVp1YttqZ+TF1eK4XByX68Td3Yk4HZVqdH7henkxwyhtNL3pMHsXy2btSJWb8UhTpDMEzZUcyIgimYHD6Q5n2jHnAz5EDoeTZq0d7+i1sK0X1utZaW19aOn02W61UkyPc5oP0B1NlIIMnZfnZ9WJOk/JGRt17Q3bMKcBYVkiIU5M02xFfzGzJof4YVYj1o/LzaTJijMtRLVIC1Gb4xhni2rR56TUinTdkKbgmQ8HWqk7zXcgJs0MrMSB67IbVcUpasP8qmFcr5cdkRVRZDdno3cgzNO8o1LeB7ooe2REFfgYrVloO0Vs3Fv0gVAoSrpMcW9uV4s6ETP5cR3TJlnuYclafDuvoGpv1JQhdFzw+DghrUKrbFwQ79lSICXPN195Pn1c+MOfOv7JTwI/+Kzgg2qR9ga3s0cTfJ+PdVWNlXfWeHQdHml8S9RJ/3JkWU7M88zxdM9nn/+Ib/7k/83l5ZktFX7845/yxRc/QizaoYwmxhCLaZpND67Xvta6Nzw37bbevzFGpmnidPwD7C9JKfH8/EQphZTV+OxwOA3eBd9+9RUvH9/z4atf4kSLr3nWWIsQhHIubClzvqycr5mUC2tu+88fTay6BKukgH4zHqkNvf+s+B5I8BQdvjmuNpRBnEVM35rM1jTDdUQDjagT551mPgq0UklbJm3JHKL1neWsTaK6iuv3hxhYt0zOpjcLIF3Xj+hgmU/06vbmOWdFYIOZWQw2Se2V7K04dNpsi62F25povbJmDelANHl0AfwU90i1kivPuVBq5/n5wuEu493NsViv90aMM4+Pb5imiXU78PTpo8Z9+ajSlVLx3pPzRimJGGfEUOdaMpfrM09PH8gp7QO+gfymlPYh3riHxuBPX0clxsDpdGKZTzbsC0qjzglMEuK9Gp11W0s6ulZdL+d9YPl9PxIWpTJNuPyizyKBiqd1z1a6rYGZ4xQ5+gOHu4X3n150vW2Z2jZy7bz97HNaz2zlTO8XPa+zECbdB5tA95HuJnoTWsvk9EzpM0Uc11qhZqRU3p0WnNOs588fDswevjs/QzpTykY9OFyYOCzqXFxdwS8JnxuaYBRw0SFTZz5AWSuX9UrvR6QHXNfmyQs6WMkbJSemeM+yOOYZxDVqL6S8MgX4/PHAP/vpv+aLd2/5V//8D1l8x9G4riutP3NZV67rxi+//cD/9tdfct66mhV14e3dmfvDxNu7WZ2TneyZ2B3P+bKybRufnl7M+E4HZz54FjcxxYllPhDDgu8eyQ02kxw1IXDPLJGjDxzmQnOVy/qJaylccuE5faA1zxzuqCnTOyR3ZHOVK5mnLXMpK801KBdihLvjYpm6GamrDpAlcE0r1I7MHUiIJKSvzBIJwXNcFiIO31dOR09zQgoFEQUaTr6SxbKSJwsUbeoc71C2lhMhipBFhxziJqLbkFAIs3BerzyvF3KH2GEqkMoV7z3LYaZLQiTrvTtinMoV7zwxHIgUgmy0+A3PL5GXTzN3Dz8mhMASIqF7pAmpbmw14X7DXOrf+cbW2Bj2uUaO8F/FBLshTWiVY3y5QT/uHXLrSsFN8POPwjcv8Isnx1MSjcFx2ux1s7PWTgEISvUMx4nl7Yn7n3zG9eNPcDFy+XKD4uj1Sikb1+sTrf+Sb7564Hz5xFp/wvGwqA33YWIWp1liKKqljYgSsrS0VJ6+xnGYWL/LDffq6mjoUBOe1Dt5bbysja8+Fv7sl5mvnjrv308UP9F8wOdIC0LdBN9VF5N7NDdajzjIRXYa9JY1NuiShbVqpu2tlZJXr/T1dRnDg98f/y2OMsyd5DXFfk8rQ4yeW3s36ofRZNHirtBxUnGS1b1b9GektlFauRl22N/rs9PI2VGKQ2RWxKJ1Lpcz1+uVnDZar7q4ijEq+qAUG7tCBirrzCVYbLI/4byQU9odgWOMO1I5aM2K+GlxFEKkWOxN78VoxCjqh6IrwxypNzVZULMjnR6XkonicMExzzotbrXSgiKIU++vXqtNqOk72jAodDAcQBUrH/EUt2iWuje1g4ZMf4Uwd+M4GMIeGBoUQ4gMQX5Nvd5Nv0yb6v2Ifxrf13Yd76AtDwTcjSHDru0d95TF/Ng1E3GwZ+remsYx4BPpSL9JI/brPd6gIWnjuiPOaGL2GnvDtWY32EBpmhUX4yQptRN06c1bp9fOx/eFZXamVXQcD7DMg7PXjbPw/W9s43zYs0gRzQJt3TJsfVCUNgSW5Wh/hvP5ZUdU11XRu1wy67palqk+E69NV5RhsLFuK9u68fDwsOeejkEO3BgTzvv985zzPgZW/aXlpZZE3q6cn554eX7ier0Sg5m+iDPEQH/uMCorRamFxhnQn9uHrMipQ7qY6Y45KA0mSqfvZkc69dfIFFc7nWqLoMc7jw+vIfvhC2G52XR6rbuWd1/fhlMc7PezjO+3Z19Enb2HTExriU7KRTW0HYvi6pQKueggarVhn9iZFIEtja/1v5LlPBrgUhOWj8WaEl0Cflp2Q6l11QLZec96uZC3jV4UTUKUdfErsgqGI72uHd0Q01LyboR3a1LNZGrISOjq9NyHQZ/FhxnV3Ptgz/utkRB07VwOB07HI84FWtMIk1tO9y0WpVjsFDZgwQ0pw29HYzuetRjVz4FqBoEidPHGZNIhxjBu9KiLfYyBum1KY/XqVo/r4ANx8vTmcFWYp07wzdZSR5BI645SGrUmkIDzwrwEGppB6kPF1UrvlQp0i/NpVei14jpoXnqhes1vdSOSFx041a7pGXHyhFpxqe8GguLa/nz1prnMYoNyZYzYum/06eNx4QdffMZPfvwj3j0+8u6zz3AtQyuI96SirI77uzuOz1eCCyi3EfPsGGaN48yrb4SThuuOyzWRUtYYLdOpODPjS7nox1ZIKWmjh8YkiQPPRNBgLg4eqtsokkn9ulOFuyGX3mWizzQEcZXCxlqvNGmIKzivmlSdziU8QnSqye+iCDsexHdEMpWV3jZyvuqll1mlFjRoGyEc6E6oQW8N1zphDJabsjm7ErGQPiRaG00G387pdSwTUBiZt61nRfS7J6BuzU4qznXNPW4FkYp3ug7r8N9c+ntCLEfYtbozbFsrOIncTQc8ytCoXaWatW6/0fP0O9/Y6qk0GtWrz3+Tr2anZxqdyRquTuOc4Jzgy0+ef/9L+MUn4VP1dCeazSTaRNc+NlelSNWmebPNO+Ljkbd/vJBbIPzyW9aXRLt8B9snWk2kfCbnC+v6zHx4x/2nf8nbdz/gdLrn3dt3HNvEoXt683ixm7PfCuAY1d69oVE9rSudRaN+OlW7XW3Ui5AyfPe88fX7lX//55/4y68Tz2unyEQPE+IjOS6I9+qolTellR3ucPMBP0OYhJwdWxKmACk7zhs8b/CcOtEr515P0dA+9f3s//74b3+kYoYqTs1+tJhsBIKmOzZzI2zaxAK6845GomYYTTCyOzc2KrtXdx9aUCtOe2ddIadACHfQPSUXPr7/lvPTJ9b1alQVdlfXW6bpa7dcdQvVwtoxx4kwxZ0yF8wAaZoVTRSbJw33b8OfVVMWkuq4mm52tY5mVJGrUNTZsbaKF6+Iy+WFnDZS2pimmXmaWZaFUgrbqvb4vimiuudwOk/OiXVdd+qz9xbnYRS+gaD7yXSCrVGz0pVLTtwod5hpStqbNrECslvBPqiUpWSjqVZDdl+N+MTpJuTVaGg0CgOtHk3AXtzbwCHEYTgxmh5tTnMaWcNjiKBGWN2oys7JPmCovSIdfLe4DxFqVXrcaHSdd3T8bgSzDymwpr5VSs+mM7Z31dXgZMT27FNIFVtSa6OVysfvoJTIp6fI6eh591aYYhsSzd0J/vueEnK6f7M3A8NZu7Wqgx7LJ52mA6e7R3MDzTw9/VK11Qhp03vyYsjWvBw4He/0+4d5kunRz+czT09PPD094X3gcDiwLCPOqtvX3rT2r5kgenSWZSHGiSkGrtuFy/MnPr7/jpenj8oOmILeUwMhlTHA0WGIav3ar+wW49nuzpO2gpPOcZ72eKxW8561Ppyac850JqPNZ0V9OyzLwjJNLNHyaQVSCNo0tUYIpl8ulSkG5insJlOdsZeJPY9aJcrIWOm6Fir4qm7QWG1wXRVtzAUOcyAGZXJky+t+Pm/Q1YDNe234czb5gTFUhgGgmJv9et3UnRXh46dnchXwcdcpPj0/M88z4hwvT0+sLy+U9cp8OOn5f9XcbttmtN66ex6Ukrlcz6qjXg779d/PRu/7PXR7dvX8jNe9bpednTLMOPXrjX7rNVf04eGRdVu5Xi+aszsGZnRjATR1CLdzvxwOuN536cRvQ2PrRXW2MWr8TJNOr2rq16yxzaWbUaLXoWCtzDFymCZe1idCgGlyPF1fCFNgPkwcjpE5JGSC06EyRb33de1fQDziCjltODcRgucwz+SYqFsjTBnJGkt5Kced8pwvGyUVHXQ3fW05mKYyisVRdnLrbKUzVc3KXTrE1Agx4GMAV8AGEK2tOC/EKWgtIMLhIHivzZBz8PbNI493j/zzf/bPOB6PHA8zNW+0kpmWmeGs++MfbKTU+OqbJ0q7sKZCk7YPy/TQ8dO2beQMl97Y1mSRRZ7uhqQn0lplXRMv5ytznHh5PtPrDDXqgCgKU1hwPRCkEsORlbPGAAl4p4Z0YjVOcBtLrLQgCIXElXNpyDQpYCC6lkkr5LIS4kEz20Ol+0yVyjR3nO90WcnlhVavrHlm9jCFqE1y73SuhDCDd1RvCEWH6DylNpoNFJxTSWIplV4KpT7b4DTQ0LW0JZMtSaO1K6Wt5JaZ+oy4mTmqO7q4hriEk4SnsEQFz1qFbg1+Kero7IzuHXwlxEojEd2Jd8sj6ZrJJdP6RqkvpLz+Rs/T72xjO5pY23L/zum7kY/2vkpswtuBTOdlg0sSvn52PF87H87w8w+dtQjNOc5F1OXMmtlRDnZu9DstTLtpCLAAaijFMb99Q26R4x9trF/+Gfmjg+Itl1IRtrpeSV//OU/v/5oQIqfTA4fTI8e7B94+vmVeZo7HA6dTZIqeeRZtIB2EqatleO08bUOfUtnWUexcebmsvJw3vnspnLfOx3NjTVXpWWGGmul+ZFhGYEZmXeiYZ+LRExeHizooxptDs4OPV/h//qXjf/268/mx8odv4Q8eOw8HXdDdq4Z2nK22X8PfH3/fR9M5IR2jXEpHqOTedMMsnVrVUKqZRl3RCYXUWlczd83GdIb+Y06jXY2CBIu5GGZUwrYtpLzg/MS2Kkr7/OkD63q5IZmmD22Y3rW2WwHnVDcao1K2fAhMQYPtRTqH44nD4cDhsOj396ZaPgPjas1KF6yZeVnUlCMESmts68a2JTtDrx3P1dRKAOejUjydYz4cmOejOryabtCFQBBHq1XD1zsaeWPa4dYqQ+c7tI+ta7MVgrqc9jqMT8puSqUorja+A00DwVtB2Go1kFOMTqq5B9u6WrPbd/MVN2JERiSSNZveNE90jflSN9i+G3sM9fuICBqZuPuaWbR5HhpaetfsbnT1bXoyLEnJGt3gmWxAET27RteHSfXYuZGdM7rpLZ5pR9KplFr2glrvCRt/GE1cZNDEmqFB2ixtV41G+Q9/2vnhDwRxkft7dZkXAde//yZ20TSxIcSduplyYpoXdfAumXW98v7DtxwOJ5zzHA9H7u8fAMg5czydrPEYaHvfHayd6zulttZOjDMPD4/kXHAu2e9V/e48TzsjoHe3a7tjCNzfP/Av/+W/VsS1JL77+ktqa0zLgdP9Pb0Valp3ZLbWRi2Nda3meG3GXuO+8xht3tkemrlc1C3KOSGJPsfOqSPqlhJrSrubNzS2VCjO0eiGhHU1pCoFL53j6Yjzgs+F2gqtZtw8E2LgIKL5ucDL+YpzwjxHPjxfddAgjloVlYoxkFOid40eqwPFagUvgeg9BU+tnS+//sCbhwPHw8QyR+7vjkzzRPnle1LWEWMuuoZMU2RNhdJhnhZFWc0FutauJnl4Q80aHz9+4OOnj+ADtRTWdSP6QK+V548f+aUTtssL/+x/+N9zenjD6f5eC8pa+fTpPfO8ME2z5oM7T/Ce+bDosKg3NbZrisoXQ3KLcBu0G0vE+8lcrL1mdtsQo5h+t5rhYGuVVCvPL11pxwIpJXqvpKxU5LRtjOizVs1oCXj+9PE23Feb3f9/P5r/Xx8/eHenBlKiQ5OK0tyVNQXTPFN8o5TGNZ0Rl6l94v7uoMY/5ZnD5FhiI0wzXYRWEo+nSryDg4scDwW46v3cPD17qj/QeiVGz1TQhrJceZyF+Xjk7XLgG3flm08r17rhaufN4UjbkiK6EZLT+Chxyt7yXigOy0iv1vgKcfKcnJpH+agVcqnVEhkKWyrEeWHyd7juCL1zmAqHJXI4LNzJHXM4MocDd3cP6p7vNEKn5MTletXEB4E3p4Xts3vOf/AFrX3N83m13HMIoZlDdCTGgAv6vlOpnDetiWvtzNGxTJ43DycOU+D0sHB3iHjXeH5+QvoJ1w9qmFgDfgr4MNNopCq0noHGUWZigCkErqdMqiu9n5miIN1R0jONRGqR0A70XpC+mf9Do7HSxIEE4qKGd2EC566oHnhk207ktiF9hTZBV2f6UgtLSziP+vD0ovWW83TXcFKoPUN3BJluZndslA46GXQ4mSxKrVN652r1xRTBU3AS8FTEq/6x1KI+DpaOstXMltOepqJRZYL0wOTfcpjPlHKllCvSTtChUmkUrSX6PlP/rx6/s40t/DpCe5smvj4GUrFP/dFiNpVOqvBhg2/PwoeL8FffCk8X+PgCH1dtZOdF6M6aWgZ1cnzyq0rRMXnegRAnerMdJqb7zvLZ55TLB2paqdeuPt+10doKrVO3K2nTjXTbrizXlfPlSkqVeVk4nk7crRPTFDgsES9WLE7NJsSFlDKlNLbUWNdMSoVPzyvn68b5svJphVSF1NztLrJcNHq7nSzRCbAEj4ueMDniLESLHAoBpVyJkBt8d4GXBE9X2bWMP+qNJXQOAYITnVCNK/R9ryp/iw+zPENzjAcepzdmM4BLM+fMbVj0Hpfe9gel7fdyHQ+NTupEbFJvtMR9bOSobaYz43wkrWfStpK3VXOerZHYUdlhuW2vmJ3+qs3dNC+EEIlhovcxwQcfAiFGcr5FSQyN56DjNqPbiQuEOGkGo9dmcDhFu2FEIrI/B+P3d9FCw4eoRXcZyNL4eLUGcPv78TNuX2c2+69u+FEIjmMYaGlT626vCaNIWeO9f+24PgOlNbRzb2Kd/AoVeXwMt3eVx8puQNUtCmC/ntZYO7k11vRO8yDN7hHXX11PaxD7TYMsRvMcjbbfDcKMjhe8Ff82GDSaNYMeK3bvMRgqev5a9Tin11icusw65/Z7R/M5K7UaJX7rfPygUWlv3ihaIgfNkvxtGKtps35D4sVoncN4DNQwrJZC8Kq7DT4wGVJXW2OeFzNvGyj8uCduNHOlc2rTOFlElA5q+k6j/3VTqdvfK43/cDxRSsEnpUi3VwVtKaol1eehs21Zd27pLJPbGyHnHO5Vg/srDIZ+o+lXp037oOFuWzbdttIcvRdzPtdBTC2ar0nXe2sNnuWw6D1kpkwOLcaC90SjYYsIuda9gXeGzI5zhlgTWw2dlfFs6zMzzJLoQqmNnFfmSVHZeQqG0KqHgCK61Ugz3QpWpVE7ubk511Y1f1S5vdDMSTZlUs5My3KTGnQdOG3bpp4BIqzXK4fTPfM00ekUMC2sM38B1dQ6i1iCSq8YfVyN+kBfhw7Bh9RirN+2zqEZrDt9facXy75Ol3Jzjvch2PVT87OclM2CrWMD4dO4n2IDmmDSk++5vTkQo8MZ5TaYr0D1Xbcvc/x3zXLEaUYXzcTgaXPksMwsszBPDhFdP0tTavLk4TAFpThLR6U3isL2GPQqW+68Q1G+4DTX9WD5rVP0FsvSIFg2rheWyela3NRdVzPP/V5Ydxsk1t6YRJTqPA1JYH+VSa0MLd+FTkRcJ/gO0RGDGU2GyDIfOM33hDjh3M3oLeds1PhizAKYJ8/9aeE4BXLSZzN4BXs0aqu/YoX03ZyqNtUUt6a0/uOSmSzPdri0p5TIed5THDxa0/qu/hUiGJtNKeNNHFGEWafG5NaYQtCv6eAkU1E6tMoeiu33VpCJrTPRIV79cTorSgNviExIUBS/SaGSbKylcYh0jUR00mnSQBq5dWvw1c/Cgbkg6zLmjRrMYFVKpvXrvr6XsoExzZxE1eWSUTjQPA26R5tiW/e4DbnEBul0wcmC95vKUVrTmKuug5HaX1PH/xHn2N7QWjGc4dbWvp7d3fDc29FsQfjqpfHNM/zbv3T8+beOn39w/Nl/hpKB1vnv/6nn8V6IRnFsHTLs6FCvds1GG9HNhdhoTynrnwlwfFBL7y4/Bmkw3XP58j/BdtGP/cWriUftjet25bpt8PFbvvrqF2qQEyPLEolxYrl7hxdzSqVQ60ZJF66XlVI7pTpaV8+yGnTiizhFZ51Hgr8VKz7qh5sgLBAmiBGJERc982FiOTmWg/DmnToiL/HW3DrT3W4Z/uobz19+Cw8H+B9+BD986PzRZ53PD51DMPMaGRTH33xC8/vjNz86zYpDtzcFIiiRuOv9X1ozai7ghJFxfKObjZ2LVw2c/osWX7LTayHQWwTeIe7EPB94+aT0w2SNre6OzmiIgnMa6eLcr1JpR/F+/+atxu2IusCWkrm8vNBsYxqbawdyrYomdM1xLTmrU2lTdMn7iPcFWFULJjpujoYmiplIeOdpziN4TqcH3UyzOj+X0shbIeVt17aO2IsQzBW0VTWFqELrisbS+26eUuuItRDLqIShNtf8NtXSDi3uoCCO3+WcZzYn3GIFt3cWS2T5ktVoz/qe/K5JbqYlHm6wdCyGyQyn7DWEqDm8WthGpTzXgrRBbR+UZPYhwhh+7EY6zhBVHxh5tursLOiWZOfbQ2iFXrs6UjstqGNwhnoPh2UdIGouZielgKsF5wPHuwd1YaxqwtVqU2dKQMTz6QOkDc5nEOf5/DPPm7tsm/r328DufP6krIVpBtTFMsS4N/GtNbzzLMuBx8c3LMuBZTmSS8b7wBc/+BHn85nr9UKrRYtBo/GCNaWi12xkjqpRT9L1whqNkaP8uoFoZlp2XVdrTpoaWB2OhBh4+rTy7ddf8ctf/JyXp2eu1ytTDAidjx8+cjgsnI4HvJ9YZs/DnZpDtW6oZR9Dp9FUG0XZQSqds2XOnq/r3sjRmppS+YhKOQWqxkLlXNk2NapaUyVOMyF60nYlOggmEVDN8sHifDDqd8R5z5uHO1IqpFQpts+Xos16653tciEEvX9rdZTauWyqTW9NabUhqCP9MmmzMi0zD3cnzj7w9HIG01ErY0EL8ZfLs7JI5khK2YZT6rpcG1zXjeu6sW4b9zK0y9r4tt54Pp/NcVR4//4Dy/F+z8kttdrPnvE+kJKa0OlwfSPnQkqrsml2bbVJDoz6ndKm9wrCNBU9txZV5r1nmqIiv7b+XC4vrOuVl5cXDocj9/ePmrHsPfO08D59y+VywYfA8XjkcDiyrldGrE+M0Z4Ht2uCv+9HrVeauP09SoDqEh5Pl6E/bSAeH/V512i4Rpzg3bt33C+Vw9T4lCK5ArmRm54H/GK55h3qRk6Zy3WFxSEuIV4j+lrrLF6H0aWCp3GIwtuHGe/ABUGCEGaHE8/buwNty7w/b/hi2koBCeCiw/Wwuz3nCqCsHFqjlsqaN71GXijd41qkEpldJbjO0bJ9nXeEeSIeFqbjHTIi7MpKul7Z1gtp21jXlfPlwnVbKa0wzcLp6MhV5Xgx6gAzTA5xndIyPd+Gg94HfID1ZeOaOvSkspd84HSY2CyK0Dk1ltyC+X2YEdo0zYgXiA2hIlLBFbpbqe5MdMowCjJzjBNBPEyRa9pY82YGijCFxhSVSVObw0dlE92hFOPqKmtJZnw1cTi8IfhGbV/R+0oRQWRRM7oiUDU2ytVh5lh5ub7QRR25g5jzs2tI6JoqG3TAoGkq0FohlY+6HzcF3LosOLcw+yNOMpmr6bWF4A/0pka3revQNE7zPiAwrga1CfQFLxuTz5yWyBwcvXXWUriWrF2UMdZ+k+N3srGFG/IKjd69UjuaNb03nqE2l3sBDM+b8NUz/MmXgV98hH/3V44PZ+H5qnlxdwt88eB4uBfmWUxQrRNUY2AiAm3U/M4+7+hkwv492L7cMBQiCNMpcPfDt/gpaobm+Zl2foKilAMAynbTOlpzoXEYldYyLas+7XrdENO7dTMSab1SqqN3oUmki6c7D9PdrXH11ol6pXAq7KI6QXzAIFncFPHB4Wz6nZM2QZezqE37BFPQQcAksEw6KXNeeNqUnvyyOR4PnR98Df/jP2n86B5++qDT8d+G7Lnf1qNUQ2F736eLbg+1ZQ/r1uxYSwwww6MBq467b+RD7nCrTUAHsBjCRC0zJS+ULdCKIwSlK3tbpEbGa4g21RdF8Ojq9Is1SJvFDgyNaQyBsCz46JnajFh4eS7KLnDeEWKwQHB9P857wjQb1bbRa+FwugNxXK8Xpf6j+uJcMpI27h/eqDtsCFSL7ti1Wx22dSUnpcbpOVCdmzOkyYegOayu0Jvq9ZqhOLpey95gjsbWOadUISva1SRGZ7CDRgzcNtOB5iLgNFsuuum/NNKqbkc+9fvR62oIk1hx5ZxTQyip4DzeBXNQvkUIOdPweWswtHlQ3dVubCVm9WOoee+6OFYgZS1unPQdKRdRRJyu+dheHD4KnmVnvwQ7n6U2Uis2PHSqdXJieb96jtN6JcTIshhKWZWJoA7PG61HuKg29K//SrieIf4MltgJ4dakfx+PlFZcFnJaCWFmmmYOx6M2clVpnTltXK9nnp8+cbmcEfHc3d0zzTPfffu10UY1K9R7z5ZWRBZrZuvupB3CtKONKW174xwtr/V189AM4e/2bKS0kXLmgQeWZeHduy/IW+Lj+/dsW+a6rqybZg9rNISwJXV51pgTYTLUqFR1RR5IxxQGOU5lO3SjqpvxUgzqYi4ordq7ESll5k822FMrAEOHgyPVQmmVLWV6cDTvKFvFe70Lt1z1ZyaTHIx4EBEbht1mfiO+qmA676qvq9TKuiV1mXYwTfp35+vG8nLZn4cpBnKpBKPv6880Y6ZWd8aN6jC1+XfBa8NeGyF4zQYWjdUSESSqG2yplTgvvPn8h3z2gx+qW/Knj3zz5c958/kPORwOzDY4AViWw+7UPqLNhoSE1myQoXToWpV01qruAzs7xAak3mkk0vBF6L0Rw7RPs5+ePu1DifP5edd2H48nY+Vk5nlhnmfuTncM1/Y6WDB9f9nf+0MHq4GO1V8iiAsGtBTWdCZbLea8MoWqQNk00zk4zSKNMTC3UVtC2Rx0R6pqhuSMyi+irrfl8oyLlekkHA8zvUZq2nBBtduFivON+6Pe0y54uiH26oOwouZrFS/OIrW8NkShEWwAVaoOeb0IPgrlOdOyMiWCa3gRjkenw6Ja1KDSO+ZFTZBqr0iIlO552RpsG9IrriXWUsxUTpHh0iqpZP2ohTB5DsdJXzsqaeljAF47acs7q6BWHULFGPZ4qqermjyF+ELOneNh5rM3ArywbhunbQxdhbvjiRgDsQem+aC62xjY3KI0X486/Bbw1jNMweHcRJw8xTW860zewIQuhHDAG4NGqqP1TqJrVFLvlBo1UhMheGuoyXivZnHNd5pUSrdM4tb0fLmszaZ3VIrV3WMQ0ondq7zMqaxIpILfLDqo0VkRJhyOKI7gG+odp0nheMyAEmpLGtcoHijWpE6as11ho1JbQNyBh/mEd6o1zrmSc7MBe90HrP+143e2sR0UwNKUypGbkKr2hK0PLpuQrcdtXR2O31/gz74V/t3PhZ9/EP7DL4ScNUtu9p3TInzxznFc1IipNqBoNl7ctT+Quza0BWij4DREa5AzW8coV0pJDrOwvLnD+Ymnby90mbXwymfdHXrRG6MWbTR3KLhoTlQt1GLF2GaaNBEIB53gOs8ugpXJ4NQA8YCEBfxi3afof4dgmK6LrfMQJgt7j/ioBhGCvrxSYFtRCke3Ta3Bi4Iw5noJ1wIva+f9xbHEzn/+BMcFcm+8O8DkO27PIdzr/98ff09Hb5026KCMaJOdN/QrNFrNdVRKqBt0Wvs/HeLsLa4xIG7axIG81hapeaIkneIHV/ffO5DGQVsTBlW179RRjAZfLaomi1B3MxMxoxx1j8wpqdmSxZUI6sjZW6PUvOsJBaG1QhOlFSsK4fesxmHEU0veI3ZGUTaK+m7/SylRkqLG3hCzEaOzaz2dUfPgFQWRHQUfJhXOvldM4zicP/emdyAiTo1snDgkToxOdbgkizimadob6xvQfvu64SJqJwrEIfY6vHP0OtyoFeXaCy6bYPRBJwa67yDmat2VkqxZwzd/4Z3a2pWY0ktTgwuaFl2u4g2JGo1RCHregxNKs0LIO9P+2v2sv3Knf/V2o3xmo1E6c7sV16gWz9RqARy9K4L29deNWoUffA5yMhrW9/ioNVMRpGQER4+REIamU9kA2twmzpcXBKHUqpEqImzrdaekAoQtcr1e9vzVWoczeCeYgUqtOlxyr8zFnLvdU2A0XDrgjCZY1IDooJSy+/s3vDw9EcNEqZWUs+p2BXMH7nvUzTJNzNGzTI5p8uQaEEm2nXb73W6PjRpZ1K3pMxa915msE6XbyWhqvTa2KHIfnDYSNumhWAGlkoagZmJSWYoWwCkX6I28ZZNljDWB3Vug25BQ7UlVA9qMcr2EAObQGkOzyCxPa52cC9dNB3dT1OiOGP3+XgeLY5c06EmndGOndI0ALOZRMBrI0XgPJonSLzs+ThzvH3h89wX58sLl5YVP77/l8d3nxBCR6PaInmmaGHKJwRZRzzZr+FPeKc61mrYep42tnW/nPN7dKOZjjQIIXk3vas28zqRNaSWEyLIsHA5H5mXhfH5hnhelp57uKKVwXa+UUvf7uv+W0L7UIKnvUhDdz5wylVql9ZWqnaUONZ3DdZPW1IKPjhA8ITqmovtSRthWR6/a0DSbGIozhw37XkRTEuYpQJ84lw3xuheUrnrJwyxmiCJ053YUp7XN0LSOk4DDWWPbwAkhau1YmzOarhoU9VrpuVLp+G6yg9kMy2qlCnTnCDHSK6rTbZC3TL2e6U1zqKNU8ppoOSNV94faGqkWUi3kVhGvg7EQdEBUm/mDWDTdlvKrwRT2/FhNUmHLGZHC+6eramJz43RYVAf+KsYqeIcXR6tKk56nBe8CBLd7BVS/4gv0WhDJuve5jnhHEMelXfCmS902oKlO3zsdYIkpAtVYc/hx6LCsuc7k1C8FCs41xGsyS6NSu6PYOSpNkWTnAt5DbwXZTT8VUR2+Qyp/6uAakG0A2RDRrHMnbh8YOi83XyFRKVun07qirnoeLD9cOr1q1nZBaC0gzCzLAUeklord/qghqblK/wbH72Rjq2Ylja00/vIJPm7C12f4cHHkqkjAQFYrkEsn5c63nzSP9quPjq8/wfMFPnzouFaJrvPH/53w9k54PEK/NHrtLK1zdJ3Fw2OUHWK/1sYGPNXOR+9ZxZGa5sqWdmv6arXi2ynC6Q4OJzPLD/8J/fQD6v1GO39SpDZfoVygJv1GK14UxS3Q1a32hqfZ4SPdDSqxRq0wdBBWuOIjTAuEaOisTVdEUAqMLmrECRc9bvLERb8s+o6f9KbuHXKG3KAtOjV8f4Vr1/d3ilbYivB8hidxfHeBjPDDR8fXl8ofPTY+XzrZioDXNmC/P/4ejlvdOVin+9/3BtK6UuoZbaqWUq13pDm818VM4zHCPhlSRZa6Iu9xQl1Yr4333yWe3hdqcYTwxPn8TNo24jwTQ8R7z/XliVazuUHq85FqJ3rVt8yzIknOOWreyCnSuNPgeee5u1tYr1fWDiVpxuK1XZmWRYv6VrEuXTc3c8nthnKKc+St7LFBrguD+uXiBFVpSGJfX3OmpESyBgFRGtxAPEfROcyimjUD43wP3WuMM9OsiJs6JIuZQRhNtxTLhlXEZBjC9K4bh4h7hZ5U1VKGWzPuBjrdlaK9F6YdWjaNkA+aLTct+zCr5Upvw+kWqG1/L72jHgHO79RD77ytvXofYbTx3gPOEL/RdDb73KGIbQxRi5It6f3gFFHrNvgLMSKt4axgVrMfvYlFdPerRTfxqI5ojBgQccL14ndUOw69ptMB3LjvP36MbAm6JH72U+EHn32/tXnLfADEUPuDmfsE4lGbj/PLMzFOxDjz8vxpd/+O02xOtp3n509s68of/MHP+PjxA19/8xV/9Id/zLIczLhN759pGsOfwuPDGwCLvFCpwY2+rOfcOU+MQWmky5HL5cUySuF4d8/D41s+++wL4jTTcaxJc1S7d+RyK17ef3ziMAUe7g+8ebzn8aGzTJHnS+KaCuLZkdpm9F8DjAlBOM6BZY4sS+BytggkLyxxwntBUOOc4B25CmtuvKyVlLWRu25J0VnnmHxg8poVO4zZSlEtLyjjS2w/7RZJtswT26ZSi9PhwLqtlges1O9lmbisK845Hk5KcVY6srCVils37o4LvWtT9/R8IWWVMagG15Fz2ZvrLWUNHDHtWmtN9YClkkvF1UYIgePpYHEy0H2gtM6WNj58+xXbeuJ4XDi/vNC5NauIcH93T4xKAT6fz2rshGqae8eyx0czuhFD4OHtO4Y3gBp/BWPpDAfpMeBUh+SUV0qdefPmjSLwJRGi5pB/9vkPdzbGYTny+PiG+/sHrterOutz/bVZ3Qg3/H4fh4NTuVaC1CpUdF0uBdcry6EjUizruSEEhAXHlejhzb1wN08sMdLLqsind1zDgd40gaBPyqZpeHPHLiyTQ2Kl5RdceIP4mRoWCoKrjWvOOAf3p4W1JkpvpF4hVdxaCNtKRSwyTpkUNGji6dExBwch6AfK7iulEZ0Oc2gNEc3jnpfAmuB6UemQef2TyOR05Zv/8Od8/dUzX375kdPdHcdl4fHhROgr0VU+PzlySuSU+PRy5nJdWbdsiQe6loXgkCY8n6+7U7z36qTfmuqbvbN6Ywo4gW0L1NJ4//GKVMgps8ye+7uF42FmS1mzxJ2z2LLA28d7HuoDy3EhyoSbApM/ESZh888Ega29p7GR5UxwE9EFxFWaOBpiDtiw+GgmaYXeqw7i/MJp+oxaMy/nRM+Z3CqHWfCu41xGOONdZFomhJXaC7lalBOJ0zwy6SOODXqht23fv7daER80xlNWu/+KioUaHOKBzgQ4XOiKrCO3ur2vaBipx/umOnoay6yLdtk+qVzSeUI40SrU1vHuQHCan35aHL17Pr18wM0Q5Dfbk3/nGtsO5CZ89ez4s+8cL0+O5+T4sArnbIUMYmhR3525WutUrdWJUYXTgc4sleMB7hZ4uwj3Hg65MzuNrZlEOARh8nCcjGqMMEdH7p25Ab1xpuMnT2kaKl+MqlOqUASkjLQtfX1xDpQq5Op18lEypIWeZm1s88bektSGtEKvm6K53So1Z7pZFxEXtLndG9uhcLeNeAjVvUYn4KMiOGOHcIATneQ5IXjdpEJQye3Q0rod6B1InyLkpem0qbxCVzra5KcM7y9CE/jTbxzXTfh86cxn4cOqEx0Nvv/98fdxjBmFfhjFxdDaUQRoU6qN0xiAtO5uqO2ut70xEfaJMF3jp8xtuWThcm6kFUoxxDXrtHKZ591x0/VC3q6sl6zUl96ZxJyNnVN3vWliWmamZSHGsBvZqJ1+2BFfcY5eCnnbGK7KqvMyJHkUYHZ/i2j+4ba+QmTNzKYWdVrstdyQIWtUSyn7hFJpzhPBK0LaDDnKOe3a3mGGMqa8znt18/XhVy6QGjrZYGGfU5mMQjDtsl6zOtBpawBjiGauYc3Gjl7AyJUdTSamuRuuybqptd28ZVABi02zR3QZaIFqMPv+POvrcODAO/9qaKIDquZ0cKLdpDXxmElUHQMRNX7yXg2OAKhiJiNDV6vvY9x8SmVuujk6Mx8zh+qSM8knfAg75RtsxtGarq+tsV2hVeHbryunw68bmH3/DtUpqlnMNC/M85HT6d6GQqpXVIpcYHLj/fbdtCdOM0vOOHGKyPaOq3W/xoMloAVhsKHSQNEw9sIwsXKv/v5mDhKMLZDLhDe2RG+Vy/mFb775mst1JeWitPJSCb3bs2CGLrWSCmypMM868Lg7LtSuK03wGo0iqIRAs9zVAEcvXzcExHM6zPuflzkqwuLansn76SVB6XszN0ytfFfacxN9bmtre8yMZnYDCOLDjvy4MM6VDgRrb4gNe5z3tzVDTHMooo2nG+Yz+kDtjutu6Oo9rjVyKfSixlAYi6S2bshcp3SNMqMPvbPJpZwOtTtixX5nmtUoq+TC5XJRlor3vPvBj3TdnWayIbZPT5+IUXXdp9OJtAXOlwvreqGUwjyr03EHiySrbJveg4rSqobb+0CtQ7YAPqpe/3x95uXlmev1TNo2RcLCtKO3Ka07Wi2ijtjX65nL5cyWEjkn8wkAlWINBtD3+6g2c3V27btRmoq2OETUybfTKS0RRM9L8EFNelzUJt4J4jrY8G8MSVVNpvEw1IGiKWIvJiEpNUEPlKbSpIbov4tjCp6E03u4lz36stYIAl6E4NQoqOKMHaOMviZi/jKD8q8mSyD7Wk6viNMs7nVLxMXWADK96xr+53/x1/ziFx/45S++Nb+Amcf7e+6OjtPsKO8WzZrunS0lM0wrSmctFXH11VBU/y6Viit6j3hxNKcxbylX9WZwAM7KHEWC16xSiTkHYvCIJKWAxwkYg2ylzdZSCUWfu+gcVe5AoIaVWj+SW6Gwomd7siGZggOafWvPUmvqZi0bSLQEgQXXPbNr5J7oTbN1o8fWlIAQ8BKQ2s09vNFcAck4lwzYmLT2701zYrsi516qghXd0VoyxotqbnEaS1Vao/cCFGNrvaotetrfj3MYg2Ps+QVhVXNR8UY9bsr2Ug4zpa4ECUy+EoOZH4Z/rI1th1Tgrz857n7p+SietTquxRxgRZtQ79g3keB1s5sX6E7dOF+eG21tFF/54kH47MHxdoEjncPWeXeAOQhT8ISoToveDf9X/by1xkNpsBXmDm7xu317LrqYpQIbivQnsButM8+e2hy5eXoMiixtG7It9JIgXfQNi6BOAwVJV/p2gZahJfCT6mJF6ceifGejkrhb42umBNBvNOQQ0Ad6UJPZ6SfOqzFU8ELwEO15FLHGFvvoYnF9naJsFStI9OuUytLZsvDxKmwNOp5vXzpvl87n1fP1ReM+fn/8/R3emdbGnCzF/jeMzkazwSvHVbqK+QcBd9AGGZQ7dIoHfV/8vOtAI+fE5Qzb2im50c3l0nnPPB84nu45HA74nrnQWc/PSCs4mtL7PYgNUg7LxP3DPTIdwatTZiuF5sQckvU1O+eodPK67sW9umqaqUgw3W11SHW7scEw1FL007SYKVkjWwyldLtB04gQGaZWcZoIIWrDWZWfr1PkjZw2a4RNX2tOo/O86Ck2JNOjuuPW696QDtCh9cbQzo+GsJa8GzqN3x/jZDEl6oo7UKVBhRxN+66b9Yq81qpU3WpN+/ja1kZ1qA+jiOCC32deMBD+od/1ugEOrkVXp1JpMPK2WxtGM7oWjpWj24ivhQDNNuRX12Q0U7K/Fm3062jIwd6TGqxoXJEwT7P64L1ClYa2ig61JtImpBSY54lafzOjin+oQ3WLauK1LEeOxxN3D482cDH3b2ugZj8bvd0K4hA4Hu/wTun707xobBSikV9dh0gDSZumQGtKTx6U2dFAjGuiR7fXJFakK4V2nmeG83YtmadPH/nrv/pLnl4uXLdMqhWXhOY7izny9t7YtgwFrlvicJjxk+f+dLA9YUheGhWhS93N43pvONtLRSB6zxw9zkFwjsMS1W01qGGMiOfpUrRYb511y9o8tm5FJ/QmOx37uibV+/ebtnZZArk2Su3Mom7fvWO6v53GYCZMm67BTjW01SiRY9a8n02baymFWvXytXUu141smdiHg64fpXZyMZfZrGZd3rndwb6B1gM+0ERpic41DocDzntyyZwvV84vL5xfXvjxT/+QaV44nu6VwpgTH89P3N/fsSwLj4+PrFfNQV4vZ67rBR66+QE4SknUKkA105jINE12Dway+RXghKmrw+x377/hcnlhW1fW63XPPhZR9Pl6Pf+KJOR6PbNtVy7Xsw4izGEfwLtoje33v7NV9oky4LCVTbyzPNjKTKX1RG2FUleci0zhSAw6TBGZNc+ZDlI1kqXYOi3ebFMaIdh6LtBQcympDdcKqax0ceQW8MY6qCib0Eev+bnSVfqm+X7UOoHvBAfRqeNvESFETb+ga7q9uh+LJnWIQFO0ttVOb0oxdaKyh+tauZuVidP7RqeQcuJP/uNf8Iuff8OXv/wWQYjTxN3dHT/6wSNvHg7U9MDpMLPEwJoSa85smzW3RRuvUps5kNedxdBKwTvHMs0Gcgk5aY6sFyHEsDMOcq1sBWucg+pTW6Oj9+muM35FEyc1nAREIpO714FXvLLhKFRyuzC4cbCgLXTd6+jWGrmquZfIGXELITiCO9Fd4OAztV2pLak+N8ASHLXPSI8mB9PzXKvQewK/4VxSEKpNNixq1Ho1Np4QXFdTxia0knemmreeSaIgpdlAJCpi5W5D516ViYLT/qrWblJJh1BwsqKcWU9wM5mGdIfgaC2Ttw84TkwOlikyBdXx/ibH71xj2zqsBb58FpYPjn6A2jVyRvu2jkxCtb4uTjekYZkgemERmLojvRXaPxGOvbMAn7XOwTsOB8ds1NtR2Q056gAWu1PUaPbC51QOrZFa5iqeagYpXWw6G9VM6igwzUJJQtsaOGjO0S5CDY4eAiwzGJqkXOZOL3YztYJsF3rNUJI2q+KgGl3KOYgnxHutRn3UJje8Kk19NMRFrKPQN+bc2BNlz+KdrG9uRf+Lt8bVqIxVXeRZVz1/gnANJtXwSt26rvBy1e9LWRHva4ZvovAXZ8dfvReuZpr7++Pv5zjOmC7C2XRMddGldyq3vFAw5HagsgMpq8W6GUNv0c+dxQYEr4urBpIXeklsl42P7zdqUbrum8c3HObI4XggzFFpe4cTKSm1LYgxpTu8XK6sqZIbzMsTx+Mn5sMJHyJhXojTRIzRqL4AjVwSOMfd23e6kRjCg2ljdRqq6FBv1QxMgqEN+p61Sb5FY2iz2WilkKr+V0S4u3tQNMt7mk2BBXNgLoX1cqbkbO7FAyXXIPo4RdMA6zRzBMjv+p3ecGKTeNHG1pvZVkfNqkIIzAfdWJfDydBcx/V61kLcDLg66mQ79JejqQQYWZTX83kv1m1lVMBYhvOtGr147/GTGr203mlWOAB7w6h5unaPGA289276xVd6P27oFobMtK7fP4raYQgmFh+jRlFBo1swJJIx2Cz6ekrFh0n1+toZE2pVfwND3BvsA4GWVT+0rsIv/nPl6cP09/zk/f0e4jxxmjkcjrx9+xmI8PVXv2CeFpxzpG3bG7vH0+csi2oRB63dh4AsBx2CVDWQqiWT82aNhA4YlDb6aIWP0vpexwON6ziGMDEOkyAM5fXaPNnXnF/UBXm9rurq2RvrthGdIbBdI6xyLspuKpUtX1X3e1j44u0990cdep3XTPVCqc4yXg3lxKtyxnuiV13f3f1izaznsGje+3EebAnhw6cr5zVxvl5ZN8uQdhqX0boaJF1T4emyEXygduHD04s6mTrhur0Qoz4fOWv29RyDrSWd88uVaVLUYfy795pbGryjBS2Sz2umy5VD0eie+7sj3nvuDgvn60ZrfY9oarXycr7uaO24th124xYZTCsG0iksy4G7Ox0oLqc7jqc7Tnf3fPbDH5O3lVaSNcqFYPrXQWtOm0Y0xahr1zzPHA4qkUhpY1mOzLP+/D1ma9xHQRvztiVqVTbLdbW0hpL57ttvdt3i/f09Dw9vefv2HefrlRAijw9vVINbCtf1QskbzUynRHTQ8vz8TK2NZTkY7fv7bQIHgJjrMQ1xk4bEeKcpnq1SurrxOzq1bbSuwwxltzjOWYfOqQhbEraqqJ/3md4KT2vhsCRcSKzbEylHSlvoOSCt4D2aO0wnl0TE08TRQ6WHTnWdIp5qw6TUKq1mjq3RcEhXOVsXZeel1KilQ89sHRICBJYYiD7infp85PTC4VCITunJXkQziQ1fia7hSsZ3mAMsc+R4OnB+ubBtG6135tipaSX2xOdv73n7eCLOC6l0Sr0wwmxKq7ycN66bZlobeMwrStQ+5K+7ZKiTVkU2hc58ipxOkcODBw+pNiYfuFw3LteN+8NEnSPL7FktZ7kWNWgLy0xdO81PuOkdd/EPif6eXP6KJoXUN3qbqA2yGeA5PJuP9J5wkhCpdNGYn5xmpHfmYMNFJ8xuYXaeyXtSa/SuIFemU4iEcCL397T2ieA+QZ+RZoM70ffrjfGU6grGeBAKvalDc+mJDsYwOSl63CNeVBqBT0p77meNJKsLcb6niSN3EAJIp+KoTZFm4St6vyeGe1LV4UnJGzk1ShWc0+ejt3+kjS1oE7RVuGQhmnPxnmIh6tQbguoIXdWCKKDFdOj63+I6c+j4AEsV5tY5ijA5mLyYPuRVaS9DT7djXIZ6KbLbG8y1sXVH66a1rRqDk5IaL5UELeukrdau0ywDUbsTWtDGE6PhSFUVeU0mLkLz7qRG8JNFnjgoSSmXzoFX2pEE6F4jVYh+b2bE+8EnNMdbfe1idC8n+z/vh9gDQb/RUXvXxqQCkqEE67HtZw0l8KCjGLhFKoIkyFWQi3DezPX5v93t8o/umILbEVtwumB1GImNgiK6fV/whZE3Jo3bRI5qTZRe0+6MhuzYP+gd55pqUPJKLYoABe+Zp4nDsuDihIRAtgJRnGgmKmYsRdkRjVE8F9OK+bQxzTPBqGzeKLXq8qqZtqOg89VQi9Zso9LDuZvJ07ixd+RazGija3E7Gr7eG87rBjLOgVLlkqGqXZ3NS6aY0dUNDZfXLeOOU+7620Eb1k+tuTVKBGL/PqJY7Fr6YFTbG0V5HGqb03eK0Mh+DWE0k+zU6lry/rudmYz0na7sdjR4ILzNDB002kd/fjUX61pf5yOO96WGP4OuqvnV3BaUcc5twDD0vK22nWXjg1IpFV3Ta6pNP/bz606/dK3RnRi92j6s8R6ou2/qOt3NDKe0zvVc6PX7j/SMyBSNcmps6xW6Nq3sQxRn97veJ7llbYBsUxzXo3uPb1ULxtaY+ohlUfMguLn/juGFE9E9Q18Nt4EFDKmCCASLlKo589Uvfs53337L+XzR1zXYBANZtGsEmqdN18HEdc1454xiiVFaBwW6460p9tVZYayZyJo9q5/H6Hf93BSDNZra2MbgFUswpNaMwhmUida1eVxTYZmCZe8aHbii7BLXdyOg12iuG+O/V+yHcX9r9yn74Axr5ovXrN+ci2md2e/Z10cuRSPa6m3daDYckt1kxtawdhvUDS+Ay8sLvTUulwufPn1UCnHJPD994u7uTnX7xiw5LEdCjAzn6+CH3nYhWYyaiFLXQ4h2z2hc23i/IQSCsURe53aLiNGO9X443T2yHI54PyFiJnA+sPhAi4VtW8mtUUoihlkHXRZNUmvVf/8taWyVN6foLLYPOD9yx8WG0GGX0NErvRdtBEXj40oN0IWtaGRfRwfYTRy1KkW/1KpMnu7U2GekT4inDqPI1vQctk4Lhrg2qD1QLWe1j3qha8UQJeCw9JFe9PeVhheTFHRF8keSQGtd2URjSNaNKOhuWbNewLtuDa4wT54pqjbbe2NWtUpOiS3A5eK5LBPLHJkmNYoqre17QcqVLRe2Tc2ilN4/BqnKQCm2Lw05Q0G/d7AmxDfc1JDY9nUhmFN5b69QVrCfN/Z7O7dB84lr9rjDPZMXTn4lyTOZq9VgY9/XBaj1CiiiPUA4J+qz4el4V4kmq4wuKCKO0NC9nN7JDTPSNVPMnqkuo14UGyKT1lv0vcbX86LPbjOzXdA1uWESKCri9d+kO7woUKJ9i7dT1PH2upwxCHr3Vmua2VVvwBGw3N3WNQbo1RkdWfe/yfE719gasKTaTZvi73s4unhQO74qVfJQNcB6sqkuHXrplEul5M7s4S44DlEDlr0XlHEx3OVgB7S4Fcu9AU4vxGESfHOcroXn0tkKXJMilOsGL2fIxi7uTRva50+NLXU2A1u9MwjLChU3LJlrA1fp5kDY64w6HYObZiQGer49cII1DvMoOgRcMA2G6Goio9g19KWMk9rpwzVZ1HSrI8wHe8/2EDUDk8VDswwzMWRlmndQhslD9vpfzP0s105LsInAFa5JrFn+/fH3dRwnnf4KusA0UaZ5r57ewLuA66AKSTUyqYOVLBh7RBcj54zqZZfIoRtTNGo+dJaDcHpw1LZRilhEw4Hj6YHHxzcQPF2E69NHXK8EP663mhnFAqEKfd0oOeFo1LQy3IclTLgQmObTHv8QpsC8LASvuh86EAu1aPbjWH0FLbToHe+j6kaNXCvO73mLresG6k1zqO/ryDQvSknOmW29sq2basdEjIqXd4dVRRrDjlreYlmqooe2SDmn02ClSFbKljQA3dCvjhr0aEOj2kelpQY1s0HXkY6izN15uhWXtRabEplBlemiStGmttZ8Y0d0z8gx1aIzMi+aQypAzpuh0pmc8s3AylDhkSsrwGSoj9CZl4NpN4XRou60axSJ1d/f1Uio67Q2em1Epvmgy1EFsQZEGwyNaZpCMLSv2EI0aDVGgbbfgzhKOlPdiFAxfXUuXM9CTt9vDcQIXejAy/lMrYU1rVQzEDseTwQf8T5SSmZLK3NauFwu2rgOp2/nubs70nsjZ8/T0wcEx8PjIw8Pb1V7vm0MIylgp+gLEF5NOcfAYgzEut1rzjnS9cqnjx/4f/zf/6/88he/5Ouvv0YLw4gPmj1aW2fLRVGAGLgaKuOcGr7U2nj3mBW9R+NrRsM2+YizFtI7XYMOh4njEjnMg3rstLmdAnHkMZt+eJ6UZldLVW+Brg2C747utGlMudLaRkoZJzBHz8tF0c1wNIp2qfhgjWs36qX3LHPUZ7BVLYabat5yqeZXoYMyvO6txTdKaTy9XExjFtg2zaPdKcreky6JXKsWhK+mzsUJTRzJzHNGwyJA2jaCd2w0/uJ/+4+s28a2qWTCiyLN93d3tFr56c/+KcfTHQ+Pj9zf31sElGYYT3Pg8+UHXNcrKSdyVn3uNM+UnK0oNvM70fvh3bsTDw9vcE4jfdZt5e50b8MIlRB47zjdPVBKY8tZ1wHTzD++fYt3jpfzC5frhet143B4UB1j1EFjLZXz+YXflpG4Gw1Irwy9qY8TMURcr8yhEU1vjFPTs1o3glNiZ25XSp+o4jmvRQe4TvCi5j21FUrpJKOqd1HkQfpA0mdyCxSj25daycAUO1IdfeukOluzgbH51NtFB0cLQTxDCpRLoeRGmFB2VK04ZqRBK420JdKadM2u0Jtj8sJhFu5Pjikq+BSdmrvJMvH4MPPxg8dL47DMulabgdv1WjnPQnz2NPTZz7mwpbQPhy7njcslsaViTCe3e20MiYHPSrltve/a/2ByihCE4jstNlqI0CakC8fjUde83oyN6Kk4svkVtFIpuZDXDQmRCmytMT88Mh/f8JMvfsDH8tc8lS+5iLpUO0O0tVLJeKnaqvagz1eYeE4NqLiYmLr6HBzDDE6b160+2QBBuGRv5n9XSk22N2aTjAmCMQB8w4suEs51ci2sJUPX4Z+2HSoNaqbVximw5roQcNSstPMp3KkBJ47Ze5p3ROcI4m2A55SZJ9qLbaWQaybXhjRHbbOuBVIhZbyLRP+btay/c43tOFrXnm9N4w9wT2MWuAvCXYDFw2JaIC0abTsWYTlAjUpJHL566iSn0wTJ+j2zBxdl1wB2oLmBUGD6B52FLAihKiqbslCq1dtRJ1XHGXrXv1+fC9u1kV8q0120XDFFYwYNuDehVwfRCtnWqccjrTbKqvldPjorzGVflMRBmJTOJybu3yeD5gdTG5TU9wZVnWeF6aC6pDgJueqpvV5kN1MewLAivrbPevY81N60yXXW9I9+vTdFbNd0SxxyVdRs6h/g/vldPrwZDzlMy2OGCcE5DVfrnq52mXuWcRWhU/eFzNt186JFpxN1FtTixO1TV6Hx7o0gP4v88q8ObJfAcX7guMxMwUOrRKOwvJmF4/3Eg3tEUOqfi3ecnq58Oq96g/Wm+l7RoUu2vE5tVq97YyWbGK1ZlI7qFLkZRi7bdTWUUdHFnLPm2Pa6O42OabYzRGxM0hvadGocA5RSzBwqWYOmRXer6jjcDd0QEdO7aiM6z0oDHWuOOKWH+6BaXUUboLqBYup16011s+pyrFrIQfm9TdwHSmEItxlXdbqh04EwtGtdo296a4Q47691mOo474h2Dp13+9dmiziqtVCrUq13dGQgVc7jnSeEEVUkeB/tvaKxATa7rRb8jowYFnA2TfGi5xwXVPODznCHs3erlp2Ho0vABUcUyxkzXpsaVGmREYK+/74cGLEJHc3qDdFygr/n87Ru+vKUNo7He5zXQcs0zfigLtdjolma0vRzTruZ2eX8vLtne38zyxLLc1XnZHW83baNGKNmJr9G151/1fCO8ekrtsNOYXfaXF8vvDx94vn5Ey/PT+SqyIYTQ32NiVBrJavbkRrWdUWA1jXx3YdnbVK93H6j84SoG0ppleDVA2Ia7rtiCFRSx2Po5Fi4rkorVq25wwd1QawpU23C46LsDf3QxPauyEIuqu9FhNoFisaSRZ3mEkNjilrQHZjIuWihXW/O4rWrbOGyJWLwu8kWBJyIUTeVSTOckD89XRg6+9wa2RApjQZx+GmyYr2pXrzps1WN5llyJidvZliV8/miCHrTwWLNgeeXZ15eXqg1s25XSi06COsaSXQ4qL75ul749ruv+e7bb3RAFJQpk1Ki1kIpiXla6MCHDz8nm/HW2zeaD/7m8S3OOba08fT0kS9+8ENOxxPvP7y3hnvTZqFMPHvP/d09fp6ZzCCvd4jTQu+N63bZteE+eGXK9O9/BbFthY4x3FwieMc8zcgy0YMwhUrwGe8yWQnKdJLtvTejvdo60+RJpXLdModpRroniCMlNfoZM2oX9H6ovdLSlSZ39G5eK4J125lShS0X1r4YyNDwQYgHR1rVadvR6VMiUyl1w0WnunbfkB5wzQOTuhI7MwJsxViP+gxUIx7KsHYxplfKV7YmnN7OPDzPvH2Z+erLZ0o2fpmD7oTrlmlPT5yvF6L5AJRcSalQSuOyJlIpe8NZqqOUZrFfRhfZ0ehOK51aGxkbtounoznzPjhmFznIjPOeUhppq9B0KFdK4ThPTDHAFG0f7/StaASe97jV4SUyr488hon/D3t/1iRJluV3Yr9zN1Uzc/dYcq0qdDdm0BAOhU8U4fL9H/lAoQghxBDADIDpriWXyIjwxcxU9S6HD+deNc/GCLsorAGyq0uzPCsiw8PcTJd7zzn/bU5f8dg+sNQXrvLYqdyDmwQ2+GtIbVQqqu9NxlHPRJ9wUsiL3UNVBI2Gnpe24fSAiEfk2mVNM1s+dYmhIEScFKZg8Waj6HYixGCeC60JuQgqAcuvT0whMsWId7nHqlZiPOH1gJNeV6hykmhSrehwroEEQrqHtiGY0z06I0TLLFYFZxTspsW8Sar1U3/M8efb2DYzCCYrASE15c4pRwcPTrjrlOJobMxdwyZYI+aj0Jx0C2r6JLnuoeaKxQac5shEIArorrW9hdOIsjuvRsxdUatS6xDXd8qmGNLVFCQPukmjDW1ZR1phUHY6ouqsqaaZTtIn0yiAaZ18dDjPf9HYxkQP7IYyUFzZewdKsUHbKLoHtXSaIEYhJWAzE6y8qXlPdfoIIj0bdZwP7Q/GaGzZvat85/Brs3O9bWag4EUJHfn9J7Av/RM7jB4D4zrZRjaMK7TfyILH9fPf+mCiSUMd+zDI94GQl6HF7EYn/R5wAoeDPRz395HoEsd4ZE7RijiBKJ3GN3uan6jpzjRk4snMVAJNIpct96aqotUoZrobHAnVVVypFFfRas3kcr0SU7OMWDd1iqw1soMiNxyLLf9Tf6YXNOrPTYs6wN4bfVK77tA0iqi++l6bKPffAWaA4joSHGM3mtrjtKypvbnR1t3gaUTVGJWx9feuuO7YOLowk973xnZvctvewNsktmdHdvR3aPa108Us9/XnObg+dK3geL1qcUrt1d8dvx4mQdLNsYab647kvXLN5fbdNvkd0UJjLe73aOjDBRu6aV9jlVsohK0x9iv7Gc7Lf7ERGjBi94bz3Q24F4TmDN2dMJ3b19tf7KGYUdS2AaaNctPRTIP+wfWidfoe+52yR7WIM8TeBpNyY0KIDQO0FGotu+nWuMEHmj+ik/pbsv//B2u2iA168rZ2ZsOVZVmo2gcOHd3ds3D15vatOp5HQ/BfLlfmFEjRBiY6zNS8ZSo7f8tVHEZ5ItaEKdZIpzhKn0Z2lWHINmjZrb+Hf3C67Xu8oxbtDszs913tlGmndk5dqWy5kqKZaSVC19J3EzS603j3LsjZqOHNO4IPDHmCDGYVN/r11jWCRkHXvXEN/d43yrmZ0MQQLMJtdzBlNxiz5cwa1XXZ+jDS0Vxj28rN/blWmnPd8f2VXEBtLV2WhetywTszxtq2xZqm/nNStM99Pj+zLFdba/s9m9LEtq3UYk3/oD2v62rxbevC4XCk+bpHJam+ilXr+5c2Y8Lsrue8Wvd+4YcZEPVasWeMBtfQ4M2TB8xv2IF2GrJKMeaVsGvTtTedFKOzV9e67KsPDUtF3EDaFK2KUs2HxfXBdf+33f+V1mDbGoViudlSSb4RklLP9jqu2kCpUNFWu1Gdaebt2RVq62wn6WuwGlqoDKdiuiSKvkgpIhu5rqzVMx09h1PgeLRYOYaRIn196QOXWitBpDe2PRO7VJZceo6tNaxNLDoOi/U21mOX6SgdLKrW7Nq9bnv+qGtdz8MWZ9B3bVA3y3bVVuklPN55M5N1Hehy3p7TApIdbjswO08MJwpqCLuuZGcyH5G8752qdntUmtF51ZGr6423o2yWslIECH0/1IyXya4lK84ptEBtqe//9oHsWgwOkF0E5xwBjzZH0X4OurTC8r8NRVVRVBq5Fbyf8Qit5d4JNSbxVPEGnnTTR2OLBRyR4GaCi6bjbhWn2mn0JnkzplWzpuSPOP78Glur01gWOL/AvTTeROVXSfnmICTfN7rh8utu7J0bo0qR4OwGEChbI+fG3/0vL7x8fuTppx/ZdCXOB979+r/jX/71iS/fTxw6tUPMXBLcreGTJiQcrgo6Enn6/SO9CcwN1qu995fFszXBJW9Tsiq4ctOT1aJ9UmV6VENZjLLsvcUFDSGrH02kswLaeSHNsqNxRmGyh7WW3nxCR1Hs/dCLgxCsqT3M1qDmPKjK0DbQ0bR2ea8qbIuh1BqE1t/LlOAQbT2NCltWigrrtTfdAebe2L4CAv5y/AkOrR2xdX2AIrIXtc0LoetGnQi+DXOpRpWMSkV9RftAyIqL7giuMNoR50brbLSgloSH+8AhTDykB+7uTkzzgeNhZnLK5Btv/+oLohQCK/7whqXA//z7T+Rqw6I37/471nXjer3w2z/83iI5mr0P5yDEZEZSKaHVGrt1WbvuziizJddXkTuDAmyowrpeblRdHe2/9MxJ1zMRAcYwplJLI29WqG3bakW1mL7R10DoG3jt6HDVhveR0+mOaZ73mJ/Wm2DvbkWsdspDjBPSKf3r9WwNZGt7Dq5zEWHoKK1ozdlohbdm04pSnCPEhPdd/1Zrj+WwB007pcl7z3w4EWLA9+bPzpWZOllx2ZFoF20KuxcbHX0eWbrem8tmb7BrtQrGUH8z1PIhjK6T2oxO7YAUA847phRZS2VZFnywn6uYvqy3v/bh1SjgYzCxI92t4abeoDuBrjVqgA/Rck1j2Js5u8q//EVn21ZjGgDTdOBwMk1kjInj8YSP0QqrPdPYnMhrKSzLtQ9SAlOadop8iEa/fzm/kJLRIQ+HuQ8pDE4ZrUIIgdhf2+hl2qnsNuwwpN6+d1kWM466XFmvC3nbqGLNci2F5qB6Z/em2OCsvMq0bVppRfn8VInBkaLn/v60uzxrd3Wep5kpSI+9MFofKJfrQmmNXJT5kMzoyXUtXi1djuM6E6UbPHb38CbGVzG/B2dSJAWRW8RQWVaCG/nLpgUupXBIb4g+kmKg1Io0W3/bbkpl9+mUAluu5NJ4ez9Tq/J8XTidZqL0yLMYmFLq2mMA5ZqzyX/ooJO4/RrWVq2AbA0tFbRnhGNIfNPG4XjsGdQwpcQ0JY6nIz5G+xwVHg5Hjqc7Wm3EpByOR0IItFaZp4nT8Y7LscfurAuXS+Cbb35jSH02b4ScNx4e3vDm4Q0PDw/EEMlb5nx54fHxM6rK119/w+FwRMQybWsqKI3j8Ujq+ctbts8QQjTvAVUeP/1kz3kv5Jx3RI2UKrwOUvylHj65DsYoqmsfaExdVw3rpjAVHBltrssdE1U9TjzHeGQtK7lsWLS8SUGenp5wVE5pQVlobqW1zQyffKRkQAtOjVaMZIJUNDu2Tagp0mombxeWFmgScCETg+y1bRDPTOTjtpAxY0npTVGMDjqgMRRlQ6qmCsc5oHXlfC7EGHm5Ck/PwpujPXulvvD5LLycV9LDW+Z7x3QIHA6J6BteHFPwpGg59rEPkV6erqxb4eW8sizW0C7ddXzs7NrXqdIlJ629WvFFCeIIrksXvDV+tTlygeuyMU+ZWSohWrFbG5y3lbJmnp9W1iVzOEwW6RU8wVdaNXkQ2tAUacWTnxdimUjziTAnLu4T0UfUP5LbguOly44UVk9RR829WaZyXhsuVJBGWU9Ut9L8gm8Rq5xW7hJoy3xaf8AHGzS368mQe+2NfssGsHXJlDg1eYdz5LziEfCJEPrnLY4YjgR/RyGylcZ1KXzx9h3ee9b8yVyha2EiUJydx1IuFF0o5ZljPBDDPd7NqDpqEVpd8ALJKZWNSjFt7s5p+MePP7/Gth9OlaTKt6HxPjjeeQhqpjQ25Je9WZL+/Sjkplyzsi6VVoEmtFLJW0GevkM+fIA//J4mC+t84pM78eWbb7k7Ro5Tn2L2JtEYSt2Cx3UkpyO2wmuDjWGIA+vSWM+VsjULeT84XMQKW+lia2fv+uZc2j/HgEk7euF0B4K66HpwrYf0TKwT35Fg+15jUd0Qq5jGftELvk6XFkyXdjqqxRdpb45VKZmdAvb6S4V9Oue9aTgOB6hXQWu/LNqjkLIZfY338ZfjT3Oo+p0+vLPeUKSCDjqsWBHs1e1oXENpJvg2u3+5oTa+33t2i4wpqt1Xzisxwvt3M+t0wBej6EzRcz8FkmtMvvHu4dCdEWfmN1+xVnheKktu5AbqUkfu6IU4+GB6JOcDaZqIaSLEibytDO2vD4ZQGi0uG9LYG7Omzai/qLnDFmNl3PI6b/TaQUcEiyxpHVEqpTvK9igUEFrPlzTDjG7I1CxDNPRYIMvpLJa522/yoUXbGSSdUmcbT0eFMTQ0xtSbeds8Edi6xncgw4OqJ+I6zTbhZNCCAQyByZhJVXSJNB8JcSJNsw28uD3AyqtJk/DKLKqjt2JxStLpqbdIHatkBmq843u92NEu2QjBaJ5GT244GlqVdcNiG2pFao8UcaEb5BkyNSonP2KgXscl9Qmw62ix94EY0w0ttCfA3sNAJn/hR+tofgqBmOx6nY53/V5qlvmcjLJprN6eRytC6ddmIOrTNBlCmm+DFSeD2QF09NBMpLpvgnN9FtH3hTaoYoP1wH7+W2sWHXP3wPF0ZD4cSClxzWW/BqUzKHx2Pd90TDb7HsaNDmwDnNbdhW1oE5xDvGWsT9ETHGi5xeJ573DBczxGpikZiwCYZxtobFsm+POe+zzOgevD4RhssFWKDb+M+tn2ddDu/9scdpjm5GKa2jlY7mVrjS04tCi13PJGnTeUS6FrSm3guG6ZWlv39JDuG9DPV7PIlNcGi4NFotCjXnxveG9GPa0pzSlezUTq7v6OGCN3d3ekFJkPM8e7e8Q5vvv97yxPNqZ+Xm5oba2Gos7zgTdv3nGYD4SYeja5UYWDN1+BlCacc0zTzLZlPn362HV/jru7O/v/0z1psvXsdDp1A6V+fX3Y79O22acV7/Ehsq5LH8iFnmVrMWuDlfNLP0pLuzTGyfACsGfN8sknkEJTY2fse1N/xkoJlFzYciaKraHOOUrLNKoZQ9WKk4IyzNHMP4OOnDdtiBpibgwAyJsx6cpWEFcM7W2Frdh6ECUZNdcLW64UmpmruoAQbZBUTatugwiTlbTOjIm+0ZxpfnMxJqOBjfbcbUUoOKoTqt+QSZlOAZ86A6M2fHAmhaM/CxVyrqxbZlk3tmwRP/YMdWO5Xne3ajR+W6v6sFjMrMue/c4868wUAwIU52/sjh1UCp1B0jy+WsarGarljlB7y5gPgZACw5zRA1IUXSvBJybuOejX3DGR3QW8nZ+GgjRqCdSSmKeM6kZpK7VVG7yVDcKK+A1pEyIHxMWdxtvZ1p0RWgyJrZ7SJQr0LF+jKI+Yk0ZwEbyjOk/0Fou4tYxzAedn+1laEF0QQkfSA9FPOImYrG18Xov0Ee+ZYiK4YN4n1QzwnHc7qEBzqDpEIjEE5vTPWWOr5m480/g2KG+Ccu9tImag0kArb42giG0yW248XSuXa6FWzHa9Vcgb/vk7wqfv8N/9PfgL5fDAFr7m8us3LG/vcA+DAmMTUSPJCWLWhDvq0iV37GVDpyyUAtu1sZzNuAov+NmPCModRXKvfn/779xeS9npOcayHghQ/3a1xQp3KyxvxQz2EBmzwVAT1wvuXnC2BqVIR+wMkXObslUoCq1AzpBUcd44/CMzWLFnJTfM4ypagtGy9olZn6iNKWUut/f9l+NPdfT8UfcKtR0mUGqNrxejqo6IjtZat8Bv4IUmw8HX7hN/ozuAOgZeO147BOHdu8A1HlifrLGdY+CUPJMXJud4c38kBnBSufvyC3KDp6cLj+eN61YpGnoTaKiMIgRtOB+7cUgipIQPyQxLrEPqDpyObTUzp1qs8VMMdTGDKEgpkfOGKz2uBHZUV/omN45S8v7M1Fx6szymiaYRNHqjv9GalJ9Re2vJ5vYbItqfK2uGtTeqPWdY5GcGU9KpxDFOt9xceuZu2ex99IJV9qa0o3Xz8UZPBSsKCLRW8GrxMfPpnjgddvrmaGZuwzT2wYVq66ZTryapbsS9dAppLa/ITT//2m+Z1gzt9g7FprOBblTRGkup5K6PQppRuZMjDB1pHw4KsmtLDW2rDPasDRONYjscswcd9+Zia5pq+u9/yYdi93aapu5Ye+DudM/lapFNKSbm+dAbiYJzYrFYu6EW+/AjpWTXcN8j+nWW/Vu7bvuGhPt+nowV4LkNMWxtUXX990Y/S9PE8e6ew/HEfDgwTRPXrmVXzIykasO70vF43V06XacamyxGDPFQ06Z6cWis3SjLc0iBKVkDf3257IMZ3w2YTqcjKdmaQKtM08SUEufz5TbU2BvbQWu2Z0UYWYyjgey0dic2fHolYWh20ii1UIvHzTaYIyqrN7O1DXNVFoTYh42IWJSGd0S8MVNc3Vkj3vneSJuutva1xQZPo9Epu9GdOI+oDkIEtlboviY557m7u+Ph4YGHN293FP5wOKEKv//t33O6u+d4d8eQKXhvSG6tlS1n0jTxxr2lVWN8OO93DSwRxtN+OtngZds2zudnQggcDgem6Z4Y4v7ntVaOp1Onebqu04+kaeoa3WLrurP1dLmcEXGkxO6GvK4L+k+gqQXILUKz9VLE9lkbzAngCOEAslHb0LKPfHGL2ymlkksm59wRQaMnlw6XVuz+tPzQIR1xtOb6fuP60LIS3ESTStFKLo5WoG0VpoIotFbYaqUoBDeBtwHMtjSaNI7iEBdBEqVt3Y1ZOUw2fPI0ah+qe1fB2ZCldK8/L9JNsSwSsiAUEaqzxna+T8RJaMXOU0wWkykoNY+c2mLNbc6Uojtd31QmJr0bsp36ypk7dtmPDfdfNbZ9YDt6BR9tEIW4V+uh67puY2ZWrWwZtrxBj7g5THN/vsywFVG8GJLTei0S5cQRT5GJLM+UcCG3YsZiFGoLbNvEFDeUldo2c5gGcl3xbiXoiujRTCclUdvSB96CSgGpCAVVT62eXAewFWjN6o7JeRC7KClNoJZRHH3qbJrc94+EtBkhIz2X1hpbT/SzSS2bMSuMyyKo8wTnmXxAXGBdK6VaOop3DRGPdKo1zQbSMcxMKf5Rz9OfZWPrUb7ylb9Jja+S4MVTiqMqiDeKkvboErTrBxX+029feHl+4vHj9xzvA2kKzPdvOXghkqnbH7iWnyhcqOWKFo8vH6Fe0VZo2SG5T6oF1AuSgORoKNdcWKuwqfRsPPpUDPIKL5+Vz9+vXJ4zOh1M59WbXnug2E2aXG8qnXOUs9rDW7q+R7oGt9j0CkZx0hsXZ4hxWW2jixOW7yt96q5KVX4WZdtajzvI1oBnUft7np7ZazFJ2mRHp7ZNiQFOB6MW+yBsYtO4JEZFrE14eVEuF6VUwScsflegZUbc6F+OP+GRwtRDts2gQboLXhtIP8Hs2btRSNOGSkM6DUHlVXwFajR07NqLCq479Vrj1/r3gZcjh3jH3bsvOU2RKXpSMJfkeQr4w4npcOB4f0+YJ2S9cn9oHFMlucLj08JaGmtuhHRgkkBpbY+5sYLPdKMh3hbA5XIFugaumgaoFNNihWRZpYJNxUWue2E1kKQxuR0NamuVkte9KSg1g4O5uyOaiVIZc/WuTWw7opNL4fn5iSna9NYHczPWlskVQozE6YDXTg0WwU2OFCMhGE3c+4DvdMMtr7RqiHHZ1j68wxwJO1XX+4BzYZREVsR0JNd5z3y4w3nP4XS/U67LtuxuqpZfXDsiZ42yNqN+jqikvXHstZe+aqBMK2R/PgVrToJ35GoFx5gkD42XD455PpK3hZw3zp1GWruOLiXFh9Qb9q77UUUbHXF3iARybn0YaKYoRrWO1NbYtoyPkZoL63LB5Y5u5cgt6uqXexyPJ+7uHnj7zjJqY4xMycyjQMk5U+ozL+fzqwGu/V1rcifWde15wZGUEnenEz/88D3Xy5nL9cybN+85Hk8450lpYpqmn1G8x7PyOvvY7hdDMdY170Oj67JwuVzIuTuBv9Zqq+zRPmTtsR+OIK3TAUMPIrMbZY/N0mb6zFqN3p8c797MNixS2BZjeDRtvOmoZJomrlthLQUHnE6B4/GANmVKqRecsje3Voh6rstGSpHDnDrFrnMsGdo7M7MrHV11ztbJ0qCi5NaIIZBC4LJkttKMotmg0TgvretxreHeVnuGYgioE5woeGueH+4OPL0Ysjscin03xyu1omsmTdIdVO25977tLrAKu1fI9brwxZdf8v7dewRYlysfPn7g8afvSSny+O6dmUHlwldff0OMkRCtON/WlcdPPxFi4ni448svv9rviXHuXufJrutqGtu89rxkO80l3z4D2AAw98i2w/HEcT7Yuhgjnx8/s24rpa9HguPtuy9AlVoznz8vXC5nzpebbOMXf2jo1+VVLmUF3RpaYYlm4GP1mzM7Aoq5gCssW6WVRmiVvD6hCNF5puOBWgvn8oSj4RHiNNPKTGsTiOWhl/aM970WoCBS8a7iwwHXEqIzSiQrPD1vTLEyezEzOe9Y28pWLxQtOHG8e/MFU7zj6fwMFHDmfCu6UbersY9a5bxcIVRcNPlfbbYOlLaQW0U183xdeb4Kczhx+vLA8e3M8Z2nLZWwKFEjmuHDD1erEZbNnj9vDWrzdr8HN6IlC1rdrncfrLPxnHvn8ED0jhSc5WB7YQreTOkCHA4RqpBr43rdOsuwcV0y25a5vCy92TU35Tkl5imRUibSKM3YYyEbxTgEkweJzIjzJJl5n2aqeyB7x8XNXOsjj+URakBaINeFooVlaxyT4NSRW0TZjJ1RrggBuCe0ido2LvlM4koIheMsLLlyXs4U+ao3jolabZ9ctwu21m5UkiGxcuqML2VKE8l7kihLZ87M0wnvuiFm11VXFTYJNDaCLDSMuZbiHSpXar1St0DZoG6KuhXVSNUD62IofoyBrWRertsf9Tj92TW2gjVks4dTd/NF2TPy3Gv9sZ39Hm6uPL5sXK6FVc1JtcZELp6ohVQ38nKl5BV1tpmoNFyQ3YFRnHQ9QV+e+hQVMZXH8wrXbFFEo6mt1ZrabYH13MirCd5JQBev97ptp42K3D6oOOk057Hp2w/WNsym9Pb9oj3Cx96PATtiDs/SJ4V9WN30RiOGjt52A6jR0oz9olVzSK5tCOT73xFDab0XYgAfsBiTbkTl+rUSxRbxomRVYjLDq+hh26myfzn+VIdN8rFJreuNCqMRFYaRCtgfDQRioBA/A7IGuNEHMIaY2WsYY97YAa0I0ma8HMwtMDjLMHXOYi5SIs0H4uFIPJwQZ/SowxQ5zYHT5PmJFbpOc9wSrdqoUZXujJtpDGqfJ/Z822GgNH49zHHGZ7g1aK5TLAdiJa++95ZlWwftAtmLMcHoiKaXtZM2mBP2OoPOJBaJE8JOR6499ie4eENa5HZdhulG6lpIMwaq1B4/X/KNDi1uNJiGGDtvOkrEWZzP0Oh2aQNi+uSRTTuybm/NhyGfdv66vrZVRrQD0BFuO1evqSS3LGCjkHrvmKLfs/LKyP7rqJ32hrhIzwfVG2pmmmPMME86ytrpz/vndV3PL7e3sd/Lr2/brq+Vfl7H+x4xRYrcPsYv9HDe9fPQ7+0CG/T1Uvp97nc6aFOLiZpSQiWYm3fJlFLIOfdXVdbNpvsxGs1wIIAxRoaR2qDJ3yjt7Per9tzD/Vkb39DP56DwjmfpZjxm32Cma10uE/rmpxhi2/9cOpIyfl+KFco2uJCbZlvsWTZk0t5vbVCamSl6Z+W+ikdcj/8Z0opxKnf8+IbSDsOxkTV58y0dg+BOwVYzmzQqZMXhO2rUUSHvLXO0MxNqtcXUdLrmBL3fx/vPkB2tlF4UDLo3pdLMvepnqOy4Pr67xY71XESI3STO4sg8MSXmwwF6TM/55cyHH3/EBXMbPp5OnE4nQrjrQ7EDTgw5VTXTopw3VBulhP2+GO/h9fNozZwSQ7RoG+fYM6ZL6Xr+ijudzPuhmxIJhhYbSrnx/t07QPuQw5zCB6vmf+35/6UdVneN5wdjPWlnpGDGPWasJ5TaupFUIZgNEa1m2wubGfg4F4je4aSiVErNeCkI3XF20PzV7muLqMtdPhIITglhMPiE5jxzDHi1ezL5Ct7tMXNNFFWTf5Tm9iZ9p4IrODGqc6srIoPBaE2lsRQauXTmQxNUC0gx0KhW61a8ecTcfzHhsjJtwlQDdYX1rFyvnb7dmR7eDdR6MCnsnzbWHRTPbR0bX6M2BZMgpOg5zIEY2j5IhQHg5G5IWVjWjbxl1q3ivdDUcb1uxkZpyvE4c9sz7TWWZcU5Y1gcMc8H8cnqKHU0N5PcPQ3h4LzV+05BPagNum0w6MjFE2IkyETtXioNR6sdmS3dVLZH/W25mhGea4aiyozzff/XSlNDeWvxeJmJ7i2ODaESA7tju++9z21d1h5tptAcRbo/UGdSNenDm1HJqRDEan4v2274RzfssvSGwR77x48/y8Y2AAcv3AWhqN20Y2Zn8Rzgte0U32VrvCyVj0+LZd/ev+Hy9guIE+tTIZVHDnnh5fHCsqyobzSpEBQ/J6Y5MM8OF0wnSrWfAeCKNYCbCn94djxmx1qcWXL3pna5wHppXB4b24rFBvQOQmvrTeHNkMcKPLWCXqzAQRWvRufamw2wIjfIrYlfbEpc3SB6GfyPmKbN/lIv2K0WRtR4784buiyd4tnXUWpVlsXQXHe4FeOWzWf/P0826cLBHJTU5b7BKcEZ0kyB9aq4YyPMyjFCCbfm+i/Hn+bw3qJWvLccV7AF+FY23U54V0eabroXcuMfufUvjB7HDTMqGRuWufhti0PKHVHuuD/OUM090HlHmhLH48zh/i3pMOOnA5qveBHu70+8fziyXhe+//jCRka7w5l2BMAVQwNVO121FEOXOg2zYgV26Zl2rTWmw4GhAxztvEXb2BewN5TDlbg/lHvhNZ6zaZp7EVd6cVp7Ydsx24H8Ot8Lga49HehKd1XWWjk83BNj6npQ9kxZ7wTEjJyscNvQThF2zrF15E214QkE73DO0GAXkzkgt8blcjZZAdbMmvs1ptN1zhrsrh/WV/TnkV2Zy9bNYHqkUW/gfaeJ6n7/9PvA2XmNzvSFKRlKbYhigbKhWgwJFrsOdh4r2hpztGb5MEVyqeSiBLqRlzZz81UhpojzRu+yHF32AQe9+aPf33YNu3unN/fgGI2+zisE8pd+iECpmcvlmVq3fzBcsCP4ZBT90x3aCsv1TEpGvV969mitlev1wrpaMfHy8oxzwhdffGUNkjZy3ogx7T/3tSOyNQ63nznikyzqjhsK1ynquWe3lh5Z9RrhGwOL1izG5tCjW1pTQrTmS2unA/ZlqrXW8zAztUaTAXmPOG9FnXbqbc/jXrOyVaGpBxcpRLJaY+udOXemoJ0a1wcunaVQm7Jshho0NXnGWC3l1bpn0VI2FFq3bPEt0aO1dQ2fkGKgqnlOZDXUNlfLiJynSG3KVqs9UyMfuK8Lzof+FUF6JnY2tG0wKGpthrxFu5+dGBXd4obMudbHyMPDPSEEtm3j7u6OmE7cnU4slxfyuvLy8sxv//7v+PTpM9fzmS+++opf/epX3N3fM88zX3/9DZfLQimFl5dn1nXlulyxnHMbWt7dPXTJxKgPboPF1iqHw8zUaZrLsphJ4OXCsi6s68LD/QMaukt0/7ulmMP25XLm7Zs3OOe4Xs0AcFmu1FJ2re8v/WjdvE8UGqYrdHjmdMQRed7Yhye5bLieMW56N6Mit2KpAWupTDGQYkTbQq4LOV9RXUFXWwtbglZobepD3AxyxWsliGMKgZQM6a8OWvA8zDNba9TSaMncleN0sCFDK7aOa6WQKJrxdWErC1UtT9mq3o3WzjgfCHg8HgmCeOV8qWxZ2Upfg1shhA0hI5oAtexugbv3ExPCqXnuWkSvsJ2F8zXz+LSSy4oDYnCsqw14Snvl+Kttr2Ni13HbLLMzhnyXUWljniLHOfJwZ7rWGLp7cx9cLcuVdc2cz1dzAi+V61K6azs8vSzEUEgxczgk2jz1xs3Q6S3nvZ6QpnbPzkBziGu4MjFN7wn+nhy/4tJeeKlPLCw4yXadgVwc6zVxiMJM5KUUqjpKv4ilOpatcjo4pjjhgGWplOLBFcQJgZOh566xFWfDhrqRc8L5ew7pNygfEBZiPBDDgeAic3AWOdaHLipqLtm1oVVYxdhbgqfWlVaVrQ/DUPN0maIYqs8LI0JOnMW/GGhQKPWfKWI7DtWe3aojA9GCioEddRS1f61b4+XS+JwPcDjy5utIuJ9RcWj2/OGHwIcfHXpW1rWxlMwmDvETx9N7wnywEGnP/uXGSFThvClPm/LdVXiuwtY1qiXDdoXLMywX5fK02HSpi+G1b/LzDD5CnF47pvYGU4V5UqqHzJhKq9nrD/RV+kMqMJ/6ZlJhvRTKppQmHbWAfS4sZhrVDdxwwdBp5yzPal2V1mnRXWqAc5ipgw0XSUl2RDAEmBPE/n1O7e8ZiKsWdRTBJQjJrhe9XpIxmf+veQP9GR9mTKHIMBGgN1BjYkw3GpBqU7uRgdjG9/XXGTd4Zymgbh+kGFIkNkhaHdfHwF08kfzMMQI9r/HhzZH7hztO9yd8Sla0dBMLpRFoRCpBC61saK3IsO0WQ/ea1J81oLtJjnO02pGhVlm31dBHVeKUdiQxl0IplXVdWJYrpRfx8+HA6e5+R56GxnaYlIxg99wbvVqHHbr0ZjDvKOfIc6W7rFoshevFnqGSEo3G0FBER1SFxS30R9Oy4JpRHb3Efj11R5VrLQznQMEK7ORT194a2uoYKDT7ORgX9oaasiPAAznRXgyYSZ3Du7BvICJDt1eQYdIUJtP2qen4cIGK786fzbTJnZ7tg9+LD+kTg1IyWTzBCTHEHm9W2VozdKDTvY3WZiZc1hjnG42gn59SK1KtaGu7BthZDIrYNY1x7sNC027WP3I6/N/qMHpnY9s25vmwI4Ajf9iHRM4rW88HpQ9qaqeu5i13XfMYNGSW5cpPP31PjImvvvqmsyAgpeMt7gfZz9mefSu3SJ6bydpAVu33nz9/4g+//x0fP33kfL32MeqNkeA6fdcyGQ0xqc10t1ora+lorLOoPvFjV1C8g5IL65a5bo3DXWRK0QqnVrr+vODFuIQhWkxQjNbYnjdDyNRHDscDVVdETHNcS6HVYp+xWbb6aOSd850FNRga9uyEYPUAwaQFLsRdv1vroMdbXMg0JUKo5Ox2JOm6ZEL0pBRY1o1amuVFckOsa7Om2TK3dR9IDgSutYCquRI75/pQzOJfAnB3OjLPM8EHTqcT9/dvmI+HPjxv+73TWmNdFhDh08cPxOB4uDtStq/3zF3f16UxrHAiXLqRXS2ZDz/92LXcsw29neObb36138fWqBY+ffrIMOK6Xi9cr9bc5pIJNVrEmfN4b4349Xrh/PLEf/5f/hNOXEdpPXd3D8Y+6efrF3+0jKrF2MU4IRgdHWfI1/nlmeBXQhAr7qvlfrcgu2xoKZ3m7QJJjMq/ykJtF+q2GBJRoc0NtODdxmnyIOakbPsVrLkSooPYyG2hlQK6mnzMOx6OR7y7oFXxEsmtcKkFiQFXhZzh+fmZq79yXTZCSPaZdEXrAm3rg1CLoCpbpmojZ2Nxne6UU3BMTvAyk3wkeXPmbeJQ71nE8mC9C9zFQPKef/E3R67rwvll5eNj7vebRy7mdOoHE0s7u6TvfWPQFIM3Jpl3nOZE8EL0jtD/W4yBeYIpAq6xbCvrIkxusoHV2Fe7RLC2hpZGirO5kJfK589nyqkyxch1udBU+95mmoQ/rN8zzzMP9w/c3Z9w0SHSCD4SiLzTxCQz0QcuwbHoxFZXvGt4D6fTRHRCW5RLUZBACJFcHVtRms40DbTmKdtmaHNZwXd6dDXHa+cch+kdwZnfitS3SD1yfm6EQyMkiMxYWK4HVkSrGUhx2qnZqcfu5WUhhkqKmcoRdQ3YQI0LE5Oj9D09uADdLV/EGKshRlI6EsM/Y40tsNNph834K3CJMbwXVYoolwrnCjlEfPK444SLnoZAhPPmqC/CKdsEdWuVEiMhHIjH+x6pYNpDwRpbr4Neolyy8rgqL9mxNtOVDl3tdlXWi5KvNgkjCS45Qro1sHEybW1I3DQ5r2wQB2WkWxLjREjTTQ87JuciIHHQt16dq+EZsje31t5UPyieRtdQFELPo+3Tb+2UD3NRw/SWao2ONqMp136+zQXvhsB6MZ3nlLBJjdDjTtjpY/8UIjf+qR1tCK9Rc2AcDeoraoh2pHHQSQYCqYpRToCRFzWaIdkpPT1XEgdNaDlQ18jBBWJvXJ0I0QuHOTHPE2meDYFwjsGvcJ1TIFqhVVoxFG8QAwfd2PtgGZbO9aZMzQm50ygZKLNa7I62Rt62TnXpDUIprNtCKbnTJ+mGJaHTtMzFz8xTrJAzEyo1hJCOVPXnZI8Sajf0bxhSAa/Okw0D3KtzB1ZY7qZdpXWNnaBu5G36W1RQrXtRO8x7BKX50HWnrRfnZio1mv9BeR6Nh62Nup+znSa0/+mr994Lc7n9tL0RuDEP7VzYL830qzU6BdWocDfKt0PFKNIDiRuodlMIbmT7KlQbeuigpLtuTCHdzOPVOegs1ldDAqPajeJGuNHPxnBApTGozb/kY12vDF2i9liXEMxELcbIMSRKLbu+0eJiJupyYUwfAxHnBh14ICX9+nSWAR3p86/irkZDCremtvWBA/s1lY7iQy2V56cnPv70E8u6WoxPXyd2F9JuHpZi6nRARWvuz63S1FzIgx9CB+m5q3aUnplaGl2GYBRb7dFDpar5S3hBe/HUJLA1Z1PhouTaDd6co7rW6ZLa8yj7M97vbWvQPKXre4xaaDeTH3IAsb1ShzZdB+vl9WuY0Zb3vpvI9ExatfdRuqmXd243oEQG/Vj36B/pD5/oGDTeBjuD2eG839cq7z3B+y6D6FToUvu62P+OD6TZBj45Z85ni/RZOjK6v3a/D7dt2zX5Y6i35UxdrogIh0MjxYSfJmJMO9NlDNAul7MZyKmyLAvbtlp0Wc6EkAlhrLs3szrVxuPjZ4CdXeLE4Xzo9PRffg3hpddz/Z5yIrRaaKH2SCPLVBQEtJoWtRSiGxnyllFsfg/mJ2DaoAbDR4PbnuK0IVSiz4gruKCszbTurT8nOO2NR0V8o2lG8cwpoC3gu9a9AVst+8JfipK9ZbDXWvqQGbRl0IyTugMesmcA2TA3OeE+YTm5ArTusCs2YMIHUCFXYyY0glGived4pxyOgeOc+Pzsca7tlFYbxI2InzGUu1GQR2M7mllDvD0xOstU9WLGV87jO2pVSqGtmxlGdabkjf014rz6BVYbWC9bJgTHljM5d9Cg6L7elWz3a/A21IoECA1RM1NKOlGlUNwBddkkRRxwZLwoPpnYQasnF5OimLbY0TSgJGqN5GKOxyZLaDjZgEatmdAMVfN+Qv1EqxNCRJs3hlSXW2kzKneRivbBjGixe1VvRmhBYGtGKRfNaDNWjQ2V+0roHGCIf2sjWaGfu50598pI9x85/iwbWxFDZUu2m0Y793tsgSI2vCqqfF+UxwKfvcd/fWQ6OMI8AtrNCfG5OC5noS2VbSuc60q9+5r08C1f/upbDseDoSO5P0DsgBK1Kb9/avzhDC9NyFkoBZaXrqu9wPmj0QglCek+4g+B48mmjU0bh5PReZ3Acqnc1nTb5Jw3d+HDEYxaaC519cU+P10+5Rx0l3wq4CZPiqDPrZ8rCDO9YWnU4qlixWipisuC840QhBiFLWufeEGcHZO3HNxthfXaWJ+VGi1y4P4IOgmp0zhqR2xPRyH+Svj83KiLOfWJQnFWkG/rePj+cvypjiVvpmH1/V4duojxBTsaWbqr7D4Q2rtYG2iMqtIMpbxNj72ZT4l4yhKo60zbDpAChcblcuE0B0KC+9PEfJyZ5tnyMMVs+50XqgO0UnK2AmfboGJTQFFCcNzd3zFNB3ywlPXL5cz1cmZOCR+MkluyFVqh5yau68LLy9NOKX5NGR5RH7XWTq9qrMuGD+Y+67v2jcWKxza0c93QKZfcoyaWvaCKwZyLQ0i2iTjPNM+kebYIBG/3vKggIVojrtbktVrJ20ZMCRcTwYfegAkhTShCzZahW5v9XOc8zXvS4QTiqCWT88rIvh0mLKeDsVJKc3sxmfOyU5VHY+DG0KDZxqejGNk1yr1o7+eAjpTUbdsbl0HjzDWjWhAaHjtv6tz+fHtphkpJp+QhWAmG5cx6z3U7U2vrmcCmM3QhmSxD6FRnACv6Tb9YqNnckoMLNsAMvt/DtmLnZq6T9na9TY5/wcd3f/g7YkxM86EPGSyiYp6PHI5H7u7esm1nnp4eefPmnRWYXnh5eUaBL95/059Vbw0NwuFw4quvf23/rTbu7u6Z5gMpDm3Y0M4qItZIW5GX2bbNDFFC7Mixne9SCueXF/7u7/6O//Dv/z3ruoE4M2tzm/lnBtczkz0P9w9W1JfCthi1T1xvnHs2bC5CcMJxjjecsmV8ssltmmYOxxNpmiibDVivWRm5OG4y6joFLlURyWwvL3x+utoQQBQvQ2tr93mpt6gty852hDTRtg2VSkpTd/HWbtZmCPR1Mbr3w2FiBEsBe8Ne223QfOPMdNd6MYOa2jNvDzJZgWe8yR0p3l3O/Rg+sA+/hrY2RqMC11rZVvPv2NaNUh85n898+PF7UpoIHfW/u7vjePeGr779NR8+/Mjz8xMfP/5ECIH7hzfkkpmtuDJkXIRSnvZG1HdNbIqJl/MTtTW8C8zzicPhwOPjp5398vz8yJY3Hh8/741u3rY++BKeX56otXA8HPj06RPbtnG6u+P+/p6cFx4fP5H7OniLavJ9zvB6QPfLPB5C6N4jqfOUGmu5ENJECo73b5Oxj6rlzNYGyxK4myPeRbQ8AyveFw7JEais6wWcI6TIYY44f0Vc6S7aDdcas19xPlvcDhm0GXOhWoRamBwumYPxU/5MVc/xkJA64boPS66Fl22lYlmu6wrHFHEuILKZx0rylPYZrxuHnkO+VYe27p4dKzHD/aR8dYRjVMCxLDOlQNGN2gxACuK45gU04ac3xOmegONy/sA0R9483PHx82ISKDWTSN8wXwjM6yIGvze9PlhjPKfYwRbhdEwcDpF5DqzXKzGYEZsHXN+bt21jvRTa7nEj3XjJBuuiIx6sEYIjeseWK5fryqfPT0zTjIjj5fnMPBnDJDhrHp+fnxAH8zFxiAnXDCjwrRKbY+aAl4BIYmbB1QvCxjRnXHW0ksibOQ5HCq1GUIdzJy6buU2fDgIhWk5vagRf2PIF7+5xGoCAJzAFc7IuslHzheY2Cpm1FJayoDXQxPZ05yotX4wCXRoxFtSBOeRvlLLycl1pYkwV74d3kMVFLauxEVKE0yGg2hkg3lPUkmr+mOOXvXP//3EMOl2rA2G8OUKKwHOuXJryU3KUKIQkHNW0rE1tCtUqfeoEW4Hr2tgqbC5y98Vf8fbrv+KbdzOHybRdVbvkQSybatmUn54qv38UfrgKq3Pk3Ju/xaJ91nMjb4WqDTd5XBDM0HVQ5Loxk0IciGY0JFYVcz72dASMngdli8t6NU2s7p0JxGhNb5j69ukgHBw+2Ubn480OHWcN/rqOWJg+cW6WUzvMrBpmytXkds5EhDBhNISqLJsjrJDCQNPNRdk5SMlxOja2LDy+OHN2duYmafv1L39j+qd0XLZsLoC+O2uL9CLO79b2+5S7F086GtqONrheMDhvC7o4wWnAu2gNQY00jZTrPWRPIOzUuxgix0PidLS4mjjcgb03OksrUPNwN7O82+PEb75+w1KUtQgbV5aiVDwuTrieS4oMk4FMLgXVKyPXtZSBRNkxkE/oKEotN7aB8grBvqGeiC2Zw3Anb2tHBxxeIiVnytDM/INDxJxoXc9edJ0OjN7YCR4rYEveeh5j3f+udBRi0K6dt+Zj3WwwZrFEbi8WfaeDDz0sTiznNwRcCODMgCb6gI/2ucwYYyDuSquFkgOb27qBVNg/3/iMYwjSb5a+GXVUqGsUcrUFq9VmTYMTYgiGRnfUyaGvkFLta2/tA5VhIqQ4b4UfbZS93CJh+oRmZOlKj3MYC6a2Zprx2mDLFr/S0draz1NM0Zx6f+Fuqq9XxffvvkSb8vnTB1orXQ+de5NQWNcr62p0wzTNxDRbUzyZi/Jr9kBKk2Wb3j2YgVRHHgfCOBgNhrZZkXy5nBlI7uvzps0alI8fP/L09MxlWfZrBHa/DUTV97Wh1MI8TUx393z+WFFdzRytIwXAMFtnzW2nznon5K2xbgXxkTgf8DHR1DK4L5uS28b6/IhPm+n8QtyHSPnyyPV8ZuQuiyjB3+oHc0a3L4umU3x3VtU6aLijYa2AndPWGtvW+PT4TEqGkrpOJb5p8q27jaFrfb0107m0TtcXHDYoH8ObYexl8iNzsE/dCMp731FdY+K0agNCbdq184WSBW0OqYWSHdvmKTkTQtdnqnI8Nb785hsecja9PjBNk71WNbMu7yPbtlmhv62UWrpRWcGJEELidLoHhMPhyOl05HA4dGd6y+P+8OF7zuczLy+PhuYDd6cHQgy2N/S10gzM7HrXWpmmmXdvv+B0vON8fuHTxw9Gn+6UeNWfr/m/1ON08EBGdKHVA02FIoHoHMkLaUrkXNgQ5iidodfNH7WS8wWane/oIiJKqRdj+knidHxHqStN176OClCZQkZcZtNsfigSOPhIxPx0t743FlXEGdp6dJ6iAa2h+x6YZlvlZpjmnSeGQNkaXgpON5brM4FG8IHSLPLRTPoaSGEOjcn3aCcfyVX46alwXoVcBJGAtkzJhRhgTpH749Gei9psQDnq3GBaeTCGVQhmUtmtMff7yYn5QwyJg8dqoeAdaXLMR8/hMCFNaKUYu1GFkJxp4ktDdcWLDXFq6UOVwG5AV6oh28GLvQfnybVZVKGAeKGqspWCOqU6K32uy5WimeKvnMKJyc/QArSGVCX5mYbwJnyBBg/ugncGfFXtDCQcWluPUhOKJkQsHz7nyNav3Sl6nCiX1f5MNHOcas+lj/iRjEHdWXGqK6Vu1OyQcA+i5ja9WR3VcmZTpSC0LaDBtMBrXS3ys2JyEa8geffQ0BwQdeRgDbF3jnk6oGou2X/M8WfZ2A4mnfG87b+13tgO6tnjtfFUlado9IOQhAn788HiGcZxtZtBLVkpeGo8cnr/Kx6+/Ib394kpdvexBjijd1aFy9b4w2flx7Pj0yqohzLichYlL43tms1ARqxgc8FoDNobW3FCqdY4OtebEH8zbhqf0ffsy6JdP7uoOSxvA40CbVYYhijEeSeM4ZOYrrEZNVgcSHDmhtfsBvRizW0t9AmxIX62lihNBVftnBlVCnw0V+RmNSTLBtepXwOF7K25nSJMk2NKZu09hhDShwp/Of60x1oqzokNS7SbPA3N5cAU9meoNyuvxLU3p18rTDtWhNeAF5vytRbRkqjLCc025RxaOsvXnEzfFWJHN6zYM5qCGUfYVyMFx+mQ+Ob9HZesnFflaRNCVjLeaIUuWF5n3ggxcV6u5viatx1ZHFFWO2FIbrR3125h98MQyb7H7ehI7RmyCJ06Z02s8w6nHsXoeqVkhpZnx1/64uN7Az+Mfux9mY4RNTrSaMxLj/Jw/X0YlTC8ul5GAR5I2U7BFceIInK90UfAYUWkmc548Iaqe9cNneRGVxRncT61lK4jbJ3O1LX7Jdt16k35MD9xQNNXD62Ylqr2IYUOrbJ0dClbU6Hd+GA4Gw9XzdrpTuPeQ7qOSW3Nen3Ijs4YQmw0WrcvSq0NRN4KIe3Xx3UB89AuO3FUzWYm9Qs+doMNEU53D7Ra+fzpRyswemMxzNJKNwRbtyuHw8mMemJkng/Mh2NvVl03+zEk/HA43p7/vYHq6wWDGVV747wQgjUhg+7YWiNvC9frtSN+zzaRH9fwFTW2lLp/nloK/njicLrj6fEzIuZ0PtzGFds/pEG2h5amjejN7GTbCojHx5mYpp2GviyVJWeergs+GAtjSlOnrxbqcqZsy+1edjZoKcOTgF6I082hWs/27qZ6tbR9eF6qDXps/7OMyudz4dAsizH1oVQp1fb/1ocqoUfppEDeCtuW9/20OjXX5G66J25onW/ZuzHGvamF2/pdW7NweeVmCCegPcZgdw/WRqtm2NI6UuJDZD6c7P5A9zgp7WZ6Q++bO9I6NMDG7OlxYvGIiLPM4J677H3ekeScM8t6ZV2XjpgLIdqaPs/T/mx7H3ojwp6jeTgcubszA6zzy4uthf01jGn0y29sU+rrVFupLRptVAJBpKcHeLQZIhgdqIea2DNpS76ial4NwQVUM40VmHA+MU8Ty2bN4tiLhNapyJmt1n2w/ZA8vjpcUwqlU+MV74qZnvkJ8Ynapt7UmiRHh4ytr+POuc7AsczUbb3SnHBwqTe22vdmBSrJm77SmCeO1oTHc2Vp5pUzJay5qZXU4wIPU0I223MUc41Wheh73nNvVOlMJWt1ZXivmoRur32szvV+aGod08ExxUhZlOVzpVaHNkH8zeytFssCDs5Tsq0BqfsdiJiLtXfmUu66y3V7FTU0zPGyVvPoaVBFuS4rpWWqV+LJG3re0l74h5aYxXPv31J8oTqlyYUK3QcADHnqzDJ1lGbXuIiyZnNJLlV3xs+6OZJrRF8RKZ1dHvBUqqvQYwKtN9qotcd0hrdYJKjVDaqKlsLWbL102YYO6mBrFt3nigCeEBRxV0pphmVUTxFHycaWEeeJYaK2q/Uwf8TxZ9nYAogoIuZKCDZlaT1Soqny/WPjY4HDW9OJuVcNmYVQW8N4WWBbKm3d2CiE+y95+PVf87f/+/8dX371ljkZkjDCn1Ez5fntx8bvP8P/47eOszqymmNyKVCz8vK5kq8X1udPuPsj/hCZjg4fbvEJ43Du5jmZe0M7qNKtQb2aXjdvULI1o3VT6pLRtSKzTXfFCzG5roUdBb7F9MQgpKnreFWpWVmXSslKXhR/cMTkiFHMzXkzOgkKZW3UYBEqw+QGb+fZI8RkdIzrxdC9FAy5fWyGGMZi8UMK5OfNNiOpsCn15RYr9JfjT3OspeIEchVq8Hhng0AwbU3oe81OObWnhmEeZIMS2yI8AS+eIAGnwTLOEOp1oiwz9eJZXs48v7wg7YQ7HpjvUp9cmia2dMqZRN+nhYW6XinrhbqtBO84Hie+kcDz2gjXxm/czCUrzxssFbbaeH554uXlicvLM0+Pj2zLwvV6Zmhx91gK71ENe/E9dFmlbLt2PaVEnCZimigDWcmDJqGsV9OZbdtCmg9AhuVK7g2mDBocFroeYiQmy780ZLVQg218tU+4LZs2MXiJQ+sXYyQdjoayTTPamrnhnl/I24ghs+bWYhG6aQ69aW7VnHFDZJoPlpkX4u4Wqk07cimmI2bcCwH1g70pu7usNLXor47etV6Uj783qMS2LXXR/ahfsKJHRVgKPcfWHvChnrZhlmC7fKFpYVnX/gMEJdi92RfK1sz4iGi6/VYKTSzeQPr0LaTJEHc13aYtgsIIrXe+Gi1cHLnTGd0rp99f4vHu3ZcdIVGenp4IPvDFl7/GB9Mjn8/PqCqH4x1v37yzzxdCp5hb5u3xeM/pdNeLV9M5un49tm3ZTcPm+USMiZTsPhpDqlGsPTy87awLx/lspj8vT0/8v//tv+HHH3/gd7/7LZfLwrJurKsZ5Nzfv+X5+TPL9crj58/9+sC2rjixoct1WcycDRDvcR3Fr9UQ09uorUdxrZmfPr9w3QrqAl98+2teHj/y/OkDcrmS88bT48s+vHKd1eCccEjBpsLoTnGPceZyvrAua2+sK6rdeXrcf/25cL43mqJcrgsxmAnNWEVzbZTzhfPVc3eY2Erhumaua94HB4c6M1Vl3uUQDXHBjCzxXLeM5IKEQAieu7sT57PFM40oDEVppVKc67TIQN42Q5wGA6UPGv1gTwVP7IW4YvWMtMb1euU//od/R5omUkq8f/+eNw8PfPHFew6HEyHEfXAAcP/w1hg80gdJPT7rcnmh1s3ux9nyvqdp6oMoo7J7J/zm139lrsjbwvff/56UJqPHf/kVMSRyKbx9+57j4cR//E//oecir/yL3/wN3gVOpzteXh47FTowvAp+6cfzsnJIjbtDYlNHLgLFQVvRsrHWwLo9s26PnLcrKgHvDwgvqFZKvdDkAD4iUonRstyvS6TkRm3POKdMPuLcBakOkUhzBZVmoXHNQ3O4sHA333EIMyzPnDdhWaD5THOCaGV2B1y64/tPTyyYsdoUksW1ALWtXNeVGIXgFK+Fspnmk+QNCQyOhykZY7FUUrAmb6mNtqycF8eniyfFSIqBd/czipnJhRg4ThMumDN8y2VPRCi5mClbDBySmYxFEe7f3Zk+uxik2V1ACMHtNfdhCsRuFpWSZz54TsfIlcznbUWvSg4Nv1ZeVuW8CqkZ2rnRWK4rihIWx2GaiDF0hFpp69Z/VgASpahJZDqiqgqaHGhF60bNhTh77o+R6/JCcxm/2gBBPbiszC6SwpfUOJPdC99dNs7nhZfLRnHKFIXDQbk8X8lF2ZozoGmDj6vlWKs4Hp8NnNjyDEczwFqXMylVUhxIaXc/aT2CqnYtrTMEvrbAViZUF9BCaI0tJ2oLhNzIzdJPrnkG8UxhpjSx6+Ev5AZFhSmccBIp2dI4KpXH88YUAtGf/qjn6c+2sR30IrrhhFiVZTdPhVYaZTMdrpnBjIayIxC1x/Fkg0S9NsLdF5y+fM/7f/HXfPH2xMMhIj//odSqrFX53Sfl+2fhUhwZy8yrGcqm5K2xLSs1F9Q7JAVcDPv7a63r/8dkrWeN5YplTvUOvDUzdtIGbXSUfQ0PQdDJNmz1nVo90KgmSGWffrf+9y0Lqz/wvcHZGYD0+tRhnf8wsUDxoTfZtTHy/rwzGrLz7Bu+YkPjgZqDNdW5DGOpBvm6G8yIaqd+sH+uvxx/gkPVjNGaTWJBbDrbzaBchw8HGrcjtxiiKx2htX8CDo/ITfdVq0L1UAItZ2qxL3SgGDfjk7ItWNxLwLeAd0oQNSpyKzgnTFNCxSG+IKGCKzbxk8p53diuC5d14+XlzPVyYVut0RvRNIjgqiFCAyG+5doOKmDd0Q0R6ZrYSIiJ0F2By7YxisJSzJF3ZMRqa5R2Q02HznOsD61Wtm3dX993SjFOeiyHxyM7mjIGcuay6LpezgrPpo2aM9u6kreVkrcb/T8mUppIabbvxxqQmCb7s2kmxgkfI8GbLmDojIdZGAMV2yfL9YaYdWR1fLB9bdVbbmD72f3S/62D2TEQQMwop9VbcywjPkb3e87Mg2pfx7u5Vl9LbrnL9jO0KU3sdYZeWjrTBH2VC3xr3XdUCboztbOpvznm/3HT4f9Wx5s37/f3OB9O3R11MC6sUTWEK9pgI0ZivzdCiEydli7OEZ3H9eakdmfb1rXWr7NrYZ+7QG+SXt8Q489Kzjx+/sxv//7v+f777/jw4UMfjtCbjohznvv7B7z3PD89MbSQrdP+TWNpLz3QdWOKdEdVATMl62Ymakjp+Xzhw08fmeaJOQV8SPg0Ic5070bxt3tenGVUxpFF15kWr9cCcxT2lC0bHVm6iRuvaNcilFqNftjd4IcZF9yG1eYSXjkvq2VfdlRdVXHqyGXoeLVTKMOuqbW9ukcdKXg3hhS5szJuJl61NeRVnBID7VZj2+y0/R19f2Vep213Uq6+sK4rtbM32ps3O5o/1qP9ItFZLdhrhx5c751DjicbdLtATNEi57pLtBlNjTXACuZt3VjXZV8XyitpgHP2c6/XC9oaMSRr6gWOxyP39w/mbl9GPvgvm3kBRle1bOUIBAYPqtaNjJJbYmuFrTW2as9bAJq7ImScyzg3I96jbNQmUANbydRm+bKum0gFX1A1E65lA5xQ1FOb68PsjIjdy5N3XAW23PDqqM7REGJweBFe1ivVmenpoXs+OCz/tDRzMa9N8aVLSlyvHpwxnCodTSwNP00gjdIqLStrAQhMYWJOCSee2qmwDLZSMdfm1pkpw8wseE+MgRTNZ6PRdfw+QvCUtXSGlOW6jtrfB0G8ORojQoi+00Nsf6it7DV4U3r8l7mtB79bJQKmpy1NSdHMwYKDbSsIkEOgaWHQoUeNO2Qee0a1CKXYOuGyWDJEX+ND21AXcBrxIVH9AakzDqNBa91QL9YFS0FkMKNsMd9KxRyHxZBoEXABH8ystmkzMycqtW5UFZTaXeAdFe1ssh5T1YRcHULo65WjFM+WDZE2GnNlyTaUbK0RnSN4IfmAWggqKp6Gt+cBG7xft9LrzT8uuuvPtLHVrgez6AsRa7TwZtevCpSGrqZ9cd4RgqGH/a/3hsuchSmVqI347q95/+uv+Zf/+m/56t3MIRnJYt/nG2yb8rI0/uOPwscFNjVBfW3aXZAb21LZzhezvD5MuEPCJT9YA9TWHdz2TcOaz5xNM6xq79UaW0OBRzRCCt26PBmfv1VhLWZY1YoarblPq3fXNjHNRu7NbfBKCkA0fGTdrAisTW0c1ykclhMJU3BsWzN9LfQNWXChN7Vedp+ZLdvPU2c05FaVvMHsYIoVV54pqw0VXGo3w6K/HH+6wypfo5p3Kp8TqJ1jMqbojKy30Yj0As2LOe+5jtg6cQiezmQjbxUpHqmRWq60stFqRmi4TqOzDNfCej0TisNnhyuRGBwuBLRmpBV88ByOlusW10JKmRQ2al3RVvixLlyffuLx+cLT+WK611LI20rtbrCgVDGt6TQfgBFt0HrhU/sQzD4jnbIbUyKmyahW+roBNsRUnBCdRRnUmsnZGl8Ri6d5XajnbWNovbz3pGkmRIsc0t3hXH6mX3VOjHLY6XzOe9tASmVbF7arIVAlG1VTnGOaDsyHE4fjqQ+QrMhM04EQE9PhREpT16rJTlld19VQ693pVHHOMnNL1yiPoplOsXTVkFzLU1S8c6QQjP7aI5boOqeB+NbWUOe65qda0dVMUzzo1sZi7G6pxaKUgh/DABiuZcrPzXIsO7R2tNr2AOi9q1jJRac0jiZAsbgx65Gk6/IEaLec5l/o8eVX3zKirYYWFuh0+MLl+kyM1sjGZIOaNE2cjnfdOTkRghUKKUVDuIG13YYdO6XdJq2v/vsNzR5NcClt30O3deXTx5/4z//pP/HdH37PZV13+nMtjRAqiPDm7TtiSnz44Qf2nPZhELXl3anaaOKuD4XGdTSDoNpG4QQ5N55eXvjd735HKZl/9bf/CgmJMB1x7gkwWvaWzX3YicO7idTZIgMDbs2uf9PWY7kCW879eXLd2Ay0lEEkYMum2dZ+EppiebHcmkbXnWavl7w3nUNTCsK2ddaFNuZ5ZjpEnHiaqrmoDqQVG56lJPiwUJsN7po2pMlOCa6lEHuDPgaKArfMbmc1hg3Qek5wa5S84oJHqjm4btvG5he29+8REY6n035P2P/sddZl2Rky8Wg+Ai4Ejsfjvh6mofPvGtjhfWCRcpV1WTifX/aoIREh94zwYVioKOfzmdPxjtPpjlILzjnuHx5QGpfzC999/3tqNWnIL/0wWrojl4Qn9jxkKNXoqFmFtVrU2VZsv0WhuDNeFrzPhGjXdc0rVSO5zSz5kdbs8zvX8K7ipkxWZy7XizVQzQVadca2IQMVR2MONnBd14JXj/OBrIGjdwSB5+WMRGGeIqf5rg+9lfO62TXB4YviW+E2Gvf7up2rZc+XrRLuDyiZXK7UJizZ4V3kMB85HiYaFgtU1PxmqlYu65m2FSjGIgJbF0KMJFXmnMz5G/BemELEIVzq2RpbEaY06lOrTRBjVyD2jLW2oc2aTbufbBiqWOb0smSia8wx9Ofc41xgzRtty5SmTF6Q4FgWu6fH4Ns5YUoec342Sn/0xtIK0fa7XCxS0AW1IbYDVPHF4yURqkN8RLzi25Eo5up8yRUtUIuZeIlr5kwcAl4cuVaimPZXNRjY4RIxKTE1yFtPxSjkulIqKKUzRk326J3iXdtZrjmbpt7uI2HbKsvaaM7iBgsb58123NVn5hBJQUjzhPTGtmFRbFXN4FdVuawbQWYc/4zjfnZ301ZxUl85bXq0O6L91VvH/Qz/+YeF6+xZZ2dW2cGE4QVz9718akg5EA5f8Df/+ld8882Bv/rVkRg7ncL1nUItD/fvf1L+5++Vn66BpUfd5A3ypizPje16MZQqNiRa1k1RsabQjQ27IcV3gbXlzI7Q+las6JyiLQyme2o3FMONhhJwzmJ6NpBtoDLNmt0K5VpppeGSp02OpkZHVqy59s7YgJotY2wTy6/yUUiTmLOiAsl+r03JRXpj22nNKNsKLplZERgNohQ4TjcE3QYEnnSINghQK+yb2IT6F15j/pM6XEdY9igsVVQaRQut00QHamETPt3NeYYBVHDemlv10MSMw8QYBc+PylwrrhTO52dKbeYoHCI+RMRPPTs2Q2nMUZiSo7TZqK9O0byi1b7H+YCPDlFFakNj4d1UCLVS75X8VNHLxg/nJ9ZcyLmybdte3PUPQy2FbTXaniE2wzFXd6hpGGI5PxwNy470pmliXTs9s2nXy4YdNd3W1ZrPXojvqE+P6XASdmrgNJlx1tDHhRDs9Zzb0WOjRjdzU+5vsdaNnDtS23NyvbPpuTjX0drUtbQj1zR1q/xOfa7FUFBu6F7pGbc15/19Vzd0xPbZWrXIpTH0aHXdJ+XOQVNHEVh75IfQ0L5J7ZEwPauO/tPHz/JeukO3+SCXWsiroS72Xrr+Vxz4zdDJEGli+jPnPaNqN32waQCtmdWOFPR/vLOIptbw0TIEK4WcVzMUihPizEH2l3zM84mUkjmKh2gIHNaEWaZxJvjQr/9N0+q7adgoLluz58X1+yfG1A2P1v0ZMqfwnoPsBCsdQmdeNM7nlx2t9d6xrBvn65VcLEIkBKMEruu6f8/lnGi1slwvlE5HHBhwKZVlXYghdQ3rBRkacm5YsTrb8zzehimdTv/4fKbqj+TWOM4ThzkxTQdOx8qbhxPLaoX23WHGO8u6r3ntzqmDLNWfQexnhG5+oiKk0Bt9VXI1x3DXWh9AmUYVlFwb0VsTspVKCtZMbqVyi1CzZv0wTYROx2yKZdS2RuyxXrUPoVD7tU8Tp9OBy3Ld9/86hkqlQncRH2Y+3psrtvl0jAgNQ0vSNDGlRPSBdb1yXRYahrwL0hvRtN8T4jxrzizbxufHTyzLQsmZXDZ8N/JLIVJr5fnlkW++/pbj8fSqob0NTEUcX3zxDZfrmfPLMylNvHn7jjdv33dk13IES7UGLYaIHI78zd/89xwPx64Zn3rUVeTz50+8vDwhLjBPB2L641Ce/5aHaxFpDW0brXmaOqCxFEPMmlvZ2mJfeQxkGtdrwbvKw8kT/Yz3d4iDy/WFz0+/J04BxZFrwIut6WGp5NVQ8dIOZlg6m3GYSmYrUEKkhdDnrWr7MgmYSP7Y5Q4VDabpXLZAZSaGxHxMLKWSS2cY+kqjmMyoQcueGoWCkos5ZYcJvA9W+1F5XiqK5+sv3zAFh5PCTy9nfPDENDTghWrTJaQBJGozM6tWbdA1T4nT4YgKnA5HojOt57m+2P3nhLs3E2lyhAjn517X0gzOdQ0vHpXKumXEKa5BLeZ9k1tly1BobLlwnGZi6EacPtBqMV+B6PFiCDKirHWjZmMhuXAwhoYKI4v+uhRSCqTZ8+YhURWWrfD84wfC7JnuIpEZcSal0lUpQXGSiK5RfcO3gDYo1bOscF4bT5eVr4JwmB3HqXGYPQ93gaWDSaVZQW5Z8nfQew5pyX5dK+JrjyZ6Q+GCyMI8f6a1E9rukXYAEapu1BooRZEQKCpsrZC7uVRxcLx3hCAsW6aq4FxkG6kdYTIJhTaowiwQ+WdqHmV0HdgqLFW5E3NLM81HAxxO4O5gm9Xji4nAtSuutQqtKBnLmi2rMsfI8c2Rd1+euH8TSdE2NUMnO6WyKB+elR+elR9eOkraoBRlW5SyNbbrRskrtW7IFCE48L5Tn5UqHaVpstP51GrI7tY6Cj8zDRiFV+9xd2rwoDMDNxpX779b1X1zbrW7lFbX6SCO6oU25EP97ohRKNViCVoDr4PKZy9eq5lOuWD6OGdGqAQ/dO5qwvK++Q5grNSOj/WR9yhKkCFQb695b385/kSHDPdAuFFEmzUUOqiZ2qnqXT85qOWo4bQDs6WbNWj3vsgFlkt3GGzmpogznYmPCfHR4ltyhpqRknHNE9TuvREzQNn2pnTo5WkZ6gplYQ6KzsIXd4FPp8B69Yg2Wi3kXF41r6NhvVEDh0HU3rjr63PTp77uhrbqqwdoDIcGt/C1UQ4YaulG3qea9i8Msyhv59WHQOi5oCLOzk030JLx/OqNnnvLBTaq5T/Mxx1GHc75bh4TdhMo5wLOhxs9tRa0Ce1VjIlRjI3OVUvZI49UMMS2I9+tjqa0xxFVGx4O86s6KIW10yw6Sm7GfTeR7e7SLD2DcdAh+7+dGLPGdadeHfTo1mgOXDOHxtuKN1DZV3zZgSL1HzQm6YNaqq0x8nSb5REYI0Vugv5fekxISrM1ttNhb2bHEMZ1Z+nR0Bh1j87OMbPDnaaKSW6s2W37393PVUf82Nkbbqfyj/vfUOK6MyQeHx95/PyJkZ8r6lC1Icg8z90UaGZbN7ZuKNXaeN49IUXmw6EPYsv+Psb72q8v9GGGECQQY+T+zT3TNIMPXBZrtFIf3CKOFGzPVYR5Cubu2+n/g6o79nejzgvDKXwsFbvZEoLTZuaJY80YrzH2YS/985nZjOsIc+umU4gRodyORBszpmqjbM2YUyLdadgab9+aMWeGlh5bB4aTvL76ssFTP3/j3HVJgzRB5LamNOd7PVNxuQCWl2qfVFh7tmx9xeIYdN/B7AjejM0sQ7gb0zi330/yau0cX3Nn0uRtI8TQ7zm/U5bBIotKqYRgcUrv3r0ndenFPB/27z2dDFn/8ouvdxf4X/oRxGNk+No3U0Eo+7WsrWf99rUW7BarTfvczhPDTAwn1nq156ataAsoli2rruEZ0VHYPalYlqwC2L2y5pWrWwhMSJxwXkjRoWN9cR5ViwLE5b3eNDMvczW29bq77FO7Nl3tXatFvxUatTZzIQ7dlFHNAbmpRdXMyYMakyiXsufVW2a6IfyeemMkYHvnWPOdc8xTREWYU0QQq3Xb2PvFGvvJEZNwvSpk9vtVnCDOoxS2UghVLTqo101m8trjQQYr6dXe7bzvcYNWw/uouNhQMTdi1NBhJzqwbGMwlUJplYLnkD2umR5+3TbUB3wV1I3np/cvooQUqOqJGgZq0VMALMd7y0YH9s4RXMY53fdDVbU6T4zlajK1CEREFSh97x6yiBlVi/QrNe8sOMVYT1UrVR1NHVW1G0v1erH3DZaQoLukEjrrRCtC671Ao/WIlD33+B97nv5Ez+Uv5mgKSxU+LsIPF8e7L6x/BKVs5urlg3B/cjzcw5dvrfnMpXFpyvOqfP9JOZfAtQhthbdfzHxzOvDrbwJTFEoGdWaS4sWol0/nxv/tf4KPi+Pz2mkWBS5nZXnZKFsmnz+DrxAUpoMZmIgz5Kw2dGugAcUTUXDdjlwwepEqU4LgleCUVo2KfDxCbY7L1hvXqt2MSfoU11DRVqFsZiDhYjBqildbJIpB/0u1h9lHW6yCF968F5ZFWVbtOS+GzNrDKlwXOB4wLYGzGzU6xxygNFg328g3tYV0noxKvWwQA5ymYYglFFt6QSttK2jpdOS/HH+yw7mhrRy6UmhSMfmFULlpxEYtFJ3Dm1UUrsXedGBoCnadSxWWi+PxMdJmxxQE0gkfTOM33T3gYmQplevLCy1fSbJQjxEOEVxPLK2GCjjnuTvd4cRu3uv5M+fzhfPzmYc3b7g/Rt7ev0E0Mwf4H3/7E8u6dbS27A2s2zce0w/uiqtXQ5PxS6f0abgVZaVmtFjDV7LRabRZYTUaQbDC2uJTJtOmtWZsA4TD6W6PM/I+7JRXGz4JcehhndtjftblCmBNbwjE4PFOuA6TqGYF7Ng8Q0iEEDgcT4ZeSr/O4nazqaYK2d0aYWydUrS/ZrGitRQr8jtNeJjYtFY7ojuE76aF0GZmPqZZrszzsTvkerZsDbNiP9c7gTrkIY4p2ucyK39QtYLEB0VdwvcimtZXNBGcj2ZCws2xutVmEUreIsqck85MGEMKIaRo5wrYepPfakHUIxKssRIzu9ndsH/Bx+lklOI0zbvTdgxxp9Pu13m4gu8fx9g11+uV4US8rkajB/Z72Dn/qkmmF8t1R2m3bQMM8c05c345c7mc+fTpJ77/7vf8T//uf6SUTIyR0rOeXfB8++2veffuHe/ef8G//Tf/hsvV8jrtHjRH5vdffMG3v/o13/3ht0BjXmeWZbFr5LhR1m+jUu7v73jz9i3/+n/4Hzpzo7AsF9QnCp7zWli3ihdnEX1ijrPLsrEsC6MY9s6jnYcuiBk3WefYByJWiDnv8MFRa4/g8c4K0pyJfgxZZNfIVq2sa+5a02EAOVgdxm9o1e7x03FmWTeWbd3flwJbbzbTDOo8hMCybbtxlDiHU92L3tYa0prpeBmxbA7ngplJdUPNdV25XgPH050Z0pUGYsPFkjfKtiICj8nx9O4tL8/PvH3/nhgjd6d7RBzeL2zbxuF44u50x93dPQjc3d39TPrwurEdUpB5tiHNiCtyTljXzZgyKXWn+GImhCLM88yvf/WbnXY/TdN+L9rgZOLduy85X15Y+lr6Sz7ufCAGiK6yaMLiq1Ziq0hVlm0jN3Mvdi5ZY+JBC1hHOHOY3nM6fM1Pz/+O1jYDYDRRinC9XokxE2OhJMwleJ6MKuxNvlZw1Fb56XzmchE++cZvvv2aFD1f3CWuVVBpzF7Z8plcVoJfoTladby8LMyTcn/y5qtRC/PpDi2ZXNZONHXgAmsubC1TWyElcx6u2lhz5eUCcT6SYmT2hefLheuaoUF0cEiGFhuKXwmi+OBw0UyPEBDv8WLP1t3JtMfHw0wulbVlcu4SJKCJuZj6JIhvhhYmi8BzweNCosrGy3Xj4D2+uC7JU3BKmkz/G7zve0ql5Y00RaJLNuN1xmhLD830q7WyvBRqFnwuOFVjpCWrldetsL1sxnqcM18djhyn2I2+2j4o0GaRfOJ8NwdLPUKl7SkQ6goVG9yWoigZcQXkhdYi61a5LBtOHO8eZqZQ8TQupSDyHt/eMPm3qK6ofkKbGWTVekBbxqDBRmmFrW6EplRR1npm40BzqQ+Rsda9Z4M2FO9WvLN+og6ArVY7F17M5wchb5VAIg3Q4B85/uwaW7Cpz++eI9fvE89N+PrU+NWpEqVviB2pEDVFQIyWHZtoHCe4m5T0GS6ipEl4d3C8OXT1QLPIGxcMtr9k5T9+p3z3Gf7w4g2prcL53Izu8bJSXn5EyxU8yHyHHO/AR+vuvGUtDvTC8skafZ+1AtD7rhGGFIUYhRQsyqdkZT56ahVrZlV70WiZfjnDlu0Bd0if4rBvzKZ/HdOtAXjY64parEZL9nknsWYdZ1TngYiM2J+q4JMhtSH0HF7p+mbt5i5VaV4gWmyR9wLOmvFWC+16RZcV3TZgsViRvxx/2sP3fD8MRZE+ThwRDdpNg2rvXVyf7Ko3QwAzbOku31qpKJsqy+VE2Q6kwztamNjE4w7JXA2TUe63y8KHnz5yPT/SysIpZLQeiP7ASU6Iqmla84aKkJPfKcmfH58try4mFmZK8TxdGo+r41Ica7EJMHT0AvB9cjyeCx2T6d7QA73gsu8xczTZNyiadsfR/Aq57NNjrF3O3RHN7bTYANI6Hbi7MY+HS2Uv6HK23MvT3b1lRDrP5fxM3lZaKRxOJ9PMHk+7/sY5wYdASvOOvJsdfrplAQ/jCTpAI9Y801HLke04prStNbSU7th8i9+p9Wbq0gZCM/Jqx9isU39NQ23rToxpbzJ9M0MqMw9zaM8z3int0RO8w2lHEppSLDQI59RoT+JwkjC/VtirF+iDmY5iNKAG5qMZ21jYfd6RalcNsZXuGh2xhnhQxXdE0l54/Ihf7GFaZjP2CXEieHMlN132uNZK6Zm2Ax1zr4qDgayllF5pu2+U9YGwjaZ2RLHsg6JqkTTn85nz+YXz+YU//P53/PjD93z69Jnr1QyApmkinEzf/dVXXwPw6eNHlmXZEcF5nokp8Zvf/BX/4q/+im++/ZbHTz+yrVd8DMRm+cK1WB7r2B/nw4G7uwf+1d/+LW/evuXdF1/0Zs+QicM8c5gn6rbxJI7r5WrIV2uUasyGlBLrtlGL6Rhbb8CC2oCLPugbdKNSK9Ia0kJnbjla7cZk+8DMzGS2UnekdPzxzwzW+udotXZJwlhDsiFy/RoZYjmYBspyvaLrRs6ZWnrMDjdW1MiE3tEnEbzYuGf4D6i2/vq2TqzddMlQL2MBxGj53GDawPkwc/9wv8e1OedIU+oZ1QPJhh9//A5xjsPhYEwWcbdmu3/PWAvGEWPs95oC9v2lFLac+71mg8vxc56fH3l5eeHLr74mRctEB2HdFn74/nsu1zPbugL/5z/58/enPO6PiaaOVszQtGpFXDdEEmWKM3nJ1G3ksTa0vOBoBIlE+QbNsPKZur2Yc3G64/PzlVIrUyyIU1BPQ3FeLT+0KuIdIc1UZqRU2voTFUP+gk+kpEyp8uH5Sq2V+1DMCZnGu+PJcuVzwMmMEHEUTgeL/ioDVClCbg7vjLa7bhulFabJk0IgBcuUtkFdJc53eCesdaGo0gScr1Z3Oqt3aWagGlPFiaIGAeKCZ1vbzsoJweOD/9mzUbRSutnpIG256JDYkAiuKiEoMRkdbZfydDqiQqcqgwRjGTlvzI7WGstWUBFCUHvdXghvzYZJcdbeDDqqOCSYnOdlPSPqcBKIMeA8rEtlua64UCmlIkXIm2NxK81DcqBbMXBsUkL0SJg5Tgc23TgvG5dV2ao5v3sx/wkRkyNZbE/BeTgkRbhQS+GyCkUrKpWT/9I6c5INvFAqkVwO1GJGVo1AU8+ajYFTOFA1UdSjaoCaimerG6pjOLkh3QfJZJWOmUBVqGUDKrU0nl4KMTj+WIzrz66xHSji4+rZXgLNOWounKTydu7uvFppTfa4Ee/MvdfjiM5ulOdLYwZOSThOYrE+ag+BYGhpUfi0NH73CX77SXhehdbttJdLIy+FfL7C5TO0K3J/h0SHm2YzmBibnTGQLJ/NWzNYstEdxfXGUawJ9AFiUGIUm2oohCRQIRQr4gVDdWu2E2JTYIzq6+RW0LvbJjQa2lv2WzeX6jRoW1CE0rpxTNddiJir2tisQ9f3Ot+pGr0QkN5IiA4rmXEj9zqgT6xo5falxWDmQQX9y/EnOVSkLzKDUoOd//0b2o7YsjvEwqjMbhN3LL9QlbU1LldHyxHnj5b3jIMQkBBwIbFtC+uy8vT5kevlhVZXtlA4zZ5cLKtwUE7pWailZFreyCWzbhmcx4WJpQaWLPz0knlaGudsWjVx3jbUkaXWboYwo5D8h7fTfxEHoewaTFW95T6+ciyuxRxSzbGzU7Bi7JNTKyRDtAZqxKOogFabstZmzq90xNV537P7as96dUY1nWbTko5GG3aUNpIA6cha6gWx7+/B7zRme/1oaI54C1WvPR6lU4fH57Km9ob2jCZ3uBcbFWmgWdrvB3qQO4iE7sQboCPT3gmN1pv6Bi68Krj9TqFFGkpDm+/oUtvRLss57oW7jnW+08J7y6udouxcL5I6BbHWag70bbjCSqfdYgyB3gAMaoh2VPCXjtgO/XfrQyqA0irBWQNjRYvR9XI3JbsZP3V3c7lRQ8dxy1YclLpO2d4p91hTibCtK8u68vLyzMvzMy8vz3z86QOfP33qUSwFQZhmG26NZmi5Xnl8+rzTWsGel+PxxK9+8xu+/uZbvvjii13rbskFvVHPw7XbHuOUJt69/4Jf/4u/4v7hwdyf++c9Ho7M88w8TXz88AO1VF6entFuTGQDL2sW1o2ODNadqoncFov2ap2w8yCg1Yrmvpe+pkfv16lTrG35tNfUPhRmUHVl5CibRtp1t2pj9Ms+gHBOaN0V18zeXntnvKIc6zCMujW14zLbulg7k8L28kF5HU7Cr39mjLF/v+XkTskyyL0P/bObX4BgZjul1K6nXjoVdNof2puuVm/Ndr/G5kYf9vfQ9qGiDRZHIz7uw1rt5yzLhWW57v993VYulwsfP37ongi//OF49I5SPaXcHPtpjUpDBVII5tHQfHdMrmhb8QLBRZzc0SpkvZhBkIIQqOWZ1jLzNDKg+6ot4JzubvriA87bdS4Eo42qFafRwzxFztcLBeUYrGEsCqfpYPUz0oePDiUzJY/zwuWqtzqyS+wq1ajVrRK65t/70P+fbnQ3ITTqZo78iMOHLtUTi+szlk83uJTuqdDBq9byvl9N3ly4teveVYZxqnZKrT3hPgoSQLziUHxQQrQITZMMuX1grHQGzDAz7M+yDw5TUmVcqajAIaXuQG7u0vS4SzrjxEAD0KCs1xWngdTdxJ3Y8DWXwpabyfeKIxTPJhuigo+h720Nmpl7uhCYYqLkypYba1ZygRg8wniWdN8fLP4Lkt9AF0rdWDbH1gJFA8Q3WMLwkLJAVU+uiZy7NKjnxpdWrMEn0Ynir8hx5pI94s3M3Lf0PcnTmti+Xc3kT2mWNFMal63s+8E/dvzZNbZ22CZSRPjtZ0delHzZ+L/+rSMF1zMrzdgEMQqlc47Sm9WtOt6dAnqEuhkPfstKig3t0TUvW+PjWfm//x08Zs9VrWnMK1yvsF4ydb3C8hFYIQnu/bf40xE3JzSblq3lgk8BFz3zyXWHTmW9VkqzKVf01sjGgzWOEmCaISZHrXA1qJb5YJbsY081MbghrU0FVcfh4HqB2CiLZepu14w608iG2SzbaxsIl3JdhHkSUgJ10vnw1tyrQA1Gl3YAxZBbAdZqbszrajTlGODNnTGw3cjHrLAUuJsd7ug4vkmGGEpE88UMtf7S1P5JD4U9+qkOba2o0WGQrqUeQxJDDByubzwRJxHVQtXKUgtLVs5r48P3mbwuBPdImo6EmIjBs5aMXzcuTx8tW/blxcLay8bnsvBwf+Abn8xtrNpNkQ5HBGHdMh7Trj7cP1AkUWTm779f+fD5wn/+7Q88vZy5rBtv373hcH/Pmhs//vgj27aRu9nRz5ra/y9H6REZ27YxFxuqDHqw6XZzXz/yK+MkIcSZNB/2JtU7z3w8EmMib1tHl2yS0FqlbBspWpzQ4XBnG1xH3qbpyPF4woeAClwvZ9MANnN7Hg33YXe3nRnPiDp2yrMPsSPICddRttZMG1u2vNPFSs8J1dYsOqHrYms1A65aCrWVPu26ubziBB8MSZp0ZO4Gmoto39CcjySEFJOh1N0BtjYbYtVejE8xMELrc5cs4D2udPMnwAdzuNzy7dxbJnCfqPcGVWtDksOnA+KTocVcrIlTdi2/uTibIZDpkOwXZdsIMQ4Nyy/2uFwvhkz3WJXRtMdqOuvRJJRayHnbEdttXSg190gXQ3ntOoau/+6a+E6t+1lj0PcEJ9aAPfdYn3/7b/6ffPr0E4+Pn/n4448sy8Jyve6OvzlvrNfA2T/x4fvv2Lb8M9fbGCLRe07HI3/913+DqvLD9z/w9PTUacIAasZHMTLu9xgCv/r21/wf/0//F7769lu897ycz3zx8JZ5PvDw5sEcRrvu/NNPH7i/f+Cnnz5wvpy5vLxQt6UPsqxddj5Qs/0+c3sedgduHQRohVqMbdHvPd+ZSjH6XRM7oogahpZHH/D9PJrm2IZ6uRSOaWY6nDgeJ0puXN2KdCp03ZFkR5pPhGlGnOd6vrKtK9u6MAypAGPKTGmPHFJVctn2JtN3IydzirZmcprMiMw7z93dG47HE++/+Irnx09s65U3b99zON3hvO9xPKk3uT2KrFW8V6Yp8S//5X+/N66lm2WV0l3VewMyqMmDpgzsDeq2bbeBWmuGvt93pLgbap1Od4QQ+fzpI5fLhafnp93gqpXCPM8cun73l3xcl4Vcha06a7xoXK8bDRuafv1wokzKVivaPbkdcAgHYpipCmtZca5ynL/h6eWRnz59T0xXJqd4PFsrNLGBbPCQnLJulVYdZS1omdDqaDXsxdzz05l2jDw8zLydN0ThbjpQXjaWWjjOD6QE8wxrS0BhyS/M84lJAst1s8axiLkWa6O0K96DC84QTddvyeoJznGaHaUu/X5IxNDwUXuE3YwTz/3de7QVlvWF4AtOGy5a8+lFaKV0zwSYpoBzwtPlhebNVdfwFmuSW1NcgLdfeV6umVobc3Ucjo7D0fPyWQlOeLhPbK4a0roUkye1SskbTh1ehW++OdGaclkzazEK8Ptv36K5UNeNjz9VDndKvPPIbEnpa81UCj4UyrTSrpmXp8LbhyOHFDgeAyqZpWy8XGBqantTPrPFioREFFvHpTe4SiM4k9NsufJyyeTaePcuce7Z2eerME3mfzCnyJwaIhe2TSnF8/IysRTY2pV2/InkA7MDn06IBHKduK6N9VrwcrRYtZCouvT16kSpQlExE9sOCGy5G/RRLN1CC4fpnnUVtmLyJOcclrQq4JXDm8BKIa8vf9Tz9GfY2CpaC+36Qn15ROMdT1fHb0vg3YfIw0E5usohZWIoRFfR5iliuUmlOWoTpGtUclWkKa4Jtdq0qwC//ax8PMPjKqz9z5YF1kXZrpW2bVBWkAx3D2YWNXddLTsjuL/j2y986O7B6pAitGy049CDr6UZfSRnUBVad1T2HqZoETqoRQPF2MXt2cxB8tb6dFpIyVGj0ooyTb47Edubcg7muVM0tJ/TPmGeEiYAr8p16c1pUXL3cnFOkAIl3+KTfOw6zAq5CursM265F6wDuHZCSAEXFPENzX9Bav+3OLRPvm80zpuh2M++j4HR3qhww/CoqXRtbWMrjeu18dOHR5bLC6LPHE8PTNOBmGYOh8RhTvtkVpw5ileEslWua+G6ZJ6eLgQpSFWuLxulNtZlYY6OGBxZEmsNXCr88PnMh09nPr9cuS6bUdWK6efmybLrivwcjR2f01AQ+283FOPV596RBZv45ryZ7mwUTK/RDuc5Ho/ElPYYC+9GXq4Ve6UW6KYfwXdtX0r2PTHYdB5AxdyjnSfEuCPO+3BBIiQZuDmHg+mXQ0j7B1DRV7Qpb+tVNi2kdpTYmnRrDofGrg0zpf5ra2jzXiCqlh10ct3Aww8jD+fNAMR7UorkPpkv9WagIY4dGawDvWGYczmKGyyAjhT2829URUFcd1Olo1Cq3TwAFJtUW3ajdA2kvX/2hiPS3wRtoBROzJAC05hJL/6HLdV/geT/wo7Pnz50/XViWhdiTBwOxz3OaZ4ObHllXVe7B/tRexNnDUOhSWXdKiEm5vlwc97tLsimezVjpn8YY/Xpp5/47rs/8MP3f+Dp+Ynz+dlQso6Y7velWn5sznRzGXMQNiKI7O9r21Z++umD6XwHtd/5nlVpmrrXmcchRNI8czydjHLeY28OhyOnuzsOx6MhDKrcPTwAxgIJ02To8ocPrJcX1qtFhZme3JrH2ka81Wi86HR+hzigGbrrau2DoA79iFESBTO9MxTLjBrp+bvOGz0xOEeKCVBKbWy54vzGw5sHa+CdM0mAWhNtOdKmVT4cj0zzkXVduZzPvDw/deM8u/fTNDFNs+W9qvbGnR3JNcOxQcU06k5rjZQSp7s7RCHnlZenR9blanEd20LNmw2U+ko0YrZGczr02QPdt8bVzkWrxZ5XVSRGWjMpx2vWwA2xrXvjm5LJOqZp4nI5s60L55enfXBjb8GGmNfLmdYqp+Md9w9vOZ3u/jd7Bv9UhxX7VtDTKioZYbV6T4Xc9eciVgdGccxhJoUjzsWO1FrzWPMFrUtHdYWqQi2g3tywxUHTSq4bVX2XwFVUjPkhHV5pNC7rigvCsVmsHepY1ZA4pHU9uuFyQToK2iy+yEnlmKCqM++UbigqIkRn9UZwghBAg63fWPyaSo/Yw+pV7Xr/4Cain4liSIpEJTiPqxbB5b2zxJKedGDSQwA1JNE5WmdP2R5TzKFcK2FS4gxhMW+d5owCbaxOOB6tUXRTI6VGiDbI2ujsNkyyJwgSzIS2qJqWNDqcS6xPV9ZNOV8rEoQ4Q6mdrYgNv0ozz58tN5xvrKvie5xZ1WamTLWylYKIGYoFZ6CEMe/sWYshEkpEcH0QXMysUaE1j2jFSyCGI947Uuh6+036OmJxhNGb2ZVF9gleTuASqrlrYgsxmDSqloykzjbFhhbeQdyR2koKxggorVF66ktyAcuv1z5I7HN0DV1z3IjBIX/ksPnPr7FVpeVMPT8hjz/B26953oSXl4g7Trw9NL6ernz7kLmflBAzSkQJ1Oap6ntjazd+Lj03ztGd3JTS4D9+gI9XeCm+UxdhuY6c2oLmBdoKriD3XyOHk8GsO5L+SnNDn1g1wXd0VpxHN0OQU9Q9Kke6A1rOnX6nVqgFD1MyKvWo+VLqOgpn+tatduc17zgcBJ2702gxu+9lMxqeE5gPjutFO/W6n1qEQ4+Rqg3WrMYYrkLZjDLgk+vsLWU+GrU6RMuqrQ18dqiFXLHlnh/pZadchSngQgMpdHuN/1p3zj+bQ0cMzitn3dtVtpvyVtJbITc0i8H1rEO11LHczPDhulR++umJl8dKzfDm4T2H4x1pvuPhzT3OvWHuNGGjr3kawpIr16Vwvmx8fnxhCsohKJ+eVpY1s1wu3J8mDoeETCfORXi8NL776ZmPn194ernuNLVty8Qp7ZEa/6uutq+Q2/+Sgvmqqe2NnhnjbORtYVsNORqOxYOqdzzdEWIyN+KORIR4M90pJds5b4qbDREKyaKPvPeWidspuWmaGY7GORti4YRO3fV4NfQ1OM80H3DdTXlcOaNlOZqYDqjVStnW3QiqjOa807IEbLOvRhlTrDmoxRDdQcPWVvYmdRSuPnSUFOmxQoEQEy2b3oc2KI1GMXOdDqm5MIzJzFWyUp05IIMY7bo3tr7HJ7kQ9mvjOiVVnE2BrU+u0F3WdTTmecOFBCL4mHYqqTVq3XF5oIDetGeq3cn7Z/SpX+bx8eMPRrlOM/M0k9JMLbkPlBJOHMty4XK99IboprO8RXlZAXG5nklTMZS3I+KlDFT1tSGYfdVaWZaFDz/+wO9/+/f88MN3XK8Xy0PuzZW229ot6E6HPsx2j6cQDA3uzYu95pXvvvs979695/7+gRBtvdg2dvp+a2q0ezE3VUMmJ0otSDMN+uF44v7+gTil3eTteHdvz2kIxHnm5ekJEJ4frcGrmw0ASm04b43qsqwMTfGOLnq755sKtWWkVpz2xpWxrnhMJ97dmLWzYMRkBurpqLcjJhtiyZbZckY7Ku280ZFLq9DGfd3wwdadw+HI3cMbWms8T0+oNi7XHpGFMqWZeT6wrMvueuxGU9sRfeeEnH/uohxC5OHNW54fH1nXK4+fNpNHOCGv1z0WaSCttZrPgg2nzTTO0P4RFWVD6/GcjixwH+I+YB37kHPuVWP7eoBh73eaJj78+B0fP37gD7//+24S2Hjz9gtSMrft3O/Z6f1XPDy85c3b9/+Vn8z/348tV3ywJq5R0JbxsgFGbRuGiCJKEotomqdEdCcUx1KeURKBQN2eoV4JrlGbN/pvhXjoMU9ie1itlgsrgHeFzl9mz6SXymXd8NGz1cYhJpTAeU2UXr96Z/nsDgt2k6YGDvXIi7tkhlHZBXLXWTtxxE7fDc70pBBozYMoXiqNDKJUsetuVOlE9BOTn4ms1rzF1k0QhU3GPsQ+xPGdNtuamRsJntYHU02MQZBrMSfhqREnCLOwZaXYnBRVxXs4HQVtDpkdaWrE1IhRufRrWDHkFzG9bu4O5bU1QvKkOfD4ZA3vy0vjNAVCENanhqWG9mF/b2zXrSGucl1gqkJAOnXZ6MPkipNiwz7xqDqks+ycU1JIRJ+Nut0atEIQ6c7EASHjXSCGA1NyBN9ozbNuwrJuqAa8a4RghlrWoju8HEEO0D7tSQkpzjYsWRe7GiKoq3jxNCdEwaIaKRziRG6O89LIdTBmI+a6XHrjbgkrjUhpynW5IseAlz+uZf2zbGzRQvn8O9r2/0IeL0h8gOkNf59+xe9D5N9z4uu7jS+Omf/DN1feP2y8uVO2C9QWqHKgtEBpDnzstAU4XyofrvB3T8KPSyC3HsGxGUKZNyi5onmF/ARekYcvIM6oOBPmizMaQYyI2GKgmIkTYqjp1izrVTGKR0hmGjVNYvLTZhqApTTW7EwPqfawxv7yx6Plx25ZWbMtaCF16rCqZQt6bLKkjRbt58VpaPOwRbaahrYW5VJMJxeC5dTe3fcsVGC9imX1LtCK6fRK1a6ZGPFFwsumhNU+k6i5Q9Is7NkFz8OXR5anC9f8TD1/hvXCX2yR/7SHUzv3Jv16FQMyXGbFGAtN1PQanV4bQjSU0Zm9u2qjdjpzbUZxvF42rtfM9XrFe0/OSpomDscD7x/+P+z9V5MsW5bfif3WFu4eEZl51BWlWqKBhhwzDMdsCD7SjPzSNPKBxjeawYzkDAEMRKPR3aWuOCIzI8J9i8WHtbZH3uoeomZQAG7XlJedukdEZka4b9++1vqre3JOpBw9AcOMXUppvH//RC2FZY7cHSJ//rP3XNbCFCPPJZLPgThvfDwXvvp44c/+8mdcLispCLXb9PLD4yPto7uWdiVEIedEbV4Y6i22ZO/jx+F/PbQyW1m5Xp6JIbCuF3ffvBnw9GbmUNOymLZWxBpBCSBmDGXxHUJdV2tMY6L2TqCR063wSyFStou5qbrhlE0sq09gLc7BmknLKxUEYkRiJE8zQ9u3DXdUheL6srpdfSI8ik8zhcMzdFXb3sxWR6Z7q2bGgVGbNdgE1t6LsToguoNyI8YjQQO1B6priO21hph2uud+B/DvXZtprCRG0EKQTIjZcu9UUTG9jYSIpKEjcqdrj49q1dbhuL6qStmutq/kRO/ucJwi4vrlVguiCYk2ZAhO3Q5Bd7R3h/K/x8f7978kRtOj5Wz5s09Pd56lbAOVQRu/5cdGd1O2Nfv69Wfc3d1jWqbG86cPrBcr1VptlLohAj/80R8YxbM3jocj67byzVe/5N//23/Nn//Zn/Hh/beUYuhZStlR8rRnX+dsGai1FGprTFNiORw4n3VnLJjMufH1L37O9Xzh091HTqc7Wm88Pj5CCMZ0GHo5VbRXPrz/mn/zr/5HfvKHf8zrN+/44Y9+j/v7e/KU+fDxI4P6OqKwYsykaeb1mytv3n3Bh2+/4sP7r/nLf/ev2a5XSq1czhcbLLWbNKNpt6xlR4YQLMILK6T3FF61gh1/dS9lN2Izl2Ub2kzzzJRnumTP3+xIN1nA8/ls97IIEo16rTTmJZPdjO9yOXPdtt0A7Xh3bwWgwOn+HomBUoubS9V9oJNSQqbAq9evyTnzzTdf71raL37wI/t34JEPtFYposxTZpkX7t+85fTwmvlw4rqusK6EIFyuZix0Op44Hk+cTqfvNLaDehxTIvTgDXTaUd4buhtcI3lreEecFApTnnj79gvu7l7x2WdfsF6vrKtdsxDMBOwP/vBPAEg58+Hjt3z99c/53/3Tf/xf6rb8X3VcememkVPgYTJjk2NKnK8zpWYqjS4VCY3DvBAl01jsmdQvoN+gLdEl8uWrxvMWCPme5/OzoYlzRHJEomd8N4tbuayNLXREK4cpmrP/IqTQDWXvVgdsFQ5zRjXy8VopmtAgXNcn88QNwnq+oChpiiQyUwi8PjRvlAIrB1oVtsvG8Wh7UMpKDpN9nj6BFEI8M3VDAHM8YDi8gCw26GBF+wWRQk6QZAYim870ZmyC4F4Xy7xw2RqlF9bamA8mE3j4/J7nx5Xz49Uc0IOSZiFOHQ2Vx8fK/fPE9drZtitdV/JcmVkIi3A4No6nTLlEKJl5mbi/P5AXi9QJh0C02S7n5xUJC/GQYc60JpwflTcPmXlJXAvkQyafhNALuilbhOfrldoj092MxECeI3myekzFnrOUyqfnZ2RRek/ES2daIEmAtpEFXh1m7mdYSyFxJeY7hCOUJ0LdqNcLx3wkCUSqUYFlJqeZqo2ila25cVaEUj8irNylBTmeOGS4O50odaW2i7FxUO6Pytd1ZV2Vq24ELUy5Mx9hLZ3LtaGa6CrUXm04Tbc9q0WaTpBmq1VpbMUlSr/G8dvX2II98OpG386IfItkowVv04xMJ8h3RBJbgVPY+LQ23lw6oXVSgGkyN8LaAs9XawIV4dIjX6+Rr58Dm09sA1CrUX8taqeZ8VEKZhS1HNBhBMGop13ArwOtdbOeADUFy5hVQxJCctqE/7yOUUBlIL1YRmypChco0YTpUwZ1YfswDCDc0OHWd1NmQraG15ANO4XN82gHaqHKTg/Qrk7DxIX4pv1FhW1TiJ5zNQxUUWKySWF1dLsViy4KAWuivACbl0jOhlzX/t2p/++O38wxIn4sK+9mLCJirS1ebIzGJHgUTQhGRY5u+jMKtxgD8wzzHJhmYdugts3irs4b8ZJ4en6irFfP3Zy4Py7MKZK9iVtrZ64NRSm1cS1GURmazSaJ61p5/3jmF1+/5+n5zFYKc0pcS2UtxZ0zu7kHx5Hb6D2rYM2csyTskP0/3s/6+bA/tFoo23WPhRlRHzc3U7FzsX+fwWs2qpedSnHkZZjVWVFba9lZGC9pz+ONDBMp2amNxuIYTbRgKC6+VzB0fAMB6d6g9aFpe/FZB2OSQKftqOyOzvpnlEHjEvzmB5Hbk6W14nrf7pNk9QJ+vHbQi/2zDR6AKOAOy0HMnV7VHdSN0tyDDV52l9UXDzT7vsHybmO3CTROPZObSQ7jvIia8zydYQY0zrk9AsVpyva+bl/3v/DG+i98DPqlxTDY56ptIYwIl8t5d50dkSfDtCsXc60+XC/knA0RqmbUk/IGyN4IxZh9TxgxPyvPT498/ctf8OnjR87n533d7IkDGL37Zb6yuhHg6trJ5hp2fN22WqkC5+dnVHkRa4WbodnQZuScokqebNDTejME8/6ehwdDZkUsUqrvg1G5NVgxk6bO8XRi266UsvHw5p3pj0tBwge2Nbn3hg/vvIEMTvEPrVGzWaooEPSG8g937f6rz6+xnj2jOQR3YPSx0WAcXC4X0+ZzowkrEFIiTRPzcqDUxrbata915Mra/THPMynfaOP7glF2Gnptbde59t5p1fTqo3FelsUwot6YlwN39/ec7u6Zl4UQItfVkFFFWf19HBbPHn7xuff8XGf/SLT3NBgtN43tYM3c/v7lf7sO5NLo4ctyIiXLcT6fz7vJUJ6Sb5lmRvW9p14AkiDETgyVJW2oFmrrHLLRby9iBlOiiRxtaFJ6oBQz+5nzSpJKDoE5ddZm0osQLAc+5YhGqy3Fn4tDfjGG2yE0YjCH4fGclBhRAlsx9p7VierIO2iru9Geob5CjoklBqYYCGpxLjlHDjlSMTO12ePgRDpTDOQY2aolLrCbukZOy0JxeUCXvt/3SgFpTvW3Z0UtJg2ote/rratabdALTZ1NNSXmZaZsne1a9rVnvjtq7tH+HFanK4fQSKfAVgTJQsqBwzHRXymRiRASRGXrnQJMdzP0Rls721aZWmeR4B41xnDcSiekbvRagznHox7EhmlVO7V1ut6SANDbveLvktobsYFuSmpqTzXxGDICSzKk/DgXrx8SckikBHMoJKkkgTlZOsqU4LpFVne0xvsPRWntShAlMJFDhGQyM+LGMnW2Xt2Tpdm16cOFuSNBmBwwM8+6QFOLTKu1U0snT3Fnb9mzXYhx8rrp17uXf0sbW0A72gt6+QYu7+1BUs9w+hx596d8+5z55jHzV7/o3M8bD4eVz+8arx8aP/xBJVIpm/DTX0LvgdYDP73OXGTmHCeW2R7hW4Hr6mhtM+ofbUWOC2HJxLt7L0zHmxO7MRs3Gmi1DMG1QNeZOFkGl0QsJ0+N7ttXey+g5Ak0WCTGtiltVS4NC9Oe3CkZoUehdS9+nV7XOmzVkFSJME9CqpCqGRe0Bq0qIXRvhAPdv3a4G/duJlRgr09JyMmDwBXoFnbdilI3uLvH8rus/qJXmO9chxvwxhYOx8ByCExLYPsvuGT+t3S0NgyAgv+yxRmdpogPOUYfmGIkZkc64mSU5NiIrRIkssxGoXr32WImRSI8Pa1cL4Wn89kzTpUPnz6QYiKnzB/86Ae8uT+xHDMdYWtObz9Xni6bFcNTZj4sTIcTEjPffvvIz7/+ln/97/6Cp4uZS5SYeLque25lc3p167dC3HpD2Quq/RA85oW9cRpOx3aeNq7XvlOdu1MB1V8XvLEd33/oeQZlMLimeJoT1qz2XTtWrwVm08SrN9SjCRCB7k2jf3PiJISUmeblhjr7kOvqWbEM18duCOyYnpmbanT6ZENrdacko/KWdbWM3lr3RkLEonhwymp1BHY8eXvvlG3dG6cRYWR0TCsMQjDE1AyebvFfQUxLhDbEh4NRLNIshUBY5l2jOyjJFkAvL5/mtmZDotNpWp1aaWZKhhLjpllKrwWCSx9k7MEdScPJ1l2rvVizfe/7XRDnaXlh7mRFvOmfPZ9Y2ZHCVo3ejQjKk60JMcbN5XJ2xM0MUbLn2IoIb94YohvdNBFVnp+e+PqXv+Rf/Yt/wTfffstlXQ2ljOYiOBw2U4iWDxkjec7grqWXy4Vtb6Ts9bUUrr1R1sD1uvL8/EyeJg7HA701pjwZRVo7aZrdHRWOh9m1tCd+8MMf8dkXX/L6zWuu1yulFA6HA6WWPefVGjqPs1HI08R8OHCsD/zw9//QNJtbIf/sL7mcn2mtUKo3tqXaoC8ELpezx874Ou1GjR8UbFUbsJV6+xq7xz13OiZ3Tc/7YDE60g7w6cOH3SRu5G2qKjFnpsORhzdveP/+A+vzM60Zonm9Xhj0/YMb14nCh+hUxDEK107ZNh4/fdoNwrbV9s3L+ZnDsvDus8+pZePp6RNPHz/w6vVbvvjyC969+4K7u3skBK6r5dYOc7HkEpBxnm9Nte695dgvxvrCP9fLyJ/RoCu49MH2odYaj09PrKuZjp1OJ/MZuDPX923buKzrPloJEnj18IZpyv9Z7r/f5JEPgRQ6KRYO0yPaV9ZamOKM6j29PDKnyaQVW2OrUErjfHkCeeb+tLIkZYqQoyJlZm0goZJC4HCYaJqxhFKrE0OKrGv2gaKSYyeKxTqpCk0CKc8oifNFeTg0YoJlEh8kV7Ka67kQuDt43FMIvJ4jU4DLekaCDUreMFGrsk2NJZuxYdXGIUcOU+SyWcRg1UTVTpDMw9GYAaVtFK60Zs2rhIaEToyVXgOlKudL5Xqx+DGwQci6Fh4vF9PXTkJKmcMyc3fX6VXZrpUQTc739GjU7JCUaQmkLA7ubOS5cX/KlEfTCk9L4M1nkYf7wOXVkU8fC19/e6EIhJy4/+KeNRW2x8qnD4/kunAMAY2BXqCujY8fN66lEeaZLt00xmKD2C4WH9QF1q1QWqL28dhWYjNUNrgEqGnlWivhCqkEJrUIr9QgdjjNEwcK7x42agv0Hnl3OmAhoReLPIuR+yUgwdy4PzwKsmZ6E85ET8qolPZEYEX6nTW0ckDITDmQc+X944aqEDTv6SraKiHasHyOiRYU6ZXeMrVGrle4XDrXS2VeTkQiQSNrVVqPLPM963bds9P/Y8dvZ2P7YiI6UCUF2vPXSFmNinn8EkknuiSe1s5l7bz/0MlJ+Rf/YTMta4fL2REJhTWe0KWjx4larBhtm9qvovT1gtYn0DMSj0iKZiHuqGkbdsHaoXWP8hHzuFPoYlMR6VjWaDOZLmUgJYMOqMiz0X2NdukTN9+ggpi5U1NzRW4DYZVO6ADCtpmVeCvQshlI1GZRVb1D64G12t+N752ikLKSsuVzlc2ckWEUrMIy+yhJIqS+07iI9tnSZFTpGI3OHKP5aVnUj+XgLg8HTp89cP7wgF4O9Bg8iPx3x2/i2JoVWzHYVFQ8HiS5BiZ6U6tj6h2jUdjyREozc5oHKZW1Fp8eRv7JP1q4nCtff33mf/o3X/Oznz9xXSdKqZTi9vIoBFi3jcs18+puRlJG8sR5M8xinheSO+P1mHi6Nq5l41/9+5/y/sMnujbmycxdrutGcaSpte6IbeM25bfPPMyCBgKZc2Q+JI53E4fFEOrLc3dmhVC2yjwn5iXz4f0z16tYHM4+Lb1R6KJramPKlG0zivW8MLJia93cwbe7MY8hqGE5EGOit7qjjcDoCxEx6tg0W+xPniY33wpOtUo2aS6FKps3pSPnUoyhoYE+UFa96UkFNyRxHe1Ao5tNrwDdtXqjoR1Z1+q6NmtgTO+nXWliSEr0IrX16jpuex1Of59SJosQulHvYhTmZHE/vbvhExbBMpgipSs42jgaMu3m3GzvyybaqmoZozES1fbKgHhWpxXTrVvTHSVYwe/ncwwGJCS0FfbN7Xt63N+/ptVGrZsNUJaF4+mOw3IkxsTD3RvAnh232J/N41xgcT03Ylmw0Q1aDm6GdjycyNkM0YauvJbKt66r/bN/92/48PGT5b+2RohCTMHQACBoJ06maZ3n2QZnQTifbd1KCIbKetdj8VNKu1ZSsczSUgrZY4C2sjn1snP/6g2vX7/m7//Df8Tbt+/47PMveXj1GoCPHy3bdNs27u4eTJvbDCHuve0xSSmbntg07wt3r5KZq20rEoRtvXI+n31PueWvCsJ6faaUzZDV4nuPG9i11kyi0RrrutGbrUl9wWgQheL31Nu3b9Fp4nq5uIGb7swQ+5lhv/8MoVw4HE9cLlejIz8+Wg6liMVsAefzmWXRXfsuAq0F33sMGGuuZQd7xnft/OLnPzN0X+CHP/wxMf4eX//iZ6QYKOuVZTFDqpxtnaScWdeVu9OJabLMchFLnkget3WLH2JvaF/qar9LRb6xPKrTi1Myt3WLMwusHhG1buuOzAJsZePDx/fc3z1wOh758osvdoO77/0hkFLjMF8R/QRamTPMqSIUnp8aTSwyRyTavdWfOcZGinB/iEQqgWaoIBVYCclidHIMTDGjzHxaAToxNGLIPqBtiDYbhtXBZlFWEQ45MGfodbPnc5rJsVOi79+pEfPGFAsiZgz0ajLnmrWsNKwOfLg/WpO0NnIIiFi0Zg6PCI2U3pnXQxXmaTbHeu3QrwYW5eZ7crXnQLJadGtmgJdyJk9KnoxFZhKpRgidKGYEVWtjXat7uQTPC7aBYAyRPDWmgzAfhTCZbrZUG+pqjNw/HCBBmgrvv9748HXj8Vvlcuk8n6vpb49KE5juF2LufP3VB9at2F4QQabIxIHrxZzqf/TDg9XdqvSYUTFpVU429C3dNectsG7V0NgcaaXQuzDtsieordJqMmR/bhSFfM28vTsSErw6NbYtUEpHYka1oPrEPDWmvCD5lRGbeuM4VeiBXgNrM4mEGYYqQRtle2KeItMUycFMrUpVqx8xMGwAemVrpKUTI1Td6CLkySKlWjXWK+p1KF53Zni+VkrvhDTD9uv7Xvx2NrYMeos1toPiQ1vRTdDzN0hcbLGGA7VD7ZHSglEsPrbBuf0OEsIUCZqIqdK7FfZ9U3rpZg5Tr9A3JDYkRUKKhOTum5jZzoAadvQiuOOwiuWL6s6EoynupGgLxOiU7qBWbbIDeIaeOvXKjK6MSqbeTAdETO8qfaCsagtKrMls3dzZmmf1jsVWR20XQYOVufZzoHhx6WccMNE6YrnAIQHdKFoDAQxh5NzeprlBdP/MIMQcycuE5MldpH8Fafvd8Z90tN7QAEIk+X1imWmR6L+39TaQt+GCaxrPnKbdgGiKk00QQ+T4WWbbOlMO/OKXj7z/cDHGQQsv0H+PHCnVQ9rNjK10aLUTg1hUBtbUXK+V81p5vm58++ET58sFxMLMW1e2Wqm17cjUoOLeDkdJQiDPaS+wjqfM8W7i1duZu5Mhjo+fKkpEO6zXjXlJLIdMqQUJUFdzKbRCTfbc2JiS07V9nYplctay0TE97mhsRxZtTOmGlo9GV+J3VroE2XW1KSXXgZqJVPDcv5GzG9zQSwcNmBt7VwF8uCWD0wi7oczIqt0pw05r1WYIm75AsQfCBrdAdXPJHt930J49l/PFtbB/Vke5zek6Rbs+Mdo+3bAhoj0TvaC/fbX/2R+YQaHe9g3G+topZE5bE8vfsyGOrW3TLAfX6Nr3t0/tm1ST7z2FcZoO1GDoxCjMBCHFbM7IaRnkC0clDNlb1wugHA9Hi5DpenMYnhbmZWGaZh7uH3aa3sVzQrV3np+e+PTpIx8+WME2WBFjamRux0pQ2aOngiO36iZAZlQ2nne35koVawK9KB1XYFkWRpZtzpm7u3vevv2MH//eH/D69RtevX5DzobMWbapTffn+WDfWdWfh52Xek71xTY8BHqq+4BpmheIab9/m7qzsHZisvzqNGVqsWa2jsa2NtayWWMWA+vVtPl7QwdO27evGVTcEAK9jvztW86mvLj/Us4kdwjOU2aeZ54eH+3z+H4xmsJSips+BcD2ju7OwRLE434ivTd6MJ36+fxMnjKXy4Xj6cRhObBdLmzXZ1qtzPPMNE3EEJmnxX8eZHfifqmL/e7hg3m5xfqMY8T7DOT2VynIVleY42SMN1mFvjg/g60xTOViShyPx++cu+/zYaBEJ4aC9IJIJYVEjgXkSgrFhpSeLys0EitTauQESw77sM+wCzUgI2R7tgclxQCS4Irvbc7wUXV3205gsO6MwmxsP9uDS610hHTIpNSJySKHYmzktDHnjjiyN6dOoiGhGNuQRM6gSWhYzA2qdClIuCKyIeEV0m1vn3JgSgIU0A1Ra6qDdGLoSLQ6N0bFHJPE4u2i+z8I9tnoVl/6py2lIlthOswEd9jNUyAm8X3QsmvzbIip7myDgIRsnhFJIShraTw9FT49JrZVWdduz7NqA+KUzcuiqcmrtlLpoubtkAJ1tfp/miJVO8Umrii210wRJEOcFII9m2vvpntWpdWKqA2RurPPbIDnWdehWhY8kbt5IU1wmAui5rzd3GASGjlWUqzGFrNP7etRiAI5VjPB836qA6qVFIUlR1RHHWHPWh18ahwAdBZGEGGrjdpcmoUNa0yFJXtsqBtkm5lfj36d7ef/OsdvbWNLSJBmkMVxTmU3c7i+R9qGpAUOXzId75mPJ+5Spmzw8VOl9HrbnNWb2/XJEdIIhwfbJLqYc1QtsL0nzIF4OBBOJ+KSyUtwnaxRid1FCSabWFmJ54itb8r2UINeGn3thMl0KeYO2U3LW9XpJIFpcYpeUOYlMGWIYhE82iw/NifTspl7sU9Ism+oGcoKa7G4olaUWpxOBKTJ3EO3Ljyd4aTCkkFrp1cwdoRZe6+bbTaRzvpsBU9ewkjasGa9Qmi2H5k211AFDULZhjbXzGa85vzd8Rs8qkLySjSEQAqmdU2eaZnErPxV+p6LGkIi5YWcD0z5aHrPlCj1ik1/AzFk2tzJsfHF5zOfHjM//7k1RiEOd0Jraj8+n6m9c3w6UjTwtHaPjBGmbHEjW6n88tsPPD2fuV5XSrkQommzPz5vXNbK83mljMZ2RwFk/2zB7f+nJfH5l3f0Zv/+5Y8zr97OfPblgbs7QxwfHzfWtbNtneenwjwH5iVweh14+lD5avEs0I418PM983LH4XBHrYXrxfJmJQQvhtUm0D6g6t00bDFlltMdEi1DL+XkxlyJbdv2xtGcIBNIJEgiBcsZdU6oNWUe2aK9ob1R1pWhwbWCpVKcKqrYsEKbDeJKNVOZ7+bzVm6PJGv0gg/KBuod4+S/H6nbsFWjNovTywR3yfRGvI+GWTtdzIRnyaNRN41Vl0ggcF2LPUQ9fsIaU2uetVaTZugY0BXX9Lo+Kbjz8qAwO+SrQSBEQrI13qqZVxk11x178XpPxAytvudHyhO1NUqtRDXDnfLVL+mtc3e65+7ulZm9OWKac3Y94vOeWXpz/L1RyC9uHhVj2tfEul735vfp00ceP37gejlDSL4XqA+S2WnO0d1sQwiuizSGyDxP5kZam7EHukViWRaxoKUYdbDhKPPKup4NuT0s/PBHP+Inv/eH/OBHP+bNm3csywLcGsAxiAP49OmDIYnTxL6GJdDVrv/z87OvebHGzF24VSIxTUjKN6S3FK7rlev1QpwX0nLgcP9q19nvyHCrfHj/3lgktfLt199yfj6Tt3Lbo7ww7b1zuVz3+6B6xNJwV48+CFCx73+8v+N0f8e6bSyHE9M0c71eWdd115+acZ7RpVs1in6eJtNSuxY2RuHzL75kmma++fprrpcza3PnWAnMy8HcdLsyzQvbekZ75fXbN5we7ok5c58nMwsLwTJkLYOQu7sT9/f33xmAjR1lUMLt78Muz2jt5rI89vDT8bQ3rzGGnTEQQ9wNCadsKPFyOLAcD+TJKK7zPO9r4m/DcQiQpNK5MmerjdraaPoVDXtmtJqhTZQNhMLp+Mxp7kxJmWNi00bBEC4JnbtlMOk6iStLtmeKPFvGcmkrtQZqUc6PhX4XyCFzPQdz3s5Wt24NPp6Vp9RYFuEHD8LRa7qyNSReCfGREGYCkUk7IitKQcT1+i1ZVmuMnI4muyulcj5/TTxuzHNH65UQM7NE7u86OWxIP9PCJ3rY0H5iijDlSN819yspCeTIMkdC7NSubLWgePPtw7tWhcfHK3Gt/P7n98zPmZgDbz87crpXHj+eCXNgysLhZI7lvQmBmZwmjoc7/vKrbylckddXtrpReqPQKEBRRTcbfpdrJc0Wc4cIa6l8erogU7eGPEO5CKEKUispVyRVzpdKs/Eu+QFO98Lnn0cODwqpUVoj9AA0LudGTcrh4UTs5r/TVLmuhfS0cZ2fKT0gfeaz02csh0Y8LdA/0NozpWZUM6oLc8rkFOh9ZWtQeyDoRu0TnchxulB74FoONJkRyUgO5CxMufPxfEaphDAx3AKkQ1CTZzVvXlXh/WNhrXCtkVncxDEkUmiYP5Wytc61wHm19xObGQGFPP1a99NvYWPrD2pJPu5YrBD0gsWU7gnJR+J04M3bhd//vYk//L2JP/pCWK+Jn/8i8v/6l4989U3l2w8XR2w7SISiZniSD8apJaB9M7oEm+U7xWhNQW/UFaIjD46XWJFZDZYPU6AYYw9tugv3Q+hEhZAM2g3B8mylW2Oy9UbrAW2KTmnXrs1JmbNFBImYo3FttrkHoEShNmibINGooRbILFYwijnimt5NnTndd7pzXaFG6M1oZT0o62Y63ZzNJr03oa62kTT1nC7MGCdkc2iOATaP/IjJ880w06ucjSZGN/Ob3/W1v9ljp7JK9KlwZEqJwM2O35ogbMDgCJ7BaMEzUg1BjCl6U1buyJEAAOBySURBVGHFce+N2irHY+Dt24njKXK5KNs60A7XYqpSWuPD4zPXrTDlM9ptqjxPGVUrCh+fn6whDJ3DCWIOpCkgC0yXaMXxJm7b3/YYmZQi05Q4nGamObAcIz/4/QnBclHffJY43U3cvcoskzUxMUe2agYFd6+KDWhcA353n1iOmRDM+ODT+8q2ZmrRPRbHmkfba7SbbtCMaG4FXBDTyDMQTtU9sqI100pag+bouQSmnD32JFkB7XRrXpxP0+MONMr+vtRbbMs4Otg91fWWU9qqU4oFJO6UZhlrJdqaMJbJ0BI7i6TrHotkIEC/6TdD3H9eb8WGeKJGLQyB2Zzjdgfd4rIFixAaa1U883isRV+Yjsza4QiRgHgYfO+eMerXUII3xh5d9AJgNsRcB2vEo558UPB9Pp6fPtJaBe1MeSFEj73YVp6AmKyRnYMYfdP158Pdu7UKIw7DG7JSjf6b3FBqULiPx6MNiLuybcXRSHPnFARSJroT6Y2VpDtbwpoYY+2Y5rHulOgdVsYakcOyeJ6s0VkPh4VXr1/z9s1b7u/v+dFPfp8vvvwBb999xquHh+8MIYYm1ZyY8x4dY9qsGwV23I/Xdd1jZMLQZQfLmMXN2UK8mZnk/kJz76+1wWwg55kYG7VGDsfTrjkvm9EdL+d1NySrpfh5Uq5u8jXikIZkIwg7G0KAlJKZY716Q54XWikUVQ6H4z5UGFTo3i3Hcp5m3rx5s2twWzMa5zQd/B6p7pB9JOfM09MnyrbxzVe/5HhYeHh44OH+npzfGTpzvCOl7M1xIGFOuke56YunaUZETAvp+8W4Nr/6392b4DuMEPbfvzxExDTR3bIzv5PLK+LxSckHim2nsce/BUOqOS+IrKxF0WB0zhyFp3Zh00aMM7Ms5ATPFYIUDnNlThb1mLP5wNRm+cGJwClDyrb31xYIoYEUO29eZ2pTWnFgIyqkTvaBYtcEYhFDnsRM12hRRCGQo3LtlZSUHCNZjAGWKIhcqbqZlE0TURbW1dhcy5yJFbo7L6uqN6NnlAlkIsjBTEXbZvFHVKbYSEFJQel0R1czScVSTGImhk6QyuzP9JA664oPkANbt/0hpkieIvOSOJwy86L0fkXUnkeHU2Y6JNKUOD1Ybvr7j584X1Z6LGyl0WmEYLnMKoIkyFMkJmNe9GwDs7RYcVtK5XBIxADa7fWSlJAaslgTfnm051qtjaadSmeTQkERMmm2RJEQobp+cCsW1ZQw34GtWvxiT81qsxYREhDQZnu49kZOBvYFeQXSUAIxCJCcGdAhKCE2FItKwtFrFaEGpQhsGqjaCBLJYfbrpe7LYHtcJ5pRJeb43auwbopqJIi5bdceLfO4ySj9GdKvVisSLSby1zl+Cxtb7CEpjuOnBRiNrTmuSczk5cRyPPCjHyz8k78389/+48Q/+aPI5Vz5sz8PvP/2kfW58L4+wl5CBXA0gsNbJDh6otXEsKHZS0yIRm/WCCIgyY1l1IvBarlwJj0zxzmjF+O04WZ838nyPmOUfZInCquqFYxVvOe2WO05KcsEOdnCymoTt/GICEEIFTYHsBUoRSnVpyp+/kJQklgrvhalq+ehFejVFmaMmFNzt++bk73P1iyuqLmlfK3KoHPnYyRl0OR7a3Dj1mCN+ZRGYxuQ2+r+L7t+fsuPEGyDCCGSozW2OVrTJBiy34yL/F1aJ15sDNOpYPTC7lBX10brZmazLIFXD5m7k8W0tGoPo72wVKX2zqfnM+frSnRUxxrbCbSgWqnlyjxFcg4sd4E8B/ISmWtifq6sa+VyrVY8+prrzYrnw3Hi9Zsj8yFwvBM+/2F2OnXk7j4wzZnDIVs0hwjTkg116Z1akzM1GiHB6R6O95BioFXIufDhG/j0oXtz2EedCrhJTS2Uslm2azcacojiTWhD1TWktdJlULBmhltq8GJtxJSEnbpj5i/Bz2XrLk9QdZ2i/Srrldabmzd5A/MSMfLmQbW7A3JwOpPddiM/1/J5ZS8gxSmv5oZcPSKn38i8/hok+Pdv5p4ptk/EEMhJOOTEoHKoRDpOx3qBONt6c1rwoBa7gd6tsQVrbn2NEmjBJuddu8VYBW9qWnPzEVu/qt3cssFQb1VHv/sLN93v57GtF4YGfnJ6qqq7CWtnWa+uUUzUbo2rNew2pCql7APX1ppFXF3PRihSZSvFaKcxcjxkc+msNoTpqsRkUQ2qHieXEjEEar0ZfMiLaz4YOJaDazT3XfuuTjsPYkZRtVBca3d3d88XX37JT378E16/fsMPfvz7vH79mvv7e46nkzk1l7IPJorTe1NKe2PbPAIEvqtfLdtGTuk7NNqbjMk+m7i0Btip1aXWG60YHwSn7OaO5hMwom62rdI7xPTePqOwSwBQZXOWRWu3a2Pf29b+QGCnlDid7rl/eACJbNhA4nA8gn99nSpSYF0bORlS/ebtO56eHr2xdWZMzo6iF5c5REd/L7Ra+fj+W46HBe2NL7/8kpzuWRZzY44pm2O7m0XlbGwTRT36y5D3XZP8okG9Na63c/3XNbA3s6n9b/y10zT5cCaybeu+yHQMF1I2Crbvb0Pn+30/cpyoPbEZHYUQ7FlTysqlrSxTJUUIGtkixNA4zI0Y1Oii/nwwZosZQR4yTHOhK5xXQUJDxdz9xVk4ZpanVgOWTtTOJI1CompgOA8Hbbds9F6JEsnDKA4zmJxc2pRpVFlpfaM2BRJBzIU4iBKWRAjdM5Vdt6md2q+AMRGRIwCqxfTC0pli9897k0/MOZO6UGriEhKRggDzZC73kuyZZHR5YbuaJChFc8+el8R8yOSps17sGRgkMp0S05TIORGOnfW68eHTI+tWYWp+79gzBpo9E1OwKMMYUJf5CEKeo6WslEaIEyEK0jshQ0gKsZFyRyZ1XwyrjWpv1A4bK4VIREhT9K/D6b2drTY0Kk2EOUVq66xrJZ5MXkAPaLdngzbdh+ApGsIawxFYXQpgja3t8RsqHYnmWmXpBTcCZQ+m5C4qVBWSRAIzUa7gDsgifRDCranF2FXaLYrUHNAjvUdaN6dvK/vFB9juzeHDSsKv1wv87bjr/5ccBjMYDXk6wXSHjUYipIVpzjy8OvDf/cM7/uT3Z/5P//uJLz4T3r0RPj0rH8+Nrz6d+fT4DeenT1A+mG62F7RdIN5B/hymA8wPMB+RXJE5kw4/cOG+UD89AgHJC70txCkTDvEFaGzi6tpwE6lOr5XsYux3n02UDtdiNuY5wqs7qEezXt+KTV8EIU/CPMPxILy+h3kajqJ2Qu4PuKMZfHJEa4qCYAXw9YKbPMH6aUObbQbRg+hrNwQ5pci8QMzmpTYvkdBhqp3LCtcN5sUK9K5QrkqvavzjYEVyqz5kaMrxlXBY4O7gSI3TxQOV2Ff0/AndLjjO9LvjN3SIZGJIxJCZYrawdw++tktjcTNFC10bSRMaLf+zxY2eG10rTete2PVe2dzw5XE9Qywc75Q/+uMD779NfPvtZqitgvZg2p1W+HS92C2rhtpPOYBm7k4e+5RBshIn+OEfzNyfJh5OC0EC69b46tsTHz5ceH6ufPpQefxUeX5sLMeJh1eZH/xkYbmDPFtjGoLpc+OciDnAyDL1gjO63isFd/NT5XSXOJ6EV28MuSmr8vSp8+HbK+t1o+Wj6/eMaoUX8Ja7ag9wo0IZxbo7IrgcTyTPrQ2eL5nnydFRc6TMeWI+nKArrXYu5ydzGu4jNdOaSpMUKX1bd+3scFa2nEt7ILx0eB6meAqGZOKTZDHKaIi3KBJx9CjGvA8mLEave+QEiFjerGlnxDRZraDNXOZJmRgzHdsSFPEprLk0qthgsNTVqcgR0QoIDXUDHzfU4eZCLe7kLWZNRlNFHEVudTP0WYQ8DbffRq+F1leEQBVDOW8xWN3zbX892tN/reOf/tN/xohWeXz69ILO6ehWioCZl1n0iw9R/fpfr2cfbvSd6tlbJeeJFGR3/h4U5NFY/OEf/x0Q4a/+8i/4+Mnypw3FszUU3eAr4EM0EVrdjNlQq7kbt4oE5XCa6V25bmWPB8pOLc1T5vf/4A/58ssf8Hf+7p/y+vVrM6GKiWmaSDmb5t4bzFptmPTp0yfXf98M3mzoUX3t3u6X4+lEjK5V92fjoM4PvX5t5ux9Xc1p2X559FDC1koI+/2SMPdVBELMhMcnNJgmF7+PjCprDV97gdTijI5aG/7QNCr5svD23We8fvOW+4dXjv4siCqHw4GPHz/SW+f1a0Nnf/azv6JXi2Z6enzk+fmJ6/Vq5nMiXPYoKKNodzUE+/7hNTknDocDX/7gh7z77DO+/OEPefP6DXf39xwOJ28kTTcYfE2M3nVomF9G/vTB4vAGdvgB7OvRG+CXbsmq7PtU71ZAD5+HgcJGf712RUIn58Srh4f9+42s5u+7uzkYpVdDhwAxVaYUmMIdP3t+5PncSfHCcVYOudPqyZA4sqeTCdoSUQpTEnLqHlfZSMli81iF4Ntb78HICEE4HpQclZiV06GyxM6xCheUawDRSumZ0idSuyB9o/VGlIWUJl4fjuSUmAksdGJXQltocaX3wvm8MR/gsMxuXNcpW6XXbpIYIk0rTa9M0x1NA6UfuNYTc+gc4jOSAy0JyyJ0ndFuqSQxKinb91h7YH1ulO2K6pk3bw3RvK7KvCRiA0nCWavVnqHSD5Hy5o75KKTc6cUNUqfA/ZsjOR8JYeGvvvop63nlel25e5g53GfevYu0i9Auwqeo1nAFIST1Ztdcw0Xg3Q+OPD+tPD9dgdnlPMryKjAl5eN15TQF5myUc4kGdF2eLUrpcBbuDwGiRZd1UVoS1thBK3O7ElZIRWA+kE8QpkQUc5FenxrXu4aGyjKfgZUghRhWrOmfebzamjhqYF03a5aJFKeMi0wo5gHSW3HkNdI0U0S4qBCr+ancpyMxKj0EAhtoY9samhuZziwR4xEotRdKF1KYqb1TaidH6yFmr0NoVjtpFEL832pj63RJ0gzzibA8uPlK5uFh4s1D4k/+YOa/+4cLf/CjxJvXgUuFf/cL+Nf/ofHTnzf+5b/t/PI8cwknODoiqw3ZHkE8fJUCbEg8GJc2QHfBqIIFC9uTDTTYg3Vzup5iiG0SeguGeDmtUPxLxl8N76gYlZwNQQsdc/1MdiPOC0yT/UoRghgC6+RRkov8FdvEtAvJbx5thrj2asiqNvXGFmqxnMEuAbItqt6FUpTzs9o0BRDs78xR1cBZM/qAniyzVr2f1WqOkE1tKtN0oMQ2oGndNtyUzPBK/obp7e+O/8TDLY+9ZdnzQ8UJR9qrDRl2XaRdM3X0Twfyo07VdKRDvYC0Ak0JER4eIiHANItN4bqgPXB+bmxr5+n59v3nOTLPgdMpcbo3ZD9kgSSELEyLkGcb5AR705weIhoy8zGwLJHjMfN8auQpc7qPPLwKpIM9uEN0FFKG0++NxiYeH4Kj1tp0sFR9VmbmTgDN3RhjMu3w7hbcjbJr6Endi9hBNZYR+xGGYzuAmhN1TN48DAv/iWmarZHsNvSyOJaR7elmXPim7wyOQS0eWr+u6g32oDh5Y9tuztF7I66DJjiogt3WhHgTOuir/tqBABpKO1w7YNe3dqP9os3pzDvBGEWoXg9IN6fFYU6xrykjZALumPtyH5Ab+mPGeVYso+ogsOw/b9BvQ4yg0Zthb3y8SZaQfE3bWuyeufp9Pu7vX7kGtrgzuMfhpLQ7HI9f2Q1/Ykw2mHIaavW1Yjmztn7yNDPladfH7veI/3r9+g1v3rzl4eGB89nyVu16G208OPsA2N22q0cJdUdPu5/nwzyTppnPlwPLspBT2lHdNGV+9KMf8+btO+7v761ZdDRz5LbWsfbB0Wo7H+O93w5lxMgM1Lb3vjfeDAbCYEG40ZsEIWgc5GpnSHSnJ4vn/EZHy/1VTsfWDh27HtM0sxwOe9zXzVzJjVUGurlni/ZbtnyMzMuBV2/esCwHcrLcTHHJwTTPLMvC8XhkWhZyLTy8em37gptwmX9HJLjJZHcENKbE3emOp6cnnp8fGRKEGCP3D/e8evWK4+HIcjyyLAdjvMGOVt/ukBuVeM+ZDjemD/Di97Zfjqa1u8GVyRC++zW7UZR/hjDo4a7f/s7aBDTE71z3v9nI6vt31FIgViS5OZJ0tr6yVbVonwqaTS875Ubr2PNXzFxTtZixUhyMKAM23K3B2ArOQjATKdvrUhQ0QSgGrsQIdctUAl0tyUOkoxqIbqjaekVCI0pjmhLRM+1LMVruFJy5Az5kU0TsOaFdrVEi7MOQ3iO1ZWJO0Gwd1NZIdGJ2uYKaeRUEVCMiNoyOCG3Q+9XMW+LUiLmj1Z/pzsjJOZCjDdzuj4FAZN2SedVIMCQ1ePuQ8M/dkNTRaNTjaYbDITBPyvEYWO8iebIiIU2R4ETLOQc2f+4f79MoPJgWe0xqa8xHk951qXQx9meaM3lW0jQiAhX162Bxom64J0ZZF5Qeh8zLdf7O4kpi0p8YzJiz1k5rwesBk7Agna6Na/GBdjQde28NiTOquHO6GXrGxB7ZuXsWvTD6CwSqI7sDbVXt1KZ0DYCzPTBGgsLuXq3YcMAG64ElR6IURI2+LNrNiPbXOH4LG1uMKjkdCcdX5NM7lsPM8TjzJ7+X+OMfBf7P/73wD/7I0M2//Er5138J/9+/UP4f/7zwy68rP/+Z0sorNN/DO7BCTOHyAVpBWoPYbDeYMDgoRgfarRmQ47Q3DvhUsZ63cafTS0NbQCW/6GJtIUqAa1G2AusK82Q6sWnS3aU4pMg0w7IY6jllWGZ7napyXQfSouwxbl2ZoxlW1Qbram7I2q35LGtDB6WSSDlf7c/JKIOSIrWqmQ00pVaIyTrWbTNqQd2UnI32kSb7VrVYIwtKLzrM+NhqIFUozR1WsQ08RDP7icFcm393/IaPul9iLGzKKESjceuhEtSwWLx4Ch5wrLVYc6WjubX1ro522P9ZYRsTvHmTuH+IfNEnck6mYWmRb3658vRY+Oprdke8+7uF5Rg43gemO6Pb9NTAUdac/aGgStOOBmU6wMOUOLXIu7fC5Vm5npXWgv3b204PujuI71MU/704GmlmN9ZodcE1nepMAruXghgmKJj5Q5oieQLBi1p3SlaFUiyKIqVIcX3foPyFEIg5e4NrNLKcJrIbI8SYOByOTNNiCHEpbNtqSFfd9iYWsQluKasZ3LjjaWuGiuko6CTsKF0p6055FNe37hpFYS/uGbTi4I6kjtC2Xnb30VLWvWgc+k5DxrwAqhtYmBlpPhhSg6JibJW1QcL2u+JNx66vle+6G780BZNB044e1zOALv+4MVh0VYz2+VQ7dasEBJIZconHWpW+IjF5nmfxgYG43vn7fRyO99RaWLcri7vglnLlcDiR88SUJ9fBJ2anFMeYdiruMIbq3Yyk7M+bD1QiOd3yP+3aWKPx9rPPuVwufPHZF7z/5j1nfTaqmMhu0gU+dHEX8G1bdwTOzJjsYt2dTrx+85af/NEf8+7dO+Z55nw+u/N35P7+gWU5MM/zjpZm1/8OnewY2gw2xNDY7jR2P/YGR8xtczRULzWgI+e21kJ1Wm0IgdADqyOyrTVmR//DoIF6xE3w13dvjqmmdT0dj7x6/YbL5czqMUJjr2x+38YQSX5Pmq+ZNbp5njne3fHFlz9k8Ws7u5txa3Y+luXA/cMrYk72ufz9tFp5//49OILZfBAFds/O88wPf/Rjfv6zv+Lp8SO1lD1P9/Wb17z77DNOpxPLPJNy3s+nubnvPcOtqfemc6C0LxvL8ZqBpt+YI8PpWHeTsZ2mLuO1hvCH7qjWuG77z7ULO2IR/7Y0tOOo6xXJGyE018I2nq+fuJbKugW2VWjZhovTVKnNTIIsRxRUL85GssFLafbLoibDPriGwDyJpRA0i+tBrSGJoRGC8lwWNiJVIqkaUGJFgw1UaxfEMiiZ5wl6RGvgcm1kEaaT0ZcFJSUhSAM2BJMKrVeYl2k3Fast0zVwzAfA1u9WV6JUJGwg5glxuVyQ0B21c8drX8tdLW4m5Mq0VEKqBDVGQnPwZpmEOUd6VN49JJZZqZJcV2rRWDYU7cRkvhCtKelg5b6eO/MBjieYZ+XuPtBrYjkUcgI5JbZHwzVPh0x7Xqm9cvdKmRZhOSRkMsnVei4c7oVlUYpUd/kKzKeJ+RRYjg2VdWfB1Ip74QQ3ilIkW2dC6rStG0jVGrUqpXUWRt1kenfWTi6JXhXtxdyVpdNoPK/WCgYKrW1ob6Rw9HOrVHUWUIZaA/TAiBvsvVN7sfUVTPqowFRlb6JLVWpLqCZaM1f+ZbK+oqpSWrUxdrTBVQqBkyQSnaDV0lV6JPZfryH4rWtsQxDmQ+RP//Se3/8Hn/H3/u4b3r6KfPYq8JPP4P4Ib9/Af/gQ+Od/Gfi//HP4i6+En34jPD5m1t7p9w/cOHovkKvjZ2680pCU0ZSR45F9Won6pMJjLnxyHTLudpwZxdnAUNvWEAyilbXQlkBtnXo2rVurcPUIj6dFKMUieIIq6vpVo1VZg3gpkEU4TmLhxs0aTh96WVauQFMTb69X2FbQZoYFfcq7bby9Z5De6KVREC7+sRAzn0oZDrMgrUNRnj8V4hRIS2SawvAmsZupmRlWSkLK9hBaN/jmW0N3c1ROJ5Ae6JJJh0zNgVvow++O38jRFKVRg7DWlUBnSdHopxKZw4RUo361Xr3gEkQbvW/UeqVjBWUUy0hUlMAwCzHdX09mZJGjkIIwT4kcInOaePfqYEYGNRPDRIgTaUqUvnGuz5y3Z0ovrLtOC0PSWmerlR7E6bCuGUuBnCKnCfSVslVFpdMD4EXvDQkY9EQ3IYmGkAQd7unWnAk4ijvM32yyuNXG83OjVUNXe9VdQwt4I7X579nNX3akJ5g5WnQzhIHghkE/nibydHCE0d5Lrxt1u1K37UWxZ9m1paz0UnckaNAAoyPAZuRS3XClmYtrDPQdHWXX2vZh+OJNwXiM9H1oMdBT3RsDGQjJyIHFEfsAKSZDtbKNentr1ObIQQhUF/o3XL+lSpwXpHe0FYujAaoaE0c8b1mCxVJp3RzpgZBGfIHHIbSB0rtOOJjRWfFzaMO6jGKNVwg+WVc8Z/H7PVUr1QyIcs4cDkdyLmxbYHJ6uzkZi6OS92RsaDLWiCFz4lp5ex71Hjgsi6NhN+RrXVdKtcYyxUieJn7vj/6In3/1FZd1pZRiFH+npoJrwR01NOmoNz0pEf35KiFyd//AP/7H/w2nuztSTlwuV2obETrGELi6s/dYy+u63vJok2nhWut7k5pzNvo1N2QQ2PN4Xx6jya1+D9VW90YcJteQCq19tCHTuoLqTomeZkPF44tmepqW3chpW1fO5zPr9UrZVmrZTJbAC+QRdjQYVWKKLIcjd/f3/N7v/QFv377jyy9/aE7W7kewbabhDyExLwfuX1Cvc8q8evWaaZr593/27/j44T3v379nXozCvcwLy7Ls2uyHV6+RELiczxyPR7744gtOhxNTzpzu7gkp07q5796G0DYgK71ZXqyIM0ReRq7Jbt5kjJC+U4XH0MAa28BOo7FX21fLaITT7X7Uvr9u/NUYtv0qQvy3pblN04GQKikdQD9RauHj9YJKJ0+BtcC1CNfqLu5NuVajtFrsTaL1RuvCVmFrxpBam+3FPQi9V1pvrFujtG76TYsqJ0Zo0iiikIUskRwS82zxFR2h6spala2ZVl2DErQQKARR1or5zMRnLmvhuXS2npHeye3CcZptCIxS6mbPxbgQ5eC+Cw9oCESE2oVrgU/a2Fy6MGdr1Gw93FsDvF24bspaheX1wmlNNJ3RUgBLari7M/ru4S7yfLUaWijEWJgWY3e1CpfnwhKtZo1Sab2ybR3Nlm376tVEToYebquybp2tNOY7oeeInCJ9bUwSefdmIobEVhvTfCHPcDjBh+fVnnFTI58606ET1J5Xl0unXhOleiRQDuRFOd7BfIAcOltTYguoJsS9nKoPj0OE+SHAtLK2jQUzfepU1seNcGlISrQ4E+RALWc0NIgbIgutw3m7GvIv+ODO5Fuoo9mxoaWizcYkMYgbv1aaBloTXs82DDlfz1zXwrYpW2msJXIu1siOml66QAts1fx6RAOXFaKYDwmlILWQSLCtJmX8de6n/zy36X+9Q8Qcen/yg8Q/+pOJv/93M28eAu8e4PMHQyAeN+HPvwn8Tz8P/IufCl99EN4/2tSqC8jcHUbHEAHPriMu9t9uNEDx7MWddhGMguOGc+CIg3CjPo6MOtk3YR3/4FN0RQpotdcN3U8NYoZM3mPnjNGf/c+9QxuOZ9E2quSAm9dq9G6OysMcZny0ERhvA9AbmhUn12KokQK1GSI7BuFbgN6s0KzVDILK2nfTKDO32RkP32lPVY3+3JuydTOYrtGK4SkFCIm0TFYQf5fz9LvjP/XQQXP3yA0RSq8kRx5iCCTMDKQ6mikyihIziNqNgvx/owQeNM/hhjpooQSj7sYYjBI0RaJGksykOJueMQauBfSyUt3Br9YbzWxoslobNCu7ZwYlKQdBot1LIXWqipmk+Yxq3GrAfgNoc8qsiFEpFWNdoDvF9VZqqd+nZtitDD1Y3eN82M9T/05joGMP8PMTo+fSDn2eoxjREcWB5FizadQgc14epkmy046/k0f7Isd3R2QHxbEHp1B6pEkfn+nWDI/zaV8T9hO271UvUd3R/HrTr+BGTI7MOKoao9F/x9bSHQlvfo4MVR2DCpCQCLjplH9eHevKTcv2htqhWnsPfd9H9/1Cnc7s4I7KDd3zTolBox9IsA00XjTs39OjtbrfazlPuytx3HWt1jzZ8XK4M5Az81AIOnKUbzrH4Nd+v7Y6nIQr2WnzB4+byTnTe9vXMU5T7S8atXEvDLulsW6a095iiNZoLQvBm+/WOpfzhZFN+qvPgIH02Z6SEWnf0Wu+pKjKoLH69xAfOrfedhO1VqtH9pS9GX7ZLDW/11DdKdCGSvqD9gV62T03Osa4Z9YqL+7NMBhVspstwaD94fTjhdP9PZ99/gVv3BHaKKWym2+FENjsAyHO4FAFDsrxdEeKiePxZA15KSyHhZQTy7yQPFu41kpKlg0cJHB/f29I7d0983KwAYGvqZfnlLGSxnNebnjAd4+Bqw1Z0e0V30XVfb3pDXX9a1Tm3lEJbjb5Aj3+lXXxqw7M3/dDstU+QYSmtvavpTh9U3ZZmqWqGRXZasHxUAu0rpTaje1XO6XdarWxb5tEpZv8TYc8yN5DdW+VkGS/jqp1Z9h0X3OleSMF/szxoTPmhVBb5Voal21ISTqiV1KwIXiXwLZ2Sldjd4jsz9Lxe8XYhHvSAd1yeZ1Kb87hHbSwlc5WA5JnpkNgOSXqOaDNDaIOhWa0MANWRImhElMnT2rMQlWPAsQbNkWpFjsmZtp0vAscZiWn78p7poPQotCjs78iZnI5iTunN0Kyoaw+melUzErMjZDVENgOtYx9RYgJZA7EWZFoBkxNO7VC61YfjMK+9W4XIAghd/NDofpe0OlazTBRO6VgGe4pU7sPwrTRm9LUTGWnZHTq22bJfm6QQTMecqOO5Sp3ryvNoRkxA6zWlFbt/NZmg4Cut33AvBjs2Y9Lkbaq5KDMQYlqjT9jYPZrDqp+6xrbGOHhJPy3fz/wf/xngbu3SkoW7E2CXz4K//d/mfi//Y+Jf/uLwPtHa/SGT0hQJVa74bVDr1bw7uht71bVlg0tFdpqVL6YkLvFpmdiC6PXRjlfbSqhNoBoxRaRPezx4skvVogWp9NsWiHaCFR0nqkSua5hv7FfvXLE1enKLQkT5k6Zky2meYJFTHS/FuXprFyuHu1THVFJwrW7oU4IdEscQSIsrw4Wbl0q61XZNosv0N6hKdtZCDnS6sS6CrUofVXqtQGF+uTaxWD5U3tu3Sb0IrTiOgtR1tYJAus18Opt4HjInL54oH9cuPxXWUm/xceggnZFt42tV9eXBJYAU5zc4CCw1bAXB7UVFCW2yZsKQbSbBgIlvHBIjDESu2krDWyzQlLFHkhFodHtIU4haKSshvDUthJCI/tD0MEeohfZpbVdz21boU34InGfgVjxJfuAamddjC/oaoZJzcwkVM0Q7TZqcsrxqAqwyJngFNYUJ8zxz2N9aqWVasgBNiwKo6kfp30//ZE0zUzTYjmV0RyqwRoURFi3K2W70ltFSzOzHTVDN0OdKrWurnl2pCoEZNcJshfBCNb4pERn8YGdWibs0ONW+/QCe3bmoJQaCtP8vRutWdVpQ8qN0mmjbnd2NUQre+NO9/zKaOup9oZuhkYEsXNWvVgbhlL204s72zVCSLs5l1FVE1I7EpohvE6rHRpHCYI2RxxUacHSdUNM/pBsbrBnC6xVC1VIPlj4vh9buToiPrMshx2tHLTzPM1785dS3v9dvIGY53lfn+YkHMhpsqFD6y8arpsRTwyRw+FgVHeFlDPTvKAYkhJEuF4v+/DC1mHgcFjMfK5V+nZjYXz8+J78s8S/+Vf/gr//T/4bPjsemaZpp1JfLpcddbOc1uFwHJjmyRyNp4l5nqmlUmv1aB+LiBhN02iOI9HdnJVeuiO/ZdfsNqchW+Y0jgpt3mSfqdWouqVstGpNR4jGTJnnhd46rVaenh5JKXF/d7+fY3MitjU3e+Nmw6y8myLtJlIor16/4Uc/+j3+5O/9A+7u7jySyIZSyWm+tVV++tO/soK4W96rob0Hvvn6a95/eE+eJ8ufvTejLNSYE61Wyrbx+PjI3d2dI7yZd+8+44/++E/4/PPPORyOBB/CDeS1uyme24IwGte+N7W34dbLZv9/tsnUF7+Rm0vyoLGDMQbGIGGaIJKQ5MghPmzz9/Xy5/xtQWz7/EjgjHDlXFZKXTmvxqirLZHmidZhq5WAsYW0JR/+QdOJy7ZyvnY+riu1KbUZiykFOGRrUnvfzDU5WnZ464GmyrZaHZwTvHsQLhdlvRa2uKESaFhU3pyV47VCNu1p6vg9ZsaBTTsfz8q3T5XnrSFpJsnKLM8m9YkHJGU+XZRrgThF6FcUyxGvbeZaDuQYLBZHVmJys0AxXaxoZisrIo0YGpdL4bIGmnSmU+AhTKwxM00zaT6ieeO6dZ7XRp46x6RMUwFRTjmQT9ZsuieyS4UUXTe2dkXlxP0h85PPF1J+psfKs3QkKnFWXr1LXErgabMGvIdOn8WYYPZYZp6sOe71Cqoc74Q0G5uTHqmXQF0F6kYIkeUUSQ+JNMPaVrhAaI3LFpjqZJIu8WvXKhMdjYJOGz1tEIqZLVao25nq+vWyWWpKiomtJEqDa69c1tXykrPVfUk6W6s0E/pzvTZLrBixkMC6XSE0Gonk+uutNTqBJkKXybTBxZ6126Y8PjWWoPu+bP2KWDazDz6eN+V+6pwOnSUJ1yI8lQ4Ur8L+48dvXWPbOzyvwv/7p4H6ryLhmPfc1NOsfDoL/58/T3z7ZA+lw2J03lYGqulTwOYDhBF5Mui5PpLRafYG92rFcWj0HAk5QA6EbGhF0Ew5r/RidN7e3G49JSQlYk6GewWx4Gm1wtBcEc0m24YnNiXKs9Wb16vpZMewWB2JLcX+cL14hJAqHaE0KE0pK7Sq0CEFe5998ZMnRi3Qbt9roG35mOh0D7X3CeKYwTbYztWa9REr5NOVtlnT09qGLEdIlvE7dEhxik51MBp0CJAXIUShdUHShMQhvOd3qO1v6tht+43SBJ1nz3M0V0bLXbuhCGY9rwJJhazNWQlC00bTSumF0gvNdTg7xCrj/rEYHYAVY0fYw6ogxRCA1hwV8pw9EchhIIxCeoFqdMNrHS2xNakEVG2WLP6QSiEAru3T6uiNmxiqIq1aWpcIXaxIGsXYDREIQ21sTXQ0o7acOzHeJpTq02pEnGpsdM6BPAowLQfyNHkDbO7TTdwdOEbTmIlNYYeLbK/FBmH+ufdsWjdhkBh306qxV8CYxambPJmxlzXFN7rgKAStaB2yhu5NXtlvORmmMb1/pw59eag233OqTWJTGhuCfa4QEInUZuZkliahBL+W3WMAbMey4t4Mt2zqDdbQd6cx55SQWnwIoTvao63RQ3sRPeJogHYTUMdk5jsB1uvZ9jIRUjRN6bpedsr49/moTvMd1xiE3byNEVszkMEbMHYzSLIInDEAkWB5jeM1tyZL9rUcYzRmhze92q2R28p2I0N4vFT0AcHQSBpV0r6nRRRlelmp28ovfvZT/vQf/iMO80LL9h5uP3+87yEfGAZMhlyJszp2xkG4DePUp/3DaArFo5+GlvNXBxiGVuVkFN1lPrCuV3rfuL9/YCsbZduIHm+zMyJkUG6tYT0cD6B2jWJKzIeFu/ZAzhNlK7ZP2Dtkmg8s88Lrt2/Y1s2o0bVyOBwp28b1emV2g6iUEykmJhP301V5++4d27ZRtsK2bYQgTNnya0+nE7VujtI1YrQIpKfHT9RiA4C7+weOxyOHw4HeG8fjiVev33K6u3P3aR9Uxmj1gRpl3ZwI3MjPP4ufQm6Y7m1Q+OIV37lO6tRiu0WbRZ9hvx9UtxHbE14Y7/UXOdMDCP7V3nkwD773R3gkyMYklXNRtio21BVzrN5KsRpJ4Tg1kiQe5shhsiHz8/nKddtYS+P5MoaEnYMGNCpZmvtMCPM0UZpSq7KWlVJgW4XTMZk0IVaIisZIzp5VrdFZD4ONYbU2oaKsqFwIqVErPJ7DXp/ezdYshxRoBCCR44HWjeofUTNXc1230KBvbg5esDgYq5GvbSWwIlLIcmcsp27fO3XTkc5LYEoR2Yxyn5fE49nq+WmJ9BrJqRHTs0l/xAxMLWkAi7TpuPNvQUN1jWln3a7kqZOiGR9Nc6B2qw2ywIRQspJSp0mznN6g3J0SeY5Iivu+M8+ZmDshdbTeTC3nQyJqJJTENhVChuU0ETaFLtzdZeZDgGDa2IaiQQjSKRF6KkgqSC5I7ISkxBzpvaLSqaFTtFr6QVyM6dmx8yyRIIkYIUillk7H9vmcuoN2st9n1l5Y3XNaFkrtsDXWutGiENJESnb9UxgZ6KaVJwR6cqlQEnRtu5GslkogcHDlZgwCMe457L/O8dvX2KpF5Pz5t0L5q0CbLGstCtzNymUT/vyrwHUTn6TYoqo4nVec6w1W6PpF3JFyBQ0221ER2ASaUxpLQUNCEyARiTaRqs+gtVkWVGvgqIKAG03Y5GI+JnrptNrRZrS8rtYCBMFcwUKwEOatu4sogKPL3ryqKpe106u97zwHmhpVuddOtxqR4KDMksX+HXNo1X6jeyBCSNFszJPRVobDsTnlQl3bTv/bH2iqdk5age2KhGRfGKKVz3FMh5yn7/SHvNh7UhVr/j2e4Hc97W/yGBQUoxojyloray2kGFh03ql6NoM0hC1otEGFdjd+F0ddjZ7ctO6bz9jwBl3Y9GO3dTKYB+aC2R1FGDeZraEwkDlHgqKIu6lao203pdNw1BtIcPqTsQGi3yNNBBWnGHuTKaqII7dd5GYwJZa7ab350Nf68rU9mZwhpe5GHy8oO2qjqJjSnv/aWtob2zxZhM8wPhn32HBD7t44dm302na68agdzXl6IKx4Vlz0iCBr8fzdUnu/UZX9Zw00z36ONYLijZ3s06PubqovzodYcfGSkjxKVn9ndp2753wLSAx7g2p5sVZktta9EQ3W6IhtKn0MJ3rfv0fcaaWjmDW9V1e9Fcm/srrVKVjaFUmDPhn2pl09F9SGDk5fNkoAYJpL6e1vaHq+X4c1GFZM3lgVbUdkB+J6K+6/a6pj8UBx/zfvIV5879FwBG9sxA25bk7i6vFLrY77HtBOSrdGz35WvTWqahS0HBO1bvTWeHr8RG/NEOhkOtpB9x1rrrsUonqTbOt4mC+52de+ZG8U833/8WGx/DXOrJ8b8GGZupt0Yl5mWw+tsBwOe0MfPB6p9f7ifASLWfRMWNPdq2la9UAI0RvbjepopAgcDieOxyNf/uAHXC4Xtq3sWcCt3xghoxmMydDdwZq5v39gXVeu18uOApsu+O47lOrBoti2jRgCpZjW/Msvf8DheGRZFhtcJKMqT/Nihn++liz+bzSP+tduPN2BmBuleOx7Y2B422P+2mr2taM7y2QvNoQdLb7JNn4VjZXvDGPHGh6Dne/7oXJBpBJD5brijW2kew5orZUigU2EOTZiCswpkIJlSa9roZRGrZ3rapIzRUnBnndFGiGa03aM0Wmija1VahW2EjgOaY3YELtbgeq4goBGo+g6SjzccAkbyMWkeU24bEqtHbrpQqMbI1nVEIFMV3NwR7tp9rP42umOylWge8NlA7LaN4SCaCWkCSSZE4aYBEm0GViTAu1gLsu5BYsMLDAFowunCCFtRIlEiTQHaiS8lDyZdIBgoFbDzpWtRZNVpUnITVgLRFWymqlUjGqGl1EhC8sSSFOwvmGARZPdTyEoRBsYBBHyFIgakBKsYZ0C05L359bxLjHPYrpX6aj5ONHETDLNWbsSYkNCszjD3KAWNDSadJqj04QJwojes5oJSQjm3XBLHLMUlbjT/9UlE2PPhDlnhEZpviYEpjQRE2QPTDBttdG8bXAyWKv2PG/qBpXN8pkvxfYbG7YYYNHa37R3/PXjt66xVQxt/PaD0n+uzK8MbVARftoU7aZXyBlShlIgR6FP9vvq0xMTOIuhChnISi9hn3AwsiOnCV0r1I4+PVHrTG8LvdgDLyYh3y3M9wtpSdTSqbVRLsOAxd50RLi/GxPGwNMlsV0NeV0yLtCG9WKoyOXRQuNTtoWDKuWiXKIQRHn82JgyTEm4nM26vXfPhVLl2jp9s8JlWQLrZoJ4bZWc4PQgnJ+Mfvx47hAikpONAkuBy+pUC6GnuIOqHUUiSI6WkkSHKKbXXSJ6sAlwysEE8clcn8W+FcuC66kEeTXR7hKPOeCg1e+O38ThDz1rYOwBVlW51g0JSkqRKGYGUroVYaU3Us92P3ijogi1G1q79Y21bpTWuNbKtW5srusaTVWojuSMZjV4LtmgMvdRYAcI0Sm/ybVHOJLfPRrGbOK7djNRYxiKBC9wokkCUJro7rjXnWsw3DPB8i9lVGz+EE9pIIWABH+vQpdK7I3jQ2P51JkX5fzkDWaIHGanhO6NIoZ6pIk8LSynk1Nz7eeHEFiOD0yzNbzbejaUtlTKtnpTO4pIi/bpvTvC6HEsbjKlfk4Y7a1rUurLxnbX4prqd9eseJwGOmiiVszqKDix86O9Oa1cGGiNiFBLfVFUj7xYaL06/cMjU1p1mrYQwkxtDa2rD/cywc2c9qUaMqhFNdSuu5tzK4Wn+sE+T2uepWs6H0l5p08Gp3nGlCxLtTXq+rzrm2Oe9wbIJn7CPC+slzPbtv5nuwV/E8fd6W6/NqORu8XX8GJI4powH8AMN9rxdSKWQz20oTCeQ+y/zzkzhhcWqeOIo6+FkaELQuvmoi7BWAC9NbbLxRF72QuZ0hoSE2maOZxOlNo4Xy5M80xrjVKLOxRXStm82W1cr9ddf366O3kchH8mNbnAywzVYXZWmjMfdpMn3we9IRoGcPvXAAjMy0xMgevl4lTYCRGh1MLT0xM5z0b1lmCmLwMlD4EUE4fjAQUOy5F1XVm3jafHT+Q8cTgeuT89sCwL9/f3uylWa5WPHz/w8eN7JCqtFy6XZ3pvTPNse4rHN93fP3A8ulHVZq7pUQKl2gDAtNPia8TOxevXr81Z2h2Zl2XhdLrjdDqZqZPIHqdj68Qu91barn/2lUc3Msb+mv3YGQMwBLgv0dmbZjfcEPhadv28eKavRRDZ+RwNLkB3loL4AHQMdF4OcF4yFb7Px3Z9IsVCSxvXEtjaQuuZUp7YygaSmOZEmCeet8baOoULep1pNXA5Fxq2318vGQ1KmhrXTdlorGtlniEkM/JpTbBYhG7Pf4S1WCMnT51riaxFWD9emSfl7jhzPCRrCgnUZvf8Zb1wmCv3xwB1QjuspbPkToiVFDqtH7mWE9P0QO2ZerGmNgjMTEQNNtjshSCBJbMPytI8g1ps3LVGhELEmnHtQotmXla7AT2ShCkmePPO3IG3yvHB/r6i1FKJoXA4JaJCuQLpABq5f1s4nbD4zJzJDWKNtKoojZUK+YhMEembAT6T0J5tgHqclM/vot2XWTnFhHY4HhUNgaqB15+fEAnc3R2IUyHGjdMxkoArSsoKSZiOiVfzkZhgORRkVQth0UDtja1tLPcQekBzJvSC5EY6VNLUCclya5kC4UGZ542mlS7NGEvRjBRDNyQ5NDPsulzteZCTouq5o9qZog1RZjnwqXpCg04YOy7Sqnl4LCSnFNvA/DgL9RiZPkbwfSMEMV+oS6dV6Em5lo3eA12tmS1deSqdZZoIUXjfleAo+K9z/NY1tqIQUObWOW6VcG1GC05CQXyq4ROC7ohjZ0c/JTh1AqE3tWmTGoLYxWo0qu6mTWZMkiGB9gIetl7nmZAiqoGQ7MZKk091o09cxjSzK1Hgemnk7Blv/jPEp1GI/51TQAa9OorReH2gdhOBl0EpNodkVavbdpfiTayOQ2kq1NLZzg1Ko3q+7raaIVQtDQ2WUajuTkoI0ApaO1oAR0Bo3X6fBEkRyRPxGJnuDsQp01OwhjwpOZqrnw/ddoc1Z1AblXt3J/1b8HT6W3LUalrZJjZDNboTvmEKa7WJfnxRICZ3Scwh7bTXgW6MX93NKWqzfMzSG9UzyBTAdR50o6HqnnfneWzdmkpjA9hUUKXf2BKOurmtjTdv7A57VojahDpaf0t0pNccjwcqaGvtRqHz3hqcHSFGSVIzNpBo01OimVSlLuQZ8gRpgmFaJLjpEGI0Oc++FW+sYop7gYlA8PiVFIMlCHdzdRuIcorRpubuWGzoWNupxFUtciG0uCOa1Qt+ejNXVi8Yb2jarW0cNMDeblmgNqQPhmiGxE739i8LIe4IlYrcgFtcYzmiXvzn7TFQgjXaiqPut+zcYbTTtJvuGdv3QhoZ10ZrlmqfLcTg77sZdbG7BtlfK2PsPjJBuf3XCmGfM2vfN8TBYBhuy8Gv2ff5qNXR2d35eKCbdg4GYjvyk0MIrpVsWK7kDZkdmnSJ7NnMYzAzmuaXh53em9mUZTCPQZHpVK/XC9nPYUrpRtv1fT2IEKO57v7kD/6Q090diLBuK7VYM3tdLy9iiazhlCCWnam3/enl29tNnxzlVR+AiSMz6jEo++eWgMjt+7TemUN0VNadxn0QNSi5pkFWM8/yGK82pAH7eXHdrN8/MSbypHtUTYrJmtTZPA3Ol7ON9YKhE3nKHA4Hrz8sh7aroXdGTwZjQLT9HI+IHdtzFS0erxTsvh451Ais1wvbtqJqeup5Xvbr/Z29inGfvkREFbjdO+hA3PguJusX5pYLfdtzx/kfzWmQQJfge0zwQYMxTqZ52Vkp47Di/Pazvvvdx4///6Pt/R4dZb1Qc0VDpbVIbUJtkdotmieI1anVKcSxNapuaLvQauDTU2F4PlxXa2BjEov8UTcNVYh5PAONHTPPBkrUYtNjBSROlicr1swgFmEXg7qpkBjtVA0IiaFTm+XTl2Zu7T0VonR6n1EivQckdkSMJWLZyp0YzM25b0oMug+UajdkeK2d7tnr56syJyHlCZVIF/GkBhuWirNBFCVOAQ2dqo3l1CF2Cp1t7QQ6RVeQyJIzV4wSfHpQUmzGZEzZ63STAgafA3Rf3FNI7v3SCMnzbaS6wZWQQiN5Vm5KluKABu4eZqPxJ09EiEb9nWdjg+FpDBIS6TAToiKykbPVCblXHKxlOljGdpgzfQuk0CCYE7JSqT4QqFpostGpSPTBXoj05vuhdEx6b3V/6wLVpFwKqHTmEIiSSDIhI35nyJN8SKndDK68pAcKKTWmyVhZtmOEm9mVKClEYx10M5dqntiBRosmFQPlEAPlovx69/L3+8n9v/KIKHe98qYVyrWSBKYpcHXklmh5qcWbwF4FfG0GEcuoDKDd8uS6O3a2AFKdrtRwF9UAcTLUZG3oVtB+pqsQciJoJqWIBkwE7zSmmLmhQLXRS+f8WJhmQ3nLqqb3fREc3apSqjWXk8flhGjNrYwbr3vmVYmUqsQC8wlQ0zBGk+YYn70bXaRWu+G350pbzWnzegm7BqaVZui1CHgYNzGgW4VWoBV6snMQekOy6bbCMhGmxHScOdxFYrIII6OhKnO2O0BVdq1tCKZz7iqOgv0tGbn+LTpqKTZAD2rZtcHXTW9IU64l2NQxRKPeEphiZIqJKVogu9skvGhgXBfauzfIzUyehiuqWvMs4AMSz4j1EHEAVG4IFIp0CxtnrIMwWhMfPOFan4FmMpyM7QEXxb4m7g9y/yV2740icmjRby2Q7D8jYNE4Gr2xFSGqkCdhmoVpBkaT8GKYaE6vVswnRw3DoDV4d56yxYQkW/T07rbnXQlikSXaI61sFq6+6wuHQ639XGuQjZpY6kavxQvCvjdsMAZxLw7tPoyo+3lPKe0NN3sOpelVDcnOXs++QAV9+i5OkzR2ryHpOrhKo4keSCGyGwztpjOug0bZmzDA6Uppv9ghRaOt1+7NslFU98LXz/H40fZZsZMuSozjBWMoY+cBrLiIkggpkb7n247pKQM5ZUJywx1eIO67e7S4r4H9SinTe9iL/uHgLaOQC7dGQ/fG5EXslrDTk4OjaHma9qbuer3umbPH48nieKZpvz7JdZqKRRXdv3rN3/m7f8r9q1dIEC7nC6UUai1crmdb863vmueXjseD4hyiemyOvGh2vztwEx9Ytdb2ZtE+b6eHQeW3QUtMRhU09LTt/gAhRG8eN6JGlnkxiq6IO8yPpj3shlAv6d8xJEKOHJajNbjOjGi18uHpidPptH9Nzpnj6WQX2xtjVRtoXM4XH1jEPfbImCF2z7Rqw8VWG9dyBWyG03Y6ZeTx6ZHL+dka25RZDscd5RwDC6P8jiH7GJp898YwFNZp535dkdvv1ZHwG1rue5EO1NaGgSPOazjFt3p1g6uVaT7s1380wzHeJDWqNgz91bL3V82kvq/Htj6ziMLUqW2hVqH2wNaErYmlRjRlq42t2AM31oISqUX45lMhR3MNPl8C0yzMk1BXu360QOkQJyXPwZ+DgcMhk5P5zAQx1DvmCWm34auERO9CDJ0YsffWOrUq2go5BkqJaI9srbO2SpRKojP1bI06QozF9JshUlux+yzOrMWYGYcpWz2ujdojjcZ5tUz2WqqhiYfIcZ6s2RZFpZpsZ29ssefHFAihIb1xuOukqbGihKsxlq7twpwyxwwfayNm5fC600qx/S2pS/XMNT4EzI/GGUxznM3cUCEl/BnrA2QRYmgsUyAnowJ3MSbaw6tMqUJpYoazwQywwixMUShbhwAhWd1MaLS1kaeFiUwom70fhOUYaESm48z6fEa0gFTTBqt5cLQurL3QuSLB9glC9n4C1+g2Yu6ggSaJ2gOtR3KI7q0jLFMgSiYyI31DlJvniUcwMgaIfi+ilZw68+yO8CJ0LO7HBuhKjokpZUtcqUZVLr2hHQ7Z4gprD67vjvy6osTfusY2BrhfOv+Hv9/47/9ZIZ8uVE1sLfKhJArmCPtpFZ6L8LPnwLcXeH9VPjahNjWaho//0rTXZZBdh1uFLQfqplyflV6DwYzxiGl9Nlg3tHUagWstrHQuP9923ahqJ8yJcFxIYgVVSoHt0qyB3ZQ4JdIivHttPORPH5sjKXC69/fShPPF+Pkpm014Els04uDq5eqFZ4fHJ92b9XJutNIJ2R7M8yFzqUIvle3TlXzISPRCofvNos45ihGZF0RnYrLs4DQFUlLSksjHzHSMni8aSJO9l1oHMqvM2WrVYnFVlqN1GcWwMlJ/f821/Lvj1zwu2+bFrmeBdtywzB6YZ3B0NjMHM5SYHK2NYrrJoWM0J+JIl2xOlVgDNvIiR4brTj0j7NQ4o9i2F83PDcWz1zvaEqAHQUPekRDDEgEMFXbygRVl3nYnsUw8oweaKhi/Lwz1swKp1BFzo4ZUe1RRiDZRTSnvWhbVCFGZZ+V0Bw+vhW+PEe2N9VIp29WRmtmGSdWikbpkM2woZUcD8zwz5dmL7bLTjEcL3vqwt7+hbm6OjyBmniRDQ6lor9CqNeQpm7lEq9SyMbTNwO6EvFMue3ekMlpB7/rgnWwYElPMo269wWPeQyJiJm8iO5V1FLU2l4qovjB6UTMuKmW9IckhIB1D0ppd9wKE2O18LrOZToi6+2smn2Yu52d6FfJ0sJgbX9eKUsqV3psV+9PCMO7AGzNc1zx0zqPartcLOGX+e314gT8QSmtm3dSIG2ILt3PeWrVzl+c9uxaUEQFlpmbjWt0orPbjxloLxJhJaXIzkW45tv7vd/f31FK4Xs5GFw3C4XhHnmZzFF4vhsIHy3OGzi9/9hfkKdH6a3NVHgOL4Vbc9ebMjbjWXK3wHJTVmHxNDqSf/R6yobVNxtqYYsPugD3osDfDLaNs71T+dtPqmgY37U39DdVtFG1Uhbu7e6ZpYjkcuV6v7up7BTV0/eGzL1jXK58+feTTpw+cn5755S9+zrvPPuP+1QM//OGPWJbDnkW7LAcOy8HrEiGnTIqZkYNr78XjlhDU9bzjJrVBgVHxYwws88zbt2+5Ho88PX40BNeze1vrpDRu8+8yW+wIe5NtzwEYPgNj7fkfDMVxRoh2pW/bTjue5qMPXtQJHY3r5ULYbI/MOZGnA3mad51xSrYfmwHYi8HZ+JEvmlgbGOjtvv9eH8X39shlC1wr1Ni5VmXdlNCE2AOxR2oNxKjEBOtauV4DH5+EZVJS7mjMrJtSv61kMY1sCFA2pXZIkyGlMSTu7hLNDUHLFURtD5nSkOdZw2IZ2MqUgB7YejXTuPVCipm5zqh0Nmn0VElpgZD4eE6YEeRGSpXQNyRuJg8S4bleWdeNWhv5uFCamBv0ZlraXuseH3ndYDkkNC+Q1AbKanGFEiKEIzEtg0ZF025Ns1xharx6ONK+CZyfKz/7eOHNSXl339DaSCny5vWJ3iNKJy+RuSmH0qlXw3PyBDEMlsGJEBIxmb44hEiQibY+Oyrd2Gpha50UzKF+mo4sPcKqbBeLcjL6bSelQExmrhjiTJ7vaNJQNmI0JLYTKGUMiwDphNiZDgYGaRM6Pk3uitbVXImZIVRECo1kA6Q4EychSEV0M3ANrKlmJjIzJ6H6/hdzAyls9QmJlZRBkg2Ke69oN4BAO7QtEGNnPly5tDPnWshxoWkyVDgkQlBSaqTUicF6rtaVqsY2TcGyep9rZGtwvVpfJRZu9h89fusaWxElRXh17Hz5unO4txtjq53XValuUvJUAucqHKbEkgzJXVdYt4EmGedg1Dtw05EIoJMZOrUa6BG0QW8+RQJcYAq1+WJr9FKQ0JHYIPpUN3enKAsxBTN3QhFMd+AsR9+cfGLum3rzhrBeFUvBMDMmox03QhwPaCAY2tRKNydJn7zv+ZnRfrUt0MJwsDNDHy0VxabdJiaPSA6ENBEEYg7Mx0CeAtOspDmSD5HlYE1CdMTZzGsMjdOungWKNQDFxOrDuEvGz+5/fQr7u+M/7ejdBiE3LqhtSNoswbUHb0zVnYfdRng0s0Ozht5QzSAW2xIG1/1XL5oMNNQpjGKNrbjmSvfGdiC7twIpOCq791OD6mehp3bPjUpWjS5kql19EefihW0Y636YEXmTgyLSnaZjkgFc6xWCU5GdZhTc7GyaheVgxhBhaD8GYjMKXtU9G1WwSK0YI8lzR8VujB1BEj9PQcQibGQ0+7f4FMY5jN7I7Q2lvb9xc2tQ06yINcPq951dR0Nhx/c2KXFw7Wl09oX9fFHZUfCX1D55UUT+z7Eq7CV+NQZiz2i0XuSsdkzC4GtH1YxQgiZzTqwVbW5MpQpELyyyTczCzcRnUOpwtLlVaLHc3hOW242o0RkFXqJQza/D9/1IaeROR29SBxrmxg1+3LJH7UMN1HHQl+01YR+eGLh4c1UeVOThLi1iLITj8Uh2lDDnyaJmBlU3Z0dmba3WWkk5gyR7fvhw6eSmRb03yraxeXN1c8t9cTgiZ1vXaMhvUpXdCRl8n3K00JsqHUjxaMYY9Pzbj7BoJCuL+qASvEC2f/WcGqvJ9jA7d/bNcs6kfBvEiYhlya4bvSun4x3VGz5rxIdLdWDKM8fjicPBnIpTyuQ8GVvCUc6c827m5CdnvzflxXsczff43CJlR9vneUFEzAV8RHu52ZRFeL28/vslGN8dGBrW8cS2u1v3nf62+ZoOVlENDB3/+Peb0ZR9DpNGmKnQ+Gy1ll1j27Uj/RYH9HIY8fL4vpu/vTxqg9qE3iPVFGE0nL3WLYbxImbwEoIzhoCtGPW4VKtPu1geqnalNOjBvSaCeTVEN+xRcIbRYBcITYPpViugXksSSMEYdSkGcrKvC9Kw+CB32+eWkEBQo/JKtnxZDU79VzOmUnsudQKl1Z0tA+LN3jCS7DSxutAQbPzcCGHQmsde53tCGzWmGJ25tEbXhjjdVqLQQ+BSAsfm8peuEIU0ZR8cdZMPhX7Ty4sint4RReg49VHEKL4aTZIoAaWbgRJGuZWuJKzWzjHSkpJCJ0p02YFY5yzJc+wzIYi5o2s12YUY00xjpDdo6i7X/isksf3N90VVRYbBnjNTxI1bOyOn2L1ARDwXWV3WNeRSt/typKK0vhECxHRz7B6SDyNUCXOciCkistKxQWIU7P31SEhCEDcI8z26OSuEHZM1EKQTXDaq9GrU6l/n+K1rbMGux5Q7p7ny6rh5k2g36Ciie4gUDfziaeJ/+GZi+iZTFR4v8OkJSrWpSId9EjGaR0mGjGozlLTXQG/KehHqFihbsi/qDbbNkU5DpnRdjU53f4cGRdZGXDI5B8JkmtM+weWSTfdY4PlZzTY7Asne09MTbCtsq9LXRs5e2ASjBqzPG9PBNDe1gEy2GYKY1jHCfLTIC8TMqVKAPCVqCWzXyPq00tZCP19N75oiYQ6EWYiHiWmJjvrB4Wi0zOXo3ysqy+z3xgttSLlCK+YW6cAvMcPzp05tEFIgZnOL65dO3fTl0/R3x2/gEMSylUWQEd46Dq/0NHQ0NppaA1nUNVDaSHgzqBD01tjGER3CzS1vj8yxu9D1J+FWlKmtV6sHo5lCYbSi4IyDPgoXH+oMinyISuxOT+kDdRuNnf387lt9INzozOKxVvaBkeAaUtfDSjSqvURjV4To1B0s1y12mJNwOgbqK3NCvGZDF0c2bYg2pNLe7c8hGn1omo1WtBwZ2qUBPZhW3oxbxkDNfmb/js5waOCSm9igIF6MTjLoeYaWJIAZR75syNa7uI7dJlzDXCnnzLQcCMFNY8Kt4GjNvAN6Ley6VLo3/rfC90ZBtK8zU6K+N/a3Ctnc3xEfIqh6o2/u1L03+lqsQAqJWpufF4EQR4vGPB9Abb20btEMOFVeu1HLaqso+MPWqaj+EA0x78MEo6IqhMCvtFTfy+O4HE2j/UILrCo7IjbqeqMVJ0IYGlHPFkZ2XeY4rKFhb3jH4GH3VhB79h0OBz774kvuHx44nu6IeXY0zd1rvc359OmR6/XCp48f6L1zOALutBpQvvziC169ec08z2ylwPmZ4BR07aYrDdi+gw+8BhVZg5KT8XqG+dN4v8MEajTJeI/ae6fU4p8J2398UFeL/X1KyenK6npa2Qcx1kvJTsMeubI2B5uccSEcjidvKDuHw4IIXM5nvvrqF3z69JFaNg5HM2t68+Yth8OBUgo//snv8/kXX/KjH/+YeV6Y59mpybdGLoh4pq3Tz1uld9e46s0X3duX/b3mnC1+KAZiyhycIn5dL0yTmV+NfWagwLaGxn9f+Cn0jt9E+1rCr/z+o/3eDhp31NeyfKtrbtmbVaOK43FEhVbajoY3zxlOOTMvi2mGu1HdR+b2WMMv2QX+m1/jTvqvfzxdI3PItHkyOmYVa3Sb0TS3zfJav2mFt68CR2A+wtOz8vzcKV3RAqEL5+dKc5lcIhFVmXTj9K6TDhAilA2uVzgeXZKjgm6JVoVLaoQMOQuH40T0WJzDElkmyLFxvVYubPs9F0JiLVdqN8fmaZqJYWYrGMtJE4qh9VtbqW1CNXJeG0msjraHtnXnzQ1wNAilBEqFrSqXTXm+GI05hEowbSAdXIZjA5YpL6ylc9muNDUdcNdm3h4xcC6RQ+lcWzMn+TQh4cCUD4TQKW2zxtnZDwRnCQUhSeLKgSYzTSq129A89ISEM2jluhZPdQBpkN0XY4oJSQJTgDAhHkXYmQhxJuUDEjJKY1svKI28LGhIVAIyL7TrZuavAChbK8Rse3zXYs917WivtJZoHfJ0IESjBDdg623XWiORdTNDsC4WP5iCoDHtbUxtGyBoU2KayRrYXBbZBjvP19zpeEfypBVkRSmkAIEIcWKaI2ihltWkBhIoW3PX7EAQl3RIdjlXpzVYr5W6lf+5W+g7x29lYwt4VqUSnR8vYv8dVbyKpWN9eSxUhdMEkyR++ST8RRAeL0KpRp3tVV0bao1YzrYZ9O6yr2ixByEldyJVrmel1U5ZE2rdHGwXxsNGLxd6LdTWqIttDNMhcLpL5Bh5/144P3fbtFYr2K0xtYJgyhZsfDgIbXN9S1CuV5vY1Yo1LUVYZjXn0BWPYRBi1tuUpCpXN5OqdcBjdh5DDOSHE8spM50S+ZBNuE/0yBM4HCw2aUoweTMbBOqqdu7WzmmC+wQ/fq2csnKclNptGrfVzgdsivDF28BGYGudn18qdVArfofb/saOV8uyn83oBWboijRH7zURNCBqSEsDtlJYWyGlxHHppJBNazuyUbVTtJs7Ifgk0KgqNtgU9m5hNMQiiCR68LU48rQYFAV2M5sYTetq9ZNNaQWjD+cwnEjDno8bxVBIixkadVZw1oE3U34WggzdrWJECcEr1b1JHohvHFTkPLFNjWWu5FxJ2ZyUc7YisnjGaECYUvYideF4/+CaJei1oN0ivOz5Eui1UdWn1a4f9NOJjO7Qm/bW/cHbbm2YaaYt89eihmzC2cE8A3Zky+hbpos1rW9MmRDzHlM0TKXU30trjY4Z6onI3rjrmGq/GDrQu1OrLdd4OCwDO/Kvvfk1weiFPnRMeUK7Z/TJC/R20LFTQrVBr/v5QALLZNTGzV1lO2rZgb3RykqvrufzCDEEyrbuNE7VgYxjlPXf7G33Gz9CMFrmaHIG6lrdbEV1UGut0HyJwBpL5yWV3Y7RjI14mEEVN4fl0SRapEOeMl/84AdspfAf/sNfGMJ4PFiDVAvr9cL93R1TSlwvF2qrrOuFLz9/x6tXr3j95g33S+JwzNzfnZiXhZhn0167iYx9LkNme2/7GtqZDSHdUFhnJNhnt2u5bitDL9y6aU5LKXuDNj5b7/3W4Hsz1HrjcjmzrutO5Q3uRDzOlaGewaM67D7KKXM4mBFTKbZnTtPEvCwcTydqrTyfn7luK49PH1nmhZwn/uiP/g4//NFPePXqtdUQlwvr9eJNsjVwqib1OF/Ojkb3vREVMdMcxD57jLa/Dp2wmU6dGY7nw915WRYfKqlRyoNQa3phPvYCDX/B2BgMkhD6i9fhXgIDvcV9Mm666EH/H4OE1prfwmHfj4L/jOju5tPMziZQd1ctxc3zdj3wC/x6H66xD+K+z0fXey4l8u0lci5X1tpoupIkEvLC9Xw1ACID2DroqBn9SOTtm5lSLInAGhFHcRsG47ZIPwrMiqpQinC5KOsl2/MpBc4YHTRmoWFrfiuRKSfSAfM5EKFopXSLkyMkmppD+OVypVallkyMVhuqJEMG1bLMO42mzYfZwoYSs0kKSllZ18DlrGx1Q7QibaO1DJpJyRqpdYNpEgKm/w2TID1wfuqstVCd6df6Ru3KchRStOd5yIE0Q2xXJDZKr7R+IXVDjUKYCQJl+4YxJ7N7TtiqDcyQAKkQ48SUJ5ZZaG2ltCtRzcvmfCkcl8wcLSLJIoxWWkuUKlyLGVVJUIJC8xikHMY+1+hmd4sOwyV1FleIpHlhkk7pcL5sTEnJMbCkhMRsGbYysYVEr5FNE6Ep0gstBxqeZ69C75bfrmpoOEARyB7Dh9hwTwSiWg9hfI1O3cypPkoiBtNrCSZvW7dAKzPq/iC1dVQroQZSjCzL0eQs0WjxuKxtcnbY+XKmhYXWhZgS29p4/nT5te6n397G1ilrhmMOit+LAZ4YnnPKjc8PgRAqH67CFAOXamjUeYOriplGeTHJi5o3dKjJabbdNubgtAVF2bZA675Q9dYsgtF7UaNw1G2yjNg5krKJ/vOsxM0a8t6MGh3i3hb7dNN+do+3GKJSlFq8EW+CmS8bPaP7tHk0+vZQV3rp1GqTMTVrWs8ei+ZuPCXy3cR8l5iP0WgnVchJyQmOR0OTU4Ap6N4PhDLoYo23E5xmeHdU3hw7D4uyNZ/CXa2xDcCPPw9cu3AuHXlfOU+mD/7d8Zs7lpQYNF0ZjrdOSaaLUYewYcooJjudLp2kjZxMe22xTDetZnezJ2VoabtnPr/oP7xgFmMPEb35HXTiHT2zG9dYpvGWXWjFNjsFRnAH5NEo+/TZUBz7GcNcZJgyCdy0oGCvZTSPslORd4rbi/VnVN9ATsnitDKkVDzT9mXGYvPC291Pp4nlcCBPNlSoqzet3eIWdqqvawJ7N0dj9XgeVPdzuP9GbS8wimHYC/hBIwqhuX2+GwEF6E6Tjvh+FZOZWOWJYS60R8a4k+mgm30HlR0nxemDtzd2++t938MNZca137Fy9n/f99eRMRuAlEwjOc5LGNRRP1e7ZlYcSYwvtMEWZRWCOHrtWm4xt2+CNXytFVQDwWOF1M+pvLzo39ND9fZr0IhH02VNwHepwzdKMXtD+1KD+/L7fvf7Dzduz23FEbsQePXqNZfzmZ/97OfkKe8NNIDI6gZo3YyNcmKeMq/uTrx9/YrPPntLojItixsfZWt6WnP6u2D67PGeR8PigxmV77zn3QG59xfv25uuKE55e5HjrGY8ZDnPnSlb1NR+/7W258PeGlvX3OtohC12K8ZAbJE43UycLBqpMrJh52VhWQ5s6woorZquftCfHx5ecTqdWJbFnOt9X807khx3FLqUddfJGxraSSlSW30hTcCvwy3+Zgy6trKRUiTEuK+NEGT/3C/N6f76urs1tuC1xkDRFV4ivGM4ItwIyrZXKcjNwCwOM79owzZj2bBLQYKEfb/Yr+0LY6jb8tW9yNub278VqO1E7YHnEtnqleLNwCSGpHduWlntQu9iqKyzpQ7LhGpjc+f45vRdqVabdo2UZsw5M2kUehNqsf0w58SYR0ho9prejQYdxxZr19iw+mH6Z1TR4hFgtYmlbLjRn4tcUMw4VEVfmAbavjIbBYzmhlSlds86t2g/u37m3qxqDbtquA2rPYu7dnsfW4WyXUGbaUZjIGa9MQg8ppKgbL3Q1QyoVEHICMFZGrZ32kBPaH0M/RqqBZEJCYmYDrYW69kYZ11ZS2OZ035fWb1dMfp2MFdpUaIzW7oGRKNLjxxdVntN99JM1QAIlWCJIy2Cdta1mekhNy+OEH2YE8Y5N2bLECV1bveNfc7ks6huwyMxv6G9piDcAAoRo7dH66FM9miMtOhNinabO2tP0BOqmz8/mpnYBts3jfnn9Rr2vZOnX1jWdwNMatO7UsrfvCf96vFb29j+zYc9EMfvRSBK581h434pPMyZr86J33uY+R9+HvjqOfD1CpercN3gcrUCvDbhYAMGspqGtTWjj0gW4gR3C2xXRbXR0pFeZ9MwbGdMjS6WfVsvXH6pbHOiPixsz4lpDqybAafLKaJOUz7dw3rtbEW5nIV5tl/TMVCbvT8p1kC3AikrWpRNhNbEMntdkiYC27VZru66QY+oJnIGglBiQE535saVhDZDC5BnO381wsMJpsnQ2rZ1tELflGWChxl+8lnlzdL58avCu/vOcVaOU2NOypTMyGAAdNULkHmOaKvUUvmzz8/8X88b//7/qXy4wK+3pH93/MeOYww01T37TdWHHmJUELxgU78uVZvl1bZKjmYipamjyTQPpTXWVnbNWJTAlJIbAPhFHo1IV3vgdDNRSRKIAj0oRWxzbhj1h+BmaDHsJjWm57GCsXlTlB0pzDEjGgnu9KRqGpqune5W8vL/Y+/PmiTJsvxO7Hfuompm7h4RudXSDQwWQoYcUoYPfJk3ivAb843CV76BBMmRoQwJCrqJ7kYvtWVmRLi7mare5fDhnKtmkVXVnQ0UGtkJOyVRmenhbm6my9V7zn8LFsQ+dJRBLDI+BKPfpDj0hyO7FkY0Ctqvm600o8eM9M7TY2W9wEse+Z52j0zTRM4T8zxzOJ54eHxrGbzNpkwpWoZca5W6bbSy7boyBdu81kov206DiK4JxRE3xI9TNM1uiMHoPXVzV9TKyCgdJknBxEak4BvbbBm7IvFmebxuhJt/JovhSLuxD+NYxHA1o+oWL6JupmNDCUMY0IGy45uM5Kh0NTqY4hPs6AjYjJSyo77iULXS6b3uu1nTDCZKqbQOaTIqVyu2cQIIIXuj3SnLhZBMz2T6q4A2E6ntjqs7rf6HW9u2sG0XXl50d+B9enrjxk4J1ev7/xTNGg3CyK411G8YUO0N5K6FhGW57MifGT5ZI/nTn/8Rx9OJX/7N35hGq1XO54vpt30DG3Lmj37+M37ys5/x2eef8eXbJ7JUEhunr/45Ic+ouFOrGhKa9/ggccTkauCEGBJaaqWthtqJf218htHgjnsihGAI034M9LrR8uuid3MYtqzZ1Y3XLHaolI1t2xDZGLRnEeH1/MqUJnv9Wvnii6/48quv2BkeMTptMvLT44NtTmPgMM12DP3YhxhYtwvn84tr+BNTnsiToyndsppXN6L6+utf+cYXHp/ecJgPoJ3z67MPspVpyk7VzbRWKHVztLRTykLNkSSm370O9uw97Xm4fl19F7m1fx8DgBEXJjvNPYToX/cG2S+/a2TP1YHbhk+2KZ/nvCchDA3/Pmjxc1fYEO07Xdo5R4wm+pqx6/Ks//Rb7R+ghNIDr5vwerGBf6ez9gY90CRbtGNQzmcz9NGkxJiJh4xoMEZOFdbSqDWiPaPNgIzDKbvnilG+cwwcp8jlvNBqIz+dOD4dmHugSyFFPNrvQAyuk9XZ2FDJPGK6wLoZcGFDVHu2phjomHlSLRMpTESZWJeChg7JNcW1s60bU8gccgZHhDU4Muryp4A1XXVb2DSjzLSeSGotWm2B1oI7Kpth3OJ05S6BeZ4hCjlZTBACUz5QdeP9eaH2EyF2lm1jSoEUM7XmfeBCf6WLUPHGtm+sy0c2hKqBkA4kGnDh8vpizx112VUMHJI35Z7hXmrj9Vw4HCopK4ekpGCDWQ3YMxqnhndlKTIuEZJ6Ix8SW5u4rJXXlwYHgQ79mAhsQOO8vdoayZEUZ0LIJA5IXEGKaYgDIMrpdDS09lypFZMHU/18CNP8yBQga2Rtnd4LUSKitj8oq3KaA4+n2dD4ZtGFUS0q0vYlnaWsTDnTRKihmFlciGy1GaKehERkCsJDSmg2w981KPMhMB++H/viR9vY3k6z9yl/kL23dcADESWgJBGe5pEFpnSd+M058ufPkW+e4cMZnC1r3++yEs2wwp61VJvSFo8LQsiHQIhqgvx+oEdFt/E+HBnKCZVA2ZTzS2O7qJsG2CKd5gBN+BgC29IpRVlX0CpQBT3Zg+aQDQVVNxKYJtO+zsfAuhrds2xuuy9KOS/01RzRiLO5nOVsUT7BtIbB83KNxW3vWwLk1IlByAJvQ+fh1DkE5bOj8jgrT4fOT0+Fh6nx7tA4HTC6RFBSVDc00CvYw9i4Kz3YjX2YYcpXBPhef5gy9O32BgEIZiIllt8M+JSSPVJHRemhU1slhUjrYd8QBcSbMkGT0kJztM21WNpd3zluRUNYYzCzhTERtOmk0H2Bj8Iw3DSTBx0ar7HRcfOcEJniZE2RRtcDm7Pw1qs3uLfmR901MHYPRszYIXlDY43NMN1xzHq4svq9O6cER/jiy5la4Pl9o2x23x+y0QtTzkzzkRCyu0Ubgtxc22AIcdxpeOrHrHnzK6ghRGKvy45CQEymD2113B+6I71D+zSavmGiYxSPDtIJwYyirNE1FBOBXkZckGVIGv3KURDXXyjq+he/qAaK6v9pKFm8aZJ8JisjqMnm+ME/S3DjC3VNnTWZRo/03t1fp9FrRSXQsBgEicOcpNOpUI0xMM1HaljpzT5vEtusbOvFEMjN2AghGB06pow/6XdE74dctZYdebUGqbEsCxLMObIPR2DVT5DUPXrGrW9V1RsZe91BRb6augwnbWtsp2YUVgPAA8fTA//if/GvqNWGXN9+8y21bNSy2fA4Rh5PR07HmeNh5s3nXyI0qCtxOhLS5LR/cwi15+yg4LvHeW/UYptVpbNtZadc46j0qBFPZQ3lLVrZdiOVcW5rrzuqvZXNo33ajlDfPnhuadymazYE8noerJm7XC6cX1/pXa1JXlcATqdHTscTkw+7QM0PY1uJMfL27WecThb3k/bca/cTcORy21bO5xdenj8ibtb15o0hrefz2Uxr1N7ruhl99XA42ia/N4/ICbtMQX2NvKL4t8McpTXTuQ5EdrA5RK5RS93lFCLXe2c4cOMMG6W78369Do9uzKHMJT84pdrW5bizZpy6w1gDbM2cptnXzsGsMcd+kWEONvTmP+z7GLBmrneTkDXzwFAMyUOFXjo9BVSindcAj8Hi4LSbNjJEYZojOSV6D9QizB45c3jA9mhzBwpdLSNXgjUSMSmhNZs5+3A4IOQoZgAaLEXA5EL+3A8WiaOilObMKQGVTu0WIVdbIyYhTomyTR69tWBOyYJqRHVC+2Q6VzAWWTNfnJCGoZSbabVG3zZqFVKESS13tTZYC6ylmyN0iy5vqmwtEJq5BpfWjaItCWEGfaD2CSnCh5eV4+R50PlIaDb8G3GEpQiXZD4gPRiaKFRasX2NyETvka5OfcbPaXNplMC6VUqNTuu2Mb74PijFaEwNG90bwq2Bjg/bJaDVHIRr79QaQCNz6Ey+F1cSzQ3Atm0YR5ku2oCGTHfPm7FkBrHovcGi84bJdMXBIkXTuA6Iu/FoJJJWO7+Grlq296UWOo0gjRyhZ9sbpmi+KDhLUKg2UBVnhKH02snZmvw8R/KUqQjnXjkdM9oO3+t++nE2tno9N+OPgnWl8mmTtKMYQTnFypQap8keAL+5WKD1QSADWw14LjUp+FUg0LwJFbmit9iglTQFJHSLoBBLYe4hmHjX9WK2ezdn4KV0mz/G4JMPpyaWYNSR1ZCn2gSa6SJDDOSszDN24SfTHk7ZNLjzo9E9L5fGtjq1UYT2utCXxWg/h4BME+SEpmg0ZH+epOEO58cxin3+JDAH+Dx3fnbsfH7o/PEXyuOh8Tg33s4bOZrduT249kNmm1nfBgt2Y9vT1ZaLHgM5Dbfnf5Cr5r+aGk55n9LjnZ7UobXuFCPZp6B6g+KMcPWuZngkWJD7FCFKI3ao3dwrmw7nwk4T0/CUpgxyS9xpZ91/h7U7TVz3Kubjh1Nh9z4Zb/SiWHB4zMxpJnR7KA/9b6GhXUDNJMJoRDYNl2AP6eAT0hxGYxtcczaQroJl9g7k1qhRORsF8csvZ7ZF+dUvi0eFBdOtuW415QMSomlMYKcYSnc6aDSn2CABbYXeK71ZDl0AgudaKuzrjIqYyyw+3WacH93phIMKDQmVjgwXPLDnlje1Ica9qQV1LeJmfgGOvA0XU3UPAREhJDdpcjT2iqACHjNhVHa7vq7uvPZ7RH2LJOPhaihgr8VcmX1z4GC1092xCBnfRGfBox68Ga3W6KQYyVMiINRggfUxZRSllvXaFAEaPb8xJlvjBGuGrzfHD7JqLbsztp3WxrIu+3VwG+t0mA978zE+d57yjmYty8otNXfcI6MBHI3QQL2DN6KDYvvP/+W/ZNsK67YxzzPrcmG7XAjRqLmfffElur0i2nh497nF6JSNkGaCm7S1Xu3eaFeDohAGBdVQxDG0GTm3ewZvMLo1WMTW+Nw5W0afYkjOQFqDP1iGr4CibOuysxFGYxTCaKxkpx4PEy5VX0vH8czGCljXhdfXV9Poni9cLpe9KTydjGo8H2ZjRbTGZbGIsLdv37mmNLi+dVz/sg9/StlYFnvNlBPTbMkEvTUz7xnvJSW2YvS/Uqs/f2VnqYiIs0vq9e+DZSIPJHY01K2F/dox9+u4I9R2PK9xUQPNbq16Ezto8dbsjmMxBh7XhtteM/mw7ur8bPICCdHX/25+CyEaArcP+q60+tv9QnfN9Q+9bG0HLYp0IXahij2fFKHVThehS2LZlJAByagabbaHRowwT5GcTVqmKsxz4DALpxOcjsJhFmOzdHcXRujSiVmI3e75VtyDoFt+7kjMGPsD1K+joMRkk+fabD+IQKdRu3gDVZmkE7KgLdObmS2JgESAZOiQzoQwEYIiVLsvMVO20swRGXB9daHURE6CUaZtz705Wr1uzbJYm1+HLVF6RGug1EZpw69hQuSBqhNaI8+vhS/f2ntK+UgoFViIwfZDtQrnEo0WPJnnANqonhoSwuQsmUhOphtXH1Z4x86yNUqx7w1EN94cja2wrqZBVi2esuJ082GyVju1KevWqc1ov8fYOATIRidz+SNsxYC7lK2xjcENotTaj5TtYRewqD28ucUtN82XSGyvH+09BsRcmtUyuVOuxGjNuMUPKdtm1O6HuZMTdIIz4ToxGsXcmFvNnJ/dNLS3jmhHpkSIQpoip0OiKeS1czwmRP5rbmw/qduJ69/RJImSUE6x8y/eNP74IfDfvMn86ovEr58T/+avJ76+CF+fhWEmmzrM2U58AtbN3Iqv1jS4aF05zsDxADXz8qEY8tCKXYFBiA9He8iHQErQVtDFI0jcOOf0aMYutZnZTkNYi5msTLN/SFXYLlyeK7Umwkv25hvquqDVUCC6ICET5hPhNBMeZlrK9sDH3I1zguNsRgApKQ9BeUjwboKfv+t8+aj8939U+Oqh8DQ3cmgE6QTpTNGjTsJ36UC+CQ7s9EIf4nqTA1HUsr3ivav9Q9dlW26m79HXXH+IKqy1Is3pZsEn+TERg9GMQ0jEMJHigTm6M68IvRlttB42tmJU2NKqN5MVTcFmkQpRM4FI0rhvlsUnHiKRitLFZpe9WVNDG4ORMTkEJDKnE1OeeZgezZSqY41wh6l1pydXSr2gwbSmgE8NzZggh0iWbI2tUwjHEExDQ3wD1Vy/J8FjEFLmZz95oJXAb35ViWLT59PD22t0jmBo07baIMuPZ/KGyppYQ2fjNKGaCC3BIRjKUYwW2VtnPpxI00w+HA0Fb9VC5X2Stzf8jlYMh8Sr3tWQuhSMvmdNoT2oemvUuu7ZuTjqukea+IIWomuw95wop7AGcxOOvgZZYxJ3VHRoF9Ude6OIaYXYZ1r2/pxFI93pxyHSQ0J6J3YlJEe7tBu6q50wTfv7095tMEcgTUekN5SLIXK9k48ncmtoq1yWM6NhL2VlaLa+q63+Idbl8mJ0/pSI0bR4tZqGOvggorXCtm2uA43ssVTAto1MQL1+VsX1XX6tuIFQuEHMWrN7IKbAtpo508PjGx7875+e3hhtuRYuFzMrenx8Y4MhVQjmGj7lgzUe2unbyiBW9dZdr1d2VLC2YSJob1LB9eEen5Uy22prjtGq7b18/PjBNOX+PeM45GS5zMt62WnNYTyA7NDtr7FtK6UW/6w4Wnk1dbMGzzKwD8cjp9OJ5gjzaESFQHmspBQ5Hg+fGDMdTydEzMyp1kIpK5dLIedMniYul2VHiY/HI4fDkTdv3lLrRimFX/3yV/s9Npy/N3EXeOD547f7UBIRcp54enxzIx8Y51s+QVTnefbjZc12iJHDfNyNrOz6UXeR7t7wX52ihznZOEYxNOS0j7Yx5+3roGBQnYtn1to1Wuxa88ze3ewqWtTXrQnYOB9DZ957/y3X7x9u2fGaJdHzxiZq2aBiJFfVha2YId+mndiEZTGTotaUtcLTQ+bpNHH4aKheWSOPb6I3tZV5tnvlw4fEx2fh40fh6TEyT+azkPORUiMfflVYV0W0ohqYJ0Xm6NpIGzRPOXKYM+eLUUybduYHoCnLZqZNFr3zSn1eeDl/w/FwIgZhzm84TA/0HizPtQdKdQApCw8PgWOc6L1R1IarnW4Iq3REOqVUSgj0KYBmAsF12r46qMcJJpe+aKS2mW09s1wqK4XTMfP0+CUSIikGpjmiUun9QsJia3R+4DIvzv6ARSdaEw6i7tZ9obWws+AOx7cEPRHaC3kSQhR6L2bypYFlseH3nCJTNnT9OJuWdimFbUiHerGIMkmUClOeSCFbUsW68bqsTPOBPDUe587D1EhRWVSRGCEeWJZHkEwO2Z+pjRA6tXZqb0wYqr9uYozNoKS0UJyxomJSrGmC2mw41aWjwe5F9sGekoKZR0mArXUIyukhsqwmGbOEZkiC0Y3nyOkpA/b5lLoPrmpvdIloji6DM4fnKQtB8ve6m37Uja0tdk5d+V0d7b4aGlLEzeI4RQsOlgBRlWNUvl0ih4+B0oSPxaZIzkokiLF4W4PqXe0tIKYYpVdygAjTSWkb9LXRiyNSpbr9fTA32GTZtoamWcOX3Il4DmHP9wpRXRbpdLxmn6duahqyDZ+2CVo62jwGYbiyWj4PxOiTW2to5wlyVI4JjrlzmuDnb+DtUfnqQfnpU+fdqfOzp8qbuXHIzaYxDqsNlDaI7MfBjgW+bx5mEteJg/gJGNPle/3hqzktRqTvGqWgHrMCN02M2kQxXDcjNvRwimuIpGj6MgnB7eEb0QPfBxJiU3nT7g7VU2Q0tsGHLs0RfNk3Q5aN16ldrs67mLGUqCOujq6mkMyMQG3DpDKQhEDu1lxlp9nZJs5pbu5yGkMk7KjDcD/zjy3Bm7fruGrfTCnEkMm5c3p4YF0nWs3EPO1mVjjKGkOCaKYyTSu1NMByG68NojcQiCFnfdg83JhaBdu0ahso6WgyDXEbjeY4ZbYOqW9+ozcQFqwu/jvHluBaN+ccN1MSQ3l3Foxev464PczNfSvutiv773M0Ft1jPuxaAp9SGMrsTXV3SqWtrwnEHph2AZjxmO4obnPUxv7YEEJ3ZDGmjLSKuMlZ8M8SY9rBZnN4HoOcsEdV/VBroPOlDCQyIFWuUS1OY93Rdm8Ibw2jRsMz6JoDAdOb69xQuGuzW1szd069mjOt27rT9/foFZR5tgm7BHckR6l13JviTaHpR8e137rlltZiza3RFweSakOI3VQoXNHDshXX4lYzXHRK/zBbRNN1GQsDKYlUHCnu7rau1vwFGShiorbCYT7sx6w4GiqCm0lhPytiSHowCnVMtnkd92hrptldN2uEY/J1S2BdF2rddgdj9ftk21ZQKDGYCzNi0SauOd621Rggco0hMiO1cWzKThke+uNLPO+fdwyfVHEd8fVZ3FNjPtga1rVzUb3Rnw+K9Lh+Gjlf84/H9THYA7ea7dE8395it7R6GA7dhmTGeM1ZHtW77p/L4oJ+2yH5Vhf8Q67ewn7fpRQ98kxZqtIUUg7UYlIydfOnWqA2Q/BK65yOlu09T9awlMn2kYgBL3vGPE75JdBboBZYlsY06c4MGNEt5qx9PZe9gwQ3/0n2zAQlDOM2OqU0SvWBCRVaR2JlmmyoK11BTwSJHGbbv3Z1P4/WKWUjiTqbKzGhe25xkE4Uy7AFGAZP4uuAhLrvIYdJlrqBKr4Hbs2Ms3IyE1STMgU77mo06t7s2RglEuOE0rFoG2MBjYGxaEG0gLM2p2k27WldjYIdFEI31L0FR0gh0c3bw7YwPsjbqGNQi+4MGq3Y+SAiofuzNgzIm+rPyRjsmSghQkzkacacnj01hdGAW5Md3RSq90DM0VJkxnDAGXnXfcAYxHWgogRUw84Os31iR2QDh/0E/N60uL/xWUMUco4cj5laxR2f3VRSMGTYtffFh5raTb4Y0vd7Jv+oG1uwDctYPMfyNjZa8slf6D6tNTTB6JE5dk6p8dVDIcbA05w5r4GlXRvb8TM5m95tk75Tlm3DJPsmWKKhFKe3kbYECp319YzWStOFKRtsTwDJdkHVqkizCyVPynyA02Nk2yzHVnU4HdvvLxU6mbZ2WIwuYb9foJnhT6sX++YglqsVIxoSKZnT6+PRqM05KEftfDUrXxzhv/9j+OqN8kefV94dKnPqHFO3aawMoyDfIAyNzHe3zTcPzn1je/PsGQvVD/9x9I+zNBnZREI3KqfPdKovpM0RG8W04lHNWn/XeYJTeRI5H3yjY01f10Zt/gCLYoHtAwnxxZEQyNEeAEGFXtve3Am4tsPc+2oLu8i3Df2XKBHxazfsKEyM5hKIN7bmQRWYJCFR2Eqjt402AMkYSDmR8uQGVXHX3WoIu6OgfXNASAzFrdpb8gduJsXI09NMqTPb5hvFapE0AqQ8E+cDPdhmvi4Xtm0x0yIgeYMtYjqm3pV1udDbNQdXxMymNCitF6RVtN/S7GyKbOfHo3c6tJGzJBA8o7PVSikViZGkg0ooBIn+3c3cF3HUVGxIFUOgFTeL6ez6VjvPvpH037W7SiOU9UIrG62sJEcUc0r7w6xj15OEZA9Etc2aPY5tTQxYU11hZ7HUbaX3Sq3BnJ3jtaFrzabOIkKcDmSzaWRbFnA0PaYD3fWArZk+j2CN7e8chv6QSmxT0FoliJ33rrq78qZopj85T47eudY5jHtYqO5m2vrQPV/rSm03pGiYQZVqSG+5oX8uy8W0oTdo2cgZ/RQJhFY2hhu2IayFZbns+k1VpdRKLcWNnbyZrMXOVa37UEJ8I/bdh4XpcTshBZCr4ZkqtKponvzasM1ZLRtlW/d9wTQdmOaJ4+FIce1t9HunlI3z+XWneuc8Ix5xVErhcn5lcur34XDw426Lxer67mVdSSlxOBw4Ho4AbP77uw+zxuBoXRdGru6gPX/99a8toitEY8fU6kZoI4Zo3qm8rXnz5+e41Mq6Gf05xsjjw9P+e7fhI+BDo9wz82H2wQa8vj5jFNHI6XRyTSw3Tsoe3xEN4bOhRfGmVm8Mn9j1w6P5jTFyPB4ZdOYxMFC9IrrjZ4fB1Whq13Xdja5yzvv3jdf/oVffAi1AkWoshJSJ2rm8bNTWmeZE2Srn88Y8B7QL22qynlINwXx6yKDK4yEh3Rqprs0HfG7g15WcJ6aszNnYUOuifPt+5c3biZiFnK2BUzKHOe3nqbZu+IcoKQSmmJlCRkUJHh9Te6GUxnKptNqRZPF4EoV6dJkElRROpJh48+Zoz+RW2WrjvK68vL7yNB9JIZPjgTRlGoHXSyUF9WibZ0KoOzsnBGNvhNWH6gTT5rbgg09rnHoPtBZZF2viDrlxepjIKZJypNHY6kovG9rFh/cne8a0Qtfsmt+K9EbQjdiTa9EjeTpZjE9dzU8mqEusoJfgDZcQe8VCM42d1MrGslS2UkkRUgr7oHpryulojWQI6oaNhnZWVV62zsMkZAI5BMxxM3M6HU3z28xDo2s0DbcGgsu3zIPAnr2gaBombGYQ1XtAeyJIMgRcCko109GenFVTmEKyZ1BoPncWtEfKVlnXwjVHXUjZTOKeHh+4XCqt+bDb9wxTjkwxEkW4NDsmWrt586Tv1xX8eBvbQc27ndbdIKjy6RPcTsT4Sx9sDTQiik2pvnoorF249Mj5F4Gvz/D+1ZjErZresCvkHPwmV7O89o5ZzXnKUOAMU4o8Psx81APbeWM7F7bzRmswnSabgBVFm9KTWa6UTZyOYy1GjFBaoDaL+Smr0orp8rrTQNOUzX67KWquU2grZryQJjRna1i2xsNROE7wcFB+OnU+Pyj/658oP32nfPFG+epN5Th1HubGFM0wIIYRo2IL6fXgGorzW2jt/re/44ufnMPvfN+9/jDlksoUTCcjqjQVF/mMSavSxZoKwa692uxa3mql1MIUC5o9x1TN8KVppepGs6Q0+58aVUlVjeYrYZgeG1CXnI4whDTBPXzA7s0oiNpk2JAerpPLECwGRjpNV1uQqVQ1jWmMiXAI5B44hARFiVVoyeIz0mx0vzycl4PpSzat+/1qrvaC9OAoAdQubGukt8AvfhX5+CHx/KKoJkKAVodWthGwXEDp1aISWqNvF7Ra0zvlAyZuUafema4+pwkS5GxIkzoy2mqlrituaLjfewo2EOrGmBCxYYSZaPnDio1W3OlY7CGH009xlNcm3sEGDRJ8au2Di276V5PZ3Ezy9brWei/rm2MbdO3045g4zBM5Zw7Hw746jOCD7vERqA0v9tVDLb/PIqbsq9rVKMe+rncflcUxoURpZdmbBHV32hTTfoGlFOlhIJh2TRnV2qGiH3BdLpddzzg0mSEK22YIQIptp+ECnyBZo/pAQK8uYPvxHMfsivzbRqvWtg8DluVM8cZqNB6D2aCqnI4P3tyyN4JbqXusVW1D1HONHyrV6Opm1jYGSbZ5HyjjQA0HUilBHGF1Z/MUjYKX8m4uNAYepS60Xv0Y2vsvdbPPijVShoI2k1f4tS3VIn/WdeV8fqV75M9oItPxyFY2tm31mJ/E09MbeqtGg6+Fy8Wa260URALn84s3cxhqzfW9buuZl5fIuhk623rj+eUjYIOEFK1xlWAoW6tXczzFBgGDqj5cog2RC1wRGKh1UNJBxK6XPE2OLhejc/t53V3Z0V1ja2i7Db90vWba9m4a+7prs+3CMrf4THeUVYINF0KIe5OrCuu67f8+zaanLdvG4XD05jU5dXvj9fXF1pbD0RCk4bZ8G1P2Ay6tlaU1XmrhIWXmDO9OsDWjd5Ya7PnaK8IBfNATk21QW0v0Hmk1kCKG3qaJ1i6GfvaJpWw0reSTNUguyfTBtvD1N6/EsPHzn/wRry9wfi302ohZmCYbGMTUyRFyi9SopFgNWCFSmw1Fc46UFcu3LQGtoFE5vxYOs3B4CCAXmlakfwQ9IOFAa5a5vLXAWiMaI1mCPbuC8vbtG6aUmVIkEQlc6P0Z1UDt0SnBZnIlMaCaWIuyVgNucrT4oK3hHg7u8t829xU5cF4rW4g8DK23Kjk92J6iL7xeOjF0pmTGlik1FlloJJY2sW4bOinHKYNLs2J2U02EaTLn6l6vm9vSCo0JYiB2Qz6jVGKcaD3T6sTreaOWwpyE1oxxRhDKJjy/dqIGng7C23eR3oP1HWqa394jTRNoAE3uVaG8XCqXGtlagKJ+TQSmNDk7woalw2Vdm2Ury5QJIdLkgFAICE8nmKcCupLCTNfIeYXXtbMU5SdPE5civBahaAKNtArNQY2AEmNgmjLvHo4kz+POOTCnxM8eE+etstbvdz/9eBtb2Dda1+Z24C2fUlSu1JtPut1rRyUm4T/myts58JPHxNtDYCmBZ4MXLPdq9Ab+M/a7/bEt19V1/L6QxG7SYzZjmddCK7ZJT8kmpHZBWfPQamBbBbqwzezmPrX6761q9ONmUx0XZ+ybQ6HvFAq0ISGbxi35htENoaaoPCbl54+Nnz90/tuvlC/fKW+flIe5kkInxWYaOWEwA7n52Duydx0m3HSpn0wXdAfMb7/h6tr7/c/3vb5fScRpeJbmNED2YGwdLId5Z/PsSG1zlK7URqmVEm1aZycp0LTStFJaofZC7ZWmZoYw6CYGtKqjJ0IXDF2VgbTiTdx1Q6KffF3cN8gRW8+Is7a6egB8pWq1DXZQQsgEFTKRHjqSoIgSciTmQEhx14FbPp9SetuBZu0Woi4dM3DrsG2RUgJlEz5+DLy8wrbacExuWCJgzQNDI+j00aEpNoMnj1zSkV831iVDQ4NvJlUsq9oQ7Ktjq7dl1tb5BnMYge6GQGPDW685lXFk3SnePFiXHDApgNrFwDChUtR1+b6iqKDarpvm8b6HSyniTW3f0SczustMkzvD9u6/O5ilhArbHv0T3DqFXatPiEgbjbRB7+IN/95RKwzXze5OuHbpOYXe6eCqV1RZgq2r45gO1OyHXMMUZ88edhmL9eSdRts/w04Pvrkwd9qx+rZrUEhx+YiqI6Lj/NtGD71GBC3LhXVdWNdlP55GVx/N6LZHwAydeHUDMnX6IjJchq12bfgndb2+R/M3kAV8+Obf4AOU4EMMp94zfl+/cT7uTv8t1jCMay4YEmHuyuWTxqjW4prbjUGxnVx2EJ21IsIn97i9NVtkW1M3mGz+euPSFUcuhEGFL34tlzrchxu1mOmVuRm3/Tq3e84/P1ekUhV3tFWG+/x4qNp7ss8gO/o+/u6K2Lda6W7QZZ/RdlGtVXfJZUfbB6K8X6Pe+A6EnhtZWG9tlyRYM9r3mBX1Acpo0ruaLGNZl33vlpK5eW9l3anhhiC7vGJ/hvzwR+Pq8Sjiex5RIYfAIXeq+roPXB2eFaUhMZmvhOeBdrXmSUKiY9dQEKG3YGw+heT+E+CAhDe3y1LN3yQMsx+jhQvRNJ4xuIlQRMyEAzNUtOGKWjq6Ndv4utvtGW9Zt5jhEwFzcrWBR9AJMHqwakTJtB6oIoSboam5hWdStNgatGLzKRlPCXbkCDsWVSNNZc8Btk89nrmWrTsM4FpzOnVQjim6caXe3FuB0prfw2JO0pgWeaSYDCM2pkEtZ1+38GOKs6hEBmvFUPXmxpl2p6qvZfY5tlrRriSSmWGKJVaUrlw25ZwMHX7j2/suuImUU4YJ4MZWzXOQg3RKc8mX+2qkkCyZhOu+YtyPY93PAxGXxDCNi1FAfFApia7CsnXWYpnKTw+WNFHV+hg7PyY76d28eFIIO3IuYuueAjF0Hmcbzt9Gtv1t9SNtbPW3/ifcNLKwP4Q/qXE2FY8fsNfCIwhOqfD5wZyK/+p0ItbE+RKoKxRVts0dkr0rsA3g1XRl7L1UDeXtE8Q5EJ8OZAKX98Vu7Cosz2V/jV4X2gZtWVl80vT6bLE8uIjbmmBo5+pxLdZl69Yol7O/gUCvG/QCvUIS5JBJx0TOZgs/SeNJO/9MKv+Hf1H5lz/t/PzzQhjGqUH3Jj163tzYDA6Habujr2jt7cb7ultU2kCHxrHXQVoGbZ1hyfuPYeL6j6nmKVpmq4wwbLPDjzHQOkiV3bwpeBMMQuvBF6IN7VBqIUk05DNF1r7StLC2hVLM+KVsmw1mmiLdKcKqqFqEBCOWVe3a8ovHmjGMdloUCoLhNz6eCrd6KkA6rW80LZReKFrMLZREiCdSyBynzHSI1N65aLtSTqPvPptdclWVtZe9oc4KoQupC+tqZgvfvk+8vAReXoXzRdjWzrpcUascJ4RIjZVtudijwDeBImZYFfeIozYgMtOj+Ea3u9Y5uUM5KLptpBDJhxOCmUet62LHT33L4Bvc1qvHbrgZRO++WbTrIDj1WbXuaKcQXBtrD//hgInfzSEkPHWJ1iwWqLVKr7ZeBaeFiTfCrZpJk8U7QQyR4+nEYT7w+PjgLtCNtar9bglsr4vHveiehywxomFCJdO3C70WWq0eORRNKx0yIonWNjPRiZG+DW1xMq0zQpgOtGLom2IbJ9u3XBtji375nuPh/4J1OBx5eHgiuWkQCIujkK1dKa1Gc3fEzTcrwwBJsc1dcJ3ZQE6zo53ArkGtu/4TaivU1li3jefnjwwDlZyzmdysix/7cN2UpsTpeNrNf5JTwsff7Tp2xRtrpwrXsiN+Y6jRvVE1GcL1vY6hz2jUzeSl0G6Gqmsxh+W6bftahZom+HB64OXlmVbdwGU0V446du2EaOjS6+szry8fyWnaabT2nk0732rZY2+Gs3fz681cmivbdkXShxY1puiurs0dup3hMh/NAf5w1fv23vyZnG6OoZ9ZdTd3n9PH8OlQoLfO2qobQmVA/T2d3QHZXrN33QdU5gYLbbP1zrS8tjrfOhCLs0suy2XPEp6nw47gAv6zY40R1xebedT5cr4i0COCqnfKtvlg7MCyLEarlrhriGuNDK0zXBvpH3LVrfJ4CLx7d2C7DC1x4nEO5FSpdUW0UbYOj8WemxkIkdgTc/Rmo8NPvnrk9awsX1dySKDd3HZ9MHy5lH2vmgOkqOSk1M30sd+8fyUEJR+OlmoQZh4OjxznZjRb6RbxUxsvr50UhDmDkkECMSSanimtkIn7fVtrplShbEo+RKJE11j69VqV3jNTfmvPFh8sVVUkRB7aOyqm8X+YJ6LMEBL4cyPmmZQ7qcBalNotZ1YkkQhMGPo3T4K2RqnKtx8bn7+z4bq8LiTXxF9ysEQPf7BaXJXv74GtKZEOUlk3YS2RpQr9UmgdDpOdjyCR3hamaWLKka0IdXichEZTM/dbt4mtCCInohaqXpB4NdBcVxvWH2PD4roCyypclsrLaukkgvL55mtBEF5fbLGbpoSSnI0x83LeOC+dx5MJjXCWDClzeHhDkwXKivb3vler1z247zFCCDTNhHCwgVSD0qFtcOmWHvNxq5RFST3w87cHfv0C3y7WZI3ewKj0kNPEYbY4uIaxNd6/vjCnxCmDpoVSVtZSvtf99CNtbEdr232iaV8BcdDkmo04DG6GlM7qBsm4gSJFlWPqfPlQ+V/9ZOWzh8aUZ/6dCL8CvrGEDqNsVhPa4w2ndmilk2chZzeuENs8Hh4Sgc7rIYIalUL3B7mibbN9dwhIni3s+Ll7N3BL/VX6pbiLHPRS7HW2F0bDQDfDGlIkPBzJTyce31hTmyN8pp1/+qbxP/zzxj/9svDuwdDj0b+OCfQ4ojf/55sOWGtgKZFLlX1GfAyNHEyvLAEIPmzYT9jYlIwGWPe3/MN/LP3jqkPO7jxtk15Rp+Gq0UBjFIo2KsNMx35Om20wtmqbwNoakffkFMk5GgVZK2tfbQrZOq02O6ddyYwG0nS8iGD9ZfCJnTd+wRgKXT27ztoPurhZEbLTVFMMxAgxqjXGvWOBUe06wcLiYVKaidlsq2jV8F1t+4RURXb0sWmnjwuwGZ2qrcLzC1wu8PVvKudL47I4VaqpuUZGe5CXWrwx7UzzbJuzbhtbFaNN0q9r0diEJ8/fVVWjcIpFJJlDMISYzfU2J6jFzELmgw22uiKtQrtBYLEJPF3oYtN7h4rtnLoxT1NvXVu1aX0Yrqb7zHnMq8yMpvW9WVaU6NFD4/yMBsA01RHpdq6mlMhpIsS8N8j9Jh9xnyzesG26HzvVTpe6oxZBxvebMZfRWzfQRq9KcUQXhV7rVfMfxPQlPezRRUSlFV9zcbOw/xw33x+wfvmLv+J4fODpzSvH04NlN3czE2qt7sZKQ29YqzWQwzn3aghzPVe1XrNEww0VJ4jHKQ2TJe2G7IRo+c8x0T2PsG7G5BiDAXVERA7WBA0zo9Aa8XD0oYRHbHls00D9s7v0X5EDdjoyOkQ+7J9nmEvtWc7aHYUSpzerb5hNn669uT9F3Gn9rWxod/26QuuOmHpDP57LonCYZh8WdHM/9vt4PhzBnVNDtHvpdHgwlolDZKNhGwY8ZiBjSG+MbohVbIAj2GYyT+5uLYYkIYFazbE1Rtei7xo8Y2iZROiKjo8a5lJgKPtwLh+srlu0dLA84DoMGUh+ylfH4hSTN+xtv9eOx+OurU0xcwXXgxviyY7gr9vVAT4E28CHGGxA5ruFmBIKPD9/8GNWDQ2qhW1bmObZotNu2CI/9Pr550ceJuHdIfAn39rzExHyDIco0I2qOR+MZRSTZaWGkOkSqb3RqlJLd/aAIWDns1CrXdPxCCELKdp629pAzPBIvECt8Fe/+Mi7dwfevjlwSJUpJx+CGOafUkSIjsxlthpoGnYGVRRz0M5ZyZrQ5k63btrUm+l/VQOtR9AEnnLQmxlkJadK92YJJBCoPZFjIsdA1w1UCBodcTS01EhHCW2FSDDH58hOc33zkIih8/JyNnfg2hBmM4RqULWhvbBOeR/aqBYzfIqJmGw30rTRxfJdiYJ08cgcm473GlhbY9NOSh0VGwiUzZ5lOYJER1YLbLWzlkZKtsYFFXLooJVWV3q1/YqGiMVDdNRstRASa2lcQqf1ieTGUDlNNE2UZuAFYmZW41lfW7TElhF7iOltu8cFtdoIGRQzo+vdALmsHXo1jXszxsxWFZVEI7tkyMAOpCO98uH1lY/nwHkN9JDoqo7mVlSU+ZiJKRg7MAZUI6TMVhpJlZgTulRjqXyP+tE2tqMx2uH0/ev2DxlNq44Ga6C5Y2M1eq0ryotgwvXc+G/eFR5m5dIzX78GPq4CL3gOILTNaWASd31rqw2RSAjWPAiCKEyHgGhkOkbqZnm2Q4OkzfRpCtYMijvI7dN22akkIoquBW3VmvrWDJ0ti09tLUOKmODwSDjMxOOB+SBMCeYIX9L5J28b/90fNb56ajwcmg8AbmDncTwUM9fZpzlCbcJ5C3y4RD4Wy0IV4G2CU4LpUInJNhA6UNzrLnsc+htk915/6Jpu3GjtGpRdS4uaE3hQQbTSvDFQtalmV9s06tD2oeQUmGqki1GPi5rhRetKr55XquybKIul1Z1aG0Mkirn8XXsupymjjpx2N3LChyW+UMdBXNCrW7JYjrOHshnCIJ0QxTZ8kugtIa14Zia+gWOn7bZ2gxIUMVv8V3j/Xnh9hW++biwrbMWGU8EpgHhjOxAJEduI9a5UvRrYDHMW6xvHJx4UKaP/pWA3Sm2d4Bv0kKY991alIb6BaV0huCP5oNHqcGMOdKdo7q6icl0ZrxpZ3CpKEUyniK9RY8La1ZqU7m6zim2Wg2d87qNdv2YGggWmd56myXWPkeqUOHvL4j8+GvJrY2m/188NV7fGcT2ZI6TRGbtaRp41OM2uK0fbrA+45hNLNErWcGk2LVHb19NbB9YfYr1//zXLeqG6Riy6ltLQzU5K097YhhAY2dNzmD8x4Wm1sXtv+3URgmn68GPFoLOqo4DY9Toa0uhUfqFT1mtMz/V67vRp2inMIm1vXKM77OKveetum3N2tO/qaL67F/tPjPttNDG9WXRTdVdksDzGNoYjN02tIalXdHcgvOPvbCrS0RudqGIMDpHAPOX9XirlhkosRyP9aicGj/U4Wrb1yNBlfGL/TMMEqvURnVMsezJcz0nKyQc0utOtdzqoiMWVxUieZnSXNXhUR6t+H9t5NPMYb2797TR3Z3eS+nX4oXZv1X1faa8bNPq949mgebIm2teBECzHOKfMcLEeey0bnNwOsG5MynTo4c0Qqkixa240G72zLOedbk20Vx0SgujXd2tuMPQDry+eZo4RHqKyLaZLTFNjnpRkdgeEIOQpElK0Z5kPChRhwYY2tTkrRez4lhpYl8ayVE4xMMehgXcpW+u0Lm5wGmhN+frbC9Nh4ultInuUpWqz2D2x8+4p9CjJaMM9EJJ9VdzsK2dImkwW1H1DrYMC7P/sydMIIqjQW2fbKsHAXx9uG5W29kDGKK2K+N7SgKCu1ogNHw9RA46mZBFnI4rq4RCIoqyXC62qsxstGk58IKq9U1q3NIVkx8qGNpGYfCjQbfBgUiHDlxCguzSndVqxIdWEEmInOkocVIiTuMP/GNaZOZcxIo05lpO6i3+hdmNydem7LMvQU0PIa69sVY1y7PujEMwDpDanaos4SGCU56aBEZM02JKtD6mEXRs9ye7tAeIxTsYCaWN4D9QeUCJdspl5SbSBV9ygwvNl4XWNrCUTJ2ucS6n2LBfI09jTWGOLRiRm6qVSpSMxoYjFJn2P+lE2tmOqaiLpW7fHQflxVGFnCQ9HLvsrCW7n3bHJ/k2TJU6pezM3GsLnD8rxYPlbOwocsEgDIB4CwZEZrZ1tUWoNTIfIsFT/yVdCOkSO/3zmV3/+wseXDWSGkCEmQ2G0oWpohHbxE+3Of80270JF62LZuA4Ti3pzO+jH+UiYj0w/+Tk6ZWpVPv5m4fN3kafPAv/DP+n8888aP3lcOEbLjZTqF5NgRj/jQr8eQNMzdPizrzN//THzH97PFE37PvftsfBmbvxvvhLeHCpPoV1P1m/JqWxx2X/4hw6d/COrh/m0N221t33/Zs1ZYM6B0BvSI2st5qqrRttUsaWx9E6ttomONlzzzGGlYU1cU0Myg4rRbiWQEJIYsNpV2dSiqlIAleiTZqOzRjEqf6PQRW3IM1AZbHOXfDIYXacaQiDtD10rc3pWVCIpHkjxQM6BtS6E8ko3XpYNpJy627ZKdS3N5TmwnIUP3ygfPlhDu64CEvfNl4i4wsfRHCwrWkbD1Xxz7GtS3TZytGmpaeBG48aONKkL9lspjCibFNNV/xhtkr6VQlkXWq1kb6ybdqac6K2xdcvhFR1URFsHm1MRW/MNsAgxZWs2YrLhAexTvdE0xGT00VqbIUQxmg5v5N/Fq4YGtab8NJ+Yp8zhMKMhsXWol+roWCPEyc+T5ezZ0CKhMdJDgGB4f3CEF+JOLzaEyjbJobs2z994adVXezHkEHWHRiUBZfFoAhWnREY/DocffGMrwLq8sq2vaO88Pb3hq69+7o1IZ1u3K8oVEzln5vlg6NlADHunUW2rE6Kb8li28JUGqj4QsGHAPM2EbeO8rlyl8+L5s8VymdVcR+d5BqBsG70Wtt5YbuilZV2Zppn5cuRwPDFNM8fjaR+mtrahGvZhznjG7qW2HqHNH0uKRKjV5A5bMbdlG6p4vEQt/tC02KfxmElpNM8dj42nd1ufJEQOh3nXuipudjIfLFc1RNZl3Rvf6ChtzmZ6lJK5gU6TUbKXdd0329M0I5i043x+ZV0NtZynzMPxZPplb+StuQvM03Q9BGrGSylPzNNkTq4pmeO0dmNG9I72xJQnP2ydnGdiNPRk21a2spJTpDUsrgUbhCvmpBtCYJ6P3qAKpbjUoRdSmskpk4bRnV4HBmADMbppcWOI+9d3fTCCRnP0hoGKs7vdp5wZ0T61FFpr7ppsx3s+HGytdCp0VxugDMOyH3q9myLvnzf+/TcLv3y1Z1dc4bB0ptTREgiSmebE4Ti5a27gNNu1U89+DGtgWTCqsZrsgiq8np85vT0wHRPTFFg3IAjb1okxsZUD21YoRVEyz88F9Fvi551+jARmQo9M3a7j5symFNXQ/nSkquzPisMpcpg7oWGDnLUTpwNpgmlWdxYWBFuTpnzgw/uN1/PKN+/PvHsITCkyRTMdqiIcLwvTFJkPR2oxV2A0oppQjWbIVJXQO4+HiaLK0pWywYLydFTmpGSUb/pmQ+Cx8Q+RnCZqMcRyq5F5tucPyaQ0OUTm5pFEraAB4gSHo7JqRZeNWhekN5bcqUPJkhVpQt8qy9LJIXCcjCIuokxzQmW2HOGl2p5dbA1rKCF0crZhQm2F1gPaI4eUyBLI76BukEMjpkzVyrrCx9eNpskQ3dogwJuHIyKFJI1eGylE5pjpaiyI1+WFywq1QJDJnpmqnFeT5iy1EpZGDJFezSBLtJHiCcubD1RsGPP5UchTpm/wp99eeGmCZqG2QqwBNBv6H4JJjFRo42ntppWKIE1Zlo1lKVwu2++6fX6rfpSN7V7W4V4pS7spznc7pVuTgQFP+Qu4yJ7bvxdzAp6CcpTOHAI5QIhi3Em5RQC6a25Bok1OxmZA8SEW1kwfHxIpNegrKtEjRwSNiT2qR23CaxNRp9o1a1pVNyO5N4sZsffdvYuo0Fbk8EiYZsJhpnVotVOaEk5wUvjiofPuaM5vMpr72+M12H2i1x0BtoiuJfA3HxO/ek68P0e6XjeGvSdKFb59SGTpnFJ11HY/pOzIuSNou4HUvf6gFYNTTRw9vKJkg96JIzWj5+0Mwq6drEH0t81j75hzN6Z3NX+jq2HRoJmbT7FvGL2Rqz5x71HckTgSuuy5hTEIMRg1OLib304RRnd0NgRxqq+9+aHV7p5d15vdi+rRA1GixwlMFKlmPeX6wdoqZetsxTYILx+F5Sy8vAiXpdvD36edI4sziOwUYwnB9Yk2gWzbVefad1SRnYZnwzSj3VlemxlaJUepzERpGIR4lqD63dJHY2rn5kqTdHOX1sAdR8eaBNycd9+oK44E3WTBqtN05cafwNEZ+B0uuwOs9cZecLqjRGLOSMpoSDYV7p1S7eGq2om4Oc7Q34lNCKPY6H68x5267R9iIErjGOjgN6utUeo60yBx13db5u31GlJf88cQdI8K4Ye99mhvO6toXS/eKI1oKJu4j6FgKZWUkkXw+HAEgbKZ/tRMfLqjpVdn20FJjjsToXvD11mXhXW5sC4LtY0mou7HEWHPF0XEI4gSxb9n0E+N6lspxVzNRYzuaA1NciaEX1NyjZMCP68anL7GJ9eEOYI7krgjysA80XJkuD63buZ2g8MAmGtvt0ZdBCK46Vi3gfQYBKTo9N9IzulqVDYG5d4ABwmUYhR+RFjXFXGTnjUtjKzw4trushVaaNRQ9/tN/T40873rtXmLyg+n4+HwHSWQY9qPSxrZsK0yTRMhJte1bqBKnibTO+fJXGNl5HzGvaEdTbuhxUrv0x49NGju0ZkRtrjZc0U+eY+368YNatvHOuZNb79+7349xoGizdfBTRhe6N9lfvyu/d4Pr375ofHx3Hl/USSZNKd2qNXuvylPhMWfH91MgFK0Ea5t83zN7pFSjDK6FRvIpJw5HmfTzyOI5N2kKsREjJmQZkMeYyeS3QzKEfA+7oxIJ9iQWM1Z22KEgstDDM3Fm5SuneBDxpQ8c1oAR5dRiJJJcWLKMyF1lEAp3eJzQkBjpFRl7Z3Xy8ZhzizHTHC5keXLjmsgWUJCCOaT1G1/UpsQK25+acyOECwnN8RwRUCD07807vv03i0KT3WYuKnf+8mRYAXKzmALboRp0Zfs7CIj8fuzFGOPiBodm2G+pEILhp7XbmZf3TfHJtey71c3hRIx+dU8G6c54OkHYrLF5rJGi+MzYO2yNlox+nkeppXdzWZxdpyb0opkuhan/3pecrVEiCAmWUmpkxNMOaNi9p1ROscEPz3BuQmv6k7IMjOnE3Urtv+SIxLN1Ks2qFthq41ps+OVYqSq6XC/fRWWIo5I/93142xsdTSq+3/6Yq/7wvfpt3tnNb5xGD6J2k550AwHvqvW2OagPITGSSIHG/rg5nSWN9k6datDzEvIwZuAa58cotExe4LDYyLGBn1Be0RzQGO2TB8VR2HxWIJ+7TfLBdqG1gu+qkOvu4Ml2pBe0LYQcibMB8Jhpp43emnU2oiPymNTvjpV3h6aI0bqRjTXYPUbuzTsI9gxqU04l8CffzPx/pJ4XmxDIj7FWwssm/DrY+IUC28np4+KPYzcc3V/PW4arntv+4ctce2cGec4otkbGiIRJXoEDLC7BI94DBWj/PY+aKH+7x2S31q+Ndmn7oPm6EmnRkXuHh3SOg2j9pkmzPUh2ejStpHqJNwZU/EHljdwGOoSRelXZhuIbXS1B9P14NbyaRgyBQiJHmeaLHSU0gqlWm7aunQui3C5CO+/FdZL4PwaWFdz+UseJyEIy7Y4DdCMjmIMzPOB0rs3cMW1iWMDedW3BXd1jikRUqZvFgOScibgnAyRvZFdlvP1POL5lPVqTtOGG6taNt7QRcZkmqHmzfUIYN91k+resjeMlqF1DIOdgW2UtNmxH06c9t/X62vfVAfLqk0pEvIMMVElUaohLmUrThNUFKM2lbr5JsNckrMcEYn0ttpgYpw7fJnzJqr3beyh93VPwV1aBYnBr59uejNvRpDr9w9H15CsgdEfONCzN5AB1uVM2VY+fvzI4XDczZjGQKNW09xO08EQFm9Wu2tRR/Yt2Pqw04C9GbHv7Tv1s9XK5XLmfH5mWRZaKztCdnWrtqEPuD40TxzmA8F1lLWFfZ3o2inbamhcrUzzzDRN1swk+WRYIje243k0viL7ext01BCNJr0/QLS7s2vYjaZ6MwpwqRvbuu3vO7pGdV06Xa9xSeD6r/GZUt6N0VKKDAOtUa1VcjoQgrCuFztGtbFt2+4IPEy9pmnaDaO2bdtfZ6ClITilWMR9L7xpHHRi9TGkdlqphJgIMXCYD3tTaDTJRlHIk5lDFY8eUtivD8v37fs6e9Vq683gYb4OQG42BdnzZ0U+vUcHjRi4OUa6a7zHWjbojSKBHvsnYITIFcWFK7q7u7Inb1Z8KHfVBv+w609+VdhqZ1mFPNua21Qovn08HiLPL4VWoLUEagwEwaO3qj3PIomywrYp26aEFJnmwJu3D0yTGQsFLO9Wu5LmTJoyaT4QsxJLJ4RMSuZbYY2jYI7HpumsrdE1AZ2YHDNxPb2EjMhE7YFSG7J2JESmDKSIBL8+mw28Y5pI6cA8H8lTR8JmmuAa6CFCzpS6sZTK8+vCNAUOB+E4FaJURFx2B2SX/LTe0QS9dnv2V2MPtGb7Yq2NFKzZTpjmu4vY74vJG06/dpsdL1VYtm2XAIYpE5IiUVHd6L3SqpBz92vUWA86UC3jxOxGla2bPljVBnMxCkGUkgKlQKmDfdAhsQ+XrLcxpqeqPZ/zwbTRdKX06ns7X6dkDLQbtXWezxvSjMGVJuslWuvkGHyYEVCxI9qYaGpeKmYcqKwlcOwBUmJOE30CemWeJjMa00YOyptJ+ONH+PNX+LoKhYkQjhzliaWezXQ0PFpEarAIttdSOJ8v5IM1zVOaWICtKL/8EKkaUcnf6376cTa2wEAv9PoM9DHq+Hdvo/rNjuyTyZ5//fZLNz8fRDnlxj99s/HffmbC81+8mBX3ugHRUKy21j1KRKt9TTuUZJrGGGFdsSlJCNQ4w+GAfnh1KqI7H6Nu/DTenjW3aIVyRnt1PsLJnZIV+kBwtyuCmyfIE61ZVx0yzDS+PFT+xZvKKa4k8Q2gqushfTokg67HfmwUe4sfl8BvzpGvXxKXzehMpj20Q9a6sBbhF5dIlYlvN7uRYzAh/dvcOMTOm9zdPVJ3R8pPds33+k+uS1l8Gtkp3XQOiiK9mY5WbCrbfMNpkT3dh0LqUhmhiy2Yw/dLfDNhe5YbREECkYioIR1dMf2GdnC6TXXErjchiZk6xBQsem0gtDsa4011twZ8R2KsqwEsr06HKZFLAQILQkI7zPOR2hu1We7ktm0s68rloqwrfPN+YlkyyzJxOSeam/HFFJBgRhqteL5k3eyhk424V3ujLRfLsyyFspUr2uAoLFhuZRDheHygd6WsK7iR1v5RsPuo1UqtIwPUUNjbTaKoDYiG0Q3ojrKoCkTbuHK7+R8IpetQLQM0oB7TBKbhUYlu9GROr3b+TT8d3OSn97qjqdbYBlKemefElBMhHly73Kllo3kW8thB9FpuEBdbWFodOs0bfaUbmASRXQc6kGcJYV+TmjvpJqdbGpXRqZPF3VK56nQVhWD6KO3tE53gD7Vs2u1RPGqI4tObz8lT3pHykWObkjWu83Rgmua9SRpIqzUswZuGtDe2YEfKnHENAZ77RJBHYrR8S2twX20Y4BT6Ws1cZEwbRIQ8HQhpIjSLC7Oolo3JHZOn4+R01gkByrby/PE96kPceTp8es0jzId5n+UOpzvT3fW9uRm6YPt304vmkP24qdODh++Ao97RnqE5zzuKug9JgnimZ2Ke513H2bEh8kBlx7Er68rQzY114HDjamzorT1bt624m/U1fikmQ+fMtXg/+3vTpriON2eWZkaPIUSCx/6ty7c314nu61At1d6hBKOXY2weIzN0cky2didrdCWYOVQYbvI+BBuDDLB15Yr2D+30YAYBjnTbYMHWaMGMeYigyeRL4/OPQYOddLu+RsN9a242UNrWGuK4hGrfHZZ/6PXNq1KrsYFO0pmyGR/lPJk0KATa24kQKxvGDIpxQvsLaONwSGhLQEIIxADTFAgpEER5c5pQ2cyHQYSU4DDhDAhHEGMgZQGZiZ5QUHplU2HrQHOZTyoQhXxIPL490dwQ6sPHF7aqLKUaLVkzp2NmziZvet5eCXw6qACl9UJtG/Nx5s1b+KoEJlGiWLTgeKbV1ljLxnkVgq7kWIgp0LAkAxVlbY3zWumepaqSIHRChHnKhNrpFI4nIdRELLP5MPRoAwOyM648Gb51pnww9JyNpZvxXVuF7agcp8CUD0wZUhKODwcOExwPldo3OpW1bnSt9J6p7qocmhKqmUctWwEKaGSrbiS1NjNkQohx4/ExMU2WLx2aOT03Zpoqr9sFjXZvrrUQBSQk8uHBQYdOiMbc/PhygW4N6Ot54XSceCMBSWANd2TdzixLYZ5nl0oJeQ4+CLc4JiWhbG6KpbQKBBs6H6eMovzbv6n8h2+U9+fE0+FnQIZu+n+k8boUjoejS86eCShZI7kmcpiY5onw7kQpifPS6UQGPPJ31Y+4sbW6miBcGzJnCNkmfUdrrxNGX1l9Yyn7ZkluXtUE+soxN94eOl8cO48znBfbDA0ag7abhrSPqSpuJqXUYvC+CBCgk9CQgbM1rb2AuJ7mk8a7u2ujWy7vele9/tHBee6OboHkDCmhIhZ3ojBPgcdD47NDI0lzwbrRHPXaMfhreuNyMyPQDlsVzmtgK+a2N7qd4WNrU3nhtQppNZpEbCspdKaobBlOGdKDMKfv6Kju9Qetzd09uxsBwGgoAPHp+T4YGqi/utnauLrGzTTMSJzcwBVht0dm2DeM4j+sA43vMLj44/2MhVidcqvovpHRm0t7IPrjXrVPcDU+sQZ6bLzsPdbWKNWQEomB1hulFdatsK6V8wUuZ2FZAq+vgW1NbGukFnHJ+tXQrbfhuOnundHiZQbVyKI+6m6Gct3shX0+pm7YIBKcjaHEZGiaIVNXHKS76U1rrp33mdc4BxavNZYXAaf+iSoqwe533/zvo6LxXsKtuZcdz+4ozfjeHdlt1QdtwDjXwrWR8PcdnM6MBHS4MY2rYugUb/wP1BsriwkaHgfN/+bmGtSBIPhQww+m+nqO4JvuSAzqOcm6H6exodpdm0Owif9wY/cN8j8GGcRANEe2aEqG4sRoBkOoesRSIOe0R6sMmu8wKeqeVwmAyK6bTinug9/gz4uoAXK25iYI27Y6NXXEbtnJqNViqMZwsqkanTIGao27lhKU5LnGwxVZuw3Sem+s64XBANDbIcdAjh2hsGvB3ZzD9Tk76Pd7Lq6f93FP7g7Le9k+YUcrsWvbdPKjERRvMu2+M8fR62tc7/dw03zZ+jfymGNM7EZazvwY6x70vRENMRjrISbylP1VcPq9I7R9NJWKSN9/d+/G3NjKaqj7GKqJYOZdgVgNrR1DpFbrPgyY/HwM06c9x3a/R/p+Lka13vY1LaVx2w4nbVBftOJoese9dnPsxnUxrr2bv939B8Z5/GRdUd8T7ZuHf0RD8XGdCDtlOwZDrrJb6E65WKxOH4yfaGkGKHkK9BpB41gGEXC2hZrfgnY6zSnwSs5K24cTdk1PEyCWZRrEfCk8rZWmZiTY/EFsJqi21mq0ZyBV2UozJ3wRH4Y4Zb+PvNvr/SFixm+1VxQzipvnGRnMD22+ZgUG63LIBoYniA5ukwS6WuxM3/V/gSFhiCGAG03Ok/gAlP25GNwHxKQ/7NdmlDEAsD2OoZi2P+kIKUeiI9w5JXIS1+VXNFg8ke3Tmw3jsfeJMyLN8Mvv5f0ZNyQPnvhAJ0gnSGKIJnADyqZXI7bursy2+/IMby2+L4GtNsIYQGNmYzYcs+d+rSbfETpRZkQ6ihkqBjeqDJ5d26kMSZr0TgpqDX4MtKp8+9J43QKlJ57SI9qFRidNM51O0QuosaYsFSOSo5LJzCFzTBP5+MAaJ86XswMj369+3I3tQBlUryjIFd8Z7Lp97evtZkp483W1a5G9TRPA/UNjrHz+0Li0yE/fwGWFrz8qbe20rdNrR4aByXxwKoLRJDZMA3iY3WocKH2ihxMqHwHT25JnEIsU2DsDijW+e9ZiMF6zU0btRrpuCMFov+FwIByOEAPSzRvr6Zj56m3nj981sirUTo+2eRcgJH94I/7wHM3q3lNwvggfX68ObDfA1H4xtg4f1silNL4Gjq9fk9mYYmPjgeM80//JI189Vh7znYL8n6vOZdvPiWCGQtn1LwKYsfzVPAQfDzGaS9/Q7feRf+8+FOJKGxz05IGL7a+hIBoIag1eGN3J7rhnX2/BEdB+O/Vnv65bv3k9ezNOR7LrbhggKUrphV6U0jeKFlrvrKXw8fnM5ax8/JA4nyeWJfDhPbRq2lzRQcUpbOt6zZUMZqI0zUfTKqWEONLTt7bTkEKOu4FNcOOmwC1aWJ1OHZjmEwPBDCnZJtsb5FqN8hQIxDhdqYgYlbf3juX6+fH3aYPAbgPT/W+RSJqSNRHliij3oYlEjFbmjWYtq+tcO8H1XLbJdt3z2PS7U2dw50pbD5zEJqa9G1pjuhlg7frHaDEBFp9Uwd19Vfu+me+t0cQcs+042IPRKPN2Xub5yCEHDpPwi68/UloDqbap8o2VZVzCfHywa6bVHdHaY1F+4NO1t28/83+zmyLGRPLjob2yrSs6z8QoaN9oGmh1Q+jWmO1NVnTdfaP1Roy2kYzRdMnWqKnHg0Umpyz3U0cCbNuDUW6zaS1DMDSxFMtorLWwLJZtXWvx3//INJmxlOXnZrZ1odaNS1lN616r5zrbBn/bCiL2fDOTqsZW1qvBUByUXTFt2xgie2N1OyBrbVxb7M3wQCh6r1wuF3q3jNx1vVDKRq+m/TZtqZCbUQ1ztvxkqLh00MzvYtypymBvZ+S5Rs/BVVVOh+M+TIlhaJqHhi17XE42kym/RgcS2Uau8L4hvqJh4zNfzmdvkK5mduu6uOYx+GcKjvomf6+6r1W9GRqUdrS8u8nedTA1DMvqoKSKcJiP/l7UqNWO5ppZ1g2NWPsNhf06WBoIL1wHg2EfDCplZFr6ujJipSLRGxrbZH//7fB/uXo6zJQOW1UOx8AUIYXGfDxwmCekB9LlQlTLcE1TJIbEcbK4Pg2BVjO9TUQK0ro3ODbETbOgGq1JEeiz0opyLv606JGHhyOnU8R8hkwrGVNDog+IYGfd7JF6NHBvhjxNxsRYK3ESYjKXXcRSQB6OB2+GFmJOCLanrVpYi3JZC61H8pTZ1g7NJH/H00QGJNugpVaL2ZpiQHoBslFUp0wXixrbSt3p/UhDghKi7bMReDoZqt1qo1a7nqZD8DzwYM8fsYjBlIYvM6ja88mSH6B3YZoj8wHypBzyhBmld/PUqbBeNqIIRYTQMylEZybYE9kavuFcbM7I5lll+4PDBCk2ghTXNHdK6c4QM2dqn+zRcd+EXukZHzRGH8ortZmM2IahyX0IbF3tKrxe7Lk8B+E0T5bEEipBCjnC4yFzSLNRiPtC7UJRAd14iMpPHpTXFvm4KX/9HrrM5OnIKb9laxutXnj3+CVdlZflBVszi0VKzYGkyimdeJgOfPZwpMlnvC6Fb77+KzqXXdb2d9WPurH9rvnHPvl3pOF2Ung7yceRJHU0w+5ojCqj1+HsGFC/PTZqL/zx08THV+EXk7BMxnHXmq8T5Rgcwe1mlNOgFaFsthmO2IbcBDuT/c5ejUocLHPq2phHQyIEaGenF6h362pagl59ummbCUNPIiqCaLNYoFaZjzBLY5LuInhzJo1y1XCpqE+R47Wb9UOj3Rr65wuUoR/eD+zNf4lQz4E1ZJIEtv45cfmG8PEvef3wZ8yHA++O/1vmIMwP6qjxf+pVcK/v1svLVY+YfWMb0kARlUvf9o1KqRbb02rfN224xb6ZNXVGno8ZJlzp49bYqv/pYza0N7UgaAvecCmhuf1+h1osyqaK6VS72iRxIIctQo9K6AFqJSe7v9dWWWtjdRv/IFfqimrzvMZITNUeUKXy8f3G+ax883Xn+WNhWQK9JG/ervmO3WUEqtcHffMHfddiTon2i9DaPM/R7ful0WQjDiflKVNLATU36bEe9dezn4i+N3ZlXVFHVAZCXvvmkvth6GMN2bYt+xpXSwFsg6piVKJ1W/xoCOro7xgAq00FbD8EbnpnCFbrrhNuHY2RINdBgy0H1wHCVfNmeaA1BHqt++/ZNvtcMSaGKYHuCI1HtHTL97TIBBiOy10rWlzzL9Wo4cI1OxN4e5j57PHIV58/8uHjC61t1GKvrd2o0PuARc62aVaPBvlkePnDrj/+43/Gtq5cLq8oyjTNfP7Zl7y8vrCsC62fd2R8RO9Yc2LXx+Fw3M3iLudXYORCO1oUrjKYEZ8CIGLDibaZA7LFPtgGUXtjWS8+MDO38jhNTO4OrFi267ZtRsH1pmqaZh4fHxERluXM6+szr68vHulS2LbCyC22zF0Y1GkQZzKUHe3a3ZxxdLM3o1w7xaD6exZv1rtTs+2/ZR+YmS7edPXagxtNVYskCdZQD1ruLVKbshBCY4uDUYUbyViZGZc9a0dusGmSy95Q16rkjDUCoXBZ1t0YrLe2Z/Xul6rgTe5Am+09lbJS68a22ft1/1wbauGSBketcKZGSMmRZD5xMTaTKzOJqqXta31K+Yp0+xow2CdBhByTIfCbDcjMKOy6F8OvDfBnyk4FsTVlj6cakgO1eKUrsm567mW5EIO992F49kOXFAB8/uVn1KZsxRrbqBUur4gGWhc2b34Q8w3QLoQUmGbLpD+vZqdUOzRPeZ8C4FFclilqutjaK12UgprjfMxIPJjsRK05iiEYFbhcDHl31k+nU1oFWelaiVHpNVGKXcM5Zx4eElvdzDMhBl43M6o8Ps6WVS8VNNF7YFutAY5RzN2/dtfvmhljc+RxsCRSEKIoQY05VWtj2zqlK5rSPlDql8VaxTCRkpAnEHUX9CBcSqd0QaVfUdYASayJ3aq5HnfG9SucpsClBnd0tr3uVpXDbJraKYnn5uo+iDezs4Q2ofbOSSALZG9CUXeNloSS6U1cEmZ7C/G9lVLt3DSjLMeQIJlTsspE28y3YpXq61ZkOS+kFJkPGZo19aHjA7NgngbdgAPVAhoINLbW7LndrJnNOROkE5NyzCDBNuVbaTTNEDJZlBw7URq1JloTphwJaSLGmXkWZmYeeqb2Z5Za+Li+cpiMPTDFRo3KFpRzW8g9kHggSmRzHXlHd9nb31U/2sZWbxZKsMVxaPx2O5vRoMqN66dcnXkBZDjCeYMrn7yq/fchdR7nzrtZOWUhWQ9qDwbPXNsX6ltNmIJ2D632Xb+OzWTMqFanKA4tmtFCxBEzGc35iAO6fnhriJ3+AEY9HeiLRV62Hc1J0t00yJuH4G7O0TJ5Jbru1SemA1wbv6p1WItw3tg3xTKuwNvjqkrvgSZCDQF4INRXOFc+/PpXTNPEt8//HT99SpQjV43tD/+59I+qvv122ak8OQZSiKzZTmrXzqWujNzC3hwBrU6TAafAGH1pb2xlTH8wXNBnLkmEKJYn+klj61l4aHDHQCVEozYtuVnwuWC+h8660H5lIYRgBk7LpFwmQ3wUZWvF/nTHa8VkAIYMtN35N8SN1ju1NF6fK5czfP115fmjsi6Q47yjGLv7p6NQXbs7c4o1mq3tDqz7utMHrcgHYH5AEkbZSnqgFUNackr+/jAdsFO41M2htmUx/TJ4lI49pIvfH71Vd0xUtuW8D/CaN5PBeER7rEfwY9Axh3Wu5KbdyVoVJLqEQrDPqLYuBG8IxgzNvvfmiaPsaO5wxG0+OVFg21a7/rJnpfrm1eQR3gSr2ZWUbUWq0YWNLln9MrOpY2zR37e7UgJtOyI6kwNoK/SysTVDmrR3Wll9YGY0uOFI3VqxTbRcm7gfcj08PLnbrkUgTHlmPhxZtpVQins7DI2pRyjEaxM1GirAmzLTOianQQ7nZBgynqtTst3/9hzr3qChlS6N5WIOzfM0EdPktOXr7xU5cbmcbxpBa0Lm2fTQwE5xFl9XbKjj57p3H1CxU5NHFrP0T1G/IOKIbdszbdFrAxiCmJGrmov4oA/HZAPpWsoukTCDJfusRmGu+/GDQfu0jbX6QKy567fua9iQL9xQmpy9EaO5y9qxNGlFC51aKi10KIUUs1Ooh5le31FMRPZ4G2Mk2ES97awup5n7+2RQ8/Xqto5apmdyg7Hx8UxD7CwVcYMm9y7AP494ZnHXQan2MbyIZa92c+o1rfvNc13sO3fH6xvgYF+PREc7vq85I5rNzoU5Si/LZb9Ox9Dj5hT9YOv0cKI2JReLj6QV6rYgBItBUcNHO5ZkEbPu93AQheFirNDUztuUoO1U8sFAMSr3wFw7ASV50+tSkiC+JkItSm3izwrx7PmOBbc6xVWbSW76jIjnDntWdMM0o70r8+OBNJ49fWh7PbVAhdIatZls0D6NGy6F4U/hrtwCQS3KslVDL6tCzMb4iZ/sudXZD/5qwaVC245fWWOd7DoJHhumWlE1irOIoZxTElIQahBqlZ0ZhhjTIiWXeQTd857tuo52DisQ1TEqj8ND/T4MINGexzJmTJZFIaGDGJNNezOm22AUiclD+hhUDRqyWqyZiCKa/OIQ3/cFJMSrXBLFsrCVILZW2oBh6LEzQiGGziFD7eZh0sceK0SCeBPu+5iODStiCk7NLjuF+f3rC0tdOZcLEiyH+RBH7oZSMY8PY3jYeRYdzMHv1wz8iBvb8ec6sWu+Iftu22962SviICq7eQrBLgrpsqOHMkBTf5kgnRwbT1mZVGkr6NagXldo7Urb2vWGax2Sbe5idOqB00SUAPkILG6Ptpg+V6L/sQuatkBZsF9oFxk6tAmWZSvd6MqSMqSDcfw3pbeVfJrI04SGQtNmuaSlEen2rDMXcaRjAnzMVXVMtXs3U6hzCXz9GvjNS6TVm0xgP1bjaO/bRRUT68cnwkNgniPh17+ibgvffvPKy7sHlodoD0jukO0fuv7P/8e/AAbj4Kr9HDuGobsFfJJ+M8jY/2Kc1d+z0PjPDdr6b+8thn705nVuNtHXr968vvLJ947rcNBi8eHJcHv+9H36vT2+Jlc0oDdzda7VnBO1W4zIdzdFgxJ7/T/Z34f6Z0auMoYBgnCjJR2byeDUOXWEZEeYnJ4svmFgX79+G0XUfqM/9aPcXZf6yZEe74/ra/3te73rjnP/XPtXP/2M/gu+87OfXhv2uW+aRX8PweMGxmcY3y3cft7vvvZ3B12y/2Os89/+6m/40z+NzDlxXs3JcrhZ8snvun2V68jy0+vyh1u/+fUv2baFy3ImhsC6LZTWPLP1wE9+8rgboz1MJ+bZMmLVPR9KdQ2zKgQh54nT6UR2k6LuDrpGdNedCro3mkCMEzE2Xl9fb96ZbUhL69RuyFwtxRvcyMPDE4fDgcfHBxBh2zbef/sNz8/vqW4itq0L27oSxOj9ITQYGji56vaHodQ1S7m7ztMqhADuMDqGP+b06ii2DKfRRqmFnCem44HPv/jKjvFvfkktC2jj8enRTbFWy03FIpXKtu4NVqsbrZq5ZPf7YjRY5pzqhmjxxntgzqQYmeeJnBw5JhBTsgYbEIk+iHDkslff/QaWdQWx7NxaDJleltVNr4y1AewNdoyJw+HE6fRgsUatUgb6qifm+cAcDhwOMzFEluVicVrAmzdvLSZIouk2u7F6attQN5OzbNsr9bu3vmcEl7JyuSxs22p5xWFEAMU9QmTyc7ptC61vlq/L5CZonmfb6o5ua++2j1Frqp6fPzgjYNsHDT/0inIgZphnZYoroQb0aFBgJdBipKqwbp1lbcwK86OSpiMpzggXe/6JRS9OKXM6Bl5V6NLZKtiY2CLVmk4QZsrWoAjnxcATG34dkdYp2lhX01deViGFyQZeU6R3YzW8ns+0mml15vmDU9Elk/NEnid6a6xb5VIKyJnDUXl8bLRmqZRg8jU2WNdOaTY4Ct0HK2kixgDB0OIchdMceZzMWf2lbyxbomri7WNing9og8urya22Unl4PDDNgRSbu6grq0IlUGpkypEUAAq1FWv8FaJMFpckjRA6muE1W+RO3a4+OhZpFjnkzDzNSHSk24dBpUyUAsuroKnycIDjIaFajIHULNFBg6BxQpNCaNR+MV1tcLlO8CF6j7hNpe0B6kJmQ2Ij+TNTCcxihqB1eQUiEq3h3BoInbUJUwc0oGomt9MEW1Muq/KoiWOcmKdkLCkaUTqrM/qOOXAMEXpiXStbMXS+iyKxU8PmgNjK6/aREBSi8s2y8HzufPMMr2c1ivMxsDWldOGz0xs0wG8u33CMhboVHmPleats3zOT+kfb2IKjNCNfy12QRYadEfu01eZD9n1XJHJo0xx1sOc54wcMUQGbclksRw7KFE1Abbb6um9q3erXNpki0Oz1Q7DetXdlrY26dWt66wr1AtsLxHzdGN4asWxnpJyh36hItNob1Ya0zcyn2mpUUWb/HuhV6cUUD5e6cV46L6vw5ggp4kidNbVBdaeooN0jfGzStlbhN+fM85ZYqueq+a7X16N94gUy0pP8+AMkND7wxU++JNTVYxau1Mx/BCyif3T1+nKl544N4C3y0D856NeO9rdPhfC7vvq76ne3CfI7//P7NV3+vSLXNu2GbXFtXb7bGP32bxjXmfahzWPfQH73d9/21uOlPm2Kbhvp/Rd88hl3dMInyp84SfvvFa6N2t/2vq9/L9/52s2vlN/1Xv62o3z7PfpbX/3tn/5dQ47vXBufTAjGl274L7/rMvp9b/H3fa9/trU3ag2sq5jJh6Nl15//vS/wPd/AD6OeXz7u6Jx682S5q3Z9NUeyLGN1sggpp9DvN7QPKYzxAJfLhQsXhjvwfl2PgYz0ncGACDElcpvI6cBgaljklDqFt9F7ZV0W1y7DclmdDpfI8+TDHXPLjDF7k2b60r5n8Q4TOTt9eTgpTzPjPI3hdEyjWTVEfppnTidrsFqzxjSlZHpydM+YTk7ZnHIyrWsIPD0+kJNl0NrnbkZZ9JztFCLmCN49Y3S4Qrvxz3Tg6fGtZQjXjdeXZ9bl4rrgzDRl3r37jMPhyNPTW1ozSuG2br7vCJxfX4gBjoeZnC1iZ93Wfc0+n1+ptVDKxvF4QCRwOp2oHqsVgrAsF86vL2xl23W5pZSdEWU0/2vzjwytb3Ia+9UxWzxKrda6f97WfFjQxOnazdFqG47UKj7g2Oj7kOF6Le8sEu1cLmd675wvL6yrZSWDuGZyZkgdzucXjy5TjqcHhjdAzgdEkqGCaj4MP/QyZsu++TSEOjuNVSJBA9M88fB0QtNKTMF16IkogTlnWo9AgBZoAqV3NDhVv6t7JFSUgiFt076PrU1dzw6nZHs7urIVo6Cua0CTgTE2rZ3sGgnNc3cDyTW1l3XlmI6kmM2Eis0SFHDQRepuNleKoczmxWDXhMlyHUlsRg1GxTJq1XStrZlLcquG2hvC53r9nEGSsc5cStW7oCGiIYF0mkQagUqkd2eNSUGomGGS0Cn+s8YEOsRufjChewSe+xt2SCFymjODZdWphAhJIzF4pBBK6UrToT8WgrOPmudpS84u+bqV9tyqxK0rUa20alTidVmZqCTpbrIVUCLnre9D+N0S5YaFk6M19HvOdwDE/Swwf4zqjtf06ICVrXe9dUJyMIGBOLuxmNj7rq0yTYaWhwhNbc3ZqlK7f8YQUZTz6yshJ6acTVMcoDVl60IpWJMfIA8j3b+jfpSNrbeofpM4/Wc0tTLgeK57dsFO6M0DFHyx6c1dFsX+iP+AXHf6QSGi5NCZknBwWudwUB2QVUDRYRjjNEGJQtmUTTvt0qlrM2pxOSPbM2wfIfnD+9YFUBXKK2yvEB/ZxcBaHPHo0BakbxYDFAX0ZJMeVdP3buauembj5dJ5Xi0MOTdobYRIj00/5trcR2yC3ZhLCfzyeeLjmllb2h8ugv3K6J5WMVyxmLGxMjpKpMcDP/3pT8m6suTZ8zEHrfP7tk73+r61Lj/wgM4fRN2P0d9WP+R7svf+PUMB/nHXx+eP2GCVPSYlbivmsKuIO3ejwyk6XGmiCrdBvSKBWgvruji6GjgeTwz6TQxhZ3aMvFsdyGLMpDQxXH2boy6td0ox06jz66tpcXsn5xdH3xIPj4+7K3LOM2R2+ttobAWLl9lukNHT6cHQGX9e19IIbnBkUTq2wVzXxRvMydHVwuv5mRSTO5cXeqv0Vog5W85tCv7AEx4eHpimiVqLNZBFbWgM5kgbxT3GdHdCr635M//IMSVDOecD22bHdlsXRzwzx+OJN2/e8PDwxOdf/IRWzWDr5fl519CeXz4AwpQzp9PJjOouYc/CFoHz+YVleWWe35CzoZutWeMZQ+T9+29Z3BALOqVsDGq6SX6ssRXEm95KLZWUMjlny0bONnS2rN7Kuq47KnuNHtJd/1tLvZp2DX17rbvZV/OmNEbdTXFaM+OudV14fvnAcrl4417d4OvgjbW6/tpe4+nprTESDg82xImTaVY303r+0GvsE1WUhrlZBx+uiCSkCXmaOD5C8TSPbatsWyJgecq5iTfzQundGBkjMq/gTr6VEDd6j3b/qzn0bqWzFRv0HA5iwEztbKvFuSwXgVzNsChDl0zXhNARUUJSUoJ1Uy6XlelwIpHJWQgOimhffQjUiGHyWWSnNgNQWgtXem+3+6yqxf6FIJCgVgOC1s1iyspm12nVRi0NuhAkoWoygC6VsnVK7jSn2YtGSg+UFig1UAMmPu0VifZ5OkJpnV4qNQkZIYuQbMeKYMBVLaBNiEQOOVFro2qh6Ibg66bnBrfeWXvlMHx0vHnvrr8t2oiScV/FffBtjDL3nAk2oOi1U7mwFeXyuhByIyYlTH6sCKYhRlGbbfhw164PUdPOB29yTd7or622N982KKtSMk53tuF/K8Ea06j7oHGAUbVhhp+ts22F40HMUTnCuq28rhfWkinVBgriiOHrywunxyOHOZJTN6nVyn5trvUVQiSH/1obW++EjCZrdtaDinelXUJ0Tnhw6sZVf3v7UsoIRZPuvHZHJP25Zw2rNKaofPVQ+ewIx+zZby34z9sGIh2CGdA0pfWwT8vWxegIWgMsz8j5N/Cr/wdsz1fE1pvWHe3Amm7VBukBcUt2c0W1i1TaAn2z39+eoK/o+QVlhsPJmsemtOPMh1r4q/fKz57kaviT9Iq2pkHLVNf7Cb9+mfnVy8z/+FdHzj2jIRDiflhI8dqH99HfO3rUFbatM4fGIW+8+eodc1A+lEemtBH7QiuWlan37vZe97rXvT6pf/v/+be7oV9wN90QIsF1qqVsO4I/T4ddbjAiqubDaUeJLLIGa4Jdy2YN7Hfp6EpynW4Y1H9vbMa3jcZZga2sjtgNl2MzU2rd0NxpMiflw2Egr7qjiaVsjga2T/JI85R5enrL6Xjam7/e2k3TMzS1lefnj5+gjb13tnWhOR07BvEc2sbD45tdFoBrNE8PT/vnPZ9feHn+yMeP39qxHLNtb7Qury+7D0FOmTzNHI8P/Nm//0tEAut64Xx+cf3weKaruSdP8+5yrdo5v77setkgQkyZ4/GBx6e37hC9klJ2qm3gfH7l229/s1O1Y4rmB+DmVJfLmdfXF0f0zazruh8a+kUbWozjNf4OhHmeydPMmzfv9r97fv7o+t0rW8RiiKojyMVpyfUG8Q/unu3O2t7MTtPBacx9zwxe1mW/bhbXZIcQePv2cxtqaN+ds1P6BSll5vnA4XAiuF65eGb2D73+p3/9F3vmdGcFGtIbQRNopIXo6QCW/20RS41v/ywQozW0WxG2CoHo+erVnfXdv7hZnmrKhdZXSl1YtoAKhChm2Ijwm4cX3xt2tvUDOcPpFAjhmRg6p2lFkjlPlzL2dcrrWVhXeHlVfjktxGSMhNDts6T0SsqV+VQIvNJb5uU8EcJEkMRlrQ5AiXm8NGWrldNkZkdb60xTYJ6FP8sLaGWrG2t5pTPx5/PZGq+q/OY3Hy3/VjpPTzPHOfJXT4kYK0jj46WwroFlSRyiEIMyp0aK1shvAyUV+OIEU4BZhF+/dl43+HhRDhMcJuF0EIJMCDMvS6H2QuWVmBIQWFflcoHLxTq/0yx88+cTVS80rSybWhoKmTQfbA1tSjlfgMbXByxSKAqTMyV7EzYSpSqXc+VhjkwJcuxIsDzjb86u549t74mWFeY5k1JgXV6ZMpwOwulopoJrrXx47myb8PVx4XRIPMyRFFZiUKYEr8tK7ZWYKkFeiGRElRiUnJRVI+e18de//Mibx8zxmJinyLKtvC4XzuuB2iJriRymRKSzvLwwHTameeGvj6sNVS6b+RS0xvsPL6g6I+F71I+vsfUakwRnP/nXbvSf3tTe0h8/aWwHOKtDsHzzQoa121fH//VOppEIJMyUIkYDd0fOXJgCFKPGDQhfu/9pPu5YPiLnr2H5CPVsNOKhmxsT9kFbdCOA0UqaQY3dTGZZuxliS7N0oBBh/Wj63cMju2lMjKyt8eGslDqmfp3WITT/9UFvzET8KKhAt4zPUtWdaO1bAkoNQhgeO2PXJNehg/TGMTe+PFVOc7RLtgTWEjhfAq1edc33ute97nWva/3Zv/8za0h2kx9vVNw1ttay0z2HG+7QM0sQpungr6Q7lUywptbcPOP+rLltbsOO3t7Q7m8p7jea7FbrHrfTbqi6w8wpJo/FydNOBrfGqDqiN5C+YqZKAjkljqcH5ulgBkrdmvWcLQJroIS9Ny6XszdusqOCwzgK8Jgje44eTw+Am8B1JcTI4XjaY7rW9cLlcub8+sw4HOrHA8VyexnHe2TPzv6+YNs2dyiubnBzZYfFFDkeH/fh8bou+2dIIRGioc7H44M7JhdHbBMpRdZ14eXleT8PV82xmedY9NLqesCRwzsA+YEMjjzi4blwrZQSKWdOxwc34BMu5/PuuTFOeHdKduttpyp3/57xe1JMO819aKJztozecexVO6VeEd9tXVweJnz79JGcDbkZQw3xrN2cjZ4e3ChzsAR+6PUn//OvPSc40nFdtHZLD/A4n+5GbQOlRhs5yY66leosOwno0KpGo5B2hut7J6VG74nWL2zVz12QPcbuML3gJ5NaL5aDO5smPIgypWKxdhJozVYVAdbNENVlhRAvSIjkbIZI0jsprYTYSFNFWNEeWdaEhIRIpGzNEjtEfI1Qam3MOZKiUJoSk5k0HeNmAzJt1JboJIivoMYoeP54sWtJOt8eMlMO/OYQCMEYC5fSKCVQSiBHA1Bz6MRoZphVr4ayvzhcnYw/rspalPMGOQs5wpwNJRbJnNdC00pn82NvVNqywbaB9sachG8fEp2Nro2tQtdE10jMIx9bqatHs+UREybGBB90bAK1wbY1Djmaaa10RKwBfF2tdxGnF5t8AJNaRMsgTxGmCaYU7HO3xmUxv5FpOjPnwJQDUSpBTF64FlvTCZUoiSDJkoTF4pk2DWyl8+2HC8dDZJoiOQe2UljLxlY3eg/UFsjJjKfK5UzMKyktTNOZ3jplNeZQ78r5vDo9+7/yxhYGnG//PmD9UTGYy6/1agbRjxrNr63X3W3vv2sbL7srYO+KNiH0RmyBWAM5Bno2olgptmmIBw+L7uasZiJ0gZ4QLbAt8PGXyPu/QNYRy3HA4jC8Xdyb2uKNrqvw1SZ4/mGxprf614qbTL3Ay1+jIcPTT+0DBqMvnCv86oOyFTEqhDOiBeO7i5goHNcoiwqHAE9JeZsq719simU5fOKTcJsEShQk+Higm9OeNuXzeeOLaeV/+eVCacJlC5QK758j/ZyJm2DeF3e49l73ute9buvf/F//zX/pt3Cve93rD1D/l//Tn95iBv+wBLW/65fJ3/H3v+81/2N+7nvU9z5ON+/hd72V73OM/66f+3u97s3s7x+sfteb+Xv+/r/tM/5dL/X3OhbfvWb+E26CH3Fjayim7kCrWhaN8wv6QBLjzXfvfHNDHMePqdujoxDcmfF6BszWWqLw+SP85En5+ZvOf3gWNAaLtPjQKKWzvdT95OXDcD91kHUT+iYcTv+UaXrH07SSk5Ki7GYNrSnVE4CqNqdzqZk0dNNPDJ2T7lE/DfpieYOtUkpA1xW0Gsc+JTqdc0t83TIvW+ehCMdcaJZHb+YLvRMau4eVqpJD4emg/KuvIk0zWQKpbzQN1BapS7L8M7dbT0E55c7jY+dp7vyzLxbePRS+ehqZqcqb08KHD8L7V9g+Jt5fEv+wK8G97nWve93rXve61z9Q6T9wM/v3qf/YN/af6QP9vV5WP/nHH/x3/Ue97n/pE/33/P1/27f/J3+U777AH+jY/Ggb21uAdndKdZdfVNFoLmvWMt0YS7l78j482J15u7mTyXcjNhz4BOakHLPykJWIaXhjkt3XqRU1IXUQQpId+QzOlw4SeDy94RRPfPlWmSdhntztUaG1zrYZQFu6WjxPM+MMixqoZrOv/WrXph1tF2rdKNuFVzlSU/T0IKetoRQNnHtkaSaq7x5vZKh032ndwaOSRI32MMXK56fCFycoNSC1OMJsmoguAZVAzkqOytPceXtsvDt1/snnG6epcZiNAtO7kmKhbJHLCs9b5FIt4+y/9Fpwr3vd6173ute97nWve93rh1s/ysbWeloPRG/sphg00K5Ic7fkMDSjpr0NAQ+ndoxXjEpsDnXgP8h1vCYIkdbNyrtpI6hwINDPna4JDslcgSO0algwIuRTwty1O/qhkZry+duZn7yd+PxR+Sc/Vx4ehMeHwJSHQlUpm1F8y2Y25q1BKW3P06rN8mVV3SgEiznYtsb53PizrwMfdeLbU6ZH68g1RkpTXlvnZSuciwUwZx2vYH28DDX9OM6tk1T5yXyhftF595h5XYQvHht/9G4hB3WzKCFEIQQl50YMltsbvgPEBuDNVDlMna/ewp//jfBaA1uTOxv5Xve6173uda973ete97rX760fZWML1sCaCYFaMo9aQzvy7WiCdAueH72aJkG6N7a7OYYZbexaXem7iQEEhE53Z+WlwMdN+M0qrKVTVJENkECchDC5iUUUaA2toIty6srDBD85CD/5HD57Et59DqdD4HQU5kmubsKeL9vcKKB3pdTg5hzBQqPV0Nbx97V01iUwTcLbEmlr4usNmjS6KL1C21YoF0pR6idJJ+Iuk452i16tjoO/KVHeHCs5dX7VJkqN/OJj4KfvCofUOWbLRwuihHhj4IX/c6DA/htjEvKkpBzM3fDe1N7rXve6173uda973ete9/pb6kfX2Bq66M1rdwqyAl13GnLHkdLbn3HysQRvbmUEFsuN/lZRjzgIYhHOipjzscJS4aUI365iIcTakU1BAiEbGhyj0Z3ba0MX4KycZngzwRdv4fN3wrs3wps3ME+BwxycjiwQxHMJld6jh0ebI7GqNbfDMKu7Hrc2ZVuEnCBI5OE18qqBflGadDrdmuWtEMtmDnOfILP2O0TUY8++I533YPHHqXJIwus581ojX78G3jwpKVdCakR3oZbblx6vspsqyvUcREju0Hive93rXve6173uda973etef1v96BpbT/IhFJBVka3vyOt3BfoWDTziZ8ycybS20KMFZMciSDTkkGSdmQqQ3CZfQAl0hK0lPl7g1x8666aUZojw8UmIScya+2Wjr4X4vHGKkc/miZ+8gXcP8Edfwbt38PCoHI9GQc7TNUhZwC2Kla6d0I2WTLDPcNXFKn0cCIE1QEMozb9fYcqQjomeTDecqjD1zPy2Mp0KIa6AmjtyCWZEpRa0vuffeSzEgJMTwj97c+ZlzXxYEv/+P2RCnvj8XeOnb1ceD41DHA3uQMqvZ8S8niNfvya+fhZel0CzjPG7f9S97nWve93rXve6173uda/fWz+6xnbUjti6MdOuuVXTlQYPUu83eVW3nlAdDOWNhlYiHWqge+6bqiLBqLUq0NRMl0oztBZv+mIyam2Igm6KVCXVzpskPM3CF4/wxRt48wBPj3A6CofZsrFSEibPwzUsE/8s9i/qkt3u9F48p3D4ZoUOYTfIujbilkelaAxIDkhQIKDV3n/teJah96wDBVaFfo1CCtjvvwF3idKYIzzmztsMlcB6Fr4m8noRThPkpO74PPLlhNIs1+p1C7xcIpez8iZXHlInit772nvd6173ute97nWve93rXr+3frSNLYrny3YLn8ZouYavXtukNlyPb3jJqtCDunmUEgVUAq13zG1JiEmR0IkZeogUhLVF1mrU4JCFFALzKZAnR3obpKZMFX7+mHj7IHz5TvniHTyc4N3bwPEI8yQcciBHISfZUWSQnWpsiKml1CpiCC2YZhhT/4aoBHU1sIfUx6CkaEHLNQgahZQFeqBV4fUCy8GcmEXaroHVzn48Rpetfrx24NVjkabUmIIwp8rrlvjFc+ZvXgItJB5O8HDoPBw6x3w1l3pZMpct8M1HIVQltsrPTxt/fijEcG9s73Wve93rXve6173uda97/f760TW2w8F315oq0K+UY/zv9W+htxpAayZJ2qFXRXoDDY5eBmqx5pIslCC8tsD/9NfC3ywReRN49xhoGmgt0DqEpnwROm+eAm/eJX52MpT283fw7q1wPApvHuAwWTM7ZyEFJQfds2/h2oi38cekt2ZgJUIl0EVpoqb/VWVKoFnQKfDFUycE5eNl45cfGxeEOjVSCsw58ucfhCkE/tUXkRg6ceDDIoRxjFXRbgdbghIIV9fifj2IeSq8SZXDtLG1SGmRtSa258C3HyLfiDX8IQgBIaL8PBdOx0aWwscPldmNp+51r3vd6173ute97nWve93r99WPrrG9rdHkIt6MjS+iu9PurYEU7nX8yWvooDWLxd2o+NcsW7Wp8NwD70vgL98LH1ZBYyTnQOhCX6xJTl15kzqfzcrbSfjsUXl6gHdP8PRo9OPTMTAnMaQ2m6Q3hZGjazBpcEpw6E41tgwep0jbB+mux+0GVhMjxGi06DnDMcNDbKQVKELtjXAUOETeX4Rvj8JricyxEoP/jvEeut5Qj9XRXP3OMTS0W4ISRTiGTq7QohIVQo+Wy6tOd0bIAXJQTrlyTJ0snXNQwidmVfe6173uda973ete97rXve712/WjbWwVxayOrDpctbb+BTNBGt8//t8ovrfGwKOXs+TZAGoRNLULlzXyJ88Tf/E68T/+pXLuwiaBfDCsszXloXYeafyTU+GzR3j7IPzsM3g4Bt48Co8nYcrCcQrkCClCnIfONRgNWK2x7d5o9wqtNnpTJlFaV6pgTscdVhk/A/lgObtbE+ZZeGjKF6fGt2flUgLPCmkWNAT++hnmEPir58gkQhSYk6HUvQnQkGD64j0mSXU3kLrCy6bHHfFAKVWSGj15HMPg5lbieuHxk4LFFtnJEe6t7b3uda973ete97rXve51r7+tfsSNree+Yr3VqN0hef/C7U/JDRppPxiCc5YVuiZr8DSw9cj7LfD//nri331M/M058LpBNbkq59dO6HBsyk+mztvY+eIR3r4R3jwKb98Jp4Pw8BA5zcKU4DAFUoQQICRDPEUET/jBWj5rWHvsxCRoD9Su9K6kqrQaaF3dLMsawxo7NQt5VvIsTA2OuXMInVnhRdOuo70sjV/0yv/tTxX5Z4k/fhv48qGQgulyY1QCikjn93OEb46vjjxg+eT4XnXDbs6Ff58f36LKc0lcWjSDr7/3FXCve93rXve6173uda973eu/lvrRNrbwKRXZGidDbAXZNaHmcPydHs1/RjDE1GKChO5NV+3Bslovkf/vbyJ/9hL4ehU2hR6sQSyrMqlyCspnufPZpLx5EJ5OwtOD8PggHA6BwzFwmCBHQ21DhBDFm1p/X228LXdCVmt4ifa7xKN+YlCqKKFZHFDvhjZHR4FThpyFnJQpKbPAREdah6ZoV2qHjxflT3/Z+KM3Qg6BUw7MCaakSAiI/o4289ZEasT5jFzaIWi+Och7U3v7EgpNI2sVlqJ8fQ68LLJro+91r3vd6173ute97nWve93rd9WPtrHVmz+/C1cMEUaz672iUZP9h4PTjrVlupqrcuuJS418LIn/+99M/Nk38K//ZKVnC4Z9+PLItgnb0plXeJs6//LU+NmT8vYEX34lPD0GHh+Ez95ZTu08WbRPjEJKeDYsiF71vtHP0jWVyL7fu1x6c6OsrvSqRk9eOlPqHEojSecSrFEvWWkZDhlOSTnRkF8/0/uBOh15+tmJ+nrh3//Ft1y+bfz0TeB//797wx+9Ub58VN4ehMlR2ybm2Bxj84Pt+UOhI9G78b2hlV3BfO1vfWjQYamJtQU+LIH/36+V//BN4V//vy788s82npdOuze397rXve51r3vd6173ute9fk/9KBvbrrBsnddL43jopBhIIuAo6EBjEYvBAe/JriGxdI2oBgqRrQlbFb5eMt+cA794Dvzbb4Rfn4U1HQkpEkJgeWn0DWSDd1n4fFY+e+h89kZ2o6iHIxwPwmE29+OcISUx+nFwii7sDTdc9b+3jfp4/yiWpatAULpAj0ZaFqcOd6Ll2YpSF5CmnGd4OMDDDLE2+vMrm1yY5s9Q7eg08359oX5T+H/+u1d++UXiZ+8i/80X8HAIPB0CUzJzq6xG9w4IEszgKnBTLqDdU5U0oAi1B0qF86r86qPy4dL4i286f/l151cfKn/zMfOyGP37Xve6173uda973ete97rXvX5f/ega24Fcvl4q3z5vHObGMYMkISTjHEuSnaO8yz/h6nbcxKJ6iFxa5HUVXrfAn3w78Zfv4d/9Gn65CotG2uFASACdy/uNUJWpwVdfRf7/7Z1NcxtJdkXPy6wCQEIkRbXkmW7PwjOO6Z/gCP//CK/t1YzHs3CEw92aVqslkSBBAFX5vMjMqgREyb1yBOl7IiSiipVfJW0u7vt4fQbfXDivXgYu1oHrC1gtYbU0Vguj64y+y6HCFrIYNJzQiFpsrsxsU7JwrjyctbjjpfdOAMZouBcHOELfgUVj0Y8suhHf58rE23Pjcu3cb2GREg+3W3b3O1YvF3jsCGcrNve3bDZ7Pv5p5Ls353z7esnDANcXgddXPZdLZxGds87pzAgGXRG4MZ045WluvzQmI6XAdghsds77W+MvPwy8/ej823/Bh9uRzXZktAVp35PUxVYIIYQQQgjxFZ6dsB2T82kz8i//esO///CO37waeH214u9erXh5FVgtIuernr7LDql7YCQwuPFwgN0Q2Rw67g8d273x8+3Apwe43cPPacmOBVsWDKTcR/Z2TxhGwjjymy5xfW68ugj8/rfG1YXx5k3g+spYn+W+tcsl9L3TL7KbGmsuLUxi9ciRxbJ4pfTkLSWxsqtrJQ+4Cl2nK85uF4zUZwG5GCPjEBkOI5frkYeHxOuXiZdXie/eB2Ja8/ad8ePPifv/eIsve8LVmuWrb7DY0YXA37Z3/PSfG/765x84W0WuLte8ub5kfd7z+qrjxcpZ9cb5CvousYi5rVCu1WWM7oyjc7cd+Xi74+PtyN9uRj7dDfz08YH3Hw5sh577/rek1SV+ucC2joXl9EaEEEIIIYQQ4jGenbCtYbzRIp1FfAzs97C9d7qQOPTOYZerEMcAiVwMavDI/QG2g/HpAHcHYzdEPtzDZoTtGBhDJJhxHiCaY56wACtPLIE3Z8b1C+PVBXz7Bl6s4erKuHwBq4VzVkRt1ztdTLnHrDGXbfZZ5AYL5TAOnvvCkrKArZrXSpGmUOOn2x8hO7gpGARI0eiiES2wXBhdyG/r/MzZ7xe8vBy5PE/8tNmyC8YQnLGLeNfhsWO/23NIPfvdgrsxsvGOTQqcbeD9ZuC8H1l2ibNVCU+OzlmfQ70dI6Xcmuhum7jZJG7vEh/unbuHA59u92zuRoYUSGuIi0AMkUhiTyKVzkFCCCGEEEII8RjPTtgGM86Xke9/d8H3f3hNF1/kljPuDHcDo8HWxizyQnYBh9QxpI67wbgf4cPgPHhgsA66nov1gotlxzcGITlx3LNmYBWdq1Xg5TqyXgVeXsL5CtYr4/zK6BeBfmGc9yn3pu0hxlTyXVPpU5v37eSQ4lx+qVRFLjm3tTBTsjgVl4ISuuzZqXVyZWTIYcvBcsGr4NkVdnc8QlrmvrhXl4HXbxKHwfnjP0Y+/rLg/bsL/vTXB375dODHn3d88JHtGHjoAt1iyWHdse/OOTg8YLy/AR8HbHeDHTaEtMOCF8GehbRZzrtl2OEpMRwCY4o4gWW3zPtLxiotSCwZ93A2jix9z9K33Pied6T8fv6P/y8JIYQQQgghngbPTthagNVZ5I/fr/nnf7rm6sU1ZiEbn5YmV7MNbs29aY3BYSCw98jBexKRMQYsJggHPDK1temD0YXAog8sO6ePuZVOCEYIga6HGJzYjUTLYjQXiHKCOVSB2lRins4AYNkNtjhXXXL3WdhaFuu4T+dIXosz1Z/zpO7gpb9t/bxcwJjgfGVcX8F33wb+4fdLHvZLNts1N7uOh4Nx+wD7h8hhn/h4v2R7gM3e2O6dYXD2+xek4UAaB/CB6NCVkOkxGYdkLEKiN+eiH1n1sOw89+0N0IVEGnPBrgM9i+VI14/s7wb+8ufE7Vvnbjg6jhBCCCGEEEJMPD9ha7ko0/Wrnr//3Rmvr9c5rBfmosc1rrWIxSpxa8eaZKVnLZazWS0XbqrtWMFKr9ksVqMVZ9VK8SnPbXDMsrj1svhUGCqUxrk5AXVug1MP4VmAhpCF+iRsyS7vNK4Rtl5XaMRtOeB83/JE1b2tfX6XC/Cz3BP3zetIcuMwRO63xm4PtzeJwwGGvfHLfeD+ADc7437nHAZ42AeGMTGmhI8DnTudO2MaGRM8DIFVhGV0Xq0OnC8SZwtntcj9dfvI1HN3GENpezRyc+PcvPN8rRRbIYQQQgghxBd4dsIWci/YuOzoznu6F4scCksRiVVE1rY+KU2FmnxKXi0TOaTDODmkIZYSTd4GxqYyf6gBwVmUxiyyQ8iy0z0niloRq1ab+DiTCJ7c22K5WmlL5EU0Q3muLaQ07XceU8V3vW1eGwbNf6fyOVeRLsd1x1Lp3WPO9VXKH1N5FkieingvYjRBGkaSlzN6XRNGj7jngl7RIbgRrZa38hymXKopexH7Xv6tUkr89w9Lfnzb0/cmYSuEEEIIIYT4Is9S2EIRhaVwUhW20OhAy310QgjleTseDEWg5iJO03y1/rBXaThPaqVQEmYlPzaP8UZc2ul+ZsMYgud8YE5yb+s6zaOn+rberN6vndyvs9XrUFxcigivB6k1q+rGzGnulcrMXnOC8+dUI7zrHDUnmNkVDl4LXoXyxUBTAMtqljD12wfGNLI8yznKJlUrhBBCCCGE+ArPTti2EqiKpnqzurRmJSbZGgFoTTjwfLPEGTdzldspzWLMyxrBbPpMyau1MDuiVfy280AjWk8M4/pQ6w/7ye8bc3m6U+fP2rT1aVuBb3i73vTZ5oJVZWArlq2I0vrFgAPxZDfm+dnp2Ce69LNc2RpLPa0C4wj9MhD7cPpChBBCCCGEEOKIZydsIeugGIwu5Hxbizmc19xKhWSavNXPxx5dhFnQTk6rOzHmX1qwI0fVzUnkqsA1LjhUJ7ZalLQOcRWKVTwXnec2zVlzhNO0SLtiHhwm9R6meWfBeHzK1vWd1qjvrfzGzY7d5LrXrG6nGYycl2yTPWvTewqcjJ2GPeJBW7OUFXEsp1YIIYQQQgjxK3h+wrZRR9UdNTsRlW5wqg2hcQ1bF7UKUWaHt7iV2Kkoy/dCc91qQytCt93LPL4Uiyq30qRLp5lnoWhWPteHGrd5vmy0rZW2QF9+XVXYHpnJ5S9rTmKnA+v+50OeBkLnrZSCWtP1NNQ+f99Z2c//do/sWwghhBBCCCEqz0/Ywmx7BiPU0N/qtlZxWSoinxiSc57o6XzzBXOVpnpnitct4cdFdvrkxxaBVsJ5m/DoulczI5Cm4k8BL67tXGQqa2mjHZ672OYt5QLKTb/XUszJ0rzt02PUiQI5lDr/zuf3MT1uRVyXYla04pRG3FoTvjyHQJvl82TS0RsO9QyNQ+74Uc9eIYQQQgghhPgSz1LYZk2bRa2nJuy3qYrMkRton6u0z8o1zVd1Pi+VgN3qoqGI11whuQ0tNiCk2cm1ps1QG4Z8vNgsIGuF5GA+57pO2/YibOcJUh1YRe3JKapr7NjUEogaZlyKX3myqcJxOXCV5tAKaLJLXNsJ1UrKXtapQngyYwlzom3zhYAzR1IbYLF8ISFxK4QQQgghhPgKz1LYAtnta/5kVdU6rVWiWeNctnG400x8dtUam2VsFp/FlZ2V6BziCyXXtp21DC6hyDALvPzrpuRT7V17Epp7ZPw2YjG0D4QcCnwcpt2Mn5J862Ydgs3vpvxpHdk6dtrr9G6L8A55YsfmtN92C95ugLmQlTXPhkfEvhBCCCGEEEKc8DyFrYHFQOg7ulVfQlsbd7P8qO1hJ7cyzBWOq/ClHVNF2KzmZiHbljaurX7mqTKlwJKlRq19Rbg9UmKpye19fKCTZuvTQq7q/PVlvrxyDPPl6c9S6tlKuHX+8qDm4foshBtH9miOE073l7+L8KO8XCGEEEIIIYR4jOcpbGESqgTDQmiCZxt12oTZ1rzXKkSnolH5l19ep5qwDqmKziYPdlrXaxJsrqRcc1Ynh3TazCyog+U5j0Kfy7i2bdDs1DpGKKJy7qlbtje9mC+dpgl8nt7h5NoePegQ4uwou+NH/W/Le2neAY2w/TUiO7/KONu2sm6FEEIIIYQQX+D5Clso4ay1/YwfSzr3R93D6jLWvrWfCTOaizI+1cJOXjq3hqZIlHvJhy0i1Gxq3wNzIaZ6feqvhppn67PYng83V2m2SWHPYcY+HeixQz5y+2Tt0+NOl25F1DY/2+fsSB4fT/Er9alNCbfhf3tUCCGEEEII8f8cc/dH5J0QQgghhBBCCPE0kB0mhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJI2ErhBBCCCGEEOJJ8z9yXoanPkuIRwAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{},"output_type":"display_data"}],"source":["bears = bears.new(item_tfms=Resize(128, ResizeMethod.Pad, pad_mode='zeros'))\n","dls = bears.dataloaders(path)\n","dls.valid.show_batch(max_n=4, nrows=1)"]},{"cell_type":"markdown","metadata":{"id":"BY_WXXiM1Xsh"},"source":["All of these approaches seem somewhat wasteful, or problematic. If we squish or stretch the images they end up as unrealistic shapes, leading to a model that learns that things look different to how they actually are, which we would expect to result in lower accuracy. If we crop the images then we remove some of the features that allow us to perform recognition. For instance, if we were trying to recognize breeds of dog or cat, we might end up cropping out a key part of the body or the face necessary to distinguish between similar breeds. If we pad the images then we have a whole lot of empty space, which is just wasted computation for our model and results in a lower effective resolution for the part of the image we actually use.\n","\n","Instead, what we normally do in practice is to randomly select part of the image, and crop to just that part. On each epoch (which is one complete pass through all of our images in the dataset) we randomly select a different part of each image. This means that our model can learn to focus on, and recognize, different features in our images. It also reflects how images work in the real world: different photos of the same thing may be framed in slightly different ways.\n","\n","In fact, an entirely untrained neural network knows nothing whatsoever about how images behave. It doesn't even recognize that when an object is rotated by one degree, it still is a picture of the same thing! So actually training the neural network with examples of images where the objects are in slightly different places and slightly different sizes helps it to understand the basic concept of what an object is, and how it can be represented in an image.\n","\n","Here's another example where we replace `Resize` with `RandomResizedCrop`, which is the transform that provides the behavior we just described. The most important parameter to pass in is `min_scale`, which determines how much of the image to select at minimum each time:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ynWLPKRg1Xsh","outputId":"274e0947-8824-4fc4-d0ac-db0e58bea6b9"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAqwAAACvCAYAAAA4yYy3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy92bM9WXbf9Vlr751nuMNvqEFVXdXdUre6pW7LsoQRSKaNjWXZBFjYQYAJjBUQRPDECw/AA+BgjOBP4IUgwsgoCIYw2MYmUBvkAaxAgzWiwZJ67hp/4733nJOZe+/Fw9qZ5/yqq6tb6qHqp85vxa3fuffkyZPDyr3X+q7vWlvMjAULFixYsGDBggUL3qvQd/sAFixYsGDBggULFix4JywO64IFCxYsWLBgwYL3NBaHdcGCBQsWLFiwYMF7GovDumDBggULFixYsOA9jcVhXbBgwYIFCxYsWPCexuKwLliwYMGCBQsWLHhPY3FYvwaIyH8iIn/lHd7/tIj8yW/mMS1Y8NVgsd0FTyMWu13wtGKx3a8d3/IO62IkC55WLLa74GnEYrcLnlYstvvu4lveYV2wYMGCBQsWLFjw3sa3tMMqIj8OfAD46yJyLSL/voj8oIj8PyLyUER+UUT++Mn23yEif0dErkTkJ4Fn37K/HxORz4jIPRH5D0/+/oKI7ETkmZO//WEReUNE0jf+TBf8fsNiuwueRix2u+BpxWK77z6+pR1WM/sx4LPAj5rZOfDfAf8b8F8Ad4F/F/ifReS59pGfAH4ON7z/HPjXp32JyMeB/wr4MeB9wDPAy+17XgV+CvjzJ1//F4H/3szGb9DpLfh9jMV2FzyNWOx2wdOKxXbffXxLO6xvg78I/E0z+5tmVs3sJ4GfBf45EfkA8APAXzKz3sz+LvDXTz77LwF/w8z+rpn1wF8C6sn7f7ntHxEJwL8K/Pg3/pQWfItgsd0FTyMWu13wtGKx3W8yFof1SXwQ+Jcbvf9QRB4CnwBexKOgB2Z2c7L9Z05evw/43PRL2+7eyfv/K/BxEfkQ8CPAIzP7f79B57HgWw+L7S54GrHY7YKnFYvtfpMR3+0DeA/ATl5/DvhxM/u33rqRiHwQuCMiZydG+IGTz78CfOxk+y1O8/uXmB1E5H8A/jXgu1mipQVfOxbbXfA0YrHbBU8rFtt9F7EwrPAa8KH2+q8APyoif1pEgoisReSPi8jLZvYZnO7/T0WkE5FPAD96sp//CfgzIvIJEemA/4wvvb7/LfBvAP9C+64FC74WLLa74GnEYrcLnlYstvsuYnFY4b8E/qNG5/8rwJ8F/gPgDTyC+vc4Xqe/APyTwH3gP8YNCgAz+1Xg38aF1q8AD4DPn36Rmf3fuE7l583s09+wM1rwrYLFdhc8jVjsdsHTisV230WImX3lrRZ83SAi/yfwE2b2X7/bx7Jgwe8Gi+0ueBqx2O2CpxWL7T6JxWH9JkJEfgD4SeD9Znb1bh/PggVfLRbbXfA0YrHbBU8rFtv9UiySgG8SROQvA58E/p3F+BY8TVhsd8HTiMVuFzytWGz37bEwrAsWLFiwYMGCBQve01gY1gULFixYsGDBggXvabxjH9a/81M/PdOv2l4JBSGjBmqVoHtCeIjqIwC68hCpO6TeoOUaG/dILqzUvyqXnpur+7C7YXz0mDpkDlWx1TkAq9t3kM0luVbGkiEoEgPaJTbbrR+DGQEhBCXFQIqJagWpfpDj0LPb3TAOI2BoCH4O6v752dkZUYXD/oYUA5v1GqjkMQNQysh61WE5k6JglunHHZUCwPpiy+3nnmV9eRvrziEFJAp5HPx7aqHu9sgwztcNOV5XkeMvgoAGwJjZbjHA2nYGmiEaENr7AZMEEhFNSIjUVULiConr4za1YGUAO2BWQASRVbuhG0TXmHaYBqx9rZovtiF1oPY32HAD4x6pI6hAuu0f5wXyeJdq55isyWOklA7B9x80AoKZcfb+D56c/TcHP/0Pfm223dMsgmCIFMz8etd6sriI+XsKbuNyg4Zrgl4DsKn3COWAlh2x3GDjY4INBNxuDo8fkQ87Vt2KGjbcDMJ1nxlKpjYbjNszNmfn3Ll9F2qh5B3jOM7mYTWTxxGqQVFqrdRa6fsegForKhDN2G5WrNYJk8xY3PbW60RkpAuB9WaNnp3BxQXrZ3wZaz2/QKpR+z355pqOSu17qMN8rYSIIIiA6uniK1Ax3DoNVUWiQACTNpSEiKY1hA4k+Q8FM99/KXtMMhoCEteYXmB6DrJFWvwsQCk94foe5dHnGYZ7SCh04tewxnNIdwndC2h6H2a3KGNHv/dltodeqTWhYYO0caeK/0znOP2c/n5qL9PvL3/0I9902/3bf+snTaphVhCevP5feuztfauYVQQfH8EQy9Denz5zOvZghSfbStb2uyEUgj4mxR1RPCOZ9IZQ9lALKoJpRWpBq9t/tELEUKsM40guPuaEZvullPm1dB2CMFzvqAdfbfLu5S0ePHhAwUi3nyP0metXvkAtBwBuP3eX2CV2D294/be+yEvPPs/+8UPK4LbVj4Xu/JzVxV2ueqG/esSWzMr8+Kw/UIcBFWV7sSGdK906kFaXAJy/9J2cfegPUsKOqy/8Q9LwBmkd0DsvABDObmHDntK/Tq17RoTN7Zcp8YJwy+evuioMY0+3viRubiPrM1DFpmOgYBKRuEHiLah34HCLeu3jpowdJh2qK0QSNJs3OU4k1eTt72d737eB1QsvflNt92/9jb9tWitqNtultddGdZu1isjRpv20mt022wsckOBzLXFAdU+nV6T6iFiuCeUKxcdDI5AJVInEVYdEpeaM9sXHUWAcx3kcDSG0MVToUgeAxoCq+hyoioZAikIX/PKdnZ0RglBrpesSN7sbrq+u6fe+/0ePet58UPmN37nPT//Cp/nCmwe+9x//o/zTf+pP+f67iFWjjKC5kOSKe6//Mo8e/RYAq/WeEDMpGl2M3L294cMfeY4PfOAWAJfbFbmvqApFRnK4wMLHSPEHACjhZQgb1qstMXSU4tc5Z38uPvnJT/KT//tf41Of+hleel/HJ37wD/DP/sgPcnE2YvYQgMDeTUcDhIRpAg1Ysz+VgGDuZ6n4+C0BmcZ9ErACMsYAkqkVrGr7fIdyFxtuMVyfU/s1WMC0zYtpSwgdpRS6F17+snb7VS0cYE8YYEEoYAJmKGAq07hItWaEtSKixJgQU0T8wOtgPk5WbY4Xvk1qjg6RYRgoBhIEVSXXiuVCaA7nZrUmiFBrIecRKRmrhdC+I8RAigGxSik+wYvIPMj3+x01JWLXJrg8AhWmSQC4vtmxCpH1ekvXbelyYhh3vv9SuXr1iyQz4q2IEYFAiH6dbQRE/PxKRgVqmaZ6kGnQVsUEqvl3HydNQ3RyrvxRFhNEJ0LcHRkku6MjhZIHlIK2Wy2y8vtWK1YMofqg1wY4QUEUMbAS3fg4mcAEJERIG9AEZaQaoGdt/1uCbKF01BKoBczC/P1vP5h+8zBP5DzpsPoJt0F0/vf4dsAw2vWyikmB5pBKLWAZsYzVjJiRh5HDuAegjCP9zTVX9x9gYU2OG2pYE2KkW7t9FzNKztzcXJOiooBqmB2LMWf6/kAtRpBINT9ejc22JSBm6DhSa8EIdOsV27QBYLNdk8iUsSd1CU2RXCul90nfug4NilFAjFoyItVt0M/STaQ2t7T9y8m9NKtUDE7sVdvgLhawUsCK208Ms5353o/Xu5i2iQqMyjGqM9CArC8J5TliD2V4BM0pF1FEVohsGQdhGDNlFKzE9n4gxjjvz5+7J23Rn5svb5+/H6RSLdw9/v67eh4FrKPWQlWfmCsZfxaa41Eq1Iq1oK9awQTGcXBnFSGoUrI/P0ED2oLYcXfASqX0A9s29udxZBwGzi8vGS0x5MqDxwfOz/y+xrSiv9lR+t7H3pqp+xu0+vGtzAiDUa/h5iqwCsJht598PqwvKImQOiorailogdQm9nh4zPjGp9nVK8b9Y2JUdHVGzn4V674nlkqwiKrPHR70GlLa2C4RCdXHdQxt44nNl14R1INC87nDilBLe74tNmLhS+/fU4t2ImbTmHFyVsbJ7+06W0Ss3TQUUxilILVCCRiCyjQWRAS3K4pQqz/rGkDbMxwASoFSCCmxjhExZn+inMwVtVY0BMZxpPFTiDg5Vmvh+todthgT0rV5/AJKfsyHv33N2a2P8cr9wAc/8j20WJmxjgRim2syogNm14ATIeOwgwpaIzkLjx/ueP2L9/i253yuHTZCqYaNSkiFmDJVerA275QdIQUkdFQUER/zUvLz++Ef/mf4oR/4Ph4++iXWm9c5W+9YxwGRjFpq55h9ztSAiGKTf9AcSpHQCB1DTnyWyaxFQCWBVDzwrfO183+txcKC2dGn1ObwSrv2Xwnv6LCeRvNTpO9OTQVz46gYWt1p9c8cbTLXwnazoVsLD9+87xd/P6BEjzJDomKMuWJ7N8DMAbZbJChmRh4zQxkJXcfNld/g3fUN664jpUhKkaCB2HWUFlFZNboUUYyqhX4Y/MI1Ay5ViEH8ZpiR0gqzwuGwb2denWWzShlHdNWxSmtqG9iCZaIq7G4grRDWENdUO5kgVfHnoWCluHPRbl4Ije3VdlXbiCocWZOKG4YbQmwT+8SwKupeOKIGUtu+S2NNAHEWpLZ9Bp3u59hO0b+tlgItmhdthtWORkLCRCHU5nArIrfaOW4x65oJBQRFLWKnTse7ONxKczKPgyTz7yZHu64ng5Ug7ZCLP4w1ohaQ6NfUasHqQLUdwh4rAyUbue2j5AEZM6Ef2ZUM55GwvkS6Fbn4NtlGQhcZ8oEQVsQQEBGkPYq1FMImcDjssdqYB2UO+MwMnYI/LRhGHTK1DfBDOVA1o1LY554uGqtNguKMhPQDYb0iC1Rx5kNqnVexdlbVqI3lp7Y72WIlFSFoIIg/H9Uyteaj8ycKFhCtfh0784gdZzOoAa0KNviEUisqHkxZS0dUBK0RUgebc5IMRDGknUNNazRcQL4NdkEelMqWqM5yhdjhuzagukOB+v2d7rNM45W1Z/BJ+1HVp99pFZnPGX63TrhgtaOKUcXtv5izJ2oZUejUWSdrma0gilhtmS0IIUKp/gNIVESM4dBjxVAJYDJnxh7eu89w2BPOLwmyRruO+9ZxvroAYPdgR95fs7//CMvGgwePsFK43HhWaRh7rAwcHj/kmcvv4Ds//O188bd/g1c/6ytirkKHoay2F2TtEAYOhx12eAxAzp8hP3pA7uDyViKstkhYcdj5vKP9jlUMYAMSKxKV4XBF3XRYcad7pRvUQnuQANp4c2J7/qwrZgKmVFNqaXPDFMSJcOLlPhUQK0hj+k+zFx6M2zy/idlM3lhjWN3NnN6Px6kj+8CTRajWEewC5AzwuVqlEgN0EaqMYCMlF2odCcE/G1NERKgiiBl93xOCHrNCuPNaSqFNigjGMPp4M4w96/XKfzZbSikM/cDQArE87okycLmB0dZcPvsSm7u3mLwJRH2c1YLGkf3+AbleoS0QlObIlZypNnC2PeewH7j/pi+QZSKQI/1uZHMRPFud9kR1EqLUQrBArUpQRVTatXT7SSvj9nPPcHn749RcCfIplAx1NdtdYxlBtWV8BdUwk2Qz4Vg9MC0lz9cffM4QBqBgOjbHVWafp1BQq7NPA+6n1TnYNbQFau+Ed3RYa63zxD6FG0J2lqQqakcH1WZnsEI1T0tVGAZn5mq7eD7ZKkXEH1QE1Qix0fMSKLVSaiFbpQpIUHQyqHYbsipg5DwyhuDOa4sGDGuUf+Rm6Cn5mBIASCkRB6UTHxyG3d4p9IMb6Dj01FoINXMdAofLC7bnG2Lwy6UY++sbKJUOoQu3sE7mczAVqhlB1aOWWlHRmVk1P1E0RlQUCy1ar6Vdd09Zu6PiD7g7U+1uqqAqc5rIMMwUaqVOhoS2CSuDjP53O4303aB9YIyoJGddT+a0Ot11VTQpKh1WfPKoeU0uShkrdRwJek7QNWUKS9+G1fpm4nTAfDJy8xTAEwPq/I4hVlsGweaBZGYEG5tkpVDGEcmZLiVK7w/zWIySKzkXSg2E6vaec3F5CyAxMPQ9MSX6vqeIEoLQJbeBlBKEQC2Fw343p7Gmo1x1HavViqEXuhhZrTpqHulbWtRSJFNJAfqx52p/w9nQc+f55/370xobDA3mA3kt1OrPi0OevF4qLfVzcl1bZG0iIOqOycRmVgN1JhoTrO7RIEhjpJSIWWwMuCFWwMYnJimbnd+KBKWGDuIZaBsj0gbRM+oYgciqWzPmDrFpcJVZTmNPksNPBaZj92fzyfcmR/qtKWGrOrNyYkZtY8mR4ZAveRZUJ37bMTkP/otgRLd5UvtbIJq45Kl4FszK6PcQKOaBeR5Huq5jSuhobNOMQRkyViubtCIPhTJmbnY+8T68/wCpxj5dcSnP8fC1h9h1Jke37YtbK64eHcj3r7HukutD5nJ7weqWM1G3V4nXXnsVMbhzuSXvH3O2jZxt3W6Gw4ACl3eeYfv8CwjXXL/xGXLvDqsOI3l/TZQtZ/EWhZHHDx9B+36NiSodNQRMC8aIdgWLIzU0Flo7VBSNEQkCsWXSJqddFaq6D6eC1doCvuka1znNOjl1HLkWz3y9Y2agXeh3oTxFphnDjtlK3m78bX/3f6aU7HS+5qHl9PkKnvdaUSRSrWLSIcFtJmoG7Qk6ECQTxZn8Ogpj9ntSSvEMZTuCFCOVSp6dLmGslRQiIQYf47VS52fBiHHDerViHAaurq447A+UoZEQ/YEyjNQxQDViSqRVx6FlfFQVlYKkihZni02Z2ctQjRSUGGG9ClxcbBEx+ubxjvsVgYgIhChuezJSJpdYAEtYVUycAOFUdhHcV4p2i5w3mGV3NCXClBW2ilnx21J9bBCVI4ElhkjweaIYJoqIHDNrGFJGz9xZaXaqM5FiKGqK68fU93Uy/kwStK8UUy9FVwsWLFiwYMGCBQve03hnDWutM4VqdsqcnaRWpTbl41TY1CEyuAbCIoe+x4YD0qIdyyOUQjWhhgSdIjrpQCFbpR8HUCV1ibReEbuupShp3xHA4HA4EINi0RmbIhPDYlgZyeNIMU+Xxy614irouhWlHzjcXFOtEmIkqnBx0TQjh4BVQ+tAtcI49txc1/kanG86VBL7a9caagxICJ7iwlP4pWk6paXt7ZTJqFCLNX2kURs7Utv+qxXXihgtXeZM1jGwPtL4VTwtbCV5ZGPH4hlDwIprzIpLDJ5kWCsmFcHvo+urJrjGMUalmFFFXaMyCXPEReolG1gE8fRBbAdZrVDr71Y39/XD2zKoTatyWhDw1m1qLScMq7nU+hhoU81Zuy5G1Ayp0MgsrIqr1iQQ48pF5GMmI2g4xoYlFwTYbrYEEcaxP8keGEE9Y1BzJOf8RBoljwMqHsWbuObV6iT8gJvDgbPVmrTakFaJfrim3tywe/1VAC5e6IACq4gG8QyGKoyTJsD8+FpWw69YPdGouzxIVLzwBnHZhB6zB1YLwuhSmJwJIrOOEDNqnljagungtiPhRJYQUKo/xxqQuAGJWGljiK4JukXlDMsdpShWPBU23c9J+0178o6s61efGn83Ndi/N5zKcd7mXZG58NQ3ewfZjghmwa87k84sebFrzYQyNB3mkQW2XBiGA5gRUCjVU7GnevJScNWhNB5Q5iOQXCmHnuvxTa5eLQzXA5sQub3xoqgHr73G/v4V6xKIt5/h1p1LxAZ2N144cvv2HTZjJvQZSYV7D77IOmRu33WG9XBtHA6Z6919YnmGoIWcC+tJklW98CuLwpBBBmx8RFh55k23l4TLuxgrxnxN0R0Xt11esLrwguAshmoidB2SAqhrJPOU3Zv03CqtriAjMrreG0CiF1tN2S+RI9P6LQIjnxSZTZIul0+AUks3y0xQkJgZzTM7xkCQgoYIuUm5GuscQvCam5Ms0SmqFdSEUjI5D4S1b7FZb8klc//em1gpWC5EY7Zrq5VSMmP2mpn1ao1qpI6TRtazrv6sBEw6jJXXhgDUA0Jks1rxzJ1LglaCVPZXXjPzevY6gxgzslpxtt2y6jaMTVstQVoGZWKs36rX93HaM2VKzhCDSzTm4cACilJq8Qy3GaLW2NnjnRGcwRZsGl6P90nGSd+AmWIWEVm327RG2FLGSB6VYMkZ1mn/QpuX33nM/QoOa24OU50FzGIKpphUqo6MlnGi1weFoBtEM6K9G10VxEbIrseQeqCWStVI2SQ476hmlGnWBzAhxki3WpFSapqRfp5oKubOUQyksGISdPdNY6oKY+59csSIXWK72WDNgG+urhATUuhAKqvtCsTom9OARtdoaMfl5QVjHsnjAW0z6jiMhACbzTlahEevXpOGju52uznrDdgWr5ntqDa4nm4S5mslBSGYNQ2g602lVWQHqssAzCeZinrV3nwP3PiNaUCDYF7hL7NG1Wl7MwGCPzDtuk3naBpBolf8qYBWbC4wGhCrYIpy1KrS9GyimUikWkcpXthDNxCYRNzxiWrQbza+nFNiTT91mlKdt7UTwXhzTms9PtSV6Xk0EOXs/IIHr99jHPyaqAQsJCqZIRfkpvdq3y7NabE8ZDLG7mZHfziwWa1ZrVJLq0OMXqgXVOmiF7H1fT+n7M2MGpSoQlCXvRz2A3UqbJEWFNY1qVtRhj1BKrG9b7vHSDDo1l41L56akiblqMUdYAnNARRtKfpW7emqWT8O8eDRd9PeV/V0kRqmtXn7+aiB95x1+4xRbfRuCHaUuIh23pFCDNGApbXrYNskZbLFOMdqwiTi7lFznqANfm1fbdKfnO8n7GDe5slU1NPnqH71ePLcvvQ87WQCOga3k5xLCKUg/Q4b94y49j9MzoUV8jCSUmiyMN/h2DpcaNBZP5zH7AUueizsSKqQK+NhR63iBSEhkVauD63ihboxBspwgLol24B2/uw8uH7Mxe1bDGPhMFwjXc/2PNIl3/96FXn8KDMM93nji7/BZmWkfENq41Q0qP2ezcWa4fAGtfas4uP5/cId9Pwl1ttnyNevse9fI5zfIaULZOVkx2HYk7xilmq1FaIJUzVqnzMriagYSEF0JKQE09yVA7BtY8zv8Sa/W/g6+dVGfjI1PL9WZ1xkxSSqd2LMCJIJIVPGHWaZpEKcZIZNkmFUSq0IguoxWJNZ4W7U0vydqLNUYbfbUYaBVYhEhDyM9Iee0rTXeRyopWDVg/+YOky0dcqh6fpGzCJVoMgGCbcJXdOo1mv6cSAOwqOrh2zXCakjU2cJdl7QfXm5pj+sibs7aHweE5d5xe78eKmqtXHUnvRbG4El6tI/mwgBjkSJj/KTcytQjdI6gKiqd2yapF/mcpaJ/BHBJx/MHTCJYCtENm3/W2CDlYjVVveiikz+sLgkRL6C0b9z0dWsYa3zhOZwraMXhajvphVMFE2oRcQSYiNigRgS0k1VlYlsI8UEDYmikdo0JgAxRpfAmZFzppQyOxap6fyY2yr49iEERGHdGNRSRqK4ajas1ZnWfiQ1Dek6dmDCMBpIIOeOkJQQpwmzAANjP/La6w9Zr5Lf3MaAjmKEpJQQObvzAUQ7dnED6UUAuu4OMZ65o7fpmvPTY9UNtNaHSDpgekMZb9Bh9MFruvk0B6CKRyraAYGc9+390RkrDUjwtlYiU4X/9HSX5oC6Nc0s3TS5aNMOaYuktBn6zKS7s2G1DawyaY1ONHHqLFxtTrNXWDKfw7uJt6s4nLV/Jw7rE9va5FxlrAqhMSHW+iGVakj7yRTPHtD0wgAWqPg9C5rQkKgGeczkiT0XIaySa9eAnDNmhdwE+F2XSM22U4qM40DJI8PEwIozm2sNUCv9MJKHnr4VDNaS2VvhcH3F5Z1bdClieWR38MIRCZGuU9gENHVkc53tVOlNNWJoRSOiLXuQmEYWq62AsEXnMs+rk11oe9ki7epFNybjfB9EvN2a2VQsKM6yMulcmfXUjYeFIIRWlWv1wjXUVclDhqKktG7BmTPCE0PlscVbm0Mt+KrQbuU88dVKHQ7Um8eQD6TNCkVm3fw8cQdh6HtS8GLRoTmsq64jJA/eDoMH8VaN0ruztl2tsTXc3H9IWgu379zh3v0HvPbgHgCP+z1dDNRSGfZX7K6E23fP2fWlfX+hpsjdZ25zNUY6iaw5kNvxBxHGDKtc6fMj6k1PlEob9olS2T28R5WEdb23GWJHtKaBHQPDcMnFMy9j2QhasXTp+uroDGuig3rwqu7iin6JOrdXEzN/NDx9hlCQmJE4RcWRmiuV4pmGJxiu9zbMjtmMt8tenW43QWQuNX7rVk+8smqINIfJwuwoUUNj87Q5uVMWwQP6aQ/uDDVi5sjpTwcENmWRhBgiFpizuqLe+spKYXfoKYNnjaYgJGNoc7jUK6oxkabR9HMsKKhSq4JeEjcvECZ3pguUcc/6fE3qjF1/xYM3X+f2bc8srG+dsQ1bJD1PrS9R83eBfTchfrAd/mZmVyfWV73vaPt+/5+75YHZf6NQmVpxtiKp1hpPVSk1H+fGGFpdjF/DID5mT5l1d4iLz4cSnHRgDRwdVmv1IKon2bSpqEulJfTfOep556KrqaIK3iIJaCds1Zk+S3OXgEE6QlgRpEOloBGk9khr21GDUNS75lhQQpdQujklWq2yTt6SqZRCbszQ5IyCt6GaTtQnfHempnSXmVe1pxgY+4E8jM4CR7eQgkdbMUKVSFqfUQz2Lcrdbjd0ZwXb3dDZmscPH1OyEUJL+xRPU97avETuPsT57edZp0tyaAVJnKN1jRDRFAlRCZrRNmkn3SNcU+s10t/H+BQ1X88MrlJ8wg4deYTDdaUMPdJ6z3UpE7QQU0BiQmLCUsv3T9cgtIdYhUkA7cbW7qLSCmpk9jrspLUXNqXOJ8q+bVOn95lTjMcB6m0Gg3cJXyoFOLKrYse2Vu2N9s8xYjTzKvpCnWfsoN4X0WogF+F6t4M8QrPRauaT3QqEjiLCkEdqUNLKJ73VZo0kL6JS9cm35OwV8b4XSmM8y9gztu4Sq1YJfbY9g1I57G8wq8QYWK87uth6lJaM1p5qxv7mhoNUzjeJMvg57u8/RlcdYdW5FKeC2TGdrrgZ1dcXiS0AACAASURBVApSK1YEq3nul+fCfA9garXGeJxU4AvQChasgpUANh6dSRGwjBUfGE0MkeoFh3qUakyuJ9QTWcrUDq71CDSXY6hFRHR+/ksz40kGYHUqWnxyMHyCXX8P4q3dDE6Pd+p6cmrDhiHaGJLgvT/ntCUy78/qaTHa0fZdBtRiWQGTnhQHYvWipC4/QPqHjDdXaB4Zxjf9DjWHFase7NRMRaldZHfYU1rAF1vxR82Vw26AoJRaPegA7mzOGfYV08Q4HLCy50MfeJE3Xn8NgNXNjlC8gDZthP7mATebQG7O4lAyDAfW+YZnX/og/eEhpX8TQqsoZ8/m4EWiVgbqIKip96sFRHZECZReWEfoqhKIlOiTLlGIdh8pd1EgbS4o3YbRCivxfXRRqLk0oiASQ4eFdDS9aqCtBLn6NRPJWJruU8FqAhLGmlrXiCW0BXOTDE8IXsAs+sS4dSy2ee/a9VfE23ZHmMiY+oS8x/1GmeemFBNmlTIWxsYOQiGoYHiBm6q4rzk9S+rPhpUK1orgss2FX1YNy7mRNxBXkSBK7qeiLWvHod7n1dxpiy0IqeLPW62BUgIh3ma1Nmpxuz1bfTtdEu7eWrPpCsPhAfce/DRh5T3P0/ocjWfAyyDfSUofx+QlRnFWP6oQTsiqaZ6bjU6Or73av5EE7Xr61R1nn87HVTl+Fh+L3OEszmXhrUpl6hOMO8vW7t/UytRsYpkDPr7k9tMhJ8fs9/wr+wxfsa3VRKrV2VGZ0qZ+wu7vSKN5AVljNngDe3GNZJXjhIh4P9EYOiwmigil1rknKtUIhNmBBXdKr66u5qbT3WrVmNWjrrPUwm63a19hUAb2+4yKsF1vUITUdfP+Sh0ptfB41/PGY+N6VO4/9oF5c96x2SY23Uinwmp1h5s+M/buNNy6++2c3X4ZLp/jsZ5xdb0hpUtCbG110pouJUJrgZJUiLIhNANL4Q4xtJYc6TF05/RXX6Q/vA6A1h1RYbcvvHl/x+c/d4/PfupzjDfOkr3/hVv8ge9+mbt3hG59Q1wLtfX105YGEY2NBW2tKcRbT00eq4jr01D/Me/+zrHRuDYjb/pCCy0QPdrBFNF5T9jolYXvOrfq+LKR/cSweldjwOa2OlDQKmARE6PqSKbOD13QDSo9KnsYDBiw0kP1itVqUFYb2N5qTpOniWJKrFrAFWP07gClUKx6z+CUsNTYXjNKHrDWOqRSSauObft8fzhguRIlIgnSpvOel5OzloVufclqlTj0O8RG+mFk3XlatSNy9foNHWek4QwJ51QiuQ0FVkdq8X57KQhqxe9vczpEKzJJVgD7ErnKlLZrTooZauNxXJra+YhraVWD26BEJnpeFEybHtsyVEFZQesZ6ONOJlApNVGLkHUkhNZ8XXwhjumeH5voPInTQOu9pAIQmXouH7XD09+ftOuT5+1kAvY/Ned0ChTa3DBpzzwoOJ0kPEU4pQW9696BLg6E0TNDoV5DORCqO32l3BzHA3wylOTjOShlOND3A92m9SDOhuXCzeMrci6sNpvWPaPd9xDJhrfSs8LjR/co/Z7+kS9Ks+ZYvVwYvIVPTFy+8AEA9ibY/gE3NcOhp1ufEdeZnHxe0Hyg2yhDXCPxgtvrW9SH9+HgLRdF96zWAl3ylkhWKCKtIw3UOGD9Z7l6szCExObuJdolxmHH0LdjDIGgpS3B4LIslTB3vpBYUFxL6PO1AQXilOUpSPcYasJq78GdbTyCxAOPqlMwFmYpzgQ7dQLec/hqj0tnW3Zm9OScxNocdrR1o9meKiFF15mWZuvTHpsjY63dpJw8R9Y6CPliHRWrbv/TvKACZ2dbJyRai8o8jLSkGCruAKcYsK7z74iR2Crki2Wv4G9OmRGJ6YLQZCSQSOuEaWB7ueHZ5zKf/fyei9tOgJ3fvsN2fYvLixc5O/sg3fplhhq8GwsQRU4Y5tocxTqPaUfn1RcSmdpjGpNkC7BpMZ02r2fmOgag+W9yvODY/H3QxlnxkbZKbZILZocXzPvqB/MWWFaP49TvAl/RYZ0Prk7U3GQ8noKWmfqeGJQ1pR6wUVpqzuhQ5j50AlHVV1cK0Yt26km5j0IZ/eKFEAghzDrW6eKFGMg5M47OMIUQnlhFRVVAIxI91VnFU61T0HDTH7h+9JjhkHnzkfA7r7zG3/+53+L+jTOsZ3fPObu15bs/9CzP3rrgYjPywvMv820vfsh3sHmWw/ZZruuaOnobk1gyKfrAHssNg8E6BqJtCGVDVqNOBUklUkT9xsVnSPqHWcfvIFx/BoD+5lVev/86X3z1Pr/z6cf80m++wq/95ucJjSV7ZnPFz//qff7sP/99fPjDa+CaID7hzEUVc0+spifBC6NmQaYGRFLrRZdc6G8nsg+BSeSOuUM7tcEGf8hLztTijrGGMKdifIN3sqxvPL6shrU5qza3XjnJIjTm/Sh5MSgKjd0o1orOLFFtJIaEpkTNrYcqxe0uJCy7va4I1GreiBoPlqZWVSl0aPRIPDX2XxRSWlHyQM0QVxtvy9ZYqFWIoDAMIFWxukaDO3DgjOPj6564H0nR2xuVwMyQ6q0XsHTGTm6xjS+xWt8l6IawniQ7lVp31HIf6W4wHmP9Hm22IVNvWNTHBE2YRXJpi2qE6nrpuHId7Jz7mfTh1ccCbZyfmpuZuCzFtzmyKT7OCFMRIO23id1XVWqdHLn3Brv/tWJijJ6ccr8U8iUD/lvPO3Hsn+1Eg+JxQRVDn2CyWnq6lqYUMsyuWUud+0WqZFCIXcfh0JN7Z53mcRlhHPPsiOWyJ3bJFxgAqJmSC+P1HonBF+LIZZZ6DYcDOY/NKQW0cr17RJw6PnlahyDeBzitAvvDgS66Q3z57EtQXuD+K79N2d3n2Ytn6NZbMHcM+t0B1oZ1z7L9tu/h1sWGm8//Ovpw6q9thFUgdxvKOhC2FVtnatfmti5Two79/hV0e5vb27vuIFkk76ZerpkQV5gqVV0OI1pnoiBodG1u60HrUcTJgi1qaKpOAJUVQqXmkdKCZrOmDTQwkS+xEJF3b+gN4iSAO0ITezmNtzQnygOOeXxuKw0dpUXgI+nREVLwAM58c09TzxWajAgWApsYGesNQUZiAmsTfqkGJftiAjE0Vvuk3K96Oydnt70IuWab75kGdVLIKmMZvfizFsa2YIzVTKyVFQPoofUhnTqB+1gZxVtEpa6Q1eVQx/rHzFCFx72i+4h1l5zd/S4u7nrP87S+g64usO1d8uY2ezVyHUlt3jHxlTbFWraq5JlQACcRrBqEe5g8RMzbTYmOx8Uza3IzfPJGzAGRVffZpoys6jRGTf5AAYr/axXMJV6TzMs3PkM1+HnXQqllHhs0BlzX+s429o4OqxfdTNH4afTOrDkVWiQyGagVQkiIbMEGqg04EzA1xw+EqNQYya04I5hRDm21kRC8j1pl7p1a2iRfmpEf9ns0KiEGggqx60gpsWppV8OouWeS03UpMQ4D4yRs7yISAuMIN73wc7/yO3zqtYGhLVv6IMPtMZD7Pc8/2/GhDz/P+5/5MEP3HABlXBP3SiWjsZLSNSUcqK3RsDfndelDSneRepvQnRPiHT9HvYUQvNdrEIpdEuKa1PoJXg9n/LVP/n3+3t/7B7z6+n3evMqYbvjYRz4KwPf/0U/wyz/zSf6Pn/4U/+ZH/whna3XjU3cqHW11MV9yhbkx8BzwTFrDxsKItirGo/Pmvdem1EFzHNogMB4CpV8hJoQgLc1yjIz9s+9etP/lGNYnlracZA8zS2R40VmLhKthOWBNwzZKh8UVkQ60IKFHQ6C0XnalCBYU7ZIHSKUQxbtHTNKWnDMpJVJKDOP4JdIXUbzvals+sJbMuHc9IIDGyJhHdxJih6QtfR7YbJ2BXW83hH7P4XrHzU1PCFvGomzkGf/+9FEun/sgcXWXHG+7fMU6dOUDSwxC0JEYblAeUfJDkM9Qe0/LqjWGlUC1xGFv5OFwlKvEkZgESQVJkZoUDXW2S++iIK5Dl+COq9DkKe02iNDypUyckQfHM03bJBXSJp4Tsoqn3V2lTQrH8/my271FMsD8rE4bxBOHZkTFSKESQnMesjF1FRE7oNZTzHWooVYobxKCEswDcZURolK7jvVmS73ek8tImTSkZXD2MLhToCKEmJDWgaLWTO4HorkGzvJIF3ReDrrf31Dy4CsGqk/ooQvzCoYq3i84YCRZE7rIGLxQEdyxCN0ZVYWUelbrSs7Hla7QAFFQveDu+z9K1w2U/Aqk1j2mZiQkdHNOL5l4O3n9U8t+5BQgRYJA3AYkRqiByGpmwvvdY0J3hiacBAiuR7XGZIWQXJ5xoq/01cOmqveMaQ/VP0tVoDB1arDi+ndlWoo3terv94LVv/14f5xDvj7H6E755Ii0InCmYnBtqetp/GhHZkbOxamzlo04rRmJqqgmJLoeNZfqxXB42Hg4HOgPO0oeGcces8o4ut1PPVJFCmoDtewIdU/XMj7ZnGGPCi6bgTEbNktRWg9lEfpDz2MyNzd7zrYtYxQL3Up8nigjsRZWq+6kK0r1nvbW/LLJNzsmtfHe43vG8SF5eEhK3nd2curRhDCt9NiCApV5apxcvFlmhZ/LdAzegSF5oa0ys7zzKpHkRgKdcJ6/BznW06PoXrBgwYIFCxYsWPAtia/AsB6ZqDkCfGsKokkGJr2HF2Uo6ArTDSIDvpLSpK3snArWSOq2pJAY+hHrPe009j1D3TcNl7XVtp6MltarRLdauUxLW4WzyKyzHfNIoLJZbTg/P6OUzEGE3b6R9AqhS6y2HY++8IgvvPGYviQOLe2yCoFaIw8eZj7y3e/n49//Q4TtJfvcGNwxkvuemg9IeUDd3HCz/wwpOct063JF2CmsCnq+RdaX1PEuafX+dtE/ROheRNlCiS5ologGTwHceu4jfOJP/nl+5Tff5DOv/CLD4YZSR37jNz8NwHd95GN89Hv+CT77j36KV9+45sMXa4oVxEJbTcJPUtp/flWaqmq+jJ5u9WIXL6TB3lI8I8ftvJWWzZF+0oQRm661UGwESSd9Hq11Vnj39VRv35OVpgt7sh9fmdKXtFU+KvNqHVlWwIoQ137NJFD1yHKFFL3yvjEAqUtIlWO7JTxyPRwODMNAWnXEGGdxvn9/Zre7ASvUsUfAlzeeGFbDWa3c8/hxIV8H3nh8Q2hpy+1ZpJM9Z92WnSXG/Rm3nvlO0nPfDsBu9Sw3N2d0+Q4hXni/1hRdZwokDURdkfQWKb6IdiMS7zBe/SYA++svoHaDINx/cOCzn73Hp3/rM0Rz2/+ej7zMB16+YL29IWwEo6OS0LZKlaBYaLpqc320afQq6qkNDG1Z1CpNO9uqrJssqZp5QVhjyKtZS7n97uQopytFTffmvYCZi3rLebzTszQXYT351yOpVSsaMpuNoozU0rseuemvg+2g7hjzjtLGBc2PsANIbC3TGNFOGfrAaruljBWy0Q+eGt1f7em6Nd1qjVG9vVWprd+0y4gsF3/uKtQxk7puHrfFCjEpISpp3YET8aQwtUzzcyzjgMiabBUls3/4Cu0kWEU454pg1wxXr2OSWYfW3SVWCKD1Gg5foNQDVd4kXrSlZDVSwho930K5oZwn4vma9bnXJnRpi3UbcghY2oKuyH1ASpiIaobrA7oSVucrIoKakUs5nmNSzybYlFad0tvT3NTkA6oumagjoFNBOlXAxlYNbp6+FiI65XaZUrrvBuP69vZ5+ox9PeYDZySndIqeaHl9FSVMsRN5m6oiKbXh3gsDvWtekx14Ote73ExZC6G1afL3cxkp40geDlgeMYw4Fcpmo9bs+u+6w8aHxPE+IbndjHSUAl5Vb9QIGirj1Psa9dXRRKiloAjrFLygF7AyolRK7iljT46BGDm2zTIwE6rFeXVGgZnVRw3VnpIfMo5vUst9AoqES88C+EXFs63ezk5C8BruSXvdZJ3zCoLteoVp7tLgxYJTH9YqVI7dpXwpWKMt/Nk0xKcZoSlL/852+859WE9wtDM7+cMxXTen46owjgVNntIptCxyM7Ao3qimlOxV8aJo7MgnZG/IPhGVUr2gBGY9KzAvT1ibvmXSuUxp1VIKKQWGYeDhQ0+3qB51guEsoCaYZVKKrEJCayS0oo4yCtfXB97/vhf5g3/oH0PDhqFn7nWZD3ts3FP6+/QPfwWT+9y6Y3TnfrGzeL+z9VpZB+jSmkMfGUeXFOTxs2zO/hAhfBeid6nihWbTwgMiynd/1/fz5/7cX+ALn79H113xhVde8d6DwK/+0i/xgRdvIzl7b0Npml0N0BwbmeUB4kUMHAsw5vtX22RSM9MSrdMSvDY5qiJMhXbGsSpwakJcrTUGr2Xu1ftewulylPPCAdMyvZPU5dS2qxe7IPWouWoPreqKUjr66mmigDbBf3NYVSAE72ldjZDivLzxZLvr9XouKEzRZQO15vl9bw3m+uPQ+rcWqjchBw67A/fvP+CwG3nlvvBzv/br/MJvfpH1HR8cn/u2W3zsw8/zzEXh7u3nefGlj2LnL3GdngVgyCu0RjorxHRNxw3rGOjM009qW6wEKq4xF+mI3UdY3brrl0h/h/7q89y/f4/f/vQ1P/vL9/i5f/h5UtPY/uwv3uNf/DPfx/d+7yUdO9dMijAtNznrqknNSQ3+niRs7uGbjpKVSUttJy1UOKb4vJfn1K1ieu9rMpl3HafKiLdO9lPh1bG+4ORzbynKshOiQbUQw8D5tsPqgeFwhUmhiz4pRruGfE1IO2rEFzbJe6LBdpJaFX/uWXWYFLbnW0I1dEr570dKzmTJrlVOekJ4uG0P44BUI2mgUqnl2PFFohA0EUSx2IrARJ5oLk6tFBMG8ybwKVZs70VTV194CKly2Y1IcJ2rRp37xK47GNNIGB8wvvEz2Hkghcewdm+zpkgOiRIHaqqMK0XWW+LabV+6S4jndMmo0XtsqyTUKpZbL9mSsCZ5SM2+64kSayr2KaUgUlrq1PV/QCs9aLUD4nUgGo/FMaIZwR1gyx68qa3mZURdGRLmJTO/mbDTApy3IQnmdHIbV4HW1aI+8dAeF/34Kr6zitcKm5Bz688eIqpTUS3tX/EiPY7HMOW7a61YzgjelmocB+8k1IqquhTpUkS6hFhb1OCkGG8cm4ylZow9tb9H7N9A1l7lr+GSLAEkUBDvJ6yRMMcYEXdag8teqtGpIM3foGaXOMYEdfRlkbMSwuR9uQxRzIWX0hzFqZVg0Irke5T+dSQ/IlpPrAnrh/nZq1MxW2sBKKEFTZPPJe5PTB1B3A+olNZbPiKNmGx9un2r+T6bma/aa4pKbEu7PmE8rYXb18Fh9dVKJnFte3CeKHI4alwljN7HNORWZd27roN292XEpGesmbqvWDfQrTZz03yzStRIGTNWcpM6uPhh6ndZ22ttD0AIgRDj7JjUWtntDgQVLi8vWa83qOrJ2sLeCqsf9nzb85d878c+wO4XvsjDfRu4LNKFNX/iR36EyzvP0g+jM15DK5zZX1HGezy891us4ytouOHh1UhpE26uyvmtC9J6TQrGSiIhZLK81i6XUfMK5QJs5QsMWETDNGF3hKD80A/9MX75l36dv/pX/0eU7FWjwKuv/DrWb/nTf+LjvPjSi1h6QGjOv7R9mEbXC7afuZp4lpi6QFso0Azb6rGRsDGC5Pnh1uaEU6demB7JeoNhZjbkveM0nERudnxttSK1tqISX7XpGIPNpYHNmYWpoTIA1ZpztabWHYY4s9Gc+BCVoqHpo4x6GAkhtjZRk20WasnUat6fUoVuleiaXiqlxGrdeaaijoCximku2qoKxMjQF+4/Kvz8//cKr14JsvP379/subl6wEvvU/7IP/U+yvrbGPKK0LeJkpGu66G8iVVfU7p2iog7tCK3CfGSqHfAoFBQtkhoOr+LFV98bc9/8xP/C7/yq/+Iz71+xciaH/7EH/Pjtx3/189+jo987w/RrfB6P9Wj1pLGmgpOF8+a6VM95lSCWTC8J63Xp0xLimXGfqQMBRVvPH/qsDIz+8cxSqf7Cq20ztrdfdcN9euKJxxcKrWNGV1X6LrMag1qPYE9u13fek7TdKrXdDo4gVBgHNypCnEKgv9/9t7sV5YkOfP7mS8RkXnOuUstXaXuZrM1BMkmh5QozHAIUNKAwEgPnAe9EBBA6V3zB4z+OL1K4osGFAaakUjOcEM3e6ntbmfJzAh3N9ODeUTmra03Tnc1UQ4U6t57lsyM8DA3++yz7wvUZoy7iUWPhClRj8GRVODm5ppXr+45nB4IKZB37mYzF4+rtXo8zylhoXOSRTe9ypSdnykSkMG9xpOcfeWtD8dI6J7ppgiFvMYvgUkaUwwcw57KjoBLAAKkKWO7SoozWr8H7Zq8z1gv1ixlZNx11C5TZSLEa0J2PcwwPYV4BbEBSqmVIQWkd/QAdnFAxp0f6NrjjQVi33vB/L648orimtBtGzbxgaQerUV9ElwKa+EhIuQp0wqoBLS5hNA2ra1+6P88ugXbEOBruMjfz/MlctafsU8gyOKDl+LgjDY3IdkgsBCI0mWWtNJq7UoYq2JO/zZcFst1K5TWjYZKq6QYNlUiFSOm8wR9yhHEiCbQFlp5iZw+QPY+s5KTkOIelUTpopVGJPaiIjKwapR2qIApJ1egYR1mq4h1/eoWsRapvVD0getIiA0LBUHReGKIXXZLj9j8bdrD3xHbPVmCn1vanC/tnwLEZTAtcAYJNt32FWhYwZsApIv76/MEyMoRxueWenfS9XJdzcDPV+GshsIFp/vz1+cmrKto/2Wl/tm/tlcr1gnkBs0iQUaU3QYN19AIIRE7YuJyDLYFxUEgLm2blI1JN4WANRhvqFVKr+mArl8fx5EcMtM4cnV15QFBZKs6j8cGBkOKvPkk8vu/+zX2+8C/+4+eUD67U/7Z7/8uX/vGVynmrhutNEJHxoah8ur+PU7L91G5I4dGWSr60BFWS7xRM2G44ep6hxVjSonWB1NauEfb91H5HkEe0eSaGCcuohYhCDePbvij//GPGMbIn/7p/8Hh4TsA/PIvXfNf/95v8gf/7e8wXRXMfJufISkAD+pI9ODeh1P0olXiCEZjpQ8Q4iaBtwUHWkeza28KrHqcoQfWQIhCiImY4gWK+3NOBC51Vlc6Sy98ormG6Krf+5rT1YpkGF6NXyBEWEVIYDuQHWYPTnUJq0aiEPPIbhoop0o7nVhOcx8S6M9H001Sa8jJ5a4uYryIoM1NM8YUePz4EWbmNAFgKQsxR4bdjvdevMeHt4WHumfocmbYxOE08Ku//Xs8euebHOoeSiYcvG1LuyXubrk7/Q3T1Hh8k5D7RnjUD+WrtwjT1wnxW+T4ddTGDfkHkOEp73zzn/KNX/sz/s9/89e8elVRW/jzv/w2AP/9H/w+P/ib9/nBR0cePZlQLY7G2zo40x2nukmF55UuIbSZFwTt3786ofQJ9l70mrlJKJZozTApiAybjaCs2q49aRWh622ue6PfU6HrlPpzI/+wcleQRujt8JQb+ythGguiRwKFUoV6WikBM6NAbZVp/wi1yOF0T22Lu/7RB/Ji8GiRHCi4frTnoaPrRWEYvajNuwkZM4s1pDtR5SFR58UTh1A9bgQ5D00loZnbBY9XewxzgfKONC0P7ugmGENym9NpGIh717O8PxUYRtqQiVdfp8QIciAOq4pBRcdCKUeaGMECg00MfehKousoh+Aa2kUjhGs0dQ3wNEDucdYqJkeaHbF6T+2yVswH0j4TgLYsuHxb2tRZlIqk5kk3q/HO5eoOcVY7xG64QkYvpS32glsdrSJ6MrChhWus/3klrF5QrAlzuPjz+fvOWYTw04IbvZo1IYTk6J2t121Nrrq308e6bW2jBDRo6vtv7X7FSO4/X1sFVXcWHAdK9H9baQnTNKILDqq1rmyyvKLOH/nvmkZSTDQZe8Lmw2EblaxTGQQQLQSM/TRwuO/KK9JLa2uuid0qrcyorcleR0fVkFBRZqQ9IL17UufnyOFvSfUloVXXWU7BGRSroYt2K/ewajiDdcoWgAUhJLcMXgeFP2H1vNJRvDWEmE/++/X2AXBnspy7vWtnUUI4zz5/zvqhslabheW5+b9+8eJvFzhFy2DJ32zzk1is+/8CahmRxSsCiW4FVuVC39M3W4iRhOurmjicn9apPTPSZXIlQm2N1JNeww/8RbzSdHrXqvvlGzjHgbCLLrQuM//0d97gl77pVmcf3e34lW/9NhKU0hqRhNmFbanM1PYCeEVZHkCNnBLLodtflsb733vOG08mbq4TrSlWumguMF4FRI6I3dPqHS0H9z6WVQgjdi4TfOMbX+N/+Vf/iv/5j/8HDqc/B+Bq/xG74UhicZcqG9m06larqRD9oQjR7TO7NuVG/ZH14bXtgBcSZwi20wA267W1fb6iYOsW8PaIdJrGF2WtRQ2cq3ztXKXLltXH1+tmApddBFAVlqIumZK8olfZqE6YNgcOU6YNCSUgJwOraOfGVvUHPefB1QA6tWU9lAPngB5C4HA4olq39zUOA3Z9RV1chzJaImjefKvvHk78xm/8Bu+8+0vUGtBSqMcDurjsTnn1F5TyHR4/XRifJEiZaRKmzkUKtuPh9s8p5Xvsr3+PmL6FhjM3WcLIOD7hD//wj/i///T/o7U/5wfvf8AHP3Ae4V//h78i6eIBLbp8j4S42W/aRlEJF5d5dZFbbYFDb5O5jrOIFxpnHr24fqusUjcuxxTij8xw+oexLlU4nJtyQeHxy5NWW9LJuLkJ5HQL5UiIJ6Y0cGKVQ6ukMbtBSohc7a5opwFZ6pZQuoJEROeGDglRyI+uWB486S2nQhoCQiCNCWKktrbxL+eyIBHSNHaObt2Ey4AuaOKpVlF1zUuB3J+HNI2ElGilkGIgoex3O8K+q6uUB2zaYfsr9u/+JiEah/vvo+KJA8uBFiIl+3u0DQAAIABJREFURuL+it3TrxLSiFZPDAhgMpHzVwh5TykvqBq8tQ9oMBqFUM2l5GKj1HtCvaee/PnSuzsKyj6OtDESB5AUCbLKUvm9Wgsq18OGzWrUBLpZiSu1OOdXepCR1vwskt5RCy5ZeD7shVX/+We9hOy9C/v0BPX1eHzet6sqhnRq4QoW9F8K0Lml62/ULePwH40IiaYZkZHgquSsUn+mC7WdMM8qITjSt+bNMXphrNpoWjZL8sjKnY4sZUa1db6sO2VuDZ8YkDw6T78UAkKrL7GjA0xxMNLkcnAhZILkLqzvnyF2wx//jM31j4dGzV05iUrUQqzFzWuWBTUjrt3OYGgQzzOskuKJPNxhB6fK6Pw+8fBtxBYHaEIECmjdHj6LIHEAiY5QI0hM23mPKbSZtWGpgnNU4/kaRquYZEwCLShijbBq2VrEyoio0w6dVuFUiNdu9A9Znx/h14TGLn/d2dqSrYGs5w1GJjTXbVXAJNHYE1ZfXLkHTu5vLo1hMALLhp5oU7S59ZmkQGjOjxBwR6D1XYhv6tiHrYIZtNXTPaDaeHg4kXLi+vqK3TRtm3w+zdRamI8n2nIkU7gZA+Wxt4aevvMNdo/33BM6OqaEVIniG+h0eEHVO2LsoubijkXVPHBP04gZvHh+YrcXhpw53Z9IQ28LZ8PsgTgcEU5gb6Ga0FXPcLXkE7e/HJIw7b7G007s1/pvifEFQSNmE9rRTuuiwX4RXOrExX+FlROluqLUjda85RyCEqIRbdkKE5UF97r2zdtoqDXS2mKNZ3kLsy7EfwbiXquif15LesHyGofVznvXD4zXfuIzEtYeHEOFUCFWmiwUXTp1osuZoZT5DqyRxp2j0hqghnNL31bB/TXHkNeS1BgjTRu1LNS5stv54ODaHSjFg+5xZ3z9q2/y1bc+ZPmgsPTAc7V/xD/53X8GMnA4Ku10oB5fcbz/O/9Yx78hpucc50a6j0y7gTfSnmH1c4+K2Amxv0TrE4K8jengw2VAjAPCwNtvf53/7l/8S/7iz//KzQm6+Pp//A9/yn/1j9/i3a+9g6RDp5Kks1NWp6h0/LoDnZ2acaFcqGr92patHbiiUSKR1ocrEGEDSX/MvUGPIV+gOgvwfRHkwtP78mu2HtR+uJ27B2uHxfeYmtN5cnSgIKXGkIwxzAQeML3FSMTUD8Xs7fthP9LsxDTtGaZITBNTHy6xWrz9GH1QU8KIENi/6Vy9++OBepzJ4oVUK4K1QltpRlYY9hMlLP3uJ0AYOkIKMKTEsizM9zPTNCKB7ecRQ6LHmpozexLh+EB98IRziM4ZvbcdIX2V/R443WOl2xKzI8gdIUXiuHc0TpWlJw6Wb5j2/wgJ3yQkIcq/pywvuDJv7ZIGNEXs4Q4TJUyCRkG1kmpHFOeG1DtC3mGPI3WYkTCSu1YsVZAaseC2mCIRIyPh6nwfraASsZAxAjFA0H4NpbjOJ4UYzNHV6gOwsJ6fy2Yn/bNdHRT5lNj/w8AML7T6n7l8nD//c6yDxdrELXjFi6pGJGz0tgYUzHxYKqi3v8Ma81IgYtSyeBJqgqg75p3fnw8YqxqqAdNI22SpfODWuZ9CSIUoFcz3XViegSRMInkCkSuw8+tLn6fwXFrIAWISjn2SL1bXGo7SHf3UEKuEPiQu0edITB8YxCUJ7eF9qroRUSsfgN06MBIiIWdCUlLK56TbFpdLC5kYk8daLdjScxYBTQMhZkIcMAkULZTWaZYmjJ2bq0S0A1xhPTs1YC35/7Gus7yaKeCFyxkP+8z1QxDWTyvTLg79CxeDdbetCcx6ihjuQ66sGqkBkdEPI04EXYhipN6KzckdmJZl9iEqg9hvbFzbKqa01vmVOPo65GF7D602WqhIgpQ96SxlZu5t0ePxSC2KlkYrhbYUaoloJxCPu8k12ErsqEVD4tlVxIK3zwmJoIUUEuMYeHTVtTCnQApCOSl3L40hG600rnrXVmmkIUAstHZyBFfDFmQsrNVXT0ClAWlz0moluFZiiF5dhoRZRs22e6bNN4V3SR21FgnbtZR+dxDOnscrnaO/S3fI6AMy5F5ZOsqtdeWwJi8uvgAJ6sfXa5qrn/Hvjnyulf8F+f9TElajIqIoRiPSSF7R96TARMFi53sraXTmmsnq/sNmUYw4p8+1KtO5NSIegKfdxJQCjx8/5lLPNkZPfnMKfPWdiT/4/W/yv/9ff80PXnnw/Ce/89s8fesNihmtKEEbMRw5HDxhbfUZY5ypD5VFE4/euiZfPWYau+afOZm/hXtMv4fpD7BwBdLbop1eknLmv/nn/5x////+O/7kT/43BPd7/61vPeWP//hf8MZbN6jNiJhTU9bWkHTkX6Ini1yi/H3whC5SvZWYPmQSVj/2rrnoPCjnlqWYPoHkrNdzu519BQnOYZXzc/BFS1p/tCUbMvfaER+MiHh7sB+qhg/rSAjuwtaclrab/L6PeeB0OnB1tWNZFgwj50SKgZz9uq+HU8rOXRvHDFWZul7k9c0VuszU49xRq0jMAdKKDnoMn1thyI7epHS+b68POIaLgZwek9TpYQKonrAsNC1bzLve3WDtQGTHLh0QrUQ9bPrYIWYsDOTR0DYz3z8n5kSXy8T0BO0VMbyizguDHDnWA3X2xCPVG2LaYTmzzAfK3QNjqshcqQcHK2yZkdiIDw9YzCCZKCMS+ot0AXzpSgy1+j1ZucQebtygwR2XYn/017jcfMpa3LHJxJth6zbwy/fzY2Y75eeT8fZyfYIS4N/147zK5S8HQlcOOaOuntivQ0u68eC1OZB2pgz153/Nl6U7iMlZwbi1xqo+3boJAjFtT5xK185ujTQMnqfUtjpNE+yI6nMvwtuMxKegeyR4TF07Tj40VcnqVJGp8z/T/MAQE6FVrJwgZXQWytq6iDDFwBiUrAd0/gBpHzLEu35PDrRJKNUHfAf1IS1NstnViy1UPVJNkJTI0+CiLbYWSpGqO1JycFJxc4+8WsHTc77tDA0ICVndCVve3L78/q+d3/7z6r/jh+URHyfQfLm+XF+uL9eX68v15fpyfbm+XF+o9fdI+lrrkeVc7HvJApYuKSuYRkROWDJUGjEGaq/esYUsEKO3i6y5m0K4QA9F3I1CoPOjXB5lrZhqq9jgCICq8urlC5IENufHqlALtVRqcQesWvPF0NbkbUuLrhsm5vSIDsGrTKhcI+kK2r1PE+aBTvUiB4FWWY4HPnhvIURx+ZW48/c/7YjjDap7Qtqfq4wLjs/HW9XO9VlRuK5/uk76B0M0dl5qR5RW//etctFennQEo8sLmenGr0TKGTUXr5LMMsiEsEe4Qlt371gi2jIpDEg0XKND+XE5Kf+p1sph/aHTstY1DXGEdaurP5XD6nsSMwiVaA1pcYM3YnDXE+dldxe3sGAJ8ooyVOejDsNAFCF2tG/de61WYk7Qie2Hw4EQzioDTStC4Hq34ytvLPzWr++5fvwtvvvMUd5f+y9/Cw0NVDq5vRLkSGuOgNZ2iywNyZnTwXj/B6/4ytvXPHnse7MtQBNibKjdQ3tF5ZZhJep2K1ZEefsrb/Cv/9d/zf/0x39IKX8GwNtvzTy5EmAhMgLWEdW+xzuvWrqziljtiFnddowIzvnrU+TmxuCc29+AdRcWc777iix91rqcSO0Cbdt9/4VdPs7b/7LSWapTeaKS0kzodBWs4ooLQq1CK464pFXqLwrTNHI8PLDbjWgrxOiuVbEPs1UB1EgpkpJbLFrQLWaMu4Gr6z2njl6n7FPGi64or6HW+u9zbC2lxO2t8z8fP368UXhCDKSUqLqc0W/T7vLkLcxKYImFFHt3Lpyoc6Fq4OXf/BvGq0zrVp2AW2PHHSkG2nJHRIgWCavOcjP09D51Meb5hAzPkTSjJ0eqWJ4QcqalRLKRhw8+JLUj+7Kstu40BRWFeSYdTyh3BMlnaa5h59QtA9NKqcowZOcTgu91c1UAka6NLbLJCbWqrtktEZNGrSdajW5xDpgOmMXPexT+k6+Po2Q/CUXgh7zCx/6+IpTOZRVpGHoeMNbWdZtl7byTt5jR7ztd09ZcLaCpnWkVwQeiQkr+77g99TB0dQmMcZwIAuU0O991Wc4xXxvSHgh6C3qHxLdJ6U3AaSClnyFigSxK0pmoRx53BLXdf4SVA2nYO+9THN1c+aPjAEOo6OmWV6++z8g9uzyjoQ9UXk/E6W1yDKhUQu8saltYz+uQAjkJjUATmJeFZGFVyfScCx/60uXkCLOcO4Ngm/IOvQMgZGirJF6GPoQldGUXOXNkfVDuh+cMP4YO6ydh/Uvo/zx+peeuakeHRTqhGIDBRWVFsViRrj+qm9Wrv/EYneOhUvsDfjkwtCYXYGqdq+gSNwBjjpRoNK1o8Rtkqpxm54S0ZfHN27qkSE9OViu2mDKLBPd9li6BE4ZNQF7lhji+Q4gGsVLLEYsDp+qvv5QTp8Mtu91A3k9Mu4lHNzeo+VDXfPzPGHa/Thx/lSBf6wmrbUFGtYvudA6rsHJ8VhJ4ptX1RjdMlz7NztY+cxUK6TIeSojprNnKuqF8yt/PffVBr41I5FZ1xoTb7F4jukN13aC5J9DS21Oht1zOO2LdJz+vJdI7cHqZ6PShhVVF4IIG4AnUmaPtc5MX7WVLSI2grnlxIlPsGmTfv76QAgzZCLJgbaHVQpSzCobfoj5QgmEpd3m2/iKq3X8c5jpT28J+t2PsrdtkkdNxppZC0IXrqfHuWzuevvtNAMZHew7W+ZmhIWHmdHiOhEN/jw2UztdaEBt48dEDN4/WoatAmSvXb4yE3ZEUT6g2PwQB19ELfSK/cf1oz6/e/GPavApH/T9Ejlgbeszw51ni6nsdup+0t4VEXVmk1bZJ28XQ1SikYeK6hyaycRmj2UrJppn1ienXi7xP7jvDLhJee43uIa/9zOcN5X2x1sfYfuKDoRIrMSq7qbLf9bZiKMTgNKKYRkLeM893nInnXuC3mnpC6VqZfp/8WoTQI0YMjOOALktPYP3eT9NAGRNaB5oGYhaWWtGVf2k+2Bmje5sLMM/zdt1rrWdKQIwYkGJi7i39CBvnWzUyW8Ji4iafE4OwKFFP1Fd/SykDcTrbDiuBOF4hixKtuoZsCwTtknJimN1htZGsYe1IDIZ1YwTKCeYJlYzWxk3M1OcfIlqIdR10y24cUhocTz4zFRIMq7VyQMIAiMeBUiEbZzKhgFWkD2ea+R5fY5grv3SamLTett1uEa3h59pPuKN+2vXaQBX9fvWB3DMgc0E6X5/bFdzqxfsnnt7L51H0XNyuZ5i6aogP6lVaOFPsoq1HW+h4Q6CprcINXRx/BVr64FcI26AoZljwe5AlbIPcq76vWqPObpdd5uIa7yrU4vsmFuP++YE47hiuH4jjAY0vSIMrs4zpmhiyH0O10ZYD9fTA3UeuWnT78iOudlfcXD3m5uqaw8M98+ngOvbAV955zHF5RTu+4CovhKy00NDV+KDdUFpimR/YjYk4JvI0YjGj3TiktEyYJsKUICUqRhMfegcQU/LgOYmFVftWL4blDRNDW+shPyGaPVEFtAx+fnYt9xAyIokznuR38kx9+fT194iwysf+D+cn6bxBV1FkP6S7ZpzZNuEr1tDaWPXpMHW9Ml1/36YQshGuTTsCeoEOSnPatalh2lhqo3Yd1hijqwzosvEvZXs/UBUkRHISVIxqgmpAuzh0zE+Z9kore/aPvgoU3ni8Y8x96EsP/MWf/VssJh7fPIG0g/A2Zr/iX+dXgF/D5Cs0uUKsbIjpdt3MnZb8zDfONxTnrbKiFP2Q2hKwiwfbQr+OnU+sHe3yqw64Np0n+k4iXw91lxVyUXfrHFZHcdbhudZ5h+s9Dlu19MVZPt6zyhj7temDKj1R/VQE9oKjbRenQUB8glTByDQCyuQHEpDCAuFElBmR4tWpROrKxwZ3DGNFuIWq1YXS+7UbOuJlVlEqgUQeEuuT/XB3x+HhQJ0brSzo0jAdyF3cPQ4DoslR99Q/v7TtoQkhklNgHAJX+8Q0ZsoCp/t16Mo1BU16MSbHHuR7d0EDoX8PGERBbCIGD76t+ACfD4xY51XbFphCOCfnEsQHX5ofHqsuoYghWvz5R7sCxdk4wLqUj/Og+qSpXCZvn3Zc22f8e38vch64e02c/+ewzgf256MO20S5/82fydAYxsa0j1wNxpDXA6d2ZQUIISHDRIgPrJPKRiOE6ImoOkIlwdHUVcEij9kBXCClSKvFk8weu8cxsUyZKMYyK0urILbxaFPyQVJPen045nQ6bShNrdWVXjqfsJmTbbUP0ybxZzAiiOwJ05s81IWhT4NHvYVWSdEYeCBscvprByuT8kQ7PfgEuBasis8qsD4iiw+URaOoEixhvfun8xGRySW9mhJVCbVh84IVv46lGGG3AyJUxaRwerglXXlRG6cJkiBEokSfpEa2zxhDxGhY0y2Zq7VuKh1x2NGHysGMGMWHdDvcFixRGmj9RSi4zutcYMrnPaZ9XQArm8JyxCxj6uih2LgN/IB2Keguo6fi6GuPuSGI861l7Uq61OOq5KqqPtQExJyx1lz2qqPep7nQTFERXJFMsaKIrl8/MUoiVaG9uuWgd+TdNdZ5zfPiBjy7/TX39w8Ea5zu7zkd+tBWm0nhQE4zp7vv8+qDD2inI7Fz/u8f3kZZuJ4MZOEoioUMg8+87G0gtAeWu2eQCnWAvB9hnLAVpNvtEL1G5BoJO3fxWgdagVoLqQYvuFCQ6IVUW9vWdLDMerr3OodVNPcCwguM1eLgnDPIJ4HzT1l//zowFsA+fjjYRT7bZWrE36S36YTUif10cWjP1KUTc3visB50vStrek7STC+RXfFp0lYZQiDvd9RSYDf2l2jUpbqrBE4vGIeM9WnYEAKSBjR2DTkTahf89U8zkfMbjMMNUTL7XWZ3nXl040HjyU3kw+cDURqPnj5lt3vEzdXb7K6+CcDVzX+OpMcswJBWLcrLA9Jf0x1BPJGV1wRgLitCr7TNvNW8GTyY26BJdwEKoSNJ22v0ZLez9l2qws77R82vT/RNZj0fkNST8qg9qK7FyBcrQH680v97+Z2ULqRs/UGLQMCqk+crIEmpsiBB0U5vCSGy6hCLiDtimaPjq8be+l4dMTeKzqR9IqfM7auX20ABVYlqlFaptVBqpbWRaTwPRWnrQcUEs4QyYaGjwPICtDLmiSfXVwStWCl8+N6r9cfZ7410/Yir6z2qsQepMyLyOprZg9CqAmC9AJVV/9TbaLUHb8UIKnSYDBFIIdI4F1uObldM1Ct5jSA7AiuSvacsEWvJZV42FPAnu98eij7myvILsS4/cxeYFx/62e1HrgbQ2oeBbAbrGh9BEA3sdhOnox+K0+gUjJRdkLzW0vdq2BQixjxiMWCtEYsQUqScTqyd02nK6PWOu1rIQ4QGWtomrWUihJxoHU1bi8Vh6La94tquwULXfYyUpZwHEk3JKRGbYbbn6bu/ycEi4ehI1PGDv2CfBIISrZDTFTVFTqUnvDFiCCmNaBm8kFehzR2J6+5DkotLH+kAMm7FVqsLclpo2hhoSKvEIK4Q00NzbZExXRF3A2qFGiNVlbQWQ83cRrt5Jy+FVeLovPfa4uLvAXMqgCnS28+CYZdGHMEP/dURUqt3Q76IQ7Cftdx9yvpADj/CY2ysetn+V3HUmeQWuKaENKGdAxi24l/B+mBYWLsHrngTRNBaaaWirXSVkvOAssc4ccpWlyM8zeuz5UCDj4kGWjBKPbFsUoWJq/GG5bBQ5nuKVq4HIXYVgGfvv2QYJ+ppwo4nTqVwc3PDddf/bS2wGzKpHQll4c3cKMuCVe88lI8+IOTM2+98g/tXHzIXpcQbHr/9qwCkJ4+I8j7T/XMGreiyUFiwdkI7VSXNEQ6ZeHpCfPQU2V9DTJuknVL8LDDt+Fnwvbh2Uo0u/q9eFBMQS6w0SrfL7ferOwy9hqMLP8qN/yEJq5w1K8+t5DWR9gQyfOI1lNZbqoH+IQzOyLF2FE+ogKXEbshUO/bPUsnJEyfX4HUkL6XIpdVakAjBD3dMXSOtf2AtzaVDMPJ+x9Bb1qW3ltAKWin1hJiRzSVGiP3rofikvvbKS31qPw0eFFoo3tIKCREowMsjaHYeYN4/Yvf0N9lPkd3VU4bxEen6KbZ3+Zdl3G8qB7FIb6md0ZJVWN5z9LUKOUH8sF/De8Q8IBI9uLqdpW2ah16o2gUKHX3yehuz6zwYcERNXZxd9TIpFsRmXCVgbf/7ZwxB0GBYK+4yon268gsyxncpXXWuZMwDFv2o/5TEZP2nC5UVtmSymyisaLU/lgGYzt+ljSDZfcmr7/QYMzL6jdHWegW/tqSUtUDxrytB3D1IUY7HB6TaJmJdTjPLvNCaH2YuRRKJvdiqEkgxeysdsDBi4RFx+Er/KHeU5ZalGq/u7hFbOJ7uSb2Ym6aRPL7B6fAW49U3CeMvd/R0bX/5NK5wTkqBs7mAxJ7PN9ydxb83XkyCay2YeLt3m5q2M8JpZlhqGxpoMgJ7hJt+P0ZMu94z3YYynN341te53AufmExW9USkJ6r6C5OkXq6LhFVcuifEQkzNvc/rid2wXvcB1RMxTVhyI4frR9ebPWQthZQCOcVOBWrQxJGptE7ydrwyCCkGyNFdrraWf3DXtimjDezUCI3NCas0ZciZ2jl0rbZeTHf08EIpQ8NZ23n792Zur6mNGAemR18ljG8gd84FPL76LibPqcwk3eH6pIGU1oQ4UE8LY4hY2KGm3eLUn19dRmQSYqqoBlrZ+3R/D2palRSM8uoVeRBsOSJJqFHQrrO6VGPM13C1x+zk4xvKxjFNVQiDOwAFGbyjoRcFnyrWHKAQGrrMSAib7fXaYpeVt8kqadjjB+t5/fMJxD+Krao7TvmfbaWh2SpC72fWxzW0L52QxCKX3bzVKrWRaOZcVm0ur+Zf77oupgR110a7UAEw9S6kzgvUQjKlqaKrRrHqtkeDBLQ4mkqnmkQClMZ8nLmedhy0sCikm3cAuMoj7dUtrRTyGHj86C2macfz918CcP/8jl96d8/y0UseDwMv7o40MldP3BJYh8zp4ZZWZsa6EDviO8+9Y2wOiLz3ve+gAdL4iPHJu9z88rcAaNPIw/vPCSkSYkTzI8LTt4m7HTq7IY21F2g7UW+fQw2kJSP7gO39KrVyAhNSvILU5xBEN7lSo6GSkOjSc67FP2K6Jqx9jsb7Iw6mdOR7u4esTlifvT43YX0tyG9//mkD+wrVddvQzQJsRXC6z2//TpcE8oonrIce3spdD8KUEhbCJntl6jIUsSe593d3lOVE6xaBpXYL1mbdss3cws+6nma9I+kBCzc0c2tNW6sHoCX3LW7qSacXDELpji+vXt1yOs2ICWl4xDA6Z6b0iiuWmWGaiDlu6LAGY4UqxMDHQqwnTkIIldZ8OGEpz7DygnGIxOCSWGvyvK61HYtID2Kega2BbLvc3dc5RtcDDKsWh4CE2O9FRShg+QLFphcLwmsC5l+QtfK/LtfZevWnX5uZhpyv6eZiom4oEEIE7YfixXsJMTi1QNaCgouKrnuoI/3fvH218a9LdZkhq2c6S7ioXiWSovtCNUuoRuLwFsPef37YT6AHnjwa2Q+N977719wfHng6evtoCI8hfBOzb6H628TwTRrjuTDtNIqwdXOs89PXyBN7tt+9rO1cPPRP3zlgfo0cXXIEd5WtAmh4wh0k4m5BY/+vXyvRnkf0zsGn3NmPI6aXz0eQbkG4lrlfrO37Iy5jowSIItEYp0gaKk1PzKcH6tEPtavrHWMOzKcjQwqUomQzrm/8vi+nE60uqAopR0RGyskHntbDWquLqqcYsBhpZWa3mzjeO0o7LzNDSlxd77h9+cCynEgxOOqFH+wpJcSMJup6ma1tSGtKaeOxSkexHHH1jxi0o7K1waCcmtDSzVnDdBhcfzZ6S1SJiAzkyYvsejph2ghpwMKItplmkKJfg5iuUFucEhEG0vSYOE1o6g6FrZGaIceZeloI4UQtJ07zTO6F/O56j+QrJE+kaYSoxKos3UYzF5e788JOnGrV5QEBTIujrl1rU+i2m+tepgMDPc6s0m7j6K9vYaLSKOUXd6DwR0l6P+en8Rg8rbLsSPA9IQhqM8HMKXR92LhopakntDkErHnCuvIzY3AXPDN1fnenc7XOW261cjoc2SUHjU7HE9dX13Dt+r21GPfH55weZt7+6ltIzCxLYXnwZHFPY9LC4faZU8RU0XJPa47gfnRIlPlEbgujVbJW2lJA14HJTJaMLso0RUYq+7AQj67DSktIeYUEQ2NmfPQmNtwQZdgAJtUTGiLVhJxH6mKEIZy1XqWh5pzW0IeT1b8A9FPAOmFHBmBAW0LLas3qA8sSpBcfa9z+8dbP3BrmzBV1jiQ9abVtmCdi5s13Cc7P0ZAwbaS4co2kT/01rKpr2XFORkyVFsTt0Ipi2rBa0S7eHrR5gpsjNns7XUQJzadBbX7GMD0j7fdUS9QmIPHMaYneEq/V8CEU9zLfJo6asBsy1GMfbKk+gFN8A9aUCBFiHHtiFfw9rjZo1uF2MVSUECti95Tiji2tfgj1BRYmRG6cZ7ryJNZElIBEryQ3RYDXQXhP7LvpQojOAbrU1u0gL+DVpmjD2poEyOXL9Zv7k23CL/5aL2qnu2xcae3Ba62+fW+G/lDmOGCLbQYN0A9/rT4tHaSj6by2d6uqH9KmuItaJEpHiabBkalSveUegtuy9veQklsTuvNpoFogxMdMe3+FJF/lZp9588nA08cB4x2effh37K/fBmB39ZQ8/CP2039BGr7JQmIM56TPkzu74FxbDz1nBLV/kk5T6da+W0LeC7CYkNVBTg0kXBzKrG6LzguLa7xY4VznajqqeOFW8ePc0RCIhk/9ftGSVQsb7/r8NPb09BJFvmiNSmikrKRsRFWkQW1hAwJfUy6jAAAgAElEQVSOt7ekHRRbSCkRa+XUTs6PpvNT8X1p5m3SPCWsnu2YQ8poWyjWkAFEGzlcGBbMiw/ESfDkl0KKu23gVgQkJYIIrZbePTvzN1stlHnGdX5Hmvj0dl5NK0Jy60tt5NMtx7/9E+zmCY+mTi1IC8clUxQkZyxFSHK22FycZvYgoFfXpGNFZCI9/nW/oLu3WJbnsHxAThXayae9r6/6bRnQkEihUV89YxeNcDohs20GgzKN2JCpLZJsIiIMGY79TrYwEsked2vbnpvVgqdqIYgSUwcEuoFA7e1h4Zqge8CVNkyNZvNZJcAMelHwC7s+1i7+8Sk6AdPdRuETWR8Tt8DBCmMIG81Km0FTYvT4Ox/7dP1GRVlVGoQYodbmRjAdYAoIoRkxBZ5/+IzT8cjVmzukd95CzNwu75HjNbENLHczy90tywvPN6JGXn70DGuF6zFT60JrR+aXTnWhvcFv/OqvUe9f8u2//AtqUyKJ2Av8OL7BIt6zXo4HON1i5Tvc3zuCuwyJPBb2VyNx3NMUDi+fMQ6ZvA2OuTVtiMJ8uoMxUVtmkp4U5wG1fgQGznStjTARvfjqmvKex8VtODxo8m6KOEBh9pPlCV+QBu6X68v15fpyfbm+XF+uL9eX68v16euHIqzrBP25yuncR/v0yudHI3vLOcM2b69vHJXoaKXLC+EtKJLr2K0ojzrytE5wqylDSltbtbWGIZRlIaeIpIgMuTs54ZyhFDm1hgXr1mwK5hC9Hj8gjU+w8ZoYb0ghYxK3iq0RkJhISZxY3PlEcUXRTJliYFkKwSqtztBGXF8PaAta3U5OTGhqUBs5rjOt3flECiFUop5oy3fR0/f96+WOjBJLxdoJwuguSxdkfC/+XH5IoutgCsE1Y/0qEmPCzOkWzjU+k/VdIsdt6Px+OKK66ry6gkDno/TW8KXSwme5TP3MllmfyO8T73ChaOAo6TrMd2nHunFXbftYry3thOxLByVb3UAwB9k1EnJERYmrM8jaubVGTN2W0tRpF9qwfl+sOe/TqqO14zSw3++Yly4/UguoslghmDKIoamhsT8bMVEUgkaSGJIa1RqhT6QGCVQyL08D+ydvcvOVjAxf5/HTjrDu32C8eQe7epeH6uj+oLnLWOGoL+oDfbJe4xOIV/OCT/ObVOdWN39uNwqaASIEEkY8P/cXF9vMEf2VBhTCguD/+YfYEaPQ+mClmrlkyqeEHvOLzmruur6Us468NSVyRojX9YsxtHLROu37tlUF8Ql214/sCIcY969ecBWN3TQhCFVPpHVfTKkrTXTrYFNSzI5yrijJmGgnR5fSShnizAWMKZEAXapz3FujhsaqMLF2ZQiCREGCoy7S925OqTv4dYTZOuVhnYAPAS2t05cq5fQ+ps+5feXPzk4U8jXTtSuvLNYQU6YLqSyicALSkNETLGVB1uGY1l2n2oxwhwFVI9I/f4sn0EqIhdYqdS6kUglzQ2OP7XpEykzreqphGonDwP7KW/aEQNOGNVfuCCFgwZA1rvZYIsHJHkEixAwhb59BpCuymD+DIXJxNhq16uas97Ncl/aql+tTZa1Wd0XtyhG9o/Sa9TBsucfrslaCvIa1nTXa/a+CWd5+pjYFW8AiSQEtaDXCJnfocwW1KVYLdSkMw3BBg1KyRFcKKI26LOSQyF2qcDnN1KVyd3jJy2fPETUeNHBTHwNw/+IF9fmJIYHeVUKrHL7zIaF3LnR3zUkrN4/fZBgjb91c8d5779H6sOCbj25INhNS5c039ty/vHV6Y4f1H7/9LunRDVEO3L73N5RyhIfDpjttJXM1PGHKew6HF5TTK+KgWJ6oyfelkrGgqBTi2LChEHJDV7ewEIiSCSlC6owWOz/7QQKsbp3Bu72tVVbLYJdhixdx3nnWmxzqj9ic/ZEpAZ8QA2Z7Rj77Z/rPvdaGvuRZWkB7u319K9oWVIwoDslHnNzbWqGt0kD0hwDD1MWnc87bUECMAqbUWmmtkqKT+LtMKs08WXFlAnGhNgw6x9XKKzj8ANs/IiUlpWuUSOHCGlISUQKR3CFwT0YAUjB2Y6Y8VGIX3BWrsPru1hMxCXUxNBhjAKRicZWMEpQjIc9IqNjyPnb8NmH2FkG2Qgwu3Osc2BNYpwX0QGAx4OLxXaw3DEhMZ5Kzrdcqn7mdF5PSiCfTIq5vZ5awFl8rNDww+NR7jCsP+QvSirLeCrp8O67WzTlpXffx2uJnzWHOP/KxX2rbwya9vX3ZthWaBZoFDLdojbJK0Pj3aFNPIPGWrpgrVazTmCZOPGmqTtNoxt3tLa3zrpflRK2VZSl9/zWSzLQ+tCgUapgwiV5ABaXGeuGLrRCMpvDy9sj8UCkt0my1CdzTJFNRchIfMmiKhlU2x5/7YOY8XQTCguoLAGq9JQW35sSi+05fBIq11a0qWBQvzqR7S68df0IfKmxOB7A+Ad+narGpc7L7QdULk8vk7XzL1jv0yWj4ecXUL1zC2kW5MZf6itEYspJ723CKkYf7E/f3B4Z6xS6PQKX2eJFzJqTkMmR4omRmrzEuQggMYcSOFa1zp7SclUlQ13tOOTNNE/Hh4AWJrENVA9NuQnLgNEvX3g0+tAKumNGHraIJ0nwieaUMVIUkggVhjiCpYm3ezA9ahTTd8PgrX6Pcvc8yDuT9Huv80DCMiDVEK0Fw5QpVpPreDYuRc8HkJcIDxMdU9tDbok1PSP2IFHdYjJyOR4alUE5lU0JIcURPD+SrHbosNF0wuyIN/flK4oOqtaLiNpjO3+iJmjXCZqoe+7NxUdhRHfiwTvGS7C7hm8VlQBe7GJ794q+zSsBnfP3yXILXB2k//Rf6UJWsAz9OP0oSSK0Qyj1uoX1W2hFz86F5OZKC+JBol2wS1jmaXgQ2cx+IugJMQgqBRiA1qIeZ+8NH3L/f5dCWgLTGO9/4Gkrh+9//LrmclZGmp2/y6GbHstxzmh/Y54En77zL8dSHwKNwe3yfgYU3vzIwDgPLsXHsVvPPXnyXK3mbJCe0Lg4FmLHvUoeyn4htYbmfQV6RwitSTIThmvTW1/09MnA4PWPRVzx98y0s7kj7R9TVNKQ1pmEg5IRFsKA0FVpbSYOQAYJbbBuFkBYkr7QJV0u4vKc/yfqhQ1efi5CtCcqnHvDyqQnreuifEY9OOO8cPbXCKh9kpjSr7shg5wfQrGv0rXpsqszL7FUrTpLOEhhiorbCMhdEAkMnppdaKM217eKQXEuSiHSE06UHn1MevktORhwEi2PnaEBZqztRT6jXqc2eFEQWYhZSbCRRIuoE+i7tQ6vuua2VlAIqjRAaLfQqXSoiB0QeULtDH75NXN4nmYu/W6sQEhabJ9tpZRF6leNL++S++KWz2oNc/2qfkjZcukoQwloFAbZVP/0+aXDidF1J1LIlui4EHFE7zw79vNemgMBlcPv0N/dTyxltw4A+TCGs7ldxU9RYq92YYh8YdJkd52Kv8mD+XlKMiClhSFitlMPs3CSglRnDuao6134AH5HFD92h3SLDjqousWJipGQsHcFtraOWImgppCAsdUG7RrGg1HJiWY7EFFyPz87Tm6rJP5soQQ0NjWBHlsWdtEr5iBAqKT4Cct9PF3JpvmF8X24xwJOXtbqI0flQQfw7XMu1Elg7JH65VC/usXxBNt7PdElPVHF0ShPaau/+QAgzu6lrRzfjZr+jlAP18EAblLRPxDU6q+tSqikmgsQB0+ZoyjaY4QNDU9yjS8SOB5dyCat+daG49gsxBqZpQtJIH2Ym5OT82ezF3IIbD+Su46pdb9RMySF7nOsxCvzZaKZM+x3jtGeZbxlDZdAVSRO0zjw8+4CYGpISado7KAJINn9+1FzvNEU0LtSDAwFteYXlSkoHwnCFxXfR8BXy4EgZ83vo4T3CmMjDxMIDTSHHzNpCkVIoty8IupB2E7VVR/h68jQ8TlgAtcU1LCU7YrpWlKZY8F6dSz4LMdrWHbQ2O41eupybOfd4I9FaO9+wf6BrNRe6XJ8YsL0ogLcoUwt6vKMdnhHzI6Sj1mLu4NTaQquVNCTq7IAAgITAfDx5tjL6AGpdinOi19dripbCfpzQYsyv7rBeSD26eZO7u3tujw/MOtNCZBgGUr9nr579gF1+m5AaeQjcPbxiv9/zzhuuMnB7ekBo7GIiayOlyHwwQuoJMa84PrslysIVPkyZZeD4wmdeRrlGhyNqjXFayOGEcM39MqD5GwBMT96El99Bl/eR3RNS3hPGK9qKeNvRh7e10eqqnT9unTetntd5XdUQKYSUYFh1cg2r+z5we1YH+HHXj6QS8Dok3xELOyejtiEcq8yVbJvlkznCilB5Ex2NlBpRVvH1qQsoFcSOmM7e9jbdHsogyavwEEnBZXK0lY2RK2bULg/kSJf2Vvh66Gas+cAFWQh5RGQi4BXNYI0sd8TyPeKhIVpggpDfBCCGHYs6khEu9F/XKjgFJeTKMBRiPTDUPSkkYocrHD1ohJwJLWBBqVYIaztITkz5Djl9QK0fIst7mB7OmydnSBAwxAJaDU3SBxq6lqz60JXgU4+mM4S2TWK7XFCgWGPRikQYzEXg/S4lamhg7voSVJCasdr1AA1EKhIcpVb1e/5F0bKUrU2kF6oTXVLNXt/Tr1d7FxJIH/sM6/Tqxz/ZeXDijDq3yubWdn4vHvxE0paM+cvoZiwQRSi10Fojig9cDflcKNRO21gAxIhRSRyx2YNTXj4kjo+oMtDCgEogkLq7zkrpiC4PZEqOwkkbaA9+dQYdoS20ErEMRtiEyEOInbJSMS3EULHyPvSBwKgPBBOYF5eaEnNNy41JEvwaxEQgbOiZiGxtTNdHTP3cda3gEFYpMXqdelYXeP3+rNf0x6ejXH7/FwJh/dhb+Pjnee3vFtDmQ2raoFhhikrqZgyJwHSzZ64PcDh5ER3ThvKYNVRdwUKlu9+FlebT5fZQXM++ITEQxgEr1Yt+wEpBEJZSQIRpNxLSRFFHxkMMxBjcuCV3RYAA4+gx5XTsz56IU74uJUnAHf7MGIaRYZiQ4x1XyZ0LAXIckXiizjOSHjmNLF8om0ijdnWTIELIAzEcCNWHXwIHEB+kJT5mmn6JPH1jaz9HqZT5JQTIIaEhQ9e/rmXtjhWQxnxfMV2wYXIJr6Frds4nj9Pqmp9GQyRjF1P9FgxLyTuQGFYruZ/wzQrQiGmPMOBODpUNCpcCJOTnVMBtMfIitn7iz8YWW22d3O3dwVXSarPL3igtoc+gfty2vMf37n7VFa4wOfngHJDtlqG9JC7PaPfPaXd3MJ6HnDFzRydTcu9qFavI4ADXsZw4LQu73Y7l5MPfh/sHH9YCQo4sS8Fa4+nNY06LYXLs1qegeuSXvvYWp+ORh+cfMZSC1ErtNJIchbsX77N/401avmJulbYsDMXVN978+jecAjM/w8ozUj6iHHncaSRFF47VoAaCBaIuBHvYOhflcGSkMcVAVnM3tjiBNKQ+92tQd0iIjNdvorsrFmsM4gYJAEmi0wctECQT4uig2RqTu0Xz1mQ1RaS4ixveMFCLIAtmGbURsbEXXI6+uqPh51NZfjpKwE/U/t1UMMGCQ8qiZ76IgIUKoYI2TzICXiX3z6IYQRQhOFcziPtBb6eiYQRq65JCBNfc2x4SgZBcTNhHrWmmxN62kVCgqU/P2wPWPnR9zNS1Yu0JsENk9MO4y2SsCecAJCI7MmE+MOQHEgpd6FfiiMWIxkCJHleTCGN3bEl6R5vfA56Rwh1VjtQM89J115ZKHAZCzJ70xojYkTYrrW/SkDNpHDo3qNIkoHFHzH1yMbk97tYWb4pJQ2TVVFx1V6M7J2lyTTW7TBDcvs4tWru23hcF6ZKOrJpdBO/OlfoEL7v/yGVw5bPw2PP3brvtojgz8+TdLKDqqPNKbwF61R5otWCqnjjKue/quoxKDEIrldrFyVdpIUI/+BEkK4SKaKF1hFOOPyDsnzCmJ7SNxiIbwhNIjsoZ5KBkE6I14mpK0TsBWmdMI7WIPwu90NHQOu/uSAwLod5SH/4KTq4RPKLEMEAp/SBKbuW3tjQtQLf9pFv7unRSf5+sBcDZzNk5e3FDE01XFxqHUUIITv/4MYqllbf62iuu8k1dduuLv1Z6S1/m7fQQhZwS45DRLo2zHv0pJSxFYgpIzoSusVpt6cVDckvnTpnR3jYHMK3O/zdQbbTqu2vcdxcnhbAsXny0Rs4ZQtg43rvd5BbDySXNam1gRu7GAcu8IDEiXTptYztseatbmb788Bm7vPv/2Xu3JkmO7M7vd/wWEZl16W4AgyHINa7INVH7sLYmmen7v+hJJjPpRfsgI7nL4YwGQF+rsjIzIvxy9HA8MqsbGJAzsxyAFNys0ejKysy4eLify//CzoPHs24Y2bBDWKGcEW5QcbQN2gDQLFn04tG14PxATANSrHsRWqU2j3pvzx0LQc5mOgO4esCXI3pSAh4/TiCRclo5ni3ozboQ4kDJBVnNFc6FSOsi83WZCcOI1ArFgl1xVylHxWBiiICPlsyuq90HADGFGh88kKwzKQW9VGs2bds//fzddFSfw0k/XWfl0/8TuMxhseceeQ49szVcseskGzfhwpVomPSXSS05zCSncWS3mdzUJ0J5xNUTgnUW8/HIZvBqCYwl0uohtwoK+WTXfK2FMAzUteLFcXw8cXg8MHS5tKCQ10wMEXBWLHeBzTp1Pj/yZj1R15XQqsmYJtcTDVApeBdoPrD/5V8ypR2UIx+ebE3NpyfG3cDNF78gHwsaMm6t+D7vV14Qp1e8urnn/M0/wulbhCPj2NezFHBxxHmlugIxkCOQTszH/weAp/ktLY3c/fJz/Jgo+cy6PFyKgNF3xRG1Ap3BIh2Xrct5PKaLbUGcWrW/y2RqaLgBqGe0BbSNiO7Q1jWQa7QVyrnnKKTvjH+2Dut1/LEyML1Ar2D9HtuMNukUIVgmr8U2z26F2bo/L3SMqpi2aeuC95s22PYNtZnkkHh/rQT3hUfFZHWC8+aLPQ0mhdUz9XWeabkSmXGt0MoB3z6gtWOdwud4/wr0xha4ZpWe7iND0JWgM/dOKPMjms/46dbaOFiVjQ7t8kEYUsPXhfnQjQHmt4z+RIgz4jPp5QuIN/jtbqnimlLrSiuKHwckGYmhd7+oWinLmRgd5sioCIb5stcbKgEXguGvxJn0xyWot0kpGqEl84avgauwr+DEpFWcBLs/F03Wn8qwVvFHi6TDNl2xQOdTa9YL2J/vtpk+HZ9qE19nnyBiGGO9/HtbgM3kwjJTNVmlVpF+HE1sYw7iCF4oLYM2QtrA6wNrzXjniWOC0gi1wCZyvbyl5dcMMeHdiCGL/CVodxIQ9YiC00x0jujl4ottbjDFcHZ5pVBN7mVrOfpGcw3kAGEmn36NnH5FqrbpS1PEC0RF3UpnZ7Ep1DcVe6bBLD3VJFUsaL3OrUupREwI3OAVW8AqHZ+9fbS3wOj3waOI4XPpmE306rzk/tB+1Y8xnidjYprU3me8F7ReK/dDtKqVeCOgLtkqLhfMe7Pug8GKjEplsnhcrFWlO+J5n2iqVCeUUgn9foYYaaWgAvNyZre/oTx7voYh4bxQmgVcIkKIEd/JK+LchYuwrnOPZfQC9dJe69RlRYvSUiP7idmb3qXbfcY0nWnLb0GV0JNp2dwRpCIdurScZtLocT5ecEwWA0XcsKdQqOu3tHJCOlnW5dfU829RN+DDHqmW0Mdpx9ihWKdlIaQBrZlzLkyjkoJn7dewrQu6OKSZiL0oRrh8RkhqHkIabW3VajJHHcOekkPcCpqtK+KqmXSw8TsKzqfvVOf/FMM51+fRD4y+7l55rspmB34dBgeyUW1/d4rB/M0OdJOkEsmILohmk55qRqbS9oahdxc8J0QWc7+MAdnvOR1OtE5qarnS1CEKlXzVH+9zN44DwSuaVyrC+nQiKfgNpphhcA6Hcnx8YFnOtuduxDKpNFHcCF5Cd9cUwiZF6AQZAqd15iaNDC9/QRoCv/n73plYX3Pz8hV+CJTsoY5oKmg3Lkh3f8P9//CfGeKKjMD7maHJ5fsZ98zeEW8ccQclFTQKbVRa6jFPe08aPiNNESeRMUBZz6xPFvNoiGYxH43w6H3tBarefXCBKxtriwMMHmQnUSGuhrdsEakj6EqrQ7/L4RLIxh+YPj8YsD5n9z1XCegr/LVC8awc9WmQ+51qx1a6p7erNUD3AAZoTalqGVZTsfb5Bkjpn117S8EE+626YqXWHs0r+Bg630L74lUvntetWavMaaNqJc8ZEVjPFsx5vNmzlRONxnE+44cdaW/2lS59QN0tId0y+Bu8t8xqY3rX9UxZzhzev+bh7TcMaWA/7nnVnSvWeeb4dKDmmfsXN8it53x4Q+oY1f3QaK6yBsF5TyByevuE9tbabvT4MZKGkeYDrTh0SPhxwo9dXD0EqihFMHyaNJLTC3ZEN6KpVrRaButF0E1JQSLiu5tQG2h5gBqRC5DdqmLOmfC1Bbj+eg++swj9qce2AVzBTHKxDS6X39rmuP3uNs875MW5jjH9FO7yKS57w59qD/IDtUZgQNwez4o2q86X2rV5ZXMGE3PCahvGNINWqkp3j3Ksa7n6ChDN8lJBnMcNe3ytjP2canlNOQ4EB0wRCYa93irvvW7e2+mZIJk0LIQOhwl1xZeMdxmdDbesAVqfOJmFKDNjeqA9/hbmf0SWb67XO3iUDFrM0jMFRK7BpjjXoUCKyALdrafBxb7VB7EWlAxUB41msJQNR5uH7kJXrIKrzmw2Ps4fPrnH8vHPFVSUzWDix4aw/EFDNhw/0CuiJovaqHWl1Ix2qMdcTRe1LQs3w0BtK805fK+weg2UvBiOFN8TlMaVqIitI80+3zlnvuoY9tQOwZ6VeZ4REWKK5HO+EApD8JRaqVrt8wWmabroa3vv8MGjTdDSrTPb9bbVNSO5Iq1S6kLxiVUnhi//EwC7P/trXHvD4Tf/O45jh4yFi6F1bdbaTD5yOh9ZXCBWh9+S8OoQv0PiS/JaGEVpyzuDpAHSjrSlUsoTISmtOtCIxBG609x+tyfdTwxaeXx84LQsxJtrGzuvM24xzL90fK7m60mWloEOf1G6S1ehdJdGJ+C8Is70xU1XtF6Nd6Qafv9HCFi/3znwh58rkd7x/IgIE7jMay04KewnR/SF1lbD3veAVusTkYWSj5S6ULUhrSH5/RVOEKzX5JOQoyfIHmmO+Whr8rrOrKeZ5bSQhpGYBlQbKfZuZVW0Qz5KLuhaCE4uJOrWMmkYDB+tjRAFFwJpsHldtRGDwwl45zDJ9op23oD3idKU4Arzw9eoVFxy3GJV++AOuOpYHh9wsuCCskZFQydOt0eivqWVJ2R6ILhKdJG6wQP39zhZqBHi7Uja74jjRAkj2t05906QdAN+oqw2N2X15IPN/ZUTcS+k/YCPQFVqy5drLKGbAtBjDGnPglbsfnoA66DgPbTlo0JKq8bZ+KHxRxkHXOVgtj/8cB8VMM9rBSxiMhZ6vGruo4gfAGXrjDhXejBh39E6M9XaX5sYbb3avdHYioWGh+m/u9mrgYlRz2ebgGKLY+xV3ppXWBu1razzwm6YcFnI7yxgPZV3jLe3tDByOsGaC/u7F5yOFnC2YiL7y/GJWGYGPzLkM9qFgo/ffks5n8jnI/WzF7wPnpudZ9ft4MvpzCqO4kbSzT23ozlVlLNJBy2xUGLDTwOaEiQLVnW3R/TOznG3Q2LqFxBKybTikLiBoL1BxbDqynWB29pngDOnC9GAtEhr4XKNLVHojis4e9tPrI1qTH7lWm6Q/oC4Ky7v9wxUvv8Mt4qcVaZahdKxmw0su75um5jFqwVqThwh+G7x2sHrTaAprWBuLRIuLcHWGq0bTfjoLkz92NPS4BSvR1x+QwsDMQi4O2rPW81BC6vaipCcMIhDFlu8U1zw4q1SGhdoEfXSnygIVKI7Uh9+jdOvqfU14hZqJ42EYcBFJUQjhbT2BOLxscsnOQ9ZqWulhBEfxwtMZavGldzlhaK5FakDrQ7Zgt4OTRF6twL5qA35h4xPXf1+zAB2O5Xvg6U8/5ls0Krt3851hrkSo0MKl6pxyZkUoORm+Dx1lFouslYQoFVcMxy166L9zw1bqjaDElg214PLeq2et5WyLNTZbDGlmVNV6q1JCYI0wSuspRK7usul3Oas4ivicSnhPbhaqWsP1mrDIzjn0bJyqiulwa3bpHluexI0IpyQFGgxIF1cQtTmiTpnpPzzDHW94ENbVz4RHQhuIsTJqkCXhBe8y5T1A6XOtCzksuAnqB3WMO73SBpIyXMTIofDI6d5YdjZVltrZrNSLZXe5r4Wyl0z58OaC3HwuJBwmtFF+/uNHOdMquMyWy4yT9ue+SMsxUak/PhZ2myRPyp6ffRsfVchwCAkG4G6EPzCzU0k+YW8HDi3E7EnWqEdiXqi6IEqGVVvtqrlSFdLY0oJ74SWBRkHXFVo9YLvPtdGaCC5kddMq0YS9b4HfCjUStNGXldKyYRxwHUcY1OllbXjoh34hBPZUFh4McWXizKMgGalbF1lFxHJJF/g+C2n07dIaLxIdm/r5LvDXLREUWCa1Mw3ANX/xvr1a8JNYkgnNGRqcNRuNrFGoWiDYWBOI+P+M2S8J8Q71Hc7+VhpztOIOEk4VlpxpGrXQF01pzox7o7qxwTrrbtdW+2xwcbb2GTaNuLhRlC3zskGQXSebrmcf3CO/Svqff08fh4/j5/Hz+Pn8fP4efw8/v84fm/SlWrPiOyHoBur+llKp8/y/u9keluNYMMQOJRI7fjUpoKyI3irFhQtRljSerX4885aqa4zimshLwubebAJ1nacTCfYPBc1dt6x5ALacCESnUdLwXUmdfFwykfURabdxKCO9XS+SP+kGNgHRcuJd//vW273eygLsWNk53klThNfvLgn1z3ROXwpyGysvxcRWj1HLuEAACAASURBVFVO5xX39IG5wPDvvjR5FOB0PKNxz/DiL7n/y/9IlQM8/h1psQpvopIVlC7cvZyp+RGdA36+BcDvX+H3L8wwIQkmlix43ysqTkC6zt8mESb+kuqLtyqK02QY1ra1059VdJ5XFgX4iOH341Zbn+vJfh+5asOvft9rcM0Y/1lDr9fBmnyG5zWMb0MlX4gnvUlFrdJbJ8qS8wWgL61ZJi5WPVVnhMG6Fb4VJERrKfpOnqntUuGkNVJbcPWtaT3mM+K/oInh/JokVD1OHVELsazcSkBXM81I8ztcPpmGoXdmcZxgDP3I10fW09cM8p4YHomTUKeJ1uEq5EprmVyEOCZEM7WtlGKtpVgjPtrSUfsVk6Y050mpYw2dM6y+qk1LCUhLsGX71STDRJxhcvEGN/sD0+8N4/5TUbio3eDCjqn/8DnkqsOc/AaEx9QBFNOrjgLRecQLZd3UJ5RWKlMcWR5P3N3dMZdM064eIY61CdIqg8/QVlRch05shJ7Q1w0jCbn+vdt1DyK0UtlLMDPnJZsedO/qrJrxYUCXSsAhweO9J9fePXCg3iqzGrqsXmuXSplrgnOJFCJFPTMz+Hwh/JVvBB8fSO2BBtQxGSzm3Fuv4mjOoXHADyNuORC1XIgjSzaNTnf+wDDcos0bdk+MVJbLA5WZJpGWIWSop5VlfWT46pf2HbcTBINKxPGGWx/JeTWJLmAaJ7NOjYNxUpxZErs+54I2SjXohbhokJfmcZ3/gHhK7wWKKN4ZCWljW5tm9lXZ4V/HkI+acyrVVG2AkArTUNntlOTOlHACVtbZ1psgZ9AT0S1ILQy7W2pV5gx1W5PEOrFUcCkiVWnV4/t6o2smKHiEh4cjuRVCitC1dZu3CqWKUr3gx0Tz12vsnEE0DI/tO38G3Nh1UJ31IQNCXRdyLvb8bFbzQfANUhT8ICylMkRH6GtuG79gcRNFlegCYwC/X9FNhWA9UtsZrffEYcQ7Dx5ctHlb/UDQCXWBIiMt3OPSPTLdwdZhkQJayXkhhgzlDPWI77CHEBISo0HkcqE534lX/abV1lWInMEBe0V9a/mLdMiWKnYjjJS7addrFUT9Bc/+u8YfQLp6Hpw+C1YvYn0ORC8i/t9RF1B3WXw3ByJjOG4PnEfrDnDglSDVoAd1vcZKznTAtJqkhbSClEa/v3g1PFxtXT7Lmfalf6YZ5mOANKC5MJ9mggrDaCX043zEp5F4/wWpwfzmNcuSGW/t9d3dLcEHPrx7z/r4xM3NLee3b3EdfxFrY316Yv8Lh+rAYV5o5yfGjg9NLdPOM1pgzivTbsfT+3fMZzu+NI74kLh7+Yrh/o61FOaHyrBt6D6R7l7hX3xugc3yiJZ3FM20DkuI/s7wa/uEBGeAdF3xcWsh0RUSxHToTHsBdRsBQTpedaDVaAxbu4GX140M+Jyw0K5s1Q0z+CPt/Zu49HPRaWkf47E3iMhzDCtsYvSwHfwFUHCBwHwS1GzXhE0L18wW0EprjtJbqwBSN1mtrkP6iVSWtVKq+Tb3hdYchbqsTTO/NefVhNxDJJf5IrFSl0zQlXz+QA2vibdPhPSEG479C/YWeDTBt4KvM3r6wMPbrkUZBm5vX5DiQMkrSCXeBs6rJUv1+JqRA96vqM/El6+oRYm9tROaR1InlklFhmAM2744r60SetvSuH6K0j3V23VdQQ3nhURzk6uJVlJ/3YJU54L5qatgraZtPbkuktBZ/8/WqA13L7iuHGKwkY/nwU9/2BTdjpnucqRUmqmvGNAZgGEcjXQqQm4ZCZ4h9vkIhOSo3YyldRiVGRKZNBtgRLf+vZtpnCmFbCz9iDqHS4nkPYf1TK3NsJ7AcjrjQyNna2uPu52ZYHTDli2RNGeh2p0DlbK17OMAfkfcv8AdHjk+/QY9PnJ2/xWAY/sVL15mhvQI3BBcwPlI7fraeimsKDFEXEtQ5ws5xRWgKevyAdUjkgcaO8ZoOqxRAhpfUdyR/PSBuiiteZZWyQeDe7W7PTUkvPe4ThCKIbHMlrCVqoS0Yxd64J0zRRXX2dSlVWSY8NH0WbWJXcMOh/Pdi90Stu18nomOYuTDn7RvwHNirn4CIaCb+nQYyTgKL+5GpvGE1yNBn3CT52HpDPucaS2zS4nz05n7FxM+RKQ8Mc8bJt7jHaQx0VxBc6MUR+oFoqjCQ35HKYVhiiQR/DAgnei61moOTyK0qsQxEbyDjvsHtYTRC9UJKkJFLUgG1Jlqhg+2N3jovCS7Dik4IpG721t0uGF+PME0kft+P3z5nwjjnnX9QC3fUhBamCldtis3j5tuSHe/REKgtcXW1R6Men9PCJ+xcmJpM+oGNCTUC6UrFfjSEK9IyOQ208qRfHxDe7J1fzkGphCQyaEScePQJRv7OVYgqH1vy8YX2hZatr9NtkplU6RRNuKBiJjrWf0hjYA/EsP6fFw3dfno7z/ok9pk9qds2bsFS5t4ctCG14bWQm0F1yrJC7VXOGvOVDUQv2A/N9esDWfbKOfFHKKq2a1NN7ccPvSbc5p59dkrcriBrDw+fU1bHXeD4UPzXFjXM/OHR3YCnI/kx3ebRi6xVQSlvll4f0zc3H/O5CKHt8a4m/OKNHAkQkgUmYwZ3ivEbllJ+oC+/q88Le+Z9Qjt4ZLx+d2eFkbOj0eGGPENVAPJC+XieFKppSClkjThw2R4yotsk2nXtW0jFwyresE6RiCiLZoeZwl4ojHAsWDvqr770xsfs/1/91H+TpKg0DHW8k+rYjyvZnyEy1YqCZF0mbvRWYbZRLpxg2n/+U1juAduTgTw1Fot2equJZRK8A7fCsu6cF6zAdW3EmxttJZZz2dCHGnr17RwgPA1AMnfouqJaWQ5nSnziYe33zKfbO7f7m6Y5pecjice375By0L7iy/Q7qQ1+TM1VmYfcGlCQ+P0/rfQSWXTJAw3OxhHWoj4mxucv8V1C8AwBBCl5JVYV5zvQadwlfZpG+64IeoQiYgmtMZ+j2yDFjEWuBGqTC6r34R/4ob9GxnPcGQNMQOQi8ScKaHc3L8AIHJE29lsop3Qaia54RrwlsYQAqXa54CYW5rzfS6CMbZ7MtEKLVtAtkkSllo5rRmnShgijoyUemFb1zVTcyPEgaqWSCzLcqmwbgRI7wTfKo5Gk3plW8dAVuGswpo96ypMfqE+/iNg1rB1VjQoJU8MuaFrvlTvqphSwrqa8oYTz1IhdgF5paGl4hNWccoZykLrZFytEe9GQhHWc2adMyqReHfL/s72hjAMLCHRmjIvK8l7ci64DmiUKrQ1k92M2WXTmfVbkuXxIZnEUqvgHS54lK0STneH67JuG3t2KxQ0R7XT+5OPa/Hq+9dUe72B1GtXakvYFVrHropwsT2NoTKmyhQybj2CHoiq1/qWqwQ3AY00JVo7c7tLrOeID1ZhnAZTbXDa8MESNp+SEYaBcD+w18b5t9/AkgkqRtbrwZOrFech10JIghuEVUtnxtt65YPJnClmCEPOLKdN2SHhO+FQHYQooO3Suahe2Isg5wPl+MTkI+IDyzbv01dML19RD7+iPp3QfMbJDnGdDDgKftzjxMjrRaCFHcPu39nx+z/H+c+J/DeW5e8o64FRbiHEy96lx4UmFZIBqmtZcTkTendC8tk6hi+Voo7iB3wacK4Tb6qYhbGrVF2sKCIeOr4cBth4GM6jEixB7VPFtYpK6fP7d48/qsJqUXHfXC6T0n7nU//gjz/zh4NZrQOVLl6tDaTg64LXrmPauoRVNekJUdNbXc92A1trJkbdNp9wk2za2rJ5Xogh4JqjlELJlfev3/D4vvuhK+QwMNx+xnxY4LExhAE99CpZy3z4zW9oc6HGG16/e2Ia9uz2tqhMQ+Tx8ZFlXZjiyF/9xZ8h5cw77PjefP1bWoPWArcv7rn/i78i1yd8syz9/PAN5XRgWQvlw2tcSnz2i1fX1tV6Jq9vcEkommghUHvVqrnNseiE+ggSCS5esiEJVwIEljRSm+DF7OsuWpdq9cLWGrVWywafVRivEIvNtajf60vC8oO3+F98WKVGL5XWP2RYq/jZAvwpm/UyesYocN1EIrWAMND8eJFAUekVUiedpd6dnXrVoRVLNFpt6Pco0jlvaVdZVkRtYRfvLq4r61pY88wUd/jmOb57oMgHXnxuphfzm69ZlsJuf8Ph6Uj0gbsIu73Ni12qxPwBPT3yoh2o65H89cp0Y4v/q1/c8PT0wJnA9Pmfo/6Wqf2Wet4EqGeW9YE2JiRF/Dzg1xfIy8/tEo07s6OkWlbeKuLULtvF4EGeJQHWKkID1G2DkL7Ze4Tn68mPPOn+BYds+IBnc1n787eN1oRa1IT/u0Vr6Ezi+biS+qWKQ2StGXeukO39uVWG/c4CJ+8Q3yvYcjVs2NZuC4+cueGZbKYdj3O04KEqMkSSH9HzQuvVsBACa7Nnc0vE0jBYtwuYzzPBB7SaKoaxqhXfq4+UMy0vVK3s7r5gGL7k/OFX+GLJUkgRnT01RHyKtHMm7tvFcKUFh9SAK0YYVTHDGu3kGqSgOaO5ok0IRMo84zr5pazKsgbickZKpZVKcY4xBJbF9qbl8ITcv+pteUdZC6nLPYE998tpxuOtzeqsHX7pSAaHi8EIaBbNEqK/wNWq1t752qQg3bM/GOmoyjPb0Z/a2JLLZxJ2KOZ+ZORf5xdUN0JRAQTvHaUqLUNeCzF0EmcKTCnxdDyw31vgqlpIKRG7OsUQA3muaK2E4FCNlHVh7C37Mi/sbnbc3d/iVVlPZ7yXrnULEWeWurlBcDStfevrChtBiDEyLwvTZAFarfWyb/gQ0M6W19a6xi/Qz7HpgvZAWmncTje00pCuUepP/0hNj3B+S1sfwUOTiEs3ACSd0XIiP73GJ08czBGuLQaV8SlQ5gOV3xLckXJcabsb/DBdbI01DZT1xPHtB3a+kuaVelqovTNAbcjxSPAJV4HqcLcOGbeI06PqERraunW4H66fLw5a7luozWFxV+MXbaUTiuW/T8CqzwJS3Ri68p019KP3fj/btl3KwM8/99k77eTEHk6vK048vlVCX5ioldYllKRVVCtzni9adUNKnW1pAUGt9aPjdE2JmKC0NCNb1lJpHRfTlsz7cwFmylwhFz776kvo0havf/sGnjKDj4SXn3N3u0PbwrJYwLm7veV+f8vhcGAk8XR6TT6/5+Z+UymYWM6Z87Gw5geezo9MO8/y1NmwDdPhVLjd7VEnuDXTNumi9hYfjgQ/4u+/wt1+Ceo4z++oYq3f+y9eUmUk7m9owVNaY0gDLvUJFMT8gNUZPgdPaDzzDldUCsiKCw4XpQs2757f5J98iPB91dXfVVW1OWsttd4ktjZ/b+1sEleb2Pfl87bNYYO6OKESqRqMFSyGcbKR8drMGMS7Hqhx0Zqs82zZZq1d6UIv1eztK7KADAlflbZkBucpPdEoEhlefkZaC8vDe1Jy3N/fEnpb9Ztv3/JidwtvPnDvHI/nE3e//CVtsEpcmc/k9cxAo0njlDMcj5Texnn/fqXiiS++5MVf/8+UpJx+84bdBlcJE/ryC+I4UNcHWn6iPqyE7pQVbn6B3E40v6A14OPeKqUuINuiTkFdt0r2IG2Alp4lxV0yRfr1EbUc4dJBcR8tSlYhfC5vZj9v21xQwbkrU1l1Y9f/OJXaC9tan2nCNmu3bc5gYKHjBfaAQ1uhFFDvKAX8GFg7NnnNGchMyRPCjrqsHJ+eTIMZWEoxyFTwVDH5nda6GNqljNugdAfBWnsZr10u6LAbCV9+Rj4c8UPEzRU9z5clJWCGASJm3brb7YjjwHm5mhs478hZMUNrx+gFt7X0l9lsMeeZQ4tM0RH8BH3d19VRTwPZjaT7RD4uuN1ykXRTBzEkWlkp64xIwMXdpdLlZGVZnszww02onxCp1K4xnJdHyqkZ3E8NVhb3N6za8P2+xKbmliRuQyFD1wcF63yN084CAKfU2myd7WVqH/u+pBXRgjZTFdmMAERiZ5Vb0Gp/Apslt2CBQ6s/Qon1nzWEj8MOg0CprDhX8b4xDgvj0NcLt+JcD1gJeL/jXB+RrZXtAz4I0zSQV+uqarPr5fzm6mjvX9dKnEbrsHqhtY2R3gjRsduPUFaCU1oT/GDvL7WQW0W1oU0JIeKcXK6x856cMznni2sbcMFjbljVVld7pvTZMwSoKCf1RB+4GRTPAucV35P206/+D9a3E370prThzcXQj73MvLyl5QPBV1x1uBZxpVyq9trOtDWg7oiLC+oSuhxg3uMG47ysgBfPWJT65q3BxdZK7Z2B6uzZl/MZX0FzMyOPrVgz7RGNhqdupqYgowe/GREZLh4xkwYVgaoXqIu2SsOBbLCv7x//3SABv2t8p0qrH7cMvi/YVWebkdtQgbXBfKSczP5R1OHiLUK1tokW1nXGbyLYtVKr+UW3VplPJ4ZhuMpaqWmh1tIDkFqhNm7HDq5fnigPT6h33Ny84FhWlpKZux7fqsoYzQv4/PiWKVXGKVB74HI4HdiNE19+9UuOOaO6MO4j++68kQZPPiuHD5lSTizv/o78qMQONB+0MniPrpX5Aca7wPk0I73tO6QTgYxq5FxuGG7+hrTfcXz79zS1KrHbvyCEHTLszeYuz7RnOL1WC61LiIl31NL6g3QNClQyLqz41AOA4tBmGaR2T+DNceTf9ujzVa7Wgd/7+rMAZwueVBO1jRR65dsXUKVpNnmVata4vrdLAtL1cM0Uw4lpwT6H2qgKLVdzBsqVadpfSAi3t/fo8ILT6R2Px4UvfvkKkXDRHHTLwm7a8fThTZcxapRQOVS7r8t5JZSZSQu6zFA9XqLhcoF6zux2nsllwvKGVgtOT0auAdLtC3R8YY5KtaGukrUROmmkrg2pHvHJ3OfapiWqz/LYXoURjyOBJmr20MLldeee4/a2a/+70qefelr18TAx9U/0r7+3UyDXKbcF5Sq02iut7ePmQG0NnyJTiiwHZTldmWoOpeVsOpGY1FLVTG1XF8KyZgKW1LVSDeOMEjbh/wCSHGGfrDyajdgY+kGEpiy1IiHgQyLnTBiSVaOwuZ3LZlLQdSu9s8QFKFLM6td7XKjkCneffcXxne0LrVXy6hnY4SRSl0o7zbQuOdVch05sF8UFCCNrJ9NGvHXtFBRPHm4Zbgdy+Y1dQzKuzEgbjfA4RGRIRtDpwyNIKcSQcMHR1FGaYVPBYBNhzZS2kn0GJ6hTencaP3ho5l5nOp9CqyvSK+UujNYpEwtMka3KugVFgla5dMr+lGNL/n6wvbZN40sHpSG+4iQzTDDthF1qBHcNdLzva0FISKuM48R5Pvbv9EAlpYB3nXCt1XCwm+1wKaQhgkZC8NTiGJKndey0toKPid3NQCsDIcC6WiXUvqRRWzbppWBykMoVtiAinM9nhmFgXdeLq+F2HYpWnCi5ZKyZ5IygyBbQ3qO7FzyVhRAysnxAcqEXJ4n6Ad8WhB1r8zQNuDBcYGBOouWMdbG9QSxZvWBspeAC5GaSiaJQ5xMuHdFu+S1+wOXMTjGy5DLD0shdTk3igPMJQ7Zlih7JAqlD1cR78Io0c3ezmoI84zJ1iatqgb/09a30Z9/7gE+jPd8/MH4wYP0Ie/IM3E9fUAUDGG84lO31pm2rTfU+9TPs5GUubx7ARrj42Jp1JvhC4kgs7wnra9rxLeWhB2PiqWHuC7ptet6ZWC8YxlT9QPXK8XSyxcVxdc9oyvHp2D3NPcuy4BQ+vzdh//fHjGqm1QV05s+/esn5dCC/MwzqUDK+VoqYRtzxw4L4L5CdgfNP62qbw/LI/S//Aj8OlOUDWq1t6scZOSzcNIUMxzbTmsNn2zyigrQZz0zOZ/LJkSY1TU3AY4Dq4hNNz1DeoPkLxCeG/S/sFKeJpVYi5gccJKC6smnZGoM92aKt0Hy9VM37bbBASQvEBZUVXTO6XqeOakJ0RDSBRhzB7F77B0hncv9bGRvc5ffCZzdzBSrhWSLQKk4rXhpBDch/WXy8QVtq7W5AKK0YAxWg1kbO2YTzqzliPbx9x3y2gPRmdweyo5Qjro24EllOJ05ve8t+LRzef0BqZj8GwpqpT29pxebu3/yH/4nj22/4+h/+Hq8OL4kwfUHZmODMLIcTkn/DaTlSkmd/63B7a081AueHt4atlmp6hsmRe6WvuRGtmRCSEbOcVRhwetW7xOMw0wrUQ/PUIrgeNDvXjQ+exWv/lsbvCli/f9Y9g0Oou8ACqrO5Ipe90xNiwkdPo+GCIw6xE5s61KRWpFr1v5ZM1dy7VH1tz0snWBmrXbRSWrl0D7RrT2oUC3RTtwjtwZpTg3HlvDKkEUXJOV/cuJ7DjwxBb4Sv3AsNdbfn9u4LDo9HpJxRPMWNuBvDj67n90RXECmEMCA4yrywiRSrE8OTYl23lJLB7DYN5OVs1p4t06Qx7L9Ax4HcbVdpb/B5plBpPjC9uEXTRIyJc92gFyfoVTjvhXDR3+xBd83U8xnnE/NyJgyxu3lslSal5oXkHJSZVpTS8sXZKfkBOhTALIu3vbdX2qsVdPmpQgIE7Knd9omMMiN+xicYpsAUCo5NlL/S6orqgA+OmoXdzR69vF6ozRzSvA/kVSllxXl30Q9uNKITvExWjw4OHz29sc9pOYN6xjHC7Y5Ds66VL/2argsRZ7aw0eO8dSy3xaeUgvf+Ul0VEbz3bJ5fIQZyXkAEHwKh2p6c++fH4XNe/vv/lUUd7unXnH/9f7KLJ5rvRYxaSW6CGFmrUktDmlkhAzi/o7gTjdlMN+ZAIOL7w+9DQ0Oj5URjwEmi5IovmbravtHyieAr5IUQHe3c0CYsHTIU40Tav+rdgMZKoyLE3jlzxXSaRSBIZAgT0rwRqTD0RM2NVhZzLKuFWgubk5HzYjGD/+FE6yc6q38eP4+fx8/j5/Hz+Hn8PH4ePw8bv7cO63dK/rL9p2czosbi3UrBqGX5G3CfLv1zYQRaRr19vhNQDgy+EjniygHfjuYU1JnU+bxQdTWsD+ZgpeIpvbrXWiNrpjRFgiMOgbpc7S2fHh7Ja2a6uaFJo9VGjJG84QibIj7gpXGeH1jng1WFesbkA7jgEFdRt5BSZK2F+8//HIA43jEOnodv/oH1fGIk8+oXn7HJwtVTZVUllomyTsjNv+ez+5eEnu2cf/u3uPKW4FbiEGkpIYNHhn5+sVBHT0kN0gNPj/+F9XCPm/bc3n5lxzgO1PVMXh9AKzFa+2gr0WvbauBmqebF4enEK7sTPYPszmReIS24TurS5tGagAltE1oTtRn7z260R4jPPu9POy7z6Rnh4UIae1aWc85dK0i9Yo/r2TQg+kySyj7AsudnHunXKrJePucyNHRjqa3KNBvLt2YjeChWFumQgHXNlGUlxmA4137MV9vflRQiXhxzPrPkmYe372mr3ZenGgje8fTNWxKe9ljJj0+U113D9/ZzGCLj7S3jGLiNnm+//ZYXN3sAWj4wDIUXLwbOTzPaCtPLV4wvrQJbT9+yvptZTwtxnIkM7OWzi87q8cNrwtRgvKWmPUVHmjsTN+jzUJFBaa7hfcKlgASxQmqHQ3nnoW12v0ptxSoqsrWLwxWT3otL2kmB273/FLZh/9yq3BtmUS545U/HptP7Y4yPKqztWmF9dorPxvYTZ92mqlQxAlbTK35u2O0YY4B65nQ60/KKa+3SvrxoPtZqr2FqDvSqJ1hrVUWpHVcdoqNls7aETpICQvKUrISYCDHSelvRO09KQvbeYATOk/N6weXW0uEyrZJQcyN0gbKxsac7wud/ze1LcE+/5ptff83DeblYaO5eTsyPb8GNuJjIpRqM4fL8G4k0OEeMCfGRNCaGvm8s5wMhRPLpQA0LPg0sfocG6x5om0haWdtKkcp6OCBjJd3cdRtlaE3JpzPVzQTvqMF/hHd3opSc8T4yDoO54Hlho0tLMFmvvM6myapKpVxsiXXYYFjP/lyUAmwZaY1LJ+2nN7bq6nZPCj4U0gQ+rCz5iZBPXU0FpinhRaltNXeraMSel69MV3pdZvKy0GohxsC4S+RVqGu+YKs3XGtrFS9CSpFSVsNbguFf5xl8YBgD6J7zaSWXzilxSvKBmjMpRnyMkPOlMm/fYdjj53vDxn2g83m898ZfcJ5Wr7hkdQGZvsCFO3NCHv+WxtE0hoHGjkakVUccRlwIrMfTVZ84DDSZUJTaQOSWpvuurw5CpvoKckcIN0gSqi+UNdNFf1jfvSPEBpzRllm1mC5qJ3ZJvEXGe2RQNDV8K1R1LJ1QuUtGqkQ8ooHgo60/PS7UDldyeKQaNpuS7Vpy7V5uz9HvGv/8gHVr1zlBtSsAfOQXvwWcg/3cZRyVGNRKwBeBWPP6RWecLqALNednWAdF6ltiU1Io5gkdGzV5/G7fvymwHM/ktdKK6aqJOLzfgiVrQ4UQiDIgqzHQNtkr5swYPFJXnMAUjJn6dOrl8ZYJyRmTHjt+R9yq15vgFp5qDNAQOFEvmJfdzQ3DNHI8HVhOf8f9uEdcomERq08BUoJRUHfLF3/1v3Dzck85Glaq+W8Y84zXCHGkTTfMujLc2c31O0ESaApoHNAYcJoZ74wdaxc6khxUPbM8vqN4j8Q9btgesoh3lVptx/fBd1Z6L+GLnTtSgYJRAxvijYBAi9AGRE3AuJVAq55Wx8vrQkKIP1LI+i87LmQY+F5s4UXTUwTF4XRrZwdCbfj5CHWlkBAKri8ueZ1RrQwhmj2qKOuyXtpboopUS7K8CIgjIRcJlcPTN9R2Qip89uUvUK08fTiy28DsIfLq888o5cTcFtK45/Ov/py5B8SzvudmX/n8zxLzoXF4WPjw/h8YSpftqU8MLZOcI2kjDo58fkOr9uwM/j2+Rhi/wn/xP0JbeDj8iqlvMH68Q8Zb5ryQQjT5HjHw/gYJaKUSJVjyKgXnFyR53NZe0mTJasewfH/I+a93mMJKl/R6e8HYSQAAIABJREFUrrOqeiHyqDbUlUurWdThiCiJpWVQuHFcNv7kEsElgkwUD9oO3Wpxw/2vsIuU0YP3pBiJBNppvpBNY2k4zYZ/9wLR484LIW+yVB6JHoYRH5OtJiFQ+8arwVFyQVLEpX4OeTFjGEC14KRRqFQCRSCwXNRd1sUY3tP+c/wYaF+/ZZKVu257ui5K8YE27ZFpz3p8orbGuD2fuYDCsmYUjzpBwlXjWOJI1ZHS9vb8Lr9m0InljbGtWRzVJ9ZaaerI88oUJzxyCbqFyogDcVRXabWZLNVWKNBGDRVVIQVvRZUhsnZyCjtTLgg98NHW8M51khU9wXLAhOqASEJahGJ7Y50jUrr95Z94qEiXp7vWBAxB+Pz57AGr68mnL6QBUlScNmStrE2pbKL4J/YjzOeMeCEg5HKm9UQupkSIE+t8pmnFiycmgwBuvyM1GqG/eYoWE2CIV1mqNEycOOAVnDZSiDyVJ9Zsa5qPA0qAoviYkBjw7orPDD6aukuzz87LauovU1d2oNBoBG9qRR4jLfm+5rrD1xz+/n+jjRO3MbNPhTU71r5mTz7hY6Q6YUwRzQbbKf25WV3C3b6Ak6I6Eu/+A276nNJsr16X14R0xOGp5xOBAc9Arg7f9W59m1k/PDK6hi4zYcloc8TRuA2y35PVoIXOeVIErUruAWkhEDFZrZatuCiX+23QDdVGCIKodoUcj4Z+jdxkUl26/0HKwT+pEnDBUemnr/0OwhTOANVaCD5zfxdxLNTcmZbryhAELU8kmSnrgdKWjeRIqw2pB/xiG3LyVmVxQ7wcQnCB4Dzr8cxymDmdZmpRhml3ObjQ8ehaKpu8UV76Q5AL0feqlXRcYVVcT1mGfcTjcAkUy8idkwupy2BZlbJCdYbFi76wfvi1Xfz8yOzhhpnmj7hSqceM66bWKVQ0NXJsuPoED/8X1d1Qylt7/e5g2NEwUP0eHQPaCnnXg9HdRLx7QUg3jGEPcaCFBn6HdhZ/y8EIerNDj42VhXCbiD1ucc6DWlWj0UmqXi5YYyfNhI+1oFSQ7giz6QnSE49WULfgXMNpoOQtMQkdv/nDrL9/FeMZp+qfDo16day/TZ2R01xn2YuusDyRH94i2vDpFrSybq4lZSUEx3qeST5RWmWZZ1xfOJwT1vNCyYbAKvPKNEyksTNK3x8Yd7B/cctaZx4PB9SJORIB9fyBpw+V/Z05pxzOT7y6v2O/twqq6pnYDuj53EH/Si1PLMfHfnqFQSAWz3ooVPeAnzLJbxi7BZUXPK2J3fgVTooZe+wsUyeMSNwRJQErtVVa3VQBbH63jZlhTAKcK0hcLtVGXSe0dacrdyUbPV/ornJXf0w4+1OtUn3/PNwQwOICpWUUR+2bYguK9xGyEnxEW0Bz5tyxzyFA8omUIupDX8Kb4TG3RKLpBSSpKqxloc0ZKTb34jgiKpRcULGNPA2Jdra57byg2crEipFiavGX6mJdAWekqOYsAHJOaL16j2Y0H/DTDqcz+9QYNON74NDWM8nDtB+QIaGzt7vf500rBWlKzYWSF2iNECJDT/KbYt1BPMsyc3z8FvzAuYun7zxoEKgmuTiOE8OQWBfTQwarGw5hQIInTAPDzY61lK1eQ1NlvBnZDROtVlSVWsClDW/okTBcuireyBcmxI51ByxZs66idMJVhwFbo+aCa/3TDuX75+V30/nr8YmzTkotpgsuCs4H/GZE4grHD2+JbSHtJqKPaJ1Z6/Y6hJgYpvEiDYg6QnBsnKmajYDtRVjnE7RC8NfQx1RfHN45vCpazGRIOwO+lIIL4WKiId4TvFA6WS/gqSJ45wnO0Uoxwvd25q0rasgWU2EBVJeYrHIiH/4WPZm754BCvOXmM5MidOVMdlAEBu/tGU4DpWt7z6rc7EfWY6PkFdcqXvXSXRFVnL4Dl6gqaNkjvlHkhO/62T5U5ryy5pWUC26pGDzVcLltPSMpUo4LPgc0JdK0Iw2dhO1MM1xrvVSTcWIShNCLmxvo1tZsS3C7qkKIXSnmhxOtP6L49Zx8cn04KivoypgKY1q42VeCnCirAdefOIM2hjgT25HgTtRY8F1XrVal6Eprmegi45ioi+mt+U6bW+TELkzGas+Vwd1zeDyyzOd+DMI4RYJLVNeB7qUayJcuHeKls0/NaScmf5HBaNVgBiSHcybDYEXiTg6ojdoUDZ7qI74pTgpR7PvL6Uzwyi416rSjuRuqG3Bb6zhC2g9IOYGfafP/zfphItxasCmTgIxoGGhpRxVB8OSejbR4hxu/QMZ7XLqluYj35uy1sVGDd7hajFVJwMWIxHS1t22WIXkV3IX01q7sdqwKoF26xjlsAj4D85vtaLGWl1daXYkbaLoFWi7msPUjjc1ycwvWNviKiLV7P237muYklwRHumvJVnVuWswBSHs7WYXW9JmwumkAIt1eFUH8ivdnBmzTG5Zvccs72ulEK5kiZ9tUe6IQvLVKi9rmeFxmYkqsy1ZJU54eDvgYO4mkMu1uWB+tfdXEs8wHdqPD1UY6POBau1i/OlbKudFe3uPuvqTReCwPvOrJXpxeIvqBeip4d+YmR841IV0AOlWPnB5An0ixgEYGhLAFk35k9QmR99TDf6GEe4bdBL07MpeZVA/W7iVTcXg3gk9obwcJzeak0AUEKoQVlY3xp1BHtA009tAmRFMXHrf7aFaWAejETNmMYLFAWHtlVrRDPTybDuz2e+5PX6T6PcengcnWAnTWEq5Xa8S6rvx/7L1rjy3Jca73RGRmVa3V3XtzOENZt2MdHQHCMfwD/Pf9yR8M+IMNGzBwJJyLLVG8DGf23t1rVVVmRvhDZFX3HlLUFeQIngJIDmf1ZXWtrMy4vPG8t76irWJto0xKp3IfA0VTVtKaKdcZq07fKn3fkd44oqG+bmT6uC8hpzDrpyGLmZOBrDoSkT0qKsd9TM5yKbBkwE4KwGkckBSIPUmC+Ia7MI9DbZLEt7/8az58+/9y6c/k/gGv62u1LRmahTLpmL5/QwQg7GoVglOrKfbLvcKxZ3l0EEWFIsq23dBinAxNVYxwEgMlaWJfNyphpxl/Y6KUGU2KlcyuoNeFabQ+S8mYOr32cD+ayvAHHPtuM9JyHNzDWUw45XB+GpnEmQAJd6Vuhy35gbr6vl5HgjlCjzE07dbJxSmamPKNZdyvSRrbBv1+4/n+TL4+IerIfCQ5e5x1KjG3KjF8bdY5euYq4WhXykSaoO0bshPJEwRVCA+DgBFsLcvMvB425gVzZblkLtcFnUqgqEayh8cZMJUJqy2CcCAf+1m3qDqbhWHMOGXTJbqRu+4gG8U6kxZadSRNJ2tWtFGLsrx7QueF3gMBdnac6h4VX3FENuz+t9A/IcPVMusHxG5YeaT6e5J+SUkJ236GDRRnyRe0TGy3O76Hc6ibkUoE5fvLR5TGdL2Egm2fohM21lq6JMx3WquBGjxYwvWVUS6D0x7W5cFxPp5PEcctKAe/bU77X9StfRuwvjp1GCkZl4vz/ilzve6ovWD6PF5PfPqw0/sdtZUlK59uO08PwYFMeeLFd+73jSgCdspcgjow/vbWlDwJc37Hsxn788Z8KRzerJIL5TrTZbBcS4YkJ+su5xKLXjsQWbyOTQ7Ak9JFmB5CF+I9Mq66jgVuceNTEuYCGeV6uVKeou359ccXdJno2chf/gXy8GNcKnuNCmoqnxAzbOvs7Y6rkecFneIeqBhJe7jc6kJO71BduPthBbfg5REvC0wZEyFZRlLDiEp2sw9Yu9NuYa8mOTPP82ks4KzIPLIakQAVp/4Gn/S2gu6cm6e+sVVTInP0FpWRBGpjIrdlxKezZfn7uk67R8YqdU496W+6dLTw/bN6wRHwTiOYiuAnJ2JNmZxfJXSEintHXZD+iUlvzHofX7Miasg8cd9CJ+UDwQZQ3cKtzByzG2meUelR7QLWlzvtvpIeBJPY4Pd1pY5sP2VF1Hi+fRsaxWUgxkdlPGkjLYm1Vd7/5E+4fPETvv3F/8MvXv4WgK+uTzz96Ik9PdHXDR5Al7/kyz/+SwCm9pHbf/3fmHbQArZc6EsiP4wq1qXTL2DznU/3/8ae3vPVl/+ePB1w9k57+SZkEPkC5NBzdcJAAMg6cFaSOXXUahz2PTLviBW8LYhvWL/Qa8ZtIFZkCu28OK8Sl39Mdfzf2vXdnT06Yr2He5q4nkmyd2OvK9QdpTIPydM07Pmkd/bbDV0WWhP6WklpeNyf7W4iV6jhXlXmTJ6Fvh54IIsAsBt725He0eZv+NFtJIAGvfOyPpNUQ7vKCBaHLjMlQ13Yb41ljoPdgb0/I/LMvn4iS7wHG3uMkaLFrxIBsxvTNJ8hfe/xTKqHZl9F2LaK5TfGHynFvosg6uQMeRoBuVicFTnc1Xpr7GZUl5NEsFwXHt6/pyvIZWZ+94BM5VXPqIL2HklzDZB9o9PaYfxRKa2T9dWI5TPzEz/e6EEJSHiHWg/JgfI2hfn+XuOstcBMBfdX6N7RYsxjXabuPLx/oGulfvgIdSUvC1oO21Gl94pqjnulwfj0FNVbIPjZ3WOdJEhTISWwwzq11jCd2GsQXVpFRLiMgDKVhdvasR4Jh+SoHk79tQIrKbHMC6vd0BQSkHR0tbpFG3yI0EUEc+PdF8PMZXvB7r/kmp1e76hOSNpYP4SDm04zMj2RL1eaZ3ROtPud2mPPVw/qT55nentGtl8i9VusjGQ1Gzm/J+U/5eHy57B8heqKuuIfQ4aoV2UuM3uKxD+L4q1ThxkTc2fvK77NlMuFrhu9dWScW5NGoO+2R9fWUsgTz4DVx7kan5P5KKGMZz/JRrcdZz8epd94/eOxViPQiQfmYCAOHZK/WsupKssyMS/O0wNc0oruH4FAUhUUzaG/KhIA3jxlfGhWnt49YK2AXrguCzpazzKnU4OqRUk6UeaAA//q735OXz9R5KhSReBVzSL0kErrO9PQlJCgCwhT8ERLCU3peNJLSux75f58Z5omVGHv7Szh55SxPVhilpRJMpNV+BgB6WyQSqFOQpv+iC/+8H/A2ze8/GosYIPkO+gGeUeuT5TLF0zD+nWvL1TN6PwjyvJHiP47NCda++tY4PVneN9J6QkvhdYrsm6YdnR61YxYu8F6I7/cQv7QQb4Ym/sDWJqRaSLrBW8CLSEjK+1+H9WGhEvBuYwCzqg2iGKSYOCF1A28R4WRUdXMhZQOOPO/jevVXvCt9uoIWHMEpN6ZJ2cuhvt+PpTiO8lf8H6jtZVujvZPaF1J0+DNyYpOSrssXF24fXxhXzfuQz+NCdM0g0SVPGWDvZ2t3X7fmEWgbZScUIe6bxzZXLlkJHtUHQRyiirT0R2YSKBKp+HtRl8/csnOPjLtKQn7zUmpo0WxAvNl5unH0dJv2wfmP0xMdomA8vEdKzvyLp6t6WkiLTO1LExlYdaFfLnS98EctBm2zu3lV6TLe8pjRkel/kgjci6YxDBcfBwxoHno3qLTn4NN2YlNTwpeRwfChxWuzyhhc/mbJpa+z9bCh6Tk77UOZvxJb8oRPrAyPniLbhouYcDow+MWQzmtOiVn5iUOft/HAGA1tAtqw+o6vdFrp4CdaxoOVy6kaWbkUtQtBrlokVxs9zvag/8KUFQxj/1c1an7Rr5c31S2Xz8PEaHHBEn4uANuFe13ettpOOSZeXk8K12VRCpK09DPHsHeqSd3p7XQ0rnZWbU0PwJeoCRsuByJKrXvTPPB86wgQllmtnXnvq6IJubLFT8C1uVCXmZAyNcLnjPpMp/du26dLAnr21nNnctMK68DOr019HAIsh5DoG/WBR7BqpPAFeuCnfruY438fla2fOc3/zqz2geH83g9Bn+TZlQrU8nMJZ8ykDL2QS0JXUpoQEshHQmwGs3W0BBrRmxUcCU6YvFLYv6iVyNJaIPNXmdOpqRcnh7ptxXZdiphwzoNqUiZZp5vH5nnC4+PD+zWkJxfHdQ8nqUyz2zrFq344eZ23JSjexfPaGK/r3z9Nz+L349wnWLOYbUFpgdEd7QP1qyngeDMtDr6GZ7PAaXslb5VcrmSpwb1heyNbsf6znQXaDtp2XD7Fls/kPtH6i1QnW5Xigt5uUCa8bWx1WduI2Cds2LitHunq6DLgnqn3aNAlnIi5wXtDasVb3UUDF612yYpbGynBZGQOa5rFOFy2+I+pd8uIfwnVFjfZvNvHh8Jx47DlUHShlvj8J3OSWndzvJ7rzvLVFCZWeaJl5dPPL57eFP1ioWicmWeCt4qbV+jfTTHAlrvd5Ylyu/zdebdF094q6zPL+e700RUVlVo3sMXe2RU1dpgXAp5msKpovfTVs0GY03QCE5jezzfY+0tWqxudPYYJvCoLAA8zpewd12dtH+NvfwN3j8h7dP4+Tslz7guzA+Jbiu2fjhF3jqFu5L1jNdv0fzAft/QHItL7RP1JaPzgk4LRRTJhbbv3D9GYnDNnXLbaLcNXze8dfqnT+cil9qhOukR5KKg+XOtslVq74jmsLPTNl4bAagcmpQUgYV7CKtHtdEQ0hhW+31f56EvsaEfU5s2gPxvD7SjkvH5xjtexxE6mnauF+fh0qnrB+oANM+pke0Ttn+ksdFN8O2O2MY8BP45Oe4JXRYMJTncqiNj2vK+blSL4YV8nXEzeoM2krVW6xis68ODvJOTBKydcCjy1F8DVg1ZRB2Sgt0z6p0iK+vP/4r6tfB+6izX8bnWlTQnSnJkgX2u2P5X7D+LZEzmnfzwjItjZaFNgqmwj98/P31JfviSNL2HMuEFTK4wtMzajbQn+ibIZGRJJI3Nv/ejZW9BDbA+ptgNaAM+TbD6jilo7Yg0UhJkDK5YbXgPU5EIkBKOhG477tLISV6d2uwNqeQ3O/T97q7XdfgPvIfPtIoCJ1kypFXb3k8HMiVhRAXTBq+VMgWLGaINpzEUIs1jL+s92KqjZR5Oup25BB9YNNowR4U0jZZ7yoXWPCqP7q+OPzmhXchlAldKzliILsd7iBRCRaNF6C32wfG5d+tIioPdS8bzlcf/7t8xDVvibz98zdZf6FpQiURt33cuy3Le16PFnkoezt522lVbEpgSvWSmpZA049t+usS1LrTWyJJJKVHXSqtGnu00T2jWua0ry9MTooqWQlmurx3IKtA3rB1mGU65zOfZVse0uVkPSIN7SDDOtamjXXBQAhJmip9OV997HQtgb5LH6F7moiN/CLKDD+B3zo2qnd46y/VKva0gTp5GEuH76AY2pEssZFMkv0q1unXEIh7BoZSJ6g0dLm9tD/fBlBNWhd4b27ZxfQiZlBOyhcfrBU2hC0+urw6IIjw8PETgnRNlmsCMdezph8guSAUeSYsL9SW6zjlBtUS9fEF//+dMX/4R83xn/eb/Ht9/C4qPZixPSDOEnWkEd9u6cv94Y7rkkEJZVF37eL1cfsSOgD/Tb/+Z1ozMSt9/RVuDzy23C1O5humEKVpm5qeCjbmfdF0oi3K/3bjtG9d5Zip6zl607Y6OIXXpod61vaEHvcIblUoRRSVhYw7J6iGzXJmmhKRzYfzG69/C6v7h+uH64frh+uH64frh+uH64fr/8fWPr7D+mtWbYTREKpqMPHRAl3ljnpyS94GaSjQpaIqhi9Y/ItpJKTSg1+vCvm1n9dN6RVWYpomUBEjs98ZlWc4K5zJPuFXwmKK8PCzUdWE4sbGte7SRRGk20FdiZ+uplKF3GRXRbdvGvx/TohYSh1RyuGQJ9LaFkBtI7iQJ1qwb3F1pmrmOdnyWiq+NbIX6d/8nz8//DZmVNJBSWjIdRed3qO3I/QWxF5QxsWsZeqbTEdnx/QNeG+Qov+dU6TeBh3eQJ9L0wC5Clsx8iO9//ksu1khrp3tMMdIMuUWJPzXwreO10b0hD49g85nJ407bNiQZOc3jfjun1ZXoaL9ENaq5R8XvKOlrxiQj2v+NaKp+/fpuO9aooBvL0nh47DwuGy0/8+nT0PD1FeWZLC+oNsrlkaqBnDr1mSXTO+Trwu6dkhZ82ylnaQxe1g0tBctK09Bh90MLXDKeBE2BdUpZooV+6DuTkJYFJSTdtu3Rojm4tCmR8FDApKhaTuLYEvrrmp7oYkgW0sNO3jp9+4Y6JAN5/hFluYamdH4AnRF5PBEsefoxcvkSmd8HsFhaWHDqwKH5DWkri2RSmSMbbx20kw69aTdIbaB8+ih629HBHcVVR2gxPKmOt+3E2qXc6LthTUJf7Anr6WRTih7K6mMIAH5NL/B7vNw9Kr7/YJH3qLJ99s2gipmzbka7DC2gpqEhi8l5E4XkaDnGy4+hDUXcqHs9XbKOYrYLeBL2Hm5RbKERPaxJpROOTM1QC+aiS+yjwPANV3KeoRtzKeytnlpDTUr3GIYMF8fKMpez6mJdSHrFzdAp3P6e751370L7f+0du4WdKeZkTZ9VyrtHV6yZUaaMJph8PvXVL+qUpZDqBdPRhXF/lePsnbp3mho26DMHw+n4G5zwkJ/mia01ijm+12FjC3RH9x7DORJoSCkJPSwuid9pZpSU3+Aejy5RDAjGvjsq5mONx+t6ar1/19c/pichoyv79nnTlBCJSXrVmNI/3M/udUUnCxvqlMhpopkfYwNxPjNR9y3mC9wRDp/7o/IfA4FJZTxTsSaPCqy5gxnWO3XbWV9uweodVfMOlCmzXBZaD1cr6/3sLFwuF6Z5xnqPqnoKB02xY5gQklsMB9YVWlhwy9GxtQ3LC5WJd1/8B+Yf/wU5faL9KrpaC38bLp65oDrBbYsqqh5kicx9vdG9UVpj0RQYfD+sX5/wlpnykEe1O9od8ZnexuDXdkNyx6rQupDmB1ouTO9Dpjg9PpCWTHl6x8unj3FGLQ1G57BtK2meSSljbeyx1dHDwvSw4O6dVjv5ekGScDiW7esNM8IG/Ldc/yDW6rg+H8AxkIbqHu3Rh8TlEl97LQZeEbYTHaGpnDzBy7Vxuz2PtuzhAeyn3sOshcRAY+PMJXO5Xig50/Z4EJc50/fK3jeSJi6XAu+v3MczO02JvcqwTwv9W8npM5AvSECtLcr98zyfD8kJk5cIyw/t06EkUoSsindH9D3Tj/6YW60kjWBQ7r8g1zVAwf0TxSoiD7TRFg3FQabMV/rNyTLR++3cXPtmqCtpdsTvICuSnX08paqBnam3T0x6oW0gWkh14zp+Rtsrdr/Dbuybo9NCKpfXz7E2mt/YzZiWKQL8IviwWsvTFLBqE8Ql2rPqmB1a5iGII1oc7qH1scMUWwgr3IPn8ju+3toJ/9O+8VW3OhgDb/TZME3Cu3eFd4+dSZ4xf8aWWHi3jyvWd5ac2e4bX375xJ4Eay9nyzCpUpYZ3zvWEnlOZH/PhzGQV5bENc2keUamTLUerarxtspUwrTiOB6SYjkGxWBsrjmfGyslkeSVmFyyskji3dMTmyzce6dfC+Wr/xGA6Udfsa2/oNvf4b3SyspuiXIMRT79EWZ72HGmCzl/heYHnvs34/fPpDxhOQYoikVgXHu0v/r+ifb8Nf58Z0pCloLrDvOrzi/WXBxsbnVM3cobggXxmrSxDhtSQPrRJsxI7gH2NsVaGZKeQ9M25nQlDTzQ96vR9Kq7/Keu30G3IPaY2vyceciiCBkZ2tPwJBV0TBLTwYlhIJFIyFMawytHS98jAa3ripqHhavoOTDoPYI4sY53xy1sQo/Bru6ExCgVnIalzqwFP4I5AcTH8EbCbEWzIEXO35/1gWRCZqc35eX5hXUwiJNWCo5td3wPO9MkryQQA1pvMaCoHhpzTcjhOa8KSZmfHrFWg7KgCT9uosXe33sQZ0QCGC8SzzVAmucRvETSQXds3alDqyce1tvWOpoFx4LINt5DQvHaQ4esYdAgqqf5gIsM7fUxjMWguRxZxT9xyfwrXk085pa/I2Q99+KxNpPEaCoAmjDr9G5MGSYNuU63YxgnjBau5cL64RPT5QGKUlt85mUpdM9sVikKIhXxCqbnvo1qWAqPxCIGYt/U4FRCly0gtfEgoUGta5x1PSXKUth8J0vQftpaKeNvWIYla8exJHjWOEaGLlkUpBoJ44Dn53KhDLnOtn7gxRtwpz3/lPu28nBdmTzOBNzweaI9TNiWydoCH3cU+ZYLqW6k/YXcKykre214H8Wpl19R8lNgvbqSlvf0rSNWziFsvNLXTqoCa+P2aSf/5MdMjxHQ2mWKqf5UuLwv5H2jtn4ajpQSdBuZZjxwDZF4joMru9Pd8GYIiug09uRDshRUl+rTb2Vc/BM0rKe4caTSG8idNDXS5IPZCEXvMT2N0/sdmWfylOkj0Hl4eiCX4LHWtjPPE9McLg4A+76hAxkiLiSBeZ7C83o81NJbbEx1x3pDkvDwdD2Do03Dv/y+bhjOnArVnHkZkFqPzcotAtFSCtP0udhXVQOLUjJ1W8PZZRxsuXeKagzP5vd8+Wf/Ew9yId1/DsDLf/lf0PJzyHGgqi+h65JXDZ0g1HVjShnSE+YdGWMntRbELiRmSnZkjqk7a0NjqzOqmVYbuTbafoO9klKH4ZaVi9LuDq5sLZHLlfnpD84pf9dGw2gpk6qTdkBe/dzpylweY8LRNMTqvdKHLkelk3Ba23APoLLisenDK1Pt9+Rp/da96q0u9eDgffb6+T3E2vbEUQEwC+wZRC0rZ6WUzjJ1yn4D+3R+bZ46JS94b5Qlo6myXBO1XriMCoq3GgSIbOxJSGlmej+zD43qy/pC8krRRO+Z5A7W0OHXrktm904enu7T5YKInMYC27ZRb5VpKXTvuAbNQPLQAWYlq8D9I2KfuDw+0sSRKSqsD+//Hc037OUbsjwg+owugpbYuKRbYLBTYbr8KSn9OSSl1NCPt+0Di38BpdD2jX7f8HII8MHqhm4b+nJD/WuETPcEaaGkoRmzhDTFtWJUhAK6ID4g1lajcKrRRYk6o+ESG7TLCMRyhj6BTKgZfTjXmAmQR+A/hpHJOoWHAAAgAElEQVS+PwXW83LnleUIn3ErOAbSjn/zdkDQ43BubWWv8fyV/BhJi+yY7JRywbSi41CNgZQW6IekWDacIFjkEecnTXjPaFmCNSkC7UDfDc2aJkyE7o3eg8rRDxZjkpjGTnHwYUZbN2Tsi909Bok0jyAj9Jl5VO81GaIp8IapYB3q7qy3qN5f54klP6FZxyCYkpNiQxutYz+K4C7R6kbKnOzpPM/haFhmOoLQ4ned77/HWmke3OARh4lKBCNAcYNtpbdKKZn24Vv6Z3w0QVOiYLgonXh/5zxhUqYyPNhVh3WY0sZRLRpdMEUQz7Sq1P0kXIYG+Hs8TMhRlD7iaxPMonpuEtrrJMI0yBDXKeNbDE016zTrXJfruW+HG6Aylwzu0QUwHwzf454lkM5hvOHuMYTaR8cFBUmYKNUdyYV5nqjjLG3WwIX15YVcGqKZ3uw1wQa2faP1HgmQRHFr0gMz1xEZ9d4S2D9d3pFLdJ3vPxfa/jXp5QM3+79wV+xHzvIQ69p9QV3JJCxF4a2f6Tv44Aknn+j1jqcE4mcHue03mj3jXKi7MpV3JJtJrpQcpILmL2zPHwY+MdE04bUyj4CztUB/jckxcipo72dQ35qTykbSTNZMb43u9axXOS0MF0oUJo5xmWNswTUFV/hfy+nq84C1IakzLcI8g7Cxb/HGpb+Q1LheClpgvX9illfUXas71+uMXWb6vtFapeREmUeknWf63sCcg0VnHiFBGtR76R3zzuPTA9vtxr7vTClzfRgHGs6HDzfMGtNc8Ga4OmW0rrII214jKE6RDfXeyWMate41MtuUCdcuIZFONyLVRK9t4DI27i/P1OvCNG729PCAr0JNleQLpjPumVQOTMZMva/0XmGeaeWKs9NH1kh6R17+EJknqj8jdgNNpBKT2rnMoHGY1TU8JrZvfkXTRpI4lHu9se07qU9cHn+EXN5j+QEdLUKdoYhhzdl2R6fIVo+gnB4EBsei4pUVb5zuIOogviN+MDPT4KodgX+4XPn3mgn43etorR3tvT7kK/G5p7QhbEBUEroF7PxoGc5zZpln9nXl4brg1shJuFwvzMfa8gbNmabCdt+Yp0zf9ki4gPrFE7ePz4hr0DMkU62d1QJ3RzUOpHmaWNeVy+VybuBmRsllcGJDptF6Px90szstCzuVlKEk2NeEf/NXAKz6CavfQr+HZeD0xGTPUN8MDC4Js4KtP0VzoHi0RDWg0+j3b8nLhawZnwrrt79ialFhXdaNdt+xvdLlTvr4idQFsYS8H2tvuuKeEHda3/HemKaMHRxWryO7CIc7QbBesX5UYDNZp/h3ttEtYV5OhnAkLN/bIx3gJBjYm4RqxNbjn8dX+CFuOFZIGn9fwm1iH7fsOCSUHaTyML1nt2+px55WKkpIR5ob+8A+CZDHfbPagv1oiZxS4P7M8X0AzD/dmK4XZJmwURXPOZ0WlKZCyjmCCo0AYav9pBC4K5oSJhnUmJdrDMtJVLBUwxpWJ8KAwpw0Oz6SsVQmzJ06hhk15djH/ajQahRDJKOe0FFhP/ncKePNMGv0PgJTXq2bD4amE0GQSJwb+74y7cOFsORoL0u4aHUL6PwyBnpbb5gqaZrorgiJXg2tByfZ4uDWKbomyfCcaAPZVrgAJQoBlulbZltfUxk/8UHfz8txzM/CG1gkkAfVwi2R88R1ifvZt29CVthX8hwyub6v51ndnjckK9OUqd4jwRABfW35C5FYvRZ/Dff+muMRyUF15947RYX5MlHyuKd7TOEro4sg+hnDe9v2kA+OYd40KouvRgadpAz+VDhH1vUD22FbOr+j7HfYPsD+U8o00V/eYLemC2kz/LZHhTgLll5pu9ZjnNIls3dlGZQZGwNRqVU0daQm0uawVUQKtSqMrlRaK6w7+9rokknv37Fcruzr6BrPC54y3ntwbDUhxungKKbDLlZIqUQ3WhjyD6JzMs1hxSoC3oN3PAo51vvgEf/2kPS3vvp2szxzNnFQQ5OhKSbfsFd0SCch2tlfPtH9xiydPE1nILT3O3cz5vnCvEzUGuzLQ4qlo+zsBn13VDPqmVpXDr/1PE0R5Q9Ab5Now9Zxc5MKra/x/j2/Ru1HxpVTgHZ7Z0oTte6ks2IB1hsqQQfoxIRbUjn9nA/IfgJ0/xXP/+V/xpfpREJN/U7zQisPiCb2nOjKgKVDEQEzcpm4udOWhYflPesv4tDPlx9jD38Wtqz1G6T+DTnfcAu3obo68+M7tE+0tgZrU1bqx4+kkdKUvaK7hT51dlBo3RiqBZJnUpmYc0bnAnkZlafxkPZKLuNzNx3TjZU0HkJJozqpisiElQVJV5RhfuCFaKD9WwpY4XUb6EBFc2UaSKqH684yOVPZo92eZnR64r4GmUHFUXEul4mcRpaFk9/4iYfndLTrl7lgbUPEWJZYm5fHBaWzbx1S4NS6VfzwxdYgX4hDrZXee8hVjsq2RHuLFAmGdSM7obkGzDIrhZ4m3heDbSO1jH39nwDY979BL4GmMkno8h65b9A+jruzk1ohpQlXwe1O6oYNRrBLwu8f8fkRmd/RmvNAov0yvl/3lVKhScE9wW0N9FF3+vE3fvFj4AKDBdgxGFIjIFp+4ohtuEMbWb+nA7RNGFrQ0QEml7f+FSO7Dy5itK8+lz/9vo97+c7//vN+hvnM821UQLoiuiCulHThfn/gef+GZehDH8qFRlBcWjdIiqRruEMNB7J636BVppQGEaRj3dlGhbN3o5uRLByLUkqUXE5Wo49DvojQLaRWOaXAVxFfn0sOPTzCsizsR8Q9rkPCRTdk6AzPapsobTwTbwkgaVRLjgAjpUStATgXgbofUpFwPNrXFj9n20nur/a4AKpoTufPl/F+tnH2AMzTzN6CRDNdAvR+dK7cOk2FooqWjKjQWsdGh0VEYt4ge9ALRIFCksu4ATNqC8KM24T3FEv4CBzG7/mu/v53dp3caz//v43P+nh/yqsMp3twTJtAl0TrRloKdRBztnWjUJkVru8fsa1yu38iD+pQM4OUuL5/ioqdxH2Nqv/RLbSIUQ47a/Ohy3sN8iUJy9OVLF/RXu6kZaKMpVd7JwFTyjQPOUZXzgru4+MDmjO39U7dKyllWt/pR7wgBU1GKQZ9g77iLZJxAJafcCnvqB83tNUooEmhDrOW8sUMu1M/vJAfUphYz1NI7oBcd1rbQSdkeqRLQtVoWxQJaEJfC5Ym8IROjda+od5WhtEVS48sQlMiX6/UpGz7FgYAwILgKYMoxQVpLaqk/cBWOdN8wbZGmnR0hwY/m6NpEjbc4g3xhnU/yS85D4pJ+hdoWD+/RkTph/gjY91wwiHqwMjNuTNnyFTu3zzTthekFN4tD+PnVHqJhZUvQplCn3e0CERTaDZ6bCZmMD1MaA2fdQBrjuSE2cjWLDAZaWRd0zRxuSz0lzUs1kRJeWIZeBOdEnvLIT+QMA5YpoU6hq9yycO/WcPxwRms2bi6h2LQp8ymO8gzrA3GzW4dLE28++JPyamytztpmcnD7ce6kOcL7p1qkWmE3CkWsOzfkO9/i9TCXHbcf4HahknoCKs+gDwARt9/RckZLZldlNs4PKbasb3h3pnTTHv5iKqTjoymOp4nfLmwPM0RHPR6Dpb11lGvoBoyAgkRub7FTvjQxaUc7DnhxJHEkZOiGvGPX2T/atdv2rDPfPu3bOaxhwXzU2RlWjrv3o+NaTK831EN7qeoQionYHrf71HdKxnVwr7vhH+yBoAdKJcp2qi9M02JZo26b8xT/Ix37x949k7Oja1BwklGiO7hdN9KqjHMlD9/hDWlqGABrXeShN76sNfs9sDDT/6SzZ19/Rl+/ylFleKxborExrS1Cmkma0ZkwYjNz6xiW0hENDW0fAIX+iHwlxIC/PVOuys5CWkPu0AAW3fa7rSWmR7eQ4rzY73fSNvI5rcdLwmxTJYyDpjXqqj3FtrWgZazkfy5HgHrOLZlVP5N8PRqT3ssyEMrKm+wQZ+vhd934Povu0xmtjZQfr2NJFLI4tTqwU18iHs2S0VdsRoHuWpCs7JvzzhDzuKJj9984sfvQg9ne6c2ow2s1JRnFKXXcALMI1A9AlLcqb0zP1zDqMTDZewoRB0VsCTR8kwpR1X1M45qdDxcOgoR3I3rAL4z5g7MAjd1JHNmMczjFkNTZS6I8Dq7QBRB2rBMbYdhwlEok2jZi0qYIkSJlZJeGeG32khzR8yRkilpwntlH+YK82XBi8BwCHOJYTcfxh+uipQJ83DkU0m4TyQZ1sb+AP5Ir1PM72whDTjwgSF74jM+7+/qOp4nMzs8ej6TZL1eb4YFR7BtJvQmEbguvD6jI7lJc+FyXejryvay4zbOatGwuN32mLuIQ4hmG/Wwb5VE23Z0JFGYh8vguOeigpTYIdO1QLKxHxwc0466UyyYwtWCH3wkIb33IWcYkr4WA8o6/kZFSFrIRdk3Q8scA0cjyWi+olJ4+uq/5+WbX1L7jlRh6RGw5nRFGvjLRuWGTOHgmd8MXLqDpgkpzt4qE+WcR5FuQKFND6Trj+Gys358JtmGHHb1ukBOzI8XZLmQykwbCRlAv6+oh6mLiIMKvTt1FBF7M3KeaLaxyT107+qn29jlOmF9J/Uc52YHsFMqKtlJJYxkftv1z3C6UvA8+JAtNiXv5wIrGS5LQis8fvFE/Vix2/1VJ7TMaJ5iw+s7UmJ69zhM0oB8y5AReLfB9MxoPnR0Gd+iJ9tbxTUW0jm45dFyfZcyJoXb2klzoQx2W55LuJUQLdOSwgXqYF3qqNwWwoVFPWDHrq/Za3Pjqy//gN029pdfcs0d7YejSyJNyv7xp+wJ0tNTTG4P+0vbQxfatjvdKlMu5DxRBqCa+gH7GK2OPXdKNmT+gjz/OQDz/Cfk+QvEP7Hf/wpvH8hTYZ4v7IMC0HqnSKHVTr+veG9s9YaP4CovC10ydd8wg/npR+g1wVhA1ipmEpauknHX4dYxJn6TYh6OFdIN0QYeFd24RxOa3vg7/5u5hkabDc07qbxWN8XuzFO07cx25inRmvL4Lg6TbVWs7rhrOKKMgYHYnkcV6KxKAzmRpoTt0WqHkBX0hzk81NdGcyhDXwVQlpm99Vcxe86fBa0OZ/IQuutEdkePHlxeePqD/8j18iXt7/532vo1mu8cWmMl08mkPCEu9Loz5Qtt6KdxpbcZ3a6UouS5YZqwHvdAdMJNwnry/oL0DbHb2X1o4jQy1ZTl+iUsoQ00t1MrWCrDplNDBuSOuJ7VI+sOvaPSqXuAurWUUz8dFnmK8Dqs9XYVqugbBdibauv35vrXSfGac/6dYgm3gpKo3mkGy/KIjtKzdkWKodboWwxTdIRt7VyHymcuF2zvfPvLr/nqx1+gzdnuK+XQ8rmPlrpF21QEb/20TrWkmCr3lxsgYXFd6xnYHhWb0KhG0JXzRD4g+i60ZjEdrZEMvw2GRAbb9Rg8bY38pgJ7BFSthed5kWm811c5Tc4hExCNn9P9DYdhFFPEPWYnRIerkZ8FRe+NaiuXaSY1i4Bg318pHzk6W5F0dehtGCO8AtZFFEMwj6BGmVEfxY56obeJtmfqqlhVkhfSGHY174j42dH5XV7BL49JfbO/73n6bvcg5AC9OQ2nayQ4o3jJNM3MGYpWtrrR6h4DUqPClY/7X9swswlpgVHDTAAwUfq+xXPfFXyQA/So0jb6vpNU0dTRRem1oyNemKaJ7VYRd+ac2eoe8uJRoBJR1vtKtz4G8jrSnTIWRREha8HSzJoXvvrj/8BeE8uoLj7//L9SN/hYhfT4SPJn2v0jNpKQMn8VWv+9s+nK5bLQ3MmHnEeiQqG5kObEPDv28Vfko1pZn4O48fRIevoTWr7R8teoraQhRdlTpw/9tCdFp5CV9dF9qN9+wHM40+Wk8ZwQrGSIYL3d7pRpwcXDMncpQdMY96j3CnWLNdIrzY064g2dEinP/6CG9fs1HvvD9cP1w/XD9cP1w/XD9cP1w/XD9Z3rH11hfbXPCz6gmYSzyfBXPhANU1K8bWQV5pRJyxQZx1HgmQppnkGN2ldEUkyUj8qd29CViQ3uqkV7WtKrUtsteH0C08MlBPatnTqgw3rt4fGJ+xZaxIfrhekaVSLXYKGaO7VWlmkmq568QG0xxd/6yFYZ2fkYaRNJ1HXj259/TUG4JGGmcGujAjRfSQXUnnESWZ6QUmKYYNxDc0Mkk0j4VvFLYrk+AdA+fmC2G3Sha8J8wpsiw9N6LorXG1a/ZbGN+vINcnlicqdchvQiLfjWWfdnbrc7s17CxfI57tFkHZ2XELTfXkiaKOVysuG07fRuJDcEo7do8rcxzpqmJfQmArXu1PZCzoeyF3K5jHTo96VhVV5hTn//9et1gIFsy8ZyEabi2NBT3dYXdmk8PiQagSlReZ0+v1xnvGf2bcOBaSmohqD8cPzwHiiblJRUCuLG47tH7p+i5e4Cl8vMvm3UulFKwd5MpOZpwrTFI5L0xB/VN90BmcLlSpOi5kgPoka8vvLyzU/x1liyBXWAThnt9JYmPBWm+cL+csfNqGXCp6ig2ibI9AeUhz/G8sbevkVKtK3i55fQeK1GMqX+6hdo7tgeFIH9vpHTI9f37/ByRS+FNMPszv3QpVVhuozBkh7e72Jydjgg9h68Ihq6Q9eCMCQBzCA5vt8dTUJZphNL13bD3iyNX0NIfUc68Lu//n4N66HLPFybvvsVn70u9mYam9ATeqyNZsb9rocsmLR3ymIsKNKEvu/oIqTW6MNBMKtz0czLh49seYqh09rR0RnqbuG0xqtecWstnK3GleeZl/XOZbmChaXlMbSYNI25g6AL3Ict5KFBTafeNdBSDBeuQ+daUqb3Tt13pmnm4Nke2tW3lVYRjXui8tr6t87WonLqdDx6Ka/vvWR6rQhOtfj9SRXrjcOfVsxRiX1Tu8NeabcbeZSpk8T5Fg5fccaJ28lRxi2GwNI03oGiMuM91rbVmdoLdQ9cGz6RtJxMzpBk28mF/V1e4XgoYJwV0Ljnxz+DSMg5/KAeeEYotF5YpYILj+oxAwBM5cpSFgrGfv8YQ52euOTYj9Q6khy7ZNqkoIFYyiRsoMTYdqYaEje34L0y57PrpLd1vDmFktBpDhnh6PjkeWbPa5RlVcImdsrk6ZAMVLxvwWfvOyJGfzPH76oEW8UxET69VL7647882fMpJ/72P/81i1QeHwqtZtYd+phryE/v2btxrztpyqTayP11aKz1kPdZzmgOspKvCzr25HqvNO9Y/Zq5X6gvd+zDhu0TMgaKN9swEW4fPjE9Og/TAi6nTlbWICC4Qk8a6C7VU8MqOE1eyO5clye22iizcjvkQA8aMRAhM+i2091OeZ6YBC2jyG/ddv8JkoDXaS9GEJdLJuceUPQx7NO2irGTcmejYt2ZrxfafSwekZh+Zo83aePwPaDhasiAonfv4D1sULsFcBroLfRBVqOtkkoO8fv4BNdtw9woJfPpJSYKL9cFxoG3tj3sLVXIOXN9iOECHRvjPC8hpN+CtScDhWH91SIwG2wfP6IJ2px4kff0d/8egOknf8Z0MfYP/wmtP0OBkgp+MEpVYpBLCpIa26cbqyWyjna93mG/I2lCl0f0+shajWLBuqzPL1irZL/T969p60f0dmdKc1irAVhCp4XpXcH2ij4slCWzDu/f274z58ylpLBNW1+QF857INViYGWrY2LZYrhltOdyWRApJI1pwH1/xqWfJAbVhLDjln8v574P/WwEIm+ik6HvPP/znVawjP8K0L9jLfRoQEzNa2N7/pbWnsnLRNbMZgOKT8gyZp2iCS2Ql4xboW+HuHyhktjqPVqd7iHInyMRmDXR1hUVp/seU9mSgyMISMrkpIHNSQVrjZwT/QhICQyXeQyAqaaQbIxWS7Ib60//V/imkCQ+Yx7+EBki9C2Fpq6IhpawZF4Erk+RTNX7jZQeaPMfgGzQVrJ+Q28R1Pe+kHikmTHlgrc77fnONAJq1o7nGvy/XvGbk3ohzxPXkVBSloG6qaQelA5czjajewyk4WPwIS94viDHYIpPQAZxXDvuO6YZG/fQCImBE3p0vhNovQasv5+I9ZxA/peqFOStflCIDPKgClgMhgwUWF2f2f3Gkle03uj7DZrA7YX7pyHzKYnSO+wVu29gFmYNZ6zloZsTgl8tAXD38bmlkskpo+xMubDtg6N7fK7H14nSfPAaTxvSEYwb7HuDrKScT/3pccXAlb8ORcGZzLXWTtlYa50yKBrbCGzmktn3SpZYFyknevUzmFQUyRnvFcnD393C0vcceiTWp3kLpmqrpMQ51Y5C7RVPKezME5gEoxIiJoobGloELRnVib7F2t23wN3RM8pE0gnV8iqXUR/zA7+ftRs6ZHl9lt688vp8vUoo4n5J8G6lULthnmgjAcgpjBXcBKVEG97rKX3r9xeu765omkiX2DfEBasdRrs7D6mJ9AqDuNJo7EO/yd5QkyA5uNBbwxzK2C/KMpGngmpoqzUJiJEGg1SNoL30Tk8Hcgz6QZvRkDr2fQvL1P0Tbf1lYPeAzMpDqcyyk7tR9xemIlwHAzVdL/gWFKEiArUhrZ/3sNVKrZVmcX7P0xRFgwMpKRPWbjx//AVG43bbsH1jyoINRrJteg46TtMSBgq1xVAbUPJEypk0TzFEv0whjcgHR9W5PsxMecZ6FBJ6308pmBYlLaPI1cOkIaRrI2DNGdA4t37L+vrtxgGMe+KckfbY7jlgu4iTxElDD2J7p7UdaeGSVLcAf+fhWd2s0wUkJdQn2raSiawUQL2PQYoemQJRdQpN2/jjs4TGCAczfK9YrWwvI3DYdpZ5GpP4CZkyWhJtbN4pJfoIRK4PD5SpUOE0FlASasrmBU1CslHtPdFdIXhOQGt3Wip0T1wf/yg+3Ke/YL4468dvKfIhBPDLDCUCbvYWej0XUi64Zu73lTwGlh4iYgrQNhnhCRWhlDGB3zpdAkmhfsXrxn57QVLlGDxsTdD5Sp8Xlh9/QXm4olNievcegPvthfu2IttGnhesbVhbgo9IDFbiinXQFgmEWCA9ANreKFmDq+aJ3u5Y27HD9UbAJfSgv7dC1T/rUvAEXkKnpuV0UJtL51Im2Jz90wvPLx/I1yc4POwFPOc46JyYKJaBHRkuZ5gwlwXZHN9XxKJKem4Mwx1unhem6RbjlZ7IA4szXRdMnNs99n0thYScA4OqirqcgYLhNDfK8M3uRbC0kdodlUy3xPXynjLHs7Enozw+4jqhs4M1pO1HrodR0e2X2HMiT0aSXyB9w+QnALT0Y1xn2v4LZlV0mtmeX7DB6/O9k20n6R379A354YI1pe8zSV7Rdt53vFZMoqLhtb/6TA+Inw8/9WAfGm4Hh9UIrFoKTZqOKscwHjGz0HQSA5Wofq9YFhGoEc/avyRo9YQcKC9j6C+DCYlAnjbmcrjrfaKuv+Rmz2S7o60hbULvN7zHZ7cSe8AEbC8v7NvO0/v3J34nhmT7uWf3UQM+ZgNSikHBUgq40fbKdl/PgUM8UIYRZ/sZBB5B5oENMjPENYLTNxQATUqrDVU5v8f9rSnNUWkdmrvakBTe8udN8jj0972+Ug/G4m/HIauhXQ1NZBtDNePgdUE0sIt7H8/OVM5KbfNGNZjShCSJf584XcWQoO9IUXQe2EXSGbT3GugnBpYrp3xW1SFSEtfvL9ZqoBb4rDfwxqwFNHBJx3ZZ9zDl6Z1e7yyLkJKyjWe91RvbzSglMH9t6/S9496R8bl361F4sTpILrE/HmYPh7VNb7F2VBTrle0A70NUcWloylzKTFcPxBUMMkBi31Y0CSY6SAhH0J1ou5HSxNNDpvPCNz//P05MZtmeKb6FM2HvpOTMOZFGRxUNEopOMegrxCDZ8SmbJEgxgF7XLQgMg3gR3y+krJh0ar1HEJl6uLml42eM5wvhfrtRzaO7O9b18vgYXb55wuYM15lLeTgLXCkp5h2vRqv7ia87Eqe67pTZ0BLvX0XO4eD/j713bZIkS87zHj+3iMyq6p7ZIQmBIPVV+qj//zMkM11oMhMpUgKIXcxMd1dlRpyLuz74icjqxWJ2VwB3FrA5a4MZdHZXZ0ZGnOP++nsBkDD5x7/HEPv3J13NEc1R9brxrtsT99Z8LLqEUxGn2CR+e6dyLRduP3ziw7MXShIjo+3kVFASHb+4aZL/TSsmEcx/L8HRPd7H7Jl/YJnJJJIzbdwo8+Ksy5UeYL9vPt4Jxr3dT5J0736Y5+DdSB8TPYzvantRQnZIPExbDpMjESWSrxeWWNhff+BNX2G8sbz+ZwA+vX5CXyCN/4LYhqUnuCzYsTHezDc7ETQn4uXKcu+E3Q+PKObee30Q9zcMH8GPOfpqPbKs3zBGQUIiJsX2v6NtjVAnWlGNt9ed8N23xPKRGgOoEGd0arwGLmVFzDzAYFkY5h6eANGE3sZ8uI3A8Ki5+Xo4LChCYbSBaiTKgk7PRLPkv+efV7WKb5oR08DoAYvhNG9P0ViykCUTv3lm/+EH2O+UZ28kYk6Y9nlgzxH2lO0eEXU2/BhPS0LiigVB9/3sVFUVmyk6T09XCIXXe/ckEXzcZUFoY2Az3nLU5s+K/1UE9VGoqe/8hpGKfy9PH57ZvvwN1+DxkGFZ6be/pR9+fN98S7xc0REhQds6weTcmHLJsP8Ir3dGNiQbaf0LyvV/9Gu0/Dti7IQN7O0HSl58XDVnz1GEvleSROqoWFtIlysj1RORWEMipoSOOmlBBaRjh4E7AbOEinfk1t1/eBx0lrgi8QlIuGdrhVDfEfqPPQyn5swC6c+ns5Lf+udYf1wZIvau4DXOogfrBDFK3inJD+U0bqTxSuILod+IauhtQ2rDJorZWvPGOQjtfke7iysO5CwtxUeEIsQcab056np8hmk5tX54ATVGa+T4Xuv84C940tmMfZ5iVpn/871/FptB5ekAACAASURBVKVmZ4RmDBEN6gXs/PNhFrgwqQDHVZXAUCXFQJmR3G3bGEPR4IIwCZFcPHERoPWdJFPKF/zajqFkxO2SAILvFmMoYSgpugXW8bqO4dOMYJgNunZiMEI6bJ4GYp0UdBY/j0jx4xr4aeyhGd4S2IP+NPebv6/M/3NZB9L/W/e1eQRuTtGng0cLaeIxqK0iQ2m7kS/xFCinsYJ5mpjedtgV2vCrdIyzMS+odM4KdRAskOeeSMi0bfcGaPMEvWGdNl1LknmyVskrA3XxkKQzmvX1yxe++eYbxvAprZh4UzP3fInC3jrXciVKIOgO445OwdKuSlkWYi5s+04jEorQp02f4mmSh6+smdFrJR9WhcP3sCCOJPcxHGWfojFtXmvknBnWpmDKKXPHuVFYaK2zbZs/r6WQUyZe/D08f/yIxYjmSHq6EK4L5HQ6M+kYPg2j0/bq7k8peIgBPkTpYyAzMfRwjziFsqebxD+iYH2/zlrRvGh1nkrAzBOfjmzfkgvr9RuS3bC90duGitGnGuyailfdzc10r6UwVM9uelaqBImOqh6eezy6SOsd7eZ0Q1wxeB+DOjuel+uVFJS67zA8Dqy93U6j3pSLJ2rkTN0rXadpbXx09EGEIh1BkWD0AMyNbVhhjyt5/YZ6M8a+kW+v7PV/A/BC7qY8fzuwsKLNiP0YM4PFwPA6ndY6ZkrMrvyEeQPHBfrumdPpsxu392kvswt6+4KMhFhh0Se0fc/98xujHmhfxi4XcnYTX0XoEtjn69Y7OSbnXw2h3hvE7czyDSES1D1oTadfWgjEmUAiab4XdU5ZmGrug7PqyPDvT674b7XOeEuz33oEjiPr4R389Z8b0w1BCOK2OmVylXKMzs+O0fnOa0GGnVnkMUea7Wh3i7MwDndnPTcnM0WHEoiuKtVOTpHrdBqw20ZrjTY6pWQUT055eXZusmVv0roqvTXWy4X7tO85fv7QMaksvoExjNcfPvkHfGtck39fmyyEfCHaZ8KRWT6tunS4+0eQRNDqdkdAuTyj9QeK3hiaMBbaUMKcDkT7jN4+k9snxvYb8vLMJS/wPHmOW+Pzpy/IVglPmXZ7YwmOaum0reu3V0q5EnpzdM5mPvih5pYIRZxrho90Y99OREEYThWQAtIccZDiKUH4vf2IevWCwMybSPDaznPkfz8H+r/FGup7QpgTFjj2c50NoI+MDwuhY4mEed+DqmsNZPogmgxHLxSMTowbl9B4io7MP8edxSorw2NDNRBtELWfdBPtg5LdAq+3G5ecsH178DyjNzk6Pas9gnM2Tsx7USE139Oj00A5PRxsYH0QxIgDR1yEs7CoeyWJEBW0exFYe2PMJjoneXB4Z2OoY5zWPBxZ78F88mPiji1zj8oWGd2vbgzFvfnDw3IqpUQy6E3PUbZObv/R0IUQnXhRG2JCXhaaGG3Gu8YlQd9cs2FlIsSDI06sd0f/g92Jc+ceWtAjBS5eQAUjuTd23P3sPcAU4hFG9Cdfp9fqT1jEee3woFAYdt7XZkLryn0bLEccsCTnPVpALdL6wKQQjmllBoanT9E9Mcy6MbRiBwCV3Z2iTTejlJI3BkcTMZ+lMBHGGKJbNk3NiupMWJum9yZe7B4pTutSqHXzezng+9W01AO3fJIUkSS+59vwZmSelT0XyuUDT7/6S5Y++PTlB+71M5qn5saEkjO3bUN6R5bFudnH1EsgZadTGBBSpAaBGb7Qa0TyynJ5Yt93UKPMBM+DhhNi9Mlta4xh07koIrMgfdvurM8f3LUlRmJZSJflfLbFBJkNqSdmKmldydOVqAW8BhmDPOOSfbglj3tGIr/Pt/0P57CeUK0f+DpwLz8RTzWZfI+yrmB3bttGEUOCsT5fTo7O9vaZ1ANtDCQFlqerV9pHXnROnBnfh0/fyYzhvDiG3zgSQXMkP11PLzyWhZiMJQf09Y51o8TErgdEL+i8qdL0ytv23cfsOJ9itM4gEAVSUGKCY94uo6L1jdY34vO3fLz+a7Yf/1/CjKd0K5XASCtjSVwtU398I3+cubymjCykVJA6/JpKOn0klQRRMBuMuhMJaIiUuSna3iB/wUal7oZVoewb1H7GEFrBvWrNePv0mSUvEPJj1DJTrhLh5HuNvdPwoqGU4lSGQwAnSsj59APl4FppQ0RZlsJQg3AUvBmRfB64/zyWf9ZJqibl6NZqs9jsWwWqx/PtlWVZGFs7vWljdirJ0AbDhRtigRAnHxsQ65ji45UUMcv0fT8fU5k+kLVWrs9PbLvzgg9Ltq23aWMolHVhWVfqvj8SQ/qY6UFu/6RtENpA5oHZ64+0NVHTf0f6y/+J5dtfMd7+A7L9R8BHTTFkJCbUGiUUTG/cX72wKXmSYYYieSVcvmMbkNuv/eff/oYwudXj/oWYKoGEjce4v7x4xFZ5Wbnd37jVytP1QSvq2xvxNuk5w7DaHImee0iXRskLQiIlmaKH+4lCh9jAKkZzZJaASCcetnjiCPifZR4r8DWSKr/j1/7Q9a7Jfzd+Y4akJDEmU4QsgcUStqsb2jdBTIk50ufURoL4QWszN12bc92PwIcpIgwpoep2gwE5L7Mf/OJWhd2LvvfioDE6rXeGZro6XzTE9Egg3KFNhIYkHgM79ES6NB90pIlEqYMWhyhrTH/V98b2ozf08Dg+rtlhDC6TYjffY5yHerDgPt2q/oy9G7+KCHvbUTOSuU9oeb6gs3iwZXKl1b+UMGkOx5+PORBSnl6mOpHTwSMxaDjtwobTJ9TOQ//4bn8udNXR9D9kvUdYvXW0eQ1769w25brO5z8lhDSbVfGCPCSYsaZpSWjdYXrWqjW0dWIKp2ZFYvB7Pkdqqx5ZrePkXqeUycXBB08yGB5KZcfUy0h5hZA9yn1dyHllzKnRdV257xspJzh8Y2NEZkW5t7t7u1/c+13CQoovp0h8KdA18emt8nR9Zlm7C9LnxRx7JYpjzkGEYUYzPTn9dTRi8SS7shTyZeF2m80RkD8+e6po9Geq3TYSQtv7yYdQqoODh7rDnF523vs5U9YFC4G6V8rTlXHb6fPZEjNiM/ruIUxqXt/JesQqB4/fHQNPHfbn4PQLDmFSfn5aLPhHVBPvKmELEykK6Aj0JvSzqwq0PpyTZ41lyTy9PNGm4nO/fWLcu9+mO6QYkJQfI00FlUZTJdr08euDHOJ5i2vrjN4AI4ZIXCLrN1fS5Hy4SbtCb5gNFolk86Qn8LFsThlCoORCP1qldxurnWhhIEWIWRhTLQ7Or+39RosLWODl279i/+yJR0MHtgn99kxeViKZ/Yc3QvAueQRHWJMk8sjsav7AlcNrr9GtO09r26ElhixoduFLXFcsv7Ht/zdsN9gUtYKkSJ4bY7g80XJ28VmIJHVvviOdgyBYc/85RqfrIKWMToPrbW8eTSsea5uyUBYfeQOE0ZCxgURMO8pw77wjulUO/9aft2Cdjx/wu4cN8luvH9KAQ0ghGHmS662pOyJYI3SFVikhnyrjHAoSM7oPIkaQgeAE83MkiDgHe7priEUv5qbf3WiV/nYjG6fRdcnp9AyMOdEP/vXzk3PcYjifHx+XFqIYSQ22Shz+nABYb7xqQyXx7fIdefk3jLf/+jAeLxldC2jwDVcCpELb/N63euc6P4cZiC2ksJBmMQgDB1tfGG2jbTeiReoRBLRekZcXll99S1wzLy8v3N9e2WrjUg60sHkcc4g+fZFA6JycLcHFgHEJxLSQtNH6DX1XgIroTFGZAhTjoF+784ccCUb+Z8YU+fzLWXJOn3zNCzCbsRBAaAQ7REsDCe6TW3IGMU9bA9osgFIQmjlKGS8FnfzPPu/dt7dXntYntI45DgyElCjT4aLqwIZTAXrX+Yw9PHKPfVfHIC0LqSyePz4R1BorI0wPyJwZs9E+hFdfcV1nsd5aO1HoUgr3+51SCm2GDIw5qQAXez1cFuY1FDkV+CmJI7tT46Dd6LvfYwdFPQahzhSulDJyWeGy0ObrKRcy7ifbt524Fv/5pwDHI8H1K3qacSQGIQOzhlmBOSUQHgWvvWtS/tTLnSuO/81fe//vd8jrGTU9w259L0moDlqDOi9YCotzR0NEQ/fvIKYHBaPcMXWwgJDcNSQphEecNeIIooeLOCUphnSkGjOqk5GsD+eeTiTwiHoeXR24mMBSzGU2Z/7zdxvknH1Sa94MhxhPb1xsn04mQlpWRhNyfiLk+QbCQEekbju//s0blzXydF3Pn699oGKk6OI6d9UQaptAiroGYt+qF80hEJaCzaj3fLm6VqZ3dxFICq2TYj6pJDpdB0KMyKz1Uwzn1LmkRN92TwlNgfbJo7qPZy7gKYyiw/VCTNeQ+RWEkMlBPBCKODVQ4lMZfDJAyI9N+h9Y/5J26F/WL+uX9cv6Zf2yflm/rF/Wv8D1RyOsWDirYFOhN3ePyMc4rzunMefCEo2UjY6iR+7tkrA+KHFGu9bmXJ2TnFvRcOSjR9q+e3MZ4tmuuTnLoI/OMBdyhGTIerwvxQakNTs6o17pH3Fxe61cXlaUwNDBfbt7Utb0A2ytI+aBhFmCdyK2cp8k6G///b+j9UA0RT/9V0Yt1Jix54lC6ytj/4LanVI+EEMhNmP/4l1J/PACKbLvlYJMUn0iTX7ooBKs0/ULSSLUGxYKyzd/4a9fvqWFv6O+fs+ijbBv7LFjKbF8OLiOC8tyoZlngLfxPZbTw9MwCDlObyA6Ojq311eWdaLABmo7+VIY1t1f05QxobKcp21Nm0khDMpaSMlRYJEEpJ+PwyoPdPVEHCZfTt7BqvJuhCZmBIShYExFs+gpKJygC2ZGjpn2emNdL18h86Q4xUMGVnFLDDnvb2L2l1xS7YlWM1ccnJy+hMS6RO6tozITh9qMLSXRq8dBphhpY6AinjsO2DD3YB1OZDPJWM6Uxb8Xu9/43P+O0D9z/9v/Ffv0f5Lz3yAybedyRi4LujtvayDIslDa5H9uN7doibj/7OtvkPVK2w8Bw7NPEgKkuDPu38M+sDlWvm+Ncr0QItThCu+wPLGY0qbNTCqeQFTKBVX/fkwVjhS1IIjE6fma0CEIGZVHhGiUA0kVsIyn851DXyZG7J7S81cOMDJMlO2fXUjbby+Rh/aAiTqHQZTh3OzoKXqAC0uBWDLRIuSZ0x4C7XhYYiAuibwsLGtES+Tl+szn37jd3vd/82uKRGTA8nSlmZKinNxgFaUPo1dH0A/7W3nHY1uW5RwP51ImReyExp3CVQohFz6/fnGU9LSq6j5qNINpDRbmqBEe9lZjjAeH0ox2UAoOdHLuCYLHsB6oTjgETwbajbYPah0ME8r0swxi7H2QcmTNhS5CiInXm/sslyhccmSrbv/4/NE/lxw+qhJAcLswCW5tJXAYB4c4QNxJx4i02t0T/V1088+3ZFpL2vtfeggap82YmPLgtE5RnmRH+CQxRuN2n1MtWcAKwo5ReV4uVOEct4cgxBWC+P3bRakhEqZXNbiJi6lBh0jyuHZzf2rwJNaxVe63N9bnJygJDeG0fY8pE0NiqLJeV9cuxgCL73mtNmqt7j406V6eTOjvsVyuPsnT4sKnvkEy0pxGWlxJEohrQzbIpbgV4rwnqgWCBNKcVMgQ/7PHuYMSNAEVEFrvxJhOfqr1jhHd39cE5msq/d3YMSBRzuepaSNvN57mucLbF0KMDFPSUrjtO5fLhaUcQvaOJZ8GDhOCFLSBTDvHKIaKEcPi33UAS4bN+7aNQpZnTB6ezb9r/WTBaiaHgwwmx7hFwQpBI0aiWcR8SOJ/sRglrazRuORnknb2+2fatKEIGlnSE8GUkBRbEj2DhcPvK3te7cDzgffu9g8zDMB/U3S7qVZ98zvh9nlgxej59hZJ5c3FIym6nyvOTUyrc2XH2LGxu5XG5Kjm4FnTx6jFZDjEPW+g2yj86i//B2LMPH/zf/Gf/sP/gejO5Trh83jhhx8+U1MnfXzByoXt9QuhHab9hrYOqrTeCLmgBGSKC3LJ5NFpn1eQxlYrmhoMPxiyCbfPn9FbwMaFDuw60G68TXFNeX7mmsrkSYHe7sSZMw/QY0CTC9tUFdTQeKfP/OGn6wu1DXIObAasglySF1q4PVmo7ndrmJvYD3MeK8wNdMWs/LOB8d0S0s2dZUzqi7qoEGBNmcv1I6F9wmpFxW1qnqbzAsMt39Y8OWjBDziZNjjgYyfm/q2joR2wgE4F99YHTZXnpyuh7dAa1hr1zUfyIWUXO4bAvu/+PYRDSOZ+f24bBUMUcqLbQs1HrPFCv3+mvH5Pvd/QVXj514pOyzSaEZp7nw7xiMXWHh7FSqKZEqRgbWDjDfodmz6R6GewFdFC0ZV2r9xfN3RSQ8LLCzn7aKuH6GOt7lx4dFqmbZ1x2wj2ULOOpiePLyxXj2Kd6mKJCaFwCv4kTe70tAOyABoZs2jW8X5U7gXq+8Lmz2Edpvfybrwrkxv2U3zW4zME7+rPAymIIdYR3SnpTgk31tQo05KtBCFKRC4LKRZs+IjcWoP73JfWhbIupBx5SlfkaSURuE4Vv/WB3htWO6UUH01mxdrhAOMjfBtKiJG9NfJS2A8eXAhnQ20hEKe48FAiI0y/Tv+9InL+fmAGxui0veIUpeX8OFRlqhGNR4F7jjUlntZZKRVUjlHpw88zBPd/3erG/bZhFthbh5s/n9fLdVIvIhoi23BHmpdvf+VvclpcpZzZbH84RJ+8JHdAYFIlXJCkhFkQL5eA9MB2G5i6dZDZu6bc/P/8PLSAf4rnR+h65cvbtFJrRpQrZoEoK2YX9u1GmPvl83LlmhPW36BXr+tTIaSVPsEVCxntG29fPnMthRSE0doJYFntbG83t2UbLgg0dTsqgCDBC0D89TD1Nr1OKskUaulQ9xnOmW52xpKu63rypw/aS5/jeXBaRM6RPMW7QQLjnTtGGOm8T1NKfo+P884hiLDvOyJuh1drxYadkcm32zb1LhUZg3go9OUhFowc95qcIsV9285426UspBi57zsfvvnIYobpjX7s++LCqnK9ul9rjDRV5xfjz6vGhEXzwji4T/YR9hLDE+gTQZ9+MmvopwvWd/98DTd494kFJGY34Z3cRrVA7zPnIUVHfCikdHjdDdr9znZ/4/JyJcZMvK6PA2Q8TH/jwA1/e8Wlj1MBb0LT7oKXbs4pKfkkEDdzzmuIkeWy0HQnFHlnYO2CmKUUah2sJdNqw6Kcn64H55pqcBsXbOdg0fb9R9r912jMRL3zXDqFncv8CG17Iwfj8rxQXp7RvNBvr276C8gYyMyY32tntEGzdoSlkGNkCUcRk0AWemt8+cFts8r2I69fvpBM3V9yiYzqGdTr6srClAp129lnAVRycQ7MYQeSC/myulcgERG4LJEyi2bTQQiKasWkE8pKKImSphcsgg1X2kYRSJEQ8yOMzAIiGX5Px/Tfap0uAfCuEPHuyw+t2Yy8jzyavD9BZqEGJURXzAN5WRnjC61VCkp5WtE+uL96kxD2QNfB+vI8u3DnZocQz3vPd0X/73CIB0OAeSjnZw+xkMvK0oXxxbCmJwd1MFXYE42Kptxut1OY0utAiaRgLAnoO/Qde50exetf8OHbf0X98b8Q2w3RyPhyQV6mKGRT9HXDpKA5EDQT++4cI3DXC0kEGqN9xjmr5fRQNb1DeGW/dWQ3ZG9YH6elW0iBbdtI9w15WQghYXiBwYmAgu6Nwe68MwzCOEckMSU/1M158jEFYipnklyc/GkvWt3H1jQxxjGBcW9LNXzTFM5C5f3983MuTw36x70HbyXnpmg7QSuZjZdSuZSNJTZymOp183ts6HyWl0xZCrdPX7j8628BuC4Lqp3dBumpkL95gqrEzfeMclt5fbsjo/P5049cnz9y+/TltK5JlwuxZMRwtbfZ5JNOHu1E40KMbvlnxtCHKWeIkX3fCA1CyQ//1eP1d8InV3r7pO4yPYzhEF5xCrUCcu4BcSn06al5JDSZcd7bmO+xqsZ239FJBpaUqLPi1LYRo5CXFVsWehTyunD95hv/+y4X7vtOpBH2L1h4mKfPNz/rvllYC6gMJExBceiIeFjP6IpEOYElf49+Yv/c9+///yUMMm3yR/f7mGj3BTHldheWpXBZ/HqKKMF2CgHrr1g/wJLANgMhSoikuFLvg/3TD3z78YUkgXqfvPzWPVEseL2ie59OEcee5rzqrkrvjSVF6rY9BM5DsaGkEOblV1KIjHA0j/MMODnzwW3P0uN71zHOPWiMTkrpnAgcXGwzY1kWaq2o6mNi0B1NXq4rxqC3gY3OMhFgF2f5e+tjYOLBBhoOQbv3WNr9GQo6BZFq7LMRY2+EVFiA8Hon58y93hiT43p5vmJrwnoj2OLXAM5mz1pFQga8rnE3gEjA64kkH7D+gtgTU07xO9cfQQn4bZzseDAAEw47AlEhBBh1521rSO/Y2LnMai4kodrG6Bv1pu5tmYojKEDfu9OeJ6JqtUPvBBSRY4zgkXgSI9q7dy59IOFQYiu1b04DCIqKi4LSTHUIq9ta9FZpu8df9tGcuA0McYsbCe6jV++dFBdeno4Iwjuff/O/gCl5v1GkkdDzBiYYZc2kEggpsGtHUjythwQvViJu/uSdUaDVI15zuOJVxG0lohOgh/oD2EdydHp09Eis7cLhWwhwf7vRjNnVBMr1gsQEU23OZUGeL25QPJFWzKMWAfrWkCikFKgKvXX63omHm4OIF6W4T+mBvJ7bpAnu9vDz2Vr9rv8+NvR/WEwrODKnrmrswuSuYxdxn0ZVUoAP33xg3O/sb458RxNGV0ZOhHVBFCwMeq3n06O1u5hKAto6vTXcScqv3/LxQkwQMcY2sM+DIuGMERw2SEvGQvBNre6zwH6YoiPJY4sLjN2N4pWJWIw3kgSeP/5bts8/unDkdqW8TCpJNfqnG1xhRDz2UQKHNEfK1V0NRNDaoRojPDGW7/z9P8F+/0/o/j1hE59yXFfC1W27WskIPiWIyMN/tu702fSOPkhlYX+70VPHxLBolMt8fnQg2hDdsRFQbYRkhEnZ8Y3RC1X/LiOmkdEP1e/hG33MpO2r++TnRlrPpKt/pOLbgmJ2iCIaUTZWeeMad17yjSV24pycuRWbI5tDjJQjYV0IOliY9jrDx88pL+SXK1YS0NE5NqzoqUzePm+gX/hye+Xy4QMAH5bFhbRzzH4g7QfCGdP0LI3REe8YyTmeYro406VUjVrrV6N9eB8MYAzcd3KfgRow7YzGYOhwY/OhJ+p7rDEGJeUZcLCeIMnxGjP6dW87IQVSzvN9+ilbloIswnd/+ReUl2e2scOSsad5DZeF1K6gG3yp7sggD6N/OTgAxwjdfZJOezIJAwluxabqTYaqwkTz3k2if4Z1wPpfr/dxwfD3397p6jB/j4qelsFiglkimFt81WH0e6I2b4DHvqNF+WZJxJHQWmGvhEWQGfTTdVCWxFPM/PD6d7y2xseXF9rrDM1IcV5H83Sy4dOx497a20ZK2T2IkzdC+7bxtM4YdB3uljQGMTvSKhJPKkzdqxeCMcx70pHg8/VZrKbgNLQU4ldiwpiyUxjEUffW2leTAR3ufOFBMU4RsKFnwe6F8MPKr6uRY3Q62jE+1CNu2IW+2rsLpM6ivBFCJCGE6k4MY7+T530t5sQq1QY2PA3OAmbH1GvWc+bfrXsTL8jcW2Q8oe1Ct4XJSvyd64/wYT14Rj6K8Q113mBDsTnO0y6E4go8HYr1gQxj349RcyIvhXRw7NrA7hVmjnhq6jnLMlXtKdH6fprmggMtEhJhzXR2em3eJR8QZRBa3aitYdU7eXtQYFEdSBB6rdS6k1Pym23yMbzWCjNoxpOCSl4eysS+gW0M62wKZVlZnz5ynx3b3nYsDva0MqY9F3Lwex6jKp3jYVUlpnSq/ozpNJAClMTYAzHFM5Gl9p1lTWhTjIFIooins9xvt/kzAmldScXNf8v1iuQC01M0Pl2QSyGuKzEFRh+EPpBZ2PTaiMEL7mt+YiQfU9js6iR6paxmHt5w9mrh/Pvdh+5ndgl4t1G6TZqdI8PfXQwE/8dAh9Ca0d/xs4ME5/AlQScvJ80mIKCOdLbuUXPSUfOuPB0JYfth+CzT3KV5HOHsxmM0wiqMYQT10Yq0QZzov7bmnK2ZGlT3ytBxolTBlBUoIQELe7nw7b/999zv/vq6f2J/3dnTinwwxv4Dyp1cvOCMRNp9h1KwEM6x1/H8x3Jx54fdfITa3iAOlpe/8s+3CLX+SNZX2HdqEsrTE0w/vmVZ2M24f/qMbhs5edRsjIGDozpGo7++EfJCq51UMjqUsh6+hjvSAiaOHzZtxBLIyQ+Qkw5w/hMY3XikeH5NCYCvi9SfG536bbT3H/Vz5n2TRVhVWelI/5El7FzX6Nn2QB8CYpTL6vu7mDcs1+WMJo6kOQgwbEb4EoEZ67u+XAkxs1hAP3Q+/ebH09QcvEkf3Zv/GMPk/I2v3vNx7Ye6C4eKnFOb3j1Aw2bT+N4V4O/9+d5Jy/LVwb+uq6NTQ922z6DXyjj2XXNOtaNZbv4vKdLakUm/Y3ujbhuSneqzLAtpKXzzraPQpWT2NZC+/UB4vrDkF3Yd7HOPKMtCGAtaA6G5C4JPXeb5mg5/YEfiRJjUl9l4pAkIaQeKn2kKYyLpgpwTgz/1EvEUo59grPyBP+g92OC75MS7nR6kDenTs9lu7O0TtW+s3JDqYFjaA2E6m9z2jbAWQtvJbTD6jWrhdMRJL08ONomjpc6ZN/qkIB00ExPhsj7zVndKLsRDyzMbH/d7O4IzwkmPO84U09mAmBfwZ0GZ04mi+i98HSN82E6G4GFNfYJ071dvh2+30epOSZFtfr6IN/WIW4GaDaoqJaXHVyUKadpY6XSbgdMhQ6xj1h3NH+4nm2IgHemDYrSxQ8xuTxjMC1OOhjnB4dwSzG3pciFMSsDYMnVLDM2s/MPrj/Bhr9P3GQAAIABJREFUfVDPfYSh7y5aYJ8WKLc4TWclT1THvUA5KvWQkfxEKBFGg+B+ZTK5k7p3jI6kcJKbh4Bqp5xpQIMwnDwM7qMWJtLr7yYwTHysIIm0uOUFc3Ms5TILyIEsC9t2I5f44PbHiXpapO6VmBNhiaf9iQYhhoujEteIxivh5d/wq3/l3cLb7Qt/9+NfEy8Xeh+UcuFmPHKvRaYvredUS4rOvz04MSW7eCcHQizoWL0LnF18uN0xHcQQ2G6Odh3jhoM3M7QTS/EUmBC4152ny4U4R/5DjSVlUsqM3pBhSFP6fhQoipqRcyC/PNFToEk8UYzB5Lg58RNJzlM5usYjTlCnD+nPtXzj/poSgD3oIbwbp3mimluGiEXMEnUk7jpjhcVYy8I1fWQNSts+U/VOmjOMEgQYsCRaxmMfU/GNbG5OqTXCnB5Icp/fcX8YOGsMxGVxWxxJpKWgrZ5JOFESacmEnOh9c6SxV/JhT2JjehYZQzpdEjV95Jt//98DENqv+U//+/+MWOXjh8Lrl0ANg/jsCGiPmb02Lke05RyhHglnshRyyQgDCVda21B2gjrKLFtgvA7iuKCmVIPblzfSbGivaQZZjEpq7snXUmTkdx2lDRo3LkUoeYUMLRpynSO65HZXVneGTYQ05YfIQDJwASmIZhgr456hHzdidNQWCCE5n4qfv1A91ommBA/8gGNSLH4g2mHYM05tAfNIl3OObIzUiOYH+xrvfFzuPMeNqBWi7zMHj6+sV6zfCHF4KpkMRAJpfcfxTJkQndeqDPdcNT0cmWCdtnkGaS18vHyLPQVaOyyZFCHS9ooWb2iDpLPVNTXfwsXAOr0Zy/XCfT47Oibv0JSgQpJBt37SzUJMHggTkk8vxmBZVo7nP6REWAqjN0p6WCOd9w2OLtVa/XxogyKJNsGW7a06vYXI08szacks15W05q/S7tY1E5+eGKlgJZOSo9YAIwgpCTEXinzw9x8Tdn7PwUOskoe1uC1gOv0pTSqkze0L04KXcQ9ec0iu3/g5UNYgYUYBj9/7e39yWTptZx0ynBRE/NPGVLks7nm+yI3YvqfevofxRhq7h6BsGTniqnvn9upWlEmdYvDD3/6aNM/TlJIj3TFMqog3eoddIWZ+9sfIdr9jwOV6pd/9rKzbjphQcnHhWPCR+xHdGmdUrqpSp7BUVYnvyq9aKwKUnCcfdjx0D3M/gEcNcfCvYUbPqlJbJ0QHBWyMU0SeS2av/UyqI0TQwd7aydNlcrMDgk6AJYiR3sUjD9NJfxjOw75ezjCXbo1uQo4LEqHbQOSR4OYapeGxw8XFmwQQO2gXwWOH7Z8qOOB8At4d/pMSIBLZZ6Fzj8b1EiBkohSHokM8DestRKRAojC220nAlRnNikFOyU2nU8SCEZeMddgmOT9gPiJN5t6hzY1+z41nDGQEF7QQnASt7gUGkPJCEKHr7rC4Oa9jnGk/QowJGZFb31nXRFicNAwQeqGkK9I7RTpjRD59fkVkRrlF45ILQQf9vhHJpHdKUB3O8e2je+5uMKzFR578uiABxuQ/XfI3vlGeStGM9cZoAxnTSHhUR57n15NinBnXAcmJcrkQJJ4/Q9XQvdGqj7jEjEzwMS/uIqDT3SGkQFhXInImHpk6uhKi510TIkh4p3b9LW7Vn3h9Xag+/m02PRoPOgvv6iQmaqT+J4yAhXLyswfBY30DIJFA9vCHmbV+//JKSkJ5LpTrgnbxRq0ZUzOBNR9nm3aGelIPWyNN/mVaV+dRmZFCpKzF/TAP3Yn4w5+zd+xLCVi3M7ygG57wEkBGR2zQ798zLl6QynjlWjplbMTeCNZYr1fyTNLq6t1z0JmVPZRaO22m/XQT1pQ8rcQiJgt133n9/j/6NbJAv79RYkCLb7y5LGf8Zd12ttYheDEal+LNWnqgbUES12uizAAPFwh4vjo4F1IkOr/dSYZIzOeh74SKjJCBTK+RXgOix6Hv367HJ6aZpvPns46pwOFrCUzej7nhuc1PGuxBf5yvBwk+EkQJbCzJ98wPF+W7C1yS0Ksg0ZGdvj+Mv4+kH53xwjGvTkmap4SJ+B4lx+91ukmcXLxwSbDMZ2cYugqX/AH5wac+vW6YVnJeGCKEZXWhx/kgTl9WG3NqN9AWsfl8BXFBjKg6unVsePMa2FQzSnDVfNt3j8A+/Cyn+4Ck6BoLEU+sO6gErbvAq04fTRHq28btiyv8t/vN45DXlfL0zNPLE3GNxDWhj17I79Ps3qoW3FUhzjvM0HnNEtlW6n5jwCPGc4I0EszRKeV0DvCLMMgX4aoL1lcHkuRRsKok58X+DEttEBGE9BUIMGdD8/8/JowPEoTIcc/70Es0IAdV5XgCproshp01bjxFP2uf4hvXcGPhjcKOTt/noA0OgKk1+t4IIfGUE9vue98ynVna2yt5XYnr5HwKxJgfNb8dKGeg3jdyWUjdaAdCq+IT2SOxS5XQhXictZPyEVJyQEE9zjfNv2GoImrOr46JmIIXrMfDre+8vG3uy+/SQd1e2bDRMBX3rh16cvbbNhCNxLRAdLBRayWYnQ1ra8PBJoXRlEggSjxR5BiLA4zD/76lXKh9nDRIaQOJgygJdGeEQQj5nFp3lKFG0kSW4kJwYOikysQLEg3rv/iw/rJ+Wb+sX9Yv65f1y/pl/bL+Ga+fRFh1Er8x4UEL91GxiU0eWHZS9GFr1Rr3fUFLBH1DpKJSeVpnpmwUgmU03bFFnFIZwqnQ71kZsoMpabiQJaqPRA57E8HH0KHhZOG3DYnO2QSHo7u6m4DD8c4LKld/3YJAzoQg3D+/MsxFT6dTRIhYTGBCLpfp6Zf9v4FqDSmRsjjhXtV5LLepqIs5s1w+ECJ0MkEhxoU4OyJtRnKZFpgLQLTbaVWh6ur/sl7R0YnpwrDKEREqUf2bUxwBGYOgEQSnWuBd22Ago7GMRNzvWKun4jbnxP3zD6Ti3nCqA0J0RwQcCe8S0QFj96SPGIQUj/jD4khVMiwJQxJwIYTJQJGIWEB0+QNvxX/a9R5h/aNQXvu6h3OR40NQKBj77eYoVNtYV+FIoan9hnVD3gKlFPq9IUNBBzItSrQ6uuopTH5/Dh5iOe19WoT1ScZXLIyT/rIsGRNltIaO7qKRICf6GESQ5D6RgcTLNdHrr/nhb38DQNreSGMjYujo5BLIi+dcA/RdSTk5+jRdE4ZMBB3nSnmnbBNZF099G1NNGgsWByPiqJO6GHC7OSJSDXoIXF+eiZcVWTJcCunpclJ+3EJmYPtAe/VUOvpJVwkXJZbynuHh/KwD1TEXGSAJM6HugzEe+Ou8Q05emDsO/HnQAeARIeqIqf+a4ZNyF+g4LWCyAAAXaokNdGxgg5ICIW88F79mH1blqShLVJoFQnY+pPb5A4b4eF4UMacWmaqL7ubMf4xOb8PR2Hjw4eDId7WRHJFRo4th18L1+UqadJIf//Ov6V8qz+sTIT9RSnGdwTsxjoAn+wzDJFDlIaYKIoi6P64MjyQt6YGO6zAX8qkjqVWVPjrLPBfC5FiGIC5uWVdHqOUd0oX4+NcMC4Ftdy2Ev0Hh+vzMx+++I+TEbgPpg6e0UK6H4E/QKBhKzEJYIhKMGN7vRf5JY07EETD6uS8jHaFMHuWAOCbaeNDJXH+RSkItokMeKDyTRxp+HhzqvQr+nFvZgYA/JrMHkgrHpZevENZgnJ/JRM8YZQEkGin4fQywRuUShWIRq911Hs3F1mHel7VWpwNEt0Ez9cnhfqhpJTAwLjFgwwV5Y+wTjfRPI4fISQIMT9o7ouDjFMeZzRS30RmpMY6xWHA6X5xR6fW+Y8M8cQqfXKQYqftOb81pfHAirHMeRKuVwxJLVdF37jfH9WqtuUMS7/yPp5uP4Paf4GhvQpBJG4gaPXUUQ9uh28lnMmY3Ze9jTtYgLQvrpTCmyFJKQO2GDffMDuK39DH5CwIi2S/faKRphwpO27DQsNDRM3nvd68/jBLwfqefG+nXLwjIHPm1Kz9+NkqJkwda3QNwxo62L18I48Ylr1xKoI47ofUZOAAaEjEltDeiRMyU29srJQbyUfCpb6ZhQL1t1G1zPtYcO07WOSklP+wkPPxG4eRleDygK8Jt2KMYy8kFRijXp6fJ4Qonj+Z4D8emHXMgLuEUODiPzGa82yCdwp/H6+ru9KTogi/DPFaNeWDpcLXeUGrd/EGY47toPmaxydUPMXoc7bvvyQvgzv32ho1O3nb3D5y8nuvLs/ux7buHGQ+lB4jL4Yt2IZfMMBi1+qEV88OqI4pH6gYwCYSwonZFdI6e7QK2wvh5bK2O9bVbAHAMjt8pUx/LnQ/CtK5BDkHh/L3DR8imRm8dulKrcpkP7Xq9QK0uJLztxH367YqeIz+m9UlAwHDe0zXSbtMBojmf2GywbTekGcP0PM+GDoJFWt09ovUYiR7c9+ic4VoHS1rcSm3cGXoUjOojrcszt/uNbg1JxYtSYM4gffPtA5mcpWPzs9FRhIHCktAaSCG/s4TrlCWCDafyiLqf33x20nohrgvr8zP58gRLJr5ciE+Xc3ykqsTW0bETeyDmyJrzaY/UhzcAonOjjnHqNM65KR4L7JZkvQXQR1NgvBul/8R983NyWs1841d7RCfq6M4tH336ObbTBUC0o7oTrPLxZSGXzCW98pJn3nmoRH0jyk7XHYZgFFI5DtWCNA9cEdzurY/hoSvy4KMo5gLCMBt/wlmwoum8d1QMixGrsHzje8LHvbPJZ6gds8EYA+0ugAIPKhijExCSRLr78Jwj+9MSTtWbkhyJ5pGvfo06ISRUjVwWTJXR+6mETjEQhzeJ+75xYXEz9XmexRj9uTZjNNcAfPz4ke+++27+/UbOmedffcvb/Y6JokG5tUpvfkOt19Wz0pNActGqBeM0SzGm37ASosc0G+3kqKoC/Z13tXmxalMMKzSI0xJpiBPleVgDqAj2e+7tP+/l99QhirRJ3XD7Od9HgzSyzOaVhuA0LYuBmDIajbZvyPwZu/m1lmBIVNLTStRImRSAHBKvn77ww/ff8/H5I113pCQsHx6jwrpe2JpHaGjr7NzPekIQ9wyenr2HKD3NszSVlbQUJCbqtE2TwGk71cND+e/uFAco9PUXWet0G5jhGGc9k939QsRFjS2004LzWKrTd1VcgxSTAxKjHbZ2Cbr709b7oKmRLhnJk7/dBgMXwed1heuFUSJv07v+Eq8krtTaGZ9vrP/KI4fl1BlFlOx7dXQQUQQOTkKIioSOWfvJu+OfTMJtB8LKhbp3btX5N4GEoLy++etlWbgu37rYyHaKZay9Tr4pxBgIMXG/f0FwRXbbv+ft9Qe+mdY7JSf61v0GaoMcC0hkHHnsOBoRZzpW7x3MVfQAqSx+AEwUQXTaQhxdn7kYo4fuedCHx+SJ4Djno4TkqVrmBt8Hp8S7pDwPlUm2rvW8EYHTI1BVGbWRSjo9UFsbCIMc3RtudBe+9FNQpcSjAw2eyyuB044DQA7LlzF4+/yFJWUuqZDnhwh2Y1kK29udTV65PD3BEk8kUHRwpEKpKtqqd7nzPeo0ZA+SMCJRPiL6BP3jvEYLvWZ6DVwfNoh/8nUYNft7etfa/0PL4iSS9dPd4QhTuN2VNR3pXcEnC0Mh+gcMuSLqfz6cfsINojivFNAoXmiGmaakNumUkys0hTNKpKmgJqSST4QzSqCU1dX7ZtRWPbllvv2H56sQSqCPjllAJvJtC2h6Yv3ur1gl8Ovf/D/I+qgJckrctrvftyiYOxgcptZV1VX7bWBrZvTiPqjH87/tXhC8FwOaMSb/PC0rOWdqb0RxVbUhXmDMTyEKNPViHz/s15cnWnp40Y4+3PdQDYnuKHLypwmuLraEjoCOMBvT3/Xd26P/fv+rP2PB+td//dfTHNz9FOcbwkwJMgvZoUiYqlsgiRHY+HCFD8+Fy7JziXeeojdCWe8EvWGjusuJJEzraSuGCnU0pA/y9Ets09nkqLUORDpIQMTQMKds6UD3M0fhlJghItGQi987y3cfMaDfdix74xeDu4/4e7D5fYoLOnU4YnugyOL8Wm0DHQ1GIgK1H5OnTG8OLpS0EMz3yj7Ny0dr7vIRI2LqRc0R4gJY7W6X1RqjO5H96cPzaXf4/OHFr1fJpCTktRCzoAffFNw5JHiQi/RKSlMZ3sf5GUTKu3tuTisPRbp5Y5JEnJstCnQO9xZPM9pBKkqfBeuBanK6Cvxc1my/vce6luFkov6D6+v3K+/+ywgMkEYKGyVurGnnkqehvZhbLVkkPF+9eR4w3h5WgG27s8RIXArlsjh/NEOZ/rxxuJXl69/9SNs3rDau4YO7FQF5KUQ1ZCghJnrrvkvPjzR0kKWcNmsHQnpwiVPJDiSkhNbmABOcABUC9/v9LHRba37djoJYAtgjBON9AMF5zZk821n0KnLyT+EAtRypNpuer4QTQQ1RqFvl/rp7j9gUbGdcDmGXYUEYErFUeK2N69PlJJVqKjTLqDX2sZPVv5cTGQjzZIvRp9ICJnYCOTEPyvqw0fqH1k8WrL/tn/a7Xj8u1En6DjrHVwEjzbQaZUzbqtozdYN222jF+HbNpFGweog6GmEZsDXafWBPK08hs98rP765MvC7X/2KsfvGsizLiTo9lIVKjAnVwVD3D9OhrLOjur29ITFSYp4E/sND7YFwxhAJ4vGpIm7Bcoy2am2o2qQRTPKzyGlLcaheveuxU2X73rLlvf3KUCOZnF3lGI4iMBTp4yHWOpWkPv5y9FjOm6m1QQ5HMEB2F4PhAjXb60QuZmFUK4xBv9+Il4WwDkdQpsDBtMPoc67rqkJsPNLGwvR8M3dMwJ6gP9N3V8v2kRgtouMnXID/ROswL1ZVfv82Lue/zOaIcBas227Ua2Ah+6hewgxSmg/doqA3F8OEBOpTgkOcBqAhEsz9IYN6Ck5O+eHR212J6bWij69CycxGmLQu5Lz49zqdLjhM9HHEvm8K0olrpDdIdpkCJIilMkbkhx+/kFMmx0S0ythm9GtcTveHYR5b2Xs7i5JhSl4LOxXTxJo++oF/KGppXsx2aOZirWicdJggbuqeloWUC6qgbTDuO30WtaZGVkcyJM5Iv5wIhxH2YG7mniAmYU5zzg36MPAWTF156mjLO7SdY+Qmv/cw/VOvlJySEYB0mo876Uq1T4TRXGwxN71IZ82Vp3Xn+dJZSuUlDZZZ6OSxE3WDXgmjE1OA0c+pkAUYk2OQJoqTcna6xDGaDD5FChIg6Dl6lkNxFLy4NNxsIwyfUtiR2hsiKcB4vRO6j0EVYbtPNXf02MwoTok5xuLrbJZ0DCwGhgVqU7Q3ZKRzNHtdHSyJZ6iETwfaPPjfPn8hXQrWO0GN+5dXcojTZg6fPo0JYoTg1K6nC+kyP8Ba2LVTLoUS50RAFLQhUzTp9aMhKWMx+d/dxuNgFiFGPYGA1jshvwNDvOI8mxMRxUVV82yRCmHH2CcilSaN6ShefOLysxWs8Pf22D/k+Xof7vJ14EVFzN0unnPlZb1xCXeWNO/r/4+9d12S3EjObZfHDUBmVV841Nnn/Z/tmMkk7eGQXVWZACLC/fzwADKbM6K2bkNtM8KspWF3V3UWEIjwy+frozm8TjK9KjK5Gcl8XVjfPV6Y5euQJCp1MNGXr6+EcZ7bfWOpn5xd+pc3qI1f/vIXpsULZLpVbnwQSmZ6SejotW5j3YXoLlX3dT07UWGYDoG/N613Yujn+9R7Zz06ppObYBzx1mkbLI93n6cgdZqm77BuOrq5x9B5751SJj9Hjvv7nUzj6DM+WLOmxv2+Uvsw6kiw2ihUARKMKU/kT5+oKWI5osuFz68/+mecZ27rSpbOfv8FHYW0x0TzQOyN3/KG2LCHBUKsxNzR9Nvjr/9NkMwRfJnAidw4MsidbndnobVfWOuN2W6E5ho4rTt6F1JrrB9v3N4mQm9MvbMNvMn28zfqVpmW2eHs3TxosKNE71gn1e4w4CTEnM+Ac22VpSzorvTaXJsonA9YgleyqnYOJZ/p8dDB1LFI27ojeUB+n7RYaQCwW/MK7bHQjhJ+rdWzIPXgXrtS93ZqdGutQxeoWGvkENjafh4QvXnbYR+Q694rSPDPcuIYnBkaUGepaUdpj/Z2U2o18mhLEZW97yfix1lq6jBx6aPtb8jB+4uGZZdPxDzDXqhbou5pPOcMmgm/ZVvx33odScGvsn1lVHTs6eU5glR3FzLa2GQjhzkCwF531v0yOp83LKxcp4keH5bB1oUc/KW3PNHaHbHm7TsOHZ1XaOzgwe7Qt1Hl6UqcC007vTnORU3OZCpkN38ITNzf3kGSa6gPrWMsEBohTagmcpnp3RyCDuS4oAp166z7jct1JsaZNnAiwYSSRkBMRPDuhI3P31r3Cn8u7hAjCWzjYKiG3M/KnbbBak1y6nzNOkkbU2/YxxuS3Gb5/vYLZUgCMHMYu0CXhKrQ68MZpkhwzJYE11DnRGMihBFYSEA00fbM/ebVAUcqPXSEB0x7lKS+O2V/bznA58/epRAz5EkSYL17BenkQtrpcEZvvFxnPl8N6/+M6ArKqZMrAWKFtu7Qm6+nVuFw2xF3CKq9UYFSiiNpwiOgN2xwGV3/G2NE8Cqq/wV7rEMT1/Bb92ol3j1Ln14hJfTbjnRvcx4oPu9mOdO5aaObIUTvMADah1VrCKdqzzDK9JAdOSHAP1cwI/AoGKz3D4q4Hbb0Tl9XJMSBvgLbd1IITJcL8+snlpcL+TpzG4SMj/2GBuFzSdiYu8ilEIh0PSD1LqUosZCXy6hAGehRzFC/p+qFidqUKU9edcXPGK/Cjr9r3WcXzmRsB7lD3EfA2scWd2CfhP8qju+/9/qvcGcDRrX5qEjvJFuZ+OAabnxKN+a8sYxWtdbmFIkkoNHlGDkil/mUUV1eFoIpqpUoE2nOyHU+u0poohVBS6C8LMRJWd9X9g+nW/zy/kaaZ778+CfvxpqzTQ+ntWmenyqeMmy5nxJocVdFxN+lmB3Ld1ivauW0XYVHV/Dcg9SD1IMRfLlcXP89Evyu7mRpoytzPP8Dy5VTom6VLm4J7HIvN2TS/YHm2tvuqMVQKDkxTdPpEqfRmL+88PoPf0KjUOnOiB98bXIht0/QV0JoSHE5wEM8Ku6wJV4zR2RInY8CWEeSEtN/osL677tGNqF56Izwk8ECQyXvP1feuJQPFvkgtz+j20/0fsPq8EpXQ+4JWiPXyvr+M1EgqJ5A2Y+f/oKqVx/WA/iveg5NSfRM/7Dh0726vPfd8SRlmsgh8r7e6Xv1KlNIJ9g/SnTeoeqJRVEztm09f1pTr3Ah4g5VQ6QMDLZpOx1btPfv2iS993NRBnxYxL//aN/lTBTY17tjkYYL1kECCdE91rW1k6VmNLes1Me/kYfwOoWADq5qPaq9zStzEjMmjtjqwcjzWBLR21xmlZAzmoRuFRla5ZiMOEU04c8XQTWcNqaQEctn5eH3u54EnuO/nzP+76SP43cege7xtYcX+cIv35RS3FouyEKYXqjvfwagSOGaX0HvtFrdCyNNiKWHbnpb6XunjKyZruje2IZ1qkTHkB0+zzkm90+PD1wYcmCNg+v2YqIMU4luRsyZXMrI1hOt7WfLUUIhpkgqkHZ3eGm1npzkEkeHwMSdToYBxBF0pOh6Kcy7GPv9RtvamYmHo00l3v4JNtr1h21yq2y3D9BOyj50s7xcwToyNkczpQUhXRZSSXQTdK2ENCQ/EglpQlIZCVUGLmBDP62unbaa6Zu4zONpHUgIpxe9r4e/DlJ/z4D1dG/qneOlP3XXOnBMIYyhkEMyoPS6k0IHdkzfWHdhOqyRR0Lft811m2VC9x0dfU3JkZgTZgUxQwfc/BgmAb8nMcXHUIz9dTXEGNLKnLCYaHtlG3t7bMpskRwKu+5jyKQ/pFo5E54kMylEpmU+E3kfDB0SmZu3FJUx/Aes29016CGShr47p4ycjkDuUNR7p2+bx9mtny5wulckZfLFAez3WhGZYWjU8zw7f/VyfWjxrIPWc+g4iJEskqcFi9GDBuvejuWpkjgkLKUs5FQIoZz376iu+17ksPbDWIAYQDZCqEjqI2AN38tdfqeA1dftkHX8as99/nyOH3t+v+zxdwyIemKtptC5hMqLVCbeiHbjshSmMWSqYfLnaxvpMmMoGjoqkXgZa187IlDSDGZ0bYgYx2Ep0Yglcvl8JS4zyYRPu7G9jSJaMtRGo2HIcciZw3kzRnGuNo+OtIi7EgLs+4oMu99tu5NCQsQIh8NePzCHRojeXTlxZuBDjM3tWg8Tg1zKWeHtpizL7H9vr7Rh3XpwZute3YgoCNo84VvvG+w7fbx7vTam60JMiWmZSCVzeb2yXLxjutIpX16RZSHMhRQDTZR2cFZjJkrG9kCRV6D5mfXM7w8+9CXBu1tn4ApgisQO4T+lYT3KyHaK/03tLFs/eIGPgYZgQHAxunVBTAiqpMEDXMLGa9q4xjuXtFNkI2/7EL9D6EKUnWSd3tw6NQXXd25tVFj3nSln6scHkpP70Yo8BZwOr3YzN2e+aXOBPzjMXdYG204Zzl3eQhoa0b2StCFtHLwhEHN5OFX1TjKIarSuJBHWzS3V/C/YqffywQm/T4eOT2tFh8gawKQRROj7COqHOLqQWffq8H0yR+ynwfyAN3O+azdqVdfOHOy3qiiBEjNJgk/yt+0MTLoIyzTToqCMbFBvYyAAUIcgdxNCXiB2Wm9nxVTsjmOGG70LMLtf/K7Hh0Sf7cX+r778pdptYV8rYQ1jfSm3W6RMHmh9viSC7MyW0P0NUSFNmX29nxOfQYxvP/0Lr8vElBN9q/RtR8aBFFOi7R0Ft+jD9ZoHIziGgNTmNAFz5bjYQ4YSQqQHXwu1Nl/7aidEWkSdzyvjK8ZaPSUqh03g2Bxba/TWz/Mylew+8NpYUqS17pOvR9AxytZ2sIyHnk6eJr082nxuAAAgAElEQVT3daOvO5cyEcyIEgkC24cnhNNlhjlD83afyIBjDy0i5YqZr1t3UFmIfHnop1moa2ZfA/RMkskL6kdwFr6fpD54p7/WhP1eQasf+P7rce4PM5N0HOzm7kbjvl6WAtzYtxtzbvS2IpZoB2uyd/runR3rFZoPB1aOPae47GJZsN59+E9H8fRRQPX7Zk4p0K4E5ZTcwNgvBZoIIU3EmCnj0JJbpb6vWDPyslD3xrq+8/HNk7UpZ8iR3ivT9UJeZg9GD5e34SwXxA0VPLgL58GsCNq9orq21TX/z4FSN/Z6x0zZPz6YckZUaP3QuDaaCWW404kYCy8sQ4SfXi/U4GdhMCF0t0hFeMgjBIzsAf8IOuSo4gNGG8VS75pMcSHEdGrUAzI0rYdG0skIhKNF7npOpELw72XK4+Bn7AW/Q8B6dBDHxjJ+10bn0sYCMkJ4nLXjIZ6SHTXFuDMFDxY/Txs/zBufJueOqxpxKgNED9pchym9IUGpbUUQQo6E4YzXVD158PbaWMP1JB8JjWkOKBFR33NNIX72Z/r5h8z9p3esNfaPD5BAU8Pm42csiMVzPw2C/3yjgta0kecJpbnRCx2xyoGezyliobu5RAgQ3PjhSFtKKdw+PkZ8YT6wFOPJjd1uDQuuK89TcS3s3piOju1ePYYRgerzNB8/v2Otn3HXcrlw/fqV5boQp+hV6BzOgDTnQlwmZJlpEgnzzJTjGRdy8IVLQcontvVGk3A6NIqY710JJHTMBNHCMazvA1g7afntgDX85p/+cf1x/XH9cf1x/XH9cf1x/XH9cf3O139Zv/bRAhBM+yj7uxxAhBPrEaWRQyNKJ0Uj5UhbO3lkC1TcKjQGVxIGwSL0w+sWkDlTo5BSpHelvr1x6Q/nh3bfkGVCtfvwUQgn4xQ8k9bqImURIcVEbZU2Bop67/TWkDw7Py0nQi5nlWq/b2eVOYXHhPahKTkHaERGxiUu6B/Zfq2Otti2jWmeftU+gXVdWfI09EBeNXj2PncRNqQihN01PIlCskQfbLm6qeNdZm8B7825nmWguyxG7LKQLxN7FJgzMw9ZxH6vhOK6mRgDoWSwgBxCdTkqK0PuERohNJRjcCZjFh/iyr/79SQyPy9nnz5fz9XFX0+R/3roUIf0ofcIVnyYcFW2NnQ+e8DmztdpIrWVvjekN7Q2+qg8T0nIXfj2z3/mT1+/0O4rAifdARuTkuKVx1bdvvi4j6rK7e2dkoq37G10ew/9dY50O5BtgZQy27Y/aeD8e4ToOqrv2q1Aa17lfdZdt9YfWkl8QLG3zq6GSESC8hjutKHtchlNO7SEx+Rs9UFAr8YIJSbCujnNYDyvUDJCPFtlaCOQOBBOqI9lKOAGhxekPw38tULdM9oSiYkgBZP+XYX1mK4+dOTekXw8/7Na9DtcsTt1hDEhDnDUXDEZYylKkk6e/J68XhslNkpayQmCXYmdh/1jUPY2kGD1jt6VRoF9VPbaRL6+IJeZXhI9QlGc72xHdXx8wBCAQLB6TsUDXnkMjlgKIRGj6wiPzlC8zGhaWL99I1VlermQv73xMtbW3L1aX1unz0BzMoIU/4erCaTCujnj0otz+ewKTWlhr3e6dtZDcmWPCnAOwWeXzOi9UbeNOc+Pae4YvRJmBq0To1Hf38gvfjaFqRDKRGs7UndojleLMRDnoUEtiZAmCN4CJshZdQUfmpOwuRtZMEwDkh5YKuT4uRz9EyyNJueo+gfFQaMfEFYsvKBkDkqPHML836G11Yc7k/D8Lo336NhHzbuv8rRfaNt9QDXAnIRU3rkWX/c/LJ1PpXPJihsHRlJ5yFQkBaRHYsjATlChdYWi3mkF8jSjOOrKeqfEADE8pGEaMU1+VocIqlSM/smf6dxemF6ufPzjT7z/089MksjTTLp6RyfGyO22nRKjY9D6dHYVYe/qrOzWXCqlT/SNrmQRckx0QJtjBM/9UIQgQh2SwXMQ8xiGFJ+vmMvkrfWhlT26cq255MvpSca+HZhK4fPLVwBev371exShmjIFYV6mc3bCsWFANPKcsRSQ+JAv+RBsRKT7vJBGlProLAYBy25Zq8PuW7rPSAAmFZHGv6Ug/K8XGEo4228uMG9EqaTogcyUdubklqbRDOLQqh2ftMN2W+HQdFogTpkwT8yH760uyJRY5gv3n9/46R//GXvrXLJvLNbNtX/aKXlCEao94hHnmR4DGB5Qm9k54ZdnFybLYI6FnAgpcevesowpEZI4oSAF3t/fCeHhub3vuwOKbUB0x58dgWwIDyasBw+uMT10R7VWNvXBr+P3fBt4KoiLuQ9wMPf1xQP/7eYl9e3uFoZoZJ6E2ioW5PT2LcuFTQIlF27bnZQSy7RQB1ftftu4zBPzqx/uEl0AcCjZQ8quSRHOaeU4ddI6Ah/tw0v599WwugD9+b7pf2AvH19wmGUca3yEDnUkCZvdWds3tvpOtHek3ui3SkJZb66fjiVRWmO93dmDTzgv1yv9CDjPdprRpQ2LvsA0JqWrDe9r8IEcNYbgCfChKdSlMAe6xFQG7sfXUUzp9KTuvXsCdSZZDlevtZ7YNeD8+lQ8AE5RWNfNoXXquBdw6oWZ41d6q5AcJ3Vo+I6WsSdzjr6zCqaNPIZnJBpN69DP6ljjD/tJ9wc0LLh3e5CZdi/s6zGcUzArJFmGPXRwjMoxeSzefrRDcwanbAd+f0mAjAPKrD/prY+A5mitOp/zsLQW6UxT4sunT1zLTN3eHPk3DrdonX0Eg9LUJ5QDbjyC2w7HuLneuLgBQDim/p/slo/9xnCjAf9kz8GJkxsQX6OeXBzP3ggpMl0v6PudhPD6+RPvg8KhZmzrxq6NsE10M+c+H5Gy4IUMUw84zD/Lw1zBIER63YYcYHSc9Ug4D1KIYQr73qDvJ4UllUJVWNeN66cXyjzTMe4HQaN3cs7k+YJ0RXqjrndut3fCMLUoEoA6hkcMUX+W5+GjbpdsuLZVTnvd42eUEaCE75LM87JxZpm6vGAkYicj/NiqfgdJwPv7u/vMaz/Zt24lrOP3FNPmyeNIPgMd9M7rNfEPP74wF1jSG9eDHyw7ud0IVGgfoI1eI3Hyd71cCro22m6Ebm4H2psnZmPvyuKcZhvSDYmBHp9O04IXCqLv7ccMgxxmD9WIcuGFQM6F/ZcPb7ufSb5jrnLKjqusjZhk4OEGEkoVmpMzxBRqO4tDajqMjAK9V3QYnxzddovZ8W21gjhrdSqZNBK1lCLbujKl6PuvdmKAbR0aXG3o7gyQl5crr58/kUsilfxgvi4z67YRckASdJRdzhrhQKwd75sS4oFiO3TAglgYaxpiEmp/GGIoRq+O1gop+bOw5tIW/weADZOd31q5v+109W9UGY5pNNXHgalqWOgIlWDNcRRlZ5kcMXFNN5ZUyXQSQgwOF4/DRUokwnWhbTvBGksp5BhA9CzWLdfPpOuCdGMK8CcRPv7lL9xvt3FvA/UvynxduP/85gL5nE5KgDVFUmSrlWmezgAyPgWUIoIGnwSsvbl28NhTxiBV7Z2Y4wnzPaYGgbM6FeQYXpAzoJ3n2bWBvZ8bUK3t5Le5MLyftAFJmRDT+fP34/vi1dsUE1qN+/3GPjZOk0gH3rediowhhkyYRxUqZVYRJGc+//AVmTJNjTimWeP6Rg/p9F03F2qdL7FPD48BJhmJSW5MywiwVVl7R/VvbLp/j+sYRLCHuF1NeFRZ/z3ByPiZNXllQL1S4PrMTim+MSzlndR/ot3/ia19I7aNouLx1ciOb98awYzJjPeffgIJjlArY0J0DDTJAFEfnN4Dmt9jZJmvbO8r+7pTknteP/tOu/4JwM6qvz0N77Qh1p+nCQaD+Kzyj0201eqTpDASr9EdGDxhMaPWjZQC+14fd3No2/fBSZUUCAY6KAgB8ffZQFHXw7YKMXC8Pk0bzQIlzdgIViXJqVszug/9zRFLATRgGtA2qgGaCZKJIRGDcyCD+Dvh6+DQrKpzlDk6Bv9zAtYjTf3rj/AIVkNoDNIXpRjzHJimyFQyU74QTNAxKKrbhomwNXdnst4R7eeep9W7B9FA1LsykvMIAs9/GZOhq1W84wIc5bKADUZrQEhwzA6cgHVAvHqVJkdCpctM+OZnw/v7B70bsWT6thPMoer9SGRyHMWC6DzUUbnvhxbR/IyQ6AxObc66Dk/Bfu/dey8WgURTOSkFYXKGsqWIpkgXXytpvFv7vtPWlTQXYph8jV0ySy4nJaDSsdacv2xKTtHfgxOt1xC2sWcOYkDoT+8P2GDPyqmNfTrCR7XVAetOCvDg7yBsyPjav3/AervdfA3whLGLozMSZOD/EpIgjIA1h8acE6+XztdPjZJ3rmFnEl+3xW5EvcG2EXr1hKrtyHRM4IMFY2+NBOSYSSFBzmdM4nMoPsQagg3k1INoIQSkJDA/Yw3Ial4dwL8/BeLXF3cafJnRvZHHoFxAnF9933zQWgYD9YifVAfSLWBFkOMIGnvqum1EjI6x18ZyfaXu7Sk/7z6nMAgU97d3D3LHhpnGe/3xyzeiBKIJ+7Y9Bqpa92MhBKRk5s8vSI7kuZwM5HSdmV5nYnEzIKWhomfMo+LOb5q8M0fdQcwLCuN5h3jotYcbF4887ZgRUPVCWkjBk+0zYD0qX/ffXGP/hcYBIygY6KPARpKVOXzwmu58Gof6nFaWbFhrblGZIl0jfYhzU0mE6wLrymXOlChYryh6ApzTdYEU3VFoTfRbwKboon1gf79j2863+8r7/cbLl6+8fv1MOOJBHM4eY2Qq0wNcffwMql4NDcGrEIRRZvcrjIe2150YODEWR3n8mOQ7AvkokVIK97vfg8vlcgKAW2vnkMvz6SRHoGgGIuzbTjraTsNhptWd2Bywvn7c2dsOY3oyTZEQF3LOzPPsWIpPC5/+nx/Hkw/sKFIyXGbCVEia6NU3irxmVNfhHjYqiuN+jE84dlQZrcuKxHZOchMUd7P5nSQB4nKFo8oNnO39IHkYPugoYoyNCXMXtafpaDNPwuCocnd0lG7MjBQ3LtHv2Wu68RJvLHan9A2tG8kC1jpyIEi2nZwLJoGPbSeXwv7+TrkOiPU0oeZVFvFE39fJYPaFXEhV2dZKEbdFNRsbCBBMCQ13IYoRQwlmnLQQ9VZ6aw3LmRgG/++p4m8xYgOj5Igdh5uDw9dLmBCF1p0BHMn0fNwjw+pOtOYEhGakEGl1tJXNh7FCCljfR/KYiClTh64gqIGuiBXMNroJOc+0cEzFCmITaQj2u31g8cIDxBxRjfRQMakwzC3ODuBZtPT1K+YGDufwkNp3B8rf+zo2/b99GZ4BNUKqzPPoChUlZyMnX6OCyz3ioAQohb4shFQ8eBKvzst4P6ULuneQnTwkUN6e1lNKcbwH4eDedka11z+Z2zGGEVP5oJ3AKTtxQJz4wfd+Y+0bZSq8/uBtybrtaHeXHqudNIWRWz7uRc6ZmnYYhYCmev65iA+BxJjQ5om0f5bj8ztjVfEKlkiidfXvAUwhkueF+fMVEtSBBFxHhXXadsoykvAQ2VpnKoVSCjo6Uybq26V2t8LudQSvo8PRG+gGwZAEFgMWgg/cHI93xKgiBwbv10tgyAK4g9yRsEAf3cXfrE/9914//PADYh6QHBI8M/VEwsZ5aEbIAcagW4nw45fCkt+w9r+JuSIYaaDSJozYlL7t6L6Sy4TUCsNZjOy0hlAyre4IgVyyO1mHp6AWI8QwjJXMSTtnwCrjL9mZvNLDuZ0oStOGBCO/XJjLRH2/E+5HhbWzbS6TSimNIVJ5YKvUh/RScQJAr42k6aRTmLlDFmaUKfueHcNZJMgxUNX5wr0qdd+o3+ppfFC3ldAb+30jx0iZZrZ1PTsL12lGpgvX1xfydYYcWbVy6xtpJIMv19l/9hwJKRDwwdpjqKr3jqRMuVwhJj8PrHuVlNFlkaO4AVvtw+L7QM45bca3XPXuOw2zwx7Xn4PF23+8wvp8PXv7Ho/xOfM7W1ehEaSxxMpFNi6yMfELeUTOL5dCKQHdMugEtjJfl/Ow6KGhMRKvxbMogRTd81mPBZAAcaeXUALlWijylXKgQ378jN47bz9/Q4MePGtHOY2fIaQj2xJqbePQPgKXA+zc2LYVSQ8kBTjax8SDVG07ptVbaqOCe2BWRPwh1YG4OiQBrTXmZXFmX6uklJhyOStfTWR8Vjm1rsCpoY0SETPuHysyWGpqShkYIIAyDzTFy5X5srDRKZ9fiANTwZSZUqSKsUcZL1omNv8Z8iLUu6A5j+DNMSyHF/FhsOJaq3GDpRPSwVXbEUnk/DvaXAEjtzv/l1/y9OuvA4ORI/yNbyVeTRIb7TpnTaYxwVuCMokxaUBXt0C12gnJHlWgIIQgbv0boYpnz/3u3YFlUCl6bZCiV/aRUzJAUNq6u9HF6AS0VqmjGppSxmIhxUIoha7GruupcXOPaa/kttoIJZw0C2DwhdfTz773Abs+7qEa+7ZRYh4Wth33+T6iFq96RQPrlUwhmrANDa+YIFPECKxt9dZzjJSXF2QeVaI5IbK6Rnd4xocYTmeYGAqIDd/pjlEhPPBEpgOork+PiietMiOIGb9O2snx/o///buhrU55wpOF7Kic6ehoxKiU0onpeO6drjdCyIRgaGuu+z90v2KUeeblyxfWb7+QBMT62RWKKWPq5iOxGdKh0ny9Hm3m4JbFHRvryK2zj2peGF2Xkd0C3oE79MtBBNRIofg623a2ulFGIn799Mq3+jPWutNwuif8++BvJwGtDW3OzyYGrOu537bm9tUBl8CY2Xh3DvQXQ0Pn+u4YI2qOOQRPFvOycP36hTxFcvIO0jbW/v2+YfnOdfaENs+TJ3PWzkAx4PptCTjKSCtaN+iPhFK00q1hSYgXt5A9jEUIAYm+uX4frJ4LgdGyAfkA3kEuMKCPHiD8PkGriAzpjzxp8sMpYw1Rhvym+8Q6Tk2p+42XuUK/0fZ37qTTNrUHdWbutrHfb2SJWN3p6yE5yITkz0KTV9Y7Xmg47p5jKUdRCTllCufW/92cgv+yHJGBCrSutNsK2rCtkbuQQ6Hj8cC+bWxb5/axulwrCHtrZ4GtlEIshTwVLxTIMTswigT+rwxAQGIfgfdRAt73fZjJGMs8c99WAon3b9/G5+te+Q8B2ytNhb5u58+f5gsahdu+Ms/R46WSSctEGhzVUGY/T6K39U1dTpYOwwsLhFh8lsdArflefgLYdASjAWJknq/EHIlpJMziZ8Sje6Se1D1XWKNg/5kKqx6bOiDh0NjZ0CWNBWE22IvHqvzgkjZ+nHe+zDuX1BxHMRZHvEyodXoIRJJjJILS2mCcNn/R0zTRsiIxOkOsP8DfYUToASVkiJcI09PLbWDduPxYyG8vbN/u1P122r/mNFF7Ra4ZZ1fpaQnot8780NNG7ZUyT84WHNmA9IaYY69SDEgwWrCx0eDbuQS0wbQsfLy9wXDPgnFLxbPCoK63KSmMzQ6muLDfV29H5cS9NsdSjMWh9539vvL27dt4AY2XT6+8fvnMtBybbyQvBSmBHoScJsIyEWZfoC1GZJqYSx6aNLdiDQPSHeYrlo062tOuH5MxIAASR4bU3WnId+iOZD9c5teZnBasX39zAf7fcJ0NWgnnOhZRgjRibJTg66LERjB1Z6tpIk6RtlXaVllHsh+SEIuQysJ0ie5cJZE//+O/ANB//oVLmV3nU7LrOmN8+KXXxmb+rvhMh/ewDi1SCJE0FabLBWJiWzdSzpSRTKV55uN+Q0TY9/3ROjwKPEeQKo/N3jPjhwa21oo19UDGRjXt0FoHd/MJ3fmANKO2yjqqEUGNxAQouxrznGFe6NPE/XhBu7KUhfW+InHl8unFBxWOA4QIafBpBUI0yJ0Q/etbHV71zQOOlJQz6nq6ngHdv67E69N//8+4joBbQTpqGzE5jgfg+hKp941ffvnGD59m5yRqPVvRIUDIiWl5oe8da64VO9x0OoGUCmXONIW2NcIczwFPOAKAjvZRTTnkAQ+t1Fkp8QcjmIRzwMZGNdYAolBeL9z36lpShspg2LMqnohZSGd1fm/VK+Hdq3gS3Pt8Sp4U917djvVJbuUB6ghGxtAPIyENKXjLflSq8jLRk7DWjR4iU7kQgjwA8aUg84UUQUL3SqrZ+e/4h1Ba37BekV4JbUVv70h7BN29bjQ6YSnIlOA7WLqc//dgLjOqgoy7JGd19R24enJ3MJLsYY/7975iM3xI8AlzZmOGQMBlVJ1EY1n857lMRpIPxyQmCBaJ+gjWugptV/re6PuKRkXC7IOvQFgjZVk88LpcaDZs0AEZZijS/Ex3WbC4JlvrWSRTvIilh5RCBJOIRC/upCyIZpdfhE79uKPBhwYBUuu0n/9M3Ctp27EQaH1Hgp99eS642bpgMbKbkFJg2w/5XkJxPnEM2avF234qCj5uN7S7DtgDSiObsN+OISxj/XhHQqLEjDZHzqVho97xmI3asT0hvTAvX+D1ynb2/CuxA5snCCEGR4MdbemUIJbxPCHFsRcfuFNrSPTBWQtCiMXjgoMfbj5E6PSyACpISANnhifW0mGcpf/a9ZsBqw9QDN3BQf7GS/xYw/pGCjCVwFEcmcobr5Pyddq5po0p7VR7TBHH6HrINCWkdYIW0O1cXD6o0QmmpFI8w959A8ojkyZGTHwz9OzIS+6nVWzv1CQkApfPL0w/33j/x5/ow9o1bjtiC/nzgqnSWxvT/uOQHi5DvoKVXUfQdnhWh0jo6novcz/sFJM76gC1N3/QatA7OSbW2+3M4krOpBio3V0o3rc7vZcTLt/H5KnWTuud3jxAeMDjffjl8w8/IBifPn+hvFypdT+lFU2MjjKlQp4yFgVLgo3WbZqceUhQYnRnMs+YjsQkUqbMXu8ouz83FbBj8E3dyzpEbw1IxSM1v0exCMEyWn+foatnDdd3msSnbPrUX/8retYH5Ht8H8UriFYR25nijUt653oE6alRgBiSyzHShOwN2eo5ZDDlRMkJicLr8pl4vcB958t48W//8gvb7YOpOAhaDef0jraq67GM1jrTPD+4qSNgZWS4vg/YyRE+jpADmJ9SOgM1Vf2uGtF7Z1mWU64C3vYC1yqpqmfM4q48MT50hF3Vb5cIORXq1nh/e6MPkOveFL3dmYoP7WksbCHQunL90w/+IYuD20Of6NKf2pxHUCyulWVk9qETc2O++J/fu1JXxSz4dGx46JjhEaj+2o/72ZP793a7+lcv8eJBSMY0wzI049eXQk8z91++8dOf3/j8cnHuIUdLrzoPe5pZrsp2u7lF9Pi2ap7Ip2Wh2pC9dD/kT6mEBK+q9+7Q/vDoJoG/RWeiIzL2fDuDuVN9o64f1CBMr1c+Pn4C4O3j3Z3e8Anpre6EKMSDbKKdel/dzaf7vq8oHF2d1gkGtR7VN2WIk8//PvWqQ3MXQjwd1DbdoUHSwiXPzj82Pa1dy2skZKWv7ySZkJzOYPXMh7rLS7Q2dLtDXekf7+jqHZTaK906GmCKr9BnP0+fBsuQp47Fr4NPU5TNdbiSET5AtrH/gtnEuWH9na/jX7UxfPe4nOlhYyo8hkYa7oDT1LnOhc/XSImJtk9IVcohEURYb8JWG7027taJ1rHRSYxj4j6ZIcvsTk0xukvfEQuNQFSCJ1lqzSUhR3VwBNNnch7EOxVD8y5qqAQkJMKUKDFSP+6nnfzl8yu2VdZf3BBl3zb23k6iDiFQTf1NjG7521VpZxXPyRD9UNdIQEKkD5lX7c6fRc3t381JAnIM6uIFuvu6orG7+UCKMAZh77URY+X10wtgLnHZNyZ5ZblexxMKPqTWO7ptrOsN6w96k4xhK0aTMYxq6WOY0JMV43BmGwXAoyNrMiQagyd9yjCeVslRJPiN5fs7TcT8cf1x/XH9cf1x/XH9cf1x/XH9cf2fXb9Z/vqXf/7nEdmPiUYAU2JQgu2UuPMPPy58eZ0ocUweh29cc2PSO7HekF6hbqdwv9dImgshZnSrbLdKVHVdGiAEqjgWqUjybHNkw0drxqKiwVvxzv6avhuKwowsQPOUJX994XPObK9vAOxvq/vc2iidx+TcyvHlXb19n0Ok9TGYo4/WcFTDBpai9wYpkYC9HQNHkY5jPJpEUoiuyxqZ+na/s1xcM5Kjm/pt9w9sZGS9VqIK+3Z3reHuuq02qpdff/zB7WWnTJkLISU0Z2Kr5KEHY2AnTJQeHT9FfNjFidbR0hWkDzSMlEfGJOb3VxyfYogbd+wjs03m9AXcCvKYFLCh6xHZIFROO4/f6Tocx4AHzeI/WDnTMVwWuJH54FO+83V555LGRGuoSG+DcdpJJREvC33bWcrQM0VBe4UI6dMVydldpC4DyZS8Vfn29o1SFm5//on55YXr1y+A+7H7MJY5Omrf4KwUjwGX4Vvtjk7ehjkGAGR/MIT/VhUxpcS2OVOwlOLV1GcnI3W+bywRra7Nbq055sz/AmYuU2m98f7xhgVOqUmai4vxU6K8vPLl//1f9Ag2JeSTW6umZaE2I7eVtv4FyUeb86h4e9tuTKW4nCVWZOxBIh0114CbieN0rH9XrPqrqrs+SQCGROj3ZLH+rUtkOHQJLMtEzusp1Wpt5bIULvkr+8c338N8jMG/dnRZ99rIZSKFzG3bzuqpYGjMNBXnL6dA21bu+50ynp1r8lw3igga1AekTsmMPZ6LRBBDq56OQgwJ2SEpU4wYA/PVW6sfMbK26i3NZXLJmJlzJBlfau7uFcxtfpHAevM9pw+dX6+VUMropD/q8zq6B5hLn3xa3Adq/K8GYvB3Zd93//re2Ecla++GfWxspWNZKMuF+XJljhPhoKF0w8Q1mhJcxBVEzol0HR25tVfatpLbZdAVRnfwaEvztMbhSW/pKCHnXW+I7IhU7LDo/Ve6RX+Py/eUf2V7PTFsO9OsLMcoxQTXa2ZZhBInmCARTqe1X0wAACAASURBVKtn3TqSIruqc021E3QlDH5wSglrHqLEpsji+0vIeVR6AbFzvbm2NiHdtcZwVDWNiPkzCwJk52HjHVtVw92aAk3ByuPrDZg/v9L2ztsvb6gaqWT6OnTLBDRAXTd3b0vBrVVHZy50H/CWNJBtdnSRjipzovaKqlJbI5hQn+gbTYUgmY6wd5fJLC/TiWuTlLEps4uNobhG7B1d7yc5KZTXEV91wnVmvlzpbedAATbMmeK9ETBScLdE06ObcdAvRrshMPaI4x7FowVzyl1C/FW9dHRffquM+psB6+dPn8cBpae+MwaDvnGZlE+Xxlw+mPJfuEx+82bZuMROaneSrth+J7R23hipG2QX2BK8LaQqp7VdTNlHB+PjcJIQCDlx8jR9SNM3SAOJf/2G5G2U/6PRJ0NyZhoWe/Z+w7ZOtkTv5hKCvVHGxFyOiSjirfhRq5+mBRkaU+2KdJ+k3jefauwtnm9qDMmHpVojxzDQKkbtvvHu984vPxl5mWnaSWZs9zvraGW9LAvalXq7nZ+lXC+nEH35/EqcCprghpGKUF4WklyIIzAKUeja6DinT00hROLQsBJHoGSuBVYbrcZTzAjrXmldieUAU4dhZuBtwigBpLlOjRHVH9oWPiDcIM6/tcT+LtdjKCR8H6Cd+rDny371/5+u6BiPOVQuurHIz8zyzutlkBkk0TfXL+c8uVQngcSJVI6hJyPF2QfASnQzgiyEoal5+dNnJhVs7Xz89E4fbdKTJWlKyuKT3DIwWE9c3zSSPWsVAWrd3Wb18J3ujd6bo6zOtrqdpIxAIKZ0ygL2WulNT09pa41qDzJGbd0DhXGohxjY1xtsO/2+oaKEKTGNtVumic9fvyA5wqeZ6csnmAt7MOpozVqeiGRsvxG+re5Lz7HGcCnQ2BAPSDYoIR/JVsOGcauZumwCOZFscn6dP2XT76Uih1zg4Cz+3a9BuPDGma+LhgwJTmWaOvOsTBmuI0FdJqVv78xRuHz5AorjeMY22vaK5EaKlX6/I3QmAvcDRl4yeVpGyy9CN0oo3PfGdiS5KZHKceC4LKBZO1unj2E4w3ojiWDP3q59MK9FT4vK3ptPjQPTy8wv//QvhNpYlglpCtLYDgJGjljKfh6Ya/V4NoUxSDm7NXGMNPXJ8DbkKL7XR3pzAcu0JELgMXgWAxFl0sb29jOaI2Uup9wmTYWYJqbcuO83dP2Z7Zc3umTyON9yzNSYiDFAbdSPlaTGNA+d7OVC3yqlfkDvsG9Ivz7kaOLyHRFH5klwk4hzbYohPXoymgx4R/kLJH8/pU9jUT8Qi3+v67A4dsDNIXGQEfR0QqykWClTZ1rGeR82YjRyEWgV1IdNQz5ayZHleqGtn1lVCWIksTMRi5KIlmhro6vb+4YUaf2x9j1pH++7MmYuvsteRwB1fF44sYj4t0k5jZTZ914tGf3mbO11XSlT4vXHr6gq97ebY9WGZCCUiZx83fXWfIA0xnPd6tBjt2EqYCPpOs/asT85eWAMuz/RMVRx/mxw9qmFiOVCXLzd/+lPX0gv2ROj6EnRtm3Ix405+fk8leha2uDveZTsw5Kn2QqIuGTA6ua/9o1w7JHakF59KD9BKI7EPJahBTkD6Md9/+s1JPz2nvubAWsclRpCxA5CxACvR1GWGUrcQf9Mq57h7QQuSyYGI6iy31fqvrFcvXrCvnvUPXR8aZo8aD0HqoZAe1QSVLsPHIVHsOQH1Vhzh2YKTr9zFcHmAuY4qNZ3ohplbEzL9ZWqN/S2s22VbVf2vTGNgFXV6AfTLwh5KpRlesCQ90osCZpg9+G5Y0oZweDtvjJNgabdY6LmSIqjCtV6Z19XandsRN82pCs20EcqAZpi606cA8vLKzIvJ6szXtywoAUlLTP5eiXOFw/uz6xFnXU39CQoSMjksXGqiAex1gnWfKGEpyqWBdex5oWUZsbb/J1nNuPrTSsWGPpX1wlLuCBxJ/L7VFifdYrHdULiw6PypPY4UAUbrE89q5Ao5/ewcGeKN/403/k6b8S+EUInjXtK24h5ds5crDT9cK30dKGOgNVCGPpAh4cHcw3msYGbTB6Wdbh+yYRfCtvb7m4w4CYAGDoDMhFwtNS5F1hH6wpSiMHQvhJNkFFFik3IYnQJEIsHrT0yjWnO9X4fh69AjIS50G/OSvTPP9jLe3UnrrY5ImbA323rrL/cafuGdeXT58+8fH4lX/z7pzkRp4yUSLpckMuVFhP5spzZOPiQVJoXSvrCjlJifOj6UiAkMOlYL0jInrwmD76m64UYF+gLJsNwIOYHAP9YC2ZEVd/3DwzdWDvS2jms8/e/7PHr2NSGWLLkwLIUprwh2qljWlqjEMTovVLr0I2mTMhPFAB8PUc1CA2Viow9rfZOVGWaZj/gTQkSSLlw2/2+2rbzkmcOxyKPS+R7maU80xjG37FHQIkMU4RRQdLB2AYeQPGUEAJRInWr53MJMXklfCSadp7d47mNCqph9FYJg9LS2xOL2AQY/vPBz6CDHuIBg4AVwGi9kqS43h9oZuSSCdPMdb6QBqVAW38MXYk7FqWUEIGoDXrCuan+OEOORFO2diM1I6g9aVY94fWEcuhBTU6snIPBIgcD12ggu/8Cr2T+j9BeP53LqoSoqK6kRZmmysuL75nBlPv6Cwl4XZwBWvt2nvUiSsiJy6cvjtLbV6/pHz9iCKhEYs5ITrQKjQpTeLjzKaNqqn6u94M9fXxUT2blMMKBsU4eSYT/e04fMPVKa7z4eV+A7ec3kpjHBWZo7eg4K2utSPS6+Me3nWmesdphxEzSbRSVGiVl9la9g3uyrxuHsZHpKD4NTSuMxy3iHZAUSctMeV2QeVCJot+El2VhyhEF5hjoZToHwaM4DSam0QU5Kr1HlVkbqjv0Rug7sq/0+7uvb7x+0NvmzOw5kcLVB7XODo+c8YUboxyDeM9r5sC1/evXvxGwxvGQlEO8L1J5eYnkcKPXN0K6E0TPA1UptO6uE3Wt1G2nbzfmowoaJlp38HOeZ3LJMJXT9WHbd6IZ0QJ0r9rJCBwfP53DmX1Ld5vGs00IINDSRAyFnDoiK7F29OafsdXdeZaXiN5X1vc3rLpoG7xq1ele1VwWt4cN4fyM1RxL0XpHCSCRGCJxiJxLnhCDFALvH++OYWmNdFIC3Pmn3lZUO3270/d6Bg16Wx1hNQ5RM6PtG+iYRt8zeb5y/fqFPhWqgNJ98GxU0ujqVejklbSQEoSHhZ9PmMcxNJVciB4eoGAzIV8Xr0ZFr3AFOUay8JfcJyd8HZ5w6GPjvEP8AHn5zQX433X9egL8+fcC9pgY5rmypkiwUWVWetsI1plG5S+Xdz7PlR8vyqeiWBfUImEEo4qAui2lWMOaoaETxShjYlNR6rYRzIiHjUgOJ9IpJA/Mmin6eebl65X8T2/88v/9bwBShXK5Ul6/0HsfDmmPzbe1ig4YurbqG4w9wOVxdDNSjDQz6N7WPW3+DOq+Ucr05Ljjg4QAOUaCRro4Sq23hnU9cWf7urrLTIx8/tOfmF+ukALtGKKYM/HibTFL7qqSlgJZvCoF37VyyzKxbzeMSji6LuIBhWl3kxLrPpg2BjnyEokUtA17YEBDfHAZeQSsByuUJwmAqjry6HeWBAx7A/8PgRCM6GcSASelHEH1vjWs3Yi6YftOjonl+nommB0/6Lr5NDTie0Meh27rXtnatZNiJoSI9oDkwny44URAAqlMtOaWwlEiMiqsRwAp6lVsZ3A+/zxH+1XG1/TzsAUPWGVwLG2wn2ttTzPn4p2gbmN45hF8gBdYts0lLyIeOHSz09VNm9L74HHm7IFIEA6PzJh8r2utk+fCdJlJ88T88snvkSRICVv8XAiA1p1iXpQAfHDFAOt0VVQiSnwMenYlVqP2yO3ekYtzkx+KOw+KvPgAIgnnVp7LACFhFsYQKBzkCL9+ZxnLr4IQrz0JBCUEY5oD82JcxoBkDhnbJ+5v/5t+71yWCcnyKE71NkDzmeX1M22d2ff9tB01cerwy/xCmBJtMKOlPb07GJIdn6eHGUs8glgnqyCcw1leZZVzkNR0WGCDf65DQnQU8abkw4O3v/D28YH1TlRBx7reavVK/lwcYbjt3LaKjjUTDNquXl2XhO5eXW2jQqtdT7MiGYNJR6LEuL8hBDjg/TmwWzuJdrTEq7yAGdt99Z9fAuVTQm8uZ9v4s0s1c/ZOrDnp5eiciXYfyKobtq+E/UZ//0bf1/M5KUYXJeuFNBWk5O+GMEeF8bzH38nzzMDa0zP729dvj3CLH+JGJ44pxJIa06RcJ+NlybzM3qjrdfC8mpFTJEhn7W4nZnXn/nE8nA3LyeHTrZGW5ZzuAy8lRw2nnZ3/cCM0Pfkozv9SvOKj5pqqcFRQQiBJIUjCgk+ZRslI9KCh5Y1+czvS16+foXb6WmFUONteqaaEVDA29xWWh6ZEcqGrsqlhIQGOwTg6UzFmAsKuO7XufoDboxKAKkJEmkPdTeF+W7F0uH8kbBwMFhK3bWO6LsyHPee2omsg9Ctpmpgmnyj3Kb9huam7TwNGIc8FwfzAPysBow2C0xbMogdZY5UrzV/8GHza2C1knvyLB4Nt2JRyZqBjI6ECK8Jvc9X+u677/f5XVVb3d+5Yd8tT5/H104HMesfwarPYRomV//XjCy+zr6tL+oVPuTLbjdju9H4DGqpHyzCC5FExhyiZql69KtPhWuG13RDj0BkDRMyGzeVZjBotrQzLP3w+p/i3P7/5n3ZFcQJFVztdqWIOZAJdFWmd2AcFoR7rog8klHhAi1fOVQ64u7kMQFwAk2MghcA+NqY4zfS6EcSD094qfW8ny/LLn34gl0wuiel6Zcc7EDJafCpGjULMAYte0Q7jMLMTnWUeHZkSoiDRMKlnF0arszYJhmukd7+HDAvN6Oxbs1GNckHAuX98h+wKo/UXOQ/J8JQo/p7X0WIFvOAdlJwh0AjmTlUHFiYOjWoUX1vWFa31JIuEJM71zRfEjL5X//rj38IrOK33M2nVERSlU8MqqG6YDqoIgSDplGq4BaV3xEyHBerRGmYg2PBKFxKIMfu6GFXkVAqETCASY2bbGr3LWWQWcQkX4sGlqdBNz7PDxPmo27YiIvTWnRXbnytVePIocfhDhFPuRoyEmEhlYl4W8mVhbZWPbz77UE349PUHd6YLkRiEFATbN+rAVtX1TmweTLdR2IjThXwQXhRsXUmtMIWAm1p4tRcgElFLyJFVRMHnNJ72XXP2tT8D/H7yPyFgdRmLp/xHhdWQaEjoLJfEMivLHEkD5RVMKUvmdf4TNA/ULNkZyFiIEDpmFQvKdMnE0h5IKP5/9t6uR5IjWc98zNw9IjKzqpvkzGihA2EF7P7/n6KrxVlgr3Sh1ZHmfAzJ7qrMiHB3s70wj8jinBnO7h5oOAIYQKOb7OqqzEgPd7PX3o+oNzwtNGdQB8HbyvoWZ08qmUljmiSRz4urYR9W/xEOFJx4H3t0/K3BcEY6vjzAjoMjG04lwvX1he37L3z5wxf2vZ2e56mEb/r+WMPqr5QY+uhBMRxFqML2/giNgOrpGx8JXRHvrqJ0d8z8dMNQFcoUxaqrDDqUnw2+urHd35G6RW8mgoni7w98jXOh3neqNzRPTPPMlGayZNKJMgcfNRmBHu+NLIk0gBgsY9ZZ64rtG7ZvpGV+3uEPvGzn+KON9DNiYoL/xanWX/AcCg4R0kgpirnLVVhm43JVXl5mbnOKI8GeMWVh7LshWdmaBSl6FFKpxwaTc8arY9VJtaODi3USpg+DdiK/NnyoxzjaNAq08U4VHwXr0fJo8NeahdjJwxvs2ImtKCwTtjfSdeH63Te8/fMPfHn7eq7HVCbq+wMMujq7yolGSEpBmt520lQwcSSnIEzHV0QNJ0Iu6TRhrwP9VCTMiGuNg7QLIhNDW0Cj4+rcLgXXjEwFK4l22CthQX6uO+3xIEtGywua9bSVypOh1ug9SoaOQa/4KM5wp2iYyIvH9xPfTn8W0RGFW8IT0dzGWOPYOANZDQDuA0v6vAUNWHEeP5kY/rWu3//+92fE7kcOqxC+wWGSnHEX8lhXlhKaJhKdOWdeLhu/+dy4LCP0Im9cZGVqPyJ9Rfs27M7isJI8YQl26yQXpjxD0TNWFYhUlpxivJP6uaaPgvQAKLJB3i04gK+ZaaBcfp1pa434QVdqC0HcgRYkHzQaglNbSsF75wgc22uNQl2iwJiXG/u2IxYbj3rQFfbHg7cvX0jzRMLP8Ir3dWPWFE3dutGrR2c/KAPL51fSnNGSsbmQpzniiwdK3YPQABqWW5Zz8Gfb/iHmb3xWwrB/6QjPJDiz4RWoH+P9FHQ0R3bHZQWZCRJVeqIn/OvfzwS0kyc4xoO/dMEKZ8Hqw/d3npTrnEkMI/0x2aqPnUSlZGG5zEOouWMjESiVhZyHHaBZoHQtilRgRNgGj9PNoqEj3K6PgzpJBjG2xxspa3Bd/VmccDTlZoeDzUm9AU4usfrZ3wZSdjQKKYe7thTMlN4Gtz4flodR24bp+vFMPUe3rY6pmznbuuEGJckZuNK7RbEnSnMnS8I07NcAJAuSM66JvTt961QExtp+/fTK7fNndJmobaXZ2GMfd/b34DN6q0CmLBemORAr0XTeZ2sdNCN75mWZqb6zb4atsfmXy7BTOvQa/gGVij8FQs0QwB038gOa+Itd0uNs8/yh0TI0R5F6vTam3FEztB+BFxYUJh2cbYki/rDxs9zDtqw0LG+wV3LqtMNUv1ZMC2gZXGMBN7JaBAwBj22n+sbtdVC3rA9ea7zGjpEkD24rQ2jeOcwA8wDNzCwKWx0o+JHmNcC0Y1pU6agYc/oAQuydum94VtSDEuMDovWu4W2c5ExadPXzuVICjJpLoQ6LT7N0rmsbsbNpmkhDGyRu6Kg3pilQ+q2t5LlwfX2hk5GkLKOonstlxAZLJBTuW9inHVV7KmguJC24FzqZlJczLltFSHtj1sReH0FvHOFHcRN0RA6Ps2rY5R1BVCN/Dv0L3OufLVidhmhFpDJdYmOcL8K8GKIPUlJyBq+Vs1JRQQokL1xeX+n7yvZVTw1Vkui8sxSSF9rW6A5TOtTnehKmZfCbHBlZuONHUIIH5RZde5JYpx9Ko6AmeqCt83QarEP4oNq00378yrY1puvM5999d26c69sD7Ua3hs5OSZE8dMRj5mUmlekcL6BCb+0cAahm9m2Lg8GH0fWHnx+HAaObCCQol/mZdGUeaMO8ML/cePntJ7TI04dWnK7C9lgRSSxpCdL0T5KohERHewF8FPxBMwCgblB3bFuR3sjeCTPlgTYmj3xlGV6gmkH9yWEd9/m84yeJ/dgwK3AH+fHnltj/sOvv/u7vAM5m4bzcEYvY0fBpfLo3uHugyX3ltsBvvxXU/zvqcRjRoczChMO6Ux/3UH2OYs5T3OfIQjd6SsiIDjy51gN1EY/I00D2DiTl2PwAj6ar1QivKIO/PP/mW/TLHd4r676zb6H6TsfDgQeKmpQyRxpV3bazoNw2H0kzIZBCwgUgH2lBZmQVWuvc376S20ytOwxEY1835ssVe6xo71xvr5SXl6eJ9m3hYRWScb3N5MsNPgROqLdI+XHDSUy3G2jG6cjg+Yn3sxPv3cETSReQsUccEX8j3s9si/Wt4XWJviN5R70N7+DwDz1WwdHYfvTjdfkwARl0hF+aEnB6cxJ0AE1G71HYh9W4UcbXzCWjpojtgcR4iF2Ot6CecIskmwA7HC35RDS6G62GOl6INL+SJjRxpjCJOUKipBFFOgzA7Sz0f0rBARtSuVMA8aGeivF+ILujqJ4mXr/5jrd/egv3CwjHidFjv7/dR5SkYj3ep8ETCEiJ++MebgI9Wuvu/ZkS56GRUA3xVnRGiXbWVse416h747bc+PY3vznXbndHHezxTsLw1nj/8XukNQ60oaTEdJnRZYYpMu3j/DqwUBu57DGBSRIs/+19CMvSgmgbFK5oBiQ9C1j3GE8fCYP/2vTkl4AHntepCRgvQ8WYijBPEoELHntvHcl3Xh94W2m2Y3tjSoX59oJOz/OkD8zTkuI5IQo5HbqBElzorDgRyyuSsKZnUtVSyqB96Ehqarj1sxgL0WAi/IH9SWk5IrllNI4f1q58mOiaemh7kpLKBCmTiXUab0HZ9hYpcpqJ9Wsfjsyf0ltUlW3fn84vwy/YqOxbDfeh7SlOyqWcUcqSNFDLFPQWCH9XdeH6+gmSkJcbKZWgH4xzxa9XpnmOqO/WUHO8fQC4BkBovQUAk2e6pafrUHfUhO4z79sdW51LhXKMRzz0dCIRniBOvN6Tm+1jDvYzFgHPO/rr9ev16/Xr9ev16/Xr9ev16/Xr9bd5/SzCqgrdd1KqzPNIdbgp336eqY/G29cv2AYvl3KOfqo1xML+R0vh9vk7kmbaOsi54+tMhSbKPM/IXAJVBdqjIZOSpxyRyaPj6NZOLpLrYI/I4WJwjEnGJcGL8iDhRjzfBzW4Dz+18nJFVNh+fEfcThaQm+O9YylGoUKIldavgbRN247NO741aOET19ad6RBt1RYqQDfWrT4bzkPUcZKnh/BDBE1C1sGFzJnpekUvhZZhs8YsI6aTAONMhDkXZLmimlFqeDKergn9fO90x6zS+zZGViBtJ7WNdv8af8axVunjLsiUKJ9uaE645pNSIed4+xjfjJHc2eYfKr+gafgHwcBf8zoQso+cGIFxT+K1nZGBT6UZ3RtTFoSdXt+YppVegyqySaalCW0N9p39fmdSPUdPRiUvE2Wawkqqd8x6pNKcVB0naXCazD3cIdxPPhQiI35bsXIlTP8e2GOg71slaaFrZ1tX3r/ceXl9hcGBNYzpspDmQppLvAbxM9eaIZxLGqhjjGlhfcTzefi1phQjp/vXN7xX2shzL5Loj5X22KIjvsZYrq8xjn99Xbh+/oReFygFKQVVGb6ohNdlKgiKayj8Y96gnNvRoJog4SKSpkwqBT/EPfC0s/KQR2AVUrxGdEXyBtZx8omM/DEV4KcL408jr7/odQoVgrO5zJmpdLIYWUJdzuGj6jGKj0jaRtaMaD+5x10baSqkMkUSG4a5/NGPi+fYnRh7WnChD3uvoA00kqcRl5pwG77CAELw5vRQ/stQNft4D2GX5a0HlWCAVsdUKOXMb3/3v/AP//mfSK1xvVwgBTUAoFpHC7TuQYVwDsktAE7w9nMuAxESqoWHNUCrYcXVeyBxb4877HD9FPY/0zwhqWCiXG+vfP7ud+Tpck6dkjrrl6+IGEkFekerM+eZlEcikGq43kjHJKEpuIp+2L5ZTDFU417gGmLDsfb2dY+ppTuSx0g5pQ/aFGdIoce7VgI+PEapvzDCihNUwoPm0VlmKMnJdDI2BDzx9S4VscaUFJky3gzb1ifffMrkkmHKQZ9rDe/ttPlbPkwhTqGtdVzTOV2QnCNZk0atld4ga+aIQldJgYK30Ov8sf3hWTpI0GbiHOEUG6qC50BmyzKDFhgjc4B12wbvVMkk8ERr9hR9iWJ9jMWz0rwDyj40NZFEGa4svRpusK4bcxk0rjxhIjQnYrFLQYs8HULKTFkmynJjt84Pbw+abiy3F16HA4bMM55SnE8lY9vKvt+pj0GzGgl0Nvxi03Ilp/ykYXbD1xVtG6/TgiWj99AjAeNeZyAhFtWifKTKDeqe/IX1+xc5rCnD5Zq4XOIgu1yglM4lz0i/sb//wOO+U8bN0RIFodkoyjQx316ZpxgZbvtO60aX4LAxXeEDxw0V3Br1MWL5SiZNCfdOGxuPqUOKQpbzEOLJGZBQ6HXC/kE9+DHnUz8KxS6GzIXpduVx/5HHNorq1iLScZ6wVtF8KL9Hwbs31r2FEt+jiDAR6pF/PAysQ6ndKPNE3epPeIpmFoWtxQIJpd8YMSSlEdG3yYXUdmYv7GP0TG+0bngu5GbY+0Z/+2d0KqQhfsl5okgO54Du4D1Mgwfvhb3CviLrim8PWttB4lAAYE7olNF5QqZpjE2fi+lkjv1kzGdPCxs5aCK/DKdKR9Ss8jTVP6xJhg1yNDTykWVnzNp4uXZuc+My71xyAhvjbgORQvNM2zutrtR7BYmNyfeE1Avl5QbLQqfjtaPoKeJVGGKruIPuwX86I5U1eIUy4l1FHZ2VNFw2etqoX9+ZXi4sj5X+9mDunb6OQ9kjftOq43sPUWIup+1c8zRU4in8gjXR1/cQ6HHw/KIQTAh9j3Wzjlhj1UwvM25OXqYoInpHRiO039+5fb6RbjdaSiHKqu2MMXS3cAqYEpojejmN13N4jnZriG4YhmcJKkAOvmR8kCH2ExQZY2nEgu8GIA+Qdzx9C37FDuHVuMmnReRH14A/Gv//4sUq8XwdPDtwchamksi5UhBKmbgOzcNcKm27Q40Ru/dOys5lUEGiwdlJdQ8XEyREqGezFoXVZR7iWR+UpQ+2bibB2VSckuegA+DBvxv/KKUU9BQNqoC5nebiKuFV3foINdCwcOrDGieCoYW3+wNZ43UmTdSxdslKa8bewtJLh+9kGWLUH798CZW0KPSOaMa6n/++t2Fr9P5OnsLP9fbphfk27IkuU4ACOUa7j/tG/fH9FDRKDjVAzsGNv10uzPMLmJ+x3ElSNOmqmHoALYNTGFcjzYJ6RmvEXTc38hE/OwRr3vugb+gpCo17OArC4Yt9AgdnwfoLD01lPI568NEbYFG0AuqdxNNXOiUnCSQfTUCCZtvZZOTpyhGEEg+ED5rEk5Tm7rQa/tLHUDlpRgeFSIclnopAV7wLmHKYhIaIMEAMsxDhqkqM+eMtBaXIbZjhfOATEzQIs/DfSdPMdH2hfq08hqDJejQpkhL71ql9g/QsqM2CWugiUTtI0FwOsKW2EAuSo+my7iNG/bkfuqaICh40F5On72kFejXq+8bt0yc+XS6YRnE9j3rBbKPvDbMQaPke4inGArfmtgAAIABJREFU2pvmKzoV8vWCJ43YWf9Ac9wbPkddN80F80Z34f41Ct6JAB305NgOQ9h0UAyV/ze1ws8jrLkzL3C7wXDd4VIScxa8dXKG27ffRsc0PjwfC8lyePx5qdi6oWl0mNPCY93o1sfmsIDKaT4NjsrOXle2PRKfJI3c33HzRAWThg1uWtKwYjhJ1D1QraAeDeW6fTiEZHRSWCA/CZbXC/NLbFz/8ofvKQbLPEUKVO1sj+3s+nya4jVrhq7DvJ0zkeVIM8GFpEqSEN4c77G26PKtK3VvZDfmeT65YiG+D1/F7J1ijfXr99Rxb8sg83uoFuJ97jv1/h7+mkDXREVJmikaKKmlFARywDajbpVEolyuqF4DFd5HaoxV2B6wz8hyjY1Ung3CgQSKHNZQhvHBH89yJGXpTwuBv/4lp+Dhp96rx4YXPMj4ghbFQDGWi/Lt5xdelwVrAz1phvad1pStdfY9HAcO8+RUMr7HWtNu6JSDR6T6LDxEBqHegFBEyyDZM15VpK2EBYo3CyT2OIdKRq8Lsjeu33yiPXa2x0YdGzw5sb+v4cvZG+W6RBrV8ewMxWqQ4Ake4Qe+VrgoxPODS0wDzPDRKW+1s+8beZoQEnvr3F5TWFMRAoatVXJt5PkaYkAcr9FsbduD6sbeOuJrIEYa3L/TBMQqLjsh3OsRHPAB8fiJLcrHjvzwJZQObCAbaEd8InyFP/z7D7//8Z//1H//da/xPg4+MiAybGP6Ru87aYKShdYH17M/WFIKB4jewHuYjx/fUgVpjd4atXWm5Qqi7IP/ac1ImsipDB5bD6cQf2KY4sFhdTN00kj544mK2GG3o4J4cPEDkTr+ntFgKG7h3uJq51THEda9Yiit9hgudD8+VuY80ZrResQouBv98NEleKuRlBMNZVgncAIdeHBzRTO5FKbLxOdvvkFH2EqErAg5Z/b1wfp+p9Unwpwz5JJoopR5wYoyTRN7r+c9SnlC8x7FuxKiEmvnZ0oKT9wDXxGLHJ3j3ERBcng1tx5Jcq490Fji+XWPs8WdEY7xsWCVD79+gUvDIz2P97PMiSl3snSK9BGCZOc5lHDULVB6s0A+pT0nA7KHcC0Xcs5R1sgxkYm7Gsiq0Wsb08o8CqLRaNXReHknk8OOsA6NBiGE6xbC7nSkQsrz3DKL8y2lcGvwQxcxGmizwd/WcPb59//hP/L3/+n/xB/xbN6uFzQnenOaV6jCfL2wDaFdrxVROcNbHOexrlFDHO/UoFkbBWsIDNMQWCeLdff1/o6WxOXlQpnKyWF1SUiZeP32t1w/fR7fMYrk+x++j5+RRiFuRr8/mFRJ+YIeFWLJWAqnAEuQpiEeOwjgOXjwaBphbJFMeoBcdet439DUQ0+RHD4gtMcZlP5C0fqzBWvYUHTmvIUQYvzgXR1sxWyNWLtmTAOeTsuCZh0wdcW6Y9PTsgbTSECpO20oxnLKQSwfH5dYI09LoDOje805nR2Dez8nueH3N+yvxs6mCOKHPYuPTfcJNosISTQCBobggiQnOun6HFuGeXVjr+EIADGFC9P98SD0mG2dG7sI+15PW5ok0fkdSEStjd4sBCEoKS1IKie5PyVOc2zxGKFJkvMeuSrL62so/fJMni/o9JlrTud79NY4rK5kFGiiicNJ1aY5Nv2+B42Dg8YRP+P+/j390eHaKd1jgxyvF4ju/0PRFwvTn12fZZyE6s8vwP/RV6yBZ4HiH+1JgKguB4KiG8ulc7nCPHfmWRDtlIH+56ngzRGbKctCvc8YBvWJ4DrRyaoL06cr5DSQ3Odm5B6xdAGWBJk9fShoQ6GuHGkmKeezq/eccYW97mhJvP7uO374b/+EjQ0+W8K3Srkuw8s3YlTLcBnYVGLz8z6KinCDODxQe2UYsNsQr3QwSMMSrvYaBcCSmJcrt29f0FnDMnnc4/XxID8ezNONvLxQrZGHrdeyXMOAeriAeK9QK74/xsFOFFy2fzjNQy1+jglTjKwPq7ZzHf6ElnJH9A38ith8KnL//Dr55RHV43IJtCZsl45101F1ygTuK9u+0eqO92gw1TYe7NzKCBI0iwb/CHRInaxxD7et0Rtcv7uyvLzGD5WhVB5eiybO0Gui7cOEQhTJC5qFbfuBJDynawStwgBSeI+aPveEZsJEDi/KvUMGkYly2FJlg1Qpy8LjbWXtUdDkIZ7Z9862b5Qce0trTikzdfhrFy/UfcfEWd8boVtKp8BHhil/ThmZwo1GUiINFLpV4/3+TtnScBIZASNj3RWdSAh1r7grtewjgEBjHQPmO0J4H5dBS5MM/ZiQ6PBNFpA5PmTr7WzIkgfyp3mie8TPlqlAP+guE6Q57MJEIjLUh2MDsQMPTPDfvA7/f12DqnOc95HKJ+QUAsE5TUyqzNNA3T2Ap4M2Z62iU2cuRyHT2NYVJGFlImtB03ROSXqPYj6nTL4M28VuUP0s8rsb1uJnQSfrjCePpDQGQtpt7CsaFA59BmCYR5EoAS+MnxkWZDDcLXr7YDsF74+Nxx9CcFxSYdJMbS2EWanwuO+n4MhDjUS3zjTP/PjlR0SVaax7cztFur2FINANtkHTatOdaQo7tk/ffqIsBSl6UgjzlDFRtm3n8ft/Zt/CF1Y0JugQIElKidv1ymX+HJHw3ciHLZ5KjBiT0NUwq+Guc1CStJMuinpCG+FBDue/l5xHoxEOJIdjTz/oRGSS+nAw+fPXzxasc3GydJL3SE2CgPK7Q9+xHtxH7/3koIa35zSUwSPxwxf6MdbpjezOEdgpKtElH/8NWMuBwC4lxtJqdNtwnsb7mUQa9h9uTtsbR3TrUcTGF/+p0XX8t6YSXNcMTEIZBStpQvNCSjPbVmnW6caTB0ii1YaUY+QcC/5ESFN0v/tew6bCYqEdG7c1o64VN5jmBSmRA3x0bKIa3zsnJOfwRrvMXEbm9qNX3tbG7pXpqtzKDb9coRQOLbSa4TWU7G0NaF/8QBcZRcqEliUWjztsG7Rj81dcOr1lcs8Iwfnxg7A5rDmOBIsD8DoUwS6KuWImH/3a/6qXDM7RiViNUXfU1kc0p3HwbnNpTMvO9ZbBHux75XKNbhSiWBPvaEncPn8b4RX7ftqfJBUkldhcTWl7bNxSEjp22OCjGb1FklAaSt9TEX64PAy6gqQIfjgfYnPyZULtytq+kLKyvNzY7gNpqy089rphYjy+vv1kE+h7CwPt2slTYn9sYEYbnn7Ww+zde4+CyXxE/41mKmd0TsyvN/Q6U25Xpms5I0JdoIpQm5FGlGIq6Tz0sR7PgRnuwxS8N3x9YFuo/DPBUTQacilIuoKliG2GMSKM6crHze2MtZAV+BG4IHLBuQy+2f+3hfhLF7EyjkgYzVC3mC/SSMmYc/DVIO5Z31Ye9zc6TlGNfclj373vK1qUl2++5Xq9oNOCs59ej90l1kA/PF4dkZlS5vN7eO9REEisyVIWtvv9fOY1xbhVJGgaOWdatZPrVzQjzUkp02zH1xaJZfWJhClKyTNmmXUL/860x9ppVsNzMx5j9hoI67YdvGulNkHb8zlsHfpQKqsqj3Unv46kIxX2face7hQp7IE0Zbwba62h2h6v30SHW02mDbR6XR+UuTwP3s3JCiKJzkBEm59IE24YFZWDEiGBtB6sig/JW6UU6gBDTgOLI2VRo8gz7wgVZQS2jBjUJ+L617uiVgx/6G6HTyqIVlp/kH2j0elt4zE471kqSzImGVIUDNvaOfRyCTeMKLg2qk4sr98ggwYiKTxN3QV1CwN7d3qyk6bB2NNwwXxYZsnOOviZ81Si+LSYjvXhP97GVKlLWEBVC3qSitLqflKMNBVSEixVTJy9b2iZGSwtVtfgnpIomtn30DY895eYVqScWL9uJMvUbUck3uO2hX5nnhf2rdNa6CB0xKCnMpOXmWmZuX36RJoStVf29uSW0zvd73DwgFWi8XvmDMG00NJMWqYISur7ObInefhl0weqH5HMPR1Je44MDY4XxujO4jMBYA/EOAdVs/aItE/DvsxrhWniGdn4p6+fR1hnj03RgiwNhEikNpROEZhVUC1nLm6vDyx1UrnEClQBf45l3fKw5QB8mLmfnqqjN9RBARi/q4K1RttGYVAS4uFDSY+Hwt3OjTUobn6AOIhE8s85lZEwvgYZCWfB+5pG9q6UC9Uy7EZrTnNHNFPr0bE1fIw9OhYHAx/O5JGvfv5qa/AYD6Sh9rOATZowgo/rg2TP8OoMfnamSSz4PmIYp9sLOk0UFZaXG9NloVOxx3qOELf1AdtG2x94a0xlQcvCfGTCJw3OCwHt99ohFWzweC/Lgnujq/O4V5JuTJf8bArGuI3BRYlIWHl2XJI+0Dz+Fq+BCAu4DkuaqXO5Gq+fM6ln9rfv+X7deBliOsnxEEbRWrh++o79/f0UKrUA3LktN3QpNDFoHubip+tbWLy13sO8WjW61w9UixAUSXinmger4ui/hlLFc2J6vbGuP/L1cX+mnrhQrdO3laQz3Rrb2/1EH7WHEM2642g8z8MTOO5KNIDxa8ROMhoToMwZpgnPwuYVbRuTlJPn52Z4SlyWG77vePlhcKDHunEiqah3etuxfUX2Ozy+0t+/xH3s0eh1dRb5RBrpNydIOrqjkxpw3pvnoR2HwQLpE2KfcJ/5uYL1ly5O/+Rlz3G64ENwUtFsiFVa3cgS9/2xfeFSnNfXhf54UNc73Tib8E+vL+y9Y62j2mnbA6dS+8F91sHVE6YUqWNCAbPzs4NA3g+6SE4Lu+/sj1h782WKotX0bNDInJOlQAUVx8maaG2lPQKNBKgP4+sPb/y3//qPPN6NUoQ+4qshRFvzrOzbTplm1kdjuWRaG+KSpPTuY7wbYqZaGzKOuXWrgU59vXMdYsfa6vMeW3AjPYWABcloyuehWubg/oboZ4hzzIIWdPIdR3HUjYN6FrzC5+cYJvgCkgay9QQSzBvuiV4rOc+UMg2rsLEkjkCQUp56Vzo21r5KHePsX4aKFQ6xH2LULYJBxHfctzHJq2g69qPKen+jWWNEKATPeLz+rW8gcHl9ZSrTmLJ2jihaIdHHJEisRwS1O6SJMgo+39vgNCsiJc7WnGAglNujUkoKrqsHcCQEZWW8CdxjEqz9mCRGYiGEKOqMP/egN+Yy4xLP3n0dXvOqrHultco8Tyc3WUSp1ZmmKE5TTtRd2MZ0sveAobbd2atjFlzX1uMevHwTKV6iwl73oN2In0LXSrj2th5C7EA3hZTyGf+qGG3faXtMtad5wjH2LbQLRWJa6jtQ4md5CsQUYnJorUbJp2Gfhz0tIw9fbbOxdjU/GwqiGe77juZn2MCfun4+mlUaWTo5eeRPA1mckgQxUOu0vQUd4RAMUdm3lSRBLE6pjJHmeCDHIXP49fXeTwN9CI6RenDWfNSYvXXEhCIj03nfkTnjPThezkjEOYriAzszC081hJSfnoPewhQbH3Gro7CeRib8f/iP/xt//5/+nuLO9bIgKdHNaXUciCpMl4V1q1itMZpxZ+fZ0Rw+alnDcw3lLCp6C0RL0DgAUqYJvL3F4ri+XsklMeUCKdNFWeYrL9/8BoD5dhuZ2pFZfP+X70MYhpwChzYU7ItOaImYNMt68MyxHNnDIVCIIihiGwda4glvIz1DBKuw+U46uMg5R/a3BtwvHjjjwQA4pUy/eCHgPKH1n1gxnxzbaY73fLsFBSZrp6jw8t1nqE86DJkIWXCCMJ47l9dv2IegqLYaCSVlwXQ4XXhjvz9OkYDqjOZAQHEwDTTkuE1nTCCxLM2HN+BxOz18U41YU/PtwjpPvNV/ASBVR/MN9ejSIwnoeXiJh4jDEqz1EcWv2SkIVI2JQaQePZHXcqhJUxqj+U7SmLSs7290ff77TqK50u939u83SJl5jmdrzjOZofjVULp77UjtTEdSnRsGrH2jrw9yvaDLNTjUwCHAiFh4Hx/xc6wakPCG6B2xr7g+wK+cBauP5mo0LX98/a0UrypPYQgExzfJcAexB9532kDWbteF7Cv79gg1dhJwP+MfU54DCTXorZKnGbM0fCEZMcPDtzpnkiptjf0lnW4CeiqoWzU0HShr7Fu9fogJTjJ4/nq+hlo7IiXQHAtP09Y6dR/74q78+MOdH39cSemVx64x0RmLf2/OY6uUXOi7srdCauUEEqRH5GvtPcSKCq36B87yxFYrn8o8FNpjvHsUrC5MuVBro1ZjWUKUVgbdbVmutNa4rw9EhFp3JCnFnazPgz+CdAgwxTtymNITdI/WY7rWTXBLSMqnANAHiNOAZB4Ure6ca9daoOwOEPc3EoIOHv5RrP7rdf3XuMR+6qVprUGtpOJkMbytuOyYjbAVNq5LIpth20bbdrox/Hbhulxp1rFm5ByFaa8rrR2uJufkn6zClJWsYxJ4NOkSQq0QD/oopiQEc8D7ly/QjWk+PqdIxDoGppIlKHx+NBmANNJYV22LKRVdqO/Oj9+/8V//y+95+3FM7rICRu8NVcg58dj6KWbMSVnXzvVa2HclZcVsot6PqbWSc2LdO0ckb22VfXgVp283roPLvW873mJakAaVTVSpzXDXUUwGRWxallPb4HV7TuF6UIZUOnK4BpmFpMAjdMSGcOoM5cHoto+krfgZKekJMjid7kOcKDX8y/W5/7oJzcKBRC9/fn39bMGaUyRGLDlRNB7aKRkl7RElV4cVgdlpbaJTjxveN7atIZIoeTpVkFIWDDmV9Cll8pKfHtnmeDXcYtxjjUC0sDMFoZRlIERhmeIWY6czlEEj2aYxBCvu8XfHhKAbmJAkk3KhfshkB+gIP749kG0j/a4wzZm9tTNxJUlmfdT4hhZE7703liWQuK/vb/Temec5OLi1U4qeh/++t8G3de73B2mZycvE7dNnAD59+4qnKCinuSA5Ywj39xiZfvnhjb3WOJTUyFlAlZwLt2ugxJf5c2QGt8h1l6SRGHJYMGmMphIpFKxi6EXIPjLtu+Atn/xLzSUW6dFRWaN3Al0f6RyRTnJ0XBCd6U/Htn/VS3xs4AcEF+8zjSQWE2Oe4XaLz30pleSGWg+RS98pwonQiBYkKZYakiuqE77tkToFtAeYCqSJlKeYLCBM2biPzaU/KreXaVATQtBi+Ln5oSnWdO8kiUM3Ag6OzWfYGYmFHVQS8nWiHpSdpBRXpDn74wFJkTnWB4S9SG8S3Dm349x7ArwOJWW2utM79B4PThrrouRyPme5N4p1+nrHB+fs8vpCyTNaCsv1yqLL6DrHZ1A3jD2svcpMkkzzTNcJpkE7UCfVRtmUvtVwGPDnoe3ESJpDVClRwB8jOrFRAOiGy484PyLcwI7ir0Qh6Ixa5Uln+tu65AO6KWEz1WGvjYKTSKRBQlOFtnWySKT/7JWUphP53u6OpxRBDKnFvrAUrq/fxHe/zjGOE4e20/ed1oeF0DH6JBLvVCPQQq2TU8ZHQSfD/FzEQoSNjFS3WDs2+IpOpP9lBJV8vof3deX77x+k8sqyfEd3BeGMmDxIPB2oFVK5hVHSOW73UwxjvY3PszyRLJyyvPDy+s1PUvCO6YEmHWlGwjRNqCilTE/3lsHrnqZIDZOsY/JutDocZmxncg1xVo3nM/mE2xGRm8g4tbcQzzRFsp0obqQtDSABBz9ExwdHNtAo7x0Z51xQsn5KjvmlLkUHBeRDrinRaGGBnHbbuQyh26QTbf0C3vG2B7ClSj9dRQb6bJ3N1+Abi5LmmBSWeYo0Ng0XgBy2FtTq9DE1SmMfluFS0Vvcvzwmmst0oe1b0OaJSZoPygWEy4BLou3RFGfJtGbkoyBG6M2hCtt7459+/4Wvb0ae4jxf9zhvDp3NNkItDiu0rToiN9aWaV0CqZWw+IJY8akJZnrS2rrlMxZ1udxOOmI3O5+XIxa5t06tTs6ZXCZSUublQi6FNjjw3QMs6b0NfUpHvJ1hLvQjxlqwviM5IXzQHimI15gEN2iiSM6kY2o86Hm9e6RoupHyfCK80ALEGROjP7++fr1+vX69fr1+vX69fr1+vX69fr3+hq+/4MO60vuDSgubGWDbNpJvZHYm6RQxkjOsraDfa4y/pQdfVwvbtlMHQXj5VNC5IGXCfdjpWNgDAcGbTMNU3W24IgXZ2cf30Oxs2xcEmEoekXl6jvwtCS4pBiMaY9BqQj6QMlLErA7hVU6CpX5O36o9KJcrb4/Koyv7Zogmyvj3j3uonKMLVnrrpFy4f4kuO5HY12jX9t5Z143rJdHagbD2oVZNSJrI80y5LFxfxtj0esXEqW3jvq5MKeHWaTyRBAZXcCoF2wMpa6XTBhIu8zKYNobJgPelP418VUOhnhxLjqlxWB0BWAlrGjdDzICNJAk9FL0qNIy91RDWSY/84NH1+ci6fvox/e1c5h0EshqlRIIixFjDe6fXjvtKa3e2/YmgXl5eEXIAhiowxZ8Pd4d5CrEgJdMkCOVuilOYrgO5zgGWpjLRbSOJhj3auPHB95MzevgIvTiV8EOsoZpGBF94RspBwB/mzK0ade/kZZi7H2b4+sGmJWda79S9nghrSvFa9r3GfTDI04yegqfgVktSSIluMF8X5mtMF9K84GWma0LnGbl9x5xzeBsD0hu271hrJIvxqCF4XmjHHuKGeqN6Y9sauglL1/MeeQ86D0nGeI7BjTvmTzliSPXgWHV+KU7fv+mSGEHGnxMcdmc6kzUmR/sQSfa6MUuMtfdq7I+dKRsH2qYK83RBSma3HbPOLEHlAcI+qnfwHgEi4/MqU0YHz9WG2bl5x63H76pMQ/jlvQXvuVrsj6ng9vS/zXlCTNEEa481rTqdDhQ5Zx4rLC+/YZ4/n9HVHxSH8dspnhS6yFMYQvBSrfchtIoJxhN96kx5Ik9L/D8P2thhzZMkk0RH9GfYFd7rG8vwpt23FVWlpBQWSyXR+sZ6f0eJCcqUYL9XmCcaTppKWB71g2qVca8oHuKulMJR4aSzDa6kjojRbk/rRsAlYkXpHvZhqmONfPBh9fHrl7hOb/Rznh77pWWyTqhEiM06Jk4mlRyyKh5rxWtlyoUn8GZMywVNE7VVrDfU8+m9m9OCSx6uOh2rO60Z1v0U+4aAcExiRwhRtxa0LiJEIM8atIpuA/Xz8z2Ei6uQ84xXD/RTEvuYmCaUkhbEJ95Z+f6Hxnz9LcsS0ws8YmNPJz5GhPF4i4YH/xpCx+L+Ex5v7zUCNz7oLsw711sguPPl9jTwP3jmoufkoPc+PI2VXivWhaSJ7YN11jwtEeWdE+aNfbuDrZRhS9n3HrG4WWnuEZDQ9Dl1zop4izNUhznV8KeFceapUjRBGpQwY7BrifX9oQ78c9fPFqxuO8iG0p+eX8kj3alvWN9pvdJt+N8xrFgSbG3HFZaX19goD08w38Pk13WMN8J2KY0PR93RdIk3IA3b28k0O5MlklDKlfX9HW8tbFX6c/QcFh8BgUeSTyKT0SNdQwWVRt/WCA8gFKqDw0yrIbZad+Xt7oRk0RE9bqYzTYXWKikV1rWxLMo+uFgpJVorvHs8IKILW5XjzKZbWL481o2qmW8lbI6O0dXj8WB4nQ8+o2CuZ8ErKuQ0IUOVLhLpIW5+imeaWdih0KIgUUVFTgGDWAo3AxtjJfdQZZ9cSg0/0BwFDk6M+o4zQ4xc5pESwhi1NPyDYvh0TfgbusyHB6o6KXcuizANAUCho9ax2sE3ZnXmy4wdHLv1gehCnguUGZhDCDM+WIUhmGJ4UnaMFCKQcS/SFAfWvg1fP08o+Swoe+1P5TB+ctV+4kPq8SyIGq6RBuWnQCAsnLYt/CzxjJk8yzWNhKE+VIK9H78O8/ZK0kyvnX1rKIpeMv0DjzHnhJaE5rBSSWU5m8m3reEdbt9cKdcFHxugDi5Uqw+2ty9Ya2QSMk3oPJPyy2mB4t1gXdHlSulr+DhUyOM1JMmEmide8elUwTEKU0KxOMQQEubl/7NdQXp6UgJqd+57WJVFve7nhi+e8AR1b4jOvHy6MH1MmdOClpmOs0xLiIto1CGq2J3wRQw7grC4SyVEd0ezI4NiJYKm8IIUF8oHBTx+FLIZ7WUUDcfIPUQtrkKeFtr6gN2Yxt+/vVXWKizX75jmy8mvPoSkPg5xdyMT41Hzfj5b5j24hElDUDJCC+w4+B1SWaIA0hBztVpPy7Wcgz+OhYCnblvsl6Mgr7UiImzuPLaVPGU0GdY3yhBualZq3dnpuAg5Cd4GVQjCg9mCXiaioXLPU7jEMLjrKTiAzqjNx70D0Cq4xxrABDzHLzmO8sMN45cpWM+nbKyJvcO6R1CAq5Ilmm05KBLqqMS+l6cb06Jkwt83vk1Gp4UOaNE4j5JgPcCh9b6Hbn3Q0cQ7KpBLjn0cxhnqGCM8RxmiTz9favCOw3O300GevGKBsLqUBEWQLpTpQh0C5bpttOpkT3x9a2wt8/LN3zFNAUAF6BDr2Ibm5hDPAmSRQaszRIJihz9TGlWnWPseXxMhA0qeg/6Xp3k4KRlmjTzl0zMW4mcnDGuNx2Plclmoa/jGn1+DkKdCLuPM7w+S7Mzz2JPbzl7DCUlG4do7yGjExHK4vuQUeqZcoEynJqa5x+eu0aS5R5OcjpS7VPC2R835M9fPFqxFlTkpYiu1DWK9NOZkTBm0R0qF7fWZhtIh68TteqO28AE0fUapIWCa6Cj94LckpQyuQxKl17DdEZPoZuzgTcbX92qozpRk7I87Ykrh2cmLxMajKmgutNqpzShyFM1jXxPCU68btgs13iK//4c/8H//l39G5YVyT2Ox+OmbJirwHqbOKsK2K8bTRSA6qcRWj2SU+B6tHQswLGcejw0mO9GCkwC9R/qRZmWaC7Ubbe/ksXGmFIrGy+VCKYX18cB8H8DD8TnYsE1rQ6XZUXvycsJhQZASAgtXoG/Pf68j7CClQPMkOI/WxgLsTklzFEvDYN4sPDUBlBw2F78M9//PXiKHHZeRcifdLxptAAAgAElEQVRJY8kDYRkPdsbJScPLsrXwmwO6rZH8lC+Q02hGHD9Q59FRtlqp+45qYtIUB+Gx+blEg+YZayEetBZd9nF1DPVAB8Nb4o+iAgFc6WPd5Hnh83e/A+D7f/iePBBkF+V+39CcKcN2arOd3jrGQFrxiAA82/0ohtresRFhKSnB8ARs2MnNRYTNnFY7n16CU/abz58D0S+K1EhTc+u8fw1PQm0N7Y25FHSe0OsFL/m0pwHwvdFLINOpJFRhX42ehuXalNEsyPC4Fc2Eu8HToUKIv3NnILN/xOsTosD9M3S/j/f7l7rMHJOnmEabse/EXifOXPIZzyjmqHbyDLnMZAffv5wJZ/nwkB6bnyTFbD2L0ZRKTE8k9mORRFtHzOV4Pb3u4agyrAhVQ9i1DzFqPAaBvnrXiNJOzxS3g4+JKfPlymPf2fb9DC/48nXjm+/+PSqvg0saASZHE95tfG8PLmlrwQM96ZvmEbhycJ3PhKjjXIC9dn748SvfTEqeC2WamIbAhyHUnXJoKtx7JMEdzZwAWAAF0SORNEQ+15Gsk3xnt456+LsG8NfOsytS5vxM4sM5nWqePyQ8hs07IocNn55vRexYtzLWdj4bFz/X+i9TsLo1XO304WoIq8S0xbQyJeGiT+410uMeLguFK7Y36vYjzyAGZdJwrzBCqKp0sOBepjKT84SnqBWSlhBz753T+9pDAX8AXz6e/aNYM2u4BToojOhYFaSMhdXH54GR8oSLotNMmY8odtir8+PXyh9+dL77d/87KrdzYsSY3LW+B6hjHbP2rJk8FPZh+ReTB3H/IFQfAvKuhIrccEt8fYuC+V++/8rnNFPmMtZ0ClDmeLY1HI0etUES6ih+RTnjYRElMm7CvH8qiWW+kQbK99juuBm5ZHLSEeJkH5D8mISISAD+HqDN4Z2Ne5y7SPCVrQ5uuJ8/P3zif37o/7N/axYaMUHPmDMY5rjxlOG9s94fHJb1qpn98UD2ipQJcaO1+9kFaxfm2wuX5YprHrZXxgFv9hrjKOudZPEoesB75yKuayUlp6RCmq+xgdWnktqsY8jwf1QUpXsPg2IIG4lmSDeERJLIj/4yRE3/+I938vQdl8t3dCKlSNOHWu98EGKEq2WmWqIdt/Mk/0c0H814dr4EmVoUnW68fvfvyNM0/A3Pj/4UBBxZ70H+P0QpY0ghw7ZFlHleAtWcngIH7xvNN9QbWg2ZhviKiPBMpaA9hY1WyYi3E83oPQqepkoqBVTPRgAYRvaxYYrmoQ7N8fQC3iquBVDkAP/+Fq4xZU0JLpfMPHXyGHsUhCkpc4k4W7E+Dr2xtktsNPu645ooZSivz/HXceAnyOHXpyYjEnKgsBWwHTWJMaAlzJ73PZUYObrEBmCt407kowPe2jjMYxZugKjy8vlbAP6v/+M/c1Xl9dMrHScwbw9vQ4DeQDiL3fvjEYj9UVBbNCN177S908XwZTnJ87VWXq8LeZqZLzPkxHJ9YVpCcbs9As00KuaNpMqUM8WPZitQN0lKV4lsdzFy9jMUTZLDTNiftDikclIYdJa2V9SMxBSG1KPwPnBkccaIdQgtJNbh/yzX6ckpIf6Dgba3mcbEpoleKl7fkKG2nvMOvsc0TBJta6zDaxeCorVMxpTy8IAMcZuM6QKlQJrwgSy5NbTsYEo/PH6tkSWa75wS3QTzFp8NMZFLGDLCJsQU3/tpYeRZA03MsbZzmrHpxj//EGt/7Ynb51fcJ5p3zBvSKzIK4tS3oCv0RqUhvZNaHZSlQHuOFCKTYb91+CcSz05r8H7vXO0COqFFqUfuPY2SlaRO6xvVewAeY13NU2JOiZwUTUJvO9KMZRLKmP71FirpZkGVo0XRWQ5RVetYSlgn7osb1rZzX5XhwiAucaYe4/1x/uZywTUF20osii4Pyla8iXdgAvtlNt2w93pO6qRPtG1ik4wvDfMHaduRfFgJVsyDorLvQBNknk+Fu5nhKSyp8mhAre5R4BEiUOt+UmYOKoikp/iobTVQbaLRSClj5HPaqMNj1PaNIpHiqWniSEPpraKTDYpLj3PRQQdKbDaj0wubG/Prb5lfr7jlM+bcvGGtYq3S6mOs4f1ph0gPL+pWz4mdt/aMi5Z+1gM+aCxg58S29YzrDUsZz9AkisnDihR3tvWdrRleCq1k0lS4ThNDKxvWoQNYSGJc5kwzQQdfbl5utF45OFi9NkT9JKLgPYCHYVLh1oMalA4ENSbgcawNi09vJyUJLeTpird/Q8G6N0XTFLy3w8nXGm91ZckaqrUqoMvZrWQ1ctLBzVwwEUxs8MnizogbdX3QBh8vyvGhRnNDUiajqNnpZxf3/TmaarWCClmjU7XeIxoM8AYuBRgFmii5TCclAGI0VGvFu5K9IMy836Nre3skPv3mf2UqlxO1PH7BGNUdi32MazuG6EimsA/QvZbz649/Ixoj2GWZubx8ppR4X+1YgeakKZM4Nq+w9Kgj3vLxXrler9y/1ihoJQyvcymkAw3QTmt3lJ3rlDDbWbdDyQ+IkK5LfIYqiBXMnyOCkjOkDHmCnGnuIEoZC9i1DHNhR8xjTFtm2hiTOD0Ms8/e/699fbR3+Sk62a2DViLvekdkbH4lxjO1rswajYGGtDH+cWukouFXZ47pSpkW8hJpQc1GprRmprnEWGdvGPZhShCHkZPJJVH3Fl3usbdYpAOpyvB1jUG3nn+vWDWyJFKaqBK2V+sYf20txqDzLTp3LRnvsI61Iz7W4uiPtsfGPE+0Y20bJM3UvYU7VA4k9yhYv339xOu3r0GlyUKZJtq28v3jvwNhXQRGzmHPoqkgLy9clhhf1dbo7oFi5YokcDXcduyA4pKRphwoVBv3TDggPI4MgG5jw+sVcX3yq32k36GEG0D4DT/h1KMIkA9r5M9Arb/gdfDdYKDBHkCBWcIluMof0UMXo/eK7Ttqicv18nTyGsl8rW6oKr0Z+2MlX0ax5iU4kVlALJC9mMmfXDp3p3sbKGaKBhk9fVR7iwLKDu/gHorsfOR6m2G9YV3wptSa6XI5+d2v3ynYjd51hLUch/ywMNpXrO30XlGPvc/rHtaCQJfxtJudquzDhgtCBe1jH9M0xdmW4FAmO2EXFDzYuKmS09ks3m7X4RoSSO/7/S3srCzRa9yD62Xm5fOnUFurPBMRxx6iIrimczUezgMHDz7M88e9H22YDMAmvmDYNcmgu+DjfHzGS3+MFf3rX88R8/Gf5h52TBQ0LWF5ecSo20bzsOr6f9h7tyVJbiRN81MFYGbuHhGZyWLV9Pbu7Yrs+z/V7Ex1k5kR4e5mAFT3QmHmkaxq1oiM9GSNLI2STDKOfoABqr/+h4wwTUtYf60PVP1637jfYw2UEq4PMtLJ8ur4dGJ6EtI0j8IuaC3765BKFPzhj7472ih5n5iOMCSR2Bd6s6DcFD+eUbtVypJodUOz0NaO1djTNgPnwvIyIVPGrNAapDHd6H0UrH0jtxJruNUjXKFai/+vG7atdJFge+wIrcOe5rn//XFdR/pVj0AJ17jXzbiN9MMkziRTxBFfnknTREmJSZW23sZj2JhKjoZPI0Wrp4dN5nyeyUUJ6qBHuALyiC0ergr7Y+xbpQvH+7TT3B5TgTGpPjQuSuiC/icK1ts90bOyKcyjUp7zhIoh2siJYUv1jA/yf9vC/DsdCT3BwtoJwC4Va6+Q5zDmTRkROfwAIUb+NhIrvNVI3xGOtJDjzTNn6xthvtSPMYTjSC7f2d6IanwM8OZMp+gY7tvGenNuryu/xkPnL//6f6NyGahXjMVar/TR1fnORRl+ka21SKrYEdLeBldmoGTm340AgkOZqE345dd3OCVOlwUdY5K8ZFLZkQEjJwlj3/EaS1JqqzFqxsY4NDzarO9EcJiScppPZDXu7zes9+EJN96fHoihD4FPoI/p+B3iOx/T2b1tHwfo8P4bNiwMGsRuAbNHiYr/oEJA+hiJfMhCH0VaJMR1RIyUOr0HF6TRMO4kX6n9Su53JnF2rKJbx6TRvFGWBZLQtko6jZv2tOAeIrzWKmI1rMBKOop26T0Q6TShxblff6GoPDhqHqEWLimmChZrxWy3VAtrkNoaKQlJJlxD4AJQljPr28rrzUhJSeZsdaWUnQ4j9D5M1luFnmj+MCbvPdbbfbXgJ7tTcjlGylLyIWFqa4y4ZJ8oMNhzqsyDB9u3TksT97HVpKyYB0qmbkhnoFO+A6h09XEog0zDnN36wVEVIqNaUnDUs4DXehh1I5EEtIsndPys4/J9ZLoXrHzYOI8v+h9bZ/8J1069jWsvAGC3hgmObkHShMgQrxCUIjUja1iTiXS2YW5eW+Vmt4jNzfkopsrgZ9utUy6fmC4fLZU6kjhQWhen1+B+CmHMv8cLwxByDp9fb5BNwJw+0H0pCq1hLrRaqF7ovpCXoJMsnrA+UavjtSE9Y5qOsyMlpddM6xXxRmsbXUfAxniVwrd4L+Jl5Mz78f+9B9Wlbp08x2h15yr2ZvTtjmtCpDCfT8ynp6NZS6pY3djWK8syHZO0utWj4NySkk9BozEf4mF9aAfyhwbEd9FhkmOCGT6g+xMaK35XFo41IDJEWmOic5i+jpXwo65gOMS9JXvRPBoE9wQ24T5jWmg7ItxD+yDbjckTXcLf+XjPUdZthRacf7qTQ9U9Pi9M8xL0ixJ2aaIeqOgxUu9Mp4JVobdhexkSp3iIDLFhd1p3ehf6augoWPOUwTp9NborSmK7da7XwSHNT5gXGHZnvUOvjbQOzUnv8Xh6QVrGWoFWYfA1fSCXQV9y9n/2t1Q9mjA+FKwOh+bl/XqHX+CzCmjCWXFbD29gc0fnzOnyjJYT3UOAtm0bdSSOuVfUJ86nBcVxb7RtpY57I5uhWcNTPykyfGB30ZbrSB4UifPPIjBDBkqoKcXSFDjUZ6KPxkYFLCbiv1cx/G7Buq5PuCS61jHWBrGNuTRgxb2OlBw5CMIyhyFs9ygGRPa6caCIdcNbpaQS9aUmRPIDXcERXdGi9LrS2zZGI3x4ceLrXRtZM1Zvwz/z0THprHiNiMdUMiQ9+BQ28n7FJ1wmpFy49sry+S8ALJ9OWM80r0ElaBXrj07fjw4pRlPaexgk7+KbkUjjNgzexcLD0x5IhUgPHuvaefYLXU/I8KH0DI2K0ElueN+41426p0YsEzUl8jJzypkkTtBKGtf313hjxTnNwRVOJVGmU9ATPnQ0vTVEnDSiPy2Xo5OXkXZkbcOGAXikWz0O8oTE4Tn+aM6IPx3vI+pROP4zXQ5KQiy41142Utp9GjeSVqRtZK0syWFb2dbYWMwluliC+7xcFkShbkElaes1bhOPwnJKoOkUBdau4uy7Mb+AJ+bpidvrK9O0F/pBlpecKClFupbJQQcJ3lHC+kZdK+JQ3433r/EYfvm3N7wVDMdsRUQoJePXx8axrpVlnqkt0GB3j7QWQFNm2wyzKAZrvaJfXjjtdK7eI9Iwh/AGTfS2K2tDuKI5BD5oPe6JfTogEmEK3gxaMMOwjCc51N6KR3KbCClHxrUrjwmHRwJSKguqBTwmFj7ep1xyLHP1QYq4I2wgIxBaOkd4wL4+P/pY/hPwV0MIKeyyqVgv++Gv4AWkYLsHcIwOaOuNYuBpp0gMuosk7vUe/FV3EkpO5XBWmOeZ+bxEQzJ4qmaxd9lOmVlyOFNYqJojlanD8OD2bngXvCu9OqlFxnsfZ4dZj5ARErc1437BZMJ0OEycCt6B1MM5o7UQu6THoeaqpJZwr4OHHeNfAM0WI/YeTdTO5tzfTyEO721rfPv2jqQQrfpYm9iKeODJp2Xm8vQJy5mjeelO22p4dmbhcjmjbpHYNQQZtTb0FP6TKWfMO9t6Y/fEjAM5hIK99wBXVI/AFWWHiffueoScfPDjPTpv3V1d/NHh/MClG03VEHwd91OkSXZLmBXWLRKPyi6wlEQhkSRj3bnVFbN6aFpU47mHCM9pvVNyOl6PpMp2v5NTCr2Nd2xrtHU7nATICcsp9tC9yer9AFe61SiG1bi/r7St49KPRipPM0kK62agC31beH/t3GucdZfyU3B0PUedlCJNjkGFkdaRVrFe8JqhFbSueB/PsW2k0YA0ge4drLGPR9SiCZPhLOBmR+EKQZG6vt44X06kzKD5PCa6tVVWKfT3K7Jt5Kkw5cR6fTuSLUsRKp3TslBKppQTd9UDQW3NmEqIpepWqbUCcvjrH/HFrQewMwIG2kjnDO1GFPthJDEK9J1OhI7JmP5uUfq/D7Hrj+uP64/rj+uP64/rj+uP64/r/5fXPxBdRTSey0LKI0+djlGpFshfMSeTKENFbG60Ncbf2/XO/R6cqT1VolvksKfVYToH92Q+euGhxO9AR4ugUvAWCOaupFbVQAVjXh0N5khPAbAm+GbkudD6FmPpBHtog2hmuyu9fqK64nrm/LkwXaJb6D3RmlNriL+sV7xv9DqPzwfpu1sjW6O3jV7jDwxSeB2Z095jtP6hI3KP1IgYTznb2imbhUiMGMEj4K2ytY2u4cu3jI5vujwhKYWYRZztdo1RSpKDFoGGZ26rgvfMdJoo04NNuo/69/ckD/T0McoP25reHLKSpjLiOz+M+ge0L8d4SsMZYPwGHyOKf6YrFJgpuI8WCVO7tYb3Smt3ThMUFFs31B6WTO6Kt05KCetCva+k4jG+h8Pf0UXJGii3NaXWjvZ9ZK6EJ2Ao8VPKlDRjI9nFxEPIJYJPwSdtZtS6I2WF1pxMjO+tOtu78d/+a6jwv35rnJYX3m8PFOK22YOqoQmzBbRQq6AaKKfvnoIqERnpADliEst8IHFmRus7+JNotWMG00AzUsosw73i+tZQzbTejphDHFQaWEOHt6r3ikwPpXOMC7bYS/qwVyv5QG2sO80d6aFadfNAbXeXjdQHYhW8KbfO99ZWH3nN/wF/9QemXj3YAA+rruO5D/6z+0Rt+tAOSAgZxAXpnet2pyjMQwHvw1bmfLoco3HsIVRNBL1lKhNCqJbX+50p57iPAS0FdRu037CkCSBwj3eFulZaMzChnCDlcnBgtw2yzmyb8fWbMM1PTOWC5HiM0gXphmoIOqw1tBX6LsRICa8paAJdSb7zI8fkzNrwO1XU/Duhyv4a5JzprXN9u3J5PlO3hstuS9cpOe4rEeV2v2Ma1AeAra7YeiWJsd1v4XShwvl05vr+Fs8hhfw4BLlBHTMbllnsdoGCd6P3TseG8HIXDApMikogrwcV5Dg79qkWROZ9xj8Ieg9E2f3vrer/1OvAseXDOTHur9bhdg9knpTR4RfeWUlWxh5rRPpfO3xacy7MS6a2Bu7h6rBMB4VKSonJF067XmPC40ZazmG3CaAxUU3TFGdxG7Gox9Q3UMG2rlyvb1gXJE9suxdxh04gxKLP9HZini6U07/EYyxnWpcQHmdDrA2x5IMC6KLHfRST/91XlZgGuI/vrWjL9PQQOEsHdi60B73S7EGbiAm2gCklTWjerc/iNVQJfug8Z8ppQXOGvtG84uNrWiVGu/OEoNyu13H/xOvctka3SilT/GziXtJ9ctDDRUHHtDb8xR8IrYxkU9/F+kbQAL6jPOk/3Hd/v2D1hHnBbaEPqXfTMOXGnVor27ZRyOSRaZ3U4+Z0CSIww79sHNh5ZNdnlDxHTFjKeiwux8LuBzA6Zc7IlGjbh82bGKmH5UqcnnXt7HHKvRo5xeZTZMKbUzc/RBlo5vW109tnpvKEWUFTIQ1VoHdDaiNvjveG9aAEUMfG2jZ626BX3CrUnVP0eHxO2ANJj2i4PacbBqQPMKysfvn3b7HxaxSk2sK4XqWRJPJ35/PCfLqM9yVCEtq2UreVvt1RNUrJXJZhc0PYcG3rjdqM7LGIdpeApIJ1Zdvuwx9t2DQdRYFFNKNKjPv3Uc/HmZMMLqCETCDGQeV4BYIPkv6Xb5y/e+2GypJxKZh3zAZ3WGfcNrZtxaUzSeK+Xam3GJtMKeNV0DJTTufY6PqNLOG3Ny1nyFMcLtawuoat0G5NAwxTPgBarXh3pjwdtlfeO7714XeZ0BxNmx2qq4x5uFyoFFKeuHvll6+x+M8v/wfT9BxCJd0bwMeh3h20CA3B00QbgrC2ix6bsRPg3Z3z5cLp/PSgJDD4VMemaUx5PkRl3RutbmHrlRLLVNCSsFH01/Ud8XvkilfCqFqh2Izta3PKKHU4bYQ9ldmDm5hUyYeaPWgGmiasBS3C27DWEeURc7n/2Z/FR7L/b9eI/NA1u99hghyG8juf0R1aV7RKcNH2PS0n1IVJysHvf7tfud6Co5ZLYZqmYaHTEFXmqYQDCLBtGyJKmQoq0HoNNxJND36zKponMMNbuJeY+UM74IMXt3bQztQ6eVrYI3HdBe8z9d5ROZPLFyQtHIktDIU5EgeaaLznB6HXjiJbiWI1mQWXHqClMWLUIRjzEcAxCtbdRginbcZ2ryynfMSihuBmo/fGt/dvzH5B54mpDPuicTalJHgHnSfmuZByog+P7N4akZ8y0c2odcMZolRAGNxq77jZEFkRFmDE/R/VFTzs2OQobkK8tIux8hCpTDjjbGL4b/7Ahgv/UGCLj+ccPuFJJ2CJiGAI/2iZouHEgt5WnJLiNc85Hb6j8zIzTSEC18HJ11LAlevbGyUXyCE+rmtns93SbQp/+LIgXYZwryFH5G9CNfboZg03IUs57j2ThHvBZULlgtmZ0/mEpTDudw/HAZNoesyHj/ZOCRguu4IjI4hHPjQUAWqFK42kjOSEWj6s0IJTGuv44GOrh70ZgAVlqHfneltJpZKToaNgXqbC0/OF0+WEqWC24X1lKhH3CnEL99q4Xa9sq9BG7PIRX7tMGDWoFiXuGRXF2oNqlqcAFcz8g3fOXlRHUID3oCu5HzEI+6sQWpp/EDT0uwVrMyH3DFvidVTSS1bmHF1d8RA2WXNu20AX+4amMBcvpYD50T0CTFNBczzh9XZj0hR+qexoX2TKSkpIKVR35mlGkYdtVQtlde8tEBtVbnWNhBHAhpCjLGfyNLM1w3pCJDgn26qs90ya/gz5CSWFMXrb4YaGpgbJsWZI39BeD1GU1xzCmb6hPdT8oLRxk+5+gRDCFVy/E6b4UGqLanCcbpXbe+V0HvYpSYdiMbr0LTxQqIPolKaJeQ4z4fX2Bm2jZKV743TZieApVNoSr9O2VrJkhuUozTttGGHnUlAJkcC+8RphWabDgNm9Dm3FLv7xccMPWZ3q4NuNG8B9PO/yT8U7CQPpeNxbc65rqN0BuiaylmHHNFHNkHTm8hyvafENR9Gy4BJeuFrABrG83t8iQzmlobLupJyw6hxOF3hw+VSBHjxiHusfj27fXcPvdZDTd6WydqEsZ+q2st5Xiglv753m0ex8+tNfSIOX2ndR3QeXAoi8dCfECe7B19Jh/H8kGLnRraHlHEXKeHytd1SEkqbhGGSoG7dB3k8pUbFDjbuW8AZMaUfBbiyloerU2xok/qngSbDdp9gDlUs5Nm/KhKdy3J6awsfRhqgmaQrj6bpXVn1wIRNiBXQCyqMw8h2Rii1zF3j9s1y76OrBvPx4hahvdSdrYtoTyGTCfcKpUaipU8r0aEQ0eJO1NjQp87KESXjZY96ieG3rSsmJLJDLSB8b6HxYBZbw3fYOHmikDzW0bRv3+xWrIJPEBMCg7Wo6FszOaFKenr6Q5he6KW77oRbFjSCQonGKfmusXeuQPji2WA8nE92FolGwyphi7EjjUXHrQMEsOHQqOXi8eS9owyNWknO5nDk9P5GX6SiI672CN1o1hILbTBuH/N7oqybqfcN7iB7xsLQ6KKajGJUhUJHB0TyEoT7Oh4FEDWTjO9Td97UrBWSOP4wJ6GhYfkTB2qiolZhgjY+FPV80NcIStkXaIq0OQHoUUN4QKt0r1hN9rClKcExLTswp07bOVjfmS+x3QkOmOQJIRKj3G9Ia9+uNfNpTF4W0nBBir1nrjd63wyUAnNor6bzw0/J/hql+TzQ/jef1Qvcznp/o6QXPC8gUkyrGWTdQc9+njqThQkOsvwH8oAlJGXU/3nOnIVhwPC1BT2F5cST3JcR03AdjOuR2eKi6xV747dudT3rheTpTUg0kFTA1Ksol5eD4tkj0ymV6oL61c79fcRpbjYa2tn5MF1oPkK03Cwsstwh9OLQVEo5BOvisIkObNDQCfbi4eHDxxRyvuwcOSCphSfYPioV/EM2q3NdGbuF3BtDSQkg6VqAdRdg+8ug5DmXJ8SI27+SSmecRv1dyKNBzYZaEtcb69sY0vj8nJaWFtccL3qyxlBkxjrFlt454qKW9dWiN2/Wd9TZEF6kgHmo4MaFbwTnh/hIvDhOfPy0w/Rk3pbWhxMuDvG81ol190BNG0fCRvB+8+L3DGSOYsbFpzqhlTEadso8fPn6/6xBADNsiwvw8FiCwUx4cSsk8P1+Y9pu0RFSr140kne4brSpuSh2ISWtCrRsppeGBJrT7iu1qdAkripQSYh5BDVM+Nl4gxuWidDz0U8YhrnNzpPvDNufokAaaQnSuyMQPuTQFkh3wBbC/7hb+jhh1S6yyIPMglqeVSwJNgqhTklLyGR8q53u9owpFbKjmo3NORFEgoqTphKdAplSja42bc6zdbQsEqTNGIpEEtdu6KR31jpORPhaQCozNx1NGy0QuM00Sv74K//Y18/O//D/xeZZo+ryHirquWG8R70fEnrYRcShmMZqXdNBtTBRMx8gq8X5t/PuvV77MsfbKskTca8ypKCMxqe/jr5TBjZKFkkJRqtJjlAwsU+a0TLT7FTOjqJIFqPX7MzalAaMRdkjUx6GtoxmyGqpqT4ikI+LzKFhGK4A7LivsSXW+xGoQ5xCICMcB8vH64XXsHkcrHIbn3cKMv6QS6mSIKcGw8ttjILUY0xBl5ZRiyKWJ6bRQpglJciCsoplt2yK+cirkUmhmYYKf93s69gpEvC8AACAASURBVG2pkagT+5kedJNwTKl4hyJzHOIoh1ujzMCJkmZ0+gRpwbfHa24eI2FRGwLPKEj32G9ShtQQj4/JPhnax8Pj//GwAtyvj1Ss8aJGLeDCum5I36eD4VxxWmZOp/ACNavYcGdJCUoG62GjuN5ubEnpvR1I1DRNzPNC7xUnpl6qGultjPa+TCG02hME/XGWCHvYxeO8+CAfGwXRoGCRiYnWjDCKM8k/DmHdFdZxOMaH9gJrFzybUKseqLt0CYs2Dz9qGtDtAE62dSPnuOV/+fdfERKXy4X7a4yy1683fv7X/4t5OfP617+yvr2iZhGpPaaNzz//mVwEv0eCVZGC5IeCHVVu18bb6zufnv/C0+UnjJlqo4nnme4Lmj9DfgIKRhpuHYG8h/HIaLh2wd/exBDnzoGwun1fsHobVnANz4XUC9YOF9WgkEROevyJBcNu2q9JhqjPaM14e71Rpsb5MiZWRXj79o4YTHMeU/DCOkTk8b4Yl5cXVD0EvVtM/3YxYNYMqSBSwxmqxD6/e8luWyN5jwYsl3DJGO5M+2v8IWD8cT1wFET2icF/fP3+ZwdfxpiRHCiTm4SZeTphtpExhH7MsYRCysH7aS3Sfpb5fLx561qZzktU5pq43+6cpkIbRUEpmfV6Z/POdLlE8ZYm0pRpwwai9RbRgSgmYW57+vR0mBG7KaSJzoRwwXXBuWD6PJ7WTJ5OdJZYNGrDmmXf0MYoMfkwuh1DGNuDAfYFJ8CIWqPj4/PSM2IpNt+WxibkHw7EAYlr3MBOxLp++zVQqstzYT4pmkvk7y4TOhWmYS1Uex0xZo3TecYmxWqot+/3MRb1QPEC8p8HQqeBEhBItwtYi3jPlCPfd19SigyryvAidXOUdKAhu32ldxsT1ogZPcaZ+8b6j3qi/6xLdAQ8fH+LiBA3lgC9ULdELqPRSBGjWtRwKtZXanXSQIim5TQ2J6O2O3tZvluDpLlH5OBArvaXRpJH3B/AnkAikaPuO7o6LNPoBm2MPVukC6VlwofPoqtSO3ib6JxgOnP+IiwvUVD2rtRRoFpbaeuV3tbDEq16JbcWnn/jT0TL7vZO8SLtfpUA3TM+lNzkTFdHxcJIugcfyUdhJNNEnifOpaDe0QSvX39FR3CCTIq2xLyEaXvEazK4weO9ah2XFCMv88i/TnLYCzH2HCEoQRJjFlIORMTdBoDq43mtIPdwLRhvQbx19mhGxR63/w++YgpgQEL3+00yhy+MK9iE+OnwSfS+BZLsGdWRUGXpsNpLmql1Jasy5ynoLLVzPsbdwtYbSy4xllZlvb9DCQ41QJmWsNLKQf0Irt5jZF9OM5cvn9luHdeZZuGz6oMyY/KEywueZ9AF8xz75oE0wUHXEI8qxfSgy0QccUbU0NSwgTwdEZpJR+SsRjy3+wdUKv7aA1cMeHu7Y1q4PI2pUZ7JKZHmCVJiKhNbW7/zUD0/PdG2yu39Sm0bdB+x2uNXeMa60pqRVCK6dbgqxC9JD1TpQ7jFTolT31Go8fPMwTi4hG6PAJ04U3MUqx7ns/gCtvAj9NQRuQqHh288YEbXGagcTregAADh0pNOOIb2QOcmvbEnTbfawoHBO0kzJSttq7y/xTmXpgXZIvHy/d+/oR77wXq98v4WvOLT6YI3I88LooWUC4hHAAOg5cT5cqJb5V5P5PaC5ie2viOUF7ovTPoZlxPNx3h77JkmHtMedFQDw91j3xOJSOIYiw/euD/OWjELZ0iLaZX2Dqk+nCVSP9ZyJNPtxeuHDWvws7et06xRh10lwDQJsyq2dfK8UEpirTfOT0/Uce5YLkznE97vtPdIPpRux0Q2wo5y1H8Wiv+UCynt3vMt6sDxWGx4IadpgAhpBwAZr8n+748fyzjn311jv1tNuDPEKYoNwVHzTrWK9jsMsrT1jg3rEu9Ov95I6qQUpP/b63skYwHzvHDvlY3Kp5//zPPLF+7fvrK+DjsmIipSSmGSHLzNzYGM5N2E9h4cTxXq1nh9e+c0v/Dp538ZD3yiesH1TPUnTJ6Q/IKny/G0jYw3wWUcbgzuHqDDkNu94ylQBPF0eF2qP3wrnWGhYu3Bq7EcGymKxEzjw+YJSFjOuAfNIaF0tz3VFLdM2xoiEeu5bgZvt4e1ifcxbs5sdYufg3B+upDHeLv1FetG78aUp7g5tBxEbSQPP7rH6FjdD16P5jyMtgNZ6e6PzTSe+EAy4j1XFYwUdjT7lUpw1H7A5R/+foyn4gM+RAEi8dzM97HoCdKVLhtba1hbmQzyKNa8daw3au/cbjd8iAD2KzVQS8wvSyB8Ept3UCvGLaqFXmNsKxpIGMPTF6LZsg7eBZ0HonbvRwKe5kS9C1v9TGeC+czpS6ENYcq2ddgaqVesFVLJ9LqSd5TIKrWuNNUwqAb64NwCh52RWeRG99ZY75Xr2yDwFwW1GN3VEKVM5cTz8+f4/DyHb7A79+sb05QoaRQQBAKHRSxgPudhVRd+lHUg4VnSgVBY7/TuSEkPocVetPG94I8h+BO3QPp1v78fHs3/W1wyClYTxPfnNApWGVMZm7Decd3FehvdC60nkvdImhs2QQApR5rP5Xxmu2+s60aeJm7X4e28KOfLM7at3N7e6BJ2QcvLJ9Kyx2Zn6IqUM8Yd9w0VPwQy7nD58ifOz4XaMt1nuj9hDKu7/AnSM5GXPoU5v+5NxSgmUZQccd7OoDI8UBpNaXAGR7Ga9EBYUY2vRwJccDuQp/j5PsD0CDxo3ckyM+U421JaIQlrNUrtlNpHpOcoqEVYmyEeHNVcJIpWHrZu+I6IpvF3xrHD9sroJBnFdc6jsU7H9/sOpTtBI+u7eGyg2K7BgJCEyoRQEJYxNQD6E9iPmWrJ8IV1HgCvADvIioWc2r1gHq+5yRmzTnYLqzVpMQHbz8o8oTnAnrVWblslaSYNoR6aeX9953a/c183vnx65u3tGyaJp5eYqLbaWeuV/nYlTwt5mqgeIQUAKc2k+cKn5cJ6T9Q2MeUXpjFVyvmEy4LLHMhqN4zOnntvAq4fdBySEHusCSP0LA6x7+/A0HGec8T04o5rg1TZvWZhFKw2Qjx89xYfjcvBI9chMgxLqYMn3IPTfv125e31DZPO8+cL0zwddlTlvKAls/VK7RFPjMvBUa12J7GwbZXtvsHlFH6s4zGkpKHzEYHseEp0hToKpZQLeUTZxj0Sjfn+DGUU+DKa2//o+n34SwLBcHnwkLwWvGdMCuTLkWqiY+xTZEXVaT3g5vvtRpLENDKvvRmvv77GQnxxvG68/fUbPuBpA673K7d1JWuhbIZUx0UpY2OJyOswrC/LZ8q28HZVIArSZflE9wn3BewMeiHrJ3yMp9teP4pjEh1SF46xaN87pDQhYkEu/gBnBwYQI/AoXndEKj6fzGitj4J0GBQfnebeV/hj1OXRWe5F1rdvV1KpTItx6ini09pjvPf0fIYRH7hcLqzbikzhHeg9Do9+C8qAdCc7wd1KeQcrwBWRTE5pcKbCmeGhb7DoFN3RUphKeWSC/51rR4x3LpWTY+OU3++Y/tMujY3/A1gR7chHoZgN1bXv7g8rm+dBawjUutdO3cn7Ejn2GNEEfDByhhDXlZQjmUwlwib6Gm4RY7aSSwka8Oi0w17THpG590pbYwSeFyfPE607re6ip5m3b3fW7RPL8gnyjOaEtD3atSHFwsWizchWggM67q/UNkz0cYb44Fr3x4EpqsgHw/Xr+x39Gs+xLJnWO/hKyeHPt8wZGwdyW1dcJZD+tkIXpilTRieuWrjfhi+lDK62ON4EZFdSh6AKc1qtmAqYsVtKCwktken+OCR2bl80IeF3+Xgv4+Dciwr/fmz6T8ZhlWONwjGTY4yI5XFYmfnR5MpQDavEoYPLoE3vYr6IcL5f77T2zmm5kFz59tdfAXj60888XRZeb+/cvl65W2erlXVtfPpL+FOztshs14kpJZLsE7jYl/7t337h6Tbz5dNncjkBY7I19gDVM8hC9xRUAQkhnX+3s8b7IkOsKeYPpEp7NHnq4WutDdF8cPVSDkeBYCrsY1M5XoMdoY4WKVD1+31jaxEcMp86z58mBOP1l2/QOvOcA5EjQAA04rCfLhdUjJTTOOPG+JWgz0Wzb0FPU4lGjeAAoj3GwvsIXQTdEdjfToT29/5AVYewVfZCdeJj4tmPvHIuB6C9o22CkiT4mcGjHwr9nSo2zs9uhUSNf9wRv4/vr2htMVFsQkmFkucHeNMT9apsW+b89C/UlJHzQpoMBrpXJYeLkQiUUOA7T9gAsCQtuJ5I+YmcFzLBeddBMUIL7plmYwCmjJnr7iUrx6TUZYg91R5ZDli4FBE1R9iW+xFLKnn3KA0Ro+SO5N0rGrAt9mMZxerjRY7vl6DShJRGyUXR1Nk9pmvvWFtDYOwNTcMNpjYulygQP/35aTgXOZenZ6RX7vWddTS83cFb5fPnT2zbxrevv4Yjw+5UoELJHudYT8g0kZYZ3d2jRGgtJjIppUgx/e0Q4H+AyvLPpIf54/rj+uP64/rj+uP64/rj+uP64/qb6/cRVvUB3xp999pzxy24fK0LySExU4atVWdk+OaJNARYa63cb4NzIjmScFLh/fWd9b5yfb/x+SW6nfvtneZwfnqhd6e/X3l/u0HOLKfo1LdupLKQ84zqwsufnji3mfst6u8qF3R5RtOCpBPIHIkqAyI0bKinayCsymOsCNHdWyhcXSLrmfSA6naZlOwOAMP/8APECrkFpJ8aoqMrOpJ6RsesKTgpPTK4924lrohPaxVyFrw7rz1oE9++fsXV+fLTC9M8U/JEnmY0K+twSqi9ByrqDW+d1W6oL7ThLXfvYTMSYrmh9rN28NFIKVwSklLNUDNSKYdTwniE3y2XQMsGZ0XPAe/rhR9xDZpQ/PcHIO3gyA1KgJlQt7EuTHAVzlMJqyQmkEof6OG93pB7pAKlpNTeSRp8TIhxeG8tUk3WWyyZ7ojm47Xqqug8Q+1YDTpJ7xY+dcC2rdyvG0imnBun6RTZ6zsKvJ1xWyjzf0HzBXMdjeku/KqD05njPRyc1MfajVSdRKRD0RJYGiKlQOJ9WLDZsK/qNOp99ziGeSngFfpKt859vbPMIxo2T6g4td6gbXQSkpUy/ECRoV5vHbsZ01Qia9uNeZqOx+gjYx2LJDYzDx4VQAqKhOzWPxITkQNh9TFCH+pp5xSj02NO+ePRqN+7DvRIJRBG9nH2Thy34M250gdvvnohpUJOJ8yGk4PcDneGWivuDdWYDiQV7u+3I7Ndu2O3jdvXN2xrFBW26437/c7lKbj/VRI6zaQU4iSX4I8u56CDPL0stG1m6xfQC2sr5HLGBi+tyBPOHG4PHkxdR7DdXWVnJjsxHkTQ5PSxb4rl4VlJWAFZR3oPNAmQtAUaZgQNxGXsy48ZS1Cx9jFmofW+h+1Qq3G7bswlnFOyJM7Lma2NNKBpjuQlTZTzCW8rta4PP3BAXejVQmRigR4mlHlwhbuNFKTxsPrw4Mw7tUjl+101RjAPuqLkGP/7hPspOKtSDrRvP51+xHU+n2PaaPKwGrMGXmOaKIbRQCvCTlsIJxnshPkWyZL+hOym6b5Cv6M0yiSYKHfn4PyWPNOsUE4FOZ+gKJSNWZcjGTNrOqY2lgRPypQ/UfKeZHXGPVMtITrHfu0cI/Wd0dcRTAyTQDt3kfTBR5VhNTX+3j8vEhOd3ePcNTYvH6KvEBqNx0o4CEXE+pgoNXA11Hb/2P4doK5qiO1ccDv0etvw9i5l54gHVSVp1BPr2433X8O/+/1e+fzlBXGjnCbylHl7fT1+zely5na/U+udp6cLKcX5cbgEiA++fIgGe4to5Xy4CAzBZn64evz2EmyIef/j63cL1pxnGBY37rvdUQFOuCvdEokFpbH5UO25gm8oldvWQmHZ8+EykIdvmvbM+papzTk9/Stt2v07n0iTo6nQtAzLJcVzoo7RkOuM5We8nDCdaXpByoll2FhABplQLTiZ7kozOZTMPRF+Xxb+qVGUekDuMMj+NqwlApp35Bgp+ggiCPZpwg9S9Xjhu5GyYaaIbOAxAto3NftoT0EIWD6WfzrUu5LiIN/qxtYqzv4eNEpRXlW4vV+5PF14+fkJkcdN9vz8CVrlur2x1i24inXj06fdOy7x/vYNVR1KbgLS34vmIYlNyzwUxSl8H8fo2VXRZMeo+7h0FxSkKBj8B1ECxuW/+e8H2XsvaoV1KJUnErnMwzN0BlZwPw40luFtmjLNOqlMnE4ndPCG0zShUqjbhrXGVBK5TKzRdYzfqeRS6G2NgpFYFjrWxrreWbeVMp9CquBC9wLDks39hafLGS9/ovdwuAia/86/3j2Nx8GVB3/zUE0Pv7/egqecQ/iyRy/HQRo7nqrAKGDT4Ie6CW3raAol9jwVPn1+Ip8GPykJfbuRU2SEWzW2wauC4LDmnJmmjPQ+rK0Sc8678xdeO7oUUEE9NvqP03EfzgGHY8UYJR8OFSIxMpUZ5IRwRnQ6RnDoBy72P+EVBesY/I+HfAg/fYwGcQwdI+Ggiqx9wayS+hw8YG2DkgSelDQlcgpbrPfbO20zyuDpWe28/fqV6+sbz5eFut4QFZ6enrAxzv7266+gifPlmerBcS5lPnjqn366cL8n7tvE+elnSplI+YLsTWs601HohvUtaHnijz1jsP5dNIoEJKJghz2QpJ3LRRRAaiFI2alVOkXBKo6ncGHxD1Ss+MZhMdiHZkH8+HZ3xQaCIR3u73dut9tOjeannz/jMoQkqeAWFkBzKfg2fogZrYZV3Lquce6pHutfReltDTqLQ5fQgKTdJWBYtn10a/Hx/sOgy8gJdAF9xrmMZvZRsP6oazq9DC6mh+IfIgKVnW4WQNFm9yOmHPcQSnnDe7ibqPXDQ1TouNVYx6P51iSHQDPso+I3bDKFb0sRNJ8PnutUZnKeSDnHI3HDZKbv3rgyhf+p6yj5xn611zzuw41p/yzAg785fggQPvRmH0b08SQRzzgStUzKiDZ624W0fXCrHZWg8JkR9zd7rRLrXKzF3x/EhCqxrn3YFbY+6I3DO9897ODCm3hjvVdKUs5Loa4hGL69vrHdb/z5z1+QNLFtd+6bUUfc9fnlE8s5cV83RG8sy0K3R3FpvYVgMWcsKV0FzTPuH2heqYRPskrc9x9YrImESw6Xi99ZY79fsE5LbAxuNN+OJy/s/poLWMWsRv4tYP4FoYHd8b6StFNydEYAq8QCKGmiSSHPCU4LPo8DPW8UXciaKCmTNIfCTIXdzi+nEzldKOWE5pnaFaMcKUuGIGZs3SO1h3iB7FD1hXxbSOEOoDJ4bTtnJNAMGSiq0oJXtdtUpBy2E70PUvLeZYzlOVRyhkATsIabHX6dcbPGGyY4Sb7fWB0iGKCF76WngbAcvP44cK0a9/vK+9dX3m8rT88nplE8lRKG7V9//RUMnp+fuW93ti0WaHRJF2rbRl5zdHe7wMFU6RaCrCQSnqOaDk4KOcVN8ttFc2Sz7yK2H+MSsNswCj5ujjjiMUE9zLYFiy8cKJW3M6SKNcfTitkdEcfYs9LzwT92c5ZlpjdjG5ZVS17wInQzkjvtfod1Y6uV8hSHti7n8FctmfbeUGnxM8d58/TTF8pidEs0Fpq/4PqE62g09BkpC+ZLbFA6HCf2tStpII/D7qlnNJXDVipsvTri0UiSY0qgu/BsrEVn/FwD90Jtsa6+/Xrj808L82kmFwml/weD6W27QW/My4xnZbut1LbSR0MrKni14D+JUltllkR1O9KwsuRBNwxOZkwyPIoJQE1jemFDlKJB2D+sdDT4sCFIuYB/ArtA3wWA8lin7KXhgz8lPJTYP+IK/qMcmeHxoOKAFJXgoVuESxzI2kDcujUyiaYN6/dD7JZ0jj1p24bX6sT5/HzwT99u0RA3KVBOrFvDyhkpF+qHpKnW4boZJgnlmS4nco5mqkyfyTIh00TThTI/k/OZNiyMmieaWSiqdTfA53iOsRsKO083JlzpcKBAnTEeAAurQ7F+qPjRCdKM9EBgnbAQOrwgsdGQGepyoF570y0DyW/NeF9vfH39RrON89NpPL/Mcpo5Pz+jCtv9PZp5eyBD63pnRbg8PyMCX3/9Jfxux9rKOVGmkQ2fHZ0nTOWYfCXVeD5mg7/7vUVScLV3Z4DTCJuZj/fxR0ZeyPQcUrMPAuMwxQ8dhw4O9iz14QttfdQYj8Y69fXwpZZhOYcTKUoiYfL/4fMxQApf0pTjnEp6OrjNnic8F0iFLGEntpGO0rPCY2n48Eu38FKFw6SCEDulAWDxcH4Rht86YQunPs6aHQDbJwmKSRqdd8P3qVjuaJKR8Becac3TkQDXajgCWav4cAjaC9e4+sHJdnQUiY+wGhPDuCPSwTSACEloUsq+b99XrBdut0YunbY5mi7c77Fvb1VYzk90ufO+VsopXs+9aDZTmkfxH+IpIeXT4e+N5mi+xzT7QJlH06CygDzh+vK7a+x3q4nz80/IsFKogwRto9IPi4VYbG7tWKC512FrEYtPhlzpiBHTEE3pULSZwJbzkXAgs6LpHJZOZYpxd5lgKOkBuidMMlVTLKokuxVqrKvhv+of3jTMH6IN10MoFbz3vdofG6c4Siy8KCNzCK90T2wx0BYGvKkjKZ6fHl6yORTL6UrbhvF0b4fISnuNDsmH+i/F6/lxY11bR3VBdAbfyJpJo/Dq7cbaN84zlJTwXrm+vrLdbvz5v/wcXyMzt9uVe1PW643nzz+zXGbWNd7Hb+83np+fRgHqtFYRYhQGIFMYtad5GmhVoKzsqTAa6Ijvo2QSSWZMRlEgJ9RPiP++6u8/69r9qp1Ho+H7Jw5qgAD2+LwlWs2sHqIJIYPVR6BEc3pfSWpMU+L16yuCsowEsl//+pXz55+4vHzi9a//jXZ9x1un4bzoPmG44HcjyUROOZAFEb5+jUZCmPn8/C8gZ5ovNF4weUHyl3iMww7Ietw7qLEHUwCoZ8KK0sETNkRguhcF1lFrWC4D6c3h4bkjjvLR0SIoAQk57q3elW01zCvnJ4FqvH59O3wmU4p41q2umDllmSlFQkEK1KG6TiiaQ0mdUiElPTr2betxnCRFyxRI6pFWNd7T/X02H1bJiu5QmGREF4QF8Rl8BtsFKvv1m4LU+Y4q8CMP/pIjge2jc00c/IrKkH+KxqTmaGLnUcCCs4UXrxjCWFcWfqPeVkSeEJ34Vh+v6VQWejdOT19oJZGfnsOyLE+H/U+e5igaSg6FehriquGi0fSCns6ozDBSmBqZNvb2BnRxulqstyP5bzyJI6pRxr+/n2zFKDZoLpqGRZB1ZPfPzpWUWliT9i3uDbMPausx1fII9Yi+3ynzKOpTxLS2vsEwSlfNx2v87Zdv3N8yuSycznO4IlyesG3l9XofjyFR1zt1ynz69MzXX3+h1e1o6GrtAZIkieJMhTydDvufOhw6douj367CYw8jARP4jBOTRMZr9qOueVrQ/c75EPYwsupgH1nLB9TbbDj1xsciYKc+7u/diH/8UdX4+g/sHjnYeAOvG43uroB3VZoofTw6x+n8Ldgiss8x4vDY99T9CneZceY5HA/iO6DV4v3FDpqVumE6PFj78O7WFHQsIuqdgb7SE64JTflo1FJd6a0OT+0NcsaHl3b8/gq0UU98eIy79610mmqM+6cpYrRzZ3OwUVCub1eyJd6+XmlrBDUUzYNSA9++vZGXmXk5c//6lbf3lZSUy/CGP08Lvd3pMu7npEQq227HBrQWU66SSelE5wzDQcR5RuWFxP9EwbosL+x976z7D45NQPYx9yhc901FbBuLaJg3SBwmh5JaODgde2wkwkNtJorqNJDVjKdM1zBf3keGeKCM/mGxfIwtcycsmOCYkHx340sCAp2CsWUPr9H9OfrgWIUfYCQF+W527I5LRjUy0dHIO5c+EN5cIn+9zNRtjWjXth2jNW9bfN8YgUQ6TRQe8VAMkXQIXF2jM7OBcqeyUFLBUwqovydubyvTDK+j8Gk1NoJleuL91xuvr3c+/ekz81igb29v5NVIKZFLIs9zRNaNmxxTuigiMznNSIr0ocfWr6iGW4TJDHLG5QnVz+MrnhGe4AcVrMfBJ49OOUTTzuETOIqyne7i4jQrUAvojKRL+CmOZz3pDfFOszWie1WZcmZ9j9d8rY3L2Wjfrlx/eSVj1G3l7XY9ilpMgn89zdGxayKVJ87PceO/v8J1e2aev7D5jPoTkl5IIwawexjAu/QxNWD4AO6bk4e7xWjPxML8ea8JxAO5UTO8dKRuEbN5wAiPg4PRdI5b9HhZ368ruVVchWXS8Kmd4xeUaaLaxunpmfv9xjTPJGmsb8OH1QUd6JH14LtZF0rOh4l9OFa0A7Ewd3RKB3963waOt/n4z+FQ4UusO3vGdUHGkfkfl6D+nVFA1K4/rmBdltOgYT1AGrex1wwHgKA11AfCynhtNYNvmDWqz8jQFuAr2I2sEdbQVWneDrskOJFKQuYzOhdIG0VnkiTyniQliielJ0XzTJm+UKZzUC+ArSumM6KFSFoLJ4N97XX2JncU3T2cEA5a0QAQ9rND3SA5xzHl+7nRMDHSWB/76NbLTGvbsPWJPdvoO+PgcHIR94F4xhq3gdB2idGm5H1QOUgKezPXnG+vv1Idfv7Ln2KEmzJ5nmnjMZxK4lRO1NEYvLw8cb/fPqipAyCRkQzYeyfZo2nOOaPTDHlED/9mbQgWscNAFK1pvD4fA1t+zBV0hRQ7z14PaMStfvAloX/waZXhzaofvsb0cf/therH/87CsSfvxaof3d1gcvqHfWK81budlIn/ZhPh+PlHwfoR7Dq+4IOdpfsDJf7u63Zu9v58GbxrQ8Vx6bH23Q73C28S43KbYhrba6CpeTSCbUXrBtuK1BVvK13XqCMA9xRaFe+H64sfHtSxZhje2Sk7d68j5n9rOQAAIABJREFUfVSOOBbTDUe4rxu1V3rfmJTD3eLt9Y11Xfnppy9s1xvr+5V5npj2ZvayYK2zbnfKcmZbG90U3cZj0ITn8MxPLKT0DPIZCCDG5AvCJ8Q+8WFL+5vrdwvWaXk+jGr3cbqLDdTVSBoj133cGL/YjiIVHotsv2GPUMRRsO4j1u8Rj7CMajGMBw8u2/4V9pu7eDevfhhQ+99Q1HzE5DF+U2xeBzwR/9r/f0eZNA5uNcf0IYwRIYRVPdKERBMpF3x0PNo3vFXICzqt9LZRtztSxwIbn7e2BW9H0jig9o6pBw9rf0wS9tq7+XQujmljG89z9U7vndact29h0XK/3RB1Zg0k+du3bzQ3XoY3Xa+dr79+Gylaz1wuZ7qEBy4EUb338PR0EjJ4MXtYkJSZJGdEX4BPwBecT6h/Ga/4Bez8G1Trf90VnMsdGdwtoQhDYxudOcJHA2fDcS+4L7hf6K2THYoMQaE1kE4uYBpxxNftelg2pbJwu668vl6pzZlOC9t95XR5OaaW19crXe7Mp+Dz5elMyiemS7wvebmwrplenpnyC6mccRY6e6KRYzTMNkwHo+o3gkFvsbG6ehz4/gExdAbPzHDrSFoD4WcXSfTxud1GZaQG7eKfcdCLgHXDmrC1jf++/tt4DRsvX57IOTHNJ8oy0+vtYT5fCmyNut5HQRGoq/X5mMKkpKjUaNbM8Zyp20raxTKyxHTE/dg2AnUcfE69IPoM8gl4winHGvh7147nPbaDUcD+oJN/GgXr0VMRhRTWECbEY6JV+z3WJOPgd4vPWUx11C8D2QJshbQGsiixZnLm8E1WyYDQKNwtYeqUfCaVmWnQgEqZISnVjS4J9wVjJg0Oa1IlEszl2M+6f0z0+YBODduu3RoOBpDhgavavqw9HeeXElSCLgq0QCJTRcceo7mS8hxov48xvcgDYfVA+kRARQZCJbR96buBKJVOHjxiemcbwrTzPCEO9b7y1//3v/Pzz58QTbTeeL8FwprzxHmgTu9vb5wv50OUub8GkyqSUxTIKVLaDpA5Df9rke9OxeP+PSBFDYDD96L1NyjyD7iS5oH0Ch/RpR2Ykh2cEnkUrIO2sX9eZOA2+uH5Hj8p/kQ0wF6wfgCZ5PHc/+YVOG7uAVL9vXvbH8DXiJ/426/Zl5L4h4noh18hse/6YZI56ptA0dBBFwyNwJhKp6AXem9j7224VlLag04WpFVkWrG60tYbnu5RYxB2jG7tKFaR4KvaQQNrIDPdO61VknYMo64dGedKPpUQxGXFM9y2ytrtAHsWz7Rr5xd/x4a1lopQ69iz74L5QjOl3ZRpOWOtHGFKrgnRC+4XsGdE/oSmL1AC4JLyEtxs+33f9t8tWCUtHDTkfWw6uiMZXWysrQ/Fnj7g+8cPehSbu2n7PtoIgcij4I3a8e/dcB8+po9f9/HTD4T1SFv+8BgeH9gL1m79MXqAQ9WxcxTRYYyvcTgmtePnizopGaQch/v/1961Nrmx49YDsNl6ja99nd3///tSSeVmd+0ZSU0C+QCAZEuaGW+S63FtNarskdRvNh94nYNauqUvli6geQHVK7gsoOUKcS7MulxQr2fI9QrIAtUrRGpXWJvy7PmENIO9qg8A1Lpg0oICxSSWV8O7hMqK6xB+e/nHN6uXLBVyKTi//IHrixONi5XoPB0P2OcDSq6oFbherA2uSwHnHVQJdbG2wJRBjvhNdATkCwhfQfwFPP0Oyk+AfvJHmAHM+Kgc1sPBCKmrLA0AIJpMAYqQjRbjT4zkaLUCCoK9EVxLQsUBi5dNXXQCcAaXC1AvQC2Yp4xreKlKQr7sIaJ4+vRXlKSY0r+BiCFTKLUzQAzJ2UKp+QsoH1Gcq5LmE+bjHkAG0wyhjCLcCm8Uru7nNq+hkk/ULYc1Qm8eTo1cGbfgWJORj7shxrmAK0DkZfo83zpKr8LHeluAWK2S3ZQhagUWSrk6UM0Qq8//eMZyueC3L5+x2x9RizakOZUF317OIGKcr//Al69fIZXw/ds/WnlnZkJOasS3VZCYMR8OLTRdW76b9qXL13AA7jXcAzgBeoAOZY8fi67nk+Zu/RiNVbPzWyNCpcbtDM8HJC/zmPQAkaju56AMLTBAWsVULwh2Z8IntPdJ7HnrfV43Y0FRE4GnCSllY1iZdhBHsGvegXky9V8ZhSYUUMPrmYHoXigBCAnmJ/DGFQF7OpZ4fi5RaqBG++6GEgkqEZh7rqGtNgkiDJ3Z1gGSVuwkMSPDeGFl2lkIUhZQCS+z50tCIFSgIF/UI7KVrZyyXMG8gLmiyrcGjmEiTBNDS8ECoBRgqRnnlwvUU6HOF8Vvvz9BcMHL9YwdLHIQoKvlekUSRuY90pSsNHbao5Wk5AnCbFUQ3RttSluwbByhOIH0BNYDoDsQptZP0ErmfoQYoAZEnWPUXV0tignL5ewKq+cRN2cRPGLbfdy3Yt7TIdwKB4gO+6qz7fZ9mpsVpt7eaQi+p4Mb8XDzoIYodNB6Q1mleE7qOk38Fv8oQN1hgLOCuEK4togBcwWaMVrAtWCqC7RcUHYHlOsZ4iTMpVxQiimsGv8gHXAp1odIis0PKKhkKUPRb8q0IE2EwgJQQTp9QSJpYGBOkzELEAftNb6DoC8WQT3QETzP0Gxgq7Q7gfMOAfyiNEHzETrtIekE5d/B+TPIuXCVDKDVgLGvyMbDuskmm2yyySabbLLJLy3v8LD2kKpEgjyReVZV1lZRL5E0hC26xNYqVjVhbRmlYQ80d//KQlqF8GlleQXNpK4sqrfF0gbMzqMwpzrCoVlIzePrLn34d/KcmSllYwtItdX1ttKTFWkyi4alIJWlu/CvZ5TljOlqydRLubiHNa7pYVnPr4wwRY167LoAZJZUFQGTYJqvoAkoKSzXCjp99pBLtRzUoniWzmhAM/AsBJyPWNIRlCdgdpYAIezmJ1A2nj/iCZhmqCOCa9qD+TPy9BU0f4Kmo51QArUcpT0+xtrf7w8wO7x2D6u3seVNRj5gWJ3mGS96AWly8NIOkGvzYi362dpeXkB8RZ4AIUaNfsEJ4BnTnCG7PZAUtLMqT3N4WKcMJEJhAvEe0/SEPB8h7kGpmgAKHkArS+qZtvYMJNCkILWa5MEzyc3DGmykFu6k2bxU5CU8K1VEIg5UILWgivSxI8nSAqS0/pggHZGqYlySBShVoJNaPlnk4AhBi2IpF/zH87/j5brg6Zix/xT8vIzn5YLd8YhZCNfLC05PR3Dao1P/WJ4aJQNLqINPojTrlGdQzh65GSM5kVOm8JpDUI0w5Rv+Uhm8gHGq1/b9CTLlXUt5aFmMA24gWGczz9DmWRvQ1mrAniS9rCg5NRgxNQ8re3jctgMR2UnMhrROO6RknNkAoCkbAhiw9/zA39FzAAcP1yqMFb9ZGld4pgBYXnOsHV5iNSjL7BAGk9dUrNRCrR3QSx7qZStNvSzQem0MNSoLUAtaHXvU9XsmTyXjCcqKKgUpz83zr8xIOePl5QqqwMv3i+VsKrCbzNP08vyMZRHM+yMupeB8Ldjt5pZ6MWWGSEFVS+8BE+ag/IGtfcafwGAyjIBih8ZvjQNARzB2gI6pLj154EfWvz9HuAOghoZVVctDJ3h1M/T5ArZNHTDIrkvw6nluPq10i/Hz8NxKN4N43SYPYrDDaaOE740OIx1kbI879H/tHZk89WSM6FrOh3o+q42z7mVWcE02N/tczNPAEILF1q1aAFkgi1VPjBREWyeqpQdpRam2f6Qs2OW4Rxh0AesChuXV2rMnS3NABdhSxBIZxRgAIGdUAZAM7JkSWynXAGHv9piPn5DzDmk+ANMBKe+QPA83TbOrAglIM3g6AXxApHGZd9XWpLfkTYXVmGV8eaPegRrZs3YHekMpkyXz3r7sVbe7Ww1uB1hMdoSWLrDqozeTZUOBd4VzdQ8+YNZXVCCl7q4f79hprdoP3tmGjGvbB57rwrXVX7fNltdr6GYHVkm1yRKAlIuj/Izeo5QCkdo6mEhxjk7vdF6IOFz8xsxwBaNYQjspjCJCWmiWWDDpYm59rd7hFEHaKypIEwPMuMwZkjPm0ydkr688TTsgH8BOHTZNBuRpsCvO4HwE0hFKOwDZQGlxj6Hko+Ij0gLocEBLPvF2j3KjDO0LPKq1DwBVQdEzUO19WXi1tOMnWVqKDFTA5FQrAd7zXG0FcE2Tgdl4B8oHA1LAlJE0ZWQFijKEJlyRWki/6fii9s7JR0NE5MFuP1loN0GhrK00KkViPycr+UcM4QkSnIO8mNLCisSETAShhCV4VocwKvsEOBI6ixWAx7UaGTfKYhyGngO7LN8hRbHfJVzLBd/++Bsyf0H1lIDrZcH5SjhfFU+/fcL5fMbLpeBwOGHkagWRodJTAs0ZoB2YPSyaEsBsNbx9rCfsoF6HWukI0gNI9iCdbWnS0vJwfenwNdMXrttQlJqS9xEhqDzNtlhpB5fAWUUY6hyVhnVuCqta9mgibcwuGuTrcIWVTOmzEq4ORWuAlnH9tdApUwaoOysEhKLxGQMEE+0cPlOu7P8mzD7VeseO3NWYVhHQODPEDKzrnJYALO/PAFMWZvb9x4REJUxKwJJQ6AJZAn4IaE1QWqBR5EXc0GrOCXvu6sT+nCbs5gyerG9fBcZOs1zAonj5fobUiv0uI7lCKlXw/eUFXw97ME84nxeIaENT7w8H1OXF+p8SOhOCpz0U8TWUwWmG4gClI6LsONETCCcAByBys6NNV+3+ATwXVB1wNf6ofV0kyxNPkdCP6Aotl8dYJsF367VtDhDtqNTY+L/bfZXjM2jQbQ2/R/Zob8KY5dfbOa5nEoUJVLrS3YS1XZKgLTVLHA8QWCAAYEfV88DXO56LdYZKRU2W6lO5NCcWAMxUAJjSKo4/uFfQ7RgOvU1lpZRT6G0xNCS4YXsTZlJP3zDHQ0rJMAmw/HbOT+BptpSiPIOmCRRFAlJypwrZWscMFW7rmlKFKkM1Y9rhVXlTk6ieWAsia1S4567prp1mplPO2ABadZfB49o72ysdDbjpbC3BadxhtcCMHa39huEe2sI2nsHzbL0T6YNLdsCCtpcc363DOeAsWS7SmEMbfxmGJhSpDVVYJ/P0iZinhHhBrX273U9YPjBPq3RvCLPlgFGgXuGGRXiK/bvI2oOiFOhY243ZBknOGTln0PRkOZbw5H+vTEGcgGSo1UYNRlZzXokNXlsVigIJPs9hqf+ILFZOuQP+puG9qKGLGy2b1sHSFSg/NeARu7cqJhaqAwPGDc0K0NK32rsgJiS2CkRwD4qkybzVcIT8ygyH9zNXVuGVqrQrFmHMBVKYAKsj731VRMBgo/SpBiKBDhQvhZHYaeaCpDxlyzcCIMsV1ZGoWq7G+4fulYKwG4viNbENPBLDa96fbB1NgFyvuH6/4nk+g/F3AMCUGLvpiG9/P+P42xfsDhkvL8/gCY1SLe92QL2igCHKTgG2ByLPT20OMpaKGUpHKJ1AZEwKRL/BClbYgk6o3r6PDOOYvx4t7x/jZ7UcXHWFzceRCAjVWFacxUEa0AQdU0DhO1KvW+7eR1qPWyYy3uVBYe1GuTsi1KtPRd9T8/8Bofuv25MpuFV99r0DGrDdk/a9RulgFWnIanMKNGZ/EKxci4Siw5OxpQCW75pmKE8g592sPEEaGvuCArZKTMq+SJbB0eHk6mz3kKeMhaUtqkZuDlS8gIlxWRYsUvD8/K3lCpda8N//9Qcg5oV6fn5GmXOr+LObJkgtWEpByntclzMEDM6DUlcJrAnTtAf4CaqfIPAccD2B5ASjakv+4m4WXG+1n997b5S2uJthviTVVr2tHXVzyEOVYOW6Hb3Irz3lo7O8tf+PnqEf3+7boxcYAIQYgGUAmg+OlSGwXO4WEGqFMwDV7qxrS7UKRJLlpquCs4+hhtSzQhXsv0V/7kA9JxVRbVy25IpD7MOobW1D6EbAsO5Y7m28x8TJ1rcUlHAZlTM4JdtGQbs4RuaDOcrXvRuLwIy4t10Eb4OuXNGMjmaNt7rC/aTz6ByrBSE621sd52GXfeXzj56B7rZHJyNHrN4PNlfPWLyzRSUdAYTckzFcIRTV8dxqCmv8tbM6itsJ2sHFOtuNwtvu4gbSGJ3ELuFVgCBDh+uTRHy2Djdutwk+lK5pmlA5twWSky2WArVqYBxUMzG4yCzhu8lnfM8fJxxUaESdg9Q96YyE4MHtlCtApBDAkauJEJhnO94BEEwd4czEmMKQCIV1XLTVohERui5ASywfm64Tg7u6MISMRoOrT4hhmsLDbNJ+JzbaKCLj/UsAolyPEgOcjLN0ytBpZzRYXjqyXM/A5QxdzpByMeVVrghAoP01z14lS6sRqshBOTVVLFzBpLiIoVefny9YGjE6QHVBLVf853/8Jz5//ozzywXluuDkxRU+f/6EqsXI1BNBLosRTHu6C5KA5h0mPgL8BYrfofgK0q/eJp8APQAaHJrq49s9bWaa+OQe7d/fRTMWMXg4f6KweyKpcarAWEk0tXApeepV50FWZwmotg8BEoYJYi6PK3jP4h4WVbjhju79ulMpqW8x4Ot6u6g5IFS0zQ/3x/u7qOJMKDeOBjKGGGX15xXwEBUKoNZEDEkeFnUjWVKG8tXSGUqGphmUMqr3zXq19tTqcDYHYPWVUwzMQwlMGQUVtSzI4WG+Chg78O4JogsKGImBb99fMIXRCoU+X/BH+QOHwx4vL8+g0wl6tO2yCGohXM6CLAKkGeWsoMXvYZpAfATXJ6P4we9g/grO1reJf3Mk9QxQgnlmLeJjbdSjiR8RHdAHhoxqV3Qe3dO47hHRba8D8EhhfWdcvqav/j9KeI7vQOYu3WRw5gEKA9EdUj5nR+TUjnkkyR0sQ7LkoC8I6erYHrwYlHqv8GaVLT2djMYriHtPuyMmns1v0tc3as6u1eDlBEq2Hiwajpv+ngjApIzU1dYH+tb7c+3bHtZaBzf8/SlXLyy2c9+re/zGDjai916Rn9DZGn2Fv5yHluGNkt0dDQwi89ZFMYDYa/zQ01p01dnG6yssaL7SSe86P6/6BnGyDuMWEhEw6VphhT9XV8rN49EUVvTFDApoYmjSxgBTw8prxxOSWqeL482F/xNe1v9CmHP3SPsH9f5InjNtJDyjwuoLMZw3L0h6/DySbhgwyLqqDpEGDWYHV1jvmycQqLHo32zVmMBHhk30PuWGVSUZemfPrTLPqxrDhSg4iRGsR2EPThAp0FIA2aOWK1LaAZ4KQvMVNL+gXs4ol2cInwG5WP4fYKktziBgIekCxc4oUWDh/IqKRQRIBKYXLNTjKufv3zChYgKh/Nc31Iug1IIpMebgHdwLqhDOF0GaCVSTpdAGUff+ExKfQPJXEP0VnP5iLBXkpNOyBzQjSLQjJagbCPZZNAyBteHZPBRKyG+RAv5ZoqEmsykliHEugwfT+l2n7/OojxvfzcgZQyxtT5OrWU/tV9ul4wn07ggXEgvZP1hgAhtgp319ARKy3HwC2jMQAGVGUAIptHFl20Fi/1gbybpQatgBQgKJ5X7CPaycjM/bmtPI2Eu5oFbPZ6WOxSAST80qxiCjCxgFLSVBzBCbpgzmAp0IlQU627jv7ZhRFXi5JlD6DZeS8LI4CfzVispI2uMiE/a7T7ByslFpbgfwZ4BPIP43cP6LUf94eVvFHhTUUYArqoPyooFx//mGljwIRYf0amaP7yzWYttn9PyTn1vdydKVwJCRGm044833tVIZc+xb8v/HxWz6QtxjGKSNCWHwNPb1pa8dxls7OKlcHxmmM0vf9K0gOHVYH/sSLDHMKx2h8eOj6ydEAFx3aBEeWESnj3leq3KKjrFpffP2M6M5ARV3a6Nd7+138m60NhSrR6mwPWw9doSuXUeJUmukuCnrKLHPrYfuVlZK2OrabyfnvtfZxu2heN9fpDf22LebdUJre3E1yNzCqcNk/OjaOr7UB/dI5FW8qLchkyuKfg/hPLk7ixNPm7WkqzYLX2NYTFWDZ3R9bQM2dO8UDR7WUu7buX/9WEWWIrcLaDcVyrdSMg9VeCdbuxjPY3irNEr4tmcKDsv14l+azWITNrd9dJgG9Obv41xvU4Kjw91Pzn2f2scaqM16DRigprTCQ3BRuzvxBKrVaH2kWpGOtIDUFda6YCpH1MsLlsse6XpGWS6NQFqkIECBAqNSshQGB3VhwQKjWEmpAnkBTaagAAAdP3uyP0DKeAGDM6GS4m9Xuwd5OSLtdpAMTPmIeX+COiE9AOh8gkwnCH9Fzn8B5c9QPiBK7EbONxpg0YoPjDmXAg9ZNa/rfX999NtPFSKs6p/oQGyubrys+iL1OYlh5RsxHH8jNn2v8wHX4znmt9ucwfj/Ud81U9Bvd3291TceVqxhfIqPGUJYb/30RFBmqxikrszXBPWS18LZ+JedvoenHXTetTSnKc8o153xYi9Gd2fAVc9hj3z2mFrVQC4apZlRISSodAImMw6JCqbjF0xB6wa4kUFYRJBzwlUFfy92D8v1hGm/B+aEPB9RdyfwtO9V2lKG5gOED6j4DKavIDpBvShG79vmMGmRukEhDGX/Z8trSuB7a/FjTxsNn/u5JbAjwzqFH/DWjd4+v+qb9/Qjcq8A38gYbVw1zc2sv9ZYfe2gm2cc7379nW+e7WZY2blGulG1/sGDTrEKwNhZbQUaFNbRP66xdjUVSYGauoPz/oSWYuRz7migjE/12L/e5U9IL4wwky3Y1smANsUFSOgHLcDHDryfNRjfv0e6UVrbcaYd3XUmYH33TGiVZFb7DA+uTK6YdoW4ebdN7fT6yndnWf29v9d1DjHXHgClwTs7nq8gvOqjVdz3aXzPH73Yr02E4bOBpLqVp3chFXVlRn1h0KYDuLF1O3XcTshx8rtrh/g2siKlt4dqGHRtNliDBhWIpKR21OglonGxVwWok1STmte1lsmAZZMiqUDRmRIgBbI/QpYnSF1QS4AAgSoVtV4h6nyt6kaMe2BJFpBeDeznBpVQceQpkLAgqdXOrjAAUIUiTQnF+T6/zRn702fM8wE8n0C7IyZHndpNkoH+5iPATwD2UJ3Q6pfbnToAwUPJQ49c4XOjv350d11J11KH9aIpcRa58RzVFvaBpzl4qUsFeIVEftAPV9yVEUkYGkIJKxj/uOrSDUMDYmENh0QHO4XUAWyjnlaz8sIAIO6E7TJeDwCYrUKbO0BIqs+F3I5VnsDqnn8tQM3Q7DmsuxlSDl5kpTaFtdSoGOQgVwdjkRRAF5BYPfUESyGKKoSVCogKgAXcFFaF5Lm9o4WNu1Vcab7OM/j0G+b5gDQfQPmAKR8tXxWel60K8IyUn4B0AsjKr9p7jBQGhfVxN1IDrEPNJXT/vn8BsSn1vcF2r7DGWmW4DG3cvT983Xc9sB8gbT1frwG3K0eisTDE/bMwaL22+ziO3RTdA0uxXW2NbjmsfNMeLU3h9Xa6vY8kvFZYb0QakF1bPu0oZiS+ejm7z7c3b7LJJptssskmm2yyycfKD3tYw8Oz8siN5dMGbb7J4H4ORBuTei7avefxNXno4l7v8cbR9AP7/ICE8+DmR33kHR0+8+AZbdtv0iBurQpzTCX3pjhlBsacRWrpfBFBeFhq7jYMfWMR3VrhLANQa+DJC7yjkkKGvNcIdYyPdxu2+DAZwiwNhMCWS9Sr9BnQJJ6ZAbB0FgwiNlBR4Jlafx6+0z3NyqqZm9dq9BiohfZAuKVTGvdsZyWsWC4CaamOGl0VCEwGFGv9xkusNlosEeOynNmQp94OUV5ZVYzTjw+Q7HmGVBroSoI6peUfKqB1SPlBY6ew8KhidMIH2wX5M7GHjowixaYj4/L7hJR34JzBeTbqLM9FtHY3UKCCoYUsXHvDUBE54oaBZaPiG9u6OfBoAAt+vGggdkGD19i85SNugAVOcRUSAFIfrwOYY+yTPcQ4dtQ0fIsB8ChKkPxkjNuYv9Ez6dB/aTzbqjJQm0akRw9aLmKAGj1C0LyHYhyeKpZ/HmwHY0pXpLAxjJpOuKIG12MSaK7IEKguqM7cEuVtocGO4LQ/MKBJ9XSY+G7TgDaXkHpua7SURe3Vq4kRpmnCNHsJzLwD7T+D5p3l2O72oGluLCKUUvOYGZvIBBVGTEICeOqLe6F9wog0DGn9/NfpzyvRe7qoHkK2+75nkLDx3sazjjoB4TEuRu9+M6939P0fwNIM13+cJ/tPyOjaXP8IHT2sq0iar0s0xCoeBqfX99ZAm8NB1BptYGy48YTS+pR38t7zkw5RrNt9Va2g5IBxus0GZQy4mlfkHYV1cEOPK1L85mFjoSHfQiK7YbwwDb5cAzz0fe4bge46LFaNS83J7Wd80JD2wvpLeTVP9Q3pKSivodrwMCVgFc6nB8Hxm5fyqBtQmxBtEI9H3D6b0UQ8OAeNC4a+O4eNtZhHAt8ApRmZ+Q16EOvFUMPN/07e0p8v+uCzPd/t4r1iVqg3i/ww8ldTTVsUxsXh0Wzy+O2u/77/BKuxGDdHr02kNhkTAmE91t4O8wOd7QDUQFmiAiQBOxeoqkK5lwUe0al2vvgXoSVTxCOFyfJVx1ypkVw8eP2MHiVCRClPEJ7BnMDJEjEqdeOQ2+xBN+mV8Z78r643rb7rzbzx6mT8AaCrEUJxh0zolmojIV9tDlpBasrXervPJ0TA2tQZOlybzG/ua+y3D5Qi7fvcqwvDvY+fuWsfOvweOeb2j4ffjFLNCDuojQFg/T5J2ABZqPBSA0NIWYyP2BXWvgiG4mQFWxpa+m6+8MKePo/bOcdnC4CQA1eYmzE25R2QjkhpwjRNoJSg3LluQakZZCDyabi3poKhA4doMJ/0V9ABNj9bbC66X4/XbXPvKBkmESiMlCeMHVqN5VBqR8CRK7kPhwnd/DbmcUbp6S639x1fO1DpMW3Xa7J+DeRpdPf7rdbSB+vFaiw9eK57Vf12rX/BccrKAAAB4klEQVSgjw1tbses9ZS17uCfRt3v/jG6/tAcPn1sijpgS6m9mzudlqkBmF+TNxXW915OWDyj2sl3L/1OjW6/ByDr7rzQ1cPeLpIIUMkvIO8mXv8ryXuTEfr2j26L165vE+ra2Ik+6H6jJrEQNXAhD0v2SmEdEw0fXPD/6t1/ICOn3q0x1g1BaspkeBd5yCfnNCq7Q3J9eE/Dwz+40QcD2S9hRTxGhbUl+EMb12dU4urJ/3aC8EK528pO64wVlUKlCgXYrpHVKJOYXuFx7g0xtNfai6o6Gi6/6rh9xDKxXgjuoiYrY/ldG/WXkEcK56PtK3TzXZUh9HruRIB4HXRicOrLnIiYQspTKySyQrD78ezOgjReh8hHvCusoQDxbRStM7akxCtjjKcM4akzvcBtrsHQJ6Xugb7X+u8Mr1E+MlBwt04Pv/+z53nrt/Wrf6xHjKCemMPvDdSPHfd3/drlo9fOP0vssXysPnBoxbt8S+hftXE22WSTTTbZZJNNNvnXkA10tckmm2yyySabbLLJLy2bwrrJJptssskmm2yyyS8tm8K6ySabbLLJJptssskvLZvCuskmm2yyySabbLLJLy2bwrrJJptssskmm2yyyS8tm8K6ySabbLLJJptssskvLf8DFZcXkiWrscAAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["bears = bears.new(item_tfms=RandomResizedCrop(128, min_scale=0.3))\n","dls = bears.dataloaders(path)\n","dls.train.show_batch(max_n=4, nrows=1, unique=True)"]},{"cell_type":"markdown","metadata":{"id":"xTdQoELA1Xsi"},"source":["We used `unique=True` to have the same image repeated with different versions of this `RandomResizedCrop` transform. This is a specific example of a more general technique, called data augmentation."]},{"cell_type":"markdown","metadata":{"id":"1Rc_OxR81Xsj"},"source":["### Data Augmentation"]},{"cell_type":"markdown","metadata":{"id":"odfudUbF1Xsj"},"source":["*Data augmentation* refers to creating random variations of our input data, such that they appear different, but do not actually change the meaning of the data. Examples of common data augmentation techniques for images are rotation, flipping, perspective warping, brightness changes and contrast changes. For natural photo images such as the ones we are using here, a standard set of augmentations that we have found work pretty well are provided with the `aug_transforms` function. Because our images are now all the same size, we can apply these augmentations to an entire batch of them using the GPU, which will save a lot of time. To tell fastai we want to use these transforms on a batch, we use the `batch_tfms` parameter (note that we're not using `RandomResizedCrop` in this example, so you can see the differences more clearly; we're also using double the amount of augmentation compared to the default, for the same reason):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"o1BY6cVx1Xsj","outputId":"70b76ad4-98d2-4148-d0bf-ccb9ff98962e"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAqwAAAFhCAYAAAC1XPjHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9a6xtWXbX9xtjrrX23uec+6zqru7qB3a728YN2MLYOBijGCVAFGEM4hFBcB4SyZdEER/ykEhQ3oryKYkSJR9ChAiEBMRDljESsYXAMigC2wRkDHS7m253V3V3dVXdxzlnP9aac4x8GHOtvc65p26VY1fduvT6V5179tnrNdd8/sdziruzYMGCBQsWLFiwYMH7FfqsC7BgwYIFCxYsWLBgwdOwENYFCxYsWLBgwYIF72sshHXBggULFixYsGDB+xoLYV2wYMGCBQsWLFjwvsZCWBcsWLBgwYIFCxa8r7EQ1gULFixYsGDBggXvayyE9ZcBEfnPROTPPOX4F0TkX3wvy7RgwTvB0ncXPI9Y+u2C5xVL3/3l4xuesC6dZMHziqXvLngesfTbBc8rlr77bPENT1gXLFiwYMGCBQsWvL/xDU1YReRPAx8HflRELkTkPxSRf05E/raIPBSRvy8iPzA7/5tF5G+KyLmI/Djw4rX7/bCIfFFE3hCR/3j2/YdEZCsiL8y++w0i8nURad/9N13wzxqWvrvgecTSbxc8r1j67rPHNzRhdfcfBn4R+EF3PwP+D+DHgP8KuA/8+8BfFJEP1Ev+LPAzRMf7L4F/fbyXiHwa+F+AHwZeBl4APlqf81XgbwB/YPb4Pwz8X+4+vEuvt+CfYSx9d8HziKXfLnhesfTdZ49vaMJ6A/4w8Ffd/a+6u7n7jwM/DfzLIvJx4HuAP+7uB3f/SeBHZ9f+PuCvuPtPuvsB+OOAzY7/qXp/RCQBfxD40+/+Ky34BsHSdxc8j1j67YLnFUvffY+xENar+FXA76/q/Yci8hD4fuDDhBT0wN0vZ+d/cfb5ZeBL4x/1vDdmx38E+LSIfAL4bcAjd/8779J7LPjGw9J3FzyPWPrtgucVS999j9E86wK8D+Czz18C/rS7/1vXTxKRXwXcE5HTWSf8+Oz6rwDfPjv/hFDzx0Pc9yLy54F/FfjVLNLSgl8+lr674HnE0m8XPK9Y+u4zxKJhha8Bn6if/wzwgyLyO0QkichaRH5ARD7q7l8k1P3/uYh0IvL9wA/O7vMXgN8pIt8vIh3wX/Bk/f7vwL8B/K76rAULfjlY+u6C5xFLv13wvGLpu88QC2GF/wb4T6o6/18Bfgj4Y8DXCQnqP+BYT38I+F7gTeA/JToUAO7+D4F/h3C0/grwAPjy/EHu/rcIP5WfdfcvvGtvtOAbBUvfXfA8Yum3C55XLH33GULc/e3PWvArBhH568Cfdfc/8azLsmDBLwVL313wPGLptwueVyx99yoWwvoeQkS+B/hx4GPufv6sy7NgwTvF0ncXPI9Y+u2C5xVL330Si0vAewQR+VPATwB/dOl8C54nLH13wfOIpd8ueF6x9N2bsWhYFyxYsGDBggULFryvsWhYFyxYsGDBggULFryv8dQ8rH/iv/8fQv0qgkzfSv1fEJF6WEEq95UEOC5xHrMr4WoSMyT+lmsH3B13h+m3xXHzerwg06YQ43dgblfuYWbTvdwtTpoePX4H4hb3qdc7BdwRB5W4uaBI5fcuGU0XtO0FJ3rBhh3S9ngqAAyXRtke4jqJkh76TNMkADQphqNJONt03Lu1Rtw5v9gBcLnrAaUMhphjOOvGuXdnHWVXOFweyLsDH7x3wsU+8+rlms23/iCv5xMA3vzcj7DSL/LNnzzjW75pxddfHTh76Vdx9vH/GoDT2xs6PaHpv0b36M+x/fmf4hbK9mtfAcCkx164z+o7P8bmlpDbO7S0lKmhWtKQKbanL3s2H3qZjl/HKz/zLXG4W6PrE7a7HZ/83u++2gneA3zhC697PHTe48bPdu37IwSvx2rfw9Hah8ffx37kuMz6lIcEKOPd3RAZUOlRGXfUy7j3YI/BH9ffA02KvpFSous63AbcC2qFpIZpXJ/ONqT1LZAGN8OHHnKZ+maUCVQTiIEIaItr3N+1wZsVQoIyIGWPU/C6RbXIClxg/4hy/ll0eAPt7kG3ids3CUm38eYOyH0s3yfnE0o5jZr1FYhikjAHcce9XGkCu6nqpY616U9BtNa4F7z0dKuHALTdA1TP8fxVxLdI/zr+8FV2Fz0A3cu/mebFT+H5AuwxkjZgA1DrwAc895APqA94SbgPYDEdelLoTpDNbVL3Q+953338j3/BGyw61NhPxcANtwLs0NUjurM92tVc483nsPI5pDxGVKHtoDuBdFKvb3BSrc8D2AWUC/BdfWoG6XDZIBrzEZbx3SX0+zjF+vjpMz4MUAR68Dw2qKAqdb1wHIEieKkj0Rw05lhpOywl/KRD75zFd+sN3iTEDvSvfp39Z94kPezZfT36/vaykFPisndKFtSVfu+8+SgDcFGckqIjJYWUZFpjALpWuHWrY3PaIEnJxckGF330z8fnA+ePBrw3UoG1QHso9A8OUf7dwGkDq1sN3f2Os7srbt9d0d1reWMfT7mUNdbdZki32fERDv1HOQy3yXV4DuoUX5FZI6qoKI6jdf1USbgrmhKqyliT16crx3FzzApmGStRR2YDWEHM+KN/7N97T/vuFz7z+bc010r9Gce4z74/whEccz9+LzKbb6Wu+/P6EDxmi+h3IogKIkz8BGC0JEvtm+I2W++ZcRk5PvdK6eelHGFPfOO1lD7/2gX1+T0cN8HGFcrBMVzGeVKm9r0Of4sWdff6TMdv0EPOj0/vN34HsZbMjwPuytQS4/nXLPLGcZU1nt7d/IYVeY7x6u/49d/6ljd6KmGdN+R0u+s8NHrGkbCO391wr+ule8uCT5XpY2vWipz485MXVxINVzvnjU8fjyNTpwVH5Eh+vd7TGAeb1wUE8ISVFaYDQ8q0DbRFSU0smN4dkEE5HDJuQYpT0qnOHGiS0nWJYsblruds1dClqMO9QHEjtcLQGzYUNDX0+5iYz05afN2waRMPH205OWn52Nk5j177KV74xA8BsP61vxt740c5a1/lpTu3KVvYvPAI8b8LQNJ/nrYRJH2A9a3fSvvw5+jPD5ydfTMA1j8il4Rc7vHbt2nuddil0rZBXIoX7GJAh8yt+y8GC2m3sI4F0PKKhNA27Vu08rPCW7AlRrI6njIyq1m7408MSXE5Dg0piBfEM0kMyOBblAuEi7iD7yhlQMhQ9ng5oBCkEGhXG7RpgnR4gcMjvOymcqum6JOSYvJSxWWAnGsRC6IGlkATJK39vavvKPiwQ7RDpKFoi7iiNtTy7ZH2FnLrQ9CsGb78UzSP/hHp7D4AtjlD1hnIuFwizUPadI/kQVhzf5v+cBvRjiY1x7JOi0PU4ROeSH51Lp1OkpG4tgyHO/UdlHbVg64gb/HuNr7Zon24eqWTFynaIUnAFEqPSINRaptllEMlgYpowTyR0irecdgj/Y5cjHT/hu7yLsPMKFaQdJxKpS7SbgWTAZUM1uPDrh6/QMtj2D8MEWt9AtKABhl01rgoYHFPLbgfwCoZswK2CyFLCy4N4oI0CdcqzGTDB4OmjgN1vBwFfXGZJDYfKYpo9GWAYnURNtwN0RQkfKjC3KqNc7NBcTTFgqltVML6LCGrlm6A3aWxvTTOdwN9fX7bKquVkr0qLDwW/baJ559sGlZdwgooHvO8+VTH7pCz0RJD/jA4nmHi4wiFOtwznJ8XtCu8+MKKXKJvZTVKzhQMlwGnxzxTSpTBSihckD7eVUZBsh6vy6mbYthxTbsyNzGtjaGYiZ/oO46bITbf5fPZQa5wgbnCaDrhqjIMC2FpJJD1nImyugdpndZqQaQqk2Q2XkSu0ZDxfoKII1e+m4ryFrg6WT1BP+TasUq4j+SX2h7HdSTeOx2v8lkbT4T86nOfXH1uKmkVcG46d0Y4r7G6o2AgMpFbv6ZwnInPV757Z2V7Olk9Hnv6fd6WsEL1GzjW/STJMGlZ9TiwrvdPeYvKY3a/m76XkZHfoCGbabimf59WEzNt8LWrxtmBKrPeXKY6YEZCG51ScUu4JbJB0yqlr1IyCW2dw5AZDgUVwczRqkXbnLRoio7RtQ2HXFBx1imevGkT+6GEpmyVKA7ZnKZqyZpWabTBk/GRj7/Ifr9n2MO99ivk5p8A8LXTH2B/9/djux/h4f4VXnrpjNKccmgeAEGgtVnTph1ZPsnl/fu8oA/pR+LDffRMGPY7dG/kYaA9WSM5iE+rmXx2hvcHSupo5BYmA2d3YgF8/NUyPef9j2OP0Doqb+xTc43XXFvrUWeqBU09ZdhSbCDRk4dz3M9xCzLlZYub0aSWRhOee7IVymELQDm5w9n9DwVJU2KhEyc1V4Uvl3YiIFBAowxSgnxIKlE0K5CGqpkDtEVSg5eC01TNjiE6TgWC53NwRzd3WX3it5Pf+DyXX/85ALrda+jtLXL2QWjvwtBT0oGU6iYtLXjpyDmGlmqKcTwJtMeJ+wn/+Umgm2lVRBAf55dKesstbBBSk3DZR1lPNsiu1mF/TmMfwtJdlD1eLoGCelfrYF2l0j1uGcxC9+jb+kjFrSf5wLNAdkNt1I5TyyRIUnDBxbAyYLlHS2g/xfd4uUD6CzDFxZHUQXM7btAcZ3MnAQmkwavKS9zxnENIshLCgCRQn+ZOd4WiIQSNOpUm7gk8qTp3B7NJA+ulCn8KUKKeRfEqLAkZMtj+ALnQnSR0aEg52t0GYchCX6BkJ6lw78WOdBl92wDtGrb7QslQzBmKU/kqq05DSG+UbI4bdG1iN8T9h8Hoe8MNWheSwzA4pRzJzuCOlZB1GhVKdt5440BpRuIJJMGrFa1Ij9HjeVPrWVEMtMdNcUm4CGZx/WisDN6fniSscIW0+qhZmR0zc/RGM8azxk2apuv84OpaLTPiGmemEIxmyitn1KjW+1USfOWucpWKyBUy5jOyOp50g0bsiXJfXwuO955PbZPVTux4nUx6WKr4dEVIv3LPaS68qRxcO2/UBP4S27/W2TgnB/HVI4ufCRH1C9zll/qUtyvE2/HVd7Y1q1+Tgo6snJCgr4kmNzbjfL29qe2vnyqKiuEqeBkr8i06CKPEef0+o7Rx/ZKQTqfruNpFb2wED60ngCqoWGjGQrbDqukWwAZHVWibRM4FK07TKFal3u12z3rTsuoacimcblbsDwcO1axDMUoxUkqcnazZskNzaAwALi4PvPTiCex7+jKwWitrVfpdz+prPw3Ar/6ub+aV/nuQj5yy2/0k++Fz3D29TyehMhJVulWHqKDW0979GPv8Jl0JtwPrjeHQw2pFU4RkDYeLzOZWbbyS0JNEWb2MXDxAbr2M+BmrkzrBiGOew13kGcGvfXpieL2Fmk/qYoxaSOOjhtUclSCmbn2QHS9INdcrPeIHmrQnDzv64UDJB7zsUY7kR0WxUjj0e8pwwD3aGkD6PbvzB6QESTIqmdQlqNrB0l+Q2hVORqSJ4aQpSMb4pq6UPOB+QLVDAK1916yE6Ts1oRGmrQOuah+lRZJidon1A5o26EvfzuaDn47CX7zG9tW/Q9u/RroLrM5IwwHPoenTxum6DUkTuYDnjpTayXhmopOAKDoSoattMc7LkxZJY+FSCQ1oLoCeIUlJ7RobfgGzHq19U22P+YD4CtMXGUm41OlO9CQkaxuJQwY7kgMhz2e59xxmjhUjVXMxUG2pAipYOTAMF6TmkrQKku3lEj9kuDxQLKwyTe9oJUJ+JkhzCtLiNECDSDq6uQhhrjdAMqBVK3599ZUrC5dTiSgg5pU8zLToxkRkx6vMQkvmpeBFsKppUstxwz6TKOR+4M2vXLJ/M/pmKw37AfYu9IPTdIlWhXUt3lDL4dkQhySwWimrLuagVSu0jSKNkHtnyIXXHxx4dBHCXp9Do3kYCn0Ojr+ymLvjBRJFnIMIaTDYZ/YadeK3qyVpk7A2UbSlL4mDF4rnGHfEOuYS711ogpmqYmMzeLg6QEIllCg39UUnXN7mbm9T35mZu99fmL3PFQ0qN5CFJ1fho9iQrh6vPEcmwuN13j7qEcVH8nvkEUcyrCHpTxxCq6vXkbwd15BRwJsLET4951j8GV8Z3RrJqAYxNZhckMJVqT5DfMbbrqjW3hJPUGu5ttJdMfNHvTwt2H4ardcZ/0xQAgnl5HUzv8xa7wbO/fZ4+rz7PKi/FixYsGDBggULFnwD46kaVrlJthMmKXv+n8vxGiZTxXjBTC9bFQVOmKFuuv30WQRBcQ2HYJ8Y/uyPK5LANW2qHD0rfEb5JwmjSkGCo7OyVFnrLdl8MYNkpMZIaiSFkge0Bl2phDY0tYnWWvKQURW6tgbWaDVJAVaM3eHApk3sLCT9gxlWClaMvlFONi2lzzTVLOwC5+d7PnC7wXLm69s999fKnftrutO4x+VrP8E3ffwF3pTvovnQp7it/wRkj+onAWi6PU1T/cu842T1Mv2tz8NQtR06cLtd0+cLui5hgyOtMlStWNvfQocLvN1gaaD4lrz7MLttlQpFKMVomnekxP+VxxjoMwuKmuTVyan/yf7n6KRlVYWUfKp3vEfYgx9Q3SM24KUHwg3C8gGznmIH8rCllIx7QixTqvZcPOMiaEqhaUqpxkbVgD6kOrsncnFs2LEatrTdWOKBIg3pdAWpwVOLlehf8do5/LykRdIKSQm3Q5h7AVEPrbAN4f+gCdfu6KfooV1USTgH8D1qB3x05rz1cU4++UHyw89xeOP/ZX37Mb75IGNAk/ibSHsG2sIgDL3gphEERow9S4rbLAhgcgU44hgEURUUs2Ge0go3pT+EjaPtTkjdKzT6mbhPalDb49oi0iFyF0+jloPw7dUVlAPQoclxCmbHNhDR8Ed+6x727sE9FJ1zs27OuO8ptsX1Ec26R7sdNI/i+HBeNf6En+vFBfnBnvQ4+qZ8BOTOy9FnUJAWaMCPfnQiWl0ERu3QqAmLehHVqlXx0JoWi9+jGXH0B3UJX9U6acss0sYFJHuomJIhG5/cVcQLkh0dBvKjHW98/oJHr/XcPglXjlXXsXuU2R0KiGDFENdJW9SosN0W8mDTfH9ykth0x+eXYgwZLnaF7aFg5jTVFctNaE8S3ir5YOx2hS3Oql7fpgZLkDV+WjMoBXUwRh/URCGRS6IMLXloKdkx62s9K3jGSFWzHGV1jXdIGlp1d6fkgqiQdGyjI4SoY69aVqoPLWZoseP89z6CI7Hm6yxgG66YwH2aD95q5AnX/Q6nMJpJoXpVu6yTBnZ2Xz9+PloZwqIgDoYfg6Cc6ZmTxVBGSxxXAm/HCxybKVgdPCOSY/6ta4vLaPVqEG+CI9Vh53NNMHWaFJ00l6OmdDo+1qNfectj8ae7ca1+j5xpOqe20bzWxrdi0qo6N7WRMC/TFUeWt9UUvxM8nU2M5HT645ryW8LHYe6cO1cnT691hYXC3NH6pki4OBCkV/zJapka50pZ5Mq143nzMvjUmDMlvx873rQgzgj4/EZHXy6nmNO7s5EIIFC9+i79kEmqQQqlATua9JMIbVIaETwl+iGT+4Hb62iOToTSRszdcBjYrDZ0Jx1j+NJ61VC88OjRnnu3Oz728l16MU5OV5zcjsl9c0fYn/81Xr7dcb76DrL+Fu6dnjHs66I8GN7uEQ3ybiXTrtb4SXV7WDVsh55mdcpeEk0fUYxi1Sz76C5qJ6RbBe8StjfS0JLzqlZZncy7Jzv1e4PawjPTjU8CShwWvz6I4rhLQckkHUja00j1UU0HhC1iWyRf4MNjrN+Rc43QpamkR1Er0a9SCRNQnUNFqunZHRWhFCcPA3gQi8Ohp9/vaddrmq5hs7mFSyYP57UMkC8f4XJGOt2gzYpihXKIMjSpjWAadzTCR3DRKxH4bgXHJl8w8dlEl6p5SmqEsg8RaV9Hh+k9PK1IL3wavfVR7PEvUA6vk1L1L7UG5TGSbqM+oEVxy4xZDCJITSZiFH5QMcDGwJEpKHL0RRv9q8Z1xR2VBtEWfIWVDdqcopsIXKN8GeyAeAKa2uIdeA18y+dIc4J3LUiCsgq3j7GRHCAhunlnXe1XGhqCk6FTmXIeKMM5qd2yPjG6MyGtCsIYNJVBDO8SWgoyHLAHOw5fqUFZB2f9bSvkbIVIF6SVxNFJthIlc+Ld67yFQvXl9cLRxF8shKAMUq7NxeMCbzBN4ozTaCyCsYY7iNBuRkKWYW/I5Z786pb2ULi7blhv2ulw6Y18MIbidG3i7t2Grs7Lh4Oxre5U/RDLZZOE1ar2q8EIS76zOxS2u8JQwKorATlqpemUVXUdOPRHn2tTwVK82lAKqxRuBtIIwyhwutLnxGFo6IeWXEbCOroECbgFyUmEj6/MI6yNJJniQeoUDZe86wHETo10L7hFNhGA1kok1XnnNth3FTfTmiui6XH9nkWtT6xjzDbkx7MjyMqv3GnMzjIRhhmBFcKNTyrbu143EY4zZnwZialzzALAxOY0jS1lV447Os1PwU9GoYkIMCQjWlC1SmblOM9dy0I0f9/j/UbuMnNzvPION/C06+9Z73NVDTmeX19wDLx6C4HBZ9c9vYuN9XyVNz4V8vbnvSP115yQyywrgE9enLMTjj0LrlVNvcHVDli1nTdVz+is7DVjwNwfVUYyfVOtTY07psjwq8R5YrAWi+F4v1nR5y7RIiFxXbs9DmQRVslJnrAhiE2rCW8b+j6jCE1KEZxQJ0arvpBmzmbVse4S2/2eh5cRQLHRRNJI4HG66kjZaDcNpVQf2P3AB++sscZISXBpuP3SKd3tDSOr9ZXB/jF89c9xzy7xD/8Ger3F6iQGRaLBh8R2+4CTU8PKOQ1CKTU1ULuiO9mEts3h4EZj4BLHtw/ucYsPUPZfJ6+2qO44DJkSnIC2VYroM5s4w1fq2HeuH8NuGvYh9aocEO1JqadtDjQypvW5pAyPkLIllR2+P6ffXuISfr+e1tB0pG6FyoaSB7ABK3vG1E5WUzQBiDlDf8DKMJPcM4dcKP0lKYHv1ihGp3F9t24ggect+B3MVmjaQFv7Vr9FtcNtj9kBsVSl+uPbx7gouIUFQ3SeRkZD+8ia6EwJswNQg3u4qCqLFla30Re+g9S/iR1eq++0BT9ERLkpaKJJQZyhCnUWiz9EsIRVoULlOLnNDShTMME47jT6VawvCrYhD00lqJDWtyG9jnuOhUwanBU+pnCyPfQ9aFeD14ZIIeR1OnQD77E88KRu692HaaTBmSLta5FUlbZbkVJGvASRrP1CkqOtYF7n5CTQCOk0JoR09wxqOrTAuOCPb1gDsSDaVtegXYyTHKSYvoQDsVn1mS4xw48BeyrVFbq2VSNMKQkBz4aXOucieKokpY4NKQ79AI926LbQlkhN1VVp69H5wPmbPZf7EgRv7bx5sInsmUUR7pw1HLKz7wsDzqOatqoFUKVYrIyKcNhnhiEKqFWxNIigdfFcrZTqXh5K4SYWiqE3DhjrFNeMWlCVluIN/dDRH9aYK1ZsEsbCglPrQwqTv+TIdkyiyhI1O0bNBnJlgbRqoaikyUtko4FJ4/0+4avcSFlvZrGTEmGcF2DON6hCeKROO8YChUAUPquzWx2ni0noPSb+mxE0qCS3IGIc1VfzIlo936pmM3ywj4ouAYnsLS6OiyEafuhAVVRZxL0oOCUENj8KyOYdOipQZBTynqDvs1jUpyuCrnHeo1AwC6Kax/1c/SyzNjpyLq6cc/X3ePsR7k8efzvENP/0K96ZvVaujxgBtJLWqp2ZF/bKpTMxZ37cecrbXK/qaydXshpal7l5//pVMnMw9uuXYyNpZdagHBvv+hvPnaxFnEZA1TE1Gje0pig5DMOkXXXzyJ7jzqqL6raackVUInWOwsmqYz8uIsVpqml6yIXeCidWkOY45M4ve+6slSYlhgR664Thzgk6mkPynpZM45dc/uKfR/a/wNm3fB+sXo7jpeOf/uKb/OW//Nc4Oxv4N/+QIJ5QjwVuu9/S+Bq9dUIZYPBCakLDAXByWvALpc3fxrB9wK55SJu6o5ZMudGU9V4h8spdbfcnBihE6p4qKYsOJBnQdKDRnkZ71La4BQu3/DgIa97heU85HBj6Ql8u4566R7s1DY7VzBlNUlRaUl10y3CgYFjuKUMGKyhHk7m5YXmPuyJtIu8GNDla+47v9nSbU2x7TpaO5taLiDax+ENEKY+SsuXouDavhzEwhjgnD5geA8fEItiM5JGLVDaRe3Mie5cxNtIJSBeqjdUdtJIWz7t4VDrQWKxAZSgTGRUNMiAe4y8EypoDYMrCcXWyGE1u4qNuw0EUxScNjEiD5ajDfCm0Z4KkR+AX4BlpVoiGBtbLY8T2uO/rXNDiOU8povIhU8op7aZ5JoSVyl98FrBkFimk8lBo8phOqgGqRcNXuDUwOPRGkYTfaWlO7wKgL7yA6zpuPi22MhEl90ixJE0C2UDahDDAgcmVoni4AYxBVkkjsmm8x6jZi1xmjK4Ds6xwNWOAIyk0SpHlajQ/GPQHyoM9h4cDtnM8Ka+/GsLSmw8yh11hpUpaJ7pVYjCnP9SAxALaKKLCulPaTnl8KPTjnGTOqhWaVsn5yJpyzWKQBw/hfDCKOSfrRNcqh5F4JCeJoDidJqSvpnvxsUroB+gRhtLitLOgqLEOHEgRZFUtD0GmRsJbXQzc8CYCIq3YUWE0qnE87jsGXsmUWuxqENZ7CXWbraHH8s7/vs6DniCuk1Vl/FOm7xBBLGwP43HDQOJvnajI8b/pETNl1DQ/1rUyLOmlChAO6A0JYQruA+6ZSA1nk9VKRfApPRmR7k2OGthRSFepw8VzZPoYKbQayWPtdNEp+v6oRIh/JrfGJ0yDcu33W2OuswveNP49v+fo2Mk15vkEBX6Luz/tnJtxZXg8BW/jwzqritkHmTP16WGzSpMrveOoDaV2KKdKh8err+cHmw6NEcVPHr1aodeO2vHW07XHjADxjY6L3ezc8fiT+rerxCckOkNx8FDzj2ZRM6GYxf2Vmh1AOFRNQqeJVsLU48BhyNw7aTlbRc7EnAfyIZxKiPUAACAASURBVLMh8fCyR1NHkUIa4vpdP9DIitO25dFux4svntKsW7q7G4a6+cD2UeEkx+R3mjK7N/4eQ/MlrHsJgN7u8GM/8ln+4l/627zy6qucrv8FfviHXiKlcCloEvR5h14m2nXHxpUi4G31013tyY8K2kDT3UXKXYb9niblWv+CNs3bJhN+VzFLDA1cncSnQe+MaanEB2BAfYfaDi97zC+g1K2c8zkynGOHx+TDZWUVHVLV2lYGhl3PYdih7ZrV6lbks5zSmcQin0Ldjoii1saiV31cHSVpIlFImmhXHalJdOvQ4rZa87taRoYL7BJ0fTsyBQA0CcsZyeOUM8seANWcNvZvR2hgRtrd+yAlPuBskeYEdAM2qu73II/D7UA2IKvwU2hqgvq0mrQelIxnRbWZhDknNGwx78bgC71GaPJh5D83TY7H8etuZBEa88mtRasfbilrylajSI3j5RxsF1pDQOQu2AVi+2h7KYj1obUG9lv4k3/ix/jiJfx3//MfeUoHe3cwxlIDUw5TTQ1Og0gGOlzWOBn8Vr3qlCCvDZL3uDbovVP0Ts0KcnIP11Wt6ZG0HjFqiZAW1y58mz1He3v1v/Q8+aaKhKZw9LcEqq+xhHZXgziqy0Rw8RICTiRKDR/dWTN7LvhFz/D1A4eHhVyEfclcVAVv20XE/5CFA0JJQrNRzjaxjF2eG5YdKUEMBPjAWTu5JQ0FUhtr125fyNnJ5TjTl+JYJaxJhZyddQdtzQNLq/QHQ5PQtkpjdQ43p1Qf0qF3imgIwqUgJfw2ZeZj5qPAUABpYh4Y27sqhxzCBx5H6wYD0RFm9eXxXOe4DIo5mF3ZROe9xBPUqfqkznnEVYPztV4oR4XSdNiPFlKpvqPjcaXglPhe65rOLDcrxPw2I2PRUUdyGvdEdpXAhjVo8illFPEMJMdYkIxIYUpzWXORCYT2N41C9igoheyXUmiH3YYo81giNfAWlYR5U1Oc6ZVaCv9RY+7C6Nfqbm6CH8t9E6aS1fF7/WSpSgLx45p5Xb64/qwnnjEd/6WT1qfhbXxYR+lm7vegsx/heqFGM9Zcrpq/2ryjHvPIPVnU4xL1hKgT3/rxKTe96eg4Pb7HlQAqH5cEv1qfb1Fjfu3TNKW4Y6VUEn/cX6JRjx2h6rtJqlrVSVFRkJQwd5qmQQpc7A68/GLkTNz3ERzw6uvn3N509CacdqdYXVDXWXn84IKX73yA8/7AbrdDL/a0dgupCarbAloiJVDOzmZlcP4GRYN8tSr8nu+7w//5Fx5jJP7H/+n/4Xf/wO9kdRqLk0kitRvaJvwdiznr5oTdmM9xfV6tT7UOVVm195EUZdz2OQwpz8g2ZVMAyEz0mJtBxCafJhiT7g+Y7TC/xOwiSI5tIT8GQOwSsR5yJh8u8dyHL2QJkl+KUCR2EzKErA0i6zpRxVDTlCiDYJIpHBjpiaYxsEVoUosQ2lHRRMmF3UW0Wy/QtgnzS8rjr9KdnLG+8zKyjqT6qUl420Yu1iF2vTErSDqagn3amc4xcVTao3AnWh2+QvvrObStMjcllwFnAB2IxPQnE2EWSlg1KNDuaEwZtgNlNNenjnHs10x/XDVBUSfludB4JHBjEUKB52Sdk1bqM9aULPiFkU4ttHm+DY0zgKwh3Qe5gLINotamyS3j7IM9v+P3/XZ+5udvv+P+9iuKWTDFMfgsYZIYDhlRo4iQckPTBmFtmw9D2kK3RcqeJjXo2SmyqYJE087q1BBKkPUx3ZJVvzpG7XsGO2BlV4PTom0Rq10ncsJKciZVUyG+U406D7+ncCUAyFY3cwCoWuJe4LKuE72Rv5rp3zQaSWSJhPg6qbIUM2VfDF0p3aqhiFLdtxlKuHC0Ao0Il4fC7lBYnUbfzUTu1WJGKU5Kwukm0VeXABuc3b7QNsKq1XDLcibrCOZTQiVplNbTRL5Gw5ZKIrHCLHIslwIuU1gPFnsc1nbQmXuZT+0g9W+r66+7R71F61SrIZN2VUXi3GMHeqc97T3BE6WZCaSCTUJ0cMlJnRTH3avpfHTvqgqsqd5yVTiEIKxJKlHVUfJlTKMVsQMS7lCESwuASOweJxMpHdf4uD5azIhVfSB06BmV8XqpqT89di/TEGSmcMYm5reU4phRwMtRyKCg2oM3kzUsNLb1Di51XjVIBRXD7Ji717w5njuv8bdcev0o4TxxTq2z6zlWZ+v4qOq48b4jca5KibfDzerGt8bbalipjT3T0XNlV6t6il+9KLZmnXafOBLD8D0bJZNjxfr1oo8L2MTwn8x6NhvmN5R+bJQjaZ2krLlzdZ1yrrsNXH/BWFqPWQASsf2fAFjdlcXz8QoPk0GxiAhU9ymv9kjmG2JC36xb1km42MXCkFQo7mQRvvDqY3R1StqccNqEhoi05axVXvnqQz76oVMev37O/Q/fqdvB1qApSwhKZqDpGsyddSuUUbNdCh9Zv86/+we/g//2T/0cv+7XfRc//dNf5/t+Y3SJdOsUaToKhg6ZbtNgbmxyNb91O5AeJNar7E5hR6oaofXmhF32KdDtvcaxPecaoJmA5GNmCIM68VjJsVUnOcw/1mO2P+4ClQvDcKAMe6zfY9tH5P41chOkIZ19iLY7i7Y77CiWcSm03pFkjJJ3RBJNuyalhtzvyLmfNChBxAqpaUGcYpELdvRRKyUjrOhWZzSpg8OW8uYX0FuhOZfT29CtsKYm2O53KDMHeY1tH13CcQHPzLVkUqrmKwl1F4JwqdIx5E9rzx21xj3CbDczCf/PUYMsXSzseRdjo5iQtO66JYK6T/E5k2FGRrNnbauo/Wujs5qtzCkqpOqPPqJpOqzE7qNpbciqn9oZDmCb8D3WGknka6gZLVT3fNu397z4we7pnezdwiTrHt8pXIw24frgA4e90/RGOg03B3ND02PYPEIaI7lCu2JywJSMyBZGyuUH8AM+bo4QWzAB5ehKUjVXY/NO+TNNkezHMTZO4zprMyfM/9mQmpjfi2A5hW+zJPBNtMPjqp282LN93MdOWqeZ8ze3XGydusEf5sYgzvoksbnfkbXhcut0VcNaLjKNFBxhtUpIJ7TmvH5R31EF6YIUuUc+5CHbFGDvxNw7qmCSVD1XPV4Gp03Kap1oUmj0UnaqH06tI8VM6A9OHmJbbdfZHFR/TOf5aufxGSWGEIRTrdc54Lq2rRLW6/o0FwsCNm4U8h7j6Xq38SQ/8onxfJl/pZM/+uhWEkqF2MVP5OgSEHuP9fGd6tG/dcbJQsMa/sAyxlVIQRgzt/R1bAwIXcxhQhBIqGR1JKyllqU/jh1s0ttJ3dlN9Zif3mjAmbbaFWLrXJ+9r8oAMroKOpRCyTMlYXJUjSQFkRKyYXXfG2M1wmKcqn/s3M/3hkaaeuIc11vuqjvPkQfP1ZGzs2fztczO+5XEkod1wYIFCxYsWLBgwfsaT9+aVUaWPjf73+wK8OTn0XBeP080v8z0ojOt6mj6mvmyRjqImT51UmNfldCuS3VKmEjEZ6x/ZoYYr5q/gUchrt5x9MXDER/dIDiakuuWkwp4CYf8KEBIdEMeWDU67Wk9Bp6UYjV7QIOZU4YBbVfcvx1pdPpcGEohNcr5TvjM5x/wdz93zm/7vo8B8OGTDfkSOi1sdwMnLWy/+pA7L9yhb8ci5AjcSRKBAg5DX2hPosn3COqZ3/PdZ/yDv3/K5175x5A/RVu3QSx9A+uObrVChoIdIHc73KqWVx1PPUPZIXoH9x5BsGuBMc8svUr1K55rWG0WnDea3QRj2mam5qUMjYhhPoD12GgStYxqi0mHIVMgzBToNgwU2WNVyrY8MBz2kWpqlE7NSNrQdGvcCkmFZlDyEIElZRgAh9KyWp3EeHCj9OPxHUP+GqlpWZ3cpmkVG3ry7gsAtLfuk+6+hHansRO5bqBkrBzTSoVBcoApPcx8z/Im/PLyPrY51zVojkAsCHcBJa6V2BPdpWEygEkCT4RJucdlh7RKqqmP8gFcEyKJMZdgqm4lozZ+dABQuRYvdmzc6beIhOFDhSnIwama5MiBzO5OaFdWX6/X7XAeI7YBbUNzYhlSDB7XBmTP/Q9kngXU6zxoZWoXSZCaNZpOMOsjtZcqojUYTgZo7yPywqTwk24D1Sc9Jq1cTayR0xXbM6asEsa8xdVH2on0Z2OgFSCjFtYl2spiXhvT9SHxGLfaJqZVdV5Nl82aXE6QkxdJ6w8imxeR1YpSLRile5MyfI10Z8uDV1/n1a+8ytcf7agbVbErmTv3Gx47fP4N45U39jw+d25Vk/26HPjgxli3QCN0p4l+Z7Sr2vcboW0TqomcnZKd3c643M6CymqfFBfEJLSv9fWaJrE+adlsGjo1fKjp4TBKrT+TAZceTz2UDkwxa6YeO7rtjt715qGJG8ePVG/WeY7yMatHNONxpVONNRJzZObWhOUr1r73DCJX1uF3imn9npT1s4h/l6ot9fAbZUC0TMeTDDg9IoWkVUNe3SiOQfhh7Y0sIArSRCrm2gpJelxqdhOa0KgK2OQGFWmpnB6nBwZEBsbMKeZDlD2FOwyaQNLRzUtKHA/n1kkjOs8XqyI4Laph1QqXj6liSQ20DSQx3CN12Rh3EIHjbfV3bzGvPrAz16LjrnVjjV+fWGdaU4k+N7nQwdHCfy3A/q3xTk6aaYFnK9DT8LY+rF69oEcPzTElyVQguW6sm73Q9HGes2tM62FT5V2humN06WjOnb/ENTNCXH40986HSyx4R8Pl3HTFuCDU745+QX68eiLqNiOtU+2CGKUUSoKiLZ32s0EUvk/NmAVAwqdqqD2wTYpZGOdzrYvHlwWt+vf7t0/w0xUX25697/lHX3rMq69f8pmvRpLwf/v3fhsvNQ2lwOPLnvZE0MuedLEl3QtC2bvReMYRsgmNROD3bhs+qs0qMYjSnQz8R//ar+bnf/4NPv0xKH0sHt2msO8z1rSRM1ONkkHausDJgK16bLuj6dbVFDzzo3F9Z/36XYJ5mfrR1IvmUZFet4f0Mm0aIUj4FltDQcOM5Erb1EC0pqUc9pgpohukOcCwo1Q3CXa7MCk1kczfcLI721JN/BC+hSqklEhp3CpUZj3dSKmlaTtyv6PkA6ltabpjGSxvaJqEaGIYdiQxmnr/vEscLJNu3abdvIR0d4ANiTEp/g50B+zw/g0ojxDZM/pADQfh0YNH7C9e587tE07POlIH1sX9tVkhY6CV1C0+650DK5AGoQePBcZli9WIqvBrTJDG/hGBBA3Etq3ERO1V2gxK/eQkNvlJUa3U7uiU4N4mp/+2O6HkA3knUx3o6ivAJegF+Do4GD75sGra4Nri5dkQ1glynNDHYJyYFgW1DtXNMY1qdw+aPa7nNSVShqY9EtYxN1LN3Yn18VNTrHnOMV5SNW9adQ0oZcovbVYqkatE1BNoQuumFKNtfVobJeHdCk7DF1jbj9DYJ6D7dtCPMPgJw2HyIGffvEG5/xqPHn6Zh3dfJX30FZK8yhe/+pW4r+/58huFLz488HNfuuQXv3rg8eOBu+vou7/mpY7vfEn5yH1lfatw9zRx737H6Imci5MtzKaNOgcrnK0S6+rG1PfG/lAwh1wM8wiuSpV4sEqwVkydy8OA5MyqEtW+EsQsA5Z6sAOkhBvV17DWYbRWfI+BRUq1NLN1uoSgIp5rdPl8m1GD0fM79CWRh3VkZ+Na9QxmXx3X0Lqm/vJwXItH5cJEPdUm/9FwB+gRGSLDQt0yPQIEawBwcdwTsAKNlINIRxpTwtFjvsPsEvGEkYntiavJXZSIeRhw7yeCPKYLFCE2wUigKVzM4prRDaxU31wFGzMeHLf8Dt/XmPvxgpOJjWvq/KZCm5yuUYS6qZDITEiJLC+RaSbjVgM0GQNdR2F+5mZRsyNdiW5zjcH7ZIqE8YxRfpi1y1u03jvWU13vJ0/vN+9o4wCT+U5WVcHi108MTML2E5rZOfWcBXFN0WTXKmaUAHwWdjV75pXqnP4YnzF2pCvZVI+Xa6SaGkmrSET3TXnDZxqDSSKaETKpC0esIR7R87RTB0xiiDZkvGYIiNQ+bZ2UcjlKyykJ1kKXlK6qEh5d7nB32pRoupaLbebRIbH9QgQ0/dn/+0v83u9/ids5c39lHHrl4euX3L68RO5EGZsEXiJfHxKaT5HCutb7fp+RVqCBu/cbfsN33abtD8dI7VJoLTMceryBrlVac0xiAWxT5IPMBZrGKZkY6HVQjJkR/CgmvreoDvpX/cOmg7WvROoRmwirR9Cahv/vlFC/aphS11DcwRXVdURdywEZ81BKwvJA9kJqO1arE7Rto//WRX3IQ0SKtl3kacUwG6YAQW1b2rTGSg5ioidAg2ukL9JGSc1Af9hhfV/zMXaQIsPE6u63sLn1KUr3IoPfRm2NaEJrpLOqkMYFcn2J9a+R918j9yEMvf7gAX/vH7zGX/8bf4uP3L7Pd33nR/lNv+VTbNrDsQ5NQdoQUiR8yNBxxU24rKLu9EAEM2TabtRyr8h7xcxIzZpJOPTIuhFljHRHolLb5ua9r0dS6lrH5DTVRJZwr4GOmlZYccrutLbzy3j3ZZwd4hcoKbSqUwepSfP1yWe+N5Agq7OJ9rhpiVWBu8VtNfUra1eo3IXmpdCGyyUmx2C52LAiXYn+9XLMkSrIyKYYfQWx6ms3DZ8m5IvBoHesB2k6GKqgUAakiXHlIrh0+OYl5N5vBEBXvwbhmxjKPXpr2B+M3lt2u5gPzx+3XF40nF/AnhPSvRdx+QB3NhFQ+PkvfJGf+6ev8fmv9Lz6xoGLbaEUZ99HHXRJ+MjZig/fD+9EaYSzs3baYfDyMvPgItMXww2G4syqgLYVDKUfjEMf60NqnHXNMiBr8JWRBQ65kIjALVBy3Re+WMNAw1AaPDeUojEPMdahhXZaYEqA77FxC1CJWFgxpRSEFk1VMzjhuoJotv6OWqtnpS2o6/7cn3y+nk4r/ywm5mpRnyRK8VZeE+wHWQ0NJ4j0JB0Q6UF6InB2qMGxNd91KXXOWiPNLZAB0fW0XsMhyJ/vY72SyBbjUudcUi2u4WQg12DD+goqSDMGII7vajPWNss9LMf2GRVUTkHVgQIemtmmlUlDq+I0rbNqEl4yA4WE1PzWVPIsIE0IlbSMOeypbxAPelL4P9b+rBVuZJt+jdtdJ6vyxOe3nT3lHZxzDW+Th1Wu/cQDCtVswg3jYq6EnKLF5pHa9dcUwTfFCc9OqGTjePKkLTuedrVD1yde+47rXHj6bhQmjmvSXD3tXBsvtWFtdotINRJJo60S2lETkSOly5gc3QnTbR4TWDt9MYpDamK7tT4XLrdBCk7WHdmhVeXeWcO9Wyd86Y3LcN4GvvjKwE/87CN+87e/QG+GNj2f6Fou39iy+nAQF/NYmJQqobugrU4pZk5UGGqdNo3T3t+wG9Z4TWHTUnP7lYylhj4bG+/I1VG9cEJq4eCZPBM6xiTg46R8fZu89wo+Cjo3ENYxb69Q4qd+ry7E7pxaB32HaIsRJH233UJ/gLLHy4A1G7h1EuSNMByZxLam2q4QEUp/uKIN1KatTvmxm1DTNFhJeBmzkxsl9zTSIEkwj35iJSbPN88vcXU0tTVFygnDcMbm5FsBkPbjbPdnSN+SkpGaHe3aaGXU8Ha4dxgt6G3S6i5t983056HF+gf/+K/wIz/6t/jsLz7k8Sc/xof7T/Pn/tJP8/v/QJCO09MhiKWWMOujiBW87rg0JuH2mi4rAhnKNNC0W6G5xXIEKabUhkYVrkydMbnXKhmbbh6pOk4t9bPJGOXOcStGOTZ6atYR7AOUXQu5JZ0+AnmI63lV644TewRi+TPa3lJEUBlT/MzmsShcROHrChGlDFHvRYzUrGhW95F2h1M3Fpguy5X8ji5dqZLySmgNUKtpB6uZ2ULgPSqzFO8Lftnj20K/FUoGbesOfafR50ycYis4fYn2/m9CT39PFEE+wFCUgxV6Bvbs2fEGj/aRAePx5TkXFxdcbi/Z7gt+aMl2C998JMp4r7D/4o7H+z39EI4t5rHjIMDr28KDg7NepyCf7lxcDqy7mIOG7JTBOBRI4zaXMbnHJ6suKCo0LWiKnK2rqkjwdbgUWO+odHTrDsM55Ib9EPPuvpyR/YRSNlh/grtiatPKYVX4EpdjEvlZai1UYhc3n+3m5MdAZbfQ1vl4tyrA+GyKm+8E9d5DjoNz+mpGSuXKL66nyBwzuxzLXxPxU5P1S0F1QMe80XKIjV7kgPsBtwNWtkjeQw6TveeMF8Vlg+Qd2u4QPWHaREMyuGGSUT2gOiCScV/VsjZVY0oIchJZSUYhXbQSVYWqN493mFvuJEjHcV478pkY744TW2wnQjurtXwqRqLUwO2MmqEkmhq8qjKEcE8bmV0iqeTRPc8BT9fm0CclmpssWfM+GOWdW06P7XyFLjnHyfkt8f9PonpHLgF+RWSLz0eKWCdWv3r8eN5sNAHHhpovPnLtb59I6k2VOL/fpMi9ds+Rc96k352kUo30R3hNZs644GnNN+hcKdpMrSzVV89N8RSRg1ZV9GIDPpSa6qdScpvdX2GDsu8HXBqUyApwWdO/DPuBHAoO7p/Bd337PT775cfsK6nJlsjtB3mtv8vZS/c57zKv3+7ZPnzAyw9rNLYIHRJrr9ScsMaUHuVQjE6E7IVwkBO0MdoULgUZQxO0GqmD2tUaKysshyZOmy1DH2M0NgsYB0c1eonhpGfmwzpqtq/2v2O/On7W6bDVbXbNG1w3NBommjGhfWpALIPt8FAvIdpNEfSVBtSJRjAruPvkDgBHYaiESpqcD/GMOrnihVV3gqYWywO7y4dcnh/4xS9/BoC/+bf/Ia8+PnDnpQ/wyW96mRfvf5BPfdsnaLrIt9kPipeBJHvgIUkvWO96rKusY3WCrO6T2o8gzQvABpeO0zsfB+Bf+l1/hI994nv5k//b/8rP/r2f5Y2vvsJ3f8fH+exnXwfgO3/9h0OiH6tPBCdNdSz0VXPRAh2hJhxqe4AmJa26WEBsiJQ/Y47WSYQfU5JFnU6aiGn7yzo2q7/hOA+Nc4V5mCdjPpXpmrGdVAtlOKVcQnO6ipym+uYxfdOYuFue3cYXohIbeYyLWhrXhjrfagJvyTWlmh2UtBaE2EwgMjdkpPrZRVKnBmQN4w5KoxVhhNlUr6GZMMgFr/mfZWdwMWCPC29+KfNTP7Pl51/N3HkxfO+/49fe4VPfeouzexuasw/R3f1e5OS3UuTDABRasodFwfM5kl/B82cYhlcA2D5+yOPXL9hvhbw7Y3+5IueGgdCwNnc+zrd8OvHGhfDg8SsxvmZqmlxi58HT08StWw23zlo2q4Z93Vhguy30Q02KqbBZJ3p3+roZSiFyZaZW6AejbXTagADASFivUBLy/7H3LrG6bdl912+MOdda37cf53XPfdS99XQ5LttlO3aME8JDEEVJMIgohAZIdNJCNNxBQunRSIMOCAENEIIWTRpEBEGIiHAIDYJQEgIyInGVy2WX63Ff57n3t7+11pxz0BhzrrW+fc69t0ySe9w482rfs/f3XI85xxzjP/7jP4JyNQvHGRI7ZrxBw8QdEudY6aGI15ZbWWnyy96oa3JxO2yzDqxKOpk6Gg4VgYgE8SyELbzijWOxoZL8QRgePK478e1DO3VmV53gNrQqH7izmtxJDRU9ZUTlAByxckPJN1i+RsoRKXU950TJQikHTEeMGwhnSM1aSQhI8JoRTHH1hmnTjMFlAC2EKh3RkNIGsdY0em252xo3LO9H0CWIaJZqq6fq5yviKgc1UqWl9KMYagXLGckJKQWlWwNSC+QEOfeUsq+Ocb8E4L7GK0K38YtOduZPQFVf+FM+SdDKNn6iLd1Dbfvezd22ze+f+p23xmc4rMqaX3gJdAwLp6FJ1TUHcnEk7TY6someNmdzepi3nM/leOT0JdvXyK2/T6Bebt2QijKIYOJp2YwssYPLDIobg/pZW8fLRNx4lUjJLqg/a6ZxSjoqQlyMoJFSfJ7ntqEWo1fhrA+MqQrIR2Gs/NGUZwRlKsZ0nPjSW8of/pmH/N5jv11f/8Y3+Kmf+Qp3718y9wPj3Qd8fCk8eOuGx9e/A8Bl9xTLI2XOFBTtAjnZ0kVRRBix2hklMScl7ANjTUPsu44xJYZdTwyBiQEtYem4NOePKOVrBNk5L6dJ2jTnrxTKK23Nuv5vbYG3DYQcnfCXtEVUkCJgEXSHSUZlJjQ5MwWN7rBiIyTX09XKE2yRtFQNwJzMUzjTcelkFfvBzVNONY3jGq3dUPUyKUjoagc3xTRguTCNfozf/u5Tfudpz8XjkSfPrvmVX3nATwxvcpMqynuYsPkZ6fDblPxt9mfPkLuRrhL5NCo27zhO94n9NwndL4I8XATqY9jx87/wy/w7f/Ed/ov//D/lH/z9/5Xh4jkX9x/6B4QHmDzlRB+5Uij8GmasTJhNqEyIDKvUDlC4RrqesOvIx0Aps28UL8uOUAMiY2mVWa9Qtb9V7ksdTVj0Ouutlub1NiO5BJ4BjYblPeVo6P4cYcIqalMsoRKwjVzR5zvadd0k7MSdWNoc08qDTxUhZUDziCxctdZmtm5qkqv9TI4saUsz6eYr66ZW0VUsQ07evgmwccZuCk9/AP/1X3vOX/67V/zgqnDnnj//h9+PfPO3A7/08/f4pX/mF9lf/ElMv7po8BYyQRLwffLxb5Ef/22u3v82z3/wCIDrjxIfvz/x9IkyXl+Q833k7D2sq6nZnbE/u8fXv/41Pv74wOH773sWqe4L+6g8uOzoBuXiPHLvfk8XAnfv+/q8d9/4/vevOSTXTHbnFXZDDZg6Y8rOOxcRQhTCoDWD5LJWiiAxMIeBgw5ch4Fp2mPJEVazPWYuGWc2bTbx07nk89O4naTdSswpMOeMmvoGUu+T1glxqpUp9f9CrXT7xNn1j2u0YsmTxh9LzcvGaX3JntACKaiU/AAAIABJREFUzwYySNmsdsmEUBB1dFX06LqlgMgN2DWUA2JHxI7+ezl6YxDwhjDFKLmn5ESyI8kORHOKUNydETRCDFjpakbyNHDwC2/eFnuJY1tTlqprXAM+bWe/oUJ4w5R2spW/2gCwWryoQapOcZXRWmjJgqVEmRM5OQ0GHaC2SacE90PS5BdfepB5scmCLnKW2+O65cm9eFuMk7l5wgXYSIN+2ljDlA1oxMp/fcHqf4a78OkqARiGwu1w7QRNrTHDhry7FAgsh7HZ3MyWif2Cjwm0IoxTlPV0NGd4G1274d1cFGmRjCzX9oSbWou/Gm/OzJYouNRK6oV3srke7RwKymwRKR2dRSyHJSacSl47l5irB5SyRiZ9VFLKqMBuF7FinA89T+vHP3t2RDJM2RinRJkjv/DTX+RLyZ2G+1/6GrGLjKPybB6wqBy6C3j+Fb7y9s8CcDd+i+urv8VlyKTKQVYNC6e0uKUn9D1FHVUuWaGKbM/SEfJMmUd06AlxIKBMtf1lxND9NdNzIcrWcG6jRl7dpl/RiW3bXsNqlbTVxVhLgJf2lHUhixdLKGeoFi9EoVIrdEZCh+TgVakxkuqdTcXcMTUQjKABFSXn2RtMAOPNlTcH6Dr64QwNkRB7SqnFcCrs9hdYSUxyYDi/BDoun3wMwBfevM/3Ppx4+qig8pTQXYIMHI/+/vk4M15/yHz9LbDf4ma65jgGNL4FwPnlAzoC6DWW/y4mB0T/CEV8bhXZoRJ494vv8e/+pb/E4foJ2PfZ75wy4ALXd/FqWWiIwQI2yFADPe8gBcfaOaUsr0cKGmeyDL4ZW65o5otwk9QdcEuFbo+h6i14i+/iZUMJqPoPvg5tPb71GAJIpoxedBV2q06ryLHO24lXMRrAaWzm5GIxhXYyxfJCc5DQIdLjyPbGZtv2QwsLRUeCI85LNXkNKpbXtMKTXP8Fk0QOgf/ndxO//q3Eo3nP85T4fuXWf/t3D/wv93b82Wd3+YU/9UtI/BIwLJtMsYTl73M8/Pccn/0NZP49zrliSu7wPr3KjI8Sjz4oPH6qIBfY/jnd/k0Adpd30J1y/803+Pk//LM8fvKMq+dX7OoXfP2tgXfvKn3wLlVXz2fO9lB9G25uPEBVINeUbd8ruTpHqZ2+QYweTKa89mSMVQtzNmNKxjQp09Qx5x1S1vRxMfFWn06e87kkLcvSnDe/5sXCC7t2sbVU+GXgzdJGQ6oTKKyUG3DHSV8BnaXus7rZ2FdtZVhAIlt31QV9FTlRCFr9hYyERIiZEDMiyW2QtIzUdf2pVf5WRf1JXrRWP8Oz9i78X7JCEiRVjmhRouwJXawNsPKpPIkfZBVAqdzy7X0pxRu1lMLS6l02QXjzzNTWdblIoLQXVABDqxqCpWWvtiSUeSbPMzllDEVCwlq9SI5QImo7TCZcvSAsPogtgVELULf+W9unqVvhrWKqZe9s7/gUsomtr3nhwZe+/vS5HyfEelUQwuvxerwer8fr8Xq8Hq/H6/F6/FjjUxHWsnGAF51U1mKI9cnT3609tg0gNn+cRFDL71sEtpy8YkXmT6HsJf3QJFteiEplga5PMECpxQR4RBS0Cj/Ul3hU7ehOWL9pgxlXnTeUZB2pDEQZF86bSiTntVdwjEKMgTyt0coQA8dp9qpvFZ5fH9k1wcE7PTfXifF6Zpoyx1nZ7c947/67ABzEmFIhHScO8wek68c8lId8FHvC8FU/4jf+JA+/8B7PfvBX2dljYqeMBah6mDsRbnL2CvcYsRjpYk+JTfrnjHz1FGYoeXZdV+noq7xRSQGzwjhfI7szyHoS/hRcBudVpKZgO6M2yYgNag8VkSvGypfaRtSKyUApmWS1oIgjYpEgA6IDISZvYauL+K23Mi3J0a+K5rq8in92DIEQeyfJ59aeT5bLlHPieHhOiJGu3xNiR9cPfOUnfKn+6q/+Mhfnv8X//Q8+4PzyARd37pJMNhJMRt8Lz548IafHTGVmHCNz+lE9t8BbX3jDU0zlQLf/LaS7XFPL+tA5XapE7blz7yHwAJvO6jX8+6hGhIjhKECpCEa7diKCSPQCkQXRq5dI6x9dJuxGyjFA7tDYusmto0nNCYKqrSuw1LaV5h+4RdGhUgYArcm6IN7vvaGsNe+ChAEYsemMbAGtEsNoQHQEO+PVjJoBkDU9fLKOzCplhAVtdd5055JhVhHkLTVgkRFsz2lFlCsSp7B2uUqOsqqnoqXZJSKl9Hz7aebjuSOeXTA/fcTcOKAKY+l47yd/mYsHvwC6r9zBetj5GdPxb3B49tcpx+9w3h2J+5nrzo/h6jrz9CpzNRnXCY5TIkzGm4On9NO8oxDRAR6+84Cf+8ZX+e53vsMXLv0a/dKXI+/ddWpAp0qMyjglxmPlsN4Ubo5ehR+Ko3o52SI3mGrxk1bUMhVjnmzhsPa9a2hnMgFFiUjeYWkPtK5o6ghprXh9KR5V96R1N9jmpyrCZSBWaoe89TUCSKXCeJJMK5rakLLGp3zxaz/PsSHnLP/Xhg2rrodX0dhT3VlZfACfozPGiOhEUKcaNQ1U4+Btl+0GbEYsVw1jto6Df6pWfV3pCfGiqpSAqFOwpPGO2uVbpJEUiS7F5x0Aa7aibK65VZS1aqiKlNpeFUdnReoVYJMo0fX4GmtEzLMeNnu9BGBzoUwT8zjVluMBsUJpslUWEOudxiQjZtGPue0pNZMordASda3k7WhbIxs7y/aevGxKbeRKF//w1uv/Ec/Dz6AE1K81WaHhtiGdHNrp36sErLFoem18gYaQn55M+6NVPdryti2vZztOL/nthd/eWVgIzi1tScZ0JogRQqYL3vqwVGduTDDPDaj3adaMyPLdCy8hutOqHbF+QVBdipFUPOXUqbCvXKnxZiIjDDEwp4x2gfF64vraDWvovJpQ67EXCfRnl+Q41EvkqdBSCmX6iPeffMT108y7P/kOu/0/DcDu7i/BvV/k7a9fcPO9v0xMj+jOe8baePswJ/ZBGKeJrouEnRcQ7Wrv8WxGiD355uiqRWkmS0HHukGGiARPXSnqya8SaM6fFS82aLUCn/ewUlUmzNbUSku1tZXU5uTL5qH56zVEEOc6mRiFjMpZ5VAdEQ3EyrELsiPHQp5HLN1AmSklUTYtNkXdkKw94v3LFtsqSuwGht05LnnlRuvCu7/yjZ+Ct97c80d/+Izfe1/4wsO7Xpe6LD+v9B52ZxyeF9I8ISVzqO0pP/7wMZhy5+5dT2Xph3Tx22BeNJLTBUJHCLoYWTA0euFMmR9j9iNE+pYpq2u1clTLhEqoTlHl86LLeZhNiB5AenQIwA02CiU7d9evhlY7USkBpVa9tlOU1Rld49ytcW1lDOvrVFaJtaZ7KwgaBtBEniCbp57DLmLhOej4isKttSzjJLW/qb4WnOJTtNEDvEhTs7iEDxFphW+092r9u/cPlARVFcQ1P3ONNOt9r1qSjQNuJsxFsaAcxsIMjOO0HFPf97z95jv8uX/53yB2dzEL5GwLHUbyB1j+e/TyA7Sb2KnSX/RMX6l7y2/e8OGzmScHYyxwLBM6PaOUJwBouaSUc0oRRIyf/Ikv8N7FyB3x59+5mBgkM94knj/19Xrvfk9fGwccpyOZQslGtEBUYc5GqcopLgHIcr1VhaFTuqpHKJXaRS1I9X1RsRJOnY9GPkRr8cmGy79MqLYLbgNmFufGxHcebbdikYHyoiDfW7eHe2rMXs28/aSxPdfqL2zjL9YCJfBYqclWIROqjQ9/RIKn/du8LTaCTZWnmpCmv2226Ae7v+q1BqJn0F2iu0u0altL1HpYeQniRFfhfUeu/Mf1UluA3JpttMCv8r7NvP5guWWCN1OxzVXYXADdBB3iUouuXlOLuHNCckKzA0CGkXPCWjMX86Jqk9Gd5ODyi6Uq+hj7epX7+q23ZdLWIP9TvcyTpgEvzjDXDt7+vX6SbB499dR+f+OzVQJamfzWg67V81vtw5MDuwV2bg/OZVNelLFad+ztAWweu1X0dPqa+rPw5Cp6WiOhtqm2TwjRxft7nehDYtDC0AWmCqTdjHAkMCeXfsriaKncvsoWMOsoZSBrT64yFKmkKk1hzFboRZnzaphip+TZJ18P5CkxBGGqTbPHYyaLQK7TWjuk21Nqb2MzQUNB0pGUPuLp4XdJ88zZ9z/gzu6Zf8adDzne+1Wenv8Mb/30v8T0/b9Curki1KKpjDFaISqQq7RTL1ArassQKShxF5lzoYyKnhdKMxTlAjOv/m7FLSnnNToTsFQWftjnPaxuHLJB31Y95CYsXwOZ2wFlmyvFdRqlFkwRXWpEJHhBjM1YviFVw2JxdmF9dYeeVNdHWR0rVMklE9Vl0cAL1HRpIgDzfMQoSz/qECL94GjA+X5CitF157z17lvo3gsGm+NCB6rndGfvoOMDmH9EjB0XVbydlHn+6BHj4YCocXax58IOdGc++VXcyRZRLwZsXqm6067xa+T5MYHRnWObnCuc1w3ZO1+1IiyQ1RzW7mHPnBssCe0vyDlgc798hoQeZ59Wx7IirSsny+ebNhymBdCLU9AgDKnH4wqKrbGAqwvUOSKKakfoxIsZgHJ4gzB02PD41e38t8xhc7DXIaiGZd6UGfKY0dmQriI6skFYF33PhrwusIF/vvj9cGTVfM66EjprlzOj28NX3huYp4lHVx+T0ryuL4Sf/7lf5Etf/VlEOhAh24hl57iG8juQf0QfEjFGFCVcwM0PfO69/2HhZoSUzNHOAqYT1wd3SC+He+jQU6THRDm7c8FZuYs8vQJgGkduovE81L7sKTNezcRdq/KHOAjjaKQxE00RM2pSqRbGspwL0a9jbKr+Jg6wKcwUYoAQjFjWrOC6l0kF4KRun5tAGHemmxSGWV4cUl0KnW1ZO+75NH512Bqy9QObkoa5w/PKOgx+0mjqBWyryaFdr8Ve446gVI6qqisCqI6oHBE5AFdQZfSEmdbdi1pc5YFEWRRrSsmggRAj2g+Efo8Oe0JF7gm2FF9Ti6ds65ypOHc1ULOzley8dB9rnGN//4mUInghL/XeaLVim4JHUWid+hpaC0ZLTZSSKClB9qYyqVS9gbovqToPuuCdB+EGKyO2yC16zY1vhcLKY93W53yWE7lB/pupveWGyeZ17TNP/2r///9vVD/VYRUcJrcNB8APtKGotx3HE78SaDfu9Aa2i3N62W4teLMNRH3rUm6IwO6Y1hsspxGPqG9qrQXlUn2pwtDD2U64HKAPmV3MXF83tMFQiyTpmJIwlUJCl6KsxXkVcRSh9OTSk5q4uznhO4ZqtOqmn6rzFg1CUCzVJ62gwmI4xYSjgZVCB+z3e+awo5X4B/MCBpg4To/I6SljEB4/H3nnSa1c/OBAOdsx9v8Kh8s/Sv/uM+bv/k+uT4en76I6gkIplJuM9kIzBPb8GjojS0cMg3cSKhEN1asPmWMEUWOc1lZ5Tb6oJHcpyiZy/nxHgcVprQ9tDUkNqmwbUTbmeVtWVVO0FTAUMZJHEC5HprFuLnUZFanBxAAakVBVBHJaUSYNqICKS+Ms6EtTpDAhM5PSDbv9JX2/Zx6vGW98U57nEcpMtCOaPiLYgSBw03RcVciyQ4cv0p3fkA6Bcf6Q6xoMoZGnzz4ghML+zluYvkscvkjoHF0k7B0VKgnVuAj4t9S+6F00fJWSv4PI5KhDDptgTvw6aME7XomT/qtzHoj14s+YXSFiaB/IObBWPc61Q1OVnlhsXl2/4qqMrUCgWLu39WXL/a1uXp2cS3OGJQj3TcTd6bCkCC3PlOM9JPdw8amT7B/TOHVutg+tf7gea+yqrBUDpMD8PBHDTNjXojfZzHfaZbEabHhb0fUj3btfQgMJEOOyrYlCNwT+2D/3Bj/3Vx7zN//Pxy50XyvYLy8v+Ff//J9HQkWscI3oKXnBoKUfudRQMQ5PM/OcsFj40e9VdZSjBz6WzQuyxefOVLz9bJEDfbznU8wCRYSz83Pmg2/MNzfGcSyMAToVQi5oCdzUIHw0I+yV0AkhA7msclF4xteXt1BSQSSQijGNFWhQJeyUrg+UBBrMOxvlTNl8jml1u6oKiRo1+4Q70tLkHqlCPOteKlWSatlHzffGRRPYsjscQbAmv1jy5h61QPzVRFptuW4bDd0ewouAlbeYze68hxGtLYc1jk4DCBNI7dDHEaxJ0DkNwGoa3R29UFHJupfl5HM6CGHokF6wLpFbJykB7y6VkKb/LmUBIS3gm65SaV7urMqi01wd7eqHNAR81XGulCRxZ9FEqpO7ovKtjfji+UkLPiCnRE6OuAsBDY6irs1a2msdaCilYKZgTUFEcQ+o1CDKJe1OgtbfT3xTfZ8X7+vp58itZ/9RhFCfibB6JL+Fj+Wlv27HGt3dggn8yfqQkauml9qGw2Kri7pQAT7xTI26u1bjXLuFaMIkEUKh65WonW+C1rhKmb4LnA3Cg0tjF2bII7FWaqepYAl2OpAEjnNgzJGppteM4ABE3QIzSi5xkW9JEnwyFwgxEBWCGI0RayWRDUSUnAqpIjthST0ZocBkjor0EaQfKLEiuFOipEgyIdWoNKfEzdgxVsfnov8Qxr/OPr3L0f4Funt/hnLx/9JdfRuAvnh7t4FIUSHnhM4Fene6Ld24Md/fQfpLigW0BPLC1YLdruO6Sux4RNvCEPCq45dIZXxOo+nosp0/tyoebXlsO0/Xv0s1rNIqsRlALxBTrOwRu8R7sLfNKLqzVjJY7dMuUp3UZhg8RPW2jO4qeQOKip6X4rSDTkj5SLq69vaYVSDe0uhcKRKd3GD5KWIjXQ2WsjjaGvu32F0MzP2b9HLN+Zk7Y/fu3mE+PuHpo+8j8T4W3sP4GpQ3/P2VbuIrP2MiaLaNbRTQM8ocUJvQWA3nNqgVn9utNaGDBQ0hKiA7mvyOMUG4QruOMq2v9+sqNSisiGjblBv6Ue2tm15ZjKg057XaryXIrre5iKGtUrkirSJbxMNT6ja/Oh1WKnd3K4WzBvV+8ieggRXIguYztAwV1W5KDSwbopHqDpzA0rIprt6xVt/V0+5o8M0a/3orwtnDjr/4b/8hvvY//IDf/N7E2fkXAfjX/7V/i3/2T/zzhOj31gXWN6lJyyBKysb1ITMfoKgw3vg57AbljbuuRXl9dNuf8Op9cI5pNKVY05GNhOEC3dV21FcwzoVphjRnjghTzgxnVdlkUJdLEl+xqSq39HENaNRw9FP9GsegCz87KIQAWY0S4DDC8xlSKktKW6vA/Fa/e6u5ud699syCZyxPutnyzJWqwCboF3J1RlYklu37VWn6GK9qeIq//iFrwLgNmjanS0NYrbjEYuxGQnR7F+LRGwPohEtY3YBNNLk2W1LxBbFMKRnNBdKEVnBG00gqhTxf+H3oB6QLsCgEZc8WWkIbwKGyKL5VVlNtNtQkETMsQYSvTanott/gjbRYASS75nR9bKOThIWGwjdVItd4lepQJ98kCOrtuB0MCcuMKtl5s8XMgRCEILaopmAjFbrD9Y+ig0msdnvFQZcbtzyyjk+OQpqz+llh0ma3/YTx6Z/wmZ2ubmuoSS12OF1+t7/o1GF9UZhq+8pCccB6fU9FTLjt+L7k+JbINGS0ImExFk+Zh0TshLOdsY9GntNyVimN7HrhYoBdOVLyNaq+SI59ZJ4MTUf2vTEgXJeIZhfIzuzJoaPUDhlqfvxrW9OyaNGVuZAjBF3DZsMLQeZKrSho5VHVdL16qj4H0JJRS3QKx+o1hKg1LXAGeoYI9DGS58THj30hX1w+4KJ7ykfv/7d86eKb3MT3uHjvT/PoN34PgDe7IykZswiden/sKR/o95UsmQZEDt5tSXuk67A0knN1rBSGoKjGSvNwdNVKS0Gaow6vMDW1GM6to1qj2VYQxXYzueWwemTsBUYAaIcRKQyI3aGSe737CRA0EXQkyNE71ZRAyZlc0tpNS4Oj/Q0BrvPETjal6lqkkaoITZo8rSoidDFSktCHkeP0IZK/SLfz+6amZHO8IHT3CeHM517nKNSxRO6/dYHuPyJNR8LuHVJ4wLGec8yePksUEEEtkFl1iJ2mcI5JYJ6f0JcBkTOWYKxKqIlWh0eib76toxLgzPChIhG11WE8IG1uJShZCKFCUDSnshlM88CgdnBzX3UtALAGUdX1tRpa/7ehDYJWx6AiFPW7pKbMNLyaTV/xID6YLU0TvPNOdWI1LA52Q/ZySg4KlR5hj6tB1w0UAHdOZQkqE66NW9eG2bqhCmtWzTaOsmotUCl881cu+fLP/SGuj29y98GfBeD87p+oHYTqDo+BDQhOJ0kSaN3g5lL46IPC8yvhyUd1/WS4HBSKZ23MzO1Po1pZR7EOCFU+LmBhT9i7XZ41OJ3FjCjQ9eKNAWY/x11naAJL5pzlufoS7fSCoMEDn9D5lclmtGkQozuzU20EoOrdqloxj4+NE8kmyNrshWJO9VFpPEdd57b5a1Sr3m5Qty9L/YW580MrnJOK/K3lwW6vXk2XNoBlQ3hhrM7rgggvbsO23KcgFXwSnRH1TlaiIzBS8rygm+44Vk3tkiFPMAtMNzDVwqx5pnQdmBG0Q7sBjbo4vWRv50rj2VdJqk3N1VIQZc05bs1NYHVUW7bX3DFso7R2yhXgahSnJfxU5/xLpRGKimebtF0Np4epxFpToaSSl2wmtTFAUKn2rBA23c7MZm9wRMC8zyZmkQVo8TuzgQk5tZtUTLDdKfNrwQZpXTyxz9juT+mcv//x2a1Za4S07Q2MLG7sZ/sjdrpw/Y/mFKw/J06tNDoAn3oB5OQ3qekQ0FiIMdN1BTSjMtKHqq2HRySlN+7uAp0U1BIhHZHkDuuFRG6AuWQimS5mSIrNvunPdk6xHaUD7UDyTEgjsXbWCOlI0FLbrho5FWb1bhXtlEoMxD6S50wxmOa0GM5igRCMsyFgNnOcD+zyNWlwLU0rkSSJWc7p9m9j0w9Qu+bh/XNiTc89u555+84dsn3I1bO/yZ3wF2D4RezijwDwwbO/RxxH7txXSAXdFYom0lxTMefn5JvJnXsNhBIopSOM1wCkUrjJgWwZSZlAB+SKssLCMPyHnKD/8GOLoG6d0U1aqh1zfd5kfb2yIZJnqdGpcwCNAcq8FAiYjkh0wr5U50BDpBNdEcZaVKjSlCsMR7r8K1pbTnLByLRCsVg5rIJR5pkuRUqeQa4p+TGIp/Ql7JBSHR0VcgkIeUG5xgSPnx1R9qQ0cnN4TgjDEs27MR5QArn2LvaovCF1fr5aBqREKGNFlJrx85ZMRaWqDXQg/Vr4JlRdwILK4JXwciCEgKo7HkUCWPZN+MQh3YTJYtXxbMe3gAWbeKMF1xXHWn0CvHWhIxKe0pNNrUwNYl6QQ/l8RjT/frVVm/LEsQR/vDpLACUbgQClx+YBYYffmLoJU5UqpGnkVu7f1rGpFT7eYWcTQLU1HIKnW7UDNe7uhTvyBtp9uT4/4PQrR26KedGd1BaSyAUa7lJ0z/XNc374QeJH72eurvzcrq4yVwdjNkWiIp0yDAP0VZRfzzHZuXaxClECGveUml0IXQQmT7rhfNXLfViKroZOuTkUjsdCmo1gzmZoHFXRykIs7kx44YoQYg3GMKw2SXF9bS+wTW3NwiLGILSp6zzwxmHdTk3VRjN7cZ45f7x+rkSaWr3VEmDn5jsVoFjVevV3si3q/AMzPuF45IX/42t2mffePpv6445lXub1kppvlIJ5gjnDfIONtd4ilQpIR6TfI7FH1LBGGShVHaMGc6aK6QYMM6l+aKm80lKvcTPatWhM2vPSTqKeQ4FiNeBUR29tQzmoiCqyBti1hKU+b4gGzFxFJlO7nDXueA2eRJRUCkYiFyOV2kbdZqdMiGLSYXQgXXWqW3aw+aCyQDhtHi83pT0u5nvTlotsATZz8GXjs82pfNJbl/Hq8gavx+vxerwer8fr8Xq8Hq/H6/FjjM8ouvrsR6VGBCv48TI6wC2YtHFvzCNVOYFpWwpFNu9/ybAVCVvld1YIRcywlNCQMZtIBvvKZdIApRhnA/RSCBmO80qu7/ORc1FuKATzlPwghVBlqa6nkTk5z62PPcaMzQeohTElHTy1tNtX7l9BglOdwVME45RIfY8GRYISYiC11sC4GFfXd+wtc7geifMTzrSiJWFAOijziJy9y76byVe/iXCkr5Hs40eF7/cHHt4fSOlbzMfHxPAW+f4fA+C//K/+R96+H/jmW4Vf+YUz+r4nzZlQDyIQUTpHFKiFwzcTeu0Iq87PkcsjWSa6imRBtxS2lOytINf2tp/3qNWyjRBfH7Nymn4/nZsN8Vz/brJoy/MGSwLEejzlXVPZVOkkTZhF52tiNUuxpgkXCZRtQNlQ3pxock4iRgyB2O/J2dGCnI5ORZFMFwrkj0nz71BmVwHQ3ZfIoce0dSyJ5DKRF4QXcs6EoOx35xyvHzHFbkGIXIyqgHWeChUlSMRaa9Vyg8gzSAc0FShTTRW3dFpwRM2cS+Uo3rigbCId2SBXdQHRPWik6IzGyjnLgwMVlTLhvbzX++S3wDaFjzVV3l7QUKtb1boL0L5pe+VoZU3FLSCzV/PyCX2z/7EPobX9fjksYV5prcKiEhBiD2XGcsBSD2XANWpbIWprDVkroS1hZa7Fmziyjjo/TqqsmDmqs6wWiWiMiAwVjpkwO9Je0ZDukyWEEqrAbdavMx1+jvn4hHE8MttTPj5kPnzsx/joowQa+dKX77B7MDA8V7LsmeSBn2P/gGyDo6KdSwWG2COVw7o/7+mON4gV5pTJE5S44V8XiAV6EbrOaVohyIIxV+YAIdQ9pfhrtLVFrYiSmFCyOce/UYtkfU0TWVDzXldmWxmnLXZ1+1+WbOZCLCiuG9r44IsVESqDxWk7i51dINxXgUV9VroVWK7VJltCQ6PbAt30P61kYM94ZNcEN6fi+fPNxmekJCRPjrIdFSnvAAAgAElEQVROI3n0uV0sIHpG2N1Fhn3lqK+fYSV5XYB4vU4WP5JG8fMymbUwjNbSe3P8y30V8yrQstZvSOXnllK84DNoRSkbslxYWrW6bhZbpQENgZIMLV4gms3c5jYNZlVEAzkXUsqUUvWC6wEUIqVKdTXlD0ErJahdZ63XPCDUttQb3v/WCtny3+bsrZnoukZuZQ6WkrJ2sz9xfLrF/Qwd1lOYHtqabam29QtOEH9bGTt+Mrcn8tpLd1vBvbylWb26oS/SWidHthYLWJPNWXhXDuMrSkgJBOY8c1XT3XfuDFzsAp2mlkwkhshNxeDnDOcdXHaB49EYj6CWuXvmm26QmUOeKQn6NACFUo6kmi6fbg5YUITO+1GrpwfSpqd9EEjjhMSAxkjsWvV0rXqWQlGINnAxF47TUwZzyaqiD6HrKfsJnTI6/CT33nzIzeP/iyfPvIXmBz8a2HeBOIzcvbxmmr8L033efPMbAHzrh4H/7td/g7fPC//Zr/0870Yl3u/IN+4YdRcdlguSElL8WKbf/QF5comZ887Q7mPu3nmPcuiW9MW0VGSLGwJezRBr/NnbAdOnHdHtedYWZ9k8uzqt1ZWnVWN6w9oOs0AIgwtll7nd0PoVlVB/O/myaF2mGsCZ8z7FSNORNPncmqfnlDz52lQI+Rqbfgeuna4SQ8SGdylEdzjoKEEoNP62c99UhKAdQ9eTx2fO8QJy455apgRdjGi7BkGvMT7Gxg9gflL5qnlRsEAVk4MbwBjR4AoDpaWFdQfaE0JNxZcbMHdaLdSITSekOOdsrZhWFs6M1RQ+rTDJ1TiaCWrKBKtp2RZhtTkgK++13nbZBsDW5Hde0Tj1Y5aU4QuAgbaCoh1lGsFm55Gnrnpe7ZVNFQC3k7WyulE12mf5nMNTm1Jb39rpxihiVXjcwA4IrbHG6Xpbll+V1xH9Mtr9i6heEsKObvdbhP4jujO/7yWOPLh/yU/97E/z6Poc/QieXgldXV+F6qyqEtU5p0EDQ+fXoOtgcLU15lR49tw4XK8p/7N94Pws0u9CdTiNUoy0UEGE2EktuBGC+b+NdmHVkZkrXbHxELd7XVvfrkG/KtMsbUcbX0GE0oqNhEXirs1LUS8+kyXwXO97c2q1bpBOYazvX3iNvIKxeMsvPLoGky/qC92KcMA2tTNQ+aKulFAsEbbqFi34LxnyjOQE88Q8zQt3mWFP3N8lnN2BbqgBYdnY3KrVLp6ubzKNiz1pE7ntKdac6xXIWArrjOqwFk4Kyc2q01tz7wHWBHd7v18Zq4+0oaqe3i9tjQpS9VYBQuwQhJQnSnb1jXmeF49bwlALo0fgABZqUJRoLqARUSJYXwlSUn2oF+8u1b6u4A0bpbXWTru+Y3ujxW1z8x9vP/njTNlPd1htFbrdHnTbJJrxO1mwy4GtPmj7LE5e18SCW1/kzcHb1jFYT2VdDqXqBrK5UhvjUH8UoY9KFHXScOsZfTxSQgQN7HYd0+hn1bhKqRS6IOxiIAgevQpc7p0rFWWmTEdKznT4xMyaFg5tyoU0JeCK0HfETpkr2gfeL15CIISCpTqZY2TYVcOexLVfg/Op9l2hlKckewrAPt6j5B1l6MhlpJgyhXf58k+c8Xf/j78KwPc+fI6GzL23L7nKiSE/pe+eIcF5sH/mT/85/re/9feI3Rv8h//N9/j3/80vEfd36AffPKbjEckzMoHsR0rXM7z3Ns//zm8BMJ73DLvHUI5cj8/o+z1bhkmCGuVv0cxXMH6cVXAyz2RjLGTz017YNmqrBmGFSQvqcjv0qMwgk/PXanEPVENJlRtqhoy1oCjEJu5s1RlULE+LcdVmA1QpYmCKlCtkdvUHnmXi5Qi7tyGcURhIxFWSTao0SjVK5+d3ODz7ATZXBQz1YhnLGQuB3DIECxL3nDL/CClPMJkpYs7hrYUxEgbvya0JK5AQ9zWt6SrWK1j6WqBVEDtiBFCfe9LNWJ7duFupSMJ2HoXTIqx2h5aYtxr/Zcep/NeNQfJ9o71GFvvqL183mlcxJIRq2jbn8BLk4RTYU8yqrFoOWOkcKdm825HzaeHZiVADB9xJUMfXl425VtG3giKthVRmm43ObqirHdCq0FBrEDYAAkAJHUnfQ/o/xZ37D3hw9b/zpfRbnD3xQFzDM+698Sbd3W+SZ8O653T7G0KThCPR95kudkQNxCAMcqSr368baSAxgWyU2ShV5aAEgb0DJXMpkMwbZNSjT8WcP2weAIUA3U6Xgqa51G5Y2feWqH6Fm3Pqx7BF+6Vy1depZHgstwS/y2tvzYFalNW6brXhAvFt7/UdRTdoloZQ9Yw/f7ur8qLTsXVWt9a0zanm5DUcbHFqFpvc1C5mzCZgxrm7W3WLykHNCVIizYUxC6nzJjjd+X3C5QPC2SXEzt9TUVUfjZO6Ki94nN5uWnNU8wqEbLRwWzFjc4Jd0OPUIfaEWj3BxWdqlXReQNm4rIYX42ldm6YB0bTYAxVFYofURkIhRlSUKWU0RKK5vZvnY72GM1A1lRdlgIwDLX09kh6jyvqVFgy9mLVy/jRuW8QWjdklJ3BrMi/e3gIgbPfT09Dltq/5svEZRVer3//yIet+vVmQ7f+N/G1lM72ayLK5w9qA8e13rIDq1uNlmaSKbS6AT564KaqKwVM9Toov7KLRqy7C5GUcOabCcDFwLB0RYxhWpGycRif1BzjfB+ZZiRFC8Al+96Lj6hqSFPpY6FWYsrlBxCv2p3Hk5vk1cejQLhKiVrkX2PXRF7c1SRSfCqVO0C4VZoxOnQAeo7IvM/PxAwDynXeYZUcqyn63Y5wyxZQDX+DBWz/vx9B9xCyJ59d7LuI5id5BsODG/Z/4lX+K3e6MR4+vuP76T/LYeh4er5FdvYZRnfZgE3JzhcSBcL6j/4K3h+XqEVN6xGRPsfCAUnq2E9DRK127cXzOwzdMa+o06+MvvPKzl8kSa9+OGmtgtQRjphSLFOnRMANK4DQ9IqrVsBmougyJldq+1eWfqlnwatigBA10vRckqWTS5AGUaO+oVznSWdNp/S48SxQZift3iHqPIPtFjsyk1IJXccdVAmfnZ5TxsR+fGZInV0QQyGKozkjVPcw3P0TG3yXyITII0p0hmFf0gyOso0DXobtzLOwxjSydsOYrNBYkeKrT06le3LegtN0eSTM2V+Naq3ZX41kDC2tp/OagrqiM1U1vaVRSEa31I6ymbR3x2Nyi+l3KqVX6/IaId8g7kbV66TzduAO10YOYQukh78DOQfb1lW2DTbUCW2455G2OJyiFkr3zlTsRa7Dlkj/+er/0M9ihfsaMEXE01/WFzbbHWEhaSHqHcP+PcJYuuAxfZd6/D8AYf8RcjPefRq7ngokQg9QCGIgxsu93dLojqNCHzJlNSPbM2ZwTodFwgC4qe5EFfNz3Qh/AUkEzdJ0SO13mzWEuy35nZpQM01QIjRKAV1pnIrNFcgkElE5cc/X0Op78tbnKG2BFfJ45faeh2EJQJdSmIdZUGjaBiaorLbj98O/SDZJrL0HiP5exODj2EpO6xRBbwanbodZN1mk5VoPaFkhFX8Q2Q/GOVrLBtZuklZWEpZkyz+Qs5LBHzu8DEB68S7j7EOlq72XL3jbaVrqa6CojJTUIWamKmWJV1F+8Ch+Dpp1tOfvvpSCltmY1W5+3Up0aRzZPOmgBoHW9eGMagqA2s+jKa1WNqLdVQ0CGPSydAR3YCnGgJzAxkdK0HL/lhNnkNtcROEqeCNo53QSAfT13RWm9PVsBWQs+q244jr7Kxkdb7jvrzHMopnlpdmJuPtGr/AyQ4DMQ1vq1stkMZI0fV0RzjQJvP4ednsSiV1tWWaGyeX6ZJC0XuBz/Vn5o3WBMBA3m3atqS/dd76alD8a+g100znqn2wGMKTE+PzClkXy+Y9gNFCuc75pOak+avJOJirIflJSFLjSkIbPrBes618w2owvCfqgQfeoZj4npZqKkiW4oSB+IDZWIhqSCqNC1dFNeeTGjusRLPubKxcr0IRDzc38+P2IY7jGViGjts25w9fya7twdyjfe+CkuwzVW9uTpK3T7O1jeI/UYv/b19/jjf/yf5Nf/57/Gs6sDj/MbvDM8Q2tl4WwR6UAtMqeZOM1oLwx3nCuZD08oAnfujDy9ekzfX5JSpiFtwImD8Ad3tMpM2G7isj7d/lcDLX9ysTkAJ5zIiHc/6xHZYZJrVXz7ilZRXNNa1ryqFm27cVJ80zLLWErLMWjoiYORs98n7QbEerQy8TQYlr9Pub5C8peQ3RcJ/ZvkUNvL0kGtwpfilehDOFtks7h6v6IQCpbJ8wGRETOngtj194j5I7KMjqZevs08PyHgczP0BjFiMSBdh+4fIPs3kaXS28h5IvQB6bt63s4zb06xyYjFwdPaVhHpyq5t92QNApq9WOlFS5BdHdKWvT7N8G9N7Olj1UDxqlQC/GBLtbXNuaknIHXDb8ot9RBVA8QBSx4w5Jtz4u5NpDX6sIhRN1tyTdfLwoPzuV9RoVo1XXKqOqAbfqTiTrEmd5REwD6uzx9ALqqDUdPdttmcSsBKYpZM7iJ5eID2DzGt3fmOicPhQLE9yI6o0RsX1Bs3DB372NER6cgMOrFLV9joc69ME7tg7BQ0CrEXKLY0bNHKL7QZ9tWWz1OpWQQoHsHU+WPupIyJXGkX0vUU6cgSmLMw59b1aONgLXqXp+PEXlAdV6w2DqgyXVSprKrluk6HzT5ovgcvDq0qaqsT7I0Q5PZk/1zHKpG0GS9clPUPq3x11SYVtsWovfrcckbyRCiugWq6OkKYuarKnMlzodhAf/mQ8OZ7AOi9h7C/dF2yYtVhXRFWaU6gBJoCgywH1sCPxgNpvOUCFfknO11BSvYGAbYsSv+nBj++frb3pkr2Ics6aQrY3mmwvkrcZ1jAEsXpWk3dwnw/CVWnnXGq51BtXDEQ1+42u8HyVKk/HdpQVfF5zJLxM6gydP4CVxQQuo2zaRsHc+MLLnd4nQNrhv3WQtjOAz57fHrRVTOKJzNNXhLs3z4wO3nGfzboxvLTFuLW+14fe+E02qJsvxruAKhLjYRQEVjJRM10muikMKjRWV6e3/Xw/JC5fnzkPGfIyTs/7d1oXJ51PCsjXvRinO0i05ybLBo5GXfPe1cznBNWzFuv9tXhnQLn+475mDgeEyTQDLnC58kUqY18VNURaIE0V55g7wL0gwhkSLOR5yNae2YP5z+kyEPmcIeknjaylJAyMVVdxjC8zcVbX+bunYfkcIdduAR0adfWn5/xn/zH/x6/9mvf4fD4KRK+RKIn1EUQg1JCK+wI3p2xBPTSHQ+5vg/hAaUo986N58+vCHpGroakacS9SnmV1SVZ51KjzywSVrzEjtrtB+SlTzoosEHBpEbKxTs3iXaodnjKqaa7xVFNxB1RlxuSxcgZ3q/cbKqRvhuv5vyXrI5mW8RK8iYDsV/83RCsardeY/MPETmAfUDovXClyF3gDPCNTktC05E4OkJ7ePQ7HI7POBvOkDRz+OA7lJuPuPPgIQCxm+nPIvN0g3V32V18gbi7Azff8gOYr2H/JtqfQ3pEuf4hMk/ozjcPzu5CLKT5qW+63XnV/2SNKPUaiR05ircatWbkq+MgLJQAvyynW6TUIGS9a83obh1S/2fVG7yNNhpmeaNU+PkNF1E33yO2JLLba2nLCVBFuwGzzvVFj2eQ7yA8XJ731GDByrFuTNsgwBzlb/xpKYhkLDWpHn+pFPXaDKm0ADPMvutP23eBb/hFLebaj9ZalAIlE9Xoo3FdRlK6AUvEeu2jGKEkejzDtOs7rFPvJgWEIPSiDMBOMoNcIfNTODq/u8+J871x1inSC1RVtAZEhKjMs4MLglMAiqzXcLcPEJUpe+q/lPVa+CXKmGYkFLTSJawFnMuNas7mBkXdpMpXYIbqibQ/2pyUk7m7udmnt92sFg/V41+4yNXGvQqz2/bnxW/w4UvsVnr5BG1b/2zY2CKzVz20paNXcWpdo9cZVdIqQZqFKQfs7D77N75IuPeOv+bi0tFIM6RkSk6UkpZATJUFlNuihmthl5cTunNcnda8cViLUxSs6a0W1kwy7fNOA+QX9kXZBo/NvvnvGh2FL1rf35zVBRF2+zkdjxyeP2e6OZDmtWWyn1cGmyl5do5qAcsRqRkYkbRYUHV4Ge+zWb9Dot8nEcScWrB6Yydntvy7+Gm0XVjY0t9e8Ct/jPFjOawv8zlu7+lLhGf1pi57w9YL9+dbZytZIvGNQ2s1ijglwLKNMtvJrwfiUdMyASUTNBPIiyiw9JldTVvGThh2gatxhJuRyYwyCGONcs92Pfcvd9wcnYO465Wc80k0se8jasZUCrkkQieUzo+pDML5HJm6wHSYuT4csTSQKwnckjENEYKnpbrOe9P3dcJO1xMFYT90hKKkyfXn8uhoyRAjfXeX/fB1kuyJQckUYoHjwnXMJIOb3SVZzthrB8XIVQVAe2F/75z/6D/4C/zut/4OX33biCWRajVqNCGEHtTXuvRgJKbOeTPce4shvcGzJxeMs3lP8T6sLUhrOutV9bSWtgksfKM2VrRziabXPXvzqurobJG7z1xTblyLeeczlZ5iE8K86jRSHZLs3VUWRLdVfHZSKQKbCmR0cx39/ngdl4tIowGNtQofo9gNJR2R6RFl/IiCIf09fz6+iegdhB6vNilMN8/JNx4MleuPsfkZZhd0EjgPN5gcye//pr9/d87xcg99R+gjcfcAdg+Z5o/8+M01ec0GRB9AeYKl55TRiwELiXB5vyJ3I9Aj2pMLSBXy1nIDqoRddl5rmjG7OLlWgtZmMp5OlU1hmNXub/60b0K2QSsXbuUWKNhUxK4FBa92bA3+J8Z97flaNVxmQ6rWoit8tN6yE3CNcXQu4FKA1T5no7oAOEuz6ZOu6KFsMgFmMzk9B74DQAjfQfTLFOtcG7TIiV6kcwBHyBNlOkAa0TwhlQ4zqHGYj5wFYxRBtfcCk0pjMkt0ouxMONNELFfcTE8ItQvc/Z1wvlP6XimqzBmsCFM95pQhBqD3tSzBKQda7bb2XoZSsrmSRVVIWXfJQraEESs31bmH2Eo7MFmdHL+8pwoWLd2sIif6JcuQFiJvUPRNOLYAQm1ytGYXcuoQ/bgOwD/SsaHknP6+cWOkIYh1LVfH3ZaYSCrqvHG2ate8FTPcaDJbQoq3vk4JkuyI5w8Id99Czz1Iz3FHkYzlI1KOHhg3Tn471gWYOwU4lnPAWOkHFVlvCG11YqWpAxRXiymLQgeoNX54yzxsHfqWLdkYpM3ta2i81QumQQibSDrnTEmZ6XhkOlwzHW+qEkytiQkVEMkZK4VUauMDjegihQCIohoI6tz3UmZKLbgMcee2YekyaKfbahsLBaiVocnJc00N4qTGAJYg7bPM7mc3DthadcD5SbI8t9mGl39tOfDNM0uq1Z2Ikyq70wBzvV92uvyWmjVhuYUitXsEa3u8gDGoEUvG5kSymUQmdz6BBjI7BemUmLJXwqsu6KD1ga6DvnPeaxeF/RA4VpmMIIZGgexdUApGH4Rj5Wv2fSDujXkfmW4C05iYx7wsyjxl4lkh7CKKEsXQALXYlZyMnDOzCIcxudBxCezm2nP78TNi/B4Xb1xy3b2DyB4LICSG2NIQ2TtTlSOi55i5lFeqfQ673lOeF8Ml3/zpSD7MpBTpulqRK4qWgnQDsR8oEayMy+enh3coj9+g78+5Hi8Jwbkti3aw4Qv75RPrcxhbw+PDp1Z1QpvxkM0yaU6LyBpd18cB51stny0tQ3vLkXUukpWIae/pTaB1y1JmxA5gR5chQtzxrCtJNTprRqzyrKjZ6To5aieeRnJ3weh1bfj68o20pBtIN5R5JATn+WX7CJOOrj8jXR8pKREIWA2GOo30l29jRZhvnqFFkKLk2o89zSNCIJ4lNP0282+P2OUb5FopHneX5HEkT88JXYDYUUQxHMGNnbezNemrkZ8qktgtm1CxCa390mUoEEdINy7VBFgrFrDgm4MEKHFjH/zeNjS9AVktvdXM6TpTaqFN26Bsg6a8grEUnG6Rqrrz62anOrWrqyMgaiA1wF6c87XgwkGFXL+iXjMFL2aDduriD20QkQ3cmzOUCZuOpNpBkO43iMM3EDqfgyVAUkppkmzX2HxDmRMlHZAyehe/iqAOfUTniYvo6GGkr0hStTmmDBYZgH05oMePkOuPGNSLS4ZgxC5gvQur5+zXsR1eCL55pwKYtKXk2TGcglVEaSzyXJ3tNNVVn405GLNCTl7zIOZtl8viYDWHNa43aWMftHJPqSl9VwSoLVjZ3PMX/M0Xomm2RdHrPHGH71VArEshdj0OuIWhbc5LNkHj0pLUnEYWNu9szmrrBuVSbayqC2WGNFJSIhOR3QXx8g10fweJ1fZqbYQhGZjARkdEF6BCsKKrXagg2Fp5U22CVVnEVlC1kdaSDTBXzLzrY31e9DZNxBfZin/5dzbtmLXJxEbFwNxiaeMtT0eytUDMHf5pPNafEbOWIQAt3l7YyOR2HlWlyRrdJcwgR6iSVmaZUhSaHKEGRGJ11AtG7cz10sDIz3br7rft+JSXz8ZJf3G+vGy8CrG21+P1eD1ej9fj9Xg9Xo/X4/X4scePyWHder6toKFC2w53rlyFJY25pi6swenA0iigPW0L2F0/4FZqYyFAnx4F4oiI1qgHs4VVoRSkZFQKpcykMjONiZAaZyXRC/QxEMSIUaELWK3iVyuoKLudkmdHanaiWHH/vnVyFhFIXnkXN9Fl33n0Me9n+m5k6ALXU1p4iOe7SEze17qI0wqgMMVGaRByyvzeoyv2+567D+8zZ8OeuKyVHWaufvgDznPg/IExdg8h9GQZ2Q/+HUENzTN5PBDlDhTn3JYmQJ+VqA1tNGS3x+Yb5oUIHoimxFIwImhPmY8e0QIa7jLpGXOOBOvY7c64mddUxpTzCxX6n+84nYNQ02m2mW1bRIBNqoI2r9f0xuYtYA3VlJruahGxk9VdeLkj5YyRCJpQaVSJeZOzqOmjWh0LQMobpK8Ba7KkZT3FXZDg6R3VQCCTWt9sqjaBdKRyQ0ozXbxAa2WJzQfCsKPTnpurj+lKRNOEVI3i6XjA7rzBMZ0hpoQpkZ4fYG6poZ4oX8A0MqenpA9/G736AD27U6/hAyg3IP8fe2/SJEmSZOl9zCKqaou7R2RG1t7o6RmaOYAGuAD//4bT4AaiJgwGRN2F7q6qrMyIjAhfzExVFsaBRVTNPSMrCxjqjD6kBIW7uS1quoiKsDx+7/EfYAd687+ih39HaoLBEjJhOKLDLbUmLF8AQ2NwN4F+nSQhtvgJDwHRC9THduIUs2aOX6Oj2USoLQVmbn7vZTS74nVbnVfpaPkLlPUq+bei8Z+hrb6xek1i/X7G4HnrZRMLoq08sAS20qtuCSQkhLIlz64Pcc0u4GhWeJGnq+1eKp76lJQJaaY2Kkd9/Hus/gYZZ7TeUZYR8s451QDLB/L8SEqC5TOWZ9TKKjzdD4HjXokycwyVLO4JK9p9WAeiGEd7Yry8IywfmMrCMPrnxyAwaBvHhYi501HTDhQa7S+680DBBTFdtW1Nwd0yuxhuJK+9pDfOT6+mlBKxPCDSeH4dWZUm1tPtXBa6NdsmKtpGmu9f2474b9dme30T4TVXiIbQ0rQLqsERQPnpswPCNRrfn3x5D8n3XxZtfFz18XP926+9iAuEJEQXFfZSrIDkjKWFmgsW9+y+/A3Tl79Chv2zAiFitfX77P91Q3m772qPVFZ8sH+HlWZTVVran/b3OrFsg0btKOLLm+sqghIfl3rmoF7NNesIZJWaGxUm5ybGi5hBWWan4zSEtVQXRJWUHN1tCG+/L9UCgcYlFyHGgAR1Sko7hFoyJjOg5KCIesn42MplewbVoEZgwMVXLWtDHys/kW+37YmeF+w/sSsM+690tvgrKAHrWX7xeAsInvEUO+T8TD22RbQvWA1/8butBbTd3P8aPl5tF1rnkbpxKgQfmIK4PZNnxyq1Baznkim1sBMf4MIUGQ9hVYu6SNNApXEK/STvWqWrBQi1WXCMgSxGzZX90AalGqhWOdxMhA8nNEKsG0naTTkMSYWSC3M1zjmzu/GU5xiVYAZz5rJU3twKc1U+nr0D3+6EO63U939Cl8rtl/+OMn1BJpNaQLmrGa0Jy2fK5YE6BlK+ZWhKbMmt75Ewc17vxQ6rwKGGSDawamgpSI2oDVTzgFdDZYqZDyeYwoEKBCrUbYIt9tzK4qdtW2e4Xmz5Sy81rN+btWl32DM9xOrY+L0OfP1E96r0BY6JgsZ18KzdoqYKK3G9Bwq0G7/z45r/qL/SJu1a2sDTiPeilJxZuWzgfplBKaG6/clwQz21KmxlZghuJzVOkfTtO0KIcHZbq50adv97otwy3P579q9+yxwS5++cg2rlASMj4xsX5Mz36NMDw9hss87fQH4kjB8JMlPu/wDj/0DcuXtF5pGiA1bORAHBbZSs9Br2tEDL8BAjt4tQV0s2vxsTWEWrF2qQKm6YD9Qygo1AE79JO8/rOdI1QH0ZtPatG7g47jM0DaGp7/l+X2tCK+mreNmet1qoNiOS/RhrRLrXpLjgCgIadlcxULPeqQWscYGlUw9c/Wx5U0NLMSeD5gS5ELIgzbGizH/ELv8b+uqMhv+IzXtseUMfWG2+py4n0mzU00xYLkx5pmQfUxa7cHsoRD0xxdcsVp2a1C+DJKI9sct/Zkx/YkgPqKVNkGhemWocA6aCUinS1P/01xQdFA3SMvO20phEnQ6QK1ixNVW/XQKl2kC2iSVPzHWiSGw2Un2R6Xfgxov0/tRT/j04uu5/V/KMJiLXVqRBrocx1kd908+yqX1s6lSYn36xdQ1wrc89H4A/3ac90qUXY7DrBboOnpauA2axcaM3U/6aKzVligm6vyXcvkF3NwL3l20AACAASURBVBDH9RyYVZSMWgHKxjPuNKp2L23hav/Z3TEKYtnvpWqINV/trtuplWrdqhPQwbd5rblag0Nr79v6hz97pb03g1qwXvqylDW4LnlhObt9XOlzgjhn3INV/3y9ch3SznVuixzW19XnI6DWjKnbtpEDQY0YB2LsYuFLAwYHP2vmc5Ot51BwMqaugeinpv4tkH9eemGbCP9y+xGE1SffZ7Hq2gm2yd9/bSjTug8r0lqvgkl/Tta/Pr2Ttv6jmZPb6jVnbKiJQfM8M1/5A1KasGoIxCGiJRJyISzt5GdX4RKVGpUyCLrbvCKLFXL1a2zBg4cQdSvRh1CWgpihUthFZS6Vqb0+p+QB7qDsdoHwBAdRL1YAoE7uL9kdBmqpBPVtApxKZRTYa+D0eOGP//iWaX9sBQ5g9+rAOAof3l84ffhnbpcLenjDON2ybzfJYX5C5zOczyyPH8hqVL0jTx4Ul1IZ+UCx2W036sIUIo9t8tkf3E6k5OSm8SURiFvMV9oNYANxGEk5EYKgbXIYNJJqJpcrcvtP2LY+++mBe/Wog2fLQEc3fAMbqXzDRP/id1rH+D0wMCJWR++aTVhiOEKj5lxV0Rbc9pUuhmoPWIxavByh1W5P1LZv7e7pRPaOTuZMXmZ245HFnhiHPTJ9SU1+3ZflgWGJ2OVCfbinLoUlRobdGwB2t0dCjJxP90hMVDmx/+rA7s49DfP5keXx71nevwUpDPmDH0Mzf88pEg5GsIyEiOQ/kh//d6y2gFUODMffEYYdNT1gywdAkJjRhpQR9hTLjZ+7cbq2lYOBZZCLl4Q1l89q3SY5sx1Sd1iJWBFq85311+MaxH7Sgqctjj8XwuoIUzvuHocIHrhLvrLGuZ7wWiQg7jIhWZGkG9Cmub1LECJrlNatxFppyp4xI0QwD0qtcedZipcBzNbGhAqLoJce6J+x8+8plxm5+YZw+RX19CvSxS3VigEpEy+Z/HgiPt1Tz/ccmqVaWmZyFfYpMw4Ll3oiY460A1EuDOkt8fIn5OO35PcP6Cmv/tp5gDEYYXBNQDDYj8rSkKxiIFFJQDFDsngw08btMEKIXhAgm7kzSmGt4jdrYJGBJe9Yyki2+GwualeKdcHbg0tYA7lmKezYRUfapKPhvkiStd9fiYuu++iK7PXHGy9wExR+nr7b23UsfS0I8258fSztfSKYKLUaJdd1kSLVkUVs8PHU1Be4Df2splg4Eg97OHyFHl7BsKNquLoujo660KrZU13tF2Kry8IqfrripF7bvUkDcZ55kLa315ZxlqCoRGq6tr0y34Z0C6sN6KtmW4EIc1cOyYW6NHAoZ8QCOc2cz4m04Fm5ofNPncNqV/f/8+Pz84oYKkbOtS2SdOPxiuL+soVaZ7QaIV6F0bX5XrcFlhdviNuiTAY/tiqNAw5VNjeHLti8Lspisp3ibV3zl/vtjyCs/kXPWl/ZP1uJvFxCbY970LqJ0X4A0ZCrz1/do9fv78T2hn+0jl/Xi2xlox0M6nVZggLl+bBSayV00f8g2KDYIBtfPldKrV5VSCNFHbVafWcHJzKLKZVMDMqgrAFrolKrsRsCx13ktI9cLsXNnoEkkFvhg1oKWo0oijaFvRGQGIlqbod1njmdK1/eNM+0x8oDM6eHhbthonzzlvfhPRb3XNqkfYMSJcI0wSigRtWRAa/+Ufc7SnhPTn8m4kbFVoTYSyJlCPtAaatSKTOGoEObHLJguRJEyZYIOmBOe/ftl0JAKZ+lpjW0nM+zldval6T/ZU1B3j9zjWNco1fPt/yD4WtDN/z2CD7IVvOAqdvOaHak1hSYQcpKM9g27qtg9xZc0Jqpqwn19WDUqAnVttdzRqoxP30kn59QmRnLHpZm7bPsSW/PjJNiT4mwJOLxV+xeuYtAsRNVCvsvf42EAYluFxfkFQB1rkwPiXz5jsKE8Mbv4+bTGiUBR6q8do3EEAnhiSLNRWC4o+Q7NN6g8ppSLuTz14QdBJ3asUUgQJ1dQYzRPRL9NHcBRRtDmsk+0oJ6EcRmT+XJnmIRKdtA7tXH4oomuuBjm6B6JaEfX+//6zSzSq1e/OQ5ivZpgGptV3MtJWB5hNLMqYO4wML6JKOtz7VFfBNVbJ5KslYOsq5aStX9o3NtwWyFuWBtIc1lgXTBwiM2fofYr9H8NwzZq+vlPGK5UucZHp/QxyfGywND81G18yMhZXZPJwbeMspIpSLtuobyRD2/I398R75/YLmfIRn7ttCxqlgwEhUd3ApJojEefQxK5iVbMRegYkYwWykJ9VKJx4GqzeGgiLsXaf98JNtAKRNWBzZn8Oc+y+vv1o+6b+r2Tg9stN3D1WgobXvFtkD3erbcfvtcpAoqTYTUjqFngeSHe8lP2vqiEK767Rpob11NRSEOTRwsLEsrpGLCMASCTGADENDq2TuAqhMyHQnhFjm8QaabJiS6Xog2dT9dSNWDqL5fLRNG8z7tmcGrlL81GLx7xlp9sUwRN5cq5lkwDXFF1a2WVhjGPXI9KLYV3bRWEnYN6ItRl0y5tGxoKQ6lFMGrZCkSBrRVuhId2hiZvK8FJVu9KoRAy0J4Zc1q1cdTYUWbRT1YtW59lROmZV0YoNZsXz3wN2t0mLbQCipIiORSodja57eYvztDeeB8Faded5QfbT9KCZDWo55ta7132k1m22qhj/vXNFZXZF8p7q5n/OsY4sWm/SL0T+m2F9Zvy+YHVrsqr98EbjVVtXKZF0gLe8l0xoTROrwK4xDQIBQxN5rGV6m10wzEqSZVgNi2X8WDWQnUNDHnmSGGTUEfhDlXBjVudoHTLnpM3fkexSu7ZyoS1Q3c1egIbzSwZFyWTKmgWnh9OKy32eV+5nx6JCHEvTA/PBGnieGVks7ORfz4z/+V31ihlgvG35DtK7JlYtuH4RCpy7c8PP4Ld7uKDJWyJLT5tKZZiFNENXC5JI6H1PbF9yEy8/HjQqmF2GCDa8Prfh1VP2PASg9S+8Bw3c96pHp9p3w6RNkqTF7VVrZPvb93+L7NgDFQy9WEZNZOog8YajMrT7u1Wipm2T1Su2VTo3qsJUlrN5ZXas1r2WGtQkmJPJ9ZHt5Tz2fK8J6aPeDM90/sv/gKwcjVqSfl8S2LNpeAmwNVlEspTEHY3f6KcPhbwPnTkv6A7AJ6X1nCf2L8xf/EIDPlu/8CQJC3yO6AHV9RJyMeb9DjFwy7X/nBja+xuPN7W0eG6Q2azrCcIbbAxQQJR69wZIsHW5av+lbAPUBLG/xiO+c9iC0gqZVWLKgckDRiaUt/qfhi1Cerhmatl7HhlZ8LpWrd52p4vOqmVy/KNYrS+psIqhEzwfKE5VbdZxgQGzG2oJ7V7QVHYUozDxdxbUDJrTs3uKv2CTPDJXut0nMhP3lwke4TliuRjKYFLh+w+Q8Yzm+epjuMyOX+Qvlwhjmhaebxwa/7t+8+Ukph+OLAcPyOoMoY6jqmlXThfHkin2Z0yezMd+Hh7Nc1RuFmB3t1fl4KwixQLy3grg6ceEDvk2dQYWwxvZmwPGUWUay5ExRT5tJKs7JjqXtS2VPrhEhowYf62AesnD6RlWN63VZkbaURvOhjtm6isT9ku+f7ZW7IrOj3x1sRkCuPzs/Vngckfyka6eiitIWqUkzcJxVIS0YsEsYDIjeI3IMGpHR0MSLjER1eo/s7ShiuoLQ2X9v22B+9pKo16yxrGeXnH9+GdNr43YPW7dMNZ3A1fu2fkb5IqW1bXgGuo7i1AWzEK85uFWoy0nmmtMzGoIFaPBOnYSSGkTjs19Ksc/JMZsqJkvP3PdDb+OZzsUDxOaaKeV8B5wVX8IAUqua1bLyfZw9ogw0oiSojEgbQdvOonzCRAdXQXpNV95Nrnz09G2ZyfUX6ef5xmODHOaxr2H+13atueP3sy7aablx1mHatv7cFe/a5q95iG5r0HG4wurluQUmmK4Lp/cSXQ6V4/d9Uc/f1J4zqq6AIx52T9E1gbttfRAhI46v4zlrYxGFNC4CqsCdwelQWU7Rd/Jv90Ay3C7d7R1hLMZJ1jqtyLoVSDYmhfVdeRWM0H8lSCyEIZoVSLkjj6D0uC3GpHA5H3l8W7iSTnxb2hx3721v/jnziu3/4e8qf/oV/b/8j+/q3hHTHfmiVrN4uWPozo71HiOh4i4pwaaIsk0q6KMM4IEOgpBkdhzW1rXpg0omkQtDQLenWO7sjC58NplqbrCukl0NmBzavU//XAkHsJTawJl5fwh9XbV2leRckUHALHACpgYqXWw0oRkSYPcWKD66KW6fUWlHcO7c2aoXz4bqnH/Qa2mtKEfEBPY6Mw558Wcj330H1tOu4e00uJyynNfyW+YF0f9/2/guGN39HuPsbbLfncflIPH/kcOfk+7j7HSWAyT1jhjhE4nGPjF4YwNIZGRSbIjUKSSJBbwiDUwqIX0IYEKmUesbCBQtGffoAs++jHi/Y/g023KE6OWdShdqKL1QzNFTcPumyXZ21IlMFHX1BEAVCpIgQzHm2tVibREobVXzxsKUuf3zg/Nds6+j3YlLl6rmVurKKUwCJhGGklNmzn3lYA1apI+gEnHB0WkAKPWVXagG8CIma+1eTZiRl562CCwJPCzYntBq2QH2s2KmJRbOXlA2pIm8fKN98oD79mcvs+3ghItMOzsq7P53IqXAYlNQGj4/vT7y9JD6+G/jFnV+/u53y4YMLCg/BuLuDrz8uDNVpX7t9XMWy56VSixCLcM7mVnxT0wPQ1zTWSoE6YlZy5ZL98+PoC2yhEqJ4NaVuAQSkKiw2kKr73IJeDSrbxdr8y78fpK0TtXhQa7RSnr0mu14BM/gcU+vWN0MQJLS68LKhci976+dabG2h6dXP3pmfLa549q4Wh+O0nQGk+X3jAmgrGZU9EiakjmtqOegOGe/Q6Q7Gg+sF+vbWs9JT4P5NZp7BsnVecAChawY6ULcGa/3D6/TcY5qro+5oOg1as0qn3WyVo3S156q2UY5CCGgYvPahVQ86c177QaO0UgkMxxuEyLIUUtMl5FTJKTOfZ9LsVoVbUZVmhRVasFg7gNjE1ivQWJplV6dfDlQD6SW3QyLGhaCT07AkI8NIoSHhYq1+hiE2EYL7IOcePK8WWM3+8pPd8y8tbLz9ZQ5ruwRbp+sP6nbxrIuj+sm9gtOv2OT27PNXm1sDhi1A7THu1uU3fdn1FkTqKqTNCDW2SlODK1xD8OCUrAyma+ooROeQGoW0JIYholWeIWmzwQ4YMEevlFW93etGiypxEqYSWJ7yWiptGJ2sXJfCELzSSirGY0udzbW0VJdTxZI5/7WD0JMTnNxsOLgx8JwuaPMDDJVWfKHw269eU5czh/nC/fvvOJ88MDgOxr6eeff2G97aA+Fvfs+r119Q7n0gqF8sTNPCuPPUvYSK7EfGle+V3cA+uaJYtSBLxYbtOtcSyLkwuoP7erX8gTznKn2G9r2uvyLw8mIB9vz19Vjk6v2AWJfj9NCVZ4Pvy2+1Z691lGpqK3BXxasMKI9oCygDzdS9Os2l1JaeadziEAZHV02aWOUKBgBycXVpzRnCwHjzBaU+sHzwlP1SE7e7X2J5oeQTGipBBFFfqIT6SL18YPjy7xhuf4WmW8rT/0lNzYVAIO52aH2iPPwzdv9Era/QsaWv9iOEigwjhCPGnuUiTLt2LsfqyGkbOGsQGCMilfrhj34opw/ozQNMX2J7T/Mh43ZmS0P249HPt81gm5G3WUFj8VKMcgGLhOjfASBpoGbzQXq96a/QMPEx4LOvtbhOa/rfWzrzRTN8QoxtQqG62Gl2CpCMNxCecMaQtnzVQmkLpWKZINEDhlopywyXEyEl2pxEORXKKXsAaAInQ06Z2Lj3nAvlXMmPBXm3MP9xYTkbqY17jxfh4yLMi/Av72amoOjNwO2tT0O/HgpHYAqV+f2JCJQgDNmP+eul8J+PI//uzcD9Q+H+XNmPyv61L0R2pZDmwnKpVIw0A/PmwBGDl9eu1ZCufayQGvKek3mRFBFq8kV7xJi6S8AOLupiyqrP7vTtOugW21TDUSZhXRiI0LxYu+emEGwbY1SeZzMNGvr/PCB+iaxeran/bbWrzIU0pFheHONLQMyfaqnmEBExXyDohLBH2BEa9Q2dIE5e3aZx03vAInZ9r9gWm3hlAro3tv92dBdLzzAH8LlOusiqZ5Nbhutq8x7L0Oa97l4EnlaXHgh7wOpcV0cn3ZQ/rP6uVlwf0wEFtz71QhM1F3IpzHNiaZmDnCppTpzPF2gCRt+37orU0WNvMUREW+nhdgiquPd3yU38JpQCps17PgbCNIHOhDCiww5k54ACYEEgtIyieelwaQGqn2MvOtCdOH64o/7lDvy58rU/t5/bz+3n9nP7uf3cfm4/t5/bX9V+hBLQlxnCc39UfZa293i5rzY2WN1f+34Bupd/PccQruwlrlOyq5oAutLPKFTLCEYIxtDhawFTwYKyjwP7nYuX9tFXXGFQZqucnhYezoUdEV0Cw9FX6lMU5uDfVywTqvlipa9GaqEWIxUIEhgnJdaB1ERTuXjlrMOk5DkxDsoQhZjb2Ss43aCtLIMIVbZya1Xc15UgyE6JWdFUqRfffp3d1iPnCymPhFH59es3PPzxHa8ayvvwcELJ3JWF9PWfeSwPxA8Dhycv1birr3ia4O6LPSFAldnFBfueulYqAWohxoFUCxqN3mWSVWpx7la1SgPNeEbAgq2Cy0/cNjrCD63YtlXeNTghV79hI8gDG3XAmtfi9w7tJVTwqe8OWJ2oEjALTeCT1pS91cUJ+hXECrVmalqojcPqwnFPq/jzlRDGlbeUW1k+a3ZXu+GATBndOUJKSZwf/+RIz14IYUKDutUR7t9r9SPLd/+Vmu5RyYxyop7981VfwbAnHF+j4QPl6VvK5WtEXLSl+6+cwyQjIfwWib+lSGE5OcI7qKIhujAiCTVX9wkcj1joPsMfsVLR6Yyd7ymHL5Djl2vlmhAGSsnUvBDChFmA0m1roJQZz8CMjr7IAuG8jkMqThkoS23qV0cXdEUDtKGsn6eF4LZGnQHXfwrXmadGC1g/1cfI4Jy4mr2/Lo3DutzA+B4JA7XXYrfNCjCIItUtgsiL21bV0lwq/D01QLgd0bnA+xk+zMhDgo/eN+c/Lzy+9yo4xzjwdAqcPy7ERin49Rgo58LpvvBVLhwEdilD65q7GDjeTIRS+OP7xM6MgnE7tjEtGe/eZ15/EZmmwLuTkWf4pTlStZ8C7x9P/Olx4TApYRBClNWntVQjZxdZuWjGtQidSvh0KcRohCFgGNWEtKS1QmJ8vWfYLQzDwlID1BFQR3OlUXakogwbyqeylgYGWip/gJXz2viF3yux2secDXltV/n7HfNFJvXHE6s/YbMrKgCsqfOVprXy933k9eSsbIigBkTbvawTInuwA9bEgmh0Lroqpk3Fvo7i/Ry6eMg1uIJ7DEeQse3U6Nfj2mO1/wd6OVZq3URXV9nDFWm1Fr9Yt/bsp2AzeTKEWvychNAR3lZmeqVO+HF0G86aoRYh14XUtI5pyeSWGSjZyClTc6KmTFBds8G+f55P8eSpkMviCK8GQtPdSAs+3M/anRmCrEaOaMmwOIVIxhGRCdEDGjye6MipoW66QHE/8HZvmgmV4NdW/v87sPzlgFX8Ajy7S9Z+0OHezt+4gt9XfsaWrvx0gu0ThjLfuzFbELA+BuekOMzuXC4vjTq1owkU1DJihSEGjsMeS5CWJwAuSyJgjINALTw9Ziwod03lH/eRQZUgne9WkCqEVfXXFW+eNk7F92MYfQfmxUugBXHuiBgsOa/wewgwNL6YiZ85tzjyzhOG4Bc9Z1dIWkCXQmg+sHUu2LnVEBYja+RjTnz15g5pHixfxT3/7V++ZafGwRZ2aaR8mHlsN/ruVpE3N9w/LNxFpx7Yo1IbxB9uR3Lx4N4Vkuo6F/btGuzcgkWUMQZSLphlxtZBF2gT6Ccu+0/SPpV2eB6kOn9VVo7aGuSub7Pnm+hCFbmiBnzv+K7Mn6/V5ldsA7NmzwKIFIRhFU3Z/EgtM6J798bLF0qe0W7jkgou5gqkZfE+U4qncoD58QFBkRBQgZwuIBVpaU0JwZX/QyREJQwRDUpp3GXfjYKmb+FpBjV0FMLO63Kb/sJ9VMMJDXvgLTbfuycQoMMXLQVafD9kR0TIyzcA5PvfM0pB97+kxolgUE8P1KUQg/etIkZNIJoxnihlcZbZ8Re+DxVCmMCaElwHV7tKD0hzC8iSeyeKAXMXtCLq9biRQD4nGlmL0j/fXEE+16wvGq8GwOvl1JUnaW+9A4o0UZQiOiA6+oTb+afpCOUGiU+IFE99sgVCmyq6esY0uD9pNpDuLz0IshS4zNS3j5Q/zdh9gg+Nx/a+Mi2CHiNye8dYhY8Pb5nPThcpuZLnQkgVzZ5yny/Cx9n35QOZMCS+0so4p2bVA0s7hliNj+8MW4zjPrIryuPHykX983EPTx8yb0+Fu4Py1auBqMLY+KEJD1iT+O/95GObNSAhJ+MyF4ZgqHj12XJJq//vqB+5HYRhqjzWhVKOUCYKwrDShwIq6tZG0ePTUoXUREKF0QPWdk0FXvBdW8BDS6O2Aj1xLapRv981nnUeH8Ps+wPTT9yuBryXz18FQt/zaV1DmS4G8jhDwwhhR+UA4bhSmNy/zAU+IoY1D2LwQNU3UjxopXrKXqKXhu4Bq8R2PrPn33NX9feVms9tHrRezWnfO8XtoljTIFzHP7K9R5TmNbstSa8F49TKfLqgzRZLi5CXhTkZyRZMA2lOXBoVp1Yh51ZooBrViovQ+0rMzAWHobTCGF6cIcawlmLX4ELNGrwPR3WFRe1esDVTlwW1BbMIeoQodN9169QPaSxVS8C0OhVg4m4JeFD7qan5OfD56fbjtlbt7ti4MnY1ATdLGGDTTz/3GpOXk/7L9qnXGkdHXrznWW1dZ3SAuTglitHmZEYxgrm5tQFVlGCR2ojcS01IctvdKG1xBZQ2cJqC7iI6BheEPHfBQKs6v6lPcEE5Szc4hxCVISo5Oz8wqrDUTLXOy1HfX1WyuSegVSO3FdUMHKaBIAPZKqgwHQPl1HzZBFBjysKswu2vf8d8/45f75SPTx6Uh9PCYTCWRTEmHh7PjDeHVS1++ADL8pEvf/ea82NhCokw7kltcgn7wLTbedA0GGVJ5DwyHtxTUS9fcToPiOhq3C0iq33ZaMb8uVTW8IPx6hZO2lW1o+ug4Ec2u0a6/Znn+YHvP3rZrK2/mjIVr8jUTaLt/BGWe5AdVrNXJjMPVvwNSinmCykxQhypUqnJr5tmtx1Rgg/iqphWdO+Dc1BxgCcGNAQfPLGtmlCpLggLwjgFajiQrKK9Nvr0twx3v6Ysb6npn9Bd8P1vPrHl/DUS9mismFwwewK7gdJcBuI9mYVYFmT8Cm2CP+YHTBvKLJGaFT28RoaBMAZSPlNPLgyL+y9ZVdaWgYg1xBpwXpWl9v8Jv7sHn5AApIBU4rQDC+RLRupmW1fb+bjyhPhJ2+o9W6/6llw/+H4/tWYZYygik09OV5kuS0dkuYX4hITkrgudKw3+GNasj6NKGatlzfzYUrD7C+WfHij/cqE8Nl7e1LUDxmDwZLD78sjdL2+o3z3xdPFx63wq1OxBSKrglLvC2NSw/+Fu4EOqPJ0zrwWOk9flet/ihqUK5WSEORNvhbsYqUvl6z80sZ4aS0kOoI1+nyxLJec+LvvYmZJxf6nkZEwqzPPmzrKkymNpfpsYWo39rgEZaSHkExORyMIlnyllAoShTT5xGDxbEUdkVKbdSGHk3b33vVMSqkRWZfmnArY+ZfZJ/CoAlTVa7XxMR2ev7Vet2r+BgNVbH13lB56QVt3Kn24+puqWkd4StRYvDCAjyB6TIyv/VIV1ZeD4ZdOC1DY24L9rwb1YcRupK+9bOt+z3RPb/y3g9desjRP64ph6IYirY7xyduiLENp97QLJKxG3+ALaqlu+5fMZy2W12SypsMyJJRnV3Jw/p0JeOmdfybmsaLVVR4TXHlAqoi2vIjShplFyJrWgORqIjogGNEZCCK5haefQqnkGphZyqugwoHWm5uYCUMznmShoDMRByWSoK0qAScZo529NV27odOvVf7E//Yjoqv287vy2Pbi+KVbxAt0aYkND/7/KFzo+K2rtQKwFRR1W75QAA3MzXKkVaSuKYIYWR1hSNp4WGKSVZqN516miRd14KDQSQ1vJh2KuJi2GDkoMwVP4HQXrZ0ZpnUqIUUht0TeocNwNpKeFOXnQHFoVFfAVkagyTNH3ORXSVa7PcPFMKdVVu91XrQ2KKVVfweMoxf7mQDnuOJ3e8rdvvgLg8u3X5DnwT98UvvrqVyzLW26BX/zW1dxpLJRv/xsLC+P/8CvYK5ePD4xfugVNXUozclfSnBjHicXSVVp8gDqxG/ZOB1iVsdt1VMtX/eBztt6TP9EPX87/wjZh8KmF0/ZcR0F+cFvtM88kE+vEUlBdCJzQ+oiaW/fUkqkpUcvFbU/cpHFNy4rpmp7SEJvHrrqSHrC0NPQ4N0QxeMq/WaCguJXa2FGJQE1n3ya4PUmMqBqhLm57FQKN7UJY3kP9JSEeKWmPhVfoXrHkwaTUR6Q+IBY8NWoX0J37/OEZizqfyfINoQrVDl5GOYxYq5ZV0wwWKHMi7t+gITLGuJYirMlL3Zp5+V8rCxrD5muICypqLRhnRBaMgGhTzHdRkmbi7oAQSZeM9kpZZpSaCfpX2FT/KzSjlzO4Fvk9B13XHn21WFxVwCJIPPoE0F3v8xGbb2E8IXoGZhcRbnnLbZwXoJpPmjmtQa29y5R/fiL94YxciqP0N9OKshBmyrtMLBXefSDnJ4bLTJh76hJmFI1KLIXTUgDjVZvTfrtXXk/KHy1zHODLQ+A+Q2hzyxco7z4uzJfCtxR+/SqyV2mlrWEpFc3GFzeBWuJA0wAAIABJREFUQYWP58pYZK0MGwRu98FBgiy8P7uTcF6RKJ+YSzFSdbul4yRMTWi6i7ilT3pC0gWZlaoDQxT2DTQ9HCZs2LOEHTUKX3xxRIY7rPX/8lB5WkBlx4YzXg8aPs/1YKdeCZWAVqLT+8h66QSeuwL8EPz6r9ue2Sj15/qeyIuxch0I7er96nO/bEU+qg2UsniCL0Yk7hGZr+IN83FsRVV7Oj5DKzghtmCW1oB1oyn08+4ZB6sz1MUdW2rZ7odexaohpdojlGeXbfOclybq2uKVHruYBwziLiWymdN7xrgkyjJTl4UoYUWIl2WmVBBVai6U4sUyejxSqqOrQXp1tC6Ub9vvC191b1SNLk4T1ee2k6JtiWssefGSt0sX4xZHbEshSHDKUVlWq86qEMNA1ITJ0sC5hqYCFXVQ4Qr0Xa/f9Wn870JYn6Grz3+u0XD3I1sv7rYLz4zaPxmzNhj/R+JZX4tcORPQOr/1x24FUfqs2venQimZU8lEjN3YAtLmGWYFT2tbYRh0IzWYMbTJoFbDpBLYbKvMvHJOtzwRqV7HuvFBmDNBIYvzpopVbvcj52afUhevZiQxEtTJsaWmlccU+/fgaK2qw/i9bw1jQLIR1QhaOH/3NftXr7m3wlc7D0ymrw58cX7k4VR5Wp44DHvOj/ekt1/7Nv72Dapw+vARG41p+g3y5ggn90TUYY+MA0kDIQTMBsZBoSFpGjIaMsGcL+M8LFn9/zQqUurnKGm9tR/sd+1F2Uy619YoAtcV2VYPPrFn25P1R3sdWFNy/Q6Rng3on2nuFrIQ5MKgyf1WO2Vr2lMtUS4XLF0oc8JScW4hHrCKDs4NNjANWFBKm5VrG1SDiAefUlp6sqFgUr2qSRg9ZSUgw4j2vpubjZpC4ZFYZwIBzW6XVt/9F+blHp0mkBMSDIlHRJoaff4T5HeeQis7ZBiQUdGhZ0cGqHsogTy/JwyRumTscvJFJhCsuO1cnannB8QOEJI7JABIREpEVNxuTQRqQMKGniPOayu5Um1GtaLh3K5BbivNPWgh7G4BJTcupdZINSPb1XjyEzZpHUukT6z4dRKBXihlnRT7yy1gbWUjJQii00oVsTIiyxEpR2DCiMBGh1lJ+jG2TKhS50rNdaWvcG+EVm5YB1BTJAupuZcQAnoEfV95+IeP5EdDPibOl66QV375eofIwJ/ePjGXzO0EXx3arCKJrMIvXg8cm2i7WGXXxpTHc2Ep7p36WCrfPCV+NQV+sffXf/9YnY8qQozKeanMTS8AcLlULufq/FaDvBiPS6U0oKJWSMXIZsQAu71wnJTD3u+dcYQpVhKzg28Vht3ItBfGFpCO8UKOM6Z7xmPky9eZeAyUwcfl9HUm3SdKHrx0rjTleL8MarjnTTeH5fkY0wOjZysYX9T2znPtIvBvpXnqX9Z4YY0qXgTk3u+vQltTavWFmNsBjkicVuSvWmm0Ll1jAjc9T1gLWHu2xQNAwQhtgVbXbVi5YOXiPHjzUqs9fpGG+vqf3Z7peQBu7dikoa12tejo10u8TJa7DIWwXSMxrCRsmbFlceDMbI1nDAcZlIiVBcSpPEG2gFXMWhLOCwdc23LVWsk54b7B7sSuKk4HWzlGofle40VorFLSsmbuaqlo9SJHDE55KCk9n9nKTBh2pHLGC2PoWjBDq5d9rZQW772oENfGvB+DNn/ch5UXCFE/g9a73dUNtF6c68pSivHXDPzPd/W5fdD14/6qArEFzb4SXW2nSvW6fIZzOgoUPAUEMI4eRJzPF1I1drvA4WagtpV0EYFcndtnmZrdvLd0LzzzlYqYkEvp/uUrj6kCOVeWJfO0JHKt7Me48sgXM3QciNPAKWVONjNZWAfOIXiFiBh9xeT3oG2VvKiEQThaYBwHni73TPUR2VeGFngMdwPxNvLmtvL29I7zErgR4duvnUu458zrG2W4e8W5FOzrrzm++TseG9/r9vzEZYiE21uSwb6Z/qa2j5oTMRqk7mXZWrPBiARyE2191vYDQavfH42DvXbeF/Yxn/jUhn59arOdH7R9sWCoVbqlklpFLCF2ItSPhDCjMqNDT/nvUamEOBHCRJETqTx5rXegpgVjoWKMhz1xCGBhBblsHP3eDAFCcj5pUGroZUlbad4leeot9ju1D86GWiHX7GmkUBhCRYovZEI6YeXv0cMB2e1gPGA6rbW/GX6BEKjlO0f3qqJ22CakwfmhlgUlYHZGJGCq5E5HyQVJixv95wTpBp0mH1CBch6R/WvC/tYFg+kCGTTGfhkpsqBxT4h7hIFaHjHxgNX0Cjk3AT0TRl1taMoManFFbH/qtvpIamDVBlyVaX3+5m1s9HR+C35EgGFNe1pVSNG5rPs7RB+9//fbs7YIqK3QvAqOe37WuZ33UmFupUwTbg2WEqkjqKeKXoSdRKRWHufsY1ovnYpxuSQWK5xq5s0OfnMn3HlSh3CEQYQ4DuhS+ef7TIpKbMf4eMmoVUKFO4N6ycxUUjsvAUOCcCmGLsYoLkjpSNRUIZ0ql2SMUYnVX1/avLAUuGQvQHM8Bu5G5e4YvEw1MO0DYQf7nU/qUuH1nTDtA/cfvO9O5l1WIrzZj7waZ4adMv7aq30lGUgS+XBfWynuVt/9uvDAukK+vszXo41bIvbA1E3h20logVXVz4kUfL/1+PpF/P38xd7vgY3+h8N3K3e0zf1dpEZ9Fuz6NnKLCzoHNblyiepIrG5p+f4lzrn3qo49g7uNieKBs3MwWAsPrHhcC7hVHCl9SRHgaqzpiwndspFd7FjOT0hZPOOrgrVgb5gmRzKrEooxDIGSQJoepZbk1MW27TBExjBdjQ14MBvEwYsgiHohgY6wVrwMeyoerAZ1UW+em51hLqgZY6jkYoTkAXihB8WOii8yQAwto1boNCxV99I1Urs2w7N5Z+3dP0Ij/NGclw+C0iXgXGn41yyS9VVNe25bmehVR+279MIb7dlvrlSD12/7VNztiIISEQsIYb2ps5lnUk0oJt7Z2VI/Ip4KC1KppZCSV8rSnack8+AVTlSg5OJIq1RX94ErvDUwBCWYl++rhRVNVECWwnJKzJfsSryrFME0BqbdAEMAhVwLVYqPmPjglKsRo6NGpRSodTPAxlV4h0E5BCHHyCEUjrsRbeKZGDI2DIyvDtzsA+Xbt9yIMDVhyy4ZIhNFB764u+Pjw5/RP33D+J+85vupwtjS0+cIu6mgYYDcxAPZKBlKXYhybN8ZWHJDdFZ06vMs9a+xpyuIlL8AuT57e+/jAs/9VBu5/FNdcgU16b3TEBLKgtRes31pZUNPqN2DLagm4nonjo6CxpEQIjWqDx7R+2Y6nVmWGQ0DEgcnu1v1fCc+0GuM1BjWsdE0Os8LvKRfiOT51A42+u2dr9ECv69KHbDhlqyRfR948ndIPsHlQhy+xGxHuT6rEtHhSxDFygn0Dhv+AyZNrZ7fIvoR7AO1jlBnLATiKJTs/Sil2UeO9ISkDPnCcgZtKJVMR6wmSp4J+6PP0TlvxRXiAFbIORMnJUw3qL6mNNpCYUHjBXq1IIugi3sLAjUXLKv7IH/G5v2vX5fOR5VnE/x64s1FYqK5LdQbCtsXElWgDti8Q/INMt5g3IOc2gYK1vnMAhYEnaJ36JZyr7tK3VcsGVaFsAsEVUITXdn7BXsS8lIZqnAb4YLzQAGsFr7LhacKtwFe7eDVK5i+bNDGF5Hj8QBF+ad/eIQvdkwE8kdfaOyCocFAhCJe3vpcK6VnnqLH3akYp0tmmBQ1W9fMZkbO4IBwXwjA0vbvYXGg5c2kvJmEV3vl9lbRyfdvt/MS3haMqcUDv3gzIFF5vPf3TKOLVQ7Dwp0VpiwEO7Gb/P4/7EbGoTKNAwsjZa0m5Pf3hrZuvsAvRVleE973vV73id7+imHuX7W9cAb4ZJD6Fz5jbeEPDkRhgljzRvFqGVz7inqgWVm9VMH77JUvMw01NCkN6c0r8u6vV3rK30EiXR0atti1tofPs8Jtjfe8uFjLzvobxMGQFktJUAgbIYRc0LwgZEpZSPOZMl/W7x/iCDqixftyTs09ZgWDDA2h43OkUqjizh/+9YLbvypxiG1h3zrJGrepI7FpoZZMwNBSXMjVzoF1zVAu5MVFab10a9xFonpkYjVTSXieuukKxDm0QnGApSPtLxdnP5Ju/9mH9ef2c/u5/dx+bj+3n9vP7ef2b7r9daIrtnSUwMqjsRUXv06k2pYiNkcIeim0bcPXaVie/X6+EtssPn54D8XVwRYpTWCw5MpARkl43fEG0ffSrFEgC2MMlFSw6qXN9g0FCq3Ma4yuHC5zJudEbRVXRAPEQNXgPO5S2ay8IGdjThUtlVcIWYWk7iwAcLMbGXcDFpW6wJgDVYShoSFpyV4GEUHFuS4qwtBWoCNefGbWxJQzh/FIORzYvfkNc3UU6TZ85GYwyn7Pf/zP/wsf/+v/gfzp/yGd/fXpWMnngRS8zOUxDMzvTwxv3WXAvpyIeMWk/TQwLwmZJkI7iTV5VYt+/TU6SqdrnqOlwz+XU0BHtFsaydsP9aTtdekZg/bZnsXZ3ieAp2qNlhFYywQ2AaBUxLz/BU6onaD6ea35CShInZF6QmtCoxCGlrrVgIQ9lrJXDxmVYRxJ4aHtgmHBBYdBG9pU82qRotphXl/RaoggSm4VUAJNniDXXqPRlbP9GCUQiFjdMd79z8j+19TkPqr2+H+h+V9QFspyRuItEuXKZSCTUJjeILYnnx4gndD4Zbssr5DyDaILudxi4VeO5i5/JjaE045fUep3KAs1V/L5EcaRuqb4MsHcjSRbIkzHhuj2NFAmxAg5Ubl3m6fxBgnOw7X65BxZSXhp18GR4QZz6zA2pe3nWc8/76Wt81lXNncug6cpNxVDTzc2Lmrr9/26oAHyRJ0XNO2R4YCwA1qlGq1Abl1ckCmiZaCe6wpmDb+ZsGMlfRCevjFuXt0RJGDnbwHY2Qwlk5bCfIEyO9o69bShwJMKMsHtINxFiEeIX+m6/fNF+ObPC0+v9/zyN19S58I3zWVgPylHMRaE5OoXsg/lQCvIZS2xqzS38G3u8mo+cF8qY1bGKIhCaFSwqfqtcxiE/aR89UVEjkpz6mN/EIZDIKkwjoHL3tgfhSVXvviiVds6KK8PA9lctFbOih4LYfJjOEwn7m7c//g8F04XI80FytV1xgUrz4fObaK07vfVJ9nvYZie3/mcbc2YyuaHsOlcrtHU/vPlzH/1QFoK+5rb+mybqd0SBjo0OvY2H8s6B/h8LtXtr9ZvN/cbllpRK419c30XOkVP1LOutXqf2o6rJTU677W5/nQhawhNgCSe5neHFnXLPXAOyXymPD1weXzg8viELQWxjV8qmikItVSseEY4t+qHxSrEkaBtP9vhbpQmzyhLccchr2wY/IbUDYX1ilheCjynBSmZbm2v4jafQSrUTF4MpaJ9fCmZmmewiIWBEkbcK7fNa9Zt2WzLzEvdqC6eyuTHWKx/heiKZwLS7QtboNr5qy8h8pcb2bowW2q2A+zPO8gPhRfPSMxsbzIiS66cmmhCdMTMSFIZTJnUUwph6Ge/IBoZQ8SGllKqkB+9A+Tmo1fVa/sOFUhGaQGrdrfpUCjVBdpBt2BtMeOpVESV/W7kIWcydRW27HcDBKWIC6yGGBANWOhK6koIunY6FXceGNsgNBSIw5FTTBw5cRcuPMqO6Rd/g1WvLzw//QO7w4l6emBv32C/21OXHXVpqel8z5SVsQzo4TVPZ+d8pfvWyY8LtkyMe5iLtRKyrONguOywou7Xpi27omXLtKlAvrb2+BztRW6s/9kGm6seCfDCA1j4NG+w9W7xoFUohC64GCCE7GnuOhM0E+wJtUekXZfKCQ2e9rMs1JSepbc0Bg8+RShS0BjQ8YjGZsAcjCIzdZlRdfGQDsO6CYFWTEO9VF5bWPbCApYuBBsR0fW+lhA2+5EwtDKEvkiqlzO7N7+kyu/aFxTq/VuKLpSSGaxiVojNBFvjhNVCEiOEIzpeKPM/YuW+vS6oLGiAONyA/A3g9lK2/KN/hS2Mu1sImZoKtmQsjsSDC7sKxUv/pScCRqmFcHyDtH2otaLZ7xvLC5ZOoCOhOSUUMbDFxUmWQWZoQStAGFvp1tXP7qdtuvpUbubjboHm/e7HWw8AZKUESIhYcZ5uWQphwn2e+hRgXXRaUTUfq6aIlOJFHoBwiHCYqIcLxQq8+goyLPodALvBi59MVLTCyYTdsFG8ggR++6sj6W7P+eFCWE6wN+TYFls7Y4oVeVcYw4BQqWlZF4Ql0tTNMEYhBiELK4c14b6xQ92IZ0vezoqnSYVg4h6zLd7vLgAjTnVKauxvlOPriB2UuW0tRl+ET1HYT5HdHjQYY4DjrR/DuA+M+wBzYZ6h1kCQ0IquwOu7QjKYs/IwB97dKx/e1pUH7PyaHWsp535Fr2O9xpHEtI1ZgdoHgBoB89T3v7FmP/DHpygD1xiBmKzK+xbXbBvoFlRKW6y5nZ+arGJBIbYg/2oxVzuNALpPK7W4V6i1IHur1Y5HKBu32xcUPdhrzki1rKnzWq930VwvoE3YpCBWkJ5uXzLldM98/57zw6Mv8oY9odH3liWTcqF0nrkG4jis3G4ZDAkjqeTGw/e5a7vzvExsCANBoxcsaIvffgyoYCWT89IKECxIKasQPEQYAwxqBNznVWxAe8cs2cs5x4jZSG1+sdYD1jq5uM3iFdB5fR37mPffE7CuM/xLRNS64K9dyLpirN0mpXfCDY1tW3xm99A7hHMfeltP9RoYPz822J73PQtYic2t3p9LsTDGHWOEQwwctKCT38SiM2EYYMlYdDQqSkC62rUUUs1I9OoQFUNyZuwqZsxJ0WNTKtdKqsK+KbFvbkbS08ycm4Zuriy5UBrPsARf2JTqdl1DDEwhsFw8YD7TVHwijetRiW2g7Qd49/qX2M0N+f0/wuk9Uc4s779h98YVDEl3aBwowwNP3/03xkNk/F0gPzpPcC6VUWdqUObjL6i3M5f0HdqI3AeZWFJlVF35QJYEtcYjXEaU6n5tskJ1Kyqg0sjdP2YB8a/drmLWZzW5X8Sy/akWzdLt2T4tr2polglGIQTvV+NoDDGBnUnphNQFYUa5OJoHIJmoAyHusGFgZvbKRi0QCapud6JgFlAUJTD2oCEOiBrp9OCrBDV0GNbVdMp5vfGFxtF8dgytso6GNaYxcGNuYFWhW4V0oX78v1lCwHZe0STaAxJfASOyOzrRv2ZKn9R3R2paGKyQ6sJ4/IqUfw9LQ4iTukAgDoh9C/oaeIWVGbJzFcvlGyIjFHXUXidqGNDJEdIw+OCX09l5XPUCp/fozj2Gtdflxu9t8gXiCbR5CGsbNK14cC4ZWOiG7qIXwnBYMyqfr1130qvJU5516mefsI5SuNcc6wpTFIkFjWfQM8ji5+YKlKhtgWbm1jnaFNyhFUQhBpJV5KsbxtNCenqC5UIZfeJNN4Ik9dNZhWmAuLNN2DUGpv90w/B3f8v979+x/NMf0JCI3d5nSbAkXoXC7iGz3J95mo3QzcuDo6lJHRklgAziBWDwQCIK/L/svduzJEly3vdzj4jMqnNOX2Z2ZnaBXSxBmEhCNEk0yUTJaBLN9MwHmfRP602SkZDJSJC4aLEXzM5MT/fpc05VZkS468Ejs6p7LgCNxDYeJmx3urtuWZUZGeH++effdz7ZziUPA4DL/auTUNw5Lc6NB/W7jJOQklMFnt8IH71MlEnQ6YIQliwBwSqUg6CEkkMpShprfzkmNAtrdbTAdMwjWBnmAxmm1JmmRpqNJxrnhT2h7J4CHqZcUClsXx92zGxDDSVFYCYXNI6/hfLO73Zc3Kz+pq+1p1o7eCBbyDHW26sXXb0rHo/7XTZd2m1ecXF026pncqUCwHDCsiCZ4ghichXPDp2iUdXZf8f2HVNiX2N9a4y++o5brKLhbBjVx0vA6ucz/eEeP50pJPI0k9KBTVfarEcw6tv6H71BaYj+h9JNolsfyXgEqNv3SymRy0wuhZQLKef4jQJtzLu6nKm14j2CdnHwHk6iAObRK9GodO+hcDRdrhPd47XecBpmFUt5INmBAlu3vSnfMXzj9f5HjO8PWDeJhmuEdX/yHQn2/eILjJP1H/dFLoccyO17R+Pq0Xf+LTGRugu9xuJcmzKlzFymyJ6PTrnp2GHompkwW6fkHns+FioAI+HR6uRuWHU0h4uXt07rF5KzqNN7xaeMitIsMnMIysHNs8JtUeq5UcTIT855BLxP55Xj4TAkd5zbY+GYM683Z4sRrCrERBhH1c2mzzpmzt0nP6O1M8vjA3Nr9C/+krN/BEDRcFBa50I+FqSAvUj05wNlqp2UJx6l0/sT+ZOfYg7zEBSUWfGsNI1St0iIJssaKJfX4XSl6bsb+z7gqhkLxoaGXham70RdeTcW2BKyd6RLrt4XZPNGzkberBtLbETYStJOW0P6Q71e9O40ByJZFNUbhGdAI42AVAk9PtEgyFsPd5bNFSMfZ472Mbkk+nreDQS28pKI7U0a28IWM2lL1rauZEaUYpAUTxvKm3fhaVHATvQ3/w92joC2a2caM1KOR5IoJtuiDZ6n+Iw1JGKsG/n29/DzV/Ge5RHtguuEs2LrXyH9Fd7OyEXqgHV5SzJgVXoT7HCLTzF3NaXYoNMxFlfr9NMTtlkfz7foEGc3DPwB8rapMGRxKk7FM4gUkMqe8UomlUZftyD+dz32MgD7Qvre5rf/+/rm24KY62DWr55MDZ0eoZxBKz66zYGhwBCJjKBINmgLoo1Nv7otkahPxyO3PzG++NdfoY8n5mebSLAiz4X0JPRXkCukxS5d+smhPOBvfsG0nJHUmSYnb8ZP6ogmDgdneuycl85SheOwVlURHpYIwc824vEcqD1Epas2Z4WwxTYi+asbdhzVoqyBBhfgkIRpO4Ud7lT5+C5xcxBSis3/MF5QJkGK4jl0t1WFLrE2lsOofh2i7JwSHKfE4VkOS9tR3VOvPL8V3r55Yj0tqB24vTuiI1l6vF9oS4aeIkDadtm94TY2Y9sEhcZUuaQ134ZX/o7GO8vqN9GASwj6zW/ovPvdd1sFFbxFA5O5MxQpuZh6jMrDXgvfjncJ2BB2EYZdU5grMGVorIsPeuHQvn7XjUH2c7/FPLvnxtAzDpcqH4yHayrECNnHR4Z2dEPWob19ekSWM9INJQ3N7Mw64oHWWiCaKdHNUOQqeA5wyIZuMBK6Ima27zk5Z0qZdv3VOJcxt5pfgI5aV3pbg1mREt4TXqNsvT6dESpJOloSRW9D/KNu936FUemzZlhqASps+sNuuPXAvvwaCrpkzCEn+f1z93sD1k2s/1q2aptamzvFNjf2cRXZXl7xrjXZ5etesNZ30VPGcRnHuryS679KBKz7jx8TzE3pLbOscJgSgpBT49VDTJC7lLiTiZLbUCQ0Ulb6aWQTNfQHyTFxJXmc5b4tfHGarcN6XqN8KMKyIxFKmmR0Wyu+CEngsInodud0CtHdqSSezdPICEdQklM4X/UW+Z77kOqJj9cEy+tf0X974KMitEmYxfiIM6eBZMk84XlinjJpmpDjASj0EZg0FvT5gUk6X7av4eHAyz/8ETc38Rvul4XntwWfPJQWJGxa9TT0BNeZpDNJJty+CVfKt/ztdzlEt1X8MreuZTS+bTptc+4SC7wvc3WdokU2n/Jlwy0TlFyRfsb8TM6Vta1RhkwXFyazivWVlCbKfMD7uges7jVsAUXJZaZzRqyzScNpEqabG1SNdlasNcyUPkr63lPY8imkMu3VjXTVZexDu7C3MBkIr265/GYBU0VSHmCzgUc3eaDGESn46QuaFfAZ5qHDOr8AEtrj/Ft9RHWC8jIOXzvUJe7pqaAbqzY/w/swNyhHtH+FnV8h9QRLjxLV4LgyHfByDKmXwYcTa7CMDcAcTxMiKbJ+NbKAH4fSgR1i4fZK7xWd86BcbItvA+17GfdDDGdUKfSyoDMqWd96R12gqSulFgMfsjRyj6TXML+CfALvgw+7zcvgLcc2q7GWDvMA26xVK+QXdwiZ8mzm7mcFHhrzQAJLM9K541837EWPQ69K2pykuuO6YPcremrMs5NuBbmJX9SPmZoOyJzIaSXVJya5MoPWSLwqQumOzsKqsrvPKmA9LLRzVnwYAGx+6b07KfluqY0HhWHaVQaUmwle3CrHOQLW1p1poKc5C+UuI5NCUdrIhWWCcrNRL4R6bsx3ien5hLWQiauv3+7n8PGtc3+vLH5AJJO87VWaVJxeg6e4XdZ3/hzLWVQGrtKTq31XrvibH2xcB6/ie/x4jXzvz10m79V7LsGYq+DmoQXqjEByC1hT/N87l4aDoW27gQSu++MIkYzjO/1bbCCSgyVgPXSg3bY1ccjDuSME9/WaIRxrrAVn2gXvMmKikWSogCq7XF3v+LLQnoImtr5+E5baeQ7r1Oa0tnA+jWCxNrqA9IG+aqKb7+ewtk6tbSQ1Y3VO6YL6T9MIVG1fT9yDc9sG0NFbZT0vWK0UDXthVOmbnOL5idrPsVzIMQLdbsHBgbBtJsBKHzFZx7enw2VrK95xFbBeGUDIJav5zvH9Aat13k/otw/n+vHrpP69f1/eMW7AvUllg/Hf+2y/ZJP7Q9u9eO1uwfVj2wHjeXMdJwPOq2Ldad1oQ5LpPCk2J57rRC5OGeTfi3LsJSPToUkY8lNx3KIexGdC8a2eGwVlGpl8OpbIxAHpMVGSw82YLCvCevXDazOqX9RqQ+hdw+LcCJ6IsYvw3tweeNvO+Fd/Rs2xgK4eckbTOMZiTikzB02wnuiTUI93lDnKps0eOD1Tnn/yjGQrXzw1bj+eeTzH5nR7c6DnsPFsXZi9oDrhdQQNPkScmYJbs3tpv7vofLhl8905sT2ybej+3ivhG1P2W15x9SoBTUrKeQ9Yp+IkGiIV5YxIRyamg1O4AAAgAElEQVQh6XwFkHV62+aXh3SVh7g/gFjGs4HVKP9geFv3kqFZo5RCTs+oSWnrmV4bPrQksytdFZNAUjUXovyy3UQbeqrkXDBr4RK3NxgFkhHnyiFlSp7IA8WS9jVZKr1LZODtFLN5iYCV+SNIzyAfonrqTlvf7pJwqscoj7ZH/PQ1etAI0DWBjqBXj2j+FM9Kt7+kr/fAhD1E6OIpIc8/ReZnQfrvDcyC9A94W5HpNhZIQKdEXU7ksYB391EZkFg/6gMmeadFOB3RK23c3/HYxNS/8Tjb/bXda3Ap+Q+UyX1cyxXkDS6hu0z+LZTXMH09HHba2OAHN1pmFMMsHIG8Gr4Y9rbRvhrNAa6kTMik5cLzn3+M1LY73rJUeHii6RNtPUNxpAu77fvieFNaN9Ypvvo8CTJKm3Y8oD/6lMOPfsqb//Ab7PWfM7dOPsXKWDCmKXimWDhb9a1aQOhWzw6n5iwt5vFTvdzVCuTRtJYTeI81Nw2q1m0R7g7w/Jlycxstu6owl+3zJZpLzZHMoPIIelTScQTFi5EOSrkr9LXRHztJO3WAIW/eNmqZmcozuimtCa0rvmlzeULIIyS6zIF3qXEDZtz+71eu9dbDavzvFyfgG2MDuSKO3H7HsGXdg4jYQ5JEsNdXg9JIau+s6hIKvEQ4k9n0tfemJRkVGZU9PpE+rFqJc+bNoDvawjWqd6Pb5d7SNJM0R4AthsiVHYyHmYYPOazaQ1pON+t2EUSmuGy94b3C44n2ZgSsD4+0aiSBap3Wnjg9PrEuQ7R/GL3kMkFyXG3QBePw1hrWKltAnlIm5UQeUoilTKRUMDxcsa4wGxtV4zboAAL01iKBdYeNZ9sqYj1ADNHgtWt+p4ga6bThYz66C7ZzWBW3NKCeK5Bxf/e3BprfGH9DwGqXqP07Pugbt8WF3Podr/D3AtLrm+8S2H7jON9AYGHPyoZO25VY7PgkpXssbI9nZXMPEW44Jg2OlRhiFTWjD7ShayeJUJIgObhdtXvwQ4jqbNLoXJwlrFO9+k6ZSTZ0YFXJJZqxkkeHNgRvJOeMjc9oZqy9779dUmyk4TDUA8HtznlwFp6lzDN1iq3Y6qTbAz0bS5lII3pKxOnIkpD+xNSFsxeOh5+Oc/DAWt7iH33MbS6kfkKY0RY3UZFK9SPVjGrKJIpbZn0anvQug5Cdgi63l1Mv1ynnTN3S2A8xrrl+8cDIkscG8LeIpq+zPh+L6jZfYyG6vu0utoLO2DyIBXhDWEVSNO0RQX5o5F1oFZISohNYdKSKl1H+G6WVtdJtRRHKPKNJqDxR6/BTT0IgDrHhpTxh4pgNjdKRbCqKSmE9P8Y5ubqnIj+y/Ty1ZWGyEUy2jKeE63MoP0UPR/CvYRl6nutb9PlLnAmvhiRHy1aCArc10E9boN1jpxWmORKJvgXtM/RoAhA9kvRtdMSucQw/z0ieSVoglbHxeDQqAr2e6efXSDqQ8hwVit7xEdDqNEeD1pgLYh1pD9gI3lQzSEZy/ZsnyN/luM63tvmxh60ZlYvuZFAczrgtiJ2R/BYpX0H6Tbxv+hLKA6TTcAWKA+wuVp7AJdQpvMdaNVRQCOCa1EFPHbkzjIzkm0AbBxLFYQ37xdfgSZmOEmviOI+mLbitzxI+LZy/Wugu5O03WPDe07MDh7tCt87z3Okam+rZPfrB3UkidJNIhDZ3PUZs0kOL1d1JAhsVWQQ25stcovFqEnYN5MMEz26V27vBX3fn5jaTpq0pTAdSFokgGfQg6Kw7ZSflFAGwG/1UsacGS2V5Mzq6zTl+mnn2QnhsSn9UzqdLwGptlKXfS7j3ng03QK8sdeFK2oTNuO8D46vvjW0N3SDhAbfCe5jCuyEMBBrqw1JVSagRblRyzRXd5vPW5DMoUHIVsGoBt8vXEGOLF9wabhWpDatGW4Snx8abh9jTTCbunr/g+fMDZcqotBGcjc/XGdIBLwfEZyRNqM9X/RsV1wqc6Oc3rKcn+v0TPI71xRQkU1fj3BoQgv6HQ4BDbXCURZVeK70G4rHtrL03bMQPIsJUMiWnC8f1qlK4uXfGXsjuplWXGlq0FhVdaw3tdbf8lhHMmihopmhBZUuswphpS5yM4Lx2z7iNbM8msHJBvferfVEyAC7at98xPqz2xQ/jh/HD+GH8MH4YP4wfxg/jh/E3jO9FWC/d/f5+4rPjoeOFvPMCeTdp8m+gqu8f6Ort3/eyd4DZyBA2tk5ovW5ow+a9Ezwfc2OpIOP5QuJGCkcxinZ6G04Ym/OFKskjhyoipCSYyd7lf+6dCaGoMKugKbHWdpFEjBQjODsIOScajXmk9w89zmdS4fY44Umo56vSlUSjkyfQBmqONNsJzuc3T3x8I+QiNG3kdODFyzseMI6Dr6XVaa1x0EJtkJbG8fBEf/gLAGo+0I4LPmdamRATtBcI9SFenV9z+/OJkjKWBRYw7XTbrFfz4MP0Pct6h2ge0+DSbPRBh3zzn9uck/eekC1H/K73xhtFtu7ytuuDuhsuCZEJZBooQB/zcaBAmpEy4b5JqBiil7Ommyf26PbUlPciyva891G+kUQRxdq6lzXruoJM0SlPNNGkMmRdCK6SMGz5ELIZ1tZ97o88d7/3zQ1bztjgWxUFLwW//Yh081+Snn2Cnf4/fPn3AGGT2k/I9ALpRzg7UnxHtuwMfW3hitIbtp4RX0I3pY8mJ1tw76FZayckpfDHzpe5ZMtjuKrlKcqI14uIh7e265CTGZSHdg4t3FIymueBZAd6431FJCa/5RLXSb+/J/XvbAwJH8d2qbXAy6/rbzq8vy/ItfGI+xvQV6TyFjm8RkpITpFfgz4RzWWCb+js1oQyeDLiQN/4ZEouCZ1Gt/LXDXvziDxXLM+gBZGMj+sieYZ1xfIJP9wyHX4PXxt2+msAer9HzoY/NmS1cKJKGyJGvPbLVzx8/oanXzyQHjup980EijeuPJqSht2qaLSDrRuJNTkkJWdCSohojDpvTVcGUxJyglmF89mY5MKnXFsgsvMkkENxYH6RQw8ZsKyYC+mmIMeCJ0dvQcpVt7PFdfI1dD1Tc/ypMdVYNz99VpheZpbZ8eQ8LE5KQtlukCE3Z8Pic5Na20awPmKuX/eBXHCqsVd/UDnB94eM/126AL5tfGM55oIIxtxXZMgJXngoA20d1EDxiyn8jta5bAqaQQF6h0YIIg3xFfdGN+X1G+fP//wVv/j11wCcW+cnP/0x//CPfp8ff3bH4TCNwm4goJKfI9MnyPwpKjPlMAcff69edIQn3N/i8iV1mTANCUMA7B6zM81iTRct5HKkrQPh7R6qRhJ81dZCCnHTjc45VE9qq+M3epTtd3Q+Sv/dQgKwtc55WWm975WvupzJjL3Hgd7p67pTAoRRnshBB0p5JqcSKjGMKsYuJZboJMwLboNmZRNOivk7VCzsqvkp9ri/WUXie1fk+zdvKNPENE3vcqr83dL99SSLe2XbcNlP2HeNywT+toj13XLI5QOvX3ahFPjVBJXh0Rzk9B5WjqOkvi6NR4wbg1wS2VMsLltpKcXFNo9u/IShJsN6bHSj9giGJ9Lozhte24CsndYsFEZQpiSs+VKP2rrEZdiptfCRvRDRAdyYxGhuoSHrylBvodaVUztQjs+R3JB+5v7sTD96Th72stIqJxXOU6HXibomXlShlOjW1lPCp4T2xjllVDqrvyEPke765Pip00+d6e6AzuHRfLiLTV/O7SIfIhZSLHIJ9FSDY7PpuP19GbueRZzk9/Osy18uL3qPZ2OIhpRVTo2UGjoWT2dwsJhIfgMO1pdostoUHnzzb5bRTNBH4nU9NAIK74MukPYNSJPhVujLU6g0iJKnA9Mc/M7ea2x6orGwaAr90ZE4VD2HaH7KpGGdXLfNEXBvhN6hDsmoTeIkfmOrK2aK5a8p53ukvEC5xTcB+qev4e4j5O5j3Ga8Vuh9L59JOeLeae1ESh3xBTs9QOo4sQGo/gidHOt/Dv4Q1p4y7bxy97AO7L3iPc6tqKBDRUA05qVqYvhuhN3g4Ki2pwccJR1eRGDvwV8LPVYQucclgrEPMjZzAL8qCcMlnxqPeK9YH7xd3uL6NaTXpMMDMj3BdIYyNhzxYYM4SqFuBHFou2djDshItr13WDosBm9HY8Zfn5HW4RPBnw1LlkWwadCQpgzi2OlMRvC1hh7maNxI9LB7XIzULAxcjjnKjBCJxfkJuW8cHytUxxq0eVyH50eeHQ8cX505vTqR1TCR3ZrVgJSCruSxd1MSdNsCTiglAIgpC63H7910Xk/NIhBQId9o5DIiMI/AogjpNpOfFyiCJsJU4Irr7JswN0Y+KH4n9JPtWq8chJQjcNDWuJmcqTvHsT48nYW6tNDqNB33zfXeOwqpQynAxaL5cOshEAf9PrOdv8NxXer/tjGC1m8+/C794f33bJxucSXUAfQSVFxkA0YY4Huyf9FT2/4+1rl9bd82XAkaXk70NvMXv37F//F//ZZ//4tI9p6s8ccPB+T4KdNN4aN8IJcJySEhmY+fkQ9/APkjcMV7optio0vausU6yCOmz/D5iNw9oxF0nWWptPoUOu+icQ3FsI0mwkggk1Byxs8y1GHi66eUQk1hnCsTaN5JW98DnW5Ga/Hnlua4O1Y361UPAxqJc+y1Y8sKNWgLWQTJE5pnNE24K6KZvBneiNKkYGScTGei+wG3WJPNUjRe6SZn9W5Md9EH+P6Z+70r8quvX1HKxDQVStkIvIVSyv6aCydELv8eAe2FpnKJMN/V5fTLRvmNo7/Lm3036JURePSRZ9p7HxAXQ+iotqH1t5CHFqbYSl8bVTq1Dd02A93aRTVRPY6SMGpz+mrMm/SQBvfDmhGewzCndOns7OGf/XRuVAdv0al6EXcXdAqFAHPnaWm0btS2SUBEM0AmOLYtKV0mbsdvXM/Ga5SXz3/G3Ysb/PHf47Kihwm9GZ3WCyDOIkJ/zNwePmbxxk0OQpp2IzWw+0fKj294/HqBfMJevwHgthRmUWp16mNjvj2iHdIxeIQ9P+L2yfBdjsVGPF0oKt2H3ueHzPR9n58xRh53lfd8c1wzwK5gk+1P7aTsTMWYijOVC7ke6XEvaMI1j5tb6I3dVGLTn9MUiY67jqDVL8f0TYWjRZe7eHA1AeihrdpqaI2KkssBP4y5YxEcmudY6LbAbSPqqdBbBXfyfBPBrdkekJoJZnXneNJCJkvTplFaMG/085fY63+NLW/I2kg5EiHSE/L2S6Q8Q8oLOBzwcydJBNTmhpRbuitYR/OELyc4n3Y0yeef4OnHcDhg67+D+gqrjfoYG4ivJ/KNIfkYvwUJXduNJzzdkecZLXPIbbkjre5oojLhvWH1CU+HS1LVN+mvE25vr87573gMfcJrPtfAjwAf86VHwDoc1EivkfI1Ot8j8xPkBfIaJRoYG8SY2w7sa+bYsAZKJZYD3fUO54Z8scAvR9PVb2qsbb9XkNuJc4Njyci8IVqGLws8LfDQWR/+kmlO6FAqkMj0kWpIdyCF2992b5iTxMjZMXVqdlYX2uDiHX/8KeWzH1N/8WvOr39DcmNO0MYacx7gWRdnXeNaH2bZvBOYJgWFqURQWnI02WxjKiFXFdLCERCYOHk0VMltgjuFyQLNLRL/V79IuJgFn7B3Us7Is4Q9dHRTmFFheaysWlmeBC+FKVVqieeng3A6x+cow8XoKmHdApMuThcb1/Wy3Y8Z8q2B4d/1iBl2+e+7j1/+Jarf0nT1Xsq+xQ6aRkKzrZVKVCCuypmyif2HT/1mErBVlTY5Khl9C5cYZT8I7rFmL3bDn/yHP+NV/Zgf/eE/AuAv/uT/5vW//hWnRTgtwj/7b/6Yz378B0x3vxffdfoRlp7jHEZobDQ6fZg3dBPcMtYT1nU47x05j/XlqT6ynCrJz6g0VKNxLg0jlDIVJOWwqek2GnBD1xTAvJGnTMqZ2hsNj3k4Anbv0WjVWqO1hkgOibBRRYlToLRWqdbJKLn3UAHYzqEKmktUUcihyzrAEoBzbXQSLgWnYD5jNu3qNd0kkiu/NF29D3WKXIOT3z6+N2C9ubmltcb5fObhYZQEy0QpmZwLJWdKzu+UfYcU2FWH+JgsV+WLPXjdAtl3ENPxOd/4NtcB7AXqfvetl4WT4UKUdaGkM3NemDTQiMnOlL7Sl4Z3GQGv0fsofTX2YG+aEstSOZ0aehji7UR3qLghAUgNEenxNTwAm/u1szaLPUFiUgDMJcSlSxFOS0OsU2tA9QBiTkLIksips2J0MXoJ4fO6VlZv3PbOzYuf8theU/gtZSq07ZJqp3plSnDqnWn+CDkIT/Y5AG0KN6/17YLcNfyhoQ+P5NcR0J7rifTZS+TWSOK0VZgmDw1HgLvP6ffPyfw4ElyRkSQMSgKX/PaDjP+ULlmPpot97OiFIamTC5QpgtYkDRlmC7jFojqC1q2dJJcUnfAwBO2DJiBbw57KFcIJuKDEAmq2xve5JqO7ILlgdRk2q7Jbs07Tke4OUjifz+SUyCnvc48hmu/uaCrkWYY1cVzX5AmzNLphCXTUDNcIOPP0HF8X6voFPPwKzl/RpVNGwFxuFd4UJL8gPZ+j1J/L3pijAx2SLGAe8l6HT+lvfwXtSwDMZ9LxMzR/Ss9v8OJg91G+Z3ynesbN6L1HE1Eue1MjqkiZkHmOsr5Fs8WmIiBm0XksUUXp+G45vF8je8L1+AG2/cu4bsa7VJEc7w33FXRBUqzLku/RwxtkvofyCOkMuoKMZkgakXjJSAwacMJta/wIBAsfTklPK/bbJ9LnZ/yrIQf2YGhupF+vLI8P2PEAf3iHbjHf4wkeQ09SWqNoQ+2id+lrUEJsi5G3wGX7dyJoH2qQhTYNd6uhg5oKrI+PtIcT09pZBXISNqbI1h2vEgL9ZnAz6e4IpFnwJLy8TcxJWVRYHhvHcX8fUtAMWvXoo7lRdNY9IPc0kOre4zgq8aVTGjaAAU64GSSDSRBLQSUbgcHy2Ok0TqysTSB1Dtl49LgObh2RGfHRsOZhy/MuehP/EbcrpGp7asgg/i3n2H/WMZR2tv0f3g1UGY9sBYTxr+/4sLFeqKJpNPa5jLVZL01oNGBIWjE6/72DN3YVgCtUdYs8BL0EawSS7SgPT84vfvPEx7//P/Bv/+yXAPz2ixN1fcv5aaG2zKe//0/55Gd/gM6/D4DpDZ1oxjNzmhvNfafPNa80c9rqtJqwfqDX5zuNS++gLzOnx1+hvOV4k5gPhXKINVc005pHrOIN84q4UwYIISr0FmuaTvOYLxr7wDj1TsSevVmsHe6oph18LCmzypl6XoZUokUD7660EHua5gm0BICRlHUEzc0U0xKBv2f6CFjNtnMcbbwXOat3Z+hF5OT7m7S/N2C9vb2l975H5hAdaeu68vT0REkpRGlzJl/xKUK4fARyInvJ/DI2RcxNV/D6y8s7f3xb3LEHvVuJa4jgbp3UIobSUTVyqhzzym1ZOEgEY7OfUXtC6kKrIcSbSNRlbPpz3m12sxQeT43Hh0oeXKi7w9jQBy+mN6NjlI3L5YGSqg3Eyp2cdC9d6ZA0sm4UCeHqOjZOgG7GUaEMPsssC1ZPtGFqLWWC9cTDl7/kTTbm8ki6nZiOMz54gNUr4lBUKVmw05fo/CNq2yw0hZwPWHXaL9/yXCvnX76lDHvade3wxQP2ycekBtBjB9DRMvx8hVawpyPIy8tV2S/YOBcfCmHdSkTfePD6+fdetCccV5nHSHzi+YpoJSVBkyFSgYqObF8lsl3d3uMWi4v0fQFPJWM2iAnjJpHrTce3GzcClsSMW4pOUojJY50kQ55pU/LYAlKJZXmTrXJvsRhsxgJ65XSl4WneW43OW+J1SR33ipAgp9A13hOhgs63ZAq9fo6fXiEi9OESp3YHN43+9g0wIfMz0BJlSwjuaFtAG5IOSDkiaSKZ0R+C62jrl6xv/g358Cm0lWZKnm6hRnDmvcKwEATFUyaViTR0WmUwPiVNgeC2NdBTH5ywekJqQqY5EgYfnd+7HWaIgntbdnTuQ419Yx5WkmJ9oOELmk7olkCWJ6TcI/k16DmQVbme3Vf8NBLuK9ZPcW6AJCVq5tLg9IR8/pb8qxO8arsDoLgEDfaXlfzamf7hhD+uewCqdcGeQhnDVcNqOhk+vFOtKnWNvEMk1kRBsLGualF0SvTq2NFYTp1mMI0D2BdfcF+/xF4vqIRKRx+/LF4Q1ZOM0Ae/tWThMDi4TRxUOMzKISupO1qVw5B3uZuj/Nqac0xCuktw0F0EwSX6DnAPWaQeVBRkOCMxZNwAT0qaFa9AvpSHaYYU0BJC8ypGch+IM2xabGaC9IGMb5Dgdh03rdHtMbmKZ31T5PhQVCznupNhiwWun3fvV0vxt+8P70QEQ8Ip1sURuMrGvbbRTzBoAmKo9AChxqdsXfEXHe6oyspIUqMiFpWv03mhrs79m0f+6hcRsD4+nJhyofaZj37yx/z0j/45h2c/22X4II8YZDhY2YK0J+hRjbT2RK2dZU3UNdO60buSRrk8l0/x45nldMJG2f7N0wqncd90RU24PUxMEtbJiXf3DOs2KAMlYo887RSo2hq92b4P9dZC01basGeGXErwyZMG8CKCp4zmoYIshg+HLB2XrXajDSesLvOgAxTcZzoTZmVHWNGQAfOdbuw70BXX8TKXv298b8AqQ/A8pcQ0TfsE2QLYXusQnD3tsj055yHtkUgapZctcIXImJKm4OgMOQ6/4j5e8rJNh267MP7u36THZkzfpYUu+ZORtFHSypxWDqlykxo3g2t4tJU5ndG+Qg2/cnMh65C1aYW1O5oE8wO6BJ/rcfA9nqdj6JmZhyTV2iIQuBklRFWWZvQm9A4lpeDIbFljCu7geVkHtzFQgTwCF5cgTasKq0aZX9MachYQeqtnSI9fc//liU8+KaT5Bf3lAX0VC1VyoRjUxbiZMvb0mnZ/5ma40jz4THkS/HjAz494Wplqp59G4IGQvnjAP3si/+RZXHere/lbDkZ6+TXN/or+mEn5GV181//TgbDr9crz92WMYFXwvanl3XGZaUFyu0qE1HCJ5rPmK2nL8AHXTtZO94Z7I4tgtuK0i9OKTFGREI1sUhglru2Qg7LgW6Oij/rYuPE9dO5ImXy4CWoAjtXNxq8NJ6hOzmnwkmSvguylICfsHgUkZ2TIj3hzkme6nZBkIWvoAn0gdfUVTkHnH6FF8CVDO4WOIVAfRhVirlBOob93uGGL/AxBclhouAMjqBQHG8bvUl/Rnz7H7YxLxrPQ/cJRpVd6PQ8ulKJySzs/4tvimwvSOv18Qg+K1QrdhgxU8Fn7+SmE+W8SkqY4z5sVpm/B3QecvCPwkA1xMIskwivYguiK5Brlf0Cmt5Duce4viD+XSoF7jYDdKxAmCX1d6TVQ5zQH11T6gt2/xX/ziH65Io+2u5ihQj8b8tpIyZCHin/1RBuSdp4sgK2S4ZjC7Ya2J1t9muBW8KcT5hVuE10jcIwXgM7KeRE4KodPZpYF2ucDfVyewKC5k58JrBGU9quGQSEa/HzcMqrC7SjpVwmM+XBQbmbltggP5qxPMe9KFujO06kzWyLJYJGMn59m2V21fOhHBX2g70uGe+wLpkp2gWaUo7Jsl3XkvjfPMnm64akVlrNcKtzd6BZyY982/WIvVVAZcI9fBalB//lgY2zXm7TW9ROXZrB4ZI9PNnejDad6r3F3f61vBxhJ157kj2qqbAG8DXS1cZFM2pDfgfCNSqDsYut5yLQq81Exb/zpv/0TvvoyEmi3xssXn/JHf/SP+Ff/6n/nxz/5Q1K+xbZgzGV0A6y4vcHar/DlS9oadJ26nllXZV2O1HZDtwOtK1u5PVvGygu4+YyvfnPPwxdf8rg88dtXg363NG5S4h///DM+eyl8dGukKZPSvJ00FKd5p9UKKYd5yuZQ16IhPBzYcpgZJaO3Rt+aLmuNqluOWCXiMkXGhFVruxSYi4Wla/d9zbU0gR5wPdD9OOgAsl8D8w2e1O1qfCsF4D/J6UpFvrGhuyuqiakUOBxoI2jdytm9N+ppDe3R0d2rIjvSpmPzTElIWclZB1/lEiRcuFuDq/oezzXKIB0Ie0W1jrqPSROBxZQbczozp4Vjqhy1chwc1htpHLPjtaPeBvFY2bmKS2xwpspDXREcO6208bXOOUVWg7NbsbnvjiuOs5gP/T9BNEVPx0BgD1OhdmP1gN7NA/nSUSJIsv1uo7pwvPuU449usK9CBPz8eOZmvqWdHpCl0lcQSUzHiWUE5SpCUuXrx8pHkjjYQq9P+DloBfn5jznljp5PzFVoXz/Samdp8R2PxxlOHX71Cv30BX050qcndBri7RnSrSH1Levya3L/OXN+iUsgPt3D6GBrRPvdj6tFkOv5s6FM/h0oLOPxbZX0S8CawnJRAwIJuznv+AgQcmpUO9HtTJEoueAdl37hL4uQNvHlzZRC5NLUuDUrbtQBe9ezxlXDgUWjPCYazXt7U5Yo9B4dpFkxgzY0dhk/yy1429bbfmwdC4/bEL32Ar7EAuYrYiNgdQNTzDuuxwhcp0ZfA/20/oSuD9h6S2od14qdntDj3X4NXMJJqbclArGUSeWA3oQblrcVX19j9Q1SbtGcMBPSCDhVBWvhfmVrI4W5Oz6CL5/WUBxYzrTBzfUW6wQw7G8dXxaMB2S+QdKE7eXzw9DH/ZAB6/hjUy7pFe9nsDOqHc09kLrNPTY3SCvmZ9zPSK+DvzuQdTpYjeu3VaaM3amGHM1Cvq74ubKuPcrtNwU5Xrr429sVq5C6oW9X/PyAj0TfXxQkJ5JnBMM7ocdoo3R5+wKZlL522qly8zzxtMCL0bSkSZFDIpeJZs5cYu4/jnU7VeelOGeEw13mfIb61BlUwbglRpApGioukmAetqnHojytNppTAkx6dpf4emn7+5MKy8k4v2rku4y+hCaDmpQAACAASURBVI1zoEWGEgHQE6TYH+M+HmtEicbKnBLaHJoFmrfRoU1Anbo2TI2pZNKiOwrtDawJ5oUsUfbvWxQII5ENJ0bXhNFHOLgptWy9Ix9i7n7Xgnp5LixR+W4kbTx3/fSmWIHb3v1+MUYYa7R1fJhh+PCz34KlwASumrU0EoKtETYqXYpr5tnLW/6r//oP+bNf/J+YhTvZPCWeP3/Jv/gX/wv/4A//CaXc4uRLsGcAFeu/5nz6f6nLXyB+H9x8oD2s1FPi6UlZ6g05/xTzT7DRZFoxxCcWfcZv3yb+9E9f8fX9W/76qzj+6e0DeV1580/v+e/++GPk08TN3czzFzGpcgknLlsb67pE9S/BfmMA2JXyi/WgiZldfoNHVa7oMJqxcEPc96UeyiuijD1nxvIRz/EbPN2C3GDc0Jgxz3SXPTGxEUvG+u9B+9kSEL4Faf2O8ferhfuH8cP4Yfwwfhg/jB/GD+OH8cN4b3w/JcAucP0lGRmoqwEYUyl4zjvGH3SBGmW33liXunPqgB1tVY3uzZwCZc1D8imn4S1Ov/BVfMtit5J5R2jBU/VG8hX1Rhns/ykbc+6UdOaYzjwrlRutTIPYXryjw0Is+ZCF6IOXxCgZdqN25+ks8d3WGuRv4PywxPcfSPGGGrcr/2cn+KMbd0aS7s4Th6mga6Ul5bG3yBbFd2OOnCTk5Vo0LPTeef7yM54NaZQ//bO/wuYjrVV6c/p6wJogD4E0AzSBNiX0wVnXxmwgOrMOlOpYXpKnlzye/h2Szpxfn5hrZxqNXXL3nH7svH7zyEcPj6Q58fjQuPsoEFY1aLmid0/Myz1Pr76EethRYk1G/xtcK/6uh3zjb9/M3r4VE9geGPIiMngNKQ0+1shUcR2SUxuKHER/a+fwXZZE0oQk3e0nxQeHyzdumn7LF9hkWDYpFtnLV6F76cPcyQnnHfbykqLB5bNA0gSl16dLaZkUVQExel3QMgWZPm01yQnrDbGZ7g1NGSUho9M7ZL1ugRtMSqBZcjPK6iCeaf0enj5n+ugngGC9IqOpSzUNzm1GpGK9hpVhKuiQ5pKb5wgVsROiHVRJmtlgausd0c1q0ejnt2iZYSiZUE/48BL31cHboCBcOoullOFTPthgpV9WQ4mOXqR/4Ixedn6mSVRcwpmmIb1R2yNeA4XRFMhrlEJXsEes1p0fvdFAYi3amkczupUVm+DVkTUQvn6bw8FJEnIaa3ddg8/eKvaqo23BU8OOw/3uZvBRVwtJnLWSszOMqnAatoSUTm+GaiCatiGYU8amTD4k7Klxen3GHhubKE2vwtwDTD49db4+G4uwN2WhYCn2KxU4TELJShqff/s8w2OjVsOzo5OAKvlpawxxssOchFwdWiBKexl70CJFRiNWVsjRHOV2oW5oNVg77c2CPfRYFsZEOrzM1DnxcG6stpLvQjaunkfptDpmgpPYHKyu1aLMHe82migHf1PZ1VhC03kgkh9q+LtUK7n6b9z7cvlB8v2IGjiqinuJqkxN6KEAm6Vw0ALxvldmbWhjb9UJ1ehS2fSavQ9EfG+07EFjkInDTea//x//C149PnD3b0J26v7tzD/+J/+M/+lf/ktubp6FbJ6HIkscsCP+ilb/Hdb+BNovSOnS8JjNkHOiPxiPb4XeX5HSz0mb62S+gVLw6QWHj36fKr/mN1+85suv4/Of3hpHgd98fs/6Rz+i1qGPNPZaVw23q0HvigqW76oom91tShn3jplxrmeuLaBzTuQc7nLdG5oT6o5sBPVBydCpoNORng9Ymug6KndyQ+eW5keaFdyGqsOuRTsmsQR3W2w0J78TIlwQ2e8a3x+wjtLp+/Jqm0zE9juuN/2cEkkESsF6o/UWXInNs7ZVHNAkIQ+lUPXCcc1JSCpMpQxZBx3E7VHGAkRC+3KWSqYiVIquTKMcflMad7OT5cycKrelM9MoY8MqLbyAXYU8ZaK4b5fGk27k3vFlSAipUtxCJw14asZcMrfHKWKVjcoyAta6kf9VSSoxoZKSB/lfp0Q2Y+7GqUYSYFdUCBGnNkNRbkpibU/cv/2CFyNgLVPCrFJuMlYrc5lQSyxfL7t3b0/QVmfKylydJiBSsAHhn86/RW3lrkPKyuvm8Ngox8EjzIX8yTPs9Eg/dezUMOtIH3yynuk3kKcT5TnMy0R9uKNIaNOF5qxfeEJ/T8b7AWpM8ffvEr+86mreRzkdXCKAFElocsooHSc6IhksxVT1hrijMl8I/hIbjfnm5R5NiuzXPo6/BaGyd3br5euoRuAKEYimHFqrgKQF0VjQBEO802vfkzFJE9ElnnCzwYdLl5DeLF47DBAcC7Fo2WwCjfnZzxB9hmjClkdO91/sHfqHwx31/IRh1PqWcnyOmtFGuX4+Pot1RSUarzykrnqrO89VDs9QjHZqlOkADPpCv5Tgdu/sHHaNtjzuQto+TAnQsHfVlOi97zIxjkNfxrXZyrr7bGArVX3IfOtSNb3Qo+BS1pOUyXMibbrLJQ96x2g4M8Pbgrdxv0oEn06GyRAtKPPedCHb5uuOeUFvjiHxZHpp2Lt10v2CvwEeDE5Onw37ZKzdvlBPRmKmakHtiamekFOURvvS8UdHlpUyBVttkotduc5DGL4Q3OKRy/W7+I02Fda3FT8t1KeO19i096tWIBWBOa5pGvarW9NUKsKz28z915X1bOSjsjbbBczX7swK013i3B0/GYfKHnBTCQvWSa+CrqAd7DpMVYJC+dCor1fq24bmS8I6vcykOTG98TA88CjLroN2vNboBg+RJkd1E4Ucs2GUWYWg/ygMzeEL5e5DjW9P/iN4iFv+uhnr6l3CFXd1iyt8f100RoY8oLUEdkBka3iyoAJISFkFwyp4+nZ1DNllBPvojlW4MgZRMZxCSco/+Icv+V//t/+Z//afb2v2z/nZH/wxP/7J748EJpq2bGMm2yNqvwT7SzKfk9OJJI066HF45fHxxOkR1pPw9v4eTQvTs/j8cvyUcpzQAsfbl6C3rC1TR1/C0jJOpYnQ3cjzkTxftLUlKYdyg655zJWEdfZGecxpISq8r3kG7/Q2xH4WerRJ8qA52k6ni+VDkTxBOUA5YDpjDP1vu6HbDc0PWC+4pbGtXlMCd1Le1YzR/e9/GxLL9wes+5J5CVDjuPYOoTn+e+GUyJh3ScOv3MeGAdB7pnvHrGM9utWShsMIbAR2w6bMPPRfk2ZMjTxWjjSaWw5amWRlmipqK3k0hhy1cqvGYepMaswpEIkyvnPJjriiFFKHpp3qjToykg6DI+NknOROduHNWFVWCeHeOSdySRFwbKAYMY9EhG5OGxuyZt3RRwSaKg81Arqg59iOBPQW+ntzCtMB2pnHt7+kj07TO84csnMm1AmOtwVxZX2o2E28Zpoy6xO4K10SSIO6MnlwCVWU89vfsp6/4u5w4MU8szw0/DxWztOJ+rZw99Fz1jVxbMKxhD88gMiCnB3mG6QY5fgaXz9iXQavJt1e+C8feFxm7jf1Ad99/vK6fYsYzh0QfEKXQD6iUgAqfb/pkyhJJ3K6patBPb+T5W5/+kZeZwdR9mNE1/GmH3vp/H/n2207udouG7WR3/twsIrmi4b1Su7XZ4DgKMlFMimlfNkget0DNSUH0ikZ2Zx4JqiemG4+pczP0X5Pbyekvo73eGPKhWaP9Ke/Zn75e+iQe4EwNkij4Uw1Y62SNFNbDdQUSGVG5I6cwGzZVQ225pqUD5hLIMEau7fRqKc34zpVvB7RIWnVcXI5YuehcCFOPhzH74zklSse4katUv8wydbeBS62J8HvIG37Q85OjtRpJD8ZyIGaY9gWCYmEuoimQfIc6/uVYRAtHLDS4YB2QR5X/H7F70fQe67w1JGT0c6GdWFxZdoQ0qUjD0p+/gn6/AVJXiOvfo2dwkHMT2fSiajcHRNeCeWtvC3+Al0RTeRjweaE3Rbyy8/i/ekj3v7FX/P2/nN6b6jBQWUzAIzeLgHPAYJIFizBOubNcjamFPW7ujr3teE1Al8IwC3dBI9WVsfKgGq3YLQ7rD322Db2iCz4lVyvOmh3rDrJIwh3DQEGgNqMfDvz8rPC1A481kQ/J87j/q+WEE/BS5XQ8zRX9KqvA9gM94aE1TdlrD7E2iuymbJ897EvrnTf9uT+n3ce1A3QEYmEyzMiUQnEe1QURtAa23ZUlnbzMEnfOB+OXNA/SjSHEwZJh2z87Gef8Qf/4I/H+39O50DOU5x4IZoYR8Bq9hr650j/ksyC6gResE12alpY+sKr+zecz7DUE7YUMh8BcOiZiRcUF6bphpu7F5yXxuk01DGqkrPw/Gbm7q5wuJ0p80QaTlnzPIcRjGbOywKSSXqp3PXeqctC76M5zYWUovl9lx/TaIZSjWSvtx6N4LscItHMmycsHbF0oMsN1W7HObih25HmQ9VmC1avEHT39E6ceIE8xxX5BuL6zfH9TVcMUfh35teQhNgJzd+UgN1pBINg7ciOnqgqWUo0q1gLHUCrMOQRxCtThsMEU3FSsl1GKI2Sf07OMTs3uXPUzkSFvuLD9UW9cjvDsxlmjYigWSePDSk7NA2kc5KE5o6J0EZQfl5byKWkYb1K2PZtQr1TUtScWhuSBr3BLs4T7hHn1GbkpBHLdgt7VQAxau1RVvCQekCjQQ3Aakekkw9KWw2k09vC00jobiQQkWSVfMgcPn7OU7dA0sZv6B79AU0TTSeUQLFkeT0urqA64y2zfP3Is8MNzDNf3UdWOL96w4tJSPNH6MsZ6co8TejQql3biVxX2rqAHEnHQmlPLEtkvrXNO+L1YYZc5uV7COr74dt3vX9XqrgKEMwMlYRZtDm4Xm6yyFIVLJGGpFS43lyWaNXM5sQSDVsWMli7bqGM0rWz1SOdS/Lo2/dx8KElKGnay+EyH/FeSeUQAU8905d1L1mqO917fE/NIZGUpx1Fi98xztJeMrrQcTQ59fw5mm/I+YAjzMcDdSCo1k/haCSC9ZX6+AXp7sc7gtxbJU1bsChIirUgl7KX2PJ8i0mUjN0mMAvtVN+UBs6DaON7qV8kAliAtjxibUElkzXHZt8uTZnmDWPrJveoBqjsyb7rkCnqv/tNH7hIwV1NLnci6NSM6HD+kQN7luwzyAwcYsbICvmMTFtJr0OKTcG8EbqrhtdN/SGaTzUpKSW8OfbVGb1f0LFxtq9W5LFjZwuVuw4lKdP4vv6FMfWEpE4qod4SEk/b2u/o6KLvBuujYQ3mm1gnkmtIRZUMLybSTSK9EbxvUnwTqyhvAkbjozkjx8zXm1uP+JDy89FAxTsb01ottGYlQIVkUDQc5yAMq9KNkl4mbrOiLzP6QjG9lOt1nLf/n71367IcSbLzPjN3AOdERGZVd08PxRmOhly6LElP+v/P+ht6EOdC9nR1V1VmRsQB4G6mBzMHTtSta5EzlXworM7OrIhzBRzmZtu27Y1GJ85KJN8DzZNas7BNtNeV7sI+GAMNqk1MD08UF/YNWqm0PEcmNS65kfd/Fss+EMe79ZD3gLufw3mSEo+fCSv43tsOdJW7Cf27quvnfMwjsREyKXV0+PXqBZUb7jvet2y/CPeTXXLE2wQd8s8IyqolLbGD2mgYKhdUI6FkekCpUdHcCd/70M71F9y/xZOGYxb0v0GJ++brj/z561c+vTTW3ULWqn1g2cII5fr019HS32KI9t//7d/R2/9Dz2HABed3TzN//x9+y1/9/pHruwvLshyxobUWit8OoFmP3gOModkqqSIQ10OzU3ci80JSTiwAxCpyAIlBG5vwMmPlQpOF5hdaJqy9PWLM2FC3cEekH1cPBKMy9tzvXX1hBLmfXAt/Qdbq3CjP7z70ze4z5DuofzzRs+LKXX1wK51M7NwjScuTNWUmX1WpurMsxjILU+0oLRI4GQljJKyP1XisnUXD9WHLqLC3zsOlcFmUSTxaORpI6fHdSoqtl0KdC1WVbSR7e4vP1xXz4Nm6xH8DrGbBg92FWjWm4cWO9rdJaKmOe6KoYCLcUranO7TdshKM6qbK3dSiOrUWyqRp8T6hyGG1Pk8L/Rb46tO1Mj0UthcoCLIP6oWBhDtF24zqG/u6UZfUoty+ZZq/wLiyvbzw7fML9eEBuZ6Tiy8fnum18pu//pLbbWMRQZKvJh18vdG4Ub4UfNrp5YUSoq3cthfUBMoYY/6ljxHY703fxg3xc5oPd3yacV0s9DpdPW72IdHmQ7oj1EYtbzyRAjW4OiNhFDx5r560gZQfGfeH56eUUJdgtNHuJ1p7BIJABkvI9yT/0z2SVKkzIkYRw/btRHqtoyjN1jA38Ir17ShAx1R5ihDgLhiCJo9XvVO009f/ys2eAUe3PyEykDylywW3SusFXr/h4fH3cZ6A1nf2/UYtkaC6CL03Sp0ZMizdGmV+pDdBegFr+L7hNaEsy4zdHKRFAuEWyAbgvePWw7rVYZkuuLWDNmH7LZQbqmLsqdChB7VHsgXp3Q5l1s9yvFmmki27oKHoIkgtxzmLuDsjXCON1w7T3XXtNw5I3/bInJpB+pX7bceaUa4VNqd9faN9dWN+2di/icdsHzq6OvvqXK+F+q4g14I8Z8x53XFZ8VfD6teIGOZGOWKG4h83xAx7dW6tI5Mwn/K3of0+F/jNBfnnivzDM/1f/hmAT5++4uXblX3rvDZ4ejdj1xr6qoBIp4hTXOgSScWkh0or86QsS0Gah87/1pksNmbIe0dAniSUER7Bq2GppGC7hxvi60C+M4lyQR+zQ1IVuzrMBVGn/dOONdCn0UFR2rPBdmPPBL1aYzl2YufkrkecCNe7u5UgQ3xfEQOTUKMdx+d1F/zh4z7yvkVh/YSLkSN3+P7zPfi6OVdwft8SyJ3HPRu1jL5JigeXy83u4vApn6VDo5h47egGTciIJ4NmQ1pem+G9HKL45q+Yf4vbC/vrSts7OsFzapp//dVHPn54ZVtDRmpvDfOJaxoZqcZ9giX3+rLwd//+37F+/UcAfv9+5v/+P/6G//U//ZYvvrzw+HhlmpeD4tRb5/Z6C838zLtab9iYyUnqVymOdYlkPe2Xx8oyi6LfJeZtQnnUDlMQKQplxvRC88raJnYumCfC6tdwsfKRI8pRZOcLHLno6M2/XaXyvZ/80PGzILC31ZoDdkg5+fjR93oS38mh5fxrmAW4OypGVechpUeeLpWqHZWNWneWSZjVmKVThm6ZGBc1rsV4KI7SoTRKBu/Lojxea1TMWXFdpxI+zwDuaIkWro/Eo+iBwExm6FKp3VjyJO2bcF3G0EcIPd+2ju49ODYSfNVxOrqHJmkz5apKE2Ub3r4tEmwxD89tInnes/1XSsn2h1InZyoXat15TbvBcn1kujzw7bfweK2sDqbCUiUI/xASVd2Z5ykC+PMLdut88EhIHy/A+jWTX2g3p20bH3fl8W+yTfFY+OrbT7zvDfvwQn0fVI4RmJ24dtos9AsnZ74aL0k0b02Y5MLnF2IVznD/3xDInbfJIsMFKtAvs5N872kTGDd6BAU14hz0wY/uyRmpMUjoHXE7uo6kxAoabd0AOs8bTAY85NHpGMmtpk6yloK3meH4orqg2w1Luox4SJp0i4EiLZKcrzhKkeSVxro0S4/qgVZooVYB1kA06HR/Bs2EVa8s19/QXdn6jWbC9vKB6SHWVdWJva2UOsdQlFn4UO9ruFIB6+2Fh8cv0HKJxNEFl3ZQAsxT9LtO0QkUsD60R/McjWuSLl5SJ9hO+SLfNqw+g16x7SM6KaRAvqsh07sDQfmljyFldu/6IndomxSHyZDakXJnrXoUWT0RjijIAbzrEbNl3/HeozW/xrron7ZYA5PDc8M+RGLZ1s7r8zDOAJkEu4SgvrjgHxv+IalUe6dXoby7wRX0OlGWBdbBO7AAvwSKOZM5LIpdE10s0U5HFL1O2Bzrw9bQs/z4X59pr07ZjS+WCZ+U/rLy4EOfOrSzu8AugWqWRNUAmgXCPC1KX3u4Ee3ONe+9BpEHXRWugDr7Nxs2TDHSscp3h9VDmnEuePWj5e9iMfhUFN+N9cPGvsMlqVrSnfV5pWunTROlzkwmzHl/hcxhDBSTljZunfvW6n17W7Ckig15orFWfnk5wXAu+37H9S8+781/OW/b944NySpx9BgwOymJgXYmeopQImBldIQh5eZmMYdBUOLObvRIllMb2xUpF4ZV9JtP6QNU8KO4hxXkhtnK3gzvE+bw6UMkpOvaA423FnJkDUQbOpD7oRmb3NLrpfJ//m9/y2/mQGD/7vcz//t//A3/0+8vXC4T83Lhcrkcn8lKJNm39UbzyGUCRb6TrILkA4cUmrlnoX929lSiM1jmCa2O7CuacTViyQWXK7tf6DwAT9EBy1M8zkvEICEtH+MUDX7GHSBz7HXH+R3P/fHjLyesB3KeX/67man/UEWUCOzYaHMyLD5WVEqaLh+RsHaWGi9SdWcuK6VsFN1Z1LlWYRFnZrT0OxM7czeqOyoeLcQM8KUo8xzqdNY8kyuOhDI4MYK5YTVaQlYKpQeC8yDO4k5fG9IMxXnnU6qmpb3Zq/GHrz7ysu0UESaviYZyDByZg3fjtgeSNBxXKsre2lFRBYn+bE3JpGfFg1NnZZovaIkb5Hlzfvv4wLStyEWDJ4tTVQ+OaekxuGVF+XKZaFLYWrR/AWx6z8vrP8LLC/q88WF3mhQeLtmee3eltobjrJ9eucwX9q3hD8nFvEwxITstiMyh4zkXppzYff30Q1XML3mMivn7H+P80Q+xv8Zxfv5xE4kPdCNFqPO8H63m9Hg+3tAAM4rLocGLRQElRVEp2YE4VQDGTRxDWjL+d+rTeTiOBaVmP2gFo40c9MdQAsBAVCiXxzO+r4EoVil0OoihRfOzR1tWSgErEcus3bntEF7yGp8dGuYrVoye7XqvCz69o5Yr0ne27Rva9kydgiqiZabqhLU92tviiExZ+I77s7Ktr9RpAi0ocwjcDyvFY2igRAQzhyJYC46qqIZJgBMbvne67ceV1nyub1tSlSpd/pxJAlFgFKVe3//I2vi3PQQY1j7jupAIDA7WY4OTSZA6vtVw8noF+4jbJ4TbUaT3looD7ti6w77He9wymXzeYxNx6B82aB2tcGvOnjqpT19MFFf6h05/6fRvGrJ3NIcOmzo8FoTwPnd3fNuQ19j07GXL9RPrMvZooa2J6j9ES7Z0R14cdqW70j7m7MJmlA0eVNFZWa0ztcZyGHtEm9OK0pPite92gHH1Fg5xl6pMF0VRtDvT6Hu2iLV6KZh6/O7ZjvdvOL4pUxFkJ1wMK4gJtuZ1KB2KoBPYp0R8LzJm2+jm7DejayTvroJ3aNvoLkQMMe/hPuYlNvl7LiAn8GMmwVUebnslxNrNG7/08X071h8/7tJvRhz+KdH4YZAgIxFK7WthBfagBNAR17O4vuvqxueLNrVn9/OIN1G6c6K2irAw+OHDkmBYWlsmrSNmu0enqm3Gy6dXbi8CKC8fs3vRnetlDlqhZ6FYQscXCKpOiWvsOA9L5X/5n3/H3//27wD43dPGX3858+W7iXmaaK2xbTtz0sDCYnVmmlsyhEK96J7m5X6a+sQaCxH/45qVik4Xyrwwpfb2oFrF7+ewoJUHjHfg78GuR9f52Ed9IKXx541ahPsJfiSwfs9p5WdQWf7HGuH+9fj1+PX49fj1+PX49fj1+PX49fjO8TMoAYmWHhCNHYiT/yDvICgDx4TY4bGbFaCkKoAac+1MxSk05pqaZboz1Q1ljerJYgBimpSHrORna1RraG9oayf3aHypZUbolJw+tRaTcYPNpJKtF3JatgZiVBMlmqYZbYYuiu2d7iEPNU/ZktuM9duNh5eZ548rt9uOGkj+3uZAEBTCvrUZc3WuWZE93xrb2g6LPTTcrU6LwXAJw52tG6WEB/0lBQlfnht/en7mUoW5FMTlQHeHc4V0oyLcbo02VwxlbSU4vQCXL3h+/q9cbx9DM02VyyUcZgC+bs716TGczF5XltsU1/M5hrKaBZoyPVSkLIgvGHJM1KpKcGf+W9rw/yrHjyGnY83+HPQ3kcWh/zs4VuTgxoG0JhVkALoi0VYiWkxmxgDC4uWMkE8c5Jg7aZ5EieL94v7x3s8Wd/JkxTvBfW2Ytzt0I+490aAOiBfK5fFA2mJ5WEg9+Y6njezptBXcWSkK3aNN7/2QLHRzXBMREQULqZOhlACFdV+ZuKLlQqkP4BttC5vBOhdUa/DNXFCdoASFxof0FoH49p4yNQhluh6Igbqz97ScTWpFBIDUFLUQ9dJsj4vPmO0MQpa3HhSgTljKTgpdD2easN0seF0+2+qNDwJmQ11lR3rSR3rqToohMkw/w3bVWcE/0tu30Ff6OlCWitYZbzt22+F1i2G052ynbxnne8NuEVP77tikvPubiDvzF3Noipad1w+N/nXj0mxIYsJVKQ8V2RX/GC6E1rbQhwWsObY5cgkKVR+jM6MtOQk2C3Jr+EvDXwJtb2kXba3RBeZLpdfsTry/UB+Ty4ex9p1rER5wbo3Qxs6uU98Em4AZlnfKDWF/IbS14hNQZwkXtDddkvy1EkB2vBmYxwDc5ug+rpOFteUl/N/LXIIfnXtDr5XWBSN50sDe4GVMhPeBMw4d5tgjRgNm9DklJY4M8OwmxDfgvjn0ix6HSoC/bevHfSrHFPjPuqfkB/7tTtLVT31QjfOkquAlu2D+Ji5jJdtkgdB68lmPgUYEtETHZqjCyMwx8HZ02rLj4ZYdr5zP8L+ib7/n9vrIy8tXfPP1B7zLYaXetp15mphrZ11D6pAyIzU1z+sSaKvGmpjnDg+FWuLG+s1l4zobc1WmeWaaQ9Vl3dLZz2BvLb6dCtbj+x0cXRG696CuiYR7IUE9rJlTeC1xHxQLDfH9Rmm34xxZqTRdaHKl9QutT7jp2VXWc1cNhYu3xJCBdo9/i3LQAxhXQb57Luah4gAAIABJREFU4b9//HTCenDn7u/a+zvh3PxP+8t4vKcumouh4pRsWRR1qjpT7SyTMZdG1UZJP+pJN6psQJgBiMVN7HceyZN0Ju8U3+mth8aYxgAUQEn9yaIVilNm4Q3WbDEYY+5gRpWgqxx79lxQU6RrDH0AUoQ6EtbXzrZ2lmtle9mwvdM2YTg5igp1Cgvb3Ry6U3okuhDewHRHa5w984iFg7LWPdpmcy3cth48SWAaAtiPlZfizLJEYriHAYIA++DpmoUG7Ga0reWAirLmpjx9+0f6WrFN6ApfvL/yQWEe8kNaeL51Fhcmd0zD+q2/RGBe+0q5vuf1tXGZn2F5gGmnPuU1+lho/afbPP+WR9wuPxK15e5Bfyl5vSfV5A3lgyuYyevRGiK87dGYyEQ1RKqxsDwF6EHzMO/B4a5T3kaDEhC8IqdHS8bzuUML0y03JEOypS/WY9ofghPLObAFUObLIXbZrWPbHlJWUkEslDqSr2V9T46RBpfzMO/Ic1BKDOfU4MmJXhD01EAlNqhur+x7DIzUurwpqIL1EBwyFY1CR5QxQOQWCbcnHcl7p0q5MyeAUo2+30LxgJggP/3Yt+DhqiEWXPBSLgwlEmeNZNiFUi90WUCng2fcX1/AnVrqZ29BHbbU1nPepBI2iw3oOCnVxUb0qTfghnLD2sqQ7pnmKyITYEEbuvX4XfpNW48YOaS8fA8G4PxuRpYcmEMxdfwiSBX23fHnACAAlgb14rhtSOnBNcaxDIz26vTVKZeQ2tMpJuhHvisqWBX6rSGfGqzCfKlMS67dCkyKXQo3Vy5PE//+P/2W/hBB5+s//JHXP33LhZTnUWdy55Kt11mcS41CcZqVfhHqF3pauyaFa/96gykzq9WPPuR8LegiOcHvuSumJOOQxlrDJEfUw6Z2dmQu2DL0ci/0EvQrmNis8roL+5hZ9AnPaeow7ggKTh8DvXF17upoOXbgWC+jAP7l4+6hYBD/ET8bP9e0gD4/6f0zz/92cPEAc+5+H1bWQA5XHZul94z1obMaFKqIrXcoQKYyAp468Xpm9TJ+NQZhGZSsfAsfMzfkHw8gItMn43e4/Ufa9l/ofOJ1f+b1+RP7S4A75mFluu6Nbd+hPiLT79D6Rby+XnAKbpqSU0IthvQ0W7ENbx579wuoPjFfZraUrHt9faW7AzXApxFjkzcaFLaI0a1FoV9KiT8jYZ01RBD6St9vaF9R2bEcPGs5h7OHXdM5YHWsuzu9YPEs+u+uQRYLenLcklYxqKJjsO2nj5+FsPpdwvqWe3L/mJGtjcqwg8amWtTPCf8KUw3JqmUyLtW4VGfKkztrVDktB1nFHPVES4Y0j1r4gvfOvu0xiVo1h0E4tFOV4C81jJboBJADMce+DwK1CjoQUs9NE40k0w2K0AZPcBN6IaaMRTDrrNa4jAShhXLApJGcNAtJrNtt+Jo7sw6+RsrzuJybk4ObUEUTdU2+ZB9Jv3BdasjD5EJairB3Yx2DKWY8TAXZg2BNEUyhWSzyr779mql1blLYPFDk63VmTx3WJ4RWCr4a60vjmhqkY6jLMIpWnrcX7OM3PJUHtG5c30X0//SHjnQ5HWD+RzmO2HiG+R9KV+UHYYocskopRj9I46kfWheKForsIXKve/CZ3bGRsO4N6TFsFW4sC1IqMkhueVs5QdJXPJDFPmTfsrr3KAwFR2w/5Ymso1oj+JSS3KXtQEh1muj7DachhAFFIMl3HPWRHCvElMy9PlBM1ptYTKk64BUt6VIVIsS4F9RjoIBSj6f3HqofR+CSgmo5JKkgUEVFQ8+P+KrNGiNzEK1IKYhlgHbLidjx+xnvG1om+hYqAqozMkw1pCcHuMek/CRs60ZJpQUtStt29ucPP28q9V/7uAutY/DKvKNMHCJBKpGgDvFybgSHded0zbPkGoPW4Jrb6xaXujn0juSks9SS8l4R7mx1fAcm4Zb8TOtOmcLYhQplUdaPnZpDSQudXVfaDNN7QZaJfa1smVPrvmPdqY/gl4IuFRfOKfxmMSjTHG6GNKc8VMq7TF4+OkuFeXb2PfimT79/YvdA1v+8t9gjHEgDGu0+5s5i2t6hbbGhh+sSh/62i7N+6tA600OhzNFlOCSl8v+DA+mheqa5vAdKvAdAgUnouTaJ4cBLcLh9emK7Oh9Xoe1X1vYlHz494haJg7JgTJwRaPQx77o88Q/GLQTnZwx+oHBYa/2Cx9thsO/8bABuceJ//muSMcUClQbFTU9UnnBTEikEXz1jZ7fjU4TTU6oTJbIXCf/957AcgrWMeS8Mniw+Ax2zRMVTImsMdXVmhL9F9f+i91fQTvOveEkJyfnyyOX6ntqfKXZDpy9h+g9I/U2emkBzVUI1CW8U6ThDNqvjHrHW2872+oLoec2b7Zg5Vco54+wxnApxqvrQXlalloKWEq6iQ3lF052q7wH2FsGZaBIJ6y5XuiyEmv2JPB+7u4fY6Xjz6HjrHVA4EluOvMfP1RyoOHZ8px87/kI8vkNYRys5SbWjYokFMlDYuHyeMlSIUbQzVTvcgJZJYvK/GstkPMzwMAmXFMG9VMea0XanbdGSnyQQ89HW3JqFi8O2s61bdNW9olO8h1ogU7Hw4sI1s+P5kzuTKB2hibCTsXoMxghsq6V9oOeQhqGj3S6OiaNVeXyc6S58+rQeU/6LOYsRk5+51++tn+fII+mMjTjdJPZ2IESjvbo1w11o3Snmh1yJmx8VZE8SeNGQSBmBc22BsJaqqAptVtocSTRAwelu4YjVld2cyYyWAxKfvvrAF08LW482zPpho14qW1oIllrRMrHojMgL0b9boURV6F6x1vFyEr//xzsyab2XWPHz7/tYG/8Ysh0RJM2G5NOQrAkBautbtj0UrZFkjGLJ+haDTB7SaQODPk068hqLp41rFkwjoXOLhNJjPZl3rG+Ho9HhhCMhwB7JXMMtE1oaqGO2h3NJIsX3AtKWSbIQzidmMHSU6RHMrPcQ+OdM2IFIJMsUSLM7avEZhKGwsWOHzWxMFZc6I20/URkJOgmtobVmB+KUD4uEbQJpB4rgPaba4xw4IXUDWhb22yuOM9V0x/GFbp8iYWstkprlis6B1Ml0odBx+eUHV8ZxtFfvjhwfDbREhjj3/ZRt/OWuuFRcpiNxMYMyzUHfqDXcvbZ+DDp7F6TFFPX+qWM3T/Wgk24UqKOGi04Hn4XLk0Ia+nR35KWFXfSlMr2/oNOVcgvjAPadzKOp14I/TXTxo7ngzWELuox5yMFfv5i4prLJ9PWG3TpPIqga6+srf/5//5EPuf7aeuOLJdZUd5gv4E1OYwKg73ZQd+os+CSnqQfQmyOhvR7MHJGQsoqLgu9O37I7N2kktVXO0F7BU/5Ia8EfC7vOrHsk1a/2yLey8C/Pxss6s9kDH18X1v2S1/jsjPhdPDqwp4xLZ244upsZgyhZmH3GhPWOEvDdv49oepdOBDXohz+vE10YESUsrSUSVhsxt0ayOlrQnuged4OseZ9oUQKhtSxs/M0bqRmtv7D2ndk+UoerhsUgW3TLRlHAaYZiIDwyXf8jD+821v7A3v4RJ9QtfvPbf8f16TfMH25MHz5x28D0S3RKnVddQhiGQpUeSJ2t8W8I+pd1bF/x4vQivD4bnrFPp0LfGt2iqyweuvNjyMpIzMHJgdSgDrgcTSXCjKGCh7yg54i55d+dJzZ7onkUV540xO809QNdRXJfOQmBAxgKpFrOpt0B0kkirj+4DI7jpxPWdOSRfMHzre//HklttvPoIC2QVu2UasyTkR0RLpOyVGcqQQl4WOBpER5zgn4pjrVK351Whb531JzqnZITaX2z0DRbd9pt4zpp8otygTbF92gJSQ0NVdPT1KXE6qBqII+eHKFTsNsD2czIVjXmBDWRAKwzF4er4DYhtfBYCh+fI2n4+LzyvHcezbhc5+CzGuw+El7JVqjTeqc1ZzIOp58okpW1ZYsyqQuHRaBnoYhjLqx7Z5lKhKgMnOKxsTgRlG0ulKcLZdhb7p1awGusHHH4+LIdSgQ4fLvtXJeJW3f4uHIBaoBQLNcFtOB7JQTsO+4bUoKrKOUhzqF9vk1/HG8sNv3Hf/b2SKTi2DRi75eUWTJTTDScrzgLGSSuCQ7qRplm6rAKBXpr8bvkuSoeAWm0YvO50dLPpMRPPpKYIcNw47C7ufs+bhHc+h5qAngkiS2RuN4T5UjkIVGLUoY3d2j2dQn6QMh35fkAtBagxGt2QcuEaqUP+RNPBERielWLHr8D0HTVChWMRDr6nijIXWLQjWZ7UF00HFKG7JVtO0VnRFIOJu9dGSh0D33K8KwsuK+s28b4GFomzGeshQOerK+U5UqZIjjrwztEa7bdf/kja4i49MfazHOTBXQ0vSqkDiLyGuuFEskqcyjjdz9eE/eYBr4u2G3DP+1IxjTpBZpja8NeDFkdzNHiPKawvz5NWA90E4HpsTBPQkme7Pah4TdDRVjXWAfXyxySYcBtd6oG8qJLoS3KtnZa0ozmBrMoOkXcvlXBZuXy+9g8vniET3toTE+q7Nb45k+fwkkFuFbhUgqbweZGEUEnOcGWEnMCUxEmDV1WL0J/TW50VbT5wbU9tOL3uySrRVGpKogrsktwsNM5oGl8ZjXBXgWfJ1Z54F++je/wL8+VP3145M8flJdN2XymMQU9hzECEAlq7Dr+ZiHE2oiE7FgZzp05w5DD+wxklh9Bx05llZ+PrB7PzXIekeCgO9CjuxLH6P7I8bAoaMfvRqIkibCH3JN3OxDWEEExoOHthWhofaDUBF8wvKfEH+FAZm6nWQNGE6fVB+zyH6gPyrI/Mj1kt/I3/45uM15fKcsLk24YM5JdKTQ0UosIFQmpuf5K1bOjWlLKq+1b5CzWg3dKggRIxv4W4v9+h1Zm8oiENeuQtBLK4ZblpWA+0ZloFsm4eMWJIr/7TJcr5g9gNQCbzELiLU4LqUPY7G49DBwoFnjY5cj5m0hWf4Z+8F9EWMetYSNgZh537OOH6G9efOmIGlI6qp157iyz8XCJE/Nwcap0qjSWalwX4TLDZY7nT7kBl6ki18K+Nvo27PMSPezG1jr71qB3uoTjiKczzb45osakEyVt2bQqaud3MA2pES/ApIHUDAQzKykdN1kBECQXqCrMs6DXEhvlYkzT6V38pz/ekA2ulxk8hKnFcwAAWOYQQjIP1HQibuiaXCupkQyta6eO5NScLeGQuUQiszej1gjCTiyyrQ2xYGfdnWnO6rUWrk8X7DWNA9aGm4cpwt759LrR+qkXWC3kvNZ1o4mwvm7cmvGUjLOnSaPVOinNJzaBixiWhcs8KRt6WPJ+juNclW8Dpcj3fvSd43xA3HOjkJGjqjYEk7hpPduurpYdyYFyFobBwGieKFMGyxHII+CelBo/NiQZYsvej88bwTYdzSTt7NDQNYXgs6RwvhBmFkVOxKUPbVFJXU4dOsAp4SIWovp3Z0613JlaTEhxSpK+zxZO/L63PbRdyynNJqLH8JCKJt/WGNCafbesHghA93DGKkqp9XgP1Ug2i17ofUsApZy8M2lZWAQiI7rQ+0rbozddqoU0V6l4XZje/w6uD1i2x2SqyPyQweHzHE60HE+JnkTDMdwE2xzfFckKUlgIT5xo/SM7UkM+EEb3KLgsMhVkKbg57VPGi7WjXWgvG8Wcbe1UgWKK50DQ+nFnfen0jzvsTp2EbXNeX5ObvzuzCVMX/BXWP94oD42WMee2B2DRO2h3+m7s61mIFw8XQgxYAhldm3P5IguVp8p+62gpvHs3cbs1ttZDz5VYR02VMgvSBGswLzJmGNEiIW9YYJqVaSmgcsjE2h58aGvOvsH0EDM9+1fxgDoV9H2JeYdJcBNePjYuv6vYnBzuKToObQd/Lrhd+eRP/OljFBb/9Kcrf/pYuW2VRsGkYlWRMRDoHfWUG7qLU9+tr+X+p3pn3eqx+R/tus9x3H3Y74bZ4YIp94/4oTzlDRAbyP6QXZNekV6PB3Z1XCTPwR7D1O7HkGacywLe8bZH/Gl27Oee95V4o5gx0/DtW7z+KZ5fHjFfcI9ELehao8sVwESzjW0P8X7zitmCl0j2bv3K82tjbR0pysSCeTm6Q0WFmrrwVYgbxVem4eypUEuhzhVzo1tDSz15vuIUKUFpsFNr+tjDkoZxv5WpBC1gKHD3Ds0LzRZ2XzCZwS8M32HvCp6FsEdUiZroRHHHgh3DhGJ2dC/0rCYSiY3Hj+0jlvt/Z8IarcysT94sIBjgOGI5rTrEpQ0thhZnmZ3r4jws8JjFxMPiFAylI7bT9qgU6mgTekw+i0i06adIDJpLaOoRyM/WOtve0G7s7qg6vo0vnIFaDJgoUwltsfG9moWLjwoykW1z7m4cpw4OlHi0UMWPoNCLIFOhXqEsBdsMn5SHTDh/Z53XWw80wfx0icvXv0yV1Qw3mIZJQCnMl9RVm2ok5VvHhwWoQ+tj86lUhXX3qPJKJLS7+TF0tTdjnuIm31uniNJcGWRG1cLeO689rOK25jw8Ft49xYWarjP1aQ4O5LrzUJ1dYc8EtK0bl/3GdClQ5tAMRNG04ypl8EM/T+AMcPSu2oufvtkEvn+8/eURLO9eNMDukawKHTnQleK5iKQgWkk6Z/D07pQE3IUiNWu9TFAH0W4asA5gnijgqRJA7+NFGB0ALcrYlUUcuxONHhubjqEqQlc1OF+BFh/IJjG8ZL3lsNdAEcrdYxK9EEe1xGPcw3IW6G3DNafYSaxI5ORijgBnLc6RJ89ZBnKUt8owFUiVBfbgTANomek90BaREuem6KFjHBQNQbyF8oCU4GgxnOY6Ml2QeYHlgfL4JXINa2KAXmq6X31Ga+Gh8jDWhQ1yqeK90taCbkadUx26XoALyAXxBXToow5kfcvCx4KSgoPBmm48fhP2Tx32HPTbwxp3+7jREmFsN6NvDmsgt42kDeR1ayJ48aPYWD+uofk6BkFz3Xh3fPdwxNqcebTsN4cthPDrkoiQnOilvZtpa+f904XpYUK/vaHrRp2yyK6hi1pnoW7Kvsfwjo6pLvcYFpRw3ZWLIpNQ9rx3LL7bRMwOWOZ9o0l0e27M3cM04aKsr52XmzM/cLgebT32jb7HsF/bhK9fjf/yTZzDP73Cawej4NT44+VskYhkDzc/8g8FqxRkdw9qiFDZj6FLo1AOF6Rf9BAy+7tTPYlPxX0cFflOaiKcpdkP5Cyj+FcpiRxaTuAR1IAa3cqIiY3mDVyyUCfoWb7f8dY79DvXK3PCutFQCwCprd/g+k8A6OUK/QukX3APAx2z/Xi+tUbfbvTtNYaW2sq+vlLmtCnfWgA3cUsnEKaHFftY56pCxcCfUX1lyYS4qsaMzlJOYEHLodHsEOoV5idHVE5SSNCzYiDYCQqbaKFbzKIASIkku+0Xml1wXxCfOO3/kj/s4BL8bffvXNcDtByAy5uU6qTYSXYP7qgjcZ1/pHi5Oz5D3+DX49fj1+PX49fj1+PX49fj1+PX4+cff0HW6q5oevPj/IEmD037gbBq6UyTx2DkDNcFHq/KY7aaL1PI9kmHvnXoG20X1kQSLgVKOj44Mesh7njxO8/oGFZ63TuThw2mFegJJqgbU4LdozopSw2CPGkh2C2RpihF7nFAl5DIKhYDAaaBkB0dwknAAmmSDlaENguS1q1fKshXt6DcmCfBW7hk26ioYq0f1URM3ZZDlkuqotkynmtM8zXxA2F1c0otxxCWEOfjtvfjMd3iu5mHhewVeFkblvaUU7Zd++4ho+VOVTlowI+PC/XLhflS8LXRXkKirF/jAc2M/dMzt025/NU7ik7RMmg5ALEbgh2T3r/08ZMd/zsk9dSM+4EnDQ7ric0nFSb4TD0ZoMlEwUq02FUmpF4oaoga7u1A94xoXQ+bQCy97MficsACWffWoO9g/RimQ0uup358tjE4NT7iQOVk/M7tQBtMCj0ltaTIwe86vnopOeBgeItp+hjyGH3VlJUZKhql4n5Oo5uO4caeVuijnTfoOJ5Tv4FouIWEl5b6tiXkIecTVIKhf5iUHEK2y82TP2skwTjPsaFlisEZKn3bkFoPySYphXK5MD2+p16eoE6hVTsFwip1itHvHxkE+bc+JFHpUspx//SuOSGhwIztO/0GdfiK6gL6AH4FXoKaJR23TwC0lxcKBUXwPYf0LnLsAKWA1OBmvr6EpFrboyU+1l7pDi/Gthm3LVqq89FUhKnEgGhTp9QxihuDqwBlgqZgU1CW3B3rjl7u2pJ7eMdZj85UUcHXiGmXa+XhSShL5aUBU+HdZWZOjqyo0KUj6lSPToMUDZ4+BCrcYixYqrM4YSud664IOfMQHur9Fii0HgOJsD8bujr66rx8bDHh8U07JDltAykat60W1rJz21doQYsoGioh4gtCBV/QIcmUb5KNlwN13Zud8w06kK4cICKkkM4BUc/b5Kcj4L/FIUeycOLCQ64oey3H734MSDt4u3f/fThSlSn5l36oKojNybV0QiQ4B6rQgzMrbljboG+x/lHc7qPNjrcYlPUeMjClPOP8MwAuj0DH9yecBcww2+mj47q3kJDrG9Zu2H7D9xvLY8hWdXPUE1ktgXBWXYYKcbaUQo++tm/w/jUTz0wjpxIwXxEvVJ2pdcYRti3pfa1jlr2r1PF+g1yOc/5GhlFzzSSVxRfMLvR+xe1KLOi3g59DByC1aXiDd+ZFPfPFiO0cOdugJ+hx8cP19DsI619Ytj+ZsPoQJj7O6vhk0SYPjTgLwnCqANQK0wTznAnrDE9X4SkTnaqdWbPVUoS2xuTwmkSiOpfcSHP6PQnCqiO4wGWuvE6FaapIg907thtjJqomNK4IVhWvmrIt+Q0mDWUAnCl79aHLmvC4xnN1nNtKcsjyDabAt2VSrDm9CQ1Fk4d7NcFW40//8sJEZ7nMuPphZOBup02aO5Nkr+BoEWTrVKBW5XqZ+Pa2HfzJvXWmEtN+wzPYEPa9H5xCc6f1mPcr7lTCju4lBa6vFs364PIF5WFSZUlpr6kWtFYuX1zoLxu2v4ZkxtA0fJxZX/fwyf7NEyoT+IQnJaDtJdrNP4NI/TmOaD9lIB3t+u9SBiQ26zvxjfhOeIgmJyVAM2PtFrxIKR50FunBJbJ2FBeMd7I1FAP6DWFncM6Klni/lvpZ351mlZhAHvznoCcZ5yi3xOSsZwt5tOiO11BI8w/3U5FilGzuBhJBtWhIpzmca9/TMCATRsmnjny7lJl9e0Vp8T01qThDUi6T11KmlKIyrGdMuZMPGpzXs6nodBttT47NLwZgpqAP3E1XewZul5YSIBJTsEBZLpTLheXpC/RyCfrBoBcASI3W22fqP4XuYw6q6JmMuXbcCmIF32fazZi25MFNM7AgzLgshGH5flqz3lZ8D56om+Eq6PuCvh/JXMhTqRvXqrS5RLJa5KjmTQVrcV3p8HKzUDAZg1vu6CTILFBgVtDpzhL7ofB8c2wRujp1Uap5AABAc8N2CyCgGbVItuTj9ScRHibh5bazI1wfleXhLNytdWxXahFaMS4P5PxC/H6qwNqxPYCG9hL0mj6k+lZDm1OceM6eLdY7fqh2w27Obh27hTxW0xspsU3rUB/j3ugV+lSZ6sJvr8kVFsGfCy8v7xh1FjTkkHALExdTQe3OqvLu/gvJoPsi248Rlu73SetnOIZs1UFOPOdgYk0rB58yH37CLj/2oTXAs2xlh7bg4FbOiM24RJtfSItyA0upv6GSou01CmEvsW+nsL+IIUlt8t7jz/YB3/8h3sMmvMbvzB9D0swbe1JVejN6JqxuoYVcBabDACY01EtdcA8qVpHpLKAJe/liL9j6B3z7Y8hfHSM3TttXbs/GPF+RS57HXLeeg7QiGjnOQS85+aODDuAOvYcVrJQZTRWA3SbMZtxngreahdM9lCdg0gcU+GMLgCNXfKMWAYPrEhbYnoPF43mjjPnphfvTCetR69y/kCEanNFSjFItZKuSJxQJqzMVY6nGZYLrJFzS6qeoUTFUDJninN/2xnpL9KQrfVZKlYO7GZqqp6yTVmWaKssyBw/VNMwCxufu0DZnpVNKh9KppeGXsasqpYQaiY6qwDg0zEQ9qqE8C2PfOk5+VdDgj9oE1cbiye/4KMh74/ZpZ/244+tOuZTDszoEtTnOLLkn9ANBijXXPf5dSiQoJVfw3jp70aNe3fdAa6334zO6BSIbkl/O2g1HaLn+tvw+pSiFTNZ742EoE6w7sk7sHzaKRwC8LJpCHYFc66VQsAi8LIhXem6g+5ac1p9aYJ/luEdNR1l4d5MMVFXOf9+XaqPiD5Q1RJQHL7h6nGv19LTOIBK8q3ETp0SLGNbXcGzpFhKaEJJPMgWAmtxVx86qVCRQVlVscBLv5EAkhwzjxUi04QwMMWnfD71UEoEd+iauDS1zhJ3UzxE7NU4xy+SvRJFnLc5J8qlKmVGpsRY9ULtD3zBPf6klBp6OSVujt34MEQwXGh8JtypyFzhj4MGP1SXJ+R1Tu2gJ3VINLzFPEfdxlGmhXh6wob2sA53JDYyaV/vzrN4j+T6G8jJhlZCYQwv0ifa6054zJi6PUNdAWdlyTa+MEF+1RFHkjk4TLATokJ2v/i1Q4vXnx8rlryO2uoPlxlg/dKYHRZ6N5dsd2x1eOi+JgBaHp4dAd7bdmS8xpCgZd30SpkfwR6XPQr0osju3fL51p9O5VMV2YiDUAxEF6NOEvCtcPLp0l2uJ7lg7u0r75kwPSlFhWZRt90PKj56a3uLY7vjm3PYWutzELIN0o++WiBhRjOWwLObRGXw1Xp5j01UR1rYecbVMgjZlKqDVWd51ltl5vEYhf/E5io3thX27RvKWaDBkxPS3EQfu8r/86RCzj+6DY4nGeQ7k/iU9y3+rY8SMH3r/49scsZW7fVDjEZ4/vR/EzCeFZFcajaRKgPZIsETWOEkWRXB8/lWQAAAgAElEQVRM/g90zwgjlo71jvedtjekjaEmRVxpe8faFpP4bhTNeLD+fzDH63S+pOscZ76fhRL7Bn1HrCHeWKYa9xzZVUtNdiNibnVF8xwVdpQbsv2B7fk/U/avKKzHva81ePq2bTQPQ6J5eWC6REeotsYA3XwYLIhgep7dnhcg+LMFqRUpEz0BJvcF8wrUHG7zg9+aJ/G4hn5/bUa5Ma77HW49fvbmNQ5+6/nv83USuPiJ4y8mrONf99BuuNcEqlpHwlrjhgnNVWMqnUk6VYRCP+RVihhFGlUsJu2nmZ4WqJCbVbpQ9LyRrTvaD50CiiqXecKbsbmjprGMcwFUgSpKcaXvzr52yAlRAJ1jUKVIOG/gzj0AFq2os1J190xmneP/NeSwcJA9UNKeU326CPP7mXevF7w5slvuffH81i0knzQ+U5gLNGTcABpSVUWF3p2XdUc4VQTcU7/VI9fYUnPNzI8FIhIi7ddpChvanpSCMSBhTq0l2mMeziyvt53XDzFJXZth2wa3B+pUoXf0/cTjFzGUtW6dh1ook4IoJgvKhf0lbiLrKbXx3yBl8q9xjMB4d9m+94DDiONumX/3wT/86UMYP6ZRbeRqVA8FRPOw6u3ekG542w4nKs0JPC3ZhmieTlWJKLYWLekBOlr+o5xVcwy91thI76VL8h9uPXKTFgFYSra4IabpU/BfM7DFRG2il3usd09KifjQ1RswW75N0dScvT/RWTSpxqSKOaeNWyYdfc0Bg5rqA2EpiDv9bnDkHN6407A9dJBT1mUEPLdIoPd0hpknEKEnahKBXKg5BDFd31EvT3GeVRO16bgFp0is8LkVAsa/ToQ15Ypq1AZCQdpC+xhDU/XyHn1qoDc4PJg+xrUHypK6tSYR3MTpt1N/V2fJwjucqPTdhF8LMime8OGuK3Sh7TtWYLkqfbVTuU6c581CJYCgGehy6qDKVXl4KPikyBxajCKx10MkDngiiy2AiSjXMm56JKXzpVA8OlatnxiQI2noF5Su0Q0ZIUjGHK4FGuwt3AbPljNZ+IN1CzlDzzcG6E5fje2lsz53isD7hwI3P5Kf+apMUyCpliLz0+J4jZN088bTtPPttHGzHfOZoAHk3iJkouLnBu/3G3nc8/ETT5exs7hSCVrHj+ma/lseR5p93xmQc4390PHDjlwnQhzPT0pUInYB1o2ivCLU4/fj/AyL1vhchtFSPD/c2nReqCVXzrriW0st9EbpQcHQoW398oegUS1GmXaaPmASigEA0gxtO2V/RdsLxV7Qi5xztJSUsbTQKjahokyp2KI8Y/vX8Pyfkds/s+gnyuQHJUlrWoaYB8CUBh+HMYB7UkpGUhkUKjuKBslWfBRyotA1rGNamm7c+kTrd99JegKiZ6KaWDAcNI8EcI7L9p0ElXNNIHLG65HYfqeoEfHv/ey7x1/QYR0f1TllMiJRnSrUyTNZNcohwdAp0il0ilgkrD5QGkJ833fMwxe6KMyqaPo5iwomnjpnRt871oe22HlT11qY5wksIH+xO101jdcREbzDtnZkKsxpNa55YqWMQJGS3HK3IR5gePBa7nODaHOka7uGnWHpHEnHroZeK8tvr1wd9peGzuVUWnAoyS/FY/K+2ZmUKE5vjZKV0drC5vDkUg0B+1iszYwpUdg+sicJnhjNgmfbw4hgZOZmcSPsPaVeVOit8zET1set8Y5AtstS0euESVg1Arz0nEbPNnmlYFZ5+ZgqBBaP/6lg9TmP87744Rvk8MD6TsItx00b8IsdyVUgRG4RsINr1eiES9VYGy4e6hN1RusS79HagdKeHh253u3ILI9PgGjalEomhqfsFcNK1QzfWyKdcnBMhZzuPyx8A78aHXipI0GQ1FEt0QY+rBDje4cySD1kzE6XtphAH7qA5JT+2a8Q+r7h1SllOpNF7r5i9OcRYuLfrKcW670QcfBbpxISV6R+LIDtO1pjI2st0Fvrd8p/WuPe6z05bcmbO+xzV6QH0v2ZMFZO/c34SdEJrY+Yt3AFcxCrB29/+7gzzxUtF5AbAQlN8YeB0Oaa7qnP64JeE4H9jaAfGv2bhm0eUlMmweFMjWyXSD6X95X90848CVuVg6qFR1wxCfrWKOwH8C0WclNaU4e6e5hQ2CjkY2agd6c3p0zRbm37ifSUElhc634U6cfSHMloFlBbOnBJJjcygmaPxLe9GJcvBsIe/FS/BcJaMmfECUMDgN1pr0a7GbPA3pwqx0sC8bcKyCzUR6XP4OosqW/9Tja+XFY+7p/Y7MJLc5rMeE5/e4q/jg7fwJ3eFKb3+3Ie911A1fJZ4+7xmTk/7ig/B7qm9/c6P81r/d6rixxFhlsNPnBNY5GepkHImUy5xSyA76lTC9I22OLmsZdn/LaiPZ5PB5PptLv++AGzr9jlK3j4e6Z3f8NuM2aD/1kQc4rvlPUTpd+YLk9H0o6nbYoITQLBnLxTLfZa73+mvf4z5fW/cC2vLBNBc0pbVKmC94bWwjTP1BIxcXQW4jznfSahbhJgQPyuZ5ftcCEUwSiYX9gtkqK9zXQLIGNwS13f4CB3iOg9Knp/1b9zBe+KlZinybVwAEN33Ouxj/73JKyphpBfIG9+sWj5T2GRt1SnljPZK3cJ6ySeGqR+tByHJIR6C6RFJLx983Nq1fhTFKpTROkSm/SQ/u8tEF6ZBXFh2zWGqO6syCjBQ9Ka4tFJtI5TG0MzTTIXSF7A8GtWjXTFLF5fULr4UbFEvhubqongWuki7HnB9n1nLkp9nFkctG7hQjUu3giEcLYxxWjb2DAN6eHjXtzpfQgWDxJuDqQhTEV53Xau8xQB/9g7ospct8ZMJO7q5wCCu4cbVonvWC3bd5m5XESZn3detoa8v3C9VF47Bwo81bCHLCJYUUQqvVfW17OqQ2FOLbrPcYz74k2nIG8KGQnh27jPCKtvg+gPJK2ZVOUIEBDrZbhgxWCER9s+h6ggCfRoaC2WS77/zpsgcGRvmZy++ZCSn6BywJ1vaAB2vF8MdSXapiNh5kAq4nRkcD8XTjgFWUNKyo/c8WjjeTE0JRpycDbsMOMBaK4J21sUqKaHbJcKtLYe10ZyyGSc1/hxnN9aZ8x7FoeO5mt470fR1i1b/+5HMSad1Lo1hExOtaBDq7ZUKBNSp9DTNYvBl1MIJhDngeL80offxYU8gvc7HzSPY/2NwZxX0JfY0EQXYmhihuTtHvzedhboLkL5ImXorgEQ2DcGN6d807DnGEwdDoDy3PFbpz8b1ypoERrHW8TGnKHa9RxGbJk4GkYxWIqwOGy3HvdCFurtFp0nk0hMl2uJzlA7E1prQUfr3ZEtePnH73fHLN5vcCMFObt7ZCEqIcfVXzpehSmHZdebYW3wVuNc2e4HwtpX59OtoxVsESYXuATy1bZRDAGzsHxRKe9DUqsvcuiMUzqmN7p/pKL88dONT35hl4iTjYLKlKAK9xnruTgYYctzCcidEUpUDQN9+yWPoD9lsfnm/e9T2O89ie8G4e/qcfrdww7TneT8Witoj3vZpeRjo5g+klqEvu94e0V0Dh7z7SP949fxGs+f8G0PlHzt7BtsfuW6vAOgffiEtz/T/F9Y9Z/Qd38L819heyaU0zVcDjFq33kQp1COa2DewhilgLqh3qj2jO5/iM/3+g/I8z9S9Gu0CmV6QGQI84PTKXWililiXQ/u9DSGa7XGGeyGq2Zc94NSUErFKYGykoY3zHS70FokrO4TktKUo/Po3OWPBxc58oURGg+67JtrPIqSE3H1ca1P7tpb9H0Akv9dCKtGoqrq2cqEoh7C28WY1JmrUbUnkRZULBJWMSpBYKf3I5nsNLDgelhiJhU9Tv4k0fpWyanfTKjCXSi/mzpSYUqBWpOYuh8i9Y2AzqlKnQWZJBLOYee+OWXJc1fiRN/fMiUrQGGIdeegSiblloFCUyvRyxST/WOBrca2dwoh8i/zRL8ZWwbOdc+bWoIsL7nABi2i9+GaHKdAMzE+OCla8B6w/5iurirUkuoDwN6NiqSRQKgORPU1KlOltKAKaPIsLyrUPMnVDH9ZsapMTxPaOpNDf8nhuKcF5gkWz2lmxfZKb7GkJHmVtX6e1upAJb67/t8AFMfP/O0DgCF+fH8ct57f361ytFGiKxADSUiJIOFDSyADbOZ+pSqil6SX1oMDGr2s5LlqhgHvbxGWA0XSw0L14IxlwnrqteZ5GJSDjPySCbVbT93SM1nDY/hLINpSfp+Q+olUWUtTi3uuU2jQFp1ieMEteL3J5+oD4bVO97BlfdvyJOxh9w2zCNSuFdp2tIalTjFwqGGiEMVbDBXAcIbzuyBZ0HmmLkFnmR/eI9OMzBWZphDSr+UcetS49noIeP6yR6zRs1wCIl6ohth3T8FtO40FfK+0W6X2OcwE5IrI5URpSokBtLF0e9AN5DGVEaaGTze0CrI7fGp4i8XakmPaXzvyYshmMbn/0mntZLoVTQQ042rzREvzPbsb1yloWt7h/2fv3XYkSZI0vU9E1czcIyJP1dPTM8DuYkiAN7zi+z8ICSzIIbCL3eH0dFdVZoSHu5mqivBCVM08s6qzmlx01VykorMrM9zDD3ZQFf3lP6zFILH7URaHUkLBv23GdGuf3axuUbxqclISanc42Wsjj6eva+uOK3EdDPhT6P6y/bNahfZi7Ge5RnE6iZC6V6y92o6wfnxttAx//x9m/EHw6iQiUGykYa0i8D6T/nFGH7W7gYRrAsAshQ/nRJYXzhhsG8mfeOnr39U33B8O6s2gd+go+oOuMyJc3a0Xiv0Q1BbF/G+CsB7veaTWjYKzo3t8eW2Pv/98oeJw52Mue9E6ft06rzjIWBmRiV0Vv7fMLVBG10jBfLnirx+pL3+Kx5sh6bGLrj6ixVjyE6IRnbrVRPn4X8jcgBsv//YD1zWSygAePvyB07sPvJaNaym8+d0/MKc89kmgJ9oOV26oPaPtB2SL96d8T5YbukTN4h0dbX0tF8t4zuH1K8HtTnIgqLWWuL/jwPdil73jlHJ4/Tb3AFSYaW2mtonW3RbcJ+4dHX7+3P4MinoH6YxrMZyjuovS7tzSgZ1etI5ide/M3YFJXxv//jQx38a38W18G9/Gt/FtfBvfxrdxN/4qhDUldsFPTjClcAGYs7FkJ7TSHWGlBTQuRhZHzXBve0sSqQGJE96f3jw4mn0HqqokNTRFG1xV8dwRrxHhN8eWS4hUCu/KwYNo7uik6JRIJyW6A7bD2M0FsZ7Pa0dnbdT21gUfCd3J0uK60x4Q33myWRU0SN/DKk+WBbUa/o8oinAtjcsWX+DWIu0qJSVp8LAUIfddceufwYcXYVaWSdl2ohK4CkvOrFtHEyQQ1j2a1QPRCHi/fzM5OCNTzkgxWkth6dGcRdOOhG+tojinZcbdqBaet7Xbj9m582ymhPHAZImtKO5Hukiciq/vmP7m4yvdKAZR/6sf8WdeoP9odOoGzdWaUJuQJKJEhYxTo0d65/XqrphrT4dSoIAM5UpX9WtXQHvHC+R4a+mJWmaFthVSSjuaMLwEvdVuO9Uv7r4dlzTayOPzhGjsSPkL9b6g4YPaU+f2mEOPbsPgQYp0bvbgyI7IU4Q0zbRS9jYeADrtiuYdIeoI8WgFqiTIE61upJT3xCmvwTlzdzTHdYm2I6429+msboeTQJo5v/078rwwnyIeczo9wDzjOaPzjOaMq+9+vN7pPr+V0vquD7AP4fjR6B6Y30lWbKKuJ9q2ovNC19F3egCQMjKPFlPw+CUdVC+vYBYR1YmKvG7IpUWCzqXP7SWiXOs15ovLzSjFDzc+FSSH4ChPMsxrdgX9rpMxuL40qkAT231US4m5sFZjWwOtzZPu31GIrpaO17816ma7bVaCEBs2ooOGIHZ0rrZmlM1ZkjAvitQeD/vaj2txkguLBo2gro5djdJFZ6Lw7rvE8h8m9B9D9GufWqR19c+Qs+IPCf27Obix17DCots+ijqnN8L82ijXT/h74ztV/rV3pv77TXkt4HYOxEsiOWzwIU0CYW2tUluh+WjOdFqShMBmv99+zTEu0p0u9RfGXZNqRIiGl2ynIH1BEfgpqOdo6gltuuJS8D0eLObOrq7obxJ+vCoz7eq0sqHNIl4ayHlCpg/YkmmmePvElYx++J8AeDw73z9/oq5/JuHw40fk8sppp+hdcX+m1cLr5Zn107/y4R/+E9PTdwDMpycsha2m+xWv32Pbn5EtPHe0VYwCWdFpDoS1tUNnIAlrQU2MmG8JtHSsKZ26qTm8kqwvTnu6oA2qYKw7zTPNTpQ20/aI20NINWohvzv294p/H+f5C0HdQNHjqXIHjXMkiXYKC6OD+WWd8D9CCXBvvVgNqyqAJYef3ZzglJxJW49aPRZMdWMSZ1aY1Mnq++PqEUq3JGFWxUp4he5+nWZghlio+YxYa12IUF1A5rxbTIr3ojMditqkMM+ZlAVPEtewHjIqiGLQiHVWNSbwUdhZiwO7K+/29v0hXOk2j8RVmKI956OoT8gEPjtlNfKUMIVrL/ZKC6eD3VLOnebCedAiVGm1xQRbI1s650TtPQYTQ1FyUq5WIhwhKSYwouKfThPrOiI26Z6duvNwk8QNQLNorRVIc9pFNK02TGMxWr1xTg53x9AdVkks6YnU3sF25vLDRO3HcP7la+9vOkZJ9tlC31XDX69iv3iBz2bLn2uJsJ/32kI/lUVjgvIckahux2foKn8j4b19DhtOP3G0QyksuU8eRwvs848+xXnaVgYTdJqWLhwY/NVRXY+q+mjB+BA8WDtiCp2Y8FVJOeytFDkUp71ICi/hFoW2pL3iVQ3blfFv7y4D4/XTNNOsxnv217v3T+1vEj6t1qh1I4uQp2V/tLaN5hbxk6JId8nYv0NK4cxQO/drPjGdHpEevepJwtYlz5AmPPVc711Yar1l9RvRWSw2KfcexsOxREbLbyhyR1/QlbZN1DWTzxOSlm6HEtxI00ckg0jwpUUcygpdCe2vITZJPbSkXRt+afjF4LWfu0bQAS7GrVpEQwv7Rh3tXXU8JscUwtQy9ssQNlMnWG8NOSXc2QvCNvyzPQSMZW1BOen7G2v3BTpY55jOy3BS6EwVd07nFFGta2O7HNf+NMXr7SBFc+qtXzcNxJzyalCMejXKzUIQC3AW7CTYo6C/S8ickE+K3jysDgkgoU2KPyps4daR0MhiB2RKsCjzkni6rbzRjZZX3l/D4WJ5Vv7t1dhuG9sGr5fCbXXWzqtYq1NqUORSmmJzKLrTImoztt0u7tcfcj/hwt0i8PMF7GdbM+8FDzCCVkZACcRcY74BBdXYvOb5hucNlwISc1p1R9R6NHEUcmmasNrwVGi64rLuNXWrQL1STJh0xvMZKRV5/SMAs514SAE63W437LLC7cr5HBSjJBXbXlmmzIfHBaSwff/P1Jd/id8/PcZXm4RmK8IN6gu1xjmf8oSljKaZJIk8zWy27UFCIUWI+SBpFKWp6wfiA2jwWEUj9thj12Zt60feesDLRPWJJmfMT7Q2rKw4apt7Tundv2Uo+/sf2QMA7gvWz0VW8tm61YvmfVMyro2+kcOJte/r3OtfCBw2VLx72veTn4ycGnNq4RAwHAH6GytOQpiydn4rgbT68cGSB0dSrTNP0uFBKmbBbzMJa4nhP8hQZzMIE7vfWBTJTu3ooqrgSeOFk0SSkDqpF1u1VawZlgyZtSOdx8RY3SPdSrvgi0CO7vjCwSWSQJykegQXdChB6bZZp0wtjeQwT+lwMSiNnBMuUBOkKZGS8nA6TsfmDmqszahuiOpIBSfnKaiFrYtrBpMt6bjNeTrlLryJxa+2mMj3NdiHU4FyuTba2ripU/pnXER4mic2B/UK6hQ1PI3VxygCiz9ilw9c6wP1dWFwNaPgmX6pLPybjt2TdgeYx6biy6J13FWff1r5yd8+n3T9i5dxF2oNj9uUlKwdZRXfEUiXKIYaCWWKoqgb8UN0KIwWyBAe1/ydwbJ7TEiKk9IZkYlWrtQSilOZO6+01r6jG1y+wwLlQD/6Tnzs0Prjojl2+bKinSu1+4ESrxmBFd2wWu8nquBZ0n1aNWWsVqwXRvSCtg0v4h2mvuMzjZCBlIMD2FrwFnsSlYtQyjWQ2578I0mD6wv75GgYrW5om4JL3pFaE8ArqnMke6XMrhYiJvj7bsSvPbok6vOrrXdKVARNGol0jQP1ILImXn9MaD4xPz0hPOJ86C9QYk7kCtmgVLwKdH4qWwuv635SFEfMabdAEQG0hYjWm9NaT75S6eb3XVCYY5GqKXR2W4siLh4X1uIsm9MQcoNlVtb1/tqM/Z3XCBII69h+Xdi4TZxWQ6Xf7gqz80OmNLiZIUlYnjI+3xf13gVSwd3PWdjq4T6TiWN6fWl8/L6S3TkvEVAAkN5p8FIj1A9OgqQULgRDzCoSnO0EbauIN9I07RZFnoHJSYvy5l1CWoN0ZVD9MytPeuGHfObHF+Xy6cbri1DpoiyfcTJijkgE6mhKpKmHYkwzupyZpl+ff/2zMMCYF+6etFtTAaM8HRzG8KxuDIG1S8G89NTADbiBFjxFsSfzhmj3o+5r8sAZahetpF6wtZqYnx4RLxS9UjrQME0Lst2wyyduW2L2B3KBT//8vwOQbxV//oiVQt0SZidqKZReEGZ/pVwde3zD+ekB6o3t9cI0x4rdXj5SqDz+7oHtesFL43yaqaMe8Q0hIU2pawkHH7rwnBAvChL+1b1QjJoohnWBqYvsVqBh9XecDUeoTBTOlHam1RP4vBeq4xxJP2d+9/fPHh1F6c4j/nJNPPjTfv/r9Pn17uky1I0AbjjG52K9n46vFqyqEaun6rttVVLrCT5BA0hiTGKkIcoCJoV5EiYVkngUswPe9hbpVbtRcuzCjwZGJ5VbtFYla+wqzPddatOGCTQVTBtTFmRWtAzhV0zqmrSLW/oi1CcmdaFUZ9tiwdUEOctBdO9WKZajwNNxkgbiIVH80NFdOuSe0nFzukcMIZMiJdKq3ixxuDePwrxujk/Kcp6jaM0j7cRAvFvDBKaZ7lqm4k7ZKlkUb40GzFkDoegfsVqkVZViZIHrrWLCbu2zlmjrfbpurDUSa/50q/R5j/k0IQ8L+ZzI4dlFkYZ077qcjeVJUT3x8sMDt+2MlxOLnPsxGmKg32jVH7LSX6yYfx5t/eyn/sUD9z/4zHtOaC2U07V2FE9nulFZf6koXp0ck5TnLqK6U4TSMC9xH3gIpA4bl64Qt6DNZI0Q4tItWkprTGnCaolUqTQFcni/2xrEd+5K9/ti0Ws/dBtMp2Nu6l899ondgFpH1N/dxGMNOmVGhun1QHbL2n1g/e7d+4HdF7dogVoLyoG7Y7WQTw/7MTSvNCu4a08H2w9Rf10Hgu7g9M3aoNxEDA6TBCKM5q7CKeMrIOp/CRT624/+8UPEMCb/gUwoojMpQ7Hb3rlysQjuWBfqJTFNfTHf25ZCKPx+xLn2WOp0zHlufTPiB/re6WADTLCtW+tZwKCTwJyEdXSmvB/GPlVuBcjsloVoCGjbFo/HPsz3JKux2NUWLgDZhFptD4xJSXATai8ya4nnj6J1PivtGslzzbtASyS8ogGfFNtaxG07TFN4pkoZQEMo/rWjtJrgw99npt/3eflR8AdBZxBv4IpN3WKwz/3poR/TW/i8UgnBVK8f9UHhFGJJ9QKrkVLhsXsA/2FZeJxPPFvlT28WnubEv/6w8OdLiOc2HkAW1CRoXd1jOXW/XUkJn6YvzN3/HY19Sj66KfQujxCFp/kG2s15ZUNTwVIh5Q2RSzzW65HuF9W7z7FxVWJOGmEjzop4JU9nJM3kp0wx3eeLNL3DP/03ppd/oVxfMf8DuTwwbTEflOdnyuUG53cs7z6gqfL6fKP1OXdrF9784T21wfrHfyHbBd82Wnclmd+85XW7kf/ugbdvH7n++AmaMz1EdOvNNpIrk05oCrcfFUfGYpx6sdipIZEWVo9iT4ISOWyvB0VEdxGpYhIrkJFoLVFbwm1Q0nbcNP7uR50w1u8RZOJ9wxEP/5R2sqOsQp9Lxs+PNWasofcFqnNsOr42/qqCNSUjD5XjZExSSVJRolCdkpP7wYv0qM4q9YaKoW7cm+WJxW5qlOChuI+HzY3WFPVA/+iFWkq6+5QmTbQUllU+RVs7tUTuCOeOHzmY3nFV+wGbVCnhZ8VWnWwelkRt/P7YqVlHuOSe4tHVb12Z6bKjjkMRL8njyArQjLY2dE7MS0wqt1ulltqz6DNrCR/V7a59UogTbxILgOigKIRnqhI7eVoUm3VrpDu+V7UWka99x9ksrDBynweeL4VrKdxqRSdlyjM3Zy+a25S4JKWp8CSZ17VxyuDdnmWj8DRXvDnbbcLbmYf0hHdekGmJ1KZ/D+MOUPz64/eTvP/kZ6No+MmL7fYpYUVSm1CrhmLVE1B39C9iVBON8NBUwH0ij7SsPXUpgW89SeoItnAzaJVWbrEpI0yoR3aabzcsNayWoB9MHNUB7DGk/YLqE/1deX7nAND8+I4HnzM2aqIatlEy+HX3KFaoRVWj2PSUMR/FYNsL0/BX7dQUPVDcAIZTFA614P0YDJQ2pwx5Yd0qrRW8lR6iMZC6mJpVgxOWp1PQG3bVbIIpIyn4QI53zu/oPdewwEvyM1PyrzPMDAzScB+XMV32zUaS4EnvcbWCSMY8U1+uXIsxP7yLwABAyBF5rQ1LBZdt3yJBFOiuHnFtM5AjnESTM8wS7EZwPs3xFM4kSaD1a+9ao/YXFXx15izUJIG6ApIUKcOWUCIe0y0CTfp3pIMwrUWyYVbZbau0X6fNOr81S5+L49fX1ai76phATzolPF6g/9x7KpA58yx7cIGXiIZNGd7+Tnn7h0z+h4y8iTfQRfAEcpYoQGfC4qcclodJQbLQrkHH0R4TOu4fTSDZYHOSNfxaEKnMS1975vg+dclVN+QAACAASURBVN04qfL7t2+Z8hO3QSloGZOJZLFRixcccZd9jSsCvxGd5S+N+61pUF5GPRDFmVtDpSJqCDc0dwQ1B4Iq2pC8QarAjZ0yQFCnYl5KhCN47y7dkaZFGplGtUZLAuf3aBvX/pmtJeZmnP0T22rU2yO58zvFCmaNtazI5FSvSFqZp/gOy9Mj7949cK3O8+uVSSqnOXHb4jvU64StK9vLhfntE55PXNbGwxwFa5aK1JUkGW+RvmcjFah/x/BsD6ck1UgK1X1OnwgXpdY36J02NLjjHp2PxoT5grURwxrJVvEi4yzd/fPub4YeyOrYdNwDGR0AGV2vkcy3d61Ejo6kEN/N2wHkWC9Yvw6wfr1gTTgqjaRRlI6Dm6SglB21NDsETaaOYJiFDZR7ZJUMykAsT2GNI0bs9EdxN46POM1CZCWawmJH/ch07vejIpAT4srssvN23KKIa3VU7/RZ7W7XkIJuUN2oFpPzTtPrSIN1W4Y4T4df4I5S9YnPPCautN+R8Ro6KWlKrBqF+PkcM//zy8rtVhBRpuZsa6UKWN8RpUmxFPGGFdnbqONyutbKorkvak6tlU+vN04P827Rst4Kg9S1lrCfySr88BI30ettZQLePJ1ZJiWp8vY0U/rO9f3jTBHn7ZuFWiqvbeUpJejfQSbFvVK44mpQJvKU989YVUGUOuyUfpPx8+jp/eOyx111sHT8xlc3el9CrocaLvZhcf0hYMnBM9YLC+u80iRT+P3297R+3EP8UwMl6Eiq23bE5HmFVvDtSqWSvOJ12zms1kov4tq+3dY87e1wRvvbPT53RzqP2697/vZ4VKuloxWjEIjflWG95cccFE84Ohlw7MYlHQuoW+0FeOv1rxLkoANhde+WVq3h7rSy7u+RH9+RNDPlmbrdqOXaaUEHQoCPDTPgjbJe92OUp6eeSx7xuUPksdtYSe7G3I3fwthqRCyLyp7uFZ+rc8cIdDvnY1H2ZrFw+4KXRKtw2yB30/+cnXS+oQ8XdHnB2i38atd+rrLji8AtXkYWwbQXWsPfNknspVognHOKe1x2n9SYY6Y5CjuVABrqaG0q0NPR3IPP2qrtNCTJSnNnmmKzPmVhmZUfP8VG5bQEnhxRpr2jJewI63oLXnTKQi3Geq1kZY+WHVZ77j39qlOkbIR6PBvrteEzvP+PE8v/MtPeysEVnPt29aywaNANPERg+xU/iu5J0IeMqPfCfDzDSG5INVIz6mujtcr0fsz9DW+V62VDm/M4Zy63j3z3thc3t8qtVJpMvbgf94zt/xVP6C+x/f5m45BNfW3sHZ224bSga2kj5RqbqRQUJ51XSDWKH20E0VjuRL2FUaxaCxu0sBILcTeAbRu+XqG+4tMD6fyBdE48fwwf1JdP/wVt39MmQXVhaje2daW99mJrbUzm3F6vXK/PKImnd42HNz0a9Zwp8gnSzMO7Jx5OM7U26mvshF5eCskS67/+iPqM1YTomZzD5zXpldfrBZqxbhtiE3qaO7kWwBkhUAb0pJ8d/dS5gwYOSAc3JMiZAMaJ1k5Uf6C1M9YW8Ll3Xw6Q7CfnCDmQejmSqu7KsM84q/t/JW4Cua+5OkLcb8BYJ+QAMkfHeheS/YXxdYS1i6kSbZ/sxQqqBZUayKk1mtv+Rtasx68a1v9MnQsLBEVA2Btc0HHs+4KVMIn2teFVmVtmmqYIGKDfpB1lwI6XOD64RjGQw2Q3Fu6DlWAaVINTgmi9O5GvPqpuOBzjOr9GfVdSBxOgJwKpEImnRwSgOjsfK89KWxLbVbHeTl+WzOvrFvdZM6iR6FUGpSErLspmTpNQWIvonontLVCJ5sHqzSJcbxsVp5SY3LetBtG8GOtaqcXQOfPu6QQEhQDg8bzwdE6cHzOPpwynWKIfPpz5VAt5yfiroZePcXz67D3NqaNioXCszVn9NbxFAUFp1vYEpd90+Gf/2ccBLI7r6ifPiA3V/R26v879dvEehY3dcK3Ruq/NwRUbhUWPWhVJfTMURPrWXTRMa9wzIiTvVIBWceuIg23RjiyvtPIKGNQ1uHAE+cBrxYeYpjhmE5p76eVzEPDhcHYX+WwnrDoKg6CNoOlOxBmxhfjYNbeYOMfve2R2RyFl/efGYYYZ7fhAjUc4Qz8RO6IQ3Q7vbS1vGhzdO35TmhbS4NoitLruHsTztIRbgjW8rHheaOW2ozqiTtYnZDnH50sZkbSngeEgo0X5G4xItQvfwlFMiUr3MgxXBU3Bzz/OoQEZdQWJ1Lm2JurW29m5IXpGH89IzqTHHNflS98oJSM9Cu1iqPYkM2+xMHajgeyJRoiQLi2Ww6kXngCvG2R3HoE0SUdb2fdz5oeCWBgL11FwpuRUgzwJ8yScT6mjOHeLZvfXtfhnd1Ox/bilvqR4gaZKzkJb+3ncjOyxoFuLJKxpEtLUUaQtaBEPHzKn/zTD7xPy5pgVJAt9woVF8Cm+h6gME4AQ12hQ1OQRwPHNkf4ekgXWij03/Fqx18rt0vb2r03BPZwRyIIvhd/pDT0F1Sp/3Pj+Ga7FunZBkLtlXKFvhH/93sDhs8kh7uzroBzQWn9uDMdpFqBY6Ewt0FUJBb3LDVWL6xAn3FQaY7GVwaWPmzY2qhbBO7ttOcLttlJfnpnfnNFlgQT5IZ6wbReSF3gzg70Jx5HizF0UZdWwdGaZ34JdmPzKNAvzu84bfjgz8cjcJrQ+cru+srXG6e1bAJbHzKf/51+pz1fs3EiulLrBQxS0lR+5/PgDtm0sT4/4ukXSZe92ak+xlL3nqyQ5PNc9NSwNd4go2F0Sjbhxmz/S/InWHrF2IloD6TOBk/hxvdzTkEbnTnZe64BVv7i+RHbq5C4Y3s923Op6Bw4MutM9m/kX8aWfvuu38W18G9/Gt/FtfBvfxrfxbfz7Gl9HWKX7qWKkzsFTLySvPc2q7WjqIP9DV/l3pKV5qNxb3xFNulOkOl/6cwsXZQApztYs/Me6SGu0FaWTjEeLLLo73jNzodau2O9VfWyMD7zEeq52ykJK8T2DHNJ32sZuGyE9tnXnsRKbgFDiBbKahM8UefvWwrrFRlbIym2PagtUIXkgbokgTI82SeS9d55gjj8ukHaIt7HViCWUbvXSqnF5ve00iFYbuFDXinj4A6ak/N13T3GcFR6WiUuJvPvlzUReEukhiOL25sxyfqKKMRdh/bcVndLRIkhxPNNkTKfC+tIotbCcQxjTTBjKv99k9L6+f/Ez/2KH/+W27rPnCwdPYP9Z783sv6afPT12j5lm1nnDQS85KNwjfatbpWl0HdpIUZPgEkpq4CtqFygv0KJFhm3BHW03qNewLqnbjg4r0eY26/6pjb4vH23RhtrMLvJyQik/+FBJ4vUHz7y3asbzrbf8Ixr1QMp2n1YRvJU4zp56fKtTW+mfr+NjZp9H93kIqeLv8ZpmRsoLnhJJM62TDa2W8FJNkR8uAuKG9feoFlhkKwXUkHzrkbhxjBoWyF8K1a2cn3q84R2fS/Pe0fm1h5tHhHVru1WfmoJ2z1yXLmq7a8UlDS9ok6B/yIJZxYcvM7fObyvADdEV85WWBncy5jFdouVnxclLwpOGeBTwKSzI3Jx6NV5LuLNcugHES3HU4ji/f6NMSSPt56Ar7qKqOUek6rwo184hVRUepmhuu4QH67YZUxdN1eakEEmEM4E6Upzc5825DZoZIBJ0JAHrtlXa+v3VnKTCJEIrvnNc9a1wPmUe/mlG/i7D3L2xOxLHDCPGm0l6ZO3ozvT7Sfock3qTIQn6lJB5cFAd+3Gj/FhIl4ZdKuvV8ee49uc3sDwmfn+akMeZ/PDIp+uJ6U/92pUSos4XY629y+OJ3aphdDP8s5ns1xm7A8ndnNlR9HsnkXAD8P3hsFBymhewG1k2NMdF1fwGbigZ644lCkj3+47Er20XTOLRSlVzhu2PNGfRzCQLYqlbZiYe3v49AE8PT/j1BS5/RM4/YvMrejbyS8y5/nrF/D3v//C/cduc7Y//B3P+N/J3sdalN39P4h3TKnz87/+VF1d0WmhrILTXH1+wstEksRZjyQm7PPPn/+v/jM+XXmjZqdPEvCxMugC6d1fg6PiqR7KVzroLKutasOS4ZAzFJdNYaITvdPE3lPYWswfwfES8i90teF9il0ENOxLLDncA6d2fe2/WMZcHAqt3bg13j3fNxI7UOnHtQtABvN1pJX5+fJ3DKuGhmtXJfUGdOp81Y+QeEhDiqzsODaEqxyupc3YGv9Ra0KUHxLybovdzM+491yE4Ekpvm5OGdUcO9XG/Mca9MURJQkyq5t1rVTX4VGNRJt5Du90VeKjmh7l6h7eTSChURYIPvLeE+03ohnqnBLJ3KfpjYS9hbuEDm5VbLyY/XbeIz3OPBcEsWsZbn7TmRM4aPOB+0tvd4hnBArCVsDfqX4G2lp0SEL6ySlsryzwxPy68fXdmfur9PYXlcUEFWqusrZBmRZZ4n/mcSI8LRY1sxtzO2HR3AafwuG25cn4wXqSwbkpeRoEagptfJDP9DUfUrM7ngqEv5/KDjnL/8/2vdzWL7M/3r9xYPcjCv3j/+97IKJo9ijNDgmQPaGo0X6n2Cv5CthekPSN7wVqgNaSu/e8FrO3tbBUlzPk1rE/6psuG6KtWtFUE7cbZvT86OK7mmHQ3XTkcAGRE+kqY/WvKUZg63YaqL0DWxYLN+o2curDqXmQRRZl43z64IWlC7q23SFjbov0tEtGE7RBuldslLIVy3u3dxq7AWmU4GLgbVlbQdLS6PGOlYJdPPYZZQuwyfJ514d4799ceg7eqeghBXQZHNxYt6/89uuWhVjKvIJXWKq0pQt+AetBNfFBKMFCYnjpVpFjQSk5KM1hfHS1xLsso6GbBZqdO4Z99Lc7WnFufN2sXYV2K4Rf43SKxsR1rYQ+AKcVYxUhJaM1ZekE6Lcp0TryuDZkVnxX1EGhBL1hnDaFUjVAUVZjG5ysOm3c2igQjZZL4OdHJF+Krx/EISoD2YtL/cSJ/SPCHTDuFyFcnheFysBzc1/2gwtg5HCewCGKxdpSTkx/ykQvyaaP+ubB9LPhLY31pvFbBurXXLM7pTeb85gRLxlRhEV77dXC1QhHn5oV6cawpYhPSxa6O49IOjuevOHyIZu6PRecsDju9nRpwP8FK0ANTUqZZY64ZLgBWMbvhBSTl2BgMGhKAaLgKtA0lR0HqJ0xWbFj9XV/h9ZX68inuqTcnjCdyjoJT0hskfQd6ojSlbg2mhvWNSlorU4X8pvHQ3sLrG5AX9Cl+Pz+eWFfj+x9e8e/+Z96e33L71//K9vLPcVzKM6mBe6J9+kj6buLhIXG59OAAq5weHmNOdQ9KgsZ3h31aC3oUjjWjbgUdRbvGdskUKkpLZ8zfUCzAqdYeaXbGmeJ4j02WC7s4T45z4vtpubuu5fBhHcXql76rx7hzjvmS23onihyvdveuv+hu8fWCNYVXf0qHD+uUnEnC03Tw1ayTpoEdbRXCISBjTGr7YqTde8E8zPKPgxPv2cRpeqCSkoLH16wdE6cmUhaaSyR9dCBoaOSTCnNOO7k+Ix0xGrsF9sSUQGZaJL0MpWfuBa7EK3bty+EVK5GXLb0wHWjqOOF9gw844kazrngdE69HIEAQo521Ger9RgH0dWOeMnXrgpO+uNcaF3AzZ+TwlmZkuvdfg9r5WsmhumC1ocscvMSU8FN3AcjC+iYzTxOPGbZaQkQ1Es0mmE6E7U91Tu8W1lo4DQHGFMfZk5GXinvFbKF0gUPKQq0tCvbfZPj43/ETP26U47b5yW/FkJ979Isn/MVqPPiGoxiLMVZtv/vTPxRdTEAUHMaK+RX3C27PSHuBFpObjGt9tx+KVCu5FwQmRaYJ84JMCZ3PPaAAynqhlVsQutMJ6ZPLjpBq62hnpEnpNMd9M+5fUaxbV8ndBLQfnq78pwdWuGh3FBiISmPw1711Zaj21x/uAa2R8hIFWF2ZTk+49aAAAuUdSVbWahRpZruLgPSCVRGqNWgNK9vhgzzNSKtQHLs+R4fEPTjDgE6p24H9NrutscEx7jLhXeKPapwzusDvLjJIRCA1xDfMK7UKWMCXOm+IWoenIi1Hl4z3RRHJsDkyJzwLdkowKfPDFOIqoD5Xbj8UlqfM0kD+VLi8GN3IjrWGAHVrzrU5f3qpzFWpvRg7P017N62ac1oUT7B0fmdeNKrKJsNDnqyyi6ZqdeZZ0QZ+bZ3DeSQatWtX30/dQWCOeXoba2BzJEvYY1XYVkNcWM79/Z8S+nagygIPifTdhExjg1nDASMI3nHbjqp5zIutnxOPhMWsDsXw7mXbvi+U7yvbp8Z2MdYNighLXxt0EfQUiLcTnsopw5TCQunD+wfkJDyXwvPNwBNm5zsmoBBV468/7wYX9fMCZqDdjE5M/PSukKELOHs9IynsmEbHtW/afHvFC5F6J8MZgPj+daOWV07TOTa/XtH1Sn35GO/x/AP245/g9YLNitkbRKcd3auaSPOEl0eavMdzOBWQIgLN88bcGrb+Z/wCs7yQzo25Yz+lPkPtFp4PD6R5wcVIXZdwWoSqGalOtSvX53+jiWItzml6OJEf33JtlbZWytaY5kSe4zu2GsZx0zwHEt0a3pw8yrekuFU8NTwlGg8UeUvrBavZCXZR61GwfmZ9xN1fJUSdSDo6a9Kvrbsi9edHv3FHwXv/2nfgkezCuc+v01/CCL5esGq4ZoRNVX8jvkCXeuLNEFUhRkrOpCE+kha2VrpHRxrWjNKs13jdBqEvuE2iQAuNm3cibxDrmwzVW1/uU0zatRJRq/vnTrEzdkeao+Y9/KcjARI/0yaBDHtE8lkXMEgCIfz0wk3Cac7eTg6rr16w+N0HursJIUQlmd6K7EUyhMXUrVZME5PnEA5U2227ymZY2cIzMAVapQ5bF2VZ6y3mWLF6+zl2XqOL0Frj1YU8ZQqgZrRamLuXpbw/cXpzYpozSkM2oZSDZH1TWEthmYQlJeZFuZhFqxpIUyBB2hKybGiyMM3vbdvk+TOaxq8/+sTd20378ANiPX76+b9/WeP6dSXsZ0Wy9M9yV+geR3n8yMP8GlCtYe/iK9gr4rdw5Bhm+h7ImhBIkg/F6N39iShpOYPMyLyQ5jN56mVFSrT1FVtvWCtIs5ic6vAAhlpXkEQ6PTKnTHeoj/fPUxwhr5FGpQp21+LjoAd4v2fkHt20O/+9IYyy2tu83UYGwkkgz7StYK2gmuK9ICyvrJ+BvgGODWt8hlKuOLm3zDQQ1zTvh7tZA1PUQFvFy4Zz2Yu/WXO02L9+EfztRrMojLrTRgzDe76hiSEdyd6v5XGMTWnVqFvtaHe/rqaGTh1QUQGLcBXp8KRbrxgmRR4z8h3k04y+PaHnXshfCvNzJbugFeZ/2/DvK6kft+9/2Kibs63GdXX+fGlsa4s2PuBFmLuQqhjkOub3/hUl5kbz2KAnBUlCHUlYxWGJjU27NaZZuFzqXru0tZEqzKdETsJ0jk5HGcEEjRARWrzWy6Vxu8KH3nnLkuIayIn0lJGnjD7OR5RwDQRxJG7F+emt0yGIHQWBdIS2Of5caD/GxqB+bLAFxSNnQR6FeU48vo/qZ3rMkAyzgqvgpfHp+xe8I+V/9/cPLJvw8eq8rMLLp9bvo1FUawjAxmf+FYdZ6wLhu7Li/ibqYmazuy7TmFcmDfs0ATgKUpWMWwp64XZD0oRrxjWOh+YFMdBBQWsFW1/hxz+TPv4Q73H9hF0uaK3odcNerhQ/ocO79hyOC9YK1YT59L8ireHr/w2A+4RXp2zPWPuBfFKmdw8wh8DYywls5dFfuf35P3NpmfbywzGnP55RF2YXtAZYZbWifaPmGlSV1hp+A8yoV+X0ptPrPFyXpClGxdyogFtctykT8bTSkNMZlhPNH2g2tpI5Lsm9xT9olHdIoQeUE3uLgawejgADVYwa5g5d/UnxelfUDgEecV/ILsBjp4IcgI7/QiG8f5OvjPG57xZ974r+O6R4R0z6xw2LGQl0Ubq9zDBl8v6z0VYfP/PebzeJRa7WKBSXHMipy529SG915iVMgpMFh5N6oFbJhEgUDlVrOH71nXgL9McaUWzTArnqxy6JgsnuBGAQdkP7oY3/V/VdlYpz2Grtt2GcuIREWkU/aFuzoEYOKL851SrWv98yezzfJNAkF5o2Wkca3Iy12P6e1mFmM/YdUTXjUpyHOewlTinQhlFAPr07c9WgA0wK6ZSZT+EJATCdJxotkNOezexqtMEz3CxukGzkc+P9dydenx8oPhCbWEzbb2pr1Yf/9J9fFqvA10HTu/G1p+2FmxwlZGwix83oxM72aKNHYk2f3FJFe3JcDsAsQiPukbahtlQFVVzvCtYkyJTDo1MclgVdznvBNqXwJm36jN2ugaa2LRZyYqNmtbfQS8LqCc0LPjJ/ASRoA5ois7xR9wMiMiyxej44EkjqnuQV7zI8WjHZqQV7UZxyUBg8qAi1XJmm875jF+kTqUd5oHR/wv4dVafgu3oDUljOpUYa8YOa0WkhzzN5nkGU1iraKQfUW2yG9Zcn0L/FsFKj65OUo+Wm4fvPUNrrHrcM7OiFW0Qt1xp81zzFdTWdE2kOHuxu/t2vHyA6Wb2/ru8yskH63QPy9oG2xMm1bSJXIW2O3ozTu4n2pxV6Qfnhd8r2yVhfjOli+FT5/rly69fWrTpTBw+qh9f1KSXyEPHfGk3Dp1WT0lajvlTW147+A9Kc3EMlplmZtkPFH/Sv6O5IBiaJFnM/RNtzo14atjm6OXkzTEF7oAtPCTtFsapLxtEAQubBbc4BLOD7fQgSGoNRsHbgwgUoxx8rY8FMyCTI7KCOqrI8Zk7v+4YqSRQuHh3h+hLBL3/4h1Cc1wxS4Pe/S6zV+aM2Xp5X6tp/36fgd/4G3QH3hlmKEKE7el6EdnCHIfQOCVErDBqhTITPqjg7sdjPoI6nV0Ru4AWxxG7EZwn1KSwna8VKgW2lvL4wrd0aqxiwoOak1wJ//oi2E/L738XjIsh2wS5/RtdnhPfk9Htq/hMArTyjSZgeJ65WaK2Sl7fU+Q/xeH6PaCFf/yvy+sxkkNPGbXCvPa7BlHJQCJuRtjaaHxR36nplToq3QiuNhlBH5nFS6rbxetnC3jMJhrH2OF9NOe6NKSPpPczgkvsG9/5SONDVcLc4EFYX2eeWsLPSn0Ar9zZV9694jHA3Gj8MrEbunjdAi4EEHmtgXD9fo9rF+AWztmg5mo9dUWAtw00ldEjdlOYOYTELQ+jUd8pmvptDW209SuxAI6Pwjn9nFRqRVCIer6701IadR2fRwr5ZTAC9xbW70jRwIl3H3THxTmk6ClrvKNV+vCTyeSHanp273XOJ905aP+AhptK+Kxn+j+NYu9neuhXvuxEO0VS1fvFqLKa1NDYc7WhHqxa8FO8pLuZsVnduW2u2mwJ760btnZIwUFxEMVV0nlmeFjglNnGu/RfPWXh6/4hfNsrLjZSd5XHCejoHk4aJsRkmzmVrkRM+zvM2zK4LkgpP72ayv6F08ntJE7VW7PW3wqn+0oU/kJAvoi///4yvFrjjvviZX+rXTfxTo4Mxgjc0oowzYVem3m+03g6XAzjulIC00wLi5YSccyCrSWFZSA9P+0aGnHGM1ja8bvvEtdvueAZxynYFm7C6do+/Mdk0RoyptxJUg3r3JcfOed9g9wVrdFjGJAoI3frEI1jB+7UjKe5p8/ASdm/Ucts/g+3c13gvle6nagMFXmilEkR+w7eC5LZThkQn0nwmzVM33w7ruP2mKjdaKzQxzk9fvQL+JsNqpdZKshT2VfQEqdECH10nkz0v3fGItW6OtTgW1tpupRfJOC2ESnuxmuKF4Shek8JTJrmQ/zDDKdH6Tjo/LqgpfikwFaQ11PJesOqiQCXNiTfv4bv/eOafih0IaXMul8b3P1bWYj1G0lg610sm4doMT1AFrs25fKz7Rn2eNOgBFgXAuhma71DmFFSDKuziKJdIRIxjJNQC5aUxO5xUyI/K6bvO431U5G1CHhNM3dd7M3Y6T56QZB3E6X96cTo2fIG4yM6htc1pV9Ae4JDfTqxWQxQ7CcuSOH+YGdmsnmLTkM4LWZTlLDydMtsAK3xl8sRTdt4/hig5CTx/7HSxTTFXfini8m8zhBGrfL89vx9xy/pOFUtGL/YNTRqhCoT+JX6hRg2QT/iy4W3rWpVxPFqssZZwM5SJUoSWZ9KbKPJ1bohW1usfmTdD18LJDLuNirHi2w/49SOyfozuZvpv4D8CkNsLvhltq8GDnh4gvcEkfFTn9/9E24Tr84/4dGWpjXSeDt1ACzqhZUHnObq71dB+X0gNWMxaBPFQAqTyfMyHulW2dQtKkAaANmp6SSEeX9IbhA3XC3O+7GET2An3wSkdAON99+bnylDta5McPxP9Cm+1c1zvgDlR3WuuABWGUIkAG+RuFf4rOddfLVitBZ/0M3TSwVLnjkosg+p3iTD7QtXvaItfGh6jZat4M/I4GP1P2heTLrLoRV5rHfoU2UURrRnNCXNe620YEXI/AZHf0NHPjs6SetuAKCJp4WGqAD6iXOPxZq0XvVFspxyE58HPcfEIRTC6P9rhMjfGZ7z8vpkYfoOlOifNqCrVYDWjdQpFvH+cyPB9DzSttnag794pPh43gpvR6kgXiidNSybNE9PDxNsPjzw+ROzLMOl+vhTePCXm0wOpweX1FSshfIC4wPI0dUTdyFMi2YLqoaRO0nDZMHlF8orOE4v3NosqKWeQz2+F32T8hdnzrmz8H3vtnytKBwoz/v3Zc7oPHfttvrezI899IGc5PFOrHA4ZKYUeyA1vISpyQHJvoc0nZF4iUGOa+t+nfXKSpEjb0HbCW7RzE9GpgNhQypKRkkETTsFb2rsHmMdGS0741FDiOt43a7AvWnGNxuaNnSObertdQFp//oSVz5OmJAeKEr6wUdri9QAAIABJREFUGat1n9wc624FETwg4z7fUd6JlM89JSs6EXa3ew/qjIV4TST8XFuldY44ZcM0Y/qTE/urDGst7ulBnqeft5T2ZDLREKkMf99doNEMq6132iS+J8GNltT5yt2jRcQ5khEUquJTiJ3ydwl5jMjagx4dnSeRhFOxG1jR3QGmuTKdFhbpmwAEqYZd+9z/2tBPjSbCchFaMWztIRvA6Zy4Xip5Fl6Kc50abM48ePUCpTiXlxrUZ+sequPaTBFEcG1w7krY7dLYPnYq1UvDbsa2OqU5p5Py9kOGhy66mgXeJHgIVf/e0du7lp1bORK0aoAJVD86FB2p8g3saliB9DgjnW7m6mhJSKsowunthD5k/E0ABendAucZmTNeHbuu1OeVMsCObFiDbJmTOA/zxHYq1C0oBZdWMAuP3V97qIe00tyObgY/P8fu/cqO5MWyVUC2+O+ejHfB7IpK6RvQjh4P7rVdoTleQ+ORUgI9Mc3vyMMZJRnUV9LySuGFLEa6XvD2PQBtnhG5RUSwKVk/kngmDZFnecW2Fa+OpEc4/Y5GxrdnAOqP/4W2CXL5Fx71Rtsu0aHqYj4qpJyxNGGagg+awOj0uRw8XevxyKKJshVGBNvkISy10rBWKdtKPuVdQD0tM6enM/r4CHNCdcPtOY4V0Dxj3VkpglIOhFrvigqBOMajlf+FeE6++PM5Gjr8V2Uviu9BobEm+E7Js+M9+asam8AvFKytxU43AWUUlL06ntQD+r/7wHFwen3e0VfrG/uBfrjr3ZeIgtCJAhhCLKQ5RfHY+UKd3Y4OJEeA3CFsv9u1dauBQH8tlmFRVFLUDiNNyDxUt2inayQ0Q6Ojg62SfT/2IR7Z7YhAk3TBWLTjHWOWow0z0G5xoez2QCHEAZinGVsNJ7HVRvG+GPgomDsvynuR64Gu3IHBvR0YF1c1oVRH1ZiG0jkrzErLwqbO2znxZp556Z+x3iLGrS4T87tHzkviVjdq6U4FSTjN4QOBVNJjDhVmGjxChZ77nPIF8gVNFTpvJqUQmv21O6e/2RDZWyJ3R5C//hb5/Cv8YoG7oy/9ftnL0vEiwyz//leOf+0cOBQ0AwnJ84FQSorXdkdtwlPC63rE9E0z5BzdiCmHwCinvSVPA5nnaIl5iCDTXasnxJQnUj0FQlcbXgtWY/L0tcC0RCzyMvfIvjvyfkePPRRX42Acx9ANkYymFHMDTtJuwTQWiNZ64mQU7Zo1zLBHIlHfpI1UrZ8T9Gua+vu3HsPZdoFRqzdYFZdT54GGiGzYyJiu6PxI+o3SgqwGAhdAdr/fLAUPXS0Ql8GdZMw5YTkVLXFlyrG51L4Bnd9+jwzExjPugVzvUsCkwT+ZDM9OmlJM/EkOIKars10Ny+DneE56G8cpo2gKoUYrYJuxPW9c1h6p+6As58R7hZc/C/W58umHxu3a0TaHXJx1DfGUZuc8HZnva/P4zFUCkJxDFFoHmphDh9AEJAev1KrtCnwpjq1heVTMmR+U9C7vkdjTWUlvM3JOx/dWOYr6JAdSAKB9XagOZfwsWrbtapRnY0oJPc34uP/mhj4aFMhJ4WHCzxlOXeWfE5rDE8tvlfK8UUrFenuZWRDJTDgnnLdzI70N0SzA69qw+pfKxL/tGDXOIbRitIIY8ECE7oxnx3+jyyOIVJwVYQMfebmvtPKR2gz3RJYUa24dj8f5bFs4hYgsTMRmyDslwLaYwxTgVhEKXqH2+0E//CE2EvqI5RnzHxCrWN8EtGvYbYkrKT3S8oLjaPkUH+HjH/GXlfTyI5orbancWqG0oarJhGlKivnKhVqNNM39EDmtVJq1yFWREJV7BymKx658qxXbCg/LzOnxxPQm1tr57SPpPKOnBZ+h2DNlvTFJF1xKD/TJDzR5oJGjATBqR+jujYOLHdx/vys5v7yajiVx7GZ1L2oHEhtceT+eL+xv+tOQnr9u/PrbsG/j2/g2vo1v49v4Nr6Nb+Pb+P8wvgohuKVuYh2qVDha/WFuD2jnmPYd1UgFV6TzVKXzJ2KkJOTkZBn5uL6TfCFQFe1hAM08uD4WbcuB6E5JyTJF65RO4PfIsYYIJ5jUQ0lrPdLQ7zvDvlPtMLrVyZF77y2I/ylBSnqgEHtLsneEDNyDzmDCzss1C9VmKJnH3lLIfZd9Pp3408slRE2EwEo9UNvxBtopAa27/oh0P1oAcbIrkyrdtYcW3VGmIWvpQQeGsXULoFoac88WP085NvWTgGTO+cTiefdxbbeNbSuxg50qNgUvR7t6sylxfEvD5pU0X9GpYCWUk0mVEfP5240vkdS/rgEh+3n2X3rqV18jgIV+BQxFn9//J6gsw5xnf6DvUvFuDp0ndhNsnehEnIjwrBNWD66jpKlvkKX70vWwh/0iFiRP6BRqf1rtLea979t9fZeIGN4K7fqKdY6sSoeb6hYtq3n4nY4vFsdMOg0iOOrjLiA4Z6NtlELFLZLQaTnuPwtu450mIIRYI6ZUgnfrzTqSGzG4P2lhdSRSIgmEoUh1q5TtGl1TIbiJVrnHfrxtO2r9aw+rNSgSyM5tDC68ollJ00Sa448OKkgXaIlVpE59Hp137mR6eOp81dqpFG1HlgFsq2HblBrkLjXtoojR7rZasTD2RU5TdI2uZYdp0pQC3e8uDlId+TCR3vc542PFvy+sNYSwpGiHbrf4/XJpWHXWamSHNHfRaacEVIIamnN0mGpHawYrgkmQGteddspeXT1avcBJJKyua1xDnmAzI/d2vL7NfGbVJhK0kKFtyLJ30egBOS6Gp0BM40NG12tbO8d47u4NeVxLgfrPeWGaE+mUkccICQBg7oKJ0mArJJzplLDOMb+WgvjG5MIZSLkgsnKe43M9PT3wfLXd1/zXHEMXInxufTSsH8ccIyI7BSnmu9EmHTZKTpxtQBo5N0opqD4guuB1pd0CPU3Ed/V162E/Tr3cqJ9+JK9hSyW1YLcVeb3CtsaaaQJd6Ob2I14cWTekrrg+sNkjOofxvm1/xLZGmmZSfghv5Kx7sEiSAuUjhlD9LbfzB7ZS8fVP/XHv9pseDkYoSAmLLsJtR3Icp2atc1N9n/O9OVkzp1PCJ3h4OPHw4Yn5fbgIsMyk0wmmhJwS9vrK5MI0OgP6jOYT5HdU+UChgi4YJ67roPNkdhFQ7/LJmMfpBJ8uqDqiW8dz+3/vkXWBIQTdL44dWT3Wg3tR1ojx/dr4hYI1dx6l0bTur68eKT6NFheMHqIRFSeLMIuQLNrxMnwWAWkhzw/3AI9iV+9alimI/42RNe7YUGP6uEAyS57RnDARGp3EfWedlWLVDIpRdaSGlRWM2kHjgAJ42DXkXlgXEttWWHIQ2nUUFP1gBq9eu61QFMZmx3e0RnCWuuCqBaJP6vzPrcKPl42HpJznTFNh22yf8+YpByDv4YcZ3B2njtc3w5NT/1/23qdJkiPJ8vupmbl7RGYV0H9mhssVriz3wgNPvPHr8ytwKRSeRmRXOCM7s90NoKoyM8LdzFR5UDXzqAIa6JmRAYYicOnsSmREePgfczPVp+89FaNWpTYnaSfy5Dqm7OWXJRmpNl5eb+iS0ebHcH05aH/8wNNfvUPWxT0Ku5HiO1ZT9LZD71huyDVhJdHXsf/iIrIGXRuyfILS53hLFv6b/xY4rN8LVEfJ7Aei0b8spn14s33xGf+bPT6TD4SAkb6M2pmNsT32GJWUoQTHCsJyHk8upLRguKk6y0ruy5wn3KfQnDM/lN/ycELiXpRpdZ89Z9tEgBwHYCGqSpZgqaRlmeUrve+uxE0ljlEmdQY4qQAPNIN5Lozv8iDVsj+Dqh0pG5IHb03Dimrx5gJipFyccoKP/yyJrhr9sGVygsdtkREtJ/EuXsKkHPQqIEqrUcnSiqCT/51y8mv4C43dlDJ5AUmJJcwel8vGuq3kJYLUksj54XlPKUZ1IZU1rkFGQuHPsuLu9QfI2TzARrOGcE7xxmZCq+pCtXJeh1Sy3zcJA/eLkraxL/x93Zus2CKudVgXyvMS53Dn7Q87CReyvnWjJYn5HT7clb26aKoeTjk7DCSEZU1wF4ywyfL3KiWM/WtwSveb0d4U7cbrp0aOgPvtMA71taABLzdlBdaw7dLs85/0SPByjI90ikVc3BvjopmLX0bABVjQBtKlnE4TJQzN8etS3i8sKR70LM47fIqluIj7tt4P7LiTzJDKFDaupVBWF/BaE45w4fndb8baBW9Ho+ovkGwZvrg+NFaZym+JXk0pkVKmDw4qYBoUkpZIZQPu03WhW8JYwTopbeSy0e439Ihy93DHqc1FPl3pt1ek7bTdvavr6wtSFblXMp6okBZKCIx1b1j6DRUj63+j2CewJzR/7ceQb3TLpOevuWshqVLKZYqquhVaMnQT+vU/sv3N/8a1vfHd//N/ACByo4nRiCYxcamGr3pr3uhDZlkdRIx1JEpJoHVSUeSSefqr93z1179HgyOroqxXp4cd1oHO07t3LBd/7vb7K3mpqLf8JMmN7fIbjpY42tAFheed+Xzqx/2wfj+o/8cmU2vh8dD0gh4/X9IBJz3kFAQ+Lp3f58V+f/txkpaAcxlmn5ogVRsaDQNcjqUMv7+zcYCLmrI4SpmD+2hhz6Sd2YJPkoSv6Vhkww5qwKJZ0Jym6CoL9NbcHTJnckrOBxooTu+06iTl3p0Hm9QmyJUYF0bmdaxVz2hfXVzQmyPCydJn2QaAJAvUKlAyPQPe3qoDGQKJjPPomJ2uPtwOXvcGJbGU7AIyLLhHIEknOVkhOttAbWfAWpuy5kJtSq2dnDIl0I04SW+OoMaiSq2VNkjgwH47OP5w8LbvfP2bd3y1bvTWaYGwyv1O//TKap0uivxuxbaMDh6wKII4aNMV444sOm2xsDTdFn6ZTcbqy2OgKoA9LDB/yW4+f+8XDqz2+BTbXNQev/N7jq3j5Rnofb6PEeC5kjMjUmYyNmysSG6gLUDqeWbjriKNRXW0kZTH6NnVmd7WtAz4/mHiiYkjiSO8OZHKOm2x0nrQ6xGLUPZH5iE6d0P/sEwxQhRmD+hKct5fjvNOxeexpN6kAFzgYIpqmyinkbzlKCDm3z8D5eSND+xhsE2bLxn/rUzlcRcHcCJoUCt+/AOlLgs5uRL/l9guX713NFlc+Aiwbm7D5fz+7C4iOZ0VjAekQkJ1DQopuH7cgFdgx4PW9tm48PzJg6xU3DbqRObjIvZAV5O7OEgu7p1b3QCdo9HfOtohPa3IZaWsGYkOfvUPb+xdnYd5EexIaPXgFOCle9VqyYKqd8EaAByAJqEkOA5P0FcVrAtboJfH7q1aacbtm4Zi9EPno6PNqOaIcVUj9XDHGNNigCkheICHNcN3EJWIHoihJFIGU5lNZbIkSJn160K/GVqDyz9u0xqiwyX5Qhbr2/RN7Z1+P7DDhUcJCLMMwOf0nL1Bw/UK1Matvk0AN2UDKfRfIGCV4dH5yFB84LJa2NCNeAYIlmRGe6FXSOsCafEkHa/oNFkg9WjG4vPh9HVvChTUMskSVp1vb9Y5RkVmvbBcCtXeWFJ4Aa8FDY4rx4X89Fcs279D2lfw9n9C/Xu0u0uAHjfIhpUF65mcPWm8DxA4Z/TyFbofLGvndv+G9PaJNBBSCVcgUggfIWueAd2wi/L82itBDloMd4xwp7hsbM/PfP0//I60rYxbrKKUJWGpTN7/+9/8bjbxOe5GyZm7Vsp6cH2XKWvl5XaQww7N7m4B6NP0eR/HjbJH5FzcujClfM7Jce9HYkLsYRYOLbrEnV5NnwWoM7H5lwSswz7Fjc39mzPR/QqZpv4iOi9umFKBGgP07Cpz0jDTWKBkRtWOgsT+s8wSz6yMigdGMlW7SmuN1rxeLjkFkPQAP2u0Rh0dqGZ0jwsHmNfXTfebUUbQbIlEprVOKb7OSRIPZJlhLiU78ppNyHZ+v6h3rbI4/mTFS/NRVn3ZG0dX1pQ4ApCylKarzlGVA+/trUBKRkc52vAjFO98pZ1WlR69sS0NxA7vdlSi33VKrGuhbIW0+QDdni6UxdjfKi+3D2guLNvq5S2gvx60797o+0Fb4HmD8vXGtBOUh/BdDZU7qbyhPcQDao40/EJlVd++0CpKRIk2XvN//3z0+mdeG0Ppewnk94Nj5vdPuNXH4gwWPIA8KxSR7EUQ6Z6KiTE7KRZinCiLI0haT4X9WByHrQ+OeMyUU/BnphQP6sJ6bvpxjgknO5UnAMzTHWK7Qj2w5m4fYpGUnFEBvat7nUaZ2sVOMS6ShYDqVEpJyj5PhZF3yn120zqDUBc3+nV28Y3F726RIrNTnVdOXGjl82+Us8atCfW99IbVcCRJaX5eevUqUj/Yvn/3/9W3y7tnb20rkEvYIa3FW1IHQjWS+hMBCUQjKjKeYTfIEbCmG8gNZAc7InjXGZRL8va3YoWUFN26j4nCGV2UdVJC3D7LE+s+BNu70SpcvrqSnq9QNlQ7x90D2v3u9n26wPp14et3hfsHnW2nbw3arY8cCjd4sDNgjRxMk1fNcncUd7SG7YeSmnsg7G8+Po6qUxC1KBSDN/NOXJtZNImJS0jMa6f+9byewEBSLXyvxcSfz6GyBY4XZXkvnlgkH+8g05qrvlXSmlnfLR74J4HesAjq21GpbwerRPm0+XqSSpoH+fbxjXvvaNr82eptonGXsrgd3nBO+Dk3EXJyR5LzuY0gxsYsaIHcjQS5gWWsZ9phlEtB0goWCbJsFGno2n3cqyK5kFcXHOn9YzzXmZQytXqwbyTKkyOk27b5mpk/0b77gH18Jd+Nnhyc0UVIPcH6gaRvvnbVO2V/iWOE9PwVQ4zEesW2jaVEkt4bCyv32zfU7/6O3f4e2b3jFoAR5fbsLbiHCHSsjSknpIsHtRFrqSlLPBfL4nTCdbtw/eo9y5bo0iYNbLtcaGaUpbCUlbwokoyu/tw9v38ml5WsxrK+sZUdW690+YrlFu3um7jA3UaMMyLNMfYf7rO5f/BjQxh4iD3kTDLnqxHnqfrnJcn3Y9OH5+jPbT8esI4vT8N2wttxFvGfLCNbMk5fNO/K0M1I6pNOUqHP8WuhwMx+c8Y1mZ5isaaOUuvc/8N3aIOcHSRKAhJB8FiUR5CamMb+KX78lHTaURlQu/deHtcqC2xBSxAVB6968KPwY5U4/86Y0OTMmEiYVlp3zz7rTvkbrjlNBZVMtcS9efk+i8wuVUd39a6IRTdG5WWvlJi0liSIQu2OtDqlIUHOtFG+yz7JlaWQlsWD0VI4RmCyJC6/feI9Rn/ZkaMjrU9P2XrvLAhLTnzcD+qtsqqdSHiK0mlkTSIvkL5B5D/698vyb4S/egaLI3w9X/5zwar//ctX7fHfP/+xLz73A3sRH4Ni3tUqp0aSYQXVIwn0gevqzcxwuDgTYC+VO8pamA9o8kTBJ4+RsdoJ0WARzGa/GsPE+QGpE05O+tjvpKH36Fy1mKv2a4OjM0h8Zo123Ml5JZkvyqb9DAbzClYdic0ejHsQVpxPHcdoh7cjtN4gO3IwrVGmEW1wLE0j+49FcCAbqsO0IBxBzklYImjV3pFWycvK6JUnssyOXL/Etj5dpof09GHNgcyluF7580RwoBWmBjnGT+pI0ChIDdjBdg9WZyA2Kl8y51uCU+c0gTYXHW1+DQ23P+uKj7UlFr1lZf2do/GKU06s79Qw/q835en9yvXdinZ4e+tUKvnNz+W9KmsBDo1uvUbvNltapxx0q3Af6dVj8lsgtGI4UOlAMF2NehgteHqK81hLTmSU2keTgZjTorr3mTekMvmgJuE20UZrmKCpdWHY3GRNnhNUw7pTpiQJS1CpSlAFGMmmCDSjfuNoX70fSO/0pqQusDuAUl99/3eFtqzYpl7tssaCsowAry+Unii/wNAdFCF4nPEe5j6bsy85klM3+1DEMn1XtC7+WhoEzAVJK2Kf6PsLRVbEHlpRq2LNq7mtVurbGxwdSWn67966I/MG3D58ZLvdsKdMv8a4LV9DEyR99OR++Rr2Rmpue6XbhsmG7p28bFja0LL5swT0ekNvnyjasLpzSUJdr6j4Pend0OTBOtoR9TlrtJruZqzXza0gU0KPAzOd0+G2Jq5PG5enK3lbqXY4nzYaXqyXzVuzl4WOsJQVRFnj9WW9OHh4HCRriDxhstL6A9X5ofTvyf1nqx3DBcBs+EAPTqt8/vkvx8TD70Nv4DxxeIxY5c8uqp9vP4GwpjkIp+l2/N+JDznqMzxGxUYrVi9bpOh2M2OXaeI8gsxAOQfClOwz2p0RHoqqzIgu+cUSr5gyWuKm6ewfCEBzhPWUtVhcuNm3KxY0m0E2EAF58kFmioTPWx9Bw1g4BEyNWiPbHq1fm5G6UZvzHno1Xj8p33znA/xP392474ZsAtVYDW/hF0eVs/NyzSzijCj7x6Dokd136xxNQcX5LXaOgRSQfhP/sVy49QRhc/P1+438vLGWhFxW6sc7utcRF5HLgoaf56JKv3sv9lnazYHkdQ9SSJ+Q8kdEvPuGROu8Hx7GP9cWgeeYRO3huRpJxgxqf/izX772Uxyb7+9ifM/4WwRapiQaiUaRRgmeXE4aQeuIS0cZZgRTxKLqwZpggUw+TBzzfAdb6lxIACwlbzThmdfDwXIirYRlnLrwZPqwjmpIjMEwYp77Hxxca7sv6snPVesxv0fygoohZUFKQWRl+K0CUHAP1X5aUTln9jMszM9lIknnzfX3+eSgvTPsr2af85w8AlciaNVg0gRnTBb/3X5oXPzrb2kJ7q7ZZzZyjz8gcbrnfXcPxxhfSTx5CV4wcgc5CPPoyP3P+y8lJg/t8VybC39ax+roAHZ41ztxWkpainfXGS11LTtVJS8M0V3uwjWEX5evNr9ztw4YHbij3KOq0zLIAsUE6+YcVT0Zb5ckrCk5ykosB3Z6OcZU6XSo7PQCRvMV4LUaqXiDmIK3h03l5OZ54cPHNhH4konuVoSbnM2xo83CIjyR4/m0BvapoynEviKwZfKwG7y4MK2LhW2YBcUg1h6g3hrHx8ZCQjo+78a8/fRUOFLjpqGNUGMhswWlYEtemRs+qD/nZhGIiX2f74jZ9FYHZnKZcqFb9SShFeqrkZcLli7xRudda+u0tzckFbd7rL7OaGscrxXUmyVkU3rtyJLIgWCqZJo2rFZSTuz3O70ql8U7VSV7j2kJjvsdOXafrx66l93fDpbLxpI3lIWUN2a5sSlWvkKfnmD/B7a6I1K4P9jwadeY48LpKSXWi9dvpBcHJnImmVCro69JAgSgcrk+s15WGsbleiGVhTQ+nxNr0HNMvRqbUuYa/HdEuO8HkqBs70jr1/S8sdc7KcZNyVB1CxAgAlFRTsTVL8QQUn8WrPIA5gjfQ1fnRfwijfHQa7x5rLU/Puf+BIf18+zo8VcTzxjUoqnAqGdrd0RFPWC14NmNjCgTHNhuwYX1MG2fJ1+D8+Ho3mjDmMqp1s+leCbC0CSeZGXAkUkcAbKJpKh3SRnH72+MCxe9euOCahpOB3F83btlTU/ELt5BLrnwxcxIlpyigGdUOfz5tCrHDt99rPz9H5wE/u2nA7FMSsLRlJydtzWqPjmft65kb7OKCS1KWx2mHWCLftwNC3HhCHoz66VQ1gKlsF6u/Pu/es8t1JdLTtAq7TDsfvD68Y2kUAK5aZJIy4b0jKXGft/5quIqYRxd1WyQhuHxnVw+IPIag+Qr/nww+PNsX+KkXjV9CHpmQBlj+88GKP+EIPXh+0Yy9uW+RB7QVSpFKkuIGrM4upRzAitTHDN3M6oZ1jFLIOo86Uly88VgjH8CC5p+eiJTKPKIiJyBTzovy+gVrCEuwZ+V0FVEmadAYSZTaor2Sn97RYPSMEr4AP24kZaB6ErMJRnlpI+IiLsC1CNumk/6OfsEbJJQ86rI5PY/8HAR8bbB45jDRWDcey/lelBr8buquSAUaK36VRtdoH7mLS1lcrpGlcJR6Ach43y0xn2DWexBQEqIzYa45ZgTn4P38tlwn962Td0x4Wheo3/rRA7KhC5zJl3XmD+Di+kH6YGvuLtI3yv1ww39k6u19U8H9b/fKE2xLGh1D8115EoZeoiquhpVvanA6AqckrEuhnSo3dx7WoQtENJurlfwREmo3QPKcd9rN167cSnCrsLz4qj1rEJ2m/7ZXqEL1HqYhAfFSjShhwaKiq8bw0UnF/pdkIyLhleBRehxH6R3LHXXZJjRa4daHxJpX1+WkpFm6NFDpBZjuULahMsmtN1LmCmdFZFS3ON4NBL5Wbc5nr4/XzqA9gAejI/Euu3LllAPyEdiGR6lrBiZnJZoohJak8GdvGbkdni3qt647zeyNdZy3lftYL17S3aBvK3I8Ya+fACgm1Kei1PqSgVr6NHndyCZUhbS9QlNxZ1YLgsSAWvqBbv+r5Tf/gde63+m/vf/zPH2DfdBh3vaMMlIlvCKTZStsGwRcEY30evlAmpO99jbBAmfny5cLlfydsFQlqdnNGcsRGMmi/tOZw/oluwVq5GotdYpS2Z7uqByRdaV3iuXTUhBOfr0Zthro9dRNRVcaPAItjA5rF4K/9xNdQhqZ6z4wEk95+AYA5O+dI6Qx+nsz22/ZM321+3X7dft1+3X7dft1+3X7dft1+0nt59Mw4zgEkW6Uq1DUufPpZMU8IiwavNsRg0sZVexRWs6V9/6nkfE3brRBrqhSu1KyWl6hiIhOlhDgNCz99ne3MopJ1dUj2BdLXwEk5DEAvXpLvQYJwWYhBRlll/HKWi0ovUSh6PIMpGE3HHek7qfXEpG0jStOlpXVL2TVkmZvSnffrzx34MScD9gyQv3Fn3kOxyn84lbRprz0JY8StkyLzHYPFu3hBMsZdKS+c3XTkZ//9WGJmPdMuu2sCwr3304XHkA1Na8DWvr7C83cuvu7Ri8l3K9skhC3w7aYRyH0nqa1mLWEyzQaKBemmL5SNpcWWkd4ZhFAAAgAElEQVT3vwbWnxpe/4rbI776mLYN7vJZfjjlUXGt4aFE8QVa8AN/+qGXHsSxX2wGdEQaiUqS6v8GBzSJ4m5UrvZ0RYsxfAkHX9ysTQTUUj/LsrNUIw+8z4dSy1mTw1JUJz7PkydKZylqouk8EWsNs/BIxW1QDKanYBkonhKlTm8zOgevgXE4ShE1Da2OMlBmn9Bo/+pqVITwZj0voXeu0igpRdY+ebhx+7q640Z3lE0fbe2ideeYNx77m3vL1kb5hTjYuQyEVR+oFo98MQJRfizJxbkRvtdjQpNQ8LPDF2NBeBA+zIEL1pXUFPaG/unAorVp6uLXsSTk/QbvL9h1I62jNOljUaWzv925f7yhHw+We3xfUyy7I8r+UrnflKXDNjoEJq+kCYAapfh6sEdlSQHMK1LVnC6w5hPgzeJl8q4Exx/qbtOFwI/f+HAzPprxv/+nJ3hwMpnFi+rXSYqLhWd9Q5nWZygkTVgNn9c4iOXdBcRRWVHcNLZkCMqPWuN43TnUHQWWDKkr7FGBeOvo3eBQ5FD0iPUn+s6XLFg23mpj14SVTG2Zt+Dp3vZONaUNK66fcZPJ0Ts3i+rInGEtFts5Xv3/p0JcE+3IlKdo8S2L1w7l7KLmYtOwiLx9gtzJqZOz0VtF98b9pnO9722M38b2/EQqgn5QeoiqVF6w7W9I6a9pb58Q3nxtf/cegCYFKZtXjYuQl4ws+ezY22/op//K/nHn7f4ner2zetNq/3x1RyBKRlVYy0bZFran8FGtByklLpcN3Ss9J8rTZdJMLtsVcqKaIqFFYV2R4s9dKhfXCkj35oi4gGpMD5fLxeMxTciSadYxGw5OEdNsGblX944zb27Po7Dab8YDf/V0jjpf53R4s8f76/fbgrb1Oa3OPnvHT20/GrCqGqKGWKcNcqNqcKMsSnLRRGC04HKT0uBTCr35ghLxKkW8JV1KozTF2ds7zjOGJdr0oXSvtCgrHlpJJiwkFslQLGwu5vD38kPw/DxgPT0HHegeNhLyUHCNidFcgZ9G0IqXE2WZPhKgLmzJkkg5rNynIt7bpWaFQqE15ZtPnddYO9btHSUtEer78bXmzgDg5WAxJSchWAYe2I5rmH0gqTlHt3XlklIoiU/loYWQpx6Nf/jH71CD7RLCrTWxXQpfXxaeQiBV1kJ+F0HD80qyREVY2hO/qYn7ITyNIKllL08tg8ubIO1QvF2dpAr9l9BYP2xflvhH0DWc8IJf/fAG5C94aH5s82qtfB4AwHxIJQLWJJ1EJ0tHqAwCf5Lui6IIQsHSwmiH7DsIjpElDxZ7c0HNgxvDZ8rxCF4fOAWTMuOl07NsM453/GJR8rdovOF/zYiY56rdMNpn55e2K4u4OXa7v2GtejkopOQC0FokYSmSh3iPjsYA3orVxYvuKwjqQi3/Fqbn8hQInJQg//2B6jAC35ijznktOd/OXABzepI2L7/rz7/o+yHHuTw0XJmCsbHoB29/vj5DgpCSiiLpAPkY7/jkwatpcAmjLDd4vW5V4td1OCocSv+u0v7g967UGDOXgmhyP1Zb0Hu07T129F653w6nMRUXG23vw1kgNaeDHJV6KEsDmk0xaV6iWYxCz5AWITXhHlQub1Mt5Ay7embZulM7ADJG63Dgi7UCt901BgCLeb7+j2+dP3Xjf3nt/L4y7QiTZCfSBovC1oyVkw7jnNbk838kZbob7W4svxtLaTS0aDgNTsV/D9+pvCa2S2Kx7HbJvaMvd45oT6v3Hg1xMu1w+s0QaQEBGmS6ZtQytwNeKny8+/5fXzNtF7SNROXn21JKA12Z3PKhFxm2Rl2UPEUqTIcOdAStiVYz1mMdkoKIe4Qa4p7NZvRBMVIj50wqLlB9/v3vsKbU++4+4oDedvr9TjMlLZn72412HKxH0CiWK4f8nsv1P2Bvf4vsb9j2DpUIKNcNS5mSF2RZsCJwO7BPzpVpR2X/9LfcPv4ttR20trK9+3fI4KD2F3J2caJIIadC2Ta2J+fpyp6orWLaWUrmnoy1ZEY7bkVJpZCfrsh182B1u5yUhSSYuBiWQTtIRpgY0I4bx14pcuG433mzTJVnbsdCi4BVKeSy0evQKxhfhKsB5AT1Ksn8b8a/j3QA8KlqCGVHc5dHoZX0B2QnvuEnNCI/GrB2VeeMhHACYg4VD0ot0JjQNJxfPPhh6mKsaudikZNQ0kCR/MF3ECX4IBGFJ4OkwuBNuOfnmNjc4qUs3nPXd/MgqkIReix2/l1SHtSf/eyS6w+ZB63D4mU4CjinbXBDx3nhzgENLFvoFvwBzA8m3s0SvRm9J9525du3jokHcJeLe5Sqxk1EPxPIdDvPxZHnwAQjAC3KTGXMoPXOkzrfbaixj9bRZHRVR70iI2oWRPRDsGr8Zrsgkt3nrfh8DdCycQGsGHrJpLxxr0J+82O4PAtSwlcugVr24x++j9PA8Bdindj45zGDO3k0j2KNf972Q1DrmTCNkfjFS57ciY/zJEaWHiIrPd+XUgQSglvEnbZx/paEjaBNHG3kwdZKhuQu5QjOH6aeOb985pb4vXMxYSKtIssc+5nF+aEGrghJ/hxHwinJ00HXMCX6/Y02+n5DuBLERC7eicpwGxeLfuiSMsPN0Z0MhiBxjKVQ4swgOhDX0ZwAkJwfKjn+fg1xTzJjeGza4Cv2BycDXCCi8i8bIf/cbfgyfj5+xhXxIHNyyb78LOCjvoO8QPpjvPAN8Ia7OQQJGR9L4xMCPvYGZHl07NaRQCjzmklPGUuJuhu8KWXlDHq7kpfM09MzbBl5WumS0De/r0d94f7qyOTldxfK2lGthLsQufv5qRnaFE3JuZsxtPfgLBcN8D7BW1Ve4/ieF3daGTomFV+6NMbuvRt3gxeF3eAPL8p/PGR2B6QLdnMxsORCkuIdiKbYNtasKt7RqirtFX8Gom98b8OZwu+hVfUuiA9dnmQrlLL6FN73WNtG8ORODFmELQu9ekK4ruFRvAm9CMUMaXAcxmuHt+Zry75fkb7OYOXn3LzjnQNQs2ljzLeBTZFE6KqTc5tFfP0Rr9oaRq3CEXZL2/MSQr7Vm2T0Ho1F/J4sT09kSdRvP0JXynrB3i2k3uifotMVLhT99M0f6XdjwUAyLWT4STb6dx9Q+zvq/i2pwuXdO/Kz22LJstLaHSTRI5HVbz9hL9HI5HalfXdH9p2lbGxf/w3dFFUPaNMiWDFSapRUfG4qmR4J8lIKWquPh2TkJTzoI9EyURdfLoVeMlKSW14OcjfNK2zZwQWvB58Is7VGulfqceNTq8i73yHbeyRt9BpiQYEpwoyp5xEJlenX7QHrl+iqjM8Q868IPDYm+d5oeZzPiXimY/LjIMFPIqwe358l6LkgDvVyoFQyR6hMUYOXnBSvCJ7BWIsydo4fSTLtlHyAO/Io4gFuyv4QD0FQyYllySyLl8HtQVUPvuBo9zLkUNqX5URSO26X4kCWIdkngHH5pNlEaZM6yTvlQGNw1b/RvbOU4JXRkSkCS8rslrhX5fWl8w/fdToXrlcv11tkk713unY0/CZHNqKBHrjl+vj7iUBV1c9I+q17GTGJTGrFvTbykihLduGCGmv2dq7+JUa7V273zrYVuoXwq4xQq/s9WGHNGV6EkoV6D5Q6N/d8u5QQh3hXNBnwBPbDMd3PtUWwgp3j4i8pOfyrHY6cvyRxS7QlGUs270Y2DC4kDNu9BZMHpoQfq7/Dn7HRlcQcGRwTw6m6HAhmPv/GfOkzdO6Hs9qHaDCVGdiMWclUTx8+EfdTxNFJLCOyuRBLEgtG38MC5tiDHtAmHceyB7nTu1ED5QvLrdPffqA252Q6SuceZYxsPj0EDeN10AicU15cuNWVnLzxiaOWA23o8V1nN56fc5vihS9WBXv85cdiaRFEdkdX5Zv42wfgDeM4E6rP+lVLPC4yFyeqYfVB+LUt6OodytKyeIc8xVvfAqpeo89fX0jvrljJ3mI3AuC1XehNqR8O7rXTzag5oeHB1Iuw78ZbM/ZmHrAh1FjD7t1bXF4XD0Z79zX94xFo25q8KYz6BbI4xSG6akETeFVfC17vRn0z9G1cWR8Lac2hdHc3gKlnzMkj4d3gJtjNm8qkpRCWl97sgvBXZTS30FPsaWB7p+8H1pRUG7m3kw0T7cTTKtRXp8uhiTweRzXozTGj3rBecL+RaPNpxSGWXyDZsrBiU7MZsA5RNQ9Ia0oP9D38UHNOLr5UwXSlhqf/ul6R5ZnO10ip3sSnKoUBjGR3sRDDWkfvB2ZQto2W/aaUy5W+H2yXK+3TJ/bj7sLmoL/1pdPtztunf8COF1J+wsoFDQRzxyusSfFrD9SXG2u0KTfrHGLI8+8p2zsO6xS9sxJqxSzoemWX5AhrKeSSJwpdj4q2xt4P0MP9WxUuMhDUEFuumbQt3mBFBGa3MA9CpINpw+xArZJjTJS8ADsqnd/99mva9St2ubJrge4xSWsbvW6YbmCZL+GciaZKjgYOzAAW5sw8fyPm5Tmnj9hsvN/GBDe65FVS6ZR8ghs/tP14wGpRPpcol+APXwwzGIGqnQGrBB0AcxWkxYI2MsyBlfjHZL5+YlLxoCPR1cPVsSmXuQ/F2/BJ62xrmAkDo9uPhr+iL2LmKGx+KBkmoKlndwkQ8xZ4Mxs4ETjTgb6mWTqyPjp2+P4tQVOjhppUGqguHCq8HMpbSzxdVy7jAemN3jutVWqrtN5Q7fSwwRjOA8O3DPNy6OTMBKztptrK5XLluq1hmXEis5KhdkcdtiU7Kr3GQ9Y8IK2tUxYf/L0Ll6HILaDFaItRtuioY0xqh7ZOa53ejJwi2Lc00YxZsfyFUKp/TqQs8OetWb//zr/8LQMww8dMTsqalS37v0s6yy+TXTs7h7hB8yl5Pfm3IqHifEDbTs7YmQ0/Rj5zenk8fGFOKOPZHPylSZ84IeJYwS24rQ9Z+Tjl4JVayWS5xsdGsuelL4kqRxcQFu+yFJtZ90hjJJyRIOsgsT4ka8N79HFyHNzMoTx2/ndndLrq2fuOo+ItYAeeG9dE8WsmcnJqf87NHqCKz8pykWn8OXT1cQ9uAPoK8in+dsc96Lw7oVuReTI0dx6D30iICv2A45BpD1TWFbsu2Fbo0S5abnX6W/fWUZR8u5O/uiHXBUqegG1aMvnrJ+T9M9Lh9b+9cD9eBr2TTWJtsc79brxU496Ue7Ql3RWqOl+59hF0MxsXfOrGEjEl5pfo6MYR8/KhbmV1a/ChKu3vd/7Tf91Zn/wAt9+K0+6TeJm/ZXrr5Gski12wvWM3hbsiDZY1YyL0CJoVcaBq5ALZF/k00LxLhpxIGs/EraEfDmwPyoz6eFZw941U/LYFLaLtyr3DXqDLgiyF1IJzCOc9/QWm3ZkrP/IUo7ysI+FMydfmdI67JMMqya9JZqXvfgK3bzvb82+cmymKpW8xjtlmOfVK391Kq1jHXj6ir4kjF+ZFUCUX7wSpBsdRPVhNJ7q4LB6jWNow3Fmnh3F6105JiWRCci8xek7I9uy7X420Kdt149MOv/l3/zNy/T319b8BcLz8HWURsnZG7TSlxCVcAu61edOi1pGupJTYLisl5p9bPSjLQinha53Er5+cXaY8VgiU1lpUmByVb4eDA3LZsLLSe/YwMblFF0BrK72tWC/wYEt2cugf7RVl/kyYzyxilTR1BWZnV6vPKp1RVUYqJA/qy3rw7n3maflxKstPNA4ID1XOzhTjTAS88GjxcI5AxcYnztX6s17lpv5rShGwepA1PFCTuLFzSYmlJG+NGqb4lscAk8nfRDXQXJsBnwZq6UFvmsHDNMaKw4lYNRaIh646ps6Xar7GqTkSnIa9SSyUXRTFA8razg6F2jxYbRSqQN6Er3Nh2BkevdJapbWdXHdqPdDezt7C2mm9R+XuURgRAfPk+ymGcLlc2Lbls0XMGBxXyNEdZ10KT+Hd9uHjm3Nke8d6lJ4btHvch+xon2JUEfJTwo7OoPFace6s7Af5Ws7A4rNF/nNhyP+fNpuI3peBaQymH4xZfxipNJTE4Gc6b7UkZSnmqPZj4DBiw7HI5+RB4fAbtR7ZaZTS8EXqlDXI5/GlfC4wmy+aNx440bbzaB8+HNQBnYGT4QGDP+7pDKrGfY7nTTG0V3/mlgWqTzWpFHpv0c7Xowp7/CzEszvOi0ge07y8dirjGMSGR5R5iqdC4OHHN4JvsHZguUwkcwrP5v69PKm/kOjqpASc/3zxhu//bWZaCnJA+QDpDw8Ba8e9KrMLZn3Z5Bx3ErmxeBOLvKK2IIuSn+OZfnch/faKvF8pJQR9e0M/OSoir+YB3dGpHw7kaaE8LxxR2mx3Q++gO276L8L27J2ZAI7cWRf47dfCZa386ZuDdugcH1V9negwb1c3aLH2jEekRWCbRHhodMXRfS7vJuwK//WT8n//vwf//n/ypOrylSOq/bCguQl5Wc5bUN1myt4U7t0dw6KBx0SkJHnC1SNIa5BWZttfC5TNTOm3A9467duD9iGuYTfv0qVQirAs3tZ8MH72rrwlY9+E+wK7CrUKqgPtKx4U/UJMLJ1gSyTA6raHnkBGO890ctAJtFXV1/6UhaSJkv2e1Ar3j8ayvWe53unphtHOimw9SL16caRVjpdXaEbvbcYsqkoBVCs7nVQyvSvtGACR86LTtsJlBSnotpxBde/u8a7mjUaSOBUu7NRybmzFKP0T1+WJdcuwbryGyNqyJ4cZoQV9S1udAXEYy1Jady3OCuvXzwFIwDW9o7x/8gYqZA9U09mqmixoa6i2iEuS+8WObr97Q5tTavpuHHRahkqaQa3ZgupY236ghCMnQDJYVCPZ8M+fsZGPgx6NWyzuwQNmKx3kIJWd5eIB63o5uK4Hl/wvoASkIUoghx8kiGVEuw+GEFidsAynx+GAfEVIkiY/FEmTCjB8WH2988+XnFhzomSJgDWFgCij46GPXtqoUvfq2Y/A1O1ZYLTB9RqHOBRx4/skLqLZ2WBgXPzejd4Ma05juCwy0eslJZ84m783m3Dsxv3uA7zWC4dmLK+sF+EdiaNmcmTJqbUIWFfKsVCKB61SIqLtDVrzAa0d6/4wz9a0GnIyE58Asw/gcdwA63L2eS9Z3Ie2G/d7na9viyvAtTe23CkGEmiGHa78TsH7zFvBY9EwQyZjCbIq2tR7cisUi9LUXAx/oZnzL9jsB34D/kww+k/bPuexnqWPRKdko2QXz5Xswr3x/HgSVpkOzGl4mY6+1BGgGbN96+xOMo79s7MKVec8n3FyDkEOdtl5up6KRjrKxPgeVJ+DsmAQHFTm5Eo+1aUJixauZ7JJKdgt/JFbtC8eaG54WY7OWCkX/x4ZydB4/exgNc4P5GFyjP0b5LSQSg4krp/7b3sA0yUSBPnsKmiXqez+ubcfupcPr37+90dfYWLMSAjVpPLQywZX/46OXiNxic+Hqt35+Yn2qWOp8PQ/Lgzlt20LPC3IdQkj+44tRopnnhDNaBuJVqL+sfESwVi9d/qu1Df11qrJn5OyxLzZjRTtG9MirFf3Sf0Yp/AWQe5uRPMA4ehGfwhYR3J2dA8im51MbRcZ+uvPRdh74798q3z66J9/99cFTR1bhGXxnvWyOCcQwGoP/qq5qt/MmyjkPNsKSxKvLA7wpINYmgbtkM9xWjvHn3b6t43+KSg10ezmvJ+w3zp7uAS0JLRNqFm4G3yq8OGm3AYY0vw7vscn+Rm2EzDSc/ZTi6A1fH6zeQL+0FlvMM81AqAufQqOhIK2C41KuazkbaV3YfJEpGM0sIr2g6Kd+umVtLfZSeq+37mbcvTqgewS+v1xDDlDXiH7/mVdsLJOn9RDOy0Qw4QiLTxS47nYl3fo88X5qfsrH/74fyHbf6GMZyvn0P4kf/qKsS0SzycsW6YewmUptKNS3j2Rrsv0gS7bhiVDdYeupBasqhDySVpIpWAq9FpZSbBXkg6hXqf2TlqvtLRyVEHKAlqowb1WzbPb1Jl8nYDTCTo+Tj4PVS8brvhAuEb5OvX5KuuC0E5aKutWWRefG0q/o283+lL5se3fbjTx6/br9uv26/br9uv26/br9uv268ZfQAlwCC7NbEKsux2MzhriQ5bvqJ+qhGCC75c40+A+hCIUL1kvwU9dS44OVziKmpNbgqQ8kYcOoEZv3RW/xXkfJRDUw0m3TjeI48o5zdxAGpgoKkY2og3iGb2bebeq/ei0aqgJZV1YJz8zufVKx+2cLHG7KS+36I/cNlJeUSvkzc/NqmFRgqA2ch10B78mKSWkD65URbLbZWkNCyu8zArBDDBHGMyMoysve+OrrUzv2gFoJQG6crROxjiGlUdO5JJYDO77jkklq3ivaxwJzMlYFuNeG7t2ylYCOYXWlPVdRhWOW2crjnz1icR7eerfFiXgB6DTn7DR+Gm49fPXRB52aW6tlqSTQ2m8ZJ10gJyMLIoM7gn+fFnvWI6y01R8DP60o0g2yuWDrvOl/+EDvjtK4ufh+gA6z+yLvFUGyprne88nKTLuB4TkM56lKZYLaXHhhUYbWAmVM3t2P8L73V04hIkQn0Iq9wk0xL09ET/xeY7m36M6/VwH0uwvi2f84bYgkqJ0dZavrLdwARhc1Vnn8u/rgv5CCOv0r/snbycqdyLl45olfLoXpoOH2jlYrTtNY1f6vdMPIW9bfCyOZxNYFVLHEnQcMUvDbnnLUL09pHdMS/S3xvGNoyb9cMsm3bu3tO7e6rlGVac29y/V6nMaeDn/U9T6X1q01+2O+Aw6gDyOX/GKhabQYOSzbCnxWgnxaTPjkM5/+Uf/rsvXcPl9Znt2IRVLoO81Sre7IndDesIqzjctLkwd18BEIMRHkoXlucAqztvEn2/M5/tlzaTnheNj9haxeNclN3Vx7cHbS2Wv6og1sFwWX3vN76ex0lvhHmJYt/CKNftn3mQp4QJi83ythzNLdL80s3NI4pdXU1Rhh9hPhD745qP9rjSUO5lX8lLpYS2hUkkLaPKxWNXbjfb7G2FKSm6NXqu7RizpXBxD6aZRnTzuO0vKbOsTkgs1SvaqPqkrxhbUpEyi38MFoDxz+f1vERMXbukrmTfK4rZYnUxLzavF0eHS2Z/x7CUlL14YKevG5av32FJIURbrtxc6wnK5un3oXtEk2KCBaCbn1Svte2W/vWGtI0OI1xfYClpW0vKOy/KO13ph3xf2I9wnWoppQaLwEvW1UdWSdPJVYaKvk0Y5KVUxNwei/mUrc4t9jor4cLPYsrEmI+vrj46xn2gccNoAaZSau7lAqYUoKeQJU2yjo9qoNh9cM3OuJz4XtzypbuQs0fv4DIB7qORdTe0G5lLSnFtrdZFVEiGboZbckimC6EONnkFGn+gkbjo8FsTRTCA4/tqN3nQ+ZHXv3ENB3zvkXOg6lnjwso4/TMLKvRU+vTZuh/NuSnqi5AuGB9kpK5I7SUb7zewBdfinjWOkx4BovsBW4lpM8UlcQ03Ds90nTRKWFuflBbnfkiIoRSwEW+Y+dLEGmxm3/YjAe2fdNIy8/Q1rCCCWayJZ9yShpLmY1qZcJbkl7VFJ3bBsmLm8U9IRF+jn72n957cfJgH8k8ODoFp4WPh9eywRogWf34PBWwUoSSmpk2iIHWCHB6yjMUDYWLkaqcxYcrYFzhnDOa1qwx4mzbHNEMPYCNDOwNX3L3GAQfXhwZdzvi/9wM958mcLvtgX43rElrKX/uLapBWG63/fb8i6ovcXQJFq5FTczkRGUB5cVII7JuJehCNpDp9W8CRp2N6N4F5yjtaxo51pxpLOYzU1X0i1OZ1FlGRuFzPOUeFfEDj+Ettj0pCi/D8SDvxfj/6JiMg/MhRLXbGjoXvFGuSykBZ139RrXLeLQMJtzVC33knGXHWyhXrfdQX9VqlvnXYfyVqibBkV4djVOXVqlAF+YNSm9ON0cXn3VHi++jL17b1x75GPmITCXGaDhxwOHBoJSsEBgWGHWHJmK4XrurCUwloW1gLfRXn5H77L/PuvMmsHreIqfgHCNoubws2gJeyOX8NMJEcRkJZIfJaEbIl0zcHnDkrQXknFx6YejXZ08iVRzIOneu/oXenNRbPpmihFyLNw7uIf0Qy9YG0hyRU0PK91lG1//nl33bag1+lDwNrptbkSvlcsGgqN+arncGSY2p34exiQa3c7KEmVlHvQgzpTo7lKGDntJHZMD9fDJOG4u61VTx4rrCnTEDQnbwxUhmgp08zAfMyIJI6jPchu/LUsyWmS4uv2HgFt2Z643d+AzPX9V2DvUD2wcDIQw9f0lEd+Tu9nO96UHbjoNHJJtHYj1e0EK+4V00qzikgmkUnLdvrH51gPaoV6kLuDcYNSsL57wlR42xOJlW5X7vvGfV+pdcQcErZaY5wRIrTgAT/w+SWeM/en/xLMUacxPgiu5uZ9j0GUJEpJxhKJx7tLZ0sVbm8/MsJ+ImA1QrFoRg/+pJgiqkgy7/AkICZTKWrq9g+izuVBObmq4J2nlJhIoEh2bunoe/ugpCsLkanHX+KieT9ndZS1eqZuatOE5q110looImhyEVdaChIPgYgHudZt8j612zyG/Wjc9sbLvZIks+VCl5OhUVWomuiWyXbhqJnWFtS8Mwb5GfIWwjI3VxfatCZK5Gg6IKiHtZ79xQlk3D81aUdzRjSMJEYyk5Qw90OSi2DUxHm+U7vTWfCJb1dBl8K6ZC6BQidhZnnvroWrNG73yjJ4vi3RdguxVkJL9kw0FvEtZ3+IU6a2A6tKMqGPk5DqUPa/lAz6z91+CBh9+O/Zz/hHP//9nUweDkzxylTHxjssFJMiGq4AnRJ8pSKVLJXEQaKCVbCD4U0q2jAUU1fGmw7+UDx/kqOrlfMFByLxiOp6wOIB6wxj5PHfNE/tRKcChZoonXeXmbylz2I3OSsnX+zf0dAIiJJAzsiCV0KA8vSM9Uq7v9BvL0hXpDuaP7oIiYlPnccAACAASURBVLky1wNTX3zM1INOfIFBQ7hhgeal/BBfDpTKfYJTysGtDVQmfCK1DQFEoKwjYRwlDDkn6X9T20PVYlYwbKQHA0a4gD2BXOKdBTj84ppiQ8g3OxS6kFOSkrPBBWQNYckDSKtqYN21Cs3cqzW6NFnr2GHBYYV6eBOMZR1cO2G5LORtQVKD1LndO0c93VksAIsAaXm6Zn7/3lGgf/hkvB3KcMAY6vK5BVJHcmuutWTWlNiC67cuC9d143q5sG0XnrYLz9vCdonA47nTsnKrlf4JlotSNsNukUweRlKvltU3fA0UyBfmXCLJToDkWrASqvDpIGNIa2gz+s0DlPxugTXuYxFkUe6vnVqV9bKA6BT0igqqiXYkmhR6Xej7hoTRvpg3jJFfACgYiYHlU2+CGrp08rLQamXYWk2rNPHEI4kHq109Ybe4XqpGzp31ArL63EhKpDJCl43UO7Ub+2tlXZ6wZyGzsrcPALTjzrJsqGSqVgQHuHSIsnDQJ4X49X470FKc+47f2lZdeW8b9NbQri6gAmRZ2JaFnItXtnql7kbOPm6P/U7JC3kVrDevKGdPmPzCCa15Q4TWK3q7cyFNn1YwtsvV992Ubuac0/CVpuLVj0sm9Yy+AmWjhgOAsZAvTyxp4dALL2+Zt1thrxuqfowFi2DS15MU1SmVL9YHGeuRiwttdKkz/3waYvDTpiU2B25IyrJ0rldlLZV3wVlduXOR/YHr/cPbjyOsJiHyOBHUHv6ryfMczwJOl3GSuqdqMnHjfz2RYoj5UdxbUQ0OU1cTx8Q7yuNJEhXvaJEskSWxblEWKV6S6b1Rj+bt+HJiD2TmMOMigpRMFmFJhZLLNBtGopPVsMox/95pzRV0gjBqddHXg41E00w3L8coT0DhaVtZ0m/jHFZUk7dHyzoDiPMBiM46Ailav4rpzDrF3P9VtLn/WvLrO62PhhODDEI77LV74D259kqrFXImrSvLZWW7LDwNZaMpt31nv1Wek9uulJymgbU0f4wtrMUy4lSLuE/r6nSAnDNJDT28VJbGREX+vFT8M2+CzIfpAV70OCRsVwTgJwLX77/y4GHJ2N/Da2FDZtYRuvP5pZIjkD8D1oqY/zB+wD34TBFNgbKar/7jSIbQKi1w5tifaW9cUe9jxMZE9L3ziaAUR2NPnHjc4xH4JB4x5HHNHi/pD+YkwonijWoHkC9P0Dvt/kbbbz5GLERS00tWsO7B/gniylT/ZyneJCOssUb5fwTFWMb9RGUirJ6gjENraBy4i2M8CDt9rRQonhj+Ets81h8elz/+VMW9sxX4Cogkmg24z0QGbU496UNK7CCEa9A0EgRzOkCsWdrcjDzF+LKqyF2ReySpTZFu5KgwmEFtnWUZ4g9CFOpeqb0pSzpL9keNp0u8kmcKuQjXQFglNzrmrhqR8OeU5iImA5zImbxktqXwVBauiy/clxGsXp9YtwuXy8bT88bTs89Z27XTtobqzss3b7znxld/tdA+hjgmZyQLfd+537wF+WaJ7ZqQJe5ViUg7ZS+RF6dAzL4f1ed6vTW0uhtN2sqkix03Rbq7Yd0P47tPB/fb2ZRGNleB71Z4VeH1EPbqqmwAS95oQNLPH7BKShMIGAGpmSLdE4i8lOjCdN5zYp4+Kz8G7cCGGKgbpDfS2pHUnXLRPREFoCf3VE4Fvb5H2bD9oPc32sWj/P2ocPi43GtnK5dZuQGwkpF1C9c3V/IvyzZFmnVvQdHoHrgKbkUZz04pJRDFAPhac0F0WDWs65Ue5y2WnR5REvkpfNl7B1zkZ91YWcjdJnVBh62uua9vVa8WjERR9xu6NpbV2L/9jro3yle/JRenJIi8Q3mip8KtPfPt28ZRL/S+PtyH040jptuIUc77NNxLhofqD6Krpg/zLHNOzXgjIwosa2ctOxe5obu7mGi60fhEaf8CH9Zwc/SS+8SPkpv0WKKNi2+ONoJXAs8fYzQX+AwBItZQdSuqCrOss+ZMXhyd2e8NTYnFhGvObhcBWDXu985xr7S9+rIqsI8+piWxrQuyGmXJLAORmRxYpXZhMZueYb2fPqgk56xeYuFLy4LkEnw5UFswVpALxhMpr2z5iSzvfP+WsRb7dom/oxSj80SSKJ93LBcsR1euoYxUJeXuyFBQB+TBpyTFYjaaLLSu3PbqfJSRddFYBMjCZV0o68JWymyRWVvzB7Ir97uy5cK6lbkaajcWMe8K1gXphrbucRKEe0BHMEoKFXo/r5FZ5ixL/gJbIP8Wv0OASw8PPkQVYEZ9jJkh/vcFujrGrnz5oJ5b7w3tB4lOKj7+c2osI2DNjZwaSRrektWNokdTCOKa0lvQRGwu4uMkTj+89BC9nJnu5J5PZPSLEEcMhlI8LtB8vsd1mRN6fMeIiGUgeQ/XJK61v2xzH3MNGskfkJYVWzeWp/ccrx+heptW5z2OgNPHu/ZOSsHbSQ8cV+m+OOqgLPVQ7cYx5AwavssTnRb/Ox6C0wxyQunxMZ3n6FNCh5/I9v+1tnm5/6LixHjTIzoc1jf2zn8AD1iD3mESTiQP51cENGGHAQrZm5NIckN2AGpHmvOGpQP3jr02N0gF2BW7K3pA00Si8PRuwQLkff1w8PapYt1oVTluDVVjCyAi4UFnWoRs3ijgdjf+8dW//7UaSVL8OMiQE7NcnnOilMSyFtZt4bKtPC0rTxGwbtuFbbuyXp9YLk+s1wv53UZ+8nK6XAq2KZoar5/+BN/8gafLOh2YzBomSm9wNOX+qXJ0wTZYl4FAxdOxJNK6korQX2/ILQLSP9x5WhP13pHnhfXdxu2Pd9qfwiXgFeq90VXZD2U//Fnt8cwdPXOvC2994UVXbm2lmncU8wPwsqvkL575n2HzYkzQc+bYTd5Fset8XgeFB387SSKxNp9PUr4yPZnMyNsdWf/o9CvNSNJpKWU1g2Tk6cp2/S0pPyFtZ//mW9LqAy+nhdc/vXB/e/Nqr1Sevn5Ght5j26iSZ8CacoZq/H/svduvLVt+3/X5jUvVnHOtvfe5tE9f7Y7tJDJ2wIoiyyBZIg9BIERASNyJBS888cID8ABEXCX+BHjgxThEAQUhZAgSRggimQdEsKwGx/jBcfvW3ee2L2utOWdVjTF+PPzGqKq59j77dLvT+5Ku79E6e61Zl1k1atRvfH/3nFvGuhqZLJmcJrOkljJnyLdmCSXZOq5J5woFdo+C9zW8pPrn/EqhKKVUL3MNX/LBQl5qbV7XB5Im81J7h+t7cB4dW4ig4ryn3I24At3VAekOnGqJyjIeKRGyf4/zEBlzj5YdpurVWGEpQKSVCWwVA8os19u9tMdivGkhrdXo1ra3m2shHhh3jC4TGOhkJDAgpYYQ6okyDbNl/bPwOYTVrKBOFgtrE3pSk42KeooW2vd4aqiv1hg+rUlDqxu1RaxaL6W5p+vDw+p75lQYUsEFISTwRaxcA3B3HjndjIznkWmccFgpkFMVrN0uEmPAe090AfHV8sWSuOIrh5Q66OeU525cXRd4ECNXB8c0CeojEvaMmMaS6CluB7JHZY/zHZ49igk+TY3UtI45loDQ3OnW+9XPP+o9ZI82N46r5FpMY71vYTXNrda2w5E1MY6lhjY0wlooUsiear63Nn/Hc+1Zr5kuWG21nBNTVq4PYSZpU07kAp3aOE1TRr21jbNZkEAzDohdZ7xG23QHlQKvqfD6GmuxrdIIalOg9Lmd9eKoZsFb76ezx5tKtFJuruaJPI1oGYmhEL0z908ohKpIBL+OYa2koIYQAJSSlmt2rdRSWVy/c66TkUqtweDPdYmak7Lay7UIloWEslg31lbU2cK6IrzPrX+yIquX49isAdCULVnNfUFiRzw8oLt+h+HpYyNZZhaql2g1lEtWm0ehxqk2S59mfE3SsGYfNk5zCRbELEyNw17cf70dt9SYbg90LWS1pLkTzZuDplQ0WaCr22qaASbgEFDPXLt5VkqkJjZZ4pOrZE5E0DSQp4wrGeeNXORjmi050kpRFeCk6ClTnk2UU51750IezMszJlfbU2ZOd9Xzdcy2IFUL6oh5iA71vjoPk6p10to5s8ylgmvvTlVagrOmMkHMDT23NfVSOyAGutjRdT2x7wmdyeXY7wj7A/FwTegP+P0euYpoXy1duz3SOUJQrsMDenpyGtuKRsq3iEwUF9DooXP4vRD2bg7Vtw6TlhAjfgcUIiPp1hJ0nv7OLVN0pAL9u4WHoafcZB7/kcnlq2CtS89TIYslJE3KHEt4p5Fn454je06yZ2TPRDc33gg+IKFHff/9TbU/BkT8czpyi6d31fo6E9ZVIpzp483ybqF+c1InE/gJ/Ak4QalNA+Y6rpniFXd9ReyuKdJR8hXdg4e4H7Ex333pGbs//IjTkxtuHj9lGieG88j+YMpcwUGROSSglMI0nOYQRLzU2tDKeD5Xi6quvMKONCayJmu5nnK1MNf3tSg+OCRP5snAPNDnoyUYtUQqJ9VyWpQ0ZlJdq7uyR3aREIwjiOvMytlsCCHiQiQPit/3lN0VpyEy5abARxJ7zsOBm9tISR7UVwnSOIWfQ7LseQjF+VXohltZH4yslpawBKhmfPOUrX6a16uItQkXHYmS6VzhEP0cZ+vHBNNkiZ4vwecSVmhkdRW8j0fVU7B4Cs+i5ZZaDVVVSRScFtYLoohrYRJUA6Ddfh2rVJRUyVLOsI9CdA5JcLw1c/HTmxOn82Buc7Ug/yFlzjWb0wdPHgtlyJSQKZKsrmLjg7nQiwXkK0LK1hHqXIPr71R5tItE39P5wKQBcTsmbVl/e3BXiD+gbocSyDmQy2LBVaeoK2hZNU5ofiHXMiKr60i8ue7r8aX4OcO5mhKsLl2zAEEtvmz27mYBFxZS27TVlAvHcaJzNa7sVF8CrxxiZN8FpmTtctVZ7VuANNZQBTFteRzy3MGFOi+aG8eHrhqwFWg99W7NMvu6Mq3XaC92taA2oVl1xBdasiyx494J2o6qpJSqNTWR04qwpoHoC773tTFAIfhMrAWRvcuzFUakGkRaKAHUDi71y2s2qeryfpjccLV3tFW+mMMbYMXQXkQy15pvE1cWySwX9yiX55nPy+Vn89gttmgRnQmgxZrWQPsa5K7OrKzkTLx6xHh3i+YadjBz6qagmSC02O+lG5hqtmt2brbsrmHCtd2CPW+9bxWvpBUClKYQtPfL7kE/xz31A8PFWF9s+IzP7+9WraTrZD6BuSB1VnSydqHNyiReLDKl6T1ojXFd3nlXiqXtq6LHYhaeMaPVApqP1UXaBfa9MJwLU4Fd1VvjtRXAT8ApK8XBdFe4OU7zNY4K2QntDk6Dzp2uzEBuoQDOtZAAmTsgWjF1hw+B0EVC1+G6Hiph1d0e2R2Q3RXSH5B+j4sB1xlhddGyw33n6K8eEtih8gzK03r+nuzuoBf6dwr7hz2+L5zGEZ7YXLn+QjADShY4KzpO6OOR229aMslHf3Tm0T7Q7zzDeUDSLSXr7GF8ejeRsXSdJMIonnPxDDXW8CwHTv4dJnYk/4Dsr0A63ExY94Ruj6sZ6q8UkozcC4s8EVlCfUTmNWVtBBBX5Rha10RLVp3PGU6oewrliMgAZHJ7N8uIugkJLQTQW3GAEBcFuGT2X810716xf/8Rd58+5fbpM/KtPZMg4HYH62oWQ7WYLkmaFLWEz/p3Sgnv/Uy6p3FiHAb6vodsltcmu+z4gs9S48TNcit9Z/W3wSrDIORpJHYRGU2xa80RpruBgOOcR0aEBx88JIujFglA8IiL5N2e7PZofMjdeYLQ+EbPkB7y8VPHcfC2fxv8+/JTmMMlVJZ1YZaPs2xqNZNrmJaWGhGwkFjU6hRDjRfWhNcJr4kgiXF4hk8WErALCn0Et9Vh3bBhw4YNGzZs2PAW4+VJV06qS8ly2YG5FamqR1Gc1rJW1SeSSQTNFBIOKwOxTttwNXM+13ptokt5LMC6YLUSHsFRxJEyDGPhWOue3RwHNGd2XmqWfyGlPLvwvAgUZRwSRQdOQ6bv01zLLpWCaLE7Em/hCg6m0kpxeKa8I4Y9znVQAup3JPZ1DPZ494DidqhEinqy1FIZQKktTefKQq0T0dzti+rBk+rqdNVqVu+7WlZltrCK1d5rcYDV2Fq0BhuoHV+yLp6SmkW77wPXVx2xD+TzmVLd16kAxROc1cXMpTBNOodFjJOy7711HsmFrAUZWfocZiBWV6+rnTycsHQH0nv/vj4s8ZmLNbV1eLLPV1pmjc15USJWKZmcMjmn+mPt9eZyY1Looid4oQuOGMD7jJMJS+UEsy+1UABohsW5+03tbe+sZhlgLqLZwipSs95rjLRfOjW1e116zd+zDLP6s/rt1iG86yFYu/UuzrXSsGU1hrIMLGvrrohHnS6WeW/ncl1Pd/WQ8fqW8dktLEZY5lAYtLYbrB6Eiw5QVkXAiVusIbLavHqmixV9dQ/OVddjje9QXba3fecag68aK4vTc7hvPW8df3SpnFCrNs9Zv4AljDrblJvb1RI9AJPFPuB3AZeLdWhyiutXXptJ0SGhU0LPBQatZclscxGhZJPhglVbGY5KrvL83S/sSBNo9LhJcYOiXeL82Lw+p+PEXVaKtzufzo4nd5mnNamrwNwlcW1lbRZWda0Eorcs8vqjsbafjB3adfZ3tL7quIDS2pqK/S3BzLmhQ/07iJrrtkxP0PwJEp8QH+wJbuR8vOXxk8S7H9TEsBgtlGdIjN+5YXx6ZrwZLGYaOOwCY7FcjVQcH35kLUSHmuU/ec9pLNxOyiie4nsmvyM761s/umsmeYDEAz4+gHBF8D0u2tq0796h666R+verhLg7KA9Bn38X20yeLWSrkID2/JY8Voe6VnLqCP4OOEIZoCSklbsD1PUgwpjOhM7kUcoTuQiurUUd6L6rLX2F3kU09jz+8EPbPt1y/U5EXCCVhA/BLLW1dnSp7v/dbscwDMZhdFkrtRSrCiGOGAMlZ7pdP9dZnY53pNMdqBJDtPtcdaKazifKNJlIGmsXrZyRVjlpHMjDyM35zDtf/lGm20QKPT5YjG5SYfLXjHLFs1MglQcM0ypJNe4ZBs/pHIGdeaeqvNQWo1rXEKnPJLe1oYlE5SKRzv5tfhCsvGZpFXPEOofKUgsWBZGMaiZ2GecTwRV2vY1x7xJJB8p0fukce3njAGlJHavEGW3dxgXFakIW8nzhrRxuQRBNlg296qXu1MIEqAXSpZamCa1xAFbY2YvFT4zFkUflvEqKGhL03trmpRFGUYqXOfDdh0hBSEmZNCNJyWVpzZqpgs/7WvKqZ79a8FIKJHqSHEB61EeK76ESVnF7CNeoRLK6evdKa+HXHBpG5GtrWHGzh0Jcqdn/7cfjnF9qnTmpYYgyL8TLs6Cu7Frb1zmc2sQbxoyv2ap9tFjcq0PHrvcUtbGOrdpIJfm3Z0ALMQrn40isO3gHobqmczJyUs6FtKvkbF/ngHNkXI1J9nOsonvhYvt6oCsyte55/NwV3ttm9YeNoIK1Hsy1ZW4pqT4XmV07zslMVkNQnMsIE6oDC2FtNeqsaYab+fHKjVKmeikWbKOiC6kWZ7FFqqivlSWs+4RtnudxUwO13dLFiLR7bCEHM2S1z+UHq2Pr/EPrKvMigr9cr6zmhYAtaCHiYiYeHjLc3tUKVY3412oTirkTS7KEoDl+11cyX6y5Qos1XSsebZGsCnFZM3OHhRmoPYXZRanrY/XyfK8SFwrU+heZ+eqyb9tc5jCX5dnvgOYa3kEJlkyQC+SECzvmGNeSQcHHWs4sZxPpKw+fJWsJjAUZFR2s/FCbm/7gCSIwwXiTmE4FssxJinnM3D7J7B/2RO/IXtAuIDuTm+eTrQnDWCgU0gjnscx1+51YzVVfs8xb4lVT9DUYicWJzQvvkRDmAvESArhgyXfeI97jfFxKJIWAenu/MhHcDu+uUHlkx+sD0hhxcqCEW8QNTPKER198wO59O0V2iWlIjOeMlMR4p9ZModWKfdczZWHa9zgfOR7hOMBQ5/BdyjgfKC4wqWeSHonXEB/a8VhCjd9d4ftrpLvG9VeE3uIxu/gQ7/aob90cXiVWDttZw7YQANfesdV7Cc3VbDO2Fau3OV5DWdwdytHCdkpVyuiQ0BQ1e4a9j9X9LDitSdKtOgWCek93fY1/31POmavjmXe+9CMADHdnjk9vOZ1OxH2Hi4G4382tT/OUCH1vCl41CORSViJO8DXEapxGK6Hp3cyaNERKiZSUcM6Rc0ZTYqr1f0ua8GKkT0o2N3tKpJORt/PdEecd+13P+NF3mNyn7B6+y9jilHfvcBof8PG44yZdM+WOXGw9tiEKQIDWIKU+F1t8qrLXnpsYP0pVtDex7txCYFVLbQKRLRSg3WdLilUFKQgt8RrQyUrm9eBjwfvEw/4hWhsZnY4f43MiupfbUF9OWH2LsVisVFIzeFGHqqPU4uOtrIar/2WCJZaQrDtWi6XSXH+MtHqq4XAVtzUVm+C+nktUaoWZFgTtkc6RHUzOSlqJV0K73hCNRKkjZ7MQaGLO/FLn8ASCBKJ4nItWS6094NGjJVLiAaQD6cH3SK1pKP4AfkdRIRUrvVU0zZmcVtDIUcRi56wxicwvsbjC3LnL1axH55cJJt5ejkZoxV0GbzTCoFjNPfUUFXIRwhzLhPUfFofD6rw5UfoaszaclbvziJ+EGDx97GoWpE3AXeeQbAHzXiCKs0LdrT5eshgbpRJWtTgapQpKC2R+fbXXKwlcx6iuX6glK7XuTBWalaSWYgpSqSQVLHZpHntnsdgOcK5Z9m0OdlEJIVvBaxIwoqV2+6mJVsXN+ZgXXEkrYbX3w6EEsxzV7VJrjlLUtFpvlrKltVkwoVL/o93Z2tgq7ZbLQlrbnivr63LA6s/5s7VEW7Oadv4VcV4pa6qKOst6lBDorh4QD89It3eLdGxEpBa7L5pRTUtpIFdjq6QgWE3HoqvEtGZBrcG/gqtdV8rFNYr3NSvVKgq0ZgTibN7L52Ss/sDxAsJ82TluzV7bg6tVArTDKgQ8rJsfQHkCegKtmfbrYuAUVC2R0vqCFyu3M1lzB6DaJGSOVSvFVjDpq5LqHCUp6aQMZ2tqcejdXHzt9MQaCQznQngQyc4zDpljzaC/O2WmVEuUYWtOFDfHdyZXZgtrI6wiMnuecGId4oL9uOBxPhAqIZ3JqfNIqGWnfJgtwFI9hm3eWdnCblbiQ/cFQv8FRG9gekYpd8TuhngoaLDY/WG6ZXRncjiZonVQXHLozs6xuzJyI86hElGvJFdoJZBigUIgaM/eB3Z+h+8OuFC9e35H6R/idle47gqJB1xctnu3x0s/1yR/lVDtFjFxP2Z8HbM6e4CeV4fnz5xZtcV9CPIxrQi/nWpl3dSC02oyKqPJR7/HSZglUjw8ghitDJUE5CCw6zgXs+z7LrD3nuE7I+P5ZP01PNbFElPNuxDQlEnThJeO2Me5q6NqQqcJklXgcL4zg0Sr+iPLe6tV2GtKc9OOqGbmK9NEHkZSSUyalrrUvtD5SMxKunnK4WoPd2lO9BvzU85dIrtAyh2l7FHC7PWG2kmMxYK6KLeXA6+Y55aaJDcnYlUz5NwYohSoiWjt+bakOsupsAS2ZsTDjSiJR7tCzxE33HI6TnhnzyCQyccTycPL0q5eSlid9/bFunRZEnXVOuHrv6UKuVaGwqNEIKFkrJx/Zmk9aULRWlbqPLGbQpbBzMkIQTyhugM9Ql81phgcPlr3G5FEiLY4h1arzjtLIpBai9M5kriVlSpQpDONQwLB7fCup2vB+dFTSgDp8GGH87a91G4kmUjCkxSSZrOmSiHXeylSvXNqvzcL6+wur4RVvUdKmP9ureRorrpGYpt1ta0vNQOvTb6mKE2pcHduMQHm7jydM/vOijE3iyjUDmOO2vGrkqayTFBVS0aLmOZb8x0WXjKXXLPgbCSgbk+r++iDWTBeV2mgS1Kq9z7n4vMWSpKrdtusqiXnC6KzcAWZX2YRI6oAvhZdD1EIQRAZkDr3S62zimSyCF5i9UbYT1nee0otvixaww2qlR6wOVGKJbmpWpa8DyvBb4XD57lPFZarslRW7kvrxKyktW5uPHPxoyya+gsG2QbyvtVvTXrbyWfzqGnfNnAOHyPdfk+6fUoLO9Ji7mkRwYfA0jGvyaCCia6mybcSVs0cUC1suPnZOlcoOd27xtquWQuLSs7s4tPX0N5yjQu94YVL+/rzWuZMBbOmtAoBrVJHDy4awQweYWfhJA1aFou5aG3wouiYyVWmuFQXukoSS5UHoSVuYdbUtkjtDh7nHdNgz2C4S+QxM2nGdUK4EtxeCNUK40rm0ycTg0UsME2KGaGqBbeFAziZF123IqzqBPFWN9pVC6qEgKsWVh86nO+Q0OHCEhZQQrPQdpTQkXw0l7QLFH8A3wq8R2L/nimj+Y5c7qx7oRsRMcLaSSLmgeH8hDwdCeoJ2s91RX1S7obEeTrbu47Q74Q+1LAFIoQ9KjtUjHDj4/KsfI/rrlEXGIsyFSGXxDQZwZvKGbInlQL8mZfOr7/bUPWzFe5CHGhtHLSY6FbTulXBWckdmRBfE938JxSeQLk1Q5lQldRGWDNME3I+oucJ6NB4IMcduYW7uIAWoQyF6BSCoxx2XH/1KwCkjz4h3Z3YPbgmPXtCurmFnBnbPH7wgOl0YjyeyONI10Xy+TwnVXlvSUeSEuqc1WGd8tza1ZdCSQnUIqLECT4LpRqHTs+eMdw8Y9f1qBTcPvLgy+8TH5nVfLy5JZwLp9tbcgn4LuJioK+3F3eC7JRUEuepcEwelX4uhWmiURbiXEO81lFQM6HGGhBJC2NcdliMQPVfUbX2zHYgF6uGOPMk6hIK1zsrZeXKmTKNTNOA7227K2e0nOfuY5+Fl24NXb+U3FkvFpWkSgmWsVsKMhPWSmBr8Wkjqku2Ks4WYal697zQtAVz2urTYwAAIABJREFUtugIOF8tUVZjr/mzJTo01EFzuZaoX1r0uSrQcCbkrA7qqg6j74h+TwwR7zpwEZWOXK2DLkRErUCXuM7KSEikaGsc4JiKVUHIAuoyhaV1bHGtN9fysDXpTEqKFNN+JNji7YKR2dbeT2q2nAS0kVYnS22wFp+mrIirVUs41RI0Pti9H+9GrvvAYe+tAkM9x/7QE6VwOg+Iam2Be5k9mDKMUyE4wUfPqMxxNyiQ1WJrq6XY0bMUKt9/9hr7CvByslq1RLWyOq0GasnFSGvOde42y+vqRsT+djXG2NySlRSJmPUctXP6GkuoCa0hAS1i24x/Qqmlh3QuP2RlVZRcq2BUZaYJlKKIqA25At7mmcxhCbWDUYs1EHfP+Fm1dhGaxjyP1+oeFxYq80Kx3vxcQ9p1sBPr3+dBq7tZdQwVNQunc8TdAd9FSo1R1yImuL3FlSFVMC6MciV8q6jQhdRbbLjDha5aA3LNuF1ZOVqHDefmUNVWbL1VCWgln94kKNx7FgupXobe2/N3Z1ooij2zGjriQ31nw0pRMYvI3CWtCCSlDAU9tQoWECopJDhcUKZzgWOTOdYdLw0F721cc1ZyrReZx0KeMj5Yu+cgHtcvrltXrCJAvlPSCMMIx0Fnz5UL3q63hkqZJfSySoBzRvLERyR0SOghVptN3KGxR0OPhh0l2O/0jbBGSuyQGMxL52vh/xZyIBa2NWm2NSK+W8lyQqpiLq5YPGI4ESUTna0jaazkZRiIw4TkIxMJlz0iHa65d6UD15PFMQ4n0nAiTQPpXAnp9IShfMgggYLWeugyEwctnqj9ZVz+q0JOgCk0bcyEZlVcvFu2YXkXrWtyu14BjWh6v+72CeK+XYlUpjUdmtdCZ21483Dm/OHH+OJw/QG5ekR8+AXbp9shcYfuHRAsvjUPpNtPARjOJ0QzJU8UhTyMSM5MjWwVZQpnggjBezzKmEZC5SN5OFPGAV+EsNuZopxPtFqfRYqJYjVFMOcT6dmwMtZNHN674vrqGukC51DwHzzCv2uEdfdoz/T0jv6dA6fzSLh+SAiOlGvr17gzOTkKhWglpITZyEhuIVlVnsNcMESek+NWgaZ1I1t7dLS2s2/Pc22jXXhb1ZVLmi3MtoPDkVBNVmI3BxyFWD0Pcjrhuitc//JQlpcS1r4/MLeZLGtCWklpKc8RVlfM3S+zCa5ZYGthZM3NpjQX/JcWB9duuGpRKtZC0okgwaFh6fyQa8KVevBiyUNdDQmINc5JatH97LQmVlUt1+8IfkeIPc5FM59jpNWeWVctyya8c6032ypkZiC5TKpdqsxYtcTYtRu56B60hBNauSsxIqrOVwtrV8kO4FIN/q+k1lmQwXy+ZhkTQdSCnU1JXeIRU1FLgAjCNCSO4jgc/GyN2PUenUbkbBZar1Z6otU03EfPmLPFrzoFbwvSSrMwQ1kSs2D4DscOl63bF9MHmHX1NbHWtQV1RcrMlVkuf1rf65Jnl8aFJ7zJRlstjXJ660BmJaqaJdNIrmojvLV7EGJlUWgyqkmLmojnqhUdI4JFZW5oAWrv1iw4igkSKkFr9X7nJITqumFR2hpdqcNS369GnDMXwUoyK8s0t05L/np+iKUKxfvPeCko/dzTr9pVK/Um3uG7jrDbM5xu5+elWU2B0tpA46KOsauC1S23tjLrSCvsPAtcI6jrECeVWvORmvSozMTHiaAlvbZwlhdU6vrsfVmIgciqf7dQ378qd6VUshpBrUsaNSHOUP2g2UFtP8rZGgFITRgq50IJrpZiMzejR9FqQZ2OmTzWzmlFuXuWKNli4AGmUek7x/5BQKOQpmydE6vgPI3KkOzdGichJchFlpaf7dZcVZJl9S+gzlN8qHWzO8T3EPb2AxA6CD0l9KTQE31PCbuZMEuMaLDC7aVaaPFKnhNJM0XNpe/FmUFDAiCLLQFBgxF6rwm8JeCWYOTC9SMxZVwZ8flIGs6kYSSNVmJpGh4zjSPjmBhPR6bxSEojqcqoMcOQqxriHUUiE4E0N73wePrnFcpXgVTnmcj8sNbzsclWpclSQ6khIHN8KwKlNrzIX0a4AfkDhDuLrW7cAha5VTKSMsF3SC6k2yPIbT2Hw4Ud0nUQipG9qTDdmhIQYoCH10TxjGNhuDlxOp1sUQS6aG3Vs6/5KqcjXtSeMzZfU8m17q8n9D3DcUlwdt6Rs+LFWfvjlCjphH9oIYbv/omvoNeRkDOicCUg195CpwA9ROLuXXQy2RV8gHFEa5SE+J5eHLs8sgsDYz6RBKgGOONSi1LQjGkiblZ4Vc1boeJx9Wd+cPM4u6by4zRdENblMWtdA9u2qoyqo+Q9d4NncIVd3PPoQSHLM3sGbsDtVrVgPwMvJaxdf2UL76oLE1rmrky2zSaPK7UrQ0l1OMqy6K6sVTbZ6pBV4+eSvNHIqw2uoxECrLWjX4LrS12UnHi8i0QfiNWcHL0jenNHqcAkxbLe6qLupcf7nhBrlqgESnGLS1LMtWF1CLUl1bZoDGtuQK0E4NQEfCXXyzNaPUx1VsO0/V0UfEaLt0QIZ51JmlIgPiE5Is4sTFbLVJCW1KW1PVodX+dKTdLS2UqEWg3W2+PIcRw5HDwuHNjvQn22keM0YeEWyjRmpgJ9fQnpI72HrMk0zCnPrWXtIitXKODogAOkK9S1ntaRpsO9DsxZ99WK2j5bE9VcLE5v2V4uiJarxGqxSjJvk9nKUxbCOlvwCpbFrtUSuAgGU9JqQkid+6pL/LIpKAHN2WoWFnOFSw0XcbVur9TYbsvc8rDOdK7H4I0M6LpdXvU4VJvwHHe0xJzpQgArYba6tW0FukyaUBq5Xg0O7VBdEe3lX5GWiKi0hLGw2zPW97vk0WSOczjX42SJ5wYsE9w1j0k97yoJooVQqBYLLaCYwJ4bAQginkIycVTDLtoJnLda0nOY0yvHomB8T4ewOqx1mps76nigx2LyJ3Pbrxp9zJ3TcEY8JrXkqrSQi6WqiVqFgARehdyymc9KSbW2b7FuVikvscX9zrKPz0XxWpe/pIxnG+dnTxKnY+HZCB8/KxxPliPhVoR1jlmVWj9YlnVBvLewB9eB3yHR6pH6aBn2Ensk7nBxR+h2+LDHxd386jkXlh8s5M1+6rtX1yTngrk8U61R7heFc10XeJJAQLGMBhujnAb0eMN0eswwPmY43jHenZgG8y5M44lxODGdz6RxYEwDU8nWXAZbmyYck3bmgZSOye9JWsPZtCPJuHrurw6aFVyhSJMJFSLVa7QQGfWLR0iacWHVl35uE5rfwbsvgjwGOWFJqzXEAGx9VpDdAf/gAflsxYRd8LOCWopSjkfGx58wTCfUC6EEONaM9MkqA8iug+s9YbxmelrmnJg8FWC0EL7o53A3ca2rI6gLlNiRQrDWwF2cY1TLZFbFcTzx4OGe7r2HuK+9j68FiqUT0yGdLjJqF2lkryTQ6Aj7jpAK+XyLd4W4M0Usa8++60j5zMk95uwcWYRCCzNZ1rKlBrnM1w6LEliqMdGOcbPcb5bVlrsqS9vI1QTQxaLePqrbE5DGwGkoBHfN9U5I6YZ3dnaN1+GKUBzTOPKyCsKvN0hrw4YNGzZs2LBhw4bPwedYWA/V3V9j8cBMas3iWi1SUqyEB1ArAuhsXRVYWVcBGktvLdowt2KzrNZ9mvVpZvCO2SWoXsz64j3eBbyLOB/m8iSuajnBt1gOJavUIARQMbdR8r5aWrzFoq7csva92cqrVDdG0+oKavVo57qqVbuWtRVJq4m9WolFkarKO1fjVn0NJ1DBsqBXFlYf51gs1+rDtrOXmvjQLNVFoMY1ttJdRRMpKyUnylRQAv3NQN/igGtAdRc95TRxO0wEgdvmviuZXXB0seDUYolLLvg6BmHxmuNlh7p3gEe09rTPxca8YjQtXMtiNS3Vwtqy/0spNYZ1cS+1ZKrWr3xxny9z89JuvHZF1wB8X9sSi8VaOufnWpXVNmpufVe/U+052w4RXKTkaXaTuVr6bP6SudyVJeeJi7im7WNteC12VdBVq17bweJlZS4H5MwCOQ/cxS2tB3Qe14utzSB73yI4x1K0k933EdY/BMQ7Qr8n7E23HsezdYvJIxoiVnoqzIkncyiASK2m4S3RoSwWUXuD7R11Ppg1t5UZKGqxvxeuK2j6u3l3AuV1GVj/OBbW5w71QITanU/lCjiCHFESiz+x5ibUOdVKuNqjqXO1eQVDS26zUBZNBYsoaXaPUo3q1SvRWl3XGNG4DySEu0HprgPjUdFJOd7UTlmnQk7CNFb3Y61k0NyEViimldCrISWr9pGEgI89PvaEbkfoDoTefgDCbk93OBD6PTH2uNjhfZj7ugcX8U3uOgtBEQK+LpMWxuJRF+a42rmx8SycF2d8KCNBj4gOlLO5PvPxU/T2MdPdR+TzM2Q8UW6OjLVN5zgeGYejtfFME5onixsObYwd0UWrx5ocWXrQB7TcgYRSNM+VD14ljnd3+CBIt5vXRFoIgJrkLDXDP1RvnbqC1rXcXulqBWw5M17APUL8Feo+tdJPgGtrufcgHap7wgedlVsjgo+4+txxEUfk4N+n18x4umV6/GyWaSVPjMORNEyW+OML3aGDmjSVU/XFq+XHpGG076ihJFoS4gNh3+O953R3pBzP6FBjYMeBgCCS8buHyG4HfeTc2fHhuse7grhU13RBg7N1nRqiVOu8TqcBmYpZd11da8MBiR1uOPOFdyb8OPFHd3nuEDfX+17nFLCEAdgfNnekhlEtVQ3a01VKTUr2dc0qpczyQ7XgUNZhH2Ypt+2FapEtnql0PD0mSg702azEsZuY0oD/nJbCLyes3aEOYCvIx6okVYvXawS2EdalokCjfuv1yobLXIUt7MytiKkR2frSz20emxvWjvfOSIATh3fRfu4RVvFWb68WxkKKzHE+SRxFzD0lKnPW2/Js1EK8iquTlMXFWR+Eb1ddlhamy006XIvlqdna9nfbXCwpYB4duwZXjHQ4PxoB9wHvA+RQr6+5prO5ntTM94s4d4sJvtS84WLjVory9Mlpfga7PhK8I+4in94OFv+ryq6+hMOYaokDI8W+c3hZkfZiz8aLgAs4dw3yHkX385N/nZS1uf1bGADUOqo5k9u22ryixe0672uPellCAuCewrXyvlZlaCajXi3ZzVuYhnNCCJHgvWUTAy0KeC7LowpEtBJWU1T6WiC7vg+ttFk9Q6t/bG0QaxydtEXVzTGe1Gu/dNFYeIBjIayXAdYzA53np+ji2mkEFdYkdT0327ZVKMB6+NpLv/qR+u6GnS0w083juU4qpcYDs3IHNZc/LHWMo7tXdHq5HxFfF746d6epuiDt/ZTlTufzuxD/uJTx+8b3RlfXi1BTDkyqWgxbjQXkfSymdQSZ5ljn5Tl55mQrxGSfrOYFVQeaFB0y5VjQhFHaqiT7aGQjOIcMyqC07q4AhCtP3EXSbaLfRZ5+cuZb3xo5HW2PcYChQC4O7xwhOLK6WQl3WJWT0p5bJaxzMm2IhNgT+z2h3+N2eyv/tLOQALc74PsrQmeE1sdgbVxrzVLvu8Xw4S2GS6tiNI+2Wr5Gqyva2hrPdcZdQXQgD8+Y0qfk9CluukWPlvU+HZ+Sjk/R8zM6HXAlUcYj+WyyOeaJvY4IE3fjQJTCYRfIrSQiDlzH2Y2MEpj8jjOFVhxmVMeoe0vmfMWYpomiAcnDEh6nJoubDM1VJrdSY13X2Xqdc1XMW8xjPb4Eil4h/j3wn1J8QvJxdreTa3lHH+Gwg31EtAcVxtzyZqyHfXCCSE+8OkCJpNpSu4/W8GLilnw7oMXkcrNjpFHBQYzOjF/jiGiZ1XxNVoYwnQZGLeiYCENiurNnmtJEeHTNu1/8AHe9p1zt8H2P1PA7f9iR9Q7KRM5m6EKYDVwS6rgUCCFCUMaihK6WsNx1pPNApwO7rgc3cCp3PD3a9intgFDDFi17yDL5Z3ZmMs9b6JVzzpImV0Io57wkW+kSJqarNaBxAuMzipbl/KIeiq/r5ZE+PKEvTyg3T+wx+zPkEcLLFa3PqcPaY5FCq8QSauF/6sW1JgBz2atKPtu6JAstm88r6/hArYu4nd/VeLLZwloz7LRaXe14rRYwh4hpyH4luNR5K/5cM5KLQhYh1RPktVWsfrPKKr5GqdVdhCXZZFXaqy0ILZa0Jo2t8nVr8HnGAp4zl4nWNd6wxiGqCkSW82uP10IomZTNalHEz3HCJSerPafFsp+dmOG75LnItrhKWBVcqUksKM+e2Uv07ej58rsd4oSn48QX9x1KoY9tStQM+PqYS4FDDEtzgzWcGmHSawoWSO4vnvirx0xOK0EFarmqYjU7sfI33i2JZjanbO6pzlE+zC/d6net74QTXeqwOgjeeiz74AkRYlSCX6zrUssHtbwgm2xltrD62Jvy1xIXS02WmSdszbKvZYxEGnmtz0XMa8Ac92cL7GxlruXNipQVKVkT1tJWaVhRuQsGpStBNRPbhs+gW3Lvl0YERKpyadYxgLB7gJ5ONrfr5FvHxM1NNEQsozXU7kL1e1uf8XXaI7IkvuHKbDURV7Pin7vYparI68H3RlvvHyUElB1QkyBn6XQCeQac7bm1bCH1VDfT/PxVHbglBlwKVlE860weRVytZQtlyox3xToLDYWgIFGY6lckFfb7yD4JH39r4MMPRz78ZOI0tLXFzjmqUemWpTyTmKqMpRVZdT7iaycr13XsDw84XL/D7vod3OEB7nBAqiLk+itcf8DFDonR/vXOEl8btKDFSi9qNZyU2StlJCKLxWP6YKWyRApSTFly0y1On8L4IcPd73M+fguON8jJ5K6OZ6a7O4a7I14z+07gZuL9fVU4c2a4G4DMo6tM7IRM4jzU51vn8MEVchdJsXBbhGfZjj/mHk09ZXr1c7f2ZcD5eGEkAJOnpcnjlC3OFpjOA6GL+BhNgfDeiFSzsAJOe1z3Hrh3QBJIomhbCwckjYynkd3+XdO7yoC6jhhaTfAC6cx4+wwfd7jdNXEXKJXwPfnOtyljRrPDHTOnZ0dczsS6vdsHK5NZlflmgEvnKmdSJgTH+dmtWRrFMR7PuJM9NNlHwrsPyA92uEdXhKvD5epYTFlSheKSzTuVpdtXkbYkkFXw/Z4gDl+36+kIt2fcMBAUei98cFUIVdH7zsdP+fhjSHTE/kDfH4jdDh/9IvpkZW1lsdHMOR0rTmbGs1busRky1/yp1WJdum01q7l3Rx7tPuLd/hMO6dvE08f2RTe3VoEov5w3yKVLbMOGDRs2bNiwYcOGNwtb0tWGDRs2bNiwYcOGNxobYd2wYcOGDRs2bNjwRmMjrBs2bNiwYcOGDRveaGyEdcOGDRs2bNiwYcMbjY2wbtiwYcOGDRs2bHijsRHWDRs2bNiwYcOGDW80NsK6YcOGDRs2bNiw4Y3GRlg3bNiwYcOGDRs2vNHYCOuGDRs2bNiwYcOGNxobYd2wYcOGDRs2bNjwRmMjrBs2bNiwYcOGDRveaGyEdcOGDRs2bNiwYcMbjY2wbtiwYcOGDRs2bHijsRHWDRs2bNiwYcOGDW80NsK6YcOGDRs2bNiw4Y3GRlg3bNiwYcOGDRs2vNHYCOv3ARH5D0Tkr7xk+++KyF94lde0YcN3g23ubngbsc3bDW8rtrn7/eOHnrBuk2TD24pt7m54G7HN2w1vK7a5+3rxQ09YN2zYsGHDhg0bNrzZ+KEmrCLyy8CPAb8iIrci8m+LyD8oIv+HiDwRkd8QkT+/2v/HReR/F5EbEflV4Av3zveLIvJNEflERP7d1edfEpGjiLy/+uzPichHIhJ/8He64e81bHN3w9uIbd5ueFuxzd3Xjx9qwqqqvwj8HvAXVfUa+K+A/xH4T4D3gH8T+G9F5EfqIX8V+FvYxPuPgX+lnUtEfhr4z4BfBL4CvA98rX7Pt4H/DfjnVl//l4C/pqrTD+j2Nvw9jG3ubngbsc3bDW8rtrn7+vFDTVhfgL8E/A1V/RuqWlT1V4H/C/jHReTHgJ8D/rKqDqr6N4FfWR37zwD/g6r+TVUdgL8MlNX2X6rnR0Q88C8Cv/yDv6UNPyTY5u6GtxHbvN3wtmKbu68YG2G9xNeBf7aa95+IyBPgF4AvY1rQY1W9W+3/zdXvXwF+v/1R9/tktf2/B35aRH4C+EeAp6r6f/6A7mPDDx+2ubvhbcQ2bze8rdjm7itGeN0X8AZAV7//PvDLqvqv3d9JRL4OvCsiV6tJ+GOr478F/H2r/Q+Ymd++RPUsIv8N8C8DP8WmLW34/rHN3Q1vI7Z5u+FtxTZ3XyM2Cyt8B/iJ+vtfAf6iiPyjIuJFZCcif15Evqaq38TM/f+hiHQi8gvAX1yd568D/4SI/IKIdMB/xPPj+18C/yrwT9bv2rDh+8E2dze8jdjm7Ya3FdvcfY3YCCv8p8C/V835/zzwTwH/DvARpkH9Wyzj9C8BPw98Cvz72IQCQFX/X+BfxwKtvwU8Bv5g/UWq+mtYnMr/raq/+wO7ow0/LNjm7oa3Edu83fC2Ypu7rxGiqp+/14a/axCR/xX4q6r6X7zua9mw4XvBNnc3vI3Y5u2GtxXb3L3ERlhfIUTk54BfBX5UVW9e9/Vs2PDdYpu7G95GbPN2w9uKbe4+jy0k4BVBRH4J+F+Af2ObfBveJmxzd8PbiG3ebnhbsc3dF2OzsG7YsGHDhg0bNmx4o7FZWDds2LBhw4YNGza80XhpHdab3/3t2fxaqiVWFQRBEYpCBlAha5m3K1C0/q6KAjpvb6cURMR+EzsngHPgRBA7CIfgnOCkINKOdYg4pJ4ja2KaBmJIAOwOA92DEyWeKPmMuIIUIXr7jkmVrEqgoGlCy0gpI+R6DXiieAQlayZNIyFntOR6vEdzIVAgKbnYvdpggDghxY5wfcBddRy/9Qnpyaec7qyr2u2YEeehCGNO1t5ChK4/AHA6j6SUSeOAc4KPO8I+wGTXd5d/nKRXZEAlIDgQwXtnAwjgOtBiGolmSimoZrymOoZKobDPf8DD8Pv0ZYTbO26P5n0o+wfsQmQYbrgeD+j0bd77Mz/P+bZ6J4bHjE8fwzTyI7tr0o9/jauf+VNw/ofsePkAVaXzgfCF9+Rl8+wHgV/7tW8oBNAX62TrliLPexmWOYqAq3PzhTch6d7ZVptUuSzb1856/3OZ57+KIqLIvcN83T/U9wlp748iUuo569lEcM4hTlDV+T1p29o9OtHVeZ6/bgGcc/VapV5Hh6fgfEKc2viKQ53O56V9F3U7juUrdPlH178IK9GASrTnUo8rWtBS2h/L7/WALMLqS+ysRRHn5mvX1UZFWY/aZ3mafupnf+aVz93/7pf+c0XdPCcaRGyMCoJKe9fX92ZjIHXeguDWz13q7uJXP8v7Yc+9mJzTAlpMfhc7eym6GsRCm/d6Mf8LTgttOggFEROMTo5EeUKUI8FlnM9IVDSZXNRxYhgGpimBKiEEgvf1Gdpc9DEQQ8BekESaptnq0jlPHhNaMmMRQv+AEITO2fVN5yNlSlztI5oHVBPeC/H6awD07/8kPPpJRr6I+veRruB3ivedbQ87Qh9xFHYS8W7k9u4J3/jGb/Ff/7W/DsBv/uZvcnv7mC99Ycc/9hd+ln/hn/5pDv0RxK7BdZESOnwM+OhxzpNTodS1BVWKKt6DRIeEA6qPkPwAgPQkMDx7gMs7xDvE7y7nfZUPORfe+dN//yudu3/n73y8fsXa7QD6gvdrWfvt32W2v2jP1Ztq55u36nz86gtfcJZl+j8nXOvn7p4MXSR+qfO4XmN7x+r+Ol9/fccUk+HLyV6wdlx+17Ld4eqKI3XetncZQGV17P2T6rKOXH6HXdQ8avq8vFNZZMn8mS7v+5rLXew1P0CWHVffrs9djyDSziUveErwwZc/+Mx5+z03DlivO229Kfdvfh6Xy0G6OI+8eLK2aeLqDqKriTaj2GciiDi8c5Qiy0uPEVLnFKcFySMikCUC4IsnTxO5DEhJUDKqgo89AC509n3nCVcKUevCXwV3zKkS8rrYqpBKIrgwX12UwnkcOBw6du8+4NMnj1GMLL738CHPbk9kJwiBPAx4J+QquMU5RDIuRErORJR0N7Db2/W9wze4iX+S4fxF8rzgO3IGP5MFUOfRMlYhaJM/VwIntSXx4L7Kh+UD3pv+FuXuU+6e3NoYDJmhCwTnOXZ3vCcd5dPf4+r9r9cH5Sh3Z6Y0cN4d2P3hh+i7D+Fr3wDg6R/8Wa4ePuRUCg949RDVupCuX7HnZ9JnHG3/l+9m3+8npKYJ29VVSaGI4lAcdh+XwlTneS8in/31VcjJPYFyqSS2U67GaBaInzFuCgWPFo9rSqxbEch6TSLLcWsZC1UZrR/OskLXpMdRhIt7K0XQUoV2AVWB+nztN39fPts5dbl2/S6flVZC+8qZaoVU4rm+3PbcVMxYsBKe9Zg2ElVuViPA/LxdI6zyGXemqNrCbINX2iq1GreyGuK2WOvFORrRnf9EEDwASTuKf0BxEeJAJwN5GhuXQ8QRfJgX01IKil8RGaUUI3ROC30IPHy4Z0omV4fzmZvTkbubI49vlZvxhnjo+OqXHwLw7qGjc8LTuzPRFfpQ6HzkevwYgNMnZ7w85d33fhwJX6H4L4LsEG/njzHhXEFkwk035Nsn/M7/99v8T7/yP/ONb/w6AHdHePe9L/ETP/kT/N43v8Xp9se5CiM+uPmeyJnkHTo5kEQumZxtELwXog94hZQLpUw4NxHq+5WnnpIjHk/wgYKQi8zTQevC/CKK9IPGi6gSND7w2dcj9wjdPdp0/2yf8V3P7/Pia/tsGXCfx84GMlUb30qyBMBdjnETd4vYe/4ulut4/h7uX6ft0dbq9ll7FxdifP/YCyrfeK3oYhtYfX7x+8o4MH+bXvJ/XU74/J29cFjvE1JZfV4NmbLa9l2Ep35XhFV1WVhkNeQHEzWEAAAgAElEQVTLVHpeJ7oQZCvFXPVSe2mayWI9Xf514szaSp0wLyQQSkkZ0TIPx3ma6HImJhCcCTjRWdPXIPgspASkhCuZzgu5LbqamUoGnfBjRnOuFp56fBFKMVHqRTh6YRd25CnN9wiOToSSE947+sOOvp7/6c0N45QR6RhOJ6TrmFSRbOe/3j/gFiWXEcAEsheGYQCg18xVeEYO70DeV0vR5WwspSAuoNIBw7x4LMNm42pE1vE4/CyH/gmy29vm40SaMv7BgaQdt4yU26f4943Qqi8c+sx0+DGGu8eEr/wE3bduyHwIQIwfcbrzjDnz4MtfesFzexVYyPyC+4LkxS/Jeqp9tqh9ifB7yXapV3RPzbNtatsEI6sOraRV7x2/kDGzsNe5Sa4XfylMZ+F6sTK0VU4vlEcos0IpYtaRZmV2MuEExCmCR9XdG0Npp5wp73P3qcs/858realF0ZIqIbczlKIzDypq76BIqLL7Hr2cVwdn+1KeGw9U0ZkTvvgJfz+qyPcHt5qA9yWsKSuIQy/kaLViKyCyKPwzoW0qUDtNI71NbhQgo1oq0beHdGGJmfdv68H6QQIyU+b6bHVFpAEi5ARuQkuhuISTTKHN3QLe4Qj4ej8OmRe1Zm1NKUGZ8NIRsqNUuZkxQ8XtUfit33nCb/z2H5FE+OrXvwDAn/2Zr/L1Dx4SS4enoyueaXeFe/SOfb/L7KLHjX+Inz4CfYiL71CiLZP9IVC8oNMtt3cfk4czX77O/MM//2Ocjp8C8Bu//W1++qf+FB+8d8VVdyRNd+ikqIR6D4GsalZVSeCMpLrO1+fggIiiOB3BJ3I5IsmMFSVfmeLmbI6oLu9bmzvNEvZmQKtF7fLT+2/cS+n1CyyiayZ1qRA/T5MWZfzSQnghU2dvmCzqud4/hy6/vuDajay29+152yLz9ibP27u7frtL5TtltQa5SpTvvbMvvIr199X/P0dU9bnnoev3eH3ccuHPGXA+b4699Cq1ifZ7qsTnnPS7I6xwb/Avp0RbcObfL764PqD7D1kuf28L6uVubeG0h3XxGtZn5wQyhVwyvj74DkfI5v5WBEeklIzmqrEE85h7NQO8TsqUBcGsjokqPMtAUXPXBM1oqRbQ7MkFnDi8g8N8PTacU5nICQiOPBXYOx482jOlsx3vH+Emx5PHz0jqYEi4EBhTdZ2NZ3b9jhA6nt3ekMaRck6UaBZilcQhfErXXyHyNVJxZAXEo+ovn4wIKgHntFos2gh7hAR4oOBlhPd/kutH5vIfn32bfE6kZ89wh4lhvyOdHhO/+bcBePdHf4bTg2sO/iHe9dw8/ohxd0X/sVkrrr72/zAdPOH4Aa8Xz4tC/cw/Xn6coay2Nwvu84Tt88jshfNGl7nd3t/Zs9CI3EpFv3xTLgVj29dVoocURByu+mjFqV23UkMJMiIOrVYwkWBKopTqLbbjvKT671CtTI6SA5SO4ONse2tLwiIz7J270Orbv00R1oXgtnOoFhYr46W2r6vPZjnrWY/ofB2XwRJ1jMQ8Jnm19z3Rwmc//1eAC6v46mqqC19MXTHJutpXKkGVFVFdBK2DNpx1u4rWhRqzrsrqYQjVyPr8PLaZtQj82fpfqg1IuXgS819aZTaKFyhpQiTN1zCmhMMRaghAC21xzo7PRXEiBO8IIfLw6mDEztv+WTMx9jw+3vG3f+dDvvmxEvqO9Icmt8fxO9z+6Z4/+Se+zqNHHxD2j0jXD3m2MzL44PpA2nUUX4hyRs9PGG5+h5we2/Vc75BOKRP0OuEYKd7xU1+F4ed+FIArf+TpJ7/O9Ts/yp/76S/x3iHjKEipyoIWgiiOYtJDBcRZmAOAREQDIoVMRoviyNDev5BJmkma0OzmCLC1fHhOJL1GzF6gNem8IBSf9569jKy+4Pte+JnOc1/F5rdrn9NkbA3DEl3CZ1ZnmMO4xBjF5Q5t/3uyf2WEazRYpP294kTzGIFjqmS10MJ1tAhSAjh/z/FyjxJXA8YsgeX+W3hpaX3ZyH3Xufgv208uHvSyewsTLd+7YrUlXW3YsGHDhg0bNmx4o/FdWVjdKu6pWTqqboKrmsViYWFh3Sur62JNl5n5y8rOtBgKmmWoamezuriySa0ssqoQvEOLQ+cEG4tr9RTTTDvFF0+pt6t48A4fE2hCKOZWquatLlmCx5DNTbYPjpJB1Cyc2Sk7BFFhyvX68kRemfiDOM5ZoRRcCah4NJgVqxNBz4n3v/glHj9+xt2zJ6RhIEYL7s8hoQIx7thfXXEqSsDhbp7Wp5YpmtnHZ2j3mDz9iHmEZaVUFVBXR9j76urT+R5LM8drRgSKOpxPs/1w9/6XybePcddXHG/uGP7g2zz8wgPINoaPnwwcdtdMKVIevcfD299iuLpiOpk1Y/qj7/DoK79O98V/APjJl0+wHwherGt/f1ibLrJpsRexl7AKOOJS/WxvzMpqur6mtcdBTZN02vaVi93Mo1GWN0LSpUejJSSSEcztKmLhJSFkRDLTaGEFfZcJITDlHQBT6pHicQLeWRy4oDh3AsC5syVrEZlKIOeEyGG2DHvvWVxOQov7WowPUl3xSwxTuTeE67gqu1edj12G8r5F4P9n791/bcuu/K7PGHOutfd53Hvruly2y912u+1+2O6YEEInacJDAhEeiZRfIyRIEOJXBBK/8jdE4k8AIfFLhER+QQEJSEREICQh7ZB0kjZut9/letx7z9mPteYcgx/GnGutfe6tKjtQro6oqbp1ztl77bXXY64xx/iO7/iOLddyg7a+zy3v2HiHLC4+7R8HA/ByxH3dHMdig3uK/AGS2mfDg+KzdeJI258vCOvDb3RXZDn3dkX6hFuOCbYvv4SfuC/FcuuhtYIjqaQU/8RnRAIxRcMuDqlRlNqzY1FhRsdVFEHM0CRtnsGQ08KB3Y0jmiYk7TgeHMoOH0eG4RaAz3z+V/n0F3+F/ORTTMMNPtxyqDvyFDSo0+GWa3/M+eqK/a5w/RR2j39EPX27ncb3YX6GlEIU1VRGKp+7Gbj9jaAd/PIbmel05PXbHU8eC7kc0GFg0DWDEui4M4hhKeGSKG1tUQaoQfHxhrCpJ4b2/lQEo+JWUN8tN2QpirbNOvwHdSxr+0e2+5dHBxzb3O12OLb3Zc4tGY2XeP39p7d9CCv5uu1PrBWiWssyxPsiLYvlUei4ZpPjAFTXrIbKKbIOArSsVzXdFEC1Z/chNcBZXnu4tnij5jRzvKDN8d7DTMz2ml1SrV5+3j9svM/Wvs2Y+Ydvvxkf6rD2fT5M+V98jazVqDigvlmEHj5Am+T/xkld4HmJVHuHzPuifDnBfUMViIpI3xxVd29djMkLyRxcaSIBmIXRSChJB0gxCTp5v5RCqjCYU9CYSy7L5ZLknBrPSxB2Is2BiO83nGozyROKUquA7jhOkYTcm7MbBmqdePr0CYhxur9fJ1GF2QspGze7a6wa9XRCPVQEePED/OqaoR7Y57eQ/Z7z+Unw/BbPvzvvgkqmJiGZU62nQQSTFNxfd2a/wrkmaTg21QrD7WOm85mrMXOoZ07PMj/88fcBuNI3GB59DnnxTW7Ga06f+UXsB9+lajg+t596yvm9O6r+HXaP/sWXJ9bPbby8eD+cuy+lPeWVv27GBywHWyPYKqn94olpQURz3F7albRCIpfgrrq/bNyXZzEUBbb7EOmqASWq+b2iNiFNezqle4ZcyUNCMUZ1hrwjp1i066zMc2Y3DgxJyLk5vLRiPKlARmRPlRmRGU0z0iqplZFFmcG1OadrIqc7W93+uget5+EV6ov1kjpyex8tBl55kxaKxWLIN+81p8r8/e6ur4b8Yxiq+pJD6C0QYcsZli2xZOPALvNKWJJozUYbss1AbqZOd4fj/33WvkTF2oyeSr1EKC6isVA16EGdVFQqqpWcgCrY7AvYoSJkFbyGs9zKlJZzzBqJ9FILViEl0KLkRgmYp4K6cHud+dIXP8179z8m3zzmq1//BgC//vWv8OjJI2bbUQ5CPZ8Y9kf8KoCAk9xCeo7sn2DyGPIVdfdL3D56Gsc3f4bp+T+Ew1uIHQHHBDQXHjW61q9cPabWHQkjSUIGx0Soy32IW+KqQb9RxVPG09Bu/sgAGAUjISgqGerKcV2KLlU3xb+X4+PRV48Z87N+8wc+aa/iry7f9ap9vX+xpHv3KR58fOOsyvalPi/77x5/SbNN0khFi7MqMymFGk8t3VZCToamRPWBWgewKCRMqfs8FUmNnsV9o+YkIOaEieJdbUNTzIcL+9Rd8O5g9qf7shB249Nu4lhp37HxYpd9PbhGXSXgpyvw+NARX/mz7eADHdaObgi6HmQnKC2L5qUT0JGVlx12Wf8vm9fe53hF5JJnwvZCbZxj8UCDUKxHpC18qsTk8baod4dUk+HUKLJyI5lhLmj7fJKC14kyG1qEozmuusibuEcEZCmxS5m5VLTaUrSlIrgZ4jOlTgwpw5DwplIwzSdwpeTMfD6T8sAwZCQ1h1gSUivTeWK3U3K+wnKhzmG00rjDz++Rbp+w54z72zBcM8231KX4RpokkSIaXF1Lw1I8Yybgc5D3zRAyp/qIId0DkLPi9cxuTJSSuPns5yiPjszvBldL3nqHn1Tjc69n7u5O3Nz+Mld/+A1e/INvxjUoM+yu8NOr7+9HPVZ6/eWyf7GNE8jz5rUF9X+/MP0D/+77WOdtV5Lo0j9hLNfqzzUQbPfNSxy1L6VXgQZKN55CRwC7u6IrXhhOgUZlcWIiecXrCXgOwDw9I+2M/S6T1Mk4o16xSxEMiY2cUiapMg5Kyg5ewKLgLydioU1CMSNlJY8HRNuzMY9I3YFH9bIx4j6s6hSbgMpdcLV2H9aFTiXFAt8LCAnnsqsSWHM4fzqU5uVtrHnLbs77+6X2frf3Ix8L/ZiNfW2yM6LSCpG2RRhA/11Y5q9fFG/FJr2IKebhulyI9OttsY9LMx/H0JALWY6xv2vLFpcnwoVT7eIRkKlhTCQxFtU0NsekFrzY5ox1n8XMKV7REXbDQNLgs57OrfZgrgiVp4+cr331dWYdeOOL3+ArX/8NAHJOHI+GTS/w+YDWZ4i/x02ICFBfuyK99pSaPoOOX8XKZynyGsfxTQB2u6cMohzmGZtmrsRwU2pVZIhz1ATX+yvOYpgksoREVS8tMEC8klwgKZISqKKpL8UJJLi8Ku2DNUVNBD0AcKoZY0PgbBsULObu4wu4Ho6XH6MPOjZ/xTY/w4Por977MudZA60VYV2Qs+a7rj7H8oGLY4kCb122qwgTwgHxNq9TSHFCZKqSDigjVoRSIkOgLbMgGkEcPiOcQ9Fj45qpOjIImhXRIbKcFsFMHG6TiJKMuEYgvnnutQW7WzhvDTFl2eaVtvACHLncIGo+5cG267e86q51J1UIcO0htfnDxocirH0BX06weeJBE2ivLdF8O6Cl6ngN5S991F7X2+VX3u+7+wn6Jdt2c2UFUBVEM6XpqM7zzM4yE4CCWiTrU58gFIRKpTKbU1xQX/U2IeGqDDpxMuPdd+En7x0Yd0HO//xnPsX1UDAxJq/hXCddotpaKoMmZhwVQ6eZ8/HM0KLo2Y6cDu9RbOBYhakqZT6RGyVgt7vCJdQNqsM4DFztP82ho6bDyJXegU2kOjLqGfId5rf04pn+E4liiyhM2Fw3BasNyRMHZsp0g10HQjqVO5IomDCKcaiV8ektXp61a7jn/vf/Lj+4+zL7+juUd2d0foPrf+afA8D+9v/KefwKt689fZ+7+9GOiEjbw7lM1LbotwV/zUtc4kwi62R7dXL4wx6tMIZOk/gxW4yeQChWbPa7je3d9cKYxuxfUSj3oAqoyKLXB4bGbMftAHLEOYE8BypDNrAIRETuoUxLWj6cwT35KtKmN9fXjPsE3mg1SSllpqe/UhqQrIhO7FO7QspCFalVccutcCQx2w63PXg8O6Jj1A75iEjGtWIeMlkdQ4170+Wb4tkXazQWAG2X9EHB0faKfdBQkZCDe3hr/aVfPpbhxLn2oASg0zx6BqXrUK9rrXBBIWifXuhXzW5LSzM9AOYXZzQoLl067RXZhwVA6B7txqFsWyzar3RT3RduY0iOUpqqiwfg4A2pku4MC1hXhgFsfX8YBcM4nk7MTOgGiCizcz4d8GK89uQxf+K3vorevok1JKvUihSHeseL57+Hzz9gN9yxG1sx6+GafPUW6fR9/O5HZP06u903gM8CcLaBq/2vsnti3L/9DzhO73A4nLh7cebRLs750VWlXimyH9HBITeaTEeBJRxvoUIlaFtpWK+eFCoFam0gTAZPNMVDrK7rbbXaQJbLm+kuuG0XzH9axsMAiJfscx9bHHfriG3LPS+2d1+Aq/h744fKKz/y4Bho4JiBRtGcdhDCZ/Aj8AL3A5KcISkdgVUgyR6VEcZMbsGJtmdRNRSM3HrBVWoarPH51NaxKLBLcX9dEe+FsoKhuA+4x3wRyRubmJrPtuQyGkCwXZfWdXJx5xy6gkFknR4APouH/+rx6pBj2XG83woqF2f3Q0zvBzqs2ipLuTiZdeG9PIj1V1kc1XWR3RrWVcqq/72J9HnV/Ok7aN+91QRa0IDtAqS4jYxyy2xgPTVam0wUkXLvVBAXpbJWzCZJiCaKZKakfPN77/E7v/Oc54dIi/7SF9/jT/7RL/PZRxb6qT6AGnNTEcgQVc4oLhU9HUiHM88P4ezVWrjZXzHLgN0fmc9HxJxyDjjSSmHc7ckpM80zXgqjZG5vnsTVON+RyWEMxxEkgZ6pecK9pXZJAYYLSJM60ZQD+gestHSzCyKFlA+k+Y5TDaRtJ0eKOS5BGRj3A9PxGXJ9E5d9/0Xy0z/M8+/+Ns/vfpGJN7j53/8x6b3vxuf/yJ/h+q0fkHYfT6RvZpvUTT+GzYzt0fFLKaemgeGdXrGVRLpoN7D5t+y17ZuGRHmTaPKFoaHiiNd123Z0nX8tZLR9Vt1W3lWnclARsUj3dy1AmxBpKX99QbJ73E+o3IPGHHVO7ftnvJ4px4K7RcOPOiLt/cpIGgeGvEdcoxLZbRFvF52jQUXqCatVUw8CELKawuj6HvFr8Jnk3VRmsJiHlmrMPW+yLcszbVFFTmOBmeO6Pp9itohqLwaYbZDxYXavIZWii428EMmmBzMfuJOPbIRsVZ+1Ky/fgP5Qh1leM1kvB1bSH/516PaPNseXPy/nsy/73+yjr2QbuYat5FraOsjQsgLrQicSWSesBG/PLp8/qxWVvsCHrnZkwfrXO9Q248yotTDNBSuxwVQK52niMCUk33L16HWm4Wo5pmiKMOHlJ5zP3waeIe48O8T717fOuIPb3QtSuufF8+c4zu2TPxaXL38KdGS8+Qrf+vaP+Hvf/F1Krfzghz+CYygJ/NFf+wxf//ITnjw20tUOQYMit1xnbUB2XHtLjhRDtGlWqGE+h2cqAyYJl5Fzc0BLdUQTWQe62xa7u7RDnfr1B2NcHsv/2xXhknSwKrUsFrVLfW2PQCI8D9v+sndxCRusdnk93uZASkGYETkjDSQQZvATwh3UA07UFHSHNZ67HTpck4c9mrX5bN1hVdwrNK6raPzrB7BiTe1ZMGLNX3RaE8IYoICPKPtwZhdalYRWNrWdVVqu4eovbmT+OpBz6dZtrTyr5nN/OLfXfMFQLz6/BhQbPduXnOAPHh+CsMZBXezE19u3Hv7L37i6tW0vGwRkQV/bD92kjVYKwPaCvQLn6hfaneolnNJGbLdUca0k2ZGHAlQoJ2qP5A2GLMwlJmnOofk3l9hpcSelTBqcgUA1do/e5N23g7/5N/7y3+Lbv/82/8a/+lv86i+/yXh1heyectUc1vP9mfPpXcTeheORyU6U58/JzSF1whCdT2eSKvsxczzPIXEFJFHqNOGjoWlgN15RK0xzHP/17Wvs/Ijsdpxl4Gp4hNc9UymkuV+YhC1p04YqemhnxpcMMemq4ZIQe8x+9zZy/v34+PgGZjNWI8pXEcbdY168G7JVJlfw2q8jX/0qV8/+Ec++9b+g44i8F+kz/4f/CPnKL2D1vjk2P9/ReYpdj3Idr477Hnw6tvQ1ld9e2DgIq7B63+dWC1f6Qt3+rfN77RC0PZ7FgDSuklhFPJhvioRBA1TOQcxnbvxWxexEbRxV5w7jwH50xhxIADV0K+Pzjg4jNiu5TKgVdD7TFN2Q/UzKe3QQvCbqZAgJaQiRpEqk8wOd9c6na5YkNQ/Q59R0ZBU8o02Wp0upmZ6oegYq4tdrcRnNVkjsv7TrZV17EhBXgskZVsh4yMFqt7AXGb3i3i9B8YPgNz77YZDLRzxEEBm4RBxkccR71uvSpm7RUIHeWGKbLZAVf/KN09l/9jQdeOSZGxKy8WrXY2yIyAdxBhdHYlN0pRLIlHiTEnXFU39fYwH1KIJNEkW9vSGMzZEqTzkhKXEu0/IdAF5nylyY6o58+xR2j6llAO3PjmG84HD6AfgL4EgtyiyR2TqcKrurax5dR5c1yc/w+nuU8y8BkOw1ZBwYdk/JT77M//bb/x1//+9/k8Ps/OoXgyr1zjs/YLe/5htXjuYZS3tIA9bBm9QckpZB8KrRsWqz4Ks6pBbopqAd7Ft27zRkpirkNCCaomHHAzP2sdBXt9//4O/t3Hx/utX7ffp9Tuall7vNfsVG3v/Xhexe9musS7x5K+67OExrTuk5uMt6wv0eJwpRUwLxCewAnKDOeDVqa84jOAw7lGs8D0ga0DSua7HL4iCGnrJeBJs9U9jIUSzsndqzqSPdSRRSe942mQ+p0OoNgpuiix+32lwW4MGWAEBWIMB9sfv9Cr5Eo+3btf3pgxvdQQHh0uxux4exvH66Tlcbu7nc+43TuaTt1yN7xYHIS3/LFh19+IWs1+ClmhN3kvbig979xBbOSE4wJjCNxdW860w2DqsLFBiIlKcmwdwZh7g5k+cIYsxJg/CHfuOL/O3/83/iB7//QwB24zV3p0c8mz8Dj36D8eYpJxE65jSnA3ZdSOd7pHyXd97+Jvu7ifPcdV6daoXZHE+ZYT9CUlpNFrVWRKJSO2dFMDQPpKbVdz4dwY9cXb/GePVpzAbQkUymWpvE1oxgu0/ujmpHPeLiWut+I14xYJJbbiUMI2ocDGqZ0XGP6p6qZ8abSPG/d/cd5puvIVSm2y9z+0d+kYoh3/tL8f0/fs7V/Jz65Y9DIaCP9gh2dE/1Ymq+uqDkVQ5tW2y8o0VN0P/B+8t8dUPcIjKSgmRfLOlSTPXgmfElWrdWnT9jdULFSQ7WyMDKkSRhNM0KtQjuM1gYT/MjXg/cH40yDux3A0OWpbWr1YKj7LKSSNQJ5lrIzeNMw9hSse14O8l/6PMmInWvHo4F4UimnmrOyrBPWMr4VMHvEd1isBOQyTJjcghH016j+GOwVimd9svVzIRDbMKaDlfBbL2XLtEYZGtAvVo0OFhVQjcOXRiwrVj2Fq914MGK9XMdHZm8SG8Ki5Mqr2ijuI7mpLZATbZGtCOzW/Tt4ppshP67d7xxCPv76/b9MjVny/3hu7HkLfzr5QQRsaZj7SzV0CWWy/CTBcxIIuRFozTuWe7O+pAoKkwtc4ZXDEWGW2R8TGFAVRf00VwodWauZ6AwpAFVJzW0Pgkcj2dOjwZGHdknocoBsciszfWIFyWnK157/Ca/9KXf4Jt/7//m2bvvMn0xiLC717/A3//eO3zt67/AmI8kmUnoooTgaQ02PEkU/Gpo68Z1aw1BPFrvigTf0WXVSTZXijUwxSO927NJ7vXCMv1BGGbbOfSy0/rqmfz+ZyC+vu8bGkuD7DYw2cORVn3rB8GXVCG4qEEl080uIiN2ROQe9XvEjogcYKFh0VQvIvuFC14Lap14XGItyAZpQHXX9LCbalGJIk/R1m65c2G826NmByTqUWiB3ALaVQObGjjT55JDmzNJKy5HkBlvyhJmLQsmG4e0nbOyIvdLLUanFLUQ1TeB6CvuULM1W4Psr/ZGf8aJ+k8j0eWT8cn4ZHwyPhmfjE/GJ+OT8f+j8cEqARtEfU029Wqy93ONW3y3BAiv7nJ1gZ5uA67V0d+8/3AH8SNkWlbAtwMH4lDdEGtcEyvMc1lOaDQla5NuqYZZFDctdIwK1RMp7xGUz7yu/Af/4b/OX/3rkS7/1rdOfPkrf4g/9pv/CldXVxQTkjsu5/b9JyaDyZ15/hL66A0Yv8Xhh38zjrs8RzSkT+ZpolYPBFV7pWcgAWZD6FyqkiRxdx9pX7XKcSqIf4/82hG5+jzYLaVeQ6vWTiJN0zCineiA5ZHS7ddMQjIDO5FcycMO90BQy/PvYukaRTmfjti4Y9zt+dQbjwCY5+/z7v33OAyf4Xi6Y94l8qffpPzz/ykAu/f+Z6jv4G+/A19+n6nycxhmtkRlNaCzyw22INZF0coGZOqbesgryaWQ6stjUQEwchJyXqt4ZS5Raa8VK9MSeXaVAJGZIRtWz5zPLwIJFafM9+0Y7kh6QPSEqFFrS4+3MmIvUyAFGtXL0+Tsxv1C9J9nw2ul1sqYQfaJYgW9bgoV49B0ex33SkoZcVv0HZeLYoaYMzTr4C1d7ynjKjAapErOM5SC1/t2P1IAImVCZCKl65DnkQFvlJ6cDCcyBCoZRahiS9GVioaKgKUofZBQ/bi4d9pT5vLSfYSF/bVgql1PGnpK7GcO/v+/G52vu6n2XdQrOprZbOa28AynVRhrYzVsYJhuZBfpyCi6eIiYxq89K7HqNy6bdPDVaVmGDxgL5N0VMGYMa2jhCH6m2rwiSa29drfr0r6otmdHh5gLp+nMPJ2pFhrSc0tNeTUkXTHsP4WPt4hmkvhSgOR1iHoD2QU1RozHt7fc7APZ3w8jtSTu74wX9Y7HT3fkkaVDIfkZmjOiA0+evMGbn/8SKe3AC+/+5EcAlDeu0XHHyZWrPKKppfyXivCMaor7lhTJGZIuhWF4XW+SK+YJNSLDkw0AACAASURBVMVLE/mqcU9fpqi2uevKjFA/huxA1G1s51w/sp7palNoC1+un+aneeJWP8GXn4tc1YZPffnQS9MXjmylNDWMtUmYtHqBGZWJKMq21R/wgvs9cEf1O5LOpBxUAAgE1nzC23yUlFAf1v3XAj6DK6o5Duyi6lFQSazCMIEarxmL1qGyc9ulz6culeZInXFpRb5MbDteik2InJo5eYwzILqL7EfXB+4UAQkK5LYLYX/fTUDSguDbppjoQ2koIo1i9+BOLrblp7O2Px0lYDO5LqpxNw4tD9NBixHqPMo1hdT3tzGlGwe1v/fSqW3+XrdJrUJ/tsuLUcxRiz7VIjAOaVUo73I21anNUzWzhaieVVEgawrqgSVeuyn86T/1W/Hx9BU0P0JkQLNyOp2p8xkv3wbgdPpdyvScOg2c5kdM9fOYfZbhyb8c7//wt8n2PfZjTN6cE/N0RDUM52k6kvPAkJScR0QTZnUhSJ/PJ5jPPPfMTf0e8ujM9e2ZOn6Owzn6YosOiKdYklqKLSZl48mmDF6pOuH1KloH+hXNLpI0I+WM5R3imfP5jKbEi/twjN743Jucv/9NzulfYjrfIfNb/IR7bl//lwA4/vK/w/Xpr7E/fIePY3hdOylcPgobTdCLCcyFgxMfXSkAsVmERw97dcvFb531aqgUslbG5CFbAriegs/pE+YzdY72iyl1nt0cVdR6Yrc7o8B0PjFNkfIXP1H8iPsJJxzKMWV0We8q4jBe7bh5/IhhyOz2eWlvyTljx3vUCudzgaGSrgdk3ypXh8zCUbUZnedwPGp3lNpPay04G7e2N8UIj0MhC56BDHI8LukxzcHDsjpTTUhJyXompYl57k77MRYLTaBD9IwnU2rX2xRUBiTtoohLFNvc5+D1rdJXTgtGewptk54Kn+jSpY2/tkoNP98hhM7iVq1idf5ku86tb7dnvKf5vHO3t8Zzme6rA7Ge9+ZkLy5Hd17Xt4RQhhDrfu3DC+UrCOFL6VxMCzVUZ2DC7Yz3dD4hZwaCtfuXVEPRoQVjVkvje1a8TFiZ4773uekVFWEY99TxEdUTImUJIKuD5Efsrj6HpQmt7wBOKQE0eIXn752oU+X2sTJLpjIEJQZCl3h0XAqixje+8Rt87Wtf5b13v41NPwbgxTPll37ra1xfha0tMpAkL5KJtVd4q6I5QxqpaWX5e3XEmo55DhqT1ERttQnzHPM1NT2w5e4t6y2NEvlxhVv+0pRbeM4N6JKLedd+26ioXDqv/tIP8cv3lzR/by1MXISLYEwAKr3hA16WfYT/XFGZWoOUE868NmHwgvsB/B7sjtnOmGaGsWlPa9BWvFbwoEslkcXmmgvVZzRdNcJrV3ZoIIYmMGGB39opyCJV1o45ItII+JSlYqov61IL1KlfpKXuwe0MViBdI7pHpSBk3Ft9D4s5hIUmEIWsjT4ez5ik9vx703NePTfZzLlVAmtroFik8Poc/ScZP0XRVf8iuXzZu1lvR/PgU2HHWpR+UfwgrLZ0K0PxYB/SCytWRc2XhncWogIrguomWBWkRhSLK8qwHK1oDQQ2RbVwTDDH6PIocxSLEHqQUfSyRiO720fUPCCMUIQ0RpFVKhFlD/4dBt5jSGcO7yqHF1dU+SJp/BIA+tpXOT7b8fz8fXYj3HIVklZNu+Rqd8VkBbNCr1ivFtXeEOjxkEeOh2fIeebKjOLO7trwMc7heH4NZ9cWL0VFWx1FDxwiSs8+UKlB5LanpOEdAG6fVnjrh9w/e5t5/4hx3IUO4vIQwn53xX/1n/9F/tx/9B/zzg/+Krn8A779238DgF/7zf+M8cm/xrT/H/nUq+7dRzzMvBmnLU915fRtq8L7iAdtu45357R3LNlsa7att2p7h5A+mRApZJ3Y58J+dHJufCaO1PmAz0d0qFSrmBu2FCU5dTpjPmPzzOk0U6dCbQt7kpmcmgy5gU8FSyuXqC/24Iy7kZvbazwlWj0haSekcoQ5zsuSs7vdU3tXjWZogxcVRSxqLJqBNPQL6XzKeELX5cFAahhQzcHLsvY64FZJSiBLntBkUN+G+pxcmqtfTng9hVbh7hZ2T3C9AYJfXTWD76OIxgfwgZBy6VIMipo1lK4hk+ILKrVwkT+M4f8xDRFbdVeXY7y0tEvIvnmeRRVpi5k8DNS6ie2227dFgxdfvjr3zqUUECzOhjzc5+ZLemDXyy4WvQMRwHCfMCbES9j3BTontFWHhFen1gjmhnYNioGXJoklzjhkJg+ePYTDSlvLBaNKxiXHfCQOXtKOfPVFxts3eHx9Ru0n/Pj7fw+A4/m92J9fMV5fY/KYnJ7gctOO/xb8Ck0jPp75wi+9yV/4C3+OP/HHP0+dw2H97NMb/vg3noK/Ew53yrimBc+L2Vip0AqvEsiwpAfFK1atFd/kCKZMEW8ZEMKpf1jQsh1bd+4P/lgeSgJb6Y6rXbzdhyyO3AZE6C0Bmz+w1Ads57Zbc0odkRmrZ7pNUgG3E17vMA1ZQGRenLVmaKGGMoBb1/2N/Y/jiKaEM1CrIRba7945nlmRlCN7pQNoJp7dZvOtRlBl7YTD+3tQGNkVB1J7zNJSTCiq7XJYRF0W3Qx7oav5FJxVBdEZ8ReoHHCbw5kFaPKcknage5DQz942IlKG5giH7OEKCbOsB6+6Z+2GfuCk/Gnn6wc6rLEYCZdQQ4+BLiOkiy021aibFzef7pF6N2aXW6tsv8Vb1d620jD+mXcD0KKZ9tCrKakkxBRPTU9SnLoELB4i0yIh+SNC9U79BzRas5qF1IQuVZ2r7posbV4HvO4JdcH+fqXOiev9E/Y395ze+g6H+9/HSlAKrl77Zxmuv8D3v3vk7/wff43z6Tm/+fUv842vvB7vjzmccFWO0wlIlFopDSGutSAuDPmKu/d+jJcjowwMRdF9ewiTUOenuCaEhGkYuy5PZO5NmDroA+6BUs3pDQCm6cj+9hHz/VvYvXA2Q4eBmxyyV3f3d9zsRv7sv/V1/uv/4r/k3/vz/z5vff8v8YXrVnj247/I/MX/hNvX/82H0+rnMiJ1rxcT82LJ/7AnxA23crFhIAHxm7XiCGnRbN9CZEbSiaRnxjyxG06onZDmcKqcGOSMyBHmCauFYs65RcNTMYwm2VNmzCKVpa3i1OpMqZXUGmZYNc6lRGthCNUHnLEUhnHA7DHjEN3cAOo8g9SghmRjuBnI1zt8F/q76BBUGXPMogUkBlb6ok8UgyRFU6tIFcE7gixNUqfGd2puz253JovgbqgOkR6rldPxJ5zv7/Bja05QCsKZYRSwW5ynyPiUXYrClry7ppQbqheq7dBpR7URaQWDmoaoPLdVkuxnAZw6NeTjWvS1tyhluyDA4iiuUPGakRINZ0Y272/H1uns90NsseMRfG1BiPVz20riGD2t2nEMeeX29OKxfu8twAETljnmtjZsMVra0KMrlyhgLHZbEEo1RIWUUwTxzmK4DVCvJJ9BZpA9CaHm7ixWioZSSsqfYrjecTt+jrsXza7ae5ASaXyE6Ou4f4lqX2TchV1WHXBPsSLlzJAzv/61r/DLX3iB1d+JbeYCVhDPQWPRBJKXoikXIbdrFPFCBAS59mNURDOQMEuYJ5iFWntRVSDvS/L7wcT+p8dRfXms2az3p5qs838FEUL2yaG0QstkeJ1Z2maLRNAiM6oh8l/LYQW4qNR6wOwF0RHwHmeOQILINiqOlTNYRVNmvHpEHvfL7nUY8VRDaLccwCvWi64GQ8cRUg5nVVrA2Kkyzcb2YspFI/zixDso0SyT1PWBFKCt8xFk9m17I6IhqF2A2zNqeRsvNQCy5rD2hgUyXAOPIT1CZH/RwdB9j2O45XBaLeHLd+SgI10I3LKJRz44jLoMy99/fDgl4MHM6YhnR5dedRwPnVfdeN9b1/T9J2WXldCtyX7pmKR1wxGBJHm9qe4RlZpQ1SkZRoTULJ9VZ8ypnUdU3A17pTYYys1J1UiAiVG0gmXwNTVluUIxapkAIaUd09S6/aAcjmcO58rdi4n7uzOH80Sp/xCAw1vK7dNf59Of/RI3j7/Ht77zf/F73/5b7P/MHwXgC58fefL4KVOZkZQZ93s4w9RUBsaUsVI4l4rqI6bzETmfEH2xGMY8ZAqK1SeYtC5BYnijHfTFTjSiePcaQZOHSLbfREvO69ffxH74bSy/xtnrglKN+YrjdMcf+rU3+JWvfoXf/t3/nq987c9zfO9/AOB65/jdf4vd/Lt8HLpWkdKOSuT+YMcC0Q3dFvvh4v2GIS8Gb5WroqEAjcfqSgJSqxZVndB0JOmZ/VDY5xPX45lBJu7vQ6dxnu+5khmZj9TDgXKeOVdhXrqgRbqlUpnr3JAZXR2EZohdCbqKx3GWqaNMHjqpmnAR5vMJtzP7q3jUR6+cKaCVvFfS9QA5Qw7jazrgU+OdlvaoVd84rEYaczOODcXYRtdiJFWqVFwSnn2pMIXudxmuU0MlcshoyZkyN452ecGQTmQDq0dsPmFyIo/BJRyG10ANqYpWYUIRU0TiHGK/imi/JhGgLb29LxDh9dY+HB8X/pqHyuwSdMaXrOV6VB1VjVfjd280gOV83mclkDaPl+LgzTMisDpTbKTcPJ4FWT/Utn2/q2cRwPTg3jPqiUSOvJXk0IfcABEgVLMIahCQ1uSBCM5qjRSreyYoMZDHsHk6V+ZpJtVjc1hnVHeUrsesGeZCr8ieLfNiumL/5FcB2I3O9Zh4dP2E65vPovkXkHyLaAuERFtBeqRnHScnJYmRGpq1H5WpZvAx7K0oltJCeBQXSufqegAjWgvS2xmLo9lpPVeps3E+GPXU1i4DzRpNXRZEe/Vvgn+4eeHnOFYO68PX4+WIbV79VK3C9FtD8art+tsNnBIjt74MlWmRTjM/b1LiodusOocOsJxRPeMNQi3zmVoOiJ9xDuAT7m1bwFPQjkJqMEAKKxOyC/Amjfu4C6poLmDaaIfN3mQNh3ajrxxqEK3uwCawCKS8X6NW8R9/Ngd9CTKje8SaXcm09ET8rN0AbN6XsNc2HyjTHT4dkHpGvTmsOkESXK5wHgNPkPQUadmFlK+pC2bhrRfOA1vUO7y0gOMi9b88474Exq++rx88Prw1a9vNBXe1czvaLJTFc10en/aZ5Wxesfc1ahdk45RfGq9FomHrGLdihF6EIEQU5AvnA6gZrwPiE0albBbdk89ggrqS8ZA+KSFGDWDFmq8S0f/oxmE+UjWE/5O9jZz3uE/UOmDmuOwQDcNXyguO07vcPXsXIXN9ted4OuK1y6P8Y7y+yen8Gn/kj/1xvvN73+VHb5/4R98OSsEXfuErmMLN/hHH6cTxeEBIDE3eJVCKio4DZreUqTKcz9h4i1grECj3UZhjV5hCFQ12hHWupC5czFjsUkOR4yE51l9keLLjZpdJXjhVxxkilUt0b7mWG148f4d9epc/+Wuf5nj/V3j6hT8FwA9Ot7wxfpfhxYGb/e2rptdHOkKsX5Y2lxCFT5eSKn4x2/qGcU1W1HTLD5NNBCseSqG0YruUJoZ8ZEgndmli5ICdXjD7EUrcey0npExwPjPdHThPFUu70GIDbnZ7qgun+QwagvlmtsxdcQPzWLBElvqM3D5vZuSUGHY7ch44HU+k44wfYsNxl8iZEGRPKVoG57wioN4MvHWuWYicJOnOeyW8hoTkAcYwrBcOUouyPfRewhD2SEctUlYqQYMYRwa5RjVR2l7SYUZqLBjJKtgZs+eROgMkzYxDpSaYpoqQG5e1IwshEL6SiS6NY0gtrVSR9Wd32j5mnEoiCJaLwgztHmPbpi8S7U9JF4HZQgl4wD+NcbmfzasX23YtYZftFh0B64vhkrzdeLubIG+zX3fBfMAkU1FSX1c6f7Gdk7bimAg614M0EYqzILMmcd7agq2EcuXK5GfEXjCOe8TH1ZlzYScj1UAIdH86Hxbu9M2jzzE+ep3do0+jV7fM+QrNG6oJ2hoWGDkb6o6XO7D7df1SJQ/CXAYKRkpRY6F5XWqjS1v4H0kjkzP3KikpaGocSKtkg2nKS9HVkDMpt6YBr2gO4A9+/jzHOtUeOCPNc3FhU3jT1/8FAtsET/5Kf3tx9LDgJhNt1LMaOTlDnnA7NjrRys90Ci4lAmU/R/OIOjHPTZZqNmo9IT6RUlCWlIwt3OkpjtBK2EaJ3+M+QN7tkTwE19UMNFoE93IJHUdk2EHag+R2PeriUOPNAbUIzbq81aLTKo3fKl33uraiyxVQWa5jK9yORjMrFQZNUDOab8mm0XbeD6hHbYT6uV3fdp1adllS45hLISWLZziuPFs7sNiGbgPWu7+5f1ty3sN76w+2fvX4QIfVtiS97TfIpZV7+Uuas+oXJnL79gYveCjSy4OL0L98PZY1RWWL4Lh4x2OhulItkcqAloxRG+/E20lHFaXijKLUModhbgbA5opWCzRR4niSnzg1JI3TW+T9ZyLFVayfBbX1Y0/Db5KScK5/k/sXv4+XiUc3j3j2IhCkuZ6Z5h8zDje4Zv7tP/2n+Lt//S/z+TcjHS95xzgMiMDT2yc8O5yoZkxzTyunZVEabm+pZcdkE3J4tvSkLsMByXe43UbvdQ0h8gbIUD0tbf1iX/XiNjtXPD9/jtduMuObmeGdH3C+L9SyeEhR2JZHLGXSkMnHmev3/goAe76EPv2zzP0Lf87DegW0s5mvvdjk4ePiy4+Fjynh9NhFtWajoYht5mxUYAKInEn+gmQnsCPOAbd75vmO6dg6UdWJuVbqceZwrMymMMoinl6Th7M5pyh4ItL9c0d7fdWlrB5OeS1O7QgoTtrtGHYjeRwRnHmqTPcHAPY7ePxkxzgqs9VAG5Nu0raxqGChoEHpKNyl47MgpbUFBV3hohsedyhhuDUJcw9ypQVLxTA5IwPIOOJiZOtQ/Ei9D0RNLYpQkk1Lt69YFBxNSh6cq6sb5jJGC1l6/a90Kli7N4tfdIH4bsdLdudj8lvDcdtq17bXLwznJQrTg4ZAaFgc2uVU+j1cfM7OA9w46974yA4s7YM3z0r701oae4lNLgCJzZqxLA7NXlsKBJ+Mk1sGxLtEKUmEJI5YaccrpGFY6C4qglosw6JB51JVOlUr+cCYCsgdlHdheIKn26YOAo6SyM0/cBIV8bKgn6npnpo4ltMSMGy1Kr3hvVajgEftiNkdwyYNmsSQlLBGZxgHXSrKVRPTDNUKda5kLwwp400loHp09zIkuLs2RP1F4/kaFUmQ1ambAOZh0PVxjHDA1sCpvdh/if8ecLL7nLt42LYBz/IAxxYqBXQmtexJTvG7SkHlDHoCD/SQhpAGdahSasGJVH0ppwWgwgfUZ9xmzGYig7bOYrOK1xJFf0DKOVaJtoGVI0pGNfiiToFU0aGh6jmHeo82h9Wi29u217R4z+jVMJJN1SeOryszXQbfi6Y6hsuqzkTr6tW523GcFdKAyA6VRHZH9Qylc1jP4GtBXHTxegHdqZYa2rEeoEkUiKdF/WYBC+TVM/BVLId/kvGJDusn45PxyfhkfDI+GZ+MT8Yn4w/0+ECEtRf5gDR9P5q7fulDv5x027yx7qF9fIPYvgQfP3jrZdz4wa9dP/HybRGPJkOWEHJwUaoj7XySOOqClcrZClYKUmfG9vksmblxmq0UEsbOFTwQzvPz76L6hMKbWNlHNeqm4vYsyv61P8zjckX13+H5e9/n0e1jjuUtAOr5jtkkvk+U3e1jfvNP/AvcyncBuBoi3Xu92zNXo9YZJDO2FEQpAdvnYUfShO4TWKZMd+w60WQHSPQ4xne4R2FZj4iUhKeo9vNOvFj4mxHkJTXuz1c82f8K6XM3fPpHv8t9a2NosiNlZxhC4/bF4cijx0+5Hpo80un3eGL/DeWHT+H1v/DyTf6Ih3tdeYvLPI74TKPlF4GpvTwBA2WNghQ33/Tpbsmshk65VLS16QNwu0d5jtQD2BGze7zeI+WEnmKbejpSizFPcHeGmRRF9e0rduOAl5laGw+oVqz9g6iInuzMkFOg+tUopVDrGk0fZMLvjkhK3Nzs2V/fMB/7sR/x8xkrBruEer8GspxinQrZVrmYi4pVafwliU4nAQr4pguVQmuxaV1twCva0NGgZbbubXVGkyC7PZb31HNE+6WesfMdg8+QFWwMTaJ+Hyu4ZCTvSENi1Ht0UmrrCe8mwTlviJmILKoR0O2VLJxMlaZHsvCsunX5uCDWxAVKCVzocrXf1q5X/YU1B7W9n8svC1gVCIxvXnv4dXibf/JgHyihxVgXxKxnppaai1ZUsoCrS9vRTLWBKjnsT6vq7nSXrnHsdY70qEggR0thGWhOqErQccTIQ1pSt7VWVIWdOO6BfDI8xmjFMf04RMEqySun+cQ4Bkc1SeeVRivjrCm+p52/mYOfA2kSjbR0PeB21zoXgUnBW1FsamuYtyLwuLVCTqGRXK2iWqleVknNJm9nxUAVqyNWckPc4jEYFoQ7ij+XFtSAtO0+FpzVfYXA3u/RuZzGDZX1B5us2YXFb+j0IplIem4pfxjymawTbvdYuUM5ofWITy/wKTJfdS6Y7qhzZE2jqPW86C3DQK+ud5vDp9CNyob34sS4oZIGJOVFnYLjc3LyUAPQmJeIIU2uTFJQrrzV3Li1osXlC9bnVVrthJitKSEJisCSEVlTXOt1N1tlrvCLDLe5gUyggqhBdmSXEQasTUyfa6OBNT/GC9hxRU69HYdEm+7EjFqitGfXPPXLs6wnW6rqxam+am4s2aAPtrkf7LDWGZHU3JlOANbF4F/suvuhm57I7/flqyO6LiAXzINXHrhs4ODtWa+zf9E96+LKlkie0SSRy20LntRYnAai13qVGqmYZviwM2V2ioXMShS7OqkZ5nF+h+r/mPTImKbXgJtIQXtPqzuTFXT/aa4eK6af4ebxa6R9LMjvPX/GudTQ+HPFXdnfvM70XqgInA7PSFmZhoF5ruyHgXNtjhaRGhuGTJnPkELjz1RI4xXeSNTJE1N1CgWvI1CoidBbJQyoA6rB6zRz0KaBCCH/4QUdjuD3lFq5evoZaOT/+8MJGQcMJblQChzuJ64/3RzaMqI1oTfPXzkHPurRi65WwXWWFMkSJ8l29rQFqb1iGrI/5huHtadLenW1zzinaHsHUF5g9oJq96gfKeUerUfUJuwUKflyOGDFmS1jPrYCk4nc0kfn80Q9TQzDjv0QIvsb/XhSVpgt9FtLZZpnal2NFQhznVE9owLzfOLxkyuubq8AyOeKlTMqxvlQSHMle1qFyBtHVhodyKz9vbmutRqqscB7bRezFzRSwsFIOVL4JnjypW2yEVqZaDjbXip5MNKQYB/HeHbF7o7s/EQywXXAsyCdMmCJaIt4h2gic0NB1ufDoypbWCi+F0MIW9FrPPpSsTisKh9mNz/SUUukzHkfaX7tdABWh3WVae28UGnp1jY2fu8rOboX23brfRmoLd/pvgjvd9e3f8zFI20NTcid1XduLXTFI+2vXtrffVEsIE5qkltTadzDfo6akJTIeYDpxFyNuVZ6cWSd4pnIekLKM8yvIljXENZLMuLeNCa1kqic7Mw4RjOUnLQ53bUVwkijxoRDa5GTbnJHQkrv4P69aP4rPWU/41aiZoqoDZhnowu5J8KOD0kZUhigZGUBEkw8imQFvCbqnLGyisQnTSTt6eJtKj1+Zg8KTfmYJrAvbVjXIOPBFpfr+3auLUv69qkVFAuNVJlQPZF1ZkjhLCoHpEtSzS8QP0E94sfnCw3LGbH8iCx7PGVKmXDRJYCFaKbiy/odesaLFN/mUqoqadiRh6tlXtb5hE8nCjPDfkfe5Vbo2bSnI9KKZ9VbY1MPLn98vW2uyYISbK5R2GA0FFZkKabYcPbdQhWpPTsua6GueAEmcAnnWcNBt7NRa1wjKc+QlAIccAObgvfa/Tk/gR+jAFEGVCasakiHQovI8uVi9Yoh20nxgHIadKQPDrU+pNNVL1LZkPu9n8PDUOkVB7Y5mIdVuRHEbIsG4ucq2NHkqhZ1AWeRsmj/9+Z5NPUTcnunClhVyixIyeR9pmZZGgOoh7pqUiEZYJXZCnM/B1UkOYM4WiqlCnOpdN20WgvDacKnQhq/QLVP4ZKpvSrRE17PTRYJaqncH2aKdZL2IyRXzEIKIouA32IpipPO5x+TDwPqld3NDcfphDLSlTzzMDBPDqpUryGxMlyHZMcUxT02n7D0qEmjlCVyI3U5rnY1XdcCjVqXRcotkJLTuZLne3b+gsPpGfXYlArGRxzPM5730Yd+mDkej/zkvXDeHg/Gi/sTt0/f4OMYZjWCK9k4rA3yCYdzLfRbz3k1FlbDYCyanW1oQzagRIDild5TWv0UWn02YeWMlDN1PkWDgFNct/l4JiflatxRijCVylyd6RjXLTukYWTQiquTUjhP1mSpijVjV4w6G2WqmFVSr0JWxcUo08SZSmJkTka+irmntWLq1OSYKvOcyHVcHF6zirthvRd2q1ZeC2Oit3kEst6QeV8CHadCiSuuKQE1shst2sz9gVdBkrRr3FCWq3BYx8ef4vz97zHf35M4tE5A49r8INcIFuzYYL2RnJ1x1+7TVKnFcb+KhUc3Ttzy9b1ftizFmi+Zyo8Fpopgj7qiakBb57doY5M3Wo6xW8UH6OoGCFgE2xsv+6HfGouJrXiAXwCk7SkpqMzssrEfhForTbwEq7FIm9uCskShSGyQmMmcGeoBPb8XUm26W4oY1UO/cq4T7t50ZVn50dURr8wS6E0SRX3lb9e5IqUw2RHmI8mNZBnZxQnM6THuI06KroJ2Yr9zdo0/mgmEFStYOVPPhWxr4wFJhgzxPIjMzNP3ON99H7X7CCQJSTIt0WWwWqF3nesXsZRKSiHVWM0x8Sjgbs+XueCSmSW0V70mqq33dBwGksZn+yoZBY7rZH2wMv/cRuA67dtX43pxNL6EYBuwqv25AwsG3QAAIABJREFU5a2uVNdW2KoF1ZmcZrJOJFojFbvD7Y46vYfXQ8g0lYlyOlLO7ZnY7TAXyJCGgZQzlIy0FdW9UpsTKTQAiFXxwHGsFtxC4tJFwkfQLum0ZzrcoT6RkkEaQebVnwxruJybWVmVNrZXrwV8UZhmKyTovhSBA6EE5KsSr0ul6Va2Rzd8qJ4V90rrwhVZEdHWsALBzpH5S6d3o2kMI+iIqyE+rHOfApyB+1Ad8F3sq90olYTTA6v1Dr/sm7b1uP39s4ZVH6zDukC7m0V/8+5PO17+LKs6gHAxgZdgvn1OPLqd2ELOJoyqC9rzVe1Hj/SzwKwVk0oxJzcSs7aqO5Moy3CJ21CqYWUitSPRrkwwz9RzgWKMviolnMwjAjl9B88Tsp8p8ijkS4BiitcamoASwtcDHi0rAUtB6FcBJBFi83v0KvT+/PRjvE6czxaI1DBQ6kRu6fhiQejepSA955xhMKYyM7bKQPUzgf4XJpNolKAbw5aI66c0VKYhJJugYDZH6i1zfhsplbFW5jmUEp4fCzevv8HgwjwdSDJyfaPkXXc6rkjnZ/AhEdNHNcxaoweXNRXc24c2aK2bzO6wrM0EfLkOD9Eod6d6JVPDqVeWLlZqE9gZtwPid2ATdZ6Zy0Q9hYGd7g+Uc8GHEyXtmXUIrcams1hLYbffs98NKOGMmltkCSAQxxSqFgA566KnC0HjiQ5ATqlQfKZSePG8iVTvleE6M1HJt9dIzpiu8kgqXW3Ao12hz63SrBnnvEOHcIqtzKh1B2cJPQNt1drao7agd5ET89apRUmkEBxozwpN8y8/fsr0+NPcP3uOHWb2+YDsYuGJmxDBo9dASjTfoUMidyHtPHM+GtO5RjrYm1h3D9acQCTcLmgwyz3+KebXRzmspmWhuBjC4nh7K7jqckjefZpuULu9vLCn/fl+vzPcvL7sBxagQCqqM1dj4XZX2WfjeDp1MR40g5WZWpypaixgaqSGhmVO6PkZcv8WdnoPVyWNkc0BKKwp2ay50VVgEdUXaeh+tA62Whk0L61X56lgdWIA1Cr12bvopOhNzIur3RlL17iMJAlk7MqFsdFphjKTUolixxSZLzFbYfrhPqrSc8HLM6bTtyinHzJKZRgDbDBXcsqoW0OgQxKgP78ApRiSlEESVVoKOff7PSB2RWaHzDfM0xCO60Klk4besrm3q0P7cQpcrKy4TUZmnUTLK+GrrMjqlo4Tb267zEXLVGFCOCF2B3bCCEdL7A78Hubn+PSCWifqXJhOxtRlKv2MjB660VgrEtXFoXQLGkitoYudUmoSZrFBqXOk/92xapgeowFAO4fd1TW3r71JOb+LcsDLOXSpe8Gxw8Kt8aCoycaRjyY0DUJymn6rtoCf9aa6gGtQTiB8h/WiLQ6iLNBWG9L3saK2ohkdbjGJ9domx+uEyItAciUjcrMppq04E/iBKKyLIjPP7dhqNLxwv2JZGGU9xy2VtLObtozQZT5/iLvwU3S6eqBaKC/z/n5mrld3CraR/EZ83byljfDWE6RXvfUZVlGHjIKG0LovSA2oVIbhiAwVH2ZMaotouh5forbJ4eIU77pibf/nSj3fMx3fDnHdClpCDBrgbAPkG66l4tOPKcPb7B5/mZoftf3vEFNSLWSccVCUyq4tyEl3jfMhkb6kVeUNTah4yng9k693iDhW5kDQmvh8R0u8od+GQQHlMbUtytgZ0jOq3SCWNjJWPQ0R4j/I/8PeuzxJciRpfj+1h7tHZGY9ADSA7umdnZ2ZlR1ZiixF9rAH/vW88cATheSQIzM7sj3bL7waVZWPCHc3U+VBzdw9C0CjuWQDe4BBCpUVkeHh7maupvrpp58muoj1MeRxYXxjFbjUDzDeocWYG29HLp/x5rOZ4cWH3IyZ+fqEVmV9cIf2xd0tb2ewX/+K88f/75bH/y9jQ0b3lGWw9ztfwdGYSnNeDd3UAeT40Jk1aawVNW+B6uTTxuOpharFOXhlQdYFaejjMjcJlXlFLyvXi8JNIt6eCClTN0kio9bCWhZS6MZMqcWN0LquXl0dA+PJ1SKWdWVdy3Y1QZWIkhEoK9fHSpOq5GpGCgNyip5lGLJnHroDTAvsTJAWMRu6pdtjSpjAqmV7XoLtTkfAnzXvSFQgDRD2DdesB8A0I+ZorqwLoUlzyd0Lpr/5a1YrPH32G+K1Mi4L1AblUR0xCAUrKxpmRObtHI1IiAnVgaqRkMKGCPsvyMFCHpCevr/0Ns8/1ubvUNUzRBgOgb90ub/dFve7T1/hG7zznrPQ+Hg74HH4vPVjNMfWusPlx8oZbk6Bl2fjnBfQJ7Qs0BDObN5yddHSEMQIWhkavB5twco7dHmgXB4xCdR52YIlgjt2MSWnHKi1QLurv6ztPL1DXGxUqKVpEKfhBpEX5PnCOl/Q5RFdV/LiNCmNX5HPr1E5EWJCtLJergztmpOIS65REE6IOk+xrk7niWNBYkEf3mHLl4T195x5IqcMlxYQpsElu0NEkqeAvXagacXGNnPmagtVXK4rtq04pgnhllBOLMuJOg8EGTzTggeUPZbwzFj3Xtv7oa2JH8Fz3dcczxBf4OCZPEdg3ZeyA1hAQxh7kFJBFswuoA8u7G8XsJZJrO9cMrA+wfUddbmiVVhLZKmtWUP14CGl7MoqkomNnwz7Wo/J25WbVrQW1tXXTeeqSoiNfrVQ4pODVkAtj0y3N6RhxJZrczh7lg5CFSQ7L31L2Vvl2Hp1my+B3s1su3UbGmn0qn3Tva6o67QeKYktum3n3fiz+P7vTntE8i1x+giA8vb3lPkNKT5CFCSdwSa2aM0UOrVAriBPEAKhd5ELFcSoRdE6Of2hZbfaSbbj9P99M3D+DvGWZ+OPO6yHL9kO1KP842iO335Cx2N885+CtU3BN4wODPjHvcOOt1ADzFFGR1V3iQUL5tF76Py4Qug3V8DyypgMzUqJTijulIClCa9LMqIJYQ2Emrz3H7DUhVCUUKsjTNEjkfL4FQBhqZQIT9ywPH1JlC94+MOvSC//jb8/fITI5I4B6jxSMWLwaCaSqMjWqSVSEFsp2riQePrh+vSGcTxze/OKy7xQrS/QQAqRakYnowqKRWPGF2CtQliyd99gwXTYUZg+D+bLJoTWpeLAY7PqPcCrwSJnYn4J6YE8vPYzfPufCTKxXu4pwweknFjrdUtt/+Zf/isffvozYpfN+IGHc4RaRNQLIjqHuedO2jgW2aj6Br03HjjodZq6FA7VnVlVtK7OswOsIaJe0OEyayHAUhVdGkdtVUo178AWEyEkikHtGqMBihbWuhAlk1JCSMwdQaVQa6GaYirN2Cuhd/MxiBVOOTFOCYkulRJaLt5EqVrJllF1JHXI3aCBLYsrrzYGyR4Y90jGJV8Cvde7P8EbQqKAKRLNT6Y6L89asGcSWwGW+KZmACtWr1h3TMYT9sknvEiBK0L56rek6wJLC9hqQWJFrFJZMV1IsewOqQKa6EJ3bkv2tR1o//6xodTvGM8A6/ff2ziqbQPcgG3ZJkubA/OsQWFbJ3TH4I9evIIUJLgIe2iFQDkpp1F5dS6Mdk+d31GDsPa1qzPJFqAwTJllLtRlZqjNGQuKyUIJUCUyzzNqszsK4N14UkYL1CwUcTmi3IpNpSGvpoaulet84bEWpsnlBKe7D1iXwv3lHUMKnKeJIWW+/MKLXYN8jZ6+4lKFnE/cPzy6ruWTR9QvXn1MGG6w6xnON6TpREqZnP0mp/kBrvdU+5qoF4ZYiSIkC/S23loFqwnNgZADkqPbkO6PiEDo61F9g1fYt64ElqklUYsgkohEbwYCW5buGboqbAdoRLo/Mrd/vrGtL2Gj8u1vdl1gGrp2QFhtl5Q0vK5kR2CL66bKDPUR00fMvCsVAOUdUWfPbM3eZAQyQtx8pWqK1UJZrmgopGTEPGwAKBIxDW7LrWJFkaro2rsLli3LLBKwulLmR0R93aYwUR+rF9TRC3Khd8oyWqOV7Qprk25rAbitW9AhktxhlF2urTcYQHWnI9jBHzJabVEvDlNoreX9+lqWGmttY6tTpdKEnN1fsJtPWd5dsWUlp9nbyNq6AVxeZFnBCiaLo94ybza1a7lD8k5Yklwu8T0z04lY305H+v446/spAXL4sx+andfaN/NvO8C3kQH2o3gVtqc8O8LaYx4Rj4oISpCCSNkMp4hCaMT/UAmhuIHdHIeWfo++YeXVF5B28LGAJKGYf3fMkVATKk1ndTCWZUGCkTSRNFLDiXDTFqD8gaKB/PIvqeEjHr/435nC19y/ewPAVScuOvHyZ3+J5YlsRjjdQvbzmy21bkBeSRp1pZQ3pNII0GF1ykBIlPmJ+2qMpzuk9jR1QdWIITYEJCEmaF0QvDNF0TuwEWrASOgm/N7uvwa/x441t84zYTccImhtVfYGT/VDznnenIZ0+ynz159BOPH2zVe8ePGSNI4MvX3sWvj6979HXt7w+jvWwJ9zOB/VegjfXt1W3U7u7pErx0i/lZK0gqttaVtFWYHadH/dGdy4yi06F1PGYSCEwOPbe9albBuSmqBEQswEiaxLoQQ2LchadSsOLKV6V7acvL0qjadtyrL0NQKS9nlDtUXQ3kJwHDN5nDiNDb2si6dcU0IlYqVitSLNoVUqqisxGBTns9qB4F+L8696a1iMhtr1e+TPXS9UpG9GG4gmzWgpNO1AR7SenBoBmJwQXhBfjAy/XHn79Ihev+K0NMRC1W1A6/iCXYGZIIdqcI1OJ8JakdA+z9vEixdqqXWu8ntr6EeCWL1O4D2nozmqDhbEb/9c/2FzBjYgq/mobTPlW5CMrsvaEK0YC3kUhlTJcRdpv53w1sLLBVkWhgp3PS2oRlmMMWdyHngsCyVXpsHPLOIJK8kJG0bKvFLnhTI325QUjZ49WFKBGEg5odtFGNq1sKuyXi7Ml0fa6TFGWO6vzA8rdx+/hLrydHmiPjgadzPdossbhpDQfOUuOWc7X92hvfz2ay5LYTjf8fHPP8VGD0/XppE8TIpMhTXNrMFIQ2KaBrSULXCQIK1QM6AkcnLdZN18C6VWQ4ORU2DKgcWqV2+DN8rYio6sMbZsLyiWvRbj20fLNP4IS3cruDK24POwKFtW2p4vzPZ677q2g1ebwfT7IY7e02lXDQiRslLLBasXyvyEzk9InLAQsIawlqqU5UJQZTjdMQxDa0e+Z2zdD2y6vmLUWjdgLiUvmHLHumDFUIvURkVRKawzXnNwym5PJBGSU5gk5Oanx8b/FCA8CyxcISMhMjhdoYFW23sqzWS53fNq/u7IRgj+nX2P69DgPgkdkGraw0SIA3LnnS2TKERBH37jtIiyuF5s/44O1CCYlnYex2JcwbTRaA7fuiPp3w+f/ikAwk86rD+Nn8ZP46fx0/hp/DR+Gj+N/67Hn8RhfY6Svs/v6pFT/1f7pMg30wIAdmBdtTSVWd2inSBGa4VOjBWC94SWsJIawhqyeT/mIA1lVSTushRbhBkirvnoSqOxceSGpC3cB1u9qlWCINlT9ueXE2sS3r2pjhhopC5vWdcWaYczUlau737HOb2k5Dvmp8+Rlvbl8TdMITOXPxDvPuLhemE4/4zbjxoXZnxJiZkUxKF1vSesX2DiElCerjDnQQUhBMNbvbWIj4i2eCeKp3kN9fa09Ipco2hsU+iVrgpbAYPnSlNrcdj5T4cZ3IjhXuQlGnmqn3IaPbIdlkfSi49YlwtVM/ch8PLujvPZ03OPj/eIxI1b+UMP1ca7lCMDeyf3H2pst+ERtOfnvsExAroen5lzfC0UXDmiV5uqF0nVShFDrwvrUhGnNAGtC5sZWoS6GBaMECK1fde6KLUMoBCzr92y7ms7mEf8ZVmd39dk5qapFSxFoawLQ4qE6Cg5Zecupyh04decBKmFuizErYjVr8k7n/n3duZvvwfU3p2oR/J7ig+zVmzVyD8mz6yIEDZExft7N6RVbMuQVLxanDQQX33I8LNPWX93ITeEdaiVivMkY40YKybLjnJZbHQMaVq8DWx/xpv7Ntv03evphxzW2uF2FBjYslzejzz4jDwDLfo/Osq1d63xg3bu3CGTcBjSaQBxJcSFNBZOp8CLUb2YEE8LvrxJjKWyFuMye3HF3dQ6r1XhSQs5ZU5jYr4aKSWXb/JfIKcIKSJjpjxFSlWeWhe2cbpBkne/SqeJOAwgxtyyOstyJaTkxShaSSrYaly/8szW01dKDpm70wl9NzPPb1muV1IXGXh6g9WFojC++Bnh/JqQhVQbx/XyhuHpnvXryv3yOSFXb019akjdGEgvbxlevmA2YZ0LaoFpCjsSNXq2i+o87rriVdlbt6xAFFhLJXrViiuCNOxIFSIVKoilRic4ckP36Q7tGatVNzDtWLv0Qw9rvOuex3p+IuJ8fPrzd7imhsq2g3jWc0uHO2otWhFZMJ0xe0Sa9jW6UOtKXS7U6yP6+I6i92i6ok2uzMJAmiZ/XpqNDiE89xdoKgECkhIxDhvCWcvaumE6Tyq0hFHo2cRFkRTQUFnnlRxG79K3pZVa5byBI6vR14vtKXtxA7XRr473J2w6rH2SG4ek/0qTYPSy80Qvxtr2LzrXXXH6wbUVbZ6w7Pco3kWCOTVN598iZUHqykY7oH2nVUxmjAWRacu8CQHMs1rSrkMO+8OzxbDVM7y3dp6tl28ff1zW6nCqfWxZ1o1j8v53PHcQ+sb1bKgejGaXk+ipaC+SCaIQKymvSJxRlm3TlWCEzMavM3HeS+fRivlkufh6REyohaYO6A96WZWIy0UEq6RQe90JCxE9vUDWiEwDKd2gX/4j6fKP/v5yYuIj7u+/5MvrfyWvV6xWuo6w1IG6PjKkJ5gfeDVNLOuXPP7eDetw8wHD6SWWnIYg9g4pl63oz0J2UX+l8Xkj1OryUQBhB/xTiBTrqdWKtJZ1Fj2lIEQXKg59A+xT45WRKj2FnJsg/E70CNYXlYAJpSQu/ByAfF7J9b+g0w0UJSE8PD5yapXcN6cT1+sFDd8TE/2ZxlHK6vgwfLPgal+b3iSgPZRtTYru6XAxV5fAAoTGn4zFNx4ghMYr1MD1coV5xWrrE90I+FU9deNVpq5zWpbaGj6CDIlSKg8PT+g0MOTENGSG7A5pXVsLwRQphc2n2QycRMZpdP1gjFILOldKy6SmYKz1SrxeeJng5mZAlpWQ92IbpctaNa6u7EVV1gT4TfdbZ0cDG8Sfb+1UIutM0vbLrkjgeqDVU4Fdlqsbx8az0pCIty85//yXPDy9Zb06h3ycL4Sp6wnizQkqSCs4dGkaIWeoxVyCuXgrV9ppV+lO64+4w3/naE/3LqHiti604HJ7ebetu8VtOo27B+D/t7q/Yu8/A+BC55WYK8OopFiIumJrZWiyUCk2jdRaEKRJqXngA26LqiZyCAiV85S8mKhzXEVYdUWTEIdIHQZqXijJ1/Y8z2RV0jR6cfJaWedla7nrGWWhlEoKkSFkijmtBWAcjJAcKHl8+xZ7fIuMt94aEzBZOU+ReL3HLl/ycPXgYFAXmD8HZdCZUBbs3VfcvbwlycK16R3qaYI0oPbAdHa9zbIWFkkMzW7W6xMhDaRxxPl8AqVutAbFcZScoov8i4MSveO1CIgqtgp1FS8Som5NfCT05/39FSPbPTZT3g9IfojhtuK9AHZbn8dgcS+q+sZ5mtejbA1uNvqA2wkzV4KwFmRIK8RUregyY/Pi9nTK5JOT0cJwQvFGQQyVUi6EPGyKKBKgqhe21nVu7Jidd4wpFlybNeBzN4wjfWtTWxqlyhzAsBGRuNVMRHB+p6oX9XWa2oGSQKdJaS8ctz1Y3dL5tjnwz/dy29/3PPxOu/IzPDiQDT2RhMkJelONOMIZ9PaeuryFMhN1T++7M1yg2xe7IjJh0pVb/J49t0c70PGtq1G+643vHn/Um9BDxB76gjuWcnU5pGffup/wvhYPugKNE9iLRcwOFav4fheiOWIaClVWYuOoFuuGy8gSsBgpwf9dpRtqaBTXxiVyofJV696Eo/riFAGpxjpXluVKr/a2PCHjxHB7Zn4zs5Yriw3ctOvM9lvm5YmTvCIFuCxPqEyMN84HyUPgzed/z+PbPyCzwvkDxtNAvXzux5/fsaSM5YhFdTRVH8kN4dU8MAwnavDmBaWJ8+Y+W1pbxO6VfylETIKTqttDkGJlXStmYVsYvTqwzwkN6QomHk1G/Pfb+zUIUn12unJDXXyBPw0fczN9jdSFJY3UpRDxQgoAHRKKMs/XP7bE/mxji9p7ZRl8KwHmaDC1RdCqjdDe7k93xqI1D5GIWndEA7VX+AbvAmI1efOKZYblQi2VJTgHtd4k0ICaUFCfyhgYhqYQMaRNn7iU0gIRw7QJj4sLnFsO1FIopfVdt7y9r+LHqe35KlW3wpbT6cQkmafLPQ9ffc2QhNNwcok9v0hi9ApUM8f65GBZurHtha0SOvC/QzxaqyNAiEupaXP8/SYBydFCrdS6IIGmInCAicS70khIhLvX5A8/QT93VKXMC2Ep2AASXRGAlDddRK1e7BYtUFpQ4CpQ3ftrrt43Cq+e4ZU/3pD9z7GTlUnYuK1G92cPHu1WaX1AVw9IDd+KrO4/OZCjznErBQkra5npFNXxFEkWEKkMQ6BqQGtl6PxnhXNTwy6lcB4HqJWytAp6jMUqOSeCRMq0IA9swVIKwfuvR5fhs7Wga9muIeSIaEFiIjTljVJ2zuc4wJSFr++/pqwXppCwGHn9+oN2fguJwjCdeXN/z4thYBpGvv7CM1sPyxOBSooBSmFZryyWYHjp5zd8AgLL2y9Z3n7O7d0N44uXbmuS20VyYF6ujKGSJbKWQJnOxNZNSyWwqj9jgwgxgoawNXQRMqoBXZPLmyn+UMtx7XoQqWbuJBwcWMO7Xmn44VewbU7Y0Uf45u90pYrtM4f3QuO2bzzsvoerB7eq1eX2tq6F2VHT4sVSLq0UiHF0vijNGTVFRShlIeZEKb7e/BiRGDPkE5hRy9L2y35ugV7bIKzOJY+Qht7JamCYJqIUdL24zYrjblu0+H4ihlFQXbxGQHv2Uds0NvWArf6iO/m98LeDBqGBW4ebu+FRwr7R7Q6rUDHZa4Xc1znYBolIOpFuPkaffk9dviJURbTXBRWX0LNew1zwWpCxzdPg4KB4Rnjz6Z6Dqs/d1/ed1T/Bef2exgEtYudQjXoch3W5SShsb3UD2k9xj7C2aKBFBOHgiUsQYhLyIKQMNOe12E5CLlqx2Uiji2sbUM2I2/33whajL/IWsXTZh2o4K8AYEWaFp3n1zlHAcMoMOZFPcH14w/3D70jxgbkt0HFNDLzhsryhzJlJC1ofufZ5kDtCKqRonE4DLz/4mF///h8Y7A/+C9dAGF7xBLz6xadcL/dkGVnXVgVtUOOCpMyQR9bqs1D7nt90XIeUKArVCl5jNuyV8LYSQkO6aNJOhwfdHxAvt9KuSVllW+vupviiVu0bu2wSUct6IuVPmOqvsZiRqK11Yd+8jOl0S11+JIdVDYJuDRAA4rcUq/T7BWxGye2u7QgrHR3ZI2FrhjmQqa0CvsRIJBIstDQO1IiT81vKXgguGK4KJsQUmabRtXTxTaiU6khslQ2h7YVYQYBaWNbCsi6oqiNd7dlIkhiSi1M9Xa8sy0IIwpD983rK5CExxMyAYo9PyOURa+LpYfIqVeutWT263OZ9l1IJ/nOzSntrSEWlukOvuL6spYPjZC3yalrEeBMAJcCzQqPmqEvAhhPjh5+g1VPHdfkDqoFQCmqZEDMxTFhoTkNMDmvowRr9Cfv3dm3tNDflkx987BXJe7vFYwvdo0dLe5/Nptr27rGLVC8se46u7vJB/ZshIowpkMU3CFv8vi9rYR0HphzBVm5Pmet1fz6GJKi2FqkCuQnc17YxTjlynY0xZQxlmibeBNuKaU/DiKXRsw1RWnGLMnRkPLgusGjTwywLMe7ff53fcn38A6Eao/XNH5alFSwOGRVhHG+4TRNicJKF6+Df/3BZUQbS6UMUp8rcpsx450jdi5//JY/rO2T+nFQvLO/uqfpEWF8wiDvFKd+h08BFdWvRuiwLuRUUhiGzYK6lHQPERA14UQ2AJmzN1DWBJUTcCTiuzeczqC34agob7bcCP/zaNWvggDx70f/q/2yvPXdYD84plWBlY67F5gRbK5AW84KjYXTqmV4vLE9vvWctgdpQayxS15bSV7wILLpPEkMkxcxW4q1eQBRTwmxAy0JtygAABCHGRM4DZa7bfHSd1hgSrOrBfkgYxWl8m3D/4g1lglNHvJD5QCU73rQtU2bv3bv9Pnlqftfe3lHVQ9D/DJ1pBZUtj+drxcEZ67JUBCROxJuPSfO/onz9iNWrb2CAaMZk2AJkl07zBjL+C3ErXHNWndsaOfgT/VxtA0KPf/9J/ur3cVgb2HF8SuS9v79lHN/qNn/frg4dHNrvemTftPoiINVpAQEk4Tw/2CuhS8XWlXmdiSk6p+lwjtoe8qoVrSvBjEhvMesITBLvXrGUQlDjFCJrQzJjgVAjGgJ3r15TxoBdMqFBDSEmQixUW8h2T6kXstyymGuQqn7J7d3KdDoRh5XL8ltuX7zGit/uLML94z3BApc3f2B88ZrHh3tOLz8FYKkPJHVR8GrKOJ6pWptsRL/MSqkVw7U4a73iAL47RkGUID3VvGNkcphIa6kWCN5D22EcfzsET5m2ntk9Mu6JRauZx/Ahkt8i61eE6QPq4zvq3DVJEzDu/ZZ/4BFUt/Z7O7qv+87c7sjzTdya7mnjVG+I1b7p1239ur4iJpStf3ckhoEgSwPAHekoEWoniUpCzJtZWENHVI3r1YOlUqoX2qdIym4QzLxNJTgqWOviMlgxMA6ZlCKhXcN6WViZiUHIKVLVKMvC08WdDtHCq1e3ZAmwrthlQR8fCVNrGGA01Y7GQbcmubXxnCOIoD1YbcaA5nipAAAgAElEQVS+VzH3tqHOH25yV6pIL5OmumZfHFp1K7tjqd0ZxrMlwQ25xUi4eYF84M+HPgpaHonVed1qA2ITQXwTi/FEjQlbfcWH4CLc3cZU3JBKoy2I2bOAfAOMfyx/9WghexAc2Bz6fQkfN6j3HANp7Rq3A+xOwv77un9CXJklNfWV1BQBkinX+x4oXJE6UXPEMkxx4DylrdNUDMI4RJbFkKAkgyFHhmaTailMKaJracoNyjRlbNPXDZ0pR9UVCxBPQwusaWoxXrfgqbgBmRKbpFNVqAEp1TNDukJcNwWOMt6h5copCy9ub1nne0a98upF3zgCyxy4ff0xKUO9fka9XrGnrwF4/PrXWFqIoZDyhE4n76A436NvPDAf48eE4TV5GllViSKMTY0AoKxCHiMWBKvGmqHGvTHPcAnYPKEloTUQxZ/jjqwHcVWLegi0j/PuU31oJ/0jjG+lI7TnqTsr21ps9sO2z2nLFLb1LLbZ417vIlrRhkiXZaYWr6I382YVSnLPvXaaUvS9q7iY/zrPiMkmFSYS3DaoN6WIwTvIdXshIbRaEmE4nQkSSCmitWtjz5hWiq2uDS2FRN2UXYJOjbrga9V6jYTu+8qW8Tk8r8/vnzVZK6c5WtcBBzcOXay10a9EIp0X7cHq6ohon4s2IccGDoJAPBFuPiY8fYbVz7ZnU7S2Q0eQ7FrzwbvG+dG6iknXh+7f8acj/XKEZL9jfA+HdW+R9uxrNyrAd33B85M8cty6tEpvDCBt8+h8kDg4whqiO1RBwERcOLlvbNWPU9eCrUJI0SOongYJ5rJMpbKshShG7O2XcWkg1cBaFL3OhOuFcnlkaf3ekwA6oJwJeeI2jYTpQ2x65dcwfcU8fA3DwnA5M0z3WH3JdPu3ADxe3iFP/0geL+TzwBRumUvGZkeALssT53RD1czjH/4FKYGYblif/B6dXn3E9fELJglYitQyA3LgMUVP28quuVhVQGYkNuktmxwhFUdVBedDbca9UwW6M9sI53ukF7YNcYvIZCeqVwxZbriXf8tJTiS9MNzecnn3ri8RrCrT6eW3rI8fYjg6E9r9gRZ82QGVajSHLZLVJr6sncR+RAHY+edStzS4aqC21FPQhOKOvtK4niKE3FJO4DxL9TR5skCt+kxC5XzuKKE72ylGQhBSKxgsZcHMC8pSFobkupQdklA1LLhUmwVjOo1oiY3OAKVW3ry75zQEhqA8rRdkume8bQjwKbojbdLoZI35nXaHVGKgNqOkFsB02yBFfLVFiYiExtkt27NrClTxfugSCMGRJI/4u7F2XrXi908kEvIJu/HnL7OiFyPUBYsDIjdgNyxz28RKpSyRWhRwR3VrP9yWg/RzFWm923ctWXvPGfihx2bsn9FVnssE7Zmq46fsGTKzSVXRP7NrCktzDS30IFwZMuRsTFG5GYwxFAYrvGhFRw/XlbAIqt6GMQ6JmCPaT01Aqqe3TYWgnqLtCOlcIAtc6sookRqMaUxYbelyy15noNWf1eQ4YXfWqkZyiMToDgi5dZBq1xurOjhhSpkXYnX0a8l+/Luf/ZKQIvPb33JzO/Hi1Zny+BlR9rX57qFymb9kZCSUQrHCw707rNEq5xeZ8ZTIpzN1uuEmZy7XL5mL01Uub79kjIn0wpzXaJFoujWyqtJ58g741ZaFkOr2gTUj80hYE0EUCZEcE6Vnxt5Dyfcagz++pn6IYd1n+obD+qzstTlQ3VlrQVWzxf4n7K1q4wKhekMEC81+B5YWgFt1xN3UefVKROIAkrbsWS2Lm5/oFLr5+gRWyYPb2pQyMeQmXbW2bJehpWvrukOsQTYevOpOFVN1/e1pnEh5otZH6vWR2mx2TAOSptaCWA91Iv1ZlLbX6h6MHh7jXjgsrYCc7rx3MJbQUGVlo2RI2p1RMeDQKEF6C9X9HPz1ll8ZXpDufgGXguKBmGcAPOMqMXnBlZzAhnYS3V84rMn/hvENjf/3xvc7rA23e45Mfftv+7v74tzqBQ8RX+8QJOa8WJVKxFpfcQgZLKxegR28WtjVAOIG1xqr44KqaK3ElgaoDYH0zRpPE9RORu6TiXPs5oXh6Qm9PiHzI+Fyz9A7W0RYlhFGIYWJQm66mZ4aWitcritm9zAkxkk5lQqTn9/08q95+4WB/JZ4c0sYXrE8wbXprK7xBPUJLe8IkpjfveXm9Usurdr1OhdqeOR+vjDdvoCUmsJBu4cVrAghJuJ4RtUQSXiXJI+IQhP9dvTI5zAeFsNWr9kis84/2rplBO925EU0Hm2q6rOUQJVKsMjF/jVB3nCT3nBqbRCXeYae+v4RhmfyW1qiv6b6jIPdjX93UER9w+tNLTauVb8nz1Jd2//obTRrMVZRT7U34yEipJiwtjZXNXJuXc5UMCvUWr3SF0+nqhkp5J2nprbxM4eUyGJEEZbLjBV3yjuAGeJAHCLDmCjrwrouWLGtGC5HUF1ZlgIRRgR9N6O3vvbjMLW0ht8nETbNYHCj5ohl8k5Dpq1A4kBZaGlKJHgaTHBUtd1zakBjRiRDVaw6ikIrGAyyQlgRizsqEHTTig15JNQbDyrzmRBeY+U1ZXUN4sdrJsiZGBwNsWbm3nfvfDTtxYPz53P1463dbjmFcGjJuVca74WsRxjYDn/ZwRF4/8jAZnv3DSIlyLmSYiGxoMsMaSGFQmg8tpucyOL8aBkiW9vdrgIgjrIGySyLBx3IzpVLwUGINRjBKucxMQ8JbWt/KeLrn8K2h3tk4YePAyElertP1Uoc85b8TKroMlOrtPoA5zD3phlC9cBnmrjKynQaGeIZLf5sjlfjRiuX9UvW+8oNxpRGpvbsSAycyCx15To/EbQg2du8Dk0kHjIyGzIrtb2P2e4U40ElCBbMOexE4tqKV+YJLYM7Z609p1rYMhj1vUDG2DUl+vF/RGz1O75854r3TB26O6z++jEjEJ4BXKqCSiKKt1c2zbuu7fIE6wOqlZLPWLzBVKgEpyUBkEh5IOSMhEjIgwfTbb/v+14M0Z+N4HS4Wq7bOYcQsRQI0dPi1lpg9+uLMRNjbrYkuzb33Jzq+QHyCZERgnPFHSzZbxtmzbHcFVa2DnDYwe1yx/YZ/5TanILm40TdFJL843H/dVF6ZQIcmotIpyUIEifk9DEmBdVGY6TZAQmYDcCEMPk1gRfAaviGXd3aoT+7jkO3yS21Zd9aTPj++N7GAWayG81+v94L6I7Vgcdf89PwiHIXwW3Qsx0ijGBbuj1nIw4NeRV1wXsFD+Mbzy9mNHqbPDHvFmUija/pc5bauQ+SHK0pe8QkdaU+PsLDPeN8gbqia8Ha++m6IE8zSxwpyYsA4jRAKw6ocaSEV0z5FRbu0RBJ5Yla/8W///IbxtYpJoWKibc7Kw1tvPvoEy5ff0b9/O8Re0OsIw9vf8/trXdceXr3OapfIze3MJ7Ikqi2EhrPUcxruQXQ+QppbFwS2+6R1R5sdJTl/flp6VaTlmbo/3Vez+rRQ9s5WqZ34xb5ogs+v6qYvuYqyhgvbU5Xb9awpYJ/2LElV1RdcYEuWt/tQ0v/swdTsRcEbOhqD3P7Re9SX6EZZzE99FIfEbxyXRoHNIboPS17UUVDV6x69bqjp4mytV4tjNPIMOSNIF+r8vTYu6BVpFYCjtDmFEghsDb22loN1Qg1MU4Dp1NluVy5Xp0fHYrLBlkwUo7k8w2PVXh80xDecSBPN0QTqjz6XSjrLqkmgDj6STS6TMx232NvbuAOVgge9PQOPRJ6xxv1a2nGN2D7BqMLVh3pleD3wZuFNHQjjchw5wLW6Q7hhqojMTpiMg4DqhNRRgKxcYZt2yTFxB3Zzg1sHN2O6vimKocChR9hNDWArYFAp2hsjuo3h69dgN4taP9VMw5ruQVqsqs/iFQCK0OoxLqi5Uq1lZXrlrqMIRCGgfE8OE+5C4l3oKA5/lWd0iISWGppSDeNSz1gVSnLiogyDZnS3i9Wm/PgxyKEZ4VlgqtsDDnTiyprsY2uVzFfa8Vli0LojqI/O+vbXxOvmSk8cb6ZSBFqqljrpBXzS7j7gHNIhHdfMl2+IlM35H4YriyLi7pHKmn6EM2ZterWNUkEajWCBUwiWs1Xd7tHEqXxMF1k3elYGWnZN50nqBOCB7pRsqe6N//keaFg76L1zFH4bwO3/j+P3nwjfMsJ+LLsSOrB3bJ9PbpsYKUXEwNNuSahJGpMBEtNOqmn66EGQWNC0gksuK9xQPnyODGMJy/C1kq9XtEYnp2nYKgUsIKWhXWdN7sWYiLl7ODPurodskpdfF2VdWa1il5P3Lz80DMABKQ7tMsF1kdIgtGQ0PeKTK29JqHtJgce5lbw1QNM8QvffS5pgb3bVH8SVugV/OQmfeX1AtJs89Fl27f1ADIg+Rb4kNAUMqy8pasJiUzACdVML9L2GEQabbPNzzfQ0oNz2n/ePebjWXzn+Ja66Z/GT+On8dP4afw0fho/jZ/GT+O/n/HHi65ENn7Fhl4/88rfl4V5f9gW8duzGHBDhh1dDdp58UiqhLg2yYeVYCtq3ju9o3+DKCUFqkZM1OkBjWYJtFaLEFqbsGDichgNgdXVWBt3MIp4C8cwbeeYVyW8e2ItgXqXGO4mErYVjtT1iRSEcfwF1JUiv0bl0UXQgev6FSF+xTDckqJQrTIFperv/fNPgZACkjOn88S6RkJ9ZHn6LQAxZGoRpjixzDOGkHJGm4C3SCDFQFlmYhbnB6aBQsRa6rja0BoH9MjF+XzPstpm3wyCNjRDPE0r0VMYPo0bEd3RHMELJZSAspY7hoaw5sGwuqCbdMcPO3oMd0z5W4eJ2+tbyvfwt9NXtKEUPcI9VLgf1rMAprohSACSIoIjeCIJS4ak7LQVIGnBroWUYnt+PJsQD9XgtVYeH5/IOZKz86nkkB2q5j2lx8G/63rQqpxrpNaB5VrJk/Li1tUKrJHo5qcCGglh4MkG5ptPef2LX8B064c/v4LhBghYWtHlnrK8AbygMA4LKrNrHKu3lIxHuRRzvBQg1IYSok1hAWpNmFRMWiWtOarBobDLamhIRPImAF3CpfGAw3SDhYyWioSXwB2BM7VVg4slRNOmYuBcVdde7ee4zRfQC6/2rLq0itdvb4H65x69b7nJnt3qRQ279ZQNZYQNvKJX/75PhzlqEYv56jVw5BpczkmUaAVvlVugrtS6slSfuyklLCfCEFAtVKuICkkO90mMmJxylJIwSWK5dnUWIcSIIUw5o+uKoZQundPoX1EiklJrQSo7F1ErWdyWV1VicDtIq3RWVW86k4QYEqMWzsOJpSHvpVy4KQ/YTXJOaXli5MrSblIdX/Lqg/+B0zQyf/HP1M9Xkt4Toqd2Q3kk5UhCETlxHV6QPvgl6/KOp9klC29vMiUoJSkhJVQCGgNr4wojbeaiubpbjEQbCMXPcV1HzJzbnWLGJKF25F8/T/o7L/lYSkvLiP3wMKuaPZe4O4zeNKAv1I0nbrsNtJY53DNbfrnBAjUkhIRIbn+aQQwBCy1PExOQEKukVowMvl+u64LW4mtJhHhonRrEKQjFFGz1PStGhsZ9jjFBrei6+N6QIiklUtMPFlUohXJ95ClAHgdygtq1YuM7ZJqQaQBG3ztM2GDzVnjWeaDSsj97i6W2f9HrfgToezu4gcfRaVv93qnsFfwkutxVbyAg3U4cVAI6fulU1oToRLDbPrv+J54R+QDsNapnSlMRMHV7Dan5COH5OjA6c24bx7qC7qV836r9XkoAwSV6uqMSug7gwcALO7J7fFDUvOZPD2nV7gd0SDhGSBlSk92RuGKy0jvtYAWzlVJW554COTZJBvPkF+327MUzzgPsHFa1XgPXC1eE1QLpdIOpElYlLpWnZlitrEzLyhQXOCl1qd45aW5p2eURWS5cK5zSKwgjRR43IeI4vuaqi/NI0g0lvKZKYly+9I8//BfmEoixYtOZOLoc0bqs7fxmQoRlvhKHict1JlyvnM7O0Ss2k1ImCMyXR9IAokKIxtJpE4yeHjkuhQNHRKSbuXZvDhtjn1UzWuViaFxGd6b87U4Ab9XgGFUTD6vTHl5OT61xwY9DCdhS+gf6yrFgQRsd4NjratMRbIZza2yhB4NxSKuKQJTqqSQa91JWb8hgldg4SSEkxqbTGKSy2NX1acVDJK26bcouBeJd2aIIKXa1gH6OBRv8vSFlrFaeHh65f+Ob6h8e4Feff8WvvnginBJ/8ctX/NUvznxwbuT4esZ05DR+RH7xCcvLv+B+/Ig8ekHTKi8onMkxksZAjoWBd1j9HQBiv6OuX8D1LaKzO63Q0kwgIWCx6ay29J/TcBttQs21NOtMl7vS4iVcm4yUFDek0l1fp7v09HiRiIwTYcxYfUEtZ9QS1jvHaAaLB2pH6MwWP/zm+H1fCurHoQRIC6z0kDZ831ml/3+7pr1WMBwc1mMHsj3gEt8cDxrDwZQIJDGmMTolZZ5hVmJXbxiiC/5HnNNcnAPXm2IEaU0ntGIYRQMhemAFoDWyFtdvjG2zqqWwtL7whMG50QTSMLCW1bnd7RpyysSYDpfg1dvbs1MLotW1BsLKFIWRsl2jjAPc3JBuX6GhYOGeWJ44NTqa5JVkX5DDGbtdiDYSV1i3hi1KTDOSjXU4s4bM6eYDbDxjg9+j6dWEpQFNbheHYSQMAetatfizIkSIiZhG5HLC1saB1UalkYg0OoA329htkFuVAw+Qb67U9/tT/hBjK/IxfeYHdNBqW5Oqz9aldGCrAU07jc2PqioICdXUAJm4A2fiQIQkd0AlJJekUgj0dVe8EUpMDGPeqEBbI5EgTafalQRiTJgEYneKqxcuhzhhKHFoIEIL9uJwIp/OuHZ0pa6Lg2WNP1cvT4TpkTDdIHH0mpPjxoR5zUgPNEJEQtqdcjM2ZYEWsBwswIEeYE2mypr9awG8AOgm3+VyVq5o0B1WafS+HdyyBlY1WkG89fMLL4AbtI54BURXLsqIjK3WQg7zeQyUD72vur/R35Y/zSL/cYe13UDnA4XttW92SjlyQdg2K8W5Y9sEwaYO4L/m1fsp7Q6rhUKlIhSiFY92dMF0R5Hq6kRsrGu40oCFg3QO4v5uVddhQ/ZriJkhn8l1JXVBX6vk0RHMWh64mDJRkfmCWmCNkWitXVCtBF1I+jm2viFLIemTa2YCS1GG5J1OxAYsnjnffso8fARAWf9PRlmJYeLpWqjm5OQ8ukMqtRLWQl0qtj460qPw+LUToMebO56uTwwpQajM60rMNxCM1OSJSnqN9cjqWFh1IP93BYaDj3qYVpf4cBTG22kGcVFgcOkjs4AFRdRlNoKAqV/DXD/glD5Dy4/DOpGDPuFuO58bye3nA4LaXXjTzmet+3rdjt0/64VCvbsYcUG5stqVgLevKyZozVsXJo0By5FoqbX8a92kOkc0RHLOhBgIqXNvw4ZgBomMg3eympeFpRZWM+a2ND/7qvC//G+/459+e4/lxO3LL/i3f/mSv/q560T+zb/6JX/xy78m3P2C9cWnXLjl/umGqXpB4VhuvBhlTOQAY4rk9IoxOr862F9i13+h6j+g8+cEqruTzVksa0DXgNpCCCsxRyQnpHW9CIIrNzSnpqP0tLnyHyLVhNiMaHNttg06pNa4UUaQG+o6sK6uYgQQwuCaxHaYt40DiqsCNOSud9RxRHM3rj/qkIZn2M5H7Jv+dyFnvXuQ9CDhILqwHbQ7B0hDwbUJSXWHVckRxCrrOpO1FUy177w5ZUh+/67q8ziJO7l+Do7cBC3UakCkKpQm/xMb6BLEA9+qnimIjUNa1KudUx6QGPzapWzPbwzRbZK53qXEQLWy2d3udLtJW1FRCjO5o8jpBu4+4fSzv6KUd+j11xQuWHIgIsQHKP+MrDfkfCG/VqrdkqShn7owTXfMsrDkRIn3vL3/DXK6Y2rNCeo5MqaBWRWRSpwSYfIGNwC1Qg7OxYQB6ki9DOjcswPOrezAkNuw3TndN/wO0L2HptqPt3y7NnXzIo+ntPEwUfWA6gACbIFlA8H2K+1Lz+slag0EdfS+r1vQFuAPmASqqq8f5aBM4jZWa3X4JAQHl9o51upFfiG4PxFiy2a2dRUlUtYF04jERJSTL/5mcMr8SJkrp5tbTC9gDnB1BDbISHmqxLESEcSyK8XQ6xJku3zvJt656H2vrs23sYY7vR+4hi17KD0r05FBvwFg1R1sc4fUKGAzW4tqAyRtDrGnmDLYub2dgQDhBcIZYcQ0bSiuSELojvPuYzzrdGXbhG576R6W2PHt7xx/nBLQe4Ifn4eOOvVHqF3b9tC0wpb97+b4bptHS2KIulZo8DRCN8yV7kAo1RxhxQqBlUhbIFVZSyDFdsPMKLVu6F8wdQShusC0qSExklo0EJvnX5fVJYXUq7c3hxahzgtrgGjCei2eMu1BMBkLZ8wuJHlC1LsJUX0BJisEBizdOuF+fWDlqy3iIawMXIms2JDR6jJI1iK+NE5etHNdvBpRV9fGbATo8vhAyiPz01uPxhIUeXD5jFaZOLy+o4YRa50oevBxUCVtEc0ePLznsfoG19rAuehxb7MJKKg0WoAENyBmmxG4zHfE8ZGxt8n5wUc/f55fVhu9dZ1XrPZin4bcb8azoQI7RovjzbYdw3TvKiMa0JAwBioZQkYNiimxFxQlc43YKpQqjb5iW9cViY4GVtPebIta3XEGmHIgp0iMXqE/LzMSZTOOn7955D//9h1v54EsA2e74+v7Mx/8zBHU+MHfoDe/5EnumIs7dVkXVh4AWLlSU8LGE3CDcMJsQsR7Tuf8M0J8hRFZNVLmzyk2s8y+gbx9M3O5v3DKyss7mE6BNGVE29ofwmbCrBvabmd6bBODF/hE7yhjwb3RTgkSc41fpPVnNkOrYF3kOiZ3aLYCup5L6HN/RDe2Fw+b7I/rsart9IU9IwLHTQoO0kDsDsFW1He42v6+B6l2eK0VYgBmlShub5f1SqwzpwTBErE9H2uZias3fJhCr8RW1gNV6XkS0ue09EAByNEDsnn1QBuB8+Sb4uOipDSSxsFbvizzhuCAOxOleKehmAdHV4tue0eWwCCe6ZH8igsXpnBlbG3cltWwspJipZQWcFtiabdqzYE8DqwxMcYJDYk1jpTuGISRej4xDomCsVTlyj3nceLm1Qs/hhWwlSk3DWTMg9KhFQyagBpDCEDE1sC6CNKUChKJdKjw9oLDstntzZHpAQydNtKCuWadzL7F6P2Zh6Ojx7W3/9zR/i5dtQdTHj51v6JfygZwKbSV5h3tWpOW7QBmBIlYzJ4Gbx6vn0u7JyESo1FrwQjkPDREdQ+0yrq4fdEFTB3lb/S6nEdizJ7llQHimWqFPHogM6SBcn3k4f4dMTrAUNTIwTtXcv4Flk7U+oJUX5PSyVP+1tsLXjC7IDI3hNSzybLRSLShuT3DJ5h4y3looJP1oF4wS6CK9MYE4kEobW3udz6CblxM2J61BiKEgU3LNYyYJUReuhMrI0Jiy/Nv9MN9PENMv2c5/qkW93saBzSv/T1Hxm3jzk89fttuWGHXObRtge2ySK0yt8PGbT+PIfjDKqBRKbjDeUwSWFViiAw5E0ygKLWWLaWeugNQFSsuo5UwYovq1rkyXy7o/MTUoj2rCq0rU1hXal1cz68oJReGcdwQnERCUkaJrPYEJizFOVkAUQpBIiEkqkTEZvTxX6hzQxrWCzk+segjEjJGxlRcGqINxaVZRAOhuoJB5yEuy5PHOxJYLhfUisuCnZShI3XL75CbzMU+ROuIUlsU9P6icjWB9hxs6Lk7qj637vSFllJoFIy+Ts3/ZxYIcthAyczlQ1Jevmtx/SBji+xhe2g296VLT220Bd1SVu3TbsQ61aStQu3HsOBO09Zhr1DCLVGrG4jmUPmU9EgUUvb13qkytereFcW6iLRX2KfscmWlBWNXXRFxQXYRmKYRrcpD9mDpca6UElGN1CosixLTDX/7d/8jAOfXv+CynmEOpOsjIS2E05V1bLJWNTCECU0vIfwCkU8gfEBpenuqQgofkc//AXTicf2/+fqr3/HZF85x/edfveGf/uFXlMd3/Me/+4T/9B8+5qOfuVQSgIaBIBlCxGLCCI26FXZ72SPYQNMJrYc/4ClSNgMZcZ5baUoMNXSVkV1SRZ4FHmyvP18r376GfujhWEoX4vbXesDZxybJtp20r2f5FpvsrzTHgN1h3/Y5GroUlRCUEGGMkdsxoEG4PLldvMwLtgjn2xMMiRSbvu12jNCcEYHYtjo1cpO9qqsjbKaVeV2Yy+pd2rrKQK0M40gcMhX1joYhuAMH3gGwluYIaxN3h9Q27iyOwIXhFS8++Vsu8yP6+Ct0/sqPL4Y9/oaH312wHMhSMWu6nbge5zC9Io9nis4eMIW9n7omYz3fkO/uuMsj52BctJLOd6TOhyzK9fEtw5gIacCAmBLaFF7MDEpb3xHP1lkhhEYrYiSG6I4tfGPNuunyrJE39uiqG9/8tR96mHmzliDh2T5jXSe1gVGmh3V7jB0PWYLtVWH7fbPgXezEJb8ARDKaMhoHf0bqCmvZkPh2YA9ygneHWuYrshpDczj790gQ5wurkYdEaPvxsl6Zn96hJjzNA7OtXNaZ2xf++ZubQAZkPHF5mJFwRx5fYPnnAITTL8mnDwjDHeRbLIwEScjYzk+vmL0F/QOEt5i+hXJhb93a9dRp6GDyP5vT7n6atf1LzNpneyDpzQroKK1/aTvuvlI8HHaFhq4A1H0SkYDYCewGrYP7K8qWWettcL85OqIqe9r/Gxn6P338UYc1tMV3PHB3Vr/LdT46Pgcc9tnp7ZcgrbOO81SgpQsPrrnhaIMStu4WHr87KT0orLagpULruKLmki1Wa+OfuBPQJNAp8+oabGVlqTO6rqxlZez7YV0Rg7lU1lAJgxB44tLWT9LgGmu2UmTE5IYwDqi11FH9jCVi5vQAACAASURBVBRGkgWXlwrCEIVJHP2cbaEWw/KHXKsh9eLoQdNQNSIhjGg14jhs2qqyiXwnVm26cVHQy8IgI0NIjMO53d2VWL8EW1jsI1SGJiLU5yu0+9J02aQXYeyQvS9yj9i3ZdA9VWuItOIBSaB5rz0wCZRy5klevb+sfpjRl6haW1Q0Dk1/qPWQRn3vg+/hU0eUwHXsdkffQb+GnujICqgNXMJAlAdyUIaoxB7tVi8wCjE0AXQDqeS0IwchRCQKsW2WIsLY2gIPAW5vTgzZPzuvC7VUQvY1cnsz8fL2xOWN865ub1/y7/79v+fVB57SX5aILjO2PMD6BtHPSfkNw+gO7+sPJoZlougtap9g9q+J8e/I+d+085sQMhY+It7Aw5eP/M//6//B3/9f/wTAP//6S37/5Ts+vXvBl19/wXRzy//0wQvO3Xg2omVg8qcyBs8SWNzWloWIOFSx3/dnNqf5qq1AAYlNp/nAr3c8kc1ucfz4bmQ2DVb77gLEH378P+y92bMkyXXm9zvuHhGZeZfqajQaINjE0gBJcAFpXGY0i8k0L5pXmUl6G/2nMpk0YyYzjbYRNaMFRoFDDprYu7uWe29mhLufo4fjHpF5q7oBUmIXH8rNqupW3szIiHCP42f5zvc5LUwnC9/G+VX0psEtSxRtW7vdGb3AsIr4mnWSapw2sH3jFCC5tv3VODGYkZcTppmx4S9Nq3Nc5oK0hqeQmvgD3tJhxYg0SFh1yMFK+4ZjVu/vHzgej773hshp8QDxsD8w7XdYCsy5kJKrwkmTDc7z4s9E77BVd4pTd15UQWGcboiH97jaf4k6f0LNHkyNARIPWBE07pA4YDKszqbVE1KO1KDUYUTGdxnT+7TkKC/Kz5Ddnnq4Je72ROAQClkTtrS1dzT0bubudGK4uiUmI5iQesY04SX/zl0blDQUZFnaNF0DvbLZKm/ImjE93+wd7uU2aCu9vqk1i9tcc+e0n0Zvbu0Ngpv8dd8nzt+rbN73tm6lr/WgzcHS1Sb7PYAYd8RxR5FMOd1T87zR1DW+9k5ZGFJqdHkNIZ+GJsvqSSEBUkgrhCjnE8fjkbvnCx/9pPB//uBjfn5/4su/7jCQDz/8Mh989R1u9jeE8CWG6SuMtx9QDw4BPIZbil0T9YpYdsQ4EqL3nPj3K0GeInwZ7DlWfg78BPT5eo+8OTVg2nilFaxBFJ3RMkJ07m4vovRAv9/D5gVZy4RKBCJrhnSFCvbPWbPHfb1FkAnqhFlsxUhZHVVX1tpsdJ+XbUizSWeOXX/f+r0XOdnXjl+CYe0Ysi2KvhztS+TS0dl+3TcaffSRFhl2R9Vk5WAMJo49aaXoIB1vFbYNyS0dKg3n1KKi0DJjSSEEo2j/ald5qi1iKWVBzLnzjkuhlkwSYe6lr7xwGEZSTBASYxyRBajtdo1PKelILD8l8YJqIzXcYoPjAEt9SZz2zBYJqgxx9Gtp3aoaXlBjxMYPGPdfIb38Cfn+h2sndWl4UAlxxe2Shg2jG9TlaU1I044gSkTYTTuGqS2gYUBihvoJQY+oHQjpCRlviqoykqs3dqxzZlvji6ybveJlOWk6wb2705+MjnF25y+uJOPmC4iSb1+3cP7uR1//sm36nlkSVr7K5mB3R0W1BTsXx7E1kr14nMxxz4Zt/J4ElAkT74TWMCLhRAzzFmxYcWYBU0IKLhl8lj0LIZC61LD4/XZOy5ZNTGG73+25M4WxcQR/8JUrfusbT1jqp8juwG9/9zf55rc/JNfGEjAv2DyzPHxMOf4QKT/mcDjx7tNmuI6JdD0yMRH1xyzHj4Bna5yShu8g8RpECeNTDk9/k4/v/xX/+t/8EIC//smnEHf83u/+PoMc+Z++/zP+0X/8AYwv2vm37GgAgmAkN3rSNMDBqw4ygoxuK7T6euuNXe0A1nj/zNwRu6wefPbG/VkmcW1su0j7vIGxdgufZVXPGsVW8nUuHdJVKODMWG8bO/TOXcODJA+U/Di7WEi2IFrYDYlQd9zrCavK1D49hORZTYSh7Qml1rW5JJgQzLlIIkJRQ7OtiSJRoyyFsBT2JtQYyAjSsNpXhz1l7X9wzOo0bM2o8+x67LFl3XRV59ucl0ihlmfcffqXXE8jkQfq0BgqRNilBClxojeVJucNBkxnYi0kK620f8MgwwppkOjBedhPlDG64AWJqqUFCzAsmbL43iN7iBbQYtTW0JuGxBAbCb4KWIXpRG0YkHqaMXXlpTatl7LBj5yAy/xYN3sbXvuLHCJ+si6nepbgOguy1iV6Fmj1JqxN6ML3nf5TDI1zPS6YHKl6IvRyuiwtK5qRMHqPQEpAXmVFa8NQS7Otadxd7AvQ9zthSDvSMGK1sHSeVa2oRe7uhP/j+z/jv/tf/5pPT8btXzqM6lv/4SW/+Y0v8+1vfosPv/MdpidfJ+/eIwfv56BOpGVksMgwQBIlxbCJSchAlJEYDgjvIHKDmawVWdHFYQ8WKYuR5xNYJqVWUR4gpAFJO89Ax7ZoOgxNmux6g3dK86XsLMiX7uk2WBBoa6TtSlYj0sFw5s4qugkDdBUu6wHIeYMVn21O/6Zm9s10xLwdb8fb8Xa8HW/H2/F2vB1vx684fgmGlRYRPS7rX8Z1F3gV4NV07BYmnv/tpY6Gn1y71RowqeEyBIclKGHlRYwDDY/pXxXE6X9Kz8BqobbsrUlEQlNq6mpb6uWBk1aKCbvDNWOILMFT7DEkpmFgaCWzUBZOpXJIT9s5HojpHaiJsPyQWn6G2RFt9C5qGWTPCeE6BsQgx8DceCRLuqKGB0ISht07hDBSHn7OIB41qoBqQWLCipf9SlnW65fg5eRgQrTQOncrw27H2PSRLXo2zoIiPDDsIqo/oSa/xoUr9rsnvLjvGDJrkrl9GlYm0y36DVsWy+lWWlOThq2kukIGtEXbGy73Cx2vaba6LPa3IsRFqfmy7EzPtr42WeGlEzsrwmnL9JklTEfQQk2FGmZi72qVSgiQF6dQ6SX/PhSjWCU2OV0PeuuasTipNySOo6//qsoQEzd7v8+//n7iD777hLgbSdcf8O3f/pA0jeTOFVsUqQ8cjz/i9PBDhvgCWwrhzs/h6mbPMMF+VKZYmfVEXSDPnpkX3kN175neuOPmya/zT/7pP+df/sv/BYCffXzi/mHh+9//Af/JP/kTXnz6U54/KFc3DQMrRpDEyu/hKIsWOvf70LOtLhG7cgaukzNg5llsWpa1nt2j0Ju4XjFDvQ71+uzTm0yqXowVDtCzqq9mKtZle/aCPioIX9rtsDZpOOjabeDUypKjKFELogv32flYOya9sbZhYqT9QE2BBSNhlFxW6HHVDulylTKrPXPmYynKMRdAGKaRpRYWU8Lga7euLEI+1/tpZBoGytJp4wQLocl7e2VDROjyeyFGdAK1F4SXDyx3gRSU2mxiJaDjHksTKQ1YqVitDO0KMr53WMnsUqTW5+SHv+DYMlVxX6F6W1MVqLlAKFRZWBrlod29hGVhv79miIkUEsfS3gski+gQG/OHn5VGxcaWJa6BWgrYE4LtLjLrj0dfA49n/U0NWf86f22jrVqb/Iy16tpZAqw93x2CdXEYVUyqUw3ialHaV504D3itJ2/KSgGpriRW14q4dx3ElFxJqlfYemejCLV6U6ekJq9KXJuwEQhp5O50zw8+es6Pnxkl7pmKc5S+fLhmCb/G/v3fI9x8k9luiWVc7U1MC2YLxp2X89NI4Ipg3pSl1iFACQmj97+IS7wC6PIjVB+YTwvPPnnGL37yI/Ldp7z3rn/+/a8+ZX+jBKtgydWozmAVFkJbR12ByugJ1w0kTzPEFbcPCqTNVLaquCdivdplFlblyyB2Ya+cquQsk/7qwnjNUv3la/eXO6yvG+u+fuaovgYz0EsT2ngQ13NqsAAzL8toPfdxL8t6Ii49SYx0Al2a7KVU11E3MccEdulGM6dMMf98NDeCuWNca3X+1TBwdbVjTL75h+hYptOdcMwLsy6koMQCi51guAcglArDuwyC45e0EOoviP0BiL7/JhFUIimODMkFBAAm3uW03GDHH5PnZ6gdiJrXcnxKkSzuIIbmTA7DjlqavGaIEEHLQgpC2h0QKQwpMLby2kJ1zflhJITKfjfy7MUzQngGwDgqhyswrnhxbCD2R/QofSrW8pKd8ZYGwaqvOglCaETN1roO1/LAG7KfK8bxAs5iK77HN1LdzpO+hl8TbL3ys21/ziEEDX7i3RQjUBCWlZganPw84qV/bUD6cNb90g24qndUp7bu61ZXBRIxesCQs7LMmZq9MWaXMl99b0c4fJnxyXeIT2+pKzYM1z/ngZx/Ri6fYszOp3n0eXtYAsPhmsPVREKIwajhU9CP/AD1Y6o9pdpASjtC2POd7/w+3/0db+r66x/9jNNp5u7FM/78+/8XX39fV6zieuckNsxTgz6sFDW9SUrXOQsEj74ktmtvxs98vjRXylxQtS2gDZHPgwSsZXE2uyVn0JjeIPKmRggdJsKrzrX1zR8u4SpbOHZ+5o+bLI2KE4xXRCqxwZAGUUSdNH3OmSFW9kOl5Jn7o2Pvd7uRNEzIYWhNGBAqq+S15kIkeJORQS7etTy2a0gpICkQ9ztvSpydg7dWn9c5L4gkzGA3jAxjopS6Xk+MCTVtiQHHrzputTkGw8Bh2rEsz4iaCQxYOrBrLAQSlIeU2KWBRGCuTrJeutiKTBQzap2QGklpBgpDO4NcI0GvIC+E5NREx+NMSgv64OXh+uIZHLM36e6UsigyGGNfmyZohSLGkAyTjEVDxoZHpGJLxbJR6y3UvcdvHaeLbPvgNsnrPEtfCW8y+rpcgOs67ew/nEFa+omGtecFaM2B/WBqEWFEqFQ9EOwG0Xk7vhgiESR5o9w4ggqaNjn4c0YNofGwho02UKt30JfWWBtCWOnWpt2BOhvFhLu7QskuynM6Ng5T2fHhb/0h7/3at6hyRZ0DYZ4RcwzqMB3J4TnjZMTDiIUJeA8ZvuTfPzwlcAut+VnZEeJXiJN/f14CH//8z/nxj37OX/zVD/nBD/6S/PIFX3/P1/Wf/NE3+fZvv8/+Znb6RJ1wWdbGEERoHNbOTNEMcrOp5xjWDsWwR3/6WLFcDR7wOTb2c9ZfTyaYbP5B8yQ++0Nt/I0dVrv46fO/wOmsAiKR2jEpgbZI3WNHA7Xq6qmriStSBXc2/AF02qTeKa1FEXOqh2Di3aQXOFnPuEgjYSrVXNO6dfFT/IEIMZIN14Ju6lEAkhLz3Qvi8oAkoQ5GDZuiSwgPVDMsDeQQmYYnaHlGaiDoLJPjS/FGryoRGQZSI+nNy5GEn1Osz1h41vbjdnyCcxVKwcTQ0husGj41uIpSxSPWlHaMw8CYBGm0FWNMjCmSzbjdHyAqV1f7tpnDovfsLTM8HSgMHE/j1mHc/jH64qo4p5esIBIxV1nqOCF3As/xos4d+iboVfz7WbE05xjU7feO1xXbAPxrivnV9NX2ubNgbc1Y2aP3dcybtO80WJ0y2zpWZQCt3r25BbKNJQB3MlWNXAvSMjDTGFGrzKcTZSmcjjPLqTAf3WEtSwabeHJ7y/D0HR7i4HjwFixJnJmPH1PKp6ge0arUHGisVDz/1JsL5Kt7yuLZq5Qqqi8B0PoLaniPFG8hDAiRw9UN//gf/1MA/t2//TPm+TlWn3H3QvnwH/02T790g/RgLxiSHLPqVxrc9Tibp44PRirWOqLPFX7E1JsQNFOzYjn4M9MaWSTENVPz6lz+iuMNbvgiW2f6q7mzMx7s113XhbMgbApk1jJLjUJIaFn/rhJV/BmuBuq1gzS5g9vLLs6zCmFxjpeiSlIl5mbbi+PfasneNGfmvQOtoTAmuLqaCGos8wzLTDTnuQSnb6t4h3cIQqnKqZR17yAGzKIXcUrjyazu9ALkpVJz4DAIKsGZCkJxui5AdiOy2xPjhCyFEJwtWZvDqmWHcCDEAwszEmZ373sQLsnxlqeCBqed0xcPsNwztQzrfHdCcoEX99h0IO999+rCGqq9icxplkTMz7Ov3bRAPKIhUGal6IzUA1G68Ih3w6v1jGOfamm/p3HgfvELeA34zxatXNjGNdLaAvTz3/dmLNlccs/OtuZWmyjcYERqc11COBClibSYYqX4ck1GaBnK6F/UWCwa80M8z6C6uEtAGHc7hnHnjAF9b0OJY+bmyS3vvnPN/qOX3JsRW8X0D/74T/nab3wL1cS8VOo8Q33Ajn/VzvFnpN1zrq8To15Rq6D2FOWr7Rq/TpQPkfAeWG8GG5BW0T3W5/yrf/0D/sf/4b/nhz/6hOcPhd/85reJz71qdfUX93zpA2X3dEJCRkQ9uF+FWMLaJyBEd15lwHsEegXUhRPcDvtZbQ4q27+titgihcv5//zl0ea7JWt/hfe+bvzNM6w9o9T91c/wR9ZfNW++L1yjNYv0bJ0GtIAVv/kWFRs9IvB+0y0q01ZWyUvxhSeRKgFqxZqaBbjhy9md2SjRyxKmSIvkTVskKpCtZYKjlxYB1JSqLsVGqUSNxN0tiJcAVK6JcUAoJJladOdA6H78Ujy1PqQRV5waCEMr1weo+tw7bOeF62jU/TvkZvhLzf7cq6seIXhHeW+ICh4EBAlInTEpDGnHmMJZ9F0JZuxSxAIsWtiPW2dkQliOJ67Glzy5HllKpBZY5dx6UNFmTdpKO4/cuyqHc4RKg270hyQ5d+YbAP/7uZ07oc2J7mVldZqP9f9njunagGW6ZbfOrjnA6tj3nNZZnaE5V06gHoMRoyFSV55VNDh7RbPZMXq0f+70elKiUcEEI6WNLm/JhVyVAUGzZ2M0V3JuwdJSyHlguL4ijge0DAi6ygZ7M+KMUrwKECIxNPU4vHnr+fOZj39x72otBlfpQBjas2UzakdC2uOKVIFxl/jTf/BHALx4/l/wZ//bf4vwC/74e7/OP/un32a6Kg7wx9e+ScRCbK9tMJPtPjaia/XyMVawULc5bRCBgJBkpJLQypqFTkG3TnLx5hxsm87U4pLS13SfzXWe32R6qjmG0jeM8zXYr6PBqGi0a/QM6+Pk1ra2Nxos8O5gQXTexBRMnUrJIkGM3SBgyhA2CUpihGwsx9nPIxjBjKWtvaTFmQKCkWOgqqEGc2PNH0JERl+3WSuoMq2BC8zQ7J03dxR1AvaLODBWojbnpiqx1NWuozMqA0t6B3bvIEMG+YSsniFOYcf++ppQA1SIeDA4tUTA8a4yTu8Qrt6ncsfJPnbnMrjdltEZQfNcyfM9QzBul4x9esfQ7oHmSlVzlbC7B5iuiGnv5WrANDbbUtAmjREjTX7D1QSdVSEjnMCUkm1N6CQRb8hqHEGrtIZt8/9mV2/bW9emwJ5RbRys4k77Z1cw1qfx7P+tBGuCc1wHalfeZCTKzBgXopwQK2gr7/d73r/fFTs7RHC7Z85UEBpf67A1kK/wNq+CPXky8g/+6Ov8/NPv89Enyvd+/7sA/MEf/REhjhxPiuUH6vE58/0Psfn7AKT4c568AzoOkHdMVwNj+imCqweW5ceILAzyPXdaaZmO5kzePv0NPvjmn/Jf/zf/M3/10R1zFr71rVtuf+1DAD4+/RUvT5GvhGuIR4flNdtKu0ueKfQstK8wl1FdyeVbes3/xLPXuj8QPPnUquI9P7jeq541fTyV5/997ZT/zVbrr+ywblgEW7+4k9i+1mmVTY9BZbuwy7NuHaFqzM1ZC0PDRxCbprui1pRTui+mbqwKbthdNaVuTnHLsKqKl31UXau9ObRocWJyIvsUHW4g4pRDgKkSU6KYMucjkyWmeEMa/BosL9R6YgkLEeeArTqj7QSjOSm2pYFJhGCejZOGpRrSDovvoFdPyTIznn6ELg/UToosnUeyO4XeGT4NjlmpmGfodCQfFbOZUmbGcMvSNvVxSI0xyKmvxIQqRmpcrlXxzvFSeeeQOWXj7mGilo5BidAorzBpxMOy7fothSkh+sGgdRBvZV3i4JmbNzB8P7f2zJ5H8c5pRy9PwYWx365vRfCun+8qQnCJu+oPQDeC/lj4phpxOp3Qn7TiJUFdnRKl1rrOy+pnN8da1OEuW0bCKVqWotQ5o0UpxVaMXK4GaSTtrqg046RGXVVd2s+SnOc1wPV+5ObKDdduTGgRHl4GhijEsZLNOjMYgYo0yINrngfSEPnaB845+J//l/8Z//w//U2E/5vr3R1jKASpjewfD7qas2rB8dPbfe7fYc3pL5iCWsGsrCprPVh1VYGEyxCyBmvnWZt1/s7MVGdhOwMg+FvOYpyzaf3CR4eCbQ765lA7HKJvtPrKKXbqmHXpr59/1ZkVSZ0JkFM9UFGSwRgCw47GpDKibe2mFCFDKkpV52t1ZasNaiVimAhzXtClMFhYKdmYXGTDKYQaq4AEjh1sGBzWtdvtIAaviFnXp4dKZaCCqUNAGIhpT2rBWM0vuScyTO9z/e6HjFOl3v+AIM5QkaYdxNEpBQnMqgzCxncphumJWo80PRpEPfAEd47URvKxoMsMoRCWByiF+dg60kvwju1ixPsTOrwk7HbIoW/84rzh0XGRFgYHJrW5VlEYPFMdWGhCtPRkX24IiBi2rfuiiNWy529u8T766vVRtLP/P/Zs+q+9+nTpzDYOUaxdqGcfTVvyp9lRtUIQ8wqOBUqenVu9n1ZnnzDHt3pWv32PKiJGLZnTqTJOu/b+7pUFxmHH7c2R73znin9WPuSjT3b8zp/8RwDsrnbkqlgxQl3Q+jH3938O+tcATLsHXh6NOO64DUKaIiksiNy1i/8xprdo/TKBG0z2SNgqDyFMfPd3/oT33vsmtzef8JOf/YKP/sNHfPdb3/TTLwVEqFoJFsE8k9pZV7YJUayrgL4yWW3B4/u+v34md42z0VDVq4Ltnnb+cOiQgkfz+ujfba63efHfv7omXjd+9Qzr6775l2RYexrpEht4cepAw5y2phDthrbTTjTKKjFbaSCcksGf3Gp4ijvgfFaARUCMKM0xAGpxjXeAYJUosen9+iGzGdaxWOquZxz30EuP88u1NBXH0Uv4YmismLl0WpAuPxmJqJd1QmAUJySWoUXR0w65m4m7Xycerrn/KXD6f9DSnJI4wDBgMeJ8ic65OQ2OSclaiDE5RKFWpEKxGTNj395jIWEhUnCJy5QCKYg77sCCcti5U5tk4WrKDKPwzG07ZZno0VVHFzmao22WZ46rZ3wqawkecIyLixW8mdE9kLMsE+eOqhtBh1d1Y7oZVYf0dAd1yzSfH/91Pk0Xv+xOQzGwIDRRwEZp0gqxpsQAMqYtZLWWlWhk24p2LwTwrHukUfpEn9suLegjENIO4oSJY12VuB6+yoDKnjBcg75AyYQAnRZSc+F0P/OTHxm7nfDOe4k9t8SmKW1EX+fajFloJObNabh+8oSr3a+h5SMiL1z9q05nIbl6pk6il+5DE7Owss1TL/n390i73w3WUE2IMuD64p1LUM4aAOT8lp2Z0rPZsrPXVwv6aDbfUKqqc3BenoQ/g9oy71hXXHtUlmsQCDn7TPvFoy1FKBp5OPkrpUSGOLEbE+lg1LhQSmEImdhFyobE6ZTRpdJg9O5/tbltTIyuaCWB2rLnHeBg5vngoTWAiQljGji2REFKyRtARVhqpdbS5HOb02Z+xGCOPdc4ounGYQxArpnalBMdDBgQGRkaN/W4OxAZKFpcn16FIbhTCjCIIeUT7DgzjEocF2bdr89uLDMWA0kCeneHSsZs8XPV3j8xcL27glApWpnv70kPB8bWFOkxszJnJe2EIQxQZaXDLFEgKmFcQCqplbuXdg9rjh6m6IjJJje+zn+b2zfisMoGk7pUOb7c+1/NtL3OPzj/V7sr0QLJgFmnW6qgGecorVQywZoYDmeOVTspa/y9Co1u0s/btKB0OdbJ5Vlbz4iWQlkeCHbi5jrwW7/1G/xG+AZX73/Nf9/O30UzjtTyC0r5EcanAIRiyBw5zkq1iTh+yasW3aZHwXgO9jFmXwMGD8JXcYTE1dUT/vhP/zF/9r//W8Qyd89/zl/8+b8D4IP3T9zc/q7THwY8O3KuXHUh97jtfef2wZvjfN3YWaNfF9Ux84qIFjfljrGPa8X29f7mY/v0+B2vc3I/3+j+f/QmPvvB6IFed3bOF+kr6kO24ubRlkUIjcx+FRqyVSRszTp2uy4hUFRXLtccaeUqGMWQYJysuD5wO7mKoVpRMxcugDVDK7WSUiLu94QEdb5D6wPWZE+r7EjyDmYTmg3Eo7nQCKgrA9XcsFVTqriT0fGjTHuC/Izy8JeYfI0cJgqR2M4vCi5eEDuZeiDGtH4+pIRhTGkkAacH72rNNa842FKF/TRRYyCObtzSuUxqCEzijQdWZg5DQvI9h2t/yO9eVLRcsUojNlzhBhnAG6/UkOClLVU9i/Z9FvVM/erNj03iDmzTXH6U/ZfmeHvV7fxJlPWznzmkG0hXuIrN2dr6JNylDUKT3dUGX98MRw8MzKo71IsRWzPdtBuIMbCkhVIqeS5wqpv4QRxI4wHiRIiJJEIxobY0mbEjDE+ZDl9FBiHJkTgZx8XX9vF05FQy0zzw9J0D++WGvLxH3DfVlvSUEJxXeL0V593sEtzpMJepCDJCVLQrZVHdMIZIjLGV3fz8tEnJWSlIMGIQFwQIFcLGArCWujU6kbb6xh3bBhTiWfakTWgPo7bRulrl83im38y41OPeTmwTUPAgXDrDSntfhwcYZ9nV11zXZpOFmv2dOUdSmFAVomQomeuYOKSRXTuXbIYihBiQ4AFTxchrMOJVoSFGksIi7mwuvQKzZEyEot5kE4fIIuaZdnB1oZgoWlhyJpdKzrlBd/xaUkgMoaJkqh6xbFjD+qkkLL+k3P2UI5lwUIZwJL7j4iVyc4UuCSmZAaGqV8d6kmgCkp4opaAEhvAuYXqfnLyyZXFG83PGsVLne2peGKxQFmWI6Eq1RgAAIABJREFUDS427YnXTyBmsi3MCFGNuvRKk2eZa1FiUgjFHdDWP1GJSDJCVJK5AqMmIwzd7i5YjV5WtwTSYF69NHvhKH6xo5u6i7CoB/6t4mQrFc3rT/T1vmyzuxd42C0xcg4romVcYxq37J1WOsuIiLpvQXU2HzyGrrYQRiHGiNYFKxvzw3I6UU8zZZmxGtjtrtjdfBmdfL9fcKy4hAXVZ8zLTzB7AY0rthYolliOM8f7B/KyMA4DZwlcRArYEdMHiHtEJraGERjGie/9wR/yh3/4h2Av2I0nxvRzAL73B9/j/a99QBg+AQoSUnNae8IprE6rrKpYxnmV0eu20GFU9N+3k3TJ59BsTnOAzxJUfm9tDZjPrFa7hHPQ0t8+mHrLw/p2vB1vx9vxdrwdb8fb8Xb8vR6/NMO6SqxehD7nEc6rY4UD0BICj6Kux5/zTnJ/xeVuGw8hQm2lPXkUegV6Wno7srY0rWnnfjNMlBCEcUzUjhMqtQVcilXn4hNlxaAKXlYstM5aIOjK/EatYOGKKE+p8wvX/bWMNnC+pQkJcVMFDUK1rZtWLHrJ/vRD7u5+Ti5KUSM2mos07tD8wpuDRlf0khDXYOZqd+BhOWJijOPAcorEKMxlYZo8G7AfBkIMhCEQk6EiWNy6+KMqwYz704lhKZRqFLlesxm7wxXH+xNW93SFCzHjrALQyix9gnqTy+Us9XLbFz+2ssbrXw9rpm6NxC/qyF3M7gxTta7jMxnPRywI58hXkdYUseJc2Epm4mVAU1vVg/zz1lTOvOSiqg1L19ZuLt6dXAtaSoO6VEKbtyEGbBrRYaKkSFRDa6CuJ7xjGN9jTBNT/IDrfeFmv/DiE1eq+uQXH6ER0uGAxC8BX0fr72D6OwAE+VqL/h3KI6qEqGv83O+bWfFXQuNF7RhWdfWu0KdGWoZeNroeLzm1jL5m1IrjDLtUa8vchbUJwP/E8KtF7h0b7rdE1szk35c060Wj4lp56jATX1vdFp0tVzrdl2e6lA5N2Q610Qb15sje8GTa5BaPhmrAdGDcT87F2zGmxfmtCcYY+lPkaw6gFs+CWy6MIQHelLWuXasc88yiUHJx3tQgKxVfGlpmvBbHzNeMaF1t0hSkybBOEIQhFko+kYNnssZhpB4L8fQxVe5gjDAdCDu3iXK1p2QlVmsFAuE4Z4ie/ZyqkirYECFNzDqQ4hPi8G67xzOn5UhgIYTAaV4IpTBoIDRd+Lgf0ZgYDhNCQVSpGhlab4AFQaIzzjgkzbNcW5K6471jqzwGNBhx7HSBI7oMZBWfJ2md3eeKRWfr5oscK3Rny3eyrbrtz7mZPceYtxcutpBNuhNP6jVnYK1INdwqdKxzaM3T274TQlgzhdDotc7eYiKEJJgopSzU5URQW+napBRqOVHyTF4GZNoRxitqa4pyRhzn1y4sVH0AdK2IpiikCMMgaFWOD/duc9r3pymRwi0SFCgg1ZURZT1BUgp845vf4F/8V/+Cf/gPv0HN/55vfd2lX3/3d79LHBWn/6M1syZstRKR3tm/MqeIH1/YMv9+S1vjVbPjG0NI58VOdLVIUCRufA6rz7dyjkNoWJdVkvds1i/qR/bo388Yn+uwdiPJmcMq61/+mnLG03k2LhadbOvldXtCazFq39k6+LThegw6+fD5tZXWdRjEAetFldJB1kYrEXqDiYTAGCN0gurqjS5aKqlWltOMal5pLMwUYiCYslTvVE2dDxIwnSg6Evc3pKrk+SetxLDdVgnj6tRJCBRsJcC2bMBEXSKSPyEtGSVRx6ndsBFNe4yFYMVLBsHlZQEqyn7cMS8zMUb2V9dYPhKpHFsZ4539zkt1pohWaigImz6yCmCVfYrM90dYZqZDhMZFW0tlGCv5lB0vZL7Y1/KceKOLSCudSyBYWKVbV/xN+CUr8O9seEleu5GjB08tGLKA0XCTZ2vb2H5+/FP/7xl9XEMUnJXj1v2iB3rNYe3voXEAWi93+/MT+jmqYcUdwBC8RCUxrN+xzDPz/UzJM6qVUhsVUZuXJBWNoDGgDeOWTF2uD5CoWEgI7ziueZ+4fW9HHNz4Zb1lnODq+sBu9xV2u99mnH4bi18BQMOB3sWt2hx3Y20QCiY4jqc0G6isXb403GO7d6YG1Rp0YAumavDAyO11Rqy2UmLHCUbE4tpgsAa77cArYkvkLNDdjKNIcG2S7tCd76B/r8bZJnDWUCrd8L9yzrYGltr9g9c0u3ojpZf4trXv67Vo5bQIY4jMITENI6U2jlBVYhycZNCKl1qrklbJ3OivqfcODOIUVOu5q6LZG2hNDRkGTyKcnaM32rqdiagHJ+28XUwjcCIyXL1LlMRy/5zeORZiIqZbrJwI1dAlweFAaI5FOBmhVKo43Zam6BjW1uEfEEqISLyCdGABLD9DGlQr2ImpHqEoowmzCks2Dxab02tlQeeZLBNhPxKHgIaNPsjFmL3RMBERFXLOhLZQY82U2fm7kYgykkIgDg0nLA2CURSzTKkGMqw8xyte8U3QCbZnSbpT5C/6n8YWcAG7OvvYhR0+T3CZ47bX9IPAuYiISnsWQqMG04jV2tbRBhPA1G0K/UC6nkuQ0I5rTTiioqWgTRK4lEpdZmrJDYN6jQx7h2T0KzTFLFDVmSREtr6A3ThwfbVnvx8IRDQnyhwdBgDE0SnKuphpoOHy1yAEiIGrmyt+73vf4zd/60tg/54hNblrcUYiYWhz0PhVO3xPEtao8oze7NshRN1nqrj9KDicy0Wdeg+K4NKwdmYzPmMRfN4vL9zaV976K9jgz3VYL53Vs4h8jept+17pJ3QWEXWD2bkUoeHyLk/s4n/NuTWxlZpWgrTo6TLzILSGLYOiunasjWOjplhct10EUkxI2iidVI1aCmVeiNYzaT55yzxTijKGQAqJIomKuYMBSIX68KxtHpWiTlCS2u1Mw+QZrt4kokpNYaVfkaWSwkTm2nlMLTKmCWuZCq0PDHbEkrEq+rA9pEvOjGnAVFm0debiRlQWzzbkeSZNIxKEKNI2l0zsKVKFYt48cdhNns0YlIdGtpxNydUfcr+MFqA0h1RCO6+GAzRTnO9tDZ19+3wDdhNYcV1u6PqaXNN6/p6eQ129mu74dMNqF5n9FY9FB9hfkrtvuVX/GjFPCoYzp9kzqO5Iut00tCkCnZ8D+PNXmmpLSmtODdGKFXcYRAJbqwsenevMQIYAopEaA6lF60UKpbTmgxhZdOBYr7HROQEP7wRubm64uXmXJzdfYXf765T4DtJIqGOQbqFxgv9OD9MDFWkZjNw2LsVs2bB1yhrr15Kdp9kafVt3OI0miOMOiwVzmjttm74cELtGy0TNEWFwXsWVA3i7k439h8uFqJt96hvqxXseNyh9saOv0McZ0j5e4baEs/d1B2Fbh+s/ba7WXL6eZ8Jqc1oXsAVdThQypVQ69N1p66BaYxgw5f5+5snYeFYbXVbSVgFo89rPLRdtSlGCDK5a5QTuPm+lFHKtq9CGhBbcrc+XYTVTqrA73HK4fZ+rmxf87CcuaqG1ECalWCVZAq4R2aNNQktPBa0VDTh/b3Xqv/NNsIj5fmADu2FH1UzNP/U7lJ9j5ch+2LELE+O4Yy7CPC/QOL71dE9KYBQqe3a3t9g4NeJ20OzNwCKBJNFZPbLSm1tAvaFyGAi7XatesHa8L2Wh1MEzrwZVW0WmzWQIW/Lnix4XjCqrI9Scou4r2Ktr+jJefDUI247dhWBsrRCIemPrKAGVSpTaCW7W5Ir78IHObY1VTwy0L1UEqYB4NcBMUa1rRSeGQBFtNi8R0hWECWkJLG+CjSADVXYQnxCGiZof2gXCkAKiBc0Ld89fcnp4oCX+ibvrxrM7QGN2uaC06z9JIA0jKd5iukdwESCHB49+r6U5urJhWFdGlbZv+Q01vCm6rbv++7aX2Jp46OeQXBSo41fxBMNqQc7m8LzK+Prxt7esvwQSsHnBm/1TNtnAbgg3J2BbsGe/f+VU2wWJX5aK+YMLyCLEJAyTrAum/70arhBQ70zxpiltkcnglzNGdwZc2cq2DHjP+qVIDIIUL9sPalTCCr4vNZPnB+Yyk7DVKWmNoISglHrk7qGQxPkfgyRftH6CWAzuFKuSSnMs2udzqezCQBoHiIaFA2l4wtxvVoiMDEBGQmKRhKoSu8/ShqyOaHEC+CgcWoPAMs+Meu0LNHi2o5qujS3RojMsRGU47Ajz2JSzPJtwSANZjbx0R/msnIAbJDceQueF9PvUHJc1CHgzxvM1Sf+zctn6ZK1lYX/5bHUKq5N1cah1LQmvvzTPVG1lZ8/M9/KMSfCGQDxw65yEHUze71svswpNta1VblJwTlYNuMOJoKWshiewIOWesd4RgxKAamldu7GRqZfqVQgR4TRn6tyDqwTpHRi+TB3fpU5XWIpOzI072GuatGVRz7NoIhl48M2hrQezvHIce1XGEPWectHkjTzYWUbB+V8VbZlVQcIINMUibhCuqWWH1hFhaMIa6118PGuPhj6yS20zPAu6z9f6Fz6shc5nm7u0Xf1yGzvfFnqA9ZrMRfu1rfbc2OAX/m8QJcaZIT2wC0dGvYflCLVu1HRBIEanEBojp3lmPs6cmjO1S96pvRQlF2+w2h92a9FxzpVavSnLJGAhshuG9TbPtbT1XvpDRhhamQ2wDGKRKUZMZ5IYw7Rbr0UpTDu3c0hlfzgwDBO1CxtkTy6MMVCyN+VmE7rLqlSXhdUTsb5Eg0HcExsBvenA6fSSIR9bCXgkDTtezJXckxFlxh6MHcZiME17pt1EKS1bV5WIIUOiqjflhiArbKKW4ow4Q0KiwBgI2snaYdpFTIU6s+59IW7NKI+Vzb7QsX71tr5EtorA65al00fhzqK9Gira2d9nH1ohVGvDp/TA2TxbLeZ7Y/v8Cv/qz7XVde1bNUSFmCLDOFFr8ApVg8LkenTnV5yBRdIO0o7YjapVh2cwEuIT0vRVYrynLt4UNewD1RZO9x+z5Ace8gO7/W6FAJbyhMG+BvYeQfZsJP1n93W1TS2NZ10+FWBwp19GVqGepiYIrI2tjTDQ7bEVb0DuPpXEtuHVR/e7J7ias9rgJ0Fia2693DvX80UuKpG0PdNaGVLM1l66v8n4fEjAWuN+hGGV/pq07B5nxt0XzyuPzbq+fKN/rBikTdbUqlBLYBj8wTRxWh4lIaGXfpobVHF51uYkhdgzoAKhtJtjTmNRe4d4u/AUGUMgizQNYlshASkNUEd0qeQ8EwKkVpr1L/LoLUb1h0Ka831W+qqlslQn0o6NOL4blVlgiQP7m6c8u/spwQwNhrZO7tsn72HhQF0+QesLhgCLOozBr9OJ0XfjjmU5IlZJIXlqqsm5LUvmYV64mianHh18AfcEa9aKCCwWCNGwlCjzQlZXJFKEMQ6UaeJ4rL5gV6NAi5yb59K7VG0LZFYeO/ulMOm/k+FQhbYO19JPf7igU6Wc4wWl43ChLc6Lhcpm+B6Ni5f8KQzto7m6MQjShDFEMTtR6oJp3g5x/h2hOXVmpBhIVVxMAncOQxAkeWY1EiBJKzICWinLS9LyKeHqnhAChUhp0VJo+CaXJUwuaFDyxqVZFtBKQKkls+SZwzRuDBddh7vjKd2z3DbK8AyzX4C5ep1I8TtyVtL26N5ads2dct8cdDtHcd1rtaZYF4Y1yyvssDKh6sFAwPlgaZk6gw0TiKzlvs8cLdhagyt7ZVK/0FF1K1eeO6wdZkLL2H8WXeBKVXP+vELrED77nIV1PQfJTPGB6+GBfbhjyC9I+SV12bLj4DRkS85cX+2R+Ui+u0evPJAoOXhwpZ5RiylSqrL0a0GIsVFXRc8W7aeJZfEguUZhqbbuETS2wlq2JEiKkRiMUp/x6cf3pJLZ45msMXmmco4wHPaMV3uqRM/s4rj9DgcQNYoBYTyDkii1PCBpwbKieSalJwQaS4DtERvIxxNVK0UKaX/FeHWDpL7+lVPJUDNBR8o8s8vjlmwpiqLEMKJZ2/6vF5UpkeSa9nFE4gCSCJ3lIyQ6i87lOn19gugLH69zQnqlS/BeisfPotC4lTl7Tvsa9nXT4pf2dlmDW2t5LQ/03aGy1Tnq9t4pF9fcoPRkWPc5qlOgqTknq5k7hNZ52R2WFBGX3B0mLKaz/cTnY8kQ4i27wzdIvMuUvNp5c6hEnvHTj/4N892nPNldQ3iKxG+2438b0+8i6QNErlZo1PkT3bG7fv2GefS23XNoQU1q++72+vaeHvyFLaGw7ncOBUBa70EnIj676/3e+iEuE5SPf3xlnCUDoDH0nL//V0wOfD4koEXkW2TOuiAv78eWnTg/8/48ndO0hFZS9KDKb56/uU1SFb93OQKNWFwTZom1zCA41Y16uj6oE+L2KNWqOU7K2iI184aBFlHVHCgxuE57Kw2Ec64y8WyuqrbsgjRO1I6hU1IcIVjDw43Uqgw9GGnNXJ07VqwRr3ccX4xUM4ZxYpomltMDU9yvD1gar9hffYVPn1fyw0unW5FNyaeUwLwEDuNEkECtlT2Bqhlp4Pzb/Y44jj6LtUKIhBRW9Y5hitRSSI2c/nqfePawEBsWK8bCKJkcM0tKLUuxIRDNegAQ2gbVaaAa5kWWdrlvKMPasoeYrZltd7KAV7Jn3cl+/JQ/etvl3vDKA9pjeLrhRL2LUAwaT6mJ8/ZiuTmsrrASWsk/SgStaPZmqi4v3B3CJReM4PQ/tTr5/5iwhlElV1eEW54T6jPiOBAY1mYvEMZxAJwSypUhtw0z4TzFqPMPW13QMiNjd+Zi44eF3rimYhCb863PKMtPqfklw+CSx4KLFEB3tLocrvh5hLjO1Ta0Uc61CoeK07WsZwki1RsV2qHkIiDxa5VGW6VwFmw0s3lWFpSz3FTPur+uHP9FjJxdIe7x3i+rPW6l36oX79iyR7z62K3XVDGpLc4sBHzehjizSzOHNHMtJ/Z6z1geqGXp6q2ICaUaUY2H5d6b55YFbcHMLG7bQvAMjCEspa6BwBActmEheNZ+TGiUVbWomtvzil9GDJFSoLZgakqDZ95rBjtSZi/tDn1taUHrzH6M3LzzLrY7cCplwzJWd0a0Fp9bcSq0Xm6v1ShLxkyINTg2cHkO4g71wAAlshwztRayVJY4snt6xeGqibpYoTzckxF2wcVo6jLT6QGlNIqlBCrVoSxp3dmQIRKHCRl3hLAn2IBaWrNl1fze1tY0GNasWV/Hl0H4FzmaK9Icqv5qx9RueMlXAqmeGIDXBItnP/e3yRaUrYFz1dZz1JIm4sJA/T3e+KmNw7hRXw2Nh3VIEAesFvLpnrIcqfW0ZmBd7tqvJCWclkxktWmmgSjGEJVqwhBvieGWaXI7tb9JTGnmNB84PfyU3fUTpt1TUvomAGn4EAm/BnK1KQK28350c9sPipHPHnGjZ0YvbEb/fO/+llYdpzVwS/fBAEo7huKy2U4XtiacOn71FS942ztfjfPPf3/uFW62/vOAA68bvxzD+vh4RtNgb+ndNTI6O0frC3fLpm4QAs9iGXRwAZ0CG0BrJc/+m1ETMTUXoIHx/Tu2cEuteibYjNjSKpqbGoN6f1xCkbpQOjE/ARWXAlSfRzAYOglzTOQQ0Z4VNdd9Po9ihzC4o5scd0LIzal1RjNX4FLGNDjuU7cIKcXIUgoLxnS4oeQj2ANjK54td39NVXcUOkuBSFwxOckyooFSA8M4gI7E6hjV2rvFB8GCUqnkWthhiCVyy2RLaqTvtVLzTM7KMAVy64ycRuesS1IIog4kN12xWJ4oqy3S3UiH+5BVSeTNbPqekWrrTrdHZfvh/Nxed47bBrC+0hI/HRJg8uj56PGOtYyAuOPsj3kjYMa73mWVwuzZgZYFSqEp60nDbbqQmK5KVS5CoZo2qEsKq/GcxI3OUl9i+WOG8YCEA1vZMyJiBJJjGM1IqOvAA4N4s4BYIVCgLlidV0iCmcNoNLpKEVJxQI2rttT8E/LyU6w8YwwjoRxA0pr9DB1/1gycWmCF6sRHxq9LcJor/0g7CaGATGyJkqbC9trpbMe8MI3bRHoS4TLaf63d+wLHL37+c8ZxYBjGFbvcN+LQMJ3aqkcbusUtqnuiWyajD78kz6AIC0GNIIUxuTO2T3fcDCcO4cTOTm6LamU821xECyFnllJQCagZSZXTg1dlhmFk2MXNqQY8lm1r11why4OHyCDBM7CtcrRUdWwmtIy6P7uhd1uPkZILWEA0uEhAHDk0YYDj8Y6lKPvdwNXNNccANcCYmqBLqVhVcimoea9BSjSyeMfYBlU0B0xuCaOg+py8/MKvv0RkWSinE9kCNkWGFLExcWrVt0Emxj3MeaGaEaxSc5OTBXrqPyRxedohNTEP/7Ui7Bq2F/METpCNIaai/rwPkVAN9JzF+cxhewNj+17pUV9bjt2VfdWZ7pjWy2Dx3JHy4/WE6Hak7XfdSZdmoFdS+54L07ZXtXebeoNTb2JWLQ7TkCYgkE9oPrFVKhwGQwgIhWALQkHFWYFCCEQc6lGDtcpSpDbZ08UORLlid/tdpusPubl5l93ulmnvkIAwPaXK3qVj1xuz/tVMmJ39qWDLWVZegUy3B2s+xfqeo4h2iMB5xnTjDXGb2p3OgMgEskeaophWx7AKXSxmPdOLIWdr0efrbO+93ID/Vib29d/6drwdb8fb8Xa8HW/H2/F2vB1/T8bnAwzP3OLzBCotu7plWTmLqM7e2YDUHhY9LrtKy+SEVvprH69GtcBi3l2SEsTWpCJrWdXLhSZKJ7wQ9VKPH6O4Bnu/QK0seaGea+AaFPWOVFcb2qiFkhaKVY8+mqJW55z0zycvF4TkZcoYicOIxZbFCsKQItGUECOlZorqGtyE6NdcTGC8QceZoo4ZBTjl5+T7OyTt2A8DZt752LtppRU5oxgpCjomlrk4S0G/zzEiKMtydKhBAJaCrmXThIXATiJLWTjOR4TEvrUuvixH4nhgCEqUwiJphVysi8M6uL7zj8nWvSkuv2j6t4mj/v8aXgE479zva/qy2ers/Txaymu2irUsdFFRuBi6Rft4o4S0UkrHg9cGE/CmU4cPxBDXkmAprnwV+om0e9pgeFQT5wG2np30Tux1bZgwxkqQO3T+BWG8JkzX0FSgvJrh9CreLVVJtlAaxco4BFJo8HytmC5oSWtTVkyNuihWJBpBFmKcoXiDgR7/Epk/IelCyAGoWJAN+SPS/h9bFmnLzPe1UsVL3iE0GFArf66cgZZbVqE9m5532rIyZzyNK8/oa8r7sT3btdmfN7lSz8ft7S3zMnM6ueoSeFUmxUiMTQpXnHc2tsxejLKVilq5e8WcQWteqwQWop5IsrBPhf3UMqzxjtsxM9rMqJmAEocBQalNEahWpWpFamUMgoTI83zsq5UogVoqYZBWlTJUWmYX72iPrQqlZsylgEHNDXOgfl0SnDdYq0FUht6MFyJxjEgVVCtVCjHskN1VuwcT9RSxfYJxx7wUYoiMqXfoVyLwUKrTFYZ2TzskQaGUjKXAbvoSOgWWh5fI3OiDFkNq268kEIcBWgPZ0uzurEYMiWlstk+9KtWfX1UIYmhWSnFIQ0jDunfkWpFcSGHGCMTEqiQIEJNRa8ViY1FQWe0E/H1Ywz3Htub52P67GdaLHOmFPW3715pcfJwtXmux62c92xew1l3v3Kxbh3tvoFwhC91ertysgtbiynpB/FnSsEL03G8obtP1SKh3CDPSeNerRVQiNQglVGr1vbCzFtVqPJwKpSTG8QrSl5DhFoZbv5I4rpW77RK3iuzmfFmzffNlplqciaXDgfzt57nIs5+74hXS/LgOs/RJEhkwdsAVwh6s4bfrANqgKWfKap+/4j7jd9bmgfN12/zJX7KCf4nD+lmpW7+4jm19jJ/ti9Ypg9gmgF6y6EdwhJ7KVtqqrUSg1ciLoVUYojLEAQluvCuRSuNas1Y+MDcOgJOZm6foI87RilYvm+OdmmZOnB8leuPSWYq7anGey14G6GXv1XA6dYQ06giRtOlgg3O4Bp/URatviFqIjdNslyIur5hIw44w3ZJkR2pGyx4+oeo9ye6RcAVE1DKxy/OpT7Cad+SGIGgKJGV1uqM5y+hYK8eSma0wERgbRmaxEaaREgIEYR+T8/u1h+R6P/Lp/EAKe8LKoxkfFZ8AU3dCcBzw5iD4hvZY8OGLHa97AF49oe3Zl8t3iTuAW7lqc1zXJX1hT5uR6aBZi5gml1JsrzkBWi+D+wEcp7ltON3H7ywLJh6A+BsMUw/UQgyEKMQU1mc1ICQJRAXjASufUMcDhM6nd/CnojnvIpCCQiNfl0EZUKJVb8TKhRrn1WmxGhtebEHjjHHE7DnMLjwQTj8k1AeSeABoukCwFS5jMbiARRAv9TY+X6dSafZGHZQvkuj4NjVZ4S6hEbJblbbnOC72oiHuDLfst/mSztzN0raBXpbQBR7DPb7AEWP0wHG34TdrztScyXPe/JO18cpNzzgEhuRlalcB2I5pUklhYRdmBjsx6pGrYeZ69HndpYVJMtEyI4oMgWncs8yV0r5jXhYqxhC9ZJ1rxrCNQaJkakktqPHCv8pWevXAw7mFM94YOkhcMaQOo3H2ABNxiexhXHsPQkig2uygEJOSM5x6U1YcGHcHpt1IrhskTRsDTa1KqAra2DNyo95q31+qkOsIQUkRTgSWLOxyWyc5U8PAuD8Q045TTMQeVDbbr6WiFQa8B0Kqr+XYYAll8aYWa9RyFrxZSNaGYeV4mkk1M4wNE8xId9DS4O/PD0pVGrXS2cr3SPaRXfqixlYQDucOdDM2q88q58HlYzzrowbv83H2en+WBRpsKhLC4J3ynNA6Y3U+++AWvK08pO0epTA4/6pW5wAOQkhhg7+BN5GoovUOyZ8Q9B6J+3atO8cWExyKIEbvTQAQU8dX/7/svVuTJEdypfmpmpl7RGZd0N0kdzh4+JiBAAAgAElEQVQ7KzNvK7L//9+s7E3IYV/IRgNVlRHh7maq+6Bm7p6FAtDkDFF8gAlQmRlXv5ipqR49erQ+8BwNNdzZ7VnCUE2MZkeDAvCa7jPs0x3nQz+ucZNr+FRDfNk7Y38AZFL6Z8c+Phz8UQwXn2XdpykIF+ACfmHXmh2a19KBhiFv+Pn4EdP5+d9fwnz+GnP7sw6rn73h8U1npsLnyKrsccwx+c7BQH/3cAagu0G7hmLu8ktOMw8N0KTIpExdtko04XpiR3i/SX5IKqmHYaoWRS6K7RzQuq1RcCRC0cyyrjiwdc7HZiHkO3Z00V4xpwch2vq5eIuCleQwGCgqunfmbS0uQOvyIxCRfBTXhNOcVTCH2m9Hmt5gTVDtHX1UEDtHScQm3sL4TTkjKarGl94T3m6G5olJBDWnrispF3LfACMATci14JcSHJ6HcetOfSmJd9eZT7WSCD6jSTl4wqfr7hJamrZflThIl+gA8lVGN4ojTAL6HHll3n9k9ECsv/Xs5gyu7iHA3F+/f8/wBMFJmBVqK7t4OTIRcmWHc2bu5P4tOnjTNhyRLmrdX5+FiPwtUARRuqJG5wGuG20NTlaST3j+E7Lp/n5Jv8P0CZMJzEk0igSCANC8MdWFaVvI+kBJXci9b8hNaOuCJiNNLygfsPvvkfvv43jb9wgbknKfHxuGH8a/JEKt3XvXn+GwylEd6x4FYdpRYOwIAvr19qa4aaDUw8b8mA7Z/vP1Lr5rQn42HUb919eSCBooPbALwpcieM6hI9oqtdVofnKyeY/WWLwhVN48XZinidyL8VKqXPLGm7xw1Qfabqjf+eYa1/WawoGTUSSYE5IKORXWflxtW1FCvF5FoVZylqM4pRrSKqlVoBdYuZ+OsSu5dKAgi7KtdXdY9RQQJgTX1DMHg7scdQF5ymguIW2klXWJI0wYc5LosmV0lY1E7WvDLRBiBt/RHFvroaE6gm9v3F7+KdQFtgW3yE4s1mgqTEkp15lLngI7bs7zcFizsDaLIkETWnO2ZdtVPLovsjtHTnDSSy77OVhbKOok7bxtaVFkDAQMUftnROZmoOcQKHfSQ/DolxwyiKYDQOrnekT4x94/MkK+OwhnR/VwJn9oqo+MzHjeLLKh0fjOgYbbgvtwWBXRQAdVBKzibd3nbeqi+kMPWzTTxcfj+ZxJFFJbsHXF6/eIfUeWQPZVoplG9ZizEbAdBUqJqAvYrB5+iLfdZruF1vZZ5YCuwNSvRt+HKu4f8fYtbrddNSmwj+Coei+gPUslQsJH8H+2hycOq+8flBAphCZsF7QdL5DY+UYR/RegH/aN80B84pk+Bfy8J58KbQcw8XN1rj8ra7UrBJxt9+mAfui4nhGr/tCrSL87ex1mdfEf7DWRStVe4BFtRc0P+FiSkFwiTW4RHfgQJyZShEliITtG8xY3ciA03pC69nTMxGRGdWPtMkNmLSJ87d8pscHKSPkT9XRRddgiRSXa2xGyf4aKUN3YBXbHdTCnaO7nVsjlQm2w9IhQNDHnNyE+4RtIJVumdSdmIGouIWuURJE0Yb7gvQXguizMDtaPeda8Uxsg0BCWFLJLUwYVbo+PeC9gaLUxz8pdjXxRfIl5YMdtjijZAPr1epWm6BqtenY0fsFxWpv71BR+aAjltVvi0AXVuyzWZ9H/vibP5zpoGGORMnQHE0bBfEY7eV3ThnpCqEEvGCneLoujEE0Bmu3Ia4Am/ThUSTkKb1Lb2FqNbMM26DCOV8NbZb3fQ8i8VvJTTy3PGy29pzEjnskCxZeoXiaCuSm9UETDeWl3rE54F4cnpS6tdUfTXzD+hLc/of6xX6MWBX1FogGAJyQre5Vz6xushpLGSEWFg9hTy6d1tzeA8J3gE3ahO6zQJbBOG9luW34iMPHPfv5HGjpQY+J6vnpOBE0psiopceipRiGfYlwm5+myMk2V1CvcL9l5MxlvS2WWja1uiCrXS1ensIa0mOOaolTVNeFFdiDgwtuYSz2zhUdzldQRzm+//ZZ1W0mLknLGsgfY0I/diOyWqvHmknl5bCzLsjd8GKiNItQBWBApduhyX6KjFo+kwjTn7qQEUoZlXAvN+/arytrn9lB9KUkx652IzHakq4lFRCjOfX2hVaO47Tqya5eUcouq9JQCsHjcbpHFA+aSmRBq75CoCdpSqb1iXVV6sxuDOZNSJueCaNd69Y2uFEfW7oC5YaOARjdEIkMYqJdGQDj2NvmpWf/vOwKrOuzfv+39x8947DNndrffJ3+DKAAVcZAV8xXFjvd4OEqSvDvVGgFw/wgzGC2erUnQ5dyOa5oUnQRtwoRS2/dY/TOJSOmrPoFPmCqJbrMs7eeQaNGMoq1kDTqf0JDhFHvFXffg+ajG786cdIjMH1j7Fmt/BPsL2ltki89ADjs5pDzhFDRERtj5bN86zZvIUEHQiob6yGnv+yIY8IX7tyPZn9+wH3tsP5If/+DT+FmVgC92WiG8/uj3fWy0cdB+RAdHm5nTZ47Hgj8h7pgcQt69W2NHVE78CrGQYwFEGzn3ijija5j6brhEo5OVSu+nLdFyMO86j4ES4BVvElHsyaE9WnnG5uDd0Tuc89E2jy7pFEjp4CkmDy7SgN3Nwmkdz7v2TZpOgZBMLoL3iCmngN3FjVoJzqzUXbdTpOASDrGKklUpuXBvtqO4ZhvejEkjXWUdtWj9GjU3ijttXfFqMCkpKdYecY3siU8fP6LTlVnnSCnb4KtCaCHk2GA8dGTH3BizxB3af8S6Pj8W45jLY8gp4jqkjk4LN1b9Z4vyRxbzQA88Yz74TitNlnAGvXUDGk4m9GCpbnhrtNZo1DBEg6PaAwPx2DQZbS7HUtkMXxu1rdStkavR6p/h1htGPN2Y599S5re4l1DTqBu8RJppu31iun5A3/wGLU9ILsiUSV2iZcqC2orYJ9y/Q8tHrDyoqaeu3chTwT0Eztxi4xgOeUolbIc7XiuwEhW1smclpHMzU99b4iadHNYaNAu34AeraDhZp2vk0NVDXt+iH86FH3n8S/fzFxq6O/C2O6Qj2zV4X0rMiX0LUKVo4t3TTEl35mnlUpy5y1ZNbFxT5UlqIDWycb3OwdcDbI1e6EkUEQt5pqR4yrtw/pQlmpTUiqjwVHLwVl+6U3y/8rJ+wNYV7Sl5Edk5og4RrLtg9w1b1k7LOrIycXoS7YYJykfqeoFbC5k3Rw8aGAQFol8jE6VJzImiKfb5fgnXVrHadlnBt9cr2+OG9bdvCmWeOuoZKVT1UzW5eLSm1YybR2ZOFDVn7SitTyU6LXoE/Z4yvtYengJJ0AxShDwVdJ5ij+lXoJmDJFrKVAk+eRqwLAHOJPFofMOpMctO3/t6IdjIZv9o1mKgr6+eGG+OPyLY/KncRt+j9+A05C+jbWgg8KOT1S6VSZdZ86CFSJe1GgFy3O8WtKNeW+CeAyyCTlO5gGRyu6P+kbr9gbSFw+r6DtKVUTWT0GhiMjAGjGROEgveuYSP4TZ0XhvetgCmNXebd9TsiLTwUexbvP4e2rcoj1PWdTquY3dMO+n/uLT9PGKGHDUcOxWygzCH2kgFn9jl2NAOALb+gecm2+cbOb7RXz0WEtCyu4R7g4PPx89M359xWO0HKf3z3tz37tffM1oEDbkrXs/Rc7FLvDwimcHbM4uNJhyHkFYSbaB159HBRpJIjVQ2NtvAKyrD4XOsGrtWqDiNtluuIZrr3lhqYxAAdmkhGQ0LOvQ9/j6n6Xqbwrg88bpxDrVZILAaC9B6q7edhG2JnJTaWr++sQnlzmPKOUfU3LoFQBESOe9hAaIpRLo9hLlLii4d2+M4x606poamMG6tWUipANZF8pOk4FVJYcrT7lSLsjszU954mpyXtuE+7zfSB/fSiYK0dNZpi5aLPwfx/3uNV1P27LScnNXTK774c2wJR1x4iJqrnz5Kjlecv9Q74uBesB4NN7nQdI356k5qhnrd2/jiRjLrHE1jiF7vhqUj/9Ydl6QJdfaWuwuVezUwuOQZqcLj8ULrItbX7cGy/YmPTXl+8577EtjPy8eQpfr08pF6eSK9/x1ZC7fHguTE3/0v7wF4yIpsNyZuPE0V5o3y23fkLh6/uXVx9Ep1JU0Zb3dWvwOQ5pkiM+KhZdimRioXcp5o/RxW36JhgCdgDrFxdVKH98US0gpYZBpEg+s3aAeHsfzpySdI1CDYsYrj1g1k4yt5rNIloWhH8MyYXT3rJYGm7U1TpDGlkKm65BtJ71xVeeqB5OwrxRbUgqKRVcipUPJRcCQGyaIYtWGoOpp9T9UnL6hl1FqY+ZzwzdjuIxCPAHrbtnCoa6Kk0REnUu7Nwc2595RslsHl7iiP0SkCJ6elb251C2cz6Ej9GrV2emVfG973kMGzG8GcheMyGglIkuga1x3idL2EM9Oi9fGUE9aR6Hh9dGfbamVxWM2Z5wvz7vrENdl6IwTzyFiowbKGc1IuBW1wzROSQo4uCgcHRzUc7thjAuUmCdq9arEJaz19fNYO369VP46vMXe/tOROgf3+9DkR118/slmDMrDP9oPI2T/OB2ow3oh4iRR/T327h/zSSSxruGmf7QWnQxSNDKq13mRIgzNN3Pcwt5k0XSLDxA1qyJ15eQtlBp5JRN2Gn8A6xRBZmSbI6qg74m0v4va2YRK1KL34oGdDw2arNmgf8O2fkPpPqN9jTY49Q1eQAtoLxXpnq0EnEkn7fRgFaN4f33XT9ShACz+p9SD5Swhpv3ifobVnAPWwpcfti0vy2T34V46fR1g57ccMNCoMZlR1HYb01THI6z/OQfQ4Eek/R4tK2KUX8QGbSwVtuFasVzKLV9xbj4oaol3LrV9zVaeJ4VRS128Urwf5v3eSCd21oAxY52UAXV8yOKGGdyI1x4bYERwf18MDgR0FT1utuCbMGllLN6C2T9BmjZQGv2sgJ8dFNh86tfR0cJCy86hatB4haqSnWou0VsoJy8ctrW3j5s7VFNs2ylRokvZziGpKDY3A5szTlW0bhW3B+6lNkLRRpPbpMvTsUhiT4bh2rtq509XXVk3bG1bs8KP0RfY/YswPZ2Y3rvuts1dLeue7eqZ58ODEJpqncA5wclfSGAirEDQTq1vfdHtKdThRCtJidZhIVD6b7w5r2xyZrkzlQno82B4vKE7vJ8HUHnz/57+gktken9jWSh1zAHiShYs56aXx/V8+8LjdSCrcbn/Tv3/jKa8wGXUSmBJTStxfwriWDPPThMwzrTsNedphIqpXWIw8RSAYAug9ANznTqDG3tvXtp6p2B3WWpDlErdVDCQTQV1HC78UvffA6tVD2pE66U5Z/3yXnYH/V8+K/6nDB1J2FE75SLVKbCahEtKYcsyb61TJcmfOD7K+IPbAayL3G/8kG8lX1u0BIpTrjGJ7wxoXxwjqlFtU96soKQnSbUqg5d6LfSyitu0IghEoOXN/vEQjlZHSH3thisYlkS4P26H9b4hgJ6exuUrUDIjyWAeLtu8VffNtPe1e+sa8tYZqqL5UgZKUrbX9871vwK05OadQPBiOCjBfr9i6xh5kWwAPtXanOo5pWVdI0Uw4TYX5cgnHYOjlTgUE2hqa2CLGnIW2ZyI7HUAiMMhWEdugU7mSOjoXTAspZRIZLLM3y2iFtilWe8vTzoN9Nb5WnLWTv89I6mdH94N1eDiz45cfkrQOGFb2fp6HJzRqBUwmVGdgAamHqtDIFPd6FIGueNO/O5Xg4VgotLiE+ooOhDMrKWXaeqfVBzRI3KB1ZZQ2heBv+ltMnnHpHOr++RFirUzJyLaSbSO1imgH4DYBLOpyrGEaPk/KEeRLfcHrH2D7PerfITRIl2N7tTXshSloiP5Hk5XRy/1w/qX7NXGfjqwVveB6AJSjScluE032W/v6hn1p/Jjd/BkQ4Xyrf2T8B8zX/jp+Hb+OX8ev49fx6/h1/Dp+Hcf4qzpdnQGLV7HPyP6fnjl4rb47zHJ+fryPji5aKALsxUC94EBGaZM0NDc024nT4XsEJ4QGoSM7F0obR+8sd/COJHSI34PNjprQbI3oAXbyv0rGRAPJNRtU1AM969dkpBLAqW2j5Ej7RmFBaKIGHWDwE+Pn1urem/1AWX2vnLTe6jTONdHaRsl5f7+I9jTd6J/sbFtlLoOlG3hTSSnkwTDWZaE1J12mfo6JtjlWoGog21ky1lOELhPl6crjFi1wc4r7MTQVdzmVjlRLHHhobI47Iz9fj//vNvbUGHtKL6LHg37yxRaB0RaFIS9ykgkF+6yKcSQbXkMI7KS5cSgiu6wVhGpDqhva7h1/sOC0AuY1Wk9ai5atPYW6g/stEHbrj1NjriydD2UOz8/vqJa4LQ9ahXfvr5ReNHX7sLB+fPB+vuC3D0xAVeXNu7cAtJyjqGa58Y2srL6w3leWP8XxvXk7Mz8Ly2Plnify05W3F1jr9/H9uqLPmfLuGblcaO2Cvn1G3/SK2pyovSBCcJIM/pYgXQVkmhIDNwogRBAy0rmUtAm3mH+Ruuttk0/33D7j0WkvAjxNjf1x06gaH4UFQWV5/f5fdjh7JfgrixvcMqdSkjFn4zLFXHueK9fizBnqZtgqFNGQJgPMVtryYN0W5qlQxMkhBgzAZhvVKpNHZylRqCrMWff5/VgbmJHxoAu0Bq0yDf76pVA008rMx493PtxfSLXy9CYmb9aZhGAtEuCD2zpsv/b16E50+EpRmNo6Qpo41myrFdHQMN5bbvdagaFRYwTqug05w62Gvm+XVdtaMOyHWo1ZdF3EBSUQWG+wdCqajUIqFUoppPnCNM+kaUY6x1unHLJIfW9rXQlGu2VuSdBJYU6BBNcNX2AdVMIiTJeZKRdCYqiAF0aLTKuZdZEQNuibULBahmzeXwVU/buOscfDQF1Pz42Kqj0dP7JgfaZ/fvBfypbsKGu8v1FCicIuiF5R7oivO51GJXXAvhdmVd/30hh2ZJO1kErXvW2B7Hs1WluwdQua3rZi64JtQaOStqDW0Kli6XcYM+6ZUW6YpQZf3yBvCzndgv7QbTY2BYqeUqcfNiQ9kO27fnT/Au2PiH2IDIum4LSO1IXmPu/7nkBHUcc9GPaR0f0xdZR10EroP6NG5VArGIWt7O8/e3Q/ipj+yEPOz6sA/Nz4GZUAO9zM8UWy//Mqjf2l4xgulZw4BXvhWq/Ci8pNGxKqI4mKqJGykycjFyNlQ/oN2g9FhJwEXHFJpEHp8JBd2SxSOl6N1KteATw56gklsZqFREx3ECAkp8Q12rTh0SrzVSuygNNdNdIJ3XAMvT8iy0gS6ZqvsRi6XaeZsbVKHhVS9LT/IIF3oz0cevfgKNaT1Mb4Dumvs9q4WduTALtGrYQDXdLEuq77Dc/zzNKMzISXCRPhw2q9zzzcLbH4xCKJtoGRurbrMIzWdVdfH/+hmSidSvE1TWcfR/aIUb//xeOSsSHKzlU93gmmins7il8A3D9bvqPKciwVB7HQsqVXjLYFvX+AeqPpTJAnumPRNlrbmHIKcn4btJw4iWpBes8oVo1WG7fHyvKIlPzT0xPTZYJVeLkTG15LLB/i+eW7Fy6tkZYby/0OCCmXXU1i9YnHtnJpC1Nb8HVDtoo8ohiPWWjzRLWJNP8tb//+v5HKnfIh5NRkuce6swdcZ9IyU1hJU0+PleedC2hmTEShoKcjBe9m3UmKwFQsIUxQo3DN60ToA4bDEsGh7oHIX503GmnCzwKXuHdfkRKAxcb0KlpquFRENnKqzKXxfFGuJebN26vzZk5MkmnbEzWvFJzUlUfuy0q93ygYXhS3RtvqHqQ7UB2yRgCQskAJ+cDhUJo70fMhjkst1kjpHND8XJDJSEWYMHy7xfPpsHMqwmpOKTnoAO5ob36gXd9ay0yZCibKujXuj3AcMqGO4YRNQ5Wkp3T7Lo0Yfy/rxlYPSoBZSAQmDWdxM+Mq8Og0qLqteOttVKVXNIjsdn2kVFPn5WrKSMqkqaAdCMjXiVS6Dm1ttHWjrm2fSS5GumTkqSASIER9LKx9j0ye8fmCSEYlE4WtBdpwWAvbqlgNriZ0vc0zFWsE2r/08C/87p8/wUGlOr0wygijSPpQW4kfr0CFz87Lx+e74j5jfqHJFWENacvxIeJR3GQN6oL3PR/oVL9e6Cwa1zCKafp39ILsarBVfF1odQXpNm9ryNKQ6508fUDLe5AZ3zn3FVtfSMsnNN2iaDU/QQe4JGcoGU25F2VtiH2HS28JrN/h8gmXDUSRcokGG7tqinU1DiWc1aGRPvyRFvvSiBNGwZkcSgkjyojP7HOrF7XGZ/Tr0v/fdcO/aCJ/JmTyVz/+VeOnEdZm/eC+/P0/+oXj5PumE1V3fWIOwrR3ntoAS0+AqGigqTkbpRi5NCRZ75/dUUno/YVlr0A7OyFCVFxu5riHEW4+qk03VIRrnqG0iITbQu07Xu5xX60ePXSULuy7h40xcbrANaJIY+fhggRHRhmaGbsjDt3J7NJZw+EJhHg4g85at1cI5VLr/v3er13qWrRijrdGToVdikNTSFediCdZErVrFro5S93YmnB5M9MkIyiPrcsPlQsfH8p9vbBW7xq0+TQRguErvfhM6EHIfowWyMVXcljP63CQsM9R/9D/ewWY+giwRvXtqyitIx6C01AZ0/yEFriBV2BUoQJaSXpnIozbtH2HPv5C/fAt1JV0eYeKH8VwrUYhTa+WRYStI0P0I0qqKNFcw2tjeXlw/xh8J14q/lLYHoIvlcs1U79fuX8MBPRxW4Maqc41BxJU28LyfY/m81ukGS+3Fx61Is1ImrHW186y8VBjfvOO59/8jsvf/SeW+x/pqlbhvMwFn67BM79/ZGs3soXDm9vv0OdnyEr1kN+SZEja6+HDYdVw/t0CEVCb8BoG3rcZQtANTRMimUMKZlylv2Z2nB+RXWVEOVC6rzGEcFYDXd5DQpANNOSq3jwJ16kxpUD/nmZ4ewkefSqFloW2LNTujD2WB/VxCymmSVhXKGoU7Y6WCkwFMUOyoFmiyFMOu5aTknDQXsBi0bVMe0OTlJRajDY1JoX3YtRHO87BvPNinUuZeLQt7ISOzJYiuXTFh9QRdt+LUYsqWjJra8GRDQ32Y2+B3Z6a2Y6uWtd5HfUCAwhQb2wqO4JrBtu2RQd4GwXHRyW1JA1gIyklZcpUKLn0BhgxV0rujRP27GRD1Xan3HrHwpJyBIrVqGaU4XDS95OUcSk9q5Ch6yDXNYfD2kLSKhyQIzsXkmdfp9g1bO3nCio/HP6Tz8YrjloIDh+BIxg5LPNA7RJuM2ZPmC4Yy16Fn6QL91slil0jo6W9M6b1gxcbTpzu+3p8skTWVZ2l3qi1kaWgHX1sLzfq7R9J14+Qfs/mT+TLN9hAJ93Ybp+4ffgXlMTbb/4T0+X90d0zJa5v33TU/Y5t35H0Rpm6zOVFkMsFU8GoKCvNjnWHN7AXXDYkz6hOPRt4FPKKTriM4sfGUEl45TH1fU88gWfcAggAdhBHQ9Pw87v+Zc/Vf/w+/1un5083Duie9O5Zn45v/9bPIiCQH9S2+OnIj4iolzTZa4c2HCzri9zQ3JDcsFQZ6WjM95R81PZ8FlL2r2sOJikKoDR3LccQnjAqjxpyI6YZa9uhVNDC2VprC3UBbRQtu9GJcwyCs/UWiMDRhrQXQ3nXfx0nPyK63WHaz7mnw/ZoMwxuOCZREW69oCCe71JGJ2dwWVdyzocgM22XZslyyKYMgfr1fo9t2V5I+cJCQtKM9ffXBuuauW9CaxnrEdmhxzZI2N3x637xkAYbunL/IRDWMU7TNI4N9vT//vwhWr3P1V36QwAja2MqIVNire3C59gGtuFeMe96e76Q5cbco3G1b9Hle7ZloS0r9fFtzKX+naqKZGWrG1qEirEsK9dLOGspKW1trK1G4NKM5JB70db68sL2AWiZ5+uF4sr9w532fTiMU7kwv3vDlIw5GbPCp9sNq3GO37x74rkU/vhPD75/uZFIzE9vyJdLP8CKtI1pWyn372j//H+ztQ/Q5ZN0viBvntGnZ0Qqbf2eag/s00tcwvSEMyFPCmJYK92M6MnE9KKnHhQICfUJr729bCuxlnuXuSgAPAesQ32jO6I9w/GqYmAUXfZH9GSwRhDyqlnHLzgU7yleh13Kr5JSo0zOmyfj/dvMJTVs6+LobmCCeIu0dwapzqNGgLquC27GIoZvCyqBYs+9WGi6zixZqbVSibafrgNljKtUVFExmhIOtQoypT2YwpyajUpiSpnnBh+2jyxLBFO5XKI2ZS44RmuGyaF1LCLR5joH2lVHMWm3STlnXELjFBnUmNdbn3dkrOHUOoqt+nOdflVbSMrhzlor476PFuHVA+UTFYSEpBNc6NF8oNCYrEHdsCRIL5qyZaOuAYhoM6w2wJlG1WNJNFU2i803a0gntjH3c479iAlnJlGQlrEWma/1odRV+tzsOrxygBJjv/6SHOUvNV77C37sFcDnJWI/dpgn6KefE+wdnOC1eoYIoUdbwCaUgvlRSCraIrvZLIJBq1hdj0BHlSHFKRJScq6J4RDUbWPWgm9OI5He/D25VuxTgABeH6RszGnl8e0/YC2jl7esW9uPsW0bsn6i5Jl0a6zf/r+sLx/7NTDS3/4NdgH1j0zTCpPu6hX69j34N1BKb82ccCp0B1RKCPybP6BVkKUXlcWVbvm5N9mIfSZS8y0ekz3nunsfgiDWNY2H8Dr9BspncmqfuZ6jFcHnu76cfon7N1Dv0xPy8yDBTzqsmvQ0YU4LomvAjYgqkKYjItq1Il+hceNX7ylvO/1+vMLdSL26MmcPKoAa6GetF9vnKNrxlPXjcU1ouaAlI5Ipw5mrlXVd2B6PEPjvG5itB/rY2haC0wJsFdWGdnFn7XwOGbIiIw0zjsfDOd0jSX2N/ro5rk6tNRyUvlmOBWRnJ6qjtSaOnvQGMQuPvE+8okpdVt4+Rb+6fdwAACAASURBVLu4j63LeJn1yCw2hsHdqdtKayuudx5ubGSmyzPeERcvDa+GtbeYd8FsAekV9+Jpj37lVKk6znJXP/hqhvOEkO6HYKc/fmxhHMf7qtgVQCrCyjxtvHsWxB6s67K3dhRbkXanrgtrNXBDWZh8Y0oxt8TvIZqfEtWgLmug6yNq1UTtc6IlZ/VGKoVt7UEPlft9iXWXhG2tPKVCmcOh/PTpIzIZz0+FXBLLunG/L0wjbZqE5+uEJgPfSHMJPc2hGKcrW73zdGnUJ2VbnXK9cH3/237V7rT7d9w+vLDUf6R992euv7nw9Nz5pSmQQV82SnIKmaQTNgyjCbY5YoIpkR0YxrQrCYhvfd1kJAkiGWwGG+Lq2uOIkHuLe3k4l1+ccX6gMyK7We6Zgdfx7viArxVr2d5T25DcpfryxjQbTxfj7ZPy/OTM4tjoJFcXrCZSCtF97U0EpnxyujtNypfKhNC0UqeuvFIy3p2pgkZHNQs0NQ+HMXIqaILcNJDWnPCBHjpoM0oLabbn5wvLpwePRwRruKCXTEm6o5q4H81FOv2gukc1vVnokg7nRCQ4oaJxu0/81v5huDuPbWNUhoczM5RNwqGNNqmK1TXyJTYAhUBVD35twr1ySCkM58a432/gkGtDtoyvYTcfy4SWKVBUkWj5mYQ0h+2+Pl15SAdTzI9ufAMhVaXRWxYTrUZpM8st1vd6S1GRzgFCILIHDUJokPvhCfziQ4Rj8Uho6e5L6QeLs4NX4z3D5o577iPo/HGLHd9z2i9d0Lah9aV/RW9sYxvmW7Rs9XbIVhk4ocTjPevjpK4T3W1UEZbbJy5Pb7H5d7QPf+H+8gcAnt4/M795gzf49Md/4f3b38HtT7tztZrx/Ju/xab3ISfXXtDlA9z+AsB2/0St3yLPM+UJ7PZgzQW9RF1BUcfX70A38pzRp2d0foNbl5jkAmUOmTkBty3mw1hX3rqGuwT/9Xwz9rXVrx0p+LTtoKHs13d3tH7aMMoXXyPHlizH6/asJwP4+ml/4Scd1pTy4XwOBGhwPOBwwk4TdLx2P+jPGstGOruxA489lbf3EU+gydHcSLnFxjqc1fM1kM/+d/ZdR+gaoCm01FKaUJ1O96+iOYTGNWVSc+yeqR4k6m3dus5g7/tLSFVpJ8mmnDp0Po7lcwedLg0TaU7x110mzty41pFU6YgBsLcyNDOmXHAPBHhwXlVC+LrWFbMtesdrtOccbQrVvW9chHMrIfcy0iS0Dd9WSpnw+yeyKomKDaehfeKSV7ZJuK8J82tHwsflPwzKgQ4fTqK4xaL/KmSqPvx1RD/W24kl8cM3jNeeDK4xIuWF67Tw9rnyzTunLR958dtOfi92R+uN6ncmieIX6sLUfC9M0VSxLMhlxjejbnfqo1LreD5FClRAdCXPhSRG6wjqY9lY1o08ly6DAjIVVgukrSFBNdAZmnH/9Alq3Q1TXR/cX77jzfsnNpyHNd48X5j73KrtwUzlOglTSXz4fqP5na11lExqyLM5ZBFmUa6W6epKbMudZjfSZcJLQaRBMlxGJ64V9UaSgqbc9Y0jEHI53SkJDnTwUye8zXgdvbnjvuwdkujIyDmMj6vJ54+Mv75YDngC0v7NOav/CcM7ly8VY+pFVfMM02RcS+PdNfOUG4kNwk9iaxZan3MKX86M1Ck78f4rDUh0yoonrDpr1wf1HI5ZViWLsLd3dNt58fQuOmJ2ZJNS1wQGMEgWiUZNAvPE9e3zLtlGNaQEtWrrGtSqwgHQtm5jlK0aW20kOXp9NY80v0gXMZPgzJ/55CPY934N7LzYO48xWQIXanOSwrp13VTzwynWKMCyk/xRkk7bcmdbV7ILbBUpmXnwIetKnmdQRToiRtLdqU9zjkI/837s4BwOp2k4q0hCyXjNbGvi3n2vtil46mpDveB17/R2nOpXnL7Asd5+jAd+0OtG0U+/zj1zciIIdSfseE8X9duf71cOpKJsqN2R5Tv88ed4RnK0ZsVwW6L1bS77vAsaSYA/Nor5YKfT0IyP3/6Z1irXy29IduV+/462DirMM/W+Ul9eKHUjb3fWD98eVBIX9PIGS2953G8Uu1G2G3mLrJevd/wDpPIbyvv3rPeG8Y756X+P908zvv13fPkz7bbgjxm5PiPdoZX2DaK/QfJbPE091D38LlVn72Dl0ouwPkNKXWLeeRT5RbevAwiIQu+EoHv26sfu+6iJ++GdH0g5fR9+nYH98X35GD/psOacTg5rR2hOv8OpOOXMH9299XEGx2e6+1DFPm0MckxQ8YjgiyG5BsIgXX/NTxeXKIZyJWBrOaYwEt2dJBdUCylf0FR6hymoLeE5Mc2FbJCq8bg/kS9d/PyxYLXxWO7UtoU2Gsba02up5NCg7RsnXY/W9wkivTOWBI/EJZDjVPbrMzrAbDUqpCPbcXKY9lORaHPox9IvpVBUWHpPYnMPRASC+0qAAkoXlHej1RVxo3XeTvUNl0atC0/libU+0KTMved9bi/kKZPSjOfMfZ3A82E0RsbyNPFe7Q34T07srzM+S1/sKaGBxA42LhxB1KHHV4rz/o3w23fO0/RClQ+0Wnm8jF7mLxR5IPLgcr2wpcb6cierMJch4gw2KakVtEZXqtuj8VjivjUaljMpKdOUSM3xpdJG69R1C/5sN6yiwnp/sPbsgCZFtPF4fEIdSt1IHlXdAE022gbkb5D5yuaVloy3v30T56BXZPseuz1iVTZn2W6sn8bxGc/WmJNSrDGnhrYX2jKM+40skMpvkbdPVGtUeyFf+/lfBaJpDJITUgJFJXHK0gRyGj2tJ7AJ2zK+9fXjqSOvJ4dUDhhnR2D7/BtFHnt37c+Bd+S1jfrK271LZJWmyZlKXNcpb0xamZIhvoJVxBd6Z1W+6de6YVirtK1G2+h+UaYysZqDVZI4OYXtHoFSNic7XbC+B3pioWs67FJIU2Bmh6a1nBzWJCRLNKs0KrkI6flC6a9ta6BY5gF8GKdsG1A3j+/oTqo3Q/wIO1oLNHTnjI7gc1w4iU5GOQWHtPbHdifOAI/MVkICWTt1REKP1HMz70wz3bsHjgLIOC5H2EgGM4IQ66/m7kTnjAvkNGOSaJ2Dqi7knMMJd6K5gcqBMqdMSl0dgEzdMo+7sK3nvW+cr4SSiB5NM17Tm3758QNcrQNKYz+EHwERXr0hRxU8INqiH41GYba4B+p9blksgK5kfSHbd+Tlj/DyR9qtFy3lJzRNERDZGn4D7GCKIGzrg5QLe1raWnTTANrjzvL9B3yr3Os/I8nZPnzPLOEv+MfK9vItj798i61wr38hUxm1hlOrbN/+I4/2Hm9G3V6oviFDX7il4H/fX7j9+U66fkN+/k/Mf/9/xOfrAn/5E0lDJcSawGqIh8Mr7WMoI8jfIfoeSdOewQbCVqRpX9cHWnjw9kNlpYBP0KaezTrX7fRAaiCEP7q3/9SGf7zp3zo9vw5J69fx6/h1/Dp+Hb+OX8ev49fx6/grx88grFEVLjKKEkaqVA4UdRQu7MgaDF7rjm4AZ1hDvFebDdjYAxWCQLs0KWkKlBVtB7x9qjYVd1Q8ENYeMY1OOSZCVUWniZwncim45B0VCDmqHP2umyG1ManuUe5WJmiGPgrrulC3lVo3Wo/6lu1BkilOMJcdZdzbmnbcW0RPQcVRVJWkt9TsSGyWTgnox6cie/FUpKcC6d61at279EwhEUUAo/vVodUKWCCtYsH18m3j0SIqM3Uub97T1gVJilSlWqVI5BgnTagvuD7YyoOtLVib9shITF4H++OfgVYIQQvwrxUT9fQlnGagv3r2h38cr460bAMxUi+6uF4Tb54rb68bk32gySdMwTq6om0j4azVefv2ia1sfLd8JGff+507kKfCVg19ytia8UfBHr2ae21sVtE5OpWYRRpzG+oOzUhZo8pVHEyoa925xdNFu1qJI26UrCHz1ufmLIpcMivC89/+PWnKPP7yh53f/fbtU8iVTQ9yvfNmUWRT1g5o5M2ZPfQ6t0fFbncK7J205rQicqGWJ9Jv/ysucL/9nvK2p6bfvEXmK60Xm6S5IFMKWasdHQqE1X3IywnW2AsAEokhP3O+j+dyjv3xfZIelJ3934HAijCaN47no3PM1+EBam6UbFwvvstWqVSybMwK2Ru+LTTb2AY1B6XMhSmHfF9zxWyFPncv84Vm0FqkWz0paUpoGTYzYSgtZB6D5iPSO171AxNFSXva3GWgkMP4T1RNbAjb2piAMk+UfhmzVlqFzbz3bPfQ+hvsAqJ9tNVKc+vdxxzddVJbPy6i8KTzW8ctTqLUunCZpkCBWwsEeNxHB3cLhgxB6YpuVD3tOTIt1tAWHPSgHwxkvqLe5bdaI+EUa0zNWLpdbUkiw6CCmJFlyOH1+7Q5SSBp6LVK8sgwDPuQCqpdVsgzdUtsSwpVAM77adyjlBI7BMzYIp2vkyX4LJ3K6c8zIveKchNPyGerTzo3e8qVeRLctihgaxX8gXeN1OA4g3KnpIXEd4h/j7UbtnSa1P3R0fagAEoptM0gxwE1r12dJexKW5eQMhsFxM0oLmwvD+4ffw9yI6eJ6W0grO3jje3P35OqML3/G8qkZF0ZRfzb44Xl0Xj39pl3v/t7vv+H/5NPv//HfV7n6RmZ3kdxmG1MNEpquw5rkwetvoTU3Pwb9N3/Gm2Ft94atn2i3f+IShRpy/zUZVPHvJ32+yPEGoh7ccrbiyJkxCZ86MKip7URf/tw9vas5M/NifMYdkI6dzuoR/ExfQ78DIXwZ4quehuzc9HVZ87qnoY7HdJrSsCep9tfIIOPcrx9LzrRBKmATo6kFkUFPvgX59StE1V9sSeZjhxg8DdcInWfe3rVhd15Gs6yJKIcXoTDnYg0jZhDTpR1Yts2tnVlXWMBbG2jrtEjOpOQHO0EB/dU/OD5Buc3pEbG8xB0AN9bmforCZvRcxfpbVw7R3S8v3XukqYQ9hW33fGtHMZZ3EPxwCpWK7RDm67MT/zmN7/j0TZ03fA1c681OFdALjMqxsydp3Tjlmc2u+B98rs46kd1+5CJ2iWkPMz8UEb4pccxXznmzetfT+PsVDuRbgrOsqZK7hVJSTbmbBTZSG3BtwezG93HRwle4HydyNnIWXlcM1PW0AumOwLeaJuSJJPeXLDbxtaFx9cWFc6eBEtCHVrF/cCTCqRI1+IhE6RF0NzT5YQTEN20ex2TRX90gEKipYRlocyF8vTMtr3lZQu+13MSrm8msAv10xW9Ovnt33F9fhff//IJ+fM/oe0jlynW2YRQdjk1aCmzekLzG7xMUeH+rp//5YLOF6xuMVdUMAyjRQtW4niz9Loa8Qgc2NDeylCYXtkjgB+4lj9hSF8/NQJxTgWCY8P/OnnVUmDKjTk3Sj/nTCVLC15q28BX3CpLT1t6LqScyVkwzWhyPBmahxMG0wSPbQ27M2XSnIZaEhWjVaekcORdoj3r2UFKErqMQhTFRqEKu1wOOkcRaVO0ONQQWi/d7q4N1lpZNielUAJQOWoBDA9bZ4a0cFi9a6dCt9sqNCH429Jt7aAcmB0SWClRW6O6HdrQxOdZlKB2wX3f9yjRAFNEFWmGNfrm0veVZjHXRWhiiAQdy5pEu1Ug6cSsYOL9OkHRUB4A8NawmpHSe9Vnp2WBXtAraSJLwSzhNbGtiVrP8kIcm6bIHljsDupXZLOMItW9PgfOGv+fE7JOb4x/otWs4b6RS8z7y6XyNDvb8oHGSsoV2gvmUci3NYs9rr6Q3MjyQHSl5YTnMMz15UbbKkkKpkZN4bBV7bJWCmmeqYth24O6raEVPWyaOWV6QtJC3YzypJR5wjqAtd5u+NbIZWa6XChP0ehhyE5N1yf8vpELrLffU8rC/CTUR7fplzdM3/xnSAtW/5n1+4+Y/39I11DmuZBLhfKEXt7jXlBPCFFg7frAWkO2ij8akhxPdaeJqHaaw06hivnvcuyTsTo6JcBCRi3Wftqf3wGdz53dcQ99gEKn170Cg84vPeqi4iReO7A/Nn7aYdVzgdX4soPT+soh/cFhfTZObHA9yyP1Bw8KT1cGSA3T6HSFRYcVH5GyRfQ7uki5GeJHFybvfLaSlJy1E+jPR6bBie0dttQVM4HurElJ0IxJps4TTIhG9yuA7d6otUIzzIWpG7lxRs2MqZQQ10+hy6cps3V+KdI5S04US3Uukx+XqC/+0bs7pFHG5lFbI3WJl2MSxrlM3XGp20qSELp/uX0KuSWru2+mgCXhzbv3PF5ulLVER48erefrhUmchcZzerDxQrULj6EsJplwi87jrBZwIJxff4wo7nBCznP3cGJH0FNRXcmTM5eFuVdSX6aNywxJovtXrRE7PV1iGSUJfcs0Cgdx3jxdKCqBDABCw7ojkdOESub+ssBLFDWVSZhzQedCxZHUe+QMiROVUM0YXO8sB5IfBxEF99CRVcPb/vW49UIXX1i++wM8Llz8huauk6rK+mihhZwScpm4vv/PvP/7/xLv//QHbvqBea2IOnWakUnQay/euTjrrHj6xPry/9DKe/LbCXmOitYFZ5YWGp9eMW+YWxz+0JoddHbx3vVlI5UVKYOzdTkgfTkZxlN0Huvn89l5DEH2tfClIOYLWNEvNi6zcZ2dp9wogQ2h3qK7lTSyVzKNp5KiyI5w9sS7trV4ZJtSChsKMSmTkbyQkzKVjBbZHVakRlBcnZTDvqtrOGL9vhS0O2JKlvge6Whn/xLEgms6pUJLsNH2DoQN574sPFbjerlQNET29k6AIrs0n0E0xmhtFPkj5Ohs5SO4iG5+2y5f5eRcegOCUXfM7sR6i/0ipRLorADoHmQL1rNdirt0Z1iotTsOtRdFCmiXtKveWJwALYCcFVNnozGJd/7vSQSoqxw0AhnVJNHRi1gfqk84BVphfURXq1Z1R+PglQV7BWC+Gl9j8r76zhOcOlCsUTMwOt6Mp4ejKxKNFXKoYQA8P1WmfEP5yOIPtD1I+glL4bBmTbStYsvHULfIEvVX04Q+BS/f1obdVpaXD4gm8nSJYCl3IOJ6QaTS2sJ6v+MCOh3ZRE1dhs2EZhvF74jB1m22PV5QN1q9U+//Qr58gyt95cJ0vXJ9ekOrN9TvXLKhWnj8JeaV5woT5OmKfZrxdseXBW6BsCZ5Ir27AhttvWHbDZ9mdHyDhmIMMjrFjc5WB4zoI8PU52PIoZWTY5fZO26Z7vfjXK/0uXf3k1NMjnv76j3Dz/2Bge2Fnv9DCKvGRYhD3T1WRkX87rT+NeOMsEasy54bEGfoDbpsmG4g/X9vkR6QSM/G6Fp7/X+shcPan3eilWVOQtJRxX7y6IXu0YOWME40OWR1LKowqztNBc+ZJIl5yGBo4rHcqHWLAodayd1RjO8/I6nhUDi+y0yMvTW0J3t7U2TvtOWjIs0c8RZi3hxrvFZnSoJ5d2QHFcKN0gu7tu08vZzb7Tu+efM7pmvIo2xJWayRkzC9fWK9L1xceIxDn2cEg21hZuWbacH9e769xUE8/BoaihznvYfX/Ryj+vIrjVeW/Oes93jeQFZEHuR54827zNuLkaWn/Fm5TJnkvndH8d5YAqCUBCSShiPpzbjOJSR6dhFnQGOjnTRjXrm+mfn0oUsDmZM0Fm6zQYlplI7AhvPgOBoOZdZXvlqeS09jgtSGbb2L3EB4E33D3eD2Z2SF64VddkfaRtGGasOLIZOh6SNFvwWgXj5y/TuY24xLQacLm2xob7/pF0cmhYvzsv2ZjZW/e/dfmZ66LM96py6fmJL09dBbq6ZpRwQM60jXQN8aUlaY+ib9uOI+4WgoBfxVtBPfL5KcHN09hfrKm5XXP3/hkfNK0Y0slakX/E2qXEoiUZHW0N61Z+gqVwTxGtdSI5B1MoM00QZijUNKoYCSlLQ3S4DaNrbWSJpJSdisZ7VGSl6IIiQFOAo2RmtTmlOr7QF4mTJtK7seJqrYVsnN0NZwDXknzT3gU2Uu4XDWrVLFqK3t6KVIuH7WKRyiSp4L62gM0Bo5h8rGhmMpHL3hMFe23lJ6IOhRIKUnWa5xPkIiOs9uLL2gUM24SGQ+zKXT0rQr0nRRdhVWD16F5JBq88ReuCYKW0d1DSVLIckVsUDLpD2DT9h2YXkp3F4GYjnmbh/SASXkVUX4GF+FEiCcUh2n7//iocirHy6GeUPVmSfleo0nrpeK2gck36hSsfaCsuC9Ecl8+YaWInMgquQ8Y02Q+bIj6/PzE35fsU9rVPNXSFPes7pSDW8rdXlEMWtJSF3RPdBx6v2OW0OzY/UTW7tBV9goXoOeKBu+GehvkeffhIY7YKlx+eY9mt7B9i/4fYk11Of1ev/A+t3/RVUotlDESTIfa1MMqXeaf8TqDX16QvLvMB0yfxOkCrqCrCC1O9l9dJvgr6SpohGQjPSgR3Grt2gpfzirr2DQvgZ5DZ3vN3KEUufGO68Dq9fjtd39a2bsTzqsoXN4ho05Oak/7bAOBOvo+NEf371uZ0gFiFTQES1ENxd0JWKUqAiMutGRXg6DY+a0Fs6r+IGeDeHvc2KvyVkuqjuNPkTFAy3YEZ6snYEQN0zVwaBnGHjz9Mz9cWNdF8wine9uuyagJKW2iqaOno7jODvtIuFDeGijiuiud1ibdeQiDJz2jWNIyYgKW10DdW51l/x1eutOQNXw1TBrTNNE+uZ3vH1+tzs+m4ZjLN6wksl6wQ3msTn1PvaZgllDZOU3s9B6VbGvzkNCrFnP8hSnc3T82Mx+4eFo58kcVJIf1XgbgZBsiK6ksjJdNqZp5TJtTD0t6xaGKatTEeZ5otkaXFKgZEHJbBrC4yYefFO3XaEiQjXFsyKtkdSZ58RzRyDFLfo3JyWJsmGY2sgYBpI2PORpgpTIKmxdM7A2JycN5CwJmKJmQSUAZoGnuUCZ2VyYklEuV7g+A7AlQdNCksp0TbAteP3vbN+HZqBMjfy80lRpeaZlxTVjb2PDzW+vPM0TawpJH8tXyvWKe1efsJXldgMqenmOgCdb5/LFaWVNJHIgd71ZA3nBL/0+uOLbBvaM+xvgQujhnW+qvjKV/5rte9iur9X0Yi6VJA+yGEnHJlBDjk831DfUWqytcc4Cm4N6Cocza8h1MtQpojNOvpQdKxGRvce9W7Qkbh5zqBQNOSoxhrqCdfR+GKehDIIda18l7B/mbGJ4Oirgr6VwywWnQndEdZ7Q3hY4l8w0FapF3UJ08us1DIQdba3GBiyBpA01BIBaN3JSckqsdcPcyCnv9RfJvKv7hIzRVmuvXh+XMJzQ0OKPlqy3x7rLG6k7mwYibDSyKCUV5mmOPQNoIkClaNAtqvrwDWJoXENLcT1dJ7AnvMb6s/uVtWXWNeSspAVveAyXUGXIGnzLI+g6D/9xW/fvPE4swXEo8TjnNfiaguUEKKXaSKmSdCMP/WFZEfuE2Ecu0vDiKHlvdFKmiVIybc2RGVDIpUQ9SW+2oE8z/nSBx8atvrBtK1J090nMLar3lyV4wTi4oTuNw3FfyZeYd0FjMdI0KEwFNUOpyBRZj/m3/xt6iXvaPvwDNRXmN2HvfH7g9pFp6Q5zhm27IetKbispZVgNH5JzJcUeMN9J2SG/R57/C5RAkNv6z7h8T3l6h6cZnRKuoNr3lFQiA6wdUxrOKgV2wKngljrFMHcDMWgAn93Q4bV+1qyJgeKeVtQXZsgXHjt9xs+Y3J+nBMCOso5Div9OzuoZxZLTIcvAUf389AmJC6dVtKGdJyipO6tpA9/wnuoXGodwlXVn9IC8dzLr/8/emzRJliN5fj9VAM/M3COXqultekg2eSAvvPJG4efmJ+CZFCFFSF440iM9vdaWGRHuZg+AKg+qeGYelZVZPd2dcQmIZEZ4mJvZW/AAXf4Lqb7isJsf1/wxYDQPJbd1bC7gKndIgACubFWiFWMSkirZeqru1FbZe6f3zhiDl+srtpysMIYIVQLqEAGyHAGzZiu9pqbfTAOBY+9ZhIaskSwDgEdx5NlTOy5/dy0Iyze7lsK0sGM0Nc5fvcOfT0fr6qzCFEFsIKKhv1rKUY1wD0kjVQtMlQq1KLeR/sml8N0sfBwFfAkY36eBL+LZ58j0gceH5lOy1aMxQ+j7PrgJtcHpPGlbx8eV28v1MAO5XArLl1mLUM8VaIdGqmNsmwDKHDNb8xImorZEqo3hTtXQ+VOErSpPTysinfQBrso+Jz5n5lGZJmo81bWUOA+JxHKuIpaD1JhrQsAGYiHIBV6cs3pIvJQaAp/f/ntOf/IXAEy/MeevGH1i7YZtHed6wGFa29ByDl3JGs5oXmC/BAGhfP0L6tM3lO2JS5XclM93DdVd4WVy7S9Ua2zlEsYYfeJLYqk1InpdT8SIwCn1buVkSLni4xWfHZ/vwC74sZwVVFpYJ2fS4j7fPD8/WvU5ZsrnGdVvNNkRH0eSOhkMG1SdNEnBGb+vCVoEl8k+bmG5KqEzuXSVVQsbFZtRtYw2vByf7y6YKtOcKcKw4A0I9+tuWlBJslCSnw7LQXJZF6XqQ3LYJzMTPlRoW+Nl35k2MRG22u7GGxV2Xw6F0REb7sz8gpodv9Yqo4d+tZnh4+6ASBYIVHINc6Ms/ep07lIRhqfUkjxeA+PWd3RObB9cr9cgl+W86NP42DtbFRCnbBtsZ+RyPq7zdiq49CSjTaZO9O6siktALvQk+KlS9YS9ntmv2fnyE3MWbDbMtuBIPMAWIPgPmhai9mbO5n72mYLVt+P3j+Gt//wKCAyhI3XQ6mRrO60OWmKvRQws9t5SCnXbsHHDPZ33ZFCqcro8hZ65jyAaFoct11x5xp53+ocX6qUhLpTzdtwzYzLT4EFVQ1dbJms9KFUply3xwmGTLf4AiHPDR6e6glRGccrpifrVn8TnzxvX23+kaeH07pkhT8jLhXKJ45uXP+fU3qGvL+jv/had30F5gUMzPQoZhQn6jiFfIe3fbnXKQwAAIABJREFUI5dfxOtlA32HPn+DlKcoINiNmiZAUtJQIJ+JQG8rTrl3p1Ja01c1X/QemMan/MT9ljd/X/GI+ycvf1qYPUZEYz/Vs//xCusKPn+gwvp77P+1oX7yHkus0R0Du4LVAO4LFuSWehew9tJx7ckInNEqcDtsP8X90OfzDFaFu5+zEHjOuSqpWe17OAkScZxWmBJ13COoXi67Ac1Xl3gxgz2bM1s8NQT3a41N4PCkntjszAOnE6LoizhTt3IwVOcYAWkwPxbeEC+G4ekhP3tUBQ5v44JJotd8aRnGRHx0yEIF8UmtjcvlCX0+sef8PGfiH8lHEBtu0yK7I7CM7s7wSdPK8AHqfP0uAqt2u3G2G//wWnjtAt4iDnjAKoP+cd3af7PhPCY26wH6vfV8zU3xwFBrtCwZRscpNSABzSezObMoNasC77660FND1cYEUU7nyn41fAr1qGKtljvRKCjCxCgi1E2ZDwHr9WbcRmKy0yf80NcWTSe1IBsUVfr9TAIvrYFdNouAt7hhKdwvRcB3GDdO9YIVmKevKd/+Vbw+vsPev+L9PSaVWUsoYTwF6cq3DZcJBaSeafXMUGcmFMW2b5DLt+jpKRfIwTCjros+OrU7DKUSnuoilTGdsTooUrEST2BoXAfpioXHbDuUHSkDBljvTHvBs60K59AhlnvGL48rpfjbjlb+3gHlOZgtn6fCuukexD4GskiL3jHrvM4dinAWRfGjBSszyGu7jSBVmSFS72u3wDBb2hdI0XD0y+80EbRtPNfsziy3sYfL4BKkGC3Rls9i5GErisQszyJm4ASLcM0LrSIH9n7MgFHZnPSeGr8qzAyGTYQ+koi3CgmpERvavsZ5OzPGvcLqNrE5uO2dqAuH5mpdGNoZECp3goOwAtYMmPt+Db1qMzwhC0VDKxhIEo5iCrUo1EYvhb02XhNPuCGcpbKbs6UaTm3CnkF/l8mmxtYcmiBWmKOy78k9mCHcLjQqWyRdOMsXfvEWHjtaK13OH3/PrvbnGw8xwXEIP3Qssf/H2JFyCxe3i7PV0BeuWbFWHJdGCq4HN0A3UmU3IXfGdrpEaaLPIHIqlJYV1rJhX3f47tfIrbPpBrUeUBM0VEq0bGEoJFfA0VQR0FrxzaM63k4R7pndeQkzumDDKoqh2hnf/zWM6Eo1f8XqR0rZmLd07qwNtlivylf/I5e/+B/g9R/Z//p/o1wHUia+ZYV0E0rtUGHWM16uMP/pKAJQz5TTCa8n0BOilUJ50FjNpD36c0yfFEJz9o4lDqKxSAWNtePtPf2h8Yfn2R9+JYlV2dm+T2P/0Xet8VnDiS/jy/gyvowv48v4Mr6ML+PL+Knx45CAQyHgxyqsb0ErKyH3xNas1vAaziqErs8ORQBJSIDrHjhWOiSxADfeODck7kiP44ry9cJKlQQ037Ua84jz94MzoIFzJPQg5SFrdZv5ShCmlMBkrRLs7CMqFW6IFkopnMyOCm/fr8zZ8REiU0plnz2wXYBNZRcNiZOsiIRl6rJezWvogdGVdN2oWcUqcNhSOuPgA7rZcQ3EQbaN+vxEPW3UbUNKXXbsGFA9dBZRwVUoLgcGdquVXZVpwmByrkIXC90/oN9u/KK94Ai/wrn2M33A6p+7FvDyIBX0c4+HPuWRaK4s7vGYHkpIovcKrAmlCFsRamJcx8f3XH1nOzVKFaZORCotRUin5rxUYTsVZk9M3AxJHIjKdS0l2vZNsX1Sq3DK9tU4VQxjEJqPZUFV9J5busfnHVJpyfyPU4jJE/qtTs3W1Wp7doGrGheZNFX2fVKu3yEf/zY+e75g45XiCtLQraF1OyrviAQ+9fwtZftzpFww+y1TgzHrpeGt0XWtA475lZG6iXL7HvYrp8QaynRIrORhtZoe9uaG6oxsXMahkymlhnJIGbhe8xYObLltZSvdxRBaKHB8sga9nSerM3MnfQEHCfLnHpWJ2gC5sdRUCjubDipR/V9up57lTVfHqyaUJObcdtK0Ybx3FsY0rntHEc5F70u3FkqR0HpkYCMaAbXIm30g1Ewk1Utybj1UYA8Hw6XeokLJzlSnp9Z0drDck3+wziXQqkWFMQPSZaLHuida2Q471sCgzrFkD6Pz1vuO3GJds94xM25zYVDBp9PHZIwOHtCpa+p13m4v0eoV5bydkwB23/+22hCE4ZNtq5y2FhKHrfL19i6vozDHzsfxEZvGcy3UrTEPuFnLBXzi7JgNhjuWkCFmQ6RR9UTVGhUx7N6pygrrgyHpg1ziGp8HFuCJ0PfDSem+/L49GoOj4zOoW6dug1oGrYyACBxzDlwK9XRh7B8CilEKS1vUk4CtpSA+omv1YIW7vm87n7i8e8Zvr2SJ/OBXzGXrejnls98QHGlLrzD6Bq5KOW1J8nZ8X5yYgRRFS6BDpQzk+g/Q/xGAenbkuSDzNSSmpOPV4ZRV5O1G3a4YH2l/5tR+wb3gLaxXTQZcHLaONce2Kzb/Bk+nrPbuz9HTV7EG2AvFNeXm1n1Za1xozfsMFaXo+C9C40R0ROxlS7eVT1r5b7Vyf7T6enSrH3/8l3esfjRgjS9ciznHnwd+VR5fWa//wIPySF4QHgJIj/JzyQsFoB1f6gBmoYd6zPpcnPOC+fpsyfZhPqSlgZR8T9H7IVouGrlgWnowKyD1fozuD8Qyz2AYpeTna7I/TaDvPWSCaqXmBBd3hjujXwNDJYKPceBFJju7cQTiSvx9CZWrhH+9quI2cmrYsXmphmC0uXEdS/9PEwaxcLLQSmM+P1O3hp6ChX1MxZqQCKIdaCq0KncChQR2x7cNHc7r3NnaxhIMbjoo83u+0YmdBt8X48NH4cM1F1IJa8HFtPzZR+Kk5GG5DEjAD8zPA8cTIvXiSquVre48n5SWwd64dfz1IzYacyt4BS9OOa+FpxxJVdGKFMf2aHtYBhZ97mitSK1cLsLL+IgAp6XD2gsv146IU2sE0KW1o4E2zRljIipsy6sc7nNchemhv1twqggVxRLP5OdnXn3nLK/Qw1qy/+o/8b5H+0qfN9qWc76eqdZhduz1fZzXuVK0IXZD3fEJwgRLYwProVygYNdgrKKdOdIM/eV77Pv3zFKRywUpZ6ROpNYDPx35QZyj+0hs5J2UFc81GYEMRHriG7M5Ogzr8SyonBGruUD/UEPp87T9f2wErynWvZL46qcqeB8Um/gc9DlxyiFqP6YhrpGYLoiQCHMpL1hQp6oqT62Be+CdD6/wJWVljGnsfUQA+0AGRSTy9oT3KQTkaAVP7odcoORaNLkn0dOc131n33d0OiYlcICP7WPzkGZbe4YKy+PSJIiIbhM353q7ZQ563x2nGa+3G2DMMZlzUNrpOL4xJmPMwOeLUrbGL76OwGDvZ/q+U0qhtcapFupWUv0jYAAqgrRKu5wQFa4jgqstYQNmzrheqR28FrTGGljX65SAluliZGSz9iCwhGHGQfpzTyOQta6uakYmpfm2u2nNSk4+R6Hg7Vr75pWH4xGxCI6A0ga1GcrO7C/0ceN8bkcw6RhSlKobwongvBRK3pM50rq9SFg25/wvo2MjTXIscK7b0wnrz/TrDFvo9R22CjHZItcSUIy6IAWhtjF7Z9xGSJeJHwUosTD+aSps7Yyenhle0Hx2y+kZLr+IpEVeKOUWqix7JPnM/5f53T9AvaHPH4CK61dQz3kNdni+oOdTEMx0Y7CF9jxQThulnnHfMXuPzw7aoJyP2yJSEFIKs2g89/KQsGIRgxXAN9zDfv5uPvDPXCc/iQ0z3s25cEyEhx/+uPGTGNaHHz45mE9e//TFB7Y4PExgeQh51UEnIgNP6aAlZRULqh1AepCHc8uJFklDVkPvlTQVDUyox+srur87sqxANcKZtK8+2KpZrgwQshndAbnXaKaAt0KTE60U5nXnUdjfJau/btiYmCpqUU2FcLTyVAaQBYJ2DtIWKqG1qoqvqsYynyaxeQJbaZgbs/f8vHCKAbjOgUqjbRulbXRVpghb7vpFgqlaSXGE/J6W13a4BY61hQbdGBOfnae8RlsJ/+WzOt80Unf0xEhHlpdbBE6LYfvZhvvDg/J7y2imPQ9yaJ5z0ydbNS4b1CVleSncXie6GyJbbEaPG2YqLInEzJIkw6kJNb9jv3bcQUtBEWprNCRciQDmZO9XkBbVfZWo0KxZPO3YyIrKUYmXg1iieGKfmxSaOcWV7fJLAJ7/7L9lH1fm+79h3v4JFeWJFw59eX/CbMO1oO0M/QXxK+qLcFhjHs8Ct79jWsXLC5KYMr9tSL9RT090EfbXG26v1FtsHny8Uj5eUZeoYJSNuV2QcqGsdMqSznqc9Vu2qqcou8sIHKAaLjtbiffbbnTAx6qYBwNWs1L3qAAgcePfjFhNPldnIHRMSdLlWhN6H5QZ2HifIzdbOzaSqLYLNTtHpShUOdQhHMHMaaI0NWzEfyOJbiaGutDUwgHQBK0SAfFBZk3Mqxi1rNUTlh6UJPteSNKfz4huM4meNrnebozeI4nCk4+QlaoBMjoicb7mGewe5xDchJFyhmPaY38ERYLJP/bQ952B81+uSXN0xJ1NK9SKaGE7n3hOqb+vct0+tcaHW3wGYpyeIuCtJRKxdjqhp1DIaAJDJvvq7g0orVBujlZHawm87xJxryU0lVVTTSGSw7VuM5NI6T2SPWlvAgvP9Wwl3+YcKgr3ufOZAlb//R9+v7oKR3mPTJRi8yOeeKO//g4tGezVgkrUmds5DEfcLa5j/AY+Ug/YQdjAOl7k0Ly33lHd2J4v+Lgh2hkPnBH3SI5F7+Q2d8NWZb4EeROJbiySmOJMkEU9+CJFKTKR8YqWM3LKgPPrv6L+4r/DueHz74Io2j5C6ko7v8N9ovWE6FN008oTtjo8WrDzO/Tdn6Lbt4g+xf69Osbta9xPgb3ed8b4DqkX9CCdWXTY1BCCOBlV5PJwcyJg9Tri/syB+xlZ5DYacUEfg9B/2ToZHbh7vBhGVD8eGP/RAas8/JusP//Ahz/KN91Lw/dFJ44rSVcyODRXAfcBRGVVV2fBeXMiTogzq6d4tb+N4PE0WrRo7x3tJxaQ+35hDtIBcg+uTTAjFvXpESAWjrZsoBwCCoAFi9UXbAHuVoAIbgPrO4JjtuSRJlRHtFI1wNHT5kEK1KJpApQBK8JgJHMXmsQipSq0uiWLco/9K3/ntr9SFLatAaEbOFAkgeheBKTjHm3jCpgGox2i0GpkFmkhghEPambGeBLNXnkqja7CXnd+8VWQc0Qr+9z4KSHgf6uxyFbyyZLpn/zWIv9B3N5tU7ZN2JqEVv/o1NTCPFVFt0rt0RLU8wYF7JCI1nD9SbcganQcxKFloC9lw66O2IMMWiYLwGFA4fn3Umqy5nMh7YOiMHtUFuac4BJVf8DVkIQIFEtIggv1HFWk9s1fUnzi/SP99TdsZSIitKwWjFQciC5DuHGZOXgSY/asHtcbLr9BZ+h/SlbBpN/geoVyisB/n8j7j9TXrLC+vzGuPe7M+xekfUD0hMoZvaw2n2R7uOMlrhlyOTokLjNZr7HIisQ5yFiycoZWJQTYCzZXy3WtQSWWWsmMN8d9ifm8VdfdQnQeuferzB2Zzn4b+Oi0JCAtC2cnCD5mUEoQsK77DdfV8iuohLZqSaOG6XYnnrhjBt0Hmp5jNWX5VlAbgilrizJULCqkS8CUBReLaq4uHMLaAzKY7GMPC1Kc8SAfZHPQd8Gm0fuIfaQ8rKdKKhwkEXFE4HrvlqcN6xzYuDFH51S3o3o5eqeIsj1d0NOZy+XMdt7ubtIqsV5q4XLZmDYZs3Nb17BpuAs2RbYCrUXlVJzlbiAGpYLIjVqBVo+iQ5xDwDaCCBwyTKoEEYeA+rhbXtKSc0AOQvBj8m1uoY3LJ0Qr+1zp1uO9Xv/iP1BFU1Y06R4JkUqhFqWpImPn9hq2o2U7IbVhxajbKdyj5jyuZ6k1moIpWeZ+Q6QEhCnXtFIUfNBOjXneYkru8y4BWYFSstgQXTJbbQTIvztSSmoGD7yHpCRAcSOUTBwk1uOqXx2kJ69fIU//AfFX/PUjPp9xNmxpt9cTXP40SVh7ShI+ISlL5WJYPWPtz9Dt3yHlKWOoLBJ4C33hqUh3bO8IJ6StpDwIlu4jimlakYSV3Fe6EZ1rMSiGyB5dM1vfcUmowFJvierrevYigbpDQf6ImfJ2lV3dhJ94348HrG8+b5285MU6mkmfHIjfV35/+PvDcSF+YCZEOyadxfrzZcNqbxe7dZKQMKnsHpmTVUrnsMgxu7+YLSfHj4eexCWt6qq9/Zo3n+0eWDbV+wOgKvEZfbJzY8wRWqUPWeVwT6xdBCZm47ByE4datoA76MIgyYGRDdSso5K+3xJC9cvebz1KwzObTmcWG/th8RsBUQiJz3Rt2cqGLDZ3i9YaNpg4xSYifqhXViJwUVW6xjmraKgaAN06KsbL9calbOEw4ztbXqN358b3r4XpD3iYn3HMlE3TxQgHVk54H4GdXKtrKVCrozJQ69i+0+VGLWkcMHvg8RxohXKuDNsP+1nVe9bqCXdBI+k5jqAkpm8LjCsaEli+7r0K5/PG9MpuStsa7dwOEWl3Q1CqFqoot+stk8Dc8AhVgtATVNSdMifcoqV//d3fUk4bqgPOYTFZ6+kQoUYrpTbooZKgZWNIO5jgvheqNtqmlLaHgobr0VqevWPXK+5nEOHUB/bhin6I9pe8DLDYsGWf6PsXXBuUhi8/9e0MppgPxjRKE2rdHrL5YOW6RvKrxHX2bDN66ZRNAk/bG+YSkIzFJieTatVcnj6FCny+6iqA+UTUKWLL7wH1SDpr2bItbgn9WHM3qslz5oYzI+nsPebuMKOpsunCP0qwntezYdzx5qrUUnGLbtBKlDV1LkMDO3BwAQuItwW2VB4uX+Di+6qwTuN2u0aAKinNZMbYU9KwKsbEx0ycXdZrV6VsZKfHsxjhgZNdwVp0mAJfOHvgW4eNu7skoLVFxUxgKGynegSsuzi+FU5bo6lykai+3UZ2P9zD7KAJ2pRyKmhVisA8Yupw29rthKjjWqIduzgHK2AtASsTYGtCTye764juWwiOCHVJEXMcwlGgXLqxS0v88Zc+7wx+u2l/WiTwh33dJ1ADatEqnGrEF/OWz+rr9/jpDC2gFNpOEWHmPXdN2/NhIFvoCc8rUhtqKbfojl1fUVXa+RzzTYyyknxXpJ4irsj9WrRQ6h23v56XSKZDmaKsx4XUMEboxTgVQ+UVS4wr13+El78OY4HxPlvtJ6RF9VLqBa0XXCqmBWm/QOpfoLpa+t+FmVJ5h5dTZESx8QNg7CihV6vjGrq9ZUMfHOjiPFPM05cLnN8LISkdGJXWHeQU+9cdi4b7jnvYtwo1d9MjXXzYXSPuCx30x/jv98LUTybHTxcKfhLDug7l08+Uxx8+HY9V1SP5tvufErgzkR3kBuz3gJUA0euRld3PaC1MkV3e/5PM5NeCK2axgswVsBrues9C1QgNOxgev/bGV9cjWNRWkKZhIah6aFFaVrZshLzKspw+gN6m2BCiDhkmAm523HuVWGhdJmrhguUP5XCxXNhWwC8KqSkJ0M1pJQJYS5yWOPTe2fIYn2oLiIMIUgrbdkJKwXJ1VgksDNxxr5V7e+kegoRIdQeaaFhoAdZ33DvMnZfrC/X5iZMqEASGc3theOXl9nkwrA7HYs4PzKXAB3rmNKu6CYjR1KkysdEZHhUhAOagWohVjxq2v7IkzwCfhlpgrqTEHPEkAD2Kf0+J6nhpBdkqPo2+NHwFni5n9in4gO1yop22QyJtGWVoqRRgv+2o3DF/bvfzPc5ajd7D5m/8+v9Jt64bQwqjXJDtdEi2lVqppTD2IBb2Upn1hCfUA3nG9Tmcu/SGiYacVFaQpwnWnf76gVYE3a+UPiAJUeNqzFnQU0OkQh+MDx/htFEuKeNSBZGK2WTMGUQVHQ/V+hltZI+NBY9rv+Y26pRMhLEJ6ijjaK/brIg2RLZsS71dSD/vZg/4AO8UHdRsZ28igcWUASNcnoo2bOFDVRiEjJPXjbO2wBrnJaluKEYVS/OWdHw6pG8sq1aKVqf7FabdA1oAD5xeiNfHGjYJyAlk58qzGnxwZOVY+vc9iKWlVEppKMKtD2xVy7wcay8e3TFHQi6ObHd7rr0LhuB+r8B6VmPdsSm4KbvbQaJrbcM01s1CQBFUob1LW9StUbcQWVdAs/NVRgYGNnGckSLsTZ1SYh05SI8GRTQMWnwyq0ZAlsGRVInuVnIIVjHlqFvnnqZJaTD9dMv36KTBYWns9laN9Yecr36O4ZAdT+eTEtDD399W4UrRcKRc1xGjtYJvmUBfeyRFpeb7AibkCwIlJeyb0YCx0Jh+A5ejOKNlIpsjI2Qy58jkOZ0rFSinUxoIrORHI3F/GFIqUgQbuX7nDllcMb9Qvvqv2ecrVX6D3r4LTVjA3v9/dH6HnM7oaQMEyjs03bqwK377FbJ0ffkWkWeQ5/zm1/jPB1JaQAHmgEPQ8IbZR9h/jb/+Chzq5etD7k0SWhnE8rwf7oQpyL3HHFkrkGtDZBPrOwQkkknccLYsFB6OGLmE/vDE+1RWVD75NTn+9+PjJyqsiVG4d8szN/+pT348uPXj+rfArIruiNxA9sSv9uN1HtyJ3nxq/tOb4qtntcTuOq0+I2CVFbSu9uYKGbXgGp7RLQlM5M/xPXcso6RA8+TOzHQPbFkfM4ISASnlEBJ2USrCZMfnZNKxBx1VT5FeZGJT0/KQg5ywbv5YtoEiaKl3vUGyQuwe1d0xYATu95oPYy2VZ73E+4syiLb/wkqVEZWAcGCa2Ua6Bz7Rasp2jYZI+TBLxkVU0sLpq3O7fuDd+Rvenb8+SF3PT4K87Pcg4rOMP7xqPz5bKxAKZn0YVCgZEHFPhLxbXKqWxDgJFrNlq1rNie5AaKhqaqGK+Z0Br8KUWHaLaoig3/rhhz7MqLUw3Nm2yuWyoa2GnSOwbSH+vpXKuO331liel02Lin3OD62FulXGer7Ge3wKk8Lpm6/Znk+4TmbinUoriMW83wtYUao8MV/i+NrlP8DlG4a8Z87fhOtfvRyah0PDj95fdma/Ilzx2Y95N0wYVnk6fwNnZZZJF2BMJPHOsg+kxSpTCHiMu93vg3WwHm0tgemS9rNRkQh2/8RlEEq6Ffd6JKzmk+L1j1kfP8sITs5EvHNggye4Ke6RIIuExukBNRGo6kxtUCpVKqVuRwI7fULqWduMNr8ah0e9ERyBUgQtMPaAIEiJf4N4Zpa+agRMjrvcq8CQUUv83rCIulY8eb12VFq01VH2Ebqxq5KVy3jUGJxs5Tv9aEsG9GpaFByiqXYnq5p7tj7Jlqcxph9mKbU0rIbG76mV1JOF8zlJWZeNHWeTwJe6eIi2L2rDiNZ8axVK4eZGH0YtEsk8oXDgbrQm7MOR4qg6utqzh6SoHtVBL/oAJ1sYVcFMmBbdk0NL2u8VyoXpfWuEEhfycyRdD0C4e2NVSLz14qonjG91taqgaijBkXDfQxFkkXWLBiGznXDpmN0Q3Y4iw+KxrGqhlhbi+TeOgGF6wAJFFdXK0iNdpXspFW3n+Pe+U7Th494xnWOG62cCZVWF4nqvsLoj7Ze8+8v/Obqev/7fmdf/k5Iwj+ofKVRc0xVTGlKfYUQRQeYHkI76KdSC7NfQTyx3QPQ7hI7PM9gvkHIO2MgiunJD5ivcPiDXD4GD3r5j2a56GXg9s7gyUQFdD9q6e1ltXRwjz0R+aV8n7EqJosj67/4BUXH98UX1Tc/+iC1//7U/PD5nNPFlfBlfxpfxZXwZX8aX8WV8GT85frTC+qi6dddFe+sW+8Pvu48o9doDJCCgACJX0CvIFWRHknQlJMB5la2PD71nbY9F26WMICuth6wiRPnauh0VVl3AdpnJ0qyo1HR8knABAoSSVTdJ20vJqu4DEMKjmhWVI6HWykq51KDWjZtU5oysLfh56xrWZO1JtJk0NQuOil9k0NOyeptEBz8qTIkpS0JWYGhW/Tf/Xwq1Noanv3ctyWKM7zAzqoUPvKg+QAFi9MSPoZEhVyu43SuBPkMjdpgzbbDvL3z19BVPyYycifMdvloOP/MQjnl6VLazTxlzJxm2nxALDxc1he3U2OjULE5GVmuc2kZti+yidxzPAt1jUd2UIM5R7kgfB2pT5tSECxj7bed2S5ysLqyUcz5vnLaoCC0FiphnsJXC3AellmiHLxBdHgar2iRCq2d0xElsDMqMVqOPHtjOrVKe4r6V7Yx0R5snbXviboflb3FHtUSbfgow8PkCxPubXJgSxJ7xu99SNAgw+7Xn+Z1ol2f06Rv0neI1tJZdy6EpulwRS0Ja1Eu2SHMuzc5qLZrFzdLtfCcYRf0viCzFcJ1xn3x1OP7Zs+lnHZJWsmb9eH6KS8hQKdQt26MqR2m9EF2RqoIr3MYeknrZ1iwayin7tKzWRvVwYd5joeGozBep9H6jiKY266pmCYYzDGYCXdbsNo95KNmaN4vPX8+fUHFvOMKYxvAZ7PlV6ZLCtKjgzulHhXO1LVfbcHX4ospzr7C63atGIrG+l6qUXJPq5Yl2CZjESPBtEY+1CmjnLbDCvXO77olHvevI1lqYFGorAYsQS1KKHeunS547BsWjeyHzmHOFxPomryDQXkZ2p9FSAs6w4A3TkAdYgBP/7rkBRvf9rhPwWG39rMM/+ZNYWzWLegcJTYJnoExs7Ay5Aq+UGetFKaFYEmDeHjA0V8QWg17h8G+zpLH4UZmFqKD6mGBB1iotNMn7zKp4u1BPZ5RJZyJecB2HZNzsN5yCaz/Izmrlfk9sou3ElEsQp07f4lvFddmYN7Q0TBuHZKaDrgqoA/OGd0F0Q+oH3P4zx9apO2hF5jcwb4hsUYHvAb+jf4+OD/DyEb++xNL48Tuo4aTl5Rn0Galn0oceZ8Z+uBwY3yiS9lSAAAAgAElEQVQAeL42WXKjgUftqFTctkAtPeBoccc9PuOQD3zcW31ZOX86Qf554ycwrA8Eqzcb+x8OV3+gkZ/BahJTFnZVb/Gf3BBuHCoBjNBf/fShEyiPF9TJY7qTanQFXe7Riu8D23u0tUVTzoEQvtZyaLVaqgLIIjCs9nwu3iISOo8roDRAQse11hYYmAfs4OuY7ITWW9k2ml0yoL6zwkNCKQlXFsHdOpFlIajRmA7dtwdc0BwjA5TAWC0pmXvQGhds+XGLSGgIlnJg0kwWrCK1BXW1m+63zYiWnxLtuSKFe1hcqLLhZQmJGyqTkjugM3h3rrz0R+PQn2+4LzmdH3kwQuDw3o6bFkGYRVBwbhu2f+QOTI/2WylCJWRRtPDm2ZgpNRTYKslk5P5cY6E6ETJ4ztg79rpT+9LsawwRtBa2c9jdBls552YJUggz9QlrZTIOxYH1HcHA8ZAHorBlw+7SlJsLZVPgI2N0in5DOSfAv56CIKjRQg4NTkcSUmC3X2O609qO1g+YC1Mvcd6A2A5950Rh9hvzdqP1wbxlktXOcG5YqYhWtClNnZsLlptQJfCtYQ+ogZN6xAoPC0zqDJULPZ3C53vpIiaUpdQS7NlRoNU3WMewu1xJsLDwhMcvfMYxbaIM+uyHNWuVSsu5NI57LUfL7o6/D/a+llAeW8HeSJtrzU1GPcLMT4ObkEUK6AuuhG9LPvMeMldT7eDTCoFbBigGcxiVcrQMbcLoWfiQjY8vv2XTkNvyTKRXIjEnwaL3SOQjONCj1exuh6KGIGlOE21ziNbtIoeKCrU2ynainKLlXy4nnr9+YmuK2Ax8qwi3pXIwhbZtQTiTwu12ZR/OlvjTUkMaraiyY5iFyYA+XH9z5zYm+zSkJDLQHcl75iMS2MW5EEJv+XxKc4R5Yc7CnEGGDbUbf6PI43ktVtAaUIgHWIS//f2faxyP0I88Pm5BXLubRUyooTEe9rOWovxL4rHF+SqA5vr8UADDiawm8OpCrpk+j72utC1MevoNm5PtdMFkwzKJrpcL5XwO9RQPeJyU7VAB0FJTLccfvlcOHVdxR67/wO1v/lfK8y+p9h1eYWYWIvWE6Qn0TCkN73ti61P2Sk6xr/YTqme0KdJeHnCeJeb72PH+Cp7zOY/PP36P3r5HrldsZKFxv8HL+7wvJ5Az6EZgUrLQ4HcLVtcLwhbBzSpW4RwGDwkJwFrcH4111u3epA9oZsmCyzErfn+eEDHYpzHeH7Pq/oSsFW8IHfFlP/wg/DhqxmBJ/0hHdcdkx+V2x6+ugDWxqEuqKr+Uh7pqVBVlEYQePLcO0lU8wDY6fd8ZFsFfOUhTCqVFFYlg37pzLy9q6KOiKxiescnlwhYahj0C4xVHuh/XSVVBZgSFGsFHsQZjVVjJSp9H5HiUjtemEzqojVWJ3WLRWhg8M0ayf/voFI9gPcgOi5E7GDaPYFvyei0spUrGyRKrh3hct4OY5uGBUUQQi1rlbo4voHqFYsqkUjU9t30yEldjWhC7UT9FV/9MI7BsufjlffOH+3XvE8i95LZwOYk9770zb/shAH06N9BO31/htTBfnfZ8OsT7pZW894GHFvcA8cs9mYkFMYMqNNYHg6ctsu19kUhqCXmTGvI9696ft0bbGnviV0stUc1ZVSrPYKPPFNCf7GPQ0lVlL++4nb+hvduo8hvE93BpSd9qowHOdIEZTkdW5JD20v4d4i/Y5uhWkNMvof0F0sLpR3nPvP4KqR1R5bYP/Dawa2Kn6bFg9xt+NaBSTie27RwVAMAoSE9MsDpUT2xfJqQiobCRkkZFohOySBRQogKT0i19WkrT6PH+4OLl5q4Lq74mz6pifZ65azN8v8MhLY5h94HrpJUgaQ4zbv31OObL6RTVxBZSeVrj2V7i5lUjMZ9jVU8sMakrmIzKqZnBcIoHhlLkHrCqK5rJmGVXpnjIpwHBnp6hLlK00CmYQ89k7Hfff+TDxw9c2sblfMY1CFVr2W3SqCqJy7yv9utvQcATCiXPJzD5M2W3QvLVaS00MSkaSmhLZaCEeM+5KJetUjE+Cux5fNUkKstA2eIJ3cd+fH7VLPS5o0Uj6DaJKuvRQgk1GnNoWkGCeHsI2LihEh2ACH7CGOB0jue/zDO9K7NGV8W0hsrFCkjNQ7Yrfjjm8NF9W0Ss/8K59y8ZK4CWB2yixEbN8op37s/e/Y0hkVlPJ6rvIcW+KtZkV8kdl4JTAv8q/Xhv7F/28N0hP3WQjlRR1Uj8+ytSwjRgdR+2ywVpjeklgkALtZxxfTneL4v1nqQ+PPZ2AN0qs3S8/x3y/le4KrRnZPs2DrEWRqpTrG6oC8zUjfb6Dh8D0V+APuPsIFf80IV/wjXkBXUas39EFbQnaatfkesr/rrjU6GG8YKk9rXLdxFDlIpsX2XFLTCwkoYyUe0dxz3KigpvFkUmwQ2Ysd1I5XC2nEsnPxQTyA71I5j590Wr5Ed++uHxkzqskm3nN5/2Y0+Df/pDBKtHy197lrj3mHSSCgG+RHxX2/YukbC+/9OvPaqKeYz3Er1FRjUGo+/o4nAd0iKZ+uaNcY+LvBb3cAwgjsNjIZ8L7A9YH/huyLB7JdftIbCPCuok20HqCSJfAXXaTZrhImgqAKxgk6xY2gwCiY2eElRZxXKn327xIGUQNixqXLqqDfuNl+sLX797CliDGUX1CJxMhJFV6yoSbcgVw5FfFZphh3sNKNSY4E02ut8wD6eXVhpjTjxbz16Dsdz0j5mG//ojKtoZlNgPTFj33EzuhhRuHvqfFsSlmZrAmvPi8tywq7C/fMSvO2M6WgSS0aoajmEqq/0Rm+0S+gcWJwsM5nBe957Ej6SrzZEOPZPbvlOmMwaHY1hLEethocEYGI/C0pguvUfyNJ2SLdk5Oy8p8aKnf8fXf/U/sb3buP36/4Lbf4pK1HIDGrHQVwn90rlPilSarCraDnPiVrB5ocgveb78V9hafIdT+u9g3ti0srsyB4dcmvcBry+M4pz8CZ+NOZ22nY/FzW2kGkKJzaUmKWgxWjWTANGowLQz6AVliVzf9QJFCqfzhWGFFTVMe5jocFRcH3/+nEMlnmN1QbKC0edk+GS20Kv0GUSSNbf3247fCBtmGq0YEbMt0tWKIJLlO2e03fNcFyzIfWITNgnFiMk82DTRtIhMNwhWRnGl5gXbTfDhDJt4iUTXTHnd4/Xffv+ePo2thhuvu60OZR5aaEVm3yzur93X3ZldJcwx9QxW5xHUu0dgIlqD2LWej9UhkQgOSaLSVitt25iZrFXVg/AobLSqyKiM1M+eRDJRFBph6iGiTC2Hu4hNKE0p5URrytQwDTg4lwqqnko1KwCwQ2VAm1KpkTC407UcRBeIREqmwgiZRB/jjbTXqrbeCbw/31iSlI8ESR6CU0mGlOV5QG77BqqVWlrom+L3QEeToGUz46fYG91WPBGyYYGpyPf5RFw5Sqxu2NiZ1xecIBvbgHZeMKgt495QBtBoNzL3CPi01Jz8WRln7Sm5Jl6eUXlF7ANl3sAaevol5Zx2vQ18OyF1C0KrVgZ2nKP4BTgjl/8eb08Y/4TYr+426+UrtLZ4VsaE/SPYDXjJ8xuRvA3B50a9fAtVDwUQGzu+f0THK5R0q1QyoF9EdIs4jJlJQMZtDzQnX1U9AZEW5LhjcchCoc+H37tni/9aBf8fDViP+PrTePWe9D6Mh0hc8k8WDmJEgAq43DC5HQGrRxnhaMuS2aIR+LtwYbpnW7DQa/m/Na8fq1gWLhU+ZxRoRCmq1APLqGFH6lHBEI3gZrU1o+WYgapAtxAZnlmCx4xiSpnRFjabKXkSY3ospqGlGkzUhQ+LSxX4RbNgK4pobuirArs27qgSjpWd5vmV47VxyLis8P5g1DKpmQmG64zFzw91CyWurRFyNQbHfVh4zwh0S6ghTD/cwByhbcJIp5ZaAp+zKriSNob8ULD4M4yjQu/3gHSduzuRJYqA11jciIpzn3dHtFLCzu+cwF+zHkYUcQMCL9hHVABYQZkz5o66Rts+q/tytB2TfSqh5VgvW2xCS+R6BzWjZJU0gqtyLPDDZsjdZJtQVVCf6MJ3EkkW2ihaqcXo/ZUPObc2EZ73G3KNPbOUhp5PSDKl5WMEHU0KhnC9Dmpx6qqyGXhRpJ4DW2vv4fqf7xXe/jvo34MYjYK2Dauwp+/1eO3x2S8TZaLnM2MY1I3TtioOgSO0qejWQnvOHzopJa9fLVBrVBSkgd8rrAHZmQyuGIrXCwvALX7Pfu8ry32F+9wqlmKpUmIcczPSX+fWB9NK2oTee6v34kJUlRMif18zM4hQnG7hAsV8xEZarth2QAVSdfKQ+plZpS0ZRNtUhnl2YNJgwCZzjMDJTmG/Gi8vEVzcboMxwE6VbmFKInBIVPU+GOJHwrda+0vneGaiP5nU0gJD3+8C77U2Sq2oVjSxvCw4F3CSCEJ2Dzkwu8khUxfXfVKZaOqjoiFpuGS7pk3GGPR9Bt9BF+TKDvUUw5BNUI3Ax1Pz8q2DcmCUhY7LIKxnlgLMDLyi19BSzlzXdRU74nvj/JRZC6NPRhYKbIR82+dhU8uxL9/5Fp/+TkQVvgpU69JlYu3jhirUhHH4uDKv76GDni7Rnq/LdYnsZklUmzMycJss3soatu/onDQPEX1KoWSici8QTUrdaNuZcbveZa9qDQvYVclOy3hbMA/ZqGrZHTBoDv4xtGEB2b6mXL5CyxPsA6qB7SztbLeODxC7IpzjOTZjmfQw3gPPiLzDmcjYsZd/DC1twOcLo19RPSP6hFz+BNkkZP0gHNuW/J9FTBaiXI2H1kBEPN7zBu7coQHEPoqCnCJBwCLxXfM2ISrud/erUFny4/1/dNHzR8Y/2+nqCBTf/OvDP8oqy2ewKj2AuxmwUnZcd0R3YCCerbc7UAnw6JTnRnJoTL49urgwfr+gKzjyGbaDnqX9ko5Sd0iAhCNRBokBgOfAQrl52Kf6crGKqsShz3Lcxih5L2mNJao/zWAuOk4SpkTyRsffnbt+oBuZuKxPXcBsjwVwysN3cgC/PYWz5xyUdZ2WjM0MpxdPE4XQrbRDxiZj2QzLQzyn6rr+GbiGtkWIbEfyTFvOOqWGaHZLEkFiEsuS2dFKUaHO31uxfpYRpD0egtXjX2Nhk+MOHlfWKeyuWK14LbS28VSVOiPT7tf3gVtTpXo9MHyr9WQjMFDTBohiew+yjAYxCmJTdpyqim7K9m7DK0d1XX1SrsJJBNHCkMQiZ4W1lHK/NyRkh3nAFoyJqeC14uWCEC3FMUPuTD/+hg9//39jz4WtfYeeBLmcsMTQ2UvMkSnCbJVxM6TvtDz+mDeVUr9ilC025etvOBxR+gfs9j0g1HqmUpDzBUuJltvr7Vj07fXKpgpaGddXtmvKUrWKjD1gMMwgU5mwysierX4jJJeimt5Z9s4hP9NCY3NTTJU+7Y4jXq0ET3yhvTWYWKYinwEGGN9vHkUQD3muOKaAmWhaSK4G0QoItqJhFdw2atvYto1SK+MxzfeJzcEipT2uqBI2P5F0mSUGMH5vVWe9QLFC8WVtHTjYRcScY1Kn4dOYBn13vvvdjb/9+3Atenm5IVbppnjq+Ys8dpbIABDQ6Fj0OY4boUn4VWDYYE5P3OqdXIPWkIlKQprqPWyR1NkcYui2RZvVndtrkFdeffA6b5yfLmy1BnJwPtQZgHMrTNIOOwsrIhZJFJkzlVyGNXSasygd50D8YGKIpnlOmZEJQmCS3fKDNOflvUKkmZhYrvVrXqyTdBV8vIXx/VzjOEznOOE7VCH2miDk6PG6pa60+8TF0VIodaOmkcl87dh8wUfgtGQ7g54OgvRRukYfvt8eOqiREJlZWJ+Wyj5Hfv0i8w3WklpPp9Qv524UVFt22yS6qn3AMDyJsuN6o54UPz8zt2+QyxmtvwFLvdfyLbQnjFMuO4GxX10zw3D/gL/+NW6/QtsrUl9wSYiUnuNY7SMiV9QM39/DiHmrY6d0Qr7t9IzXd8hWkOrH+U1X1EquKQW8xtqdE2dJjy1Ca2CKH0x/tSF6PvYdVoy3DGtkcqS4R4H8XoT71xo/aRywnEvWA/cmWH204FiZ/vH3bHlIBqslLq6XWwSrMiCxqkuzdo2Y7w+IB+GABcTHh47pwsyszedomyzWtINICQeiUg+R7eh2h42moGj+eagAJBucrEgIQtWKVDneX1ywYSljHILXixhjc4AlI3Rhih4Wlcj+FsjcE0PuD3qHGYwurMwKqQ5gPwfmjMQ8+jROtd390ueNvV9DVzQB/iuAjnNwiofo8cAwClPuSYpIVLKCqGqEosHjKURQVD2qzK4lNWMXTjAocrdVlf6Zx2HXC2+zLV+l11w4jxfy91RQBZ8T1xH41GUJ6vmAp9e9bopdKnNbC5tQRFATfO/I3nN66nFdlcluMSeqCHoS0IrtGfC9xL3a0GiBOpStHt7ZW2swBzePzXj0CChWZbvKYn8OzDo7jUkLFikgH37LGC/0qbSvBS5fB5FkdR+wwBYC4XhUkD7v6hISGXsZk61WKDWC2wfiytwd+o7IxL1C2bBMZNq7Z+qlYcXZ953dJqcCNjrzmgt8O6H7iEQo1SYCi7iWqw009ERsTIpcI1EuGfQrQSaQjuhAS9jv3o3wsjqglkGaHsnZMQ+OBfczjLmeaz8q8yJhw1weKo6lFtoBFdEIZEuN6+JG8fmQ5E7m6BEMK0hT5tG+i7lE4q5VU8M6rxMHma2CKzN1eovGOnhdFdAZAaG6Mrrz+nHyj7/6wN///a8B2F+drRZertlWbxHsbe3eNnQC4ykKA2MfnZaQm3iGJDVj0+UrE0KIgNVVI7EpglRBqxzPjpZKqYJUpZ0iYJXSjts8rq9cZw+i7tOFc22IcSh09NnZrdOCSYZ4PBeCY2tqLttW1bCxVaUUPe7DoesyATWMiYixZEe9rCoe2X1bbmRrDfJ7wKrR9pbxsDdKWPT+tFb6v814s+7e/xVI1Qc8H7U4n2GVTsN00EqjtXcUXpn9fb41gicVQea8E7KPCu0eu+PqShCa4Uv1FQAtYTt+OsXsub3CmFjyQNyDPCSloVqZMyB+C1IgtYBU1GdwkMZERsxzAB8fGaUxyl/R/uJ/oT6fsQ//B/T/GO8vG1Iv+Gx53AVJUl4cXkXkAzL+CZHfZS75DbL9N/EL9S+R2nD7B7Dfgg3cYSZGVfeOD0HOE7YJHlhySZiWlufYt/RCkK7CeS0sqo+JBwyiWzvjO6wfRQLRGnu7rLkVcKtDL9cVmyW4Bv+C+fNT4/N0Dr6ML+PL+DK+jC/jy/gyvowv448cP+l0dYwfDZvvGMoUgcxUy6PFoePu8y0DkQf5CoNP8SZOAK2Ppq3fsTGwuvN+qEysr1zd5z6hT8ctPteIMvihF5gZqhOVr+mOmt3diIhyfWCPErxdNDJaoLvjfWIeODv3irpwOLm5MkeQZ0L3KHvTqz+dbVCtFhJVNgM9sapwRYF0LPLQoxTRwKLkJdYkhJEZ+7TOmIVlAVrKiT5mFhQ/qYYf1zVZ0qSOo8PKYaoUTMJrXlU4bTXsH7PiUwW8KCqNWtKxRfWua+rGhv4w4elnGdmXWKQxiAx/Tc2DAbnID1G9aBpao4WJ7Teuu8FYGqlGFWfsN8a+c64X2na+2wgiAQUZjuwTbgP1wGcfkktFkdc9qvy1RGWrEvJLEMx/if9mVoM1qzQQOLreB2bRDjVAUEpe9606kyviQTqctXK6bAxLYli/IrzirTJPJ8wLPoD07saNIfc2Wsm2kR9wlqjm79fvUenYOKH1Hbp0EXlC/Ir1EXN7H8w6kW++iuP79pn2fMbF8ddX9tHTNtTZr9niaiUqKebYPikl5v5s8YCf2hbsVhshC2YdreNQpBBtIGljuhRI5F79X1Bus6ywls81R394BFFfsMkhtWc+qRNaDfzi1hqtlqPkEJJLFdPKVM0PCdbvev+ShdIS64b7/fkMRRg/bK0DZhFr9Kquk5apLAcsKQh+VOd3d4YJmxcw4bv3O//06xc+foz7VsszwzXgcWrsw2g1VBzi9ehctKYw57HeWbL0D/6yhuyTzbA8Lu1eSaMo3Z2mJboDVe8V1to4nRvaCkMVSmU7NdopMaycmKMzP175+OGKnc601hIrRUj79IH3G/N2ZY4eqg3ieHZZ5KmFduhUphhLFrDm3hGugXJ0rhGn6HiABDgLrSbZSXsjaeWxVoiEcsBS0TwgTqronHy62v8cY+Ge39RY86/ua39b1fr1uoDKnZ9RLsiE6a/5mYWmTwgdlvuYTdxXdXRml3aytERtdJyQRAPQU6N+9S66BmNHZqeMu2qI2YyKo1sowByQoKOlS5HOYfWtG9R2uPvZtfDKDS2VRkPlHSZfoxo6qKWd0XIOJv2M7o+ZM/fUmtVzSMbZLZ5HueB+RvRPAWjtP8S6Oz6AfZeNwHo4LNrIPW7c4PYBrwXxCz4To3t6R718i2uLtc/G0WlcXeOD+H7cupA1XLJXoaKyVAFqVGSlHAoijyoux3x4wOQtpYV7U9x/OKb8iYn7k5CA//KxAtcICFwWFiv7/48wqgd6uogek1m4x73mHC09Nw/tVE+FMgdDSIwzY8JIL+kihUnFqEfA6gmUCns2Dbyq2bEwhypDYMVqDQ02L2HnCkGqMnpgb8oI+1HzA6QdtseSIthJ6lotfrhPFg0DV5sBsD5ivQgfgyhBAJfjM+5vD7TACkQVpDDmpK4JpieUzr53nhITtwL79RkGYJ4tYDusEAEqQeoYMrmNSasbWguz3/U+tSitlUMmyFSouTm4KjL8sAz9uccSz3/zUKyF82G+xT1Z+MyYA8VBUzFgH7cjYN3a5LQ5w3as3xhXofbzIfBsJuG/PgfsMzInCxD7ks7czfDbDMzxqaHnlvanmazUmhJNGrCSFkLlC7P1/7P3Lj2WI0mW5ieiSvKauXvko3IaM8D8/x80u1nMYtDTQKEzszIz3N3sXlJVZBYiqqRZRFREVXeH5yIIGNzc7ouX1IfIkXOO7MfBfhy01mm9U8yoAkved9XCUWBbFtrjYI8msNyevwOgfVV6P7B9gX4DW7CH01+HrVyUi/XQECUiuNTZcVpwvDV02yND3KOVYkmFvlhBfOXYneN1xxs8iqPPw9NQo4mFavBX93BbWN2mMGUQV8wtlOMtREIj9/Eb6KrUZaM/drzvSDVmX2sPfnxY3wT9SGRBLny3uWXmvHxDHeHHypq/3rF3jY3a2jT2d3Oad8SFbV2wbhwOksFUXcMov7sEr/1oLPhMdIzwjUZj3ayiqLeTcsBQPp9elFhY/g2hpZrQD0sxVG7ol2BKUR5NECt8/7Xzl78/uD8Kt+fYeKNhSgai1mjWaBZWUQCHRsvrm2mecQgfr8odEaGoB282LY3auFG9E3FoJM9dgvM5qGBdlIOSQracY0WQ5G+vyxOLGf2xB0XHjP44sDYCVkdaD1u2xwPb7+yEGI09nvNUP4TNkUfpe4ypaRLiaVwwyqqmQbUaAhwRXGvuAUFXGQLgeQ2IfXLoWEI8OwJWiTn2DUJW92G9eD3XU4Qz5l2EMuc9LRKwkvc9nA/6Mc9fBPr9JXCf2w2WCnoCM94e+HFHbNhmRhIVXtK5pqqgtwVajyYidmTL53j8cIeiaF1Znz7R+k5v+1wvnGgdK3RMDK8Lzge8pAuAV/r+r8jrX9n/8n/B/ZlS/ntQQwC/fcSWLQRXyTcSLRyPr3lZDkqXGEjrM7L8gU5B7N/i9fcD8QPav4L9Ay1raCNKBMSmYI8d7JF85obwCZZ83AwtG1oW3I+gLHqJxH7qcmLODUTHAeoG5TnOQZ8QeQYWImw8XVgAtKy4abQSzjv/ZkEdQyD/LCnOOgVaI0H498ftfz5g9Xer+5szu/50hn1HHHZ5bLxP8shgDu8hmhkc3xmAQPKAPIe/pNIwgtg4CkvdUqleqCU6W0yi0OiFTYguQg3vmA1VXQowNPpRF1lC5MR4ucSm6xXrncd+4M1mb+EiJTuYeKqqY/Md5s6eBOWB+rgdmPu0NgEPRARicxD7Adpt0dQ7+XiBkfbeo7sPGfjrytFOr74RQM/bNO5I2ryMfuLjGhcRqirtCFSt1gWfZMZwENgN1lqCQycyrTRUDJvWLb/+8TbZ88u/YxdRzoXT5otm97IKPpKOmUUCKMtaw9rJHXabKufoqmaxvbQGR4vMv1wudx8IlgSo0p2OUTPZWapyqFC0gFkEZluZPDpaQ61R7GDYyBTVKbLoovTtd2x/+j/h0Xl++Stf//FCSxGD3xq2h9CulI0iC37v9CWC8q6KlODFBW+8IGXDE0F1nGMP5b3sYbkj8oInItJbpRwded3Zv95pruin9QycBB5G+i2D6kKxzvFo0xqoQIhnLBXg3alusxOWH4Z8WClV0eMV7JG81YHEBToQiEF069Jy+iTH6nENSc91ZXzHN8PmVz72XnE64sdM+IagxMzY9wMrTi11brr34oEwl0BXxeJ6jXiyuSM1fFE1GxAEKh7XXF3otBC/mNGbQYuwcXBMR2LmzUNjoITHbSIF1gutw+evxt+/73y9F8r6e54Gzc0skiVruDXc4/OOETT3jmrh0QDrFFWO3mdAqxkfN1oGedFhUBLp0nVlWSvLViORXkoo/oc9UF15/vAJrcrhRr0tbB+2cJoApBaqLmFtVXbsEajaOpxR3DjMac1ZENa60Noe1YTcv9beWYAiYWkV1bITJdUg6kL+M/wrbQiAdLh8KLkFhgDZL8ikxFo9l/JEx/MJkfB+k4DVLmb3P/YETaBoClAyyI1kB2u04xXanbqMtaDT2hfcFPUnhFuALMMVpXW0NegP8JZiu4I8HufsLguiilcBK8l5vogOzVPMWJIbnU0ZrlZhUgPM0B3ngXfH0pXEdEVN4cu/0vsXel/RTwpPfwJA6y3WM2I9cxG8FKYl1P98NboAACAASURBVOMl7zuhq9GPQJ1JTLv/N4Qdjn/D9u/R+gGRDc01XW4rZl/pPUTsHHfg9G13Cr5/hWVFtEDfY1DV9RKwxuQ6UeUSYsb8DOQMVIW0g6Snq0CCbBoNiLATZ5/jUC7LqY819jpY5M0/P3X8JwPW9+/67sNl/C2C1dE2LQ5jzsRJkta52QTcPZCxc+MYVi/z40j7Kw9Fau8+KQHIafuiUsOrrS6TIKwlPActbZvcwp5huEiQwaVbGE2bBWVgtHoLoQYphCj0JQn8IyBtjZbqWpOBbpx2SdHyNBakQGUP3I70GRxXKX7vURfijReuh9WMqmZpuKW4Clq+h+A5KQqkp19zm0Rx4m0ThEwbsYvwrPtIHALh8G6h4pwnEQWY5kYzi4BEODuuAHsPs/NvcViWp1xOr8lM4/JaJtyarYAhUKx+9DmWikfZdFqoaLyulC3nbognZM9rvjcQi5KrxHWVjDQG3WQtQq8OzSPBOEJgd++pcO8tgv7iaBWoErz3vIxrkcioFVw97XFPFKOb4Xqjl2f++H/8F47PT3z+/P+Enybw/GHlRb6GyOFpifa9h4W/H2BLqr/HQqYF6kZ7xPsXi4DRuuBtpayfkOXBcfwNgPZlp+wCjyhvSS1Zyou3cycEKR4BfnFP43lPiyKQx8GyrOkzavTDMbHZ3EDKgugSQlBX8EL3s4IS7J2RhMhcZ+aaKO8TmvOp/wzHYTdi1dipedIKLNlVzlKQVavy8khnEgplUbZt4dh3HvcdqzrRxVaURUM9vyxLNJawznRDI6z4ioc91XH06MxbKtu4rmgkvi23K+vsh2OJLh5t4zDhtRuPfnB7fmZZhSMNznvbae1BO/boUjbsAMdJaKwxzcL7tSeFYbYlLsKozoX4yCmrsiYlp24rT08bz8+3aJsqsdaXJdbtdd1ACkUrW4qvIiNNupp1dvcU5AzLQKbn55jHUpeYb6osorjcZ3CBJZ1iBKvZlWtQdqaSPd1lwvC+44zWxQfFY35FoBtvO1uZDmEwFkFSLucTgZVxbb7BYM77cjnN2KtwplO6j7Md1yvnvUmCNx63eJRTSqEsQf/xoyH+SLHdSLQ63vZoWUoHFdrR8MeBDqu9TUAzWFPQuuLlmMb/ItHGVYvS2oPeHmEPNgTD7hRZAkTQhrOD7/R0AdDlA7p9gJc7wld8OfDtmWGz513QltQwGddITkedrmAl9qq+4/tndP39ySBc/4jvX8C+Yo+OPb4gfsdJKsvyAZYnylNFVqXbTnOjMsArTyT6FdEF6QF2aARW+R0Vl0Cv4zYp+Fntjuv9gIwTwg1KTqtAGSAaQNBeBrViXMPACH56XDr8+wkPPxew/tR7+888PgJYsQyFrjYA8dgUa+eklDevvSAhnqWqy7UdClozo5vTDqPtZzCmUlPcNspgmqWk/JT0sRMCms7aEZbduAJlC+N7s+CZchTWbWyYgYwqwqolNlJnWhc9eOD7kaF53FzHZ8AatN2EC2KFSe/Y00tz1O/HAHc9OTnktbP0QB1+sorMG74fdw7gD//yv0UQ6mHbNSmlHs93JNTIOqxQMmA15+hhv1S14M1o3mJQA26xga5psWM+EoqBNjZaP9AfGvH9KscoNrwf/6IjSg/LsKBVnNOg9zvNC80XxFcEm+MmhJKC1hbO6plNnlwUCyuRTE52MxbNSkAOvSJlqoPt6NCN1jst+UxyRJBtyqmQb0ZLy7Q4dQsadLk0zJj1clA6/fGZdi/48cKtdpbkfK2lc1fD10L93XccdeHRjG3sd92iQ5YFRUTKGhS+ac7+Gvzp1vG6odufsPqVx2uUr3R/QXaloyxPG75ttLVOFwFtRrHg9JmWAOAz2SJbeNr9yC5LGkp+N2TV2WJT60C8PO3iavCzhux2OkAUJt/Kzrkx/EXFo+RtPqo1/xxH5ymVzo2WWXSVaEVSrLMI0Duf749pOVUWWKVyvBy8vL5ix86hQoLSbB8/IGt4la5lYW/h2TxQujZN+Dv3x87j3nAT1q2OW88qJSorOEULexPuD6E/gg7Su9Cl4mpsz6HQP46DkgFrOx7o/oqWO73t9H5EgjYS/bQPdHrQrzwCmZYBbbOZQgOC9YZu8KSn5dtsgECMjyJgmYw97EE7LKleiizCsilrlm6LwGM/kPTx7i38XiXFCcH4cVTCbaBZiW5/3rBEmkKtzgkHj1BtRp4jaPPgq0oHP4hgAFweIC39x2e7jQtdjPlL7JuS+8KlKnBuob/6EZz69wCWTB2H4zNgA3DXoDdZ7G9OCTRvBvgd0RvOESjz3pHWOJuI5EdlG26XQGsDlR4IqkVFLM9Na8WW6b2D1kpZasQpx54I5M5AsAoWtAV54igryx9+hzfD96wq7Y3l6Y+4C7Z/wfcN+ifIZi0cFgEyPQz9D+JaTPAoPjvwkx1v/wa84seHuAblj1kN+Q7ne+zxPdr6bGzAM+jv/4R+/A5dF7Q92O/f03PvLRhiDWt3ijIbF4XdaN6H7njpiNxAagTX1pEcl6LGcGyIkmHqkC7IPvkd/GopJee4lFHVSiQ3GT3nMPkFg/ZnGwf88MigRs6TMrh8ss+fWNoiWPWJoA6hzwkY63wdEVzJ/JRsLuGEj/0J4Y/SbbdozReWSznIteS6EOdpqZca44MMBM6IP71Y8+YVS8uGzDR82GiN0lcL/NMHSjwQnNw8lrqyrjFBGkfwSlxoybPpWXbQ3Cx7b9l4YNx8zXOJQL3RaW1nraOTz7hyPbJSZwaeYyFovXP0g6/3Bx/bM3WVRKwyaPbssjXEPR4L9rUxlXskBYP4b90mF9mI3u9bLbgKD49Afx0m+91ox7cLWH/8GBOGk7eIMLtx4MDCYxdeyzO7W3AG08/u+SZ0vUeXIQ8u3ZmCZDBbArlxHKnC0TtqThmfVvITVUnXS7p1fAhLLNo+em54AvR2sKft1VKjbIUQpXv1eG2OvW0pmHeO+7/yj8efKfudTV5ZMhnz1liK8/zpidt3H/jagrM3Qj1r0dK1t04jOLRSCpqIRv9ScSv0blQRyrLwsIWei3PtC/1otAXq04JsK3VbQwgEYQlzNNZtgRJWac3Shq7k2Ho0uoUdkasji2cSOoRpTLFFXZdA/6mnQECTY+UZsFrFGmdHpMudjxEhnNtXHpe19lc/9AmzID3NsqO/0tod6a8UcW61hvX38OeVwn4/+P7lSwiWeuO1txmw1vWGPsGmFetKt0LvzM547o4KHGbsx8HrY6eUhVVPnlo3pbvQEdQ2Xl4aL48VSaRHtQYfeyOmVOlQD4YatSwbWsM6qLU7ejxovc2GLN7bNH1nfP/UKkAirgS6GGBGod5ulFn5IlHfmBsuDofPfcw52P2OAetSKWul7YWWr/9wW5DuiHUWN7YS1YEhTKnLEgukOXTD9p3ehSbHDA6qK42Y2y5ZAlew2eCBuXmbh8esyh1ISzd/ZJXFkgYgb4RXozowOIAB5uop2rLRVetbRKwnYDGOiW1J/m+uu1MuhtnC0UHlQyDHUlhGZKIabZ77HdEVPzq0NqlvkblHRVJH3FAWdBEsm5VYa4gHr5We5vjqUxegNWlQLtHOtzllaG0gFhwFt53uhfr0X1ie/neWR/gLf/3v/y/taMjtIy73qEQuz4hk84PHgZegKAy6RsQmWW4vz7iVoMn0PbTd3SFBhhgbH8EEbYX+8qDvNteGxheW3/8RWRasrEhZWMpCT5/WiLcsgbEhdA+NBimGt7S4C17sgojR7Y7kOQhHdGiTgrBG4x06jH1lpCquiQwPYDKu4bC5vEaJcwBcB8uPlb4uxy9uHPDmTWeWOMPMHz5Jrj8jGHh3xj6yoJN8G2idzLewVAf5uMAE9Dy8VoODKhTR6TE6Jodq8kUCED1jbPVAVOVsFiCcxuFFlKrRs3oM2+5MJG2UwS3blWoaAY9DEz1VLZSa531xQnAXGns0NyA3TGeWxqTHu16J6a3vJ89XhFHmdBGia0U8fzY/QGnt4POX7/nDv/wetegDPm+DR7DgShixe2TxM+jP4HW4Mayjk9XlLndxdg8luZZKKTKV2iG+cIah/Lc63i6hP+xm/PZQum18fVV6F4oYtVRIjty97/SjsbGxVkelY63PYMxL8rMsNv9awpjcs0sYeS6FQFlpMbbj3zk4w6FCC7UWyrLQvNFzcT16Y7S9DxBGONxmC84qSreG2SvHHsncWs6x1zvUbWF92jBxDvfg+k2yYwhujma0o3GYo+vCMnNFoVvh6Ia0V9rLn+n7A//q+f4rDae5sO+NdQ2P0JYo2uPLK697Y1lrmLMXCXFLOx3azYRDG7IoUqHeCuttwWcZsAUCAhT14IeVBR0bAJUpDvAa3MojRJhxEzQ3DCIpGCK3CzDwLQ+tH6Av4AuWwaD1BfWVok+IdA58ggAAXw94Oe701nmuSrPO3trs4mTpHcmRbYfb6Gh1optHC39HKYW6rtGt6eLt/LAQsCIL973y8lCafceyRCI9xHKyOWhwcJVTUDjWZcHRQ2nJp/PhhymMduZxC4wQRQ01tI/WkcF1vd1Wnj58PH1aif2iWUclnDUcmWOPDMqraHht7wdH65Qt528V1rLiXtD0RvVFkS23ybUgGv3g6YTnrQsVw9rAQpfg/Yninsb+l+3BxcKf1TueYIfJjmpSAqQlKPDTgzCHbSK35P46rrH/wFng1zzkB7/52/+94WcBrphtvL4qfQ1n0KV2loT+ixakxv0WLTiPmLMjeU0HEddIANTj3r6hRUyaxx07dnxvaNnOLVsjWbLR+hdDSvhpA1kNjSQFa1jbKeszZfkXAL7+5b+CHmy3ygPHpKHPH5Ca7a5Ty+Ba0FMxjZRsDNBBPWhZ3g56X5B6OzUt8gVr/whh3/6A1zvHo+Mpqqq/f0ZqDQ3KUKe7oiU/38IxpmyAlPTAtdgTRvzjAUa5gdYQZLkHXzfulhPraiNauI5Wrrmmil1+j/jEx7UnQYL3iMB/4vhPcFjl3Wf9SLA6A0c7kczL47Fu+ZsvMxmuntcwg1kfdgnmXPspm53G+gFGaWQARDwamzkxkEewKufnnWFyWmiNKiKRBQWyOVqnClWENnqRH86RdIFAIXOM5HcI4+YIAJdSaUm2rslZKbpwR9n9kZMhFvoR1JDPN7cTKTanHVmi0PO2RQOBHuXb5LcBmFTMC/fHHkgKJRbHSR0Ks3kp0ZbF1GYAnHeZSthYuTtdw15r8GyHMtWIQDs6gkkoZkm0UUpuMt/6OFGk8f+BRZ+jdQzJQtudx+6ob1Rd2Pe4JvvD+LBs/P5GZsH3QPlHIlEqVQx16M3wJhQvkVSMZH1PFLP36ETkztE8OWuhinZRXAvLsgUSW86uaObD2D+EWdZj8yvLQMGC1y1ZUbClUrcPMxG537/i2um3p4wNAtGdF8FCKFg8yvZHC/rC4Li6RWJnwP54iR73R6ckSmYlS8MuUUEwo+395GOJUZrDcdCWgi81BYE214AqJdwKiE3HLSxnrOem3h/IEahVF6NuSyCwQ1jmab1CjROyhd5l2sC4Z5vC3NxH96BzgztR2G9xbNsH6CtuG9Zy05EN9R3hwDl4+M5hnXUYsHejaGNdCgedJg1X2JL369348vWVvTtP2w3cWMWmkvrRnNfDqKXw9PQdtYY2uiw3XOM9ulXMV2DDvXDbFpo/T3eUoHxmS8nSkEWCpnWt2iQEIEJwr5tOLqGq0mXH2oE6mArqln4BY35Gcl/LwtPHD2y3bQr6YmtKu8O8g918Roux3glFA5k26/TRZIbQQRTVKDaLslShVcNG1Uih1jGuPezflsIqTyzZOaAV5zBl8ZiA3gJNk8tO6xKkhWi/K5FbJYc1OkK+DVj/3VLpiGnk8h3fcux+teMnz/MdajaofhB729EX2ivUh1MVbptkJ0zoemcrT4g45g2TktqMdB1xR1BUl6QyddQlqgIj4Bu6DiOoQbpmw4gx7ireO9b22A8TvBn8TC0ChwGV7Vaw/lf2z/831SKYW/ieUl7R3hB2ytMH6nf/QmNwuw82Z7aLxzqOohnQVmoAOwYcO24fofwXWCLZ7P2/4o//htwbcsQ+psuKb6MTVjZVcEAr1o5A2MZ61mPeWWvhpiKjTWs2CciLIwN401tmRC9TcDyQ/hHQh6D1qk3KRAk5AYG5y45ncFIB3g2LX5pg/XjV/7fjt+O347fjt+O347fjt+O347fjn+T4H3YJ8Pe/ydv/68Az33EVTlTrLavBR/ZlPi2n8EHUPsv3JQL5ZHkrqFOGpRKcGXwmDXIp2RueHMYsyEtkVJMnlG1IU0fH6Jw9UK7eLVAyC55q+MJejHNVZ9nGRWaLzZGBalFKqWjtaK10rbjpVMNacrW62XleVkL5StIoUlEZYLBjvYdx+BTHCM0EuT94fT14el4DwRhm3B4q1kU02l7KEL+dpaVxnVpzli2oElNV7ATFQApGmLcfXWZSWyU8IGUayv+THdf0bipbPbnJUfYWX0OMktfs6Cv96ZkVpS5OOw5onTpLop1u0SzguN/hONhq+v0NYcluPF6DR3f7NNqaXsaeBB2gLJWypZ2adewYYzOJL5rigiNKM/UW17kdHS0raiumHbdKefqOp1v46dnrFx7tC7o9z+pB0FEuY7snx1pCpe/d5tj3rFroIqCOS0t193g9dI33LUWxbuyvdx7DHL5W1m2jlHU257ABBiQ/uoyWuKvQqsMmsEg02IBoqdg7B4aV8N3ULYysAcQvHFYv9EPph+Czf6bO1WZyKzjXorCg+3YI6+35uyiV94719FLsH8AOsB33HfGGRFd7IKpZ202o2mjtDmysa4sOH4Cp0lrwg1t/RVRYKhQGD854tMbRFtanjzw9VXaLsuLuSSuQFZcVYYFSqeWG+kK/8OLRKM96YSKIJ0bjoepOuaNKgFgDzW7uRLMCm1SwWN5z3bfCJJfpwnrbKLWcaLiPyt44n9BKDLV4Sfu9pRaKBmXqFLqGRZdooJtj/yjRlROAh3oIJk0CJS2GL+CUSenR4jwaqAnVEuW70CFdQ0yIeKyflr6w6aZi+kDKHfGW4/VH1s9BB5jb6lkP+Fboap4W70lYP3c4HpfOlN4XDiRcKpLT/+H2MdTvItA+x5zWGwORdjfoDTFFZAX6FHIyVP5awQ3r4F0oyxYs6GxdWpcnOjvFlKPtMSg70+NYcLqHjZyKQP8Hx9e/0h5p/E9HJSye6lpYP35C1m1qXqSEyEl6i7W09yjIJ9VM6gLtDh4osYtTb3/Cn8LntX/9O9o1PK9dkfVG2T7ga67pdTQECM1FkeT+z3JqXumj4boHuhwl7LO2XQtaNqRskPTCCEdy/MmCURJFHTf7UpYe9/4nbv0vHZI/97xfHrD6uez8+Ee8/3uAwmdDgwwm02ZolP39/dtkmd/sDFaHufdQ/UUwOIIMggPAlZ+Yk3ZwhyTeb56pjGqBU8b7pmocIpiL0pNFudxjYoxyuPVRIg3+ZryVTT5YQP65sEqq8EXf3EtRDT84LRgSdkTnqpP2VDr/dmFQZPepQmu5sZPX9DguG61iVtkfO99//szz84pqnf2LI+CtuEl6WOqb4Rf8qtGpRcPrVt8WSs0ca0ZdK5t2WvNTDZ7rln2zjT9O4Fry/9lJM9wcPEZTGHYLx7Q7c6oJXztsm7D4gu9HbDxE+VHc2NbC8drp9we6VapI8JgA26NDT1kKvdk0Ny+TkxVCjzCyDtuyZj6V2mE/MgJXBW2UujAtndYSi7IsqHdag9fD6Mn57GZUVYqDN5vm5oNK0j0CBi9CqQWaxXkMD86q9CoUqYx0NDp1nRdZXek9rJF6d5oonmaaT7eVsq7IrVKeN6hKseBjbsvg4ca1cToolE3RbcGHO4CFgCLoPAUzQb0gZPmbFUn+KlY5HtDbyYWcm6rwJkn7ZznW5+9iDbEwUQemDRT9wO0RwasHNw4iYLXiNG24HNTFKDSywI1Lw/0IBlo2VHFTlix7LusHbk+d3oTGhshCF0Vkow/7nPIEuuGU2Dh9CXXxm1XBIT2EXST2u7mIWXjtRqvCoHy4TdN37WmBZprilFibx30bHo+SblRH7+zdWOtI9iJhnn67zqRhxed7Cnpiww4vV53uK+aWXY8yUTehuMyNfylhcG8Qri1rUHhEZDYXiB4ywuNuyGbhyX0hsY4AM1bt7LY4aqSAq10U2ckL9AtlZ4q3BJHh9PIeD/p2yVacr3Na+pzH+05IwJyKLmkh6MreDBud/3xjcUPqDemPWOVKDVoPIHTayz9QGrWMTmxGv79MW6rl43chEu4OOXYpFU0OqNQVtVDFh0jY6eh0HbLWQ8hdNGhJyc8eVJGyfQdSOB7fI7oht0+ZoyR9bllnjEHaaFpvHBJCu7WsIaKzgvUaThH2V3j9HNftywu+r3irmBhSNNbQ7bT5896xx2tytyuITM5/t6AhSDf82BHPjmFqJ6VEb0hZ07M4BFqiuYYCpw/r6cUaoMBYk3Xm/wiTrjnvvbwfo+8JA+ff/73jZwJW+ZHfT0gibGXePy9PRUYEfwacEBuj23lq7wDWWABtoKqcllYj6yV/Z0RwwzLq1K0ELfTSHOAdwqs50ScB2kLNNjbt8HcdKsyxkZ88whNMDnLs9PXkgjTkiWg+Zhn85RPwweNC6A770SbJWlJKPtS5luc3bA7cg1fTm07v2Yzrs1tVfowttH3nr3/5Cx8+fGBZnqjLQAKITk7dGS1nw+rrkl54LNgtlYWWSsDxuCYyd7ToePW8RvcLADFjb8Fx/CaHa96Ttwvn9Z7+8DWCeEneY5/f1Gfr1gfWXjjuXzn6nUUfyLHTUsGvahyPB3zY0MfB1+9fWJ+DPN/biPg8HQLSdQEy6ZkwX3CjzVgILqwNZWeeYymjNSOURUIlnZOjlELHqXWhlI3FnMdr5zUtWLZFqHVFtJ7OGhoJE8CRvr54Z3FBirCsS3T8AnwtcFtGUYO+NwrB656HKGZhaybLwnJbqB9ic3j6+IxkwKofNsrTGtdDfPJk+yO6DM3uuRJCAE0BERbogQpQhxhDGL6EzgasiK30/Yn+ukAfrUbORVUkRTEXEek/w1GefgfZDWqIFsWT+9Z23Ha8h3fz4PWGB2UIegSy+1mnTBXvQfcjfJHFcKk0SbSP4MVvT8L93kEXmoZ/dXDhY5uo+oRJ+N2GS0jw532uGeG14B7XOixwy0TfXaLFr2uJdoDuSOlIH+4OLVXfConSi+mJ4RjDrpNaC1rX8ETNdbOuhI5BRyIC4saRlnC1VnrpPPZ4vGi4sYx1X0ZnQe+BwbuCKZJr2JIVuw6YOkVj7rkacpz72ZIaiN46Mr7HuM4lLJfUPa9HjsvTwiYHaO5Z6SM8j4vQbnAKZXo7MauJ3yZozUqkJx8SGOuvu/34GbkQtnMa7ZhxkI6PBHt/4bCv9PVO9QPzR5rsx+PLtuFHZ3/5B+Xjp0jwWsP2HV2GYDHmhWo4nohG8jvs8dAYk90zAXaLKukQXfmOVEEWhRbrCtpmEx1d/8j24Y/w8leO/W+wffcWnEpRs5sxLPxUFD+GO4ZPNNil0NvO/vn/mwAxx2vwpil0B3vslHJnyYAbMdgf4Zj0eKHXhVKXkxdqLapYRzS5oOzR+KhCGW3FJzLvkF03tSie1ZVwDlgCCJC0CqSkXgDcJJspjEB1AEbn2L38mfHr29HzPyVgff8WylC1n49dQ2mfgcIQNU0v1fHcoZLjEmWPwKtn9j1KlRmUnoRfZubt2CXj5Axoc5PzEfSS3ngz0I4JbeapZI8S6Czb5q+BjMaS0PqltWqehei5EIkyy6p4fPtQgMbJuJ8dkSbdgUDK0BKiCUbf3sGZ9lwAPAdIZnwWKJZZzUBGo3Q74OS4YuAFd+PzPz7z+fMrv/v0zDJ6B3u0QbTurFWzgcKkYOf7xXBbtLAQvqIjIK6JGId40ji6Uod4La/PUhesDOX2r3u4T3LDZXimiG/+3d8g17Fp5HijgIfPXC0RrN2WF276Pdr+xr5/T7E71fo0BQfw+4PHY0GOB/Zyp3mi1+VMCiaq0Ie9G2fTCBF6EaQ7r6931DWQ0KHmzAAr6B1E22DObHZUBlw8FM2L8rwYj3veN42x0qWGOEFzk+lj005hngvHEUbXUuTsn7lW1k/P4W15RElautOPM3PyFEX25pTilFJOFEtg3RbK04o+b9QPt/DO7I1lz8TgMLw4uii2yHAROrs+5Tm7EH6dQ2E2rHIkFfa9sr8KdkQiMn2QHRDNQPnsYnTCXL94mP2vOZZbIIvYTCDxjlp0ORM7YhPqO91GS90jA61IQmpRVoVlCnc7uz1ofoAQHZ3OOAcIRH8r8TclKRZe0XGNtEzPZ3NLh22Zlk0mpC9uRpV4LGYT2E7XFjktn5CsNBFd1qY/tQYCISIzoRayctOjvI+G2bmMsVls2u2oCFXArAXCBNladqe3ECxu68JtXRlmtOYdsz28kz2U29LLReFPIKI5h6Nqregic92rHucY8afRe6dcLnRsNxJdEYfgdqCLEPSAuY6Ptev91j4up8xka9zGX7Lp/y87fgoIYG75XNfdeOAEScZAKXKwLtG2dNO/I/Zn2te/IX5H3dBS6cMDdbtR9p3H93+LJhk9FNDhbJF7XY+WqCIl1o1RtZ0nF8I7NxLdr2/iDS25F+sCiyDUEHsNsV6Dx9dXHKXUDdH1XUjkQR/MqslQ0Q8Uwi0AAi8CVdOd5+UErGSP3KmCd6Eut6A1HDH3237EWt+3SK7qTq9LNEog1jZDkOOO1ifs2FOk5ug62lkHaozveX8ithpd4pA11lVZCJXgwmkdGAGrdZn/H7f6pLqdTTDOC8Obv51NFX76+PnGAdMM/py1abtNQMeJLo4PmlZWlmrI6HQ1y+VYLsacsatdVNCJOo19XTW5OuJTRR9G32eYPtDXac3DQHYzWPZLp43xHRwmN8EsUZu568+vP76jTR7teW0cSQi+HUo6QQAAIABJREFUIFZmJu90xMIjNvX/DCV0foH5XqIluKfU6ZE6eupO/1PTCKBmNChRMpFTbXkC3/keHp9clo3WhO+/f+H+L3/keRtK6qQ49MzQfdzbeL8ecC24UwnHghDcJspLLDQ1z7G7c7SD0w8Qiju1/nLWyf/U48fW+Hfgqs9xMP9AGv7O8SHS2EoYNH9aX/jAZ57s7zz1L5R2Rw+jjB2tO/I4eHwNtGZpnfb1ld3g48fsybyU4OSNKoN4jq14i1JiAzag7S3sxJpNOozmOqcagYKIJrifcyOpJd3CT7JkvDCU1CLZHc2jsKNjZkyUKZTdMTWioUR3nx6ovRSq3Gi+R0VJC9P0mpi/rXfog6Oo2W0ou8wNZCP9PcP6yygmp8+xxWJZtsJ2W7GlpF/xxaECMgAdP2fAOhbSfsB+H+d2Raki6C1lwVUve8u3jlTjEK3zbMe6KThaws9XPczm3Q7q6MLk0e4Ui+pRVUFLGbEeKs5iB2IdI8aPqsyqT/CoFa2xJhYKpSxB8xnP8ag0denAntiqTLqKkUsGciIIP4BRIsGQiS7OBpXnNBwbXfpfDusd1ViqJW1gLK0FpyWi+9k5yiW6DSITgTUJUx4dTWfcaG6sy5gbnd6PQISrpBvL2ZVJ1Ket1dRBaMHLOYYsnQa0hDagSST/ZVhz9QBfbNgKyRi7I3GKsXtqCd5ewB8docK5t/ENg1b3GV//4s/3sVuf8UHVB081AtKn8pn1+CtL/wvy+Jr0kAL3FwDaFwXvlHbQ/vF3RAtle4r1cCwU/UTHhvetqyBHWjZ1w4fKHolSuOice2UJ72vRBawntW6Zzit9bxyPr5SilHJDKNOrG3LNTbqJ+6ik6gS7IJxffAlHE83S0vQwJcv7tczk5Hh9wUaih1Jvz6ltAV02ZPh1QyQFCqIHqmskoAW6dmS0XRbHbUe64PaIamopqMS+FU4gC3gNlHVQroZPdNeMX0ZZLI+pCzq/7/8I+v8Lool3by5cdn07f6ZvTxbhpeEcOKMrxanWEUaM6zNYHQhPoJojYMvtSATsbckeGyxRvySj5+OjfSHuqEdLvVFc0nhS3GALgYVcOLJjCSySC9P46+XzzwVFZ4l2BKTmQ8T1Lsh9fyElSrjr9sR6+8T+uM9rgAijf3S409VZZpEsrY1SkGdgIXPxIzLJEfTWhcfufP/l4ONzCISqxnmWDJbWWnMRtnln3SyMxSVuqyCTlzPXgBReaRFKGubPkdH75Bp/i+NksM6tkLfjefz/kuj4sDoDoVPLzi0R1o/14JMefCAWSKwh5tN83faO7QfWOqrK6rC/PhBV+uhkpSRMFIh4x+meHbeITVETHa5aIgg2v1DCnOiQk80sPH4fiYFZyzmjWaVwztF6xhEx9ANVrKVMr8rW+ykgFCgq9H7a7IhLcFNbD1/ifMPZrz2rI9ToiqQlkK41g4ZFQHrHD8EfB12Eo/VALDJgDUPrQFjrh42jFrrITGojVXLQkl7LgQbKDFgXeq8cR6G3gWac933MFVXFslz3fp17e9V+3WMKRAVO0jnDLp+woFminJ48NezAPQzSFT8pUaMCJEIp6V+diVIE6/lZg3PqQbdoBs0F09O4v5lhkn6NPvBfmUmsEe9h42/qRAOA8X0u9mHzd87pN5YvTRN3JKLMmaFoPiXawh6t0VqnjA6adIQDPBEnLVip+OCH10pRpczkL+Zhz5K/06jSwkauObu1aOva4/WreNDJlhIgTDOsGCqVOlrgxlWPVUVLUA5gomnSoYinZzOZFJ8BK74gvjAEGOG1mrxCSDQ2zvYnV9Z3Aeyvf5z7SJzOOb8S5mLe9OvUFEfEqOVgLVHy38qDGw09dtxboO79TjkioLV9R7RSzOj75+CjlhpjyC7XQDL5k7CTci3zviuaalELiyvPtuf5ci0l+LDuuaclFTBt9JbnBV1KxjQNkyWggNmFR4POY9GOGw3awbLGXix2YF3htiH6MXb1FtSGeUXNQt/QneP+AmVBtuyEtVTq80e03mBdkNsTsq4ngOejEq2IRSUBAamKDIQ1EWnre85pcu8e92lUXJK7SgHXOG8yYB1WbiM7kBmv5rucsdQPw8qIh0YV7KeOnwlYEy29IDhn6SwmZsjp3gWs0mNRkxYqYk6/rrMtIjMlD97qWY6Xwrmg5R+7n4Iekuivkgp/mEgqcAlWLb9CNBEYLgLR9TQQRLMwdR+er/FxPkBX3EPcoiJnJyypuGh0iOJEtcZtkQwUi0bXIfP03cubcXb9CqSjLivL9syRZdXe2ww4I7/S3JQHPJ/dZ0RiER9AxoULKVIyqynAE8jB55fO1+wJ/6EoLhZbvEfrgeDZ5keMkqv3uJ4YVzPB4Y44QElJ77tZAsDByzsG6a95DJT9lzx33BdyAwncp2hjqTtbLp6L7Czs1BIJWMmgTPzs9lHMWCQaWTzSd0+A/RFBLxpG+uYkOkk2Z8gT1Y41pVSlIOyPnWM/QlBATmzPrNsSmRWnjqmRfsUtVf7hK3lNtnLmengJL7XinJSE3o2jdQRPVFQ4jka9XMjjaPQjWsuW2ahiXMrwQ45gyWjWsNbQoVx7vYeIYam0+yu2lBQf6lxgC4ZleVjWii4LvZ1rBJpqVZVJqUEqPgJWL3gv2BHCwkt3wMvd/umF8duKVphIyeS85+GZ+ptMXPxEMIoivoLbkAVFmJCPdwAPP+WcuRmI5v27dCoU7zOJCqfGXOfEcfXcb2J9sIseyL3E+MpyPulze123zh+4EE3HF78EsslBV53BHkauwUEtsKT3DKW/2U7RqCoYgaA/bTfIZK4UYdVIoMQ7ZsbRjrmu36qwlZrc4MaR/pUlG1J4C1+GhYpKhOvdjcMNS1rCoDdY7le6xH2aFTXreAcvNWhLEtUzIRXjckve4IXAfR0bnKXVMY//aY5RRn9/Sm/+JDN6iIeMaE8bAsFaXlnLC2uN9bLKHvdKjLLe8L1BPxJJj9BJRel20I8HgmOPl/SzPjOhQBA7LoaUNRx2hkrfCf58AlijlfsEKB1EojLUjiPeb8QQxF4pEBSVrnPezL3YE60NDlMAFa1Rkx4qpUBdUJ6D3932aCIwHH9aNKgRiCY0rYMr5SkBuO0JXTbK0ydkW5HbDVm32VyBdFLwY8eO4FUP4W72sEeXW+z5/YARq8gITiHQ1SdgxRNpxZfZMMM6mSDE/uRjfr8Zv3HnrzvGyXH1i+vFTx/6M4//dvx2/Hb8dvx2/Hb8dvx2/Hb8dnzT4z9OCXgTIQ9kdfxAcFcbSAPpiCR5N1893BSm2iVFGiOJPpHK6ECjEmj96Gsf7zGcAbLU4ImwTpQ2ShJR5k8A2+0sq2bJ03qUg8TeIqy9R3bcXQK1EcLLbxDCPDID7z069Ez0alACInufCPG7azkoCxAIaymFum3Ia7YobAEzp5cBg/M1y4OZ/XgiEZIZ4VA9x1OCG1uSjyPidDv4/mt2y1oWqoQR0CjTqU+6WOgQpED6PaqUEPJkxhVV7fju1py6aGaiSWMQj7LhNwIAfswN4PzvW5RijE73DtIQb1QOtnLnub7wYY1s/7nurN6DArBWliI06bMD2kEUA6sK2Uwk0BMdZjhw7EdYWJWBMjFp3xCuACqd1ZbsV96pIqdVzyit9RzfIm8Q0tGu2BNpdQ8ByhiJ1nsK/GR2TGutXxDW+L3oQIaSDzvWgR73tSeK6znHrk4T1lIzc8TcbPvO/jUpAUfDVSlrRdYCS0WWJcCHLE+VNcZsN0G7oIuyVp0UGRHJSZ0IgdaoJAwKjQnWld7TfulH8vaofv8Elprrybc6PIUoyg8hB8uK0WjBeSIgMZ7OQn3w5wcRS7N6cH7jgXT5+cZuWdaMTw+B0Gn3l87M8TrNWpmdpdMBfwz3mKmAn3XBC8KqQ3R1osQ+y4hJGRjo6rAjU8+CnydfsM49Il4f38PFkaKsy0opNVArQuVfBfqxUzQQt3Y85r6wUiilYoQnaylp9TfW9d4wN6rGhFUlrrKEY8K40I7Qe1ShbhqCw7G3tLRD1A6UvD5WkgZA+Cd7jfLqFWH9wRC+4pQ/PL4FIWAQm354VmOVPc9qIPpB49gp/sqqDz6sd57qZ7Ya9Ljq2S/q6SPaBdM73Rp9OOqU6AQYYrjoXtWPO7ovc8EfThKDgtiPB+CsW6js2/1O318p2f1KsmXuUNtZ64mE6wxbUnyT3yXee3TMizby/VwTlwU/ghIQFJlhmpjXImkhLhUkKtZSVoY3b1AhCH5174HdakHSsk3qErFAreHpWpbwaT03FSACKSmBIFMrlDLHZTIG4n3xpPTUM+ZgGBKHoBWvWFuwPR+3tGiDcw5f9lnk4lxxGSDXceo/OnbeHj8TsI5A9I2c9HwsxVUzeJ1/7/MnPOVOfujYnEORd91Y8/EMvMbNfx905He/3OwzmJ0Bbfph4llUF6GYzfdqPQJaSxPf0Q92tn4dG74HZ7MTavGpgPMIEILvN773ybGLln+dWkpsLD9SJZnnPq7cJSD15OONSSLp5TcJ+KPMloHr4GvJRXGrWtG6UEqoBVUKoo0jA5NHK+jiWI/FmVriWg2aQ/fwavT4W9fYAM/SYfqBEmU8zBj9seMawt6Ntjd+/yPf/dc9/O2/8v6vI9lqqNwp7cFNH3y33fm0fubTki4B5WBxo6DIbY3rs/TZ3rLvB30trEulrhVsQST408drcFgfLw94gW1ZsL3jW017nVjcekSISHNaCwV+0XMeWOsZWHiUYDTGQhv2YebU/IpuYSuvF5V+v9iMDcrEcRxTMGg5D7qHDnQ/GjLLzKB9BC8hROwe9kBezqTNxCkiUzB57C34roDsHRFhfV4pfaE/Gr42pOq8D2WJftdmjj86WgxXnZwxVGFxvBRMN9ANlTqTqd4q+0Np7dzw384/OefSjyyT35oSMErrqpdEYWz6s3wub85SprxzhAx6Br1kkItPweucu+cbELZu8V6DlTqcQsj3DrDgUpgTY0SM4R4TNlYmFkHvcASACBy1Z+k0OXFv1rV0Hkk6wAytdWx0hloKZnQErMrQR8SlCU3CIY1Hi1a1I6Btc9NvrEuUaYsw96beG8cBT0vB1wWR8JAfayI97K6sheCxLBWVQtcyucKjCcgEEQhHg3acQS8M94xc/01Oz08/uYBYDReE/6AOYOx5v/YRcVxY8s1yuXCCWhcXmznntLHIziov3OQLH5cvbOsLS9KwtDekKEio73W5EV2scz0yD09Sj/1JXNj//jf2l8+syfH00mBdQwiH4r2H/dmRAeFjjzU9544QnqxjXIyoqx373Pt1iIshqXS5/1l8V5OGDiqJWcYEMfbEo2mA2SBfN4oUemvhpd5CHDnXLpFUHGrkpwJSy7TBLKWkjVWCRubQ05EAIg7qHU+7Qq0rbDe81nNuDhvHTDZJkGPSrIYjQFpaWVf6wSkUdz1X0slTvwjL3oNHl5HwHzl+nsP6U4f45fELRJRB7ERWZSyjI5OH0RnK0k7qimYIl97eDC9UZvAJsT6eNPTLKY3H8/cQCkYwapevYxmgYhYolvW35zH+8RBSNbe00slN2aJ7Vbee9k+xSA3/VZ8DeHyXvDw58DWzmE6IzVqiYtNDVWLDHs4AQ2E3M1TRJPSPfytSKgVNOw8CXa0bWpaJtKo4lAicju6s5uGT2hxqLN5XpFvMwxfOfG4GNTePDoMinImk49ZO8Y0o21LR7IX+ax82RHSXDSmlZJAY1JxEml6XHCzyYNWvfCgv/GF55eP2woc1O5rYEUg9xHWtC/UGfSjg3biRwiKFtUhYOKG8/luYQO/3neOxU3twqKRIeKmOxSlVz20/aMlhUtFwbSBEUWISvGEtgSwWndPvuB/h65rTs2emX0ZQYUKRdAUwx9XoF4SV5IKbGa2Vqdi+2lYFvzuCIiMqCZocPmsW9EUhxkIzpBs2AlYX1lJYHh070h/xaaU8r7Mrmlj0FO8CfhzYXvClngIirelkteI8I/4MtoFn44BjoT0KvZ04lL+Zf5EEvseD/qnogABprRZH3tA36+65AsZ3HMCCzW/Wx5IxUNvJn8+w800up6erSVZIkDOYgqHovwa9ci79o1ygMb4sBukFpbH0ZY2GKZ6PnQHwxenhkptPAU+ej1jw97sZ+3EMGh5F47xKUZ6ebpH44IzmCmYdOx4hKpPCWjV46MNgvXd27Sw1vY1J/XoCEZp7kzdDqqIewr1aCi35ggch1kUKVqNSEBFABqQWjg1Y7mEZw131E+cFSJP7q5/0G0jq3xuwv37A+vd/+xulKlXPRiilCCIWyL+Hd7K4hucuUMudj8ud5/Kg2hcW/QfbWi+CoVivRWsY7S4bqo7eQrCk6Y6htVK3J2gWPqZ//gsjN9f1FuNYVqSEhSO90x8h3PIhpMLx9sC6BhI5xqXGPmwtfXrJPX64lqiGWCtBM72KlYDediz1DGZG0RBQj859IfYKXqtZp++P1JZcIhwtcU6umBjmHe8jqD+Q4x7Ibdvw45V+vPKGO+4SAawaFEHXDauDKx2gjYdvGydMqviw2pwIa8G9RNIWudfbQ86EbVakL8f7p8/RPgDLH7zi7fELPYdOeDzy72sI6peffIZkWWYErO/W2PA5dawnsjqVknnzMzib8DuRMdbhZek+icxOJvh6ERzRkwAcbzCCgPFe1n1u2GRG6BeEFmKzrenx6D3eawpXSFRuLhjjsTerf14lOYPrS8QtRMbkYunvJ3N8itSE/QclIBfqi0uApAkyWtGSPxJWNDAC1iXadJZK0UItSimjO0bHpLP3Aw7Hi0UZe3jUzGtf6Bb+jrHaJpqhQi1Cc0FLoGnNDLXr42V2J/q1DwsIP3UboxtQjwLA2G0Bp6MaE38tDz7qzvN25wNfeSpf+HQTtmy24HvSWSQNx5cwnB4eq7cCi48N0qhPa3RzenTWRDC3Lw/244X7Y2cxT4RHkDqCKaF1p7eeLUvlzYZ2LZdu20rdVkyER7YJ1FS/azYQGJWH93ubZ/OK5k7rPUpYl0MUemtsa7Q1bNkq0SWe3220VBwoSr6vaqhPTVCxifUNkYS6UQy0tWg9XBTdKnqlFXnYwqmHpZCnm4HNKKagUlF9xvmI+O+gPdMzOTruC32veK+Iy8UbNNeHUZ0Y1+I6ZuAyz79hBCv6I4v3uQ4Pd4ifAhU8n359KXmVs6aZdJ2rGDZU/tPnWi72hZfXDfVw2O1cYYNwIIhLnUmBnqVR1yh/I5WgjGUgMPHcDG6nKwAzaI4nxECL/deT7nHaDyFCLQvbWnm6bdRtDYF2zr127Fjb4+17IPm16Fx3R/XJJNY2Iez9ZmDhp6tKPCp5jqdloUu0vNaqYTsUW8zcm6qWCBy6Ez6zGgKhcbN6AD6Dbnf2sboEspNCMS/S+zv/TY5SFGudeztSnARHO6gV1kVYi/H0FP63dYl7clsefNoePC8PxA8cRdc6u59hFWEB6cFTKwsiz+gtgRALUZauN6gL3F+pnz7Rv3zl+BzWV6X3aLiGwJKCqt6xbD4AMV4d8l4HJW8k4VKjWYb3PdT6WjJxH2Nfwx5qxjGZ9I1EqbfozJdgwPRAbxlwEqCVpDPEeN8i57yRdJYRBDn2mJV7VP76y+dwFCglkOR1xR4Lmi3DkXAKCivESBRda4jPZqgyEuIxxwSkIjIaC2SnKy9417SxGskYl9fmFdEhPvux8XhNyv5jx89HE++4NO8A/Z/4XD/P3bmaBIRCsjODxeh/y0WBn3w9lxkUCtmtMi9OmOaHx95IZkIteJ7QwEODapJq0rERmSVYEZZX47v0ufgGn7OUk7fS/dzARpksfAxhNiIYAbEIJuQidnEyOK9OLOIKnmhB8H51Xs6Tk3r5dwSsWUIOD9eC1kRRpUZbNsLPMygB6RmnMQHLaGNYDJNO80o/GltpLCqjckt1KGi2cgxPVQS0jA3OIqgny9kaV71n5x11wqPw/dD4lY7j8YiStDA3HM0sPzp5SLZEbSzJl/puvfOnpwcfy4HaQRFne1ooMsrtivTIpslWmGGHmxy5esuyVNh5lduSLUl9OOPgVajbQreDdjT2oyN1Z3mKBbg+benrG2jqdhvdm+KoNcv7NWgHdak0OzP6UgtLrehSafuOe7RILWVsuuMKZaDa3tJpRjImnslLj/LwcE9yid9Fox+7awtF6yVukeRMuzsFZdFLECgW/Ncj5pMuS3IBzzJi8ANz0R+L/wUhNQRkQfmA9O+w9hGzjWOPa3XsFW8LhXWWZWVwJ8fvuT6YX87tsvFfret+/WNQFt4iNW9XXXkbp8j18XcBDiSKmfy5gIjeJPG4UbwE7Wc8RxJ1GR1/EhYMnqsFKCAnGy8Q13CncImWp+IVBl3EAn11dUxqotxXJXJWDAYgae++isaHBIc3v5uf1QWVCmqZrBeKCs2yYxigdLr3/N4C7ixaqBmYfH2ccyBQ+BiSg6Pe8ipqfrYTj/V+SW5K2CfKCAAc3GT0Jog29RYIayirFcppWci475K0tqETGWuQDMLPvCDMC3AdI99g6N7WLVx3loJnV7qY1x3xO1Xu3Krz4Xlh1Qgmb/XBrews8go8oGok76k+D06lYPYA3xFd0C2QPgCRNZwXxnXSsAwrTzdyq6K/PNi//x5eXlg+fYfenhHR6S6RnQEYDQdEFcqCbqN16xZr5NHQ1IaEBdygUTWKn01/Rlwzk/isxJIgmfWeg0jm46ONbCSiFbc2E3SpS/4/Z7FqBMwjKehfkD26xNWnZ6S1sHJbMyAvii8bcntGZc05DbiENgcyeUzOqcb6iizIdAZKjYBHS2fv5RKsXo9LgvnT+fT12f+h4xd0urr+xN9+PGq+Rtrnr+TF8T5uzvgZCOfgmSZ6OtBVzqAff295MDaxzPj97ceOMpV5opa5KY1M/AxYz7VxmlWP9xgbXQa2bm00wsLJ9piUuem1wd0hx4KFNYwkApVnmq/PjeiyKYnINGcfGfz7oPUcCHrypEpyWEsN3moKaaTUScyeBO2ikYUR4zNKdgveH7A7i4L4sGUZ18No5jTvrFrm1uIET7ETyYbnJJrlwVFG+wZcKoC//PnPuKe1U3o+1QKLOot2PjxXttvCujz4sMXE/8O28/vtwU33oDcURVdl1JZcBTVBFY6241qi9JVJAFvNsCDsrkx9ZGezKro9LxQt9KWyfz34x/cvGMKn3DSX28boD15UWUplnz364p6oaixIogxb87mnp2m5qEzh3+Brk88bAsM+6SzndTOL8pSn1VY7GouWt63BPRIUNMQDasG5BdLyT8KqrsGCJAf3tFix1iOAL4GWGUb3TsldXQu4evBir41I8nFXCR6W3eiPJ452w/pCOwINsL5msBo945FIrsZNmMGgh0AiNtXL1xtryzeKV6+VpfPejDX4THvfveryuxAb+oj4SAAAJs0qr8H5OfF/yyDrDbI3EgX/4ZqFnMb8DAaARXl+2NrNcl+J98ZCwHqlNQFR9vUhNMlvdEVYXRAL4VcsN8bL/XXaCz6XWCObwdEcaLj3mQgtVSleOY6Gm9Fa49XtfHuPJXIICkXg9OEepd+gZ6mErVZrPYKMjDfDgTNACstVXwe9Iq+/orknKe4FsdFBCPDRQWiAFCNgvQ6IDFTnLX+boESy8esPXh17qA66DUH7cKhS+d2nZ27L96zbV55rUgJ4pdpX5HjB2UFXRD7OipObJDcIrIcNo9R6Duu+T8/Q8CTu/397b9skOY5jaz4AKblHRGb1XNu13f3//27t2s617q6McJdIYD8ApORRWS8zcyezPzjLoiLSX+RyiQQPgIMDyrVS/scv6NsXAPo/P/j4//6dtn1Q21teyqMuR7O1tTtzT6UsR1FTiegpqpRFKcuFvW+Ho9sTcM5MgNF9n/POek8YE/fRvSNeJli0vicesqAFMAJcwxPL+aJDLqvAvjMBScpc1VrR+w6tR2AhgyB6fYFSYh2ObEfv0RVrdhbJwlX12Mt1BXmZ81I8qABuhT6iq79jINMf/j5WnbZt2NfPx/jjefsX8rV6+iFRdXre3/vAB44VE8lPx2+cbP5/LK7hpY8U6ACiR6eqk9LA4yccS3Xc30zb8PDjs5OV5tX08TuPenSeiA5WYSDT0z0XZSEsJUjP0XklWuvZ6Jk9fKPeDsFh92zTmh7SA2iNxweJ2uQzWD1+jmt0qAIMvdVJE4DktR6PBX3gAKyuA3QYZsp9c6psvGT/5W4bpo5kaH9vLTrAjP7JwFQqQKha2K3P+1hcooOInZHOjxtfv3zBeououY9+7BvYnVp2Xi+Vr6+Va3nnS2r+fS0bL35nsTvNNspa0HJsaGIaRibTO9YMvYKO/pdFwjg10JId180Q7yxrvKb8slJfQb5c2P650cXYNpt0l6MLmrPUiPJM/WEiS1AmR0gybXu0GXSc5o5ajwyBjOYBueYS/zkBTkspka2wuQqmURGPDfkcwRnccy0RaouCv2PNuynigjXDW8wfLWUeo7egZdQiIewuEQUTOAoZpNOlZ2dQx8Xiel5y7l0jq8C20reFfVtxW/DksBYuFF0zgteziEBPxUHDoE4P9DfRVXObhWo/ekRWaGxuabP0sE3H7++trTPyLsfr8+FQ+jhFTEVP7xyef9rc8G7mES0LT0WimMtHp6yRop6HOj5TEEZ40UtOLCtIL4d9OjnZeKq+JoXQT9Xaw14KuSYz4jAyZ60FuWDfdmxZgvd3uh49N5xRb3Df7zSLFr0AtZTgi/dO2z3oBPi0y1XjeSSOuvceXcAEluRfRzxQMhCSgDXBxriPwiiCVLAFfAUyxe0XontQ4ajGGM7DecTnyswQyuNzP2HImR80052RLVmLUfVGLb8i/e+x/wClGIUb3n4FDF0UoR1wg45Zp8gaxXwYpawcijzZTVIloixF0EvUBjA4pi+Vywry91+REnQAqXZkdUul9T2O6aAsUOoxr/MajyYsqOLtdE+bkR3MAAAgAElEQVTcMjjAtJ3e97l2o8lLO1CPeTQGyHk/MtAWvbZjP+lRfJUnEPO21gy2N5hFYiDeEFqwJvpG33sA1HVod+cH+KCYeGQd+o5LisG6AvmdZQGuwBviSStgAavYrvRdjqDapxlwpl59H7IejtV/Zvwci/wcz/Ecz/Ecz/Ecz/Ecz/EXx59EWNPDmzzWeGymtMdjw9sFQiEgUPzE16dUcbzz8OQj43SSmTkCrHmM4PGcu06PxxiFTxkhsbOm2Dlq4kR0dUQrMiUaL08PXh6jGMGbiXR4z57VI9DlLlGohWa0KaSJDo5cxFi7B1/FzKKX8Dh6ti9zy7RSDxmsI5BwogB8/pnXezyf3axmx5+R8o/oBSXoAiPSOjxbz8pHNDp3NY9iH5ZRAOHs3qjioIXWO8326eKs5RLyIKeOLXBo0t5b51UPL/dHj7VkVbkSHjtQpPDlWvn6cuPt5cbr5caXuvFCRFgv/s7SbxGJ9Y74BaGQmSGsQ9sN6Y5KRAdDkjWvaRH2toNnVCa1TClQLhlRkCUqqLsjr8rbi6D//gFZhd/uWxR2SKUsmtH6T2tJkh/tHWVIWh3evLnRNouiJjm0AfPtOFEk17uxrktwUQcfy+N9o12xpwbrXBmDkpAmoWjJ4qoZEsGasd0N24xaCxWOfvPmrKp4XagvF/pV8YsCbRZmRTW5IdXx6pg0oLFk8RzFcCJz0U3wXnFbIzICLHWlZItFk8gmGKfONUR6zj2ihgeP9XjBuXPejx7uGdnj6I4Xj49sE9MWzOf9nL7/3nkfrzvyWzrttmYqedQNuFvao4M2MP5NXldc+E0AFEHomV6NuSZl2GWHYhFhrQtKR/uKZFGU6o6NewxE+21mx6LRrlVcEI3I3eyIBUn/EqQT8m9LFEQe2QXDRYMHLtC9HQVVEEW2Dp6p/lKi0Lfmtavj25nj9GhnXEYtwqeCPY/kv5zoWxBRXBcJZY9JUznaCpsXjh7tI/V9Kkg8RaZ0UDI477Zjr/jOFPgRw+NcPDm3VTqXtfF6aaz1g1oiy2VNx8vxvtFv38JmLgu0++xO5pJZJFnRqnhJDu/YCkcUXUOBQooh6wq1zkJSv66Uy4W1Vtr/+pX+3ilm+Nuax/DQPo+0U0ACP9lUFXwfcmw95KjcZr3I4HxHViLWn1mn1EFRakG1KmVGa621k3iG5y2W4K+qA5bSVoQk1chUW6gTFPQowvegjVjfYIt1K8tLRJmJKPXoSCqfZEgHdzo615XgrMor8IbwBhlhdVuxvtBbwbrw0D6anO+JR85Zm09T45xb/7OZ9N3xx4DVT3SAM8H2N3pqPo2GcBRcjZT76UxPKYxccKN4aMohzTeHDMbkqQ623gjNjwKaMKCRtR+AlAlOz1yKh9atxynl/NeR7Y4HPNtUptB62KMj1TU4sZEK0AOc5BULGYqFnkoInqA13h9Cvu5gNuQsbJ6zjNTXJ1rAAVhzwQ5ge+KDDY2XEP4NUOqpKvAwmURBwhQH/7Ug5vTkkAlGd6hKpnSVbu0k8TKuQTRaWBBqqaE6QErEdPlN9fmPGgGkQi9x0BQWNd5e4O26s+g/KL5RgDU3yYvtaLvR9jtFheKjej2GeTQJKEApC6VI8NCHiHWmw4JDGukpFw0noA9HQhNoOf0VrtcVRfn2P38FoH/coinAwpRKmZwfYs249yj0aI6osG/3aUAk9Q4n4EraiM/vMIoYS/4tlKpHlfNZJSIBg0im2+IDjrSf93RbD+XOZrDddrZbyFZpVvgfWrdCXRb8ZUXertzFWNdKEZlKBJr8QS1ADYqMq2E+Cvo2nA33DdfcaLwcmoJimOxBzNFcNycAOtJ7ISWXG+znDhdnh/cHj6hE9mO9M0xDbIZ+PPDAdZVBlp9p5PH394Y8PDd4c4PbN3RaHZmm3wlnfAYJJJ4bOsTuoXoSN4+0XVPbATWLItNSEK+Yr5TF0Nbn84hgLfqZBz7uD3ZxFmGLEc1RfKZ23Tu9OY3O/b7RvXO9Vi6XM7AQVl0Qb/gecobz+HNepzNXCuqg4wJYbImiudd4AH3rjuS6sQ5Wcz3Mhi86uYIqBSsyK7/P+128oOfNrIhr3qJzwOjT/Uyt42Prkt++5kcNF4Ls3hBirdbaWFfj+mK8XReqXLH29VCTIRQF+v1XlqJwrfS7oaRsVakY17g+JYH/aXqrJt1IsgC7OrOd7yw68aAUmWDvH7R//h01Q7/+H/l0aLEHN1rBG3bUQMdeuH+gEgGE3m6Y9cm9JoNbTHsruHW0vMxLc9ZojznTZp2HJGXSk2MqCsKCDIpUsyj49Yq3LWQoT5gpNuE9ZLZEDycq9YnNd4q+BDVaPHiqQyptcMbDCwZZUV5x+4LbK+4DdFfMCt4K6kFXmXvDeOsp8Hi2GeOPz0pKfpqnJ0v3+/OLvxRhHYtlGIXT6hhtq7QztCzRHUmyu0zP8IytE4DmQiwEl21IA42Ch/FeSY8+n5lfaixSd6LAZRRxkcogzgSQ89359lHxP030AIbj6B6RoH6K2uqQooIkzWf0tMeGHJGAUXEnOZmWkHXpMoE1DGAd1m90DTI7eIiPnatO/NV53R/Ba3Q7yp85YbKXcno9Q/PweN85QgtFBdU33G/5fNzr7h7grC7R0zi/Q++pN2dOA9wL10Vo2yiacN7vN+rveFv/7SMDL0WMmoD0ZTHEfkX5hvg3rO2YVFhyw7IQbu63O3Vdkdah7bAMJyA3aY1CK100EP2cZ44WCf5u8djcCNQv10Fez/ltHvJOYlz+7WU2Ftju79AbKlcgNk7xA7y4p+RVphEa4LbPKmTMZ6FbnKscVYXkXPdwKJal4sCyLGwZ5fIeSgQuTt99OiZngGQWxVbux7oaRZPbtnPbGi21j2/dsD0K3gDqUvBSaVq4iWBF6aUiotySs1WbcxVFswuW6BryaHMqxfqxbE5iyT2bmNq2iBrLAqPA5Tw3xvcZjsCnaOoEhD8nOTCX5nkc53d+4nTOE7j+58DKIVMokDzXqdAwW0mlHZuGN6PWY41nH/Zpn2zob+aRa/IN81tEBL9TkzcfRSkRz9dhz2xnZNZEYNTHhekKiaFZTOtOa422d253Z70uiL5xzbVXaqWoUHH6HoGGABZx+jXtrblE1opDSQKSVZoOkDvR0S6doVEf4eaBAWrsFy4aNQnToUy7XApeNECY+AQXaAN1xEZ9gJNpot8ZY1/4SSD1YWQmR3dKCv9fXjqvL8716lyuhaoXxDSAF+DbP2l9Z79/IKXjHx3pV4SvAOj1C7pe8d7SQdbEIHk9tQBZPGQB5EaR0ph3ZTe8dOT1lcv//f9EIKD5nLdDLUBj04siqFNIy60hvh/HNH10CUdDk7O9OO17pS7ZJS3UAozI0M4IrfuMlg/5qqEVDeBE0at36LcOe6csyzSq7g3rhkoo2Oi6YqXMExJpiIatdLWDHq0yo7DUmJOiF/Ar3i6YreFgAuaVkBirc20wuOTxIRMfDfNwRmzkNyGfk2lD8hn5a5osfwxYR2RikqlP0FM8vcEOukNqWZLpO6EfEdBZMRlHkBEdzK+nCZpO3+n0FRPgcizJUfuqZLTUnHN7V/y4Jw/HOqF+zyhm0TCOD9GMnqSDmYLLIqw5gbLLz9C4JL2kclyjcU7d+iEbNHkRlkb2aJxwjgRPAH2OrH6OsI7fDyBWP71GTqA1N4CpP3qAXAjPVeXluEhRMkRD0SLUS6fUlZoV94Zh1lhEwQt7z3aJckTavn175/qTdFjBEG2spfFyCTD25WXnpe68XVJ8v0s0S0jawrY1+scN2zaqgrdCuzk1U81FBVtqVCorsSmVYzNxCA1Gj83Ui8YaqGWmRTO8R2lO2RPMvglv/9cvQNx7u3V8kYxwjsIpG18r51sUSvVsfjEKQ7x7YgZBSqGLn2seQ93CTw0GSKM1hf8b18uC9BBB9zZE6EcEKWgfJdNf+94pe2e7xzV+v98wDFkKdU2qjB5ro7xU/LqwrxV9ufDydkWWQms7fXvPs5Qwpik+LalrOQsG07BrcaQYzp5FDfkdLDaWLFCO9xyY+2FE172z53+82H+SszWbjZwjFn812hs4kvQ45317xDR/tjUcjm8ES8fGfUStptLAwyWKwg4s7k9Y/X5EWIGRnRsMhuJHm+oZ2sjzHndlduwZB7H4/O5AHxJozKp8OMDr/b7xcYt58fp65bJUet8jSNCNqp9S/lpx79E5WQIctbn2PJSTNEIU5Rw0mAGdQ+oww04BWk92FUkqw8iAFY4OD8m1iZePBjyF00z+k3v3s0fY3ZrNVq4vxnoxRN5zTkcxpSbIc19oWjCU1hv28R4ZlgF+dIHrS1Tt553yWTxELuDUykyscVy/LOZziWxMUeTr31At+PsNUopq6ORaeOPTXZpFTxZKE4qk92KgBRsRULUAlRKV+Nb67DwFHAXP5tT1EnJUD9kTI8OfgE7HbaxTlRrKFe8f7B9bdFwbcksQwUFRdL0iL6/I9RoqC6MYmI84ZzFcwkEz7bhvqAzddA/nCcWtYq3SeypWAHhosoqU6cz6dJaYeGWu2Rkg/ARZ87GgEJwc7Tzen/nbf44mZEQFx7/zt8YFQBuzFSsxIZGUEhmtW+dEyvcPLtLJMJ+N6GxF54f9PX+PIWwtY2PxTOmNt83NaVRrHixYgNFTQAZgnaLBaezwBKtxjJJtT6dH9gCS7UgP5dU2orK7t9EJ63G3HCn/cQ10VPtP7aB8Pr35+fpT+P3RgZBjQzoZ0QFGD0GHcTXm5c3zHbywcjiGyaNqFiBUS0fLQpHYPD76O2KdpcIisUhdlZqG+Z6qCh+3Oz9lyI7qzlI710vMzbcX52+vlbfLBVrDtoUVp1g4W3vr7PcdbXda6fiHgS+IHxqpl+tKt05vPSK4I6pAzJuiGhzpjI7MyPhpbjhRST+aVchF0L+lrJUq+693ihewTJOf1nxEptJhy/CPOsjgCrecb0sJvpwx5a0gqQAZ0RcyU5ngFnJtlNggy1Lpts89AQ5KAS3m//19h33HMrIuVVnXSq2FsoSAeylKeQlT8/pvr5TLyo4hq1Jermip9NudZYvXdLY4h9RLDamcBL7jImik+eoSP1sfbRFD0sjVqblkJgia19EnZSLW+Vij+Ww+9pNEAg6lGTlq3M/GPcZ3gIunaZ0vPAG4+b+M2v1l8Hp6jZSIto7Uno4Ts/mq4G4Ox3iA1eP/4hNzTsnAqVEKk0/snIIcA8t5fFSYmJivoW4RF6wz7CXTru7bzrdg21BL5fV6Yd83RKKxiTSbW1M3h240s9A41ug/N2hSbk7vHZOgXxVR+rS+k+VN7lABeDPTZallO4CranQfNInQig7ZtwddWg7bMe1HPx7+l8OusSZLdV6ucXKvr8LrteDbxn7/RlmX9KVG9M+plzfq9W+wfwtwuDtWUtmlfMS+tF6icn/Y1BnOzPCVHyExhAzUJCjWC07F+juqQrl+iU5Nt7D71nbMIvgw5N3EOzLgUc47esOthwO9HDRJTxCrpQRutlQYGZtpqvOIQC0LJoptx4KOeplOt05J4Oq9HZQGc9ptY7tvUxZ029uRUSoWmau6YssVXy94gbLk+YvS96AgiGaQJdeuT9wWSgNOY/LXXSeoFymJU844TR6s0LAxAbjzMX94dgLWsMsjg3AGrn9sj/5Ca9b00X8DfROwDlA6OWr99O9HOkCe0VyEST15PPYAk+d35b8naPbzjw8rd8hOeYb3pwPwmFIfl2lsWPhBmmac9QAFKiyZshwf33rMGrdO8FhjVxw6qqoFVNCq9BTa7acvdIB0jTazCYinR5YgdfzmHGmdB+C3Pw/QXvjtPfvtRmUM1ppgrkjKXKiW9EyDQqHFKewh4Azc9xuqxtWhEPSItit7OwTqa6l83H/lp4yysSw7r6/w+pKA9dX4+qXwui5Ifwky+75jmY5vrXG7b5TeQIwiRumd4UiXWtC14suCiUQLVmQCpRngTp6fd5tNK+YCFoJTLAsmHnp+OGtGIJeXK9LA3htb62xbGEIdcmJp7M2iU08pJYTYs+NDS31J8dAe3W1HTmLj0aecODc3xFfSr56XrvXGqmVy7MSPri5mHgUr98bHtw8+Pj5QnJpz/8vbKy/XlboWlkvl7e0losgvMa/Klyt6WZECvXhErLVQtyvc0iH8+AflsuRmn/y/QXFhBKEcKZ2yGKU6InY0/rDo997FougmbcU5dTyzGsP5TJAKsQH9LP4qjGUrAwHOc85nf/d9sRfkJvhZXvD0qrGx/Dl9wDN9N+xSfP7YZpmbe96XpAHkP06295QrLekgIwdgzaeUiNzjnrQun2CA+d0i+HFQ047WrpFByuhO30I7sne2e5zxt/cby7qAdy61YFbZ9zv7mNv7nupITmuOl9Bcnh2HMr3hNjZc6D4W/UEXk0BMoWXN6PhzDiQEXaXrCqwIK7MFpqdAe/zjuG6nWzXurJz2yk/Y/ucMcerauF5hNKJal2jOUl8u2HbDfcjkDepYR5YLy9v/wD4qeMts0dAohdKTPEwJjjQcXzTlrMQFZDQQiAi2a3Z15AWpBamCtw+8NUQr1qM16/b+DS0rRUeBUUT7yuisWWp2xjL6vkcjQ5FD7J8KUmDVpIXuOCeO6divNShaUpfgr469Uoye0dxR89FudyQbA9i2sW/fAlNcV8ialAHRVRV5fcEvK329UNYr1DKD9iCY7RQLwExds/nNJeht+S2chtPz96O9Gc2RIgA5sNQx24btOZhWQwrs4RV5rHHk06f8Xor90/jTCOs0Tt99ZhgTi8gqJIhNoOpB7nWmMzKjfpKPjdT8/IiT14HI4Uid7e/86BFZ9VnVDGEzTXJJnBbyYKlGdXcYvWZOEc9I2TiFY8M6EL+fPj9cLvcArNF95WTKhdS3TM/PlN5kTrADLHfMxucKZx3YmRI4pQXlbPTkuKbDY/ktXo3rOgCTf7qP5zs4rpGdIgWaKT/rUdhgvk2vcakGshFqo4p7Z9sjAjGuYa31KDT7waOUnet14+2t8JIdP5Zlp1ZHpVGKUzLNvGfFqlaNRggu7M3p9061fRYUSSmRBrxEqjt4Rp99zKHCm38LWfWZ114jRejLBamCmuL9jm2ZfmqhQNC8cbtt3O/GJaOU4yPMHVSoS6UuETEdOqqmCWg7sIcI9fW6so8I6AABqV7RW3jyIztQVGhbtFPse2gTtm7sexjn3npSCZy6FF6Ic7u+hLG/Xi9crgv1olxe10hNVaWkiHV5veKXFV2DBxyNlAS9GGU5qsV9WZhFgqm4MEKPkt2SwGDSAo5uXQFSQyM5ujXlpZsO7amQbaxlOwCrZQHGoBX+6PEQxTge5LFo4fN7xqv9917y+R3no/9Hz5CReg3QNADdKdAQAtXZDTCdLT8CAcLhlI+5pyKU4USMcKqNApG8VXLg1vlpg6olBWNBzFFJTh895jjw8fFBXZSvLwuXpdLM+PBOyfd3N+idWgq37Q4Yl1pY6whEMLNlZmAaNCgfvN15XTP6ZhKFU1mrEOcYmSx0Ab2AXHGujEgWXgitWyXbsjxc+c/W5mzf4cC4/5W7+18ZIzCoeSJFg3aF7azrNQCZ+qR5ROveQlm/gBdsv9PpLDUDJ+sagD8LUyIKOt2uyAzKSrhBg3YX+s/C0BiNOSjlglxiXxYXtCYFqW3R6EQV7/GZuiyUS9g0EcXYUDMaUTwt1hm6P/Vyoe/RTtrN8LanksAjhnDrUYk/duK8QZYZHkHw+067v7N//DpVUxSor18iYLJEq/Xl+jqvgb6sLF++ht3H0PVCWV9mIKVtv4K9R4Q6aSgiFc+uXXEQnZrqcV6Bb87ZGvNs0S4VppM4jOujw3xApc/G6DNwPfBVBA3/eNb+pKTXczzHczzHczzHczzHczzHXxt/zmF1+Y7DfoqiplczkLbn41P+hEzRPLw/I38jtCzTL3/IhJ3B+fS6OQqazAzrPiUlpjSNO4ZmSuaQ5jl78pbpLrMIczsyo1R98E4T/ffJAZR5LvF5QQ2QGR0dXK7w8jR5UtQgMHtr8/wt06x9RFjlHGHlkdt75rHOiyTz2j7SAc6e/hHNntGQ8R3mWT5GWgfZ3YhKWS1xHd2CMrCO7hwSPBVLAnx4Xsr1EryhvkRP8Mv2xs8Yy7rz+mr88kthzZy+2AfesxjHQ0dRrAXhHFjXleVynR4mBtIF3+P5dmtQG7VWpAzlhaOKWrJ9aBRL1Yg8pXzIcBxVNbqQ6RrJw+rIJYjuAK3fo81pUXrrtPvGoorldTc3lpcVXSpLdnSxvU9pn+AVech56XE/h2xVUQmNyh483NvHLaK+o1q0NfZtB20R7WrGdt9oe4Qb+27IWnl9vfJlfUMElqWyXLJDmoc02l0NUXh5WdDl1HVlLXBZKOtCWTQKtDKuLyWPIS801ajCzoKtWZgKhFBZyQyCEfz5s2aphl2gTW6gnGzMpAQMKkDy0M9amo7zJ87+f+MYZaXMdT5s2Cy+y4jGwRI6Unf8Lh3gGH/KBpifyqdjPRZGxFX103OpTDFsj500uDPVK+M5ifvbdS6OI1M0OMb4aFSXEdaIXLoro0XQSBMPqoHWQtU1eM4i9JScaq1HpuBlpbtwa51vtzv/li08mxuLwlIinf9xv7PtwpoqIZcqlBqfYXS8R5esIjIzT+M7hXqAIv00V8msmJZc/xecF/AXdLTAlEpIWqWNT8L65x3098YxZ3/85HV3vDv3rQVtDjAq3YxFC71tuU+cI3uX7LZUERZ2yQKhJa9HXSLo7EHNCvZFRrEhKQYa9nYEB8f/Bi940FRUQvJpiSh8eYm9qa7/RPYO253mjixXQtv8UIcxH/SimJNn3XXHcG9RJNp26I2+G/vHPwEo15eIyO730FZ1oNss6rJto+8tu6DFEE1NVKAsF65ffqFeL2gN9ZSyXua9lrev6HKNojJJvdiyZEEC6HaBrUD1VDSIcz+3q/asF0DIgtaQhDw6VSaVzA8eq8//fd/aPNbuyMOr/DEfw3dI+t8df4HD+r2Jn/zU2eP4MBouIzV/hJLPVcqHiXtMWnzvLxiyOsFLHUVRllQA76PwyR/oPjPdd75GdvytLqMOMMCtewLW+A7dfK784HAeRQXj+e7HJhli6sIArH4CsaWEflprZR4fZ4pg46Hh5i5HUcnYiYQTUD0B1jO3dVzH3+DV8wOHY3DIXh0qAUMpMVWq8rvqBPkie4AEcUgR/lWN9+3Gh+8UWVhLwWShrineTsHEebOfk1d9e4UvX4S3N7jkdd2/bfzzH/9EXi8si6LiiPWZ1i+XhZcvb+zfFPWO4JRapui3u0aWsoNY3K+Y6UfKsogiRdDuDNH/4FSl8VBBZAlHsIUsWlGFQZBfO2LOsnVe1krZOosb/Z48W6BeFUejNaYIHZ9zxyRbAKvOwpBm/XSOsWZUJLiorXG/3eb7+7Zh287uQqmV/b5hu82JsSyVy+uV17+9sV5XStUAzpk2bRB8WzG6dKwGGJZhaSqUVWCJx1SigYa4ogkM6qXiGCmCiVSNNq3DIbTYsESA0imrs1zK3PTdBfPk0ktNXUOZazqolkGJGFzeaCRy4rDiPzn/5J9+x4hp5Ln2fzsGLv9r8OYvnsl3D3b+/CFnE8L8YWoO23jopJ5k+kxwK7jL5GcXVbrIoTo66FAJHHrX4AdqQbzj3sD3mZpFatgrDS1ktIcDlYB1KMm0Lny48X7vNJfoTQ/UVG4RFdZa2FpI943mAq1BHyzV/E4tgfUskxpgNX+ytJEhUaQCWhdUV4Qr7q9gL2ApYk+AtwlW48z/U/fth4/cNnsX9j2vzx5tovft71TZWdYl7u3Q5+47bG3S+Ug1Hl0y0FFKrt+Nvt0CsK0Ls4mQeVTpz8Loh01w/goaRvyIO7bd5n1f3n7h/u//k3b7QOqCbfdwlEab82XFS2Xft7ifEu2EywC0wwHuHe9tOsft9i2el5DKsvtHygm+4H2fNDDbe9DuamV9+8rl69+IIq44P10umEVrdF8Kcr3CUqKVMaCXK6yvUCpaCiYW6f1BxangZQsueTkA66PI/8AIcT2jMQfRTIjENEN5rfjEInNmnqkAB7fyZDyO/efALcdxxPwwXn8w/nMc1oduCZbRiBFh9UTih9ExP3hMA6TlPp7e42MB8BA+P5ztBKgD7w3NVfdJ2j+f4YxPzOs2VAXi3wFYI8oYXNaD0wrDTkgKiw8VgONCTt1Uz+LlFIH20xm4DS87o5knWSwVcC24R9WjWePcT0iGUtL0etKjfCi6OoDnEf09gdrx9wSpv31+uhX5h58uWgjQO6NLRghcHYLQixpLgd4brUEVwWhsaYiul0LxhSuHePKPHF9ehdersNTOUmLivP3tBbuEmP3gmvvJ05FSuVxfwYS+NRyjKaF5B5RLxVVpHaQF50bLYRhcld4jqqNogvxxG073ziU8bEuulXBowV5qyLpcF5bryvaxc9v2o8vaUmhbRuqrUpbo6NXSgN8tNtWi0emsaHRjG1/zfttoradKQHRau9+2Gbnre8N6bMveHe47iyjLa9zHcr1web1w+fqCV6UXkGulZpXFUkeBmCG2E86sY0NnWSV4VtJjTcJRfTrWZ82IsIZ6d6x3mxWtyNCm7Wgx1qtS7ErfXuO6mODeInarWXB2Wt/0foKDks1t7Kjt4bEI68eP3wsUDKOZf/9eCFjGc79n/B+DBf/pMQsTDrBx5vFPMzU2pbSnASqVIYGlfVT5BxgsIhRRqha2UpFUj9j3Ghu/7fj4ccX82HRNG11CWLEQAu4tI02Cs2+dj4+NXpX7ZiArLatTLpdQEHCcpYampQ8ubX5P91QRcE8Vh1FcFaMQa30A1XimwOBTIggXhAvKC+KveH+DPviWF45ok5+O8R+bi/8b7u5/fAjgBbdKz8599w9HFuPl8pWlhJ6p21EBL73j/U6/f4TSDNE50lO5RXyNfdOimK3tnaWWxIpwtCsAABdpSURBVCDA1GkY+5tOGztnv3jON0CTF3u50rcoINbrFV0vcA9FFNs2RJV+j+dLylIZZKet0RVqmV/bbGe7fcusq6Oisyirv/8zAOq+4T3UB+z2PteN6kJZVurLC+vXv1HWFVQoS9hUT3k1siCKAix1KrtQNcB3vSBlQdRDzWDYy3JBeEXouKaO6ixmHfvS+NvT2YRRPBwn4cd1fQitngIh8+FRcPWpeDX/fXbo5jz9HQf88/gLIpnfQ9JnSkCmz+bTBzgaE2m0AZgH8omvJ4Ya79fzhx24NH98Pj4krSRt+GEqh7k/LsD8tOMkpzRQSLAcdIPj9fEey2iqnwDv+L5xzTVBx0kuyvN/GivE/JCYig8QrIf4ftjCRxWAcT2GksABPk9Vh6fjzWPP1+d5nGkMHMA9nsvv4x7Rcde8yOMjRtOGjhJFLSqdloLPhZ2XqjQKzOKzHq1JgcuqlFrY+88JU63VuFbhWpwlq2cKxuWyBljMrh/ucgCVrVOWleuLspWd1lus6zUr3K8LViIlJC6RooJ579WyralKRDlHdEnkAVsMYruoUJbopjNa5qo77eMOAuvrle1jZ9ves0FFOEftvgNOF1hVsvDjcGCi00kNACEl7l8i3o+2RaV/3msF2n60qNzv9wxMVvat0/bGku1bgSh6WApyqbRKyGe9XdEsutI6IiKdYgUb0d2RMr1cMI1sRknpKNGwEiOCapmxMYkiGG8t0q6zFV0nYrkhqadVkLUi2ZWld3CPVG3XMhfUiKCKFXQx6Dabf7TeIoQGIDGfVX7O3A3bmlbrAZROFzNfdwa2J+8fyazB8d7DvPnco/5Lp3g67nGOw/JmmaKEjM7MVk2bk7uD64ONEhFaalFWKSGjt6zUNebWvt3Y9zut3WjtDr2G028ZWbfC7ndAUBrqPfV54z4WEba9I7c7rAvWDXEhG6xx0YJJYfcAy1WzsUC+vwqYClt+71IK1DKzVkDqc5MNASLLprKEIDvgUhG5gL0gesF9RewaUVYg0ti/BaePBbN/HIV6vEM/cGQlP73StjjHfWtclytaCiK3jK4POgd429i//Tu2ved0LlAXZGiIZtHycNbqUhHVExAKxzXUAdYEY/H4sMsDO8jxj9DGTrve328ReQW89eg06BwUIXPKsjA7SSa4m9O+Bx7obY8udYlJBiLp2x1vAcrrcsU+3un3jxlBXb/+jfL2lfr2hl4u9ATYcok5o/WSMlmO+x4/J5pZBEot4mFJxQrsmdewlADpfctGMukwqhyQBAilinJgspNUmGeg0dxDHuscgOHAF594nI+AduCLR5jyMP5MueQPAesUhp2lmWOpnCOsj4B1ANUBGc/i9MfzD991fNLnU5/Ab4LVE+Actnv4zgeD9PBJdaD2RP/Hxc9mAPlvI3mHn8LcM8riBzA/zi4ByQytn77j2Dsy/dpadKI4Uxpad1qT8O49v8FxiTg6nJw8x/MLUi7lALMyz3mehAfVQCz11uSIdMeeKISwmx7e1NkOSPYgJrqWKUbL9ph7vyPsqBpaAvQrTh+tWZuyXirvP8XVDy6lq7JbiIBDXDEzy4LzvG9rmdxJkwp6p8tOd6FLiNYPw+YaYK1KZ982bN+plzIlncIJzrlSOFJUKie2h4STMn2P4Z1kxSkVeVm533dKVepakxuVszuzC2V4ug5aCmUYV5EAv0WwnEdm/jCnrUfHsuj+GcfWIe1zjxZ/tdoR+VSd4unaG/u+c8F5/eUL8rpitUQnKkivfTCUBKWEg5hC4cvrNTrNeUd8n5WwEXSOv/duKfqf8zpI1MgpqhKANVq0iuxZbZwRizS8jkzaxjk4OTQ60Uj7mRnaSsjRAb123Hw2Y/jxwydNZdrIIbj/ndc+Dvn0m9Nxxm7xv+F7+fk406LP3/F5+vDwCGFMh94fQwsqERUNPegFLVGtrUs6ycvK0u7s+4XW7rS20duOTUmgBfEF9zvdN+62Uzj0dF07uzv9fst2xp0i0HvKGaFoWdiasVYNpReXo1q7KGU0hympS6kaDmIZ2bGcd1NbW0AKQy4QvYK8gLxg/gK+gBfk4Z6MjS1gxMH3mw89vvZfaih4nTSMfTPaalhLLO5h6kY9x/br/+L+j/+XQke1UOqCcg0aEqDlFXQNKaZlzbiNHy2kU7c2BO3HjU77kvS1Rwxk6cR46rrGFd7vH9iQu7IGbT+yxh+AhQSim0HRcH6H0oHlPHbCtlpHXWZwSFrD206/3dDdsOUSMb9lfL7R9ju+Fy5vb+haoVZkDSdG6iXnkyHecNtwP2WJtIIGjUpIQKnpPOQQDf67SAPZIZvhnGWYohVw3qRiaBWKjeYKegq2jvn4W3B6BBVPuC3f4zNo6OD6XSv0Z7P5L1ACHnl6g+h+gNZcXHNWDF6ETlTO/A1Hp6UYMsRYT9HT8+8HsPoQBR3/P+Kh01wKydET1AOQ2unijb/P0dtzWmd6YhwXenSmiuNnswGPD5tnNSKk+Z+Z07ux73u005xalhFdbV0wSwK0fN6MBgg9g9bfbkbuhvcWFIOTlqu7xCQjKAEDtE5QrmGg53X1Y5OMFwSYFRriDdhRGjVfc2s7bf+GFuf1eolWpB4SYRDephaiP/RPGG03nAUzuG2x4Wm7sWDUmh6wGew29fD8tlMsmiDEvZLUQI3FraXGbHNYRPnYG67K6Mzn00mI1RGpT59R1hjxO6K06Sfgx9R2YFH0stA+WnDkTm2HvafUjxltb/gtwcEoGGyjf3QakORqTg4t2XK4W957iyKsPIHeHW/OrXdKFepa6arT+F5EUDf2+51r+Yq+vUYB2kmnlR7Rdq2C1uR6jYtE9P4WATWHLBKAftJZLpSyREo22wk/wDVp+bOD3nG759+5QVFydzwoGXHcBBUexXFxuywjBjp1E7tFRuWnRVjPAOXBKgwrd3a/5dNzfwRG/3cCcHkAnY9jBCDkoVuY5qlHZiOoZKgc2V3LRi7F6L3jrqgr2nP9LSu9rZR2pbctfvZ9alhau2PtA+833O/AhmuNDR1w3THZMXP2tlExiji/voe8kWjUIgQloPBSFpa6BGkdwr5qoaggSzg4Khqp2TooL5lqHQENleBX5jmIXkFecV4TsK5RGPgHFX5BuTs3ExjX/TvAYexRPyHC6qNFMoU9HextE27vO8V/peo3Cs5aFPa45v32j2gYUHyCLvxYtFJCqN9H0aVkRlCPeR8SYIE5xiURWU7gKeoRIlJgBOu/HwnLWjBvtPsHulwQW0K4fziNPoJO/Zjv5ZDRs9YiWzM6wZk9tIr3blhz3JS9Nbop5XKdHNTuRsWR3rB2Z/nlF7i+PdSbHM1gK9mecQJ0KRfQwij+mgXD4wsOCU5a6MB6w7whfshTjax5SKlFYXJdF4pkZsB0ym+NQII/mCEP2tbYrzJYdw6UzPuR2rl/FGn9vfGnrVllxp1PCyAxqavHHDmnq8fEkbHFRFTPT4bVx/8HjvXje49CKGGgSX4LVudGfzLTIgdHNT/NPQSoLVP+wykbQNXm4eV8eKZgvzPPQwjvGUAl+IFxDEkWzXHtZWywD2D7+Ao2Ir4+gEou0M97U16R8f9JTB9A3R1ckhNUcWlzg4iiqki5je4wbnIIL5P7d1IBHkL2EEAixDzBt4iGyc6aLUbvkl1futGyqxHep8i2WceaUMuPN5wArSn3d0PXhqYAc/VGWfJeN4/v1zqSGqO2bbRtp2+hIIDEZmo9uEzi2TLQx/OftgobRVaWhSCOyMIZ90Sv7byXIxLpPjldZhYV/ovSVPjYNrZto2a2uqtivVO6Bjf0fp4X4K1DKdFbujh97/RmMyJhzSYAPqtVjC+iVHbvtO4sJUC6LhXWQfCv6KVGatSMSgCJ0VxBesPuTtt2tEPVgtZ6VAVLpKujKDEj/ln+W1NhQmsUzUgp0Yd9hqeHE2m4b7FG5Y7oHSk7UhJYMCguh22IlRzvL9kExM3Ddg2d15yrYpFylJ8EWPVA2CdneHx9f/yZy0snIP+vA9PvgdBjDDB03q8+vyJ+fYJN06H3dPTTKI7HNUFFNzTbdYpXxEbXowWtK9U6Zg3rjb7fD9H1faPvV2z/ALuD3TMaFevXZEPkjvEOBm7R8WrbYvLebg3oiDpVhEutrNclus0BXSSaqEihlpVaKlKiqHCqbEw6UG6SM/U67s0CvACvYJdwqil/uG/7KcMZl1FOgZJhs4cz5w+v/ZGjW8/Ax1FTdb8Ll7KwlU7j7yxSqOuKZiZOxVnXQqmKLzXu8eWCXoKPLusSLbBVGA2JHI920vGKA6OcnadzevqUDZiA60wF66HV221HuYTN33d8nGNdQVMT16OWxinH5O+N3tqsFYiggk2bHmokoQvbbEdN0LJCUl1YV+S6ImtN3XpB6mU6OfR7gGULEK21IGVhdPJCskiPsT+1DNAf9tKsT6wx6e2psBCPGpG12mGCVp3tsEl+eTicp/k3LnE2UFKTWQw/HidfNykDLgkRD9TkIzb3hzPsP4xvn+M5nuM5nuM5nuM5nuM5fuz44wirH970RL6SqWMZXXxgtE6MkekQHyH6z2lsYRQLeEZazn769JEeIqv+gObDqYzojLkkU2MUGpDdRXxGUSKSdEg2WXoaRwLfsmtRFr7kc4OTPM5wpAhLiXRQHzxC6zM9BEN+K7yRSFbI+YOxQYt9iJZ8uvQjuit68hxH5ILpqbh1TCLioBodpyBC+C49f8uMrk5dNTmKzUYB25GThVEd4d7QoQbhzppp01pqVEJapzVjNQvi93S5gs+j51TWDxx9L3x8ONKNL8lB/bdfLlTbMrXTs+tTo9+DMrB/vLN/3EPqSDKlX6MLGgDmETmQcGpXKSzXQlkyzX/37BYy+i4r52gUhMepOCrHnI5rduJnxs0PSS0R7vd9yotoEYqXSEHhiDl7nxMK6ZluNRCt+B4Rq6GjOqKpIcOS1fZ2kjNTjUiXgCwLel15+frG8jpoEY6VWMO3bedyb6yXgmZFa6mGlh2rhW6NbiCtz37xKlEkFnJp0V5QpGNiWEbvpZRIs0pe+QiTco6eiFlkAXQD2ZHSZoR1pMTCmJwKGmdyIa1OSU6z64z4AlGVy1nX9ceOKHJ8jHPG3w+98uYanUMeX83I3vyHRmR9Ju/ze8G6B9v1O8eQ+CYjk3Cc4/jfYcsOmxHz0TWyH+5R0ImPudcRi37u2jtunbpejq5J1uj7G7Z94HsUuljfZjtp8zvOB6IXtLygvoPt9Kzmvm1BZVmq0hYPLd9ubJmBoUTqvlZhoeQ8yU1iFD1qcsil4FJBlmh/KWOXWoELcMVZ8jue6xO+c6nz2sQBjv0kV0te6+OxiF1/ry7kv3fc7jeEsFslUy4NB11xX5HySimOiFFmBbvA+pXycsGXqHYv6ytcgr8Ze5ehPjSV0laO6ePnua7Hj+t3VMEOfVw3sLT77f0d2Tt13KsSRV6j0BVpQU+RNdL7Yli/MU/Cok07I5vZMzuZ7x/F51ILpVTK9YXy+pXl6y8A1JcVxHBNzYO+U7pRSraWXV5AN6y9Y+0jvn5q+QKTTigjDZO6+JPzL7FhaXLDSQWbuCLD8J8KWdkJytUoriezy2Xa1DkOkeXsjBm1AUPXWjLUbj0zkoO3/kCTy0P8hczAHwLWwRx7OO4QMp5Z7GF8PlECOKQmPmuujiX1KesdzyQ99txq9XNKfchiHXBPTp+X5+jMHuEBVn1+ztyckodhMyuYgDULPc5KA+fhxMZeKIzqw1LqBLw9DWh8kh8Ug5E1UlAVNHl0dv6e5+v8cAPP1zD/dhKcNMwKYmVK/7hogtT8TQLWAeqz5aEn5zJoG4bNoqzUEe07Wi03S597/lIKS11pLZMFHlW0h6xNkLx/kgwrbau0rSPLyuWSm4Xv4eCUGpxeb+z3nduvvwJw//VXyIr0osK6LEi/0bexaIPcLrWgtUw/zYaToCBEO0oZbs+QcJv3vmTWMwCzyrEXxTkOB4KYAwV277PK/0LQFPre6C02h94PYCxO8P8KbB8bPTmvNritEPOmD67VQKv5fpHYcEphfb1SX68sX164vgVouCzx/ZpCc0kZLNDU3733nWW9sq4Vsw3zUAmYbU97gw5D9N+so7onLSAvRNWjcvKkFzg5WzbWuaXe6ga6IzqcNUjdOoaeMKes7LGq0ralkR+g2iQtyk8CrNX3CAZwSN0NpZHjjB6LQGFs3uNeetq3MbnO9viPx7lJivzmU8bHf7ZP891MOhdjn8i03/h0j8fyFp0+QTMt6EFxcktepB3nYgEG3DqJDpidBaxjvWH9C94btt+iOrsFYG3thvV36O+I3VHfQnqtJ3Cho77RaHRf6Fa4N6GlAL01R4pjewdtVARdhKXIBKxSKi4LLgsiC12vmL6iZPrXL+ChDgCVx+K1719N5fOlHioSOa85O8TDEf6t0sB/95CibLc72/s/qbmYrquzaKf+7YV1/T8p5R3h26T56HIJVYDrNdRYaolrOeaP9eBfSvDMsSjInM0A0sGfaX4tCAv4enBIB4fficd6wz6+waxtMFQKennDlgUpGjJXuY9rWeJzSVAl4O2waWO9aDq6UVjrwW3N50ULuhTKsiKXK1wqks1W6ssby7qABGCNhkg9Am+AyBpKKmtQJsz3lMdK6S8EVY2iUV2IphrbASZVKOuVoRpzhL/OMyc4rsIW9tSTGjBB77A+R97+/G5BEk9ksMWj6Hm2lVcLdYikAB0BguMI51+/N/6k6Oo77z40G5IUfJidvDrMyOpjx4DjEDK+IilJxfQaQ04iDN7Befj0EYyHj8V+VKDF644uNp5R1uP7aEZdBJkqbn7SbXPICM35E2QCy9jMgoCvFlGu0zvDofHjEoyDzEXq4az3FsAVlwR2ucB8SGglaJxT4xNgPW3cPvoYzwYOlhHVzii84mT8Qz0ggK15yLsoh1yIO3TviHWK7WGATizrSy20ZQUzSnKdNQF03Me49/0nIdZ9K2x3o19k2B2sgJpkL+jYeO7f3vn293/E87cPqlgI/5cShQBeGc59UUWq4FWiADN53JMXnFI2KsMcJOqyw1mZ+7wN7tXgM8cLzEPXke7sHzvtY4+NcQoVx2dYN0adqBdmJDs6ksXc761Np2ZsAEV1Om/mURRI99kcQVSotQR3bFV2Me7euGTRVKmFmsUpqgomwRnPiMpSsle2K8oSKgGSACNOMCpwe8ytiJzsYYkmLy2iV+HZ8R0zNC5mHo8N5M4g0obGcUSu5op5rL6Kx7LT3iisHMt49EH/WYDV27ej081wolMCaqiupHk4fSVnAJlZVf5YFcG5dOOwWI/f8fE7HxvQfJ4wblMb5sG+59F9FOWOreJkt9IJkRE95yQpKHM1zPkefP/BgzNcbS4iS8A6RBOV+LdbD93LFmB0RGCjSOuDvr9j7T25gXfc9jx+8PXN7txE+WaVbsLomGS2s5YFs8relI6hLnSp1FwflVQB0BdE30Dixz26aWFvwCvCyoyIjSKDcQl5vAfip+i/DwA26kQ+bbDfC378oPHl6y/wZjgNS/nDvr1z2z74dgtZKF0apWxoVqnL8oL7DusLcnkB6fT9Hc/3aymp6MK0swJMo8yOk7KKKOIlIONQZYDkokrY/Lbj7/9EtoZkYVhU1ReoRJHocsVqQbPbiZbMaO0NWUo6zxJOP0REFcDDDpv3CLDGV0DUqJclukYqoI6r0VNxx+i414CDqojUWDfDDilEJ7BCKZoOmuNDGqxvuG2YSQYROyLt0K0mitRmlHSCw5Oz5CBDfUUywqr9UHHB5jqYN+FUNxRLP7PczsRuk1WvMgHrsMVnW3MUnf/xxJW/EoZ9jud4jud4jud4jud4juf4WeNZdPUcz/Ecz/Ecz/Ecz/Ec/9LjCVif4zme4zme4zme4zme4196PAHrczzHczzHczzHczzHc/xLjydgfY7neI7neI7neI7neI5/6fEErM/xHM/xHM/xHM/xHM/xLz2egPU5nuM5nuM5nuM5nuM5/qXH/w9shugyFZ2GyAAAAABJRU5ErkJggg==","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["bears = bears.new(item_tfms=Resize(128), batch_tfms=aug_transforms(mult=2))\n","dls = bears.dataloaders(path)\n","dls.train.show_batch(max_n=8, nrows=2, unique=True)"]},{"cell_type":"markdown","metadata":{"id":"IYaG1G3Y1Xsk"},"source":["Now that we have assembled our data in a format fit for model training, let's actually train an image classifier using it."]},{"cell_type":"markdown","metadata":{"id":"ie8RQDcp1Xsl"},"source":["## Training Your Model, and Using It to Clean Your Data"]},{"cell_type":"markdown","metadata":{"id":"QJNeTqYD1Xsl"},"source":["Time to use the same lines of code as in <> to train our bear classifier.\n","\n","We don't have a lot of data for our problem (150 pictures of each sort of bear at most), so to train our model, we'll use `RandomResizedCrop` with an image size of 224 px, which is fairly standard for image classification, and default `aug_transforms`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"G4FQT1Vj1Xsl"},"outputs":[],"source":["bears = bears.new(\n"," item_tfms=RandomResizedCrop(224, min_scale=0.5),\n"," batch_tfms=aug_transforms())\n","dls = bears.dataloaders(path)"]},{"cell_type":"markdown","metadata":{"id":"D0r1eApX1Xsm"},"source":["We can now create our `Learner` and fine-tune it in the usual way:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nHKZ_eYj1Xsm","outputId":"0ef6275a-c6eb-4fe6-cf1d-a0ea778d5fe1"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
01.2357330.2125410.08730200:05
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.2133710.1124500.02381000:05
10.1738550.0723060.02381000:06
20.1470960.0390680.01587300:06
30.1239840.0268010.01587300:06
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet18, metrics=error_rate)\n","learn.fine_tune(4)"]},{"cell_type":"markdown","metadata":{"id":"8_tSV8rk1Xsn"},"source":["Now let's see whether the mistakes the model is making are mainly thinking that grizzlies are teddies (that would be bad for safety!), or that grizzlies are black bears, or something else. To visualize this, we can create a *confusion matrix*:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eDFgNUL61Xsn","outputId":"8eda47a2-f095-4d6c-c5b2-d05dc5c4409f"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAARYAAAEmCAYAAACnN7/iAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAdKElEQVR4nO3dd5xV9Z3G8c8DI0iNKFgYVAQFBIMoEI2C2KKiYCyxRwO2ta0xrhrXtprqBlOMbhJb7BKjWSP2thqxhWIhxqigSAQ0gokFRFH87h/nXLwM04Afc+4wz/v1ui/u+Z32vYeZZ36nXkUEZmYptSq6ADNb8zhYzCw5B4uZJedgMbPkHCxmlpyDxcySc7BYo0lqJ+kuSe9Lum0VlnOEpAdT1lYUScMlvVJ0HZVGvo5lzSPpcOB0oB/wIfA88MOIeGIVl3sk8O/ADhHx2SoXWuEkBbBFRMwoupbmxj2WNYyk04FfAD8CNgA2AX4FfD3B4jcFXm0JodIYkqqKrqFiRYRfa8gL+BKwADionmnakgXP3Pz1C6BtPm5nYDbwH8A7wFvA2HzcRcBi4NN8HccAFwI3lS27JxBAVT48BnidrNc0EziirP2Jsvl2ACYD7+f/7lA27jHg+8CT+XIeBLrW8dlK9Z9VVv9+wN7Aq8A/gXPKpv8K8DTwXj7t5UCbfNzj+WdZmH/eQ8qW/13gbeDGUls+T+98Hdvmw92B+cDORf9sNPnPYtEF+JXwPxP2Aj4r/WLXMc33gGeA9YFuwFPA9/NxO+fzfw9YK/+F/Ajoko+vGSR1BgvQAfgA6JuP2wgYkL9fGizAusC/gCPz+Q7Lh9fLxz8GvAb0AdrlwxfX8dlK9V+Q138cMA+4BegEDAA+Bnrl0w8Gts/X2xP4G3Ba2fIC2LyW5f83WUC3Kw+WfJrj8uW0Bx4ALin656KIl3eF1izrAfOj/l2VI4DvRcQ7ETGPrCdyZNn4T/Pxn0bEvWR/rfuuZD2fA1tJahcRb0XEX2uZZh9gekTcGBGfRcR44GVgdNk010bEqxGxCPg9MKiedX5KdjzpU+B3QFfg0oj4MF//X4GBABExNSKeydf7BnAFMKIRn+m/IuKTvJ5lRMRVwHTgz2Rhem4Dy1sjOVjWLO8CXRvY9+8OzCobnpW3LV1GjWD6COi4ooVExEKy3YcTgLck3SOpXyPqKdVUXTb89grU825ELMnfl37x/1E2flFpfkl9JN0t6W1JH5Adl+paz7IB5kXExw1McxWwFXBZRHzSwLRrJAfLmuVpsq7+fvVMM5fsIGzJJnnbylhI1uUv2bB8ZEQ8EBFfI/vL/TLZL1xD9ZRqmrOSNa2IX5PVtUVEdAbOAdTAPPWeRpXUkey41TXAhZLWTVFoc+NgWYNExPtkxxf+R9J+ktpLWkvSSEk/yScbD5wnqZukrvn0N63kKp8HdpK0iaQvAf9ZGiFpA0n7SuoAfEK2S7WklmXcC/SRdLikKkmHAP2Bu1eyphXRiew40IK8N3VijfH/AHqt4DIvBaZGxLHAPcBvVrnKZsjBsoaJiJ+RXcNyHtmByzeBU4A/5pP8AJgCTAP+Ajybt63Muh4Cbs2XNZVlw6AV2dmluWRnSkYAJ9WyjHeBUfm075Kd0RkVEfNXpqYVdAZwONnZpqvIPku5C4HrJb0n6eCGFibp62QH0E/Im04HtpV0RLKKmwlfIGdmybnHYmbJOVjMLDkHi5kl52Axs+Ra5E1Uatsp1H69osuoOIN6NXRtWMvV0MUtLdWsWW8wf/785TZPywyW9uvRdpfziy6j4jw+fmzRJVSsqtbu3Ndmx+2G1NrurWVmyTlYzCw5B4uZJedgMbPkHCxmlpyDxcySc7CYWXIOFjNLzsFiZsk5WMwsOQeLmSXnYDGz5BwsZpacg8XMknOwmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+QcLGaWnIPFzJJzsJhZcg4WM0vOwWJmyTlYzCw5B4uZJedgMbPkHCxmlpyDpYm1aiWevmQ//nDO1wA4YeSWvPg/B7Hof49hvU5tC66ueCcefwybbbwhX9l2YNGlVJwHH7ifgQP6MqDf5oz7ycVFl1OvJg8WST0lvVhL+2OShqzE8sZIujxNdavfKfsM4JXZ7y0dfvrld9j7wvuY9c6HBVZVOY448lvcMeHeosuoOEuWLOG0U0/mzrvu47lpL3Hb78bzt5deKrqsOrnH0oSq12vPXoM35tqHX1na9sLMd/n7vAUFVlVZhg3fiS5d1i26jIozedIkevfenM169aJNmzYcdMih3H3XnUWXVaeigqVK0vWSpkm6XVL78pGSfi1piqS/SrqorH2opKckvSBpkqRONebbR9LTkro21QdZEeOO3p5zb5jE5xFFl2LNzNy5c+jRY+Olw9XVPZgzZ06BFdWvqGDpC1wZEQOBD4CTaow/NyKGAAOBEZIGSmoD3Ap8OyK2BnYHFpVmkLQ/cDawd0TMb4oPsSJGDt6Yd97/mOdef7foUqwZilr+GEkqoJLGqSpovW9GxJP5+5uAU2uMP1jS8WT1bQT0BwJ4KyImA0TEB7B04+4CDAH2KLXXlC/veADaNX1X+6v9NmDU0E3Ya9setF2rNZ3bt+G33x7B0Zf+qclrseanuroHs2e/uXR4zpzZdO/evcCK6ldUsNSM36XDkjYDzgCGRsS/JF0HrA2olvlKXgd6AX2AKbWuMOJK4EqAVl16Nvm+yAU3T+GCm7PShg/YkNO+/mWHijXakKFDmTFjOm/MnEn36mpuu/V3XHfjLUWXVaeidoU2kfTV/P1hwBNl4zoDC4H3JW0AjMzbXwa6SxoKIKmTpFIwzgIOAG6QNGC1V5/QSXv3Z8ZVh1K9Xgcm/3x/fnXSsKJLKtTYIw9nt513ZPqrr9C39yZcf+01RZdUEaqqqvj5pZczep89GfTlLTnwoIPpP6Byf9RV277bal2h1BO4F3gc2AGYDhyZt50REVPyXsp2ZD2RT4AJEXFdHiqXAe3Ijq/sDnwDGBIRp0jaBrgZGB0Rr9VVQ6suPaPtLuevng/YjM0bP7boEipWVWufQK3NjtsNYerUKcsd7GnyXaGIeIPsmElNO5dNM6aOeScD29dovi5/ERHP1bFsM2tCjmEzS87BYmbJOVjMLDkHi5kl52Axs+QcLGaWnIPFzJJzsJhZcg4WM0vOwWJmyTlYzCw5B4uZJedgMbPkHCxmlpyDxcySc7CYWXIOFjNLzsFiZsk5WMwsOQeLmSXnYDGz5BwsZpacg8XMknOwmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+Sqii6gCIN6deXx8WOLLqPidNv+1KJLqFj/mnx50SU0K+6xmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+QcLGaWnIPFzJJzsJhZcg4WM0vOwWJmyTlYzCw5B4uZJedgMbPkHCxmlpyDxcySc7CYWXIOFjNLzsFiZsk5WMwsOQeLmSXnYDGz5BwsZpZcnd8rJOkuIOoaHxH7rpaKzKzZq+8Lyy5psirMbI1SZ7BExJ+ashAzW3M0+BWrkrYAfgz0B9YutUdEr9VYl5k1Y405eHst8GvgM2AX4AbgxtVZlJk1b40JlnYR8QigiJgVERcCu67essysOWtwVwj4WFIrYLqkU4A5wPqrtywza84a02M5DWgPnAoMBo4EvrU6izKz5q3BHktETM7fLgDGrt5yWo4Tjz+G+++7h27d1mfSs9OKLqdwrVqJJ28+i7nvvM+B3/4ND19zGh07ZOcK1l+3E1NefIODT7+q4CqL9eAD93PG6d9myZIljDn6WM486+yiS6pTY84KPUotF8pFRJLjLJJOAD6KiBtWYJ4xwJCIOCVFDUU44shv8W8nnszxx4wpupSKcMrhu/DKzH/QKQ+T3Y/5xdJx4y85lrsea9nhu2TJEk479WTuue8hqnv0YNj2Qxk1al+27N+/6NJq1ZhdoTOAM/PX+cDzwJQUK5dUFRG/WZFQWVMMG74TXbqsW3QZFaF6/XXYa9gArr3jqeXGdWzflhFD+3DXoy07WCZPmkTv3puzWa9etGnThoMOOZS777qz6LLq1Jhdoak1mp6U1KiL5ySdDxwBvAnMB6YCo4CngB2BCZI6ke1m3QLcWzb7l4FeQPnW6wvsVbb8TsA0oE9EfCqpcz68RUR82pgarXjjzjyQcy/9Ix3br73cuH133ZrHJr3Chws/LqCyyjF37hx69Nh46XB1dQ8mTfpzgRXVr8Eei6R1y15dJe0JbNiI+YYABwLbAAcAQ8pGrxMRIyLip6WGiJgbEYMiYhBwFfCH/PR2qe18sp7SU2XzfAg8BuyTNx2az7dcqEg6XtIUSVPmz5vXUPnWREYO34p3/vkhz/3tzVrHH7zXYH5/f82/bS1PxPK37UkqoJLGaczp5qlkx1hEdpHcTOCYRsw3DLgzIhbB0psaS26tayZJOwLHAsPL2rYAxgG75j2T8lmuBs4C/kh2cPm42pYbEVcCVwJsO3hInTdXWtP66qBejBrxZfYaNoC2bdaic4e1+e0PjuLo825g3S91YMiAnhzSwg/aQtZDmT37i/CdM2c23bt3L7Ci+jUmWLaMiGX6oZLaNmK++uJ0Ya0zSBsB1wD7RsSCvK0D8HvguIiYW3OeiHhSUk9JI4DWEfFiI2qzCnHBZRO44LIJAAwfvAWnHbUbR5+XHXI74GvbcN/EF/lk8WdFllgRhgwdyowZ03lj5ky6V1dz262/47obbym6rDo15uDt8kfU4OlGzPcEMFrS2pI68sXuSq0krUUWIN+NiFfLRl0LXBsRE+uZ/QZgfD5tszD2yMPZbecdmf7qK/TtvQnXX3tN0SVVnIP2HMzv709ynqDZq6qq4ueXXs7offZk0Je35MCDDqb/gAFFl1Wn+p7HsiFQDbSTtA1f9EA6k10wV6+ImCxpAvACMIvs+Mj79cyyAzAUuEjSRXnb14FvAH0kHZ23HVvLvDcDPyALl2bh2gr+a1OUiVOnM3Hq9KXDex53aYHVVJ69Ru7NXiP3LrqMRqlvV2hPYAzQA/gpXwTLB8A5jVz+JRFxoaT2wOPATyNimR3m/N6jkuVPC9Teq5oCXFc2PAy4PSLea2RdZrYa1fc8luuB6yUdGBF/WMnlXymp9LiF6yPi2ZVcTp0kXQaMBJpHlJu1AI05eDtY0iOl3oCkLsB/RMR5Dc0YEYevaoGNWMe/r+51mNmKaczB25HluxgR8S/cOzCzejQmWFqXn16W1A5ozOlmM2uhGrMrdBPwiKTSqdyxwPWrryQza+4ac6/QTyRNA3YnOzN0P7Dp6i7MzJqvxn5h2dvA52T3/uwG/G21VWRmzV59F8j1Ibup7zDgXbL7exQRuzRRbWbWTNW3K/QyMBEYHREzACR9p0mqMrNmrb5doQPJdoEelXSVpN2o/8ZCMzOgnmCJiDsi4hCgH9kzT74DbCDp15L2aKL6zKwZavDgbUQsjIibI2IU2X1DzwOV+xRfMytcY88KARAR/4yIK1I9SNvM1kwrFCxmZo3hYDGz5BwsZpacg8XMknOwmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+QcLGaWnIPFzJJzsJhZcg4WM0vOwWJmyTXme4XWOAKqWjtTa/rX5MuLLqFi9fnOhKJLqEhvv/lere3+7TKz5BwsZpacg8XMknOwmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+QcLGaWnIPFzJJzsJhZcg4WM0vOwWJmyTlYzCw5B4uZJedgMbPkHCxmlpyDxcySc7CYWXIOFjNLzsFiZsk5WMwsOQeLmSXnYDGz5BwsZpacg8XMknOwmFlyDhYzS87BYmbJOVjMLDkHS0EefOB+Bg7oy4B+mzPuJxcXXU5F8bbJtK1qxYQzhnP/2SN4+JydOX3vvkvHnTmqH4+dvyuPnLsLY0dsVmCVtatqipVIWgc4PCJ+tQLzXAgsiIhLarT3BO6OiK1S1tiUlixZwmmnnsw99z1EdY8eDNt+KKNG7cuW/fsXXVrhvG2+8Mlnn3PoL5/io8VLqGol/vCdYTz60jtsvkFHundpxy4/+D8iYL2ObYoudTlN1WNZBzipidZV8SZPmkTv3puzWa9etGnThoMOOZS777qz6LIqgrfNsj5avASAqtatqGotIoIjh/fkF/e9SkQ2zbsLFhdYYe2aKlguBnpLel7SOElnSposaZqki0oTSTpX0iuSHgb6lrUPlvSCpKeBk8vaJ0oaVDb8pKSBTfSZVtrcuXPo0WPjpcPV1T2YM2dOgRVVDm+bZbUS3PfdETz34z154uV5PD/rPTbt2oHR23bn7jN34voTt6Nntw5Fl7mcpgqWs4HXImIQ8BCwBfAVYBAwWNJOkgYDhwLbAAcAQ8vmvxY4NSK+WmO5VwNjACT1AdpGxLTaCpB0vKQpkqbMmz8v3SdbCVH6U1NGUgGVVB5vm2V9HjDyv//Educ/yNabdqHPRp1oU9WKTz77nFHjHmf8U3/nkiMGNbygJlbEwds98tdzwLNAP7KgGQ7cEREfRcQHwAQASV8C1omIP+Xz31i2rNuAUZLWAo4GrqtrpRFxZUQMiYgh3bp2S/yRVkx1dQ9mz35z6fCcObPp3r17gRVVDm+b2n2w6DOemTGfnbdcn7feW8R9z88F4P4X3qJf984FV7e8IoJFwI8jYlD+2jwirsnHLf/nKpu+tnYi4iOyHtDXgYOBW1ZHwakNGTqUGTOm88bMmSxevJjbbv0d+4zat+iyKoK3zRfW7diGzu2y8ytt12rFsL7deO0fC3hw2tvs0KcrANtvvh4z31lQZJm1apKzQsCHQKf8/QPA9yXdHBELJFUDnwKPA9dJujivazRwRUS8J+l9ScMi4gngiBrLvhq4C5gYEf9skk+ziqqqqvj5pZczep89WbJkCd8aczT9BwwouqyK4G3zhfU7r83PvrkNrVuJVoK7n5vLI3/9B5Nff5dLvzWYY3fpzcJPPuOs8S8UXepyVNs+7WpZkXQLMBC4D5gNHJuPWgB8MyJek3QucBQwK5/mpYi4JD/+8lvgI7Jg+kb56WZJLwOnRcT9jall8OAh8eSfpyT6ZNYS9PnOhKJLqEhv33o6i9+ZsdxBsKbqsRARh9dourSWaX4I/LCW9qnA1mVNF5beSOpOtkv3YJJCzWyVNesrbyUdBfwZODciPi+6HjPLNFmPZXWIiBuAG4quw8yW1ax7LGZWmRwsZpacg8XMknOwmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+QcLGaWnIPFzJJzsJhZcg4WM0vOwWJmyTlYzCw5B4uZJedgMbPkHCxmlpyDxcySc7CYWXIOFjNLzsFiZsk5WMwsOQeLmSXnYDGz5BwsZpacg8XMklNEFF1Dk5M0D5hVdB25rsD8oouoQN4utau07bJpRHSr2dgig6WSSJoSEUOKrqPSeLvUrrlsF+8KmVlyDhYzS87BUrwriy6gQnm71K5ZbBcfYzGz5NxjMbPkHCxmlpyDxcySc7CYWXIOlgJIWreWts2KqKWSSGpddA2VSNJWRdewohwsxbhLUufSgKT+wF0F1lMpZkgal28P+8JvJE2SdJKkdYoupjEcLMX4EVm4dJQ0GLgN+GbBNVWCgcCrwNWSnpF0fHkAt1QRMQw4AtgYmCLpFklfK7isevk6loJI2g84C+gEHBAR0wsuqaJI2gkYD6wD3A58PyJmFFtVsfJdxf2AXwIfAALOiYj/LbSwWjhYmpCky4DyDb4r8DrwBkBEnFpAWRUj/8XZBxgL9ARuBG4GhgM/iog+xVVXHEkDybbJPsBDwDUR8ayk7sDTEbFpoQXWoqroAlqYKTWGpxZSReWaDjwKjIuIp8rab897MC3V5cDVZL2TRaXGiJgr6bziyqqbeywFkNQB+DgiluTDrYG2EfFRsZUVS1LHiFhQdB226txjKcYjwO5A6ZeoHfAgsENhFRWofBdR0nLjW+ouoqS/sOyu8zIiYmATlrNCHCzFWLv8L3NELJDUvsiCClZzF9Eyo/J/T87/vTH/9wigonu3DpZiLJS0bUQ8C5Cfcl7UwDxrrIi4HkDScOCp0i5i3rZtYYUVLCJmAUjaMSJ2LBt1tqQnge8VU1nDfB1LMU4DbpM0UdJE4FbglIJrqgQPAP8naYOytquLKqaCdJA0rDQgaQegQ4H1NMg9lgJExGRJ/YC+ZNcivBwRnxZcViV4BRgHPCbpmPzM0PIHXVqeY4DfSvpSPvwecHSB9TTIwVKcvkB/YG1gG0lExA0F11S0iIi7Jb0C3Crpt9Rz8LKliIipwNb5VciKiPeLrqkhDpYCSPovYGeyYLkXGAk8AbT0YBFAREzPu/7XkV3m3yJJOr2OdgAi4mdNWtAK8DGWYnwD2A14OyLGAlsDbYstqSLsW3oTER9FxMFArwLrKVqn/DUEOBGozl8nkP1RqljusRRjUUR8LumzvHv7Di37F6jkdUm3A8eUXSz4R6BFnhmKiIsAJD0IbBsRH+bDF5LduFqx3GMpxpT89veryC7rfxaYVGxJFeFFYCIwUVLvvM0Hb2ETYHHZ8GKye6kqlnssBYiIk/K3v5F0P9A5IqYVWVOFiIj4laQXyB4r8V188BayC+MmSbqDbHvsT4Ufj/O9Qk2ooYu9ShfMtVSSnouIbfL3G5Fd3zMkIlryVcnA0p+d4fng4xHxXJH1NMTB0oQkPVo2WL7hRfbXetcmLqmiSNooIt4qG64CdoiIxwssqyLkZ8m2iIhrJXUDOkbEzKLrqouDpQCS2gEnAcPIAmYi8OuI+LjQwgoi6ZsRcVNdp1cr+bRqU8gvTxgC9I2IPvlzWG6rcZl/RfExlmJcT/YEsF/mw4eR7TMfXFhFxSpdnt6p0Coq1/7ANmQH+UvPYanobeVgKUbfiNi6bPjR/IBlixQRV+TPpPkgIn5edD0VaHFEhKTSoyUq+j4h8OnmojwnafvSgKTtgCcLrKdw+R3N+zY4Ycv0e0lXAOtIOg54mOxShYrlHksTKntwz1rAUZL+ng9vCrxUZG0V4ilJl5OdDVpYamzpZ8uAbmQPFP+A7B6zC8geFFaxfPC2CUmq96HHpedvtFRlZ81KP5Q+WwZIejYitq3RNs1PkDPAwdEId5OFSulq2wA+kDQoIp4vrqxiSDqR7OxhL0nlF1B2osJ3nd1jsYoh6Ray06oTyMJlH2Ay0I/s9OpPCiyvyeXPX+kC/Bg4u2zUhxHxz2KqahwHi1UMSQ8AB5aeByypI9mxhf2BqRFR0Xf02hd8VsgqSc2b7T4FNs2/S+eTYkqyleFjLFZJbgGekXRnPjwaGJ9ft+GzZs2Id4WsouTfWDCM7BjLExHhrwZphhwsZpacj7GYWXIOFjNLzsFiK03SEknPS3pR0m2r8jWxknaWdHf+fl9JZ9cz7TqSTqprfD3zXSjpjJWt0RrPwWKrYlFEDIqIrchOE59QPlKZFf4Zi4gJEXFxPZOsQ3ZFqlUoB4ulMhHYXFJPSX+T9Cuy54dsLGkPSU9Lejbv2XQEkLSXpJclPQEcUFqQpDH5zYhI2kDSHZJeyF87ABcDvfPe0rh8ujMlTZY0TdJFZcs6V9Irkh4mu4HPmoCDxVZZ/gjJkcBf8qa+wA3582sXAucBu+c30k0BTpe0Ntmt/6PJnuW6YR2L/yXwp/z5NdsCfyW7vP21vLd0pqQ9gC2ArwCDgMGSdspPXR9K9pCkA4ChiT+61cEXyNmqaCepdHPgROAaoDswKyKeydu3J/tyrSfzb/BrAzxNdv/PzIiYDiDpJuD4WtaxK3AULH1my/uSutSYZo/8VXrAdEeyoOkE3FH6jiJJE1bp01qjOVhsVSyKiEHlDXl4LCxvAh6KiMNqTDeIdF/tIeDHEXFFjXWclnAdtgK8K2Sr2zPAjpI2B5DUXlIf4GVgs7IvJjusjvkfIft6USS1zr858kOWfT7uA8DRZcduqiWtDzwO7C+pXf6M2NGJP5vVwcFiq1VEzAPGkN3zM40saPrl30hwPHBPfvC2rmfVfBvYJX/63lRgQES8S7Zr9aKkcRHxINl9Rk/n090OdMqfPHcr8DzwB7LdNWsCvqTfzJJzj8XMknOwmFlyDhYzS87BYmbJOVjMLDkHi5kl52Axs+T+Hyc5MzrgrYepAAAAAElFTkSuQmCC","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["interp = ClassificationInterpretation.from_learner(learn)\n","interp.plot_confusion_matrix()"]},{"cell_type":"markdown","metadata":{"id":"lXyti4ZO1Xso"},"source":["The rows represent all the black, grizzly, and teddy bears in our dataset, respectively. The columns represent the images which the model predicted as black, grizzly, and teddy bears, respectively. Therefore, the diagonal of the matrix shows the images which were classified correctly, and the off-diagonal cells represent those which were classified incorrectly. This is one of the many ways that fastai allows you to view the results of your model. It is (of course!) calculated using the validation set. With the color-coding, the goal is to have white everywhere except the diagonal, where we want dark blue. Our bear classifier isn't making many mistakes!\n","\n","It's helpful to see where exactly our errors are occurring, to see whether they're due to a dataset problem (e.g., images that aren't bears at all, or are labeled incorrectly, etc.), or a model problem (perhaps it isn't handling images taken with unusual lighting, or from a different angle, etc.). To do this, we can sort our images by their *loss*.\n","\n","The loss is a number that is higher if the model is incorrect (especially if it's also confident of its incorrect answer), or if it's correct, but not confident of its correct answer. In a couple of chapters we'll learn in depth how loss is calculated and used in the training process. For now, `plot_top_losses` shows us the images with the highest loss in our dataset. As the title of the output says, each image is labeled with four things: prediction, actual (target label), loss, and probability. The *probability* here is the confidence level, from zero to one, that the model has assigned to its prediction:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FIpEstS_1Xso","outputId":"5aeb395a-2d35-429d-d0d3-fa82cddffba4"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA14AAADgCAYAAAAT8LdqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydd7glR3Xgf6c63fTiRI3SKCMJlABbgIWEYcFgm2CCSSY4L7bZdWQd+MDGa3u92GZt47VZYzICk42JNiADJksCIQnlNKPJL97coc7+Uf00V5eXZvTezNNQv/n6e3eq6lafrj5dXafOqbqiqng8Ho/H4/F4PB6PZ/0wx1sAj8fj8Xg8Ho/H4znR8YaXx+PxeDwej8fj8awz3vDyeDwej8fj8Xg8nnXGG14ej8fj8Xg8Ho/Hs854w8vj8Xg8Ho/H4/F41hlveHk8Ho/H4/F4PB7POuMNL4/Hc8IjIloery//f9VA2lVrUP/by7rueah1neiIyD1lW739eMvycGEt20xEXjGg+zuPpNxieu7vp8fj8aweb3h5PJ5jgohcMzCQUxEpROR+Efm4iDz+GIszD3y9POZX+6VhA26AO8u6rl8zCRc/fyAih0Tkb4bS/2FAtr0iEh5F3Qv355o1E/jIZfiOiHy8/HzP8ZZnGBH59VJvt4rI64f0Wct781UReenxlnUNOMjhZ6S/TLnryzJ3LiR4Y8zj8XgW54hfzh6Px/MQSXGDtQR4JPATwI+JyBNU9RvDhUsjotA1/LV3Vb0OuHwN63sD8Ia1qm8ZnghsAj66kCAiVeCnB8psB34M+NdjIM+aUXpVLgL++vhKsizPBr6iqgdEZDD920AOnIvTq8tFZKuq/uVSFYlIrKrpukr7EFDVTwCfWEW55xwDcTwej+eEwHu8PB7PsWavql6uqpfiBrLgJoFePBjKVIY63Y0z1MYAROSFIvI1EWmXx+dF5AmDlYvIFSLybRHpicj1w/llmUVDDUXk0SLy0dJz0ReRe0XkdQvlB6p43WDI1RIhWIGI/KaI3FTWNV/K++Ql5HiFiPyriHRE5G4R+blF2u7ZwAzwHwNpzynbp8AZAACvXOSat4nI34vIfSKSisiBAe+SAleWRa8cDDFbIuRs56DcZdrpIvIpEdklIt3yuFFE/rsMWSlL8BzAAh9fRdmFa5oUkb8trykrr+lqETlr6LrfJSJ7yvtwQES+NOiVKj1ZN5c6NV/es7cNnWsT8AQGjN5B2VX1scDZQKdMe1n5vcH2e76IfEtEUuAZZf6PiMhnRGSulO9WEfl9EYkWv2R5rYjsK2V9r4iMDWT+Vqn70wPt8WEROXeJJrxARL5YPiu3i8hzBupabUjiA96tBb0ATi+zXz5Qx9MGPp8/8P2fLdO6IjK+1Hk8Ho/nRMAbXh6P53iy1IB8B/BWnNF1AEBEfhO4GvhhYC8wBTwJ+IKIPK4ssw34JHAxoDiv2idXJYgLd/wK8CxgFLgdqJbnWAhNXOB+Vg4t/AfgjcAFwK7yWp4EfFZEnr5I+bcAFwIZsBN4i4g8YqjMM4FPqGo+kLZgZH0GeFP5+SdFZPPAtW0q5f0l4FTgXqCN8zZS5jXLz01WF2I2zBacpw3ge7g2uxD4K+BVq/j+A96k1ZxMRCo4A/RXcPpyGzACvBD4moicUhb9O+CluHt6I84wejxwVVnPTwJ/CZyPa5dduPb/maFTPhMIWNzwepBoy+S9GzipPM+C0f8F4Kk4o/MenNfsj4F3LvL95wK/CcwBNeBFwP8byL8KZ/ztA24BJnEG7b+X7TXMPwNbcbp5NvABEXnUCte3HH2c3ix48g5xWJc+i3umAH524DvPK/9+TFVnH8K5PR6PZ8PjDS+Px3OsOUmc1+p64CNlWo4zqhaIgFep6nm4gWoG/GGZ96eqejZucPzZsuwflXmvAho4o+sJqnoBbqC6Gv4YiHGD2otV9ZHANuDXVfU6VR0MTfzH0mu3aJiViJzJ4cHlm0t5z8ANPE15rmH+BTgTuKL8v6E0Dso6Ly2veTDM8DTgR8v/vhP4EM6wiICXDNT9Kxz2QrxEVc9R1TOAxwCU13ZdmX9deW2Xq+rexa5vCe4AzlDVU1X1Mtx9+2KZ98LlvriCN2kpXoQLVQV4oapeCDwW5/nbDPx6mbfg7fmvqvpoVd2Ju69/M5T/OVW9oKxnjMPtusCzgRtV9U6+n4+IyDdwbVAt0xYznD4InKqq5+BCQf8Q5+3dBZxZ6vv/WrimRYygPnBuWe7/lGnPK/UN4DXARHkdj+KwIXwqrn2HeZOqPgI3OdDGGZa/tUi5VaGqe0tdWtCbTwzokgL/t0x/mYiEpbduwQP89qM9r8fj8Txc8IaXx+M51sQ4r9VFuAX8nwCuVNVBj1KXcia/HLBdANTLvN8tw5kKnKcADq/XWhio3l6u4wJ4/yrl+uHy70dU9XsL51bVo9kw4zEc9ny8t6yryeF1V5eISDD0nXeX13rzQNq2gc/PBnrApwfSXo7rx+dwHoMWh42XVwyUW7i2e1T1vQuJqnrtEVzTSmTA74gLz8xw9+eJZd6OFb67Wm/SII8t/6Y4gxNVvRG4oUx/TPl3IXTx7SJyp4h8Euf521Omf6as48niQky/gltnli2cSERqwH9ZRr5LSnly4GvAy5ZY3/U3qmpLWYuBa/i0qs6Un987UP4xPJhrBjyCC3otOM8iwGk4D/C8iFjg3wa+u9g9eH8py27gP8u0Ry5Sbq14G25iYCvO2/pMXH+wlwfL6vF4PCckfnMNj8dzrLm39Dosx4GFAWrJYPjWLThDY5A123hjHVitbLMAqpoPLIkavO5nA/+uqu2BtJeXfxvAvvJ7SZl2iYhcoqrf5qExKP+CsTi2SLk3AT9ffr4dmAbOwnmfho3MYZbzJh2JfIvx+zij4mk4o+JHgKcDL8B5Nm8UkQuBFwOX4sJU/yvwiyJyuap+q/xulaUNrzNU9Z5VyLrvKK9hMR4U0lh6vT6KM2SawLW4d/wlZZGV7sFq1uE9JFR1VkSuBn6uPIoy612lIerxeDwnNN7j5fF4Hg4srM0B+Dzw+IUQJpxn53UD5QDOFpGFAefzV3mOBY/bswc3IxCRiwfKdMu/dZbnWg4Ppl9S1jPC4TVV3z6SgaYc3vFvMMzwiTjDBtygeqw8BtfyLKz/Wri2nSLygoE6Bq9toX2Hr21wzdXC+RYLsVzwOn5WVc/FhUnev9j1DLIKb5IRkcrQEQDfLPMT3NonROSRuHYC+Fb59wnAf6jqq1X1R3FhlwAXicgmETkH59z8ozJ09AJcWwQc3nDk2cCuNfYQMnANTxeRifLziwfyvzVU/koR2VJ+ft5A+k04ozEu//+0crOP/8XyPB9ARHYAjyvTbly6+KpZSpcA3lz+fTqHQyHfsQbn9Hg8ng2PN7w8Hs+GR1U7HF7j9SrgfnE7Fh7AbeSwMFj9O9xaFQN8RURu4vBanpX4A1zI2Thwo4h8V0T2cXgtDThvG8CrReSbIvInS8h7J/BP5X9/RUTuAO4GzsFtovAHq5RpgcV2/FswqqaBSFVl4cBtTALwEhGJcYPde8u095c72N3JgzcHWbi2x4jIDSKyENL4daBVfr5aRL64hPwLIX5PFZFbceuWTl3Fta3kTboCZ/AOHj+DWxO4YCS8r7zX38AZTIdwm3oA/BkwJSJ3iMi1uE1PAHbj2u5K4A5xux5eh/s9qtrCNZVG3o8DH1vFtRwpr8OFJ54K3FW222sWrklVvztUvgLcXpZbWMP2QVW9C2d8LRjznxaR77Ky7v+GiHwP9ww1cDr2Fw/lgkoWdOmnRORaGdghsgzd/SruPiXAN1X15kXq8Hg8nhMOb3h5PJ6HBar65zjv0ddwO9SdiwvPewfwj2WZfbhB8g24gZ3F7VK4mvq/gtvt7mO4HfnOw21mcM1AsVcDC4Phx3B4Y4bF+CXgt3Frtk7FDTK/ADxVVT+1GpkGeNCOfyJS57DH4+NDuxxCueYJ95tfP6mqUziP1D9weNe+UR684+MbgX/HGVmP4vDGG9O4jSxuxXkwAh68cccCv4FruxZud8H/zeq2hj8qb5Kq9nBG05txa4TOxRnd7wcuL9ctUf7/G6VMj8KF4X0MeHq5pu564MO4e31+We564OdU9d9Y5LfT1gpVvYZyp0vc+/gM3O6Mr6Xcjn6ID+EMozGcV+n9wC+Udd2C29Dlbpzn6xDuvi3HC3DrLBOcwfnTqnrD8l9ZFX+Ae05T4DIOr71c4M0Dn723y+Px/MAga/ibpB6Px+NZY8od//YDr1HVtfBGbBhKb9J+4GpV/bXjLc9iiMj/wXnYti5i4HqOAhG5DBeO2wNOLo17j8fjOeHxm2t4PB7PxmYTbvv59x1vQdaBTcDfAh843oIsw03Ar3mj66FT/nDyazn8kwlv9UaXx+P5QcJ7vDwej8fj8aw7Az8Y3cb9jMQry/WbHo/H8wOBN7w8Ho/H4/F4PB6PZ53xm2t4PB6Px+PxeDwezzrjDS+Px+PxeDwej8fjWWe84eXxeDwej8fj8Xg864w3vDwej8fj8Xg8Ho9nnfGGl8fj8Xg8Ho/H4/GsM97w8ng8Ho/H4/F4PJ51xhteHo/H4/F4PB6Px7POeMPL4/F4PB6Px+PxeNYZb3h5PB6Px+PxeDwezzrjDS+Px+PxeDwej8fjWWe84eXxeDwej8fj8Xg864w3vDwej8fj8Xg8Ho9nnfGGl8fj8Xg8Ho/H4/GsM97w8ng8Ho/H4/F4PJ51xhteHo/H4/F4PB6Px7POeMPL4/F4PB6Px+PxeNYZb3h5PB6Px+PxeDwezzrjDS+Px+PxeDwej8fjWWe84eXxeDwej8fj8Xg864w3vDwej8fj8Xg8Ho9nnfGGl8fj8Xg8Ho/H4/GsM97w8ng8Ho/H4/F4PJ51xhteHo/H4/F4PB6Px7POeMPL4/F4PB6Px+PxeNYZb3h5PB6Px+PxeDwezzrjDS+Px+PxeDwej8fjWWe84eXxeDwej8fj8Xg864w3vDwej8fj8Xg8Ho9nnfGGl8fj8Xg8Ho/H4/GsM97w8ng8Ho/H4/F4PJ51xhteHo/H4/F4PB6Px7POeMPL4/F4PB6Px+PxeNYZb3h5PB6Px+PxeDwezzrjDS+Px+PxeDwej8fjWWe84eXxeDwej8fj8Xg868yaG14icoWI3PoQvv8KEfnyUX73HhF5yhJ5V4nI7qOVazXn8GwMHu56cDyfIc/GYKPp8EaTx/Pw4OHUlz2cZPWsHw8nPXg4yeo5zJobXqr6JVU9b63rXQoR2bEWL/31QkQeLyJfWSLvLSJyq4hYEXnFCvX8uYjsEpF5EblXRH5/IO8KEWkNHSoiz12hzttE5NxF0hMR+afyXPtE5DeWqePvh87bF5HmIuXOEZGeiLx7OZlOFB6KXh7rZ2iYFXT2EhG5VkQ65d9LlqnnfBH5vIjMicgdIvKcJcq9rtTXZQfdy7WpiOwUkS+Uct2yirqeIiLXiUi7fK5eMJC36ufyROZh3rceiZ5eU/ZNC33YrUP5W0TkvSIyKyIzIvKeFeRaEz0VkbeLSDrUvwZl3kuG0jvlM/To5WQ71jycxgMnUL/7qyLyrfJd/PZlyh3TfldEJkXk/SJyqDzeIyKjZd5pS4xhfnM52dYDr7Or51jorIjEIvJBcRNzKiJXrUKuuNSxxiJ5kyLykfLdf6+IvHiZesZF5B0icqA8Xj+Uf0TjjgXW1PASkXAt61slzwA+fRzOu1qeAXxyibzvAK8CrltFPW8FHqGqo8DjgReLyE/BAw9fY+EAfgJosUy7iMhZgFHV2xbJfj1wDnA68CTgd0TkxxarR1V/eejcVwMfWKTom4FvruI6TxSOSi+P0zM0zKI6KyIx8DHg3cAE8A7gY2X6cNmwLPuvwCTwi8C7ZcjQL/XwecDeVcq1VJteDVwPbAJ+H/igiGxZrKCIXAC8tyw3BlwCXDtQ5EieyxOZh2XfeiR6OsCvDvRjwwOZDwP7cP3hVuCNq5DrIetpyZ8P9q+qWgCo6nuG+t1XAXexgXT24TQeOFH63ZI9wB8D/7TUiY5Hv1vKNAGcCZwFbMONNVDV+4b0+VGABT60CvnWDK+zR8yx0tkvAy/F9cOr4YnAt1W1tUjem4EUp38vAf6viFy4RD1/BdSAncAPAT8jIq8cyD/S/hxYheElIpeJyPUi0hSRD5QzFn9c5l0lIrtF5DUisg94mwyEnYjIT8v3e0OuKS3875utW+TcbxaRvxhK+7iI/PeBpOEb/1gRuVnczOTbRKSyxHX9DxG5s7yum2VoNl5EfkFEvjeQf9kidTxCRO4WkRcu04RLGl6q+mZV/RzQW+b7C2VvVdX2QJIFzl6i+MuBDw6VH+bHl5ILeBnwBlWdUdXvAf8PeMVKMopIHXgu7iEbTH8hMAt8bqU61pDjrQcP3PeHwTM0zFI6exUQAm9S1b6q/jUgwI8uUvYRwA7gr1S1UNXPA/8J/MxQub8FXoPrCFdiqU7+XOAy4HWq2lXVDwHfxeniYvwB8A+q+ilVzVV1SlXvXMg8kudyndkwOrxB5BlmLfR0WUTkqcCpwG+r6pyqZqp6/QpfWys9PRJeDrxTVb+vD1hLHgZ92Q96v4uqflhVPwpMLXOu49HvngF8VFXnVXUO+Aiw1ID3ZcAXVfWeVci3LA8DPfA6u4zOqmqqqm9S1S8DxTKyrCiXHB6jvlZVW2Wd/8L3j0sW+Enc5Fen1MW3Aj9b1nXU/fmyhpc46/QjwNtxs9ZXA8PhQtvLvNNxs9oPoKrvH5jB2IGbkbtaVfcMzW58BHjfIiK8A3iRiJhSns3Ak0s5EJEIZ9n+28B3XgI8DTejci5ukLUYdwJX4Ga8/xA3G39SWe/zcTMxLwNGgWcypBDlYOGzwK+p6mKyU9a3DWcRP2TEDWhawG6gjpu1Hy5Tw81kvWM4b4hnAJ9Y5PsTuHv1nYHk77B0BznIc4GDwBcH6hsF/gg41iEDx00PBvVyoz9Dw6ygsxcCNwwN7m5gcd2QJdIeOXCu5wOpqi41ATAo12LP+qBcd6nqYIjrcjp7eVnnd0Vkr4i8W0QmV5LhOLAhdHgjyDPMGurpAn8qLjTlP+XBoSyXA7cC7xCRKRH5pohcuVQla6ynAK8SkWlxoTqLvtBF5PTynO9cpp6HzEbvy3y/uzqOY7/7ZuAnRGSiHGc8F/jUEmVfxspjmBXZ6HrgdXbdWHR8i3tvFfrgSK+V+mAZ+rwwhjma/hxY2eN1Oc5q/etypu/DwDeGylicxddX1e6iUrsb+V7gGlX9h6G81+Bmx392+Huq+g1gDnfzAV5Y1rG//P8Tge8MXfjfquouVZ0G/ifwosVkUtUPlAppVfX9wO04VyLAz+Os3G+q4w5VvXfg61fgrOSXq+q/LlZ/yTOAT6/VLKSq/hkwgrOy34Vrm2GeCxwC/mOpekrj7LFLlFmIiR2se64870osNuv6BuCtqrprFd9fS46nHgzq5UZ/hoZZTmcbfL/OLaUbtwAHgN8WkUic5+BKnNsecbHXfwIsN5s2yGLP+tHIBXAKbobrubiQ2irwN6uU41iyUXR4I8gzzFrpKbiZ/zOBk4G3AB8XF4oFTleeCnwBN+j5C1zIzOYl6lpLPf1rnH5uBV4LvF1EnrBIuZcBX1LVu5eoZ63Y6H2Z73dX4Dj3u9cBMW6iZQrnvfi7RWS8Ajeg/+AqZVyOja4HXmfXGBE5E4hUdbFNR45Urk8D/0NERkTkbFy71Y6yrgdYyfDaAdw/1LDDA+iDqrpSSM7/LIV59WCiiDwd+G/As5dSIpwV/tLy80txBscCi7kTB+W7t7yG70NEXiYi3xa3YHoWZ8UuvExPxc3aLsUvA19R1S8sU2Yp+R4S5WDleqCLm00eZjUhJ0/Gyb/YfVuIiR0dSBsFFut4H0BETsUNrN85kHYJ8BRcnOyx5njqweB93+jP0DDL6WyLB+sFLKEbqpoBz8aFtO7DeTz/GeetBae77zqCweKayFXSBd6mqrepiwH/k7L+jcZG0eGNIM8wa6YPqvp1VW2Wg5l34EJiF/ShC9yjqm8tB0Pvw7XDYgbQWst1nbow2Fydd+I9wE8tUnRNvAOrYKP3ZT/w/e4qOJ797geA23DtOYrrBxbbbOvlwId08fU5R8pG1wOvs2vPcstojlSuV+PeAbfj1qxdzeExzFFf40qG117gZBEZdLWdOlRmWW+OuBj9FwHPKwdjC+nn4W7yC3R5b8i7gWeJyMXA+cBHB/IWcycOyncabtHesEyn49Yt/SqwSVXHgRs57FLchQunWYpfBk4TkSUNitKFfCWLu+jXgpAhGUvj5ypWDjlZyg2Lqs7g7vvFA8kXAzetUOfLcAOmuwbSrsItSrxPXEzybwHPFZFjsQD8eOrBYPtu9Gdo8Dwr6exNwEVD13IRS+iGqt6gqleq6iZVfRrOq7Awg/dk4NXids3ch2uTfy5n5BZjSZ0tz3+miAzONC2nszewQptvEDaKDm8EeQbPsaZ6ugg6IO+R6spa6ulycgFQesB2sDbegZXY6H2Z73dX5nj2uxfj1ta2S6Pq7xma8BKRKvB81m4iYaPrgdfZtWc5nb0NCEXknIG0JXVWVadV9SWqul1VL8TZTAtjmKPvz1V1yQPnFr4P+DXcQP9ZuMWYf1zmXwXsHvrOA2nApbg1P5cMlRnFhSL94iLnfAXw5aG0f8O9AP9pIO0MXHzlYLl7cIvbTsHFwX4J+JNF5LoAt3D+PCAAXgnkwM+X+c/HDRAejXvRnQ2cPnCOpwDjuJ3Q/myJtvtR4POraN8Kbob1F8rPZpFyBvgl3O4wggvb2Qu8eqjc7+EWpK50X+8BTlsm/89wYYgTOLf0XuDHVqjzVuBnh9JquPCcheONuAHClpVkfCjH8dSDYb1kAz9DR6qz5bXci5s1S3CD63uBeInyF5U6XcMZ3XcDSZm3aUg3dpXt3Viknu971hcp87VSvyq4uPjZpfQMFy5wN84QrOE8ce860ufyB0WHj7c866mn5bmeVt7jELeOrQ2cV+ZPAjO4WfgAt352Gth8DPT0ebhwFoMLd2wCVw2VeQsuwuFY6OSG7cuG234jy7qe+lyWD0v9+lOcx6IChGXe8ex3v4AL6a6Wx98B/zlU5sXltYnX2Y0j6/HU2TI/KdN24/rCymI6UurVFFBZRrb34TxXdVzkwhxw4RJlz8I9MwHwdNwyngsH8let/w+qdxWK+xjg2zi32gdwW+u+dpWK8HrcS7c1cHyqLKND6a1lFOGlZfknDaT9Km7NwWC5e4DfBW4uG+AdQG0xWXHu2OmyIf8SZ2j8/ED+L+OMiRZuxvbSgXM8pfw8iVtM94ZF2u2NwG+t0LbXlNc1eFxV5r0EuKn8bHCxptOlPLfhjCwZqu8W4OdWOOcjgRtXKJPgtvWcB/YDvzGQd1opw2kDaY/DDVZGVqj39cC7V9K5h3ocTz1YQi835DN0lDp7KW5Q3MXF7F86kPd7wKcG/v+/cYPWBZnPXuGePWWJvO9r00XK7MQ9T93yfj1lIO+BZ2kg7Q9xL6mDuI5+YjXP5bE6NqAOHzd51lNPgS24n7loltf1NeC/DNV1Bc7obAHfAq44FnqKM27ncP3wd4AXDtVVKWV+8jHUyw3Zly2hsxtS1vXU5wHZh/uv1y/TzxyTfhdnaHwcNzCexo1pzhmq7zMs8sx7nf3B1tlST4fzdy5yzp8A/nUFuSZxnrw2ztB98UDeFQttU/7/BbjIjk55X562Wv1fVoajUOKvA69cywdjFed8YtlAZiDtk8AzjqUcRyjzzcAFx1uOReT6Hdzi9uMuy4l4rEYvN8oztEiZjaqzG/pZP9GOjd7eXk83zrFR+jLf766L7CekPm8UPfA6uy6y/x3wquMtx0rHan7H60oR2S4ioYi8HBc+dMx+VLOMJf1vwD+qqh3Iugbnut5wlNuCvlNVbz7esizCPcDbjrcQJzDXMKSXG/gZGiyzkXX2Gjbos36Ccg0btL29nh5fNnBfdg2+311rruEE0OcNrAfX4HV2rfk2brv8DY2UVuLSBUR+ERd+0sDtQvO7qrrUwrU1RUTOx4V2fAe3xmj+WJzX41lL/DPk8XhOBB5OfdnDSVbP+vFw0oOHk6yeo2dFw8vj8Xg8Ho/H4/F4PA+NFUMNPR6Px+PxeDwej8fz0AiPpPCeuz6l1iiJEVSEKKzQS/tokdPpZdQmxjFBQGd+ljCH3qEZqkkViSKq46PkhLznc3dx/S2H6ExPEeR9IhOQFgpBSG6VIBRCY6jXqoQGkjhgJBa0SIkDoTk/z9Sh/VSiCqfs2IIxQrVaxyIEUYQJIlSh2U6xgKpBVWm32tg8wxhlx+YqeVYQGENgDK35aVrNebrdPjMzB9lz/26i0NDu9NkyVqEeB+xr9alX68w2u2iR0u116aUF3VyJkgoihigU8jzn4EwTVSVQxRhDGIVERnjSOZt51tMfz5lPfTKxgfEtW8l7XfpZn8nJEXrtLkmlQZH2mW3OYkJDIBntLCeJG3TEkHdTmnnO5ijgpMlJLEq1UkeJKLI2hQISENmMTq9HEMQg0M+7aAhRMoqqJQIKNRQmIGg3KSSkVo3RoqCb9kmiBNSiRUqQjDLfmiY0FYIwIDDQ63VJ4gqpLQjDGJGAotenUgnpFzm9Xo84DMhRGo1Jp0Bpj8bJT5JlVGzNefVvXqqqgrWWtKdYC2PVLUxs2kYcJmhhyTKYmW7S67fpdGeAgiQRosAQJxESulDnPINemtHLeyA5IgEqytbxk6gnm4hlkm5/DqsZvXwWFIzEVOKYH3r02SRxnbvv7nHf7l3s2/M9tmyug6QgIbnktFILNuSUzWdRr43TK/rM9/fTKnajtkALt5mPCWtU4zpxDNUko8hSTpm8nFgmuWvXN8mSGSq1mCiOyazSmZ2lyDPG66cxFp3HnXffx979t5PRhijGxBA1hCBUCgpsajA9Q0BCIRUKm1GYPmEIWzZHNEYAlF6rD4UQmxqiQrPVpdvJyfohRR6SpZDlfTLbw5bh4tYKIoIxBiOCGqFWqTAyMsJFO88jocru6f20u8rjLr8SEwakaUan3aLZaVGosqf5eUzcBVtw6tgjmayezL339kbYcsIAACAASURBVNi0qcaBvffTavU4NDtHNyvYNJpgwxp33XM3eRc6/TaV2gj1asC5Z13AyOgktVqFSjVy19RNabdb3HXX3YRhxNYdp/Bnb/ybY6qz9YkJjaIIA2RpHwQUpVKLMCJEQUAUCJVaFUKDqTfAKkVzFtTS6fRI8xwFkjgiNIa4UiUIqoT1SWymtKd20Zxv0pxvEyUxSRKjasmtEpqAJIqp16vEccTE5HaCpIo1hpl9eyiKlMbIJgJjmJudodOZZWZuBlVFEIIgIM8LwBIFAROjdeIQGkkNjSOyLEfVkuY5/TwHLLXRCSq1OiMVg9EU6CFxTDGxlSyIaO45SGvffiQzRHGVokg5MDtDVhSEoaFRjxkfbaBBRGHcvTTdPnnaZ2quSRgEJFHASCOmKAqmmu73Q5OogkhBFFiiakzj1C2YkTo2U3p7ZtFmF5MHIO79IlGMVGLCOCIIBCEDlM5sG9uz5P0UCYRwJCas1qk0xsitks7NkTfbFHmGlP+yrCAvMlJbgCkwuSFTJQ4NcRxibUZUi4irFdRAYS1iakhchyDBph10+hDz8x3avZRet0dSjTj57FO49eu3HFOd/ZEfeaKe/KitYGKm9+8lQhkLx8krGVI1jJ0cMrN3lpk9fS4861IO7L+NpJLQL0KnA92M+TQnimpc/7XryLopJ596MjZL2bxlnML2MCak2+0SxwlCTDy+nc1nPp7qyBbaRUFz9gCde68lLzLOv+TJVKpj1CspRb/NfLvN3P77GR8fp0hT+r0uhw7uJe222Lx1CyONOiKW8a1nQGUTOx99FZWRUeq1BpnNSdtN0tY8Jk4wxjAyOk6lXsWq0u31STs9+vP30Z9vw/xu9txxPadEXc49YzsH9u8n3nI+B+68i1qUMjN7gJvu2EVj0w4mJib51le+RL1SY7rfQ4MK9+09yI898SK+d+seDs33eOZPPJ3PfPoTHJya5cJzzmRmaorTRmK+e7DFD1/8KO7edTc7z3sUYSB8+ctfZWsCe5s9il6L888/l5/+8SeQzzXZs2c/SWOS7bUY6FCtj0LY4Js33Mi5555LbSzhzl09suwA375lNwcOTHHFI8+lsXULicmYOnSAblalsnkbtjXDmeeeyz03fY9Tzz6DrWeexa67bmO22aYIx+lrTLxpkrzfZf/999CemSHLU0IJqI1MMLJpEzZPiaKIKAg5sHc3V1/9vmOqs8955S9oaAyoZetojbFaQmhTRiOoGmFTLUAUWt0+Rgyo66uKzBIYQ61SIct7aJbT76TkVqlUIgyW3BryPEesRUQIQqGwQl4UVCIwAr1cQYTGaB0VIUMIw4goCOhmKQo0RhqYQAhCSxSG1Mc2IyagUMGYgPlWG2uVMIqZmppmvp8x1+3T62fMN3tkRUEvTUnTgk4vRRQnTxC5fQFN4DalEBf5VmCw1mKMIcsyxBhAUQVrC4qiwBY5WhREQeB+WPCBMooxASIM/DUYY4iiCMC981EsCqUseVagalFVCltgi4IiLxDAYsnSlCLP3U2zdnAjDVQLQDAmBARRSxCE5TUBAlHk3pthGADCyaefjiJc9cQnsfmU09m+fTu1uEq9WqE/tYve/Cyjm04iC6oElYi4UgEMaS+l1++x+/77aXc7XHfdt/j9X3/1UensERleQRwzN3uQbqAEGpMW09QrVYqswBihnfXozLbZ9dUbSNodRsKc0bEGc3aM/XmVT9/SZXbfHmyvRU0sQRBQCWLCJGCq2WR0ZIxmniMEZFmfIHLK28ygEgihwOj4BI16FaEgSRKSJKaSRIRhjKrS6XYRDOMVQRWUnEggDwCJ2Ts9R6tpCbRganqa+tg44xMTGBNiTZPtjRFmpmY4NHOI6VaPXYemqcUJYiDLp7AW+kWBLZTCKrVaQiRAYDgw16Kf5fR6qWtcMQSBUhcoAkNsLEaEL/7HbbT6KaeeOsqZZ25lYmSUuelZKmFIr9Wkn6eM1cYpRDCaElQi+v2UzUmFLCsYS0Jm51v0exlRGDE3P0uWpfSAwITEkaFmIpKkQr89T64QVhO6eU6HNhRKjMES0KiOUq9P0uo1EY3AWmIixAq9fg+rCt0Z0n6fTBQJYiKBMArp9zLiuEp7Zh4NAAy9bo9Ko0olqtIveoRh6B5AgY7mNI5GSx8C3V4HVcGq0O8XiDX0SLFZhpqQMHIdRK0aI+T0+xGFVbI8I7dQaEYQijNsc6EoAiAEETJNMQUUhQUV4rhKP+/Sac/S6bdJKhW2nbKDMMjJe13m9ze577v3EYYRQRGiRYQJDH0yVIQkqqDW0M16REWBZoLNFWOVKAqR2JBmGZBR0CdTS5TmBMYQx1ViqZEkddrZQaQvGFMBtWBicnLQKkVe0GpPYUnRQrBiCSJ339NCoVBILTZzLxrVjEItmbVkUjAT91ECjBEowFghtxlqwRZa7vOqgCAoubUUucVq7jpMXOcXGhAjaGFJDfR6IUEQUh8ZQQ4epF5NaHdarg+wQpa7l4AWBd1Oj2psCUOhVm+wZfMWbrjuG7QOKUQGq4aR8XHy6VkaY3UOzrRRNZigIIlCiqzHXGqRUKg1ImyeY0zM7OwcjcYYQRiyecsWwqRKkafHWGMBWyBqMIEQxq4fC8OAOLYEgSGuWkxgsGGKCvQ7LYpeis2d4ZT2C9KepShyWnFAFAmjaomrBdoVNLf00x6qShiHqFr6/T5jY6MkcUB99CQkDMjTLjbPmJqZAi3Iuh1SzcCCpl03qRQHbNs2wYWPeASm0iDVjLTX5eDuXUxNz9Drp0y1eyRRCHkf2+3RzZSezREDlTAkqcYEtQqmljAfuvdlURhEBT24jywroAiojY2Stfq0OrMURQFiAYvNlU67A3nuXrBBgARuMGALSxhDPRbCEGcUxRFbxxuEcUI0OYY1FtPPCCyYXMgPpuS91BldVggDA1g0Lcj6LUw/oghCgnqCCqhVbD9HNUcqQhCGBPUGYRhje33yrCBvNWnOzaPq+pKsyOn1nfEXhsZNRmhBEATEYUJ1ywRqoD81y+z+JvOdDmKERlShklQIR8aQIqPX6dPsdMmyHBMYwjAktMc+kKUyWqeQAJEcyYX6+Ci1Ro3xnQ2SiR5ze7pUZJSzGhnZvvsIA8P8VEZcCSgyZX4uozoauWsc3cRUbz/9XpdKNaHVahHHAWGiJFEEKoxsGqcytpW40iAtlKzfpui3SOpjJCZgPksJ6tDt9mjNzZLnKfOtOSgyN94Uw8j4JDo5ztatpyOBItYSJVUak5sIk4RKvUocBxgVYup0jRAYwQQw2qhSqxnyQkmiGr1EaKdbqFkhmruLdtbirEedyX2338r49kfw0Q+9g8lTTkem76NWneBxjzyXZm+OD3/u3zljx1Z2H5xhcmwTI/UaYdrlc9+4mZO3TJIWHd7y9nexbfskUaXCvukp7j80x/65kNl+zle/8S2e/KQr+OfP/Dvnnb6N0ZERDnZT9rdmEDFce+Od3HrPfi654Ew2m4yd7RkOjW6lEVsajZjp6RlO2ryD9tw8+w+EtDot7rzrLqZ7BWeefSazhVJkSqXfZdP4JsbPuownP+tZvOkPfo9oYgtnnNtl9759bN2+lUgaTG4b48CevaSFsueW3WRpn6kDewmDCiOTNRq1OhIYQmOQpAphQFYUxNXaMdfZy8/fSR0lCYRR7SJpi97cLL2mkmvBXDskEGF6ao6sUMbGRjBAs92h2WxhJSCOQkDJ+gUYAzYnzfp0shw1AZU4JgRq1YQkDsmzHEUIw5AoDAgjQ2i6RCJgUzLAYmg06oRRhG3NEwSGSiUgigOqWdP1L0GAEUOjWiBRhaBS5aQtOzFhSJzUKKzQ7RRkmnPv3vvZvWc/U3M9ZubnSfspIsYZUw8YMO7/KgarzpYICSnUjW+sLTBaDuRyEOPOryLlT7o7w8aWhlEQBBjj+jWgPJ8zhgTBqHv/g8EYdf2iKhIYCgUTGWdsqWCCsJx0hkKLUl59oG5VxVqLYBCBPM8eaB8xAhIQVipcfMmjOfW00/jxZz2TShJjMks2dTed2Tvpzk5jw5Dmvt20Z6bYm2XUJyZoN1sklRq1sUkaW0+G6hinTUwQnbKDiy646Kh174gMLy0s1SimW6TYQjCFIbABcbVGu9dhrtMGhT337aOqBclkhW6zxcFgE9/Y3afbmmX7WEiaJDTn2tgspZoERFFA2xTMzkwRVBpoaCkyIbUhASGFzTBhxFyrTyUJiQ1EUUCullAt3X6X0SiisJY4jgjDiLzfJTSGbrMLgRBoThDFTI41SLMCzQuyrMf83BzWWrrtJt1+HxFh2/aTSeKYA/N30k0LlAwQsiIjMAZrlUKVzComSujnSrfdpt3pkueHLXIJAzdAiAICEQprybOCXfummGl2aLVboAXnnKHUJ0eJjaCiRCYGYwnCCMkDAqOEgaUaBGhcoRoGFNVya8ogJstT2p0e3UAYSaDX7tPFUI0iCluQmIBuVtBNMwqbk3Z7bJ/YgmqAhBFFkRMHAbbbpJf2iJMqKERRlTTPqFdikiBATUgvVVCllxcYtUhUEEdC31oqSUwS17FYtOgRSkie52T9jhukHbWaHj1FXjgvIAZrC1Rdp1oUiqpFpBzghoEziIKgNA6coWBVEQ2w1mALKTuPwM3ZLOSLMxqwSp733YMfGqIkhkBRk0Gq3P69u5k9OMX27duYqI5gC3dukRxEiILEdXKaYm0OCGoBdTNsYYSTw5oHOhuLRawQmggjhiRpYNuWTCwjlZhEQkykZP0eEKAIiLhZqlwfqAcV1LrzqbUE1gIBYhfGt26Wqt/r049ixEBIQKAAirXqDC9L+Ssb4j6UHbeq+76Imz0rKM8pFikKClsQhhHGGGq1Gr287M8L14mLwb24ugVZaqmUL4dOt02n06GShJAprTTHasBJp22jsDlbN2/mrnv3gCpJkmCMkBWWNO0TBCHGBGQ2RUyIFYMpXx4jIyNIFNFptY61ypYTdUpgoFKNsepm9pQCaxQCgwaWIk0pCqXbbFPkkFuwKHlfyTs5EggmFNIM2mkfVUuYKBJGNMa3UKkVJK15ZudmWVjpKwbUqGvv+jioUOR9irRP2m4TBkKlUmV8fDNRFBKNNQgqFTSIKcKYOKkRZCkjvTbzzTmUgMy6GcxDRd/piSjWQGgNmVhiMZhQweQk1Yrrk5KAAks+O4PYHkSWKK5T2TpCPBeTdnuEs21arQ6iAUlsqDViRAQJjZsttQUQEEpAUD4fiKDWIkWfop+jHQOhoS41AhGyrIvmilghqm4GVbTIIO/T7/UoVImsM4iFAGMirGZIEKMiSGQwcQy5khcZIQFitdQ1Qy/L6PVSiqLAiSPl5JSbhCiKgizNSHpdJAwwCBQWWyhBAW3t081y6kVBYCz9PEcKZ0hIIFi19HvZMdfZwBjmp5vEiaHaiGi256jVaxSac2hfh4oGFGnOVDPF5kK4xbDnwDTbNu0g7WWMViuYxNDrWWrVhClbOIO2yAiTKlEcUhQFaZYThyG2sNg8Y2xshGaakbU6BGLRIKRaG8EWGdZm5HmOakq/3wK1pP2USrWCtZYkSYirVSr1EQjdILpRrxPEMVEcEkWGauSMd5sEFFoj67UIMe4dJ26gJ24qigZz2PYuPvXJLzG+aZSbbw4YDVO++tWvs/OMHXzr5rvZ2qiyvznD9TfdxOaxBpedsxPSLk2gPT1P3p5mJFLSDjSnm0RhlfFNBmMiev15GknASGDZ3AgZHa3Rafe48YYbedLFZ7N7ao5TTjmZ6bk5WmmH6ekZ8jAkzTLu23U/m8/aQS+Mydodto2OUa1U0ekmI2MjtOen2HnB2dx97y6CQyM8+1lP5d/+5SOcdflj2Xf/XsYm6px8xpkUScQ9d95CQMF937uJkyar7Nh2Ml+99lpe+cpfZP/UFNc3m+SzTU47aQfNVotq6N6pqboIHDEJWZZSq9XJtAD3VjrmnNmI0Pkpil4ftRl5ntLpZXTzAgxMhAE2txQiNLMUO9vGZjnzaZtmu0NOiBGIgoA0KwiDsBwDuzFSXljGRxugSjfN2TJZd1ElEmKDgH7Wo7DCXJqieUE77RNGAdU4IC29TkWeE4UBUFCtxmS9PhhDtVLBiKEoLDlCrV4jGakRxjG230SihNHGKLkknFU5lc0TY8zPtZjtdt1kRLODtcqh+TZpmtPt5CABuS0wuAghjCCY8n2uLmpFnRdLcH8tCwaU+/+g0bWQtmAgGWMIAlf3YaOJB8q6MYJFTTkOESnHbrgxS3kscHh7dtxYDkXRB+RY0KvGyAgXPupifvrFL2VsdJxqANqepblnF+mhXbRmDyISUtu0nVu/ezNpr8/Wk7Yh3ZSD+w8SByHd225n53nnkoxNUNt6GtrvILXNsOXoXAlHNBYOQ8Pm8e1k3T6WjCLrMZ9mdNptiqxHkNRIuy3u2LOPXXfs57KztlNUNvHV5n567XlGpMfJJ49z0tYRZkNLr9cniYQwEHIMIjn9XhNVS6NWI7WKdkJ2TFYwWUHUa9Ke7VEkhvksZa7VQoDQCBOjdZI4YeKkHVSrDSpJgi1yMEqapRS9DkkeEOSQIGRYijyn35ulMTJKrTHyQLjNvffdw4GDB1BVWt0+FqGfFRSFJQgoXaDupTkz3yIKI3r9PnlusVZBhSAMsEaIJKQaBZw0NsI5O7ZTndzByWKYrFcJTMAN39zFrTfv5YorL2LrRIWTNo2QFhlhEqEUBJUqedoBMfTabdRm9ArDWBJRUNCZP8BIfZSw1qDotgkU+r0moY3phSlFIeRJhfGxmCLLqEpMHkFcWPKsw77WPJO1GhIGjNbGiMUQRCGdTocst6R5RrPTplapUAks3axDo1YlMhEmrpD1u0S1CkHgOqmO7ZIEhqzbZz4tmE+7TI4acpQ4MowdlZoePa1unzA2GBXSNEesYE2KqiACVvtYNeVDHRCFNawqVnNELaqQZu4hN+pm4a0VchXUGpIwopLUEWI0z+m05sjyHmFFMTalO7ePMMi58bZpvva1WxBy7tq1D+KE0845nbGJiCAMUSkIAiln8nMK2yc2dQKcQReHljh2IQJpH4o0RPKQTCwmrBBKBbHQqI8h9zewnYgvf+5mNtUSnvC487j0gvPY04zQYgwJDCpQiBuYWmspMkOuSp7nkCuVIsRqgdrCeQCLAjSlNZNBmhEEghHBaEAlqmAkIOtmZJlSWEFsuYDUWrCQ5wW2DEdAAmxYUIizz/LMEtuCSiVh67at5AUcnGkSRTFxFFCpj3Ag66K58+71u4qd6xIH0N57L/foPNVonMktDWh3SCoN8jxFLQghaOZCLHBhB1EiqBbYAjrtLkEcU6mOMJ5mVKIEG0Z0Om2anTZZ1j3GGguBFDRGKyT1CKm6AXnWdRMIxkAYCKiSpimddsHcVAqFomXfI1axAlghTCCKoBIZosRgRmokI5sZG92B9jPu+94NaGExQUi9VmdkfAujO07BmIii3yXt95g9OI/NU+qbt7LtrEewaWKCTeNjJEmIGkjTlPvmZun2mpjRPpONUbZd+ENMHNpGv9Nn+q77aR6YZ273HJaCOHAztvValbiSsOm0cwlGYkAxokRRTGFjiiKjF0ExGpFJF5t36WUdgnpItV4nbiQ0unWyZg/NCoosRw1IGDgPsYRERgnGqgRhFfKAuDGGSk46fwhrM+JEMGGCwWAtBJVxwtRSCxN6vZS83aU/28SmffLScIyqMcFolcpYwxmqmWG+NQNZigkamMxC2sNaaHd6qAGjQq1adcZXZx4DBGLchI+4/qcQxYp7ruiDFjlGLfV6lZGxcRTo9Huk/S4zs3NYqyRhRBxHGGvpZxlZWrBv975jrrONkRqVaoIxAbOdKSpBBfKYu2/ahYQRI1UhCA22tpVtW3Zy3757qI3l3HLnrdSJCOshkzsnyMg54xFb2LvrLucRDIQodQPPvLAEQUxcbRCHCYGkFN1pKmGVLROjtAyk1qCiBJrTnDtILRba7Xnac1P0Ok1MWCGKQqq1GpVqjbg2Sn18C1G1gTUGE4INQ6K4QhQaksiQBhBoRmhTukVBYCGzBVk5OST9LtP33MnUtz/C/ntvo4jHCKub+O5378KmLc678JEUc3u59JQtjI9UgZDmtkmkMUKeZtx8wwEuOX8n199+P0Vc57ILT+MXXnQKSb/Fhz97C/drzGWPeSz/+J73MzvfZbRaodvvc97ZJ3HHrn3cuOsAlbBg33SXg7O3EcUh7WYbCMhUmG23McZwqJOz/8AsF+4Yo2O2cOiOe0nC/0/cm8Talp33fb/V7e6099x7X1vvVUuyiiyGFGV1JiVFtiDHsuEkiAYxHMRAkkEGBjLKJKPMk0GACEYaWzICK4CVBAEiC7IYSpbFQCQlUiyyWH3z6tVr77vdaXez2gzWqaIyCAIySWkDBxc4wLvv3H3WXuv7vn+nCfGCvl+yPj3j+vQQ+0zLO6+9wvHhIbefeY6xMXzvu9/n/smKp194lvPLc85WG6SIfO5v/F1c53jt7l2++kdfY0bk8GDGtStXuffkgm2/5dqVK3gE7WApjMK6hDYCHwaUlPjg8O6TZxas332NdrcFqUBLYogUUiK9Z9v1nD65ZLvt6FwkpMTN4wXjUcnOK6qqYTM41l2PkDCbjiml5qCa0/UDI2OwbqAZFUSb68bL1Ro7BETKe9zpdovzns5GrA80dUFTakajMS+ogt56ut5nhCg6Ducj2m0e0molGI9HYDSbzRqjNUYLitpw89mnMEVJ314ii4ZJM+Pg+hHimecIfUsMHu8GUgjsNi2985ysWrb9wGrb0/YDZ8sNF6stISQyMCWRCAqhSPKHqBNSwL7RMUaTVG4pPmq4hMoUQFNkqqFQmQ4oRG7AUhS5RvjoSj43UjECEkJAJEdSgRgDWqr8e/YNWYgZcUshIAQgftjYHV25wi//6t/iF37hl1lMRnTnd+nvvo8NHaHveP97r6D2Nf1mteGd7jvcuH5EM5+BKkkx8Xi5Zb3p6NYdj07WFLVmcfWIejLjxjOf5Znnfu3HWns/UuNlY6IWAqkVMkS0KTBdS6Mjs8kEUx/QdhU/9dNf4PT0G7x9HlFXZiwvHhOtpSgDZ2c98+YplIDZbIIxBd5FtJSoGJF4JAmxvWQ+n4CSNLUgek9Ma5COdtWx7QfWu5ayGiETxBgZNw7OHrMraq5eu0H0HmcHYnCUIiJDQsdIkiUuOMrxBI3EegfRYZQkRejbLcMwoET+vb3LVKrwUacuQAi1X3zgQ9jrGzKHVew7e7nXsggh8MFx7doxlhIfPWXd4Jxjs7L0feR7P7jPC89doa4bjJHg85QY5ZFK4IY9PS4l5rPDPL3rtiTnUARKLWhkSSkLqmZBcJHOWsqiwFQFdugppaLvWgSJbrfFuoHBR06HnqYZMRqVCJGwbiAKgYsBU1TYruNi2XLt+AApJD54Rs2I5WrJuB7hXU8SBoHESIGPkbKpKZJjikAJQR8ipfjk51ox7kPORaa+AQjy95g+DhCPxJi7gI94yTF8NC9RpJj1KiD3VCFJigIlC7Qu92hRyk1TCnsUKeB9zzBEqqbglTfu4Fykair6zrJdrlEPTmlG1ykrQRSCSEY1tFSoPRWAJIghkgSZoiEkKQBWZTTY96A0UmQdSmE0wRruvf+IYW2JzYjvfvdNgogsXvwSwY1xfiBGTxSJPLOCFPeTrZipU0KIXIyS70O+T57gI30fMuVGSFQKECQKTfKRGNmjXpk+QMpoWIgf/R5ARFJIqPzAIMkFTFFWpBjpB4v1fv+c5YlyYQzdYEkx4B3E3pMM1EiGPqKVIEqFVFDVmsv1Dmcdm/WG6WTCer2i7XoA6lGFkAKhVP6ZwA0WrU0+5KRESvXx+vikr7IqKKY1qVakYEkxYm2ktx4hwNpMYx56j/d7emhmd+YGU8r8/WhFURTURiEAaz3KObR1+F2L61q89cQYKErNeLygmR8hTdY+fkQbKcuKVBRUB4eYeoyNkcv1JabUVMagkBwuxiRVcvUpybguoNQ89fznsD7yzvGcs7uXFO4uQ9/nwlhJRrM5k+NrXHvm09i+Z7dZEzdLXGwZSHjhQDt8CvRLS9i1hN5TjUZIpfCDx1lLu+0RSWD2k3W/tPQMJCWoSs3i+BB9PENTMjo8RuhEd1kRYs9AJEkFIjdfUleIPlJQILcSJwPJKoIpKK/MCd4zPp5QzY/QiznOOnCOMrWEyzXRDqSYP0cClMjPjg8DPmR0WZt87MYQifsGGvh4muvjR022QRSgpECV+fMJKSmVQoTMvLDWYa0lxIyKSWF+OCX+BC/nLVMxQoqSm8efYhhaqkKy2hRE76iODhBJMJqMOHt0F2xHSoFqVKCCQFYlMXrqg4JKC6JItG1HM6qy9tAnEoKqahiPp8QQcUPPbvUEXR0xWiwIfYAqMQw7un7HbDanHzqiS3lfS4nFwZwhxLzVpURR1qiiQiCRUiO0BJ2HayEIZErU0lGrDmGgsxKSIsZEipEQA+HyEQt7h898Zkb7/E/z1T/4U67MJ3Rrw2j0Ig9PThDrNWVpWA5n/LW/8RXQij/73tuYUcPx1atcPzjg8eiUl3/+l+jP32a3PMFudtw4LHjSTXjrzlt89rOf4/uv/oD7yw7lHZ9OgudvX+PR+Vt85jPPc/+bP2A1eNohoJRE+LxvOhKrXcvb73/IjZGirq/w0s/8HO+/8h3e/MGrCHnGMy++QLW4yne+/Qovffoqy/c+RDQTKmE4fXLCZH7M5fkTVsslUhn+3n/0H/M7/9M/JcqSVbdhXI85vHqVannK+PpVvv1n3+bTL72M9QOH129w98ET1ustB/MGpU0+KwHI9/EvA/G6WK2zVskEkpcMwdPFmJ9LBFIXyCIgZcQOA7uhw4UBFyKJhNGSyWSERFALBcHTVIbG1NRKkoRmtduSkmLoLF3fs+s9MsnMzCoLjC7ok6OqNIuDMZOmxLte9QAAIABJREFUxPvA/PAA6zy9DRhTsF6usEDncq+j9ijbZDZBV5rgPYUWKJUHniF4hDbgemKXkXwjfD53ESgZGIaOWkaMSlSLhpBq9PgA6yOvvv0Bb31wDxsT7W7IUgIvIAVI8mOGRCIhREashBAk9ZGGLGvHlN7/FImqyp4AMf6Fb1vIjxGqXDfJPQImECo/s1prYspaWrk/jz+mNO5RsECuvZGCJCRl1fCzP/9L/LVf+VUWTYFdnrC+8yrJOyoNm4tL7r//IYvpGKUgesfxwZx+u2G1WvPoyQrvEq0X9IMg6IrTbY/uErouGQZHIe/82GvvR2q8xs2UYXNBsPvuEtiKxIiEGzzInlrXHN+4wvFTh7z5pKE7OaPfbSBG1u2WZ2Zzzp48wFRTVsstTV3hg4DdihsjSa08CEmSBQFHVSruvPMWTan41PWaB4/OuPfwDKFK6vExyhR423OxWjHYHhc80miWmw3T6ZxrB1O0qIirc4yCznu6zlLogjIFTi/O4eCAxeKQfrchhp7riwN835FSpC4KWhv2vKc8rQcyVUQIUnJorSnLGiv63OWTF78WUGrByEhuTivc7DbvPVgxPZijCsNqHbh9+yqddTz8sOeNt9/h/r+25XAx4qWXrjGrDUkkrE/goR7P8Mlh40ClS8qmotslVDHGdz3jWiE0YBpUEanGY4JPWOdJskBq0DoipcHHnhZP6gWilPh1x06WiOSQRiNUQdlUTMZj0pMTko54O7CY1ggSq90Fk1ITQo+TGfVwg6OQit55khRURTYVUcliZKTfffJTrSQSqhCIlDJVzyeU0T9svEJubJyLOB9JKSBF5jDnDkdCCoTgCCJBBuLR+7+5EBpvPUE7BB8JSrO2MEhDwLNoDtlteyotWW82dJ1DFxUffPCQ9WbFl3/5UyiR8CkhpEermqKo8UEhlcTtAtZDQUQZh0wGQ00KmqEfEKkkBonWCR0Dr3zrXZzzGBl544N7jIqC3fAGf/enfhkfKga7IQSLC55SC4Q0CJmQMZBCbkrr2qBESb8FQ8QJiU8C7wNb55AJZJIomQgNaFFkqmXIusYUHDIWRJcINuJCJO53ayHFniqeKToaw+HBMU01QinFu+/eQZY1XdeTosHZJRJFO1jWmw3WRvwqYAqFCz2xVTz97GdYLS9IwXJ4OOP1N9/Cx8R4MibeFxhdYPserQ1FafAxU2x1UTCfH6Clyo1bgrbtsAFm0wM6oz7xNdvMG1RtCMnRXbR024Ht5UAMcX/q9iAEUmWqExpIgrIsEUISvSe4iJQCowqqosGUBUllJKgqG2RRg7WYUnOwyAYjxjTICL7vkEJiux3OduiqpppMKMdT+u0lffRonaeZSSpCSPiyox5LVque4HuSlYhylnVUjeGpWzd5avEUPjg2W0dyERUEpVasH97l5P57xOiY3logRpJQKRgc2AIdxqiYCJ3F7wbUWCGUQhcOKRSRCnyiHI8x+2Ge27X0p0titAyPl8hZTTooaBYbmsYQj2uSGOGERkhDQ4ERga4P7HYDyUWqqUJcm/HM4TMcLGbU0xIbPa3tGFzLyAj8UCCAs9sN28st7Tv3SV5QF03WfG5a2s2W80ePaTuLj36PxklC+GERQQKtC0BgncUMPZUeIZtMZZFaQAwQO1J0GK1QqmBUwbbd0Q0Wbx3ODfsp8yd7bXcrCIII3HzqOfrO8fjxKcfXG6xbZ4MJKUjmMZvBMROfIUbHfBKJ1nPt9i222yUHxSH3379PoWu6viMESYweiWJ64xZKjdCHt1AiIrxnu3pMaXc0TcmoKnGDo7cdF08eI9qOpCUxGigXjOsZnUy4foMYFKPZgm5wyE2HLqGZNkgJKEnX90yqmqLaccsEVq//DlVzk7OLivLgiCKNeGr3PWww/PEf/xamD3z1+9/n6jNPc+vGTd688y6b81O+9qev463jp156Dh0VL968yn/x6/8z/96/9QtMGslPfvolPnN7Rs2OL//K3+Hw+m2+8afn/OP/7uv8lWev8zNfvMrr314xnl5l/eh1jhY1HzxYo8qG9+/cZz42XD0+4g+/+QOaUcM2rjFlQeUajOh4+rkXeOutt0hCsO6gEZGzzvP1f/5VfGxZbVomB8e8++5jnjaHPPfUAZvLJZXr2Pqer/3+73Ht+IAHD97j5Rc/A+UYJwXvv/l9/vbf+TcxyVKxRumKR++/xXVZM7rqePG5Z0kERPB0Z5dMDfjjOcbAsrfg0l77HagrQ2yqT3zNnq8umY8bVDJ0fceuHzjbdrgQEVLQlBVGSWy7xSfJtg+UBppCMdaawmiGaIkJqnrMuu0QvmdW1zTGkFJi3BRsdgPbXjGdH7BpO2azKYvplFIJqrokCIUymlkJWsLjszVP3zxidjAjVCVVM8Y7yW6zJdgho4bDjuAsR4dzUgwIkdht1piiQE8O0XUNyeOGHtfvEELQX54jZGY36GqcpQnzMc451G5LjI5SOvS44Cufu82XXriO9YnT7cDZ5YoHj5/QDoHNtiOG9LGmO8szElIJxk2DUnnwFxOMx+M8vEwJqST1ZIzzAe8SyPzvd7s2Dwadpe87Dudzul3L2cUFWjZ0XYdIgSCyjjalhCo1k+mEv/oL/zrXr9/gyeWSGzefYjYacf3GDerRmMPDI6LtWT18h/bRu5zdeZOybthud5ydX5CSJqbI4eKQy+U5q3aDi5oAjA9mkMBfLpFGMpocstu0tEPgz9/4EOccMrzG3/wH/+mPtfZ+pB16tbykPn9MfXDA3W7gYD5l7GpisLRCcJgknQxUR4fc+PSLfOPt17HDls3ZfabjKSfLFd/ZnXD7ynUOD3q63vH04hmmJvHp8ZhGw9WjhiQLVm3Hw/MdupI8Pi+oK4n1nvunWzonGAbHZfuE6bhh1IxYHF/Bdi2PTy8pSsPzz03Zbi6xJYwmE6IJqBSYjiUXlxvadYtYbjBdx9puif2WsiwgZF2IH3YIBG3veLJp6Yf4f0G3ICMjk9GIEEIWVu/RklIKiDCrFaWGL9ya8sXPfoZ3n7TZDKM9pR41LBZTQmrzdEoGxuMxr776kO3g2abE088ccfvajGmTjTHWy3Nc9IzLCm8iSUQKU2a0zRSYFIhuwKZIYRQiJWKyXO42GZ6WsBjPgYTRFTMktYg4N2B95OHlBZPFAWGzBgQH9RjpOlCJqigZui0+SoIPVE2NS1kN1dkd2+0lWhlctFzagcPygLKqsX5AKEchFKvdJ0/bkiI3wMiE1oBSGF1+DHWTIsNg8UEQfMA5R8rjUUIMeJ/QhUGKQPAOkBSmQukCfMBGRyd7ylGDUKCUzG4/WqG0olIGsaffrbuOdW+xAUx0jMYTLi57tKqROhCdQxsFKoAWmAgqJnDgdg6nNOXIUJQjoqzwUaH0DCMrZJQYBb/zv/zvnJ5tGIKl9w4lNa0BIVbooElCYdMWJy1CJoQUaCExQiKQeASmUIwXJZoSKTybXYAgUKIghYFkBSFJiBEtoDYSVMooYRIEmVHfkBI+RUKKmWqYEhGRUSZAyEQSiaas+YnP/wxCKparnNno+g5iRApNVUq2XZ/djpxDS0U/JBSKZrRA6holEseLBcZoRqMRzzzzDHc+eEhdFvS7nqasiUEQYqZqJDTe9gghmU5ntNstUin67YBznuA9k2ZEU5pPfM0+uHOCfqDQhSHtJ+umKLKbmwAfMwoU/J5zbwxFoanrPHkcrKYIEURi3AiKQiBqjShqFtduZvG1hSQhJY/3lq6NXCwfYIYRppmSApSloZodMrtynWY8xhMgeIqipKnGIODhvffx3YrdyQV9pVDXNLKJSNHhW4cMmnLwxOCQFx76QOgSoChVwzYlLvseMxlRaEWDQbWBzgVi0ERfEVoHFwPdeqCZTzj8/EscXpuyOCwISE5ON6wud7jzSwQGoWrKxQGTp69nG5qHj9EnHWqTuOgN22nBzeM5qo70KaCkpoySfpfoth2jySFyAjZ0kALL/oJH9x9RKMW4GaF0Qx96YlJcqw2mqLl+44Dh2hWWT1+jkQ2/9gv/LjcOrpKi4NHJE3791/9LXvvWN3ApfKyzDCGSPtqHSHS9I0YoCs3k6pRiNCKOC5L1tPdPSM4xdC0xpVw0OIsPgcE5Qkwfay7CXwJt6+rhNVa7JRH44P6fMx4fUGGomzFKd9w6OqZUMJsb2k7x8BtrnKuIbsPVZ485vVyx3rZ0vaM77zmczrizabFDojSJg8NjRpPr6OYKo8VN3OYCU1jYPmJ3do8yWMrxgsJMSKmjJhFjzxBGNJMrCBKj0uN2K9LQE9xA121AO+ZXnkZoRdtZoimQTjByHcEXzB5/j3/5tX/Og7tvcP/hE17+6V+B/h7V53+V3/pnv8nDu6+z7BQvPXeLX/zKz9JS8l/9t78JUvGVn/4i5xfv8xOf+zRPzs7pneaXvvzzPPW458JJfverr/IH/+LPGU/GjOoF4+k5H9z5bf7knQc8c+0IM6+5fzHwVLHjlXff4bnnXuTe2Z/xH/7bv8zv/x/fYj6fZVptdBRHM96/+z63rt/i5OQCKQNSGV577TWEEDx15RBJYmU31NMDVutLnHccHB1xer7ly1/+ec4vLjk4niG04dmfuME//eq3ODya8tbb7/Hv//2/z//wm7+BrCbEFLi5mHPr+jXu9T3rsw1f/sWv8Nv/+L9m8cUvceeN1zFFhU9wevKEL7x8FSGmHFQl9x+c4O0OLRQhWqTI5j5SffKYl3Xw+GxLaQzjWmC0ZFRKRpM5PgS63iG14mAxQxlNIRWESF2VIHJzdlhO6buBru8wKXB0uEBLmVFsKWmUZnzUMD1aMBkXuS48OMwaay2p65rR/BCkxO02yBS4vlmxWCzy4LFb067XpCQZlZpoIlJHal1izJigJKYYYYoSOZ4jFWAqghCkPrsP6tqgtCEljTFl1pEOPSSfh8lKYcZjBJLoHf1mgx92jOoxjZIczmbo527g0xdxER6fXeJSYtt7DuYHfGSnZbTk6OCAYDvarmV2cIgxFUVRYJ39eLgUQkTiCKFHyxLvPIO1ecjsBoqyIsTIZtchtWJzecqH9+7R9o7dZmAYOl7+/Mu8+NKLXLt+laRKqtnRvqZQWbdPwK3PGdZL+p1lsIKD5z4PwfPu+9/gcrkkdAEzX/Dw4UMOrl/JpBHrAcnOBjbbHcdXrrDrerrBIgqd9aXacLnZst3sfuy19yM1XsMw0JSalCRH8zFaSQYPo3FDMiXteoMuGh48WfPKa/fwweO9J0bY7raMK4W1A23b8sKNQ56/fsTtayNKBSoZjILxSBGTRihPNwiSTBzPKjrb8uTcUpqCnetIUnP76ICnn7rByfkF7WZLjIFu6AjRcXryBAm0owZJQnZbSgLj2RgZOqSSeDMlaY2JASMCfdshlWBUGKbjMY/OlzSlZuIMXZ9dwKT4oRAQ8rRSKUWMgdJkql5BLiqNFIwLxfO3bnJvGVmmCw5nU7pdh1Kaui4Yj0YMg6WzPS5FCq2pErz6/Yecbx1VoUhNy9Bu8LbDoBCNYDvsCKQ9rKvxCEptGHzA+TxVVUrtRcUJAjS1QhKRymDMiGVYMhmXPLkc8Foyqmq8T1kovdsghcTFQNf3eNdjdAkR+u2ayThPTFKMLJoDZNEzuMD6/JTF/JhaF5RlifcRowXtpkXLT35zlftXTJkeKkVuiGAPjSfxMZ3P721MkwgkkalWPgSElkgpUNqghMGYmkimJqQQ9h4Sf4HuRZ4CSQQ6CRCR8+UO5wODjdiYGETCrdcIVTIMlsboj8X/EBHJU6mG2tQcjI4ZjSsQARmy2UehNUQQ0lBok80XouTxyZKkBTFKXObTZCqA0Nh+oIueiCeKgBASpVR+SU1CIMSQQZUCCiWwnURZScosvT0dKuX7mX7oaCQQe1qgIEb2Td3eY2NPt4p5GWb9154CqmLEe4frPa3OjbmQgsoUGGM+Nj9hf0+10oiUgGxBq5ShNmNSyIjhtatHKCXR2uBcwDmLILu9SSkJATbrNTFl8bzWGtfbjCaoLM/NQwqNEtnU45O+UsimLTHkSSEx0x+10kgpiNbnex8+cjLJNFEfcgFTm4KiUQSRsNEyDIESS+Edu4sKV7a4zcCw29APA1IqjDGUzRhdTVFaE2VAlgXSFKR95IcdeqINtHSs1RLvHdvTU1ybNb6iaDC6QIqIdz3aRYg+mw9YRewDoU+EPlN1UD1SCZrSUBUFSkqkj+gkcK3Dec+2zTbttu8IMRKsZ/3oMaFb0u1KdFlhvSBIhyoqUAbRjJE6YiqBEQJRK9TKIo1iMV9kdKRU+OAJXUtQAyJFvIOQBN0wEG3krD0jpoCyjugTqZihxYh5UROGRG8dlxtLYmAyhnI8YTG7wVTXCJ+/v/FoxNWjQ5558SXeffMNpHd7DWlGpxHZZTImh/chF1izKYxL5KRElIkkBVpLghOElM0eSI6UBD6krG37CE3+S6BzA6z7JUplNLltW4ahQ/iK6BKPHqy58fQ1FJ4P7zzg5FGP8TVXbs1o5reYHjUM33/CarumrsYc3R5z7979TCHyCSk1m13HJCmUUNh+IHnHzm4wIaFioN9eEINHTRLKbUm+JQbB9PAW3RCpimwyIU2JUoYULUPXMl+M8cOaFMu8J5YJXRSINBCi540ffJd/9ad/Sj/AxeWaZ92KGvit/+bXefODExZXF8RNy+Pzc/7su9/m1bcf0dp8bvzxn3ybGOHRoydoBIdHc+58+JgP797hJz/3HA+fLDEE4pMlVXXBjetHvPLOGVFmivDpckNVKOpC8rNfeJFv/uADvvCln+PakeCnPv8prt78FJfrDf/yj7/J3BhAcn5+kem8MlEUxcf7nvWOQmmuXbvKux/c5bAEAhwf3ULFktf//Dt85ktfRMVENS75xndf5eWXXmTbnnOG4A+/9gcsl0uaCVS1YTZt+Ee/8Rv8J//Zf87D+w/4wZtv0IxnPDo7pSkU9WFJM5ly6/YztF1HXUZi11MWWcesdMq1hgDvE95/8oYwTWHYdT3WWTY+4GNkax2mbEgxUpYFZVVSG5U10S7ghWC13WCMYtRUNE2VYyWsy9T1FBiNauomR3RUTY2QmsPrN6hLiXOWejRGGoM2JaaokCqbwRkSwTv69YpLF+i7nvXlJcFnFoopJFVT7s9pQVmVSJEoR2NS06D2jBFSlgkElXWzQiakLEhFQ0QRhSMFh9o7qQoEgb22VELSikJNKWfHpCTpuh6CoJzNKJXm2dnBnopZobUmpYAdeiQRXTckP2IcI1IVhKFDiYSWAiUlwtToFBBR4AfwKVLUFaowNE1D9B4vQGnDYiHwKTArJbeuX8MLg7eO8/Mzbt+8wWI+ITy5g6ynROGzpwMFumqIbmD54Rsk29O1lm59zvHN28SYmFy5ytl2jSQybFtGdc2Vg0OGFHj8+ASpJPPZjCtXr7E52zLsLHazA624XK2otWJcVZwt1z/22vuRGq+b16+gwgFJlJjkiQTG12vOlxuUkWyM4PGjR/zGf/+77AZB3+6IfqAeTUgILs4e8O985Sf51KduMTEGIz2LOheA89kIYySdzWL/ZqQwyxPOLh7BxlKWUwZZcN7ByWXLeDpjOYC42DGfz7h45112dmBaFzRSUonIdDSlKSWTKmGDoTIFpe+oiwIfA6XfIm1H2UwYdh1BFVm024xZXDMsNlvWnWXeQDcEdi47zSkp9lQPDSFlV8A9wlRpiSQx1pov3mh4+cXn+a2vv8G29ywODpg2DVcPDogp0A8tf+Wnf5JCG1Ta0AhJLCOFFjx4cM7qsmdea55+asbNwxFNMUYKWHYtWiu6PlI3BWddS1MWCB9oY08Ijicnp5jxAhUsZaXZti2xnHPSrimFojSWbXfB+NotvBDopoHBogXZSl3kHDJvc6HgvEaJAFIxXRxjtKHbddgQqYpIFOB6SzN/ChMHooxshx21iXnCIeDwyvGPvVB/3KvUBcSs75JCYKTBlBKjDEooQsoIV/QDbnC4GEjJQfL4YLEuf/ayqqnrMSCJIWH7jq5tQQQOlcruZcnvJ2ESI3V2PlSBrosMg6P3YBG4kEAkWhcodMsHbz7m8194mloaFrNDvvDMT5CiokgFzfjzDDgiNRHBdliRkuNs9QihJJv+YdaApYGzB6c8PFvR2pD1mGWBSIlA5Hyz4fTJQy66kN3vBNSmpC4LjDIYbfKb+w2yKjW10aSZxAbHditwHxd1ZTaFFwIlwEiJUZKosp6LGHJeRwKKvdNhENl2LzMMQObm1ifB+eaSN17/c6Zf/KvM5zPmk5qL5SYX/SIPa7LpgqKsarRS6CiRCowyTJop1kaGfqBf95AU9z68QwoD58sVRVnTtZ5CKwYbOL/YUZYlphlRGMFqe4lCZIFyWdA7y2g0YogWGf/vVtb/f5eUEoLM6Pr+PSFBh4gImS4rU8r3EUFV1jR1RT0aU9QTlKlxwxrrB/D5kJVC4PqOsw/vZk1QCCQhUAiqpqI0ihgctrtADQ1KlRSNykXt5QVdSrTbC9rNEpAU5ZiiKagPjqiOrzFuCsZ1xdVJhZADy/Uj2j5HbuwGj8OCuEQWmq1dYW3ChAGlFfVoRCqzeYLfhKyH2A14bxE2ozkuxYymOkH3YEP3ZMfyQ4kwiupgjq4qdD3NvlZdT/CeIPbUzLJgmEqEGzh58C5CRlRVkMoCJadorRCypx9a7MUZsjDIsiSVDrqB0PnsmKklA5aOEZLEoh7Ta3LcQhfRa0+5hQdxzXe/8w8pExzNjxCq4rHdMH750/j1jt16DSGShkgYerzdIJKkLitiyuqwsHHs2kuSb0nWkjqIPlKIEi9hsANCZTMIrSTJBdxHlqIfKc8/wasc1djOs1ttEbJAaomPjtWTNVNxzOvfvGR8VGNbwcF0zLXPHbEbNgxt4N7JmvH0GjeuS4K13PngIUY2KAy9dYQQmO3zLfvNJYWQ2OECwsAwZLdOEQO7y8fE00coZZChJzjonUdXs9xAx0xvGx9exfsNdrni9P57OV/KNOjRMaP6BsjA0LbYesbvfe1b/Nn37tGHgbpq+M1/9justwNKV9h+TbqALgXunQViPGO52WXqlpRI01DhWe52jKqSxyd3+YOvb7l7cs4/+e2vcnz9kO++8R4Sw9WoaN+7T2cEtamYjkZMDg4QSfL0jev84be+y8//9S8THPzO7/8RJ5uO8pX3CUJhXc+9+49xNuGloxkZLpdrfAh5wOwcy15k5sQQePmv/xyrt9+kqhPrzrNantOMau7+4Nu8+OKL7BzcOpjSuiV9v+H5F25x78NHJNXwaLklPBlYtY4r8zl/+Lv/G88/9wLr9QW/9G/8LQ6v3+T3/sd/go8XPD2dc+/BPW7dvEVrLZ/61AtM5477Jyf0vUUkj/cDMgmiDf/Pi+z/4+tg3DAZV1nPKgQhRZ4ajZiOSpQS2CGjWpP5iEIbJHsnYSEpi5LBDlycnTEfVSwmDTFFFtevMplNGI3KHF+x12mnBNYOGK0Rg0W4gSSXtIOlW27Y7Vq225aUwDlY7u4RSIxHddYz+Uyxq6oC5yyjuswmSzFHjGRdaKIsDHWd95F6PM4xJE1FFJLJ/BA9GlNXY2wxBhKmGBFTPlOKqsYUY3wMCCNJ1iJVQRHjHpWPpGgR0qCVQWNpV5fZ6EgLtGlwfZephikQ7QB2x2AlRTlCiYL1k7eJQjG9eou6HiH0iOC2SCVR5ZwUYWIyvbjvt5RlRvPa9ZJCSspR4MbRlN2TB6wuPuDs/gdoFMiW0XSBGU2ZXrnK8vwCt7wkIRjskJ0lTzwxJpoqcPv2Df7hP/pfOZ5MuLmYc+f+E5r5mOWqI5mKb7/5NjFFfuKFFziY15S14t37F5ytNrz14DFt13P94Me3ivvR7OTJDlsp9QSTg4oVifFkilAlvdsxbDuW5ytcMvTtDqLls7eOON0Ggpa88KnnqStFLXqaKttbCyIxeMqmpm5KVqsVH54u+fD+I7qup+0EIhXIZkpMEaMkMjjm2nJ1XPLOO3eYNSW1ifRDh8WCn+Qgtf10oK4Nep8fVBiHCRFZGJQx2bXQOqIQGG0IQ0+/WbPebJEJjFQoBbiIEIqqMEiZbYCdy9kxwTuMlGgUjVEc1ZrPv/gMVpZsuhyul/bubuerDaOmJAnBatXSjIq9QYjn/OySwQeUHrHrHX/yzXvcv7Xm7/3qZ6hHIzbrDSJIlJKUOlHWBe16jS9LZFIU1YjV7h4FArxntVtzfXrAEDrajUQUmj4G+jZhh6x1m81mWeMkLNvtlivTks5KbEoYcrHcWctoPOfs8jGj6ZwmFGBKBJbeDWhjsNax3lkWFZgYaZXM7pI2MgSF2O0+cVfDJDIF7qO4CSnzS4h8CP/FLIgQIylGYop5Te4DA53LWRLG5PetG7DO48OQJ4pCIdmbYWTvVSKJGDybbZuNf5Qk+oj7yN4+CSIRHwUnjy74/IvP89kXn+fp6zfoLjLl0cUBHwNmNEWXRc7UGAx2cLhdmZ3hyjlt2ODaHe++/R6dj7iUtRYxJUr90SMucoZIyuGGOum8QeocZCzRKJGyPk1kq2qhItoklBEgIwQQSYJI2eyDvR3/PiSRlPaZHMDebhmR9SnKACJnfWUULvKR1WBMgW27paiKPQKXEcaYsvlH2JtHGFNSVey1AQIl8/BDCDJNU0DynrMnl/SDozA59y4m9kGS+X7ubwcSjUARo6MfLEOCohph7UBdFxADdhg+0fWaV1DaO5SAUpqQcm5XCDkvMYYs6vchIIX82CHP6AKQaKkRoyMKLTEIrG/x3ZoYLb3bQEzURQn7QymGQFSKJBW6KCmrnHFVTBeIvetYcG5vglSjjKEeTzOFpaxACUSpSDob6ygFum4g2IyK0ZOcJYmAKCRmfoUiSkQPUTqsToRCIaKArWeIITvMmQJvLdZatm1LCCGLxn0gKlA6orRCWxBNDY3NVvU+5AJOa6veAAAgAElEQVTJZSQzpIQoNEonZGlAa+xmIK02JLshCgHO4gfL9vQcKaFZTKivVMgY8/6BQE+zxXFrdwgfoZU0UhBTwHU9orCUwtB7i71co/zAg7MHoDVxNM97kQgk1/HR9EP4jOxlg4FMw01JEHZ9dq7se6y3RBf3QvMCYg5Qje6HVFOZgBD2BdInfw2tZTKZ0BQlg3VoDSoqRlXFdrvGtiWXrkXXgdgI7nzwEGlmnD84z3tqF5hVM04en7LZbKhMfk59TPgQ2G7X1NNDlMwOwiSd5/Ra4oewb54Uve2wdgASzvZMmxqfClzfUmkFKaGLGi8GpMwubX27pSwFQWxodx2NUSgpIQYG77DB0g8eH3cYY9gMjgOd8x533lEVOeN0udnQjMcMLscC2KFDKoXeI+gpBk7OnlAUBZJAcENmAojEZddSCgnSUBWG6Uxx5+4dRi+8RHMw5XK9YTKe8vjeBzTjhqqHlz/9AjsX+N6rP6CzFh8iKelsxqIUaZ+dlNif9bKgmTSMqoKtEly/dot7H9xjMSmBRH1wnffu3mc+HnN+dsbtFz/HZrumGI9wNtvwDwKcVNy4dpXP3X6WV994AyU1y+UZq7bjynLDT33lF3ntO6/wxmvf51f/5t/ma1/9I2bzGXfu3GFrXaZ1bjYYEZFRMq4bovjk1+3ZZsti3iC1pB5VGaEqssFTVRXsRI9UOqPxShGCzfuysyAiBpgezqmqGlPkKJp6WjEaGwqRSNaxWm/xIWvCBexRbRiNa3bbDe16x7CxOJ+pbUJJolC0bQ8SRuMSZfL/nfZ123qzZSlWKKkotaAsCvrB4XxCq7yHSCkYjydIHRlNciPWHaw4unkNtysR9ZwoDbIeEZOgKvNaCf0mD/wG8P0Goww+CYqyIqIQMeDtFqMl3eYUoiCGKc5aupTpzrbvCH2LTJHz5ZKDw0Pq8ZQoJK7tQBW40QVeQFHNabcrqromhoCUBZ1XBO9wuyWpsihdYMoxdTMC12W3aW3wQDOZszq/pDQe224RwXHe72h3O1TymLLJhmch8fjBQ2znKcKWy3XH+8uWVdujVGQXLGcfnPDeg4c47xmNKqazCWVhWG1aPjy54PV7j7ncrDhZ79BSUv+/oMf+aFTD4KlNza7dQHA53dr3VJMFcdhRmobv//ldYizYtC3brkUrxfffe0St4R/8B7/GU4c1jZJoWaPLitnxAiMjur+k1oFYVIj1BWfvv0dTlOgkMEXDyTbw8OFjZpXky1/4LKKombHhqO649iu/yPe//q8Iw4BWCqM0KUbOnpyw3XWkq1OevX0FnTyN2uHjQD/0NLXBiRl9KmjtmvmkpBnnLITVco1Rik27z26RgsZoOpc1XpPxQe7Et9tsXR0cV0eGK+OSn3zhGofHV/jqK3dYdZamqhl82BeL2dHGaMOjR+eMmocsDiYcHUwoqyIncEvJmx8+Yrm1bDaaXbfl0Zeu8txzJePJiMf3T6nrBfV4SoiJvvPoOnC+XjKez1FmSre5QIuepw6eoiokRT+gipp53XC+OmXV9aikuTi5T7HPSNFCcFBp6nrM7XJMaRq08pyuTjBashw6bj71LIWSGXZ3W5Kp0GrEfDynkJdMvGe5PkOMp0xMyWZoiShk01BV9Y+9UH/cSxkJNjtiaQ1ai30SfNqbZ+RDanARFyFEB3ii3FPygqXrbQ4AxvNR2Gz8OJtHZZcgIXOuRoz4YHHCQrRUytCn4WNziYjAhogQuTkLIfH4tOPh3Q2/9KUrPHjrCXXV4FNEGoPvBtbLJ7T9gAuJybhmt2uZLw5w3cCwrJmPxvzJ17/Nq6+/gQ2QlCF6x+ACKQTKUYWUkqOjq8zLEa+9O2fbXSK1yIeJiChZUeuSNJpiY0f0kWQCQue1pauAGCKEApuGvTuSylM3ckBiqQQpRYKIBClzblQSBAWlykih8BGVPnI43OdyKMllt6bdrrh+tODBvXuYegIkAp66GdG1G0wxoggSU8BIa5Ca09NzyuMxpRZURjFuBN3KIWViPBnx6PE51keQkl3f4bzDGIOS+RCJ3tG2a9bLFU2pOT2/ZNe2zGYb6mrEZrP5xNcswHQxyTRjLxicw7pMDQkpEEPIQyByi99ue4Z+4Pz8AoGgqitmswVFWRNliY8Du90aO/Rky3aJ8wEXssX/WJfoqqZQBckFdv0ZQkrs9mKfC9UTnP0/iXuzX0uv88zvt6Zv3NMZa2RVkRQpiaZEyRI1ua32HLgDBEEaCIJ0kM4AdHca6c5NgNwGSG7yHwS5yF1y0TEQuBF07LQH2ZbsSJapiZRIUZxqrjPu6RvXlIu1i/KtGID+gLqoc+oU9t5nfetb7/s+z+9BBYmZzokqEEJDGDVtf4ELlnVuEGXFvekutNtHlCpQpiKrFaGAq4vPMJks0EYy2J53Hzykuzxj/e6bmMUCUxl0ptDznHBpiSHdb9Y7huAIPk11LC7l5HmBGgWcPkZmAllUaV2NgWBtepAjECKgM5PCtQ+mIAX92ZKxHVgvB5zfNVueymEE9OtLssc5UaYgZpNFyk1E1TVm7zoiZmwvWi7WT3BdS8wLisWE0p2R5wqZW7yOuG1L7HvYPiAKRYgKU3ni4OjPWrAx0WuR1HVNXhSEIsOOLW4c6AfH0DsGF1BCoJXbxWAkQ/vQdQm9vCORCiH4O2BrcPrwlHDoKfOS28+8gLM2ZeAYzWIxZf3gHC0ld1444uJ0oB0047AmrHPabsunXzpk7BT/9b/4F7zxxpv82Z9+g/fv3yO6SL24sms+gBIDxIa2XZJXmmAjZTmn77b4viM3BhlHlB+p8poyDKzaSG4y2nXDYpEhMEzKI7Z5g+97QjcgdMa4PaWppgTf88wz13CuZbTgCCk7T0jWTYsP4INPBcTQ8cKzt9gsl1yOAmFtoiETmdUVhMBiPmG16eitxVpPbTIy5VgtB+Qu69PJ1MyVgIqO8yeXGJXx2huv87UXXuXrv3yL+w8b1quRf/wf/QdsRMb/8N//Txwe7ONUTqBBa0PTDyidfKkxJIruOA5oKXfZpVte/94PCL7jOKv55Gc+zXj5iKLMceOKT332l3nvrde5eXMfE0faztGcrfmt3/gKP3nvA7Y9mMkBb7/xGlfnC27evsbrP/o+L3/ms1RR8Ppf/w0nl0/41LO3kabiB9/+Ns88cw3b9xzMahaDI9MZd6NPXlo/sFquk9riY75u37nB3rzAmIy6MPjR0jYdRV0SCchJQZYXFHWJVIqi2icrcqRWtNsWJRXTSfJ7jaNN1gvnsZuG87ZLcQ95RiYEZ48eIwIorbA2cP4w4K1jGB3N4BhGiykTYCQ4S10XSBmhaxh9ZDNELlcNy00qjAbvKeuK46MDMiGYzA+YH+5RlDmF0ZRFwXw2T4RaJdFKMTYN66EnD1AVYJTGdxe4scfZDju0CG1SFqNUiO6cbdtDCIwCHj18xKSueeeDEx48PEUHyHPF5z73aWbzKU8uTjl89g4RiahqhM44Ojwir6bUi+sIXWDHHqU1Q9NgRMTM5swni0QYnVSpwVVMECHw3X/7bW5cv8ni+AjJSL8ZaE7eY7F3gNYVkysH+NsTrgJP7r6Ocx7XXfKDv3yNKjMsFiXFrEPpjBgEwoEfe77/szMenZ7zW1/8NH/1/Tf5k7fuYb3n6GCPT16/BXgu1hd4H/nT7/+Iuq6ReU69NyWbTDi4IlJk0vL8I6+9X2iLNkrjhzahLPttyjnRHqEiMUoenax4790P6J1PdEGl8TEivefa0ZSyNGS7KUO9f8A4Ws4f3qOeVswqhZ7tMbYN3cUJhwcz2qCx3UizGgiVYtln6UULj9aC7PB5lm7k4s13WW47hNBooTAyo/OCPM+QEkbn0ZlGRoXtGsp8Tl0r8uAoJHgnKcqSujSorCAImM72KLJHVFVBO44wwlMTT9ihw2ujUdOKoY0MrWVaaG5emXHlmed4eLbmshm53G7xIRHzZlUa2bZ9j3VpWrBuO8q6xOSaPM+5cmTYtD0Hs4ohRNajZugsTy46bl4fqMuSzG4YOwjKgFRMD48ptSSfKrwXBJmjhWE23SNYhxsFRmbp8CEje7MDpNiwHkeEVBipkCbDekeRZcSoMDIS2NEcraPtOvLFLSRJpzy4pBvOMk2mMoZ+CaInAKosdyF4kcH7JIXTAZF9/IQ4oXa/Ntjh/XeHK0kyIO3w6SmsIgHn5c6TBGm6Egn4YLGuTaGeO9phgqmkg53YeYOeBhL74JHR0w8eHy2BiNQaNyYt+99OcXdEVqs1b7zxE/bmh2BbpMnpe8dsmoOw+AjaZFgv0VlN11uiC+RZTRws9++fsm5Tp/cpyj3uJlLOeYQPaQK88/Nk1mDZoe9jQIiAEoYsq4gu4F1MEVwhEPBoI8EHpAWTCbxNGPO/bSkRAkTcoehlopwLBQpBJEE3JGl4lj7fp3h5GN3I0A9sNhuUlmij090mBFmWMwwdwQZ8CCglMEqhdcHQyw+T6jtrEcGS5ypNN2SSXlnryPIiSUDzjNCnptE4dFycn6KMTshaN9K0CQJi7UimDUWefSzr9G9fqWMJ4Bm9wMaYSFvCp+BpAMXTMMGUhRbThFUKyTAMbLaX5GMLKKy1DGOfEM67h7BRGr2LupA7yYobWmJwjEOPD55hq0iNiRQUGk2GyAUqTwHj1g8M/RbvRoSvkd7jfEd0HoVBTQukyZlNpmiTcWXvmCzLWI5rWutwoU+d42ICMeDdSLQR4UWKyvApXDXTGi0EXkk8oI0kM5pMq+RLYCdxdcmvEJzbdU9lArlUEgpDDDB0HfjI0Hb0vd1lLyb/oDGKTKcFbYzEj55xGPEeslySlWoXwL0m9B67HrDbJViLETkMMfnzPDzFZLugiFEjFAlNLUbSM0QgpU577C5QwTqH8h7hXJIi2pDgKjFRdJESJSIIn4rbmOTTQQiiiB/uc38XxsSzk1OKImfsLGV5QQiCZmjIbYnzI3ltiEQePVhim4orN64zjJqfvvs2Xef5l//sv+Xg4Cqj9fz6r/82/8l//I/45S99GSkiUpVMZ1OiypBasV0+hkzQdI5ST3DKIJRHoVFagw1IRqK1tJfn6PyQsR9wtqNtBvKZwZgpJq8xO9VK3zUM1jG7chPfwzh6ylLz/C99ltde+8t0T2qdiAx4hmHEZOpDeag0JTob0FrSNi3OOfqupS5zQvQM48BkMmUdGtphoJQK6xK2PEXRiN26CAgBjy5aciyf+/SCn77xNpOs4v/69l+wuWy4fbzHWVQUecHedMZmGFKciYhkWtH1/W7tqw+lmI6IlgZrAw+WG6YqUleC7XaJbxJ+f68uOV+umS4OGJtzuu6cdnQoHSmUoN229IODoaVpek4uliybNS+/cIe777zNwd4hJ08es79XkWc5P3j7Z0gX+NxXf4Xlest0vuCN7/+QbFpTz6acNh3TacVqvcG6j18ee+PKnLzMCHHXhBVgXWBiMoRWFEaTFzl1XQNgMoO1IzJaMhmwTceqa5JnM6T9RkmBVgo/jFhr6S43uHGk6Qa6bsBoxWRS463DDo4QAmWRkeeGqiwREpq2o2lGlEoy5oDARSjqkoPpFO89s0XF8ZUjZouawpSUVc3i2g3wDoYt1vaUdY0uy52/PU2tkMkag5J4P+KHDklS8hitcKFnbDva5ZrV2RllWXF2cU41mfHd773FYjYh7uAde8cHZLlCVAWyLDi89RyT+RWELhDZAp3XqDx52IpyThQKHR1aG8rFjmppFMN6g1YJAW+7Drt6hO23XNkrKZTn8sE7lNWCqt7Hzw+JSjH6BkmJGDY4EVhcuQkq5+Gbr6Emc6p5DcpS1VPuffA+uSmwgyBqgTaGF56/SVEV/MUP36QNjpuzGbeP92mHLc224flnn6UuK84vLzGZoKwkz125jo+S9z54wuVyif3/oS74hQovJSxaBrRQrDvP8ZVn2TSn5OWCaAPvvPcO9x/2tNYRo2Doe6RU/O5XX+FTL95i7GBdFEg0f/aHf0WpI9cPcjITmeWCXDievX3M/ryg1IYHawuFwcSUtfBgCbqe4YSk7XuGJydEIm+9d492PSBipCoLei9xtMR1Q12WtEOHqSoO5nMmxT7KXjLEFHggQouKkrrMqIsCN2x4fLFi1fZUZYWRiq5LyFApFVKm7JWm7xjtyOG0JNeSV19+jutHh7Q28n+/9jbWOa5dOWRS5VxuGjrr6X1E9JY886zWDTevXMW5gcuLc9b7M6x1bNqB2WzOs89cR4T7vP39dwhK83u/7/jEzd9mPjnkmRc/T+/Te3JRJ5mJ1kwWGTEmSEipBEJEiqpCKsncFDg/ImMyaB/P9im6JQ6JyWsqqeiGEVOWXFxeUpmCXPcINQGdU5VTun7EVTXbbY8BZFUztCvOnWOiYWsHolc0MVAGCCisa9jbO6bIclLawsd7ZZnBeUewqfARSqMzmUKLgyBYhXVqd44JqWMuZAqqReONJ4q4I8DFdOCNAiEkmVFkRiKNIBqFEQaiwntJdAELZEjy3KAzQbcdU0HiU4FXGUmVaY7395EiUJYTZF5wsd2S54keOe4IexfbhoDC9SPTekJZpaL3/Qf3Cf3I9RtXePvxE0afDLqSgNSSEFIKvNYSoUsuL8/wo0eJdOgLKXUQLxRCZszLCaPTjHaDHIYU9RAhz9NkEJ28WsEmJKwWEqUT2tyLgJQqQV9I3jhjBOwgFdolqVyMuyJ3l/ElBATREbTEhcDhlevYmEKec52RGUlRVAyuBRHIC4NBogvF0d4V/Jh9eKBGKGw/Mi8mXJxfsrpcIzOFdQ6tFPPZnPcePkwiQ53k0ovFMcPYc/7gTfp+F9QqEh5Xq/xjX7MSxerJBqklcVfZhhDopU0TwuBACvKyQIjUiQeI0aQSVyawShgtRgW0luT5FCUkmclTMyVGXEgNlXG0FCEy1jFJT1WOdAFlJFJlyPkUVWj0okRoQ3SOzcmS2GzwXUuwDlH1SJOjszI9UCclrj0juHMusxkzU3FmPUNjOV2tsM2I3y4BS3llkSYPo8NuxjQV9RGkRhYGIXr2rMHHiN15mGQIZLrgaQCQG93OXyAQMuJ8ZBxSUyHrJXn184JWSElW1PgwECuLVIE606kRUigEmhDASEGtSrK9OVJm2HYkbCPSLpMftG0gOIwyBO/o1g1xHOmVwOOJwaYcPAE6M2SVQQlH7D2+9dgu4ke/yxoMNM2WrmswucJkBd57MqWIOtCNNsVWhDGRU03S7pZFxjiMOCmJPqZG08ff3+Irf/9VKnGAMQsWRzOGYeTO0ZSL03PaVST2kvXlJWV5iLSRHIF3mn/+X/03fP1Xf4t+lGy2ESU0202LEAWHB1c5P73PP/kn/4zf+z9/HyVzxq6l71q0PCSoAlXso/MS5JqxWdONHUKVjOszVps1+9k8bdnOs109oVt6lOtR5jbzw5uM4wVhdUFsHNG19JePqfavEUXEC0XQNbkpQEKhA0trk7ohEygRqKJGZZrrh1epzs/ZNhtuvvwijx4/YWJKFvsTRLCcXmzYbrYMLpJngstuTCV3TNlsIgRGH4nWkU0zPrhYcmM65+7dC75y82VCEHzt01M+OIf/+ff+DTePr/K7v/1V/vUffIPOB4wpCCFinYcY2VssWK1W6XmnDT5YpIaus5xerLm9N+X+mz/GCEFhphxO4YMnPY34Gc9dvUIjMhb1BLItjx/e402/5flrV/mrH7/LZ3/5BW5eP+CDe/exjWfYrJhVNavVKS+/9ElmJXzw6JQsLymP9pCmwLvAX7/2Oq+8+ir05zxuRiKBhw+f4HygKD9+NUyuBNgeIaAsp+SzgqPrR7v2a8p3VEJg2y3jOLIaBoQU4MGOltEm8JgxBq00/dAjokto9NHhrEcrnYi+SKQ0DNYyXGwwxuB82qujTRC6BKiSNH1E1zXzvRl2Z+M4zDRlXXGwvwcCvLUMfZ/yZ70j6wfO334MwZMZgckyrBgRvgAfCUIyDg47bNNUvMwThCUEvHP0zcDJkxOGJsnsTS65d/cMlWmKeYVF8uynP0VZlxweLpjPJpiiJCuneDVB5xUOxWx/n74fsAEwGVk1J0aBKYrUwNJ5gmJphbMO1w+YTCNioDl5nPZwt6JvN8z2riTVjJe898MfEEXk1u3bbKNA5hV5keGDQJuM0HdE56jmB3z5138bYxTWddSLA+SVl+jaDj+2dM0lL88XKGn51v/7JlJkFNrgvOede4/Ymy1AGt589y5EqMuS/boi8wXvnjziwcUZD1dp6HR1Wn/ktfcLFV5t2zOPEZkp9uopSmvKLMP6ESkE9x5vWHUR50ZG2yOloM4UX3jlZepCk2tJYy1PHjwm6DmjAicAPyJNhpaezeUW5xJiO9NpXCHFFiUD+3VBr02S0IiRxsIwWiD5rby1uNFjxUg2zdMGKaGaVKALgkrTq0xpnCkQoqMoCvCJ3FKUBaMIZIwo1yGlRmvJYjrl0cXFbpIQkUojiORZxnM3r+FdoHEj33zjbSaTGcf7Bx8G2vmyQAh4crFByXRLO+9x0SOkYLtakR/ss15t6EzKc7j/4CE3n7nJndu32Hv/lPNmZAyKR6dbTHbBvNaQC5wbmOQZ221DjGkBEQVVXiZfjaoQ1mHKjGxsECGn73tcTM1yaxtUrNhsHlPoMo0nxoCKln6wqJACRaOIGJ2oPyfrFfiBUkoKCStnGbzDKEUTIqFf86Rfc0PfRCqNFJZVv2FrB6aFYPKRl+pHu8RTzbNOxJ6UISVQWhC9IgZLjMm7JHZ+NiES2VEAWqmUR2JSZlWMINXPCUBCRoRKnXV24dliJzV52oKWSlGXhvXGEYNIh+kYKXPN3nTCzavHTEuFCEAIlOUUIpQTQ9f1OOfJsjQBK4sSJZNEsGm61EUdlwgRqasCebnGhV1A6M4IHCNoownR07XblPsR0wE/CEVMtmGEjGglUTKn7be4ISCERoX0npQS5LkEpYkqSQgFEmUMUipClLv37HfezfQZpGmaJGiFFk/zvNK0S8aEPpQy+SuFEOmhNAbyLKPe0TOVNOS6oNddIjAKAIeU4FxAiCzJSKWhbXuWywYfJaMXTDODdW5X9FqcG3HOUE8maCkpigIfHCqrKMuBth1QEoo8p+k+fjS3EIIgnpI4/9bXAxADIiT/nCCto6fFh9gRJp/6m7yQaFkglcJojZIKucsliyEgdlJPHzwuSlSMhMwQldjBUzxRSJQBaTwcKXRVEgaH6BqiN8RWgFSJTR8k0ctExho96C2Z9/i2p6OiHzf07Ui/6hGjJw6bFBruAbuDhXhHDDE1uYwmElFOYYT4ub/XqER51EmWHYlEkWbHH8rtAohoU4xxDPjRYpRGZTVFvUDvTSiaLc2jR0Qd0DJ5IIOTGJkO6tKY5EvLJSLLyAqFtJ6wHilMjlSBse3T78IO4AZ6qxFqF4Yek28LASIPYApUDsooVKboRYuLCTLzNF5BKSiUgdwgdSKU+RA/5GWED31c6ZkXw1OyJRCehtF+/LKtGAf29w+wLmNoLcvNBVf2HREoJxUqE5Q11EVAFhmLyQKD5Wu/8ms0vaXrPUarRFjzHmMM9XTK+angS59/hQ/u3uN7P/opQteYiSUrp8isRmUlOi8RIjIOQ4JDDQ1tN4BRbDcr9Og5PDrg/sUpmsAnnrnG6vQh+Y07aF1RVo6oHc3jNd5ZlFHIGMmM5uqtO7tGTJqkap1y67wDqT11LTE6gRS225aIYLNecuv6MXWhePTkgllVUJcZeM+maVBCY7RiHAaUFIw2kOeafrRQTKCYkpcjRSG5ul+RGcc3/+p1XvnKqyzzkRdu3eLND97juWdv4kRCaEfndwVEkSbcO29q8kV6yrJASrB2pCgKhNI8Ol1xMJ9wdNUwrSd87dmreHr+/I/+nJvP3qLIM67MptwsF/gqKWLysuaHP32PW4s5d27e5qx5n3v3H/H8cy+y7TecnJ2y9+lbqCLjWpaTz+e89aPvY/uW+WTOzYND1JixCacE7ymKHKUzur8DL60dAwiLztJ9NvQ9sXdkWtP3PWM3JGpuXSGVJsSBOHqGpt/RYA1aKry1eOfp+56qyhBCoNNpghgEPgTOL1eYPCcCq6YFJHv7CT2f5wXCp4gepERNJbkxaE2K4RCRxXRKiIHV4wdJQSQFbkdU7tZbqjJnfjCnmEzQKml3mssz2hCQIsn8YxQEOyKAh2fn2HEkM4bVeo1UJe/fe4jzCRJ2+9YR08mUbJJx4/YV8qogyytkXiCkIs9zZDFDmBxTTkCVuG4gBIPRab/WWjFslxRVvVMGScKOcEhwiBjJpQaV8rRiESjnx4wEdAwY2zFut6xXK2699DJaT9hePCSvJ9TTCUOzxnUD+WRK27XoGNmuNzAGNAFCi2+3zKsFh/Nj2rElxmPu/uQHDENPMdvHxQASrICm61j2I9E57ly/iXeei/UlAs+T5RmrYcS7yLwomUjJtdn0I6+9X6jw2toGLw3lKAhZSdtvGaLgwcP3qfOS737nh3SbDX7sUAhe/eKrvPTiK3R6jkUw9o7FrOLqJ55DqR0ad2ioaBm3DzDKsRpHjKlQeYHbrOi2a6z3dJ3HiEhQgiYIirJkM/b0fU/XtoRxREvBvEqHq74fEEKwqCXDZoPoV3TSk2cFMWYIHH4YOTk/Z//4BlVdcXp2Tuode6ZlRodKh+kYUFIRnANgsCPJNdTy9t3HLKZz1qsLFnuH1NMFi4MrbFcrum5DiII8K7l2lHP37JKmc1RZ0mAvt1vu3L5BjE8fGiXVYsLR0RHL1ZoYIreuLJBnDcvNlu+/cR/GnkUtkbVm//oebd9idI2Onot2g+0ce0IgJhNUjOTVBLs95d75GXFsqCWcrC4xKnJy+hhBoPMdqsp58fgGfvCUsyP64NGxYtU8wkwPmZaGeHFGHzwmNxgdaeyGvJzimhUuRIzv0TqQ49H9BUM2YaELbBwYt+e8frgW348AACAASURBVHLCr1373Y+8WD/KJWREZWmiJRRI/RShniFlgdYRpQIyarQUBCMRMqBNOsBpnYEMBBFRO92ij2lqo3REqAAqIo2AKBEmoVwdERUVaIU2hmeuH3KxeszGeQSeWSG5dTABDIelYT4rCULR9R1FtZ+Kg8EzDrBqOkahIUicG/FjS5QCITTODngpWbYNN44XvPv4lLCjKO1I5HgcaM3JxSmX5yc7VaUmIvEh4olYn4oRrWsEOW2TMVqPiILoFCJopAjILOXqRC+ITmJ9eh2ILEkKo0VGmbr4MSCih+hQUiCjSeHKu4IsEohRIlAooZnPZ3ifDqGF0ZRZQVUkUpK3A4KAVgZjCoYRwjjQjxsyDpgdHHHr2jEny0tGobAhIHVBVpaEEGm2bfLjmUhZ5kzqirKeUmT6w26jLufM85FheEK33RC8572Hjz/W9QqJKhpFotvJp4adsEMux9Q8IID1qcCWwSOVoMiLDyMvkmQ2Gaa7rqOLEaUUeaYRUqKExPnI4Cw+enosez2oADETRCWRtSIKx9BfUAhNrgteevEqqIy3Sk33uKSrTJKxxgxQ+CFBhPwYaYeOLo7oTc9GbrGkgOboA1J4qkKiokYacNISxoCXCmtHnPWI4Ci1RmpFUedMCMRM41SZLCHBgZZIo5EkfLbUGYOLjJsllXRIbcgWMwKR2FlUVlIf3+Dw5m3WzTlmKsimE+pZiR8DhZ5z5+qLCBFYbs/RStMOFwx+xJeBbRwYtzWid2QXlvHcYvsRP/TgPXEcUmPNJRn3U1mnkQG7GnBaIE1Aeo/RQC5RPk3NlUlkND94xmXLYB2r7SZ5gHr38wUSY4qPiOD9LhojRrxIAfCuc3zc172fnvGz7g+4desFvNpy9epzXD4I6KJEaIkqHNPFBNlF3Gios4Jf+vzXOT1v0gRcCEbncS4VyE3b8cpnP8u9997k8uQB//S/+E/55//d/0hWzdDigLxYIFWW5KjGgMowQbI+fZ+h73GyYDqZMw4dY9PyeNgwqStyJTh58D7P3H6OYRgweY3QgrIQ2IcfEGLEO8fYO/J2wzMvf4bjG7dZPbmL1jl+lYorEeDvffFzHB9P+fGPH3Lx5JTORnKjGQfHg/cfMZllKFnSWcfNa0dcOZhzfrHi4cmKs+VmF3fhd1JamFU53gcWk5LzZQQRWMwPuLy0nIcJD967x7Se8NLta6wvzpkdX0/agp28PcaY8qMg7WkixXzEGOn7DiUFWW7IdM5Z3xGcQk73WL11zrRY8uzRGVopPv+FL7PZXPCJX/ocmz/7JsXVPd782ZJMwu1Fxna0fOtHr5PnOf/wH/wOoyr4zp/+EUFpQmzBK7748uf57rf+mCfnZ1y5eYu9wxcZzx5hhzWDkQybLdePD3h48gTrBtTfQY5XVmgkBX038mR9gdASISSF0WitQBqatqNbd6lh7uwuEkUSoiRYS4w9mdHk2jDNDWOfpMT9GBIEY90RhMRkmmmd0Y0jR9ePMUoxn06Tb9U5jEmB4WVVMSlybN/SbzuEjwQbaC4vEDvgVNemIUGW5UymBcGNOAR37z1CxgRUWi4vKXTBcttzud1SFIayVCgh8UHx7r3HyEzx4p1jppMJvYvMDg6YTkvKTHM4n+w8Y1kCHSnD4APTsmawPj33NyuK6R5WdOSlYjGvOH3zW2hTkM0OiFmJ1nD3R99mfHCX3nVcufM85+enlJMJ157/dJoyNz1D2zIrFbHIQWQ0mx4jKorFHgeHV5BZicoryqN9fIiYokAj8NHRL7cYKyBanrnzEk0/4lyHbRWbduCgVLSbhslsxuA8d175CmVRcO1TJ2R7C+4/ecJrP3iD7WrD0FpCiPzs3gc4BGMMcHKKEgIhNW6nTpAx4saPvs/+QoWXC557reVAJwLgrM7oRosZLcYUXF5s0pBWJgPC8y++TG4M2C1aGjbbS2R9hNYlEYVSAl3XBC8RribSse0GCqnJREYxmeCsRcgGH0a0EGz6LW1q17NcrvHB4b3deRYiy+2AQFBXgTw3HMxyptMJURqsdTjbUGU5hSnJJlPqweG8pyhLtutlwm8KR1UIunXP+4/OUxhsSNkrQgjEbvIVYsD5wOVqnTqSwZNrw3bbYExODB6tM4ahxeiM3BhEURHHDmctzTDSNC3GZPTDQJ5nSRZHoKxLBFBmmjKTOCd542cnzGrD73z1efowMLgeJzNijBglyWKGiyPDCIgN+WTB0Gxx1hP8AEoChrZpKfdnGJ2zapfU0yOmdU0Ihs1omedT+uaSJ8s1mcoo54J2GEAVZK4jjAPnLhKsosqgKiZ0zQVhHEEqDssFIlqaZs2khGJWs12u2bbtR16oH/VKOVCRQPJjSalASKTQSFQi40m183jtfkZKtGL370h+NZHIcVEALmUnSfWUkph+VgqZCIdCIqNA7L4XiBwdLKjKC2LbIhBMMsO8qugdZFowm9U0Xc/xlSOGoWfbbumajrqcEYLAZBqkYrNpyI1A64LgRRrre08UmuA9uckY3Qhx954RuODYP5jjvaPv+p/njYWn2VvgvcMHTwwhvSehcN7vEuoTDMNHUJqfZ3Sl4QZxJxeMPIXxpaJVEhFRfOjDEckUR3jqiUOmqQ4CLSXKSHznsKMlCrXzwSVgyWgHrAu77C61k1B6TGkwIsfsslaClORVRV1XjC6itCKEJBXOlIQYkCQSVIwRbTK00gkwojXbyxV+dGip2GwbNtuPHpL4Ua+n9sOn1M0UmLvTkwuefuPDv1ZlRlFIyrLG+UCz6dMBMqSpS/A+/T9EoksTWBl98jYmIx067uaT3mFEBpnGzDJE5nfBmwaP4HzZE4TFmxx1/Zgr1/cRztKcdoStZ3i8JIwplsH7HoFnsAlOIHb+qVIbMiWZiJigNcIQRAQZ8KIn4onCglQYU4BzeCI6QrV3HX94nagCQ/c4zXoSthKpJFFKnHNkMceFhOOXJkNnObGM+C41L3prCVKzd3yTg70FN68fMfrIcmk5nFRIEakrSQyRTZfRjStW4wm5CAyTNO2Wg0dtJNErgk2SXiE1MgqUStNzrTNMnqO0SLLhzhPoUwzJGNN0T2mi1KBMum9jR9N39P3A2KX8SCF+nj0IyZP2dBr6NFsPEj01xo/f4+UGT55pmnZNOTV4GyjqKZfnd5M0tFIYJSiiwDnQxvDplz/HcjtSTyZs1htMXtKPFpkr+tFyeHSEUoq33nqLF1/6DId7U1a9Z7Z3FZnVSZa1XvM07s56izIGtGG+d5T2jzii8pp6fo28zmjWS9yw4f6DBxw+e4AuJtSTKednJ1T1lBgCfd+nfLhhYLY45Etf/Rrf/INHbLbb9NxHUNc5N64c885779O1G7zzlGUJ0bNctuzPpwRhEKGjzPf46ZvvsDw/4+rVOS996nm++Z3vI0SiwPkQSbBXwfHBPp988QXavmF1vuZ7b91j/uIzrAbPmw8avvSF23RD4J/+5/8Zf/zXf8P+fMrj85QnFELY+Yx+/vsXO9/xU0+tlpKmbZHSc1hOuf/kPMUiDB03j2v2F3uoTFHUGX/yl3/D+vEjDpoVp8vItJ7w7K1b/PWf/wVHRwdIYXj0+ITv/vhn/Pu/+XX+nz/7Ji8++yyPT045OLjBdL5PJnLeevsdvrA4wPrI22+9yZ2Xf4nD2YIPzp5gMo3rRuLfwZTWGMPY28QCKAyOQJZlGCGJ3tNvO9zgECH5ZJuuTdMmlVQSSklENAyDp2+a5C0Vkohg3SQS5tmmZzqbcm1/H5NJhMpRRlOXJevlhjzP8N6laapUiBCTJLcwODsSQ/IWDuNIWeYJ6mV08pp7x9npBSF6sqzg/r3HXJ6v+NQnnyNIwcPTc7aD5eDKAUYLDvdrxtHz5OSCT37qOeppRew3KJHIm0pY9qY5uTbYcWS0I2cX59y8dRspJbmWRNcThoGsmtC0LTrL0EWB9A2ru+9iLx4iyilPlpccXr3Og3fe5PTeI5QooMipg2ZyeJ3V4/v88b/63xC9ZRtB5RlXjhZk0SHymqBznv/sFxgZidue+/d/zHz/kMOrN5DaoIocnWegaupsyjpK1sszXL+inOwjzZSuKJlJQVWUaUAzWjCGqqjwwbE3n/OrX/sSj8/PuXHjBvfvPeAb3/gW58sNjfdJtyNTiRQDlCrNMT2gYmBRzz7y2vuFCq8T17LpLI83K1698yJ9s+Wi3bI3W2DHSLPZYO1ILuATn/gUbJ7w4PyM8vmbzOsjVqf3UaFhebbkxu2bHBxdReUz5nnAFNcJQ4NUGW3XYgpFlBmmKMiMpsgNzThSKMX91YqIYBgaYoRpVdE3DdZ6JiZ15HPpUAHyvE5/yjpJU2KgqAzLJ6d451jsLbAhyRtC1MxmNdM6EXj+lz/8Dpdtl4x/RuFDSATsSDJH+kCvWoySTKqaGzfvUE8mNKsVfYxc2dujb1a4sWfdtNy5csTDsxXZZIaWgvV2i3MRYyT3Hpzy5OySl0zG2PUc7k9xCO5cPUB7zxuPN2xWHd957T3+vd/+ZRa5YulWaGewfsSbjHZYM+7wtLmaYbuBZmxBCo72rzN4z7C9ZO/oOpPDPQ4nxxTlnG67QUtNlkuqfcnYNWQo8ukB0mT4oHDDSOsGxqGnH7es5cjKWm4d3uCyazAiZzs62vEeNyc3KPI5h4c3sJtzLs5XrHso+o/fQCtCmhAIBUpohNQomSNIhyqtdJK4aYFQGYRuh0VXSJWiDoRO5nUpJIGk0Y9Rpq/JiBARokMokR78XqaiRiu0Bi8sUsF0XqEuGyaZZr/OWTUNZVGSFxnjmAJUz04vyIqcuq6QJme72aCycneghHI6IdiR0VqGwTKbTfERHj28jzI5k6pMONgYGVwgysBiWvPlL77M1evPcHF5iXuUaHYupoByKSGqSDO0zO0ET6KO9j7SjRFnwUUPOGQuCFkq6CIhHTZJwdyIjCgFAyNSSmIUaDQy+uR5ITVMgN30MAUWCyEpC839++8jR0GRG5brBkEyi2+Dw8XIMPb0w0jwKSx4HKETnis3j2naDQ8fn3D1+iGi6TFGgvIQIv3QIyXMypLja/vcu3tOdIJx2CCnFX23odv2iBA5OzunriccHR2zXK34ZPnR5QQf9conOVonj4Ed03RQGoWXpGkHiZ9Q5JKiyJheq8gKkDbirKecV9gAzluGpcX2ESFTTo2zDlyS86UryfScS2HTOIGpNCaH4qomTDR+YjAygyi53LaUynB9YSh0QOWG5cayPuuIfcOwuSAOiQ4WfCoQ6oUmqyWHs4pcKGrpUH7ENWva4FhebhhCJFhHHIb0OoSmrqZQ1bhhoF1vMHnGrV95ia99/UuYvMKx5XJ9yZvv/ph7dx9jH7ZE6zDSEoMinx+nz7Mq0QeHiCxD9qkIVbnmmaPbzKsZk7omywP0G7w44bV33iZYz2hTlpjKSqIfCc4SZSTPCsYgYRgxeY8UET+GZM73pCw8XYA2hNIwChBjT+jHZOTXGqEUuk6I6ehckkO2SXpox4TkL4ucPFMM1jM0u7yqmDyVxii00RAFLti0X+28furvwOOlMsHRjRlSCzRzNpsty9UlmZkgsORGolWkyBWqVHzxS19h0zhMnnNxcUHbDlQ1xOCJJpAZzUuffImsKPijP/kGr3zh6/y7v/P3+Ve//28ps5p8vkConDwvaZoNjVvuSJo502LK2fkpeI80muvPvIBSBVldYcpD8B399oJtc4LXhrEp0M5jYmBoW/aPJNU0x+QFq5NTXNdzbbFHvxlRWYdy8Jtfe4m79x+Q15IjucfjJ+fsTzVuVKgZIOH21SlFsWAcI7/y1Zc5efSEsQtUhxW/9auv8JN37/L6Tx6CjGwHR6bg/vkZD//0W2B7dIhki5J3zs4RcqDONK+/8WO+8JW/x8WTu+RK8OztZ7j/5HtAangHD5k2+J2EKu6KMecSYGO97dmbTaiMRucZWgUMA5949nnuPXqPaS7YdJfc/uTzPPrhz8jrI/R+zbN7M947X/L2gzMGC2LrePXLL9Gtt3z9s8/zJ995jVe+8CWOJhnbs5FHp/f4q9d/xmI+49/5jd/gnXff5h/9l/+S93/6I86XF3zw7ls8d+sGJ+sL+hiR4uOf0q4v1gz9QNt2TKYVAEOMDNYRvcdZT4yCrrcpbohkW8hMAqy5caQbA9u2IxDJipS/1o8j08N98hDYu3acIgykZtWm82puPf2mp7OO3DqKPEMIGNsNfunIy5IQPT4kkJCPnkxqnPW03UBeljx8dMo4WHRRkWWSxUzx4gu3EJ+UHF45wGiVvGJKkBtQWtNst+Aci0nJ5rJBjx2NhdYNiOiZVxnDEHj33fd48RPPMXZb3Bh4fO8RFxdn3L71DNvVmmpREyYVeVYzXjxkWN4nLwpOHl6g4sjJ6ZJP/No/QEvNnZde5bkvz9DNOR+8/kO+940/oprPOb7xDF/9zd9AKMU4WMIwYC8eMzjHxXLDLMt58N1v01wu0Vnkmc9/gcjIH/7v/ysmy3npUy+m5mGm2Tu+gdq/ztGt6+S6pOs6grMEEbH9lr5rkkwymxFEYGjOGZsNXbNh2K547tpNjhf7xC+8wp3n7/D45Jxv/MW32TYdH9x/iAAWVZnuJWNoxoCQitPtRyce/0KFl39yyb4S3Lx5G+k8mci4Nj+iFIKHm0tGG4jecTjJefXWhHd/8te89d4D7r5ec3Cw4BOf+SX+9F//G04fnPHis3e4aDf8w3/8HzK5/QmenLdMc8E0nySAhwyITOKsoY+RZT+wbEf0YsbR3gQXBctNgy4yNusVLgbazRpRpWT63nqM0Nw9WzGzApFXzKc1wY6crVcYKamKLPlbHCAEWVmw7hz7Zeoc3j9rE5mKiBQQQvzQnwLJx+NjwAjF3vSQq1ePUErwzNGcvm148OSE43nBlf0pp8uG8+WaOk+m6BAjSgoen14ynwemO2TpdtuQl8lbkhnFZr3imWuHPFj1XK5bliHj//ijH/Dq565zeH2PoXfcW95lui7JCkOppyw3AzeLKT6v2LYrIrDFcrWeIOcLrly5gfWg5iUielbrlgHQec16taXOF0RZpKwYF2BYMUZHkRtQinLviJlV3MoNmpZHfmQyPSLPJ+RxxphlZFnJg8v7XDYr9oo5t45vsq6Lj7xQP+rlQ/ILCBlRQmCEQIkMETUiasBCVB9mUUXnidLDDveu06AJRArORkpkSHAIUnQVu9QuJGIn51DgJVJGpEg0qbrIUtBiqamMYTGr8UpzPJ8RkeTVJPl6RBq+dc2GTdNQFDnWt3S+JBMa7yzZTt9dTUqenF2gTcFsOkVKmBQG7zL6rkNnEgscTHKmuWRST5kuZgnAESI++uS/ygTGSERwtM2GLCuJoUDg8X7A2V0RF0OayMaUh6dCmlhJpYhC7fxxMuU6iZ3TZHwa6sqHrrf/j7f3+JEtTc/8fp85Pnykv3lN3bpVt7q7uqsN25JNMxTVMyIHmiGkGWkjCBC0EiBAKwEDaCtt9CdImoEW1Gg0EqSRGZJNcmia7diuXFd1uevTR2S44z+jxYkqSsuuRX1ArhKZkXniOye+932f5/c4saXpbe8kpUVHjYsiXOtIt1l+/azfQUzCkCztYbcEurbxVFWLNZLTxQW96IKdyagzH0/7GLNAeU3Tth1sQkiE7yhiT0/Pu79VdoHBpjU467rpQtt0uTtRRJjE7AYh9+/f+8T37Kd/97P4oqbNC+pZQ1M0LOcFq9UGL7ug5ygMOPzUhOx4QDIGipx6JjBpyOCFXaJewGoD7rylbQy0GtuWFB88w65bLmfrLkdKgBBqG3WhIQ4QoUCFvgOyKIETltZvaJAcD1LiQOK1QoqOxnUQZky/0qNxhqurinJj2Lx/RnpWIhxM+wN6SUQWayyO63VF3pRdcPtwysHLx6zKC+rFhmZeoYscVxqU82jjCaRCD4eEvRSzWTO/+IAoCahMh1tvS4eWA1pMl6fXGqTwqFSgwwHDo3tMdkcU5TVVUzIIU27v30SpAKTuch6jKcL3yPNTrk9OoGxYXV9iy5w07hFPx0SHB8hAopQmFQ49ntCIgroqcJdLzKakvljhLUihQUiMbxHWIdoCYbuDHDJCRpowzrrgcu/xpmGzWaEbQdwLGad0Hi9bYxrH7CInzyuqwuGUIIwjoiAk0QGN7YqyxnS03cp88hOv/mjM22885tbdMS+8sMPjB1c0jWRnJ6XXH7Iqr9DeYI1i78aQwXAH7yMur86pqhrnRNfUqyrayrJer/BeMByOef2N13ny+CFHt2+zvzvher2iPxkTJiFNGdLvTSjLArSmWuQcTIdczC9osQx6x+jhPkkcI2XXYNV6h2x6g836kgZBVS7wzQYtY8b9hHE/ot9UDPoDmsMbfPF3/zEfvPk9aleRRSmf/eIdTs6XLOcVRzfGhLHjq59/kWfnl2jnOCuW3Drog3FcXtRY3zAZD7YQJ8ezk4dEUUQSxGRpwjrPCQINwpAFPfYmIz54/JR+kqBUwOxyQe0Vb1crXjm+xcMPfsrhrZf5u7/1df7H/+Vf4Z0nSRKKrZqhrrtwbfjbiVe4nfAb21FLhVEIZxhkEbuHezx79oivfO5l2vUVw/EuT1/7gIPxmP7nX+SdH/2Awc0dpk1E41dUVvCL5TXLH/yIT+3vMJC7/MO//7v8/Oc/542LE2bnF7z8qU/z937tywxHY65Wa9547zH/zX/7X3PzYJ9pEvGlr36TUDqer3IenF5TyU+eHmsay3JRYJxjtV5sfaOSLAs6oq/3rNc5q02F9VBUNcbYjm4pIAhDkiwmHQ2xxqCkIowD0ixCWIFxkuvNGvCMsj5F1YLs8halgumkjzGGtqqI4pAw6mBCzsGmMrRtS+wFWZYxXyzJsh5N0+K85/BoirWWOImIkpis32cwGYO1bNY5Rd2QDvsI7ynXa1xZE8d9ZqtrvIpIxxJrDJHtvNRtVWCKDfl6wQvPHSNtxfysRKmAq9kMrRSXT58yPthjuDOkLArWV1ecPTknSmM2Vc7dlz6LD4fcvTUhCmqkaGnqipiOrbB75yW+pAKKxQzVrvj5dx6wbg0qjOiNRhzffYFgPWcv6SOCCOUUvjdEtQ3f/aM/ZbFacjpbIYRicTnjeH+H2eqKdV5iyor90ZBXvvEVJndu44IeQXrIYHpEXpSYpiEQFmsbmmhIb7CHmV8RpGNk2mNx9ja0NV984Tabm0c8d+smZWN46+e/4J1f/IKTZydUlcO5liDq1DiN+fi+xF+q8Doc7dDWBc42iKjLqDBeYqTnKq86A59zSC/YHfXZ/dVfZbH5C5bza6pnF9y5d5NhkvLEWIrSUTaGd956E6UDdkdDSuOoy+sOP6xanOnwyMgAR5c9Y8uKIBngvSQMO61/1Ri2DF+M9eRli3WSKBI4t0G0LfVwQGEtcRRuQQCe1WbTjXqdwpgOz7vO15igparyruOg1EdSMqRE2A8lPx2WvGlrAiWompz5fEYURUTDHmkSgoDrVcH+dMLueMT1YkWkJQ5J07SkaYa1HbbbC2jrppt0CKjqTj6ZZX28F+wMe5xfXqO04vWfnzIYhOzd3COLFE3pyU1B1jtmGPV4eHLGpLfDfL6kMXOcDqBY05eOwjm0KYhk1snhhCXqBygdUOQNyIg0DFm3NUEU4p0j7EW0rqHaVEx3DzDKYHJYtA1lW9BKx6DfxwvL6vQSH0XMlnN0HHM02kXblvPrU0Q6+dgb9eMuuTXbS9X5WhRi2x3W4LupS4fM7oovT0c3dLjttzqwBGJLaRbiI1Xiln30EVZeCoGWAusUfous19JtJ2ohmQ4YZQnGeqx1pElEkkQ01rJcrQjDbQp91hGekjCkH4dcr3KQ3QGtKFYQBERRgHeGMIg4vbig3wuRQhJHmnUOcRTQmA43HYWaMIpoqoq2LmmM6XIgXYOSHhlIdBB2xEvbYG3UTQqFwHuD8x9K1uhIRFEHxDCA9YLQC1Dyo0Iq7OZf4EEpibfdtelUiGJ77QQfEgOEEFtwR4ptLVp13hgl9daPp+nw/aoLBvUSa7ubpm0Ns9mMNJb0Rymzi3NOHz/GGovWmsl0wOlpp7v3IqDZZjZVdYGKNDLQmKbqJp5GEkURzhh6SYfVr4pPXmo4ujmmWFwRlQkqy4iWNdWm6TqjsgvzltJ3FMBlSSg8CouY9Al6Gqsb4jAk7Ct8b4ATAus0+brFb0pKuyRalnzkthMQaE0YeESiUDsJqh+g+inJQKJTz7puqMoC7y0Ii/AtUmkiTTfRCA0IGGRDrA9YDFLM4zWsHSPjiKUkd4LSeUAjdEdIHOxPuP3C85zVI07OnuLVClFEuFVBiCJWIK1ChwnSSorTa07elWT9jGSYUTWOehNAa5DGdh7BMEARdBEg3jEe9Lh34y7WlMxX52ivaeoK5ytKYzrCVtNibEfZTEYH6KHExSlusyLAEfUnjEc7hGGAijrZjTSOyi/IdUS+bFEYOry/AbeF8liz/VJIGXRSoTAgSELiNEA4iXMtXirSYUxbt6Al0ViitEP4kLbyZLUn0Jq1qPFe4qzFKoP1CinVVjbbPb/YRlZ8kmuzKQhkwNXlnMmoz3g45nqZM59fEMUHeBEz3R0QREtauyTJ+jx9fI6Winy9Jk56VFWFc46nT59Q1zXHN47Y3TngnXde5/zilL3DG9w6OuLstffpZwmNMYxGfcqiIkl6YGomN29w9uQDWuPIhlOSyQHZeI/WtsSB7qaRqotWcUrhcARRyPnjK8JyTRx6bFUiTIWpcqrW0BCwWCypGsfewZRysyZNR3ifM7taEMVwVpX0+yPOVpcoCWmoqKoW7wRJmrJYrsh6EZt1yXRnzNMnZzggjkOKuqRtW3ppyHN3DvhP/5P/iP/8v/ivMNZgleH+Czd4smx4/f0nnFyt+NKkj0pjqvWSlz/9KX7yxjtUTYNWCrcV7dkt6vr/KzW0WyVEoDXOWcqqlXTaWQAAIABJREFUK9ifPDvh+Vs3cNKRTgboOOZz9z7H62++S9rA4cEdPjh5xnxZ8utff4X8suGt01PqxtIYz8HxMf/bv/jnfOvXv8zNnWO+fXrGD777Xb71za9wcXFO3rSMBx1CfdTr4zA8efSIs2dP+NyvfIbzZfn/pwh9QqsFdKK7GAznO/KtDimKaivc7RrrhAGmNdTeIbQkDBVBFKKCgPFggFa6g4NIQe1aytZiaqisBS3RCObLBTqOaK2lblviKECH3eekVN1Z0mtFVVYEQYTUkkDFRLHE0zIYZiitCMI+QkCaRTjvyQZDkjTt5PfGouOERGVESFbra7IwIogMQRCipCTrl11OYV7y+PEpgYOqNjRViRSC8XiIcF10ibACpSRhECC0ZLg/YTjtYZuKzfWCzUXN2fmMeJhxdHzI9XzOc599havTM7KdEa5tidMe0tfYYkVvsMsySBkMBavFFcFgxN3JmH4a0TY1vQA42CMZ7xEkQ5zMsLZhc3VJfHQb4wzf/+EPWV4vWBc5y2vBi5/9LJUTPLmcc3pxweYvf8itkzNu3r2Hj9bURcFw7yaD8Q4XVxcUF8+Y7Ox3g5QyJ+sPQIeUPmI8nTIcZMjNmq/fuUvVGhI8MY4QwenZJYuioq67BocKPn6z4JcqvEbpmIUT/OLqmuf7Bp2NKH3NeVPzLM9pmxrXtqxsw48fnXD+bEGTHDP98jdZnT5gNl/yrd/9O7zy5SV/+Nc/Z3rrPqlaI6oVNn0OllfE2pPFgiwbka9XNG0KQcp43HBytaK4umKlalohqNpOB58lMW1piQfD7kbx2wAhIAoUvUEGzRohNK3skaYDfFvhw44iY1qD1IooCmnbEJ2EeOlorCOIupwP/+E5/ENdfQce76QjwKZY8/M33kIFmlA5xv0e9+/c4PxySRyobThiZ3Cfr5aMe32ch2VZUZUbjg+maKVYrzdMRwPOZ3MurmBndwck3JxmrIt93n30DBn1+PafvM1Ln73DdHeP5288T1E12I1g1la4SFC3DbkwOBeStoaoP2XVSGS5Qe7sYfKScrFEJRkuB6c9SI+yNe/PZvjKcutwnzhKcN4gvaYWHufaTmbja0ZRQJwdsV68j/OeWCn2s2NaaxD9jAQwsuZsOSMb7PHk2Tsfe6N+3KW3pDchFEIGSNUFJiqtsU4ikGgdfCTT6aaRXcK88gqhBW6LFudDL4VUXZEhuyBTqdVWW+8JVQcZkD7AK8l0OOJoOOXh2QXDKObGeAhKYwkYZhn5uuTuy3dxSiGcwFpDbcwWAgPlZkMv1igvyLcI07IqiHTMclWgtKLf77O4vqAoK4aDPrPrZUeywzMdZrzy8l12d/Zoq5q62OBcTdNYrHP4wBP6gDRU6EBRbmqaVqBROG+62kg6pPN4YfAW2tbiVBcYjfBorUiTjgwohICmK26cAC0CTAuVqRFyW7x6Pooa6hD+nbRT65DeJGV+eYmOUxpXQfVhplN3sJdSd9jsWiAJKJuWYrXmjJq6WXHx9CmituwdHvLCy/c4u17z5MkzJBrrHFoGBEphTI2Sis1mTVltOj23gCSMUFKxWi5I+wkn51ef+J7N64pkso9QIfWqwC0LJlHIuHSdEXm+xBhHflViK0d6eITYj8lCg/EgXMGmaPBSMS8vaZ3mxmCPcKiI7h8Q3Zmyt6VUGmfJT2a4dU0wjYhvTHjxUwfIwPPw6oSrvECctvjaEjaOk80loQowwqEjTTAZdJ6GlcdaQRyWBAhU6/FpgpKKZm1wzlNgCYDRfo8sCqisoaFEXD1kL2yYHg9p7hyzrEoevvkerGsoJK6xSGOINIzbkunZCpYVzfwaLTS3GjDS4u/sgPQ88YrcG+qiIBCabL/B6DOclPTUgLaFosnJy5LWQRImzP2S3NREOmZ4Y0gUB0zKEU1dEWAYxhHDYddkiYYHCB9D29BUY5qmpSeOWU3XnO48pd6saa6WmNUGtylpvCUOYvR0iIxj4sMBIut8br6E4oNTXGsIJ0OCicbba5p8jZKatjE0pcc3DoWkl6SAwJgGfJcL2U3kO3+ICgSi+eQl3QdHxzTrJb1sl9l5S5Ju6I9jkjijKheEfcdVvuDZa+8TyZD89yp6vR4XJ0+RCIo8Z1XkXF1d4dqG45s3sc7yyitf4LVXf8jPfvoTnnvuPtPJCIVlcXXBYLxD1NNIGZLnPUxb8s6rf4NtcnqDMb3xEZ/+la8gk1GHrK5LDJ4oSbF4pvuH1EXN6aM3SNI+67N3OdgZEkhHWS66wG3dx9Vd5lvVam7dmJAvc65mF7x47wbXs2vu3jzm4bMrNufXyCTjRiARBKzKBuEMZeWQkSJWhsl0zKOHJwSR5Ppq0TWIAoVpLNZKmsJzcjJjkKZoAReznD4BOSGTpMfFek7rJnzvOz/mxXs3uPHplxmNhpxeXH70PJaigxv5rSf9wyVlJ6kI47ijnjadRHVT1Tx6+pTPHA65d3zA+mrG/GKNblqS/Ix4L8OqI2S84d/82V+xt9cjOxW4smK5afnhj1/l1770Rc4vZmjj+fXPvcSNW/f4wz/7c6y1jFNL5kvu3P08T3/xFqO7z3MUGW5+/nPQyzDWUFSfvP+7qUo26zVeKk6vVsRhiDEti6JCSMWgFxPHCcqUaNmpOqrWkI4GKAU7o5hYd8AFrRV102CNpTaOdWmI4hDTtGitOq+x9+zujBkPYuq6RkuNCgWmbFhvNkRJQpBlDLKYzXrDydkFt15+iaIsyKsNSX/E/v4BDk/cH6PjjHg8pVxvOrCV0Lh6hZQNzjTsDlPqsiSMuwJhvZhzeT5nOOizXmwYJD2qaoNUEi0SrLGUVd410wJFkEhaZ7h5/zZCCeIkBAtPHpwwHIzZPx4zPdpBRxGtsUz3prz1g+8yPdxnNb9C6wDdVkQ6JA4k5eqcKJFURnLzi19BWU+cZYj+hGY9wzQlvrWYYk2kPM5X6KhHMhrzR9/+No8+eI923aCjhMmtA1bS8WSec3B4zK9/8wtU+YaHP/0BWdKn2eTMn55Q+YA//qu/5LVXX+dGb8zxc7f4/CuvoLTip6/9lKht6KchezduUeO4bA2b5Yx+EpDokK9982t8/Te/ycnlFX/8R3/Cj3/0Gg+fPMFZxzj9+IzuX6rw8srx7MljGil4f3aBcYKd41sIHdHkJdZ0+Niibnn/ZEVrAtrNFWfLOcpZ7owz8rLk7ksvEL49o6gKDo5fINu73YXNXT3E7/bxqgslbJsG4T0y0ERxSBRGON9wtc5Z1S1BmhBoTRplXNUNUiuUFLi2C0hNk5S6btmsCsrRLuN+j0B4qvWSLImoXafjXyxzEJKs1yMMQ1TgOZ2dMcvrTteLIFCyM7m7LsdLfSSkF7TGYb1DKIijECUc3neY5rQXd1kMWhGnIZUxgKesG4b9jLI2COEJghCtOrmbcY7dcZ9N0WBNQ2sMo36GwjPopZRlgZYBj57N0HHIopixXK0ZqwGJGjBQGYMsJakdq7pldzhklA6xpqUKFDrp411JFMa0KMKe6rphDqIkYlYucRI26xI9irF1ifVAC62ruN6sGcYDvO5w/ko4WunoqwQVWNIg4GRTYKyhskusgEDH9KNPXmqI2uakILtwbRVsjend5ErCFp3d+Y3YFtLWeYS0WCcI+BB53r3fnYiuQ8vjPZKuCBFegPQIL5FOoYKAQIUdAVEIqqYCHEVZk2QB3jvG41EX3uk8/SRjcT1nsrOHUorFYsYwCRhmCUpqTGsY9tJOFmAsKIXynuGwT1VtuvBq5Rn2ezStQVqHFo5YdZNbFWrCOMBhsd5gsEhU57OSHqU9Sllc22Kc+bC10IFxpUN4j9uGMn+0/FZA6LcgD2tpvd0i+bfXVQmUE7Q47HY6JvyHHdnukOBc51EQQlDVFcPhEGMbmryiLotu2iU+BDR0Bma7fd2slyG1QIoQqQLGoz5xHBDokKrpfDXOGpSVHwElvPcI38kVgyDEtDXGeaIkIYo0XpitVDT45Pbqdg0HI7yMaNoK35RI5Qn2Bqg2QNWW5MYu1BVCCoJM07+xS38aYcsFVd108AhTU3mLaDo617o2OF/hogofOg73duhlAZu64GFUI/IANdGM90L6/YZ15Vhd55hlhagVwgYEpaG6uKS0AvoBfpRBEBKrkFBFGKCpDK33jKIJg0mCawQmLjGmpSlyjHGEmSDqKaQC1UryTUkYtUSxoL+vSE3C0w8i/AYwFo3A6xaJwVSeeV3R+gbXavpKs6N0V8jrTgp8VW8obYMPPS6W5Cy5qqBcQ5qnOKtw0hGoDkjTTYoDgjhi5a+pypwgiBkkAhUGpEFAoBxR4GiFx7m68yhKi9tm0uwNumwb3Q9Y5EuueIxsLFVeESBRkSac9qCXEe0PSNIILRTVuqGKwy54XOpOtqsy2nWJtZK2CLCVxTZdqLd3Gugkt0KA8xYlOj+qdw7hIE0/edlWqiLu37rH1TqnaRoq31J7xWc+kzDqjynan6FdxPTomDxv8HXL7OqSsjXsHRxxdnmB85a2rbl/7wW0Dlksr5nsTAGPaQ1FXRCEIU5YpHcIZ7m+vECGPXQYEsU9oqTPxWLOwWSADkPSbETcG3YUzDTpqJ9yq4LwAmTI3t4R78+uaDzUdQ5KEHiDaDt5/89/9F3WVU0QedaLBYPRlGE/JZCSXi8mLxbECahezNlsSeQhDCLaugEhKOqGyAbgPCdPnzGd7lDbnHQ4QiWW5vKaVnYypkxI3n/ze3ztc/d4crZgvbjmUd6yqTY0dctuKtiUltJ6TmcLPn+4x5e+8Cv8qz/8vzsQlO+gR0AXCr+NG3Cu81A5Zzvibtzdt6at2DnaRTtD5SuePjljensKpeDd9Tmj5ZJJlPLdt39GbhS/85UvEfdCfnH6A+7fuYNsDfu3j4mykNLH3Egk758sKOQTrE4Y9TW3n7/J2Y/+hpd//TdQ7x6yePc99K1Dbt884vuvvs4XnnuRH3/w/ie+Z01raRpL61t0pDDOkNfgtsqKOIkRzpLEMbYomQwGCKWRcch42CNTnrIytNYymy8x3qOFx0mJoStMJ6MhHsFgmBGGkl4coCSYtiEOI5yHKAqJkoiyLmlbRy0dcRxxcHjIKl+RpjHT47sd8XB6iAoS4uEOXmgsmn7vADwEAkxb0hYLvKnJl3NUmKBCTd229MaOuN+jKnOETJlfzMkGXRaVEJ6DgwN8k3fNpSQgjsIuH3Z/2p1vm5b11RpvPLEOMd5wcX7J0dEhq8WcIAjYPTzi4PYtXBAgvEAHiso4iAfINCThgvFoF9Hro+ucOp+jggglBLo3JAx7rC8fsVleEyZDwighHU74u//gHzE/P+HR4/fJVxsevfkmqm14cnpGWX2fQdrj7q1uH/70uz9kNBjy2S9+gajfJ3/rXSaTXc4+eMDi6pR333qDW7du8ZWvfZWLizOacoURLYEw2KZBqIi6BV+uGY52UBruP3ebRy+9CEIjAsXl+SXlpvzYe++XKrxmRcWN23d5/92fsfQNQRKzvjzncO82Y0BKi2m6NG6zvuYzn/sy16uctm3Z351SXb3PxXwGgwn/2X/8D9ksl6xWa85OZyT2TVItCbSibQyFEGBrAmEZZRF1OKafLfHeo9wCUdc8u5p3I+HtGDXRIdYLVKyJohgVRBxMU7yz9CMQzrGpGnpJ0FHjihLwDLKM5WpDvt6glaDMCy6ua5q2M6ay7Q5rIfBOYrYYZ7El3VlraEyLrGqMdfzGl15GSc9ylePQWAfCepIwptANk3SAVIpQB3hZEUYxVVWghGJvp894kDBfb1itN4RR98CuGsuwF9KKKW88fIajx1/98c/hmzXHtxL6kwOqVUvWOm6PDqgW5yhRk4qUpmyZNddIZzldPCPNF+wORsggoHQQBopIRQgDdVlyNJqysQatM5JQcrZsMKqlDgTz2ZLKr7De41vFXjolJKNsa8rWgAiorebOcMh752cMwhjhV1At6MU7H3ujftyllUYjkWhiGZJFGZGK0UIjQomQCXXdEix1R7dzDi8EresQvRpN4AXCdj4lIegQ8lu/n/cChUKjEUJ3ByhEJ0nSCiU9tcnRdAX003mO9fDy3i69YY9pv0eg1JbO5zk63KNxCuMtaRxStJZ8vSbJLOPQ4es1vVDhFdgAWmtZLhZcrzc4axmFioPxkNlqhfQwSBWh7DqfFkttC6zvEOJSdcHQZptJJrUnzKAtDK7u0OVh4BB0uXPe+u0HudwSB7epXc5gbQMWrDfkbdnhzXV3wDW2uyaR2E5NhejgHK77u6RUeCfRKqWtGtbrJfPZjHS8i7E1gQ/oZX2UlDjjO4nujM6XpyL2bxxQVhWt8Qx7fcZhRL5Y8PAXDzldL5E6wONIegmr9Wq7LxTzqzlJPCTq9VmvC+IoxjjBIOmxtz/k4vzywzr8E12b+ZLNs0tkY1ESvJY0QYLY2yPQDhv1iLxGxJ5pL+H2wU28a/lgtSSfr/H5HDOO0dKDc0R2RdOWOC3YHY8Z9lKmWURjYX61RmkLoxBR51w9yTl5oGDtKN6ZU68ahAgJdNBJF6VGxhrdy7BJyjBKmGYh094I5xzL2RzXQrPccHF1iskNrrA0roWgJdERFJ5Vfk256cA/bS8hHEs2c0+7uUSrmFqGEIK3G3xlaJsK5w3KReizRSdt1QrRS9nf2yVE0C7XVEXLdbmgsg6fSWpd8N4qR/X3UKKDhPSDHqNh54n0VY4KPbfuPIeUEedXjrffu8KbmueHCb04xLcNRdVyel2R9YcMBp1S4mKxxssWjSRINFlo+cpn7uCt443nEh49vWT+08fYvCGcpMT3JqT9mP1BgA4VxqYswoj87iGidcSBB99SLAwqGGCKBtoa6QxC1N375KBqOuO9UgqhPMa3ePu38rJAf/Kbdrlc8du/8hyhdjw7W1G4isLWtNQc3pJUbwYcHu4wa1uiCK4WcwajEf/PH/0xDx88JM9z9g4P6fUHfPHzn+PVn/2Ys/MZWZYhEHz3e3/BP/hH/yHXVzOCQKOkoC0LwkBvZcMx2kREccLu7i698ZRsukc6ndIf7iC1xrVVJ3m2XaOza0BZhDIcoyE/YZWvefLoPW4d7tE2G/6P//lf8tpPfoC3gpdfvMPy/JS2ViSJY5B6JoMBed6y3qxZXJuO2hoHLK+u0UIwGAzIoi3RWHiiuMU2G4JAEySS1fUF0taMhjFVbbn13AFSwqOnD/jgYknrBMMsQGiFNDXImOvra6oaRA6v/fn3mY5DtIqxpv3IxxZFXWZn1yCWKCW2z26Yz2eAZ5yOmfT7tK1hbzph3D9gejTBFjnr9Zx/+5vf5Nm7P+f+c7sEb/aYPb7mL372U/Zv3+Pf/zu/zqZpeefskj//0z/h3/3H/wGJlXxw/oC9ey/w1rsPeeVzN2k2G56cXzMa7/ODv/4uN46Pebi84Di4y7e/+zdMpvuMxn1u3zr6xPds1bSdtwqBDBpCHTDIejS2iz8RW4Kut55eP0KlvY4Q3TS0+YaZtTgnOm+d1hRFgRSaJA3YGWZ45xj0UpI4IIs9oVQUm5xlYynrmvUmJ00i0kgTxzFJnG5piTHJUDHe3yeZHCNUQNib0hhHND4mjDuip7GGIEqxVY60DZv51VbWr7HCEPenCDp4W1gWxGqITCfIQFHlG25uSs6fPWBv/5AwzmhMQ2+YYOqCwBssAi8UUgc0+YZ2vUGECTvHN6mamjhQHB7dILeeo9v3kcMB6d5N4qDPavEYGUQkuy8QOkN98Yj8+iHUBSsRYWYXFOcPGE72SZoK5wwXHzzuJoGmwTY1Ok0RKuD4hZdRIuLGuEfobiNNye9846tYFfP45IzFcs35owcoLRgNevzOt/4tLk5PqDYL0izmpRvPcaEzZqEjiQPGRPSzPt9/9ScsLq65cesOD19/wOzy+0zSHjefv0saRvim4fryHFOVJFnKb3z+s/zmV77E+d//Fu+994D/4b/7Zx977/1ycA1hCX3F6HBEOZ+Rq4qd/hGrxYpeEpFEmrp1ONvBIy5OHxFnI4LA8ek7+zy257zz4CHLynN48w4tFRenT3HNmps7gvHOHmGcUDUddStLe9impAibblMHMWW1xlhDFEhM29B6h29q+lmPpmkIkpSmqml1RFkbrFBkWYYMY3yYICpL07adtjovQHSyjVCJj7JhmqrhzYez7qCH3x4QdRfAug339HSH7y6PSFA1LXEsSJMOM3q0N6Gxjvmi6LpQQhCEEaPBkNZc4z2EYUjb1libcXRj/yMcrHeeNI4Y9js9b5ZkOAFZEjLbrJGym7hdXS559GDGC3fucXG1ZCce4a0jCDXrWUkUSeaLNTuTHQLlqKsSZRyb9YokSJmOeyyLFd513Y0gTHBaUrsCbT2DOEMFEV7AdbVgsHNIdX1FKyRyqlG2m16kRtPiMULQFgXOGgaTEcvlnGQ0RtUr2jhA+o+f9P1xl5IS5UQ3kUKC6w7sgQ67LCMahJUorZCqy/Fw3nThvnQGW+dBCwHOdR+szoHriq6/XWLr73Ag/BbT7jCmpPISZytsa/AqQOnO0O+MwVmLjqJOmufBt56yFeANvqlprWAUalzbSePyTYFWIaGCddWwuF50YddKI5AEyhBqiRTbDriUJGlKnGbUVUmebz7CwSM7fbnf/o/Ob3POAoVv7RZ84XFeIB1IL7bFZodB/tA/IOWH08Lu8GesQcsO7OGl395DnY49UB7z0RUTW3x297NRGBPHGd5b5vN59/pSowm290bnaxMfohF9h7IvqpwgTBDWUBY5RdtiioKlmREOsm6SJmE8HlHWJUJWGGMoi5pAOWTTYq0hCAOatsFYz/x6SZGXRPEnj4grCaC/izcGW7Z47dG9GF+vkcYj8hZhPHLag0DibUnRtOSVoXUSrTQuNygv8UYghEGIEqUD2nREvq7YLHOKxrC8mhNe1zgHJlD40GCqELd2FPOWallibIlSkmgdEESaIA2J+yHS1iyDCmcatITaWKqywRlJscqxiwWusJhG4a2ll8YkbcDbb7xOVTfUTYsAzuKIo7tHyElKk3VzVkzQTbhEixem6yALRV01kG/9ZP0eOnQsURipqAzYPKdZrTrv7EZ09MAkxJIQJCm9nZRhljIZj9ARtLUnDTOinkB5QxDDdHenC6PPAhplIWmxQXe/iixCZ5rCNlxV10QqYhBnxL0EpUuEzBES+v2a8cRQTlNsP4YkIu2nDHoBla/xVY2zCmM0oh+hnGM4ilHSYgLAKGTQ4MQKUxm0DFBed8+coMXUnS9SR5p2GwPR0dMEKk4+8T0Lgl+894DjwwmNqWldReWXhP2U90/eY5BOWTaCtx4+YJDsMpyMefTwEdNswJ2vfoMnz57y9d/8LV59401++tM3+O3f+k3OLq46oIyH6+srhJAM+hli+wwWrsVbgcJjqg2mLUniGG9iwjgjzXqEYdLluwUa4z9E7kMcx7S2RThH2p9Q5l2gan215vz0GWfnp4xHY84fPyDSGjT0sxjT73N1vSDLRigVcH5xSdUq+v0RJ+cnXaNGS8I4AWuIkpjNYkm+KYjjiMOjfTQCIyRXFxc425AmCeUmRzvBYCDYOdzjzbcfEgVL4ihFOQiiiEGoMJsNvu0ziFJWpSVeldy//xxt2+Cs3Xpg/Uc5Xn6b8SXE3xZeeIEKFHXT0rSavGqpraOqFqxnnjCKObp3i7VVuDTi9NmM3/jm15Dfe53pZIz1kofvvcvDyzlqMODl+y/w7X/9R3zj858jHg05vZqDlXzw4Bn/zu/8Ju+dzHjrjVc5OhhRrs/4lS9+nVW14dd+7eu89uZ7vPv+O5Tik3/OzudrgrC7Fl50ao2iKMjLGmNaptMdqrohzVJCrQi0omhblnnFbHaNDRTeaoyxBBFoHZGXNXGWIZVhOBmQBt1nlneSi6tr5osS6wS9Xkrd5AgnUb4Dce0c7GKEZ//OfWQoSAcD0snNDgalU7RQ6CRFSklTNUipEM5iNlc06yu8KfGtp6kLrG3QKkThOXn/XYS12LphuL/Hel3w/Ke/gB3ske0dIaUijEOqpiAMJEFRsHr6iGhvDEIRhglCRwRCYPKK69kMIQVxf0BVGVTRMJ/PON6bELQLNusVKh7Qmxx0eV6rS85PHnZ7MxwjTMuTN1/lxU/dRwQRVbFBC1CmBtOQ1w04qJerTin0xk8pS4eUmhufepnlpuDdp68TKkX/ueeYTIbcunmIsy3f/873+eGb75GFGqoK3n6fFz/1RSbTl3jt1ZzH55e8+vh9pqOMX/3ml8mGOzz+4AGmrOilKTJRbJZzHn3wHumgx8HxbRJvkLbENgVKWKbDFHX/Dvdeev5j771fqvD64Nnb3BnvsHYtT67e5ebebfqppvSSfNV2PglncdbQNA3z2SXN2WOSSPNn10/4vd//9/jJ//QvyZuHbP7Xf0EQKIaDGNcalNjvMnusJcs0WgWMxhHKW4rqXcSoz9FBS2tKlnXJpmo5nGRsqoZ12RJskd54i9Qd1tp5z9X1it6dIW1dc11WpEmPojEs1jmRDFFaUpQVSRJiLSxXS77z3jNefTQjjjrNr1J6G6AGTlqE+ZDUJnDbiZGWCuUdaeDZmfQZ9iK++OkXuFhs+OD995lOOsnE3v4UnGdZFNRNjXWOqm0R3jPspQRby3sHF3AdRUc0REnGaNCj3FSMez3KsiRRmrffnvGrX3yeF3bHKCdQsaJtLMPJPqZuGcQNgfeYqkGGITJIwCv2x3uEQqJbg5aW08sLjnfu4WxOIyMiqSiLNV61WCc4GD/H+eqUg4M71I3B0TCIh1zNT3hw/RNeuPHbBAEk/YyqKmg219w/2uFkccU4OGZy9BKb5fxjb9SPu6TooAzSd9NKu80r0sHWOOo0rnVo3ZmOpRQ4J3Cuo10K20k3nIRtmlX3i23nIxQfEvtklyGkBF0mkbAoL2lNTV9HBMMDbhyGPFo9ZjTs46ygd/9UAAAgAElEQVRnkmUkgeLq+gqlNEmaUFYGFfc42h2xmF1zuZgRK0s6mZKEEhfFBEHE5WLGxfUKLxSJFpw2Dd54VtYwGGSdf6a2hGFAMhhRlhU6qMCXSN3BGFSg0VqjlcQ2NVaGHUJ/i8nvUPsxQShxvqaVDmM6BLFUnVTTSonUustCUwLpLcIbvOuktsJLrOp0URJJoropWGEcXoISHi+7MHVB1xSQUtAf9BhlU7wAb2rCOKE2DlfXeKlRW/no/t6InWEPHfZJUs3bj9+lKCsGSTcxef2dD/AGXGs5Ozmj2GzwGNabhqvliiQbY1drbFUjtoCeqqkJVMje3iHp4JOf0saj59jIDcJsIFkghSVONf1+ii83FJezTlaEpyxK3n9/ga099fUC21aYtaQ+r7BNA1GESkKsEbi6YpG/hko16b0dwkEMm4DisgQJqh/CEqqTFW1eU64rjKOTj+IwK4hCjysdrj1FxYLszg7racakHzNIFNYplrmlVR56EbIPcT9AO8n8z5/y1sk5VV11Vf62cbFcF5zOlighmR4O2b1zA3V7F+drgkSBDomyPsZbSlfR5Ct807DI12hhUIFHeEd1coldFxgsCtk9p63HJD0il9JMBdmOpx8ahCyo206+WNYL3jj5Do2rUGrE0d1jEp3Q2A216aAR8WTAJoOLfM47j96hbg2LQnJz+gJSSBKjoGh4+vQhNXBVLKkdZHcmpEFIMhwyHWZgDeeLFRfXOdaWBCpCyZTWrDmbXaMVtGGInSZQtoRhSugabF3inMHYCl2WtNclWLMdObfU9VYarBVBkn7ie/b41vM413BtAp7N3yGMYbFuODiU9Njj9o2MAslu+lX2d27x3//Tf8aNwxv89t/7FnjP9b/+v/jB975LnGVcz5b8k//ynzDd3+X+S5/GGIuvLY8fPeLTL92jNS3OWLxWtFWJDAMSZXG2YJglmDai1xuwO9glC0KGWXceMDrDGIsOfCdztSHWSBpdMuiPGN94gavVBavLU77z19+j3++TxAlP1yVf+/I9ZrMLRqM++8e7+NbiZMBgssvVk3POHjwl66esq4a6rkjiHlIL1Nb/WnoLCOaLJevlBhXGTPoJR7t7GFq++ntf4YufOiSMxvzB//6nfP0bv8r9y2fce/4uf/qXP+LJyRl3D6bIvSnL2lI2hleeP0RHlj/4p3+AkK6DR8mugFFKorWmqiqgazamaUqe5+zs7LJer5FIirql1+9xsV7x7kzzmd6E+YPHDAe3uFhb2v6Y1x+v+MbnYj5/b8KjhSUTBVV/wI4O0c7y8osv8uLzJfN8zbrY8Pu//3v8+Dvf47oe8YMfv839T38KghFxkPHmq29RLH7EKy/dI788YdhPuPfCl7qYi094Bb0U6Vq8B4cjlBqkpD8aoGQHnIqyLu7FWs/ses16U/DoakFpWmzeNcPbtsFUjiAMee7GAXuTAQeTrvBuGkPjBM+ezciyiN3DEU1TkaYRQkQkScLO0Q16012mN5+HIGCw8wLWt3hTU67nSOHx1aprbBadbFu6CiUtq8tTNpdnFEUBOmHQ61HnC9q6pF6XLFc5vdGYx4+f4IUmfPy086oVhjCIiQNNUxeMhinr1YbTRycYHPc/9Tybn/0Mi2Rw4w5B1kdGQ05Prrh191NUxhP2JySu5Nmf/hU3X/ks8cFdNqeXDA+G+OCQJE15+//85zhbMrqxTzKYUq1Knjx8RhKk5PMV+P+XuDf5lexMz/x+33DmmO+c80AySRZZZFVpLLGtglqtti1bUFu22xsZXhjeeOGFYcA7uxf9F3hrWLANGEK7292wppbUVZa6S10l1sAii2OSzOFm5p1vjCfO+A1enCDVXnhRBEwfIIFEZgIZce4bcb73fZ/n+XlOjo47f2JrmZ9fko6GpIMeTdVC0J27t/e3WZcVn37wFl5qLuYtxyfnPPqnf0gcKm5c2eu8m1XOS7duIQT0ooxwMObk2TPOz04YpiGv3dhDPH+Tdd3w/R99jKgbojjijTd+njAKeee9D3nw9ClHh0dc3d1jnCZk4wnR5Arn+Yrm9JLhICYOEv6L/+w//8K197OFa4Q9smyHG2GPW1+7xtoUJGHCfn+IIOpS3ZRCBRopFXEcoTDsT4YoHfCXf/ltrK0pW8n59ILxeMTscIrAcW2rx6BMyJKI8WSMEoJQa4zxJFEEvmaSCapRyMUsRimNFZpAR5T1nDjsGE1CddHItmmJ+ylF2XL49IzXX7qLklCUBVW+JA5CTi+nhNFmU/AZ4ysMWNXQ+k4Hbt3mQxl0zZeTDic8zvruy011aQGNacjCIZnuYHTFumBnJ2N7kNHs73K+yJHOYeuaXhohlKY2LXEYkKUpcRyC78DJ3jvSOKJqGtaV6SSNyqOCgMEwI7nIWa6WzLyjlYKHh6cM+nts9we01pL0EvJ5SRTFXDvoUZUVcZpSWY9TisiWxEGAwBHKCK0EYZCxyufkbUU6GJMqy3x5SeNqatuiGoetHDOzZF0uGfViikhRtlNy0/Dp6UOCyVV6G+1vU6xYmhLTOvqTbZIwQGRf3Iz4RS/5eapTN+3rTMcAAmcdzn3mUeq2L533q4sx7LBJAu/F5t91k0Ox6bvB0jmbOiCw937TNttu2+Ud4zjjytY+9z9ZogNNFnVNLc6gA80i71gagWvpiQyPwFjHk2dnRNJj2pJ1CVJMCJQmDgVlXRFFEQDrdU5jLaDQWtPahsB2E7WFK1BBxINPn1LXkltf6XcR4cIjlEcEDhV2Wz5rPca6zxvUrua6rZawDq0VAolwXVJid2+6eyq928CpJYpN8+ksGyoocrPx9ZupqxAeiceLDtQsRMczqusKZ+rP+cDOGXQYYIzb+MU23qzNz1UKRRJq0khT2QYdBsRJjK4b+r0+qtcjf/9j0mxIQEBdNTjbvR7hOnivUoIiL7sgk6rAGkcUhagwIR1MPgcofpnX6tlTaAy2zhF2jYoCvFLouEFIQZH2McJjGoGrW/y6gqqlnJd4J4gCiUhihFA4a3GVpZiV1OWaNJZksUJrhytrqqOc+jjf1O6iCyeqJRJHGEh0IBAyAA9NaTvYpwWtItCC1li0sRxPc2ZxQFWuaVuBJsQbg2saRGOJdI+T41OKusLbzQfIAnQeP6M8RhjOz+aUVcv1JMR7S5LsIpME6gLfFERao+JhJzlPNCQKGytM0eCaFtuazrQZePwmbIC6xi7X6FhyVpU0C099ckRVVAShJooCEgm+NcRty1GzJotC0lGA6TWcqhqpBOfLLtJ/dXiCt45odJU8WlNQcrky+HZJMT/DSoGJAlSsOBhmDAdjRJzRVDVFWbI8y/HLBhkKCBVWgbUaM2+hrtBxiBJ9PAFWRdjW0lqHdx7TOHxpKOsaZ8Aag2lbrPOoUCMRVLPll16zre3STOuyJsr6CGV5+PQ+wyTm33rjNbRYE+mQQgQcHh0R6pQiL/jO//Vtnh4e8v67P+bFe6/w1o8+5OmTx+T5iufv/TYX5yfdd6pX3WYVgXF0z2UhiUJB1bbU65J8Ou3qTSjGgz5xGBOG4LzrwhGkRYWdKkGpTTKr7AZwUZIyHE+ohjtE1hJEIWfn55sAlpZhr09+OSWQkmq1QgcBy3lFYzxt7TYBHw1RFFOWaxbLgmv7A0xTE0hNOOpha8fp6QXj0RCtIcsyHn96yG/+xs/zwQfPuL4/4OToAi36ZFnM0bMAVwsePXvGKy++RJKfMS9bdgdDiqLiydEZ460RSipE51T+fLsVBP/Ppss5R9N0fMWLiylhGNCaCgg4PZvhRymB2MFQEShoCsez9z7klV//FqvH73NpMm7fm3D67iGDYMTDByc0bcPJk0dI0/LKay8yUCnFsymr05zXX7vL//Gdx3zy0Ue8+da7ZDtjPrn/IefLGTthyrNHz5AqZuvWXb7/5tu88erNL71mt8Y9mrLzALemJY5igkAThyFSCsrWss4LqqLC4zCtR0pNFkdkIiZfFwyTBBdHBKEmiDR37uyyPcyYH53TVE2XuK0kw2HMYJRuBuo9giTF9cYMBmOu3noewoxktENrWtqqwLUtbZUjbIXF0xYVvq3xzhHokOnZCZiC9XJKte5QE8bAiRQdBqZpMUVJ5SGMNLFsKb1mNluzrlqkzLrEZOd5cnTMjd0RjYXl5QU37tzg4vSUxfEJxrbsBykiybl59x5KZWRhRI0kTTOOP35M/8YNtm49B8Rke3tUywuG1wX1eg5CEodjsiv3CBBgp+zfuk1xccHsySFFvqa0Fb1+byOpTFBI1vOcwjeMx3s8fnTMwTVF0dS89/5DWmsIwgRTNbxw8ypla/j0wROyQHPn+i6Bl2S9Pk468BX94YC6rghkiwwVaTJg2Br2JyM+uv8p0lref/ddRls77I9H3Ltzh79656f86Qfv8OP7H3H3xjXu3XuBO6+8Sn93jFAWKQO2+ztfuPZ+plPFjYNr6FZwsH+bx08/JJSCUdyjbmu2BgEvP7fPO+88ovYOa1sO9rc5O3WUZUUUWWbTS7RwJEHcARZnM7bGQ+JIcz5fMej32dsT5PmSQX+AsS3GWgb9iGFPMBzsce1giPEhh5cl9nIBvU4mZpwDGdICDkj7PWb5irQ/oHXw9jvvMxz0uHP7Jk1rWBYrrAwJkiH5ako9W1AXOTtbA04Kj9ABpiw3Wy+DFNAag2MzLdO6k0cFCg8oqYgCSVEVrFYrdm8dsFrNyMuG2wcTAilpvKSpWy7W9cZQ2WfU7+G9RQlII433HfTRO0ccRawb20UQ4zg/nzKebCPsI5JAMBiNOTk74aN3Jzz65Cl//z/8ZbIkZH5xRF7WbE22CKNuYiOFI3M1a+/YCrcpm5xQBvTiFOs8kdWczY7o9yZEwhEFMXGUEEaaetrg64LIDclXNbWtqYxhJnN2RvvsVCHP71ynsobSSuqiZNo6+vGEvUmfMM2oigVZ/8uPkxdegOskcFJ0U0fo4pi7iF2zkWZ0DZnaNAih6rZfUoWABQ9t6xCWTpYIf8PpEuKzAPXPo+WF6EIpBkIg5o6PH0+ZrQvwjl4cMUwEZVWyqFrUZtO2Wq7pT3Z5dDFnXVT4aoFScCVUjIYpTd1i25YkCjl8dMR8vuDZvGA03iGOImxb0xiPWFf0eilzZ2mMZTZriNUpz798E+9bghBwXcR+FHcOtbrt/A5adjjkYBOfrySbcBmBtx33S3TrP7q+SyC0wTuDSmOyKKQ2AZWpcLYlEGGXEillJ7m1nb8rlgqkR8cC5SUq6KSw/SiiaVqsgTxfEEUx4Wbb2DQV3nYNncSRhIooSqmqliAKSZKE3vaE+eMn7F65hoxCtrbGm+Yp4OJsinVgnEMGiiiWOBqc8KSDHtPZBcIrwjDAC41QAa754qyOL3pVb/4QqXUH5pabqP5bO7SDiDQI6SU91kVLs9C4IKBuVth5hXm26MDYSQyu47SIylBu5JNBqOnd3EYMAqqLimaWU5zkaN1FkldVhZCScByjtCRx3XZYBF3oSVt3ccrRJEPf2UGOIipXYdoGWa5pKo0UAUpo1M4QP8hw8xXi5Jx8vWRd11hnP5eISkTniRSdhFUgMS3ML0smh+dceelF9GBMm9dMjw4RUUh4Z4fooIcVFlUV2MbglkvEuiYY9JC9BJxDGIutOhSCikJEYJGupKamEprSWsx5zuLHT8nzivUq7wYx3uI3n2ktFVEUce3nXsbd7GG9wbcVmBDlFHZmmJ0dYltL8ewJvqxQgYAgIt3dwgYhl8uaVb9ge2vI5eWc5XRJsKhJpKBNGgxlF4HvwC/XCOdoZQN9hYwDiJquCU7HHUD7YoEtTMe5coJQCqTXWO/BdLGhpm6+9Jo9evwWvWybK3tXCfSQxsz49b/1DX78k0f873/4Lv/O3/ka84tz5lPL69/4Jo0/o20NZ+cnBKHjhReep6gu6PVDXv7KPQQwvTijrBviOKaq1ty5e4d3P/ioa6glncLGdGmPTbnumo50SBClHTA1lohws9UPFHVdbfAUQSeP1hAJTx0ppMzojfeRL36NZx++g1lf4r3g7OSU0WDE5fkJQRjSNA1aSZIwIi8MZV3SSzTLtkYnCcvFisGgx2TUIxAOLyWXlzMmwx7DUQ/TtkhaipVjuTxlMh4xOz9jMq74H/+nv+SN3/gWf/bDf80Pf/Ih/+7v/A7/6E/+jIOdLZq82/L2taC6OKMXhlwmKd9+630mo/EmvbDDohjTUpZdRH0QRBhjiOPuHOO9JwgCvIe0l7FcLnFRikpHfPTgGGtafv7nXmFxecZ//Fu/zA/f+YS7L+5y9PEj3sExSjMeLWqmZcH1vW0SfZtb9+6yvLygNglK9nnnez/ml/7tX+dK8pgbv/jznK0azi5P+cu/+C7ZaEQwSXjpuWvsXtnh/k/f5+uvf43e7taXXrNRL0Fp1TFclQRvWa8KZvmKqm6YFZbpsmBeFEgl2esnmLYh7WUY6xiliu2tjH4vo5eFjAY94gBoK8pqjbOe4XDEuijZvbbP3tUDhvtXCMZXiLIhBH08AqU1Ho8pFlSzGY2xOFt1qaVtgUOSDce4QFFeHlOsKgQ1UkOapgRxgsxKSucoFjlHD48pi4qb917g5s6Et97+KYu8wps5r758C+clTx4+JQu64K/pomTSi4jikLkTfPeP/iWlEbx0c5eXXn6eG8+/hvEeEfYRXnLuUg5eeAFLwG484CYSazxhnLF4dkE1LWC4Rpc52889RzjssfzkI5JIUORzqnnO4fufsn/7Nsui5ObzzxMmEetVTdgM2b/zHA8ePGJ1/2P8+aobIDYlobd85fkDwsEYMdjn6OSSN//iL0mU55UXbhENJvzk7fdY1hJsw3gUEA16vPLKL9LLBjTe4xV88sFHLKeXvHj3Ki8+f5v1umD/9l3asuXRxQUnDw5J1mt+9c4d9HDIu/cf8cf/6n/jyiBmNOjx8r3b7OxuM9nf4/YrX/1CtfczNV5R1ieoBFJqxv0ddBgTaYXya4QVZGlIkiYUVYNzdrM98EjvO61rHFFXDVmgUXGEjDvPU5rFeKko6zVVVROoCER3UAjCEKcmSO9IbYVzsPPUMG+nTPMS5xW9vqQsC+I043yxpmksW5MhWbrN6fEp2f4ucZRijKWxjvliQRxHOF+yWi1RQqK1ohWK4/MFj88uuujqDYRQKUUSxdRtQ9HWmy8533nAPDjrCOKOBRNGGtO21K0liROKqsUYSxQHzC+WjAZ9At1BYQeTIV7CumyIwgAlFdZZynXBaDhEa898Pmc8GiODAIWgqUoCKeknPYzzDHoZTesxbctiuSKMxxhn2JtMSKKQpq2p2gaPIBKCPC8hhLlZEesYKRJUCKYxaBkjWs86X2LjGIwB2bLdj1nOcgZJSlFNOV+dMdn+Clq0JGGPiVpwdHZKIwRXJ/ugFbYRuMawlg2mPidMekid82W7Dz5zYbmN1t37bnLsN4c/67pI5u7PHEp2hlKlPmugPvNAuW5T9nlM79/gBYQQ4N0mAbDjU3k6+VMvSvAlOBTryhBGEQJLGMadhEYI0ijCtg29QQ+pFPN8zTIvUKYmCnQXvqElVeno93usiwoEFHXFqqyxMqfX02ixaSQd5MslcRhQ1xW18NRlhTcNasMbk+Kz7VS3vbJ0HBOkBCnRsttKWOv5jLwF3T1z+G7j5TZGMbFhmYlus6W1IvCaxrXdv6PzgX0WRgKCQCmEhjAELTVCyM530bRY62mapvPnKYlQstvEbLaRnx3avXMY46hrRxBLvBe03mHpkuZaa+j1MoqyoWmb7h0IiZfdpg06PplUAh0ExGFI3Tiapu22Mp4uxv5LvoLBFsbWeGdBgI4jCCRCm84sb3JUbVGN7rxQVRds4sJu2+69wFQNpmlxxuFa0IEijGOkl/iVo7qoKOc1pvZEcZemGoYBUmlU3HHT2lnZ8aHSjnsUBRqZxsh+ihj2iBNF23R+AqkDBv0+Oxtppmsb2kawjvusaZCXzWbzKTt/LKIbisDGS7u5fOeNLPKm8zRJR2VyfAhqnKB2e+hU443D5g22aJFLj1+2XU3QwYhtbTqpsJT4KMZ5gclb9NM5y6SgPV2yuH/E4nCG7QqzqzG6rWorBFp5mtZz8tEhB8lz2Fjj680wRyj8uqWqprja4coKb1qUV+g46ODQXpA3Dlk0WD3DmqbzGqdh9/6VR7UF5WKKqSv8hh/kJOgwxEmDDl2nsqAFL/EyBBV3agzviMIMLaFqGqzztK3FWvslVywkPVgtp8ySiGwwApHwve99Fycy+sNdzo4ryqXht3/nd3n67JKsV1I3htOLY8IgoKoqprMLyrLi3gsvcnJyjFawu7PDcDiiaUoePfiUQMZkcdr9XCUI4XC1xbYt3jmiIOrisyV433ZJqPA5LsQYgxIav/nuQwlUEHSDCqGwImCyew0zc2gp0YFkf3+bs7Mj4ijm4PZtLs5PieOYRb5GSEGeLxgMhlzkLVHYKRECrcliyXxdYE1NVStkKambhjRSRJEgQpOvlhye5Ny8M+Hv/tpN/uDb30EJhdCK9979KcZZvvH1b3D+9AmLaY1xjq3dIbYq6cURURxx9+5dPj06Ayc+Ty+ELtVQyu6z3bYtSinatu2GKG1DWTp0EOBsy3Q241ff+EUuHn7MBz/+KXfv7KPTkCAw3LjeY/rRU3bGiscnJ7Qi5sc/eZv2xRf5j/6D3+bBJx9S5WsW+YLReMhWL+Pk8RH1Ys15uaKJE27fvcuPfvBjdNzj+de+wdP7P2FwcIts0OP9995lvr7Or33JNXvj5RdZHD2jXJesZlMm4yHVumC5XBFEMeezOV5ozqYzkN291N7jZNM9X+qGXWmZbPUY9RKkd9hyjQ5D4izBNhYvob81Yv/2LcIsIR1t0QQJXkUI13lchfdYY1HekoQSS4nXAu8CotGNbjBVLzHlnCKfY9qatlhTritmZ5ckvQykZGf/ABtGJI2hrg0fHz7mw/sf8OLtG9y5njBvApyp8UKwqluOT2e8+tJtgrruQud6Aw72d5muas6WDVtbI+p1yfrsEuM9/V4f4wS7z7+GDyRpmDJfl4gIhG6pZ8d4JYkP9oiCFFRLfXpIcGWAsxBOtjl++Ih8scRqST6bEsYRV25cozYt/VGAU55inhO2Fq0V55ddEIylRmlJaxQULeHasD2Y8OLXXuHBx59wPFuwoxS71w44ObtEuJbxzjWUhfzylHQ45satu1il2dm7Qr1e8/ab3+XawQ6j/dvki5IrN67ThhEn3tFTnipfkRjL6y/cwnrL0ckFxbKADx5wMF0yupjxW1+w9n62xkuGyH5E0xjSZExlCryX1NagteV3//5v0g//nD/6ztsIAXt72/i2ZP7kGZerFY9PZ9RVF00ehiECiCOJlIIXX7rH9mSHsvUMopTeZILOEkCyLrrDZpaFxNKxez3nwfFFF/xgPErUBFohrKPXS4kjQ56vkTj29vaIAg20DMZjlos52+Nd8vWK1XrNZDxEyYgojKjyFSeXOWVVdc1SsNFLCyiaupNjGYtWGqU7XKyUnRwxVIowCtjb3UVmGWcXM9b5krPlmht7V/ACev2UMJSMh1l3D+KQ8bjHeDegl4RI73h2McOjUHSAtl6ScHZxQb8Xsre7xSpfc2d3i09OlpSNIxvs8Ol5zo39CY8+vaQVcHVrwMo7lq2jWK0IwoDpas046TFfeNxQE6xKFsUlXse0tqCJQnzrGPfH6HxO1RviiiNMUzDpb9G0Hcg29xfc3H6Vad1wWc3ZGkQEPuCjZw8ZTLZ4ZgVRoFjMlwSjCSrP2T64jlaCB/ffZnLtV75gqX6xywm/abo6/6G1Hb/Ket/BDKuatmow7eagqwTSgwoVQgq0lBjXyVVc24VSqMCBhCAMCES3mZBCgGs7uCwdWkAhUK6HbUPm65y8KBmPU/CONA2Zz9dEQYxtW0xTAikPHj3gw0+foJRi1O9Rtw2TyS5xnCGCFJSm8bCzPeYnj46Y5iWn04IgOuP6zggtHAVdOEsmJIt1hfSSZ2dzlsenXB1kPIpUR4/Eg+nks9Z6sLYbJCiBCh0I1z3MraWpHcY6KuNRtHSsWI0SnUTRegu+kxHqQOFFiCkdOEeoBSIMsB6s77xdgYIsUsQ9hdIBQobs7BxQrVYoFNY6emmGV+CkprEO6zxVW1HVBoFACeinKSqIGe6MOT45ZrkqCKMUL7okUIGkrkrKxoLyKCSZ7GLnhaqJ4wTTlOTLJUpJZpuH7QEOU1ddYtWXfMW3b1NNL3F1TYghiBTSt1SzSxohIC+RVhL4BGkd1oQ4HRDtJTgc1XoNjUMFXQJnGAlk2Emp55+ek+c1VdUNCrJBRFV1h7G0l+I1lNM1dV6zWlR4D1qHSAFRoti+uo3uazQNgcxofYS2CrUy1MWak4sFBjAyRqcRxnvKSUwURQglEaZL5hOdNRLv6bZgdE2SlAodaIQJOH+65tbVl4l7V9m++SqlbRj0U0apJgkEesuQBgkOQVPUCASVbVksl5xMz2mrhta0GAOmzLF1Tf3Rgna+5Nmjo26I4AC6ISHOdwFLQnSvy3YgUX88Y7RdIa/1Ef1tsoNtnPX45QrRv0scKVKlEU5QNpd4arLhFlKErPKGVEu0MiRhgpIRwmaU6zUnx+eIuUXkNbQVoqoQUuN9Q3XaQBASJkEniTMebyz1qsDXNYHo2IHWWKTu7pvzbhOP/+XDaO/e2uLwsEEFDb1Uka8VV6+9SNVOce6MR+cVVZ6zf3WHF159lT/7zr+myGtee+0b/PM/+RN0EPLcc18hijIW85yXX/ll/vAPfp/hcERvkHF26VjMLnn13leJPjlCBR065ujwYSf7DDMmk6vkyxW/+Xf/Nm99ekQ/jSmWc8IgRm4A73XbwaVtKxCRRgeOLEtotWOyf41YamoR8d3v/TnHR0/Y29vi1Zfv8s6bi66GRSflmy+WlFWBUAGj8RbWGgZZj41EFCAAACAASURBVEW+2Zxai7Oeuqy5ee0KTnV2hdUCjPHk6yVpnOAALwKGYcBXv3GLj+4/oz9fcDyt+dY3Xif71hv8kz/6U/L5jPPZjMRavnLnBrf3d/nFX/kG56uSy+m8w2RIhZZyE3gETdOB46XsZPVeOJIkpqlbpFDoINxIyWvaquKoXuPCmDAIiErLD37yEelgSFPW3HnjNc4+/ZR3Fmvox7z+9W9yevyM3/8nf8Df+uYvcfvmdZ7c/wQvBddfuUnlQ/T1O5y8/x5XB2P+/F98h+dfeYVRInj/B99HWcf8r3/Eaz/3C8jM0K7mX3rNvvzGv48pLmjXUy4e/JT8YkoUaHQYcnx8yY3dCUEUkkWao/Ml7z86oXWWq9tDdkcZL9y6wlYvpV0tKYyhWBfUZQeDjgZ9ZKq4ffsmva0rDJ5/nXKZU5QtqpizPD5mvZwSxCnpMMW3JUIogt4EPdhBLI5piymP779LHER8+uGHnJ6dsr0zJksT0iRFKM2Nl18iysbIICTqRZSrSy7nU/rDIb/x6ussVxfEWtIaz4vXbuF1QNvW3Lj3Mov5GoThxouCy+MjnA555auv8/Vfy0D3yXbG+PWCy0cPEc4xP7/k+ZdfIQnAhQk66eHNkmB8hfvf/zZf/5XfwDz+kN5kgAjB1T3q8Q6mjrnza7+JKRYEjw7ZHo24essx3N6hbXLKck6aZOSLS1xTEcuIV169w83X7jHsDanXa5J+Hx2mvPf9v+L8/IT+Vp/j80vqqiSKU1rjODqbMd7fg1jhjOdwtqS1DR8dHjMeDGj+xZ8SaXjt1dfRYcydO7chjqlWawIpsW2DLStu7t3gaZrCbEY/NGRJzK++fJN7/8lv8ejwiIOdK8Q7Ey7PLr9w7f1MjVdRN9Q+ZxD2EWjW+ZrxwQ6Nh3U+5/qNXf7Ov/dNvvvXH7DIK4rSc/XqDW7fOOCnb7+Dns3wTlPVhnVVEQeaqhE0jeWtn7zPg08e8Stfe4Fr1/d4/bVXGO5fw+J470c/4ej0nKAsuffaPRYXx+T5oiOnt5b+aEQ7naPiGFlU9Hspy3zNaDQmTRK2twasFwtmlxc0dc7N6zfx3nPz1g3ml5eUxYpCSab5ksJbnO0Sojy+22aFGus8jbGEUYzaTPedc0RaMUwTtJJM12vidcHBek3rLYWF5bLhveIxe7u7bPUyqtoQ9hJM3ZJoBU5zenmO2xkjBZRFxcV0xuTVV5kucrb3tmmcoyoNWQSBVuzs9JitVoQyBSmoGsnT85zjsz6BXjLsDekNI7zwDIchddUw6Wucd4wGMZGq0ft32A8E1tc8PZ1Rl0tGW9sEzjOMA2SksWoL7wcUZcXR5Rl7V25zc3CXII0QreaAFC0kWW/M7t6aQTKkMhGts9zZucrR5SXj0Yh10zDsDdm6+uIXLtQveinXcaWcc0ib4J3qDjK2pWlr6qqiaQwWi/MdCkFICDQb3xKAwDiHFS0CgZQBWkviWBNIRRgqtNBYI8C34A2xhH40IGpHHJ3NyIuaom4YtAlGCdrKYPHY1tC0Du8sZ/MlIoi5dfUKF+cXXNnbI0sikjRBRhHCesraEPWGMF+QpiOSxOJ8gVKKvGyIFN1BwnqKMqc2Ht8asiDh+NkzJlcDZGAJrMC5Lm3OW3DWIqzH2i6i2gqP8BblNcZCU3fbNGv85kAq0NIjlcPUFiMNNjQgOymhFpJYKZQSRJEkSoNuc6g6sDKNJQ1h0FMIJWl9yM7WLidFjpYe5y2VdWAM3rd40fk6zi7OidOEsNUoBMNhD6VDpPA8evAQTYCMNfNacrrqtO/L6RIVxbjWkmYpi2VJmoW0VQHekyYppll3CZNaM+ylKAVFvqDIv/zGq8kvCUWDiB3JKEWGAS7KaBvwdUV12YCXiDjEITGVol4XuMUFGIM1NeiOixaGISLUuFAh6pbId9u9qu5k3EEoEZsAjenFvEvBjFMGw5jBsE9TtbQbhW7ooJzl2LYhbkqKVBNGIcI46llFXraIdYuXgnjcpw4sKpRkezuo0YCbv/AiT354n6atYOPx81J9jmmQUhEnKWEQkfaGBL2Mfjok6Q9oK0vbtgxVRhqmBEHItStbhLqLywZYVyVKSorScs+0VE1DXixZzUvyxQmr2ZSPv/sXzKYL7MbPKB109Mnul0Bttm6dlFYqgVCCIIuR4zE6C7myu0MQBwziCOkrVACLckmgU3pqjLEVR8tTWmuQfbVhNQqkrBhliq1Rn7r25D6kCEIyO8TnCbWvCXREtVzTLheIosCuNgMO2fl3wtbgPEySHs57RBh1alQkznqEkuhI/r/W1v9XV11qmrZG1hWL6og2b5Ctx64dSnkOegGyN6EoWtAtabrF2dGn/K9//nvdFtcrZvOCre0RveEVjp+e8V/91/+w2yzNj/kH/+C/5V9++zu8ce8VWlPhrcGWNREOj8WYlunskiAe8P23PiQejinLEl0uWK8z8qJAKtXFcBuzSf/rNmFJ0JEZTR0johQVx6RpimlK/vav/zKz08NONq0SbNuglWUw2WK4vcPFxZSyKJFSU7QVSiu8aRE4Hh8+I0xSnp1eEMWK0aDHzs4e1bqgKisaY+hlCat1wUf3Cx48PKH2gqLtvudvPfcCf/pn/5zd4ZArWxN4/Ai3yqkXC560lvidd/hv/tPf5nf/+/+BINI4rxDe0bad4UIIQRxHXSI0giiM0Fp1XgwkUZSwWs0Z9DPy+ZI3v/cTIil47YVfZhlY7mxtcevuFZbFAhE1zLYmvH5HUiUZP3rriF4A925fp1zXBHtDfuGbb/Dkcsof/vGb3N4a4PopbWO5f/8ho37G8wc7XQhKVeAqQ1kWPH78gPmqZJR8+bzE6Udvko3HHfvxyh0cGinOUN4SSM+b7z1muipIwoBBX/O10TWMg/l6TZSkbPUT+lGIdY7TsxnGOHQUsLs9IQkApRFhxKpYcfGDH2DLnCRJEVozGA6pqoa6qKCqSQdjBtdv4IDy5CHHH/8UYzx1W/PJ06d4L9i5ukc/DqhWOfO8omxbLqYLloufYo3l5vU94qyHLw3r6hRZLzrGbm+I1JLzxx+Q9ieEWcbOjVvsPtdHK0Gdz0mSiKYsqVdnNCvFYPsa2oU0zrB76y5lXbN1/RrN+SGP33qT2y9/jXmeE/f6lHrA3W98i0rGjJ77RucDxkHsmYwOCKOYi/MTYiW5+pVvUp4/4eLD7xGozgLy7OkZgY746Xsfs5jPuXVlj6vXDuhNEubWoKMeWgbgLdrXbGUZTz99iLGO1Fqev3WVB0+OkU7R5gWr2QrnBY8OT1k3La3r7Bm39g/oxRFn3/sR+eySe7euce32PYJenweHh7z/wft8/bWvcO356wzOh4jnA+qy4vjxfV5+9SbeGO7dvMLHDx+w/OmP+OovffML197P1HhNVzNUKOiHXURzv7eNsw2BijDCIYOA8fY2k0mPsml59OQIaWr2dwd4JzaHVo3H8vLt/c6oXLRkcUgaRWAF9z95Sp0bIhkxfPCIK9d2OPrgbZ4eXzJJB8z2RiwXlyjhUTqkLZe0raFuWqK0x8H+ActiydUr+6yLsjPtVy22tfTSPieLJeu8IAgjTNOSZn3K1Yo0zSjblsbZLtFGKaTwRFGAEBAnMdaVSP4GpgyeNIw6xhGSSGtWqwX9LKWuap6dH1M3Dd4qFqs1W70e1oMMND0dEmqFcZo0TnHWocKAK9euUdYV3lt0oHGb5CrTmo0cSFPWDZPJgHxqQCpM2xIEiuNZQZJIXpKQhBHetxwtciZxn9o1NMaSJSHrtmK33yMKJPPZjN3tXcK6j9IWb1rQAUW7Zqg1IBAy4/rVLWprkFFIlCZkus/R5SnD8T5nJw+5unsDXxn6SUIaBeggJkx6XROSpmghmK3n3P7CpfrFLuW7Vb7fRAkL0UkvvLUI5xBKYnAb2coGjywFUrgOsNypUTDC46XfMN26hkJpgZLd76WQ4BVyAzYNtSYgJCCkaSuqusYYSxgEGGvxm9OmEx7vOiCwaQ1CB4x6A65fvcZyNcfYuts8SUWWxARhizEOJxS9JCEONXE4wEtJHISYKqdqWkIliKKExBuUbUkCiQ5DgiBCKo2U3f/bTULpJJSbzAPnu7ROv4mO71R+3WuEz1L1BfjuwIK3n3OEBAKxAUt3UkFBECjCABAKNHjhMJLO4yU9CE/rYXp5QVkUWGsQsjsKC8Bbh5OdTLExBqEUQgs0HdZBCM/Tw0OKomCrN8Jax9p5rFLYxhAGIUiNs3X3upQi0BrvO7MyootgL9saYw22banrGuE1VZl/yRULoqkRYhMEoDU+jDtYZrXG5GvKyyUChcy6TJhm3XHXRN1B0IvSgrJdSAhdUiy16Ng0aYxynjj4mxvsqgYpRAf5jTTp1hY6iWGTlNmqLqSjOZ6yXOQURUW0KPFakkwyVBSAEWA30l7jsZcrvPDYQIKPEJVluD9itjNgWlYIv6mnz5YzUnRbYqW7oIODm2xfvclkZxfrBaZeM56M0F6ys7eN91BZR2M7dWxdNyRJSNsairJhXVQILbEtVPWaw/ffZz07papWndBRyK6u/w0eHXSy4lDKbugmuk13b9QnyGJUECKkZrGYI9aC/sEuQRAQxSFnyxltsyQOLAKBr0oWjaWuJP2wT2s1hydnzDUUqyUeh21L4lSwf+8FyqrieDXDVxVCWMRqiXCOSIXoMP08+bNyBcK36LB7D7o3JErSzftp8NYh/3/geFWtIMt6xImkJwyu36fyK9bnS7w1eDshCAK2Jts8O1/yj//RPyXU3aBqna958Mkhr73+Co8PHzGdXTLOUiBEqx4PHx5iWsfh4wdcPnnSbXREx6hTQjAYDzm6XKEDTW84xqioswpIzWJ6iU4neCRCB2jdHXmcM+go6r7fhEUpiw4C2rZhtphjnWM0GiGcwbY129sjRsMMLSW7W9uczOaUVRdLX9cGay3rdUUYBcRBgPOera0JUZKS9AfMZjMEmtOTE9qqIk4SyjLHKo0KJVE/xTaWXpah5g2pMhw9uk+axPS0pmoMN69c4eP338dZgfGWSZzw+OOPyLKUxSoHZzDWbZ5PnTSuqiqklOxsb+OsY76YIzfPwKapO7+XA6EClA4RWnHluXu899f/ils7I1Tk8C4lSwRaN7z97gdc/8qrCGs3MmzP0yeHbI0DXnrxFpPrW5TlgsW7H3Dj+Rv83v/yz/i5N95gJ4upVkvqtiAbjonTlvNLRxAGSAp2dw6+9JqdHX5KEt3GKY3UAVk/o7jskD7CddJ74yXPlhVRoBE+J0tTvvLcdbbGfcbD5HPUkLOS5bLEURLqmKmrGYxHiMsVw61diGKiXg8lYWe83SVlT3YIkphYa6RtWT5+lyZfcnR4RFHO2Tm4RmFabj33Ag8++YSmqPj08ITZYkEv6xFqySiL2b++x3g8JEkT2tWatQMIMI0iyQaMD65i6hqzWuCcZL0sCIYGpUBFITLpEWcTtFgxnIzRUUbjLKJqaFcrVBgSCIWxDiMC0jCgylf0dvY4fHjEna/fpWZMmGX4jd9d2ppivaJtC3QQkPT6pKHg4f33iHyFVwrbOparBacnF7RGUFjF0bLlfPmER8dzbu+NkEpgvWa2KliVa5IwIAoj0iTDNi1pqOhpwat3b1I1LZeloTh80jFYk5gsjnGmIRICs1rh2jXpZEw4nlAayY9/8EO2tybc+/rXaTy8+/FHPDt8xs/92q+TjLcxRqOV4vj0IaESjAcpN27c4Sg+5ezJoy9cez9T45XIiDSMWTcr8vqSfpBQ5IJESrTozof7kwl/7+99i9/7n/8ZTz99h+1Bwn/53/1D/s9//Pscny/Y399lqzcmTWKaoiZKErxp+eWfv8bNF79CcNmwd2WPwdaAycvXEU4xYEJl4cHpEcv5Ib0sIC0jMhuQxCFFXaMUrBYzkiShn2aUZY6pay7zNecnLXdu3sBUBS+9eI+Hjz5l1BvhGsV6OePq/gGYmu3JLhdPT4gDhfOeXhpR/htJaP04xuLQUmCtR+ouPaiDuva4vjdma9yntIayqRj2h5T1jNp6nG3xWBZ5SdW23L1+larKmS8LjO0OswQhi/Mzbt66S7VeUdeGpqqJtMbjOJnOGPczJuMBOztbvP34XeLEEcYh8+WKw2eGqq65dmvKV/s9nG94af8WZV3w+OwSRxcmkOqQh8/ep1wvub17jbgfMgoV5/NT9tOA+XpGviwpY8fB1g5ZmOF6AeVsypP8EdvtkK3BDoOkh1CCNBtgm4DBJOJ0vtpsIRNqU9EaR4jDS4P07Rcu1C96tW2XRuScwGmLtQ3W1OhA/Y0kUAmUdyhpiUIJ0nR/37GzO8+FVAgfIr0n0II4lGjtUcKhAoWkO8gGXiGcR7s+Zj1kHSxZ5AuKqkLI7oFpmpbaeBrvWVWGNAgInKBsBcI5nBOsFmvWRcnB9ph+HJOlCUpsoNvW0h+M2BqtsYenyDAk1iFKwro2SOmIw4zVumSWFyTSsQgs+WzEjZtb7PYHXNqKqq2wLsRuUgfxm6RC33HKnO2aQ6U1WZrRGo1dV7jPSFwSrPgs9dFhaoeU0HqPt93GRUcKGXhUIBGyS8lDWHzQ+eJa0UX0e+P4yVt/xbA3wDi66NsgINAZy1UHhpzPFx27T9QY21ATMl3NGQ9iLi/OaNeGXC4IZMJlWTK7OOPJ4yfsb21hnCeUEb511I3Br0v6lWU6PSOOt2lszWyxxDtLUVcU64ogCFgsv/yEuFDGWLPG1JJmKXDTErO+xLUVom1xucVpT5BpAhUT9wWyL/F1iW8qZKloihrwyKDzi4S9GCdB9XuIQOPrGlO1NNMl2SDtGojJEKcVXnSHepHFEAYEvQjTNrimwk/XnVTXGCQe2fiOFxOqzhOJAxyN75AYvnE0Ty7hZIp8fo+bv/oK1R+/Sb0oMY0B0T2CIh2iw5Cdg9tsX79GOjkg7PepVisssDXeRgjN1mSAlGHHJPIBxhoElqqsydcFHnh4+BhvHXWe44yhNjVRf0hblxjbYFwNSPz/TdybxuqWpudZ1zus+Zu//e3hzKdOzV3VNfVkd9vdttNtOx4SN4MFKET+hxCRkFBAiD9EIBDCCCPgT8AhghiCMXaQ3RA7HtIdO93trqG7xlN15nP2PH7jGt+BH2tXRQIJqQulvKQjnUFHW3t/z1rrfZ7nvq9beiz+/5HH52mwSCEJABEGXP7yK/goZr2fEEUBpTUsl0seTo/ZGmVUUYKwCucq9mcHJGGKqxxB2SAD6CQaEXZZLSSzkzmsLFk2RCJxoaM/VIyDNVxRsnc0p3PtMt0nruLnJfn2EaKoEdZjnCWKEkSSEkYJSmt03MXFKf48ysFZQxp/8iTOolhibcDpSUM06bG9v0vvWsRPvfBZznZXbCZdhLG89up3WLv0DP/O3/wbnBwd8G/9G7+CFJKrV67znT//FkqHaAHR5iXefP1PmUwu8Nu/8z+BbDg4PuA73/4mZnSVqixbeIWOOF0UZJ0U5zX9boJKOwilCMKYVFSsDu8RJRnopN1CCIUKYlwYU3lBHEkCqakCh44jskEP7yWT8ZjT/UPuvPuQpBchnSbVPY7PZsyO53QGQ6RvSc7zczhLXVqGnZTZfEHciSgWy3PwliBNIyaiR7WKWC5W9JOEysF8sWDfOMaTDusa7CDj5qrk26++zhe/+EW+/aff4md/8ef5rd/4+0RhyIGtuSxqtGi4vejw0mOX+bM371GYnDiJqesKew6PCsMQKSVnZ2co2RKfn3nmWe7du09taqw1rBqL857cVIjK8bf/7v/G01tr3L71kBdeeQob9Pknb9zhzmtv8+kXnmbriat89/UfsHHhIhLJzsP7PPfiU6zyhsoait0dPvfTnyZMt/hb/+Hf5Ff/21/nuWdf5Nb9W3zlC58lnFzGFDNu7h7iTwuGnS5n1SfvS3zz9bfRocbYil6vz/zsDNl4sA3Yhp4KyK3laFaQ+4YXLm1yZbLGK89fIwoVxWLJ6dQxW8x4+959nFQ8dnmL3DSMJiNGGxOSbEicDdjauEhdFkgdkFzYAq3Q8wXOOOrlgtnhDtXBNvP5grXHPsXidJv5fMn7b75L2om5eO0ynU4Kzz3P+OIFYgBjmB7vUVcNaX9I2Bthhpb+pSfQuuVc5vMzpvu7qCglGl9g88kXsFVFvpwRaI9tPK7MMVXJ8LHnCHsp5myJWBxQZgrV2yS5cgFn27iOdO06xAsKldDpjLjy3GfxUUioA0Lp8ELinEAEKUEsqc0puJLm6AEHs2OCao+jowOiMGA+O6GpLaIqmZ2uePveIVPTcLAsyW89oqkrvLVUdUPlPdZ7AhXQjUJevHqJfhJz9cI6VS1bpD+W9UGfn/viK5ycTjnaP2lDspVH41lfGyGiDt+9e5u8rOH2AVlg2T054cFsSWMcVb5kfdTlxv4OxyfH3L13j7quWZ3OuHPzXdb6GV//ha9ycZCyf7r42LX3Qz2huyomCWJqIwnTiNPTY8IkwZU5SZoQRgFLA2HoGXc101NLVVU8cWOdX/irP8Obrz3gs6/8CBeHm9TOkhcVnVQxyAK+/EtfIN24gbl/hNYalWh8ZSFIufjiZ5jPlxzbinL5kEE/4dHeCWG4hnUOqoZOljCftZ4t4ywnh4f0h0PyoiBQGTsP7tPJUgadLoOshykKLmxdQ9mG05Nj1oY9prM5prEt8chBFCqs0RRVa9yVQuKtRwcBgeQjM3aWpGgpmQxHLfFQCaxz3Hu0zfEy58nr1xn2O0glcd7S7/WYzmaEYYzznrppUFJRFQVFUZJ1MqQO8HnF3vERvcGQzf46s8UMuhJrHUWxZDLssDqXsWitcR7m85zj3TknW4cEgWYYZ9i6ZlmvGGVjmtUS1wicMKRxgrUNB7PWT7IqT1i5qMWneoUWimKVs7IVOgxo7IosAqfrlmwnHIvpEbayNMZTW4lwltnpMaVf4Y2gspZ+6imaiuIvgLblrYVz6EXrKWmwtgYZAwJnPN76lnwuJFIppFbnWn7/0f9rg4ZbEIVU52sw0W7HPgRLAOeHVo8tU472S7qbHc6WBUVd4nVIFAaEWlNbgzGGKExRAuIwpm4M4Kitx1hDJ01YGw6I4qhtuJwjDgKaRjAZ9tnLDhn0+iyrqn3ZivYQXFUVcWhQShLrgKLOKa1jUdQsV5ZOJ2NVVm0Iqxc0xuG9xLc2FxzqHJ/RGrSVACvapkqXNca1FKYP8e7O+498MZ7Wv/MheURJiRDuo0BqQdvYCfXP4AregzWWQW9IU5cfIZHFObRDSIGxBmMhizLm5RzjLKbJWfo5keiQJknroVjlZFnYQmqqFqqhBSgpqJXEilY+bEzrE2vKCqUMRVFQVRXdbo9O1mkhB84j1Sd/iFWNwdpz4EmZY6zH2RZ+46zDWA9a4OqWMhicU1aD7gWU1DhTsZzuUpqcKAlwWraZXZFCJhleaeplgQ4blFME0hMGIUIl54Grpo1WcA4vLO48YkCiCGKF8LKNChEKIT0gEfp8SuFFG8QgNU56pDsPoHeC5qTG9mdcevEys+0px7dPsc6iwogoScg6Q7prEwIdgWlo8hXLswin2vsjCDPOzk7QSYb37d81TYWWEmsNO7t7BFF7n1TLFcXZFOubdttcVKg4Jc16NLXBULb3txTnwJz2vm0X4y3+QwaK8cUN3LokUxonDaU1OOMIpESIkLwqqUyBtS00J05GJFGK1QKvVpwup5zM5shk1gZNyBQnUhqrCeMuxtesiiWpMPTjBNNbp2hK1jc3Cdb6nCUpxcmS+vAUUy7aUG0hUNoQxCFBFLfLRtfglMYHIWrc/cRr1px7W8Fw//AE7TWJUBwdnfDMpSc42X7AuDcglhZhYXvnEd/8w/+LF178LMdHp5xOjxgMOpyczBltblDZEt80PLp7G2EtaZywyqcc+wbnaoRtWuTq+SBK6wAddKiaksRGCKmxzrJazVASAuEwVBCF6KhLUxXoqmk3yVqilW9liMq1El6t2d89RPUcFy9vsVzNsdYipOfJpx7HKIGOUopVwWyxoG5c29joNhMxCWNkFOKdZTGbIsKI+WKKpiTUEb20S1PlXNxY4+LWmDDMeP/WHZ793CUeuxFy88EJ0grM2TGidCRJRl41KOcQUrLRH7Hx1BP8xv/yDR67cBmpxLnvHOI4oWlK3Lmnua5rkjhpIzoax8NHD0k7KfnRkjAI0EpRlAVFXrDRS1kuc+7tHvDjL72EnDwG+ye89Ox17PEZp0XB6YNtMhzzowPSa1eQ0jE7PmReXMfknsdf+CzdyOP6G1wfK376az/DalWTJs9z+95djt69y1e/9pf4/EvP8/vf+qf0k4ys3/vEa3aV1+TLnCCC6dEx87M5gZDky4r5omReG0pnGWcxAzRr/ZjxMCFSkjovWUxziryViTx59RIWz9XLE7rdjMmly0RJRtQdEWd9nJY40eaFNtMjVtNTzvYeUdWOYX/Ean7K8fGUpD9i/cnnaH5wSn5yQieL6Q76XLx+4/z8ElDO56xmR9RlSXd9i3AypjMYo+MYvKOcHdLkCxaLFdIb1jbXMV6ikgxbFW3WblPjVIDqZISyQxJq7OwIlVyFKKHxKZoY3cnQcQ+Hont9gE4Sem6N2kqUDgm6GoNAK4HwslUQAM5LgigB36OsKqTuYkVNHVwg3VjHlAtUOEM0FUrv08sSnG+oior5bElhDHVTYhqL+dD24z21tJR1yVsPd+jEMdOmoZ8mXBx0sU1FxxvMckU+WyBqSwDMZksaYzieriibhsK1CrWjxYxLa10uT9a5cHmLaV2xcxzyYHuHP/r9P+aZl19ibTRh+9E2Z8cHXNgacTif81v/4I/opiE/9pOf+9i190OdKqRSmDpvw3Wnc+p8xeJ0l810zNw4hgFUtuLFp2/Q++tf52/9p/8jUsc8+Obv8dxXfoa//3f+NkINafISFYTYxnDzrduMjvyVJQAAIABJREFU1gy9K1uIZYNa20RIj82XzA5OWZkjlsWK6fEJy9kDkkyy/+gOlzY3YBlzeLrA2Nb/MRoPefftN7HOsrG+SVXk5PMZWSdDaUmRr2iakjBUhDLmZG+bfq/PxnCDKAz4/dfeZbHMCQKFaCx17dgYDWhMi0A+my/JOjFFUdKNU7IoQilBbWr6nQxpam48/hjbO/sMhgMW791mulzy3p17PHvjOpcmQx4ulmysbyBop72P7t9jc22T3eMj0iSmRGDOKTeV8RwfTzldFPT7Pc7mM9IkQvg2WPna+og7BzOKxqG8Zz4/w3a7HBwuuf224eKVmJ1yiep0GXa2uNjvcuhaZPowcBR5SS0UR7sPqZYzRlmKLTzCGqSbEqgJD3d3GE1GFAVIuWAt2cJbzaO9fZpqxfrmU0jrmTZTTCUggLg/4OHBPmu9Hl6F3N/fwfnqL4S2hTOItpsAZ7Amp2lmOC3ASZzJcbb1ZQnpSWKNDsCS43HnUkKF8Y7KGkIlWwS6Fnhp8dIhZduUOCEInUDJHts7Au86vH33kLh3gcHgAEdAHGm8bcmRKs7AebqdEOcadA3WWnpZF60DNocd1ocdIq1YzqdkSULaTbBJhJ7NuHpxg+GDAxyO1arCWEuaJOS5oaqKcyqXIl9asm6PCsEP3tnl6mfWWBs6QrEEB3lpmC89XrSI91AG7aEa0EoRBAKpVDv1qnNK0UIJnGtR4CoMEPqcQCja+rKi3Ri2XooWbuKtxTYGoVoAh9YK70NAo3XKaDzGNhUfvH+r9SZJgcEgdEi5KtFakXW6zMtDdCCoTMV8tSTWK4yryZIQWbcY+NnxjFAEJGGIsiVRmLUUVNsOKVqZJ9SuJLAN3kvW19dZG6+TphnGGJZ5znD0yQcon50cIkKJUCH1qmxfZlZQNhZXNxhvCCyI5pR8ekaaJYTDNZL1PkEU0iCgm5C6inStT7/Xpd9NqV3NSb5iWVfIsG3u/NjCbNoSLaumjb0qBc5XSOPaieO9fVxVUy9W7bMz0Ehaz19dtZN1pduNpgo0eI+hIup3UVGIaWps2WB2z2DXkq0P2HzpMTYff5rDmw9QK0PY66OzPgpNsSgoK0u+ylmezYiTmFuvvUoLW9REvQ2yfo/hhQuEQYipK5bLBdaUFIslVA06y1gu5yyOD8mLaVtPStPZuIrXEdXOw3O8tjuX0LpWans+QEmSkCd/7EXsRGLqgmB9yHB4CesalstDjGswuiAcj9BSIcs5WE9ZGeY+Z9EoyspS1wtE2aALiXAaFYaIUR8bRvS7PSItuD7uk8UZItIsyxm3Hr2PcA2BHDBJBeXYIi9MaKoxe4/mrI6OOdh5gAwCOpM5nfG43XhlXWQWcxisPvGaTaWkcynFGsGl9Q2crTmq9ilmOcvTI4w2zMo5h/v3OWk0v/qf/CqYAhdkbGxu8sGtPeqqYjRaYzVbsVrMeXDnHbyHV17+EjdvvsepO+W7N9/j+pMhQaJJsh5SRkjVZiymSUjWzVBhiAxCwkgRyC62KTk5OqCpG9IkojPaIk77mDLHuBAlYkQa0tSGRPfZvJLxVpxwcWODcTinqHKK0jFc63F9c71tyITi5q2HBGgK61tQhnOkcUIcKJrGUOYNZZWzMe5y8cImcZbxaPuAZ27c4K03vkMcafLyFIHC2JLNrS77R8d85uUX+dmvPsfv/OH3cc2CH3n+Crdf+y6b62vkaYKsauI4oZuO+OWf+hp//sEtrDN4Z6kqRxRFH+VVJkmMlJI8z9Fat9YHltRN3ZJtVWtnEN7TOM8qr5j0OgRZRiNjVme3KLMu7rW32dzSfO81w/EH7/KZz7/I45fX+PXf+ieM04SXPv1sS+fLF0TNCaflkHffeIthlvL699/k8PCQT3/mRb76S7/Mf/1f/lc8fP997rz9Ov/S17/O3p27JOqT99KGSYeb795iMOiST0vKumQw6tBUFUvbMKtWNLKVcg06GS88fZmtcYeqWLFcFMyKhuNlQbFacXFzxHh9jec+9xJpr4+MUmQQooMAhaacHWObksp30VFM2h+Sn51iV8ecFUs2n3oOpWNOtnd4+49/lzz3zBY1n/+FnyO0mr/79/5nti5t8RNf/iKRiEmevQLC0VSOarrP6e37H0nzQ6UxVU0xnRFECXq0hg4UgagpZjM63R7D4QTXlOy89T2Wec6VZz5FZRxWgQhTRhc+jwsUOowIoxjhQSZtvIhDt2oAXEt4du02ylrP6fGSR/e3ef3V7zObTjk4OWwhV0GG8xKrWhhZvZzhm5JAeZ6+/gyXHuvzN/7yL7F/sMcfv/4G27tHvPnaOyz9qt18+db7YKzBINg7O0VKyf78lH7a4fHJGpNexrWNNdY7MZNuTImirC2r5RwvBLe3Dwi1ZE1pLNDNEpRpWFQNuw/usTbu8dknryCfe4zTk1OOHt7hwoV1NrqORyrAz2d86elnceM13rp7l1/7b36Tr/z1f/dj1d4P1XjFcUJl2hepFoqNwRo3b9/Fd66AsdTaUcynBPGIyXhMmgRIJXntzR22Hr9HNokRdYoedBDngazjrGDtSgJNiS8kIta4okWTHp6cIKRkOj+hKs/I0hARdSiXfbYPZ2SDjG6qOZ3nLOcLVlIiVYBzjru379LtJiRxwmo2I43C8+l8i5AOAkm9Kpme5FzdeIqH+4fUpqXcaamYNxVJFJIl7UPsbL4i1IpQaQgjwBMFiul8QRjFrI/H5MUC6QzWGJrG8KmnnmR0cERdG5rzw8GHOO5QKbxUREFyPpnylHlJXazA9TibL6mac6S98DhnqcuG5WLF+rhPEwhs7unEAYuiREqFQTKfzWi8PZekSUSgMLYmSYc0TZuPFMQh/TSjpxuOZ8fIQLI+uIgvtlmuzhCqQ+5q0niJNw3bx3cYdS8R6gFV2E43hr0+q6Xm9OQILQNWfkEaBKRKIkNJv9NHmoaV8STOIXSGcWcfq0j//13un/3WO7wzeFdjbYmzssU00yAxKAxaSZSWrfTTg5AOIX1rxBdtSLA493pxHpfsOJfoSUEsNErEWOfodRKKaUEcdcjiGLzGu5Z2JbynrhukllRlTlWXJHGfxrnWH6YVsdLEQdvMWNPgfYS1TXuYdR4PaGER51Q2LwSNqVrZn7XgLEXtWtmf9wz7A/KyoKkEcZhiUos3BhAUucH41r8YngeDCy0RCoRWKAlKeIJAUdUN8nzTIc+bKyFla5KnbXLbLWE7gRVC4u35P51Lkjknr0kVIFFoFQKOMGxR2x9ejWnwbQ4zOta4yiKUJohCvDNIAmSgkca2sl/XxlnbpgHrCNT5BmhhaWoHgUQHcQt2EBYnaFHLUhIEAXEc41wrvbHWEYbxP+f6/H9ftmkQWiFV+3oT3uObGtcYvAAlJDiLqS1CQq0EYj7FyYetDymKcM4gspA0SkhlTECAk5K6nNGUDVoliCim1hX+bHoOV2nFyI6Gpq6w8wW2bqiaGuklgVToLADracqSuhYf3SeNOd+8V+3LWMYKIQNEEhKkGhFUOJsDogV9uJJgM2Gtvszizn77vZ5LXZ0X+KJACrAYVtM55ekRIhL4IASZoJSkXK0QqaepKup8ycneNk1RMpmMWc2OkVITpCn18Ta+BKIuMowIgpQgClvFwofDIHf+nJCSXi9lfGUN12mwlYcqo24aolicb4MFoXVUWAq7QtqARbGiqBuK2lMLKGcFalkTugYRKAbrm2hinBCsr2eM+kO6vS3iUJJ4A6LdOq4aj1IL6jxopc52DnJFnAh0JAgHMeUqxjhPnueY4yOMMwRZRKLBYKntJw/X0P0G40pOj+dsZAPKeoEJDP1uh8PTA3QiGXf7FKfHHOwsqYsFgXDUXrO/v8tkMuHBg/dBdDk+3ifSmizts1wt6cYpFyeb3H10l+OzMy6Vq3aoE4YkUReFY7U8ajdhCMIwxAmHdw6tFLZpn0HYGlNUmCJDpSltArVswVmNQ+ApTg5489U/4ebrr3Pt8hqjjQGrUlMVFVVVYeuSYb/Pm3cPCKOMuqg+elw552jqgnkN1jhMowgjhSfk/r27XLy4ialL/vy732ZzkmGdpm483jaUpmJ7Z4re8rzz9i3mc4tUCdNVw9pwwtG09Xzfe7TDtX6GDobU5YzZyQ7Xr13jH/7JtwEIgtbb5X0roS3LkiRpN9lVVZ1nV7ZKJHnuaWxjVtpGrUbSzRLWx0N2TkpUZdnorfH2aEBfxQScQWW48/77fPb5Kzx27SqYEmsN1aqgN+jRFwaje4xzxfffeJPxZI3lcsnde3fp/Pwv8NTjNzBlzmSyzqOHj3j/nXd4/EL/E69ZU9XsHB8j9s7oZh10AHHZMD1YUNWOQZASdBOE9qxP+vSysFV5nMc2pEmEm68YTiZcfeoxNi9MkMZSnM3pTGKgoqgWZFGGK2f0tp4kG2yynB4jcOhAkg4GJL0hxeEBb333uyjnmFy5xPsf3OLFl1/i4M5d7t28y9VrV3nq2afAh8TjMeUqZ7mcM9rI8PWSUAV0rz2G9wKbL5G23YgXizlBk+NtQ3rhCaQ22HLG3s4j+oMuaX/C+NqYcG2dXtLD2JKqsQTdDlq1Hn9/7pFXQiHcuTIAh3GA8ew/2Of46IS7t+7z4OE+s/mcg5PD9r2RRNRVQ1BVlHnO2XSf5WoJCIIwQsqAnd1t0ijkZ//ST/D0M8/yb//4z7BaLfiTf/h7vP7Gm3zr299ltlrhhEDrgDIvsMaCdOQNuHzFtMhIIsXR0RRMhnEGohhT1viioraWURbRzbqoMKEwFh/EOJszPZtxcnaKdPDKyxfIeh1WFzeRgWZvb4YW8FM/9gq/9/t/xnfefIdf/lf/ZS5cvsQb3/7Bx669H6rxcsLiaRBh1NLLjOGVl36apqjBO4yIiFYVVsdEGxv8yOef5tU3PuCN7ZLB9x2PD28ih9fpDFLGly+j0pCtV56GxZv4JsZmfYxt19beG/YPH4IpSVJLqD2NdOzvH2NkSn/U4c72PmEY44s50tbYut06GGMItcY0Fcl4TKfXpZjPSdKUUAeoxqC1ZNRPSQKBs4ZlaTmbTYmCgDTLmBc5417G0dkCLyQXBn2UhMoYwl6Hqi7p9mIG3Yy7u4cMBx3u3jvC3LzNZn+AVJqqKBiPBowGfUKtyBtLWVsGgw7FqqCoDJsb60jREqnKssQ6T7EqmC8LaqFJ44Sj2YzZcsF42Gc+n7K+NqRpKrrdlEtWsX9UkPaGmFATxQk7R3M2+glREhB3LKYumUQjKhdgreBkvqKPZrpcMgz7zFZ7LOuGzc4VTufHrG+NiPMjikVFlZdcu3IDnQ4piLG+wVlNFDuqumAwWENLxVo0QhhPJDw5DTcubHB8eICygq3JGmezJSuffuxC/biXaLEVIAVKVi0By65Ylg3OS2rrMKZBiRIhPWGoEYEFJ8/zpyxOtBphXEv8kwF42nBW7wReONqQZQM24HC3ojYB89UC4TX1eQB3pxPTNAZvDWnQ0vyEkm0jowK0bDOk6ianbgTxOGVr1KMbilb6J9q0eKU0/V6XYpmTRYrysKDIKwIpiNMAIwwYCyqgagyNsRydTPnUpcsMekPuvnmfx58fMB4MAM9yWVHkpzRe0jhJGCriMEBqhdIQqjYfyUkI4oiors99YW1zJVQr2RISrBfY86ZUaYmSsgU3OIFzHufaZC9joNGSKGxpW2XRMJvNEM5RWkOnM8DWJU1TIWXQNqJxhyUFcZyQBpow1DQz1W4ywhiVCM5mBWVVsCoXxFKRxYoohFkjUHE7RAmS8Bz+0cZROBxBEBIojdcC2xhW58RDqdz/Z339c6nZOEUFAUK1Ic/CedRoSKfbb5Hh8xybrzB5Ds5RVRVFsSLITwmzjGDQR6ZdRF5zeCY5Wp0RLUMS3ZL4oiTktMypqxIWFcI3KGFQGlCKLErwnQFL4XG+pjsYoWLAW+qpol6UFLMSU5u2URae+jym4UNCS2BqxN4Z+kyTjhOyOERcneCtx5QV1cEMc1ARdSdIqakrQ7eTkDcGZyyDtR75ySH54T7O1Tjj0KM1sihl3A8Zr3eRoUP4ksXymHJ6yGL7Hk2+pDq8RbHMKa3FE5B0ejhTg51j8zb8PNQBPrDUnA8ppCAKQ577+o9h3ZJqOaehQvaHhGsxTqzYn97Guoaz2ZTaNFiladQZ1jS4yoIIIIgQ3qAXp4hlQ2NDRAB7do9olOGEZ1nvcXqWcenCIWkcEWtFXhXsHh6gjKaarRhkEZ3YtEOFbhcKwCaExiGNJ907hjynWOWYqiZIIkTliHoNqht+4jVbuoauVUQGPnjvTW48eZFnrl/l/r0dVCbZnIwYxX1W3nL94iXqquLq40+Qu5DFYkoS97lySVCWOVJ30EGELFcMgpDtD95g0BuhUOSLFTtHD5k8/ixBPCQIYxQOe7ZDXc7IsqdAKoJQoIRHWEmFIEkS7OKQejFj6RqqYsnkWgcpBE1tQGkkgs7ahKe/9OO4xUNOt2+xt7+PawyhjElsjEBwNJuxKGoqo9p3Q6BRSlE3NZWzCBXiQ4nzjvm8Zu/EsDmIsPURN55YZ/TEVU72z9CBYzE9YbaYUtsJWbdmUTb80Z9tc5gvefbSmGc/dYUo7nD5sZhqOObWgx2efeZa+5n3JnRuwJ/8wT8lCDSmaSEfrVS7HYJ9dGhW6qPPKk1TlJSslivKqmJjbUSe5yyKiryBzfUxvi5RdcH923tsNpqnrz3GO7c/4PKmpxP0udbr8vDONi9dG/P+7oxIK2IXsayWiCbi/s47nBatn/bmB7ewZUWyMnzjN/8e/TDk7vYeX3nxWUzWZevGVYz65M8GDw+OuXFxjcZajuYVrCypgEIKdudLjo0jtYYffeYyG72YsqjYPjwliWOMcXT6IT/3s5+nOxwhVcJqsaA2NYONCWFvjPBgF8d4oZH9Cywe3mT+7qt8/9Uf0FhPsjZu8xdtxWhri80nn+b4YJ/X7m3zxS99DqU0e/sHLG3DlXGXB+/9gP6nXmLhasIsYmNjRFksSQbr7B0dkh0cMp/PCIddumkHESfE2tMEAzprl1AiZ/bgFhJPvruPmfcxVc1sV9DZvEI6mBB1t0gGI6w5j9KwJSrsgJBY7xE4ylnNwf4pv/+Pvsfx6Sln00OsrXj44A55cQZesr7eqhHqZsWDB3d4753v0TQlvvHnOaIeicTLVrKotebt91+nN55wafMZrly6xhe/9AX+zS/9LP/ef6D57379f+D7b7zJWzffI4mSdqjrLba2VN4yzwt6UYRMQkpTE+iQxrRnlrTbJzAGZSqM99R1iVSKanHCxatbPPHkdfb39vGm4ebObbhnkI2l1+tx49MvEyRdlqe7/Au//Ev84z/4Q/7w//ht1q5d59//j/7jj117P1TjVTUNUoaESY9ycYoNY4wrsVIRxhGnR0us0ARJSlWd8uKPvEyUJDx8b5vDvV0myQscvHWf9Y0ucZwSKIU2FhV/mtUU8vIA1R+zsp4Ei7ALeh1F4yzFYkqgQy5de5I3fvAueVVDy08hSwJWK09jDTpKWK1W6CCkKBsWiyWDwYC6rAiUZFmU6LIgylKU8mSdFMKQxTm9TKmAQa9HZzbD2NZkXZoG4yxZEpNXBV61YIB+r8NiWXPtwiblcsHaqEdRVQjhWc2nPHnjOvuHxwRSkMVxK2sKA8qipGkM89mC/mCAkJrFYklelFipQbUklfkqBzxx1H4vmxcGdLIYa1sfWlEUBGnG/Ow9Qt9OTO2yYZyNmc1WxNqSDhRVs4RwSVdGoEPqYsmjRw8wXtKfBFBLRNAj6m/QkzF5kxOHIwaTCUFnQSU0SZRAVTH3DRKPyS2ucQRKst7vsWwWWGEQFjpao3zNuNvD25Yg6IFenH3sQv24l/jQrSR92xjhMS7HY3FeYozFeoOjJekJIRHefriQ4UPeGbQZXkiBx+FFuz112DYw2Tuct9S1oigU3nmUCtuJeNlubYx1REq0mTLe0TQVtrFMeh1WVUVeluAFxXJBFEbEkUbpVhLX63VBKBaLnCLPSaOUNA6Y9Hu89cEjTGNRoaYoCgTu3ILWohpr7yjqhrouSGLdoqwXlo1+u6kKG08QRfjzbioMNVGocIA6R8a3Qcrtxk8GbVSt8+2flWrphS1IXrRf9/xn5s8pif6cXiiEPA+iFjgj8UrhncI2Bu89dV4ghWrP73iE/HBr1nq+Aq3aLZtzSC2IOwlplBAKTxBEzFc1slEI12rqe4kiVoqVEwRBQFPWBFp9lOEkhEIqQRgGhFHbfAlPOy3XGuc+eXms0/KckunPaX8KncWQJm3YtZFtpEGUtJsa29A4Q9ALCft91GCIkO1n4ZXCOoP2DSsZktuSxhrKosI3HqVB9DLwGbryICVKpjhjCGyB8RV6DFI7WLVEPYUhjBRK+bYO7IfeqPMdsHc0tWR51iK8Xd0Q9WK6HYVXoCw4J5E1qCBmVUxJuptY55CBwvoWFd4UOd40eG8Ig4QoyXj6mWd44onLNFZhdUyYRAxDR5EpirNTZseG5cHu+XNaIYRiXhekadaGQQdRi4k/D5YVopXQB1oz2hoRbvbID+co7SHQiFBgTcWyMahFgzWWoljQ1AYnNSJuNxaqrJGqxGdFCxnxEq8inBdQW1yxws9WeCmoJEyzFbOioRMHpJFCCslqVdEUS7JzYq6VHhmPkD7GNA5hBWHoCDNDNhwSpBHlssCUFcIClUEUNSr+5Ddeh+/v06z1yOcVj1+8QEcHPLx9h04Uc2v3mJefeYZxb8hSNETBFj/21b+CTDos5gvWz4mqN55+tvUkWUddFaSBZDE9IVyccGVtBHwP7wW9LEPpAJSibNpcwSAI0b7CmgZ8K5H2SiKFopOmnJYFURKyWDpMPiVQmtrkxD4ilopIKxZlgZ3nnNy+j6iWRMLQS1O2H+2xqkBtJMwWJWezFXVtiKKEaVmQBCGBchRe4o3H1jVeOhqpyIuKUTeldJbQJ5hScrSzTWcw4OH9e4xGI3pacXx/ho4980LgvUN5eOmlJ7l5a5/LepfTvOSDmSf0glUDOzsH/EhecPu9B9zdOfiI1itkW9vWOqy1rW1CtFuLFqMfYIylaKr2g5MeY9r3g3WgA7h4aZP797fpxZKkN8A1BdX6p4iKU54Lx/yfv/dtbF+gZMSdu2dcvtLlvXt7jE3OEzeeJRjHrOUDJk9cYHf+54QKZnXJ5158mjffe4/PPPc8X/3pr1FNj+lFmtQ6VPSJlyz3D065OOkzHvY4mOUcTRccnE1ZH3Tppim9cUqWhaz1YrSA5aLkbFpwLHLSNCVoLEK2eH7jPDJIUb2MZLRGVdc0ZUEadSmLCp0OCbI+D+7dpSgqFsuCII4wXjPeXGN9fIFv/M7v4FzJX/nX/hWOZjkXL11m9+4dnn/6Cd7/4CZXL22xu7/HtWc+RX99E+kty/kZR7sztq4/xt67r6KVJoi3OMst44tPEnQSXCORHqqzR9TLnKiTIKqK2elDxteuUKyWzHbuYosFofJUckUiwaQJ1uTEOsGJNqpA1I4//EevcuvODvuzM2xdYJqSusnPcxjDj34Z67j34C6Hu4+wZdGeA4VqLSdCIqRo8+ecwTatP7SbpRhhefv2LRY2oBdY/sWf/1F+5a/9Nd75zDv8Z//5f8HJdEljLcIrolQRBopup0Pa6bLIC+JOQCgcg26HvBKYxqEVzPbOkJGmcBLnBYmSHN5/yOrgkMmoR284YLA5bqW6vpXh7tz5AOcFn37lsxxN53z+c5/h8MFdEIqg+fjMgh+q8SrzHBc3hCbkrMnJbUkHy6qucfOKx9ae5mAWEESepjzjxeee4LEnNvnf/843GG9d5b03vkt/7QIHOzkdaci6A6ILF7BLw8H+LWSSYE4W5PsP6aeWp55/jOP9fXbevw3WsbfziEYk3DmpCIUmiSOSMKAMFM61EhUl/Uem0slkQrFcsWr5ddSNZTWdMYokJp/R31oj62S8e+t96pUlixKkggBPJ07pxSn3j88YD3os85LJaMikL7A4hIDd3UPWJxs4ZwnjmF7cJ0sCdg7PiOOU7e09uv0+YehZ5QVhnPLkjatkYYiwlmqVE2+ssywqokDw6OyMycXLaKUZdBOWxQoVh+zuHzDZ2sJ5KIqCJE6w3lFUNVk/47knr/HoZEHdlARh2ModCke4kPTuTal9RRwX2Kji3smULEpwBJi64Xi6YpiOqY1nVZQEoWb36BwskkI3HXDndIpKS7SrOT46IIoT1rtj6rqgzuc8mE7p9XssqxWUNWkasFMcc2XjMs4LinxKKBz2LwDNrWV7g7cDQI93jlU1I5AB3imKxmEbizj3K3lnQLS0QyHbaaEQvpWu0EoPnXA4HFJ4lLB434AwhAgOjx2WCCVaE2scKJRoSNIOSknSSBNqQZXPqcucIMyoqoK8aUhVjLMNrq5pTMmg00oNrXcUxjNaG7JYVOTCc2E8Ic0yHuwdkIaSWVG0mHmlCXDEStB4iUAjdIjQEWEIwizxVnH3bsnoYobSniCLiLMUWdXoQBNHMcLJlvhGDaLB+bYZ0oEkTnSL3we8aw+NgVIoGeCsBy/PJS0OK3wrGfNtI4Bv4QzeSJABOkloygZbKbqdHkZHKBWidYvpFkZhjScMI8qyaAOw66pVhgmLbXJqX5L6hlrk59ELlqpxVKYG42kEyDDClDWB1jjTms2tbTf13huiKKDT7baSwyTh8OCQ0TAjDj/5fJnOlTXMsgLrqFcVwntEWaH0AhFqwrUUEQ5RQdySI6VGIDGBawcMWpNlPeIwQHjL6WrG/PAtxFmJXVh83bRG6FBjowiCFNdYmnmNkiFhT+MU6CiFwrJ6sEA4g1sUbbKBhyiUWK1xRuAkJLJ9oc4WOc55bGMJlEYHnqQOEF7gQwexRESCoFb4MsanAyIZEcZdfNOQn+zRlDkrYaARaEm7gU1iBv2MH33haR57/gmaGsoSpILXble1AAAgAElEQVT5IES4TXxR8SjKeOdgnyBIMeeBwgiHkgLw+Lo89ya2mYhKJSiluPri0/SurlHkeftzKi26KaCsqOsaM3eUtSQUgrqqqYuGoqoRDrRW6EmGijXBJMSnEUJHyMjgbYmwBqEEttdBq3OCjXfMtlecohHFDC8dutNHRgmHBDwsA3rFiMlygLKwmp9hmxlax6i+Yu0rL6KVopqtqO8d4ouyDYEWgoDOJ16z18djCtfQHXWIOpK7D7b50Z/+Ant7D/nJv/wTHM1ydg/uYWZXufZMyPMvfZl5vmC5PGvvaWOwTQscev+Dd1meTZmu5qyPJ1y59Bxr1y/BN34X5x1FYZBRD1SbteWlReqAMAhYzKd4IRn0MsIkpvEOnEXogIODY2xR0kwXdPIKuXYJpwRhp4Mv2wiZhTL49U3WVy+gjWH74evktWFz1KGfePYPjpkuLUnWYV7WrWTZO+I4Zr6sSeIIpSSrPMcYBdaxMe7waO+E+bLi5OSUYTfh0kbDvb0l24cr+p2ANFUcnKwIAg3WcuPSiG9+83WK3PKv//yXufmtV7lzZ78dHDRn/OSXPsfKVHz/zbfIy5IwDLFK4r0jSRKWy5w4jkmSCK01dV1/tPWqqhqt9HlOqeFkNkX4NvPSNfDGrYdsra/T6ISuLIiCIVFRMNn4NO//6R+gIgFxzM333ueFlz/LH/3Z9/iVX/45bs9LzOQyB2f7ZCLmG//4W/Q76xwcHDDsDTibLhkkQw6Oznj/t/5XXnz6CR776tdYmIqhN594zX773j7v7e5xcZTxhaeucmGccf9gzmktaPKCT68nbE1SyrxkVhmK0qN0TNrPyMuS3bM5zQ/e5+r1K3TX1xhMNghVyOHN98BYksEAsTaB1Sln23eZHx1CVSPDiN4w4d69B1y9sEXeSMKsy9e+/ov4IORgesRr3/wBv/HBr/OLv/Q19KTLV9a+wNHhMde+/JM4Z8lPd8hPT5G6y+MvP8/i5IyN5z9LozTj4RZeK852bhMWc0yzIsQwv3uLk50DXBiinSLthCxO9ilXVQv2KmbM9+4wuvY46kZE0rmGikckqs02/O73bvOdP3+XB48ekK/OeHjrBzRVyc7OA5qmZm1tg8mFizjnyIsl4CirkqLIz+WsDkE7VFRSEgcBWgegWu9YkRccPnhE0jtk7/iE2fyY/nDC0W8qXn76Gs89/gT//a/9Gq+9+j1++x/8LrNlThooxt0O14Z9siQiDgVp0oLTTqYL8rLEGIuxFhWHBChGg4Q4iVBpyryuSLKMuYKDRU4wLcA6TrYfMez1uH5xRGfURauC/miA1RGHu4/YnEy4+85r/Pgv/tWPVXs/nNTQ5WAzGmfbl42F6XKJlRAIS1FXRNqxXJ2Q1ztk4/+buDf7sS09z/t+37DmPddcZ+7u06dHsptqkSZF25QsyXZiSZaMWIhgIQFyEeQyCJI/IvBNkAEJkCCJE1iy5DhSIimmZQ6SSIlzc2j2dPoMdYaaa89r/oZcrGoigYEAJKLWuimgcHD2rrW/vb7vfd/n+T3PUdJw7fZNZqsZr//Cz9NYQxxF7GxtIpUgd4Z8saAu15iqpHUgbINUUFaG1XyB8571ao5Oh6zWFrzCOEcYBFhjUZc0qqZpiBNFqHXXxdaC3BiqoiDuZXhn6WURgbTEgBQOU1dUrWO+XneH9Mvg2MmgT6A6Wt3GcMDh0TFFWTHKQi5WS5CSKIzJAk1RG5q6xjvDxmhCXVWMxxucTWfgLPH2kLIq2exlNKslvp/RGsdoa6PrCDvbyZp0SF1WGOeAjqCYDXo0bUNedR2qJEmIo4i012c2PyCqckzTMur3eHx0jLCWKu58EHVjEFKjLqELSjYdAEGHyKZhZ2MTjSARjjJfMh70iVNBEGrKKsfUJSbUDMcJQnXqNbxB2JrHRwes6pLns2c4mx4wbz02UARNw6ypebKYMohHSBnQTzOcrWmM+v9aXn8pl/qw8JIACucFLb6jgDnThcP6rnMvfAdpkQKE6oJdJQIrHJfHtm4Sdqnz9tJfBr929D58h65XQUDgWiKl6A9STFuC91jnMaaDBlhTd1k+tmW5rvFhhHEOISRKSNqmQXhHlsbUZUVdNRjrePj0iMp30yhbl2RZQhyHsMjxziECgWlaCCKs7TwOwgvKqibPcyajHmVZUDcBq1IwSvpILdBhgHOWQGsCrcFKxKWOu6PcyR/N/lQgQYESCms6MmQ3kfrQ+ya6cFfncR0eENsB9z9kRCJQaBmglaZqKgQBcdrD6ggdBijVSRI7cIMikoKqamibBu8cxnaejLYu6GmIAk2oQuZVjdIKoRQqTCBMcb7tvGVSokQnCYoGQ6TuIh6kVPT6fXqDPvkqRwUBrWm6iZP4N5bUX/olxgnSO+RlM8B5kFFHJSQQ+F6ECBNUHOM8DJIU52BqS4xtoSmIBxk6zDBthb2c0GMktqgQlcN43015yfGio+XJ1uF155EV6rLR1lTYVY43FmqLVOFluJ3upqHCgfO0ovNFSsTlfZNEUUAQSpQGWzfkj9eIUKLSEBVL9HCCJsCr4DJPyOB85yNs6haHRckArWKGkw1+6rWX2drfpTcaYlpLfrjEW8dwMsAay97OCGNq7r2b4IoSazu0vXOCpm2618DhvOlyEpUkCHsEYUDQyxCZJhQBYmcTVktsVSONJFQhvm/QrUMYwLSApcgrhLn0BgYVPtUIHDJ2BKMMQoEexJ0LNAhpejHGGVRhEFZgSgemAqHxCHx1+X61xuSGWbXEDCSybmiXM5Rs2d6KGPfGhFmCA7QOEYsWZxoaW2HhR2Sxj/Ia9WMGUY/d3R3uvHyT995/wMX8hNF4RL1aIp0mEJL9W59mXtRIJdjb3eD8opNX11WFaRqaRvDiCy+gEdS+oS5bZJBxVjXdM0XAYDAmSQad50Rp1vmcQdhFwJi2RmmNcBZbN4goYbFakZcNMkjwbUO1rnFuRn9xjlcBo839jvjnPKkKMVFGvHWFvcTwleO36YmAUAlMVSCCkMOzpySDMfga4R1aSsqyIAwDemlM3dQEqoPMbAwHtE3VTZysZV63LPISKSy9OObOrV28qTmar9jcmNDvZ0wvLi4zBzW7k4zzi3NUkmKtYblc8vLP/Q3iMOS99z4gDCO8X9I0TVd82ZaiKLrniOhUMR9mWHY/HVIqnHf0swzrDOuiJJTqMrcO7j54wtHTcyZvPMeqnpA0lmiQsTm6wd5ewKrd5WJxyt/+tV/i+PEJV7b3qasVO2mft3/wbdJIsvH6x/h4seJ/+Wefp9fr453npz7zM5zPFnzpy1/kb3/mUzx9/z0i2XJ6csJx+9FHzXgBp+ua07zhcF6xmaVsD3scTxeMBz2ywYg0yVg3K6TSjCZhBy0JFZtbYy6WS7b3N0myPpPRLmGgaYo1aRzQkJJsbkPSx0c12TDk4MER0gqm50vmdcn169corGX3+g1aNO//8D5nqyWvPrPH+eyUn/v5v8mNqzfo721y9v5dGjxOCpI4YT6DbLxD3SrOjx7SrEqufOzT6CRk/fgpMlJEtLSrNc4UGNuyOF2ynq5wUqFUiFfAIO7Iz42ndYrd289howFBf0Kc9PBCIh1UpeXb37nLdDlndnyfe+/9gPsP3sYYQ9uUANRVjpWejcku+bqT4PYGQ1a9PqvZEXRpemipGWUZ48GAfpywLirWTc3a1sxWFxyddu83n30BFQy4+puf4NGFZbV8xD/6pZd4442fZjU75733PqDMC0ZJTBZIRmnMeJSiFBjrCRRoJ/C0eN+gpO2mk1VJ2I+ZbE+Y/eBtqrLg+u1nyQZ9gjQikorH4wytNL1Qdoqz5RS0YX9jwtMsZlVX3LjxzE+89n6swuusnDEKe1yUa5rKsTPYYV5alLTYQPP+o3s4apJBQYrjrDjBhgHxluL973+d3/+9/5W2MYRRCNZ0I8I0JQgjhuMRUah56eOvM5Qlz33qs/zwW9+krAvuHpywNdnibJFDkFGXFwjnkZMxg0GPslyxszlke0tRFQWBCFjlJdW6YGNjiLeQpClxGDKIPZtbe8im5unxMTdv7nM6L5iuc6JQs7Ux4uxigdCafm9AEq4ZJBHzSGHamkXhWJeeYRYwTGOwFfvbY47OZrx44yoH9w9BSvJ8xZUbVwmF5/D8lOlizvbWmNPZGa2U/ODduzx74yZRGBJFCQ8fPmSxXLG9u0ccSOp1SxSE3Li6R7macbFa4NwuWEtZ5lCuGaUJaZrSy3LODs+Jopimrjk8PmIy6jGIg24q01ry+QXZ1pi9yRbOeQbjId57giDE+patnRFCC4q8ojeK6MmQonRoDWq+IOmPsA3sJtfY7vVxeoRv1tBa0sGIJwcHLPOGO7e2OXh0wMbWHnfv3uXmtX1CPcTLgDD96DHHSnt6aQxKUdcOh8fWlsZY3CUUoIuuUijvoWrQWhGpEKkUYaipTFd46UACHfL9w6LASkugIRSevGop6oamMDTlioum4cb+Js554jhBKM1yPQdklwmmPFXVoMMAGoOQnYwOY+ilMXEU0jY1bV0xXc15cnbBQow5vpjye1/8U3Y2N3jtuWvsTEbcfXoO0mG9QTtPaTyla2mMQ2hFi+LgZIZC8Mrzz/PNtz9AuBjrLV5AlITgu/BweVl0gsAbaBqHcaa7X7UjSADl0dIipaR1nQkXIJCC2gd4Z7FNQ4NANBYdeoRQREoRhzG20ggHvoW2Npi2YTjeYj2bMRpm2EvpTBIFtI3DIXDWslouETLA5AYlLFmvhwxi1rZlM0kZtC1Cd0Sp0bjPha05Oz4mHSe0yhLKgGJ+yvHJMddu9wFLGGVEcUbW63P85LCTP/rOLyr+CiovFUlEpgCF395DCwHFGrdcopH4WIByOBqcd0iZEWmBnBfY1Rpf18yaBYt+H9802PUK9zinrbppj4wVQaoxrYWZwSxyPGCUgKCirBrwBld3pD/fdgWR9QJp2i5uwTucvYxr8FA3toviQBGEIWEkiKOg67I7cJXAn3eGaCtrhFYk2xusLj4gxNGsL7BNDW2B8BLN5cTVe9q24md//tN87nOfoq0VMhAIHzLYGNDUhuX5FNeU3L62y+445p23t8k/eADeo7XGeKjrGtcagiDA0UnbgkChdUgymKCzLQpajDlDb0XozRHNB1Oq0xy3ztFpgLjRg1AT+B6qcWzcO2fxeIb1lmpW4afuUnrc+cXiXkr2/ASRgKVGrRuk9KisD1kMPY1fF/hVQagD6HceonC5QE8blIqQ6whrCmhWyP4YNdgnihK8nxGollrlmEFOvS6oQ4H3HZnyo74as+b5119hvaz44PsnuDRDiQswitBYZuuK8d6Qr3z3e6hI8dU/+0NOnzzhZz7390iTFO86MqD3MBjvEISKnc0RQRSyv7NBFCb889/+bzi7OOU//k/+Mz7/lbe4ODpECsm6XlKRMwhCekFGHMaYShGnfaq6IMl65OWCNozxZU6gNVGgmR89ZCdKKeYzwhSCJEWHEWnPszwq0a5mvarZGQ1BCs7OLzgqz2mCmNA7RnFEPwwJQtE1zbyhqQsEHqUsO1tbKOko1mt6cYCxgsoomrrmojJoU/LoRCCcIs40yyLn8CSnblpsGzBOMp65Mmaz3+fpw2+TKYMIBPlijd3MKGYLZmfn9Hs9pCxp24Yoiro4kTjGe9+dFejAH0EQdKoI14UE4z2BFwRCdvEJoSISXfjy3vaEKI44Oqyx4ZybwQDZrtnsh5w1U974+PPc/eA9Nl/8GV5PM1SaYU8atocpF9Wcf/3bf8xnPruPDjw3t28RKM3nv/yn1KsFYVXx5a98jU+8fIcPns7pqYQffvDoI1+zbdtN+Btnaa1gMBzTSzVhFnLj6i672z1E21BdFvNlW9Eay7Xta0y2NtjbmzDa3Cfo9YkmA4SFuipJh9tMJkOK+QVv/qt/yWK+5nC+4vh4Dt4zvLbNp994neVyzu2Xb/ONL/0xXzk54e/8yt8lflJw/OgRn33jdZ59/jmW3jFpHbOy5eVPfw7RNuSnx7zzpT9j1TZ87jd/AzurqUvL+slb+FgRJ7sQRcQ+ol0csT6bc3Y04/xsCrWjLtcI70BLJm6D8Y1txrfuMLn6EsMrL6PDCC81ge+e+2//8BF/8fXv8ujxA+6+812+9fUvUhRLbNtZKDpVkGC9XvH43rucPX3MZ/7GL6DDCDOHja1dLo4fY5qSzShhmPV48cZN+mHA1e0h9x+f8u7ZGWcnFwiputgeEdLrZSDgza/8CyabN3GmxjLj5z/3SX75H/4G0+Mj3vqLL2KrnJ7sGsO+bVCyy65s24bWNoRhRllZlqsFUmtiERK0gundh+SNIJKCk9Mp4XxNFMiONHtlE+8sudcYCbPpjMmwYfX4KfubQ5LRFsH4Jw/9/rEKr0frKZUOUGLAzY0xwtXoULIscjIxIJCSYThi7Vf00xe4f3DATjJiZ2sH+ZLA1pa3f/AQESi2toZc3R6wOZmwv7fJ9Tsv0O+ljPox0lse3/+Aw6NjTo5nrBrN9OE5UinWFzMCHF7Ak8eP2d4YEWuNxtPLIpYYxsOMzY3uIHsxW1AWJUWVMxkOiQdjzh4+IOvF9PsxJQFxmvH87RHn50scluNlzt7GiO3NDVZFgQ4lw0FGL+txeDYjDiTL1Rqc5cadK0zXhutX9yjKgrcePuGF2zdwzrDKV1xczJA6Zn/3KmezBYu8orBn1G3L3vaEHz58wO7GFjhJGIRkaUAaC6Y4dBpRlmvW+ZrGSxZFQ6QFfR3QT1Pur46RZYVoK65f3ecb338fpRVZEvH05BStNtkdpYx6A44OTgmiHrdu7WOsI4tCyqokbyGNAmbLU3SSIiXkVQsipM1XWAW9vqSuVuA8jRC0QcYqn7HRGxLGkiQb0h9uMJ1O6Y9GfObmHbQUyCglkp6yXBDHAyrz0SNjBV04ppWaIOgKLWssVoD3Au8tHtGRrYzp8liUQASaQGhkEBFoEBiMsp1vxoGzDqE6sqB0BuXhyf0jlquKxl56rHRAXnYIY2sNVd0QhjFNXVG1nkSILpMtbxBaM9BdWPPmxpCNXkoWKVxT8uTpEScmZPv68/zj//y/oKgLssGEvHyLsv1riEDinKdsDUHg0UlI4/0l0l2jVYMUEGd9Zss1/UHOOE24+/0pdz7b7zxNQoB2GNcivcBbfekL8BhHR+ZsHXVlUEoRJB1G3zmLxyGERggNHiSq6+h7aIxBKUHrLUp7tIxpjEdKjXMteb5itSqQwvLWd7/OxrADfoRKE2mNFJqmLPD4jj4oJAqJ8qCExdZrGrNE6gyrE4IwpymXtKYlX7TM64ay9UySgMBYWtfinaCoS1AJ1naeCCUldVlS1Q2taWmbFqlDor8CX6LJFUqNEVqDF7iywi0LtHNdQZpXOGk7qhQwna+xHurWoVqDoobS4usSYSsoDd4rQqkJM40cJYjrmzTW4Q4XuPvnULeYssa3UJklQgjCKIBAdBINKTsIXGXxzlPmLU3ju++O7X6nlWA0ztCqk5rWjcUYQ5pESCEQwxSVRZ2RxDhcrTHeg45oijWmzHEemtbinLn0SrVonfHTr79IuWpwQR/CIWGkCPs1i0VOXqcsj5fkJ3OUt+zvjjh6CHlRd7EBsoPYOKlobZdRFiiFUAF1tcac1qTFGDY1iJZmXiJkhAotVrTMT1c41yAPIxQOryU6CtFpxGCSgbFY7xBSU1ctpu1ewzUGqgCERmqLX9WYqgZdo4YJbKco7XCRxmtNb7DBhu7j4hVFc4F0IaluUXGENVs4BUdPnhCmAb3YkaqWQexQmwnz2NBOTzFlBb2PPhPp5V/8JAGu21MXBS6QTC8KhPBkccjGSNJUNYv5AQcPHvLyreu88swtvvftP2O5XjIYDBAqZLK5w9buPpPJBg/uv8NyOWN3d4cX77zI7tVrzC6O+frXv8bLN1/g5GLKW/fu0doSFYDs95lfnBLGCePBTZyrCGWMk5I4SvAiY1Y8Yfr4CVES84k3ruHbGm9a2jJHhlGH+7eGcDTCrmYkmSdfnaBUiu4lLGcVQgqyfsK1zQnz2YyybrCua7zVVjLMYiLhiKVhe2eLrx7OaJxnkZeMY40EqsbzwtU9JqnE1IYPHs9QgSQSncphebrg1hu3uHljn9//+ve4f3LK7Z0R/+Df/zW08fyL/+uLvPqpT3LtfMnbHzyhqrpiqyjKH+HjpZSXPlWHc2CMw5rLiZcFrTR5ueSNV+/w7e+/i1QBrWuZLmsSCfGLt8mubPOdg6e8EgQoJbjy8k+RBRHf+Mb7bFzbZfr2N3jxk59idu8D4ixgRcBLV7bZG0747S98n+vPv8of/NEfM+xlGFezMRnxmc/8NG9+87ssF1Oqk6fsbQ54dPTRr9nGOaBGS8Grz1zhpetb3NjqMxwP6PdiAuWprGWZlwil6W9soIBVsUAuBbvPPUP2zEuEaNYHdwl7GfH+NQg0RV0yP7ugqhyjvWvc+qk93n7zB+RVQT9OWdmGa889x+/+09/n5/7er/JK1qNcHrE52efQzqhjzco3BMbxB3/wR/zKf/Cf4t2ab/zu/0he1OzfucNW2uPB177G9vVd+teugqnJF+fMH36TKIr4zjd/wPvvHnA8m7F/ZRezXrGaz7F1y2gQcP3GFfZfe4ndl36a/pWfAilpsJi2RivLIq+5//23+f1//R1a0/AXf/r7PDy4z3J53qkavOjIz0IgRWeJqIsKY1ruvvc9rt+8zSCOsWnGxu4N2nJNWC5JI0WqYHF2Rjmdc1ZV1KblpWef5eYzz3P/0WOqukYIyXBjl+HmLvN1TmUqvvPtP0fYNf/o13+VjZtjPjkYsjh9zOm7b3bnMN3HVw15UZNEMSoMOHh8QtsaeptDYqUZDXrUVUkSRWw/O0FKSbles7MxYu+lF2ksPH5yyMXZlNV8zrooeXox5+DJU5xpeW1nh92NPi998mO8/td/8Sdaez9W4ZVFMa0NaeoSubVNnq9oAa89NnQUtaUsFly/coWmluz2r9I2OUp5dvd2ePTWE4IQFrMZsWw5sgXCNgi7ROmGUT/D7l/Fe839995jOlvx5OiIe09mNFXLrevX8N5hmo5SF0YRRVmTJRFJkjAeDamtJ1/nDIZjWmPZ3JiwDldUdTc52NzZ5uHsMqwukVQ64ej8gp3tCduTIY9Oz2mNYTzskWjFRj9jvVyyymv6g4BFUZCMhuxOUprWMJ3mLJqWF29c5+3375GXDaZt8CjiSLJal6QxNE1E3TSk6YDZes3Ozg7L5RIpg04jnmjMrEMye9sdWI2xSNnhO+uqpm0aAhEAnrKpMNaSlzmjQcbdowVCSpxz6DAmSXrMVw1F48i8xxQtF0fn7F7bQ0pFeSlH6wWO0+kRynsWyxX9OADnGA1GlE0FeNZVQRwlpEHIRV5QFQXp5UQIQEtB1k9Jez2c6YrxJIyQSlLmS6zwGG+o24++8PIoUOElCp4ub8tXqEAhUNRt3dF1AGN8l9mGxFqPspcABi07bIToHjTWdPIvvCWS3QPI1hbXdIS01hjGG2NWy5xeGqOUxBqL1iHGNng6SWMQBFSVuXxNcFLirME6Q6AlUjjauqQ1BqcHPHx6QtPU4DymKfBty7t373H7yhbWdkGDykPVtmipsEp1GHcsWgjCQBMgsKYiSzVGBvi2w+Fb77F0UQhCKBQSaztCqHUeYztztnMeZzu/l/fuQ1UZ0D2APZeyNgTOeox3XQdLdqAIexnMq5zB+xbT1DR1QxSGzC7OmPR61FVF1kvwzmFFV9hJpQnDAKM10kqiJMLjyESMrRvwCaiQvG47s3ixpl5ZCmOoPSzWK+rKI4KQ1lq4zCzzzhNoTRiGNHVF4yyNMQitCC7lnx/1pSuPCjqTvbMOatMBGnQXGaC9v5xItZ0MpNPGdn4m16CCljBNsFpBOMRVLbrvkXUNvkX2QsKoh3CWdmjQ2y2yMPiLRfdvFegwREURKIVVsvNomYpAd8+Y2IOS3fuzEowzaCXQgUBL2a1Z71FCdAhiLRDGQA2+sXgvcDi8s2gVUyxnBNKD11jRRQMIIYjCgNF4jFSCp4dL9l+6QSFjpPCUqxqvEnTf0reS06Mj7Dpne2tMEIZIsaZzFfgOdy87YIq17keeFi0VjW274mnZIuoWF2r0oI/aGRDFI4YiplksWJ8vaZoW6yRS1wyHDp1FyCRAIXHeE8oSbfXlAbdrECodIAcaY1tMBaxanFNYa7pokSAl7AVMgoBBogjVmHrDYUpHZWq8vCQxWklUNbjWsqgcbeAwpqY1jrZtoLD42uP/CuAaTksWszV9rUG2nJ7Nkc6wtXGFvDhBy4CqhunZCbvbE959+y3mswXFKicIFOv5mqQ34OjxBSfHD5FSs7VznTRNODt6yvnJUx4d3AMpefTwPvt7z5EGgmI1QwhH4xUXZ2c4b+n3e1TFClMLouEWTWuQShKFmihOMW2D0gpjWrS1OGdReJSSaC0Ig5C1BeEFr778GmdHTzh6eowwDVXdEoaS45MpwyRl/8oVjk5OuJgusR6k99RNSxxrNjZHLNdrKmt5/s4dvvu9ty5jP8BUa9YLx05/j6Kp2djeZLkqqOsKFQT83V/8LN/44BHRnZsoHVI1jv2dTeoyZ3axIo1iTs6n3H9wgHOCLMsoyxKl1P8rL/P/iYtXSv1oD5NKEsUhgR7yyksvcff+AYui259FKOlnGR/cPeD157e4NexRTd8hGH0coTwu3Gdz85j9/S3KmWU5OyIyDVefvc6j6ZLzw6ds3XiWpxcrLp4+wBjLYrHgH/7mb/C7v/M7ONflYy6KnPFgjKymLPKPXmqoLkFPUghWqyWrdcpMW3Z2xwSBwNQtzlj6WUrjBBfTGUkSc+3KTfrjEXHWg3aNqaBcnFA1MeONPaQ3nDx4gDUtr37yU0zPp3zpC19itlqxvbVJNMh45uo1fu/3/nd64yE7m0iJvYAAACAASURBVBPuvv0WoTLce3jAp3/ubxEoQxxE/MUX/oT+7nUoZ1w8ep/R/iZ3bjxLf3AFvKOozzrit6lppoeUF+c8vfuIYlXxnbcPeHI6o0XgDi8Isczna7SIeOHVK9x88QZ7t18h7m3QtCXWlDjT7d1xnLE4XvH2W/eovMS1VTfEqBpAdXuy9J2/GwXOUwMOh7WCYl6wXC4Res3Z2Tk60Gg1pHWWRWM5nk6RRuKkIJ5MmNQ16XDEaDTBPXwEQjHa3qE/3EaoLlojjAJWZcHJ8VPOTo7Z2tknTDaY7AbMDx/TrleUiwUeR+Mcq1VJg6BF0QgHVcPSrEFY0iRmtLmNr5boIOTmzWssZnMWD95BpRnCGeIk4srWNVoh+Vgy5v13P+D8+Cl+esG6KLHlRwTXuLF5k+l8QdZPacuCKI4QGpIw5mJ2wWgjJY1iqrylbT1RIJn0d7kSXaOfDnErxfTwhGVoeHI05XFreP/JKbY1SPE1RlnEay/eZLWoKFrDBw9PcL5LrI6jiMdPH9M2lqvXrlKVFVmSIKUgyjJUEFI1nkAK0lhT11UnVYq7pHHtPf04Il/MccIzGPZIs5jDk2P6aYQpa86rkqr1DNMYW7ecnJ9xOpuTlyXLvEbriDTQJIFiMu7zjR/eZXPc5/aVfeIo4OFiTa0Ddjb2OZ7OqMoSrSSDXkaoFHlb8/7BU+7cuMGV3R0+/9Wv8crLLxEoBUnMC6+8wMVsxqifcPjoCTJKCPfHPHNjj3e/8l2ORxe8+vxzxEmEaQ2vvHKHYrHGS8WD47ewtsUY03XuoxApYh5PO5pTL+rhWs+qWFMUBTsbY7AtQRqRV5YrWxNknmMah3CeMl+gJGRpHzsr2BholkXFM8MdymKNDSTL6ZyqbUnSDOEleZUTmgIhPUFrWLY1Ds84jlmJnLD30WcioTWtA6lDlHZ4r1Cy0xkrHdLB4zyu9RgdUeaLjtTW2u5A6T1KKvDmsrsvqFuPsxYtPAZPQsD8ZEEQaDYHPZx3nJ0vCANBU5YI4fBSEwaCdWOQCNIkJNQGqQVNWYFRTFtDFkdYY4nDBOdhvSoQkeLw6JQvf+1NvPNkUY/aNCgM89mKR7LGu44U1CHbFY0TONNl1oUKbuxuc32ScTFfUjlIgoB3np6z/cyQuCe77CpnaZq6Q67rzjNhHVjruimQcQiXYKxDtRKUwmM65aUw2A4H2G30znWHWesxrSXTnZTTNA0oqExNoASNKbCum06/9vprrFZrQt0jkCFVWaN0SJz1QQXkRUXbtrjG0t/oYVvF1dEVaDco17bLRen3qBvLuV8wGqacr9fYMKaoDGXRMBkHnctMSJTs/JxJFJFlCU+eTCkXK+q2Zff6TZIkY7E8+8iXrDlfY5uOAtWILvNNWI9OI1SkUMNuw0J3n7Hr9RBhQKQ6Df3GOKbfS5HS4ESN8ynWh7jGcrpa4GgIAoOioYkNKhFYqxFhAk4ja4MUAUJnaBWhnME1Nb5xlxEKvgvnDgUCjfMeLyU6CJB9jfcQlDWqL7tsr9bhrcMuK+wShBOIUJHu3aRqBSoe4lcXLItFF0bsHIHumiU7N+7w93/tF3gyX/L9oznfP1ry1p/8MevZGdQ1qr/BrdfeIBmPyFdn9FzFr/7Kz/L0Iudbf/LVblLrXEfNxONDh3GdpNZJiZWWxnaZaLQRzaFHbSlM2nDnpS02+xssP/sxDp7OOPn812iXHfBIRiHBqI/Y7XeTPK1pFwX+6Sk4i5MeUxqqp6d4qUmvbKPiPmEocE2DdyG+SEAIpIgJTELfONK2JdQJO1tXcEZwkl+wKApc5bFAWDpaD2iF1Z3svQrWlFVFkxvcssUdPf3I16wsHQjJbLlmOEjY2trAVzkX8yOqsibVntlZwX/9X/2XJGkfYVo+//l/yXJZ8s477/HNb32Lxwf3WczPCSJJmvbQzlAmKbPpDK8MN67f4N33Kr74r/6QerXiys2bbGYBT89PGfc3qco1rikR7Zqnrqbfz9jJeqgwQ2tLpAQqjImjCOEtTZ6TDByRVigtCZTAeoWUkun5OUNV85Uv/Bmth9vXtnBIrCyxzjDeuc79w1Mmox5nF+fUdZeb1RhLHIYIFFEcc/fghHXr+eDe/e57EYQIpXjh6g7PXt3h8ZOnjDa2+d7Xv00Sh9x+9gbTsyNGmy2vlNtUqxXzszW+Fjh6TBeOssjZurLDX7z1HtYrrGkpigVZllFV3TNS665x0TT1h5/QJVreEYYBWiuWyzk3rl/lwXvv8uu/8nf47//Z/8lkMuL09IzD+Yo37mywDh0bAbRri9juIcKY/ugJ6eYu62TI/OwQcbri1u4mNAU3e/DPv/oE/eiYX/7UDf7xf/d1Xn/tFRbTBb/1P/0WgZb84LvvctHmlI+XDPoQhnDt1vZHvmattSitSELFM1e2GKUpOg6IQgmt4fHjUy6Wa4zvqKfPPnudK9f3ufLKxwiTIW1d0EzPaNqCrWdfIhxsYl3J8vSEzHnefece/9ub/wIrBZOdXc6mU67eeY7nXrxN7hp+7df/PdKNIQ+++WfIasVv/dGXee2Tn6KcnrEwNQdHR/zSf/gfwXzKN77wO9x87jkSFyEWOd//5v/BcNzj5iu3QYU0xx/w/S+/ybsPTnjrySknFzMQCqlDKmM4OJ13zRsqbkzGvPzys2xcvwpSUy8Pqc8fE/e2Uem4gyPVhrd/+AFPpivM8pDB9g4qytCBxtca4R3jLGWYJLx261kCoCpW/PkHDzgrC6IkYTgcc3JyzHI2w7mOxN3f3EMoxdurJVvjIeNszMdf/QRxkrFuLa1p2b7Zdus06nKAT04OOXz6pJu4bu9gqyVvfv2rPP/iq9x++TV8knDt9b9Os7zg7a98kflqzmJdsMotuTFMlwXnZ+ds9GI2Jn2cDfAu4OT8iAdHU2arJU3ZYBuDtTVIwSiN2N/e4freBB9GjK4FXLl2rYumuv9DJlnC9tbmT7z2fjyqoVVUpiX1jrouMHmLDlKiuEe/3+JlhFYaHXrwsFgtsEriGsNaVGxtT5hsjliu1oRBt2GXZYVwliCQrIqCH7xzwCovGIw2yPMKBPTSkEh1HYgkjkkCSVk6zi6mbE5GCBXg/OWBMYzxXpKGSZfLFcYdMMDDYDBguewWIEKwKgqkDtG6s5mvi5IgCMnCkLppybKIprX0s4y2dShviLVECNfldhhDlvZwrWW1WrG9uUGkQxSGUT/D2Ibd7Q2qstPrD/t9Qq2JlCSOYkajCVEQ0IsDjhc11hi2JkPy1YpQSuq24Xyec3Ze4p1lsVxyeHJKFu+SZikHB4fsbIwp1jl7m0PeP5x1mN1Ls2+gFYu8YtX0SQJPvcoJ0wyPoPWeNAmIlSVLU6KkjzeCNnCUywtW+ZxxtoGSCm+a7nNSIVp74sEAIQLKuqRcLnEOyqoFCUE/IRIOa9bMF4dMxnsUVUvVrpnE+z/xQv1Jry7PpMuQUgLgknD2Yd6Q7r4CBomWDu0DWnNJMBQe5V0X/Os7w6Y1jraxHXpd0eGmK0GVO+arEhF0xWVVlUQ6wdoOfIIQnfbYXVIBTXcQiMIA70UH7ZCiC0hWkrKuWKxzTNtinUcJyc72LkmYIvCczafIKEFJiTXmw6k/xlqCsMurEpe4bHEZSaCFpZ/FFHVD1huiPSznOUJFqLh7Dw6Lx3aFkwd8B7Hw3uMu/watQqRwCOof4eOFlFhnL3Oluy5r9x92+EMpOtlgh95tsVahle4mirLDfuMVxkAv6yF18KNubagk/kNMsunkil4H4JoODe4gTSOCAPr9DIznbLYiThKkPCEKA0TgKXyNtY4gUGAtugsVoDGG1naTrrquMXgC1YVYN3X9by6qv+SrmE2RTQnW45IAKRXSK1QcoZMImSVdl191hQ1KIhWoUJAFEf1+gk46P5H3AoXF+hoRCdbGYbwg1BJLgFcKpwSkmmhzhMtLmrNFB7qwNZZuXTopkGGAb7ti3hr3I9S/FAIRCgg90TgEPJYArAZjac8WWG8xrQMvUEp1SPnG0DYNTkCgNDUKUzdIINAaD+zvbHP79jXev/eQ40cHPHjzTVYnT7qJHxI3O2U9O2G8t0e6uc3ezV2GG0MGkx7eK5xrME3T4e69w7bgurksUkrqpkFcToa1CmizBJvX4GpO9kPSeMgwidncTDnbGRLFET5Q6F4CW33iQUaWRJTeYqxBxA7hLwE7WYKJYsyspDidkUyGCBEgo7A7bcrOS2mUotYadIzUEZEKECpBGElka3po8rYzsCdaoV1370OlMVpT+gQsaFFjA0VVf/T02PPplOnZCaYoafY26KcD+v2EKICyKlAy5PVXPoFtS5pCoaXnF37hb+F1xHrleP/de5ydHfPo4T3+yf/837JYzLh//y5pOqSXJRjTsLd7nSAIKNdrjo8fcrGY8urH3uBsds5ivqCpSwJhCLSnrnK0sljTEqSaQIgOgqQkYRiBt3jX4dataQmiDvzzYXxEOuxRLQ751Kf/Go8fPSYOHCcXc6x1yCDgwYMDsiRgOp+TJDGL1RKLxLWWRgeESnExXbBYlljnKMsSHXRQMI8gCjWzRc75fMnx2YxXX34eJRzrfMnNm1f5/vce89zuPhUtw90dwoNjVOAZb49IMwV5zenZtzrPpuoAL03TAWQ+nHBBp0LoPF0dUl5KiTGG0XDI7OKc4+MTbBLQH2U41ylotICiNVzZeYkt2WecKVwZU59+j6R3lbq9xo0XQh4/XvPczhW+8adf5vb2Dum1KxgEcnzEt7715/y7/9YW/84/+Pv8D//knzLqj7m2u0fhKh5NL/jpj93BLEtSWgIEN3c3PvI1qwTcmozZSiN6wlEXS9TGDrLb2hmPB0T9HhfzDo5SVQX5aoGp1wghKVcronSEDvqouI/SAWdvvcmTu/c4eHzCycWc/f2rVHlOsVjxc5/5LNefeY6tyR6Ls3Nk0uPBD97m/R++SxAlXL+yzcdeuMXTo3OOHt3n+ZdewuUr2tWC3atXMbSkkwHLpmQ4Hl0CaSoWh2eY+ZQvf/c93nk85/E8Z11XBK6jV1oPaZJimpZnd/vcufMsg/GAZDDo1D9OokSKlyGoDrKidMz9R0fM5xfce/vb7NYvcuPmDYrlKcsiBydIwoitwRDVNiRBwLDXo6cFeaC4cvNZbt1+iccHBzhrO2idEHhbonVGf7yJl4J12/Lk5IheNmSys4dQnavae49tG8qyZbVaUBUrellKoAR1VfLw/j2kkOzdfI7ecIjJhmhr6W/tktuWGMWjkydUecHm1g6B8FT5lPNFjW9bYqX4+KvPMRwOkDqkKT35Yk0ae6xzFKsVSkj64zG9yZjepMdysaI3immvbuGdIRz85NlzP1bhJZuKO5u3COMBZ+tz1h5kUVBNp5fJ8EvSOEPriCJfUZclrS8oadjZvELR1vzsL//bfOkPP8/x2Q/wXlCWhvhDb4kQnOSd5raYnSFER3nLQsUwjSgMOGuZzudYZzk8nSO14OreDk0hMO2lh6bp8poGgz7L5ZqmrLi+u0VZrMAZJqMhq1XO+bqktp5BlnF4tqAqazIMQaAZDno8fHpOoBWRcPQiTRB00rQwCKgbwzBNSWLN+eyctx8dsLd3jWwCItQdmdF3IW+j0QDw3D88Zm93C4/nvQcHvP7xjxO6htOLGYtK0EORDENm85zrt67x5OiYUZpQDeHateu0TdtJjbQiXy1Q1jBf5gTOkUQdWr/0kun5BXt7OxjTcHYxo58G3Hphj9VyxcEP77G918N6gUo2MR5kYDmfPmbQm5ComLKSRE5wcvSQOusTDCfUOOLxNrJZE1hP0UiUFAz7EwYa3jk7Ix2OWcxnzNqKqxsjNnVCYxzONIxHE1zwYy23/18uocMug6LjrXV46qCb5nhrOuqaksgoAueRaUbTenIj0BpCLE3rLg9tXdHVFg6sZDSM2Qo3ODloOTksaQHXdNleN69eIdKSQWTZ2xnzpz+8d3lIVh2kom2xGqQ3XdKYF7S2O5gu1zm0LYO+INEBOkwJMGxuTRgOxzw6eEDWG/DKy68yPbqP9gXWz2jxaKBuDUJIjDUoBCjPdL5g/xM3yGvD3YfH1FXOVpZQrlrG4wCBIQojZBDg2xrtDE5IlBYIKzs0uQLlArK013lTWHY+skAivMZfTrqE9CgFUmq8cLQWlAyQoituhe8kUlLHtNQdujwQ1LVBSoUKFJvbWx21TUmkrXFWduhZAVonOK2xreTk6ILAea7fukWWah69+xRbOq7u7tJ4z2Q85OxsgRcghCbQEUqvkaFE+govAsI4wvgOZ1k0Xcdr2MtI0oAs+eiDPVU1xzUWwpDezhX0aIQe9RlFmkQ1pKGnQfG4jrr7aEpUa7CFY6EC5iYmjroA1a7vsGKjHzJIerzwzBaRDugnKa1teWd4wHtadpl8Fwara6g03hlU5BCyASmRuitMnW27zrnoaJdKdfJHKodDUVcBUaq7rL+8oi1rpAMluuLXGANWIOKYZG+bYJ4zP/i/iXuzGEvT+z7veZdvPVudU3tVd093z9LDIWfI4SJSXMWQohxFuwTBshU7keMYCWTESAAjiZMLIReBgSRAbN9kgRMYlhRBlCVKomSJFCVR5iIuIjk9M5zpmd6qu2s/+/n2d8nFVxwll5qL0Qc0GqhuoBun3jrn/S+/57mHcI5e2mM+P8fiqaqKQGt+9Mfex7PP7XLvtdfw2Smrk2OIOpTlisYYAh3hhOPw/h3eu9FhvQOTewc8dWXI7zc11tkWqCM8SIh1K8pNO512O6A2hFqhTEDg+mT2AXaSY3xDPTacD+Z0L+1inacz2sGNPE57pBakgw7S1xT1gqYoCbMa5xJoHMJ4vPK40QDd7+MOxlSrFUGvg95MoZuiuj3SOCQJIQ40sjdgRUW2mBGbEl8DuYPCMlQhgVJtYxGBFx6hLLlWzFc1buVxPkSkCb3+4C0/s6FPeM9TI9Jmjf/rs3fp9Ur+zs//V3z+Nz/DD3/yk3zxO39B2OtwdOtbvPzCy6x3SnYvPcfJowPCvmLvHT/Jpd0RVy5d5/pT72GxnPKRD7yDxfiMf/mv/g9+/7Of4dZL30ELTy3g5OSINJox3tlmYzjibDppSavGYcqaMsi4tL+LNBnW5DgnaPIZ1fSUorF4Zzg5bUE63Z2n2u0G277faK0YrA3pBft86Xd/FV/V9K5ssre1zu3Tos2uFjlK93j5zglPX9lCq3bSlIQBSRwTRQGv3D3keFbTTQOUhEC14m5jDeNpyc3juzz39uucHZ1ishyZWKyI+Pbtc9aF4rlnNIPLb+e3fv1zVM6zO9xlLQl46SDjN//o31E0FkmbN/7eemFLNrQXK7XtSm8QRBc5rzbf1RjDYrokilOWWcUg7fKFr3yHH/z4R/j8F7/C1tYILTS//kef58rep9BpSp87bEY3sFXFtJoS5orYC87ygK1rT/BonvNYusHpiy/RiTzKGH75s9/gwx98Dzt7V5hOp5TjI65ev0aZSW68/R3YpuHuuObt73ov7ubrb/mZ/fg730ZPWbpxQLYq6XVCmjKnNA7f1Ggh0bamFwg8CukFRV5SZznlqqC/vkuRN0jRIXaeyesvcPDiLZzWXH5yl7QTsFrCk+99N15a1kZbdAc9fv1Xf5mqyLl8eZ8bb3uCa9eucHRwzPd94KNceeIZ9P07DEJLt9fBFhUqClpSadbwp1/6KstVzv7uJvvbI/LTc5anM/7i5mt86+4xDycritrQWMPCWZyr0cJxXpRcXUv5R3/vx1jrJPSuXkPGnTaXrTRBkLaRCiNJdco/+6f/M7ePxvQHKUdHB3z7O18jM/YCqOGQwDLPOLaWVDgWQLbISAfbPPvkPr/4X/zXPHr4kD/87L9BB63OIIzC9u5T5yyWRxcRmx5SK9ZHDWGvTxyH9Ac96qrk/PyE8XjM0eF9wqD1q2bLCTPpUMaAu8X62p+ytbvP7rUbxGuX2Lj2Dg4Pj1nMzoiTDmvr6yzGEyhXXNvcZGdjk0YqrHc8ODwlUBFeKlbWMJ3NOX14nySJGa4PkVIwvlsRnkwp3D1ufuubRFITpynLZUbze1/jcz/zi2/q7P3VMl4qZVE0jOKAh/MZodCkTqCdI0xTFssJp5MV/f4ms3JF5No2fDeJiZSjP9pERimPv/1p7r12j/NZwXhVsiw9GtfifWXr/9noBnSiiMYHrPV7DDop0/M5gQ6oDZSVIQwVRVHQSSRFmYKHom4JNGEYEEURcZpycO8h1hmmmWGYxERaMPPtmth4kbEZhFhjwRv2hwO+/Mp9OlFIoAR76wOcbZjn7UpdmiREgWa93+eJvR3SUFHGCeW8INSK9dE2x2cnGBShliSBxkpBGKesVjkbayOCJCI04FyDbRqMgzhOWc2XVGsR1nj63ZDGOmQQEYWGPMvYXN9gOV9SVTXLxYLN7V3m8yVSa8q8IO10aJrWMaKDgKqq4SKsbhpHpEOqRYFZTwm7CWVhELKiF4WMZ3OM6BN4TbnKCAcJcTdGhAFBFFAWOSESLSJ0qEG2lqeAmCTQ9NOYMBAIGRJ1UqIkwccj0rRHL44RwuHkW+9EElLi+cvun5KKKNBY7zFeoFW7WhJqgXcSVIyQlgaHChRSAdYinUAYkBa88QgnCdGELmKeOUrbnqfvwSaqqoRGsHf1Mr2kpZV5Iaht233MyopA+osJEW0h6CG4wCLrMKQ2jp2tEatliW1y7t+/z/bOVVargnQwYDI5Jwo0TeGw3rUTgDbtihcS70Q7iTINRWWw3hPFEZPJlMGwRxoFLMuSprGkXpL2+6g4YTY+wpcNIHGiNc1r3WYTAvSFNFkgfdBOO4QEr3B1Ow1ppbSgpEIGClGLC+ihIwwloZbUtkRrh5QWoSVag7UNcRwwm4/prq2RJq1V0zQVjnY6IESLRP7eaxYHEaGPSKIOcdJOW6qyYHNvj9w4mu+tmPk2VxDHCW7WNma0FDTOEkYRURihA91+PQiIo5by+NfxqCjGywYZBOhORDBI2dge0qdGmHayXwJatuuw0lYIU0PhcBLwEbkwGNugFHjhaeY5Wd+wKisG3QDnFzjviIUj0A34BhFZVE+AD3BeEOiodd81BlE5VC2QRuGMe2PCqpTEO0fjHNoI/Kqmcb6F1tSAbVdVvbVt5s9BGHikpp2CeUuxGLekQe/baW3TtF1P41guVjRNRbYqCFWIE4Z8VeJcmwnxVlBmi9ZfpRXT5YQkusz6sINzppUyS4Vw9qLjrzDWUhQlpmngIvtiKktcC3xmcbMc7yzlokZPCuy4RIcBut9FqQAfS5wGE2i8rGmEwzmJChN0Cj73uKpANKC0BCGJB31c07Q/B9UKqIh6gl7YpZ+EhGGAFx5jICsyxGKFsopurZEOrHf4hnY1USlcoNAIpJNoB1JrXJLgjUWovwYSZ9EQesWjkwPWBjOsC/j07/wKl0cRvaHho+9/luOzCV/90gl1veKD7/4oeS5QrJHPMzrulK//yW/w/T/yd+n3OqwKxS9/5g95/PFr/Gf/6B+zf+1xXnvhJt9++QXu330dnCBfrciKktW0xGqwtsYWC5I4gU7EgwcPeOf2DlJYGjxNmeFtQxDo1q5Q15iywLsC40s6sl251rKFLZ2P53z4Qx9kNj7jxRde5vHHdugkAYuiYXNjiHWtvzx30FiB9K5VzHRirDMssqqVzAuPlgqtW7+Xc7BSnqeuX2U+n+O1plguCZKEVbbg0vaAvnI8PK24u7jD668f0E9TzqYTrmUDzk5O6HW7TPOKssjwyDcKLaUUURS9QZpzzr3xu9YaYy1hGBKFIWVd0u12Mc7gheDo0RFJkhBoRSAEqU7QMuDg7kOuXh+STUqkOGWn0yc3jnm2pNsZ4vwmT1+9zMPXD7l9NueJJ57k5kuvcD7LKRrXru87gZQBx0fH7G2NyIuCV196hU/88A9z+9GU1XL+lp9ZUZeoVLXxgDRke2vI1ev7pJ0EW1acnUwo6gYpNHlWkvZiHLAYj4njmKpbEG/sEkYR88PbFNmMzijCNZ6DO0cc54YPfeJTmGzG9s4GB/cfcXJ0xul4zMc+9hGu7G9RLleEMqYRiuc+9mEsjvCg4qWTMR99+7s4eXCX1WpGJ1KcnZ/y5I3H0WHExqDH+PghEjg8PGe5spwtc1ZFSV03bXY0iRFCYpsKpSTPPH6F7VE7mVNpB+cVCgUqQiUD6toihGV69oh7Z2NeuvUSri6ZzWaty9D5v1RVCEnZwNiW6OmMYbfLaPcKj994nqeefZ4gjDk7PSUMA8qyPZ9aa5QQrQ6mrghDDdZgTA1CEsQpQagxxrDKFpycHjKfThHUBComkO1nTVEUrITE2hn3793DNIbuYER/uEm6ucX6lSuEgx43/+AL9JKErX5KP21XWY9XCx49OqaTJFwa9Khjg3GO9b1dRhsDTmcli6ZmeZYBHn+aY9wpkbQ8ceUSIukQpH3S3pBPf+Z33vTZ+ysVXkeLJVJFHN5+ia5MiZKQJBQI2WVlcvbWr1MbS13MuLK2xdnqnJ3RkH5/D+EqnKkQWvPhj3+IajXjhW/d5GiaUQvJqqzoSsWoE7Isa26d5Pz49z3JrcM5o26f0VqXpD/izoMjnrx+nTzLW+JfWXHwcIoONFYostWCbqdHVdas9ddYTR7y+P4GmBqFZjw559XlFKUissZzNJ1TOMf2xibGWo5mGTsb6yyzJYNOl7oqyfKKxy/v0+8ETCZTkjDAOksaK2ZZQ9EIblx5jGo15f7kiAdnK6SSWNuwuT4k7g64++othv0eTV1RdzusrQ0Q1YrlqmRWGuLI01Qr7t8teOyxKxgHSmhyY8EZ3v7EVe4fn7G7sYEVgkVpOX31DuvrG1y6tMHpZI5oauqsRAUpjZcMRvvMjg84PJlwvNWhn8SsHk2p6wpzfYQJSva2etTVirIoMStDJWZsX7oCUjG81MeYmtliybAfEjV6EQAAIABJREFUYk2D0DFOSerZCV5HqEBQmZJBf0BdGyIlKeua6Upjul3SKKQJ+ySRxZb5mz6ob/aJdEQQtB84CInxNUnSw/kaL2Qr7xNcfL8solZI0W4ChVoQKkNjWgdXYByyAec0QgRcXbsEZUK+yFBKo5AUtgbhwTSoUNGPFco7Gm8pF8sWvtGA1PKiKBCIQGGadi1GCM/JrKY2nv3tPvP5jE7SpyMEu8Mur915ndHOLp1uyt3br/LJ972Ng4MVwnmUs6SdmNoKhPQXomdACPLG8PJrd/nI+9+N84psmdMfruHqgG4cI7Vge+sqg/VdjoKQyeFdrLM01rSOMinQSlysZgq8Fy2tTUKsAPSFI81SCQ9KICPFehoQxIq1bkyZ1Qx6iij0dBYVQRwTBw2d4ZC9zXdQZA02K6mKBYcHdxi+/XmaC4gE0hAqiaCg0yuprKK2kjgZIkjJ8gaUxjhPZgKeXN+jKwwP7nWZzyvSbkS2OmG+moGVRJFFqnbttCpKhLWkYZtRTZMOSdzFlg7711B76d4mZr7AW0OTLyCXTBc1K7/CGUvjGwwab0RbcE0rfN1gXYLVDtm41t/SNO2lSxgyb8jjBWdbA2zgkSJvmydatAheb1GBQo0UzeXWvxfYCFFU2MkSbyxyBC6PccuaelJckD1bSXc6CtCdkGAYIzsBBoEtLEEFsjDYylBNckRek9cW4yu2hMSGmvFijjGmXYu98L+FQYAQjl/9V5/mT//4i+S1ZHw+RgeKZrXCeYd1DuFrglATxxF37j0Av82//YMvcv/RlKapsKbNRimlcRKysmiBXK6d3MVxjFK69ZitGmK5wWlxRnURrBeiQJ8uSAJN2IkRSYxMImQkqc8DdC9BBBrfi3BSkaQZXjc0TYJzChWlaK/aXFaeoRDIfIFYeXzsyesMwpDaCvJSIFRIx2t0JnBVia090rUTBOOaNucVJIRxpy3QgzafqusaKUJUJ8LWb72MtttR+CbAZOv8zMf3OXiY87/9yhd55j/5e3zpay+wqRdoHD/0wXcRJm/HyJjX7r7M1RtXuHz9Mb77Z5/l3e/6If7Jf/M/8R/91FMszjOeD0+4HJfM7ub8+I//BOZHf5Y/+tzn+B/+u3/E5/7oq5zP5vydv/1TXL50ib31Tc5mFpWEGNOuB4dhxPjoEQOnqYzF5GN8kwGWfr+LKQuqckkzPW7vDKsFRBGmuRCvG8mV9W2KyTnPXtnhbFXgpMAJQb8TUlcWrSI213tMzyfkdUBuDOX5GK0Vm6MBA2+Yz3M6nQ7WNqAUa4OEYT9gMc9wJkPphBzJmu8QGM/1wRpmNUd1BL/ymX9LljvWugms9VgtDS/ePeTg0Qm1BBUGuMahVHuxraqqRcXD/w+oEQRt07NtlLW/tNYURcHP/viP85Uvf5n7Rw/J8gZta8Io5mS14JWXb/Gu7383nbVrzBaewYZGugHp7hb14muUs0OqSvPad79NsHsdUyzYfP6DiN4XqWcr/vjLX+cHP/YDrG1u8P/8+r/h6tXHeObJx1idTtlc3+BP/viPeduTz7Aev/XNgsY2xFpTlCtiHbfFKTWTwzlVbShMA1qSpBE7eyM6owH9bo/pZEZ46TG669tYD3Y1QYwPGd874gtfucnw0h4/8tM/w+LomC998fPceP45To6O+T//719j5Tz/4z/9JXyTc/r6bb70la/zvk98ko+//3187bc/g69Lbrznndx45ll+99OfIY08jz91jfTyPuuXH0PUOaf3H/KFL3+Zvd1N+lry4HjGtw6OmK0qjGkBX0IIvHHEccRobw+B4vufe7oFyiQpvmqbs8HGJiocItI+CkWdLQlVzDPv/CCXn/sJVrMpr738R8wnD5menuCEIYwT4jhlc32Hssi5/tTbyMuG7OyQp9/7IerG8vk/+D1uvvhNxuMz6qpqJ662YbS5zfrGOlGny6C/zaCX0utvEoQxZbliNsl48cVvslxNqYqcfrdPuraHwNJUNdZEWOcpXRtnunt4zGyxYDWfs7G1y6W3PYOVPe7ce4VupJHeMZ3M0aHmdDnD1A2jKKEpC9zuOnuXH2OWFdy7/ZBICNYThUw0j12/TpSmrCZjumnK449dor+9iVrb4uYLr3J+fs6P/sAH3vTZ+ysVXhvDTWbzFf2gDSCW5Ry9sU0YKILakKat5M/EnqiT4oIWI9fr9bA2oF46nHf0k5Qnn3mCrMx5+dVjZlmFNZqysRQ1pHHC0SQj0IqyaVqSjoBAS5RWzGZjOp0ewsUo3UpEBZ44DGkcJHHyxrphmc+RPiEOQ1xTYl3DKq8JQ8kstyyKhscv9ymKmiSJ+O79Qx6/vMfUGUzT0Es7nE4ztLfsb+8wm82J44QkDFl6iUMRJAEq0BxNlpyMJ4zWBpxN54x6Ccu8YlFP0VJivedssSS2jiiI6WvFuKyoa8ulvQ1moiGNO9Sm7eZub23wyiuvsLO1RX+tT3A6aYO/0xmdbhfncqazBabZZrQ+IjyckAaK6XJOrxuxWkwYDkdIGpbTGcp2sdbivGC1XCDWA6aLnEBY4qDbyqh1gLeCThAzn1fEnR79jqfMF4hIopWibip8HCOVIEk6mGzJdDYniFOEKSiNRVpJKQFTonxFGiiKfPqmD+qbfZSS7eQFiRX2//N1hadFTQMgWkYEFz/QAt7w4bQrrxAqSS0tSSAJtKajU0qn2lUm78gWc1CaKArBWXqdLkop8qwg0pqsbHAWnIAwVCRhwCJrs3jGWDzQWIOUASBJg5BASBLdOpc0gp2tbQoL3jYM+z06UUS307lACzqCQGJ8a4LXolUWSynx3pEVOXVdMRwNwFn6ScKdo2N8M8IL2wInREgUp7wxiruYbAjR/hNKCbyXeFqiIYC4yA8gL2CBsn0dpZZEiaI/DOmlGmyDEmCdodtNiOIQ2wT0+yH9bpe8jtFAFKfoIGwD4p6WfCc0zs8JwhUuXBGKCFNFGOMRWGaLKUdnj5jPSgQJtWmQAXR7KcH5jF435Rgo8uIC/S2pyxJvFXVdscyWVHWBkK1MOggDSpMTJX8NQBgZ4HWIlCHOSuqixp9UWEokAQQeSYPxCa4J8UWFryRGta+Fpy2ITJkhlYQogiBEhAoRCrS1sKpwwiMSSeja75erClwkcJ0huAC3mqPKGqEqCASyv4ZsQvyygTjDV1XbvPCgtUdEGh9pUCHeAHUNpcWbdvIs4tZXZ1cVTVMjPQRR25V1/mL6az3CO6xvJ623X3/A4YNT+ltD1kcpYr1DUReUZY1rPFEkGawlhEFIthjz8osTvmEqyqKhMa34GyFayqJotym8b7OfSikCHRAHIXVdUayWKOup8pzaGqSU7aQaSWMsqizbhWUlEULiXYNxbZ5LWA9aIwOHlwYRBnin8VKAF+ikB9bjbYNwF3RRF1HUClPUCAeusAhVY8KYru5hnQDXgknq2uKcbCElwiNlcKEQaDBZiawbpJZoKxDurRd56VizsX4FVxwQJiMuX91md+sWr92+y+WNiOd+4PsJOwnH548IOCZdX+cjn/wYJ6+NObp7TLL2Tn7rC3/KN7/5Jwzql/m5n/2H/O4ffY1k6zrz8U1m2ZLrz36Evb19QPLo6JiHJ1PqIufe67f4oU98hBdfvceq1CwXMxxtxrzfT+k2JVJI/MW0p8gz4iig3++jw6AFWJyesnZpAycF3jboOKS3scH5/ZdpmhpT5lBbtBNEKqBpGjpplyRM2N0cMj6dUM9y8ixjbW2NOIwQpiTwMHce50zr9xKeIssYXLrKkoztUZfVvObluw9Z6wZI45mOl/zYDz7Jr3/xgDw3jIYjyjrn9t379MqMBydjoiQhy1ZUjW2bfkq9MeVqIRr+DXlykiRUVUkUxReKEIPVAWVVkiYpf/71b/Dk49c5OB1jTANRW6jqICYdbXCyWLHIJmw89g4y1+BLCJ2nM1zj8OBV9q89Q7DKWZUZWzubZHnBe977fcxnf8i9+2d8/c//nCtPXKObxjx88ID3P/8Mrz485uln38H4xZu8+OprfODGtbf8zO5s9Nnph8RpRBz16CQhWVZTV46iNFgFWrWu2UgFrM5nTI/PGOxfZrC9jZcWd/6QfD5hNl1w//CURbPi+au73Prmt/nmX/wF+088hQg7vPjnXyVVir3H9omEIEnX+F9/47PkjeFn9vdYnZzQX0/Z3buKb3L+9f/+r7l7MuYnf+QjVIsVj168yealfe4f3EaWhg+873maKsdUDePJgqI0KBkiJYRpSCdNuXLlSku/HB9hqpI0jrjYqMc3JTJMLtbGFToIWlq4NXhXshkWVPNjpCu49sQ7wb+D8+PbKA2BDlA6INQxVZHT7W2goopXb36HL331z9hY3+DR4X3G07P2juUFUgcgJJ1Oj35/iA46bG1dQnpB2hngrOfV776EloLVao7E0+t0CZVuYTXOkQYRxoEx9oLondOJNMJbutMJSgdslxkbmxuMNjc5O7rLfLlkezgkCjTve997AMGf/flXOT47Z/HibRaFYXNnl06cYsuKS9sbmKakWS7oRSHdOEJ7x3Q6Iej3CcSCvbUeKYa8F77ps/dXKrz2+x0iwFQhQRrT84rSZ/TjITLsE4QBxmmaFJZ1yeXNfYTwlMtJm6MRnmK1oi7g6tNPM9y+RF02fPvrt7l/eM7pbEFpHEiF0iFRb4M0rSiahqSpycqCXhyh0EzOx8RJynKZk0QxUdrH+jb7cPvgPs8/9TjdAPK6IIwloVK8Pp5ydDZDqpBmueI0bzDeU1Y1D86m7G2OkEoRSE8UBmgEaRLw3I19Ds9m3Lr7ACckOo6YZCsaqSjmc3pJQq08r94/5NLOiDiK2N/eJI5CpquCVCikjtjcv8JyNufx61eo85yDw4fcPcvoxB1CJdnd2ePg4CFFXRMI6Pb6DDdGCAF37x5w/fHrVKsls0XJZHzI5Ut7jNbXuXPnPtZ5Bp2IWVbRG/QoFguUFoy6ewRSI5IOXgX0eh1MZZjqLixK0pEmDLr0k4jeoI/2DbrbRcmAernkfD5lMxbEqkNew1wU9LsxXa1pqiWRhmTYJ8mmZOWChVWs9wd4pdmJOizLFUoswfc4LwtuvOmj+uYeKSQ60Eil8b7CWU9dNS3VTIDxEiQtsdBDXdVIHFJDbQ3GCaRQRAEgPJFqL0NpGCNNxHJec7ZYoLXm8v4eq7KiLFt/jaRddTqfTemEAVXjLvDRCuls253ykiQIMLalq3mhyMsG3/fsjnpsbG7x8OEJtZR4L5hPzykayIRlmMYkWjPopTTOowXEEpa2FWQq5/CyxZJLEbDeX6MbJzSuZjzJuLq3iVYdXvnOQx7//iGr5ZQ4SHBljhcO5w0eg5cSj0R6SRQr0mSdosyZTOdI6SASbXEagPAOoSXeeIyrkZFHRgaEpZsqhAvIq4ykq5G+Ju0JtCwJpGY4GpLNJuigQ2ew3tZ9TlDkC6S2zKvbZMUptnFoX+CNodMfMuhvcOe1W5R1hdQdirpmMZ8SCYNtChpbEiXDC51AiLc5q8JQ1Aq8Zb6YUlUZQsYkScJgNEQFClMUpGn3LT6xUBZTdBKh4w5KJ4iVoaoXiF6MDDTRKiNwFsqCurFkywJbG2Q/JtzWsKUJCkm4ShG2Bm0QWuOVw9UV1lqqWY1bZChnabbXUFrjsgqsQx3PsL7Ba4kINMigpVWaBtdXiA7oKwlC9WApaMZzykfnrfzyNGqLEGPaQlx6TC1wBspViWkMjffoUCKimPzefbyEMEwQQlCWrSepMhaBozGOWZZzPJ6AbEmU3lusa4XOy8pzvsyQXiF82zVvFTOuBcwIh1Aac7G+iGz/jpTqjYJvnmeI81OocogDjDNgWxEyUoCzGCmYFQZR1nSKkigKkIMYlEZ5ic+q1vtlErxXSKJWfO0bpBbYfgexs0EoPWFT4kWDtSucUETpJsOwR7+7T2VyZke3KZcZQaRJdIJoBEa1cuHGWLxunTnSOPAeufTY2hMkoMMAZd/6idfdezPGd5dYO+GFL9zh7//n/5j/9L98nmD1gGE/Zux32VYJzeIucv0yv/Vrf8zB4T3e9fQNnrrxLJevXuYb//xf8N63vZ31YcEvf/pfsreR8muf/jw//7f/Ib/zB7/Hl7/2Ep/64X8fIRTfvfUaa8N9vvmNr+C95ux8wfsPH/BPfumX+MTHvo+vv3ATg2Q4WBFMThEqQElFvspJkm7bBVcRSrXU5PHpMcFgg6CzjvKecrFCNrDdG5HpEw6mhu4gpp/WhM4zXjX0OgHKNdy7e4wMIoQ2XL4yREmJqRrW+iO8t8znNXVTIxHEYUi/41CioComzCcxy7zm0u4Wy6zkxvPPcefu61y68QS3fvU7RGnCYnqOEIKqsuxc2mNVW0JnMO1eMXXdimyNMURR1EJjqupisuUxpqZpSoypiaIUZy3z1QIpBVVT89KtBxwdn/PYcI1LOzvceXiCcoaulhQi5um4g1/mrKYPqOeWtc0NJvfuImcrLu/ucf/2i7z/xjX6ScgffPEvKG8+wiuFsI4sK6mt5+DRYetKdI4vfvErPDo55YkbT5FGEdt7exiTveVndr2n2Rl0cXiC0LI2iC7eHixpGuE0hKEmW2ZMmyU+CVjf3eTqu55HxR3yO7f4ymc/xyIzfP3lu8xtzd/8iR9icu8+Dw4OicMYPxkztSWX1zpkzz/Fj/6tn+Pkldf4vd/8DE898zY+/JEPcv+lr5HEmlf+4gV++9MHrI2GfOqjzxInAcUsQzQF7/joh+n2RkRhwNHrd5gsZgw31iinM7rdhOGwh1QnhMqRdBKCQJDPzlg6TxLBxkaXjbUuq3lOb9ADlyNpXZ1BkrbaHZujdYwcNrxrzxFW9xhXNbcmU0TU4YPvfg9prwdS4PEs5q3j6vbtu1RNxWh/n9PxOZPZHK01o9E+adpHiPZsxnFMIAO8i3n6qXdS1u0948GDe8xmYxbzI/K8ANfQ1FWrAVICo2LqqkEKyeZwrY0UFTmdTpe8qckbg5JjstUC5xt2r11lY2uD71pBGKS8dO8BUsDt+4+wtmF3tM6Ny1dZ5DkdFeCLJWujCEvMt27fZ7nM8ZUlDY4IAo1Wlv3LexSvnaC8pyMsa2s91nbeIoGyR9CNU0qhiKMOp9MpMnAI2xDgqEyFtTUulLg6x4kSKyFJuoxnRyRhivMGGaYoYNTtcP2Jp5md5iyyGXkREuiIULcfivNVhZKKsnFEYcTheMIyq9nf20FKjxCKYrVqEdx4amuolnPiQGGaBmcNSRhR1YYysJSNwzqBDwNOljOiNCVJYqq6oZckOOfppjFBoOklKWmnw4OTY/pJAt5jrSXPM7I8xqHa3AmQ5Tl1UZImCbg2uxBFIUGU0BMarRRBFHF8dEyoJIvxGLzndJ6zsb6Bdx7jHI2pidOEvKzQYcCjw2NkHBH3e3TilPlsxnqvg7YgGJFlOUVR0E1CirpmucroD9Y4Op8QaoU1hqrICdKUsqoYdmOc80RpDIWDUOOdpnbQi2OsVzT5rPWaSMWqWhCnI+IoJS9KvKnJTYMRJcJUaAllnSMlRFHC0jTsr61TVVNEOMIrSz8JmC5XnNcz9ncvv+mD+mYfz0UXkDY47YSirto1I4R4I4CstGoxqralRDna6axDEAqJFKC1wEqHkJAEIcbCdLqiahqElEwmE5ZlSRBp6qYG32G+WLDKMpQArRVVU4OX5HlB1I0RQlFVOVq3GabGtoJnKduclA4DhJJYQOh2/9k3HpUokiikzFYo1U7tlFZY69upmrdo1ebFhIBAStIwoq5KqrJgNl/SNA2VMUS1wBrLajmlF8fUxaINL3ABNsQhZDv6UkoQhiHeW5xrO6vSe5RsXWdSy3bqZdvXXEiPNTWVkXSDhGJpCMMYJQVlucAHfzlcWy4XREGI1iFRHGOtAaGwzlJWS5bZgtlijJchozUJwtLvD9pcQiBZ39rjzmun1HVJpBXaNEzG5zRNTZYtgXY659z3MnEahGuLbQG9/gClQ5IkbRHNyyVR+NavwMiqxHuwQqPCALAIFeJ1gpUC4XJ8XeNL2/rkcC1RNApRoSJINcZICC6aCtLj6wIrBVJ1ERbIDG5WIYQnWBNIC7aRuNpji6KdgAYahMWWFa5uUDpHd2OcFshegEhCaNSFTgCkUnihwVus8chYtx+6VUldOoqqAQedOCLpdKnnC1aTc4y1REGAUorGNFhHS8b0HntRMEkp8LaVRvuLiU6rGmmbK963DhkusmLtlLY9sx6PEx7F99asWqLh91ayhG/XjvIyp9dbZ313A2kriqrBGktdttAX79uJWe4rjPd0gwAR0772aYzQ+iLvKJFOInAILdpKEIeWNUpdkFSFpViUIAR1VWB1yGbahaCHr2bM63aK6Z1vM0LqYk2MVvbtvae2F9qGIAJvIIgRUYz8a3DPlbVgen6fZ5+7xDsHHfavbbLZrPHohVPK8Yrx+SHp889x6X2f4vYrdzBNxX/ww5/kpa/8CfdkzfZjm1y5vM+tl7/LtNPllVuvMlp7ljjpMZ2f8KlP/XsUJfzJH34B6ywPHj2g19+hriqk9AQSDm7d5Bd+7ie4cnmX6WzOK/cfEap2RT7SIVJ41oZr1KYmSlI63T7OtfcGTzshjjtreGtwTU2eF+x11un3U7Z21vHOcmU/5dW7B9imoZPESO8xXlGYhm63T91UraBbKmprEK4FYBgLBsuwlxJqw872GoE3WKs4W5YMYkXYSWmKBdv9AJck3DseUzU1URRhrOP09PwNGmZj65bifEExdK4lLTdN85fnWoiL6a5ASvUGYr79s3YLwhiDloLlasW7rl9mXlbUxjPoJvg654UXbvL+pz/J9HzGsL+HDjvMTx9SnM4olguqAvb2djjLztnbXGP/8i7feX1C0xh2tzY5PDrheLokiiL63R51XTObzxmN1nnx5Zf5kb/xN/jqn3+N3aubb/mZfXCWEXmFEp6dndazp4RCB+0EsbCG07NzBv0RnbUOm/s7RHHYZgWFYHF8hkyStpkl4G2PX0PmK3xZszXoIfFsbKwx6KU8ev0u73j2eTQht195kTCAvWHK+e1XmC+mjM/OuP/wmKjX5cb1K6T9LlmZs3H5ChuXLxEPt6A2NM5z5ekn6aYB3nluH00YpBGPbQwY9WKsj8FJQh3SiyMQMEwjdta6dANJEocXdGVwpkG6BtfkeDTWNO10ygmCJGSzB9I7XjuYcn56QjldkXS6rO/uoALF+nBIFHe5fceAt3SiFB92AI0KYpxv6DR9yion0C3BuMxWuKpChwphNNPxMQ8fts6zuiqpywLvagQQBoLRoE/dNISBIoniFibjW5gc1hLHLUm9NA2u8IRnpwSdHlIo0tEaqshRU01ZVayNUjb6awRScXB0xHA45OHpKdEyJooUO1ubfPwTP8D9ew/46pe+TlaWaCGJopjZqw/Y2d6kMob7swnxecS7e28eYvRXKrzG0wmFzQhlyiQ/IgoE/XTArFgQeM/R6j6DOCFNdsmzko6a0YvWaOo5ARVGKIabGxRVjqoFZV7y3ve9m2efu8GrN1/khW99l+JszN0Hp4xXEXlWsrM54HPffJnz8YTHH3uMMEm5f/CQQb9H2axYGwRkxZzi/pQrl64wSjXaN6zKJQ+ODlkucgbDAXfOSx5Ocp7Y2eNzL3yXsml47/Y2URAyXy2IwgDjLGEYUDeeJArJs4wrly6DgwdHD8nHC3ppwtlkRa/Xx/ma9eGIm6/exihNEGikksyXK4Iy4OqVDYSUFHWDwtNPQ0xdU1jLbD5nbbTJnYeHbA+HLLOaMFB00i4HB4d0rl4mqyqubO4wX805ODzl2advcD6esshrvGs7G9iGxWyCCiKquuLh4TmD4ffexFpJ52K5IHxsyNpanyjpUCyWNIVjtZxgygV7m1uYOoOgg6hnjIuy3a2NuqzKOQVz6qIgCASFF3gTE8VQ1gYIiYRmupwyWt+jWE6QKgRTMm1yYh2z1gmxWtKJO2/6oL7Zx9O6pKSAQMd4AurCUJQ56IiibqEOYdRS+ZRqgRR40Qb+gUiJ1n2iJDhPN43o6QH3b+asKujEMdZ6chzD4QbOG/b3O+wMOyxmC9I4ohuHnC0yjIX5siIONOOiQCnJLKvpdSKsaVrxqlesrw+RSZeo2+OkMNy6dZ+j2Yp5ZZjOFvQHXaqi4IkrvdZJJgRpFHGelRjX5s2cvnCWXWgQbFNS5CvWOh3macXp+RTlLPO5RxaSjCmH1RKo2gtn3VBfXHKlbpv/QQDWVS0SXLX1WW0rYiFIohTTOCohMFIgRUOsPc2qospj+lsJ3YFEaYuKPLWrcbaiKErG8zmy7vOBj3+Sb73wXarVkjyAMAghECxmUx5NHrAslozSaxjOMcJxenaPutD4xtIUFZPTM9K0xyBJ0HWDKB3SKmaTJcPhGqtVgXQhTQ04SRBqsmxFFK/T6SSYxjAcbZDnM7K8BN56IIyZ55BahDXEHZCBQnZCbCdAes98USMKi9ApOkmQG+3tX671kDpAHFlU7rAyopENvmxX0YQU2MWMOjeY6bKlSUYholzhkfjKQm5wWYkXAufLFgV8sblmfI2dZSglMVEAcYiMAnCeaHsdhMDkHqxHCYWv23xkXTTtSqhqV5W7gzVGl5+gnM7IlyuCQL0hN0e0DZGWOurA2Qs4QPt/cM5hRLuWKFxbtFsuGix871J5sfrKBX2xbpC0U7CWsyPfaBwI0a7ONHWN8BAP1xi8ax1vMpp5ST0vGd96RFEWLZznYggmhQBTowOFSpPWgzfNMK6luJqqlfaiFTLQBLGnlgKFoooa8A7pA4SGpj/lNF8RZwVRkLIWxURhj8Y7VkUBZcMgiOlGAb31Lo2H09kSZ1uASRT10WELl+lEIb0oeWsPLDA5PWG01WPaRLz/Q/8hr90+hXLB+PSclZlx+uAVXvnyV/jBT3yI68++h8cv9/jd3/9Dr/fLAAAgAElEQVRDbjz3Do7Pxvz3/+0v8dM//eP83V/4eT7/+79NpFN++w++yaXHd/jWl3+Tp9/+NFIP+cV/8HP8s3/+v3D71Zt88qMfwhuDCgJufePfcXrwOpUC01njb/3sT/Ebv/2bHJ0v2NTtOnG/mzJd5MigQ5zEVAZCJZhMJ4xG28xPHiJVG96X1ZymXDKN+gT9HYR8SNIJKFeGTppQWkEapUhhOF3UOGuZTSboKCAMQ2Qo39AtrPcH1K5sz6CvWe9vcXI45/LWDvcfHSKBfjfFmZrDg3v82EfejWlS3vv8u7n58ovkeYGSEh0G/Pbnv8zulasUiynNdPpGfut7BVVd19T1X4pdkySirmukbJHzrbpEXCDnL0iHoSbudYlGIz5wbY8X7hxgm5I4CIhlwDe+dpP/+O//TeaTe+j1x6lyWGaWr33jPs+9+zHmt+8QP32ds5MTNgc9zo5f4Hy24vat17ly6RLejjl49JBItYWf8ZJrl65wdHhE9uAuz+wO+c6Lr73lZ/ax0ZBVUdIbDBiMNkgjiRZgGk+2zMnzGt9IoiRhtL3FxuU9tFbYYoJYnXPv1uscnk7p9Hv8g1/4SRIFJ0dHsL/F3vYW0/GY6x/4MGGny53zJWcP7qIpee7pa+yuD7n0ticRpuL8PGJ/e43J+RgXR8wWCzLXMBx1WJwdUo3PGb98k7WNAesbXapsiRzuYL1l7+ouuS+5oje4ttnndDIjqwAUVV3S68Vc3tki0gqJQUcRjc1RtYKmItqQ2DoD2yDriqYukFFMsn2F9cWEwGa8eydkNQw4ms7IZmO+fedbyCCk1x3Q1A2lcSyWGUZoBmubLFYtMXOwNsLw//L2ZrGWZed9328Nez7znevW2FXVc7NJUeZgUpTFSImsICEUQbItJLEcGX4IYCNG3vIQ5MXJk4wMiOMMdgA7CWIlUWLJoiLLbpmiOInsZnez5+7q6rp15+HMZ49ryMO+XWQmIOzAvV8uqk7VPafqrrPP+tb3/X+/CF9V5GVFkmQESUuT/ea3/ilp0mpvymqFbWryZQuK02FCXZW4yxFvayyj/qBVy/zIWnfOIVTQehi9QCjBfFlydjah1+viVcTh6SGrRbvveeaJx2is52KxYLS1Tb/bpTA5HkVRN9w/umBjuWJtMOTXfuUrxFnG2u4tDo9P+c4ffZ2L0wOckAx6PQbdDrr86KqZH6vw6vUyFodzVm5Mf5jiG4d18N7b99lMA4Y7W5hGcjE+pLEl3c2b2LJG2Jr13jpCxVRNTWgCclcz2NzG5jM2h7tsDDd59pOf4R/+1m9zuPL8mX7CsBdTNjVKKi4WFWuTfbSOeeP+hF4a0MtSDJK1LOJwPObByRFpd53GGA7mR0gJZ5MVetWws7FGEoW4OKKqGvqdjDCIaKxluijZWgsRStM0OSJQnM6mpHGKx1JUFUVt6aYpSZrh8cRJStU0PDgdczJbsN5PeWx3E4Hk3uERF8sKr/bppwnGt94oLSVVWfH6d18lSxKub40YhiGL2YyzMCRNY27tbrK11ufdD/bZ2VznrXfeYZGXXNnZom4MvUGfe3tvUDaGKxtbrA27NI1FeklRenppl04SM1+1rolOlhEojZJBe6pQVqgogWrFk3fuYFRDr9+lmc25MeozXoV4UTJdzpnN9og7IyrrCIXklfdeZX39MXppj4wSqaG7kVE0Bev9DQJT8XAxIfceKWNiXSF6kkx0qPIVeaVY2/3Ia/UjXR5PbWqUAOcDdKBAaCpjwDikjLCiHV+SSBQtutUKgRICFUEQyDavdEm67EUpuky4v79PXoEW7ehSY0ti0WNeligfEMcjVpMLkiTg5pU1DiczKudpGkOn22O+mGKMQ+uAumwIdUiDwTSOl968x6gTcTdvkFGXv/Cv/5sMN67w+nv3uP9gj1d/8BLn58eIMKYoPJEWJEKykgGCdpPrrME5z7CT0k0TOmlKFARYI4jiiPP5jFtbA15674h6ZdBx61ZywlDVUFiB8S2AIsDhhKAyC6QOMbbhxs0YIQKW+YK1fkonkExmS2bLBk9F2pWEkWQ8tdy99iTDbsLF8ggVZDQsqAloViW5bcgywRPXr1KtJlTFCtvrtEhzqdFC0c02qY5qlKpJM810OUb4BMUBy7lnOYH6wIHRBFIynVxQlytWeUMapzjpiaKIsqjRUmKkpKoarIEsiun3+kgpuH79GoN+xvnpgkCHlOVHt9N/1Cu4tovuaFANfqhAetK+4JNP3aGjIt4/3SIvKnzSRUlJGMQUZcPhvX2YrCiP90A0qDRCdltXlxj0sE2FvVjg5gWqagloOnMEWYDXAc2yAQuy1nglELVFWLCixQcrpTDetg2u2kJT4kqDUIKmsLjGUM1KcB6tFNa1wBpn25B/IC5P3L2irmrqvMC7Bq1CBPKRbNu7H3at/CVV88PckhAC+eF/lPjhlw+LrkcPiR/+WrYmOtyHHS8ExjjAssoXBDpqN6+ALysQQwQSUzTYlUFKgRSSINAoLch6feSwi4pDghs7RP0RYQTLkyPswwtc1eAmc5wKEFpiJIgwRCKpLXhtQECQKWSk8bpBJpK9+TmicURWkugYTUDZNFhTUpVLSrrcuL5LL+uzs10xn885OZtwUVVUQkEgaAQsLjPCH+f15c8+x62f+DluPP45VvNTluMxke5x5+kr7N3f53e/+rcRTcnu47cYlCV5tURVAf/1b77AZx7f5ubjz/K3/su/S76c8qXPPMuDw3P+5m/8Or/xn/8O48N9Xp5ecOXmE/wbv/JLiMDz5uuv4+oVwvYo8bz8+pu8/+CIX/9Lv8z127f5zje+wy/+zGf4G3/7fyQIBHHawStQQcBgNEBFHYrlElPXaAEXZ4ckOqSeHBMkUZtjXuSc65ioigikZHK0QvYyOrFmvhQIKVgW7Rh1KCXdTkoQhjSmAu+o65ooDIkzxfyiIA0SNgZrzBcTsljx/oMDAunoxhEb25scP9xn0B+yduc2ta+59+67WNOuX6Uky7xo3aZxwuf/9Of5R1/9vfY5oog8zx/BNKB9rzrnqKoCpRRShjSNQ2t52QGTxHGryuikKavllPce7HFrq88TTz7OO2/f4/k/9Rx/8c99hT/+vf+NJuiRXPkM1fE7yEGX9E7EzXzVArZGQ6ZHBVefukvSEaytbfK9F1+mVp5ZXfD4nbu8+tprSN36K8GgteSxO4/x2smUP/eVX+Dldz5+6XczH7NxZZckkqTag61ROqQxDXEUoMOYII64cvMqRV1hVjndtRGromY+XfHk5z7F070uaZzywu/+Ad998SWG2zcxzlF6y/WrV9j73jf4Z998kfvTnL/21/8aO9dv8Mf/8DdZrXJuJQmnB6dIry89rz3uPvkk+4dHjEYjnnryLm+8+io6i1nkc3Su6cg+nZ1dykVFU+aMT864srNJGMW43HFlrYfzl53Oy7z52u4mUitOH+xRjFfEOkL0NV6F6DDACYmvS6r5GdXkmCoIkJ01ojgm6Y3Y2mzIZitCL1iWNbGLuZitsLMG4R3js3NUFDOezlme7TEYrtHUc+4f3cNe7n2bpsEJhXUeIVpB+snZGUpLvPA4PJ3eABVowkBRFgXSwSLP2VxfvywcFUVTEwYBodIkccrFeIaQgiRsxeSisSTFEqE91lmOL45Z5QX93oCvf+dVOmnM+voaMox47cUXyauKTq+Hraq2gzbssVi+wXIyp5d2CGPH1miTzbU+f/rZu6A0s9mcrD/Adz56DOHHKrxstUA4S+MLpAsItKYpHd//J1/ni5/7LLeeu8HZ8Tn9UYwUGY1pP+SE93jT4AkARZANyfIJ0juMB6FCpFLEXU04WkNlx8xOZ8yOzgHfIrOdY++kwPkSIRTzvOZwmtMYy6fvXMerhIPTM54YRCghmM4WpGnMqrGs91Iupku8EOwfHLcYdCUYDnvMFzlaa2QQtShZpZgulhgP1jnKuqEy9rKNb1BBiHee+XLF3tExw36fUEk2RgMaY1mVK+IoZFmVWOdYFjXrayPm0ynnkxmLVc7FbMl0uWKtE3N8NiGII8bzBV7AarUgijShVsRhSO09edUQhQEXk3OcH7CqKorGc3zeWtNxnjTroAKN8tCUxSVaFsqyxAat2yNQuu30IEjTAO8sm6M+G6MeyyjCmdbLszHqcXLyPmGakIYp+fkBlfMUpacsDb6Z0GjRiknGY+JIU1YlkdZ4Lxl2MpraEOm4vekLQWMly+rjn+P2wlObBoEnDFqnlxfgbJtLChSt4+lSqvrhNk04g5SeKAoIAkWo25CnVp4wDKDQ1EZgPKRBQNNYOklCURZ45xj1elSNpz/sE2kYNw1aSZqmoCwLtBq2iP8oQkpLKBUBbT7L+IZV7TmZLggOj9BBh4P9hxxfnPM7v/cH7UhpJtkeJJyfT3h4OkUpgfOt906INuPRIuotwWWnwX8IDhGqxeonMVkcorREItFaIGnacUXj23aWb6EkweV2t7YlETlIw2gtIgoz5ktLGgZkUlObFZ30EmqiLoOwjaAxOauioKin5NWcpB/incQ2jqoxBGGEMBXHD96nMeAsSBFgG4fzFVI3DKOIyuZ4UdA0HiUdvW6EsBZbObQNcAUI6Tg6PaSuLylwYUBlDGVZ4ryltiVOuMtOqGcwGNDpdB75bzytuDkIwtZz8jFf4dUBqiPwNselrfR0Z3vEYJARSM02I/KiggjiICLSKauy5OykwZRzgrgt4l0a4oZdrAyQUYSoC8RiidcOFweXkt8UHylAowU46bBp2EIlbNVKnBsH4nLDhsRbj3VNe2q+akETEkljDMtljZSCQAeX40y+dej5Nm+lpCYIY+IkRdRtUVVVbfbSXyoV/p+uH3axQP5/YEe4H6nDfvTPtyPGHiEd3gus8a3DLoraQjSI8D7BCYWsDWa5wFmD1oIkiyGQRNsD2Byg4gB8haxnBCnoboMbBXgZENhOGyxv2k6cFO2IWKAkUhuMt2B8q6swQO3xqsUsW6eRQYaSgigIsUJTFTMm5ZLD4gJSTRIm9Hs96romnzRY39CYNpdZuo+/S/vee/s8/2e2mI+PqauC/nCErVf8jf/gb1IVhm6nQ7XyvHX/AdPvv8Jb773Nn//Ff6U93fYhr739Bqv5hCSKsDR0opry9Ji/8qv/Av/N3/tfqE4W7Nx5EqE81tZMxmOkEFjfjqDqQHLz5i2m04rgnUM+8cQniYYpIvxfKYoSj0LoFIfAujZzGIUJQqmWFFqXNHnejmJVrXeoWuXs3n6OP/yjf8Tnr3U5Op2iltBLE8ZxifftmLJxvi3khaJxnl6nh7OmPexzreSjri1poqidoTSGpLZcuXqF45MTlJacnE0YF47pcs5v//73+PIv/Gk6ow3GH3zQ3pO858knn+K1115nOZ5QVdUjwfyHJENr7SN8PPAIMe9cq9VI04wgCCjLsj1EMQbvPWEY8vRPfpqDvYe89cE+3SDmZ7/8ZR7ef4uT8wlCa/aP3uXK7k3Sm4/hbcA7L32N07dO4LNP8Phj13j/jVeIJXQ3B+hA0d/cpjw+YHx+wTNPPk3z0kt459BSEYaKB/fe5ZlPPM9Pf/Y53n3t6zxz98rHvmaDsNXk9HtDhFKY2jBeLKgaCwiSrIN1juPjI5CCzd1tJhcXICXZ9nr7Xs4SLvZO+b1/9g2uPHab+WzF0594hsefu8vmaMjfe+Hv8+7DI5597kk21oaU0ylv3NvH6oSfFhHKS2prORlPSUZD7h3s88lPPc97b77Fd7/9PSLvOJ3OuPP80/SGA8K4VX1IoMxzol6KSmL6ozWSkzlVU7K2PiQKQiZnE8I0JOpkBIEiTWNEUyPwOGvb6C4eLSW1szRVgYhCmqKkE1lUFNPXEWeHxwRhgNY1Kmjv31FsOTyb4kT7vYSxKCEIo7CdakhjhpmmLgq01kwXOccXc2ohCIKQTiehLHO08BSmQQjQcYizBiE0cRRj6wYnBefnE3q7u+TLJbVr79uFrQhURdYfIJXkw3M2GYStV1JKOlmHtU4XV9bkiylSCkbDARfjC4q6otvrUZ1eUC1WDPtdvLUkWUaaZZwen2CM4dPX79CNO0S9Pu/uHzMaDbh+7TpnF+eI/x+U7h9rV3E+WzIaDBmJDQ4v3uJ0JlnrDbj+kz/PSd3wPA39YUQcRGidUiyXVOUKqS155UmiIdVqzHJ6TL+zTrFcUFvBdO8AKxWrsuH2jVu8/fI9XrzwXMwWLIoVgWzHvQ4mDUkUUFQNcaip6oYsCfneew9xwhOGMftnp0glufHY47z2g9dI05TZYkmeV9zYvcIr79xjkGXsjAbM5gvml4QjY0y7WQwClmWFVi0CuChrPIKNjRFppDk4OuWpu7f57g/eoJPFVFVNFAUcnU7pd1LyomBje4swSinKksLUnJ6NqeqKxlqEUAx7Hcq65r3jE3Ct36msa3Ae0wiMhYPDI0xTk8Uhvtdax1dlTmOgE0dcTM/Z7G1xcnZOlmZMFwu2rt4C42gc5E37ulqal6BqwMkAV69YVY6ytlT2iOu7fXyTM0wVyJSO0hgD1zav0d/YRCnNKgxRSnPveEw3CWm8ZOUd82XFZH5CmU+40kuQQUyQDbGN4mRyQhLGbNQltmvI84Z89fGfxDohaJxBNo7ZckYYxIBAhZpAC5SowTlq2gpMqzaTIX2b68qihLSvUFKTidYHJGrJwf6MeVFgEZTzttDpZwFx1nYhVJBwPsvZ6jh2rt3k3vErhArmRYkOAh48PEFrQW0KBJ4sTanLikwHrHKDtZaX3t3ndL7k3/lLv8I/fuHrfHA2oyimBFqxvZaxPdzhxTcfsn82phNGtMxGjxIa73xLhtNtJqRdx7al4dkSrSTTRc6NzQFX1lIsBqEStJYUS0tta0ASKwVasDZMQDas8ope36O0phErlMtZVWOmU8uVzR1UJHjsRoZ1XU4WizY/JWMmyyOmi5wghNJJRBlj8iXLeU5hKrphn+PDA87OJ2SDDsYapNA4PMaW1BwzSnpUjWOyPEEHEYoY6YJWiqvPwUK/NyCRNacXc2of4CONCmOcySmLJd45pPeEoaaqa4T0PPPcJ9CB5GT/lKKsCMIAbwRJmoEQ/++L65/TFd+IyF2BtZLUtB+MxjU8OHqId+29KtCObhqQpTGdUJGGiifv7jLe6HKgBdXJpO1Y1R7f0WSdDt6n5GFKeMORBFF72olnMZ9jViW+GaO0QIUxUkmMDGjyAlc1rQahbh1i+JaW6b3FGN+qBdpUFSAw1mOaGq0VQniSpJ3D1wpwEgKPDwXZ5ha9cslsOm2/Ly1FzFoHuLYD5SUesBKcazea2v/wZyKg/Rn9aMUmRDuueJnv5HK06tHl/aPsp5It3VDrVozZ6W/SH65BYjmQKzrDmKSwKBGjpcG5CrXRIxumDLoxfjKmG1RsxhAM+tzrxZzO+yzqEBqJbBTO1HQ6GY2SbYZBBqRRwmO37iJlwCo/5uLiAfP5KaoXMFi7wSjoEpoGtViAgWUlMKHgVX/Ke9MTdl0PasHF8ZKmrPE4jGsw1lEvP/4Drruf+QpR4JmPp5yd7vPSyy9z/dptvvILP81yfsG77x1w/e4T/NW//u8SSYWTguee+AGffv5T/N2/83c4ubjgZz55h2XlefftD7gyHJKP5wQ9yd6ZJIuH/NZXv8tsvmCYrTGdnPPtb36d27u/hAoCnn72E7x77z2y0Ro3nv0k33/n+2wfvcG/92//Vf6j/+w/RQcpUgcEYYoIJSpOWc5nhKEkDhRNUZBXFUVd0u8NsEagk4yL6ZSNm8+g0jNq8YDIeQKlyRJNt5eRlyVSJizzFXhD0xia2qCkoNvL8M4yWkupagmqTSGub2zwhaduMb44QWgNQoP3GCHYHQ35/HO7jM/mRD5HCte6OZOUP3npFYw1KKX52te+dumlk/zcz/0cL7zwAkKIR2OGH2a+vJdEUYL3baH24ePGGLrdLnmes1gsGPYTdj/1NLPFkmsbG+wfHeGM5ODwhJ2dq/R1h1B6RLXk/N4BG75ivBkTHz/korrgsT/1U3z7j7/DBxeH/PKv/DobG1t845vf4sEHDyiK4tFzeeFJsozNUZ9mteT3/uCP+NIXnuHW9Y95FAbYvbrN+qjbFjPOUTceGWakiWs7odK2uWURM5/PWZxPEWHIxu0blKsF++/u8Y0//DbeK+YLy/53XuPZuze4cnWL9Rs3eOvFF9kZDrj1sz+F2Nzm9OEe/9N/9w9YuoZ/7Vf/PA9ef5WL/XsE/SFN07C2tc379x/w6ksvs5rOkGGGDCU7G2uU51NmH+yxe+c2SRozPt6nXhUMdjYYbW5zcX7B1d0BMoyQaUZRVjx2/Qp5UdFNYhbjCVoKymKJqWJsk7YZXuupyyW4CpwhG+6ylBNEnOHDPuXsjH6/j6kN5xdLbNMQqHbkupMmLIqSnZ2r7cjf0QlrG5s445mOp3Q7Cd4ahPTUqxnboy4NMBwM2o5inTCeTSjmF61vLJek/QFFUVCsVnjTwsiCQPHew/s4Yxj2N6lsSyaWSrEsa7SWDPo9tFLoMGSRlygdsLa5w3Of+iwv/NM/oKxyvvDFL3B0cEAQhDz37LO8/INXkcojnWPQy0jSlN76BquqxD37HJOLMe/sHbGedbjV66GDIR8cLXj77W8yGPTYvrr9kdfejwfXiNpOklAh++M503HF7sYacZZS1zNc3RAHHarVGBeaNgzdFOg4xHjPYnpGPplSl1MGo6so70lkgytrmtKRScH95ZyisoRB0NINVYRxDVVl8NajHTTWkYhWytbJEg7PZnSykDSJCMOY9dGQ1WJBoIO2jyFA6nZTLaQklIpBr4v1jkAHSCGxziIuA9e9rEtZ122Hwlq0VKz1MhCOUClc0852VnXNoNMlCLp4L1gWOUJIFtMZVWMoqxp8G1zVWqGkpGxqpG1BDjrQ2LrNlZ1enBNryaibtHh8KZjnBQOliHR7KlfVDXEiuJhO8c7ivCUKNYFu5YznJ8esr2+R50uU1kgd0DQlQisWRc2itAS03R2HxAuByecEyQZBlGG9wdoG5zVbV6+jhKApS9IsYbXIef4TnyaKJaGBhxcTUq9JfM3qtOC0qgiCiEE0gHKOIaCoLSWOpZnhfUA1nn/khfpRryCQlwhphzENwredmDAKkaI9jZSANR4ucbxwCTSTAiFBBwIlBdK3ORSbQ1O3G80kSWlMTpqmqMtOkxKeqq5pbMXGcJOtrXVwrQOrriuc1gRIiqbdDKaxxjkLUhGFglDlNLYNQJ+cT/na17/Nrc0NyrJhuczQKqCsKg7PxpyOJygk3rXwm3Z+v+1sGWOQl5LounGXTpcWMmJMmymMlGBj0Ee6hixNiZRjVTZI0aCUZmM0RCjP1tUh4+UxcRDQSWMQhkVRYTAsVzll0TCoKoypiYUikC3FVIgMiaEqc7SsCcOQUAkEBmsrwghkGJDECaeLU7TUpEmGbRrAt9CTChrXABpRxXhREBKA1+3InREUzRyUZD3bwCza0VLvHUoo6nrFajlD6vY9C+qyWJA4B1EY4i+TQqZpKIui3bgg/k95iY/r6iUCZTRF0UBe4rAcmxqdVoQqJAmhEwtivYFyFlvn4Bq6nRihA0rjWK71sHWDijUajTEFQkiiLEEhCGSrQaiKou08NSDQ+EChO12kl1TL87bT9SOvTYi2EGrbxD/MVAVatj4sLzHWtB1D0Yq2I93ey6UAFYTEvT5hlkEVosKMOM6wPn+UuWohFrQqg8u5Qn+JvJftE3JJzWgf+1CQzo+Uf21U7BJEIZCyLc7E5ev1ou0OSykfddOstfjaELmQSHmK0QZ51scsm/YgpjJQ53jjCfKGOBB0QkGmIXUCaRwdIcgjhckStE6xVUjdLNjZ3WXVNExWYxbLnDiGTi+ik61hTIaILTMxQ0cRcRYQpq4lzEYhrvJERtAYi2HBxBucE2grKV2BzkvAI1Qrq7bu4z/g+onnngbneO3Vl5ic7vMzX/g840XF+PCAhw/2ccbw9jvvMehkmMaAcEzOT/nyz18jTmL6nR6uKXEiINQWFUnuH52zeljxy1/5s7x77zVk0Gc2PePl197GWcubb75JmS+RUcLv/PZX+bW//Gt87Y//MZOzE77x7kN+9UuPc/WxdYSQNHXTCtfDmFWVs1rMGQ56uGpFuVzgjCeKUoJuh6auybIBhamIkg5XbzzJ/IMjhoMhVWlJOx26xj4q9tM0ZVUWaB22I7TWEOuwFbEHKUnYHoKWZUG30yUMJA/394gCycV4wdmiZmuQ0UkiRv2UQT/jW3/yBvOyaXExl3j4XrfHqioo8+JRFywMQ9bX15FSPrpXSSkfFV5V5cnz/BFuXl6CWbxvfx8gSWJCrbh7+wrj0yXhsM/p+SnjsxlRoFhN5pTFEqsGKJcgBHTWdhjmGu9XFKWlKsYcHo/5zBd+hk4UcWu9y9cqgxSSN958k9u3b/Pqq68ShCFFWXB02nDz+jXK0vDgvUO0+Oiggo967W5tUNdF25H2Di0v5eSuJgwVi9mK5apiWuxhhSNe2+Cp554lPz9l7617fPV3vs6CgKPzCWMH1nnuPPU0Tz79HNOHeyTe8MSdm+wfHGLrijdfe5PVasknP/cZbt+4zmsHb7BzY5vp3OGt595773JlZwPtNa+8fh8vpvzUTz6NNjXNsiFJIypXM8zWOD+dIq1jdD2mymtsUcEwQUiNk4Js0McWBmktZb7i7PAIVRviTkaYJAQ6fAT9EU5iqyXCW4SISHobBMJhygWmKdjY2GA6npEkKZ3+kPv7J6Rx3N67qwqhAoRQ7KxvkBtLVdXIKCWvHAfnE7wXrdR5MUZhMFVDFCZ452jKEuEcYaixjWE5HmMuAWPWWawxCCmY+XY9j8/G7Z7At4e/cRJj6oZhb0C328M6y3C4wXJZsL22S54XdDodVqsV33vxFXpZRF4U/JMXXmB7d19E0ZIAACAASURBVBcVNRjjuPfwiCfu3ube/kOWswWuNqwPRyyKdoRxf/8AhcJWDY9fWSdJIor8Y+p4eesR/YCFrUmyHTZ7mqOi5NZd2Myu0xRjdLqFFZJAKFblBVJL3KpsqUy+Qoy6mHmFrM8RPmIxHZNkA4TwVMax/+CE6azEOE+iNUGimK1WeAG1sxS1uQzYSaJQo4TGehh0ezS1oXAlh8cnKBUwmc+JtKbbSXDWYkxDJ46IwxDvHZWxXMzn3L16Fecs90/Pqeqap27coKpq+p0YKQVlVTOeL1FKU5mGe/uHbK4POT0/b8eY6gbjWlmdMY5OlrL37j28k5Sm7aioIKGfJTRTQ143RIFGS02chgSh5sZgm/lijvGGznCN0XDE0ek5t69tMr6YUZuG2XTBbLpkfdCnbsY44MrmBquiwklFIDXz+TnXrl7jjQ8OiLMMZ2E+nXAahnQ6EY8NE0LtUcpilgXom0SRBAyBFMyLEleUiCyhm60x8zV15dnc3qJcLMlrw6rK6SQpo06EUAm7N55AFAtWRcViWbB3tuSxm7uEoUQLzcUb7xBvDlnw8dtoVehJlMIYT74s8aL1vUVxhBLt7s6VFb5yeAwCjfMOKQVaSxAOLxxKSyIVoZ1nkYdcnK9wBIwnS7JQU1UF3eGQfDXnzrVtVqsFvUSztTFgMRkzX1ZIoR6NhIRRiDcWYwymMaxMjTWe0bDDqBOB1hycTjEe/uc/+Da3rnSxUnE+XrWbUOlYrRpq09IE8a27ydNS3z4kXWVhK4ZUWtFY0DrhyuYQH5QcnJyxWC0ZZQmrqqKfJEyLgigd4HOL9R4VaHq9Hpsbm1R+hk4ClLY4XzOblgQIhImwRjCdVFTVklEnwMxKqlrwqU99ASngj77+VTpRxHo/oj/ssagWRJFgZ2uXsqzIogGnp68jdIpMMkKtqU2O9Z6mNjR1i9pXfkTsLU3eAiBWKgdXM9qIaRrH1qDDws+JuztMVpZitWJ8fkJTN6gkAixxHFD5CqUFQkjOz0/x3lCZihhFscpxwmNszaXd7WO9skizkSmKOOBBA8o7Bl2Fjw1atP9GraColpiyJoxCgjBkfdBnR0fc2h4yW55RViXTec1qWVFUAiGCtovoPfOqwFYNdrrCnS8xqxpJQNBNQAXYqsEXDZSWKLrsFkQhIg4RtNoFbyxUDUiBiDotXbAuMWVOXdaEKnpED2wJl7o95CpMC/JwbXA6TqKW0ubbwhfazaOQAunbEVmHbamFl/VWC8Dx7XsBB8LjL6u0NhvWFl1KtqRE4XzrhLv09elQAaJVTWhNEoQESpMvlthFTVFBJCJCF1Apgzc11ljwGlFYFNAbJozWI4SSzHKDqy0uUMTSQV2C9eyupfQ6O3T6HWQcM10m7O0f0FjL/fMf0FmG9OIOoSq5s7bGUGu8NpwuLhC6BatYoTg7XlHM5wSzE3ygWeo1AhsR2RgZCIS/XKfakXSjj3nFwusvf4+zSc7ew/f41Oe+yH/y3/73qJXl5pPP0h/uUo7f56VXvs4zd++yWi2ZLOYcHJwxOTvmb/3Gv89/8V/9A568nvFH332T94+XvPPgA372y8+yf7zgqjvgX/rip/gP/+P/AZQmX65wAl587Q2siDDW8xf+rb/IoNvl+uYWTzzzCYrNm9w/PqJsXuPTzzzD6/f3QMY0TqLiDsNQI22NEyCihEAqKmdJ+zvkixkuztjoruEiibQNNg65cvMG3/zat7iYrvjMp+9QiZSz8Qzn2pyY147hoMN0ssSUhm4cEY9i4igjTFbYJseYhtFoyOZ6h2I+QwcJXkrmpUHkK568fo13Hu7x7gdnnJ2M8d618mMBxjQEQmKDgCiKaKzDWstv/uZvYox5dM//EKRR1zVKBpcHCy2kxhpHFCYYY7h+7QoPP7iPdQWj0Q7ji4J3Ts95Lk557NYNfF5wcPqAO4Muia1oLiaYxDKpNenagP6F4e2HB5wdzfhXt7cZraf8ybe+zad+6kvc3RRsbw0QON649wGvnr/C9tYm09kCKdrM+dnZjI2bNxmf7fOp7sc/HvvWvX2euH2F/qBDtcqZr5YsinmrYgk0MgjJ1iO2O1dQUcJouM4Hr71NPh1zenrBrHC8fXFCoyTb/R43rtzgX/zKzwOGKAsIrm7y0gvfwYeaG6ngtFzyV/7yL/Hg3j7f+d3f4cb1TapVyf/+wjconOeLzz7N3g/eYSk0P/Hpp4lDyc76AOlhNV8Sxx1OHhxx/P4hsc6YLs6Z7B9RJQlVc6kMiQJuXtkmX0yo/IqkGzO+t0+xGLOzvUNv2KMsSpaTeVucmRylO6Bbgm6QdnC1YXy0RxSERL0Ry/MJ52cTpBJUZYmtK7QUCK3wIiQMI8qqYX2tz3ye45KEg+kEEERxr6V8hhYhBYKAab5iebzHajnB1Pb/No3gfmR6wfNDQm1z+dWX/hE8aTEDhGIyPicQMJ+c0umvc+3qVTYHGZH0PP/047wpDIenE6zK2Ll2jXyxZH52zu3Hn8JYw3e//xKn3/s+vSwB63j6yaeYLebUjSWKEvYOj8i6GUprXrr3gKYs2dkafeS192MVXtuDKxyWY5R3mLJA9zOm5Zjbeo0sSrBGEoaa87MpPoNBNmpHOoIAgWKZz5BOsNG/ipAKU1YUjcSVJVbFBHGKR1Mbz6o2LWLb28tTSUXNh0LclnaSJgHzokFJQRqETIqGoiox1tJJk8v2cQM+RkvNclXQyRIEgsa2H/rqEile1VXblZCaKFA4K8BbBJIs63B6cU61yonikDSKWFU1QkiS6JJoVy7pZSmTcslkPGa93+P4YkYaR5RlRV03mNhhrWs3BEoRRyH28oZ5dWvIkXBMpgt6g9bd5ZxtJdJVhUWxuTZkkeckcUy/k5GEEfISj13Vhm43Blm1m0wRgBd0uiPKYoWUkqaq8TKlMRYZhu1GTAUYYXG1o1wVVN5Q+xxXOqSTFKbGSI1tCsrVvPVeAXGcId2EJA6J4gCVrFEfn7C+NmJpKlIp6ChYrCaoLKXTSdi/f/SRF+pHvYSCIAjQ1lMW7cmw874NfkhQQqG0QnuPFgIhW5qap8W7e+8x1hEFEiVDtPAsZhX5qmlPoK0njGJstaI2hjgKiQJNqAWJFtx/cJ/RYMQsLxCXSF88OGvhMgegtSYOBBhLqFsRsjM1gZQ0tWHlJPcejomSmKoxeA+1aU+qpGzJlcuqIozlo5GtD2WaglZ87LyhKBsWiwJnDZP5nNp6VkXN6JI2Kb0gLyqE1AgVIQScz+bU3hGfSvJFjheGLO1hbIOzksZBrDsUFNhS0JQOnwqEk2RJRtNUxLFGinbsBedQApraIKRiOBwymy6QhOgopqHtMne7HaDBuLrdNPgAJyxeB4gqIS8XRJ0I6xq8L+joGGFiGgMo2c6bh5o40q3HLpBUzuKcpd/JEE1DEHi0VixmU4JQt0XCZUfQeY/xjiD4+DNeRx88RA+6lHiySDPqRmz2QlQi2o6rkTTWkC+WRErQJUPqjPhSSWB9gxIe4Rsi1aCzkEB6rBWU1lKZikgKTKiplcY1Bl9X6Ai8D/CFwS0KRNWA0Mg0QgeaIArRSYz3Dh1HuMrgVI31HqHbQsYJSaAUIgjbjKBzGOsvKWqilb3iSeKUYtWuVaUUYRDSNDWVsa2Hq+XDIy9HBgE8ss1nIeASh+2lQyKRl2h5uJw8FJcZR9sGBsUjBIe4fF+3HW1rHUj3KD+Gb/HxkQzphhFlk1MUDb65LKbwyDACqShrmBUeIQ2l01g0BJJYSdK6wFQWURtsXtEEU5YzQ2McGo9xlrKs8U1OJhyBE0griJykqmvG4xWNrTDeYGuwswbZGLzookREJLpoJ5G1RzjbqhfaNB1O+P/rkvrnfgXUfO/790i7jj/83d+imp1hyoAH9x/wpS99BrfW5+bOGrPpjNgHBDJjsVhwej5j96rj0z/xHMpc8Nj1q6RJj/nZOfv7p7y/N6Moeph6wnN3dvnWD97hyvYu7+w9YH9/nxd+//f53Be/SGwNy8kpn/7852mMY2c4YHFxyhN3bvHqO6f8yQ9+QNY0qFQwWBuymE4YZh3m8wYpPVZojDPtGg0i0t4AghDnDAd7RwyNZnF+QlXVqKCFCgjhGQ2HzMsahG8Ph3zTAmECjbGtliXKMjbWLPRSptMJZ2cXdGSFq0oa6/DeMBgMaMoALy1hMmQ8fgWlwXsFou3EFEWb3fY/2mkOgkslin/Uvf2w+FJK0Vw+5rxFGIFWrbahritOT05I04RumlEUNSen9/nFf/nPIqzg1dfe4vEbQ27feorUG3LbsP3YXZrxBTPRkBSGIFGoMODsYkyQDpHygL3797l48B44z9npOZ/85CfZ23tIJDssl0uCIEBKSdZJKIs5n3z6KV7+kzFB+PETjxtrmS/nhAkEosWdN15wenpOrzfgxo1tgkBS5AWmqDBVSRJGnI8vsHiUEjxz9w7LMmcQhmyvrdMdjDCTKXF3wHI+J4wTrj9+k/uvvsLaYzfJNtbYWOaUZUl/a8Dh4SlZkvD83Tvsbgxw1QLR6XKxXDAc7rK2ts5yMefJT3yCxSon7Q/wzvPKd77H+rBPoiSz2RSCkF6coXTEg9ffZDq54PbzdxFJTF1bOqM1VLeL1Jp8taI/GOGdw3lLqCRVbWnNiQJzmXWqVpqmqpjPliyXS/qDPrPZim4no6tDpqsc6wVRoInjhL2LMd1eh9w0JHFIXTVkSYpSmtOzI4xpWMyn1FVFXRbgWjjfo+zu5SGdcO6R7ufDkiwMQ/r9PpPJBGvbmkBrTRin6KSDEIL52SFFmbOxE1PXFbPpBZiaydkJW2sjpvMVWijee+c9BoMeTz79FJWXrA/X2N3eZrZYkYSKYX/AbDZjc2eb4vCQ8WTCaDRib/8h1jm8aeE0B+Pzj7z2fqxdhVnM2OivcbI44rOP3+T44pBPdDapiwqbGGoZc3C4x3C4Qb4qKM7P6PYSjgsJOmTv4APW1jOU19zZ3G1P07d2kEKQFwXeWUpjqY1jvioZJCEWgbWm7ThEQfthefnBPF21RVagNEdnE/K6oqgqsiimkBIEhFoDgm7aWts7SUwcaFZ5xfHFhGE/5cHxCUkU0O/ERFqjpSeNQ+IwAOFI04C9vZwkS4l10HbLqhrjLOfjCdvbWzTW4K1DeJjmeetPwpOlMWEQUNaGi/mC2hqiIERJWMzmbG1tIIAPDo9JkgyExpmGNArZWBsyn684OZ/yzBNDVqsCJS1HZ+ctCa/JaRo4Pp9irGVnc5tw0Gdv/yFpuklTNciuIorTy9yDIxQCrzzSt86b44MJTnex1ZLOYAPhA8JSkmTrBMIwsQvMasHZpMJozbVRQlGFeBRKrqGkRvoCIz1rGwNMPePZmyMIUshnRHGX3dsD3nnjdZbVR8dvfuTLt8JilKCTKmrbYLygNjVBIAm8IhQRcSiQwhOqVkopZIgONVJZTONwgcVFLQJ6Np+zaCxRINoC1DsckqOLM65v9BlPxmwNOxCmpGkPrcIWQe0cG50ui1XOqq5wl2hf8DR1w04/43S2IFSaUEEdKhKtWDWOwljyefXoA1YL1c40q5AGjxMBVd1KX41psE1Nr9tDaUVe1gxiRRRGHJyes7O5wSxvOJ4smeeGMC4xoaKoc2pTIsOoLTi8pKjmsMjZO2zRtMvyIUGmaayjMA5f2RaxHSQEOmtzDnk78jvoRizy96mrgN3tAc5odC/kfHnOeFFgaVhMJtjGsFiM6Q1GqKTPPC9Be4RakmWKWblP1NfYeYOMA+J6yFF9SKgMWgNNxMP3FwjZpYiP6QUdyqZmulgRJiFhJ8LkNUmikTSouGSnH7XOMBkyHZ/T7Y7aGbVA0EtjMK2wsSmKj3/NRgGmKekkmlvbCf1Es9HvInRGWZVMJlOcaYiUQypP7XKaVUVZNQiv8NIxWyxYrErypu20ehtSGktTgfASdwl+8E2DoCJOQSQRThrc3GGKGp0mqCBAhwF4izE1ZlIDAtNYlGuwts1PumaB8z88uXSNvRznbDc4xttWRC413d4myJDl2Qe4MkcYQyeKqISkrgzGtWNhXN5DcQ6Jx+EQ8hIUAxjnUb6totyjQcP2i3Q/7K7Ly/lDr/Sjv9+S3iSBDgiCEBWG4GE5mVJsFahQtRJpLxgEChUpKtWSbG3jcQ7Ozh3H8wapBEKV6EAz3LiKAhJjKfOKophSKcn/QdybBVt2nfd9vzXs8Yx3vj2jGz0QE0ECFClakg1RJCVbUizJcdmKk7jiOFVOqpzBb8lj3py4UrJdKUtVcVmypSrLkWyJjkRFFEkTJEEKAAmCGBqNbvR8+45nPntce62Vh30AOo/iA7Rf7q06D/fcqm+vtb71/f+//20zo5YShUaucsOKfE4uPLpv0FIzWhbcsx5BTZktsUWOr10rglUamXZQ5zfpJR12bAffVGRTQ35U45pW1iWkJvhzAMKIRPH5X/xR7t89YUd3+fhzP8ev/KN/gVA1f/iHX+TMVp9Br8enPnaNuqq5sz/i2997hzSK+De/80WuXdhk48wlNkaGqx95ioe33uP0+UtsrB9y89ZrLCeWrMz52EefRKkeNx88oMhzvvD7/5bzFy+g6306gyFJtc7aWsw7f/pdvv2Nb9FLnudzn/spts6c5f/+k+8QGAtFTVHVREqztX2ao/0D0l6vhfSg6K7tEKV98qqmE2suPfkEX/jVP+Azn36a7vA+WVZihGbQ77NcVpxMJwjhcF5gvWxz8wKJDmLKvGISKtIoZDw+Ymez3+7XBCzyKbOyot9NaIzjeDRlaRq+9IWX6fV6FFVDWRsirVvPq1RtY+U9ZVkShiE/+7M/y2//9m+3svLVYfT9LC+lFN6tcgubdkpgnaGxFUK61YTM8nN/5af50z/9Lj/9lz7JS1//Fk+cHXJhdxsyCBeHGN+Q9J9lnjeQN3z84rO8+OIfc+baRR6rL/ONV97hi195nc986hppAFRjfP8MGxtDXnzpJZ786DO8+uqrFFVFknYYDAYcHR3yyZ/8C8z3vg9S8o3vvsNf/7CL1lp0koDQ7D84YJ6V7M9KZrXhaHnMzaMJgZBcvrjNR554jGZRcvfeHjpO2BgmPPuRmpdvPEL7lhK8NCVhMkQHKd/+nd/AlDnP/NRnMHlJrlN+7BM/xWh0xOnnPkmdFRxef5PGwGc+/+P0OinfeuU1JtMFj/c3mRzdIdYB290OWVHx1te+ybDfgiLSJCUvcsLT2+wfTxns7HC0f4jXD1ty9WTO1uYWo4cn9NcHpEmMl4rRwQkz4VjrrzEdzxgIT1IscXEXbz1hkKJ0jG7a96PKSpQER0XaCairFqg0HPSZzhec3d2mKHLuH02YlQ06iDiZjpgvC6I4IQokb773Dt57sizHmFY1IEUrPxfeY1wDKFrZv0Potoal1HQ7PVQYIkTMX/74Na5cvsRvf+VF7t+7RV841uIOj184y4XLl+H0FX7zN3+D8XifPF+inaVerJF24lZ5VpY8/7FnkcDs7CkeHhxQNY7j0RG3brzD+UsX2dGKxfEIoRT9tQG379+j0+0inOOx07vs9jtopYi6fZZFyfevv/NDl96faYWe5jlriUYJzzQrMGVOJx20YbNCosMuvZ4mVhprS0oUeZbT6ZxCBBHduM+AlO7aOo315FXDsjHUVcZGr0fVOBZ5RWkMCMmyNNSrRcRZ2xrwVo2W9z8IyzSNZekcjXVY77HOtc0aLQbY2RXRzrkWLOxWga9KoLUmLw1BoOnEIb0kQQlYLJf0ttaoG8doNCVNE7rdDnVZEQQBUaCBhDRNKPKMfpJQVRVRGLHMCyTQSRNCrfFeECA+mFYIJbDOonVAnld00oTj8YyzZ9ux7PhkRGMMG8MBi8WUXprSjSMWWeuDWGY5nU4HrWIeHhwhVUQcRmRFjlKSJOmwP58zWF9riU9K4TzkpaOxLUHOmAoPLJcZvQJCAuZlTj+KqZoFje1RNQWNVSQ0yDRibhWjOicQMVRgfcHa2jpN7WnqAudDhBTEQcKidBjrUXFMtlwgvaczDH/oQv1hH2ubFhUvBVGkwEBd1pjaIoXG6zbzRimHVpJQqVb6LFUb8idbX4hf1Y6znvmsakNVgaosUUGAVJJEJaSBYDjokMQBSRqxdWa3BRQAQjgiLagCRVaDtbZFnDe+BbzQUDcVsU6Jw4A4LBAGBIraSawHZX0LvVctfc97R5ok5JVBydb/6Dx4pYikWtWfJwwCqsoQdEKGgx6ntiuGhzNy07AsKibjCbsTjQpar5inRkhLEkMnlXQ6im4aUtQBdVnQNJCXBc44AuVQSFQ3RDUJa/0tpCvJWGJcTRy2RtzlopUMVmVDEAhMbcjKOU0jaWzrEfRSsra+jmkmeCaESR/rlijVxyuB1g4tNGnca71HjUcS4miDz62cUwlB2jtNZmqMLNGJh8rS6w5QQU1tx6hQosIWVV+WBaGp8B6UinDWEaoA8JTmw78s2BykSOUIlUDVDUbAREwJgwzbgPICZdumJlj55Yxpb6WdFSg83rThra5xgEI5j3YelEA4qHwr3jPKo9MQgWtzs6xvvVRK4VyDbSq8bwPCnbdIFB6H1g3CQGNte3Pq2nVVyjagWKycpO/7CAIhkVoTxiHFfEpVlSyPH9FUOWVRtnlYSqGDVnJU1W2IZuNdG5yFQK3Ih866FS0R/Ooz0WpswbXiFC9arLagnX5JIT7AaLP6xK/2CuFte2kmJM4YlrOW1tVZ01g8tqmIpaQbRYSBYp7nNLbC1m1T6YQjDDzeeKajCUJKFssxNjNIHeMAIyxStZCixlRQGcSkwntHli3xEiqzxHkJqWojLoTGm9Xa4QRNXiKLJTYK6HR6aBPR8wlT207JbNlKp9WHr47lYDThxz/3Av/hy/8XP/3LL+DtnPVEE671eOPGDY6P9vhrP/M5tna6ZNmS+9/5Pmm/z7CTkGUl5XJKunaJSX5CfWiIOl32D28QSMHf+aXn2OpAtn6N/+Mf/2ucMz+4gIo1e4f7/MjTfXTc41f/6T/j4rl1Xn/nXWTYJe11Wc4LPvr00/zG73+DJDG41JN2e0RhQJYVJGmPoiiZLRb0ZQehDEo7wiCizCb0t4b0+32+/NUXeebKKepmBDqm0+3STTMaa6nrmtmkBC0JQsiWGXXaJeh1STpdIinx+RytLVrDMqtQQUReVgghUcDm5jZBnJBXjmEaURYNUdrmOwa6BUC0pOUKrTSOips3b35Q1+97t96nHQohfzD9knrVmEmKovWCKaURUvDm29e5e/sO82efoFEx+eSEfGH41ouv8ld++ke4fOkM85MTNp/8OBUGJzNmoznbdcjGruby+Us8mMw5eHSPtY7mjbff5PyV59nc2eZ4UWCEJuimFFWJtQ3j8ZjzZ05jG8tzz17i/vHr3Ln+6odes5kR2LrE2aC1ZSjNbhQxbBwHJxN8GJNEMd1ul4ODAw5ujckzS++U4Nyls6Ra86037tPt9hCB4Mq1qzQYfDEn0ZqnPvlJdBJx76132Ll4mb37D4i0RKoEFStkp89TFy7yxd//fYIoZWN9k6tXrvL2a9/n+Y89j9SO6cmEcZZz+vEL+LLECcF4MmJ9fQ0Q6DBhNB7R7XbYu/+Iza1Ntja2KbKMQliSWBP1u3jjW++9siwXGQ5HYyxlNkV3B4RKYerWF954iwwCpK0RzpHGMcViybIoWgWCMXSShOVswTQrKI0liWOOFgWOFg1/4913MVXOyXj8/6tLiUIo2UrOG9uqiHSAXFE2e+vr7VRUtD7k2jX044izg4QrZ9b5y5/9HP/mt/Y5rQxn+glnQ8tGNWKw/lEu7G5ycHCHo8MDop0dnGtwTcO8yDg5PsGvKLHRYMC1a9d4663rbG1uki2W5HnGmdNnePRgjzRNOToaMRysc/fhA6R3xEpw9eJ5nG2oqxptG9bXhz907f2ZGq/u2pBAB2zSx4matceex3hPthxTNx5nMkTQJrbPqNnafQyMJVWeygkqIZkYwaOHR8yyE05vP8bxcon2lpmJKeuKt968xWi+QMiAZbFY3XZCY1s4AoB+/+bHeZx3xDokr6pWWiUCauco5zn9boJ3ljzPSUJJWdes93toDePpgu1BnzgMkKlnEIdEgWS9n7BcLFkbdLi/f0wSBQwHfeSKGJTnGY1pE7M3hgOcda0vYZUK30kjlrmmrA15UVGZhjAM8bbNg1FKEUUhQrQB0kJqJvMFnU7Knfv3eeG5ZzieTBnNZmximCyWdJMOo9ly1bh5pA4IA01tPPO8oqxK+r0enaRLUZYMez3mtqbMKxbOkiQxcZqyXBZkRUoatdQ7EQTMjyb0dgSuLgkawYE1bASn8LJG2Jwk0NigSyBKVFGjYwix3B89wvuKo/07RL1Nyiajv3mZrSgBGbIRZIxUB1tVxNrx/I98nOPZh0/bamyNdQECTaQ1SgqyckldC7CepBOhtCRNNFoGpEFAHLV+Ih0pvBIYV2OqkioMaEpLlbcbXZoEaG2xxiKA7WFKqgWxUkgVsrW1wfr6kJPKIITCNg1hoFCrs59SiizL6HVTGg+j8ZxhJyYMAyKpGHZSFqVDeYfSvkWzNx4hAlCKatVUKitYZTvTCIGzDqWDNq7BGJwK8AJOFksyG5Bff4/jyYJ8MUf1UxZZRhJ10CQQV5yMl5w+F6GFY7PXglcyOybUDkTA9GSOcbQhzV5QFEsKM2GtE9DrKAa9DnVt2gmG8yyaJVqFKCUYDrZR69vMywMOxw0nswlhmBCFHTa31zAyJO70ORrNeTi+jg93qG1GNRcoWjmylQUbSYhzJbNsRCcdsLGb0O/2WJZ3cSJABYLtdItHoxGnOwl1vVxJyxRl0aAiiJIA0ziqKiJO+yRhihISU1ZEnaSV7bkPH64x3h8jNSgNx1XTbmWqzSKKgoiqNNgiQyeeqBuxtdGlcZ68FDjr6UjoxxGdTkhXJS2Uj2oROwAAIABJREFUxZQoAB0ghEN4iQ4l6ACfDpANuImBxhGua4QXNHWNNy0eXmiJCkNc1dJXhZf4xiLnqgUEyRYsw/vEQVvibZs2HCkFUhDGPcJejwZDdnDMYrKPcRrnHP04RIs20qCx4gOsP6hWmts0eOmRvr2w+MDn1VrjEcJ/gIp3K63h+02Wx4FUq6iFHxxShZCtNwZHLRWNbUDnOGMwhcEkCT4KWJQTsjynHIasd/rspBtkRU5eS6p8SlNnOKEwSjO/ewyuJulq4riLbRpKY2jqCuOnCEC5dppXT+fUWUEVjkkGHeSGwgmB9xVCgQs8xhq8hyCIkCpA5ymxigicIvQxznu2B63cLC8qjDHM/xyUBfPJnL//3/8D/Kyi/qUf4ZUv/S4/+txlbhzFnN4e8OPPfYrD40NeeeMdZpMx1iuGwy6PHt3h7MYaaVSS7d3jv/6bv0AcepTqcOetfda2DRef+Yvcv3GDk70Jf+/v/i1+7Z//DiBBCIq65o3vvMKDe1t87Zvf4ud+8nl6YcUzj+9y+vwFNnfP8+u/9m/4zM98hicvnuatOyOGQtAdDBFhnzRQFNmMbtJB94Yslwuc7LC5tYVzGe+NGlSw4ODRvRaiYTznzpzinbffYffUWTpJDCrmZDxmllU0jaGuLV5ItjfOYZB0+yn9bo8zOzFvv/42ne4GwlryomQQxpjGM9gZQFXiRUx/EFJXC4SyOFMjlcI6R72a4jrfSlWl1Lz88ssfgDPeb7i01gg0prZtJIZswTFCCIoVAAzg1KnTPP/8J/jG1/8DG9s7/NiPPcNLr7yNNyGRjlh7/DyPDsZ84pNPsyYaxPIQtblLPXnExz79DDdv3yaO4IWf/AS/84U/YnfnKaJEUN48oszHLGcZwyjhW6++ivMWj8I1DZeuXmI7kdw5OOaPv32Xc+cvkc2XH3rNXrq4xeXHzzA6HmEaQbfbY23N4b3k2tlWejZbFrz9xl0sgsuPbbF7NiTRnr2bb3E0lTzx5DnOnr5Ikx0xDGo6QcSihud/+W9j5xm/9X/+GpmA/+I//1v85j/9R+ycP8vn+p/HCcv5J64w2d/j488+TV42vPnwiNHdPX7pl/8qr7z8Mg/vjbn1YI+d9Q3yeQHCceH8GTppD1NYHj2Y4GzB6UvnmMwzbt7a52i85Oz2ENFYrp66Qj7LsUqRjxcc7z+i2++S+Yxz1y5TWgMP7pNGKXW4ThgP0FGIVwLpSxaLEeOjI/qdHnGUsMwbGi9ppGA6yxBBSJimnOv3yMqaeW248d4tDg6PmM3muNXa9T5lVuAhUggdEvY3UArSpEPTWJCaanJIbEp21wYEUrPRj3jqo1d59NYNLvQaNsM5v/jZT2AP7/Lal/+YrVTwxKUttne32XnyMeK/+9/w3f/xexRVyfFkhDEVYb/D45cfZ2Nzg4NH+3hrELGmNhVRGLKYTdnYWGNzZ5s7d27z0Y8/x3w5543vfR8PnN7aoNvtMp9M2Xt0xPqwx+MXHkNpzYUPC64hREhlJVq3PqH5fEra3aQhpTQSpR1KBhRZTlU1jChoyoJIa6qmvY2blaYd1TeSaZ4TS4lrapQrCTFs7Gxy/3CCMTkISeMswjV4PM1KxN9Yu0INe5RoE+LbTA+HFALvxQo04FcaUcGsqFArKcpstgDv2eh1WmxyWSBxhEHbdRtnSaIuUVhQFhV0Lc4ZoL1FCgJJkkRASyZcLjOCVX6GUq3vxnvTNlxAFGpCr8grgxDtja3zDuMtdZYTBq0BPAwD7jw8pKgqTN0wXxZopfFCUNVtA/Vg75jaC7TS7aF6hahvaUqGXq/LbLFsN2utaZqGxWxOlKaUpsFLwSLLGa71PyCNlUVJ0ywxynJ+cB5pFNI5OsmQwtbISLRST9OQKEdlKnrDgPHePpM59KVle7hGEsYok3EyfcBgd4u6KqHO2lA8HXDm7Ief1WGahqYxraFXiNbXJT0WjXAa2zhQK6+XbENUlWzpl1oKnGizutzKBxg2AqEUURwwX5YUZUUSxjjriCR0Oj2SKAVamqXJcoqsoKwMjfUYazFNO+kqyhrrXOvHAcIwJdYSqVqEuFYxYQy+WtIJBE4qlr4BPEJLrFhlKjUGqTRKgq1WNEBEW9vOEYYBzjsmiwUNCefOXeDd+yOSMG2hHB46aUyRl+xc2GS+OKDT0aRhSCfUpN0By8mI0lQIpamKps3H0nGrd9YalKUqF8RphNDtgV0oj7AhVZNhrcHL9qark3aYFgeAaglsAoQPWrR3nBDHCdbDeDYhQOOtoipqOnGXMO1ixIRuqLAiZLSYo6yiF0McdpgWNYiKvMxQOsJRksYx3U47XW7wFJlAaEdvTdK4CqQniiNCHSKlaJHzQqAC9R9NSD68xy0a5CDC1g5fmpZYqRRF4yiCCtc4nLEoJIUCO3YYU1PMCjyCJFa4vieJUqzxmNqTV5baO5y0IFrYjGtcS+qralwDvm4bKhKNl6CjAJwGGrwA33iUW61fpmmzW7xHqnaaJYQA6xCuBWkI4VuibKARQYCKu+gkJYiGmLxCAsJZvDE0TYjWYfveve+D/MB07duAckcL8lh5F9//tN0LVr/5ltz5viEbWHlcGvAS79tDqpDtJLkNdHZUtkY4QWhzqrxEhQlVXiIIUcEaPlTMpyfY2pF2YqT1hGGCWLayTGjz/aqyhLIiiQdQWbxwuNLg64qynIDwRHEXoUPi7hBJQFEu8GVJZBKEkm0mlLG4wtEUFQhF2gshjAlUh8DFeCOoGkNVlTR+dahZPVKrD6VO/+Mn6iQc3rvPL3zmJ3l4/zZhIBlsbmMfHvDU1Ssc7D3kytXHee3771Iayyyb8Nx2n9v3HnLtyjOE5i6vvfIK3/7GSzz39GnWti8T9i6ycf4qufVsPnaaeOMZfu8Lv8v1G++Abw/ItWnx6vfuPuTM1hbn1iTPfOQKLo3ZOP04//zX/xU/+dmf5aVvf4sf+5G/wI3bf4RvIJQRXkgaB/3BGnlecjyaEwQtAGY8GdPrBWjtMfmc0fiE2vT5/niPJx47x6mtdWIdkUmJjjSVg6I2KCRaK6wQ3Lpzn9Ek4eyZIefOnmX86JBGSl773jusdSQfufo45qwiK2vy+YL1QYfx0T5JIFnaNu+ocR6l9AeywPdphdZaut2UoiioVpfO7+d2tTXfNmBar9ZYHE3jiaL4gxyvLFty9epVvvbiV5jMl9y8/YCtrW38+JjdM2f5F1/4Inajz/de7/MTz1wjGx8R7LQH5unxmNg6pnVKc+sB62nC9OSEMxd2OX54Fx9WXDxziq/efonB+pDpeNxSTZXm05/+Uf70xa8SxAnD/hqjxQxlP/wxba8bsr//iOWsJltaYhOSdhVlVrFcZMzyiqPpglp32N5e59TuBpGE5WKBI+JwdMgLn/sUX3/xTX7s+SvoJCQfHXP86D3WZcWNb7xCkQT89M/+HK997SusRwHriaacH4KUJMMhyzik0SHf+/73mSD51Kc/wb0b7/GVr75K0B/yUy/8BMvRiJ6KWN/cYP9gj+VsjskMy2zOR568RpbXjBcFG9u7PH75HLF2BHgCHXJ0dEgS9zh4dEIUtBc15aLk9r2HXH78MWxRUixmMOjjvKOpS2ydI7MpCOj1OuRlzTzL0HFCVbTS6qQTs6xKojiiqj3jecZ79/e4e/cedV3jbOvV1XIFSlK6vTiKAkCjUSgPFBWx9vQHawibc/XsBleuPs7ewxMeP7/Bc89d5osP7zEta+qqomcmrG92mZiasnGknQ4yCFDC8fjFC8RBTGUtZVVTlVWbHYfH1jWD4ZAyb9VX1jbsbm+TZUsa59l7tI8MI26+fR0dheyc2sWUFdYLitrg8KgoZlIYHhwdEypJN45/6Nr7MzVeWenR1EyyGbZpiMIOh5MH2NogggDvYX24w/7hCOMDiuIhcaiZLi0oRS+VVGVOkqZUkwxMiRZLbFGCjYi0plxkK3yxp6hqnG1wzfvellbPXxmLtW2j1AmD9vCqJBqJdY7K1CRatdjeKGq9B5Xk1EaP5TIjiUP6wy5xJLGNo9NJkAI219domgahNAfHJ0RRhPCe6XyJcW1Q3MZ6j043pdvpMB1NGQz6aAzIkCCKeXhw2MIcGsvW+oDK1IRasCxaPxq0iffCy/ZFcOAay/FijJCS8XSOFpL1XpesNCzKiqi2nN2I2Tsct2ZGHTBdLjm3vU0o4WC6QEiFdZZgZZxNkk28q2mqCh2EzKZzFssl97b6rAWebsei4hCJJZIRW+tDaGqiWrNz5hR1VXJ8dMJw0CGIBxRlRuEzOmLQBjZ3O4h1QXc7YX3QwywXRLKhMA05nq7ocGZnABLyakkcaHJT/tCF+kM/XmJqhxWWGounbJHyWiGFojagbHvQFtbThArrG/A1zghEIBDOUbsGt/B0nGBZLMmWDcvS4J2kKgqSuCVlBpHCStDekEaausyYTEYtTEJoZvM5SdrDFjUzVxIEsj18OkG/myBFQ0eHWO85mc7IjGdnEJHIhkaDcyHGe7qxYlF4ZlXN2nDIg/EIJ1swR6ACtBQsa0sQaoS3SBGgo5iidkjRsLuzxoP9E6T1pJ0e2XQB9xVP/shjZOtrCFMTxDFlFbA+2MY3dzmaHhN210h8QJ7nhMMNVKgIQ4EUDePpCGMjaO4jlEcO4PKZH+XOw++zdMf0uz1m2T5ZGXK4GOEF9NeGxCJmcjwiTDfpdVp6XhQOqBae46piq3uJRCvy+ZIGQynGRCIgrw2LJqPIK3q9FCUNWQFSLRhPr5PGG1S1oVo4giDBNBVFUeOEoq5hucjwQtIJA3qDIb42ONdQVjlppXEEbVj2h/zISlPOLaZppWoy0Ksw3+wH0xrnqRSIGZQ+x+cGshqlJYvYkkclTTAmqDS+9jgrscoh0xAfhIjMIrMKXzUQKXAerRQkGtGL20bLuZYGaEQrO6krfNTKQrRUeCGIlwaZtV4vpTTnLlzgzJlTfOazn+fixct4IO12sdbx7t0bPNqf8K9/509weUF+HKF8Q15DUeTYwDBMe9gIlnlOWVWskhHwSraRDlLi63aHcM62XtoVSAPRwnTwLeWQ1YRAONFCnvB46VpwkhY418KTQFBXraS9qQ1O3seUC+AcQRPRHXYx0QbHdw7IjvaIhCFJu+jNTWyd0eQ5VVWzFAJM0zZyezUq1Jgsx9Y1xhhqWyMDTdWpkWFId9hHpxGxEpTGUNyZg2vQiSaIEryXpIMeKk1Ie5voIERJyTLPeW+6QCtJ5AS1sQgPaRTincOXH/46e+b0Nr/8Cz/Ps1d32X/0LhuDAePJhKeeOcO//cLXefE7rxN8VUDjmM0WxJ2E77yZc/3WHkHwNT77ox9ldyNgdHLM116eM63usrbZ5ejXj5B2wHR6SOkzNrZP8/ST1/jOG9dZlIbxZEFdNlx87AJ3b95g0An4zlvXGbsdrr/5R3zlxe8ymTu+/NWvssGEz378PF9+e4qOI86tr6F1iHWGNAlRWLrdPkGnS5T0yIqa06fWefubXyaOIqw11LVEdHpY5ViWBaVxLIuGZW7RopWpKw1aCaK0S90IwqSDEILX336PG/eOmFUNT165zGw64737e8RhxOn1DpGGuw/3kUHCMl/ihWr95GUb7dE07VRZvA8EqyqstasM0rbZbkEF4gOAl/MGsCgNUobtYVhr0iRhPJ7wK7/yj0k7Ad1OzOuvvEnSG/L0Y+u8+NLX+du/+It86atfYnL9gM2//FfIJ0dU9x/gnEbWhpNqwWic8/TP/Dwv/cr/hlIh44MTeheusXfvFhMTc/XJS7zxB1+lqU1LWmw8f/D//HuevnqF69ev89K3XmF9vU837n7oNRuIkDo3CCnoDVppeV02zKYFhRHc3J+hoohLW31MNuGbL8+Zlw2f+NgVjGt49mNP8uJXXyavDNs7W0wqw3jvNrsXT/Eb//Cf0USCH//Ux5m+/DUuPnaa7e1P0Buu0738LDpMyUb7hI3nX/zuv0evb/Ff/u2/zmTvAS9+/yal0pxe61MeziiXJbmqmJQV3lt6m+v0zkTMF0vevH0XL2Fzc41nPnKRw72H+CSGtMs3v/4qp0/v8L3vvkygIjbX11BJQGng2195mWpZstsNmS9nPP58ipMOqxpEMaIpZvQ6XRbGczwaUVkFMsBHIJxHCehIxWiW89133+Ptm7c4Hk0xpqK1ALV1utFNuLq7y8cvX+JonnH97j5r3YDPfPpZ7t47oilK/sZ/9gLpxg7/+z/8da49dYWzV84wqUu+/r3rvHt4xL/76repi4qzgw7/1d/4RV567To3xnPy3HD13CmuhCHN/ITNS2e5fP4Cb92+hXWWw9EJ2jt2T53Cb9BO4hY5eWXY2tomX0xZ29hChxG37t/D1IaqyFEZbK1vcJQtGOcFgdJsbq7zxq0bSBmwf5DgGsNGP/2ha+/P1Hg9GM8QtmSRN2ysr1MWOVIqmnpJfzDg0dEjJvMJnXSdNAhw1uO0RgU5kook7BCoHt41PHZul/F0yrXdDmFnm1def5dYCWbzjDzLsb6VUXnvqZtWWqJ9S6+qncXaNiC2sZZOHLVZV7TymECF1I0BBGVjsNYx6ESkUYSpDFleUpuGQa9LbWqqquDU+TOcHM3p91M21zeIggWjyZhBf43RaAxScHZng5PJlPW1PmoVwJkmMUEUczya0kktrrHYxhBr2VLmUOytYBhp3JLijGkzuZIworENodJopVkUxeqGOKCxlsLUFLXDWDiUE+qqTb3fSXt0opBIS6JOytFsAd6wmC3oR20yPdGMtcGAh8sJ8yyj2+tjrOFwkrFxbp08ywhMg+qmFKVjuNlhI9ogCgKW+RKLxogOUe8Md269TR0otvt98gY63S1qW7F5+hzjxSNKX5KkayhfI3spl7Z3cHjGx8ekaYc4CKibBX8O8TJIFM5C7WtMUYFoELJB6whFa+u01pEXDUp4kjhEBQ3GtqGkYRqsNjWNtZ6ybLC23dhCLcmrhkBqamORWPpRymyZE2uPxnPv7gNuPzggSCKmJyPCMGIynaLDtmYDBN7DPDec7q2wrEnCrCiZVQ0IvdImRwQOThYFMgjAWbxr8EqQr4Jta9PQiWKcEx8Q23RjicKYrDTUcUTciXj1u2+Tdns416C1ZD6f0e10cFim5QkniwdkeUwcn6IbrLHMagIXE9iUbFTjag1VQLEsCIMOorGUZYVrQrxTOOGYZSW9pENVZtjKE2rB+lqPk8kR03KK9BGT+RzSlHlRsXkqoDdcQ0Uh+WyOMFCMA5yWMKuJooRyYagXR1RBzTsHYypXEm+s/EmiYpQf0u8OCJOI28s7ZNmSQXKKRWZbmYRzREmI1TXrp1MG3ZDRyRirSxq3aNHmuov3ltwUaNFgmg9fttW7co7aOVxTMOyv0wjB9PAIc7L4IFRSASKjDahsPMo4yspS+wbROJy1SOvIlWj18kqhogBFjAs8sqyQGNxGgBp2UAKE8IgoIoxaeqCzql1n5yByCFEE/S66Jzl/5hy769t8+uM/wWZ/jdM7j5HEKV4KamcwzqBU2E4OPcyrBYPhOnuHNcXRHDcvCNpxLo0xGOeoq5K5d1jj6KV9wiBgWZarkGS5orc5Gr1qPhFI3/ocxcrv+34j9r70qpUWQruwSqRSbb6jcK381/o2U1G3EzrrDNl0CnWNtY6436cp11FRSP+xj+DsGDM5oMSjmiWOCtUJ2r9RNQRBTJQmCCS2ydFpQjDog6s5PhlT1g06N4DEmuaD6YUWAj3cxFuJFg3dTowLI+pI4+OAvGMJfY4KGhSS7GCMXFSEjSIOeqA0BodU0OgPf6H94u99hb//D/4Hvve1f0cYbSKaB5QU9M2Cv/SZT7F3vOQn/8KzdIOc5bLmS9++yf07d/jjf/lP+PI3X+Xk8IS9wzvoSJMMe9x6e0K/myJswtHkEO8UDx6VnEz36YYp690Bi+KEk9mUvFgQxjv8wi/9p4ze+xKbp87yT3/lt3j2yXP8vb/z13jt7VskYcz9ozGP9zeRzZRsEWCL00RrfUIdEyvLsHuMWU1eItESVcejOQ/u3SMvCpqmzRe6fush4ROX8Tok6Hc5nkMQBuxsdBBSMBh00ay8VKEiCGImowkP98bMxiVlWfLqa29zbneLx86dJV9m9DsRURqT5wfYwLMs2xqRWlFXlroqYHXm8B6kCGiMxTZ+lZ/nkKKVyzrviFL1QRMGkkSHOC9wUmBqhzENSgmUdGgskRR85NpHIAyI3YQff+Gz/PEf/gF/9XM/xfHeHtnD+/SefJqTxZLpOwd0+l1mtx5x7vw5Dt+7zrWnnuL16zf55Mee4MypLbwvUNVqj1UBUSdESkWeLakqz3QyJU1TdNTl6WefpR8nH3rN9noJU7MkkJJiWbHISirreXQyQwYhn3/hOULlqBeGm/dLXr/zkEh3+N733+LZaxf40pde4hOfvMq1y4/Rf/wpLmxucOOVb/Cr/+TX+O7tQ/6TX/gs1WLK+rlzrF26wPhrL/LeWzd54exT3H/3NTZDw5s3bvF3/6f/FuEkX/yDP+bM+cdYO3+B//mv/wKLk0OyZYlpapazGcJ7Hj16yFv37rN55jIHDw8YJCE/8Rf/IoEs+d7X/5SsanOplFAMtgb4IKW7s83TzzzNl/7oq5jbDbu7Q9IgZDGak8o+dpaR9t5l58knKI+nmOUSVyzJy5rpbEpVVzjRRuvEacoiL1mWOa++9iZ3Hu5zc2+P0rRgJ4RGKVrPrgwpfIOoG37ik+fp9HrcfW/My2+8zYXHdnjiRz/G7/3+n/Df/a+/xrKqGS0L/vCNN/Dv37ax8ubKVsLw7mjB//Krv9kqyzzcyHL+3zduknYSthJPpQwvvPAC1++8SykaHuwdkEjP+mBAJ4lZ21wj7ia88eYN5osHdPodmmDG+HiEDgN2tre4fa+gNA1HN9/h/PlTBJ0ut997D601zz35UfK6Yu/4kKoR7N999EPX3p+p8YrSmFSkDPqeZVngXcPp9QELYZCqoa8Vw+0u3kqWRqBDxXg6RhUL1rfacLMojjFVw3ovoChDcqfRThIGCaFS1KbCrTrmIIgomry9fV1tpNa3Jm6AxoJznlBZ4kCiBQRKYXEfSE4Q7WYsBZRliZatXlqL9uC8tA7TtL6p0izp+hjnGjpRxFhAVRZ4HHGQYExNHEqG/Q6TyRLvW9DFcrlESslimQNihZeviJKKZV60iO/2y9BJUyazJVpp8qok0HoV1isJdYBpDIFSZCs5AN6jpGizwozDGINtKoyGJFqjyA2LLCcIApqqJlsuCIN2GlCWNVVVE0QJbnXAH8/mLHbXGPQTGmtxeKxxFHXN3FuGsguiYbqcoaM1mrrAuIaHd/fYfOIJnK8pBQw7HZz0mJlEmYowjvCuBaBMxmO6vRDnPa5pmORLqmZGGmz+0IX6Qz9SYfGYxrRZFzhU0CBl06YhS4FrwDQOiyUI6hbh7FdBpBoCDVJqlGtx1E1j2ymqtQjv8dJjXUO/t0ldltRVTTfuYIyl9hKtQiaLfaxowwXdCpeqhSBUbahy3Tic9xTGYFcRCqEOaKwnKxuEsnipaDxg20ZGqADXVJjGYJ3/gdwKVmG07bsiaAlwXmisAx3G7I/GOA+dIEQKTxRppIZlXuK8ABQeTafXpcpztAjphR2yLKMsHU4GKJ8QBUOa8oCmsuA0gQ5pXE3ZVPR8h3F+iPEFsY7QKlxlLElsAa4W2AgQER6BjiKkVpii5ODRHjiNcwHTWUYagUZgvCVQCctsjNMNPZmSBLK9qBGWOOowXFvjYHrCbFQSBC1KOS/KVprmHZ1eiAwcjS2JE4UOHaZZ4J3+wCdRmaqFMsgPH8194dQ6HoPwmm4QUzXwzjymSSpoLN40H2xO3oE0Dm+a1YLo8WWN8q0HSvZitGrzrETQygFF49BOgldIpdopkQDvBLJpUKFCKkEQtsHcda2Jgh6bG10uf+QyV688zrNPfYJe2qObrmO9xTpYNhXzconwnk6SEmqFao1yhGgOJjm37z+isQYRqjbngHbtUw6wP/jfrDVIrVeYeN9ewq3eG6VEK790YrWutZ6p93+yCkR+/xFC4OVKkr7yByNU+zsClP+AAqe0IgziFvIhWrljnRco26C7GhMm+M11hHAY5/GmBt8QJK3kVhYNcuU1886BkohQgxCEWuIah/ANvlHUeUEQhEgPjfeo1VqiVbsniMaAK3EVUDoK7xBJjAg0QeLwQmGbEKf1SpZvCGON/XPAyZ+5cIlyMeX48JB0uEXHCda3ztPrx7z91hHb6wM+/8KzfPfVt8imR8xnU37uc5/kxtsP2V3bpNuFZbZHYwsmkznLxZyjUcCiqDk+OsYay8Zwm6wy/M2/8fP8y9/6AkJCVVcsi5zdU6c5PDomMI4GgRCGzY0Oa92QRw8f8vnPfob57IijozHnT2/z3kFGsyJ19js9pqMD8uUCmUrqfImrDVGS4D1cuXKV1//06wBEcYRzjgd7j8jzko2tLUARBJqd7W2KKgPv2dt7QBxE2EAyHAwx+QznHUkUIoIBiRCcOnOW2eiIbhqilGK+yFFao6IIT9FOYFe+7vef9hKwlcJXVb2iHLb7BQLCsP1+VVV94JPUqiV+RmFIaWqkaCN59OrsMRwMmU5n1MCgm3J55xRFHPH0s88xGh1z7vwZjsKQdHyEsBGj5Zg6UBycjGi0xjrJlUuXeKuYcTJdYpaGMxcv8t0vvkiVGXSg6KUdjg6PkEKSZRlnL19l9PK3GE0PefOd64iy5O99yDWbLQu0DNChRBHiVYBZFuxsbSIDxWI6xbuGO+89Ylw0FM7w6Hif9f5phA/Y3tng6vlTDAY9uus7xEpx/ZXvUc1yeknA7tYaXsP69hnq6YxlltE7dZY4KNheC7h9/4iNs2ew8xF3rr/Lmd11ojTg+YtXKI8eMhnNOFnMGQ4HdAY9Dvf3kckaw51wHu3FAAAgAElEQVQOL33zJc7ubqG7knwxZzk/QSqFqRfsnj3L3sM9+r02p02EMS996zXG8xrtaoTSzJYl795+SNq9QiihLgrMck7Q6dDQhoM3tYFAE/Y6eGMROqAxDQ/39tk7mvDW7QfMFwvqpgYBSsJaMsD7Bh20MLCsqLk3HtFd77O+3uPOfsbrD/d49bd+D0XEnf0jFnne+nlb1fcHTdf7UvEfRID4D94FLwQewRv7I649OuHHZI2SlsevXV4p36BuLCfzBecaA0Kg8fS6XeJeh7puaJqGbJkRJTHz+ZxoHhHGEXmZY5zjnZt3ePajz3H1I9fYe3Cfd9+7xdpwjW6UoLyg6f7wU9o/U+O1gaV2BU55drsRRT4hBJKBpqoWrG/GdIKGfv8sjQrZf3iT3f6QRKcgE7JKsTbsEgZD3rl1E4ViMW0YdjpcuXaV+3cftLf0OsC7fBWk9oNFx6wMokqINuR2xflfVoZZaUmjgEBAGAaYNtezNaZrhRSC8SInUpKzG0PWu32qvMLahiSKWcwylLCkoWY0nqJ0QCgFSRiAi0nTkMl0RhiF3L77EGMspmpYZAX37h+ys7WBdR7nLKWxTLOSzFgEnu31IbPFkjRO0TomidrxdlaAxGNXkhmlBFGU4r2jtgbhLHXdoJX4we2tEhRVRRBoqtoyni/Iq4pECIqqRMkBtimZThY0DqqqxjjwxRIdRMwWGW/decipZ88TRSFeCGxpqLIpWadLvWwQzYTGhdi0w+HxXbqdlGeevkJVGTSSkAqrIc8Lgv+PuDeLtTQ7z/OeNfzDns881Kl56ok9sNlskhJJiZQomVJMSLbliJRiOYGQxIANI4GRQPCNECdXuYpz5UCOhUCyEk3UrEgixanZbHa3eq6eazx16oz77Pkf15CLtau6GftGHaDzA12oqlPn9N741/7X+r7vfZ/XJRzu3mT5bEJtYXhwxKQwbJ69iLeGw2EfmWq6YoG90ZDzH3ipfrDLS0lhCiprcWb+4ZYCZ3O8FrTSGKHAmCA7qozCoShsjRBgZwXdlsQr0HFCMYRpachLixI+kBs1JFIGPKrNibSi8hWFUeSlYFZKjsYVjThCKXDeUmQVq4sNrKmZFQ5ja+q6RgP7wynHs3DwV0pwPMtRrZAH55WmtBWRTRBInIfSOoTQxCoU98H9EgqOKFYcjUtirciKjKwQPHRuhUE2YzqrWErD65/OMnoLCdeu3cZ7QXNhgaN+Tq9dUJU5Bwf74DOUtXR7TZZWTvNTX/oVlIz5g9/+FXa2bxEpjfYJ42mfbmeJNIq4fXid2TRjxSxgOpJIJkyd5WgwJJ9VxLTotVeoqorD/QOWF5coixxjpiCbWBvTPxpQdxwnttpYMYNMoNuC2kBHaTqxwNuCdi9l0h9h+hXtZgqVpNfyHPZLmksRB3eOkF7RizWNRDLLx7TbbZJWBKIiiSRe1dQuR9scTYKRHz6a+1SvhfM5xtTMphZRwKpuIDsGU9VhrQpB2ZTIwiP7k+D5cgR/VZKg4hiZKHSnBUriIwVKojspVoDo54isQB/UqFGBICFtpTQWWnz6hz7NyZMnefjioyy0F2jGXRwSL6CmwjpL7Q1WSPamfbJsRl1VOG9ZXtpAaU0UN/BIhJfEcQii/81//xcMbu7gy2yeURgjIkttTSjylAi+M6nQURIiOlyNMzaENQuBlhKUDMUe4fmq5iQtLwReCKSfe8xg/nkQBHWhDJ8O5xAyxCVorZBAu9MEr0POWJqCCCRd70KIpzI1Ni9xwlHJAu8rVO3wyoRh2vw1IepQXCmFkhKjoHAWmaawskJc1+gkRmhNkWU4b7FK4ByocR8fSVpLq0SdHiiJmY5weU49KxBKonIL0lOtClhssdDp0Uvb1KZi/7jPWHji+MNfs9d3bnPjyl9z9sIG03KF6WBGu9XFxRUL7Q6Xz5/kf/xfvspPfP4xNk4t8/HHHuSLnzvPr//OX/LY/Zd5+codzm6d4drOLt97+S3ywnD7aMjiUo+0u4qOY1Ybjn/wn36Fd9+8SdRKQBiKwnM0HvOHf/Cn9JodPvNgk53jARtrbVaWEq6//Tr/w7/6VTY3TvCr/9P/zHS6zX2PrWA3uozHA4SK8O0ErSTS5BSDHBoN0sVNynFGNh6Ec4ZzxHFMVVUcHfVJY82bb73D585cIPKWtaUer73wIp1ul41TW+g4ZX1lnVlV0O02efrlF5A6Yv/oNrXxxLGitb1D7Ap8qjmoYFp5ZNKgqALFsKrfa9IFIIbDGIPW0RwsM1/Lc39XaAqGKeo9gqcIZxJkmEK4MnjEFhYWGA6HbKytIdFU1vEX3/ouX/qpL/DqjV2eeGCLt969yfaN6/R++DFiUVDKlGomEKkm61sKI3nl5bf53E99idVOzeFwl/7BEWcfOcPt44pLH7nIc99/G28q+v2CKEpwVtBII+rRHT77uc/z7s0drr91wKMfOf2hr9neQovhwZTJsGD3cEpmDNv9Pg9eOk9DS+pswsLCIipOOdzdp7IJSnsePn+SxBhcndNcabF5epni4A0cmqaAi6e3WGu0+ORHn8C6gsZCmyvfe4V46ywPf+xJJpNjRLrI1knN4PZVfDtl7dIpXnnlJqO9q9zuj7mzf8ijjz7MM9/8Lg0dc+7UWW7s7PDm22/z4H338fe++KN0GgmHx31+/w/+jMuXLrC3N8A5z7f//GnyouDO0ZgT64sc7Ay48u42tRD8/R/7OGubm7z0+m0m04qD8YyG9ETXb9JoJrRPblKXGYogEW8urbNznNH0gneubnPtxjbPvfIaB8cDDo77GGNoximLccSl5WUWI0u72+PqOOf123fI8oJbJfz6V7/BF3/ss3z7jWu8c2fALC8x0iO8+4GGsXjf/bnbSHPzs2/4O4cU8l6W3Z285te//Rqf+MlrPNpe5CMPnKAZx+RWMC0rjo/H7O3usbqygo8kg6M+zjv6owGL7Q6n1lc4Ho4YjsaMxlPOnb9AU2v2rUM1I27cuEFe5tRZzoNnzhM1G0wmY5Y3Nzk8+pByvJqpQTuolUWZHKUUO/1tOkunUChsdoRIlnCtCkfBcrdJVdW0kg65g9RapK0YjUes9pZQUUKVFwipyAZjBqM+aRrh3Ly7OTe5Q3jw4eeoYBceRC78CSmCzDCvaryWRDq8rbtdTD2Hb3gCCbGVJCgJeW0oipKlxSaDwYxeR2JtSZJo8sogkZR5RqQUZZ5TlxX9wWTeWagoa0MzjjDOBiCGE2gtWWi3meb5vZJRIbHOBq/QbIZ1ljIrabYTJpMcJSVpmpAXnqoK+vxWqxWw90rOEcoB8ekM1N5T1Abj6/D+lcJYi9Yh+HU6m6KUYDoZ4X0IbfbeUmYDWs0mZZajVIxAUBaB+pfETZwytJM2uRkQl1PGfoIrp0S6RZWXrC51qcuaaT4jTjVZMaJWmsVuj6PhEOUIMrc5jKzVaqHwLK6dJDs+oNftfuCF+kGvGofBYUQ4nMk50tTZcHg0UTAsm5CnHGjaELDOc1Kgks1AIrSSsnBkeYmdfz1MmkLxrKSk3e1weDSimpXkdUWn1aau9wO5J02IYoUqTGgiyHC/HOHgVtUGrTWFCZLS2gX/SW3tPBw2eBjx4f8bRCQS4UO3ScwR2nc7R1JJauvBW7TStJoxw9GULCtoJyn9aUlRG1KhiCLJaDSluw5VWWGcZjSeMRyP0CjyqkZIQ24qzm+e5fzpC1TVhGk2xNgZSZyiiEJwsY44sbpG7QqiKAR5xyqhrsP7CB0sj/WW2hjKOsiC4zjBOIegRlGFHKi5VSfQPCs8oUBN0jSEzooa5yTNRkqzEdO3A/JJgY7atJKQ06V1STtJyJdSTFWSZSXNxYi0EwphnAuRAC7IRbXwtFLodh2z6sM3fRdZgfclde0Zjw2m8iin6KgmVVLhGuGGu2kdYjUijbQeJdU9bX2cRDhl8WI+bQ9DGITzaBGCopUM9/3spUucPHWGRx5/gvWVdS5fuA8l1XxK6pnYHOMDllqiA+ACiUCSJimtZhtnPdbXxNH7de8aJSXCeY76I0aDMV7OD5Fe4L28p2xwzgdZSSSJkzRsrmURvl8LvAoHTz2P5xBzPLw1BjeH0yCCl0syf9bzXjBnJEO0yD0JIgFzr+bEOGvtfEP3AU0vwFQFMg8B5bRSEtdB2QBt8lUVoBlFaKLVLgQZG1OidEIqI6wgeMkEOFODcwgZoDdKSZI0wnofphiOeVPI4yNwjUCcFLVG1AJKi1QK2WkgtMfENVZDbgpMFWIoCjfDC0tVfPixHc89+xyfuf9HyY3klStvsNlZRq0csRp1Wd1cYX/vNifPnePZF19lNupz+dx9XHn5DcazhK899Spba5LnXzvkndt7FHXJ6uoS+3tHCGA8mOKE4MT5BZ57+pvsHtTEUgb4RGXZPTggPXGCw6xgeflxvvniFWJR4WvPxsmz/Nt/82+4dN9lppMRuSz45l/+OR/7kS8yGI9ROmbSjCjzjLrMQQhmgzHtzjLWWjqtJkIs0Ww2ybNsHm3jkEozGk0BwUI3Zm/nkE6zw9mTZ0gXuiAUeVnjhQio7509QNPp9HBeMMsnjCZTzqx28KbER5r+cIzx3ItUUFJReXOvuJLyvWPpXb8XhNa0lGE6rbWmqqrwOp1Fx/G8+Ao+TGNqrLU88cQTfOep74TpmDNEUcT1a9s8+/T3+cwPf5qDw0OOdrc5s3WGp779ND9xtoNbO8ehyxhOLb1mSv9gj0npOXrnOifuW2Z0sM1yZ5HZaMTywiamrvBKg2EenKyo64Axv3zuPBOfsLm0SHU8pNP48D1edWHC6zGCmZEcjitU2qLdiunEkriTYIznaDBhnFd4WyHrCpUIZCrZWFul22szGE4ZjAZ0oogo0ozKiouPfhQpPOnyKsI5nn3mRT779/8TisEuR3fuEEcRykzppBHfe+UqT33/Vb7/0g1UlHD+zDofffASX//D/xvlJYudLq+99Bom0fyjX/iHuLpmc2ODd19/kxs37/CxRx6iyHOiVkJWGgZZTiNKOLu1xvJCk8EgZ6XTodFOiLXmtTffpZ9NWWo2WF5bph4PsEXN/s07LJ45jY8SZpMh1sV4QmarqSu2d3fpT8bsHfUZz3LwnkRIlnTCuW7Ck6eX6S40UVGT4+sH4O/gg2yAP3nqVZ65coOjSUlWlVgc0ov5Hh+e0+J9VdddanlY4D84wff4e//Go6m95//493/GLynYOHuRRGpqC5UvGcwqjLXMsoy43cE5T6/RpGqVzIqCg4N91lbWyZYNx6MRe7s7PPLYoxwPB3Tbbax3ZHnCTpbx+vV3uXzuAgbPje1bPHT/gx947f2tCq/rxyPqymDKCaeWJAtLZ5hScnRwSJp0MGVKUeco/xa91hqpk0RScVwZZFWB1jS0I1nuUpcl0/GUhaUuRE3WTi4wFAodP0us47DBCoGpinBoQISOoufeWN2F20phAqrdWY9zBikERVUR64iNpU7wBRjDcFYQa8nBYEiaSITWQU5mLdl0wnJ7gbeubtNsBrpWK0kZjMYIqdg96uM9FLWlrA2IsHnOSkMjTdk5Oma52w3hpF6QRBGFCfTFcVYwLWqiOqORJmAtvV6Lw+MxWVGQJBHayjlAROM9ZLMcKSRSaawLQXMRgjRNKMqcTqvJ7vGI/f6Q2jqiKGEyyxmnE44nI7Y2zzHNMibDEY6KZrNBI21wvL+HX1zm2SvbPHLfaRLhmWWeUWY4GTeYDI6orMZUEcOjPWQSsdzS2NJw/ZVrrJzZRNQlcdbEec3+m29x5vJFIt1mcnDM/mSEayjkpI8ZTNGNBvHt67z77ls0Tyx/4IX6Qa/KVVTUYcqlQVqBcglSWjyCzFSBmEmACSjv5p3wNk4arC9pt9ZJtCUbDZkMSzID1lvaaUyaahQBc91rN7lzcMRoNKHVWySrK8bHA4bZCKEi+pM8mPwlSOU5HowQUhBFEcIqHFBZixWCygsqE/yNTkiy2qPRVDaErRZ1mFTZKmyuSoTC29i7+uhwoKvnhWFZu0DISlL2BxNwFUVZkaURwkCSxri4w2Ij5XC2x7SIUAKOjg9Y6mxgXUJVF8wqy/beLp2kxa3xr/Hu9ot0ohTViCgnGaV3NJsJ0tQo5YhExEJrES/h9sEdpJI4EhY7SyQyRwiDwFDOZtT+ENtOuLCZ8urgNnFkacSWY1mSNDw6maJ1kIcc7htaDclsNqLUmuUTreB70zAZ5bSjhHajxY1bu1SVxThBkc9Y3mhTM6WqKk5uLTCb1UzuHLCwvohxM/LsiHayyPpihG4MqfnwCXGDwYgYhfMRvlAIBxiLMBCJ8MyqrAGnkcIhlhaIokCFtM7isgmqtEgfSg/pJb12g/XVk3zqhz7J+toJ1rdOkzaarLSWUTrGe0tN6K7n3gTsLgRv1TxLy97d/6ygJsgwjRAkSHQco32KMxWRVEgZMaunjKsZv/s7f8G3vvYsxWRANZtRFzlVWaKjBKV0QF6rAKeRak4ZLAqkqWjEaZh8ETZaxbzIER4Iz2Exz9KK3F2kfNicpQz4eFSQFWop3pOtEwi0QngcAcUOJUnSDIHnOiWOW3jrMbMxtTMolaB9Ex3L0EjBIvX8tKAlKlX4SFKWnnJWcLdQdFKGsFYNIorAeqpqho0gbnUQnXhezDWgtuS2oBwfIlUEmcGUFdor0Cl0GnhqdJkTmQljM0FkNb4qwnvVEtv64PkyH/Q6t77IN1+4xdnFJc6f7LCyfoZs5vnWW9fY2Z9w/vwSTZ9zvKd5+oXrPPX0G6TNFpnL6XZ6TEpNqgWLvTaL7RhHoI3WxvEjn3mSVhTTE7skSrBdFyw2QjPHypwsL0mEZDDrc/3GNaRu88Tl+znuT/i9P/8TfuE//yU21lf46u//CVHD8eh9j/Dmc88Snf0o8ShGrPZwsyERFlc7Gloi6xlRlDI6PuTpr/0VRZ4jfPAIem+QQnF7b5fXXrvC2kqLctJl6ew62dRwuLOLESBVxGeffJxv/vVTtNIme3v9QBOcTllZWuLkWo+lKBweb+yPAsBDKIoyhJTnVYgHeD84w3uo6xCmjHD3Jlvee06dPsXNm7eIkwCKiCJNWVQI4UkbMYWpMM4gpOTNt99CScWDH/kIz//NC0ynGSc2F9g7GPLExx+lf/sKj148yZV3d7h4cpPoI5fx2ZDItLg1qfm7nzzNuZdW+OZz7/KX3/hT7r/8izz56JOMJiM6y8scTKYcHBxz7vxJyvwJpsWEZrPFcDKlyC0vvb3Hzu4Oly9ucf/FLb773HMf+pqdTSrKylMagU5jllWHSFh2bh9S1Y7Xrh3QH2fk3lJaQ2dpgW7SpbaON2/s4GXMjRduMKHmM5/4FK+/9g6tkyfYee4lHrYP892v/TmXHniQq6++ysSWNGzBC8+9ziMffZLvfOs7PPu9l7i1d4hQMZfObPGPfuwxnLecv3yZYjzmgY89yN1QvrVTaxz3B7z0xi1ObJ3kz37rq3jh+Sf/+Mv80e/9AaPRjIOjCbk1fOaJh9lY7BHHmq0LF3n65WsoLbBVyfFxhstmfP7jD7O9s8v3n3uZz37q47Qjx3Q6ZXZ4RBRrfFlggebyEj1RsHvzGrdv3+bq7TuUpkZJyVpngVgrkmrKFz79MD/144+SzwrqQpElPd7cvk1/OguqtNox2R/em2jdVXCJe7Lwu37E90sK7379LjSGQB2eD2CEF0gBuTM888Y2r/3qr7HS6qDwKCx1LUPcxBtvc+H0SdZOBJ/wLM/ZOnWKF6+8hhhJ9vbfYGF5kfseuMD+nT2+/9yzJFHMsH/MxtYJoijGCTg8POL5V19judtjaXmZK2++8YHX3t+q8DLVgLZs01pZpZ1CJ22w6pbYLyY4F0Jq0zSEv7biDv3JMVoYstrTTtpzCo9DaYETIcC42UhQKmIyO8ZUE2bjnLo2gMSY4t7U6O4NEvOxf7gJMvQt7bxd6EAKT14bahN8N3VtyedhnFKGTmvlYCFpMhiPEEKQaMHJzTUOh0cMZxnH0xnLvQ4Yy/5gEEyhVTjwah3hEEihiOOI4XRGKkJoaFFXKKeY5BVzRzdFXRMnnjRJ7+m1K2vJBqO5STa8bi8cWkuqyqKUxNjQHZ0vU+J59pYUAusc02xGFMXEWhFpTSNtkM4R5ZWp6Y9C8HKkNdYLZrMpzbRBUeaMpmN2+yPWJwWnu0mYUlUSK2NqOWUqPUUedONpErGQREynM2SrQRwn+ChiVtbkVfCf2SxnZXMJvbrMnUkfnSYUWUmj1SQfTzkUBUIJ2r3ND7xQP/jl7+GmpQhQDOFFKHDDcgjkNBEOlsbOYwG8RDmFFxIhwwHXWUtRVDjPvf/E3QOeg6LIiZKYRjNMei+eO8/fPPccjVZj7k8Mhz0lwJoKa8P91DIEaFZVkDfKKJ7PE8KrN/MNV0g5b4wLjPMhPw7m04d5zizznCPvidBI4YmVxDrDNDdIGeGlY2Wpze7EkKQpWEO71SJaXSbVDskRUZyy2ltFiV2EF6RxC1tUOJMzrmf0pwccHs3IyyyEOUeKqAFoS2Er7uztsrjRo65DlkdWVRRVTqe1hBAp3hqaKkVEBb12A1fXFLMh1IIj55mNBqQtQa+rQRR4CqRSNNsxup3wzo4jBiwSzxw/bj2IFGtrnLQUVcF4OiNKgpzMFoLpuGL1rMaWFRECrEfjQBSIqKTMcnzuKasuXmXYe9XGh7hijcC6GCfmcjlvsbWnLD1OEOhSXhLNH3siEcRSEymNdZbCZwgtkcDaiXVOnz7N5z/9GU6dOMPS6imE0HjmzSvrkc7P2X4O693cQyvC9NH7OfxB4YViNJ3gnCNNY+I4CutVBA+JEIJYJygkEkleV9y6M+S1K9uYymAHQ0ye40wVPGn35CVy7ssCbx11PsN5d8/TJeexIgBKaywuTE0JiHvvQjPjnq8KkPPMLu9BKx28bOE7EAKUjoi0Dtu9dyTz6A+cxVuDrXKiRgJa4/M65IcVGV5bfFUivAl5aGJ+aKgMqhFj2wk+AVfm+MpCVeNlOCzHnQZRrAJ1zEThZ6QC11BgPFQOgcJXBleDjHzII9MaogSSGGtrqDNEngXvjvXYSY3La2xhEWlE8/7kQ1mn77/StIFziic+8RiCMe9cnbK80ebdW9eRskW70+TweMDyUvD5Xjx/gqu3j7Aedvf2OTIV9184gzWWnTu7rCy3uf++8/T7E44ODzn/0ccZ7e7Sa7epqz4ri20aScysCPTLNIlptlJ29qbcOnI8+MktmkWD1dNnePfqdV586UUqU6BNl3/8y7/I//XVr3FtNCCNUvpHe6TCcPr0Sd66eoMkaRElKciIsixZWlxgL46pSkNd1SCCD29psc3uzh0u33+JF196HdK1AL2JNPk048x6M5D+jgfk+QylFfVcPmiNoayK4KlxYR3qSJHnNWVdz/+NfU+1ozV5ns/PPjIUVaWdRySF5p2bR4e8n3LoXMgczbLZfO2Hc8nVq1f5hS9/hRdffJE4FZAZpBMsby5Tjqcc5QXrp08xNBFi2icWLaI4ptEwvPva67zY0ERJOzR2ohThFYPhEIeks7TMoDggSULG39Jih63mClJKNozj8OAYhOHixQvMiintCC6c+fClhuPpFFtXlHkZAqw7Ce1EUdaWSeFw/ojMwHiuuHCTHI/mpddvstBdYHWxyZ3dPtFyk4PdO7z4/As89OmP02x0sOWMg4NDTmwOqKczLp09xfUrb7Kyus63/vIvuP72VRaSFvHJiB/7kY+x2Ep5684+Dz/+OA1Kbl7fprGwwng0YtgfcHt7n6ysOSg8b1+/RYzjCz/5eZ77/ksMh1NUHJPNctrdFqsLbZJYcn1nl6PRjHFuyMua+86epN8f0OsmpElEr9PlsF+QJDFHR7vMxiNsliHqUBY0FxaImi2SyjObThkcD5nNMqwN+8ThZIiUggTL2/tHfOXiJdqjY8qJpXt9TBqHvFrhgxl5vkv8gGcR3vNy/cf+LKXCO8t/sAt78MLjhCXyHpym9JJhaXByXpgJgZeCwjkq60iThNp5yjrEcCRxBN7Q63Y4Oh7Qn0556NwFegsLXL95k0hpBvmMTqsNc5+ZijRxEjMaj5iZD57x+bcqvLaWNjm1cZa6LFBBQUQaNWiqAqWaiIagqgtslXKYH7O+scxk2odqysQ5Ti+tMBoOUPkxw9pTl+AHI1pxxsHhHcxohpGCqipDZ9wG6VVtzL0E9vcb7OC9KaSfK4JK46jsXE7iPbePJ/d8YVoSAnG953Ay4+bhhHasWWrn7A4PSJOIOE7Iq5rxdIZsNymMZ73XxLtQ5AklWeq0GExz0iRmRSlG0xkLnRYeKMuaaZbTbXfuZWxleY6QQdxSVuHr9wpJoKprhA1ZUkJ4rHXBY4AgviubRCI0TGcTqtqCqFhvNWk3U0azOxRlhug2qJ2jHScMhofMsiZSJ4AgSVsY72i22+RFRp5lvP32dc5/8n4QMYODKedPdhFph8W0g+h67vR30UmDpLPIUiNi2h+hEYylYmsxJb4zJjl7jqJy7O0dUkrB4nKHpcUFdHeZd15+Dd1os9pdw24tsXPtHR782Adeqx/oEoiwUO8eNL1HSEkjbSKUp1aG0jq8DBKMqvAobYlIQEoMMJkMMLEhEZC2NLW1ICIqB+kcS61lwLJPphOcF0SRYjbtY2sYjzKKsqB24XylhKAsSuJYU5Y13U4y70QKWo0WB6MRlannUkMHDirriKRHWoeWQX6Ye4IvSRiE5N7hVMwz7Vzt5/AWjdCCO8cTOo2EaeGZzTIWmxHDccap5Q7WVbSkoN1LWSoWORqNaDVbKO/J61066RpSKI76A5KupFAZuiFp+R6F9bQ6EcvLbWbVlMpIsnpMbBJG0zH5NGDzvbPIKmaSHeEKaKUxF89s0Wyv0eUib777NoWtuD3YZVxXNFo5Iir5zOcukE1yKjlBSEm7Jzi9tsC0Gl5FW/IAACAASURBVHLuzKngg8gFeM3u9jFaSJpdySwrWFlOyNwM6RSdRbB1jjUtmh1NObbYQnL+7AYn1jvsD44CHnp0zO7QkUwy4lbvw12wgKvblDaAYBq6S42hZkwv0kDA+lYYSlMhtKCVNmk1m1w4f45Ou8Op9Q0e+shHaKRNtI6Rei7rc2Gi6n2FFxLvBc5UOCxRpEMmoveUpsa4UNVZ60iTlNpDrKHdat6TNwsfirtQoFUIAaUL0wApNNPxhFdeepPd19+gzibUzoLW2GJKXRVYZ0Kwsnc4o8F7LGCLnKoqqOua2pp5YLIHGdQExtrQgJrHc+goCg0567DOIbTCWUecxHcDvcLm7YPcUClFnITMvkacAE2MDRJeIUJytdaKcjJBpw0WV07gnSXWEiE9xTTDFDkuqojaCTiHFBG+FsizjXAQXe/iJwXsjahKi88LqmyK0inp1gZJQ2HUMU5WCDcBC74d4XUL8hhmRfC1GY+wBlQOUY52ClcW1AczrA0HAWkjqAXUAp/EtHsf/pqdlRUmm/Dau28QuZxnn73Of/Pf/jLLb94CH9FSnju3bvPpz/4kl15+hQcud5GNhN3dY6ZS8iNPPMmrr77JAw+cJV1os96wfOFLP8P+4YQ//rO/5DvPfJ8f/9FPcPPdN9lY3+D8Vpe3bx2xP4C8NCStJqM721z+0ud57re/xvdeO2QwLfnn/9XP88dff46nn/kbtG7y5V/4Iq9f32F7bw/dPkFV54g6Jq9nZP2czdOnKUyEJyVOmyyvLPHC4R2EDGHbQQbo2Tq5xaC/w83r1/mJz3+K//6f/hL/9t/9n4zLAG1qJA1+9vOf5Y29nNWlRXZu3WRW5MyKgiiOybKMRPdQacT1m0dYmaCVRyiNFwZra5R+b9L1g8h4cS+L6+7EyznH7u4u3W6X4XB4rxir9Xtpd1IG2ayUgkhHnDhxgm984xssLJ7gC1/4ed564ZucP7nC7u2rnDhxiRvjdzh54QL2sElZWBr3n2Hh9nV+9Mmz9AcFh/2cJIkQcQNnBIsnT+KJ2B9m9JaXOe88s6xgod1jNp5wYutujqdjPJnS7i6TVY633nyJS2urH/qaTZsJsYhI9JTYGZTW1MZx4/YRe8czru8PmFQVYyEpHTzUVTx5/iRvv3WVt6/t8/lPPsRtA489cJ5vPf8mvrXMlSvXGB0bqiLnypVrfPwTT3LqgYdYWUj55te+gWpGPPjQBR554AKNlQWanSV++7f/mMsPXOYnf/bn2buzw3g847nnrzCaVVy5tYdznrquWFtZ4cd/9NOcO72KHR1y9a3XuX0wYjazVP0hn3zifjwCESmOZxntTgspBPv9Y9Juj/baAqquuL2zx3FWcOnsGVpNTRwLcpXimJFNp5R1zfr5+5C9TXwcMzjc5/DwmEQKvPXUdYgGyL3HVoZcwR8+9Qq/kq7RO/MoajTiE+ok333zBq9t79wVBr7v1x8srt6ft/j+3wNzYJuYK93CGfoHCjcHVkiM8LRUiAJKSYi0oPQFxhr6eU154yZprFlc7LK1ukheVWyurtEfjxnNZiy0WzSbTd58+y3W19dppU0cEKuY7Ws3WV5cIlYhD7Wswme43frgJM6/VeFlleDmwR2W2imUktIaXEvDPMdHqQipUw4PD9EiQtyZkpsxlZPYWlAlHWaFoXZjKp+Q15amaSCEpawMmJq6KFFKUOYFCIGp6/mUy/4HlbH3d/1eP3jj7t4YEeSl93DCxgYvziArUEpSG5h6w83jCbO8oGFqOo0GtbEhhFKEyZOxlnariXGeqqpQStGMNaauSHWMbyZESgaSYRQjhSQvw7ROCnGPjpVl+Rz9Gl5fbUMeGUAk5bx7GkIG86pGCo8yJnjAGg3yIkdrzawoEXVNEsU0khhjfYCNSEkzSSiqEiVjWq0ueRmKWI9HRRHTyRAhFUWeUXWaZJWFIkNayWSckbRTDg/6GGmoKsMkO+aBU6epDwuixVW6aUQ5PcI4gU7bRM2YtbRJ/7hPZmo6SRoyxXxOe6mHRVBHgsV2i+7CxQ+8UD/oJSQ4M9cSE7okaEI4rvYYb8J0SQmcB1MFU5HBI5TAocjyMViDcBF1VRIpjfMSSZC3dpOEGEWaRGRFBKIEqZhmFZVzjLMSoTXKQ20rpI7wXmARlMZSVgUST6w1zkNhoHTzIPD5uL22BhfL+XuSwZtUB5+Y9yGQ2zpLEjUw1oAIHhfrPdI5vBN4HaalSZIwyiZsLncZTqd4JEpIsDOyGmQk8VOLKw1GClxd0NAV1nmq2qJTqG1OXesg75WBABklKQ0SJpMZzgusr7CVC4hm7xHOYaoZZjpDkSJSTVFVRHVFLSqKoiCKKvZ2blF7QyoKJnnFQrND3CqoKrA2DoHRkSMbhIJOaU05qaECYSIQNUuLXcbZEXEzpsjClGN1NaaqwOU1QkdMpzmFE0yiCeMoxntD7StkkoAyVNZSTz78AGXjHF7o4KHyMuSyJTHaBVO91DFp0uDShXNsbmxw9sRZOt0FFheW0TJAKsIGBSCDD2oevlrZMni1pASp5lRAS20chfeYssZYS9pIUTpGSDsPLfYoZ9EyASGo6iBbuutHCTAXN5/ghnUxGY4xRYm3dZBmpw18ZZBpi0hIyKbUxuBVRV0XKKUpywJb1yFPay4Rdy5MuIS/G3zMnG6o5vLs92TaUoFQitqb+SSNkJuowvTLWod1hrIKuWVZnhHpKHiGrUdKgy09wlp02gzPBWMDejuJEUlEUiXYeoRqRGil8A7qWQ2xQxQWgcEnEuEi0l6DeGoZFSWREiQqJtYSKx2+KvE+R9ZVCMXWCbIhkK0UKSxmVsLU4qxHED6PzAK10gwLbA1xktDp9FBJjGtrXKpw0w/fl7h/0OfRcwv8yOf+Dn/61d/ikY8+QTaesL52Au8EuAKFZGGly3KvRRy1WVuBKqvRWnPh5AbD/ohet0WvsCTMaEYRD9x/id/8vT8iimIOjoZcfOARXvybVzk+HqJ0KCac84ynGVLGGBkap3v9Mf3RMRGe7evv0k5TorTJt7/5FLK5Tqe7yM50gogaYHvYKjx/s6IkafZwOsZ6SVEWHO7vzYE2ocBBwM7OHe67eILtm3v8/u/9Mf/gZ3+WH37y41y9fpuNjU0++sQT6KpkZanN7Zu3yKuaoixDMVRVpLHG1o5pVmC8YjLLWOx1QgPN+ntNBWCuJpL3QBvO+XtF193CSwhxL9crSRKqqmIymZAmzTmkI9yn8HPDM+03fuM3MMbw8EMPkzRafOU/+2Xc8bu8+crzXGgvIgSMD/Y5s7JEsb9Nudrh8LgkM5qrV6+CEigpqIsCIkkiO4goYtLvs3d4yCyrGfVHzKqKO3t7DCcTTm+dYG19iVYjTEDj5gLNODQvPuwry3NGxYy6qjE4kiRGeEVeVCBVgJHUDlMWtBsJlzeXOL+xwN7tlFFRYV3J1toaJ1fX+frXn6eqDJe3Vji10WNrY4VWs8fenT0qJ3ng4R+mfeIaD37mx2kJw9HtHUaV53d+90+4fHqL9V6Lv/rqH1FZySuvvcD4eMJgWmKModNs0u41WV7u8PjHP4KtC15841X2h0Oa3Sby6IitEyv0Fnssrqxwa3uXw+Mhj330YW7euE3SSOi2W2zf3mFjeQkZJeztHdLUiigJ4caD0ZjRcIy3gjwvsLbAT/r4Yko7ESwvdumPpyHK5v9VIAnnmXnF17/+PX7un/wz0mSR9qFjbW01NMju+mrfdza/K5u9Kx28e71fggjM1Rfvfa+7d7afe8Ok4i4IUSJIlCCWAkNQEmkVUdU1VW05PO4jMGyeOkVeVjSKijiKGE0n7O0fMBlndNpNDvYPWNvaYvv2bUbTCZGQjAdDtjY2GU3HaOtJdPT/iR77tyq8BtOK5RRk1EaJFKsrvvfWm2x1BINpxsrq+bBwVcz+/gENJVleXKDdUAhbsj3e5czmWTK3yfRgm/XVNepsxrXjI072uuyPpiRK44xBK0VeFOEgMe9a8r4bCKGYCZISec+A+v6vM78hLtwVwi4c/DF1VtFtN4mUJIokHdmg0Uy5sXPIaqfB8uICwluM89QOEhmQ9GvdHo00pplojscTWqlmbblHUVv2+xPi2NPrtkiTlFGW0x+MSJM4LCABlakD7EPKeWaIQCiJVjLIUSKNnQf6eh+6CyLSaAkKQbPZosgNuECEKYoC5yxZUVLWlmYcZAypjjFlHqhfQjMpZpjMsrG6yWQ2oraGoqjx1jEbHKMWFkmbLWSqWVttMx2PWDp1CpMbprkH3yCR0B+O8RYoKqTSpDYKnpR2lw1nENITpyn7432We2dIOm38sM+tG7epmpLLH3ipfrDLGIOtw4ajnAqT1LmJ3QmHlx6pBSpR6ApcXWIEVKZAeY2KJNbnWBRCJti6QAoZggJ1TBQnwZ/hLUU2Y/9oyHg2I0qbbB+MOZ4V7E+KIH+1DjFvKpTWU0+y4OETClPXGCKOJxluDjDQeIRUAbGNp56v7UhH1Bi09Vg81jnMHK0txHsB3TIKGGsnwXlHUXucdWjpcUrjrcAjGYwmnDpxgkiXqPY5Lp8+ybU//11GkWScz1Cpo9f1dBdWmL35OsNiRuk00vaYTSqihkZVGT5NiJH0j0Z44fCRQDlFQzZxGJJI0TExnUaDqalptBXH0zH4DkfDa5w6ucV4+3VqV6PbmjhOGE1qajHDipIyX6LKmig3RGqHThOm0xk6gsGRYDHt0IzaIPtYkSEiRVbNUELjhGN5xePriJXeFoPJLiptUwmoi5LpNMcmDiEy0q6mkSrGxwnW/P9QeOkGZZ6jPKSLEcsLC/z04z/NxTMXaDVbNHQLBbi7HcCgNwqQCAS1q8HVzKYzRqMRgkBRM9aQzWp0FLG0shxk095TToMMqtvtEsWdu6SWAJnAgw9FoJEWYzxKSJK4CT4UZcpJImI8jlzWCBcRy5qnn3uL57/3MkaC9QY7q0ErhNIoHWFU0Ppm+SzIQ52/m3mMVApnHN6Z+SRqjtGek67EHB7g3rdpy7sTAeeIIjX3eoE1hlhHc1lEiG0wpaGCezAbiQyTOiVQ0oaJgxLYumTmBLqRIpFEIuLxxz7N2okm3/jGX2GzMaaocOOAINZFjUtirA7wjpZqIKUnAOYkVB47PsRGnmo2xJqQSekMlOMxQk9praeQCERmyPYzsAIrQsg1ZQXCoeIU2YyQjQZiQSMbmjRdoPQOc/zhByi3ug0+8dkf4ngi0K1N1tbWuXr9OqdXLrE/6ONNziifQeW4dGoBoxp87L5V/OiY/nHGyRObXLj8EN/6zvfZXBGcWd7ke999kSd/+JP8y3/xL/jX/+v/xvdfeYcz+8dsnTjB/tEe6+vrvHVrH4Gn1WnSP1a4SnJpvUvS6vHlLz3It576DgvNlI/+zGdYWLyfoirYu/o6Jz/yMDf++nnKZEpRLtBIEpxR6ChFJzGu3aaVtnjmT56jsjWNZow17xVDt7Z3ePjyOVqtlKv7fY6KlNP3P0KeW8xowm/9u/+dL33lv+T1G88QlTOG05yqrMNENlJ0mm3WFtq8evUGBcGHOSsqjodjtA6SYSF+kFIYoDIqyPuNQ8XqHvS5rkMA+D2whgV8mNJ94hOf4JlnnsY5R5KktNtt0iSh02kTNWKu3bjC586sk00GdBc22HrgcapJzsHhgEsXTlDtbbO0vAmjIfv9kqs3c1ZPb3D+wiWWFzt87tNPIhsdbt+4iTGel15+FZDsHxwxGAwoq5q00SQbT2k3Uw4PBmye3iCOI6SwnDixyUcfeeBDX7PNdpPt/pgoTogbEaYsKKYhz7HIQ35jO064fOEC1DM+/uAliixjY7lDaSu+/JWfQZQTnvrW0xR5zemtBS6utWGzydgY3rh1k881vsD5k4vsH97i5/7pf4cxJf/8y7/EWzv7DCvLD33sAR47scS1v3mBF164itCaX/x7X+Tb338GIRXrvS6jEj710z/F+voK3/yjr/H8y8/x2KVzfOrxR3nq5Sv8s//6v+DqzjY/9Hf/Ic9/59usCMH9D9zPN779DAfDY86eOstkOuCTTzzJr/3mH3H57Cb3n9+inTapleDWzh2anQWUjNm7uUvcTIi9Y7J/lWRpGY7HVPmEuNVk0r+DdTCb5cQ6RnhBaSu8sPzLf/Wv+Ts/83MsnX2I5csRDzzyAPJ31Tye5j2PFoTmwd2iS6mwx75fzXYPJa/cvXP/f+wSNnAUcmkpneGRy49zcGebVEV4UzExNUM3JJKCovYMZgX19h0azQZSKlaXl1hdWWZleYksL7h54zZr6+vcvrWNFzArKoT1nFzucfH0Bu/esijdQkjFOBt+4LX3t8vxSqHUloPhkJZeZFoXFKZkPNTEjQbj7JhWo4dONd2VHtPjPq1Gg+zoABXV2LRLPh0jkjZNFWPrGVmes9zu0ms2WFrs0GoF31Jdvgf011LgXPC1vN+QJ0V4IFk7z7HgbuVLKNSknEvN3vs+Ne8QRRJ6jQStFcu9BmVZMitLYqUoKoO3AhFpnBXU1iOEQ0pIEk3tDLHWNNOYTiMmiTWzssTPfT/ehhwN4UOmlxAC44LvRmsNc4rW3cwgLefVu7+Lhw3gDmNCiLQxLiBhvaesK5QS6EgymU1Z7i2w0GmRFYaiLKmSiGYaM60E3oefPZ5NiBstbJFRFDmNRosiK5jOZhz2h6wvtyirEqTGeYeOI1ppg+l4hBOQOI+SDiGDRMeUfd69OSJRTVrdVfqDI9Y21/BmQqvRYDgYUoiaUxttCpuTY7BRSiP58A+xzhicV4FO6MDiMMIFUhkeKyzuro4+cpg5ttcZAw7SJKXTadKIE1TRoK5G4D1xpJHALM/pLHeIZfD5GWtJkpS01cGiycs6AC6kQktFbYLnyUuFNyZMvuw8S8zJQFcUAZENjuD+ChwfMz+U3tUvK6WoXI3D47ygMpZI1ljj+H+Ie9NYTc/zvu93L8/67medfYbD4SYuIilKpCVZi2VLXlDFbRqnNurCTdCkRQx/aIu2QVrAtREYaZsG8IfWaNrGaew0sWMHaW03FiVbliVTC0WRQw45wxnOPnPmLO857/5s99IP9zuHVNovJhDmAQYEOZwzM++5nue5r+v6/39/r4M09v5WQAi59BDWSJVgmyDhss7QWMFoMub08U0ee/TjHFs7xosv/jbeN5jKUjtHWTbk+j5BNIAftIiR3qOsDP6UGmoXgj8RgrqC2CuUM6RZizxPKO/MaMdd2h2QmWFWV3jvaXfa5FnK1myK0wqhPEImaBXw4pVpEAq8iWhKSZbl9HqBeGikxzYSkSiUtMQtzWQ2ojEBySwbRZIrsjRCaEknjYiTDlKlTKuKSWNYVBVKQqQEQrtAofMxjSs+8Jo9c/wUDxw9yeZgjZMnH6Cdt+jmbaQTCKkO/UrWGrwQAckrBIuyYDab4a1gNBkymUwYDFZotVroSCGdYePISmhIls8iZy1Zsh6ej4AREm8C9U+qMG1XUi2jOcK29b5exMPhkKgS4c8SIsEDcfb1b73KbHcXTBgUeRmmkE1jcMYiZKhh5xxKRQjhibQ6PHBCkAofDt64D8ZgSb0NDZi8/07AfR92+P6vEYCWEuc81nm0kljena5qIUmjEM8QJRFlESA4dVUGyeHsAOc7uDjFFnMWU89HnvgYDzx0hq3r17h38xZvvfYGo/19FBKMwNYGKQzEMd45XGOolw1WrBwyVahcIpIIUXnqpsLXDmnBSwG9HNG2pDrGFQ4x89RVjdPhLySjBBFHxN0EViJUKyF3ddhYLj6wUj285rOCM+ce5Wvf/DaxAFNVKG9ZFOH+0VpwZHMD5xrW1zvsFhLjKkojQnSKkKysrbF+/Ch+tsVwXFAUnu999zWe+dhT/PDHHub3vvYGV6ot1tcHDIf7jGb18lssQqbVMpuq1+9x9uHH2Nm7y1uXbvPEI5ts5AnjZsrFN8/z6MljPPXwBl96KVB9D2ZTXJ7Ra+V4qYnTjHzlCE1ZM5lOaLXbREowHS8OzxFRFFEYw/BghHSSXrfL//DLf4u1bg/l4YUf+hSXrrzJnbvXyH2NbeyyLiGWMa0I0kRSVIYoa4P0TOeLw220WL6TwoaKw38Chx73+/9NCHn4Trj/84f3jxCsrq4uycYB9gLQ7nSI4zRYHcqSN85/j6OrPT7y9NPMF3Pi1LN5ZIMkiekeOYFN1hisbWKvvIF1DWUB+zu7PPeRZ4iSjOFozP7BlN2dIXe290iTmDheQtI8VMWcTr9LMV0wmpbISJGnGTIu0BJ27+z86y7R/88VpW12i4bR7oj1lS6xcDjj0GlGaiVFs8/cOF67coVzxwdI0ZCmESBRKmZ3f8b47i32hwc89OBRHnv4JIkpyfKEP3vlJtO55SvffYW/cvILoGvKyQHfePFPef3mFtvTGU+cPc0PPvMU89k+0+mUE0fX0Z2MrBNx5sFTDFYGTPdGdFZOcfrJp7nz2nc5f/412oM+p8+eZn97yOrJo+SrfaLJiFdefZXf+Ce/yw/94PN85+VXOJgGPPq9m1skiUZIS6wjtu7u8eEHT7OxMmB3NMQai5dQNzWWlO3dXU6WZ8k6Hax1dPs57XsaLQS9Xo/pojysuzhKqJdDs7Ix/M4/+h1+5heOo2PodLuHVqDDRkoIAjTDHd5L7z3T/6tywxCZ827t/6tLFSsI+CtnQ8blbEYr1iQ6DkO7KCKONe0oYpAkdPIMrySz+YK90YzC3cIZSxrFh3/W4XCPUydOsL27i5AaUzVs7+7yQHGKhx9+iK+/9N0wAI3fP3jrz9V4Te0IaTJyLAf1DuOipK0cTZpD3KIVpWSJZq2UrORt+seOMinnJEfbrPePMDENVZpwZzLi1Moa09kBG6urHEz2+aPrF3lw/RFiLUhjzWSxII4itNJUVR0msMsPPWCTQ9Piluau93bK3nnUErwhBERR8A8III0iBmnOghLnHI8+/BD7u9vEWpImHaIo5vKtHZq72zx57jTTsiaJKx4+vkYnT/EOWu0B0/GIjU6Pfn+Ve9t3MVVFmoRvxL39A2pjObq2jpKSoqio7yfFEw7dxjTEkSKNQ4hhbdwhOt57ixdBQqFVeADvjcdh8lU2tFt5kBIUJfNih1aeoqXBmmZJQdJovQxetoLG1Ni5o93uMJ9PcDNHv7eCtQ3Xt/c5c3KdOI6ZF5BpRe3m1HbGYHAM7y2qqpk7C1aQiojaJxw5epLYWSbTKf0kI9KC1f4mQqS0WyDNiInZwRiNQtKJI9Ij/wYClL0IhmLh8c5iLZS2IU8bFBInHc5BpDUyS2lckF4lTUTTONotSbeXkqUpdtxmUt0hz2IWVUlZVyAUjbFUiwnTWZcsi9E64tq9A3ycM2mgvO85lHJJrQyHR+FkMMj7YPx0zmKbBhUptBU0UuCED14cLxBOkCcBjT2vQ57Loqiw4RQJzlM1FiUk0oO3lspaWlGCd55WliCzEGzd7faoTSBnOgHWSyaziqOrOdht+hsZxWSfM8cfY2v7Bru7V1mMBnQ6Ka04RjQwmS7wThAVAqUV63KDg8WIdtQNEBGtSKTmYH8LJ3NEmrBndtgtah7eOMnMDpG6iyIhz1Lu3LnFznRG0jX0+zGybujFMQ9snOLW1lWy3DGbTri9t8P6oM1KFpN0Ahaif7RFV8d0+xtMFpIrezuUteMHn3+UV759gccfeJSi2KO/2uf2nZucPLnJcLpAWVgZtHn1/E3a7R4bm4GyWJoKp2IWxe4HXrL/2c/+Al4E/5Ra+p4MntoVWFsxnxcoIE1TrHUhRsNDK8sY9Hp4B5ubPZwPzxVrPVmcIBFEMgbvKFyFNQ5jHCqOqasqDLJkg7Mu4J+9BKHDi2/58qulQzhP9B7aY+EapAwbMhEW+wzHBwzv7dBMJtjxJJAR8dR1QVMUQVaddNDOESVQV3NYGq+VCB6WAGZRaC3RUYyINcKDb2qsCw05cHhv4Zf+WKXDAdYvIRsRYejQOIRQeOtxtlluiw1exsQqQqkwPElbOb6xOJrgC1MCV4YgeeU1+3tD3rl8i5/62R9DflbinefGzcv8H//rb3Lx5ZfxAoT2OKOYzErqqqGaFBjnsDjsrkXHEesPbiLaEcgCgSBKAuio2a/xhrCxLizMGuoqNG9mWmIsWDcPB/SNVVQvx+cROlbEjaXuvn/vwfu99nYX/M7vvEjW7vFzP/fvsX9rl8sXv8qiKtk/GHL8RMrpzQG7d29xfL3LzTdnPHRywJWtPdIs4ubWNg899RE+/MKz+Jvn+eaFu2yseA5mDa99/bscbY348c9/jD/40je4cfcOq+ubJO2GC+9cA6BpLGur61y/+jaXb2/z6R/+DPOx5qFHUr7wk5/l+js3+dMXX+GBMw/y+R/9YdJoly/84OP88bdv0OgYkQ5wviHvDGj1VkhaK+QdxZEHHmTr1jWaqlo27RxKW9+5dZe1zSPs3LnL+Ve/wy//4i9xZ3uHvfEBX3vpJY4f6fOFz/wA//Ov/TpRnKIjhTWOdpJw7mSXJJXEaY/peIwVy/OMc7RarcPN1f3BhFsCb949mL4r0ZLqXRli0zTLYGRBlmX8pZ/6iywW8/uCIay15HmO1po01vR6GT/3s3+Zulxg64JjxzZZ3+zSbmW08x6+LjFFwVQ12OkBq4MB7VzT7/V4/EOP4V3Fre0DklnF3Z0Rd+/uMhyG/DVXFvTaLcYHB0jvSGJJNZ9z4/otdne22dg8xvrmKpsba8TtD57E+Y1X3uLS1ohiNuXc0SNEwiJbKXnagB0Sx4qFh04r4Ue/8CkGieT2zV2GBxOs8fzir/waf+Nnf5zP/cgLqFTQ669x6eW3OX/pKn/8xh32FpbF3S1e+uaf8dyTD/C3f/4/5eLdPSpnefL4cZ46vsK9dy7z4FNn+cSzH8ZWjvWHHuCt85c58/TzvPytl3jy4UfY3R9z9dtf5vIbF5ktSj7+3NO8+Md/CnHOF8mPUAAAIABJREFUz/31/4hf+pu/yMxKXrtyjUE35YvmWTZ6Hd68fJfzr1wCByuDDOkjzpxYZTSesXUw5smnH2V3uEOeZDS1pbs6wMSSE0ceomosMk4oZ3OyTsKJ9TYb3TZ3h6PvizJQQpKolMrWVNbx3/z3/yP/4Lf+EX/1p36cr37z9bAIWQ4TfCCcoaQEH9RI9+0492ud5fkd7jdZLsjP3/N7svyaANLdB5A5SmtZjIec3lwnijIqnTC0lp3ZhF6WsL7WD9L6SFM1M6IIylKiI824WOCBONVEKmKyP+Tk5gb7oxEHpoFOl4uXLjNobbF5ZI1bt29TiPe/SPhzNV7r/ePYheXmnbcxcY10gmcf+RFe+u5XaOkxZ556nkWzIO3nZNqhej1WVIIzMJkt0NECUQseaK3x7RsXGcQJs/Eed+cHZPk6N0f7ZHlMkoa1fqwivABrmyXBcNl8uWCiVkoF+ch78i2EC4bj+9/kThpjrWVj0MEZRyeP8V4QRQknj6xiygprGtYGHe4N53RaHazd5mC+YOZCiK2xjvFsjnIQRQrXFDgR/C637t6i2+ly5d4eUkqs8yRa0+90GI4PMNaClwgp0EoGuosMAdCJihB4jHVI3i02IcSSbOQRQoVA3tpQVeGAE+sKrRWdLCNLMirTYKWj28pJ45iyqimrYL4trULrmNpYRuMDsryN9JY4SomiiPGkxBAReRjt7SJIuLZ9jSP9HpXxdDopSoVMkkRapDK0Ox2s9BxbO86t6+/QzBdMFkOEWuH61hUGG0dJKKl0SltpnDLkXcVkvP++C/X9XlqmdKOIqqpZmBprXfjMIwspy9rxSO+QOiJSCa1WRFR6ZpMK5yuMMEzLivLAoUTCYj4LaG0fPICz+YKuFjSNYz5f0FjLzMa8s7VDWVkaIYl0QmMaTBNq13uPjDXGhgbKmgrjIyo8iVdBDuk9VWMoa0dMyEfL0phIgsSCjLDWYw0hNNU6StuQ6Rgt5HLa6FnUVZCwNjVZGmObitmkIhYGgWZRVRSzgog+F974FzTNgr3FPmks2FjtkCSn2J2fp7AHOB8xH0+oC8PoIIBrBiurlL5hOJxha0k5KshaMZGIsLEkbq+wvxMCiUUSs/A148UBDodOJOODXZ5+XHHzyj4ohSlGqCRideMY+6M9/uTPXqHVSsjXpsxMSek0J0+v4M2c0i7wDRxZbVHODcoq0uQEF7amWFvSimq6nYy3377Hhx86QYZj0M+4tzNivC/Z25sym+8ynoZ78vhKjHA1luD3MeaD9x7c2btD7QyRjPFS0FQlrmnY3NgMQetSLlUAHqU0WRxoadYYhJaoSFM1drlEFygFizIQ0bbv7TI+GJO2MrI8odtpk8FhBphbek7rpg6SVUIAq5ASJRWxT0JnJQTCuUBjVRHKh1eJFY5ZNeFXf/W30FmOqwua/QVNVeKJlgoAC0KihcLZ0OjZxh5CBMLE3h7KUMJLWRJHEc44jFIBdtA0QXooQrizEoEDGhau4XlqbIPQAtMALmykPR6UJhZyudkM3l1EaMTSrBMw8cbijUNoi25lmMWcopqhneLyhau4osJGir2dPV556VvcunqVql5gahBxRNPUFNMy5ALmKf3BABUppqM9XFOz2JngZhFRv43MW8SDGNFYiu197KRBJRoRRYdNq2w8jTEIL8niNEiidsekqyv4NEenK2RxSWTev/fg/V5Hj27QHMz4qZ/8cXyc89J3L3ByJeXVi5eI05yy8JzcHPDt775NdLzDD3zkOJPdEcZEfOYHn2VjbQ0dCbSM+I0//BZ/6YsfY7g3Rx3EPP/ECt8+f4F713f5wsce4cvfPE9vdY0z586itaSxcOv2Fg8+cBoVRxgryFNNKk/Qy07w3/3S3+PzP/Ex/tpf+SKvX9zi13/7n7PWasjzFdJEIaIuXmf0VvpUCLLOCnm3g9IJDz/yBN/5yr/ElBVaKaQUfOjxx3jzwpvYxuEQnDpzitfPv8KNW1e5cfMu3U6Lk0eP8IOf+DBvnL+AijKsqfFAGmnW2hKZxWwNZ8zmc7x0eBTGBdnU/v7B90/2fZBlOffuxD/IEV1QWSzvmSiKDiWHURSRJDG/+Zu/sQSTqfCsSGM67TaPPfoIP/Tpj/D8R5/hzddeJo1y7g1rLr19Da8kk+EerU6Pz3ziaUymYFzQOJBEfOITH0VlETu7Q7wRbO+P+PaLX8GZmsWiRFpHvSgY9FssFjMiJTh6bIMag3EViTK0WkFNcPnSJa6+c4Xscx98jtf5q1ucOHqcx558mHObObs7B9ybHnDz1i7zhaGft0mShr/2H/wkG/2E/es3WO93+PRHH+fuzj6rwwFZnjGeVdTTmD/+zvf4+//n7zMxns1OixcePU3P1/jJjLdfvcrdnW1sU/MLP/kjrPcT8lTSP7LG6Wc/Ry1i4mjK7vVr1C7in/6D3+STzz3FH/z+l/jED3+eixevcOXSZQbdhLtvvc2P/8xPc+zYOn//v/27zHXGpRtX+bc+/lFeeOZhauPYOijYns3pZCndPGFvPKFRGR956lFu37xLVdRcvb4NKmdrb8bTTz/Ol//wy3z6heeoa4N0UE9mRHlKXTXk3Zxnz6xBU7O9f0BdNuAdVnr63Q5VVXEwm1I7y6V3tvmv/s4//L7P+r5CBxXy6JSMUU3I8dRaHZI73RLqFCm9fM0I8rTNwXi49Cnfb+TUIcnZS4Gzhplx3BqPePbcOWSrxXoyoJlOmLQOyJM0QGWEIclaAFy7u8f+vAiKBCFAghKglSSPY0bXJxxZ3+Ds6VMsyorZYsHWaEq1vUtvsMLwYPq+a+/P1Xh1khZXtq9hXJjWn9g8Tr1/D6ksiRbMJwfE7T6j2TYLBGUxRuiYI90NRosRlajoxT2KyQGnuquMa0uKZBB1mXlLrAJ22zThMOqakLGkdZDAIYKsxHhLEP6D8PenQIAQ7yLDRTBPKyWwBrp5wv7BHI8jjaIw+XSW2XREK0nIoohOnmAQiDA85fr1e8uvJcKBJ1IoLYN/oPBEsUZKiNOEOIqojMPiMdZTVtXh4UGrpUzyPUWIgHaeMp0v8D40d1II0iSmbGoiHVHVNc57msaFybVzwbtlbThEGIuPw4RYScFwPMH5YDL0LlDAwlQh4NPdcvtjrQ2I6CiiamrKoiDXGaZxOGdYybvMJvuoQuBMRtbro3TMfDpHxtCYmtXNHkVV0Ot2OPCeXDl6KI62VhiNdlC9NovZhLQv8T5ksmwmHzzmWMso4M61Zb6Uc4aXlwcnDmVXSwcJIlIksSbCUdUKYxsaS9gmFWWQYQmJVipo/n1AnXZabeq6JopiJvN9jNOYsqKua2obDppKKaLIB8CADFlAznukVEgdXrzOe6wHaz3Gue9D11vnMN4FSiEsgTMKj13WfgjGPcwvWtaaUCG6wXuL945IRyFTyLggc8SjVYRrDHvjO1R1TWMskZIMJ0PSKA0GeRocMVVlsMaTxCkxYUpUNQUVnrqBLEtJEoEXYZsgk4zaTDFNBd6Gh5sEKWKaOkz3WYyYT0bUxpI6cLOaWW/BwWTCaF6B0iRVg20cOEPtZkDDoqygEUxlyehgQdkIlM7pd1pUjWA+rylqw85eRX3a089TpFFoEeHsAmMMtXMoCaurCSpRJFoym0HtCura/P8X1r/GqywKBmurpGkrSELTPHzvCAcujV5OEMOksCwKirLEeeh0FUhJ4xzCQ1NVNHXFZDZHCEWcpGwebZHmEVKKw4gNhMCYZkluCxInHUeAw7sGZzw6a4FcPse8R8glel6oQ3iNQKCVxhtDNZlQzwuEjFCxoqmrIF9tgixRWoO1Bq3iw2k/BKmUtSFaARl+KC2Xz/gwIX23tRABMS+C9CWwYMNk33oXtncqCoO6ZcC4J2zmnHeHuV6NW6K5mwYl5sRRCJj3IuCHlTEYafBe0lRz7t69yyvf+RZnTj/Ive3b/NkffZXx9hZNbYKZ3NowOEOjlCLptkhXV5FaYVWDKeeYsgbThO2mCHmN3nlk3gp4+kjihENKHWRlEvIoAS2JshzXBEm09Q7bGCZlgZ3NsePqA6vV+9d8MWd17RGqWQHWMJ4NadkZR9daTBeaYu7J8gIlBNOF4eZrN3jqXIf1jT5nHzxGN9PoGL78lZdo9TdBxERqxnMvfJiuuMfNG1Nq28EJwbOPnaLOV3njwkXqpsFLzWReUNc1OwczmiKEWt++d5s8aWM7Gc999MP8ybfe4ML33ubizpDPPHWOFz71At+++120khjvWFSWpKNwJgxItdbsbt3CmvLQrqAjRZolWO/I8pTd3R0eOHmc2XTEf/m3/guuXr7Gzt4tVntdZvN9vva1bxBHisoIkljTiSUPndngxr19DqbVUp4OkVZ46QL5Uyl8Y9/dEsDhxivUr8PYkMfl8ThrDw+teZ5jjCFJI8qqOLQt6ChG4GmnOUkccfbMaX74Uy/QVIbbt4eU1S7tbk5dGXq9PovK4uSc4bTg3JnTlPmMcr5gLUtRkeb1i+/gnODmrTtcvXqdyXhMGifkWR7OK1XJ+uYG+8M9inrO7oFFKImtG9ppQjFfMFnMiWVKv7/CdDz7wGu2aRrOnVxlvRfjvAEcxaLEq4Ssm9MxI04OVkmpkE6weXQDUzRcuvQ2+ACKKiZTbt/b5dKtA165epfCeJJI8qFT6/zQRx8hUQVJktHJO3Q7KYP1Ps/9wLPEyjGb7ZN2W0StPs4pZDPFlA2/9r/87/z0X/wirVjz8NnTiKamGU05ujIgTjKcinn0w0+zdektVJzxzptvsLGxylPnTlPPRhzUgnndgLO0kxilFIui4uKbFzi+0sKamkhF3L51l7XBAGtNaICURkcRnXbG8N4Ox05uIrSmrB1plnFsrcPVWxFKerwMhxIhJVpIkrzNwez7G5FDS9BymxXk7AKBQkmNiIOXPY6iQ1iSlOHnYq3RWqOWioP5Yk7d1HhvDs83AkjjJFgtrEMCp1YHtNMMkbcZSMF+Ux7+vxBiLybTKZNFgEx10jT44IUHIWilCVIKuu0WpqnRsUJpQb/TBh/k99MiZjyZkUQfkNRwdPECjxw/x12VUNoFdu45cAcc6TxAt7vGrd2CflmEA5apGRcNVncYXn+VrNWi24ppsgbbSanfuQwqY6oSciMYeclkPGMyLiiqZmmoc0tDK4QhZcAECwSR1Ch531RuSaKYummIYlBSsNbJscZSO0u3k3IwnqGV4ujqgNFoxsmNAaaug6RGWLpLs11pGrI4wqKZLkMwldJUtmF7tM/zzzxCf9BjdqFgPC0pqoq03ebkxhrzKhzSjN2ltpZunlM2Fc45enlKHCmKuqZsDK0kpShrGhO+fisJL2ghBVmchiIWAqkinJQBgw4IPJEMEwKPREURmYqDj0F7qqomS4K2uqhqkJr5bEbW6eNtyMTRSjAe79EXa6x1VpiMZ4jGEEcSZxTRmqCzeYZ+0kGKiP2dO+wMR0if8cTzTzMf7TEZD2nSDjiBSlPm1YQbsxECS9Zus7e1hSbl3uIejxx/GnzNvdtb8OT7rtX3dcVCkClBnMTMZEHtIYs1kVboOKYxPoSbRgolJbVr8NYQpZ7UwnDfUc0bvNVMFmPG4ylaxigpmDiLjhVZJFgf9Ei1YjY+oLGCezt7NAikDFEACIcUoXkSSqERNCb45maLBUf6OUVZgVUYLEUTRvS1CwdERUxjLPOasCWLMybzEoHHihCO7PHEKgqQASGxPuDkIyWCX8eGYPFWrDGVRWtLIiPQMXVtqesKZxzj6YTNfhepYGf/Gp10nbpKiGNDf7DCneEeeTul14rIypqdyZwGS3VEMC0sSatD3tbsjbZRsaS2sN7vkcXQGE2kwsYmURJmgkRplDBkoqTwHiUTdscHmM4UT0Sr1aGVx/QyQz0eMXMFw8k+w/EY37SQpWTKHou5g0xjxIRWHOMXklt3D1Ai5eTJHnf2dxntQ1OXmETy+BPHeEKkTEtDbRvyCHb391lZX2NWTJhOZ3T/DYTRbh45hhASwdJrJQV1HbYeQgjiKAwwGhMgEFILut0ejTHUVcV0MsF5R1M3aKmIEs1gMEAqHSIHhCSOgjHf+0BQq6oKrSRJEhNFeml8dggkMs4CmfV+sLJQeGeIVBKaFeeQIsCHvAte2J3bt7HzHWxlgAjXzDHVGO+jAAewlrKuETIcgMLfN3i7jFn+u3wXFR+e0xIvBVG0TLhbgpdCf7YEEYlgRrPWHr5DmirIuKxYfqI+kDil1GiVcD90WSiFRVAaQ2Nt2HAspd5NXaGSHOM983pOtX2D115+hW/+6Ze5df0W33vpVSzgZKA7CilwgDWAVKSuwsc1STsj6iZEXU1d1rjagwGHxS0c3ljiVhcZFbiqwNQlEkk7yvHdFi4J2zwrPFJa9Gob3UqxdcF0WCONx80/+EPsj/3IZ7l57Qp39g/Ihgesp4YL24ZHT0huFwu2jeEjJ49ivOexj5zl5e9d5cbWhJVeiyceeYzRtVf5x7/xz7h1c4+f+Xf/At/4wz/j4UdS1HzB7//p13nu6Q9x/vouW8N7PH4ypXPyEZJY8c7165SNYVEWGGP43svnmUwnjPYXXL50nSPHVvkPf/Iv8OqfvcKXv3aTZ5/8MN9660UanTMpS6LY0cwK2v1NpI7QSRu0RLYi8AXX3n6bwcoqw909bGM4e+IB3rlyjSRJuXt3C60krVabPM/4lV/+ZbT2PP/CR3jxW9/i0sXLWCORqkEoSa+T8tTpAZNyys2tOaPZmMIEn22WSRZlAYTn9qFn/RAs8C7NUCmNs0tw2H1bxfLgGuS5nsUi+MXSNGVlZYWHTh9nfzRiUlo+/sIzfPJjT7B/b5eXX/keb1y4QpJ1Kd4psMYym084ceI4t1+/yJNPPESSxMTpOu2+YfdgyPdefZObt3e5c+cOb7/9DkJKOr0BaZwwHA4xdQDT7A/HVLXFeQ0yYV5VaC/pdVbo2IrSVKgkAKu+8Y2X+PkPuGZP9Hsc70ZkLUW706IqaqrrljzLiPOYz33mWaQU6BiOHV3nrfMX2R9OSAcrTPb2+fxPfIr1tiRylu9euIUvZzx99gRSeEbTBd+6eoP/5K//O6x1unznay/T7g346Ceeo/PgA3TSnPRgimi12Lpzi1aW8Hd++W9TjeZ87nOfpGVqvvrNP+WTn/0Us2rKD/zw57l25U06gx7rZ5/g8je+zlf/nz/kd7/zKudOnSWPGgbrPXA5v/d//xHjheXc6WN87MMP8fLLb3P8yDGOrWRUVUFvfZPIOu7d3WVzbYXTZx+gnI94+OxJLl6+TDdvk2lLb5Ag5ppsbZM0yzhydMDpe33OHtlkZ16wPxwihSSLNbHSrHYH7L9H1STfY62AAMFLkwQdRUQ6IUkzjPc01QK8JxKaKM1YX1tHCUkxmRKlCZ12i2NrmxSzGRduvINxFVmWIlFoUxOlCYkEU9R87vEP0U1zRGedJqqZK8ntnXvULgxZESm9ThfEgjSKmTY1+7MZO+MZ3num81mQyg9HeBy9fpdOKwwKa2cYdHocO9plOpuzN9x737X35xIpDi1IV6Os4GA4Zj5rGBUNa2vrzJ2h1e1zMJ8ynk/YKRbgDMVoi0lZMRzPsabi3p2tpck5YX+8w9W7txjuzOiRkNSWSCniSKOW+FRYrillCIlF+KVvS6GVRGuFEMsVoZYkWtPJIurakGYxx9Z7dNsJSRyRRKGT7vdyIi3IWilSh7X8oqiIdIREkCcxWayojF36JBq8g34n5+Tpk5w4eYokS6itQUVhwpy18iUYg0NKSztLiKUi1dHSnB6mV0pI4jimrsOUQRByl7x3NE1DbZf0I4Cl50EujcMgqI2hNvZwQmptQyfPqOowQdNSYG0TDLcI8lZnmXvTEOnlBshZqqpAaY3C09QNlZUUc4uZjRnPxtSmZjw6IJWGaVGwevo4mSmQDmxdce/OHUbTmmZRYYsGWxgm04bRaEGvt0mKZjGccXCwi6sq8iR934X6fq+wDV1CWpQkVopBt0On0yLN4mDeNB7hJNJLbGPwBL+d1gJjLMWioVhUCK9wXi3rMaBN7wMBWq0MK8KmAaFQUURtQg5dHIXw6/uaZu/vEzlDXSuxDHkmbL/c/ZftcjN639PoAYunNk3wefj7y4r3AGY8LIHbwBKxGgnaaciIa0zDdFFQm4Y8y7EuHDCtZymri4ijlM31HuurbY5sdKjrGVnUQ4qE1UFoRJSUNDZsiyIV0WvnOG+wwuBckOg5H5FmXTY3H6WVaLTXeClJWglVFfDKxjrStINrBEldYsdDVKJAK5RTdLMOqRKs9Lq4qEMlUvI8RyGpyoa68DSVYGt3wmReBlpXNwVn8KahLktaOuKxM8c4cmQdFScsTB1iBCKBig3dfkq3l+GExVhHWZWkmUJS0c0/eAmMkmrplZJLqV2ARdx/vvjDWgFnDVW1YDo9YDGfUJUL6qrA2SAr7a8MyFvtIOVQEiVFaHyXsimASEfLF6IKm1Dh8N4SSYmW4JzB+/uNikbJkHcoZUAFO+HxwmKFZVbPmFVzkkEXX/sQ8FtM8E1BpHPiVhcVZyGUXCdIobkfm6CWh00hRNjsqZAttkQkHcq178umpNBoGZ6JAVLjDu8xgQwgkvdkPwZpStgMCx8iFEIkSTjF+veoEoLc0QVQjfNINGiFjkO+n3Wey1fvcuH1t/neyxcomxB8a23YUhvnqY2lMg1VXVHM59STgmq2wNRNCOZeegRsWdHMC7ABVe5MRWMbGl+j4jCFjuOUNMvQm12ijT5qtYda7SC7Kcp6ZFFj6hpnw/33QV+rq+tsHD9GnOe8/PK3qYymu3qSjaOnWMwXeKlot3Me/9AjCJ8x6MRUNRxZWeVgdxvvBWVtefyJkxw/eYo473Li9BqzyT6nHvgQaST5+CefR0dBVhvFegmfCgb8+SJAPOoqQKbmsyAN/PCzz6BVyh9943U2uzk379zhueeeRst1ZuN9Hn/oJFmsqMsCqQI4wQuHFIokiun2+nT7PRCCs2cfII4TnIMkSQ+lvuPJBKkErTQlUhm/9y9e5Mrla8Q6XXoWFXmk6GcRWZYyPFiwaBqcFEGyLgLBOdBpg6f3vocdwv0QKHDvacZ415Zwv77vI+ffq3gYDAYMBgOyPOfcuQd58MxxPv78M5w4tsbFt99he3fEaDzixs2b7A6HvPb6eY4cO8LO3g6dXg/vQ+ZjXdWMJ1Ou3bjDa+cvMJnOORhNmS9KtI6oG8Pld95hOp8zn89p6prd4ZCyqhlP5ty+u831W3fZ2t3DqxAAfeb4cdrtjOFwl6ZpPvCavW+NbuombKWzhPWNVSJt6OSSPE+4fPUGw1HFZLRAGksnTem0WqyvDpA+RP2YqmStl3F6c4WjmeLJExtI57lzdxcvMnTa5Y3LN4hbXXSck6Upwlsmo12SOMKVFeVon/V2xnNPPMyPffbjXL98mWeffoYXv/4q06Li5sXXWIzHnPjQ87S7a2zfvMZkPidJ27i64NypI+xt36YoCrK8Td5us7ba59FHHyYSnlNH1ui2Unb2Zly+epMjxzZp93LujUboVovvvHqeIydPcOXGHe7tjxkOpygfISwsxhNMXbF2dJNuJ2O1kyOdJdKaVCkS52hJyYm19e+rx/ukca31IWgFII5jkiSh3WqzMlglTVKSKCJPM1p5K8DJkpQ4ToiXtomWjlnrDjhz/BSttEUax3TzlDxLaec5SZbhY82XXn+NPE3JdUSat0iiDCEjENBKU1pRQqQ0SRwzq0pu74wYjudBHWYtlfHhh4VF7dja2+PqzZtBau8Fu3t7bG3dxTpDf2Xwvmvvz7XxEsoxryHPc86l57C15d7ONsX8Jk1dU4xqsiRlbEw4eOqYKoZT7Q6V18wO5mTCsv/GbY6d3qDc8sSdmvKgoRtJ8nZCK1GsrfaYzsrg3xKeLAoSw1lRIfB0OykQ9PkeWOv0GU/nREKy0uksJ6oG21iyKGFnekAsFeDY3huxsdpm72DM+kqPLNNIHIuyxBc1ToQcLS3Dy946RxRLsjxnffMI/dUV0taAE6ePMhlPmZUN09GYtfV1mqbGO43wLmzNTMV6r0VtLFIKxosCJRVJqom1olAS4xyLsgEpyGLQQlDVNXKJWsaFpsh7h1pSyGqv8HUFKJKiJI81dR0yQtIspahr5mUFaHQCZbFARwk6SojiGIWiKAsqa9BZQq/fp5xPaeqSJkmZ7Sq0ENTpnO7KCq10nU8eP8Oda3fYzSTaW96+tk9lLZ89dYrFvGZ/PEOplDVTYpqa06dOMPcLMnEca2t29kf00/x9F+r7vaqqIU+C7yNNFdYJBt0WvX5CZR3T+YKqccjYk0aCUblA+pgkkrhYgbNMRwJnK+Iix1iJiDRFUeAceGfppB2kgFu7e1RFwe5oxqyUOKCdRZimZq8uiXWCq0NTbYxZ+v8cLo6ZFyFLROowtVRCYgiES6HCS0JKEbKghQpoehkhaZaH4/sv3/dIDEXw6GgdqG4y8VgbYaoKnGAxL7FChaZcNMR5DMDqYAPBgqJesL7RZ76YUpUpWbpCrhOkE+AMU+sYmYL1wYD1QYuqWWATiXSCsvZIueDf/omfp986wq//vb9BXQnaqwl5K3iFhjtDioUnTtrsLGp61Jx++Bhvmy0ikTIalyQ+JtUFOsrYK2Nq2mgfGqyN7iqX3hizmIMhIYkaPvbwSWblHivdmKacsigrtm4UFAc3mduMutHUkSV2iuHeHq12xqTYZTItSJMEpGNWzZBSsjKIWe12PvCa9UIB9zP+PEIpkjRBqrAFm4z3kCrGGBOM9d6TpCkgUMttuNRho1XXFqkUWoetjpZBwiGVCrXlFc7bJRHQIdBoqRBeLOXd4jDLyyw9ZNILpIsBR6JjJCHYWHiIdYt3ru4wXyyg3UHMRyFXTkX4OEZlLZrpDC8apLAopVFZB2FrmqbG1Q4dafRieqCuAAAgAElEQVQSDf9uSKxC6QRrIRFhSIV0CCWpmqCMiKJ4+QGCJRzkpAzwiwDOCM2ZUIG9qJZdrBNhqKdE8BZoqVGRRuk4HOy9wVYLFN3QLDpLUxW89eYVhlvXkALiVhpw/su8JwAhLFoLpNIksUaUDY11uMIE2Uocgwph7lJ4ynqKtYZqfy9kC0YxohthcUwXByipSToDXJIhrYPKIo2hGo2opwuaRQ0y/H4f9PV//eGLfOZTz3P+rbe5fe06R06e4Etf+acc+9n/mERGnH7wQQ6GQ0S0y8HBCkdXcm7u1qylDbfefJmHHz7JwWjGv/+zP0ftHbvlLv/yxSs8+dgxHnr8c+zfuUCUJax3V5Cp4s23XuP6lRvgAkSqsZad/RHWQ9ru8M//2e/yxS/+OM987BP81//53yRafYgXPv1ZLl14nU889wwfff5xymmDaWX849/5E7bHQ7rnHkBojXcGY6AsGj7/hR/l7/7KNyjrhkuXL9Pr9UniNEjHpaRpLKtr63TbLURdUpYFq4M2zjnGkzntOEU0iidOdzh7+hS/9/VvMZp6pk1JURQkSQtn7eGmiuXg1pogH9RavacBk4cNlvdBYug9iOVW1lgbpFxCIaWn2+2SpTm3bt7i+tVrxAp+8x/+Kr12yusXXuVPXnqVKGsxW8w58+BZXvzKV/nExz/OtZtXOX3qFFt377G7vcOlSFI3gttb93j9zXcCEW7vFnVjqBvLzt6QjfUN8qxNlmXgGrxzFFWD9ZJFZYiihKoxVNZw8dp1Pv2xJ1gbDLj08it022229+YfeM0++ugZhKupyhDL450nTjRPfugcV69e45/89pcoDPxQb5V7t7do91q0EGxvDZHW4MuS9qlNHnj4DE7Ds/ph2nFKFktcM2Vj4wR33rpK9njMopZMx0NMOUHMd7n82utcevMm3fW3GG3fZf34Oj/9V/8y0/GCg3u7fOgjT/HSK+c5e/IYg27O2bOneeedO/zW//Y/cWww4PLle9ybez75xGmeefA0ayspB/OC1y5eZTidI3REt5dw4+Ztzpw9A75mXlku3bxL1mpx/sJ5dvdnWJ1w9bd/j5OrXe5tbRMpTafdIdceIwSz8Yz1LGN0b4vu6jpPf+gcX3/1bVpS0KiUQZrw0eOniBHcXhRc1IEkDGFAkCQJcRwIl1IIWnFKmqZkeTtEt6mIzbV18I71/hpOa4SQlIuCXrdLbQ1lU5Mss0uff+pZGvdhbt2+gm0WHO9nzCczomSDBs9rr1/FxDH9doteAauZpttdpdqf0ooTPI7ZvMBYz6DTpT9YY1qV3DsYU5YVWTlDSclqf4BWGuMcabvFaDqhk+bLOAjNZD6jWLx/fOyfa+MVJS200sznC7bubnPl6g1imRBZiyhhZWWDZHCCg4MCTEQnyhjELbxSdLt9bFnifIHxM+7s7JJHKamPaOUJ1lXEIgRV6vsPmKU2UyBoGoOWgXiYRppeO0PgyBPNoiiWyGBBpMDZBq0ErSxlfzwhSxKQijiOQkhiUTOel9S1pd3K6Pe7rK70Qp5XK2W118ZZQ5ZGKCGwTdgdxWnEdL6gWQ4r0zQijjSz+ZzpwThMT0yDNTbAMrzHNE3I59KKNE4YdLs458JWT0narQyHQyHwy4mXcX6Jf72/I4NYa7wLIBEp30WFV3WFI8gwI61RUlE3De2shZIgpaLV6rEoptimoq4rGtPQavWQSKbTBUkco4TAlDXD/RlR1qfVXke3V5nNCqqyIZaK7sYGGZZbd7YYdPt0E82Fb/wJX/qDF9lZzBGpxBLAHlGcItOco8fWcNWC0cE+1Qc/iA05Xt4ghUXrcPPWtsZ7C1gkBucarGjwyqJU2IxpJVFLP0lTg7MSU3nqpsGYhmopgU2iCGct1hriJGw2nfd4EaRGWRqhBWgVMrWiKH4PqSp8j2vrmJWG2prgOVt6FT2860kTAeUdCRVqBYcj+Fgk7zZacJ/wGcysKlI0DVSlIUtzPEtykBBkaYbDL1/eDusqjC1pmhpT2+WLsiFuKXYPtgNwwSlWBitkaUrjLJUAFYUHiTE1Rhgqb7AeNBGJEty5/T2yNMd5i7QGZS3jyRiBJkpyEB5tLVmiSRRoAsHROElZNqyt9Ykig6nnRMKRZwlVVdPPevS7fZI0o/FBhjaZBhPuZDJjXszBeWrfUJiSW3d2mC8qdBwRLzdq0iimkznzWY3xjiyLSLMEHUmiOKGsP3icvPdQNBXzKmRDFUVNWRkECi0TVvsb9Do9uv8vcW8WY1l2nel9ezjTHWO4MWZEDlWZNbLI4kxRJC2JsgZT3VS3bAFuw35zw35sQK+G0YZfDMMGbNiNhtqADdhAy+1uWYJkaqBEsshSUaxiFWuurMqpcojImO98xj34Yd9IUn5jwajeL4GMzAzcuHefc/Za6/+/v7dEkrbpdbq0W21aaYs4jsMeW/hh0yQJpuawsYijBHluYvU2TIAIHThvDMZUNIsAce0VERotIqSTaBkhnAYnSYQmRqG8RCKJvUd6z/sfPuCln7yLneZURw8pTo5D/2jhRTFlgS1zXF2FYi1Og/9EnEsO4ZFrWv50PwefgEaoBaEUwkTYETwBUbygHAqMbfAiSP7Cv5MIqdEqemTKdt4urtufwm7cQmUQCr1A1EKATjJ0EmPKBtuEcPIoTamqEqWDjziKNXESo6Jo4QOWxFqTRBFpFF63UBFCaExlMKXBNQbtBZEQSAcmLzCzEiqDtyHSwOUVbl7hKourPHZW4kcz6v1jqodnIWS5cQgvEAuPhPj4eTA0tuH+g0PG04rti5eQXuGs5I//5E85HE748P49JuOC9z44ZjYfcXw0ZG29zVKnRktDmY+59NgWSqW04oQ4ztBxRq8VJNhSJ9iiYHd7K7zH5ZTVXiB/mtpgveTobMi0mDEaz9i9sE0sJffvH7Cxu8vzn3yav/nB93HGIxPBfHTEe+9+lyTLEKNbJHbGdHxGJB3eVDSmYl5M+OHffI/5tEBKTdpqo+MQSSGjED7uvOfhw0P6/SW0DvAMKQSurokUtLKESFrW1/tMjOF0YpiUFd5JBKGRaowJn9viunTWIhewG2PsI2y8C+FceB+acHLRMMALrPMYa1E6TJCXl1ZYXRkwGo2pqobZbM48rzk8PWGWlxyfjen02/SXujhCs+/qtcc5OTvl9GTE++/dCPCWsqRqar77wovcunWfs/GYo5PTMH1zliTW1GVFPp+TRjHzyZSHR0ecjcZUVUWe5xRVTWMalFBY4/HGYaxn7/CIwfIy3XYGtv7Y92wn1VR1Q1MZLJq5MXTTiJOTYyyw2m/z7OM7TEZnfLi3j1AJpgl6gyiKcA3c/uABhyc5aXtAaSyPX71C3Rh+6Wtf4gufeYp+J+Hs8Jhq1uA17FzeRTjN5GyMdo7xw0PWNlbYufYEvZUtTFMyHD7k7HTM8GzEzuVLPP/85/j2d/6GP/zjP6XlPfv39xnPZyRasLmxyqe/+EmW1lc4HU64vXeI0JrBco80yrh//xBSQdpNsDZYUda2LnBwfMrO9hZVXpIkbbppTFNXbG1t0DQF3eUuZdFQTHKUjigmc5qqRLUU2guEcThboxZnKIWjoxWD3gpCCXAWhSTLUuIoppd26CYZS0lGCnRizdrSCsu9LqudVbqdJQbdjIuDFQbL60S6RbvdDtOrpEVRGSwRqY7oJilXtnfpRC2ccXTaGf12QjeJWOumrC0N0Fqho4Q06yBkuCascaRastFvs95rEQnF2fCMvQd7aCnodNtoqZAeZpMZTVnx+M4Fru7scmXnMsfDMcYLEIper09RfHQv7c/VGruY9jg8PQHX0M1isn6fqJkxqzQ66jB3gr4v+dznPs08r2grh/Md6klJcXZCd7CCK2taG5Ybeycwb3j+yR2i5RVufHALVZRkaUKkGhDhYatVhDM1rTgmS0IGjJIC09QIB9IH6Uw3S5kXJVka0W33OBmOOR2NubgxoKwbkJ6qNnSSlNPRnHaWcDIrkdrzla99kcP9Qy5e3uHs5IidvCFSgvUVy3g+IY5a5E1Df2ubeVURVXN2Lz+GtpYfvPweUgmKMhiHvYB+NyWvGorSYLSjncXEsUI1DUutiOHYMctz0iiicY5WlGBZmMtlIJFpJcPAj9C1jWONc566bjAuGAytMagkZTqb0mu3scZQVwW9VsbprKGdtXlwchKq9lYHnCPPp0gZDt2tVsZ8NmUym1E3DdpnmGnB0f1D/MEJvV/6LNnSAEzB3sMj2nim0zkb7Tb3jqe0owSWd3l67WIoAHKP7PbZvnSNpvagO9RJSn/wOCJbZnt16yNv1I+6mtJjXb1AZXusdxyeHmPpEScSIcJUNa8Lkg50sphYC4RTSII81TaCSEucEYjGUtsK6yCJQlhx4wzGGbIoYmwtXgUdc5lP0MqxvNLj4ahAuAZnGpoqoIIFJnThDcxcTeoEsWzQCJwUYAjUNkIXVMlFc0FKnG0WHsjzTKZzg+r5xEuiEShEoL1JOBtOQHhSJUkiRZ7XCBmy6hKt6fRTMl0xK2bIxe89rgq8tjg3YzaLkJHn6acewzQ51fU79AfbrKeSlaTF27fvcTSZ0OtktHSHfrTEn/6b/5Vp9SFrS8s0qSaJNKrQ+PkEO/UMG087iVlJGrqPXWAyndCcOHSTMC5nRFawMlijEKf0ooqRhUbBfGyI+5onr17kbGR4/b37tJMUH9ecnkwph2Nq37A+GKB6HaY0SJUxnRkGGxGZ0ChiaCSJiklWM6q6pHCgEsXwdEJZKJL44z/FtnVKpmKcMxQmx0qPEkFuaJxnMssRUtHtdtCRXmgPJV4GCeJ0VjAZjpjPZqwOVtBxjMOHWA1qQkHhFpOgEi1UMOkLiRQJmUjQSFChwZOEuh/jFoWMhMaWSCXxOLyFylacjKZ869sv8tarb5IfPcR5hYyyBSjD44zBGwcKrPHodhfihGoyoinz0OVXoXA5L4Sst8HnKhRGKEQUBXChdOF+6xzKC0wdwC3CBxksYiHflkFSGCA64hGCPhRBAtMsrsFFI2RuG5TURLUmWkR9lKUk7bYQxuDLAhXHYbIYtUlaGd7UIVdMCJKlFWSW4XWEyye4vMQ7h24n6E4XoTTUNa4piaRAOoWbN5RVgZ8U0IScwciF5oMtcpy1xK0uKo2ZP5zgioK6qEIhuTEIwfcyRcUG11S4fwuyra2VFX7nt36J1969zen+Pd59/wZNY7n8+GOMZxMePBzy3KUdtOszOjzjk89e489/+D7/6He+yQe398mSQ/7er34SLwuaWjDYWOMXr11jdLZHGjmm1uDGD9jZ6fBn3/4Abx3zElAp7X5Gr79CLAydNOF0PGHqBS+98S43zwq+++IPmcwn/PIvfJbvvfDX/Nkf/yt+9YufIO2s8L0f3WEpqvj85SV+Mj4lSwWysaijU+689xNefuG7SOtIpUbH8QIMEBElCWmSUlcFo8mcdz+4w9XdNZycgrHsDrrURYOxnrXPrPO9n9znzt4hQkNTu0eUt3M5lljYCYIX5qeoeK0VWidUVfUIihUtqM2PAEqLINpW1sItpja7u7vMZjNGo1E4Vwgo6ppXfvwaX/vS51hd2eDPv/0iq2ubNMZxcHC2AHhYtE6wThAlKTpuMRzlIBUHR8cMh2NOT8+YT3N63S7zeU5Zluzt7dFutbDWoeME5zyT+cJXgwhNvKpCEkBIL7zyFlpJdgcrJElEv/Px2xAin/NwaFlfW2J//4CV5QHjwuGV55PPXWU8PAHh2T8cIkXK3sExrVbC1aeuMh9Oee/6+8StLqPhmPXNdeJORGUqltdWyeuG/eEBn7v0HLffuo4b77O2s4WvG5yUXPnEUxwc/4jjkxN+/T/6XZKtJ/B2gosU73xwSOHAasnaapc6H9PLFN/8za/zB3/4HbYubPCLX36WJO7y6gc3yfOan7z6Pr//R39DkmV87dNPcGlzQD4ZsX84oX9hhW/8ylf5X/7FH1A7ycuvvs7v/saX2VxdJa8cd/cOeOrCVVAJd+7cpNtO2Rj0EcLjteBkOAQExXiMziKubA3YO51wUjWM64azvKAfJ2gPX7h4kReLMaOyAu9oJTGry+soG/JJNwbrZEmCLXK6iaLXatFpdTitS07GU1opbLQy1q9conaGSV6wv/+Q3a0tOq0WVy9exdcFsdhEXn2Ot268jK3mXNkZUFUlZ7fvQj7FZw4he/T6y3QHW8yHDzBNjiktg/V15o3l1umYwhr6S0vBL12bUHhpTZalWA/3jo8RpydUxmKdZZ4byqrm4KCg3W5/5L3388E1mhlV44myFA8s9frMc8f8bAIeLm4P2H94wqcGPVaXWhyfzakaqI0g0hrjCpSIiHzMYKWP63qgYb3TIbq4zenZDMd5JJEL2TBSILUmjoM/oQHiSDOaFcRJhJCCSGgSrYjbGZ1WhvCeprGPMgLK2ix00o5ZWaKjaGHSjjgdl8RpRm0s65sb9JczLAmtLGY8y2m1FVVtieKYC1ubFNMTnPU0xjIpHcY5+v0uw5MRiJCNgUyZL7LHpJB0WxntrIUxnulkTt2YEB4qZHioRpqyaZBKUlsTpENqgUYmYDZ1pKnKBmMdWgXCV9VUtGwa8pqahkgrWnFCr5vycHiKMY4oTjBlGXJu4JFW3BiHaCzLvRRrLWmWMpnPaacpk2mYir3+g9foDVp87vOfZdCPqIsz4iSmtJZLa33KRkCs8Y1B+JqmqXBGkirIx6eURqFoSNspG9kaXkUfeaN+1OW9xC+IRd47hPXMy5p0XtEmRmpQcZCqNE1NGqvQRW0cznriJF546dwj15RejNP9YqKZxEHvbzzU1mE9AVThPONpTpmXuEVsQGksjpAXdK7ZD68z0DDVIhCWhT8PEQJyA0BA0BgDStLYgF392UT38MAOXkdBIGU554j0AtQg1WIaEK4FoRWRVCBCGG+/0yFNHFUdJCF4Txq10KLm0oUVbCXIsgirWZBHJUv9NpFp6LY7OKWZ54ZOpkFptMyYjcYIZfFtR5xpaASjSYmvBa4O9M/JZIpWGic9pqlD3q4Jn4HEs/dwn3SgiVNBlCny0pJpGfxDrqLTbZPGIW9FCE+kBIWFuvIImeJ8Ay7QFqdV8ej6aZwhlS36WZcGh6tqjqenWNegqphIJ4/w6h/nMs5QL3xozodpuxQhs0RHmqX+MkgVYBc+AC0QYW9Ybzk9O+XuzXtkWcL65jpSSZKF1MP5QENTBBmT8efUPIMiJpIxCokSwRPoFlbDAPYIVE3v4XR+gFQRRV6gdcT7N09558Ye+3sPg3RRCHykEDrGzcowYRYqTDelxMcpKklDcVVXmIXUSqoI5/yiu/8zeS0qkGiDr1LifZhSWRfogd55lNA46fA2TMSUUI+8W0qLMCO2Ycp3ft1478IEkHM/aCg27ULKF6bUYIuCqJXiXSCDSqXptnuYtqMucqrZOEzLtEIlMaQpVlikCB7geGWZOJJgLcZbjJU4HEJFKK0QpgQkMorQizA0ISJULBGNQXqB8D4Qa30wqjvvMUWJ9WrxIZkQM/HzCVn+f1l79z9kpZfx73393+G9V/4KX47YWNvi9o3reC3IkzbGbrO8vszseESntcRSv0deNcTtZQ72brC0fkLSf5zhfIi3hiKfsXdwTG9tQhxHjEanpHFKUUkORmNu3p+ysbmDlZpOp48pxkhjSZKE7/7wR0glefqZEacH93lsd4VPPfspfvjSmzz97C5PfWKTv37hBlUc8/lPfTnIRPMpo1NN3PEk7SUGy+0Q04AnTVNYYKxB4OzCi4Vgloesttu2YHd3k14nYbmbkeNAKt59/y437h8hZIw896UtCq3zwutn/Vw/+2fnXIg6gEeF2iP/l5ePMpKklKHo0aEhUxQFR0dHj3xwfkHH3Ns7Zjg8YePCFT7xyU/ywY07LK8ucXY2or/UZTqdUtYV08mMs/EZJ595hrqpOT4+YXl1ndffvo5WEXEUU5YV3ofpj1KKsqpQSjEaT4mUDo0WHzxnTVWjdYRwAQpUNwbnFc4HNUi/8/HbEB4cjpnVmuVVaCcxk3nOOx/cYW2wzNHREc8+fZmDhw9J4xi7AJmtb26QpBFnZU6WJAwGLTYHHerKsba2xtloSivJuHPnNipNkK0W2eoSnaUu02nOG29dZ/3KLjpLabcitjbXsNRYO2N87yE/fuFVvv/KOyytrrC73mF1awch4Nqzn2Y4mrC5PWBjsIKSbb71F3/Nb/6D3+ClV97iwYMRO2t9BqsrrPUyaArSdo+HJ7d57vNP4U3FxvoaD05mSOtYW13l6OAhdV7graNuPPfu77O7u41tKg4PT1jt9ygmOTJSrPaXKE2Nm+QkCryp8EgaLxjnOckCBbWUpmwurTA6PMITzjOtLCMVMXWVczYdMog36C5vUJmSYVFSlyU2EvTTlDoviFpdtI5Y6gxYXpFUk4JUOFpCUdQNkXP0lnrEaYeLGzscPbxLK4vZ2h7wystvEacZpC2iWhF5R5p18DphWszoZinD8ZjChvPPUruL8bB/fESUJGStFpVpGE0nWOdZQdBf6tNfajGfzRdZkOLvNEc+yvq5Ci8fZWBnNNaxu77GyeGYq7uXyJct9w/3ODraY6evmeclcdZlabBCY6aMzhR1UXJpY4vD6T6DpS30oSaNFIfNlOVqjGkk1iiytEUUNUTCoZIYKaG2HpTEesf6YJWDkzNaSUS7lTGZFSSxRgqPl5LD4xHOWQZrG3Tnc07GM4aznPWlPmkrAXEu8YrQwnE4mXDv3kOc16zv7BBpuPbMJ5iMJ9y+8T57Z2fM5wW1gelkSGMlfpbj64bKCmpjmeclUawoG09lPaPcIEREtxORRkEyMJ2XKKEpvaUyljQJXdNmoYfNFl3pxgbcdgArhADlRMuA3RZhoiEXNK8sSSnLOVIKhpMJFzfXqUzD6RRWel3KumFUFshIUxQ5rTSjLAuyNCVJMkzdkKYp81nOSluzNVjFWLhzeEJd5YxHOdZZ3njxOoP1Hk9fXWd9ax2tJUZqisYihGZ1Y5WqaVhpZWilcKbCRx4lLcV0xqxqiDua1U78kTfqR10hoPh8GqQRpqGoLIfHBb2iYX2tg29LTs6m5POKi1tPk+mY4cEB89KgdESvL6iLhrO6wRhPaRukUlRV8NEtdYIh9PRoyrSG0gps0yAR3D8YLoAaEaWpkTJCShbyksWhcmGGNtbirGMpjsLBU4SCT4pAAVQCqibIwGprgVDI/h10vFggvUWY0gmhsU2JkiFlPjQ1LNZ60k5KaZpwmFCeoinQpsE1hiRuEytFpltEWRuKmtms5N13XmWw2+P05CFVWTCbJFSTmiUVI5Wg217lFz77TWIpefPVbzM9Kem2JPdnpxAJ2qrP/b2CTioRPhR1pjRMp3PaUhOphHmZU5mCpBNRF5aZSoLxfX5GnCQIv043LYm052R0SjsTXH08o5dltGVMspwhjcBPZkzHJYUoQuEVt1jdbNEWDTrWzOYlxbChFafgFcqmmFJSzGu21TbpxoCDw49/ejA3JamKiAk5XgKQPuxl4SXahXD1goBB9+cRES7EJ1zbuci1i7s4EWIl5ALWIRGLfWawIkhVhQsBzVpHxC5C4jEYSlfjhKNuKmpX46xnNh8SyWiRLxYxnhZ8//vv8cF7d7jxykswnlLYMkCVxsMAe/AOr4M8w9gKITVR2kErja1rvKtwrkEqgdZxIDg2gZwoRAiHlVoHDLttEM4FgIV1mMbiF0Xa+eGThe/FLsiCCy0WxpoFiKjGEvxoCJAqoNrVwiejIx18lN4jpF/AmyRSqABI8o68zKmrkuVsjaXdJ1jdWObo8Baz6YRWp03RhPvDdNIQRW1kEoBG1XyKaUpwFotF6xiVxlgtkaSkboVW2kNHkqIp8NIjohicw8+DrEWgsXFMK0lCY8Y6RDlHCslgdY3VjQ12r21/7Hu2E2n+5K9+xPvXb/Mrn7vA/f0jVgaX+Q+/+QXmlee7r9znb19+i7XLn+T9g5pvdHI2em2cttjGM5oaYu8Q1Yz/5r/7H/nqFz7Dj9+5ybXtVfZuv4Hubi72f83mxR0ORw9JE5hVNhwMI8HBvSN2t1Yojo/Z3b1CjMSOJ/yjb/4Gv/rVp/nPfu9/5trVHY73LS++dJfSxXzx2c8ymU85HA7Y7hgOxjNS6zC24G/++s+wHrJuB2stiY5Is9ajhq5dQLDqpqEEJtOSo7Mxv/y5q2z2E0yRkXW7/NEPP6CxlliGzMXwPAhNsp8e3sTfeT/PCzIIfvXze7xSeqFw0FRVoDIHoJeirErWVi7wzNNX+MF3//ZngpfDZhdS8MMfvsbv/s7f55133+fFH3wfIRKECnCaex8+4LHHHiPWbUzj+fq/+1Vef+s9Tk/P2Lm4wzvvvMtkPCNJUqqqCs10YxaRKGHKXEwnaK0xjaGqyiDJ8z74Zeoa4T2xl1Qzw3K3Q1GUmDJna3Pwse3V83WQw+XNLkU+5+btISqKqU2DjmI6K0sk3YQrnSvcuXtK1RQMVjdIZLCSrF1YoioL3rv1EC1gY7DMCy/8iJ3dHbrdNsezkmvbuxyczVja2WVna8BPbhzy4ouvIyLJb/z9b7C5c4F2J2a49yF733mB/YMz3r5+k8Q7fuHpx9hc76GEZ3b0kNde+TGvvfEuv/T55/BI3nznPb7xjV/n7ltvk+qU5eU2v7bzRZxr6A+Wubg14A//8ofYpAs2ZjRpmFaWB2cjjKlYXe5wtl+zvNKl3Uk4OD7Ge0+scoR36LUlHuwd0000k9Gczc1tZmc5cRRRVAbjoK5KojQlzhJqZ+lkLdqbF/jNS4+z/60/Yl5WRCImQtDptPDdDsPhMVaGSVh36wIuTqmrObKuaHnDg/09BpurSBVz5elPo0XE7GREMT2lqktOT/ZotVLkqKKlxgz6azSnZzz71ON0O5L/4BefJ7IVk6llY+sJ9s4kL0EAACAASURBVKYVV7Z2Oby3jC8KautJowSakljC8WzGZD7jbFbipjlVOVs8DxRJkjAucqZVyVLeY2dnl9E40I6TJHkU9PxR1s9VeKmkR38lxmjP6ekxvc4yWW+JzDuSTo/Z2RHtRNHrRUjd43Q4Biu5uNZCij4Gz1LcQQtFFMfopMUgizkYj9lavkRuTkhizWw+IY0jTGOIFLTTFuOiYKXfZl7koQNhG47OhmilKLwhbrVQCPK8oJUmuLqmlSScTiekSRQmAVIGeomriXW0IAPC4cMTuq02Gkunu4TWkqzdIZ+MaYRmGM1wwnPr1k3WtnbQaYwCvJTkpQGh6WcatKZuLEma0EoTtJRYUyOVYjzPiWSEUhGJDvKXNInJ6+bRg7+uyke5YSEIUdDJYtqthNHEUNQuzEFEmP6phelcq4h5VXA8nJAmKVkrJosUZb3AKztPFCUYZ9GLbK8gWUioq5LaBSN3leek3T7W1BRlzTCfkGUZzjUcHx7y4a27fOnLz7F1YYvuWp/VfkwaSwQSU1VUeY7PuigjMdZTWcnK2irD4Zz8ZMhy9+MHFYSMbQ3eE0cJjRd4P2deNCRaEKNxSuHdBNN4lntbYGuaeg9TWUgj4lgjvMIzR0mN8oQDrw+I33a7TVVWwfzvQyabjoL2PdYR1oMwAiUUUgRkvfMhFuG8e+m9D0Gri07n+QM54LEdwgeJlHUh5NZYh/DBb/KzHZjzSAKxIOFFUYwzgXoo4oWcxTk8oahrnEE5j44SrHDkTY0xnl6rjVcRdZXjicLhXnuKfExdpHgr0Eowm03Qo4ZhckqaaLJIsLN9jTTW/PClPySvLFpmVNYQZTFKeZyT5I3BOkMURWRZi6OjIx7fHGCMQ8YgpSVupUxzy6y29HQHrVNwlnzuOC0ca9vpgjo6Z3k5ZqXbIY0jxnlNbSu8XpimIwdOoVJBHCt8XWO8pTENdVXSa/cwFSS6g2gUtpTM3BzfaiPdxw8qaOmESKjgbV2ETllvcNYHyWzYIAsgxDnJ0qNjfc7/w3hH422QqhqDFBKFCp19bykX2USR1sQ+YNRHZoL1Di1VmMYT0OXCGWxdg7HU1jGZjjg8HnEwyvng9n3OJiNcNcdVU6p8iDUWZ2wo8JxDoBYSaot3AUVvTUGUdWicQ2qNN0FebhcBmmHvS3yovvBiEckAGB+8q5HyOOEwAqwPE7KfpcEpHX5f71wAFS2673iPteYRNRTCtKBpHNZpojhCLAq5cz8uHpxpEFGCijSusUxHI+KlDuPJmNXtDcz9hieeeIK7xwec3tvDNzVCK5w1lMMxZR3COpVWCKmwzlDXc6jDz5aaMNaMg4TS+XCPVjJBighTNbgmyMYipdBKESUx3gucdXzmi5+js9JmUnz0YM+PupaXlrmwuc3tD+7w/R+8wv7DIb2VXVqqpKxKTk+PWJMp2WjI1sWL/NkL7zM8nDLTku3Vx2mQVJVBVDOiJOWD6+9RNQVf/fRVktYq796akKow2btwaZfX3nwVHbVZW95GKsu7b/6YNA15bXEUMZ6M+PST1/jtv/cbPPjwQ1740dv89jd/nd/69a/y+7//LzkdH7O1/TjPP/88b7x7HWsarmxvcuOVe5RVjj2tObx/j7Kq0IRCR2mFI0w7hQvTeC0lTojgi7UNVVEwrwzzGvr9Zd65cSsU8E6Fa1ZJhOPR/fq8uPppXpd7VGSdQzTO9+E5LU7rkHuXJHGIl0hiiqJBKc3FnQ2kNzhrHnl9gbB/rWUynfPP/8X/gZTw7//OP+TGjQ95+933GY+n4KAqax482GOez3n/+nWevPYY/eVl7t27RxQlOCcoy5q1tTWqqmQ6nVHXDVEUEabiIQPQufA+6QXwxhgTcix1CLt1CMqqQccxkjDh/7hXbRxlGWJbOlmCC/IX5pXjnVt3eOKZyxzuH6IizbNPXqWbeGIEUStkYRlb01QFGxd2kFHExuYGDx48YG11lV7W4d03r9NfWaHTarGzuc5b790jw/In3/4RddTlMzttKgfNyZBEhom81HBhY4XdnU3SRCDrmpODQ4p5wec//Ql6Sxk37+zx1JNP8eqrP+Erzz/F+/ePubV/wLNPdNjeXGdlucNwkvPOB7cAwdHpGR/cuEG73QvxHFiSJF04sxxJ2mIyGbO9ucGH9x6ysb6OFIJWGoEM59TZbMba5jrH+wcUsxxnXch7xDGsGmSasdNq06kq2oni2c0N3tnfpyxLkjghVRFSR7C8TrvbRSNIcUznE7I4Je61Q65WWVMUFTvbA2Rj2N+7S6Kg0AKkZDw5o6piVCfDqoiVtW2WBxscHZ3hbYumrplOhsjeKriKlIZEJyz1l4nMEUII6jInjiSD5RXGtWeWB9msCfOdwGUwDVXV0O9Jut0uvU6HWEV02h0Egnw+D9K8j7h+rlPFoL/EaHKLQW+DmydnUM556ehHXBhktFs9llKNSgS1hwRDmimEjzg8mSK9Z2W5w3Re4n1Bp9VBa4UfjfEi4cGD+wxPc/J5jpQhf6U2jvE858rWOs7B3tEE6Q1eSpyDxgaJ2Hq/Q1nVVHVDp90KD7oy53BekCYxWkvqpqFNxP3DUzZWlqnqijjOiJOUG7fv8cSlC9y9+wHPLX+B1Y3NBaHwCci6tCYT3njjbeZlzkDHxHELa2paScqVC2sY68mLHOMMlXE0xpO1M5ypSJKI0axgOq9QsibSiiQK5KQsSYgXsI4kjmmcoaWDxHF9qUMSxzjrqauQvWNtTZqmaASRFPRaGo9gkpd0Wi2mswJjASGopcBbT1PXgY6FxHtLEmdYb/DWY2ioa8NqJyXVEmMbkliwvbbCe6MxRydnHI+HIcNUKKQS3Lx9QBRFrKy02dpY4Ytf+TwrG+voboSvPbo4ZX0p5c3bh3zq8jqZhiZtk+mYw7v7XLj8kffqR1pxpINkR2ic1yTao7TE1RGYhEhoVOToRi2UlCTRMo0bYwwoQrBeKxXIJOZDO0dGgrqsAp1MepQDj2Fe1IzPTvBeIoXDCEucJmRJRL/bYXR8SELC6XQeip7F6xM++M48ofDSUoWpljEhOsEJpHJYSyC6SIFZQFik8EipUYvJqPdhtB9Lgg9AOKwtSbOEprFMyxLhHe1YoaRHxRJXKxySdhKhaDDGIiJBJ+0ihOCkuIurYFzWOCdQEvxMksouIo2o64qamAcnU+gmaFEzGd1i7DKKRjOpGqwy+EpyYXmN+XjEYK3H6dkIYwWf/+LXuHRhi/mbbzGpLKLbh25EXyW01jqUTYlFMjzL6SKZTXPmJ4bV3Q4ycfhEMDYzWpXEmQO0yBjnhnnuA80vk+QzA04RZ4LICirjEbWnzAVFYWFTEytJMVW0/Rr3Hz7koDzkiXiZw+nex7thAS0i7Dk4ZZFvNZvPuXP7Do1pWL+wSb/XJ4tbQXqmwBmP8iFqw4kQcm5dkB55EZpEAkFbdgJRUAoaa4ijiPN4ySRK0UIsoBSBqIlzpHEHUslMRzz48B6jYcFfvPg2o/GE4f09irNTzGgItsaZGucclbE01mCcC3EJ3hPFKbrVD8HiVYPSDa6uaOoaITzGuIUPSxPp4MHyAqQPE34lQxETZnQgtAhBnFagnMQ0i8xHEXyQplrENyzId04q7LnUywepVpD0nsc8eBrvwsFYSnQagBxhxOHxGIQTuDrI1Kv5iPwkC5L4OCFbWuO1H/4IUxT0tteJ4jafev5x7t29hZtUPDgyyNoGGa+xaKlxWQxNTrzU5ktf+QWuX7/F+PQhzXiKlUCikWlC1lqDxpKfHSG9I+t0kEqjojgAQrzjdF7yma98gb/4zvc+9j27vLHLl7/8BbY2Vvjf/7d/xsbmGqcnB3zw+hmrgy5f/swz3L65x9L8jKx9gZd+8iErvSEv//EJn3rqDv2sS1krUqm5vL3F5TXN//Vnr1BJh5Aduj3LO2/d5lPPP8GF7Q5n04KV9W2sjHjv9VfwCxmpWezpqiyJpOXVN99gcjTh0m6X8WTIf/5P/ilf/NQ2kob/+p/+HsM5fOsv/4onHr/G3Rs3qayjGyc0jQx+jyhI/aMoRqsYrRIaVwfokjGL2IHwNZ8XSA+37h1S2VWuv3KHk9GMqjEkSfKIXHguJQwZR+db9qeF2E8VDKF5dv73LCTq52Ama4OsUqJIImj3enz2cxf56z9/mca7cDB8RNgMX/O8oSgqfu3Xv853vvMCX//6r3J4fMrh4RGbG1vcuXs3FHreUleGw8MzHj58yHQ6pqrsQgZs2NvbfzRNc86hlKKu60d+Y60jlBLk+RytdTjw1jXOK1pxjClrGmm5de8+6ysrVP8WgurHkykrT2yxvdzh+vu3WO632B8qXr5xnS9/9jn+zf/5l4g4gNwak6Ncxq1bD7Ba0W8lREnCkzsbvHnrPnPn2VpKuXrxAlpq5kXJWqdFMzpmrxyyfWmd565usrSyyj//v1/gW3/8bTq//RV+9Ze/yqs/fp1rzzzDUf0ma8N1KhGxtrPJZDZmmh+iErh87SrPfOJZ/ov/6r+nmyVI1eLXvv41hvt3+dd//gNq2/CP/5PfppqNKUYzbt7c59PXrrDWTpnO5tz88Bbd9hpLnYytpWWOphV/e/0+l9YHbCy1saur9AYb5Ddv0l9po4Tj5bevI73nV77yeYyGMi84fHhC3ZTsrvWZGU/tJYezOZOqYr3f4bmLSyQq4j/96pc5nU958e5DjCm5vPo4WghE2qIRgm4roRsrdnrLCBlkfMX8hK3BBnduXqcZHZN/eAtjLJvdHuu9HqYuefPme0yNZT3ukvZ7rGys0CQR77/5Eic7a3zuG7+Fff023c1thjPPIInpkLK9ts3h3utEvsbJlKaR3D86pfSGfr/Dh3sPaVwgRaetNi3h0VKRKkUxmbAzWGNtfcA4z5nnUzyWWHx0SffPVXjNpyeYMqecz+m3OiivSUVKb3UDhKYopsQCWmlKUU1xIqjNo1TSiTsU5ZDV5RWkTpgXBjOvOb5/H6libt0/Y29/yLxoAEVZW/K6op2l1FXFrCxpd9qYYk6zyFvRUURZFkzyEm8tSkrysiKLQkexMY5IW2rT0MlShIBuKw2FjzUkSYqfTjGLJut8VjEenrC5u0OaJKSdjKzdIipqWu0WeZETRWnwGXgYT0bMyprV5WW8NUwrw9l4wlKvjzUNsY7wPhRiYZIFURxjiwpLoDbGUdD4V01NpPUjQl0WRYDAS6jMwvQnFK20RVWGcMQ40sELJwSNqdFKUjc1k7lltdsBLEIKqqogTUNHKokzGlMhpCCOE6q6YjSbk6kYS/DTtbKMbrdDc38fvGdS1DQmeBs67S5ZmnGWG27eH3Ln3pCt3W2e/vxjXNheJ24MK72ItcEmxlryHGItaZxkZ/Pjh2sIFTDRCoX1cjE1kCRxgtYxQiqEC+ZpJTVVPqWu53gRCJJKLkKQrXuUxWWcC9MpPEpBrGPmskZJSWmCDy9S8QIX79EKeu2M4SxHLv6fhEdZbecik/McI+McjXPnLi9gkd0iftphkQQUtlLhNZ6HaApCrlgkQ86TkoK6btA6ggVIwHmHcYGEFWRaKhyMhaSxoIWkaWaBquVdkI5VTaAperBWkraWaIpjtIzJlts0eUVROurGcvvWDdbWn6S/vM3Z4V2MkTS2CXQkP2O1s0Q81YBksLJDf2mVPOugO6toa+itDajrAwbLHWqhmBcRwjumRc1sXmNsQppC1oooR5bZvKA0HtFro2NLu9fjdAbSCKRoFnSlFmVREWUaL8K15K3GNpDXNdSW5659lXz+GlpNUe0eWdJncnD9Y9ur5ysMsASx1JS2pKpLZrMJ21u7ZEnCUq+/8HuEcn3mysX0RjyaeMkFjh3PYtq1oBMicEIQ64hIhXuCExYQWCyV92gn0UITSbACJvMpeT5HxB4bZewdnbC/v089ndKMz/BlTl3N8c6G7Ct/TmBbvITF/VKqCJ1mmDx/lEEWDsxmkVemiKKEQOTU4bUR7m9eBLmiUBHCWvz5ZEAIhJTB/yQXZEIZvv+z+V1CCvjZXCTv8d4GpPwjeu65XFeGLDUWB1+vwDuaqiCJwlm2MQ14izUNdTlHjUv6GwMmvSWEillZHTBzntfeexdpG/7L3/sn/E9/8K8Z7p3gj06gsQjhSFf7VCpFpilrW9usXhjwxrtvcVjcxwkXcv6kglQjY00yj9BeI7xGyYRf+eUv8dJrrzIaTtjYWudo+PBj26c/u+7v74W8OVuFa6sxNEAUpZwNJ/yD//gf89/+D/8MfIWpKr7ypc/y2sv/D0nSI1YK6R1CxugoZqWzwupaDl4wnzccj08Z9Ac82D/g8pVdljvhXnvv9rtM5qGNZYxFKxnImFJS14Y7dw/ZPzwhUwn37x7jdItPf+IJdnZbPHbpIrM858evvUe/12M6G4eg1WyHojHs3b3LZDIhimOapqHT6SBsKIqiKMbVVXimqzDhKasyqAqkZjguGE8+5M7eMY0NSgdj7d8prsIEC7wL6gSlfjrVOi+83CIG4XzqdT5JOp94aa0X4d6GJIkYLHcQeGZ5db6Zgf9PV17A+zdu8977H3Dl0gXefvtNiqJgebnP0ckJURITRxqp4PDwGImgLGqm0zn4ELAOUJY11v5Uhl1VVYibEEG2CBDHina7TVmG9yaOY5TWWBeaIaaxZMvLTMua+qMD4j76soYnLm1j6zl3T+Zcinu0o5iLO5toB0dHY7KVHlmrRZy2ODsbo6OYtUGXYjZhZ2ud23dPORpOeezyJld319g7mSFkzHQ6odVqUY5yyrpkknqE8ggt2N0ccP90zne+9wqf+cxnqRtBkRsckrJqGFYlS/0et27cYHPtCeKszacev0ZtLEp5vvSZZ3ji0jbKOT64fhutNEu9Fiv9PvdGQ9659ZCbHz7giWuXeHDnDrS6XNra4kdv3iBu90i04t33b3N4MuTqhU3aqcbpLq+99S7XnnwqTD6Noa4M2+srbO5ssrq7wUt//l32P3zIcreLjhpmjWRSWg7mc1q9LkZFVLWj22uxe2GD1dkQ0VriW6/8LckTz5C6Bd22sRydzTkoZzzxTIvdK4/TNJb79xrMrKCynpv37jJ48mm6/T5bV57iw5s3KZuClSRivpgAN7ZhdHzKSqfHlWuXePaXv8BSP+LgjbeYjfaYjCSdrSssyYTl7hIPEUFKLjXOSWrnGM8LZnmOFSKoZ8qSsiwXRNKMzcu7dNodBssrxEmC05K6qRZqhI/OLPi5Cq/Ij5mu9CiiCp30aBrL4/0NTsanRHESHtzDktZ0yvpgk+OzfaI4Ji+mtFoeXxkmkxn4Kdev7/Hm+/f5i++/Q1FUlHVNWzuevLyJM5Y0TqmqhkjqIJnzkE8mXFjrs382I0k1J+NgcLR44jhiVlbs9Dr0soR5UdJtJVjniZSm321T1zVXL+0yHo3p9Za5v7/PYGkZJy2H0xnp7RPy/HWuPPks7W6bdmeJrFMSjXNWN3fIK4fWnrLIEXkZEM9SkVcN947HdLttrBeYpsIYgcwSkihCK8Wl7fUwvqwNFui12oxnMzY3ljkdTmhsQyuKmeRNgCNIhXGhS5xXUzqdNnHVUFU5vXb4udOiIYtj8qoO6HKtaaUptTFMigJrPYqA3JVKILxiWoxI4pSmriiKOUu9x/hg/4xWZ4ftwRKz0zFlWdKKNM7WTKYzhvN8Yd63zEpDHM8QIgToHowmqJv3+M6P3mZjdZXnn9pi9/KAZ5+5ykkdczo5IZKCYjzlzHn+4ZMfea9+pGWFR+JxTYOxhqaqibwk6yVkcYr1YuGjEkhihicPacycKNK0VzaYlWMSHbwzdVmGB61rMB7aSURLSyaTnKKxdNsd3j+eBlKgsXhviZKE4ShICeI4IkvcgkzpaLALaEZ42CoEQknqxtJ4gRYLlDZh0uWlQHpwToScH6lQSiJwaAXOBqOzXJhatRS02ilnZzl1XS4KrkXOkGmYah5hi2UsEEogLQjlmdTHlHUdHvZITAmN90gvOD4bscIaqkqYVQWrT6ScHTuaWRUOnWvP8sVf+E2sKHj4/j1EbajKCu1KBjualRWLaHqMRxXH+29wetRiZWmd6MJVTj68wdrmKllHMylmPH55jbfeuE9TO6ZlHhDoaY1jSivaIB/NmeY1uyubRImikTmxm/DZZ65x6927FJOKtJextJFx794JVaVxbkaapBSVwKkOhwcjOnGPJx/7DD94+WWWVy6Qij6TfMrR5OOXbZVNAVEITRXO0U+7bG6HUE4nPFNTMBqdcnh6RJIltNOMKI7ptjvBe+IcdRMmXv2sixIpLHK2GuyinPHYRWRH4hMclkgItNAUbsqkqajLHGsNUdQibwz/6l9+l7dfe5tiNoV8iisLqtExtm5oXJAK1YuYBeMc7pGMFiwWLyOirscv9u2smP6/xL1ZkKRXep73nHP+Nfdau6v3RqOBBgbLYDgcYoYzkoZDkTI3SY6gx7Qkhm1RjlA4Qhe+dfjS9pWXa0XYl7KD0tAiZYnkkCPOQs6GBgZbN9D7Wnvlnv9+Fl+crAIYlMIxcAg+EXXRWd1dmVkn//983/e+zwvWolRIEqfARx4Wa60P9w4VIlSoMMFJhVQBttEg3cmkQcYhWGiakrqpSVotv28FaGNwWvt9jS+sjDEgvfTLWOObL1KAkMvcMIeQIKRDCOPDk5ejCe00GHwWWpggQkVro0+Z7bC/m9M9t05dDnj2M89w4eJZHu49pDYN7+98yEuvX+Sd92rOv3qaIAoYFTmnz/URTUqE4PS5DfZGY77+t3+T955/m5oGZbvEyvLWj25gneH5Z1+mg8I2ltsPn7J1+TwvLPZJVMT12w+4ft/idvc/9T07Gj7h5vvvce/WW2it+PWvvsZ33njAYHUV12qDgK//p3+XYO8n/MvvPWT3YJ9nr32ZP/vBt7l/Z8HXv/41Sq3RTrHSE8TO4Jzmw/sjbt+/zS+8/nPI0PDo4RPeufUImookDhhNJ4D3A9Z1zWQ6ZXN1lfF4THelx9/40ss0RrHZyanmmlBm7OQd4m7CP/rH/zXrqxepTM5wPOTXfv23uDsViCAiCQRpHPlcNie9siCMCKQkSWOmTe3l3kJgtEbXtZfYYigaGA4nSAJWem2yLFsW/eIE5OL9vc7n8BnjNU58NOE6/gwcSw+llCeFVlF8BLXwOXWaz7z4Ar/8tc9TlHOiyOc3CiU47n98FLIsWFnp89rnXma+mLO2vsHDJztEcUKW7dPt9pnmuc80xCKlwtqa5649z6MHT9k/GC6f20cxD02jiaIIaz05VeuGIFCUZUMQtE+ev3OOpqqIWwlmGb4+Hi/AWc5sbn7qe3atm/Jgd8J3v/8GSWeAFZDJmtlE8/50j2Ghye/uIB/tc/29D/jbr7+ElCGHi4K90YyzKxnKVXztZ6/yr3/4gD/9yWO+/PJZNroxnUixvXPArUc7/MIXX2F3+wlbZ84isTx3YY3IlTx/+Tzf/+a/5XBWc+eDu2yuraBrx97RiOGi5v0PHtJKUg7Hc779I59b9fnXPsPpUxtcf/smFy9cRIUxz19a5zd+7Zf4Z7//HW7ce8SbNx/w8tVNfvL+BwynFV//Wy+yP5yzPXmHK2HE+spF/vQ7P0QGMfuTEV/4mRfYefdD8jwnBubTGVcunuOFy2fI5gV/9OdvkR+NaQloTM36oEuvHdJLIhoreePJPk0Q8M7jbfrtFs+FKZvtDueuvcgZZ3np5ZfprPUYdFa4+cE95pXm3tGE7bLijXc/INvZJpXQOIUuC6yQzF3Im3cfcW61T57NODo8xFpDWdeEKmasSzqiQyeM2FrbYKDHpMOS7RsPSVZOoWxIvdaiNehxxXZoD77Agzf+gEgJoriNkAqZ1pBldLtdImupmgZTm2WckKDf7TLPS4ajKYt5wemt0wRxwjOXr7KYL1Da/L/usX/f+umohtOSuA2JXGF7+zFn1s8wHs8ZVRUHdz+km0ZEaZfMKvLdXaqkRRw6OpunOJrWVPOct75/j4ePhnz/vUccLgrKxstNsvmYPBKcXU+p6oYwkJSNRgUeBdwYf+N7dDBGCsl0nHNpa93fwMYLFnnuuz+6ISssURL6CYGFM6fWmBcFSkreu/eAU/0uRVXSTmLarYCjaYmgYhzNmU7HPNnZ4fTpsyAlrW6Hg4MhURQTtzrs7R6xtXWae9tPuP94j5VWjO8a+wtNGChUENA0NcLhp22Jpy5meUYvbbHSahGGAZ1WBK4hkI6t1R6rgwFvfPiESEnCAPJFiXEQxwl5URKHIf1Om14aURtLltc0pmC116exmqIoCaWkFoKs8tI1bQ1J0kLXJWnS8pOUumal1yVQIXmRk5cx+0cTepFjsL4JtiGMI6bzBVlVU9Yef+6EZFZkBLWf3qkggKUnbVEWDMdD7j1+SKeV8PnPPeYrX/0iVy5ukUaGbr/HVvTpywmSSGAAW2maQmOcAyStJCRJIhZljXINrbRNGrVAl6At3XRAp7XOtKzRtiSRiqTdxjD3siNtacUJg26KNYZsPme8WBBIhRUC5QRlXTOb5eim5tSgRRAoL+0SEmNK7wG0FqSfCASJ96EY6ymMRWO918RFXiol/FRKATb204owUkQqxDhH7UAGfqZW65ogbrFY+Iy7YzKjdOAaixQ+e6eThlitSXsxhJx40mzQ0Cwq0qCFChRF4P1jcbeDinvk0wZTR8xmDcl8yGiSE6s2raiD0xV5tsfoaIdue061cJzaHLC6EVN3fYBzXlaEoWJ4dI9FlsClDuMP75EXGYUc0jWag3wIozmmrAk7Eae2EqxWVEcGJxzv37zNYlSghSAvSmZFTqIE7dVV5qM9sA2b6RlmaooLGoKwZnw4ZjrPiIKCNEmJOgGjUUGpUm4/3mE/nwAhqYi5ce8Dmkb8+zfXf6AVBAqc74p3ghjjHIUtCZea/EBJ1lZXWRms+EiBZSxBVZcY670UkQwhVi1CtAAAIABJREFUECgjQDZLD6HDLqVKzlkCIQkd1LZEm4rZYrSUDQmSuEUUd7nz4JDf/cY3WMwX3qKfJKi6JB8tsGVBXeQ0jUHjIS0O56Wwzp402601OCSiLigmh0jlKZrC+WlTFMVLOIZC62aZYegLNkI/YnJWYKzPgbOSJVnW02EDGfn4BTxkwBjtZU3HkzEpPNGUpYRQKTT4KZxYknOX/iEZqJNpl4/3kLhAEqiAsspRlfY0SF0TtAOoJCzgH/+T/4pKWqyC9V6HeXaEEBGXr/0Ss8WQ7cNbbKl1nv3V51nttrHWkZcGIQ3d7gYoyf7OQy5srDKZL/iZz32ZUEmEEUxnhxgTcHpznZXOGmkSIoTjue0DSiouXnvB4+3v7JIqSXR241Pfs599/hLbj+4xPdrjt3/7PyMILC+M90k7Ae89msP164QyIN/dZXf/MYP+Jr1WxG/8yt/hD//oX1FMM6YqJZlnSDvBmpggkrxz4z5lZUj6Kc4qitmEFz9zlZ/c/JDpsPLeJdvgixiFbjTWGtZWB7Qiwb2b7/Dyq1+lnu3SP/8K3/6T73D36ds82J3zP/2P/z0/+PGPmRwdcfXCeUrniNt9XJ3x7js/oSor0lbXK1Gkp0gabVhMZ5RFQZIklGWB1o0PxF7mjx4uQQXWWmaz2dKn61BSLSda7uT7UrKMOlhOawUnqHlf2HyEnA/D0CPZlx3/Y5nj5qlN/su//3eoiiE/fvs21649w/0nB1jjaag4HzMhlhNxYw23b99GBiEba32apiZb5AwGA8qy5tSp0wyPDoljxUsvP0eWb5EXhlu37p0UUcuh3JKQ7D3jUqql30stX5ukrms/6VoSGYMgIMumpHHLwwtGY+Ik4nA2/tT3bCUld24/II0Tzp3ZpNQNP3jnLue3zrK7d8DMGPKqoGXg2def5ebdfV66dp7f/eYbDNp9Lv7ii6iZ4OnRgvOne3zx5XM8f3mNMIh4790nHBwdUiSKwllu3HtK2NtAZws++8IVrpzd4OnIcOP2I9K4xe7BPl/+B/8x51e63P6X3+LffvNb3Llzn1/42pf54dsf0BYp2XzKxdc/i2h3KSRcuHqOupzx/Je+yB99+y/4xr/6Lo1xvHhlizObp9nePiIJQ/7gz9/h0fY+0sHf/Gs/y6QUbK70CMOAptQcHAwp64bhcEiWb6GEwFrD96/fZDif0SIgErB1aRMpY9ppRCdJEcaAg61ByO6k4E9nE+6P57h0zHMqZDycsLJ1lmc+/9cQFor5lGuXzxO2+/Rv3EA0UCG47yrOxC1aeUEcKi7013ADycF4n9pqYhlw/uoVZqMJdw9voCPLKVYZxAlCSHae3GV2sMM0r2gmR3zmM88znc5ZbUtGoyN0quh0O2xcfZXF3gdQNiyERjpDZSz5PEM7QxCGgCdG19pR6Rnnz3Ughu39XUqrqWpDYC2dTpvuau8T772fqvCKkpg4CWmnXVotw9GoYHWzzejuDkkkyKuGxi04OzjF4XiXtg6IV7vYSmNswNHTEf/6u+8ynWu2R1MfEFqVNFWOcJrc+a5PrTXzoiSNA9IoJowlRWNZzHwX12AZ9Do4LINOi9m8JFSKfq9LKD3KO0xiGuMIpWC+yAjCgEKX1I1BCX84GGclrVYLox0yVTzdPWAw6DI9GtNKO7R6fVqtNutbp9k9HOJkiBWWo9GUTqdN1WgW84ZJXlM3ml7LJ5Qba2mlLeIopDYaqbzPoqgq2knMer9NK4owziCUly/ESQpSkMZeJlE2Gie8lKxpaoQISNKQKA4ZDPocHE38WB9HnEasdAY8frRLbQyhUmR1gXWSOPYHN2sNdVMRhjFhEFCVJS4yhKGXxGVlQxhF1PmCg4MjRkcToihBiOwj0MNyHxz/SRuzJJDJJYXPy36KsmFn54i3v/8m+7faXL66xcaZLV68evkTb9RPupT0W1wbHy8glIPGECgQwno6k7QEKkEEgfdfOU9B82HTlrzW3siMl4S4pbzTaENTa4z18QJFpYnCCCcERV1inaOqKpTnm6CtpapqZBhgxTEcYRmU/LE3Vyypav7P/oEg8HIr6XzXVC99KEqKJSbcdzOPfV72OEVVSIS0Xh8l/IVSW7vETgcIKXEYkrZERZYwCdHG0hiDQBJHCUGokLJG4YuvpBUjdEBWVx6Rn1c4IzC1gxT2Dx+zu7/O7t4T1k91KNoaF4fMyjFBt6EyhnluSOMUbSSNdWT5AqH8gSPLShZ7c0xco4TCBjG6McQIcAIZQpKmFE1JWS+orGPXHJImEtlOmRclG+0u3bSNmWqEwGfehfbEh6kxJICxNcZIjFDcf/KExgYEKsBZSV1D03z6aO6intFkGm0sRQtacZeIlGlT4JRFSottLEL4WI9GFxjnqHQFzlEVFUpJwjCiStvUjSZEUlcVjS0IwoBOq48W0EjJweEuTV3RbicoFZJnc8qi4s3397h1Z8d7A5WgqWqKLEfP57i6ocznmKbxZEGB99g4x8evFta65Vb2E6qw0QgVLv+OO5lw+YnTMX3weNrkrzXGev/asXzwOFgZZ7wMEP/v3fJgaZ312HejPVhDyY8ANNbBxySIsPzs4LHWcewl6WYpXRdCYo0GERJEKVIboPH/rq5wzlDlFcY5Vld7uDBCYBiIFYSIEEKhooit1fM0jaCVdEmSmKbWtBKwtsDVGUnSpTdYR+cTUhXTksp7wIQlVjGvv/Z5T6JsauIkpaxrTp0/T1ZkdOKY+/fus35+jdl8RpZ9+g2uqihR1FR5xqnTG1Smod8NCJKQxhh2trfZWFnn8d4R3TTgwqULPoBahQzW19jenXB1sM7w8AhTL+gOziCk8BJnATu7e+zuDbnw2Ws4XdJOQqJIkRdwPJmJIn8vc857m+MoJAokz109TVA33B8bHj4d8eLV8+xOH3L33kPu3L7BM2cv8eyVq7x7WNA5fY69h3tEUYJd4uLdEuZirfFfyzytPF8AAq2bj0GRLD7C5GNwpOXyUye7lIirjz3m/p1oanlcNS3Xibx4+ZBZyhdXV/tsrrV54/r7lKVmns0Ah5Ihzmn/UfzY7aQoSqwxPPfCNa48ewWLYH9vyGS6IAxL9vf3GfR7SGlZWRlQVjkf3rpJp91hPJotC0OfK2qW77effDUncsrj96MsG/+8l697sVighKEWtYeI6YbQqH/n6/8PvbY2VmhbgyRleHhI1XjY00o3ZTFLKMuGeZ5DrHi8N+ezP3cN5QR1NSdoJxwdTbnY6yF0zUtXz7Pej7FVydG45sHeiNXBKtvjfR4/PWRj4zRPHj+lEyfM5iVJq8f+zVskYYSwmsGgy6VnL7D78BHnzq3TZDPObKyTLeY+NsJUdNsRV86f5Sdv/YS/8UtfQ0rB4WzBd3//W1z/yU2EEnSTlFSEiMbHkNRGYwrDbD4nCBSPtg+4/XCbn33xKqOjAwa9LkkYcu/uAz5z7XnSBHrdPrdu36Hb7rEeSWICRNMwHU1wGIKNFRSSlW5r2RwytOKY/XnB7fGEnWHAm++9y2ZvwGu9LsY6VtbPsLJ1joPtB7hul5effZb37j8hkwmD7joyiSkWBZ3+KsPs0DefpWBRVThrGO3vUuUVoXBk+ZymWGDqkt65C+jJEENIf+sC03xKmKSk1jI7OqDMNNHWOjQVW89+jht7DxDVnNIa5vO5l+JL6anBQUBTm5OmgbWW0dGQlZUBW6dOEycp/V7EzvYTBmGfOIw/8d77qQqvg8MjrsRnCUzEmbUBWVMRq5ILly6RlSVhWPFwf8SD/XtcOH2RYlLy6NE+Ogh594PHvPGDR9ze2SUvKrKqpNE1zhis1lirEUlAnEbYcYax3ltjXcOl0+f54OFj9BLfuN5tEbfaTGZz+n2HbioubG6wubbC3cePkUHIIq9opymdyFOsnLG0Oh3aWUXWWJp8yqnVVWoNeqk3nuQ5QRzz59/+Ec+/MOEzn/8crW6HbrfP0+09nHPcvHmbOIk41elRFg2zoqDVSri82Wdc1Lzy3BWe7O0RKu9QkEIxLyqcscRByO5wTL/dImy3sNoxnEyRApJQsFgsSKOQXrtNECoasyBWFqcNRik2VgceG11VPHthizRN2Nvf4/7TI0IRcmZtBeUMi6oBEdBttSmbGl03CCAvM0KjicKElU4H0zTMZ2NWuz3qqkKogLWVNkf7IfGS5tdtxYznM39hFH5z2qWMCKARzUkoqTWaLPe+h0ePD9jdGdNJEn7mcMKVi0dUTcHXnvmFT7xZP8lqGkOShgSx8sAAp3HS4IQ31OumxkqJjGuc8QebpjZYI8mqXZra0rgKYSyB0UhrCIRDhIp+2mLQTnFKQtyipiTLC5wQ1MYudfkaqXzjoCorhICiLJDSgzSauvESQgROu79yswV/AxbWES6DZYUAFQUI7DL3y5FEIYGxNMZT0wIVUOQaGQjyosI6R2NrIiAKAowVtFstH18gLe2exCmNihVxEFBNoR0pbCMxVlLlJUaCCtsUuYfEtFYkciLRlcRpxcWNZ7E2Z2f8DtXNpzzZvculrS5BX0JoGTUj1KzAlJJRpmgLCEWHqvFTwjKvUUogQsWiMLjKEkiLExFNXdEUjjgMKG3DdFEwzRvOnnuG8cGUOGnIi4JwvcvuaESoE/KpY7XdYSrmVHmNxmGCiiTtEEeKOAgxlWWte4EkWiUzho3uWUYHI2Z6gbY+9+rTXo21RJ02iYV5WVA0OVFQe4pdEEMtSFQLGzpqnSOEoJ92CQiRUqBWPWFDIKhdjY18rpZtt2lMSaMb7xldRlOcP3UenEXhp20/epLzzW//kO2dQ7TWlMWcoigxRU25/4RqdEBTTjHaYp0HBuplltjxgUtKibGe4maPKWdCop0vJJCOymRLeZJY5t59JK3yEyeDEwnOWILIga0xuoDGF1VI4ZE0LiAMEpQqMaKhaWrqqvTIeBwKH27spCIIwmWoKydEUOuOf6ZDEZD2V708ssxwdgm5cYIwjpHtiFAGGF3QLCZoXZLNZ+zvZAzWNqiqGVWdg60JRIhwI+oGVrqruFjjnCDUAcJqitE+Igi58fg6i2LiY1ZUzEq7Q6vTxxnH7pNHoCBvz+gnPdrpKtpq4iAiDiJWwojS1Tx/7Sq2VdLpPEskPv3YjllW8+DD96hyDwXZufc+QdRisH6RL325y2g8YzgcU2rFq+dP88MH237KNN7n0uYWb90/pLUy4MPv/YSvvLRKd7DG2TNbPH6wy6/94iscPh3y2itfYFwcUD3a5eqpAWEc8uTAS4HzomKxWGB0RZ5lLLKcdz+8zX/zO3+ftZUub7+5IExi/ot/9A+43F3wd3/rOf7X/+V/5pUr67zwmed5/Zf/I27+3rtU2YzpaIxViihJUSIgDkOapjnZm8eFRVXnOOeoqtI33JYFSBAEJ0UILEmFgDaaIAhwzvwlCSF8JNuzVi8LG4nWxvt0lQd85HkOcHIolFLSarV45dol4sgQxm1mi5ytc5ucObvHPKtYzD66fh03HwQBUZSS5wV/+G/+hJ/7udfopC3u3t+maXxR+fDhQ17/4ue5/sbb7O0dsL6xxu1b905Q296HKamq6q9411jGVgTLHMmyLP0UPopI05RuO2Y2mVMUBb1uj7qpfNPuU16/+LNX+cM/vc79wzlJFDAezxBBm6JccH6jR7N9AK2YRZWzc5RRY3j7xh2uXDxPhOIv3rrLa1//JUrT0G3793O6aEDBr/zyazgL01nGorTsliUzrcm05vqNDyhry85owS/+ws+z9+QRqezx/of3MIspG72Ei1vnCMIhgVKMj0aIbpuvfOlz/PN//vucXV3ljW9f58/ffof9gxmXTvX46pde5vvXbxAI+PIXXmBvd8hwOqXbb7P3eJsr584xno554717CNmwNkjY7F/g1Vev8eThI37jb32V5565iM5GPH26zzRqk0QxTgS8d+MDIiW5fHqTbhxjzTIHVnmiZxgFrMWKz55boR0v2J6P+eZbbzLodJkWGav9FV599VWSNGXw868jS8X4zju8lDo+yOYc7taMpKEfKvTBHoPQYbWl3+4xzec8fPqQVhriDGR1Q39ji8tXnyeNQlpxjF7f4OrmCi0nUCt9iCSmEgSxZBDHvPIPfxWbtNi8+ZRzp/v8yb/4p9R5QeV8JqtdehBnszmeF+PDyHu9Hmka+2zWuqTV6yKBbr/L4dERK91PaeJ1bvMsg84a06xmOJ6yKHNOtWPisE+aNMStAamFWx9mjOyYidFsP97n0eM5D57u8+BgyizLqeuaui6wxpN5cG5JvvFkqjgJfXCns6x3OxSV7+gmoULIAG0NyloiJXjxmYs83d4HIZguMqyFSjecXukSqIBG11hjyWvjscXO+wiaRpOVBcIJnDU02k+txpMp40nO3Vt3uXj1KmEcs5jPWSwWVGWF1pbYCe4+fEpRVv7iWGvyquHC6dPUtYdkBMIRKshmFVEUksQBT4/GWOe4dKZFoARPDqYMZ3PWBl0CpXCuQSwRwVr7SZkQAu0gUIr1lR6PH2/T27qMbhouXdqiFQme7k4YT6ac3VxhPq+oGk0SxSghEQ7fCdQa6fzrD9QSbeu1N5RFwWLmOBouSJRiMBgwms5IkpRQZWjnKKuaOIy8zM59VBr4PCpLEIRIqZa4ZqjKEtUSWKspy4aqNMwP9z7xRv2kq6pqWp2YKA2wtgKtcNY/L8fypigVDSXWSqS2GGuxNkDXBUqmIB3GNARSEi7fO2M0nXbMoN/iaDxiOCspah9OjBIETuGAui4QgfJTMWMIVIg02stOAKMExvm8IhxefrUMhz1Ga/jDpfd6OQEsKW1CegBBoPzj1hjvB1vKyXCSoliCFxz+YMwSGiICmuM9piQWCdJRNxqpjj0tEtMYrBboWkMYUhmJnuX0kpSkA2knJgpDcl1R1w1xLIlTQ6WnaGPJcgsS4sBPcI121KXFidD7GowikBHaSKQMEcrR7iSk/TX2ditq65hORiRhSBA72klEVWtCFeAaS14sWO30oJ6AiFEyotvpMc5r5gvD6krsjbMGhAyIWhGiUaz12rjKobViMlxw+vQmRhvOrp+ibWOe7tzGUHPq3CdPp/+kq5cOkIQoJ+jEXRCgfLgUTgiCRKKcZCffYbGYsdLbJBIhMZHfQ8uCq8FXRYGMMPjJNNITx7JigWssURRTVxVYQzuJmS1q/uDffJvD8Yg8KzB17Q98SiLNEioThtjMw3bsMo/IHHf8xTGmYjmxOiG1AdYilxcPi58ee2CAOfGChWHkd7w1SOlzgoLQTyGN9pOmYyqoD0MGlns+VIoaMI0+mbIJHM55QMWxbAu8zNDPmpegm6YB6ygoSKoSlbQQrS7OGtCVH1kfo0vCiDCOsU3tPydaU2Q1umhIV1JaUYtyNkTYBhm1sKKm0hlZ7qXIk2KftpLMxkesrJ8hCQbUNqfMckbDA6ILzzAP58hQIVVEu9sn6bWIhWKQtDHCkZUFCu/JLIqcUpdstldRoSTPpp/eZl2ue492kMEpttqSuqxYGEfVCH584zGD3iYyinj3g/vsPt5n8wtnOTwaUuQLXjh/hjAJWF1fR6FQSjEcLVgtSi5urfDk8S7dNGQmDFE85v7OmJefPUPmpmwlG7x3x8NEisIXJcYJFkVFrTW74wU//Mk7rPbbRMrwq7/5n2DDLrff/RHf+uPvUVeaOO7wzLmIUFtPP17UNKWhlbTBOcqiJC9L0iTBlBqLxkofF5KXeCInoHXj/VtC+ByrZXHvlhJEcDjJUlHByfdOPifGwFLBIIRDGy/5dYLl/cjS6/WYTmcnuY9RFNHvthHCcuPOfbIqo8o158+02VgdgJmRZ9XJZOwYL6+NpWo0vW6XeKWHwLFxaoP3P7iLMZrNU6fp9jrs7h5y7bnLBEeCxTxf2tQkcdJCCuELqsCj9cMwpMnzJdTnmL4IxvjXaExN0zTHL5ylc4S69s0I+/8hE+mTLmcs40VJt9shMg1Bb8CTpyOq0rLS77ExWEFPRjhSnKv48a198umcq2dOc//xNqrdYTIryQvD2kZCO43IixEHwxFnz2wQxgFOZOwe7NMZrOHyjMlsykpvlVo79uYlZdOwefocR8MFN9+/yblTa7Q6KTs7e8StlEePtynyErfaJ2j3MdoQh5bv/uhH1MS0lOPcWo9up4MQhvOnt9BNQd3USCzOlJxZ6XHp7BY3dc3RcMrPv36NdrvDfDLn3sMnKKm4cHqNRw/uEscJB5M5IkmY1zWVtbz86ktM9/cJlaQoC8oqIggixqMJURSRxBFSBVy+sI4IE8TumJ0nYxaBYNgYqtGIwZ3b9Pt92u0ek8pQzsYkdcOKqalVRIRBqBjrWjzdfwCuQdcah6NUgqRUSCCJu1w8c4nNTp/Y1HRbKfMFdLodskcPsGFIEsceY7+6QdnUBGGIVoqgPKQbhLQ7HUBxNg44HPtGedU0lFXJPM8QQFmVuInj1MZVyqpCSsV8sUAJqPOCdPkzPun6qQqv8TymLiZoF5LEKwzafRZFhpwPaacBj/crtFU888w1DoaH3Lyzx/vvPeDDD/eYNw1lWWC08YZmIU86rtb5IMymscwXC1Y7HYbpAtuk7E3mnFKwWOSc3lxnNB7xykuf4+H2Y6yC6++8x+b6CuPRFARUdQMOoiDGWE1jBfO8QUroRRF6NifPK6zzGQ5pnNDq95hNFsgwYVaW6Lrh1q2HbJx+g5e/8DrDvX3+/AfvELZajMYLhvsjWknCJM8ZtNtIqWinCU93dojCiEobFnnB1TN9ZlnGmY0VjHHEccRqL2E0zdA2Y2eywCEY5w3xtGR/MmfQ7bBYFHQ6LbZO95lNpyStgCRNuHhqg+lwyGI249zmGvdu3sJZw9rZU0yOhpS579xkjaalJFk+w1gvcxRCECiJWsp8hIA4SSiLgjjyB1/nDHXVkM+n1GXN04NDkjCmFSfMC+/HUyr4S0Zf3wl01HWFUoHvKDtLUfv8lrGQZE3BrYe7/L3Nv/aJN+onXdoYpDWEiULXkip3OCN90RFAjSYJBFErxmAxpUe5L4+5xGGKTCShEMSdCEVBXlviKGKlmxBgOZyWjArfsVc4ECGm9hMW3WhK52jqCoSgMj6/KgliKqP970T4i4q1nsCJCAGNdcbTC/FTLMeSXqgcytd3yDAgjSJGixznFFI5n2lkHXllfQirs1gLwgVoZ0A5wKC1Q+GIpSBMFY1pKHIffFlXGuliwlBRNA3t1iadbsR4PqNxAWVQomhIOpbGCbIq48bDD9g41WZ1y9EsCpSMqWpHXZeUSpOmDRdX11mIkv1OQ5QoZqM53e7AQ0akQwlJVmmCJGQ12WDn6IjANKSDFUy+oJYVnST0vrVG0zJtnr30AsOHH9LqOrLFjH7SoUwrplQ0SpASUUpJnS0YtBIqLUkChzESZxTz6Qzljoi7EWV9gDCSZ15ep3VaUKqdT33PtmS6NPQfxw04ajQQEB3nyNEQhyn9jQEt2V5K7D4qDqzziHElJQZDXhc0uqbT8uQzozUCi7bQSdoIpXiys8/vf+NPuPPuOzitvdfPGNANTjtKZ5FhRNjqAYKmyDDFwsNchFpKdD0h8RjPfryOvVS+a+P9LmYJGDAnmUMSa3x+lXNevhsnETIMabCoKMYajZTGT6rtcpJna5yzaF0D1k8NlnEax0TDY6iG46OukbMOK/1UDuGzzySa2XRIomuS7gAZxrgoxtUNYRKDs+giIwgUYZjgFnNspbn71k1aTvP6z3+OOEnpXDhHIEIOh7vsTh4zyw4xUYORikGvTVApLl1+hU6a0syPuNx5kTAYEF6IvedtWb92Bm0qrYlMSK/bXRabAWc2znuplzbEWZdsNmU0PKSYL1D5p5+J1Ol0mUwrzl98jh//6E0wgihd49HT2xzEC27cuksUBrQ7PeJWyldee40//rPv0o46BEpzamOdyTzHOocSmvff/AvOnLoAYcSrL1+jNhkraQvnJFU1YzSUfO+d6+RF4xsAH8tuK8uKKA5RQci9R7v80298C2cs//sf/D0OJzl6VvHay1tIFZCLmG/98Ca9hxOcfIGNCxe4+uIL/N4/+99QUlGV3lOV5TnOaE9udI4gDInCCN00qGAJbBFerlqWpW+YLil/gfR5ckp5b5THXfnGAXzk6YJjAIxvpiF8JqRaese8X4yTaVe/1+PS5UskoeA7338X4xw7O3t0uykb6+vkeUU8i6msxdjq5OfEcUwcx4RhSKeT8NW//vMgQ358/W2kkty985A0Tbl48Tx1XfHMlWd4970PCYLIByFrTZokH+XcRZHPS1w2WY5fl1nCRzqdDnm+OPGoWedIWi3qsqQ2higMyZaF86e5dp8MOTvo0VlbI5svkDLh1v4Bg3iVw0lOJ1H80mev8Udv3qJG8q3rN2gnIZVsMZtr+ibj//jWdVY7EVvnTjOfjhj0U6JojUePDnwjf17waD9j++AeP/vyNepGcnf3kPXNdb70uVc53D4kjiM6SURZWN6/+4QEQdoJCWOLqnJefPYKt7d3eOvGfZ65fI6vfOFl/uz6HZ7sH/Gbf/M1Xrx4huvv3uK3fv0X6Q1SvvnHP+Dqc89zuSwZT3NOXVyn1YvI65pXX7nKl1//Aru3HhLJiHu3n3Lu/Hm+9e0f0e11ePBkjzzPWVvp0046xAEsJmPa3Q7D0YiVdodKgywsvc6Abq9NGFiEcGysd0mDgLMrEb12xMPDnL948wdsbGzyZOcJp9stTr34ItGgQ/VOyYu/8w/5/MYpslGJMjk/+D9/j4muGLZ6ZI2mETUB2kPBgpjVwQrPhgHPntkiqubYYsb9795kdeMCvPhZ0jOX6KnzHO48Qtclot1l7bWfw8Yxwmk2uoZdStZWnmU0u0G2aMirkkVRkFcFAL1ez0tgSx+NcP/xI7rdLoNenySMGI2GdNsdkjhmvlh84r33UxVej2eaFdVgnUZVC85cOItp+eeGAAAgAElEQVQpxswXGiMCVlcHxEKQZxpnAm5/eJ/hZOGDio3z5u+6WXb0LXKJYvUkH0/d8hjh44uSZbXXZv9ohBCWyWSKczCfjynKnDiMMdYS4iUyRVURRxFlWXkylRBUyywXKfGmT2NRiSR0iqbRBMpCqf2UKAkRUpBXFdpa7j94zOmLF7h/9wGzaYael9QabK2pqjlCen+Bc5ZK+4NCVsxhWYAcLWpP4bIWZwVJHNDrthlNFhjnL65CBeAEdaNZXVujyQuc9fLHTqvFdDIjkIr1QY/+oE+atohin73TGH+AmR3t4YxhVJb+cevpQThobIPRlihJcLXF2IY4jDBGU5WOKIoZz0bopOXDRoUjW8yZzuc0xjCaDz0+XyqffXN8gHEe4Xvi+BIsTcZLqVEUL/1GMJnMmM9z/sU3vsN//k8+8V79RCuKAqxpwCnfAUKjlh6RQEWESoAzRFHgwRvlR51Kh0NKg5KCQEiC0CKlPzhGUYgUyr83KkQI7ffx0mzslvvCOuc9J8b7rKwve2m0RgmxJMs5pMAflJWiXt6wj7+OyYPGOlSwNGoHPsDYnBx2PbkSfMDyiXeA46P40tDtlkZu5zPAPIYbXOT8GEB7Xbj0tZ+/8cuYXjskiWG+ABE6rK0pGwNI6rIkSRSNc6BAW6iahjBSvostE4SWYAXdtIMoBIlwlLMM1ZRAvjyo1GgDlXPUGDppTByHXDy7zmheM55UBFaRtAxStmjHLVwRkSQ9dmYTojREhwIdSQYrCfFhiQ01qYtpGn2SQxZFMVVliVRKVi4I4xgVeGJgXTYoG9BJBEksKbT9dDcsEDq/F7UzNDQn089YSBQOJyzKSfphH+GWsAwh0M4XroHz0x/l/MFI42WtKk5QQmKcIYojlFCksk0apBjbMJ+XPH28h8kX/vdReTR3oxtMrbGAw4cpyyAhSiV1mfnrxseKLIH/jJw0sZe1jhc/Si/pXRqzAcIwpK49odApn2l3MkFzzhdbVYnFYk2DMA1S+M+nNRZdFoRhiBDKN/SQSOxx2tfHwAX+WfhJq/d8yuUkIAiCpWfSH46drrF1hgxiiBJUFGKN9oHsuqaxFiUCsBqDpswMtoqwlcWqhrpyVEbT76yQBDHT8SrDxS5ZVeByh5QhqQxoyorI9VjrrNDqbxDECdZp6rIkDALSVooTEEbpEh7RIITyjRSpCCLBIBjQbqV0V/r+ulN8+mzuq1cvsrezC3Gf24/2GR3OOJocsSgr2nHKqY11xqMhKkqIwy4vXbvCu+9/wGyeYU3Bua0tsrJa+rQKuu0BH975kFAYijynKEo22i3On9nk/uOSw4MhUZiQFzVBEJxI3qz117ZAKTY31lkUFf0BDNbWmOcxRbPHmXOXCDji0ZN9pvMRr770AusXP09gE1QY8eGd2zjnWCwWJ8UE4M8r2hMFoyg6+Z6zH4V3B0FwMmESwvtvP+7zAv6KNC8IvHJBCEG4pGpaWHoVfa7d8f/fNA1RlAAeugVQ1TXaSHZ3D+gNVpgvCiaTBf1+h1lWUezNTqiCx5LG+XzufWpZzs7OLoPVDXrdPpPJk5OicTQakkaKV165gAruEoYWbQwKTqZXx/lcfxkIIk8m2F4y2RAEgc8cW07rmrqmrv3vLk5i8v8ffIm1NqytDxjNpzgn2FztcuXsJsoJ5tM5L195HoXfS1p7ymZeaO4+3iMJAqJYMdrZo/vcZfKyJorSk6btZFrQ6a9wONxjd3/E2uoqgdU4rTmaFcRpjqi3uft4h62NdXoXt/xZbpyxduECj3cf0OvXfO7FZ6jrglOrfR58eIOXXn0RF6ZU2gCGixcvsr7eZ31zzCjLaa102T2cMNiYMl9kZGXDpNQcjB5zan0dh+B7P3iLjlNI19AKAnRR0kra5IuSF5+9TJqmvHn9LXpJh8W8QGCxpmZtfZ1OFIOuEUEAgaIoS8JORBSHxN0WG0Kh9i2roWMcSLLxIZPRiMN2l/naKjL30SNlM2X39h2i7T22XniJ6cGC7PARYRhwadBj4QSLyoKrqfI5Udri/NY56gc3Ke/fZPP0JnmZMV5k5P2S1XYLU2vK+T6DU1tkeUbQ67Ny6bK/zgPONUTtNqcvv8RRPsYGksI5sjynqEsf22H9ea3b7SCFJAgD0jimrismTUWn3cIZQ12UpO1Prob5qQqvaQO2dsRpzHS4y+5wytlnrqBjSUdF7O7MmA2H3PrwEaN5we7jfaZFwzzPaLTx3SEpPbHLObRuPmZCBWRAXVW0ooR2HBE6yelOzPZ+xdmVDuOsQinFzsEhoQwIwhBjDE93xihp6LdblHWDxfuZ1npdRsOK8+fOsre3j7SC86dOU9U1k/mMXichjAIm0xk4jwzf2uhx+8E2QSAxDjY27vN05whhNco25HmJrmvyqkDiWGu3iMOA2093McYftM+s9hl0EuZlTRyEaOuIooBTSZ+41SfJNNZ5elcSSlpJi067xYuvvMDd2/c4PBhh64rIaKxuEFIRC6gXY9ppQFbkzKXle+/dZWt9g4PxhEG7zeraGnleMp3O/eFZLA8j0o/0LQ4FZHmGIkUKP0HpdGOstewejHFFgZTKe2q0QwURVVMAgiBYegeEPLmZ+JsGJ/jnY5PtovCygyhQaCOQsuLuw6efeKN+0tVpBQg0zlVI4ei0FHHSo9tKWB2cZqIKZot9ML7AckvShcF361qxpLYKqUAqTacj6XfaNHXFIlsgZcA0yygKHz6s8fKQ6mRvSxrjfJCtdVTWZwcZYwnV8gAVOpwxf8kbcOwLcM7LcVUYYI0/0B7fxqWQlMug5TBShEFInvuJXaMdtW0IpA/Pbmy9lDoqauMnZlVZ026HyBDCdkieZ4QixAlF7makUjJfOJyraUWCqqlQQUCUQL7ICWSbJAlwzZxkNaRa1KytRsyWstxOqgi1Y3XlFKGqaHUiZuMF2mhC2XDp4gqLvOTMRoioJItFibGOsmnIZzNk39DvC3oDiRGa4aFicug4t5lytJizMog4PHjMTeYkgwFdKXgynmAxvPTal1kUt8j1nLby+vCyhiR2BEowGWk63QYba0Z7c9bWz/ipmwrRNmO8mFDWM0L56cM1Mlf4z5eFkGhZruBhGKZZds0dNRbjDKEISGRI4rxEVDuHsGY5WZK+IFMKi2FRzXEWoqhFLCNiK9F4D+hwe5/ZzhPcbOQhRnWJlSFG+PfPWIcRHrpiJIgoRimPcnfCHz6P8+QQAqf9AVQuw73jOCZNWxRVTtPUXqYlBUmaEsfeqFwUBSylswBVk1PrktApkD67MStyjDVY95GsGeenP94X4z9rH/fPuGP57lK+rYLA/76FRIYBURB6mZjwkzLbNOgqJ7CeLCeERFclTkJgPE2OEJwKEUh2tvf4EXDx4iq9fosohUAIOmkHay2tuEci2tiWIWmlCOfIq5IkiVlbu4R1UGpLGjragwHdgUBrf02STiylxMvASeFYLGa+8dVo0naLqio9nVEqVOvTl8d+9tWrvCsaDg5nfOVnXuD7b3yfSFv+u//hv+VwWPC7/9f/zXS4T6+7QlWk/OStb9NJ4eHTISsbq/TXNskWY+p5RtWEKLVGEh7yK1+8xoPHu6TJOrdu3aVyinfvTHn1pS3WDjV/8fYtiuWE6dinZx20Wy2O9vfZOnOGo/GEjbUuR6MRv/Pbv4mua44e3eFHt0ZExvLaqy8Q9CwqU9haI+GkgXsc/muMQTiHk5Ikjj0iHgiDgDhMPDTipJHscP8PcW/2Y9t13/l91lp73mesc2q8l3fgvaRImaRkSZZadnc77aTtDgSkHcDpdNJGHAQIECSNvOSvyGsC5L0f0kYDCZx0hm63Ybtt2bIsW5Q4iZfk5Z1rrjrz2eMa8rBOFSW/iQHY+4XTrSKqztp7/4bv9/O1V02Z3Zy5z2S3bnM/SilJ05TVakUYhz7oW0jCUGGcwVofAWOsJVQBMpIbbDtEYcjWaIv1csWhKjh+fkGS5czKOfO5IM9TVsWM0VbKcrGmaa4aQ8XFxQVJGvOjt3/EnTs3ePDoOTdaycNPn/Pwk0eMRj2EUNy9e4fVfMrh4RHDwYBH0+fXvrS69s19EAQ/s92u65pgc4+FYYS13jMWBAHL5ZIoiq6bZCklnW6Xum3Je90v/Mwen89xSpEmGdv9nO2O5Nuvv8yjo2e8+dYv8vx5yXufPCFNYtazGS6McA5yJdga9Pj45JgwUBQPnhBYw9/95pukDvJOTjdeMzk75M5+h71xj8Y6KmOprWW7v8Vut49tVow6KW/eu8u7Dz6kt3+XdW25LAsul5qz2SW3DvZQyvHSsINZTbh/6yWaVpKpgLs72xyuCu7dv8Wz0zNmFbzz4RPSfo+Ti0vqVnA+mbI2mq1EkYqWk8M1qIBUtfyX//g/4sc//oDLquRiOiHNMvqB5GI+Z//OPVarkkWtWa78WdcnBmcN/SggcJqvvHKHrWFOr99BOMn5yQV5FKFkyCCB7dSRSEHRtBwtpyybkj/+w/+H21nOj/7i+/zd8T5bOzcJk4wsH/Kj80PK6Tm/uHeLW1tjpqGvK/NMcjw/on0w4csvbZMEFjl7QVDVpJ2MdDTApjndcZe8/xXm7/8Vcitm75tfItwegp6wvniIOf2YbtAjHezz1td+le/92e+h25ZBv0/dbsK/lb/ftDZY2xBpSaQkBzduUKxXOGtIwoSs02Gy+vxRMz9X4wWCRWnI4pBH8xK9XtG/sc9icUFVdmjCDueF4QfvfMx0VfP0bEW9mf5f6+03oa1skKrXieyh3ww1xqIC/zITUjBZromigGVVszfsMy8qokBR1Q0Ih1RePpUnkSfROYtQgvNZQd1atHPMlgsq3WCEI45DTwtcK7p5TmsFbduSJRlSCuI4QgWKMAwQSnB6ek6xXuKco2wsutUUlZ96WWBvd4eyWHuYAoIs8ZOw8+mCbp6iQvVZkHTa3QQwQ91orDGM+12MtazWJY8/eYZtPR2wG4XMppd08pyirBBooiBiZzzmg598hKsbtLWczSY4Y6kaTV96KpeUa2KVczXtdc55jLxzqDDwMh9jEEpdE71UKOn2uiSdhKePH3Jycc5yXWLhugi0xviwUiHR1svgHAFXHLMgCNHmyq/hEMoTKnGCMFDkaedzH9TPewWbEGSukbyKndEBdbEijRLWoUYI5TNYhCNgY4myDoTdbEljrK0JQkHeSdHaSz7a1m+5pFQEgaNpjdfxXw84fePlKWle62+Mu5ab+M9Eep+hE7jWE6D8VJvrjYBSAhX46by0AhUorBX+a+VVwQEqkAjhZYVuI/fCgbFms73bhM2KDepbSA9FkPLaF2NxWCNoEaRSUbeGRjc+08ZaH+vQWh9CjpenCjz1O+1G7I37lM8bRGQY5jnFZUUSSg7GI0QIZ8WCdV0SpwrLmk4vw4kSr/by0rMgEIjGkGcBi9WctkkIQ02eJ5RrTVsohFNEIqQfdWnrCmEVSZ7igHXZ8NZXfp3JvOH5iw/RYUDVtgQqQsqr4GpF3VaI0GykQpaqKIiEYNkssIs5QaKQrfpiDyxQ6ook9NupK4qlw4OGwBdzrXCEKGKhiGR8XdA5AVY6MMaTLL3pC90YmrbCCsjijhc7ObexYzmssEhKX7haA20DusHS4qRHuhvjIPRZWsb6jVMYRljTwFVeEIAU3m8ouR5kCOEzCb03S18P3aSTSBUQSHWdy3WFvgbAemKhCPzvoqlq7x3RDofGE1X9BN5tnnfXk4nN5YS4uhOv/WZSbGiKShJGEUkQg5IogfczCjZjKkBEEPgtGW3p8eVCYhDEac//1M5SNQ2TsxmDPCMLcxyWxWzlCYadrv8olGKxWJIkCVEcEEUBctChrc2mONdUy8I3sDjMJhQ4STw62Ri//QyCkLqqaavKb+qUJEkzuHbAfbFXW0tOL88JlSVDY4s5Wzsj2qbGBpaqbUAIht2U6WJBazW9Tkjaiah1y+Hzp2SdnJt37vHStuH3//hH/L1v3CUIMx4+mzAeCBaVJM8iKt1Qt4o3bm/z9GTOo2cvsFJv/LoSjSf7ntU1rycRd3Z3KNclofRqmR//8BM6SYG2LVEvRSUdylrStlOWK8f88oLWWE8TRqCNRnGlWBC0TUscxJRuQas1y6pCKR85UNcNeZZT1V59gpIYqzebML0ZTHAtjWzbFiklURTirMYZgwpCaLxfVyhQUYgKAu81UR53raTAmhbXOtbLNUEQcn52RhiHzKZz+r2MXrdDEHUI5CXt1QZO+TxJ3WrWbcvZ6TnnZxPG422KdUG/3yNJUrRumM9X3LxxE2M1p+cTtNF+Q2z9MPAqQPYq2PmqmboCcDTN1RbSUNcNYRhylT8WBH7IrtuWpqpI489PiPvcl3PUdUMgYbleszPcYbI8Z3u8zcHOHv/7//t/UWi4u7dDWUR0/QuSG9sj+t2cD48OaSpfEx5ernhyOqerHLfThO1xn/HuFo3VPHx0xGhryJOTC7Rt2B/ucjE5pzcc0OkNmCwWaBkiAsVwa8RHDx8zGo5Ik5QHnxxxY6/HS7sHzIuS4bjP5cUFb/3CKywWK2bnlwinECJgvpgxmS64d2MP09TMpppIhlycXdA92MLZliTJWaxL7r92F1TMs6MzrINbt2+yXC355Mkxi+WC2y+9xMV0wbJcs1gsvKQ5SkiUpELTSyNOLqdUZUG7nJOnAa++cYe2aVmtCrI4Ym+gSO0Zrq6pVEBTzVkXJaNb9/n6d36TzuiA1XLNdhYyHt7mV37rt/i/f/d/5cn0jOl6QZAPUIEgDRW72yN6vSFZGmHrgiCKSGVIONhhfHAL0e3Q2d9BqphgJ6M/HGI7EUhBUxTU5TmuaqgXE6QYkve2WRUVl5eXtFrTGu2JungFxtUSYV3ViEBxenJCnmVEYeBtSk3DdPkFNV4Xl+fEccJ6OqW3s49pWz46q0GEzDWMdrokN16le+dDnn7wmFXp19laa+8/cA6HRYYh1mxerirw08iq8vpl47wEMAx5cXpBHis6SUo3iRj0OwyHXT55ekpd1/RUl6qpGXRyGu1dEJ1uj7qsSKMQISVb3YTFukTKwBfTUoN19Lsd+nmXF+cXxGHAVi8n3Ey5tNNg8TrmQNDLexyezymLkuV6jbsyu3YS2lZzfHZJlqRUZY1wCuug1/GhkUJIiqpFpYLtbofz01POplOWRYUQkq1extPnR4RRxsnZGd0kIY1iRBDw9PycN16+yfP1kqfPT+ggOJwsKAwcnc3o97fQ2psQ50XBQRDRlhV5GFO2DY1ls6XyzaVUEmy7kaQJ9KbIUUA/S6hXC9pIsLs1YDIt0faQpjVYQIbKSwqsl4heTZPrymtjlVII6yEbBFxne+AcBwOfli7NFy/bktY3Rq4RCNEShgFfeuUtfvLgbUozw+iCSGlck2FsTYAkJKB2LdoY2rplOLyBsS313iGnJwusUHTyBCmjjXnYIIUlDBS6bQhC36gZ58ESXjooiQJFIP1Lx17dExu5lJCeYiXwEjMnLdZ4RLaSAmUFRWN97haOQAis9QWksR5yUBYNcagwVhEEClNsvP/OYTa/e+s0JvS+gxZHpC1OtKwXl7TOEpFQN7BoG9KBYb1oWS0XDDoRxkLrIlg3NLZlZzthOb9Eap8x0+lFdEPBN16/h21KArXFqfiARhtUWmNthHUKYyR37w1YrWacX85I4g5KaMIoRiLYGfX59MWculrhTM35+QQTaqKgw2S5ZiWG7O70ScKEaKekljVPT45IsxFRqlisDX/+J/+C1bKiLQpGnS2mckKWZgjhhzs3d/d4cvaMdDfny1/N6cQp1cqwtguWpiCXIWkUUzVffOPVDftsaCBemuN80x053zQIESDwJnaHQzuNMz4iwwlHK2tW7YpIxqQyR0lFFqakYYwUIdaCtgUNBi0tk8tDlssVv/DVN/ilv3vI7/+zj9FtjdHan0+99n1V1EFYhTYtYZwgIkXthiRBynzivXDXHqqfkR4KhPDFXtPU11uBKIoIg9ADDDYbhKvJeZIkRFF03VBao6m0z1pxZjMksA7nNEniJVceyCEw+m/4y6Sn2rKJCVAq9N/H+YDmQErCrIsIY7AWY+cEUiEC5d8bbYmzAuUsMukilSZoPEafUBFEsW/WdIMxDbPJlMlsSp7HBGGCUAqUz/BTgSJOE5q24ezkwjd9WU4QKETgi9bl5AJwREnCzv4+cZTRthVp5qNBWq0xuiVLU5LB4LrhkJtCmL8hbfsirmq9ZrEoGI3HfHr4iMFoSDc74Pf+5b/h0YsVy/WSuy+/zM54xNPHj7m5nRJhefVWxuWq5MXJCd/4ypcRtuGf/R9/zenlnN/8+7+Ari1vf/ARv/0Pf5nvv/OUVRvQiTKKyZoiS9nqBEx7GWfT5bX3WAhJGkf0kpSPnzzhH/36N/nrdz/m1ds3+OAH3yNUIat1wRuvv85LBwMWswnPLo+J9r/CerXE6Iaqqrx6o258qP0mILnVlW/Kjbkm+8ZxfO1rSuLouuHwgzZNuBkq/zRi/mroHEURvW4XTMPtO/d5/vSx35BmGU3bEjiwm41tksQUReGBNsoP8spmiXENTgiiOKSqGg4O9v1GSih2txLMnV0++PAFQRAQBj50uTY1o+GAwWDE/v4O08mE/iBCSM30cgoCPv7oYxaLS/I89UPGTUP/s3JCv8m++n1JKa/tCEp95q28yvtSKsIYQxRF3vNc12RZdr1B/CIvU6zob/Wo6pr+zhYPjy4IaHlxNufweMYbr97iYrJABQYrLMLArZ0hf+u1Ozx5foxEYYXGOsm7T15wtFyBafj1b7/Jb/39bzFdrtFly727AabSvDQa8vXXX+GH73zA1nCA0S3jTsp6uWJ+OSHpjfnBu+/QH/TJkwBrauZVQzyvQZ0R5F3++gc/ppOm7GxlhLai0o6//OGHtEYwX9U0RtDpdhl0tlFJStLJsc+e0u0NOT0+56tfGvHx0Qv0suLP/+C71Os1QdbjvQ8eMurlHAwHaARN5ZtsJST3X75NEoUI27JcrHHWeAm0czSto7ezzXirQ1tZlrM1RrcoJejlAb/y8oBp3eNHx3NWTctivuBsOiPZ3sZUCypnvA89sHznd/4rvvNP/gv++f/0P/Pwhz/kRq/DaLyHrGrCQGGjmEKAjCNMltHd3kd1xrj+gIN7t0k6MQ5Hnv8SYaAggPX0gtXDx9hqzdMPH1GrG9w6GPJ4NufO/Tcpmobj8zOWqyWShKr1EBi7GVSEgcRonwdZlhWtjji/vKRpG1/ffc7r52q8GieIwoi20QjlWDcFgauRmcSUa7KioShKuv0+t+7d4smjF7RtvTG/uuv3gW0bNjXnRuuvcdYghScSDbTX5DspMNZRFz53QgU+6LJq2utpS6/jZRXPTlakUUQUBjQ1OGd8k7haU2vNsNfxWVpl7elwzrKqSqx1dLtdVOAlfNY5pFAoJVmu1uSrjLLyU6xVY0CsN3AKQRSGTJdLVkXFII5wOIIoIQkFg27GdLmmbmrSOCFNUqaTCY0xLMoCbSxp5P99YxzSWmIZoALlKVlV7TdS1iGkpKoNTy8WXK7WKBWglKSs14Ck1lcmc00nTVksPebWGIuSFh/K66EmSRhhjS9ghJTeu6QcSRyRd3KiKKRetzTlfPMQ3Uz+rjTiOI+q3hxMB7ifeqlc1TtXXxtKSSAgDkP0vwO/DNqhlPdPCeeniMvVhNbWmMYXMIPOaDPg9+h3gURJh7WauilJ4xzrIAzOkdIRqQCrLdY4tDU4B23T+im6tRjd4owPKb7CaDsgjr2e2lpz7QW4ol55MLbFz7MdOB9+uREXEYYB1JX3glnvtvH6ee1lYW6DGRYbzKtfe137W37aq2Ct978YYyBSKBkQAdb6TDKrwTYW3Rh6WcZ6uaLZgFWcZoMirqnLhkjFqEAQBf57l5UmThuEhvVigoqh20lgsyH0UBOFUOAU7O6MiFRAXTZYJzBu40NMJHXdgAvRrcRJQWs1lauxqUXGgvlyTqs1SEPaTwhyRegkibGcHj9EBClZrmiKmlRlaKmp24IglKhE0DpHbBzJVoLTjjTNaSpLmmWErkWUivbz+2c/99U646OS3WfnQ+HPmo8QCMHpDaXSoWk3TZd3EBptUTIBJFZAKATChjSuoaKi0RqtC4IgZDlfsV4s6fR7yDAg60Rg/IDFbU6fFX7IIjC4pkEo5Y3ztQWnEEptfIifQQ58/3Ul8fMBytJs8rScJ6v6Sbihqmtw5npbhvNnUWs2mHiJw4fLrgsv6VIBSKuutwdSSpQSGMO1uwuuitzP/qokxKFCBgHaQJpk3kNjDE74DUeUdfw2P5CbDYXEtA3KWqyyxFEHETQUs0tU67dfcZYTq8D/bFFMVa148uSQOOqxt7dLm6YEUQDOYJ2hqCr626PrDXcUR8RZglKKqmwZjfokSRekoCwKPv3oU7bGQ/qjro8UcBZrDetlS1vXGBydvOM/7zj9gk8svP/gI04uFty716GtC6IwYNwL0dLx5f4dsl7Gt779Tf7wX38XVMSNcc6PHjxme3yPF2cfMysr3nnwmGK9pj/codPfBqEIwoBKW6QUHnAhYrRuGY12EXGHTgydPOZ86vOOrt5LVVUhnCOKY97/4FNef+0e7z58Shx3MK5gvW7Y2x0yuTylaSqGN98kSbrESjI9PyPNUtqmJgw9LMpsyMfOGS9B3Jzfq8biurloG+L4s3ed31J+5vn66a0Q+OdzmiY0pSFQAaPRiOVySXD1dVKC9J5gKRVpmlJUDb1ez79jJZyfT+l2ezRtSxxHHB8fo8KYMIjQbU2v10EpRRiG1/JGnCPLMs7OLgjDkNFojLGWs9MzlEpIk4QojhkOtyiKJeu1h2M0qv0bAA1zrXLxjZX6KViIvX7nXPnT7Gb753HzAf0NMCaKvvgIhBsHB1TtiiyLKecT8jQjjHqYNuTTi3O28wEPlse8ekl1pdkAACAASURBVOcl3OmUOzd2+NJL2/RSQb8TEipJotKNUqvmfL5k0EmZLmrCpEt5PqOfR2T5mOdPXnDjxjZV1bDVz7lxsEeeJRwdn6GdYzjoc3x0QtNYIhlwa3+X+XTK2ckZcrzF2fmMfn/IyckJv/LL3/LvATXm/U8Oma2eE6gY4QQXl1NenE2omi6T+ZKyWHLrYIcsitFGE4UBunb0uhE3RwPWVc3jywsKXfPGK7cYZzGdLETLgEtdMOwmTC4u6A8GTOcL1osVr967h3CWoqrY39/GuYAXz87JlGDQTVAq8F5ep9nf6hMta7bDgshBbzSis7eDWZWs1s/Ib95m8uKY/iAhOthHBAH/8T/5z/noS6/y6K9+QG9wwOjlVxnduIlyivOP3ydJQ/L9MdnWmM5gQJinqDz28SEOgiT2oL16jp3Meff7H3J5+YSkbLj7tbuswojhcEza2/NQP91S1zVxFF8PUbTW15tZsbn/qqomSR1xklA2Nevi8wNhfq7GS4aOejUlDBKwMM47BFlO0ZYI2fL9P/0TXjx9wYOfPGSxnKObxhfqwjdMwoG2rQ+1xEMCnG42sg4vqRoNeggZcDpdgEgoGi9RyITkcuFNzd1Oh/lqyUtbQ49THg95+Fyz1e9iW003SXHWYI1mti5IswxnDUWhqRvNMPPNVK+Tk6cxWSfz9KLNBAYBYRTy4nLCqm5YFzUqignYBHDiSOIAqQRPT87I4oiyrhEqZLqYcmPrgCRJ6FjNYuG3LDIIOTw9JwxDLpcNgRSEkeDh46e01nKwNSBLQ5IQDo8XBComkjBZrhhsDVGLJdO2oWhbXtrdZj5dUCwKwjAk7/bQxlBWFW3dEkcB66ryxVEcEIQSudFVXyHKPYEPhAeJ09QN5WpNFkbs3dgn/vip17k691mDjH+R+KbOXPuNrl4mUikvacNvQKSwCBwX65JwM0H5oi+hY2Tg9flKgpKWR4++Ty0UtoUk7bK7e5/L8wvm6xUKSFREHiVop7G2QRsNCIxrSFJFIFqkkRgnKNuW9aqkaS1pnqCCgNpaRBigcBjj/PJCCC8TksFmEmqutf44ew2cMdbDNuymSARf5DpnieMQ6QyREoTxxqOCoHGSMAz9y89ZWq03SkIB5gossPmMpM/HkxvZr3YWpRKEiHCuJnAxTVXSdxnRGnrDHm1TUzWWJJa4RjOvG6Jul/WqoSkbRkmG0yWz9QpXg7AVkc6wtiGOU6p2gdA5hTaMt0acHZ9gLkvGWZ9u1mUya2i1odItTlom8wkibFnN1rg2pzNQlE1L7Wpu3B8S9y1hVtO0FU5tMZ1PsLlmUa955f4rFG1DyBIhBVHZIIiQpGRR6CVxWY1RBUI5inLB+aUhBV4ev8Rl9S79UU47h9W85vnR55cTfN5rvj5jsZrhHPT6faqq5uJkhhOOTjdld3sPqSKSIPT3sAu9Es75ezJSCTGAc7SuodCaQEZYCZFICZXFRgGNbuh1u1g8cKNuSuLEG+C9W1F4X9FmaKYbTZimoAKMkgRRglMaAkm6Smjb2jcEzsta1ab5sviAZWs2Q4gN3OUqeNZZc0Xf2Gz4rpolL6FjI/1NohDnrCfX4tUR4CXO/pmkPWjG/fRzxvmwc+s2318QRhEqkiQiI4g6uCD2my0pUNJ7VlQYEkqFU9LLTnRLjKWtC68AUDHGgWsriAJUGBHEEdujIWGksCrma/d+iV6/Q10ZVBjS6vbaV9bJMtI82wysMg8/QFC1Ld1Bn8Ya6uUcYzTGaG7c3vNApiTzElQZYq3xAx9nNrlpBhWFaP3FE+KeHp+zLg0nh0/YUwOCOGeYaU7nAV9+84C3vvUbKBXy1tcXHL44I48sX33rFd7/tOTv/O2/w4cPfsLB3h4nJydsbfV59eX7LFZH9DsZk3nFulizNegwL2qMhEKX/PivDvnm/SGzRlCaFCEc52dHJHFMawxZP6OXdCklvPfgKZPaIa2gF0OS9nj8ydsILE68Rj/dp9MZ8smDT7C2ZTGb0TQ1utEIdZVP5SgKP0wVThBslB8+UkVee6iapvGDujD08ulNTtwVfMJae/33w+EWX//G13n04AMkkv39PQaDPhLB8dExURJT1RX9QR+xkceenl9SVZXfiAWSxbJlOj9HOMvO9pDxeEzdgkXw/OiMPOvxpVfu8eTpcwCWyyXdbpcgCEjimPNzHxL76OER/f4YKb1Cpqkb6qr2zeCi4fRsci2NvHrf+DvsM//aT+f4XeX3KSU3+WV+eOIpyA1ZlnE5mRAoRafzxfsST+YTuoMtjo/OOdhKSawlDUOeuRm3d3b5vb/4AVu9Mevlkk4a89L2kG6kUP0BYyEYfnxM6xyz5RKHBKcoK8eL4xm/+y//gLs3djl442XivIMIJIuzOUQBb7x+j/l8ybsffUoUJ2x1Yw5GL/PBo2PadZftYReikMP5nG9+8yscHz1na3uHycWEV16+xbCT887b73M0qXjw+DFfee0uSklCV3P/9i7vvvseX3rtNRKhubs/II4yjs4maGMRaYwWMaonGd8a82/e/oDz2Zpvv3mft167w9HxEb18wNHphJ0b+0ymC+K8g0GyXJekvYxFseLy7JzhcEAwnXN0dslWJ2O7J1FhSCwdeZzQ1AsCZcgjwd1xzsrA/s4+ojdkf3Sbop0zeuU+iQiZPXzGMAcXCkxY8vI3XubVN1+jMJDlW/RGXZwU3Pz6HQBvdZEgjMBqjV6W1LVh9uABQmVgGtZnj2hMxbPjgnmdcW+8R297nycfPCbe28MFHVQcEUWegFrXNcZa5GZw7axFSUUceQKokIrzycSD0ULlYRyf8/q5Gi9RGrrDLkmc8eL4EPI+Z5dHBAKcEfz4g4958fgZ8/lsg43fYLCdw9oWY1qkinHC+QLIWcTGDyDYyAzRNLpi1M+p6pK6kYy6Q3COF5Mp2lrMyucgPTu5YKubcXg0YavXpZskWOux7XazpXn11btoYykWM5yF0XjM5WSCkIJFUREqiW01k+mc7UEfmSUEStLv9zDab5tAUpU1gQwIlIduVHWDsY4sSejkOZfTOVka+TC54YBHhycYY8mThLpumSwvGPU6nEwXeJkfOCS1hW6eM0wkp5M5zhmk8h+ykCFhFNLv5Dx4+JReJ0VbR1nWhHFMnsRYZ8mSFCEhjCIW64J+lrGqPF1H2xYhA7Ksg9bNtedLqRCpBApBVddedqO2MUaT5EO+8w//ff7o/U8wCFzTXNP5pHTXZCKxycUJw5B20yArpfz/V2uMbhACuklEGil6afi5D+rnvQKZYpo1ToGUsS9WU0HhHG0LzinKusXS0lpNKBRxmBFJQdHUIBoup0+RKsCJmk5XsTOKWa89MVIoiQgVOIkxLVXdbgJlxbVPxGEINtFYCi/FEJsXtjFm8xCROKfACKRQSGn9hkFblFCYViCxtA6E9fJQBX5Nby1Wa1QQepmu8D4Cw4ao6Jw/53YTeIvECYfEkcYBgharAmSQsXhRoLUkDQJEnSO6AZ1OyqL28QtN3VCaBkXDnZcOiPsxb924wbOzjwjGuzRFRSQkkevw9PAJ27sHLGbPSYKA0hhUG6CCBLVUpCjK+YyVcSTJgNq2tK5htliQRgW9fA9rQcUSVdeU5YL7X76DdgXT8wuwkuePn5J1B17GqiWmXpHKlmezU2IZ8Pr+axwZUCYhLh1R1KEKE1Ro2L87xMgGihKMpW0rokgSCoPsxsxWFUGWfOFnttIVy3lJUzV0O0O2OmPuvn4HhcQIC8KjmlsHRngPCs6hggAJRC4CaREScrzU+MrnV7uGxlTMFpdeqmcdO+NdLz/UK371732D/+1/GRLYBW2z3pxVf5ZkECKSDOsE2Xjsm4DLM9pV458/gc8bc1dwGCc3W8zN4E0FWCewjfGE1M02TCqfSXeF1FbKPyeiKMJIaMrS5+fBBtZjNu8Uv2lw2qPkzdWWwWu8N8WeHxw5JXx2WBAQph3CtAtIgijFCV8IRkHkQQj4rbLyIUoIaXFGUxRLBC1OKsIoJVQB2rSkQcB4u8+gE3kQwWjAjZdusFqULOclSZYRRA3CWObzOdb5SePeDS9Bm00mOAfPnr7gzt3bpHm6yTPDZ3WpAKM1KlDotiaIEqTwcKkwiGnDmKZpCYOAKPYboS/6GnRCxM0ddvdvMTxImRWKp8/P+LV/9N8w6qcY5yiWl+xsj/mN//BXefDXfwZxn1aW/OEf/zEv3/sS//ZP/4w333qD7X6XP/mz7/GtL++xu92l0I5PX8zZ6+Ys9ZJlo5msl7R1wXSZcXJ0ymwd4GyLNZadgwGrecEwiXBJzuOjc9aLJUEece/eXS5O1lxeTpguNL1Oyrd+7T8hynZpmjW2qTk/PaFYLmiamm6369+PeAVn3dR+dLkZPl5tfgCapvE+WiFR6jpU4VohA1xP0s2G6lnWNZ3BLqPdC3S15u69+0wuTlnOZ2xtbZFkCSenp5RFibHen6WUf+8OBl0+/fjEA2KCgLr2agpnKvp55nPjAsGL03NuHhwQBYqirOgNc6yxXE7OefXePbYGA/7kT7/HcKvDarGm3QxE+v0eq9UKcMxmM/JO7kmEKtwMWT1c5Opnh8+8a9bazX/zvx9PQfTexKt/LgqvhZdSXodDf5HXcWV49pOPGY3HvDifcKACVucTJhcrPnr2MamMCWzDt7/+df7oez/kL99/TOhafvs7Y8yq4DfevMe//uEH3BiPmC2WPg8sgp1enz/58U+4sXuDdd1St1Ns0xIOcjKlKKdLnHUMeznGwYvTCePtHdI84c5LO9y4dZM///O/REYx7370Ka8cDHF1TRiELFZLZss5s3nBxfmc7VGf8WjEyZGnIz49PcGoiPc+ecLNrZTXX/kay1nBoN+jM1nx3ofPSdOIDz864733n0PrszzHoz4YS1XWrFaWbp6wWhaY1vL46TPiKGZ3d5v5ouBwccb+9hZv3LtJuVyze2OfOFTUyykr3TLY3kIXC5Jun1aU9DLJV/dHLHTE7S9/hX5/SFPWpN1dFkfPEd2W7p37rI7mrM8e0onPCQcZRHdx65rO7bus3QzR1NRnksg65o8e46qG5dFzdFlB22Kd4+zwKWqwhTWWi8NnXNSas8UE7QRv/eo/pT4/Qwx2+OTwBNuscEFEmMTEUcaqmVFurDNBEKCNoaobmkZTKMX2eEyWpj4jLI7J/38oC36uxqswBmkcoQiYX54xHO6wnLxAT9c4FdLpddk52GU+n4MUSK7W8C04sWliHM5aP2F0DmfNRoLopSJFWVDXlqZtaWuNcwYlPOkskJIkDCkan0kVBSFhEGCrhmGvSzePqaoGJcQGYd9y6/YBxsHj2RSlAqI49JAC6YEP41Gf6XRBnmYIKYhVSFEVGOelhK0xhFHCxdk5cZKCAykV2rYYrSnKAmsNWre0raLbzfj0+QnT1YrxoE8UhRjnyJQ3+C+LArUpggOlPG7WOT49ukRK4fHnTUuYRWRpQp4l/mdEsFyXJN0OxnnqUhhFWG2QaDpxSBQqOmlMGEri2PvodGs2chxf3KsgwllDGEYIYb1hd9BBa01tNeM09dM4UzDKY57NvPbaS4QEzljMpnkLAnldAEnlQQ/WeciI2vgaAimotcGUFYH8d7DxEg5ahcVvoaQKiQKJd65ZisKwXs0pywXWGaz1EkkAY3yg9bpYoKLAy4y6IYHy58deofOVRCgfPqxkCMo3Q1ckNQCjNUGovO+PK93+FeVqk3mCp0y2betzXH5KnuuML1Rl4j1dTVOjCDbwkytU8AbhKwIa4x9EV5PaRrebsytw0pPRpBR0sxQpS1QQEShJVU/BhchsCxmluCakk/eJ85RVOaMOJ7TVGmLoxAmi1ESiJU8kNhTE3Zj1ZIW2isIYT/4JQ5Zl6eWCRpB1OoStACxOB0QqwAMYJNJJskrArCa8vYVTlu5gi8wkLNcVKMd6vkZKhQktg+2cXmfIop6BdKyWa4RqmM1KemlGaQVVW7IqK0QdoRpJnGa0rMi6OUGUUwHCxjhhSJKYIFTewB4q0iz7Yg8ssNPbY5zvI52HwQgErTPUtqbQNShJGEREIkI6SbQJ9Zb4rCxtHIFl87z1cqBWarTVzFZTmrYi7SZ+ah9EtNrLZJUKyLKcg7v3OfzwfUS7RigQ+IaOKCFMvTRPBhHteo5ezrBVRRIonAwJks41RCkddFFRyMnzU4z2nkljrZcVOn8ur4Y48irHaIOyvpIetU3jz/hGwgTeS+mcw+gWKbw60RiDu5Luyg1oRG60J3j5sBCWIIoIoxS1QXEHcUSrHVkno6pLlDaEceTvO+tlnk1d+fDnTVYZpkE33juqopAgSsiTkEGvg8NycnqKc5YoTHBKkhcthBZdeolanKRYHIvpEucMxaqgbVs6WY5pDCvjNxLz+ZJON/dwIOcJTVKAbtvNVs/7bqwxBIEEDNrUmxDrL/Z6+OkzjlcVb339GyzLCV/5yrd47/vfpT/aASWoipKiWPL0yQsOD58xNxHPPjnk2eFz7r/yKu+99yP6oy3ef/AR4zyh2+lyfrnkxsEY62C+atkKA7I44e6dmICCNEp4+uKcOI5pLi+9FNr652lV1UTDPjs3bnL85CF1Y9nvBzRlw3o5JUlCdJGRju+Q9PdJkpRMphSTHT558OB6i3UVkmqN8c3v5l776YbrpzHtn9EL/Tv+CjRxJS+88kZd+by0blkul7z1jV/m4bs/YHt3l0B6aSsEG4l6jFLae2xbTa+bU6zX6Lq+nsR7UiB0uxm72wOyJOb0cspqWRLHCcvlAqUE3W6HqipJ4pxer0fbNqSpHx57z07jISAqYL0umM8VWZaR5TnFJqbgWiK/eb40TXPdDF4pK4DrmAlv7/d5X1fDFSkVURTRbGTCdf35w2g/79Voy8s39+h0O7w4abiYrRl0EnArqrKmN95i1Ak5n62YrFsSaRkPBpxPptzdHbFtDfxQI51GbjxARdkwibscXa5496NPufNSnzRQXF4sWZuW7dEQKaDbzWlMA0LRSW6iopQfvvMhaZaSTGZEWU6c5ghqRuMtTg/PqSvDxeUa+fiQZVkRRSHruuTw6ASjDdPZgiRIKZojkjCmqkuiPKE6m1HXFf08YroqEcJvHifzBV977T7L8hn9XpeyKonjlEgLdvcGfPfTF6yqmpv7B4RhSFXXlLWmn+cc7O8xW5XkSc4nzw8ZbfUZxzH7Nw7Ik4jpcknbarR1BLGik+cYkyOFf94SxZ7QWS2Znxwi0pD+wW1Uq/jwj/+C8V6CTE9wndv0ZmuEmmPLFeWzmuOTU8oXh8i6wTQrdNMSd3s0whH1RoRpxnq5ZLkqWK9nNK3jtTe+ynA05v0fnTCLFNOjpyxWHsAXxRnWLdDWXG+ir855Wfsmy2rLqvCxN2nq5aVX3uLPc/1cjVccwvHJEc/MC4SGi8mESOeMb+6yLjVV9SnzeUWra+/12cjykBIhFM74wlCoANPUG9nexhMgfBbWyeWKm+MO68bLj4xx6LahaTV5kuKcYdAbsl4VbPVynIBunoHW7O6NePr8lMFoyGq9ppOnuKrl+GxCawy9ThehLb1OihKCrW6HLI441y2BUtR1y9bWgGW5pq1LXrl7wPd/9ICdnT3KoyMCmXhMMr5AUDKgbhqshSxN0a2mLBuapiXPEqqqZjgYEIeK+XzF4xcnGCOuM2r2xru8ODthp5diEfS6OauiJEljRr0uD5484tU7N8h7AxpjqJuGV/Z3CKwgTzLmdoLDcGt/TFOXzFYrtDEEQYc0NhSVpbWaOO9iNxsolcUEYcCyKEjiiFG/R6Ak3W4XXbVMplMORon/2KIYKTam1w0tLNiQia5eGkoF6I3p/arIR0hMWyOcAyNA+j9ftl/8JLY0NX0raGyAFZYWQydIaW2FFgLpLLPZIXW7xmBpDGi7QjhobEPgQoytEISEWYw1AmMrrIkxWtNuCt7lakEcJoggwDpHGkjSLOHs7MJvt6whkF5ie2X7vyo6/a/X52ld0cs9REFs5JxefmicNy9rZ4mCkKpuqS0+R8xB0xiu0OPGuevg7A3lBTYFqTb62tOlTcV2PyeSESqI6W/VOOP4nf/2f+SdH/4Rn7z9DuV6RdTN6CRD1vGKvFFYYWjqmqTWTM+fISNNsWjo9jKqpqFtWpbrhtpO2Br10YsZeZaxrlpCFTFvNX0co+Eug86Yp6cFTVsSRCmRTmlcjs4cCk3tWobDHp1JzovTZ4Q4bm/f4OzihC+/eQtTx9iLLcJcorVEyRSajNYp3nt8RNTtIzW0tZ/oZSqhCQ1hkuLqhqoNGHY7uLZGKdC2Zl35Ajwov/giNiNFhFwX1QBKKgplUSImEgGhiAiFROLQVmCEY2lLjDPkKqaxGm0c02rlMw8jhXWa9WqNFHD++JKmammtIQ4kda0JQ4FtGv7Bb/17/Kv/0/Dor9/2RE4Ve49I1kMmGW1ZYI+fInRDFATINOHuV+7w2//17/DVr33dnzsXkMQRnzx7wn//n/1Tlhcn2KokcPhziKdzegiBwrjPzqoQfmDQNI0f0jmuZbFBEBKH3vtK5DcInmToQAn/nnFuk29mNkWw90wiJN3hLirrgFQoFZAkKaLRfhMRhdimpW1arMAPKEyNaTUqDJF5jq2WmHKJc5IgiIg7Q+KsQxqHCGc5Prv00/zVnLJtuLwsGe+N+do3vsVHn/yENAy5ub+Dw7FaJERxxGRygUQyGPSxTYtIPcGu081JssRHSWyUBeFm2yBFANhNHmSA1i3GORSSKPniCXH37u6x+OSMH3z/h3zn26/y6P2/wiHpJgmN1SynCxpj+fCD93ny9JhHDz+k3wv49tf+NsvFjL/11pu898ljxqMdTidTRns3ef21e/zg7e+RJpKTszk37nTp5zFvvnqX3/+z97iz7ZgUAbFQPDq8xAmJRbFeL7wiRQrCOOetX/kHDEYj9gYjGi14LZE4EZBt7RHGGd1ORhZIZFvyL77757grBc7Gl5TEMUpK7GaL2jbNdQMFn0ntfxroAvzMn7kKU75qSuI43nheK54/f8R/8Jv/KU1dIpxi76U7tPUaXMDhyRFpmhKFIbPpjCiIkUqhREaWJsRJipRrXzBaiZIxl5dzPl2VZGmKkJ7Mu38wJk0qzi/nBAiEtAwGQ46OD/noo48Q0keZVFXFcDjAOciyFCVD5vMlSRIznS08Ml9bnBPXQA2t9c94lq+aK6O9D9W/4vx9edWkgf/6KAgIggApv3hf4qvjAd1Y0ulklKOhH2DpkvsHW2DhtKwZDbu8/f4nrNZr3nj5gOOzS54eveDlWzv85KNH3BjtUpRr9rdGGGuIRJdpseSlfMDqYs3ToxmffvyEUW/E8dkp27t9fvGtewy3hqyqGiEU81XFgwcfsdXr0Mkz3n7nQzrbuxQXF3ztS7fpJjmTYIJ1LS+OT1nVDRfTGYGALE6ZXEwY9LoEYchqteb2bpcv791g1jT8xdvv8vTJGa/cu8P9l2/w6YtzVqsZrx7c4J0PlxSmodPLma5b+p2Mcl2R5ymz2RKVZLy8M+bp6SXzovJUSyk4uL3P6eKSZ49OSaIIpCE/m/Jrv/gLPHp6jtMlozTEacdgPEJJLzNfNYZnjx6RhBE7e7vIbgchMtKuoTw9I+lsE+0fcPMXv8Mf/O4/5ydPvsto/yZf+u4H9PKUNM9YPjsi6/TZOzgg2pJMDy3rZkHiLNPJFKqKybNzirrkbDKlN9zmH/93/wOXT874V3/0b3l+fMbjyRFWRcjeTfI4QwhN0aw8PKf1tN1QKgKlCAPlbcfOUtclQij29/cBuLy4+Nxn7+dqvNZtTSpjVCIwWpOnKVYbdN3w0Tsfc/7sOcvZbIMHcBs4hAFrNiG8PjDYGv2zTdfmcg62+j06nS7TytBUFRbB8aImCiO2Bx3qukQ3DUkU+U2a9NkWRdMQKUWSJhiriaKAPEso1hXCQRIlJGGIkCFZKKka7eEbRU2W+vyvpq4pypI4StDabiaJAW1bk6UJy8WS6zBaoG6bTX6Vl3ApJSjbhn7SQamAfsdnuJyeToijmKKqyfMeerEkCBTjrSHT+SXWWLKNAbbXzanLhtl8SlG3qP+PuDeLsTzL77w+Z/mvd7+xZOSeWdVVXV3t3tzdbrdpix7booUYI7AYYCQ8QgMPIyEBQjyNBAgxTzyMAIkHPyExEsLCzNgzGoYxmLHbay+2u7uqa8mqrMotImO9+/1v53/O4eH8I7LaD0jdFuXzkhmRkZF5b5z/Ob/f77tJQb3dIJUmiiAWMhSJQNVU9PsDRr2cU2uRuqVtLUbAqrKYNlg1CN+hMiJkArWdUNc7T5z18b5BK0Uc6dDFO9islihv+WiK0aU+I/ysXkwFLkXDrbUoFXREzoorvYdWkrQLVP64V9U2jJRCIrEiuPo5G0S+QXPi8d6En7d3WBcuQyk01lu07IwDHEipUdITpxFsuokeXE3oq6oh6cVgPVo6yrIMhR90Ptse32kbLy/qH3G76j6WMjTnqVaYJiC+EBop74PJwiVFERFxKZL0vqOhEZ4se/ncdQXt5bsfELIQfu2lR0cajMO2jl4vRuAZjG7iVUrjDKax1JtzkAmNCdozj6NpPdvNhjvXdnHO4JwPaFvbYhpHgsbWBlNU5ERMVM6T1YpVs8a3EVkSkY76TCZ7fHB8jJQ1qBQjNcnBFK0btkUFqqKuOrokjlGeEytFIhPiKGK2LKlbxyAeUhRrnBUoG6Ih1qUhG2S41gT6M4a6hso0JHFGWVTURrIt6qBLykI2lBAdKvkjT8DHszxQuobWtxjXgPdEJEQyIVYa4ejCjLsQ4e73svsBW+Ep2pLWWfpZRj9NWW6XgCSKE8qiRKmI6U6fsq5pSkOWxUx2chARUsDdl1/m8Q/fxeKJ4hytIhpnsesFrg06XeEhzhKE8Wgi8n4fHQUxcqwy1uWG+WJBFMdopQO6j6DtGd1ZoAAAIABJREFUNC9aaRAyZB7xAgm+LFYvCzTvHXWXqeTVpUsiIGS4YzokwbsXAeHi6jt2Z6CUxHlO2h8SZb0r57W6bkDIzglQkvZyqqJAWoszBmdqqCu81RgFwhpa0wQRt1KoKAlIrQh5ZVJLqqbh5HyGc57pcMLrn/oCr37mk/SHPZIk4Xvf+RNsWXDz1h3SfkYUpx0dUkKkSPKcfn9AUwedrvXmKrDXO4+XIFSw4XeXiIqOsLZFag1/BXs2S2KGndPZeDhiMTshjoIlvmtboiThD3//21xczHnzrbf5G9/4Ervjlm+/tWS9mlMVa5xtWCyXnB0/52BTkSea4d51FG9R1xVFq0lUTLE0tNYwmUrmteLo6CTEKLjQ3FR1i/OwLStiHeFVjNA5vj8hUinD/WsUjSXLe6SRohd5BrHme9/5HlJJ8mzA40cPQ8xMllK2IdzXWdvRwENdcxlPjw/7VklxdR8GU6wX788luyGKoqsmLAxvw/BEotnZvYnZXFDWjjTv4SxMp1PW2y15mrKYL3DWEscRMonJsjBxlx2TRClFYxq08ggkSRRR1wV1ZXjypOT6wV2eHh5z/xN3OXx23L0GyHt93nnwfgg4FkGP1bYt/X4fKYKbohCSXt5jMV8GM6Y4DpKCbv/ZDiEEru60y2c5WO2/yDi7/P5SBopknCQdpfHjXcq3ZL0xp7Nzev0pbVOjooSecowGOSJLEU3ZGaBk5GnGwe4+mIaToxnP5wV5osAlRL2UzXqFEhHWWHZHfe7evs7vfPNbDPIhsj3j+m4fLQXV1rB0BXXdkmaKdbEhihT9OEYJSR6liKbh3o1rXNvb4ewssK0GXrNuPReLJbfv3OThew+Y5jl5Pma+XOKlpmpbbt24QS/LaBzMTk+om8A2GA2HRPaQV+7cYpIO6GU9zufBKv7k5BTZbOknKZPphMcffsj1/SkXF+c0TcViuabf7zGdjjh+fkJZbtjb2yWKYw6PD4MjqxRsq5LpeMB4dwito95uaZ1n2OshypbTkycIC2mSkGQ5ojUsqi298QgRK7xzJOMpL33up/mN3/+/GawWLGZn5EKTxjFf+eovcOvlu5TLC1YnxyzOn+OSjJPzOUfPPsABz86OmK1W9Hdu8At//Vc4evAuH7zxHk/SjEfnx1jpqEyBWz6naTZsizXGVDhnru6RS4fU8HG4j+q6QeuIxWKBlPIvtWd/rMZrmh8gdYCOn6mIWV2gbc0/+s3f5fTokM1iHeBmFaGcpTE1eB8OIR3sQ31d4l2wKb5c3jsEEikkx6fnlGWJikboNMPWFcZbXNPg2hpjDdZY+oOc9brAOcfewR5xFvPBk+fcuH2X0+fHZEnEdDzk6OiCqiy499IdqqokTiJMDTuTCcttEfQ1WhF50Coc3sO8x2y+JMuH5FnCervFtZY0iWiFCEYa3eEKIQOobhqcNcSRRm4L+lnCeNxjtdkwzGOmw5wHjzW+01toJMfHT8hixXK9Jk1j+oOUQb9HVRveePAeSRITa8V6s+HG/pSyaMi0ZtrXRFHCG2XFsN/n2ckZMk6YDHIWiy2H1QIVZSjbYkSgqCBj4l6ObUqSvIdqGzQe5y1ZmuBsuFwiKckGAyJlGSeax3iuAlGDVVknFNY/Qm+7PFC7DiDw3KNAydNS0rSGLP34p1p1W9HqOBRpLsVZWBZLQEDriEiQWrHGBot26SmahjZuaIUnE5ooySjqCmcbIp0y7fdot5ZV1VI1NaYxITZJK4R9QUMp6xonAy0Wr0OWV0d/Elpjm8B7FzJoYiQKZz2R0igpiLVEKsA3qDimqdqQcydiWuNJ44zSWJzzIWTVOlASrWQwOBEShKfFomS47OIoCgiAEDjr8RryXoLykgRJkwqyyNOYGbOLGUVdIIVgkDoeHj4hy6fgY+qqxCGJsozT2ZYsj5mO+1A74jTHupJh3mfRlAityayEmSFOexS2pKkbTuqGqd9wfvwWX/zaT3N0+pRNLZkpRakKyuUarKcUS/J4wP6tm7RNya29G2yeXzAcTnh6fMLzk5Jr4wy7KSHJwLfkesTtdMwHmwtM6RCNp96e0ZaGYtKjNibETihI1AGmgqWcI1WB0hESiXSQxx+/E+fh5hF53A+0URWhdAIEVFMjUAKsr5iZms1my8XpGa1tOdg5YJD3SPspSTLAOEdZl1RVRbktiNKYfm/IzngHa2qqqmB3d4ITAYkNLqWSa5MxTZvyB7/z+yg8VV3TmBpBhIBgeOEUtAbXFhwc7GKkpqktSvXQCKTX9NM+n/r0S3zm5/4l/ux3v0nb1BjnUC6cGRIZGiXRBRID8IKKFXQiyVVOkJQa21qUDg2b6UKiQ+4XiEhhO61JJFVHtXR4Idm9cYfdm/eQaU5TN+RpoIuslyuUlGigqipawBuDa0qkrRGuDY2WE0gVbi3bZRjqJCFPYwZ5BN5gGsHudI/xaMhskVNsNiw3M95/68/Yvz7mvTd/QJYl9BJFK1K2qzWtMfT6fRASJRWeFldXFM6RZTm94aCb2QRqs06zMNiCEDURxVzm+AnVoQ7u49+zx/MSqQRJv4fUkgcX8I2vXMdmGonh1/6HX2MynfCZz32Wv/13/gP+/n/zX/DlT93lw6ePggmP1kxGEU7kNIMxSaR5+MEH3LxxA6VSSit444nh5duK3//uD5hMetzY7/PB6YK6lOzu9ZnPKsbTXeK0T918iPMO4Q3TyZThoE+vl5H3ekRZxKg/wDlPpB0RgiiSvPbqS/xe4nn4/lsIPDdvXOf8/AyUIkkSNBpfBvS1Ni1xmuCs6zIVbdCqf8S50JimuxNDU3SJzl4aU8SxJk9znj75kO9/71soY9jdGUKUUJYTtLAcTPaoWsdwOMSKcL9uFjOSSIfGX0Wkne4kTRKmO1NaW5FlGfP5DIBRb8De9R22m4I8zzg6PMG2jrLc4vHM5itOj88wxjLo99luNvQHfVarJQjLeHoHbz3r5YIszdlsNpgOuRK8GMKG1xQHHViHgF2uS5bM5e8/SileLJd8/LwCeOXGlOPzJaaoeXb8hPP1iq9+9fP0XE1yvuDT+xOG8R5vfvAthrv7zM9nSBXz6Og5eMHp4VM++1P3OTk0CNlw/6fu84M3HzEYDLH1iiTxJLrHwd4uCTX37uzRy1OssZyfnNEfpsRaM8qzAApg0Aq+2rvFeuvJkgTpLdY68tEOT04ecn62Ik8T2sWcL7zyCuu65ocfHFFbj5KSzWbNy2KXVgpQki+89mnKH77DttwyP70gGw4pTM1L169z/+4NvvnGA1zbcn06gd0d8kGPqqrYG4cMsvHdmzw7Pef63g7GtsRKgEjZHU2ZnZ9TFQGlzeOMk+MzVquS4XzD0dkMby2v3jlASDiY9LibSf7rf/CbRDrmF7crvuQ+T3804Prtu7TOsV3PcNWGyfgaL33qS7zy0qf57e/8Ie8fHvG3vvbzfPruXZL5Ie//3ju8+f6HlMbylV/6BpMs4bf+p/+Zi7rARZbz9ZZXfupz/Gf/+X/Ju3/8J/zZB094tlpwOj9HTfZZbNZsNivq8jEtFmsgiUYIu6VpQhA9EBheqhsSqDBcW2/WFEWB7pDan3T9WH9zdzqirJbUlUELTYNnZzrl+r1bOCT19iHOQ1VvcbbFtd2EI05ByCD0h8CncrZDvcIEU8qQ7l40hrS1pFGgXulIIb0CZ7hYrZFC0Mu6XAnnkUqw3WzZ35vi2wZXNfSSmFpYVpstyOBm512YFLnWUHvJ7nDM+vlzGmOQUUQcJXgbpjSj4SAIGedLvHOdA6HuLMkdWoRN3dgXVANrDUpKlFKksWbUy1kt1jw+OgUBb3/4jEhHGBO+LtYapaLgoiIVdV1hqphCabIso5enrNYVeRqzmFUkUUQjG1prWa426KRFxTHrosQj2N2J8a3HuDABt6ZB6AhlwxTBS4VIMrypcc6ihOx0AYIo6YOpQkhjU9PUBXhIkphIqXCIdlkxdIdnEBGrK3dD2zToKOosrkF1MM+lyFZHmrv70594o/6ky3uFxaJl2H/OC5qqIVYxwoGQnY5KBMc1LVQIi3aACDQ/jUJZMG1DmmboSOGlpWpaWkvIVem46qazd7+cltAGFtTlNBACUhaJMI3HQ6QjGgKM7627sqCv6xovJHkaqEaXl1zQJ0a03eeECDoWCJffC/v4rnG7cqQUAYGUrjNbCBbgOhII3Tm61VD7lqePfshqfhwQMRWRxDFZopCRIHIRiWlR3tJ2ujgvLKZsqKhROkKJirWpcBJa16KyFGMdcSSRtWP3YIK1FfPlglT3EK2hadesygYvaqqmxHuFjsL7Z02Dsw6tIpSQPD8/RccJHkF/2EMLSVUa5u6cTEWsl5bpjV0Olyukd8jIEOWK+arEeoiSNCDvEky1ZTTIqNuKsiiJYwUiWN4nycePHnz47nP6w5TBaMDOzj5KKYxtKZB4V7OcnVFXBWVdc3ZywvPDM5SM+KF7h34/55VXXmG8kwcb6k6bYoVHtIbtasayMcxnM0xjOLh5g/5ojPcuuP0JSawE08koIMKuRXW0uzjNaGyDjmPq1Yo4ifDbktOHzzl4JaapapBBD2YJNtNYDa5ExxEKQSsu9aJBG+o6JBjCQA8Rfv2oC6d1Yc/TGfxYG+JJWudQ3fcLd40NAehd+PAlshzFOSLpYYXG+/CeNE2HWulQBBtjEHisMQjh8KaitXXgbniPc8GlTioVdLVKkWY5ipB10zSWxpTcuZ+zu7vLdDpmcXbO0VnQvL79xhtc291hd3+H09OzcM/0RqRZik4jvId+PyWJI3TWQ4hO/ysvtdEdeuQJblvdMOmjmUrWBhTfevv/sbv+/1kXiyVx1uf0+ILlyvHS66/hRMFv//Pf4b0fvsknP/ky282GV1+5z+zsmOdnG34ojtAalMoR3pJqRT4Y8L13HjOdjvns668xHg1xOIrasZ5d8I1f/BrHpw8ptyWbleXo6JQ4zjBU7F27ySc//QUef3iIUmvK9YbtaoWzlixNcTZoOE1bU2w27OzuMO4PySWgBAWOWzevcXJ4SLktubg4u6J4yk576y+ZO51GK+i2QnYYXT3gfSiC6cxdtNZXTUlZlp1mS11RzZUK5/SNm7eJqJltSm7cvsv5+Rn9/pA4PqTfGzDe2SfSERdnp+Rpxna7Jc97NMay3WzIezmz2TzQ0luLlPHV/7kuN2RZHmiBcUJdNywWCwaDAfPZnDzvs1wuaZoSh2C73XLz5k3Kcst4PGE5Xwb7+bP5lc7tL0aUeF4EQl8OT67s9lt3Vahe6pq996xWqx9xQ/w4l9CK8XjA/rVdjr/9JpN+TqwSHj8/YTgZc7A3IFKSnV6MklCVljR17ExGRKLl9v6Qtx6dkKuYnkx4+OyE6/tTqhZWtcY4GA8zDILzdcOXxwMGWcRmXdM0mljFWOeZLdZ4LHs7E6qyJM9ThsMMZwVHZwv6/QwlPUpIhsMBq+2Cnd6Q9aZksDvB2kcINGVRcn1nSL+XUVQ1RVlzaOYksWTQT1kVFZttwbVrOyzKCtO2HExHFJsi1JXbDeNRcPm7dnOXDx89ZbZYMxwNuViscR3LIE8S1qsFL9+7zfOTC2It2B33ma1WDLOM1XqDUH0G/YwPT2Zc2xlgpSdJLK9cn/DWo0O+/e6bTPoxo+EEWyxANgynt4jyPr3BDnK6w1/7+a/z9OQZtikYe8vs2Yccm5aL0mAm17h3/2X60z5vfffPuSi3XJiStjb8zb/1d/jq17/O29/8Ax4/e8LT+YzzqkHmU9oWttWW9XZNP1ZstwWb9RrTBJfQSzyo9RbXeJI4QUtNHMVY74HwvlnviOKf3Czux2q82maDRoNsuNPrYbMBTz94E7wF5bB4jGm6cFiHipMXD5WzyC5Y1l9RDUMwqMfjlcZ3phFpnDBMUxbrFZEIFuWoGIvDYzlbb+ilCcOeZjKZ8OGHz8FZxoMeT558yN7uDovVlto0fOLl+zx5VAXjA605m6/IkoyyKAKtZLkhS2K01uRxzHyx4nx2QR5rCiPDRj3YJ8sTPnhyxKSXczxb4hxXkDmEAyfOc5SKcN5RlBUPnj6ndZ5IK4RQVGUBhIN42OtxPp8x6GcoKcnilEk/pWoMrYDd4ZAsTimqik1p+MSNXd56sKIpC04KT0uBBZrKcOvGlCSKuFhX5JNrFE3LZrPCi0DJcA2YukJFEYPhPmUxJ4pioizH2UA3yPoDirok749p6pY8SflXf+nnyL7zPf7Zt95FCEHSn2KKxVWAtBB0IaeKtqmC5kuHLCupJL00B295aW+AlCIUZh/zcggaCUkiqK2lqQkFVwKJSjCtQ6oIpSJipchlQkxEbVucLcAKIhkRqxRb12Bbsp4gTkFrhbEeiwrCdw+lbcGDaQ2mo2q+KCK7C0kq6qoiUSIUgsYiZJj8B4QraAmyJKGoG4QP+TBZL2NbtUgJZVlC1+iHIjb8G62zVxRI5yx0RieX9JbaGCQifJ0XTHdG3Ly9w607MY+fXFAVHqkifus3fg1vBSp1RNEA7eDO3oC1zmnWjpSEg50xs4sT1m2LMY4EwaoskH1N3RoqazHeo0mZNy1JDNNRxnAnZyMrdJsyVgM0mrfeeAOnBaVZgC2RUY7cFohcUszmmHXM2GckWcqDH77LfF6RjzWNadmWFdvGMpnucGMyZnu+RDtYny2ZlAmV3tC7rpHkrFeWVdESSxCJR6QpSVuDW9PPcg4vFKQNUTZBRgpZfvxuW69+6mUaBcY0HJ884/z8nFv3blOWBcIr3nrzXbbbDevFGc4ZenmOdYK2gcX5cx68+X0sLmQEVjXWgooE/UGPyf4eaZrxiVc+wSTLQpafDpS1uiyRwtEoyAaSKE5xVYHUikQpnIpQVUOzPkMlMVjQwpPmKX/37/1X3Ll/hwiBEx7hJV4meApee/1TPH/8nPXzR6jWoQlUV4tACEfTmCv2gL+0fI/CkKpputwuFQYoTnhsZTrLDM8lqTA0RCENz3uPFw4nFVl/yid/9mtBl+ICqhWpiChJQ+EM+KZBK41xFteUsFlAW1PXZTAkkqpDNSTOhlD6OA6GMFI6FA0v336ZazevcXD3Fr1+jzRNkbG+cr4TIrwGj2O4MyVOQu6MjjRehmbTmUBlQ4LSEolECYVUGqE6AagIjVfT1KFJRXWDls4l0lnkR9gkH9f6hZ/9Ar/+27+HMD3effyEaLjk81/7JG674Iuf+hQvf+p1fv3Xf516a3jrh28QZQqva4gTWiuYDCQY+OqXv8Rbj56z3lQcHx6yOD/nX/7ZL/L02RG39nag1Pzrv/zX+F//4b+gvzMlis8Z9Ib84O23GE0yvvvH32RbLBj2YprKUG7mrDdLxtWEyWQHTIOKE0ZZQhQ7ttslUSwYjPq8/+4DPnx8SpwPKOtnaB2orpnMKIrihWar0zHZKzdaiLUOQ4FL5od4QTtsmubKyXB3d/dHvtdwOOTmjZvcu/8qUkrWxw9J4pT57JjpeBcQ3Lz3GtPdHciPcNazf/6c/Z0pD95+SG80Zrlah1wvJSmLBt2xZExj6PV71FVNpjvzmEix3VZEOjB18jzn6OgEgWS13JCkCucilBYcH58QxzHf/96bfPLVl0mzDO8vQtMoguW8de4qJubynrm0jr8cAIYIk0tjKXHFmLn886Zp/kqiZk6WDbf2B7RtzcvXd0jznOPHjzkvG27eHPH651/nycMP+Own7zNbFSyFwHrY3R1xc2/I8cWa0U7E6cWS33vnkCRS3MxztlXNq7f2WK22LLYNj47eI8kzvvX9R3zxc5/mjTffZNDvMa4tp7MFZ8uSpql5fLRACEma5aR9B60hTxQSzwcPHoYM3XJFsSk4F5KiNOzpiLppyFLJJ+4f0LYts+WaxXqL85LV2TN+5guf4fHjR2yk4/WbN/DCMZtdECcJn7ixj1Yxq82G0+MTPnnvgH4/ZzIacBRrBI5BnqGjhOV6iZSO8WjAer3m+PyCqjHEaYJ1jrw/4XS7ZrGpePPZKbGWvHb3Lsfna3Z2d7h5c59//5e/wtPTOX/w5hH//E++ze39XVbLV4iilv2DGucljRoyvXaLL/3Sv8JrP/0lnh8dkdSe3nREb3ePKM2ozs85/eAhf/QP/wmHs1O2kUSrjF/9lf+QL/8b/yart5/x9rrhUSmYu4htWzNfHOGsYTY/I80iajSbzYamrqnrqtMnyivdIkKw3KzROhjjeTxChmD0NE1DhuhPuH6sxst4j6nXpEoR9zJW1nI2XyIjjTVtx+t1VwVf4KS/CBJ01uDbJlALLwWpIeSoE0RbisKSRhF5Ruen76/sk5M4wjtB5ANK0ZhwAWd5Sp6nZHlCVdVkSUJjDFkUEUlJaQ070zHPj08QCNI0wL1FVVM1Db08IU8UTW06eFyzqSy+3tBax9npBZPdUXBdrEpEN5H9i1OawC+vGfaGXKy3tAHewzlPHCva1hFFEiE8VVMSZzmtaemlKc47FqsKD/SlpO2CCc8uLlgXBRM7orUhtyXNMpQMzjhFUSG8Y1NUbIuSfBBTNRBlPZom2J172+KVxtQl0WiXVqegBK3zFPWWqk4Z5CPiJMK2lsY0VJsVi/Nzzs7CQWvaNhQCOqYqt1chiOH9clfZJOH4DGhYqjSxjthULbUxhOSwj3cpLaCzqvatw7mAoASqTqA7CRKUitFKoaWmn/ao11uE0CDVC5RWKiyOvK/IIkEaK0zTgpBEkcQ2JpiMWHeF7sqP5LdcPtBeiDDNFpc0jXAZBa1KaOikVJRliY4irPXoSKKVxnvzYtpI11yJQNM11nDpGgqd7kdKrO0iBLTCW0/bhteuI43DMxj2yLOWKHKdLkwhZCiA09jjMTTGkmhBJcEqhfOO1XJJlijqSFG0DYUNpjretrTe410I6I6JWVUlIpG0psZLxbKYMVJ9snSP45NDqiqjqXuILKGuDCZW3J9MKaWh9I7NusJut5yvVjTrikT0kSJhs11gPRBL4oEk0YJ0mHP709fJt4K+2uNRc46UmvPZBSvTYmWC1ILtumCQxagIjKs52B1zvtF439I6g9IRvf7Hbyf//OKIyd4+rW359p98m82moTSK4SjBto44itl4QZL3ghmLTGlMQ9ZTFEVJlCqaqmG1WRCpCBVF3L57h/v377F76xoCQX8wCrokEUJYvYckTYll0CplOiOJ8hBsjQlGn+UK3zZIU6Jcg4pTomHOZ7740xzcuUHjXaezCTborW/RsWa0P0ClUYdrBWONYBwTiljh4coA5qMIjn8xNXfOhXui2+/4F2yDF3TDgBBdImZIzWB3DxGlaOVpyoq0c68NG9WRZim1BCc8WiUY12BdG4ZH3fvjcV32XgiP1Z1WGC+IpCSOIobDPr1+n+HuCCVDQLNQAh3FxJ1DKUic9zRbh3Ud5cpxxfaQWgSrbulom6C7dd4iWoOOEpDB3bG17ZXQXUdxoHu7kJmolMCan7wg+EnXzesH4f2z0Ci4Pt7lh2+8T5qN+MVv/HXOliu8UPzhN/+Ip4eH5LFmZ3fMk/kGL8L7Y1vHOw/e41Of/ATf/u4POHpuef2117g4nfHKy/e5sdvwzpsP+MVXXuMHbz9kp7/kK1/+HL//J98jSjTbzTxo4VxLayRN2yK8JYk1VVEgMGRxjzZSDHtjtqag2GzYP5hyfnbM85Mj+nnOZjXDO0fbOAaDIVmW0rYhnLiqy9DgdqiW9Z4sjTvNbXCmDcYZJsStdDrxoKt1LJcrQiZjgrWOqqoZjcecHx8R5wMECmFaIimvtOOTawecnZ8xnuwgopxi9pRUCRBBW2VbE+in3bNXVCXGtqAEtWlQXtLL+sSxJ01ammoN3tEf9LsBhwXfkqQxcaIpS0vTGJIkoW1bBoM+J6fBSCDc90HPDR2FsHsOL0ORrQ3UrPC0d38m6eIrAoL4UROOF4HLH+96cHjM/Xu7jKKc85MFeZ7SNi3rqmUzX3J6seJ8sWE66mONATRlY8lzxUsv3cSLIy42DUdn50RRwlA5pr0cawx3rk2p65ratDSmZYBHWcPh4TGVsVzL+2yLBoGkrUsipYnylOPnR8Rpyun5nP3JiHt3b9OUNRcd0igaQz9KWM+XREmP0+MjpqMhrWmJ4gTXtgg8iRKUTci21Xh6ccym9ahI0uv18EqyWBZESjKdjrm4uCCKIx48fMxrr7xEllS0XnL7YI/tszMePnrGcHef6zsjpIMsiim2wVylMQ2Dfk5Vt6w3wU0QKdFxwnuHzxmlCYtlRRotuH5zF5FkfJmMP3/7MccXpzgLg77mfLOl3x+x/P6f0xs95f7du4yn13j52m38soBIE6WK9fEF29MFddXwia/8PNHD9zHvv83ujWv83N/4d3n0wwccPviARxennCxXeGmxbUOxmVGbmmEvZTDsc7aZsVgsghb/0oGzq2k/yhyyzhHHXCHXl7TZj1Jpf9z1YzVe/X6f1XaO845Ea06ePqA63/DdP/xT6u2Gurq0Hg+HhqKjfYggUHOmgs50IxSNQduldIxtG3xX5BZVFSahNhxQxXpJfzAiUpLtds10OGS52dDLejw/ndFUFTdfuk29XTHpZxTbNUp4diZDJIJUh7DJ3f1d5u8/ocXRzzKKpkZLSVk39LKUwXhA62ygDQDPz2dMJhNmywXTnTGz1ZZnh+dhsuMsQviuVug0PWXZ+f87jGmCCFYqnDPkvYSyKmmtDUGghOms9TBIQgBqfzJiOV+QKMf9g+s8PHwWigilWK6WJHFG05SUbcvLd3c4Ol6wXKxoVYL0nlFfMluvKasGsh6ta4niLCAipqE/nGJsi44SnK1CsDOa/niKkwrnFFEcB7v6/pBHh9/naGWuCnjvmmAlLSRtY0LIaBzTiVHC4RnqHdIoWOsa56mLpgsd/finWlEaMZruokSDbrbUHQUD9JUjoXSCTCQoIaALfZZK0lMZkcxobIv1gjRLiDS4uEUl4dLiiZOXAAAgAElEQVSsW0MWJ1TWYkVD02W+9PMEUxlkFAddnw95Q04IrHe41hFnEc4YhCRkb7ngXufahtYamtYg25Z+HJwocQ7pFcp5GhSxVBjvuqDmCutdoD3ZYB0ulUR4R6RUcLV0llhrTNsGw5meJJXgmw2btuT+/Vs8evoekWppGoVrHT3hMNJRENEYx2SQcFxZaA0iyTGuoixXNKamqkLgqI0kGZo8jdBJxLKpcdbjdMbhYslklFJvWs7LOcPqBqcnC9Zqwch8DreVnJsSE7XMeyXXDw4Y5TELvebJ0SlYRSpTaA29yZhBT0Iy4HRxwbKeE/mcPIpoywXvHG/YT67hVcyNvc9wOp8Tx5pB0qef9zCnW7brgs9/6tM01rNpjxmOIw4m13j3yQlSSNTg46dtvfXmu7j2bZRWfO0bXw/0Vutp2obGtRwc7NK2PhjuxAnLcoExlnf+/G3SoQMLP3X/gCxNGU/G9IcDkjgnTsLAxvkWYxo8wawkESlpHGjCUqhw/vmWX/1P/z3+2f/+f/L0T/84nFfeQevQWpKNJ0T5gH/nb/9bfOErX+C0WNBay+z0AikUy/WW7aZAeDg8PGV5vgbC1MO7oPt13mO9RUjZEWVFF84aYy51XV2T9iL7yGOF7WwNXgz3pCdERoigQbPWcnDrPtfufYJitcKUFZ7QsDjrcHVzlYXnRKBjt7bFt9uOAumJoqQrLA2IoIfVUgf6SZSRZBlRHOGto9pscGbKxckF+9f2EBqECHRjHQVGhRMS15qQ69XdE95dNp9h8m9tizOh4TTW4L3FNA1x3KNpQ7xF3u+RxBlCSIRUGFMjpSKJ04CcJR//nv3v/5d/SlU6tKw4WXt65zMenT/l61/9NLPzQxaVwlnH84tnqChmsy45Pp7xq3/z3+Z7b7zLs/ffIOsN+PDxY/6j/+Q/Rgr4wZ+/wcMPH7MptgzyYNiyqQ1/9+/9fYajPvvXbvD8YslmW7C/t8vJySmL5RqtY+7dv8u7Dz4E4XBNhW1qmqZgtYK9mzc5Pzvk5q0DRhoaa9nZ3WU2O+MH3/9TWlMSyYBgrVcr5osFSkmWq9AstKYlUmHoJoTAtsENMIqiDsnx3WBZMRyOWC2WRFqhoyh8Xay6K1Mxne5QVxWLo4dEvTF5qlB4hlmOVDFZf0irE17emeCJqL3idfE5vv+tP2Ay6bMtNoz6OYv1mkhHLFeBjSNF8gJpjTTQcn13zAeH5wx7KYvFHK0Uz49PKbY1/X5KWTV44ahrg1ISY4IJ13y+5Nat6zSmJMvyEBDdUeu9c9hgwXtlnoEIYeZaawQC05qr5kwqhbUhJyzP86v8r78MevCTrvnW8+6j4AGQRJLpeMyO8OzuTSmKNd/6g+9Qi5TxIOXmjQPuKMXh8Tk+zVgUltn5lvcOL7h38xZfzFM2Tcs3336Hz969ycOnR5yvCq7t7bPaFJjK8Nk7Nzl6ekRvMGI+3zBbl5xczHn55dvcvrnPH37nDUoRsdhuWW4KkjTnbL5m0O9huviX1z55j/lyQT+6wdlsiYs85WZNPOgzHuQcbzds64bFasP1aztoAW1d0+8PWM+W/D/ffZvxIGM6TJBCMxn1QHnWdYVsI166tUddVHz78XN2R0MeP79gWZS8dv8eOtYcnhzz+muvkRcVCzakec58ucA5QdNWXCwbnA/DqovVmr3pmHg04v/4ox9wbdznX/vFLzMe5bx6Y8CrBz/No+MFv/udN5mTs393xMWm5H/7B79Gkmbcu/cSOko4uH6L0XAKSJI0YzIeMR32qOWAkb7F526/xNd/+Vcom4bf/Uf/mG8/eJOj81OOz89YVwWmbbr9KJlOp+RJynK55PHjxxSbdbcbgkWVMS8GepeDBAgDhstn3Ht/hVr/pOvHaryscyHkuC7wRcFsvWK5XtDb2cF0wWN/keUQLsYwiRdSB7iBMJ3x3iFlhDUNUkdBF+bDQ4szDHo5TdNiOz5wUZVY71mXBZUxTNQIqT34gqqpmS03xGkSRKcyXOKxDjb21lryfp+yqsiSmKaumS+WIaTTeRarLWmWkCQxZxdz+nkKCJarNdY62gZiFaa2WkvK+nIa201yLvnOQoBv8XRFtA/c3KB3ujSqCEhIay2JBqEiWtfQtsExq2kURT3rDnfDYDjGVFv6wwFPDtdEicS2jot1QWMci9mcfpZQNGHKVjZ1oNLYlnS4g222FOUG3wYao20a8izFe0uSpDg8SRrjfcu62HBzLzSAu7u73NpbcbYqSWIV7OijlCiKaag7tCW8ZulccNwSPoQ/i+BkqJVkvb302fv4l1KS4Wif7foo5DO1NoikhQr5QFKAACUFwgfNSaDjqdCUdRol5wM9QmlJ3kvJegLnAzwtNeBcl6kV7Ny1DFN5pQReuC6nCwThsvLOUddNpxlQVzB3QIvBtK4zYgn6Ets6oixGCksURRRtCLL0LtCUrA8GCa4zO3Heo8VHxM8dapAkCXVThaDdWNFWJXVlKMuWxod8rMa2mK0Fb3HK4bRA9foU2zVD62kaT1VbtvWWpq6JRYxpStbrhrY0HBxcw9QFca6wWuJryNI+eMmqLNm7NmZXSWbbOcfzc1oU23qNNjOwIhSYQnK+remXLcIXjEYTzIdHaKfwkUDEKdY5slTRaEEUCbarLVkuscpzf3CXzWDBk8WS8XjA7HxGnuUo6xnmU/CKpNNgzGYXXD+4wXzhyGLFaJCSJQJUG3jfH/O6d+8lsign7/dYLypm7RpvLZNJH5QkyzNGOkapFI+nKpc0dc3tuzcZDF8NVFVRo1VClvVDaKmSNE1FVZVEiWazWiOVRilJFIVwziiKQ+xBd9l8+SufIY1S/scfvg1NQ9tsiKQAJcjHQz77lc/y2S99DpUEbajznul4iHWW8XSIc4aLsxX/1299yGp5RmstznZ6LhwScEIGlz4PSnVaGQLSlETRVQF7SdWVUmKaDtHtNI5SSpx1P6I3kVISpymmCfSVarvCu4BStMbg6i2tC9NhZEySpmANri7C/eODjixoeFznWhcGSwiPVKAT3QVDS8qiZLNYkgyHbDcFO6McITVJkoXcPesCo8A5bGs6bVtXrDqPjjXxpUudC1ENpjY0TUuapsRJQtbrUdZ1MFxRoQCQQpIkWRc7oBDSo+XHjx7kERghUb4lUjFKBbr2vTt7KOn54P2HaKm4efsm2WBMVZyitKVtC27euMbTB9+jaS1aRZyfnPHzX/0KDx98wHy5Ynd/gsTw9MkKYz2j8Q6fef015rPnPD9dX2W4JXFEY4Lb4Hq9Ae/RSpFlKZvNirt3brPebEnihFgHTcztg2scnZxxcvQ+X/qZn+Gf/OY/xpoKvAzB5F2z4DtUlcv95hyj0YjNZkNd1/R6PVpjSNP0qkCTUrJZr0NeUTdB11qjpO6QsTQYiUlBVWwQcYKNcopiS55E5EKTJAleaATQuKCpf/K4ompa0kTjfUJTVYyGQ05OTmiNwViHc6G5S+OEwaDH7t4+gzxm0EtoIxmMbkxLWVZXrrf7+/thiKZcV9eE+IZLyiT8qC3+R5834Orjy89JXDC16nRszrnwDOGuNHO2QwTbv4LG6/DwhPliyfX9CV9+9RanxycUmy2j6YjxqEe5aXhwOA+atF7CZJQhleTk/BztLEorYq1JlCfTcDRbkceaLI6pthuu748ompZRv4eoa1rjqLYlm8pgWsPuMMc1BUJqlsuS88Wai9WG+bZiPBxg2pbT2ZJt3XK62LC/l2O9wDmBERYRwyjNiYQgTlJOT08xTUPTBFv0OEkQxtB62FY1rnVsi5D/pRY113d28bZlu1mTZylPDp8z+spPMV9tmG9qPnz8LqPRgDhNuHXrBm++9RZeCIa9DF9VZEnCYr1is90gtnDjYJ/WngXjJOG5e+s2i9WMo9NTVos1pb3OH33nTfqZ5ud/5vN42zLKNfuDjLL1vPzSXYrK8tv/4nfZzLccz8/J05z4rTfJspw4jrlz+2WUlAz6PaSSWB+DsWSdpvfs+TP+9PED5tt1GAoAsmNHHFy7znQyZbZaUrQNZVFeMbX+olv3ZeP1UVOYSy3wJQ3+L4PS/ni2HF6yrjYY25CZmp2d6xyP5pgHh5i6gm4CIuM0UEGs6f7DXVCyVPiOxgEEKD6oLAMVQ0ha11C3gucnz3jt5Vd5tN4gO4ecfq/Her1GygBiayW4KDZc29vl8HSBbx06EayKkoOdKdNBn+89eIgxNa5u2NoVWZoQS2hEuFT7/ZRIx1zMZhjTZ9DvcXx8TlFW2C7DY1tVvP3eQ6I4ojVNZ+0baACuM53wXTioQrDc1KRJDK2lahp2dybEKhQnWikug5Kttag4Yrac88qtfdbzFVGsKdqWOElJs5TZfMXtWzucF2s2VUnjoa8180WN8RqnM84XC6J4ymK1YjCekmY9bGf4UBcb2rIgimJWq3OGwx10miK8oy4LxsM+ynvKIlh6xloFznB/gI4uGOY5uuNuK6VpTUWUJqRZSts0Id9GSirbNQKXW8V7lmWBFLA7mnSao4//cE2TPtP9O5zOn9HLEsrWgRdImdHiSHNJqiJKV9OaFiUVG1MR6T7eC1rRYH2LBfppRhTFZAOD0CXIBKlhsVhifERVt6A0kRZEcYTYgJYWFXUe7x6ElkErorptby3GGiIhiZPgfOgJuo/Wth3U7dFRymq1RoiIqqyIk5jd6ZCqaTifr6msQwqN8w2tl9jWY7DE+jKwUuKNpSq2RBLwnqwnGYw0y7riejxgcVEziXIaPC71RLqibR3YCBUpWhWzXm4oi5bWOhpnKJsapzRROuBGMqWfJixXM2oPIoKyqtCeYGyDZFnWzLYb9ocjlknLrNwSJxPabYVTR9y6d4vt4ym9BGpajEjYzE8Y5xHT4S5Zm9KzAz5UFavzObsjwfn6AoNFm4iNgEZqjk3F3u41nhVL0lHGpjqhbUr6+QRTldjWcjDdo64q5kcz5ucLoskQmPH0qGQ4yihNw3ZRfux79sbN6+hIEynNbjQKDTwCi6duGs7OL6iKmnfeeUhThyyc69dvsH/tFuW2YHlxxmgyJIos050BWmgePX0cUHofdCmTyZAkSUiSfocmGRAtmoTNdksUR0jheO3zd/hvf+O/Qwh48L338K4kjjQ3btwn6kUUbc124djbnxLpgIYb01LVBW0LKhZYW+LrKgwQcDjhQv6vIAw4ZJeNiER0dtbC2k6bFiFFaLiEDIWfootG6JgVrTFXF2XY6wovJFLHXJyfo73DrBf4tg2Rw84hsFcif+u3lEvTGQe1aCWxXWSDv0TFpSSJExKlkUiSSDNIFcoZIi/Z1CXZdsOeVjgLi5Ml3lsG/SEyjkgHgyt0S3aOsFHUFdbeBVdZ31GHdUIsI4SOyTrjqaDzUvTiFKUl+EDPuqQrOynwWNrWhLPmY143x2NevZ2zKPz/S9yb/GqWpOd9v4g48/mGO+ecNXVXd/XApkBKJFsC2RRFU4JlSDbghRaG4bUh7eyt/wAvvLNX3piAbMAWKUuyJbJliRQltshuks3q6hqyppzvfL/pzDF5Eed+mdWSYXfTKB4gUYmsm8hviHMi3vd9nt+DGFacnG342Z/5BWKV8lu//Qc02mCN52/+h3+VR89O+Mpbb3B+eoHVPUPX8tr9fT45dcwnOd/7wz/kZ3/mG+H5JxUnp+e8snePm3e/wOVizXTzhPXqhGhoOb24RDvLN7/2VR49fc4PHnyAdHB8fDaGAVu6psKLhOPjpxTTXXQXnot9Z/n44VNev3PE0U7Gf/Prvx6yp/BY9yL4WI/IdDGeGa4lqOv1Gu89e3tBVmasZbVaUZYlRZGzWCzY3d1ls1qHRsBYgBkTIB9JkrCzs8P5xRW7R7dJ05Ryvs9k7wa9XpOpiNV6zWT/iLbeMLiIp6v3+Y3f/Mc0q3NeuXGTNEvYnZd8/PCEWMW0rgkycWEYhoGd+T53797j++8/59ZByD8a6oE0jnh8fEYUpXhriEdlhhyDypWSozctYTKZAGwDoIdh2FIJ3UsHVbg+uI7UQmsZ+ZvYkfYbJaHZE3JAzWfkhp/39biqGM7POV+tef3mPsoMxFlOUk4p5jnZqiWNPV73nDy/ZF3t8/Ss4uT8Ga/cPeLs4xWXusXrhIvTU1555R6DtFysl3zjjTd49OwY0ff87Bt3OL26YHYwQXeX/MGDJ2RlycF0wp29A/74e9+nnO6QOklkDV0nOe3OkN5x/uyMXmtm8znv/OABTiRI7/jym3eYzndYrGtOzlfkSYtuB1QccX5+yf7hEQ+fnCCcRkQXeBRSRrxyNCcrMvZ2pghnuHt0yAcffYp3nls3b/DBpydEKqJuOtK8oDeWWVLy3gfvc7ZuuX/7FqZtqbqOVdeSxorX7t+lqWuGruUbr92m7QdcHLPYrGkGwdn5Ja/cvkEkBb/7zqdgLWdXPT/9hXskseTNO7v01uOrS3RneOu1O2zqlnU3cL5a8fz0hCQJE9yHJ4+2lF6tNcL5MQoIPA4hI+IoQkhJuTNFOs90OmVnOsX3PZ989CFPTp6HcOchRLWYcWhwvQ6vC67rBt61peYFrVRvvYk/6fVjTrw8eTHncDpnMJLjszPe/+P3WR+fgr8GB4QA2WDgd9uOJUmGbatt9ShVjBDhpvPjBIzRG6YHSxc7FquAso6TLLzJxlIUOaaviFQUAlcFfOGLr/P299/BasNcTCjLGc8vFgwONlUwLioZofIC7zwPnx4TRTFZktK3hvnBjD4viFTK0GvmO8EPNt+ZsVxX3LxxxMnpGVVV45yjbloiFZFnGavNOhD/xomCcxbjxkPAiB+OFbRduz2YGOtoekMsYFVVKCk5v9rQa8ugNUe7M4Sy1JuatutZVmsePDnl/p173NiPmWQRq1UFeGazKVJJGidRaUFjCblpUYY1BpXmaOeRhGJOyjHvJI7Jk4xiOiXPcpwZWK837M9nIQdFOfb39tg7PicvAkXS6KAnt9ZQFjPiOMgGpEqIVYo2emuEl/IF8UVbh7Ya9+dA25rP93j65AMiJEkqUW2LsQPCxlgn8IXEyIE8BYvAjnAqC8RRhBcahCCJAgHRegfCkOQOT5BMRDJCa4GMQ5dRJpLeGYSUTDNJpDzeJKyrBokizwvqusaPfpRYSoT3SDxOCIwNE4E0juj6IHvq257BW4okxYkE4SxSWE5OLpFRkIkpIbDWo43GOohHH6QaJwUCgSNIGvPEMytTbt2e8ez0KfuLQ6SK+OLtV1g3HY/qC1AG7VIikVPEijYSpF5RFh4RTdidTEhsh/YSbxWv3bnD2fKUncMddv0OXX1CDIjYkpYBaf+lV79AU5/g9w7Y3Z+xOb4gSQq+/MbX8cNT5sow3T3EugWTOOXw5ozHn/a09RUeT5xCX+cgHSoSnF84smJGtVlQTueoSKCSgnPT8uTklLyMyNKIi+Y58yzBdSBzSewiJnmGy0qGGmo/kKT7tO2Gi9NzVvEKM2j20vJzX7ObaoVQciSPKuIkYrOpqdcNSkm68fn3pS++wu7uLrOd/SCLUAqjBy6mCeWswHvP0+dP8NpwdOOQQA4MxmCpAjRCjbmKSiis9Qwu6PZ1rwPtkggzDDhn+cpf+BJWB6jAoHuaZmA2K4milLpuSNOENM5o2g2D7uh7w+OHx3z0vR+gq3XweIVzWZAGjp7gEE0RvGXX8r4XXfZwL2hjxkOr2cJ9rn9tfWDebBUXSia0Q4P0Et1ugs/VWqwNm6ZUEu9NkPaNk60wdRZY7PbfD/AaxoO3QMjg142iEKhrlSPNE+6/cp/dwwMmkwKpBEkaQZxihQpeuDRDSUWRq20X1Y/B8jiHjEJO1+XlFevlJbeOblCkM1SiUKPnMxAdLUq9KDJDD1OEkE8nSOI4SEI/5+u9R2cclgWPVmt+7Rd+muPzil/7tW/x/h//Fl99Nef9K/ji66+GWA7dUxYZb5+d0/zev6SpPc36mF/+y7/IB09O+aM/+SHvfPAx/9V//ff4n//X3+TTd97laF/y6fOnfPTwOV4Kfuqnfp7m5Jg/ePcRr9+7xWqxoK4qvAn+PRUp0jhGqpjN8pKd/fAzk3KGbisGPTBJY/YO53z48fsIKXn8yRPwligK6g8ItgklQPoAhPHO4YXASBHuzSjm6uqKeJzOKiXY293j9OyM+XzOarVCieDtzbJsnPCoMHmOI7pBc/+1V3FmYFpOsapEKMHq6owsqsnygkgKduZzei3RQ8x0WrJZnHG5WWAWBgR882d/id/7g98jzVKatiURip3dfQ4OD3nw8BHPnp7z8NE5cRLxyq0b3Dy6yQeffEpSBEiG24zhyNYiZfCKZlnG0BusqQFPHKttMWptIHvykudlOyEY12SAv7itJCsagRpSJgxDj/eeNE23hdznfXnXc2PnABXJkMklHfvzhLOLFe9+8DHexUwmM958ZZckvs3bHzylXlzw9TffIOk1AkmRJJQqJtqZsFtEfKoVzxcd8tkxpXN86c4Rm8aQJgXr8zXPFwNrLUhFxEfHZzy9WLEzz8mFwYiITWe5c7PgrXuv8fDpCZ8uNsSJ4vYk5mC6x9lqw/lizcPzgrOzC46XFQfTOZPUgzAMbcN8d580SRiqGm1BJQlSRpiuYzqfoPVAXVfsTGa88+lj6sEgZITSmnrdcH55QTmdUnUNRV7w8dNTsqKkqloq84ynx0/oNczzjP3ZhD5SxHGElYKnx+do62lHj2Nd1SRKoqTn9PyC81WDMR7HE/704SNu7O2SK8Hr9+9y8b1/y6oxiL5H6R7Vt5Tec1AWLOuGQRvW1rC3v4fXhq5tiaMUqULmL0BepuzszNnb3QlciCg8bxerBReXVzRNi9ZhL7Hj9Dbc5y/W38sTrus1DWybBNcT3j9LLu2PJVJ01qCijM54PvrkAR8++ICubRHqRf2mVIoi4NuvN0SR5MEALWAbOigUMGJZR3kVL0kkvIfOGqI4YlrkwS+kNVYPGOuQ+ICCbFr2d+YgBFU/emy8xzoYLNvpWl3XNJtqlP+B1iEfYegHur5lUhT0fY+1wcRtncNbRxoH2l2axFujnXUOYy3rUR/68iPjRQaNQIfhCkOvWW+q8GU7C85jtNl2v+qmY933NMPAoIPc8PTsklXd4YXEmuA7W21qHBLrPK02zMoJ0yRFqSh0BIDJ/hGdHl4Y0a0BbxEIoiQNHVWrUYAdOsppgem7LdzBOcdqs6HpOiYSdosskM/iUEg57/Cj30FKAjaXF4jd4NG4lmQqEILehMmnFJ+/BKbrK6xpmRbzkNcTBV8LBLmfNQPOGZQSqEiOG0hQUF5LeJVSxEqFjrI3ICxJGqENDL3ZbjpSgBSQpcnWnxJHLzafa7iGM2EDV9dQmevPitFofJ0PIUTojuMZjCGKky1FK47UVroSNsCgAU9UhDMm+EZgKzW0dnwN13Q0IJ/E9NqSJoGmqW1H73rKPAvRCg6s9QHjLhVYR5mHg0gchYiHaRFCN5WStLqj6npknFAUJa/fvkdeFogkIs8VWe4pypjZfELd1vT9aHgvoKqucN4QCYXVFWUSoYTk8uIMJSW9NkRFQVzE2CyQw7JiSpzkxD7iIJoziQuyJAc8k7KgnBbMZjOGvkNFAini0OEVgJKUWUkkY/I0oYhTlPeUxT6SHFsP6HVHo3/yrtZPfClPkaU4b/Fe0NSBunT33hF7e7u8985zFosVRzcO2N3dD3KXOKauauqqJVIxdWV4/vyKzbpjtdpQbWqiKGEyKciyBC88jelHSIBAilB0pGmGNgNNW4cmgoxp6p5q05FlJfkkZr5bcuPgkNfuvsp8tst0tsPR7j6TouDJk2d89MEjTp8veP8Hn/LDP/kA1wVJbaDyveiMv7xxXR/ogM90Gj8Tw/BSLMLLf37dnQwShBedyzh+0fyJVDzCacafHwutlzfc699eR0Fc09u2PzP+fCjCQtCmIhzAkywhyYISQsUx+WyXnb0DZru7pEUxPvtebOLee+yg6eoGa0JzRcWKGzcPePPLbzDbmZDmCUmcEMtou8dcy8KsteFZ4sJEIXjbrp8hn38EAhgu+xofw87ejEQ2oSoUFhHBZtGyXG1Yr5bU1YpHjx+zWCx5fvqUOJX81E9/hY8++YAPP/kUnKZqNvRdz9/4tb9GEluarqHpNcZ5fuWv/hL/4vf+LeerDVlWcHRwk7bVnJ1fXX9IIAPk4vj0DGuGQJy7dYednTl5kXHjaJ/5XsbFxRU3jm5SrWv0mD+1s7PzgqRpDRBosy8fwqQQJEmAT6TpaG9QEilhvd5grflMRzyKItq23XbLrbP0fc/FxSXOeYr5HpfLNSrJGKzDyZi2qeiaeksKLMqSNC/4lV/767z1lS+zXq3Z1A3p2FSz1pEXOXka89obb/Dlr3yFk7MrFldLtA4+tKpuOF8uaK1lMpmEtWc9RltWyxXGBJna9XW9n8ML0uj2XPeZe+f/vXB6+e+9fA9rrf9ccPL35lOWdU1tLR8+fc7z1ZqTZc2z8yWPnl1QZDm7Ozt4pZjv7ZLHijfv38EOPdXQIxHcnhUcTFKiSJLEKatqFXI5O0/T9qR5ivGC89WSpRlYGYc2lqbpeHi24GS5oe4dy8aEqXmRcr5aUqQFm7pn0Jb5dI4xIGTKvf1d7h8e8Onj55ytanpjWK0rWu355HzBedOxaCqsACTcunlApgSphNsHc+aTkqFtSZOUTVUjvKSqOlDBL365WZOWJevNhmlWsjufw2jLcFYzaEPVaQbnGfAM3pJkKb0ecHh6FySxXkR45BhInqCHnk4bBqtRsaBqWoz1LDvNd975iN/9o/e4qkNWY5mmZFFEESfM8pwyTUliRRxJnDEsL69o6maEpYXneFEUFEXB0dEBaRKRpeHv4jxXV1dcXl3hvCdJwoDgOlPvZYjGj14/ur7/LIXWj14/tscrmuzTDX3wCEloqophCIHCUZKBBN20QVYVJ5TJiDkAACAASURBVKi0RDergLkVAqRCREnYH73D6oAYl0mK09edj2B0VhK8d0xixZUzlFmOEIE2pSKBEBG705jv/fEPwp4uBefrDbNQ27CugmRmMAPvPz1mdzZn0waPlxQ2SDwcRIlilud8/Pg5sVK88YU3ePL0GUopbhwGre3rr97lyfE5cZrS9YZ+MDRNtR21X385AM5bOt0SxTkCzaqqGF4iTVlr0NaSRAWD1rTdwJ2jfTZ9Q2csz682Ie09StmbKG4fHHB8tmB3XtDqgeW6Z1X3TKRkva6Y7O2QZZJnzzbExZIkLeg2VwxdxdBuiOIU7yxDFwJB8yxD9w1SeqrlBdODkA8ihMOYlrt379A3LX/y4CFvf/AxQz+gogghgw8D73EuTNBMP+DNSMjzFpWkSKWIZUBFT4uCCNDWcufw6M+8YH/cS4qWSbHP/s5tzk4+oswT4jjHDT1xDKbpSOc5Io6QKubyckUUpRSxI1IWHSx5KGQoONFICtq2pTOezjlUonCdZZIkrJuaSbHL0GsyYYlzg3MR1VVPkqbUmw3Kg3CeaZ5ypQecFyRJEuSovR6zYyKapqOc7dDVS7KsxGqLE440SwDD05MrDg5ucH51RQTEkSQvZ2zqFpRAEiIeoihGDz1CePAC4Q1ZEpPnkienK27enbFZDySFZb34iPvzV7ixu8NyA2mUIKSiUAnzpGRnJ6JRKcVkztnqY3amBfFIczxenWJjiDJJLBzPnl/QR46LdcWd2YxVdcWl6bC6Rw8SiWc+yWj7xwwo/GbATT3zoid1Ea1XoDXf+NqX6RvLdz96l2984R5L4YlWMV0v2J3fZvnxp7yxfwejJK40ZHnMyfkV03mJH3q09wxDy/TgNRbnDVpAhEKKkixLqdw5O3mOTSa8eu8rvNfHZOefcGVrNv3n7/G6e+MuCMXueJgKpt+a1XrD0A/83M9/lcF0LNYNg1ekqcJoRxKnFMUU5wRd11JkCYPTIaOkt3z44WOm8znz2ZQ0CwfFTbUhyWLwMHQ9Skp2yjnRLCZVAQudvxFkHifHxxzdvMlYQmClYVPVWLckShKMtvSDJs1yuq6hbWuWqxV9v/nM4crh8WMD4RqeEch+AeBxvd8pFQKQX6aCaq0DUc0HkLwcs6zAM9ndYzKfI7yCOKE+PkP3Ddk0Q6YzRJqRZwm6a4L8zHu8D2HIwrtQsLxUuF17I9WIuM+LnDRNybIiZN5Zx7wsuXm0z/7RDfaODrGJICkzJrPZ1usamiXjlMuzLSpXq4rIC+QsxRmHswGL70XwBUdKYX3IZUQ4hPB4r4Hgx3POMxiNdzpMuVyYoLddzc3y8PNds7ducXGy4FZe8PDRB7x69x5nS8/u0Vf5R//Ht9nd3aOp1lyeSxaX51Rnj/jS7T3OhkPe/tOPKItvshlm3LmT8VOvzvDRHn//f/x1bh7NeP32LnUnOLta0zvBJx9/zOPn53z11SN+5a/8JY6vegZref2N13j73fdQSpEXBXXTcLFYUCiLEoaT42P6ruP2/XvY3hCXOTu7UyKh+OM/+lOGrkEpxeXFBWmW0/c9k8mEpqmDhBO20QsRknYMUr32fN2+fZvHTx4ym83RY1NDSonRZktEUyo0zOIoSPR393Zpmpadm68zWMfBndfo+xbhOrp6BX2AFtXVmr0br0GS87Wf/0Xuf+GL/JN/+Jt86xe/xfHb3+cff/vb3Ly5w9Xykq9//af49OEznjw9ZrHabH1ZwzDgCSqgp89PSZOEzXpBns3weBrbkSYFXbt4Ia8CmqYhy2OUUhRFQdd126Lyekp2/fMvH05FuJFeTMSkxHoX8im928oWfzRs+fO6jCy4rC65qDfMpq/x8fufsj/f4d7BnKicgIJltaaLdvijT96niBKmh3Mm3jE0DXfv7LM/mfCvfvAhMoLitudrt25xtllS7hR4m/P4/AwRJZTFjH/zw4cYL7hqK5zwnKxWIdfw5IpnwJt3D5jJmI8u1vzWd7/PvJzw9S/coesdv//DD3nj3g2+9ZXXcUgO5wPuYsF8NuP46oLlyXMO5jso78nTkrOrJQDN5QrdDyRxwu0b+zw/PmVvb49YSKI05eGzY6JIcn52wrLueP2Vu1RVjRWCOFFUmxVFGkiVSZaTxQmDM7RdB17h6XEskUJyvl6wrhquNhuEVNy7dZPNec28KNAGnIyI05zppGS1WCCjKU/Pn+Gc4E8+/JQffPqYLImZFzmTPOfm/i5lItnZLSmuFIO2nCxWdMYSxdEYW2BJ4pg8y0jj4C0dhoFmXTGbzVDCY4xmud6MvAW4hjwxyrSFEFhvEF5shwPX9+71da3C+NE1/pNeP1bhtdICaVZU7cDZ8TFXZ5fhoaJCZ1G7AW/GzoWKUNkkkKfG7CJ/PWAbfV1+e7OJbb7DKN7HWY8g5JOcL5e4cYJ2Y3/OJ0+ekSYJqIg8T7AInHXEkUJJRZykNH1HQiBnaW2IZEQ/aIZBszebjGNGiYoUy8Ua12l2ZlOk8JRFwtHRLjvFlCxPiCLF2XJFrBSTvEDrDV03gBdj/sz4lseOox/N1HGWh8ndYLZVtZKSwYT3PeiggbbeMc0LlquwOJpBszspiSKJ9IrLs0v6YaAocpanFZsuyN+0DZj9Mk24uTPhcZwGz40eMCPpqm82JJNoPMR4FBI3DKiixIswedF6CNMX65inOSpJSK3h9ft3uFpc8eH5Bu00giBnc6OvwiUJjLQzgQr/Pw4Bt84ZzKCJoySEATpI0588cO4nvWQwQdCbnsEZvJDM5gdUV8co7zHehXUmwg2orSVORAj6lWB9hPQWGbi4CBxVV2PRODEg45A95AhSQSUZCxzLbJZgrKbvNR5J23dhymYtaRzT9i3Se4wzGKMp0hylLc0oQ/GEeALhoelbZkk+aut18Ag6QRxHOBuCZK3RrPQAUmwBM9fobiWD5l6KgMRHGPrNgI4Eve6IZIHp1qgyQWaevYMp62odcva8J1YqSNRixf27tzi7WJDlBVoq0jR8biGs3BNJi9ED8f4cd3WB6SzLhaH1sOkbrB3IRjBOFuUs6lOIJ+R5TucHZnsTMjujPjkhkimLq3OSuGSap2hnSHzENJsjqo523TKb7tEZje8hlTD0dZDbpBE7E0VXteHB6R3O97R1R6KgL2A6mbNsjtHSkcicmSrJfIzrJW2jUdnnL4GRJESEQ3vne7QzLBYVMo4op1nw0/Yw3dkjTlIUgiJSJFGC8IIyzTBRgZKCxgTapcdz84ahTANRr9c9zge4z6rZYLShaxr29/fJkgzpR2ogPgRNIyinU6yFXndgNZeLJadnaw5uzEnSnqvzkDEjgDdefYXHj55y/vxku2GFqAPPteghFE2jFH07n31Z+nENL3Lbg5mUcitJD92961wgxe27r4AXDMQk0wm2MWAMTlusXQERKoqJ4hQpm63s0F1PrGX4Bf6lgFtgxJI7o0EpkjRGjPTFOI4DxEYItLPkabk9SCrxwoN1jc++jt8QQjCdTHFjoamk2srV/PUnsZ0qeLSx2BEGIkSYhI6uOIRKcM6idThgx0nxOa7WcHljcVFPZwXlZEJVW1Z9xdGspNg95OioYH9nn4c//B5PnnyCSSecna853rTce/U2/+l/9p/wG//bP2NxfkynFV//+n0ePHrM0X7M0y6iaQ1n5+eIZMLDhw955d597t0+4NHTE373X3+Hb/3SX+GTjz8mzRL29w9ZLpchaNt6lHBU1Yo8STFG03UVdw5vcna1Rig4Oz7j+bPnQToYxyRJwmYTCvO2bbZnj+tiPI6TraLgek1679ms12NHPWQtpmka1i7Bmxioh+GMYK3dSg+FEKi04HAyQVtPNPr4XJIhRWiiCBzWedKiRCQ5e3de5b/4L/8ei9MLvvfst0knKVpXvPHqa0RRxunp2QitsGOczRhejKBrO/p+GKekEX3fkyQJKorouo4syzDWoLUmHb3o16RGeFnV81mZ4b+zJrhO2WOr7GD8LMJ5hD+XSdf1tVmvEA5ipXj46Bm9MchkYE+H7KqPji+4deMG7/zpB2zampu3buMXDdNUYoxld1qybHtW7YAQIU/ytVv7lCU0MmGz6XDWovyAlzFX6zVpktEMBm0bHKFwMMYyWMPGWEzXEycZzy9XaCd55dYNNtUFVljarsVaQCrO1yuclKzrhijL0X1H1XXc2tth09RsmhYjFNI7YglTFXN2uSSNE8qiRA8hYHmnzMmLjHXVUBYlUqhwxlOKh8dnHEwL5tMJi9WGaVlSbSo2XQtCUNsGjyWOE6RUHF9eYTqDxzObllR1jTEDlpzOGOSY77ZcrQJdWRu6QY9RDB4zxjlNJlNOFisWdUcWS472dpECJnlCXkdBeu4gjWJ6cy0JFttsuaZpcM6R5xllWYa1PUKVrPv3F/jXtcfLRdU1Mfd6fX/Wx8jnRzXsGxPkGqbmw48vuTxfo+IM3dZYO2xNwiorEUJhugpGkyoqyM5s34dE96HZhip7N5qLw9vCW0vvHFdXC2bTCcYasihmU1c0sxxEhLFweLRLkSbsH8z54IOWaV4QO0OWQKVkKHIGzaQogqQpTdjUgvOrBbNJSZYEP0Hf9ays443X7mOGAekM3/yLP8MnH36Ec5au19y/fxvvLY9OrpjOJmzqBiPiMWvDAeEQ4ZxHyfCQ3Fytg1dDRZgRNGKM5/pZ00uDUiBFRJl4plnK1fmaNI052Jlzta44rxrO65aknLBZrFhvakRaYpoNiVcIpcBHfPTJCVbG5ElOs75ExhlpXOD6BtfXJOUcoweIFJvNkiLLUCqg0zebNV0UcTgrEQL65RphB67OTnC6I01jvAimxareoGHMtYE4TjFWI1VEFHm81kTFFN2HfKu2bWmyhKO9A/YP93/ihfqTXpFx9HrAby4ZnEV2Pa1ZomKLsAasJolytJJYbUnTQMLMCol1kMgEZ1qUytBA7D3FzsBXpzPe+8GGy5WnGjoiCYM2lHmKs4Le1Nw7OODivKe3lrariIQgjxO0NUgvqGtNJBWxEljjuFptmE5yRCNGrKkfu7CS3Ie4WKsMCZJYRVgDi+UyQF3GCW7bOwwEbHWaYXSITEiiGFB47yhiSVmk1E3M4Z0IoRIm8ZSu7uiyno3XHKKZTWcwTVhcrkjiDBW1NArq8wfYPqLD0HYNrxwesl60DEA5L3DdiouLE9LdW+iuZX8+5Z0HF2QTyaRMqZ3l+PwsFLg3HKXKmB7tcPFwwdXmCbfu7LNoWnanB4hY4yM4Pjnl7s1DVlVN0wl2/R4lGaftBYu2wt/cBecRtaRplnhSrqoVk0LS2TCBf/j0GZM0B6OQUULrBgqRY6VgM6yZqkPee/AudW3YOEs+K2j76nNfsxOmKB8OLpnM8Mqzc3M+HsbDn0vhUSjUKHlz3uFEgDM4LI1vGNqAhU5UxHqoGVrN6ckJewcHHEx3Q2Hneso4J84i7O4+kZChiPUWg0EKyTQukEiGuCeXETZJsaR8YXrE3dsNm3bDH//bd/HagnI8e3rK//Df/U90qyWmbVBxHOIRxrwU6wNJ1Ak7NjPkGDT+okjxPpBApYi2sqSX6WnhmRsKr3k5Ic4zzk+OSfIpR2/9NEmcIFXC4uwZq+dPiFW4P4Uf8fSJGr08djvlkjIAbq49J0GK4kmlCjQ6oRAyou96kiwJmWGAjxTzmzeZ7u+ys7e/3aCteyGnvPaIBblvgEpFaYrHoWTY9O0Icej7njzPcT7kh4EgThKUjzCmxzqPFKFxGMUR3gV5oUskUgrSPweq4flmwet3bvPg6Sk3Dm/z2tENvv/uO/zqz30DjyIza4qu4pd+8ed4+72b2Djl9o07fPu3/ik3b8bEQvG3/+O/xT//Z7/Jdz94wCfPz/nKm1/j++894he+9iqPLxLkN3b5+HjJz/7FL3F+tuEf/NN/zd50h29985t890++D7olT0usjhFI3nrzK/zw3bdR2pCbltPjY77y9a9QJjHgKLOYSHkeXKz48ptv8d7bf8hgDE6HvQvhESrCj1L/6yI4wCJCDALA0Y0jLhcLiukum6bj6vKE+XxnBIDFkBgkEcNLMr14vCdimTKbHpLvHRKLBBFF1NUKQ4wUHUZKjIMsLxFSkHrDZlERpQUiTtmQ4g4KvpS/yd179/jd3/lXPHv2Cf1gqJtr/HWgsUk5khq1p+t7jg53w0TMGtIoBeEYdBeoqFFMHMmt7LBpGsByuD9noeDySn+GBgcvGgXXxeT1/Xwts/dinCZLxTWA4/p1vSwL/ryuW2XJsulQMqIsYgZtaKqGP3mwIlExURzT/ukD7h7scHS4xx+98wArIuqhI0kzvvnVN3j/w084WdXME8WD4wt+7utvsVfE9MsNB7emrBdXTPMcO3TcmBbsTmdsqgorFGUqEd7yxbt3OT47YblpcdrgBfRecVa1fPudB/i25s7REYn0iDjkZrWDYdAWKWLaZkNZllRtzyfHF0TSU+Q5i+UKISR5mWCqDbGA+TTnwdMnHN04pMKBhlR7fvrLb/Do+RnCasoi59npJSpK0NaxO5sytC29degxCiRNYmaTybax63WP8gqnDJFXVJsKJ+DO0U2sdWR5ztXlBZGHKEnCBFYb6q4LEBYPk6IgjwM8zBhLrytMnrN5foq24VnvraEdDI5wfpZx8LVKQn7hMGjEuCYvrxaY+RwvFHGc0LZd2EPGJStVuMdfJpJ7z5gFOVJM3Qtp+I9KZf8sk68fq/BKY6iuzsOX0PXoQYeN3ulA9hurT6lirOnBhy6nvPZVjJOu8E5edDpE0Anird/+ufeeuuuII4mMY5QSaDNwenGFsS+M1cZZXrlzk48//gSBoq1q9GCQCK7W660Z1jpJmgjSOGbQPdYYfJzQtA07uzOc1rRNg9WG87OBYjLhallx8+YhXdcym2RMp1NmtUFFESenZ4SRpdh+kddfhLWMiHAQo7+G67c/HhYYDxhag4o8i6tLrHYksURJWNdN8PGYQP9JEjB6CFOQth4LOjl2sGpW65p0tocSgTZEEoeuspIgCFhYY/DOjA9MS5LmGKOxg6acTELw7dCBzVFSMCkysjQLUxaryZI0fF+Em0fFCoXEjqS0KIrRuqfveySQZ8E464BWG5Io/UnW6J/pEhI6O2DHr8kBXvdECRjvQHmECmY850Nug4yubzQZcPAWvAgexYBkz5BDQqQEaSKohuCvCjCEkEabxgneglAChBxdZZAoFbDazob1MXbaPSEnYj4rX3T74QUUw3uMtUzinDxOWK5XxHGYiEVx8EMZ53AyPDC8FwyDDllBUZB5hA6lRYyGU+0gySSxgqpuKJOM3lZYF7TaV/UVX3jlLS6vroiiFBXFON9Ttw0JCV6GwM5+6MFpJI5IRHTa4qMEGQfdeJ5IBuGQVlG3DpIYbTwugjhKiDyYRlMPLUpGbFYtOMVm2FDmMb6vSFLBumrYtAPOJtS2oVr31LambhumJgbjiZqMzaZHzeYYIbnaLDGDIPJpiHAwliwuSKOMzvSsuxXlZEa12SC9p9IV8/0pd/KbtH3Npvv816z3noHwrIhEWHvWh+dY5AWZjJEiPFuM99Reo71mWa2wRpNlCdZrnLVM0xKEwegBrTVRFBEnMS6gZKi7msXVkmleMtuZowixCd5JFMHoaJ1BE+6XxjR4Z8mSkqEf+P3v/YBHDx/z3d/5Dm3dI2MFUhBnKbpJcVpjXAAteQjSOedhBMsggx/YEixB1xtfeKx+tsP48mbnw8MUD3R9jxeeJA/BoH1T05sVV8ePaVfnWN2RyCL8+y4UOs6J0UvGdqoLwTt4fdjcFoEv/d6JQBQ02uNSN3pvJkRphopTIDTfQoZRUDiwLRSDtDISoYniJFzjtr33RKNXusjzf4cW57wPzxMUQtitJ/Ravnjtn3bjnvN5Xx5P29bMZxM+/fRTaDV6Z8N3/k3D7dtH7GcXKN/w+MQTZTdIUsNsNuFyseBLb74ZpvcRFEnCL/+VN/mX/9cH7P3lKXyUkqcJbTXQ6wFDxnsfPeKv/dLP8y/+ze8wmIjnFyuq9YYb+zPOFxVdZ5jNJzx99vTFa+t7MtPTVDWTSc56vQ70SyW4vLzi3QcPaNsOFSnKvGS5WjEMw3ZCFf4bvCRNXW8nk845ri6vGIaBtV+FIGMLbdtxeHiLvu9Zrbvgkx3jK5RSW6+7FYp+MEwnE4RIkUmCnE24OPfc3TtkuV4G6qBSDFYTiTgwPT3EUcykLPm1v/kf8Z1v/ws8CVXVobXbFj8hvFlsJ8bes30dcZwGr6I326ZGkiTUVaAgG2Ow1oaJgQpUxjgKFNLxCPPvvTdfntRu18dnJmN+W7Rdr+8/D5z8rZ2S55uKtrdoE7IBkyRmtVzjMklXt2hjyDc1xCqE8aqQwdrplsdPn7EZ8wCPdg9Apjy/WLJcLdFCIaxmuWmRCO7d2OX+qmEymfPRsxOMUszTiDwpydOYSHjquiJNMwSQpTG9NsRRhLGWi01L5C3rpiUWioPZhLPFCqQkFpJ5kSGdZzAOXLDpAOPEVzDNUvI0Y7Fp6bqeypwzDAM3JnNWdY3KY5IkpWraMUTYMysketAYbZhMpuiqY11tmE2neGuJlGBV1RzulhhtiSR4Gc7abnwPq/WaSTmhbVv6QXN0cEDbtchIBuBcrMZiyBFHEa3WxC4U6omQSAHldMq6brDWYW04G0UynJOTOEYKwTQvgnfeC5QKjYY0zzg+PSPLc6yx1z2T7XX9bH9ZaXEtP/x/ul6efP1ZgDA/nsfL1ljTMbQtwlnMoDF9g/ce03dhRC4Fpm/B2yAlIeRySRmMqs5bhO4RYpzWCAXW4oXbFiRizL0ajKHpOvaLBLzBu4Gh81gRM4sVX/viPS42Aw8fH6OcoNUdNopwwuOGYSs1mE5Llqs1baexPlD9lAwFSp6mWOtZ1zVHZk4cJRzc2OPBhx9zeLRPbzSrasP09Jy/9au/yH/73/86MgphtkpJlJPbB9CWbOgF2FFaGAXD9cvUn+uCyNggMxEWfvBsySTPyJMEKSQniwVlmoECheBLb77Co0+fIYQnS1K6YSDPE5rKYYxjMBrbVExnM7TxRHmM8BDlE3CWoVlh9YCIwoJNI8kky4iiGOcMfd+THezR1Q2Te7fxzobMhvkeSXLGNJ3iXciGCOtXkuYzhNEUeUbdVIHYFEdkaYzRIbMjTRLSpCBWEV96dfcnXqg/6ZUlgoWp6W1HGRWIXOFNBzGgJKmIkNLiB4sRjnxaInEYbYkjQZZKWkGgN0oBzpLlCU3Xs78vGbxjEEmIKDAdkyIGKZhOMqLIE+Vz/s7f+BZPz97jH/wvf0SaJgGgYgJJzjGOrEWQLlVVFeIXRmDJ9TMgiiIm0ylFmrK3t0vbNzivscZBHDPf2eX0/Jy2G0giRd32OBdCQPNUbiEzzhl67bh764iDgx1kUnG4O+H88ilN6tnfm1BXLccXDYdHJZtuxetv3WMWpyy05fzykqY3ZHslvm7J45yL9SXKWkSsWFy05FkJIsMZS+csQg/IwuN9TGc1+aBIVUmSxvSdYtP3FE1H7zWxjDg+WTHZUdTNmpPHHfd39jFCs64HqrZjkiQs+gWDswx6QMQwWIkdNDcOSkR8m7rxlLM5pxfPUC4nTyOmucQ6wSQr0dbQVBviaI8ijUmjhKq64nj9lP3phNtHN+m6mmWz/tzXbCMaQkUCK9MildiGtkYqpu+hRxPHEXiQIuDg3dDRdRuWVz2mHSh3J0RSkicpk7ykzAVV02C9Yd1tUEIyz6bcvn+AdGBF8BN1PnT4lZcYa7FSMLiBpq75nX/++3z47lOePnyKNQHXjbHINEIkCfWmQvQD1mnMMNAsFrRdjdYWZIR3Hu0t2DEXayzKwj1A2AOc30643AiQ2PrDRuiRGJtYwnuSIme+u4fRlp1Jhh42nH/0Ec5L4nyH/dtvcP7wIxQQxYHINgx2ewANoeoeJYLUrK5rILwcKeQ2vyVJU4zpcW4HjyItCn7xr/0yh3dvc3T3CC9eAHKufTXe+S2oYeiDFxoT7vkQVu0J210oRK99QOIlopYQo6RQShQJwPb5gPcIFfafRMShwPtzoMfeOrjFyfkpv/AX38Q7gcWw6yVv3Tniaz//y3z6e3+fDx91/Op//sucHh/zyScPOD895caNI16/c8Q/+if/mP/gV/4SV+cf8u6Hji+89ReYzCd87Ys3efDsIzYu5u/+vb/NLE/417/xbX73936bv/t3fpWr2vLbv/0d8qxEuAACIrIcHz9HKUcUpWy6hr/+y3+Vq8aTxuFzR3iWq3MuLhZcXD5laFf89M/+AvP5Dt/9w++wXC154403ePrkCUIIiiKn73rqut7ChOwYtO2sZXc2D17t23d4+vhT4jgeg4aDB6Udpf9KKZIkIZ1NEMbyype/ys50n6aqOLi1g3aOuh64fes+x588wLQ1SdJQb5a8+tYuAojzHCWD2gYV8f6TJTu37vHuD95GRgpreuI43q7bl6E0aZqO+4pHoJhNd1mYRdh38FvZYdd123twGAbyIgCjJpOCwRrWVYjkuPZ6vSzD+tED6Y9KFNUYT/PylOv/T3DB/9drGQu+eHRIby0fnF9Sdz2TUrE332HQIXrCSXi+WnHZtGRpThRFQcanB2q9S9NrZkVKnijWVcN3Lpco6SmKjE+enuCjFPf4hBsnO0Q4SHKKaYmIYm4XKV+4e4PHT47Zn8/wyxVff+MeSsDpsqHMErq25WB+i/ceH2NVynfffcJ+nvJTr97iHTsQRxnLyNM3HV+8d5vFYhleY90QqwgjPE3b4vIQGqyF4KrqGNYteSLBRyyrDfb5GUM/cP9gH6TEWc2s3ONi6LlaLUmzjKvNKsiypcAOwetUphF1XVGtN+SR5Ob+ISdXK3pjKdKEtbf0eiBPUg53dnG6IxbhbHj/9k2W65rVZkOcJDh8CJ63lt3plDwKAwLvLLkUyDglUZnE7wAAIABJREFUmk2pm462Ddmye5MJQkqyWJJNC05XVfAqRzHnV1fEUcLp6ek2X+9HmxA/Wmj96Nq9lhN+htq5laZ/TlLD44sT9uMckYesFzHe3CGfyY9yiWHM7BoLEhs2Fg94a0Jd6e04yhdjURJGptddQXy4Qa3z9Dp8wXXbgPMMtifOE5yMWK0bnFUcn58gpaLIJ1RNIA02vSZLE/Rg6LoQdKuNIYpTnNUYrUmynChJwQeNrRsMUZESe8+0KImTADuYz3fQxvO//8P/k0hBmiiuiShpkmFM85kv5+XLaE0cv9yd9AEqN3aM5PjzSgr6oedwfw/dDzSdIypjetMjlWRXet5eLfFB5Y/3nuViSW89kQvEMO/BmhBG7fVAnOQoOXZXTZgC+nFaaM3Aar0ginZQQtAPGtMHLbnTPRE2+ObimFiGSZZ1NsQAMABBHup1S6yy0K3110W2IIkinNVhyiMkZayY5J+/X0aNny0ivA4nBcaP6Og4QmGJZASYcQI1+jrsONkbD4RCjHp1ZxHKUZYKFekx7kDRVZqiLJhNEjrjKCcK7wfqSvDDt99l50CQpemIzg65EVKCsYYozjAmwGeuqZrh3wrkRTd2CZ1zzCZTqk1FVXVIEbqQldH0fR9CYDcN8RhWGYJlA4kzzVK0bimLEus0kzJFuPCaYxVhHXRaI2WERNBbg3GWZbPA+I6bt6aUZcSzk4E4znAyARRDN9C7jjiW4Ay9MTQXPbGQlNMyhOQ6QRwDrSVOYso0YtVXRJli03gsnmFZMxQG4we8g3W1pIxKqqqmLaE3jrbVNFXN7sGMuEgRg6brNEmqEAzEkSZOFK32tOsNs/0DYpWhRDLm0yiEiLHCYJxG4BBe0HUNZRGz6CyD6XFMSOM85ALKz7/wqnVHEmX0XRc2IiG5XF8SpzlJEoMfs6AcSCTe9fS6o9Mtzgeva2c0TVOTZVk4HI6ImOuDVZQkRCKilAXSB0ppJwzeweAtwocnjXWWqmp58vyMf/qP/jnv//ADbG+wTYP0FuMtzlj+b+LeLNay7Lzv+61hj2e8Y9WtoavnJpsUW90cZVOTQcmCIkVyADlAkCBGnDwlMZzHvAVwnvISIIMFJEaCxEkECJAESQ5kk4kUmaTYNNVNssnuZk9V1TXXHc589riGPKx97r3VpADTEkr7pQrn3nuGfdbe6/u+/5SqIaZd0yzmtEWJlD7QOKyhaQ3WhRxAoTQYd6qtkt2wSogQAP7RDe68BsR2WYmnmSuEPi1SAuHg5/72z/K5L36a/+kf/x+gFNlwHyGh8Q58cPrcuBtKJTsNTNtNSJvT1ztPD5Qi5EsE11eHaU0XoqmIk4zh7pB8nOPRp8jZRoi9abg2WgERhd/RG02bD8hBB6mF+41SAQs5N1U934CFfTFQNK3dUDXD4Trau/9raLx6GWT9MePsIrP1EYN+Qn844O2bbzF66jnW6yOKJphMrFcltjWs50t2t7cYZQnF6oQ7tz/A+orB9ieRWnLzxh2uXtimOEz40s98gTe+fZ1vvv42X//mGzz/3DW8sxzfucvHn7vMgz9/F5Hl4KEqK5QKTIIo0hRVRRTHjFXM7Vu3EHHMWAzZ3d3DWkVVrfn8Z16idglf/qN/AQiSLOH4+Ph0QF7XLabTBCLOGmRnDE3bcDI5IU175HmOdY6yKsnyXueeRudMGCiGWmsuHFykXZeMt3co14aHDw/Zv3QZIQgmZauKdVUzSFNwNcPhkMV0Flw04x4ikl2sggeVkvVydva2mR/vMD1+QNUEm3lrztZCYNg0ZNngNJMry1KWS92hWyFaIYoVdd2cXnvBUCB8Buts2N8jHWiQ3WAkMDM2yFc3RD/3uhvmxubcSfypy+9GI/e4j3fvHLEVZUCXBegciRCoSGM73bvprv9gHurpZxmtMbRWcHh8glMCh0AnMUhDMV8QR5r1ZMGqrKlsjRKC8uGULI2Q6ZD5qiLra5ZNy6xqkQiuHVxiXhaMRwOUb9GxJvLw/mJCP9vmwlYPdMLxrORuUfD5l59nVawRMiNNYiaLJavVGiUEe+MhSaxYG8t8XYGQrMuaXpKybhqkDHPnpml4MJkglKJq23CP0hFHxxOatiVSkkwHt9zKOKbzBXGacXhyzP54i7Is8d6S9TJkmmKqGoEgTxPq+Yp+klDVBVIE6ngcaWwLpTVkeYYW0IsjTJrhRVAj1Q0468iTiFGW0lrHqgj6s3VVgXUoYDzoY01DmibkSUZZVVR1w2A05uHJ9YByFwUlFVVVdYYuj+4nnCJe5x96lGnw0XX5V7VOf6zGa0qGXi+oZnOiNMJ7c8qR1HGCNWGip6QGHMY0XWiyx7mKDSe/w+jxQiCcw9NRoKQKjVrXlFnrsNqjZQquwtpQPgy0BAyHkymJ0kSRYrg9RihFfbuiqWqcDwVnmgV75A3PWEmBE5KiqIjjmFZ6XCMZpznHizkX84xbdx9wcOkyx0cPefr5F7h36xar1Zooitkfj6ibBtGJ9aIk3OCtPftCztNEQrjyo3C89+JsKNlNzpSMGPV7fHj3HlopruxvM1uuGeU9RoM+3/7gHg9nJXs7u4gkQ+uIxXKJF4pV3eA8RGnGbDYL59m2NLWh199CqIi2qWibGiUDlUh6j2tqlDN4rxkPBpR1Rb+f8/6Hd9ke9FmuCm7cPkEqTdNUtG2NUBolJUIK6uUEpTV1E/R9URTTVGuqYsUwz7CdsUqWarb7Cb3HT+PGS8N21kcJ3RVEHleHU6SVREpNbYNgP/IxtW3opTkOR5ZmeOHJRMq6KYh6Gmd0CDPNHM60CFLS1HBS17zyysukyQm3b89pVUG5bvn3/96vcvzQ8k//l99BiC73TAekwTQ1Xjh2tsfMF0sWjUHLCAhTShUpbGURAqwzVFXJ0cmUdVHQtoLRMMcJqFZrhoMMoUKo+HpdBTpIB9cHbQEMRz0iLVnMa+rGcuHCNns7hkgKhv0xRbVgvS7pp4rKtpRW0VOKB7dvsduPGY36QXeioa0b9rYuMTs6Zj43+GHG3EyJZAxWc7xYMLqwi9YKqTVxL6E3HoCvaIqS1dygMslg3AOnaFiR2iEJCiMUAtjevcJwsMu8nONswrpcolVMU3iGiSLRnr0nn2DZHBKlLdJ7pFiQ5YpceTLdcmF7D1vq0Gi1Hp0otBZ4ZVlPWqZmxmjHMFuviOQBeTamtIb7D+6wvXeR2hePfc1aZ7thFCzWK4y3jAY75FrjtKBp6o7W22W0eR9oWv2MuhLMJjP6oxGlsbg2QihNP8tQSjHOB2gUsUzwXjI3Fat2QqR0cNVsLfcP71OsKr79+vc5OVzwzvffpypK8A5Xt5i6whRLNvdz6xyrxRy8o6nWCNcGzZmXOOtOKXDBeOlMr2Vd9zgbdEmcipk308TzVCTnA+VSntv8PLCczcHVvPrHf8zRjZv8yt/9NV79xnf53je+gWgMTVnS6w9AdgQvGbK5rA1UKu88kdYoLZnNZo80f9ZZ0i7ewTmLcjHWW7QNgzxngp2ykCG4WXRarSjSHdVLdZNViabTbPnNOxdhL+hsCCIhTpkGZxqzTZO6cYQkUBh1FyjdtufOjz1t+B730ev1sQ+nTKeH2H5B4VL+zs//An/2x7/Fn/7e/8r+lU+SJvfBl9y9+SHfev0bPH9li5c/9SxRommqkhs37lGWMf/hf/p3+We/+zu8+c4ab1tWbcLdWxMOLvf44md/irc/OOTK5af57T96jZt3b/HstSf5937l53jjrXc5nK7AW5I0ozEVW4Oc5XzNN//l13jiiSew6YhIaLz1VOuGSCk+8alXuHv3kN7WFsvFhNnsBC0jyqrGe0GW96mbGq2CcVfeS5ieTDrDoYymbdCxZrWa8+DwGESoDWaTCUppdJygdM1wPGS9WqG04PlnX+Dm9es88cQTbB9cIe1tUVU1/TxH5xlzY9jZ28E1DeMsZbEqGeQtjW2JLLimpJ/2UM7y3NV9Htye89xzz6JMzRvf/Q5KC2xzhhSr6IxyuCoKhIDpYko/DxmpvqOyInwYAn6kGSrLgraVzAf9kFMXw3Z/zOEDS1MHnRYdswfhu76ra778xgonmKU555BKn6JqGxTscR/r2nHv+D5xHHexAQKhJLu5YisdwGTNtKxI44wsjtkZDylWK2IJZWWRWU5bldS03D2acLxYoiLNuqoY9IaMR2OOF0va1tDWNgwl69vU1rGaz5jMGx6Wa66Od1hMptxfrnn13Q+ZTNc8vd/j6csH7O9uo3s9nrx0wNZozDe//w5H8xIRRVy9uMO337nJtSeu0TvS1EXB3uWLtNawWjakUUIVWSIpUVJTtC1VExoX6SzOSyrrsPXGoALeunmro+tpvnP9dqBeO099MmNdNwxQLOuGfmuYH00Y9AfMi5rJYh7YTVmPxaogy3OmiwWDLGFd1HgfBtzD4ZCoXBOnMZnSNL4gjSPquuaJi/ssl2sirYi0Joo0+7tDTLli3VoemIqs1yONY2rTkiQxi6om6Q2J+hHv3bhBZTzz+RxrN3bx/pSBAI8iV2JjnvSR4/za/1Eaxs3//zLGMD9W47Uba1Zrj5awmM2xTWhoNsYZ59+g6zaXjjmCt11j1U32OjJ/N50LV+Z5VvBmMzbWsS5Wp0+vpARvgp5rvWTlgiXpfpIhsPTHWxzfvxfoJEYSa99ldwXIvzUmFCuRDsHHBBqZtZDFOd6a4P1/dMjW1jYxBkkI+lvPZ2wNBhyfnJDGmrJuaerm0S64Q7IEgXdvncV0/mCnWjBOb0mniyNMo0wIfYviTtcDF0Z9JssCE2kgFDk0JU3bITQdP1Xi8c6eOTAp2aENgaPdOBec+bo36LwjjhR1J271ApyXDLZ3SJsCvKfXz0mzBas7C5K0R2sacI68l9M0DaZp8MbQ7w9p6jLQ4Xo9BEHvJQQI5+inMWksA630cR/SksYxSirapgEEOtIY0XbrywZE1hNyvCoRXKlwwabZBN53UXq0klilUCoCLDrWoWmOFc63nBw/4FM/OeZksmBWhpDpz35xj9XxiP/rf48pyzUWhUQxGo3AOY6nh6frIE4ShA9mIMG8xJ7+TAiFjmJW6wKhFFIZ+v0+k+US04aJ5GQ6O9XRnDqEdvRdYy0HFy4yn8/I8oTaVMRxys5uhHSCxewYl0QQxSAFw0FMnGUMc41ZVayrht640xXkPVprAwra1kxO5gwiTeuCXXDiBW3jKaoKoWUYpLjg/ijx9Ec9jL8f1rJ34ENx0jYFKM3+6Crr9QTvGgZ5xqKYk8Z9nD1ECI1wsFzWzA/n7CpNFKdEqsUbhxIRvSxG7Y2p2wrnA205aKUURBGNqZCRQ/hw76jaJfW6ZBC1aKkxLlBR180SrR//tGCyOkb7iHVRkqSStm1o24Y7RcFwPCRNInANzhqk1GjbUq7XwdHUGnb3d1Ao9vKcPO7TNGE9SUGgWksovaV1FUez+2RphpZgnKf1BiEF9+4c8/rr71KVNWVr8UKhPNSrFc60tHWFkgpjTUCh2gohPK6tCZrkoKh01nbLUNI2ptM/hYws2zVT8jQH8oyip5TudDTdDZVwrzvfhIRHBMYaFouCv/Ezf5Nf/rVf5Lf/4P/lnW+/Qz07xjqBUpL1eoVSkCQp3jnqNliwW2PQHTLs3OZO3U3oOyqf7AZoMoqCPhICE1SA8I9qxKQ8Y0NoLUPwcZe15X3YDzaTf9mJuPHBFbVy5hSJiHR0hp45R+tCOLRUEil8R6O3tE2D84HyZow9HYA97uObb7zHIIl48/2b/MZ/9qu89/pNnPDsbyWksWD7whVEYmlMyWo9RytP5Et29obQNDx1dZ+379xiR2+ztZVx8eIB9x68y7def4uXP/U3UTrlvQ/e49nnf5IXnnuCGzduEEWOT3/qJ9ga9nnxuSu89/4P2KCmzlqsCcX0crlkuVzSmk2W1YrlaslnPvNpFvMFX/tXf85ytaJs7zM9eYgzLU5Hp0VWkiRdvmZNrDPm84CCb5riV17+LGmW8+3XvklVVWgVY1xAjIR0HR3Pd3oqT5rmVHXLhYtXSftDoiTHeeilORaB0hHWQxKH9fbu+2+Qpz2S0Q52eUw23sK7gHwLU/GFTz3L9NIIay1vfOtbaKUfyduCkJWllOpQ3nAdmjZkQ0ZR9KjGyp/lG51lbYVhgvcenOfi3i6R1rjGcHIyo3E2ZGQad6rN3BxCgHeBogaP5n9tjr+OxmuxWmN9V6+JEAyvkoyT5YxRf0AEJFKSRpo00kjnGeQZs8NDhJSsiwrrApKe1gkOjTWOfpqF/Vxrwu5zpqtrjSGNU/Ce1rQUTcuNO/fJs5S69dy+f4TxitYFOmIcZRwuC6LGkcaWZVkzWze8f/eEXEKcZDw4OgHnGexuE+UpudLMl2v6dUVRhuvBWIsVYfBjTLDzrxuLlyGjzdMJRdlQ6+BoVuLxKCUDiumhdCUOWBYltfOY9Spk21qLai3LomS+LhiqCFM3jIc5Kx9yw+q6YXvYp6jFadZvniUkMma1CrEdwzwlz/MOXQ3XzqDXQ7SGZLEMurJFgZUKrRSVMVy/cxsVxUR5zoM79zrk/0ejWRunzY3WcFO6b+7Jf5FpxkdZB3/Z48dqvB58eJ2rl55kVtVEWYqfLvHdwtvQG8LE48wyN/Dc67PusjshQgThduAjeuAsFT5sXq67GDzTVcF4kKFVRKQFs7Iljjzt0mBNoLE8NxozOZpSFWv6vR6T+YJhluNNQxzHuE5sGmmFcJJeL2W+XrMsPIMspaorUj1gOpky2hoHITqO9WKNb1vqoiJJUpIsJY1jRpHGZhnTVXHaVTs47apC37mxKg7TUL+hhmyUj9aGBlUqqsZSVEuev7SPt4YPD0MOw83JAikkxWpNpDVZlvPg6AFx1sMJgfc2UAGBdr0kShJEnIJ3SKUwTYVtynD+Uaf89KZtGfZ7JGnKal0RRVskMRxef49eEpZFYxT3jmdhEQuBaSxxllM3FXEUoxCkaUQkobYWR0vWWRn7zg2nqmts25LlCRe2Hj+dAK1IYh0m0dITCUEdga0tUkucBCE9BoF0LXEE82rBOM4RvsZ7RRIlbA+HVN5202uLUoGP3LqGXjrm8pO79PvgpGXnooSjjFXRcPv2Hb7y+39If9jjcDpBC8nOYESSJiQR3HsYqJlN3SKEBilCY+UCFUAgQxErFYPhiNV8htCKwbDHYjljsiiQKuHoeMGqqOn3B1TVOtxKvcO7rnAwLR+89x7D4YhPvvQ8P/GJlNXDCXcPR4x6hqeu7nN0NMHriP6gR+UrVOwp25J0kDBfzBluRezu7DIa9ijbNUVt2b+6Tx0rKmeZ3l8xHoTvPO+PODqcs7O/RVHURFZjGodqWwpVkW3FzCYzdrKYRkiKquLlpz9OsbBMly2ZHLCXbePXBaa2pDJhN95De3jappyIbarcsXYlQ/YQyYq6dhzNa65eHjKzE8q1wYmYYR6jjGbtGko7I1MxpjFcGF1DaMtJfZet8QG2UfR9j9bFSCzVfEHq08e+ZBOlaNtgUfzt125SFCsODvbpDUOg5SDJqazh4YOHzGdTZtMZ27tjRltD4jyhKmve/O47KKX53Oc/gxGWxbxCCEVRV2yNevSyuNtINIfHJ6HhLwxp5JkvlmjlsCrGCodvF7implkXtOs1zrW4JtghO2eCwZLvrNntBskBj+nu46EUM6bL8hIRURKDE7g2RGM4FeE6BEwpgfWdaQQhMqO1Hucs52u6UAyEwVWaZMisz2//4Z/ynf/n69TOULXBBtuXwVQkyzKapqFtWqw7y2Xa2N1vjG50pE5NCVRHUUUEI5i8l5OkCTpLSdOIomgQKNIk6cTftsvhi04RhvO22xCKTO88nkDR32S1RVEctL/GUjX1ORv+bqvEsVoVmKpiNplSriuk8jS1Q2nN/uWLKK1YLSt4vDFejFIBDqbrguRGwX/w+U/z+3/4O/z6p7dJRnt8975hPl/Sfvn3uffBbS5kAikTfFsyHF9iNHrA/I2GX/zSNYpVxU/91Od47/pblPMUnabcvHWd1i340vMf4z964WP85n/zX/H0x7a4cPHj5D3Nt15/i0WnU7LWUjcOBNRVhRz2WCwXLJdzxDglThOSNOXW3Tv0sgxnDFtb23z1a1/l6eee48MbN6jrpkNCAr01jmOiPCXLhkTJDuvFjPW6oGkaXnv9W4zHW2xv7zJbLhjtbjM5OQEvyPMchGQ+XwfDgDRGyJjJdMkv/8qvsrc9ojdMKYgwzZIru2Mu7O6w3IL9z13jzr27/Mav/iKjPOH3vvJVfuFnPo/D8O4HD8lUwcGTO6i2wjjB3v4BUgquXn2SH7zzZnA07ExkIh3hCXtBv99nvS4oyxrhFb1e7xR92jQHHw0zd9axWhYskxlPPvkEP/3TX+TSpcv82dde5a033+Lw5IiyCrmYzj9avIbGZuMUd/b/JEkeaQgf97Eqyw59D8i9EIJ3b92ml6YsmhWu01XqKEJKuLrVoxcn3DuaMsgzfF2yaByV96y9o3Et4Dmal/SyHNO2tM7hZTA5yTsH6NYZtJLsjfcp6prjdsWqXWONw+DI04ijRcnhd97ihYsHrOuKaV3z/smUh/MSIRVf+84PyNOU1WrKtctP8u7tmxxsj0iTmmo5I89yHk7XLOuaLFZoGZHpiNo5qjZor8Mg1JyahglxNuTaACICcOc0gk03GFutQ+ZdU4XhmUBgpOD9Ow/w3nOyCOt9PB5BnHLr8AhpCbUYgrJuKYSkn6XgPKPRkFnRhMyxXs6FnR2+f/0DkkGPaW25eesOFw8O+PDuIUcnoU5Zd5qtTdyINeas/t7EH3ykkZLnw+W7odmGgeFP6/UfHQ7+F2kX/02OH2u153HGaragqTqKC0HkTEcROeNFhkki3dTeO49QIjjqdRNk34mkA0c9TGMdArmZQHCOY+mhbUOB2lpASFrrSYVDR4p11ZJpz0uvfJzb128gEJyczPFeMOz3cQT6h1aBX79crcBK9oZj8iyhWK+C5ad1KATjPGO+WFDM5sTbkjSJWRYVUaSxRcXW1hZxfJ9mXpzmeHXlxinKsLnBnBluuFP74c1ClghEh3YZBEIJbh1NMOFMMBoMWC6Dg1LdWPJeSlmtMdaR6RizWiGUDPQeIRHCYZqSuDekWM7Jsn7Y/DuUzzmPkOG50yxHJQmtCeYdsbEI6Rj0+9hmTRxF/Pl7t7g3D3bmSaxpIo2zDeVywWD/IFA2V3MA4iQPNuxJoCJ6H4qBURSRx5JYOapOf/c4jyTtUZfLbhNt8QiG/Yy5bYPOSgsMgXtfNTUgiWWgy6ZpzLptqcpALV3NV0RakAmJUjHzxQovNFXTMthO8DEUbcu1Z7aZT+6RZDF1+y6f/FTOe3cXyNsxV/ZGfOKZy7x9b8l8cYJ1YJxE6QglFMtiyShPKWqDdoLWBq1NXTfMZjPiJGK6WPDM1TH37pW0DpxvcbUnVjpQYrXCenuKdjnnUSKibAqayTGHD2J2fu4lPvHyLl9+/TrDfsKD42N2B3to31LWLbH2ZJGjdip8n8s58/WEg9EV6MUsjmZ4DxWe0e6IaNVycLFlMIipyhGmddy+dY/d7QtIb+mnMZNZyVYvYllU+FSCiZmr4Gaky4g33riB9I7LH3+WTCc8vDWjn6Rk6ZC6KdgZj1lWa2ZTw0JW7D25z7qZ4jGsa4+VGh9JPjyZY60lFxll55BEDOv5jCyPML5PXTp292PKaolD0TqBN54siRjpAdKtWa6mCPn4Ea/aNLRVjbeG556/RJQmLGdznnnmKRAwL1eU6yV4gxOOwXiIihKOJwV1MWOUZ1x74ilOJhPe++BdBoMeUZISRwmqMUymE5ZzRVVVtK1FaYFrG06O5tx/cMSfvfo9rBespyvMusAsZ4FG2DZ4b3CmPTWd2ORQeSuxriHkzIZBXJj4hyB4r0C1FteGLMXW2E7zFLKtrDcooXEepFe0nbZXqZDNaKXF4XGmQXFGwwvArmBVlPzBb/0uonMNFR2rPY4jnBA0tcG4dXeGQ+be5t581mBJdKQ6dkVohDZ5XhJBW9XMm5rRKCBu2sP1d2+S9IY8M8iQQuHagBTUdcUmPFmIkPG1IRxIFYaKwhLMp0yDtSagakLipQDb6WZUhPfBvbRtWx48eMB8OsN1eZlaa+q6BWry4RxjLPdvPeQzL7z8WNfseNDneFqgYs9YzvnwpsUagch2uHd/RrVeMqsyXpRrnnnyEtNFyVffvscXXv443/xX3+Br33nIk3sXGCWOSHim9ZLdwYAXP7fPOw8/5MM7N/mNX/glXnv1O/zhP/9t/q1PP8PRouLG++8w2LrIn7/1IdlgCx3Nw4RedOcn6WFMMNmSXlJVLctFsN++dvUJHty7zyc+9kn+5KvfwBUL3r/5Lk89+QTGp9z68AZprBDeInE4A6vFDOtanFOkeUaxKtjZ2aa1ll7ew3hPsZzR6wVDr6IsQ+EuPFLF9FLH09eeYvzMy3xwb8EnX3qFKxf77A7HSFuT5To4VG5f4N2bhzx9cIkHx0f47R3+zt/6PB/ePyHpD7gwzqkLw+T+gqdf2CZdWL772lv8+r/9a3zmH72M9ZKmKnnllVeQKjAV2jZEhCxXy1O348FomxdG27zx3deYnIRhrwv2macFq3UWrWKiKOZkUXCx8lx58mWMX/OLX/pZPv/yS/zT3/4tDg+nNK2nadqAoIigbZQq1D2BxdGesjGsDQY3URSdWvM/zmOjxdzQc7XWKB2zqhpcUSEQJHHMyTSwRI5bw/sPHpL2Mpqq5LMvPsfX33yP1loWi0XXUIYYidoGn4FNcLyzjrKpyXSCR7Kqa7wD1Q14gFPksSgLWhMa0nuzOYvlklaA8CsqZ6lNy7KqgCXWGcriA6I84e0P7yNVRGMaJCeBTOIci9KwFDW7/QGTYo2ONK5qwQu8fPR8bDwHfhSNbkMBP28w4QJHHA80tmWYgeUJAAAgAElEQVQzLdv8zu2HDzHO0bSWSEWo3oh79+9hhaCoavpZilQhY9dYT1lVXH9wjy+89BK3p0tuHE8pi4rGON55cML+3jZRP+Pw4cmpO+5pYyRlqK3d2fuFR1GsR5qw7rOcxh8gOlT27O/PI12bv/3LmGpsjh+r8Yr7A5rJDGM9kVRIGYWNwXQcYSECpRAR6EXeB+RFBFiRjprhu8fPW8oH1MgFO1xcGPF1H75uDUoJ8iwLjUpH00jThKps6OcJR5Mpcb/P9s4Ok6MpWZYx2t6hLRYBcepO7Hg4pC6rLgfH42wIVRv0ciKt8M5RrFaILmitWodAUO88q3VJW9dUxnDpyiVuPpycfTHAKV+Sc1RCznXGXSF83t0wTD7DBuytp3QOqSSRDrlSVcct90JgrIemQeuIuirPnlN0LyhCw2ObEO5srEV11BeURLqgZTI2CGKVDG5ZbVOzWi5IcoGtPTvDnLppKNsA96ZpQrleBRcnF5A0HSlqa07FtL6j05yJjlvSKOTkXDrIuHplwN7u4w/2zKKY2XqGxXSQf0qiFVGkqI3FmBYvI7R3ndAfdOd6JZViNZ8x6sWYpg0WzqILU/adpgNI0z7Gllgsq6LBESOlJE0EWd5w4UoUJkQ64uDyNv2hhPuOxWKNUKpDu4I4eSPEp6OcGBuoX5sJTmMsTdty5dIud+7NAU+v12NyEqZc1rfdkhCdeDnoxfIsY9kGm9ejw5PgzKkE+1s9tHAUxlHUNf0Y8jwF25IlEbYyWAEiEjihsMYGCoVUGFvikEgZI6VgPM5IE4VtFfPpjKyXcu/uIXsX9yjrMqTDy7DhOoJNrPWOVEGk05CnEkvm0yX5XkasFa11JEmf5WrB7jilImZiFyzNklzFIB1agzGCKEpobYgviIjABs2b1gS7YAXW226zUDS2ZrFa0GBpKoMvGlRima1mRNKBMSya6WNfs2255vbNQGc5uHqAdbCzsxd468DR0RGxFKxXK6aTCXGc0Ov3iRJJkmSM8h7L+QlxqugNBqAkJ4fTQBVpGsY7fbI0UDyoWrJMYBuYTUBKQ5zELGdrmqNDTF1i2wYXdlMsPgRwd6J6nOkiM8LAzfuNYVLI4cI6kiTBdxuklBJrLN5apNaoKKJtGySyo8iGxqOzl8EaG2gnJjQu0gmcOI8gdeoR11kNt2HCrHD0BwlRrJhNmvBrnd4MwHVRHBKBFIEOG4o/1VEEg9Oo8+BMiODQ8QbF8ljnGY2HxHmfoixZL1d4JFHnXAdhC9ugfCqOTvPBRBdIq3wc4iq8INgAOVrboIlo2kDjT5RGKoWKIhywu7fH9vY288mKprEMRgohNHVtUJEgSiTZqPfY12xZN2RZikw8t2YrlssTmt4u67KlsYZBOube5DrTkaRsHLdun2BbTdlUVPMFD6dzetKg4idoW0e1rnh2P2Ywqnj9esPuzpiKjLffe5ODa7voXHNp5wk+mHzA3aMjskFAtQa9HlXtA11bhuFCb28cTKK0prCGLM0YDgZoqdje3uKPvvwnSGdwQqEtvPv2e1y59izj8Zim0zZGOg5anTYY+GRpDydqhHAsFyv2Lx4wmR5z+eoTvDM5CgY2OrjKNnVFluY4Z/nkiy/yymde5OD556i95ea9Y05Oprz4pGF/d4cMhXCe1jkOdsekiWRkRpS1wZmarZ0xr37/JnXtee7SNhcuDjk+mZBlPbKe54UXPsvhzFDVS64dbJEkSYh3kWc5ZG3bUjcNetTn059+mVu3bpGm6SNZeR89TlEF75hOp8zRiOgC/XTJOMr44hd/lq985Sss1iVte5bJKk4HvhvUQAaNojpzAK2qKhhD/TUem88npUQJCTisNdS1QyjJsmx47/YRbV0RJQlKau4cThBSkUVxsEiXQbsf64REaUoHQdMaEHPnBU13P7DOUTctog2Ike+YXxvkpW1bnIeqMRgHcRKzXqyQkaYXZ5RlhdaKxlrWdYOwLbWxYExXWwqEd0GyAuHe37aB3m8tostSDOBHdxJ8V4d+pNGAsyaEbtAVbqfhftrNOIL+9OyWjMOzKiocHik1VVNz9+FDpI64//AhOopxLsg9rAvShFCXwnu371Fby3y2BBco8rSOh0fHZGnWsbDo2Hb+L1y7H0WuPkojfKSxwnd1VvezH6LMPtqU/mXosT8e1XA6RXVNSlNXmA5a3cDRZzxhj9QRrm3Y5FYJ7xEqxpmgs6HTIm2aFS/EKS2PbsFsLLBN27D2ljwN3FghBYNMc3IyIY0jIqVI0gQlIOvlJHWN0IJLB1scPjBgLW3V4IxhoAVuPAouf9Jj2oZ+niOlpKwaerEiTxKi4RgnDLPZnNF4QD9LufPwmAeTOfP1iueuXWTcz1lPVx1X/+w8uY7vr2R0qrkCfuhLRwi88GF63KFgiOCeBS3TNliD16ZFyYi6bWnaFqk1TVODlCgVYW0NHYRqrUGahjQfBoezPMfUNbYJ+TtxkiK7QMWyKImlwFnLpFiSqZh+FrI66trTz1LivMfd4wXeh4YQPGmSsJjPsNaRJylNU+Nci/cRAtBCc2l3mzxPSSJ49rmrPHetj0weP51gK+sxWy6YL+aMh2MiHRBCbE1ZNVhZ45U9DZRu24ZIRURpRGkbGuFJ85i6qsC0WOuJE430iq2tjPm0wltPb5QRRQKrI6aLFUIkXNpTOCmpfc1qVvHZLzzP8mjOdCG4cDDk1oeWONIs5nPqpiGJYuqmZjzsI5oCY7pJhRMQCRbFijxRbPc1P3j7OkJAEilMbYiSOISXq3CTx4UbQ9yLQ0aVDMMQZ1uSCCQlK5/zzOUBTWNgFLQws2ZFcbzgmWcukRA2kpUxbF+6gHGesrVU6yVIhc5CGpRWGmsda9OCkGRxzXg7pZ0taRZw594h48EQFRuW6xIVJWxt9ymXLbZp6A97PJwv2Up6FJHn8tPPk7UG6Sqsk4gCru4/TdZbcrKqWQ8hrhsm928yuLiDwCLWCpWm1L5GK6hWnqwXk0eaqlqzKFYkw4wkSqgWDqViRNuQSMHJsiH3lkE2YKsfkemWo8MjhtsjnK8f+5r9P//n/43RcMDWzjaDPCbvZUT5EC9LTNNQLhbcP55wfHKIc5YsS/G2JYvH5HnG/eNDgghJcrSekPcTynKNUopBliGNo20MOo5JBn0e3r9PURT8f3/6GseTBdP7J9TzKe18QmsavDOdQVIYClizMXwJxYnvhmGbqSEEnaHv9i3jLKf251KCChPvxhqQMgzFhKS1FhXprhHrhlSWzpXRghdY78DZ030gWM93wZebgFYfioPlooZNIprvXl+dua9JpUg7VCuKojBIURqZxCHYvNP5aBmovtQGa8tgvJPnfPKVT5L2RyR5wsP7D06zjtIsDaizo7tfK9zKobtNPh+kCCRNu0IYiVIapWC5WBBHEV4Ht1y66090yB9CdIV/xKVrg1DQWdfREw3T+Rwp4Ylnrj32NVuUFusrLqUjhqMeSSa4s6j5wd0JV/cPcA8rLl/Z5p+/9hZSCiQ5O/2cD49m7G8NUfGSV156Eq8kb3zvTXZyuDjOeXdagZ/zS1/6Av/1//hbXN5SrJeSTwxb3vr+O/zgw0Mu7O3gsUQStocDjo5m5IMx1lhWxZrxeMzOzg6mbch7Kbs7O2yNxsRRRCUlf+OnvsB//9/9D+xevMJyPefFa8/x3ttvEkcxQoN3DWVdI32oc5ragl91LrCOqmrp9focPryDuXWLsiy79RS0jEorBllO0TY8+dTT7O8f8LMvfZyd8QifSrT2VI2jtktq18NZuHNvxtMHQ1Ss2RkNuPdgys2JYdhzfPZjV/neDx5QWMXd6ZRnD8Ln93rM175/hBeKCwPNZLbmN3/zH/MP/+F/wXIR0N7FYon3nn7eQ+qIz/30z3Hh5k3myznTyb8MFvgd9fX08OC6miFJE05OTnj22j6zpeInP/Esad7j0sETfOvVbzCdLyjL+hG0IQzYzwrcj4pvtNZk6ePPS9wc55lJpmtcjA21rHP2FB2fLgK7hzrsCSeLZdBwCUGvl+Cd49mDPSIheDBZIZ0lixJirQPlVSmMs6fGD2UdtJmce326IX5wgfQczuch9sg5VBSMkoqipDUtrQ05X1VjEW1wSN0wsIKkR5yeaiEEy7oOTUzTSSY6VsCGcrdpusKfP9p8ndHvxNl9VojTgOGz1+yeTwXgpe6acCnD7915+JDhaBiGV6ahLs/cM733OIL53Ae373axA+4RZkJTe6pyfu4lP/I+N3q1zc83LLS/4Pjhv+fs98WPpheeIsGbmv3f4PixMDMzuY1qV1TFKtgDS4HsaBpnE5Xu8N10cfOQAGdDo+a9feTUhA907oXE2R91thRYe2YjrITs4GxoTYttGzCe1WxO25RESXchuxBKmcRJoJNozWpdg/OnJ7gq2w6lC0drLcVqhW1rNg30fLEMIvy6oqgqWme5cW9Cvzfo4Mruk2y+PN91/qezgUePRyYJnJsmdK4/4hzn1jsXbOC9RyuF6oToHpBSo2QISg4TJYtUMoCJwiOiCJw7ndS67mKTXWjnYDhEyZBOv1oXNN3FrJQiiRP6SYypms6cJCBAEKbA7elkBbIso5/l4bnqAuctkYJMC/Is5tLBgMEwYffJF/91ltlf8SHI44Q0yUjTPGTD1SVwJtL33nVoE0gBUmwE9MF0xNoWgcfasPEEapVlNE7p92OSRCC1JM0T4jw0PptN1/oBWb7Pb/y7P8NPfeFT7GxtMZtOGQ7GIGA46p/eKJomTCb7vRSFObsJdgVvYyxKOF64uktRh9fZZK5YZ4n0mROcVEHUr5UKVKcONRZ4ej1JFLc4pdBRoHo4fIguyBKyfo71hjRPyRLNMIkxlUHHETpVOFywBZcOZAiJjZKQaWYDdoFSDhkJeoMIZJiGRVrTOjAiDEoa09BUBk1G1utz1M6Y+hIBrFYrplXB0fEx1XqFKQzSZgiv2dvbZWuYoawgizJs3SJljHCStqxwVXD9I5IkcQQelNQoESGcQnqJQkLTor1HeUmS5PTGWXfvEZjWUtQ1SfT4UVoVK9I85/Klyxzfu8X9D29w98aH3H73Ou99/01u3/yA9957lzu3H3ByvODttz7knTffJ44989kJs+mK1WpN3ZSkqaIqKoplzXJWURaGtjVUxYrp8TGzkznvv3+PD969xaX9Abv7OzTLJc1sTluv8abCmRbvLMbUtG0d/jVNMMew7pH72QZ9f0SILLrg8s3POGWDdBrXkBcGZ4YFrtN4OW+7uBK6GytdIXcWbrx57k1IeXB+7n7eXeMb/cJp06UVSmuk1iE0XcpwrciAgCEDAucQCJ2g4gSdxt29VmKc5f79B7RNS7EuUCIgaNOTJXdvPeD4cMF6saKtW2xjaYqK6cmMcl1impamqqir4AjXtg3WOGIdJumyM1doWnNKhWrbFtvdc611HdreBb53iN3me4iix48ejId9BqMhL734CaqTBWbZkooY0pz3757gfAvWULawXteU7YrLV0bcezAn3xqjvGR7q09jWr7+9a+BWyFQvPadH/DUtQMu7o+Ams+/8nEu7eXcOV5y52TNIAqD11RpYq3I8gQdReR5nyhOOsZG2jUUFm9DhmLbNAyHA9I0ZbUuePb5Fzg4uEie9vDGksU9BBq0YDgckaYpdIhtkgQmwqC/TRwF7fmNG9dpG0td1cRRyLyK4xilFW3TAqE5vnRwmc9+5tNcunyJJEnppQmRiBhkPbYHAxZLx/XbS6yDybJktQ6U4ysHW5hqhRYtxeyEvqrAGupGdmizRMcZQnqkMsRxoAh+7GMf5x/8g/88DD6EwDkbULCmRkYph/OKfm+X8Wgb6IrJHxoQP6pziaKI3X7F3/7pq1y9OGJ3a8Qzzz3FJ158kV6W/QhNzBmk4ru6cIN+b0w8lPzhOulxHeJcDbuhN3/0OKvRPvI4oX5YlyXOWqIooajN6UeOtKLXS/FYkkSDd6cxE92LA2coyvkh/eba994TRxE6is5ocfIseP181tT55/hRn+Gjn/tf59z80N9u6tuuHtfn6JLnj42hyHl9a+ssk0lwjsW5MEgLL9BtHWc08tMa+CP0wPNUvx/1/s7vO2cP/gjg40ccj37OH/37j91c4+krT3Lr6JjD+++RZDl10iBWq1NreNlpe5w1sEEwvcDj0DK4cwEd3a4Ls6L7sLbr9M9pBxChyQrfr2BRFPTyDG9Np/mKcV6wLC1JJFku59RlwXh3m+3RkL29Pdp1g+ncvqQQnKzXKOFRAqq2DkLK9ZqqDpzefppQ1A2s16yrhvGgR9GUeOl54plneOfBq1S14d5sStJ19ZvPcMZ9DXird2eh0GG1ylA7dBfNZvpzSr3kh/moKk7Ce1ehwWvaEA6npAIlqZsSawxRF1AtdRzQRuOQhA07FJJBRCkApTSjfk67XiGkZF5WjPspQscs6xbfGoqmpTENsRYo3+BsS7FakGZ9nHVIYDgc4NsSZxvivI/EkcYR24OEKA7Bdr1Mk/uGfjLgna9+hac+9/f+Muv1xz6KtmacDcl0zmK9wFhH0Tb0FDRtQS57tLahtYbKNPR7GUXZkBHhvCfzmkWxJlGaVdWQZ3ss5hVpohkOMvYuRNxfOjyQDhLSfsN4MODd791hix3KdpssiXjqYxm//U++hW6DBsULRSTCZHuxWFO3HWrpBfcfHvPrX3qR3/vyO1SNw6P5tV/6An/wL77J1lbCnZMJzkUkUc7D6QyhNcpZdJrAKrjKpVGEEaERl1pjnGGQZpRFy9NPX+byXoZpS9qqRkeaabVmkGu8kPS3tvCyYrKcQ2uYHM0RkWI3T0AaZvMFOopo6hbnW0QckSQR7WFLqQTSy+CaKRTLYoaxDq+3aFY1xnkSGXPr+l1AcXWwSyRjDGtmds0zOwdMDo9ZHh1D5OhlGVoaDqdHNEXCeLBFfztiqVfIaMC968ckKmI4zGlKR5L20SJGKEeUxNRlQTRKGUY5ra0ZJD1uFQ8QtuRgq4+TLU/sPUWa7aCVo6lb+oOMJ597klsP7nJpPHys6xUCbXKxXPK1P/sGRVVjjce1Lbs7Q5IsJYlDLtnOMKcxDT//s5+hWNd8+MGtbuLoaSrDYjFHKMFivSYWijgNlL/FyZTJcsrWeMzxgxnOWtatpyhKhJe01YpyPQcXIkGMbTuQydPajfVwl02FQkfR6dTUuQ6hEueCJxFdqK7ECImjy8ZzgXpkrT1tvLwxwQmwa5qsMwgcosvSCShat/F2w0zlN3Tvs43SduchsC3oNFxhUKi1Jk4yYqEhUkipkEmEVxKlEvJ8iNZB62WMCQiadRgByXAb31qiXo/jkyWD0YzGpuTjFJwjloLGKjyGqoKqMigVsXuhT5xoojgmjnOscUjZonWEaW0IvY814JEiDgPNOGJVLCmKmiyJUEqipcR4w2q1AIJRklYJQnpGo60w6BOPP8drVTU8dWkXO7zAaF9QrWuaxvKJyxf4J7//Kj//8acZ94cM+tsMY8m9k5vsZxHXpzPuvTVhvVrS04LjkxVN3bBY3WM6m/Arv/y3qKeOdfGQpy9c5b13HrI9NjiV8uHRjM9+7Dmsb1iuPM9e3uLG4Ypf/emX+Nr37rF7+Ul+5T/+NW6+fZvGWWrXooolx9M5g/GA9XrJ5YN9hn3Nl//v32Vr/xIP7z9gOZ3jtefC1ae5+4M3WZTBSCCOJE1Vg9cIITFtSaQTXFTiXYj/aE1n1NIaorjLrsLzxFNXiaOIn//lf4fCWRpnSFKNs4LJSUHRrjh8uObibp8r+xl5liKUARv0juvVgs+/chXrLEmsefopyeHRjDxLaCuHSmB/S1PgyZBI4dAq5uL+mP/k7/99vvqnX+cbr76Kp8V5ycc/+RP8l//ov6VqWwbK8crLP8nX/uTLgKUoak4ztwjoyKbAN2WNkZLvvfY2Txw8QxYP0Qh6wwEvvPgCr7/xBrfvHZ1KEADwIW9MKYXrwtETnQTKuQxuwdeuXHrsa1ZrHfSgQrDVH1I3Nau6fKQpPH+cp6U5G2IfJF3tZ6E0htfevX5mYGYMxWLOdD5DCkFtlqeukuefy557HU9AuDdNR+tDUzjpkMo8y3CiCzG2tsuH02fIzSni1VXX4my4D4H+B5z6DZyn2W0ogqfv5VyzedZs+NPn7J7wUUfMzcPnGqfNc/mu7teRpmnas6fb/A6PIqLW2jPmA6HBtRsa67km8xEt1zmwI9Asw7nagASPvB9x1uid1uPybFgXflH80Ov8VThw/ng5Xg8fonSKTjK0akjjmO6qxHcL8bS79XSoFz8E9T3qGhKako0w0XN2AvFnU1KhNtORronx4L3pmrLwZeYyp1qXKC9Cw2fd/0/cm8Valp33fb+11h7P3me6c41d1V1dPagnUmRTCkmJ1JgooWJJVhBbyoA4SiAgsZynAEZeAgVB4DgGAicxjARUrChWHqyH2DIimUogUmyFEkVx7GZXs4cauqY7n2mPa8jD2ufcW9VFhaTk1mo0qurcc8/Z81rf95/8IjHwRV5Z1QyyjPli7g+uNmBK0sQ79MVRzGS2QDrL+jhjUQlaZ0EGNLUmSFviMPCZXULTGNtt/elxglMurd5XcKdgxUtlCdMu/80piBeQHf1leSP5RUiLtYZQxV6ELuUqrNrbFmtvKW8MIgiwzqMRwkEYJT54Uypv01kvaErLYDAiDGOfOyMDBJKyNYggIe/lTOsJrYU49Ja6RmvPHVaSQAoa5zVjUaBIAolwS8qoY32cMh4F7Dx2iX57iOlvfTeX21/I0KZFyRjrPK8aJT3CYxpflIaOJApwsuu2S0HV1ozpEUpF3OmMGnzuhXGR1zQG/uZMEoWqIO/HtLqh3+WkCRWQjxJu37rLkxfP8sevfIswTEhjwXzu83eEkhhnvDMonbWpE+xsbXY3uVshvqNeQN02ZP0N3nxrn14Y4a8xP7krpTyS200adItM3TYryq613ozGWefPNw6CmMY0COG1mFprrGkRQuFwxEnCeD2g0jXaGtq26rqD3QNSSKq2Qpu6uyeh1t4eJuooZa1uWFvLeeveTeK8R9bPfSxBnGLbBolFht5gpNfro6tu8RIIwtDTPNM0Yn19xMG8IGslZdGQpRnaSupFyXiUIxEMkyHWaApT+hw7BUIFNMbST3voWuOcII0zgjSkqRxRmDIYjKmrEiECpAoZ9EOa2zXavv+I1/og5WD/kCAI6CcRVdMybxy1brGVoKq1L/x7A8JA8bUvvUpd1xwczLDWMS9LdG088hwq3xhBUrUNi6qB1iB7AbrW7N89oprNMK03xghUSFMsaNsKuqDxttGrxZexS/daA/hoBm8K5lYo1nKSA7pFytK2163QJqPNyq59OUkv338yOT745/Kzl1OHc4AU6A6x7kq9B46lAJyUuK6rHcfxKsx1FYUiFTJMUUFIEEQeoXWWtvaNQtEhYVk2wGlN1RRoa2lNy+7uLsk0Ye/wmNGgz9lz57HAotDkPeUtuFEYZzHWYKrGRwAEarWvYRhirEUpX4Ra4yMlqqohTiT9LGGpm1NKYQydxiPEWq9jStMYa3xzLknefzv5WhvuH1fcvN7wgxdSjluLaKGpZijXcm/3PovZjLt3D9HjMZKA48mEo8MF9yaHJLEiUgFH+8dsrq8x6g955/oNvu/CE7xdvc5Xvn6Tg/2bqLWEg4OCp65eQmGo2wptG8ASBBHFogBh2NnK+IW/+kEqM+RL+1/mzM42Wmvq2uuZDw8OeP6ZZzDGcv/+PlGcs7a2xcUnP8Dtm2/x7juvosJ7tLbteqaeqqqUR0dtF/GQZUPKctExfjxym6bpqmvf6/WQUvDcc88xn81Ikgi9qDncO6Y/zNHGUlYt62sZaaxQymDaBtFLkSKitRohWF0v1ljKyrs551lCsWiYG8hViLGK0NXEQUAYKOi2uakbfuVv/U2u/2c3uH3nJmmS8rM/9/OIIGDYE0Qt5Fmfra0tDo9np+5B956FeBh6/fJsNuucV8VK1z0er3NmZ4fXrl3v1oF+jWKd7ajuYoUqCUGH/HQrpD8Hbet7HcvCa8km0qfovA+P00XYstABVnMrcILUCIs2D6Inq4ZYp/N8GAnqPuAB6tdpStvyvYui8DrZU8fLaN0ttzsmQLeW7uD9B5CbRxlNPGAi8dB+P4w22SVt+3tEfZxzJ0XXt9me7+hzvg2bbDnsqRDvBwqzUwihFA+iaSvfhdVLjod38/Q5+/OYbHxXhddc18xnh5wZneHO3i0qZ1eQnhRgO7MFKSQOSxccRSy9yFSpjrIml3Q5gYoShAywpvWW69ajP6ZtvFXxqnizGOuFzUEgOzTJ0WpHFIUcHU44ni9YHw44Op4hpGBRzCmriuF44EMzpUSqANu56Vjhi8VFWSLiGOe86UatLTfv7ZPGMUomnN0c8ftfu8koitibFF7o55x3c/HxBkgs2TimOKpXxaNdLkCWJxwI8x6mrP1DOY8o583JPrI8+Z6i5xA+eV4KlFA+CFcG6FYjVUBblwjRoYRGEwYh2lik6Cp4pYjilHp27BdhUYpxLYGSRGlCVdbMFgXgH6iBEAzSnFnZYFxLUdVUtSbL+jRNxWgw4OhoQhRFrA0ywkghXEoeSNbyBIHFWsOwn3JhK+PDHznD93/wJSYHBxRkPPHE+e/5Qv1ehxEWp6DSFVL5Ah0RUkxrnJAEoSRPQw6qmqqpUVWIto3Pxoo9FB6oAFRILx9ig5DQhZSLY5RqkTE4oRiPYqyThEZjGke+3mdSNMzfaBkV+3ztD+9wf3fKExe3kEqyd+8eT17dpm3heN/3ZoRQrG+uY5ojXv3mDK1bcIo4tPyf/+wPkFLx+hv3EKpPvz/g8PiIOAqoG++IppvWd/TDjn5qHHGkqJQAA9P5jDiKuHP3Lreub7K+kaKNREQxWSpJE8X+ZMZ4bYCSAbNmwaSak/dyWusIVYCoDAp8l50H/TIAACAASURBVDMfUeiK+WzBIOuR9foYJ4iyEWWxYFrNGKQpRVMyGiX08iEiyCiLkvVeRigj+klMKDSWiiuPXWB+cJ9Bf43aVIyyDYZr67x7Y0oYGe4e3qN2AeFMQBMQxzFr403260Pq2qGEYqzWuD+5h3GW3YMDnnksx6mIK8++wJf/+PeRgadyqTBhaheEWULWX6OqF2htSdIUDYyihPNndyiK3ff9mr2+t8+ol3aMAUucKMajEY2Gg8kCZw1xEPLa27fRjSHtSo4g8YL+2fEUPfOaDtO0CGOonfHUayy6aTFVw551iDhESW/fLlRAq2vq4gjwxVZVN7TaT/Kn7c3p9J7OWLTRqChALZtwy0lRCB+k3GmyTppyHZ3TaNpuzjDO+mey9Y64p7ulvvkgPcVVcNKR7CjBEo92OddlxnG6WytASOJeRigFcWfzrmRIIBWiazghFE4EOOc1aX76EoRBwHx6hLCOpiq9/bCTFLOCN16/wXBtjXyQ8sEPPsOgPyLOI1QAznrq0iD12pW9dw8IYkEYhdR1Q1O3JElCHEeoQHReUj2ssWjnMxFHo8xnT7XNKqS20YY4CQlC2TVs6IouR1M11HWNUqN/mZfnI8czVx7ja7cb2qMZrwQfZ/3g8ww2LE7XXLm4gy5qVJxy9dIGX3njJk+ePcv+ZMZi1nB/d8pHX34BrRs+/PJH+eJrb7J/r2C8cQ6ZDPmN3/g/CKMtfuyjL/Lqm29y7sKTLKqaJy9fYlZW3N/b5ezOGmUx5Ud+5JMMo4bS3mEYKHQvYn9/nygM6EWbbK2tsz7ud8XDgjhN+MpXX+epZz/AZDbh+P4tnC24+tQLTIsKOdYc7O0SxkFX2O13KTgarVu2Np9gUUwx2mG0Jop7BIG/btNej+PjYwb9nMuXLqOUZF4cocIUFQqEcQRSkWYptw9m7O5rah2wMdZcCgxtuyDPcqQMOJ5NiBtvMlNVNcPhkC9+Y8r+pOaTz63xzz93i5KYF64kzOqatSgEqbi3e0QSBbz8ke/nX3zm/+L111/n4qXLRHGPtm6p55ajxQFXH7/MuXPn+cZrr7+H3rUEQnw2nX/uXr58Geu8CcSyENnc3KKp9Sl0wx8H2T0HTiMLceI1cEWxIMt7rI+G7/s1q7VGKQnGUpSFp+srRWPak8W1UidoSYeOLDPSlov45fFZ/nt5rB5AUlhq/0+a64gHS4dlrYQ4pc3CF3onBVtnWsRJgbBcb3Lqf+8ibhGPKGZOo3mnw4JPWFhutS2uawgL0RWf8r3FjGBZ6LAqhnyDyLynuFuORxVuj3rNds26JQ0RQQdGiBPkbbnNy8IJz6Q4BZ49MFYFrbXLE/cAEuYbBOJEL7d8vWOq2aVm8dsY0Xwn47sq2Q4nc9+Rnh+SDxKPyJy6uGRH56ArMlT3fy+OiZOULB+QZH2S/pgo7ZPkI/LRBipOUb0hKkqIkhQVxgRh5Cl1Hf9eIIhO2Y4udQB0PPe6qjyMjYEu3+Xo4Ig4jYmikDSOSTrhNjg/0QmfDRNJhTXe4W6QxUgJURySZyk4x+17x1jjaCvv3tjoZdfXH5clpPv8Dz9G2HvwkApOXaRK8cSLz5INeqxtjLmy02ezHz3QkVg+tKx1HsIVy66RD9GN4sTD9kHYiWDxjalTHWMpPRTqrKatiq6rmqCilKTXJ00yqtpire+MpHFKW2sWxZSqXmCFpLW2625bqqroil1NFCrCSNLoFudgkKWs5SlRGJKnEXEU0E8UMhC89MxVqt1d8v6QOOgz6P0lCGi7e9lau0IbjXO0nU5CY2iNRlsfKtlUNUkYIoSk1i2NbeklPYSTBJF38mubOUVdEwSCOA1wCKqyAgyBkBSLimygyIcJg37CuTOXaJuaNAq4cH6NMztjkkTQiyHvBaugxe2dTTY31hiNMsI4XWm/hoOIg6pmcyOhqHxjYhkGGipBFEl6vd7qHpTdw9dai9WeqoXzjj11W/Fv/JXvBxq/4BbedSzPUpSEIJAeJXE+NFOG3o2oKAuQXmNotEa3GiE8ShWq2KOlYnmfxjghaITE6hppLLPFgnSQM+gPUE4QqcAXb2lCUxekYUgawDgPydOQ0XhMluVUdYMQylt10+VwCEkgFdPjKXGH6hnjH866sYAk6/cI0xAXaIrFguFoi0Z7cbwKfFh2bSoWVUvdlEynh0SRotdPkIEApxj2hmTp+28nLwAVCnp5yt2jBbcPpszLgqIsWJQVx8c1h5MCXba0s4r54THTg2Pmi4rjeYm1AtXrIZIUmWWQZ4Spz/arFwVaa2TWI9/ZpLe5hsoyZBhhW8vieIppNVobmqZFt+1JJ/eU/gpYdbuNMWhnO1RnWRR5mofD8/ob63W9Upxw9J09Tc8Wq+94mOLjvg1tZXW05EO09VN/AqgwIA5CkqAzPAgCVBz4oitIkFFCEAUo5el+WT6gPxySD/pESUQUe+F8XczQ1YIldcoaH9SpVEjT+EWcbgxtY2iqhqap8EZRjqyfEkUx1jqiKCDpriuz6rhHKCUJI0UYJ7TGMluUlJWhKT0dKgiCDkFRvtBqNG3rKZhx5INH4yimqd9/Q5ivv71Lm2yAqbl+CJN6hhOORVWR9XNaYxFK8eEXniLPE0xbo51HThtdsbm95Y1W4gQrNG+8eZO94xlf+tKXCAy8+NwOqXLc261YW0tpnCLLR5S1oawNi/mMrc0xH/zgB8EpxuNNGm04t7VJnCQ456gbj2AuFp625dEOuHHjNnWrOTjcxbgWJ2OeeO5DDEabLAqNMcIXKtqhgsA3toCPfexj/Hd/7+/6fNEw9FrnLEMKSVVV1HVNHMf0BwOuPvUU62trpGmP45lGhX32Z5KvXz/mT67t8+rNkldvz7gz19w5rjk8LJEqYF7U7O4eYa23Kc/6Ofkgo2pK2vIIy4S0H/HS05tsZy0vPr7FlQvrCOE8y8X4xrRHnwQvvPA8u7v7HB4cMRjEbJ7NyHohvSSgLAvvQPqIxfrynmvaBmMMs9mMpHuvc87rwI0lCMJTmp8TmtbDlDDwwbz9fgbW8uGXP/S+XKenh5QSL5CzBJEkDCVp9BAWsXyeQJex6Z9fy3203XrCdcXK6eJn+W+fwylX7ChPbDn5+XKI7rXTLCoLaGt9JJJ74BM4UcqejCXyf/JEfPR41DlZ6aKkOGFnLV+D1XrkAcZax0aTymtmTw7bd45efSdDKIlchdeLEzRP4P0NunPjum1yuAcK3fegi7Da344gtzL2ODmKD9IMVwW4lKvv+F7Hd4V4ra1vUsxmaBRmPqNuG8IwQjjjxch1Dc4x6GcIYDAadV8RIqQjS0MWZYXVFt02aGOYzY+Jwhi97IwCoXSIXg9cSwBUTYMQkiQKOmTNT+KBDJAIrGmpdEugAqYLQ9gUYDWFtWzsbLCzuUXTtFjToLVHu5z18LIUDuN8B/nxizsUsxnrmyOuPnWZa6/f4uzZTfb2JgzjGV969ZrvNjjvpHVxO2PriQFfeuU21krcQcl/9Lc+yf/43/z+yv7bLzbEsmXERC8wgaCeTLnuYv7Gv/YS/+QzX+HGnu9QS+XpBEVZkmcRURAwL70FaRgmtE1FEMYkaeondru0bF26jXlDCKxG0tmidxappi5ACnpZxmAwYD6fo3WDdIZ+3qdqptza3SMdbLPWH9DrCYZGEfda30mNI2Ip0c4RRwGbo5wz44xmUeKkII8U/+4v/yQH77zDmWee562bt8jXzrGZrUHakm+9/4hXUbWEcUSe9jhczLC2RSBI+wNqB4vaW5lGaYCua1SgiFEUVYWZL0jSHrv3dxFhSNLvc3S0y2YeEvcS8jHMbUWaahbVPuPxNmEQcjBpiGPNaKPPNz93nZEu2RlvsMjB0nL5sQ2q5oitzW3efPuQfj8lG/pA5OnhPa4+OebgWLOxkXE8XfAjH3+O3/v8N0gCRaBChPXXsuse/sJBEgS0rSJRIQJB01a0tUErA52mRoUSpWDrUkBschIh2W/myDAlT8dYV9EnYFbOyIIIlQmki2jLBiEjppOCXqRIsoTWOky9wCKw0jEvC6yCYjH3BpvOIYIQbQviJGJ/eghpwu1bb5JHKf18zGJxTG+U0M5L1tczpIwZbyWUjaPd1QzSnIPd+wTKEUpNuYBhP6NtWlIREOQh1Uxx9eKzHCz2SDPJpFigsoDJ7JAgNezPDE6lvPa1PybLhsyqQ3pBQKwqirZh3B9R1TOSxBBHBk3FrJ7QumOQgjcP7rzv1+zjZ9ZJ84ijo2Munc0oCkNRW2aLiY+ISCJPjQVkHBH2M4LQUyStdbSmxugKFUs2sgF1VXH7jTepZ7POuU8SRQHGaha7M/bu7dI2DbZusTjSXg/nBPOy8vqmU4XQyobIeucq71dooXI03WSsggAlT4o13z1cdglPU1t8R9Y5vDOmdR2D4MQe2HVOX+oU0iWEf+63ouO2Wlaf47udDhlIwighUAFplpKEAYEQCBWC8g0DYz19zzUNBBEBkrrVmNIjTnGgPJVXKtI8oy3m2FZTtse0tqXXzyjKEqaSWzdvMJ8fc/HiZVQkiZIYiUQKbwXfy1Pmc7+wFaguIsQ73jW6pW4L7GxBHEeEUYhttXcuKxuQECbesCGOY3COcBR2BakgSdLueBny/C/HlrvMn0S1LRrNa5/7p/zQD12lbQ4Jg5jLl87w9utvMx5m7O3f47mrl9i/s4eymixRBErw+MWzHB68xm/9zq+Rbe7w1hvvsDXu82L2GOefOMOVi2N+55XX6Z87y+aox81JxNWdhBs33mZ7e8iHn73K2YHC6JLaKV54+jz7d29z5fmPc/fuHrEIEesb3p67niOVpS4XhFKg25I33vgW2fomwgiuPnaRKMh46qmXON6/Ta8fMTs8QDqBlD72JsuG/Of/1d8hy3J++Zd+iVe/eY3f+73fw7QtQgryPKNwmjgIyJKMY9GjWTvP5//ffbbPj/ntL94kCCURitY5Ku0I4pDaFhzMAuIrhrIsKWvHYxc2kdZx//AYVzX0wh5E8ORjgqps2d2bcuXCiCcvZiSxJEv7bOQJi6riuNTgFsThiQHC01cf5/DwEOEUs9mcc9sbHB06lIQkjJm7BUKojomz7C77QkmFIVEcE/XG3DyoGbY1QlRsDkImixLTNd2X0hFYFhFe/++cpRfFvpA0mkE/4xM/9FE+/KEX3/drVkpJuyw0cOxsbnFweISU9arR47P0HqT22S4UfWko5z0J/DNNd5lgS7OO7otwHR0TODHIWNL7ln9fegKcGs65lc2965qn8FDxw0lhcBrNeqQZyLcpQJb7cfq1h6mSp7f59OechLzLb/va6X09/blZljGfzx/Yvoe32zqLM6eL9gf37XTz7uGfPxJF687d6e1Ynu/l9p1u9C0/Rz50zv4847vz93aGPMtJRmPuz0qMPvILQM8F9FRCY1AqIO+PiLMBGEMWGF545ixZL2U6nXHn/jHz+ZzdwwVl7W/IMIppqhLhuovSaZzROCnoD/vEcczh7h4AsZ+FfaEmJNb6QOU0iehnKWXlBZL5IGd6NGFzsLaCYpM0QZiWQarYP57hgFBKrG154uw6X3/tkPMXt3j+xWd5+43bVHXLvK49n1lKVKAwncXl7ftzfvo/fJL9/TnvfPOYa9+4z5UPbCNDsE13giwe+u1OlC4bsl7Cwe4ER0SgLD/8wUv8+u++CjikklgL53cGJJHk3r7X2ySx715pY1Ch8LTDh24WT970xhfG2u698erhaYFASmQoaXVD0zYILNoZjuZT1pIIGUYkWZ95UREFAWEQcHA8YTDKENZy725BnCZkcUoYRjz/0pPM93bZ253QywPWegp39XHG/YQkv0yW9MjaGUf7E+baMbj057pev+thjPNRBpx0NhSdTbOS5L0eRvvMlzAMUTIglAG101gJWhuquiWLArCWLI1BCWrdeg69EMSxQgYBeT9DWkHbTnAY2hqqhWAxqZBxCDj29w7ZWTtDniv6A8Vo1KM/TJEy5w9f+QrDfp/hIOX+3h6u6wze3z1ke3vAnZsTD/tL5wNonUdFo8A3EJI4QqiQpq5XE4FDoJd6GuGIYonWPl9p0swRUtC2JTKIabUj66VoXZEkOVVxgJSCVjuSNGIymxCNhoSRxAmHtt7d0Do8/VUGaGtobAPS02STJCGNE46LisEgQwrBeG1M30SoZoG0EqkioihB1xWzaY1MBmRZhgqkd7Vrff6UQSACSRAFVEVNGqakeYQzAeXhgoEYgxJdYRFRNVNKWoI8ZFLtoqQijVKPKoQKKkvTespw21aocE4iJXVVcevoFkmcIHn/NV7X7+0xO5hRlSVr4yG9fsp8MaOa18hAMZsdI4QiNAqnDW1T0QpBlMZYY2nnNXo2pW0b7jUluqzQdYWwjiCMEQ4W0xkaaIqKsqzAeRc0BETGB366paZ2SbvptIPgJ2LTUaStc52LKyed3yBY/Z61y3y/oKMe2lVRJbqweN0105ZUQWuXlta2YyacWqCseNkn3+cDk8VqO2Xgn9VBEKK6SdMphehcDL2dsSEQDiEVdBQipFxpz3RV+oyypva6VmcJwtBn/zlHEHokwVpDECqatubde3cZjfokdUSaZESRt6hfooVlUWETy3CUY4VEt5peL+0Wpb64FDikEqBdF3AtieIIKSR1XRPIAIHAOO8uK5uGMPALZa1PNAzv59BBRGANoW1pjo94890bPHtlh5v3Jlx67gkQkrqqSZMR7UGJlJK1tTVc2aBu7vGZ3/0dfuLlx9jZOcu7C2haQ7EoeeWVP+LK2YTZ8QHPXDjHP792l4Ew/Mk7NzmeZQghePGF59i9c4vUxgyahl7Wo9fLmDjF0f4exlmqtqFeNntnM8qqYb4oWFvfZDKdkCQxsUrQQvH2W9f4qaee5LN/8AXKYkEvzZDCm0A0jV/Y/tu/8NeZTCqyuM8v/ce/zGIxY29/j/39fWbTKdo4hHbIQLB94SLWbDI/mvGxj5zh7TtHTKaKpNegnaY2AY0E27ZIK3Bpxc37Nc616EVAEleEAaz3+9w/LHn33rucP3+WL31rnxevbHH+XI5U4OwS9bXEiSBKekwmFRvrQ+I4XN0/bduSpikqgCAEFSh6vR6j0Yg4ib3kYwmqLIGNUwtZJSVKWEIM0vlCs6pgPB6zvr7e/X7TURPV0k2+G6K7z/3joa4qr4O07zVo+Jc9rLWrXazrlslkQp71OJjNWWovlzRo8M8apbx2bvnvKPLMo1a3K6rd8l4HT7lbykeEEA8YM5xe7MOjaXHL73mY2vdn7dPyfaf/fBBtfPRnnx6io3F9O/QT+DOLl+V2PMqt8fQoy/I9xdjJNjz6dx7ej+X3Pazl+nao2+nPXT4rv913LfdnhY51xbFzPgbqex3fVeG1c+4yN958m2dSwx1dEUlHGMU+sNFZ2vnML+bDhPnxAbFZcGl7nbpaEFYFz33gGbIkYj6fcvP6Hfanc/7o1RtMi4q8H2NJ2b0/oa1rrNY0jc+DmC8Wq8pf4BBpCvgFNMKS9vocHc+oe54ap5uanc11kBD1M27evoEzjjCMiZSlVpJ5bYiimDyNQdeEyvHKl15jkIScH2Yc3XiXUZZy72hGlve4fXCMcHYlDHRA6xz/+3//FX7h55/m1+4uWMwt//QffY0f+cWneeW33qaat6xvZCxmDcJZqlYT2gq1nsBNmNyf8ttfuMZ/8lc+wG985tXO/CFAGsuN2xOiKCRJEqIkAREgaAilACzFfOLpJ1KBg1ApWt36cNimQXS0MN3WPqtstEkgBaPRGKErBIbtrXXu3LkLEmQQItMhQZZj4z6WOfcP7lNUBWVd0Lcxv/zvv8z/8D99ltrAsBeQiJZ+3PBzv/Aj3Nu7y3icIeJ1RocH9M5eQLYOXTfsTaZUUc7erOb99i5SQUwWhVghuVfNaKqSfhphlaDXS7HGsahK+kqRRClWG9Jezru7t8mzjJ6SLFoHZU1/MCCUKQ2GeVOT5wEDLZl9c5/NcxuIQFA3Dm0VKoBQhbhWEsYJT71UsXvccPiO4fW33uZDH3majbGi1zc88fQT/Pr/8odsrEteeG6LPG4ZpE/wxrv3qBYVb16/z2zecDBt6UUJSkU0tSWNEoJQkUYSZ6UvIGyDsRXO+eDlsqrQDoS1BKFjY7uHsw2VkyzqkjPbGxwdHTHIQiaF4155RB466mZBYzXFYkqer3H9xjtsbmxSO4hDjakbCqNRRqO1o5cOPRItG6aLgn6aETlBmqQcTmeIXp/AWUaDnEBaNiPIxwMGZy7x2uvf5OLWgHs3plijiHNDlAmK9hCVNkQipW00c1uTrQ04PrpLf9jn4OgA5eZkccLR0RyEI80jAqVoG4dUGU5OOJoe43otQTNmWkxY31yjWtQsbEveM6hIMptr6lnBY70hm+M13pheIzIFW/H7bwhz463b9PopNlRUOOb7xxzcuY+Z1TjraOoKY1psqz111vrljNXeZGJJ/3PON3I8guRD2GeLOW3b0rbOIyqtJbCeZmHxk0nV+FB5bU0XOixWWqolu9nTPGTXHABnW7+4wHc7W6ORsguuFwHaWOqmQskuQLkrmKyTSwILiKU2whA44RslVndU7lOWyc6HKKsusBkhV5MhUpDmGWEQgPX6iDAIEVIgUFjtw3WXtvEyCDBGoydHvimjQqSJMc5hTINzBoxBCg3GO15ZBFGY4KwjDiVSOGaLmjhOcdayv39E1uuzSGp2D/YZDsf08yEysNStptjdQ94OOH92DSGjznHRI3VBqFAupGpLemlK1vO6L+u9TFjMFiAkvSwGYWl0gwokpm2ZHnvzBif/Ymk+38mIiwkXzgz55Iee4tf/nzv8/o0CI77Jh556muuv/hF7R1NefPoJ+umAjbFiEEYM+gO++K3X2OjnFNMFKoDJouWzn/86P/kDl+mFLUVr2bywyT/80wU/85RgVjbcrWukcHzj3bv8jb/6swRmyv133mBtbQsZSvJhH4Vg0O/zta99ldq0tMJxODlmPOzT1hU3b9xhONqhfPsWhwcHPHX1Ka5fv8V/+bf/C849/iwbmUCXFZ/Xhp/+1L+Kro+ZFSVXrjzJ22+9xX/6N38FIxqyXo9yXqFUyG/+5j8mjgI+/Wuf5r/9u3+fjbUd+sNtfvbn/hofeDZHuIRLW2O+7/E17u6V/O7n3+VGU2HdHOUC8igi6gmKecH9wx7XD444f3bIF/9gn1ApfvHHH4NQMt7e5s69PX78I5d54/ot9vYs1mqSOCSKKoIwZDIpwQqsXtBUAWk8QGtNkiQEQcBgMMA5Tb/fo240aZ7xkY98hMWi5d5nPtMtok+KgZWcRHgN8eMXz/Dk5TMIoTqHPdjZ2eHxJx6n3887KYLp0JqlZkmyzIDyRVnI2mjAuZ0dLl2+9L5fswJHP068zlRFHE5mnE9iQilonc8jlVL47FnrOn0nK6ppo1twhqwXo11EUXRIGXTNHbNa3C8LgUcZdzySAnfyw5NnGyDeow7yZlGnqZ0Pf8YKaVoWmn8GaiNExxxwS0Mk8Z73PaCHghW7azlO53K9B9U7Rf+D92ZhPbzdy9dOF5J/VlEVhj6o3n8AD8h4lk6ODxdbj0LKHt7PJbr57ZC773Z8V4XXU+cGvPzsJ3n3+nUeu/IURfk6w/wM9Wx/xfHN8z5Xz495/ulzfPzDT9Nozf/66d+inh+ST9/l4voTvL4/oa8qglzw9E7EW3uOMM3QrWbYjzmoq1UGRlWWq0paKemtjZ1FCom23kozkp4HGwYBwhk2hhnOaaIwYT6ZMRwMkUJxLEDrhs3NHpPJBNfWaG2IhGCQxKRxTBgJvvna2/T767RSMkpzbh8ckMYxd6fFCXzeuaYcziz/8B9d42OfOsOf/N4ujbbcfXOfj/3iFe59tUU5w+5rtwmSHj/8oceYGMOXpg0yDnDO8K3rR3z22jsk/RjdWBwGmSiahaHVlp4MsVoTD0esbz7GhYsp17/6Dfb2jkE4ksGQajbx3WfhLyrdVgRRinOCME4JooS6nBOEIcoZkjgmiATzRYVDdguQkDCKWBvmjIZD3r09pSrn9PsJL//YVe6+ccArX/gCP/zhDeZtiGkM53cyPvbRZ0nlglE4Zdo0XB7soM6exVU11WSOdbCYa4pFiQ7+EmgwwrFoC89Hby1JL0ViKdqasqoxAmZtTe56iCCmqQoK3dBoR6VbDuZHVC28ffs+O2c2EEjmRUXrWuJ+n1w78rFDhSWaHpVpccLROtg93OPllzPK4wm22sEtIO3NaKsJk6LiyuM9BqOY1kxo2jk//qNPs7mTIZqCL35xhjEtly9tUtYt19+tQAqsMEyLkq2xd+GLlEIbjZOKOOlh5nOiKAQhWCxazwu3FhUFBFKyvekRD2NqrBKUlWZ9sMbhsUfT0nRIa44IbEEvhHv3Z5Rlw2g8pp9n7E9n1KbEFAaXJKRxSHDQYNrGF/7a+gU3lsA57u/dRyUha/11qsWUSxfPc3xwQN20vHtnj6cuPc+ZS49x59ZbDPtbgMUJg7Ut33rzLbbPDNjdnaJtzZmL50llxKE11EbT6w+5e/cOCz3jynNr3L9bMZ1otrI+LrYU5Rx0iLEGW1QcmgPSLKPV3q00TUNqM6FpNAujubj1GMY1XmhdOvrr64TR+6/xmt++SxulWGu5V1UAHqHr5AMWg5AQRCHOOALj0SqhfBCxdIawM1iRKgCpqIqSpm6oG4Mxjrrq8gyto10+1ITACrqoDoWQdNoSjz5Z43WmvvjpDC3wKLIUnvLadh3BsHEYBRpQwYl1sTnlBGtWn2CR3jgYXJdbSDe5Su80tqQ8row7PIcblCQIPK0nCmNv1x56y+a4Q4mU8G5cPljZT6JBl+0onCMQBt1lhPmcJ7qoMAPOEEiH0RZnfH6OMZqqKinmU4yuQSiKecPuQcHTT22Rxn3SOMA4WFvb8G6KqQQZ0cu8aUZVViymC5RqGEHsqwAAIABJREFUsbomyftkmX8+BokgT1K00cRRihSSxbykrivCuJsHdUtV1xzvz6nrezjXsrm9iXUQq/c/qL62B9w4jPn6t25CmLM2LImTHrY+5BMvP8vto5Tbe7eZzWYczArODGOKAmZlw/YwZ7Ofc3x4xO37e1zZSujpmtakfOIHXuRXP/1/g51zbfxhfv4jz7CRCZ7o3eNDP/Yy//i3P8PHP/AUw+GI/qAPBKytjXn32qsIU/LVN/dpWsNkNuP8zjaTWUE+ndDKnP2DIxbzW/zUT/woo/GAX/07f4+b+w3aSHbOrPOr//Xfpqk0zhnKsuaNt+/zwRcveffJVqMbibCKQX+IFI7JdEagJJ/6mb/OX/t3/gO+8PUbvL1nkOMB7XzO5ngbI7wRxZmtAf/ez1zlf/7N1zAiYLpYcGFzzPFswdogw80rBjYlmQrOxYK0F/L6tX02hwnDTHD2Ys4gl1zaXmc46qECSajCjuXg6Pd7nRnEhm/KOIe18qFw5xApQQWetvqxj36UN95829NwTc3pymu5yLTWMuoPGK6towKvT/cB4JbzF87zAz/4Mp/+9K+zFL57fbp5QI9jXee8J2A4HHPmzBbjnYvv+zXrTMP6+g6z+YIWT+eNU0/b9cEOzjs5dyZvEkkYRSghvE5WeinH0vRMrbT1dlVQnDaxeJjK98htOlWYCNHldcFDjuEnC/+lW+TpGuBRxcuKGfCIny1/Z0n/9tyok/dJKR9Aeh5+/QHU7lRB915dH+9536Nokf9/Bc23+yxgZXyypEGs8MHuevQNrgfdDZfj9LlajqXh0+kCeoWCvV+uhqKcMh4OKLIhXz54BwkEuiRL/SQW2pgsgp/+2DNcPLPBY+MeKkq4euUicjHn1p1drn3zGvkgJV7bYX1txJ+8fodABAgnUYhVN7Sua7J+RrlYnIL6LNL5jqkI/CrEOz1pBnkXROu8iLSpS7CapqpogoDecEySJEjVY3Y8IY5S5lXJoq7Z6Uco4UjikDRLECpkWsyZ1QYcrK8NqL/5DkkgqdplN8AiReApOsbyra8cMt5Ome5X3H9jznCjh9iOKXctUxXiGse3ru/x+FbGdpayH0isEOSDlGMqgiQkG6aYpqRpLaYqEUJipSBO+95sQRdMZxUWbzHrrGOUw8Ec6u6eDpSiMX4RZnRL2OtjjCGIUgJpmU4OEL0UWsjzIbO56nBlST7O6Y8GjNe3SUZrFJMZdT3nE5/4IQ6eukP97k3Obm2wfzhlkG/QG/ZZiwIq3ZCtXaZYHFAWJeV8jpUx+XgbUbcEsSFuQurj4+/5Qv1eRxwoKlOhjCQQEqs1MvLdcIWkddq7UzqHCkNaYyjrijiKKIqCMMhR0tFoz+MOwgiBd6RKwhAdOLIsIQgU2rQ0rbeArltN0wryULO2kXHnnsLoiqJYsDieIoSkNQtGo4TZLGBre4Mnn9xgXpYYHSODOevjIWnqKO9pLA4FtEYTCEFRlaRxhLWGfp6zaGpvuiK8E1vbLsO0O963MVgBeT/CGksSBVS1YbEoCHupD7GtG9JswNHCo2VCGHpRSNFoVCy9RXHbhcoK7zVnnEWJjkBiLHVVe+RPCqIggCikPxr6pkic+IZJawnzAZW+TX/Y5/7BPc+BDwWBCFnohafcaoO2NSpJyJIQYZduQILaNhwfzX2GWJagjWZ7Z52vfvkaQlkGaylCSOrG0hrF3nTK6Pw5pAgoyhoXOHIZoAIomqaLZ9CUumVeV0ip6PVG1MXifb9mjRUUZYkSjqCjELVVvaLbnVgzBz6LRAncMvMEB8JTBaUUyC4nqqxqdGvQ1qK1N8/wR/LBic4YC8LwcFRJN32vpmPXcZE8AoRH1FixcDr9VPeMVicTuV2iVPhiSjrvqOikBicQ7oRKs3QRw9mV1tk4UN18EMaRj7VQ0mu5kpQ0TZnP58tsz85hF3By5ZDlcCunRR8O1mk0uv9so72bmTUYo1FSYLVHD6VS3r2xownSNeCs8Pl8dbvOcCgZjQdEcUqSJWS9HkEU0GhDEIQc7BXo1uuc27ZibW1I3MNTHrFUVU2SJCihsK0Baajb0t9r+PDeum4xxtHairppaWrH8eRdTNtyfmfE91186S/sevxORhJt0ixmHJsBmAlhFXDr1i4/+vxF9o8LPvmJj/GlP/osX/7GOxxMDnjiwkvsbK/jvniNQdZD6wKlBmghefbJDcbpkP72GSbTeyhpeWxrg41+j631dbAzZrMj0uqQYd7n2q1dLria46MZZy+m1MWE169d4/L5dVrjiMIYKXy8ioxiYiXoDzK21tfILl7k3/zJT7CoWz73jWPO7Qy5eKZPWVqCYIke+3xMJyM/37feKOR4vuDw8B5XrlxGKsVoNKRpGr72jTc4d/4ib90taMKM8xuC9WGf0TDA0WItCBnhhOTnP3UFayXFvGFtI0Frh+0cPtvWkoSgG0MUhQhhiaKApu4WgiKirBuiykssVgtSfISDlOKku28tYRiuFpIPDOcXlGEQ0MsS33QRS/e2B0cQePfc4Xjk6badoYLAa6EGw5wkjXEzf89b6zqUoctHEn694bpCDCc5OjpGRdm/xKvz0SNQCqEEvSTASMW08AZBSkqUFLRGYzCdE7JnXDVNydntbRbzgnZRYrt5LhIxRjWYbr51wnHK2PvPRElWr3dUxeXw5/hE++V9ZFnRFh/+PI8mvrcYWKKM/r2PQrlOfycsH7arxtopSqYQy33pwIdTBhQPo1fL108XOkv91BJB+naatGVRdroIOl3EvceAaVkQnTq8DrGM4fK/B2C9665nZ3TNgIe274Hi6tQ2ntbm0R2X73V8V4XX5z7/Fm+89s+YNz6L5Mz5C2zLOVEkyHsJ5zbXuXNvn/2jCTqIKCwEomW8tsbnvnGNP33TMM5DttZSfvy5l4hUTH+4iaHCElB1gZrLCn52fOx3Ui5PdFeBaotxzhdqxutcprMZ6yOJEDEiUNSFpm68AFqGAW1VekqHFDRNSdMYdFc0tcZQNo7HB4paVwz7EfPacnx/n7OXz2PmC4xoKRsfwiykIEojyqrt3PIUn/rED3Jr7yZf+PpdqiPN13//Phf+9UuoCyFnpkOS1PEnX77DG/diPvaDl7kWgMhj/q2f+zh/+KUv0EwWmNzyD/7+r/DK77zC//ZP/hiBIJAgnUZUU5JcYUpHPt5A9c9xePc2u7sznnviDK++cx9tvCYpinvY1hDGKbqpcIhu8WCJ0oQ8G2BsS20cKowIo4g0y6BqObx9h+L4mCCKOHdum1zkyDdv8NjQMHrheapByOaiZF0OWD9z1pudaInMEtZ6KXd23yJyEYumT6XnzMsJrcoYndmCwfufL5PFEY1umFUV/ThmVmqmrqEfDRitD3nj9pv0XEjdGmzZIGWMlBFrg5hax0gTsX94n/E4R1tJGiceSZ1OCa0iDDSBdGRJQoikKLzl72CYI53i8NBy/mxIv7fOm9N3KBcFw7UxUTjgzFkQGA73pnz4Q2fYONNy9OaEe4eCH//UOf74lTsY4Btf3e+uf0GsAga9mLZpCJKQPOszGvSpD4+oqoKN9TX2J77AfRDWl0RJy8ZmgJKWAIWyChU67u3dZ2NzCxfF5EJRyyGTxR5Iy9baiGhSUTtJUda0ZcNaPsDIisPjI2wcIwyUtUHJmDzqsagL0jzCipK0P2DQH1ELQdgLyOOM42zAcDPk8Zcu8cabr9HMCxphOZwd0RvERGlKL+9xfJChAkc4COjlmmGUsaj2EZ1zVn+YcTgrOJpXCFMDC1748ONMj0pe+8ZbXLi8BSLkcF8j6RHVhiw1FI0vXvcOKoytkbRsrI2YVvdRwYDDRcG432dn4yzX33n1fb9mt5+5TJYmFNMFi91DiqIgyzO/iHEWJQVC+PwpISVOaxA+iFM3rXc7bRuvz7Jg2paiLGkajanbJXsFR6dfsEttlHeJt0avuoXO4SMtRGcfL5aOrr4IWy7OLHI1sQvAik4ILkRHzxaoTjtirbfoWBbs3t2QroARiE6Ev1qb4a3iVwHwQdQ9g30hHyBI44QwDqmr2t8nYQJCYhCdKYJvkgVh4MXuRoPxzq2rY0nXjcchjHcDDZVEt+1KlxY4iRAhQRT5pp4QqCCgfzajl8VEQYAKFNoIAjzt8E5zn7zfY3N7g6ZuyQYZUvri1hlFtajYv7+PlIIokdSNp4ZGYUQXAMBwmCMQFOUCYyyBhLpYMN3dJYkt41RQLRytsLz+6tv8xA/91Pt6zbatIR2sUQ6ukr37dYL8gDi2CBdzcFhyaWvBv/Lyc9y6tUc6SPnTazdYuJiPvvQMqTSMty5QCMu163f5/mef58btXZ7eSnn73QqpLI+fH7C7t8uVDcMXvn6XS2e2SIKchGMmtaNNMg5mLc3rX+Z3/sVn+Ykf+jD9GNpq4amvbctiscAay6WzG8yPDrBNQbY+YjAcUe5P+cCzCcq21MWUsNdDiJgkDZHE3L63T5REXHt7lzSSbO+M2NoZsrE5RGuHtlAVJQjLJ3/4A/zpl29yZnOdH3x2DeHguGgwLNjezLzOxzkkijSWOAzDzOd9qdiBCLBGImKBw0Acw8pwBopygjWaKBFcvLDZ3VveXMXbjRuqqiHLsvegAqd1kMshhG9Wp1mP5595AqUevTj3v2u58Ng2adp7CDEQBEpx9uxZnnz8LJPZlGkzW333SqNpQUiHaTUiVFy9etU/H9xfgi7RBRxP52wN+0RBSF1q9g8PaY2mF/domsYb8kjBaDRiOp2ijWF374D18ZggCjg6nuGc5bFzQwb9Hnf2DjmYzZlWNZ5yIDDWvIdutyqYnDtxpKYrKjhVhJwq2E7TPk+KlZPXTptenNDpThdmnPr7g+f4tJnIatuEeE9jDtwD37kU7D28fw+bU5z+jocLxkfp3uC9lMDl31e6OU5ogKv9fuB6X7IN/z/i3iRI9uS+7/tk5n+vvfflvX7rbG/2GQAc7CBIQgTJEAWaFCXRti7SQQ774PDVB9thX3yRbUXIF4dDB5uSJdlmkAiS4gaCkAkBxGCwDN8sb9967679v2emD1nVr6dnQAnD4DBfvOjqrqp//6s665/5+323WcEmxfsK29MF1vwYp6mSc2OTE7OnU6/tI8vxur+9jxSCdhyzurLE088/wcO7twjJULLi2tUeR5MJppgiqi6TdEIj9PCUE2BnRcmnXtri6Scv4ElFVUE3iUknJZV1nHs1d2qDmXOfMzF4rFuYv2nMBNuzP5anqGqXIVFrQ1nVeFIRhgEItzmRymdu7xuEkix3Fr1ZURMrn5XNhFoohDLs3hwwzXOaiaS9vMLTgz6TN7dp9mJevLrM9Ru73HpUzz4kFjUt2AwDGk1JU3XIpcCMS4JugFYF3W6HZjuEULAznGAlRM02b7x5By1Dmu0G42nOw/ERj0ZDAt/B/94Mueq1EmxVoCtLUXvIsANeAFpy7YkF7u8dcjyskErh+QGlzqirEhWGjyfZbOLpuqKzvMDB9i7WWpJGg6TRcJqgNCVut6mqmtXVJbw6YpwWHByO2P5EjxWriLoh4/0c1R/SbCVUZU5sWzSChLzZoaFiOmlFdryHryHyMjyrOd/66I0KrIRAKnJdEXsRqfAoTE4gFUIoulGLphczqKYUZUkSJijlYYUhUB5p4TjZtXb5KVFco4Qk9ALGkwlGBPieW/hCL8BaQa3BaIsxFX7Ypn9coKvKFWxG0+m1mU4KkkaXdDQm8C3GTGkki0BJWXmsr8Uoz9Jpt1mIPfZFibbO8bIZx5Sewvc8wiDAVx5WG+LQ2VXneX4Kcp9dTKyh1Qno9AJnL6wtRVoQdgOMtYynU3w/pCoKdCWwVY3xHB1MKEFeapTWxE3htGulC/M2hevg6toSJQHoiqYfoyx4QqKEs5fPa5iMBkQmRBuYZCMGkxGev4gVkNuSKpeoVuiu5RKyMsfUimYrxIt9ur0FtrdvkKYVy4sLCAOm1kjhHOKazQYHx0cE0mdtvctoOKLd6hD7lqLIaDVaCFmhsxw/CJzJiAwoi5RpnoIPqwtLTohuKxqxT6mzj3zO9h/uM6wNwkKWTqjqGlOZWScatLAoL0AK1xGsqgrlOZt/rWe0PW0xVUltDGmWU1U1Vemun6c7f9a+N4jSGoMROORpTis8ERGf4dnjGmXzjZW7zz1M4jYQ1loXFD/rLlprkfPNBK6oms9Tt2bOrZnnx5PvodFIqVBSIpUk8HwEkAQhgRdQzZA8IRQzDNYtkMp9785tpgcDxKzgm33nOru1cUixdX6Nwlm0OedYrdF1hec7G+28KBxty1MoCUsLHc6dO4e1lqNhn8luytHhAN8PuXLxEt2OxVKzd7SPqUrWVhdptjp0Wg1qXZFnKRbfoQJWY3RBXeVMJxMGx3vUtWYwGFIXBc1OAy9Q9A8eUeUT4sSnQuGpgDD56CndMgyoo4Tjg0P++19QvDFM+LNbdylnVvf3br9Jr7MB1lJXFTsHRxz1X2etHfIzn/0UaZly+8E9FtpNHmxnHA8sw8GQS5cv479xh8X1LYLREE/5IGHr/ApBr8eV8xXf3z4kajaY5jn9mzd49rlrGKPZ709Z21jBf8tZ9c+jDPIspd0ReEqA1WhTs7XZobY1UoRg3GdNSovWTvvY7XYImxZb1wwGfaraIEun6dGVo65O8wwlJXESculClytREzsd8YM7QyySdiPCDyJaTUuoXGacxCOvLDJyMRlKyBmsYZnDDO5zMdOYSEu322ZuwuI+EwIhrCtoao3FEEXvnQMfpJN534bWU6yvLJ4c9+wQQuD7HusbqzMq8+nMPEAI2u02v/Z3foV3b/1jRsPxyfNOMHNrkczYEMaysbHCc88/84HF3l/9kBSls8dPkiYws4bHbbgDzz+JyNCzYOw0TalqQ5pmxHGAHzijmxvb2zTCgIVOh6Vel+zgiLp+TFF7H8oIJ3qw00XWvFA4WbvniMOZ8d6iZv7evve+xwjRybM+4L73uxf+6N/jjvGeRz2uwhzj4tQ5nJ5zp3/nX4RynabzzZ8z/35+3xx5OqshO/0C3oMizs/lzOk7JPH9rounz2GO4p39/Aj5l5uvP1bh1W7AwfGErZUO5zY7ZNvvILIRH3/xCXrLSzx9aYOPPf8xbu8fczDoM/j+DykSn9/+2vdASv7h3/tZNja2qOqaQEiMtATKdR2nxZTKauqqwvc9Fhd7pOkIqawLiEXQaCSk03ImgnZ5GlHoY4yhkcRkeUkRl7Saq8hZKJ5A0ev2uP32O/SWVugfHLC6HPLKJ17gN/711+m0Yn72i89R5cecv7RCP03Z2Njkyisx7VaXON3jwjOv8MyTDf6rv/sKr3/zLa7fO2DQT4FZLpCU3BwW/PyLK1wfpvziZ17lX//JG/zy5z7NXjbiGwc/4LlntzDDlIVL53n3zi5xHPHaz77G3T/7DueurPOrf/vTfOtPX+f6/SE3bh9x/uI6/aMBUio6y20mh2OyMmXr+WfR9yvGgzFRnFCXGX/27bf5T7/0Ev/zv/zWrIOiCZOEMnfGGmHSmm2GLLUVyCgBIVhYWSZsLTAdD6i1xes2Wey0CBttsukYW5RURclh3WGh67P3/ddJNxfo9rYIzBAdeRwfTyitot8fcm4xIhPLHB88opgKEjQHd28Q9ZboLnk8pOSjZnIba/ARSANhoJBKUWYGFZfs9/eptSAMQkJRMcpLgiAkCSInLalKvCCl0Uyww5T9gwlJp4uua6QWHKZjOo0251cWGIxKRoMKXUmwktooIr9mcnzEeCq4vzvCEHPh4hLdhYDNixJBTdSQtLo+r6wskOZTXnruPLuHj9BiTDPxeXqryetRA8MUJSRxFDBNp/TaTedmKBWVNsRJhEGQZSlVLVFeiLHOpU1Zn0oXPP3kOoHn0WpEbD8aIHRNWmiUMsSNJsZU5FUKWUE78qk8QVZW9I+mRAttR+uKJEbAJE+ZpClRFNIJY/KyYJJO6XZCxv2U0XFBUWUIq2hKqLMJgfSwnke3u8B4ss/y2hVk4ZGKEbptSMQKRmmajRZFmlLHHnmm0WZIPSwQVcQ4q/CF4uBwQBLHmNoQxSFaV0xHfZqNRep0ShLDQqfFw90x6aGh1Yo42pnQ6Bp6UUSW17Q7iwxGQypCHu1P2IpjrDZM8yHnFxa5/sPXKcz76RN/1ePqi0+ze2+HepRipSCwxoW/S4kfeLMCzKPKS8qiQErf2bAbgef5BGGM7Hapsoxb19+hrGryQjttH27tkUI6zZOY0+xcsWWlQ8F0VeN7bhFy9MH5wvTeosh95aTwMsaJ6YVUzvwIZ7FsBWjm3ULLLDhlZgM/K/6MQSgXfSCscBo0NVucZywIpRRxI8D3fOIgcHQ8Y8jyzCnFpMuTEcwdxJyzp/Lc7dmJOC2imtnFM+P3z50WlcsgU4HCGI2uXZCq74fuuVLieT5WKKcxa0RsrizSayfESYM4aZAWGSvBMs889SQWCLwQz4ey1Ny4+RbnugvYdofcTKitAa0ZTwczXVeENeAHIcZamq0G0ykUWYUtPOpasPNwCFpRVzFBENNqd4gaMa1Wm0a39RHPWJCN83hI6krzr+7sUqd9XnryMsNCoKcpSwncPnrApCxphwHd3gIHR31Uc5H/5w+/xrnldYTn8Z///V/gX/zmH/GVv/Epbty6R5UOuLS6xG//7jf4ta+8xoOHu6x0I7a6DaK4yxc+tcnB736dRxmkRvPyxSWeffULvP6db7M9mOI1PKbZFCG0a740E4yGbHhEnk7wxQqBVGAF0vhoKnzPp8hLqsoQRxEagbElobRUQrOy1Kaoanb3M+JIkRWWJM7pddqgDaORpiLmaG+fvIbjCpa6itRUvHVvj6WOz4WVRZSCwHe0QMqS2hq8ZgOBIC8yp/dWEmM94lCBVQgMxmrqGvb2j+l2GnTaTewsoNgaPZv7wlFo9azhOm9qwAlybOc3ZrrJdrfHtedf5urli7z552+7+62YFQgSrCAKI154+QVHOj69YTczmYcK2Lx0js9+/lP883/+f7uGyux32ZnG0o89hLSEvkdR9PHkR3+NBfCCgKIasT8agrE0mxGjQUozjGjEETtHfbQVSCUos5yVxQW6SYP9oz7TbEptKs4vLFEbzf5gwLg0DPeOZnq6uWX5Y+Tm9GZeOpjx5OdwUme/92dn6G2nj+NuAzNmwtki6ayO6UchXifojZgj/meOdapImz3j8V2cOhceo3ZzFOs9Rd2ZYv9skXX2/JVSJyjTaUTqg7RjJyiUUk4DW9UEoWvGnQQ5z4pDIR8XWWZ2zDll9jRd8rQO7YQa6an3/M4PO348jZeQVAZ6rZjh8Jijoz3KyvLg0TZ1GNI6OKLXq9iIYb27zj/9zT8AYYgaIdeubNLqLDEpHO0E4axG43aD+sHhiWhaz/JhOPUHcdlZkKU1IFBe4IKVZ/x9pTyni5pREQPPI1OCuNFwaBQglEddVSgh2d/dY6Ut6TR9epHHWitg47lnsVLx3IXzfOv3fouVJ57hqfNXqfKYVrvN8Pa7fH9g+Or3D9k/TslRRJHEj3y6nSZZWiBFxGbXQw8GNGOf7928yfnnr1CUJVtrS9zoxfSWGiwexCQXfM6dW+HoVkxz2eenX7vGy+tdrg+P+b6EIPBpt5uUuuBzn36G3/vqv2PrlatcefEK9wcPyI6PSfMpAri1N+HN2w/xlHMZc1Qh5z5khEBXJVYIAk/hCcvw+IgwWCQMIqrpFIwlTGLW1tdBG8dV1z3GD3dRBvYfHnBoU7arCSuxwLZjOvUSoWmRiyNsuIAuMtLBBD++QFpJ0qLCqoCjSkGesZ+XnAvKDz1RP+xw4k+JcqZ/J0GElTHUxhmSpFVBHCZUdQYIZ0hgapIwwvcU2SRHSCjLijTNsBaSZpO98R5J1CQvp0RxzDgtEELgBRJsgVAGP0gJRUi355G0PKpBSavRwVPGUUmVC2aOGyGTbESnlbC50kQCa2tNjI658eDQOc5hHFJTFaRZxuaVS/THOVZKGo2E/nByYpE7h8e1sSAsylPEsUcSx0ynKUVV0Gkl5KQOktfOtppZhzcKAkajISpweUdVWdFot0jzmqycUOkKM6NulVVNVVmSZoukEXO818eXIbn2qKSgti7SMQgadLsLjIqcpNVgaWmZ/oMxo+EI0zC8u/M2jW6XS1cuMLCCfJpTFBobQjNpUpYlUZhQlzW6rqhqy0KvR+zD9u4OcRig8ynMjHY8JEnsk4mCwfEI4XfpLbWwpkQI6LY7hL7Ho8OCwfGADSOprSsissKZjygr/sL59Vczaoo8w9raaXyEQCkPAVR5jZQGQ0WZZpiZbgiBs9H3XWzB8cMdjo6OGE+nTncwo9G934x4TubD0WJOePszROyM0NpiZ7KmH02zOFkUT/8W8V59wQnyNv/+Pd/YM33Vx3d6nudywpTETe1ZMTf/p87SU6yjGc6KQFeIOa2mxSJn/01dg2W2qXXFl8Chfg71UkjlHAP9MCIIY4yuCKKQOGnQaIYIQNeVs5D3EoQUhOFMM2Nr8rxkMp6Q5yVB4CE9jRA1w+MhRT5hMhmQpgWLC4v0FpbwpKKztEC322VhNacsSrLJlCwrSacjPOUhrGBxoUkYhhRljZIejfZfA7PAWERvEVn2eebq0zy6c50wTsgrSxwmIKHSQ4RUdLtdfnjrAQ3PoxkFFHHMJJ2SFgWDo0c8dXmTdNSnSKcc15rFpuDqp59DC4mnFNffusOVjR5kR7Qbizy7tcUf/uBdNpYb7Oxu0717E2zN3fv3mGqfTrtJOs0I/ACwDlGsK9KyYpKnTIsKnVdobQhiH/KcMs/xlESgqIwhCkMEgsDX+L5HcTxhmNW0F9ocjh2DpTuj095/8JA7uwXxQgNtShQufxQF07zGmJpGlBF4lk4zIooTtIGyLJnrGsMwAiw7R0PqMuX8eofKAMKhL8rzHYsoL2m3Z5tSM2tozDRrDYa+AAAgAElEQVSMAjGLUplvNOEE+Z1/uKxrTiopnUFE2OTc5gZvvfXuTKfJCfhmLcRRzMXLV06QboATPZiFLC95/Xtvcvv2nRMU29qZ1vLU48uyZGNlgeWlBXwv4H2XpY9gRJ6iNj61hcE0J4hD2s2EypQIYYk8j2leILwAz3P7R2ssrUZCXhRMs4y0KIjDEGEcfbKeITLz1zn/6vs+de0s8+e3zyKQp6+bJ8jXqfP9URqxHzXej1b9xY89XXCdIEBw8vOzKBNnfv4XHvsUNfD0OFt8/fue/0HHePy+OdZCPSvWqqp+/7w6AegEpxeZ/5AiygHRjx0OfwQw/B80fqzC6+qFHvlgnwf9nM9dbdBVbVavXGVnd4cfXn+Lq91nKSLF8WDIdJpx/3BAFAb81Mef4MKFTQbTnCgyLjzSVDCpKPKCsnLiQa01QRAQhyFal2RpTlkZpPARXuAuAgKXDWHBk9CMY5cmLywtT7LQaTI4OmB9a5Od/UNeuLzG3jCju77C8OCIXFuieI3/419+nZe/eI2H37zBrRu3SZoh555YRQ8O+clf+k+IzIR+f0wUxtRG4T/zGZ7R8Itf6fG112/wf/3xW1y+ss6LPbh04TzfvH6Pra0l/s7FZ/hnf/gdxrXh8Lt3EfiEScj+/hG1UfRWlojf3qcocvZHKU9evsi5ly+wPdzmdvGAF555jn/0X/wyv/3//imNSyu01iUvvdLl0vovsnVlndfv9rn20iK/PR5gasvC2hY3fzjkG2/uc2nVYyg7/KNf/Dz/w//2265SD2KE8k46LZ4v3QJeGvI8Q6PwI49KS554ZpUoq9GFwtoY8coKRZHxzre+ga8Uo3HJx4JlLgXnubt9n3f8IWbxKot2QDAImfgdlpsBrdUrdJcstx88ZPWlz3F+JWTcP+ThjesffqZ+yKHq+uRCaqwmlAIpfPwgodIlloqyFni5Zbm1wLCqqEqDr6DKC+JGxDSdEiYhRVFQ5CUaReJJikqTlhWdhRajSUaz1WSsC8qqRpqSqvCoakMn9Flsety9+4gvfekqtQkZD8bUeUwQQqcVUdUli90WWhc8uRkSV4LajPlnv36dQnlOCIwmy1KaUYCVku29XcIkoiihKHLGk7HLKDMGLWBtfY3KGB4+eIQFllYismzC4VGBDCKGWY4fQKPTpUxHxHFCbXwmOiXyFkhCeLQ7ZKnTpD+dkERNyklOt9FCexFGS3b2+2ytrRFGAUuL6+we76BiD5XD5QvPsj3tI/0GmxubmDrncGePe48esnVlnTR7xP3vb6Ox+HXOeHzEtEoZHhxz4513iXNJK2jxwosvIgTsbx+Rj8eIwAWZdhZ7bO88QgrNx57fxGawvTtlWJWstFeYjCeEgWLr4gq2ht3jA46OAkbpANUMGVb3sEWO12wgRcJoVFB1Netrm9x/eJuoldBtdT/yOfuH/+fvYJWebXRCvMCj0WgQhBG1djorW2qyaYqvPMqyJM8q0rwAIM8LZz/+mFNxUqTMxdfmVJcVMevsCetofHIm4zY1GOGQnZngeq63NzOHwTk9Zp5pYnAbMGGF676fUGUs1mrm69Vse+hE6MzLPBDGUaiMBSEFtXGbNyEkSklHcbKOyquN0/rKmTW8mkVqeL7PCeVxFoKsZ4HyMvAQSlLrGlNXKKPRM+dGazSeJ2c8dmdqIKRCBg2U52GE09RJz1EN48U2US8hbjRoJAlxElCYmoPjAwK/TbMdkaYZxih67QgtMkaTI9baguPhI77x7dc5PhogtHYmNM0WrUZCs7PK5SevEjdjlB8jhCLSDWcIsmTRRjM8HlMWBdlkyr2HfbRxlMtOJ+Ggn/HCpb/SKfq+0Vh7Cs+PGdk2O0d/wvpazMO3H/D0Z17i0dGIuOlhRJNr157ixo27bCwu8dozV1lZ7TAuaw4O9/jqH/wp9+52uHZ5i539I1ZbAXVt2cvGXOzG7D7cZ7GTMKo9bty+TyN5wJPP+Ww1J/y9V5c5PNjl3PpFJPs8/9Qqr37sMjdvDhlUHr/xm79DUZbUVU1RlgRhwJ+9tcOtfcubD0MarYAgCGnHhij0nDW7rxBHKQCbiy0WF9suGFfA2/cOGUwrdG3pjypH7dMV3XbCs89ehGCf6ztTV9Aby2giCTyHKtSV4K1HAxqBIlIjPCGJGz6TcclSt8XGWhNPwVs3j7l+/4jNXpOFVoN2J8YYwa07e5zbXKa31MFqKMoaL5DkZYGvPJQQGF0hPA+Ly3t0DmxihmzP0BA1o8JZsLbG4hCDVz72It9943s82t11yNZsUyylZOPcKpcuXzmxRZdSInDOhW+99Q5/9Edf45/8L/8reZ5+INohhMDzFMJ4xHHMqx9/lXMXrv61FF69JKAowZOKtCyYlhkL7RZJ4LToW+c2OBwOOR5N0RoCz8dXgkJrtK4QKO4fOv11EkR4QYAC6ro+sTSfF1R5nr8HKTkpFk4VW/J00eNunIT2zlGbDypQ5qjWaVe+syjRCfL1QQXOafrh7LEnTob2tF5sRrk+VSRK+RgkeXytf28x9EG0w7MF2wdRX0/PmbPF7NnbJ/T0+dyW88DuM3ljJ/Td9xZzc/qiN5M61TPZ0ulC1MV+iNkxBcr/8I7HP1bhFUhF5CvyrODdB7usr66w3mvziWcvsZ9rhns3OZoMGPZL3njrPmVdo41ma2ON0A8pjSQMA4S1BMJRsrTWGDsP4xT4nuM5TycFtXZIVZh0nHhba2ztMqoEltDzXa6CEvhSUuQZRVngY8EYhscD3r6rqI1gfWuTfDxhmhZEccJ0FLJ5rkN1eZXJ9Jjp8Ji4+wLKi1F+RJ6VQEHSahKGAVcXm2hiHt14hy+8eJ4qbBFLTcNXGA33t28QfPIpdGZ47nyX7pHi3z2YcPutB3TXEx49HICnQcHgYB8bJnTbAecX1ljprpFNUnzfo1XmrC81+Mqnn6W5tsn28R2O+hM++cITDJVhvWX4wdsDjK7Ixn36woLysUjWNxJe+9hnGR/cmUGkGmE0daHx4wS0IZ2m+J7P6HhEGCd4oUcYhO7zEtXc+87b7B1mpFlB24NpNqHQgloKUuMxOR6xG97jYFii2mt4j+7w7rTi+c2XWF45R/Foh+2DAX4CUdTg3GoXm4+JdcWLr/3Uh56oH3bUVYnyASxVVWLKCmqLrSHwIyTKzb/K4PkBoZToosZqDdS0PI8g9NGz5PS61hTaoIyg2WyR5jm9pSUO+yMEFZ6vKAqD9JxJge9FNJoRtvIJZExdaib5hEF/SpEnLrdHCoRSeEFIWRk6rRBpaqRsEjVaRH4fo6XbIGoHe0exs87utGLKTDOZaboCP0DkTmS9t7dPs9MijmPn1BhJsmxCo9Hj0f4x59bOM50ckmUlC40EXRukVXhSoI2k0hJb6xkbxTIZTRxqqiJ8W+J5AcLUGFyAZL9/QFYUVBjEzImp3WziS5/79+7TSDwCT6KQLCyuUU5K6hKmRcWzVzts7w1oJU2K0lHoIuUThREL7TY3b17Ht03GWUVeFyyuLLF/uE0lKoaV5jvXdxGFZbW7Sl5mBFGAygJMkRFEUOQVjW6MFpZa+tTSo+XHhMonjNvIep98mhL4PgrLcDxGxT5p9Zdoa33IMR5PXAAxljQv8X3F0fEQXyryvEZ5jh7nSXetzPIMYwW6doHH81yoE2mVlE7TZWYidx4vRlIKF1JtDZ7LAcAwj+/w3PF8z9mp148zXtyUOLWxmjUQXYfdIq0LRD4tVJ5XQ/PHYK3Tk51dsMVjO/l5Z3JOh9FaU9cCIUH5M1qiVCAFRekKT5cb5Fwd5yWdlHOheI2twRoNpkZIz2m77GN9BbOu9TyLRwj3vji7fh8rJNrWFIMh8WqLsJUwLQvGNqe1uki70wEbYGqfldWE/nHK7fsP8fySwfCQ8TQHK11orLH4fkLcTLhy8Srnz63xxLNXIVAY4XKD3J/PzpDlAqUEi4ttjDFs3yt48qmrBLFH7CuqUrN30P9I5unpYSqNNlO8bpO2nPLZVz7BP/6Tf86wv8/u3oiVaJFprrn18CFlWaKU5Lh/yFNPbKKmE8LlNtoLOByV7Gzf58bdbT75yZfZ3p+yN9ynEUccWoXwA157+RrZwT0CpXjn+p/h+yHnzz1D2OwhNNT6kDeuP0AbzbnNCzx18SrdbgdrKrIso6pKijxnlFnU2NBcBlFDVpdgFYU2TIuMwFd4CLzQaX171iFJpTZMy5rV1QWavmBl2WMyKcmLjGkq6HV8WrGPwOJ7LqRd64AKi5AGYQQWhc40tS+wuia3NXlRUx1BoxXSSTxu7wwZl5ZpZaiMwFpNVWkORwVxs0DrEk86emerkzAcjVHCI44iyrxARS7TMApD5IwupbWlqOoZquZ0ZmVZ4weSwPOQMuCZa0+xtr7KzuE+dWVOuvtaaxqNhGajdUIl07WhrisGw33+8A+/xve+94bDyecXn1Of49NffV/RaDY4v3WFuLWI02V+tEPXNcGsWZMkEUWWzzBxQ+D5eNLg4XRY5axgDxsxEeC12qSly7MUCMq6JkmS2WtzWVKndUxnC6Y5hQ1O1Zzz66l4bGphztAFTz//8dPeyzCYF1unC5dTT/zAY8x//9wifX4dPn1MKeUJ/0HMDC4+kAbJ3A/xvQWW82R4TEE8u4580Pt0+n54vy3/B72Ok9c/e1NOqJCncsxOP/a0ocf8uXOa4/zvdLp4dPshBwB92PFjFV6LC4uUKkQpuLUzYX94n6i34ByzxiOeWI/485uH3BMtvndrj8W2TysQRK02RWkJQg/PVMRRgKlcRld/VGCExGonkG43Kie+9hKsN3WL4MxdqhU2qesKXZdEQcDMS4uFbov+YR8lFaHv0+t0uXP7LpW2HPYnCOVR3LzJ0tIy9+49YqnTAs/n1jev88IXX6Vzd5snnl4g1BllWtKfTqi0oRE52kDzeMKlJ1/kcDDi2OR898YNfuVzr2KQ/P7vf4PVi0/xS1/6SUbjnJ3jQ/r9Y9oe/OSrqwhh+Fu/8GW++gd/zCtf+Dlqobl0ZROd1/zNa5eQsc8PfvAW56+c41J3Ea+KyQ9u8dy15xkUQy5sfpJ7R/eo5BGqd4lLJkemV6jHBfd3R+ggIQojhM34pS//HL/+L36HL/2Xv8L57+6CNty6s4PnBXjGp6oKhpPRiR21EBJbF5R1iQgEy51dvvob3wEvcQWxNiglicIYYw3PPP8ESXeFuz+4x9rnPs2nnn2FN3//d1lcf5Zrl7dQUvKwv8u0KKi9BZ4712W0/wgTSqJOm2q086En6ocdaZETiJDSVExyjVUhnk4RaDwpCZMGBp9K1QgpCZCUgWAymNBqNbECFha6PNjexVMRUnosNhOO+4c0Gy36xZi61EReTAXUlQDp00rcRXNhOUTqmrK2rG100ZS0Oz6PDpxJx3gyodFpUBUVfuJyVR7eecj5c+ukwybnzi/x8OGYNK9RShF50GkmKAkKw3qrTZmUVGVBleFoTJ5CW0FVVQz7A7SpeOLqRYSsyHONkorVxRUG/T2WektUpgLjE3qWw2mJ9ptM05QgWcJTB+we7bO1dZXjoylpbYiigvOXnuAgnbA/HOAHbcK4Ip32sSKgqAVCejza32ZxZZHBwTZJq0VZDEmSLkoahqMJnaRJo9ci0CV7g0O2Ll2ESc5ockyjJegsbBAnS9y6+0OSVpP7N3dRcUgj8pCBR2uxi59nxDLiflWx0Ig4HuW0k4TD0RHjFLK8RpcpdW3wehFV4LO0tMRO/4BHBwPWFnp4QKcRIEuf5e4yP3zzDXqdFaRUjKeTj3zOytCjtdRl1B+wtLxENk4ZD4esPX+Z44eHZON8RsvW1FWBHwZIXL4XusKPfIqiwtSaMPAw9ayxJRxSqHz/seuglPjSBYVWdYXyodlqkmU5Uih0WWKURvqKelKf0AAlMz2YcccV9mSpPSlg7Awes4CxAiU9hJhFG5gaF53lHm9mhZtrWs6WdyFQyj/pWjqDAUf/EtJzGwMpEUpR1+7zMe9YgueMEpjRjU91cF0x5c7VGIM27nV5s3NzznA1lXFFl6en6FwgpcL3fCpPOXlGFOBlFlvWtNaWWOp0WFhaJQwjFhcTCqvZ3TlkPBwR+oaD3UdIXzCZCDqtJr/0i68RJSFWGaK4RRTEhH7ANM95cG8fAGNrut0OvV6HIAiJogAhFWVVkhcljW4PUzsXu9s3djk+HjPsD/niT3z+I5uvAFX/TUTrIsmjmk8/fYVv/ObX+OKXPkE57fOlz7zA2zfucXR4RK8VsbzV5l/9zvcwOmfy9X/L+U6P3rqgzlMe7PVZbTf5mS99mht3thnUHX7+YxskquC3/u0b/INf/QJrHY23dBk/bvNge5vvvX2Xh9MFbh7scXFxkWubAf/mW7f44mc/yw/e3eEffP5LPPXEJd556zrGKKf5E5aysqRVgfVSpOcjrGRSGXJriXxFWhoaoYuaOZgUNKclvabHJKupqpjhcMpUejyxEbJ1qccwi5HChWuXxYByKpChj1AGDVhTEyknkSirGmsk48xFJfSERyMKOJwU7L95nyuri+xnJUjJYJzz7v0jPtlZQxuL8iPu7QzotUN8X1NZF7y9uNgjy0rysuR4nDI5nACWbrtNnhf4vqQuDZXRaG1QQs5otwphNFHooaRgY/MSn/n0p/n+m9dx0h8xC8mFZ689O2uMgNF69nmq+Kf/5H/iW9/+c/b39ynLDGNqRwc+nV0lFRZLUVR0AkmvGRE2Fgii7l8L4nX36JBIKXyl0EVFp9F0zIFSU+spG70OnThmOi3IjGZvMCKtCq6sLmNqS6/VYK8s3XVUwWQyIQxDlFJu425drMe84DiLQH1QcTPnZp4uDj7IOv1HOQRa61gLP8oUYv7I07qz+dc5qnNy7FNshjkzQcBJcXZWfyWFQOL+5mrmTm54XGC959inCp2zBdf83D7Inv4skjcfp49xgvhJcXKuQgjXwZq9pvnrmMefvIfqeQblmrsoutBv7z3ff9jxY/khnusl+EnC/jDDCsHBMEXnE6JA0VtZQGO4u9fnytoCSMFSy+Pq+QXyomSa5QgsSnrUZcWwP+TR8YhRP0UZQz4eU0+GNH1Jr9lifW2JTitx2UEWfAR1kWHrikB5bqFUCk8pYj9A+op2p0WcRAxHQ4bDMQsLi1jtuhp1LQh9H6Qg8gShFAwOC/RgwN5kyl4/B69FVdeMpxnSGgb9Y6RUaFMzGgyx/W0WfcmrLz1F1t/Hrw2bTzxPFDWoRgWNRpOXnn+JYlJQ5iWNRoswadFSlo+/cI3El/hSMc1LMmN59uKTCF/x1MVLrK5coBd3qKohRVES+wk5iqavaDYTZDMhjptkdc21y4ucW2kjqNDTPpicVz/+NDs72/gLLeoYfua1i/z8J6+i64qimJKN+5TZhLouKcqCoijIspS0qqkR+O0G2/d2qO0sXV0IwjjBD2MXYorgeJBz857HMDzP1Y0toixnraFZ7vrI4X1kkZJ6CfH6OV56+QXSckqlwAhNN4kx1Ud/dTXWOIME6THTsBN4EjHr9qfTlCic0Vh5fAFJosjZTZclIGk1W0ghqQoNWKRSRGFAFEbUtaOFuQwkZ0AgjMaTAikjKqNodQWXnmjT6baZZlOqoiL0PZe5VTodWlXVCGspTUVlKwwpdVUxnmQnGp848LHWumIbxeHhPsvLPUbTHM8PKMpixiV3CIGvHNoxnW6TRBKsZjQaMJr0MdYyGA4IggAtPQ4GA8p0QiADJmlOGPr4SQKeR6h8hBWsrq5TVi7cu5EkSHCue2XlaC6AyTS2NqyuLDPMp5TWovMMhUTrnKgRgnWZKdZqrKgRwseUKVpnVGWOMJrdvUOSXg9P+YzGU/wwoN1eoNVq0R+N2Ds45MaNGzx89JCsrjkeTciMIUx6JFEXtESJgPEko5G0UL6ixm1kO2HEeDyhFoIiVygvohnE7OxtY61mabnnMlROXdw/qqGUC+pcXFwgbMYYYeh024Cl1YpZX19mcXERT3pEYYS1higK8QJJ0gxJmiF+6HSDnu+5RXO2gTJumruFEQjCEItBKPACRRCG1HWN7yuiyHN22tI6507PaUiBE0TqfUPY99z3/sVxluU1/9nZp8+OPr/9+OnzxZaZO53rNso5WnaS+XJm8ZydQ11rjLEzxNg5ms7pKLWuTzQs8wVYa0NeFNRaO4MNXVNWBWk+IU1HlEVKPh5Q5DmtRpOqrkmznGbbJwgseV3SH0+wUqO8gDRP2RkPuLd3zIsfu8ZTzz1D3AzRRuPJBn7gU2pLoQ1pkTMYDjnuu7VAa6frybLU2dpbQxzHdLpdOotNukstOt0WV57a4tVPXOOn/sZnPtzE+0uMFy5tgJ1C8QOu37tDPyvxaw+hJXa0S1aUpJWm12nw8gvXqK3h5oNtjqYVDwcp7UaT82vLNMKQrQvnZyG7Mb2FLtoEfOv1d3jtladJkkW0VjQ7qzzYHfCdN26RpvA3f+HneO7JJ/nun7/Dn19/B8+WjPpHjIZDjDE0W82ZqYEkn+l059tQX3muCSBcs6Ce0WgtGqNLlLUIW5NmE/LcsLM3ItcZ+4OKnX5BVrjjKumouEpKLl9YZqFtqMuc2rg579wync7Yk87cxuAadFmpKSpHjcoKzfWb+/gqIFAS3/fQsw2r73tIYfADRRT5eJ5Aa8PB8YThuKQoKxDQ63bxpUKqkHFaMCk0o6ykNGCFQANZqSm1xeBiF6aZYTQ1GOuztbWFOhXEbXE64aIsmUwy0rzAWMcAUb7i9p373Llzh/F4jDHuNZ2lx803q77n4Smfl19+3mXxiffrdj6SYSVFWZPmJWlecjQcgecxzUsqbdnpjzgcTWk2GkRhgBCSNK/c59z3WU4aJ6HJxhqU59CzvHCh93OU/nR+1VlLcnDzwVjXbvr3nvKZ4uCD7qur6n3F2Hz8KFRpft8JhRC3RszXibkj6FnETM3mMbP/p4vBDzrXs/efLcI+aPyoLK+zFEY7p79L8ThA7exxTt7zxyZRp4/5F503vLcIPm2D/+OOHwvxurzicX5rHVsWDI6PEVqx/Wif0It46527/OLPvoIKPMbvfp+Xn1pjur/L1Y1FsnRKmmt2d/cY5gYdd/jjP/4eea2xSIwIsNKj4SkuLiQo6dPq9fjy517hsD/iG995y4mKJxNq7UJde+0GaekKBG0tP/HCk/RHE8ZTJ0LuLa6y2G1zfXePlpZM89TZhjYSlG944vwCK12FPa75zFd+mp6NqIqSo8EBRXODMssZD/ts33qHS08+TXt/h9FkwPrKKnmdsD3xYX+AUgGD4yN6S21HXRGSn/riZxiOUrzJDib0ycKA7pVN1k3EQCpuL8YsNDuM+vtcEBHtq+d5eHSf/mTC/UlJ0rvGd8fHNFpNbg0esr6wyFSU+NpyobvK7b0+n/2Zn2BzscGv/5tv8st/6yv86e98i2+8MeE//rs/zW425e3dR5SjDOXB6soC3XNdHly/z/GgmHVWnOeYFwYsdxKe/ZmX+OVPnae38h1+67dvIkyNlQFelOCHIZ4Q2CRgpblGsBTS3ss4nLzNM5/5CnY6pogaLHQ7XByllEhG9+4SxiG2qmnGLYzoYIIPz4n9sMPqEiESpukEjI8QllGashCG+F7ENC0JVUhZlpS+Txy7jewwTdFG47aIiihs0goVke+70NdaU+UZi70u/f0xnueKA61d6HbTg3Yn5vrtHTbOLdI/fkS70cVUXRZbDW5M9giVBBFwNKxZ7DQo8pQ4UJx74iJhIFhaHvHd7w6ojAI0vtR8/MXneffWPaZZSSMQBGHI937wFlrF2KpwbmsG6tpgrMCamjiUrHQ91po9Qi8kDkP6h0dEYUjYbPBod4eN9S2E30KVI8aDPiIK2d29z6ioaDVb3Hn3DknSwdga41uOx30acYOnL1/m/v07bC6voZSiJUJisYi0goP+AYPJhM31c5THewSNkEaiOH91i9Eox0jL7uF9Wr0W4+OCjSXJwXCMEm08ZXn+469QUDGZliytr2PsgMPjfZZXWmxv76CCGM+PKOqSRjNEBYqWapEXBmkF7eYyenJAY7XF/t4hnWYX0GzvP+DZq5fxTE7oe9S1ZuvyE7zz3TfYuNAjCAOyfMzS4iJ3Hh5/5HO214zRaYafhKhas766RHhpw2mVFguqaYrKc+LVGKU8+o+OyacpvcU2SjrtUy+KKXKL0S5EGWupqxqtHRVGl44qqhQ0G21UGFBXFWAwtsRaZ8yilEcsndZAJT5ZXbgmQ/14cXed0fniCW5La3ChPcLxEK3THpr5RmwWrmyFWzCV9BCY99JB5JnO6GzhnHcxPc9zQvWyxBNOtwUuKNltVitnBHIS1sls8+MC6HVtnGbNWGqtqXGxC0VZUJWl0+MYjYpipBRoXaOxKGsxsqK10eHo0S2O9h9yr38VKyxf/c7XiQufT7x6hVGdMphY/KzkyXOXaCcLzoXXg0k9on/nAG0FR8dj4maDtdU11tY7BJHP+SurZJOCwdGE4XBElqZYoCordFXR7HUIfZ84iWk2YpT0mGYFtRasbXz0usTPNd/ky08qCAYMdwI2Fta4f2uHnX7Nq8+eI/IHGOVCpHWdoaSH8RO+8/ZdjFR84VOXePrKJa5cuEqzlXPYH3L/cMyLK1dZXhJsLLtQ41u3dwkYES5e4GOv/STSb+Ch+W//m/8OWwmam5dQscdrL/i88dZbrKws0z844NzWZb72x/8fvu+aW1Z4hL5HEvsooVyDF1D4aKupc0vgeTRij6tbC3QbHp4H79w94sbdAWErYpIVdFuKTCtybbl9/4i8dBvfXivhp37iAn/y7Uc8yGvayukQHZVX4yORARS5Rms4yly+YDvy8P0AG8KCZxFWEvkSIbVD6qRlqeszTms2VzoIaRkcT+lPag4OM1YWI5KGT+iHWK3ZH2Quo7I2mFpQe9VsUyrQQqCtxD7RTQEAACAASURBVJY1YtZcMUZjlceVq1dPkJc5QiOl5MnnXmF3DIeTQ+IoZDw45s3rP2D3cHpSUMxNJObDFRmuCRIGPp1WwlKnxfPPPYvWFb7/OKPqoxz+TK8klaLSGmEFWb+P8jzXrFGKtKyQIqeRxHR8lyF792jEg9GEp9eWuLSyxDBNGac5hpkGypiTY5iZa+xZ+h+cKZ6EcPT82fiRBhIfUKScLayQ8kQbdhbROvvYeSFxGpGbF1RW21kg8SxEGIs6hX5qO8eOXBi11vrk2j0/jlSP0auzOq65ScUc2Tp9//w+ax9naX0Quve+94fHdMQ5bfwsunb6fTz99SzKOEe3Tp/H/OsHBpH/GOPHKryeePoqX4l6fLMhyLnEwdEeF9oB584v8PyTPZZjwU8+00FNj7ngtfjNnUccj1N29x9w8+GYu/sjFIKnLmygVQsjNL6SWKFY6XVYbkYMJimYKbv7u0x3HxK1mnz5s88zKWqu37iDFJLR4SEAm0sL9Fpter0OOzuPaDQSlN8g9BXHxwPyqqKocyIRQtxk76hPK0lY2Vzkxeef5GoPVnpNjoxlsdXEH424cO4SGVAbj0Z4iSi3rC61qeuaJIjxept0ZI0vj+kPM46O9tgdjzg8PuDll1+mONyh12qw3G6ysvQkdafNblawHvosSMnD/Qn/0d//NdTBPuc2tvDjFgf377C0sIbtGOrdA3aPdogWV5huP6KzeJ50UJNKQ6MaUBUjrq2fY3lpES8v+IdPbvI//tf/O7q1zK/+9EtMBtsstzbYuLqBfThA/fQW73znh1y+usS9tx6g4pYrqixgajbWW/xnf/vz7LQEr7+5x8e//Hl+7+t71LoibCcoPFR3AVNrFj75Mt944ybnzy/z6tYm8fmXYDTC+B7l7pBv//lDmr2YhWZMI47x4iYNf8zUGtL9XabeR194CSEZDyfoWiONwJMWZIipNLVX4ilFPnFW51lW0EhCLILlxWW2D/fQxiC1ZrnbZTiaEoQhVaEJg4g4imjECQdVn7DRxo5ylDCO5lUZFCXNbkJlS86tnqfIC6SESHlsriSMJqP/v70z+5H0Os/77yzfXmvvPT37kBwOV5GiLEuiLMCWaNmKlRjxFhsw4qsgDhJf+J8wkgvfBDAQIAiQm8ACglhxFNmxE0u2IlG2JFLcNJx97b27qmv71nNOLr6qnhmKsi054lU9QKOXqa6l59R3zvu+z4IXKrCG0WAMoSZA0Gp0cWZEnEiWVho41yMMFdpBr7cJGLLUsNBUjNOU3DUYZWNcWRB6iqKoL/xVNqkpjms+P/e5Z7h7/zbO8/CjJoEXEfg+SkpWV89x5d0rLC8tMD46AmHxotOY3BFGmtHggKSToDyBUhZLTlrlQE6gfdZXllAKTDamGzsOrCTNMsIg4PT6MqYYstBusT04oNlooIOAKLJIrWgtJpS5wBmPJI64nu3RkI64ESECx871W5w6c4HDowP640OsG3PYyxGFZTzq43kRKhSYoyOGuaS7sUhejtkZ7tNtryKA/b19lC/RTiHKiq2DTdpRQBL6OGtJOopmt82Fp5/GUwY/CtjsbVKiCfUHn4nkRTGNlQ5Bp4mvAgoqZFjT7Jyn8VJHpSxVOqEKNclaRNP4lGUOQpP4PtlwjA4cjgCHxNMKU1RgDWVR4gdNsIIiN3i+QPgaIS1lbkiShLKoyPMCcNOAWEfgx2hlKasKKdV7dBzfT4eZKazqzc/WekEhcKKOJHA4hJ3Ra+qusUDUuWz1CRU7zSrT2kMrVWvwZO1mq2c6uDwHKfCERojabr/IS3xfo30Pi8Xl1VTjZmqdmClngzIQkGXpVBD/gNePrF0SszIniiJwgiTywbP4kY/NUtRKF0/HbN68jhhMEKbEb7f5y+KQuBsy1JJTnUUuPHeBP/zyl5AYjMhwzjAaZIRexGp3lUanySQ74N3Luywsdbh+/V36B0MOD4ZorXFOUJWW8bgiCDXVeIyuHO3FBotrJ1leWae96FOl4FzK490zH+ia/ebWAUtDj+aqwC9ziryEKCfMIv7jH36VX/+lT/P0k21ef+Myk7SPVBKTF/yzX/t5/sd//RNu7h2wvdcjK77HS8+c5OBgQqfd4uTqAE2TN+/scf3WFmuNNVaWEtbWuuRpn/OnN3jn7bf5x5//R5x7/Am+9urX+etvvM7J1ZBGq8n33r3C8KjPxskzDNOahp3nGdu7B3TXQ6LQJw4CvOm01Jp6UVw42SXwLEvdkMqmTMYhcRKythCzstJgPLEsPiWRWL7+5g698YhhqihKh7s/phHlXDrZ5JMfWeKL39gkzw2+r2ttohCUymGq2mijMoLcOYqxwVQVsZYkvl9r2LEoz6GkYFJkxKHHqfVV7m4eIjH4WrG22mZ1yWCsQOh6qqalYH01YXW5SW4c21tDRqMcGUjyrG48hC2fLK3I8hyroMwl1gqk55E0m/i+TzHVDjvn0EqzvHGRfuqItMVg+fKffJUr77zF7tYmk8nkuPiqD8L1AV3KuqCTQiOFoxVHPP/s4zx2/vz0vity44j9H+o4+g9GWVV0Ox2yNENKSVVV+L5/rO0sy7I+xEvJaJzWjRznECjI4M30PouthJXFBZI4Z7/Xp8IRhgHSCcqqQkeKMAgZjsZ1LJKoJ+gzzIraRzD7flo4/CC8nxnFe5kGxwXQjFpo7YOQ4WmOGMy0uRybfNQFHFNKez0fqp1xbZ1hNWUGTSutB/b55lE91LHZhaip2tbV7B5jzCNsh+Pinqmmd/q4ckpXnD23hzVo752czfBoePPsN2e/84PXw8PF7ax4mxV9Ss3CUab64/cJiP5h8EOtdG0yxoebFOkuJ06eZslr09u+y2ONJbKjHbZ3BqSFIxvu85nPfprXr++hnGBwlNIbTKhKg9M+V+/3MdbHKcFyO8LTklOnFgm04s6uwZaK5TPrBK0Gnh+RD/qUec7ZEyvgx/QaEW6a39NKQlpJxNFRE6kU7W7I7vYuRVEShRGhDnAWGotdhnmKEIIPP3uJ9TY0fMOo9DCTfQ6LjDg4iXWQ2hGH/R1Ot9fIFk/gRy2wlm7D1SPnwnBYCobjIXfuX2FQQZkscn5tnXajQeEqRuUEGQeE0mfFO0IrSxws021BjqW9tkw6OCCMEuJGQl6N8XXIxsY6IonY7/WJWxtQjZBhh2bQwGQTxllOIxxh5QIBFUf7m5x59mm8EjrdFofbt7FK8pGXnuRPL/8Rv/DZ36TRjnn8RJOvBVfRxuKs4MMffoHvvfUmn/m5j9LZCDiaDFlaW0VQEMYhaQYvfvxxDq/t0sMn86HbCnHNDnlhkZ0m57qC2/d28MOY/bt7HJSKEysNqqJiMChZjA03Dwa0lGF3v0e5vv4jL9QfFYWFwtRhqJ4UoBRFBXlhUHG9IQRa48mgvrhWOThBEIb4foA1ltAPEK6mCRhXU5V8LyCOG4yG4+m1UWKdJZukFBVESXLc6cM6PKnwkwTlBKYsSdOcwliElfV8IC8ppKUdJoRewOCoj6cVUUPgXJ3T5bKU/X6PotC0m00WO5r9vkN6GiUsTk2lwc5RlROWl9vc3+zz2PlVsnLIYJwjfEvXNcjS2jI5DjzySY6pBPv7+yy22wwHPU6vnKAdNHn77mW2bt+gfaHLJMtp5BqcRUnFeJLSCtuMHYwmKYkXUJY5o4lAe4IySym9+mtvanMeNRoc9vtEcVR3uqZao9WVVSAjSRoAlMbR7/dZWVklTUdkaYr2JKEOmKQGpRRJ7GFKR1UUeBq073F791499TEl+ZFlMepQHBygbE0rLV1FHMYcDca0A48oajAaDVjB4och43SXk2vr3NgxRE7WrmQfMPx2gggkXuTRai+wnw6AksqmOCXJVZ2VZRONrExNh1WgPIXxA6q0xDmLjCKCRodqcFQbObgS4XuEvkZHMQKBynKQBqEF40E+NeeQOI/aYKWop0g1hRDqYC1zfLCqD1Xvn63y4MwwPUDMOqGyNo2YGdZLqXCuwroKQa2BmW3Ys/tSSh5vmpWzSB7QAmvNWa31UtNOpJwabhhna5OhyiCUmBZdhrwop51WgVJTkydba79mG7eWCk9pKlvWmXWxh4wU0WoHV+Rk+yWyU1ApgUuLejo+KSiG2whPcDTw6Zw9QX/c5zvXvsvtO7dYXO5wefM+j20sY8s6fqIqxmAVd+/fptvocvXmPm+/fpcqS6mEwpkSWVmUlpSloxgritGAclJgBZx/KqR0A958ZwdVws27t/mpZz75Aa3WGqoqWGpFPLbW4a3Lt8n6A+LVZT70/AJvvXWEqAyDvT6rqwtcubGNtRlCw4XTGzz15Aa9wz4Xzy3y0Q8/yxe+9L959txJLp48RV5m/Pv//Mfc3T7gpz78ItuHe0Ra0Pub19jYuEB7oUkQN1BkHO5u0UkSrBN87/Y+n//Z57hz5w75+AgZnyaM2kBFLxvhq5gFpdHaQwpTO9FIR+g7AulzeiVEK1kb2cgQW1omWYGvIQgU3ThAa4MzEm0dB/sOoy1aQm4torSMC0O3G7MWOzaPFEVmKII6WF46VRdKWIRTaCwoibWSrJQYzfF02HeWMJCkmSMKJEhLt+sBCms1QsBgkBKGAYGWU8McAcJDCEOoJadOtDHGkBUVVWmxxhAkPtbCnTu7CAlhEDGe5BQmw5P1e+PBVMEhgSj0yazDWs3e3gFvfOcb3Ll9k8PDw6mW0yGFh2X6fpb1tQNX68WNcChZ8twzl2i2WlMNqeLOvZInz0cf6JoVQjCZTFBC1pl+rpZZzCQsUsyKjukaF5rKPrAor6zjYDAkLyu6rQ5x5NObjLF5he95CL+eEmWTyVQ7+oBa5x4qqt6rwzqepIgHJht/G7Xw+8wtHpo4fd+EzE2v4+/z2DBto1k3LZDEg0wy5HtCg+sCaXYdFscTqQfPY6Y3m00BYZofKcRDlPUH/xfHz59HA4qlkDg73Sumk+m/i5744DU90Hgda47do+6PP+hv+fDreDTselpw/gNClH+owkv5ik994iU++ZMv8vW3t7lx5Sa/84uX2B4MGBif8XifkSv55EdOc+ETn+X3X/gU79zc5ou/+wcU1vHxFx7n3c0xKkg4/9hJTJqxstBgobuIm1lwCkWeTtC2oqMhPdoh9QJaSYIOPbJiAsrhRRFR4DMZD9jr7VLmlrKsuL+9S9yIeP75S2ileRvL4nKLSxcf47XJER99boVlNcSOcnpVzOkNKMYZ92PDib13EV7MoS7ZORgj8iPOtBT50TbOKPJqgm0uUhifazevc/HiE5xqNen1Dhl11/j2a5d5/Mnn+KMv/jf2x4bf+he/zuabr/HNG7dotyY8/4mP0yo1p1c2CIKQ8XjIZOcureV1hrt9nPQ4myxghiOS2KMTKY7GDso+2xNJK98njLr09w5pBjHdEwkvNS/yVHeDIR5hrBilbTYHY5YWV/ncr/8G73zhS7x4/hz/68Y2SXuNvNrlE597hYPLr/Gr//oVrv7pd1h97qcZG8lHH3uRraNNLj59gX/6+Z+iV9zlzUmOHCoGhaG6dpdmq8vissekv8k39oe0bEwraGLai3R8n5XlDv1hRnf9JJev3qJSAQdIdFfx5uEmn/2Rl+qPhsBrcn+4QxjEWAs6CBGeYVQWFFlOrCWTLKORKJqhj7UGWxmEH5AEMVrB4d4OjWaTMAiwVIR+hDQSW1ny0hFEDfJJjrMVC42Efl7RG0/o4OHKjPZibW2+1G3XhYK1KC24eeceMhQsJ8s0o4jB6JBMCUqvwglDHFacOhFx5tQSezuHLDZ8hmmBKSwba47V5Zh7exn94R7n1pbI0wk7B2N8JYk9j+3tHc6eW+DmjfvEy126UYQOI/r9AUVm8HzF1et3SNptTp4+i5SKRjOhkPe5e/sa4YVLLLSW2W0tYSqD5/sIpXHFBK1qIa1Wik7cpM+IooJ+KVg7uYYtczCWRAkyUbE7PEQpEKKEakKkE8ZVgdM5XhzgNxQHhwckDY8oatJJEob9EU5BEmkmoxFQ4IeCg6MKKSVZXrK+3qHXPyKIGjTjNtfv3EVKgScVVTlmrbPA6voyOEspLcUoZ7g7pF+N+NzPf5I33rlM0ghIx0fc29rh2SfXmJQZWkZoHZEkyQe8YkEvtgiTJs2FNkeU6ChAFZZ8OMJVBt2KkEttxMEhtiqp/BSlPUwlkbWAhPDUBliJGZYUFYStJjp2FEcDZGUxDUeURCgsR/0hYSNE+prIE1RVSVnWNDxrp2WNEGRpMdXlOYSQCDEVGE+LqvduWse8+Nk0zD2qI4AHHUxja+1kHW75YCOUsraQnwmai7KEqZU1VuB5Et/3Ucqr6YJleawdrIocQR0aHfoBWVWQl8W0yKoPVFVZYIykLOtCTCqJkhKt9YON2an6vquSfFTgN8D6EJ1NyHoZnj+BXKC8ALHaBq3IqhI1hN03r+I8x62/eg1R5RRJE/HsJb6b5WxEMf1hyte+d53ClGhX4azg7LkTdJZjilKw3logigIqYYhDH5MZnBCEkY8UijSr3fS08llaXKDphbSXln5sa/MHodEIOZgU2Bs9PrT2BO1TMX996x67hyu8/E8+zv/92rc40ejw5s2b2CqDCioLf/7lP+fll3+Cv3n1VU6v+/zxn/wZw0GGDjSvvnaNw/1txrmh224zyoYcjEa0Y4/DrSFvffcqK8stVpdWIZR85atfYWdri4+9eB7sBZ5/5km+9vVv863vXiVrCi69+DLX3/wymzuOlZNLnFqNiZOEyGmUNBgV8vRjEZQSJWr6azbOKUrDwnKTUAtsUZtSBb5fH0i15Kd+8hyHg4xvvr2PUZpJloEzZEWCQ7PcDrk/LhmXBpdqAuEItGQwmlDpOmNSWIc2FSYIsLLiVNJEuApPSbqtBkFYT3oHg4xxmuH5HqWqTTKEFORliR/4WOuOM/GsdcfOa1qAUgLfl1Tl7D1pCGKP5Il10ixHSYHvJWzfG3CwnWKsYmaSo7VkoRuy0PLYGxnu377Bf//iF/j2t75Ru+FOD9f157qBoaRfH1qdwwiN9jShgs986mP87CufrosTFTHYzxj0yg98zUopKYuSIEkwzhIEARNjSNN0OmXXhH6A73nkZUFqSrQXYPL6uTrnsCgG44w4toyzkgBFM45Y6HQ5OOozzFKEmlKi7bQhNjW/cMz0p9Uxla7W8XnHtLa/bbIDD6Yz773texthD0++HjaGmP3s4bDiWebacV7VQ4/lSY019e1q11uLmhUgQlAY+8gE771Foed5xz8z08nfjM5njKmbctNokIdf18ze/b3asPfSCB/WYgnxQF/34N8epXOqKUXyvX+vGbV2tq6ttXieNw2Ynu5f9vvNP/6++KEKLxd2aHU67O7usNEN8S6dZlKMOZJN/vK7r3G4d4DnwQsLp2AywCsylswRC4HhzNmzGC+h1dI04gTPGA7397lw7iSmzMmzjMoYTqyvUBnD9WtXEb0+g6MBW9bSaLRYWFnB4lhe3SDt7fPqq99hNBlz7uwGXqPJaDAmjHxOn1lGm5xbN67xzCeeI/ADtu/eJVQVH3rmAoGXESZLVOkRvobBzohi2aOki5qMaK4u0bl4Bu9gl0kmEH6EKVIcAu175GnFuRMbpIMRV6/eYWEhpNnU3C0Vg6Jg48kXaJaG69c3GRwN6WcVB4XkJ3VGNzzF3tZllpdO4JxisHOP0IOsLEj8iIOtLbZ2dml2GkjpUYxLut0lWpSMt4cc7RyycvYUw9EBlrrjn0pD2KyNPCqdUd24ymgR0MuMvQZrSyf5idYCo3e/hT65yC/9zMf46kLFmRNdvrw95mecx9nVU5x1E0TS5tOffIbz/g5/Np6w8eR5XoiXeePOJmZi8BcE4WrCeDigpSEMNZ4tObGUsLi2TDk+wihFkY4pxn2c0PSGYwpR0I0+eKphmRmchbwo68PbNIDSWBB5RYkkDAIm6ZhYxeRpha89cLJ2n8pzGo0GgodcgJxjMpqw0F7CugIw5PkEDwFashI38VVJlGgWpIZq1k2vtSeTYUacaFqNBBEIhKs51Y3IRwlBUZZYY2m3AgRj2i3N0Y5ldSlhs1diDVhTkBtDmWUstVukkxHNUBEHknJSsLQQklU5Fx8/ybWb19GeYDTO8K0mIEfpkMJYWq0WSgmctBwNM8rKsXbiFFfeeoOD/g5BsEqzvUie9+l0O6RZXhuPUHezuu0u26MeWimshd5RyvqyxOkAa6AaHGG0JQzqjKPhaEQzjkiigHSc02oHZGODkyVh6BHHDRrtLhJBGORMRkOkjeoA57aPcNVU5D3COggiRdPE+HHE8KjEZJAWBbaoWFxqME4nZEWOcBC1Y0yaIypBkRqazQQhLc0ptS4OA65evc3iwgLOQhBETMofncf9o6Ia5ailZSpqYxop6+4qgKlyZCEpigwpS4yrD3mmNKSHFb7QyCjAVSVOKhAlUbeBk4qqN6pzY1Q9CZoMRoQIlK9xhSUKNLiKrDBoTxP4mrKaoIVGOIVxFUiH1h7CmNoNc6qqfrjTOaOKPFxgmWl3VAhwtu6EW8R0YmanbENVS7+cxTlbG8pMdV2zbjrU+kUpRK09VbVbYVWVCDHl9tv6b2apD6WuqumRRVVgTU3nctPOb2UMcno4dLK2pzfOIqyhNuAQFFWJVDXtVimwwoGWiDhGV1DZnHC9iRO6DiDPc1xVUZna+t9NStw4wxqLKcfcuXoFP04oltfJq3qiKGQd1j3Jczbv7SNKKPMKtV7SaAYM05J0kjE+nFDlBUJKlPbQocZVDuX54AS+52Gdx2987tc+uAULlEVOYSq0aXG5d52z66cY5QOSUHJ/8x6vfecWz/7CC7x46TE8z3Ft902O9nZrI6M4xgpFq9UkWVhDXL/FKLdcu36Lk2uL7O1f5/HzZ5hkKePxiDA8ie31CIOA0Nd4WvEXf/l19vpjVjptlhYXaIQtGlHwINuuMjx28SnuXf8G92/d59Of+0UeP3MCP2ywsLDIYDAmsyE+QT1RlbqmnSmPLM0Yjif4WrLQ7DAVvhwfMLVyLHcj1hcCtvoTrFRYHHlhMcbRiAOszXFCoi2cXupw/ozkjcsZN3vgqhJPhjQCTZqWiECxtpLQCAEc7SRCSsnRYEKVV6AkUiiEqjVKRZ4TxhFOCIqyntDL6eTEifqI58kHGUSTzFBZQxzW15XxJGcyyRFO0W3X7orXej2qqpgeVqdanKok0I4iHfC1r/w5W3dvY0yFcw8O9rOsUGPsdMpjardgrfGUQ2F45ZWfodluTCMhDI2Wx7nwg29w+Z5HbnMm2aQuCJzD07rWdltHWVWUVUUcRoRRSJXV388O3rMsQyUVWVkQNxr0B33KNGVUWSpTm1Bl+QSp9JTabB+hZT9cOPygj9n17/jz9Guor4nuIQfDHzTper+C7OH7mRVcsxnUrBB7L471etMJklLyeHpmnUEK0EpixLTQ0vrYcdYagzXmAV3QPmjYKSlrjbFUGGuO31sP28e/V5f1fdo2Hi30xFRXOHsMKUQ92H4fs46HC7pZAeqcIwiCY9qpmeZSHj+f97H5//vihyq8Ai0ZbN5nsLeDSkf8xFqTvZGH9mDp7BNYb5PFluYqTcovfQm3sETumqw88wxL7Zh3r/V47NQGg6MBr79xjQuPnWPr9j0G4wmdxCcIAnaynLIsCbSH8AKChSWUFMSex/7hgJMnV+inBSpuc+bpi2zdvcvW5i5C9VFasbgc8Nu/9Zv83u/9AXsHhzyux0yOJnz0Mx+hcg0CT+K8Bp32KipJQEdsnD7Fppuwvnia3cGYbthFeB5fffNtBlJy5twFTscBzkq2rl0jiJsc9vpkRcFgmKO05u47m6ye2eD2cJ+sOCCLHa9fuU81tnz0qafZun+PbNcnb/Z59fIeZ1cswYLPim7x7re/hbfSJZQ5SdhifalF4TSHvT6Brru9a03N9aRL4ad4SxHGxOzdu8JIByz7MeeWT3Fr5y6NyT6fevY5RGed3eyIz//zX6GQIZ8Y32Z4tMKzT3yIZu8Gv/zKJd75xqt8/pXnOLESsbe1wzhpUExSfvb5DtnogCeKNjfu97h8520ma6ucfrLFmeyA01EDL1ymCgO2EWSpY8lN2L97j0vri2TpAZ4zXDx7hsPhAH99jd1xn5MffN3F0FQst5cZT1Ji5SHzijgKGI3HpIMRNEIqVaGdw+oCLX3GZU5iKkLt0SsyVha67B0OUZ4i8BRIkJ7GOEORj/GDmE4TvCRmr8zBubozRkX/6IhGHNMKPHwJgzRDBpKw6RGHMVY6qgz2sxTtOVorba7d3av1aLpASg8tCz7z0lmiJKCXZSSLAadONNg9GrO62mSSVzRUg05ch8y6fp+8nPDExVX+z1+8zm//q5dR3hFXL28zyUY8sbLIYX/Ifm9C4DuKrHZJjFuLKGfxPEWzEXPl2lv89Keew3hw6/K3cUYxGPUJkwXaIWzv7mNyx0Krw2iwRdBYpWnHRKHEWY9ef8JC0qYRhnRjgRQRV+7d4eSZDfYGA7IKhO9hy5Is7ZOEEVYFRL5iNBqzuXsXDMQrj/PSiy9z9cZfs38wqJ20lM/yUkwYBNy/e8CyF3G0t8dwO8PzNU5Cp9Hl/v0egXQsLnbpdju40rDcgQObkQ9Lzp08w+rqAk6U5P0C21jk9v1DFleaGOdodhY+8DUbeh4ikQQrbXpbWwQGWnHCRDpGh3tkwyFIha1yhHCIop5MaeHVRU9eETUF5Jb+/qDevDxqAX3iUTmH5ytMWmC8uiOepRM8T2GMIMsMAYrecIgWmiROKKoKKS2uKLHOUToDro4NEEIgp4eJaprfhXU1hQuY0ZSEm34IMdUa1I61ckZ/YWrC4dxUvyUe6YYy/dxMEoIgxFQVWWEJwtqZsSiKYydKrX2cq7WsTkJajCmL8niaVj3U5Zx1PJWUYKq6w4nAyQo/8AmTmKKYEMQeMhIgFUoH5MMRKamgFAAAA3BJREFUfjNA2wCFx2ivR6PRJc+mHeGkAb5GyIpibKGaIGxOtrmP8Ycc9lLwPcrSoJzDRCGe8cgGQ+KGhzYlVy73kcUsd8kjzTOU9lAoXGlxAlQS4pxAUfuZVGX+Aa9YaDSbXNho89TjL3Dne6+RFRmrF85x7c59elcEax+6wH/447f52AsXSGLJubNrdFc6vPyJl1FKcTSYsLO7w94ILp0/yf/8yrd46ckTZHnJ2olVuq0IAXQaMc8/8yxPPGVwTvDVv/oa71y+Rukn5JVlabHLl//sdZ44G3Hz5g0+/NJLnFpvkI4sK8sn+KVf+V3u3vsmv/prv4xyioWVLqtrLTQLfO/WFn6Y4PsQRP70QGnwPElvYNDOIe2IZjOZHjqnB0ARgLC8+FSbzU2P725moAyT1JDlFWsrXdzlITjLymKIH6Uc7fskYcJKW9INLUY4Lp2K6MQN7u+lXL/T51MfWmU0zhkPc5rNJkkUYkOHE7WBzmg8Onb3LCtTT2qVQghHOJ3IleV0quDVa/1oOOaNd3v4sWZtOWTQTylyS55ZFhdipLZk2Zj/9F++gDHpdCJQ4SmfMxuP8fv/9t9xY+uA+7duEccJSdyi3+8RRhGLi4usrqzwymc+ya1bd1he7LC1tcl3vv1tkjjid/7Nv+S55y6SBJqiyPGsRSX1+aYTf/ANrk6zyX5ZUjlHADTCgKKqGKZZnQE4a85YQ5qO6bYaOOcYjCaUVTk1irEYV9EfDGi327QbTZyr8xTLMq8dBqlNvupixjwyYXo453A2aamq6kGQ78OGG/zd5hrA8URtdu18XxrjFLPG1pR/eMwsmOmy3LThN9N4CVUrd2fmEvX0bDods4JQ+fUeJCEvCpy16Fnm1zT6Y2ZcMWMeaM+buoKq42mftbVza1mWj0zjHi4UhRBT/at7JND7eDJY9wTxZrdx5rgh+PDtHp56PTwVFKIOUp6Zf8wmgbMprnyoyPthIX4QR3KOOeaYY4455phjjjnmmGOO/z/40Wdlc8wxxxxzzDHHHHPMMcccc/y9MC+85phjjjnmmGOOOeaYY445fsyYF15zzDHHHHPMMcccc8wxxxw/ZswLrznmmGOOOeaYY4455phjjh8z5oXXHHPMMcccc8wxxxxzzDHHjxnzwmuOOeaYY4455phjjjnmmOPHjP8HBAwtsW0PyNoAAAAASUVORK5CYII=","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["interp.plot_top_losses(5, nrows=1)"]},{"cell_type":"markdown","metadata":{"id":"NYSAx0ky1Xsp"},"source":["This output shows that the image with the highest loss is one that has been predicted as \"grizzly\" with high confidence. However, it's labeled (based on our Bing image search) as \"black.\" We're not bear experts, but it sure looks to us like this label is incorrect! We should probably change its label to \"grizzly.\"\n","\n","The intuitive approach to doing data cleaning is to do it *before* you train a model. But as you've seen in this case, a model can actually help you find data issues more quickly and easily. So, we normally prefer to train a quick and simple model first, and then use it to help us with data cleaning.\n","\n","fastai includes a handy GUI for data cleaning called `ImageClassifierCleaner` that allows you to choose a category and the training versus validation set and view the highest-loss images (in order), along with menus to allow images to be selected for removal or relabeling:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["d547f14e0f7848f39627ebb88d457e64"]},"id":"wspFLLtA1Xsp","outputId":"931963b8-c61c-47d8-d0ba-bc96da4a645c"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"d547f14e0f7848f39627ebb88d457e64","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Dropdown(options=('black', 'grizzly', 'teddy'), value='black'), Dropdown(options=('Train', 'Val…"]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","cleaner = ImageClassifierCleaner(learn)\n","cleaner"]},{"cell_type":"markdown","metadata":{"id":"p8RgRpwc1Xsp"},"source":["\"Cleaner"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"T1rnWKFh1Xsq"},"outputs":[],"source":["#hide\n","# for idx in cleaner.delete(): cleaner.fns[idx].unlink()\n","# for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat)"]},{"cell_type":"markdown","metadata":{"id":"18Hcjeme1Xsq"},"source":["We can see that amongst our \"black bears\" is an image that contains two bears: one grizzly, one black. So, we should choose `` in the menu under this image. `ImageClassifierCleaner` doesn't actually do the deleting or changing of labels for you; it just returns the indices of items to change. So, for instance, to delete (`unlink`) all images selected for deletion, we would run:\n","\n","```python\n","for idx in cleaner.delete(): cleaner.fns[idx].unlink()\n","```\n","\n","To move images for which we've selected a different category, we would run:\n","\n","```python\n","for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat)\n","```\n","\n","> s: Cleaning the data and getting it ready for your model are two of the biggest challenges for data scientists; they say it takes 90% of their time. The fastai library aims to provide tools that make it as easy as possible.\n","\n","We'll be seeing more examples of model-driven data cleaning throughout this book. Once we've cleaned up our data, we can retrain our model. Try it yourself, and see if your accuracy improves!"]},{"cell_type":"markdown","metadata":{"id":"wQfEJjvb1Xsr"},"source":["> note: No Need for Big Data: After cleaning the dataset using these steps, we generally are seeing 100% accuracy on this task. We even see that result when we download a lot fewer images than the 150 per class we're using here. As you can see, the common complaint that _you need massive amounts of data to do deep learning_ can be a very long way from the truth!"]},{"cell_type":"markdown","metadata":{"id":"LaRHPOdP1Xsr"},"source":["Now that we have trained our model, let's see how we can deploy it to be used in practice."]},{"cell_type":"markdown","metadata":{"id":"9c6CvZU-1Xsr"},"source":["## Turning Your Model into an Online Application"]},{"cell_type":"markdown","metadata":{"id":"WhIdLWaz1Xss"},"source":["We are now going to look at what it takes to turn this model into a working online application. We will just go as far as creating a basic working prototype; we do not have the scope in this book to teach you all the details of web application development generally."]},{"cell_type":"markdown","metadata":{"id":"U1GCpk7l1Xss"},"source":["### Using the Model for Inference"]},{"cell_type":"markdown","metadata":{"id":"QLgyWnUW1Xst"},"source":["Once you've got a model you're happy with, you need to save it, so that you can then copy it over to a server where you'll use it in production. Remember that a model consists of two parts: the *architecture* and the trained *parameters*. The easiest way to save the model is to save both of these, because that way when you load a model you can be sure that you have the matching architecture and parameters. To save both parts, use the `export` method.\n","\n","This method even saves the definition of how to create your `DataLoaders`. This is important, because otherwise you would have to redefine how to transform your data in order to use your model in production. fastai automatically uses your validation set `DataLoader` for inference by default, so your data augmentation will not be applied, which is generally what you want.\n","\n","When you call `export`, fastai will save a file called \"export.pkl\":"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jDLhah9f1Xst"},"outputs":[],"source":["learn.export()"]},{"cell_type":"markdown","metadata":{"id":"u98MhkZ-1Xst"},"source":["Let's check that the file exists, by using the `ls` method that fastai adds to Python's `Path` class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GtCgk4f01Xsu","outputId":"79777599-82c6-4cbe-ce5c-164bbdf68bf9"},"outputs":[{"data":{"text/plain":["(#1) [Path('export.pkl')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["path = Path()\n","path.ls(file_exts='.pkl')"]},{"cell_type":"markdown","metadata":{"id":"RAmr5l8a1Xsu"},"source":["You'll need this file wherever you deploy your app to. For now, let's try to create a simple app within our notebook.\n","\n","When we use a model for getting predictions, instead of training, we call it *inference*. To create our inference learner from the exported file, we use `load_learner` (in this case, this isn't really necessary, since we already have a working `Learner` in our notebook; we're just doing it here so you can see the whole process end-to-end):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"caJs3cNa1Xsv"},"outputs":[],"source":["learn_inf = load_learner(path/'export.pkl')"]},{"cell_type":"markdown","metadata":{"id":"LxgD0Aqa1Xsv"},"source":["When we're doing inference, we're generally just getting predictions for one image at a time. To do this, pass a filename to `predict`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"N1w1JCNl1Xsv","outputId":"8d884730-99d4-4523-f45b-292924c3cbf4"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["('grizzly', tensor(1), tensor([9.0767e-06, 9.9999e-01, 1.5748e-07]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn_inf.predict('images/grizzly.jpg')"]},{"cell_type":"markdown","metadata":{"id":"ZZ8l2EwH1Xsw"},"source":["This has returned three things: the predicted category in the same format you originally provided (in this case that's a string), the index of the predicted category, and the probabilities of each category. The last two are based on the order of categories in the *vocab* of the `DataLoaders`; that is, the stored list of all possible categories. At inference time, you can access the `DataLoaders` as an attribute of the `Learner`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BJAZah1C1Xsx","outputId":"9d1a3e62-297f-453c-b605-0591d39f828d"},"outputs":[{"data":{"text/plain":["(#3) ['black','grizzly','teddy']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn_inf.dls.vocab"]},{"cell_type":"markdown","metadata":{"id":"pvjFVwMp1Xsx"},"source":["We can see here that if we index into the vocab with the integer returned by `predict` then we get back \"grizzly,\" as expected. Also, note that if we index into the list of probabilities, we see a nearly 1.00 probability that this is a grizzly."]},{"cell_type":"markdown","metadata":{"id":"CmMXMHS71Xsx"},"source":["We know how to make predictions from our saved model, so we have everything we need to start building our app. We can do it directly in a Jupyter notebook."]},{"cell_type":"markdown","metadata":{"id":"GqDhVHmg1Xsy"},"source":["### Creating a Notebook App from the Model"]},{"cell_type":"markdown","metadata":{"id":"eTA4TySM1Xsy"},"source":["To use our model in an application, we can simply treat the `predict` method as a regular function. Therefore, creating an app from the model can be done using any of the myriad of frameworks and techniques available to application developers.\n","\n","However, most data scientists are not familiar with the world of web application development. So let's try using something that you do, at this point, know: it turns out that we can create a complete working web application using nothing but Jupyter notebooks! The two things we need to make this happen are:\n","\n","- IPython widgets (ipywidgets)\n","- Voilà\n","\n","*IPython widgets* are GUI components that bring together JavaScript and Python functionality in a web browser, and can be created and used within a Jupyter notebook. For instance, the image cleaner that we saw earlier in this chapter is entirely written with IPython widgets. However, we don't want to require users of our application to run Jupyter themselves.\n","\n","That is why *Voilà* exists. It is a system for making applications consisting of IPython widgets available to end users, without them having to use Jupyter at all. Voilà is taking advantage of the fact that a notebook _already is_ a kind of web application, just a rather complex one that depends on another web application: Jupyter itself. Essentially, it helps us automatically convert the complex web application we've already implicitly made (the notebook) into a simpler, easier-to-deploy web application, which functions like a normal web application rather than like a notebook.\n","\n","But we still have the advantage of developing in a notebook, so with ipywidgets, we can build up our GUI step by step. We will use this approach to create a simple image classifier. First, we need a file upload widget:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["e0c4141e3c76425c98ae9994ccf9a748"]},"id":"WdMjMh5C1Xsy","outputId":"2f463ec7-31eb-4800-e532-690f5c8942fe"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"e0c4141e3c76425c98ae9994ccf9a748","version_major":2,"version_minor":0},"text/plain":["FileUpload(value={}, description='Upload')"]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","btn_upload = widgets.FileUpload()\n","btn_upload"]},{"cell_type":"markdown","metadata":{"id":"xwbJY68v1Xsz"},"source":["\"An\n","\n","Now we can grab the image:"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"0o-FyUel1Xsz"},"outputs":[],"source":["#hide\n","# For the book, we can't actually click an upload button, so we fake it\n","btn_upload = SimpleNamespace(data = ['images/grizzly.jpg'])"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KQioqE9r1Xsz"},"outputs":[],"source":["img = PILImage.create(btn_upload.data[-1])"]},{"cell_type":"markdown","metadata":{"id":"BSjUnOHE1Xs0"},"source":["\"Output"]},{"cell_type":"markdown","metadata":{"id":"KkdUEXV81Xs1"},"source":["We can use an `Output` widget to display it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SOVzpsFM1Xs1"},"outputs":[],"source":["#hide_output\n","out_pl = widgets.Output()\n","out_pl.clear_output()\n","with out_pl: display(img.to_thumb(128,128))\n","out_pl"]},{"cell_type":"markdown","metadata":{"id":"614fb-gL1Xs2"},"source":["\"Output\n","\n","Then we can get our predictions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"npHWhO_h1Xs2","outputId":"171db8bb-dfa8-4028-a706-0bae3f8ccb44"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["pred,pred_idx,probs = learn_inf.predict(img)"]},{"cell_type":"markdown","metadata":{"id":"IxvTI7Q81Xs3"},"source":["and use a `Label` to display them:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["08509e39d3454701b5fed10439970e84"]},"id":"3pzmIW7g1Xs3","outputId":"9aa308d7-7cc1-40e7-c8be-1fcbe2c7788a"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"08509e39d3454701b5fed10439970e84","version_major":2,"version_minor":0},"text/plain":["Label(value='Prediction: grizzly; Probability: 1.0000')"]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","lbl_pred = widgets.Label()\n","lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'\n","lbl_pred"]},{"cell_type":"markdown","metadata":{"id":"oEqrh9Uf1Xs4"},"source":["`Prediction: grizzly; Probability: 1.0000`\n","\n","We'll need a button to do the classification. It looks exactly like the upload button:"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["5948c2dc026d43cb9afdce7dee8fa425"]},"id":"EYSS4LC11Xs5","outputId":"67cf8f30-46ca-420e-f579-97cc1b44e3ba"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"5948c2dc026d43cb9afdce7dee8fa425","version_major":2,"version_minor":0},"text/plain":["Button(description='Classify', style=ButtonStyle())"]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","btn_run = widgets.Button(description='Classify')\n","btn_run"]},{"cell_type":"markdown","metadata":{"id":"KhzbrqrW1Xs5"},"source":["We'll also need a *click event handler*; that is, a function that will be called when it's pressed. We can just copy over the lines of code from above:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CPCTbM9c1Xs6"},"outputs":[],"source":["def on_click_classify(change):\n"," img = PILImage.create(btn_upload.data[-1])\n"," out_pl.clear_output()\n"," with out_pl: display(img.to_thumb(128,128))\n"," pred,pred_idx,probs = learn_inf.predict(img)\n"," lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'\n","\n","btn_run.on_click(on_click_classify)"]},{"cell_type":"markdown","metadata":{"id":"-DWt9z0D1Xs6"},"source":["You can test the button now by pressing it, and you should see the image and predictions update automatically!\n","\n","We can now put them all in a vertical box (`VBox`) to complete our GUI:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GzCXkTag1Xs6"},"outputs":[],"source":["#hide\n","#Putting back btn_upload to a widget for next cell\n","btn_upload = widgets.FileUpload()"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"referenced_widgets":["e9e7b05555a44125ac0e5365e17ea59d"]},"id":"x5jM1D6L1Xs7","outputId":"fc9f516a-9494-4c29-c624-d74ffb51cd9f"},"outputs":[{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"e9e7b05555a44125ac0e5365e17ea59d","version_major":2,"version_minor":0},"text/plain":["VBox(children=(Label(value='Select your bear!'), FileUpload(value={}, description='Upload'), Button(descriptio…"]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","VBox([widgets.Label('Select your bear!'),\n"," btn_upload, btn_run, out_pl, lbl_pred])"]},{"cell_type":"markdown","metadata":{"id":"LoW7NxHS1Xs7"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"L6jSDU-K1Xs8"},"source":["We have written all the code necessary for our app. The next step is to convert it into something we can deploy."]},{"cell_type":"markdown","metadata":{"id":"xDg4YuDh1Xs8"},"source":["### Turning Your Notebook into a Real App"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eHbM50dq1Xs8"},"outputs":[],"source":["#hide\n","# !pip install voila\n","# !jupyter serverextension enable --sys-prefix voila"]},{"cell_type":"markdown","metadata":{"id":"d4ouWElY1Xs8"},"source":["Now that we have everything working in this Jupyter notebook, we can create our application. To do this, start a new notebook and add to it only the code needed to create and show the widgets that you need, and markdown for any text that you want to appear. Have a look at the *bear_classifier* notebook in the book's repo to see the simple notebook application we created.\n","\n","Next, install Voilà if you haven't already, by copying these lines into a notebook cell and executing it:\n","\n"," !pip install voila\n"," !jupyter serverextension enable --sys-prefix voila\n","\n","Cells that begin with a `!` do not contain Python code, but instead contain code that is passed to your shell (bash, Windows PowerShell, etc.). If you are comfortable using the command line, which we'll discuss more later in this book, you can of course simply type these two lines (without the `!` prefix) directly into your terminal. In this case, the first line installs the `voila` library and application, and the second connects it to your existing Jupyter notebook.\n","\n","Voilà runs Jupyter notebooks just like the Jupyter notebook server you are using now does, but it also does something very important: it removes all of the cell inputs, and only shows output (including ipywidgets), along with your markdown cells. So what's left is a web application! To view your notebook as a Voilà web application, replace the word \"notebooks\" in your browser's URL with: \"voila/render\". You will see the same content as your notebook, but without any of the code cells.\n","\n","Of course, you don't need to use Voilà or ipywidgets. Your model is just a function you can call (`pred,pred_idx,probs = learn.predict(img)`), so you can use it with any framework, hosted on any platform. And you can take something you've prototyped in ipywidgets and Voilà and later convert it into a regular web application. We're showing you this approach in the book because we think it's a great way for data scientists and other folks that aren't web development experts to create applications from their models.\n","\n","We have our app, now let's deploy it!"]},{"cell_type":"markdown","metadata":{"id":"Y37b09Vn1Xs9"},"source":["### Deploying your app"]},{"cell_type":"markdown","metadata":{"id":"uVc53-xq1Xs9"},"source":["As you now know, you need a GPU to train nearly any useful deep learning model. So, do you need a GPU to use that model in production? No! You almost certainly *do not need a GPU to serve your model in production*. There are a few reasons for this:\n","\n","- As we've seen, GPUs are only useful when they do lots of identical work in parallel. If you're doing (say) image classification, then you'll normally be classifying just one user's image at a time, and there isn't normally enough work to do in a single image to keep a GPU busy for long enough for it to be very efficient. So, a CPU will often be more cost-effective.\n","- An alternative could be to wait for a few users to submit their images, and then batch them up and process them all at once on a GPU. But then you're asking your users to wait, rather than getting answers straight away! And you need a high-volume site for this to be workable. If you do need this functionality, you can use a tool such as Microsoft's [ONNX Runtime](https://github.com/microsoft/onnxruntime), or [AWS Sagemaker](https://aws.amazon.com/sagemaker/)\n","- The complexities of dealing with GPU inference are significant. In particular, the GPU's memory will need careful manual management, and you'll need a careful queueing system to ensure you only process one batch at a time.\n","- There's a lot more market competition in CPU than GPU servers, as a result of which there are much cheaper options available for CPU servers.\n","\n","Because of the complexity of GPU serving, many systems have sprung up to try to automate this. However, managing and running these systems is also complex, and generally requires compiling your model into a different form that's specialized for that system. It's typically preferable to avoid dealing with this complexity until/unless your app gets popular enough that it makes clear financial sense for you to do so."]},{"cell_type":"markdown","metadata":{"id":"25U5pTGE1Xs-"},"source":["For at least the initial prototype of your application, and for any hobby projects that you want to show off, you can easily host them for free. The best place and the best way to do this will vary over time, so check the [book's website](https://book.fast.ai/) for the most up-to-date recommendations. As we're writing this book in early 2020 the simplest (and free!) approach is to use [Binder](https://mybinder.org/). To publish your web app on Binder, you follow these steps:\n","\n","1. Add your notebook to a [GitHub repository](http://github.com/).\n","2. Paste the URL of that repo into Binder's URL, as shown in <>.\n","3. Change the File dropdown to instead select URL.\n","4. In the \"URL to open\" field, enter `/voila/render/name.ipynb` (replacing `name` with the name of for your notebook).\n","5. Click the clickboard button at the bottom right to copy the URL and paste it somewhere safe.\n","6. Click Launch."]},{"cell_type":"markdown","metadata":{"id":"Xj4LqEwk1Xs-"},"source":["\"Deploying"]},{"cell_type":"markdown","metadata":{"id":"ene4DJcR1Xs-"},"source":["The first time you do this, Binder will take around 5 minutes to build your site. Behind the scenes, it is finding a virtual machine that can run your app, allocating storage, collecting the files needed for Jupyter, for your notebook, and for presenting your notebook as a web application.\n","\n","Finally, once it has started the app running, it will navigate your browser to your new web app. You can share the URL you copied to allow others to access your app as well.\n","\n","For other (both free and paid) options for deploying your web app, be sure to take a look at the [book's website](https://book.fast.ai/)."]},{"cell_type":"markdown","metadata":{"id":"C3j8jbO91Xs-"},"source":["You may well want to deploy your application onto mobile devices, or edge devices such as a Raspberry Pi. There are a lot of libraries and frameworks that allow you to integrate a model directly into a mobile application. However, these approaches tend to require a lot of extra steps and boilerplate, and do not always support all the PyTorch and fastai layers that your model might use. In addition, the work you do will depend on what kind of mobile devices you are targeting for deployment—you might need to do some work to run on iOS devices, different work to run on newer Android devices, different work for older Android devices, etc. Instead, we recommend wherever possible that you deploy the model itself to a server, and have your mobile or edge application connect to it as a web service.\n","\n","There are quite a few upsides to this approach. The initial installation is easier, because you only have to deploy a small GUI application, which connects to the server to do all the heavy lifting. More importantly perhaps, upgrades of that core logic can happen on your server, rather than needing to be distributed to all of your users. Your server will have a lot more memory and processing capacity than most edge devices, and it is far easier to scale those resources if your model becomes more demanding. The hardware that you will have on a server is also going to be more standard and more easily supported by fastai and PyTorch, so you don't have to compile your model into a different form.\n","\n","There are downsides too, of course. Your application will require a network connection, and there will be some latency each time the model is called. (It takes a while for a neural network model to run anyway, so this additional network latency may not make a big difference to your users in practice. In fact, since you can use better hardware on the server, the overall latency may even be less than if it were running locally!) Also, if your application uses sensitive data then your users may be concerned about an approach which sends that data to a remote server, so sometimes privacy considerations will mean that you need to run the model on the edge device (it may be possible to avoid this by having an *on-premise* server, such as inside a company's firewall). Managing the complexity and scaling the server can create additional overhead too, whereas if your model runs on the edge devices then each user is bringing their own compute resources, which leads to easier scaling with an increasing number of users (also known as *horizontal scaling*)."]},{"cell_type":"markdown","metadata":{"id":"sbmx6-y21Xs_"},"source":["> A: I've had a chance to see up close how the mobile ML landscape is changing in my work. We offer an iPhone app that depends on computer vision, and for years we ran our own computer vision models in the cloud. This was the only way to do it then since those models needed significant memory and compute resources and took minutes to process inputs. This approach required building not only the models (fun!) but also the infrastructure to ensure a certain number of \"compute worker machines\" were absolutely always running (scary), that more machines would automatically come online if traffic increased, that there was stable storage for large inputs and outputs, that the iOS app could know and tell the user how their job was doing, etc. Nowadays Apple provides APIs for converting models to run efficiently on device and most iOS devices have dedicated ML hardware, so that's the strategy we use for our newer models. It's still not easy but in our case it's worth it, for a faster user experience and to worry less about servers. What works for you will depend, realistically, on the user experience you're trying to create and what you personally find is easy to do. If you really know how to run servers, do it. If you really know how to build native mobile apps, do that. There are many roads up the hill.\n","\n","Overall, we'd recommend using a simple CPU-based server approach where possible, for as long as you can get away with it. If you're lucky enough to have a very successful application, then you'll be able to justify the investment in more complex deployment approaches at that time.\n","\n","Congratulations, you have successfully built a deep learning model and deployed it! Now is a good time to take a pause and think about what could go wrong."]},{"cell_type":"markdown","metadata":{"id":"zLNIamp31Xs_"},"source":["## How to Avoid Disaster"]},{"cell_type":"markdown","metadata":{"id":"nMKkDrCL1Xs_"},"source":["In practice, a deep learning model will be just one piece of a much bigger system. As we discussed at the start of this chapter, a data product requires thinking about the entire end-to-end process, from conception to use in production. In this book, we can't hope to cover all the complexity of managing deployed data products, such as managing multiple versions of models, A/B testing, canarying, refreshing the data (should we just grow and grow our datasets all the time, or should we regularly remove some of the old data?), handling data labeling, monitoring all this, detecting model rot, and so forth. In this section we will give an overview of some of the most important issues to consider; for a more detailed discussion of deployment issues we refer to you to the excellent [Building Machine Learning Powered Applications](http://shop.oreilly.com/product/0636920215912.do) by Emmanuel Ameisen (O'Reilly)\n","\n","One of the biggest issues to consider is that understanding and testing the behavior of a deep learning model is much more difficult than with most other code you write. With normal software development you can analyze the exact steps that the software is taking, and carefully study which of these steps match the desired behavior that you are trying to create. But with a neural network the behavior emerges from the model's attempt to match the training data, rather than being exactly defined.\n","\n","This can result in disaster! For instance, let's say we really were rolling out a bear detection system that will be attached to video cameras around campsites in national parks, and will warn campers of incoming bears. If we used a model trained with the dataset we downloaded there would be all kinds of problems in practice, such as:\n","\n","- Working with video data instead of images\n","- Handling nighttime images, which may not appear in this dataset\n","- Dealing with low-resolution camera images\n","- Ensuring results are returned fast enough to be useful in practice\n","- Recognizing bears in positions that are rarely seen in photos that people post online (for example from behind, partially covered by bushes, or when a long way away from the camera)"]},{"cell_type":"markdown","metadata":{"id":"OFaU8y3V1XtA"},"source":["A big part of the issue is that the kinds of photos that people are most likely to upload to the internet are the kinds of photos that do a good job of clearly and artistically displaying their subject matter—which isn't the kind of input this system is going to be getting. So, we may need to do a lot of our own data collection and labelling to create a useful system.\n","\n","This is just one example of the more general problem of *out-of-domain* data. That is to say, there may be data that our model sees in production which is very different to what it saw during training. There isn't really a complete technical solution to this problem; instead, we have to be careful about our approach to rolling out the technology.\n","\n","There are other reasons we need to be careful too. One very common problem is *domain shift*, where the type of data that our model sees changes over time. For instance, an insurance company may use a deep learning model as part of its pricing and risk algorithm, but over time the types of customers that the company attracts, and the types of risks they represent, may change so much that the original training data is no longer relevant.\n","\n","Out-of-domain data and domain shift are examples of a larger problem: that you can never fully understand the entire behaviour of your neural network. They have far too many parameters to be able to analytically understand all of their possible behaviors. This is the natural downside of their best feature—their flexibility, which enables them to solve complex problems where we may not even be able to fully specify our preferred solution approaches. The good news, however, is that there are ways to mitigate these risks using a carefully thought-out process. The details of this will vary depending on the details of the problem you are solving, but we will attempt to lay out here a high-level approach, summarized in <>, which we hope will provide useful guidance."]},{"cell_type":"markdown","metadata":{"id":"pGHbUjXZ1XtA"},"source":["\"Deployment"]},{"cell_type":"markdown","metadata":{"id":"sjM3GFiU1XtB"},"source":["Where possible, the first step is to use an entirely manual process, with your deep learning model approach running in parallel but not being used directly to drive any actions. The humans involved in the manual process should look at the deep learning outputs and check whether they make sense. For instance, with our bear classifier a park ranger could have a screen displaying video feeds from all the cameras, with any possible bear sightings simply highlighted in red. The park ranger would still be expected to be just as alert as before the model was deployed; the model is simply helping to check for problems at this point.\n","\n","The second step is to try to limit the scope of the model, and have it carefully supervised by people. For instance, do a small geographically and time-constrained trial of the model-driven approach. Rather than rolling our bear classifier out in every national park throughout the country, we could pick a single observation post, for a one-week period, and have a park ranger check each alert before it goes out.\n","\n","Then, gradually increase the scope of your rollout. As you do so, ensure that you have really good reporting systems in place, to make sure that you are aware of any significant changes to the actions being taken compared to your manual process. For instance, if the number of bear alerts doubles or halves after rollout of the new system in some location, we should be very concerned. Try to think about all the ways in which your system could go wrong, and then think about what measure or report or picture could reflect that problem, and ensure that your regular reporting includes that information."]},{"cell_type":"markdown","metadata":{"id":"R6ykzRTa1XtB"},"source":["> J: I started a company 20 years ago called _Optimal Decisions_ that used machine learning and optimization to help giant insurance companies set their pricing, impacting tens of billions of dollars of risks. We used the approaches described here to manage the potential downsides of something going wrong. Also, before we worked with our clients to put anything in production, we tried to simulate the impact by testing the end-to-end system on their previous year's data. It was always quite a nerve-wracking process, putting these new algorithms into production, but every rollout was successful."]},{"cell_type":"markdown","metadata":{"id":"rnNj9RWq1XtC"},"source":["### Unforeseen Consequences and Feedback Loops"]},{"cell_type":"markdown","metadata":{"id":"nSD2VyPV1XtC"},"source":["One of the biggest challenges in rolling out a model is that your model may change the behaviour of the system it is a part of. For instance, consider a \"predictive policing\" algorithm that predicts more crime in certain neighborhoods, causing more police officers to be sent to those neighborhoods, which can result in more crimes being recorded in those neighborhoods, and so on. In the Royal Statistical Society paper [\"To Predict and Serve?\"](https://rss.onlinelibrary.wiley.com/doi/full/10.1111/j.1740-9713.2016.00960.x), Kristian Lum and William Isaac observe that: \"predictive policing is aptly named: it is predicting future policing, not future crime.\"\n","\n","Part of the issue in this case is that in the presence of bias (which we'll discuss in depth in the next chapter), *feedback loops* can result in negative implications of that bias getting worse and worse. For instance, there are concerns that this is already happening in the US, where there is significant bias in arrest rates on racial grounds. [According to the ACLU](https://www.aclu.org/issues/smart-justice/sentencing-reform/war-marijuana-black-and-white), \"despite roughly equal usage rates, Blacks are 3.73 times more likely than whites to be arrested for marijuana.\" The impact of this bias, along with the rollout of predictive policing algorithms in many parts of the US, led Bärí Williams to [write in the *New York Times*](https://www.nytimes.com/2017/12/02/opinion/sunday/intelligent-policing-and-my-innocent-children.html): \"The same technology that’s the source of so much excitement in my career is being used in law enforcement in ways that could mean that in the coming years, my son, who is 7 now, is more likely to be profiled or arrested—or worse—for no reason other than his race and where we live.\"\n","\n","A helpful exercise prior to rolling out a significant machine learning system is to consider this question: \"What would happen if it went really, really well?\" In other words, what if the predictive power was extremely high, and its ability to influence behavior was extremely significant? In that case, who would be most impacted? What would the most extreme results potentially look like? How would you know what was really going on?\n","\n","Such a thought exercise might help you to construct a more careful rollout plan, with ongoing monitoring systems and human oversight. Of course, human oversight isn't useful if it isn't listened to, so make sure that there are reliable and resilient communication channels so that the right people will be aware of issues, and will have the power to fix them."]},{"cell_type":"markdown","metadata":{"id":"ZSD2ql5y1XtC"},"source":["## Get Writing!"]},{"cell_type":"markdown","metadata":{"id":"B_e56Ffh1XtD"},"source":["One of the things our students have found most helpful to solidify their understanding of this material is to write it down. There is no better test of your understanding of a topic than attempting to teach it to somebody else. This is helpful even if you never show your writing to anybody—but it's even better if you share it! So we recommend that, if you haven't already, you start a blog. Now that you've completed Chapter 2 and have learned how to train and deploy models, you're well placed to write your first blog post about your deep learning journey. What's surprised you? What opportunities do you see for deep learning in your field? What obstacles do you see?\n","\n","Rachel Thomas, cofounder of fast.ai, wrote in the article [\"Why You (Yes, You) Should Blog\"](https://medium.com/@racheltho/why-you-yes-you-should-blog-7d2544ac1045):\n","\n","```asciidoc\n","____\n","The top advice I would give my younger self would be to start blogging sooner. Here are some reasons to blog:\n","\n","* It’s like a resume, only better. I know of a few people who have had blog posts lead to job offers!\n","* Helps you learn. Organizing knowledge always helps me synthesize my own ideas. One of the tests of whether you understand something is whether you can explain it to someone else. A blog post is a great way to do that.\n","* I’ve gotten invitations to conferences and invitations to speak from my blog posts. I was invited to the TensorFlow Dev Summit (which was awesome!) for writing a blog post about how I don’t like TensorFlow.\n","* Meet new people. I’ve met several people who have responded to blog posts I wrote.\n","* Saves time. Any time you answer a question multiple times through email, you should turn it into a blog post, which makes it easier for you to share the next time someone asks.\n","____\n","```\n","\n","Perhaps her most important tip is this:\n","\n","> : You are best positioned to help people one step behind you. The material is still fresh in your mind. Many experts have forgotten what it was like to be a beginner (or an intermediate) and have forgotten why the topic is hard to understand when you first hear it. The context of your particular background, your particular style, and your knowledge level will give a different twist to what you’re writing about.\n","\n","We've provided full details on how to set up a blog in <>. If you don't have a blog already, take a look at that now, because we've got a really great approach set up for you to start blogging for free, with no ads—and you can even use Jupyter Notebook!"]},{"cell_type":"markdown","metadata":{"id":"S5cIkDIP1XtD"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"PKUA35Aj1XtD"},"source":["1. Provide an example of where the bear classification model might work poorly in production, due to structural or style differences in the training data.\n","1. Where do text models currently have a major deficiency?\n","1. What are possible negative societal implications of text generation models?\n","1. In situations where a model might make mistakes, and those mistakes could be harmful, what is a good alternative to automating a process?\n","1. What kind of tabular data is deep learning particularly good at?\n","1. What's a key downside of directly using a deep learning model for recommendation systems?\n","1. What are the steps of the Drivetrain Approach?\n","1. How do the steps of the Drivetrain Approach map to a recommendation system?\n","1. Create an image recognition model using data you curate, and deploy it on the web.\n","1. What is `DataLoaders`?\n","1. What four things do we need to tell fastai to create `DataLoaders`?\n","1. What does the `splitter` parameter to `DataBlock` do?\n","1. How do we ensure a random split always gives the same validation set?\n","1. What letters are often used to signify the independent and dependent variables?\n","1. What's the difference between the crop, pad, and squish resize approaches? When might you choose one over the others?\n","1. What is data augmentation? Why is it needed?\n","1. What is the difference between `item_tfms` and `batch_tfms`?\n","1. What is a confusion matrix?\n","1. What does `export` save?\n","1. What is it called when we use a model for getting predictions, instead of training?\n","1. What are IPython widgets?\n","1. When might you want to use CPU for deployment? When might GPU be better?\n","1. What are the downsides of deploying your app to a server, instead of to a client (or edge) device such as a phone or PC?\n","1. What are three examples of problems that could occur when rolling out a bear warning system in practice?\n","1. What is \"out-of-domain data\"?\n","1. What is \"domain shift\"?\n","1. What are the three steps in the deployment process?"]},{"cell_type":"markdown","metadata":{"id":"TBPufyRH1XtE"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"2UOytiuA1XtE"},"source":["1. Consider how the Drivetrain Approach maps to a project or problem you're interested in.\n","1. When might it be best to avoid certain types of data augmentation?\n","1. For a project you're interested in applying deep learning to, consider the thought experiment \"What would happen if it went really, really well?\"\n","1. Start a blog, and write your first blog post. For instance, write about what you think deep learning might be useful for in a domain you're interested in."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aS8GBOXL1XtE"},"outputs":[],"source":[]}],"metadata":{"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/02_production.ipynb","timestamp":1712447655940}]},"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.10.12"}},"nbformat":4,"nbformat_minor":0} diff --git a/notebooks/oleg/Education/fastai/03_ethics.ipynb b/notebooks/oleg/Education/fastai/03_ethics.ipynb new file mode 100644 index 0000000..271beec --- /dev/null +++ b/notebooks/oleg/Education/fastai/03_ethics.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"oCZoKINE1bwj"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"raw","metadata":{"id":"a70NpxDp1bwp"},"source":["[[chapter_ethics]]"]},{"cell_type":"markdown","metadata":{"id":"cjvGrSpU1bwp"},"source":["# Data Ethics"]},{"cell_type":"markdown","metadata":{"id":"hUSOgqTb1bwr"},"source":["### Sidebar: Acknowledgement: Dr. Rachel Thomas"]},{"cell_type":"markdown","metadata":{"id":"Gn7O7RsN1bws"},"source":["This chapter was co-authored by Dr. Rachel Thomas, the cofounder of fast.ai, and founding director of the Center for Applied Data Ethics at the University of San Francisco. It largely follows a subset of the syllabus she developed for the [Introduction to Data Ethics](https://ethics.fast.ai) course."]},{"cell_type":"markdown","metadata":{"id":"SlWHrjqq1bwt"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"menc1T5Z1bwt"},"source":["As we discussed in Chapters 1 and 2, sometimes machine learning models can go wrong. They can have bugs. They can be presented with data that they haven't seen before, and behave in ways we don't expect. Or they could work exactly as designed, but be used for something that we would much prefer they were never, ever used for.\n","\n","Because deep learning is such a powerful tool and can be used for so many things, it becomes particularly important that we consider the consequences of our choices. The philosophical study of *ethics* is the study of right and wrong, including how we can define those terms, recognize right and wrong actions, and understand the connection between actions and consequences. The field of *data ethics* has been around for a long time, and there are many academics focused on this field. It is being used to help define policy in many jurisdictions; it is being used in companies big and small to consider how best to ensure good societal outcomes from product development; and it is being used by researchers who want to make sure that the work they are doing is used for good, and not for bad.\n","\n","As a deep learning practitioner, therefore, it is likely that at some point you are going to be put in a situation where you need to consider data ethics. So what is data ethics? It's a subfield of ethics, so let's start there."]},{"cell_type":"markdown","metadata":{"id":"SN-S6cl41bwv"},"source":["> J: At university, philosophy of ethics was my main thing (it would have been the topic of my thesis, if I'd finished it, instead of dropping out to join the real world). Based on the years I spent studying ethics, I can tell you this: no one really agrees on what right and wrong are, whether they exist, how to spot them, which people are good, and which bad, or pretty much anything else. So don't expect too much from the theory! We're going to focus on examples and thought starters here, not theory."]},{"cell_type":"markdown","metadata":{"id":"cX1ipYUV1bww"},"source":["In answering the question [\"What Is Ethics\"](https://www.scu.edu/ethics/ethics-resources/ethical-decision-making/what-is-ethics/), The Markkula Center for Applied Ethics says that the term refers to:\n","\n","- Well-founded standards of right and wrong that prescribe what humans ought to do\n","- The study and development of one's ethical standards.\n","\n","There is no list of right answers. There is no list of do and don't. Ethics is complicated, and context-dependent. It involves the perspectives of many stakeholders. Ethics is a muscle that you have to develop and practice. In this chapter, our goal is to provide some signposts to help you on that journey.\n","\n","Spotting ethical issues is best to do as part of a collaborative team. This is the only way you can really incorporate different perspectives. Different people's backgrounds will help them to see things which may not be obvious to you. Working with a team is helpful for many \"muscle-building\" activities, including this one.\n","\n","This chapter is certainly not the only part of the book where we talk about data ethics, but it's good to have a place where we focus on it for a while. To get oriented, it's perhaps easiest to look at a few examples. So, we picked out three that we think illustrate effectively some of the key topics."]},{"cell_type":"markdown","metadata":{"id":"D5lx17Z_1bww"},"source":["## Key Examples for Data Ethics"]},{"cell_type":"markdown","metadata":{"id":"1B5R70HS1bwx"},"source":["We are going to start with three specific examples that illustrate three common ethical issues in tech:\n","\n","1. *Recourse processes*—Arkansas's buggy healthcare algorithms left patients stranded.\n","2. *Feedback loops*—YouTube's recommendation system helped unleash a conspiracy theory boom.\n","3. *Bias*—When a traditionally African-American name is searched for on Google, it displays ads for criminal background checks.\n","\n","In fact, for every concept that we introduce in this chapter, we are going to provide at least one specific example. For each one, think about what you could have done in this situation, and what kinds of obstructions there might have been to you getting that done. How would you deal with them? What would you look out for?"]},{"cell_type":"markdown","metadata":{"id":"xeo9hx3a1bwx"},"source":["### Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits"]},{"cell_type":"markdown","metadata":{"id":"BUD8vJiJ1bwy"},"source":["The Verge investigated software used in over half of the US states to determine how much healthcare people receive, and documented their findings in the article [\"What Happens When an Algorithm Cuts Your Healthcare\"](https://www.theverge.com/2018/3/21/17144260/healthcare-medicaid-algorithm-arkansas-cerebral-palsy). After implementation of the algorithm in Arkansas, hundreds of people (many with severe disabilities) had their healthcare drastically cut. For instance, Tammy Dobbs, a woman with cerebral palsy who needs an aid to help her to get out of bed, to go to the bathroom, to get food, and more, had her hours of help suddenly reduced by 20 hours a week. She couldn’t get any explanation for why her healthcare was cut. Eventually, a court case revealed that there were mistakes in the software implementation of the algorithm, negatively impacting people with diabetes or cerebral palsy. However, Dobbs and many other people reliant on these healthcare benefits live in fear that their benefits could again be cut suddenly and inexplicably."]},{"cell_type":"markdown","metadata":{"id":"qP-gxufR1bwy"},"source":["### Feedback Loops: YouTube's Recommendation System"]},{"cell_type":"markdown","metadata":{"id":"VBjq9nQp1bwy"},"source":["Feedback loops can occur when your model is controlling the next round of data you get. The data that is returned quickly becomes flawed by the software itself.\n","\n","For instance, YouTube has 1.9 billion users, who watch over 1 billion hours of YouTube videos a day. Its recommendation algorithm (built by Google), which was designed to optimize watch time, is responsible for around 70% of the content that is watched. But there was a problem: it led to out-of-control feedback loops, leading the *New York Times* to run the headline [\"YouTube Unleashed a Conspiracy Theory Boom. Can It Be Contained?\"](https://www.nytimes.com/2019/02/19/technology/youtube-conspiracy-stars.html). Ostensibly recommendation systems are predicting what content people will like, but they also have a lot of power in determining what content people even see."]},{"cell_type":"markdown","metadata":{"id":"vmrUdILp1bwy"},"source":["### Bias: Professor Latanya Sweeney \"Arrested\""]},{"cell_type":"markdown","metadata":{"id":"koHi1fGz1bwz"},"source":["Dr. Latanya Sweeney is a professor at Harvard and director of the university's data privacy lab. In the paper [\"Discrimination in Online Ad Delivery\"](https://arxiv.org/abs/1301.6822) (see <>) she describes her discovery that Googling her name resulted in advertisements saying \"Latanya Sweeney, arrested?\" even though she is the only known Latanya Sweeney and has never been arrested. However when she Googled other names, such as \"Kirsten Lindquist,\" she got more neutral ads, even though Kirsten Lindquist has been arrested three times."]},{"cell_type":"markdown","metadata":{"id":"yRqvxsPE1bwz"},"source":["\"Screenshot"]},{"cell_type":"markdown","metadata":{"id":"No87f8FW1bwz"},"source":["Being a computer scientist, she studied this systematically, and looked at over 2000 names. She found a clear pattern where historically Black names received advertisements suggesting that the person had a criminal record, whereas, white names had more neutral advertisements.\n","\n","This is an example of bias. It can make a big difference to people's lives—for instance, if a job applicant is Googled it may appear that they have a criminal record when they do not."]},{"cell_type":"markdown","metadata":{"id":"IEyL6obH1bwz"},"source":["### Why Does This Matter?"]},{"cell_type":"markdown","metadata":{"id":"wxHKz_GR1bw0"},"source":["One very natural reaction to considering these issues is: \"So what? What's that got to do with me? I'm a data scientist, not a politician. I'm not one of the senior executives at my company who make the decisions about what we do. I'm just trying to build the most predictive model I can.\"\n","\n","These are very reasonable questions. But we're going to try to convince you that the answer is that everybody who is training models absolutely needs to consider how their models will be used, and consider how to best ensure that they are used as positively as possible. There are things you can do. And if you don't do them, then things can go pretty badly.\n","\n","One particularly hideous example of what happens when technologists focus on technology at all costs is the story of IBM and Nazi Germany. In 2001, a Swiss judge ruled that it was not unreasonable \"to deduce that IBM's technical assistance facilitated the tasks of the Nazis in the commission of their crimes against humanity, acts also involving accountancy and classification by IBM machines and utilized in the concentration camps themselves.\"\n","\n","IBM, you see, supplied the Nazis with data tabulation products necessary to track the extermination of Jews and other groups on a massive scale. This was driven from the top of the company, with marketing to Hitler and his leadership team. Company President Thomas Watson personally approved the 1939 release of special IBM alphabetizing machines to help organize the deportation of Polish Jews. Pictured in <> is Adolf Hitler (far left) meeting with IBM CEO Tom Watson Sr. (second from left), shortly before Hitler awarded Watson a special “Service to the Reich” medal in 1937."]},{"cell_type":"markdown","metadata":{"id":"Yjopg6rf1bw0"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"W9HnL-L11bw0"},"source":["But this was not an isolated incident—the organization's involvement was extensive. IBM and its subsidiaries provided regular training and maintenance onsite at the concentration camps: printing off cards, configuring machines, and repairing them as they broke frequently. IBM set up categorizations on its punch card system for the way that each person was killed, which group they were assigned to, and the logistical information necessary to track them through the vast Holocaust system. IBM's code for Jews in the concentration camps was 8: some 6,000,000 were killed. Its code for Romanis was 12 (they were labeled by the Nazis as \"asocials,\" with over 300,000 killed in the *Zigeunerlager*, or “Gypsy camp”). General executions were coded as 4, death in the gas chambers as 6."]},{"cell_type":"markdown","metadata":{"id":"wzVl3oOD1bw0"},"source":["\"Picture"]},{"cell_type":"markdown","metadata":{"id":"6Zd8AtCS1bw2"},"source":["Of course, the project managers and engineers and technicians involved were just living their ordinary lives. Caring for their families, going to the church on Sunday, doing their jobs the best they could. Following orders. The marketers were just doing what they could to meet their business development goals. As Edwin Black, author of *IBM and the Holocaust* (Dialog Press) observed: \"To the blind technocrat, the means were more important than the ends. The destruction of the Jewish people became even less important because the invigorating nature of IBM's technical achievement was only heightened by the fantastical profits to be made at a time when bread lines stretched across the world.\"\n","\n","Step back for a moment and consider: How would you feel if you discovered that you had been part of a system that ended up hurting society? Would you be open to finding out? How can you help make sure this doesn't happen? We have described the most extreme situation here, but there are many negative societal consequences linked to AI and machine learning being observed today, some of which we'll describe in this chapter.\n","\n","It's not just a moral burden, either. Sometimes technologists pay very directly for their actions. For instance, the first person who was jailed as a result of the Volkswagen scandal, where the car company was revealed to have cheated on its diesel emissions tests, was not the manager that oversaw the project, or an executive at the helm of the company. It was one of the engineers, James Liang, who just did what he was told.\n","\n","Of course, it's not all bad—if a project you are involved in turns out to make a huge positive impact on even one person, this is going to make you feel pretty great!\n","\n","Okay, so hopefully we have convinced you that you ought to care. But what should you do? As data scientists, we're naturally inclined to focus on making our models better by optimizing some metric or other. But optimizing that metric may not actually lead to better outcomes. And even if it *does* help create better outcomes, it almost certainly won't be the only thing that matters. Consider the pipeline of steps that occurs between the development of a model or an algorithm by a researcher or practitioner, and the point at which this work is actually used to make some decision. This entire pipeline needs to be considered *as a whole* if we're to have a hope of getting the kinds of outcomes we want.\n","\n","Normally there is a very long chain from one end to the other. This is especially true if you are a researcher, where you might not even know if your research will ever get used for anything, or if you're involved in data collection, which is even earlier in the pipeline. But no one is better placed to inform everyone involved in this chain about the capabilities, constraints, and details of your work than you are. Although there's no \"silver bullet\" that can ensure your work is used the right way, by getting involved in the process, and asking the right questions, you can at the very least ensure that the right issues are being considered.\n","\n","Sometimes, the right response to being asked to do a piece of work is to just say \"no.\" Often, however, the response we hear is, \"If I don’t do it, someone else will.\" But consider this: if you’ve been picked for the job, you’re the best person they’ve found to do it—so if you don’t do it, the best person isn’t working on that project. If the first five people they ask all say no too, even better!"]},{"cell_type":"markdown","metadata":{"id":"XOgj8T_X1bw3"},"source":["## Integrating Machine Learning with Product Design"]},{"cell_type":"markdown","metadata":{"id":"y5ksvuaL1bw3"},"source":["Presumably the reason you're doing this work is because you hope it will be used for something. Otherwise, you're just wasting your time. So, let's start with the assumption that your work will end up somewhere. Now, as you are collecting your data and developing your model, you are making lots of decisions. What level of aggregation will you store your data at? What loss function should you use? What validation and training sets should you use? Should you focus on simplicity of implementation, speed of inference, or accuracy of the model? How will your model handle out-of-domain data items? Can it be fine-tuned, or must it be retrained from scratch over time?\n","\n","These are not just algorithm questions. They are data product design questions. But the product managers, executives, judges, journalists, doctors… whoever ends up developing and using the system of which your model is a part will not be well-placed to understand the decisions that you made, let alone change them.\n","\n","For instance, two studies found that Amazon’s facial recognition software produced [inaccurate](https://www.nytimes.com/2018/07/26/technology/amazon-aclu-facial-recognition-congress.html) and [racially biased](https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender) results. Amazon claimed that the researchers should have changed the default parameters, without explaining how this would have changed the biased results. Furthermore, it turned out that [Amazon was not instructing police departments](https://gizmodo.com/defense-of-amazons-face-recognition-tool-undermined-by-1832238149) that used its software to do this either. There was, presumably, a big distance between the researchers that developed these algorithms and the Amazon documentation staff that wrote the guidelines provided to the police. A lack of tight integration led to serious problems for society at large, the police, and Amazon themselves. It turned out that their system erroneously matched 28 members of congress to criminal mugshots! (And the Congresspeople wrongly matched to criminal mugshots were disproportionately people of color, as seen in <>.)"]},{"cell_type":"markdown","metadata":{"id":"hXGCItZ51bw3"},"source":["\"Picture"]},{"cell_type":"markdown","metadata":{"id":"00GID4DE1bw3"},"source":["Data scientists need to be part of a cross-disciplinary team. And researchers need to work closely with the kinds of people who will end up using their research. Better still is if the domain experts themselves have learned enough to be able to train and debug some models themselves—hopefully there are a few of you reading this book right now!\n","\n","The modern workplace is a very specialized place. Everybody tends to have well-defined jobs to perform. Especially in large companies, it can be hard to know what all the pieces of the puzzle are. Sometimes companies even intentionally obscure the overall project goals that are being worked on, if they know that their employees are not going to like the answers. This is sometimes done by compartmentalising pieces as much as possible.\n","\n","In other words, we're not saying that any of this is easy. It's hard. It's really hard. We all have to do our best. And we have often seen that the people who do get involved in the higher-level context of these projects, and attempt to develop cross-disciplinary capabilities and teams, become some of the most important and well rewarded members of their organizations. It's the kind of work that tends to be highly appreciated by senior executives, even if it is sometimes considered rather uncomfortable by middle management."]},{"cell_type":"markdown","metadata":{"id":"jk9nfpkJ1bw4"},"source":["## Topics in Data Ethics"]},{"cell_type":"markdown","metadata":{"id":"hgyR37QC1bw4"},"source":["Data ethics is a big field, and we can't cover everything. Instead, we're going to pick a few topics that we think are particularly relevant:\n","\n","- The need for recourse and accountability\n","- Feedback loops\n","- Bias\n","- Disinformation"]},{"cell_type":"markdown","metadata":{"id":"rZ7A0HwF1bw4"},"source":["Let's look at each in turn."]},{"cell_type":"markdown","metadata":{"id":"3gX_ZfLx1bw4"},"source":["### Recourse and Accountability"]},{"cell_type":"markdown","metadata":{"id":"l0rJqjci1bw5"},"source":["In a complex system, it is easy for no one person to feel responsible for outcomes. While this is understandable, it does not lead to good results. In the earlier example of the Arkansas healthcare system in which a bug led to people with cerebral palsy losing access to needed care, the creator of the algorithm blamed government officials, and government officials blamed those who implemented the software. NYU professor [Danah Boyd](https://www.youtube.com/watch?v=NTl0yyPqf3E) described this phenomenon: \"Bureaucracy has often been used to shift or evade responsibility... Today's algorithmic systems are extending bureaucracy.\"\n","\n","An additional reason why recourse is so necessary is because data often contains errors. Mechanisms for audits and error correction are crucial. A database of suspected gang members maintained by California law enforcement officials was found to be full of errors, including 42 babies who had been added to the database when they were less than 1 year old (28 of whom were marked as “admitting to being gang members”). In this case, there was no process in place for correcting mistakes or removing people once they’d been added. Another example is the US credit report system: in a large-scale study of credit reports by the Federal Trade Commission (FTC) in 2012, it was found that 26% of consumers had at least one mistake in their files, and 5% had errors that could be devastating. Yet, the process of getting such errors corrected is incredibly slow and opaque. When public radio reporter [Bobby Allyn](https://www.washingtonpost.com/posteverything/wp/2016/09/08/how-the-careless-errors-of-credit-reporting-agencies-are-ruining-peoples-lives/) discovered that he was erroneously listed as having a firearms conviction, it took him \"more than a dozen phone calls, the handiwork of a county court clerk and six weeks to solve the problem. And that was only after I contacted the company’s communications department as a journalist.\"\n","\n","As machine learning practitioners, we do not always think of it as our responsibility to understand how our algorithms end up being implemented in practice. But we need to."]},{"cell_type":"markdown","metadata":{"id":"0yXcM88i1bw5"},"source":["### Feedback Loops"]},{"cell_type":"markdown","metadata":{"id":"9PixY0hV1bw5"},"source":["We explained in <> how an algorithm can interact with its environment to create a feedback loop, making predictions that reinforce actions taken in the real world, which lead to predictions even more pronounced in the same direction.\n","As an example, let's again consider YouTube's recommendation system. A couple of years ago the Google team talked about how they had introduced reinforcement learning (closely related to deep learning, but where your loss function represents a result potentially a long time after an action occurs) to improve YouTube's recommendation system. They described how they used an algorithm that made recommendations such that watch time would be optimized.\n","\n","However, human beings tend to be drawn to controversial content. This meant that videos about things like conspiracy theories started to get recommended more and more by the recommendation system. Furthermore, it turns out that the kinds of people that are interested in conspiracy theories are also people that watch a lot of online videos! So, they started to get drawn more and more toward YouTube. The increasing number of conspiracy theorists watching videos on YouTube resulted in the algorithm recommending more and more conspiracy theory and other extremist content, which resulted in more extremists watching videos on YouTube, and more people watching YouTube developing extremist views, which led to the algorithm recommending more extremist content... The system was spiraling out of control.\n","\n","And this phenomenon was not contained to this particular type of content. In June 2019 the *New York Times* published an article on YouTube's recommendation system, titled [\"On YouTube’s Digital Playground, an Open Gate for Pedophiles\"](https://www.nytimes.com/2019/06/03/world/americas/youtube-pedophiles.html). The article started with this chilling story:"]},{"cell_type":"markdown","metadata":{"id":"n-hiw1J61bw5"},"source":["> : Christiane C. didn’t think anything of it when her 10-year-old daughter and a friend uploaded a video of themselves playing in a backyard pool… A few days later… the video had thousands of views. Before long, it had ticked up to 400,000... “I saw the video again and I got scared by the number of views,” Christiane said. She had reason to be. YouTube’s automated recommendation system… had begun showing the video to users who watched other videos of prepubescent, partially clothed children, a team of researchers has found.\n","\n","> : On its own, each video might be perfectly innocent, a home movie, say, made by a child. Any revealing frames are fleeting and appear accidental. But, grouped together, their shared features become unmistakable."]},{"cell_type":"markdown","metadata":{"id":"bJ_1LSiu1bw6"},"source":["YouTube's recommendation algorithm had begun curating playlists for pedophiles, picking out innocent home videos that happened to contain prepubescent, partially clothed children.\n","\n","No one at Google planned to create a system that turned family videos into porn for pedophiles. So what happened?\n","\n","Part of the problem here is the centrality of metrics in driving a financially important system. When an algorithm has a metric to optimize, as you have seen, it will do everything it can to optimize that number. This tends to lead to all kinds of edge cases, and humans interacting with a system will search for, find, and exploit these edge cases and feedback loops for their advantage.\n","\n","There are signs that this is exactly what has happened with YouTube's recommendation system. *The Guardian* ran an article called [\"How an ex-YouTube Insider Investigated its Secret Algorithm\"](https://www.theguardian.com/technology/2018/feb/02/youtube-algorithm-election-clinton-trump-guillaume-chaslot) about Guillaume Chaslot, an ex-YouTube engineer who created AlgoTransparency, which tracks these issues. Chaslot published the chart in <>, following the release of Robert Mueller's \"Report on the Investigation Into Russian Interference in the 2016 Presidential Election.\""]},{"cell_type":"markdown","metadata":{"id":"zhvsSue41bw6"},"source":["\"Coverage"]},{"cell_type":"markdown","metadata":{"id":"P_YjcyaO1bxA"},"source":["Russia Today's coverage of the Mueller report was an extreme outlier in terms of how many channels were recommending it. This suggests the possibility that Russia Today, a state-owned Russia media outlet, has been successful in gaming YouTube's recommendation algorithm. Unfortunately, the lack of transparency of systems like this makes it hard to uncover the kinds of problems that we're discussing.\n","\n","One of our reviewers for this book, Aurélien Géron, led YouTube's video classification team from 2013 to 2016 (well before the events discussed here). He pointed out that it's not just feedback loops involving humans that are a problem. There can also be feedback loops without humans! He told us about an example from YouTube:\n","\n","> : One important signal to classify the main topic of a video is the channel it comes from. For example, a video uploaded to a cooking channel is very likely to be a cooking video. But how do we know what topic a channel is about? Well… in part by looking at the topics of the videos it contains! Do you see the loop? For example, many videos have a description which indicates what camera was used to shoot the video. As a result, some of these videos might get classified as videos about “photography.” If a channel has such a misclassified video, it might be classified as a “photography” channel, making it even more likely for future videos on this channel to be wrongly classified as “photography.” This could even lead to runaway virus-like classifications! One way to break this feedback loop is to classify videos with and without the channel signal. Then when classifying the channels, you can only use the classes obtained without the channel signal. This way, the feedback loop is broken.\n","\n","There are positive examples of people and organizations attempting to combat these problems. Evan Estola, lead machine learning engineer at Meetup, [discussed the example](https://www.youtube.com/watch?v=MqoRzNhrTnQ) of men expressing more interest than women in tech meetups. taking gender into account could therefore cause Meetup’s algorithm to recommend fewer tech meetups to women, and as a result, fewer women would find out about and attend tech meetups, which could cause the algorithm to suggest even fewer tech meetups to women, and so on in a self-reinforcing feedback loop. So, Evan and his team made the ethical decision for their recommendation algorithm to not create such a feedback loop, by explicitly not using gender for that part of their model. It is encouraging to see a company not just unthinkingly optimize a metric, but consider its impact. According to Evan, \"You need to decide which feature not to use in your algorithm... the most optimal algorithm is perhaps not the best one to launch into production.\"\n","\n","While Meetup chose to avoid such an outcome, Facebook provides an example of allowing a runaway feedback loop to run wild. Like YouTube, it tends to radicalize users interested in one conspiracy theory by introducing them to more. As Renee DiResta, a researcher on proliferation of disinformation, [writes](https://www.fastcompany.com/3059742/social-network-algorithms-are-distorting-reality-by-boosting-conspiracy-theories):"]},{"cell_type":"markdown","metadata":{"id":"imrvJ4xg1bxA"},"source":["> : Once people join a single conspiracy-minded [Facebook] group, they are algorithmically routed to a plethora of others. Join an anti-vaccine group, and your suggestions will include anti-GMO, chemtrail watch, flat Earther (yes, really), and \"curing cancer naturally groups. Rather than pulling a user out of the rabbit hole, the recommendation engine pushes them further in.\""]},{"cell_type":"markdown","metadata":{"id":"48O80yjX1bxA"},"source":["It is extremely important to keep in mind that this kind of behavior can happen, and to either anticipate a feedback loop or take positive action to break it when you see the first signs of it in your own projects. Another thing to keep in mind is *bias*, which, as we discussed briefly in the previous chapter, can interact with feedback loops in very troublesome ways."]},{"cell_type":"markdown","metadata":{"id":"tTUX2wiz1bxB"},"source":["### Bias"]},{"cell_type":"markdown","metadata":{"id":"ZQEN40Z21bxB"},"source":["Discussions of bias online tend to get pretty confusing pretty fast. The word \"bias\" means so many different things. Statisticians often think when data ethicists are talking about bias that they're talking about the statistical definition of the term bias. But they're not. And they're certainly not talking about the biases that appear in the weights and biases which are the parameters of your model!\n","\n","What they're talking about is the social science concept of bias. In [\"A Framework for Understanding Unintended Consequences of Machine Learning\"](https://arxiv.org/abs/1901.10002) MIT's Harini Suresh and John Guttag describe six types of bias in machine learning, summarized in <> from their paper."]},{"cell_type":"markdown","metadata":{"id":"eQgYXuNL1bxB"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"w0fVdHkt1bxB"},"source":["We'll discuss four of these types of bias, those that we've found most helpful in our own work (see the paper for details on the others)."]},{"cell_type":"markdown","metadata":{"id":"8gowOs0G1bxC"},"source":["#### Historical bias"]},{"cell_type":"markdown","metadata":{"id":"DgWJfhxL1bxC"},"source":["*Historical bias* comes from the fact that people are biased, processes are biased, and society is biased. Suresh and Guttag say: \"Historical bias is a fundamental, structural issue with the first step of the data generation process and can exist even given perfect sampling and feature selection.\"\n","\n","For instance, here are a few examples of historical *race bias* in the US, from the *New York Times* article [\"Racial Bias, Even When We Have Good Intentions\"](https://www.nytimes.com/2015/01/04/upshot/the-measuring-sticks-of-racial-bias-.html) by the University of Chicago's Sendhil Mullainathan:\n","\n"," - When doctors were shown identical files, they were much less likely to recommend cardiac catheterization (a helpful procedure) to Black patients.\n"," - When bargaining for a used car, Black people were offered initial prices $700 higher and received far smaller concessions.\n"," - Responding to apartment rental ads on Craigslist with a Black name elicited fewer responses than with a white name.\n"," - An all-white jury was 16 percentage points more likely to convict a Black defendant than a white one, but when a jury had one Black member it convicted both at the same rate.\n","\n","The COMPAS algorithm, widely used for sentencing and bail decisions in the US, is an example of an important algorithm that, when tested by [ProPublica](https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing), showed clear racial bias in practice (<>)."]},{"cell_type":"markdown","metadata":{"id":"hz7Ca1je1bxC"},"source":["\"Table"]},{"cell_type":"markdown","metadata":{"id":"8dQqrZTK1bxC"},"source":["Any dataset involving humans can have this kind of bias: medical data, sales data, housing data, political data, and so on. Because underlying bias is so pervasive, bias in datasets is very pervasive. Racial bias even turns up in computer vision, as shown in the example of autocategorized photos shared on Twitter by a Google Photos user shown in <>."]},{"cell_type":"markdown","metadata":{"id":"71vYE_M61bxD"},"source":["\"Screenshot"]},{"cell_type":"markdown","metadata":{"id":"15TjlO1z1bxD"},"source":["Yes, that is showing what you think it is: Google Photos classified a Black user's photo with their friend as \"gorillas\"! This algorithmic misstep got a lot of attention in the media. “We’re appalled and genuinely sorry that this happened,” a company spokeswoman said. “There is still clearly a lot of work to do with automatic image labeling, and we’re looking at how we can prevent these types of mistakes from happening in the future.”\n","\n","Unfortunately, fixing problems in machine learning systems when the input data has problems is hard. Google's first attempt didn't inspire confidence, as coverage by *The Guardian* suggested (<>)."]},{"cell_type":"markdown","metadata":{"id":"OhqEOggN1bxD"},"source":["\"Pictures"]},{"cell_type":"markdown","metadata":{"id":"i3do6YHO1bxD"},"source":["These kinds of problems are certainly not limited to just Google. MIT researchers studied the most popular online computer vision APIs to see how accurate they were. But they didn't just calculate a single accuracy number—instead, they looked at the accuracy across four different groups, as illustrated in <>."]},{"cell_type":"markdown","metadata":{"id":"CVmcPt1w1bxE"},"source":["\"Table"]},{"cell_type":"markdown","metadata":{"id":"zdzP2d951bxE"},"source":["IBM's system, for instance, had a 34.7% error rate for darker females, versus 0.3% for lighter males—over 100 times more errors! Some people incorrectly reacted to these experiments by claiming that the difference was simply because darker skin is harder for computers to recognize. However, what actually happened was that, after the negative publicity that this result created, all of the companies in question dramatically improved their models for darker skin, such that one year later they were nearly as good as for lighter skin. So what this actually showed is that the developers failed to utilize datasets containing enough darker faces, or test their product with darker faces.\n","\n","One of the MIT researchers, Joy Buolamwini, warned: \"We have entered the age of automation overconfident yet underprepared. If we fail to make ethical and inclusive artificial intelligence, we risk losing gains made in civil rights and gender equity under the guise of machine neutrality.\"\n","\n","Part of the issue appears to be a systematic imbalance in the makeup of popular datasets used for training models. The abstract to the paper [\"No Classification Without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World\"](https://arxiv.org/abs/1711.08536) by Shreya Shankar et al. states, \"We analyze two large, publicly available image data sets to assess geo-diversity and find that these data sets appear to exhibit an observable amerocentric and eurocentric representation bias. Further, we analyze classifiers trained on these data sets to assess the impact of these training distributions and find strong differences in the relative performance on images from different locales.\" <> shows one of the charts from the paper, showing the geographic makeup of what was, at the time (and still are, as this book is being written) the two most important image datasets for training models."]},{"cell_type":"markdown","metadata":{"id":"bhpofMja1bxE"},"source":["\"Graphs"]},{"cell_type":"markdown","metadata":{"id":"lRuPrruH1bxE"},"source":["The vast majority of the images are from the United States and other Western countries, leading to models trained on ImageNet performing worse on scenes from other countries and cultures. For instance, research found that such models are worse at identifying household items (such as soap, spices, sofas, or beds) from lower-income countries. <> shows an image from the paper, [\"Does Object Recognition Work for Everyone?\"](https://arxiv.org/pdf/1906.02659.pdf) by Terrance DeVries et al. of Facebook AI Research that illustrates this point."]},{"cell_type":"markdown","metadata":{"id":"XzRt9GKu1bxF"},"source":["\"Figure"]},{"cell_type":"markdown","metadata":{"id":"6bbJQFLa1bxF"},"source":["In this example, we can see that the lower-income soap example is a very long way away from being accurate, with every commercial image recognition service predicting \"food\" as the most likely answer!\n","\n","As we will discuss shortly, in addition, the vast majority of AI researchers and developers are young white men. Most projects that we have seen do most user testing using friends and families of the immediate product development group. Given this, the kinds of problems we just discussed should not be surprising.\n","\n","Similar historical bias is found in the texts used as data for natural language processing models. This crops up in downstream machine learning tasks in many ways. For instance, it [was widely reported](https://nypost.com/2017/11/30/google-translates-algorithm-has-a-gender-bias/) that until last year Google Translate showed systematic bias in how it translated the Turkish gender-neutral pronoun \"o\" into English: when applied to jobs which are often associated with males it used \"he,\" and when applied to jobs which are often associated with females it used \"she\" (<>)."]},{"cell_type":"markdown","metadata":{"id":"-gAQl0_E1bxF"},"source":["\"Figure"]},{"cell_type":"markdown","metadata":{"id":"Fu5MIoZt1bxF"},"source":["We also see this kind of bias in online advertisements. For instance, a [study](https://arxiv.org/abs/1904.02095) in 2019 by Muhammad Ali et al. found that even when the person placing the ad does not intentionally discriminate, Facebook will show ads to very different audiences based on race and gender. Housing ads with the same text, but picture either a white or a Black family, were shown to racially different audiences."]},{"cell_type":"markdown","metadata":{"id":"6fVqSGvM1bxG"},"source":["#### Measurement bias"]},{"cell_type":"markdown","metadata":{"id":"9yVnWB7c1bxG"},"source":["In the paper [\"Does Machine Learning Automate Moral Hazard and Error\"](https://scholar.harvard.edu/files/sendhil/files/aer.p20171084.pdf) in *American Economic Review*, Sendhil Mullainathan and Ziad Obermeyer look at a model that tries to answer the question: using historical electronic health record (EHR) data, what factors are most predictive of stroke? These are the top predictors from the model:\n","\n"," - Prior stroke\n"," - Cardiovascular disease\n"," - Accidental injury\n"," - Benign breast lump\n"," - Colonoscopy\n"," - Sinusitis\n","\n","However, only the top two have anything to do with a stroke! Based on what we've studied so far, you can probably guess why. We haven’t really measured *stroke*, which occurs when a region of the brain is denied oxygen due to an interruption in the blood supply. What we’ve measured is who had symptoms, went to a doctor, got the appropriate tests, *and* received a diagnosis of stroke. Actually having a stroke is not the only thing correlated with this complete list—it's also correlated with being the kind of person who actually goes to the doctor (which is influenced by who has access to healthcare, can afford their co-pay, doesn't experience racial or gender-based medical discrimination, and more)! If you are likely to go to the doctor for an *accidental injury*, then you are likely to also go the doctor when you are having a stroke.\n","\n","This is an example of *measurement bias*. It occurs when our models make mistakes because we are measuring the wrong thing, or measuring it in the wrong way, or incorporating that measurement into the model inappropriately."]},{"cell_type":"markdown","metadata":{"id":"wacuWkzW1bxG"},"source":["#### Aggregation bias"]},{"cell_type":"markdown","metadata":{"id":"E6HBULpu1bxH"},"source":["*Aggregation bias* occurs when models do not aggregate data in a way that incorporates all of the appropriate factors, or when a model does not include the necessary interaction terms, nonlinearities, or so forth. This can particularly occur in medical settings. For instance, the way diabetes is treated is often based on simple univariate statistics and studies involving small groups of heterogeneous people. Analysis of results is often done in a way that does not take account of different ethnicities or genders. However, it turns out that diabetes patients have [different complications across ethnicities](https://www.ncbi.nlm.nih.gov/pubmed/24037313), and HbA1c levels (widely used to diagnose and monitor diabetes) [differ in complex ways across ethnicities and genders](https://www.ncbi.nlm.nih.gov/pubmed/22238408). This can result in people being misdiagnosed or incorrectly treated because medical decisions are based on a model that does not include these important variables and interactions."]},{"cell_type":"markdown","metadata":{"id":"PB7cjFxk1bxH"},"source":["#### Representation bias"]},{"cell_type":"markdown","metadata":{"id":"zQ5AX23a1bxH"},"source":["The abstract of the paper [\"Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting\"](https://arxiv.org/abs/1901.09451) by Maria De-Arteaga et al. notes that there is gender imbalance in occupations (e.g., females are more likely to be nurses, and males are more likely to be pastors), and says that: \"differences in true positive rates between genders are correlated with existing gender imbalances in occupations, which may compound these imbalances.\"\n","\n","In other words, the researchers noticed that models predicting occupation did not only *reflect* the actual gender imbalance in the underlying population, but actually *amplified* it! This type of *representation bias* is quite common, particularly for simple models. When there is some clear, easy-to-see underlying relationship, a simple model will often simply assume that this relationship holds all the time. As <> from the paper shows, for occupations that had a higher percentage of females, the model tended to overestimate the prevalence of that occupation."]},{"cell_type":"markdown","metadata":{"id":"JxTwRuqo1bxH"},"source":["\"Graph"]},{"cell_type":"markdown","metadata":{"id":"g_tCJLua1bxI"},"source":["For example, in the training dataset 14.6% of surgeons were women, yet in the model predictions only 11.6% of the true positives were women. The model is thus amplifying the bias existing in the training set.\n","\n","Now that we've seen that those biases exist, what can we do to mitigate them?"]},{"cell_type":"markdown","metadata":{"id":"kiWofeix1bxI"},"source":["### Addressing different types of bias"]},{"cell_type":"markdown","metadata":{"id":"cMc_kNYa1bxI"},"source":["Different types of bias require different approaches for mitigation. While gathering a more diverse dataset can address representation bias, this would not help with historical bias or measurement bias. All datasets contain bias. There is no such thing as a completely debiased dataset. Many researchers in the field have been converging on a set of proposals to enable better documentation of the decisions, context, and specifics about how and why a particular dataset was created, what scenarios it is appropriate to use in, and what the limitations are. This way, those using a particular dataset will not be caught off guard by its biases and limitations."]},{"cell_type":"markdown","metadata":{"id":"vcZa8x401bxI"},"source":["We often hear the question—\"Humans are biased, so does algorithmic bias even matter?\" This comes up so often, there must be some reasoning that makes sense to the people that ask it, but it doesn't seem very logically sound to us! Independently of whether this is logically sound, it's important to realize that algorithms (particularly machine learning algorithms!) and people are different. Consider these points about machine learning algorithms:\n","\n"," - _Machine learning can create feedback loops_:: Small amounts of bias can rapidly increase exponentially due to feedback loops.\n"," - _Machine learning can amplify bias_:: Human bias can lead to larger amounts of machine learning bias.\n"," - _Algorithms & humans are used differently_:: Human decision makers and algorithmic decision makers are not used in a plug-and-play interchangeable way in practice.\n"," - _Technology is power_:: And with that comes responsibility.\n","\n","As the Arkansas healthcare example showed, machine learning is often implemented in practice not because it leads to better outcomes, but because it is cheaper and more efficient. Cathy O'Neill, in her book *Weapons of Math Destruction* (Crown), described the pattern of how the privileged are processed by people, whereas the poor are processed by algorithms. This is just one of a number of ways that algorithms are used differently than human decision makers. Others include:\n","\n"," - People are more likely to assume algorithms are objective or error-free (even if they’re given the option of a human override).\n"," - Algorithms are more likely to be implemented with no appeals process in place.\n"," - Algorithms are often used at scale.\n"," - Algorithmic systems are cheap.\n","\n","Even in the absence of bias, algorithms (and deep learning especially, since it is such an effective and scalable algorithm) can lead to negative societal problems, such as when used for *disinformation*."]},{"cell_type":"markdown","metadata":{"id":"yNYdb1-K1bxJ"},"source":["### Disinformation"]},{"cell_type":"markdown","metadata":{"id":"nYiyluNA1bxJ"},"source":["*Disinformation* has a history stretching back hundreds or even thousands of years. It is not necessarily about getting someone to believe something false, but rather often used to sow disharmony and uncertainty, and to get people to give up on seeking the truth. Receiving conflicting accounts can lead people to assume that they can never know whom or what to trust.\n","\n","Some people think disinformation is primarily about false information or *fake news*, but in reality, disinformation can often contain seeds of truth, or half-truths taken out of context. Ladislav Bittman was an intelligence officer in the USSR who later defected to the US and wrote some books in the 1970s and 1980s on the role of disinformation in Soviet propaganda operations. In *The KGB and Soviet Disinformation* (Pergamon) he wrote, \"Most campaigns are a carefully designed mixture of facts, half-truths, exaggerations, and deliberate lies.\"\n","\n","In the US this has hit close to home in recent years, with the FBI detailing a massive disinformation campaign linked to Russia in the 2016 election. Understanding the disinformation that was used in this campaign is very educational. For instance, the FBI found that the Russian disinformation campaign often organized two separate fake \"grass roots\" protests, one for each side of an issue, and got them to protest at the same time! The [*Houston Chronicle*](https://www.houstonchronicle.com/local/gray-matters/article/A-Houston-protest-organized-by-Russian-trolls-12625481.php) reported on one of these odd events (<>).\n","\n","> : A group that called itself the \"Heart of Texas\" had organized it on social media—a protest, they said, against the \"Islamization\" of Texas. On one side of Travis Street, I found about 10 protesters. On the other side, I found around 50 counterprotesters. But I couldn't find the rally organizers. No \"Heart of Texas.\" I thought that was odd, and mentioned it in the article: What kind of group is a no-show at its own event? Now I know why. Apparently, the rally's organizers were in Saint Petersburg, Russia, at the time. \"Heart of Texas\" is one of the internet troll groups cited in Special Prosecutor Robert Mueller's recent indictment of Russians attempting to tamper with the U.S. presidential election."]},{"cell_type":"markdown","metadata":{"id":"sFgKJEMq1bxJ"},"source":["\"Screenshot"]},{"cell_type":"markdown","metadata":{"id":"0hztLoCV1bxJ"},"source":["Disinformation often involves coordinated campaigns of inauthentic behavior. For instance, fraudulent accounts may try to make it seem like many people hold a particular viewpoint. While most of us like to think of ourselves as independent-minded, in reality we evolved to be influenced by others in our in-group, and in opposition to those in our out-group. Online discussions can influence our viewpoints, or alter the range of what we consider acceptable viewpoints. Humans are social animals, and as social animals we are extremely influenced by the people around us. Increasingly, radicalization occurs in online environments; influence is coming from people in the virtual space of online forums and social networks.\n","\n","Disinformation through autogenerated text is a particularly significant issue, due to the greatly increased capability provided by deep learning. We discuss this issue in depth when we delve into creating language models, in <>.\n","\n","One proposed approach is to develop some form of digital signature, to implement it in a seamless way, and to create norms that we should only trust content that has been verified. The head of the Allen Institute on AI, Oren Etzioni, wrote such a proposal in an article titled [\"How Will We Prevent AI-Based Forgery?\"](https://hbr.org/2019/03/how-will-we-prevent-ai-based-forgery): \"AI is poised to make high-fidelity forgery inexpensive and automated, leading to potentially disastrous consequences for democracy, security, and society. The specter of AI forgery means that we need to act to make digital signatures de rigueur as a means of authentication of digital content.\"\n","\n","Whilst we can't hope to discuss all the ethical issues that deep learning, and algorithms more generally, brings up, hopefully this brief introduction has been a useful starting point you can build on. We'll now move on to the questions of how to identify ethical issues, and what to do about them."]},{"cell_type":"markdown","metadata":{"id":"t7CGCMda1bxK"},"source":["## Identifying and Addressing Ethical Issues"]},{"cell_type":"markdown","metadata":{"id":"yw8H-ZIp1bxK"},"source":["Mistakes happen. Finding out about them, and dealing with them, needs to be part of the design of any system that includes machine learning (and many other systems too). The issues raised within data ethics are often complex and interdisciplinary, but it is crucial that we work to address them.\n","\n","So what can we do? This is a big topic, but a few steps towards addressing ethical issues are:\n","\n","- Analyze a project you are working on.\n","- Implement processes at your company to find and address ethical risks.\n","- Support good policy.\n","- Increase diversity.\n","\n","Let's walk through each of these steps, starting with analyzing a project you are working on."]},{"cell_type":"markdown","metadata":{"id":"Mw5sfGG81bxK"},"source":["### Analyze a Project You Are Working On"]},{"cell_type":"markdown","metadata":{"id":"zSpol34f1bxL"},"source":["It's easy to miss important issues when considering ethical implications of your work. One thing that helps enormously is simply asking the right questions. Rachel Thomas recommends considering the following questions throughout the development of a data project:\n","\n"," - Should we even be doing this?\n"," - What bias is in the data?\n"," - Can the code and data be audited?\n"," - What are the error rates for different sub-groups?\n"," - What is the accuracy of a simple rule-based alternative?\n"," - What processes are in place to handle appeals or mistakes?\n"," - How diverse is the team that built it?\n","\n","These questions may be able to help you identify outstanding issues, and possible alternatives that are easier to understand and control. In addition to asking the right questions, it's also important to consider practices and processes to implement.\n","\n","One thing to consider at this stage is what data you are collecting and storing. Data often ends up being used for different purposes than what it was originally collected for. For instance, IBM began selling to Nazi Germany well before the Holocaust, including helping with Germany’s 1933 census conducted by Adolf Hitler, which was effective at identifying far more Jewish people than had previously been recognized in Germany. Similarly, US census data was used to round up Japanese-Americans (who were US citizens) for internment during World War II. It is important to recognize how data and images collected can be weaponized later. Columbia professor [Tim Wu wrote](https://www.nytimes.com/2019/04/10/opinion/sunday/privacy-capitalism.html) that “You must assume that any personal data that Facebook or Android keeps are data that governments around the world will try to get or that thieves will try to steal.”"]},{"cell_type":"markdown","metadata":{"id":"9CII7fWK1bxL"},"source":["### Processes to Implement"]},{"cell_type":"markdown","metadata":{"id":"tCEPpbwa1bxL"},"source":["The Markkula Center has released [An Ethical Toolkit for Engineering/Design Practice](https://www.scu.edu/ethics-in-technology-practice/ethical-toolkit/) that includes some concrete practices to implement at your company, including regularly scheduled sweeps to proactively search for ethical risks (in a manner similar to cybersecurity penetration testing), expanding the ethical circle to include the perspectives of a variety of stakeholders, and considering the terrible people (how could bad actors abuse, steal, misinterpret, hack, destroy, or weaponize what you are building?).\n","\n","Even if you don't have a diverse team, you can still try to pro-actively include the perspectives of a wider group, considering questions such as these (provided by the Markkula Center):\n","\n"," - Whose interests, desires, skills, experiences, and values have we simply assumed, rather than actually consulted?\n"," - Who are all the stakeholders who will be directly affected by our product? How have their interests been protected? How do we know what their interests really are—have we asked?\n"," - Who/which groups and individuals will be indirectly affected in significant ways?\n"," - Who might use this product that we didn’t expect to use it, or for purposes we didn’t initially intend?"]},{"cell_type":"markdown","metadata":{"id":"-xj5jSOH1bxL"},"source":["#### Ethical lenses"]},{"cell_type":"markdown","metadata":{"id":"2-fC_tgL1bxM"},"source":["Another useful resource from the Markkula Center is its [Conceptual Frameworks in Technology and Engineering Practice](https://www.scu.edu/ethics-in-technology-practice/ethical-lenses/). This considers how different foundational ethical lenses can help identify concrete issues, and lays out the following approaches and key questions:\n","\n"," - The rights approach:: Which option best respects the rights of all who have a stake?\n"," - The justice approach:: Which option treats people equally or proportionately?\n"," - The utilitarian approach:: Which option will produce the most good and do the least harm?\n"," - The common good approach:: Which option best serves the community as a whole, not just some members?\n"," - The virtue approach:: Which option leads me to act as the sort of person I want to be?\n","\n","Markkula's recommendations include a deeper dive into each of these perspectives, including looking at a project through the lenses of its *consequences*:\n","\n"," - Who will be directly affected by this project? Who will be indirectly affected?\n"," - Will the effects in aggregate likely create more good than harm, and what types of good and harm?\n"," - Are we thinking about all relevant types of harm/benefit (psychological, political, environmental, moral, cognitive, emotional, institutional, cultural)?\n"," - How might future generations be affected by this project?\n"," - Do the risks of harm from this project fall disproportionately on the least powerful in society? Will the benefits go disproportionately to the well-off?\n"," - Have we adequately considered \"dual-use\"?\n","\n","The alternative lens to this is the *deontological* perspective, which focuses on basic concepts of *right* and *wrong*:\n","\n"," - What rights of others and duties to others must we respect?\n"," - How might the dignity and autonomy of each stakeholder be impacted by this project?\n"," - What considerations of trust and of justice are relevant to this design/project?\n"," - Does this project involve any conflicting moral duties to others, or conflicting stakeholder rights? How can we prioritize these?\n","\n","One of the best ways to help come up with complete and thoughtful answers to questions like these is to ensure that the people asking the questions are *diverse*."]},{"cell_type":"markdown","metadata":{"id":"JGLTD6KV1bxM"},"source":["### The Power of Diversity"]},{"cell_type":"markdown","metadata":{"id":"8hzyLCbe1bxM"},"source":["Currently, less than 12% of AI researchers are women, according to [a study from Element AI](https://medium.com/element-ai-research-lab/estimating-the-gender-ratio-of-ai-researchers-around-the-world-81d2b8dbe9c3). The statistics are similarly dire when it comes to race and age. When everybody on a team has similar backgrounds, they are likely to have similar blindspots around ethical risks. The *Harvard Business Review* (HBR) has published a number of studies showing many benefits of diverse teams, including:\n","\n","- [\"How Diversity Can Drive Innovation\"](https://hbr.org/2013/12/how-diversity-can-drive-innovation)\n","- [\"Teams Solve Problems Faster When They’re More Cognitively Diverse\"](https://hbr.org/2017/03/teams-solve-problems-faster-when-theyre-more-cognitively-diverse)\n","- [\"Why Diverse Teams Are Smarter\"](https://hbr.org/2016/11/why-diverse-teams-are-smarter), and\n","- [\"Defend Your Research: What Makes a Team Smarter? More Women\"](https://hbr.org/2011/06/defend-your-research-what-makes-a-team-smarter-more-women)\n","\n","Diversity can lead to problems being identified earlier, and a wider range of solutions being considered. For instance, Tracy Chou was an early engineer at Quora. She [wrote of her experiences](https://qz.com/1016900/tracy-chou-leading-silicon-valley-engineer-explains-why-every-tech-worker-needs-a-humanities-education/), describing how she advocated internally for adding a feature that would allow trolls and other bad actors to be blocked. Chou recounts, “I was eager to work on the feature because I personally felt antagonized and abused on the site (gender isn’t an unlikely reason as to why)... But if I hadn’t had that personal perspective, it’s possible that the Quora team wouldn’t have prioritized building a block button so early in its existence.” Harassment often drives people from marginalized groups off online platforms, so this functionality has been important for maintaining the health of Quora's community.\n","\n","A crucial aspect to understand is that women leave the tech industry at over twice the rate that men do, according to the [*Harvard Business Review*](https://www.researchgate.net/publication/268325574_By_RESEARCH_REPORT_The_Athena_Factor_Reversing_the_Brain_Drain_in_Science_Engineering_and_Technology) (41% of women working in tech leave, compared to 17% of men). An analysis of over 200 books, white papers, and articles found that the reason they leave is that “they’re treated unfairly; underpaid, less likely to be fast-tracked than their male colleagues, and unable to advance.”\n","\n","Studies have confirmed a number of the factors that make it harder for women to advance in the workplace. Women receive more vague feedback and personality criticism in performance evaluations, whereas men receive actionable advice tied to business outcomes (which is more useful). Women frequently experience being excluded from more creative and innovative roles, and not receiving high-visibility “stretch” assignments that are helpful in getting promoted. One study found that men’s voices are perceived as more persuasive, fact-based, and logical than women’s voices, even when reading identical scripts.\n","\n","Receiving mentorship has been statistically shown to help men advance, but not women. The reason behind this is that when women receive mentorship, it’s advice on how they should change and gain more self-knowledge. When men receive mentorship, it’s public endorsement of their authority. Guess which is more useful in getting promoted?\n","\n","As long as qualified women keep dropping out of tech, teaching more girls to code will not solve the diversity issues plaguing the field. Diversity initiatives often end up focusing primarily on white women, even though women of color face many additional barriers. In [interviews](https://worklifelaw.org/publications/Double-Jeopardy-Report_v6_full_web-sm.pdf) with 60 women of color who work in STEM research, 100% had experienced discrimination."]},{"cell_type":"markdown","metadata":{"id":"wNvRYCty1bxN"},"source":["The hiring process is particularly broken in tech. One study indicative of the dysfunction comes from Triplebyte, a company that helps place software engineers in companies, conducting a standardized technical interview as part of this process. They have a fascinating dataset: the results of how over 300 engineers did on their exam, coupled with the results of how those engineers did during the interview process for a variety of companies. The number one finding from [Triplebyte’s research](https://triplebyte.com/blog/who-y-combinator-companies-want) is that “the types of programmers that each company looks for often have little to do with what the company needs or does. Rather, they reflect company culture and the backgrounds of the founders.”\n","\n","This is a challenge for those trying to break into the world of deep learning, since most companies' deep learning groups today were founded by academics. These groups tend to look for people \"like them\"—that is, people that can solve complex math problems and understand dense jargon. They don't always know how to spot people who are actually good at solving real problems using deep learning.\n","\n","This leaves a big opportunity for companies that are ready to look beyond status and pedigree, and focus on results!"]},{"cell_type":"markdown","metadata":{"id":"ZkTiDkNm1bxN"},"source":["### Fairness, Accountability, and Transparency"]},{"cell_type":"markdown","metadata":{"id":"qNsZiVcT1bxN"},"source":["The professional society for computer scientists, the ACM, runs a data ethics conference called the Conference on Fairness, Accountability, and Transparency. \"Fairness, Accountability, and Transparency\" which used to go under the acronym *FAT* but now uses to the less objectionable *FAccT*. Microsoft has a group focused on \"Fairness, Accountability, Transparency, and Ethics\" (FATE). In this section, we'll use \"FAccT\" to refer to the concepts of *Fairness, Accountability, and Transparency*.\n","\n","FAccT is another lens that you may find useful in considering ethical issues. One useful resource for this is the free online book [*Fairness and Machine Learning: Limitations and Opportunities*](https://fairmlbook.org/) by Solon Barocas, Moritz Hardt, and Arvind Narayanan, which \"gives a perspective on machine learning that treats fairness as a central concern rather than an afterthought.\" It also warns, however, that it \"is intentionally narrow in scope... A narrow framing of machine learning ethics might be tempting to technologists and businesses as a way to focus on technical interventions while sidestepping deeper questions about power and accountability. We caution against this temptation.\" Rather than provide an overview of the FAccT approach to ethics (which is better done in books such as that one), our focus here will be on the limitations of this kind of narrow framing.\n","\n","One great way to consider whether an ethical lens is complete is to try to come up with an example where the lens and our own ethical intuitions give diverging results. Os Keyes, Jevan Hutson, and Meredith Durbin explored this in a graphic way in their paper [\"A Mulching Proposal:\n","Analysing and Improving an Algorithmic System for Turning the Elderly into High-Nutrient Slurry\"](https://arxiv.org/abs/1908.06166). The paper's abstract says:"]},{"cell_type":"markdown","metadata":{"id":"O2FWrnov1bxN"},"source":["> : The ethical implications of algorithmic systems have been much discussed in both HCI and the broader community of those interested in technology design, development and policy. In this paper, we explore the application of one prominent ethical framework - Fairness, Accountability, and Transparency - to a proposed algorithm that resolves various societal issues around food security and population aging. Using various standardised forms of algorithmic audit and evaluation, we drastically increase the algorithm's adherence to the FAT framework, resulting in a more ethical and beneficent system. We discuss how this might serve as a guide to other researchers or practitioners looking to ensure better ethical outcomes from algorithmic systems in their line of work."]},{"cell_type":"markdown","metadata":{"id":"GhHYmbyZ1bxO"},"source":["In this paper, the rather controversial proposal (\"Turning the Elderly into High-Nutrient Slurry\") and the results (\"drastically increase the algorithm's adherence to the FAT framework, resulting in a more ethical and beneficent system\") are at odds... to say the least!\n","\n","In philosophy, and especially philosophy of ethics, this is one of the most effective tools: first, come up with a process, definition, set of questions, etc., which is designed to resolve some problem. Then try to come up with an example where that apparent solution results in a proposal that no one would consider acceptable. This can then lead to a further refinement of the solution.\n","\n","So far, we've focused on things that you and your organization can do. But sometimes individual or organizational action is not enough. Sometimes, governments also need to consider policy implications."]},{"cell_type":"markdown","metadata":{"id":"WZ1mjMJ11bxO"},"source":["## Role of Policy"]},{"cell_type":"markdown","metadata":{"id":"Tb_50i4q1bxO"},"source":["We often talk to people who are eager for technical or design fixes to be a full solution to the kinds of problems that we've been discussing; for instance, a technical approach to debias data, or design guidelines for making technology less addictive. While such measures can be useful, they will not be sufficient to address the underlying problems that have led to our current state. For example, as long as it is incredibly profitable to create addictive technology, companies will continue to do so, regardless of whether this has the side effect of promoting conspiracy theories and polluting our information ecosystem. While individual designers may try to tweak product designs, we will not see substantial changes until the underlying profit incentives change."]},{"cell_type":"markdown","metadata":{"id":"VXuh5q_h1bxO"},"source":["### The Effectiveness of Regulation"]},{"cell_type":"markdown","metadata":{"id":"tgdk0l0j1bxP"},"source":["To look at what can cause companies to take concrete action, consider the following two examples of how Facebook has behaved. In 2018, a UN investigation found that Facebook had played a “determining role” in the ongoing genocide of the Rohingya, an ethnic minority in Mynamar described by UN Secretary-General Antonio Guterres as \"one of, if not the, most discriminated people in the world.\" Local activists had been warning Facebook executives that their platform was being used to spread hate speech and incite violence since as early as 2013. In 2015, they were warned that Facebook could play the same role in Myanmar that the radio broadcasts played during the Rwandan genocide (where a million people were killed). Yet, by the end of 2015, Facebook only employed four contractors that spoke Burmese. As one person close to the matter said, \"That’s not 20/20 hindsight. The scale of this problem was significant and it was already apparent.\" Zuckerberg promised during the congressional hearings to hire \"dozens\" to address the genocide in Myanmar (in 2018, years after the genocide had begun, including the destruction by fire of at least 288 villages in northern Rakhine state after August 2017).\n","\n","This stands in stark contrast to Facebook quickly [hiring 1,200 people in Germany](http://thehill.com/policy/technology/361722-facebook-opens-second-german-office-to-comply-with-hate-speech-law) to try to avoid expensive penalties (of up to 50 million euros) under a new German law against hate speech. Clearly, in this case, Facebook was more reactive to the threat of a financial penalty than to the systematic destruction of an ethnic minority.\n","\n","In an [article on privacy issues](https://idlewords.com/2019/06/the_new_wilderness.htm), Maciej Ceglowski draws parallels with the environmental movement:\n","\n","> : This regulatory project has been so successful in the First World that we risk forgetting what life was like before it. Choking smog of the kind that today kills thousands in Jakarta and Delhi was https://en.wikipedia.org/wiki/Pea_soup_fog[once emblematic of London]. The Cuyahoga River in Ohio used to http://www.ohiohistorycentral.org/w/Cuyahoga_River_Fire[reliably catch fire]. In a particularly horrific example of unforeseen consequences, tetraethyl lead added to gasoline https://en.wikipedia.org/wiki/Lead%E2%80%93crime_hypothesis[raised violent crime rates] worldwide for fifty years. None of these harms could have been fixed by telling people to vote with their wallet, or carefully review the environmental policies of every company they gave their business to, or to stop using the technologies in question. It took coordinated, and sometimes highly technical, regulation across jurisdictional boundaries to fix them. In some cases, like the https://en.wikipedia.org/wiki/Montreal_Protocol[ban on commercial refrigerants] that depleted the ozone layer, that regulation required a worldwide consensus. We’re at the point where we need a similar shift in perspective in our privacy law."]},{"cell_type":"markdown","metadata":{"id":"h5Z5Ff4Z1bxP"},"source":["### Rights and Policy"]},{"cell_type":"markdown","metadata":{"id":"gViu16gv1bxP"},"source":["Clean air and clean drinking water are public goods which are nearly impossible to protect through individual market decisions, but rather require coordinated regulatory action. Similarly, many of the harms resulting from unintended consequences of misuses of technology involve public goods, such as a polluted information environment or deteriorated ambient privacy. Too often privacy is framed as an individual right, yet there are societal impacts to widespread surveillance (which would still be the case even if it was possible for a few individuals to opt out).\n","\n","Many of the issues we are seeing in tech are actually human rights issues, such as when a biased algorithm recommends that Black defendants have longer prison sentences, when particular job ads are only shown to young people, or when police use facial recognition to identify protesters. The appropriate venue to address human rights issues is typically through the law.\n","\n","We need both regulatory and legal changes, *and* the ethical behavior of individuals. Individual behavior change can’t address misaligned profit incentives, externalities (where corporations reap large profits while offloading their costs and harms to the broader society), or systemic failures. However, the law will never cover all edge cases, and it is important that individual software developers and data scientists are equipped to make ethical decisions in practice."]},{"cell_type":"markdown","metadata":{"id":"2zi5kHa91bxP"},"source":["### Cars: A Historical Precedent"]},{"cell_type":"markdown","metadata":{"id":"Ls-I6-BB1bxQ"},"source":["The problems we are facing are complex, and there are no simple solutions. This can be discouraging, but we find hope in considering other large challenges that people have tackled throughout history. One example is the movement to increase car safety, covered as a case study in [\"Datasheets for Datasets\"](https://arxiv.org/abs/1803.09010) by Timnit Gebru et al. and in the design podcast [99% Invisible](https://99percentinvisible.org/episode/nut-behind-wheel/). Early cars had no seatbelts, metal knobs on the dashboard that could lodge in people’s skulls during a crash, regular plate glass windows that shattered in dangerous ways, and non-collapsible steering columns that impaled drivers. However, car companies were incredibly resistant to even discussing the idea of safety as something they could help address, and the widespread belief was that cars are just the way they are, and that it was the people using them who caused problems.\n","\n","It took consumer safety activists and advocates decades of work to even change the national conversation to consider that perhaps car companies had some responsibility which should be addressed through regulation. When the collapsible steering column was invented, it was not implemented for several years as there was no financial incentive to do so. Major car company General Motors hired private detectives to try to dig up dirt on consumer safety advocate Ralph Nader. The requirement of seatbelts, crash test dummies, and collapsible steering columns were major victories. It was only in 2011 that car companies were required to start using crash test dummies that would represent the average woman, and not just average men’s bodies; prior to this, women were 40% more likely to be injured in a car crash of the same impact compared to a man. This is a vivid example of the ways that bias, policy, and technology have important consequences."]},{"cell_type":"markdown","metadata":{"id":"MfiFEQVk1bxQ"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"RzH19Xmn1bxQ"},"source":["Coming from a background of working with binary logic, the lack of clear answers in ethics can be frustrating at first. Yet, the implications of how our work impacts the world, including unintended consequences and the work becoming weaponized by bad actors, are some of the most important questions we can (and should!) consider. Even though there aren't any easy answers, there are definite pitfalls to avoid and practices to follow to move toward more ethical behavior.\n","\n","Many people (including us!) are looking for more satisfying, solid answers about how to address harmful impacts of technology. However, given the complex, far-reaching, and interdisciplinary nature of the problems we are facing, there are no simple solutions. Julia Angwin, former senior reporter at ProPublica who focuses on issues of algorithmic bias and surveillance (and one of the 2016 investigators of the COMPAS recidivism algorithm that helped spark the field of FAccT) said in [a 2019 interview](https://www.fastcompany.com/90337954/who-cares-about-liberty-julia-angwin-and-trevor-paglen-on-privacy-surveillance-and-the-mess-were-in):\n","\n","> : I strongly believe that in order to solve a problem, you have to diagnose it, and that we’re still in the diagnosis phase of this. If you think about the turn of the century and industrialization, we had, I don’t know, 30 years of child labor, unlimited work hours, terrible working conditions, and it took a lot of journalist muckraking and advocacy to diagnose the problem and have some understanding of what it was, and then the activism to get laws changed. I feel like we’re in a second industrialization of data information... I see my role as trying to make as clear as possible what the downsides are, and diagnosing them really accurately so that they can be solvable. That’s hard work, and lots more people need to be doing it.\n","\n","It's reassuring that Angwin thinks we are largely still in the diagnosis phase: if your understanding of these problems feels incomplete, that is normal and natural. Nobody has a “cure” yet, although it is vital that we continue working to better understand and address the problems we are facing.\n","\n","One of our reviewers for this book, Fred Monroe, used to work in hedge fund trading. He told us, after reading this chapter, that many of the issues discussed here (distribution of data being dramatically different than what a model was trained on, the impact feedback loops on a model once deployed and at scale, and so forth) were also key issues for building profitable trading models. The kinds of things you need to do to consider societal consequences are going to have a lot of overlap with things you need to do to consider organizational, market, and customer consequences—so thinking carefully about ethics can also help you think carefully about how to make your data product successful more generally!"]},{"cell_type":"markdown","metadata":{"id":"5OBukDZB1bxR"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"5fSCLJ9q1bxR"},"source":["1. Does ethics provide a list of \"right answers\"?\n","1. How can working with people of different backgrounds help when considering ethical questions?\n","1. What was the role of IBM in Nazi Germany? Why did the company participate as it did? Why did the workers participate?\n","1. What was the role of the first person jailed in the Volkswagen diesel scandal?\n","1. What was the problem with a database of suspected gang members maintained by California law enforcement officials?\n","1. Why did YouTube's recommendation algorithm recommend videos of partially clothed children to pedophiles, even though no employee at Google had programmed this feature?\n","1. What are the problems with the centrality of metrics?\n","1. Why did Meetup.com not include gender in its recommendation system for tech meetups?\n","1. What are the six types of bias in machine learning, according to Suresh and Guttag?\n","1. Give two examples of historical race bias in the US.\n","1. Where are most images in ImageNet from?\n","1. In the paper [\"Does Machine Learning Automate Moral Hazard and Error\"](https://scholar.harvard.edu/files/sendhil/files/aer.p20171084.pdf) why is sinusitis found to be predictive of a stroke?\n","1. What is representation bias?\n","1. How are machines and people different, in terms of their use for making decisions?\n","1. Is disinformation the same as \"fake news\"?\n","1. Why is disinformation through auto-generated text a particularly significant issue?\n","1. What are the five ethical lenses described by the Markkula Center?\n","1. Where is policy an appropriate tool for addressing data ethics issues?"]},{"cell_type":"markdown","metadata":{"id":"Ff57taX71bxR"},"source":["### Further Research:"]},{"cell_type":"markdown","metadata":{"id":"JlDqZ51w1bxS"},"source":["1. Read the article \"What Happens When an Algorithm Cuts Your Healthcare\". How could problems like this be avoided in the future?\n","1. Research to find out more about YouTube's recommendation system and its societal impacts. Do you think recommendation systems must always have feedback loops with negative results? What approaches could Google take to avoid them? What about the government?\n","1. Read the paper [\"Discrimination in Online Ad Delivery\"](https://arxiv.org/abs/1301.6822). Do you think Google should be considered responsible for what happened to Dr. Sweeney? What would be an appropriate response?\n","1. How can a cross-disciplinary team help avoid negative consequences?\n","1. Read the paper \"Does Machine Learning Automate Moral Hazard and Error\". What actions do you think should be taken to deal with the issues identified in this paper?\n","1. Read the article \"How Will We Prevent AI-Based Forgery?\" Do you think Etzioni's proposed approach could work? Why?\n","1. Complete the section \"Analyze a Project You Are Working On\" in this chapter.\n","1. Consider whether your team could be more diverse. If so, what approaches might help?"]},{"cell_type":"markdown","metadata":{"id":"DvKacUrx1bxS"},"source":["## Deep Learning in Practice: That's a Wrap!"]},{"cell_type":"markdown","metadata":{"id":"xPdtZLvm1bxS"},"source":["Congratulations! You've made it to the end of the first section of the book. In this section we've tried to show you what deep learning can do, and how you can use it to create real applications and products. At this point, you will get a lot more out of the book if you spend some time trying out what you've learned. Perhaps you have already been doing this as you go along—in which case, great! If not, that's no problem either... Now is a great time to start experimenting yourself.\n","\n","If you haven't been to the [book's website](https://book.fast.ai) yet, head over there now. It's really important that you get yourself set up to run the notebooks. Becoming an effective deep learning practitioner is all about practice, so you need to be training models. So, please go get the notebooks running now if you haven't already! And also have a look on the website for any important updates or notices; deep learning changes fast, and we can't change the words that are printed in this book, so the website is where you need to look to ensure you have the most up-to-date information.\n","\n","Make sure that you have completed the following steps:\n","\n","- Connect to one of the GPU Jupyter servers recommended on the book's website.\n","- Run the first notebook yourself.\n","- Upload an image that you find in the first notebook; then try a few different images of different kinds to see what happens.\n","- Run the second notebook, collecting your own dataset based on image search queries that you come up with.\n","- Think about how you can use deep learning to help you with your own projects, including what kinds of data you could use, what kinds of problems may come up, and how you might be able to mitigate these issues in practice.\n","\n","In the next section of the book you will learn about how and why deep learning works, instead of just seeing how you can use it in practice. Understanding the how and why is important for both practitioners and researchers, because in this fairly new field nearly every project requires some level of customization and debugging. The better you understand the foundations of deep learning, the better your models will be. These foundations are less important for executives, product managers, and so forth (although still useful, so feel free to keep reading!), but they are critical for anybody who is actually training and deploying models themselves."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5oL4E6Ff1bxT"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/03_ethics.ipynb","timestamp":1712447676913}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/04_mnist_basics.ipynb b/notebooks/oleg/Education/fastai/04_mnist_basics.ipynb new file mode 100644 index 0000000..b699bcf --- /dev/null +++ b/notebooks/oleg/Education/fastai/04_mnist_basics.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"c5NxGwn6z7bb"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"u47jK18Ez7bh"},"outputs":[],"source":["#hide\n","from fastai.vision.all import *\n","from fastbook import *\n","\n","matplotlib.rc('image', cmap='Greys')"]},{"cell_type":"raw","metadata":{"id":"LRVOWDZlz7bi"},"source":["[[chapter_mnist_basics]]"]},{"cell_type":"markdown","metadata":{"id":"Zb0L2U3Qz7bj"},"source":["# Under the Hood: Training a Digit Classifier"]},{"cell_type":"markdown","metadata":{"id":"FtIg2SA1z7bm"},"source":["Having seen what it looks like to actually train a variety of models in Chapter 2, let’s now look under the hood and see exactly what is going on. We’ll start by using computer vision to introduce fundamental tools and concepts for deep learning.\n","\n","To be exact, we'll discuss the roles of arrays and tensors and of broadcasting, a powerful technique for using them expressively. We'll explain stochastic gradient descent (SGD), the mechanism for learning by updating weights automatically. We'll discuss the choice of a loss function for our basic classification task, and the role of mini-batches. We'll also describe the math that a basic neural network is actually doing. Finally, we'll put all these pieces together.\n","\n","In future chapters we’ll do deep dives into other applications as well, and see how these concepts and tools generalize. But this chapter is about laying foundation stones. To be frank, that also makes this one of the hardest chapters, because of how these concepts all depend on each other. Like an arch, all the stones need to be in place for the structure to stay up. Also like an arch, once that happens, it's a powerful structure that can support other things. But it requires some patience to assemble.\n","\n","Let's begin. The first step is to consider how images are represented in a computer."]},{"cell_type":"markdown","metadata":{"id":"zn5CtL3_z7bp"},"source":["## Pixels: The Foundations of Computer Vision"]},{"cell_type":"markdown","metadata":{"id":"qe01nuBSz7bq"},"source":["In order to understand what happens in a computer vision model, we first have to understand how computers handle images. We'll use one of the most famous datasets in computer vision, [MNIST](https://en.wikipedia.org/wiki/MNIST_database), for our experiments. MNIST contains images of handwritten digits, collected by the National Institute of Standards and Technology and collated into a machine learning dataset by Yann Lecun and his colleagues. Lecun used MNIST in 1998 in [Lenet-5](http://yann.lecun.com/exdb/lenet/), the first computer system to demonstrate practically useful recognition of handwritten digit sequences. This was one of the most important breakthroughs in the history of AI."]},{"cell_type":"markdown","metadata":{"id":"MQ8f8gqCz7br"},"source":["## Sidebar: Tenacity and Deep Learning"]},{"cell_type":"markdown","metadata":{"id":"QyXc9ycRz7bs"},"source":["The story of deep learning is one of tenacity and grit by a handful of dedicated researchers. After early hopes (and hype!) neural networks went out of favor in the 1990's and 2000's, and just a handful of researchers kept trying to make them work well. Three of them, Yann Lecun, Yoshua Bengio, and Geoffrey Hinton, were awarded the highest honor in computer science, the Turing Award (generally considered the \"Nobel Prize of computer science\"), in 2018 after triumphing despite the deep skepticism and disinterest of the wider machine learning and statistics community.\n","\n","Geoff Hinton has told of how even academic papers showing dramatically better results than anything previously published would be rejected by top journals and conferences, just because they used a neural network. Yann Lecun's work on convolutional neural networks, which we will study in the next section, showed that these models could read handwritten text—something that had never been achieved before. However, his breakthrough was ignored by most researchers, even as it was used commercially to read 10% of the checks in the US!\n","\n","In addition to these three Turing Award winners, there are many other researchers who have battled to get us to where we are today. For instance, Jurgen Schmidhuber (who many believe should have shared in the Turing Award) pioneered many important ideas, including working with his student Sepp Hochreiter on the long short-term memory (LSTM) architecture (widely used for speech recognition and other text modeling tasks, and used in the IMDb example in <>). Perhaps most important of all, Paul Werbos in 1974 invented back-propagation for neural networks, the technique shown in this chapter and used universally for training neural networks ([Werbos 1994](https://books.google.com/books/about/The_Roots_of_Backpropagation.html?id=WdR3OOM2gBwC)). His development was almost entirely ignored for decades, but today it is considered the most important foundation of modern AI.\n","\n","There is a lesson here for all of us! On your deep learning journey you will face many obstacles, both technical, and (even more difficult) posed by people around you who don't believe you'll be successful. There's one *guaranteed* way to fail, and that's to stop trying. We've seen that the only consistent trait amongst every fast.ai student that's gone on to be a world-class practitioner is that they are all very tenacious."]},{"cell_type":"markdown","metadata":{"id":"V8QPgqJPz7bt"},"source":["## End sidebar"]},{"cell_type":"markdown","metadata":{"id":"D0L3IJ5Hz7bt"},"source":["For this initial tutorial we are just going to try to create a model that can classify any image as a 3 or a 7. So let's download a sample of MNIST that contains images of just these digits:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PN50sfQnz7bu"},"outputs":[],"source":["path = untar_data(URLs.MNIST_SAMPLE)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WD07kRx0z7bu"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"markdown","metadata":{"id":"hVTPK_W8z7bv"},"source":["We can see what's in this directory by using `ls`, a method added by fastai. This method returns an object of a special fastai class called `L`, which has all the same functionality of Python's built-in `list`, plus a lot more. One of its handy features is that, when printed, it displays the count of items, before listing the items themselves (if there are more than 10 items, it just shows the first few):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kzbff6Iuz7bv","outputId":"aa208d4f-00df-4950-939e-eadb1d43b8c7"},"outputs":[{"data":{"text/plain":["(#9) [Path('cleaned.csv'),Path('item_list.txt'),Path('trained_model.pkl'),Path('models'),Path('valid'),Path('labels.csv'),Path('export.pkl'),Path('history.csv'),Path('train')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["path.ls()"]},{"cell_type":"markdown","metadata":{"id":"BpsmlPi5z7bx"},"source":["The MNIST dataset follows a common layout for machine learning datasets: separate folders for the training set and the validation set (and/or test set). Let's see what's inside the training set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"prs5aGqoz7bx","outputId":"61494d5b-abcb-42d5-b65a-04c426cf8245"},"outputs":[{"data":{"text/plain":["(#2) [Path('train/7'),Path('train/3')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(path/'train').ls()"]},{"cell_type":"markdown","metadata":{"id":"AqtnfJ2Rz7bx"},"source":["There's a folder of 3s, and a folder of 7s. In machine learning parlance, we say that \"3\" and \"7\" are the *labels* (or targets) in this dataset. Let's take a look in one of these folders (using `sorted` to ensure we all get the same order of files):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qYK4EnENz7by","outputId":"420f49e0-27df-4c50-88c2-eb45aeea4095"},"outputs":[{"data":{"text/plain":["(#6131) [Path('train/3/10.png'),Path('train/3/10000.png'),Path('train/3/10011.png'),Path('train/3/10031.png'),Path('train/3/10034.png'),Path('train/3/10042.png'),Path('train/3/10052.png'),Path('train/3/1007.png'),Path('train/3/10074.png'),Path('train/3/10091.png')...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["threes = (path/'train'/'3').ls().sorted()\n","sevens = (path/'train'/'7').ls().sorted()\n","threes"]},{"cell_type":"markdown","metadata":{"id":"o-uDFZhOz7by"},"source":["As we might expect, it's full of image files. Let’s take a look at one now. Here’s an image of a handwritten number 3, taken from the famous MNIST dataset of handwritten numbers:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7_lBdRxEz7by","outputId":"6cddc9d4-ca85-434b-f140-f35ef65b7ae0"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAAA9ElEQVR4nM3Or0sDcRjH8c/pgrfBVBjCgibThiKIyTWbWF1bORhGwxARxH/AbtW0JoIGwzXRYhJhtuFY2q1ocLgbe3sGReTuuWbwkx6+r+/zQ/pncX6q+YOldSe6nG3dn8U/rTQ70L8FCGJUewvxl7NTmezNb8xIkvKugr1HSeMP6SrWOVkoTEuSyh0Gm2n3hQyObMnXnxkempRrvgD+gokzwxFAr7U7YXHZ8x4A/Dl7rbu6D2yl3etcw/F3nZgfRVI7rXM7hMUUqzzBec427x26rkmlkzEEa4nnRqnSOH2F0UUx0ePzlbuqMXAHgN6GY9if5xP8dmtHFfwjuQAAAABJRU5ErkJggg==\n","text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im3_path = threes[1]\n","im3 = Image.open(im3_path)\n","im3"]},{"cell_type":"markdown","metadata":{"id":"mk1Cjnjdz7bz"},"source":["Here we are using the `Image` class from the *Python Imaging Library* (PIL), which is the most widely used Python package for opening, manipulating, and viewing images. Jupyter knows about PIL images, so it displays the image for us automatically.\n","\n","In a computer, everything is represented as a number. To view the numbers that make up this image, we have to convert it to a *NumPy array* or a *PyTorch tensor*. For instance, here's what a section of the image looks like, converted to a NumPy array:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"k3gqzzhDz7bz","outputId":"a37393c0-ce2b-4b90-c351-869a1e85e371"},"outputs":[{"data":{"text/plain":["array([[ 0, 0, 0, 0, 0, 0],\n"," [ 0, 0, 0, 0, 0, 29],\n"," [ 0, 0, 0, 48, 166, 224],\n"," [ 0, 93, 244, 249, 253, 187],\n"," [ 0, 107, 253, 253, 230, 48],\n"," [ 0, 3, 20, 20, 15, 0]], dtype=uint8)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["array(im3)[4:10,4:10]"]},{"cell_type":"markdown","metadata":{"id":"5spemAq3z7b0"},"source":["The `4:10` indicates we requested the rows from index 4 (included) to 10 (not included) and the same for the columns. NumPy indexes from top to bottom and left to right, so this section is located in the top-left corner of the image. Here's the same thing as a PyTorch tensor:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yQ7XQr8Zz7b0","outputId":"5cef7dab-b01f-4d0d-fc71-13ff49d828c7"},"outputs":[{"data":{"text/plain":["tensor([[ 0, 0, 0, 0, 0, 0],\n"," [ 0, 0, 0, 0, 0, 29],\n"," [ 0, 0, 0, 48, 166, 224],\n"," [ 0, 93, 244, 249, 253, 187],\n"," [ 0, 107, 253, 253, 230, 48],\n"," [ 0, 3, 20, 20, 15, 0]], dtype=torch.uint8)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tensor(im3)[4:10,4:10]"]},{"cell_type":"markdown","metadata":{"id":"YegrLCVdz7b1"},"source":["We can slice the array to pick just the part with the top of the digit in it, and then use a Pandas DataFrame to color-code the values using a gradient, which shows us clearly how the image is created from the pixel values:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"B2UPTz6sz7b1","outputId":"e803a539-e9d7-4cd6-cf3d-d5712a515414"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0000000000000000000
1000002915019525425525417619315096000
200048166224253253234196253253253253233000
309324424925318746108410194253253233000
401072532532304800000192253253156000
503202015000004322425324574000
600000000002492532451260000
700000001410122325324812400000
800000111662392532532531873000000
90000016248250253253253253232213111200
100000000439898208253253253253187220
"],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_output\n","im3_t = tensor(im3)\n","df = pd.DataFrame(im3_t[4:15,4:22])\n","df.style.set_properties(**{'font-size':'6pt'}).background_gradient('Greys')"]},{"cell_type":"markdown","metadata":{"id":"AFfVdmUWz7b1"},"source":[""]},{"cell_type":"markdown","metadata":{"id":"DCSOfoEBz7b2"},"source":["You can see that the background white pixels are stored as the number 0, black is the number 255, and shades of gray are between the two. The entire image contains 28 pixels across and 28 pixels down, for a total of 784 pixels. (This is much smaller than an image that you would get from a phone camera, which has millions of pixels, but is a convenient size for our initial learning and experiments. We will build up to bigger, full-color images soon.)\n","\n","So, now you've seen what an image looks like to a computer, let's recall our goal: create a model that can recognize 3s and 7s. How might you go about getting a computer to do that?\n","\n","> Warning: Stop and Think!: Before you read on, take a moment to think about how a computer might be able to recognize these two different digits. What kinds of features might it be able to look at? How might it be able to identify these features? How could it combine them together? Learning works best when you try to solve problems yourself, rather than just reading somebody else's answers; so step away from this book for a few minutes, grab a piece of paper and pen, and jot some ideas down…"]},{"cell_type":"markdown","metadata":{"id":"94m9KlMSz7b2"},"source":["## First Try: Pixel Similarity"]},{"cell_type":"markdown","metadata":{"id":"5qylMnpAz7b2"},"source":["So, here is a first idea: how about we find the average pixel value for every pixel of the 3s, then do the same for the 7s. This will give us two group averages, defining what we might call the \"ideal\" 3 and 7. Then, to classify an image as one digit or the other, we see which of these two ideal digits the image is most similar to. This certainly seems like it should be better than nothing, so it will make a good baseline."]},{"cell_type":"markdown","metadata":{"id":"eD7VdaYhz7b2"},"source":["> jargon: Baseline: A simple model which you are confident should perform reasonably well. It should be very simple to implement, and very easy to test, so that you can then test each of your improved ideas, and make sure they are always better than your baseline. Without starting with a sensible baseline, it is very difficult to know whether your super-fancy models are actually any good. One good approach to creating a baseline is doing what we have done here: think of a simple, easy-to-implement model. Another good approach is to search around to find other people that have solved similar problems to yours, and download and run their code on your dataset. Ideally, try both of these!"]},{"cell_type":"markdown","metadata":{"id":"I7vdaNQdz7b3"},"source":["Step one for our simple model is to get the average of pixel values for each of our two groups. In the process of doing this, we will learn a lot of neat Python numeric programming tricks!\n","\n","Let's create a tensor containing all of our 3s stacked together. We already know how to create a tensor containing a single image. To create a tensor containing all the images in a directory, we will first use a Python list comprehension to create a plain list of the single image tensors.\n","\n","We will use Jupyter to do some little checks of our work along the way—in this case, making sure that the number of returned items seems reasonable:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7b8qTSDHz7b3","outputId":"0148e164-c4cd-4b81-9f13-d04dd11e8c0e"},"outputs":[{"data":{"text/plain":["(6131, 6265)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["seven_tensors = [tensor(Image.open(o)) for o in sevens]\n","three_tensors = [tensor(Image.open(o)) for o in threes]\n","len(three_tensors),len(seven_tensors)"]},{"cell_type":"markdown","metadata":{"id":"NhFaqADlz7b4"},"source":["> note: List Comprehensions: List and dictionary comprehensions are a wonderful feature of Python. Many Python programmers use them every day, including the authors of this book—they are part of \"idiomatic Python.\" But programmers coming from other languages may have never seen them before. There are a lot of great tutorials just a web search away, so we won't spend a long time discussing them now. Here is a quick explanation and example to get you started. A list comprehension looks like this: `new_list = [f(o) for o in a_list if o>0]`. This will return every element of `a_list` that is greater than 0, after passing it to the function `f`. There are three parts here: the collection you are iterating over (`a_list`), an optional filter (`if o>0`), and something to do to each element (`f(o)`). It's not only shorter to write but way faster than the alternative ways of creating the same list with a loop."]},{"cell_type":"markdown","metadata":{"id":"tHzydz_Jz7b4"},"source":["We'll also check that one of the images looks okay. Since we now have tensors (which Jupyter by default will print as values), rather than PIL images (which Jupyter by default will display as images), we need to use fastai's `show_image` function to display it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eMwtAeZcz7b4","outputId":"23e101a2-bebc-4e41-f63e-d0e08db570b2"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAADjElEQVR4nO2aPyh9YRjHP/f4k38L5X+ysohsUpTBhEVMJGUyGAwWg0kGkcFqlMFIyv+kSGIwKWUiUvKn5P/9DXrvcR+He+695957+vV8llPnvvd9n77n2/s8z3tOIBgMothYqQ7Ab6ggAhVEoIIIVBBBeoTf/+cUFHC6qQ4RqCACFUSggghUEIEKIlBBBCqIQAURRKpUPeHh4QGAyclJAI6PjwFYXl4GIBgMEgh8FY59fX0A3N7eAlBTUwNAU1MTAC0tLQmNVR0iCEQ4MYupl7m4uABgYmICgJWVFQDOz8/DxhUVFQFQX18fGvMbxcXFAFxeXsYSkhPay7jBkz1ke3sbgLa2NgBeX18BeH9/B6CzsxOAnZ0dAAoLCwFC+4ZlWXx8fISNXVpa8iK0qFGHCDxxyN3dHQBPT09h98vLywGYmpoCoKys7Nc5LMsKu0p6enrijtMN6hCBJ1nm8/MTgOfn57D75mlnZWVFnOPq6gqAxsZGwM5I2dnZAOzu7gJQW1vrJiQ3aJZxgyd7iHFCTk5OzHNUVlYCdmYyzjDVrYfO+BN1iCApvYzk5eUFgM3NTQCGhoZCzsjMzARgenoagIGBgaTGpg4RJMUhpnIdHh4GYH5+HrDrl++0t7cD0NXVlYzQfqAOESSk25WY+iQ/Px8g1LeYqxMlJSUAlJaWAjAyMgLYvY7pg+LAcYKkCCIxRdjJyUno3tjYGAD7+/t//tcIMjc3B0Bubm6sYWhh5oaUOMSJt7c3wHaPScn9/f2O4w8PDwGoq6uLdUl1iBtSUpg5kZGRAUBFRQUAvb29AKyurgKwsLAQNn5tbQ2IyyGOqEMEvnGIxKTV39JrdXV1QtZVhwh8k2Uke3t7ADQ3NwP2sYDh5uYGgIKCgliX0CzjBt/tIWdnZwAMDg4CP51h6pK8vLyErK8OEfhmDzF1RUdHB2AfIhnMEePp6Slg1y1xoHuIG1K6h1xfXwMwOzvL+Pg48PVpxHfMS+6trS3AE2f8iTpE4KlDzBPf2NgA7I9bHh8fATg4OADg6OgIsM807u/vQ3OkpaUB9qvLmZkZIHFZRaIOEXiaZbq7uwFYXFyMOpDW1lYARkdHAWhoaIh6jijRLOMGTx1iPnIxtUQkzEHy+vo6VVVVXwHFf3jsFnWIG3xTqaYAdYgbVBCBCiJQQQQqiCBSL5O0osAvqEMEKohABRGoIAIVRKCCCP4B/PMI7HrW9/wAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["show_image(three_tensors[1]);"]},{"cell_type":"markdown","metadata":{"id":"aA5tJItYz7b5"},"source":["For every pixel position, we want to compute the average over all the images of the intensity of that pixel. To do this we first combine all the images in this list into a single three-dimensional tensor. The most common way to describe such a tensor is to call it a *rank-3 tensor*. We often need to stack up individual tensors in a collection into a single tensor. Unsurprisingly, PyTorch comes with a function called `stack` that we can use for this purpose.\n","\n","Some operations in PyTorch, such as taking a mean, require us to *cast* our integer types to float types. Since we'll be needing this later, we'll also cast our stacked tensor to `float` now. Casting in PyTorch is as simple as typing the name of the type you wish to cast to, and treating it as a method.\n","\n","Generally when images are floats, the pixel values are expected to be between 0 and 1, so we will also divide by 255 here:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FL_MG__Uz7b5","outputId":"803a1928-be7e-4a18-e065-6c702ae90b1c"},"outputs":[{"data":{"text/plain":["torch.Size([6131, 28, 28])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["stacked_sevens = torch.stack(seven_tensors).float()/255\n","stacked_threes = torch.stack(three_tensors).float()/255\n","stacked_threes.shape"]},{"cell_type":"markdown","metadata":{"id":"0TOBDqpJz7cF"},"source":["Perhaps the most important attribute of a tensor is its *shape*. This tells you the length of each axis. In this case, we can see that we have 6,131 images, each of size 28×28 pixels. There is nothing specifically about this tensor that says that the first axis is the number of images, the second is the height, and the third is the width—the semantics of a tensor are entirely up to us, and how we construct it. As far as PyTorch is concerned, it is just a bunch of numbers in memory.\n","\n","The *length* of a tensor's shape is its rank:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pP_0CPtsz7cF","outputId":"43d89933-d14d-44b3-bd68-571ace4acf4f"},"outputs":[{"data":{"text/plain":["3"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["len(stacked_threes.shape)"]},{"cell_type":"markdown","metadata":{"id":"jiJ3STT4z7cG"},"source":["It is really important for you to commit to memory and practice these bits of tensor jargon: _rank_ is the number of axes or dimensions in a tensor; _shape_ is the size of each axis of a tensor.\n","\n","> A: Watch out because the term \"dimension\" is sometimes used in two ways. Consider that we live in \"three-dimensonal space\" where a physical position can be described by a 3-vector `v`. But according to PyTorch, the attribute `v.ndim` (which sure looks like the \"number of dimensions\" of `v`) equals one, not three! Why? Because `v` is a vector, which is a tensor of rank one, meaning that it has only one _axis_ (even if that axis has a length of three). In other words, sometimes dimension is used for the size of an axis (\"space is three-dimensional\"); other times, it is used for the rank, or the number of axes (\"a matrix has two dimensions\"). When confused, I find it helpful to translate all statements into terms of rank, axis, and length, which are unambiguous terms."]},{"cell_type":"markdown","metadata":{"id":"TgUFgaU3z7cG"},"source":["We can also get a tensor's rank directly with `ndim`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"g5XVRAwWz7cI","outputId":"bc38b071-fdec-4092-a0a5-ae92d979b1e3"},"outputs":[{"data":{"text/plain":["3"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["stacked_threes.ndim"]},{"cell_type":"markdown","metadata":{"id":"1Co_Ittqz7cI"},"source":["Finally, we can compute what the ideal 3 looks like. We calculate the mean of all the image tensors by taking the mean along dimension 0 of our stacked, rank-3 tensor. This is the dimension that indexes over all the images.\n","\n","In other words, for every pixel position, this will compute the average of that pixel over all images. The result will be one value for every pixel position, or a single image. Here it is:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XivIZMVjz7cJ","outputId":"87a4c189-3996-4f5b-e097-0652ddf7ccc9"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAE1klEQVR4nO2byU8jPRTEf2En7AgQO4gDi9hO8P9fOIE4AGIR+xoU1kAgQAKZA6o4eUMU6O7R983IdbE66XYHv3K98rOJ5fN5PByq/usf8H+DHxADPyAGfkAM/IAY1FT4/l9OQbGvPvQMMfADYuAHxMAPiIEfEINKWSYSaL1kW/t9MWKx2JfX5T6PCp4hBpEwxEb+/f0dgFwuB0A2mwXg6emppH1+fgbg9fWVj48PAGprawGIx+MANDc3A9DU1ARAfX19yX3V1dVAeQb9FJ4hBqEYIkZYJmQyGQBub28BuLi4AGBnZweAvb09AM7PzwFIJpOFPsSEvr4+AMbHxwGYnZ0FYHR0FICuri7AMUiMqar6jHFQpniGGARiSDmtkDZcXV0BsL+/D8Da2hoAu7u7ABwcHACOOalUipeXl5J3tLW1AXB6elrS58LCAgBTU1MA9Pf3A44pYkhQeIYYhGKIMoMYoigXZw+AmprP13R2dgJuvo+NjQGf2qNnbm5uSvp4e3sD4O7uDnC6I41Rn8pK+m1eQyJCJFlG0VDkW1tbARgaGgKgo6MDcFEX5CFyuVwhIx0dHQFwcnICOF3SO8RGsbOc+w0KzxCDUAyRoivSmse6lvIrGymqgqKayWRIJBIAXF9fl/Ste6RD8il6V11dXcn93qlGjEAMURQUFUVP19ISO8/FFGWfx8dH4NNjbGxsALC1tQU4DWloaAAc2wYGBgCXXRobGwHHyrDwDDGIREMsY8QMtVrjKMtcXl4CsLm5CcDq6irr6+uAc7fqc35+HoDe3l7AOVNlsqjWMIW/KdTT/yBCaUglVyjNSKVSgIv+0tISACsrKwAsLy8XHKhYJScqBrS0tABOU6JmhuAZYhBKQyxTBF0rm2ilKp3Q6lcMSSQSBWbIX6gyJv2RPxHburu7S+6zlbOgiLTIbBd9tjygHytBnJ6eBmBkZKTQh50KelZlABWZ2tvbATeFoiol+iljEMnizk4Zu9iTiVIZUNcyZvl8vsAmlR+TySRAwdI/PDwAcHh4CMDw8DDgmGItfFCj5hliEKpAZDWjXDnAFnGkGcXPSyskmipEizlKy/peDBJTrFELWijyDDH4EUMsI2xrmaPoKDVqnlsUM0T3SDO03NcC0pYrldpticFrSEQIpCG2uKxWURLEEEVLGcBuFcRisd88ixiirKN32ixiWesXdxEjlIbYTWw7nxUt6YLdqC4uHIsRcqTb29uA8yF6l5yptEV9e6f6hxDKh2i+q/CjzSQ5UGUCRdEu3IR0Os3x8THgmCEfoj61ua1FXU9PD+BKi9apBoVniMGPGGLnp90qSKfTgCsEyV1KY3SfXcmmUqlCiUDPaAtzcHAQcI50cnIScAUkOVT5FJ9lIkYgDZGiKyrSBm0JCPf394DTA2UQfS6NyWazBdboGMTMzAwAc3NzACwuLgIwMTEBOA0pVw8JCs8Qg0AaomhK2VUA1haBXcvY+8/OzgDnQuPxeEEjdERCtZNymmFLh2Gzi+AZYhCrcIzgyy8rHcOUY1V2kQtVK99SfBRTkbetdMkew4xg+8H/e8h3EIghZW8uc4S70tFu+N3jVGojgGfIdxApQ/4yeIZ8B35ADPyAGFRyqtH+d85fAM8QAz8gBn5ADPyAGPgBMfADYvALMumtb+Vr5kIAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["mean3 = stacked_threes.mean(0)\n","show_image(mean3);"]},{"cell_type":"markdown","metadata":{"id":"_7RISHJRz7cJ"},"source":["According to this dataset, this is the ideal number 3! (You may not like it, but this is what peak number 3 performance looks like.) You can see how it's very dark where all the images agree it should be dark, but it becomes wispy and blurry where the images disagree.\n","\n","Let's do the same thing for the 7s, but put all the steps together at once to save some time:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bH1m6ruuz7cJ","outputId":"20beda3c-0cde-4e7d-f1fd-bfa76dddb4b2"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAElUlEQVR4nO2bSUszWRSGn3JKUGOM84giCA7oQnHj33ejiKCI4MIpxhES5ylx6oW8dTvnMyaWJd1033dzqVRqyLlPnelWgvf3d7yc6v7pG/i3yRvEyBvEyBvEyBvEqKHK/v9yCAo++9ATYuQNYuQNYuQNYuQNYuQNYuQNYuQNYuQNYlQtU42kaj2Wz/YHwaeJY+TvRZUnxOhHhGimNb69vZWNr6+vX25r/Ep1dR9zVl9f/3HDDQ1l29qvUQRFJckTYvQtQiwRmvGXlxcAnp6eALi9vQXg+voagMvLSwAuLi7KxoeHh/A4nUOjrtHU1ARAR0cHAENDQwAMDw8D0NvbC0BraysAjY2NgCPou6R4QowiEaJZfH5+BhwR+XwegIODAwC2t7cB2NvbA+Dw8BCAo6MjAK6urgAoFovhuUSdRhEiMubn5wFYXFwEYGFhoWx/JZ9SqzwhRpEIUXTQrN7f3wNQKBQA2N/fB2B3dxdwpIicm5ubsvMlEgkSiQTgyBB1Oufj4yPgfMXo6GjZtXWc5KNMTKqJkGqZp2ZDnr25uRmA9vZ2AEZGRgDo7u4GnF/Q/nQ6HRKiGRdNq6urgPM3IsFe0+YlUeUJMaqJEJv9aRaUNYqIzs5OAMbGxsr29/f3A44Mbff19QEffkEzrBxlaWkJgLOzM8DlOJlMpmxsa2sDXP4RNbpInhCjb0WZaoTYGkVEaDuVSgGOJM1uQ0NDmNtYKdroXD09PYDzS+l0GnCE/LQa9oQYRap2K1WglhRFDn2/paUF+LPuCIIgPEY5irLb8/NzwNUyqmEGBgbKrql7+akiPTKSNYx+oH64DCKDCXttS6+vr2G43dzcBGB9fR1wj8zU1BTgHhWFbHsuSamCT91/qB81iKyTFSkiwTo6jXo8NIulUolsNgvA8vIyADs7O4CjTKFcox6VuFuKnhCjSIRU8iX2ubUNJdtYUnGYz+dZWVkBYG1tDXCJ2OzsLACTk5OAC7vJZLLs2nGR4gkximUZwhZalZrOkvarpM/lcmxsbAAuzKoQVENoZmYGcOFXfsq2Cn1iFrNiiTJ22/oSjXYZQknY1tYWuVwOcDM/NzcHOB8yODgIuKRO+YdtGVa6t1rlCTGK1YdUyg7tfvmO09NTALLZbLgkoTxjenoagImJCcBlprbMj4sMyRNiFOtityVBks8olUqAawIpGy0UCiEBKt7Gx8cB6OrqAqrnHT4P+SXFSkiljFRkaGnz5OQEcO3BIAjCdqKWF7TwpMrZRpXfei3CE2IUCyGVXouwC1la6jw+PgZcvZJKpcJ2oho/2lZe8tPlhVrlCTH6FR+ihrF8h7peWmy6u7sDXE6RyWTCaKJqVv0O+Y64apVq8oQY/corVYou8hHKTLUtMuQnEolE+OLL3z+D6C++RJUnxCiWarfaYriI0EKVljIVhZLJZLjgpIxVmWmlrvpvyRNiFFSZ3Zr+YmZ9iH3lStFGPqRYLJYdFwRBSJHIkA+xL9HF2CHzfzGrRbEQ8sdBFc5po9JX37cE/EIe4gmpRdUI+d/JE2LkDWLkDWLkDWLkDWLkDWL0F7hnDWZImx+vAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["mean7 = stacked_sevens.mean(0)\n","show_image(mean7);"]},{"cell_type":"markdown","metadata":{"id":"XK8G3zd1z7cK"},"source":["Let's now pick an arbitrary 3 and measure its *distance* from our \"ideal digits.\"\n","\n","> stop: Stop and Think!: How would you calculate how similar a particular image is to each of our ideal digits? Remember to step away from this book and jot down some ideas before you move on! Research shows that recall and understanding improves dramatically when you are engaged with the learning process by solving problems, experimenting, and trying new ideas yourself\n","\n","Here's a sample 3:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wafFTU5lz7cK","outputId":"99b58c5b-5738-4e4d-e722-4f389e7ebeaa"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAADjElEQVR4nO2aPyh9YRjHP/f4k38L5X+ysohsUpTBhEVMJGUyGAwWg0kGkcFqlMFIyv+kSGIwKWUiUvKn5P/9DXrvcR+He+695957+vV8llPnvvd9n77n2/s8z3tOIBgMothYqQ7Ab6ggAhVEoIIIVBBBeoTf/+cUFHC6qQ4RqCACFUSggghUEIEKIlBBBCqIQAURRKpUPeHh4QGAyclJAI6PjwFYXl4GIBgMEgh8FY59fX0A3N7eAlBTUwNAU1MTAC0tLQmNVR0iCEQ4MYupl7m4uABgYmICgJWVFQDOz8/DxhUVFQFQX18fGvMbxcXFAFxeXsYSkhPay7jBkz1ke3sbgLa2NgBeX18BeH9/B6CzsxOAnZ0dAAoLCwFC+4ZlWXx8fISNXVpa8iK0qFGHCDxxyN3dHQBPT09h98vLywGYmpoCoKys7Nc5LMsKu0p6enrijtMN6hCBJ1nm8/MTgOfn57D75mlnZWVFnOPq6gqAxsZGwM5I2dnZAOzu7gJQW1vrJiQ3aJZxgyd7iHFCTk5OzHNUVlYCdmYyzjDVrYfO+BN1iCApvYzk5eUFgM3NTQCGhoZCzsjMzARgenoagIGBgaTGpg4RJMUhpnIdHh4GYH5+HrDrl++0t7cD0NXVlYzQfqAOESSk25WY+iQ/Px8g1LeYqxMlJSUAlJaWAjAyMgLYvY7pg+LAcYKkCCIxRdjJyUno3tjYGAD7+/t//tcIMjc3B0Bubm6sYWhh5oaUOMSJt7c3wHaPScn9/f2O4w8PDwGoq6uLdUl1iBtSUpg5kZGRAUBFRQUAvb29AKyurgKwsLAQNn5tbQ2IyyGOqEMEvnGIxKTV39JrdXV1QtZVhwh8k2Uke3t7ADQ3NwP2sYDh5uYGgIKCgliX0CzjBt/tIWdnZwAMDg4CP51h6pK8vLyErK8OEfhmDzF1RUdHB2AfIhnMEePp6Slg1y1xoHuIG1K6h1xfXwMwOzvL+Pg48PVpxHfMS+6trS3AE2f8iTpE4KlDzBPf2NgA7I9bHh8fATg4OADg6OgIsM807u/vQ3OkpaUB9qvLmZkZIHFZRaIOEXiaZbq7uwFYXFyMOpDW1lYARkdHAWhoaIh6jijRLOMGTx1iPnIxtUQkzEHy+vo6VVVVXwHFf3jsFnWIG3xTqaYAdYgbVBCBCiJQQQQqiCBSL5O0osAvqEMEKohABRGoIAIVRKCCCP4B/PMI7HrW9/wAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["a_3 = stacked_threes[1]\n","show_image(a_3);"]},{"cell_type":"markdown","metadata":{"id":"TXvqBO28z7cK"},"source":["How can we determine its distance from our ideal 3? We can't just add up the differences between the pixels of this image and the ideal digit. Some differences will be positive while others will be negative, and these differences will cancel out, resulting in a situation where an image that is too dark in some places and too light in others might be shown as having zero total differences from the ideal. That would be misleading!\n","\n","To avoid this, there are two main ways data scientists measure distance in this context:\n","\n","- Take the mean of the *absolute value* of differences (absolute value is the function that replaces negative values with positive values). This is called the *mean absolute difference* or *L1 norm*\n","- Take the mean of the *square* of differences (which makes everything positive) and then take the *square root* (which undoes the squaring). This is called the *root mean squared error* (RMSE) or *L2 norm*.\n","\n","> important: It's Okay to Have Forgotten Your Math: In this book we generally assume that you have completed high school math, and remember at least some of it... But everybody forgets some things! It all depends on what you happen to have had reason to practice in the meantime. Perhaps you have forgotten what a _square root_ is, or exactly how they work. No problem! Any time you come across a maths concept that is not explained fully in this book, don't just keep moving on; instead, stop and look it up. Make sure you understand the basic idea, how it works, and why we might be using it. One of the best places to refresh your understanding is Khan Academy. For instance, Khan Academy has a great [introduction to square roots](https://www.khanacademy.org/math/algebra/x2f8bb11595b61c86:rational-exponents-radicals/x2f8bb11595b61c86:radicals/v/understanding-square-roots)."]},{"cell_type":"markdown","metadata":{"id":"NCNve3zTz7cK"},"source":["Let's try both of these now:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"N-MvOxDfz7cL","outputId":"1fa3ecf6-ada7-48f9-e5ea-139919ff8b57"},"outputs":[{"data":{"text/plain":["(tensor(0.1114), tensor(0.2021))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dist_3_abs = (a_3 - mean3).abs().mean()\n","dist_3_sqr = ((a_3 - mean3)**2).mean().sqrt()\n","dist_3_abs,dist_3_sqr"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"O-3D5X7Ez7cL","outputId":"d1b2e04f-cd5d-4705-9ee0-82570a55935a"},"outputs":[{"data":{"text/plain":["(tensor(0.1586), tensor(0.3021))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dist_7_abs = (a_3 - mean7).abs().mean()\n","dist_7_sqr = ((a_3 - mean7)**2).mean().sqrt()\n","dist_7_abs,dist_7_sqr"]},{"cell_type":"markdown","metadata":{"id":"UiBqfp4Lz7cM"},"source":["In both cases, the distance between our 3 and the \"ideal\" 3 is less than the distance to the ideal 7. So our simple model will give the right prediction in this case."]},{"cell_type":"markdown","metadata":{"id":"y9cr1RRqz7cM"},"source":["PyTorch already provides both of these as *loss functions*. You'll find these inside `torch.nn.functional`, which the PyTorch team recommends importing as `F` (and is available by default under that name in fastai):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Glo-DqRVz7cM","outputId":"f6566e9b-d3a2-42a4-de30-91693c3bf42f"},"outputs":[{"data":{"text/plain":["(tensor(0.1586), tensor(0.3021))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["F.l1_loss(a_3.float(),mean7), F.mse_loss(a_3,mean7).sqrt()"]},{"cell_type":"markdown","metadata":{"id":"NFLaksTlz7cM"},"source":["Here `mse` stands for *mean squared error*, and `l1` refers to the standard mathematical jargon for *mean absolute value* (in math it's called the *L1 norm*)."]},{"cell_type":"markdown","metadata":{"id":"a_SLY9Xhz7cN"},"source":["> S: Intuitively, the difference between L1 norm and mean squared error (MSE) is that the latter will penalize bigger mistakes more heavily than the former (and be more lenient with small mistakes)."]},{"cell_type":"markdown","metadata":{"id":"vC7mNo5Tz7cN"},"source":["> J: When I first came across this \"L1\" thingie, I looked it up to see what on earth it meant. I found on Google that it is a _vector norm_ using _absolute value_, so looked up _vector norm_ and started reading: _Given a vector space V over a field F of the real or complex numbers, a norm on V is a nonnegative-valued any function p: V → \\[0,+∞) with the following properties: For all a ∈ F and all u, v ∈ V, p(u + v) ≤ p(u) + p(v)..._ Then I stopped reading. \"Ugh, I'll never understand math!\" I thought, for the thousandth time. Since then I've learned that every time these complex mathy bits of jargon come up in practice, it turns out I can replace them with a tiny bit of code! Like, the _L1 loss_ is just equal to `(a-b).abs().mean()`, where `a` and `b` are tensors. I guess mathy folks just think differently than me... I'll make sure in this book that every time some mathy jargon comes up, I'll give you the little bit of code it's equal to as well, and explain in common-sense terms what's going on."]},{"cell_type":"markdown","metadata":{"id":"EpJTYTaiz7cN"},"source":["We just completed various mathematical operations on PyTorch tensors. If you've done some numeric programming in NumPy before, you may recognize these as being similar to NumPy arrays. Let's have a look at those two very important data structures."]},{"cell_type":"markdown","metadata":{"id":"NmYCxzWaz7cN"},"source":["### NumPy Arrays and PyTorch Tensors"]},{"cell_type":"markdown","metadata":{"id":"z_zXXsY0z7cO"},"source":["[NumPy](https://numpy.org/) is the most widely used library for scientific and numeric programming in Python. It provides very similar functionality and a very similar API to that provided by PyTorch; however, it does not support using the GPU or calculating gradients, which are both critical for deep learning. Therefore, in this book we will generally use PyTorch tensors instead of NumPy arrays, where possible.\n","\n","(Note that fastai adds some features to NumPy and PyTorch to make them a bit more similar to each other. If any code in this book doesn't work on your computer, it's possible that you forgot to include a line like this at the start of your notebook: `from fastai.vision.all import *`.)\n","\n","But what are arrays and tensors, and why should you care?"]},{"cell_type":"markdown","metadata":{"id":"_Ekrv2Nmz7cO"},"source":["Python is slow compared to many languages. Anything fast in Python, NumPy, or PyTorch is likely to be a wrapper for a compiled object written (and optimized) in another language—specifically C. In fact, **NumPy arrays and PyTorch tensors can finish computations many thousands of times faster than using pure Python.**\n","\n","A NumPy array is a multidimensional table of data, with all items of the same type. Since that can be any type at all, they can even be arrays of arrays, with the innermost arrays potentially being different sizes—this is called a \"jagged array.\" By \"multidimensional table\" we mean, for instance, a list (dimension of one), a table or matrix (dimension of two), a \"table of tables\" or \"cube\" (dimension of three), and so forth. If the items are all of some simple type such as integer or float, then NumPy will store them as a compact C data structure in memory. This is where NumPy shines. NumPy has a wide variety of operators and methods that can run computations on these compact structures at the same speed as optimized C, because they are written in optimized C.\n","\n","A PyTorch tensor is nearly the same thing as a NumPy array, but with an additional restriction that unlocks some additional capabilities. It's the same in that it, too, is a multidimensional table of data, with all items of the same type. However, the restriction is that a tensor cannot use just any old type—it has to use a single basic numeric type for all components. For example, a PyTorch tensor cannot be jagged. It is always a regularly shaped multidimensional rectangular structure.\n","\n","The vast majority of methods and operators supported by NumPy on these structures are also supported by PyTorch, but PyTorch tensors have additional capabilities. One major capability is that these structures can live on the GPU, in which case their computation will be optimized for the GPU and can run much faster (given lots of values to work on). In addition, PyTorch can automatically calculate derivatives of these operations, including combinations of operations. As you'll see, it would be impossible to do deep learning in practice without this capability.\n","\n","> S: If you don't know what C is, don't worry as you won't need it at all. In a nutshell, it's a low-level (low-level means more similar to the language that computers use internally) language that is very fast compared to Python. To take advantage of its speed while programming in Python, try to avoid as much as possible writing loops, and replace them by commands that work directly on arrays or tensors.\n","\n","Perhaps the most important new coding skill for a Python programmer to learn is how to effectively use the array/tensor APIs. We will be showing lots more tricks later in this book, but here's a summary of the key things you need to know for now."]},{"cell_type":"markdown","metadata":{"id":"LBmgMA6Oz7cO"},"source":["To create an array or tensor, pass a list (or list of lists, or list of lists of lists, etc.) to `array()` or `tensor()`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OKXfxBOCz7cP"},"outputs":[],"source":["data = [[1,2,3],[4,5,6]]\n","arr = array (data)\n","tns = tensor(data)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XdLVXec2z7cP","outputId":"af66bc43-d469-4d43-fc63-54cacce96d3d"},"outputs":[{"data":{"text/plain":["array([[1, 2, 3],\n"," [4, 5, 6]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["arr # numpy"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"i4QLMYpDz7cP","outputId":"d52e8845-7de4-410b-9f6d-f015c1065ff0"},"outputs":[{"data":{"text/plain":["tensor([[1, 2, 3],\n"," [4, 5, 6]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns # pytorch"]},{"cell_type":"markdown","metadata":{"id":"pijMl09Qz7cQ"},"source":["All the operations that follow are shown on tensors, but the syntax and results for NumPy arrays is identical.\n","\n","You can select a row (note that, like lists in Python, tensors are 0-indexed so 1 refers to the second row/column):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pMEWpsQvz7cQ","outputId":"be5b977c-fdc9-4e73-b0cf-866db56a5227"},"outputs":[{"data":{"text/plain":["tensor([4, 5, 6])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns[1]"]},{"cell_type":"markdown","metadata":{"id":"xS_OqcQbz7cQ"},"source":["or a column, by using `:` to indicate *all of the first axis* (we sometimes refer to the dimensions of tensors/arrays as *axes*):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gTEmE6u6z7cR","outputId":"1bc541bd-c950-47b2-e517-5827874da45f"},"outputs":[{"data":{"text/plain":["tensor([2, 5])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns[:,1]"]},{"cell_type":"markdown","metadata":{"id":"S-qjcNM8z7cR"},"source":["You can combine these with Python slice syntax (`[start:end]` with `end` being excluded) to select part of a row or column:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AV5pEFAIz7cR","outputId":"422f762c-826a-40b8-d5f9-351419244607"},"outputs":[{"data":{"text/plain":["tensor([5, 6])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns[1,1:3]"]},{"cell_type":"markdown","metadata":{"id":"tQCxx2XUz7cR"},"source":["And you can use the standard operators such as `+`, `-`, `*`, `/`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"B0qIemeuz7cS","outputId":"d9e53d57-3d2f-4acc-dad3-ab7107b6faf4"},"outputs":[{"data":{"text/plain":["tensor([[2, 3, 4],\n"," [5, 6, 7]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns+1"]},{"cell_type":"markdown","metadata":{"id":"Ua60QeKgz7cS"},"source":["Tensors have a type:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"l1h2mROvz7cS","outputId":"23d90cfb-8b98-4d20-eeb6-2139b77dfccd"},"outputs":[{"data":{"text/plain":["'torch.LongTensor'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns.type()"]},{"cell_type":"markdown","metadata":{"id":"32Q-qOJLz7cT"},"source":["And will automatically change type as needed, for example from `int` to `float`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"71vqIEE3z7cT","outputId":"77cea8f5-b8bc-4e0f-f7fe-f8e99e94cad6"},"outputs":[{"data":{"text/plain":["tensor([[1.5000, 3.0000, 4.5000],\n"," [6.0000, 7.5000, 9.0000]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tns*1.5"]},{"cell_type":"markdown","metadata":{"id":"z6LT_YcTz7cT"},"source":["So, is our baseline model any good? To quantify this, we must define a metric."]},{"cell_type":"markdown","metadata":{"id":"7qzQdjCaz7cU"},"source":["## Computing Metrics Using Broadcasting"]},{"cell_type":"markdown","metadata":{"id":"hrzRzyD3z7cU"},"source":["Recall that a metric is a number that is calculated based on the predictions of our model, and the correct labels in our dataset, in order to tell us how good our model is. For instance, we could use either of the functions we saw in the previous section, mean squared error, or mean absolute error, and take the average of them over the whole dataset. However, neither of these are numbers that are very understandable to most people; in practice, we normally use *accuracy* as the metric for classification models.\n","\n","As we've discussed, we want to calculate our metric over a *validation set*. This is so that we don't inadvertently overfit—that is, train a model to work well only on our training data. This is not really a risk with the pixel similarity model we're using here as a first try, since it has no trained components, but we'll use a validation set anyway to follow normal practices and to be ready for our second try later.\n","\n","To get a validation set we need to remove some of the data from training entirely, so it is not seen by the model at all. As it turns out, the creators of the MNIST dataset have already done this for us. Do you remember how there was a whole separate directory called *valid*? That's what this directory is for!\n","\n","So to start with, let's create tensors for our 3s and 7s from that directory. These are the tensors we will use to calculate a metric measuring the quality of our first-try model, which measures distance from an ideal image:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7IpSwJwRz7cU","outputId":"f74d5570-0827-4649-d355-547f08054a4f"},"outputs":[{"data":{"text/plain":["(torch.Size([1010, 28, 28]), torch.Size([1028, 28, 28]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["valid_3_tens = torch.stack([tensor(Image.open(o))\n"," for o in (path/'valid'/'3').ls()])\n","valid_3_tens = valid_3_tens.float()/255\n","valid_7_tens = torch.stack([tensor(Image.open(o))\n"," for o in (path/'valid'/'7').ls()])\n","valid_7_tens = valid_7_tens.float()/255\n","valid_3_tens.shape,valid_7_tens.shape"]},{"cell_type":"markdown","metadata":{"id":"UCudjHThz7cV"},"source":["It's good to get in the habit of checking shapes as you go. Here we see two tensors, one representing the 3s validation set of 1,010 images of size 28×28, and one representing the 7s validation set of 1,028 images of size 28×28.\n","\n","We ultimately want to write a function, `is_3`, that will decide if an arbitrary image is a 3 or a 7. It will do this by deciding which of our two \"ideal digits\" this arbitrary image is closer to. For that we need to define a notion of distance—that is, a function that calculates the distance between two images.\n","\n","We can write a simple function that calculates the mean absolute error using an expression very similar to the one we wrote in the last section:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ATktdGEOz7cV","outputId":"38c3204c-e015-4dc9-d13f-9e8948668383"},"outputs":[{"data":{"text/plain":["tensor(0.1114)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def mnist_distance(a,b): return (a-b).abs().mean((-1,-2))\n","mnist_distance(a_3, mean3)"]},{"cell_type":"markdown","metadata":{"id":"jZ5MYR2Oz7cV"},"source":["This is the same value we previously calculated for the distance between these two images, the ideal 3 `mean3` and the arbitrary sample 3 `a_3`, which are both single-image tensors with a shape of `[28,28]`.\n","\n","But in order to calculate a metric for overall accuracy, we will need to calculate the distance to the ideal 3 for _every_ image in the validation set. How do we do that calculation? We could write a loop over all of the single-image tensors that are stacked within our validation set tensor, `valid_3_tens`, which has a shape of `[1010,28,28]` representing 1,010 images. But there is a better way.\n","\n","Something very interesting happens when we take this exact same distance function, designed for comparing two single images, but pass in as an argument `valid_3_tens`, the tensor that represents the 3s validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"j-7gfM6Fz7cV","outputId":"17fcec80-5f4b-488c-c66a-28455b93f66a"},"outputs":[{"data":{"text/plain":["(tensor([0.1050, 0.1526, 0.1186, ..., 0.1122, 0.1170, 0.1086]),\n"," torch.Size([1010]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["valid_3_dist = mnist_distance(valid_3_tens, mean3)\n","valid_3_dist, valid_3_dist.shape"]},{"cell_type":"markdown","metadata":{"id":"zNBobNACz7cW"},"source":["Instead of complaining about shapes not matching, it returned the distance for every single image as a vector (i.e., a rank-1 tensor) of length 1,010 (the number of 3s in our validation set). How did that happen?\n","\n","Take another look at our function `mnist_distance`, and you'll see we have there the subtraction `(a-b)`. The magic trick is that PyTorch, when it tries to perform a simple subtraction operation between two tensors of different ranks, will use *broadcasting*. That is, it will automatically expand the tensor with the smaller rank to have the same size as the one with the larger rank. Broadcasting is an important capability that makes tensor code much easier to write.\n","\n","After broadcasting so the two argument tensors have the same rank, PyTorch applies its usual logic for two tensors of the same rank: it performs the operation on each corresponding element of the two tensors, and returns the tensor result. For instance:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wfFzfbrLz7cW","outputId":"97625ba0-4678-4471-8675-f23c6e9ed308"},"outputs":[{"data":{"text/plain":["tensor([2, 3, 4])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tensor([1,2,3]) + tensor(1)"]},{"cell_type":"markdown","metadata":{"id":"7OhYk-Njz7cW"},"source":["So in this case, PyTorch treats `mean3`, a rank-2 tensor representing a single image, as if it were 1,010 copies of the same image, and then subtracts each of those copies from each 3 in our validation set. What shape would you expect this tensor to have? Try to figure it out yourself before you look at the answer below:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"K9EKjR4rz7cX","outputId":"77b5a46a-c606-4cdf-ee93-4ec2adb2244e"},"outputs":[{"data":{"text/plain":["torch.Size([1010, 28, 28])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(valid_3_tens-mean3).shape"]},{"cell_type":"markdown","metadata":{"id":"GFyx5D4nz7cX"},"source":["We are calculating the difference between our \"ideal 3\" and each of the 1,010 3s in the validation set, for each of 28×28 images, resulting in the shape `[1010,28,28]`.\n","\n","There are a couple of important points about how broadcasting is implemented, which make it valuable not just for expressivity but also for performance:\n","\n","- PyTorch doesn't *actually* copy `mean3` 1,010 times. It *pretends* it were a tensor of that shape, but doesn't actually allocate any additional memory\n","- It does the whole calculation in C (or, if you're using a GPU, in CUDA, the equivalent of C on the GPU), tens of thousands of times faster than pure Python (up to millions of times faster on a GPU!).\n","\n","This is true of all broadcasting and elementwise operations and functions done in PyTorch. *It's the most important technique for you to know to create efficient PyTorch code.*\n","\n","Next in `mnist_distance` we see `abs`. You might be able to guess now what this does when applied to a tensor. It applies the method to each individual element in the tensor, and returns a tensor of the results (that is, it applies the method \"elementwise\"). So in this case, we'll get back 1,010 matrices of absolute values.\n","\n","Finally, our function calls `mean((-1,-2))`. The tuple `(-1,-2)` represents a range of axes. In Python, `-1` refers to the last element, and `-2` refers to the second-to-last. So in this case, this tells PyTorch that we want to take the mean ranging over the values indexed by the last two axes of the tensor. The last two axes are the horizontal and vertical dimensions of an image. After taking the mean over the last two axes, we are left with just the first tensor axis, which indexes over our images, which is why our final size was `(1010)`. In other words, for every image, we averaged the intensity of all the pixels in that image.\n","\n","We'll be learning lots more about broadcasting throughout this book, especially in <>, and will be practicing it regularly too.\n","\n","We can use `mnist_distance` to figure out whether an image is a 3 or not by using the following logic: if the distance between the digit in question and the ideal 3 is less than the distance to the ideal 7, then it's a 3. This function will automatically do broadcasting and be applied elementwise, just like all PyTorch functions and operators:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AbVhMNKRz7cX"},"outputs":[],"source":["def is_3(x): return mnist_distance(x,mean3) < mnist_distance(x,mean7)"]},{"cell_type":"markdown","metadata":{"id":"hBs7IOUtz7cY"},"source":["Let's test it on our example case:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bNYoug-Dz7cY","outputId":"ac569ebe-318b-4878-9c51-c7bbaaedfbe4"},"outputs":[{"data":{"text/plain":["(tensor(True), tensor(1.))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["is_3(a_3), is_3(a_3).float()"]},{"cell_type":"markdown","metadata":{"id":"QAKC3gqxz7cY"},"source":["Note that when we convert the Boolean response to a float, we get `1.0` for `True` and `0.0` for `False`. Thanks to broadcasting, we can also test it on the full validation set of 3s:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rQ4Tvg_8z7cY","outputId":"3027cc8c-7f8b-4c2d-e3d4-ffc940d817f7"},"outputs":[{"data":{"text/plain":["tensor([True, True, True, ..., True, True, True])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["is_3(valid_3_tens)"]},{"cell_type":"markdown","metadata":{"id":"UujxS4g3z7cZ"},"source":["Now we can calculate the accuracy for each of the 3s and 7s by taking the average of that function for all 3s and its inverse for all 7s:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eu5WkcuSz7cZ","outputId":"e0cd5800-71a5-455b-c25f-f1f967811b1e"},"outputs":[{"data":{"text/plain":["(tensor(0.9168), tensor(0.9854), tensor(0.9511))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["accuracy_3s = is_3(valid_3_tens).float() .mean()\n","accuracy_7s = (1 - is_3(valid_7_tens).float()).mean()\n","\n","accuracy_3s,accuracy_7s,(accuracy_3s+accuracy_7s)/2"]},{"cell_type":"markdown","metadata":{"id":"XVKijoB5z7cZ"},"source":["This looks like a pretty good start! We're getting over 90% accuracy on both 3s and 7s, and we've seen how to define a metric conveniently using broadcasting.\n","\n","But let's be honest: 3s and 7s are very different-looking digits. And we're only classifying 2 out of the 10 possible digits so far. So we're going to need to do better!\n","\n","To do better, perhaps it is time to try a system that does some real learning—that is, that can automatically modify itself to improve its performance. In other words, it's time to talk about the training process, and SGD."]},{"cell_type":"markdown","metadata":{"id":"wl_nMisTz7ca"},"source":["## Stochastic Gradient Descent (SGD)"]},{"cell_type":"markdown","metadata":{"id":"GS8LOq5Cz7ca"},"source":["Do you remember the way that Arthur Samuel described machine learning, which we quoted in <>?\n","\n","> : Suppose we arrange for some automatic means of testing the effectiveness of any current weight assignment in terms of actual performance and provide a mechanism for altering the weight assignment so as to maximize the performance. We need not go into the details of such a procedure to see that it could be made entirely automatic and to see that a machine so programmed would \"learn\" from its experience.\n","\n","As we discussed, this is the key to allowing us to have a model that can get better and better—that can learn. But our pixel similarity approach does not really do this. We do not have any kind of weight assignment, or any way of improving based on testing the effectiveness of a weight assignment. In other words, we can't really improve our pixel similarity approach by modifying a set of parameters. In order to take advantage of the power of deep learning, we will first have to represent our task in the way that Arthur Samuel described it.\n","\n","Instead of trying to find the similarity between an image and an \"ideal image,\" we could instead look at each individual pixel and come up with a set of weights for each one, such that the highest weights are associated with those pixels most likely to be black for a particular category. For instance, pixels toward the bottom right are not very likely to be activated for a 7, so they should have a low weight for a 7, but they are likely to be activated for an 8, so they should have a high weight for an 8. This can be represented as a function and set of weight values for each possible category—for instance the probability of being the number 8:\n","\n","```\n","def pr_eight(x,w): return (x*w).sum()\n","```"]},{"cell_type":"markdown","metadata":{"id":"bAXGAwq2z7ca"},"source":["Here we are assuming that `x` is the image, represented as a vector—in other words, with all of the rows stacked up end to end into a single long line. And we are assuming that the weights are a vector `w`. If we have this function, then we just need some way to update the weights to make them a little bit better. With such an approach, we can repeat that step a number of times, making the weights better and better, until they are as good as we can make them.\n","\n","We want to find the specific values for the vector `w` that causes the result of our function to be high for those images that are actually 8s, and low for those images that are not. Searching for the best vector `w` is a way to search for the best function for recognising 8s. (Because we are not yet using a deep neural network, we are limited by what our function can actually do—we are going to fix that constraint later in this chapter.)\n","\n","To be more specific, here are the steps that we are going to require, to turn this function into a machine learning classifier:\n","\n","1. *Initialize* the weights.\n","1. For each image, use these weights to *predict* whether it appears to be a 3 or a 7.\n","1. Based on these predictions, calculate how good the model is (its *loss*).\n","1. Calculate the *gradient*, which measures for each weight, how changing that weight would change the loss\n","1. *Step* (that is, change) all the weights based on that calculation.\n","1. Go back to the step 2, and *repeat* the process.\n","1. Iterate until you decide to *stop* the training process (for instance, because the model is good enough or you don't want to wait any longer)."]},{"cell_type":"markdown","metadata":{"id":"W815OSFqz7ca"},"source":["These seven steps, illustrated in <>, are the key to the training of all deep learning models. That deep learning turns out to rely entirely on these steps is extremely surprising and counterintuitive. It's amazing that this process can solve such complex problems. But, as you'll see, it really does!"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"potlu8wLz7cb","outputId":"f4160953-aab5-4790-f24b-7f763c0f7a2c"},"outputs":[{"data":{"image/svg+xml":["\n","\n","\n","\n","\n","\n","G\n","\n","\n","\n","init\n","\n","init\n","\n","\n","\n","predict\n","\n","predict\n","\n","\n","\n","init->predict\n","\n","\n","\n","\n","\n","loss\n","\n","loss\n","\n","\n","\n","predict->loss\n","\n","\n","\n","\n","\n","gradient\n","\n","gradient\n","\n","\n","\n","loss->gradient\n","\n","\n","\n","\n","\n","step\n","\n","step\n","\n","\n","\n","gradient->step\n","\n","\n","\n","\n","\n","step->predict\n","\n","\n","repeat\n","\n","\n","\n","stop\n","\n","stop\n","\n","\n","\n","step->stop\n","\n","\n","\n","\n","\n"],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#id gradient_descent\n","#caption The gradient descent process\n","#alt Graph showing the steps for Gradient Descent\n","gv('''\n","init->predict->loss->gradient->step->stop\n","step->predict[label=repeat]\n","''')"]},{"cell_type":"markdown","metadata":{"id":"vhpd9SQaz7cb"},"source":["There are many different ways to do each of these seven steps, and we will be learning about them throughout the rest of this book. These are the details that make a big difference for deep learning practitioners, but it turns out that the general approach to each one generally follows some basic principles. Here are a few guidelines:\n","\n","- Initialize:: We initialize the parameters to random values. This may sound surprising. There are certainly other choices we could make, such as initializing them to the percentage of times that pixel is activated for that category—but since we already know that we have a routine to improve these weights, it turns out that just starting with random weights works perfectly well.\n","- Loss:: This is what Samuel referred to when he spoke of *testing the effectiveness of any current weight assignment in terms of actual performance*. We need some function that will return a number that is small if the performance of the model is good (the standard approach is to treat a small loss as good, and a large loss as bad, although this is just a convention).\n","- Step:: A simple way to figure out whether a weight should be increased a bit, or decreased a bit, would be just to try it: increase the weight by a small amount, and see if the loss goes up or down. Once you find the correct direction, you could then change that amount by a bit more, and a bit less, until you find an amount that works well. However, this is slow! As we will see, the magic of calculus allows us to directly figure out in which direction, and by roughly how much, to change each weight, without having to try all these small changes. The way to do this is by calculating *gradients*. This is just a performance optimization, we would get exactly the same results by using the slower manual process as well.\n","- Stop:: Once we've decided how many epochs to train the model for (a few suggestions for this were given in the earlier list), we apply that decision. This is where that decision is applied. For our digit classifier, we would keep training until the accuracy of the model started getting worse, or we ran out of time."]},{"cell_type":"markdown","metadata":{"id":"Qtr6-w3lz7cb"},"source":["Before applying these steps to our image classification problem, let's illustrate what they look like in a simpler case. First we will define a very simple function, the quadratic—let's pretend that this is our loss function, and `x` is a weight parameter of the function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3mx1sAtCz7cc"},"outputs":[],"source":["def f(x): return x**2"]},{"cell_type":"markdown","metadata":{"id":"OVGKSq8Mz7cc"},"source":["Here is a graph of that function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"S4aMKkGmz7cc","outputId":"242abf31-6082-4635-d048-3218a40dc020"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3yV5f3/8dcnm0xWElYGYQ9ZBmQ5aVW0ai1UQdwojmptrbVLq1XbX7Xj2yUqiiI46ihK3a1VVBCRsIQgG0ICJCSMkD0/vz/OoY3xBE5Czn2fJJ/n43E/esaVc7+9m5wP133d93WJqmKMMcY0FuJ2AGOMMcHJCoQxxhifrEAYY4zxyQqEMcYYn6xAGGOM8SnM7QCtpXv37pqenu52DGOMaVNWr15dpKqJvt5rNwUiPT2drKwst2MYY0ybIiI5Tb1np5iMMcb4ZAXCGGOMT1YgjDHG+GQFwhhjjE9WIIwxxvjkeIEQkQEiUikizzXxvojIwyJy0Ls9IiLidE5jjOno3LjM9VFg1XHenwN8GxgJKPBvYCfweOCjGWOMOcbRHoSIzACOAP85TrNrgD+oap6q7gX+AFwbqEzrco/w8LubA/XxxhgTMKrKr9/aRPa+4oB8vmMFQkTigQeAH52g6TBgfYPn672v+frMOSKSJSJZhYWFLcq1Ie8Ijy3dwca9gTnAxhgTKJ/tPMSTn+xiS35JQD7fyR7Eg8B8Vc09QbtYoOG3dTEQ62scQlXnqWqmqmYmJvq8U/yELh7Vm8iwEP6+ak+Lft4YY9zy0qo9xEWFMXV4z4B8viMFQkRGAd8A/s+P5qVAfIPn8UCpBmjpu4RO4VxwSk+WrNtHRXVdIHZhjDGtrri8hnc25nPJqF50iggNyD6c6kGcBaQDe0QkH7gLmCYia3y0zcYzQH3MSO9rAXNZZgollbW8s3F/IHdjjDGtZsn6vVTV1jNjbGrA9uFUgZgH9ANGebfHgbeA83y0XQjcKSK9RaQXnjGLBYEMNz6jK+ndonlp1YnOfhljTHB4aVUuQ3vGM7x3QsD24UiBUNVyVc0/tuE5jVSpqoUicrqIlDZo/gTwBrAB2IinkDwRyHwiwnczU1i56xA7C0tP/APGGOOijXuLyd53lBnjUgK6H1fupFbV+1X1Su/jT1Q1tsF7qqp3q2pX73Z3oMYfGpp+ah9CQ4SXs/ICvStjjDkpf1+1h8iwEC4Z2Tug+7GpNryS46M4e1Air67Oo6au3u04xhjjU0V1HUvW7WPq8B4kRIcHdF9WIBq4fGwqRaVVfLD5gNtRjDHGp7c37KekspbLxgb29BJYgfiKswclkhwfyYuf2z0Rxpjg9OLne+jbPYYJGd0Cvi8rEA2EhYZwWWYKH20tZO+RCrfjGGPMV2wrKCEr5zAzxqbgxBymViAauSzT022zS16NMcHmxc9zCQ8Vpp3ax5H9WYFoJKVrNGcMSOSVrFxqbbDaGBMkKmvqWLw2j3OH9aB7bKQj+7QC4cPMcSnsL67ko60tmwDQGGNa23vZ+Rwpr2FmAO+cbswKhA9ThiTTPTaSFz+300zGmODw4ud7SO0azcR+gR+cPsYKhA/hoSFcltmHDzYXkF9c6XYcY0wHt7OwlM92HmLGuBRCQpxbYNMKRBNmjE2lXm2w2hjjvhc/30NYiDDdocHpY6xANCG1WzRnDEzk76v22GC1McY1lTV1vLI6j/OG9SApLsrRfVuBOI5Zp6Wyv7iSD7fYYLUxxh3vbNzPkfIarjjNucHpY6xAHMeUwUkkx0fy/Moct6MYYzqo5z9z7s7pxqxAHEdYaAiXj03lo62F5B4qdzuOMaaD2Zx/lKycw1wxLtXRweljrECcwIyxKQjY/EzGGMe9sHIPEaEhjt053ZhjBUJEnhOR/SJyVES2isgNTbS7VkTqRKS0wXaWUzkb69W5E+cMTublrDyqa22w2hjjjPLqWl5bs5cLTulB15gIVzI42YP4f0C6qsYDFwMPicipTbRdoaqxDbaljqX0YdZ4zzTg72XnuxnDGNOB/HPdPkqqarnitDTXMjhWIFQ1W1Wrjj31bv2c2v/JOGNAIildO/HcZzZYbYwJPFVl4YocBiXHMTa9i2s5HB2DEJG5IlIObAb2A2830XS0iBR5T0XdKyJhTXzeHBHJEpGswsLAXYoaGiLMOi2NlbsOsbWgJGD7McYYgLW5R9i0/yhXTkhzZFrvpjhaIFT1ViAOOB1YDFT5aPYxMBxIAqYBM4EfN/F581Q1U1UzExMTAxPa67LMFCLCQqwXYYwJuOdW5BAbGcalowO75vSJOH4Vk6rWqeoyoA9wi4/3d6rqLlWtV9UNwAPAdKdzNtY1JoJvndKTxWv2UlpV63YcY0w7daismje/2M93xvQmNtLnyRPHuHmZaxj+jUEo4F4fq4ErJ6RRWlXL62v3uh3FGNNOvZyVS3VdPVeOd29w+hhHCoSIJInIDBGJFZFQETkPz6mjD3y0nSoiyd7Hg4F7gSVO5DyR0SmdGdYrnuc+y0FV3Y5jjGln6uqV51fmcFrfrgxMjnM7jmM9CMVzOikPOAz8HviBqi4RkVTvvQ7HJhqZAnwhImV4BrEXA79xKOdxiQhXjU9jc75nXVhjjGlNH28tJPdQBVdNcL/3AJ7TPAGnqoXAmU28tweIbfD8LuAuJ3K1xMWjevGbt7/k2U93Mza9q9txjDHtyLMrdpMYF8m5Q3u4HQWwqTaaLToijMsyU3h3Yz4FR20xIWNM69hdVMbSLYXMOi2ViLDg+GoOjhRtzFUT0qhT5fmVNj+TMaZ1LFyRQ3iouDKtd1OsQLRAWrcYzh6UxAsr99j8TMaYk1ZWVcsrq3OZOryn44sCHY8ViBa6ekIaRaVVvLNxv9tRjDFt3Gtr91JSWcs1E4NjcPoYKxAtdMaARPp2j+HZT3e7HcUY04Z55l3azfDe8YxJdW/eJV+sQLRQSIjnktc1e46wIa/Y7TjGmDZqxc6DbC0o5eoJ6a7Ou+SLFYiTMD2zD9ERoTzz6S63oxhj2qgFy3fTJTqci0f2cjvK11iBOAnxUeFMP7UPb67fT2GJr3kHjTGmabmHynn/ywJmjkslKjzU7ThfYwXiJF0zMZ3qunpesEtejTHNtHDFbs8MDUFy53RjViBOUr/EWM4alMhzK3PskldjjN/Kqmr5+6pcpg7vQc+ETm7H8ckKRCu4dmI6hSVVvLVhn9tRjDFtxOI1eZRU1nLdpHS3ozTJCkQrOGNAIhmJMTyzfLfN8mqMOaH6euWZT3czok9C0F3a2pAViFYQEiJcNzGdL/KKWbPHZnk1xhzfJ9uL2FlYxnWTgu/S1oasQLSS74zpQ3xUGE8v3+12FGNMkHt62S4S4yK58JTgu7S1ISsQrSQmMoyZ41J5Z8N+cg+Vux3HGBOkthWU8NHWQq4enxY0s7Y2xbF0IvKciOwXkaMislVEbjhO2x+KSL6IFIvI0yIS6VTOk3HNRE930abfMMY05enlu4gMC2FWECwpeiJOlq//B6SrajxwMfCQiJzauJF3OdKf4llZLh3IAH7lYM4W69W5Exec0pOXVuVSUlnjdhxjTJA5WFrFP9bs5Ttj+tA1JsLtOCfkWIFQ1WxVPXa7sXq3fj6aXgPM97Y/DDwIXOtMypM3e3JfSqpqeTkrz+0oxpgg87x3iYDZk9PdjuIXR0+AichcESkHNgP78aw53dgwYH2D5+uBZBHp5uPz5ohIlohkFRYWBiRzc41K6UxmWheeWb6Lunq75NUY41FVW8fCFTmcNSiR/klxbsfxi6MFQlVvBeKA04HFgK8JjGKBhtOjHnv8tSOqqvNUNVNVMxMTE1s7bovNntyXvMMV/Cs73+0oxpgg8c91+ygqrWL25L5uR/Gb40PoqlqnqsuAPsAtPpqUAvENnh97XBLobK3l3GE9SOnaiaeW2SyvxhjPmg/zl+1iUHIck/t3dzuO39y8xioM32MQ2cDIBs9HAgWqetCRVK0gNESYPakvq3MOszrnkNtxjDEu+3hbEZvzS7jxjIygvjGuMUcKhIgkicgMEYkVkVDvlUozgQ98NF8IzBaRoSLSBbgHWOBEztb03cwUEjqFM+/jnW5HMca47MmPd5IcHxmUaz4cj1M9CMVzOikPOAz8HviBqi4RkVQRKRWRVABVfRd4BPgQyPFu9zmUs9XERIZx1fg0/rWpgF1FZW7HMca4JHtfMcu2F3HdpL5Bf2NcY46kVdVCVT1TVTuraryqnqKqT3rf26Oqsaq6p0H7P6pqsrftdQ0uj21Trp6YRnhICPOXWS/CmI7qyY93EhMRysxxqW5Haba2Vc7amKS4KC4d3ZtXsvI4WNoma5wx5iTsO1LBG1/sZ8a4VBI6hbsdp9msQATYDaf3paq2nkWf5bgdxRjjsGeWe65kDOY1H47HCkSADUiOY8rgJBauyKGius7tOMYYhxSX1/DCyj18a0RP+nSJdjtOi1iBcMDNZ/XjUFk1L2fluh3FGOOQ51bmUFZdx01n+Lqav22wAuGAseldOTWtC09+spPaOlu32pj2rrKmjmeW7+KMgYkM7RV/4h8IUlYgHHLzmf3IO1zBWxv2ux3FGBNgr67Oo6i0mpvPzHA7ykmxAuGQKYOTGJAUy+Mf7bR1q41px+rqlSc/2cnIPglMyPjaHKNtihUIh4SECHPOyODL/Uf5aGtwzDxrjGl972zcT87Bcm4+s1+bmlbDFysQDrpkVG96JkTx2NIdbkcxxgSAqvL4Rzvo2z2Gc4f1cDvOSbMC4aCIsBBuOD2DlbsOsTrnsNtxjDGt7ONtRWzce5Sbz8wgNKRt9x7ACoTjZo5LoUt0OI8t3e52FGNMK5v74XZ6JkRx6eg+bkdpFVYgHBYdEcb1k/ry/pcH+HL/UbfjGGNaSdbuQ6zcdYgbT89oc5PyNaV9/Fe0MVdPSCc2MszGIoxpR+Yu3UHXmAhmjEtxO0qrsQLhgoTocGaNT+XNL/ax26YCN6bNy95XzAebD3DdxHSiI8LcjtNqnFowKFJE5otIjoiUiMhaEZnaRNtrRaTOu0bEse0sJ3I6afbkvoSFhvD4R9aLMKate2zpDmIjw7h6QrrbUVqVUz2IMCAXOBNIAO4FXhaR9Cbar/CuEXFsW+pISgclxUUxY2wK/1iTx94jFW7HMca00PYDpby1YT9Xjk8jIbrtTel9PE4tGFSmqver6m5VrVfVN4FdwKlO7D9Y3XSmZxKvJ6wXYUybNffD7USGhXDD6X3djtLqXBmDEJFkYCCQ3UST0SJSJCJbReReEfF5Uk9E5ohIlohkFRa2vbuTe3fuxLQxffj7qlwOHK10O44xpplyDpaxZP0+rjwtje6xkW7HaXWOFwgRCQeeB55V1c0+mnwMDAeSgGnATODHvj5LVeepaqaqZiYmJgYqckDdelZ/6uqVJz62ZUmNaWvmfriDUO80Ou2RowVCREKARUA1cJuvNqq6U1V3eU9FbQAeAKY7GNNRqd2iuWRUL55fmUORLUtqTJuRd7icf6zJY+bYFJLio9yOExCOFQjxzFo1H0gGpqlqjZ8/qkDbv2f9OL53dn+qaut58hPrRRjTVjz+0Q5E/jeW2B452YN4DBgCXKSqTV62IyJTvWMUiMhgPFc8LXEmojv6JcbyrRG9WLQih0Nl1W7HMcacwP7iCl5elcf0U1Po1bmT23ECxqn7INKAm4BRQH6D+xtmiUiq93Gqt/kU4AsRKQPeBhYDv3Eip5u+f05/KmrqmGdjEcYEvbkf7qBele+d3X57D+C5PyHgVDWH458mim3Q9i7groCHCjIDkuP41oheLFyxmxtP70u3dnhFhDHtwb4jFby0KpfvZqbQp0u023ECyqbaCCJ3TPH0Ip78ZJfbUYwxTZi7dDtK++89gBWIoNI/KY6LvL2Ig3ZFkzFBpyP1HsAKRND5vrcXMc+uaDIm6Dz6oWcdl++d3d/lJM6wAhFk+ifFcfHIXiz8NIfCEutFGBMs8g6X83KWp/fQux1fudSQFYggdMeUAVTV1tlMr8YEkb/+Zzsiwu3ndIzeA1iBCEoZibF8Z0wfFn2WQ36xzdFkjNt2FZXx6po8rhiXSs+EjtF7ACsQQeuOKQOor1f+9uE2t6MY0+H9+f2thIcKt3aAK5casgIRpFK6RnP52BReWpVL7qFyt+MY02FtLShhyfp9XDMxnaS49jnnUlP8KhAiEi0io0Ukzsd7k1o/lgG47Zz+iAh//cB6Eca45U/vbyUmIoybz+hYvQfwo0CIyDggB1gKFIjI3Y2avBOAXAbomdCJK09L49XVeewoLHU7jjEdzsa9xby9IZ/rJ6XTJSbC7TiO86cH8Qfg56qaAEwErhSRxxu8365nWnXbrWf3Iyo8lD/+a6vbUYzpcB55bwudo8O5oZ2u93Ai/hSI4cBTAKq6DpgMDBaRRd71HUwAdY+N5IbTM3hrw3425BW7HceYDmPFjoN8vLWQ753Vn/io9rXWtL/8+YIvB/67XJuqHgXO9772KtaDCLgbT+9Ll+hwHnnP1wJ8xpjWpqo88t5mesRHcdWENLfjuMafAvERcEXDF1S1ErgYCAc6zkXBLomLCufWs/rzybYiPt1R5HYcY9q9f28qYO2eI9zxjQFEhYe6Hcc1/hSIO/CxYI+qVgOXAme3dijzdVdNSKNnQhSPvLsFVXU7jjHtVl298vt/bSGjewzfPbWP23FcdcICoaqFwIhjz0Xk4gbv1arqxyf6DBGJFJH5IpIjIiUislZEph6n/Q9FJF9EikXkaRHp8IsjRIWH8oNvDGBd7hHey853O44x7dbiNXlsLSjlznMHEhbasYdZ/f2vTxKR60XkGjxrSjdXGJALnAkk4FlG9GURSW/cUETOA36KZ2W5dCAD+FUL9tnuTBvTh/5JsTzy7hZq6urdjmNMu1NZU8cf/72VkX0SuPCUnm7HcZ0/90GcAWwDbgBuBLZ6X/Obqpap6v2qultV61X1TWAXcKqP5tcA81U1W1UPAw8C1zZnf+1VWGgIPz1/MDuLyvj7qly34xjT7jyzfDf7iyv56dQhiNj1N/70IPoCaXgGo6O9j/uezE5FJBkYCGT7eHsYsL7B8/VAsoh08/E5c0QkS0SyCgsLTyZSmzFlSBLj0rvy5/e3UVZV63YcY9qNw2XVzF26nXMGJzGh39e+bjokf8YgngWKgee821Hvay0iIuHA88Czqurrus1Y7/6OOfb4a9N8qOo8Vc1U1czExMTGb7dLIsLPLhhMUWkVT9qiQsa0mkc/3E5ZVS0/OX+w21GChr9jEInAn4C/0OCeiOby3li3CKgGbmuiWSkQ3+D5scclLd1vezM6tQsXnNKDeR/v5ECJTQduzMnKPVTOwhU5TBvTh0E9vvZv0Q7L3wIh/O+GuBadmBPPCb35eAa5p6lqTRNNs4GRDZ6PBApU9WBL9tte3X3eYGrq6vm/f9sUHMacrIff3UxICNx57kC3owQVfwtEIZ77IW4HDrRwX48BQ4CLVLXiOO0WArNFZKiIdAHuARa0cJ/tVnr3GK4an85Lq3LZnH/U7TjGtFmrcw7z5hf7mXN6RodaDMgf/lzFdDWe0zxXerd472t+E5E04CZgFJAvIqXebZaIpHofpwKo6rvAI8CHeGaRzQHua87+OorvT+lPXFQ4v37rS7t5zpgWUFUeemsTiXGR3HRmx5vO+0TC/GiT4/3fckAbPPebquZw/FNTsY3a/xH4Y3P309F0jo7g+1MG8OCbm1i6tZCzByW5HcmYNuWtDftZu+cIj0wbQUykP1+HHYs/VzF9hOeS1Ke820DvayYIXDU+jfRu0fzmrS+ptZvnjPFbZU0dD7+7mcE94pjWwafUaEpzxiB2quoC7+P/EpGZrR3K+C8iLISfTh3CtgOlvPj5HrfjGNNmPLN8N7mHKrjnwqGEhthNcb74VSBU9XXgVRF5GHgLQEQ6i8hL2DQYrjtvWDITMrrxx39v5Uh5tdtxjAl6B0oq+dsH2/jm0GQmD+judpyg1ZyZqEbiGWReJSKzgQ3AEWB0IIIZ/4kIv7xoKMUVNfzpfVu/2pgT+d27W6iuq+cXFwxxO0pQ87tAqOo+4Nven5kHvKOqN6lqWaDCGf8N6RnPzHGpLPosh20Fdk+hMU1Zn3uEV1bncf3kvqR3j3E7TlDzu0CIyCggC9gJXAKcIyIvikjnQIUzzXPnNwcSExHKA29usstejfFBVfnVG9l0j43ktrP7ux0n6DXnFNN/gD+q6re9s7GOxHPp64aAJDPN1i02kh98YyCfbCvi/S9bej+jMe3XknX7WLPnCHefP4i4DrrOdHM0p0CMVdX5x554p/CeDXyv9WOZlrpqQhoDkmJ54M1sKmvq3I5jTNAoqazh129/ycg+CUwfY5e1+qM5YxA+pw5V1X+2XhxzssJDQ/jVxcPIPVTBEx/ZbK/GHPOX/2yjqLSKBy4ZTohd1uqXjr2eXjs1sX93LhzRk7lLt5N7qNztOMa4bltBCc8s383lmSmMTLFhU39ZgWin7rlwCCEiPPTWJrejGOMqVeX+N7KJjgjlx+cNcjtOm2IFop3qmdCJ26f0573sApZusQFr03G9vSGf5dsP8uPzBtEtNtLtOG2KFYh27IbJGWQkxnDfP23A2nRMJZU1PPBmNsN6xXPFaWlux2lzrEC0YxFhITx0yXByDpYz98PtbscxxnF//PdWDpRU8etLT7H5llrACkQ7N7F/d749qhePf7STHYWlbscxxjEb9xbz7Ke7mXVaKqNsYLpFHCsQInKbiGSJSJWILDhOu2tFpK7BokKlInKWUznbo19cOJTI8BDufX2j3WFtOoT6euWe1zfSNSaCH5832O04bZaTPYh9wEPA0360XaGqsQ22pYGN1r4lxkVy9/mD+XTHQZas2+d2HGMC7oXP97Au9wj3XDiUhE52x3RLOVYgVHWxd9rwg07t0/zPFeM83ewH39zE4TKbEty0XwVHK3n4nc1M6t+NS0b1cjtOmxasYxCjRaRIRLaKyL0i4nMtQBGZ4z1tlVVYWOirifEKDRF+O+0Uiis80w0Y017dtySb6rp6fv3tUxCxgemTEYwF4mNgOJAETANmAj/21VBV56lqpqpmJiYmOhixbRrcI56bzszg1dV5LN9e5HYcY1rde9n5vJudzx3fGGBTebeCoCsQqrpTVXepar2qbgAeAKa7nau9uP2cAaR3i+bnr22weyNMu1JSWcN9S7IZ3COOG0/PcDtOuxB0BcIHBayf2EqiwkP5zXdOIedgOf/3/la34xjTah5+dzMFJZX8dtoIwkPbwldb8HPyMtcwEYkCQoFQEYnyNbYgIlNFJNn7eDBwL7DEqZwdwcR+3ZkxNoUnP97J+twjbscx5qSt2HGQ5z7bw3UT+9o9D63IyTJ7D1AB/BS40vv4HhFJ9d7rkOptNwX4QkTKgLeBxcBvHMzZIfz8wiEkxUVx96tfUF1b73YcY1qsvLqWn/zjC9K6RdtkfK3Myctc71dVabTdr6p7vPc67PG2u0tVk1U1RlUzVPWXqlrjVM6OIj4qnF9fOpwtBSX8zabhMG3YH/61lT2Hyvntd0bQKSLU7Tjtip2o68CmDEnm0tG9mfvhdjbtO+p2HGOabXXOYZ5evosrx6cyoV83t+O0O1YgOrhffmsonaPDueuV9XaqybQpFdV1/PiV9fRK6MRPpw5xO067ZAWig+sSE8GvLz2FTfuP8tcPtrkdxxi/PfLeZnYWlfHI9BHERvq8l9acJCsQhvOG9eA7Y3ozd+kO1tlVTaYN+HRHEc8s3801E9KY1L+723HaLSsQBoD7LhpGUlwkP3p5nd1AZ4JaSWUNP37lC9K7RfOTqTZTayBZgTAAJHQK5+FpI9hRWMbv3tvidhxjmvTQm1+yv7iCP1w2kugIO7UUSFYgzH+dMTCRq8anMX/ZLpZts7maTPB5d2M+L2XlctOZ/Tg1ravbcdo9KxDmK35+wRD6Jcbwo1fWcaTcpgU3wePA0Up+tvgLhveO54ffGOh2nA7BCoT5ik4Rofx5xmgOlVXz89c22Ap0JijU1yt3vfoFFTV1/Ony0USE2VeXE+wom68Z3juBO785iLc35PPq6jy34xjDsyt28/HWQn5x4VD6J8W6HafDsAJhfJpzRgan9e3Kff/MZmdhqdtxTAe2ad9R/t87mzlncBJXnpZ64h8wrcYKhPEpNET404xRRISFcPuLa6mqtUtfjfPKq2u57cU1dO4Uzu+mj7AV4hxmBcI0qWdCJ343fSTZ+47y23c2ux3HdED3LclmV1EZf5oxim6xkW7H6XCsQJjj+ubQZK6dmM4zy3fz/qYCt+OYDmTJur28sjqP287uz8R+dre0G5xcMOg2EckSkSoRWXCCtj8UkXwRKRaRp0XE/ungop9dMJihPeO569X15B0udzuO6QB2FJby88UbyEzrwh1TBrgdp8NysgexD3gIePp4jUTkPDyLCk0B0oEM4FeBDmeaFhkWyqOzxlBbp9z2wlqb9dUEVEV1Hbc+t4aIsBD+MnM0YbZ8qGucXDBosaq+Dhw8QdNrgPmqmq2qh4EHgWsDnc8cX9/uMfxu+gjW5R7hN29/6XYc047du2QjWw+U8KcZo+nVuZPbcTq0YCzNw4D1DZ6vB5JFxFYDcdnUU3py3aR0Fny6m7e+2O92HNMOvZyVy6ur87j97P6cOTDR7TgdXjAWiFiguMHzY4/jGjcUkTnecY2swsJCR8J1dD+bOoTRqZ25+9X1bD9Q4nYc045s3FvMva9vZGK/btxhU2kEhWAsEKVAfIPnxx5/7dtIVeepaqaqZiYm2r82nBARFsLcWWPoFBHKnEWrKam05cLNyTtUVs1Ni1bTNSaCv8wcTWiI3e8QDIKxQGQDIxs8HwkUqOqJxi6MQ3omdOJvV4wh52A5d768nvp6m6/JtFxtXT23v7iGwtIqHr/yVLrb/Q5Bw8nLXMNEJAoIBUJFJEpEfE3mvhCYLSJDRaQLcA+wwKmcxj/jM7rxiwuG8O9NBfztw+1uxzFt2O/e28Ly7Qd56NvDGZnS2e04pgEnexD3ABV4LmG90vv4HhFJFZFSEUkFUNV3gUeAD4Ec73afgzmNn66blM6lo3vzf8PDN34AABHlSURBVO9v5V/Z+W7HMW3Q62v38sTHO7lyfCqXZaa4Hcc0Iu1lOufMzEzNyspyO0aHU1lTx+VPrGDbgVL+cctEhvSMP/EPGQOs3XOYy+d9xpjUziyafRrhdr+DK0Rktapm+nrP/h8xJyUqPJR5V2cSFxXGDc9mUVRa5XYk0wbsL65gzqLV9IiP4rFZp1pxCFL2/4o5acnxUTx5dSYHy6q4edFqm/nVHFd5dS03LsyiorqOp67JpEtMhNuRTBOsQJhWMaJPZ37/3ZFk5Rzm7le/sJXojE919cr3X1zHpn1H+cvMUQxM/trtTSaI+LqKyJgW+daIXuw5VM4j724htWs0Pzp3kNuRTJB58M1NvP9lAQ9cMoxzBie7HcecgBUI06puObMfew6W89cPtpPSJZrLxtqVKcbj6WW7WPDpbmZP7svVE9LdjmP8YAXCtCoR4cFvD2fvkQp+/toGkuIjOWtQktuxjMve2bCfB9/axHnDkvn5BUPcjmP8ZGMQptWFh3qm4xjUI45bnlvD2j2H3Y5kXPTpjiLu+Ps6xqR24U+X2zQabYkVCBMQcVHhLLhuHEnxkVy/YBXbD5S6Hcm4YOPeYuYsXE1at2jmX5NJp4hQtyOZZrACYQImMS6ShdePIzREuObpz9l3pMLtSMZBOQfLuPaZVcRHhbFw9jg6R9vlrG2NFQgTUGndYlhw3TiOVtRw5VMrKSyxG+k6gn1HKrjiyZXU1dfz7PXj6JlgC/+0RVYgTMAN753AM9eNZX9xJVfNX8mR8mq3I5kAOlBSyaynVnK0ooZFs09jgN3r0GZZgTCOyEzvypNXZ7KzsIxrnv7c1pFopw6XVXP1/M/JL65kwfVjGd47we1I5iRYgTCOmTygO3NnjSF731GutiLR7hwuq2bWUyvZWVTGU9dkcmpaV7cjmZNkBcI46htDk/nbFWPYkFfM1U9/zlErEu3CobJqrnhqJdsLS3nq6kwm9e/udiTTCqxAGMedP7wHj87yFon5ViTaukPHeg7e4nDGQFv+t71wckW5riLymoiUiUiOiFzRRLv7RaTGu4jQsS3DqZzGGecN6+E93VTMFU9+xkGbJrxNKjhayeVPrGBnYSlPWnFod5zsQTwKVAPJwCzgMREZ1kTbl1Q1tsG207GUxjHnDuvBvKsz2VZQyuXzPqPgaKXbkUwz5B4q57uPr2DfkQoWXDfOikM75EiBEJEYYBpwr6qWquoy4J/AVU7s3wSvswcl8ez148gvrmT645+y52C525GMH7YfKOG7j6+guKKG528cz4R+3dyOZALAqR7EQKBOVbc2eG090FQP4iIROSQi2SJyS1MfKiJzRCRLRLIKCwtbM69x0PiMbjx/w2mUVNbynceWsyGv2O1I5jhW7T7EtMdWUFuvvHTTeEaldHY7kgkQpwpELND4r74Y8HUHzcvAECARuBH4pYjM9PWhqjpPVTNVNTMx0bq3bdnIlM68evNEIsNCuXzeCj7aagU/GL27MZ8rn1pJt5gIXrt1IoN72Brk7ZlTBaIUaPybFA+UNG6oqptUdZ+q1qnqp8CfgekOZDQu658Uy+JbJ5LWLYbZC1bx8qpctyMZL1VlwfJd3PL8aob2iufVWyaS0jXa7VgmwJwqEFuBMBEZ0OC1kUC2Hz+rgM0P3EEkx0fx8k2ec9p3/+MLfvP2l9TV2/Klbqqpq+feJRu5/41NTBmczAs3jKerrSPdIThSIFS1DFgMPCAiMSIyCbgEWNS4rYhcIiJdxGMc8H1giRM5TXCIiwrn6WvHctX4NOZ9vJObFq2mtKrW7VgdUnFFDdcvWMVzn+3hpjMyeOKqU23K7g7EyctcbwU6AQeAF4FbVDVbRE4XkYaLBcwAtuM5/bQQeFhVn3UwpwkC4aEhPPjt4fzq4mF8sLmA78xdzs5CW1PCSVvyS7jkb8v4bOdBHpk+gp9dMMQW++lgRLV9dN8zMzM1KyvL7RgmAJZtK+L2F9dQW6f88fJRfHOoLXYfaG+s38fdr35BbFQYc2eNYWy6zavUXonIalXN9PWeTbVhgt7kAd154/bJpHWP5saFWfzuvc3U1tW7Hatdqqqt41dvZHP7i2sZ1iuet26fbMWhA7MCYdqEPl2iefXmiVyemcKjH+5gxrzP2Gsr1LWq3UVlTH9sBc8s3821E9N54cbxJMVHuR3LuMgKhGkzosJDeXj6CP48YxSb80u44M+f8O7G/W7HavNUldfX7uVbf13GnkPlPHHVqdx/8TAiwuzroaOz3wDT5lwyqjdvfX8yad2iufm5NfzwpXUUV9iMsC1xsLSKW59fww9eWsfgHnG8fcfpnDesh9uxTJAIczuAMS2R1i2Gf9wykb99sJ2/fbidFTsO8vD0EZxpE8b57b3sfH7x2gaOVtTyk/MHM+eMDLtKyXyF9SBMmxUeGsIPvzmQ126dSGxUGNc8/Tl3/H0tRTZ1+HHlF1dy86LV3LRoNYlxUfzz9kncclY/Kw7ma+wyV9MuVNbUMXfpDh5bup3oiDB+NnUwl2WmEGJfev9VW1fP8yv38Lv3tlBTV88d3xjAjadnEB5q/07syI53masVCNOubCso4eevbWDV7sOc0juB+y4aSqZdpsny7UU88MYmthSUMLl/d3596XDSusW4HcsEASsQpkNRVZas28dv39lM/tFKvjWiJ3edO4j07h3vC3FbQQm/e28L/9pUQJ8unfjFBUM4f3gPRKxnZTysQJgOqby6lseX7uDJT3ZRXVfPZZkp3DFlAD0S2v+1/bmHyvnT+9t4bW0e0RFh3HxmBjecnkFUuM2jZL7KCoTp0A6UVPLoB9t54fM9iAjTT+3DTWdktMtTLNsPlPL4Rzt4fe1eQkKEayakcctZ/W32VdMkKxDG4PlX9dylO/jH6jxq6+u54JSeXDepL2NSO7fpUy6qyspdh1iwfDfvbconMiyEGWNTuenMDHomdHI7nglyViCMaeDA0UrmL9vFCyv3UFJVy7Be8Vw9IY0LR/QiNrLt3Bp0tLKGf67bx6IVOWwpKCGhUzhXjU/juknpdIuNdDueaSOsQBjjQ1lVLa+t3cvCFbvZWlBKp/BQzh/eg0tH92ZCv25BeflndW09y7YXsnjNXv61qYDq2nqG9ozn2onpXDSyl63VYJrNCoQxx6GqrM45zOK1e3lz/T6OVtaS0CmcKUOSOHdoDyb170ZcVLhr+YrLa1i2vYj3svP5cPMBSqpq6RIdzsUje3HpmD6M7JPQpk+RGXcFRYEQka7AfOBcoAj4maq+4KOdAL8FbvC+NB/4iZ4gqBUI0xoqa+pYuqWQf23K5z9fHqC4oobQEGFknwQm9e/OmLQujOzTOaCDvkWlVazPPcLqnMMs317Ehr3F1Ct0jYngG96idcbARJtMz7SK4xUIJ0+4PgpUA8nAKOAtEVmvqo3XpZ4DfBvPmtUK/BvYCTzuYFbTQUV5TzOdP7wHNXX1ZO32fEkv31HE3KU7/rs+dkrXTgxKjqd/Uiz9EmPo0yWaHglR9IiP8us0T1lVLflHKykoriTvcAU7CkvZUVjKl/tL/juNeViIMDq1M7efM4DJA7ozOqUzYUF42su0X470IEQkBjgMDFfVrd7XFgF7VfWnjdp+CixQ1Xne57OBG1V1/PH2YT0IE2ilVbVs3FvM+twjrM87wraCUnYfLKOm7qt/Q5FhIcRFhRETGUaE9wtd8YwflFXVUlJVS3XtVxc8iggLIaN7DP2TYhnZpzOjUjszrFc80RFtZ9DctE3B0IMYCNQdKw5e64EzfbQd5n2vYbthvj5URObg6XGQmpraOkmNaUJsZBjjM7oxPqPbf1+rrasn93AF+45UkF9cSf7RSo5W1FBSVUtpZS219f8rBOGhIcRGhhEbFUbnThH0SIgkOT6K3p070adLtE2WZ4KOUwUiFihu9FoxEOdH22IgVkSk8TiEt5cxDzw9iNaLa4x/wkJD6Ns9hr4dcBoP0/45dUKzFIhv9Fo8UOJH23ig9ESD1MYYY1qXUwViKxAmIgMavDYSaDxAjfe1kX60M8YYE0COFAhVLQMWAw+ISIyITAIuARb5aL4QuFNEeotIL+BHwAInchpjjPkfJ6+ZuxXoBBwAXgRuUdVsETldREobtHsCeAPYAGwE3vK+ZowxxkGOXUOnqofw3N/Q+PVP8AxMH3uuwN3ezRhjjEvsrhtjjDE+WYEwxhjjkxUIY4wxPrWb2VxFpBDIaeGPd8czgWCwsVzNY7maL1izWa7mOZlcaaqa6OuNdlMgToaIZDU1F4mbLFfzWK7mC9Zslqt5ApXLTjEZY4zxyQqEMcYYn6xAeMxzO0ATLFfzWK7mC9Zslqt5ApLLxiCMMcb4ZD0IY4wxPlmBMMYY45MVCGOMMT51uAIhIpEiMl9EckSkRETWisjUE/zMD0UkX0SKReRpEYkMULbbRCRLRKpEZMEJ2l4rInUiUtpgO8vtXN72Th2vriLymoiUef//vOI4be8XkZpGxyvD6Szi8bCIHPRuj4hIwNYabUaugB6fRvtqzu+5I79Lzc3m8N9fs76zWvOYdbgCgWcG21w862EnAPcCL4tIuq/GInIe8FNgCpAOZAC/ClC2fcBDwNN+tl+hqrENtqVu53L4eD0KVAPJwCzgMRHxuX6510uNjtdOF7LMwTOr8UhgBPAt4KZWzNHSXBDY49OQX79PDv8uNSubl1N/f35/Z7X6MVPVDr8BXwDTmnjvBeA3DZ5PAfIDnOchYMEJ2lwLLHP4OPmTy5HjBcTg+eIb2OC1RcBvm2h/P/BcgI6L31mAT4E5DZ7PBj4LglwBOz4t/X1y42+vGdkc//trtH+f31mtfcw6Yg/iK0QkGRhI08uaDgPWN3i+HkgWkW6BzuaH0SJSJCJbReReEXFsfY/jcOp4DQTqVHVro30drwdxkYgcEpFsEbnFpSy+js/xMjuVCwJ3fFoqmP/2wKW/vxN8Z7XqMevQBUJEwoHngWdVdXMTzWKB4gbPjz2OC2Q2P3wMDAeSgGnATODHribycOp4Nd7PsX01tZ+XgSFAInAj8EsRmelCFl/HJzZA4xDNyRXI49NSwfq3By79/fnxndWqx6zdFQgRWSoi2sS2rEG7EDzd7WrgtuN8ZCkQ3+D5scclgcjlL1Xdqaq7VLVeVTcADwDTm/s5rZ0L545X4/0c25fP/ajqJlXdp6p1qvop8GdacLya0Jwsvo5PqXrPB7Qyv3MF+Pi0VKv8LgVCa/39NYef31mteszaXYFQ1bNUVZrYJoPnShJgPp6Bu2mqWnOcj8zGM6B4zEigQFUPtnauk6RAs/8VGoBcTh2vrUCYiAxotK+mThV+bRe04Hg1oTlZfB0ffzMHMldjrXl8WqpVfpccEtDj1YzvrFY9Zu2uQPjpMTzd6YtUteIEbRcCs0VkqIh0Ae4BFgQilIiEiUgUEAqEikhUU+c1RWSq91wkIjIYz5UNS9zOhUPHS1XLgMXAAyISIyKTgEvw/AvL13/DJSLSRTzGAd+nlY5XM7MsBO4Ukd4i0gv4EQH6fWpOrkAeHx/78vf3ybG/veZmc/Lvz8vf76zWPWZujcK7tQFpeKp9JZ7u2LFtlvf9VO/z1AY/cydQABwFngEiA5Ttfm+2htv9vnIBv/dmKgN24unihrudy+Hj1RV43XsM9gBXNHjvdDynbo49fxE46M26Gfi+E1l85BDgEeCQd3sE75xoTh4jp4+PP79Pbv4uNTebw39/TX5nBfqY2WR9xhhjfOqop5iMMcacgBUIY4wxPlmBMMYY45MVCGOMMT5ZgTDGGOOTFQhjjDE+WYEwxhjjkxUIY4wxPlmBMMYY45MVCGMCQET6eddWGON93su7dsBZLkczxm821YYxASIiN+KZF+dU4DVgg6re5W4qY/xnBcKYABKRfwJ98Uy2NlZVq1yOZIzf7BSTMYH1JJ6Vx/5qxcG0NdaDMCZARCQWz5rAHwJTgVNU9ZC7qYzxnxUIYwJEROYDcap6mYjMAzqr6mVu5zLGX3aKyZgAEJFLgPOBm70v3QmMEZFZ7qUypnmsB2GMMcYn60EYY4zxyQqEMcYYn6xAGGOM8ckKhDHGGJ+sQBhjjPHJCoQxxhifrEAYY4zxyQqEMcYYn/4/4/tCvGNWZU4AAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(f, 'x', 'x**2')"]},{"cell_type":"markdown","metadata":{"id":"hdqCtnxfz7cd"},"source":["The sequence of steps we described earlier starts by picking some random value for a parameter, and calculating the value of the loss:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3oPoH6_-z7cd","outputId":"b7517371-23e5-46a6-af43-f5a95ed8b5f5"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYgAAAEMCAYAAADeYiHoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3yV5f3/8dcnm0xWEmYSwh6yDMhy0qpo1VqogrhRHNXaWrVDrdb1q3Z8OxQVRREcdRSlbmsVFUQkbIJsCGEkJIyQPT+/P86hjfEETkLOfZ8kn+fjcT96xpVzv72bnA/Xfd33dYmqYowxxtQX4nYAY4wxwckKhDHGGJ+sQBhjjPHJCoQxxhifrEAYY4zxKcztAM2lc+fOmpaW5nYMY4xpUVasWFGgqom+3ms1BSItLY3MzEy3YxhjTIsiItkNvWenmIwxxvhkBcIYY4xPViCMMcb4ZAXCGGOMT1YgjDHG+OR4gRCRviJSLiIvNvC+iMijInLAuz0mIuJ0TmOMaevcuMz1CWD5Md6fCfwQGAYo8G9gO/BU4KMZY4w5ytEehIhMBQ4D/zlGs6uAP6nqblXdA/wJuDpQmVbnHObRDzYG6uONMSZgVJWH391A1t7CgHy+YwVCROKBB4BfHKfpYGBNnedrvK/5+syZIpIpIpn5+flNyrVu92GeXLSN9XsCc4CNMSZQvtp+kGe+2MGm3KKAfL6TPYgHgTmqmnOcdrFA3W/rQiDW1ziEqs5W1QxVzUhM9Hmn+HFdOLw7kWEh/GP5rib9vDHGuOXV5buIiwpj0pCuAfl8RwqEiAwHvgf8nx/Ni4H4Os/jgWIN0NJ3Ce3COe+krixcvZeyyppA7MIYY5pdYWkV76/P5aLh3WgXERqQfTjVgzgDSAN2iUgucAcwWURW+mibhWeA+qhh3tcC5pKMnhSVV/P++n2B3I0xxjSbhWv2UFFdy9RRKQHbh1MFYjbQGxju3Z4C3gXO8dF2HnC7iHQXkW54xizmBjLcmPSOpHWK5tXlxzv7ZYwxweHV5TkM6hrPkO4JAduHIwVCVUtVNffohuc0Urmq5ovIqSJSXKf508DbwDpgPZ5C8nQg84kIP87oybIdB9meX3z8HzDGGBet31NI1t4jTB3dM6D7ceVOalW9X1Uv9z7+QlVj67ynqnqXqnb0bncFavyhrikn9yA0RHgtc3egd2WMMSfkH8t3ERkWwkXDugd0PzbVhldyfBRn9k/kjRW7qaqpdTuOMcb4VFZZw8LVe5k0pAsJ0eEB3ZcViDouHZVCQXEFn2zc73YUY4zx6b11+ygqr+aSUYE9vQRWIL7lzP6JJMdH8srXdk+EMSY4vfL1Lnp1jmFseqeA78sKRB1hoSFcktGTzzbns+dwmdtxjDHmW7bkFZGZfYipo3rixBymViDquSTD022zS16NMcHmla9zCA8VJp/cw5H9WYGop2fHaE7rm8jrmTlU22C1MSZIlFfVsGDVbs4e3IXOsZGO7NMKhA/TRvdkX2E5n21u2gSAxhjT3D7MyuVwaRXTAnjndH1WIHyYODCZzrGRvPK1nWYyxgSHV77eRUrHaMb1Dvzg9FFWIHwIDw3hkowefLIxj9zCcrfjGGPauO35xXy1/SBTR/ckJMS5BTatQDRg6qgUatUGq40x7nvl612EhQhTHBqcPsoKRANSOkVzWr9E/rF8lw1WG2NcU15Vw+srdnPO4C4kxUU5um8rEMcw/ZQU9hWW8+kmG6w2xrjj/fX7OFxaxWWnODc4fZQViGOYOCCJ5PhIXlqW7XYUY0wb9dJXzt05XZ8ViGMICw3h0lEpfLY5n5yDpW7HMca0MRtzj5CZfYjLRqc4Ojh9lBWI45g6qicCNj+TMcZxLy/bRURoiGN3TtfnWIEQkRdFZJ+IHBGRzSJyXQPtrhaRGhEprrOd4VTO+rq1b8dZA5J5LXM3ldU2WG2McUZpZTVvrtzDeSd1oWNMhCsZnOxB/D8gTVXjgQuBh0Tk5AbaLlXV2DrbIsdS+jB9jGca8A+zct2MYYxpQ/61ei9FFdVcdkqqaxkcKxCqmqWqFUeferfeTu3/RJzWN5GeHdvx4lc2WG2MCTxVZd7SbPonxzEqrYNrORwdgxCRWSJSCmwE9gHvNdB0hIgUeE9F3SsiYQ183kwRyRSRzPz8wF2KGhoiTD8llWU7DrI5ryhg+zHGGIBVOYfZsO8Il49NdWRa74Y4WiBU9WYgDjgVWABU+Gj2OTAESAImA9OAOxv4vNmqmqGqGYmJiYEJ7XVJRk8iwkKsF2GMCbgXl2YTGxnGxSMCu+b08Th+FZOq1qjqYqAHcJOP97er6g5VrVXVdcADwBSnc9bXMSaCH5zUlQUr91BcUe12HGNMK3WwpJJ31u7jRyO7Exvp8+SJY9y8zDUM/8YgFHCvj1XH5WNTKa6o5q1Ve9yOYoxppV7LzKGyppbLx7g3OH2UIwVCRJJEZKqIxIpIqIicg+fU0Sc+2k4SkWTv4wHAvcBCJ3Iez4ie7RncLZ4Xv8pGVd2OY4xpZWpqlZeWZXNKr470S45zO45jPQjFczppN3AI+CPwM1VdKCIp3nsdjk40MhFYKyIleAaxFwCPOJTzmESEK8aksjHXsy6sMcY0p88355NzsIwrxrrfewDPaZ6AU9V84PQG3tsFxNZ5fgdwhxO5muLC4d145L1veOHLnYxK6+h2HGNMK/LC0p0kxkVy9qAubkcBbKqNRouOCOOSjJ58sD6XvCO2mJAxpnnsLChh0aZ8pp+SQkRYcHw1B0eKFuaKsanUqPLSMpufyRjTPOYtzSY8VFyZ1rshViCaILVTDGf2T+LlZbtsfiZjzAkrqajm9RU5TBrS1fFFgY7FCkQTXTk2lYLiCt5fv8/tKMaYFu7NVXsoKq/mqnHBMTh9lBWIJjqtbyK9Osfwwpc73Y5ijGnBPPMu7WRI93hGprg375IvViCaKCTEc8nryl2HWbe70O04xpgWaun2A2zOK+bKsWmuzrvkixWIEzAlowfREaE8/+UOt6MYY1qouUt20iE6nAuHdXM7yndYgTgB8VHhTDm5B++s2Ud+ka95B40xpmE5B0v5+Js8po1OISo81O0432EF4gRdNS6NyppaXrZLXo0xjTRv6U7PDA1Bcud0fVYgTlDvxFjO6J/Ii8uy7ZJXY4zfSiqq+cfyHCYN6ULXhHZux/HJCkQzuHpcGvlFFby7bq/bUYwxLcSClbspKq/mmvFpbkdpkBWIZnBa30TSE2N4fslOm+XVGHNctbXK81/uZGiPhKC7tLUuKxDNICREuGZcGmt3F7Jyl83yaow5ti+2FrA9v4Rrxgffpa11WYFoJj8a2YP4qDCeW7LT7SjGmCD33OIdJMZFcv5JwXdpa11WIJpJTGQY00an8P66feQcLHU7jjEmSG3JK+KzzflcOSY1aGZtbYhj6UTkRRHZJyJHRGSziFx3jLY/F5FcESkUkedEJNKpnCfiqnGe7qJNv2GMachzS3YQGRbC9CBYUvR4nCxf/w9IU9V44ELgIRE5uX4j73Kkv8KzslwakA78zsGcTdatfTvOO6krry7Poai8yu04xpggc6C4gn+u3MOPRvagY0yE23GOy7ECoapZqnr0dmP1br19NL0KmONtfwh4ELjamZQnbsaEXhRVVPNa5m63oxhjgsxL3iUCZkxIczuKXxw9ASYis0SkFNgI7MOz5nR9g4E1dZ6vAZJFpJOPz5spIpkikpmfnx+QzI01vGd7MlI78PySHdTU2iWvxhiPiuoa5i3N5oz+ifRJinM7jl8cLRCqejMQB5wKLAB8TWAUC9SdHvXo4+8cUVWdraoZqpqRmJjY3HGbbMaEXuw+VMZHWbluRzHGBIl/rd5LQXEFMyb0cjuK3xwfQlfVGlVdDPQAbvLRpBiIr/P86OOiQGdrLmcP7kLPju14drHN8mqM8az5MGfxDvonxzGhT2e34/jNzWuswvA9BpEFDKvzfBiQp6oHHEnVDEJDhBnje7Ei+xArsg+6HccY47LPtxSwMbeI609LD+ob4+pzpECISJKITBWRWBEJ9V6pNA34xEfzecAMERkkIh2Ae4C5TuRsTj/O6ElCu3Bmf77d7SjGGJc98/l2kuMjg3LNh2NxqgeheE4n7QYOAX8EfqaqC0UkRUSKRSQFQFU/AB4DPgWyvdt9DuVsNjGRYVwxJpWPNuSxo6DE7TjGGJdk7S1k8dYCrhnfK+hvjKvPkbSqmq+qp6tqe1WNV9WTVPUZ73u7VDVWVXfVaf9nVU32tr2mzuWxLcqV41IJDwlhzmLrRRjTVj3z+XZiIkKZNjrF7SiN1rLKWQuTFBfFxSO683rmbg4Ut8gaZ4w5AXsPl/H22n1MHZ1CQrtwt+M0mhWIALvu1F5UVNcy/6tst6MYYxz2/BLPlYzBvObDsViBCLC+yXFMHJDEvKXZlFXWuB3HGOOQwtIqXl62ix8M7UqPDtFux2kSKxAOuPGM3hwsqeS1zBy3oxhjHPLismxKKmu44TRfV/O3DFYgHDAqrSMnp3bgmS+2U11j61Yb09qVV9Xw/JIdnNYvkUHd4o//A0HKCoRDbjy9N7sPlfHuun1uRzHGBNgbK3ZTUFzJjaenux3lhFiBcMjEAUn0TYrlqc+227rVxrRiNbXKM19sZ1iPBMamf2eO0RbFCoRDQkKEmael882+I3y2OThmnjXGNL/31+8j+0ApN57eu0VNq+GLFQgHXTS8O10Tonhy0Ta3oxhjAkBVeeqzbfTqHMPZg7u4HeeEWYFwUERYCNedms6yHQdZkX3I7TjGmGb2+ZYC1u85wo2npxMa0rJ7D2AFwnHTRvekQ3Q4Ty7a6nYUY0wzm/XpVromRHHxiB5uR2kWViAcFh0RxrXje/HxN/v5Zt8Rt+MYY5pJ5s6DLNtxkOtPTW9xk/I1pHX8V7QwV45NIzYyzMYijGlFZi3aRseYCKaO7ul2lGZjBcIFCdHhTB+Twjtr97LTpgI3psXL2lvIJxv3c824NKIjwtyO02ycWjAoUkTmiEi2iBSJyCoRmdRA26tFpMa7RsTR7QwncjppxoRehIWG8NRn1oswpqV7ctE2YiPDuHJsmttRmpVTPYgwIAc4HUgA7gVeE5G0Btov9a4RcXRb5EhKByXFRTF1VE/+uXI3ew6XuR3HGNNEW/cX8+66fVw+JpWE6JY3pfexOLVgUImq3q+qO1W1VlXfAXYAJzux/2B1w+meSbyetl6EMS3WrE+3EhkWwnWn9nI7SrNzZQxCRJKBfkBWA01GiEiBiGwWkXtFxOdJPRGZKSKZIpKZn9/y7k7u3r4dk0f24B/Lc9h/pNztOMaYRso+UMLCNXu5/JRUOsdGuh2n2TleIEQkHHgJeEFVN/po8jkwBEgCJgPTgDt9fZaqzlbVDFXNSExMDFTkgLr5jD7U1CpPf27LkhrT0sz6dBuh3ml0WiNHC4SIhADzgUrgFl9tVHW7qu7wnopaBzwATHEwpqNSOkVz0fBuvLQsmwJbltSYFmP3oVL+uXI300b1JCk+yu04AeFYgRDPrFVzgGRgsqpW+fmjCrT8e9aP4Sdn9qGiupZnvrBehDEtxVOfbUPkf2OJrZGTPYgngYHABara4GU7IjLJO0aBiAzAc8XTQmciuqN3Yiw/GNqN+UuzOVhS6XYcY8xx7Css47Xlu5lyck+6tW/ndpyAceo+iFTgBmA4kFvn/obpIpLifZzibT4RWCsiJcB7wALgESdyuumnZ/WhrKqG2TYWYUzQm/XpNmpV+cmZrbf3AJ77EwJOVbM59mmi2Dpt7wDuCHioINM3OY4fDO3GvKU7uf7UXnRqhVdEGNMa7D1cxqvLc/hxRk96dIh2O05A2VQbQeS2iZ5exDNf7HA7ijGmAbMWbUVp/b0HsAIRVPokxXGBtxdxwK5oMibotKXeA1iBCDo/9fYiZtsVTcYEnSc+9azj8pMz+7icxBlWIIJMn6Q4LoyvZN5/viE/tiOkpcFLL7kdy5g2b/ehUl7L9PQeurfiK5fqsgIRbF56idsev5OKkDCeOmUyZGfDzJlWJIxx2d//sxUR4daz2kbvAaxABJ+77yZ97zZ+lPUJ80ecR25sJygthbvvdjuZMW3WjoIS3li5m8tGp9A1oW30HsAKRPDZtQuA25b8g1oJ4fGxl3zrdWOM8/768WbCQ4Wb28CVS3VZgQg2KZ77BXsW5nHp2o94ddjZ5MQn/fd1Y4yzNucVsXDNXq4al0ZSXOucc6khfhUIEYkWkREiEufjvfHNH6sNe/hhiPZcPnfL0lcRVf5+2uWe140xjvvLx5uJiQjjxtPaVu8B/CgQIjIayAYWAXkicle9Ju8HIFfbNX06zJ4Nqal0LT7I5dsW88bgM9l29kVuJzOmzVm/p5D31uVy7fg0OsREuB3Hcf70IP4E/EZVE4BxwOUi8lSd91v1TKuumD4ddu6E2lpunv8IURFh/PmjzW6nMqbNeezDTbSPDue6Vrrew/H4UyCGAM8CqOpqYAIwQETme9d3MAHUOTaS605N5911+1i3u9DtOMa0GUu3HeDzzfn85Iw+xEe1rrWm/eXPF3wp8N/l2lT1CHCu97U3sB5EwF1/ai86RIfz2Ie+FuAzxjQ3VeWxDzfSJT6KK8amuh3HNf4UiM+Ay+q+oKrlwIVAONB2Lgp2SVxUODef0YcvthTw5bYCt+MY0+r9e0Meq3Yd5rbv9SUqPNTtOK7xp0Dcho8Fe1S1ErgYOLO5Q5nvumJsKl0Tonjsg02oqttxjGm1amqVP360ifTOMfz45B5ux3HVcQuEquYDQ48+F5EL67xXraqfH+8zRCRSROaISLaIFInIKhGZdIz2PxeRXBEpFJHnRKTNL44QFR7Kz77Xl9U5h/kwK9ftOMa0WgtW7mZzXjG3n92PsNC2Pczq7399kohcKyJX4VlTurHCgBzgdCABzzKir4lIWv2GInIO8Cs8K8ulAenA75qwz1Zn8sge9EmK5bEPNlFVU+t2HGNanfKqGv78780M65HA+Sd1dTuO6/y5D+I0YAtwHXA9sNn7mt9UtURV71fVnapaq6rvADuAk300vwqYo6pZqnoIeBC4ujH7a63CQkP41bkD2F5Qwj+W57gdx5hW5/klO9lXWM6vJg1ExK6/8acH0QtIxTMYHe193OtEdioiyUA/IMvH24OBNXWerwGSRaSTj8+ZKSKZIpKZn59/IpFajIkDkxid1pG/fryFkopqt+MY02ocKqlk1qKtnDUgibG9v/N10yb5MwbxAlAIvOjdjnhfaxIRCQdeAl5QVV/XbcZ693fU0cffmeZDVWeraoaqZiQmJtZ/u1USEX593gAKiit4xhYVMqbZPPHpVkoqqvnluQPcjhI0/B2DSAT+AvyNOvdENJb3xrr5QCVwSwPNioH4Os+PPi5q6n5bmxEpHTjvpC7M/nw7+4vK3Y5jTIuXc7CUeUuzmTyyB/27fOffom2WvwVC+N8NcU06MSeeE3pz8AxyT1bVqgaaZgHD6jwfBuSp6oGm7Le1uuucAVTV1PJ//7YpOIw5UY9+sJGQELj97H5uRwkq/haIfDz3Q9wK7G/ivp4EBgIXqGrZMdrNA2aIyCAR6QDcA8xt4j5brbTOMVwxJo1Xl+ewMfeI23GMabFWZB/inbX7mHlqeptaDMgf/lzFdCWe0zyXe7d472t+E5FU4AZgOJArIsXebbqIpHgfpwCo6gfAY8CneGaRzQbua8z+2oqfTuxDXFQ4D7/7jd08Z0wTqCoPvbuBxLhIbji97U3nfTxhfrTJ9v5vKaB1nvtNVbM59qmp2Hrt/wz8ubH7aWvaR0fw04l9efCdDSzanM+Z/ZPcjmRMi/Luun2s2nWYxyYPJSbSn6/DtsWfq5g+w3NJ6rPerZ/3NRMErhiTSlqnaB559xuq7eY5Y/xWXlXDox9sZECXOCa38Sk1GtKYMYjtqjrX+/i/RGRac4cy/osIC+FXkwayZX8xr3xt61Yb46/nl+wk52AZ95w/iNAQuynOF78KhKq+BbwhIo8C7wKISHsReRWbBsN15wxOZmx6J/78780cLq10O44xQW9/UTmPf7KF7w9KZkLfzm7HCVqNmYlqGJ5B5uUiMgNYBxwGRgQimPGfiPDbCwZRWFbFXz7e4nYcY4LeHz7YRGVNLXefN9DtKEHN7wKhqnuBH3p/ZjbwvqreoKolgQpn/DewazzTRqcw/6tstuTZPYXGNGRNzmFeX7Gbayf0Iq1zjNtxgprfBUJEhgOZwHbgIuAsEXlFRNoHKpxpnNu/34+YiFAeeGeDXfZqjA+qyu/ezqJzbCS3nNnH7ThBrzGnmP4D/FlVf+idjXUYnktf1wUkmWm0TrGR/Ox7/fhiSwEff9PU+xmNab0Wrt7Lyl2Huevc/sS10XWmG6MxBWKUqs45+sQ7hfcM4CfNH8s01RVjU+mbFMsD72RRXlXjdhxjgkZReRUPv/cNw3okMGWkXdbqj8aMQficOlRV/9V8ccyJCg8N4XcXDibnYBlPf2azvRpz1N/+s4WC4goeuGgIIXZZq1/a9np6rdS4Pp05f2hXZi3aSs7BUrfjGOO6LXlFPL9kJ5dm9GRYTxs29ZcViFbqnvMHEiLCQ+9ucDuKMa5SVe5/O4voiFDuPKe/23FaFCsQrVTXhHbcOrEPH2blsWiTDVibtuu9dbks2XqAO8/pT6fYSLfjtChWIFqx6yakk54Yw33/sgFr0zYVlVfxwDtZDO4Wz2WnpLodp8WxAtGKRYSF8NBFQ8g+UMqsT7e6HccYx/3535vZX1TBwxefZPMtNYEViFZuXJ/O/HB4N576bDvb8ovdjmOMY9bvKeSFL3cy/ZQUhtvAdJM4ViBE5BYRyRSRChGZe4x2V4tITZ1FhYpF5AyncrZGd58/iMjwEO59a73dYW3ahNpa5Z631tMxJoI7zxngdpwWy8kexF7gIeA5P9ouVdXYOtuiwEZr3RLjIrnr3AF8ue0AC1fvdTuOMQH38te7WJ1zmHvOH0RCO7tjuqkcKxCqusA7bfgBp/Zp/uey0Z5u9oPvbOBQiU0JblqvvCPlPPr+Rsb36cRFw7u5HadFC9YxiBEiUiAim0XkXhHxuRagiMz0nrbKzM/P99XEeIWGCL+ffBKFZZ7pBoxpre5bmEVlTS0P//AkRGxg+kQEY4H4HBgCJAGTgWnAnb4aqupsVc1Q1YzExEQHI7ZMA7rEc8Pp6byxYjdLtha4HceYZvdhVi4fZOVy2/f62lTezSDoCoSqblfVHapaq6rrgAeAKW7nai1uPasvaZ2i+c2b6+zeCNOqFJVXcd/CLAZ0ieP6U9PdjtMqBF2B8EEB6yc2k6jwUB750UlkHyjl/z7e7HYcY5rNox9sJK+onN9PHkp4aEv4agt+Tl7mGiYiUUAoECoiUb7GFkRkkogkex8PAO4FFjqVsy0Y17szU0f15JnPt7Mm57DbcYw5YUu3HeDFr3Zxzbheds9DM3KyzN4DlAG/Ai73Pr5HRFK89zqkeNtNBNaKSAnwHrAAeMTBnG3Cb84fSFJcFHe9sZbK6lq34xjTZKWV1fzyn2tJ7RRtk/E1Mycvc71fVaXedr+q7vLe67DL2+4OVU1W1RhVTVfV36pqlVM524r4qHAevngIm/KKeNym4TAt2J8+2syug6X8/kdDaRcR6nacVsVO1LVhEwcmc/GI7sz6dCsb9h5xO44xjbYi+xDPLdnB5WNSGNu7k9txWh0rEG3cb38wiPbR4dzx+ho71WRalLLKGu58fQ3dEtrxq0kD3Y7TKlmBaOM6xETw8MUnsWHfEf7+yRa34xjjt8c+3Mj2ghIemzKU2Eif99KaE2QFwnDO4C78aGR3Zi3axmq7qsm0AF9uK+D5JTu5amwq4/t0djtOq2UFwgBw3wWDSYqL5BevrbYb6ExQKyqv4s7X15LWKZpfTrKZWgPJCoQBIKFdOI9OHsq2/BL+8OEmt+MY06CH3vmGfYVl/OmSYURH2KmlQLICYf7rtH6JXDEmlTmLd7B4i83VZILPB+tzeTUzhxtO783JqR3djtPqWYEw3/Kb8wbSOzGGX7y+msOlNi24CR77j5Tz6wVrGdI9np9/r5/bcdoEKxDmW9pFhPLXqSM4WFLJb95cZyvQmaBQW6vc8cZayqpq+MulI4gIs68uJ9hRNt8xpHsCt3+/P++ty+WNFbvdjmMMLyzdyeeb87n7/EH0SYp1O06bYQXC+DTztHRO6dWR+/6Vxfb8YrfjmDZsw94j/L/3N3LWgCQuPyXl+D9gmo0VCONTaIjwl6nDiQgL4dZXVlFRbZe+GueVVlZzyysrad8unD9MGWorxDnMCoRpUNeEdvxhyjCy9h7h9+9vdDuOaYPuW5jFjoIS/jJ1OJ1iI92O0+ZYgTDH9P1ByVw9Lo3nl+zk4w15bscxbcjC1Xt4fcVubjmzD+N6293SbnBywaBbRCRTRCpEZO5x2v5cRHJFpFBEnhMR+6eDi3593gAGdY3njjfWsPtQqdtxTBuwLb+Y3yxYR0ZqB26b2NftOG2Wkz2IvcBDwHPHaiQi5+BZVGgikAakA78LdDjTsMiwUJ6YPpLqGuWWl1fZrK8moMoqa7j5xZVEhIXwt2kjCLPlQ13j5IJBC1T1LeDAcZpeBcxR1SxVPQQ8CFwd6Hzm2Hp1juEPU4ayOucwj7z3jdtxTCt278L1bN5fxF+mjqBb+3Zux2nTgrE0DwbW1Hm+BkgWEVsNxGWTTurKNePTmPvlTt5du8/tOKYVei0zhzdW7ObWM/twer9Et+O0ecFYIGKBwjrPjz6Oq99QRGZ6xzUy8/PzHQnX1v160kBGpLTnrjfWsHV/kdtxTCuyfk8h9761nnG9O3GbTaURFIKxQBQD8XWeH338nW8jVZ2tqhmqmpGYaP/acEJEWAizpo+kXUQoM+evoKjclgs3J+5gSSU3zF9Bx5gI/jZtBKEhdr9DMAjGApEFDKvzfBiQp6rHG7swDuma0I7HLxtJ9oFSbn9tDbW1Nl+TabrqmlpufWUl+cUVPHX5yXS2+x2ChpOXuYaJSBQQCoSKSJSI+JrMfR4wQ0QGiUgH4B5grlM5jX/GpHfi7vMG8u8NeTz+6Va345gW7A8fbgGUCaEAABIkSURBVGLJ1gM89MMhDOvZ3u04pg4nexD3AGV4LmG93Pv4HhFJEZFiEUkBUNUPgMeAT4Fs73afgzmNn64Zn8bFI7rzfx9v5qOsXLfjmBborVV7ePrz7Vw+JoVLMnq6HcfUI61lOueMjAzNzMx0O0abU15Vw6VPL2XL/mL+edM4BnaNP/4PGQOs2nWIS2d/xciU9syfcQrhdr+DK0Rkhapm+HrP/h8xJyQqPJTZV2YQFxXGdS9kUlBc4XYk0wLsKyxj5vwVdImP4snpJ1txCFL2/4o5YcnxUTxzZQYHSiq4cf4Km/nVHFNpZTXXz8ukrLKGZ6/KoENMhNuRTAOsQJhmMbRHe/7442FkZh/irjfW2kp0xqeaWuWnr6xmw94j/G3acPolf+f2JhNEfF1FZEyT/GBoN3YdLOWxDzaR0jGaX5zd3+1IJsg8+M4GPv4mjwcuGsxZA5LdjmOOwwqEaVY3nd6bXQdK+fsnW+nZIZpLRtmVKcbjucU7mPvlTmZM6MWVY9PcjmP8YAXCNCsR4cEfDmHP4TJ+8+Y6kuIjOaN/ktuxjMveX7ePB9/dwDmDk/nNeQPdjmP8ZGMQptmFh3qm4+jfJY6bXlzJql2H3I5kXPTltgJu+8dqRqZ04C+X2jQaLYkVCBMQcVHhzL1mNEnxkVw7dzlb9xe7Hcm4YP2eQmbOW0Fqp2jmXJVBu4hQtyOZRrACYQImMS6SedeOJjREuOq5r9l7uMztSMZB2QdKuPr55cRHhTFvxmjaR9vlrC2NFQgTUKmdYph7zWiOlFVx+bPLyC+yG+nagr2Hy7jsmWXU1NbywrWj6ZpgC/+0RFYgTMAN6Z7A89eMYl9hOVfMWcbh0kq3I5kA2l9UzvRnl3GkrIr5M06hr93r0GJZgTCOyEjryDNXZrA9v4Srnvva1pFopQ6VVHLlnK/JLSxn7rWjGNI9we1I5gRYgTCOmdC3M7OmjyRr7xGutCLR6hwqqWT6s8vYXlDCs1dlcHJqR7cjmRNkBcI46nuDknn8spGs213Ilc99zRErEq3CwZJKLnt2GVvzi3n2ygzG9+nsdiTTDKxAGMedO6QLT0z3Fok5ViRauoNHew7e4nBaP1v+t7VwckW5jiLypoiUiEi2iFzWQLv7RaTKu4jQ0S3dqZzGGecM7uI93VTIZc98xQGbJrxFyjtSzqVPL2V7fjHPWHFodZzsQTwBVALJwHTgSREZ3EDbV1U1ts623bGUxjFnD+7C7Csz2JJXzKWzvyLvSLnbkUwj5Bws5cdPLWXv4TLmXjPaikMr5EiBEJEYYDJwr6oWq+pi4F/AFU7s3wSvM/sn8cK1o8ktLGfKU1+y60Cp25GMH7buL+LHTy2lsKyKl64fw9jendyOZALAqR5EP6BGVTfXeW0N0FAP4gIROSgiWSJyU0MfKiIzRSRTRDLz8/ObM69x0Jj0Trx03SkUlVfzoyeXsG53oduRzDEs33mQyU8upbpWefWGMQzv2d7tSCZAnCoQsUD9v/pCwNcdNK8BA4FE4HrgtyIyzdeHqupsVc1Q1YzEROvetmTDerbnjRvHERkWyqWzl/LZZiv4weiD9blc/uwyOsVE8ObN4xjQxdYgb82cKhDFQP3fpHigqH5DVd2gqntVtUZVvwT+CkxxIKNxWZ+kWBbcPI7UTjHMmLuc15bnuB3JeKkqc5fs4KaXVjCoWzxv3DSOnh2j3Y5lAsypArEZCBORvnVeGwZk+fGzCtj8wG1EcnwUr93gOad91z/X8sh731BTa8uXuqmqppZ7F67n/rc3MHFAMi9fN4aOto50m+BIgVDVEmAB8ICIxIjIeOAiYH79tiJykYh0EI/RwE+BhU7kNMEhLiqc564exRVjUpn9+XZumL+C4opqt2O1SYVlVVw7dzkvfrWLG05L5+krTrYpu9sQJy9zvRloB+wHXgFuUtUsETlVROouFjAV2Irn9NM84FFVfcHBnCYIhIeG8OAPh/C7CwfzycY8fjRrCdvzbU0JJ23KLeKixxfz1fYDPDZlKL8+b6At9tPGiGrr6L5nZGRoZmam2zFMACzeUsCtr6ykukb586XD+f4gW+w+0N5es5e73lhLbFQYs6aPZFSazavUWonIClXN8PWeTbVhgt6Evp15+9YJpHaO5vp5mfzhw41U19S6HatVqqiu4XdvZ3HrK6sY3C2ed2+dYMWhDbMCYVqEHh2ieePGcVya0ZMnPt3G1NlfscdWqGtWOwtKmPLkUp5fspOrx6Xx8vVjSIqPcjuWcZEVCNNiRIWH8uiUofx16nA25hZx3l+/4IP1+9yO1eKpKm+t2sMP/r6YXQdLefqKk7n/wsFEhNnXQ1tnvwGmxbloeHfe/ekEUjtFc+OLK/n5q6spLLMZYZviQHEFN7+0kp+9upoBXeJ477ZTOWdwF7djmSAR5nYAY5oitVMM/7xpHI9/spXHP93K0m0HeHTKUE63CeP89mFWLne/uY4jZdX88twBzDwt3a5SMt9iPQjTYoWHhvDz7/fjzZvHERsVxlXPfc1t/1hFgU0dfky5heXcOH8FN8xfQWJcFP+6dTw3ndHbioP5DrvM1bQK5VU1zFq0jScXbSU6IoxfTxrAJRk9CbEvvf+qrqnlpWW7+MOHm6iqqeW27/Xl+lPTCQ+1fye2Zce6zNUKhGlVtuQV8Zs317F85yFO6p7AfRcMIsMu02TJ1gIeeHsDm/KKmNCnMw9fPITUTjFuxzJBwAqEaVNUlYWr9/L79zeSe6ScHwztyh1n9yetc9v7QtySV8QfPtzERxvy6NGhHXefN5Bzh3RBxHpWxsMKhGmTSiureWrRNp75YgeVNbVcktGT2yb2pUtC67+2P+dgKX/5eAtvrtpNdEQYN56eznWnphMVbvMomW+zAmHatP1F5TzxyVZe/noXIsKUk3tww2nprfIUy9b9xTz12TbeWrWHkBDhqrGp3HRGH5t91TTICoQxeP5VPWvRNv65YjfVtbWcd1JXrhnfi5Ep7Vv0KRdVZdmOg8xdspMPN+QSGRbC1FEp3HB6Ol0T2rkdzwQ5KxDG1LH/SDlzFu/g5WW7KKqoZnC3eK4cm8r5Q7sRG9lybg06Ul7Fv1bvZf7SbDblFZHQLpwrxqRyzfg0OsVGuh3PtBBWIIzxoaSimjdX7WHe0p1sziumXXgo5w7pwsUjujO2d6egvPyzsrqWxVvzWbByDx9tyKOyupZBXeO5elwaFwzrZms1mEazAmHMMagqK7IPsWDVHt5Zs5cj5dUktAtn4sAkzh7UhfF9OhEXFe5avsLSKhZvLeDDrFw+3bifoopqOkSHc+Gwblw8sgfDeiS06FNkxl1BUSBEpCMwBzgbKAB+raov+2gnwO+B67wvzQF+qccJagXCNIfyqhoWbcrnow25/Oeb/RSWVREaIgzrkcD4Pp0ZmdqBYT3aB3TQt6C4gjU5h1mRfYglWwtYt6eQWoWOMRF8z1u0TuuXaJPpmWZxrALh5AnXJ4BKIBkYDrwrImtUtf661DOBH+JZs1qBfwPbgacczGraqCjvaaZzh3ShqqaWzJ2eL+kl2wqYtWjbf9fH7tmxHf2T4+mTFEvvxBh6dIimS0IUXeKj/DrNU1JRTe6RcvIKy9l9qIxt+cVsyy/mm31F/53GPCxEGJHSnlvP6suEvp0Z0bM9YUF42su0Xo70IEQkBjgEDFHVzd7X5gN7VPVX9dp+CcxV1dne5zOA61V1zLH2YT0IE2jFFdWs31PImpzDrNl9mC15xew8UEJVzbf/hiLDQoiLCiMmMowI7xe64hk/KKmopqiimsrqby94FBEWQnrnGPokxTKsR3uGp7RncLd4oiNazqC5aZmCoQfRD6g5Why81gCn+2g72Pte3XaDfX2oiMzE0+MgJSWleZIa04DYyDDGpHdiTHqn/75WXVNLzqEy9h4uI7ewnNwj5Rwpq6Koopri8mqqa/9XCMJDQ4iNDCM2Koz27SLokhBJcnwU3du3o0eHaJsszwQdpwpELFBY77VCIM6PtoVArIhI/XEIby9jNnh6EM0X1xj/hIWG0KtzDL3a4DQepvVz6oRmMRBf77V4oMiPtvFA8fEGqY0xxjQvpwrEZiBMRPrWeW0YUH+AGu9rw/xoZ4wxJoAcKRCqWgIsAB4QkRgRGQ9cBMz30XwecLuIdBeRbsAvgLlO5DTGGPM/Tl4zdzPQDtgPvALcpKpZInKqiBTXafc08DawDlgPvOt9zRhjjIMcu4ZOVQ/iub+h/utf4BmYPvpcgbu8mzHGGJfYXTfGGGN8sgJhjDHGJysQxhhjfGo1s7mKSD6Q3cQf74xnAsFgY7kax3I1XrBms1yNcyK5UlU10dcbraZAnAgRyWxoLhI3Wa7GsVyNF6zZLFfjBCqXnWIyxhjjkxUIY4wxPlmB8JjtdoAGWK7GsVyNF6zZLFfjBCSXjUEYY4zxyXoQxhhjfLICYYwxxicrEMYYY3xqcwVCRCJFZI6IZItIkYisEpFJx/mZn4tIrogUishzIhIZoGy3iEimiFSIyNzjtL1aRGpEpLjOdobbubztnTpeHUXkTREp8f7/edkx2t4vIlX1jle601nE41EROeDdHhORgK012ohcAT0+9fbVmN9zR36XGpvN4b+/Rn1nNecxa3MFAs8Mtjl41sNOAO4FXhORNF+NReQc4FfARCANSAd+F6Bse4GHgOf8bL9UVWPrbIvczuXw8XoCqASSgenAkyLic/1yr1frHa/tLmSZiWdW42HAUOAHwA3NmKOpuSCwx6cuv36fHP5dalQ2L6f+/vz+zmr2Y6aqbX4D1gKTG3jvZeCROs8nArkBzvMQMPc4ba4GFjt8nPzJ5cjxAmLwfPH1q/PafOD3DbS/H3gxQMfF7yzAl8DMOs9nAF8FQa6AHZ+m/j658bfXiGyO//3V27/P76zmPmZtsQfxLSKSDPSj4WVNBwNr6jxfAySLSKdAZ/PDCBEpEJHNInKviDi2vscxOHW8+gE1qrq53r6O1YO4QEQOikiWiNzkUhZfx+dYmZ3KBYE7Pk0VzH974NLf33G+s5r1mLXpAiEi4cBLwAuqurGBZrFAYZ3nRx/HBTKbHz4HhgBJwGRgGnCnq4k8nDpe9fdzdF8N7ec1YCCQCFwP/FZEprmQxdfxiQ3QOERjcgXy+DRVsP7tgUt/f358ZzXrMWt1BUJEFomINrAtrtMuBE93uxK45RgfWQzE13l+9HFRIHL5S1W3q+oOVa1V1XXAA8CUxn5Oc+fCueNVfz9H9+VzP6q6QVX3qmqNqn4J/JUmHK8GNCaLr+NTrN7zAc3M71wBPj5N1Sy/S4HQXH9/jeHnd1azHrNWVyBU9QxVlQa2CeC5kgSYg2fgbrKqVh3jI7PwDCgeNQzIU9UDzZ3rBCnQ6H+FBiCXU8drMxAmIn3r7auhU4Xf2QVNOF4NaEwWX8fH38yBzFVfcx6fpmqW3yWHBPR4NeI7q1mPWasrEH56Ek93+gJVLTtO23nADBEZJCIdgHuAuYEIJSJhIhIFhAKhIhLV0HlNEZnkPReJiAzAc2XDQrdz4dDxUtUSYAHwgIjEiMh44CI8/8Ly9d9wkYh0EI/RwE9ppuPVyCzzgNtFpLuIdAN+QYB+nxqTK5DHx8e+/P19cuxvr7HZnPz78/L3O6t5j5lbo/BubUAqnmpfjqc7dnSb7n0/xfs8pc7P3A7kAUeA54HIAGW735ut7na/r1zAH72ZSoDteLq44W7ncvh4dQTe8h6DXcBldd47Fc+pm6PPXwEOeLNuBH7qRBYfOQR4DDjo3R7DOyeak8fI6ePjz++Tm79Ljc3m8N9fg99ZgT5mNlmfMcYYn9rqKSZjjDHHYQXCGGOMT1YgjDHG+GQFwhhjjE9WIIwxxvhkBcIYY4xPViCMMcb4ZAXCGGOMT1YgjDHG+GQFwpgAEJHe3rUVRnqfd/OuHXCGy9GM8ZtNtWFMgIjI9XjmxTkZeBNYp6p3uJvKGP9ZgTAmgETkX0AvPJOtjVLVCpcjGeM3O8VkTGA9g2flsb9bcTAtjfUgjAkQEYnFsybwp8Ak4CRVPehuKmP8ZwXCmAARkTlAnKpeIiKzgfaqeonbuYzxl51iMiYAROQi4FzgRu9LtwMjRWS6e6mMaRzrQRhjjPHJehDGGGN8sgJhjDHGJysQxhhjfLICYYwxxicrEMYYY3yyAmGMMcYnKxDGGGN8sgJhjDHGp/8PWA5XvPpRWP4AAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(f, 'x', 'x**2')\n","plt.scatter(-1.5, f(-1.5), color='red');"]},{"cell_type":"markdown","metadata":{"id":"5SE44dIYz7cd"},"source":["Now we look to see what would happen if we increased or decreased our parameter by a little bit—the *adjustment*. This is simply the slope at a particular point:"]},{"cell_type":"markdown","metadata":{"id":"5xb79cCMz7cd"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"wCXH69fIz7ce"},"source":["We can change our weight by a little in the direction of the slope, calculate our loss and adjustment again, and repeat this a few times. Eventually, we will get to the lowest point on our curve:"]},{"cell_type":"markdown","metadata":{"id":"67dSVj4bz7ce"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"if-2EQlAz7ce"},"source":["This basic idea goes all the way back to Isaac Newton, who pointed out that we can optimize arbitrary functions in this way. Regardless of how complicated our functions become, this basic approach of gradient descent will not significantly change. The only minor changes we will see later in this book are some handy ways we can make it faster, by finding better steps."]},{"cell_type":"markdown","metadata":{"id":"kOsJUTyuz7ce"},"source":["### Calculating Gradients"]},{"cell_type":"markdown","metadata":{"id":"k6g8Mgczz7ce"},"source":["The one magic step is the bit where we calculate the gradients. As we mentioned, we use calculus as a performance optimization; it allows us to more quickly calculate whether our loss will go up or down when we adjust our parameters up or down. In other words, the gradients will tell us how much we have to change each weight to make our model better.\n","\n","You may remember from your high school calculus class that the *derivative* of a function tells you how much a change in its parameters will change its result. If not, don't worry, lots of us forget calculus once high school is behind us! But you will have to have some intuitive understanding of what a derivative is before you continue, so if this is all very fuzzy in your head, head over to Khan Academy and complete the [lessons on basic derivatives](https://www.khanacademy.org/math/differential-calculus/dc-diff-intro). You won't have to know how to calculate them yourselves, you just have to know what a derivative is.\n","\n","The key point about a derivative is this: for any function, such as the quadratic function we saw in the previous section, we can calculate its derivative. The derivative is another function. It calculates the change, rather than the value. For instance, the derivative of the quadratic function at the value 3 tells us how rapidly the function changes at the value 3. More specifically, you may recall that gradient is defined as *rise/run*, that is, the change in the value of the function, divided by the change in the value of the parameter. When we know how our function will change, then we know what we need to do to make it smaller. This is the key to machine learning: having a way to change the parameters of a function to make it smaller. Calculus provides us with a computational shortcut, the derivative, which lets us directly calculate the gradients of our functions."]},{"cell_type":"markdown","metadata":{"id":"izCr_aXrz7cf"},"source":["One important thing to be aware of is that our function has lots of weights that we need to adjust, so when we calculate the derivative we won't get back one number, but lots of them—a gradient for every weight. But there is nothing mathematically tricky here; you can calculate the derivative with respect to one weight, and treat all the other ones as constant, then repeat that for each other weight. This is how all of the gradients are calculated, for every weight.\n","\n","We mentioned just now that you won't have to calculate any gradients yourself. How can that be? Amazingly enough, PyTorch is able to automatically compute the derivative of nearly any function! What's more, it does it very fast. Most of the time, it will be at least as fast as any derivative function that you can create by hand. Let's see an example.\n","\n","First, let's pick a tensor value which we want gradients at:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6ciSYg4Sz7cf"},"outputs":[],"source":["xt = tensor(3.).requires_grad_()"]},{"cell_type":"markdown","metadata":{"id":"dDXzY9cez7cf"},"source":["Notice the special method `requires_grad_`? That's the magical incantation we use to tell PyTorch that we want to calculate gradients with respect to that variable at that value. It is essentially tagging the variable, so PyTorch will remember to keep track of how to compute gradients of the other, direct calculations on it that you will ask for.\n","\n","> a: This API might throw you off if you're coming from math or physics. In those contexts the \"gradient\" of a function is just another function (i.e., its derivative), so you might expect gradient-related APIs to give you a new function. But in deep learning, \"gradients\" usually means the _value_ of a function's derivative at a particular argument value. The PyTorch API also puts the focus on the argument, not the function you're actually computing the gradients of. It may feel backwards at first, but it's just a different perspective.\n","\n","Now we calculate our function with that value. Notice how PyTorch prints not just the value calculated, but also a note that it has a gradient function it'll be using to calculate our gradients when needed:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yhITaUhFz7cg","outputId":"245eeda2-6812-4cf9-acb2-39c0f6913738"},"outputs":[{"data":{"text/plain":["tensor(9., grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["yt = f(xt)\n","yt"]},{"cell_type":"markdown","metadata":{"id":"h8nbufOWz7cg"},"source":["Finally, we tell PyTorch to calculate the gradients for us:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pUT9PR7oz7cg"},"outputs":[],"source":["yt.backward()"]},{"cell_type":"markdown","metadata":{"id":"DebHfahxz7ch"},"source":["The \"backward\" here refers to *backpropagation*, which is the name given to the process of calculating the derivative of each layer. We'll see how this is done exactly in chapter <>, when we calculate the gradients of a deep neural net from scratch. This is called the \"backward pass\" of the network, as opposed to the \"forward pass,\" which is where the activations are calculated. Life would probably be easier if `backward` was just called `calculate_grad`, but deep learning folks really do like to add jargon everywhere they can!"]},{"cell_type":"markdown","metadata":{"id":"DUh0QHx1z7ch"},"source":["We can now view the gradients by checking the `grad` attribute of our tensor:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_-NFKBnrz7ch","outputId":"c7493f8c-39e0-4cb9-e75e-d904ed20c92e"},"outputs":[{"data":{"text/plain":["tensor(6.)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["xt.grad"]},{"cell_type":"markdown","metadata":{"id":"S8PDFgVSz7ch"},"source":["If you remember your high school calculus rules, the derivative of `x**2` is `2*x`, and we have `x=3`, so the gradients should be `2*3=6`, which is what PyTorch calculated for us!\n","\n","Now we'll repeat the preceding steps, but with a vector argument for our function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VvlGd3zhz7ci","outputId":"863ea109-4b89-4852-8b17-773280e29d39"},"outputs":[{"data":{"text/plain":["tensor([ 3., 4., 10.], requires_grad=True)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["xt = tensor([3.,4.,10.]).requires_grad_()\n","xt"]},{"cell_type":"markdown","metadata":{"id":"BsAMGH8Kz7ci"},"source":["And we'll add `sum` to our function so it can take a vector (i.e., a rank-1 tensor), and return a scalar (i.e., a rank-0 tensor):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zNA9DgVtz7ci","outputId":"8102fb1e-6c4c-4ea8-e588-e7ca9ca1d7f0"},"outputs":[{"data":{"text/plain":["tensor(125., grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def f(x): return (x**2).sum()\n","\n","yt = f(xt)\n","yt"]},{"cell_type":"markdown","metadata":{"id":"5nv_7XoCz7cj"},"source":["Our gradients are `2*xt`, as we'd expect!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NVVIjT1zz7cj","outputId":"6a432089-9866-4c53-be66-5766afefb1f9"},"outputs":[{"data":{"text/plain":["tensor([ 6., 8., 20.])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["yt.backward()\n","xt.grad"]},{"cell_type":"markdown","metadata":{"id":"dpyuWcnCz7cj"},"source":["The gradients only tell us the slope of our function, they don't actually tell us exactly how far to adjust the parameters. But it gives us some idea of how far; if the slope is very large, then that may suggest that we have more adjustments to do, whereas if the slope is very small, that may suggest that we are close to the optimal value."]},{"cell_type":"markdown","metadata":{"id":"nnFzYtV3z7cj"},"source":["### Stepping With a Learning Rate"]},{"cell_type":"markdown","metadata":{"id":"i034KJV4z7ck"},"source":["Deciding how to change our parameters based on the values of the gradients is an important part of the deep learning process. Nearly all approaches start with the basic idea of multiplying the gradient by some small number, called the *learning rate* (LR). The learning rate is often a number between 0.001 and 0.1, although it could be anything. Often, people select a learning rate just by trying a few, and finding which results in the best model after training (we'll show you a better approach later in this book, called the *learning rate finder*). Once you've picked a learning rate, you can adjust your parameters using this simple function:\n","\n","```\n","w -= gradient(w) * lr\n","```\n","\n","This is known as *stepping* your parameters, using an *optimizer step*. Notice how we _subtract_ the `gradient * lr` from the parameter to update it. This allows us to adjust the parameter in the direction of the slope by increasing the parameter when the slope is negative and decreasing the parameter when the slope is positive. We want to adjust our parameters in the direction of the slope because our goal in deep learning is to _minimize_ the loss.\n","\n","If you pick a learning rate that's too low, it can mean having to do a lot of steps. <> illustrates that."]},{"cell_type":"markdown","metadata":{"id":"H31-KOjjz7ck"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"qackorVpz7ck"},"source":["But picking a learning rate that's too high is even worse—it can actually result in the loss getting *worse*, as we see in <>!"]},{"cell_type":"markdown","metadata":{"id":"ynVdmL43z7cl"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"_kWVs571z7cl"},"source":["If the learning rate is too high, it may also \"bounce\" around, rather than actually diverging; <> shows how this has the result of taking many steps to train successfully."]},{"cell_type":"markdown","metadata":{"id":"zsQyz4g8z7cl"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"W8JyoPnfz7cl"},"source":["Now let's apply all of this in an end-to-end example."]},{"cell_type":"markdown","metadata":{"id":"mxx_wFABz7cm"},"source":["### An End-to-End SGD Example"]},{"cell_type":"markdown","metadata":{"id":"9Md9F5Ltz7cm"},"source":["We've seen how to use gradients to find a minimum. Now it's time to look at an SGD example and see how finding a minimum can be used to train a model to fit data better.\n","\n","Let's start with a simple, synthetic, example model. Imagine you were measuring the speed of a roller coaster as it went over the top of a hump. It would start fast, and then get slower as it went up the hill; it would be slowest at the top, and it would then speed up again as it went downhill. You want to build a model of how the speed changes over time. If you were measuring the speed manually every second for 20 seconds, it might look something like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HiTbYYaWz7cm","outputId":"d2c15d18-853a-4695-bfc2-ff31ee754b95"},"outputs":[{"data":{"text/plain":["tensor([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["time = torch.arange(0,20).float(); time"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OV7nuxFNz7cn","outputId":"d2f95320-76b4-44a8-bf43-cfd6078fa9f2"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAWy0lEQVR4nO3dfYxcV3nH8e8vtpWsbC+u48XFW9luDLGpExw3i4KIAkhJa0FLcWMkTFIISMhAlKqo1IK0OLh5UQBD/yiEF0sp5LUNhrUhpGA1SlJICikbXMdaYVt1UkPWKawhXrz2OjHu0z/mTjKezM7c8cydlzu/jzSS59wzd56czD5z5txzz1FEYGZm3e2sdgdgZmaNczI3M8sBJ3MzsxxwMjczywEnczOzHJjZjjddsGBBLF26tB1vbWbWtZ544onDETFQ6VhbkvnSpUsZGRlpx1ubmXUtSQenO+ZhFjOzHHAyNzPLASdzM7MccDI3M8sBJ3Mzsxxoy2yWM7Vj1xhbdu7j0JEpFs3rY+Oa5axdPdjusMzM2q5rkvmOXWNcP7yHqZOnABg7MsX1w3sAnNDNrOd1zTDLlp37XkzkRVMnT7Fl5742RWRm1jm6JpkfOjJVV7mZWS/pmmS+aF5fXeVmZr2ka5L5xjXL6Zs147Syvlkz2LhmeZsiMjPrHF1zAbR4kdOzWczMXq5rkjkUErqTt5nZy3XNMIuZmU3PydzMLAeczM3McsDJ3MwsB2omc0mTZY9Tkj5fcvxySXslHZf0sKQl2YZsZmblaibziJhTfAALgSlgG4CkBcAwsAmYD4wA92UXrpmZVVLvMMs7gV8CP0ieXwmMRsS2iDgBbAZWSVrRvBDNzKyWepP5NcCdERHJ85XA7uLBiDgGHEjKTyNpg6QRSSPj4+NnGq+ZmVWQOplLWgy8GbijpHgOMFFWdQKYW/76iNgaEUMRMTQwMHAmsZqZ2TTq6Zm/F3g0Ip4uKZsE+svq9QNHGw3MzMzSqzeZ31FWNgqsKj6RNBtYlpSbmVmLpErmkt4IDJLMYimxHbhA0jpJ5wA3AE9GxN7mhmlmZtWkXWjrGmA4Ik4bPomIcUnrgC8AdwOPA+ubG6KZWffLeg/jVMk8Ij5Y5diDgKcimplNoxV7GPt2fjOzjLViD2MnczOzjLViD2MnczOzjLViD2MnczOzjLViD+Ou2jbOzKwbtWIPYydzM7MWyHoPYw+zmJnlgJO5mVkOOJmbmeWAk7mZWQ44mZuZ5YCTuZlZDjiZm5nlgJO5mVkOOJmbmeWAk7mZWQ6kTuaS1kv6qaRjkg5Iuiwpv1zSXknHJT0saUl24ZqZWSWp1maR9EfAp4F3Af8JvCopXwAMAx8A7gduAu4D3pBFsI3KetsmM7N2SbvQ1t8DN0bEj5LnYwCSNgCjEbEteb4ZOCxpRadt6tyKbZvMzNql5jCLpBnAEDAg6b8lPSPpC5L6gJXA7mLdiDgGHEjKy8+zQdKIpJHx8fHm/Rek1Iptm8zM2iXNmPlCYBbwTuAy4CJgNfAJYA4wUVZ/AphbfpKI2BoRQxExNDAw0FDQZ6IV2zaZmbVLmmRezHafj4hnI+Iw8A/A24BJoL+sfj9wtHkhNkcrtm0yM2uXmsk8Ip4DngGiwuFRYFXxiaTZwLKkvKO0YtsmM7N2SXsB9KvAX0r6HnAS+AjwHWA7sEXSOuAB4AbgyU67+Amt2bbJzPKr02fDpU3mNwELgP3ACeDrwC0RcSJJ5F8A7gYeB9ZnEWgzZL1tk5nlUzfMhkuVzCPiJHBt8ig/9iCwoslxmZl1jGqz4Tolmft2fjOzGrphNpyTuZlZDd0wG87J3Myshm6YDZf2AqiZWc/qhtlwTuZmZil0+mw4D7OYmeWAk7mZWQ44mZuZ5YCTuZlZDjiZm5nlgJO5mVkOOJmbmeWAk7mZWQ44mZuZ5YCTuZlZDjiZm5nlQKpkLukRSSckTSaPfSXHrpJ0UNIxSTskzc8uXDMzq6Senvl1ETEneSwHkLQS+ArwHmAhcBz4YvPDNDOzahpdNfFq4P6I+D6ApE3ATyXNjYijDUdnZmap1NMzv1XSYUmPSXpLUrYS2F2sEBEHgBeA88tfLGmDpBFJI+Pj443EbGZmZdIm848B5wGDwFbgfknLgDnARFndCWBu+QkiYmtEDEXE0MDAQAMhm5lZuVTJPCIej4ijEfF8RNwBPAa8DZgE+suq9wMeYjEza6EznZoYgIBRYFWxUNJ5wNnA/sZDMzOztGpeAJU0D7gE+Hfgt8C7gDcBH0le/0NJlwE/AW4Ehn3x08ystdLMZpkF3AysAE4Be4G1EbEPQNKHgHuAc4EHgfdnE6qZmU2nZjKPiHHg9VWO3wvc28ygzMysPr6d38wsBxq9aain7Ng1xpad+zh0ZIpF8/rYuGY5a1cPtjssMzMn87R27Brj+uE9TJ08BcDYkSmuH94D4IRuZm3nYZaUtuzc92IiL5o6eYotO/dN8wozs9ZxMk/p0JGpusrNzFrJyTylRfP66io3M2slJ/OUNq5ZTt+sGaeV9c2awcY1y9sUkZnZS3wBNKXiRU7PZjGzTuRkXoe1qwedvM2sI3mYxcwsB5zMzcxywMMsZtYT8n4Ht5O5meVeL9zB7WEWM8u9XriD28nczHKvF+7gdjI3s9zrhTu4nczNLPd64Q7uupK5pNdIOiHp7pKyqyQdlHRM0g5J85sfppnZmVu7epBbr7yQwXl9CBic18etV16Ym4ufUP9sltuAHxefSFoJfAX4EwobOm8Fvgisb1aAZmbNkPc7uFMnc0nrgSPAfwCvToqvBu6PiO8ndTYBP5U0NyKONjtYMzOrLNUwi6R+4Ebgo2WHVgK7i08i4gDwAnB+hXNskDQiaWR8fPzMIzYzs5dJO2Z+E3B7RPy8rHwOMFFWNgHMLT9BRGyNiKGIGBoYGKg/UjMzm1bNYRZJFwFXAKsrHJ4E+svK+gEPsZiZtVCaMfO3AEuBn0mCQm98hqQ/AL4HrCpWlHQecDawv9mBmpnZ9NIk863Av5Q8/xsKyf3DwCuBH0q6jMJslhuBYV/8NDNrrZrJPCKOA8eLzyVNAiciYhwYl/Qh4B7gXOBB4P0ZxWpmZtOoe9XEiNhc9vxe4N5mBWRmZvXz7fxmZjngZG5mlgNO5mZmOeBkbmaWA07mZmY54GRuZpYDTuZmZjngZG5mlgNO5mZmOeBkbmaWA07mZmY5UPfaLGZm7bBj1xhbdu7j0JEpFs3rY+Oa5bne07NeTuZm1vF27Brj+uE9TJ08BcDYkSmuH94D4ISe8DCLmXW8LTv3vZjIi6ZOnmLLzn1tiqjzOJmbWcc7dGSqrvJe5GRuZh1v0by+usp7UapkLuluSc9K+o2k/ZI+UHLsckl7JR2X9LCkJdmFa2a9aOOa5fTNmnFaWd+sGWxcs7xNEXWetD3zW4GlEdEP/Blws6SLJS0AhoFNwHxgBLgvk0jNrGetXT3IrVdeyOC8PgQMzuvj1isv9MXPEqlms0TEaOnT5LEMuBgYjYhtAJI2A4clrYiIvU2O1cx62NrVg07eVaQeM5f0RUnHgb3As8C/AiuB3cU6EXEMOJCUl79+g6QRSSPj4+MNB25mZi9Jncwj4lpgLnAZhaGV54E5wERZ1YmkXvnrt0bEUEQMDQwMnHnEZmb2MnXNZomIUxHxKPB7wIeBSaC/rFo/cLQ54ZmZWRpnOjVxJoUx81FgVbFQ0uyScjMza5GayVzSKyWtlzRH0gxJa4B3Aw8B24ELJK2TdA5wA/CkL36ambVWmp55UBhSeQZ4Dvgs8JGI+FZEjAPrgFuSY5cA6zOK1czMplFzamKSsN9c5fiDwIpmBpVXXvXNzLLiVRNbxKu+Wa9zZyZbXpulRbzqm/WyYmdm7MgUwUudmR27xtodWm44mbeIV32zXubOTPaczFvEq75ZL3NnJntO5i3iVd+sl7kzkz0n8xbxqm/Wy9yZyZ5ns7SQV32zXlX83Hs2S3aczM2sJdyZyZaHWczMcsDJ3MwsB5zMzcxywMnczCwHfAG0i3htCzObjpN5l/BCXWZWjYdZuoTXtjCzapzMu4TXtjCzatJsG3e2pNslHZR0VNIuSW8tOX65pL2Sjkt6WNKSbEPuTV7bwsyqSdMznwn8nMJuQ68ANgFfl7RU0gJgOCmbD4wA92UUa0/z2hZmVk2abeOOAZtLir4j6WngYuBcYDQitgFI2gwclrTCmzo3VzPWtvBsGLP8qns2i6SFwPnAKIWNnncXj0XEMUkHgJXA3rLXbQA2ACxevLiBkHtXI2tbeDaMWb7VdQFU0izgHuCOpOc9B5goqzYBzC1/bURsjYihiBgaGBg403jtDHk2jFm+pU7mks4C7gJeAK5LiieB/rKq/cDRpkRnTePZMGb5liqZSxJwO7AQWBcRJ5NDo8CqknqzgWVJuXUQz4Yxy7e0PfMvAa8F3h4RpV257cAFktZJOge4AXjSFz87j2fDmOVbmnnmS4APAhcB/ytpMnlcHRHjwDrgFuA54BJgfZYB25nxtnVm+aaIaPmbDg0NxcjISMvf18ysm0l6IiKGKh3z7fxmZjngZG5mlgNeAtfMUvEdxJ3NydzMavIdxJ3PwyxmVpPvIO58TuZmVpPvIO58TuZmVpPvIO58TuZmVpPvIO58vgBqZjU1Yz19y5aTuZml0sh6+pY9J3NLzfOMzTqXk7ml4nnGZp3NF0AtFc8zNutsTuaWiucZm3U2D7NYKovm9TFWIXHXM8/YY+5m2XHP3FJpdJ5xccx97MgUwUtj7jt2jWUQrVnvSbsH6HWSRiQ9L+lrZccul7RX0nFJDyc7E1nONLpTkcfc22/HrjEu/dRD/P7HH+DSTz3kL9KcSTvMcgi4GVgDvPi7WtICYBj4AHA/cBNwH/CG5oZpnaCRecYec28vz0bKv1Q984gYjogdwK/KDl0JjEbEtog4AWwGVkla0dwwrdt5bY/28i+j/Gt0zHwlsLv4JCKOAQeS8tNI2pAM1YyMj483+LbWbby2R3v5l1H+NZrM5wATZWUTwNzyihGxNSKGImJoYGCgwbe1btPomLs1xr+M8q/RqYmTQH9ZWT9wtMHzWg55bY/22bhm+Wlj5uBfRnnTaM98FFhVfCJpNrAsKTezDuFfRvmXqmcuaWZSdwYwQ9I5wG+B7cAWSeuAB4AbgCcjYm9G8ZrZGfIvo3xL2zP/BDAFfBz4i+Tfn4iIcWAdcAvwHHAJsD6DOM3MrIpUPfOI2Exh2mGlYw8CnopoZtZGvp3fzCwHnMzNzHLAydzMLAe8BK5Zl/ASwlaNk7lZF/BCWVaLh1nMuoAXyrJanMzNuoAXyrJaPMxiXaOXx4ybsW2f5Zt75tYV8rDtXCM7/XgJYavFydy6QrePGTf6ZeSFsqwWD7NYV+j2MeNqX0ZpE7IXyrJq3DO3rtDtmyt0+5eRdT4nc+sK3T5m3O1fRtb5nMytK3T7mHG3fxlZ5/OYuXWNbh4zLsbdq1MrLXtO5mYt0s1fRtb5mjLMImm+pO2Sjkk6KOmqZpzXzMzSaVbP/DbgBWAhcBHwgKTdEeGNnS03evkOVOt8DffMJc2msA/opoiYjIhHgW8D72n03GadIg93oFq+NWOY5XzgVETsLynbDaxswrnNmqaR2+m7/Q5Uy79mDLPMASbKyiaAuaUFkjYAGwAWL17chLc1S6/R9cB90491umb0zCeB/rKyfuBoaUFEbI2IoYgYGhgYaMLbmqXXaM/aN/1Yp2tGMt8PzJT0mpKyVYAvflrHaLRn7Zt+rNM1nMwj4hgwDNwoabakS4F3AHc1em6zZmm0Z93td6Ba/jVrauK1wD8BvwR+BXzY0xKtk2xcs/y0MXOov2ftm36skzUlmUfEr4G1zTiXWRZ8O73lnW/nt57hnrXlmVdNNDPLASdzM7MccDI3M8sBJ3MzsxxwMjczywFFROvfVBoHDjZwigXA4SaFkwXH1xjH1xjH15hOjm9JRFRcD6UtybxRkkYiYqjdcUzH8TXG8TXG8TWm0+ObjodZzMxywMnczCwHujWZb213ADU4vsY4vsY4vsZ0enwVdeWYuZmZna5be+ZmZlbCydzMLAeczM3McqAjk7mk+ZK2Szom6aCkq6apJ0mflvSr5PEZSco4trMl3Z7EdVTSLklvnabu+ySdkjRZ8nhLlvEl7/uIpBMl71lxo8s2td9k2eOUpM9PU7cl7SfpOkkjkp6X9LWyY5dL2ivpuKSHJS2pcp6lSZ3jyWuuyDI+SW+Q9G+Sfi1pXNI2Sa+qcp5Un4smxrdUUpT9/9tU5Tytbr+ry2I7nsR78TTnyaT9mqUjkzlwG/ACsBC4GviSpJUV6m2gsCnGKuB1wJ8CH8w4tpnAz4E3A68ANgFfl7R0mvo/jIg5JY9HMo6v6LqS95xuO52Wt19pW1D4/zsFbKvykla03yHgZgq7Zb1I0gIKWyJuAuYDI8B9Vc7zz8Au4Fzg74BvSGrG7uUV4wN+h8LMi6XAEgqbqH+1xrnSfC6aFV/RvJL3vKnKeVrafhFxT9nn8VrgKeAnVc6VRfs1Rcclc0mzgXXApoiYjIhHgW8D76lQ/RrgcxHxTESMAZ8D3pdlfBFxLCI2R8T/RMT/RcR3gKeBit/mHa7l7VfmnRS2GvxBC9/zZSJiOCJ2UNjysNSVwGhEbIuIE8BmYJWkFeXnkHQ+8IfAJyNiKiK+Ceyh8FnOJL6I+G4S228i4jjwBeDSRt+vWfHVox3tV8E1wJ3RpVP8Oi6ZA+cDpyJif0nZbqBSz3xlcqxWvcxIWkgh5un2PF0t6bCk/ZI2SWrV7k63Ju/7WJWhiXa3X5o/nna1H5S1T7J5+QGm/yw+FRFHS8pa3Z5vYvrPYVGaz0WzHZT0jKSvJr92Kmlr+yXDZ28C7qxRtR3tl0onJvM5wERZ2QQwN0XdCWBO1uO+RZJmAfcAd0TE3gpVvg9cALySQg/j3cDGFoT2MeA8YJDCz/D7JS2rUK9t7SdpMYWhqjuqVGtX+xU18lmsVrfpJL0OuIHq7ZP2c9Esh4HXUxgCuphCW9wzTd22th/wXuAHEfF0lTqtbr+6dGIynwT6y8r6KYwH1qrbD0y24meSpLOAuyiM7V9XqU5EPBURTyfDMXuAGykMLWQqIh6PiKMR8XxE3AE8BrytQtW2tR+FP55Hq/3xtKv9SjTyWaxWt6kkvRr4LvBXETHtkFUdn4umSIZJRyLitxHxCwp/J38sqbydoI3tl3gv1TsWLW+/enViMt8PzJT0mpKyVVT++TiaHKtVr6mSnuvtFC7grYuIkylfGkBLfjWkfN+2tF+i5h9PBa1uv9PaJ7mes4zpP4vnSSrtSWbensnwwIPATRFxV50vb3V7FjsJ030WW95+AJIuBRYB36jzpe36e66o45J5Mi45DNwoaXbS0O+g0Asudyfw15IGJS0CPgp8rQVhfgl4LfD2iJiarpKktyZj6iQXzTYB38oyMEnzJK2RdI6kmZKupjAWuLNC9ba0n6Q3UvipWm0WS8vaL2mnc4AZwIxi2wHbgQskrUuO3wA8WWlILbnG81/AJ5PX/zmFGULfzCo+SYPAQ8BtEfHlGueo53PRrPgukbRc0lmSzgX+EXgkIsqHU9rSfiVVrgG+WTZeX36OzNqvaSKi4x4UpoHtAI4BPwOuSsovozAMUKwn4DPAr5PHZ0jWm8kwtiUUvpFPUPhpWHxcDSxO/r04qftZ4BfJf8dTFIYJZmUc3wDwYwo/T48APwL+qFPaL3nfrwB3VShvS/tRmKUSZY/NybErgL0UplA+Aiwted2XgS+XPF+a1JkC9gFXZBkf8Mnk36Wfw9L/v38LfLfW5yLD+N5NYabXMeBZCp2H3+2U9kuOnZO0x+UVXteS9mvWwwttmZnlQMcNs5iZWf2czM3McsDJ3MwsB5zMzcxywMnczCwHnMzNzHLAydzMLAeczM3McuD/AdndnL7Vn+NhAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["speed = torch.randn(20)*3 + 0.75*(time-9.5)**2 + 1\n","plt.scatter(time,speed);"]},{"cell_type":"markdown","metadata":{"id":"P7aTdN-7z7cn"},"source":["We've added a bit of random noise, since measuring things manually isn't precise. This means it's not that easy to answer the question: what was the roller coaster's speed? Using SGD we can try to find a function that matches our observations. We can't consider every possible function, so let's use a guess that it will be quadratic; i.e., a function of the form `a*(time**2)+(b*time)+c`.\n","\n","We want to distinguish clearly between the function's input (the time when we are measuring the coaster's speed) and its parameters (the values that define *which* quadratic we're trying). So, let's collect the parameters in one argument and thus separate the input, `t`, and the parameters, `params`, in the function's signature:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1lPpvspXz7cn"},"outputs":[],"source":["def f(t, params):\n"," a,b,c = params\n"," return a*(t**2) + (b*t) + c"]},{"cell_type":"markdown","metadata":{"id":"mEbTTX56z7cn"},"source":["In other words, we've restricted the problem of finding the best imaginable function that fits the data, to finding the best *quadratic* function. This greatly simplifies the problem, since every quadratic function is fully defined by the three parameters `a`, `b`, and `c`. Thus, to find the best quadratic function, we only need to find the best values for `a`, `b`, and `c`.\n","\n","If we can solve this problem for the three parameters of a quadratic function, we'll be able to apply the same approach for other, more complex functions with more parameters—such as a neural net. Let's find the parameters for `f` first, and then we'll come back and do the same thing for the MNIST dataset with a neural net.\n","\n","We need to define first what we mean by \"best.\" We define this precisely by choosing a *loss function*, which will return a value based on a prediction and a target, where lower values of the function correspond to \"better\" predictions. It is important for loss functions to return _lower_ values when predictions are more accurate, as the SGD procedure we defined earlier will try to _minimize_ this loss. For continuous data, it's common to use *mean squared error*:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6LGLbwPmz7co"},"outputs":[],"source":["def mse(preds, targets): return ((preds-targets)**2).mean()"]},{"cell_type":"markdown","metadata":{"id":"YnlXu648z7co"},"source":["Now, let's work through our 7 step process."]},{"cell_type":"markdown","metadata":{"id":"_bCON-vJz7co"},"source":["#### Step 1: Initialize the parameters"]},{"cell_type":"markdown","metadata":{"id":"uEjPHUinz7cp"},"source":["First, we initialize the parameters to random values, and tell PyTorch that we want to track their gradients, using `requires_grad_`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gz4j_-4Pz7cp"},"outputs":[],"source":["params = torch.randn(3).requires_grad_()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qpkBQlizz7cp"},"outputs":[],"source":["#hide\n","orig_params = params.clone()"]},{"cell_type":"markdown","metadata":{"id":"If4PuhSQz7cp"},"source":["#### Step 2: Calculate the predictions"]},{"cell_type":"markdown","metadata":{"id":"loyTo4o9z7cq"},"source":["Next, we calculate the predictions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0BeiVtFvz7cq"},"outputs":[],"source":["preds = f(time, params)"]},{"cell_type":"markdown","metadata":{"id":"Ne0yjECUz7cq"},"source":["Let's create a little function to see how close our predictions are to our targets, and take a look:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Eq0slK7az7cq"},"outputs":[],"source":["def show_preds(preds, ax=None):\n"," if ax is None: ax=plt.subplots()[1]\n"," ax.scatter(time, speed)\n"," ax.scatter(time, to_np(preds), color='red')\n"," ax.set_ylim(-300,100)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XngSNTylz7cr","outputId":"3c4eba00-d985-4066-8831-25999a55b459"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAY8AAAEACAYAAABLfPrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAc1ElEQVR4nO3dfbBU9Z3n8fcHsYAAd8B4hyxMAaurMHV1iOtNOZuYxIxuTDKbLUf2D81NHGY2koxFaqusMjErRCtKaeLU/pHZyQOWBHWZncQUWuM86M5UxESzk9pmLExuBHeJXBKfckkQuYD4wHf/OKe1bbvvvX3POd2nuz+vqi66z+/Xp78cDv3t83s6igjMzMxaMavTAZiZWfdx8jAzs5Y5eZiZWcucPMzMrGVOHmZm1jInDzMza5mTh5mZtSzX5CFpg6SKpBOSttWVXSxpj6Rjkh6WtKKmbI6krZJekvS8pGvzjMvMzPKV95XHs8AtwNbajZJOB3YAm4DTgArwnZoqNwFnASuADwGfl/SRnGMzM7OcqIgZ5pJuAX4nItalr9cD6yLivenr+cBB4LyI2CPpGeBPIuJ/peU3A2dFxBW5B2dmZpnNbtPnDAG7qy8i4qikfcCQpBeApbXl6fPLGu0oTUTrAebPn3/+6tWrCwvazKwX7dq162BEDGbZR7uSxwJgvG7bYWBhWlZ9XV/2NhGxBdgCMDw8HJVKJd9Izcx6nKSxrPto12irCWCgbtsAcCQto668WmZmZiXUruQxCqypvkj7PM4ERiPiEPBcbXn6fLRNsZmZWYvyHqo7W9Jc4BTgFElzJc0G7gPOkbQ2Lf8S8ERE7EnfejewUdJiSauBq4FtecZmZmb5yfvKYyNwHLge+GT6fGNEjANrgc3AIeACoHYk1Y3APmAMeAS4PSIezDk2MzPLSSFDddvFHeZmZq2TtCsihrPsw8uTmJlZy5w8zMysZU4eZmbWMicPMzNrWbtmmJfS/Y8/w+0P7eXZF4+zdNE8rrt0FZedt6zTYZmZlV7fJo/7H3+GL+74CcdffR2AZ148zhd3/ATACcTMbAp922x1+0N730gcVcdffZ3bH9rboYjMzLpH3yaPZ1883tJ2MzN7U982Wy1dNI9nGiSKpYvmdSAaM7PGyto327dXHtdduop5p57ylm3zTj2F6y5d1aGIzMzeqto3+8yLxwne7Ju9//FnOh1a/yaPy85bxq2Xn8uyRfMQsGzRPG69/NxSZHQzMyh332zfNltBkkCcLMysrMrcN9vXySOrsrZFmllvKHPfbN82W2VV5rZIMyuX+x9/hvfd9n3+9fV/x/tu+/60vyfK3Dfr5DFDZW6LNLPyyPJDs8x9s262mqEyt0WaWXlM9kNzOkmgrH2zvvKYoWZtjmVoizSz8ujVH5ptTR6Sdkp6WdJE+thbU/YJSWOSjkq6X9Jp7YytVWVuizSz8ujVH5qduPLYEBEL0scqAElDwLeATwFLgGPA1zsQ27SVuS3SzMqjV39olqXPYwR4ICJ+ACBpE/CkpIURcaSzoTVX1rZIMyuP6ndErw3r70TyuFXSbcBe4IaI2AkMAT+qVoiIfZJeAc4GdnUgxsJ5johZ/+jFH5rtTh5fAH4GvAJcATwg6d3AAuBwXd3DwML6HUhaD6wHWL58eaHBFsX3EjGzbtfWPo+I+HFEHImIExFxF/AY8DFgAhioqz4AvK3JKiK2RMRwRAwPDg4WH3QBPEfErLvMdJJfL+t0n0cAAkaBNdWNks4A5gBPdSiuQvXq0D2zXuSWgsbaduUhaZGkSyXNlTRb0gjwAeAhYDvwcUnvlzQf+DKwo8yd5Vn06tA9s17kloLG2tlsdSpwCzAOHAQ+B1wWEXsjYhT4LEkS+RVJX8c1bYytrXp16J5ZL3JLQWNta7aKiHHgPZOU/xXwV+2Kp5N6deieWS8q88q2ndTpPo++1YtD98zKKsvQ+OsuXfWWPg9wSwE4eZhZj8va4e2WgsacPMysp2Vd1RbcUtCIk0eX8gx16zczPefd4V0MJ48u5HHn1m+ynPPu8C6G7+fRhTzu3PpNlnPeQ+OL4SuPLpTHZbibvaybZDnn3eFdDCePLpT1MjyPZi8nH2unrOe8O7zz52arLpT1Mjxrs1c1+Tzz4nGCN5OPF4uzorjpqXx85dGFsl6GZ232ymPoo/WfLFerbnoqHyePLpXlMjxrE4CHPlqr8mgqddNTubjZqg9lbQLIuiqw743QfzxCsPf4yqMPZW0CyLLWjzvru1eW4+6r1d7j5NGnsjQBZEk+WftLPEGyM7Ied0/U6z1OHjYjM00+7qzvTlmPu1em7T1OHtZW7qzvnE42O3m0VO9x8rC2yvoLNI/mj27uM5lp7GVodvJoqd7S36Ottm+HlSth1qzkz+3bOx1Rz7vsvGXcevm5LFs0DwHLFs3j1svPbamzPstIsW6e4Jgl9qyjnTxJz+qV5spD0mnAncCHSe5x/sX01rTF2L4d1q+HY8eS12NjyWuAkZHp7+OGG+DAAVi+HDZvnv57+1inOuur78vaYZ/lqiXL+7PE7mYny1tpkgfwl8ArwBLg3cDfSdodEaOFfNoNN7yZOKqOHUu2TycBZE0+TjwzliX5ZPkSzdr0k/X9WWJ3s5PlrRTNVpLmA2uBTRExERGPAn8DfKqwDz1woLXt9SZLPlOpJp6xMYh4M/G42axwWSY4Zm36yfr+LLG72cnyVorkAZwNvB4RT9Vs2w0M1VeUtF5SRVJlfHx85p+4fHlr2+tlST5ZEo9lkuVLNGvTT9b3Z4k9a1+TWb2yJI8FwOG6bYeBhfUVI2JLRAxHxPDg4ODMP3HzZnjHO9667R3vSLZPR5bkk/WqB9zZP0NZvkSzLsuS9f1ZE8Bl5y3jsev/gKdv+0Meu/4PnDgsk7L0eUwAA3XbBoAjhX1itX9hpv0Omze/tc8Dpp98li9PmqoabZ+OPDr7+9hM2+6zDjPOY6Kc+x2sLMpy5fEUMFvSWTXb1gDFdJZXjYzA/v1w8mTyZytfvCMjsGULrFgBUvLnli3T20fWqx43e3VEHr/83XRkvUIR0ekYAJD010AAnyYZbfX3wHsnG201PDwclUqlTRHmLMtoq1mzko72elKSCIv+fDPrapJ2RcRwln2UpdkK4BpgK/Ar4NfAnxU2TLcMRkZm/mXtZi8z67CyNFsREb+JiMsiYn5ELC90gmC3c7OXmXVYaZKHtSBLfwvkM9rLzPqak0e3ytLZn3WOC3iosFmfc/LoR1mbvTxD3qzvOXn0o6zNXu4zMet7pRmqOxNdPVS3m+UxVNjMOiaPobq+8rDW5dFnYmZdzcnDWpdHn4k72826mpOHtS5Ln4k72816gvs8rL1Wrmw8O37FimTIsZkVzn0e1n08QdGsJzh5WHu5s92sJzh5WHtl7Ww3s1Jw8rD2yjpBETxay6wEyrQku/WLLMvRezl5s1LwlYd1Fy+NYlYKTh7WXTxay6wUnDysu3i0llkptCV5SNop6WVJE+ljb135JySNSToq6X5Jp7UjLutCHq1lVgrtvPLYEBEL0seq6kZJQ8C3gE8BS4BjwNfbGJd1kzxGa5lZZmVothoBHoiIH0TEBLAJuFzSwg7HZWWV5S6K4KG+ZjloZ/K4VdJBSY9Juqhm+xCwu/oiIvYBrwBnN9qJpPWSKpIq4+PjhQZsPcgLM5rlol3J4wvAGcAyYAvwgKQz07IFwOG6+oeBhlceEbElIoYjYnhwcLCoeK1XeaivWS4yJ4+0MzyaPB4FiIgfR8SRiDgREXcBjwEfS3cxAQzU7XYAOJI1NrO38VBfs1xknmEeERfN5G2A0uejwJpqgaQzgDnAU1ljM3ub5csbLwnvob5mLSm82UrSIkmXSporabakEeADwENple3AxyW9X9J84MvAjojwlYflz0N9zXLRjj6PU4FbgHHgIPA54LKI2AsQEaPAZ0mSyK9I+jquaUNc1o881NcsF76ToFkrtm9POtcPHEiaujZvduKxrpPHnQS9qq7ZdHlFX7M3lGGSoFl38DBfszc4eZhNl4f5mr3BycNsuryir9kbnDzMpsvDfM3e4ORhNl0e5mv2Bo+2MmtFlvuvm/UQX3mYmVnLnDzM2sn3ErEe4WYrs3bxJEPrIb7yMGsXTzK0HuLkYdYunmRoPcTJw6xdPMnQeoiTh1m7eJKh9RAnD7N28SRD6yEebWXWTp5kaD3CVx5mZtayXJKHpA2SKpJOSNrWoPxiSXskHZP0sKQVNWVzJG2V9JKk5yVdm0dMZj3JkwytJPK68niW5D7lW+sLJJ0O7AA2AacBFeA7NVVuAs4CVgAfAj4v6SM5xWXWO6qTDMfGIOLNSYZOINYBuSSPiNgREfcDv25QfDkwGhH3RsTLJMlijaTVaflVwM0RcSgingTuANblEZdZT/EkQyuRdvR5DAG7qy8i4iiwDxiStBhYWluePh9qtjNJ69Mmssr4+HhBIZuVkCcZWom0I3ksAA7XbTsMLEzLqCuvljUUEVsiYjgihgcHB3MN1KzUPMnQSmTK5CFpp6Ro8nh0Gp8xAQzUbRsAjqRl1JVXy8yslicZWolMmTwi4qKIUJPHhdP4jFFgTfWFpPnAmST9IIeA52rL0+ejrf01zPqAJxlaieQ1VHe2pLnAKcApkuZKqk5AvA84R9LatM6XgCciYk9afjewUdLitBP9amBbHnGZ9ZyREdi/H06eTP504rAOyavPYyNwHLge+GT6fCNARIwDa4HNwCHgAuCKmvfeSNKBPgY8AtweEQ/mFJeZmRVAEdHpGGZseHg4KpVKp8MwM+sqknZFxHCWfXh5ErN+4dnpliMvjGjWD3wLXMuZrzzM+oFnp1vOnDzM+oFnp1vOnDzM+oFnp1vOnDzM+oFnp1vOnDzM+oFnp1vOPNrKrF/4FriWI195mJlZy5w8zMysZU4eZmbWMicPM5seL29iNdxhbmZT8/ImVsdXHmY2NS9vYnWcPMxsal7exOo4eZjZ1Ly8idVx8jCzqXl5E6uT1z3MN0iqSDohaVtd2UpJIWmi5rGppnyOpK2SXpL0vKRr84jJzHLk5U2sTl6jrZ4FbgEuBeY1qbMoIl5rsP0m4CxgBfAu4GFJP/N9zM1KxsubWI1crjwiYkdE3A/8egZvvwq4OSIORcSTwB3AujziMjOzYrSzz2NM0i8lfVvS6QCSFgNLgd019XYDQ812Iml92kRWGR8fLzZiMzNrqB3J4yDwHpJmqfOBhUB1auqC9M/DNfUPp3UaiogtETEcEcODg4MFhGtmZlOZMnlI2pl2eDd6PDrV+yNiIiIqEfFaRLwAbAA+LGkAmEirDdS8ZQA4MpO/jJmVmJc36SlTdphHxEU5f2akfyoiDkl6DlgD/GO6fQ0wmvNnmlkneXmTnpPXUN3ZkuYCpwCnSJoraXZadoGkVZJmSXon8DVgZ0RUm6ruBjZKWixpNXA1sC2PuMysJLy8Sc/Jq89jI3AcuB74ZPp8Y1p2BvAgSVPUT4ETwJU1770R2AeMAY8At3uYrlmP8fImPUcRMXWtkhoeHo5KpdLpMMxsKitXJk1V9VasgP372x1N35O0KyKGs+zDy5OYWfG8vEnPcfIws+J5eZOe45tBmVl7eHmTnuIrDzMza5mTh5mZtczJw8zMWubkYWZmLXPyMDOzljl5mFl38MKKpeKhumZWfl5YsXR85WFm5eeFFUvHycPMys8LK5aOk4eZld/y5a1tt8I5eZhZ+XlhxdJx8jCz8vPCiqXj0VZm1h28sGKp+MrDzMxaljl5SJoj6U5JY5KOSHpc0kfr6lwsaY+kY5IelrSi7v1bJb0k6XlJ12aNyczMipXHlcds4BfAB4HfAjYB35W0EkDS6cCOdPtpQAX4Ts37bwLOAlYAHwI+L+kjOcRlZmYFyZw8IuJoRNwUEfsj4mRE/C3wNHB+WuVyYDQi7o2Il0mSxRpJq9Pyq4CbI+JQRDwJ3AGsyxqXmZkVJ/c+D0lLgLOB0XTTELC7Wh4RR4F9wJCkxcDS2vL0+dAk+18vqSKpMj4+nnf4ZmY2DbkmD0mnAtuBuyJiT7p5AXC4ruphYGFaRl15tayhiNgSEcMRMTw4OJhP4GbW27yoYu6mTB6SdkqKJo9Ha+rNAu4BXgE21OxiAhio2+0AcCQto668WmZmll11UcWxMYh4c1FFJ5BMpkweEXFRRKjJ40IASQLuBJYAayPi1ZpdjAJrqi8kzQfOJOkHOQQ8V1uePh/FzCwPXlSxEHk1W30D+F3g4xFxvK7sPuAcSWslzQW+BDxR06x1N7BR0uK0E/1qYFtOcZlZv/OiioXIY57HCuAzwLuB5yVNpI8RgIgYB9YCm4FDwAXAFTW7uJGkA30MeAS4PSIezBqXmRngRRULknl5kogYAzRFnX8CVjcpOwH8afowM8vX5s1vvZEUeFHFHHh5EjPrbV5UsRBeGNHMep8XVcydrzzMzKxlTh5mZtYyJw8zM2uZk4eZmbXMycPMzFrm5GFmZi1z8jAzm4pX5X0bz/MwM5tMdVXe6gz16qq80NdzR3zlYWY2Ga/K25CTh5nZZLwqb0NOHmZmk/GqvA05eZiZTWbz5mQV3lpeldfJw8xsUl6VtyGPtjIzm4pX5X0bX3mYmVnL8rgN7RxJd0oak3RE0uOSPlpTvlJS1NyedkLSprr3b5X0kqTnJV2bNSYzMytWHs1Ws4FfAB8EDgAfA74r6dyI2F9Tb1FEvNbg/TcBZwErgHcBD0v6me9jbmZWXpmvPCLiaETcFBH7I+JkRPwt8DRw/jR3cRVwc0QciogngTuAdVnjMjOz4uTe5yFpCXA2MFpXNCbpl5K+Len0tO5iYCmwu6bebmAo77jMzCw/uSYPSacC24G7ImJPuvkg8B6SZqnzgYVpHYAF6Z+Ha3ZzOK3T7DPWS6pIqoyPj+cZvpmZTdOUyUPSzrTDu9Hj0Zp6s4B7gFeADdXtETEREZWIeC0iXkjLPixpAJhIqw3UfOQAcKRZPBGxJSKGI2J4cHCwpb+smZnlY8rkEREXRYSaPC4EkCTgTmAJsDYiXp1sl+mfiohDwHPAmpryNby9ycvMrHv14JLueU0S/Abwu8AlEXG8tkDSBcCLwP8FFgNfA3ZGRLWp6m5go6QKSfK5GviTnOIyM+usHl3SPY95HiuAzwDvBp6vmctRPSpnAA+SNEX9FDgBXFmzixuBfcAY8Ahwu4fpmlnP6NEl3RURU9cqqeHh4ahUKp0Ow8ysuVmzoNH3rAQnT7Y/HkDSrogYzrIPL09iZlakHl3S3cnDzKxIPbqku5OHmVmRenRJdy/JbmZWtB5c0t1XHmZm1jInDzMza5mTh5mZtczJw8zMWubkYWZmLXPyMDOzljl5mJlZy5w8zMysZU4eZmZlVtJ7gXiGuZlZWZX4XiC+8jAzK6sS3wvEycPMrKwOHGhtexs5eZiZlVWJ7wXi5GFmVlYlvhdILslD0v+Q9JyklyQ9JenTdeUXS9oj6Zikh9P7nlfL5kjamr73eUnX5hGTmVnXK/G9QHK5h7mkIeD/RcQJSauBncAfRsQuSacD+4BPAw8ANwPvj4jfT997K3Ah8B+BdwEPA+si4sGpPtf3MDcza11p7mEeEaMRcaL6Mn2cmb6+HBiNiHsj4mXgJmBNmmQArgJujohDEfEkcAewLo+4zMysGLnN85D0dZIv/XnA48Dfp0VDwO5qvYg4KmkfMCTpBWBpbXn6/LJJPmc9kA50ZkLS3hzCPx04mMN+ilDm2KDc8Tm2mSlzbFDu+LolthWTVZyO3JJHRFwj6XPAvwMuAqpXIguA8brqh4GFaVn1dX1Zs8/ZAmzJIeQ3SKpkvYQrSpljg3LH59hmpsyxQbnj66fYpmy2krRTUjR5PFpbNyJej4hHgd8B/izdPAEM1O12ADiSllFXXi0zM7OSmjJ5RMRFEaEmjwubvG02b/Z5jAJrqgWS5qdloxFxCHiutjx9PjqTv4yZmbVH5g5zSb8t6QpJCySdIulS4Erg+2mV+4BzJK2VNBf4EvBEROxJy+8GNkpanHaiXw1syxpXi3JtBstZmWODcsfn2GamzLFBuePrm9gyD9WVNAh8j+SKYRYwBnwtIu6oqXMJ8N9JOml+TDIUd39aNgf4BvCfgOPAVyLiv2UKyszMCpXLPA8zM+svXp7EzMxa5uRhZmYt64vkIek0SfdJOippTNInmtSTpK9I+nX6+KokFRzbHEl3pnEdkfS4pI82qbtO0uuSJmoeFxUc305JL9d8XsNJme0+dnXHYCI9Ln/RpG7hx03SBkkVSSckbasra7q2W4P9rEzrHEvfc0lRsUn6fUn/KOk3ksYl3SvpX02yn2mdCznGtzKdElD777Zpkv2089iN1MV1LI31/Cb7yf3YTfXdUfR51xfJA/hL4BVgCTACfEPJelz11pPMbl8D/B7wH4DPFBzbbOAXwAeB3wI2Ad+VtLJJ/f8dEQtqHjsLjg9gQ83nrWpSp63HrvYYkPy7HgfuneQtRR+3Z4FbgK21G5Ws7baD5N/1NKACfGeS/fxPkhUa3gncAHxPyaCU3GMDFpOMwFlJMpjlCPDtKfY1nXMhr/iqFtV85s2T7Kdtxy4ittedg9cAPwf+ZZJ95X3smn53tOW8i4iefgDzSRLH2TXb7gFua1D3R8D6mtf/GfjnDsT8BLC2wfZ1wKNtjmUn8Olp1OvYsQP+mOQ/rpqUt+24kXzRbKt5vR74Uc3r+SSJbnWD955NsjLDwpptPwQ+W0RsDcr/LXAk67mQ47FbSbJO3uxpvLfTx+5h4MZOHbuaz3kCWNuO864frjzOBl6PiKdqtu0mWXOr3lvW4ZqkXmEkLSGJudlEyfMkHVSy9P0mSe24D/2t6Wc+NklzTyeP3R8Dd0d61jfRieMGDdZ2I1llutn59/OIqF1hoZ3H8QNMPUF3OudC3sYk/VLSt9Nf1I107NilzUEfIJmzNplCj13dd0fh510/JI8FvHXtLGi+flZ93cPAgiLb7mtJOhXYDtwVb06irPUD4Bzgt0l+XVwJXFdwWF8AzgCWkTRxPCDpzAb1OnLsJC0nuWy/a5JqnThuVVnOv8nq5krS75FM4J3suEz3XMjLQeA9JE1q55Mch+1N6nbs2JGsDP7DiHh6kjqFHrsG3x2Fn3f9kDwmW1trqroDwMQUv2hzIWkWSXPaK8CGRnUi4ucR8XREnIyInwBfJplcWZiI+HFEHImIExFxF/AY8LEGVTt17K4iaZJq+h+3E8etRpbzb7K6uZH0b4B/AP5LRPywWb0WzoVcRMRERFQi4rWIeIHk/8WHJdUfI+jQsUtdxeQ/Xgo9dk2+Owo/7/oheTwFzJZ0Vs22ZutnvWUdrknq5Sr9dX4nScfv2oh4dZpvDaAtV0XT+MyOHDum8R+3gXYet6ZruzWpe4ak2l98hR7HtMnln0juqXNPi29v9/lX/SHS7Pxr67EDkPQ+kttKfK/Ft+Zy7Cb57ij+vCu6A6cMD+CvSUYTzAfeR3JJNtSg3meBJ0kuLZemBy+XDrcp4vsm8M/AginqfRRYkj5fDfyUSTrpcohrEXApMJdkZMcIcBRYVYZjB7w3jWfhFPUKP27p8ZkL3EryK7B6zAbT821tuu0rTDKQID0P/jyt+0fAi8BgQbEtI2kHvy7PcyHH+C4AVpH8yH0nyWihh8tw7GrKt5D0t3Xq2DX87mjHeZfbf54yP0iGqt2f/oMdAD6Rbn8/SdNKtZ6ArwK/SR9fpckInhxjW0HyK+RlksvH6mMEWJ4+X57W/XPghfTv8XOS5pdTC4xtEPg/JJevL6Yn2L8v0bH7FnBPg+1tP24kd8iMusdNadklwB6S0S47gZU17/sm8M2a1yvTOseBvcAlRcUG3Jg+rz3vav9N/yvwD1OdCwXGdyXwdPrv9hxJh/S7ynDs0rK56bG4uMH7Cj92TPLd0Y7zzmtbmZlZy/qhz8PMzHLm5GFmZi1z8jAzs5Y5eZiZWcucPMzMrGVOHmZm1jInDzMza5mTh5mZtez/A8bIaIXveo0oAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["show_preds(preds)"]},{"cell_type":"markdown","metadata":{"id":"gp11vA9Iz7cr"},"source":["This doesn't look very close—our random parameters suggest that the roller coaster will end up going backwards, since we have negative speeds!"]},{"cell_type":"markdown","metadata":{"id":"0ljz3ofaz7cr"},"source":["#### Step 3: Calculate the loss"]},{"cell_type":"markdown","metadata":{"id":"q3-PyRDPz7cr"},"source":["We calculate the loss as follows:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4C3_gshrz7cs","outputId":"b4d99bf2-c780-41ea-b820-75de8ec983cf"},"outputs":[{"data":{"text/plain":["tensor(25823.8086, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss = mse(preds, speed)\n","loss"]},{"cell_type":"markdown","metadata":{"id":"iSvYOn33z7cs"},"source":["Our goal is now to improve this. To do that, we'll need to know the gradients."]},{"cell_type":"markdown","metadata":{"id":"u-gUXoLSz7cs"},"source":["#### Step 4: Calculate the gradients"]},{"cell_type":"markdown","metadata":{"id":"yXK22b4zz7ct"},"source":["The next step is to calculate the gradients. In other words, calculate an approximation of how the parameters need to change:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VmFiG1kaz7ct","outputId":"e9d4a09e-ce09-4565-c2a8-d90f82e0ae13"},"outputs":[{"data":{"text/plain":["tensor([-53195.8594, -3419.7146, -253.8908])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss.backward()\n","params.grad"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"M2YjIES5z7ct","outputId":"d22d2375-95bf-4303-db14-ff570294b4c5"},"outputs":[{"data":{"text/plain":["tensor([-0.5320, -0.0342, -0.0025])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["params.grad * 1e-5"]},{"cell_type":"markdown","metadata":{"id":"9vE3dY5Gz7cu"},"source":["We can use these gradients to improve our parameters. We'll need to pick a learning rate (we'll discuss how to do that in practice in the next chapter; for now we'll just use 1e-5, or 0.00001):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"69ViXKA6z7cu","outputId":"385132f8-7e02-402c-9723-f9cae5028157"},"outputs":[{"data":{"text/plain":["tensor([-0.7658, -0.7506, 1.3525], requires_grad=True)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["params"]},{"cell_type":"markdown","metadata":{"id":"Vnb4j0Brz7cu"},"source":["#### Step 5: Step the weights."]},{"cell_type":"markdown","metadata":{"id":"yLXRz442z7cv"},"source":["Now we need to update the parameters based on the gradients we just calculated:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6FWxw9Koz7cv"},"outputs":[],"source":["lr = 1e-5\n","params.data -= lr * params.grad.data\n","params.grad = None"]},{"cell_type":"markdown","metadata":{"id":"GB_6lbFOz7cv"},"source":["> a: Understanding this bit depends on remembering recent history. To calculate the gradients we call `backward` on the `loss`. But this `loss` was itself calculated by `mse`, which in turn took `preds` as an input, which was calculated using `f` taking as an input `params`, which was the object on which we originally called `requires_grad_`—which is the original call that now allows us to call `backward` on `loss`. This chain of function calls represents the mathematical composition of functions, which enables PyTorch to use calculus's chain rule under the hood to calculate these gradients."]},{"cell_type":"markdown","metadata":{"id":"gGtYtn1sz7cw"},"source":["Let's see if the loss has improved:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GYRDc3Iaz7cw","outputId":"c3502823-3153-477e-959e-9e4a22abfabe"},"outputs":[{"data":{"text/plain":["tensor(5435.5366, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds = f(time,params)\n","mse(preds, speed)"]},{"cell_type":"markdown","metadata":{"id":"pWPrn2qYz7cw"},"source":["And take a look at the plot:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"o_efvL1Ez7cw","outputId":"a688c973-0525-4559-c0f7-191a99c05763"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAY8AAAEACAYAAABLfPrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAcYElEQVR4nO3df4wc5Z3n8ffHGGFje9YmzJKzVx4vHNgrwzqcJ+IO8sMJuZCwx4nF9wdkEta3G5wscnQSJxJy2AEFkElY3R/Zu/wwgpgfXjYhMmhJduGyG0yCcxvdEGSSCTaSA0P4mXFijMc25tf3/qjq0HS6Z6amqrpruj8vqTTd9TxV/Z1navrbz/NUVSsiMDMzy2JWpwMwM7OZx8nDzMwyc/IwM7PMnDzMzCwzJw8zM8vMycPMzDJz8jAzs8wKTR6SNkgalnRU0taGsnMl7ZZ0WNKDkgbqyo6TdKuklyW9IOmKIuMyM7NiFd3zeA64Hri1fqWkE4HtwCbgBGAY+FZdlWuBU4EB4APAZyV9pODYzMysICrjCnNJ1wN/FBHr0ufrgXURcXb6fB6wDzgzInZLehb4rxHxf9Ly64BTI+LiwoMzM7PcZrfpdVYCu2pPIuKQpL3ASkkvAovry9PHFzbbUZqI1gPMmzdv9YoVK0oL2sysGz3yyCP7IqI/zz7alTzmA2MN6w4AC9Ky2vPGst8TEVuALQCDg4MxPDxcbKRmZl1O0mjefbTrbKtxoK9hXR9wMC2jobxWZmZmFdSu5DECrKo9Sec8TgFGImI/8Hx9efp4pE2xmZlZRkWfqjtb0hzgGOAYSXMkzQbuAU6XtDYt/wLwWETsTje9HdgoaZGkFcBlwNYiYzMzs+IU3fPYCBwBrgI+nj7eGBFjwFrgBmA/cBZQfybVNcBeYBR4CLgpIu4vODYzMytIKafqtosnzM3MspP0SEQM5tmHb09iZmaZOXmYmVlmTh5mZpaZk4eZmWXWrivMK+neR5/lpgf28NxLR1i8cC5XnrecC89c0umwzMwqr2eTx72PPsvnt/+MI6+9AcCzLx3h89t/BuAEYmY2iZ4dtrrpgT2/Sxw1R157g5se2NOhiMzMZo6eTR7PvXQk03ozM3tLzw5bLV44l2ebJIrFC+d2IBozs+aqOjfbsz2PK89bztxjj3nburnHHsOV5y3vUERmZm9Xm5t99qUjBG/Nzd776LOdDq13k8eFZy5h80VnsGThXAQsWTiXzRedUYmMbmYG1Z6b7dlhK0gSiJOFmVVVledmezp55FXVsUgz6w5Vnpvt2WGrvKo8Fmlm1XLvo89yzo0/4I+v+h7n3PiDKb9PVHlu1sljmqo8Fmlm1ZHng2aV52Y9bDVNVR6LNLPqmOiD5lSSQFXnZt3zmKZWY45VGIs0s+ro1g+abU0eknZIekXSeLrsqSv7mKRRSYck3SvphHbGllWVxyLNrDq69YNmJ3oeGyJifrosB5C0EvgG8AngJOAw8NUOxDZlVR6LNLPq6NYPmlWZ8xgC7ouIHwJI2gQ8LmlBRBzsbGitVXUs0syqo/Ye0W2n9XcieWyWdCOwB7g6InYAK4Ef1ypExF5JrwKnAY90IMbS+RoRs97RjR802508Pgf8AngVuBi4T9K7gPnAgYa6B4AFjTuQtB5YD7B06dJSgy2Lv0vEzGa6ts55RMRPIuJgRByNiNuAncD5wDjQ11C9D/i9IauI2BIRgxEx2N/fX37QJfA1ImYzy3Qv8utmnZ7zCEDACLCqtlLSycBxwBMdiqtU3Xrqnlk38khBc23reUhaKOk8SXMkzZY0BLwPeADYBlwg6b2S5gFfBLZXebI8j249dc+sG3mkoLl2DlsdC1wPjAH7gM8AF0bEnogYAT5NkkR+TTLXcXkbY2urbj11z6wbeaSgubYNW0XEGPDuCcr/Dvi7dsXTSd166p5ZN6rynW07qdNzHj2rG0/dM6uqPKfGX3ne8rfNeYBHCsDJw8y6XN4Jb48UNOfkYWZdLe9dbcEjBc04ecxQvkLdes10j3lPeJfDyWMG8nnn1mvyHPOe8C6Hv89jBvJ559Zr8hzzPjW+HO55zEBFdMM97GUzSZ5j3hPe5XDymIHydsOLGPZy8rF2ynvMe8K7eB62moHydsPzDnvVks+zLx0heCv5+GZxVhYPPVWPex4zUN5ueN5hryJOfbTek6e36qGn6nHymKHydMPzDgH41EfLqoihUg89VYuHrXpQ3iGAvHcF9ncj9B6fIdh93PPoQXmHAPLc68eT9TNXnnZ3b7X7OHn0qDxDAHmST975El8g2Rl5290X6nUfJw+blukmH0/Wz0x52913pu0+Th7WVp6s75xODjv5bKnu4+RhbZX3E2gRwx8zec5kurFXYdjJZ0t1l94+22rbNli2DGbNSn5u29be7XvQhWcuYfNFZ7Bk4VwELFk4l80XnZFpsj7PmWIz+QLHPLHnPdvJF+lZo8r0PCSdANwCfJjkO84/n341bTm2bYP16+Hw4eT56GjyHGBoqD3bX301PP00LF0KN9wwte26QKcm62vb5Z2wz9NrybN9ntg97GRFU0R0OgYAJN1F0hP6K+BdwPeAsyNipNU2g4ODMTw8PL0XXLYsecNvNDAATz1V7vaNiQfg+ONhy5apJ5AeTj55/PFV36PZES/gyRv/bMJtG4d+IPn0PdWeU97t88R+zo0/aDrstGThXHZe9cFJX9u6i6RHImIwzz4qMWwlaR6wFtgUEeMR8TDwD8AnSnvRp5/Otr7I7a+++u2JA5LnV189tdeuJZ/RUYh4q9fjYbNJ5bnAMe/QT97t88TuYScrWiWSB3Aa8EZEPFG3bhewsrGipPWShiUNj42NTf8Vly7Ntr7I7fMmrrzJB3p2vibPm2jeoZ+82+eJPe9ck1mjqiSP+cCBhnUHgAWNFSNiS0QMRsRgf3//9F/xhhuSoaJ6xx+frC97+7yJK2/yKaLnMkOTT5430by3Zcm7fd4EcOGZS9h51Qd58sY/Y+dVH3TisFwqMech6UxgZ0QcX7fuvwNrIuKCVtvlmvOA/PMG090+75xHJ+droJg5mxmo03MeZkUpYs6DiOj4AswDXgVOrVt3O3DjRNutXr06Zqw774wYGIiQkp933plt2+OPj0j6Dcly/PFT34f09m1rizS17QcGmm8/MDD1+Kf7u3fYPT99Js7e/C+x7HPfjbM3/0vc89Nn2rq9WRGA4cj5vl2JngeApL8HAvgkydlW/0iZZ1vNdHl6TXl7HrNmJemikQRvvjnxtj3aazGrkq452yp1OTAX+DVwF/DXEyWOnjc0lLzRv/lm8jPLG2/e+Z48czae7DfrCpVJHhHx24i4MCLmRcTSKPMCwV43NJR80h8YSHoLAwPZPvnnST5VmOw3s9wqkzyszfL0XPIkn7xnmrnnYlYJTh42PdNNPnmHzNxzMasEJw9rr7xDZlXouZiZk4d1QCcn+4vouXjIy8zJw2aYTvZcPORl9juVuc5jOnr6Og+bnjzXmeS9PsasIrrtOg+z8uXpueQd8gIPe1nXqMyXQZm1zdDQ9K5mX7q0ec9jqpP1eb9AzKxC3PMwm6q8k/U+08u6iJOH2VTlnaz3sJd1EQ9bmWUx3SEv8LCXdRX3PMzaxcNe1kWcPMzapdPDXh7ysgJ52MqsnTo17OUhLyuYex5mM0WeYS8PeVnBnDzMZopOX+BoVsfJw2wmme5NJfPejRg8Z2Jv05bkIWmHpFckjafLnobyj0kalXRI0r2STmhHXGY9I++ZXr4ppDVoZ89jQ0TMT5fltZWSVgLfAD4BnAQcBr7axrjMul/eM708Z2INqjBsNQTcFxE/jIhxYBNwkaQFHY7LrLvk+R4VXx1vDdqZPDZL2idpp6Q1detXArtqTyJiL/AqcFqznUhaL2lY0vDY2FipAZtZKu+ciYe9uk67ksfngJOBJcAW4D5Jp6Rl84EDDfUPAE17HhGxJSIGI2Kwv7+/rHjNrJ6vjrcGuZNHOhkeLZaHASLiJxFxMCKORsRtwE7g/HQX40Bfw277gIN5YzOzgnT66nirnNzJIyLWRIRaLO9ptRmg9PEIsKpWIOlk4DjgibyxmVmB8syZ+FThrlP6sJWkhZLOkzRH0mxJQ8D7gAfSKtuACyS9V9I84IvA9ohwz8OsW/hU4a7TjjmPY4HrgTFgH/AZ4MKI2AMQESPAp0mSyK9J5joub0NcZtYuPlW46ygiOh3DtA0ODsbw8HCnwzCzss2alfQ4GknJMJplIumRiBjMs48qXOdhZjaxIuZMrFBOHmZWfUXMmXiyvVBOHmZWfXnmTDzZXgrPeZhZd1u2rPmXaA0MJKcc9yDPeZiZTcYXKJbCycPMupsvUCyFk4eZdTdfoFgKJw8z626+QLEUnjA3M5tIF16g6AlzM7Oy+QLFppw8zMwmknfOBLpywt3Jw8xsInnnTLp0wt1zHmZmZargRYqe8zAzq7ouvUjRycPMrExdOuHu5GFmVqYuvSOwk4eZWZm69I7AhSQPSRskDUs6Kmlrk/JzJe2WdFjSg5IG6sqOk3SrpJclvSDpiiJiMjOrjKGhZHL8zTeTn11wdXtRPY/nSL6n/NbGAkknAtuBTcAJwDDwrboq1wKnAgPAB4DPSvpIQXGZmc1cFZ5sLyR5RMT2iLgX+E2T4ouAkYi4OyJeIUkWqyStSMsvBa6LiP0R8ThwM7CuiLjMzGa0Ck+2t2POYyWwq/YkIg4Be4GVkhYBi+vL08crW+1M0vp0iGx4bGyspJDNzCqgiKvbS9KO5DEfONCw7gCwIC2jobxW1lREbImIwYgY7O/vLzRQM7NKyXt1e4lmT1ZB0g7g/S2Kd0bEeybZxTjQ17CuDziYltWev9JQZmZmQ0OVSBaNJu15RMSaiFCLZbLEATACrKo9kTQPOIVkHmQ/8Hx9efp4JNuvYWZm7VTUqbqzJc0BjgGOkTRHUq1Xcw9wuqS1aZ0vAI9FxO60/HZgo6RF6ST6ZcDWIuIyM7NyFDXnsRE4AlwFfDx9vBEgIsaAtcANwH7gLODium2vIZlAHwUeAm6KiPsLisvMzErgu+qamfUY31XXzMw6wsnDzMwyc/IwM7PMnDzMzCwzJw8zM8vMycPMzDJz8jAzs8ycPMzMLDMnDzMzy8zJw8zMMnPyMDOzzJw8zMwsMycPMzPLzMnDzMwyc/IwM7PMnDzMzCwzJw8zM8usqO8w3yBpWNJRSVsbypZJCknjdcumuvLjJN0q6WVJL0i6ooiYzMysPLML2s9zwPXAecDcFnUWRsTrTdZfC5wKDADvBB6U9At/j7mZWXUV0vOIiO0RcS/wm2lsfilwXUTsj4jHgZuBdUXEZWZm5WjnnMeopGckfVPSiQCSFgGLgV119XYBK1vtRNL6dIhseGxsrNyIzcysqXYkj33Au0mGpVYDC4Btadn89OeBuvoH0jpNRcSWiBiMiMH+/v4SwjUzs8lMmjwk7UgnvJstD0+2fUSMR8RwRLweES8CG4APS+oDxtNqfXWb9AEHp/PLmJlZe0w6YR4Rawp+zUh/KiL2S3oeWAV8P12/Chgp+DXNzKxARZ2qO1vSHOAY4BhJcyTNTsvOkrRc0ixJ7wC+AuyIiNpQ1e3ARkmLJK0ALgO2FhGXmZmVo6g5j43AEeAq4OPp441p2cnA/SRDUT8HjgKX1G17DbAXGAUeAm7yabpmZtWmiJi8VkUNDg7G8PBwp8MwM5tRJD0SEYN59uHbk5iZWWZOHmZmlpmTh5mZZebkYWZmmTl5mJlZZk4eZmaWmZOHmZll5uRhZmaZOXmYmVlmTh5mZpaZk4eZmWXm5GFmZpk5eZiZWWZOHmZmlpmTh5mZZebkYWZmmTl5mJlZZrmTh6TjJN0iaVTSQUmPSvpoQ51zJe2WdFjSg5IGGra/VdLLkl6QdEXemMzMrFxF9DxmA78C3g/8AbAJ+LakZQCSTgS2p+tPAIaBb9Vtfy1wKjAAfAD4rKSPFBCXmZmVJHfyiIhDEXFtRDwVEW9GxHeBJ4HVaZWLgJGIuDsiXiFJFqskrUjLLwWui4j9EfE4cDOwLm9cZmZWnsLnPCSdBJwGjKSrVgK7auURcQjYC6yUtAhYXF+ePl45wf7XSxqWNDw2NlZ0+GZmNgWFJg9JxwLbgNsiYne6ej5woKHqAWBBWkZDea2sqYjYEhGDETHY399fTOBmZpbJpMlD0g5J0WJ5uK7eLOAO4FVgQ90uxoG+ht32AQfTMhrKa2VmZlZRkyaPiFgTEWqxvAdAkoBbgJOAtRHxWt0uRoBVtSeS5gGnkMyD7Aeery9PH49gZmaVVdSw1deAPwEuiIgjDWX3AKdLWitpDvAF4LG6Ya3bgY2SFqWT6JcBWwuKy8zMSlDEdR4DwKeAdwEvSBpPlyGAiBgD1gI3APuBs4CL63ZxDckE+ijwEHBTRNyfNy4zMyvP7Lw7iIhRQJPU+WdgRYuyo8BfpouZmc0Avj2JmZll5uRhZmaZOXmYmVlmTh5mZpaZk4eZmWXm5GFmZpk5eZiZWWZOHmZmlpmTh5mZZebkYWZmmTl5mJlZZk4eZmaWmZOHmZll5uRhZmaZOXmYmVlmTh5mZpaZk4eZmWVWxNfQHifpFkmjkg5KelTSR+vKl0mKuq+nHZe0qWH7WyW9LOkFSVfkjcnMzMqV+2to0338Cng/8DRwPvBtSWdExFN19RZGxOtNtr8WOBUYAN4JPCjpF/4eczOz6srd84iIQxFxbUQ8FRFvRsR3gSeB1VPcxaXAdRGxPyIeB24G1uWNy8zMylP4nIekk4DTgJGGolFJz0j6pqQT07qLgMXArrp6u4CVRcdlZmbFKTR5SDoW2AbcFhG709X7gHeTDEutBhakdQDmpz8P1O3mQFqn1WuslzQsaXhsbKzI8M3MbIomTR6SdqQT3s2Wh+vqzQLuAF4FNtTWR8R4RAxHxOsR8WJa9mFJfcB4Wq2v7iX7gIOt4omILRExGBGD/f39mX5ZMzMrxqQT5hGxZrI6kgTcApwEnB8Rr020y9pmEbFf0vPAKuD76fpV/P6Ql5mZVUhRw1ZfA/4EuCAijtQXSDpL0nJJsyS9A/gKsCMiakNVtwMbJS2StAK4DNhaUFxmZlaCIq7zGAA+BbwLeKHuWo6htMrJwP0kQ1E/B44Cl9Tt4hpgLzAKPATc5NN0zcyqLfd1HhExCmiC8ruAuyYoPwr8ZbqYmdkM4NuTmJlZZk4eZmaWmZOHmZll5uRhZmaZOXmYmVlmTh5mZpaZk4eZmWXm5GFmZpk5eZiZWWZOHmZmlpmTh5mZZebkYWZmmTl5mJlZZk4eZmaWmZOHmZll5uRhZmaZOXmYmVlmTh5mZpZZIclD0p2Snpf0sqQnJH2yofxcSbslHZb0YPq957Wy4yTdmm77gqQriojJzMzKU1TPYzOwLCL6gP8MXC9pNYCkE4HtwCbgBGAY+FbdttcCpwIDwAeAz0r6SEFxmZlZCQpJHhExEhFHa0/T5ZT0+UXASETcHRGvkCSLVZJWpOWXAtdFxP6IeBy4GVhXRFxmZlaO2UXtSNJXSd705wKPAv+YFq0EdtXqRcQhSXuBlZJeBBbXl6ePL5zgddYD69On45L2FBD+icC+AvZThirHBtWOz7FNT5Vjg2rHN1NiG5io4lQUljwi4nJJnwH+A7AGqPVE5gNjDdUPAAvSstrzxrJWr7MF2FJAyL8jaTgiBovcZ1GqHBtUOz7HNj1Vjg2qHV8vxTbpsJWkHZKixfJwfd2IeCMiHgb+CPjrdPU40New2z7gYFpGQ3mtzMzMKmrS5BERayJCLZb3tNhsNm/NeYwAq2oFkualZSMRsR94vr48fTwynV/GzMzaI/eEuaQ/lHSxpPmSjpF0HnAJ8IO0yj3A6ZLWSpoDfAF4LCJ2p+W3AxslLUon0S8DtuaNK6NCh8EKVuXYoNrxObbpqXJsUO34eiY2RUS+HUj9wHdIegyzgFHgKxFxc12dDwH/i2SS5ifAuoh4Ki07Dvga8F+AI8CXIuJ/5grKzMxKlTt5mJlZ7/HtSczMLDMnDzMzy6wnkoekEyTdI+mQpFFJH2tRT5K+JOk36fJlSSo5tuMk3ZLGdVDSo5I+2qLuOklvSBqvW9aUHN8OSa/UvV7TizLb3XYNbTCetsvftqhbertJ2iBpWNJRSVsbylre263JfpaldQ6n23yorNgk/XtJ35f0W0ljku6W9G8m2M+UjoUC41uWXhJQ/3fbNMF+2tl2Qw1xHU5jXd1iP4W33WTvHWUfdz2RPID/DbwKnAQMAV+TtLJJvfUkV7evAv4U+E/Ap0qObTbwK+D9wB+Q3APs25KWtaj/fyNift2yo+T4ADbUvd7yFnXa2nb1bUDydz0C3D3BJmW323PA9cCt9Ss1+b3dGt1FcoeGdwBXA99RclJK4bEBi0jOwFlGcjLLQeCbk+xrKsdCUfHVLKx7zesm2E/b2i4itjUcg5cDvwR+OsG+im67lu8dbTnuIqKrF2AeSeI4rW7dHcCNTer+GFhf9/yvgH/tQMyPAWubrF8HPNzmWHYAn5xCvY61HfAXJP+4alHetnYjeaPZWvd8PfDjuufzSBLdiibbnkZyZ4YFdet+BHy6jNialP874GDeY6HAtltGcp+82VPYttNt9yBwTafaru51HgPWtuO464Wex2nAGxHxRN26XST33Gr0tvtwTVCvNJJOIom51YWSZ0rap+TW95skFXaLmQlsTl9z5wTDPZ1su78Abo/0qG+hE+0GTe7tBuyl9fH3y4iov8NCO9vxfUx+ge5UjoWijUp6RtI300/UzXSs7dLhoPeRXLM2kVLbruG9o/TjrheSx3zefu8saH3/rMa6B4D5ZY7d15N0LLANuC3euoiy3g+B04E/JPl0cQlwZclhfQ44GVhCMsRxn6RTmtTrSNtJWkrSbb9tgmqdaLeaPMffRHULJelPSS7gnahdpnosFGUf8G6SIbXVJO2wrUXdjrUdyZ3BfxQRT05Qp9S2a/LeUfpx1wvJY6J7a01Wtw8Yn+QTbSEkzSIZTnsV2NCsTkT8MiKejIg3I+JnwBdJLq4sTUT8JCIORsTRiLgN2Amc36Rqp9ruUpIhqZb/uJ1otzp5jr+J6hZG0r8F/gn4bxHxo1b1MhwLhYiI8YgYjojXI+JFkv+LD0tqbCPoUNulLmXiDy+ltl2L947Sj7teSB5PALMlnVq3rtX9s952H64J6hUq/XR+C8nE79qIeG2KmwbQll7RFF6zI23HFP5xm2hnu7W8t1uLuidLqv/EV2o7pkMu/0zynTp3ZNy83cdf7YNIq+OvrW0HIOkckq+V+E7GTQtpuwneO8o/7sqewKnCAvw9ydkE84BzSLpkK5vU+zTwOEnXcnHaeIVMuE0S39eBfwXmT1Lvo8BJ6eMVwM+ZYJKugLgWAucBc0jO7BgCDgHLq9B2wNlpPAsmqVd6u6XtM4fkWzXvqGuz/vR4W5uu+xITnEiQHgd/k9b9c+AloL+k2JaQjINfWeSxUGB8ZwHLST7kvoPkbKEHq9B2deVbSObbOtV2Td872nHcFfbPU+WF5FS1e9M/2NPAx9L17yUZWqnVE/Bl4Lfp8mVanMFTYGwDJJ9CXiHpPtaWIWBp+nhpWvdvgBfT3+OXJMMvx5YYWz/w/0i6ry+lB9h/rFDbfQO4o8n6trcbyTdkRsNybVr2IWA3ydkuO0i+srm23deBr9c9X5bWOQLsAT5UVmzANenj+uOu/m/6P4B/muxYKDG+S4An07/b8yQT0u+sQtulZXPStji3yXaltx0TvHe047jzva3MzCyzXpjzMDOzgjl5mJlZZk4eZmaWmZOHmZll5uRhZmaZOXmYmVlmTh5mZpaZk4eZmWX2/wExahUKOb/yYgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["show_preds(preds)"]},{"cell_type":"markdown","metadata":{"id":"ipN7dzCGz7cx"},"source":["We need to repeat this a few times, so we'll create a function to apply one step:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"D51O0Rg3z7cx"},"outputs":[],"source":["def apply_step(params, prn=True):\n"," preds = f(time, params)\n"," loss = mse(preds, speed)\n"," loss.backward()\n"," params.data -= lr * params.grad.data\n"," params.grad = None\n"," if prn: print(loss.item())\n"," return preds"]},{"cell_type":"markdown","metadata":{"id":"_EtKk-1Iz7cx"},"source":["#### Step 6: Repeat the process"]},{"cell_type":"markdown","metadata":{"id":"-bGSp_1yz7cx"},"source":["Now we iterate. By looping and performing many improvements, we hope to reach a good result:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BLNCaExWz7cy","outputId":"0d7a3c1b-d43b-4b7e-e6f8-248b61f999fb"},"outputs":[{"name":"stdout","output_type":"stream","text":["5435.53662109375\n","1577.4495849609375\n","847.3780517578125\n","709.22265625\n","683.0757446289062\n","678.12451171875\n","677.1839599609375\n","677.0025024414062\n","676.96435546875\n","676.9537353515625\n"]}],"source":["for i in range(10): apply_step(params)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"g7K953VCz7cy"},"outputs":[],"source":["#hide\n","params = orig_params.detach().requires_grad_()"]},{"cell_type":"markdown","metadata":{"id":"oE72iueKz7cy"},"source":["The loss is going down, just as we hoped! But looking only at these loss numbers disguises the fact that each iteration represents an entirely different quadratic function being tried, on the way to finding the best possible quadratic function. We can see this process visually if, instead of printing out the loss function, we plot the function at every step. Then we can see how the shape is approaching the best possible quadratic function for our data:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MnhYWafqz7cz","outputId":"88b51e3c-da57-4e0c-872c-b62a5bd9ad9e"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAA1QAAADMCAYAAAB0vOLuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3df4zc9Z3f8dfbLIe9BsemGFJMdn1CHD4Z5CA2ihroBUJVuOS4InxSaCbiSARbtUcvVw6DqY0hgIuJo2suIuW0BMQB2wuXE6Y6LgdVjx8VrlplCYHUxERK8RpsI0xrG/Can/vuH98ZdnY83+/MfOczM98fz4c0Ws/3M7P+7tf78nfe38/n+/mYuwsAAAAA0LkFg94BAAAAAMgrCioAAAAASImCCgAAAABSoqACAAAAgJQoqAAAAAAgJQoqAAAAAEiJggoAAAAAUgpaUJnZtWY2ZWbvm9kDDW0XmdlOM5sxs6fNbLSu7Tgzu9/M3jazN8zsupD7BeQReQLCIlNAWGQKiITuodor6Q5J99dvNLOTJD0q6WZJJ0qakvRI3UtulXSGpFFJF0q6wcwuCbxvQN6QJyAsMgWERaYASebu4b+p2R2STnP3q6rPxyVd5e5fqD5fLOktSee4+04z2yPpG+7+X6vtt0s6w92vCL5zQM6QJyAsMgWERaZQdv26h2q1pBdrT9z9sKRfS1ptZssknVrfXv3z6j7tG5A35AkIi0wBYZEplMpQn/6e4yXtb9h2SNIJ1bba88a2o1SveoxL0uLFi89dtWpV2D0Fmnj++effcvflg96PqmB5ksgUBqOomSJPGBQyBYTVSab6VVC9K2lJw7Ylkt6pttWev9fQdhR3n5A0IUljY2M+NTUVfGeBRmY2Peh9qBMsTxKZwmAUNVPkCYNCpoCwOslUv4b87ZC0pvakOpb2dEk73P2ApH317dU/7+jTvgF5Q56AsMgUEBaZQqmEnjZ9yMwWSjpG0jFmttDMhiRtk3SWma2ttm+S9JK776y+9UFJG81smZmtknSNpAdC7huQN+QJCItMAWGRKSASuodqo6QjktZL+nr1zxvdfb+ktZI2Szog6fOS6mdyuUXRzYrTkp6VtNXdnwi8b0DekCcgLDIFhEWmAPVo2vR+YSwt+sXMnnf3sUHvR6+RKfRLGTJFntBPZAoIq5NM9eseKgAAAAAonH7N8jcQj72wR1uffEV7Dx7RqUsXad3FZ+qyc1YMereA3CJTQDjkCQiLTGFQCltQPfbCHt306C905MOPJUl7Dh7RTY/+QpIIF5ACmQLCIU9AWGQKg1TYIX9bn3zlk1DVHPnwY2198pUB7RGQb2QKCIc8AWGRKQxSYXuo9h480tF2lAvDAjpHppCETHWGPKEVMtUZMoUkvc5TYXuoTl26qKPtKI/asIA9B4/INTcs4LEX9gx61zKNTCEOmeoceUISMtU5MoU4/chTYQuqdRefqUXHHjNv26Jjj9G6i88c0B4hKxgWkA6ZQhwy1TnyhCRkqnNkCnH6kafCDvmrdePFde/RlV5eDAtIh0whDpnqXKs8SWSqzMhU5zhHIU4/8lTYgkqKwtUsLMwEUw5x/3meunSR9jQJEcMCWiNT5UamworLk0SmyoJMhcU5qtwGmafCDvlLQld68SWNl2VYQHhkqvjIVH+RqeIjU/1Dnopv0HkqZUFFV3rxJf3nedk5K3Tn5WdrxdJFMkkrli7SnZefzVWqLpCp4iNT/UWmio9M9Q95Kr5B56nQQ/7i0JVefK3+80waaoPOkaniI1P9RaaKj0z1D3kqvkHnqZQ9VHSlFx/Tp/YXmSo+MtVfZKr4yFT/kKfiG3SeSllQter6e+yFPTpvy1P6zfV/p/O2PMW6DznEf579RaaKj0z1F5kqPjLVP+Sp+Aadp1IO+ZOYCabo2pmSGGGRqWIjU/1HpoqNTPUXeSq2QeeptAVVnFY3tSFbktaVYPx5NpCpfCFT2Uem8qPV2kdkavDIU75k9RxFQdWAmWDyg6tK+UCm8oNM5QOZygfylA/kKT+ynKlS3kOVZNA3taF9rCuRD2QqP8hUPpCpfCBP+UCe8iPLmaKgajDom9rQPq4q5QOZyg8ylQ9kKh/IUz6Qp/zIcqYY8tdg0De14Whx42VZVyIfyFT2kKl8I1PZQp7yjTxlTx4zRUHVBDeJZkfSeNl1F585r03iqlJWkansIFPFQKaygTwVA3nKjrxmioKqQ61m7EE6ccc1abzs9vVfksRVpbwjU+ElHVMyVXxkKjzOUeVGpsIrWqYoqDqQ5dlF8izpuLYaL8tVpXwjU+G1OqZkqtjIVHico8qNTIU3kExNTkobNki7d0sjI9LmzVKlku4HaIJJKTrQanYRVtpOJ+m4MvtOsZGp8FodUzJVbGQqPM5R5UamwutZpiYnpZUrpQULoq+Tk3Pbx8el6WnJPfo6Pj7XHgAFVQeSquZatb3n4BG55qrt+mARuuaSjiuz7xRbN5kiT821urpHpoqNTIXHOarcyFR4PclUUtG0YYM0MzP/9TMz0fZAKKg6kFQ1t3MFo1XBVVZJx/Wyc1bozsvP1oqli2SSVixdpDsvP5tu9oJImynyFK/V1T0yVWxkKjzOUeVGpsLrKlNxvVBJRdPu3c13JG57ChRUHUiqmltdFc7yYmT9EnelptXViMvOWaHt67+kV7d8RdvXf4kTVYGkzRR5Sp8niUwVGZlKj3MUmiFT6aXO1MvPaPtffFOvfudSbf+Lb+qyl5+JXpTUC5VUNI2MNG+L254Ck1J0IGmtgq1PvpI4N36rgqvoM8i0c1NnkX9+NJc2U+SJPKE5MpUOmUIcMpVOq0yt+Mk2febu23Xywf16c+lyvXb9zfrcOZfMFU213qZa0SQl90KNjESvbVSbgKL+e0rS8HC0PRBz92DfrN/GxsZ8ampq0Lsh6ehfHCmqtmvdlOdteapp6FZUQ5T03ryELmk/k37+2jSYWWZmz7v72KD3o9fykqm4k1g7eap97zxnKu95ksqRqSzlSepdpvKSJ4lM5R2Zyp6fbr5bn/luQ2G04Vqdt+Upnbv9J7rhvz+oU99+S3uXnKTv/M6Vev68L2v7Z/Y1L3AmJqLiqFlhNDoa9TY1q1vMpIceiv+elUqqWf46yRQ9VIG0uoKVtBhZq27hPEzX2e1UzUCjVplKk6faiSrvmSJPSKMXmWp8X1bzJJEphFeaTMUUIz/dfLfO+vb1WvTh+5KkTx98U5/69vX6qaSx/7lLdz5xt4Y/itpOe3u/tjxxt26SpF/8Tbr7nZJ6oWrFUVzRVKkEnSa9ET1UfRR3xeE31/+dmv0rmKJu46SrZv2+ipH26l7er/6V4cqflK9MpcnTq1u+0vJ3MQ+ZkpTrPEnlyFSe8iQV4xyV9HOQqfwjU11kKqmHpkXbR1dfo6H35vbpo4WLNPTDe/XGtdfp0wffPOqvemPpyZIU2/bpQ/vje5riiqbR0fihe7VeqMBy2UNlZidKuk/SP5f0lqSb3P0/d/VNe7yIV6fiFiOLC0+rMbi9utIeF9Zuru4l9dChN4qeqTR5ktqbAjfrmfqPX/0seRqA4JnKUJ6k/JyjJDJVBEU/R0npM/X7O54+aqjc366+UI+9sEfP3fbneuSpBz5p+97/ukra9K3o74n7+ZPuS5LmF0zT09FzSapUNLPuRg2/N39fh947opl1N+rkg/ub/twnH9wvs+bH5JRD+9Pf79SqF2qAsjTL3w8kfSDpFEkVSfeY2erU363VIl5x0y4OQNJsJ91O1R63/kFcW9I0n90sxMbUsgORnUz1MW+tZg8qQqbI08CEy1Q7C02mzVTgvPXqHCWRqZLLzzkqcBbXXXym/uCVZ/XcPd/Q/7nrUj13zzf0B688q3UXn6k/fHW7tjxxt057e78WyD8ZKveHr27Xz7f8QLc9/v15bbc9/n39fMsPPulJqv/5P7r6mpbrMM2su3Fe75M0VzBJ0sJ9e5se7oX79urNpcubtr25dLksZgY9qxVBw8PzG+qLpomJqEfKLPpa3wNVqUi7dkmzs9HXDBRTUkaG/JnZYkkHJJ3l7r+qbntI0h53Xx/3vsSu35Ur03cZDuAKR7tX26S5Gxf/3SM/j+0yjrvaduflZ0tqPq631U2Ue6snr07/viKckPI2lCJTmZL6nrekIRFkKhvKkKnUedq16+grylJ7mUpqa5W3hLa4G8/T5unVLV9JfK9EpjqVp0zl7hwVOotS7DC6mXU3anjf0WtVzfzjFfp/hz/QaW8f3Sv0+pLlOnHxb8S+b9Ebe2VNPu+7mdylBU1SMyvTAp/V6586Ofbv3HfDpnn3UEnSkWOP0/++5bv63Mplmfus3alOMpWVguocSf/D3RfVbbte0hfd/dK49yUGa8GCXIzPbEfo8eBJbUknoyyOle+XPJ2opIxlSsrcxQ0yNXhlyFTqPM3OJn84lMLnTUr9gTPVLF/Ve2vj2iXFtpGp5vKUqdyco3bt6k0Wk9oSZrKbTSh+pPi2N5cuj72f6aNZjy2YTjv0pm796r/XDY/+2SeTS0jSzNBx+s7l1+nWR/5DbP4l5aJoSpLHguqfSvqxu3+6bts1kirufkHDa8cljUvSyMjIudPNfiGl5AAkTbuYFLraVcOM/HKkvTIoKdXJqJ3pqIsqTycqKWOZknpzcaNHPVtkqj+Kmqkgedq1K/nDoRQ+b1LwIu2nuw7EX73ecK2+den182YBk6IPajddEn0Yi2ubOu/LscXWuovP1HO3/bn+pP4eky9dpfNb3WNSAHnKVG7OUbOzvcliUltCTmc++ChV79XW37kyNk/Lhn8jsWCq3bcVm6kC6yRTWbmH6l1JSxq2LZH0TuML3X3C3cfcfWz58uZjNyUlj89MWjE5abrGdsa891HSmO+kseJJbUlj5RljnivZyVTavCUt4NejLJIpJGgrU0HyJKXPVNq8pW1LyOnn7v3uvGJKkhZ9+L4+d+93JUk3PffQvA9xkjT80fu66bmHEtu+9/HLuuvJ+feY3PXk3frexy/rspefaXr/yWUvP9O7e2wydE92juTjHFX/tdP3pm1L+DmGt96ljxbOP998tHCRhrfepR9ecrVmho6b1zYzdJx+eMnVmjrvy1p/ybV6fclyzcr0+pLlWl+9OPHZ9X+kTb/3x/PaNv3eH+uz6/9IUnRePH/Tt/TVm36k02/8W331ph+VopjqmLsP/CFpsaIbE8+o2/agpC1J7zv33HM90cMPu4+OuptFXx9+eG778LB79F9q9Bgennt9/fbaY3Q0uS1jtv3sdV+18e999MbHP3ms2vj3vu1nrye21d77hTv/wVfe+Lh/4c5/+GR7mUma8gxkpd1HpjKVNm9mzdtqf3dSFuP2swtkKqwyZCp1nmptaTLVi/Nb2pwmtbn7bEz7rFliW09+jl4c71b/xu38DnTw/1ieMpWbc1Q37+3V701M27afve5/etk6f23Jcv9Y5q8tWe5/etk6zlFd6CRTAw/VJzsi/UjSX1VDdp6kQ5JWJ72nZbCSpAldi5NDLz7EdSMpIISnM3k6UdUemclUUlsviq1WJ6pW+5qATIVThkx1lSf39B+2Q3+o7NVFyH4XcWkv0vSiSOvm3yNG3jKVi3NUt+8NWDC3g3NUWHktqE6U9Jikw5J2S/paq/d0fbKKE/dL3s1/nMi1vJ2oPGuZStLvnmSymgllyNRA8tRKVoq0bt6bpZ62bnrSA4+IyVumcnOOQmnlsqBK8+h7sNL+B4/cy9uJKu0jcyerXvQkD2C4II5WhkxlLk+90u8r/1nqaUtbpLl3NVyyGTIFhEVB1Utx/8G3858fH9RyqwwnKs/bySpNT7J798MFEUQZMpWrPOVNVnraurnQWvIeqjQPMoV+oqAaBIYZFVoZTlSetUyl1Spr3Q4X5KJIEGXIVCHyVCb9LNJatZfgHqo0DzKFfqKgGoRuPsQh88pwovKsZaobrT78pBkuyEWRoMqQqcLkCen1arKDJsgUEFYnmcrEwr5pJa6YPQhJCwYmLQw3O9vf/UTH8rRgYjcyl6leictq0sKQUm4W/c6DMmSqNHlCJpApIKw8LuxbDJVK9MFqdjb6Wv9hqtXCcSwMCPRPXFaTFobM0aLfAACgfyio+iXpgxofxoBsqFSkiYmo18ks+joxEW1PuiiyYYM0MzN/+8xMtF3iggkAAAVGQdUvSR/UWn0YA9A/9F4BAIAOUFD1U9wHtaQPYwCyoVe9VwAAINcoqLKA+6uAfAjdeyWRbwAAco6CKgu4vwrIt7S9V+QbAIDco6DKAu6vAvIvTe8V+QYAIPcoqLKC+6uAYkq6YMJwQAAAcm9o0DuAFkZGmi8mGjeMCED2VCrNF/lNyndtOGCtB6s2HLD2/QAAQCbQQ5V1ScOFJK5gA3nWzXBAsg8AQCZQUGVd0nAhbmgH8i3tcECyDwBAZlBQ5UHc/VXc0A7kX1y+WdsKAIBcoKDKMyasAIqrm7WtAABA31BQ5VmrBYEB5Ffata0k7q8CAKCPKKjyrNWEFQDyLc3aVtxfBQBAX1FQ5VnSFWyJq9RAUbEYOAAAmUFBlXdxV7C5Sg0UWzeLgXOxBQCAYCioioqr1EA5tXN/FRdbAAAIhoKqqJgFDCinVvdWcrEFAICgKKiKihkAgXJqdW9lq4stDAcEAKAjFFRFxQyAQHnF3V8lJV9sYTggAAAdo6AqKmYABNBM0sUWhgMCANAxCqoiYwZAAI2SLrZw7yUAAB2joCojrkID5RZ3saWdGQLp2QYAYB4KqjLiKjSAZpKGA9KzDQBAUxRUZcQMgACaSRoOSM82AABNUVCVETMAAogTNxyQnm0AAJqioCqjVjMAAkAj7q8CAKCpIAWVmV1rZlNm9r6ZPdCk/SIz22lmM2b2tJmN1rUdZ2b3m9nbZvaGmV0XYp/QQtI6NXwwGjgyhczJ+f1VZAoIi0wBc0L1UO2VdIek+xsbzOwkSY9KulnSiZKmJD1S95JbJZ0haVTShZJuMLNLAu0XOpWDD0YlQaaQLfm/v4pMAWGRKaAqSEHl7o+6+2OS/m+T5ssl7XD3H7v7e4pCtMbMVlXbr5R0u7sfcPdfSrpX0lUh9gsp5OODUeGRKWRSju+vIlNAWGQKmNOPe6hWS3qx9sTdD0v6taTVZrZM0qn17dU/r477ZmY2Xu1intq/f3+PdrnEcvDBCGQKGZP/mUODZYo8AZLIFEqmHwXV8ZIONWw7JOmEapsa2mttTbn7hLuPufvY8uXLg+4oVIQPRmVAppAt+Z85NFimyBMgiUyhZFoWVGb2jJl5zOO5Nv6OdyUtadi2RNI71TY1tNfaMAj5/2CUeWQKhTPgmUPJFBAWmQI607KgcvcL3N1iHue38XfskLSm9sTMFks6XdHY2gOS9tW3V/+8o7MfA8EwpXrPkSkUUtLMoT1GpoCwyBTQmVDTpg+Z2UJJx0g6xswWmtlQtXmbpLPMbG31NZskveTuO6vtD0raaGbLqjcrXiPpgRD7hZQG+MEIETIFhEWmgLDIFDAn1D1UGyUdkbRe0terf94oSe6+X9JaSZslHZD0eUlX1L33FkU3Kk5LelbSVnd/ItB+ITTWqOoXMgWERaaAsMgUUGXuPuh9SG1sbMynpqYGvRvlUVujqn5a9eHhUgwJNLPn3X1s0PvRa2QK/VKGTJEn9BOZAsLqJFP9mOUPRcEaVQAAAMA8FFRoH2tUAQAAAPNQUKF9rFEFAAAAzENBhfaxRhUAAAAwDwUV2scaVQAAAMA8Q61fAtSpVCigAAAAgCp6qBAOa1QBAACgZOihQhiNa1RNT0fPJXq0AAAAUFj0UCEM1qgCAABACVFQIQzWqAIAAEAJUVAhDNaoAgAAQAlRUCEM1qgCAABACVFQIQzWqAIAAEAJMcsfwmGNKgAAAJQMPVQAAAAAkBIFFfqHhX8BAABQMAz5Q3+w8C8AAAAKiB4q9AcL/wIAAKCAKKjQHyz8CwAAgAKioEJ/sPAvAAAACoiCCv3Bwr8AAAAoIAoq9AcL/wIAAKCAmOUP/cPCvwAAACgYeqgAAAAAICUKKmQDi/4CAAAghxjyh8Fj0V8AAADkFD1UGDwW/QUAAEBOUVBh8Fj0FwAAADlFQYXBY9FfAAAA5BQFFQaPRX8BAACQUxRUGDwW/QUAAEBOdV1QmdlxZnafmU2b2Ttm9oKZ/W7Day4ys51mNmNmT5vZaMP77zezt83sDTO7rtt9Qg5VKtKuXdLsbPS1xMUUmQLCIlNAWGQKmC9ED9WQpNckfVHSpyTdLOmvzWylJJnZSZIerW4/UdKUpEfq3n+rpDMkjUq6UNINZnZJgP0C8opMAWGRKSAsMgXU6bqgcvfD7n6ru+9y91l3f1zSq5LOrb7kckk73P3H7v6eohCtMbNV1fYrJd3u7gfc/ZeS7pV0Vbf7BeQVmQLCIlNAWGQKmC/4PVRmdoqk35K0o7pptaQXa+3ufljSryWtNrNlkk6tb6/+eXXo/UKOTU5KK1dKCxZEXycnB71HfUWmgLDIFBAWmULZBS2ozOxYSZOS/tLdd1Y3Hy/pUMNLD0k6odqmhvZaW9zfMW5mU2Y2tX///jA7juyanJTGx6Xpack9+jo+XpqiikwBYfU6U+QJZUOmgDYKKjN7xsw85vFc3esWSHpI0geSrq37Fu9KWtLwbZdIeqfapob2WltT7j7h7mPuPrZ8+fJWu4+827BBmpmZv21mJtqeU2QKCCtLmSJPKAIyBXSmZUHl7he4u8U8zpckMzNJ90k6RdJad/+w7lvskLSm9sTMFks6XdHY2gOS9tW3V/+8Q4Ak7d7d2fYcIFNAWGQKCItMAZ0JNeTvHkm/LelSdz/S0LZN0llmttbMFkraJOmlum7hByVtNLNl1ZsVr5H0QKD9Qt6NjHS2vTjIFBAWmQLCIlNAVYh1qEYl/StJn5X0hpm9W31UJMnd90taK2mzpAOSPi/pirpvcYuiGxWnJT0raau7P9HtfqEgNm+WhofnbxsejrYXFJkCwiJTQFhkCphvqNtv4O7TkqzFa/6bpFUxbe9L+mb1AcxXW+B3w4ZomN/ISFRMFXjhXzIFhEWmgLDIFDBf1wUV0HOVSqELKAAAAORX8HWoAAAAAKAsKKgAAAAAICUKKgAAAABIiYIK+TY5Ka1cKS1YEH2dnBz0HgEAAKBEmJQC+TU5KY2PSzMz0fPp6ei5xCQWAAAA6At6qJBfGzbMFVM1MzPRdgAAAKAPKKiQX7t3d7YdAAAACIyCCvk1MtLZdgAAACAwCirk1+bN0vDw/G3Dw9F2AAAAoA8oqJBflYo0MSGNjkpm0deJCSakAAAAQN8wyx/yrVKhgAIAAMDA0EMFAAAAAClRUAEAAABAShRUAAAAAJASBRWKa3JSWrlSWrAg+jo5Oeg9AgAAQMEwKQWKaXJSGh+XZmai59PT0XOJSSwAAAAQDD1UKKYNG+aKqZqZmWg7AAAAEAgFFYpp9+7OtgMAAAApUFChmEZGOtsOAAAApEBBhWLavFkaHp6/bXg42g4AAAAEQkGFYqpUpIkJaXRUMou+TkwwIQUAAACCYpY/FFelQgEFAACAnqKHCgAAAABSoqACAAAAgJQoqAAAAAAgJQoqAAAAAEiJggrlNDkprVwpLVgQfZ2cHPQeAQAAIIeY5Q/lMzkpjY9LMzPR8+np6LnErIAAAADoCD1UKJ8NG+aKqZqZmWg7AAAA0AEKKpTP7t2dbQcAAABiBCmozOxhM9tnZm+b2a/M7OqG9ovMbKeZzZjZ02Y2Wtd2nJndX33vG2Z2XYh9AmKNjHS2fQDIFBAWmQLCIlPAnFA9VHdKWunuSyT9vqQ7zOxcSTKzkyQ9KulmSSdKmpL0SN17b5V0hqRRSRdKusHMLgm0X8DRNm+WhofnbxsejrZnB5kCwiJTQFhkCqgKUlC5+w53f7/2tPo4vfr8ckk73P3H7v6eohCtMbNV1fYrJd3u7gfc/ZeS7pV0VYj9ApqqVKSJCWl0VDKLvk5MZGpCCjIFhEWmgLDIFDAn2D1UZvafzGxG0k5J+yT9pNq0WtKLtde5+2FJv5a02syWSTq1vr3659Wh9gtoqlKRdu2SZmejrxkqpmrIFBAWmQLCIlNAJNi06e7+b8zs30r6J5IukFS7anG8pP0NLz8k6YRqW+15Y1tTZjYuqTrHtd41s1fa2L2TJL3VxuvKiGMTr/7YjCa9sBfIVG5xbOIVPlPkqSc4PvHIVHP8zsTj2CRLlamWBZWZPSPpizHN2939/NoTd/9Y0nNm9nVJ/1rS9yW9K2lJw/uWSHqn2lZ7/l5DW1PuPiFpotV+N/wMU+4+1sl7yoJjE69Xx4ZMFRvHJl4ZMkWewuP4xCNTsfvP70wMjk2ytMen5ZA/d7/A3S3mcX7M24Y0N452h6Q1dTu6uNq2w90PKOoiXlP33jXV9wCFRKaAsMgUEBaZAjrT9T1UZnaymV1hZseb2TFmdrGkfynpqepLtkk6y8zWmtlCSZskveTuO6vtD0raaGbLqjcrXiPpgW73C8grMgWERaaAsMgUMF+ISSlcURfv65IOSPqupD9x9/8iSe6+X9JaSZur7Z+XdEXd+29RdKPitKRnJW119ycC7Fe9jrqKS4ZjE29Qx4ZM5RvHJh6Zao7fmWQcn3hkqjl+Z+JxbJKlOj7m7qF3BAAAAABKIdi06QAAAABQNhRUAAAAAJBSoQsqMzvRzLaZ2WEzmzazrw16nwbFzK41sykze9/MHmhou8jMdprZjJk9bWZ9X8tikMzsODO7r/o78o6ZvWBmv1vXXurjU49MzSFTzZGn9pGnOeQpHplqH5maQ6bi9SJThS6oJP1A0geSTpFUkXSPmZV1Je69ku6QdH/9RjM7SdKjkm6WdKKkKUmP9H3vBmtI0muK1tz4lKJj8ddmtpLjcxQyNYdMNUee2kee5pCneGSqfWRqDpmKFzxThZ2UwqI1Dw5IOsvdf1Xd9pCkPe6+fqA7N0Bmdoek09z9qurzcUlXufsXqs8XK1oh+py66U1Lx8xekvRtSf9IHB9JZCoOmWqNPB2NPDVHntpDpo5GppojU+3pNlNF7qH6LUkf10JV9aKksl6piLNa0XGRJLn7YUVTmZb2OJnZKZhPqP0AAAH6SURBVIp+f3aI41OPTLWH35k65CkWeWoPvzMNyFQsMtUefmcahMhUkQuq4yUdath2SNIJA9iXLOM41TGzYyVNSvrL6pUIjs8cjkV7OE5V5CkRx6I9HKc6ZCoRx6I9HKc6oTJV5ILqXUlLGrYtkfTOAPYlyzhOVWa2QNJDisZfX1vdzPGZw7FoD8dJ5KkNHIv2cJyqyFRLHIv2cJyqQmaqyAXVryQNmdkZddvWKOrOw5wdio6LpE/Gip6ukh0nMzNJ9ym6kXWtu39YbeL4zCFT7Sn97wx5agt5ag+/MyJTbSJT7eF3RuEzVdiCqjrm8VFJt5nZYjM7T9K/UFSJlo6ZDZnZQknHSDrGzBaa2ZCkbZLOMrO11fZNkl4q4Y2J90j6bUmXuvuRuu0cnyoyNR+ZSkSeWiBP85GnlshUC2RqPjLVUthMuXthH4qmO3xM0mFJuyV9bdD7NMBjcaskb3jcWm37Z5J2Sjoi6RlJKwe9v30+NqPV4/Geoq7e2qPC8TnqWJGpuWNBppofF/LU/rEiT3PHgjzFHxsy1f6xIlNzx4JMxR+b4Jkq7LTpAAAAANBrhR3yBwAAAAC9RkEFAAAAAClRUAEAAABAShRUAAAAAJASBRUAAAAApERBBQAAAAApUVABAAAAQEoUVAAAAACQEgUVAAAAAKT0/wFx0txpoz32QAAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["_,axs = plt.subplots(1,4,figsize=(12,3))\n","for ax in axs: show_preds(apply_step(params, False), ax)\n","plt.tight_layout()"]},{"cell_type":"markdown","metadata":{"id":"NLYgemBbz7cz"},"source":["#### Step 7: stop"]},{"cell_type":"markdown","metadata":{"id":"IkwUIOyFz7cz"},"source":["We just decided to stop after 10 epochs arbitrarily. In practice, we would watch the training and validation losses and our metrics to decide when to stop, as we've discussed."]},{"cell_type":"markdown","metadata":{"id":"Iba_5Y8Oz7c0"},"source":["### Summarizing Gradient Descent"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"XSlnTa9Sz7c0","outputId":"9736aae4-b3d0-4488-a1d0-4a265c023ba1"},"outputs":[{"data":{"image/svg+xml":["\n","\n","\n","\n","\n","\n","G\n","\n","\n","\n","init\n","\n","init\n","\n","\n","\n","predict\n","\n","predict\n","\n","\n","\n","init->predict\n","\n","\n","\n","\n","\n","loss\n","\n","loss\n","\n","\n","\n","predict->loss\n","\n","\n","\n","\n","\n","gradient\n","\n","gradient\n","\n","\n","\n","loss->gradient\n","\n","\n","\n","\n","\n","step\n","\n","step\n","\n","\n","\n","gradient->step\n","\n","\n","\n","\n","\n","step->predict\n","\n","\n","repeat\n","\n","\n","\n","stop\n","\n","stop\n","\n","\n","\n","step->stop\n","\n","\n","\n","\n","\n"],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_input\n","#id gradient_descent\n","#caption The gradient descent process\n","#alt Graph showing the steps for Gradient Descent\n","gv('''\n","init->predict->loss->gradient->step->stop\n","step->predict[label=repeat]\n","''')"]},{"cell_type":"markdown","metadata":{"id":"aZAtuQHCz7c0"},"source":["To summarize, at the beginning, the weights of our model can be random (training *from scratch*) or come from a pretrained model (*transfer learning*). In the first case, the output we will get from our inputs won't have anything to do with what we want, and even in the second case, it's very likely the pretrained model won't be very good at the specific task we are targeting. So the model will need to *learn* better weights.\n","\n","We begin by comparing the outputs the model gives us with our targets (we have labeled data, so we know what result the model should give) using a *loss function*, which returns a number that we want to make as low as possible by improving our weights. To do this, we take a few data items (such as images) from the training set and feed them to our model. We compare the corresponding targets using our loss function, and the score we get tells us how wrong our predictions were. We then change the weights a little bit to make it slightly better.\n","\n","To find how to change the weights to make the loss a bit better, we use calculus to calculate the *gradients*. (Actually, we let PyTorch do it for us!) Let's consider an analogy. Imagine you are lost in the mountains with your car parked at the lowest point. To find your way back to it, you might wander in a random direction, but that probably wouldn't help much. Since you know your vehicle is at the lowest point, you would be better off going downhill. By always taking a step in the direction of the steepest downward slope, you should eventually arrive at your destination. We use the magnitude of the gradient (i.e., the steepness of the slope) to tell us how big a step to take; specifically, we multiply the gradient by a number we choose called the *learning rate* to decide on the step size. We then *iterate* until we have reached the lowest point, which will be our parking lot, then we can *stop*.\n","\n","All of that we just saw can be transposed directly to the MNIST dataset, except for the loss function. Let's now see how we can define a good training objective."]},{"cell_type":"markdown","metadata":{"id":"cs9ualKzz7c1"},"source":["## The MNIST Loss Function"]},{"cell_type":"markdown","metadata":{"id":"atWp4zxJz7c1"},"source":["We already have our independent variables `x`—these are the images themselves. We'll concatenate them all into a single tensor, and also change them from a list of matrices (a rank-3 tensor) to a list of vectors (a rank-2 tensor). We can do this using `view`, which is a PyTorch method that changes the shape of a tensor without changing its contents. `-1` is a special parameter to `view` that means \"make this axis as big as necessary to fit all the data\":"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3D0V6uO_z7c1"},"outputs":[],"source":["train_x = torch.cat([stacked_threes, stacked_sevens]).view(-1, 28*28)"]},{"cell_type":"markdown","metadata":{"id":"Q9kRt4aez7c2"},"source":["We need a label for each image. We'll use `1` for 3s and `0` for 7s:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7wSTUNq2z7c2","outputId":"a4d6eb49-9b91-4725-f414-e273f07bdf45"},"outputs":[{"data":{"text/plain":["(torch.Size([12396, 784]), torch.Size([12396, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["train_y = tensor([1]*len(threes) + [0]*len(sevens)).unsqueeze(1)\n","train_x.shape,train_y.shape"]},{"cell_type":"markdown","metadata":{"id":"prQF4uYFz7c3"},"source":["A `Dataset` in PyTorch is required to return a tuple of `(x,y)` when indexed. Python provides a `zip` function which, when combined with `list`, provides a simple way to get this functionality:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SATz9oufz7c3","outputId":"d0263d15-63fd-4c1a-e754-0007f1190d1a"},"outputs":[{"data":{"text/plain":["(torch.Size([784]), tensor([1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dset = list(zip(train_x,train_y))\n","x,y = dset[0]\n","x.shape,y"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OxkNfBIgz7c3"},"outputs":[],"source":["valid_x = torch.cat([valid_3_tens, valid_7_tens]).view(-1, 28*28)\n","valid_y = tensor([1]*len(valid_3_tens) + [0]*len(valid_7_tens)).unsqueeze(1)\n","valid_dset = list(zip(valid_x,valid_y))"]},{"cell_type":"markdown","metadata":{"id":"Kj4GzO5az7c4"},"source":["Now we need an (initially random) weight for every pixel (this is the *initialize* step in our seven-step process):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Cq77oGKIz7c5"},"outputs":[],"source":["def init_params(size, std=1.0): return (torch.randn(size)*std).requires_grad_()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ou7rtQ02z7c5"},"outputs":[],"source":["weights = init_params((28*28,1))"]},{"cell_type":"markdown","metadata":{"id":"WkaP3ZrDz7c5"},"source":["The function `weights*pixels` won't be flexible enough—it is always equal to 0 when the pixels are equal to 0 (i.e., its *intercept* is 0). You might remember from high school math that the formula for a line is `y=w*x+b`; we still need the `b`. We'll initialize it to a random number too:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ArTkOHhsz7c6"},"outputs":[],"source":["bias = init_params(1)"]},{"cell_type":"markdown","metadata":{"id":"2SWtrZBgz7c6"},"source":["In neural networks, the `w` in the equation `y=w*x+b` is called the *weights*, and the `b` is called the *bias*. Together, the weights and bias make up the *parameters*."]},{"cell_type":"markdown","metadata":{"id":"XXnowR2pz7c6"},"source":["> jargon: Parameters: The _weights_ and _biases_ of a model. The weights are the `w` in the equation `w*x+b`, and the biases are the `b` in that equation."]},{"cell_type":"markdown","metadata":{"id":"-LA7Pdfbz7c6"},"source":["We can now calculate a prediction for one image:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e43BiJM6z7c7","outputId":"f90ae645-d67d-43e6-8577-130332788599"},"outputs":[{"data":{"text/plain":["tensor([20.2336], grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(train_x[0]*weights.T).sum() + bias"]},{"cell_type":"markdown","metadata":{"id":"YLv6ViFtz7c7"},"source":["While we could use a Python `for` loop to calculate the prediction for each image, that would be very slow. Because Python loops don't run on the GPU, and because Python is a slow language for loops in general, we need to represent as much of the computation in a model as possible using higher-level functions.\n","\n","In this case, there's an extremely convenient mathematical operation that calculates `w*x` for every row of a matrix—it's called *matrix multiplication*. <> shows what matrix multiplication looks like."]},{"cell_type":"markdown","metadata":{"id":"QeCqfJlnz7c7"},"source":["\"Matrix"]},{"cell_type":"markdown","metadata":{"id":"hUS_0XkRz7c8"},"source":["This image shows two matrices, `A` and `B`, being multiplied together. Each item of the result, which we'll call `AB`, contains each item of its corresponding row of `A` multiplied by each item of its corresponding column of `B`, added together. For instance, row 1, column 2 (the yellow dot with a red border) is calculated as $a_{1,1} * b_{1,2} + a_{1,2} * b_{2,2}$. If you need a refresher on matrix multiplication, we suggest you take a look at the [Intro to Matrix Multiplication](https://youtu.be/kT4Mp9EdVqs) on *Khan Academy*, since this is the most important mathematical operation in deep learning.\n","\n","In Python, matrix multiplication is represented with the `@` operator. Let's try it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"N3rQzZmDz7c8","outputId":"951af2f2-4e3b-4e09-9171-19fe1245a911"},"outputs":[{"data":{"text/plain":["tensor([[20.2336],\n"," [17.0644],\n"," [15.2384],\n"," ...,\n"," [18.3804],\n"," [23.8567],\n"," [28.6816]], grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def linear1(xb): return xb@weights + bias\n","preds = linear1(train_x)\n","preds"]},{"cell_type":"markdown","metadata":{"id":"sr560EeOz7c8"},"source":["The first element is the same as we calculated before, as we'd expect. This equation, `batch@weights + bias`, is one of the two fundamental equations of any neural network (the other one is the *activation function*, which we'll see in a moment)."]},{"cell_type":"markdown","metadata":{"id":"4cyKFk-Bz7c9"},"source":["Let's check our accuracy. To decide if an output represents a 3 or a 7, we can just check whether it's greater than 0.0, so our accuracy for each item can be calculated (using broadcasting, so no loops!) with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CX_JM7Vqz7c9","outputId":"9a794e0d-5b57-4325-e39c-3493da04ba5d"},"outputs":[{"data":{"text/plain":["tensor([[ True],\n"," [ True],\n"," [ True],\n"," ...,\n"," [False],\n"," [False],\n"," [False]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["corrects = (preds>0.0).float() == train_y\n","corrects"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gwhYmhGZz7c9","outputId":"dbe16593-2bfd-4a6b-c239-2ddcf985dc64"},"outputs":[{"data":{"text/plain":["0.4912068545818329"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["corrects.float().mean().item()"]},{"cell_type":"markdown","metadata":{"id":"Yp5ErL5jz7c-"},"source":["Now let's see what the change in accuracy is for a small change in one of the weights (note that we have to ask PyTorch not to calculate gradients as we do this, which is what `with torch.no_grad()` is doing here):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dZsQ-48Oz7c-"},"outputs":[],"source":["with torch.no_grad(): weights[0] *= 1.0001"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZuJ2GMFLz7c-","outputId":"fc7d0e35-90b6-41f4-bf67-dd98841f13cd"},"outputs":[{"data":{"text/plain":["0.4912068545818329"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds = linear1(train_x)\n","((preds>0.0).float() == train_y).float().mean().item()"]},{"cell_type":"markdown","metadata":{"id":"Nm0usJGpz7c-"},"source":["As we've seen, we need gradients in order to improve our model using SGD, and in order to calculate gradients we need some *loss function* that represents how good our model is. That is because the gradients are a measure of how that loss function changes with small tweaks to the weights.\n","\n","So, we need to choose a loss function. The obvious approach would be to use accuracy, which is our metric, as our loss function as well. In this case, we would calculate our prediction for each image, collect these values to calculate an overall accuracy, and then calculate the gradients of each weight with respect to that overall accuracy.\n","\n","Unfortunately, we have a significant technical problem here. The gradient of a function is its *slope*, or its steepness, which can be defined as *rise over run*—that is, how much the value of the function goes up or down, divided by how much we changed the input. We can write this in mathematically as: `(y_new - y_old) / (x_new - x_old)`. This gives us a good approximation of the gradient when `x_new` is very similar to `x_old`, meaning that their difference is very small. But accuracy only changes at all when a prediction changes from a 3 to a 7, or vice versa. The problem is that a small change in weights from `x_old` to `x_new` isn't likely to cause any prediction to change, so `(y_new - y_old)` will almost always be 0. In other words, the gradient is 0 almost everywhere."]},{"cell_type":"markdown","metadata":{"id":"ymLg-eVoz7c_"},"source":["A very small change in the value of a weight will often not actually change the accuracy at all. This means it is not useful to use accuracy as a loss function—if we do, most of the time our gradients will actually be 0, and the model will not be able to learn from that number.\n","\n","> S: In mathematical terms, accuracy is a function that is constant almost everywhere (except at the threshold, 0.5), so its derivative is nil almost everywhere (and infinity at the threshold). This then gives gradients that are 0 or infinite, which are useless for updating the model.\n","\n","Instead, we need a loss function which, when our weights result in slightly better predictions, gives us a slightly better loss. So what does a \"slightly better prediction\" look like, exactly? Well, in this case, it means that if the correct answer is a 3 the score is a little higher, or if the correct answer is a 7 the score is a little lower.\n","\n","Let's write such a function now. What form does it take?\n","\n","The loss function receives not the images themselves, but the predictions from the model. Let's make one argument, `prds`, of values between 0 and 1, where each value is the prediction that an image is a 3. It is a vector (i.e., a rank-1 tensor), indexed over the images.\n","\n","The purpose of the loss function is to measure the difference between predicted values and the true values — that is, the targets (aka labels). Let's make another argument, `trgts`, with values of 0 or 1 which tells whether an image actually is a 3 or not. It is also a vector (i.e., another rank-1 tensor), indexed over the images.\n","\n","So, for instance, suppose we had three images which we knew were a 3, a 7, and a 3. And suppose our model predicted with high confidence (`0.9`) that the first was a 3, with slight confidence (`0.4`) that the second was a 7, and with fair confidence (`0.2`), but incorrectly, that the last was a 7. This would mean our loss function would receive these values as its inputs:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CckZN2SYz7c_"},"outputs":[],"source":["trgts = tensor([1,0,1])\n","prds = tensor([0.9, 0.4, 0.2])"]},{"cell_type":"markdown","metadata":{"id":"-jkkelccz7c_"},"source":["Here's a first try at a loss function that measures the distance between `predictions` and `targets`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Z29jZ5KVz7dA"},"outputs":[],"source":["def mnist_loss(predictions, targets):\n"," return torch.where(targets==1, 1-predictions, predictions).mean()"]},{"cell_type":"markdown","metadata":{"id":"3Fm289NTz7dA"},"source":["We're using a new function, `torch.where(a,b,c)`. This is the same as running the list comprehension `[b[i] if a[i] else c[i] for i in range(len(a))]`, except it works on tensors, at C/CUDA speed. In plain English, this function will measure how distant each prediction is from 1 if it should be 1, and how distant it is from 0 if it should be 0, and then it will take the mean of all those distances.\n","\n","> note: Read the Docs: It's important to learn about PyTorch functions like this, because looping over tensors in Python performs at Python speed, not C/CUDA speed! Try running `help(torch.where)` now to read the docs for this function, or, better still, look it up on the PyTorch documentation site."]},{"cell_type":"markdown","metadata":{"id":"7TvxJw2pz7dA"},"source":["Let's try it on our `prds` and `trgts`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ilg6CcHFz7dB","outputId":"8e9ef392-798d-4fec-ee34-9ad74726e192"},"outputs":[{"data":{"text/plain":["tensor([0.1000, 0.4000, 0.8000])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["torch.where(trgts==1, 1-prds, prds)"]},{"cell_type":"markdown","metadata":{"id":"sVud6U4Sz7dB"},"source":["You can see that this function returns a lower number when predictions are more accurate, when accurate predictions are more confident (higher absolute values), and when inaccurate predictions are less confident. In PyTorch, we always assume that a lower value of a loss function is better. Since we need a scalar for the final loss, `mnist_loss` takes the mean of the previous tensor:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1rs26UaWz7dB","outputId":"0771cc3a-f717-4e5a-8583-5d74ea35c45d"},"outputs":[{"data":{"text/plain":["tensor(0.4333)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["mnist_loss(prds,trgts)"]},{"cell_type":"markdown","metadata":{"id":"QODPU0Kuz7dC"},"source":["For instance, if we change our prediction for the one \"false\" target from `0.2` to `0.8` the loss will go down, indicating that this is a better prediction:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"djVFRfppz7dC","outputId":"5bbddf51-eee5-4555-e855-30a3f663e515"},"outputs":[{"data":{"text/plain":["tensor(0.2333)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["mnist_loss(tensor([0.9, 0.4, 0.8]),trgts)"]},{"cell_type":"markdown","metadata":{"id":"uRmD7am8z7dC"},"source":["One problem with `mnist_loss` as currently defined is that it assumes that predictions are always between 0 and 1. We need to ensure, then, that this is actually the case! As it happens, there is a function that does exactly that—let's take a look."]},{"cell_type":"markdown","metadata":{"id":"TXlInM5Oz7dD"},"source":["### Sigmoid"]},{"cell_type":"markdown","metadata":{"id":"oOy9J8zjz7dD"},"source":["The `sigmoid` function always outputs a number between 0 and 1. It's defined as follows:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ztaZQXkgz7dD"},"outputs":[],"source":["def sigmoid(x): return 1/(1+torch.exp(-x))"]},{"cell_type":"markdown","metadata":{"id":"nI3a5_27z7dE"},"source":["Pytorch defines an accelerated version for us, so we don’t really need our own. This is an important function in deep learning, since we often want to ensure values are between 0 and 1. This is what it looks like:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QUTxxQUTz7dE","outputId":"5d5931dc-5e4c-44d6-da6e-c7fb3d01acb2"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAAEMCAYAAAA/Jfb8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXyU5b3+8c8XCCQkJGwh7DvIpoBEEBStVetyatViq1VxrxW1bqeeWv1prdra2uOx1VqXUxTFXStuVG3VqrhUWQOEfd9JIGTfk+/vjwk9MSZmgCTPzOR6v17zknnmnuEyzFw83M8z92PujoiIxJY2QQcQEZGmp3IXEYlBKncRkRikchcRiUEqdxGRGKRyFxGJQSp3iTlmdqeZrQs6x35mNsvM3mtkzCVmVtlSmST2qdwlqphZgpndbWZrzazEzPaa2Xwzu67WsP8Gjg4qYz2uB34QdAhpXdoFHUDkAD0CnECoMDOAZGA80H//AHcvBAoDSVcPd88LOoO0Ptpzl2hzFvB7d3/N3Te6e4a7z3L3u/YPqG9axsxuMLNtZlZsZu+a2XQzczPrW/P4JWZWaWYnmNmymn8VfGRmvc3sODNbbGZFZvaemfWp89oXm9kKMyur+T3uMbN2tR7/yrSMhdxtZllmVmhmLwBdmusHJq2Tyl2izU7gVDPrGu4TzOz7hKZqfg+MBZ4HflfP0DbAL4ErgGOA3sCLwF3ADOBYoC/wP7Ve+z+AJ4DZwOHAfwLX1LxOQ64DbgJuBo4EFjUyXuTAubtuukXNjVDpbgaqgKXA48CZgNUacyewrtb9T4HZdV7nt4ADfWvuX1Jzf1ytMTfXbJtQa9uNwJ5a9+cBL9V57euBEqB9zf1ZwHu1Ht8G/LrOc14BKoP++eoWOzftuUtUcfdPgSHAVOApIA34K/CGmVkDTxsF/KvOts/re3lgWa37u2r+u7TOtm5m1rbm/mjg4zqv8xEQX5PzK8wsGegDfFbnoU8ayC5yUFTuEnXcvdLdP3P3+939TEJ73d8Fjvump4Xx0tXuXlX3Oe5eUc/rWD3bqPNYfb/nNz0m0mRU7hILVtb8t0cDj68AJtfZ1lSnSmYCx9fZdhyhaZkNdQd76MyZ7YSml2qre1/kkOhUSIkqZvYRoQOiC4BsYCjwGyAX+GcDT7sfeNHMvgTeBqYAF9U8dqh70PcCb5rZLcCrwDhCc/73u3v5N+S528xWEZou+h5w0iHmEPkK7blLtHkbuAD4G7AaeBJYCxzj7nvqe4K7vwr8F3ALoTn1C4Bf1Txceihh3P1vwGXAxcBy4AHgz7Vevz5/BB6sGbuE0L8q7vqG8SIHzNw19Setj5ndAVzv7t2CziLSHDQtIzHPzOIInX/+N6CI0DdcbwYeDjKXSHPSnrvEvJpvi74FTAA6ARuBpwl901WLdUlMUrmLiMQgHVAVEYlBETHn3r17dx84cGDQMUREosrChQv3uHtqfY9FRLkPHDiQBQsWBB1DRCSqmNnmhh7TtIyISAwKq9zN7FozW1CzXvWsRsbeaGa7zCzPzJ4wsw5NklRERMIW7p77DuAeQutWN8jMTiH0LcATgYHAYL75m3oiItIMwip3d3/V3V8D9jYy9GJgprtnuvs+4G5CK/aJiEgLauo599GErmu5XwaQZmb6ireISAtq6nJPAmpfDHj/rzvVHWhmV9bM4y/Izs5u4hgiIq1bU5d7IaGr0e+3/9cFdQe6++Punu7u6amp9Z6mKSIiB6mpz3PPJHQB4pdq7o8Fdrt7Y3P1IiIxzd3JKSpnV34pWfllZBWUsju/jPH9OzN1WNPv4IZV7jULL7UD2gJtzSye0MV86y669DQwy8yeJXSV+v9H6OLAIiIxrbyymu25JWzbV8y2fSVs31fCjtwStueWsDOvlF35pZRXVn/teTO+NSS4cidU0r+sdf9C4Fdm9gShS5iNcvct7v6Omd1H6Io4CYQuXPzLr72aiEgUqqiqZktOMRuyi9i4p5CNe4rZtKeILTnF7MwrobrWOoxt2xg9k+Pp3Tmecf0606tzPD2TQ7ceyfH06NSB1E4diI9r2/BveAgiYlXI9PR01/IDIhIpqqqdjXsKWbWrgDW7C1m7u4C1WYVs3ltERdX/dWaXjnEM7J7IgK4d6d8tkf5dO9KvSwJ9u3YkrVMH2rVt3kUAzGyhu6fX91hErC0jIhKU0ooqVu8qYNn2PDJ35JG5I5/Vuwooq5lCaWMwoFsiQ3skcfKoNIamJjE4NZHB3ZNI6RgXcPqGqdxFpNVwd7bkFLNw8z4Wb8klY1suK3fm/3tvPCUhjtG9k5l+9ABG9kpmRK9ODElNarapk+akcheRmFVd7azclc8XG3L4cmMOCzbvY09hGQCJ7dtyRN/OXDF1MEf0SWFMnxT6dknAzAJO3TRU7iISUzbtKeKTdXv4dN0ePlu/l7ySCgD6dklg6rDuTBjQhfSBXRjWoxNt28RGkddH5S4iUa20oorP1+/lw9VZfLgmm817iwHonRLPd0alMXlINyYN7kafzgkBJ21ZKncRiTq5xeX8Y8Vu3lu5m4/X7KGkoor4uDZMGdKdy48dxNRhqQzs1jFmplgOhspdRKLCvqJy3sncxd+W7eTz9XuprHZ6pcRzzoS+nDiyB0cP7haVBz6bi8pdRCJWSXkVf1+xizeW7OCjNdlUVjsDunXkx8cN5rQxPTm8T0qr3jv/Jip3EYko7s6iLft4ZeE23srYSUFZJT2T47ns2EF8b2xvRvdOVqGHQeUuIhEhr7iCvy7axnNfbmFdViEJcW05/fBeTJvQh6MHdaNNDJ/Z0hxU7iISqBU78pn12UZeX7KDsspqxvbrzH3TjuD0I3qR1EEVdbD0kxORFldd7by3cjczP9nIFxtziI9rw/eP7MuFR/dndO+UoOPFBJW7iLSYssoqXlu8ncc+3sCG7CL6dE7g1tNHcG56/4hepyUaqdxFpNmVVlTxwpdbePSjDezKL2V072Qe/NF4Th/Ts9lXTmytVO4i0mxKK6p49ostPPrRerILypg4qCu//8ERHDu0u854aWYqdxFpcpVV1byycBt/fH8tO/NKmTKkGw/9aDxHD+4WdLRWQ+UuIk3G3XlvZRb3vr2SDdlFjOvXmft/MJYpQ7sHHa3VUbmLSJNYvj2Pu99awRcbcxicmsjj0ydw8qg0Tb8EROUuIockp6ic37+7mhfmb6FLx/bcfeZozpvYnzgdKA2Uyl1EDkp1tfPcl1v4/burKSyr5NIpg7jh5GEkx+uUxkigcheRA7ZqVz6/eHUZi7fkMnlwN3515miGp3UKOpbUonIXkbCVVlTx4PtrefzjDSQnxPHAuWM5a1wfzatHIJW7iIRl8ZZ93PzKUtZlFXLOhL7cdvpIuiS2DzqWNEDlLiLfqKyyigf+sZbHP15PWnI8T102keOHpwYdSxqhcheRBq3ZXcD1Lyxh5c58zk3vx23fHakDplFC5S4iX+PuPPXZJu59exVJHdrxl4vSOWlUWtCx5ACo3EXkK3KLy/nZy0t5b+VuTjgslfvOGUtqpw5Bx5IDpHIXkX9buHkf1z2/mKyCUm7/7iguO2agzoSJUip3EcHdefLTTfzmbyvp1TmeV66awth+nYOOJYdA5S7SyhWXV/KLV5fx+pIdnDQyjft/OJaUBB00jXYqd5FWbMveYq6cvYDVuwu4+ZTDmHH8EF2IOkaEtbKPmXU1szlmVmRmm83s/AbGdTCzR81st5nlmNmbZtanaSOLSFP4fP1eznz4E3bmlTLr0olcc8JQFXsMCXfZtoeBciANuAB4xMxG1zPuemAycATQG8gFHmqCnCLShJ77YgvTZ35Bt6QOvH7NMfpSUgxqtNzNLBGYBtzu7oXu/gnwBjC9nuGDgHfdfbe7lwIvAPX9JSAiAaiqdu5+awW3zlnGscO68+rVUxjYPTHoWNIMwplzHw5UufuaWtsygOPrGTsT+KOZ7d9rvwB4+5BTisghKymv4oYXF/Nu5m4umTKQ2787iraaholZ4ZR7EpBXZ1seUN/6nmuALcB2oApYBlxb34ua2ZXAlQD9+/cPM66IHIy9hWVc/tQCMrblcsd3R3HZsYOCjiTNLJw590Iguc62ZKCgnrGPAPFANyAReJUG9tzd/XF3T3f39NRUzfeJNJetOcWc8+jnrNqVz6MXTlCxtxLhlPsaoJ2ZDau1bSyQWc/YscAsd89x9zJCB1MnmpmujisSgJU785n2yGfkFJXz7BWTOGV0z6AjSQtptNzdvYjQHvhdZpZoZscAZwKz6xk+H7jIzFLMLA64Gtjh7nuaMrSING7+phx++NjntDHj5asmM2FA16AjSQsK91TIq4EEIAt4Hpjh7plmNtXMCmuN+xlQCqwFsoHTgbObMK+IhGHe2mymz/yC1KQOvDJjsi6B1wqF9Q1Vd88Bzqpn+zxCB1z3399L6AwZEQnI3zN3ce1zixmcmsjsyydpRcdWSssPiMSQNzN2cMOLSxjTJ4WnLj2Kzh11GbzWSuUuEiNeX7KdG19cQvqArsy8JJ1OumJSq6ZyF4kBry3ezk0vLeGogV154pKjSOygj3Zrp3eASJTbX+wTB4WKvWN7faxF5S4S1eYu3clNLy1h0qBuPHHJUSS0bxt0JIkQ4Z4KKSIR5u+Zu7j+hcUc2b8LMy9JV7HLV6jcRaLQR2uyufa5xYzuk8KTl2oqRr5O5S4SZRZsyuEnsxcwpEcST186UWfFSL1U7iJRZMWOfC6dNZ/eKQnMvnwiKR1V7FI/lbtIlNi4p4iLnviSpA7tmH3FJLon6Zun0jCVu0gUyMovZfrML6h2Z/blk+jTOSHoSBLhVO4iES6/tIKLn5xPTlE5sy49iqE9khp/krR6KneRCFZWWcVVsxeydncBj144gSP6dg46kkQJnT8lEqGqq52fvbyUz9bv5YFzx3LccF2xTMKnPXeRCPW7d1fxZsYObjltBGeP7xt0HIkyKneRCPTMvzbz2EcbuPDo/vzkuMFBx5EopHIXiTAfrNrNHa8v59sjenDnGaMxs6AjSRRSuYtEkBU78rn2ucWM6p3MQz8aT7u2+ojKwdE7RyRCZOWXcsVT80lJiGPmxVqTXQ6N3j0iEaCkvIofP72A3JIKXr5qMmnJ8UFHkiinchcJWOiUxwyWbs/jsQsnMLp3StCRJAZoWkYkYA9+sJa5y3Zyy6kj+M7onkHHkRihchcJ0NvLdvKH99Yy7ci+XKlTHqUJqdxFApK5I4+bXspgfP/O/PrsMTrlUZqUyl0kAHsKy7jy6YV07hjHY9MnEB+nS+RJ09IBVZEWVlFVzTXPLmJPYRmvXDWFHp10Zow0PZW7SAv79dyVfLExhwfOHcvhfXVmjDQPTcuItKCXF2xl1mebuPzYQVoMTJqVyl2khSzdlsttry1nypBu/OK0EUHHkRinchdpAXsLy7hq9kJSkzrwp/OP1Jox0uw05y7SzCqrqrnuhcXsKSrnr1dNoWti+6AjSSsQ1u6DmXU1szlmVmRmm83s/G8Ye6SZfWxmhWa228yub7q4ItHnv/++hk/X7eWes8boAKq0mHD33B8GyoE0YBww18wy3D2z9iAz6w68A9wIvAK0B3TUSFqtd5bv4tGP1nP+pP78ML1f0HGkFWl0z93MEoFpwO3uXujunwBvANPrGX4T8K67P+vuZe5e4O4rmzaySHTYkF3Iz17OYGy/zvzyjFFBx5FWJpxpmeFAlbuvqbUtAxhdz9ijgRwz+8zMsszsTTPr3xRBRaJJcXklM55ZRFxb488XHEmHdvoGqrSscMo9Ccirsy0P6FTP2L7AxcD1QH9gI/B8fS9qZlea2QIzW5CdnR1+YpEI5+7cNmc5a7IK+MN54+nTOSHoSNIKhVPuhUBynW3JQEE9Y0uAOe4+391LgV8BU8zsa0eR3P1xd0939/TU1NQDzS0SsZ79YgtzFm/nhhOHc/xwvbclGOGU+xqgnZkNq7VtLJBZz9ilgNe6v//XWu5OWoVl2/K4680VHDc8lZ9+e2jQcaQVa7Tc3b0IeBW4y8wSzewY4Exgdj3DnwTONrNxZhYH3A584u65TRlaJBLlFVdw9XML6ZbUnj+cO442bbRPI8EJ92tyVwMJQBahOfQZ7p5pZlPNrHD/IHf/ALgVmFszdijQ4DnxIrHC3fnZKxnszC3lT+cfqS8qSeDCOs/d3XOAs+rZPo/QAdfa2x4BHmmSdCJR4i/zNvKPFbu5/bujmDCgS9BxRLS2jMihWrh5H797ZxWnju7JZccMDDqOCKByFzkk+4rK+elzi+jVOZ7fnXOELpUnEUMLh4kcpOpq5z9fzmBPYTl/nTGFlIS4oCOJ/Jv23EUO0v/O28AHq7K47T9GakEwiTgqd5GDsHBzDve9u5rTD+/JRZMHBB1H5GtU7iIHKDTPvpg+nRP47TTNs0tk0py7yAFwd35Wa549OV7z7BKZtOcucgD+Mm8j76/K4tbTR2ieXSKayl0kTIu3hM5nP2V0GhdPGRh0HJFvpHIXCUNecQXXPreYninx3HfOWM2zS8TTnLtII9ydn/91KbvzS3n5qsk6n12igvbcRRrx9OebeSdzFz8/dQTj+2vdGIkOKneRb7B8ex6/nruSb4/owRVTBwUdRyRsKneRBhSUVnDtc4voltSe+3+geXaJLppzF6mHu3PrnOVs3VfCC1ceTRetzy5RRnvuIvV4cf5W3szYwU0nD+eogV2DjiNywFTuInWs3lXAL9/I5Nih3Zlx/JCg44gcFJW7SC3F5ZVc89wiOsXH8YCugypRTHPuIrXc8Xom67MLeebySaR26hB0HJGDpj13kRp/XbiNVxZu46ffHsYxQ7sHHUfkkKjcRYB1WQX8v9eWM3FQV64/cVjQcUQOmcpdWr2S8iqueXYxCe3b8uB542mreXaJAZpzl1bvzjcyWb27gKcum0jPlPig44g0Ce25S6v22uLtvLhgK1d/awjHD08NOo5Ik1G5S6u1LquQW+cs46iBXbjp5OFBxxFpUip3aZVC8+yLiI9ry4M/Gk+7tvooSGzRnLu0Svvn2WddehS9UhKCjiPS5LS7Iq3Oq4u28eKCrVxzwhC+dViPoOOINAuVu7Qqa3cXcNuc0PnsN56keXaJXSp3aTWKyiqZ8ewiEju05U+aZ5cYpzl3aRXcndvmLGNDzboxPZJ1PrvEtrB2Xcysq5nNMbMiM9tsZuc3Mr69ma0ys21NE1Pk0Dz35RZeW7KDG08azhStGyOtQLh77g8D5UAaMA6Ya2YZ7p7ZwPibgSwg6dAjihyapdty+dUbKzh+eCrXnDA06DgiLaLRPXczSwSmAbe7e6G7fwK8AUxvYPwg4ELg3qYMKnIwcovLmfHMIlI7ddD67NKqhDMtMxyocvc1tbZlAKMbGP8QcCtQcojZRA5JdbVzw4tLyC4o488XHElXXQdVWpFwyj0JyKuzLQ/oVHegmZ0NtHP3OY29qJldaWYLzGxBdnZ2WGFFDsRDH6zjw9XZ3HHGKMb26xx0HJEWFU65FwLJdbYlAwW1N9RM39wH/DSc39jdH3f3dHdPT03Vgk3StD5cncUf3l/D2eP7cMGk/kHHEWlx4RxQXQO0M7Nh7r62ZttYoO7B1GHAQGCemQG0B1LMbBdwtLtvapLEIo3YsreY619YwmFpnfjN2YdT834UaVUaLXd3LzKzV4G7zOwKQmfLnAlMqTN0OdCv1v0pwJ+AIwHNu0iLKCmv4qpnFuLuPDZ9Agnt2wYdSSQQ4X5F72oggdDpjc8DM9w908ymmlkhgLtXuvuu/TcgB6iuuV/VLOlFanF3bnttGSt35fPH88YzoFti0JFEAhPWee7ungOcVc/2eTRwLru7fwj0PZRwIgfi6c838+qi7dxw0jBOGKEFwaR10+IaEhM+X7+Xu95awUkj07ju27rAtYjKXaLe9twSrnluEQO7deSBc8fqi0oiqNwlypVWVPGT2QuoqKzm8YvS6RQfF3QkkYigVSElark7N7+ylMwd+fzlonSGpGopI5H9tOcuUevPH67nzYwd3HzKYZw4Mi3oOCIRReUuUenvmbv4/burOXNcb2YcPyToOCIRR+UuUWfVrnxufHEJY/um8LtpR+gbqCL1ULlLVMkuKOPyWQtIim/HY9PTiY/TN1BF6qMDqhI1SiuquHL2AnKKynn5qsn0TNGl8kQaonKXqLD/zJjFW3J59MIJjOmTEnQkkYimaRmJCg/8Yw1vZuzg56eO4NQxPYOOIxLxVO4S8V6av5UHP1jHuen9uOr4wUHHEYkKKneJaPPWZnPrnGUcNzyVe84eozNjRMKkcpeItXJnPjOeWcTQHkk8fP544trq7SoSLn1aJCJt21fMJU9+SVKHdjx56VFaM0bkAKncJeLsKyrnoie+pKS8iqcvn0ivlISgI4lEHZ0KKRGlpLyKy56az7Z9JTxz+SSGp3UKOpJIVNKeu0SM8spqrn52IRlbc3nwvPFMHNQ16EgiUUt77hIRqqqd/3w5g3+uzube7x+uc9lFDpH23CVw7s4dry/nzYwd3HLaCH40sX/QkUSinspdAuXu3Pfuap79YgtXHT+Eq7R8r0iTULlLoB58fx2PfLie8yf15+enHhZ0HJGYoXKXwDz20XoeeG8N50zoyz1n6tunIk1J5S6BePLTjdz79irOGNub3007gjZtVOwiTUlny0iLe+KTjdz11gpOHd2T//nhWNqq2EWanMpdWtRf5m3gnrkrOXV0Tx7SejEizUafLGkx+4v9tDEqdpHmpj13aXbuzkMfrON//rGG/zi8F384b5yKXaSZqdylWbk7v31nFY99tIFpR/bld9MOp52KXaTZqdyl2VRVO798YznP/GsL048ewK++N1pnxYi0EJW7NIuyyipuejGDuct28pPjB3PLqSN0HrtICwrr38dm1tXM5phZkZltNrPzGxh3s5ktN7MCM9toZjc3bVyJBoVllVw2az5zl+3kttNH8ovTRqrYRVpYuHvuDwPlQBowDphrZhnunllnnAEXAUuBIcDfzWyru7/QVIElsmXll3LZU/NZubOA+38wlmkT+gYdSaRVanTP3cwSgWnA7e5e6O6fAG8A0+uOdff73H2Ru1e6+2rgdeCYpg4tkWnN7gLO/vNnbMgu4i8XpavYRQIUzrTMcKDK3dfU2pYBjP6mJ1no3+FTgbp79xKDPl23h2l//ozyqmpe+slkThjRI+hIIq1aOOWeBOTV2ZYHNHb9sztrXv/J+h40syvNbIGZLcjOzg4jhkSqZ7/YzMVPfEmvzvG8ds0xjOmTEnQkkVYvnDn3QiC5zrZkoKChJ5jZtYTm3qe6e1l9Y9z9ceBxgPT0dA8rrUSUyqpq7n5rBU99vpnjh6fy0PnjSY6PCzqWiBBeua8B2pnZMHdfW7NtLA1Mt5jZZcAtwHHuvq1pYkqkySkq57rnF/PJuj38eOogbjltpBYAE4kgjZa7uxeZ2avAXWZ2BaGzZc4EptQda2YXAL8BTnD3DU0dViLDsm15XPXMQrILy7jvnCP4YXq/oCOJSB3hfg/8aiAByAKeB2a4e6aZTTWzwlrj7gG6AfPNrLDm9mjTRpYgvbRgK9Me/QyAV66arGIXiVBhnefu7jnAWfVsn0fogOv++4OaLppEkuLySu54PZNXFm7j2KHdefBH4+ma2D7oWCLSAC0/II1avauAa55bxPrsQq47cRjXnzhM8+siEU7lLg1yd575Ygu/nruCpA5xPHP5JI4Z2j3oWCISBpW71Cu7oIyf/3UpH6zK4rjhqfz3D46gR6f4oGOJSJhU7vI17yzfxW1zllFQVsmdZ4zioskDtVSvSJRRucu/5RSV88s3MnkzYwejeyfz/LnjGJ7W2BeRRSQSqdwFd2fusp3c+UYmeSUV3HTycGZ8a4guhScSxVTurdzWnGLueH05/1ydzeF9Uph9+SRG9qq72oSIRBuVeytVVlnFzE828tD76zCD2787iosnD9D1TUVihMq9FfpwdRa/enMFG/cUcfKoNO783mj6dE4IOpaINCGVeyuydncB9769ig9WZTG4eyJPXTaR44enBh1LRJqByr0VyC4o4w/vreGF+Vvp2L4tvzhtBJceM4j27TQFIxKrVO4xLK+4gsfnreeJTzZRUVXN9KMHcN2Jw7QmjEgroHKPQfmlFTz16Sb+d94G8ksr+d7Y3tx48nAGdU8MOpqItBCVewzJLS7nyU838cSnGykoreSkkT246eTDGNVbpzaKtDYq9xiwPbeEmfM28sL8LRSXV3HK6DR++u1hupapSCumco9iS7bm8uSnG3lr6U4MOGNsb648brC+hCQiKvdoU1pRxTvLdzHrs00s2ZpLUod2XDx5IJdPHaRz1UXk31TuUWJDdiHPf7mFVxZuY19xBYO6J3LnGaM4J70fSR30xygiX6VWiGD5pRXMXbqTVxZuY+HmfbRrY5w8Ko0LJg1gypBuWoZXRBqkco8wpRVVfLg6mzcytvP+yizKKqsZ2iOJW04bwffH96FHsi6YISKNU7lHgNKKKj5ek83by3fx3srdFJRW0j2pPecd1Y+zxvdhXL/OmGkvXUTCp3IPSE5ROf9clcV7K3fz8ZpsisqrSEmI45TRPfne2N5MGdJNKzSKyEFTubeQqmpn+fY8PlydzUdrsliyNZdqh7TkDnxvXB9OG9OTyUO66QIZItIkVO7NxN1Zn13Evzbs5dN1e/hs/V7ySiowgyP6pHDtt4dx0sgejOmdogOjItLkVO5NpKKqmpU781mwaR8LNufw5cYc9hSWA9A7JZ7vjErj2GHdOXZod7oldQg4rYjEOpX7QXB3tu0rYdn2PJZszWXJ1lyWbcujpKIKCJX51GGpTBrUlUmDuzGwW0cdEBWRFqVyb0R5ZTXrswtZtSuflTsLWLEjn+U78sgtrgCgfds2jOqdzLlH9SN9YBeO7N+F3vqmqIgETOVeo7Siio17ilifXci6rELWZhWyZlcBG/cUUVntALRv14bhaUmcNqYnY/qkMKZ3CiN7JeuiFyIScVpVueeVVLBtXzFbc4rZvLeYLTnFbNpbxKY9xezIK8FDHY4Z9OvSkeFpSZw0Ko0RPTsxslcyg7sn6vREEYkKMbsXLKMAAAVjSURBVFPuRWWVZBWUsTOvhN35pezKK2NHbgk780rYnlvKtn3FFJRWfuU5nTvGMbBbIhMHdWVgt0QGpyYytEcSg7onEh/XNqD/ExGRQxfV5f7PVVnc9dYKsvJLKSqv+trjKQlx9O6cQO+UeCYO7ELfLh3p0yWB/l070q9rR1IS4gJILSLS/MIqdzPrCswEvgPsAX7h7s/VM86A3wJX1GyaCfzcff+ER9Pq3DGOUb2S+dZhqfToFE+PTh3olRJPz5pbx/ZR/XeXiMhBC7f9HgbKgTRgHDDXzDLcPbPOuCuBs4CxgAP/ADYAjzZN3K8a378LD1/QpTleWkQkqjV6dNDMEoFpwO3uXujunwBvANPrGX4xcL+7b3P37cD9wCVNmFdERMIQzqkfw4Eqd19Ta1sGMLqesaNrHmtsnIiINKNwyj0JyKuzLQ/oFMbYPCDJ6vl6ppldaWYLzGxBdnZ2uHlFRCQM4ZR7IVD3isvJQEEYY5OBwvoOqLr74+6e7u7pqamp4eYVEZEwhFPua4B2Zjas1raxQN2DqdRsGxvGOBERaUaNlru7FwGvAneZWaKZHQOcCcyuZ/jTwE1m1sfMegP/CcxqwrwiIhKGcL9LfzWQAGQBzwMz3D3TzKaaWWGtcY8BbwLLgOXA3JptIiLSgsI6z93dcwidv153+zxCB1H333fgv2puIiISEGumL48eWAizbGDzQT69O6FvzUaaSM0FkZtNuQ6Mch2YWMw1wN3rPSMlIsr9UJjZAndPDzpHXZGaCyI3m3IdGOU6MK0tl9avFRGJQSp3EZEYFAvl/njQARoQqbkgcrMp14FRrgPTqnJF/Zy7iIh8XSzsuYuISB0qdxGRGKRyFxGJQTFX7mY2zMxKzeyZoLMAmNkzZrbTzPLNbI2ZXdH4s5o9Uwczm2lmm82swMwWm9lpQecCMLNra5aCLjOzWQFn6Wpmc8ysqOZndX6QeWoyRczPp7YIf09F3GewtubqrFi8yOjDwPygQ9RyL3C5u5eZ2QjgQzNb7O4LA8zUDtgKHA9sAU4HXjKzw919U4C5AHYA9wCnEFrPKEjhXl6yJUXSz6e2SH5PReJnsLZm6ayY2nM3s/OAXOD9oLPs5+6Z7l62/27NbUiAkXD3Ine/0903uXu1u78FbAQmBJmrJtur7v4asDfIHAd4eckWEyk/n7oi/D0VcZ/B/Zqzs2Km3M0sGbiL0DLDEcXM/mxmxcAqYCfwt4AjfYWZpRG6nKLW3v8/B3J5Sakj0t5TkfgZbO7OiplyB+4GZrr71qCD1OXuVxO6LOFUQmvjl33zM1qOmcUBzwJPufuqoPNEkAO5vKTUEonvqQj9DDZrZ0VFuZvZh2bmDdw+MbNxwEnAA5GUq/ZYd6+q+ad9X2BGJOQyszaELrpSDlzbnJkOJFeEOJDLS0qNln5PHYiW/Aw2piU6KyoOqLr7t77pcTO7ARgIbKm5FncS0NbMRrn7kUHlakA7mnm+L5xcNRctn0noYOHp7l7RnJnCzRVB/n15SXdfW7NNl438BkG8pw5Ss38Gw/AtmrmzomLPPQyPE/rDGldze5TQVaBOCTKUmfUws/PMLMnM2prZKcCPgA+CzFXjEWAkcIa7lwQdZj8za2dm8UBbQm/2eDNr8Z2QA7y8ZIuJlJ9PAyLuPRXBn8Hm7yx3j7kbcCfwTATkSAU+InQ0PJ/Q5Qd/HAG5BhA6Y6CU0PTD/tsFEZDtTv7vjIb9tzsDytIVeA0oInR63/n6+UTXeypSP4MN/Lk2aWdp4TARkRgUK9MyIiJSi8pdRCQGqdxFRGKQyl1EJAap3EVEYpDKXUQkBqncRURikMpdRCQG/X9A/lu2GB8+RgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(torch.sigmoid, title='Sigmoid', min=-4, max=4)"]},{"cell_type":"markdown","metadata":{"id":"Wj9WT9IEz7dE"},"source":["As you can see, it takes any input value, positive or negative, and smooshes it onto an output value between 0 and 1. It's also a smooth curve that only goes up, which makes it easier for SGD to find meaningful gradients.\n","\n","Let's update `mnist_loss` to first apply `sigmoid` to the inputs:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4ORS-mTez7dF"},"outputs":[],"source":["def mnist_loss(predictions, targets):\n"," predictions = predictions.sigmoid()\n"," return torch.where(targets==1, 1-predictions, predictions).mean()"]},{"cell_type":"markdown","metadata":{"id":"91a89wrpz7dF"},"source":["Now we can be confident our loss function will work, even if the predictions are not between 0 and 1. All that is required is that a higher prediction corresponds to higher confidence an image is a 3.\n","\n","Having defined a loss function, now is a good moment to recapitulate why we did this. After all, we already had a metric, which was overall accuracy. So why did we define a loss?\n","\n","The key difference is that the metric is to drive human understanding and the loss is to drive automated learning. To drive automated learning, the loss must be a function that has a meaningful derivative. It can't have big flat sections and large jumps, but instead must be reasonably smooth. This is why we designed a loss function that would respond to small changes in confidence level. This requirement means that sometimes it does not really reflect exactly what we are trying to achieve, but is rather a compromise between our real goal and a function that can be optimized using its gradient. The loss function is calculated for each item in our dataset, and then at the end of an epoch the loss values are all averaged and the overall mean is reported for the epoch.\n","\n","Metrics, on the other hand, are the numbers that we really care about. These are the values that are printed at the end of each epoch that tell us how our model is really doing. It is important that we learn to focus on these metrics, rather than the loss, when judging the performance of a model."]},{"cell_type":"markdown","metadata":{"id":"xA15_vyCz7dF"},"source":["### SGD and Mini-Batches"]},{"cell_type":"markdown","metadata":{"id":"6V3XTA0vz7dF"},"source":["Now that we have a loss function that is suitable for driving SGD, we can consider some of the details involved in the next phase of the learning process, which is to change or update the weights based on the gradients. This is called an *optimization step*.\n","\n","In order to take an optimization step we need to calculate the loss over one or more data items. How many should we use? We could calculate it for the whole dataset, and take the average, or we could calculate it for a single data item. But neither of these is ideal. Calculating it for the whole dataset would take a very long time. Calculating it for a single item would not use much information, so it would result in a very imprecise and unstable gradient. That is, you'd be going to the trouble of updating the weights, but taking into account only how that would improve the model's performance on that single item.\n","\n","So instead we take a compromise between the two: we calculate the average loss for a few data items at a time. This is called a *mini-batch*. The number of data items in the mini-batch is called the *batch size*. A larger batch size means that you will get a more accurate and stable estimate of your dataset's gradients from the loss function, but it will take longer, and you will process fewer mini-batches per epoch. Choosing a good batch size is one of the decisions you need to make as a deep learning practitioner to train your model quickly and accurately. We will talk about how to make this choice throughout this book.\n","\n","Another good reason for using mini-batches rather than calculating the gradient on individual data items is that, in practice, we nearly always do our training on an accelerator such as a GPU. These accelerators only perform well if they have lots of work to do at a time, so it's helpful if we can give them lots of data items to work on. Using mini-batches is one of the best ways to do this. However, if you give them too much data to work on at once, they run out of memory—making GPUs happy is also tricky!\n","\n","As we saw in our discussion of data augmentation in <>, we get better generalization if we can vary things during training. One simple and effective thing we can vary is what data items we put in each mini-batch. Rather than simply enumerating our dataset in order for every epoch, instead what we normally do is randomly shuffle it on every epoch, before we create mini-batches. PyTorch and fastai provide a class that will do the shuffling and mini-batch collation for you, called `DataLoader`.\n","\n","A `DataLoader` can take any Python collection and turn it into an iterator over mini-batches, like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"xh4TSFtOz7dG","outputId":"30bc12a4-7c38-4640-9a42-69c4bf3eedfa"},"outputs":[{"data":{"text/plain":["[tensor([ 3, 12, 8, 10, 2]),\n"," tensor([ 9, 4, 7, 14, 5]),\n"," tensor([ 1, 13, 0, 6, 11])]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["coll = range(15)\n","dl = DataLoader(coll, batch_size=5, shuffle=True)\n","list(dl)"]},{"cell_type":"markdown","metadata":{"id":"38UCD1QEz7dG"},"source":["For training a model, we don't just want any Python collection, but a collection containing independent and dependent variables (that is, the inputs and targets of the model). A collection that contains tuples of independent and dependent variables is known in PyTorch as a `Dataset`. Here's an example of an extremely simple `Dataset`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2K3lBEMdz7dG","outputId":"9e16139d-82a2-4caf-f31f-7902230a5091"},"outputs":[{"data":{"text/plain":["(#26) [(0, 'a'),(1, 'b'),(2, 'c'),(3, 'd'),(4, 'e'),(5, 'f'),(6, 'g'),(7, 'h'),(8, 'i'),(9, 'j')...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["ds = L(enumerate(string.ascii_lowercase))\n","ds"]},{"cell_type":"markdown","metadata":{"id":"qQQGtw73z7dH"},"source":["When we pass a `Dataset` to a `DataLoader` we will get back mini-batches which are themselves tuples of tensors representing batches of independent and dependent variables:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dVkOYiBZz7dH","outputId":"0e3eb6c2-7bff-4510-b840-ac046d51aa12"},"outputs":[{"data":{"text/plain":["[(tensor([17, 18, 10, 22, 8, 14]), ('r', 's', 'k', 'w', 'i', 'o')),\n"," (tensor([20, 15, 9, 13, 21, 12]), ('u', 'p', 'j', 'n', 'v', 'm')),\n"," (tensor([ 7, 25, 6, 5, 11, 23]), ('h', 'z', 'g', 'f', 'l', 'x')),\n"," (tensor([ 1, 3, 0, 24, 19, 16]), ('b', 'd', 'a', 'y', 't', 'q')),\n"," (tensor([2, 4]), ('c', 'e'))]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dl = DataLoader(ds, batch_size=6, shuffle=True)\n","list(dl)"]},{"cell_type":"markdown","metadata":{"id":"tL37D39Hz7dH"},"source":["We are now ready to write our first training loop for a model using SGD!"]},{"cell_type":"markdown","metadata":{"id":"j0ap7Izhz7dI"},"source":["## Putting It All Together"]},{"cell_type":"markdown","metadata":{"id":"ZEV_y5G7z7dI"},"source":["It's time to implement the process we saw in <>. In code, our process will be implemented something like this for each epoch:\n","\n","```python\n","for x,y in dl:\n"," pred = model(x)\n"," loss = loss_func(pred, y)\n"," loss.backward()\n"," parameters -= parameters.grad * lr\n","```"]},{"cell_type":"markdown","metadata":{"id":"HeIhkOqHz7dI"},"source":["First, let's re-initialize our parameters:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3-Hf-7twz7dJ"},"outputs":[],"source":["weights = init_params((28*28,1))\n","bias = init_params(1)"]},{"cell_type":"markdown","metadata":{"id":"0R0txdu8z7dJ"},"source":["A `DataLoader` can be created from a `Dataset`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"C1PRsiunz7dJ","outputId":"f947d97e-239a-4936-f1bc-6c074e3c7d85"},"outputs":[{"data":{"text/plain":["(torch.Size([256, 784]), torch.Size([256, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dl = DataLoader(dset, batch_size=256)\n","xb,yb = first(dl)\n","xb.shape,yb.shape"]},{"cell_type":"markdown","metadata":{"id":"-SJA1eqVz7dK"},"source":["We'll do the same for the validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ExFOHdQoz7dK"},"outputs":[],"source":["valid_dl = DataLoader(valid_dset, batch_size=256)"]},{"cell_type":"markdown","metadata":{"id":"7GZrb7z5z7dK"},"source":["Let's create a mini-batch of size 4 for testing:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lFzxjA6Mz7dL","outputId":"cf720906-ad69-4d8a-8780-d62f58229579"},"outputs":[{"data":{"text/plain":["torch.Size([4, 784])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["batch = train_x[:4]\n","batch.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ou1AjvBAz7dL","outputId":"a8b5af7f-9d8d-4ab7-ac29-c41d01d24441"},"outputs":[{"data":{"text/plain":["tensor([[-11.1002],\n"," [ 5.9263],\n"," [ 9.9627],\n"," [ -8.1484]], grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds = linear1(batch)\n","preds"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dN6Pdn8tz7dL","outputId":"48443691-2ede-44ec-e8b9-aa46a1c68a45"},"outputs":[{"data":{"text/plain":["tensor(0.5006, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss = mnist_loss(preds, train_y[:4])\n","loss"]},{"cell_type":"markdown","metadata":{"id":"v6Xgn4WKz7dM"},"source":["Now we can calculate the gradients:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VyWT7ItAz7dM","outputId":"689232b8-f7ed-4a90-8b63-89256d2c1201"},"outputs":[{"data":{"text/plain":["(torch.Size([784, 1]), tensor(-0.0001), tensor([-0.0008]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss.backward()\n","weights.grad.shape,weights.grad.mean(),bias.grad"]},{"cell_type":"markdown","metadata":{"id":"lwuFcuYHz7dM"},"source":["Let's put that all in a function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pOGUvHPgz7dN"},"outputs":[],"source":["def calc_grad(xb, yb, model):\n"," preds = model(xb)\n"," loss = mnist_loss(preds, yb)\n"," loss.backward()"]},{"cell_type":"markdown","metadata":{"id":"5Zvx-e8uz7dN"},"source":["and test it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"q09YJ8hXz7dN","outputId":"5df806aa-2573-4f45-dea8-f8dbb0c268e6"},"outputs":[{"data":{"text/plain":["(tensor(-0.0002), tensor([-0.0015]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["calc_grad(batch, train_y[:4], linear1)\n","weights.grad.mean(),bias.grad"]},{"cell_type":"markdown","metadata":{"id":"d2gj842Bz7dO"},"source":["But look what happens if we call it twice:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Sipd1pDSz7dO","outputId":"24ecb42d-2373-48d4-d36a-b45c2b07a0e5"},"outputs":[{"data":{"text/plain":["(tensor(-0.0003), tensor([-0.0023]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["calc_grad(batch, train_y[:4], linear1)\n","weights.grad.mean(),bias.grad"]},{"cell_type":"markdown","metadata":{"id":"QJtMHP_Gz7dO"},"source":["The gradients have changed! The reason for this is that `loss.backward` actually *adds* the gradients of `loss` to any gradients that are currently stored. So, we have to set the current gradients to 0 first:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fr51i4mFz7dO"},"outputs":[],"source":["weights.grad.zero_()\n","bias.grad.zero_();"]},{"cell_type":"markdown","metadata":{"id":"L3zgXscHz7dP"},"source":["> note: Inplace Operations: Methods in PyTorch whose names end in an underscore modify their objects _in place_. For instance, `bias.zero_()` sets all elements of the tensor `bias` to 0."]},{"cell_type":"markdown","metadata":{"id":"wLcUwVv_z7dP"},"source":["Our only remaining step is to update the weights and biases based on the gradient and learning rate. When we do so, we have to tell PyTorch not to take the gradient of this step too—otherwise things will get very confusing when we try to compute the derivative at the next batch! If we assign to the `data` attribute of a tensor then PyTorch will not take the gradient of that step. Here's our basic training loop for an epoch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OWwa6y9sz7dP"},"outputs":[],"source":["def train_epoch(model, lr, params):\n"," for xb,yb in dl:\n"," calc_grad(xb, yb, model)\n"," for p in params:\n"," p.data -= p.grad*lr\n"," p.grad.zero_()"]},{"cell_type":"markdown","metadata":{"id":"2rSwJOCfz7dQ"},"source":["We also want to check how we're doing, by looking at the accuracy of the validation set. To decide if an output represents a 3 or a 7, we can just check whether it's greater than 0. So our accuracy for each item can be calculated (using broadcasting, so no loops!) with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7GkkGKIhz7dQ","outputId":"506b7643-6dfc-436e-d252-91c228082d5b"},"outputs":[{"data":{"text/plain":["tensor([[False],\n"," [ True],\n"," [ True],\n"," [False]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(preds>0.0).float() == train_y[:4]"]},{"cell_type":"markdown","metadata":{"id":"tRJvEuqMz7dQ"},"source":["That gives us this function to calculate our validation accuracy:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MSygtcTIz7dR"},"outputs":[],"source":["def batch_accuracy(xb, yb):\n"," preds = xb.sigmoid()\n"," correct = (preds>0.5) == yb\n"," return correct.float().mean()"]},{"cell_type":"markdown","metadata":{"id":"M1R9JfClz7dR"},"source":["We can check it works:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"G4b3XMmhz7dR","outputId":"0cc5141e-f3fe-4d43-c799-c72c0a29d9c9"},"outputs":[{"data":{"text/plain":["tensor(0.5000)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["batch_accuracy(linear1(batch), train_y[:4])"]},{"cell_type":"markdown","metadata":{"id":"HPGvgcRuz7dS"},"source":["and then put the batches together:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jpu7zgiGz7dS"},"outputs":[],"source":["def validate_epoch(model):\n"," accs = [batch_accuracy(model(xb), yb) for xb,yb in valid_dl]\n"," return round(torch.stack(accs).mean().item(), 4)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zM5gpXmlz7dS","outputId":"20aea308-1d37-4214-e0cb-d21a7c3f49c5"},"outputs":[{"data":{"text/plain":["0.5219"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["validate_epoch(linear1)"]},{"cell_type":"markdown","metadata":{"id":"ae4Z_x_4z7dS"},"source":["That's our starting point. Let's train for one epoch, and see if the accuracy improves:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Vb78H9bIz7dT","outputId":"377be0af-4479-4c55-bf46-2f09842a8d85"},"outputs":[{"data":{"text/plain":["0.6883"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["lr = 1.\n","params = weights,bias\n","train_epoch(linear1, lr, params)\n","validate_epoch(linear1)"]},{"cell_type":"markdown","metadata":{"id":"3Wj_ciOmz7dT"},"source":["Then do a few more:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Qszeimeiz7dT","outputId":"9585932d-3ecc-4654-8e39-d6be2eb0dc53"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.8314 0.9017 0.9227 0.9349 0.9438 0.9501 0.9535 0.9564 0.9594 0.9618 0.9613 0.9638 0.9643 0.9652 0.9662 0.9677 0.9687 0.9691 0.9691 0.9696 "]}],"source":["for i in range(20):\n"," train_epoch(linear1, lr, params)\n"," print(validate_epoch(linear1), end=' ')"]},{"cell_type":"markdown","metadata":{"id":"Fq58h30Rz7dU"},"source":["Looking good! We're already about at the same accuracy as our \"pixel similarity\" approach, and we've created a general-purpose foundation we can build on. Our next step will be to create an object that will handle the SGD step for us. In PyTorch, it's called an *optimizer*."]},{"cell_type":"markdown","metadata":{"id":"uyUV57XWz7dU"},"source":["### Creating an Optimizer"]},{"cell_type":"markdown","metadata":{"id":"rXVZax_2z7dU"},"source":["Because this is such a general foundation, PyTorch provides some useful classes to make it easier to implement. The first thing we can do is replace our `linear1` function with PyTorch's `nn.Linear` module. A *module* is an object of a class that inherits from the PyTorch `nn.Module` class. Objects of this class behave identically to standard Python functions, in that you can call them using parentheses and they will return the activations of a model.\n","\n","`nn.Linear` does the same thing as our `init_params` and `linear` together. It contains both the *weights* and *biases* in a single class. Here's how we replicate our model from the previous section:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"alKdZYMuz7dV"},"outputs":[],"source":["linear_model = nn.Linear(28*28,1)"]},{"cell_type":"markdown","metadata":{"id":"zcbN0ipYz7dV"},"source":["Every PyTorch module knows what parameters it has that can be trained; they are available through the `parameters` method:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kU2d6XgRz7dV","outputId":"e078a344-89c1-43bf-b04f-d5e26da8d411"},"outputs":[{"data":{"text/plain":["(torch.Size([1, 784]), torch.Size([1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["w,b = linear_model.parameters()\n","w.shape,b.shape"]},{"cell_type":"markdown","metadata":{"id":"L3Lyadxuz7dW"},"source":["We can use this information to create an optimizer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FtahlZhAz7dW"},"outputs":[],"source":["class BasicOptim:\n"," def __init__(self,params,lr): self.params,self.lr = list(params),lr\n","\n"," def step(self, *args, **kwargs):\n"," for p in self.params: p.data -= p.grad.data * self.lr\n","\n"," def zero_grad(self, *args, **kwargs):\n"," for p in self.params: p.grad = None"]},{"cell_type":"markdown","metadata":{"id":"bczMDyF2z7dW"},"source":["We can create our optimizer by passing in the model's parameters:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ayg2G5S3z7dX"},"outputs":[],"source":["opt = BasicOptim(linear_model.parameters(), lr)"]},{"cell_type":"markdown","metadata":{"id":"msceqwf2z7dX"},"source":["Our training loop can now be simplified to:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lzA0JGgxz7dX"},"outputs":[],"source":["def train_epoch(model):\n"," for xb,yb in dl:\n"," calc_grad(xb, yb, model)\n"," opt.step()\n"," opt.zero_grad()"]},{"cell_type":"markdown","metadata":{"id":"I3ONoNHbz7dX"},"source":["Our validation function doesn't need to change at all:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RdGVnyknz7dY","outputId":"e9d18176-b7b8-4369-e7f0-c5f75ed7552b"},"outputs":[{"data":{"text/plain":["0.4157"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["validate_epoch(linear_model)"]},{"cell_type":"markdown","metadata":{"id":"pXUbk-fSz7dY"},"source":["Let's put our little training loop in a function, to make things simpler:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uyrnx_jvz7dY"},"outputs":[],"source":["def train_model(model, epochs):\n"," for i in range(epochs):\n"," train_epoch(model)\n"," print(validate_epoch(model), end=' ')"]},{"cell_type":"markdown","metadata":{"id":"wxpUGk4Nz7dZ"},"source":["The results are the same as in the previous section:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7uesFVNEz7dZ","outputId":"06bedee4-e91a-4ae3-ede1-9bf1b2a1bb42"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.4932 0.8618 0.8203 0.9102 0.9331 0.9468 0.9555 0.9629 0.9658 0.9673 0.9687 0.9707 0.9726 0.9751 0.9761 0.9761 0.9775 0.978 0.9785 0.9785 "]}],"source":["train_model(linear_model, 20)"]},{"cell_type":"markdown","metadata":{"id":"ZbcISH5Kz7dZ"},"source":["fastai provides the `SGD` class which, by default, does the same thing as our `BasicOptim`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"epc5996Oz7da","outputId":"351d4688-9a42-4626-f214-5e76c7068fe0"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.4932 0.852 0.8335 0.9116 0.9326 0.9473 0.9555 0.9624 0.9648 0.9668 0.9692 0.9712 0.9731 0.9746 0.9761 0.9765 0.9775 0.978 0.9785 0.9785 "]}],"source":["linear_model = nn.Linear(28*28,1)\n","opt = SGD(linear_model.parameters(), lr)\n","train_model(linear_model, 20)"]},{"cell_type":"markdown","metadata":{"id":"bd8K2LE4z7da"},"source":["fastai also provides `Learner.fit`, which we can use instead of `train_model`. To create a `Learner` we first need to create a `DataLoaders`, by passing in our training and validation `DataLoader`s:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nNCp0lmNz7da"},"outputs":[],"source":["dls = DataLoaders(dl, valid_dl)"]},{"cell_type":"markdown","metadata":{"id":"kfav-y2Wz7db"},"source":["To create a `Learner` without using an application (such as `vision_learner`) we need to pass in all the elements that we've created in this chapter: the `DataLoaders`, the model, the optimization function (which will be passed the parameters), the loss function, and optionally any metrics to print:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"t6mq8jRiz7db"},"outputs":[],"source":["learn = Learner(dls, nn.Linear(28*28,1), opt_func=SGD,\n"," loss_func=mnist_loss, metrics=batch_accuracy)"]},{"cell_type":"markdown","metadata":{"id":"SOQxXohCz7db"},"source":["Now we can call `fit`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Hl4hA3BXz7dc","outputId":"ffbb4264-3102-42ed-d2d7-29d74ca63893"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossbatch_accuracytime
00.6368570.5035490.49558400:00
10.5457250.1702810.86604500:00
20.1992230.1848930.83120700:00
30.0865800.1078360.91118700:00
40.0451850.0784810.93277700:00
50.0291080.0627920.94651600:00
60.0225600.0530170.95534800:00
70.0196870.0465000.96221800:00
80.0182520.0419290.96516200:00
90.0174020.0385730.96761500:00
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit(10, lr=lr)"]},{"cell_type":"markdown","metadata":{"id":"s7yyO4R9z7dc"},"source":["As you can see, there's nothing magic about the PyTorch and fastai classes. They are just convenient pre-packaged pieces that make your life a bit easier! (They also provide a lot of extra functionality we'll be using in future chapters.)\n","\n","With these classes, we can now replace our linear model with a neural network."]},{"cell_type":"markdown","metadata":{"id":"vhSWeuOjz7dc"},"source":["## Adding a Nonlinearity"]},{"cell_type":"markdown","metadata":{"id":"lA6-1RINz7dc"},"source":["So far we have a general procedure for optimizing the parameters of a function, and we have tried it out on a very boring function: a simple linear classifier. A linear classifier is very constrained in terms of what it can do. To make it a bit more complex (and able to handle more tasks), we need to add something nonlinear between two linear classifiers—this is what gives us a neural network.\n","\n","Here is the entire definition of a basic neural network:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dkUAZQOuz7dd"},"outputs":[],"source":["def simple_net(xb):\n"," res = xb@w1 + b1\n"," res = res.max(tensor(0.0))\n"," res = res@w2 + b2\n"," return res"]},{"cell_type":"markdown","metadata":{"id":"IyQ1Ushcz7dd"},"source":["That's it! All we have in `simple_net` is two linear classifiers with a `max` function between them.\n","\n","Here, `w1` and `w2` are weight tensors, and `b1` and `b2` are bias tensors; that is, parameters that are initially randomly initialized, just like we did in the previous section:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fX9n8Pyuz7dd"},"outputs":[],"source":["w1 = init_params((28*28,30))\n","b1 = init_params(30)\n","w2 = init_params((30,1))\n","b2 = init_params(1)"]},{"cell_type":"markdown","metadata":{"id":"2QM2rb4gz7de"},"source":["The key point about this is that `w1` has 30 output activations (which means that `w2` must have 30 input activations, so they match). That means that the first layer can construct 30 different features, each representing some different mix of pixels. You can change that `30` to anything you like, to make the model more or less complex.\n","\n","That little function `res.max(tensor(0.0))` is called a *rectified linear unit*, also known as *ReLU*. We think we can all agree that *rectified linear unit* sounds pretty fancy and complicated... But actually, there's nothing more to it than `res.max(tensor(0.0))`—in other words, replace every negative number with a zero. This tiny function is also available in PyTorch as `F.relu`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mM2CmJP5z7de","outputId":"55109ceb-8488-4936-d351-2798f22106b1"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX4AAAD7CAYAAABt0P8jAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhU5fn/8fctW1hlC7iBCAUUkDXivlRtcZcWtbK4tFYURau2Vluh4lK3trZqKZZvtaggLgiudalVvu7aEDaDEJQdBMIWk7AEkvv7x0x+v3FMyAmZJTPzeV3XXMyc85xz7nOYuXPmOWfux9wdERHJHPslOwAREUksJX4RkQyjxC8ikmGU+EVEMowSv4hIhmmY7ACCaN++vXfp0iXZYYiIpJQ5c+Zscvfs6Okpkfi7dOlCbm5ussMQEUkpZrayqunq6hERyTBK/CIiGUaJX0Qkwyjxi4hkGCV+EZEMU2PiN7MmZvaYma00s2Izm2tmZ+6l/Y1mtt7MiszscTNrEjGvi5m9a2bbzWyxmZ0eqx0REZFggpzxNwRWAycD+wPjgefMrEt0QzMbAtwKnAZ0AboCd0Q0mQ7MBdoBtwEzzOw795iKiEj81Jj43b3U3Se4+wp3r3D3V4HlwKAqml8GPObu+e6+FbgLuBzAzHoAA4Hb3X2Hu78ALASGxWhfRETSxleFJfzxzSXsKa+I+bpr3cdvZh2BHkB+FbN7A/MjXs8HOppZu/C8Ze5eHDW/dzXbGW1muWaWW1hYWNswRURS1vayPYyZOoenP1vF5tKymK+/VonfzBoB04An3H1xFU1aAEURryuft6xiXuX8llVty90nu3uOu+dkZ6s3SEQyg7tz26zPWbqxhIcu7k/HVlkx30bgxG9m+wFPAWXA2GqalQCtIl5XPi+uYl7l/GJERASAaZ+uYtbctdx4eg9O7B6fk95Aid/MDHgM6AgMc/fd1TTNB/pFvO4HbHD3zeF5Xc2sZdT8qrqMREQyzoI127jzlUWc0jObsd//Xty2E/SMfxJwBHCuu+/YS7sngSvMrJeZtQHGAVMA3L0AmAfcbmZZZvYjoC/wwr4GLyKSLraWljFmah7ZLZvw54v6s99+FrdtBbmP/1DgKqA/sN7MSsKPkWbWOfy8M4C7vwE8ALwLrAw/bo9Y3cVADrAVuA+4wN115VZEMlpFhXPjc/MoLN7F30YOpE3zxnHdXo1lmd19JbC3Pz0toto/CDxYzbpWAKcED09EJP1NfPdLZi8p5K6hfejXqXXct6eSDSIiSfTB0k08+HYBQ/sfxKijOydkm0r8IiJJ8nXRDq5/Zi7dO7Tgnh8fSeg+mvhT4hcRSYKyPRVcMy2PXbvLmTRqEM0aJ25AxJQYelFEJN3c868vmLtqGxNHDKRbdouaF4ghnfGLiCTYqwvWMeWjFfz0+C6c3ffAhG9fiV9EJIG+3FjCLTMWMLBza35z5hFJiUGJX0QkQUp3hYqvNWnUgIkjB9K4YXJSsPr4RUQSwN357ayFfFlYwlM/O5oD92+atFh0xi8ikgBTP1nJS/PWcdPpPTihe/ukxqLELyISZ/NWb+POVxfx/Z7ZXBvH4mtBKfGLiMTR1tIyrp2WR4eWWfz5J/EtvhaU+vhFROKkosK54dlQ8bUZY46ldbP4Fl8LSmf8IiJx8sg7X/K/BYXcfl4v+h4S/+JrQSnxi4jEwXsFhfzlPwX8eMDBjBicmOJrQSnxi4jE2NptO/jFM3Pp0aElv/9R4oqvBRV06MWxZpZrZrvMbMpe2j0aMVBLSbh9ccT82Wa2M2L+khjsg4hIvVG2p4Jrp+Wxu9yZNGogTRs3SHZI3xH04u464G5gCFDtrw7c/Wrg6srX4T8SFVHNxrr7P2oXpohIavj9a4uYt3obfxs5kK4JLr4WVKDE7+4zAcwsBzgkyDJm1hwYBpyzz9GJiKSQl+ev44mPV/LzEw7jrCMTX3wtqHj28Q8DCoH3oqbfa2abzOxDMzuluoXNbHS4eym3sFDD8opI/bZ0QzG3vrCAnEPbcMuZhyc7nL2KZ+K/DHjS3T1i2i1AV+BgYDLwipl1q2phd5/s7jnunpOdnR3HMEVE6qZ01x7GTMujWeNQ8bVGDer3fTNxic7MOgEnA09GTnf3T9292N13ufsTwIfAWfGIQUQkEdydW2cuZFlhCQ8PH0DHVlnJDqlG8fqzdCnwkbsvq6GdA/XrPicRkVp48uOVvDJ/Hb/8YU+O65bc4mtBBb2ds6GZZQENgAZmlmVme7swfCkwJWodrc1sSOWyZjYSOAl4cx9jFxFJqrxVW7n7tUWcengHxpxcZa91vRT0jH8csAO4FRgVfj7OzDqH78f/fz9LM7NjCd3583zUOhoRuiW0ENgEXAcMdXfdyy8iKWdLaRljp+XRsVUWf76ofhRfCyro7ZwTgAnVzP7Wjaru/jHQvIp1FAJH1S48EZH6p7zC+cUzc9lUWsbMMcexf7NGyQ6pVur3pWcRkXro4f8s5f2lm7jjvN70OXj/ZIdTa0r8IiK1MHvJRh5+ZynDBh7CxUd1SnY4+0SJX0QkoDVbt3PDs/Po2bEldw/tU++KrwWlxC8iEsCuPeVcOy2P8nJn0qhB9bL4WlAagUtEJIC7X/2C+WuKeHTUIA5r/537V1KKzvhFRGrw0ry1PPXJSkaf1JUz+hyQ7HDqTIlfRGQvCjYUc+sLCxncpS03D+mZ7HBiQolfRKQaJbv2cPXUOTRv0pBHRgyo98XXgkqPvRARiTF355YXFrBiUykPD++fEsXXglLiFxGpwpSPVvDagq+5ecjhKVN8LSglfhGRKHNWbuX3r33B6Ud05OqTuyY7nJhT4hcRibC5ZBdjn87joNZN+dNF/VL2R1p7o/v4RUTCQsXX5rG5svha09QqvhaUzvhFRMIeeruAD77cxF3np2bxtaCU+EVEgHcXb+Thd77kwkGH8JOjOte8QAoLOgLXWDPLNbNdZjZlL+0uN7Py8OAslY9TIuZ3MbN3zWy7mS02s9PrvgsiInWzekuo+NoRB7birqF9kh1O3AXt419HaPSsIUDTGtp+7O4nVDNvOvAxoQHWzwJmmFn38CAtIiIJt2tPOdc+nUdFhTNp5ECyGqVu8bWgAp3xu/tMd38R2LyvGzKzHsBA4HZ33+HuLwALgWH7uk4Rkbq685VFLFhTxB8v6keXFC++FlQ8+vgHmNkmMysws/ERg7L3Bpa5e3FE2/nh6d9hZqPD3Uu5hYX6QiAisTczbw3TPl3FVSd1ZUjv1C++FlSsE/97QB+gA6Ez+eHAzeF5LYCiqPZFQMuqVuTuk909x91zsrOzYxymiGS6xeu/4bezFjL4sPQpvhZUTBO/uy9z9+XuXuHuC4E7gQvCs0uAVlGLtAKKERFJoOKduxkzNY+WWY3464gBNEyT4mtBxXtvHaj82Vs+0NXMIs/w+4Wni4gkhLvz6xkLWLVlO38dPoAOLdOn+FpQQW/nbGhmWUADoIGZZUX03Ue2O9PMOoafHw6MB14CcPcCYB5we3j5HwF9gRdisysiIjV77IPlvP75en49pCdHd22X7HCSIugZ/zhgB3ArMCr8fJyZdQ7fq1/5a4fTgAVmVgr8C5gJ3BOxnouBHGArcB9wgW7lFJFEyV2xhfteX8wPe3Vk9EnpV3wtKHP3ZMdQo5ycHM/NzU12GCKSwjaV7OLsh98nq1EDXh57QtrW4YlkZnPcPSd6uoq0iUjaK69wrp8+l23bdzPrmsEZkfT3RolfRNLeg/9ewkdfbeaBC/rS66DomwszT2bdwyQiGeedxRuY+O5X/CSnExfldEp2OPWCEr+IpK3VW7ZzwzPz6HVgK+44v8oiARlJiV9E0tLO3eVcMy0PBx4dNSgjiq8FpT5+EUlLd7yyiIVri/ifS3Po3K5ZssOpV3TGLyJp54U5a5j+2SquPrkbP+jVMdnh1DtK/CKSVhav/4bbXlzIMV3b8qsf9kh2OPWSEr+IpI3K4mutshrxyPCBGVd8LSj18YtIWnB3bn4+VHxt+pXHkN2ySbJDqrf051BE0sJjHyznjfz13HrG4Qw+rG2yw6nXlPhFJOV9tnwL976+mDN6H8DPTzws2eHUe0r8IpLSNhbvZOzTeXRq05QHLuyLmdW8UIZTH7+IpKw95RVcP30u3+zczRM/G0yrrMwuvhZU0IFYxoYHPt9lZlP20u4yM5tjZt+Y2RozeyBywBYzm21mO8M1/EvMbEkM9kFEMtSf/l3AJ8u2cPfQIzniQBVfCypoV8864G7g8RraNQNuANoDRxMamOVXUW3GunuL8COzRjgWkZj596INTJr9FcMHd+KCQYckO5yUEqirx91nAphZDlDtEXb3SREv15rZNOD7dYpQRCTKqs3buem5efQ5uBW3n6via7UV74u7J/HdwdTvNbNNZvahmZ1S3YJmNjrcvZRbWKjRGUUkZOfucsZMm4MBk0aq+Nq+iFviN7OfEhpf948Rk28BugIHA5OBV8ysW1XLu/tkd89x95zs7Ox4hSkiKWbCy/nkr/uGv1zcn05tVXxtX8Ql8ZvZUEKDqZ/p7psqp7v7p+5e7O673P0J4EPgrHjEICLp57nc1Tzz39Vc+/1unHq4iq/tq5jfzmlmZwD/A5zt7gtraO6AbroVkRrlryti/Iufc1y3dtz0A90XUhdBb+dsaGZZQAOggZllRd6mGdHuVGAaMMzdP4ua19rMhlQua2YjCV0DeLPuuyEi6axox26umZZH62aNeHj4ABrsp/PFugja1TMO2AHcCowKPx9nZp3D9+N3DrcbD+wP/CviXv3Xw/MaEboltBDYBFwHDHV33csvItUKFV+bz9qtO5g4YiDtW6j4Wl0FvZ1zAjChmtktItpVe+umuxcCR9UiNhERJr+3jLcWbWDc2UeQ00XF12JBtXpEpN76dNlmHnhzCWcdeQBXnKDia7GixC8i9dLGb3YydvpcDm3bjPuHqfhaLKlIm4jUO3vKK7hu+lxKdu5h6hVH01LF12JKiV9E6p0/vLWET5dv4c8/6UfPA1omO5y0o64eEalX3spfz9//dxkjj+7Mjwao+Fo8KPGLSL2xcnMpv3x+Pn0P2Z/fndsr2eGkLSV+EakXdu4uZ8zUPPYzY+KIgTRpqOJr8aI+fhGpF3730ucs+vob/nn5USq+Fmc64xeRpHv2v6t4LncN1536Pb5/eIdkh5P2lPhFJKk+X1vE+JfyOeF77bnh9B7JDicjKPGLSNJUFl9r26wxD13cX8XXEkR9/CKSFBUVzi+fm8+6bTt49qpjaKfiawmjM34RSYq/v7eMt7/YwG/POoJBh6r4WiIp8YtIwn381Wb+8OZizu57ID89vkuyw8k4SvwiklAbv9nJddPn0qV9cxVfS5KgI3CNNbNcM9tlZlNqaHujma03syIze9zMmkTM62Jm75rZdjNbbGan1zF+EUkhu8srGPv0XEp37eHRUYNo0USXGZMh6Bn/OkKjZz2+t0ZmNoTQKF2nAV2ArsAdEU2mA3OBdsBtwAwzy65dyCKSqv7w5hI+W7GF+4YdSY+OKr6WLIESv7vPdPcXgc01NL0MeMzd8919K3AXcDmAmfUABgK3u/sOd38BWAgM29fgRSR1vPH5eia/t4xLjjmU8/sfnOxwMlqs+/h7A/MjXs8HOppZu/C8Ze5eHDW/d1UrMrPR4e6l3MLCwhiHKSKJtGJTKTc/P59+nVoz7pwjkh1Oxot14m8BFEW8rnzesop5lfOr/L7n7pPdPcfdc7Kz1Rskkqp2lJVz9dQ5NGhgTBwxQMXX6oFYX1kpAVpFvK58XlzFvMr5xYhIWnJ3xr/0OUs2FPPPy4/ikDYqvlYfxPqMPx/oF/G6H7DB3TeH53U1s5ZR8/NjHIOI1BPP/nc1M+as4bpTu3NKTxVfqy+C3s7Z0MyygAZAAzPLMrOqvi08CVxhZr3MrA0wDpgC4O4FwDzg9vDyPwL6Ai/EYD9EpJ75fG0Rv3s5nxO7t+cXp3VPdjgSIegZ/zhgB6FbNUeFn48zs85mVmJmnQHc/Q3gAeBdYGX4cXvEei4GcoCtwH3ABe6uK7ciaaZo+26unjqHds0b89DFA1R8rZ4xd092DDXKycnx3NzcZIchIgFUVDhXPpnLe0sLee6qYxnQuU2yQ8pYZjbH3XOip6tkg4jE1KPvfcV/Fm9k3Nm9lPTrKSV+EYmZj77axB/fXMK5/Q7i0mMPTXY4Ug0lfhGJifVFO7l++lwOa9+c+358pIqv1WOqkCQidRYqvpbH9rJypl95DM1VfK1e0/+OiNTZ/a8vJnflVh4ePoDuKr5W76mrR0Tq5PWFX/OPD5Zz2bGHcl6/g5IdjgSgxC8i+2xZYQk3z1hA/06tue3sXskORwJS4heRfbKjrJxrpuXRqIExceRAGjdUOkkV6uMXkVpzd257cSFLNhTzxE8Hc3DrpskOSWpBf6JFpNamf7aamXlr+cVp3Tmph8qmpxolfhGplQVrtjHh5XxO6pHN9aeq+FoqUuIXkcC2bS9jzNQ82rdozF9+0p/9VHwtJamPX0QCqahwbnx2HhuLd/L81cfRtnnjZIck+0hn/CISyN9mf8m7SwoZf04v+ndqnexwpA6U+EWkRh9+uYkH/13Aef0O4pJjVHwt1QUdgautmc0ys1IzW2lmI6pp93p4YJbKR5mZLYyYv8LMdkTMfytWOyIi8VFZfK1rdgvuVfG1tBC0j38iUAZ0BPoDr5nZfHf/1ni57n5m5Gszmw28E7Wuc9397X0LV0QSaXd5Bdc+ncfO3eU8OmqQiq+liRrP+M2sOTAMGO/uJe7+AfAycEkNy3UBTgSeqnuYIpIM9/5rMXNWbuX+C/ryvQ4tkh2OxEiQrp4eQHl4sPRK84HeNSx3KfC+uy+Pmj7NzArN7C0z61fdwmY22sxyzSy3sFDD8ook2msLvubxD5dz+XFdOKeviq+lkyCJvwVQFDWtCKip9uqlwJSoaSOBLsChhAZkf9PMqrw9wN0nu3uOu+dkZ+uXgSKJ9FVhCb+eMZ+BnVvz27OOSHY4EmNBEn8J0CpqWiuguLoFzOwE4ABgRuR0d//Q3Xe4+3Z3vxfYRqg7SETqie1lexgzdQ5NGjVQ8bU0FeR/tABoaGaRv83uB+RX0x7gMmCmu5fUsG4HdIuASD3h7tw263OWbizhoYv7c+D+Kr6WjmpM/O5eCswE7jSz5mZ2PHA+1Vy0NbOmwIVEdfOYWWczO97MGptZlpndDLQHPqzjPohIjEz7dBWz5q7lxtN7cGJ3dbGmq6Df4a4BmgIbgenAGHfPN7MTzSz6rH4ooWsA70ZNbwlMArYCa4EzgDPdffO+Bi8isTN/9TbufGURp/TMZuz3v5fscCSOzN2THUONcnJyPDc3N9lhiKStraVlnPPIBwC8et0JtFEdnrRgZnPcPSd6un6NIZLhKiqcG5+bR2HxLp6/+lgl/Qygy/UiGe6v737J7CWFjD+3F/1UfC0jKPGLZLD3lxby57cLGNr/IEYd3TnZ4UiCKPGLZKh123bwi2fm0b1DC+5R8bWMosQvkoHK9lQw9uk8du0uZ9KoQTRrrMt9mUT/2yIZ6J5/fUHeqm1MHDGQbtkqvpZpdMYvkmFemb+OKR+t4GfHH8bZfQ9MdjiSBEr8Ihnky40l3PrCAgYd2obfnHV4ssORJFHiF8kQpbtCxdeyGjVg4oiBNGqgj3+mUh+/SAZwd347ayFfFZbw1BVHc8D+WckOSZJIf/JFMsDUT1by0rx13PSDHhz/vfbJDkeSTIlfJM3NXbWVO19dxKmHd+CaU1R8TZT4RdLaltIyrp2WR8dWWTx4UT/2208/0hL18YukrfIK54Zn57GppIwZY46ldTMVX5OQQGf8ZtbWzGaZWamZrTSzEdW0m2Bmu82sJOLRNWJ+fzObY2bbw//2j9WOiMi3PfLOUt4rKOT283rR9xAVX5P/L2hXz0SgDOhIaMD0SWbWu5q2z7p7i4jHMgAzawy8BEwF2gBPAC+Fp4tIDP1vQSEP/WcpPx5wMCMGq/iafFuNid/MmgPDgPHuXuLuHwAvA5fUclunEOpa+ou773L3hwmNt3tqLdcjInuxdtsObnhmLj06tOT3P1LxNfmuIGf8PYBydy+ImDYfqO6M/1wz22Jm+WY2JmJ6b2CBf3vIrwXVrcfMRptZrpnlFhYWBghTRHbtKeeaaXnsLncmjRpI08YNkh2S1ENBEn8LQmPoRioiNIZutOeAI4Bs4Ergd2Y2fB/Wg7tPdvccd8/JztagzyJB/P61L5i/eht/vLAvXVV8TaoRJPGXAK2iprUCiqMbuvsid1/n7uXu/hHwEHBBbdcjIrX30ry1PPnxSn5+wmGc0UfF16R6QRJ/AdDQzLpHTOsH5AdY1gn14xNu39e+3eHYN+B6RGQvlm4o5jczF3JUlzbccqaKr8ne1Zj43b0UmAncaWbNzex44Hzgqei2Zna+mbWxkMHA9YTu5AGYDZQD15tZEzMbG57+Tgz2QyRjlezaw9VT59CscQMeGa7ia1KzoO+Qa4CmwEZgOjDG3fPN7EQzK4lodzHwJaHumyeB+939CQB3LwOGApcC24CfAUPD00VkH7g7t76wgOWbSnl4+AAVX5NAAv1y1923EEra0dPfJ3TRtvL18Og2Ue3nAoNqGaOIVOOJj1bw6oKvuXlIT47rpuJrEoy+E4qkqDkrt3L3a19w2uEdGHNyt2SHIylEiV8kBW0u2cXYp/M4sHUWD17UX8XXpFZUpE0kxVQWX9tcWsbMMcexf7NGyQ5JUozO+EVSzEP/Wcr7Szdxx3m96XPw/skOR1KQEr9ICpm9ZCOPvLOUYQMP4eKjOiU7HElRSvwiKWLN1u3c8Ow8enZsyd1D+6j4muwzJX6RFFBZfK283Jk0apCKr0md6OKuSAq469VFLFhTxKOjBnFY++bJDkdSnM74Req5F+euZeonqxh9UlfO6HNAssORNKDEL1KPFYSLrw3u0pabh/RMdjiSJpT4ReqpyuJrzZs05K8jBqj4msSM3kki9ZC7c8uMBazYVMojwwfQoZWKr0nsKPGL1EP//HAFry38mpuHHM6x3dolOxxJM0r8IvVM7oot3POvLzj9iI5cdVLXZIcjaUiJX6Qe2VSyi2ufzuOg1k3500X9VHxN4iJQ4jeztmY2y8xKzWylmY2opt3NZva5mRWb2XIzuzlq/goz22FmJeHHW7HYCZF0UF7h/OKZuWzdvpu/jRzI/k1VfE3iI+gPuCYCZUBHoD/wmpnNd/fo8XKN0AhbC4BuwFtmttrdn4loc667v13HuEXSzp//XcCHX27m/mFHqviaxFWNZ/xm1hwYBox39xJ3/wB4Gbgkuq27P+Duee6+x92XEBpv9/hYBy2Sbt5ZvIG/vvslFw46hJ8c1TnZ4UiaC9LV0wMod/eCiGnzgd57W8hCFaROBKK/FUwzs0Ize8vM+u1l+dFmlmtmuYWFhQHCFElNq7ds58Zn53PEga24a2ifZIcjGSBI4m8BFEVNKwJa1rDchPD6/xkxbSTQBTgUeBd408xaV7Wwu0929xx3z8nOzg4Qpkjq2bk7VHytwp1HRw0kq5GKr0n8BUn8JUCrqGmtgOLqFjCzsYT6+s92912V0939Q3ff4e7b3f1eYBuhbwUiGenOVxexcG0Rf7qwH4e2U/E1SYwgib8AaGhm3SOm9eO7XTgAmNnPgFuB09x9TQ3rdkIXhEUyzsy8NTz96SquPrkbP+yt4muSODUmfncvBWYCd5pZczM7HjgfeCq6rZmNBO4BfuDuy6LmdTaz482ssZllhW/1bA98GIsdEUkli9d/w29nLeSYrm351Q97JDscyTBBf8B1DdAU2AhMB8a4e76ZnWhmJRHt7gbaAf+NuFf/0fC8lsAkYCuwFjgDONPdN8diR0RSRfHO3YyZmkerrEY8PHwADVV8TRIs0H387r4FGFrF9PcJXfytfH3YXtaRD/TdhxhF0oa78+sZC1i1ZTvTrzyGDi1VfE0ST6caIgn02AfLef3z9dxyRk8GH9Y22eFIhlLiF0mQ/67Ywr2vL2ZI745ceaKKr0nyKPGLJEBh8S6unZZHpzZN+cOF/Qj9vlEkOTTYukic7Smv4PrpcynasZspPx1MqywVX5PkUuIXibMH/13Ax8s284cL+tLroOjfQooknrp6ROLo7UUb+Nvsr7j4qE5cmNMp2eGIAEr8InGzavN2bnpuHr0PasWE8/Za01AkoZT4ReJg5+5yrnl6DgCTRg5S8TWpV9THLxIHd7ySz+drv+Efl+bQuV2zZIcj8i064xeJsRlz1jD9s9Vcc0o3Tu/VMdnhiHyHEr9IDH3x9TfcNmshx3Ztx00/UPE1qZ+U+EVi5JuduxkzdQ77N1XxNanf1McvEgPuzq+fX8DqrTt4ZvQxZLdskuyQRKqlUxKRGPjH+8t5I389vznzcI7qouJrUr8p8YvU0afLNnPfG4s5s88BXHFCtZXJReqNQInfzNqa2SwzKzWzlWY2opp2Zmb3m9nm8OMBi6hGZWb9zWyOmW0P/9s/VjsikgyfLNvMtU/PpXPbZjxwQV8VX5OUEPSMfyJQBnQERgKTzKyqnyKOJjRgSz9Cg66cA1wFYGaNgZeAqUAb4AngpfB0kZRSvHM3t81ayMWTP6FZ4wb8/ZJBtFTxNUkRNV7cNbPmwDCgj7uXAB+Y2cvAJYQGVY90GfCnykHWzexPwJXAo8Ap4e39xd0deNjMfgWcCrwRm935tp8/8V9Wbt4ej1VLhttUsouiHbv5+QmH8csf9qRpY/0yV1JHkLt6egDl7l4QMW0+cHIVbXuH50W26x0xb0E46VdaEJ7+ncRvZqMJfYOgc+fOAcL8rs5tm9O4oS5jSOz1PqgVlx3XhQGd2yQ7FJFaC5L4WwBFUdOKCA2eXlPbIqBFuJ+/NuvB3ScDkwFycnK8qjY1+d25vfZlMRGRtBbkdLgEiC4i3gooDtC2FVASPsuvzXpERCROgiT+AqChmXWPmNYPyK+ibX54XlXt8oG+9u3bHvpWsx4REYmTGhO/u5cCM4E7zay5mR0PnA88VUXzJ4GbzOxgMzsI+CUwJTxvNlAOXG9mTcxsbHj6O9VBRU4AAAUOSURBVHXbBRERqY2gVz6vAZoCG4HpwBh3zzezE82sJKLd34FXgIXA58Br4Wm4exmhWz0vBbYBPwOGhqeLiEiC2LdvsqmfcnJyPDc3N9lhiIikFDOb4+450dN1r6OISIZR4hcRyTBK/CIiGSYl+vjNrBBYuY+Ltwc2xTCcWFFctaO4akdx1U66xnWou2dHT0yJxF8XZpZb1cWNZFNctaO4akdx1U6mxaWuHhGRDKPELyKSYTIh8U9OdgDVUFy1o7hqR3HVTkbFlfZ9/CIi8m2ZcMYvIiIRlPhFRDKMEr+ISIZJq8QfLvf8mJmtNLNiM5trZmfWsMyNZrbezIrM7HEzaxKn2MaaWa6Z7TKzKTW0vdzMys2sJOJxSrLjCrdP1PFqa2azzKw0/P85Yi9tJ5jZ7qjj1TWRcVjI/Wa2Ofx4IGrsiZirRWxxOz5VbKs27/OEvJdqE1ciP3vh7dUqZ8XqmKVV4ic0lORqQuMB7w+MB54zsy5VNTazIYQGjD8N6AJ0Be6IU2zrgLuBxwO2/9jdW0Q8Zic7rgQfr4lAGdARGAlMMrPee2n/bNTxWpbgOEYTKjvej9AAQ+cAV8UohrrGBvE7PtECvZ8S/F4KHFdYoj57UIucFdNj5u5p/SA0oPuwauY9DdwT8fo0YH2c47kbmFJDm8uBDxJ8nILElZDjBTQnlNB6REx7CrivmvYTgKnJjAP4CBgd8foK4JM4/n/VJra4HJ+6vJ+S8dkLGFfCP3tVxFBlzorlMUu3M/5vMbOOQA+qH96xNzA/4vV8oKOZtYt3bAEMMLNNZlZgZuPNrGGyAyJxx6sHUO7uBVHb2tsZ/7lmtsXM8s1sTBLiqOrY7C3eRMYG8Tk+daHPXhVqyFkxO2Zpm/jNrBEwDXjC3RdX06wFUBTxuvJ5y3jGFsB7QB+gAzAMGA7cnNSIQhJ1vKK3U7mt6rbzHHAEkA1cCfzOzIYnOI6qjk2LOPbz1ya2eB2futBnL0qAnBWzY5ZSid/MZpuZV/P4IKLdfoS+9pYBY6tdIZQArSJeVz4vjkdcQbn7Mndf7u4V7r4QuBO4oLbriXVcJO54RW+ncltVbsfdF7n7Oncvd/ePgIfYh+NVhdrEUdWxKfHwd/I4CBxbHI9PXcTkvRRrsfrs1VbAnBWzY5ZSid/dT3F3q+ZxAoTurgAeI3TBa5i7797LKvMJXYyr1A/Y4O6bYx1XHTlQ6zPHOMSVqONVADQ0s+5R26quy+47m2AfjlcVahNHVccmaLzxji1arI5PXcTkvZQAcT9WtchZMTtmKZX4A5pE6Gvtue6+o4a2TwJXmFkvM2sDjAOmxCMoM2toZllAA6CBmWVV13doZmeG+/ows8MJXel/KdlxkaDj5e6lwEzgTjNrbmbHA+cTOiOqah/ON7M2FjIYuJ4YHK9axvEkcJOZHWxmBwG/JE7vpdrGFq/jU5VavJ8S9tmrTVyJ/OxFCJqzYnfMknn1OtYP4FBCf6F3EvpaVPkYGZ7fOfy6c8QyNwEbgG+AfwJN4hTbhHBskY8JVcUF/DEcUymwjNDXzUbJjivBx6st8GL4GKwCRkTMO5FQN0rl6+nA5nCsi4Hr4x1HFTEY8ACwJfx4gHAtrDi+34PGFrfjE/T9lMz3Um3iSuRnL7y9anNWPI+ZirSJiGSYdOzqERGRvVDiFxHJMEr8IiIZRolfRCTDKPGLiGQYJX4RkQyjxC8ikmGU+EVEMsz/AXPhmYaLqaN6AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(F.relu)"]},{"cell_type":"markdown","metadata":{"id":"BmlMyRBlz7de"},"source":["> J: There is an enormous amount of jargon in deep learning, including terms like _rectified linear unit_. The vast vast majority of this jargon is no more complicated than can be implemented in a short line of code, as we saw in this example. The reality is that for academics to get their papers published they need to make them sound as impressive and sophisticated as possible. One of the ways that they do that is to introduce jargon. Unfortunately, this has the result that the field ends up becoming far more intimidating and difficult to get into than it should be. You do have to learn the jargon, because otherwise papers and tutorials are not going to mean much to you. But that doesn't mean you have to find the jargon intimidating. Just remember, when you come across a word or phrase that you haven't seen before, it will almost certainly turn out to be referring to a very simple concept."]},{"cell_type":"markdown","metadata":{"id":"ZDLmovoiz7df"},"source":["The basic idea is that by using more linear layers, we can have our model do more computation, and therefore model more complex functions. But there's no point just putting one linear layer directly after another one, because when we multiply things together and then add them up multiple times, that could be replaced by multiplying different things together and adding them up just once! That is to say, a series of any number of linear layers in a row can be replaced with a single linear layer with a different set of parameters.\n","\n","But if we put a nonlinear function between them, such as `max`, then this is no longer true. Now each linear layer is actually somewhat decoupled from the other ones, and can do its own useful work. The `max` function is particularly interesting, because it operates as a simple `if` statement."]},{"cell_type":"markdown","metadata":{"id":"2QGKwtn3z7df"},"source":["> S: Mathematically, we say the composition of two linear functions is another linear function. So, we can stack as many linear classifiers as we want on top of each other, and without nonlinear functions between them, it will just be the same as one linear classifier."]},{"cell_type":"markdown","metadata":{"id":"v7ASMnEwz7df"},"source":["Amazingly enough, it can be mathematically proven that this little function can solve any computable problem to an arbitrarily high level of accuracy, if you can find the right parameters for `w1` and `w2` and if you make these matrices big enough. For any arbitrarily wiggly function, we can approximate it as a bunch of lines joined together; to make it closer to the wiggly function, we just have to use shorter lines. This is known as the *universal approximation theorem*. The three lines of code that we have here are known as *layers*. The first and third are known as *linear layers*, and the second line of code is known variously as a *nonlinearity*, or *activation function*.\n","\n","Just like in the previous section, we can replace this code with something a bit simpler, by taking advantage of PyTorch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"41CpbgPRz7dg"},"outputs":[],"source":["simple_net = nn.Sequential(\n"," nn.Linear(28*28,30),\n"," nn.ReLU(),\n"," nn.Linear(30,1)\n",")"]},{"cell_type":"markdown","metadata":{"id":"aDZCBsPFz7dg"},"source":["`nn.Sequential` creates a module that will call each of the listed layers or functions in turn.\n","\n","`nn.ReLU` is a PyTorch module that does exactly the same thing as the `F.relu` function. Most functions that can appear in a model also have identical forms that are modules. Generally, it's just a case of replacing `F` with `nn` and changing the capitalization. When using `nn.Sequential`, PyTorch requires us to use the module version. Since modules are classes, we have to instantiate them, which is why you see `nn.ReLU()` in this example.\n","\n","Because `nn.Sequential` is a module, we can get its parameters, which will return a list of all the parameters of all the modules it contains. Let's try it out! As this is a deeper model, we'll use a lower learning rate and a few more epochs."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eX96s330z7dg"},"outputs":[],"source":["learn = Learner(dls, simple_net, opt_func=SGD,\n"," loss_func=mnist_loss, metrics=batch_accuracy)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ebxx1r6Nz7dh","outputId":"03fe25d1-f481-4d78-fcd7-01af3935a081"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossbatch_accuracytime
00.3058280.3996630.50834100:00
10.1429600.2257020.80765500:00
20.0795160.1135190.91952900:00
30.0523910.0767920.94308100:00
40.0397960.0600830.95633000:00
50.0333680.0507130.96369000:00
60.0296800.0447970.96565300:00
70.0272900.0407290.96810600:00
80.0255680.0377710.96859700:00
90.0242330.0355080.97055900:00
100.0231490.0337140.97203100:00
110.0222420.0322430.97252200:00
120.0214680.0310060.97350300:00
130.0207960.0299440.97448500:00
140.0202070.0290160.97546600:00
150.0196830.0281960.97644800:00
160.0192150.0274630.97644800:00
170.0187910.0268060.97693800:00
180.0184050.0262120.97792000:00
190.0180510.0256710.97792000:00
200.0177250.0251790.97792000:00
210.0174220.0247280.97841000:00
220.0171410.0243130.97890100:00
230.0168780.0239320.97939200:00
240.0166320.0235800.97988200:00
250.0164000.0232540.97988200:00
260.0161810.0229520.97988200:00
270.0159750.0226720.98086400:00
280.0157790.0224110.98086400:00
290.0155930.0221680.98184500:00
300.0154170.0219410.98184500:00
310.0152490.0217280.98184500:00
320.0150880.0215290.98184500:00
330.0149350.0213410.98184500:00
340.0147880.0211640.98184500:00
350.0146470.0209980.98233600:00
360.0145120.0208400.98282600:00
370.0143820.0206910.98282600:00
380.0142570.0205500.98282600:00
390.0141360.0204150.98282600:00
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","learn.fit(40, 0.1)"]},{"cell_type":"markdown","metadata":{"id":"6-0UoU42z7dh"},"source":["We're not showing the 40 lines of output here to save room; the training process is recorded in `learn.recorder`, with the table of output stored in the `values` attribute, so we can plot the accuracy over training as:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"smE-A_wSz7dh","outputId":"a537292a-50e2-4587-a105-ac98002c1024"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAAD+CAYAAADBCEVaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAZfElEQVR4nO3df5Dc9X3f8efrfkv3AxA6JLABBZBsLCei9TlxQ3CSxjGxmwwE7GkMxnRSBxfGE6ZOm3gypqW4M9RuO5k2Q7CZIcbGrmwngQSHGjvT4BjsukbEFa5sfOfElnAMdycJ7m5Pd7e3d+/+8d09rVZ7d1+dVtrd7/f1mLnR7Xe/t/fmo9OLz32+n31/FRGYmVm2dDS7ADMzazyHu5lZBjnczcwyyOFuZpZBDnczswxyuJuZZZDD3cwsg1KFu6T3S9onaUHSQ+uc+68lvSRpStIfS+ptSKVmZpaa0ryJSdINwDJwLbApIv7FKuddC3wK+KfAj4FHgW9ExAfXev2tW7fGjh07TqlwM7O8e/bZZw9HxHC957rSvEBEPAIgaQR49Rqn3go8GBEHyud/GPgMsGa479ixg3379qUpxczMyiQdXO25Rq+57wb2Vz3eD2yTdH6Dv4+Zma2h0eE+AExVPa58Plh7oqTbyuv4+yYnJxtchplZvjU63AvAUNXjyucztSdGxAMRMRIRI8PDdZeMzMxsgxod7geAPVWP9wDjEXGkwd/HzMzWkHYrZJekPqAT6JTUJ6nexdhPAf9S0usknQd8CHioYdWamVkqaWfuHwLmSHa9vLv8+YckXSKpIOkSgIh4Avgo8CRwsPzx7xtetZmZrSnVPvczbWRkJLwV0szs1Eh6NiJG6j2Xap+7mVk9EcFCaZnCQonl5eZPFOsJYHFpmWJpmcWloFhapri0RLEUFFeOJ38WS8ssLC2zWFpeea60tHxG6xvZsYU372r8phKHu1mTlZaSIFksBQtLSyshUx1EC+XHp/Ob9tJyUFgoMbuwxOxCiZmFErPlj5mFEsXS6iEWAQul5Osqr1Eof77UoqHeSNKZe+1/9fOXO9zN1lIJybni0gnhUwmkyuel0wij5QgWS0FxaWklfBfKYVysmfEVq2aDi0vLJ8wSF6qONzMb+3s66e/tYqC3i56uDrRGivV2dTDQ28XwYC8Dvd0M9HYy0Ne18vWdHWcwAU9Td0cHPV0ddHcmfyafi97qY1XP9XZ20t0lejo76Opsz/6KDndruNLSclWYLlFYWKRQni0W5k8O3NrHx4pLye/Sq1iOWAnPZoVkZ4fo7lQ5EDrprQqMSlB0d3Yw2Nd1QoBUB0nvSWFTCZaTgyj5PlozfNfTITFQDuL+3k76e7roaOFAttPjcM+ppeWoWmNcOnEZoLTMfGlpJXRnF0rMzJd/nS9WPq8K5/kSs8Xj5y2s8et9tcpMcKCvi/6eJHQuGOxjU08nHWuEmOCE0KsNyb6uDgb6kpllZVaZBFry0XOaM7Gero6WnqWagcM9MyKCV44t8tL0PC9NzzMxPc+R2SIvzxY5OrvIy8eKHJ0trvw5M1/a0PfZ1F0JzM6VUL7wnL4Tfj3v70kCe7AcpgN9XXWDtrtNf901awcO9xZTWCjxwtFjHDp6jJdniyet31Zf1T8yW2RieoGXpucZn56vO2Pu6+7g/P5ezuvv5rzNPVx6/mbO29zDuZu76evuTJYP6iwF9HZ10N/bxeAJod3ZtuuPZnnjcD+LqmfX49PzvDg1z6Gjx3ih8vHyHEdni2u+RmeHyuu54rz+HrYN9XHVxeey/Zw+tg31sW2ol+1DyedbB3rZ1NN5lv7rzKyVONzPgIjgbw+9wpcPvMSPp+YZn5pfdXbd1SFedd4mLtmymWsvOodLtmzm4i3J4/MHeleu4FfWlb3Wa2ZpONwb6OXZIo986x/43DOHGB0v0NPZwYXnJrPoPRefy/ahXrYN9bH9nD62V/3ppQ4zazSH+2laXg6+8fdH2PvMC3zp/71EcWmZqy4+l/90w0/yq3suYqDXQ2xmZ5+TZ4MWSkt84ms/ZO83D3HwyDHO2dTNTT9zCf/8jRdz5YVD67+AmdkZ5HDfgNHxGe787P/luy9O86bLtvCBX97Ftbu309fti5dm1hoc7qcgIvjk13/IvV98noHeLh68dYRfunJbs8syMzuJwz2liZl5/u2fPMffjE7yi68Z5qPv2MPwYG+zyzIzq8vhnsJffWec3/uz55hdKPHh63bz7jddelo9PszMzjSH+xqOFUt8+C+/y95vHuJ1Fw7x3991FVdcMNjssszM1uVwX8XM/CLv/Nj/5nvjM7zvzZfxgbfuorfLF0zNrD043OtYXg5+5/P7GZso8Me3vpFffO0FzS7JzOyU+K2RdfzRV77Pl78zzu+//UoHu5m1JYd7jSe/N8F//atRrr/qIn7z6h3NLsfMbEMc7lV+eHiWO/d+iyu3D3HvDT/lHTFm1rYc7mWzCyXe9/CzdHSIj9/yBrfKNbO25nAneefp7/7Zc4xNzPCH7/pHXLxlc7NLMjM7LQ534IGv/j2PP/civ/srr+WancPNLsfM7LTlPtyfHjvMR554nn/2kxfyvjdf1uxyzMwaItfh/sLRY7x/79+y84JBPvoOX0A1s+zIdbj/x8e/w9Jy8PFb3kC/b6phZhmS63B/7kdTvOXKbezY2t/sUszMGiq34T49v8iLU/NcccFAs0sxM2u43Ib72HgBgF3b3OXRzLInx+E+A8CubZ65m1n2pAp3SVskPSppVtJBSTetct65kj4paaL8cXdDq22g0fECfd0dXHye37BkZtmTdovIfUAR2AZcBTwuaX9EHKg57w+AzcAO4ALgf0k6GBGfaFC9DTM2McMVFwzQ0eHtj2aWPevO3CX1AzcCd0VEISKeBh4Dbqlz+q8BH42IYxHxQ+BB4DcbWG/DjI0X2OW7KplZRqVZltkFLEXEaNWx/cDuVc5Xzeev32BtZ8zU3CIvTc+z0xdTzSyj0oT7ADBVc2wKqJeMTwAflDQo6QqSWXvdRW1Jt0naJ2nf5OTkqdR82r4/kVxM3eltkGaWUWnCvQAM1RwbAmbqnPvbwBwwBvwFsBf4Ub0XjYgHImIkIkaGh89us65Rb4M0s4xLE+6jQJeknVXH9gC1F1OJiKMRcXNEbI+I3eXX/2ZjSm2c0fEZNnV38urzNjW7FDOzM2Ld3TIRMSvpEeAeSe8l2S1zHfCztedKuhx4pfzxVuA24OcbWnEDjI0XvFPGzDIt7ZuY7gA2ARMkSy23R8QBSddIKlSd9wbg2yRLNvcCN9fZLtl0YxMz7PSbl8wsw1Ltc4+Io8D1dY4/RXLBtfL488DnG1bdGTA1t8j49ILX280s03LXfsBtB8wsD3IX7pWdMjv9BiYzy7AchnuyU+ZV53qnjJllV+7CvXIx1TtlzCzL8hfu4wUvyZhZ5uUq3KeOLTIxs+CLqWaWebkK99GJyk4Zz9zNLNvyFe7lbZB+A5OZZV2uwn1svEB/j3fKmFn25SrcR8eTuy9J3iljZtmWs3Av+AYdZpYLuQn3l2eLHC54p4yZ5UNuwn1sotx2wDN3M8uB3IT76Li3QZpZfuQm3MfGZxjo7eKic/qaXYqZ2RmXm3AfLd99yTtlzCwPchPuYxMzvphqZrmRi3A/OlvkcKHohmFmlhu5CPcxtx0ws5zJRbiPlrdBeqeMmeVFLsJ9bHyGwd4uLvROGTPLiVyE++j4DFds804ZM8uPXIT72HiBXb6YamY5kvlwP1JY4Mhs0RdTzSxXMh/u7iljZnmU/XBf6SnjmbuZ5Ufmw310vMBgbxfbh7xTxszyIwfhPsNO75Qxs5zJfLiPTRT85iUzy51Mh/vhwgJHZ4u+mGpmuZPpcB8br7Qd8MVUM8uXbIf7hO++ZGb5lCrcJW2R9KikWUkHJd20ynm9kj4maVzSUUlfkPSqxpac3qEjx+jr7uCCwd5mlWBm1hRpZ+73AUVgG3AzcL+k3XXOuxP4J8BPARcBrwB/2IA6N2R6fpFzN/V4p4yZ5c664S6pH7gRuCsiChHxNPAYcEud038C+FJEjEfEPPBZoN7/BM6K6bkSQ5u6mvXtzcyaJs3MfRewFBGjVcf2Uz+0HwSulnSRpM0ks/wv1ntRSbdJ2idp3+Tk5KnWncr0/CJDfd1n5LXNzFpZmnAfAKZqjk0B9a5SjgKHgH8ApoErgXvqvWhEPBARIxExMjw8nL7iUzA9v8jQJoe7meVPmnAvAEM1x4aAmTrn3g/0AecD/cAjrDJzPxum50oM9XlZxszyJ024jwJdknZWHdsDHKhz7h7goYg4GhELJBdTf1rS1tMv9dR55m5mebVuuEfELMkM/B5J/ZKuBq4DHq5z+jPAeySdI6kbuAP4cUQcbmTRaUQE03NeczezfEq7FfIOYBMwAewFbo+IA5KukVSoOu/fAPPAGDAJvB349QbWm9pscYnlwLtlzCyXUiVfRBwFrq9z/CmSC66Vx0dIdsg03fTcIoBn7maWS5ltPzA9Xw53r7mbWQ5lN9znSoBn7maWTxkO98rM3WvuZpY/2Q33ea+5m1l+ZTfc57zmbmb5ld1wn0/W3Af9DlUzy6HshvvcIpt7OunuzOx/opnZqjKbfO4IaWZ5lt1wdy93M8ux7Ia7Z+5mlmPZDnfvlDGznMpuuLuXu5nlWHbD3TN3M8uxTIa7e7mbWd5lMtzdy93M8i6T4e5e7maWd9kMd/dyN7Ocy2a4u5e7meVcRsPdvdzNLN+yGe7u5W5mOZfNcHcvdzPLuWyGu3u5m1nOZTPc3cvdzHIuk+nnjpBmlneZDPepuUXvlDGzXMtkuCcdIT1zN7P8yma4uyOkmeVcdsPdO2XMLMeyGe5zJc/czSzXMhfuy8vBjHfLmFnOZS7cZ4sl93I3s9xLFe6Stkh6VNKspIOSblrlvC9KKlR9FCV9u7Elr63y7lTP3M0sz9JOb+8DisA24CrgcUn7I+JA9UkR8bbqx5K+Avx1A+pMzX1lzMxSzNwl9QM3AndFRCEingYeA25Z5+t2ANcAD59+men5LkxmZumWZXYBSxExWnVsP7B7na97D/BURPxgo8VtxMqyjNfczSzH0oT7ADBVc2wKGFzn694DPLTak5Juk7RP0r7JyckUZaRTmbmf42UZM8uxNOFeAIZqjg0BM6t9gaSfA7YDf7raORHxQESMRMTI8PBwmlpT8Y06zMzShfso0CVpZ9WxPcCBVc4HuBV4JCIKp1PcRlTun+pe7maWZ+uGe0TMAo8A90jql3Q1cB2rXCiVtAl4J2ssyZxJ0/OL9Pd00uVe7maWY2kT8A5gEzAB7AVuj4gDkq6RVDs7v55kTf7JxpWZ3vScm4aZmaVau4iIoyShXXv8KZILrtXH9pL8D6ApfKMOM7MMth9ImoZ5vd3M8i174e6Zu5lZRsPda+5mlnPZC/e5km/UYWa5l6lwX+nl7pm7meVcpsJ9pZe719zNLOcyFe5uGmZmlshWuLvdr5kZkNVw95q7meVctsLdt9gzMwOyFu4rM3evuZtZvmUr3N3L3cwMyFq4u5e7mRmQtXB3L3czMyBr4e5e7mZmQNbC3R0hzcyArIW7e7mbmQFZC3fP3M3MgCyGu9fczcwyFu7u5W5mBmQo3N3L3czsuMyEu3u5m5kdl5lwdy93M7PjshPu7uVuZrYie+HuNXczswyFu3u5m5mtyEy4T7mXu5nZisyEu9fczcyOy064l2/U4V7uZmZZCve5knu5m5mVZSYJ3VfGzOy47IT7nDtCmplVpAp3SVskPSppVtJBSTetce4/lvRVSQVJ45LubFy5q0tm7l5vNzOD9DP3+4AisA24Gbhf0u7akyRtBZ4APg6cD1wBfLkxpa4t6QjpmbuZGaQId0n9wI3AXRFRiIingceAW+qc/gHgSxHxmYhYiIiZiPhuY0uuz2vuZmbHpZm57wKWImK06th+4KSZO/Am4Kikr0uakPQFSZc0otD1JGvuXpYxM4N04T4ATNUcmwIG65z7auBW4E7gEuAHwN56LyrpNkn7JO2bnJxMX3Edy8vBzELJM3czs7I04V4AhmqODQEzdc6dAx6NiGciYh74D8DPSjqn9sSIeCAiRiJiZHh4+FTrPrHAYolwL3czsxVpwn0U6JK0s+rYHuBAnXOfA6LqceVzbay8dKbdV8bM7ATrhntEzAKPAPdI6pd0NXAd8HCd0z8B/LqkqyR1A3cBT0fEK40sutb0nDtCmplVS7sV8g5gEzBBsoZ+e0QckHSNpELlpIj4a+D3gcfL514BrLonvlEqfWW85m5mlki1jhERR4Hr6xx/iuSCa/Wx+4H7G1JdSu4IaWZ2oky0H/D9U83MTpSNcPfM3czsBNkId/dyNzM7QTbCfa7EQG+Xe7mbmZVlIg2n5916wMysWjbCfc5Nw8zMqmUj3Od9ow4zs2rZCPe5krdBmplVyUa4e+ZuZnaCbIS719zNzE7Q9uG+0svdu2XMzFa0fbiv9HL3zN3MbEXbh7tbD5iZnSwD4e6mYWZmtdo/3Oc9czczq9X+4T7nG3WYmdVq/3Cf9y32zMxqtX+4++bYZmYnaf9wL6+5D/Q63M3MKto/3N3L3czsJG2fiO7lbmZ2svYPd/eVMTM7SfuHuztCmpmdpP3D3b3czcxO0v7h7pm7mdlJ2j/cveZuZnaStg5393I3M6uvrcN9ZsG93M3M6mnrcHcvdzOz+to73OfdV8bMrJ72Dvc5d4Q0M6unvcN93r3czczqSRXukrZIelTSrKSDkm5a5by7JS1KKlR9XNbYko87v7+Ht71+O8ODvWfqW5iZtaW0i9X3AUVgG3AV8Lik/RFxoM65n4uIdzeqwLWM7NjCyI4tZ+NbmZm1lXVn7pL6gRuBuyKiEBFPA48Bt5zp4szMbGPSLMvsApYiYrTq2H5g9yrn/5qko5IOSLp9tReVdJukfZL2TU5OnkLJZma2njThPgBM1RybAgbrnPt54EpgGPgt4N9Jele9F42IByJiJCJGhoeHT6FkMzNbT5pwLwBDNceGgJnaEyPiOxHx44hYioivA/8NeMfpl2lmZqciTbiPAl2SdlYd2wPUu5haKwBtpDAzM9u4dcM9ImaBR4B7JPVLuhq4Dni49lxJ10k6T4mfBn4b+ItGF21mZmtL+yamO4BNwASwF7g9Ig5IukZSoeq83wC+T7Jk8yngIxHxyUYWbGZm60u1zz0ijgLX1zn+FMkF18rjuhdPzczs7FJENLsGJE0CBzf45VuBww0sp5Fc28a0cm3Q2vW5to1p19oujYi62w1bItxPh6R9ETHS7DrqcW0b08q1QWvX59o2Jou1tXXjMDMzq8/hbmaWQVkI9weaXcAaXNvGtHJt0Nr1ubaNyVxtbb/mbmZmJ8vCzN3MzGo43M3MMqhtwz3t3aGaRdJXJM1X3ZHqe02q4/3l1soLkh6qee6XJD0v6ZikJyVd2gq1SdohKWru6HXXWa6tV9KD5Z+tGUnfkvS2quebNnZr1dYiY/dpSS9KmpY0Kum9Vc81+2eubm2tMG5VNe4sZ8enq47dVP77npX055LWv0tRRLTlB0kbhM+RvEP250jaEO9udl1V9X0FeG8L1HEDybuL7wceqjq+tTxm7wT6gP8MfKNFattB0nSuq4nj1g/cXa6lA/hVkrYaO5o9duvU1gpjtxvoLX/+WuAl4A3NHrd1amv6uFXV+GXgKeDTVTXPAG8u593/AD673uukvc1eS6m6O9TrI6IAPC2pcneoDza1uBYTEY8ASBoBXl311A3AgYj4k/LzdwOHJb02Ip5vcm1NF0nDvLurDv2lpB+QBMH5NHHs1qnt2TP9/dcTJ95+M8ofl5PU1+yfudVqO3I2vv96JP0G8ArwdeCK8uGbgS9ExFfL59wFfFfSYESc1Hq9ol2XZU717lDNcq+kw5K+JukXml1Mjd0kYwasBMbf0VpjeFDSjyR9QtLWZhYiaRvJz90BWmzsamqraOrYSfojSceA54EXgf9Ji4zbKrVVNG3cJA0B9wC/U/NU7bj9Hck9rXet9XrtGu6ncneoZvk94DLgVST7VL8g6fLmlnSCVh7Dw8AbgUtJZnuDwGeaVYyk7vL3/2R5htkyY1entpYYu4i4o/y9ryFpGb5Ai4zbKrW1wrh9GHgwIl6oOb6hcWvXcE99d6hmiYj/ExEzEbEQSdvjrwFvb3ZdVVp2DCO5Efu+iChFxDjwfuCt5ZnNWSWpg+TeBcVyHdAiY1evtlYau0juyPY0yZLb7bTIuNWrrdnjJukq4C3AH9R5ekPj1pZr7lTdHSoixsrH0t4dqlla7a5UB4BbKw/K1zEupzXHsPJOu7M6fpIEPAhsA94eEYvlp5o+dmvUVqspY1eji+Pj02o/c5Xaap3tcfsFkou6h5K/WgaATkmvA54gybekIOkyoJckB1fX7CvDp3FF+bMkO2b6gatpod0ywLnAtSQ7ArpILojMAq9pQi1d5TruJZnlVWoaLo/ZjeVjH+Hs71xYrbafAV5D8pvl+SS7op5swth9DPgGMFBzvBXGbrXamjp2wAUkN+0ZADrL/w5mSe7e1tRxW6e2Zo/bZmB71cd/Af60PGa7gWmSZaR+4NOk2C1z1n4Yz8BgbAH+vPyXcwi4qdk1VdU2DDxD8mvTK+V/hL/cpFru5viugMrH3eXn3kJyUWmOZOvmjlaoDXgX8IPy3+2LJHf12n6Wa7u0XM88ya/FlY+bmz12a9XW7LEr/+z/Tfnnfhr4NvBbVc83c9xWra3Z41an1rspb4UsP76pnHOzJLcu3bLea7i3jJlZBrXrBVUzM1uDw93MLIMc7mZmGeRwNzPLIIe7mVkGOdzNzDLI4W5mlkEOdzOzDHK4m5ll0P8HcyDWzinP0RMAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plt.plot(L(learn.recorder.values).itemgot(2));"]},{"cell_type":"markdown","metadata":{"id":"DUcPQ_fDz7di"},"source":["And we can view the final accuracy:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PlHlWD8Oz7di","outputId":"059b6793-f802-491a-f5c2-1b73d803cf8a"},"outputs":[{"data":{"text/plain":["0.982826292514801"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn.recorder.values[-1][2]"]},{"cell_type":"markdown","metadata":{"id":"2c-hoaWPz7dj"},"source":["At this point we have something that is rather magical:\n","\n","1. A function that can solve any problem to any level of accuracy (the neural network) given the correct set of parameters\n","1. A way to find the best set of parameters for any function (stochastic gradient descent)\n","\n","This is why deep learning can do things which seem rather magical, such fantastic things. Believing that this combination of simple techniques can really solve any problem is one of the biggest steps that we find many students have to take. It seems too good to be true—surely things should be more difficult and complicated than this? Our recommendation: try it out! We just tried it on the MNIST dataset and you have seen the results. And since we are doing everything from scratch ourselves (except for calculating the gradients) you know that there is no special magic hiding behind the scenes."]},{"cell_type":"markdown","metadata":{"id":"MnToZl_lz7dj"},"source":["### Going Deeper"]},{"cell_type":"markdown","metadata":{"id":"sR-chglTz7dj"},"source":["There is no need to stop at just two linear layers. We can add as many as we want, as long as we add a nonlinearity between each pair of linear layers. As you will learn, however, the deeper the model gets, the harder it is to optimize the parameters in practice. Later in this book you will learn about some simple but brilliantly effective techniques for training deeper models.\n","\n","We already know that a single nonlinearity with two linear layers is enough to approximate any function. So why would we use deeper models? The reason is performance. With a deeper model (that is, one with more layers) we do not need to use as many parameters; it turns out that we can use smaller matrices with more layers, and get better results than we would get with larger matrices, and few layers.\n","\n","That means that we can train the model more quickly, and it will take up less memory. In the 1990s researchers were so focused on the universal approximation theorem that very few were experimenting with more than one nonlinearity. This theoretical but not practical foundation held back the field for years. Some researchers, however, did experiment with deep models, and eventually were able to show that these models could perform much better in practice. Eventually, theoretical results were developed which showed why this happens. Today, it is extremely unusual to find anybody using a neural network with just one nonlinearity.\n","\n","Here is what happens when we train an 18-layer model using the same approach we saw in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"a6i-o_HUz7dj","outputId":"5d997487-3892-4fe8-fefc-cea160a70003"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.0820890.0095780.99705600:11
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["dls = ImageDataLoaders.from_folder(path)\n","learn = vision_learner(dls, resnet18, pretrained=False,\n"," loss_func=F.cross_entropy, metrics=accuracy)\n","learn.fit_one_cycle(1, 0.1)"]},{"cell_type":"markdown","metadata":{"id":"PEybh1_Qz7dk"},"source":["Nearly 100% accuracy! That's a big difference compared to our simple neural net. But as you'll learn in the remainder of this book, there are just a few little tricks you need to use to get such great results from scratch yourself. You already know the key foundational pieces. (Of course, even once you know all the tricks, you'll nearly always want to work with the pre-built classes provided by PyTorch and fastai, because they save you having to think about all the little details yourself.)"]},{"cell_type":"markdown","metadata":{"id":"wQ0896xoz7dk"},"source":["## Jargon Recap"]},{"cell_type":"markdown","metadata":{"id":"6sF2GehWz7dk"},"source":["Congratulations: you now know how to create and train a deep neural network from scratch! We've gone through quite a few steps to get to this point, but you might be surprised at how simple it really is.\n","\n","Now that we are at this point, it is a good opportunity to define, and review, some jargon and key concepts.\n","\n","A neural network contains a lot of numbers, but they are only of two types: numbers that are calculated, and the parameters that these numbers are calculated from. This gives us the two most important pieces of jargon to learn:\n","\n","- Activations:: Numbers that are calculated (both by linear and nonlinear layers)\n","- Parameters:: Numbers that are randomly initialized, and optimized (that is, the numbers that define the model)\n","\n","We will often talk in this book about activations and parameters. Remember that they have very specific meanings. They are numbers. They are not abstract concepts, but they are actual specific numbers that are in your model. Part of becoming a good deep learning practitioner is getting used to the idea of actually looking at your activations and parameters, and plotting them and testing whether they are behaving correctly.\n","\n","Our activations and parameters are all contained in *tensors*. These are simply regularly shaped arrays—for example, a matrix. Matrices have rows and columns; we call these the *axes* or *dimensions*. The number of dimensions of a tensor is its *rank*. There are some special tensors:\n","\n","- Rank zero: scalar\n","- Rank one: vector\n","- Rank two: matrix\n","\n","A neural network contains a number of layers. Each layer is either *linear* or *nonlinear*. We generally alternate between these two kinds of layers in a neural network. Sometimes people refer to both a linear layer and its subsequent nonlinearity together as a single layer. Yes, this is confusing. Sometimes a nonlinearity is referred to as an *activation function*.\n","\n","<> summarizes the key concepts related to SGD.\n","\n","```asciidoc\n","[[dljargon1]]\n",".Deep learning vocabulary\n","[options=\"header\"]\n","|=====\n","| Term | Meaning\n","|ReLU | Function that returns 0 for negative numbers and doesn't change positive numbers.\n","|Mini-batch | A small group of inputs and labels gathered together in two arrays. A gradient descent step is updated on this batch (rather than a whole epoch).\n","|Forward pass | Applying the model to some input and computing the predictions.\n","|Loss | A value that represents how well (or badly) our model is doing.\n","|Gradient | The derivative of the loss with respect to some parameter of the model.\n","|Backward pass | Computing the gradients of the loss with respect to all model parameters.\n","|Gradient descent | Taking a step in the directions opposite to the gradients to make the model parameters a little bit better.\n","|Learning rate | The size of the step we take when applying SGD to update the parameters of the model.\n","|=====\n","```"]},{"cell_type":"markdown","metadata":{"id":"11x8qHojz7dl"},"source":["> note: _Choose Your Own Adventure_ Reminder: Did you choose to skip over chapters 2 & 3, in your excitement to peek under the hood? Well, here's your reminder to head back to chapter 2 now, because you'll be needing to know that stuff very soon!"]},{"cell_type":"markdown","metadata":{"id":"J-YrgfMPz7dl"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"ixfvkmsbz7dl"},"source":["1. How is a grayscale image represented on a computer? How about a color image?\n","1. How are the files and folders in the `MNIST_SAMPLE` dataset structured? Why?\n","1. Explain how the \"pixel similarity\" approach to classifying digits works.\n","1. What is a list comprehension? Create one now that selects odd numbers from a list and doubles them.\n","1. What is a \"rank-3 tensor\"?\n","1. What is the difference between tensor rank and shape? How do you get the rank from the shape?\n","1. What are RMSE and L1 norm?\n","1. How can you apply a calculation on thousands of numbers at once, many thousands of times faster than a Python loop?\n","1. Create a 3×3 tensor or array containing the numbers from 1 to 9. Double it. Select the bottom-right four numbers.\n","1. What is broadcasting?\n","1. Are metrics generally calculated using the training set, or the validation set? Why?\n","1. What is SGD?\n","1. Why does SGD use mini-batches?\n","1. What are the seven steps in SGD for machine learning?\n","1. How do we initialize the weights in a model?\n","1. What is \"loss\"?\n","1. Why can't we always use a high learning rate?\n","1. What is a \"gradient\"?\n","1. Do you need to know how to calculate gradients yourself?\n","1. Why can't we use accuracy as a loss function?\n","1. Draw the sigmoid function. What is special about its shape?\n","1. What is the difference between a loss function and a metric?\n","1. What is the function to calculate new weights using a learning rate?\n","1. What does the `DataLoader` class do?\n","1. Write pseudocode showing the basic steps taken in each epoch for SGD.\n","1. Create a function that, if passed two arguments `[1,2,3,4]` and `'abcd'`, returns `[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]`. What is special about that output data structure?\n","1. What does `view` do in PyTorch?\n","1. What are the \"bias\" parameters in a neural network? Why do we need them?\n","1. What does the `@` operator do in Python?\n","1. What does the `backward` method do?\n","1. Why do we have to zero the gradients?\n","1. What information do we have to pass to `Learner`?\n","1. Show Python or pseudocode for the basic steps of a training loop.\n","1. What is \"ReLU\"? Draw a plot of it for values from `-2` to `+2`.\n","1. What is an \"activation function\"?\n","1. What's the difference between `F.relu` and `nn.ReLU`?\n","1. The universal approximation theorem shows that any function can be approximated as closely as needed using just one nonlinearity. So why do we normally use more?"]},{"cell_type":"markdown","metadata":{"id":"udDFiDi6z7dm"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"Q9xRq13hz7dm"},"source":["1. Create your own implementation of `Learner` from scratch, based on the training loop shown in this chapter.\n","1. Complete all the steps in this chapter using the full MNIST datasets (that is, for all digits, not just 3s and 7s). This is a significant project and will take you quite a bit of time to complete! You'll need to do some of your own research to figure out how to overcome some obstacles you'll meet on the way."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qANoaWKiz7dm"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/04_mnist_basics.ipynb","timestamp":1712447355705}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/05_pet_breeds.ipynb b/notebooks/oleg/Education/fastai/05_pet_breeds.ipynb new file mode 100644 index 0000000..fcc103f --- /dev/null +++ b/notebooks/oleg/Education/fastai/05_pet_breeds.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"jlvA7k5F1glZ"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BrQfZwbS1gle"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"nxkgBVj71glf"},"source":["[[chapter_pet_breeds]]"]},{"cell_type":"markdown","metadata":{"id":"vx56iMET1glg"},"source":["# Image Classification"]},{"cell_type":"markdown","metadata":{"id":"yUvkgl0r1gli"},"source":["Now that you understand what deep learning is, what it's for, and how to create and deploy a model, it's time for us to go deeper! In an ideal world deep learning practitioners wouldn't have to know every detail of how things work under the hood… But as yet, we don't live in an ideal world. The truth is, to make your model really work, and work reliably, there are a lot of details you have to get right, and a lot of details that you have to check. This process requires being able to look inside your neural network as it trains, and as it makes predictions, find possible problems, and know how to fix them.\n","\n","So, from here on in the book we are going to do a deep dive into the mechanics of deep learning. What is the architecture of a computer vision model, an NLP model, a tabular model, and so on? How do you create an architecture that matches the needs of your particular domain? How do you get the best possible results from the training process? How do you make things faster? What do you have to change as your datasets change?\n","\n","We will start by repeating the same basic applications that we looked at in the first chapter, but we are going to do two things:\n","\n","- Make them better.\n","- Apply them to a wider variety of types of data.\n","\n","In order to do these two things, we will have to learn all of the pieces of the deep learning puzzle. This includes different types of layers, regularization methods, optimizers, how to put layers together into architectures, labeling techniques, and much more. We are not just going to dump all of these things on you, though; we will introduce them progressively as needed, to solve actual problems related to the projects we are working on."]},{"cell_type":"markdown","metadata":{"id":"5rGCvsa71glj"},"source":["## From Dogs and Cats to Pet Breeds"]},{"cell_type":"markdown","metadata":{"id":"KNTGaHE31glk"},"source":["In our very first model we learned how to classify dogs versus cats. Just a few years ago this was considered a very challenging task—but today, it's far too easy! We will not be able to show you the nuances of training models with this problem, because we get a nearly perfect result without worrying about any of the details. But it turns out that the same dataset also allows us to work on a much more challenging problem: figuring out what breed of pet is shown in each image.\n","\n","In <> we presented the applications as already-solved problems. But this is not how things work in real life. We start with some dataset that we know nothing about. We then have to figure out how it is put together, how to extract the data we need from it, and what that data looks like. For the rest of this book we will be showing you how to solve these problems in practice, including all of the intermediate steps necessary to understand the data that you are working with and test your modeling as you go.\n","\n","We already downloaded the Pet dataset, and we can get a path to this dataset using the same code as in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KzM55OVo1gll"},"outputs":[],"source":["from fastai.vision.all import *\n","path = untar_data(URLs.PETS)"]},{"cell_type":"markdown","metadata":{"id":"1RPDp7TN1glm"},"source":["Now if we are going to understand how to extract the breed of each pet from each image we're going to need to understand how this data is laid out. Such details of data layout are a vital piece of the deep learning puzzle. Data is usually provided in one of these two ways:\n","\n","- Individual files representing items of data, such as text documents or images, possibly organized into folders or with filenames representing information about those items\n","- A table of data, such as in CSV format, where each row is an item which may include filenames providing a connection between the data in the table and data in other formats, such as text documents and images\n","\n","There are exceptions to these rules—particularly in domains such as genomics, where there can be binary database formats or even network streams—but overall the vast majority of the datasets you'll work with will use some combination of these two formats.\n","\n","To see what is in our dataset we can use the `ls` method:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rUhezzcY1glm"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PtYc_uhk1gln","outputId":"d6595262-4d5b-464f-dfb3-d43f12fc35aa"},"outputs":[{"data":{"text/plain":["(#3) [Path('annotations'),Path('images'),Path('models')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["path.ls()"]},{"cell_type":"markdown","metadata":{"id":"QWkreQeA1glo"},"source":["We can see that this dataset provides us with *images* and *annotations* directories. The [website](https://www.robots.ox.ac.uk/~vgg/data/pets/) for the dataset tells us that the *annotations* directory contains information about where the pets are rather than what they are. In this chapter, we will be doing classification, not localization, which is to say that we care about what the pets are, not where they are. Therefore, we will ignore the *annotations* directory for now. So, let's have a look inside the *images* directory:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GiG1unpQ1glp","outputId":"b1958c92-6c48-40d7-9b8a-db78ee1895cc"},"outputs":[{"data":{"text/plain":["(#7394) [Path('images/great_pyrenees_173.jpg'),Path('images/wheaten_terrier_46.jpg'),Path('images/Ragdoll_262.jpg'),Path('images/german_shorthaired_3.jpg'),Path('images/american_bulldog_196.jpg'),Path('images/boxer_188.jpg'),Path('images/staffordshire_bull_terrier_173.jpg'),Path('images/basset_hound_71.jpg'),Path('images/staffordshire_bull_terrier_37.jpg'),Path('images/yorkshire_terrier_18.jpg')...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(path/\"images\").ls()"]},{"cell_type":"markdown","metadata":{"id":"2n2s0ZOB1glp"},"source":["Most functions and methods in fastai that return a collection use a class called `L`. `L` can be thought of as an enhanced version of the ordinary Python `list` type, with added conveniences for common operations. For instance, when we display an object of this class in a notebook it appears in the format shown there. The first thing that is shown is the number of items in the collection, prefixed with a `#`. You'll also see in the preceding output that the list is suffixed with an ellipsis. This means that only the first few items are displayed—which is a good thing, because we would not want more than 7,000 filenames on our screen!\n","\n","By examining these filenames, we can see how they appear to be structured. Each filename contains the pet breed, and then an underscore (`_`), a number, and finally the file extension. We need to create a piece of code that extracts the breed from a single `Path`. Jupyter notebooks make this easy, because we can gradually build up something that works, and then use it for the entire dataset. We do have to be careful to not make too many assumptions at this point. For instance, if you look carefully you may notice that some of the pet breeds contain multiple words, so we cannot simply break at the first `_` character that we find. To allow us to test our code, let's pick out one of these filenames:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AXXGU_FM1glp"},"outputs":[],"source":["fname = (path/\"images\").ls()[0]"]},{"cell_type":"markdown","metadata":{"id":"kQswJql61glq"},"source":["The most powerful and flexible way to extract information from strings like this is to use a *regular expression*, also known as a *regex*. A regular expression is a special string, written in the regular expression language, which specifies a general rule for deciding if another string passes a test (i.e., \"matches\" the regular expression), and also possibly for plucking a particular part or parts out of that other string.\n","\n","In this case, we need a regular expression that extracts the pet breed from the filename.\n","\n","We do not have the space to give you a complete regular expression tutorial here, but there are many excellent ones online and we know that many of you will already be familiar with this wonderful tool. If you're not, that is totally fine—this is a great opportunity for you to rectify that! We find that regular expressions are one of the most useful tools in our programming toolkit, and many of our students tell us that this is one of the things they are most excited to learn about. So head over to Google and search for \"regular expressions tutorial\" now, and then come back here after you've had a good look around. The [book's website](https://book.fast.ai/) also provides a list of our favorites.\n","\n","> a: Not only are regular expressions dead handy, but they also have interesting roots. They are \"regular\" because they were originally examples of a \"regular\" language, the lowest rung within the Chomsky hierarchy, a grammar classification developed by linguist Noam Chomsky, who also wrote _Syntactic Structures_, the pioneering work searching for the formal grammar underlying human language. This is one of the charms of computing: it may be that the hammer you reach for every day in fact came from a spaceship.\n","\n","When you are writing a regular expression, the best way to start is just to try it against one example at first. Let's use the `findall` method to try a regular expression against the filename of the `fname` object:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GEE6H7MC1glq","outputId":"5a4984f4-26d8-4442-cb13-c08f1cc107f7"},"outputs":[{"data":{"text/plain":["['great_pyrenees']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["re.findall(r'(.+)_\\d+.jpg$', fname.name)"]},{"cell_type":"markdown","metadata":{"id":"VuPAsHR21glq"},"source":["This regular expression plucks out all the characters leading up to the last underscore character, as long as the subsequence characters are numerical digits and then the JPEG file extension.\n","\n","Now that we confirmed the regular expression works for the example, let's use it to label the whole dataset. fastai comes with many classes to help with labeling. For labeling with regular expressions, we can use the `RegexLabeller` class. In this example we use the data block API we saw in <> (in fact, we nearly always use the data block API—it's so much more flexible than the simple factory methods we saw in <>):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"n6K-fIFl1glr"},"outputs":[],"source":["pets = DataBlock(blocks = (ImageBlock, CategoryBlock),\n"," get_items=get_image_files,\n"," splitter=RandomSplitter(seed=42),\n"," get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'),\n"," item_tfms=Resize(460),\n"," batch_tfms=aug_transforms(size=224, min_scale=0.75))\n","dls = pets.dataloaders(path/\"images\")"]},{"cell_type":"markdown","metadata":{"id":"GfgR167u1glr"},"source":["One important piece of this `DataBlock` call that we haven't seen before is in these two lines:\n","\n","```python\n","item_tfms=Resize(460),\n","batch_tfms=aug_transforms(size=224, min_scale=0.75)\n","```\n","\n","These lines implement a fastai data augmentation strategy which we call *presizing*. Presizing is a particular way to do image augmentation that is designed to minimize data destruction while maintaining good performance."]},{"cell_type":"markdown","metadata":{"id":"CueP8k_C1glr"},"source":["## Presizing"]},{"cell_type":"markdown","metadata":{"id":"ImoGGCXU1gls"},"source":["We need our images to have the same dimensions, so that they can collate into tensors to be passed to the GPU. We also want to minimize the number of distinct augmentation computations we perform. The performance requirement suggests that we should, where possible, compose our augmentation transforms into fewer transforms (to reduce the number of computations and the number of lossy operations) and transform the images into uniform sizes (for more efficient processing on the GPU).\n","\n","The challenge is that, if performed after resizing down to the augmented size, various common data augmentation transforms might introduce spurious empty zones, degrade data, or both. For instance, rotating an image by 45 degrees fills corner regions of the new bounds with emptiness, which will not teach the model anything. Many rotation and zooming operations will require interpolating to create pixels. These interpolated pixels are derived from the original image data but are still of lower quality.\n","\n","To work around these challenges, presizing adopts two strategies that are shown in <>:\n","\n","1. Resize images to relatively \"large\" dimensions—that is, dimensions significantly larger than the target training dimensions.\n","1. Compose all of the common augmentation operations (including a resize to the final target size) into one, and perform the combined operation on the GPU only once at the end of processing, rather than performing the operations individually and interpolating multiple times.\n","\n","The first step, the resize, creates images large enough that they have spare margin to allow further augmentation transforms on their inner regions without creating empty zones. This transformation works by resizing to a square, using a large crop size. On the training set, the crop area is chosen randomly, and the size of the crop is selected to cover the entire width or height of the image, whichever is smaller.\n","\n","In the second step, the GPU is used for all data augmentation, and all of the potentially destructive operations are done together, with a single interpolation at the end."]},{"cell_type":"markdown","metadata":{"id":"VNN5-qJD1gls"},"source":["\"Presizing"]},{"cell_type":"markdown","metadata":{"id":"PzPFBZNI1glt"},"source":["This picture shows the two steps:\n","\n","1. *Crop full width or height*: This is in `item_tfms`, so it's applied to each individual image before it is copied to the GPU. It's used to ensure all images are the same size. On the training set, the crop area is chosen randomly. On the validation set, the center square of the image is always chosen.\n","2. *Random crop and augment*: This is in `batch_tfms`, so it's applied to a batch all at once on the GPU, which means it's fast. On the validation set, only the resize to the final size needed for the model is done here. On the training set, the random crop and any other augmentations are done first.\n","\n","To implement this process in fastai you use `Resize` as an item transform with a large size, and `RandomResizedCrop` as a batch transform with a smaller size. `RandomResizedCrop` will be added for you if you include the `min_scale` parameter in your `aug_transforms` function, as was done in the `DataBlock` call in the previous section. Alternatively, you can use `pad` or `squish` instead of `crop` (the default) for the initial `Resize`.\n","\n","<> shows the difference between an image that has been zoomed, interpolated, rotated, and then interpolated again (which is the approach used by all other deep learning libraries), shown here on the right, and an image that has been zoomed and rotated as one operation and then interpolated just once on the left (the fastai approach), shown here on the left."]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"1lUU0M_d1glt","outputId":"3ce6476e-0a08-49ac-cf53-b789f03b3808"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAV0AAACmCAYAAAB5qlzZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy8ya5lWZqt9f2zWtUuTmlmXrtHkXEzCVK6onHRbd4ubZ4AISFegBZdXoL7AjwK4gohkcrIjIiMygszO3aqXa1iljTmdk+QrjsQkUQ0sF86DbNt+9hae8815vjHGP+UUgrv6329r/f1vv48pf7SF/C+3tf7el//f6r3oPu+3tf7el9/xnoPuu/rfb2v9/VnrPeg+77e1/t6X3/Geg+67+t9va/39Wes96D7vt7X+3pff8YyP/Tiv//v/5ty99U3+HAgzUc++eAFf/tf/DuWreaXrx/4x+ffsz/uCGNiu7riD3/437ldfc5sRn50+9dIIyzzxN3uazQW27Rcr14g2mHLiWbo+f3db2nMht989Q98dvmK//R2wwUDV2lLHhPv3j6Tmp79sqAJ9J1hSUKYRqIvFIkcd0dChkkMq/WKn37xGS8+esW632BdQ7NaY1t4/t0/8PU//BO7h2d2+xP70RODJ6vAxfaWZQkcn98x9B2madjvI0o8/+6/+q85PZxYDdDbhsP+hD+MKHVCGc39H77GNIX15UvC8UAIAdVdMO/uaVoI2bIcTijbcJpOhCQEPF+/fuSrN1/xzes9b98dmXNE64I1BYylGS5hjKyawuA0XbfGL4F3uxM5BZYQuLaBv/rsig8++xDXtXx0+4r1dkOzusZPM5//63/NdDjRqECzGlAIKmf6qxf0lxeIFsQ05OAxTQNi0KZHiUYpAwjeH9HaUigY0yDKICIUJeQCIRZKAdGG+3cH/Lzwy//1f+Hd7/+JcbcjTCNl2bHpPcZprHaoRqFtw3/53/2P8mda6/+X+p/+h/+2DI2GUggxkTPsDjMFQWuFUgVtDUIm+kCMBdd1rK6u0EpDCoR54vHdI8uycDiN+BhYfOA0LpRS0MYgCMfDniVElHU4aygpI6JYry2rzcD2YkuzWpNz4fC8J8aALoLVlmFzgXUNRmlKyZQ4U1KCAkorjDVc3F6htEabTMmZvARKSoi2FKXIaEoqNEahtEY1DtU4wuJ5eP2WMJ9oB4WfE8fHA7lkdNeAasnBU7Ln/t1b7h93vHs48NXdkTkmnn3C58wSIiUXjBasVjhroAhaKYxSKBE0Ckoh5UzOGasEKGgpaK3onKExihdXHX3fMgwDn3/+MReXG4bVCopATiilWF1sabqOfnAYLSgpCAXjLNpYSswoVddkCgURhe06bNvhhg0igmlblLWYZo1oi4giBU/JCRGFiIKSKSkiZFAG3QyIMnB+LpRSoDSIoqApRYgxE2Pk8PTMpz/++X90bf8g6Bqdudp0JHoe9wNTzqScmJPn7e6JxjQcDnu69iUihZhAWY0SQxFodcNuecQoS07UB1dp5lS4WF0Q80RKcMwHGttiJdOZlsZ3JBqS8giJeNrTrwzHned5f6J1BVJheh4pOpHiQsawuX5J3w9Y29C0Da5v0W2DqMT9L3/B89ff8PoPd5zGE0efUM0a2wiH/YK3DQnHkp8Ynw5c3gi2XzGPCVkeePXJC+bdCJJpG4V1F0y7TNaZKJb5NLP9oCF7iGHEKGFKDfe/e41tFK5pcE0iTQtGwTEmkMjiPSFFIoUEkEApDQnWK8UiinFakLDQuIacFpQSchaKQEIz+8Th6YnL9hXLuDCsE6GAbRuSPxH8iOscCMRQaNoGZQ05RVSBAmQfyLqAsihjKMWQM/XhRlEK5BwppkOKAgEpBQGMVihdr+f6ZkUIHY8ff05KhvXtgfmwZ356Qx5fE1KmiEIHQfRfBG9rKdDWQs7EXOoDljOIoLSlaTTK6PrhiCITQBlyAUrBao3SBms0JVusscQYKSmzzAspw7BtQeq/U7GgUCjRiAZRCusarOsxzUCMgvce7yM5RYyxaFU3SEkeI5qcC0UyaEEbg3WGpmtoGluBUhtEUwFFa3JMeO8JSwIFyjYoZxHrKNqASghQcuH0NFJEkbWmFIWyDdr1FOcI04ll9vglklIhlUIshVwypRRKXSaUUsgU+O5rLYgCJYIqQgEQKAgpF0opiAYNdaMzClEKpQ3aWkQrSk6kGCroAiiNbhp024IUci7kHOtaVBqRuqBTKpRcyEXqPZ6vN8UAIkhU9f0moETICDkESskopSmSyWEhhwWlFco0KJspJKQAIhQMIiAiiKofQtECaFzXfO/S+0HQ7VYD49MT2+2Gq49uOR1mltPCL55mdIH94cjx8cRHf/2Kw+F3bLotbTuybT/jDw+/4nb7MXf7bxjUlsPyyOX1T/F54OHx7/j44m/IaYeIpqTAF5cfs3KR7rHBas20e8s8Bd49HpB2gAMcdzOzP5FTxrqGi9tbyJpl98Tm6pq//bf/Fts09BS6oaVME37yPB/3/N3//Ct8GLHbS+z2lubua0qOnPzA89PI0/RAjhMfv+qZDpnHN+/46//sU9rbn/Pwu2fUlDDpiNrcoG2HKgv6opCyot22PL85Me2PiGnpbi+JKTPcXjHNJx7eHRi6A2p/oqjCPCYmtbD4kcPzxGk3IUqxGgwkQy6BsETCwyPbYc2zdeznwHL/iBFFf70ieIc/KGKaebv3aBW4fmF5OuxpVkLfdLjGsXv3FtMOCIE4HbDtGtNqCpHl9IzWFm00FE08eigJhhEQTLs9M7+eQqkMVwl11SWkCKpQmYYYCpnGFZxV/OznP+Gv/ubHTHPgsDtyuH/gzW9+zXI8Qngihz2i/2jI/JNrWiLdymA0SEiQM8YaxFqsc1inEQp+XsghIaLJMTMdJ1zvsG2DsRrbNKQiKEasKBqtaCmMIZCWBYqgSqFzlq5psI0lq/pgO+soWRgPM34+kVIkpowI2MbROsN61dC0FqsVRYQlVQZ39fKSYTMg2rKcJuI8o5Wi6Tva1RZECOMBNZ6I4USOmeQ9JSVUDOjGoVJAaUvBkXJAu5Z2ewFK061XuLYhLTOH+8y8JOYlEGIiCoQCMX/LXCv4iRRUrphbhPPGDErAmnr9JQlFMiEkUsoUQKmCcZq2c7SbDcN6YL0eEBHmyaO1QhtHOww0XYt1CikLKRayCNknpBSUMShTKiBmKCKgNSJCzokUPWWqr0Mi5wbRjpwTICQfzx1c3YD94UD2C81mDbqQUoScEUn1JnVEYaHkqtOKQitBRGja9nvX3g+C7nw4opXGKPDHEVsKxzDyvHtkuOg5vjthtENJYPETvYs8+ZmVeSaEgBQIJVBCQpWMMQ1PT79n8XuSBPxcb6TBcd0pNlpRxsjz7gE/z6QQCCXR6IxSEbfaEMaMxiAKnBGUJNbDmsvLjquV0PYNeVyQNGMuttgC0hi2r1YcpkRTFE2nuZsuScpxebVm++qW3dMTh/1IjCeUaE5jZjo+c/Pxhn79EeI0cRywxdJtHcuSGX9/TyoFowuu6fB+pO8atLGYstCsWvb9itVlIezv0CLo9QqrhLjfsUwnUsqI0UgSkg/kXFCSCUVxPIKkCdW3qFbjjxBVZqBguob9GMgYZg+5RKbxhHWKaa+xbmFJCbsa0DpXiaFr0EpRkiGFmTyPlLanZIWyDpZS29e4UJSgXAcoio6I1JYKgJLJyQMgohHRQIZSUGQKiq6toGWbysiGVY9rO+LiOdz9nnn/QCzTnwidf3zN08I4zrTOVCYmtR2uD2QFCgqokjCqoBByDqisINUHWYyhbR0lRxpnUJLRBnIIaD0jurbz2AZBaLsWlCKrUltTyndAGONMzpkYQCmFURprDLaxaNegjAKtyMeAnL+biIMo5JS/I5clZ+JyAsCPI8s4E7NQxIJoSoGSChICOWa0NRjnSNljuhY7bBBRdKsO6xxeEqPVpJyJsQLl+X+qLPfbH+pmAP9MdEUUpUiVGqxCaUWOilQiJWaKCLkUcgHrLG3fMaxWdF2Hc67KA7mCpDIK21iM1eQYyCGDAaUt+Qz0uXwL/vzztSipnUrOEGP9rESRrEGUJqd4vl5FKWeWXjI5JVLMlCz/JwmhdkT151tWLyigSKo7jNS1ofX322U/CLrOZkpr0auWbdPjTxOv5z1t15BUxrGl6z276Wsu7YDZDDzvIm/uv8RieTreo03m7f2XrLdXnJ6/5O7wT9xefco0jZyWjBJNb2758eWWa3PN8+mJUb1lyQ1TLOye7inPR9aXK9aDY1g13D2MZAFkQInii7/6lHbVU05H/OlE0Rq7vkbLwrJ/4nR3x92vv8Yz46eFdr1m1Q2ILMS7Ay9utljf0olH5WsO8cjt55c8zQPT3z/z+YsZ9XKL7V8wTQdOD78nLBMPrx8IPuOprep4WOHnR/r+gCoJxPDy2vIkHf/4dYbkedU3KGCcA8+7R2IuVWfLiec5k9ORtXU0WhN0ZswQnyckJ7pVS4yG6WFPdxmwKmPJTAt883qHbhTZC/mTFwwfbTlMM+08cVxG8jzRr1YQPMoklqmFOGPzhE4ZwSN6xbzbVQ2x6zCuI6eCu6j3opSDpEk5spzuUfqsiUmGM1tUtke0gxhBoLMtzcbAtuXmdk2MmeeHG5bjnt1Xv/h/DJL/0nV4foY40/Yd22HAOk1XEpmCsYK2Dq2EtrUgkAvEGEk+UkoizB5jNK7v0cbgGkeMkRATq82WeV6Y56XqhlpBgZgzISaS0ohSLNOMIqJJ5BhYRk/Kha7v6VcDRhlSVsQlIRGgAp/WipICVhtKgqwgAiFG4ikS7x+I3uN9QoyhubxBWUuaZmJYyLMnHwJQdeGm1xTV0nSO1dZhjaFtHMoojkmwjcZHGKfI/rgQYyLnQkzlO5kABK11lZpEISJYozFGY5SiaTTWWQbbEFLm6enIPPuq0zaG69trbm4uub25whmDUYKUQJVNBesURmeEwDIHciyU1mFcouSq6abkUDFV2QhdAVRpCkIIHolVe1baoEzdhNSyIDpVrbYIJZfzxgS6H1BaUE6DKpWMFCgx1b1ZOqB8x4xFFKIdoup9f1/9IOjuHg/YpqEQsdZgh547mcio2so0HUq24Gf6Ft55z2Z1zf3hjkSkSRNr7TjqBW01++WJy9UNH138iMSOwa65fbnh5eojLnVCe+Hq5Za217z91VdMaSaXngQ872di0SiEZr0hpUQujna75eXHHyBolvGIpIyYjLgeKZbj84H7uyeyUUynxBR68qLYXjhIkWzXeJ+4+fgl9rHjcP81w0rTrLZsr29QTcdh9wyPE68uLMvsid6xuz8SkpCUw8eChIKRQl4Siox1mmIdy9svcd2aYWiZvZAElLEs40SYIrkoQoyEVPCxMoBFFWzJpAwl1NZHSkaHRM6J0xJBFkoSUklksQTRlKwIBaaQabpANg3TfkYkorVhHjP9ShGXBeWAtJA85DlR0gQW5v0JuXJoNNEn4rKge4eIRQwk7Ulhrq1za0hhJIcTpAWwuJVDslS9WBkwGXWWJESBGKEbWqRERtf96ej5R1bJsbIZH8ltRqyhaarWKdpSkAoeSlMoaAFBIFZNM4dAlspKtbU4UegUUTGRikK0IaZMFgXaYpTCTyMpZRZfSAiSEsoqtDaUKGgtuMbS91UPrNJhwVqNayyiYRoLKSTGpx1+v0dphda2tvhkRArLslQt1yd0LrgSkQykmexngvcs8wKloJ0BJQgVaVSuOj9JUTLVSEuJXMCHwuITIWdCzN+xVIogSlWA1RotirpTZVQRlIBQUCXTmIxRmbgyaA1+DlhrWK0H1puBvm/RIpSUKDGdxeIMpWq7JeezkVVZdM5QSq6ywFlfrgtNzpS7/n1KVRIrWTACpai6YcWq0SojfEd0qdqItvXzLzkAuZplqVBSROlqbOackDP7FdG1Wyqg5I9kuqIEZQzzaWIzFHTjePRP6GZFCAHTGD64+oKH579nlsKyRF5e9yiqoF9yoescQ7vGWksMARsdKezQRih55ovNJddNwcyOOPtqFKWIbaCLA5sXG8ZxJuLZvLzBISz7J5YY2N58xnY94GzGdQ3BrgnjiSWALhmrEkVnQphw/YbLYeBafP0+ciCkzPUXn+D3R9a9wuSe3d35A4+JQWva7YB5+QlhOiA6oRuL6jYYVkxf/QrdrXEIYZlIqkVLxocRyszq9oav/u6JdX+g7Row+pxOSPglMB1yBbaUz8YEFBQ+y/kaazrAueqMplhlhJAKyieiaDQJlAUlzNNEf3WNbTvytMc2G6bjjBRPf32L215SjCKGhC4zJXiUtqQlViOpJMR1ZDJZIHhPXGZa31Kk1DbNU1viGBEF8XRk2d+hlEK5DXagamcln587jRIBiQgapcA4jWkabLv605DzTyglnK+Ls2lj0FbODEgRvEeKkLMil4IxGqVBqwQpn/U9hbaGonTVu5MGCVgTSd/qwCkTJBNLIPiFnArRCylnul7RdpbGGsZQXf7gIydmtpcJ7aqDLmQkBbKvoJhz4vQ8n4mcohn6et0qIyQWv1RyEDMGIcwnilakeSLM9bVxWsgpYRuDcYaCJnmFnyZK0Oimfn8pLKTgyTlTlQJhCRmf8nm9UltsAac1TusKOKVKHeX8j6RkSAGTSpVanKJki9OWobWsVy3roalyTcrEkkkxE1U5t/q1u1BaYxuDKFVb/iJUZ1KofLfKCeUsD1HUdzJFORu/BammIUJKVQ8uJQFn2Uj0d/pSSYmcQLQFMiWdWa0WKKn+uRTQGVEGZQxSVDX0vqd+EHSfHk/07czliwuiD6w/vsY+PZHaSDoqPn15w2+/+RU3VxsexxO3Vy95+/QGjWbVbik20AJtZ9iubnh994bH49fcvrzFj5oPN1eoLJQxsTyNRD+ze3jHEiN37x7xfkEVaLxHtOXuV//EauhQzSUvf/JTXr68ZL22WGmJxyryYzuMDjx/+RVf398z+8BpnPHHifXlGjNcYvs1SjvG5x3zu3tWa0vajwxdw49//hPCnFieDtx+/gn9amC1aRHZcvfNnhxOXH3Ycf3JBe+uB7Lfk4uiUGMpfnrm9LDj9a9/zWH3v2E2A3e7E8P1mpvNC+bHe57evGY8jExReB5n5ghTqlGVRCLmCeMaDA2pRPoOTHb4OVI0oBynOTOniU2rWQ+ZdtUy5cJnr67ZXN3w/PaBYTsSSoc1jptPXmF0hpQIRfCTwDwhxmGGDUjLcppprzb4x2eMhZFCPi2YQdBuwKqM5Ez0pcamSmD/5hF/mLj4/BVmWBPCSC6gSiH7iLCh6HMMR1kQoWsanO3w1x//yyDoH1Grocc2DUpbxnlhjpntxRblHNZonKkP9DR6ck5Eqqve9JrkPcvxhBGHtpYUM1qBNoJrDK6xLONM9hOn08h+dwJjKiTIWTbWhhAz5eTxujrqyhnwEIvw/PxM37aUUvVBoyoYhFwoORFDOgOM0BVNu1IYDXFemOfMPCfGcUSbkf3uESkZlVNlfVkI2ZBSwviAaw3aaHzwxJiwxhG7hFKFeToxn47k9O3GXPAp1us444oSwShh1Ris1pRcWWNMipgFiTBLJJApyWO0oe/XDNuWbrVm1TfcXm3Z9A3OKGKBWBSLF1TJxEFQXsgJrIG2V1in62apNLpp0UpjrUYEYsooZVDWonRDTrk6fyWincF2PbrpgULwoW4IZEzTnRMQiVIScTwhFFw/ICZWZpwy+rwBh1M6R8zANB3KNmStEZWqofc99YOga7sWbWA5zegbhe4c3ay5DwtdM3C/e8viA1lbMsLN5ppv/vAaErRtg7RCXCpQiBmYlwN9P+BLYOtWXK16dFywfccxPHN8esfhuGecqrY1ZUGJ4RRg2s10a8dgWz7+m7/ixfWGdduABHKYqkMZFkzXEZKhvb7m8d1bfFgwjeX2Zy9ZDQadHWIt/UoTX7xg93VGE8kSiEtAxwmrHM12hd+/o3WZOE1IEbYvb1hODsngn3eY6WsKiTgbsBrTQJhHVA6UmBhPBTc40AHbX9MODpXXPL97XbOtSrOQiQo4O8ElQwJySYiuTCEvIKZg2sqqQggkgSSKJWQ6H2nO2ca+62icsMyFrmhc19F0DTksTM9HrM241QVRG3IqtWVSAVKozMkIKavKNqYT2SdyBG0KOXgotbWrLDaQtcNeXKNbh6hMjhHRijSOFMnodkVJHkHOfoSukTQK/cXmXwZB/4iyrmYzS874eUHZwjwHMgplDa5pySmjlCfn6tSrkml6hyCULqL0WQcs1RiTc4zMuGq0iChyEUzXI0ooaSFnsFbhrIacKTnWTK/WYApWKgtLpcpN3ge0tkjXghiyVAOqqHJOswmZQk61O8m5IMainCIejoTFk3PN7ZazaaSNpVlfoKxGlCC6RrVyqZ0VqnY5klPtdnyq9wPnyNe5hJpgUWCMom0MRiliquyyqPqeTCGcr8/mmm9tu562X7G9umToGtq2x2hzlnQEpQVUAyR0M6Abh9a1U1JSZZQaL9MYY+p3AeckBXUjse4sD1XTU4rCNg5tHWj1HUstud5RKaUaZLlq7P50QhuNaWoSIYdyjpQ5cs5kv9TkghKKdZScyKmCuKg/UtPtOofrFE536MaQhp7Xb/bMp5lPP3vJN7uETzNz0uSgeff0jmWqru2rDz9kPH3NkmE1XBK9IS6BTz77HCeODy+vuBoc5pvIMj6we/2Wx8cn7p+PmK5le3PFCsXx6RHXabYycHv9ks3VJR9f9TSdxc8TcToR40J3dYXtWuKy5+4ffss4j9y9vsMNK5p2TV7esFsWrl9saXTh8euAspbD6ypVjH4mlBYric3tlo9+9gU+N+z2icPTW4qHqw+PtLbHHz3H+yeexkjKjk4FxES6XMhzollfEui4uHZcffZTPhl6GmuwXcPbX/+WYoSHu0e0s2ixTD4QY9WHEjXPqaOgTKF1BvqOZfF89vkNPjm+ebNjHk/IAotksmv56c/+Fau+ZbPekJeR4WJNjoGb2xW2BHxaePfuxIvLDaiJmPdEP2OXEdP2FBq0nUk+IN3A6TQR4kKaM/1NIIWxZkN70M4xH08ob+mvW7Qz5PlIjhahZl/9ONJebIlh5NvAr1YW7doamFea7cX3x2r+vy57fohTSMynmTQtjOOCa1vWl1surq4wFJTVUDLj4wPGOYb+BabtyCmQzxpg1ROhxEzyE9NpYp4WZp8oWuNsTQDlJOSSkRjIJZCpLbw2lm69JeVEjIGUEiUHQs5Ms8d1lm61pmksxUdSjCzLSIoeSiZ6zxgj9izpKadpjcYcWkYfWab6O8eTJ6WMUTM/vrmlHXq0GIyp2eGwZJJPBBJoKDEynWbCEioDNOY7Jx/J6DMKGwW91az6asIhhiJCSFSJICZS8GgrbK429KsVX/zoYzabNZdXlzRNQ2MtkiNaZ3LRxKRwwwVaChdXLVpBnEaSj5yeRtqV0DuHYJBCTYCcjbBvA8HlHCAWpTCugZww1qC1VOmj1Mz4t4mVlDNSSjVMQyBlIBdC8OQ51+jgGejz4gnHI8ZqjHPkGGoWOMXvNoDvqx98NWSPeItuEn6ZaErhsrklMHM/HlnyglYZyY7b7S2/+fJXrLoeeqFVln3KrIeGKV+we35Nt1qz6VeoLGwGi0LQpXB82jOPR+Z5YloKJc+0bo+xDU47jLOgO158+AHbdYfohD/tSBli8CwxYqaEMkeW/Ynd05HTMvL4fGDbrmkaeHx3orQKc3jGpsx8mGg7S5QValiD9Wy2F4yPO47HiJ9P3Hx+jcKw+/KJYhS7ux1anpkPR2IS7OYlTbdmebpHp8B4OOKcQxNY314T80hjMzYdWa82kI/YRiOqYX+KFA/kRPl2MCJXJugah7MapxSCsGoS0jSUceTq2uA+X7PbN7y9O+DHI+uV4/rlNZ2xtM5yGJ+IE9VsXE483T1x8SOLbXuUMyxLzTgq6wixoKwhLYmUNGWpbMfPgaIVtm8ptJURpIwsE9FPiHTkkDFNIk0T6bhD92u01YRpQZmCMoo4nyB5SgY1XNaFmT1SNMq4PxU7/+jSUvVYco07pRgJiyemCFphmx5nIPtI9AH5NiIlUo2d81SYiEPp8/BIUqQUCSEScyKXSMkJpYQUAn4JFCCmRCw136qUQllL0zlEK7z3dQLOZ0gF72fEKCgBo00dYEEhvppVOWZy9IgISUnVEmMm54gqASV1QgoRbNdiSu1CXeNoG4cxDdooSqkGcCiCNqq69QlSjKRU86tK6xqBk5pFVdQNR6sqJylqHtc6U3XxrIixEEMiWoMzmvVmy/Zyy831htXQVaB2FqU0OSSskhpf1C3WFRSRpqkZsKgzWQVSLDgxIFV/TzFRBzFUTTWkuvnklFHybS43fxc1S1LPPyilxtq+Bd2S83dDHohCrAVVUys5JsgFfZ7CJKb6PZzfn1PV+pUp57USv3ft/SDoPjyN3N5csjsu3L4S9o9f8vB8z9XtBYfTkd1pz8ublk8++Ff85uuvGOyKTz79lGgiaYzopqF4uLAb7uM3rIaBVje4Ao0WmqQ4vXvi8e0dX97dI2Rmnxn3M6l4nDKsL6/59MNbLq8u2ax7/DKxe30gLp7T8ch+Snzx85/hho7luOP58R3zciCGzHplOL37hpJWuIstrW14+OYPLKcEVnPRv2TlMn0vfPDFpzXH90FPConT2zum119jjGDXLxG1QJPYPR15eJqQpHi1cbRM5PkNx93Iw2Hm+LjDuczm+obVpmV8+AqVIR+vEK043H1NXA5I2/B8nHkIkVQypVQTwAp8sG0gFHwSci7sngKbXrg77Dk9PGAlsd2u6W/WmOEVV63lg8uMypnnw8Rx1pwentmsHQ+P4MOa9XHhxYsNOWkUPd31GmMaVPQsc2Taj1x/9gnadDy9eYdqa9u4vt6g+464zKTg8fsR7YT2siPHxP71V4x371jdXNK5ntmfOLx5w/Unt/hp5PjlVxgH3eUNRRLRH0j+iHYd5C36L4S7m4uLyiy1w8+BnGdCSIRlIYVQc6NOUYhErRBjQVtSCJSSmKeFmBKt1ogWUqgPZgiBaTqxTDPPD48sIZJFk0JkmhdyLjR9V3imzeIAACAASURBVKejcq6JBb8wDIaub3BF0BIgeIKPPB9H8pPm8WmHNYbbl7e4xlJyqu55EaZpJlMZHRSm/TvCMhGXQMwQU8Q4R79eY6yjaRq0CCoXulahpBDmquG6obruwQdK9szTxDyOdUxcaufVtw0+JlKqGrVTVM2ZjNOFodUopRE7UFCkIohuGYaOT15t2faWy3WHVopOCc7U9j+fo2q2bVDG4udI9jOSQx1iUB1ZTWRAW4dtbNWYxwlIKK1IocZQY6hmrlVV9553zyzHI2ndfff7QTCNQ2mHiBBDPMffzpOJjUUAv3iknIdnjCaGOuZtG0PRmoxQYjlPptWONZf8fUvv/8ZIe7jn5e0N03LA9g33PrDdrPHnyY3TeOT6uueUasux2aw4hQOdW+OVp2sM988HPrsV2u4C05wIacHmjpVu4d2B42FHKpl5ysxhIWvD1e0NVldd6eL6Bqs1VhXm40TREEIm+kgumW5o2b17RAHL4YHT/pHTOOGzcFo0IQn7371leJHr9e0j4/FEFMXiC+svPiGGiDWRME0s+xOpROZjYFoyQuGjVw1hgenhkek44pcDrrng7qtvcLm2Nj4aliURVMMSEn3b8uZuz9a3KO0wesEYwfvIdJqQkusYJWfGhJyzf2AQihEkQ9GKJRYOYziPTWZU7tBqzfbiFdevLtiu1sRjwXQO5xTdSrPb7Wm3l6xv1pSiiKd3RJNpXvyYOI8Ym9HaESdPSIVUFNY5UvIgimbdI0WwbXs2gKrOqGwHRHKJpJRYlsIcNCulSWlh/+6ZMB6hvCLMEX88YS9XiDHE6UhJGdPUzyQy85fiuqKEFBIpxPNklGCsQzuLtY6uVVilzlG8Oi5bMa2CaxYhSwUUlYUUI9F7lmVhOp6Yx4nD/kTIBWxDyYUlVUeekEAyKZZKmEvi8e4RKYW2aSszTplljpzGQFaZ43xCq6rRd43BqJoCKChirjqvomqOs48sk2feH6urL1XWaPoO0aZGJVOqAwPfjsf6pRqCpq7D7BfCsrAsgXnyLIsnx4Qz0LcWHTUx1VbeKqrUUAo5VX9AiaJrXR091pa2q3Gwy+1A7zTOuTpLgEDKaJ0xxuDaFmMtSilCnkl+QZEw2tRW3miiUvW9kuukXUzAOSlBHS/PKVXZJ9dM8Xw84U8TrnGISkgo9f5zwrR12jLFSMn1rAWlNcq6c3ysPpc1lJFrzEwJpejKjpU6hx3OwxRF//PY8n+kfhB0iz/StoWnJxjzib27wadnytFjVi0fXg60zQW740LOO1TMnPxCwLJZWY6HA7spY1vLZx++oMgCY2CZTjz9h9/i55Hf/uZLTscdly8/4tJdcNyP5Fjobj5ko4SXlwNGIBwn5uBrGxgyer2l6xrcZs2w7kmHA1/98p94827PEYPLRygGZTrci48ZT0f8+JZ2JWzalmwu0K7w5u09m+2a+//wa2zbI90WRUREoVYKMYZxf6BphBAV7avP+OoXv8O/fU0zaJ7ePuGnHVYUf/Wf/xvcnCjLwtAYug8+4vj2ie1ly9PDQvGJcZrODKBQtEbHiGhIWTAGtr3hxas1IWQwPalEplNhPo1YJaxWho+++Clf/OiGDz+8YWg3rC57jvcewxM3159wNWseL2/52X9yzfMf3lJE8803idXziR+9NPipo4wTZuVBCse3gatXA7tvHtG6MFzdUMJC2L/GHxbK+pIwz3XMc7gm7J6QaSKXgqwGeudIkjgdZ+bjyPb2iiUJ03ikffECu16zzJGcc9Vz9UJMgvpL0Vzg8PQMprI6rcFlhd1uaYeOpmkxFMoynzOZBgW1tcyRFGtGF2sRrYGEnxaOxwPjcebp+ZlpmjhMC1lpVusWrYRpPuJTJE4JaxVd12Osw2hLUfVwnCmk80E2LaUpWAbQQtNaUgwc9keOJIwSjDbVgLNVIqjnDlT2G7NmXKpGnEvGLY5utcHqQo6Z4/FIShHXCFoJMUWWcWI6jBTqIUAxRY7jyGmJLMmSlGBV4YtLizbCEoVUBO+rVDK0hsbVvLNrGm5vLhhWa9quY7Ve4YymdYbGWZp+Vc9HWKbK2pcF0yQsDZIyOQjHpyPj7kDXFPo12N5SjCZlYTmcGCWRiyLlmvAS585njAhhWSi5RjP95Nk/TWgRYq5Z6+g9yQeiX2hzBNHMp5ESI03nsE2DpnaaJfjKeFMd/1VKo7WuGWwDkhW5xJp71gCWksL3rr0fHgMeF5L3DL2moPHJM8Yjq6EnCWw2K1LKKBKSBZGGGA5QDC8vX/HNm18yNBtECy4pQtbkkrlohHk/Mp4W9OYWorA/LZjxQAmRIgOfvOhouxYbR2LSRBS6bUjU+IzVEaMd5MD8/MTx8cDhlAk4Xr28Ic8Tu8MO8+3EzeqC48OO6A0pHFHNVIVy2+M9rD79EU3X08uEH0e8h5SOCJnldCBNCj9HZNpz/eKK++gZ928wxvFubiF4/rbRuKYjTANNW+f4527AB3CNAgvheQIJFOXIpHMkqOZAUwyoUHBFcLbDDoZAg3M1oqVKYrPZ8pOffMiLy46ewqppaTEcJeD3iVdfOIaLNethxdBlDqtLlG0o9zN6EEzb0L24JO6fmPffYFtXtS9jWZZA2xuMLYz7E8+vX7O5uams6zjRdD3KRTCGFFPNVJumttdUPbNbdZjW4qc9OSy4q0tiDIRpodveUoKvsRvqSWV/qSpKVyMKVQ/gcQptFM4ZGqfJIZJCJKYKglrqYSopparX5jpQoZRQUq7TYElIpZ4xkDI1sqQUkjw5ZOZpZl4iYjUpaZxraTpD13c02p5ZZwIRTNOiO4Mt1cgzKuDnTPK5HjojhZgLloKz3x7YA2Qw50EFMYYcAotPZBIpZDh7l8s0QUlMjcbqeg85RmIpeJ/wvh7BlM+nmQ2bFhsLRaBr6+lgWQwZxVKPJMA5izWGrm1pW8fQ9QxdS9c1DK2tA1VO07SObr0mhYwvhZICYTxUCUNV6SCjCTETUkFPCWMjfZdRCjJCnDwUjzK2asDKoI2tZ0mUAlL12RASi0+gTDVFla6bUqoDE9onwhzIRJZpQUrBWI1SkSK+6r6VQNfoWQHVmPMk8NlALVLPJvl2uoI6PPN99YOg+/KDjzgeT+RYUL0lponOaAbXcdgH1FVPPBTceiRIR9cPpDbx85/9hDS+IcWO29srrodLfrf7TRWyl4UPG0UJms5YPv1kRbjd8o+/+D2HY2L18oJPPv4RRrecno7sxgOqabh59RGNLpi0oDdbkirEAGHy7O7escRMUonttkXmp3rWAJlpTtzt7tGmodts+NnPf0pAcXreE/3I/PDA7vkbVCfYlcPcvITBEaWw7B3+OOJDHY0VlXl8elO1oQyxRDavNlx8fMPQd6iUWbWK5rJBq8R4Wvjo82uUEk5Pj/gwcdrvmB4eudo6vNacQo2p6KxY9YZGG2a/48UHF6RTZtWusJfXxBeZjz7/nFXX8WFX6Nct06ked0nIvPrgAvvFpzRKYazw/Obvef31iY//9t+QVM/T6zc4m8n7e9Y3V+xmRTlZoldsX/X4ZUFpj+tvePuLX/D87hFdLNuXA/df7hGB+bTnQkfMsOHhD98wP77j5U9/gulWhCXgDyf6lWY+HZl2I65tGZ9BoXFDjz89kU4j249fItoSjk9w8S+Eov8vK6bEMi5Vu1Ma7Rx9a7FSICzMKZBKPX3KEEh+JMXIPIfqoZgWa4Qs8t0ggKIyHaU1zdDQBM+yRA7PB1LOHKeITwmjNJIU2vZ0/Yr1Zs2q7Si54GMglXQ+dKeO5oZ55vT8hDaaJdZ2FqOwtoKc1ZkUl/+DuPfolSzLsvS+I68y8ewpVyEyMrJEsopNVlPMCJA/nBwRBNggu9Bd6CpWVorQ7v60iSuO5uBYBCfMBDI7G3UnPnruBvP79tln77W+RcqysjCkRmuNNgbnIktIRGsR7RbVrrBWkeNCipHnj09IUZkZKSZ8rpLBLGR1ewlF20ler5rKHhCVpZBCInuHUArT92dHWoOxlvXFJU3b0tqWxgqMEbQGlAStFNZUkE/KBachxsT9iyeMB45331aYUN+hTIuxAJaMJvlq+UVr5gjL06keCNst3drSrFZ1sXaGDcWSSSiUUfQXW7SSqB+ZDmQSmVgkMmliSqRSG5vlNBHUjOk6lDEo00IR9aBFIE0PQiJtg5D10K5AqDo/jiGA+xMXaatWglCsVz1JG1JckMEwtJq7eU8XdlwNl3ycH1ibDWM80nUdaz3zq9MdSitW7UBwB15OD+zshl3Xsel6sh0RfY+QCnd85NX1BafBMlzd0HcNu4seNxie7wpFtyQh8H7GHUc62yLbyjwlRYQ1GOs5/faBLBrceOQ0B5S02FVPDIVSHMvxEbfvsG1P448wzbjjidM4MuV7/uXphV/+N9APAyknlEjE4JidJOTEdLhnmZ4J+z3CtIQAyU00dkO5vGBoNvikKAvE454UAqu8UJQiTiOnlyPPD0ceHk+E08TaWrbbFc5FpJBIKlFpGTWHj45+6LHWcP3mBkXDZ28vaG1Dp6BdtSThCMsEXjL0Df1qhSgDcTpx9+2eMj3wyV+PSC1ou448TRzefyT6GZ8akBk3BYbLDePR07d11vjyMLJ/ifzsL15RVEF2PULA03c/sL4wpHTi6e4FGUsFjzSB5TSSQyR6QYwepEU1LXEOmLZqQP3o68JFCXLwhMPxz1tJ/4gnhqpWKNQOLYmCKB0iZwqFefKgNLptiamK6KOPLP7sPFLmxyHf2QnFGQoTiDESY8S7gHORlEtdlkqJ0oq272msoe172ranbSxda6rcy2ViOvNhRUaWCMlDdIiS6Lqmdl1UZqwqvhaYGBGmoyiI0ZNiQukKszEW+qFnuNiw2qyqAWGShGUkLEtl8J7HJkX9yEtWCM72VimwRiBlPaAymqAzLtUirM8sg75raZqG3XbAtC3G9iiREMQKMyiSnM6u3rggikDJgtCSYbdm0TA9+QrFmSN53pMzNKstUlFdcVQ7OVLiQ0KmTFdqwRMC8hlWE1zFNApdkNqidB3FKGPJJSOVpuizDVrpn6RlJWaC86QzT1kqxdmQXZeDss56hTQIU0dCtbmtwJsfbcl/SDb2h4vusMIhaW1mdI9gDWsh+c39Pf0guV2/pVWar374CsdIf7Hm889/wT9+/fdoCdeXn7IsI+9nT1GC19trPt/dYu+fOa0EwXme7z6QfJXYNG3Pl3/5GZtNTzgF4unI9mqL0h0iLcwnhxeavGREhHB6xo8nvv/uI9PxyO8+vHD1+oZFrCn2yCkE+uhxPqF9g55m/v7fvWeZZtZXa1brjo8PicVpNsMWdX3BV199h4gOrQ2bdQvtimZtSS4wbBuyWnP3/oRfHlFGk8Sa6y8vyCFz/+EbLi9XXFxu0b3CHwL/8quPxCBw8zNFUolh/pLWXLAxmb+7hGGlWfLAh+dMotBYw7BaYxBc7Nb85SfXNEOHkhpJ4PLtp1y8+ZR5jLz88DtyVnz1H/49vf1Htq9fo/ot/c9/zsffrPjhVx9ZXS+srzfsnxvef/cr2odnVD9gmi1X794gjEW3GiFPvNzd0759h1gniins7xfsduDxbuRwTCy+4/R8QNs129uGu1//Cjt0DNfvaLZrohf4ZWTz6gJhV0ibMENXX/xwxDYKNzvCcsTY4c9XRf/YR0hCquaDEBNt1+BDNQ+IXFjmusBqpankNGkR1kA4kaKjUT1G1SVQSYWYIrPznJxnf5hw88JxXIgpEWImFlDWsNkMXF1dYY3lYrOhH3r6rsWoTIkR50dImTkm3Hyme4WIj7VwKVldUH6ecIsnLJ5pOtaut+2QRp/JAbC5WLG+2LJaBO3Qsdv29K1AkfC6MhTG0Z8/YySmSNsbrC1YFSF7kl8oomCVRhmFQqCNhLbBdxtCrKOavl+x3qzoGklvFVoWGhPOXFuB1ANaS7RV5Jw53j1VI40QKGPq5xINqFuSr5bp0+M9lFilaV2PUpIMJO/IOTLHKldbpUTyjuW0R0hdrdTHOituOo3pClILjO0xrSRFMK3GtroqEH40hCznWe+8oETBthopoGgDUqNNg24a2tUKoSq5rMRUofJUzoY4uwSF+ROL7uP+xKvXr9BdhxeSGCW2vSBOX5FVg1SKKc/EKfPlF1+y5xlZFlLWiLRgVWF0AVEEl/0N22HLUCQ+QRiPpAzdumM5zjQo+u0F1jToDLl4TNtwOp1YrVQFpzQFGTS2b9E6cfx44v7909lqOZEKzC5zuda8//bAnDUlzWzWK9rtgJGX9I2lsZkYElpr/Ot3ZG15+7ZlGfe8fNAEFUkUHp8D/XZh00ikFkxPibwk2nXH4mamoyOWhS+QqFYyjhM8j0wHx+11SxoTtlH1GhPWxOTIaeHqumOVFUolxscD8XRgdyX55GqD0JokO4a+Zdjc0rcWURKkgGkMaYlYW2hMRK4Uft0iTM93fs30ckdIz+zetnQq8eqTOppIGZSKtKuWpzlQYkElwfb1K9pNT/RVazsuE8E5hi+2aKGQpqXvNVk4VBMZtgNBWIpsaAdNiI7xxSGERpRAWjKi3SKDwXQdsunQSqEbi58dSoNsLPPxiBCSfvf7Qc//pZ+YQ+Wonl1jRUq0NVV2ddbQZjLpzJhAnsEtpeo9g1uQUmBUxQOmmOq8N8QqPYvnASvpjCes0JpGS4auwTYdw3qgaSzGahQBv3jm6YQPmTlllK7QnJRi1Y9S8YTxXJS8T7jZcxo9WifM7FFaYYzGWsN6O2A6S7fpMabBiLoUiikQnauKi1QIseCzIAtDKhWRWHXHVQKXKYhzpSi52mSttqzWK4qwmGGLNZbGVpURxdd5bZ7OVmWFFIokJDLWuaybHSnUhbUyumIrM3UWLapqIGRVb0Q+ok2VyIGo0JlSQErKWekRnMfPM7ptyJkKi0r1/0/6QDEaIRKi+j3rGEhWIlou+Ux0TNXZVyobOMWIVAEVI/Ks6hCSsyW6AtZLqBAedXYkCqnqBehPlYwt3tO2IIzmZNccjo9kEVivV5z8ia8f/olhuOHLzz8jh8jbV68oh0zbWKbHCM1MWTJjnlgLyZt+hfv6e/b3L+ydIIcDyxTRpqdbSS52DTo7Tk+J0zxxcXmBspFl3BPGyHgMtBd1CDg+7/FJ0mx3hMOJ/s0rPjk+83D3xP/zzYxLDhfAdIbjSfE3t2t26xX6fC1M6oi2hv/2l58hk+fuu48Ur+nbDcFpRGN582aHyI7H+0d0v0a0GhmraF2ZhhgV608/p3/7C4zIqPvvwT0TfeS3vzmQ/EQWFnSPJSGyw2w3CAutySA7/O0bXh4mfrh75NXPLTI3bIc1V9cDt++2DJc7phfHvL/DKkFaXfP0YcE//4YSjpjVlkYrfvk//xs+fvfC4Yc73Ic9L1//ivXlClZ/g4+KohXZHZj1wHGakOOJ209G/PEjqKEaVIIjvjwyvL5huX/k9t/8ovr0A3Sd5KJdYRsQWTHuZ477Q90WK8Hp6SPr3SVx1kip0NpU45IMuNmxvBzpWolbBO3FLdooQvjX4+nun/eUArZp6IY17dDRD30tSjkhJFWze0YpphwphXr1TAUZC8IFSqjL5vF4Yj6dmA4j8zwSYmLx1WGozkXw8nLDahjolKSzkt3KYLREZM/p6ZHjy4Ef3t/jYyHpBql1VUwkRwyeGCLzWD8Tss5bY4jMEWRKMHlSyYgCjVb0Q0PTSK53G4zRZDcyO0eOqcrAfMCFRMwFYTVWy7oMsxYhBSEUpuQrLa1pgCr/krbHtj03795WdsLuEqVUtRrngp8X/DKznA5VhlUibno+A2L8eVnVIKRBmgaxJMT5ezJ9Xw+n1rIs1yzzTNaaLMzZ5FHrkVKWrgepNDErjqdMShPdRiB0i+xWJOcIfgYlWTUDpUj8Uu3u1pwVCKUW0ZI9pXgQCaFNBT65UCVgzGgb0UaRfGI51EPQjws5JbRW9BcbhK667jo++RNnuj5bXHDsmhuegY0diGmukAltcDnR5oxqDdPdPV3paKXF+8wyR7rWUmRg2+9YNz1ycizzjAsLMnpSSDRWITVc315BycynI0LVmJ3T/pkwHZmXhSR6Zi/JPrIiIBGEcSRFT7+yBHfiX756wq7XqD4T94nmcs12aNhu1ry6uWa90ZioSCnSqpbgHPPTPXEemZ8+YBD0u1co25Ki4/T+W0oJhJCQ1rDfjyz7mfX1Dlc0G114dbPmzRuLFp4fRs3HuwUtFbNfmKaF4XrF0GtwFULi3RHTQas6SsxsdrD69Ir30lCypl1dsLne0JhM3J8IaaZdXePkhuAlzQDNuqPME6fnGbt4YjdRdGZ3MSDUW9xh5GX6Z3w5sd0f0E2H3bxhuX+m6xRj6ZBo3BwJX9+x+fwG0UjmfSaeFpZxYjlF4uKIIRDczNB1SDGQw9nNc+4WBIbjGLjpNTEEUp5pVysQkegSOXnCHIjzhM6W9rJDGUnJnhjcn7GM/nGPm2ds12HMWeZkNbL2klQ1mCKlUs0FMf3k6kI3CAmmH1AC/HggeY+fHcu0sMwLIQVCKsQCRUisNigh0BSMrnNFrTUKEDmTfGA6jpyOE9MciKLerBAV6ZlTVT44F1iW2jkLCemsoqCuuEhFkLI4E+kEzwdPLAtGnZD9maaVqirDO487j/WQAiWqkaCxEmurnVbpmiVGBnSDsg26NbSrLd1qYLWtfw5nFCVFQhEoUUH8OTaEoIg+MJ+ORD+TQ+VwrC40tm3O9C4qIpGq91cClBL0q74ePGfehJsdQlSEotQSVTTaWBBVY5uLBAxKW3QBckEqMG2HapozprG6zaSSVRdfzplUBQSywuWVouRSAwZEPnfkgugdOVbLf87gpmrDLmezSk6B6H8kmf3+5w/PdHc9JSRKqra73q6YC8zuAIASmiLqHGnygXbeo9trskuVFyoT0VTx/1AyD7/+NXcfn5DSMD0fyCXTdoayOELX0LeWl/2eiGB9sSWlwvHgmENC64Xt28/RMpOcJCRwBZ6OE9PhwPsPT4hOIfNM9J5m1fLq3Q0thcZYRHSUOVUjQAyEJTB5x/gxEZaRxdc8qlY/kR73jOPI9LwwTSfWl1vywzP2Yk2/7ul6jf38NYdDpniNf37gcHiBmEkY5nHChUzAYGaPyZm+LUhm3JIpUuNtRfaF40y/0rx6d43pb2i7nt4mZArsH5/Z3y1srg60l28RusGPEzKNJBdwy8Lx4GmaCSUSzbpn9/pTRrNFXrxmXk4k0aCEol0Jim0pLy+0jUGbhuMh4l6esLseqVfoXhKPe4IH1W6rbC5DWiLdhawYyCwI5xdPqUTCUoTGz5GUFmynUDKyHJ4Irr7g49MJd9pjPr1FSojzkZwqZPtf6/Eh1MKpK6RF5FQZualeYwUV4kKu+MeUIkXUbLLGGBpTebE+5zO8PBBSJFEdwj5UikZNEaj0q+ADwQeaqwbTWKQEUapd1YeMD+AjZCUw51SFEj3Je5alFkmfqtmBXOq7nOv7rKVASQ2ykrdQVQcurcX0PbqxZF+zxmKMOFe73HTeyJMSyIwSGpErClGQ0VoipWG9u2DoLG1jWF1c0Q8Dw2ZN2zUYc5achUrcMgqwitTZ80JJ4H1iGX0N3TSWDgVKVzUBheTPJMaU6mxUQGNAS1VB7j6yLAuihKoqkArZGHRT37/kFaptsP0GbXXNtMsZicR2LT8yeaWUFbqfa9RP+RGVhqjafKkoshoncq6HWE7ljJZ0tdPWiZwFIUSkAJVknQXHhNSqSgz/1Jnu8f49n17/ArFNJNkxjr8mdgNzmljLHUO/xoqOZXGIV694mt4TMjh/oh86fJ7p2oZdc8ElC3cfn5G6oeSM7TSHw4n5OdCvLUUrQhY4r7AXAzFLSg5cvL5FH1+Y9kfC0wfsbluXC8vIOC+4OfC8n8kpE71jioput2LbNnx2fUk7bNlsei4ue5qm4eN/+gfun564e6xhe/bikmn/wsX1BX4+MX19QptC06/47iWyXwT2+aEeIL/6Bisl/9P/8iWXt29Y/+0niKy4++490RemcSIGjy8KuWlZKYEqErPbcdyfeJ5XPBwnGBNfbjcIMtv1FRfXt/z87RuuX1/VbktJhGx5vn9kOh15eTjx8PWBfPxPyBI5Pkxs3my5eP0J5vpzXAh1VqU7/A9PrNaWv/3v/goXFdmfOB2OTP/wA5effcKyXFLCyO7da05esH/JfG5uaLSmv9ny9eiwXc/tZ7eU+EjXr2C4JvlAWiaysaRsEcGQ58xws+b4ODG7gPCBpoOnH+7JOJRUBHvNMjkabSla8vT+I2GaaIeeftf/mUroH//MzrOxLXY1MGwuEAWcnyokG8HiYy1QqTrWcj5zVIEiBdHV7LRlGokx4NxMiJ5cEkpptJFoOBchhW1bTNOCrAVYS0mJiSQyMXpk02EHSTd7IhCzIGYIxxMxZKYlVwKa1UgliL4WFaSgSMuSIp2CrtW0bYfSiqbtaJoGURRhSSzjXBeHoeByIZ5VFyVVRnMKmZTqFj+dOQQ5CezQ8PaTG/q+am43u2varmPoGqQolLBQcsSfqgwtLI6UI7ZtaQaLUZIXO1BcZln2aJFZlmo4IEekFKh2qFIvn9E1nRV8td92Q0vuWva54JYFXGUtKKMxIoFWFKUZ1gOmqRRALQXCVJdl0zaEaUSIOgqoRb5CfHTXVYi5rOS5dJ4RIwoZjUSRkOQI/rgghED3miJUdfeJQkyJ/eNj5YcPHcZqzJ+akba7vqUUSZKJKb7QNlse4hEdm/ofK3uInpAL/WA5HiXH+ZklBt5sb3lwC62FQRR4Hjm+PCHaDUYb5uOemDSq6ZDNQNtZ3GHChYXlw8Tl6ytyChQ/EU4n3OwpOqLGBSsz87gwH0eOx0NlnmoNOWNazcWm5WJ3TRkP9GtDqxuEmzjevefp8cD93SMH15BkgxGWdug4vTwzHScenxwQ0M1cTtLGWQAAIABJREFUifZtQSTD5CQjsGTFV984Prz/ni9+run7jrhMZA/L7JldJJWCchmM4O3nb+k6y0M2uNzTyg6EZL1Zg5D0l+9Y31yxubmiZEWMoZ7mraAtnoLHvF7zpBS/++afCG6mv/wUX+RPdlXRG073R0rjsMMr5mlBuQNDYwn9hnEfCIcPdM9PNE1PEpa2U2RtuLi5oNvd4PcnNIlu1dBvr5BC45fxvOgwRB8Js6OxFtsZvBtohmqxVMYSfcQ0Fp8kPkr8FBi2PUK3rHYNjYHxOLJMjtZAmDOz+P0C8v/ST46V5EXJ2NYgC8xLJDhHDDWSvXIMz8p4IWtSBFWTW80h6afudZkXvHOEkJFSYnW1Tf/YSNnWMqw6rNXo89jAu4R3dYQjFecNu0YrXdN6S2byPY6Aqhuun2LvC6DO9lMJJHGWNklYbzqMadhst/SdRaSCTwkfUh2XlIpzVKLahnOqjsiMIIVzlhm120xFULLEKGgbRd83dK3GGoGgQrz9XG+Xfqq0PDeNlBzotKq3Bc7x7EbT9GukrF2ioGIUlVJ0piXGiMxVBiqVPM9bE6RUD5F+hTQtuLHG6qRMdAERcx0ZsEKKQi4FckRQOc45BWKIUALRVSh6SQltDdqaOgrI+QweL+clWK7IS61qrl0p5HxOyJBVSiYFlBzPB80EJWNMXcT+odTVP1h0+1axe9Mhr25QFO5PR3KIrJstc/BcND1RzGC27I9fUSI8hUdetbcQ6/Z1kFs27+/wDydOqeFCGZbTnpMrvLndsdpt2W46hA9oIyvUJgvG0VUNYdsh+lv6tWS36XHjicePD8ynmW+/+wgic3AzLkl211uaDGk/UrqGd3/3b7FCYKRgej7y8nTkuw8TLydoriykhJufCMeRl3kmhYy5HDBacDwEHkfHPI5crHtWfcvV7Q5U4vLTS1bDmmHVQnT4BcbZ8bCfSYBtNLiJHAXf/PrrylwVmZwK15stX/7Xv+Ri03NxfcX28jVWFmSJhOkZouf4NLOMIxSHGgY2qx1yDY+vv+Dx7pEYPHNKfPz6e0xzT6MEF7/4Je9/856fvfqe/vKKp6khPp24+WLL7tWX/OofWh6eR9IyYo1k/9XXNFdXlNMj/fAXiNwzPnzD6zc9ij3TZDndLezeGr7+v/4jdrBos6qLMx9YrSKhNTx9eCb4wMXlDtsqDg8vtJs1jbnAbgekrWmtJWU+fHtH8vUg3r15C+ZfTzIWciFlCD5CSkgJYXGMp4lpdkzLgpCCpmvR2v6E9ENWIXwKnhwj87xwOEzc7Ud8rKhAo6vZQGiDsgarBC2edbPGakVZJryXuJwJMdS/4zQTC5i+xTaW5Bb8smBUASvJWEIuLNUUVbvo85bdEwjUK3EpgqvbLZvVisvtFo1g3k84F5hDhdTEVH9OKRBZk5UioxDaYIYBqVRlMEiNNqtzDHqFuhR/hnsHh+wHCtSkinGucedGEzB4Hwn7A1oKcogUf8CQMIOpjVwKhBjPaonAafweKQRWysrMlWBsixB1vqqbwNAP0DWEaOqc+zQSYiAvEwJI24HgIUdYjvtaEH1VpIQQKSmyHE7kEOiGlmbo6u9lrCOlFOuhEUPtpI2u5oeMqmyLpql407YFJNE7/Bxw04yfRqQorLY7UlHg/kRHWnCOIg0vOVGUZppHjDJwhtFINFZ1hByY5pGIQ1G31yll+s5yoTv8fs/Dy8jF9QUmeh6PT6h+jTaidrHFoc/6uhQBCm72KAllPi+e2rZG8YxHEok5BoaLNWFZCHvP0Bl0CYRsKNJymAtu/4ztelRvUDqhbMNqd0WyhtF7sujwpzvmMTK5ghSCXinKEsA7Vp1FSo1PCz445FgjO+6/HVn94oLTKTHvj8w+44ukXXXkWMjJ4Vwm6pacBUU0FAJ+CbRE0jKyutliSTTGQwIfPON+JC4zhZYlWZ6++Yb17Ybh8hpUYt1B+7M37A8Of5pZYkKuVzwfR7b+kevPLnn+/hvsfCCzIoaF8f4jq+uZL/76Le408/jDA/544PSyENUzKZxfWmGZHh7oLlbEKSGHLdJo9ncvPHz7yNW7S+zNluhGppcZpQ6EKBDSonShhAMhapTVCGvq/FAYojM1DqZkpsNIDJHLLz+n312wTNOfq4b+0Y8yFtu0aGPPVs4f7ZySgiKkunSRqVCIQEZrU5dUFHRbo7vDGdNYpD6nJlXYSsmFppUYI9GizkdTjKS6ASMKQczxTCVzTLOjSEXbVEnaPC545wkxk8oZ2C0qLuIMD0ScnQYVR3jm+gqB83VW26hSoUlnUHfwoWqGU/lpbm2sqSQuVVOH26FFSrC2xp43w5qURbW1C0kKlTNRYkGbABSSq5E+UFCqQTe6BqiejoiSyMEzjyMxFZSKCKnx4ZxqbCCVQgoOrSTFVm2sEAJU/c5jzCAitqnSLYwiK0XqWlLQuPFcNEMgyNohu6VyM2KKVa2UEjlGpnGBXG83wXvKVL+bkiMpeFLM51ltbdakkEgjEVLXBZ3RSN0ihGSZHN7nykkRBmnqDaF6Sn7/vuIPFt3X765wb7ecouC7w28RqiDVBhccl+trSvIY1fHw8h0kiCJwMVzSiw1Pp2c+LZp+v+d4mNlPC8Z95NElxqPjszefMVxfcrO7xp9mXj5+Tykg2w3ZnShK41PExwRiQShFCTVK/PnjI/d3H3k8LejW8PpqIETP8Tjz6qrniy9usFrQN5YSPad94Pn5hZQyjw8fUVbz87/8GTrteXx/g1slxrAwxsA8J2RJdNs1Sia0yhxeCs5L/vv/4R23N9dcXlzz9OGJ/fMzWSr8GadvpaMoTZYWKQ20LZubW5rWoIkMFzue7haeHjNvbgM5n8g+MWwv0cOAUM+4lGhWkds3txyOB/anGfHP/0wYDzzfn9DWcGEHjryQnWd+giAK/8f/+h+waeH15284fDfxyc9abHfJ/jDh/YF+UzWG7764wadLUpJ8/6vfgDQ8fP89eljztF/ogyPIljAd0A2cXo7kfkPWlsP+hePLtwxvP+X97yb6dcPH3/wDyQXe/MVfsXvzmqvXrxjnzNXPrpHaVotwhg/fPNDdvuXiao0xlo/fvtCu/vUg5l03sNpsWa17SDWOXBqDtoVWapJW+FAXT8EFYsnYBhphQCqcr9QtbQ1tn9i4Hh9iTUgwCnLCaFVLuFCAYvaekOBHeHIuFQIUUuU4UDJpmSnIs6HinEiQKk5SSYEM1cgQnKuFSUgimiRVZVsLdbbk6ko0S+f8r/PCLuVSUYTZIGSpzOTWsr3YoLUme0+OHp0VrZFsVpKmH9Cqxg1RCimJGmfztKfkVGFS80KYRppVx3BxibGCux9m/HwiuJnFRYrUtA00jSRLQ5U/S6QSJKFIuY5rlaACfM6KiaoXTsynGaUDqmtRSrHa9HgfWRZP9oHxNCNdoAjB4mrcukwZRCbMYy2quepzX44T8rCvB2M7gFTMo8NNI/PTI23fYT/7pAKJjEZqS9P1KG1QTQNCkfYT6A47WJpWolVNzVDn0czve/5g0U1uYSoNd8sTpQQollQcFoOShZN7omvWOO9oVMdcDmhhWOKJrBKCjtZk9s4xtBZMJi4Td9OEWybCaSG1R/J05PD8wjhPtM0DhYIaLtFKYtY7ZCgQa+SISJHH5yOP40wULZ3RNcVg2HJ1u2G1sohicKfIUTwjSkIKeLp7YPaJzZtr1rseOz/z+LHmsS1zwYVSpSGqrfMaMsVV+HZj68D95AT2OHO9WlitO56f9synmeNpIeeCNvVq2XQNxUeaoWelMoP2SGlZN4aLv7qu18KS8WNEp4WmmUAlpv2B5BdOz3c0Fob1wP7hhfnpgegXnkdFyRO3V5anfWY+HHj1+RWhZOxuhx8dyIbtmw3NakW/2XC8W8gl15PftvQi0hqN6BW2tcxLZP90ZCUrVGicE+rCgFWM4z0+LGxuPmVhYXx+pmek3R1Z3VzgQ+DuhyesMXwiwKqCO00YZcmhLqJKWzg+HvGnmVefv2H+8D2uvaKUeiD9az1CVHBS7UxD7ZLcWRIkBE1jkIK6QKw/QSkCqasGmbhUAH1OkFPtOnO9lmpdY2esNuef5DwXhCwF/IiCPMO3EQLbKHIqBOdR0nKO7yV4T06RearOsJgl07LUWagxaGPphhatavSO0ZK+6WibpoZghkRIkUxCalmRkFmSypmYJQpSFgSJHAvL7M7gJUlIgm5wFTxlzsnNtaVGANG7M48i4ebAfBgJKdEMQ/1+rcE5RSyKrESNJ297VNtirUGUiFYgjaaTqo5CY0TkWCN5Sg0zrXxaCOEMEFcBdEaUutzURpMQLEtCpQhSEEtVR0hd8YveVwOLthakZJ4dJIdUFmkiIHA+MI2O+bSgTXMWPOSKGlD1AJU/Am1yrlHvAuRP0CEQVDlbRbz//z9/eLzQ9oSUOS0zpuvJobDdXOOWE4uYaUvPGA71BDSFNveE4GnNmnfNJReHA/NHx94njBF8/N0Dp1AYbl6zu3mDbltykbgsmUtHspanGNgOA/64Z4meYbUjpIy1guwSoUhi19CUG4yfSUUie4mVgS7BchRMdk9aIlmukFoRo+fplHEJtq1jujvy4ViIWJp+gzIzQ0p01vL84Q4VISnNGAwu+eqQCQHvEte3l+z3CyFXa2TWkmnVY7JC4igikU3hr3/5M0xRvP/2B54ePO1aI+PIz365JidDIWNWHcr07I+B01e/Y5xPuNFxfH7gxRXefPIpr37+M/7x70dOh5l2t0NaS/fJZ/zN3+0I80TZf8fq+gZQFCF5+PqO8HzPVAL7j3doA8EMWH/Crjz338wolbDbgbZv6bY7vIcPX39k9e4tyrSoMjGpwHe/XmiVo7yRPDw4nu9nrttIu18o2vNwkhyOgnfv1qRo+PC7D/TtI6vLDXSfgsiMT3s2uxUXt2vuv7qn292yutqhjGZ82P/n1M3/rKdtTcVXTgVtFcE5TvNMjIVMoWktptHMMSCQhMUzx1rolMgI7wjLzDwemaaZ4+mETwWhJLu+RauzyYBMDIEMIG2dC5dEzBKXz0ubknFLHb3kUgjhhPeenAs+Vb7FyxKIuXaqlWJWMLrQtqWm6DaC7XpF27bsVj2N1Ezzglsc0zn6PQFCaYxR9F1LLhld7Z88PR5qtE6ueWm2NbhZop8XhLJsdpcYW7PtKjScKqkqCmF7shfsp0cenx9YloXVekXfGaBFtxofK7N2d7lhWLXVhOITeZkxwmCaDmMNyySYp0wIiUJg/zJXCZbWdL1Ek3DHEUqusqwzD8EOldGco6fkRLtWQB31+MUzz5U/LKwkhsx+PyNLxLY1AkkaOI6O8ehpdIfULW4O5DQhhMS2gaR0HTlRaWX9YMip3mok5zBMbYBCjn/iTHf1l19wIlGyZ3YBlQ2zPyJSYt1dMR0mYvbkEuqGE13Rb3qFzSOcCiVnVsOAkIXWCoQUKGUYupZh0BRfu0RrNUY2ZHdimWam0WPWFgEo0xBSrjDzPNMbiTCCe6fRBi77K6ILDF2LMYYgDDRrjuOB4idiFly+uUHhefl4D7Jltelw84nD/h4pJcfDiNSau8dniAW7bllvblg31R/vpyPv3lxjJRycr78cLBRd6ISk+Mx0nkPrNuGPR46z42k/EoPkiGV/DLz5MnD17jPCPBLDjFKR7qallEvGjwKXE0+Pe0o88vrdFavBcnXT0+0UTX9BN7R8/lc3KAKn+5FTCij3gm06Coq275jHnjFolmmG7Gm6wuWrG+bDwryMyOLZqIRfCruLjjisGJ8eueoVIPGHBZElMYFoFH4KTFPg8fHIm1++IiRTBeLKoIxh2K7xP+H2JOrkKR/3xBB588ufQ3Is00zfZESO6HPYY5j9n6eC/glPIZ+vyokUz1Eu51jxfC6UsvxoO6i201wElXtd54MxJZzzLD5WbakWle6lLU3TYo2ilPr3yzPuL5ZEdgvOR5ZQYTJCCvxPhoVMiPVzQamksx9jfWo/itISIxVK1lDGGAVRFaw19H2D0Qry/4do9C7U5ZnSKF3VCUbrqoAwNcxxSZFQqlRLm5qYq7UhI8/fj6PoM0mrVM1qxV4amq4hxoxQlpgXxjGQ04htW5IL5BAJrkrcYpNIwuLdOVZ9digpaYdAsg2lKLQqtcMVNYE5phr/ngs/LT9ziuhUD0Gpa2qFMqLG9Zyjg6qcWZxj2sVPQaEh1mWiFqK+46HiaUPIFebftkjbEHx1IVoXESKgZoeKYLVFih972RpuqbRCWVM/d6pjnt/3/GH2gli490+EHHm1e8vT00fy5Lm9eYdI0K8GDuNCLAERa0TGq6srNjJwFQtP90/sTxNPLyM6Q9Ia2665ffsGazUiS57u7jicHEIK2mGFiDDFRNd3eBcQveZ63cDiuXt6wHnP6fmep8PCeremsy3WDmA9QsCMoes6LODDltC1lPGF+4/3LMuItYLoDjx++22d1yXBOCbuvCOFM/jEJ5TzdDbQWehj4d3b11w0LWGGp4dHvHeEXAHKdrVl2FnWV1cgZtzLyD/8diTlyLpf024E/eqWtu95+XjAyN+xe70lG8GHX39HKoH1bsubz6/Y3fRM88SHp4XT//ZPKGaG7Y54nPnmww8YEfju//zfUXZADzeMx3tkLGyuN1xerFh1mquLhiKq/MZc/ozl4MhxpGjFw8sMYUIPAykp7n/zPW9++TNUN/D4ux/YvnmF0BuarsH2v+Hi9TWjGfjw8RvWQ8ucCnf/9Fs+/a8+4fn793z5b38OpuP9b99zc3uB3l2zPxxxZeTq1QWhNHz7H3/LxVpirz5BysAyBlTT0F9c/dmK6B/7NLpmdkkhcYvHz55xHAkxkxHYxv6UxADn0EJt6ZoGLWDJU+2KhUYaSac0jW0wRtM1Bi1BiHoNDd4zzx7nHn66nhepMP2AltVkcRoT81I1wVLUa3TOhSwKSmvWWpIpJFGLtG37mrRgLZtVR98oXl+vaKwlx4iPhZgyMWVmV2fNq7XCmoKWlcSltGS12WJtwzqdi1kuSCVpW4NSEqtqJ/f84SP2HKVTMrjF4ZeFXKqlOISIsaAuL9BGEXONtRamw2iqLd953n+/R8kaWSREnZeXlGmOy7kD71BKg5R1mVkEpuuRSpNK7SB9iARfmQi2KdimaoWlhBiqg0+QqpvNNOBBKIVuDFkZwpIRSiNUYZo90oeaDA00fYPqLFFofASUwgXwMeDDxOpCwriAqJyLH7PiJBIpBKWcE4qbP1GnW9JMSZrLy085HO7ZdAN5lhXcnOu2P6VCLAmNIBExyrD4SqWfjiOHlwOlFF6OiRhnhl2HTJ55v0etB1JWJGlxaSFPDiUEranGCZ8yPnnmKRDmwLyMPD/tOXlYiqZHY7oLVkNDzprD0wvKCIyTiBw43D8zh8QUCtsbi5gmPn7vGD0gJY3IuKSwjeLVdkvwnna7IodqRWysZb/3fPHlF/zssyvy84nDRAX6GMH+/kDTtVyvFLZERCtpV1vM9Wuak2c6jggUykpuX2+wWiP8wrjfY1oDQlOkJUU47I+49x9YxgVbHJ99tmNYrxifnzHNFtV5NnrLtH9hLAsXF1tM29C1bwjHhYTnODtSBCkzs/NILbnaNYgiGZeIzI5+c8Hzx8TL/TOrm9f4LAnTjLIKf4I8T6xuXnOYM0oZmn7L/hRZb1a8ebXhu9/9CrGMjMeAFhqkJRTN7tUNu892vDydKD6wvhAIkXn88Mju5oLbz2+r6N9JRCiIIlhfXf7Ziugf+1hbAeRKlOokO7uwqoxJoGxbO6VzamwuBVEi5OpMS6lag0uqCgJ9ZtLKnCFnUq7yrJwz3nu8d4zTQi6lJlGYgowR8VOEu0IpgxQRJcHFqhU+99kVDQkoJasNWQoaa+hay2awDFagSySHmnAitaySMFFqarESGCsxVlUFErbGLaQaN963FZoe0fVfzBEhCqapC6+YCsUlYnLA2Yh0OhFjYl7C2VBQI3WU0iAyQtUASy0k/apDasUyxnMKb+0+Oc9yXcwVV6li7XSlJKaqvzVUN9mP6ctSKaQu5FwRmlIKSkzoJlDOY7ZSzsqDxsLkUdqgjSYKiTYGrRtK9rhlOnf/GiXrErLIcxTRGftYs+AyjaoHXirVmWi6FnmWEIqznltpc8Y/mt/77v3Bovu03DNc/IKn0/dcDmterd9x9/ye07LHpYatVSxzlWZ4GTFGcppGPu96lh/23D0c0KuOZYLVrcIdBEPbsVpXuvv49MLz0wvjjx7wofqclTH4BLpdc7XZEcYDGYFbCqXZstILbz5dI6Sms6A1ZOc5jTMvL/c1HVVCd7nj3WfvmA/3fPdD4LQYZM7cXjU8HwLH6Bl6jQgRQqLrG1gc7WqDtYbP3l2xaROXzcJ490AuiqYdUDZzeFlo1i2rXqGFQXQblPDkcWHJnt1q4NV6x2o3EH1kf3hG9Dv6vse5yPe/fUbqiHv8vkqGPAS9AgT9ekvJnv3HPX6K9MM9LCO/eHdLfPWKp/1UfzFSQIUjptNMXldu8k7RNR3zLMlz5Lf//h+IObN7vcbohk1bULcXPN8/IexHUJbjhzvarmX44jPC0zPbt1f88H9/w9/8j3/D4hLp7iv+9v8l7s127crONLsx+7XWbk9DMsiIkJRSKrOyQxUSbgCjrvwOfla/g29sI6sy7ZSUkiLY8zS7W83sfTF3xJUlw0IltAHeBIgT5OE+c8/1/983xj/+kqfTxDIqvvnma6zZsb+LeH+CvFC2t3z6vOCqoN9ssENHyoXX33S49ZYwBebHL/S7PbiO7cstptv8tzlB/4TXyjnm04UqWui9FIHr+8ZZRWBsu+ku+UoNixkjBCmMbamTEjFHpmnBx9zwBDq1NtrSWAQpRpRS+FDwRYBuW3fpugbRoaUKlITOCiSSnCQ+BMbZE3IBrdG1UENF6TbTbAbeQDPDSDZ2jdOKWgxSamoJTKeJ86m15YySaC3pJQzO0PUdlNakSrER1YSxSO1Y9z21NPedkJJ+cK3EkFoRJi6R8fBMCo0zkYFEA6ebziBUQyBK2sFPaXV3LTNOWzq3bwmK0g7SmlKDy2TZbolVXL1zkpQFtRbC4dQOWy3QSrFeb1BScD55hIBu5VpR5DKiu0a2M7rNrqUxUCr7u12LjYVIP3QsSyScA05ajLZo0yjrgtq4u1IhnCOLJp7UWrV6cW1FMOPaU00LdNQrY1nTb/bN2FH+RMpYHXY8PP4bGcV6v+Or27/m8/N7fIhIKfBjW0KEWTT8nZDNybRckIwIKTl8es/dN7+kxiNBGobBoFAoIcmizZFSjmTREdMVtFELBbAyEHxo2+VlIeWILAVdE2ka2W1XSB8ZT2dCruRSyKIwxUKImY08Mx1+3R6X1ltWXSHO9dr/TthSUc4QckUZgXWRkhy9gd3OsbIaK9ot3W4NTsJ8ORDGI70dMCvJygq+/vaerpM8vT9yGQNZrlFSU7odVUhSXqho7l7vULWQg+R8WAhTYJoSVRjc2uEsIASmE+Qg2b/6CqEN4+FEqEfSdZbc9Q7lenJJzEni5wWpoV8ZUvGkBP2qJ8XAODXB4fLdgc5kXn/zU4yy2PWW8fkR0xe++3Cgt5Kf/OMdgkqYFvzzEfP1ns8fH3nzkxeY3jJ+/5GXr29Z702zA9fE4fOJXhW2u1esX9yQjhf6zcDT8xmZAvuXN8znhWUMGN0OGeca3q/pcv48r1paQ6vQeK7liiiRSjTwifghvNvsrkJKjHW0FMMPvxuQCppRh1wlCI2xPVJKCnPDPzrIyPZbtWLYbbG9o4TxKoSMjQcSMyEmlpA4zxFfoIqWkFhZgxFtS6+ERNDibM7lJj61poHqcyIsgXFcmJd2q3ROIK+oQr8s1xxxE4sK3aOuuV8EKKMabLw2uy21ND27vOaAqyCEhqEMMTZ+gQApNdo0Y0XXd61Vh/ox3VFiaI0vRWMZp0jN6Rppi1TRtEg0MQXIdqMvqRJ/KCvUFs0M3rdbtXOUK284CyAnTIgY19HtGtuiloI1qul7Uv5Rya4kKKXohnYDFlKQU6bWfAWlN4GDUAqhFUK1rK8IAUGh5thodICQAm0Mymi00yAU9Y9wRf7oobvdvODp+cCr7T374Su+e/5ApRBiewQIU8KsNd1qx2V+QKuuLRmmyvmzJ0tDEB29CYxz5fWbrzBSI2tlGU/4qWHjltHjdivcsGceH5nGZh9VplDjhcv5TCyC6bwweo9QmmFV+fD9QiITfGa1XXE5N2rV6uYWHSvStrnNdjsg/MR08SgjuFwSX55PLEWxzZHkW7xrXiKDkxyXE9N55KY3WDdgVz03m44PH77w9OXEdJmwNmKUJgXL+csnxpoIuWCHDmlayL1fNzWLl5bdfs38dMDqdmi6wTA+LYwxU6qHZSKjKDh29w2dt111rHeOeDNwOe95+P4Tyiq2uzVCS3KcGYRgWRz+6pcKpeU7RQ4QR2y3JsbM5v6GcJnwU8AMku1dx8gdxlYW6/AV5ucnim9vlpuXtxwfD7z99ff8p//8Nzw/P6HCBbNS6M5xejxTRCV4wTBIbl6uKRqGlwNFGi6fHzE5cPhyIEwVjGbdZ8J4xhgoqXFS/1yvWts4odSKvP4U5Cu8RtT2gy+AGCMxRpQbsNahJLT0ewCh2u24VFIVKKmuAPoeJQWha8Bu46/qnNgQhlpmOpWJtEC+nxam2bOEgk8ZHwtLKu3Qre3PaFsnCQrXA7HQLlqtpm271mSbxsQ4eZYlkVFthCCvzbWYSXkBFkII5FzoVpVuEPS0FliD8zQMei2FFAMlBqQS19psY9imCvHKZ5C61WJd36O1pu8NRklc567iSEHwpUFhSksdBL+QgocrOF4mgVTtUf2HMUL9IZ4mG4KxStHm2le+rTbmR2W6AAotJytzi+Qp1dQ6XW8ZLzOlpGvkq0XljLkylEX7II0xQs5YAdIJtG22CaEkVdASJTm9ttzMAAAgAElEQVS1hERuIC8p26jBdo2698MO4E9OL/z2N79ivd1SbOWSKv/7f/lfub+7x8eFlVsh7A2v11uewgFtXnI6ntmvVsTTgSnMpOWZ223H8XHB9h0mR6qf+Xw4oLqeIgXarXjxSmH6DTXPaCXweWGzuWW3scQQsW7g8vhAVIZsNTFDLSt+/vdvsFLw/PDQqEBIfFY4B8Ng2O06Tk8Hnh5OPB2fOV4qUUpOZ89DqMia+XzydM7y060ilcjjYaKzmlebl9zdv8AqzYvbLf/lX37Hp0+PqG7D5tsbZLggbWUKlX/6599wWQrLMmON4/Wbr/mr//R3lGwZbnfcfHXHl99+TwyJw+FCnEb+4h9+xs1f3PDh8ycWP2FWKzbre/YvN7x8eUuaRp5+87/xXAs//8f/gZd/ccdPX68I4wG72VJF5nzR/O5XE7q3dKZDWcNMc1BlqXj+cmbd1UZbmp5Y20pSGj8meiX5q7//OdNp4Rd/u2eeA8+fz2iRSJ//jbv7Hb/9neKn/+HvWKLl7a9+jz8+8vP/+Av0esOv//m3kBes1Ejp+PzhAznZVn/t9+QYMauO48d3rL/+CZNXsJhr5TRwfv4e2f/5IOaV5hhrZoPro2Bpy6cQE8JPUCrzJRApvLi5Q8raFN5UFj9hpePWrck1X40FCzV6lsPUbqRIjBYMRjF0jskH/OLx4wVRPKfHA6eL5zJHxtSe7lIq12JEYxZIrXG6sRxEwy80GtY1rN+vVrihZ7XtyUtgmgKXpQkm7WpoWda8EGNh8VOTPabCuDSiWt9Hbm5hfZvpAKnbuIOUmJeZxUeCX4h+RluN7WzDCihBrG0WutrsGNYrthtDTZHL5wdqiqy3G1b7mzYOWPWkqKm1gcvnpbLMjeyXk2t5WCmpus1VW+MrEENAlYqqGVEzotRm3i0V111tDraBy6VqjJBaCzG0We9qFakGUqpQFVK0m7GqgX7nmi5s8YR5wU8TslY2/Qal2gdbrbQRW8qoEuk7w/np0Bpooo1tnLO43lGSJIwnSoW0/GFs6R/P6cZEFRUfPL97/39QcyYETyoJIStvXv6Uxb9n8TNOd9wMN1gktVNIo/jydGF32/PVV009E5OEDFUYKhJnDMt8YJpntPcY13E5nTk8P/PLf/gZvUikuTDPCxjHi69ukSrhs2ajE/n5A5cqcdqircPYnvF44nB45HxWyDpweDjx/Dzz/bFlfDsZSddPu0Jls+3YDj1xurCkCnLdZm7Wcl4yv/zlGx7efSAEwEnspqJyZJkjy2nBJ89pbEqPUAvFVy5jJE5H1CAp8cT5GLkcLyAt4/OR8/ORaZwYVoZhtycdG5RktRrIS+Hy8QM+eD58OLNMnruffUbIyOWzZzwc2N9dQCt8yOxu74k5oVIj4u9vb8ghI5zAWYE/HSm9Zb4k8mliJwO5KoISxPMRKQdqiqTxyP7FQFzgy9tP6H5iv9ujRSbJBklR2tA5SxWK05RYjifu9mus0WzdmhgSL77aEsTA8dNHfv1/fuB//J/+GlEVQ+/Y3W2xneX4/hOyeGT4w8uGf+9XiJHeGKoUVNqirN1iUuPjhomSCrkIVNdda7wFaDFGaBvr0vS07ZYoBYk2k/wBjp1TbQ0rq2k35Pb/mM6ey+iZloZYRLSiRvNVFJSSSJol2hiFujJftTEoqbDOYXuH61vtVmnRqHshtNuhktd6a6XE9rXnpaUZYi5XLCSo1KzC7e8eWaYJUSHH3GzZoinPD88TtRZMZ1lvh7bMUgatNc6ZdlkaJ1LwjOeR6BPeQ7kqJ6yJrXx0jbyR2/fFdY6cTSs+SYmwFiHamEEIhdKK5D21NsRiqdcFZS3YnFG24myLOgptCKKSUru5lpRJfqZkeb3BK2IKV05uc+OF3IzBiw/ExWP1la2RM9F7EIqUm2zSkFCqpTyEkmijWm1cyJaxLgtCJSptVPGHXn/00HWdQhWFUx1yveNVPvNwvnB/f888PvHq9lv+7e1bzuOR0jleGM2+Fh7/6fecjzOvX9/iLwuff/+W3c2Gze5VY5EiSSXhQ2zZxQTTeMCPiaIUm6++5vD5I3G9Yr9yqDmiFPhUQQp0mjlcZubYHilMmaghsn+5YlhBDJI1ld/86zs8kvM0sVs5chE8ThNVSl5sO0QV9L0jnGfkbsfdRmO0YrXb8OrFDT/92QvKdOT3330gY+i6NTUYvCpsd2umZY2PEemf+fA08+LVC4bO4XpFDpWnTwdOT45cI/uboS1Chp+xfVOQOiG1ZVM02jwRQqDXDaz95eOR83li++3P+eruFccgyI+pPep1hvP5gtQC6To2PVi75vHTx3YQxIC2PbIG3KZjjIHtT78iCk1IieePX5hPnmU6IfCUJaH2HbkO2CQp1vL+KNHPZ3Zv1jz+/iP7n78EaVjmwOUS+PLhM3ff/iUH94wxgW4/8PZ3X+grDH99z/kx8um3z/z061u6m1uUqcDC07sD/hIQVaGkZL37w8uGf+/XZZlAdCilib49bqfYEgk5J/xSyUC37nG9gxLbRj1GSorkdGXZ0g45ozT9aqD0Hep8xi8L4+JbuWjytKxv87F536wSc6rkq1NLXwWIi2gJhZVVyFowxmKVuka5BNYapFTsditub7bc327Z9h3ExOk0Ms3+qqGpuE4ha8WXREwZZU17JC4VOTQRwX63YbNaoY2lFFgm30DfpbY5LhXnDPuX9205JEA7i+0l2oZmvk2BNEfGaSSlTBUOtdmghxWhSMYxEHXTDJFTq8hKjZCmQWxEa7dVwPTDj4SuvndNTeSbtTmkjF8CJczkmElLoEiBWXdI3Vp2RjeaWYotVTFPz2hjMKbRxM6XwDR6nGrvwWUMXObEeArEcWboDCFV4pzoRULqxjheLjNOFIxqM1vtLK5vC9Eq4PTwBIDtXWsK2j/8FPfHD92h5373DV/G75jCzN+//gXn6TcoCeMlYJRmnBdQAmvWHC4fWbuecwC12fD8/j1hiVySISDp1zOyQEi1hbNFYfEzISQuF0+qjaxvnURGTd93TJczWWrcqscJTc4RVNN59H7CL57z2TOHzOl3HxBKMI0e7zNPk+e8lAbSkBmtLKUa+s6hcqBIyco69EbidPtkMrZn1W+4ubtlMB0pZ4owLd2SAt1WsrOV48MTh8MCtmN9s+dvvn2D1ZauH9htt6y2A8pKlC7EWXL4eCTHGbfuQXVMD08gKvfffs2rb245P194+9vfgEj0K8365oYXr29YbR0qz2SfyLKQfebwdKYSWxrhXjJ0EaUtylik7VFCEKfSll05sTw+s3uzZwkTeT2gleMUEn4pzGNmFxa63rHeSDyGbu0YujWTr+h+Tdf1uFWHfzBMU8BYzX7ocdZi8oFcI/16YN93PD0FUlC8+cXP2Ww1mcTl4RE/RsJimijxxUv84UKsfzhA/u/9ssYgf5hb5vJjJ7/d4DTGCRSVru+wxkAtDXBd2+N58M0OseRmFbB6QEqJMZpZSup1sRtzYUm1GYLDTMoFnxov94eZq1DNNVBpLAIhm3NLCUlnVcNEpnadVlqhtWV15dmuOoOmXv8OornNSjMFi+ypJTHPc4vCXc0MVUi6vqPrOjab9nWskWjTig9C0BjCqcWyKhLrbAPn1NLGxFJinUFQiWEh1kwMnlol3crihhXD0CNoyMScM7mWqwLn2uzTFWUdUjSEphANGCSUpG3U2hOA0BqpJa5vHrZlhKgSlNjq1N436po0iNKwihV1ddwFhCqIXK4ksfIjuDyX2tRLUqNtBzmjnSKmVu0Von3QlVQJoY0WtNZX60S9an5oy72pmbylki1fnf7E9MKL7o6P53esux6XA4dUGNY9X69veB4WlvmZJCdEgs16zXlWGLfGacPl8IQfT2A33N8M3O/31zqvw7jE48MTKbdtbyHh+j3bTcd2M5CDZ7Pt0SLxfJ65nCZSfuLkA6te8/Wrl3Sbnu8ezhwPFy5UfITnp5kcI5NvYIv1euDFyw6pJPPzmWQLg9Fo1ZTUg9PMxzNCaL752Wv6fs2mW7O2mttecfnygXGuaN2g1v3QkcaFX707kqWk1Ex4fuDw9pnN/S2/+OYlfWdZHt9y8D2nz2fs9o7blzeYYY1gixkGjJNsX65x6xXvfv3A+PiB1dryy//ub5nPC5dZMT8/cnz3HU684Xz25CxwfYOYiKGDsmbxAb0sFKnwxwu267jf9e1RqljspqfLe5CK8+ePrG/vyNFjZGT3y2+R8YLtIuePn9HrFecvGdwA55n7Nzvm6nBf7/jw/Wd2e8urr/6O7//514Ql8PJVZbVz/P5XI/2q4+tXa4xVrNcSIxPH6cynj4HHLyP72y0vv3nD9m5PSQm3knC7aYzTP9PLCHm92XqE6emNIy5zS8cYi+0UQlS0FOTgqUZRlWQaI6lU5pRabCwJSm3aHKunRtUShqIdwgmUjNjUll9TlPiYCQW0kgyuwXBLbbXUKiTd0KN129xLaotvLekKJddstz3WWm7Who2TrCzEeSGmgpASpQTOaYSAZR6JMeJz+6CYF0+pEqE0N67HGU1vLVoKYoztJioqUho6a5oxoWqk1tjeAQ3mnq9phJoTzmmS6vDzQqoGrSRaFqwIGCQlFVKpVAQlFyYf2zItVrS5gtmFQkqBdrYtv2TjEOf8g/pcoqXEOUF1jlkpvE/EJVxTMAWKRzn5Y465SNHabaaBzdO1qaZMRqdKqZF5CigaDdE5S/IdlEhC0CkFyoGyuF4gbgXrTqI6x7LMCO/R2qK0bXVvMyBUY2MQKpTlD773/uihK7oBk2ekUGw3dzyOT+z3t0yz4MXrv+Hp9B6nHY/+C0t+4KWSqNMX/Hjm+fHIZakMTjK4Aa0VK9uRUiYnT7fZ0xnD+TyCVsQsGTpBHi9tUTYkpnmmkslW4UeP6TqE1lzmC+N4Bqfpbl5QphPaCJZ5ZEIyTwtFGF6vLDHNxCj4+HSmWsOrl/f0nSaFC4dLIiUYVor5MFFjweWEL2uGb3fMR0HIHoVg1TV9dMqa3giU1Xz/EDh7hVvfcPfqJW61RXYrRFlht3v2LvL6Zzt6Uzl8HpFZIuJCLpLx4YBZndivDSKuyD7y5e0jaZlRAoyGJWTOhyPdaqBMpUVUrKKjIpQhGEOqmZQCS/AIC8cvB/qhb4vLDrquB2N5mNftcVOsCXGiiMrx3YVKuwVkSsNXdgsvvnmJMZZSE1Uq8uxxgyQtifFwQek2HhLV8dU3X2E6xeITyxz58vjEdEgN+2kHvv7lV6y6imLi8eNMmRb6bUctgmX88znSYgr4OTbt+NogEI0L6yO5CoahVXhTbJt0QUGUZvmNpZIrSK2wUpJz25+HIlBX8y1kamkZ2Ab8q9dCgMKYNk7ItTQIeM4sqSC1YK0VRkliaYp0UYDSlmz4wDS1HO/KWJzVpNyRpWput+stVCnRmnAptwpt26WSUFSpca7DdANKW4RsVd9SWnVY2XbbN85SSqX60hZ3LVeAFKlVqKVsqqGUrpGrvpU5SqtQB9kKKLW0+jTXMoTSClFaHbdUQSrtz0yqVAGut1TajLaVFmi2aVEbCEtLul4jVULJHyJtrcItUrjOsiUlC2oB25kGUr8aIaRss9i0NFhPBaRsih20arQ53dIm8hoV01Ig0JTavqcyJJRSaNOyyNK0ebGk/XvX0nLNf+j1x8sR85nB3TFYh5ARGx07s+Vfv/xfvHSSX336V5QwONnjRM9CRi2QykS3vSGVyPv3H7l7dQ/C8OHtexIVnxL3d7eMy5F33z/TrXfsV4n5sLDdbxBzIM+eJSUijQp0/9JyPgf0qieaHmcU/u0DMUamySOQ7U1sJG9e3qIVPJ4SVcGX45nV3S1v7lacny58mSpLTGxdT6mew3Hk7cdHsI6//cu/4M19x9svgRfrjC1Qy0RM8PE8Mp5O2G6DCBV3f8dtZ/jZX/2UTlnuXtyjtaLTmpIKT1+OfPjtyKpz9F2ldz2mX5Mnz6enC5e3zYJx8+IOpQuPTw9kJP3mBTIXkvA8nmfc8cLq7hZjB+aHB5zV+NMJ7xeyVlyq4PB4wVrJ6zf3zPPM4AQlFJKf2O43dOuep+8e6VcWaVeQEscxMJ8u7AeNqIVP373F2J7/+J9fMXpAJM5jYXXjOJ8X3v7+E6fnJ7reEqeBvu8ppuPw+cjXP7/nOCvqeOLbn9/jzHBlDMwIteLwVKAsKFl4/t0D0A6fP9frfB6ZpgsohegswVfO5zOLb8SpGGZi8JiuZ+h6hn5ocG1TqT42a0CtpOxJqSBVc4kJpVESUszUa7QopwawR6nGsJVtKTTHTFWCimZ729PpNm9NMTHFVsm1UkMVTMtCPlcezwud69isbxiqIGSwppBywi8jIUZ8agf5ZQkIIYmp5YT391u6zjKsenbbDV0/cHd/32wWCGIInE+nlperCSVl4+giKDkRfcAvC9N4QQDd0FNLYRzHdntVFoTEp0QqpdmgUQhp0K5DGnCi/Wx4H8gpMU0RrpZlbTQpeqy1GGPQRqIAbRvLFwRKgO0VrcvQzBvzYUTUgjIThWtZwXRY1+GuItFcCiUllKwUCcfTSAwB55ogU1uLHjpqdWjdLlXTvMC0tA+K2tpzIBlWDm3UVUufKFeGRgbiHNuB+6ceuvPliNtbfKwMneYST/TeMgw7SlwY5Jrn+QmVJBDp7Yqu80DHMh359GVE9po4nxlTaQs349i/uCHGQlhmlAXTFz69/0CSFtf1SCwYgzWWcDzTKwg+E6//4NvdGrPbsBogpELIDc+YQmFaInIwHE4BnzNFS273L/j2heXydECojhIXVsa0bF+GefbMRXG7WvPNNy9489ULXm4E3789o6ricPLkKui3BuSWvAQ+vX/im5/d8/XLnuXxLZcoubvb46xDK0hVs3t5y3yckMWQFk8QC0mOlKTobl4S1ZnP796TyxOrVc/iFbZfs7sboCik7Eh55vTpC/HLAze3CzEXyII5ZwIRWdoCxgyW5CNPD0d2N5KuX5FNpVSHjwn/cGReIsELVvuKnxrcJSPa1/SJp6eF7U3fJJMyoJxGVk0+R8bTyOU8IqwmIZBSYTpNkSv2dw7jBraD5Om4Jk6FqXjKnPjpX79s8cDThVAyxy8HOu1QRjfm8J/p9QPbIJfA7AOqwLJ4Fh/JueJ984dt+xVI2fxmNZGDJ4TIsizUWokpk3NBm1YoyDmThSD4QPBzK+ykfM3WNt9wru19m2tzpVljGJxG1MQyZ2ptTNkmxmwLOx/bLbszDmMt2+2KzarHaIn3sYFtUmmyydpuza535FiYc6BS2QwKoyqqNmauwKFVQYuCRKCUaAxgociJFpniWlq44gxTriy+VYfbf6dt7gFl5LVE0cYFPrQygtIgi7qqyZtFJKemtWps30pYAipGrNbUUqglU3NrnZTUUgxSyPb/0e0AbkaLhF+aS02VJk/ItdANEuwPgPr6o9G5pNTIa5epQXNU32rYSjZJ5tXGUatgmQO1lKYmUxrlDMYaQLRDfPFE6o8Qx1KaZ07Uhgb9Q68/ztNNgfH4gDeK4wWs7nh/eM/95jVJeb7dvmHJFwKZcTnR+4H49jPL88jlvECnWPVrfOlwVYI0+Gniw7vEtutYpom3H0+Udw/cvrzjbtezvdkz9AMf337P4RQ4+4RUmXx1hwkMY0qc3j0xng+EVPGpzclWK4MeBqZ5wV6BEy93lnUnefp8QjvNPJ5BFEoxHOeJZ59QCH75y5d8tR3422/2WDFxfBjZDCseHs7MekDkgJ4X8uQ5jRO3NwO3TjM+zPzbw8irlxt++y//xOB6pLYo7Xj19Su2tyuE0Cyz4vHjZ+ZjZbVZo0Vit1KUmy3Hw4Gnp2devblBisTv/+Utw2ZgZVN7cyhNEpbndxe2g6SPkdPzhdPlBFIQk6bkiu56aoV+iIRxxA0aMzSik+n3zGHm4Xe/4f7FxM1PfoE4RqQJfDkFbJ/pdi/Z7A2XOVFkoY8BKTt+/5u3hFS5u91zORZ0jdy92eP6Nbe9QbwaePp8QinBX/z1Nwyda2bbeSIskXzxxFRYzolBrej6HiM9u2//fOwFozUC2wL5WVHJRCAIQCm0kljr2G13OGPpnGZZKufLwjj7VrmuBSEERQhihiKaKNJPiRACy9W260uhCNCyPZan0pa7Sio612DhMrcoU6n5avhNCARLqlcGSUVrw8v7NS9vtnxzt2LdKyiBMVRiyCwZfBFXeHezBC9LgloZOoMrbft/9JFzv7CbJ3SNGK2xtkcbw7ByV0WOJKfE+Xgg1YjrV0glsb3B+g6/wOl4uZYmbDsQU5s9G2MBmMe5VYylwC4LSrbEQE6ZcRxpy8MGjQpLY1fnVFmtevre0XUWqISlIKHNh69adNdZEobFRyafEKVQfaO+lVK5lR2uhxATFEW5jkfGy4Xj84XD8wFjFP3QiGFaqcbarQKpJaUWXJUoCX3foYRq8b1rT6Ck9hSZQxNsKtkYyq4zGKdx6z/10BUCbTQ3mz2fjh9xckXX75sqIxUUz2ipqUahsdhSOS+JU8jY3tKbwHR5Zrd+g0oFURRuc4MxDqcS52Vid7dCq8rQdaz6DaSCs4U5ykYluz729L0jJIUSBiPKdbNo0HkhRo/ShudDi6wIqaAo1hvHsoyMR3BaMc8eZwx+WXiaJ7TSWCUxUmOyxOKQKEYfqKXlBac50uvCXDJfHhbOy4yPbds9zorjlxOr2y3TtPD44cB20x6l/uYf/g5KY3+WlFsbqVZubvcYI5nHI8t8QTtNf/cKpsQcT1gjuXm9R9SKv8yMvqJ0wlnDujctHC4E1vS4TnBZIqa72o43Hbv1ClczVglqTgj8tX2T2dxv+fxvAvt4YvfVkW69IvkZ+dWOPJ3RnWRZfJOD+kzKE9X2RB/Y7DeYzZZSBU5Ftve3nL/MDH1mmhqZSwuN1ZEqM5/fXdClcvvtK+ZpRgquLSWNdj0iVwp/vhqwlE0yqK5LI4pgWPXXLb3AyPZDuF6tsEq2WxLXG5ESqCIQ0qBUm/3GVNrjp1QoI9C1YkqBmMjeE0tl9oGU6jWhIFBCtIMxCyziuk1vc8FyTVTkq4TSGk3fObarge16oHO6PakVWgqjXnkG1KacKZlpabofrZsK3vvCElvxooTYDs3akhy7XaUf+raEo81Pay3tpp4rpVSQ12WUrGilmJYGelGmtPr4ktGmzTap1wZaBWhITKMrThtyKngfW6GpCnK+wtd+yDfXK55RNTNxCYWUISWIuVBTg+4Iq9pNVrRsdC4Qc5vAg7x+7YyUAkomBY+fWg3adK01ZzuL6Qy2t3TbVVONxQbSEfDjgUwVCJqpownZWhIip9IQm117L2h3BafXPzw6++NiStPhnMOtBvS84qsXr3l4/EyicDmPPG4cp+OZr9/8jGP4zLrc0suOflB8/nxkCom7+x2yGErNRKVYuw1aBGqC3abn/m6LtZJX93s6Bc+HM49PC916hz9d2N9ZevcKWeHhPFESWJtba0Yb/KR5HCPjXPDCEnXESUNOmfcfL2w2Ha+2lufDyJQjqUDGYEy73dxtNkgSf/mTe17dbVhSAxt3zvJf//Udi/c8Pz4hrOQYKv1+z41ozNNQJduv7znHhRQFw6s3CNOx3brWk4+C0wRaarSDzd2eT9/9jsePF8ZS2N29YNcXjJjwYeTheWR1s8acPCVH3KqZdEnQGc16cK2eyIad6tiXRL4cEEJyHie4XDidP6IE3OxvGVZr/FRZlsD507+y2axYf/015+ORj2+/cPvtt2hxR7cynM8b3PbCMs58ev+AUIopB4RK3Nzt26LycuLNjeKrv/pL/u9/+oxImfPk8UvCmcLkej59f8FZ+A///d+xHBfIkr5bIWWhf7UFNL/5zQcef/8du99l/uf/5b/JGfr/+1WoLaolIASPqBktFLZrj+8rZ1vwX7dH3XEJSO0w3YpeGgaRrgqbtgzy1x9SISGJDBJCSm3GGjKx0GresiBFMwWPc0QoiTOtxBpSZkyN4ZqrpCAQsmKVpLcWaxT3+zW3uwGtZTMNS4hxZhznliDIgXmJxASXkNqOwTqqlMxZUa+ErsVHpiUyh4W+qwxrgSuwjJ5crtgJQdOoK1jGC37xV8Zsg4rrriPGyGWc0EbhbEfOmWn0bZEXC8oojNEYbRqRq0pq1Sg9XGNiCiM1zjUCWm8VVimMbos6UVozDAmqN1Atx88zKS5sX67RncOk9kFFTNcnmEqWsMRInj1GC1LK+CU2pfvg0PYFiszN3R7rXLuF52Z4LjGjfgTptOVnLbVBcBDE0BjBomqsaTfgbmgoTGVaU63WP9EcsXZbtKxMYcQqCTkzTSPSaioZZ9copbGyo+aMi57pfAbREUUHcuT5ceTubmLjDFYLvB+ZSoayIJVhvXOsVZMWnnNgWQLWJURRbLcdhkKZRkotDFZQddM2VyMJl5kpBOZxZvGVYb+lExZi4kzgZrvi1StHHWeyUCRpWs1RCASOFDO7Yc3pcsJHOM6e+ztJjZ6Hp5mi2kZ7KZVySbx+84KcArJWho2CHNBKY3wkC8HPfvGGQQt6Len3A53R6JVAlMw8X4izJwSD6m/5yastu9sNX37/PadT4vycmGuinBd0SlgL/Ub/OCOax+agWm0Ghk6yedGx2+55fleZxhkIhNgOWCVAlJHlNLHarBHAaVwwXY/rQIqOGBPpcqKzK0SVdKu2xfYXmE8j3WBZYqFbG1Tfcz7ORJ+4u91weDwjqmd7u0cMAzF7lIvozYBTiputRmuBdoZhtcLPM8l7pLSczzOnw0TE/hnvufCDGz3nBluhlOv9riBTJKrmuYqpnT4lF5Dpmg643uZyJsSWdoDmO6uNlkjKoTFYU2oAFSFaPbudqOScqEJitcZZSQ6BXFujrVIRSjUQjWjxMq1Ug5hfkZIpF7SU5NyiYIsPxBDxIZBKvZoNXGvDXRGL8hpFy7WZuiuk6lwAACAASURBVI0zrLYbOmuwzqL01cQgGhS81kLOhTB7nr4c24xTNIqcRFBSIMdAjJ5cdDMqlLZUkkqgjLrC15tQU6mWXlDagDHtRvsDv5JW86XklqYQGuEMtWRSbJE8qRocvNDYD7W2ebO1plUC54C4Ymdzqa3wEjJZtfhZTgVj2tOINe09aqxDoMixEFUb8dQKUklyLFQp0EYgastQV5qFuUXczPV71TRLRbf3TJUKUf/wW+//Y7yQ2K/vGZ/OmMFyGg/8dLPhn5+fqEUwLws3u9c8XR54ZR3xwwPZzzx8/sD5ecLubjGugSn8UhjHmZgzRkq01UiRODx+wa+3fP1ig64OKT0h1lb3DfD++/ckCs5KLksihEKQUP1IEhlVFLtdx7AULnVhPkUu1zzwTi98+N0ZXxOrfkB7jzDtsJU2sess59Mz+5uBf/6X77h/pXm5eUGKhSkK5uORHCO7u/uWvwwZZxSuRmrWqL6DNDOOBdtv2G1XdNEzL5V4nkjaEP2Zhw9fWHJjDtzcvOT+2zXh8Inn7x84PZ5xG0f/kw3Hx9SqkFoSponx8Ilu40hBUFJBK5jmmdU68PHdO9YryWp/iwwLt7sd4xjp9jtEyriV5uHDA1FEpO4JesPsIyEcCaHgp5EaRtywbrM0EjFbVuuex3cBq2H/+jXdpuf04RO7255+vePp/SPj5cjQDdRg+PZvf8F0TqxcYp4y0/wdhJ7x3XdIbfj9r3+NEgXbr8h5zewzP7nVbP7yJ4x/5Dbw7/2KsT3ixpSQSkPNKN3mptSKsRanG5C8LcJcY8aWAKVwOl3wS8AHTypco2S5/VDSWm0htcKDsw364nNB5Ho1/MLKtcPb/8CjRaBp0alaocpKZ64ut1qwxvHpyzOLn1n3PVZpUipcpsDiPUJXRNU4IZCy/dIKdHs6RonYFnOpMPTNoffqxQ1WicbB1U2umEtpgPLr4iynSr/e06/FdVHWltoxZkJozS/hE2FuN8R+ZRvYSsqmJkoZTxN1KjVgjGXYtv1D8M0VN4+eMCfCXDG6mS3CfDUEl8ZSELKgrcUOhpIzfhrRxuLMgDL6mtQwpJiYp5k6Lu17qpoNQ6iGjgToBovuLDGURg9DIUuDoxuraSvmgjWS9auBWiRKmaaDbx2TRksLqS3in55RsjKserS26Otc+//t9UcPXe9nno4P7O1AcSsOh4+Nd5kmtF6jtWWnNnw5/o7bLnBeMoenkaQU+xevCPOIKJo4RWRuGTdhNUJYvD9TteVuvUWatthQKWJsh3SV8/GAzAtVQ5wyp8Mzk9xgdUSrgheB2Qucsiw5kaiMY6Yawav9lpwSnx9HplzorG0JDmGQxEbtl5bRJ4TMXMa2sR5Wt9cfgkBVit3NhuBbrGi9tqQYmJ4vxFrY3qzRMvP544XLpPjJqw2daJ+U6/WqNXw2HfP3z8huYDusOTw/AIEQLhyPF0qWJNkEmDKENi+UinmcWEJimifspKhBIlVhM2woJSCvjziHh5H+y0f6fqDvTwjjEHFNjQl5pfxnSgNyCMM8nsBpii7ErEkpY6Rot96UiBm0kwjrCPOCFjPLJWK1YLvrGC8Lj5+fyCHx4m9/Ri8qvVrIEtzK8Hz0nJ9G9i975qmwLCPzeWLY9FQlSaGQQ2A8nDieTmj354uMpVRbl78UpFXtMAwLuZZG9JK0f0MpQFwh1RVKjpQrS9enxGUKxALKaKpoN2UfPDFezbyilSdSgpDbfFTIZowtpaEcQy6tCddipz/OUyuSkis+pyaeTBGWirG66czhR9C5UuKaG9U/yhNblbe1PBGNeJZSo/J1vcJaizMKIyXq+metolKunOBSmi+OKrCuQd1rSfjJN7zilaOgrpyHBnxvtz5qvkohGyKzREk2qilzTEKbluYQtenphbymoWur9hcEi/cYJa8jnAa7EaophUouLHPE5opThhIzUkiUqGTRZuIpJIxpfGSpVZMuXKlmQlRqTk2fXlXL5UrTGBpaNcwlpYHfVVuWaq3IOSGuC9SQM/5HHdI1B7wkjLk+Gf2B1x8/dMMMubJ6/ZKgBSEvvFskPs70qxuM21PQ9FqDsGQ7orcrtnNiGUfONV/ZnIqSE9ZK5ujZ3q54fh+IyaMy3N/f0AnJaZm4PI/4LJmWC+fDiNndcjo/cBIrXtw6aoQvh2finBiGHU4rllooy0K/XiPEwmWccF1HkAqnDZvV0EoJurKkQMytrplrJc2ASHz15jUv7m5JuTKsJVlIrDS8f4zYNZw+n/DRU1F0a0eSicf3Rz48jrz4yVfcvlDEWeD6jvVmTfIjaZmYxjOiCo7vf91mfM5h+zWqtyxHT4kBN6ygJJzWSKnJweIzjFMliUIIhZoSolxY79eEmMi1cJoyXz58ZrNr217bK9z2NTFWlHJ0qzXlkpgPR+RmYCkSqyRKJszQkfIFVCUBWaorrDtQlGI8L1yeR1KVfPNmTVwS7/7tPdN54as3L7DWUvyF57ef0MOG40Hw4bu37I1GGcE8tieVKg1FWlKBNC88PZ94fPeA6zs2qz9fDTjVcq2dtptpJbdZnV9Y5MJ23UPO5FQJvt3CYpEskyfESCoJlCALSb5+nZbbzSyxUovAGXM9MAK5TZGveV5aJGkpV2MCWNEiarW2eXOp+XowtzpxKa2Aoa1DqvZ1ARA0mDaalANCXr9+yS0bXEu79SqJX/KP0bJBNnKZUQqjNFrJ68w1kWK8lkQquSSU1AzOIWqh5MAyzwQfGvRbVJQS19t5U+XMUyBE0fYmLTiL0YqU2r93WARxmdBaIaWi0CrP6FYjkUoglCIGT8kNDF9Fe8TP10ZcSokYm+pHmzZeSNdlGlenHAK0UWij24diqWir0VoSo6cs+co/7nCdQvcdymi6vtkzVI0YRTOD1yv3N6f2q8p2Sw6xWSuMBZoRo334/Ikz3b3bcbe+RUnF89M7apTUuXCzegVvR/zmzPPlzE39f4h7s17LsvVM6xntbFazm+gysjuNbXQoG0tUFSUkLrnhr/Cn+CUICSiBVIjCUBjbqmOfLtuI2M1qZjN6Lr4ZaW7Okchy6ayblEJ7R+Ree64xvuZ9n/fKc/kUHit5mvnw/pF1iZwS2PPK7eGB3jUup0BViofHiTkmlmvmxec/58WbF3z7JML02gzVONbsMMeXnB/foXXi2FUuV4Wh8sVnb1mmhZgyYSoycsiace8wDc7PV07TRXKemuV0npjWhVrhcOzYDZoSKqmC6z0hKV7e7fmzn7wkXydO5wBN8c1pon/9hjq95+ka6HrHOl35cPUodWbnRr786WtKSTx89YEv/ouf4Jzm9PSeuCzUsnC5LsSQqbrj9rMv2XUdl8cLuVT6myOn04WvfvU1OSuONwPWe/qu4353JCTFtFwZfOLmzZ48eZ7en9B6lYyoVqm7I+8vii5cqN/CJ6+L5DtdFXcvX/F0Wrl/dYueZ4wDywxVYztYHhI3CpYpoVukesd8uXK4u+e8WlqvUBj+9q9/zek5YLThz//Vf0pDYTrDNXasHy40d+XhQ6bGFd0b0vcnfvbnfwLGcp0ScY60MqP7nvs3e8abO3JKTKf5n+D4/HGv0/WEU6LfjEXSGKY1U2tBmyYJt0pzXRLLkpinhYoRRkhtxJrJJaNMxSipxMRMMKJtR455MxVAymJiUPYfJVMpFWLdeArIoieXQspZDlKr0RRiluh23SDXwqvXAy9f3nLc9bA5pIbB0pRFJ7HRhutlC40UH1kMClRivUZibtjO4m1Bk/Dbgo6aqTUyTVeWaWGZZ3LJYtYZdpSNQhbjyrJGUlhRZgNQOY0xVqRytfI8CbvWGEng1Sh6Z4TqFQI0WK7TppOFvpNwS+M82u1I20jAdI5UGgqZoZYq72dhC+8Mon/WIcioIn+82CS1OOdGKxFloaUNOK4gzJnr0xVjLfevXtB3ls41+p3F3PRczlfCtKBKolpReuRcyUG0ya73oBTzEqWqr/KeKq02mA9kfv9Q9w8eusPg+fW7v+Ht7U+YljPeHygp89/8V/8tf/W///eE/EAuF57WwBd25Xq+cnq68HytJGXIJWHGI8u1UEaN6SzjcKQ3jXmRDXHnNNN1onOWMBXO1yuX68rT+QmwPM2Bmipm5/C+sD/uKKGQq2JKUrGEkIjAbU2crhNZW7SD3vVcrwsZsWwaNBZNiIXO9bSw0orYez99s+cwCs8hYQkx0/U7SImnp0QshuXpQimGpQYO48j+6IjhzLwYOt+R1jMtygO1hoUwXxhvD/jiiRE6UwjTjDca6zqU9YyHW0JTzKFynU+4rBiPe6xqvDh2XH0lTs+USYAb1wipFNbsqEukH2b2Q09hT3OK08OEGz00L+myKfPh63e8fPua3Cp6WdH9QE2Kfi/ay1wVKkNWkfUyc3v/ilQaOSau15XLJeK948WbG+awkqcV96Yn41iWTHy68vKzN6RloC+Bm/sDJTcomfEoKQp5jSgVt1FKwJRCv/v9c6//2K8QC6bTYk01FrPBqFUTIb4ymoYAZJQ25NZIOTItYnjItRFzkjmuMqAtVsumXivJgIupysKnSMy5NYJYTKWRK3JAaFEhxJRJpVCKKM+81v+fj61IlT5Kx/Zjj3WKuFZyKqQokjXbe1RLpFrJVdrjlDNpA2tbNN4bQRLmLFpgIzjJFFZKScR1JcUoLIZS6Y8jru9EwlYKrYJxnpwry3KmtrZF18ic01hNUxJM2XSRDkBpyuYYzVkMByGGTU3QWH1giAHnPK6vgMyWR7OnNcgNdNPbe/AxWw3a9h41IG8dQWuKSqZW+ZoYIpI6Ib/jdVqJIW35fyIR1Fqi2luJVN1Y54W4BmyraAwqW3JuIm1ToCsyRgqJHBLQKFu6xse0ZdV+5KH75dtf4A9vWR6/YexfU02lPJ354niH/sWf8z/8P/8Lb29+wv/18Gu65mh55v71S44PMx+eL6j+yH6opJaxSTH2HZXAsgRBNnrLqBvz5cpzjJRY+eb5Ea07VHdDiY1XLw5UEqVY7m86eWARoXlnQDuDfdNhzoFfffMe6xS3hz2xWh6fnzDOMSjNuMVvYCsxFjIz3ntGFPux5260/PKXv8btb3CqCMovZ77/7gl9tIQPEdff8PblSH7+wJoL7757YjjuuBkszmf+z3/710xroB92dKpxfj5T2te8vL/DGcfz199hfKWzYN1BFB/Ncu8VAxV795qQKn//998zn1ZKDhyGyhc/e4PBiLRo6Hj+cMWUghssRSnRKRuP85qUPWlN9Dcd88ZJzdpwPT1gxx3rFFFtwhiN3e9499V7Xr15Qyh7fvmrb1kfJlbzHTE0np8ipu9pxqM8hLLy3b/7e+5u9ow3R6y1PH73jsHB+uEbnLbcvX6FMw7rGrVAfH5id9xT9m94eP9IiAWKx3vHYP94aMcpJLy2En2jK602dmOP0pJ40GJkyZm4zORcOU8La85MqWz8EIW2HrTMEjtvRMYlwlSs04SKxLpbMGhiCEK5MpZucNisyamylkJDbdle25IGTWmiOlBK4Y1kfr19sedu74mlMsVCylJVGWtYLldCCMzxY4S7wWiHM/zA662tENdM6npSiDy8+05mvSFQSiLFZePxWpy1dN5iTKWGQisFo0XPrLVijZGaEvMc0abQdULjGzqD1cK8tUbJYkxrWslcTheB5kR5nyqKNUE8Z4wqdC5uqRCWpjKlqB+igPzQiXPOWVFjGNHoplLJSUY7tVVaajRlQStiSjTdxDRRCmlN+L7j5v5A13VUpVmiRDJd4zMVWK8rlMrYydi0G3d0ypBS3rTFWcYcKKq2tCaXX6tF0im0oh9+5CLt3ft3nNPCfX/g8TLh9zd8+tMXfHf+nr/6u/+Nobvj9TZgLzWyu7nn8t2TCIvtwN3eU9PM90virvPsP90Rp0jOmesy0407TpcTfTfK7CwnMHuGwXFE02LlHEWipVTj/PRILJZmIsb21KywxvHd+weep0LVlhe7nuu8MK2yjVZqFZF5LORqscVSqsHoSJgjN6/e8PM/fc375xXVNL6uLNcTT2eR+yzN0OaKcR2mRb769TNaw7o2Pv/8lmE05CXx+Jxo3mC84nh/RJVCbI11ncCNnC4Xnh+fyDEwjgPjTqhKtmZohaQs00nGDvc3d+z7yjKfcXYFAlY5tPEYp5mzJYSFtsI5NGqFriscnOZw6CTRNAYMlX70qH5HniZMNYS0YLSmNU++zBjdC1g+V8bDDbo0Dnd7OlfQupGLxIDnqnj/MLHze44vXvJ8DZweP9DI6K7n/OHEcRzItwrySrg2lHL0vmN0hmYb7s2edWfxQw+mZz0//ZMcoD/mdZ5mBrNj7A26QSpZ3EvaUFvjMHrYQipr296Hphj3PTVVcmzbHFFGUYYKVeasMv9DJF/bjDXmzLQkGo2917CxdXMW264xkv/Flir7A0ZRNxQaa5SESnojCbhKlj1Q5aD52PGVQkHMAtZorAXVypbhJhhJs5kFwrLyoSZabZslPrNcr1inGcYdSjXCPFGchSyROFJtCgCn80Izi2J6Y10T1Lot0irOyb9lhSVDBVIQ7OHHsA5ltDyvVZZoKWX09j7GlMkFNIVaC8brH4J5GvoHu7G8ZWIuyZvWVlKQFWqrgHOQPzcbfFxszWUb64ikrCapisUAonDe4TqH88J/QetNsifiQreB5lvTm0wQMWfVhlp/ZFzPv//NX3N3e88nv/iX/P2/+R956Xa8fPs5f/dX/zOPMfOL129YywJV8dvziX/x9idM55VkDLc3jafLmfPU2I0GfzMQ1khcJy4xst/fc3N3z5vXr7G94/lpwsaZ12oi5Mr19Mh1TqxFFhXEM/74Em+udMqJprEk6roSVoFghDnz7rxSUhXXCT2lRdZSMHQ0U0kpkGPmaYaXt0fisvDv/+Zr3n7xil/86Sd888vf8c3jwuH1jhIC82VG1crjKdDKiu56lNV8+ekt1xD4+vvA7thze7PnsOu4fXGPw1Bb5bDvePdVYj1/zzDcM37xBfNyhRo5HAdUqdhdz3qZONiOy/PCMICzhSWfCcuZ6hWse5rVYBy1JMygWevIc4DnsMlimsbMhZ+VM+Po+d1XzxxPZ4a7FxyNqBN6ZXl8f8KPmrwqbD9yuy8o09C58NmLjnS8YzktpOmC6hxmdyCmwPkSOfQdb//sBcZ3PMyFmA1ffrmnOYu5itpjiidyCLxQe7TzGBrzNaGc5/wk4vT9qDFdZTF/PPXC0ylwuxvpleS1LUsg5EY/WIzrsG7AeYMyUFRkGCuuSkWUWiQsgRAaBdHuRiVUK2NE5N9QIi2ohRAyc8ykTd8Zouh7Q8rb+EIsxGKDVULwQrb+jYLGcDOO7EbPZVppwP2NJsaV62ViCpHaKtclby18IadMaIFLFhmidZbjvhMOghLp4bRGutHjOs9uHARWU2FdEspI1fb+3TMlJ5xVWOu2+HInKov6kWq2WXlDIQUIS0aTuLuxeOdwVlQgBUPJihAlcr00qJtyoTcGq6EoUWVQmjCAqzAhKAUToxywOW+0sB6qxToxsizJEFMirqJKUkpjjaXGj3prwBSuy0StlX4YsON2WKZKyxFnYHCOzjsOhxG34SZRoDsrppU5kxNQKjLWVqhR4sdSbpRcUOVHHrpee6brzJoq0+OFz18NtHXi/dM3mJvXpJww3Q21VXbdDTYHOjSDl62lagWvZcubSsU5R+08R+949fmn/OTT1yKVapXByG1tq+TbP59XDAmHx2jHKXv+5M0t80ko+K1UllSoIYEbqW1B+RHjKrEWrLWElGQOpRRFiaaQWikU9uOO273j+Wkhqsif3/+UNE+cY8Yfj3hrmPLE7jjym3/4Gm17WlHEdeWnP3vNbmc5nzxdBy9udpSWSdnw/vsPeGO5f3Vkfn5kvchSIZUTxhoeHq+oAtM1oWIBX9Gt0vU9LWVibGjvKHSo4QA6oWwR91RJ0OTnmLNmiUBz+M7SCqx15rLEDSxtsYtCdQmvZ+JlRWnx3hvfgXUMt3ekNYhxY070u5FW4Xy5EsqC84YwzVQsTkUOoyVMq1RcVuGPA6UWlueZW69JpfLd19/jVWPsDB5NVpt8ZrtotBV+8nqauT5P/3Sn6P/Pl1YQSyZli9eSdaW7gf1hz93tkZvDAWhEXaQtz5mYItMsYv2UE7k0mjKUVrDe4b2GLb8L+MHIUCRJCZR0JSH/Y+XcWkNVTaZQqygYJIWx0Goj1crYSwBjCJHzZcEYQ+xWluvC9boSmvwDpchnI8VEzrL8ibmIJlUrmoYYMyBdiDYG7+3GOeiopRB3IymsAp1pgDY03UTtwT9aYWsraMSEIcaBxm7sqK6wkDZYuCTwggIvB1dRhtgq5zWRKqQiaboHV+itYjcYVGubpC+jjCAWQf0g8SspSlRSAes8/YAs7IzFWIdxAkRXH6GcTVERVUGcIs5ZxsHSlNky4DI1F5xBqmMrHAVao9VMTUEuLt9htYVRnGrOmE0tommqSmjmhtEs8Uceur3aUd2Jr3/7V9wNBz7/7J/xr/+n/443X/wlf/HFX/B3v/23/OTNL7gdX+GrI75/4vn9e+YlS1mfNIfR4r0nxiAZQt5yd7fn05cDJq+crleMsrQi2VSVDvSK9QPX1TJ0QnFStvE3v/wK04C4ipzFKEKGa7hw2N/iVWIOlU7DmjJVCX+zU5pTSBhraLWy6/ccuoH3TzO99jSnOD98z4foePniQKmN63RFhca6Jorx7HYdExXvDyxLY55PDE3x2esDu13PGhfWU2S8u+V4d8N33z2S5sbxxR3T85mHTXvrjZFK8bxgjOW46zjPMH8oKNPhNHw+NGxOfPmTe0pugphTlcvpe4oy1OKoTWFsZUejV4HZQsyF5yiR8vvR4nYdylsChVg15XFmt99zexhxuwHbd2TVmE5XYtWk8A2h7skpstvvWJZCCle6/S2vP3/BbrejY0bribvjG8KSeHj3jjpfMXcD1wC7w56+6/HeM3hNlk4Tb6G/azRXuTwt1Jh4+/qPB7w5OGnTl5jY3ewwznDz+iXH/YGbsUOFKJSsCt4o4iZJqjVTamPNlVwrziEtd6nSkTWEO5Az05rIBckjw8jvTBtSkRwtZQyllm3+CtBI5WPrXUE1jvs9nTec5pnzsqA6x+HY8f59JOZKbpsWOGegEMPMdUpbenwj1cYnR2Eq5AS1apw1jHuJk1E0SkqozqNVRbcCuTIvFxmtKOna1pAwsWBMRLeZpkRVAApNQ6uKc+PGUJADmqqgamgaihJeQa2sBZ5KJ8aLKj/qFCO9TrxIDbdNTirguo5hrGiliFmzxkKKKzTo+h1d39gdErqJE9SPntJbWZilKBQzpWWhGGRUeXPcMez3FG3E9hwl3dz3HlMrrjMoXbleTnhr6Mce6z3OaRTCazHeYXcOvbn4liVQUqK1JIu5vv+9z94fPHQbjRd7LVXnzWtsS1x05o3rqeuz3EhVoaqiavClw9iOWhvTXNkNnmWZmYvleFDQOrwFoma/36NzousHSio8vn/g8XliWjIxB779sDDue1JQdDvHklaWVcLsalG4vmNdV87Lyv7oud873j2vDJ3i6bJSFagm+MFSMr1zUCvjbk/vLafLRR6Q0TF4TcHgRkdriuUaiFFhvMYWzZu7Ea08pyXx889vmVOga4qb/QEzGNZpYUkzt68+5XC3Z10iQ+8ZvWOaJ+ZUuZ4za24MvULVFWc942hRKXP0ntv9wO7+FbU2lvdPrFOhtfeoXOkG0RxOi8Z27Qdhdykai6OliG0zeouAKbphjKPWgjWVFjNoB9Zzf3cQqImT1IySMy0H3M2O63MjtyvaOOqSoUSGXmP1QjoX5riylEDXK45vdzL60KCsBWSWfHs3Mh5vWJ+vlPXM7mWPMWLhuZ4eKTTW88LQd3Ru+A86OP9DXqlUXJEYnbpZV7vNLKBhww5KbE3JiWWZianIYqw2atNSDSEz3DkmdFDbYl2+Jm6zy1QyVSk614lnYXOuxU0N0ACjZHYsUG0loYxGlmsfKzxrNLRIioFSPMoYus2qTq200qhZIDFWKwH09xIjXnKlpIqzhqGTCKBa2Wzm+YclUckC+i7bpRLJYgVepV1XSgnxq8lp2VrbtL4wbktF46SKRucfZuIS0lnIm3KjItliRopYUgZqY02VVmV5mHJF20JOCYWiqEbKcolrLfwH+X9NWwTPR+RjI+ckRgYlxLCPwPJh6OmcRO6gxdihncGYRtuI9fK9RQo8Z/C9294bmdc29KZ9lvFYLZL/llOiJgFMdfvD7332/uChe7PrafPf8PT8hn/1J3/G19/8Dfevf87P3/4nfPjwSz6cHvmTn+1RRbO3A7Zf6XvPElcuoVKconcbMSg73Is9r/YvONyMDE0xJ7g+nJjCwsPTmfM18m4KqJw57uUH/c3pjH00jH1PTgut6zgeBok41o1Xr3YMdDw8X9Gl8hwiIJSoQkUXDUWTtBx4KaysE8IaaAXTDJdL4nRY6G3EtUarieMAS9K8OGb+718Vcp74L//iE7EfhpXD8Y4lXLlcMuPgmK+Jap9Y14C1HXF+xjmLQfPy1StefvEJ6+nE5Xym2wmzNtZGDB1LzrSYeX76NSUHbseR40FTqWhjycmSU+Ww8YOtqYzeEpFcqNbdEmdLMwVnwajMmlcuT41lzTjj+OKLI7vdDUV7Yi3ESyZNE90osSx1CRitORw7QrNMTwvrXOiqkiXqcMP6zRO3Nw6rO+L0G25evuT+dsQycvvmnrwU1vXC+3/4HS4Vbg8dfSuEKZAyfPvtM3W+8PnnR4bBkuMfT72QaybmDpsaGcu+H+hdz2Ec8QrmVUTv87KwrgvffvueOWaWJHpabT0amOckB2gV+VctFWflw5gLpFqxzogWtilCymhdiamRiwDT1Q+JCg1P3YhsRtgKaRVdtJLDmFa4Tgv7wWARtUQNkVYL1hjGsaNtZkqCXgAAIABJREFU+tV+79jvRpoWaM/+MNI5sfy2ItuvbjhsibyCVXS+B9+YZqmkp5AAtS1fNaU2me8aQ8qSRIHvKEoJEa1WnBVOQS1G9LKlEGPallaNUkX+pTW4JpKrUAXafgGyBb8tzSoQY5RAza1qHccB13mcH4Setq4fURq0pskVQsxIZn2hNCG7ud5xczPivEarhNbQd5asZa4f1xW8ZV5FWzx2ftttyhmWYpbYdSeZbaVUSgrU0tDIzLuiN+nYj7UBtw/ERfP21c95t1z47vl3fPnzf0mXIpf1CrVst33GGo1Cy5tjDBYwWijqsRXOa8Y1w81x4OAUD0/vWVPiw8MTlyURcmQNGdUUrWlO15WlVIbdQGegrRmU4XjoyGsmacVge467nukUiFW2t42KtR5NxWpLLYWiCl5pcijMQWAYrkjumR4KuWam04nHCK//s3uWWmimYgt8/yEQsqLrLQ/fP7C7uaGnQVz43bdnNFUkU0vhEz/Qa0XTjZef3BOXidNpwTlNSYkQAtN8JTaHtR2tQN93mFYwXuH9W/K8iihbWQ5HmXF7J93AND0KkEVHrNO44ggxUgA97DAloWuk1kLJkJQW7Wgnt3vnLWtshCCVUQ6ZkhcGP9JaY3fco5tgCZUxXKfEh7Dw2U9fkukI70/kQYNtYA2X65nj4YbdYdzme5Xm92gHo82MtwdqFXyi7g272zv0ODDcDjRrOJ//eOYIazQ5V5I2KGsZdgO7oZd2O4s9d503elcMAstPVardWtFKRgJTSCLr0gL6biDgmA1abgx0TiRT5zVTPkb+FDEOfEyy0U1tul1BJ7KBt2urKCP9dmsy7rJa09sIWqOV8BCaEqhMxdCCVMb7wTH2ilyF6iCaVOH1Sj6dottIiDUVWs0I16rJbLQqXJOsOJqAlySzDEAqXOMsw66XuXeIMjdNEa0kpkhp6YKLrFPkh2Vj3DSoSQImVS3I7lBtCgWASquZ0gRgrq1HW0c/9JgNdl4bZJVh0zvXCmVTP1ChbmhHMXAolKrUmqhZ5tBaO5Rqkv6BGFGcksh26x3G2W22K9FKTYsVuhYlSomU0dowjKOoXbYfrOkf6Uh7fr7ys9f/nOcPv+OT//y/5t38FTy8I9xeeP/4DS9ffsm3v/1fMbrnvjswX7+h2IpphmIKpsI5V7SVkL3v3z2zHzv2L+6ZVkVMDj041DLxNGVOU0A7R/UOr+RWOU8rc7Psxo63r/cs60SODaXFbXJdIt8+zVxi4DjsOVrJU4rRkDYKUc2wROE34RU9nusSuRs8c5pBaRbg7dsXfPv1e8xu5H40zOdMNDtu9yuXywqvX7CESKmGv/3NE+PB83zJuGHk85/u2VnDzb3n5csj3/7mG54fz6A9TWdCAtP3vHj9gnWKXJ4ip/PCXB7onObVyztubipq/OiFL4RpAmXQtWCtkmDHAst3F2yOjDkRNgzgct1ivgdJe925juNg2N9I0mkIGW0DrcgnwFtDPtxRl0kC9ppAdUpc6Q9H7M7zPH/L/WDxpqF0ZHfsOL46EKbAt+8e8HQcfuYJqyNk6XIO3nC8P3DcddjBS5psqzhXefnZa2quTMvCugTIf7yMtExhDYm1NO6nyH5I7CzEeeZymXj/cCXGxLTMhBQ5Lytrlmqu1EaLgaY0yqgfFmVWK4beCK+hKobBoJXFOy0KhrBs37+hd5v5Ac/atiy1iiAR8zbn9VZBLmirCa3w4XxlWVdMhZvDTtKBnUT+rNPKeY6sRWboTlVM3UwQyvD9hydJudDCZTDG0JSjJDFCGa2J60LJjXHXM+wVfppYl0Uu+03WlrOmViVg8Nok4bcUTBMDiOs8ioJVeqNtyWe10jAq4yzYpChK0WxHLZYmCW4oLRlsuRSmayNazTj0DIPj5u4GbTvRxeZCXFZoDaPZgDYOZcQAYpohLEJeUxrqFvG+XK8Y1TgeRnzn6cY91jjs2OHMiHMWa4QclkuhLAnTCq4JU7iUxjLNlJw57D3D0OHGnmFnwFhiRLqIP6DM+cPBlH7k22//lpUdf3l4QYmN1Qa+v1TG4Q6tG//w9S9p1RD3oO0eXc+yOGiNWA1zMBwpPC2Bn/7pP2ewlpgV5EANK2WeOZ0WlIKb44g1lZgT56jILRGLZTeIr/ndhwvzOrM/jLSYeAiBQ/BkCvtRso2sikxzZqki3VmDtFG6SqXgnKHUzNh71pSoSlFVJUXFOPRUb3j58sByekB5GJVjOl0wzWNV4OE5EZZNCXGK1JwYfM9yvqDHjjtzw3yd+fB0Zp4ix1uRTe2cY7msoqIIicsSya5jTfKhfTothOtCq/D65cCx7+i6npoSSyr0xrNTjULlZjegkqKlgskRhXBISxMr6mA8t0ct8dxGC5g5VsxQaW6QRNhWtlFCZXfsZC5vNeFyxd9rbGoMnaPvNVoVfN/he8+7by7UHNgPI+PNEWxHo2HqjGoRZwaU0eS0kkqgNE2rGW803Zgliyp69GCp5Y8Hd4xZXEW1VuY1sqZMzlVKRiUwmNogX0TyVVBUJRBzmgDia6uE2mTH4GVBZbTIllRTqA1DmrIhZlEWsHUfalMybGJbgdzwMUKoifVXSzuv1DZDbZCLknBEK6f1xzkwrRKLuL8kbqYRUsVYoYTlnJgXSTI2umGVYTQGo8S80HXCJpivSWA91tPUDzjzjScgaosYiuiAnUT7eGdpGtRG4HJWpqtu48+2VmktizxMbRUmMjOvSlO3w1xRQW0ZD1WWbGYzQ1gnfAhlFClUKRByEbaENbRSMUZ2PkZvlDYQtMCm8VXGUHLCKAghbyAfgQk5Z/Cdw1iZoZdcSCFjaahRxiG1Qi6NEDe6/NapNMS9iamUuKks9I90pPmdZbr2aFZe3H3Gm5sv6ZzjWhfuxgMhRi7rxOvDG4IOjGRSbuwHR+kMeV7RDSqevjPMpyc+ffMJjcQ333zFdVWUklD9gM2B3CpPp5l1+yzG2jgMwu4tJfD9c0E7RbdGrtPCcBxwGO72jrxFcoSoiYg7KKeG1uCd4nwFay2maaqKUB2pJpQSJ5c2jnld+elnL6lppmiDsQXXhJE6xZVf/fqZ/XBgypXbY8/Dw8wlROYpMavG4W7g3eMjKjVSa/j9HlxhmZ65TpG0RvCGkKGZxrCD43FPRbijBzdu8SYrISdqDFhl6Y89nTfiYlcKoyPWNJz2DFbA2M5YYrP0wO1oef1ixHpPSZJT1fKKVgXbN6zx5DkweMdw17MbFQ3D6Xyl73pyXWi14p0hLQHv9hQsfa9oRVra+7sDx7uRCoQlYoiQDXoviR6nk2yKb18c6HoJCSwJ0IXBG2w/8PTh98tq/mO/StUogyxISsF5R65tGwNmak1A2SBAQp7yWjb2qTXSttzKWVpupeTvWVslpSyLsVyoVJw2cqDD9vvbwgeaHK5yaLYt/YHtwFWoDYyjkUq4biv93MA4Q1ObEk1JMoPSButAxUStatOyN1JqLCFTSiNXWUbtB4OxFqM11mnBNeZEjELcM9rKAQ4yv61tO4way5LJteE7iwwVM0o3jBEpnlYN3bYU5K3Nrt6AUZhU0blim1wupX1cIDZ+gCMoJQs5Y7DWym5ky2lTEjmMvGuCfZRo5rYRy9p24krse0wyz3a9GCmE8ia6i7LJz7xRGCfRPDIetYBG2YozCtv1WO+2ZXRlbEqSlztF1XrLGIwobWgIgyH/2GDKm1Iou5FlzsQcca7x/vQNLw6fsoQTv718xycvP8fUxCfhPX/7u18RQuV459BT4etrw6rGbqf4F3/5z/izn36Ky5HHpxk3HtntHJ1RPL1/4h+eJLMjNosdMtOUaWSu64JWEsy3O+wYnOK6rNih43bUtKj4/tLwXSNMmWwqTkNpBt8FaspcFziOHqUU10Ue/mBWSpPWOa7wkE+sOdLVSDM9L1+9RJ2+43qtnJ+vfPnmllR7bo4d7fFEqBk9Fl7sPCFEDvuO6Xll7DtSmmkGhq6wPF64rpn3DwtLSCjfy5Y2ZurzzE8+/YTD0HFzd+TOW0oJEGENUpVY77HNUYPDjGLj1GrFeLh50XNvJC7EuyNQsKax32mcHRgGaNqyLgmTbhmGTnKeeou7c4yDYZ5lCVH8ANcLWXviaeUyR0xXcbsDrtPovJJKQa9X+l6Dbpyfnhh2Pc5YVD+QlKdOBYgMuwOtVpbLRJ4v1P1IP7ym5kKOhXo90fXjjzsx/wleiorGM44DwziQSxZH1rJyvl54eJqoKIzvcNWwzFfRMC9BFkZNUVqVLXwrnKdVlkRN03cGqxQpJZTVHHsoFIbObMsoUU/kKgdD2wgCEjOOHIRaS/uuhEWQJSkSpQw5Q0iZrnN0XtCHUcHQg1obl1KQhINISZqYG7lUQhDCWFOKXe9IKbHmgA6aZZXAxpQb2iiBqldEKZEEjL6uecskFPtuzUAsmNMVrRSDh86KHri0RtNmy0zTjGMvF0q1qJZY9CrSsm2G67TGatg7zWBh9JrjTtIYvLVoNBRx6FktHYWznpYLzihRyGjR7KlSN8WMXFzWaPpeeJ2pFVCwhkjJkqpRrFTNJSW0qTgvLGJje6wVB5vWDesafe843AxAIyWJHCq1yUXiDKZzNDTtD3Rxf/DQPc1XSrVYf6Q0CDVznU+8vvmMU3hkNCPzOvHp3Uj6ENF4UjozOMNUMs4Yooax39ONBhNXQkw0Ap337I1hCjMKw9g5csm0KozLjw9kopJTROEZO0srDe8dd3vHumTmeSGrTFslbt1phTYdaY3UqsjJ4Q3kJrd2qQmnDDk3rLHkHKjNUFRDa0tKcNx11HglTAk7HHlxsxPpldcMB811Mqxr4fm8YJXjZ18MdBZ2R0NLK6kljsN+a1m1bGt1hzYN5zXzFGlWcTjsGAaHQaFbxDiJfo5xQWtFN4gzRrUsCD29E8BI37PTTij6TVrZ40Hj/cDQeZQuIhw3lc51eNPjm2Z3uKWkCe+tLC2yyHH80JNypXMe43qWGHFJcXsYoCnmKRKWyBoqioB1PTkGjFJoawX/Z7RQpYyBVDA6k5Go695UsZ+GGe06putCTZHhjwgxB8ko65zmp599wm50KITDqrWjHzqZp6+RFDIpSYXZlAYlWWYNWaxJO8yGJZTxQauSzuC9weht6YJIykprbJaBH7K0lN7caUpjtNr4vU028E3wjxoZP+RcuC6BobcM3mxKAKGSta01dkZTi0Zp+Tu0bsScKY0tm62Qtj9TS6DlSKlFEppVI4SVGDLTEii1ULUhxkqqDYzBa804djjrcK7bFodJ/o5axTCxMRLkZzIoJQegs5rOWdAVp5TgEJuMQQ+9Ytdpxs6yGz4iLDfnm94szGbr+IwEsnorVuKU8laUINWwqqIkUGCtOP2K2dIqakNb4eyi9BYGmlBUVFVb5LvZOqEkWmNr0Kph3T9KBWut4szTekvMMDQMSuXf++T9YfVC3fHCw/H2iHMdO0a62x7aGcyZn+y+5P1S0dMjXDXr9cx1qQwHx36sfHdZ+fztK37+5Vu6aPg//s2/4xoaauc47HdM10d+87snlgpLKCitWVMiV9HANTqc1ez7np1XnKcFawwxVH49XbEa4qaxTA10K1jTMa2BSkZng3EaWmVdZ3I17PaNsMLOSouRmrQoSnvGznFZAuMYUPuOh4umI/FwOvPto+H17Z6eyPvHiW8vM1b1eN/xeu8lR2taWEPh5vbAHAp713HJF2JsHA+O1jpO60o3GMbOEEPmV9+8Q1eN+Urx9rMXHIaeOq2UIIsHayr7zqCs43w60w0Dfd9zuB3EfmgrznleHe+x2hJKIpVCKJmWK0bB7cFRQ0LVK8ddhzKahGY+r7QCuRhKLAzW0veaXAZGZ0gqUpYZPcphH5YLeyvwbecCURV+8+sHSmy8OO65f3WHGQZKiZyev8VbSz/cYDtHAi6PE6ZLaDS295z+eHs0rLXs9wcO+x07U9nVzOOHC+sWpuidEm9+WokpAVock1JwkVvdHGSyULJeGM1y4Er+mhVpPqfpIxPhH+O6tVLUjW5VWhPeQJUqVysIW1aa1WqTPIlJoRUByZznhDeRFhv3dwcclZgyrTU6pzC6oZ2k06bLSqmZpSTp4LVB6033WzJ5LbRWZJzdFHHNnC8LSyicpyAeBwp5Y/8Og8L1jrHv2O16joPHKEjzTC0CCjdaLLhGfttobYW05jR9b3mhha2rjVStxjq0grETeLyzlq53tAYpJFSDsffCTrDyX2fNppmWnId0naEqMXOsC3GNogYxBme0VLqqoCgMfYfrPI1KKgKwoRaKldh3rT8yJhQ+aryTMUezZtN1C9RIMt/YFCyirW5aoux/77P3hx5MVzvuu541y32zpsxxVyj1A7HccNvd0kaHf3hkjZHrvHJdGnd3t1zUFWMsMUVe3d6wGxS7m1vC9cqUK9f3j4S18ZS2Vs2Id72ZulVMFlUNzjT2VjOvBasNpTXWVkSv6pW8EaUw58ZhMJRcaFrkOl4JhLlRCUUe4Fq21FBVZebWKrkqfGt89/CI3Q9oA2uKZKPYeU3I8hB5l5lC5WmViJeb3tF7BaqRaaxBcq9qaex8h0ITUiOGBFWhaqSkQquGfq9xWpFDRSl5OG8GzeghBU3D0ZwFMn70aO3RrWL9IEGhRrSbrleMXU+umbAmTN+jmjzcTWn6saPrHUsq27xLKh3jDKUfoFWKVlIJNEk0dRoclTUjrqJSJFZljRSnSKlxvVyoFnY3B3RVjLuOkDPl6VlKixzILtB1OxobxF41vAHbW5TvWaY/XqWrFOyPe/a7kVIa1zDx9Hz9gXGrVCWEwONpYVozSyzkthkamiBXROIlOtvOKazZlkZIobXkTN4wkKX+Y7Wq1cclWZURxSbs10oWVaU0SqsbGF1vo045lOs2gmhNfP6y/KsblAeRllGJuaKSyLtqEzvwGuULtNoWR06WbqIH/6g0YDNwyIVijBgBQpZwSK0+FkSNeVplXkrGajnA2xY7JKMQqbJbqz8kSFhjwAshDNWESGcdwzAIHMfImEVrRefFOeGU2HLHfpDId7PNuZtE1otFeMuuU4KqJIrxwXsjkT8UchTXq6ECFlqmNQvbsq80NpSPXGwfAT85C5TKxW1DKJCILX15I8FticGlin27lR9Z6aINJyIfnhb+Iq7M1w+M1fBQFDdoHqfI1/ySvywD788nzm3kz37xml//3W85zY3PP/2Uz96+5GbvKWHFd4ab1mPmwPdzYJoDpa4Y09FS3CoIg9IJ3yStt66GhyRxJqplMhHj4H4YSBFUWVlaY99/jEPJdMZizUCsC8pmQmgchh5Mo6aKtZVWDFVFlOrQBK5zwmjNqTN8OD3TLx13t47fffU91jre3Fp857hcrqSkeLnvefPZni9eH/jqtx+4zpmWFPujxwwyUJ/WIJxgKweeHwbcQXBEaTU4pTgcZcnYd5plgbDOeGehVVKa8Epzfg5o5bm76SGtWDVIUq333N6MdL1DVfG2h1hZWmK0HXbo6U3BNoW7fYNqBadl1mQ16MGw648soZLiQlGNTjvuj3fs95X47XuwjfkaSNNECwtFFexw5PQsrbXrVrx3XB4j3jh2ww5vO/b3I3bYMc0rKWeG3UCME+l8lsDEfuD6/MdbpI2dzLRfvzrw6sUNYZk4XRfiklnXSAiRNRWe5kQqjVgLpTTiplrQWsmSBxkfGBQlSeuamsSnr6mgFDjzEQojCgNv5QObNtSWNhq9MW9jls29tXIx1CrRMI0mSpsqBLNpXighEAfH8WDJFZYsjITztFCb5lbLZ2YKgfMcQSl6a9kPHTejSCtF2w5d12E2oHpBEVMWep13kmSBwglkAZp8X1oryyKVYe8sdmMtCB0Nao1yEG6KDmMsXd8x9Fs6hFYMXU/nPJ0TMPjHqrO2ilVKZqqDRTXw1m3cY0OpjbBGUUcgF1O3yUUblTU5VFNknVFG3pc1RlJa0U6jMLRWWWNiCYqWK513DENPU3sZF9Qsl4yy5GzQiybVgq1COaM1GTex7Qi0woZEa1qMFr/n9Ycr3U5TbY8eNdTEy+NLkn7H9cOVT4ZPOc0PlHElrx3Xc+BnP33B2GTT2fWWw+i4vdlhkLyvx+fIOa2EJaLqQKgzT9NK5ypoC6mQdODoLClLO+a6nl4lnK2czwtVK467kVIUTRcuKWPMiDWJyxxoykjsTWtYDClnamtbBlP74QZXqm0U+ri1bzKjSVnE1bbTfPv1hZgre2fpTaPlzMM54Z3GaM2u84QlE2KmZnjz6gW70dM7g0M20KeHhFaW3V4oRNM5SjKqbsRcSCtQNoi2GfDeSZCgNdQpkrNsZY2Xm9No8N7RdY6hcxggzSvd0KOcgvn/Je5dmiTLsuu8b+/zuPe6e0Rk5KOr3y2IoAijQQNSmkicizOZfqmGGmkqmQY00iQYQRlI4dFAd1dVPiPC3e+956nBPhENSugyodlQu1mZVVVWRWZ4uB/fZ+21vtWYnCOEiXmeCd5M+G6a0N5pySwzLjgQTy32IUQLqAghevMFq+J6p2snXTf288Z6KWgvJL1wOZt95tA9eatM0bbgvXWg4HpBKHRnCThJif0p49STkuDnxvXh92cZm+LM6XQcf2bTAYNXZu+opXDO1iVWaxn8mjYmK3MXmBUK00y7tdM+cwTqmJqcs+WQjslJ4UUPrN2kBxkBBzNQ2Tbf9MFhaxjjp+EbX9AOXPdEUbFOv5wtfACUnKmtGUhdKrVVzlumNuE4e5boOR28VcWXxr4b42FazOtKtu/x2bYGdvjbdbmDiAHCsVtmCM+2sP6SCpNho3pOqGm30Ifqc2DEmdbtleMy491YlIk5Lp77JpwoITiC91DNj+ucdZVJg+rtN+zNPgh0LCMbEJyne/v9kUbpgzHczVVQmyUOW3Omq1dL2uWc0G216bXboTvFBQ32M2i1DjmSF/RnrY22Z9SBuEhHx+3l7358N3vBwZcPf0k8/Jhz3nn1+oaL3PH24Zf49c+ZfvKP+G9e/xH/9n/8n/jltx/4wY+/x3becc4z3yy8vX9DEM/795/4/OnK0/6FGBdu397zZ3/xNXkvfO/da0oWPj89cVoCUY/s1dBss3au+4XcTaAOYYJiKSAc9Oq4Odzz5fzIusPd6YaWErMXUq+ktZNFuV8mckuU7EEzThxrsgOabhqaE/vk7eJ5uFZ++f6B41SZQuXdKVKb8vH6RMqVH761EsGP3zzyvis9K997dyDMBe8djoV03bmmwnw6EI/C+Xwl7UopnXhUomvUS+FwmphvPK51Sr2wPnaOy0zeC1WUh4vVqsylc5zt6tJqpVal5kSl42Og1IZUcIcJ3SvL4cg8OXtR+8DeG+264ueTXVVDwPlK3QtTdOh05Hp5tIYHGkrl3Q9v+fbjF85fP1LyTpLG06eKngtr6kDj43mjS+TNceH1oXFzdOSmPHy5cEyVm9dfUTVgSu7OPDum5WitIqfT3/es/J09DqeJ792/4hgDj1+euF5XHq6ZNRX2rdGqgWke18xe6ktGahihkNYoVrGLk1HgOCA1z51gTk2W21Ml1YaoQxhMht6JzuPFDpvSO6UVgrPWBDBLVW+M5Vsdrgn7q+VOEzuwH8+rpQ3XwnXLzD5wmm15dN0q52tliYH725nbm4nT5Hl4OLPvDZXAskRONwe8c6xPK7iO92qvp+Bp3VxIdDvgOoo6x/Foh66KTZ7q7LDsI362J4vfeteZow0WMXhCDBwPsxHOpmhpvmF763vHd+s4W2LEO7tRMJ5zlYb3hs4MzlPbzJaMt9vbSI/RQTzXLVlBZcvs1420rmjdKBq4XOwnJkPqcapsrZC3lbTa7mhapjFVF6RCLrZnaYqBbsJsyc9UafuGH/qxuMB3BNK++9AtsvN4afxwtnK+v/rrv+A//+P/lp/+sz/m/Tf/muxWzr98z/S9mdPjEe2e89MF3MTNPJP2nYfPiZupEw8C14UPn1akn3HRIymgDW5mh2dmrw3nsml/PtJq5zQJeyvk2ozW7zpelZyt7jlvhgdcJkfed1rrmDxeyb2xTAH1yvURjgeHZCEE2HMY+LdO7w4nNg00hYfV6kSiQsSbgT4JLTfmaKrP+ZqZFsMUvr1fENd5eMpMr6YB2ag2oc72aSs5skwedy3kbeO87WzV0d2ZvXt898OiMuEmT9dA8AsSCjE2okDP5UX8V5WX2HXvMDlngJsAfjlymGdLto0ixICgNydcq6Y/qVJaoWrCBat9X1drRW1doexIbUireJlJzszte3NoD5xzGYsdh3rPEk5MotAKh2XG+wNx0nHtgpIr6zVZ9Yqzq+zp9rvVrX/IxzRPNmGO+PjlulFqfuEglJbo3ZqU0Wp2v0GtoxkIB22oDr7AAFtb0aXyvHhrYzpUdWbN6w1B8WI7hpGKtWmrK8GZX7S2Z02U4Sl9IUa+PLqY3cqCHpVtT5TaOE6eyXdSraRScNoJzg6yVjp7L+x7pbXOzd3MMgWiN/eGiI3rVpeObfxzodRuQRtni71OG7kO057VebxiRaet2C2yVFQqzTdK9nZ7UiF6R/TGljBAUB+eYNN8zZngmOdpWLc8Ig6pGcHe94hFg+sglbVqH3z2fNqOJdeK80rNnZLMJy/dbi59hFOEMT2r0qMFJbQLGjoqkz1n3W51uRQqUHpHfYVskekXfm4XSi5oZ9ys/+7Hd4cjwoLozOP2ns9/86fU4zfUv/ka/slrlrc/4c//7H/jy6crhy/C91+/4fx0JhwL08Xx1Y9+yvbxM14a7z9e2LK1eu5dyXvhm8sF6bDuO3uHt4vVcuy7kMqOE7OguKCkpPiRxppm4dNjohUx3bF1pHvo9gO9mRyfLhshyCCLweVamAOUnOjNs66d6Cs0x946tWVyNZA0nzYKiU4ntJmbm8DahPmgSA/czMqWO9NhsR9tr1z3wtOXQuiN0xRZDlfEN3JKnD8U9lLpkilSWZ+OgN0BAAAgAElEQVQKaw5ct0LvG/Ew06+ROU6UVohemMKREDO6VaJk1sfC3gp333vF3fHIzSGa1tQH4cs5a7YIjlYTwRfLmou3sIVXYgg4ZwdKmO15Ue9pe0G8QZzVzZQ9cX26UtKOxMBxWfDTPd9+/Ib86QtfRDk/XvBtZZ4XXv/4j1i3woevf049TvxoUg5zRmdI3fPp4yPpmpmD8Oqrt4ibSPuOnyI8nX+rA/N38Xh7c0NedyqVWhNNGEWgO1tOPKVEbY08yghfH2dqb6RarU5GZlQdz01mk6+k2u2wHBpA741crIrdi7KNQ90PXdQBXSql2XVe1H6t1DYkMAiuD24vMC7eZs8yq1XpwrcPO7VUFtcITgne1ny5WIXM3eQJXih74ZwqZzrRqfF/1RTbXk0vLrnTuzAdh26aumWWa6Y1203k0qztQYTaFWkmK9lEKoibsFbhPoISZnVrI11nrAmzZtEAZxY5dcoSwkso4nQwQp14Z8NFSkhvw48r1GItFHHyFp/e7XnorYGzaffxUtnzzuWysl43UqkghdLUWMaCyRjO8+o4cZiESasR5vbduGV+oneDICmVaTZbZK6r8TFKIWghRs/qA+wZ2m8Zjvhnf/gv+LftXxFyZbu+J2Pbzr/6+Z/w7t1PkOz4+vMv+Md64vFyNj2vKG6OnJYjmS+s1836o6YD1C+8OnguqryjWPZahKjZDNyt4kSJLpJSQUJEa+cwe6RlrquQdqtcP0yRnCqq9gIorbFEz1o3VIXg4JpsoYE0g290oFvsce0CzfCInQ7N0aWyk81FocK1dRbp+NkRRWGOlARxbkwHx/tvzpwOC+dL5ZIyX90tBB9R9VzySqvCupmBunS7ljQc2hPed5QAKRAXx5tXJxqJpYFXT24gHuYYuH97oqwbd7eBV6cjQYJNAM4ZA1SV4AFt1OboTQfTtI6uqGhowN7o3lFrB3F4HOIbGjzOQa+dLGJ5dWmcvE03p0Pi8XJkWpT6cCbXxpGGqzuRK+H+FZcPE0onNeHpvEMsxMMRJ9GKKUuB0nCTJ6eCnzr56fe3SPNuhmasg5TbeAMa8LqMJVhpz4jGTAuFoHazqLXTuzXZ4i2KS+svG3qcyVXb1qi14TwvkV8ZKSpLpJk+W5vdBp7tYe1lxyAvh6/KYJuPabf1hjQoVTlfbSr3QXHYAYcaKcusUvZ1en+OrbaRnoLLdYdlOIcGX8AM/6YhO28fKylZ/LfVNshpyp4cXh0aI+qeJ1LozZZnglXtOAHnvFnIVJ4zDPbrarAgUTuNYww45wne2dQ5/gLoBDsER2mo5kL3dghbTNqWjq1WXM3jJiFj2Wa3gr2M20EbKb5xMwleiZPpzIjd3nTo7YL9TFrrdLEbjfTnBWiHbgEVER0NzEquv6Wm+6//9H9BJ8/RP/CU76jX1/zi6W+4Fsfj+omvf/nvuLs98enPVvJ6pfjA5dqYXt3x+dMTX56+oMHT10Q4OJ4uZ67rDsUWAZc9E2LEOc8SHDlXttYooXKQCVWYDjqkBU+YV3LOHAPUmkglME9mbHbA477iUCbvWOuV0q2Ub/GRy5aseqUZRg6s0hmt9KqIFBS7Orih4BUaD49PvDu+IdEoBOLBMbvEuia6BkQLH542YlQONx0fdj5/XqlYtXf01kz89LjjiByiwqTcuMo8BW5PB6sqkUQbjQR/9fNf4ULg9ubAm9eRyBOvXs2cjjNOKq9u723poUJrmU7m/JBwLnD7+pbp5oDvE84rLnqgoTpRSmHx3hZrwXi7og5tHQmeOE+EGHDTzPnxkYcvH1mzkpKwZc+aPaV2bl6/hutEr1eePn9Grpkf/+g1x3KhSaZRqHmBGojHA4QdqUM7c42sgfyw0txvBj3/Qz9ev33L44dfmdWqNYMERaBiy4zjZIxchQjDjiWojMx9b+y1Gq1Kh08TY7fm3ZZiW604AyeYBWz0rwXnEJpNsGOQzL2TMmNxZiENRuwbEWTIVWUcjvaWrqTcbICQTpsjN6LcjmVsCI5YqjVUiFCk2Qdua2xN2Eu1q7U4SstAM4/33risZqdsapD1desDR9no0gnNUYoSZruCe2FY0LA+NacDZlPR3jktC6fjwmGKeGcHqnMjiuzdkLys7Th4j3fBDnFVnAuIjmWw05diyl7bS4CklooPkZKMbSuiaMm8vb8nxpmnrZF1ZS+JlAol2+4pTDc0Cey985jbwGeCV5NSGp113S284SMuBFIqeN9xQRBvoPeyFhINnxPqPT7+5qP1Ow/daZk4Lkp9nBEX8T3z+cNnwg9+ypsf/mMef/nX5ne8EcoMDw9X1AunacI5O3C23HA0nj6/p9DoRSwSGR0uOH71aQep5mvtla6QU7PFVm4sg4qV9krunTUX6Pai8s7jteHEGbFdAvRMFUWblfgtHnrpNK14J9Qqo8m1mY4zcu5glzfq+Gc12pOPnoetcgqmi6VaEBUue+Y4eWprTNGin6k23n95pOfO7c0ryBu9Z/bVmgOkdWLoBMlUhWPwnA5Cr5X1XKAW7m4P3L+5p+B48/qItsSE47QcCc5M190N+IpCSTYxLacDPs6E+YCfFquc9oqo+RFzN/qzujimkToSUZXSzLTvY6DXzuW6sa8W/wwK8+GGLgnpVwNe743p7o6g9wimhx3rzqujo6VkxClvvsX5NEPx5MuFvSTaLqg/ojjC8vs7dFM21wlqh2iplZIMfE0vxmBo5gNVdUwDZlOrNUcw/KutdNtkv0h4ggyf7TNjodSxUfdA72Mqs2PT2ATtxQrmh4ZrBrIRpuj/8ZTbYSyMeJm6wAIbeXAJxEy1iEJQ03/3ZPQu7UJplVQqh+BxbvQNYr7h0rC6nGbuldZNb3XaxhLNeLpLjBymSFBwvVL23dJxNGL0TMsBakN653RcWOZI9AZVD8Gj3hgp6qwwU+TZ96wvuExRN3zTY7J0Oibq4fUdz4FqZZo7Tq0/rdaMOOEwz9QmxPmIS2qYyXHrdSJMU6T7hZoLve3mky6VWgq1OfPgl0rvgnO2GJRR/V5fJIT+ouGWbO0b6n9LtOPRz7R147/+r/4lf/mLTzzMf8lfXn/F9370XyDrI3/yy/+d//6P/zs+/tVf0HtlOkz86ucfOL37CefPn/nFt5+JQblsG9F7nvLOmh17M2Ge2nl9VLybKE7JF4z/WaOZi0Uo+WKQYCfMPVhkrzd69ZyWZmK3FPY8keqVQ1y47jto4CY4LqVQSmZSb0+2elQzYJ+ivmRawLanxfyWbfTd26LF8+3jhbJEVCoheKY94IPH9cb1qbBMloz55pszx9lzdz/jp4bXwHqt1gEXhD038I5GoF4SW93BQ9kbLWUOh4nHp0Q8f8vd2yM+BabDzOlwQmvjuEx07cx3BysHLI0ileAch9sbpHfCHNA+8uPeM88Hanf0x8/gnAn9ajQoN820anQo6Z1p8mwpU/MVpXOIMzpPrDFz/+WBeu1s9wv73ijmdeM0Kbd+4gd3AaQynxameeHw5i17hsdPX0z+ScJjX6mPG9E9sdwcCb8+qf5/f6yXB7ZtJbdOUIuAPlwTrVdyMj00qJI0UFrjumecZuK4qu7NuLZOgjUFBKN/7e3ZLlWt4Rbr3fLOD4eMkcdATJ4QoVT7dVVBRy+aSBlv+GeJQSyc0IauK3ZIt/4cRDCew7oXHq6VgzcOAiKIswO75kFR4zkSbDpq7jsPjzZs1GLo8ODtz1WqG0BvS3B2gWUxy+JpjlbV08z+VgbX4XBciJPnNFuwIXgjBXrnOB0XXLDv1WS9TOuO4LyFJI4nS6ipNVDYoP/M6bZDV3Qcyp1hu3M451F1lFLJOZslbO/GctYG7kDzlrLs2gi+4aXhesb5CQmeGzqLVnJr7HsiLJPFl523hVuwqRx9lndGj1zrL6mXPshwPf2W7IVt+wjuDX/yZ/+Gn/34n/Pxw//F9XElyiNfPr3n5viGljJ0uF4uVHdgvr0n+oWmZ9zsEe95HR1fzjstO3yEbY1ctwemZaHtRpWv2ojOs24J6YZSS6lau8IQ8NUZaMPSPBUqhFjY9sq6b9bC2s14HoL5BEuulC54sU8pdVCLoz97IV3Dq9hCTgZmCCuaEz9RaPjWue6No3ekXJluPbMzv2KMyhWDPq+XwjJBTlCOFSWgwwjfXCCI4ju4IGgcUOUsdr90yuHVa45+om4JaubDt99w9/aO2/iKOQR89JbnnxekC7VWTie7hnU6eU/Mc6Cr0pph7gSb1Jabm7FksE9l502vGsrakCkA8RZtfNaMY0C2guvWZjD3ZhOPb0Rt3B8cp+jAO8qeTP+eI4VOanC9rBwPnnk5UnaYJg/iydX8sb+vx3o5s+07qUJxNhmVoVcWOmsxpoJ2g7FMfpxXzVJLwduHsgNLaLVxk8CUW8HenIJFa62G3CKkGZMIVJ8JW6a9qoxEU5cBZvj1VGsMA6GLXe/NHdFh1P3I0Gxrg+tuLQwOI6lRTdZ41oZpmBNDINfKuoMXqysy0fdZnwZ4rjhnvF4gqBKcQK/mD+6MBZ5DfWCZJ6K3KLL35rP13pudcryGO92g4IxCyRCsh2yacGI4Uuc95q1vwwZmeqs9+q+fG+wDwwU/rGf1RYM1nTVQm1BLwaugUzTHjnTwM9Jh0s7BC5OOFJ6zW6KoM3Rkt5+ZsSXcy3PTTK2hl2z6roI491Ll9Hc9vvPQzfIt/+Uf/g/8hz/7X/lX/8f/zKf3HxHn+Pbr/5Ofvf5H/ODdz9idcL2u5Azny4Xp9jUqhXn2/NEf/IjeCn/557+kVth2kODwsrMXA29//zayZaHknU4lF9CSYIoQlG2tSLPDcKuFKdrWPnfYqqfuZaR4KsFPuAB968zB04t5Hb1Ccx0njtwqiMepQWS886RqE4CK0ETNnjUmkk6mSeS6Zaaj6Z9tLEREK9ULRxe45oxW+6B43BOnGkiXTJVAVUtA5T2bSN8hi0WWj8GSNv4IX70+4JvADD5GPn8qPF4qf/CzmcmZ9W06LXinpGsm52LtGCVRRmRXUOZ5wosQ/ESrxQ5Yr2ZlQ6znaTjtfXBY6NcjruMRejXpwk+zORxKx1OZgzL3im8ZdZXZNY4+MAdYoqf7BT9Hmpuoxf58xhQIqDN4iXNqbcR2XP09j8rf3SMNlnLvlnbMZTQPdAPb5GoHknf2BtNxtHWxTbsbR2tvjdxg7+WFAQsjuCUWpzVQy8vS3XL+NIQI3frSdHh4X1JqYr+jfR1zQNi//7WTobUR823P35UdvNfdlrezeuR5kd/FaoQGr1dF6NJJqdBqY46eSMepUlWhWyuMPC+OxmKOPg7L2sh0aIITpXUZNUMQvZo7IijRG0chBGPVusn60/rQrNU7q1AP0W6PzqqBVM2+COY6eo7cgsneNi+M9mR4kSaqmBWuVZMQQgyENpjBzqSWMp5vFfvnKI2DCodgwKwYHD561Aebcp010Ow5o60RRe11oRbS6GKyTa+V5h00a6H4TY/vPHRbes3Dpz/FbRcenr5wvb7n9v5HrJcrf739AppwqFdinLieV0QipVgFj8tntlLR2jlvK+ctUbRxeezs1fq4TlPg4yWRc2X2jrVUtlotfliTWVdi426JpLrz+VFM4Kei4oDM1jp3dwtHjFb/eL4yx0jZO0ELgnJ78NQMTQrFd6J29toJ0uguIK0amEMdaKNVSydVOtKF3OzT9MNT4xgCx5bYdUJ6YJkb65bJtYAUkMh6rnzoKzEIB+m4UzBbikzEEBDtTEslXwvb1pimasurT48cTpEJR7sWvvd64nR75P5+oWMyTAyBy/mJWgxcUovl+pfDPSHA4faG5XDi8fNnLtsT0xJp2848WafXstwgwVNKxWtBnIJGKJV9PbOtF3rJBBWmYwTv6b8ozKFTD50f3U+UHEk54Snc3xxZlpmbt6+pvfHhwxPp8xmZlHXr3PjE8XiLm2cu2066Xrl1Hhcch8PvT9P1znN3c2ue2LRS9s6WhT11cjcDftPO01qshUFlMHSNlZuzLV4lOGoV1mwTqmC6P8ASnJnzRe0GVhOtG6HMez9qu+sLBasUO03cWMw9m3Q7iooBwJuaw8IcD7Y5N58rqHaaWP9aq3Y4RlWW2Ihz4DhHWwCmTCk2pa1botDY5opoZg6BJs/Lqo7vZiV75hq0ahyFkhtgToPTzZE5TmipONfJ60r3ntev7lliGOCjiTCZXEa3FBcDEqNqN1uRv8WMdsYDsQTbYtU8bST43LP2617kElHbU9TWKMUi/TpNSFCK7Bx8Zw9wP2H4Sipe4W5RlqA2UPiOc8rhdMDFSBZPyw0p+8vPotYGZKrvqH92fDQqBtSxaiTLCfzG1953vTDf3ni+fPzG3txdmOeZ7jpr2Zj8bt69HM0RUAJuPhLF8+HDR+iZfXvE1UYnMIfGw8MF9VYm13LislemEOlto2thnmaW1kAj1/RATkLrjodWxjWq0btDtRC9Y8+Z4DytVPbNatktUy2EoOSkRG+eXvEOipnPexPMYemR2i1GKL/uaHqObxqyzzB9pVWieIsptiM5wzxVNApyMWTdpo3cklVF54jzyt47S+2EuxnvZlxpbK0jlzPTNKFxsmrqXIi3wvEk5M+ZkjrhOHE6LuPwt+ZaUWWZbxBn1hdjVihxngnaXpaAOEdwQi2M5Yh98kfsuTME40DSBU97LtkrhTDbh2jErEdtv+JdY1kcbBNyhP2qqHTmw4QbTct7beQ9IUMb1IHby3lH4xGcsF8r2/WJOBWS+/1NuperpY4sbVXJpdiVV0aRYrWlUhw1BHupg4Vga648omGhCU3MwWAAb6U0obTGvhskR8yQSxsSwbMdqo3p2I1xVWjDUvUMNLRaKhlTk8j4+96HRUn+o2nvOaxgMsPg3monBnkBpHdkhDVMQmi9IV1J2VpHAHoZxCzvXjy2zpktqgjj4G04sbr06MBLJU6KkRIDIXrmJTJFT1BHmAJhsrLGPjgTAiYFtIYT8/h67+37H7cQGcELVMfO02RBW6SN21K352l8g/TezREB1GpJUy+dqLA4bKLHiHG3UZkmk0aCM4uceE8TGT5nC4qos3NFxIYdxgfp35Y32li+6q9/GH/n47sjQWvlzdsbvv34DUtTDm9+wEUrkx5paecnr95Sf/XA9bqx5S9kd+Iweaa+sbaNtSqXbeductQe8X7nkgvXfed+8aRmWXEwv+x521i8J7hE2TwuNIILOG1cUybVjmpGJECvHGIAKTxeO8fpRClXnDhD6kkjtRXnIlWGV1ms/iN105Jowl4STu1Jdvq8Ce5soyHBjRoUcUrXxtYanx4vTD5QGmiGSzFwRvCOy475PvNK9Cde3QslV2raCQdzhCzq8K9/yH5ZoV6ZDhO9KeeHDVcz3//+O1ptvPvqjikaiay1xuk0sRwOBn62/myKzBxuZk533t48qZDTA109ezXvbamF9XzB+4lWG8femE8HvDvYkgWrlslF2bdG2s7EyVP3SkoJKTuz90xETq8juTaSv+AnoS/3XM5X1vMTNcw8bpU5Kss0swRP1huetk5pG4fDjGsHpjjRxPNwXv8+5+Tv9PHNR4Oo15ygZVAhl0Spdv1fi+mItbYXzbK3RsXalWenqDhyzcPlYF/3uXYHYKtDO22NXMFPEadCbZnUqrEuXHjRZAXw8hx8UKsAd4Nq1m2D78dh1KS+HE6IRdmf3Qx9WNRa6mQdEHAPfbPiSXGgGP3MsmyFpwtse+dmCcSgLNETolm39NlfPPgFJQ8Pr3pjQWNf12tAameelOMpcnMTCcPv+iwvDCnUHB8Izk14H1mWSJwifpopxaqTpNaRAjT2cQgBFyZE7UbhxiRcSqPVQlpX8rZBtaACTtk3K7A7xA6LEGugFoWuRCfc3i3EyQaHLhZM2XKl5UZKheCVsMxomEm50WrCq+K9R9QP5oQBeupwwKCN+tuyF769dCR8A3LHmj8SUkBvlOVw4Pz+M2V/RPpOzTtOD4gGrucL5zWx7jtfvT2xnha+fv/5pX30/hiAztOeeXUbbNoZkXU/eLpVrGNIzFjLXho5m0ey0YmqCHUs2AL0QtRCBpw41Au5DiZmsauX955UriiCR2kuG3HMebxz1KY2zaqjlQKt0rzNGx61iF8zJkGrkLUx66gbyRXtkFKloYMgJXaYN2U5RquoCYI2h/ZK21e0V3Kr5GSErrt3J16fTvigaHTMk0PE4D/ORebDyTTFZlqa6sJxXgiLx4dp4O42SjZGqPhg03qtBq1xzfRBVaufuQn03in7Rq9ml+qt0rtBY0uHzKiR6WKhC6o16c4nUlnRtpNypq874SR0F7msGyHu1nAcgrFYa0P2jDZQbYRZCeU311T/Qz+65XXp6rhsm9XBSKCSMfCKHUh+sJrb6P/KubO3aq9BZ4ePYLhB+4LGVXheXCG/1nfpjVLMvmXIc7saK/ICJ3+uknl+z1oowiYs6ygbG/OhYb48hPGb/G0fr31wpFrQZBp+8+BkVOW05//OJvlcYQoeb4Ml9GbXfOfwEuwgb54wvm/vxbTuMfW7sakLwRPDCEr8re9FxiTb6eakEMVPE94Hm3BVXpCZfSypemvUbmhVdQ6l4Vwci3VzMlCz3dRKMSBN78+pB7MAtkx00CeHq3F4oK2AMowEnKiQqqXtcq4WsW78egGp1tpSUiYPnd9HfVlwqjMbG2OBXf+fme2/9fjOQ/dmtr6s97/6SGqFn331hv/w9Jl2KXSF19XzePWk7lhuD3xOV46HgKv33NYDv/r4CS8ZRyULbAWetitRrK10XTu9ZVSEvQJknFcm1ynOoVQ+XXZadS8vXBWHw5wJ0Tug4XQCtU/p2SvXXACH1wgevCi1J5Rg2XKRofF21BVLmRRlUqXKTveg1VOa1X40Z5PQNAA5qQlb2clfHN4JpRvVyYu3nq0gHKeFT49XXt+cmGOkrg1yJ5cr+7rTggHa397fMLmAd55ldjipBO959eoONFubRje97nz+lhBmvLs11N6saLCSxN6gOWXPcH3YCDEii1mMYuzoq1f0BiWtbNcnnG8cb+/wMZAuG73YJ19cZvzsyNedvK5c95UP335kOXoqnqgWLY6+4v2JNWUaC9vlC7UWjvGExCN7K2yfLxxfTzSE9Zo5bBdO33vN0+POvJ25ffPu/+sZ+Tt/3C6BXBPBwfffnLhujY+PF0ozLu3d5NmqkeCWYG+sWhuztw+KNVf258YAEdr4OdWh+3WawXCeF4YCuQF0lucQAaNtAAvlNMHisMOj2ntFu8FgrD3CJihriQjjQLB+NptuR8RWzHHQtVPpbLnan6l1fBVchVyq8SLaSGhl+/W7ZcZpRIMt6ZwzfTvquFZ3pXpbGhmNUQk+Mk+Rm9MR55S7uwMx+vG1Dehu5ZIB6TYxa4w47znc3ljZZ7NUYNo2WlfDWA6uQR1hh7RMLIfC7b1ZNp+5F70ZDS6lTM35xRVTKqznC+lyZQnmOCohDnSk7TNSMxmh1UqqQk5GIvPBMx8Xc1E1xWVrJ/dxAnWWJix5wLIwTXuK9ONszo/vcEN+56Hrp0JKZ/Z15Wc/+gnv3v0B/+7br/mcdpLboJyoW+b9Nxfe/cH38P0zhcAcAYm4p87jWdhTQaVzTitBPU9bRbz1Dh2XI0usPG2JLXlOk2cKwrefH8eWV0HtxRw0oGKgjFYLXh25JeiVbYebJeCqkAscJ8eWKlE9vcLshb0anq4P7Va6yQaKRSX9ACvXqqObCkPtOWtv1WeCUW9QDS0nbVyresG5ESWvFqUFS4SpCHev36BeOT98JtdAuDGu6DQtRGd/Fqcdp44pCshOzZWSOhoO1KYEOkLFTQecQpicdah5T/CBOl5IzgdbpOREGPOU83UQomZzMgDSKiqBro3a8qhLh7yttrVWtU//XtBUcZOjtx2ZjuzXbE6RHvC+k5hIj1dO9zeUDk0DeS/0L1ecD1Btas5roqnw+LRz8+r3Vx3xeFmJMRCcZ9t32xl001Ubdtgqpq+WatqlAIWByhQsajs8sqWY2+HZvdAxKUvHuPcsHzx7blXAOfuZ925Sl9G6nlsLZOiv5jzoAzIjY2HWuw6fKubZFSOSwYjZYn9v+x/DNObaaAi+jxr5MaGaEeDlixmoBo8TtXhzHR8kvY7orP0eisWA58l8u94r0xStVdfpcFXYhIoMvbPbc+BHw6/zijorIii5kFM1S5xzL3JJHThFN4A75nP29r3VNqb/X8PTESOdldpIWyIbEQhQkyS6WmBFsMk2GWu4OpMZaRZ88AKi9n1Ir8hwLbjRsK0vz4PpzupAgx2p/deWkv/X47vdCzVbX5eDRX7FQ/7n3EoknDpzq+QV1n3l3Q/fUlKi743z9sD54yd6Gl65lPh8LaiHY1g4X1bEe+boeDpn9nTFq+NmWbgJcF13Pl8qtzc3PD2teLX6GcUxeaVLpXYjZ6VWqLUSQ7CW0m1HguOgnoM4drHk28O1MMd5gKhNbI8ukOiE2hAv9OhppVCyXfgsexPGSzeirdH019lrazoNBDc4o0UIEVqpeFfJ1cIFforc3N0ja+L6OfHthwfmQ4AnpcmMP412iwR3Nwtv377Bt45ku9q4rrx5e4t4R00dPdxAbyyHI8vNieV0RHWh10LsnaoXZD7QNnuTSF6toWC8OI+v7u0qLCN/30zCqMxsl6+JQdAu9Fa51s779088PJ3xVA5LIS8B1zsPq5C+/cL06oaUC4fjkRqP9JxYbo6suSHHIy1d2XqBVHj11Qla4c3rW9LbVzw+/P6AN19/2fjBK8d0gMetcd6ykcS0gzTWZMku4+cKh/lAUEhlJ1e7XTmFVOz12caewOxVjqgj6ipKLrZc6WqosFJsUz87h++GdfTOql+qWFpNndUo5TLanFF6s0Pa0lq81K0XmjF7q01+bfx7Nw56U0Cx2G8VsgrRD1OT2vfZu8ke1zVBb7x7e2IOkcmZBLWt+wg/KIfTTJ/aR98AACAASURBVAie49Co52jvzWUJzHNExcImEOjOnBYlbRAiEm9R7+xG5Q1sI+JIzRjEaa90KhIs0ecE5BBp1Z7bWgo1J1owby+1UovBeIwRbcGqvVb2XHh4emI9X/7WDWJwKMTTmv38UjaftXo7PJvzVDr7bi3H2gsOWE6z+YCrsVziPCNDmsit4XrnuEyoc6yX62987X3noXu9ruQEP//wK378s39KCAuxfeSrm5/S9sz6ZWXfK+G4sH26srXOeU1885C5mQuuqhXfaWfdM6fbI744crap8vVt4PPVaOyPW6ZXA8Msi8ePFFrO1iylI3VS2vOLUMx7GD2Ko/kCKDjzJlYyU5jozewhuVRaLy8mZ1Gz2uy1E2qHvlEr9G4vxoZpyG5kDb1aMSfSCRLwePzQc1pTwmTbOlVMb6sWQIgu2EQSxBi2MSJeWeaAE6HXbPnzGY7HhWlxpC8X9pK5/8EPkNZp1aZQwitStrx7I1KKZ3JH1Ef8ZLr4rB5JicJGyzutT5R1RVynu0DPFdUJ5wMSDITTaIMg5S22KeZ+2Ped69OFXIzS38oTt/M78lrBH9n6hm5Xi2l2mCZHTkouCdcMXnKtyrx4/DIhLlAzuLZyczfxtE3/6afnb/nItbFtieAUGdzErRic2jl58eyGYAzkp+tmNxLs0HPDb1sw0IvxP9rLLep5Cur0occOMI6NuyZFtIHo7IJHhn/U7F4g47Vkr3U3uLsGbjI9t6nV0NAYfAUwR/FARg6N99dX3WoM6TFty5iikeeYsc2WFp4JhBjw3VJetQ3+7Ah5hGC7E8Gq131Qond2A2gNaR0XzWur7pkh4QeXIBDm2aZdP5l0Y/8b6m0pKcOJAc9OBXAarPPw+R4wwhqtVlot49/bUFt7HxVFiVQyjtE/p9aEUUbsWlQRZ3F+qiELCPZBk1MFsencq7J0u5VY6cF4rsSwlKVamIbxPOX8W9b1vLr9KX/981/wL//Ff8a1Bn46Xfj3h++zuy/glXW/8nR+oh2OXPfMmhsUofedxxXOe6KXyvEU8FL5/HQmeMe8OHIqXEpFNYJUXOiE2RFwaFfen6847SxxonWxNJczOpCXinhBu1KQMWUoiNlkgq/sxSM1s4lwCBPXtZi1xxcKjt4TSgOx7XGtUNr4Z6koiqpVj0QN0BTXHQ7Fe0sOuR6RUjgdPVu2bbVvjorSc2XfCt98+MKnj4/cBGcsVSds18L5ywPalXS/cHd3ZD44Hi7K08NnTsuRaZl49eYtdV3RaWEvjn9/PnK9JpYlcvPqhlAOfL12omZ+/L0Dh4MjzILXSI1HHI31ekYPO2nfx4vH3B1ehJLP1CqUdaXnnThPBgAqO9I77z9+4vzlI0inaOSy7cyl8vi4448rZRaezivH48TWHeTCcndi3youJZwq3//qK/YqfPr4mf3zL7i7OeDf/QS3w6tXN3+vg/J3+RDX+bTtfNky3jlKLaiaRJCrwYiM0wrBmd1rK4zEGERnB+M8xXEoZfIzP8FZkSGYdqpqitTkPLmWkcs3R4OqhScspAG9dKCaNbE/y7mjS0HEeAB0HJWORXlrM5PSs9Shw0rmxCxhXcb/r948wc9Bh7GMExqoHazegfcG9fbeU1NhT4ltz2a9wlFTpklHov23x2PkeFhs15IT083JYDIhIN7T1ZNZyHiaHIh+Zl7ukBhxUxyclYQvBYkbrVSkVUpaadVus6jgQxgHdURdMA90qeTcyKnQyyjepHPdM18eLnz6+IV0vTJHb3uO0Mm1s22J8cMCwfRmeW7tEHoTygDSqxN86FZ86xUJE70LKVeLZbvKmirSGpODlCvn/beUF47TwnRY2OSXuPYHzOuVxR1p7kzonvPjRq5CLY7l5sj5/UfWLePjxMPlifvDkXPulpyaAr1kLlfhsFS2kukibDkze0dQi0LWHa45McdIdGbfyLVRsDdEKYBr5s/tVgldjapgHkkaU2hje1hxEqzlNHSkWVX1s4ldUPAdjy2gaBYT9uKofejBNFSE3OowZjtqL7Sm1CCIRrMatWpOCR0lhAK1Zz49PqGtsLx7Yxvq2ki7cM2VxSs9BPaq9AtMc2Lygu+Fw3JnZK4wsaadp23mnJUmHvUR1CrrW7P01DeflPu28O7WQexINg3MlQmPYTNbKdYP5T0uWg19zdWuayVBSbjZ4eLC3ipPD2dKrUgwU31NY/kYPSEqS/c8PW7sudAnuyKWz19QHGigO2V/+sx0c+Tu7ZHHn3+xYs7ecNLw4T/98PxtH6pm7VOgiyPXRojmAW3VmnXdQArWsaRC7DDqdJv0uiXSnifWqG5MvHaQPbsOVLq5JZ6tV2PRUrEEm6Ef+2hbt+WbFWCaF7pqpzd9mXphTLbDKdGHnUyfJc1hO5P+rCSbDmvarRnAng/cFzcEpnW2BqU2rtfNwEXdfMu9N1q1q/WlVsrmmOMR7wOtZXK2haE4YToseDcKH8VRxXMugdzUwhI5QorMBDRGolPc5BBX6F1ppSC1Ap2SE9LTgJzLiPLblb41m3D78OfaNwoopJTZ1pW07eRUcMOpQi8vBaP0Shg3U4SBZYReKqpKjMGsmeODtreCYjH3jkKuxvfleXnZqSmTUsW4h3/347s13Rvl/uD52X7P6Z/8gMvlhp/96JaHx7+haeN4f+TpXKhSSHvl8Zyo/Uwn8+7Na/L1yo13XFLhvAq1BbqHrRREI0vsnBbHbVz4dHkiD7TdFDtPKZH3QsIqrZdJgUjvBa/djP84lmLCe3SBtSZ62qkuMAW4FEGdctkry+y5XgtrNaHcmoUrpRfKCJf7aGb5LhYbDAgbDtdlTEON3tM4tKHUjZyU4rCor3r2/ry17rTg+PS5cHfw7Bgxn62T807alVor1/NGdAE9TuzbxvHuDeFww7QcSWzkXPn6o/DkPTON2zf3fP+nP6ZVoaSNp6cnLtuVx3PnVx8i//QPf8TxMLOclJIrOleCG1t1n4mqzMcZv0yWpKmZUhp5L4Q54oKn+InLpwuXh8t4URsEJOfM9fzI6c1XfPr80abi1hGdqTXTc4WeaV34VHbC9ZE3twvOFV69uUd/+GPK5YmHy04snfu771jx/gM/1tS4Xwwr2kVY+syekrWHoGy5QDattY1rN71xMy20Xl8WU45GVFsMpWfUYIdUwOhh1rTrR5JMxNGakepahzV1WndEZ66CBog4xkJ/LOYs3gsgWi0QMZwSfUzAojbZuuesMaaliph/AjEDmXEcrIDyBbLenyUQofTKdd/5q1++5zB5Xp8WAFLu5Ay5FIKHwxyYr8G4sb0z7Yn7ZeF0uGVeDqhz7LlzLYFznviwR/ve+w2pRtbHjvRE/NI4HQJfvZkJzhMXo/OogGyRnBJ9vUJro5PN+Aq1VtK2GdmsJpx0+hRtj1SVT1+eeHh8ItdGFrt5RtfoLVPppFYsHKJlLBsFKWZr1W62tzl6JARKEYsiV3ASWYKiPtCiyXPSO8sCvRgEZ3Gw/LaUsYojvr1QrhNSCp8/nynLzmUtxOnA0/kjLjiu6cJWIUbl8RHmEKEUJu/JSaiyM0/mDb2s1bqdeuW6Gs+zlZ3eFSeCjxHybmg8N6FdqH2ni77wM50441jmRgiN1gP22SLU4XOkdVw1P65zjlyV3DrOyQsytWUFrL2zy5gypOPV46lkmgFO1NEqoxyw4bq34j9GXTPgUIt7SkUqVCzUYBl0R5xgFs+lbOQk9G460JdzQf368vXiNOO8o4nVnp8frqztFaV6Xv/gltu7G0pJ9NoRbcQ4sa2JtSRaz3z6vNHkSOkVT7WcuA/MB08tGclXam9QzH3Q+gBWi33Y9G6+1MerLQL+b+Le7FWyLVvv+43ZrCYi9t7ZnnOqv3VKsiyQLGSMJbDc4BeDwWDwk/Hf5r9D4GcbDAJbfrB1r1S3OVWnz8zdRsRaa3bDD2PGzrpw62CVdF0BRVU2lTty54oxxxzj+35fU8VPIy5nqla2pAzbSlVP2wolrzgZyedCcDAMtkgI1XM+nWnOc14q43ljv7+m0JjHARcjmn//Fexv+yXOOjgnHRXYxwK1Kakf1tVGihhno3VR/sd5rMllbdmWikHPa7PZYfRCrQbGtw60z3n7ss05wytqU2rtUga0Q8ZNb65YArEFPbf+tYWLAcK+/mVZZrNojzONsZq80v5nd2rZ1JGqjVwupflyIb9oBTqKslQcUHfgXdcRV+06YyWU1sMr7fY2KPhgtmC6TvW8VU4lsDQIYSDEyDzv7HtbK6VUUlrZUmSePPvJM8dgaz/BQOKtmXGhVdt9xIh4y0hr1YIiDV6uSIgGnU+N85JIqyXAqEBp4LUjGDtkSPWjskNbNb09ggsRijJUS5SIgwcN/d9dn1UuwzBg6Zf6DHvXrgr5g9ULrgoaH1jiAc6FGh/JrjEcZtqDcjop+fxAia8JEbzzvHnzhvPTB4Yh8O7hDLWQNihsBBf4ZD9wbJktKSqmFjjmzM0BtlxYl8oYHNMQcS6QtoLFncBak21xu7SllUaYvPnRi2WdOewhTa1vd9vHD0lTIWKif61CrWrfYITay6f4QBgcWsBT8OHStdg32xUhDBZB4jDAhoqzDqXataRoJWtFi8MNSq0Brx05B4TJIVXIGc614LfC1Qu72rnBM10d8NGzronTObMEtYQMDw+P90R/ZgiBMI7EeeDKv6B8uEe0WUadE/TFjtEpDoePnmnnbaO8duF3qaBKyZWcFkQqLow4HzkuCx8+3FHFJGu7m4nmR1yIpHTieLznnIBSbNlZMlsVpG64cQcqHHYw7m7QbYFhJmeIIROC5ZOpj2zrHy85QoCt2MzzKtjVvVTrBr0XBuc6QctWM601tFl44WXkZNHoQrmMHzDGLpfrff86TmxuqGpLJ7qMz/Vi1jrVS3tFN7u7wYkuKRC9xNoHW+2gRy9F9+Pi7rKpU7rUjG71FbqzzDr22mzE4i8sabksDy0le3CGhHTRDgA6RKa2joiUzLpkK8iTR1wgjjM+RJPOlcJpERageM+8GxjHkXEyXGPOZtrZUiblwsNxQnXE+2gyOhRxwXY9zYqrueksJkj7v0nrQWciDjqcac0rOVmUO06exyKhWZ5bVSxsUhVVG50ZVc1kZ7VWlEYtDsuf3ONctDFHL/Z4JY6hy0k9LvT31WV4Lf3+Z/uHxwvrwn6OMD3wzYe/5O989o9J7ZHv3sOrq0+AL3h3rNR4pDFQ28bDhyPnlFHnCVrBN5baGDqJ67xk5ingFF5c3XA+LYxTINWCVtiPkMvGPATbgEaHxoHgPIt0CUesRAlsvtByIAkMzhB7WQpeArkZgQuEefRmB/QVL8EMEdXmk4OopZ6G4bkjKDl3jJ9QtHQHjhjRS9Wu0F7JzZGKMqoyOLtGVjWnUdBIiI0pBF7cRHzd0TTZXKhZUgAyEXzh+hCpJfPmFz/n6uWPTJgeA8e7exKRU6ls2x3//H/+5yzLGSeB3TTx8uUN//Af/yP+5Fef8/b1NSkb2evxeGTbEs4FdoeJqzny2VVg1ErSAm0zwv7x3ItBf5h9o0ThL//vL3n32694enqiSuH41XuuDgPzPvKb243zt0+4w8Byl/jlj01JMe2vOH5zz8uXA955nJ8ZB2FRZ7xVgaf1SFueePP2mrjf87Suf2DJ/Hd/rdmemdQK4la8BJZSULVrv4HdhSmYhND5yaJqqnWytRW0OYs5orGbzQxQq4IaKevIZjcIb3b2UhKCaT1La6AOnFoSMKbcsbkrvVsCuvi+9a67qc0evQrqLpljHmeyAetOMa6tzXt5Lv7BVehEsKrVKGVdy9sQLFTCwOkxeKIbiNIXbR2aH4IFYZ6Xxu1pgai8CAfivGP/8gUhes7nxHkt3JUdLTqQxvnhA9qU4cP3TPOO6xcvDYCjEzkVHh5NCZXqgSE6ooM5jsRh4jDv0VqRfEa0kbYN1c5byZsRHzsw6+7hyHffvufx6ZEtbUiwwMy1pb7YT2btztkal2lEC9Aa02CMBe9DP9ygVTV53eAYercOnlYtMTlOE34YqeKppcv9gsPv/kDgzcvdwBd3jbfDS9p5z2G+Ji+vGXyC7cxy3pgn4SjK4+MR2TZEAq0sjDshr47gG7EPwUOMuGC2XlXP7f3CYe9omnAauLoaWdeVICNSe/uv1Qp4oAM5lJyFcVRzhjiHqxVxEd8qEKkITjKqSohmHVRXaTkgg0dqnxnVyqaKd4GAScikjz68E869/xUJtkGlIuoQPLnT9WttVBEygka1sD2v3XDh2I2e/cFwe7VTpURG9pMRkl589gk3V3tTBDdPzis678mpUNSRmnJ/znz99Tf8+V/8eQ+vjMwhcv9+ZAyem+sdb388WQdUG3GAZd2gLhzXE0/TzG56wW7ULocS/BAoSahlMx5sbbZEKYX7d/fUvLCmRN0W/LBnq0JNlRYqC8JQGxrgdEqEmJhfKEsYGMeZOO9JWSglMQ8R35Rpmrh/fwc1cby/5yZG5pvrf+fi+Ye+rPuzq6zxcBtDDCzbR2eZWa5N6B46anE3WiEr1XekoXU03m70trR1zkYSXfZ1KXzOSRfzG0bSRgCOqj3iXUDwHfZyKcAXvsLvvnv9yFzov6c3ws9yqd4Gf/wPPSZeTZJV2+/Yky/Ksq588GLRO9MQEDHjwkX6ZpjKYFjEwbgKIY4M4/zMn801kZuw1caaz5zWe7756ltqKczjxOFw4Be//CUvXr1i3l13jbKB48/nRAqe4KHNgdl5xjEgrqItoTVTsgVuGnrVOl0VWFLm8fHE04MV3AvESJyjieluU91s2VkbblZQWxJKj1OKwZv+19kt+cLubq0yxdHs4nhqN4wEoIkZwMqWjTPh4vMN4m96/bBO9+GJN1dvKWnjkx+95funW77+5huCwI0G1graBrQNBt0+rTjg1esrzueVp3WDbWUaPUsR1nUDGvsxkqnMRNayUavyap6wdF4DR7w6HHhcEtpsPnZ/PCNSGEZvpoyUAY/WLqDRQqEg7qJUNAB52xQdN3CB4M1BJs3RnLm11uoRXxENODcgzkTdS60dvOmpTfqV0hw6lUCpG0UqTaB0W7HEgTH4vlle0AZJG99+u7CbwGmm1oRIRZKnBXi6Szw9JK4OA5//8qe0qqwPZ1yE43LmqI7mRogjOh3Ijw88Hs80DIe5ZeXdh/f8t//Df8P+8IoQd5S8UIqHWjk/PFEOM39alZtJ+OXbBsWwf2ndqNtKcEotyiqNd++O/PY3X+DKGZGGjBHnTjxkeHi/sRVbFD7dGqvhm87Z+DuvXnLz9ooYR7Q09ocDpY6MtTFOM+Nh4EX2sA2EriV+8Sd/PJ0uqqylMEVhWRINJTjHFG1BltSRSkaiXR1bZxWfN8tNuxr3iCjHrYBYkS2tUYvio2WNQWMMDtTg9857e156MCVgYx3ps3PsIDbuSDX3sPquKTdrseuR486MmuaS6jsbpduJ9SNwHLFGAYTWvH0murPMeLmup+GazluxYhyDohSOS6K12iV1niiRYVDEB/aHG6b9xLQ7EOJIrpasfV4yx6S8Pyvfvn/kq6++4Yu/+HNySt0yG/n5T37KT376Y/7pf/GfMe2vcGL26tNyep7VihemceQnn1xzNQtTP0BaM8WNtmzIR2BLhS+++JYP333Pw90dx9OTRaN7h4rjKS0sW+Z03mi1MWpDW2GaR+O1OGGeBsZpR+tRG0Pveptz5HVh6wyI/csXqPOcVTgdV/S40taE1IqGSNgG5vn3S3N+sOg+ne742aef8/7rP6Ud4GnJ3D2+Yze/5N23T+ymwO3tEzrsmKYR/2BdwfF4ZBxGvPekIlQCXi5LM0+tjjg2omssqyNGQbQA9jBMUUAaqWxGwlKbd9UGQQeib5RW8GHAqeluS7NjXpw5x6Tj55BGTt4YoWKAmdLUuhRn3nYBqiZL+FQsYbSZ/Vf7/O0i8RFpXcDOM7RaWmUIA56M9SqOorZe2zYlukYeEi1lYnQ0jZTUyFUZwplXr294+fqVKQoACeZYSsWR1DHOjlcv97x6+wnfryslGVt0q3BOifd377m//Y4gwrQTvB8YYkBDIJZCKUrJmSc38nRc2A3N5GN+wE2Okp5o0jivle++fNddU4bsyxpY0saSYMnKclrNhtmU6EAkkhZHejgRgPnwllJsZhHHgbEp024y1+GNg+TYXU2EaSLlP15yhDUiNk9dq91wci3WyXnjLIhYSi6uqwZ6/I7QQfBis1gn2tnGJmH06jt5zLra6A1xSZ/zNtuAdcmWPesNK7qt23mlP3QilppijrGOdOwdq8rHVlWEru1VejnGtBD0EZKlTrSmZobp34eLnUDEgC3WuQspK0qlxWLdYKv9T5Xnzr1kUz841xUFudLETAm5WgcoweOHgYrYz+fMljLv3r/HeeHD+295RWHevTSWgoauqqnGA1G4f9qoxfF6Mv3upShf7L+pKueUuLt95PHhkXU5dxWSuT1zU9YtkXIlJQOwi1TOq/KyVuIYGEIgxvEZFykKQ4yEGA3qnrMtKr3gB4f6wPGYSNuK18ZIIzrIW2EtiZR/f0Pxg0X3Ry8+43D9E5b1G1YniGy8+fQXlPOZD+8/cPtwws1XRIQF5dXLA1vKbMcnslNeXHuCvODL9/fmYhHHJtm81hmeSuGwh5IcxTnQzGGcmaLjcUs09aCZx82CKu1aUJEByB5x9lCH1jiXjV3wNvvKkbUVnDRyMWXALuwRRk5lMzulb3g15wk9oiXUDR9GcgH0DJjG1/V7W6nQxLEme6iUiBObDxctFCakCd41tqJ4V2nem934GBgHzxhtf50q1M2G/vcPjuiEef67FsJZK+m08uH9kQXh+k8ObIPycPvBTmmvqEREK6f0xHZ75l/+n/87n3zyGb/4xa948fLH7A9vGMeZxo5tTaynB0RnvjitvNwX5qCM3vitiUqqG3/6Z9/xb/6vP6PUJ9YMxZ84p0a62xAfcKmy08E6Go7sh4HDbjJ5XH5gf/OSw3yFGyaOTwnNiekwMc4DcfBc//QFeSnGTwbuPpz+7avlv6dXcJ4QjbkqXhiHSHDWyS5bYorSbbV9uVKqyRmDw+H7oVoYwkj0jlKLLdQopOp6yrDiS2MMXa1Q7fvt6bE91aKinHhTQHRJV20NjxC8jbxKa6Rae6S46/jR2tkGjai+L3B7NyzdAKwAfcmnlgR8kZmpVtvqO28drprLq7aK4FiTWH5eFZxrjKMAAS2wrgV1het0xuvAtNsRBlMQtdR4fEqcqjLsRl6+3FPaK37zm73B0zs28d3DPUs+c/MvAz/9+U/42c9+xTxfM+9eE0MkhIF1SWxb5u7+xPnsaNPGFMplgEgVoVB5f3/iw+2Rb377hc15SyI322+clsSaG+dTNit8LTiUGANSHeW8svOOeRo5XF9ZtI9aaOV+Hs1QEQL16sA4OFwMVKDkYnXufGbQxO7NFburPe+/vWVdMmX34vc/ez/0YN4fP5C+ycy7Pd99f8s0XbMWxS0nzh8qEoWUV/w4spsijyfrAMKwo7bCumQO+8br/URWpWihnj1ajICvWlAGYjC78Og9LhhUpPV5SpOGE+sawRY+ThpOinnYncOLWQCX3n3VmmlqA3wvnqobldr9157mCk2NYuQE1DW0NLKPSNGuw43dwy5mZUaovaO4cEh7oEpfcnQafhOyZEQD3tsCyYvHR0vbrTlbF0rGe0ctSqvWsZjGO/D48ECplXVLVBfY0pnT00bdFhr96ugMOGJbXOHL3zxwOilOrkjJ8VY9h0PhcHjNMM+cHu5BhNOyMnohTM4SXFul5Ezxga//8ivyeqTphuA5Pq6kDLE5wiCEMVCCw6dKWh3ee8bRMwSDVKtYVEuYZrYFlMJ8NeP8SBg8YRyofmC9W+zK+kfsdEPoHnqxJOfgzMSwnwODF9ZSUA/bajrMqt2dFgxOVDqYpvOsqRnAHE3tEsEjZs2VrghLydpmcQo0m+WqcZuld9HaxwgV8B3If9HoWg3VrkqwTvbChtD6scia16GTIFT78le6xOsyQnAd7GJW1st/mwtOn+fD0qVnFyCT+v41mrKsmf2WDGquwrolcqqczxtrVRgTNVfW04maM6ihMlFDLi6b8t137/BBmMY91zcJH2aGYTaJ2RBNWlYLkoRjS7RY2ceKw5jBqVQeHo/c3d6xnp8otRk/ettIqVJzRRrEzhyuIgSBeQwM3hFDj/IZAvO8M6NMKh37GAy+vt+Z2apYjmBKhbwVfMmEHnE1zJEwx86LUFT/wEXaehLO+wdc2TidbxhjZE2PlO/uSVshnTdS8xyuPdt94vr6iseTw8mK9ILwcMxUFWrNOC/s5okYlcdTdzpVZ/NYKeyYqcnoXa7zbkuyAkNLBA9bysz7ESmCtgStUprDieVy1eDYau2FyQwCqo7k7JokHc9YFaokc7iokbacU5pzNAqlWPF2rpOVsPw0cn0GFHsxXZ7ZmqBVC3h0CMPeloEOsxTGwVNaYj/AbgzmflM4lcT98Q7VM99/+J7d/hW354XT45HvHp/QsnC6/8C3X9+zm2ZaW3BsVnC1cxlE+e2Xt/zm61v+1Z9+wX7c8au/+zm/+pPP+Wf/9X/OLu6o8453331HeXqPLzNMgu4yeamcyfz220fO99/jqP0q6qmLMgbh+rWJxFMWXMm0LJxlJAbhMI1c7ScOr97g4kDx9u81zRHvr/H7A008G43T/UY5F+pW0box/PXt0P+vr1aU1q/z582wfTEEwK6frVrBGkcLR6wq+CBd3aCoZBweqb6rHQzkbXZy61iDNwMCXVLksiEEG7ZccxjtSjo8377v9mEVVRrpWVMq4mwB1j/MpuOV5/cGNn4ziVtBhOdcsUa/zf1OYkOX8iLVynwiI2JcBSd06ZtDgknHvCiDt89U9pCrGjf5SXg8PqHes5wWlvPCu/dPpFZIj/c8ngr39xYB5V1PKO4jlVIaX/zmlq+/PZ9xeAAAIABJREFUeeDXv/6Ow/7A559/ztu3b/nss8/40c9/CTLyeH/k7vGJ7FauZ0Em08me1zOPy8YXf/ElD3f3bOlMU8eyZNY1ISi70aPiqIPSSqNsNg+/uZqYxoGbF9fM88S43zHudqgGxqEQB8ew35mN2QdaaaSS0VKoKeNb4e3NwDAciFNkeH0AgZdvXrE7b9w9/X6C3g93ussDb/0b7lLlxwdlkYXZB47rhgyBY/Ycxsh2Knhx3D0+2FKmVoY44XTlsJ95f/9IjMK6NbTaXDPVxmHnzXdeYPCznbhip/J5tQyjtdqp6tW2uk0gOiVhYBDnfE8PNlSkXQcv0cimQijNxPCW+tNnWBcYCNpZC4XWPEgh96yl1q+W2gJNGoKnNVu6uKZksWuIA9BGqukZ+ddqRqqAt02vaO9mVfFRiCtsJDwCMtB05LQmNkkUHMc1cXt3pOYTaahsa2J3uCI3hbqizff3CK0KOQFUlrVxPBZEf41uG//kn/1HhNmjEqnFtI70riXlSk6Zu9PC7dcfqCmRu505542ai+k/h9nMK1TTY/sRasRJZh4G5nFgDFheWKkElGEOhKicUdJ5RUumZgfLxrRTSt46oe2P8/Le23XdedtyayX6ARAsqbxad1tahxopMYrpbJtyCWWp2szA03pibZdd2aS124rVtv7SB7raD22RrqxRaGr4QdXWZ71WhLl0qnRojF3i0ctJz8VpZu/lEnrpRHoMVY/qUePVWtAkXObAitG9XNPnWHRVkAa4HveuppaIvWB6Y9xTS2NdC0/nFYaNnBunNfFwOpFyYlHhuDTWtRJjNCOOtr4LsW5+2QrrVli3D4zDEzVXjg8PiGY++8mn+Li3m1jaaCHTilA64ObxuHD/eOL4+ETeViOu1kru9twQrNlRLONOvcUNOYR5HNjNE/PckyPCYJFAONwQkWDKIXKlrcUO4pzNGSdKiMJuNzDMM2GekN0MTZkPO7xzrD9wi/thc4SuBPZ4qXxx/A2fzJ9y8HvS/JKH89e8fXFgLYVcMzk1TsvGEIRUK0taiJPn/JiIobFucH0YLXzPFa5louLs5FfBNeGswhBMsiPONLCIwzfT5gZnc9xSQSTgXQ/2C5bGUIttaIWEaiY3Z+xLlNqEcgn0A5oUG8oz23ihRZpXSBs2MvCINFqxsEq691zVGxxEzPBg/QrgPEWr2YeDIfmKKrOYrrKIkrPj+mZAXCMOwiGOpIdEKo2H04nT7R3jq5G7p5lFdyzL1zxtgfPtIyJKXCOvX76ijCO1VY7rwuOxh/GJoniCBiqV7+4Xjttf8C/+t/+Ff/yf/hNy+RmjKJ/+5A0Hn9hPwpYba0t88/U3pPRk2lFvselbsbSAXbAEZFGDecyHF4gIV9eOYYDDtGO+2TGMr0wr6iCnDX994JQ2vvnqHccPT5BWPns920bYHVDvmHe/3yr5t/7qZoAgSkFIrTH09F91ULMSvTcbcKsMrQNgsNFBEJvbNmx34Jwn98J7MSyY5MuRSiKo64siuj3XtLxNP3JnldqNEvQxlnXTVdtzd4h2LflfI5YZp6BdumUuCzps4dZHF5YE3d9Xv+arGDXLi+CdJxfjhgwBgrcmpzXBR2/6cVV2s8OlxnETjkvm9vaRTGCrV5zPnvf3J07njacl9c+yZ7+7YjfNlLSxpsTxfKK2Si526Ky5cTwXzuff8t3373j37htev93z9tOfIRrYT54X08ButJTu42nju+/e8/DwyHI+kcvGlgslVUoqDN5YLkOw8c2wH3FiMC3vhMN+YtrNTPtrvA/4YPINF4Xq4JQLj9/fQanMwVCYQzT2xm4aGMaJ3Ysrwm5CxoFtmoitMd+YfjdZF/Q3vn6w6PqbhafzmdN2z5oK+6sTcfyE99/9mmEM3H94ROY9gzpWrcQQSevCsJvImAeZvfB4f+7R1Y3ReUr1VG+nb3UVmsltpqESNNJ8M7g2m0E7urj84gqqreK9p2TtkI5KcI4i3arZTCauYh2ENlM1uJ5l1Gxl0LWU2R50HLSKqFmBVTrGTaqZNHielvVDovWT8eP8yznBi2HDSy6oqxQULZZptrZC9BMSK9SAU2H0G+pM07icG/tXwrEIWa5oeFvU6QVn2YhOibuZNSd8qQYIL5Xo87NG1ClodeTU+Mt//TU/+dnXzDdviCMMOTGPjThEzjVw/3Qmb5ulAjhzHuVkDjgfhDA4vDpElTE65nHGeYgxEIbA4CfCPODiZBvuwZaNp61wulvQZYG0UpYztQTCMDKFmZQXhnn+dy+ef+DLuYBIpaFMMeBNUoDv0BrFZFwXl1cT+pzUmYpAMG2nqXH7nsHR6D8n3XJKZyjQdeatu9uwWbBZXjvGRuECqLlgFrXruP76jPACqrmEUnYtwkV0q4ZiF+V5bGFf6aK9sB9dXHOXGa9gc1+EHrJ4mfnS59fdSRchNCVkM3Zs58S0L6wCm45UGWiUZ2aFIEQvOB/Jzg4Anza0CN7n/newP7s04bQkPnx45Pbde3b7a7y7YfCNeRSGKGwbrKlwXhZyts+vcWlad/11dkpwRGdjo3mecS4Qosd7zzzNxHEkjJPpqp1YliKN5bgYMOd4hFqZ9iMujERvET/DNBKnGT+Oxrl2QlJrTAbvkB4p//teP1h0B664kve8S5WfvPoxX/7ZPZ/+6pGmZ24/PCC+8v7dA/vDzLos5FzQ4Fi2hdIgPTnEJQ7jjiFaUVryQiVQU2UfBkqFeRzxrZDVIMlNwWljHnaseUXE2QMjHtVCzu35ZLYH1DR9rVSCBKo4GhlpnioF1OO0URqgNirwGvspb9dD1Ysc6KP1E4zNK/4iM2vWLRfbeFssdY9QwaDLqVYqjtock7fYPvWVpYKTYgswmVCX8VtlHoUxKSkG/uqvfgOhMl//Ci87ph/9PdZvf82kG9TG0/rE6fSA8yP7/Z45RmR/AOeRapEltRUET6oNLZV3Xz/w1a+/4vN/8BlX0nh5PTDs9+Ta+P43tzx8eOL8dCZrpWim5MKr6wM+BlreiCHiAoxDYL/fs3/1FucmK7xTJJWBtKy0sLGtBbxjrXB/9466Hvn0JvDyk5GtTqzHlSALL1695HB14PrtH88cgTacD5ar1aHeRWEtCUHYT7u+ECn0E5dUTFIozuBF6oVUTFSoYhbTwQdWLd3UoL0AVmozEH+PBDRzhjPwTMOKhULni3zUhbem/dm0OXFPJePS5oraeMGEZPYrirMxxyUN4plGJs/xQhZbZY1E95yRm1IaDJ0nXMySZTpgZ3N+ay4K4+CgCqnB/d0tKo39ZwfqPDO+/DGbvMdvp2fp3MPjB9MEu4HgPTf7KzvYarGlao/Yac0qftqU7778likO/PyzymF0HfOq3N0eub8/cnw6sW0btRl/YT8N/TsjjNHSjMcxMk0j8+EG5yNhNDVCyTao0abQjH3bstHlJJ0IrnE9OWqxhiMEz+GwZxgj080BNwR0diQPWSqJjKNYbtw0Ml0dfu+j98PAmyw8yg2lnciPJ97+9A35eEaLcDhM3L478+mnr7l/2gxnF5r92u7AmhOttM4PHalVyWnFBSFGOGugtox3gWkK5JRxxTqGnEG87XKDM3mNwcWFKuZmA+vsPJanhNpCQqXQ+jbWgiyNst+KPs+wXD/JlQw6gus+7OdrmQIVJHLZECNq884GXgKC644YI/U3bUj1+GAUKHOeeRpCSpkoDafG8gwKtWQcjnHyJNeH/DmxPhy5eQtlc0xXV5TvdtTy/pntqghpPSKSudq/ZDwcaOrYtjPBObaqeBwET/PC7nCF+MC0PTIPgLwhLRvnNaE1ESeP+EA+rgQxt900W9frw8Th5orcOiN2t0O6W6c5T3Wexy1TljN7Iik3zgrqA/kpE1WZh4kYIhOevBRcEwZvpDMX/3jmCNddUCH4brm9AFBMxdBHmR10pDgxkT1kxBmNzkYE7Vm7apv/ZmOwXuzsKm+2tEsElD1fH7vMv/bqhRpxz3PbC9DxkkxhxdXkblY4P6oZ+nqsz5d7x05X24i79NH2/vn4971ocS6Mh4otiaVa151bxRX7f3s1mtkweGru2tvzmRey0VzAh4gLE6W2HgFlnwcUoq94t2MaRhQoRSwmvfRDp0cg7aaB0XsGLezcyhRnckrkXMlpfe78tfMUnDc9tIiNE6adkc5C8Cb7GkbEB1oI4DznLSEtWxIH9M9soKTMJI0heqZ5JGfFNRhCYJxHht2InwcIQo1Kdf0WhKKu27QR/PAHmiPc+Ibj0pAmHO8dbz7fcf8Xv+FHn3/K7bs/Z3/YM15PvLt/YMvFYkpGiwF3zpPS+vyPOQRo2XKzUq3s5h2lrITo2NYNcREXK5psmWVl1VIjYghc9q6D39N0o+FouuE10BAGNSL+hb7kxETOTi1VWKX0i58DLd2jLqgUUEfDxN8Nh3SBuF3veheiNhMWLO3TYVcrL80KsDacF5wzvLT2D8OWGzRvLrDcyFrQ1SHZIt2HENG2EZtluz3cnXhVH4njNX7LjPPM0/tiXwO7LTgHZUuUuDAeXuK62Lv0UUpVY8HGaeTq6ppZhIM7c/3impQyuWSWJaG6Mk2R4Kxr11wZ5oEw2JxxnHdMV1dIMWmUcWeVkhbcOMDqebhdKed7JFkx3toOHzO1VqYIwzQxjiNV4Xqz8dK4mxh3I373x0sD9s6zlQ3vPF5sjOA6HMmLJ1fjJ19iciTYDLZU93wth49chCCC4ZhsjliqdZKgDC50TbmVtR40ZkuzLs4pfbl2cZK1XsgvizR5LpiXQq3PP3ouyJcF3fMYrB8c2CJXpP9/1OYOzx3z74hILjNhWwy6DjmHXGwJ5/vfuceekRtsW2U7r9TtaGkS2hOjq5gsUPooRcQWcDURQrQDSc1efzmghhCYx4FXhx1vriZuRscUlRCUbUtsa6KUZHJQ755HCU58P0BtVDLs94gP5ljzwW7Rz6nBsD6teM0WT+WcHaQorRTCaLrteZqIQfEqXeEwE+YBmQLVKdlly/1rdrAVaTTvbEQ5/oFF99OrX7K277l3I69+dsMwX3E43PKv/uxLbj+sbDnzejzgmrDlyvV+6lT2E04au3mk1cBTWhnCDuHU4zw8uWRwoK0Q3EQplWFwnFrtchfY+ZGzyyjdKaTm0Jl2A0GwNIhsj2hmswiVWglIt+8WGuaRdnQ0m2QC3ohAF42iVrzrl7SedVUVAgYlqR3pZLBoew+KI1zcac3wkbUq0rq8SCPBDbTcGAKggTgNLKeCd4H95AxROQgjjtIy5wJPT2fuv/oN080Nx28euY4TX+UdKT0wTo0gARcHGp5zWji9X22enQu1v9/ghB9fTfzsk2v+q3/yd7l5ecXu5Q6A07JwPiW2tbBJZVlXwuS43u15ukvMLuCvDqznjaUoumaqjGyPR3KuxOniSwrkpbHeP7EfQccD0kpXVkR2krieZzwQ54An8uk4E0Pg+pM3SBxwhz9i0W2AmqmhuYBq6Qey9BGQTT5jdHinVOiONY/rKSatL69KrXjvmJwzP76/qATM+DA4h4+OEE3CeGpKrYo62y/YGKJbg7UnofSUXvrctt/Zen28jNs+Tmhdf2bB5pKodMbD7zIceicsF8db1+TiqMU05dEH4wa0j0UWdZzXSs6Gj5Q5It5uP1NTsquUdeP9b3/LfHXA14FQKvvDSx4fH1i3M94XvHemcGmFbXnoc3Gb3lxNnv048MsfvebTt9e8fXPDT37yqQHDg+OcNh7uFlIuHLeNlDNEj2uRoKMtQH0kJ8tLq2tCXGNbVmopCPbenURahqDFCu4+WoxPcKgb8UHYTyPzNDHvZ0Q8h/2BYTcxXO8heuroaRTOubLWZgngVKrD/kwfGMIfONPNw5G07NhdZ5tDrU/cS0Crw0+O4CdiGEi1GF0oJyNxUVm2SmqVvR9wakAIkZG0LTRp1FYIMthc6xIW5wKVM45oHYQUopfu7rLk0YhJVsbBcVpMqxhcv8K08nGxcLFENgU1z7uqFXQTnlcE36+OhdYGLtczUcWpXRuMx2k9sNfLFU0/CsjVI1J68fV9yZIJYSLESpEGTpmCt9meRpTE2mY7FSUxBM/oGrtJKU24e3/PGwfTGHi8u+Xtp5/w9deZLR37gsa6MINvGNR9mm0TfhgGrgbPP/0Hn/OjH7/gk5++AvFUFZoox3NiPW3kUtmCI1WHc4GCktbMOA/dggw5HWmuULRR18WE77eVYVD8PBHUMwaLjR9iRIhMsRIOM5I8wzQDvs/yvKH9xhE3etSbQuCP9RIHToOZZJo+J0CI+J7gq6SWGUSee0mkYWlmllcm2pGMHf7tncNHe8CsaDuCh3EKVqiDXT2Xtdii63mL0J8zvci7PvJtW5/PCmJLtd9tS//aS58HFspllmu/t3tp7Nf7YXAZQtBL+UcUpf1c63dU1zvunG1Q0XCsxb6Wj4LzwjQItUI6rwiNsL/GSWPwsN/tEBG2dEQbuB4A4FzDOdgNnsE7Xu8mXh5m/v7nn/Di5RWH6wPDPNAQtrWQSuG4bKRceFpWUkqklMwurEJTR8rKumVaMTC/95FtW03N4AQXPX4MlucmgWHw7HYzIThc8DQZ8MAwDWZhHye89wz7mTAMaFdzZKCIp0m0hSE2VlJx4CMQuOS3/U2vH0Y75gkdPjDn77i/bfybL99zc61UVQ77V1y9fMF6qtxcvWDb3vF0PpnWMXh2MeKBtWSKCufljA+NwU94ESIrGsCrA+eJUlm3guhILoVxdmixhcIkkeDh5lXETyMshRg9p5DJrbFV8K6Re0xyaRZKVVvfJktGNfRO1pxquV0ITQri+wegf7YIlrbaqrmHmtKaw3lLXUUjSKVpBErnjUaLbEbARbRl1jwYD7U5SjTH2ulYidHTpLBtMNKQKaIuc3UVITfuTxvffvElL3/5U7Y1sjw+8h/+6mf81ZfvqXlBpHQuayMOlXkSbq4GruYdbzz87Mef8fNffsIwTZyXhgzC0+NGWlfOpwVGz+O5cffwPfcf7gnOEVxjCBMaAo/3hbvbR1o6MfnG4U2hUliPJ8YIh3lHHAbG/YwvG/Nhb9evcWQYBmRwHCYlxMjNmx3DvEOaY3fw+GkkN+vUqv/jpQErpsDYkhlp1Edw7XmK2lQIwdkzKaYHV2y0Ezp4/KLLtTFW3xt0doNgUP9h9Lz4ZAQ8XsyRmLaNcxNSBaNc8Qylqc9TW/ex+30eC3wcKoizzrWXVXt+pZfMLjkz0YJ0AJSpSvpP9fn1xYbMxz+n/1puSpOC66KJXANjsU6ulsQijbfXA8EH5oOAmma3LgteC5ME0MI0RA67AylfWUjkejL786Ts5sCPPnnBfhz40c2eF1d73v7kLXGcqRK4OybWbeP+4ciWMg/nxGnZeLy/p9bMEGCMgTGOUA31mNMCreFKww3VRkfe5KrTNDGOe1ywVIgYA4erPTEOz2xjJ8L+ak8cR+ZpxEePDN362xqVbDJZrWRGxFuwZpCGUlhqRr3D1d/fUPxg0b19fMfrV5Xy6Mn6yNVnM7445uvKz17c8OEvP6BeOS0nordYHdvUWkrq4BrrpkhQfAdql5xxMbBVZfLWCZS+/FHxpr2tHs0gvuDUI5E+C/SMhwkNK24YCbcPVFUrbApObe7pcWS165hxEzyXiB2hcclIQ8WQpmLdsEg/NeUyJbMHX7EMKumPd3UgfZEhGhCXkQ7PaVRUPYOLiChZM4FAqhbzQ+kBg6uSdCHHmeisUAdfwDeGBq0I+f6O63nHt+8fcKfCz370lg93D2zbg11DK3hxzDOMs2MaheubPXE3QggUF+w6VRP39/dsa2JZzYr9/mnhdPfItp2NE+qV+TCzFCVtC46K9wHRhm/CHGfYC6PL7PYz4zThp4lBB6Z5Ig4D+6sD3o+oFvxYiGNkvnqBjzNSKvHgjDu6Ki03avz93cDf9ssKTqCI54I7HELsBK5miyylZ+pZcXPSdcViP2eKgP6c+d4xdyODd8I4BeIA0+4SADlRFiF4AWmWHNFNM5dZ7mWZJc995seu136D/k5F5XkpZyMD7QYIrBNHoRdz++2tp1f0vrgXYRV9zlMzdYOi5ZIKYYyGgHTHm9nWtYNtxDniFHB9C5m7624IMMTGednwIrx5/YZU4N17x7qurCmxm0devvoxN1d7bvaRcRCyOHMKFuV4Wjmdz9zePbLmzP1x4XhceLx/RKnsp8hujOjODi0t2RK6+wLNe2cYykHYHXaMw0AcZiu6YyQExzBNDNNoi9JmipE4zfgQQJxxYpxHtZGpZC0WCyaKcyOXZApLfjFyWeUSIPo3v36w6Ep15K+/Zdtf8+77E28OjusAf/X4DV/92b/m5vpHpNKgFdaUQR1rS9RsWUNt9kSvqEZ8MMCH98Yw3U2zQbc1EofM2h1cTR1xNDJWqM7YsVeOYQeHa8f+OlMOr58ZBuf1TOq8S0OJyDMRSsSQjVX6Rp/67DJzSpeOCVSPeEUYupKhUbWYX7CbHwTjQDRa9+k7tFkKg5MBRamuIBrxBHzoO+ciVF9J2VE1swtCE2MK1xZ4WhYqiXkamHdX1Fp5GRa27KlrZhoeuLkZufuQ+PH+kf/4H/2CD/fK+w8feH97y7dfL7x+nPgf/6f/jsM08erK4dg4lkciO5anI+d15d137zkumeP6yFKUD98/8HT/hKLsZs/kA+V1IQwjIa2M3hPiRBBHGKPZQZm5uXrLvJ+Z4oiLkTEOxNGhFcIcmA97Wm1Ic8ToYXfgeH8m5IWr1z/CaeAYHqgBHpbHf/tq+e/pZRZuGIeRJSW7HqqaR38IHVPYmGJAcZRS+ty02Yb+eRYrOC00Z3xdweR181Xg6qVYUfKR3dUATTg3x24e2XLlaTMe88dgyV4IxSHUXsQ9l5kt9KZBLo1Cl4d1TbmImRwuizSaHS5WvFtHOfYigRk07JYH0u3HPfKsk9U8RbFltO9zbbVgTS/CeS2oeqbJ2BpOHCFWOkSEHx8GjlE5pcLp6XvGac9/8PnPkC4V3e9mfvr3/qElKm+3vD9+z9d/9RVDHPHOs66Vx4cj7969Z1kzj+fV9LPrimrjsAsWsoASQ8BjjGTnPBoHch8FTjF22PiAH6LdRoNHfUBDRL0HF4jB43BUImWtNJI1HWEC16jOwFjZj+YBaD2iCSE6W6qfi41CpE2/99n74aLrHTUHpv1L3rxUeDgSww1aAmWDaRx5PN6zLAUfLJup1ILznug8QT2FSs4b8wz7YSYnw61VKs5HRDqGTgIquXeUHtcp94cXAyKVOAU8Hh+iidoXSwSO3qGaTfKDs4fHddiNCtllXPPP6geHjQRc/7F1t4o2Z7NSbPZpMJnLxKt3xxeXDzbdkt5dXLbCAgSnfRnnSK0hgZ4gXJ/DAFWFVDxeGik1dqOzQhW9JRHUwECgSkaa8mI38PSQWU53vPu+8fNf/Ce8ffuK29s7/vWv/4o3h4lPfvH3cX5COfLtt39KfvjAMBSmzgO4vb2nNLh/OLM1T1pbj0wp1s1H8+b7ltFgBgB1JserbqScl/73t1lm9zZTcjZ1iY7U4lAneB9wNSDRU1IjLZntdKKVhIuBQRxJhPADc6+/7ZdTpXW8YvS+p0cLBWVsFovunMN366qTj5pWJ5fASCtMokCzZAUBYgiMY+DmTaRu4L0zd9s002plOgTiarlsF2v4pWg6LgoVG8SafrcZV9feee9qpXNIP3bHzwpexzMO9XftEPbZcnzULVymu64bKAxkj/QOn25zF1NTOPV4P9NaodTMWhtSlJTtJtu/hYzRlENego2jGjxujVwTJT0x+QOv375m2s3U/MSSlPsPv+Xx8QPr473N/b2jVsdy3Li/O7HkzHntS7JmLrZalVx64kbrDGORvvjMoDBNoVuODcZFrv1QcQTALRb+6n1gGi6Kis3COqOQEgzNxj7iG8EHhjCTWiW1zQ5GlCQQnMO5vhv6gXXFDxbdOCeOeUTvvuLxuyfC5tl+eo9slZ98fs36mInDQJwi63bm6hBR3VnhRfFNOYwj22SKgVQTJWcO08ipVEbvUaekWhlCICFoSkiMDEGZholPfz6yv3Gc7ws+BOY4Mbx4zWN7z3TwcLKrXm2eogUnAV+bfRgCBBUaxUToUvDNBt32z2DOJLAT3ua/pssTZ64sWiP1H8OAYNbM1pcS1iFopzZ5MpY9VsWunoMfjRchHu8q2jznHHj18jXH43tOOOrS2NXKNFnXuRRBYuJmirQiXMeJn/5y5tG/5e5x5f/4F/8r+8PAixdv+e//u/8SP458+Zv/h1kbH95/we3jB87v7zncXIFrDPOOL//8e1r0fPdwomSDMWc2RK2jHgfH4/nMy9dXPN0ema52SM7Mu4nv/uqWQTI3n96QcyW8Cnz48MSL13vunjJzCkw7oZ0SS8KoTfNMe9jMy14rw9XM3Tfvma5Hyg62dWU67P+/V8l/zy/noxWvvt134vvIwbGkgguWkJB7hpn3gaYNL4GmzqSCYsoYBYIznsO4D7x4uePqxczPf/FL8IXteEfTip/2DDtAM2H8f4l7syZLsis779tncr9TRGTkWAOmAnoCrAeRNIk06YE0Pcj0oCf9T/0DvUgiRZHdopEsAWg0pioUasqMjIg7ufsZ+bBPRLVkrKIMJAxulmVllREVN+51P2efvdf6luH2MFOXrLSvpr3/1CpStVepKEdddB82a2m2O8R6AgVKNdMKQUsJ0x/4B0dcprcweFis+9/3Cvirarh3tHsse2uGrOs1Fq1gU67gB2Jq5NNMyrAaE6Vp1W4bbC5XOOeYa6Hlgm8amdUE3NioZsK1I/l84ObwJcu88PnrG/aHI6fDAWNch6xrgzn3BXWKiYowDhapkJKmXJxPCWmZ2gxzPNFKYRsC3gpcjXi74/7uRM2VdVCNeWuVcRwIYaWBuM6w9gFnDMMQcM4gVwOVQgSatbSwATdizQBpZlrVxkvYAAAgAElEQVTumeYz1ljC5QvVtVtB8oSZvx5b+o2LbpY9kzGU4imniqxfcrKNd//sBZ/87DOabdx8fqd5W7kwp8bgqkbkFKEZbTrrKqbHombdIympACVngqN72isGzaZ3MmCCYb3aQWhsngqSFoyxONsYNsLT97ZMSbjZzzow6D22SMEWjWX3VuN0HjSSGv6gFYvDd8G6Vqs6WS2aPYXpwBAt6rSP16HlpnVsn2L+VEoODbWWPvTWaIoEtF3vXoyl5cYwDDx9533uf35mWU5YEXKDmGdc9Cy5MbRK2A0UV5n6lPz5zvFkd8lu45lipaQTt5//gvXTLVfDE6yzvH1zy+3+lnl/4BwLMZ4R75mWSJkbuWZyTiSxuGCxwUEx5Opoc6ZlQaohV8vdzT2Xc2Q+RNzGkJYI24EownScGQZDylAOEeMG5qUyuEIInnSasEbzwCgJ4yJ5vWXJCwnHRGX9DbKa3/flBkNa6FVdx3JiKLXivSfXSCmNXIveF1ZoRS2w0HGHQEGxn94ZfPBsth4/GtY7jxjBr3c4qYrLdCuKCAdzwPRq2vZ02voIYAKakspE0Iwy0aN768416fpZta8ruvBBsaDaWu1H9/USXUjb//uk1jW9enPrvfows+CBYMdXFbMAmcw8n5GsET5CI2d1etbcmOfM4GBpyptOKamGNTdi0caeLdCMJ2dHzpnldCKlxO3xzHmKzFPWtaIfpoyKQRTZ2JGqJfftwuhQf0lFqXClqaOsQhGLqSqFq6VwPpxoJeNWBtxASgVyxu8cVcwjHa4ZgxOw4tVUIo1qKhiHuECzjlgzc57Yn++ZlongB66o3U6sxqLyDYe4b650rcWbgTbvWTlD2CR2V69o55nVU8/5deXJ6Pn529eqBnCGIoV0TrrTLZH1MJJLJiEMruGHFVOc2YwrcmkEDNZl5kV30uAtIQxcvr9mMI4Xz9/l8vkLssy0eCbGW6zbYWRivouMTvV/tqoFVYrCnKvAnCumweAs0kQhJVVQ+4K2LZxUMmBrtwQboTathL24fmxUWlSqSudy6ACukBBxtF71NDpHly5WRyVkOUOyDYkKTlmOB/7upx9SayPFwtyEsiQuNgOpwWGJrIPjifOUZpA6kw18+dkbqnEMXrh6ccFhymx3T7h7feDN4W85Hk4c8sLbu4V8PlDbRBWLtJmV1yHjaZoxUshWWBWt3nw2JKmk1cCnX9yzqp55OrK/PVPOhdU4sJwTw3CkXl/x+rcH7r74FElr8nDJ3ds7/shDawPzcssYAtl7jDXsNlvlZJwz592C33rEOVZhjQxfD3r+fV/vfrDj0787PSZDgGNJSfuBtdBaoLSiqhfzYH5Rd6Q1PMJrBlGM4mbr2D4bGDcDL799Rcl6PDWjpaJzjpfXlxxvoJ4qdVIJotd8KSqq9621Wx+KmjKa1cV3HQLOoPZxUMMPapmvpUEr6vqizy9EY+NBlTe1p1mU7lLTf/TmQ9M2mdIce7Ghegc9zfUWRpFIzQnfVNsq1pIavLmL1NZYUmQ7WKxz1NqwttKMkGNjfy7MKTPFPSlWnNXK2sjDwC53yHp9rLQfUpVzbf0Y39UVRb+nSKYUmOZMjIWguw+tNEoE6w3zVGllYQyDBooah0dX8nSeMesVw7jGGY23qq1SmwPxmMFBsBRnqd6TpBHTkdvpLfeHG+4PbxAaU7KsppHqGt5d4FxA7Ncvrd8MvJGRdv+G9fUT7j47k5fKy/WKFN8yZwVYf/E2gnX6oZdKKxZjHEvKWCvEokfsUmecWbOUhBFHKRnTOZVSlGHQrMN7wY2B6yvP+SAUObBfHDIG4vk14zDwZPcUSY3X7Y6yqH/ddLcLopZOWqWKo5ZKsKp/HZzD9/TW1hoYS8NhW6QaURi66G5sxSNWqwCHxrdbU5HiVN0gIFmTq7y3vbJQmDpNAzIRjQwStLGqN67SjJblqE4XrxQpVw1hcBxnOEwZY2BqhfOc8LZymLq0qTVu9jMmF16/ThwPhfMhMZjI3WEiWY2xb1VINWklR8FUQ6paUVvRNNNUFNRcelvdOOWN7tNMrVkfiKKVVa2WVITbm7eUbEkyM0+FcRgJzjLdHthswa92tDjRXKPkyrKc2azXeDdQMSwpU2tmCEM/zv5hrmfvXnPz2xPLSXuDzlrmxKMawDvDknTY5Kz6O8WYR/upSrmEJhoZboNj3Hiunq8ZLlaYJuCk65dHjFfN6LKcMaNjvNA4K7pw/ysLb78eLbzyaB+vXaEjRh2eevy2VAMayDpDUwcVAmKUD5xrZ4vUpBzppojDB2ea/j6q1TXm753gHhQVTfv4CrzRezC3gu3Esn3MfRAIpQjzkqkVvNfiZEmF46xxOUvSBbZW8/j5K86ydbOUVuWt961Vvqe/u+rj6XLO9tjX1WpW5yfSF2YFEAnkTDNgB9H0XxcI1msPv1U9hbWMM0bnRd2diYGke5e2O4DTciK1zBzPxDTr4E0Mc16Y05kln1ncqBue/L3P8v9zfeOie7F5xa9uf8t7z888X28Z2h0f/c2/5s3pnkvznH/z+afEUvAuaHrucgQaznikOUCB35FKrY6UEyVXXAjUrMmZNghgWJVMs8LTdzxXL7a8/yevuL87YP3I9uoFDImygN9swZw53r/m7uMjcZpQ17QHKyy5T30fKCUW5qhStJRhPY5UsTiXldbfGpWBWrRfViQjplCAgKGO3aYpEFIA01ha6fZCHUvUDuswVTC2KGBaoBSnU3GjVmNTGyJ6pvXGY8VjnQ75lpr5+a/31CbEmmhLY7VK7G8j188aBcN+ztwdEikXpi9OLFPm9vaeVg2r0bLEinGVkhq1izVbTpT+vrQuM6u1a5OdVkYlN2iRefEsi4XzzHYzcCiJuS1sXMUEOO1PDPYCacLWX9BKxZfKZrPi9u0d5MzL71yC31HTpCAgv0JBRYZhO1JCpY4bWthwO93+p1fH39N1dSW8/J7n5qNKOgipVjbjSMx6cspVgyo1BVpo5iu1gq4OBVp/QKXy5L01L97ZMex2rDYrVn7F2TqanzGDw5eKvJ1pVMJ2hZxOWNdUaV9VIyMiONfpdrW71Yraz+ei0qvgHEYaYxUGp1HlzjgMMAzXNKq6PkFPaf3lFhpL8mqDbYVzWnTRqn0897DIaS3yACfRQXfT738YHjo0PbkUDQEQ08hNn5c5Zt7c6c8N3pAqzKkwzUnhMlQGK9TaJWhSoTY8dJ6v4YED+GC/f+AA294Kak3VUbkJZI1IH4MlSGV0Rod/PQZJh5zC4B2rtWrJrbGsnaieV4RWMwbLpscOYQzNwjk0itMWSy2FqUZyK6z8FdsnT1iFkVIzU5yINRJz5H6+YzSei9/VHDGd3/L0esP9uXJxBb/492eW9Yz1a/IZUsrs9xNNoi4wqFwjp0SqhdEbbGskGoMLlBbxfk0j8xBhKlVlHdUoH7c1w/YyMM2Z3dWKlCBL5nmwxM0W6xzHw57Tac/Vt6+oXwqf3i0gqifkAYTRVd2mc0gfjkhTilQKKxxWhCE0aIFkMiKO3BTv6ErDWWjV9ggOKPYhWiWTmyWXRG1O8Ys8VAaPTWDECr47k5qxukM3lbe0DFkSKRYGZ7QnnjUCZj1YHJZUF5acEXaczhPnVDmfM0UqMalY2/WtP2UoORIC4EUBzMq0RETTMGrrYB60d+2M6VN5/SzikhT6bhpipbdkQEwh+MCSNE3ZiGFcDdQUWYVAa4FkPCVHWpxVgG6CwkBqprRCzJncIiY1gglMrXGOf7iMtMtnFzyfM5JPnP/ujEhjKRnn1K/vrCOTVUsLOOt1IRBtN7XaB7FdFyoCximJzQw7sJb1IFgXySScadS6aHBqq9SSVBtO64Cd1nPOupoGtNrt2lhM19827WOmBK1WkgjWKKw/+L5IOZWvaQHQsE6tP6Y1smRyEYrLamHOmkbxkANYW+sJ25Vataiwoq7Ch0gfNWZYak185Wrr/dYGJanJpFRVFjxwKMToeMeJIfXlFTEKjGnQqg7FedDJdyTlA17zoQVCf28e5Mqtln6/6qPnvdXBaDOahdiz5ax1GKv62+B0o3LBIh0kUZtq7J1zYNHPAqeDNH1HaA28GQjWsxm6aEACpBNVtD1RaiH/ruoFCIxrw+F25se/+JzPfnXH029d4uqaXBOn05n1KiBugCYczpFcElEgDF4znmhISnjfWLIgRqtd+4C1awVvPFCQleE7P3zCsLpg/XTD1nruZMUQzkzOw9C4GIXPvzhx9eod3n74C07p9NVxpAuSQ9CdNNdKrMJK9Eh1LAnbhDF4vdFMRYzHSyG4AUmJy/VzqhOIUWW6pdGcR+pCFt3tY1zTqBxSRWrTm6aqTM1326gRwGoEvFiHNOmNeg0ZbD1va8kzjUArgg2ZWjSo8xQq8XWl5cann+8pGF7vZ2osGAe2FlxoGIJiNCVrLM5cCd5orZALYhuNpPHbRdsWplcCmYIUeTzmnfcTu8vGXIVlOvPsyZaWE815YmoMRr3tYzBcXKzIZYX1jq0faKeBcfQsp3uCg/Vmy7jeEKshTROtztyES2JJPC2K50z16yNNft/X/v5jLq5WbP9yxd3dmeOtpc6tj3P1ak2PnMbo+2O7jEpaI4vev84J6yeV3eWWYTVQxTKake12oPp7jmWGbPFlxeS+YIpHjvsjy1EfZWuFisE0TScw/fRlukCtPEBymvQ8ND2pnHN7HOhao8kU3unXWm2IYqTig2UtnmZ08DU4T3CGCxvItXFKiSaiyRVCT+IVUlburwWCD4zrLdO0ME0zYqrmtDWrIPaqOXLNqQpI0F7uErVl4g0Ea1SnL1YdnFbt8U0MpUvf1Oj0MMwzj0kWaoGWvkHR2zoQnKhqqJme0iJYZ1itLathpGRVH1mjNnRrrA7iBbabsSuXVBr4YNvOqTDsBLO2mODIzpFaZMlFNx00oeZxg+nVsmIHKs0YMo1jrXzd9c2UMSuUuRK/2GPsmvVuZmWumOZEPh5xg+d0mnl6fan9I+OY40KRRSXG1qmUhEquCiK3xtBEGQ3ON/JUcM5SRFMhnA9cPtkSVpcEM7Ah4YdKNYWLiwLTjA2W8zmSUqaeNRtU6HAP2/tANDIaHSPV6Iy5NrwTDIVShVQgewWoYwqeSqiCpIqI17h02zAlEawjOcFUz6HOtFqZgeYKZK+mCel93FKJYpDaQdOa+9KrbSHXwtY5xHhCKdTcmyHyMLCptGKYooG44BzEWhTK4jQhWWplcI7U2ynW2Q68UU+eVKtT1z7dVlmtBdEKrTZFEJZSejUsxFZYppkwbKlpYhMMxTma9bRUcaYqGCVoVRa8o1Q66ckTggU/QKssKWKjZby60tNHnvBpoY4r5ioaymj+cD3d01L5wfc/4PXrX3D1wjLd6/G1n0axViE4xjh9v3KiGfO4wTtxuoF1R6PzTrmtmxXvPH8fz8Sb9CmlFKXrdfcg2WB8wm81dF01uvAQPql8h17CiW6QCt6ncxC0wqu19fazAvJFrFqXrc4MFJrTMAXmlnkApbs+uPNesLXRnDBs1hhHB9HMpFSZF1UEaLJLYTqfyD3I1RpV0zws9rkoXEelaqW/0n4K4KFw7bieziIxrb/ZHTz1SFTNGkdvVASvb8mDJr5pG8aIoUrDYXHWPcpilTqmf4bBQujPR1aji9p8zWPf1jmvqpH+OnwYcMHhhwEZHW0MWO8xaO6hE4uIVeNUsyxVFKpVeo+oKcqy9hPt113feNen0540JT755R2X18+J0bAcCjdv9tydF5Y50UQD+WqOnE46bNuNa4J4UnfxPNgsXXAMVmPPrbXQHWTG6i4VvCEuGWtXzHVgaY3rJ5eMa4PUE0JgOTfm+Z7WQtfI9jz6biB34shdzOyair5TU8COOigr5YGdWuDuHDnFQlwSUzFIK6QlcZgW5hlycmpxdqFnZD1wO4X14BjcwGgdTkTRgKWDcqoaLpqoftEbo2yDYtSyKEqkMk4wUvC29kVaNYG5aepobY1zahynyOB6im2X1lnRQYmVijMN89ASaBqWKGJoRVDCmv5cZ7QFpNVD7++2qn2/1tM4TKIa5YMOg8VIoIoaPJxzWGf6A9QXjZIZ11uc8eCUq5uLcH9/pqWIcwbrAkNMDKYRW6SS9Sj5B7qOJ0tOht32W1y+3LBaG5w1vRpS/Wpw9vHob41FjKO19hj54ozrFlKPHyppPrEOOshJ8Yy/O7BeEqf7M0ucoASsjIzbwLDS/7cuuPXRpqDn8H4aaV/1WgV6NYVWdvIwiFIk4UO2mqYRdy40FpolpkLLnSvRXW/GWMaV591vveDbH3yL937wPd797re4fHrJejtoyrM3vdquzMtCzvFxQCVGi7IqDzI26fb6r7TF3qBrQ2s9rLNrh0VhN8bKYxvFyEOTS+VrD/8KatBwoAhSURWSNjMt3nhEhFoy9jGBQ3DWMYSg8yMxpKSQ/wfJHOjPN1ZUg98hXLXqBmUwNDuQjacaB+JQhnHXRktgqVCw5EdEp1HoVk34b7i3v7HS/cW/+DW//c0tc7O8/tUdV5dPudsfaVRujjNJCl4G9tPCdr3lcudIpVJTpa7WSFEk4yAVYzwlJ1qoBD+SqzpGnPdkhBffjjRWPHv1lOYsT31gfDKyXz7mvk5Ia7w4P2N3fctHH8/Mt7/lfJtZolE1hAFkggq+6pGtSO2aXLUAN+lYmy7k1gpTbZZZKiZVYgsccmYVLNlUzqeJeukw1TA0x2EubK3HULkMFyTg9jQz2hW5HKmits/SVE+4xIwzGe8c23Hk+cUrPv/0c8QknLEss+AkYJ1jyTPSKqnL15ypeO+4PUe8bWycZyn6904szni8VxOKNxZDoRJI0nTK3gxeHGKhpNhhz5qvJtUo78IN5JzZGMFcWOKxcm1WRPFYn9jsRjZFyIshLY6wGsixUAuMo2eezgy2sXn+khITzTikVra7DTlDnk6MT57QBoe3iS3C5/nMTGFO8//vRfK/9HV99R7/8v/8l/z5Dz/g6mpk+ZPC4V9nTKoMzjMvCeudOhNrw9imJzEnXZFicc4wXGaevzMQVoVmZuJy4HD3c06nPenLTGxnigl8+mZiPWqf+3xfmI+6zPquqX1wgjXpwJtegCkABxzKaa2tKYpQ1MhAU1WLFZ3ua9+1V3JGze8YyxAcwVmVgXrH9as1l88uePb9P2ESEDdCs/C3/w/yxZfc3X/MEitLTI9cXn1SrPaEu3bc2a5SQPO/xVg1jFQwrlGlafJyjngreOvJqbIdLRjD22npVbPp/XKFUllBEZmAVM0762cAMB0X4GDwmvxijSNYizdGnWet4sOAjFtyOZPTmTnOjHGNGzypZMpSGVdDz4tTUHvNjXY44XJi3grH0jjWGUSz/TCO3BppPtDYM7hBJXrNIGJxxhDEsvqG0NX/RAT7xHyYuHjyhDAKtY5Myx1xioi0/iCPLDHiw4JkS44T1o6QE9YGbKtEPEYcqUZaCzQSSMM3i3WaxECNXDw3XFxecEyNH/7Jf8O8/5g38adQxw6POTHNEywGcTA+tby9XWhN4SHStJ3RTKFUS2kq8zFGyKV115l+MO3Bs0jrmD+gWRqB0arWcC4TSKIxsETVD+ZSCG5N9gEfLBILw2AIg2e1fUUrC4XG6bCQXHckN0+jcI4z9599ppwCJ12QroBmTGHJwtoGbJdrqftJWIvV/nIzDEY4YCimgsuYYmkUnBEy2ptqHWwSa8Fbo3h206Bqo9+0fnP3o5pFo2QGOxK9WrGHoDJAsYEQLONoidGTG6SqC481hmYCTSzBWnKw0KV7TgzDdqDWBestbfTEjfZHN2FDSkdc+8OZI569uOaTXyZ++dGX/MO/+gty+phfhxmaKMhFoJSM9Erq0VfQtDqyfdJvrcFuEsYocH4YPXF5zTQv3J1OLHHmfLKc3iS+9cevGC4C2zlQlllDU6UjGaX0qrCfdrrkqD3AnOwDkKZp6nWHjRseTBZGuQk162IropzlUrQ6NFb7u+PAxcWG6/d2bK8vkdXAcj7g2kiMiTev33J/s2eaMjk9WG4btXbEpWj7ik7WckZliEj7CgjUvsp8o6sQnJEOdlKLMe3hTxfMPWwo1iBVWzHW9FMG3ardH9na+7vy2N7p1bDVdoMxhpqEYtXM4q3VgNlmeitAB2q1NZZ56WnAFjt4rHdIb02UlLqFWG3CoO/nKR+JeVbDStgyulFRsK1SqDpANl+fivLNPN1ZuQM1F9IC94c78ryQUyXXjFRLNJk6V1Iu+LBhMJarJyPno+HuNJFIDMZTJbPdbMk56U5sHLbpcciPhe3VBdevXnB8/QXv//Af8tOf/V+st59y8e/3zK8St/czT19dcHujIJZqM3UuNFsopfYFNwFgsDjT8GKJRR1DYiyjVGwxxFIYnEcCGBo5C8ZkKpnB6UK9LJNqdmWDrYFUMzY1dnagWqFmZRqsLwI/+ou/4PL6Fa/THooOsH7+4b/j9uYWsiEulaVH/eRcCMYSxJIls1ppH3jJhZ0Xqsk60W0VkQytsd54EoWbU8UjbJpls9IsLm8E7yylwhIL29Co4jlLglrI0m9gp/3EQVS0nxECggyWeTHY1NhsR9iMxOUt3jpyGkmnhYurDRbD7nrgk9c3HE4TNZ0ossF5QxGhlIXN1Y772xO0yumcMXFiczFCjrg4EobnnF0g1iM5Z8Zh9zsvmv+519uY+ct/9A/44tMv+M1ne16++j7vf+/Im0/PIJ7XbyZSaaw65DrnQoqF2rLqs02DlmkpYGTL7nLN9fX7lJz47M2vcaz42UcfM4zP+dH3v8XwA8vTl9/mizefsb1YUdPCOEbOMfIQoa6boC681mqh4NAjubY+DFAVX5o6McwqcAYaU6x4Z7FVMN6TihLTri4GduvA02c71lcXXL77jPWLVzRTuT+fMRL4/Ne/4bNPfs0vPvwVac6kmJW21nRj8L71ShflojRtLyXtTGFQ+ZfB9PZVwzpN9K6tMFgw1hD7oPCYuhMUVfWkvtEFr2EA2mbVNliwDe90gRaRTiVEZyUFgvcYGpvNqMGTBqyzuOARgVWwzMVhBFKOHE+VMIxYr9LVaoEKbnAMT1awVUWFMUJoMEqg4ljSSYMDpnsNuRVh8WeWsOFy9QQQluVEFsNof8cI9vN0YqmNy82K4/6MNYalU3RqLdhgKIsiwXPK6r+vhpYL29FyPFp1GiDkmLFGtYHeW6RVcmqsrb6K6yeXbJ944rRnme9wPnK4h3B1zf7Lz8F7vvzFW9JsOcfC6TCzv8vkrE4h2xq5mC4x786UphlGzqrN0/cJcJOGUbJM79Gpp95UHSrV0jAyYHylNqui8dYYQugZSAYnA7sLz7OXT/j2D/6YHC64+fLnvPfs+xxP97za7yk58vo4saSFYvqOb8H3vK1YgaT0ploqfnjovWY2g2HJhpIq4hq1qN8/58hqcCCWEgvrsWGs45CiWqnFP8qOrLE4aSCFYLquWDTaBPoTJIYsir50LuF1PIExnsF7ciyIz1gZcKPDuDVGFuackPOMq/r5nc9njIdhCNSSiTES7IrTeaKkxLoUKGuKh7vzDZVKTn+4QVqZ7zBPnvLy/Wf827/+BG8dP/jTHzAff0LMEWNVLhfnxNX1ho0bOR4mTvuoWXx0M4Gr5LTgzCukBs7TiZw2TDGxu7pm9/Q5L9+5JgSP85bVIMSLga25xocJaVGNFwob0AHMQyVHw1kFYj+kPtSmgydE2b7e6Xwh5YyXB4mfDotSr3K348A6GC4vt9iLQA4VM66IaSHFgriBw2HPeX+kptLB4A9SsM4+brVX3w1TNQVblVyidDVjcJ12Zrq0a04PEeu1g6oMMdbeluinTHRTaVn7uk53HxWg9UoZ22ddXfolD4qB/j55p8+swuh7DNcDpOixhyu9d6y641ozwXiMGbDGd6dbocZIbZ4swiyGRFdVlETMkZQXbANvg+ZASiabyAOP29D1+Pl3jGBvDIStB7Hc7t9ynGZKKUxzhFZYaIyD195dqpzOZzYu8OY+4YynmYw1gVIzwQ16DHaGFBNhdKwBamG0A+v3TpQp86d//o94/dENs/mM3/48cHf/M54/fcGbL898/Fnh2z98h+fvX7C+/4z738A06dQ0Fs1lKjWRu+AbIww4YlXrrjMOaARrcYYeXqlW3SANO4wc5kjLygPeOYdzhmmZWUriub/AestuDDx7+ZSLbwXWTy/J2x1/+/GH/PF3/2s+/uJzPv3FT/jlv/kJy3FmPkeNBioLpQhTgWQaJo40LFYSq8HhB8+xJIxxGlOUKpIXBjdQUsLZismF0Qib0Ig20lrFM+KwvIkNqpCwpFIZnGL3BqyGMNoZEcvGWpz1nJL65B8Yh9Wqa4d5IlhhtQpKivMDxzeZi2c72j7yZHtJPWdKhXmKXG+2rPxA2G558/ae9Tqx3qwxzhM2o0qcBscxC/aw576cmc4HVmFUIfof6ArLilNyDPZdvvsnlo8+/g1//sd/xD/7n/4pP/53/4pU9hxu1Lp6+2bPxZMty7Rg+2IxrC3blQ5XN6s115fXTOe3vH39JR99/DnDuOG97/8lEGFQ3/457pldgbSDNjGMogVIKn0moRrYYAxWGqMLnX6mx+/SWteiCrutx4ghF5imGWulS6UCMUdKVffabgzsNjsutp7x+Y55qNwv92xa4bTMnA6RZd7z5WefcjqdMQ5M1pmILn660KYsj/Mt6Vp4DZk00NGmtIKIVuKlwRQThsbKabz5nDJLinhjoGcYAlSjigWLYE1AqORWerqMwYhHMKysxsBn68lWeS65wqATQjCVJoXa4HiuGLtgvZq0VhuvSc709WKakFa5evaMYTXirSA7Sx2E0lR3PzXP1Bqx6jM1TSecMVxfPsV4CMeF83Im5YVlusday4ghAKP9+oLiG0uN0/HIbnvN/f7M6aQSrZQ0RWDJlbUfKKniRQXz0lSn2zIcSAAAACAASURBVKoG7T30psRaVIxvKTkRU8JidPesOuZa7QZa0xj3169/yvHG8eq9TJaBTz7JnO4i/8P//N/ywY++j5UV3g20tFLABAppeZCL1K62bDRKLdhWHwE1znagdGu0vqOLMYRh1W9itUhKU1mZ1EbKYFDB9LgWrp5e8Px718j6gtXFUz67+Q0icH+45YvPf8rdzRvO95FlghiLalJL71mJwYtBnPa5Bmewoim+OVVsK5xyIteCs56YG94FUvNQ9aYzJoA4nLHE3MhFkKJVUalKZRJxipS03QZpPUZ0uIKossFYcN48TpiltEdR+WA108sGlcnUWCjNMFhYrRymWEyF87znPB9xzmPdqAqMqnKwYRcYrjasnqy4eO8Jdc6MU2K73mGHETF/uJ7uMWbubm9YrSxzDVy+eMlnn/2GPO/5/h//GVcvgiavoCaE6RTRaCjtnw6DwY2q5thuLsjVMRfH4Zh4sl3x9PIpq/UaYwuZyj5Gxt2asFoxDIEhGIa11QifB+hM77Ej3craT2nOPkAb0b6lMQQXCC50Rq4WFEOver0L6MjLPA7OhtWKMgpzy6ScsMZjrNNNpBXavFDnRM5/r6/cHqKKHiRgGhAg/fVJl1ApBSw/MhJyyd3qCzTTZZKVWOpX1WvrYY5NQTatPTAe9LmtlV416/NhAW8sXsyjisF0TbymDlcKmdIytSjfe384ktNCK4VgTe/dOl2IjfaIc15oWWdUOEt2hlkSidjlfIYlJWJaMK0xhoAN+hz64Aku0EpVfkqzJCAJJH5H9YLZXvL2/pbj4UQlsV6N3O7v1RBgujvDCVNSbR4VkuiEt8aM850T2xpPrnYcp4mCsBoCJRaohWFjGZ9kzrdw/fyP+PST35DGhsl3/PN//iHv/eAf80/+xz/n5m//jhff+4DPf/1jTHuL3xx58cMtpw8r+e091Rha1jeJphKuWLWfG4ylSsNblfuUWpmqIvWcFHarDY3GeVnYWcvgBmqr7NaBOSdG13j1/IIXl4H1bs3V917B04FheIFbX1K//BnvPvsRf/Mv/nfefvQRd7cHztNMrUXdRM0gNWBdZTXqPedF+88pG2JtmGbZDqPe3qKDkzkmRlcUpXcqWK99vVMxLAuULIpa9LE3+oUpZloreK8g9dMR3NDI0WJo+KCECMkV7MB5qvg+MWaprL3nFBspJprdEWPhcg1+EMJmJE8T663n/u2eZ6MnLo15OnN9vWd7dcX85jNY7TjuIy3d8vyffJfUGtP5hvZ0h28wTkdOUvBu+h2XzP/863y45/j5ni9v3/Ktd95lf78wVuHDH/+Y73/nPV49vyTtJ/JnFuZCXFRpUUS5qWFr2T4xvPPiBd/97o/49PUn3N7ueXsz8Z133uHJkx1tl7h4+ZQYKzFbOAutbjkffsJ00E25FE2lcEbljZWKtAp45S4YtZmP3nVnV3fE9cGTt4ZVcGxHZVkYCuv1uoPkMy44Go2wcpSVkOaClcB0vieeJg63b7l7e0ucT3q/Fs36g9IbC19pTnXgJ4Te8tCFz3QzR+0oScNSF/1vprc+qlBTVdUQhtijsmqrzKnoYNIo76I1hd5UGs6oQkTDL5QT0hAkx8f2C2KYl0rwQoqmf59+bS5wPCUETbQIIbBeDXjnubzc4tYDfrNCgkNGhx2UK31LZcqWXDOpQVpmDHBxeakuxaYsE+MNQxtpkzAvC8U3mlcgvWK0/uPXN1a6YTMoLcl6Sk2EEFiFDSIWL5bWCsZ5WtME1Fo7I/dx+ipa9bjKd779LqlofyfGTEMZutY4hnUg5xPPLr4HJnHeGz76zSf49Uve//N3aTKxvhrxLRBcxT9N+N1LynlgObXHcEFjUE6uqJ5Wb4qGcab70ZWypLSxhnMW36M7piXS0DC90RmN3PYBxBOsZbe5YLSezbCjrQu353vwA8c8Y82I+EAtMwW1GauF8zEwCEyhtcopzRxj5H6uHBfwpuEEHaBhqEZ38oqwcgYfArf7M/McsQ1Ga6kVYq6UrG44g2gQHwoAkQamCLZoZd0eHx/pRhW1KdpuAxaruV5NKs5mXLAsWU0rucESF0qJWNv5DkXIqdJKZBwDYRw47e8ZbUbsgGkWPzh9gO9O1JLIxrHkwr42FhrWeGL6A2akLYLzK+a7GdMWLq4HzLhhsZZffvpbvvXBn7LbPuHiwj9qMKVHPjVprDcG70aevLggl8wyLbz+4g3WOi5f7nAXG+7vF/Y3b9nfR+KSOZ/umI9vmE+Z+bhQY1MdtXRUZNfQgulRPh1u3j8r6UoHESGmTG0ZZ+n3cVeo9PQKZ7tGvGaGYBg3Hh8cxgYajrd3N9zv7zif91SZsb7gnCojdOnXXuZDb9cah7ceZ6z2VjskqfbKVIe/Qur5cfWxaq2PlbPpFTIdfdoqtKoDMtddYbVzf7oSnK+AN5U+/UBRJyqTc13BoEPqSsmFmguDt6xXA9bp73s8Ro6HMyUl1fQalTwO12vMZaCuBPEVa8Gakdo855hZYtLPx8EpHpjiiRILOWaWvIBRx14tiZKTfj6tIn2o/x+7vnmQdjexnPfEWKkZpulIylF1ebmRSsHVTpaXDGJZUqLGmbBa49E0Cdccn7z5ElMbTSpDsFQq1+/syOfEahv4r/7sn3KavuRvP/ycabnh5atvIS/eJ3924nZz5OnT7/Hm9U+4zUdi3JKPjlKPrNZg7hVxF1tGmmEMBkMm2BFBaVrinU5zW8aK4/JihbeNYAM3d/eqprDgrSesPef9nlK3nE9n/vSdpxhrefbyKWbjeNsSN/s73v/Oho8++xl1Gvny3/41b794y5RBnFakpmkaQ20WOvG+Fv84nig07nLGScF7Q7KeGAvnmqgUBjew5MZ5LrjWWK0bzXpu9gdMK4zWa1KbFUgN4xuURkkoxF0GrFtoLlHPkdWwIi0GZx2XobHyBmdXTHhaKZyXxMpVhrBhMIaSZoyzxGwpxbAcTiwxElxhe70hZZBTJfjE/SEzT7/m3Q8+wPqBS1sJTwKxJuSspLfmMrV69s0wyIrZfb2s5vd9vfrgJT/9v/+aJ8/f4+cfv+bdb13R7Irn77/P+bBnP93xD/7ZX/G//i//B7vNwOEYwVvIlc3gWfaRQYSXz98h7m/55JOPkGB5/s77rNdPWMRjecN8Slx6uLgeuTtkWjwzvz1zuJnJTSjSU02kdKCMLlC16eLlEQYXdHAmwmr0lCI4p8NoEWEIBh+swqSs1+LBG1pVzaz3FgmWJRsGsyUExTRKAL+OVKdA+WU+0YouiEYeNHL00kyrSIFO/DIUGjmrKscaLXBy0WLDGNexjA+rqC6iFaFVWHKXwin8tltrUUh6U+UDTc09lUY16iBVV51gLapVF4PYbiCpauip0phTxJTKMI6dG71WfkoW8JaaGmVKrC2UkEk2cnaVagamNBBzYUqJSia3EyUtmMWxDjvOy4IxMLcjS5oZ3ArPGimFskSSadyZr7e4f2OlG2OhNkMu2jJIufapqEblSNF0XGmGnFSb2UrR40FOJNQ6WTHcvTmS8oIzHmeFIJbn7w2EVWVcOZaa2J8WXn/+BsPE2r/LO++9IqbX7J48Y25HwjYwXl/hZcMwWIaV5ysnadOGuxFohoLGplR4hF6UUrDWMzqPM0KwgZgKufeO1m7Ah0CTxuh3xLQQrCeMA2vn9Hh9Ybg9n8hFxfO5FBJq1U3HM3KK1EltrqUWala2qGY3OZw1epSULrK3ghuEZixTzMSYKVXr41Kj9qQaGu8sQiXR70tM10nWrL20UhWGolVG6zB2IUXBGK+cTxpeYDBGq+GqD5IVAeNZlsq0FM7LGQJIXTgvkdvDmdN0Vj98qWxGx7AacOuBGBdCUFnN4e4GkZmGUObEstpw9kIxkW6sp2KJtXKaDr/bivlf4Fq7gXF9SY4FN80c7k48v7rkYj3y6nrgy9e3HKczLz9Ysbrojqm/149sxTD4jUaDxxPBeS6uLilNuDlUSrLkXEnHzMoPtCbM+ze8+e0RM47ddlo1naQ7tKDSqhYQVlR21bpFVU0PihK0RmhV8G7ASuh0RtN7rE0rwYfq2KhrsKQCRc0SIQit94JbK5QpK5mu6HBZzVT9lNYJMxoNr0O1B4BWKfSIHj3sP6RsBGNUC//YBNAh4MMCXLpDLdf62L9uvZp1XWFj0dOqvg6hi9V48K1Zq3bt0nRNMsYQnME7C9Yy58IcIzlFaBVrLMMwsL7YMK5HhnUgrAKSK5LVun9KcJcq99PEHBdEKpVELGdSmnFGc+5a0/ep1socz8zpTGnax55SZs6VJr8jT/d83mONZTUYDkvB9OHO+VTwK0P1iRgNK+8QM5BqIpbCaB1WGmXRCGYXLPNypjRDLglnHW4At4688/5L/uJHf8Wvf/V3jKsLvv+nlwztO7x6/4L108R7P/zvOb7+FcdpQKLHygtK/RtOt2843sLxGKmtA5v7MabUirOBc0w4q0cmCgzOIc1QyKzt5mHfZuUsV+uBlQsYEpIMTy8viCnhFQzKaTnjthauHOdP7rlePyVPJ67dJZ/ef8mnH38ONFKtPazOYsQpqayphbY+AGaMPjjeWwSnukoriMRO9NIU31M+gzEEqxrDYzSIRFqD3Bxz1TRlccKyZPKSoRhca3hryS1RXSPPlXXwuCCUxUJreOdJzYBNNCOUlGnec5ocV2vwbsX9YcLGhguBt/d77t8Wnr96Cimz2RncsCMukbDesNtdMpcMZuT45sTF93Y0B80u3MR7MhE/VYIRjA0c53vm+z8c2vHDf/UTXn7nJfOcefL0OfPbe272b3j18iV2vCB/8gkffvia/+4f/yXbZz+l/G97jvtCFQumcP3emhff3nKOZ26OE7Je4cPA+TxhfaB5mFLGNs++VoZZ+OJXr6nVMgQYVyM5F5x3mFQwVp1erZsBbGfX5tyIsZBLJjjLYAPV6AIVBoe3jlYcRhw2KFfDGqE0w24zEpzgR89SEvn+LTII+/mMG64J0hiNhbDlzfQlJTZK6cCfbnigVUWg9gUzi5pipGkeme/93VKKGnr6YBhgKWr1tgZMs5qGYek83NL5u9onN0YZCqsArUfYqx1bkP610grWCVOsDB18saQMtTF4p3Aiq60Ni3KHa8kYI6xXI+PoePnBE4bNyMqP+DFQ1pYsQjWGXIXTXDnOZ4okcIVmMs4GjN0gZUWuhpU3xFxoWAa3YokHxFucrBAsTgIrt/rae+8bK91pPrOkCWMMgx+JBWVRrgIpZ9qib6x2brSXYo3XhFycZib5oNVarCrL6iDoq3cGjm8jm6ee9dUlu4t3+fGHv2BcPWO7vmKeC7/6zWfcfflL3ryZqHnN7ZvX3L59w3I6c7zPTPeZkg0Og+uCPKF1jJ6mn1o30LIuuM7SXXFCbULOBSsV74TBW5qpWGeVHWCa4vQsYAw1N9xafdpPL59xuXvG65vP+fLuDTc3N5znO1pZUHNtRYpWJ42MCtr7sNHozu6twRoPRKwmfNCqIvQQR0EePetFl3CWZEhJiU2qODC0jmtsGEpRx08z6sSRpr3rWh/CvKumXDjBedV71lgJIlAUZyhBSEvGOQ9lIGcY/MDV5SXjZkfOhsMpcXc4cDjcYG0l5cRohXfee86wGxmf7Wim4FYBl09chcYmrDkmOKSE5ExZFgb/9Ympv+/ry0/vuXi6JaWF289+y/W3v8OYDfd3nzBNlSe7C/Jyx7yceHH9Du//5ZqLp4YwCKuNY3Ud2F5smdPCHBvWe5oNOOfxQ6bVieN04rjccT5H7vZ3LKmwvrpQw4Ff6+LgDWFQg4AVVUY4Y9TH3xSOVHobwRjNYRMjaiCo2rNt0kgl05qhFE2OMEYIzrBZDRhHT6AorLdbhmGNrQVTsga6Vum4SlVQtM54aE0dcbVXdbX+B+LerFmTK73Oe/acmd90pppRPQDsgYNE0pbkCIV84T/se11Z4aAcYZu0ScqkugE2gAZQqKozfmMOe/TFzlPghQCH2urovAECUQdAnZO1v3evd61n/bNpeHbAMGvdWs7FjrL6z335gOStj6isXGZdvB499fcrqASymEt1DIlHR0eFCcEcQ56JakI9xqEff11Vf5XWFd8oJVaDMwJrNEormtbiWouyCrW0pFbhVWaShVEJBiH/GSg9oVShtRanG5SwGNFU/rXQ9fsCkBUCg1ZuFgsrkL5C3r//3fvBQzdOCY1gDIEwjihRNaKuVcRULR9WzlvEnGu/lKxQCCHEjFgs83QJUimEqBvI15+05NOCn/3iZ/gpcdje8u6b37JoFzz5eIk7e0oqS44P79k+CI77LT6N+KEW2WnZYK2ELKnsHE2tSTfEXPuOjKqsUDFbua2d5QcqnCOEQOccC9tijQRdUEYTUkRRSDN1PvhT9SS21aazP3lOE2wPD0ynE1KOrJ452qWgW4Lt7FxqWepioZRaAYLCGVdRlgogo5QhUQgxoZTAmoYQCqOPpGhIGVJOJBJZBIqQNEbNKLpMFtUgJ4okJ4nTGiV0lVay+FCYmEUiEkkxEXIipKrNP042UoOJgsZp/DRVC1H2QIIcabVkvVrUA0E17LeRh5s9Ik5YJ5n6I0wDzdUCc7FgakzduktNqxxONaRiOE4Tw9hDjKyXy//as/K/2bO9OxFDRpeIiLC7eYPRgsN2ZCSwWq74yYtnNUG2OufJjxUv/gQW53DxWuHagrZ1MhzGgWVncY1Fu6a2cUye/hjojx4hM8eHB7rlhkW3ZDh4/DESfEAZRbuw3y2XSj3cfIz44OcJU8zLK/GhJqiU7zrNBIIc0zz81Ku3FILGGaxROGeRRqJajXENSrcYBHnK5BBrsu673O6HJZYoVNh4qYdxPZLk/Of7O/6DeIwcZ4lPBR8TPtaQwwdpQDAvAmd76fzvMfOHTE6FEFLFW5a6XK6zwBwNnr9GC1mXefMHi1ESpdV35DBj0drWDy9dbWLONbSLhm7dUbIghYQ3mZOM9CUykhlLZkyeKXkynsZZtDJ1iMoakWtx5bppWViL0xYjHUY6tGqqREIkJs/gBw7hd1ykPX+54u7dFiEtArBSEnIkeMF5a+lDbVBFFHQplJxpnGGcDqQiMSim4VjBIK2GKMkh8urlhjd/d+DqJxJHw/arf+B//av/jT//N3/J6+fn3A2ahT2w6QRv/snzx79c0y46QnnCze1f07/17G4O9MOKIeUZPF5BFFJEYkoUJKMHISaWTYs1ll2/58XlilNfyye1ro3BRRQWneNmd2LpGoQYQYDV1YcYes/zV0+YrOTNYY9jgZNwyolmtWBIN+ShFg+O+x4/+Bq8UDX9Igug6sb+sciwBEWW5YNWHmP1NbpiatNrFIRS0FSQhy8JEQPOuZkvUb/OeoVIYERhIqEKWAPjGBkmT2ckTWOqzzZUspmQknEC3c63AaguDZnRCIJryEUxTpFGFKQIxChrXZG1LC8a4hGSH7l9f+TsrCO2HeNuZPN0jbts2Q23eD1hncXKNZklU7rl5GsXXusMu3j3//Po/N2fxS8t/8v//Df8xb/6GY4j8dSzfPWEq+aKN2/eEj9acf7kL/g//urfsx8mPvnJjwhnX5CeFtbPC5dXZ3TdGe9ufsNud83LVz9mdS4ZwwVRjbw9PjAeRqxU7N9vGQ8HtDbcXd+zvuowomW7VQx5pLSe7W6ibTRT9HifERIardHzoDPmhA+ZUz8HIRpDETD5WG1QUlJibVxo2gYtFY1zLJaWq1cX6E3D1t6zdh1FSsQ+cH26pj8GxtPA8RDrxC7/GX2O2tOWYW4mFh/SYvAo0Rc8lYZX4Tj1WNayeoqLfGzZzihVyEnMi7p6CBsNjdL0U+XyzkcrEknjqk1Ozx5/5v/+ytU9U5odS0pmjKmsBqslwhriVHkTZ+s1zjmW6zXt2mHPW7Io9D4zSslpChQimcwpFXzydIsOIQTDaYCs0DikEpx1sNIVsnnQkjfbviY5haPpNALB0A+oYjmcvh/m9IOT7tt3R7KqiQ60QjWZmDxTmAilktSlhFIClEJjJIIwj92ZqUTkHFiQRSJzpG0sIoEwmoV7xd39LZnM+cU5zXLB297iJ0V2K4bjN6zMktYuyHni228/5dO//gLRVf3LLUeK8Dhd67Q1Aik0AoOVlkggpmq/GmOEIpjChFL17iNRlChJseo+RiiUltXjN+bap5bqJ1iWkV3v6bLhk5cf064drm3RtkGEPSLXnHsuiRirFlbBM7KyhpWgkOYbAkg1L5WKnKtLKsO3gmoyuUSMkBg5LyNK9a14Uaf3R2BIENQFBgljgAIxzXFNoYilYKSukPVc+7RyTgglKVFRUkGZOhmRRYVM65pfb6WqjpSSGFPiNHqUkMQYaZdLFus1pm2JSVLQhFIIu4l07BFkQgrsE9wXySEmdBWCqs6uCvf7P9yhGw/1kPj2qy3jccBpydvPvyAJz+r8nNV6TVGJZja/kzOr1Qaz0kjZYKxBKMl+tyX5HqNtnTI1ddkSBToXGmPZ3X5LDIHFYkm7cmyevcJjeNhu6YcToQRAVJtdrv5Vo6tWiqxBo5QebVxVU7VaoWbNtcx1USFGHnWBGhFWWKeZDIxMGFPxlUYphhgoGmzToK0lTqn2FfIItZ/lOlGv9UJ8+EfAdxHdUsp8AD7GYOeZWDw6Gpgrcx7ZEo/LMWaWhECJGo+Xs/Q2/3K0gEYrRKlpNymq5bTa0iqhTat62JHm/06pYHitNUpK2tbRdg67sOilQ3QNtA2oKoMO3nP0gaMPhFyTaJMPHE89IlcNvbMtq7ZBMyFyD2UE4ev0XmrWWCIwWs+MiFS5xd/z/OCk27ZVV8JX3S76mj7rSyaFSCqZ4zCyWS2ZEmhpGMYJrS3DMHG2XBOiR6T5f8Rqiijsx5FP/rjjT//yT3l//Tlvb+747/7853x1u0WaE6t2RW6OHA+XvHhpeEjgvOQ//4f/xNWPfsbw8FuMcRyGTE6Ks0vN2+uJSF2YSZUoCFppQEmmlOmPPavOUILl8nLNm+tbLjcbdCmMo+B+71m0LdM44bQilsiqOSMx8PTZOa1qODzsUarh6/1f0Vy9oowbpuGa4h27Lx8YT9D3iSlkELWBuEpTkZIgzfAQiEgqV9j7qscJITEm45NgihEnNSspkRr2YfY5SkGZa3qMiWAkPuWq1eZakPmo38Yy0raKOEhkHKGxpJxorSZ7QbYF2ypCshgCzYXhbnuicxJrF6RQWC8Kpu3Y7j3aRXzI5HTNenPGeBrorOL5xxcY4TjThsVlh7tcwSTQVpMawy60bE9H9sd3kAydNQyyZ9cfKPkPF45Ig2a9lJy9NAg/EMfC4eGAW7+lu7zgeD/i1JEXn/wp337+Kx4efsvl2U+5uKw+88Yt2T58SRYS2RmMatnvMlENHO+vuTBrxJNEe3bO218PtBvD5asrVk3HF7/5kus37zkdj9gzS2stXaNYrxse9j1IxThOSKVpjaJxitWiRUrJ0E9oqVCGuhxVhkYZyAXPfFjp6lIwTtKsHWllODAg9y1uoWlQvO3fcwoD+8OO034ihPiBvPfBqfsoY4jaCPHYwvs4qtVCWOrSvFAPQSGI89coIyDzna8WgXPVTRHiXKODICYwqvpuEdV3m8iMU2TVOrTWCFnx6CLn+gFPQc43a0VlQdSknq6L+oWlsYbzZ+fYjUOtNMUZboXglBJDmCg5kUQklMSUA7GEKs3Jlk47FsbRaMVGgs0FOVXJJIqBpVQ8Xyzop8IUA2N/QLuE1JIpjKTy/RH3H5x0y5B52I60nWGYepzO7KdY46QKWitwxjKMQ52eRDXnlxLRUldjdC4IDXbO2WtZ6M4zm7MGt9Q0yyt+86vP6JEIJTGmQXWO99c3aFcYUoUQ328HcBIhIynA6mqDpOq1sjOIAkbpmcZksVoidZ3Sc6gfgzlXZGHyEacMnTO0ncMZjUCBBiEDy7aiJFMcWDSKlAPSCfATYjjRrjp2h4l2YWmbglOGl59cIWPCiOoOKKUesplM/lBoWEghE3JmioGYMqWMaCFpdUsptVLHiNpOK00F4+Q8Q0NkwmhmLrCqEOgUq5FGQsyhWm+kRCaDLHmm8NXJKBYQaQZLp1Qz/lZRMnMaSDN5WbnHOVfQeq52G4NiYQ25FPww0jYNQkjahWH1okOuHCiJXChyC1oYtFiSkmEaIjFAEZGpDJUbTIYfwN/9vh8laoDj7GpDzppus0FZQds61su2LnSUpG1hdXnF2DcM057nP/ojLp5c0jZXpDiyWtTutLw4Q7eCmAfiVKvKFxfPCCGwXl+w7J6ipcQPI9e/vWF3N6CMQlpBIlTdVaoadZUVSqRErZaJoabWYqyg7ZRr3VGOVQ6QqmBcDUQ4q7FGY7RCW4lbNBjXkEomlMoQgEgYDwTfMw17pn4khkKarWZlbp14XBjVG1yNOtS27dpynXKuO4G6cZvdC/WWVWazWA1+yIpznJd7zswWBmbJgjoFP1op60JLMIXMcfAIqVHKoLSmUCdvowwxz8QxrVBKEWIixogg1d+/VihnMesVwQpGmZlSxKfAMUz0KdAnz5QnYvaUR/281JWLlRX6Xxf1ChssZrQ0saGLhpUqnDWCTVs1Zj/VnkVrGsIjqOK/8Pww2rEUrAj89v0tV8sFD33C+4AWBWk1gkJrFKeYkAqO41jryFPBOoWSCSFzjd4SubxsuPhIYZeW169fM05HPv2nz7FtSxQt3ULx9CPD/v2W27uRMzWiteL07h03v/l7fvov/4K11Xx9FNzf7OgnUEYxTX6uLqkUoVTmBcfUU0qporjWWJNZdiuGMJByqaAQo+lWC3wIZKEZxsRCZ0Q2WCW4WLZYY2g6zTeHOy7XjsIFcupRZoffe/o+EUIhxMA4RmQ2lSZf8gwsKbWCfc6zp1xv+0aVufDQzsAPyVnTgQ6MHva+msprN1ONhgql8P3c70bFNqYi6AykXP2JpICRzg1JmgAAIABJREFUFonFaTCmWmsWVjGNnkbrGYfnWTRwdxORWuJs1Q9zKJgm03RrQspIOdIoiWkUidoGvF4ptGpJ+wl7scD+4oy4DaSY8CbxYC2CkbWSnOSixlvdRCyeJ8sLtscda/uHcy+EIfL6T16yNB35+TMetgfM5Rl28xFlDOyvv0C/vmToLU4vyPkt4yg4u7pg8/S8Wriac8bTp6RQePPmPU9eOF5cXfCuzzx9esXx5Pn8q0/RYkV/3OPkBTfvHrDaoFxDcykYxwmGSLde0B8TU6hXXDXLC8ZVGH8IoS7HrCbn+aaEwEiNsqomsFKhawzWQGst56863FPFi+ev0NcN92ILLajiwCaMKLRLw3gKc9qrhiLqgV8/cEOKc4hhLn6ltjIwJ8VKnquDAGOqL96qKjvqkpFKE0qepQYBc7VU6yCEmmZ7rFqXcyIvJoEqAm0UoYBPBSeqLBKlwnuPVgLXWKD6fVunsc7W//9cOD9bsFitsAuHp3AdBf04MpZMEhBFYvIDuYzU36Bk7dY4odFZIbNBRjAp0GAwWZIPiXDyNE+W6EYxkoiywrQW1jLGyDBOlfBXvh/t+IOTrpKwblucFoQUQEacrcLhY048xIBThpgSUhoEtWMox4JICZXyhy322auJzU8zTz6+ZLU8Zxr3fPPlW9bnZ1ytLFNOnPYFkQMyC7Y3R7rlmn63pUxwdrZhe/1Anu4RvlalLzcNvhJpKmMzR0pOxBiAeuXWSs2YN00RgmnyldAvBN4nGgmyVLE15YByAqETy8USRK1tt43FdA3Lq0vGsUaLp1NkGqBpIk2nMY2gcRJURJb6ra2aj6pJ7Bm6A/oDLETKR8BJ1ZSFUoxRMITaRBtDQso6GQhRtxqzcQErFEKa6osUtUZIClkJYD5QUsDI+kNOReJ9whhLmg34WkpErACV4gtagy2ZIhVTrhacbnmGpLYTCCTGlgq3MYZ23SLbhtP9CYwlbRTbfMKniUkrdqlwnHpi9qAzPg4sm0VFRxYN6fvp+r/vp4yeafI0naM761h2G0yz5HA8sd3tQWsO28Dl5YownBDKENI9Ke4I/TVSSRq3oGTF/mGk0Zl43FH8Ed21CJ3xp3tEyKzP1uQp4In0YeTupsfH+rMtqR5crhVMg68/QyCGBIW5wjwyxUQ/eTrnMNoSY/XAGqcYQ2T0dS9Rspg5tIXcKpKpDoCnZ09ZN5YUAzElcvbkXNg/ZPpDms+d+cWiLluNqe+UlnWhNnNT5+V5/cCvA2zFO5Y5PGFNBfXER9C6lKgZNJVyIT8WVEpZw1e5yhgp1Z46Ib6LDgvEPFnXnYks1Y1TSoUPOWeqbTJXp4J1DdY2tM7RrVvMugUNoaRaIy8KMUd8HJCy4LSrt9yskEUhs2SpHUuhUXl2ZcVMHDzTfsCfRggJGQsqJVSubF9FQQlBiqmW86bvZy/8MPCmJL7Zj3SmHgJCKkLMuE5Vks+YWS4sU/SzJSqipakxX1kLH51RyJKRMrJZXHDeGqbjW+TLn7N9+BrXbXny9I8I2fPqyTOa8z3/998dOO0HLlYr3n9xzeH6PS8/+mO++Md/Yrrf8uOfv4R4ycPf/gqzGBjenLBKIXUhnKq31hjHE+c4TQEyTBT63nNd7lk4TeMszhqOh54iOozpSFPCmgZnVzTxWJNpjePqZcvVR1d4uyLmd1y1z1kqzbtfvWEaPfvbgRgL+33E+7pE1LqC3jWuEpBm0V1LKj9UVu9lZZjUpta+JEhwGkYS9YZg9RyplJpIITJgjQKRGVNBSFslhRSwTrOQlt4nCqGO06WCoBetJIyS1tV0mveFmGDhJMFJogaZoV02NWZpFWEaWGiJdueEMuG0obOOtu1w1mGE4vL5BVkKxq/u8V1hbxeUHDHDHlUi91Gz91tS6Hn90SuU1rx9/xZnOw77738xf9+PkIWP//LHJOE57nvubr5g9eTHfPPZr2g7w/nzJ3SyJd+94axJvN8GXr58zmH/W27e36OE5cXrl1y9kLTL52TVcDx52uURZc653++5/vYdyRuGh1vCYc/N1zvefvmOm5sdZt0Qx8hi0+FWghwkMdRqHKVgtbAs1g277USMBWsK1tXpU+t6NR+mgNgfsMYwhnogS5FoteHiaolarBlQjP3IedvxIjZ8c/+eWz/iD5HTduJ04/EnEMXMy9+5Tr1MpFQdDGLugxN8t1iDKgPIItGmpsjCfDA2xlIQHMeEmUtRJXXSDVQbqVIJowRWGXx63GuASJnWVA7FyccK869FQDhq40lnHEbX6VsWOFu1KKlojKZtLI21LM8W2KVjK2GXM6fgybLg88gUBgQJqywxC4xZoIQhF0U2lsa2LADT95SYCSISKZzCQBEVViVSLW4IGQKSECQh+NpwngtT7r/33fv/oEgnOqspRTGMBa01uQR8qCQg82joLxWp4mytsEk+kWKcUYYC2wjs2rN81jD0iZwyb779LcJpFk0Do8QocEvN9bsdJFBjz6JtuX3zKVK21RSuBJ/85Y/Q3Uv+8R8+53jcgkukCEUo+jGTSvqAgkPWrjGfMyEniqyhAucsK2erjUWraiwnsR96jMiUUlskDHULqs86gpKYJrBpFP14oOSRlCekAikNh/sjcfrOFwwKVRxpttPUb3RBmxlGUp1TNdAwm8J9nIhzhnO2nSNRqFIxfaUIKLrm8ItBoilzIR8IUgq0tura1RNdYUUlF6yzaKsqSB3PqhEMIRNzlYsaKfDAGD29n8h5ZCoZHyZWm4aMwA8RrTVSK6zrUNoilcadN5hGoQJEFJMw7PsBHyam0JNLwtgW1y45HnYUFEwK+wNRyd/3szm7YNz13L69QwWDEGvCNDJOkaFkLi6f4pZniEZx2Pc4p1i0G7wfQUZiFnz77ae1bNIIpu0tQp+T5II895a1yxYlCyklhNCM24n9vSelQCkR2kK2Pcp6uq5FO4uxtv7sNLXQUwpWC81iCRcXipAzh9ETU5wrgwRd42idpTGSZesoMlOcQDWV2exTZEwTQ0ogNDl6yAIxv38xZ3IJ5JJmuAwf4sZqBpJXbztzsGg+NkpBUWh01ZDrUSw/4FPnUXWu54EiHp3EM7qRMiczZx+uUsQ5uCSlrE6AeYmXcnU8aFEX5UpB25o52CSrrKIVzsj6zxcNNJooBT5DHzyn6cRp2DL5EyVn+jCAkEhZk32dbXDaVnym1qiZvDfcnDi83XHcnpiGiRg8KUVkAhMLNhZaoVgoi33Ep/6uaMdTKggZ6X0mi8Qw9KyXLf2pXt2z0cgMFEfnFCpWfyw61I/EIvAp0doOt3BouWJ7/yl/8W/+R/7zr/+O2+uR1z9+xcv1hpupIdx/Q5gcT2hY/uQ1T159xP3bL2jOE7lL/Ouf/xk+ZP7jv/+P3F4fQCncUmFK5urK8ttvaghh8oEiEo0zNWorE0+6dQVw+ITPmYUBrTQLBVY6Rj8iH6/dulqb3MLhOkFsLN/4QBF7Ems+Wl9y6k+cTOZs3TH1A81VQl5XY3eeN8BFRsojA7dUTSwmQZ4P5pwDWjkQ1SKmqcEOrQQiq9kMn2m6WiUdvUckRWMMomSKrFhNM9PSJAKhPJ2TnAaBtIrRTxRZ+KlK5GXLbrdnmK9xy7UhBs0RTT6OvLpYk6wj9kfSBJebhiINSiQur9aEfmDVtpw9PSfmyOZqjXyyQjQNvgmkEFkmz10/cEixRjxTojMN0mm+/O3XxOhZ2gsWruPp+g/I0+3vePPrwupyxSnsaM+WjMNIMRXyvt0f6Q+ep8vEbhB88tGP2CyWfDPcoleCb/6ve578RPPRJ79knCL/51//DS+J2Kd/wil/Q/8w8ONf/JLd+TV3d0ckirbLdN0CtTzhXoA8TiybBdM93D/c0xiDu2wwjSalnhASly8nhJQct5LTSXC7P2G1QGMwMz9ES4kSCqsFy+WS1XlDc9FwKpXKpdjj/YJea1hoTIRcUnUkhcf0Zm3xRVXfuiiqvseiapNqNpwL8diSXBknUoGfsY1OSZjbr0Oe9YhSR5Ai9Wxvi7XRZKYR9tPMJHaaVDJ9KJRUwYippEpRE9WSJWSt0UGqGqVXdVgzqjIX2qbBWVvLJjtHsA3b8cTRD0hRJZOlWhPixJgmFs2ahVnVBVouLCWstWDlPUyZ8WYk9BPHw4lxmNjfn3CNgQjNqmVxtcC2pjqC5uBISXWayt8v6f7wpJvzhJAKN2f/Y1QMU8DHgNESWwSkWl+SSyFJ0DpXgTxPuJLqVdoOnD9tmQ7XrM6ukFIR8zVGrfDBcceS/WlH9/yKV5dXlJg4f3FFHkecvUAaS9c0NCz5+ou37O8mwpTJOmNbgVCFZ6+uUCajTa3PFqWmrfox8uyyY9EtaVpDCAWRwadAUZCRtSYHRdbQNC1KS9pGYVWNx9puhV0XplND8i0pCK6vbxE58ebNLQ/bBw7XxwqqEbUaWogZeUeVGYqo/ss84+cieWZRJHwqiFwrtwu1mN7OkwNFftgc55lhKkpF01lVaVOlQJqXETHNE7LUpCJo2+pT7seEcRatJAur0U7XmGauSbiQCzEFrI6kmDGuVp64hQUUIgmW7RKkwrSG5mxBaaAoiTcNb/ueh5zZTyMyTbMWB7lEhtSTfNUQrW1ZtoaVmTjX35/a+X0/Sinc0mAWilIC7WpBozKLtUUtDIWJYRh56DU5ZaRoETi2dz27t5Lb68Ddu5GH3VuW7RkSTX+4Id1+TYgt9mxF7CfWT16wf3hg+fSSIgOvPrkkHSPDtxFhIPrM6SGyvTsyjRGRJnIYMV1Dt9YsL1qUaXi4y/R9Ztk6lFA4U+OuPqfqjrGJ5aLDKEVz3mBXDqMLZv4epzjih3eMww19f+T4EOi31YkgSkHI2lpRf2b14OXxsCu19NEoVfcLc8Izw6zH1un1Ub/Nubof7GO0GUlKaS6e1AgxV92ruvSOKaJlprWiNlfnimAt1L+vjRDVhiaF+BBNFtS0mtO1Lt45jWs1yilGIqc00YeJRMS5hkW7xrkWhEBLi0ajCxgkjdRYIdAlkfoJvxsY9gOnw8Rhd6oHbxjxIZBipvh6xkilkdqQpCRKSch5jjv/jm3ACcmpD5y1DimaGjVM0DpJsRmjWsbThFMZJwy+FEafcFYx+kJU0FnNj3++pllaLj/+JZcXLyjTxJOz1+gygnzO8vwZ8fg54+3nhMOKi49fcb8duP/yc179+Mcgqo746W8+5+1n15z2IBpHs1FMacdHr58xTRqnWpQo9BEQirXO6Ebz9bcHnA21SkRPlGyZgsD6WJtqc0brxIaGzbLBGkMOGmTh7PkZH736Kf94+7ecJmhah1IjSyt49/aGFCb8EBn6Qk6FVOqVLMW5DghZ67RLrtXUQswgjgI5MYmEoWpYScTa1yYFXQP3pwobWYr6yR6pV/tMZtGY6okUhWnKLLQgFkVOtbNu3WamHElesHCKdw8DxzGx7hyUQucMIQV8SVx05yjhuDv1rIpnvTkj+omH40jjM0+fbcipJp6ahUUohfpojY9HkIHd7oExB07xSO4HXOvIMhHDyDFscWmJLJnOWTZa4oxkkjNw5w/0DL2nP+1YPVnz5MmKF6+e8iANXgnWTzbcXh/RAqbDjhATy3ZBDJrb33h2t5H+IPntDpLfcvf6b/m3/8N/z6f/9IZ//M3n/Pm//gumqeX97QNWHDj70Wve/fZr2m7J84+W/OzPXvHVr2/womOUieWrwvmzZ9x+s6cgUTKx6ARmITm8dRwfAq8uzjk/O+PQnzieTvXWI6jR8WVkdSEwZNbLls2zBXZjOeZIipFRTSgtmDgwTjD0muMusXsIjD6QSkbmmeClQD36c0vt2asSrgK+K8r0odoYEWBlPWAqJ6QuhBF1n6OkIAtRNeIiaI0lpMI067+PS2QfJaoUukYiSq2lDwlAUgJIU1BknFKcLyxGyxr5NQZpW6zVLJcdrmtQrWZQMJDAyXpIivrnj1ho6BDKYtBcmIaFlNgMOioYMmE74A8ju4c90zhx7E/4EAgxkqfC9uGEHzNSG1womHVhvar2R+86phQJ5XcE3jRWI0ViPwWICZ+qQXrwVa8IaUQqULn+pIzKSOmJuYDMaFn/+vTlhouLF9imIwnHOAb6/ZJ+d8v6+XPudvesrzYgM69+8pLL8zOOD+843b9nO+y5+fYN61ZzfNhjjSRqSVKF3ban5MLVkw1v390xBk8fC01nqlev1YSSOF91OC1wRqOLQChTG0tj1T0bpzFK1ZQWAlJksXCsz1rajeGh/xIt1rRao52kaVbEAs3SoI2hcQpjBDInJKKSmSgoUdl3YvbsWS0qnak8egAVRkLNvM3+x1KtN1FUx4VVAnKuUPZSr3lSVpO4RmKVqVNtzCgRq4O8JDS1Cy4UWf2XugLIfckUa0lFIHVbD2p/YrWoPV7DBKlEdKNR2tJPiZIibWdYna3wxxF8ItolUTfcj55DnKomlwRZKjxwf7pjDD1GOIyyVD4A9FPBCVjrmQX8B3qmqVBiIvR3LJ8/xzpBP/Sk0pPCxNlqQbPsmIaJJ6slRhn6/cCwLcRJkFPdTVx/OfLwrceZJS9ffUTJS3I4oayAxjDE2hO2uLrAuZbTbuDiyZrz86ZyLIJivFGsn1ievLpAaEvwkv4E/VCv/MlHjMwsWoWfPGFMWFPtUqVklitLY1okBqEEwixIuMrYCJFDv6MfRk47wbCF033gtPOMQw0R1WqGgiylariyIpq1EhjFB+dBdSvUtl5KxiiBmeH3RWSUKKg5NZZLhaBHypy2FLMHuO40YgRKZSnUivvCFAvR16Sas6Ymy9QcSy4FpWqNvHOGpm3m74EgS1HfZ6kqtc1phFI1LUuZsWYVEEQGIwxPludcdSvWyrEQjg5DuTkyfnvH4e2Ww92B4+5IfxqIPpJTmm+ehRgDIQaCD4TBE4YRGSesqJJK+WAx+i8/Pzjp7g8RqzUpK7rW4HcTyuaaB4+6gim0rdKDD2gFORtyOkHSxNax2ii8WGGcQkzw5GzDffv/kKbMl1/f8uRfPmAeTrSseDAfoReF/XFL/+23nD3/hMNXD7z6eMNQJF98/g3KW9p1g8wTcV+vTre7I/v7Hi0hJM/eC5yU3J/gOAUEin7yWK1oXcfoD3SqZf3E4bPkYTjhpKyAdVNbI/Lo2XzckJYF7Rb85fM/5h/E/86x7BnSipgfaM9a+j5y8y7QH0ayMRhR6nJLLpCqI6aREOsf0FAe+aipQsaVxPCYI09IKhZPUklnK6uRWhJzZGEaJuUxUpGpB2mfPctVLe2LIeFD9eSWIokIGqMZjh4lBJulI2OIk8cpKlXMGabs2A0TejzwZLMmUTgcTyxazcV6VV/aUFAp0jrH61/+nEziZuw5Fc3b3R2eQOM6hBTs44HpdGTdOkbvWawuObdLdMoMU6C0DccJ3LDl7A8YjkhpYnH5BHfWYIzl4eA5e70klMzg4fnmBNOe+2Hk+Y+eI3Ni93BHe1aISA4nAUoQ94l3nyb+xvw9/+Jf/Uv+7F/8Mf/pb/+B158YbGlwL1t+/fe/RiZF6ieW5ws++dnPuLo85x/+7guu70/EnLi+vWGxbNl+ukUrU9tB+kJ3vuPFL895848DzX4EBF3ncM5yfr5hs3FsNg5iRjUCe6GRznIKGc8OZMQfLYfTji8+e8v2tme/7dneze/lXPtTF1m1OzBTo8Z1Gaa+s3pRSCURYpoju/U9FHMji9X1gB59rqEOoKTv/OTOSPqpfq1SghhqrZTRMMXatqJLLUjQUnDRLGetIyPE3KWWBUVaEpKmcRQEYRwRRjEGj84WpQ3b5DmFyFQqjnahFyihaJTACcVT52D0cH8iDIFx9Dzc7Zh84HCaiDExpURKhSmp2tKSAiokyD1+9HSdqyhLpxGpYlZVKugMC9N977v3g4eu0gInCscSOQ0FbQoxwsLNKLiYUQSErh3JQxRV/1KGoiRGg1KaGHuSajgxoeUOkbboEjBuxXJxRmq3HHcTy+45X9++p20s41i4OtswPdzQ75qKlAvwcHskd9XihMiUUtjfHCipWsWssYji0aawO/SEHDmUU03iFMeTTYsPiilFtscRoy2T95ydLck5ILKAYnC2MBhLmBTcXHPW/YifbFq+uI487N4xDAfubk5s3w2kseIt1QybTkkAEzEJjKoTQcyaUmpiTGddW0tFQcmZSEZNhgkpSCVQisQ2QMmMHrwOlaJkBWEGTktdyKFGJGXOWK0JacQqie8Fbk6pmWwYhoS1ilQ8IitQApEyS6cYoyXPDRZt1zCNnmkoLF6t8D6inaNbtDTO4VYWNi1uf8uxVOKZ0YaAwOeJkgJr1yGpwRCjKjcWP3HRnSNNZRlIHGP5/g3v7/8RrM6WrM9XnF1cEoNHOE2ShmnXs/t2x/3hwPr8Kd3inIftPYfDnhAF/dGTS6LE+iHpQ+Tm6xNfrb7hj/7sF2QfuLvboZrM0nSItqG/P7FsFPv7d4w/+Qnriw25D6gIkcJwyBjbIygcjz39CNYq7m4KLz/ZEYXi7e0DT642PNzvmXxfZajFeR0SYsZ1HQhJ0QICNPKcmEZy7IljT787cdp5Tvs5DUlGFPWh3FKI2oQrSnUMQIXWVAZEhFRvbVIWlKiFsKUkrJGoksiz/luoXy9ltU9VtZf5Blz3P2auifextngbCT6W2ZNeo+6Nrl2BWuoargG8f7w5CmIMGGMwjUVJQQwTMVZm9hjrQW61pJWKjdCIAg0FlzJyO5Anz+Fmjx89fgoc9oe5VLM2XFBlbYyWKFmHTyEkSZSaltueZt8yLM82mEbTqogQgaH8jh1psgimJCkl4n39JAolEfLcEKHnltuYEMQqygtQUiOr35jVuUVkhcontM4M6Y4SMsTE+folV0x0xjBM1MM5aKZRYu0VyyXoIrBd4e7tgf5hYAwRs1TEY+TpR0/RSjCOAyVnYipomWlsw7Pny5pOKZIYay+akhJyQOtMiYXoR6bxhAT2J1/lBytoBKzPOrQ0RCFYdmtWjeL16keY6cC4uyOHgC2gRYGsUcVSUoXIgCITkSXOSbVSKWOqGs6tFTgNTmmErIe1Vo8vWJ04ajpIzoWTlYtLKZQAStWKa4QkRI+WCVEEndZELyu+rmTCGFhYRci1HHCcC0RD9FACu2EipkgjwRnN7niilFpsiNSoUmicq2CeVEHoafLEDElrnBUEkTFS45NnGA84bbjaXBJiIReJTopp8IRscEKyiYF2GmjKhHJ/uHBEiIWxH4nRkNKBhQ74/Y7d9Q22OUcR2T88cHa+xDjD9ubI3bs7TvtMCtWjmksmzeWKqMxXn33L7dtrXv/oGffXN+TgOewPPF13mE5j2iVSdey3e6bkuXy9wapEGhIlCSafaBZuhnvX9OdqveL260J7kdlPJ3b7A8t1gyBzPB759pv35GArLMnI2YuaKClU62QpDP1IjJ6QBDFVb3h6bIIolbv8iGCsr9V3RLEPEV6AOdar5gYLyj/7dVLWQEausfOC+LBMTqlOwqnkmkMXucb2deXoTj7jlKCz1eMuRI0e+xDqMtdJrK0hHiWra9fV0kOkhGa1wKw7ihVklchy7kkUgpVUrIVmlQorH9GnAbE/MtzuON3t2e+OPGyP3O97jqeJ/b5nGEaC9+QYCeOEnwaCH5HULkhjNcpqphA57k4cbvek2z16P7CWiqXSPyid/XA4YmZdEiSrTnN/iKzagq3wNrQIBJnwvjINSskEAskLpLTkILh7M/L8RyM5Psc0S95NDzy4Fd/GL7m4WPPu68/58z/7n1huvwa34N3X1+wfvuLFx89499k3iOzo3wcOd3fsT9U/e/M2sFi15Oaas+4lx4sjp+MWJStN7Om5ZXW+YXkXyHiMgWdPLXd3cHOaECJw1rTkKHj+ZEMWihSOnC8X5JgoNtI+2yDtmoZI1Etu77/isy++JE2SWCaUOmc63TI8CHxOpBKI89a3GqhtRdnFWk09k5kRWX34FJVyrnlP9e257BxFSh5OJ8iltq6qircTpS72Us5YK0myUMj4pBAl4hxYVdBWM/jEonP44Dm3mo3W3PaB0+RR8yJtHGHtCuQJoSydlazajtNx5GrlcOdnHHYnNmvL+uyieou1JDWSo+/5+jgy5AlnW4KKjMcd43Rkvb7g3e6aJDUXm3NKEiSjCFYxCM2ybbgsO+I+ko/fbyD/fT8hRu7en1hc3RMfHIvnPyNZzylMvP3mG67fvydrw/MrQyHw7ds3PLyvVUY+RpSqOiJSEYLn9l3k7Knks89+xb/7d/+WZ90Zn93dIuQCvTjn418s+fpXX7G8uODh/S2n+yMv/ugpL3/2nF/99ad88cUdYmNYrxXWnvP2zR2xgB8Sy+WG/d2eJ08L27sTb253dFbXvYDRfPnpG65eOgjndAEuX0NWBi0COU3cvr3n+t2Ru7cDQ+/xIVUbljSkeacg5qLZCmmq2mghEwv1HU6VH1IKCCVnyxhIoUgxziTBCrOR82EuqVxcZHXHhFwXyEokzhuHUorRB6bsMcERi0TlioFsrUKrqjUvOwNCMfYTrTNIpTDG0rQtxinUpSVrQe4MqW1RruUqjigBdizIPiFDJIfIcOoZJs9hPxJToh+GWtmVClOKxJSZTiM5zS6jnMkSKAJjamPxul1irK2e+lhgKBzeb9nEzEV7Qacd4w8siX/w0DVC8HAc6LqGRhliGtBCoLEInUhZk5PHWV0hwgiEthWMTETphhcfn6HEgn4cuSw9fsYbNssF6WRp2gt6r1ktL7ifRu53O8J2Ypx2pGnL4bBA7wt64YlEVCM5f9kgl4HOrHBygd/fYRvBJx9/wpuv3rK8Mrx7t8U56NYSysDNg+T6dqIxBh8Dz1ebmq5r7Ny0q+eesIxqNDhN0JocE1O/hWbD5tXHNCHz5u+/pvhEiVWbLSXW7LisBAWRCyGUOmFTY5mUR0N4olBB7jLXhlclEk4485FLAAAKuklEQVRrpBQEClYKAhKnJV5kJBlExAiDzfMmVmREhCQSFshCEmNm0VhOqVayTyEyRY2UsGqbagsLBSvk3D4Q6bRCqIhAkaVitWlJcaJpJVp3CJFoW0O3WGAaTVaV3aNcRxoSx+mAnya2p/dYYdn2OzICZ1uk0DhrWShXU3PzUkMtGmBi95vTf7ND9L/6KYrbrw8sVomFe8L5NLK/7Xl4GPjis1/xR7+4IhUQuuP+7htiyvhYCFOa65Jqxfhi1XDcJYoQHO8Tbpl4d/OOZ1fPePjsn7h40TL2nstmQ3exIt/vseszju8fiEPP2eWGVz/9MZ//+oa4h6nv2azO6hU9Ze63A0YrDofEqYeLy1KXnTnWlu4QOZwi+h7c0x59FDAEjGuYSqK4BZunG0opvP9qIKfqqRWypsiKqJH+upSrSy4pFTn/v+2dy48b15XGf/dZD776IXVLdkdwIsMYD2Y8g4GBWWSTP38CzCJAHsjDtmxHalndVDfZZLGq7jOLSxmzGHsRBPIi9S24JAiSderWOef7fe+yzULhh+R8hI/nY+uhFGGRS2SPVOCO7yFSOf1mUVoMmmKnLU60Mrgr4B2JVoqYirW4QJtARogJ6kYdEZICaxU+lP1grS1CaqTW5cStQVSSXM3wskJGQdzviYeA3xfzkqJk+x2GHuc9w+iIKeF8oZkNLjD4I6dNiHI9iUK/TiUxlDRGohdUshDKUjQECTlqhq7CaEm9bKhnFSv7w/OKHy26SQmeP1nw4qZjp2DWSPoeqkWic47WWhpTlUdLH3E+Y7ykbjI5K5pVuUvauWV2fsWQ94hwoDEjT56c0X1xw+OLz/n269+xTpvCSMiBMS5Yf3WL84q3d7cgDE9nC1ZXDbOLirtvbolvKkbRcy1e4FLm/PID7rb36FaxWJzx1R//wue/qri/F1x/a7DeogjkFDiZVWy6notlSwrlRKmNQhrL+fmK2UoyP2+46e6oTc353KFky8ubPUGMKCsJMpZQSp+ObN6yXSCzAh0xuuwnulD4tTkfY3pEIgtPbS2awgW2M4MUhm13QGWBNArrAp1PhBjLnmI2KJGISpKdJMbCMLZ1oSD1Y8aLyKyqMXO+B6e46LDU9L6nMaXdEr3AqEy2ii4ITmY1VhqkzmW5Wyj2257T01OEMhALbL1eLRDzJRpFd/MCmQP34ZYQBs6qc3x0DMFxcXJFa1d47xj9AStnrKqGy9kcLSRp/UB6iFTNT2eOyMBm39O+gvnJmu72gc4HbDXw8YcXnJ20VEbysH+JC3fFWONjKTRSkVMoU/GUefTklNvXd7gQGb4MCPcHTpbX/Nd//yfffPOKi6eBRRPhyRUP5o7F6pT49Cl3f31FcIHtzSs+/eQ517f3iEeR9cs7zs7mPGw7coK7zYHVoma773l7G2mMQkpD50YykkXb4DvNw+GBVAUeXm6ZfZAZmkRMO1aPTlm2lt294/VLxeZuKK44MkbL7/fLsyy83pAy5FD6pMeCI969CAnRI2RBMgpRAmlDKBsLQgiULsXYhdKbtQZaW7YeYiybBDELrMiczGY4n4jBo8gs22OvGNi7xLIpib9GaM5PWvquQLXqtkKfWISSVFWLN4p9DLjkGWIgbhx5SLh1hxvG4vKTCkIgBsfoHC5GXIjElAkJkhA4D+N45LbIfGx1lERiLTVRCnaDQ40BazxaK0afSHR0vSfFxGzVcvHs0Q/+9360p+uGniEkFo0miVCA27zr4RbaUBSCIUR8hNpkjNKkWKI6ZwtJvbRgGvrUFeBxcthgeVwrrLV88eIld5sNWe6RseGwXSNdQs8KVrI+WZFbTfAD9aUgu0i/Vvz8oyvubnrW1wdqXdEfehZLgescnc9cfRTwacHDG0N/Dz54ThYGJctmgFWKznnGENj3AycnM7KXyEaiHxlk23A6n6P1yBgNIDF5A/kNh72j3zm6bSJGCltClKSIRIIAPvsybX0Hcj562K0xCC2LFVZltFFkqemPWEYpJTKVKav3IzmWH59UHtd8yCALSzULjrQwiVSalBPOFz96bcoF4RP0o6f3gT44TJ1RVhERNLUFJRh7T9+PCEVxwFlN01TE5KiNwlZV2bohst6OXK/vCWIk4Vg0p1yePuNs+YgxlHZDVVeYFLFC0A8j3g00OsL+juH2DbHz9LuB7m7/j6mgf4cikRgkQpccruVpxfLpnOpsxtPlnLZ5xHL1nIfthqGHLMZyOiwpi8VsRWbfjdyvd2WPOiRSzIy94vZmS1PXXH5wzpdffkfXralVGY6mfcfZck53f0vUidnpiuFwT2s1SmqCgrqSBV6eClxckZnXFikkh9HTasWybVBSMrqA94H4UOEPgmE34HY7zqoWo5YkcUBUFe1MsTix1I0pPV0K1zYdMY0cT7DiyFbIuXAYlCyustLwLSdkUv4ezpPycVPxOODSUmG1pLWCxqoyYzjS9rQs7bUQIz4Wh5vRufzPVDEFtVbT6vIZH4ayX68lzGc1q7MVUhesKVbh68xOlt76Mgusc8jRYZCoLI7gd+gHxzCODMHTO1/QqqkMe32IuLEQ8gocSjCGzK5zdAd3NJBQTCRQbrpSkqQoicRHc3NIib4fGfYD7H84gv1HT7pjimz7YkMUSdNawy71HEJPShXR+fLI5RMhJ0YvmdmMyBGtE4dOsHlzw9WzD0m7LQ9e8+QMXCfYPOzBtHT9d1RqgULT3e8w5pJXX3/H629s2S98OzBfGN7Orrn+tUf4xOe//Jjf//Y12pSJ6NvNjs/+41O++POXfHC1xFWvufzklLd/Br8LzBvL3M549vySFy+u2e32rE5mxBigypx/6PDJc3654OxnFfpcY+uW+8O3aCEYRs3CRPrqlu2tZzgk+o1js0648cBIRhSiDV4IZFbHWGyBFBEtNV4ElNLEnJFZYIxh8Jl+HAuxiUyjKxAlpSEKTS0ACQssUiWENgTvEUKV3VdpUUkia0sed8QY0c4xkLh4ZKkaWK8dPiasbhApEsdIJTNCCfrDgJFlIGY1xIPHVIYcoRKJpm2oGolZWJxJDHLAyQovAm3TIlQxZ0glGA5d6bPlGRwAU4hQV8vHNCqTxkg/9NBltq92xDHTu5/OkZaP2MLdrSb9SyKIHY8/fEanGpwU/KL+GEeL0S95uN+wf1OQijGWtGchJQLwIRKFRCqB1IoQE+ubkcoq/vd/fs0n//oRH/38it/+5g989qmkMnP6+Jbb15F/++W/89Vv/kSONcsLQb5z9Nee1Upx//LA2aJmvdkjZeYwlu+ztQYhSmQTx3bAEDzGK7peMQwOqx7oe8fPLk84rVcMCSSO55/9gubrtyh1y+EvPSEkRCo3+iwlIUW0Lq2G/3O+LRwQXVbLck7FPJQyyIg5pkyEpBA5FStwqb0Yk1FJ4JUkhkiWEJJDilLseheLG1CXTD8lJVoUW69tDY+tQh49mlIrqtrSakNQwMyQ2xlBJAY/YEVmcRCoMRPHhHcDzjnGfgBR0oBjiOz3h9Je8OVJJaejaelIcwux7NhXSiB0c4waKvvF26EgZEsqhaCu1NE+XXjRTWWQIuHcOzbv/y+RfwS2O2nSpEmT/rH66XyYkyZNmvRPqKnoTpo0adJ71FR0J02aNOk9aiq6kyZNmvQeNRXdSZMmTXqPmorupEmTJr1H/Q2KPiY76NmrPQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#hide_input\n","#id interpolations\n","#caption A comparison of fastai's data augmentation strategy (left) and the traditional approach (right).\n","dblock1 = DataBlock(blocks=(ImageBlock(), CategoryBlock()),\n"," get_y=parent_label,\n"," item_tfms=Resize(460))\n","# Place an image in the 'images/grizzly.jpg' subfolder where this notebook is located before running this\n","dls1 = dblock1.dataloaders([(Path.cwd()/'images'/'grizzly.jpg')]*100, bs=8)\n","dls1.train.get_idxs = lambda: Inf.ones\n","x,y = dls1.valid.one_batch()\n","_,axs = subplots(1, 2)\n","\n","x1 = TensorImage(x.clone())\n","x1 = x1.affine_coord(sz=224)\n","x1 = x1.rotate(draw=30, p=1.)\n","x1 = x1.zoom(draw=1.2, p=1.)\n","x1 = x1.warp(draw_x=-0.2, draw_y=0.2, p=1.)\n","\n","tfms = setup_aug_tfms([Rotate(draw=30, p=1, size=224), Zoom(draw=1.2, p=1., size=224),\n"," Warp(draw_x=-0.2, draw_y=0.2, p=1., size=224)])\n","x = Pipeline(tfms)(x)\n","#x.affine_coord(coord_tfm=coord_tfm, sz=size, mode=mode, pad_mode=pad_mode)\n","TensorImage(x[0]).show(ctx=axs[0])\n","TensorImage(x1[0]).show(ctx=axs[1]);"]},{"cell_type":"markdown","metadata":{"id":"Jzybvk8m1glt"},"source":["You can see that the image on the right is less well defined and has reflection padding artifacts in the bottom-left corner; also, the grass at the top left has disappeared entirely. We find that in practice using presizing significantly improves the accuracy of models, and often results in speedups too.\n","\n","The fastai library also provides simple ways to check your data looks right before training a model, which is an extremely important step. We'll look at those next."]},{"cell_type":"markdown","metadata":{"id":"7KEA28bJ1glu"},"source":["### Checking and Debugging a DataBlock"]},{"cell_type":"markdown","metadata":{"id":"t2lyFe351glu"},"source":["We can never just assume that our code is working perfectly. Writing a `DataBlock` is just like writing a blueprint. You will get an error message if you have a syntax error somewhere in your code, but you have no guarantee that your template is going to work on your data source as you intend. So, before training a model you should always check your data. You can do this using the `show_batch` method:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WZ6GOtHG1glu","outputId":"8e98d5c3-2873-4cf5-cb91-a73094f7e917"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAgQAAACzCAYAAAD2UgRyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eZRlx13n+fn9IuLe+97LpbIWlVSSJdmSbEveN7xiTDPmsC/TzTQHzNKmgZmhe4ZuONPQ9rC0aQ69DXiYHvocaPAwcIBuGBrG0ICNbRYbW9jgBdvaLGspbbVlVma+5d4bEb/5I26WUuVSycKyy2O97zmZ790tbtwbEb/l+/tFPDEzllhiiSWWWGKJJzf0UldgiSWWWGKJJZa49FgaBEssscQSSyyxxNIgWGKJJZZYYokllgbBEkssscQSSyzB0iBYYoklllhiiSVYGgRLLLHEEksssQRPIoNARN4lIr9wqesBICJ3icgbL3U9lvj8h4i8RkRMRK661HXZwxNZp6Gc1+3bfsyxISJvEZG3f6b3XmKJJR4Jf6krsMQSS1wU7wGuAE5c6oosscQSX9hYGgRLLPF5ChGpzKwDHrzUdVliiSW+8PGkCRkMUBH5KRE5JSLbIvILIjLaOygi/1hEbhGRhYjcLiJvEBG/7/i3iMj7ROTsUMbvicjT999ARF4gIu8dyrhNRP7eY9GgIuJF5MdE5JPDdR8Vke/97LyCJS4GEXntEF46M7Tzn4jIF+07bkM/+Q0RmYrIPUMbr4vIr4rIjojcKSJ/97xyjw5U98nhnHeLyKv3Hd+j4b9aRP5cRBbA91yInheR60TkPw91nInIh0Xka4ZjGyLyK0O95iJyq4j8gIjIvuvfIiJvF5HvEZG7h7HwOyJy5HG+rheIyM37+uxrL/A8jwgriEgUke/8dG8wPM/eu35IRH4CkPPOCcO4vk9EOhH5mIh8y3nnPFVE/mio6z0i8n2fT2HEJT4VQ/v84qPJ7Au1n4i8UUTu2retIvKTw7jbFZFfF5HvF5H4OX6c/1/gyWYQ/D3gEPDFwLcCXwf8KwAR+THgB4EfBm4E/mfge4Ef3Xd9DbwJeCHwWiABvyci1VDGGPh94CTwRcC3A/8UuOwx6vULwH873O9G4F8A/0pEvuszedgl/lZYAf498DLgFcDtwB+IyKF957yB0s7PA94K/DLw68DbgBcAvwf88t41gwB7J7AKfOVwzu8DbxORG8+7/78D/jWlH/yX8ysnIpdTwggblP77HOB/BfJwSg18BPgG4CZKf/1x4DvPK+olwJcCXw18BfB84N8+5tt5JP43Sl99AfBe4HdF5MrHWcZj4ReBFwFfC/wd4FrgG8875yeB7wa+H3g28CvAr4jIlwEMxtBvA+vAqynv7auHei/x+Y1HldmfJr4f+J8ocvgFwM3AjzzBdfzCgZk9Kf6AdwF3AW7fvu8BWmACzICvOO+abwe2LlLmQcCAVw7b3w3sAuv7znnmcM4b9+27a28beCpFmD/zvLJ/BPjgpX5vT/Y/itG8CXzrsG3Az+w7fmTY97P79m0M+75m2P5O4Djgzyv7HXtlAa8Zrvm2887Z23/VsP0mSghh8jie4c3A2/Ztv4VitNb79v0Q8MCnWd5enb5r3z4P3A38xIXqve+8CHznvm0DXrdve//YuH44/tp9xyvgPuDtw/Z4GMP/43n3+W3gHcP31w7lXL/v+MFhzP/Cpe5jy79H7Wfv4uIy+13ntx/wRuCufdv3AW8675xfB+Klfr7Px78nWw7BzWaW9m2/myJgXgyMgN8Skf2/9uSARkSOmNlJEXk+hTF4PnCYh6nLa4aybgI+bmZn9wows1tEZOsidXrxUM7797G6UARsuuAVS3zWICJPpXi9L6cwO0pROtfsO+1De1+GfpGAD+/btykiHQ8zQy8BLge2zmvjGpifV4WbH6OKLwLeY2bTR6m/Av8L8M3AVUADBIqy3o+Pm1m7b/s+4Ohj3Pt8/MXeFzOLInIzZQw8Udgr6z377tOJyF9SmBwoRkMF/Ol51/4Jhe3bK+eUmd2xr5wzInLrE1jXJT47eDSZfd1jXSgia8AxCnu1H39BYR6WOA9PNoPgfMh5298E3HaB884M4YA/Av4ceD0PJ3p9lNJB9/B4fz5yL2zzCorHsh/Ln6L83OOtwCng+4B7gY7S5vvbuL/AdefvMx5uWwU+zqdS3fCpbX5BRX+Bsh8NP0BRhP8U+CtgB/gnFIp8P7oLlHn+eHi82H99Pn+fiDgeX5jy8dTn/Hci5+1bjqUvDJzfx87vI+EC5y7b/tPEky2H4CWDUNrDyymC8YPAAniamd1xgb9EiekeAd5gZu80s49TqOH9HfJjwI0isr63Q0SeARy4SJ0+MHxefYH7fuIzfuIlPm0MMf+bgJ8ysz80s49R+sVj5YA8Ft4PPA3YvkAb3/84y/oA8EoRmTzK8VcDf2Bm/9HM/nrwim/4DOp+Mbxs74uU5NuXUAwfeHia5LF95z+fx6fkPzp8vmLffarhPnu4g0Ihf8l517563/UfA46IyPX7ytkAns4Sn+94NJn9CUofO3be+S/c+zIwtfcP1+zHy1jigniyGQSHgH8vIjeKyFdT4rE/P3ScnwR+UkT+kYg8Q0SeJSLfLCJ7CSx3UwTPPx6yvL+MEpvdb33+KiWH4JdF5Lki8lLgP1Jo4QtaqYPA/kXg50Xk20TkehF5noi8XkT+2RP/Cpa4CDYpsfXvFpGni8jLgV/jU2n9x4tfBT5JSUD9chG5VkReKiI/LCLf8DjL+j8p4/Z3ROSVQ/b814jIVw7HbwVeIyJfOjzDTwAv/Qzr/2j4IRH5qiEx8ucoIYefG47dQRkzPyYizxSRVwE/zePw1oax8buUMfulInITJQF3dd85M+B/B94kIt8kIjeIyD8Hvp4ypgHeTgnz/LKIvEREngf835R8hqX3+PmNR5PZU0q7/jci8t8NcvOHKMmH+/HvgO8XkW8d+sb3A1/Ost0viCebQfCbFAr1zymJJb9PibdiZm+iUKv/kCI8/nzYvms4fgp4HSVB6aOUjOwf5GFqdE84fRVFMP4lJdv5ZyhGwuIi9foeirB8A8Wb+WPgO4A7P9MHXuLTh5llStjoOkpOwFso7ffAZ1juguLBvh/4JUpY6v+hzEQ5P7b/WGU9ALyK0o9/n9IX/yUPe95vosTPf4cSK92gKMzPBn5wuN8HgVcCX29mx4d6RuDvU9iVv6bM3HgD+8bLp4nXD+W/lfJc91ESBvfjDcDPU9rqo5Rx+joz++OhLkYJ10yBPxvK+q8U4+li43KJS49HldnA/0XpV/8HZWw9hU/t6z8zHH8zpR++jGIkLNv9ApAh63KJzxJE5BqKUfF1Zvb/XuLqLLHEEoCIrFJmfrzRzH72UtdniU+FiLwLuMPM/uETXO4vAs8zsxc9keV+IeDJnlT4hEPKuuz3USjiayhzyu+mJCQuscQSlwAi8nWUEMHHKazFj1Jo4/90Keu1xGcXInKMwg69kzJr62sp08n/0aWs1+crlgbBE49DlIVgrgTOUKbJfNN5U7yWWOLzFiLyUR45zXI/fsXM/vvPZX2eIIwpa3tcSwkdfAB4lZk9dCkrtcRnHYkSBnwTZQruHcD/YGY/f0lr9XmKZchgiSWWeASGMFd4lMPbZrb8oaUllvgCxNIgWGKJJZZYYoklnnSzDJZYYoklllhiiQvgojkEX/OSp9uBcU0TPBurI0beMxl5mqCsjMfUlWdl0hCcow4BRFDnUBW8d3inVE5x3iEoThUkgwhioAJlpeDhzwBL9F2L5cRivkNKib7vIIOhiAiqDucdznlUBecD6hw+eFQU7wKo4IIf9leoKOor1HuaZkSoR4CAOgRBUBRHVocZiHgMJVvAUBaLRIyZWRfpojHtE50l0niCNg3VyhohBCaTCVUIVHWNcx7xDhHFuVJ3EV+eQRQERLQsaad7x+Xcd+Dc54Wwx+6c+8SwC6w3J8MOGf7JRdaGudj9/jbnnX/Z3+aizwTfeuQKQzOpjeSNEYYQ44yzbWbeQReh7TqSZVoTskTMAlEyQXo8QmugGWaWaRXG4qhqCNJQawSpcKKIU3wQgmQWaogq85kxij1TTTS9YmI4VXyu0HFgXDm8VOBbKt9gWRGJiIPoAGvwsSUpuOiJk0SFZ1RPoKoJzqiqGjXFS0dyFYmEE4fkhHNGlIZIyyj2RNeQBWpf45oATvEe6jwh0ZJcJohHRegd1MmRK6ioSZbBQdUvsOAR16FxTKwdrk9E1+FiJksEbUjO01BjKN5V9GrkHEEyTj3JlJx2EBRRj1jGVJFeSXvPzIKIYNYg3pi4TC/gZZUAWAjkW44j77sNkx7dEYIDU8r4iwnL4DXgoyPVU47eeBAzT2UtppBHgrYVf/nhu6nyBJMpk8WYaRPJEqhixEToDd60devnvA8D3LWbLCikHBGFnARziibDCZgoWRIiihqYgIohCRRlbuBJVAZzVUSL/M0OkmWcgOsc4ktfz5JQhIThxDAVPMpYhbZv+crv+yUOTCbk3JKaFegSsxypF4ktv8vfve4aPnB8iw2BYwfXecdd9/CCtcP88d1neeDe23jdP7iJr3rBs/mNX/4Q7cqEMzueay8ztvodjp9oiaFj1TZwdeCAC7QypZsKo6phHiNXra9wfOcB1sJBUuXZXnRcMYLv+o6X8dJnPI25GR5PMqNHyPKw9xuzYUASRbMhAtmMaIIouOHcDLRW1q/3AiKgCJYzhtBbRhFUhV2sCDdTPNBjhAxJDJ+ULiTMFMGwQePsiWoZfkegNmHh2LdmqA3LnxoeYWYGAhVCxhAruiO5siinWNEFTgWzjBdlLwCgBr1AFvDJeEHjLtiPL2oQvOy6KziwOqKqK9ZXxtTeMx5V+CCM6zFVVTFuapxT1As6aByhKDpRwauiamAJk4yZYDkVJZYTZnn4NGLfE3NCrSflsny1WEYtkQ0gl+skkGIq16GQe8wpkn0ZGEOHd0wQ84PyMmKao9GRaFFrEaegoRzXIozUNYg6nFtFnIB4DEe9EsA8G72QYmRnd5dF23Lq7Al2TyVOqScHT7NxiLppWJmsErxn3IwRpzShLgrfKaLFSFJXBKWI4n1A1aGqZMuIySOMAjN7TOMgZcgY+ZyBUM7X0iznDAIdOrxIMSLEOGco7P3IBbLXjo+85972nhHytzQMPmdwsWUqDkmBymWEhp3O4Rae7HoqMqdVmJqyYIFLgvkeORdKK/26IoFJEZJOyBmyT3RS4Q1yiDQoKhUkBynRK3gVIh6NHa06nDrEO+rK4TFcTPRVpkbo4gw04NWRFz2ty6zqKs0k4FZH1BoJeUSqPXUFikeCkFCceEKukcqRQkIs4tNloD0hQGYdY5cUa6ztSZLo246xa8jWs4jbyMjwnSO6ogQCDdkifhHIJFID3gKmYwAs1Sw8VH0mBQUcrnY4VjB6NHva3GPmEdtFXcBpTZIp0kecCrWbkHJLJ5Fk4Htwg7aaaksTa3xO9KqQhe1uSnYVB4LRaYIe7BlXYh+/k3w6Qm0kDJ97+jzFmgnj7UTnILuIdQkLCp2RbXAIolJnYX02wcKcqdTMQ4LOCNbRSSaLQOMetZ99tuFzHvSEDuPVcLko8h4QEhlwqQh9M8PQ4ZqEOoMstCKICkqCpGDgc3nngpFyBhXEOYKBNyNrZCLCQyfP8vVv+G3mseeGQ5dzIp2ilZ6QtkixYdHvklfgBlvl7u0tVscNYx8JndFl5fZ+l/XDiXDkCj784QUbuydZObhGFyNXjFuO1OssWs9Vh2asrzQsdhJN8BzfWlBrxcQJm/1Z1serLNKClXHDai2cmidGdccuFf/hLR/mrVd/mK981U287HlPL9qoLwo0mWAOvAjOoMsJFaWTYiDsqUjLRidGUGEFBoOhLI9oBsnAKTgRzCAajEVw2cha5EYFiCvXpZDxBmKDjhRQLa1jKmgGS9Bi1Bl6J8XIy0OFpAjv9c7oXDEpnFPqXOR0sIQgOFHUUfSAOCoMVUHFCCKkbJiA6KPL7IsaBEcPrrKxNqYKdWECvKeuPT4oja/xPtDUHnWKunROSWDF8xfJeCc4B5jDBqvI0vDrSimXF4yRUybnSE6RlHpyfnj9kvKwRixWATmVwYEzEkMDuWL+qGpR7CJUtS+Wr2YgI+IQ8airQBTE4VxhNiT3SDYkRlAjyRSVgHijmM0VAjgfcDmwpjDqazQb40VLt7PLdD7lxHwXV48Yrx4gBM/66gGcd0yacRlk3iOiVCHgVfFNxDlXLDpfAR4nrjTcvra4kFFwvnLewx5TkHIRB6IZrCh4FcGkvDMZrN496/IRut2snLvPnr2Q8t9vGDyW0XIpoFbhNGNBSK3hqxnjbCwwXBJmMdPlSEskiJLdYBiqQNszk0wSYYRDNGMYmhUnVoS0zyQB3yu9d0juITuSD9SppY2ZlI1sDT53OBeotFjvKYBFQa2lk5rahBgN04xbUw7qKs55RqOMhYqGgDVjJCQ0JUJdPO1eAuaUOinRFDXD2Sri5pg6xBIEAcZ4AVc5LE+ZtYLpAp8DQcdEawkq9FlRc+DAXKBzQtZEHR2qkYhADqhEfGdYKMY44umJeIzO11Si4DMuGW1KqEvUOUFwmHQQFfMJcQ0ap4QkmAjJjKyOsY1I0mIBQp5jWUhUqDlS6kBqnAjRjPjcG7H3fohqmuhIJBSxCQ1C5xQd1UQfcWGCEQszJ8UHTj4z7wPRZ8x5JBV2x5knZMga8bnC2ksXYTWfSAiypySseO/FyBckZUSFBDhJIIqmjOkgc7MUo2agENfEUzVGBsw8Z/tIJx5vGWcZFh0fuOVWvuSFN7KzWPDANPJnf3ILR9YPsZVOYVVHPTXmGU6eWlBrwo16uh3H4WvWOXX2QbY2Oy6/vGJSG31ccGhymAe3TlDnjhc+/Qbi7gIMKqt42pFVpv2UZixspFVmOy2beZdDbkSSBds54S2QzHFyfoa5rzkogcUCRBbQZNouEdMOv//OE7z/Q8f5gdcv+KIbr6NeXUOy4J2REJwWpe9VQYQ6l/eQpcg6U6ExefjXSKwof9VM2FPqGFkFn8EP3pYK5R0PjEPKReEDNBgRw4uRtHj5NjDlYhAHx0NVCmPAQJgLeAwRo3aKF8OpUQGVGm6oryKIlOcTV6pdmB/BD+UEGXTtRUT0RZMK//SnXm918FRBqerivZYiIzooEOcyIoJzCmKICZbLCxOnVM5R1TWiClos0pR7zMD2lH5KxBiZzRbErqddLEgpEtuWnBJd15OikYYfvVJ1mA1GhOViGQVH01RUIRCaEeI849V1RqNVRivrxTP3AedGhHoF8QKquGqEqmOISWBE0IcpfdQX40EVUUf2AXEeyTVkyPOW3PVsnt1mdzbjkw89yOZsxr1ndtmNiYV6qlAxmYzL58oKwQcmkzG+rpiM16irmoPrG6ysrg2syxjvPD5U50II5bkfXSDZ0AFzLp/JjM4yORtmxSxVKQpbdM/7L1SS6l5IYY+RGLYKB3UuxCEYqo8MOajqRQ2B/UaLXAJr4TsOHbEuA1nxKw48LDA2p5HZdEpOnluZ43zALNJno02G7VlLqbzLwsc5ak2IQYfiHWxUFRIcR80h2kMoDFOfIpijSz0x9VgXcaFiJYzwriV6j+8VCR7zxqofESpB6kBlRuMqrOoJeQWpIAcIQRlphTkHEnBqZJTGzYiuQbWwYSE0pY1yj/mAkdGgOBqS9IXWNGWRO0gBlzu8ZWIIYB1BGqIr/caLx1Ie2j+SXEC1Ql0PLlPlUOjTEHGMwBlewGxMdh0m4LIgdOQ+Y9qjzpNdQybiIph6cqW4mNA4JydPrDyGsWh3qFPAnBGysZBMEIdpoELJXqisYj5KVHNP/LV3EfoWy4aaoqFCzehHSj3vyc646jmr2EJw4xV8MqIscDnxNx84SXCrJGbU3Yh51WJR0dxhIuQq8C9P3XZJLN57dzpLonh6LBUlkABnQjIILhERgslgBBgkQZzRZajVOFALN//1rdxy7za/9ae3AY7ZtGccKr7oRUe5494HeeUzj3HlFUf4uf90M+vNCg+enNMFuOKAYm7OfJZZHa2zPT/LaBw4u91zeLLC7Q+dwSoh9I611chzD13F6fkmi2nHZKVmai3PPXw5H33oDCYVtz9wmpWJ4zmHDnONrzld9XQpMZ/VXH5AuX/as6qOJImchJOx5c4HT7Gx2tB2Lav1AXY5TZXHNKseaUfM+im5gu0+MWodORqb803+2T94Na998U0cOnCQJEYUqEyLIWlGUCVjRSEPjk3EcLnQ7I4iCoIJPYaiJANsUK4C3XB+EinjxSkqRkVksYg4gUkzKgYvRpsNy8JCE8kyomVSjwPUShjD5WIEBBO8GV1a0KaekztzPnHvQ9QGN11/LRtrK2QgDQymDYxHsWVk+AUoO/ffDNbdhWXxRRmCJoBzPWCkzoiWsNxh5KLMJVM5Q9ThQz1Q0YVGyZbBOdR7VBPqHGih3HKKwOBdmkHOYBmlR61HcoelntjOiTHStj0pFWYhYyU2KJBiYSWyCJo83jucU7zlc1ZW3nshlotCkxK6EB0EqFaYKKq5/Dya+ML1yD6OvQSPipKw8uyiGZwiUuFrzwEH43FFzh1r04p+0fLg7oKTJ0/RdZkQGtQ5mvEIHwLjyYSqrlhdPUAzHrFz5ChHLruM8WhEXk1UVU2D4dThfTjngcOj0/TFi4dzwYLh9cachrhU8fXdYAA4IEmJMe6xOlAGBYMS1CF0kIvtiebCFpyj18yGnIsL96FLPYulT4MuH95BMiNT2J7oPG1OzCJgPeu1RxwkyYW9AkyMjKBSPItsDoJBZ6QEp7qW0DuqSc1EKnLqCWZkVVLuySmjZEwbvGbMZcQ5MI/QoxKorUKaPAicBCTEPM4q4mRBbSNUK0apI9cJy47gDJeN6IzcKYyUKmf6KiDSor2DEDBTVEMJK1hGDJLL+BxpXI3RYRkW4tCYcdmTxoLLgaxFmffSY5ZRrfEmWF4g5opB7AzEEXrFqkQSjyUB7fBRkL2Ato3QqqPrEphhzvDaYPEsTjucX8GyI1EhPqB9LHIlFy8uZ6GPQvZGEiW4YhybKAuM2hxaQbcxoT2dcalFaInJCKGiqiJMA5UzUl/jnJAXu2g9AufpuqqE2lzC9xXzyQjtIPmEpopMJrjHu+ryE4eshrNIFodKImM0VETfM+4FcYF1NcwbXdthrmE3Qs6ZwxWMguBx/Mh/eA+T5gAbowmjdaWdtMxi4r/82T2MxplbPnIv5o9z+eVjdg2aJpI0M28r1nUNtQXTdptJqJkt5uzOhBVdMPIdrVTkMGORHWemHdtdy7bNODhp2Nrs2Zl13HryLHWTaAKc2dlld+MYn9g9y+GxYxoC83bOrh+zAjw0m3NgVOOy4zJX8aEwo+mUCk8bMxthnYhjPmsZmXB6Hql7RX3ESeBpV6wy8w1v/vn38Z733sW/+cFvZNw0RWmb4a3oK8lGUkOthJY9RWY4wGsxupQSv08p0asVh5GBcEEI+xjdDNRiVBh/9pG7+Kv33c1VT5vwwuufhps4+r7nio2DWJ+ZNA6vSjI7l/vhKal2ljKLecvpnV1uvf8kd919gvu2O048NOOue7dYazwve+EWr//6F7DSjFGRIqdNSw5NyiBKxEjGuQCS7em1C+CiDMEf//DfMbMesyIMS9xkL8ZcvMOqrnDOUVUVTkveQM5GtoyKo6pqRpO6GATDIJaUACNHMMslRpOhbWf0bctse0HfdSxmLTFG+j7Sx0y3KAaABI9zDvbiQAjOe+rJiLoONJMRLgTGqys0zSqjyQFUPWE0Rn3AhRpfNzhf45tJYQrEl1ZwhmgNWmHDj7UqJRkMrNQXEA2YOETBBo+FnLFZS+46dk6fZmu6w23Hj/PA5g4fv+shtmct7UIK/VR5vCquGSEijFZXOXTZEVYPrHHlU57C2toalx08TFONWF9dwfuqJI+p4r171AYtTEEmm9H3mZgzfSyfbR5+0UP3DAOFISlmL5xQjKKBHBkMDBloNmEv+ZHiMe7LRXCDdb2fxTjHUA5QvUjw6rOEbzl0hRmZlAVbMbyLxEXNjgmbZzfZyYHb84KUSyRWxZh4wXvPyBydSVGgTnDR8GHI+onCLHW0XU90g2cuxdiqVFmtA4FI7Aql7RtPjRIymLMyZoKwLhU5VIR1TyWeSb0GEpGVBslKFQRRR+o8TY7E0CHOnWPXgoHWIFZjwaOacWGCBsNnjxhkFxCdIznQmxDoII/JuYOcSXWFS0qyOV1KOFkpxqKLeAeSMyGNkJDJQcA5yAnP8C6cx6cKQgTnySaErCSvRNfjUMxlXFKQCpIxsyleKrxXpF2QKiFpheUZLisWi/dlUchO0H5BDIbgGeWKLEZ2kaw1XoRKi5Dvwwi57X66d/4VSVNhCFJPrSNCnwl15Mg1h7HQY7mmch3SrBNb4xMfOA61kE1hrIRZJLTGbiOEnAjqeMPpS5NUuNv2tpl6umgcDIqXzD//hXdyzyfPcs3VK3zk1i3mvuIqznLKDqJxxouet8Fzrr6M33nH7ZzZbTl8tCZlJU0V18Dm7pRnX36YLrfccXqb+TTT1sWb1ah0feKZh4/ywOYWk8qzG+cc0jFhHDk77ZG65/6tBZrh2MoR7p6fIE8zeSWz1k9wmrj+wAZnFzPumG6x6iowj+WW7/mSZ/DQmczv3nIPHQo242VXXk1DhasSJxeZW0+coJ/3XHZl4LA7zKmzu5w+u4BJx0Z9iNRl+mrG1nbm8MRzZLTOaKJ85L5tKvXcdHhMCBW3ndyl9y0ffs/dvPxVB3jLj34vq6srRDwZWHVCthK3T5aZZqGRtuRVmDLvI6PKkck4cYNQK2HdmAuT2lkxuLu8oJbAW9/1Xt7956f40Ik5RzYmrK/DA6fmHAsTTqYt5r2ibaTVxHoFr/3iGzh6cI2HdjaZzRfcfudZbj8+I/eecd3QpSnPuvwwcVRz14nTmKu4Ylxzer7Lia0drj4w5hu+6ukcPXSQ6fQsD52Yc3K24JnXXMarnnU96gObIohlHMJTvH/8DMFsZxunJbnN3BAk8TKEoQxTJSpgnqiQRfGu0N5yiF4AACAASURBVC9mQ4JbUmKvuGwofqCcDctGShFsoJ1TxvKQhJFjySfIuVDWFGttiI5jOQ0JeQ4nGXDIQF0nK8kjZKNdtJBd8TR8hXiPy6VuOswmUFc8EnP9oC3jwFa4c8rxYYtKHuGdC6lYMhIHrajouMFVFQdUGa1OEDKH13awPvHQ1g6feGCzxIlbo3VGFTPilBg7YuzZPHOa2XzOyvoqu1fusjpZpU+HGdVjVsZrhOCBvQTEh5Oc9ht2A4tVYmXIwAIYWCZnSLHEytIQQ3OPUOKFVlIp3p1DETHckCGrls4ZACJWLOzBKjCBTD5nJDxck0uXfOhjhMqhvaNzmawjetcTpTRsyCXJVShMQDZYZMH1GReUqILkXNgtAfpI9sJoVONbpdVCO+4m6E2JndH7EhJrtOTPhBRKBDEN8UuJTBjTiCOsNoivqSuP+gQ+ESTQZ6XGlZyA1OMrR7IVguySKOEDSw3JdyX/RQRnhiWH05Jp3jcQsiKpsApmkRAzKdRY7tFstICLicgCb2FgKUA0IeaQ5LCQ6ILgBbyfIHlBclKYAK8YYYiHOmIQtDdSLWAJNY9mI+aE4EBmJNewksYs6IvPUo/JcYrLPRYqJJYYvpLoLZOH2RJVDmjfM2sMT4XgcGSyCma+ZFiTcc84xs57byHMdlHpCZXHciaSsOCIoadCSS7TO6PRhMWMukzODu+Nbg6SEwunBBIpgdqlYwi2t0/x0GbHscsOMQmwsxu59ZO7TEZjPnb/lGo9om1gboFRMCpf87YPnuQP3/MAL7zmMsYrB3joxIyFtNQpMzubaCYe74xulqh9Q69GO90m1lAJeK+cmm9TjRPOOeoE6jvOdJkscw7MDjIiczJPuTIkDsYJ43Hm/naLDExWhTtmJxETDjQjuh6edmiN99/7SbbPtnQRpu2MqhmhqeH4mZOsTA5yLI3Y3t5iJQqjA2vc/sAJ9MiIyq0wW93CtsHcnMvciImsE9Z2WJeGzfYsG+vHmIQzmME8RtaqFUZjR78IPPN513P3fbv80M/8Z779a7+Ylz//hiK/tS46iYSg1PQEqTGgI5G9ByvyrWijh5nTMGRsF1ZQ8BLAlP/69lup2mM4MXa3EgcbwGB0ReCGxUEe3N7l8NED3LK1y4MnMz/9Sx8jrPYcbtZogodRx4HRCGsqKnWotpyspqw3kbgQJMyY5YxUHS5MuP2eBW/+9fdyaLLGwXXYcEe4+fZP8rbDt3CwmvCMa44wmoxJoowu0s8uyhD8yututLoKBKeE2g85AyUGXRgDxXmP05IkZ5RQgVnxgFSFEDzNZIwPNXVTo75QM2ZG3/dFyA5Kv+97Up9YzDr6PjKdTkueQBeJMdHOIjFnshi+qqhHI0SUJIJ6T6gqQh0YTQ4AkFOHuIAXh7rMePUQLjS4WvA+4KuK8eQgzlc4X6ZoiErxbM/F2a3kDFRjRAoNy15CkoDxsNFS2CMrOQd+VIyRNpIWM048cB+bm2f5yCfv5sT2Lrfcs8m0jXRtCbkwTFtLlkEM7z3V6grj1VWuferVHNw4wLVPvY61lXWOHjpKU9dMxhNU/SOmKcLDxkFKiZwzMSZShkXbkVJmp2uHRLeBRFJHLjbUuSQlTArtJIIqeHVDrkiJU3lXEu+8lPflXWEH/JDQ6YYkmYcTF6EK4XNuFbxu7SmW9CyY0jcVbqQsupbduWMWI7u5484WutyRYAgwAQjqlZAURjCKRnRQSyZlWKk8okIbrcT91Jek2SFnY7OLSOo51DSMDLIHr8qKX6NqhI1GCXVRsKbg6lGJM3qIKiAVqlqMOXE00hODpw4VJgFVT5IFPgn4hqg9oYtYUFxo0Ci4akxiVujuXJJZVRJdNgKeXnrEB/oIgkO1hFUkVVAJZnO8VoQwAsm4qi5zIZ2Q4qJM+TVDvSc7D3kHzxqpyrguA/2QVS1YWENZEK1DYiL6pjxfl3CWEOfp+zl+VGOxBllgyYh9xvXQS0fvPJIVFyLSVYjvybVhFqhFMXPkBLEOHAiBzY+eYPfdH0D6OZN6Be066lXHFccmBA+JGtyCql4j7XTceccJfKdkSywEQnDo3IrRpR4nnh/fvOWSWLbf9m9+yzZP9ZxuF5w5u8OhjVUOjDJ9q3gRpovMsbWG+6dbbNQrbM4WrHhPmz2zWctKU1ElYyuc4crJZWzHXa7yGzw43eVs17I6Eu5fKMe8cqrbZdEJThJuZOjZilEtNMFxeK3h7O4O41HD6XlH7BObOwsqMgcO1aSFEcfCNWPhG592NR86lbn5gft5aHOK4dhYr2mnC77z1ddx3z09d2vLX3z0HpqVmv6scuXRmgd3p1y5PuahrV1WmprrDx3hvQ/cz5Eq8OJrruauzVOcnCvtYoqveugPQNrm1Vc9lXu7xHTRUoUF210HwXN1s85du6c5NTfWa2NtdJBbP/kgX/qCg3zFS5/Fl7/y+WQX6FKi8hmfHU6Nu++9l5948zu44Zkr3PjUGzi4brziRc8FMuoCgmKWMBxY4uxswT/5t7/GbQ8ueP6VT0FyYrON5NSRfc3mYsa6G1M1ga0zZ3nGUw6xPY30vREmgSyJto1UIVH7iqqZsLW1jZrjm0fv46cfeh6rboRzc6Y+0adhlkOqcJURJCIiPHWi3DfrUBlxxcFVPvzR+xjXPV/1ZVdy/RVP4bKDE15649MfP0Nwbq2AgV4WsXNTFvZmAagZGORBm+ylBZRpL0UbpOKW4qkKIyAMc/MDMMxNJuNcWa+gahQXylSfFHt6bdGYsaxozESLqJOSse9CUUbeUdUjfNUQRhPIidiBc3XxpCVhopgJMQ7zPCQR+67MK8376HMFszg8t8Nc+dl0E4dYKN6iD6W8IWUD60syZW4RMuJHmBuTq4BqzZGNNSaVEtspR8YBiZnTOy3HT2/TxsiiM6wFhjmk0Vp2d2ac0ZPsnDnD6voKWzs7HLnsKDEnNlbWUHGEUFGHCpwgQ1xrf8a/qqJS8j28M8QyNZk+R9q+xMkTSkbOxdbSOa/eDbNFlOBLOEhV8OoIzj08rVQEn6Ukufm9zNe90MIQp7s0BAE4cLnMJCEmLBvOTwgsQARPjcm8JLym8uR5zyAyJSGErvQdTZkYPMEZfYwogewcmjMlpaTEuEWNDXFsz6UwXeoxyyRTmioxGlVoNSZpV2ZzRKUe6eD1AxjOEpojgRq0Y05AJRNcoFPBcizzkWPGSSyZ99IhripJohXEPtFnY+ykMAZawnNYxLwjxrJuR60e0zI7QoJgVtb46BL0BpYSlc6JUfEqEAWRhEqDhZYsilmLoyZ3C0yV3oUyfTiVvJOQI14ScSREKfFSsZbga5IIJE+oGrQTOh/xvRCDQ9qWRMtCHIkeV3W4NEHHQ3pX7Eli9CR81eFyDb2RfGT8nMs5/cGaeqejm0VyLaR2xul+hdGiK2FEP6JvOpQOemEuGW+e2keiGVJHYgo4jYT+EvVh4OzWLguDSgKXP2VM0zYEN6XLJe95DkxSS+M9lSqdJZAVjm4Yd0nPZh95zrGDxJ0Rp2c7vPjKg9x852lmbgqM+JYXXMeb3/03LNIGadGxVgX6pMwWPU1dGLIQMjkuaKoJtUXG44pTW2epXODbv+ha7tw5zcfu6ViJiVdcexnvP/4QEla5fmOFk5sLokTmC2WEZ/tsTwpwXbXKh1YnTDe3OLyyyuZ8h5VG0Ox4ysqYB3fnHGgqgnkeOtXzMfcg0cHWmTPUow26PvKMAyuM6gln2ik1I+7eOs1oteYav8pmu2Czb3nm4XXefc+Us9MZz78ysIgH+IObd3jr2/6I7379Jl/zZS/io6fWGbcLXnxNS3dmk3f96R2wcpQ/fPcneff7Ftx7312841ev5eDBw+RCu5bM/pi4/fi9/Nyvv4u/viVy9bUHuXPzDONUceRoRbejtGY0OuJEd5oDHGS9EcYuczp1SHCsphkr6zVxfIDd3DKbbzPddKS+J7gJt2xv0jqhWWT8QUfjoX3ICEERWeDJtH3CiXD50cvoH+o4tlIzzxl3oGGUx/zaH93GOJzg6cfGvPQNT79gP7uoQVBXriww5BXny0wClaLsc4Qci8BJTok5DpmVOniFrsRJm5pQV8OCRYqKG5QxVEP8/NxUQ5dLXsLIgQpN2xK7jvnOlBgj4uYsFi1pHhHLpNThFUKoUacE7/DOUUsoCwxVEJoR48k6KaXhOQI+1MWrVyXFjpQWeCpUiodBToj1JVPbh8IaLDZBMuqqMpWrHiG+QnxVLKdcEhfpW7BEzmfLGgviMClJaSsj48Zrj9C261x79BDbszl3n9hic2fO7Q9ucvzkLjttpm9bLCUWXZlFcer4cUyFj7z/Q9STEdc/5+lcefVVvPRFL+fIxmGOHb2c4BqapkG1LIRUvPkyG0NQco6IZLIamoWIQTela0uiV7KSgJdMaHOZo514OHyAd0P+gsfr0C+GT1QJIeC9YxQ83gm1d2WRKK8lx0OVpn7C5eRjomeGM8VHpWtSMfjiHO+M3INzCSwTUy6De3hfiCGxaIBWDKTCVAh9BoW6mmC5Q9qS1OqC4WNmsj7GqZFGyuWrsL29oHLCysgzbgIrboQzAzxq0HiPeMFXjuC0rAGQBDFFQvFEetcwdh400qY5WT0rOiECjVfmcZvcjzAfylTTaSz0fb3NONTETEmCDZHUBcQ3tOZpqpIfITKBHJHUkpzBGEJTo7KKxg6LPRWrdHGO5Qje4cIKwTqMERaUYG4IJWYSGckt4qqygBhKX/W0ycMslgWYLJKdRywiyePVM3c92iqWHNElLPbkCqxzSGwZdZC0Rl2Zay8IlpUcBkdBKyqnkFvmc4cT4+q//yXc/3vvI97zEDn2jNcV6Xp2ky8hjdEMd49nNwln+kWZveCl5F10fUmk1AUuFuflUmHijYPWMB8Hjp/cZjckVnygi1P6KVRuDd8KT1kfcdfWKdZDxW57lrzrOZwdR1fHfPz4aY6sNBxZV774yJitnQULG3P6VM9f3n6GZ69fxoe2H+SAX2UntKScOBjGnIpn0Fyh1DwwnXJ5s8KpnchGtcp1G+vcM9slLHa5bmOCS8rbP36SF44DxzVwrKp46hUVf3LrPbz+xc/iF2+5g1bgNz/wCd74mpt49/HTvPzwAdZvOMrv3Hw3fr0izuccoOXZVx8lPbjFlzx/Fc1X8MefuI+7tnf58W94Fh+873I++Df3cP+058DVPe1uT0vN2Pfc9NTDfPi+E5xQ49lHDnPr9havedp13HPybmJqeM+d93BkdcIzr1xj7YaDvP0vPslvvP3DrLmaK+oVftbt8Ky1Yzx4dgorc17xvKs4NVvwmpe9iB/8179JE8a4w4nTxxOnpzNOz1puuuIY93eZr3z2MXZ94rY7WzbdnGaqJIuc3l7Q2pyKNbbdJuYP8sA0cabN9G3HVqhJ21MW3UkuP7JKt6jptaWNLdGf4UObN0LdcTbssnOqQkOipSbOew6uV/i6ZVKNuXJ9Qns20C56Ki+Yel523TrPPbzBzf8fcW8SY2t6n/f93vEbzjk13rkndpNsNmdqsERRtmVFhiUrNqwkspEAyTrbBMkmQBb0xsnC2SSAA2SAg6wSZSFDTjzJSiRZk0lRnEQ22Wz2eLvvVLeGM3zDO/2zeM9thUCaiANL/QGFAm4VCnXqvuf7/sPz/J7vHHN3fMjF3L7vOfuhBYGxtQusnX9BRCP7LrLaF6Q+qLOilIK1FmzVBJRSKi9ABI2por0nin00+3a6jt6NxuBQZj8uV+Y9gmBQijjNKK1wTSLlzDTWMUSKVf2MAW0EzUROCZFqE9Te7dXzP7j7r2N2tX9tgjGu7oSUrtOCXB8KSgE5oUpGqYJCoUoCUx0UyF69rzPVjar2DIBaIGgpkCdKDuSYqztBORpjuXHYc9BanNGsDyasUpADF7vIw8dQxdiZlOvIv5Qqqpw2O74XAw/feofWeT703PO0TcuqX2JsBRyZJ7Al2E8JFCiDxVabTMpYEaJVmCjEPCCpoLK8N6bNpdqVyt6dULRGG4NzDmNsXbloi/V1ZWF9FZeWrsMZg/hKzMrlyWrhg4G6xKjwRogeSB06J4xAytC1mjEnRKb9+qe+1ifTFaFOCzRl//trUp4QsbSq4F2DmEiZoSRBe0WrHLYxxJJxRrEommgUDmhVIeuCVW7Pd4BsPV5bVCjgQUVFdpXtIUrhJFL2ehmtLbmpEwmrFEkgeKHrrlPSzIwgyWBdoYjBBEO2itAX8iy04mm1JxfIjCjTQVEoqaN98R6lc2UPZEWL4JVlrTT46iYwyiIlIl4os6V4S4cjqoJWqdoH0eRosGhEK0YMZv8+zJ2GmPa2wVQ1Egij2aGwKO/QKaD36xinNMkYSvAUEspHxqjxUpCSsEATEoOZcGVF0jNKd8RUUDYSRLj1sx/n8g8M5fW7lJ2FfkJpT0waJNMqizEzKLvXAlHvaQpEJ2TqiXpm0u+X9/Snf5XZ8GAYSE3BWMNSQ0qFVnkGq8m6sC2J3WamW1guLhIhKUIZeOn0iPUQOeoPuNhueDwk/sLNFX/+9jH/zVdf4bNPXeOPH5/x0aMlTC25DZRdxGRHtoVr6YQLtSNsJlrxHC0XBDuwSzOn3Qlu9ZgHZ4nPPtsxROHHnj/ltx5dYl1LSDNdqoI9rxTzRSatIudB8/e++Tq/8MKz/MG37tJvCskmTmm4UJ6HKXD3Ys217pjNmXC99RwceuaLLW5tmFPmIzdv4rYDj84S19oV/SpgR7hKA8/013h4dcHRx3teefnbfP1owdNty61rB7yVe964f8WchGEwnDSerAyKSjV8bnVAv/Q0w4Y7Rydcdyt+98GrfO7mi3z4qVPuPRJ+58v3uN4vODg44cZ1zal20FgGGQlzj3eFo+USE8F7ODA950HYLLeYpGmmNWfK8GiIlKx4YeXZJWHYFO67DT6vCE1AjQanDFbDqoXNWEg+4rTBlQm9MEwmcLN13H+4oz9sEZ9Y2x2//Wjk5qKhDXDW77hxaijDMa8/2rzvOTNf/OIX3/eLr/wf/90XFYIqQC6kmCplMJdKtinVJ6EKUIScCnvnBsYYjK2dqvWm7qFd7S61kqraNxplDFo7rHFouxcKGYt1Lb4/xPqOXBTKWHIupBSZhpGYoWQhhMQ8ReIcGceZYbtjN2wJYcZYX7sW2fs5TBUYGlsf3sZ6nHcoZSkl1LFuSeSS3vOjUhJgULZF26ryrw/+2lmiCpR6Y3kiTlNSVyRKCiVGcoikaUectgzrxwzbM5QMeFs4Plhy7ajj5tGKO6cHPHftEG8F32h2w4TkRAyZkgtTDEiI7DY7Lh6e89Zrr/Hqq9+jqMQwDXRNh5SyV8L/P/kFT5DIVYiojcY4Q2MMjXd4yXX/NI/oFGAekXkiDBum7Y6wXTNdrRkurthdXbC9OGd7dc764oz11WOuLh4zbHYMuw27eWIYJ1JMTHEmp0wMiZQjxwfLv/2v7xb5/+36h3/nv/iiWnS4voEykJQQ00gRwyiR9TTzOEWKPMFmUetWkX3xW4VESuW6drGORiWybXBec3pwiDeOYR4rIrexNL6l6RxeKZSJtNKyWDiUdyy6BqzCOofRmpmAsg6LrQWaNigiqu0oGpxvUMaBCxgxKGVo0JTG07U9VlfwlBiPw9EqQ/Y9ojJG22oH1i1OuWprMgrdaKz24Je0ZkHWGtM4JGscDmZB+w5jEmIaUII3S7SNaO0xqhILtVK4UkDNhKSxUr9XG7cvug0aA1Zos0FsQ4sClVFFkYrFPdHjlATZknAUA0YVtLOVUaIKOWa8FfJUaY8lJyKFbDwYi0sGK2CMpxSFURFjaoGWnWP5kTtE7yibc7pmSQ4OaQO+sczFM00z41BQMlXvdgyYpIFEVpCtIpbAX/vP/qM/8zMM8Pv/8mtfPI+FmBIua6YifGrZcNw7Hg8bTvuWm+O7TMfHDBcT7UIhoyYR+OlnjvnywzMOnUb0iNKG33njkn4hJGP43ruPMBrurwcwiTKpqqrXI9sp1YYnQDD1b5BzIeTI+bzl7uOHxOS57wPffv0hz7eHNM7xv3z1TV5/vGE7jNzoe958XLgvV3RO8ZefeY5v3b/PdoQv3X2IajNXecN//hc+z5fvvsXf/je+wFfvPuDdTeKgF/7py29wPsGzruPNuOFzK8ePHx/w6+dv8L2HFzS24+pyzdHRgm8/vuQThyteuNHzzYsznnYHfPTWU/zumw956WTBqT+ij8Lnn7tZcdkh8MbVmhA1W7YYDH/tpae5e3nFU8ct3z7b8vtvvsXPf+w2n7h1wHde2XHtcMFXLt7BNMInby342Y8d0DhN2iWKXfH9dx5wulySZabtNZuxcDavsUVI0Vf2AUu8zvRq4sdePKCjYTNtMNrilWO3W3MW1uh2xbO6cHDS8+rmDDCY5DA20+vE5546ZhdmDrqOB2MgTAteuX/Oj9xaMo7C988e8LMff45hlxiSsOo6ri7u8zf/yo//v57jHzohECnkXDBS0Y8CSFHv2c6eiAiVqla6J7vrXAq5ZHSuk4Iwz7U7thatLNrUnarRFmvs/jasQPSeolf38m4vCPTtEpSvVL+53kBVEkrKKCWkXChFgRFKKeiSqj4gJUTNFCn4pmXZdIgocpzQTb/vomsFU0QhOaK1xmiHSKbkSNEaKwpVMqJlD4XRe8ZSxdkqZRCZ997/ut9VqpIPS8nV3yzVillVT4mYtmQXMG3G+ZajVY8yRxwuZqY4s+o94zRzcSWkEplmMCGTECRVlvbVxZo0R77xja+z2W44OTwhnkR84/HuyWRE/+CERGu0rVkPqhSUNrRxrh77GDE6UrKgyKQESVdIR4wJap1TGRCh/sw41p8b/IT1Dj8N+K6HfIh3jtJ1WKNr1sUHcLlGU4KCmIimoPFo22NIhF34E2vlvmasduM/EYmKqk6LKh2qfAtjDE1SRJMoKnOy7AlxxzCFKvIhVfdKhrY4lDOotqPdMxysBWPrtELrSNEwFUEVRVMURRusrlOKaBSNVRht66SNBrPfEQsBJw2BglWVW1d0wqa8B+kIqmR0AqcVo84Y69E5U2yP0kJ2gi2GLIpCJBjBoUhlorctyVnapod4hSSHaqDQ1XtAyhXYZVpWYoheIDcYlSsMyT5x8hiyZLQkVMxYZZhVRqwhqoQvEa1bUonEErAZIhaHrYAhZRCZGGU/ddIDjXLVChsVVmWKNxTf4spE0baCSJUBLYh4KMLx5z7EuFwSXnkdkYAgzFuwJlOSZlSFZRYER9ITRSWaUieeOWskzx/IGQb46sNLbjQLKIaLssFg+M4o3MLTJs007DB2oh01g840s+HK7rBiyFvNF569RgrC1+6NGFt46rjlD+6e8eOnT/FQXzGOCekbjKTaeEwN0jjQgXkU2tYgpTpqTlc9dy8uWRbNlWjmkHj3cYEc+VB/xXqwLPuGKSTeuhx5aZu4c23Bdx7e52deuI2owEduHvG9s0uW/QpbCifuBt/cvc2Hr9/iV77zXYw17DYzbzxaY03Dq5vH/NLPfYav/vYZ//033uEXPuz40dVzcHTBg3nmeGH50oN3aUuLKMOuCGfDmnEK9E3h6YPb7PRISANTiNzfbjnpFCftEUfHPWqMPMBRxpY5e/RUCZwhCkvTcaPpmc8nln3BpQwhozrPde9pc8Ngdhht0Hbi5ukhw5CxjWCKJlvh0Hc8nCLFB0iJa81M5z0ffWaBtiu+uX5ESR5awYrl+WeOubUZeHU70HeKt9cLJFan07VjT68Vn7l1wtOLA75ydZdP9Kdsly1vPHqH2yeH4CwnB56311cUpTg+6Hh89xJlNc9eO3jfc/ZDXQa/8h98XFKq1kCBavWzT/bTtVOu1jzBNw5jDc7bujd0Zu9Lrxa/Sg5c0i8W9H1HEcH5pnYw1tc9tXZkKZSUUFrju0NQVQVdcma3XbNen3P/rTeYhpHd43NUSdU3rD3a+lqIaEPTtSyPDlDGIpKwjefGreex2qL1SH94HeMcTePqA71AKfO+06/CPiRTckIhNI3Heo/tqpWQHBHjME1fdQJlBiKKau8iTFAKJQUkJeI81G5nmkgxEMJAyQWkBh/ZxRK/PCXTsp2Eq93A3fsXXGwGvvPGOzy63PLqu1dMQ2Q9TUguxFLBQq13NKuOn/yZn+LFj73IF37iZzg+OuLk5DrONrg98VCpas0sexBUSVVQmecBCRPz5px5GtlebZhD5GoYWI+ZKSZ2Y2QuhZgr/bBGTfygUlDtWdqiNbZtabqO5dEBbdPQNw0/94XP/5lLC3/52qm4XG1B0XeoRjGpzLgdeTRXVe/bZHYlUfarsPrKpG62pJ5zR9m7LWroldMaY4Q7J4ecHq64cXLIlDVpu6m47AKqKEzOJGvIbVfXBkXtd/AWXTIJjVURY1pEWZyNFeXb7t8/ssepLjra0lD264BWC0U8YudqvVMKVXqUnlBZk8iYdsEcRlqo3XfrcEWR9xQ15T1GWULYorGExN6ls0DNM8n3mFKwOlBiD34AUXVVkgGdKBiMaIqG1hdi3BfLOVKKoNQMqiGSaJIldx4tgZgykj0q7kgq4KwmiUVnRxDFGEfKXhA5kchXF2RRKNOjs2K2AzZrrHdkLbRGyGisabAahlwwZNpmUbUKWlAloXDEeSB97RXUg7sILc407C63PF7HKvJ0Cp9aMBMq2/2ZninS899efDAcgs//h39XVt7S9S2EwlmYSTnTZc3xqudiY+nKI/JixappyUNktpnHw8DS9lgVGUrhIweHOJ9qfkG2fGNzwZSgSZGiHc56iDNzMShV2I1CbkdEO1yCk0MDm5kbhx33Zs1nr3V8+d3HrEvAzx2zRBodaJ1hs9N421BcYmU8IQzcOVzy3LXrhBi4GAdeOV/zb7/0IbDCsycN//Pvvcn9nHGS8c4xx8j11QEU4WefPeZy9PzOW99nsIkueE5WC9Z5yzRrxqJJvtFc8gAAIABJREFUJfLR5XUeDQ8YlcOKIaYZ22t0UCwXHZ9qTrh1XXG40jzeCaIKx8pzRWG5bPkHX36Tz3/8aX7/7Xd5QTUsFp57UXh64UlbzUVOdH3hm2cPyBvNL33mJt73PN7NxLkhBsecC0e9Yj3tWPSZVzaZh3nLsYYbywO0KhgLnz65xqvvTCwOFKotfGRxyhsXO165vOKl7oij5+Hz8RH/yZeF0wNP32fuPRgpTeavPvc833j4gM/feZojEzibFP/w1bdBJZ4/PGSXLBsJqDnx4ZtLbjRLLoZI12f+7n/6N//VXQZhjrWrFVCmcrRz2eNrSx2xGrOH1ui9Ze8JBleeYBJr50+BMM3ovWJdmydpgqru8I2p4Sco8Hu6oG1QpsH5hlIKHsNCaVanO3SzYdxtKLOQ5gIlVVGg1N9PpDANM9bX/3DtnmgWqoBORPbcg7qPrejiUrsZMjmm97rqUhJSarfyhHpXA5HM/gFSiVBgK+mwaFAzT6YPNeHR1HGqtVggp7BfUyRyEsp2D2BxCzp/gNFLVNEcLntyihwte3JRXG1m5BzCFElzQIuQ5kguhW9/9Rtstxtu37pDSk/T98u6yzdmLzZ8oimoFkttqz+b0lAA3y7RSpPmiNKKWCIpg1KFFBUqK3LeE7vkSdBURVWrmsZBTnsNyTgx71cFrmmYF/2/htviv/rVl4ry1GgKNVCozJVgZ7Iwq2obRJm66tljP/eCgr0qP5PrASeXak0U4yiSK3EPQ0oZXSKtsUSdKeO0V98rjDKYVLBkxDWVmS652vyKAuX2HPVE1gprAiIH9YzZqh9xxRCJNMqSKMxIdTdERZGEwqB8wiZF3J+zrDXOWkwyRJ3wOdajaD3WaBJVp2J1T0iJrmvf07+opqVXQlQZpyxJD2TboIsHB0UFEIPZO098qivDsi/A1f7n29JRcgZryZIpMaCsxzlLagJl11Q8dBRio2lVxItlFgspsiuCNRrjhBgzu8uHaFObh8lYFmlkEuFy3OJty2rVMnuL9gu0VmSJgEEnqQmQqpDaJc1nXmL4vx7QiELJRCoeVUJliYhhVoUm1/tQMdBETzT5AznDAA5NzgmTFecp0Oa68hyyYhdGkguQNc4ItDu60mAF+sWCN8cJPyraZYcnMSu4u1szzYWS4LbrecjEteWCWGaudwu++3hH0hlszd0oc+V0TFeJzjesdwo1zJwd1pClxWwwKpGyIUtDu7DElBnmLSvT86FrnlfPd3zt/iXfOrvg2DtWpz0mar707kN+5NkV17slv/SjL/L3fvtbxE64bgyXEriIW1YLy+3+hO8P7yBoTrseY2ETJm4tjohLzSvnZ+jiuTc94sPXT3j7YkMmI9IgoZBU4d5uYsyPeP6s55dvPoUeI5fdRAiBJIKZLT/57B1+/+V3eBAG/uOfu8NVUfyXv/Ft7nzkWd5JI29vz/j3nv8sISi+sn2Xf/7qA/76Zz/MtdOeN98pXNmBi7TlzYvES8crrDU8Dlfs8shP3XgarQpRt6gYcKnhte2b/MJHX2ClO16/eEi/XPDW9y5oV45/58XrtNT37+X2MbM4vNJ85OYpX3rtHr0pLFzA54YkWw5VwyYVLuaRlV1xth2xpeXeRWJxM9G1hgeX6/c9Zz+0IJiDoE21UxlVRX563xUWqSI7qxxK6/ecCE+ADSjQzmC0pe86BCHlzLDbVcqZ9xz5rvrclUGUwfhFTexqDyroxPSIaTHuCIpC+ke0RwHT9IybCyiw21xxef+CMAespGp/FIWxipRnzBQQLaSSmMaBtmvrFMEYjHWEOZCY6h62ZJzuEMloLZQs5JBAMslEtDHEaYshw+IIZVr2PrF6KQXGoYxDJAIR4gQorNkL+iTvdQgLyk4QlSg5ksKG9Cggdo1f7bDNihvXVpxKz+lhxzDMfPSpG1xuB7775gPOLnZ86+4jtmNgDomSEo/euMfFvUeszy/52Kc+zi/+lX+TG9duc+P6bXzTYvcaiKot0BSlEL333dvKmbBNTa+M84RzBmcHptnQascuTFgNIQmD5EpATABSCweeQJwg64TWBpsiUQ2M9v0P4Z/mlZIh6RFRLSquwXZ46uprWzStSoScEVF7pNITHUFlClRxYRXw5SI4VXBAYUIbRyqGqRTMELBFk8uAyTOSLNZaSt+DXhMzNa0wNGiboBgCgcZosquRqZItvulBF5YeRgEzaqSztYCTSJoTVnl0Hgk+olRA60OUdxSZKVhWfkU2sQpcm0PUQtdglzSCaihZI63FJ1MRycuOXmmcSWjnyHHEugoL8tIT0g7buioM6yCLrxMgXfUzSRS5LVgx+CKUMqCKRqmM8RYjmaI1Yb/OM7mAjSg0um0p0VFSTSIVo5hdptOe6BzzWIjDFl2ucb5+h++//DJ9c8JlnikScPOM9g7JIyVkovN0Wbh+cEp384BnPvQ83aICZgyGJvkaAuQ6lj//C8Svvkp+8Aop7yhZcNmjmoQWSyGQpaEfFNlksnp/dfaf9vXMiSFuFE8vMyEZxpyY1EguhtM+cWM65jvjY/qy5sAeYXXk3e3EPE8sm5bDbuBiMLwaC6nMHJ0IRjvy5DiPEz7WVNohCN8rW1qfObErXpsfonYNT103PB4iu1HYlkQuGlRg/VaptzmfCSHgzQLrEruN5unDJQ9wXM5bbnS30DcKMU3kArdPPGHMdK3h3vnEvfWOf/DVh6zngZODjpig1YVla3l0MRF3hf/q/CuYIjx38wQ1zCyOOrYhc393xTomlkpRtCK5xBsPt4ib6GxH5+EyJsxc6BpLmDIv5yv+zu9dYJ3mbz37AtM20x9lNipw/bCh6IROmv/xS+/w3MkBv/TSx5jUFbZRLOaO//WrX6c/sCytYZyEX3vlbR4PG27Zjm02dIueszxwOivuPdjx4WsHfMzf4o/X59xZtrzzcMvH7hzy97/2TZ5a9JytB3Zq4p99622axQF/7mOnfPXuI779rTcZVx4Vl/z7f+lH+cNX7vOTnzxk2jr+OHyNP//ZZ5iC4Y1hR9sZDlr46ec/zD/69ut88tmej5yu+NLrZ8g28YfjOV0HL/aH73vOfjiH4MnDfX9JlezXdcFeL1BzAiClPU/A1w5U5Urg005jXH3YSAQtmpgLOc6EMGGtrZkCZm+Z0gZRuj5YXQd2Ac2iUuWMIccJO61xkmkPDphSwnVDZdSnsv8tq88eMUSpNjHjHbkEpDQUyZSS3+PbF5E9rS8hSfYFQYuUgFZCodROfp4hT4g1eNmLKo3ar1RKtavt/yZPyH3qiUbC1CKDYhBVLY8KVUMtRMg6UFKgpMKw3aDngFsURFm8LajecOt4xbJvCDGwbC1X48j9qx1XV7XYQgqExNkb7yIUPvHSx0HBweER6DqJkR+IVa7sBaVL5WC7BpTGxhmtIMWZkmt4VEnVRhZzRlFISYOhaguoxZNS+5xuVQNXcqlpa/aJQPODuNQGpRdVtCa1Y5TGQZlhjhiBVhlCDUj9E2OZ7M87wJ5lXlQNj0poXDZoEVoPYiypFEwsSDaE7Cr1LBSsHSm6x5WMNQuSCVgj2KTROHAgo4alQplSCzHbEvaahqIX6LImKwtJIR40idT4ShHEks2MzuzFuZkNEU/G+Y5EwS0X6LlQXE9WM9ZpFA7bWsRYms4j4xZvFyCC6Y8oOWGapkLBTEtnGqYYKKJxeYKsyV1T4URKoZyDoDEugnhSznip0a4pKVARhwHtSWpCQq7kUDSDmYkU3FwJnjGsUcselOWgaYj9NXbnV6To8MsDnBOGxwFTKtSlV7CJiRghThvWkpl1YDle0BwvuONv1BAzFEoVHIGZSPIW+6nnme6+RpIeZcc69UiCmBmVO2Cm4JCicIwfzBkG7iwV3xgT7VC41nS8ExPHjeXhXFjqG0xu5mPXGs63novNmmcWB9wyinR6xDuXV/zix4/5x9+diBrUFFnkhl1oiWYmTJHPnHRc7jLjLiJtYY4wxYua39JRUcVJaFxmJqPRqGDJLuB6zzXdcm525BKIWRPMxKubHRI0LQ2vbq/4mcObmOs7Xrs649nDY74zvs3qaMXpuODWyXW+9M6r/MTTtxhHw6OwYSCzNJarzrGyC87XgcYMvPrgkqXNWAnoAq44NLAj0bu0d6cVOtXiGuHAOl488ZxNmtd2G8RkTIoocWx3gd84e5ubfctPNTc4nxJZC89dW7GeH/KOBO6+O/LC4SlvXpwR2wCxwvguU8EvhDIY1rtLfuT4lJQVaZzZDVd4LXz89iF3mpbFScMrb65Z+COOlifcHu/x9MmKTkY+cfNpzh8MnJqO3nc8vHrIT37h8wybzPnbr7M5qY3yb738GufbLb/Y3+DXXnvA7b7j1C25t6tZPpsQ8LowRdjGS64d3OG07fjtt2bGkglKMQ2R+fj/p+1QG8E5u98/y/7fNMYYnKu7NbMn1EmRGvmYa8ds94I9ay3aaqxVKFv32E3bV96+VswpYVLEGocxLUp7chK8XdTxu1aIMShjsM0hNgdEMq49ZJ4iYn19aO1GhvOruvNXHm0cc6huAWsN3lp26w279SWL1QFh3EFO5BRJElkta0RmzOcopbFC9ZnbXL9nrDctpYWmbbGuqTcQa1Dag06gHMramuxoV+ALxbWYNKPiRI5P4EWFPM+YrkNTKKmCc6KM5Dgxj2NlAFxdol2DtQ3GGA56y6IzLP0tNjcOOV7WyvLltx5xsRk4vxqYY2K82nLv5df5R7/2q3zi059m0Sw4Ob2OObFY2+D9E03Bk3KvWkpxDWIshoJNTVWRa0NsM74ZCFOg1ZohxipSmwOSCyEVwj4/QUTV6M09FjnGhLMWsR+M7TDbrip3nWOUQLEOSka0JdsJNffAVHHLInswVKamyT8pZGT/dbUX0Eod0ytdu6MyAJpJJ1pVKM7Q01fcdwRXEk5lgg3o3CBYUuewWnDa4ltbt0zOYVLau1gmMKvqjCgOUxKqtzTGEyXSND0pBRrbkqymURlpe1wSXNNgFJTGsMBhihC9phFN1h2VignQonOu3IPuOhBRWhPmAFI7/KQbPBCdxlC/17ga3cqYyK3BFE2ZZlzbIalglCNRyHhCSTQ6ERsNuTYNznqi1qgkuIMFy9Rz7/WXuXj4gPMwoeYrdlsh5sKd5z7C6elTxHZJe+02t8uOzWZNrzecXw60bYPpNGFeMcslS9egc+bRg8CbauS186+y7D1PHR/yiU9+gsWhxfu+ao5CITUF//NfQP7xV5BhJDETvUWXetO34okmko2qGOwP6BqSZelGxrXi2i1Y5cCBO6TomfX0gEsUp02D9wOHyyXrNEPSFD3zF2/e4rnTkaeWipXX0BwT4pY7h4EXFwfMHPC737/ihedano/wm69vqy4qztU6WgYm0bSLhhTAWc8UA8YLMoHkwNpMIJouabLKpAzSZbpsyCnz/XtrXn3nHIngreKfrV/DKs+ybBlT4ttvPcAoy8v3zmlEExTsnKC2QsqROT1GHWgkWxYFdFGE0VQRtxnRs+C7lilFjpRnbIQ5CHGniP3MOifGi5beBrSxBG2QLBwthatN5sHlmq+/+Zi2BVJPlIm20XXd5uCt4RHe9HTSYPpMFE2eoegN0nZoWl7eXPJjp7c5WTTscuT+JvCld9/henOCOdc80za8pWd+8/Xv85c+dIM/evNd/sanP8mUA7/+/cfYruGvv3jER699mv/tKy/zuZOP8uLtb/A/nR1z3S74sWvHNNee5le/8l1Wy4ab9gbjtMH0mVVxfPf+GT/7yTv8i289ZhEsh1rTlchP3F7w7hi4dzmRWk33QwjcP3xCYKr8WpkaYqQUezSrYEzlFGgD1hiUrdCaHFPtIrWiMRYNlJJBNThbfb5tu6yZ7FIBRElmJFc0aBFBVB1DqgyoESVHoG0VTolgF4co13I0b9C2oEpkt90BIKnQ7AEzBY1zLb7vEYnEGJCYKPN9GlPJe9ZrlBSmvKOIkFLBtwdks0WRkJL2mQCQc8TpBoUlTiNKTWinsKZDjIAKQK7BR64D68BUCAvTGu1m0BrJGdntaPsFSoCSaxBkqXvkcdgxjBPnm6n+DFVtm85S1zNuhTMNL9xecPOoYdEYzjcjb92/YDvOnG8mUsqcv/o2f3y14/bN27zw4ZdofEfXLd9bGxhTH9JaVw48e0GgqAUkjxWhR8gxoDVE22K1oY8Bg2K0CsmJSUVSEmKqosOMVLUjVWeRUsS4H3rU/tSuJCMaR8qZHMGZKhiMGhrb4STjSt3HS5F9CnYtfp98NtQHqFGQspCUwpuu7rVnhdI7Wt9gta2IYA1IRiWD1QGxhp1RtLWdwZFQSTDOgLIYEYzOlOKwbb9nZxziRPDdgrS0tEWT80TxsGCBdqa6OUgcNj3KNCidKZQasqUceZ5xjSUXU50lXuG0J5WEzCAuYrsVk1WYOOFyzRFZGs0Yt0hpaiGiBB8jxTdghZRcZY70Aih0HNFZSBtIUvU1ojIqTqhuQdGLql2QiJI6Wg4pUJQhjwNeKXSCMGf0ds12tyGMiSHD97/+R7x5+ApHT78AuaBly7DdVmgXmjkMXG3gcDWTwxJwBEmcHC9ZpB2tcUzDzDmZX//S13CSeOnpO9x5/hbHJyeUpCid58Yv/UX+h//67xMlkIOgVKV4elEsrKMRy4fNB6ODAfjpO2vyWsGdgWjXpAODdmvs7bqyyrIkBiEuBK23bGUiLDpOrOJxeMDh9Zc4lFc5cuBVxDZHXI7C14eBSOILt1tmp3j1wvDMUcvbj6dKMI2KXVIsWuFW6nlLbShDxFjBJ80zq46+U7y5XXPaWV4/n5htw03f8WgrWOW4fQjP3Oj4vTfWDKVw3Xe8MYxoI0zraj03KtAoiJLYmIxJppJoux3NzpGMZhEsVlk2KRFaIQ9btDXkAkYajEoUUxhzhlmIKuKK4WKbsKVhcTAQYp1YtDZx0MLltucqz2AKYjTRerTK5KRpiwObqc5ZjdgtAYMOCqcKcxPxY0+hZj3k0vOd9X0as2KcJhqrWW+Fh1fvcnyz4ymzwMXIh08NX7v/iI/ePORy2nEVI5857fmZz13jrTczd9MZm03gf9+8zN9aKm5ee5o3Nm/wT19LxDHwb/2557DR8HKYOKdA6LgoieQz764zl9MVf/knX2QeE69f7Hjp2pIfvQ5v3Cr80WtrvnFx8b7n7IfbDqmj31IKRgS7T9rTqmoINBqlTIUSYVACzrma1Z0zuWScVuRciDHRNA1Qx7ZGabzv6oPeqGp7yrEK71Rbu7W9Ra9GDu/FeXslg7EO23T4pqXrF4ho5n6EUlClIHPA5ApcaVxbA5GUQbQwTSPTsANdbWHWKMZhrz9QGqUGsp6qbSlntBGU8pS9g6FILXKehKnURCZB66baMU2lAoJF2QUFhfJthS0VQaWA9Q2ucZSUQCw6BpSZUaXatKTAbr0jigIchYwzFZbkmwHrW0x3jMdw0FgoLeFkyXbwWFMFPUmghJmzd+9ydHDM9MwWZyy58SjlAPMDwCalK/mtaiEqnlm7BkXB+5qkF0uNCJ7mgELo5xlUYZoSovZhIKXijnkiLEVQ6YNhFzttKfvwLFMiOUXCokVCxClhMgae6B944j+EP3FQPAnXqgIzoWZxlDJTkkaJorF9nUrJhCoNKgmpqWclZkhomuRILtCKQrRDbCRri81CbgRnmn0SmaCNpujKkoiS8bmpQlnX0tgGsQkdIPiMVwa1t/elIihiLa5TrFG4YUJUg02BbBus5Iqkdg58j5KEyT16npiUYFVhsj2uXTFuRpKJtLnCpWZJmGwwvn6okrHKkv0CFWeUarASsNpX+qjWFNlHu2oQo3HeU3QNJZJssEYT0sywvuDi8YaUZsKwJYnGFiEXx7Bbw7175AxtTmx3A7txWztRAr10OOmIuTBLpnGWRgI5OgIF56ExiuI0je55++E9trrwuYMVue3QpWA0XL9xwt2H99H7IKaiqmX4KgaUjqzTB7cyuBoGFk3LjK32VC90ViPJITozxMzJdcewG2jxPKUGUBCC46RLDBcP+OTtTCozJMG4gYW3hMHTNoadzsyD8KFj4Xpc8rFrlmu64w/fXbPynkuT2V1OlCisvOcqCL3VPHPUkI3wyWevcWJbfuWbZzzcDGxD4Zq3PKsj7aJhMWZ+6qQntpljZfl02/Pth4F5KyRjScER9AgsWCQhpkxOGR0Ns1J89GbL3bcD6mCglEqZVMbvg68KoU10URH1TBFD0bpGEktE5wpuipeFYmHcCWWRaXpDlpkjZZiyRorFRl0TRaUWzJOq7/xCQieDMxWt7YKjTx6jCp3TrEtBqUCcoZQJvayx8zpqtNGM54W3w0Q0I6Ur9NLyYDK8eHTE2eXMj71wned6z6++dY+H/WOO2w9x+WDNXdtx2C35/LMv8Ftvv8vywLEJGuLMnSPHvfWWNEWuJviRZ07pW8dRs2AcZr76YOLxGHjxFnhnWZrA525ZfuPu+z/2f7jLIIGzVUiYY01rwzlwFueqNS+GjDEaUyyxJFzraIyvnH8FKVUyXE03FNq+I4RALkJ34ybatcQyV+CJ9eSUGbfnaDPgugO01ZhpjaQZ1R5RlAPjQQTrOly7wjY9XhTdakmaJ+ZhqBvhlIGJOF5RUkDlWNcB2jKsr2qY0GxoGkcIM1qDdx3zbodxkGMmTAMihcVihdGaNCdc02D9E4CSQakZ75dgEsJYLV1SahytadFGo2wLvkWsg3GiOzaVV5AmRDKeJSEEKArrPM4F0m7m8cXAxToypUTMCY2m8Q7nLX7ZY5xndXrKyjcsb50QC2zGiZQzc5xJUpjuvcU7qnDz1k1uXX8K03iwsnceqPc+tLZ7fG+pkc5Nj5KMsYZOVTKkVj0hJDSKuasj5nGeUWXNdgrkIRFLYY77JDvqpKB8QFnySSzddkY5x+SXKMm0QKBFMaNN5jBbooKRhLxXDFQ+gQa0kuocAbRAVoLVhlZ7rKp0R+Nmsm6gTFgaliEymUyyDUYMk3N0xmI7B0VhpMOpHntQR9MBRSctkQmvoXUGjMXYlmIyYjw2RCTMoB00HScWplJFXblEjMpksSCRoiyNqhHhKVfaoZkKoxa8imin0FTYV5cnoq6rkCSKLgZmA/3hClUSQ4hIyfQJitOQatFkbIvyDVoi1vZVZJk3NUs+OxBLColWWzabS0y7QEkgW01rDyAqNut7hLGwK4I5bNCTZ5ci83aHNwZUQM2F8wf3cZ1jMLo2EShKyqwOVrTeIkljlo40BkKYOFwcg9PMYWJ58CGs8+ymBwzjhqspcb5+k/WDM27cvsWPfPJTiIn88r/7N/id3/wK/+Lr/xJB4bUh6zoBdaKY/uzTu9+7biwyKu/wMaK1ILpluxsxJhOjo3HCvF0TJghpzUaWoIRC4uZJ4t2HI53aoHPFZu/GRDQzK7vA6ivyqFg1mk516EUmaUXjdvzci8KcCl5r0p0A5ZChBEr0jGniD19/xOmB5Y9ecVxcXrBl4MR7lIus2paub3jutuFav+D+vYmPP3PK7796xuHugJ87ypSbkftXgaFEFodH/N4bV8xYFmYm6hYTWrLacP440t3QnI8GbzJl1jiboAg6Fo46xdUQMbSkZkJHB7ZmF3odQQeStWjRlMMKobt3Vim3HsU4gbJDTecOdX3ocqbjkKiFrISgCoezwwRHdjOzVTUVNztcyRSjcTKidCbsWnSp78ckmkZndqpOZU2yHOpDfDJ87e5b5CT8kwfn/JPvZs5V5lhaYnvJj7m7fC+veHhxl5PHI04yIUb+z69/Hy+KS1W41vUUl1j4FokdD+MG2+y4uHB8c3iHj/ZHfP38EpdbPvWc5+TWgr/avv85/qEFQcqlBtqI7HMMnlgKy37HyHsgohBCVVWXKspTBjAaydXXa7Sm7Xtc02FdVfqnIlQ5iHqPoCcUVHJIgRQmDB6mDaJntPFou6BOGar9zVgHWjBWY7wjpVitQlILgpILUWtySiBpDx5SRAHrLTkJ4ipWuaYtV+BRzvVjGiqMJIUrjIZFFnyKNKXBOofSfg9OAckCZLKuMZoo9x7mucYza5T2FDWifYsqAzlXyqGxBuscMeZ6Ay8ZyUKOkc1mZhsiV3uWcNcmvDcsxlJfQ4F2teLotKG1jsbWriyXaiObTcGEHZvLMxbdkqN4s9LeSvmBpMQnn7U2dc2j60MJBGNqVV6sQaTQOA0Y+tahVFXvFklModr3QiqIQC4Amg9KUxitqtYypXDekmMklZrzoE1BZ4vSM90Th4H6k09K1QJA77PPRcqebKtwxaCyVM2KE3Sq6YP6/ybuzZotve77vGfN77D3PlNP6AZAkKAIcABJSLLGSJYUqWy5bMty4jh2rJRyk1Ryl5Sv8hVS5c+QVCqVVOUipTiVSQoll5lIlKKBIkQCBBskgJ77THt6hzXmYm3C1gXpKl0Ep6pv+3Sf/Z691/r/f7/noe5tR2kQpUJ4BNSqnMiUuaAKyF6TncTkhiAlrnhyKrjFgVroGhoNIitMhFQCudE0JVO0put7KBHiniQFQQRUkSAqZEiiUEqSYkKoiJaarCRWZnxSmJCIMmBVx0TEuI40jRiZSVmDjwQXUYcjndOJSRSksehcbZyhRLSQNM7VNUQBVSSlaNJhiqFVYZonkJLkZ8YUqya9abGNI2wc8+45fpzJ04DwkRIic4goq2t2yM8kKRDjSHQ9wjS07ZJQRK1vast6iuTBE4dE1xlMs0Rkx/GR5sbdFxC2pz3vGXZ78oPHDMMFySgePnjO7U885WR1jCuCL7zxOX7vT79GIpNyrh6OXPBFYezHpz8epkzEMA0WbRKyCBqzICkocUbSIXWhbSay7sghMAVNYiD5wsnJTebnW2yXSdGwsgGKIKQAyrDqrpGc0qpIaiJdVtW5oSOYEbTF5IgsW5QeSblHSM8bLzrEZKtgKgjufzCyPOl498kVXTe+7HbUAAAgAElEQVSz23RsNuBy4vHao9LMLmSe+D2fbDRvvNFz9uCE8zxwrztGJM3/+b01rVqRpgHdSawpTKXnF1+E3/rjyKIXaFN4uvZYLTDOsC87JiPoBkcJliBmXKqUzOQ1NAlRJLEUdK56+8i/apOZviCDQaPwemDRaJbCcLVPICK5RPq5YdaRHKrtlSARJEpR+C5ig8CpY8boyW1Ez6DmRKcK6yKwIbB1O/S+5eSG59n5BndjybHTrB/t6ayuvyte8ktvnnJ1/S5P/A2kGxmYaWTDkpbTe5k7Tce/+O4jrKzvTYtcyOuRUCYWpuVqv2VFw0JZXj1aIIrm+eWenD3Lk+UPfM5++GJXlNoxNgalD5z+wwdViZKsCtrUfr42tvIJhAQBIaY6vpcSnQpKQ4gB1x/Rn9wl50AoGiENTbeiZKpYRjtcrw5q3rrDHy4fYWyDSBOyuYluT0BYim6QeoHWDd7nj7DEpQhyKszjAECc601fqEzftzRW0PQNMXlKsbR9S4gBIcCIutYYh4kw+9qxB67OLyAnVsOMMorVcU/bLQixQ2uNEDWopxuHlgaRAiUk0K6uP0r9ueSSKcaB6WGaUKwhjCQGnG0oqXAxecbdDj8MhCnyaDNyMWauxhpuO+oURmeOuzquMrMnrjeoEmkXS/qTU7Q1LJoWqyUxRnzKhMff4Sp7jo5O6BcnVV1dDEL8ZfeBkKpOhUpGmJaiVDXvmToiN7q2+q3XkKG1hpwK3dyQy4ZhEhAjU0rMOZMKxPzx3K4Wu4iQhpwS0W/J0uBEIOVAQw0QHh1uCTss25xIJBACWyRBciAVVjqkLAJdNI3J9EpgbK6Wv1mRtMHqiEoFnzPG1gaH1Y5GJHSWh5AsaNshpSZrj7EtOliEMTQJ9iXR+ZF5DGjpUGg47rHCkJzGSE2ME7KzaLEk58SSBtEbZDHMYUQIQVQaKQyFaqvTyiBFwhRNUgqEQQtD0/R1CiJlRYvLTIiFlKtrwLiWbCW3jCFJkCkSREHkALEwDiPWKdK8r/kJIrpZUHRGx5kZC3Ottu3yRPaZcbfnKq3x23Our66Yr56BslxsLlGAk5LtnBmHiSgyx1ZiFFxsR0K8PlgYJc1qxZxHcprJSXBycsLJ8QnLs1topZmDZj8PqGFCaMfRKnO5sCza2zzfnEMs/F+/+xaaHb/yy7+IO+v4x//oNwlzpCApJTCHGX99xQdPH3wszzCAmg1yeYUIx2Q50aoGP2dkiBjhCPESMQaEWuLVltaACJrTG8csb93jO3/+p6hc6IzBtIkQMqpEnA0oIZgPYVovMmVWZAakmpAeil1h54mBESUl2c+kNFOXWqLmhYpHKcHrr7b48Skvv14ojSXnkSWJYgNv3KushE9ezTwab3H7xVv8L7/12/z0z/0kv/iFv8b62SP+nS+f8ePffMiwfUiULfPec10aTo8zr7rMC29GvvYEwi7zGz9/l/e2z1iIliBvspCGt3ZXvPdOITY963lLSglJwm1brM3YKHiaPKYYXBcwc4tPAVUUgym4uEd4wTorNjFhG09JEisMc1PXjkIZRhXQUlfbZN7zBifcFC2PlxNReJqouEiCTR7ZCo0eCqMVmGlJJLBol1yES8p15CqN/Oc//zlOzzJ+t6FbZM7f/5Cn914gNKecP1zz3WHkJdFxdLrmq+8k3tLnnNxZcDmNvOrOWB4LVqGnt4oPZOSYxJunx7z94Uj/wimL3rDJlofrDa/3P1jb+W84EHCA2VBbBQKULJXzf6D3WWdIMVFKxhj7EUffdZZSqq0vK4FQ9fY+TRMLoUFKrGoRWIqoQawia9o+xQGExihHihPxUHMy80Thmmw6QKCEISlX09lSIqQkC3kIKtbeeEoFSqyVxhhIRhOAprVkUScJ+ZCQN1KihKg5ggPAVkhxIA5WWVOYU2V5+4hSHmkdQkhCmBEUpK4fHkJGpGwQqMOPWdS9VIoouwBkPSzkljrXDQit0UYfapqCcsAzlyRICXY5oYVAp4QpYMaCyhrfZEyMpHEiKUPopvrGLFuElqxcS4iRrd+QtueMu+uqnV0sD/XR+hj863XEIg6HO6XqG6OsIVChJLJItDKgwRpJQbFoGiQwNA0SQZgjOQS89xX7LD6eA0EWkiIyosQalDzUQ5WyGLnHF4lFMpOxpVTPBsDBZSAPkwFZav0UIciiIIWmKFllP3FG4CgCrBIkJKZxGBRSKETIZFUopqlhWuUozIgSmGdFE2eK7Ug5MokZVTRzOOCKpa4ehTlQ2mrpLCoTZ9DjjMxVSZ4FyKwpSqCMI0roTUNIiRICrqtSoygUWgOpNkKETBTXkONI0/XEkBBG4BRAYZwmVHWEITqNEYUya8yheuaJmEPgMqcZKy0TET1nhFJkNEZ5pO1RTaKfFFfjmhRGmGbisMWeOMRaonLCHAihUQkmHzAHqdboR0Rr0TqQg8SnWKVf0ZOkpdOKDR03Xvgky4VjuF5TjGLZHnH9fI0isU0TnVCcdC27OTKMDsHEZtiy0JnzRw95+ZXPcGQEj0NkHwQNDQsraV9c8onPfvZjeYYBdnpPGo+RcyKrllEJelHYioZOF7RvyCWAm2gmzRQkprOglrx6p3D/7TOO1QaVFZGIT3tMcCAbhJxY5GPGeSLJBSl6VNtCkBhjMfPIHDKx86RNwbk1S90wCYOLCmvrjl3hycqgXSIJhZoERXl8mUjRokRkyJr7TyTLFzv+5I++jl0lzh8+Y/ELAy9/7ifQ7oT26Jv88T//DvvxIUb0NMLz7EPL7ddfR7jn/OaP3kA3iQcfrPm8M0QdeX97zp3TBVoOvPhZiRSW+dpwcrPF49Al8q2nhfema76UV+zFzPfWialEVIm8cMvwcL9j3BnUAtgk0IEoFUoVrAGXMkkbshC0PkKsILs7Tc+LZxYG+JWbK0JRfPq1E4bNlvvrwu+fb/iyWvKN7SX3H0u0TlxtNjx+5rl7MxGS53/4+nuYJvCrr9/hx47vsXu+R8/f5m/8xBd4fKTYTA1v3Dzj3p2e/k++xwfPE999fsE+Kd6ZJ05nxUn/Miu5g33iU6fHvNYZooc/fP6E46khioKPhX/57o5f/wHP2Q89EGhd3eqlFEoMVYyi6968aQzKKLq+RQhJDhFEwbXVeid0DRAZ01JUBxQiAmkapgDd6gY5rGtrQbSVJidNRR3HBKXWr5QCa2sFjuhJ8aKeSk1XgyVa0rTHpJBQZovJ0LSBHAVbrhnnCR8qSna/HwFB5xRC7NAfTRMu6se/UkRtEEojlUJbSZjq7lyIavXbjyOyVPqhnwJFSILW5BAP43eDsQate0RZHv4ftccsSoAS6uEnC1CC4nqKripcGRNGKI5PT0kpYxbPsIPHqUqD80h8PmQjSmHj4cgnpMqE7Oh3A6FEFosadtmrgg8as+xpnaUlM2+esn18nxIjbddD06NEJUX+ZUOihKKIWdf2gUr1cGjqJEWXgtKFki1GCXJKWCvJFPpRI0qhnSdKDAyRmo/4GL6KT4jGVNBVrnkW7wuiSSg62n4gJY0ZCqs4EgVcJUERCkrGJk0QhSQrGKAtCqcVTmqsUZQoiUIziYgoMGQIsrCgZSLRBFFHTK6Od61uaBaKlDRSGtwcSdKTYsEIwaxqutq5Q6bGFnJsKSLgcgBfkFkhjCQFjQ8jbb8gKI/yBa0m3OoIKw22ZFzbEmTBzoVkBQsUUUrGaaRRLVIrWjQ0KzCFtqm/y8kI2rajZ8b7kUY6dHeC9B4vZ4pWuJDomoSfdsg5IM5OSXuP1R0oSfY7druEMgqjBZPXyOxplh1Xz3YoDB88umZMEbEv6M5w1klydrRM6EmwNxIlJbspMG88y5MGOe4pEkKvULrldHVKd3qLTzWKoHqm/RUpKuIwsF1PrJYdF9cDD548oLtxhJsiSSiOuo5xyjRlhJT4k3fu8/Vvvsvf/ju/yl3V8PRix5y2DEWznTLOTx/LMww1X73eXSNLg5drGr9Edx6HZTIdPu2Q2bIZHY7M1fo+L8mX2E2XnH7iv2Da/jMuLbSqYw4bQlQkMaOGwFwcF1ngs8fKDVErjn1PkzNCDiSxYyKjp56xjOTdgq309Kpj7xLjZouSCx4+WeDzwN3bHRfniYv9hGsVr9w94fjI0BTJf/N/POHirYd84rNv88LRkn/ya3+bT//km6A0FxffYrgWaLngF/7hb+J3H0DumfcTN1++TYiCv6Yt/+N//d9x55OnrIVkuniAtWtuNj0lnXGrmfmRM4jzPfzZU1q5YRYOJQqffHGizyvwkSQnnDFYGnI44tluzaJZ4GUHMeKzRKhEzILnY+LBumaDnsYt+8ERhGQ7G+YceZQ9F+8/owjL/7rxLJPil03m9ZM7XM/P+bFmycU2kUbJf/IzLVNa8M4uIKNiGJ9xbAtffzBwvGr5r959wnXzHv/QH3E8vM0/e/ASWo24HHjn3oZXPmyZguNMWN740U/gZ8P//f4TQpr57UePyTZhpefd85n/ze5Z2IYzu+DDxxteO2q4cyzo1OIHPmf/RjCRPNySOPAGKva28uxJhXkOaKUO7P9MEXXULHNNZ0tZ5TzWNSihkabFOgdSVQ9AqXvYIgQ571Gy7ixzShQZyBSMpHIQZCakRPZ7RG2IIXL5iI1Qu011zydkRmlZpxpK45xhs7kghEAQBT1B0VXelLzFNYY5ZsQ0orVFqMpQSCJWA51pDm2Huf7/hAap8XMgRI+QYF1Dzp6UDul6ARSFSBm0o4RcmfUIiiq1xVAKQjowDco2lFxwXU+/9LTLHr0NSDmgpSDlVNW1oQbcsiwoX9h7QecKJSVySMgYUCWhS6bESPQTkYRte2wuzJun+KZnnl5CK0O2VYP7fTviv/YEHA4JiizkAf2qQWWkqmQ/ZRRWCIwPQKFzBlEyXWuQIrO3GorAi48H+5oPH+QFhYyBsWQcjryLmFYhfcueEZ0LSkjaAtckav9QkWVCFlnXJwWCENWq1xiyUhQDXbaEPFYCn1N0ekmUAeVBOhBF0ZkO4yp7I0aHjDNzDlgnEUET6kIC1y1JIRNzqRMpAUZFTFLM44Be2IoyNkusaohSABGRJNJKVKoOBl0iRasKwDKKKAouRUJJFJkreVAqRJaMjEgaTuyKrAti8uyFP9hJQWcHBHTxeJnIhyaKlLLKW0rHbOeK+nWKQCWcRt2yOhEMmzU7mbGLFX6XMCHTKEEYJ7qcWLQTF9s9m/1zGl8oAkyXMVIR19WMWIyCnJnnQNcdMw1bbCrcPj5jcXJMMYYUNOx2eJ9JU8ALiZVg7IKTG4rnjx+xffYMeXTKEK6Zg0GLQoqOmQE9eJywPPzgfV751D2enhdaNDkrGmWZ+HhYGgCNUhQETSNoxAnK7qpPRGXazjNtNYERGSL7aHnx3uvs11cooXl68SGrDvYH02wKp6QyE9OO3rRMqTCVLc5Ylt0CS+Z63jCrBr/PjH7GCkfXTUz7hA+qsmHsxNsfwjv397TtxP/zZ4/w2wc0zpNKxy5OiAnazrHoLZ/45F2unm9YdTuk+iRf/qk3+OSPvcb12lP257z31gfcfPEuL7/5Etv1OV/5rT/gxU/f4af+5t9FTNfs5g1Xjx7zwqde5ed+9jMM84rvvfsO3/jaV9j5C549i2iz5vbZMc4VjFbsc0ZKRZxGUhBswoiyV5TUgpgI6QrZLlk1mVkNtMohG0UjBEk4lhTuHil+8kwxSUkZl0y0bMc9+1gYk6MkyWMS4wxDKswbyZNHVwwXkZNTzdlZw2+/s6FpE5t9pllo9HbPP/nCHV5+8YiTleN/+tpD/vzxlgdTZCUN0T6HnUD3gd569hvL7317S693HK8y95Yn/PZX10gLn7t3hs49fnvFdhTkFZwdFf7TNz/P/YeR71ycc2+p+dF7RzzPgaX6K7YMlJCHcXomjQUpMrNP9WaUI4mZcRzRWrE6OkJpwzQXjDFooZlmyCIiVGYcI8vTe5juqK4ickC6JSWNlLBHSkNOM6EkOECOlKxwmJSGWmF0J2gpIY8UX0C3lZueE/KQCUveE3Og5Ii1GmcE6+trxoO1MA6eKWV8iBilKcw0XaQ/6utD7gpCJMI8YY0j+kgqkeXxEmVlFRX5cOi/1rqkLpacNH4KwIhzCSMN2Y9YdYNkTxBzZh6uaZbHkORHemWhHEUksMcI0WDcjjYXinTc++QOZRseXozsy4DeSXzKjHO1PBYrUSJzNQaKLBz1E33JNOsrUgmcrVqMcZRciYLGeqwypOun7MYNzeqUnO6hTAUWfX8y8FHzQEpEqdApoTUpVZAOJVWGPQqsRstEbjWzKuSs0QpizoxWEVNkNwbixwR10SJW62bJZGFYacUoCjomGAUqKZZGEEthpRwmRh7JGhTKBGSx1KNPhXY3BZzWEDwmGFQUBDWQTAEMqjTMccRkTZGaCYERkkmOxEnSdxoZ9yRp0K6pSGsCuulwjcO1XfUnzANJCOSlxxsBJiBlh4qpmhSjpOhIcQlvVug8Ms2RohRlc42UmoVtCSagiyQUzTRN9UATHalUUp8omkYuEKWwn7fo0tO0C5YcpoJCg/LIEMnasZAOd+MEnwtimPEx0HVHdEJSwo44bSsCHImPI/uY6hjZQ5p2aGvZTVfs1jsuL56hVkeME2ynp8yT4MnsMSpy1kqWTuEWhl1KzBuIaHywFOmx1tR/87gjWMeJ7Mh5IuaEyJlcAkZpjGkJRaB1w41bR8jrzPPLKxrbIowmlBmftyyMYPaR4DR/9uff4vzJBa9++cd47+E5Piiyjsjp43MZTGOiUTtybsjpim3oaOXMGAs3RWA7ztghoW4kjnrNmBJBBK7HK+5/4zkbn1kpwWIZGP0eubJYXmWa3sLYRBePCaawS4I5zuyv54pRTyuGonBlg3NnWBuJNqICPJk0f/BHbzOgiJeXrLqB6yAIs2VOGwqS5cmCl45XbM8v+OBb7/FLv/gmv/ZrP8ebP/4zCNPy7P3v8uj+fW588jaffuNH8Dnz3p//KSls+Nm/+SZf/d//Xz79vT/GixMUmWG/49G7f8KfiJFX7jju3j5l/aWf58UXTvjEpz/Pxeaa3/mf/zn95WNme4J+8QUu7z8lTiOfubNhx8zxfBMYuEoJXzJ6F4gETLnJJTULobIAsWenJ0SGWSXKLOmcIESD62aObcPdhccFxWtKAoE5GZK0yLRGMrApEdaJ3/jMLYKO7PKaP3x6wrv3R37nvQc8u36AXo4c+2PEwlLYIzo4Lh9wfnZGYSLuQOvMyY1qGd4ly3eut9w5s5gIDzdrUILOao6PBX4P+03h9955hKXn1TtHLI3hcrPh3qnkVv+D34t/6IEgp0Smwk6irzdvrSXWKY6kQCpVP7xDYr/fY51jeXRUR8uy7jal7esBouhaTZKGOc6UNNFIRcmJnGck1NtyEcQ4UXIk5FADTTlVZ0ApddxeEhDrYeX7kwhRXfFCVr2yUPrgWNA1OJ5qDsDXfBUlepJKSCVhAtNolDJMuz2kFqklIWYSCakErnEIlcA0uMbVbv3h7y+lYpDzodefSyKmA1MgWYgJn54hi4CUgPIR878oAUVRSwkOREa7DhMTq+Mj4jxzctRwOQScCkyxqpplqaTiIGAIGTkELjczMWQaI8kp0x2dQKdo7KICkbIgiYKSGTHvGdfPMW5JOjpGCIVSddf/lwKGAEJWhsKBSS9LFf0IWZBKIIrEKk0xBaPrhKRrKpK5sYacMnvz8dyuYgp0pmFCUkQgioItjiwyQc4oBcg65biYPUkpVKoSo6qhysSaBiVL0FLiRAFRiIdsgRItuiSyCIhsaoAPiRCBTrVIIzAYIKGMRMlD60BGRONQGoxtUTITfKAoxZir0lhoX5XhVIMoShBRSCXQRAQaLethR5s6EXFakrPAB19bP0mgiyEWUBK0KKAalF6iVIYSK257yigtCFP1kAhZcxSV+QH90QqCrpMhJRFdxoRCitRDg14QU6HowjjP2P4YFyPb7SU5BxrTk5XBlhZhBK0xXFw+ZzNck71AxFT9B0XTCEXyoJ3A7AudMqzjgM8J4etzbLViHj299sQuY1RLVnusXSAptEkQRaFM+3ozVi1LM/M8RXb7PXK5wEiDlo7dFClFYqYJrzuunz7i5uJnMS/f5GvfekATHaP8mKoywPsPnnHrhRVxLNw4NVxcQ1YCP8zs9ARjixEKLW/Qd5Fnl1VkpWn59qOvsdl59ELSmWNmCV3xqGZk2N2kNYakPSKCn65pm4LqM6n06GRZ77bcPT2jiBmhjmnElqwV9z94zq2bHc8v1jxyA5vrK5wWRBFAJpw448ZRy7Pzc0aROesk/+Df/3Ve//xnKMaxvTpne37JzVde4Bt/9C5f+skfx1n4xh/8Dq4xnKwaPvzOtwj7z6FXxwy7kSICJ0vFa5//DF//ylfpFu/y4hv/NudPz7n32YnVaslP/Y1f4N2vfpP7Tx4x/emf8uaXfpxxs2C33nKRNKaZMHqmswucUGQHrZcM6hI79Qxih0gBRI9IiZwkUVucLszJksrIvD+mABdTQkVB0hYrFULNaNmicos1hqURiMaS2j2GxG0HN3rNLy72rG3H81Gz9wKuBZsm8eyZYK0LR+NTvitukYPmKkfmUOiVIzYBUQKlwDYk+iTJnSDFhB8FV17QyMBcIm+/H+ncyLf3sGwlf/+1F7hx7NjvfvDB9ofLjXKutaVSatVKSaysp6d5SMQ0Ym3dmRdZca6IPU1TswdSS0QpZLVEaIHPIyZKkB2TnyjlHNd1UAx+npBSEtNISRBD4uryfRarM4xbkGOCdI2wFmkWlAyy1O8TRF1ZaKMxjcUP42EHXP7VHyBTKCXjQ6nhKa3IOdI2Aqk9yEBKdQ0gdIO2FiUE1vX1FCEly36JUgbvd2itqsJYZlzbV2hQswQiPmRSSaSL72GMYhY9q6ObsF9T4gR5AKkRdlmrfcqB1KAMenWLzvTcmGdc2/H6esL1z3m8f8ijzcyDbSIlmOZEkpmUBZsAMSZ6q7jeTHSNYr+bOb51wss/8iPopj/AeMFJgQG2D/6CkiZWqyNKX9/4a5DUfKRLFlJDTmShQB3IixRQARJIpcklYRoDQbAs4HSEMmBFrXs6o4nx47ldKd2TUqA4WGRNjpnQGcyskHpmjHWt0lBYmszgE8cKdlQXRgUrZYTItYooE6oICharJM6uUHnCGYlXCl0y2ViK0lilyDphxKJ+mNsFKUVKlhi7xPaGxnUkE0hzOABxEj6CCwJfIk4cw9KyVA1Jelj0iJxxFKTSGCnJMpF2EeMkVknoV4gI5ECJhTTvSEKAa9ApIKRCW4dt6hSIkClSIrUhbxKhjRVfbS0+Zo4WLdackotCSkEOHikUGEerOsDjk8baU2xjmGdwzZ79dmRKI6vjm2zOL5nzRLy85uryiifP1wTv2Qw72Hmy90RZOO0WbHwCKxFY9mGHdYU0BqwUjKEwlpmj3lFEIeaBTbSYuGCO9Wcoc4JUCFqgBcxxYO8LWQSisTStYfKFYbenXxh61zHjicEjBYxh4rzp+PY33+K1L36B1158gW99+zvs/pLZ5f/fL6kzTYHJZEYc1oyElFhoS9Nq7irDk/cec7RUPNhssWZBiJYwTchLz+mp4OK8cHIE0/6apTlF6ExOA1Ib5u2AET0hTdzqj3g+JlqjkdbwUtOQiaQMTl4y7EC5zHAlePJww/uXjxn2E6I4dioigmCxOiOnHR8+eIbRx/xn//Hf4j/6zd+kOzpm3Abmyyta2+GOF0ybDT/zKz/NxYff5rvfeciHTyLLZeLWK6/x8796h8urDWfNgCAwebh6es60veDlH32T3/3KH/Al9bscf+pzfOW//e/57JufYXnzHq+89iLPn32L3397Tb/4F3z6Ez/FO9/VvHa64Wo0pDCghcQtHTLsMNYw7CxN85xG3cW4HVIGYpYUkQiDIBWNtwPSOPoS8FrQpEjpNCWvkdEhtUSKESE1yZ+zGVtS2jCmDqX3TOYe4/PbiP3baCPpc+Aszdijh3RqiXp1wrQL0rc3/K1PfZ6/b59TtCWWiI4LkvTsy4QMC65zZi6aIxN4YXWHrzz/kMtLzSgEsy9YZjYb2CB59KHln771LT51tuALZ4lf+AGpwh/eMkgFlQU5ZqYSyVpVRnXJWFevqPOU0CYSc6FpG0oa8ONECB1SzwjrMNOENB1FRGLZsTx9CdPMTOuHICLO9fgSkKVBCUdW9ftSLPM8os0SH0dUVogkEabKhkryddV7UDSXEik5kXKst5sSISfEAZFTUj5Y7SpNL8VIyQU1C/wU6l44CbzPWC2RyiCoq4EQAhqBkFX53LSVkhj9iFYOaR3SWJQS5CSQwiAEhHlPiA3d8e2a1E8V6pJCRhCRZUAaW2/eWVFkdQooIWj6FSlmjo9X3Np5Xji6YkqCp/uBkgsBUV+PkBFFsKWidZ3MzLHQPN8y+sjJjRtwppDWgBSVOKkENiTy9oLZjyjXkHNXWf2q8hO+PyEoHzUvFFkqZKkq5SL4SHktpUArgVGCogXWVC1y4+rO2+mPB12spUagcbGQlWKUHoI/sBYKuUislEwUmqwIulSqoTRVeRxjfbaEQBeJFhppDEtXmzOBDSo5CoacIelK1FRao4yplk9VEHEkK8hZoHtTzZyl9vdzVIhS8JnDBMYQtUcVS1IDOsCsNbIxdNExyw0IjdAgUkQIg1UJoRRJSax0SJMxpcPnLbFZIKOka3pKmlC6ISqDlhKpFRFqnYqEbGyd+hxee1lq0yQJWeViIiBDRfuKXEgE+naBH7cg5zq1c5r5KpOlxrULvJ9pFyti2jKKPRFoW40tDWMp4DTagU+Kq+1AEIrNZKrEKUSUbenJxCIYwp6lrURQpTWEQNrPhGbHXkpsqKCorlvU/IwyTLGgSYR9YaQyGYwRTHnH7ANHxy3aOK73kZQStiRy3PP+o6e8/MqrvHy25Hk9108AACAASURBVHqx4lsP1x/LMwxwtDxlnDI5JZrTlmyh0YL2ZMH1g0ds55kwB+7evcG7396TiiSSqlCqc0xbz9X1jL+VwNTXbZoHFu0KmQIhdXhhccowB0XfadrFDZ5dXLKQHbqMlAb8bHF9ZNWM9GeJy/uBeR4xrifnK0ToETKT5g2bfWThDEeLzD/+R/+gviYhk+aBYjRXuzW7x4+4+7nPs332hAffeYsPvrfn3itnfP7LP4bVFqE9frthygPeQ9wFnl0O7Lc7FqcrXvnspwnrD1mfX/PwckS+/QFfWp5y89ZNhnTO0cnE1YcF+0WNFI7n1x1aZWKZwfXkYcdy2ZKlwpqpUjuLRzQNooAuO5SqK1EZE7IU9kPAuYgskavQI/zAwrT4QRLnHcEbiqytuySWSFHo3QoVC+roLmkHnTgmZRjyfAjtNwxpIAgNoWORe3Y7UXNwUtbLdrysdejOYGPkVI0oFSnJshsf89NHAnfisAvDGD3rfSYKKqxszGxRSD0wjX/FCUH0npjSYexYk64JoBSMnzBa0rj6wTeNnv1+ous7jFXs54hzHSE+w5cPWSzPuPfyZ2naFVebh/TNAmt6wriuqFVt2G0fo4SiaXtQGdcviDEQwkQKiWnc4kpBypr4l9aRsqREQcmC6AMxBJSx2CywTcs8zFAySmqSUPhUbxAhZnJJSK3xPrBdR7RvKLHWKo+aJSqDyBFtLcY4nHVopZFK0i1XKKUJpUNLXZkLuh4gch6IaSaHii/e7DfcFo+YdgWDBSHw8whCYcxcP1TN9QHiZNDdMUJa9PIGne649fKA7lveHGduPF6zj4knu8j5PkCBnASlgCiJISUi0BnJEEdW24gQb3P3pdu8+vkvoE1fJY0SllYyjzvGi4dIIWgO2umcq7inrmBUzWqKOl0oylIoKDV+FC4VElASIzTkUqFHKaNlIGYwUjD5jydDIKRGi+oxSDrSWENIEZMk3kcWKUDXYkohkcjC4MRMSYlZSWZRKKKgRMYJQac1WiqEbMiiNgJyq1FS0QlBjoe0q/TEAl3TQpb4JtKNEtmA0l2tcxbHIEINNGaFsoZeSgKJkpdoGWjcEiMsUnk6s6Q0mVN9G7VQ2JQRQuJlIZ8skPuJYhus0SjbkgFnNbnAmAM4hS1LphJpFwuSlwQUzhhIEKMn4ulNg7GOnCWm1UxTQbtADDNp9rTt6vCce7RQxCxw7ar6MGSkETCoBltm9mGiyIJqNTKumOYrIHLx6Jwwj2zHkdYInFQYFXCrBfOcuB5nhEqsGosWMHYtxzEgncTkwjALlK8KZZ1GHj1+SlKZhejRrqM1kSwLKWzYx4iYYbvfE9KMINMbgyod+3HLlDXaFJxUSJvQvkO2iRRmvvfeN3n9zZ/hJ/765/k58fEcagGsfsKyO+PJI0/ZZGyz5P6za150PakZEGPH0XLJd7/5Ht2xwccdZMd1OEefJ9zS0bWCtp/J3pASWL/jzt1THr7/iKY7Q/s9emFR80MSBuc6biy2OGHYbyRmHhmSRkyaq9xx+egBUxirqG2pKXNL2yvsKNmJSOcs/+U//Q/5u7/+92gXR4zrc1CWebombZ6wPL2Dv3WP7/7Zv2S6Dtz73C/zxX/rDCk1l+sP2A5beqV5/uQZR1GSF0f0J9AuHGn2iEaxdBPfefs+n/lyw5d/9LN8/Zvfgz/4Q17/8pdZLD6Bbv+CP/r9v+DP3nqPT//kL/HV+5f8xpdvMucGq3fYUoj7QEZV8JYC1QyUkOvz3bX4uVYqk4FVazjuCtt9gVgQcWJKis04olSDzS2ykSzFgDGFuZyjZKSIHu8EY1T05evEPDNnhU6aLI/IZY+MPT4HtitNkh3TToHbY2RA0EC+BmGZvERoSZcjpSxJ+YqFU6AC01x181YkdF6gSHXVFSrkS8nCir8ihyC7FTHVU3oZNgggKU3JmeQKKIUKkZgi7aJFGsU8B1KBzhryQXRiREeMsN2vCdR95y5Elq5iW4f9mn6xRCpLSZE4B6S2dU+JJccJLTtK3pL9SDEWgcT7AXAorWtaPuUDKbHS9oqqI3gpBbUQR20jSEGMB5pgNRaTskAmapWQTDvPGGertbGAVDWolLKiJKpSV2l0MfWmrwwpS+YY8PsRpQoCwXbYkVIiTA1aO+ZSoTjz7JHasJ+Akmi0YHW0QiqD0ha0QzY9tum4PQ40WrO5t0YKwb0na3yGzRyJqRBKQWVJjJUKGXMFywRlGHzhaj1i7SUvvTrQtC1SVaypUpJGQB63xHFLSqG+prlURN/h6/shw1yqrKhkfUBTH/IGEkjVFCiVQBeB0ZWEaDSULGnsx5QhyAlpM0ontnOkxTFphQZU0+JDok2SSdVwKMw0UlVNbE6YIghCopOojA0p63OTEuYAKkqpdrt1aUBDcRKnlyipKSYTUyQNmkknnHKUECsXoYxYXDVqioyNgLZIITmzhpALrm0RoaBcQzSBo/YYqyxZq9rukYVOZkpumNyuaq5th3OKcc6YbkGMM0e0B+KaRoYJFSshQ2RB6iRlrGbLIhW667DWMexniuAAqQqIw+RrnkeUtChdiCKhVIUxBWFwrmGcR3RjmILiRCt89kxhhCxpXMPlo4n1sONyd02zn1iLiU8dWVLpyD7RW8t2CISQGYTghgXSDAhCKMxFEA60zE5WTHZEk/PMJDVWQ1IrpAgkUXCqI8UB7Qo2azq3IItMZiCUnnGaONUKmQxZCbT0yKgQVnK5XVddtjA0fHyhwrPFLZ6u9zx7tuH2vRuEMnJ70XHSeWT3Im89/oBj3eNDxLmWEIf6+5wMV8NDjvIpWu7peYW9SYQ4sbjdMewsZnHMOFD5J1oyrTtu3kzkWaGmxDpMJNkgMCycJ2kYaPjw/UuG8WmdFMZEIdJrydN5pDcNd+4c8e/9B/8url0RwogQkGKg1wb1woskc8L2G3/Ey699EXvjmOgLcvI8ffiYJCDNaz744JrV8QrZLCAmhjgx7zxDTPRbwWp5m2dx4u6YieUZn3jlBeT6IVePn/D6Z7/IejdycvsJaf2M3fNHLEPD8zRxoufqHWha2mRIZscyrgjMGDT7XBDecNQaWpMptmMuu5odE4WuERQSfSdJYmI3KWQJbK8Lu/kI7A7tGxwVzhd7iYmFTIvJ18TUUkyHy0/QtGjtSTKilOFUZBa9RpxmTGnQqRDFwH7oiFlhxEDxnmu/RLFndWoIxbLx1yjZIedTvEoIHcmiEHJBmhYxR6zNrNMPzsL80APB9vyK2QdiLkzaoK2jVYoy7pg3np309J2h0bLebKXEmIooJRmMWoBruHF0gjSKbnFc6Wimw7YtYXxaP8RLYrfb0LXqADDKMA21Wpgq7KeO/xvGeQadKTKTxQ5tJdo0KOtJGYL3pJhIfiTHiFQC2/cEn1E2oRKMc0AKSZISpyRRUAOEIeBDRCnJ5eUO0x4hHYSc/z/i3iTWsu2+z/tWu5vT3a7ureb17/HxkRR7UaTp0KZE2bEFy4YhCzKSQQwnQAYZOAGSQWY0MgjgiRF4FCRBkFEQxFEcRoJsUVEDCRTFThQpvkfytVWvqm7d9nT77Ga1GexLJQhCxhCsvD0poC6qLs49++6z1vr/ft9HPwSMiZS5JufxRMKHiKkX5Ozo20jbXnJxekEShlIlrBGEKFks9un6zM6twWdC8Fyut5zcOubgzj1STihtCFki+4TIa4SxUO+RlWZ6codiUuH8wOxgytV6R/VgxVU7sOqBJIhAl8H5jFUjcMnowDBE1AqGYcmt+w94mkhdz5B6zH1Ikcm7C6ItSPt3kAiS0kg0WY6LGiHHTv6I7FGAIcdy/LfRj0drSo3jFz3OmcukRk1wLOmlZ5j+eAf3X+RV6UzbOzSKybRg8JHK1chKM50phqurccyiJFEaTNLsdgNGGTYxIvOYH4hy/BlrLSmsRlAQZEbFSJG3ZHOINCDT6MBo8g5EgfEGmRxFXZGVRiuFD4JiVkOSCFug8CNqVkTsJIw8eeExdUVhBHpaMyRHUZZEaVkLQeUhDjuQFnTCFJFiOkfkjKRAZ4FVjpQTJ5NDNmGDnOzjdz2qqqmUwBdm1Np6QdQlps4U9T4qGfrdMAKMkhz9GiiENSg9kENCq4GEJqRE8o4iF/jUjWx5Y9FxYG4y11cDKmSKsqYVnhzHBXGXPVIbliGSk+K6l+PpQgq0u4yxihASTTcwE5oDO6OJEVE2iJ3Dp4hxmkZlVFR41TERFbqomFaW3nWINNAP/Ygmz5LDxR57i9vMFgv80LM8f8QuJt46O+fB1Zaj2RQtBJGENZJKatbrPI4o0HTivUMXG2W4c3jA8yc1FytDShuefaamub5iMptRpYioxnR73O1YTJ/jendFUlNW3SPunbyPspd06hHOHaLMjjKULG4tePLNH/Lcc0+zWl1TO0M3gcntO3SrTCvrceE0dBjRMbdz7Czy2qMVQgtiq0nCE4MjCcmT9QZlE//Zf/rL/PKv/BIKQfZihKZlQV1OaPo11/evWJ79Ji9+5gsMbk57seaNd96izAafl0yKwJf++Vf5lX/w99i/NcU1A9erxPr8nCBgNp+SjON4/y5vnjoOZq/Tx1tk+ZjJ7ADKa47vzfn0X/4EX/qNP+Tddxv+g0+9w2+9k/mTN55luTXcfqnmI0eKwg5kpjROIKzHbXcQFcoY3n73bY7m+7iYCb4nLzJWC7TZYMqSto8wKFRI+LjjYM9Sp0uyNOMWVAhcrtDqEqF7olQYUWAmGpsMIVWYFMAJlBDk7CjVOdVsTnYOdEHnBpw4RqlrpnXGtQMpQrnoCMHQrTymbijTlITExXOSl/RRIW5svFF2uOTIzhH8j38W/8QFQesjQmpUStA2DM2OcHiXavYcxeZthHQIPaPQEqslpijJyY9VKtfR94m94ggXBiaTPTIJY0qSTBhbIPUxm+tTtLbE4BCyJiWH/NEMO48/IBiNUTkllLSEGBFJkkRPMgVCTtDKjmjWm7l6TBJlDFobbGHH/0cLXIqj9MOM/gGhBEpCjOP3EMIQc0TokcUWQxxFTmLsdCc0OUuSGGdSxDQi5X1HCp6YR0Jj7xPr1UAx0eRmS+88pbG0zuNC5vjuU5TFhMgcW1ak2ODjaA6MvUNFh9EWocewoS5L5nv7hBA5vrVgtfVMTjf0PrIMniwFUkgMiSEFlFC0PlIpybYPiJy4Ol8zmZSc3H0Rkkao8VhMuC25WxF9j7IFKVfIG/UvN74KISRSqJHWJxVRGkQK5Bv2w4+yBj/KG4wnHXlM1SdJoYt/g4/Hf/1rNbQcHJzQdjtmg8KoQBfXyL7AmSn21jHh4oJAohgUXS3xKdAwjsdkVkQCNQalDJobtHWMqBRJZWZqZkgpiCGjCoXKApENSmRy9kSrSaUd3/8cQI4Vt2mEVDQE12Gm+wQcqXXISiPKCbLQ9NYwyQ6d9ZgXiJnKt7hsgYjyHSpDyDc6bwkh9fTC3tRxFReiQaDQsUOSUXqsWRaioFCGYBPGSyozmkSdkUghR40yMK0qyJqsPEpYosqo6Ek5I9Gk4Bgk4DPJCGIOaGGJKXE4PyQVkubsIbWQdE3Hdr2hZsp6+4T1eoNRmS4ZWiN44VaJjIpZTFBOuWh2o63RJmzMyK0bHQYBfAHTrJHWkShIGtCJ1TCgNo6cM3oiWMxP6Ncthanp+shk5siupx8cUmluFZKGAqk8g5MUckLeBdbCo6IfgVJWs9m078k9DLC63HF0d441xzT9I3S0PDnbsJiOx8d7r+wjLj2rhxlZlKTtEptmZLHF9olsJzhxjbELlNBcbM946inNdj1wPNMos6Sc7pP6JSJbjg7u8t23X8WoDUpOyFWiX2kkAeUs21jz9qMzgu7ROdDngsm8xDhF7nv+nb//9xDWIKWk356DjEznBc2mw3ctzfIRe/N9vv1bX2e9G1jsTekGx1XacVTXnD445z/8R/8eUs7o3Zar1ZrHD55gC01V2pEWS0dSc/7W3/l53v7eq7z88WO+953vcudgn8vlhtlhJGbFL37up/nfuwG/87x0S/P9777BYnKbP9o95A014x/87D55GAhRgtO4SWY7DJRJMSuP6D1UkwKlMxerFVoZ9m/fZWo0ZX+OrQs6WlLM9A0I0aOiYMgeLcZMThoaPIqYztjudui6Yut3TIVBREcw4yZVKcUsRi56TxrWyFoTpMAPHaGf0fhLdChY1JnQLsmpZHCObOYEMoWRN6A5Q5I7nBwQXuCTwKgd0WsG8//kzfxf109cEPSDJ4U04lCVoTBQdReo9gIzmUBxwJ7ckXH43o6hJGvIaiQR1pOCfnPB/vHzkBSTyYKQeqrJIUVhEargoLA0q0tsNUOrgiQ8EkmQDt9tELqgdxvGppfEFOOLyXEMbpESyiSEGH0Kpihpmyu865FKUNYFXTOy1tMgkDFTlhVKZTqfyHpM01stiT5gFwXB+bGNEDxp1yByRVEofErofQlK4n1Cq0C7O0fEzLZZ0+wCYnKM7zrOn5yyvFoSYmKxN8PLcVHx4fd/FCsS14Phweqa+WZgXlco0VIUBVYKKqNQQVGkNdKYEeAkLfOjOxT1jI/sehaTmneuG948b2h9JGVoY0ILQRHFiJuOYz1R5UCO8OTdc2K/4+T2CYtbdyj0YsxeNFt829BUE6pbzzM1FcGO4CSp5YgyZpRZ3QQKyLomIlGmu2lNeAQJoSSQ0FoihWGSE0bJ96xlkFXAbzfUlaaTHYWu0DtDDA5pPGLVI/YPoW2h6FFeMbUam8ZGSlYjgRAZ0cLgRE/tNHqukSGT0iFNv6PSEI3FdBmhBIkeIQRVPVoxu23HVTqjGGr0VKPDlPbggNonZFWNyX0psSrSpw6tFhAjuuvxZUVRjnju3sdxRJYyZbFHTi2dEFQxEHYtFAWlMAw6Maum+CxQoScJ0MO4yJmYkqArQhrQeAo9o3UrqnKBI5OaFjBM9k+w2rBbn2ISaCWJUqDKCYqCIiawJcFHfHJkOcqN3NCPcq3SYnuBjwKhKs6bS5RJHB1NuD5/h8NSMEwKiANPUqSOgoeXDqF23N0rcX2HMIa18GMduY8c1BVX/SiCskIyyMAUQ9IJEzy7boOtJkyne6OAaiaoo2Nxe592vSMUa84ebxgCJCnIySOnFSEO9E4zNRmTBSHFEe2sLFprpDYY8961DFy1z/0nlwgcot1wcOeIJBTbqzXXVx7vHCf7mreagN/ruDc5oAmPuL33Pob+ChO/y3Izp90FRMq0XY9ePcNX3/kOz906YvugJ5b3qe0xg7/m9e/+gCo7ur5EWk1Z3KZr36Q4UEyqe9TDGlXWDMMa7Qum8wK3bjE68M/+6X9CijUlinazwppEinD5vdd4uOlJynDwzE9RlJZbM8c9K7FW8uaffpN3vvY24Z7EphoRe9Z9R9PB4HuqqeQPf/dP+IW//W/x6Nxx/sOvsz9/iY//9Ic4OXmBB3/6x0wmC+bTA/ZOjmkv38Iu9nj2E8/zNzT8s//mf0Blz+c+9RI/vP86zc6wHB7z/cu/zjN7A53fjLX1rDia7xOlIKdIiAHXXlOZmqvVFYunP0l3vSQ2Nfv7txlIzKrn0KUn1h63N2OePKiG1fWOwQc2q0zafz/73Yqqygx2jzvqEbSZYAxxkLTjJJJEgylrzGFB0dQksWNbS4qZYlodMvhIEzxR7eOGQD2dslt2KDPQkmi9xbIj2wIRDaukUGlAVpZBwWT48ffZT1wQZDFqH8mZEsmY1xZIJdF5ILnAsHfARINyO2JISDP2krO1UBiqsqIfNqhC4H1gMjsk5YR3a2wxQykojPkzbDF5rD8pFF27RgiFljXOt+McOmWMNvjgkVIRBwdiA2EEkRTaknMcvffDgIiM1sN0YzrMkAuNiQNeAnok6ZXW0McISEJIKCXxXYsxmiwUylhi6Md8glAgFCF6us5DiuOphCopCkVMhnIxQwcHg8LbKctdx/MndzhbntEGhxWauqoopjXSGoycsX94jBIJdcPMV2b00CupRt9DMaVAsDg64qjruXs4Yd0O3F8NxCAYp3iZPoxsBnuTFNdaIpJgtXOYQnF99gRrC6ydjAG4BDlGdmevk4Wkmt9CyRlZ2Zsqwc0NcZMZyBmQmiwNWVqEDCD8j6TBN+2DEeUjVUBFsO9Ry2CfkugiqIjSJSoJygq6JJE50y802sVxkRdGtXEFhJSxJDwCKcbev5ERJQu6GKn9gJQlyrZIAuQZwmeS9mM4sQtkoWjWnqQTbdQgeo6qEdYU0gFFTgzOo1KBqSukAl9KtCzp/JpCGHzOTHwg6YxKAS3FzYmAJ0aHEBYrAynpERmOHj/UQ8LXieQVpaoYksdpjY6JmDNaZ2LUKF2gUqDIAhciJiZEWRM0SCUZfItRCh88xlaUVY21hpzG0z6BYhgcuEjnAm3bYrQkiUzhEpu+wUeH2jnkbsvZkzPunz4hu0Dfe6paYMKEi22LEJHpwoIzgGBiMilkrp0jaSgmmrbNGCHZCMu6T9ydacra0jeOndCEHFCpI4YCaQqKWNIFT3aBKMcwsZI3uc9CIXPFuvHsmZIdAwHLxCqSqhEEVC5vPA1QqfeOVLhXa965XFFMDNVCkdwKVR9THkFzIVBVzdurHW2/oxokK7GhY0NVN7y4P6esSi4uT9mJBcoX1BY4bCnPD2ldy0Gl0IczrPHUl4d4L0fwmgq4Zs1uecnzH/wZus0SHxKPL97GZIeMnlBarI/klDmoJrzvhWNEuia6GVpGpFacPrxmqzV/9N03+MYf/Akvf/hpPvfZv8Rq2RPMipP921T1EU9/+GOcf++rHL5wQtdKGr/m+qLl6XsLXv/efVR/zcOznuAze3szKg1nT66xyrD/1HNc/mDN2dtf44Of/ps8OosIB/uzA24912ClwEV4fLXj9p0F6x+usZXiBz94zCtfuM3RwYwQLEmUNGEgrTtme2r0lcgJRIspWgrbsfYDbhfYhBVIw71ZpHRmNMI6TzGbkfURtycnI9H3YM5m8DzevsHKSdrhEd6vqKunyHmgUJJSZ7a7gRRX+HQXQiLZNaUwHOl8Y8dtEWJBrTSFThzOapaXHbMpBKXxMVHJEqEqooMgAkL1VNbSu0jM3Sgn+jHXT3xKn8zKsWpHJsRxhyfVKERNOSFTgnbLTinKyYSpCUwWNWVVEXxHPyjmt57maFEjjMFaRdMtObr9YVIaQy/aTDHWEdwOlEURyWEMV9STfVzXEESJTBkpDNIKck4oZcc5eBhwuxU5Q2FqnG4QWSLQyORxXU+MHpkEUpWgxViXTKNPQCLQekQsV/MZotDUoiINDlmW1PuHpBTGD0UlCSmhhgGxuE30LbZ6ij6t0FlydHBM8JHJ8ZxspsxO3s/DJ/e5/+CMZnBc9G/yNz7xMxRKE4ctzW6NLiY0fsnB/h6PrzdoBUfzCqMEYMb5becQ0qOrKVZr7jz9HLP5nM9cN8xnj3h3e5+r3UA3ZHLOdFEQ040SWkhUyGQpuGw8LmXeeu0+u82Wlz8qKeo9hDZIFP7qktXynIxncvJ+pkfPgaj/zGIphEAqPQKOMmQriHkfoQpEShAdIoabBH1E3kixhIDavzcP07qasPMguh1mqnDZUFc1Me4YlCKJQM6BlAVBJHKOHEkoC8XbXqKDJ0tFkQVWGipVIowkOMgmI6MgZ4lSA0mOO6/YdyyHyOAd1lh88qACWhTk4R10P+H6eoN8S7CYTzicTDDzimo25djeGVXYAZLPqL2CgEbkm/sBic8Bqyb0DIBiUkyRCawyqELhs0S5DuOqG8hRQJgCi0AWZswCqIpJbRFoQhxQpcXqgpxGG+OM8X2ryho5KTD1HlU1fshmP/6OehkZ+o4QekTSFPOKHCANHWlo8b6lQKBEwWU6JSYL/cDT+3NePz8niR6/dsQcKaVh5xyLLlIWJZeXEV1EFpOCPWdZtS0ie1zyxJSYWY11jiEodOtROJwbn1NdW2G0IwQ/bjKkJm2v2G5anI7Min3KekKhoekHpEhsu4HjO4ekXcsQB/aEYSgqvJOkAZr1E8q6fk/uYYDVZsP5Cn7mI0f0pxMoeyba8vidQO89t492HBy2rG8PLPafYh3XVLNn6bYP2JJ4ZnLM5HAHF/dwtqGcHXK5NczFDnm0JfcThrai1y1y8ERahJghhorl1TknLz3L+v5DetVw585TtMuKoixx9hClEn7dc3JQ8Z//o5/l6PgEIy2uW/Hu4wu+9p3X+IPf+X1u3XuB73z/NWZFxdf+5E3+6//uV/n5L3yKvdkhZfgmn/87/zYnJ4d88zdO+fjPfoxHF2fYwmMldFfnfOVffonP/eUPU7Li9dfe4Wy3wTcRUssLL3+AVz75OT77mZ/hq1/+dR59/zWK2SHd8ppKWPb3b3N0+ylOH97n+z885eSgIQvDetvz7R+8xuX2jF/5Ky9gdKKaNJAlZaWJ0ZBSy8WmxC7v4++8xPLJFm8Hqjwlx4DMmbevHuJj4vjuMdPmPq+++yzr1VtMVEHTJqoFzKo5e2KKnAZQnuw1UW9wUbNLJd4N3D7eR5xnDo4SQ+vJrmJgYBk0BzIxhJLOBYwKzA+Oid0lB/uB6BJKl5TlBkOJlh5dJlI+YtutyCnx9pVAywrp/rzoYsCFSMiRdDNPtELeHNeLMUAmQCTHwBwhJ+xZgZIjwMi7njx4ej8qlJOdoHPCe4etZnh3OR7FVVNSDuTkxs1oDKTcAwplBNGPocWYEzlrZAogNdH3Y70vlUBCCw0RspDjkWWKxJwIMY11OGFGSn2IKCFH/4AxRO8IRISSGKnxItJ1PcZ2JNejzEgYVBKGfjx2TiHghhZljlChxMuAkBpTT4gpUE6nSFETTgVaFqy2V3z4uXs82nUjabC/RhtNqUZtdHJurDSmRAoFQ3SIOIBQFEIifCBLgVYGYwqqesadO7fZ7jwH81MaF2CIRAGOhEDQ+ogWoBSInAkRehfZlnNphwAAIABJREFUbgeKqy2bywtmB1DMD8f2hdLgW9bvvkZKUM2OUbaALFFaMK6KRpiNzJKUAG3IlChTjvTFdFMvvFmF/mguZt4jUqF0BXU5AAVOKnIaaGwmOENKgdZLatHRJYi5IImMY3Rr1CnjpMClBAayzHji6IlQJVkERBZYDCkHYtcRvWNInn7oCcmQxQ6t6nE8lR1rBVUc0IUa66YdZJeYyYQG5OHYmlFWEHs3nlYZiCEhhAdjyVFgCossCjJirEH+6NhcGupS40RiUAopJXU5BT8a6TwRbQqijJg0ap4VYnwdpiCGiFUFWWaIAyFG6uk+RTnH06NcR7xpLcU0CrkKVTHkgMAi0240TPqIjxHlI0FmfJd5563v49Oas9NztrurUUhGQpUlRgh2fcHOW6z1NCQOhSH1Ho9DJYm2inaT6SPYnG7MqJHMDU9CeFqhCKkjDVPUZI7OgCzougFHxOqCvcMDXIzj73DfYLOkcY7oWmwJbROJk4oy9uh6jyzAOY+p37uRQfCnvPjyU3QPrjBTRWp7ht0lc7FgeuBxsWC3jah6j5PDAx68/kd8+JXP8o0/+Q5H5QFn2yWEnmvxgJPJMUrv0Q9vkipLXJWURxE6zcO3V7z08U9y/ugtZIBNf8bd559iuLyiMCUz4zhc7HP73j74jlpqRCjJR45uKzi68wF8Z1F1h08dX/nGG5yfPkKkim9881X29gqa9orzC/BZcPfuIe+/8zzlzBK3Ky6DwMk1MmWUgn4tsZPI1RB4+rnnWG433P9XX2ZST/lbf/eXqab7/Or//GW+9KXf5c77nkXVd3A54oc3OXzhWdavd8i2RcjMp37qA/zO6pzdqudyueOlF5/hzYctIex491STJgVPTrfMfM3RXOMI3L5VkgbF9KDmB0++z211Qiw6ZAg0sSeFjCoHZvsaxJRls+LO3QWPLq/ouh6foe0TIZRs1IZKT0lyw95CoGJHLlpEVGOlWEHot+zNNI2UzMrAEP0Y5k6BICVtryBvSTS0S0vvW6y1GGXJZoprE5uwRguo2SOngVmpMAJm0wOE2JBy9WPvM/XFL37xx37xt//bf/LFnBkFQIyoYnUjEpI3ylOpxr+f1waRPY/WmW2TkRr6zYYmQzm5hdAGrTUKSCPTlwJJdluk0SBG/G/0HnxLCj0yR0QaRiwxAR8CQoKIkZzDaECMEFMi+B3eDQTfMdxod9u2J6ZMDhnnAuEmHLdtWnQW+BiZTGvcMJBiRltLVgaUoNSK5B2kDi3GY1aRIz4Z/LBGFyXJZ3bdin59RT3dJ0VwoaPrdiRRcn7+gDfeXbNNiaPJMQ83a8qypp7MOD66w978iMvlGau2YbI4oio0KgeiYtzVjA5nCmuxRY1A31T/CtCGuiyYz6Zsl0uc85yvelIaQ4AJxlBmBKtAkhF5fB0hBIZ+oDAJwcBscTAqgaWCDMP6mvbiXURpqaZHo75a6JtTgjHD8aM/s5QgLRkJqkAQx2VDzjcjhjTyEYXA3n7fP/439oT817z+l//yv/ii0GOuZSkilzmxGjxdWXDmex4SOPAKHwxzP7CXM1dCsY5xrAykTE/CyhKpKyySSimKQqOlJGdICi6bNVe7LU0X6R20OWDI7HwmRA8i4VLC6JogE3FwDC7Q91s6P7DbbnBZMF9MyLJE2/F+nNdTvAdlBaaokGWJKAqcj5hCodAUVQ0mjaO2qqQwauQIhEhhLMrUVKZAaYGViuRGtkhZTslKoosJpqgxUqGNxuuM9I6yqDB1ja1miBBJg6fvPFEIhJc4H9FaEgkIa8aWTghENIUuUAiC2xG6Lf1yRbd8CF3DvNSYlNEm04WASApVCKyRLIeB603k3rygLApy9MzLkpkqaVOHUCUxRpb9WDE2WtHlgBYgpAHsCIaSmbrWzBbHKBGYWk3bO8qZQecSozPvnp8SAGMMRuaRwyE1RkZqlVFWUCmo9o6IIaMLw+c+/3P/v9/DAF//6m9+8UN39vjyV77Ji/dmPP+xj3L5eMvANWst2Zt4Qqe4Zw1vvNVTTAeuzh+BPab3mRdOnuVyuWNRC1SCa3dNUoo+7uiaHcfv+xgunzGv77HanDPxGypb8NLHX+b1r3yLxckxe/v7BFVzcfqQWwvB994e6A04v8b0GjOL/Mf/8O+C1vhh4Hd/703+x//t1/id3/s2f/zadzl9cs7jy2u8c9x/9xxkR06Ko4MZR/MjHry7otjPbB+9wVPPv8Lj8x2r/hKZDAUFr3zs/Xzoo3+V77z6fX753/930dUxy+sOWwY+8jMf4Wvf+iG//qu/xcsv3SW3hqPnKvb2j2mWS+xkwrMv3eHidM1b775DSJ6DW/s4H+mdJ4iWV99WfOqDh8znI3pZ6zmrVcf1Fk6/+022yyXlrWcQ3mH0Pkm2GJGZyozrIto5um7DZpDcPXmZGAaOjkqKqWF/CnU1wwrPdFKyGzqapPBNR8yBFDKaxL5cE5s1u1zTe3EDEotom+mERoWB2eI2VtX0KSDrGaJyKCkge2KAqsgU1KSwgj4QQsN1q9huOjabQBc9H//sL/y/3sc/Pm7IOA8OceTbRyRDyIQ8zqltVWBLi60LjC0YIiQx8u6vs6LVB5j9ewgMm+srYlDE6NltGpJvGNrluNNPw4hGlhmRJdx8T7Igh0AOHhE7iANCaGIIkAIx+NHCmG9IhBFSHAmFSgSUSiitiGk0GqYMg3dERgJfHqfdxJRQZpxZ5pQZ+o6c8lgFVIqhd3TdmCANMVFUxdjRF2NVMPmEGzoyAyE15AQhBLZtx7KByf4xShlOd9dkOyXbCbPFPYxQxCjpXWAYBlabLRdNw8oHivoIUx6AKvAp0/rELkSytKAsCINUBbaesdg/5N7tI27vTzF6DBMmIAAhj7NwnzIhCRKCGMcw5a4P7LY93a4lOf9n7zdSjybHGFk//B6huSINW3Lyo1OCkUsw2u4UgrF9kU1B0iXoKdzob28OFMad8Hu0uaqlQkrIlBRRUgTFhfBsomM5BJa95zve8VYILJXEGYNWEoWkITAIgcagFCiVSFrQijHEmXVJTIGh2zF0O5zLdMHTRgcZXM4IkxAioPN4f4fgaQZPl1v6MODzQDdsEdLgfebq4or11eMxpxFG6NC8qEYFRkqoCFUQGANKl1irSVmhk0IychcyJfrGKqoEGCmJImGKCmEtZVGjtSYI0OLmvRECEQMqJYRWmKrG2BJtJ+Q+4jKju0FpsBo7LSn1jaPEliO90ChiHt92Y+w4w1/sU0xv0QtDUAVXF6dc7zrmtSQGz85Jrv1A7xPa9Sgf0SoS/2/kzqxGyNBEGSYqUxcWLRNGZUJImGwQWZBExty4EFx2NG1H51sQiaQzQYFbD8SioOmaUdpGxOQWVZYoFWDoaVxkwDF6vw2xU6iyJv9/gF3/Iq9VU/Lw9AqfanL1FI/feZdOLukqQZ3v8PWHr1IPgrfXHWt5zvrNxMn7nuNgMmFzcUrYPqJPG8IQ6dJAZSTFLmF0SZI7utOHKB0JkxYdFEOseNxdc/HqJaG0dF3P6uqK+aRG+AGtLGZSMZ9ktNO88sKEX/y5D5HkiHU/P93y7R++yQ9+8JDtbkWZJFpkkus5e7yCHFBZEdsNF+fnPLlcUdgVX//at3n6+Xt0bYNvl/Q7hRvWDOEhSWvmc80nPvJB7OIWwQVOzx7wz3/ty/zTf/LfM6sNf/WvfZ4333qMCC39tQdZsAs9rt2QTOTlF54mi0xRlJxfXlNWGpKlCgXX5/f5td8/xW/h4lyybJZIadi79zIEqGqJlS1mWlLpiBWapC2BikFFBiE5fuWnOTw8YLW7JPSJbSsppEXE+TiOK1oSkVtTw73DOfVszNvo1NOGFaXZo1eWyhiMcnRZ0fWKxnkO7MDxXsde3UHYkFKk3S7ZXkC/TLQbSdv3EDROOKIsyEZjdMG0iBwcZMr5QBz+nHKjvh9ACbQwmJTJSuIZO8mbIY9yI6EorOJW8PjBoycH7ElFUUlO7r3A/v4RVuzw4Qw9+Uto27G8Omf/cJ9WNsRhixkyRWUQaUVVHxKEx/lI7pfEkPF9g/OB6a2X8K6n3V2idYWXA8H3BA9uGI/3x89qgUGjhcaYklb0VNOauFyBihzsTdiudoQM3vdING0f0dkh6oo0RDbNEqsls0lB2wUWe3vsvOFoMmMXB/pNS84b1strlKk4X3mKqUUaQbb77FaBTZREIbl16x7H957lmaNjpIJpDT/81h9SCYWdH3N06x4294ikyLkccc06s2lXaDPB1nfxWXDdr0BkrJRoKSgnhyBqPvDBV/BZ8q13LomrjtWQETkTgSgghEyjIkbI0SPvE23r2TU9zbaldy26qolJkdBIqRExEs4ecvGnv8nimQ8in/kE2AlCTMaRgZTkLFCMjIioKrIsSUkgdYnIESEHUs5kEvY9GhkIoRAp4WWPFpqpzqhoaLrIWR4/iLZB4GTHWRQsvEDOpqydxwbJkEe9UVTFSHPMiiwkw+Bpmw0+SZxvaZ0nA6UwBAk+OnTS+AQ5C3xlyDnQ9wNSSISxLJRhCBJtNFEkdt2SJ+ewGhqqxYLZTCJTzZDHSq82BcE7dFEync6xqkBn0HVJEhEZBUJlshGErBF2PKkR1qB8j8BSmBIfGrQ2zOop2WcKY2iCI5ixtSObQCoEvpqRE3SuwcqCeVmShSGpCBLsYk6OA30TKCdT1tdLrJ4QfMvO7UBmkh+9CbV07OEIR3e5WF+ymO1zuxuIrkMWJY+vOkI9ZaI8Tdtyfr1hK1tykdGrzDN3BCFomt2ShCFIhfCJyiakHC2cXZKEHBBG0/aJ3C2ZFAWi3iMER2EEq01LsTojUzAtBDIOeD2lWy+pyxO8Tfhm4KI1LBYdeWIxRwWVnSLeQ5fBa9/+Dvsf/xCffPmEr339NZ59uaRiSrUWfPMbX+KnPv1ZdsazW3X81N1bfG19xld//Vt85KP3qK3gt99+k4/NLJNZzeW7DXEv8NThHj63vHjrWWoC58vEwhowZ/RlT3h4j7f6c6YH+xwUmiwrdpcPWO8yd/WOV16q+drvt/Rpw3/0D3+J//UPHlNMFMsnG/7xf/Uv+MGb5zTdBp0cH/n5v8Lhnb/N5f/xP3G9+x7vNKOzZrZfIQrLg8tHPHrrkm79kE9/8PNsrx3ff+ttVFHSXu8YWssnP7vH/bjig596P4+fXLO72qCs4Auf/zS/V77Gb/7GH/DKK8/wc3/9r9H2a179va/w8scappO7NJfvMM0v8MoH72BVSc6e0DvsvCa6loaMnFjeevAm3z2d8EufOWCIBVs5JeWO++98n6c/8FP0nUKExC54FnuK2EuqrMmyxq0C4vIh7//ML/Dud3+PiyrQmYreC66Wl2Q8hagwpmdDQRLXlHqKUIld30OessxXvHXl2N+/xk4Mtw7mSOVwg8QPLeXimNXVKVbWPL0HURrAk7JEScnFeaCcBJptZruJSDsCpnIB9+4UpKVC8uPrsz/xhEBJg+8TfetofGTTO4If4SJhCAx94Hq55eH5ije7zDJJtMyU05KuDzw5PcdHx/zoRU5uf4Bmc4qs5sR0jeuvSEFgdEXX94QgGPoe1+8QSo9YYO8hDbghEGOm3Zzj+x2CTEqO6D05jVtiJSRh8CNGUwmkFiAyxuqRMCegrCuk0ZjSkCTEHPEu4vx4DDqESAba6JnXs9EWJgw+RZZXa/y2od2tETmQTEkQIwQJKWjbLdoHslyg9YRNc8Uzdw5JRKq64MVnn+VksaAyErodT995iaOnP8Ct2/eo5nvY2SHTyRGFrlF4SqmpRIlKEucHUIpqekg1OUTbGVkUICWmNMwXCw4ODplPKkqjUDftgpQFPmcCEEm4CC4KYoJIxg8B10eSc+Q4JtgF6c/YA+RMt3xMc/o6uV+Db8l5rGTCDcFQjuAiIccefNYFUVrQ9Yg5lpks0wg3eg+uZBWlLKhkiUSStaTXMIhAciMdMJJQCVyKDGQWXnFLVWP/NyckCh0lJI1PGRcTu9SxSQM5DGQJUQmSEAzyRv2cJd4ActwBDC4SboiYMXmGOLDJgbKaUtVjGycjWPYt56s1m+s1vc/E6Ih4QooMQlAojRSSJCCniFACQqLEIoXCCksaHORMkQ3S1ihlSbZE6EzWEpO5qdUGApkOUDcLaJ0VLvakmBl8YrdtxrZOzrTJk0hooUaxlRwDjNlqOjJmVhJFRhcVhZaUpkSqSNKQigq7f4++6SD0XJw/JirPpC6Z5gorBNH3mNIwqQuUVlAq5pWlmlsigkpm5mqCEhJNxhvJEMFkgx8Z3qOASRl89DTRs21bXL9F5wF8h1SOts+kEJGFYrZfgSgQ2HGk2Cesmo0SK22pVTlSUgs1Cs7eo2vwBRtaXvjQB/joJ+9hfGJImsvrx9i95zgfXuO6fcKLc8sybXiqgo984iVMdcQPtlDFinLyHOszKJ4pOe9XHJcS+g5ZLdB7gkePNuTU8GSbaVf7PHhyxmmXGaLgzesNy9Aiiwp1MKE1kY88d8ij7QqREt3G8dLRC8RoiTnghy19s+WZ55/lCx/7IHvFHi8eXMGdYz7+1B1SHoPJ33v1MWcPlwhZEopLPvDheywvGx5cnpPbnumw5o+/dQYyMjSB1775JlkXPHz0iPMnS548XnJ9ueXO3gFvvnufb3znVX77d746jm0PnuONH77LbH+GCxDkElNGSlsiQiAFx9xakvZkmSAJsnX8i3/5TXpp8DERO4/qPbPZgpdffoXjvYLZtMfEROwD2hhc1SNlZHFSs3c05/T8dULaUZgJ2m1QfsN+PWeSDLsAPRalElKA95rQZ4RSrGNLbKCcTmnbls1yQ3O1ZbcOCCdY3LnLqh2o5nOUFFw1HSun8a0i7gzZJ+ZHoEykVIZbRwWzQ0MqBMXhnPOHA9te0Ax/zpaB1uNx6SjjicgMfR/ZEUhSE1LG+QxozleXzPcWHFa3mGwjdyeWwdQ0g2TnOmxZUeuWzeVbPP3KL3Jx/yvUoSUg2PU70BItFyO2V1Xo3BCygw5SGqlm/fUZPkE92yOE7ibsZonZjUrknPFdiwSUNszmkzEMpBcMrYNaEUMiukA9qcfFwDCQBChbs+sGdO/IOTFMZ4hast1usUqxHUC4HcVFx2JuiS6h1R4HT90BAm6IbLYbuqslUmmeOZqzWEyZzRZcL59w5/CQ69UTmvUWt7vCi4G9qiAZgXM9hTG4oaUsah6cbtm0Dzi89TSTakotDa7rcUph1FhDNNoSQoOQloNbz/L0IHnm3qs0g2fZDcQsiDmxExkboEqS3mYymcZBzpLLZYtQcP3kFHLg6N6LGGXYDgmhRhKj2Gxphjco59+iPnkRcWyRuhxRmDc1RCEUIMg5knJGqDHUKWWBjJEcHTn+hPLrX+B1GgfQkpAidqK5bgNds6NJCU2il4mUFZBxaK5iYuIbjJJ8YrbP213Do96ToxvdF3mCzoKrLtD4TK8CMQWST+MHrQrEnClkHkmbYmwHFGqsqQoNhtHdEVKiw6OiZt301NMpRWWRXnDtd5SXT5jNXiALiRARCwQjMFpSa4U2NeKGE9IR0MrgbmqgiRElnZODXFEUApcMigjVHNFtsWUNRERO6MoSiWSZkFnjEbSrJcF5/k/i3uRXt+y8z3tWt9uvPf1tqrl1q1ishsVGpCWrsWRFsSXHEOAACWylg4LASYb5DwQPMkgQpJsFmSVAjABBPEgAG4qSWKIokqJIFqu/99btzz391+1v96vJYB8KSGByEMCqPTrnTu7B/ta391rv+3ufZzQZYQXEOsURiEWEV0NwNdiAcxLfNbiuQkuN9Q7XpWgl6Z2gv7qkWL2g3lyxqC0y22VirkiyiNwMG59xldJYS6gteZaxqWq2tUMGwyTXrJqO0Apk7skqSRoEjetBK2p6Rnpwbyy2NXnXspOPKFzL6abgoqvIpCI1MQ7D2faENIvZiXa4/fo73N5Kfvzpd8k02ElOcXVJkk2JhWYhBtppsHowfH5B1zfevslsd8If/uk/552j15jmO4Mv5OaEY/scWd9gGqWcmHMe/6Bm784O6rIjPTD8yltf4s8//Zg4u+KTy4Jf5Cbj3SPKHnJucvLsCdHuPlfVFd/73im/89u/xQcffM7u3SWvz29Rbea89uaYP//0mDg5Y396E6io16B6x+///i9yvNxwsdyANOwdZAgJ+7Mcm454dPGA7ZNLPvzeH3MkrrhQE2ZHNykuL5nNxnz/ox8ye/QQJRXnz2q+LZ7TdD1378z59ocbElfybjXj/Y+ecOvVEd/5wx9i04hPP3nIsij54z/+IY3rkHGKlJqffPxDvvf+X/C3f+Nr/OLX/iZhe8Ls5pTNpiRIz42bEz57cAVBcn55gXTDSLkMNc7HTPZy/tF//wH/7t9+g+mdl7h89COmBze498EHzF9+Ddc51PiAqt1yMGoRPsZPUmxTgjBs1+cIESiqC0ajGUJ1ZBrCJGPHVqwKz2Q6RerAtlrhrUL5KbOsoFxuOHxtl5PH4NjSt4663PDme1/h/k/ex+QGq1Na6zi8OaPpSoKMUUlC02/RwSC9IZ/2uD4wzw5Ju2MyU9Ef1PRtwP6cOsDPrRD0QdA4qD1YAV3wVA5KK9nUnrIJLHrHsu0AjestAo9PR3hvWK9WhCBovKR3IKMZiUnxrmS899I1c78nBIfWMb0dUKw+gJMBrWNkJEjihFhFWNcOsqOmo61bmrqm6zqCtyAEOooHQpMLQ1lWCPQ1nzvOI9I8IU4MSRwPqXoxnHKDDygRiLQefvZQNh0OiRVysKwVBVJH2L7DWUNRXNJ7zbrbItIpiVJsyw1t7zAmwjtHS8X+/IDD6SHb5TmL02ccnx9zenbG+fmSovYU52ecHT9iVSx5+vwJnz64z4vLZ3S2ZTo+Ih/PqKXERgoZ51givDR4oeiDwgpDnIwYTXYYj3KSOBp6+gAEZPhpniDggsAisF7QOygaz3rbUawLtps1BIvWBqMHQ6HwnhACfddRXjyjXr6AriFYO0ydhP+370BKhZAaLxVBm4EiaVKEHoKaX8R1JuHU1zxvez5fbti0NZ0AgcR6kGLIkUgvBqkQgufW8bDr+cl2w0XvhzUSRXg9BO6qIKmcRVqL7VukE0gR0AKMVMMoqxhaV7KXGCUQTiD8MBFgZDzcLxHomgp7PbpE59ES9CgmLCuK9Ra6gFMBJwWNc0iZooxBqgQhBuqmMmqgSIaA7Wvq3lM1NU4qWqHxKqIPEYmUSKWII41OzMC6v87P+Ph6428daZKi4wjnLc47PBLXWZASpSU+uOuEv4UgcFpgVEqezeivv4/ZzBCNNQbJs9MTzp+e0VQ1+/OUXHakUUzf9OzMDtnZ2cOkAaQa7G1dzzwbXPS9bIf2Q29RUpGjiYxBGYHXEq0gEkN2QZuAVAKrYJQqRnGGVAK8wFpofI+0PQpHFSyvvPo6N1++RTzLkCGQpxqdSAwG2xTINLA7mtC7QYHt+i8OXbyoF5zeP0bbMZ8/PaZ2NW21pi7hrdFtvrS/T9Odcrj3GkmmmEQVZraBzvL1Oy9zdlVhL8c467m99xIujYkSg28Djew47684SiTfuLtHv+1p9BN2TURxHvDyjPtX38U2LbI5oi5KeuMwieP3f+9b/L1/5VsklUW7BOUM+IjxeEw20aSHOaU84rdvVcxiyS/cHPP+Zc0kM+hYc/LiirrquViseHB+wpPTJWcnWy6uar77/iMWdcVWT/j0ec+qKClPluhp4OH9U5bbmsuLCxZFRV3XTEcpzjlGUYQMgg9+/Jw//s4fcXF6iolH5DJD2jEv3XgNjWaUjbAyus5CDdCu4B1d0/D8/Ir/8Z99huy3hK4lKENhK2TQJHFC3q8ZJ7AqFUXTUi+vcK4nP3gZle1jSDBin4vTjuWxY3VZUpd7yHjGfH+futnQVCXKx7hOYl1NLFIKerZXW/bjXebJFEeDii3L5RY1dqSJofVLgm5wAYxMaZhQVgMiQCUxloxtpZhOI2yo8fQ4P2Dt02nO3uRnj8/+3ApBJ2DROhwSnMBjKNqe3kPNgKmdZRlCa8oQ0XQKc7Vlvq24uLnP7cNbPP78J5jkPSrfob0kn8UU5w/JR3NWbUkWj5FBIhAoHeOEwoUaqcYoZXDSI2WLdz3WeZwLvHjxFCEkBzdeQiqHSVMkMV7a4eXdXSCFGwhjAYSWuL7DaIPpAtV6yWiaImRPLWNc3dL3/SA5EjkqVqxOrygTxTwzrHuLrlr6pscFR1tuyMYRtnP4aMqLyw/RyYii7IbTYleR7B1iGstFcx/ftdRlQ7ku+e737/H09ITJzoi7x0v2JhPy2S5taHj86D6z2QHvvPst0szgsjGkE2JnaXH0ISaIjvP1EiMhFqClJ09SZpMdbuxPePwsRofhoW2DQImADdAiifwwJtchkBI29fBif/TojKbtOXr5DTI9Qqcp2jvqroNr2+Xm5BFdVRJPjjDTI4TWcI3zBf4SWCSVQXiB1wEvzdCT1tkgBPoCrrOyxuGwCnxn6KRFe0fAk0lNHwSF8HTBIYIeoFne44Sk9RYvBTtRTGIEiBhrPWWzprPNgP+VER6HFpIQJG3wYK7Nj3IIdAYfsOGnBCiBDz1CSNJIkWUpSsVo77ChRFiNr5eIg5dZlmueLi64rQ6JkhHKC9rNijCZEkUNebZHlPe4TuC9Rwo1hHutxQtPUxdEaUpZr4mURKcxhECQGiUNeRxjXbhWWgeCdIhI4MPQdlDKYNJoaD9hCU6gUPgwVCCct5RdoK5K8jzGWYtUkjiZsN4esz49p1xfMjaOg+mY9WbJ4vycpt7Czi6p0FycXWL08P8ngFQpsQ4E45hPI7ZWkGSa/SSn9S2rogcRSGOJVhGV9yglBpKmNUQaMqWpfcckNmw2HhcsrY9ofIvPE0KkeePVl3j7K19BIcmmLTcO7+Kjnu3lFVGmCH2McyPGOzdxthsZMVBgAAAgAElEQVQooP6LyxDcPdhns7bszD0fPul4dzbi/OSCEGLe/eaX+cf/5B/ztXd/lcXJPd54+3U+fnqft6PbiFzhyi3/wd/8JW7NEl7cq6nbNbEXXD1fEe/NSM62lKcVrTPs7rzCD559xDy7y8Fon1N5wvlqgYoSZpMl8saCzekBeSc5HHvuHt7h/OoUeXCT//Dv/w2cknRlzHwv4XD3Jv/r//ETXn1tjwc3/h5v3Sk5UwmH4innj37EnRsT8nzCp589xmt4/eBVLi8889emXD6+pAtQNTGt7bg8+Qx97x6pMbz72us8vzjlfLHk9GKFCC0SyWq1wCFYLq+Y7O7x4uKMPE14MB/zdjwl2A1tk7A31UgJq80VaRrRiyEQL/3gaxkOQxXP1jU//PFDXhaC+XzG0ewI0aoBWmY8Umr2JpbK50znY9rNoOI+u/85k1HLdG6Y7Y3pvMPXDUEu6bY9va1I4hSoWTdD227bx9wNJeHOG7SLK6w5YXHZkpkxZpTx9PgRmZ7S2o5I7uG7hoePnnJz9wjfnON8RyVBaYkZNcSjfU5W58RCocwOpQ1I1dGuAnVU/8x19nOf0kUrqBy0Hrog8FKhlSbViijSYBQhSRBRxGicEJRjVVQsmkCmJOdP7+N6ycPj5xS1w9oOhKDXhqbv0WqHuiqRUUwQDp1O6P1Qwgy2RZgRJskGbz0aIwPYjqauqaoWQsB7hxCD9U0McWm0SdHaoLRGMCRKoyhmKJg7dBwRZQlRGpOnCdpoJEMAqw8OGcdsipLgB61zZGKk1jgpaZuGtmnZbjqckKTTPda1w9mOpm7JRlPIdsgnRzhnaFpJ7xPKskKbmAfLFSdFxYNnF3zv0yc8Wxd8/OgBn3z8EwgJWo/Z9i1921BvaparK7q+oGq2rNqKq6qibjoWRcViXVKWLd4PFsc8TUniiCACQQyQwXBtJfAhDFKmMOQHHMPESN07NkXL1aKgrrYEZ7keDbhmCQywo+AsfbmgXZ3iqw3e24Ed8f+pEgy5Ag1CDawIHeF0jNRfDNSllhKPxzNor02AVghA4fCDB134IQuBJRCIABUcSgjSgVQ9nAw8WFch3ECC1FIQrKNzDBpo77HBI5xHCo+UCu+G7EBPwAlBQBGUIggFKPrKsml70NEAFfIWZyI2rqXD05UBW9YE1+CdoBGCum1oSkfnOzqv0MISqwgfNL731yOiEb3Uw2QJgb5vCcKjeo+4zgEEORjutEmHNluI0CojmASvJcF2SCWIdYqS6WAB1BZrNB5Yb7d426GEo+4d2kRESQyhw9cdiTakceDyxSOOz59RXVyiVE86ijCqJOgSVI+O4HA2J9uVWCzg0UFyMJ3RerjctFjnSSOBTiMAqsbhu8BYSbS6JqR6SCRD1cAl6F6QKEFiEpLEkwqJsJY8ybh5+w5V31M3FcIGvOrQfuB8WNtRt4I0i1DjCTZ4rHX09otzGdx79AzXraDd8sbtAx5/8Jg0FSjj+eQH/xdffutvcDiCZr3DYlnxS1/5ZVLbIpTk488f8NbbX+HjF5+zo8ZE0cAOKFtLuViwO0t54/YeX7/7Zequp7INrx+8zMnVE6JacpQHLtsVKrJUXY4MC5LxPkUBWe7ZVo79o1vMd+6Sz/aZHd5CBs2maNnZnfP84YpqfcaFsfzkJ99hMg382i+9wy9842tcLkowgmkyY9kZkrFBtA133v0yNDHBWpxtsFlCrAzKaP70x+/z/OSUy8Xq+pkOXkDXDtm2smk5Pz2nt473P/uUOEu4uLyitz2HexmonigxRCZBCnWtbbcgPcE6LH7gcijJP/32j/mjB8+RQhNEgsk7srGjTmDrLBvbs9psuDhec16UbJqWx8tLyo2n2JbU2w7R98xGMbuZYTSR7B6l5BNBPkq5fTTlpf0Z07wi9Bu67cD/ybOYnXlCZBKKVYuSMT0JjUhYlXBaOIpWcXm1puoETS85udhQtBtUnLEtrqgrSVW2IDsi5XBe07ueIHd/5jr7uRWCx6sK6aFXHhkcxnZMkjF1GIhsUZDUyxWOGL2jmcqETVmwrlqKqmGaGx4dn/DOV7+BEVPkQUbsUnIzxQqLOXwDe/mEVHeUmwXx6AbSlahsFyc98XRMV10gekPoW+ruDOs1XdUjDazXS+LZhFH0Mj09MvTEWY4LBu06QlWiEk2UJASXUa3XSDxGZfSmgTChjyz5JGdTlDTNMBuugyPbmbNsakQs8ast2SQhIqLc9Gw3V+zd3mfz4DGjZU1rLVEy5nhZcnD3Bs61eOd5/4Mfc7nuuX3jJT6794AXZQ+9Js/nLNYLtssS9fExznako4xRsiU7rbi1KtiZTJlOVojgef3GHjLOcSpm2ZQIbxnHCYXwPHctAUemNLvTjMNpQqQE3fWBdDgLX7d8HAQlcD+lETuwBBarmr7vefroPspEzA9fw1moqxXyeqPlPdiu5erxR3RNxTybEtLZQL67njqA65FEhgyH95ZAQlARA7bmr/6KdY/tIlRwYBwIh/bDOKqQg744khJBIDiBl4EugBIKoYYQH8aQJBGtsPRVoMYNmzCGQKIIkAlJh2SshgdK7wQ2dBgZ0ARQcjB7CkcQjpHJkVJQhYDst5xbh9GCyMAo9mRTj+oC9foJp2KfNw8O8MqRZim+hc7XlOsIFxlCGmOkw7qeZJqz2ixIkhG2d3RmqFCEBnzq8TLBmAhHS48nSXNEP4RrrehQKkF1jlhHiNkcHcWMBAiZkJuUxjts19LVW1QY2gbCROTRhC6skEJTrS746IM/pyo3xCKi11NevZPx5OF9TD8hCMH+fI9lueLq8hlzrUlcTW4j5EwRB8emhbZqiCIwDcxHKUFaknLN2g5GwgZL6jXCKaaJYC27YY1pRRZ3BCd4443bPD5e0rqAkZJgJDdvHpCJjKuT5wQV6MqWKIrYti1ZNiH4jr39KVGeYdcrNr4bsNCx+QJW8HAd7XjOHp2xzHMOjgxFI3jzK+/y7NNPuPW13+T0yQO+8/2P2XnjPerjJyR3ZxSxYqw0he357Hvfw5u3aJqnVKsN+6MZTbXCRAk7ekId5+i6Ylla2G7ZlhVpMuInJx8yzjLu5mPcbkYrY9r2gnF9k1Ve8O2HC+7uzvnme9+kaAumJkWlE/7Ov/q3+C/+y/+Ot1/a41njefiDHxDP9vntv/4O84OcT+6d8L0ffkptKybZEW0ueO/d1/nkg2c8+vwTXo1jRrsGaQ2L1RNMMmOhA+JixdHBLa6uFiiGXI9HMZlPGe1+jerqhG15im3XXF5ckKZTHjw852hvxI1+h3S8QXYS4RW2bkijGIVGJQkuXDM0esnuboa1AR0HHrw44xf+/V/gybMSQo8yY3y3wcYZO0cvExUrtisJ5SV33v4W2/NHdFVFFs8hHrgAmyIg6ek7QZTkoJdETiKjGqkEd2cjgmjZfdXg3IznT0545c5trk4K0r0ZuhVcFivsqieZzYm8YjdSpFnO+XrLqtjwpS99lW77gu989xE3d0cUnWYUW9KVx7UQZyNc6Ijr85+5zn5uhSBNDZNYM9VyAPVIxVnRsKo6fB+uZTqaSPUsrha82GxRCMqq4qyoWBcdwio22y3WbmlbR28DXd9jQwx24AFs1wuacoNvtwhb4IOj7Va4UOHbNSbJcN6DSFBKM7zmAtV6g209aE2cTQcNsjZoY4gjTZaPieMcE+foKMXEMUmWodRAZ4uNHvqhWpCmMUkyMAa0URzdPEIrjVWK2jk6L1nWPblO6JsOFRR1t2W9WrBdXLEsVuxNDnj88B7PHj3g048+4up0wWaz4uG9D3j/82d8cO8xRV3RBTdkGDycVCXLzrEqNyy2HbXT9C4hqENcfohIZ5ytKh4vCs6vVpxdXHJyds7Z+Qtc22Iby3JbUTVDX3acpsRKDchpP0wKiOtqwUBvDFz/MxCudbkBZwOr5ZrNZjncvzhDq8GBLhgkRwGJr1ZUqxfYeoPvKpzv/4V5ArgOG4rrXIH+IrYDgDUoObS3vJAIDBESJQ0+CCI5OC4SKYab4hl0zj4QGUMSp0SJAQ1GgrvG4yogyGH9GgR9ENdnW4EKahBFuwHK1ANS6kFJrFMSlSANOCHRQSDUME0iLdRNTVEXnJ4es2gLrjYLrhYXLBaXdE0JXqNjRSDGe66/S0MrK88yskSjtR4CZ1LSdS1REmGTa/y4kkRooqAQXtLZDtu1iF7iHQN0yEjAkUUxmRmAYsJInAhIAUFonDJ0bU9Qw+fcuS1apuAcF8sr/LbBCE3XlFycP+NPv/MnTEYJs70DtBRs2w2RCbxy+5BkpJA7OzAdc7msWGx6hBNsbE9CwBjBxbaj9z2jPGZ/kiJlGE5tTg9TNTKAtigdSJVAixSjPK4TxNlgmoySmIlJSNIduqakXW8pN1fU6y3CQxblxElMHM8Ajy0tq8WS9eKK1fqSZll8MWsY2FQZ8707SFHwla/cQdiexx/8iHHkePyjP2FvGvH6e7/OYQzT/Rlnx8fsRzGbMnD2vOLGqzd4eWdFnsVs+4bd6YhIZUwTzeXmii8fHLAu7uGF5t2bX6doLvn45BP2J69wI5tzc57glSJUG86WFRdmzd1b77A7miKsQEU73P/xR3iV4bUBKdnfnbGzs8/uKzlJnvPWW2+j45ynTyre//hzjp89RzuJ3gmEcsvp/fvY7RnBe3oH0TiiDjWTbIoyAiWgFT23X95j/+aUpm3obU+SZfzyr/waJt3B7oyZ7d9hOj2EANa3nJ6c0jc9XbNEWEHVN8M0lXYEqRFBojBIQMrhoLCtQegIEwKydwgXgc5pd7/KiyIZWoNRg9guCYsFQi6YqsBiecxomiP7QFGW9EVDuQbXddi2x2rwqsT3M/qQsK0FjQdnN8RpSlEVyF5w46XXicweQil28jkuKKbjmPlkRKQaskTShYANDU1Z8uorU86O71OvNsx39lFJwttfOkJJy7qQkIxYLVesi5q+7n7mOvu5pML/6b/+z/7gqrYUfaC2A+QmNgOgZDtomfBioLF5HwiuZ+UVpBGZMrxYFyid4EJD33dMUoUPjp3dA4RQnD/5C3zT0PYtUhqMFqQ7r1Bc3CMKEcXVY6yTbFbnA5JYpqwuTwhNi+9a5jduQjIi1ikmTYiNpu8q4jgnhIBJMqI4x6TjwRCnQAiNiQSoIWxo4gihNOl4hIlj8ljjuorpwQGT+Q6XVxtA411DrDTPl2v6PvDofI11CuEt5WZFXfTgNpwcX/Lk+IzeaU4XWz57fMHZ2vJwucUKyEe7dMHTtZauaVkXa9bNlqoXlGXLk4sXfPrZJ/zogz8naS64PD8mMYJQtfzZw3u8OFvw4uSc+08esVgvBougThFBUW2WlHXNZ09PaXpHFzyeQSMtAMlAmNRyKBEYKUFIYjmAofJIEbAc3X6ZJM1xzhFsjRAgpURqNUCLbE+wFUoEdDodIE9C/RRsfE0olD/97fp3hdLRXznl7b/5T//RH6AFiZfUusP765E5Mah+e+GJpMYbTZBDb1EicJpBNawl88mI8XhMADbrktY7dAgkUlw/RBRGhWGUSGmUFPS9w0uJ98N9UH4A4xjAKkffB2oXSLXCWw/SoCNFkoxxXg/4bitRtqG1jiyNESbG/FQ4FcdI3+OCR/ieFhjlE1xwILIhEGqHtoWSkiiJGU/GGJOgVMArhXeWqnNcLddUoSfLMhIVkSYRIxOjTTx8Z7xnnMRUPgzU0rYnqIiu75DowRUiBC2OLFUI4fjwR+/z/PkzfLuATvH2O2/jXcfTe/do2i0JgjzSWK+oSktdl2w2NTemY6qu59ZEsZ8ZrqqeNE6ou5K60YimJcszTpYNCkhiRxzHVN4x8SlOXLcN8hTvIhZ1gTYRWuYksSYfzejbhrK5oG07+nWP8x0NkAQBXUuQYUAp9x19Z/H9lq531LXkH/zbf/8LIRX+s//tn/xBsz1n02vWZcMoeErhmOwmjMdH/PNPa7rz53z5a29AW9PWmnhvh70sMDtMeXrmmRvP89UFdw5eYq4Fzjk6a6k2nnQnhh52xrvcP/uIm7OXWHcVv3r0Gp+XF/zo/U+ZyjHzyV9DtaeUS8sffvc73M5m3Du/QIabfPTh+/zSr/11fB9YXS7RpiWi4cnzK+JI8Hd/6yv8D//zP+XDDz7k5dde4ei1dzl+8ZS+FFgj2b/1BheXDe+++xrrk47R6DZXq0u8L6ibetgA+oiTJ895753Xee8rbwBQVTXPPvqYxeUnUJ5CXfJKHLioGhyOrtV4Ku7s7SNSzyc/+Izee37tN77Ko0cXAyDM9SgvcVpA6BjvHLC9vKRsS772zisc7O3i6zVFsWWsa0bzBNElrJyg8Zq+r6mcZ2c3h6bheNHgXEBFGiUyimZNVyfM9zPwYF3LFk8sND5OyMqGRSnQKlB0gUnSIH1BiDVxJJikkotiS2gdznUUZYXtNc73/Mrf+LtcPS+xbJnNNAe5pKo3rDZL8tkEXEEkG0SSY6TByS2/9Fu/9y9cxz+3ZZBlCWXvaW1HcMMYVQgRPUPPVIoBjdszJKxRjh3tWdQtaTpCpYrlZnOt4l1wa5ajBNTbNUYnlMsLrDao0ZjxaBed57T9ADOxumO7rjAJGJXi2oqurui2FW3bEFQCQdCulrgbX0KICK09cZzjfI+0GkRCZGJa3AAdcwnW9Rg9om0LTKwQbId2uR7S+Zqe7aZlej2RcJaeUVRbAppt19EGqFuLNppNUWOtR8cRNA2NNXRVg+0Cnx+fEYJk6zyHOzPkokSbiDiKyLTk4eU5fegRKCKh6NsWkwSMAKMVhMCPn56RCli2La+MM1wpebS8wnpLhBrsVdIw2j3AxAYlY7QyjJRmqcRwih2K4UNSXAyfWx/CkAtxQ8jNRRIfBE1jacuGenuJ0hqjDVZqQrAIMbQFlFQgBL5YUOunJLPbEDyowVAp5bAJ+GmeIAg5WBBF+HlL7V/aJaTGB0mvA2kb0WiHNSD8oGmOgFaBFxqkG17uKILweCkplWZiUjSSNI7QOsJYELLHhsHVIK/tjyp42tbhrpMbQgyB1oCj8WJQR3tD7wSpdhihsLbHKk2kWoLXODqS2OCanrba0LaBeS9YX1xidM50/wChA4nSeB+ItCLImASJtx0iCLQUdF3PbDyGSCFjjfID+18bg3MOVMB2Ftc16CjCO49DYb1kJARWK4SAKASkkUgtkJ2j4zp4xRA21h5MniGlYzwaszk+xjrL0cEest8ySxTVakN3+TnVpmI0HxPCiOlORh4aqkqSZAYhp6R9xbYrkSZmPh/jLOw2lt61rDtLJCSTyRQvB8maFj0hDAQ87TXNT7XbaYrtHJ3OmUympEEggkaNs8Fnou0QYHYBHwS1MMAg5ZqbOXW9JEQj0lGGEAETNcQiQtiffbL6l31NXzukeCJ5OXbMdqbQl6yOF/St4g/vPeVrr87Ro/c4fvScDMt8N+XyfMP8Ts7znzzhq+9+g3qz5M29m9A3XJaGZ+cFb925wWRkubm/QyzHfPez95lkMSfFMQeTl/j2p3/Gg03Nb773LWRISOwSf3sP9aLkH/7Or/Inf/Y5uvUEmfJv/oPfpd22yDRhvDNjQstZaJHe8Ou/8U2++6MPB+qrVhR1yer+j5inMWvrmOb7VIsX3P2FN3j4/R/Q9JabX7oBT1vWV8XwzMlbTMho6y3LyxVi74jdvVtcrAo225pUaTonyFTLy3PNp5sI7zuWxRVpfJs01bgm5qxc8w//438dFwr+6P++h6NEaQZ8vUsBSdgucX3DS7cO+b3f/Wtk8Q3iOMOdfJ+2sMz1Ab0ryK5hXq2Msbnk7P5nyNEc6bYoIQghYK0jzTNKaelLQdVBlHgyJajKBq2GqlsbBaT3jA5mbC+W9MozHsWEfkvZSA6mY0JuacqSPM7x0rJ/a0ao7nPzjmJ9FkPqoBHM0phsltP4mDhp2NYdTpZ0nWF8ePgz19nP3RCcXW0wccwkSuk7h+8dQSuk80yTDOstlRcDFth7YitBew5NgpMW7YdsWq4dKjQ8/vwBly9ipNuSj3a5Wiy49crbaFeyKkt6WyLqK0wy5slnHzHdex2poLh8iDZjFpenoBVexIQQuDhfkO8doelQ0qG0JBvHtG2Mx+CkobUV48ltelsixxOq9SW2apA6otwuMPNbXF5dMJvtEnqL66boNCYylr2DQ9LdX2d5fsJmuaYpWxwNtumQwlPVDTdu7dPWgdOyYl1VLCtJ0XesO4uTgdYKPnz2DK8McZQwHudcXZ0yj2NsFOEnMUJrFBHWD+S2eDRifzbn+MULjuuSs1XBJ3nGV+/e5fbOjGcvLqllz+3JHkRzTDLDCUWcTtD5iHRkmNWGqrF4cd0mAIwPdGKAuSBgYwOpDJRW4IXnclkDK54/+IQbr7Rk05uYZILrK7QRSB0hTYRH0LctXD5nJb5NMr9NfPQ2IYqQUY4QQ0kehtMzyL/MFvxVX1Z6grXgh5G0xAlarscOhRraAw5gGKuTJNg0gJCMXI0TDH3DJEKGCE+HkG4YbUUglMAFi7VDryFIiIOkvs4npEJSO0/qAl4ZnOxRQoKNsaojjlJGaYQJElJDdXVFqyRxL5GxwpKxLGrC6SNOzs/pM8XR4asIWRJHGus0ylnUJKdzFYmMSI0i2Rsx0hOsGhjpUguMHPThUZYRXEMbNH25ovLlEBwMHiv8wBowBhl6AhqhDX3nUNqQ9Y61VmzXF6gAm6YgDhG+d2zXG5qm4OzBQ6xyxJMpXVfgU8li6ZlM5rh2BbalWZRchorNuWDT9QhhEbbmtBEUmw2u3TKfJrx2lBPKCc9CiTAWdERwNRDoHMTGYkgo/ZZYxzgUXedJd+bkSYpVYyb5sP5MatA6Q2uFlw4fUlwSsSPANS1963CziFm9y8XVhvkooneCTaPpuxLZfXFjh59//884uj3jvff+Dk+efJ/F4opXXxnz7U9OeWcvY+ShD3qAk+29zPHn9/nSG6/z5NNPkemck/MtM7nAjO/S+orLixPee/V1Cn/G04f3ybJDzs4fcdgJivSQN24YjGnpih1+55VDKr9kMjrg3vOWkSmJEHz++Tn0iq++9RazscYL8HGg3hRoOWbvlXc5KT5h/xXJo3tL/vzDT9g9eJXN8pLifEufG+azPVaLM/p6w3rjePHijKOdnM57Tp9/ype/+QYffz/g+o6dyYjOtbz89jd5fH7B4a1b5LFif7rLatGiVWBfN3Qi40/aXSaTDt82RInj62++AqqiDTm/9/v/HsbfJxaa+V5O/aJCEOHiBiVidrPA2bogMRH/7X/+7/D4/BDTfsoPPrjiazdT2v2Y9dIQQsLVaoPOD/GjXXITMRvtcNW07L39dfpqM1Q3hKJfP2M+D5xvt+Bqsv4A51qatublg5TV6Skh22Hn4BVOnjyjlwrXGvI8oqg0s3mPtGM2lMQ+oFRLPBmxPN9QxR6txqwXJcIobDKiqCRvHowZCYMVgsR3w+SQBhn9/0QX6yilti2hDxhlCFJQtoN+NDaSWMcsuxovBCoElPS0TYfMNJEEgSU1GbvTHN/UJLN9quCpigJvDXmakOYT1scnpEdTbHWBkREXF0+oa8tENNRVjUpnWBuhozFltUHGGoShtYGR1rRtS2r7wRmvwMQZXd9h0ozQOqQUSCmJoingKfoLIhno+4g4ihmnGVk2oq1L4iSjs8MJIkpTbuzuYaQjSmNWV1u22wVpatCuRxEYH96iP1kySxKadcHx6pI8mfNw9RyjI6ogydKMLJkiJBwdHnEjG7FUzymco74G1MT5HuNX91HKEZeSaZbyYrWgWy1YlA2V86w7T6Y8N3en1F0PShEnCeM8ZSdRKBszTTUjrbi4/mT9TysEIdBLCAyOA3PNlugR9C5g1GC2LOuWYrliPFsymt8iXGcAhliA/MuZ3YAneIHdrKh7jxwfItwUZIRQBom9zhCI67zCF7MhiKzGYnFhuBdCBIZuv8AACkOJxylFZB2CHqf0oMgmRnpN3QWsyvDKoxE0YghnWhFQODKtqYLF+mGTYAVIHxDS09pAUB4rFcE5oiDBSIQKZMKAD4g+sHUtfVeQMrQ0VK7ZNg0zY0BZOpsjIujPLiiiXWaTyTDNIIfP1nUSk2uUUiSjHOFAaoFWekjfG4GKPMJbkA1Cx7RVgYgyEgShqRFCEAuBCBGubQiRJBDQXhK0gM5ihaBptqAMxfKKJB9hu36YABIaX64omy3L4zOsbRjrDdPEMN/fpWod62aoarR1S7WUaFMSE+iCYlUFuq7FSDjd9lzWPXM1xfU156Unizr2JxFdb8ikoQ2eUSRJg6XWCUEJlE5xMqdoDX3ZEMeObTsmAeJMEec9MvHEXqAzORhWpaRX0fDSCxnomsQonHJkSUKpPDpKUPUXBybqL1tav+EHzXcxcUOcv4rtCr727huYqxdECK5e3CO5tYOpluzf/Q3y+CmjvRuoqmDjX/DS7mt4VaJ6TbPpcbe3RH1Kt1U0/Tl4STaf4NyKP/7gjN98928htGOzvmQ0jtDpLl9+L+Xk/RNm432Oq+fcnM+Z7iXko3yAcHWBJIkJ8or5/g5KBHbUlm8/fsZIj1lsLpCu4KUvvUu93uJ8QIScuuhwribK4GzRoTNDu1myPLvEyBiwtFXH/q1DyotLRtMRm3rNwWTG3u4OT45PkKMxl34PlUmUUHRtiXKOg1nM3l7MdtmzWJ3wy9/6XV48Drz+0rtMx59xTgFY8ANZc7GqET7w9W9+mW1dgFUUkePVN3+NdPeCzfGS1flf8Mad9zjzc978xu/y+OMfYOKOpttSGoHzG+y+Y99/GaklxewQpQKTcUNz8hGmP0H6GDNWA+RPGPbvvsTF46dEUiAjiU4lTkPoWk6fV0wShYwCKvNMdl6hLBrGk5bJ/BDXrHn8MDCfBz54/2O2zYxJXlKWkvE4wghFHgtGs0NOz579zHX2czcEy6bDepCmHesAACAASURBVM/wLOipbD8APgLU6wIpFVIrbPBEWuCcxEpLV3pGoyO6rkSLjtWmoaoKglSoCBZXEcF4VN/RVS1N0/Di2T2++Zv/xjDKuFoSjwTVaoFzHVaM8WHL2fNzrGvJ0hE+eNJ5zjgbkUQxwXUIRgg5gFc8ESqdkYwP8MrT95p89hJ9s8AYSblaonXg6vKc/b1dTD5lurePbR1Gg06nmHRORMf+my+xaV+lLlecX2wptzXG9CzPTrlaLIlnM4L3mHhEvHE8eHHCzcNbzEYznq9KxvMJk/095umU2y+/ialWdG3JaGefvXe/yaIuKKTh3/pP/iOO1Jj/6n/53ymWPTtPzlkuCnbGhtdefZ3Xv/wO1WbJg6ePibUkEpreNgilyNOIw2RM1O3zf2YSETweUMHjr7OjfRjGEbsg0A6cGngStQe6wMwJbOdZXRTk+SW7N0uENHQEjEmJTTxAh0LAW08remLdIXzB+t730bNDJjfeRMUZIhkRpELraAgWii+GQ1AJSyTCYI90PSoEtBI0EvAKF/ygMBUdVkqCUESuG0Q4SqFtS7XuKcYJeZoMxsAWWulRQeDl8H3QaKz04Bzt9dhS8AGFh+vKmZSSzCi8UYx1joo1RbFl03VobXFWsvUghSJxmiwx9MGTJQlTLZjOxxjpSfsCETqmkwMaH4iUQmmPNAkIg3eS2EiENti+ZzzOCW74m4RIhvxIpBF9j20KnPVM9/aRGmSs0OnQxuI6axK8R3SebbnB20BjGyIdo8YjOifwtqP2knrxiO3VExaPH9KzJXQbLhcWGTv69oqgJEIanFNDyDWPmCQTRnuCRHnwUDQtV+slz85L+t5z7+KSRFlkBNtest0UtC7B0iHNAH9qg8RZT+ICPktROqEPhkgLgjX4vqOPNLEMtH1J3mYUwbI9XyG9pZMSKRKazQZ1q2N0MKP1LcU5JJmhDS2iBxFmX8gaBhjvHNK0LfkkofGOe8enzFTFO+/e4UcPP2PyUk67bXgrFpyfBRw/IH1lQiZaalrmZp/nVxeMkwy6FZ1wnD8/Jc8zDo9ucfroOXuTjHuna/b2Z/xr3/h1NusLvvWlPdblGHRKNoLPPvwuO7OMaGJIixyZGHQneP1Lb7C+fErVrLk4fcHRS2/ywY8+obYNVQfZCC4rRxQC+e19dnYmlNMRn/7kHsr9P8S92a+l2Xne91vDN+/p7DMPVaeGruqqngc2JdKUKJKSKduiQ0vOcBEYDhIggZHc5H/IRa59masEATJBsQRHthSLomSRFNlskj1Vd3XXfKrOPO3xG9eQi+80pVyQcCQ5XEABBZyDvbG/vc4a3vd5fk+NzBTedsnLOc7U2OKUzuoS84nD+ZzAS6JuzLSeIYOUfP+I957ssrG9yuW1Za5vb/Px/buEnQVmu2cIHzFYCOh0Orxwa5Nk9RLz6X2UibHH3ydTkuHGNl/+0ovcu3cPVESAwNYGpyX/7X/9W3zx9SFNGfH44V8gas9wVVDyjPNRQtwZcpB2eevVbyKlIA3PeOnFW7z/g7uspsscCMvd9z/ghWsJo3zKVhIyUZaJFLjla+TcIvaCLX+HrK7YeOstpuMZ4ULG6vXXObj7PqY4IEo6hJsDRvtjpvUpWnVoKkl1eIQMQqzoE5Se8uyUN7/4Eso4OnKAzGIePthnPPfkVUsQ3dy8zff+9NvcfOHSz5xnP3eVFs6hpG3T/ZxEo6mdwFlB5T2FsRR1Q1NbTmcFk7xmWjmmteVsfEYYCCaV4eT8nFglTIqG6dmEfG6o5zmYkvHhPvX0jG7ax5iGen5GnpcUsxHCKWazhqaYMhudY8oGJQIc0FTNhZgJlBatDzzMQAU4XxFGUct5Vw6lYqSU6CAmSgYEcZco6RJmA8I4Q2YpKo7J+gsknR5REqO1JOsNyIsxsRb0MslC1icJYNDNOB9NaGTIZDqlrgqOj/Z5fLBHXbeY5VHT8OzsrH29MKUrNR5PHMUU8zlKCCJniX3FRifiN954lcdPnnH3aIethU0y7zDzIzqJ5tpzN9i++hzdNCVJI5QMOJ8VeOmJtGqDBSWESUjWyegkEcEFGdAJQRtz5Nubum9bPNa33l3hW0ZBA5S1oawairIhL6oLHYBEyjZ22UnVOg18m3XgfQvxcM7jyoLi/JDi/IB6eoprCpxtqXXeG+AXoyEIpMAhkcKjXIDwCYgQIQS5V8yVQeOwVuClR4kG7wUSQeAA0bYdpmVOUTYI4SC44BYEGnkBMqmtx1uP8qC8JxSSWCjQAqU9Pa3o6RCrHELAzDaYpsZLR2BqirnB1obK1BTFnNOi1Q8EMsBbz9Q2NGaOsyWehrI0FBXIypKbitrZi5hyQ6wlWupWaxBrAkIQLU8B2tafbWqkUnSCDB0IOt0OWmqaskI4g1ACHagLHYrHWNOikAV0srSlokUBgdI0dc347BkPHnzIo4ePmZYlk6NTRkfHOOkwrmSUC6ajOQsLA4bLC8ThgM3LW6ws9xAy5nQuOZ1agiCgE/VYGQ5JdYx3EgLNUhaSJQFz0wZ0SeNJkWAVWnkkjkoJrPPkTtIIhVUJxltKK3E2wNoUqoQaiZIRab9Dvz+g101II48OJdPxmNPTI6rRjNn4jPlogpuUzM8mHM1Hv5A5DOCSgOVXNlhJBEGQUo7HhOkQX054MDa8d2ePwfIi5/aYU6kJA8fDR3vIeMDJ+ZxuLHEmpMlryqINL7NRwLSOUalm/dIVGpGyuXkdU0cUtmL/dMyTx0fsHc159GiXT++8y3C4jOlc5uHjZ+hQsHVpk6Tf4JqKrLuA8BJvI54+fsSN5y4xmRZMZ3D0rCC3FoOlHjtE0OPsaAK2QauUOOjhvSRUA5ytMY1EyAHKhQQyRCnoxpphkLG+tElt27bfzu4+pjQsr3WQUiLyOZESJImi1804OZtR12BmFTqOyaXi9ponG1ziyTu/xytXBljVauG0kljRoB28/tIGcwmLvcsM0w1efOWXGPQyzuozVrI+ovmI565vcHL4BDsrmR6f0GlyZtWM83zMnbsPWBy+xrXVbaSpOagOOC9yIjMgyTKa+pQsKlhZGyKs5ehozv7+Hp2ll5lNPT5+mdyucu21f8Bzn/sdSidQQUIYdnDFHENIPp8inUHaAhooiylPdnbxwPL6KhsbGVcu93DNjCCMODs+JAxD6tnP3vZ/foWgaSjqVo2qItHefqzDWE9pPU5YXNP25ySScW2IHExry6Qy6POcSMJyljK3NYErWO1kfPDJY7qRYHt5gYlr2Lh5hWkDd9/+U5r5CB0okjjh6Nk9kkhQzUucg/HZOT7USC9JF7qtfqLJsRik7jAfPWYw3EYEPWw9R6UdynxGEIQ0lUErjxGChdUrhEmAEoq0u0yRT1jevImzM7qLfYIoQERDukvrGGqiZIFOlFBnJVVZMzp7yiu3nmP3KOfg9Ijjg2MO5zVOJ+wcH1GUNbIcI+OExfWM5cUV0igm7fb4+MO3+eBH3yNSAeNP76Df/QGh9KxurbJ+7TZnkxFhukxdTFlf6/P5N17hlRd/icpb8tEhsXVcW58ym3XwZkyWLrEx7NOLPInyLC8tcXNjhYPjGY9Pi3bzhp8GFllvKS9ipjsWtPTUxmG95KyCxlrCgwlOKK68eMxg+SpSihbu4x3igjfgvAXnwfmWbWChOTtn5/hPCJIua9deI+ktIYZr7c1VcmEZ/f95uAtGkrcY5RGixskUY9ukO1cLbOBQViJaKSBOOIT3OCEJL/KkZycTSjlCle3DlF6AbfACBBalJIlQJGHQHhIMGCFoAkekFEkYU1iHMgGBdNTCk5czZqWDQPyUVdAlQCiDcJIARSQCVCcgrgukC1AL61hi5qMpiysCHyli74mcxsu2dYepsbZBkUAAxs8x1uGaEK8NsdDgNcOlHqZxLMfrRHEHU7c9RmUtzdygBykqlJhSoYUgzATOgAhiqqBATKfYesT09AjtpuSTY/YOHzGezEm8wLiIQDQ0M8vxwWMSHXJ5Y4XT0YTl9WWkFuw9OmVmc0I8y4spjUlYW4N6b4dZoqmNxbiAoqxb4JUETUMQKhyOOHbUxlEiiFyDqCeYvKDUXQKlsRJCGTOfTpFJHxUNqAGpHE51aYIA0RhE1zDoO9LAYmdTBqsh56enhIwZeUuvn6DkL05D4CZnHN8reCYrLl++wlde3+TTpzmDvuXX3tjk4e4EUR/imqusM2aUz5BOITREqsPh3GKLIyaNJwkCyrri7KgiW4xQuUELgzVTpEtJ9JxmFrCQGOpoET+asrm1zN6ZJDeanjxiYf0GPu4zm+bMDk+4+lrJdHbMYLCBCmLuffQe9x4+5eTwhMc7exRNxSCs6W+/RC9UNLKgqmYMF7ewScPo4JTZ2QHGGaQIWF7rEXU1sVjh9HwflwZMR5IwmnH5tVeYTa+z/+wevrHcvb/DSy+sIzWEWrA63OJ0dMZCqHnxxpCv/savUYwdycIK3WLCjz79PpUdcmvzK3SCbzNIhpwe71FXnk7W41v/4p/ygw/vs5QNePvo95nPCp7Xgj/+0be4en2Lp+MZt1/9PGFSc/Jn/5x8+FVe/twrWCxXrtwibnbw6U2q8Q7xwjV+6yuv8ehhwfn+u8T6IZvdRd69u0csl3BZzOHjEaP+kI3LX2J3f8Ll7SHbrw+J09f5H//7f876jSvIYA2ZLnB+XrK8+gJVUUHUoxY5hweHeA9qcoxKJIcnOyyam+iwptvdZGu9S5IqJvsl6wvb3N+b/8x59nNXaGsFqRY4JRiXNZVrcbgesAjwrY2wXRJpw4VqAwJkI9DCEkrBqJiAdSz1Is4rhzM1S1mCGAbosiK/t0cWShYXM4zzVPvHKAXCOLKsS16UTMuK+XhOICTZ0gK9rEuc9nDOgq3RwGyaI+QxneVFRNTDNhXZcA2DIw3W8QFoH+CKhijpo4MU3wiyblsKFiIlTAYsbCTobECgJP7654i7K60/1SvC4QbTs8vkp4dkacni8NfYe7qPuf+MvfGItN+ndmPC3pAwTlhYGDB3jvXlNeK0w70PvodWsLq1zqvLrxF6mE1O6Q+H9LobLGVDFvpLnM7GCCWJewOmeetY8KYi9CWLmaKfJLzx6gvcunaLXhog3RxsgRSOhcUua72ESLULuJUS71vwoHAtj6B2nvKCwS9pdQGugUpIauM5O59zfnREki21CXlaI3xrP3S+jb4WeBCqBd84ifWC4uiUSfGIs50PGG7d4OrLXyPoDvG9JQLiv8Ul8t9xCEvoBBZNKiRGK0oMFoOQgkiAIWw3CKGQgHeiFWEagZWghaO9KysQrXXRu6q9cTuNCiBNolZsWZS4QJKGGq00fcBqjfGeXpCAKpk7Caat2igNxnpqaVE11GHTOiCUwviGlY6kl8U0C6uorA9SkfT7LG9ukEmHDRKkN+37VzWlcWRxileKIGzzJcqmxKiYohjh5tDrDomkJUwE3ayHFhIVBGjayIlYa+pQogKJDENc3aBThZ5VWNNQNwZdNTRakiz26Y9Tzg72mJ/PKOcFWRySn5wzrUp2DyuUMHgpWFwc8sn9fYZbQ8p8im8abr1yncgW/OTHjzg5nYOq8LahqRwhDhkq4ixiNY6YGjg+a1hLNUEIrqopGosUiroucDoglo5ebBifTbBJBxfEaCkpRUpQl3RdQx1meAOpyzGBRKQpqerj0BjVYDqrzPMRt794GeUFP/ngkMAKhPrZYqx/3yPZuMbt7S67nz5FNDnzPMaVYx6dbfL+JxU9VzGNUzqdU25cGSBGhnEeYzwsb69ijGV/pGE0RQ0DTs4di92QTx8/4Rv/+HPsvHeIaUp8MmdzOWHmBOd5RFqcsjG8ghMVq1HDaDZFxgWTQ00qz0ivXWa/usyTT+4w3LhE2UyJOyHff+cjolDy3R98hEgasm6PqtDU0znDz7/E+f4jtha3ODw+YOfuA/J8wo0bLzOrGqrzEWfnBWJ0t61gSY33Ct21ZL0hhzv38MoisIQ6pnaW45MpK/2UvHLM84Lb2+u88dptnJ0QdvsUVQXak/kR3/v0Cb/zKy/w3vt/iBdH/Of/9Bqv3Pg6PZFRJCPe+cPvkNy+yad37rO+vs5br73JB0/fZfPSK4gm58XtgHFzSvb4Q9L1SzRBw+zsGc9d/k1GH/1r7Nn3WE//AY1cZ/7wJ6RLiunZGsgNvvZ3X+Dw6Ih/dPuXmZ3c5w/+p29xuPOEa19+nd1P7nMo4PO/usjg6td4+P6foRAsD/rc+2iHZrGNmZfLG5wfV8QyYSUK2Nv/c6IMPtwVLKyt88ovvUoarnPnB99hfaNknrbPR+o+aZzx/LW/ZoXAOE9lDc6L1lkmZFsi/mxzEQKHgIsS8l/VjVnrEBJqB4bW8302K8EKokAxrix3Hx2xHkustdgsJSgF0lqslTQOFjs9yrym9Ipp3UKNgjDA6BiVJASRJgw01XxEEsYkaQepE2zhkKHENIeoMECkS4RS4p1vY3gVKBGDCgmzDONTpMrQadzqItI+Siqsr0kGS4h0EVmeIYI+aa9PHIY8y8+QrqIjC5aGIc9v9bC24XTa0Fla4Kx2hFpTVzUCSz/r45VibfkSp5MR29dvstRd4umzT4mTHg0BRTXC4piVMyItkUEEZQFRhPUNidLIQLO0tt4SpyKQyiCkA2expsSZmkAJ4kChBUguOPr+MxtgS65rZBs/6rzAXYQg2dY/h3cC21iaps2DsN5hrUG2IIf2u//pNy3aiF/rWkyvNdR1hZmMaMqC4dp1+sITxR34RdCLlcNaBd5SxgonLHXhUQQYSpzQKOGwgMLhlAOvUdZhAtluZhf6gEB5hAPVCKQIEQhqGoRzzGcerQKcFLja40IH1qCyiE6nixnNmTRzmqplPVRCYBpP6RuUV0gnCbWkLBXKC0RaoWRI6NpNOaCiMTVKhARJShZ3qLBkQlI1Fms9WiniUFO7pmVNOIfzkjjJKPKKUITMqzlNXCBqQZJ2UUqiVATSYJUAqcl9WyGxrkU0V6a1SFqlMNLiraeW4OoGYUuUqzg/PaCwDdUMfFYQBBZpFfPZBOEqrl25Rj/uoDLH1auXOXq4x3Rm8E9OGZ+M6G6sszToc3q4h/AlUrdJpEknQjpH1usTFTkjCVYELWo29FjbBjIFYUCEQ6oG1cCl1UWenM1QgcboBuMV0mkmMqDnwMQa6wTKhYTVDKMdIowRUhMKSx4FiLCLFp44HGCEQ/yC8NsA2uRMc83N26scPjnBhp5kZZF65vjNLz/HuHhMnXd4dDDFlmOuXlvjeLTL2dkC777/EV/78g0+Pas52jmlUxjSOEF0+jAp+Ivvvk+/s4QQgqWs4ePHFVcur3Dt+pDER+S2pipqjI64+uIV3nvnUwgbdGSZn5wwmU6YnA9ZvnqDk92n6CjgfDZBFZaympIttYmw62vLaAzrg4zH9wy7J3ucP3mKAl5+/XOYJKMzynHGEoUhRzv7eDuhO1ikNprJ43OCWxmhk8SdFGMNnUgymRnm4xn9zgp5eUgWVVy5usjw0jrMF9A2RJmKeBCzcuMSd77rqHzdulG6iwhXMj45YmY3SKKCieryy53rHEV3cPEi9WzCyegIGkucbrGX7yCjAbWMub/3gNeu3mR/5320G3D+9BPC2R7+tqHfUTx98j4nO8t8+MmPubQe8cM/OeT9j4/59d98nUdvfxs/PyDKesRhxtPdd7j61c+TdG4jyHl673tcvXWZQTfB5jGNGDMePeWtl9ZxrkSurHM+m1PphpvPfY5wvyJIIpyTPHl6n7nW9K7cYPe9n9CUM0ymKG3OYNj52fPs503CeeOoHBfEpwaJxF2gcL0XiAs63V/G4La+yzY5ytM4hxEeGtAXWfTTWUEchEiXc6k27JiG28tDpuUpWysjOlFAqNtS6ccP7zMtDP1AYRR0VcjMW4ZFi8RFCY4P9qhGgnI+Z3llQOVzkt5VcAXSB8yOnzJ4bgVbFOgwxZkSFWfgQOsAFyYQZuBBOIvVGcLW2GwR7SUmSRHW4KIuytdEK9sI23AtSxBW8smP/pDl1QGXlg65ufaYy4967B7NmScLnE4n+HJKkiZM7Zivf+0bTE536J8/hFryg/e+Tz4tWB0uILSjPC4ZDhdRvkGoEG8sUikO9p4Sa00l56wOerz24kuoUNHvLZBlfbA53lmcabPfKXMCGrJAYqyj8i1DAud/qhtoHMycQFowGvQFvdBay6wqkTKgqCqCuO0X13WBtw5vGwQaLVo/upefERAdjbUUVU1V1uRnY8LzMff9/8HKtZfZfusbxIONv6318d95SC+wUqKUZ1o3WBzKtZRAlL5oE3iUtzRSgwiJlMMog3YZQuR4oUgbQ+I9DQKlHLm3eCdQQpLJ8CJFskK7iFq5NqgnaMWXs3yG1SGxgTA0qCjDVlCKHFMKjLFUylF7RaQNHou0GikFZa0QpadwNdtLHQb9LlpL0t6Q0XRMjaabtGLPUMeUviRxLRHRhR0yLSgDTyISRKKIo4ZazBGmxjeG3NR0ugrn2/hgLVvGdWEseWFxM0MUB+3f8qRComhMSTM/4/6HPyLphDx6/xPOijFFPqYxJ0Siw7PzKbuHR5i6IU4TamPapMnccmjus769Qb9TUAtFomKenp9wfjbHzffJUsn4bMq8qekXQLfDvZ1Tup2Q4fIS5myMw9J4QcdrRsLgK6g0dNB4Dc9trbKUZbx97wneFFgP0yCgZ0KmSUTkImxXoUQAWuMjRWQTrC8wtSdyU+woYJakGFMReY8IfzHCWIDnn7vErLI8ObDIXsCzMTy3eZUP393hyqqimy6jojHzOiZJelTNOaoo2box4MHTDf7tt++ysbKG3NCcnB0TL6SsLl3ig8c7vLW2xR9/+21efm6LuUq5tLFIqgvOnp5wWkmeW+nx4MmMw6fHfP2bPciOudRb4nt3HNP9O7inH/PVX/0ihw9/QFF2WVlZY6m7yPfuvMNgdRs9nzJpckRV8h/943/Ch598zHjvkPOdXZSKeen6bWbinMcf3GVtaZFQOaTvkC0vEXjPeDKhl/ZQm8uY0Yy9xnJ7e711mtUaLdpQrawTs6E3+XtfeZWl1UWSZJXC7iDDiFm9w8lhl83OMdeXMsSZovFjeukKjHZ5PG74lZe+wp/8+f/M5sI6dz/9Dmsrlzn8+Ai3WBBGl/n1X3uLP/2D3ydL+xTlDj8+HiFczlLPEOnrFON3IVIweB7hKsRqBJ9E2E6H12+fMh7PWX3jK/za8vs0vs/f/y/+O/6Hf/af8fV/9l/xh//iXxOtX2Z8cMzjgyc8+d3fZeV6n0Ku8Ggy5fp/+BZ5LXk+0Nx/+D5WLrAhztFKwvorTIoxOyePKKcB1zeucwh88a2/w+jwDtNQEw02WVh6kVr0Mb2fref6uQeC0jqMc0jVYl/tZxsKtFWB/9dvCwRt6pqXF4cE/lKlbLxraYOA1Y7GevYmFQrPg+m0Be0fz5BasJmEOGuoGkNTGwolcE60uNIoQ9qaZjaC1TVMaZnVOU5F9IeriKKEJQmibsMqlMXnMwQeZx1ehmhxobASEh+loKO2H27rdnHAIC5sYtJJhAou1OgKH2hkECOzAUJ32H7+LcYne60ARm/wig7odyc8nofMqymJMqSDIZe2LrO7/5S7998lVF0m+YimNsTSUlUFiXKMhKaejFjEYkyFEqq1cpUznIa+LnCRRUeOTjdlcWkJqULKaXGB5dUXm7rBW3fREfcILy+Iga2KVMj2+2vwVB5qIVHeE0l5IThshaMehRBBizVS4iJW2eMvKg6INljEi1aYaJynaRrqqiEvG2o88ckJQfAJa7e/QPdvtCT+9UZgJXUUUlO3GgghkLo95QosCI00Hi8VkQWkwRMirSLwJV7o9rkpi5cWLxTKtFhi7SW1bIN1TOOpaHsyXjgaJ5GlIuhI7NyR9DNCOSdQEbkRzMQMFYaktqIQAuUdwpUEWRdnHKHXhKFiWhY047pFDc9LrCshL8mrMb2FPtpq5vmUrBPhfUPg2tuP8jWh9jgUqdZ4oRGu/dTaWZzw4AxxqFCNR8UBvqypS4PzNcZaZDpAOk9VWkJCkjigrAzT8xGzyZxPPv2AQbxIXp3w7MkOBBnDwSKHpyccHo/AtKLUeppztH+IWe9wY+s6G8t9hHScF3PeeXDEsN9DWkHSSZnVC+ycjxjPCiQWkfaYWYdEEsVdajOlt5AwKhtC78idwzaWmRQMZVvRzJCkicbLlMWzHqdHR5SADttIbl12KJKAjlxBhKB0F+kiTOIJZEZdjhEipbARsqgJpW9ZIeYXl3Youlu8+/bvsThIiMOKXnwFESo2Lku8HnL33hG9rKScwg/u7fLLb95gf+qJP36H5eVF7p46js9PWdjsMVi4TnN1maZ8yPXVIedFn8+/dItw5Tqjoz3uvHuX5y5t4vI5V2/f4sdPAjqLm7y2mXH/3g6yWMZ1F3jlxYb/7cMfkCZDemvbJOcHjHsC3YF3PvqEmprhgqIYadYXrnDr0iVm1ZRQ1hwfHGBdxRfeepOj2Rl5ZVi/vIqvBfN8hrd7BEVE3IsZFTWBcpSMcHGf61c2MGJMJ4NiZlDK4UXKcqcmWOuxdnWbiIjxbE4kAp7tjaBWDNMMVTwj7iRM/QpLPU2W9MmbjI3kKgfPfsKlZMjlRcEPH8x55XPXkOk9oqUF1vKAD+9+h7AjOclPcaxxsPeElYUQX0zQxmOiFKWPkPIa+2aP+EnB9RvbnNWWk0eLDJYGLFTPOGrOSZcF+/c/5I2/9yV292d84dd/k2vXr4BOqYodtv/h1zk+ecaPHz5g2Empn+2yOzkhjCoG69ucn9bsjmPM4SnZAsRhB6e2ObFHnMzOSbtDpBQ8OZzisy9TKs/cKhI5o1dXP3Oe/XyVlwCpJN57lA5aZrhvUwFDKXDeUTdtf7B2DufbHUd8tuP89HVanO1nAre8rJBSUDmDFlAcVXQiLBq1cQAAIABJREFUyawsyQLBeVASSViJYoSSNI2gxBImIcMkRIcwnZ9xdn9KNMjwtaKcjZidHbK0/QInh0/pddcQkSZWPcr8CBX1kPMS1VlpKxhBB6EViBjrPUJLRBDjVQS6B1LhVYinaTPowwChLV4FCO8Qi9u4ekZ643XSjevYakx1ssvy8T7PT875X/+vf8ULnZg86eHNjLVUMh5P8LXAOEdVzFlIYw6P5lgz5Xx0zvbWFcq8YFRX4CBWFU1TcWNjmY3FIUvDDWpjSLMeSdohiDOsNcSRBhJmM0VZG/JZQVNXbU+4dby1yX7IViwH4CW19ZROkFuPbsF9IGmft3ZMZ3mryPMOpQKUlK1n21oabxFIQqnxXrRtBWOZFyXzec54lGNtg3ANdV4yuPPnLL309b/ZqvjXGaFijkYp0M4iLiBNOAUqRDjbznHh8CJAeo8QEk+DcQKpPK2eWeOsJws1tbZQarz3JLp1MQwzifCaUW5JvEKJC+V740ALqvkpjYBMgHYRgdIYZzFOY6lwPiCUElMYVKxRQlIBC6nGBwnxsM/T0THh7ir9ly6ThV2saRASkkEP6WMaKuIgxjcNZj6lDCRBPIAmIM5SgqaGXoxwA5yriZSjaWpsHF6k/oG4iDYWytEUFQ5PmHZQ0lNXAVoJpqN9nu3cJ7Geew8/oBcneCVJTM54PiFK+qTxEaOmYlJVBEIyKgpm+zV5Ibn3FMrSoWRMkiSUtiRLEnI7o3ZzesoyBurKMWvaFhcJGONIdchkPEcqQWGhQeJVjLQNo9qSOZhIj53N6MYDfv3WNrxwkykV373zjOnZKdFAI51n4g6oXEK6ptDeEOoBThZEYYTTrtXENCFFXaOExoqfvZD++x7z5oDFQcjyULFztkQxndDvHSJdwe5BiWpGDNe+CuLf8rmNFXYOJnR7MWd1xOnBPr/19bf48UcfMTofEaeX6Dx9Rnhpha21it2DZzQqJBqNmRcn3LryPDqL+HDvnHVrubYZY/wYVzdcudzluz8+xO3nPDuc8dv/8T+iE6T0lpY5KyekdoF/9ft/SCwdMk5JggSTzFi9usjy9XW+88P3qM53mZuKtZVFGum49fxNaldRockSxYc/fISLLPb0DGMN27evsHv/GaGIMfUZN659iY8+fkRRelTsMKXDupyFpVdZ21xlPh6jeuuMjx8TJx2Oj3e4crkPp0/IOef1V3+D9/7iD1m79Xf5l3/0L/nmV67TSwNm45KJrhhVPb7w+V/m7p2njKzj7P0Dbjy3yXwSY0XI5GTOePaEcFDR61/ivCl4/OSIhcGAKzevoUcpncUOvabmneOMxc0V9OxT0sUNHt7/Cd/fEby12/Dw42+z9erzLAzG/OT99/n4g+9xevyA//Sf/Jd8+K3f5flv/jf8B9tfhkGH6dNn9L7/u+BD3vvwPs9tr1KMRkg5wSR9RuWcwULO8xvrFNUZaysxjw5Lbv7S73B/95Dd+YQ3xALTyZQmSn7mPPu5NTApFWEQEwQxYdBiWyMlSQJFJ9CkQpAFmlgJAiVbABCy3TguyHR/tZ3AT//fonKFFxgkzltmjWNmGs6KhmntOC1qRnXFaWnJy4Z52RAp8E1NoMA1DcVsQjEa011ZxwkYjY6oZwdIZZmX5wifY4ojfFnjZiOayT6uPG0PKEGGUylehwgdgtSgAoyQ+EBhpcaLAHQXIRRShaDasqoQAicAnUHQgc4yemGLztplOuvrDNcv87UvfIk3b18haQpcPWH/4BFLaZ/j6Sn7J4ecTc5pGkttDXVTt8ztuqIXKijHmPyEK8uLXF0dsNgLGC4kLA4HrC0vkiUx3d4QHSZopZEXN3jnG+qmoqlq7EWwjhKtZPAiVeCiZtBWeVq7occ4aPzFzzytjc448lkOvrWzed/66IWQf2lbuHhdIVT7c9HaP8vGMC8NeWGZTirms5rJ0c7fysL4/3WUeIRtnQKetsLlpcTr9jMo0X7PyoV4D160JyNFgA5aYqHwro2SbkDiiKCNNw5EK1I1nrKE3LbiWuctVraZBUpqnLM4I6A0lMYzKnNqY2hKi3UeK+ILKiBY4amKChEmuNIwmY1o6pr5bEKoQrJen7CXYuuGGktZV6i65SEop8EKtIqorCFA4p3Fy/YQJMKgDfWSCulFqx8xBmMalHVYr3EybA+GjUN73+JXK0NVWWqbk4/P2H+ywySviReH9DsJJyeHFLlFqpCqgfHkhHFumJcWoUICLelEil6oEUZycDRjNJ5wNj2nOD4mEwI5M5yeTDk4PuNkPEcLj5KSvMiZO0MSJkBDoFTrlKktVWMoRY0MKhLRYov9RfnSSNkKNk3JvMkxzvLqy8+zvH6JyktEoAnjFJkoqrqimubUoxl2MqeY18zPJpzO55RF07aSwhBjf3Etg4N7R+iJYVKsQuV55dYqb799j9qlHJ4+RcRr3Lv3XTybfOc7D1m//jrLCylJ1mdp/UX+l9/7U04PaoQQ7O0/ZNAbcO/piB988JTVmy9wcjgmTRT9xdvszyqe7n3K2tIiTz6+w7NPP2Y+Oeb+xxPy8zGxHiNJWOkL5qdTvIkYn48xlWJvf5e3fuXzWCe5tH6JeVHTD7v0sg73P3rArUtbSKugMVzauExv0KE4mnN8cM7x08fc/dEdtq4vcuvaCk5KFlfXmJ2NWzCUszTlhPd/9A41DqVjUh0hfEwYdShPGhBzkrDHdHpCHIT0FhbwXrOytorLBEsrWxSTgmG0zqK2/PZXv8TS4hZV2dAkKXEqUUoyHp+xtdJjbVGzubaMdTDobTIdHzA+P2jdbqXEN4KiaOj3Lc/dvMqqDBnEkg+e7NKk6yzoEWb8AeuhIa5nHNeCuGe4860fsXLzNku9TTpihc+tbPBc1uMLl1+kPDrBBh0O773L6OAh9fED0l7CC1/5ba6+/g36/SXmdYovH3N0vs+jh+ccPHvCrVtvMa4ksbDMqoqgE+OrfWb1jFtrAQfTY06spRP+bAT3z60QZN0FEALT1ATeEUiBchbvHYGtEa5N7XMoojAgbxpmZftmOtCICwGbdf6naXg/TcXzF4E4zoPyKMlFZCzI0qGF4Jm3SGG4dGOLeFaRBp56dEIyXEM2NVaklPM5SjQsb2xSTSecH+8RpYsMV0IOn94FIek2Oc5Zems3MXWJbwyErl38pUb6BlEVIIKWgugMOozwCIRv2nK8B6mi9vboJdJbRCBbaEsQ4l2IDxPSZAgOPnflBdzklOSP/k9Ozyb8m+/8AY8u7dIJQ6LC0JeSfD5GmRKEYDVTTM+foV1KqgPiqOHyapfNlSssrwwI4j6dNLmwuHm0lGgl8MKBzzEmp84nFJMzbF60wTZ4govnrWh7/f6i6ulbbh+Vc4yNRHswgSMW7Tbv8dSzvBUcqoCiGOOEIAhihFKoz04VAqTQrX9ffDZH4GxWUpUNpqwwxrLw8NO/0YL41x3WKbRskN63AkIEXnEBFVJI5zGyQTmFlhYvVRvnLUpoMoSsqANP4Nsay7RqP7RzmhCLTiTSa2rrMY3Ba4mvFa5pWkpjk6PiCO3AKYOtLdZ7RvOLTdpZlDNtkhyGnk4QgWQympBmIQoPZY7MEsKgw+n5CcOTY5aXLhELjYigtBaRl4g0QQVtPkIF+CwFH2JFhDSCghpf50gtaIoKLyxeeIJJSV7OSTsp1od0egvU8wKlWyum0KLlfVSS6fiYew8+IQpCbt64xPh4Dy9r5kd7lKlmb2yRpqG/kLHYjyjHJXNX4aWksp6Tk302lvokQUwUa3q9FZbWFphMLO6gJOn3yAtLVwVMxnOmpaenHHVeMWng0JX0taZtaAWETY0KBYu9kNxqmrpgGCmqfEY26FKRsbi6RZp1qTxcWVvmf/+//4xyOkezhgkVcad1hcSJQsUBwoUYATeub9E0ntPTglA4xC/ANfvZePsvfkgyXEROHhL4HBdaNpYXENIxPqv46Owhv/zKGn/8Fz/gq7/6Jq4cE2rNak9QT2fYy6vceVSwWFr6Cz0qoyjriFsvv85sXNNbzFjMVnjw8MfIIEKnt5nNd7i0cIO58kSRpLM65NPjlEsrXcbFDFeXXH/xDV569U1suctcRmyv5RBZlrrrfPTwU9588wYPPjkkixTpxhLvvv0eD57usr19CdGPGB8fcfuLr1G+t09RjvGiR7+niVXGreefI+70IU44fPaM8fEBgVDcvHGDB3sjBJLzyTlhlDGbnWO2t3BVh48/+QmpkmxfuU5hA954ZY2T8yOuLAYEiaYoxly7sYblnMf7O0i3znTU8OzwXbYurxJ1NxnvH7A2gHF8maVhw/sfzynsh6yvrNBZvEYxcuQcUM0KnkzuU4mIt5IuP/yz7/No/Iwvf/Gb3Hn/XWbTJyTbV+hozd0H3+LGW3+ffueA2Y1NFqtDJv2XicwpI33IwuWIiiFvf/BHvHnzS3z44VPON8fUj2D89Ih0HXQtGAQRia3ZevNNVs6nXN/a4KiKiSPPcmfEtJZ0xBJmdIreWKKjJAdnAd2k5PlU4ezPjvH+uUdeJTVJGNCJQjIJXSUIVRsUqYS+CLoBVKvgt/Yi+OSzXq1UP60OSHkRjqNU+8ZCYL3FeUPlJblpLsrajtK0GgMVBiRBSBLGXN5aRZgSrT3F2YxQBi33P4yYly1bHqWZlxXj0R7nxztIrahmI6ROUWEHVIJMh9jGoIRDmBplLcLatm/qa3AG71270V9UMwTyAsTzVyseF/Q9cXHzROGEwqWLuM4Srr8Ji1d55aU3eOHWdS5nHeLTJ6S+pJdJjkdHTKo5oXR0OgFZ1mEx0qimZn2lz3Ob64RxhA8UkRZIbej0BqSdDiqIEDi8rRC+RvFZyd/jrMU52y6YUrT/PksfvIglxoMX4qd3fGMdBsB7nGjdB7X1WOsRKkAFKcZajG1auJGQCNlG+iIVQimE1kipkVq388ELGuOZFzWzvMFUvxjLVpDEhFmITEOyLCXupkRxShpHhGkIWUw2GDDo9ki7Q9Juj7QTEic9kkyjspR+2G35C9JjVctjMLLBK40hwTiLr9sqQoAl0E3blpBtnrpWgiCUZEoigRDQ2hIKh5dtIFT7pSjKqqKsGqSEQFiGvWU6sSaLDbWdYMoz8qpBmwYnPZ42XMlrTxJnRCKgVCVaSHzZ/j1KPMZZlA9wQmHyirLMacoKX5UQOpSSNI1BOYPylkBrnPSEUYBtHN4rdp895MHDR2hfEgSWZ/fuMz49xc0NYZZwel4irEUSYKsGREBD3eZFdDpYa2m85zRvmJWevBbsjQp2zyvODw/wumJ/OuF8cs5sllNYj5eG2kmMa+Obp3kbFJV1I7QS9OOAONAIEaCEIQtb2qSIQtYWN9h67goLgx5RrEmjGBXErA37UBukK8A0NHVDLUMq2+CMpq4KaivJixmTk0Pq8THzfIT9BaKLrVX8J9/8PK+9fInjWc7KZp/dWUU+ERRVwcRN6EQBK50OvjA8efaM3f2Sf/Pdx+zmZ0Rhj2/81q+Srm2yNBhQiYKst0r57FO0Kbi8NeB773yPaaHxZcAwKeimMWdqyOXLA5Jeykf37tCJ50SrISpKWN1+lc//nV/BuQanFEG0TxzHjPfPePPzz5PnJbsnI1564znG5yXSwEcf36XMS5bXl9FOMJ7PCUrPC7dvcm3rBuvri5AucbR/RD5vSIcJ29cvMVy7jGsscT/hyc4Zp7vPsHZGZTXlrKDT7XM2nrN3dAjViF4QUFnZVsPiAaNHO+jOIsM0IlYlVmlqB4GKCEPPzO3RHXQIDSwvrzEtR+gso6NqIgI2t9e4tLVNR24yraZoFCcjwE+Z5HN+6fbLHD17yOGsYFQbhukQqUtufu4blKZhGBhu3bjJvNplMj3j/v0HPPjkQ549/hi79zHl/IilxUvMTvboZX0+3f8Qp/ZIVEwkMrZfuobxKWYmsWsvEOmE5vARzkVUdsrh/n1WFq6zuJYh6iGfPntK1A0Yne3zzp0jTo8O2OgvcW77NO6vKSoMQs1SEqJqRe0NjbVEF8LCvKmxxiGCAKRHWIPwjkhJhFI0TYMQos1SF67dUGkrBH8ZdOPbDQUQn3nhcTSiFRGuSsv6Qo/Z8RFB4Ei1I9YhHkM5L1hY7lCWJSc7DynOUrqLA5IkZbA0/H+Ie7NYzbLzPO9Z057++cxTTaemHqrJZrPZTTbVpiRSoiTLUiQrthMLygA7sBAkNwFyGSNBboIACQIkuUhyEcOWkhiUotiiBA20SYrtVjebPbCn6q7qqq7pnFNn/sc9rSEX+6+WApgEYifoHzg3deoUau+9zl7f+r73fV6K2YSOadNbOc94OGXh/GcwaZ/gNVGrjc+HBKUIWjWagCDRwjR8BaFgTuxvQDyiAfAETwhNDSVEA2wS8zY5IYA0iNCk3IV0gDdtete+TG92zL/Ta/PB2+9QlUN2jgTj2UOunjnLaT5mMh7T6Wq2HztPZARPPfUsrVQRJ+1mhtvvEam46Yy4miAkSifMpqcEm2OEaARjocaW+bwLI4iUwOhAbJuNvw6PmIXN/XfzZzH2AWMDNkisC2gRoBYUedWMi+Iuw2PTnICjACiM0U1hJCVIidYKYwyxMaSRRs2TFU+cQ01KTkefTlLc8WjSKHGDRFCi8VRCIIQjSImsAoXSDGWAufvABJrN1kuUEmjhGcQBiaR2mmLejnfCIUWOUOBEM0oINLP/LJF4KQmyoec5PJk2LLVqIqk5LmMm+YyMGitUE4kqPaULCOFotzKyLGZ3dEKr08L7lOVWSm+wQRZraiUxLoByVLYgUU3kcU6BtI7KOia2xumMjoopyoI4S9AOpramLCuEBhlq6kmNEJDoDBWnxAuabpAcHEywtmGJ7O3c5fYbr3L/4W2OH96j3dIst1NkHVi5cIby47uY+pDKxVSMsU6QT8a4INgYtNnZ3aEKikR3KCvBsazwhzlKzShnOSezZnMuCov1cG8mQEiMNCyYDFtPiURCIiyTyZR2qthox7Qzg1OBw9Oc2AuKWuJkU9SLbo9+L8NEWcNP8ZZ2O+OJKxcJ6gBfFtRaEVcjylyi9RLH+QmjO3eJTc1s6WkWtzY5xwKzskJV409lDQP8rV//GtdvHhK3Ej773FPcfOMeWeQ5FQXdwQpf6mu++ac/5LknN0h7i4zf/zarV55gxgH3PnIc1CP+2vYKC3GFTCISn7C+MGWnjNjPc7ZcwfknrzI63aWY5Cxe2YSR4OD1V3lnfJ5LywPOLq+QKc3BhzXHuWDl6XNMjvdIMsjHNacnEt1VtAeOuKP45u//z3z1J3+Dd15/q4kHnuRYZ0mzjJ27D9g6d577Hz/g8PIeS2sQ6ikygtUoxp5b586fvsVsOqa/vgjlBKEErbTLM+cf43c//IDZuGxImlGLvb1TnIbsYMLFL3+RXjqgdkM6nYgP33yF3mARJxzj42OS1ip2ekrLtDl/cYvZ0T2uXvw843u3iZb63P7BK3QjSRxp3n3nQ7749Nf53NOf5x//1n/H5mrM268d80t/ZZV80mJt+RypLHCzMb31Mzx2+TIbYZXvff8bPPnMF/j93/lHbG0ZTj77Rd549x2W0ifYe/1VPv+VFynjfe7ffIt8Y4UrK0/z1lvv0O5UZBsXqfanROkSB7MpneAoJxVLrQG12aV/+08oeovsuQGT/IjlA8fJ/YKP0m/Qi5f5zHPnWTraYf3MM9x85zX++guK2nT44OMTHu7fIalr/ubf/pevsx8ffywlynka3FtAiUCFx3uH9R6Hx3iHdgIjFF5KytBAXR7V0t43s2fgE9Tto/pEoiCA85Yg5qEwQCQh1YqWMYS6ZKGtmkKjrhFSkCYKhEchUWlEezAAIB+PcK5CRpBkfSrlacUt0jTBVgUoTZAQ5kJIaR3CP5LbNSETj9wTAeY8eo+UGqHkJzz+R/ZKpdR88234BpLm5N2M2F3jz++vopMe7e5Nzp87w7XTGZ1kxmj8kCyRPHbhMY7HQ4wOPHblM6Ta0e4N6HTbGBzj2ZQk1kRxCy8cOu3iXI4XCq01tZMEqfCAn49zQmjwuJLmS80ftBBACE1BEObXN+cPlD5QeYgln0QYexEIwTWlkWjEpAGJFBIh1ScsigZF0HR/jI6ItCFqJCO4GirrqWr3//IV+P/NJ40MQcTNiEc5hNeYWKCdwXuBjT2pUHhRQ2gEkkILvAIRYoSsiL0ihFkTIa0VihplNbWbryMpcDis0ri6xLpm/u2DwlcQR4Z2PyESCQaFqUe4ekYsJTWqmfvrgJQedEwQgSLPGbqaSDpiJ4nUJoWb0k00FJZ8MkT3+kgRE6c9inxKmeZI4ShKh9YJsekioxTpHWUQRF5QB4GVMUJbhG/SHCWCSBqsbSBfUdCk0mOMoQLq8RQlLLWOqWix+3CKUZK6dcishqpsE0qF0QlprJCqx2ic4+JAVAnsPAgriTKUt9R5QU9HuLqmtBUH0zEhGXAybYrxSCkybUDWKNPEma9320RpSlTVxFZRW4gFqFQyGtWUdRMmpbUgeIWqAgqJVglIQYxk4gLgObs4YLq7z41xQaYlPm4hyxneDHFVwepCm2R9hf5gja6KuecLsiBJNq98KmsY4Ic3jtjZ2UFoT1pHRN0WaWa4cmaLl773GhvPPM4vLl1jVFpUVfDs809yeFDzb/3S1/jmP3mTx8+uEs8O2F5bQ6cJJwe7RNkiSpe0wwa1n3H+wjmGuxAvXWb3g9e5c1zy1Wev8caN6yiT8fDoPpNRzmle0M0k2cILyMRiZZtEl5g0ZTw8YHlxkSvnHG+/cYN//+/+bb71nZd4+60/p66aA5YLAS+BvMBLyf07eyRikbI2rJzr0dKKzWSF75djlmWEH9Xs7nyMQ5J0IqpWzZXPbPOD16aY2mKDZTQsSCNJ69J5up1Fju58xOL6FlPrWNpcIW6fAa+xccFAOWRnjePTAzorK1D2MEqztr3G/f0RaXeZnYOPmVrLk088zcHpmKXjG6wMWpw/e5VnZos4N+OLzzzJt155hY2LF1ge9DgaWerIMxrDF5/5SY6GBxxLy09cfobT2x/w5Sev8UffeJMXn9lkvHcdc/kq5y9Luq2Km0fv46Rjtp8Qx5aSXZK0BbMxC+tn+fDBhAW/i83vcjgsyZavEIfAViRJuz3Sds6lK5e5+4PvEpKaH759m0F/i9v3X0NUbSrZ48ODH/DVZ/9NLi/+6JHBj087rGcMxzOc9wjvCM5jbcAFKF3zcjkSDu8huKYEcAHmpKL5hqE+GRkopZCy0WyDwHk3n2s3drZMKZQUJEoQaQeuZlHGZBo0gYXFhKJyBCBNNX7OoC5OJmT9Dkmnj9QxLmiKuiQTq1jRAFhirSjLHIkkxH6+wQZkPgZb49vLTatRaAIS4Wqct0ilm8yE0IjRpDL/j3FICOGTggeaPBgCTQszCtjQxUUt+k//HAsXnmRU/kNqe4+fbV+iFobty+d4vt/ndGpZWGiD8HRSzfLqFjEFq67Eyog0G2BUGyccIl4i1Dk+KKSO8cWM2lVMJ1OqskTQAIm0AC1AiYZDIOe9gaZD86jsAe9hRiB3nkw1LWitBVI15YRQBh8CoW5sqJHSBASKRlshpEAbQxRFpKkmbTV0OTWrKWeWSeUYT/J/5Zfhv85HyIRIgURTy4auGDlBFRyR9ShpKWLTJI/5gJQa52tEHfAKEhuotUKXUNhAHSpaQhIShbSB3OcUpULWkrIG6QRGQaDpoGA9JwjGJ0NUlZOkgjqvsEritCYOhlraZjxjIYgKKZscBBGgPVimDg43OqBAcUvcImkd0F5fQQKmkyHQCK0YjY+JtW6uubdKqhVBQRHHaMBLh9KBsjxFWImKDDiJqqYUSIxxtNotEgVKerKWIhxOGc6GDA/v8/DhTU53HuJMTjHO2bfgnaLOT+nHmnhzwM7hjFk9axJQXURRTsjLnKkTyLJkeXGBti3IlEV3MkrvKCpPhWB7Y5EySGw1pSwmqKC5duUcnW4LMzlgsR1zb2+KVnByckLUSvBFIIsNnoqyiDkqC9pJTBVbaunRSmOloAwVta2wLiDjhEtPXOLSxYLT0vL9+8fYWhCO7zNY2WDt/OfoLrcZHu1gBxmxbhENUlwx+lTWMIDePENr9xbLy9uMYoM7mfEH3/oO7rkxT2waTm99gDOSwfoWkpwyd3TkEFHB2lpE1Er41kv3eOGLK0wPxxwdCUIcGNqE6eweaxsrUHjK2nL7vftoMWQQZdwbHjHwMT7OaK1vYY8Kzl5+mosbXa49eZUsW2R0sk+NZdHk/IN//jZf/vI1zrXh8PgeX3pylZ/76r/H3/uPd7j54S2SSIMRyCC5ce82xWTGex+8y3s3PqTTkXTurvK90YzDwyOeuPo4vZVF3njtbWxZE1zNxuI5rk8+4s7uLv12n1CMQWuOj0947nOX+JkvfYUP332bpfUziCjm+MZ7LGyd5fT+6yw8/TxKPE6x/zKHo9ssb17jwQd3uHjtMvu7e9TmDJhDHp7ssLz1OJPTXU5HgdHJHTJXUzBjMpGsnF3gYOcOvU7C+bVNlqIV4qyLGD1g+HDIT//sz/LSn/wO90YzfvbJbQ7u3GPrbJ/OlefpT/8Ad/Gvok8LajfjeCiYlYtk8hTu7mG3M0Josyza/Nl3vsmlqy8wNiOWo1MSc4bkzCV2p6csyAf0+k8S+VPefuUN0lXL4YMZw3rIN37rA7703OO88p3fYzzaR04O2P7ci7zz1imTey/z7nTGC/y7/9J19mM1BOMip7CW2jtKGygclBamznOoHCMZCEGgUCgpUVKhlSRSCq0VWqn5afUvdARaqSYYRtCcKOcnSaREaYVWgpVOxmKWYfAEX2OEp2UCQmjarQQVKZwLGAlpGuMiT1UXjeq020UmGVJG1NMhNp9STkdMxsfYfEidD3HFhDof46oZti7xril2cL4pZFyNKyZQTgi2AGeb+bl3n4T6fNLt+Etk+JLPAAAgAElEQVRiSecsztX44Odm/2Z+r4WhNl3qzirbF6/xpWeeZvPcNpfOnaXfygghsLiyxniyR7+/jBAwm+6hZUzQEdJovMuRRqNV1oQVuRolLJrmVIercVWJq2qCb074iqZAUVIgJaj5YEaEv1ywCYJoaIVCCNScMxA8OGtxoRHHETS1c3hncaHx8XthcfgmQlYIpJZoHaGjxlZnpCAET+U9Vf3pcOA9FaXIKUIg1AHnm9O4jmK8ClgtQLhG/wAILBqBjyRCVMwUICpEFJACgpdUQWFtTm0rgtQkTXoB1jrqAOMAua3JywqvAgKPF5oaR5FXeDyuElAIJvUMYRubo28kfIQg8UIwdYFiPEFWkGaaqCVwGgpXQFESxRHj01PG4xFpZEgxWGqSVruJZK4KyvEIWc4Q1lJOc4rxDCNjZNxQORUCW1uElkitKGxBWQqq0GRPyMhgkOw/HHHwYI9x5emTcfHsIkKlxLHmwuYZVNShLCyRVvSyHgRPVViss+TWE2yFdRabLTEtBSGk5FXF3WHFx/szzm5f4s7DHYIIJMYTSYhbKbOiJJ9N8VLw0d4uOm5DlZPGEbYC09asLiR8dnudxZ4kUR7nxsxGOSWWyqgmuKZoujamAG8bzcfhdMap6NLLumg3Juks0mqtoLSkON2nlJIqtPDaN3Ho3a1PZQ0DDD94mY/3YefhkIc3f0hVj/m1n/s59nb3mLJIqPscFafsHBzQW1kl9xX91T4nR7tsnX2Mjx/s8dSzX+bWB9fptxLev/0xk9FNzp57mlbWxwTDaP86VS25fD4i1BvEcZs4dBhWOSvRHdp1xmle8fK/+D+59PQTTIe7WD9FZxGVlww2z9FJY+7ceICMDNPpKbfv3eX+/WOe/cyzzXtDCrSOODjYYXh4ilCB0ahiNJxw//4po+EJBIcPNaPxmAf3H9DpthgMFjFxhPVjxI0hqTMcHTYk2vZyhyxLuLqyzJvfvUOysEQdlwzv3yPkU+pKgWpRTxQyUoSoT5r2yMe7JIMBu3u3MSbw8c0/ZWHzHJe2zzE+us3ymcfZfOKnCNJwenhKbGO2VjaYPdzl6qXPoqSnvbACceDBzk1e+vPv8cxnX+T73/lD7MxwbuES5x//Ca588TeggslH3+fiV55hfXGJ2TQn7W9wNNwnbdfAjGhFs5lss3X1eaJoGRGvMVgv+fjBP8fP9hFuRF9nrGwOWF46y2x4SIHmdHyHLzz/U4xGi2ysX+M3/vrXcc6ic8HuewccH5wgqo/40vZ5Tq7fZz3+0e/iH9shmBQlgabtP/MOD8SRRqPoonCqERA2I4VGtCbnmGPbQI2RCBwB51xzkpaNFQo88xgEtIAQPEVdkWpJqhyrieDaYhcZPJ1+m1amqesKHRnSJGva2klMlBoWshQZReiOAe2ws4o6CFrdHghBXeXoYCkLiQwSb3N82kHoBJ0ugUkafKsyc+393DbpA8ELgtYQmpScEBpBoZ+LDr1vbq6UYt4pCE3r3tv5bD0G5RERQJfupedR3XssnLWMjm7ig+Ho5IBU5Jy9/Bx1NWKwdZ5EtiilJWHQZNEriaNp78uqwpZjQnFCCDXBzrBVQTEZk0+m2NohRGgATDRkwgAYIeYCSPA0XAgAQaBugJINK0KqJiwjivC1xdkKqTS2nKfkCYUUmrq2RJEApZDzqOM0a5O123TaCd3JjL2TQFULTkafjofbG4+pY4RwgAUrqWmCubTQKByugqBmeK3ABwQaaSVIR+IF2geqAEFqtA7UIeAriZaWBZMwk5Y4lsxKS+VkIzKsGx0MgJMFaioxRjOrHTqBlsypvSdCAyXWS7yvKb3HCI8yCYmyaFJ02pR3s1HBtB6xtBTz4fsfILtdtNK04ojp+BRjFMIaWt0u1gum9+8iWwm2LIljQVl5QlU3TpW4cTPYxGCOSiazGftlyfqZLQ7SFm0UEZY4UnRafT7/k1/j4a23uL+/z359Sj0rabUzwnTC9OQQ75v7Wrqc4ALtOOW0PCWvgdrTNgqnNaP7H/PCc1/ha7/ybzOb5Tx4+1XeevcVXnrtuygiXOWpVYT2E0xd84XPXcUYx43XfgAqZlKfMuj0WGmlDI+HEAyHpxXH0yFJ1uLcgua4sNRlyWgyxhwdoOM2obCUdoKvaqanh1AG9m3K3nFNb2GFzc1t4qDJbcXReEISSaLYMbuxR2shgWLYUFs/pc/ATvjCM09w/8EpV8+dpXP5Mt995R79K19BiAnR4pjPXPtl3nr9Oq9/7zuoIidfPsvyWswHH3yfxd4q1999lV/71V/m/kc3uXymz9JgmeFwzEe3HrDx/FP0+8uc7HX44P2brG9GjIYtllpLzM7AS9d32eo6ovYGy8s9NtcWqGZDhBAYLCZMmB7OOD33S7z5jb/PE2e/wtLyIldf+Cnee+d9HttY4hv/6L/l7/zmf8bwZIRWArRE2tBkdXjPNJ+wc/+QOFGYyHA8PUTlGikkhwdHBAd37+1zenJI0u6QtGOqumbg4Fe+9nnuDkesndEIWzK7ZVFJQXdzk3sPbrPeg7I+oMgVRZ0R6XXG5QHl8JD2Uovx1CCUpNh/n1EZ009ajHZvcbD7A5Z7PXorS2zITUbjt3jy2lOMDm4wKls8du4MR4e3aJ97iq/1L/DDH/4p7Y5hYaOPU4Y//ub/zvntazxxbpnJW/d4J0tpv/sx6+fOofOSn3j6M01ybq2I2ue5c+s6w+ktzn72F/j6wox/9i/e48zGk7h0iXNb65Qix2jL3u51nn7uZ7j15itce/Gn+N1/+h3W+z0WLywhQuC0FnRWDWtXV1huDzgthgxFRPTEOq2ziz9ynf14dLG183m4QElFNOcLWJpENC0aEZb3jYgtzDeZRzNs5kTAedR5c6p282JgvknJ4JGq2agFgcREJBIIlmIWaMUJdV3jvaLTayGCxESaKFZEkUbJJh41BJgOZ8RxglQSDxRVTZxChJxnwc9dA1LRNNAlCNPMbbUGpR9pCUHEzelfzlu//GWuwiP4Emjd3MLmmhumP6FB/IYAKI1EYmSC1ZKQ9WkvVBwfvUq3t8z93eusrFwg+IrgxmRJB+kLgjQooal8ThI1HY8gGxuarScEVzQZBtbhg8PP43SdrfHONsWMEEgh8dKBe0SPZL7pNc+sudyAoLlniOY5KSmJshilTYPSlXI+CXJNcdSY9ufFj0cahdIaE8UYE5MkEUnUwIysg/xT0hBITDMvD4Jm8CTwWLRTgKN2DXQJEQi1bOBN0uGExngLKiC8wlpNbSsiqZDaUaumW1D7ALZh+yc6IpE1tTfUJdTCYmWYUyEtWsUstlJG+QSUxKiACRopA94JZkQoX6GURAiNU4ZpcKjZjEQbumlEa62NtQERaoyJSJTBSI0UDo0hzTrMZlOEjNBZmwBM81OkiCkridIGURX4wuOdQSKx3YjMxzgnmD4csrS4ggoCqZuxRRACEyRl5ZDFjLooSGKBLSsK74lrRWUjpvkprvR41bhLKutQQpFEEZEMVEDux3zrz36P/cMHoA0333+TvJoRpCHrd9GqRlUFg/UuraTD+PiIC9vrtGOYnOacfeIyvSjm6MHH6M6AFo60E3Nvd0JL5XR6KSGLGc+g324z6PUROoGWx9YGOyuhqhhXlkMbQxemJahpjmtrilhgrCAYifcCFcbkPkVUktp9euFG60/9FW59tMOkOsWnT6NnJdfOLfH+/n0O6kXu3nmJ93cPeWrJsPXk53nwwfukCymVclzZHuCEYeWJ8xw8uMVoNmGUK8anU/b2bvGrv/QLZMUeN3ZnmOqQjcUIORvRT1s8DDO2Fnq0i5LWRpdzeIZylel4gk5aKBMxGe4hRIYyis+eibiR9UliRVUNCbNDNs9tMJk1SPS1jT6unFEiSFNNPoM6NPk4nVaGDoJhUVO7kjhp0eu2uXP3HkZL8qriwd37rC4P2N3bZbW/gsXzxIVzCC/Y2LpA7S358QGlO2Bj8zGylfO0jl6hlguoUCFEhlnapNh9i+n4gPWt8+weWcYn99g+c5FpOSWqHVU5oZADVC+js7JAxJRe1OLo0NFezxB3C5Z6KVM3Qy0+hfJT7u29zcbyJbqZxeqUohzw/OcS+gvnOT29yeh0zItfeBa985DIz8iF4Hsvv8/j21fYP/yAwVbG9vnPU8QFa+lZHk49a727TG7d5sxf6TKePUR3YH0l4gc/LNh79xV8vcOtO1MGqxkbIuH9V37AEy9+ll6vxbWVFDGeUPc2Ob+9Qrl+gklXODh8+Ueusx/vMtC6SbYTotkEfCOUAzE/ZYYGMERjVWP+YGHOzg+hCUKab6be+0/wOM3u0vxbsZQYpdC+JsYyc4YkaHKj8NrRUjHCQVUFlAkY5RFaUVUVZS0QcUIca4T3OG8xrT5xnNBaWEGbCJNlqADON5tSWZYE2WrmJbZGy5pQlQRZI7VpkMY0m763FTiHUAahaDbbIJDqUaHwqEho7JRCCrQyoBTe27nbohEAKhPhkgFBatY2LmLLmqeWv46gos5LpqMdyuIeHfUMQgaiThsh23jRoJQ9DQbaT49wromWDlJS1I4yLyiLGdZWDWsggFACZeeagRAaB4Rv7Ih2LiokhGaE01QCgGh0B0qyfnaNKM6oqgIJxNo0dDzjcK4CZHMvEI31UEiSNKPTGTBY7FOXJd2DEcNpxSj/dAoCEwLBSQQeFxzSeZwIDWJYdYiB0k3Bi8ZyqiXGG5SpGpEoGhscQsxQSpPXOdRNwqEPAlyBwRFqTRABkcYoV2GDJPYaj0C7ihzLtBjTTVZ4bPsJHhweMp2MGNkKgaWz+BnWB6tUoweMT+5hrSPRGiENQQeGw4ohOW1fI3SLVneJ/HTGVJcsLq6S6Iju8gZaQDnNmRVHpN0M7QUrK2dRRhOsox7OmIUpoiqJHKg0RTqFEo40TcgGHTIMkRBEQiFanrKKOdg9YuviFapQM77+Lsd5wdJghcILJuMc68ckaY/x7BBbOsqqatrGw2MmgkaUqxKC9QgCb77z54RgkCpgdEJrsEQWtwiuprIFda1JM0MSZ3z43k32jnNGk4Lvv/whnVQySD1R6minEUo4xoVFtQxGCXQdmDlPMS7xywKfF1R1YDI+YlxY3vgQKmmIUkOrrnFScSoLWj4hKkC2Q+Ou6KTEvYjDvUPSLEPXvU9lDQP83u//IdO6zd/6N77A6ekxbtLiwYnmUn+R2mYsqi9wVdSY7eXmgJW1effGDR5//PN0FxcoS8t7NwrWzwXagzP89FobqaCWlpsPCja7Kcf5Ea1knfsfv8v22SUuXbrKm++9w7c/vMsXr65yeN9wdXORZ595EeQIFXeYHB/RSRJy6fHW897/9JtIs82skijR4cHebTbPPc2Tn73IwZ2H/L3/4O9y585Nfuu3fgfhJYUsqeuA1pqyrpmWYF1NmhiCLzg6KSnLmjjKiKKmSD2ZTPBBkXYSrl1cor3QYm2wynR6QF4N6ZqEQWuVpTOP88Nvv0l7gUb3E0AXp5zWKVmtWF17nJO9A2bTMRfW18ikYViOWdlaxrotlpZT7t36iMhlKFsi4hlea4Q9Yf3iVdqLl3n3re+xvKTIDwRGnyfr9vjo1sssLG+wtrnOjeuHJN0OcnefSWr4XFHzyumQ80sXGJ08ZOtMn8zcotVepseEk+qQtPZ84xv/JT/9V3+DjU6Xot2iG6Xcf3DM2hlNVV3hybOX2bvzNkvnnyL56Ae01oDBZnMQ1Cmfudjm5rvfIg236XSf4+Gdu7Q6EadHu9y9e4u/8SPW2Y8tCIQS4OZz8vnJ+JF1sDGviYZOB82peN4dgEZ1jhBI73G++Z6c/5RSEi0FwXqMkhgBiQKtBN1Es5UJegaSliRRktJ6iAL9OMXEshG8oZGJQacpSqtGlDgYoE1Eq9vHxDFREuGFoc4L6gBOimYDk4YgU5RQxN4SrGtCe1xoWP1SNcWK8A1y2c/Z/TAHATWt90YXoT85eT8ar3yS4yB1s1l+YrNs/sxLQ5RmiPoEtGkAR9Nj0igl090mjTFpIVyNcDkuaTd+8rkY0ArfdEZwTdFlbdMdqOtGCzEvwXQIzVw8hIbO533jfJg/P+Yo6kcPVvGo+wFOQm9hASUTivoUIRqvevDNNZrQtN0JDR1OPtKIRDEmikmShCxLaMdNpn3lPp1+a209aRqD9FSTHOE16KoZDdmCau6SUELQ+PA02utm3SKwBJR0OGeabphSGBrKo3SKNFN4r/C2+btR7ZBI8A3e2WAaZ4uQSC/ZH51Q1DXrm+dJWxkHwzHWltTFIcO9Q1yZ40PAhYCqPLolyGeC2HikFNRWgCjZ2fmY8+NDWos9VNH8js5GpwgVUYVA7TyZVCStFkYJRNLCH++jNegyQmiFk5CZFkkck5cjYhnQdcW0zFFVRJV7krZApxG91QXaKyv0jkZc2d5mZ+eY2fSAmdOkwhFEzcHxAWWlKEJg7cwmBw+P6XX6eK9wboYIBjLVJGcKgfeyIdBpRTuJEdKSGEmoBJ1I0jE1k/1DptWEu0djlNL0spjlhRajyQlJkJBolFesDfpEBPIcrBbUwVKFgnIyZVI7JIrZtGbnVJB7T2r6WJcDAh08Riqc9QQT0UZhJ47lC20SrTluOdK0zexT7BCcP3eRv/HzF/kff/tNfvHFbRbOLDC4p/EDzR/+sxv86gtnmRaC737nZS5ur3B1vc+sHTMratJIYLVhqV8yeniHzorl9tjy0VtvsLr9Ob76pbPc/fBVutkaHz88xijD4UnF/e9+i+nBISu9TfTgCmqyw5mLl0n6CbODU2QnoE2LYBxheoxpRUzEMuL0mI8+uMGV81ew0jAcPUSrNnQjzsfXSKKUSP4+USsiaqUcHE6b9D5hsMwwRmCd4+R4Mhe0B+qqQkhBNzPEUrLeX+ba1SU6KqGbGaowYTZ5yHLaQpoME8EonyKTQBT3GHmHPKiRqyWd1XPMxhluvEvSUZxbPMPGepu9vUOcNPQ7A6bVCTJE+FqAOSJuD5hOPYnOMLOa3Cxih3to32J4dECl2niT4Uyf1dYGWWeL6f4uqyvrGBVxIDTLlze5++5rrF08R1uAzfqEaZMyasKUcgJJvwSVEsi4986bPDjd58rlyzw8lNT2mE77OewsRugOK1sXqSlYWz5L0u1T5nuMjk7YTU/Q8SE7J/ssdPtsn11l7/49ytE+y70B0+VzP3Kd/diCwDk+abUHGncBvpmyByka5XnTAvgk5fATwoAPqHljwYnm5KxE05a2tiZIgRIKKwQdD8E6MqNIhCANHoNAP3IrKIX1MB7N0LFBLHdwSqO9pBpOaS8vYOIMJQ06zghRRukF05MxzjeYY6kaXoBSilZnES9ylBOouEvQMcaW4Dy+yBFSo6JWs3nSwHm8rfDeNh2PEAiqsd9JqRBSotQjX/4jKyLzgkF8cj8FoE2MJ0BrGaMjypNDhB7QGvSpR/vYeohhBW8rZGsD6QuUL8C0CdUIP5uhtET6GFePcXZGVU6o8yllXlPlltra5tnMuzPNaMfPEw0DtmHkEfCNbc4FvAwkUpHN4VNKBlbPXG2qOFejsTgRcKEREQYSRGhSMJWrUQSkFqjIEKcxvUEXV+es9jOUCOx/ShyC2Ce4osSJQCQCNpINTjg0gCCnEiQFtZAIXyG9p5SaOHi8NIhQIgUIF1BYImSDma4Fwni816hgyELAq5qpr9AmIhUx3tdMrEK4ioyIen4vR5NTTj94fe7lBK8ULozwQuJlQ9A0wTOqA0EGUimIex2CU+QTD1qx0O6ABldYss0B7U6PYpZTz0bEUYSJLbauCU5wfHxC+WCHcTmhKGs6nRbBW9KkBb5AKoUvJuROMrUlp8Oc1lFG1ltiUKUoHWjHgeee+wqbZy5x78EdVq1kdydHTad0B4bpLEDW4k5xQlXBnYcTVhe2yFpT8nKM0quY0MCtsAInapzWCBGhZEUsNW0pSBNPnC5gEezOShYZUxRTmKPOty8PmgLJdohiwcMHhywudHDeYrVCRtAxCf1Jxc71D3G2Te1n7Dw84YfvfkR7cZVWe4OivI/CIogIskaLQG4Frp6QUyFjwQ+/ndI1CbqdMFaGpPejY2P///489tgq/80f/oDh3h7/+A9O+fKLL3Ln8IjL5QaPrcOfvHqd+3vXyeQy944CP7xxHYXn81cv8Pb7BU89/XlC9W32ywVaIWZ8fMCzzz7DweEBf/BP/iHXnnqKnbtv8Mtfeo5hucSHD05JZpIjMcW4MfsH+7TtAavn1pG2xMuKbrdHKCom0wmdzgLH4yn/yX/99/kP/85/yrdfPeLCZYHQBVVhuXXvFk89/zRHJyP6kxXOXtjiJ1+4wsrmVT58+wavvfkWH926j7MRSRwzKyqSSCHwLPcGPP/EJrLrqCrN6mCNYTEhkhlJ6jjau02/1aaXLpEMFum0DNHCWa6/9wbWFdhqwGBd0OtkpMIxqqdkq9eYfnifVrtGp5p3b+wg7T2efvx5ZjanGk45Lh2x36OVLDManRBKx0rHU+QlJ2VKUsbkrYh2vUbc8USiQEzvQquLFRpf73I6LemnJWefeJyTOueuOWS7vcr3P3yXS9uPUZ1MifrbpN1b2NmYfrbMzevvkOqIo4O7bK+d5+FHHzAtdrh8rQ/DXW68/n2WukNWzn6W04NTVLtA+SnHkx16ixdImSLNBFtGuGyZ+++8RpJ0CeqYeDJjb+fgR66zHw/jDP4vmfJBCkngkdJ+/i3xF0XAJ8OBuXHd8+jwGZAerGiEiWoOLMJ5nPNYLbHB0UkyBpHCGNCmQSILE5G2OwgJWSuBSFG7pgPh8GiliKIYITUiyvAioqybDbm2bg4QCgjXnPal/IuI5hCaFjy1o6YmEMA3vAURNdcppGoQtM7hnJvjZiHUc+aAUk3GQdLkOAjUJx2BR04EmHdM8M1J3aSEdBVkhJkcYqsc0V1AB4UKFulLqGtkPUCYBBUczluETBBi3JzslUTUzf/X1xZblriyoq4c3jfCTicDToa/1MEI877OvA0QGi1BkBJJIFYKo0Epj4k1rc4A55tnhA8I7wmhISE2LZ/mXjpr584FmhAkHRNFMUmakLVikqJo4ECfwkdEJQGNDk3RQ6MgAKHwSoAURDJFatmcBmqHlK5R+nuHkHwSymWtw8xR3Y+K1co7RNA46QhOEBmNEg6nY4rSNd0YqXFKokJN5cU8bbLJUVDC4yV4GaGFI5gMFTzKNQkUhYXMCEzuUXHCiZphhOZ4+JCT3X26i4vE7S7KZHg/pSpyxqN90iglaStKFZGPjpkWJbYucDaQoKiFJYs7lK5E1YYqBKTJUMJRVBP8rHE96NCl326jnSC0YX11ixd+8ue5/u7r3LhzF60t+RSKWUXuS4wymEyTZAsYLbEhwQB5WaGNbiib3jH1Eq2aBMYkaeOLXQwZWafPeisjUjEilowOh5+MT1wr5t3ru6RCcn5rmdjA1OsGd240tZ8hdIthOSOLJaotefX1VxlNHaKYYpSg3v0IuzQmSvpEqcb5E0Z1SSIMxkhSArqTNaTISNNPE9qLy3ipSaLkU1nDABdWVnjiTo58bpnl1Q1eevn7/NrXP8e33vuY5cWYmx9/xLNPfZ4vX+iy/fzXeeP6ff6Pf/C/4KOUEBzf/KOX2GgXeH2KFAOSbsxJCaq3yIKTvPzhlM89/gL//f/6B5z/zBpKLnBhfcB2skEqZpwZeE6Ha2TJMlWYkeQtpDR4afHeU6qSOHGkaZfB4Az3T2bs3t+l11uh99gG/aWU8dEOg5WLyKnn8uIa1TQgYsXKWo/zZ86yGDt+8PEOkclo5ZqV/hK7Jwc8dvkMIU6oC0vHLDE6mqC1pMhnjOQBa90FbDihG2+CKeisn+fu4QlSSjr9AXVdUs76qKUMkXZY7LawY0vSVaS6x3R2xNbyOpkZcHxYcDLbJyVif2eHQbrAeO+AwfI5kpUlJoc7nAYNiWQ4Omx+Z8ucZPAZdvY+YK01IokWOTrcJVES7/u0e6s4nREVI65cu0ZLGS6f2UI5QefCF7DDMc5ljKYjukXF1uXHGI1mdEwgUHHmyS9T7LxHb2GZowf3kLpgcaHLaHRIt7/KG7ff40tf+BXuvfunDNY0wqyQpWcJsw/pmTblwS43773O0lKHhfUlMhP9yHX2YwsC/2hG4F3jX/MNbVCKgHc0GxPgg5/bpfy8AGgY+z5ALBXC+WZeH0Dj8ELhnOfsIGNSVGjnWNIRyy1DqgJmHqvrlcYKiccTaUMpAjIEYh3hfBOXapSi0hoTJRSuYQgEWzZRx3MLXVU21sI0jTHO4+WYNChMAqqYIqxFBT2P921CnRKjQUdN+E0IjRWGhkTXqPYb6h+1hQoq71FaoyLf2LmUQUjxyOqPtXaObw5oKbBJClLhe+uYYkY4uYOK0mYyEbVQtiYUh3jXQiZtJI7gA1Jl+MiBb1T73ktmVU7pK0KSEtKaIIZ47zBeNJhcEajFHDjk+WT88RcKykAsYJCEhtAVG9YfP8fSwha2yCnLKUZYlITKhnmh1BQ/ztsGl+wsQgaCEigTN9a3umRhoUcIcDo7+ld6Ef5rf1SFCQYbNLpySBEgrhsGhtUYMSPXIAtJHez8bki8kMSqwPmYKFiIFdHc1y7rgDWSWlQstVpMfI23Kc6VGAR5VUBcICNJS0FQKeXE4rWbWxQVwViUBWOaJMFgWghfIWqBNxEmabpqovbkoeCgKIg9dNspQXoWljZZWN3gqS98kSBgfHzIwekuqqzRYh77LQWHB3sk2qA8BKvIXYGoCwo7JW8PiKI+B6dj5CgnbhtKrWjrNtpEdNOEXjui12vSEONK0Mo0T16+wuXHLnHu6lO88+qf8953/ymRL4kzMEmHvK4Yne6TrJ4hSwWFNlRqgpCaumjWrRKaWEaYlsLnBe3WMqnybG9sMCkqDDWH+3t8cPuA0gfa7Q692vMTLzzJaAU+n6MAACAASURBVDrm+vv7TKqiSYOUEZuLgrLW1KWlv7LAnaMJO/tjZC7oZgqZLZKmChVEExVrJIlRoA1BDkiVwclAbCRpnGGMJOr0MEqgTIoWGsynF270vTc/Ynt7iXwGZnbCr/7Cc+zf3+HXXniKo7Lmc+sDHuQT9u+fsF/8LhvtJX7mr73IO2/uYd0xaZ6z8cVfxO69wcPDE7ZWN3Gu5o++9x5Xrmzzm7/+0/xfr33A1oVlToaS/cNb7D2QbG/0SRZj7r/3LgtnXgTpEbakrkfgmo5v1o7BxcRxwu7+HX7xb/4yv/17v8d/9dsv8Z//R7/OcFSx0D9PtDBglk8IRvP817/K9//8j/nf/ov/gbVum3SguXv7iDoP/OzPP8lgcYnx4YSyOsPq2UtMrSXPd0mjPqr27OzcZ6XdpZq0UJ1VtBRksSLttXj59T1Oj69zdmONmhndbIPCHlOHAfnRjIVWDysCVl7lD1//Y37hC5fxJudk5Njde8D5y2ucnNYsbmyjj3YpZI+9B/eoZvfAV5SJ4uxal3J0RHbmGoW4x+m9P6OfCCbjDv83ce8Va1l23+l9K+1w8rk5VA7dXdU5sRnErDCyNZKGksZjCRjYECTbgGGMYb8YhiGM4ScDxgDjh7FgA4ZnZMowLAxsYSgqcIakKJLdJDuyutnV3VVd+eZz7kk7rOSHfZual25AgAa9XwqFWwXcsO9ea//X7/d9s35FdXRA5/JnaI3fJatv8uAgR5QH3Nhdod1+n7VTVxiPbxMnb2FcQX/lIr31VaY+JdpDVDzgYKo4s7nJ8fiIVHe4e+0Go9KzvrJguPYIt996g9s7+xypfV770b9gZDS5Kbh2/UXOXP4Fnn30CY7sAf1zy2yoh3jx+jd4Mn2Kje67H3qfffQd7k/2A82q32BvT4KCUfx0cPDTIwVxkicIsaGESUCfjMybBHvDKhDypG+N5FS/j9Y0iwmNelYrQ2IMMtHIROGkYFE5YhnQOqV2jc89CEWQCT4muKhAaYSQ1LXH1h5ra2xdN8l/GpSu957gAraqqYsFi+NjysUxtp5jT7gDIjp8VRLqkhBdc3YS/E+/VqEkSmuk0k0WjYCvC2w5x1Ul1tbN//u3mNF/PVVpin9SGaJSmKSPUgpbzMCXCDcHKmK7h1CanzIfo0cE2zAHgIgCoRFCN+fVVcl8dMxiPKGsLFU4+blxsrDIv45zhpO325OPIoSgpSX5CWyp1TdsXziPOIH0fPCzklr/tHXSnEf89XERBGSMaKkbAJVJMElKkidkmSFPP5yO9e/ysj7BetXQl1TjX3BCEqNGKI1TCqomSyG1aiYGNiDqSFk1DQonMrxrqpkTWzIPJaUrCS5Q2ZoQJaFaUDqLjU2uIhWKARITP8gVWCICoxoHSKJaJKbTsNalRIQSfQJGSqQmzzqgUqJWZLpFqjQieIpKIoMmWsvFK09hekOiD1TVnMSX9FoJZ89d5qHzD7OxusLm5hpBNgHhUjraqcEbgQoCFQPBzpGVR+ZdQvRoZ1HG0F8esLG1TH+YoQ30uy2SFIyB9bU+nbTPha1tPvm5z5NuX6ZMc7ppC+89K2cfZuvcJexihky6jVnSGBALRFjgVI0QHhGb8KHxHlEtWDuzgS5rntwaYihws6Zx0R4aBv0MGyOLOmFaOHprLfIksH1hiSwxHDzYZ161UcM2c+kYl5pMZKSdnOV2xnIOmRTo1GCkoy2aDWzbSNYSTdqGQSsnb6VI12zmpBQYbRBGUWUg+fhcBudXI6OjBVe+9FvsTjT7o4xTF59gUkdOn77MNBngZjkHbkyHgLUlN1+/zjPPX+ALz62BXObuzTd4f1/x8JOPMJ9W7N5/m421FH//Jje+9z3sXcsjD6/z5EPLnDFzeqZmXCr+4A+/zcvTRzn3xGm88CADaatPUcwQQmJ0m0TneBdgkfD41fMs+4CVHRZOgEpJOorq6D6Ht3Y4rqeMZyMKBxuDNs4V7I9mOKU4f3GLC5cuIDGYTLN1cYvQVnRSTa+7RO2nHB/NSduaka+p+3OQB7TyTercovMeL736Pba2OsyLEonC6zmZHDCfjxgMtvGFRSd9TLvF3/ncF6iOD5gcBu7ODph7w617kePJGD8esXfvJtIZCh8R7TWy86dZ2niM0fR9uhtn2H/3GuXIcn7j02yef5rSRWaFIiSr7E12WOn08GEdnSha9Ln61Brnzq4w2rlGlnravWXk5mWqXJOtrlPuXycu7vBgd0Qs5iTtVdqr55gd71KnU1orc1qtU9y9+T6lL3hw9A5nly4yKidczs/QqiqOpu+xIh+wfzQhLVLKmefo7tuMrOSgGLE+6H3offaREwKpwPuAlhIfPYoGJvTBeDgE3yTyYzwh9EWMlIQQmioJYJ1DycafJ0WzUcgTSRIEx/OKUDdkvURrekoTXY0VoiHyGYkWAhcUrU4bM+iCEOhEEaVgPHEkHcOKSkEaFmUNArzzOGub2T4fBP2AEpySOBcxtkapjNx60rqFaPebylw7RyoN0RIrjxQKoQ1GyuaIQBuE0I0MKAScDfi6JFYFxNDon01G6HaRaYbOcoTUTTXsZGwew8nGJ2vh4wpSaTKZUT94BWEyTDlpmAcqQQZHcBky7eNVjpASWVbNUY3OQdYsJiOOD/cppguqssZ58F4QfST6iFaSjEBpP2iMNPa6DwqHqYKtXKG1AAJPfvHzPPX853FIptN9RIhEoQgi0spzhG7qmc67ptZoLa6aI0ULrTMwKa32AEJguDJACpjMPh4OQd/nLEyFjFB6SSIlIaZIFYnGY1wOZkEICU46dJAI5ZAikLiEWgQSndDuaOpixmhRkQpJIQNGNt8DZQNWRUwQLGqHMY7jRSA3Ai8kMRGoTCEd6GDokBCUI6CpnEfESCIFTimEUHhjSYJB2Bpbzmn3u8QgsFiSaFneOsfP/t1fg9pS3L5NZiQrwyG9y1dJhaAsJizqElfWjba106EoSpQzCJUyryWD9iratKhDxHRSMik53DnEdDK2h3263S5pAkYJMI4YBEnfoLxADBM6vcCZsw8TwkWuXrzK3uERX/3q7xO//XUOb/6E1tJpzj58kfvv30BpjyktxrRodQ2DVg/TSliUlk5Lk4UZl09dpb/U5cbtGxy5wOh4wZ3Rgs1ewrnzW8xtn+ShDCELutpwZ7RDmqTs3Dvk9PoAmaQsdxz7Y4OQFavLbWalpJc6JG2QkKoOUUnSYRvlEup6RhAREVNa0ZJqgTMOk/Qa0JoSRCHJaIiTUX98RwYPb2Tc3i/QD/6Cs+uRpe4+D3YP2WgV7L65y3OPX+Im9+k//AKHd+7QXuny7//844hqzL3DPi986SzPXdK8d6dE79/lE4+f4sadwLaFORmtSxf5jRf6vP3KHi/++Jjtp75MGvZ58lLOeu/zVPtjHn7+Z6GucaWnlQ04qTkhJCwWY+qqJOlk1JXjvXtv88LVq7z15hs8dPkyrVRjTKc5mlKSVK1y5tQp9t+f8P7+bU4Pt3lw9zqf/oVLrC5toHSNyfbIs2UKc4xigPSS8V5Nf7DM5FjhD2+R9FZIl4cooTl94VFev/YTlgYCW/Tp5YJOq0dqStqmy7Df4nixx/LZbarFDBLNe/dGjA8UxXuv88LzD7FwM6TeYTxtUSxmFKKFmZaEbka1OCLdG+CX5mRWcrx3gBOSVqfD4eQt6knOg0NLr3xA0t6m72rGd24yX3mc97/5HTYev8J5Z7l7MKXV36QsA0lHkesubabcffAi7TOPEF58hTPPfZJBLnnvrTcpXcVyx7DWuog3ns72Kjtv/oi6Kjh77hQZy4TYZdAeEkRC+/RZvvq9f8WXH/ocB4v7LNfLvF+NeGFtCNKRkX/offaRG4IEqGUTP2ubpEk/O4eREmJoUtcnU2dJcz4vhSCI5hfJx4CKTWbAnYiPIoIMSJWgxuOQLBvNUqpIMoVdQOUjWkaUSUBr0qyFbLWRaQYhEKMguthMELRGaNOk931sMgEiIhvGDMGHZkMgG2Oaj54Q6qYmJz2qQfJBdEQ0PgSkat6oY2yOPgQOIQzNAsrJG3LDG3BVha0L3GIG3iKcRSqNLfvoPKe9tI5M0oZ8F/ipLCme0P5i0sajwXt0e41YHBHpIso5sdvHUyCpIVYgEhApcOJViIEYGp+9ry21CzgfcT420xAAKZGhyVIowYl8SeDjSagQQUcJ+qr52UUl2ThzgXZ3SAyWqirRQpBoRQxN00ArAxGc92jZNEtCaLIFWkik0mhlGh5BnlG3czrt9G/nyfg3vGrdfL06BvQJeMjgGsJmJQmhOsl8OExwKCJep1jrUXkKcYH0FmpBIjXGFiA9Co2OisK5E4iVR4pGJhVjw2xwtmbY6iJVZFo0BsjEKFIVWaAoogDXEDpLDxDJdE2MGhsrhAwkOsXawPJSG4fksac+w9NPPcXm2jLBWkzSor+0QhCeajbBBs+kmFGXcwQKGxxGKZRJ6GbtJlQqNE5rCldhdIor6yaAmBlM2gLv8GXBFINJDO1O4wCRspkmzWaBJBG0REQEyanzHfqDlF/+yt/n3rVr7O/fYjLao5ztgy9ItWEiLblKiYmmpCaTLVqZpN/vsKZSltcGzBZzXF1Tjg85Go3QypP0uyyiQLUiwcIbD3bYaLc5ni3IUkPLSh7sHrLSTqmdpZgviJ0UXQtMlpJnSyhZ4q3ExyYk7CZT6rRDK29hvcAYhYwpZeXIQ0KQlugkreBRxjV125g2ds+P6frG9WNW+me48913WT3zOK+88xoPrxmG5x9jOgsc7O2wtvU41166RkdK3npwTEcv8WCv4sqFPp1ei/F8xOFkgbA1q5tTgs6pJ/dJO0Oy6piXvv0D5nPJhdNbxAevMzNDvv6dA8Kk4Oqjl9CJRkuQckhdTfBliZTt5rmmaoo6kqdNjihLhozv3+G1v7rLF37+BZICtFgj2AWt1hLrp6bMZht0Vu6QjgS1GNHLDa1uj4P5MXU1R9CiqgRVlZFry2hnytIApnsFvp5SSehmgUQ13ovXXr/O7fslZ09vU/lDWnGbGAQyyVBDmC0WZO0VwiiglttoWbK5fQFf3GXQXeO4mDGZwbmVNV7+4bc4d2qN9tYm42KBnAtC4Zi5G4hDQW95g0I4hiswns85f+5h7vzkOhuDQGe4TlUdkHfOkeYbiHafC6eHXPniz/L6n32NnfmYq5+4zPzWA4RcoZyPaK8PMVNFuXuDxdIqS4cPmC53SXNNWmXcvrPPcOUG1aFivlgw2bEM2hn39m+RJRVD0+eRC8/zw1e/wan1PtUYFnXJMBsQiSzbJdaWOty+P2LbfLik66PlRokgRSFCJMkUOE8ZIDWS6E8WXBHxUWKDaKqEPpAnkoU7aRYoAbY5z2/piDGaFlATGIgUGxypbvSwLgaiUSSmGV2XtccpReoDee2gcGjdSJRMZmh1WuStFjJpIZB4URGjR52AXqrS431A6aYjb12zeCUKoigbYEyag414mxGjR+uEaANJ3iUokNYSnCckjSrI+4pATe0crq45PtinLufMjvbxxYxqMYYQMLpFkrZYPn2GvNtnsH6GtNUhbbebt3zZaJWNgpi1CGIVxBWULXHFIXK+A7N7qKRPMBkyaFScALKZTviArQvKxZRyNjtpF3gq66iDpwoB/8HJgAAtBKlqqJGVa1oG/oSfcK4F2x1JP4kkyy0uX3icLO8wPXxAFALrLMpkaGWoKVAqaSqa3lM6hyBiXI3yhhib4xCVZiShTae3RAywtDT723s6/g2uREgK3/RfchFBGzwRGxRCNQyAEGiaJTEl6oASgiQ3BClpyS5KaBLhqeZzYqaw1pHiCToQfQIKEhROgfKCyjdZBBtSplWFQjZcjEQhAqhOTsvlTBcls+yYyifkoiaqFBMsnXbObFZhokFnlpXOkMuf/hJPPvo0Fy9cRIpAZlJ0qwNC4uoZFI6d4z3KssRVERU9Wb+Ht55FqBF2ilKgXSSqQJVm2FlKzFu4UNNvtRn2eqRBMtq5xyiASRrYjI2go6CcjpkUc7rL6/RXltk6tcGwHTFGsbIp+dLqs/Sz/4nX3niZr/7+P2M+W6DElOXWBknf4ILg9GqfJElBSpa6LQaJ4PBgj6OR5M7dB6Sx5tpPdimDpN3tcP7sRXSawwkDZPjQRfbvHvDohXO8c3uX9soWJl9wOFvQV4rlnuHYBWSaYIyBECldjSRDJh4VE5QQZEXEhQIdQKU5WUyRXYUSAqUMg6UV8k6X0paExQxnS1T+8W0INIbv/dVLPHf1FO+/+OccV5JUbbH37Z8gVMo7N+9w9akrtLMeh4f3OLN2njKFc15y/fYhV5cWzBZTosl54vKAN9+bcu5UjzNLZ9i/dZ/3b7yN1Ip2p0XppuzLdTLlkPmQs5dX+cwv/BLGO2yMKK2wi5o0X6JejGn1l6lcTr9dMS8tIVr+3lc+x//9h39O5/Jz/O7v/B5/8Ie/j/e7tFXOgiM6/YTB9jrbD9Y4fHCTYX8d9YjESc98tIeULSofMATyVOG9pS7n2CrQ6nSYzA8RtgLnaPdWOPPY4/zn/+i/Q6kev/Hrn2A+8cjMovOSNNnGl4Ks12E22aG1OUQ6SywWCNPlocvPNWfaJsPHB9wrS658+nMc+zm3Xv4r8u4al1a2qV2NCRuIrKCkxdrWed58+fu0uke88eIOtegwWF4j7s+JnWX29vZZSR333vk+Dz/1Zb7z9T/m4tVH6Pqc62+/zcNXNhndugNhzrVrt5gXARGnGLXBcjfh6O0FrGUsnVplQx1Q1qcQA8nxwT5eFrT7XTZ7Z2mrZVQ541vXvs5ybwmdFHzm4lns/Ih0dQnrcnanu8xv7lHHin629BH32UdceaIp6ppECbpCgDLU2jUGPNV01rN4gsCNICP4E9tfSwmChARBrZv6Yl8rEqOJwqMd2OAxWqFFJCEgYyBVBoJFKkWeJQilSbMErdWJSEg3FjNhSFpthE7wPjQ2O3yD4a09trbY2jWfmJLNAhabtzREREpBCA4fKoSXBOea/EFVolVs8gg6oVExNZONWFusb5QHVd3kEyZHh1TVnKO9HWwxp16Mid6hQsP1n88ntLtL2IWlt7TKYPsUKk3BNATDDyiIwuS4tNNwA2qFSHsEuzjpbVoQVRPsjI2BMIZA8BZvS5ytTjwKAR8+yHhIZLSocOKNiCCVQDb4gUbWdAJqHhpFW0HazVk9f4E07RBCJPgaQcOTqJ1D6RQhTCOICSeThrpGSnDWoo07OUZSSKWRyqBNQnoCjvo4rtxLVJpT+7JpX1CjRdPpd2gUFqNSghLUNEaBJEDpwVRQSkemNK6d4dOczBtkWCB0QERxwrsUBKOQQqA+CJ/6gJER6QAJOtSYtE+mPVIbjhYzohIYmZCgGyS4CKi0g/BAKMi6S6xkOTHv8ORTz7OxdZ600yZNFCbNcYVr7sNZycwucEWEGBiubGCyDIqCMk3IHJRCkxGbt6lQkXZTVC1ppQ3+u5W1aWdt8AIXUpJMsRgXoB2pNejMkCVLdGyXd9++xo2fzAjPfwl/epPllQxFBCN46PELJL2Ug/F9/vJP/pSDvZr5bMpqt09nbcDN/TFPXDpNkDXO1XSHKeur5/j+S2+RMWNUBMKJ0jszCf1+m2A1o2JMMZsznU8xLuXe7j1irJkdP6DrOoSqYiEkWS5JTBeRJAQDqQxkepnoCxQp3ltcjFhdY1TTWvogG9M1HqE7iCShqKd0Yk4/z1nkClMJSv/xVGcBts9+gnOnNvn2S2+zOlzmme0+9/Zqru2CaDl+7td+Df3eq7yzUyKR7N4bsbTe57BUnF8/Q1Ud4WSHvLXEg3GCs7cop5rD3UPEcJWB8bz0kxFPvHCW2z96ja3tLY6nBavDDsN8wOZKl8rPSEULb+do1QMRyNIOPhQIGWi1h5R2hJ0KMqF49OmHeXB/zEF7g9l4Sj8fIPpdYnWIMhm9NKXdWcKkbXr9dUT0dLJ1XBDYMCdREtKSarpgoguWN5Zx1RxcYH48Ya27ynB4hmxpiZdef5N5FVkZRqqFxSSClom4SqOXEoKdEF2Lpf52w1oJnirUaJHSFjX7h3tkaYcwH7EQgu6pS6jREdtP/XuMHvyY2IVbOwuu9jRTodDe89Zr32Jz+yH2Du9w9pEnufbWNZYNLBysdFLi8YQDX7E8yBjPHb31M9z5yTuoJOfMyjpl5bGLgjQVrPXajOIE3d5ge+sZynKPW/a7PM3TUAYGKz3K+T4XL32RMH6R0MtxztLprJBVknRjk3T3Jvfv36ElDHXtEFExr0vEwqJnBacvn6Oft1C6+6H32Uc+pTMZaedZo08NNR5oK4kQkTQxzeIUQjN4lpKyrht1adoEpdpaMy0XqCgIAnq5IW1K8ag0ZRpEw8b3gVALfNIs6mnLoKUmekHWzvHeU1tPlhkKF+gvD5GJOTlDl9R1TfAWLcAFT1UFrG02fVJIrG8SkJkMqEShTwJDMQTmkxlClo2YJW9hWhVSGpiMQWmUSvARXNQ45xgdjCnmBfNiQQiOajGjrkvK40NqW1BXJSJEhGgARebeTbRQdAev0O4MeOTpT7G8dZql09uoRGNM0mw5pESmAyrdxiR9Yj1DFgd4N0XZKTHWxGyIUKrRLtua6CrKqmAyOWY6mVKUtrFBehChqVl6KZAhEkQT5JQnQKIGUijom8hGS5Plgkuf/RTPPPk8XgrqxQTrmyClTHLmxRyMZpAvUTmL9cXJyYnHRygXk2ZkbjKkTpBao7QhyXKCrcg/pg73xDRvNQZB0J4YNaWz6JPvRRJTpLTUMUUGRR4EeJCyEayIAB5LsC3WVza5t/M+faUhCuY2oIxCqciorJA0tVGtFCrRJ4roZvfli0hxPEOvLjVynk4bKo9xgiQBZXKst9Q2UE+nrC5vsr62Qbq5xWef/1muXHmGLDOEE4iSLWsm40PqYkqaJLRUSmerIelpJM5X3Bnvs78/QimoreXKow/T1hEjWvTaXfJhh3bWyKhUUSCyhMTWxNii9tDqJQidYoxCZQmzxQyBIJFtjqaHvPfjH/Gjf3PAz/3Kr7J+cRkdJP2e4clHz+HqX+KRzfP8L//r/8z9O7c4fXYJb2vOb65wa/eAq6f6jGYlb72zwyAXTBYFfWkoZmOESfjUz7zAUm+VV155l+inXHroLO+P5sytYvdwD+kloRKMFgXTCnrS0ut1iCGhzhNCECS1RuWaRGtCMoRQo2JGrsCHSGYyimiJttko2tTQFiDThK4UxKqgtDOUVDiZ0FEfz7EXwPH+e7z96mucObPNr//m32E8PuRS6TmO8Md/9grf/bP/j9t3brPd6fH4kxf5zmsvsXIjg8467WEf2V/njTde52q9QLoz/OD776A+6VhUOfz4GvbsKdq9mneuvcr66S3uTAfMyoSzZ5exh28R5M8jSTAqaY5VU9kcsaqIJLJz54jlNcH+Yckf/2//hHS9wwuXL/DPXnqRje0r/Nf/1e/xj//xf8OKbhwhobaYPMckkbOXlkiMIskCw40+89IyGgcOD0Z0VY4c9tmIA6wLuBA5PLzOYCWhjBlHeL77je/z4l99l83tbT792FVMakilIu30aCXL5JmksBkqh6IOGNWh8BX1aMRgc4n9+3NGsxlLoUTrPpfPtHnta19DyAxZHMIisMi7rK/lfOv1txkMTvOpC08xLY6Z3TviYO82o5ng8J03+fQnP8lL/+ZrrK+2aNv3Odo1tHo10Q7x+ztsntlmfz9ye3eX6SuHvPClpzi6cZM7h3N6LcPuKMGN/4K1Rz7Jr/693+WtH/+Qtp7STh5iaTUwOryFMIFlt8XhfA6jHd7xIG4L1leX+PHRIQ9vnGVzrUadmFPb6zmDQZvx0RHHYZdLl1740PvsIzcESggSKbCuWVhzIZlITxRNUl4JiRWBEJqFWBJJtETKRliEiCQIoowYpUhFszhV3pGdGPY0TQ1PCFCqAcAQIj46nIDKWzLTRxiDDwGV5qg0QwjZLNxEvIcYmlFtoDEmCUmTxqYJ8X1A+SM4YlRN3iBGyrIGBHUVMXVN6h1NHD0l0EiMvIvMymYicLRzQFEU1N7h8fiqIjqLr+Z4XxNCs0mSUqCkxMYCgcCGfSbTGcq8xnQ8RRlNq9cl9jtopSFqhNRoaXAGUBoTPbKOxGqMiAYRbJN9UDkYh5CaGALloqQoKqx1DdlLioYqzAexwQ/EUyfwxRO8tFSKnhFkRpAoOHXhAkv9ZaxrchFRAFLgFUhh8DRgJUegto2HommYhBOXQomrS1RsMhviBNxkdIL5mM5ffXSoGHHekZAhhWIkHWnwCFIIC0RICapCoNFe46TFq0hSB4KUiBiYF3MG9ZAsS5vNp4VMe2IZqXwD2fJB0E8NSZ5zPF0gTvTZMpH4xBOER3hH7Ro0bggVWiSo6DE6EKJrKH5G0O31OByP+OVf/i1On71IdzhA2gKb5OggmE2OKWfNAp11hxg0JtMIYQi2xlqBDqBjYOfuXbY212jLFkU158fXXmc46PL8058iSonJ2o3cK0RcSOgNO6iyJEkSvJbkDryRkGVkeUJd1vjQp/vIE4yX9/jRn/8Z5+9d4fHPPtPcazKyubZJearmM5/4Gb5d1RyPCq6cXeE4eM5sDnnz3T3aqcfXU6TL6Bi4s3cAJtDvdqhGY1a3TvMb/+Bn6a6d4s//5b+k3TVIkdNT64wP7jFRmiRp4YRnPK0p9xasbnXQMZCoZuLorCSoSFSg64gSvgnb5gnOWlIpUO2cLDmZCIZAKppcgVMJwjuCkBgvsXLxsdzDANfevMmTj6+R9HLee/Ntiipwbc/xzuvv8V/+zqdY1AnjiWBnf8TGUo/nsgvUYYKdTnn59bcZDDcopoLbYY/JvYKLV5/h0Ab63U1ev3Oby+MjRgvo9xTV+D466SBn77B7a4/C3gZS0iTiXUDInBiqZh2IFmjRHqSokHLt2l+5TgAAIABJREFUe9+ik7U5vfEEW1unOL39DpU84K0fTLl5/TsMTv0y/XyF2XiX5f6QGAKt3har/VWOxrHBzNc1kQoZEtJuG+pAqRq8fDF3tFubZD3P3mTO1tkl/s8//iOSQcaTj50ixCmd3oBOO6eV5oT6kFmZMBwMEFETfIUWHfruiDtl0zqrRzOSwjPaOcL5G7Q3nuaZT3+JLM750Z9+jf7GEFVbvF3i3FrG5hMX+Na//g4r647ErdJPl1g9tc5s/4CXv/+veezRT9CJezg95NHPXKUKBrHYYcgKN3bnTBeBelZS1MfE42Nu7R9BkoBJWLKK7e3zGKF4+Xt/hPJtzGqHxfQ+kTXu3n6f/qDGesfqZsJ4eobVcMzWxWc5fO0v2FpaYWWrz87dXTbXL/Pe7RvoHKR2tLor5MqR9rY/9D77yKf0INHUSIxWFGWBBdrGkACJ0ZTWYmTCAk9bC3RiWDiHQeJ9TaISyBP6QpMISRXqn5IPi8oxaKWNw8BblIoN2lQGZkVFYhKkAxMUoW76kbrTwuRtjM6QWlJ7QYP7UTTGRQVRNMcANAhiQWP5U1qRGtXwBJyjihbvHGVZ4VwEWYAUqCxHqhRnIzZAOZ9TLUqOjkbYuqKqqkb5KxSy4fg2C69v6jhKnCyEOiEKSWKaRkHtS6T2zN59h+vv3eC9d95ldWODh556nM7yEoPVlabKGCPSNEclLl9BJi206RDrObhFE2tMs8aZkPVQJsPWgbqOWA/O0bxluoDjxMzHyTEHEccHlVHBhg6cbxk6rYTlC6d54uon0Trh8GAX7xaNXjrJWOBZXl6jdHO8TDBGYqsKWzuM0Scsgpq6mJNlGQLfIGmVQpuEkKbo9MNhGP8uLykitQ9oEampiEKSRoGWChE8QqRE0Uh48JxU4gRJjJRpRAaBcc1R2ftHN7ly4RJLrQ6vXXsVWzisjyipaNxPjpk3pFXF6mqXMlqmoxpRCIbdDsFa5osRwmXkfY1Mc6T3dPQas6pAZhmDUDFYbrF26iFOP/4En7j6NK2NDbpph5AluNGY3ckhoaxZP3UWqQUmajKtWQRLrAWTcsH+7Rvcu3+TybRgdrjPsZEcHO0yenCXewcHvHX9TS5eeBTV3iQcj9DeIWIPgiaOKlRi0Nai0IS2Ag2trFFGn76yhitWmU8quu0lev0e09GEb/5f/4rP/oNfREXB5tkOK2uPsXphnU9++Yv8o//st7m9O+HZp66wkhnWuzX3R4GeVBxOF9y+f9T47i9e4OK5Mzz6wnMYI2kLYLxPb+C5e2BZ3tiguxgTGNCuJTvje7hK0R50mR6W5KaLkglOOxKTkiuNTxISneLyBHEiDbM4XNqEOlupxihF0s2QHmQnx4cIscJ4jdLgjUeYj89lMJkc862Xp5w/k3HjaMyFYp+FTvn8M4/yT/+ft3lsc5137t3k7t0RD10wfPLhK+j+Kd46fBsxtRyEXZ55ts//8c9f5itffI5Oe8EPf3iT559v8XNPnOX194dsP9Ilnb3Pu7cniHidJ7/wPPNqndf+5P/F1gtMMOh0QPAFPvhGXBYN0Tl63RazRYEgYfOxx3jhC5+n2+vzTz//S/yn/8l/wWe+sMH//s+/g+9fZHt7g6TyHI4mVAvH6dNnuL8z53AqaZOSrC0j0iWKyQ9o9zImVbM+xJAyHFicTUgk/OWL3+VPv/FdojAM1DLdfInMTennLby3KNciaae08h4mq1hMU4I/xslDdh7cRWcKFQ957Z0H3HjnNf7uZ19gVDt++P0f0W/1uHv7Ljoqblzf5elPDJndvsPq+lkOXrvPpx4+x7zao3XlPJ3uMnfu7NPdXicfrKP7gfYicD0MMe/+mNvTktQq7uxqlnuW3nCT2gQee/YTTITk0qNXsccOgaO1rLhza5e1zQQx66D7nvZowsoja3z/L77G+atPYj3s+8CzKuPYVoQaXvn+y7j5EU8+9CS3btxGBMV4fIM0EbT7fawThMMJ+3d26W3d/tD77CM3BFGAURIfT94yIwQZcEgkgaAjiUxRtvppvz4IsAQypRCxScJLDTY2aWwRIVMK6yzeNg9qk0i0blj7Uku0TEAqogSvBCpNkKZhEygp8RqkPqnwCYE46cOf7A7QSuNPJhYhRoxOUFohtUQEQXAO7z3OOaqiwjrPvFogpEIlBUpn+BNb4PHRmGJRMDue44PDn9QpVWzYCRKBDx7nPFI2rAOpNCpt/PIqJhAlShqEMljRkBCPjnaxtiDJUla3NunkLUQna9gOSiOUgTQhBo33Y2QQBFcjHMjEEJVEJW3Sdg+V5kQU3kd84CRHIAheED74u2i8FCIKCAEpBEuZZKAk6XKfrauPkqQ53lqKYoKSoIUBNIKATnMSPOGkyvmB8TEEe5KyB/CEkw1Sw20QSNnkCZT6eCYERYBMtbCxIFqBVs1UpdYClQlEXROCRUaFkKZhaPxbuG7pLEFJIpYYDHce7JKfS+jmLabWspC+qagiiFETbDN5mi8sdR2pgqVlQFiLFGB8A8AhRnQQDPpLVJWgpzMSqakSjZSG81ef5tylh0i6HYwDoRuuxdHBHiWRleEqneGANIJ3BTYIpA3UsWZ8b4fDwyMODg4gMywtDfHWUUz2idExyAXJSh98STnao3QFwVqiP0QKhUo90Ua6a9t0Wi2GsouIFrtpmlYOEt2OdGOGMODDJiImvL9zh51377N+YRsTFcFELpxeoWWe5Te+8hW+/c1vcuPWHdhaJxMpdXnIWztHmMSTp02QM6Hm1s3rXHzoItF47mfLLIq7TKo2a33Hy2+8xdm+YXN1yKvXbpLnfUxmOK7HdHsJOomE4MhMGy0qvGxBlNR+jhRdUhWxWpIEiY0ekaQoIfGtDGnyk2wIqCBx3uClpXAOYyOaj0fQBfCV3/g53n39Vdotwzdf+iY/nAr+g9/8VV68+YClsMunfuYFvvvV1+k/d4nPXlKI5DK3Xvo2m2strjz0FG+8ucuN797ld/7hb1NWu7z71n2+9LlP0I1HLK93+MUzPeLgIb759VdZ6rUo1BLf/PqPCNUeV59+njztNpukcgRpjzrco6c6VNbjg6cq51R1l9nRDlefucDh7ttMj9cYdCP/0T/8D/nv/4d/wrkn1+lLWO4vczA6pK0V77x7h3lhGc0OURyxfeYsM3Lu3fwRe/fvM6/nXNx8gpBUPMjnuOtjut027z14gC8SFu6YNO/x0LnT9NMu3eUh7XzG+LiF7kMQitlsgm4LOoMeo8MAWpKUFVIpjvYiDz/xBM8+c55X/+p15nsPuPToZ+j3oT6jKQ7vcLZ7noQW1bwkKs9wuc9K3mc6usf1P/pTllqS9NFPMbu3x1ZxSKKX2dFL5JngL781pnKOn/v8ZS6cOs3Rzi0OR/v4WNJuRcbTGuWnrG+f4+be+xzfOmRpeAGXHeFSwTCpaMseC5ewffYxdL3As8YgHjO1Mw5277J7eMRBOuGFtcfwZYEvDcudZUaHt4AEbMLBnfeQTiB7GbPph/M0PvIpnSYJwXoMouGE+0AmJEJpKhFJokHESFdqahGZu5q2Us0EIdE/TSdrGUiNpqwWZFlCRykqDdYHMtn05VHNAuuiI9ONLVCnhqyVIRPTVBmRJEmGRjcBQd/AcbQ2CBQyery3J2FGhZB/DU9qKnUCRMCVlsl4QlXWjI7n1M5h6yZiV/kT6Y9UBOeZLUqsc7ja/XQSEEVDYNRasfCeiMTNLTWBVDdnyto3YaVAsxkJLmJkxEgBWrPwnsXxmOm1N0iuv82dd2/y9AvP0l0ZkA8VREjSvAEfpWsgFkg1QcRIkLKR8HR69Je3SAcDCnaYFTWFjZQhYl1gEQI2RurQPMSrIClFxCpJVwgutwyr3YQrX/gCTz72WYILTI4PWSym9FodrPXo1JAGTU3EpB3KukBGRYgCbTTeemrrKOoa8CSVRQjXcB+iAAxSpCRJ+2/r2fg3urQBWZUYGagTTfQBb5qz5GBrfLAkKIyTFNKiAYEnhIgRimAaKZESAhE108kRP7lW8vizT3M4uk/7wS7W1RzNPSJEvAQfQfhAlhnS0KJ2EtHNGWY5yge8L6mCJNeGJFui3U5Jc9A+kqDxWZuHLz5Cb7BK2uugdZvjowdMJyWy1WddG/Juj3J0CKZF4Tzz2RHv3XyTlk7IyTi/us726qCp1NYBLQKkKbK/BOcfQcUGIHY4H5OSEpTGW8v08BY3p2MyndJ+7zq2XnBxc5XBmYucSy7R6Wd44VAaZEeRp4bzy8tUdkA27PDyd7/F7E8m/Mpv/8e02glIWNts8Su/9bs89+nP8z/+3n/LW8cztjaX0DrF6kBZzRj013E+4EvLI0+d57goOZhVnFnNCeWC8YO7zBc1qyown0V2j/eonMfUkHQ1HCesbK8hlUKZVtPeEW2CNORK4k7w1EWiG+Cga9PJQUtD2u2TZAkqSoiOIDTQuFh0ACk8kCPExyPoAnjlpVcZrPU4OAicu/pFcmm5uTPl11+4gJ93+cF3v8nnzz9GTAT3bt1hUr3KcGuLeeyx/8pbfOYLp6nqLRY+JUwELZHyxvu36Q1P8TPnenz/G29w5imPrmaUqktc3OMLn3kYVa8TZEaIFbnp4UQb78dk6RaL6QQnaoxqU5cWEQtOXboKMcWYbaROGS3u8cSjp/nKr36ZX/zyz/P3f+s3ef6FJ/nEFz7D23tTMJZWTzBY3aY4HPLezXd5b3+XnXfH2IGhO8gYlTvMjiPL/citzhbX3nuJ2aTgeDSj1e3xpecvsbZyBsGMpVPnUChObRim44Leehdsv6nhmki7t055MMJkGmfm1AvYvXeP1nrN8uoS555+gXvXX+XP/+A6ncTxyRceQp06zb29glnLsKjuMhpZ1taf5e7hmAuPXaIsZ/SSMc9cOEVXHnFz94ALj6zzg798mSLOka7mrd0eYf9dopMkfU2yvMbrr96iWHQ43Qns7rzO+fPr3NDrzMqE9k+OUTNLdmaJnxQjtrSnLdrcmzxgMQ5kHVCzc5SMuHT2AoOjA9qmw9HenLOXB9x4sODxh5/m7Tfepj1Ygfu36ZxaY231PJN7r3/offaRpEKBxCGIQZzUcSRCS7QAGZt8QO1t8y8T1fwyyhOSHxEdIqlWZFqSiEgnS0iMhBjxPmCExDmHEBEjIQTROAmA2kfSrMkKBOtppTnKGITRCBFPPnEBUjZyIQQiBpRoYCrGCBJjMLohw0khEM4RrMVWFYtFwWxeMpmVzOc103nJbFFSFhXz6YLR0YTJZE5Z1lRVTW0d1rqmbug8znsq30wM6uCoffPxynoq23zcW9f8eRLOCz6QGEOapuR5iyzLqKqKSVVw+/59bl6/wezomBB9M2+JTRsiqoyg2w2WWWUnfoUEkaSk7T5Jp4dMEqzSuNi8rdvYTAU84IPAebABXBAoYJAo2qmk1crY2DxLlnQoijmL+eSEsSA+oC43XIWqbGqhzmNdTYgCF30zfVEa6zzup2bLhv0Q4wmC+kSx/HFckaYxEjENhAaPBKQPKK8bdbE0OOXRsZFtOSLBNxCt1AsECxwK4SUaSWlrgoONtS1SkxODQQGamiADlRYsXKSaO0LQOOcZLzz7RcRLRWe4Qqu7SiEksayp8MwmFp9ERrMS8h79pSGtdgfdSvEUzCcVzkfSrItv96hcc58dzw443L/HZDph2GkTPMzrgjI4YpQ4r5hXjv3xjPnOEcXxhDg9wJcTpotj6vGYUJY4K7j7/xP35jGWZfd93+csd3v3rbVXV3X13j3T0z0znIXLkJKGO6mFWqwIVmI5CmApgA0HBhJEhoAATBwIUWLFVgzHhhMniC0JUSxQCymRFEmJ5IgcDmc4+0xPT+9V1V3VVfXq7Xc/5+SPWyPnj5COA8Nz/y3gvbrvnXfu7/x+3+/n29/kG9/+C65evcF3X3yFO5MhXm+Oe/0J1194gdeef56dm/vMJo6q8urOkfaQ0qFkSW+xyYWHn2Jx9TgvfvM5RoO0zslQisXVZY6fPs+DFy+SmopJlpObilYUIFybySghEAXtuS525iHHY3TqeOXVG7zxxiZhdwFfeCyeWmFhcY4iS4kDn7K0HBzOaHWbNBpRnRVhKyot0cIggwrnK6Sn6qSREqTxUYGPFj4yitCqDqgqba3j8IVE+wIlNZ4nIYhRgaLk3RMVdtqShU6b9U5BPt7ihLrPqY0VDvc3mY0yolmCFhNGI8PhaMiHHl5lvtcmjg5IBVz55ssUk0O++/W/wMQVC+dPM6ccFy+cxGA58/QHGFVjgsUT3DsQrC5FNINVXnzlNidWm1ghmCV9NIaqrMirCVL4CKPJsgQvaDAd7NNsC1ZOXCLudgmjJtJ5jEcp739ilWe/+zyf+dSnuPLydYTSjO/1+cCHf5gTFy9D15IWOc3uCrOZ4fadOxRTTTqCO1tbDA7GvPzci7QWckaHBddfvUJDR8SeZH5tHr/lcXL9GJ4E5YWgPJqddj3GTsfIKsCYMXHTJx1PyUqHMj7KC2h2Arq6x8LxJaZ3X2N94zx/5Rf/AxpxC+v52NEOk/u3+dAjx9HWMek7Yr/k1OlT3N7b5uzFB3HTMR3fkOYh3XCBg1sD7h1OWL/0QR781GcwZcXNO5s04jZ3d2aorKA9v8Tw9ovYWLJ3bxOvucj226/RaZWEFy7ijrVgaZFg8TzppGTSjlk7/SFUpDm7scj+eMCTlx5hfzhjfr6N32gRNCMoFQueYdjvszfeYnB3B4WjE6+z88pNsvT7p3b+wA5BSf3grhD4vocWtYAPBQ3rEE7QUg2EkPiiIhYhRZnXbeKyZFZZWoFPK/SREoQRR7AgQ+xpsrye3Ya+AgGtuHYuJLkhaGjseIz0NZ5WSFlrFOpwIhBWoFXNOdDKIJVEOYlAHAXT1JhhLQTG1OFA+XRCkiTc3zlgrz8jzSuySmCcoTA1crYsylpcJcCZOtDHHukO6tl7zbkvPJClwUqFyQqmlUFbMM7hC7/OfbAW0pygoXFC4PsRze4yXhgStdrYylAUFa6w5FLx/Ju3uLE55Md/qkNzSaC0X8+z/Rgjg7orT4m0JcIVWB0hWiHv+cCnkeEcd7Y/R1GOyZKC3NWta2OhdILKQXqUv7AWCs42BSuLLZYeOs983CJL+0xmI9LJsA4D0RpUCFrhe5LpdEpYGbwju6Y7aq07CaEf0PAbFFVGLfIsULZuuTtRd0Sce3cKgqDSCGsRUhGXdbveVBYrSjQKY5eBGcZJtHBoNNJpTAAJJT4gXVTP00WGdQIpHNdvXOPC2XOsP3KRyc4hO3fv4IgoqrpToLVHIR1lbsH38DyBrirS0sMljuXFNl3pmF+9RGd5Ed8aXFESPHaM1bWT9JZX8KOIbDRm1h8xLB29TgvMlOogZ/veVTASL27SP+wzTROcg/FoTDYcMBqP0Z7i7v4O3aBBo9dhubeAzjR+GDOZTnDCYRKDFJaCukOXxTFLi4tIPPaHhxwcHLK2vECj3WZ6c5u372xz8vRZirKg0whp+S2OP7hBa67JwqKPNJLe0gf59le+zP/6a/8dP/G3/janj8+xerxDd77Ff/g3/w7f/JM/4Euf/1163cU6GbJZMRyNSazHupFkCKYiZDpLOXXyGMotk88OGZsmC50F7qj7rMx1iVpNXr16B08pWutrCBUgncIoS1NCGTQIpY/wAjypsFoTKh9tHSpS+EETIR1CKxwVvnQgAkqboXGIMKS0IVZLVFkR8e6sYYBTD3ySwG1xaEM+sG4Zjko2ghQtAwoXsDk+4IfPN/ihrsehuMzCwlm2tv+U+bDHA+/b4F4/pHRNPvjoMjsJXDjbYLpwGpNt8d2rIy6cjFHMcXv3Fp/8oUvQmeO1519CSUm8soQ0OSoOSc0BWoVYFWPNDN8PKcdDBnt7FNMdTpw+ix+1SdMhTmma3SVm0ymvXhnyve+8zqtvvc5f/09+iT/5V7/FU0+/Hxf4bG7eRdCluWDY7u/x2rVNsIKbN64zas8TyYQbt9/gYDygfeMek7EhajS48MBpes0WK72LOEY4v0Pk5XiRR5aVtOJF8smIsDHFDyLyKkO5GFtsETU1UbxM1T/k6U99gO1rO+zevQLzy2RBxr2dA04/scjy5YcgGRKunWHXZFx48iyPPX2Cbzz3OmaWstiZ562XXmXj4Qvc3B0x3O3zwadP8s0vvc2544ustwc0JWztjlhbO0Y/m9BaW6OSU668fJP3/PBT5GnOmYfXufq1r7G6soHnSQ6272APJdcOtlk7vsxwp0SHiqK8iykLbt48BBvx9ltXWFno4lNwY38PUU04duIxktsvUQGqVGQmY/XkQ1T3rpGoQ/Lt/58jA3GUTyC1IlICrSDLLAJLSQ0l8pE44WrKtxR1JLAD5NFJXUKFw7PuL0+Nvqcpin+NND466DNLM0pjiRoRWhiavSZ+6IESKE/j+TX+V9ZxcQhASYnWCukE0h6JBkV9W+7otGpMQVkWpNMZySxjNMkZz0qyytYPy6O0PmctpalPtUVVFwauqtO8eMde6XlIAbk0aKERxlBZsKWjkAJfSgrnELbmC1S29uRqLyJodvDbXfwwwm/U1LiGUxgD08qSjqf0k5zpYErQjQni2hlhcUhPUVYeIGtLoTuKoVaSucV11k4eELViDoZjciswhlrv4ByVo+70HJ3YFwKPOV/RXVlieeUYVIa0SkiSKaYq6xGJMYDFczW+Oi/L2k+vfCwWKUAKRWULlBBEgV+Db/T/g61ArTWo8xLepbTDMsdpD09qnOdQViJtPfLAVCg7QwlBLmTtCnAWbSVUNesfLUHUkC1jfayscBZmkxHjYZ8TC+eJ1iLSyZCqzJnkM9ANlNMoDMJzqKImROY5NBoSGfgEUYj2fbxAo30fkZQUVcFyb5FWs4XyfbT26PcnJElO0Izw/QaDyYjpZIy0Et1qYFEkFpzSDIYDpumA/Z09smRK2FAIV7C5NyEc9Nlv9/EbXcKmz/TggBxLnpYwyxDNCKpa2HT72lWWlpc4dvI00veZphWeZ8lij0bUpj+aEMQNRrOEyWBCf7zPhYceYPHkHM25BjaxPPzkB5BS860vfRXxiU9y/lQPETqOn73Mj/yY5itf+hMm0xFhFBAHIRMxQ9qCzb198AJWN07QbLW4f7CDQaAnQ3JTcGPnGslswjiZ0jYVoRdSKWotk7HIMETpej8SwiB1HU1uPdB+LShsRiHC82vCpxA4IbB5ha+gUI7AKApVIooSJyv8XOGof+fv1vXGdz7HRz/1Yd54823mm5KG1Lz88i2KyhGEMe1OwRsvfY+vjnweefLj2N3n8MJ1ru3vM8wqRtbAeJuf/OiHGX/jFbZvXiEdwdx8l8cubrB9sM3h1oS/8qkP8uxzrzKavkgzDBkXgrlmD2cbZJMUL4goK7DVGF9FJNMJUnlYEYLnMzncobG4ROE0qjAUboBWmicvr3Pz+m3yRpd/+Bv/Le9938f56uefpdO+woc+/EOM8l1WVtrkocOXKdVcwP73xmzfm+E1wGYlurfIKCnphAbP85nfOIsabBG0Rpg0J/IVRS7odBcIZY7RKSGSquqADIlCmJUpcXORPJlhGwHGpDzztW/zrS9/iUff/yPML3u0Yp/DWYwTi+zc2Ka32CIf3OH0sZCvvryJHD7H2QsfwV8Yce3GPtO9Q6blLdY3jhEtrjGeKHrdJWQXBoMD7g+ndFaXefP6FmcWWwT5PgunHqThL7C5+QouC+nOrzOcW8VPU575/a/zkb/+NNmhZXx3GzG9wWHRw115m+WupL3QxeplprtbxMKnJy2DyZCNbptWb41Xv/USGw+cYJxmdOcXWTrzEJPBAclkzF5/n4cuP/1919kPLAjy0hH49QzcmQJnQQYKYyXSKUogK0usMwS+h61KIupQHaElSjjaoY8QlsDzydMKpQSmrNvoUtYeVhwUJQSeoBVHKKVQQQhBiPUD4mZMGIX4gV9Hx9YSLrxA1hAhZ2vbo6mDdkoqnANbZtiqJBsOSJOE+/dHTGcVW/2UYe4o7DvAHpCybtFXVQ34SYsCjKWqypoMWHvw0KZGG8e6FvYJB4USGGVrTQMaJTU4idYeuYjQzsefW6G5vEY0P18HgkQxQRAStpoIqeimFYcHY7Is48qdXS41QsK4idUaXwcIAX7YPAIQVWgXgpkhhCRYWOWCklx64j3kxnGvf4sUMKXAHWGmrQOrFIE0nO54LHQjTl5+lIX5VQ5mE6okoyhSQq1Ii5ygaqKEIM0MlZY465jOEvxI1NZOVT8kbWUpTYHEEIcRvl9zFd4JTRLUxZ7W746osNQNpCxxdkbhHEElKZVClA6la6+rsRVaAvIovMk6BBanJapSmKpECXCuou5BCYwruXH7BssrS4TRHKcffBIzHXFwuEOepkzzCrSkHbTxVU3KpBGxvHga6QnmOjFSCPzGKs1mm2guxmFY3ziO72mSwQF7+QxRNfBin+HggNnBJs4IUEDYZG84IUlnDAZDxvt73Nm6Q5klICylFST9nJm1VJMDDitLd+wj4zlEVTIZT2qIlCcJVEBsWmQmxZYS53LGg0O27m7h+wGnT18kzwui3AM9ZLW3TFdqXn7lBZaPrTHfaXH1D/6QE8dP8dCjD9MIYo6dX2Vu5dP82Z9+mf/zN3+NH/2l/4wTx9eQvmPt1Dme/vBH+cM//BxnFlsstGNakcfB7j2G+4fEGl5702ep7bNx+ixBNWXW9fFtxbOvfRsloNGcoxAp3VaLTne+pnJ6bQItkMKCF9SwNKEIggAR+LVYORAYFRAoSWdhhSxJKLMSF4e0fA/rLONkjDIS4R3FtSuFcQrJu1cRXA8uEHzrG0zTgPWNB4n9igpFa2mBvfuHfOfVIcfaLXIOuXrta2z6y6yf6PCeyxe4d2uPi70pwcY8Lz77DM1WzOLieWbT+ywff4jrmyNm1RwPnl/g1s5dhkQ8fPE9DA4Fxp5JAAAgAElEQVQmnL58gcTk+OUBIi9BxShvDmyF9DyU9RmNEqKmx9zSgwy2rlAUM2bTMX4jpu11SGYlC6vnefzRlJev3uAgXOLm3Tf4xZ/7RUajK/zz/+N/p8x9cmlwpqrx7lnBhdMrfOwjH+Gf/e4XMFbzE0+t8dadhPXlZcrMsdquCOYWCE0X3Y5R6hAtI4pyhDriinihR0M1mYwKijJFlAcoaYk6IcJY/EabZDrjMz/74+TxSczms8j4OB9+/DgOGG0PmBSOVtwjkSdZkUOOXT7N3t6QkRix2FNcPHeBzqWnKQ4TwnyHyI1YvbjA/EKH8cEeV68fcG59AzMY0J2fsXryPTTnzvCFP/ttLnzoMUSyy+71uyThEjJo0JwPef3P36Kflswv+PhRTCYsJ9dX8MohdrckcdeR+YzF5YBgYZ0yzbm5PaW1l9E63iJLEuZOLPPoQ5/k5b/4Dtmkz+5wzPqFD3Kws/d919m/YZe2eEohlaQqLVIrtJII6SjLCoer1fjUkJvKQqBq5n0oFSUWJQVaSnwlqARgKgQCrRTO2Rp3TL05C13nH0gV4IU+wkEjjEAdnaKkgqMCoo4SrjMFjKnV7XVugaF8J/q4yDBFQTqakkxTxtOMaWrJK0deGCqO2tkCSlPC0f1UVQ1CqpzBVbVtz0lQzuGsQ0uojgSTUtQdClPVUcvWWJAO5yssArSHCJs4LyQtKmSWoaTGCJ8ChWrWvAcVRjTnfbxZwrTI2T8Ys7DWwyPEKg+JqpX9SoPQGOmjTVpnIgiBH7U4tnGCe/cOePXKNlQ5RlislVgFnTjmcJrS1ZKuVsRBgOeHWGsp0hmz2exoAxU4qUDr2pFhLKW0aKEoq4y8LJHynWTLenxTVRZnyzoZDnX0PVkcEiRHY5x/V1vjv92lVIUyikrbmu3vWbS1WPVOFHQ9PjBC4h+NAwrnsFiUqVtd0kqMNAgrsapEmzrC2FYFB/37rKx0CRoNlCehEZJmKWIwIfA1rUYLpSApK7rdJRqLPRrKx2/EFJMpMlR42kMZQ9hq0+p0AEk6m1GVAk8aTJZRJVMyl+KSCuVJZpWgPxpQzmYIZqTZhFEyokxzlOeBKXHJiKSAsigohGE/SzHjjJbJMX5Eai1hKRnbjHI2RKgWQvs0opAiSSnSjLyoOBjt4ylBGC7QCDymSYJSHoPRIVu7+/zUz/w0HSXpTya8/fLzzC2u8+DcReKuz6UH30eVFXzry3/I3iM/zFPvf4CpMlx8/H1874XnyAdTTNvncFzi6RAjHJOs4IEgQ3sBMhsxSoYY53FweMjyXJO7gxQzHdKNNWGrdXQAqZ0YVmrwG/ha4ymB1AHSj+v8CeXjYRC6Dr/MkxRrS4wowFQMhgaEQXo+dVqFQqkSUVl8pSl4dwK6AFrj63Te8wRXvvpFer0OLz9/i40HN1gwhyz0jvHpj82xf3fM2zfg0sMPoo3GeRVvf+9FPv0zP86zz76ENi06PZ/QJYwPdkiTfYwNOHfhLLu7Kdu3N1lbX2appRi5BcrQcXjve3Dxo1jTRotDqqJgNtyi2VvB2nrclMz2iFsL5CnkJfSCHpoAK2A47NMIW4wnCYvLbWQ+YvXCcQ6TIf/b7/xLPnD5BNnYYPIZtBrosh4ZR60WN++N6MxtkI76nFhss3cwoxMHKCWpxJjFhYsk04TeUoPReB+lemgvohFGWCNwukSUIbNyj7yYIktDqTyCtkALyazcoZoJ5tuSzZtvsbwS0IznuHdzl46asLy4zleuTpmbgwdPzzOY9BlNJrTLdR56/wVeuXmfRbXN+lqbRpyQJZYs2yfHR5R7DIYFvgeeH/DW3S3muj1eubqFxyu8fu0aaxuGh554ku99/YvM9yKGZYNmMICNHlq2aBz0ObMxz4SEM4uL9Kd7hAi6J9okt0YU94csPnSZ51+8SlKOeGTjHIQ+4+EmQXuOY4sXuf7Cq4QiJw891tYvk/fHaPX9R1/qs5/97Pf942/943/wWWMMpiyw1uCMwcNiy6K22wGlqXPXpfbq1rFyGGuJ4rC2FxYlcaRRtkQJ96+TE6WsiW5aoz2JtYI4bKK1otOL8QKP3tIKYRgSt1soP8ALQpTS9etoUKqm7+EcwkFV5lSlocgyyiwhGx0y7Y/Yv3/IwShhf1DQzwz91JIa6nAmWVMUpRWYyjFLc9LSkOQFVWEoj0BJua3b76WsswS0V2N8/WYbIxVOeljlkaQFhanzHaxUxJ0eRmssHklaMjwcc7DX5+7mNge7B7hKU2aWoNdBNXy8KALlMU5y5hoapUB5NRlPqpp8J3SAEzXiWTiHcylSR7giY5al3Li9TVlUjPMSLRRxt8NgMmUxhIvtgONrPeaPLdNZPEaJZToYMJ7NmM1SsqogbjQJwjbGVkf2O4Pv+ZSzhOrolKS0h+Oo81NUpPkUKTyiuIWQEmsMzjqU9GoAVDrl2BOf+q//3W6T/+brH/+DX/9sISSeoe7iAF5Zr12rHIYS58AzFldB4QzSlnWX58g6a5VAW4sQBmcVpVT41mEVJKYi0oJO1EUJRdBsEDdbrKwfp7u4QKezRtyep9NepNlu0mu08HyPLE8xs4r5hQV8PyTudlmcn0MqxfDwgNJ6eEGMdBmz2RTVimGWcpBmjLIEIxS3N28TBQFvvPYG+/u7jPYPyGYjfJujZYWTAYQh3XaDhgwwWtEMfYyKcFIRSoXnezRUgPBLyjQlrSaMDu9jshmoiMIadF4wtDO6cYzNJWGzQRi3WTl+nPOnH0DFbVqdOeK5FspvMhwNuPXmawRRl/VTx9g4d4bv/tmXefnbf86ZJz/K0kKTySjl9MmzfPELf8BkVrC22qbTUfT7Ga4yLM8vsL2/z2w64eqNW3znrRvs9RMOJvu0wgZKhkTNJr7XRKka5awl+GEb7fuohkegm0RxjO956Cik4YcIXxNFMUoGSAXOzBC2wDqN14hpeD4oD01eQ3iEwFQF1iZYG/DeD3zg3/saBti89upnR1v7xI0GS/4Orsx55LHL3Nnc5NLJBivHLuPFK+zceINp5RGoBKsiZiLkD77wRZgZfu4Xfp4rN69Slgk2XKaK5olkiJrc4cETG+wNbrGx3mb+xCMEKiO9e4OPf/gjZKpClyMEHiav8FsK5zRFVWAqTbvXw9omiBLt1SLvskpIi4xms1eLm01CszPHM19/DjeaIL2S7Zs7fPLTP83r166wP9gnMCUrc4Ju6JhNDol8yze+/gz/xd/9e2ze3uLso8dZbjdZXl5hfqXL7dde4czxDktr51hYWqMdz9NoSppBg1EpkNZSmD6UPYzogD5Aq5go0FhZob02syTjzt6MyA9YX7zI/Z3r/PBP/jSvv7nJLE/RqmKuucQzz79AL7CMx4bDYcbOzR2WT1/izZdu0Fg5w3jq+LM//j3WLr2PazduM07gyhu3UJXk5KkVnvr0p1F+wu7OFg89EKCCY2zMrTKYDknyAhc1ubB+CuuVuFnG7q1bNHohy/ExquGQ4WFC1Cw5duICb7/yOqdPL7HVP0S0VlhSjhNnTvDsa3foHx4yvrtJo9NDqBClSu7t52xfexUba5JshjGKx374M/+v6/gHdghsWWFweFJBHQNDdWRl00em/3ecOE5YhHQY5RCmhgHVfniHsBVOgSksVPXD0hlD6HuUOJyphX+eJ1BOoeOIZhwjtEL5HjLwkVohXIUTAk8KFBYcNR4WsDWvFyFtPbs2jjJPybOM6SxnmlckBSRGkBswiCOGgMWZ+rWqqqqBPkdqeetsHSXgHJVwda68qQOCiiPRonQOJyVCKErqz8uZmhAkXcCsLAkrwYABSkzIkpQsTcmLvM46GCR0F1e41IppLvaIAv8olU0wG2dEkY+NaieH0rp+TynA96gKD4WrvwOhaDdbdJsNPFuPCCLh0Vjocu+wjyqg24JOpGl2msTNZj1eKQuyJMMYQ1IWoOt7LkqLs6amKAqJtA4lJFlV1roAUX//Ukh83yMvaiJlvRjq0c07aGPBO3HL78JVCZAW6ySyrN0xhTy6HydwQmNljrVgVX0/lZBoW2JFCyFKTCkRosSikZXBtw6hFNJJsuGMYTRhfiWjEcR41oL0kabEkxYjxyir8eMW6qh4xUlMmWJDjd8MEcon0nWxNxqNSXNDbyGoO3DG0G62GGcz0qqgmE0IGl0G/QNckjPM9hjt7TBNh8yShHYoaKiQoqoQCsrRIaX0Sa1D+w1KU6HaTWwypRk10E5wMJkQVjU7o+c3GVrvSA+R4JcwMAVCBmy17jPXrKgixySf4Ydt2nLKY5cexFYlxWTCbDaj01li/+3b7Fy7ybFjC3RbPh/7qV/glW9/hfu3r+ObE6SzMYPRCC/wGKYJ8TTi1EoLpcY4m1PkUxrSUOUZQmoWW11KY+jIBlLp+qwuwnpfUQrhSaT26mAtLYm8JlI1kBoCrakw5OWMqvRQFFTS4akWVnYJzYxcOwIEuXNgKoq0wm/18KqcVFc4o4m8d49DsJ9U3DuQeG7G/OnHKOUh129foxkdY9M/SXJnl8udPn/t597H579e8fLbd3h4/Q4NFfA3fuqn+e4bX+Yf/ZN/ws9+8mnevL3DmWMee/2SfPcZ/Ac+waSacHLtAVTmU+y/QWYtD7z/Q6TKQJ7Q6KxRFBkmqhCJhwtneKJDmg/QpYetAibpkGbYYjbeZ284xVSSrZuv01u8zPycj/AFn/7Jn+K3fucf0d80rF64yO9/7nf5oQ99nN/7nd/mgQfOMtfO2bqfEJWGtFDk1nL5wjme6ypcHmI9y2h0yNLiWfC26yybah9tlzG+QmtNnleYPEF7Aa4MUBTEQYVfPUC/uI4nTlJJia1yYi+C/jYnNtq4BcUKx/jTz/0R92hyOWyigzGxNnz6k0+x2lviC6++QWAlSy3F3vVnmVUHPPe1Zzl3dpVz5x5j9/4eP/rpj1Hu3yD5kZ8nS69wZ/MKz37pjwg7PR598iHCuR6T67fw1o6x2JunUAHV6Dom6LP1wh0uPXYe1zrGhY0Ob778ArP+fVprF6mGHrfUmAdOLTOqFMFcj2Swi2NG083RlJITx9usPL7K6vENRkmLb3/9G6yeOM/ZJ9/P8NYmzRjS8v73XWc/sCBIixwlFE7WKF7vyKcvtUdqKirrkF5tEyyNrROkpCPWkoYvKZzAF1ClORpJaWuEbllWR2hQ0CjyoiKMAhAV+B6RFxAEPs12B+X7KCRKSgQV2tWRy8ZZQqtxOMoipzzylOMsjpzKJEzGJZNRxv7UMM0M93JFXgkyJ9A4pARP14VLmtc4yLIssJUhrepix2JxDgz1iKJyJZ7vk5e11gCta5ywqeqC4shF4aTBznIaLUGKYTa5RzIa0z/co6xKKlMhhebW7StEcY9pmvLUxz+M6oAf+CgZsTcpCJoljY5DuBqkpHT9eQsEMuxiqxKZT3BY/GaP5nyPwldY55hbX+T+7pBJamhowUPzyxxfX2Tj0qOEcYeg2WQyHTIzFVL7NLwIaw3D0ZCgKDDWsbS4TCQalKJAaEmapLU/31iEAqk8wiAAFmpxp/QQUtTCRwxW1BAepb1/l/vj/+fLGoEWFkuBErXbxTpbo62lAiPqcYDz0QIKIfBLiVUGL8uwzqKwKO2hAesCLIZSOZAlykju7t5kYXkR2QXRCeosC+tRSR+lAxQSKYraIYOgqkqUDlmeW0RZsKToaJWyMkyzvBacmml9Co4aZLMpqkiYFpbW3ApGWK4+8yr3D3cxWcJw/xCvIYijBpWUjDFI6WHzFCcEM69GXXdaczQCB5WmjAIO+320zWh35zEmw00dZQFBWCIDQRhoMmPI0hQ232YUCcZ7+5yuTjF/+RLLq+ss99pM05R5FVEqwcOPPEya5wTK0N++xmxU0lqSrJ48jjGf4F/8z3+PjfOP0Ap8/DjmgQfWeeGNG6hiREvNc+7YHPuHQwbTIaUXEOYVNoiZDA4wlSGOfLLKMd/roqQAajR2Q4ZYoZDK1hRKWTs7lKeoNFgbIJUgkpayEvjagSuJlE8Ze2hbd7U8Ve8vfruDBQqvgWclHjm5efdcBnu3r7NdtXjkxBzTfEA/CVlZOMPO/g69oqTM9vj8Xpdbo4QPNbfoxk2WT54mSA1qYZ33vvfD7Gy9hWNGaA5JygfIRpusxou8dfUFTnSXEK0Ofm+Bwc4Wqr3G26++xHvf9zitxhJpOSXJDolVG9XwKfKcyh/S6C5SJnVnUekG+/3bIGJa3Tmk8pkID62nqOg0Nkt55NISF/6rX+dXfuXvImc73E4Fv/lL/ymj8R77u69yOIpZO/kQJzf2efNWn6XlNf77X/3b/MQv/zLPPv8y5xcWmVuM0IHm1Ik1TpxaJydkMBtzfGWNfjVBS8PiUsR0MMOUAh3lCFdihE/sHyMTGdJosqnBhI5R/z7m8ccJJ4ds3z8gXFyldeXPuff2iA/9rV+lvbDB6y+9xle/9Q3C9hxLCw3OnTjDpbOWr3/12+ymE2ZRiwuri8z5t/jWN1/i0uMP88xXvsTw/lWWTpykv7fJ5M6Ecw+vM7oHC6unaDSPc/dwn66aMpKaQf8+S8fmSGaGmLu8/OyE3kKT5WMPYmVEZEb0uo4vPnMVlxd84jMfYXJvn9zvsbd7SHdpmX/xf73Jz/7yB3GTNm9850ucf/AszrVp2pLGmTW6Ucz23dvfd539wJHBP/37v/ZZXD0NNkfCNCklhTF/maqnEbWlx1T4ApqhJtSSli8QzoBzhEc8fGvq1nvk+bX4zFmEkERNja8lvh/RmmujPZ9mp4fXiFHaI4pDpBJ14NGRJkFRB/SIqiIv8yP/e/0/5UlKlqQc7PQ5HOVsj0tGpWBcCHJTxwILJXGi7grUnu7aF52VJWVV425L56gqVz/krcBYwFK/F7W/viwq8qIkL0tMZSmrCgn4QYN2b5723CIiDBgNDhiNDjns75MkM/IipyorqtJQZVNmkxHLa+cIGg28hgdCEAkIPY/WXA31kVLVoCVxtDEJUSOSZZ3GqNIZSTLF95f5oY//GD//V/8jPvrUk5zpzPHk+iIrK4re0jzWlEzHB9y/dYe97U1mkxGuKDCmziKQulGHVqkQrzFXv76zJFnOYb+PkII4ilFSkpviKLNA4wcRQqgj5kCdLimRR+LDkqVHPvLvvd36D//Hv//ZWjsokUIcDTwcvnMI63BUSDSKAuEcUhqwEmcVSlcYAoR0uAoqUYsNpZQEOsRXAVoEYBWHB/tMx4fMd5bxkEjlIYUjkDWTw2qQxjCtHEVasLhwnEarRVZUdOMOLgjYH4wwzuJmYzCKqNHAEz57+7vsDA/wvIhofplZv8/br7/Ejc1rkKZ0mwHOQtBqYayuMcd4tbBWxTQbLZpho6aA6pjJuI9zirw0IAJ8IaAEKwqMB8r4WGcQwtBqNfH9ABVEbO7expWCyjqavXkWV44hCWjGHcazIUGjTXdBMdcLmOt1qUoYj/t0FhZoNUMwitlszHNf+SKdY8fptDqEjTYmzbm7dRchwWgfTwfs9SekZcFcb5HBsI8vHEGjiXOWMGoRaBB+RNxoIX0fv9EgUB6+9hA6wA9jhLCESqP8FqEnUcIgVIBuNJBSY8sSQ17rQYQkLzM8FMhaGCykxvmyZqNojQg1j73niXdlZNC///XProU+Z86sMktnPPX+CyzIfZ740KMM7r3GRlvSFgMe7lSEXoduNGNzbwejUvbefp3dwYxuY4GdvTssLC8x3bmB0BmLp49THR7izS9inOTe6y+yuBRxa2uPMGxxYmMVlMckSVhoL+NEhLUZylrKPONwmIJMyYsUYSqmM4O0FS5QJKOCJJkgRYnBw+YFeTHDSjh76iQ7dwcEpEzu3+Sz/81v8Mdf+CJLTY8sGeN7PdbPrnFzd4SY7uNGr3L27OMU+YDu8R4yV8wm94mkQQcb+CHkWUo2u4/yNFoFZNkA7Sk81aIyUEmDcwJpEmZZQV5a8jzlzGrMC6+8xvbWiGBhDS/v01x/jAceP8WxhuSN5/8cO9xCKsvS6kXm5zW3spJp1aX16AdYXDrHzqvPMB4fcONtS7H+JF+5tktn9Qnuxg8Teh7DsYcTE958+zZB7xjXr7zG3v0tpv0hu1v3UTTZv3fAYw+f5I23N1k+c4y406TdahM0F5gkB1TtVdpxj6UVwwMXT9LfvMcgGRPrgLSa0ox6XL23y4899RjPfe33OHN8hTjQTGYOv+noHzoSERDNtTl/+WP/9iODv3zouvpUVclaSGesAyFryyB1HK8nBEo6Gp5CCVerdoyrw3EAJ+uWsq90zUlXAldJrJQ0/QAlFWHLx/c9/GaM8LxaN+B7NXzoKKHvnYcNghqNjKWsDM7UNjzram5/WTlmhWWUWaYVJJUjq+UAyKOToBbUD3jjqKyjMo6ycmBqNo917ghJW5/spKsJvXVLvaofmk6gjMVJUVMEncEB2vdBelS+gqKqxy9VVSczunfmLID1qJwjzxJm0yHDcRvhCxp+SOkJ8qqqITnvhDM5C0ciPedMrXrXIQ6B7q1w/MGYnzj5GKPdTf78819g82DAW7eu0MnHPLS+hK8b+L0FQukxiKYoW4spQ89HCoFxoPwaoWyrlOnBLjMdML80T9xdhemISVWxUFYoqWptiQe+8o6gSBZburpboGplvrOOd8l1iNYCqho2pKgtsdbWYx3hgTMeJQVKAZXCVICwOKXQhUchC3x3lA5pJRiBU1CaHF2UeH6I8jWVKuhP9zm4f4+FlR6Rp9F4lKJEKh9VWUrlsHmBk3WXzQFBGCIbEbPRtC6ykynj6YB4NiMKI0TomE1nCB3R6MxRZSlpmjEd9dHOEjQazPIC348IRIBuVFhR1cWzUsReA0/FlLZE2YLZbIQVPtLVVkylQ9KsT7e7DDMIJJRKIEqoTIa1PkJkhCEEE8N4eIDwLHt3j3FseZVoWTDfPUXZFCSHE7SYI88yBIo8TaiMYbA3YuXEIq1egwcfepT+1l0O+7vsbd7BDx0n149z/e2XKTLDchcODfhRRJFCmkxpd1pUw4S96YTAb+BTgmhhncIoSeQdhXepGnqmlQJRIlWEE3WxXEiBtT7eO2NOF6BlhVAS4xRKOqzWlKKOUreVJvdLtAiQwuHEOwFp7871wu0OnzjnsZ+NCVrH2Nodc2/S4M1/+kd87OOPI2KFvH8T6dX7T9ya48JcSG9xjrLYxtfz6GQXqxroYsD5cyv0R5bx7gFLvQZJvEDj4Bp2dZ1qNmVh5QT7e0M81cDagrlOm1FySBx2sMKnNElNJBQFvjdHMt4hNxXYAqs9Wn6IDA2SFs1mhFSS5mKD4e0Jc70uO4Hg7/zKX+O//M//Bwon+J9+49d54bWbrK8s8/DJDgQFYd7iRGxZWjzPZLBL5Ua0o5gyyWgHIdkkJ89CurGEqqR0AU1/HikLxoMR0mlEbKnGBiVipJggPcgLi9IRATkVITt3xgyHHj/6iVOI5nmS7dcZZAfMbu/wB995gQcXFb/9zB7L3SZPLM2xtdlgY9mgncHe3cJvL3H6F36J6b27/PPP3eRs7nFWFJznBv/q93+f6ekF3n+xjZf3OH9ijvmNDq/PGmSlqxNnm5JGG/YGkmmlOH3mPO0oZ29QkooKz8tZ7Szj2iGj3Xu47joHOzlVHIMLWO21OHlig9t7JZ95+hJ37lzj+EOXMa6k8JpI0Wept0I5SghdhTPffzP+gQWBLyWloP6ROYe0FisFCoF1DmsdxhVIJfG0pOEp4ihAmooqT1DO4Wsf4yzKWjInkTiK0pDmhlbo1fAgLRCqphQmScbCRhsdhkRhgPI8lKrbzULW1Ym15shsUBPlNBqLJbe1VzgrDNNZzvaoYjexDCpF6Y4KE+quhHC1INJUFdZUZIXFWkdp66LCIevOCLWH3B1Z6CrjkM5R5mUd92tqW5KU9YdcVSVKabKsJIjrpL00T5lMxkzGIypTU6KEEDhnKUyJrRyzZMTt628wSycsrxyjoUKCs6u0fDClwffqz6CmAHI0p7dUokRIjfQCTHuBZnueZj5jZXWZU+95DJscsPPGFe5vXcXvHiegwde+8L8wG43p90cIoWh22/i6RkWXztFsdwk8n6jVYZYdkFY5VT7E1wF2OqZwJXu+T9yIaHgBwji8llfHRFcGKRyR8tBojLVgTe3tfBcuJXyszlAuQKkcZyXagvOgcKApaTgfd6SXEdZSP1cspS/xnEdFvfYRdX6Wpf4hV0pRmgJlDJR1kXxz8y1ub0dsnD7FfK9LszsPwuJl72hbYjrdLkFTUqQJcXuebDKmCufxZI4vStqLKySHQwZ724TzcwQNn7DRI5mOONzZ4Y3XX2VvNmauPU/oe4g4oj3fYngwABUQSI9ZkVBUIaGVVB1HMSvwEMzSKVHUxkpHVZaUZQFWMxkPcWWC9AO08qjqu8bTPnaSES52mEsto9GEdDji5We/yZnzl+m0Mq69+RbnnniYmy+9TllWVM4QeT79PGeus8TO7fvs3L3NQneN4ydO8sFP/Qz/7Dd+lYPDPpceeZju0ipx3GAyGpL2mqSzjL1JRrsTUBY5oso5TC3K00gM02lB6Wb4kSX2eqB9lNfEuDpd0tZcSjQeRgsiz8PZChE5SusjFAhpa0Gvp1DaxwGR10A5g3QWKxVCWaQRKO2wqoV8F10GLz37Mn/4uV0+9sELHF9fZjy1vOd0yNyTD2OmIzZnMWkO/e1tLl16HFNs4qkO06kgFj0O+mOk3+b2rau8lsMHH28y2L9PNh7jtZqE4+fpnnuY7N49prZkbU6yEHaZpjs4HK3GWYRsIcIYT0vGh0PKqsIpwXSaoHSX6WAbz/ewznDtjddZXFpjfnkJk0q82MdmId3lNqH1aYQeIhf8jf/450D7UO2zFs0w5ZSvvzgikgVPPvYAn3jiQ7x49QbjZk6WzNi4cIzF7iLbW2+xcPIcxWwAyX3KeIlidJ9Tp0VqwqIAACAASURBVB/h2ttvk8wMnbYE2wNdA+6qkUeuplSFImx5CBWS9fe50c/Y6Dm+/PXXWGm8ih0NiJaaJN4yG+dPMRj2efqD5zh7useLf/ECmVD0DxVBvE8QxcAerSvf4/yJFZYaOcnrf8zahz/J1tYr/M2/+iDvferT/Oa//DyT0T3CbpOzWtEvN/AlnDkXsTC/xo1XvsnSxjpOa0rlM+7vEMeN/5u4946xNEvP+34nfOnmeytXdXWe7umZ7p6wu7OzM8ONXJK7lEiJlACbkOEsGwYo/2XDNgx4AQEOgC1ZhiXIEmRDACWDpKS1uSRFipu4YfJOTp1zdeWbw/d9J/iPc7u5BrQrK1jzAYWu7q6+93bdU995z/s+z+9hZmYk9TbFtE868SyeOMve7lVqnZjepILzI24R0ZEpd++9SV1UWH/qLP/j//ybDPYFT589js8Eotoh8jmzuML771/mF37COvupBYHWEuE91nu0n5+uvEeKcGIXwiGMQKBIIkmsBRFunvwH0ku8BmXCydM6R5JGGAROSKwzoOKQ8S4lznsazSY6lsRxEBKGTkSozGVABeItDz3uVgaxoxcPUvw8pXVMc8/hFEZGYYP6MJwKkXih5nje0E1wNuRsO+cw/mHfI9jm/FxINP9zIYJgzs3Dj6QxhJppHrDkxTzgx2HynEmvjylzZpMJRZ4z/6LwkBAKHOspy5z+/g5KaqTxtGodoseP46XAufB8D1jCzjnwweYIASvtPQjv8EIi4goikUS9LSajIap/j+HBde6/+xpr5z5Ja2mTmb1N2ZsEBoSzSCfxxmEFFM6h5k8WacXUOMZmikeSZQmFUeRFAXiyRmipCxneJ2OC8NPaQL7zKISfk6o+hkvYcLpzFEgforBRMqQYesFESbwp0DhKoVF4pNcY5xHRFOHDSVt4i8eFmGrv0V5TapDOE0o1hZCe0SRHuxmHh0skSiOziNilQERhPWkUBfuo8+zdvU3lRJ0+hno1QtpZELGWU3w0xeSOwfURU2fQ7YIyL7l87RI2L9HGUu1IJoWlksTgIiamhLJgJjRGSpqtDvl0SjkeU01iRqMp2ktyMyETEVJpvNfEWmC0D8mV0wlxUqUwE6x1jAYDljpNTOEoTIHX4IwHXzDo9tDHTzIdjRne3iauVJmUY5SKKazFGEkSy8ArOehR5p5zF59kZdlx8elP8fbLP+Tg0JCICa1Gi4P9PXr9Hoczj7OGSS5RjYy0VmN3sI/OFWUqiauCZn0BnaU4JzAmCIhjKbHWk+ApdIy3JSjPzEe4wlFXMR4D85GjcY7YRyhjEV4iIoU0Bqs1ykms8MSRAiWIC8v4Y4rwBvjcc0vc/mDE6RWHNzt85slTfOsP3mVtc5X2Yp2De/exVlBvL3H7cEamVrl17xbHFx1ajekdFERZRn8Us1xXvPneDUTkqSmFKKCaJNy6fp9R7x41Kbkf7RM32zSmFSoVyP0UGQmcmOLFEmWZk1Y6TGYjhJySG4FQisHoPvXWUaJKymgy5VijRY8JeW6Y9O+QNFsM3ZhqtoqoZuhqBSZbmFIy8RlxMUFLh40ihlNoP/4Uya33eHT9HLnRXLrVxQz3mBUV1o8sceujIeNSku9MaLY2OJwc4nxEnFVBFCgnKZwkS+uMxl3EJAXZxZgqpugy7I1Is4yNpQXOtRRx5wi3b9/FHmzRH+4z2JmiU8Xxi89QK65w01VZqC2RHb6PUY5KdQGsI09T/slbl9k8dYasOMNsvE8aZ+wdFvzgO9/n9NoKb/W6dGbwpafbfP+tEdc/usO9WzF3twuO1FMmhePyzdvkNqN7dYtxNOL05mkmwy6l3gYbUxv2yVqKWTdn1t2mtnyc1IwY7nnuHk64cO44v/G3/hAzyPni51/gC58+D5ObdFoJ12+PeGRzgf/pf/vH/Fc/YZ39VA3Bb/3Nv/I1QRBgaQRCQRJHZElEHElksJmjtKJVTUjjeaSsD6cspUIqYuEkM6fRsXp4UtRaEEcZaSxxJrQIa4sL1NstqvU2cVZB6DAuCGA+B9LivKP0FgsPcwKm04JpYTAGXOG4v9Pl9vaAd+4dMDUeocOpwXkbcI5S4qwPeQR5TmlceCwn8HNnhJsXCM6ah4RF58L82HsfBGnzQsX7wD0AMXc+CJRURFEYgUzHY7oHu0yngRsgxPzrBAG5LEEpTaQ0ppjSSFJObR5l8cQydZ1RrwbltNIB8SznJEDvLQ8AQA+eXiDR8RywoyKSSo3WwgKnjp5lcblCTSeUOkLoOrfu3Zq7RSS2LClEmA9LqRB4kkSjdEYsIyYzQ+EMjWaTSpKipaYoSirVbG4fjdFRTFkU2FCx4XyYsRhXoqVk8fGf+dc+f/3bf/Uvfw0M3hsUEV5ahNN4DE46arkiTy1GKiJnkUi8FFgRKJullCROhthuHEZA6sBrj9cy0DKRoOajMi1Qqs7qaptKrDE2R08Fs8mQIi/orB8lq9cZdbvc394jWe6Q1jq0Gw2iNKGZ6sDsKHOE9fSH+xzs3OXtH73OpVs3mPZ7jHZ3We600EITx5rurARi4kgR6xqlM9SyGn4yoNJq4KcjRnbGZDxECxmYHj4hVp5qljKKLcqWVLImxitqnQWSKCZ2CdN8RtpssHn0BPlsSjkrsN4wnI6o1GuMDvbR1ZTutIcuPIPJlCip0mi1SWo1ZFLFjKd0hz2sE0zGY7LmEo2FOuVkwvUPXyEf9qjWm4xGfaZlyWg8xluBKR2zomA2g8nEIpwg0QlGB8thmtSo1GLiNKUSZ0RaUa81iSoRUZKAcmRxhhKSOKnisphYzsWtMoSHRUJjVYkQNmhIoiRQDLWigsd4gZAOJ1MSX3L+woWPRUPwP/x3f/VrX/zsBXKhMX6B1370AfVaxrFTm5x8dBUVr7LX9QyyNvndqxyOhhxs76KyZca548lnP8Ply3d45uJ5/sHv/YBPfPoFpv0B9cdi3v/ONRaWKyy0K6j6BpNC8sp7BzSqEVkiabdPMJlO8MITR3WK2YDZ+DCQHH2MM1NMqUH1qSaLHOwfsLi8TlJRTMYjRuMDZDkhqSxAbrFaUMlqiHoF5QxZfZOZS1hqVDh6dIObd++Qj3r8/M9+HlOUHGzv0u4Yjj71NIM79yin+2xunCNbjFlaW+Nwdw8VC+L6IqKUjKddGg1DMTLhfqljyuKAg50uhR+i7YRibHFC0SsVR49ILt+fETfa/M4PJjz3iUdwWcrmseMMxAq3+1M2M8m2TTiqMqqNMUtHnyTeuoxTCa40bN14l/X2Jn7S4+UfvoEtR5w4s8CTn3iGj67ehKzB6soaa6sNRsMWVkaY4g5PbtSolDm9geX+FCI87VYVESsWsjr7U0+tpvnOSzdJkgofXb9OMVpgONqm0lkh73U57EraFclf/+2XeeXtt/k7f+M/Y3mhxbmjMd7sMywVh/tbxLHlxqVt/uKv/AxL5z73T13HP/XYpmSYt0slkA98/9JjfZgfCw9KCyIF2nuUCwRBJUEiwUnwglFuKEXYULVQQV+AQEvBtDCoOEHFMfVaBQkhkMcL3FyvYJ0FEdDC3tqHNkEclMZSGIebs/NLDJPCMJqYsNmXOdbOgUHuQVyxBxEgRtbY+Ymbh2hfP8cY23nBEcBHdo5Bnkf8ejfPCnB49wBKFF7ngy4CQOEdBh8aEv5PnucBFn2uUwQkBQ7joZZpms2EVMeB22BMeGxHwCnPxwX+QQ3i/cOCxOMoS4vwgIogbiIrDXylwuLKGRbXNxmPu6SVCp1GDWtKZoXB+nADNtZhjWNWWkyZU5giYH0RuKDGROmUJM7I4hTrQ0qktX4OKPLYefjTA+qjtUGL8XFcYx2sfloEYaT0mtRBhkKTIGRMWkpiI+YCSIl2IbY5RhPNY6ultyjhUCicUHgZMMfKK4pIYwUY4RBInBgjhUcWBqY5kzJnNMuZuZJaUiWOq4zHIxZWF6hkTarVJkpXqEhNMdlnOurRqbZoRhXiWNNpL1NMpkwGPbKsiUlTqmkMcUyluUAiVbDXZW3SRhVVTimLGT6NGQ9GGB86eZGSTKdTXF5S2hIVN5kYqAtNBZhNB2RZhiod1mX4mkanmiIPjpMojhjaMpyqrSIfjfFas3fvDtc/uErpC6JqQme1ST4ek0Ypq6sLxJUqWa2J8RbhBZ6SY+tn+eQLX+TgcMLd+/cZ9gcIlZLnAmcVTktmTpE4RSUTlAJsFVzqUF5SjRRSeAwKyPBUUHE0R49qhIpJkhpplEJSQUcS7R1WeSId4Fs+UvhEo1UFqSvEMg1rmTDqMzpGInBlgXGTkDL6MV3PP/uzvHvVsXV3j2+++AGX9yxLayfp9R2/8Xe+xf7lF1lfaXPrrTd59Mwxzl48z6ee/QTHTp3k7GNLXLl0g7UjJ/n6S+/ywvNP8aPXX6Q73uXw3QFLaxBnLe5euc7NN39IuwkXntwgrQqcSunnd0KxP+kyGfSYDEaYMqZfTogrGSQ1EmWY5S2KYkYUDxBiRkTKytJRqtVlJjNDnIButJBeEmlNwy/RSBaYcICINV4lFNmML3/u0zz97PP0P7jM+698k6gasXNX43b36U9K8ijhYP8OozuemXdzkVvJwfgOeXmfVmUNO1M0ljeZMUSVMdNpirWHyNwxMxnQo9Faoqr6HN7zuFnM3ruvsXKk5IfvfMDlnV2++cZVVhcNn3+8zR/dTXj7lZd5/NkXuHn9Pq63zWIr46mVlE5zg5XaUa68/Q6x6vHZ58+xvbfFa6/ucOu173OsucRCNCapLvDN169yf/cqkS1odE7TmynOPvEEv/v967SWNvjwco/unmQ4Ltnp9fnc809TaXZ49vxx8sGER09s0Jt0eemt+yRC8M7l+6TLDfaHU5554gnWq+u8/b23cIMRW3fHHG7tcLA74t7dAw4OxrSOLLA3LX7iOvupHYK/99f++68pEboDsZJEUuGdR4qw9SgvkBJiKYikQzhHLAno0CQiTmJ64xLrRUC/CsmkKIm0wgmPs4Ik0bRXF6ikUQj9aS+Q1ZtEURKUvSL8WyHC6d06h51voSFRkNDuFzIUB3nB3ftddvYH3D3sY61DyKAw93O2P4K5VdFQlAZnHXYeBuScm38YvLOhM/EwhyEUEeF4/ydCozBKkKF7EBIgUHMnRZxWkGXOaDimzEsKVzxs/fs5UEl6UCqiWa2x1Krx5c88z7HTZ0hrKdpbskSitURFwWYZioFAKAxoYPXw8XAWa4qQCKkjpI5wcYavdtDtVZKlYzzy1LNsHtvk+KnHePzTz7N5/AzrR07h44RK1qTXGzMadUnjKqXw5NZRTSKiJMK58N2Pk5RKWkGpMGf2eGZFQVkYTOmxZYEpDUWZ46zHW8Pak5//1366+t//yl/7mgG0T4MmRE4odAJIlAKBw0YyhGSVEjQ4XeCFIegLC6wQIAg2WR/jcWgXoeZplNoLHCFPQzmJFinNehUiQWEEZTmj2mjQbK9Qby+QpBqX1KmurrPSPkKqJFIronpGaj1GKSIRoRJJFKf4qWFEis1nbB3eor+1RaXZYGl5g+lsCl6QJgm9rVscbG8x8hNqaUrpFEmaYMsCIRy93gClJGtHNpFEKF3grKHMR2zvblFLm0ipqbQXWF45QlHmpCrD4Onu7tPdP0A6EBWY2ZLF9eOYwQGlSKgoRXNlMUTiWsHmkSVarSZuLnxc6DSQURVbhhHb+vEOjdYaa6sbTGZTbl+5TrNSxQ0OyQ3kJljFGp02giqltGA0iRNEcUTSWSVLE7JahVhHRBVLFCWoOEUlkkqcggoC0ERVkMIi0oTUVXBKYEpPqhVKCMq4gtYxjXaTJK0x6Q0oTI5wEp3GGB8RiZjcGp68cP5j6RC8/dYbX6tEmrwY8cixI3z2qcd5853XeHQj4+jJR3nmSz/LR7d3aWdVdgaHFP37bK6tc/7JC7z31lUW2ovMZns0sNzcPmS17lnfqNMdlXQWmxRmlbt33uTUudMcDGF3Z5tLr27z7rUP+fwLZxkODNV6k6m1HG4f4BGU+QGV1grlbEijtUZRjqi3M44efYbhcIRQJeXI02pUOfSWWi1l1u/TaNaY2j7jsk9V13EyhOYd9g5pL2+S39jj2LEldsYjuh9scezpxxjZnEfOthhsDznx2CdwZJRuyMH2Np36MjM3oFNfoJjOGPbvodMGOhEMhhn73SuMt/eIKg20AKFzfLWGKi11F9Of7HD6sWUWNx7n5KkOx1fW+f4fv8wnLxzj7/6f3yCtr9J/67s8fuQ0snqJR09/Cq3vU+9s8N5HN3ns0VMM9q6i65qsfoZxKTi6usSJpSY+qbG4XKUoDMvsc3G9zihaZlefwKP55KMBw/zkp47ToM8T59Y5c6TCre4A6z2Ht/eg2uFX/uK/zcUv/zvYuM4b3/59RLPK/niJ42fPwt4t7uxMEeWICxdOsz8dsbleJUqWqLdrRHHEzmDI+soGqYB7d3s88blf/ud3GUQ+zOgfYoKtD9GwXuBM4LozD7lxzoKSYT4qBWmagrGgBYlUGOOCaEsqmPvU680KcRxY8sZ6Ko0mQumA/J235pWUSDTziJ8gCnzYqg+bvJAK7yzGOoqH2GEfhH4+iBCtEyjhEV7O3QE8nM17/+Mf886BtfPnmO/eQjz8vXPhZBhsjiGK+YEV8KESed6V0Erh620atQnFbEZu81BkzC/nHAUebQoS6WhnmpUjG9Q6LbxSODP9Me1AaIvIMDEI4kj5J6FFc9MEMO+meI9z8+AmKZClQQ8PEJMpWTFGTMYMd3tcv/QOZT6jP+pTq7c5eeE82jl0bNm9v0MpclpxjHBgSov3BTrOUVKSevUwwMiUJc4EbYEpBc4XKEnAXccfz+lq5h3aa5yUAajlkgBQ8pLSGSLh8C68l4UK77+2CiciIkKEcABQKaSTSOFwc3RzZBUz4ZBOIGVJ5EFISRKDyMAKArY7XiBptchqHZwQFLkhShM6soL1OcZI5HhAJWlRGkeUVFAqQuZj/GzKvd0ud7avgpGM9w6xGLZ2t5Aq/KA3O8uM+yNEliIpccMhOX1owvSgj48zvPSkwlO4nFHvkEarzWQww+UzpuMu48Nd8uYGNSlptRcZjyaIJCGTKWZwB2EsUSWlHPYRpSRyApFDffMErY5m/dhxrl2/zVd+4avs3t8h0hDXBN3dGWY4QkcaW0xRTEmTZaSRNOoV1k+f5vGdT/Cd7/0hyBmNeowZeWS1Q6u1wOJilURron6EcJY4amMTC8rhFECE1xqp01BUKQmRBhOjqqHTo90Ml2VExlO6kjRKieJpEA+LnNRqSuHZ2doLtywpiDF4q8j3x6QrS8ReYe30Y1nDAC1tubK3y/mLjzH86C0OPvqQr3zuc8xkxOjOJQbdE5w+fgK9aal3nmPU7XPlwx/w5t9+g8/84hfZvjnh/o5lOtjnl375F/nuy++z1zWUuWS2e5/P/puf58q927x7M2KtNqBe7XD0mZQP7vVQaRWGYCYDtFig2arQ701Js4QsquDNDGM8rXaGmwiiRGHKHAqFrOdMfcKpjdOYfICp5fS7A6RUKB+T6xE+q2MPJ9RSWGjWGXcs+/tDlk+c5Yffe4NHuzvsDSJuvnKbI48/RWwVSTWjmA6RUtMbHzKbFVSyfaxZJG5EeKUxhSCOpsS+JFdTUhKms4KkbfA5mKpj+/AST54/TjGucG90jYY7zu2da3zx+S+TT6/y3/x7f5ZvXblNsbxIY3OVd954md2779Nc3CBtwsLaE+z1u2zJdWalRQzvsLR2kkYSsbOzR293n729GbkUiFixuPQC3R/8rzzy8/8+d65f5o1LHZY6irVOh4NY8cjFx3n9vW3qusOnn3yKl1/6BkviGD/43f+bp7745/jU018i+XdL7uxuczAYs5hGHPSnjCipdyLOrGuufHQXe+Yir92+RcUcciJ1tKsLnH3sDDdvfISLDn/iOvupBYFRYbat/AORnUeIEHRjrcVKgRYq5KHrcMNXSYqUQRk/meZgBdMy5BdUKglOKSqRJIlj8rzAmZzWQgMRR+SlQdoJWb2N9SEix3k/Z+F7vBPgJWJ+0nc2bHRYh7CWoiyZ5Dmz0mC9RUsB1uJtiZ0XKh6PKw1FWYYxwgOBn/cPP5cijC1Ca1/82N+Hy7mgOVCE4gahcNaGomBusbOmYDadEkV1mqvHOH7x58h7Q779W3+DmRtg5hHC+DDG6MSaT51Y45mnnubIhcdxqaQ8yHGlwxmDK0t8XAZPvxcgQvTzg1a8eFgOhK6Dc6FQkULipUJ6hYjBNxWiUpAVhiMyor7aZZbCwc4udusmvX6Xe7s7KClYrmVYC4WUpEdXURKKXp+ZycEbTDSh3mxifaBZmnzGZDpEIrGupDR2nlshcY3Gv8h98F/6SpzDaJDGECsZQmtsSSElyjuMlCTCU0pFkpeUSjB0jsjN0EIiJHOBZRgHGO+RKIwSQStChNcFidfYSFDL6rSWOtSyJVRcpZJJNClpvUOaxBhXUDhBNLYc9Efo3YRcGrK0jk5iFptLRDpHTjxFKhlO7zKhoBAJkbfoJMJ5z6g/YkvuktYaNOMMjixwcPsaUUUjrWU6GbG4uEapNbIS45xn4HZAJsRRjcmsCMViZLh16zazfMTJWJHWM1w5YWG1jbnZo7QD7MQzm/UgraGTjPGkR5xWsQlMyzFHW48yPZzx53/xK7z87T9GxIrGJ88ixhOK8ZTD/R364yGNSDM53OHe3Ttcfy/YUjsbJzhx/hwXn/g0SbOGuX6DMrpJbAp6B3fIezE6EgivSLRkEM1oVCtQhE6lygIvIWRwRIg4QqKJqgoZgTACGym8MxihUZHAiBynJZEVlGjKfAqiDMOHRCCMp9AK40A3GkwHQ1yWoP3HNzJor1a5IBbY3d8iXTlDM7K8+Molfubz51m8+Bx//7f/L06urZE7aLW+TeEEb752mY2ja3zwxgcYv8vJzQ1m7pPc/vB9NjttLn10mTOnjrJ59Et84zf+FqJI2du+xrmfe4G9Gy9zbb9FxJDv/e7rnH/+PN1hRpRNMGUIB3IuYlLsUzqHsD0SvU5c15TOsXn6SUb7O0FoO5syOLxFvd4gijTp0gJuOiB3kslUUk4HFMOCenWdmenxxBOep1qvsHcHnvlLC/znf/N1/tu/VPDK7a8S792hlyjqusm0EPhJH1+ps7i4wM5+n+V6n0p1ge279wNsqhgxKWbEcZVZcYhOqjCpIYVkPNzhYG9Ifg5uXHufZjLk0BTI5jqy9w6HvYzvDHt8+N51PnXhcbbuXKcqBSee/3nWlgW+L6hnERN5hCL/Jr1hyblzZ9k8cYJLb76BwrB5dAVtC4xv4EtLVNyj8eSvUeQxX/3Tf47X/+A3MfYkf/TDN+l0Vth58RaPrnrytQ6Nk8c5a34RZzVXrr3Dq9/6de4fDvnVP/s5ktyxNjlgNM740mcvMuweIlobfP/tPu8f3mLnzQ95962XefLYEivPPc4jFc+v/9f/C43V4/yHv/Sln7jOfnr8sRTIuWAuSKpcCLzx4ZTqCRhdScgokFIEhDGS0rog/HPBoiXnbVEpIFIaZy2lLUNLzhiySoUyN2SVOJyqf2zk/GBeL2QoEqwNG6ln3t63NqQAlgVlUWKsC69NqXDiCugRgvGch0hi5u19D4FwKP6kKPiT5/b/r8+DXXD+/H5Oop0XDn7OIwCwck4WFJLm4jJrJ48TRxHm9q9y6aMfcH9wDeOCZSKSko1mjdMnj7J+6gwq0jgHpsjxtsAagTMR3s0tk/MWdnhRP1bMiPBahQqjFuccQqigOwCs1IgoARkhdElaLFCWAjN9H1PmjEYzhBeU1iB1gm7VsEWOKh0H27dJ0yqLq+ukNmfQ20dhGU9G+KyGFYKyzDFlifAC6wNzwXuB1pJZnvx/uO39q7+UFhjjMNojXSjahHIoq/DCB11MGdwCQkq0tejColRCpMBKN18bQTNjhcNL8EJTyhLtDcqHUVEqBCsrGzRqNdAapQRRsohSlmq1ilFhNh9LjbcFLpZEiSZSCaPJFDsr0Q2JK8Mcu8hz7nUPGQ6niFmfQTcUiFHkcbJOklVoNpr0+mMaTTUXlEZ4AkRL4ZgpQ63a5HA0JKpUKfIZM5sjEXifUJZ5YIJoxXjYZWV1FZ9bIh0hEcFeG4NO11BK02xKxjdGeCloNmpkrTYL9ZBl0D8c8wu//BV2dg7RmaWWtFA6pVVJOeiNmIwHRJHA5DlQsL+1RRTXSaMKn3vuc3z9679NOtthPDIQKSIBWBgraEhPKRTK5XiXobAQOaw2aFdFeYnyoTCO5g4KUEgt8BpSL3BKIpXDGoWOLDNrg5U4t6jII7Qkl4TW6KQkFgJbzhCJQORjTPzxcQiqtZjLLx2QZTleD8hdk8rKMm++e4vx4A3OnzhKvVOl1mpx68N3+faLH1GvLqMmkkEqydRxpqbFuRMpMj7NtY+2cOMxC4slX//GP+CFixf40Y0hi0fPMXYaK6sktUWKwynX7t3jSfM4NvNEuspsNkHMNLoqmPQc9U4bFBTlgGqlTZQkTAcjkkrK4cEBMtJk9Yz6Sh2KJtNJn6LISZIq/XxIxRYM5ARvuvTNAl859wqzw4ioqjjeKdl8dIO6v89UHGXSHSIqEdNsQFrdoN+9S5bWmeUWUTpmxQRxMEbrGuPBfcQsCEsnxYwoqiArNeywRNUsYhpzdlFzsJuzPy1hcIiXt+lsCm7eu0nWPsa5x45z8dwZdnr32YzqjPqavhlxuJ/R6V7DVWKkvcXzLzyB9h1+57vfp+je4uip4yCWuHn3Poc7W1yZXOapJ/4UK/e/xTMXv8w9E/Htb/0QM0tZ8jOGg4RqI2bvje9yf/kEn37qFPnOByiG5LZC1eYc+/TP4S5f5tL1CXFSsNyM8UPLne0+t69c5vQ5wSfOnebddz5i2B/zpU+doVFp4V3MuNvFikAOfumdy3z1J6yzn1oQ7t7dEAAAIABJREFUSOMCMnguYvdCYqVDzk/pEkiBREnSSCO0DKdupRhNilAMCEGWaKQKG5RWinFe4EpLq1UhUhBlCTpJkEqh0hg0IWVx3o3wIlDkHgrxzDw9z4UoWnzYpPO8pCwCEEkLQTWKmAhQcn5+9u7HxgQuoIe9m7MJ4EEknycQGR+4Cx5cD8YCYq7yZ+4E9D5AjaSOwjjEE4SAjDnY2uLoyac5/ug6mRZ8+i//J9jdX+PmD/6I8eiAyzfepdffp1Gv8vizX6XzyGkmRY6ZWMa9AyJpKAsotCSuZAELrESI0w3fjXm5FgScUirE3B4lpQwdHS/wziG9AxReAc4TLyS0ay3OjcbcunGT8dgxzWfcObhEv8jJBp5aVEEKh/CaUb/LMB8QRyntWgeVxgz6B4xHMyQeb0siKSmNAWSIjrYWoRRKpv9cN8B/VdeMgLJVzmGVw3qJMGHuXyqJzx1WR8TGMI0AoWiK0O53hNRGR4TUod5KpcIIifIlqnSUUpEldTY3j5JkMSJKmVhHu9IgViLYRpWkHPXIlaS50MFrTTQrkXGCyiqkkWR57SQid+g0w5RjrBB4HdPt9Zm4HCcjSHPi3DKaONqdCl46JnmOQjHs75NUNMNRQYTjYHDIG68dcOzYKWQ8Rs+CXqCYObAzKqrOWI2pRS0qtTqT3pjrty/jdcS5C09xcP9+gPrIGCM9idIoSg53BrRqbbyKyEdTOhspB/0Dbly+grhwkfPnThKfrjLcseyKPguViKXljPUTC3R7E/ZvH5A2KzCeEUU17nz4KqpWJ1uo8ZkL53nrlW2QmqG3JNYxkSXRVCHqHu0L0qTCzClK0ycqI4RfmsdrC1QqSStVkiTBCUfVSvIoENHLOA40VRT4CaXVaBesyFqWmGFBFEVYaYjiDJvGiCQiFuBdiTQSX358WQa/93uvU2s7JjmcORGztztguZ6SLrZ5+bU9hnvXyTnJzO3RWTrFlz9haa63MWqF3uEu5cFtoqTCqz864PTijGZ7jRe++GmszPjSlxb54K03+fyzp3n11VsosUm1c5o7771HlDTZ2pth5TKJHJNPd1jotJkYS62ywXi8w2yW0+1ts7SyQV4a8u190mpMaSZUOkuU+ZAsq7BzbZ+ykrPWWECJBbr7WwEXHsesHX8Ep6s8kb1EuV+lVjUkWjGdev76v7FHlAj+0wv/B7/10n/B3tU/YuHYecrhm9Sbi0zNIWa3j0ozitIw3k/w+V08BUVXYRpdkmoHGXvyaZ9KUqPIPb3BPe72DX56i0p9gzs7kkdPZUzzGoutFT77mSO88v5V3vvgNu2qYCdexmp4+sIi3d0bqLVTXL78AYsbihe/8Rq53OGJ48dpLh2h0n6K6uICN29uc7Kd8fk/9WvUF5b5h795i3d++C4N51lcyFByzMHdkmeeeZS33rzEl77y5yFLGO7f5vsfbnHYg1Td4JnFIe3ZKxyzV7jtnuOx5VPMBtu4yPLBO1uIeInbO5bywxd57sl1XvrhW3zy+U+y05e8f3OfUX/IVz97nkv3JFfu3v+J6+ynFwRC8mDveyDGkwEGj2ce2/tA8CdCFLDDU/pACpRKEUcBNVw6SzwXvzljgiXReyIVodMg+IpijZQaIdR8ow2vQ4QXE0YGc5U9iEC/C7OA8Lh+Hl8s5vG281OGmwfsPLi8ezD+CE32sGk+mML7OWNB/Aki+J96BUGZIEwVHgT4SBkeNJD+HJNhl72b14nl50kTRa0RkTSWaTf+NLPBIelrbW5f/QhbdInaHQrvENOCvD+jyIeoJOgzHnxIL4OjwAenRPgl9G8QYu7uCHbGB0WDEDJ0Px44KR4wDIQCFVGVEmUthXccbt8jw5OXJfvb9zkUnkk+o5XFpFpComjUW6SRhpkkymqYYkY57WHKgjiu4q3By/A6nFcIFVOoyk9bav//XVKhSHBygjNxaPvrAuMUXpVkLsIbKLUgsQInPIUWwWZoC4SIghbA2RChazVWhjEPChoqYbnVIa3XkSogvSUSQTTXoowQTjPxHuMELM2dO4kmqVSIcaQ6oSoV1BNUpBBRgh+NyOKEmTEkKkXGdTI8blqjHO5yeHjI4pHjuKJEao81EqsFJBHDbp/+uEe9dYTW+hFm0x4zNyWLJaNygkBReEtkJFlDoqs1xCjCFZabNy+zvnGEWmcF50pazQ624yn3e1y/ex3voV7pUNEVqvWMctKja0tW1tYZ9LvYckbWyHjxtbeI45Tk+CadpTZxpOm0K/TuT3FFzsbJNXysuHf1Xca9PUTWoLmwwNQYYmUJ/XoNQjHNoeVloApqQUqMLFOct6RCo7EoCZHX6PnPrBIJVoNSGVIbcAbjwJez0IGbWVzkoVSoWKJSg3WKVGm8DXHstn9I6QUi1VBYUv3xFLUAy8cXKKczvHL8/h/d5C/80lneeOk2dCPOnXqUejNmr99j/76krq/SLwS9y3tkq5Yrb3/AxsnHeP/D2xxbX2LP1th6v8sjJ2pUazCe5GyutznY95w+s0Y969PLC0R9mcWjS3B/QKq7jCee3f0xJZokkxTFIbV6xt7BkEq8QTFTlGaAllD2QafBim7Gln6vR2WxihlDORvTHY5pdSoMB1MipxCZp9FKeP3yh/yZc4pi4FEK2i3HdCqZloL1Roke/xaVpVXMwXXKiiMuFcIXTGeKTmsFqafE1uPiiOm0QNWhmqbkZkgqm0xsj5lPsSLnxtaENN/i4voJ7l1/l97iJ3hrd8ym2qU3Lfnm9y9zGB3hyPlznLvwZa7+6NscWWqxczBEllNq1QqrR4/Saq3RXOxycnOTgoxi/0N+58UrbJ5b4+blG3xmNWXrB9/nyk6f5372Cwgx5do1yXByn4WoQavV5sUffYdGVOPVt1+kU1WstaqcPVan/fQRUj+l18t5/84W94qMR9afIq3k3Lqjkb7H8RPr7O51Oeh2WY5jXnnjEqdOt+kPIBGGTqPK2TPHeOPll+jvDjj9+Cd+4jr7Z5A25vkFIkCJQqs8kPukkkgRBGPMYUDWg/AiaAHSFO+DB700JUhF7INtMNaCWCsMYHWEmRmaiw2yWp20WguzWyR2DpIRDzYzR7Cx8aDwEHgRRgfWS0oTSIKRVGRRRBZplJQBEWnDydU75lZDPxf3hS4EyIddAQTzcJ5wPRgT/HiH4AGdMBAKPUoGx4VSEV64ILBz0Bvt8d573+Hc7z3J488+gT9To9SC5skWmalysvE5qptHufbOB/SEI5tOKQ9yJqMeNV2QC4WZTSkl2HyK8BbhHFIpvBdzDUMY6kgdBWHnj406H3QzhAi6C+9tAEKFv0TEEQsbJ3hq9RgjmWBEyitf/02mszFRnNGoZDgBw3pCJ04w0nM4sxgj0FqD3aOwlkq1yd5Bl3ozRsqIqNoiThLSSo0oiiGt/wvcBv/lr8h7ZqpElgotBN6VRCZCeBBWUwqLV2ETt7pEOIkqFQ6JVxotNdo5Sg/Ka7yMkExwOkI5xcaR42S1OkIZlNBEkQYtmEz20EQwNHjryb0gW1gn8gm1OCZd7CBQiJnDOYnzBeVkSDFZpJzNmA73KEvBs5/5At3piK2v/zaFKYkqdZaR7OztcvWD1xAqol1t4LxnOhwwnozJlSGptkh8Tr93QFaL8KXEjD229GjjMTInrTfYG/dYqNX5+V/9L/nD3/q7xM5x7YM3cLIK3iK8QaYC7SVpdSkgmdOE1tIitizZ3+vT7CSMKgOWlk5hRMrNSweUheFg9zYLi210v8HRpERKwWi4xaQ/5NTZDU6eWqO391m27nzA1rX3cXGKyzKGuyWFSDCFpZ1ZZqkil5a6rhCpmFgbjJqRJjV0bIiFBhVCqGJnccaj1QjiBroYUWKRKiNVUCKZWYNMMlJfolJHIS3IKnoywVhHFOtgfc5qaDSFyTGA+xjRxd/8R/+QY+cqrKyforXg+MYfXma5E/PUk21+4++9wld/7rOcWFikU7Vc2y248GSNdy9d4mDrkNWjj3P1eo8vfuk4lz8YcPZ0ynIHtq9dQlZSdg8mJElMUjWsrzzGaHqAdVNWVhusrwgyOvzonTdYay9QjRO27w1YWdsgn+2zf/WQjbXHsdbT3dkm6zSIjCVuSdwswZqC0ktGw0Gwo6uEw1GOImb77i62GGPymFJmKJHT37+A0t8lXQjUWF9AKgoSB9PdlH/rix/x+1cu8vbrV+i065jxPioVNJttBrv3yeIBhe0g4yFpXAFVMjVThFxE10H0mph8jyhb5VjD4/wah+OI/nhCS7zOmdUOH+33+ZnnPs/9UYUzkeTW+y8zW3yTbd0g2jlApLfodPv0r9wlbn+aq2++xCeeeIx7uyV3bv4xW/2YWrvB0dWLqHIHf+R5lO3xxJlTTHpTlFZ858Xf4/TKBjYpaJQFF44ep9k+wjf+4BtoEVHOekS5Y6bqqKriz/wH/zE33niFpdY67WbOzlaXc6sF8coJRixxdvMIb/zwLbYqbW5sf8TlG3eRz6VMkwoXjiqmoyGzuM75xxscbXV/4jr7Z3QIRAgVEnJ+YndzQJCYn9gdSodMAzdnA5TGkiQJEh8yBuYnbSUlQkUP5+2Fc1TxCGNpdBpUsow4TVCxDlHGbk7dI4gJPQFf4PHMBQyoeedCPHA5EE4UzBPtkAIlAg9BIJAmFBRBejcXDD6YRMiwkT74v/gf0xI8GBs8KApCBHHwrMO8gJAiOCiEDM/txdwi6JkVI1578Z9g8xG11gtUailCZFhn6Y+m9EuL1HUOh0NqpUNMCpwtQQaUrnUGaw0mzxEEMeGDFEacmMMkQlHgHogvhAI0QgRhqJQyRDN7gjBTzDssHlQ1pbh3Bzc+ZKHd4hf/wn/E69/7Du99+GZAVQtBoRSRVnRqTdKsGsY+sxzjbGi7LhxBtxRFlBElGVnWJI6TMA5CYaOPR0NgUWgb3g8jBVIIjCjRzBPuhEX6ENutXIQ0DqMdwkuknhMnQ3mAdCWllkgiEgNOCWQ1xvsc4VKsEAhXYFxoUxe+CCmLMkJkNbKlBaq16jwBURELQa4jIu2w5RBfzhAmwKY0CicNdu8uKq3QOHmCg6uXKGY5/UmXJJU4l2KMZX/UR0iPjCX4Gk3tkDJCy5isWiEykKZNZtMZ7cU2Qof0UFMY7GhKpbbAqLtLRVcwzlCPU1SaIkWK1lDaAlyOd1OwGUKGr+t0Ntg72CEuxhxc3ePcYxcpnGB/f5ssjUjXjxClEf3elMmKIkWztLbG9sxQ5oa4ImivtjnotpgOh4iswurSOgddE9a3lkSNDkWvS+IyrDPUvccLTaxTMitxZkoZ1dCRJpMRTnmMGRDJOtJOEZHAjGckdYlKKzAaE9UylHMIG+HcBGUULlYkzQXspIcxFlPMyDrBFZJogfIpJeZjWcMA5596gbWlnJwZz134BFdubbOzv8WlD3e5u7fHVtfy3Ws3OdqJObuyyIdXP2TWczxz/gzXDg3PrCxxuDvg0afOMb5/lySG5aee596Hl1g9OmXn+j1aa19Aih5JVXPYi3A4lv06Res+kwNDZaPD4c4d1jdPMRhPQDpUHDGebRHFFa7ffZtH6z/L3v5d4u6URjujEJ5YC1QcIWSCGQrKpE8ctTDTPYyuk7YzfD5l736XzsqXQf4xLo+weQgbi2pVEJZi7KgveXZfrSLQMBNUlxoMhwNcOqKki+0ZdDomasbE0uFcBy/2idIIczij01jlYHAP182pNTr0uwP29reJljdZ3jzC1o0fsbpyBjuc8MjxOpdffYuNC+f4w3/89+mTceKpT+LymLfFaar9Ibs3XmXsNdd+43c5deoIy6uPsX66wff++HVenfwjTl08R1E69m5dxaXLFIfbtBoZF84c5+R6gp0sIhsS39+nXmlz8rFnibMGH775IjmWjbomas3Yf/t7bK6sc2x9hQ9efIMPbxue/vUv8N4rH3LYv83p06tsbe9xfuMMv/KFiyStdd545Ucsr1Z569U9ZoeXeOX2Ns9eOErmVn/iOvupBUElVqSJxvvQAXBeoGRQLJelAy0J8Lwwwy6MwQF5WVKWFi8kRWlIZCANCumJohhnDBUlafw/xL1pjGTZeab3nOWusUfkXlmVWVVday/VG8luskk2N+0UORIEezwCvEEwYdg/LBgwZgFMG7CBgSRLA3tsa+SxYUnwLJJlayMl7kuL3SSb7KW6uqurqypryX2NyFjues7xjxvdlAxTA8ma6QsEAlmJyrwRcfLe73zf+z5vLaIx26bRjJG+JvB9vKkwsXIZvONtwDoxzfWpigQhLHZaqBS2wIgq/10rSSwFpZJEUpIaixJVHrrBUlIlMIrp2KPSEEydBFMIksNOYUbmL3QH/kJnQHlIWXVLBBIlFFp5CM8HKSjSvBL1SQ9nDWsbr7KxdZ3X3/gOszMrnL7wAFEz4mBng+2Nu2S5Rb+5QT2KaYea0APra6yopthFkZNPRlBmOBtWhQ5VjoIQunIfWAfagPMRegpZkmLKSFCIqS7DuoLpkKMqZOo9WkuSIH6F8cYdfv2f/jrpOOEX/5v/nt/+pf+Cuh8y2/A4MdfjodUVbF7w0r19hk5Qq/eQgWCQQuzPUK9FeMrHSkFeloz6Ga4sKNW7k2Wgi4JcC5xy+BZyWdnKKCWFl2LxECWoUmKUQWlDKX2EKZGFADXBKyRloHFWERpBLhz4MZ1mA6crjLExYIoCyMgDjxoGKRSF9fB0zNLqJfwwwqvXCKUm0pK8tMzONHDGIouMVEtSm6OFogg0xTgl7PYQucGMxgRhTP94iJMesV+jNbtCNh4hfY903EcEdSaTlLaQJKogTCVplqE9H5KSer3Hzt4mxlRkQ+cOaXRi5mdOsvnmGo+991leefV5Gu1F4noD31fkk5Kjo3s45cApgqBJHIdEUYTJHScWTpCNMj724Q9xaq7L5uZdLKB8TafTYXfjgLg2JghKWlHIybOzNJtN7ty6z9LSHFFUp718hqje4Tjd58Er7yWUim+/8RqTseBOssFM6FdFpTI4CZEnKqSwqwSZyg+oaR/tKUzcICgMzk5wJuCwf0x3cR5VFNjjfQo8ICQzBX4yodAG4XKCUpOUI2yRYq2HDGPS8SFpluPpBr6yJO7d6xAE+Rq12qPYW2+xH7zKex5+iu9clXTmOvztn5sBa7jgj7i33aG/s8/T73svyfrrIAbcuLHBoxfmGY+2MfcG3Hz1Ns98/KOM1jeYP3OaW6/XiRZP02rW6epjvv1qwqOPztGtN3j1jes0Ow16sy3C9ioXex6TvEp7LZTPrVc3qQfrtJZiTp8+y2i0CXJClh8w6M9TZIqi3KPXO89rt5/j8cffz3gz59WNb+MmJbPzHiuXV9lYKzlyG5ycT5BFh0jvURYKshSvLSlKRb0m0fWQqL1AFNzCqzVIk208HbKzfZ96q0HQ7BLXYpLBkDyQGBKQJdpqZH2O48kIrVLW+iOi+UW8yTGPP/VpDra2WCzfxJ1ukQrJN5/7YyZ/0OfhD3yK5O5tZpodzixf4rGP/Dts7N0leOkPufzUj/Gd7z/P4GhAczYiqJf0929Tts7x/nMXmTvTY34uZ/XUWW7HknK8y0tphzL0mDUpf/zl+1w8O+buN17jnmjSn7xC2HiavDvibz3zsxAeczka4Jyl7Ybc2FG8cmuH1SdW6KyUfOf1dVpzy6xmB/hexNmzPeqB5a0764QLCQszEUfbN7j0gY8SZoYHmzGTJKdV/HD77F9aEDjAuGrW7unp2No5CgAsSgo8rXAOsrysWtDGUZaG1FbfD7QHrqqsfa0oywJfCgpKwnpEVIvx4xAldQXiE7zjWqiWnUOipzqGqcvevb3Trc7STql9SmmEyKuURknVIhauunkKh5JqCgOqaIduumO2lWJyWgiUlYPg/zUyeLsroJSc7rjftiNOxxp+JWWoEMlMNYeVBRAnKUwB1rK1eZOj/iZbe7fx/YgyGTAeH6OaHbrb2+TNJvFct7LqOUllepMV6dBYnLHYLMVOX6/yg+piDWAtYgpTqgowWwkvxduBTpXmQenKefAO8VgKrC1Ix8f0+wcszy1wtLvOH/2z3+L0A+exo13OLVZ43ZpWJKVBBfVptGyMJyWBUCgPSmMpXYJwld5jlIwwNicI3535q29VVQApHyOqkYATuhJWIlG2wOoIJSzOKEo0yhgCB4X2cC5AiRSMD85QaFDWEiPwIo84s2S+QeY+CkD51Y7IizClI651aLZ7qNDDBhEePmHogeexoBRO1bFyjClyPCNpturko5J6EGOkohymlBZqns9gkqClII5qBM5RJAleEOKco1brMClTmr6h9GrML6xw0N/CN5UGxBZDVs88xOFgDxl7lEWJKGsUqWU8PCZuNlm/fZ0it0T1BoEfkyb75CLED3xGh0OiRh0hFV4gEFnGsTgidXUeP/8IWV5ycuUk333hZaz2WThRY3dnnbhzhsWTdTbWdnCzETPzMe0ZTWlmOU5LvNinOTdD1G0jRgIRRHR6SzTDNZRIcdLHFJZRlBCYkMLX1K1GuAAvbiF0QBAEYBypneBHMWiQooZDU+8oknEOEvI0wxMlnhcSKAW1iABHaiZYz+LbBKlDTBRjpSU5Sgh0TNiqU6aOyH/3sgzml84g85jj7hL5ekarfo80vc1RP+L//v0X+Q8/83N8+2u36JyaZXZ+lW98+8uc7C5yvLPPs4+vMN+u86X1Ac889gBH93ZQYpewVyfWgic/1iBQK9y5vc7m0ZjTsx6/97tf5+SpBptbGcvzdX76Jz/B0nxEMg5RhcfR4ICiyGi1SyZJgBtrBnnJKEk4d3aVuxtbNJsx48kew0FA3Dyi3mxw/eXvs3F/gFfz6TRiDvpHJN94ldyUrLba5NGIb+79B3xk4R/ia4uoN5gMJgR+gN8WXH2l4OqXf4uHnvgpxuPXKVyG3zxLuxah1SGd9gxFaQl1jIwMxfEBXlwDX5Kld/DDHod7IYPOGd4/u8a9os2N17/AExfew623NPnRhBNLGzz65Mc4ZI7J0RF5mfDwpcdRts+X/uUvs308x4MXF3nx6g2yw11mZi7ikjXWj3JOr65yd/0+jdVVtu7dwcUn2Xv9Ps1Qstl9mE5+h8nBGs1Oj08+o5iNAs623097pcXz1w/Z2Nxg3E/41httzjfu81K9y8VzK9hGjbde+B0agcJLZli7dZuV0z6Tgebu+ls8c3qGrpvnq195mR/50acI3TF3rt6ntXiGO3dvMp44fvajH+L7b97E+X9NDoEnQbnqhluaaeyutRhr8SR4SlSkM/MDP3xWlFjnCIQgUFXAje9HGFNWrgQl6fSqrkBtpo4MfISTeF6ADKY9AQtQvtPSt8a80+K3VJZBZx1lYShLQ1EyhctU52E9jSo0SmUEDoyzICH0FEZCJsBZgzBVR8BCJVa0U1iRs4h3RINVMVHF+Sq0nooep7sF97bhYCrWk9N0v7dRx9bZKlnRGlAwyEaMTcrhcR9TliTFGBB0s5zde3exJxZY6NYwxidJc5wtCQJFHASkhcBIUFYhAR1IiiwjCitBJ3mBkBmiLsBmFGNb5UGENZxXaTGsM5UepJqTVJ+aUHi1Np3OHKsL+3zg0imSs3NoDMurlzhx6qcZrl1FSENWFqQGopqPFJoojirLqe9VbdvAB2GQtnKV1Os9/KhFtzXz/++K+Nc8+n6JEJLQOCwS5QRi6i7JFQQ6JMoMmTRTTUSJRGKFxJYZFp9SOZw2eMZD2AKDotHqEvhNMi/D5VnVCRIlXtCosh0s6EZI3GzgPAhkG+VrjE3wo1katRpaSOIwwuSaRAmU0GSHGaVf6R1Qmn6acnfrHkU+QlYRTIgwRuaSbHwMxTH1eo/ElszELYrEY288wSQJpDmlMRTWoqxkc+0OkgJtHKH2OSgzpBNsb92m3u5xeHTEyuoZhFQISowxpAe30bU2ze4MOggokgmhmsFvRnh5iczHzNcjzly6yNr1W2xs32cwHJOXK9is5OyKj8xhbqHHyVOtyuLpK+bnI8pCcmN7xMJsmwsPv4/7d95ikIx58CMfo3f6PIkp+NY3vs7O+h3GoxI/zglw6Dii1WzjtyRxs0sQ+XjNOoGbupnyAlmLUbLElhqjIfR8UqnwQg+hFEifIp8gJIQTS+EKRL2LzAXaKUw5odueIfECpLFIP6/+37t0zC7P4oIM77rj5s4h7d4QqSPW7w/4zH/0Ga5fe4lPfPrTfPflaxzs3uPBJ3+czdeex499Xrt2D+89XR5YDBiNRsQLTZQMuXXX0onvMN4/RzM+ZH+7Ty1J2coOeOLDP8Ph0XWeXAy4dvV7OF3gZIMw7qEjxZzJENLnzTs5L337VT74gfcwFil5GrB/tEF7psVolNDpzRJrixWKpH9MK4qYW41Yv3cdW8xx7tGL5MdD2u2Q/HDMxps3abZa/ObVn+dDJ/+Myye+RzzXxm8U/Od//xwHeoVOY53BaIta2ENFIWayjbAxwu8xHB7j+z6d2R5b+7dptlpEjTZMYGRDjoclK90AufkyjeajuN27FNsZf2peZlG1yO02r09OM7z/Bn7jDg/NR8QLq+zvFcSzJ2mVu0wOXmCy3WDh4Ue58vSP8dq1fcKVB/EPBiTrazTUDJ2NdYaNBq2DA15du8bTH71Me2fEXv8VGuEsb3z3RSIpuZ0atE547o0mZ977FIu1nCC+iO9lGHeJl157hZvJDYa9Rc6ff5K1114lHyRcefRxbr95lZWVFu2lK3zlc99l6eFlfuaT7+XanQ3K8YjCGup+nSsPLfKnv/c9Xrt7n7T/Fp2VR3/oOvvLSRuCqi3vKt20cA4pKt+8EtWjNBULQPzAFYgSkkArhBJ4WlPmGVpXqXee1tTrIXE9RDuJb6e4XwmVPL/EubzaoRtX7b5lBft5mztQliVlaaaaAomSU9+xkFNrpJxy6cETAm8aDCSnD08pfCWRqrI3alGNJyRT2MlU5kozAAAgAElEQVQ0mElJgVYCT0r09GspfuAseOdtmo4VqrwBOxUpummHA6qzFNiySoorS0ORT8jzEc4YrHFkWTrtdFisybC2wNgqWKnMCvI0o5jaIEXltKwKJesq3cIUr4x1GJPjspRieEyZJNiyoDRVEh5FjikqC9rb544EJRUHR/tsbe5x7+ab7Lx1i6BIGW3c5Hh3g8PjXYbjEYdJwrE1qDim2erS6rRpdFq0221ajRaNeodWfYZGs0u3O8/83Aoz3UVa7R8+t/rXeUROT50wDukEwnhImyOsI3YSSKubvxI4U7lqJJopwxhP+CACAidw0iGVX4XiBBIhDRgPS4iUliisIZHoAlxYQ3oNonod34sQgUVEGpSu0jYjjY0jZOiTlAVShBSlITEJJkuwkxzrLGv3b7GztUOWGxwlOje0/QYyjqqiL6+stoH1ENpjDLQCzbh/hK9C/KiOZwOCWo1MCLI0x6iQXApqgUSYY3wVQ5LQObFIqDVR6NOIAoosJ8MiNMS6wv96QuJpiyf11CKpOb28wpnVE9y+eZ25Eyd45KErJImh3u1hlKQsod30GI9TpCerPBQrOB5OOFi/R/+wT601S+jH6LCFyRwvP/81/uzzf8ily5f50Kd/hrmTK4Qzc5U42Fqscigj8DB4WhMj0EET4cX4jS5lkVCmFi+q40sBFNQCBVZBnuIoCYKQyA8RXoznSqKiqMQfGITvURiLNA5TFpjSYf/Slfav9zjsjxFugTjqce6UoxA+850VXnmzz7e+8lV2juCFV77Lh599lppSuIO7NGXl2vLrii986TUaC132Tch8s8n1qzdYbFtkuMhw7w3u7uwRCMmutMz2GtTFPnd2So6TjIWTS/zu//llGkHB0dEheRqRpobj/pDnv/xdDg7u0ZxJac0IwnpCnhT09/ZxFJSlptHWnDzT5eTiaYTnaISKra271HoF62trFFj2NvfYT3N6M6uITOPKhO/c/Cl+4R/+Ev/oX8zxX/+jVcTiT2EO79FYeoB60yMZDNE24Xh0gMu2acUhUkX4cZtRekgj6pJMPLTN8OMYYRyqSHj59jZ9v81xP6ExdwXRO0/ctwS9Fe7kdVaXzqG1JNnb5fb6iM29ks27G0wObnNvsI1aPIsIY776J1/nK5/7Kr6fMj+zzCCpc+y6NNslXm+emcDj5Z0+S6tzFGWLzaMdTnc7eAie+fgHaPYClh89jd+Z5/KVKzx9KiO9s8FCxzApChr1Iz747IO8/+OfZH71IYySXHnmPLRP8fq11+gpj3rqCGsdolbGW1uS62+t06pJzi/OUk+PUbrkte/d4sJKm/qo5PHHPoDt7/zQdfavEBVWhC9n7bSFXwmqhLAUzlFYW0W8SsG4KHEOar7GYpESPOFQNkP7krJMaLQ7NJtN4maM0IowCNG+T1gLUFLg8gxwlE5Vv0/9Oa/9NDlPODntGFDNxJVDOIF0Ehn4KFMSaR8VOso8q2AwFChTBdMYoUitwHoQKU2pDZSGwr6NOX5bQPgD6p8T4KRCSIlz6p1BhphaF5nmGRhTIqWeagckGFOhjZ0EBE4YiiKB3FXOCyGQUqOlQvo+ThiwBWVRUJYeRjkyDINBycTTCGsp85woCNBaoeMY7VU3GesMCIO1BeIwxVBSGou2BumHSFHx51VZCcQoCkytg1AewguxQjK7cAqspNx+kzJL0EHIxKvx1t4Oi+c+yCTJqLVmCbTPYrOL0h5KVWMYJUQl1NJTF4Zfqz5LYxA6wPrvjqjQx2KNqIgCUiBkCvgEVlA6U8F5PEPgPErfooSPmHYTfE9MP18fJypeTVqmxKIOsiJ4CqvQSuJHAVYYHBLjCaIgIGjWqMddtBLoWod6EGCAIj/GZhGSEVZ3COoR5cRS9icoOUEkOeH8MkqHxLXXyTdvczAcYYuc9swsYa3Bzv4mmXB4OqyAMaXB784z2+uRbe6TmIRkdEjQ8rGewQ/r5OMRKmhRCJ9uqBkeD4mb84j+kELCbL1Do1FDyYjD3S1KYwj8CDVOSPySmd4pEMeMhjm1dB8R1zhx8gQrp09Sq4fUwgjrDEeTQ+JGTBjW2L13m6OjfX7kx3+EwaQkMZa6lGgNnV6Ni+cvEEQaP51w15XU2zGNcJlzVz6Iu/49vvmlzzPKJoS+T627ROvULMIapJY4XcMLY4SuYletyYniGrLM0LU2o/0DVODhKYEKG3hegJcV7O0f4I8myE6TtH8ItRhcpcWRbwcYKU0pHbIY41Ao5cAW78oaBkgmCYd3XmS+toidzCCk4XBwxJUL51iqDTn5yPv45pc/x/2rV2nqBuP+kCQfowOf4/4mD175KDfvXGNnfR+TW06eepD+7haJX0MUGY+eMqwudfm7v3GNJx46j2o63PA2rDxCUDS4/PhlSiyR9hmP14gbDXZ2+zT8gNUnLtDfGfLApRMM9u8xGB0ShnMUSHQxYShKJjcTktwwO9/FpgF3r23RrLc5ffIyyhT4fkwzVjS9iP6MT9e1GB1mfKJ1QHr8EXAjevEuS4+/FylH5GlK3A7ZvrdLe3YO8oSdvR38sEGylxAGGilLpFTs7uU0e5IgCDmY3OPocMCPLx1xe2uIX95lZn5Cufw483OzcBAgin16C6dpkLKfJXz1j36f2sIq4fIKJ2YWufnKtzmwgtXTp7i/OyY9fJGvf/G7eO4Y/+xD6MQykRNElrE8P0fUmCHdeZNeJHnzxiZxO2BtY0R75TJzZy5w4kqHq1evc3dL8sGPvw9Pa1751nOIE6sclC0Wnz7B3u0XqLVmODgUrG+/gBd64Bm+98p12jOClcc/ycZXvsj+aI3zzz7Li9/7NsvzcwRlTmNhkc3tDb51/SpLgwV8O/6h6+wvLQgstuoMKFkxCRBT9X/VEVCeAhwGwFUQI4UBKfA8hS8VVpQYBL5UBL6HryUmL9FhgN+so7RCvY0ntnaa/ucw/EDZb95JFxRYZ3C2xApR/d63W9+iCjBSQuArhVOCyPfIhSEqDIUDY0ukUpRKU1T0IXwDJeDZqZPCVvt6a8wP/PrTzAbn3n7mbS7RO2BD6+Q78KN3hP7vPE9piMg/xxSorIo4idWKMAxwzlLmJUVhyPOcTHkYa6ZtfUFhLPqdLoCt3idrq2Jgagu1ZVHRDW2V/VCassp9Ly2CEpuMcMUEWxYooRFxHe2HVfdGKZLRGBk3MdJHtGbwZk/he3UaM6epWYcXRPhBiO9H0whsXZ2jLavikWoX7elwKnKUCKHw/Xen3SosOCVx1seqAul8pDEYUaKcopBgp3HazgiMK3CWCvUsChwKo6r337oST2t07OF5FY9ABB4ql1jn8KxFB03UVCArLJTjIZk2zDTnoFTkLqVvCsoyw3cC3Z7DEQBJlfqJqSieRYKwghNzS+xtb1Lz2uxu3QUkwhbYcZV8WJMBuTOkTtJNJ2hfkcQ1PCsZHB0w22mytTYgjUpcaSnTMZEQiCDG6glkBb35OY6o1tC4zBE4EpfTiGLSDLQXUubjimjYqOOVDquqrJBmFJHvH1IEkosXH2R7POTW7ft0zi4SxjFGlRy8vsVo7Gg1Y7bv7XD6zBxymiERhooyMRwNhrQXF+mPDFGjjQ4Vvdij0YirEZ927G7d55ErDxIITRR3CbRHHNcwfoygoChTXBZgEYzyDK/dJKrHTIZb6KMM0ZvDmoz67Bw2GVd/Q2FEWRj8Wp2yVJQuRTnNZGuToFUHHSASENKgyncPTDTbTDgceaztjri9cYMoWuDpp66wv9Nn49465v46UWuJreN9jscZj5y+wGCScn9tm7h7inZwj90dzcd//NN85QvfxNqcu/v7WD9kdXWOm+vbHOcp/8nfeZoHL7yPUZqzsnyGq1ev0Zttc/ZsDR34xLWA/uERqtZieJzRnG9Qq8VMChge7eMFljIP8bQmH+8jmm3yvQNCr0a9qxkeKpROqTdrlEVIf9wnbPbQ8oBk4CFig1Z1drfukmWSvNzFUxYlI8ZJSiPymQxSSjUiH1panRm0yRgKgxkKGqYkbvcYDO9Tk3XC2EPKOqVxHA/26XizNB55gLXhHW6+eofezCwXY8vtw01e/c63GC930LfGtNjFn21zevkkpz7dpL9/zKwbc2cS8al/99/nG194nt3t6/j5gO3AY/bsEg+0L7F2tMelRx7l6ku3SEeGuj/EWgjqHqiAYf0EWViSD0bcuX/M/MIpbrx5jbmO5fy5hzgaePRHjsalT1HvNti/8U1ev/EWKrOc7Fqev3Obuid5860DbknLcnMRF4+4/91v0O7WqM9H3F67RX/iOKV8GgsrDPwGyc6YU80DhlsHiLnoh66zf6XtUIuqBV5i0Q6UrBC5ke9hhIO8uuGESiBElVlgrUEbh5QOP4g4GmaEYUhQC/AbAc1uB19pPK1RYYCVFQxESF0REJ0AZzFl+YMdunOU02TCt7HDchrq48pKT+DKHE+J6s33DYXNscIROYUsBKaUlI4qoEn7mNJgEChR7aQLKoGhEoKiyMHZKkMAQXUtMEg59fxXZ0DpLMpB6UqEAC31FHpUORLEFILElOFgjZ3mMyic0sS1GlEUEQU+HgaTjcmSBGcNnovRqvocnIC0NJAVOAG+56MzUxVnkwThHHkyxJmqmChNSZ5XfACv3iDNE9Jhn/TokOHxIU4KFhYMYSNHLNarSGgvYu7cgwxkQEcF1FozaB3g/JBmcxatKnCPby0lBYEfUYtirHPkaVq1WMUPAE0CwItxOMoy+5u6Nv6VDqMM2laBRL4IKClAOAohCbQgKKAQ3rTwNWhtKEqFNDlS+1XXJw/IvAKLoa5jai5EqgIlLVEZ4+kE43Uq+2tU4ImAoNdBCYWnPVyhCJTBDz2sigh1xPHWGsOjXQpboqVgpnWCemcBc7yPatcYHx5izAFne13k2QfZ3F/nJz7yU3zvhT/h/vpNAiGQkUbXamSDEa12j/v7O7TCAKU0cRAz+8iT6MAn6eR06g1G2jEeamqdGuOjPtoppBdQEOKyAYejI2quRqcxQ63WRZcFKi+ptdr0jwzpeEir3aAXN0BqPnLlcU7OzTEzu4BqRiyXAtHwKLXgtdeusrK8SiAE/XzCc899iW53mWa7hjVwanmG0TDFVR5hJuOUja23aCw8RL3eJaw3GFkfr1anrQSD4wRPSe7vDDm3MoMnM1ReMByPCNMJutVARRFlOUK7nKYIKPDJkzE66FHqktJk6HyIIUL6ITYv0fVGRSB0DqEFPtWNR9YbGHQF+RI5WVkQhN67soYB9rYhbCgajR4ffPAyB7bG/TvXeejCWQ4PfJQY0a37iCBm+YFZ1m7dYLJ/QG9xDi0cN+6MWJo9wfq9V/GikEQofM8RnTmB69/gdCOk1u6yuXeTb31njcuXH2ShU/LKK9+gFrb5j/+zv8/WW69TakmtJuinuzTCEmsLjg5S6lHBn76xRrs25P6dMU8++36cdLSLEaVtMLMQQdlASMnRwTahjrDFFrVwlnR8yGB0gEaxL485HBzQbIRoF+EmOZmIkGqCLiVHxwWhNNgsJmyEiGLAcDQkSUpqcQuBo0g2iVVIXqSIooOKcuxkjN+ssXbrPlFcEB1ucvHxy7x24xbL9kEWFwqyk8/i9t9i9uI8r10P2N86oN1N2R1oXr/d59Kq4MTiA3z+d3+HhXiLU4+ew5//W5T5kOGN67x+cMRyo8mg73H5kYfQ9i6vX9tB6DHru7scjRN6UcwTVx7mH/yXv8X7P/gMf/j5P+R44x6nz53l1tp1QhFy7tIcD50+x3B0n/OXn2CUHCBHmv/rK9d4oNPh9PkLRLyOrV3CD4dkg11WP/wIV1++iRefpHN6ldNLt/ncN29yangTtrZotpfIygS5uMKJ2l+zIBDWVclwb98A3+bgKIXFVfPv6exdS4nwFFlRIqSgUa9RYiq/+pS9r8IAUNWGO1CIqdrdiCrjfKp5n6J3KwaCneoI3lbzW/cD4p6dphaaosDkVecAXBUnbB3SAlJiptkLWkqMKaeq+hINFFO6n5Vuii2s4IcINf1avtMJeBtvXDn+fkAKfCcEyTlMaaoW5p87zwp8UD1XwEeJ8v0p2KgKSIq94B0wUpanSCVIshTfk6isSi3MQh8pArSncBh8axG2RBYGWxRMxsMqi6Aoqg6BqVIpsyyhOB4zSUek6ZhSgilKBsM+pXWEs0sgFYVxpE7Q7Z2gdJJms4dTCuX5hFGIwFKaKq9ABho/CCnLohJdCEkc+hRlVbCEUR1TJEyyamcZuHfHwx1oH1MKCpFjTBUDbKlmw0pKEglIRW7BJ6cwGuckVmtskZNJh9Il2hqUVAQCCpkjCw8ZeDiTkSmP0AvwPA8VRPhBgLIKHWmEFRXzvRBoB35QFUiHWUIQNSmKknRSMneiTmkNuc2IkEhPIAqBcnBmYZFLq/PEjQ7hE8+wtbrMV7/2PNt5ju80NooRhaE920U6weHaNaQf44dd4kYHqR3H/SOEs3jAZDBgPB7iK48sT7GqiVOC4vAIZXMOjSXSEqHrGE+Ru5KZ7izbB5sEaOKZJWxpWN/cYuXEaWRpEJ4EU7K5fg8vatObX2SUlPQW57j80GN4QUxqJ6hJyEwvJktL/KAE5bO3PyEKYzqNk0wKQyFKQi+g220xUg9g7t9FeROi0Gdvb4tHr1wm1CVevYeMIgxVsezyEXHgMU4LtLJokePHs0RexNjlaFkjTzK0FBhbIKIIacHzZUUYKCEMFEXqk2QTgmYdV1q0p7BkFO9ihyCef4CF+hHtWY+16xP2dhLmFmb5ytdvcOHMHDv7t1hcOkc+2ufrX7vOA/M1ZlfP8L2X36TVbhNKwRee+y7vufII5883SbOI2nLMW7dfZnszQz68hHp9nS+/sYOUPjsbLyMjeOoTP8JLLx9S5BMKBpD7pLpDHCZs2SGhrnM8GLB1d51oFsbZCc5dmiGd3Ge2fYZW5wGUThBFl6AGeS45PhzSWXA0Wl20X6PWCYF5JpNdCjGmGUfkecLhYEKj5kjzI4rEcersOQYHeyitMIVF0yIpjhCqR70+ojBjxpkhMDHtbh1RZmgxoZj0MWWl/5qreZy7eMDN9cfZv/8Sn/rb/zaTgePqnz3Po++BovN+/uyPf51P/MIv8vrahO2jDQK3Qy+wqOP77KdwcSbntf0l7t0Jad//OspZnvrZX2B44zuMD17lcPub7G3UWA0zVFnnzbde59SCBzlc2z9m5uz7+ImPPMnR4IiP/fgn+eM/+ROWT57jaP11rJ/zzRfeojx8nssf/Bjjm6/z1sEGP/mpv8NjzTqLnQJtc1RgqQ9f4+SpR1h65il271zn0SevsLd9BzO8h2dq/MzPfZLvv/AKUTQkWb+Ot9BjcH+P5fc9/EPXmfrsZz/7Q7/5h//rf/dZ52Q1AsBWoBwnpumH03GC4514ZCEkcRwQBj4oRVYYhoWhFdVoduvEtaiamYceSqiKU1AaiklOnudVW1ZIrFAYJyhs5Vhg6ioopiK6KrqYKuq4LJikKXmeVZHFtkoGLMuCPKmsfpX7oCIVKisphSRAV6mEtqyCgKasASkkWql3UMeZAffnwMdySv6T6i/yCaoIYgfT9+sd8BH8IJDICTzfR/sBoe8hPU0jiAiDkHarRRSF+L6H51WRwk5NByhJijEWqTVFWZInCel4ArIaaQz7fQb9AUWWk2YZSEXpKhgIviZNEvb7uxzv7uCc5eaN2/Q3d2jOLBN1u/h+jdI6+hODK328ehujQ5qdGaTvoXyPQAsEBbEXoIMIZUtMniOkw5Z5FSDkSpieX5IcU4yP2Ny4wdr1G1xb3+fjH37vf/U3cnX8Kxy/9qu//NlC2orm6AxOGpBxhbYVJZGqOk3GB2t1tapdCc5SeBJfeO8UhcZZGkFE4HlYF4LMqEUdtB/QiltIrdC2smK2Wl08LyDQNUqraTYaCC2p9+bBFczMrdDuzBAGEY1uBy/pM04OKUYZmc3x+32Ug0a7Rjeu0REpoRewcGqZlZMP8PBjz/DFr/0Ro3FKo7NAWozxpaJMxkxGCX6ny9F4H1sULCyeQimD8n3yIse3HlpqUq0wvuTocJ2G8hiOh0gHJ85cZDyaEPqWoNGhLApGB0dEXsxk0idUIYHUEAqK7X0ufegJdOoYj4/YmxSoOKDbWcLzPWYXOzz+2AVyeszOLjCz0AYEtZrEVx6TkcBzEr9eo9aeJTOWzskFTJqSJDkbd96kf5TgKcPuIKfTnScrLO/5wFMEQNzsoQIPISRe6GMLg/YUXq1Oaiu3wKQ0KGPJrUBFAXkxwbgAlydkw128WhctNWWRg03xwwZKSIQf4TnJ2KQEtR7FxPHoow/+G1/DAP/i//inn33ksVO8+NIOeepx5emH6O9ucerUCb7/3MuUqk2rt8wg85HWcmN9g4PNDXyT49cCfvQnnyAIHS+98CLN3gMc7q+T2IBnH1vFW77M5z/3DRYvXWB4cMhPfPITCP8YFdYJjw/4B3/vF0kOXmRCC185ksm4Qg7LnM2jIbYwZHnOxKT0Zk4SxJq8tDTDJldf+wrXvv0qzU6D/tExV554GB3W2b6/Q6c7ixdK+rubFHYP6Vooz3G8V9Bpt8iSHE96zM6tMrMwi0skabJNkofkiSUdHhOoOlIYdBQjjMEaD2lgkOwySXKwmnSUE4Ux5vgtvG6HAZc52L/LR3/mM/wPv/qPWd/cImSb3/yXv4Nq+nzqUz/H/t277H/vOd77zI9w46V/xqNP/zwPnz7NgW1zd+eAmYbjwqyHkhn9IuKNL/8OO1vb6NCSjDIwLTZVm3tbd6jJjNOPPEE+HDDfa4A85oFzF5hptzh44zmefuIx7q29xjCRoBZYOdXmM3/31xitv0m28hQPLUcMjvZZOdlgdflB7l97kQ+87zHOXDyJxxGTw7cIZcZi07C4ENN0Eed7goOjASdOdFg+s8RAa0R7GVlf4v7de/zEp/+t/891/Je6DKyt7FlMkwbF1GnghKuep/YtgahseTi0qMKEkiSlNJUMUUcBUkgKXDXTznKKsuS4PyIZjMjyjLwoKE1ldTKmsjbCNBPAgrMCK6pQo6ozUFUFzjicrSr3orCUhcE4A9ZU4KApitBzVXSzmXYQPF3hmD1bKdCRgrdDBJVSeIGP8rw/5yqodsEIVe3qYfrvAqYkxqpNblHCoUSVoIebhio5hxUWoVUVqas0vlCV2C3PAabuiSolME0SXFlS5kVFTisNpXEYC85Nsc65xSQFZV5QFEXViZECiUIKTZpnjIYD1t+8zv7tewhdKdw7UY1Gs0vcaFagKQFaKkzp0EHAZDJBTV0dnXqdmlYILFk2YZjlZEXlAjHOkEyGpGmKwWKylP2DTcbZhNHBJtub96jXZunOtLm8PPc3cV38qx8SpLMYqfAcKKOQQhAphZYeqSixUqJMQYBCI0BqpPCrz8f5OAyCEqU8jDHYMsczCr+Q5FYhRUQhQEiPsF5DhZqsKHDlmEI6apGPFA6X5cjCEUQNtOdTj2MaNZ9Ou8Z4NGS0vY1VEFB1zjwdEghJOTjGEFbNNRkjhI+0Bc6rYT1JYC31bgOVJ5h0RDwzR+ALYhfTiGMoLCIKGI8PmIz6dE4/QHximfn5BXqtWRqqgRdGNLszKKUxwwlgOdo7YDzp0+jO0G6HlNYStOYYlzleGHM8HFOEDjlKcTanfnKGuNFkbmaZs+eXeODiKoeHRxynKVobtOfotUKaLY9sPKIoS0bDIUf9QzrtGi63NLttOn6NVmuGertFkkyYm+2w1GnTbnbxlEJYQxz1kErim4xGGBOEIcqB8gTSOEpjCTyfQNXQysev9YjiEE/6CBEQB+D7PnF3kckkqcSgMiMrS0yRYaVBuQwXVn9PxpVEPf/dWcPA00/22FovefY9i+ykhvU31/BNwOHBETMXT/D4lSW2tsfcvnGXE6fOcfrUacJI8KM//QQyP+C3f/trHGwLfuW//QynlwOSfAeKl/gn//xruOQNfvpDF7nca/CeBx/kV3/lH3Pn/haHO3v8e//p38NM1jk+OqLcXwOr8YNadf1saPAS0iTF+HXKNKTWjum2FhncWuOFr3+RIOtxamWF3/rff480XWdrZ5244TF/qslgcMjgKMXgMzhwFCYBRiyfm8fTDR569BLzJ9scT/ZxuWNQblO4ExUPhkrXkZPhPMhGQ5I8R/kTSsZkZogfWlI3BBWA1DixQP/+EQ/Z73D1+9e5+t3f5qPPXqHd1px68kfptJb5sfeep+smjLKEo/mz3H/py5Qs8dKf/gZff/WreLUEl2dk/hn21Ao38xjtpWwdOKKgweqF99Cbu8TJC/N0GfPI+XN0li7T37jNYuckx8chJ0LNy89/nhevXeXsx36eXFoaScZ8N2B5qUAlA/6XX/slNtKA11/4fa6tb3JiNiQ5HLG9s0f77CXGueO5L/0RO/fvU29EpKMJuwc5h4cjrDAclTnnL4ScnBUsLF9g5fSTxK2Qo/2b/MGffueHrrO/tEPwuf/5lz+rMCjh8KTEq+6w1QBhKqZTQiKEw9OSwFNV10BICld5uWvNFjL00YGPRSC0pMwNx/0ROqzhhQFhLSAMI4TWGAd5XlDkGXnqMIXByuomb83bor+qCChLU+3ksrx6pFm1ay0LHBZRumnYUBXFnE2BPVJKiqLEiunPm4KIhHV4gYcfhlihUFpjiqIaKVS2BrRUOFm5A6TUCKpCQE0LDykVUqjqtbztUrBV9kPgVTQ1JaufrZWi2ahTb7bAOZrNBr7nU6vVq26FBaElUvtIpfAChVa6etYBTkvysqAsSwwgjURIHxsFeFMRXzoasX73LodHxwwPUgKvTmu2h1WSqN4gdw4hA4b9IakRKCUZpyk4KAtLZksOh0OCMEapkEYtriSfBoSurG71egMhPCZJgZMhYVSn3l2kNbMEUtBsN4njJucvrP4b31395i//ymeRAuUc2iqc0DFYTXkAACAASURBVGhpqzRD5QitpSgFVspqVOUsUihKJavXKfLqc3AC0GgkSFWp3JWg2WmhQ4+40USrCOt5+EFApD3yLKcWhBSFIlzqETQ6oASeDqg1G8RBTKvVxGRg0jGhkrQ7LfQkIVYKHwHJEB9Noz5TaQ+OtvE9j//xf/uf2DkY0uzNMOgfkQ2HpFklRG2pBuBDHBJFNZbmZ8nzkuRwgvQUcdxlpt1gcDSg12wReoBR+FHM7NIydzdu0W7NQhBhTUGRO3TQpDvXouWFFKNjxnv3ePTiZebrTc58/Kkq+jwRnDg9Q+RJjvojNrd2Weh1GI1SwmYL4XLS4wHKFrR7LYKaIB3kjI6PsdZyb2udBy6dRuiSO6+9wd2tNSaHhwz7GaoOK702o9yifcn8wilOnl7hcP9+RSiVIePRhHq7japFhCpAKY9QezgvoEwnuLxkkvWJ4yah32aU5bgClBNkpoAyQwZ1rBOUQmGPD4iMRDRjpJNk45QrD787HYJvf/0PPrs7DNnau8PpXovtoyGNmiaqt2l0PL74hZf5yPuf4N7+Lt977ovM1DVru46zccKBWuThy5f44Ac/zvW767zwrWt84EMfRgfnMck+ewcetV7A3T3B+887HmuP0Qsf4OyJkLW16/zGP/nnrC6e5Mb3n+fUxSuM+/dxfo3h7oDdrSFlYRCqRErJwqkWuxvruPYJZk6fRcchWzt3CeI6r754g+OdLU4+sMDgcEytGXG0NyJNJph8g+FRgikFNd8RN+ts79xid7+PKCdsr++T5AU22UXrgmxSkuclYWxQCFKXIEpNbixRTRJ7Jwi1YlImtMIIKTRFnuIHHRYe+Qh7RYtzPZ+mqvP/EPdmMZql933e8y5n/fbau6p6X2fr2UccDjnkUBJFkaIVMYxEBTEsyIniBHHgIDfJTUIgNwGy2AgiwIgF27CVxImAyJZJihIpcRty2JyZ5nTP9PS+Vnft27ee7V1ycWqoG5FOgkhzgL5rfN1ddbrOe/7/3+958txANuKZ504xZo731ve48Pptor3LUOyRhym9k8+zumnoyAnNpXlmOxELc7Ncv3GHmdYUL378OXQSc/3mCvOzgq07Q46cmuLEMx/h3o+/x1Mv/RLDyCATydXJUY6fn6Y1lRKPH3Hn+l1Wd3eJVEw0d4STS4e4/eg6R5YbvPqpV5jt9Lh5d59IetaGFW5S0h+P6XUbqDTi6o0+25N9rq9s4GVCa2aW/eGE4eYjqlEtpppve6bSFtsr6zx/uscn/8a/95fexz8bTBTUA4TanyOwzlEZe9AmOCD4AUJK4iSu7W6uniZEcUTgYZwXdNtNtAoxtq4mIhVxMyZpJERRhI7jGi/sHA6LMQbvHUrXhEJ/UCcQB4RC52oegRM18KeeKhisq+AAKKS8QAQCVYnavIdDHjz0kR4pOQgn8pOKoEcceBH+gmAofd1C0EmCEgJfVvVY5UAtLIP6s11ZHXxgHTcUshY0OV8n75VUCCXRsq5pKiWRWqOjmCiOsEVxwDCw6LB27QoUGDCizj0YYygpCbSojXtaomRNgBTeE8QxSgd4IymMw2QZpbH05hdpW4dqRLTnpomEYm9nzHBUEUtDS0oyaxkPBhSVodPoMMwndFodEII4CPHWEYURHo3WMcVklzx3JGmK8IqiKuqHqlB4a8izHB1KbAnWOSbZTxdq/FVeuc6RNqlLopLab+EVwkkmwqF8iRMh0gps5GppV2UIjMf62tho0QjlEd4xqUoMBXEcokWMKC1CV/jK4oOCJGoRCI3XASIKEMYTNxJSG+GEQFMgraTZnUW4kmpcEUpIWx3yTFJVBYG3+MqidEiSdolUA6+gKse0wh5S94h0SKwTismEyf4OspWgw5g4UjWFzxeETpC2GqzsDOkemia7dQlfOqSdkJuUZq9DpSyEbeJEkk367I/2mJ9eJrMFrSDC6haTcowdF/SSaVpTXZLJPsUkZ3H2EKefOAeRorIW4TTF1pjtbMKRE1NMzbSogvr+CrRgMg4Zl4KpTkoSgCBERJKFYwvsbO0SpFMkocFmijBKEJUgKwsaqWN2ap4kTtlVQ5qtBu+8fYGFw7/C0uJhRoMMH4fMqCaZ98jqYFqnJePKEiqLkAIpAxrJNFU+xtox7XQKUxm8zwmEx+QWX+QEYQsTgqgaDMbDmklCRSg+PNvheFxw4nCTtTUPYcCorND9bW6ubXL29CLNlmFvtMHe3iYzp54gnD3EC52Md9Y3efrUHIfOPsUbP/gGj59rcP7Z57nyrW+yX3lmF6YotOaZ08u8d3+L/+MrP+TwwgyHz86x9v46793/Mb/zH/0a+BaX/vguz/cHTIqMwjjiJEAnFlE43E6IsxMGWxnb+wHdnmT30S3OHVtCHzpEO8k53RU82F7n8ps/Zqq3zLhYZ3fnFu1uh6wfk/mCspLsba9h7X2WDs9R9itMInHagJP4StPfH6FkkyiKMM4hlCKmiWsIJoOHiHyeXPcpfEiYdjFGsDmJmbRPMscaF+8NmW83sHGXpdk2cnaZe++9xfDBkMPt2/zROwVf+LVP82h4HvPev+IzS4qvP7xLPtrgxp1ZIrXD8XPTjDfGnFts0G3EXLtyi7OzOcvtDi5rMAliHg6nufjPf5/FuVk60Q4rj67RqkIac12+/ZUfcfVen1//7KeZ6i1w48EG7bDDaOs67+xJXHoEaTo8ul3w/uVb2OIeQUuTNGcopxZYufuQZ490SWemWT7TYH7RcOXSkNX1e9z9zvdpdxL+xs9/ipuX3yVo9CgmY2YOzbF49hTH2j99MfCz0cXOonQ9DfgLGVAd5hOqDs4pqTj4uYnU4U/IaJNhn1IGJM0m4+GEscxpdJtUTiKjqPYWxDFOKWwFhuoAtOMIlK6tfUGtPK6Kem1RWYNzHmvNQcXO4EqLMwZZv7jh63UxijoPUMg6+MgBelgGAlfVuQJtDBkO5zxaKFBgyhLpHFoFGGsJ04QAgXUeL+uHuPA1y1kJQc1IEIjAYX3tP/BC4r2tscUfoIxVLUOSByIkCUSqfiPNswlJFJCXJTrSmLJCBwrCD2qOHmMrdrf2acQhUnaJlGZcVWgtodkkUBqlA3QQ0N/bQ1QWH0kaaYf2zBz5pGTv4R5l4mkdmmbxsSlEHCKFYnNnwmCUYYhAB+S2JAwCSmd/gkxO4pC8LFBVhQ4CShfUwTulqZwgywuCKCBqNHCurh7aMkMmMTJoMdf7cDjwSjfwujZZaJcijaBUEyKR1uhlOgdRD4EwAyRtjA8Q3mNkhfKaQMLEllhT9+cjF6JEgFIhJlIIqRlXI5JgCiEFRJIoDAmVwgYhYRBgpaMZJVTFCKNKSGKidApdFmhToQNNmIaEWU6eOeJIIkxFTJMgCPCjTUqbQk8xeHCHraLApRprJiSHFgk9lJMxjakGk5FDRynaOpyvmF1YJtIBNhtjREBn6QhhoFm7fRUpoWimJEYRihSh6/XZYneWbH+PRpzgi5xWGrNx9yrNE0/x9/6z/5KphQXCwRjTipDDCotEdwU+TjicNlm5s83MfJNsO2MYOw7NzBJ1AzouAC/JM0eYWGamp9gf5ljV5olnU1pxxEiAUbB45gymyHn30lvMzRym1Qhozsxx6fZt8vGYb3/rW/ytX/8NpF+hkBUEHbSb4IWtVcnSkXabmFKig3plU+VjQjSmgsJMUBoMCucM1gmcKRCNFC00SWOGsjVFWYwRSIJ/kxz2r/B689oGH22dJiBldqbD484wHh7iU6diOt7x5KmPURSKL/7KJ7nwxo9YX7nP4/OWZ14+w921jFZccawb82jdU2TXaC5NoYzmyWNtLt0f894bb/LWnZzlo0/RlCU/+LOvcGd1lf/wP/4NqBL+4A+/x9XrO3hVEukUM9likJX0GnPYcpO11R2E18j2FDd+8G0CJQiDJtJvMdVMuPlggrYj6B7jjXf3OX8q4/23rxB3Fni0nRFUI2bmFBGavb0BWT5CSYFCYCdD8qzCG0HSnMVUHmRJ2PSERYu9SZ+imhC3AqajJXRHUw5yZBKSBoaXPvlxrt3dZe/BOoiApHyIiuHR/ZSH63u8tzmi117kTHmZ40vT/CevPMOjC1fp2YJBb56v3i3Js5JWljF/pkNWbXL54kMqs8HzH/sSW2sXmU00vnOS5qTPZl5x+Khmc+M+U3PzfPftH7PdmqfbOcGtcYP9lQkzZz7HzzUvMz9Vcme/pLX4BNbuoOUM2ajPuTnF1be/xuFzH2d2qcHqoy5TnWnSYo9vXnif5myL8Mxz5LubXLo9YvJun93NR3zkhGNt1XP+8SUu3b1DXmrak21Wrz7k1GMxL546hInbP/U++5kZAi8EWI+ktgqaA7rdB8Q+KQRKgtYKd5Col0qjg4BKS3JnMQKyrMBax3iYMclKKluPuJ0HLJTG1eFCYzHWHtgIRc0dOIgxOA9eSBz1G6dz9aqgKHIOmpA/oSfiHaKuVeNNvSY4gAfi8HVNkIP6nwXpDt7rD/DDIOrpgNIEYUgQBERxHZYUQiJDfRAuBBEEeCUIQk0YBiitCbVCIesphBDoDyYGop5GKCmw3lGaqibo4bDOo7TCeU8xmWDLErxHHvAHxAeNBKgnMar+fpRFiSkNTqpasGM9ykuMsUS6PnRFYUKr1eXoYydptes1TaPTIU0aNFstjK8w3rGxvc3+aEg+zhhOJpSmqn0USYTxnjBNUEGIcZ7W1DTtZlIfEJF46xkPxuRVDWPKyoIsGyNdgEZj1IcDJvJWEVWCyIX1TRIYtIipIonzGYaqRjkDoPHOoJRFiAptFV44ispDVdXeA1NgbUEgFIEO0dICIVKkSK0QUuGsQBpLaC2JkcjcoHyIwJO0pxFCs7P+iMlwgGo1kHFCYRxR2sFXDumhUGBjhdUK4x2j8QBvKsaTPm+9+0N2s5JstIOtSpTNEdJTCvCVIghrdLUSkrRUVHmBxpJ7gVRgJhkNHeB1fZjrBikuH1PFAhs1iEJNVXk2V1YpraURCPpFxcLMDLPNDumhNuFSilqeQYoIu7ZHtZ+BVSgtkcZx+OgMaZIwt9BiamYKd6AwRwi8BRXUAVwdWZAQxg7lFdJVSOuJkpTpbhvZTDh6/CitqZRms8nS1DSz7R4zC/MM+kPS9jQ6CXGuQodFnf/QEVomxDKpV1uRQlMhVQ0rKwKDCEPCUOOsRYUpoZBEUULSmEIaRZRP8L5C4UjTBBUkRHH6odzDAK+88CRRkIH3vPnOddqdeXQSk4icq49WuXLpLvvbQ/LxiOXHn2bt0T2SRorqHmM0Dvhf//nvcX9nk/NPnyebSJpTUwgivv/WPudPH+buWh/jNMe6iuHmHbpLpzm6OMfYRrz144v8+de/wtETx5BBQKhDysoThT28duADlBrQacek4yG4EeeeOgrkrN3b5J13r2DCIUuLXdh/SCcoidWAVz/5MaIpxU4BQzfHZBDw8MEKOhrQaLep8iFCFJjSE8qE0jWQvmQyGVPZDOk9yArvK6YaEREe2YTCFFQqQFES6kPcvvQWW3du0VQ77AzGrNBkLVogXYyYNKdo9FIeW+5xf+pJ1uVz/PBPv0UuC8qgQ4MUFS0y3/I89uwzbG6NWbQNjsw3ObI4zcbmFR5sVqQzc+zt3uL992+R5SPe+u4V/Mjy9FPH+K1few2zco+gv8XPHQl5+WiD0eolpheXaFaG2ckav/SJDrMzC3z26R6ffnKOuCpY34lxSZMy2yGUAcOow72p03zuM6/y+V/+JDfff8C16ze4efsao3LCypbjW++tc7O5xJ+8foO1eys0Ds0yWt2nt3wMFzhWdjaw2U9vy/zMDMFX//Hf//IHApxahnMQHgzqB2IURshAI7xnlBcURU7gHJO8JM8FWmmkD7CypuoVxiCcoNFq4b2ktB6nA5ypH2TW1aCdGocM1kis8VTGYPEHeF6PNYaqMkxGOcLVNTch6oeqw+OEoLRQFhbrBePCUlqwrnb85c5RVRWVO8AfH4QKkQIdxugwqH8FIQhBGCcI6wmlAinRQqKlqKFKDgIkSut6zx9HBGEI1LkEW5maKhiH9UMkCuqwk9YkUVS7172rVcFhiFYSffA19c5QFQVIidQSqWq1cqQVWgmgDjpKpZGBpMpyrLeEzZAgDLHOocKIMjcYK+jMTCNVRNjsEKdNgiilsp6t7TGD0eSgPqpJum1aYUI+HiJ0iLUF5ShHC8vWxhqD/T5hpAlMwXgwZNgf4TToQKNsQZGN0a5ECk+hmmxvbDAuLM89dfSvff/6D//n//7LUka4oEJ7dRACraWQziuklzjtCLzCOI1VCu/NQXsEEJKwPh1ihcBLTYWg224QBwoZzxIKjQo83kqS3ixhGCJRFKbAa8iLijCKabS7dcgRT7a/yWi4S7U/Io4SVBoTqJhidw1vLLYag8lJJlDsbxE0p0jnjzEwJd96/VtsDYdk1QRRFgRxA1tVhEkPb3MQgqIoSNtzGFniqKjyIYO1dYyB5eOnGe3uY6WmO7uAKAytThtbWGIkkyynHI2YO3oYbEVgJd1U8PLZZ/nN3/kteidnUaFCNiQi0fhsRJjtUe3miMVGPX1Tkv5qhhQQNgKy/RIRgBnU4VWPQ2vFqBCsbhvm52J6zQBjYXOrT5aVNKOErZUNhCs498xZur15svEuM502aw9WUVZigoDHzr/IZP8hPjeIqIkTEIQCm0ucLjDlGG81zhtCGSOURjqPdSUyMFRlQZb3aYQNvJkg4xjpAmyg69Wjt2A9QhjOnjn9oWQIvv/GG18O7ZidccHCVESeT9jeLWmlXVa3B5x74gn6+ZidB6sM90vK8Tq2MYt2Y4q9G5QDy1e/dRG1fwOZdBhtb5N5R3c2xcqEU3OnUdpy5PHHuddPKMs+SavD9R+9Txq2kWaNj7zyed5++22eefY8+xsbeK+xVUlRVowmJWE6zf2dDFdaHty+X1sHyzGxEhSDPmmrw+rONpE27O82uHLnPo20w/LCNMVwjXv7mkc7JYu9hLzIieIpJoNd5heOYlWAdgohAi7fus+hI02SYJYwqhiPLVZWTCWO1kxMv29RJiMIptAu46tf/x6PT+8x7C4jZmYICoPOJpyaE2zfv0qCZrB7kz2R8JXvP+CzHz/Ddy/eoZck9DotjnT6PLzxgBeebtFenKZvesx3HKePz3L9oeXVJ0/x9Quvc3LpCeZm2rQIObygcdEMW3mDS48KTj/5JCKS/PDr1xmUD/n0Z3+FX3ihy94kYhQts3rrETPtirGex7uUe5OcnSxmX7d541rBc2eaFNsZ3YYn3LvOTqWYUbskxrA4nRDh+FtfeIWPfezn2VtbYX0oWDi2zFQa8PDRGg8ebFDKOVbv7hPoNR578Vf+32cI1AEXwFqHN+7AKaDqF60wwltHXtVUvFhqlJKUzlIUltwKQlVX/cJGE+MdGogCTVkavPQEaePAR1C/neM/YPV7vK9+0nBA6bqSaCqsPRAaVaa2BfgPpD3+ICBYw3+8FDitKWyBP3iAW+WRTuKFORAZOZSr2wJe1fXBmiIoDgBErg4liTp0BtR0RFejmb11CBRa1uuJOnemEUqiqgqlFFofrBkO/g0fXFLWvz+IQsqiwh3kB7yzGF/jE4MoBA/VJK9XDY0EAVSlRQYW7T1BFGK9IxtPsFlFmGkEbYJAIwNNNSmwHBgao5AgCJFBgBOSsqpHYU7UX8e4mWArS5kVlK6iGI8IohhTZkjZIMstlVcESYCdFEy8g0BSFWPUWFC6AhVoKhcTzvVAhQwerjKZjGl9SKRCLzyVKgm8xVA/CJAKKImMxKkQ6wtckONLhZWO0Hic1PUBtaqopKndD7auw0oVInSEVIowkIhY1+hsb1C+PtA5oWgGDYpyAhqUsBhXEIomZd6vPQBFxqjaxwrHTJqggogqG+PKCpMNUVqRyTECaKctwiDFFSsMhmOcAFGZOmciHEVp6DZqX0YSdRA+oBNKctGkVZRMyqrOrugQJBhpaCctXF4SxAnCVDTjiNwaWnGKlRWVsbTSDvOzKYdbU/zq3/l1kukuZlwi4wAVKHzgwIWYhiO/s03z+HQtAVLQmo/p705IrEbokN2+pWEcxlU0dK1V71cW3YJOoiitwHlJWSmUk4wmQ3AFi4uLiGHFpBiSRAmbOxvs7WyTNNvcuPoOR48v0+zN4Ta30dojUWgkZaIJdO08cLLAGkMgEqw3aBXhioIyG9GUDWSUAJZKBKjKY2SGyg2BDjGBxguDsT9dG/tXfT24v8LZZcdjxxXXbwqiVsZsOsOjzQFRo83m1i4//tFt5mcc64MJR46eZW97jRVRceNBQdRf56WnZnjnxh6d9cvsZppPf+wsOihZvX+Xotvko688wQ8u3Kczo9AiRQPzh5aBgIFJeO355/mt/+J/4wtf+BxpnELoGBlFUrTxbBEkluphhbN7BGHIofkeO+tjqmLEbG+KG9ev88tf+FXWr/+YR1VA7AWyWme5F3P80FPcW72OWXds7eRM8ownPnme97//OnmeEaaORneGSalIlaDhl0mbMft7A7zsU04i1sYRxgzYX9tCN7v0lmCyu8drH3uFYrjLsa2rrHcf4+btDSbVgI88+Rke7AqWlyM210IOHRHszsZ87Y9e5+VPfZQbN28itnaY6IjZk3N84+0MN3mTqnuc6zsb7Kw95MjJM9x+f5VG7mj11/nx7g7JoaO8PDdFq5KYMGep0WN3sEIYNHniF85zqFGy+u63iTcVzeYyz54/wrvvCUpdkA37oAXDasRnPnWS5eUeP/Tb3L9+lczN0Np8SEGLLz4RsXp7g7Q3y/7aPjNhkx9fu8na2rfpacF84FlducN8+jheVbx3b50Tx47y2Ok2K3vlT73PfubKoKoso6IiryzlwZu3CjXOefrDIZOywBQGV9l69B0FqKiBaiS0mxGx0pQWJrsDysGYOIlRkUYHIUEjwXnHaDxhlOWM84I8K5hkBdk4ZzwYMxxPGJYlJTWqtypLyqJiMs4psxxB/edmownjQUZVGlxZIazEFpYsP4CJSIGRNcs+dwZX2HolIBQ2kHglcdZRWQdS1dwAJEooRBCidUCURIhQE4raEegP+AtBqJE6QOmAMIxohDGpCmikCXGaECUJURqhqQmIQkqkDuj0puh2p1EqIFASZyv6wwH9wYhinB0giT0GMMJT5gWmKCjynL1hn53tfbK8BC+JkpggTGjOTaOShEkBk0KQjy3jyuEJ8XHE3l5GbiU7e0PurWxy7cYqD9aHVEYSpy2CICZJU6rhGFNU6PYspjAUpac/zCioeRTW5AzHI/qT2tQYBYpJPmE4KNjOBVXcxoiQYjKh0WuyeOoYM9O9/z9/Pv4/vgKRglBUNBFa1N9PKdA+xCiJEpAaT1lFyFgSo3BCgZBYYdGqDr9ZNCWSwBtiLVBWY8KUIErRBSgZEsWNuuaKoBiN2N3YrAO2AgblhPFgnyROabSnCKqKNPeEnQYN51m58z4P37+I8yVSWmI0mpCkM02vO0fanCaMQy6/f5k1aQgVqEYbWi2kCAlcTpTEiMYM1lXoKGBSWkw2ZtOOUc0mOnR0myn57g6BBScMaZqSRgonJJNihI0UHlOHG3E0Wl26RcmXPvNFWovTyFgTNmOkFiBsPfqPNNp2SM6fgfWKcnfC1oM97jzYRDQiRkNY2cnZXN8g6BjSqRgfaPr7BfduDSn2BgilCXDcurvD9sY6u+uPePPN73L89DEWZnv4pE2j2yOY6XH65HFOnllmXJQMhgVf/8pXSNNpTCCg6BNJSzXpI7KHVGWOsI7KSXTYJFM5wmQU+T42UDRmlyjcAFzJcJIRSI+T9apANKcYjSf4ssBXJUzyD+UeBlh78BbDrMNb72wyKHZZfTigkntsPHqfQ9Mpt++s8tQzTxB1epx+/AgXr19j+sR55uYafOoTr/Lkqy+xdOZljiw3UL5CBfD+5StsPRjSURNavsnbNzYZU3LpnascWzpEZ2aOni0wW0M+/pln+B//u/+a00fP8L0f/Yje/CyhapCokqYWzM22UEFEKT2m9Jw7PkuZS47OQiyabOwMOXFyhsG3/zWvPXuK1Zu3cXlCGrfpr2ku3h3zztUFbvct7z8cU+UFF7/7BjutJmlbU+72cXsblDv3ODJ7hJuXfkgatHjs/Hl6vTlml2LCqR5r27uIZJbZdofGeA1dlMwdaWDMHnfjJXazZU7MjvjEyy/ytT+/RL6xTuQtN95+nanJhLWL3+c3f+dL5MUUO6ub3NjaYP7ENGMUx2ZCbsz+Gu++dZ+kPcfRp1/jwajNhWyZV49qdhqS8aTkeGPIxZub/NmbF/G55f171xgTcX8AS0ckvrnIve0hr1+8ySDtIkSbUGasXLvBkaOLLM51memd5O6u45vfvMJg9QHHT51iQa/x6sufoXfuJTbdDPv5YW6vZDwaNtgsFLt7t1g+Ok2SHKKr9/jkE4e5fPkdnn3lC/zbn/9VjlYZjf4jLlz84U+9z37mhKC0IJXEO2pBixJ46zCmIpT1G68INFJAHNdO8v5kjDAO4zwGTSA0pXQYKSiswFQQCItxhlHfYFEIP0QHkkhqvACJPDAbmvohKvhJ8MtROwC8U+AN9gProQdjDqYFzmKcQyPwXpI7g7R/QQz0UuAEPxEZWV87FBAC7y3WeqQKavKgAlNZAiHAWYT3CClrp4J39XRAa7TUNQPgL4CLCCkIw6D+OwtFEIQEQtepfSmI0gRrSuI4Ztwf4kOBpaAIQ5yvlctaKHQU1DrlssQKMKXDaEucNqmspyhLgiBEx2G9zvEKj4MgJtIBUdJBJBGTwYTC1vrY/iCnsLUJsKhMDWM6UFSn09MYY8nLepUSK0mgBLEM2Sk11lUEymKLjMB7sqxAJy2i1JKNJNIX9NeHCFcg0gQvQKkPKVSYV5AYlPUoISkpcUrihAGjcLag0ooIiyssUNsvrXOEKsB5/mWvQwAAIABJREFUg7MeiUU7jZcRhYGJrgjQTEpLJ47qSUTuycoRKpY0p9q1q0CHSB1TjnMq1ydf8jSbU4i8JOgGZMMBRRSx0JkmH+4Se421DiUrYgK8l+iojYxDKmO4dO0yxWBQ309GYLVCBoIgSlE6QBYFMoTAeALjGVcFOhLkxR5JOkWrt8BotEcZwAzTVKljrjPPlppQGYEQIYXLUZXEtxR7u1uc6TaQJxoHjA2Nkx/Au+tgjlpuU+3kqLLEJAIvA77zgzfpzfVoNGpt763b90ijiiNZq5bOhA02R5KjRxRJ1MCYqiaJekva6fH+u2/RiRoIcggVs0kPqQ2yP6JqxZw6cZrNnRFF1qcqNI20TdXq0d8fojOPDLuEPmdSTZBCEwZtlDaoSlIYQxRGVLZiZ2ODZKqHrgxBGENZ4n2JRlGWI0wMgS0RWqOinx7G+qu+PvKJL3H14leZnTnG2EQsdPtsbu/z3HPP8kf/6g2e+dhHeP/+I555+gSX37nN0SOP01TwcK3J0+f2GAURU/0drowCzEDy9MfPcOXSVXqmpFzZIX5snq/9X9/m6Vdf4cknT5OXhnfeucETszCWDa68/oAXznT4wZ093vzK67x4cpqqGtCM5xiH2/RmWgx3Il6ZvYV76RcZ7w8JdMHmike3HtCuYmYXXmDSushXv/c+P//qE2wMJ1z84du89GSDU605jnzus/zhvzB87qM5avE0e6v3OdrqMRzepT8paSxoGtUivXaOm1iCpmBrdQ9XtHF2iDZrBNqQtB0jK9h65zrN1hT3OidZ2xwx2pthmH8DyoLkva/Qbs9RRBWD9VucO/8y37m8yUc/+lH+/BvvMTB9Fl/4RRb8DS68tUm7G3F1+xYLizlLv/03ufzH/xKUoaN2mJ89yn/z1T067h5/9z//mwxHXd5591/TiiNu7jdRM2e5/tYFwpbldvMZdrf3CU49z+LMLPevX+Wf/ct/xC/8B7/B8WOLvHlzmzYlaZTS7vUY6w2MmmH70SMWz3+BLTthc2j4pxcmfDotmFta4LFGxP2b19gfheyXlnNPLzJ/pEFkJ8x0Glz/wVeYP3yI706azAURif/pbZmfzSH4R//Dlz11sC0QAm8tWkq0rh3xURgQKQ4S8pZxWYL1lM4xLioKYxi5Wm6klWK60yJKNM44+rt99vsjiskEaT3SOWRYEwKLoiDLC7yxaFU7zC0W61xdczxY+RtTUhaG/mhSTwKEqANuIsB7wcQYKlOvO9ASXF0tzIwBWyt/8TWICClrvXMQ1A/uMEQHQf1gxWOqmnpYyAPVswcFBEGMVpI0rY2CztY5B+EdQnjKogAHcSNBhqoGJmlJqCWRkoQaUB5fOirvkFIRBzXWWJi6Tim1pshLZKhrTGteIpxgbnmRsN3C5oIKiVAhQdwmSJuUOQRpg8bUNGkvBQS7w4oHWyP6eYRqpHVyOoppxSGB8jgLMgixviZJKqUJGykyTFBBXaULui2SqS5h0iJp9Qja08TTPRpJQhy3CZsJWoV4m9XrJRVisxJTSZ5+8vBf+/71n/wv/+DLghglAoSqx8mRqb/fuIhSQSgkDl1nZWQdkpRCUsoCbQVWCQLjEUJhnUXhSERAEmsW0gZ5KCBpETVTur1Z0iRBWAU6xEpNmeckUYoPBYmIaU61cSiSZkoUhUTS46sJ2mu8MbjA09UxzbDF9PwhdByT54Y3Lr3BN999k3Kwz1hFNPBEjYRRNkInDazJIBtSSo0MHKPRFnmZE5uS0uUsLD/O7PwCs0sLhEqzv77OeDDABYJWsws6wPoSNx6Ttho4Y2mFivPPPc+ZTz6DELKu0CLAebJhRhBENTPDOCrhYeJ52M9Jp7rIqEWzLShyw5nTc/QabXpTEZKEh9sZU9OOOIppJAItAqocVm7d4cHN94hDx2x3mjQMkSJmYkuMLWmECl1AEAumem2u331AID2b44qXP/EJir2HZNUIHfUorSU4uBfLokT7AOk9UaNJpCWo+v+6tpZAauIwwldjkmZEmiZ004T5mR7Ly8eYP7TMmbNnSOP0Q8kQ/J9/8Adfvn7jESfPnGO5N2JruECceN66cI2p+R7744wzc0OuvnsDLRJOnUqJAs/eMGM8caRxxsde/BRnG45BqZieP8J4POHZF09xfdVw7cE6L3/sE7D9OqEYcm9rgBtsURjJcMdy6mjJ8y9/kbPtHfqkPHX+JK2oAdqiY8/m2i4mabK+dZ/VtTFnHu+xN7KcPXaco4d6aBVyZ+0eM8EMUapYz8YcW5ri2JFT5HKACRaYz3Y4vrhKe26O8fYVkulFVLZDOr3EybNnaEU5SbNNGDY4emKJrOjTm0kRMqEsRihXIeMmM3Nt1iZNcAUnjizixiOmZw9za3fAcwstNneGnHrsWSZ7qzA2PPnya5SDdUb7Y965cgExvM5i0zC89H329GEOHZvl/o27xEOHDWZxDy9x4vQirajkyuVt3r+7zS+80OPVV1/DhVu0owQb9fjan/yAp585w71790nSEVPTM6Q2JhYVS/Y+dx7scO2aYvmZs9ze7HKn73nx+CG+89YVgrljDHb3cXuWRjtmKQko44KVW9/l3FzEk60BKw+3mW0FfOPtexyaSlnfr7i3Kjh6pMHe1ohx1WJuLuX1Hz2ispK56RmGzWcY7V/nlz7/7/5/IRV6tNKEOqhBPt5RuoNEvPNgLEpIvIUqL/HW1sIhY/BeUllJGES0O22SVhOrawlQPimpiopAQqAFURwSxSGBkgdZgtqNEMcRYVhXwIQDXTP4ULru9HvqVHcQhmitDxDBsm5HiJqs6AXIMICDnT2iPpwEUtQ0wYMqpVL150opDxoGtZlQVBZXVvUbundIawCHl/U4v2YaiNqCp+q9qLOWg84h/mB8Iaj9CkhJkRd1qKms6iyBAy8lARLhPDoOD6CIH1gcFUoHGOOw1hMGYa1+RiJ0SNho4YTGGI0MUnwc4iINPsR4yPOCjfU9Hu4M2NsdkbuybnMUGaYck40njLOshjhhsabEGAOBxllPNSkojac0FiqPK+qDC0rVNkgnSMMAHdQcArQgaU7R6EyRJjFp3CBJP5yWgXQSIQ1SVpTKQaAohcIJDaoilg6pQpxWSFHTLAPhkNKjrCRA1B4DQBmDdwXGVQhhMI4ahy1TelGDdtxGGoe3Di0EWmuUkDSjhGHhcLklz0fsj/q0Gw1iHVGWOc5UVHmGtTlx1KIbtQlkRBiGeB3iVMiN3bv84ff+lKrIcNSobZRmMtoj9AKR9fFCETUbVKVh0s/AGkJbUTUSTp14mkavQxglNFodpmcPsXzqDO2ZHv2tLVZWrtafXRp0s01n9hBVOUEUFc984kUCU2IrIK8P3l5AmERIKbDCUjUVQSfGT4UkrYi0mWCqMcXQUnmJFtBohpR5yMbGEJtN2NssKYxnt1SMR7Cyusvdu1fJ+tt0mw1aSYSKYsJYkIYhgQwpyxEDu4MWinYSUIwyCluyd/s6F974ce2SUCl52SdJE4TwCB2jlKWq+vggoJhkZEVJKFVNi2xH9Dop07M95k+c5vTxM5w4+QQnz55jZm4ZFbXY3xvynT+78KHcwwC+XOeTr73CaLDCbtYjEBtoGXHk1GN0O4ZPvRjz+huPmF3oMjcXsrKacePuDkuLszy49ojhnuIbb9/m6yuPiJdmcWKfwfY+w5VNTh1r8YufOMv9G+/SW3iMmbMv8Oxyl/mZozTSmHOnI3bXSr76v/8el27dY5gVeO8ZD4bopIk2KcYamowZjRXzszE7G4rv/Ol3ubvZJ23Pk++v05AxF67fY/7kWap+xJ//+TVW1vfRYo7Nh2t8463LXHl3lf7mhNbRX+bO5WvooKSbtNAiZTxqorOQhbkOPtDMHHqMWE/Tm604duwUabpEiKYRLzLeGbLm56nkAvfv3GK3HPOlz32Ey/dyOq2MuCGYn5vh4y8+x3ffusxa0eQ3fvOXeOWF82yMY969skbemGN47z3uXrrC9OE5GqfnOZnkbG1VXPjhJWa6Rzn1zCk++eIRSA7zvTcvcrKzgLIRUQB/+29/kbnOHj/32BFK12P1wSNGVc4bD3fwnVNk6Qy9cw0Wl5c4vTCk3U24t3mLVz92jO7kKn/6Z3/G8x9ZQrfnWM/HjB7usukTJkPP/t4as6mm13E8cXoeJcaQNJFhwTvvvIstcvJmg2T+NE8/tcjOxgNuPxxy98YFXvnoyZ96n4m6ZveXX//+c/M+UmCMre183pPbkiQKkVJQmNrgJrwnEYrceHJTy49UqFBBzMg5Hq0PUVHMwmybQNU8ACHrHXwURHSmO8QHzHxrLN74mn8Q1mRAHUa1Ua80eFsH77y15FmBMZYsK+oKoVR4qSgrS1EassKgpGJU1SuD0tXug9E4x1YG42s1k6WmI/oDeIlUiihO6naDdTXy2NYEu9JUB5OAumbZaiYkSUQYp3jnGY7HeO9RytVo1v0h1np6s9N1/dFaKmNYOnQIZyxpHNfthiDCe41G0OympGkDJRRRFBE30vqgYgQOgUpClIP21DSzvSnSmS4KTVYatPCMhxOcF3TnWwy2B6yujym9YHZppqb0jSoCbfFOkqQR+d4+AMn0LErrWl3sgUAjqgypIvTB9MZWUPqaDmaLChEGdeDR1Thm42sHuQg0viypqjqxrwT8O59/9q99b/DKYye9VICp4U2eqq7ASY1UFRBRlVV9sLSCUlq0E0hKXCFwqqJE46sJJaKmYTrBTK/D9MwhThw7g0w6NKbmiFGkCzN1CwVJ3KhzGUrUIcNA5ZSENKOIxWPnaSQBe3evoaiw/W101KTTXkSOdwmEoNNdwIQJgRT89t/7LfJmzGQwIIxCSFOUrSiUYq7TJq8EhR0TE7M/GtLr9phdOMRga0w03aMlPYFqMs522Fq5w6Fjx9nb2qKwnnNnTnPzxnsEUQMyA2lIrBUEkjOHjnHq8FFm2wts3bzMUy/9HKc/+1wN80LWMK2hxSmBTiRXLt3A6Ta3H60QRTG9ZpennprHlYrN1T5Ce3rTDeIkAunYzyzNhmL1YZ+1a1cZjQdMLdSmxUnWJ1Aa7xUTcnTWx5WebDJi4mvl9p2bt7lw8TrTM/NEoeA//a++TNXfYm9jCxdFuMoQBY44TlCRxBeO5tIJokCTJBGucqyv7/FwdZV8OGFtY51BNmJvcw2Rewb5BDAYrSjLnN//J//0Q9l9ffHzL/q7dx7x/EsvY2SbRiIY7d1hcXmRRrrIYLSDMw0mxSO2Hm3x2PnzrK1u8nDlAadOnKXT7tGf9GnGGh1NUQxuIHWT/dUVHuxuc2ZpiYWjZ1jfn/CrLwV8840NmjMzHAq3KYsm11dv8eblIUdPLDOjHL/ypV/G7G8ioxh8lzcvXqYEOiJjowhoxBFTM4rVO2vcXd3jU6+9xne+9h0OP3uO4V5JEAyIidm6dpPDzz5HPhxw/fKPOL44z7ZI6DZDBjtbPHXuOFOnXsNUBVMdgc0Fjak2TuT0t/cZlyVr99YZDvcIYokmpDPToVn0ud/f4zO/9Gv87v/09znzzEv0t1YZDHe4cndIW3jm50NOvvhZhnoKV+4i1t6lO32E9Vv3sKokas8wP9Nga7fkzJPPcvvebfZu38NVY/7O3/1t/sHvfZ13rlueObTJr3/uMW7uduk/eovlhbMsH3ucH/3JP2PPp3ROnmX/0QpLx05i3S7njj7NP/z9f0EaSIwpOX58nl/+3Gdozp7gv/3df4wtIv6ts32kKdmPH0fJHCm7HDtxgnevXGZ/OKG/8pBWCwgdC9MpGw8zjhyZ4oWXz3Hhe9fpzXUo/DS5kJzuBgwevc0fX9giDgPc4tP8/u/97l96H/8bSRvee6RUWF+zCJpRhFQwyixKa0xhiQJFJQU+DElbUY0ELiqyLGN9L2OQQ6I8k8qSCI2iHtPqMKgzCtbVBwGlAHFA6gM4EAe5mg9gjMXZWvjjHFgvsAhkGCKcP7AqClxZrwZ0FOO8R5amVhH7mrIYSU0hHTIMMLnB+rrnbwUESoGSmAMmgRQCqeqEvFKq/r3iA1BTrWYWCIypNdGCgwiBlDVQxh2QHOMY5xz9/hAZRSipUZGuDyBRQLc7S1V5lLNEjSZJ2kIHGnDEcVrnFpyicjCsCkKviIRiazhiOkoQqqIYZ5RlQX80wWtBf9Rnc22PdGqONNIE3kJpqPIJVhYIA8IETMb7VNbjEISNJrIbolAUWY5yBhWFeFljpK3QeC/IqxJhPYEHoVVNmLQVQRhgncUWJa4owSl0qHEfYCH/mi/hHcZIVGUpI4idwEuLc57g/ybuvYI0Tc/zvOsNX/xz5zQ57ISdnY3YCOwCuyDATJoQIdOkRFFSWWWyJMuiij7RmeUqH7mKtuhi2WKRIi0TZgBBAjBIAIuw2Bwn7ISd1BO6ezp3//ELb/DB16RPDFT5wNr/aI66p/9+u/v9nue+r8tqwOJUUK13XIZEAwZpJD6opgvKAlqgnEbGUBYwGgoG3SHdbpfYK5rtCZyGfLeL0Am+nhAMc8LxBm6Uo5OUwkkmxscrPba2FMOM0INzAtMdEEUa3a5UWrVUE4eaYXeHMk0RsYayJEoq1oUvfZXlKMG0HM4UpHtOiqQzSaszgbOwur3MbLuJimN6gwHZKGfm4GF2+kPu319jZC3NOMQbwf6TR7CjjM37t7GZIwg7fHRnmVsr90hcgbCaze6AIy8+iorBCYcSAucE7GTYfSnN5jRDk9MbjFheWuepnz9AGCk8ijiO0LEniQU6cAzzglYU4p1i6dZttjcWGZ+YxVlL0e+SZyNcGkPgUdkIY3KkjxBBwES9wSjLOHTwIIuLS+QioIwDettrJEVOPY3QUQeUpVaro4KAtFVHDA19q1hZ2+Wjm5fIBgU3bl7DmwxyhaglDAdb+Kyk8DlDO4DSgZXIj49LxN2lIacfeYqtjS5pq6QzN0ca7GOUFQy6t9jd6ZHnJUZJdnZz3n/1DR5++nlEMWJ58V0mHn2Y6XHPe69fJ2i0KPsDHjxTcurB/RwYHuS1c9dI6+vcWrrDN+IF2rUE63Mu3xzyxNlp0pUGn3lillXr+fDmJn+v1mFns08oFcWwxImCem2eDz88x/zEJB8t3kC6LfAtDs9P8eX/+DIv/vjD6P5d0lpCmKR0twbMfuoR7l+8xE4J+44cYGM3YOi3CZNZXG2OzWiauTQmUI7+cINGPaIUHZStIWQf7w1FsUaiE5LYoaKIetLBpJbj9YTF5du0Jw4S1edpRDHr1zXPPzpD4AVvXVnEvfsNjj37BZZ2NS0fIIvrhI06Sgrm9s2wvLRGsHOT3eVxalOCc1fHGdbm+bd//Bo+kfzqLx3iq296/ujP3+GTJ5pcvKu4tnmXTzcC1vU+4vYYN985x3NP7CPbvc16GfL91b/hxWeewsdNDs+0uHblVXpdzTe/+lecrhvysRahGhCPtWk26hg1wWhtjQ/f+T4bwx0++dznuZDCRDMmmZ5h9eY9atMjtgarvP3ORbK+IZzWqDCmKQVbxRxr/igvffYYrnufqf0/3MnxIycEv3p2ylsPWlW+gtLa6o8Inlo9RkhFWIuw3mFzh7eW3rDEOstq3zAsHZ00wOmIQgianQ6BkkRKIUNF6CFIYjqtGj4QSBEgpCCJq1GklhohJcZ6yrKS+wgPpTN/Vy+0zlKWZZX6R2CBMivBC3pFgTEW6yXeQ16OMHlJVlSAJe8dvcFob3LgQEiStLYXlRI45wiDACR7MJWgEgxZixfVWiNUYeVC3KM5GjxaKbRSWGcYDnOSMIA4IlCa4U6fuNGg1W4RhCG1epu4njI9PUue50gvSDpjREFMXgzJhkO8ccRJjBeCorSsbaxTDEY0J6bAWOrtMWzhyIY5SocUI0eRjRgba9JopdRShTCuako4i8kHeG9xeYFXooLJKIUTKVFcpzXZqUKWpcXaynlQOktgwQcBQgmErbrZXkmCKMSJaoLgJQjroKxGy4S6IjN6+MLnT/0nf7p68dh+P4ojQicwPgehCR2YQCJsZTrEZTjhMTaq2jLO4XyB17LScnsofYDCUjqP9b4KwaomkwsLNCdnODg5T5LWEEJDmtAfDSisYX5mgVojIfYhaa2GiiMip+l2V6i3pmjUBOX6BqL0BM5SSyaJAkWjOUWz1mBoN7Gyxhsffp9vfP2bXN/aIDMWzIiw3USXmvGpacpBH11PccQMt26T5YKDjz5CqmrcuvUhrpch6wkyc6gEtna2MLlj3/wheoNNkqRGUQx5+OyjmGxELQ7YHIzYXt1CSMFkqFnaWCMSASem5viF//LX2Hf2AF6CzwRq2+DGBK/+zWtkAvoFzC+Mc3xuHhVA3KmTdS1RIBCJQ4qAYVbiM8O169dx3W10ItCyhtUGlY0YOkeQNimLHD/q4X2BCnWF+S4LgqRBoRTlsM8f/slfVShnM+JTn/wMD559mLXldd5+533Wuiv4fFTllZSgl1sSXeVjFFDaElsoZJFhcAyHO4gIWrU2aVKjM9YmDKDRGuc3/uVvfSwTgi/+7I/7+bkxZubrbA7u0dZz/NnXzjO7f5axsQzXN6xvl0yM15kMS1b6uxw6fIqb11aRdpnSxQx8nbGG5vOPHeGtxTtMjh+lu73EbGfER6sDjtRho5ygk+Y8+YlD/PnXb9CSsL27ioxr7E8jri0NKGLJf/Xrv4IcObobqwyLHpduLiJdA9c5xcVX/ndurw34zX/+yyyef5c7GwU7QmBGOVc/usk//IlHuN+DzChkFCBGGTsm4MjR/XzpS3/N80/s5+iRY9w59zaP/cQ/QLghIhJ4l9NsjoGLyYZrrK5tsHb3PmGsCUjxQU6RO7YGfR5oZlzYWeD69XP85AtP015I+fqffY9P/+zP8ce//ydsDUt+7OEZbly+ytwTn2BtS3Hw7JO88eXf5tR4i2sbuxjjmDt+loUjD+K3Vrh39w43l3b47CcP8t13u3TzLU60ahw4MseHuyGjbcnpxw8y5nbpLp3j8Wdf5Kt/9AdMnjzOTfkYxyYcO9e+iQoW8PkK9ViR63HeubRK5hI6Ev7+LzzNofkGb371T3FhnVwBOiKtN0l9yrkr95md88zuO8DNxXXmxzq88sabREGDJz/9CNnmLjeu3uHME49x4d5bRNLxxRd/iU7U51vfew+RDakffYJ/8hv/+v/7hMCLKknshayAOWlKrVVDOM9ot0+WlWxtjbDKImWA1rBVSrKhR0nLTCMgCDQDY/AGet0eEkEkJWEtodVuILzg/lYfFSjCICSJor35s0AIW5kCS1dx6KlCD9b66mlcCBAKLzzG20pz7DwmiCjxYF1FPDSOAot0e7bCUGJKQ2EcJSBQ1VN8GBFFEULAYJjhrMNFAmsstSTFe08YKvJRjvcQhCFCaJwxDLMRCEGj2UBLRRjFWO8JVVapmAuDcSVGS/Iix/oKp1wCylpG2YjSefJhjgsCytSws7rJ1tYG+agkDiKidpPMlHS7A8qRQ7YajE+M0Z6Zoh5GNNsNwihA+YrGKJVH4smHGTiPVxblJE54hDcU/T62NEhZtTeMq6qYwvg9BrRA7mmjyyJnmGWgFWkcgZAIFSCdJ8sLhK7MkLKsvi4XVhCrQFQrGWc+ngkBxqCdxmiN9DFB6bChJzKK3OaYPWqk8CCURaFx2iKdxokApEKXFqeqn4dQVNmNwhQMXZ/bN68g791GnHyU8bkxZmYOs9PdYGc7pz07jxnlDBC0j04iC0iCACE07WgWN9il2FbouI5WGbK0hNKiwgjrRqwOS/z2Lrt+h1e/8wMKL8E4tHJIUjpJh77OMBhWt7vUCosIRgT1OVp1yb0r14kbdUxmIBEEQoIcEAdjzE3Os3D4GJ/41Its319m2M958MEHsM5z7v236Q92WNg3w9PPfor5VoPv/uBtFnc3aI6N080HvPwnX+OXz/4zcBWLoRwLQFue/LGnEUpw+a1LHDy8QK3VqGp8TuFliUgUWiuyUtLbGLJ++zyNWkLSCshlQTw1RhrWMN1NdJTgm00CJavz6xRbuxsoFXH9ynWWlta5ef8e/e1dnC7Z7mbUWk1e/sHX+e6rP0COSrb6WyiXkWlFO2ji8ThnGJRDQtfGhZr9nTZhEtKenAedoMMGWmWEUQuh0ipYm5UYOfx4zjAwyrvcul+y29UcnF/g4KNneaLnuLZ4D+ea7GTbNOstrN9Ge0E9bbC+ukQc9klqY9TrCxx/4km65/+SNy5c5OQnnibbWaavWgSq5OefP8TIHuDBuM8b727xyntD+v0+t3YU9fo0cXeZe50nidJ3iWsN+r2cyYkYOTCkcopR7xy1MKYe3iSeOsy8vM7v/q9/QWtyii+89AzvXrxPvTlkoT3G5tBgE8n1u9ucammWb+8yfeYprny0yi/+7EPsn53gT7/2AWna5tlmk+W72zSsZXb+BLW6o7d1r7LADleYn20w7McYMyQvLUEUsXJ5AzsZovNlOn6Xu5sXKXdhLN3ly//+P3L3zlUW5g/w7o1Njk3VePObrzM5rtmuZ+x74CWu3niDtZ2UVj1kgnXExhVurq9z6olTxK0VLlzqsq+2BLUpPvHYQd66co9Tkx2+8/5rdM48g1X7+fb5kNsrr1EUTeyNG6TNASubgn1acunOuxze/wBj4x2uLK7w4tOz7K6s89CZ49y/fZHL769x6hM/xlBPsnk34857f0Ior9Hv7nJ7I+NzP/1vuLOxzUxnDS93eOqFT5Nl69y8cBeT7/JLv/YFGm3B7OJ+bt26zevv/QVlr85Mu8mOKXHBDz/HP/JCIAUEaUIQBUitkQhG/RHSVE+jWIGPFAEa40oKKxkNSyLlSANNvRZhsxJbVGGtfDgi0Jqk1UBqhbOWvLRk3iOGUKvvJf9LU/0CwYPbcyl4QKlKamSqf1uqj2tsWemAvagCelpUSOI95W3hCoTzGGvxssIxl8bteReomhNSEIUBWldnsrMVAAAgAElEQVTkQC9EhaL1jlAGJHFSTUiEAGmQ3qOFrJjpIkDnRYUlDkKU0gRhjEbQLwtM6emPRkjrySQVDa7fRxQ51noGA4VAYqwj6/dBSHRWsLm5we7uLqawDHROQ4aoKCaKZmiNtZk/cox2u06nkdCMI6I4RMiqESJFNdmx1iH3IFKRFhVvwTmkN1VbpCwquJPcC4c6SyAVAlPpl4UDY6vaHRbKyhQodYRzJVZKTOkJnUNE4d43SuJKS2kcRNX/QfHx1A5N6hCqmuAIW2CUwPpi7zxJvPFIrfG+Qkor5VDW4qRGS0UpBA6LCivPuheV9SqOQ4R1CBHgneL+5j0yP6IWThIojU5LjB1wvzvg9Phh/LDAK7CFRgiHDC3tpEGJI/KOvFBoEZNpQeIdIwo2u7u8+/YbrGxsc+72dRAJeeAxxnB8/342hxmm22MzG2L6PUykCZ2hKA0mTtAxSJtXa74kZLDTIw1TQumZPnCUTz30CA0E15ZXKPKCjVtNaq2EybRDOw05e+ohjh4+QC1NOX32JL/zOxn37i2zVRQEG8uITKBigZcOFUrMXmUYCWeeeghvPEJ6jJXIwiNLi89ibGy5c/4auegz0axVFM7ZeVoyRQaSQGlsGuGUpLc94N76OlcvXWQ08NxZuU7kIu6u3KbnBhS7g0q01qwhrGVkHN6mhLFj5DKsySnLEl1a2nWFTjX1sZRGENGoNxBJQLM1S+AlPqqRRZ6GbmDdCOkEBkc+6FWNI/Px7Qx+6gv/OX/0u/8OP6c5sVDnnW9/lytLnunxMcabdc7d2eQLz8/yN39xnc6MRtYS8kwgwoCpdsz84RYv//mXOPHoUR5+4DgfvPMej545zfxhwdf/6gIXrno+/cwY15Y1V95/iwNHD7KzeIeZfROUgeajG2t8et9dikbKG+e3OHX2FuP1M8T1kEHWQ4uQtKEZ9Aw3b61yYmqCh49PUQ5Lrn54gTACWw5YmDnM8vJ5Hv3E47TUKvd2LPm+o6xv3sYsr/KH37/Ff//PfowXnv8Ed+53CcMGU602Khww0ZmmcKvs9g1b26uEMqK3k6GSAcZvMOofItKW1Xv3WbsnefK5U5TrKZevOAbjATU1zUjs8sVf+jW++pUv0w6nubm+gmnHbA/gk/Uab6+c49jCLNnOIs1awM2NHc4cOESaT1MMPI8e7nBJlGz0DzKVOtZGmgeOP8ni9TfZf2yWL3/lNWYnL3Jg3xw7d1eZ2b+fh+d7fPvcXaabTaJDs2xeXeP5yQPcuvEuC3XNeHeNDRnz+uW7HBxPOfv4Ga68fwdj3qd19ARHnniGqJ/zl1/5C8YPH2Pp5d+nLkNW5p5i5foSE83LHD7SoX1W4rJDnD//JkdPT7D44RZPPv00X/7L60zMHGJiHtTmPm5f+OCHnrMffSGo1Rj1R/R6A5IwQmiJzQsKa6sncyrJgPFwbTsnDQUTaUSoq/22KQpKIA4FrjCUXiCsx3tHOSwYWk9mSnpDhxJQOBgVhpaQaB1Q7ol1tA7QgabMcpytiImYPYqic5TWQlHtUQkUEoU3DmcseVGQZ4ZiT2Ms9sJwf5sNaOx1/iWiyg9IiRZVa8A6ixCKZq1Oc6JDXhb0N3Zw1hKGEVIF6DiukuU1TRAEhGmdpJbincOUFVFxuxzhBkOGZYayjkxpiipoQL02wkrYWF3fU+Xm7PYGRLUaQRghdY3WzEHipElrcowo0Iy3WsRJRLuVEGpNpDVaCDCmwvLGUZXN8CCVItW6cj+UBqEVoaiyGULFaFuN9sVeliPZy04oY3BFhsgNQkqSICXX1fvtjMeIarduSkBVGmibF9VFzVbGSu3AGIfSCq8/HlJhREjmKv2xDTzKQG4ciQ8JHfhEoWyVa3HWY2QMaoQWqqq9aoeOqrS6DyB2IeVewyMIS5zSOBUjRiPKpW2uZq/RrDeZPvQAKxurTE7OcW99gyljaLWbpLZftWCGgm4ENa8YjDxWh3TLEe16SB6GvPvWW+RBwdfefhmTG9KkBYHiV/6Lf8z8wYOMho4/+L3foUgTmu2Yop6S7RYYr/AiQwvFRDjBdtGllSSoJOLY4WPU6jHPPfUkp04cJV1R7K6vsCElwVSdZLTDTDPg5KGjiNIwc+ggqh3ByKJ1yL/89d+AZqU23rm5Tjl0yACcAiUl2ovqEo/C5yUECmMMqlQsLq6g63XCfA0tJclETNT3vP7+ObbXtlhZW2Z58y5x0iZpNZluTmKDkjKzDMs+gVHsZBnbO5u47U18oDBZzmBrh145JNiMiJwjjfcR5Yq8FLzw2eeYHWuRDQwSi48CQGF1TkCEEinGO6zwKAs2H9GwDYwvUErhhEehEXqEFjE2+pGlrP9fX1c+fI+f+cJPcX1xkasf9Ehrx9hd+oDB7hjHnh3n7KFxXvnG2/zEzx7FFSk3bq1SmiHTccrDn/xpvv6Vb9CeXeDCd1+n+dMJM23NK6+d4+yTY0wsnKS+9hZ3L3UrAFQ6zvSRE1y9tgQuJ1+/x3xzhmyni2hOceahWSYaClFXVV219ExOTFBKGHVXkVJx9fYNHjqVcP6Da3ywBWkT0tYEz0wW3P1wjYcm3kczxeXr9zm4EJKEI+7qBV58VvHN965x7cYr/MN/8VtkxQgfatKxDoPRCmZYUPRXsaMuWocEacJWt2B3MMOJg/N86TuvcHu3xU/+9AN88/vneejoLLVxT7efsmOHPPHZR2DxKj/92eeZmz/AV/6vHmp5mXrD8ea5N3n47MP84R9+ixNn97G8uMoDpzvsU1uESY3f/p//A4Oi5IVPPcv88WNsFEOGWcjGe3/GA098CnFlkV/4qTNcu3YNZQe0pxzP/eQL/Pkf/TGDIuLwoXkmTh9Bf3Cby6v3qU0eZ3YuZOAN8comM6mkyNb59st3mJs7TNhq0TQW1Znn1vKf8ZlfeIhie4eytY9ukVIvVplpXOLgo7/C4rn3WEhDJh99hFs37/KDb6wwN2E4//bXeeGFx1i8d4+JiTNsDpfYd2z+h56zH3khyEYFWWHQUjEwBmFERelDkRfV2DlOUnrDAikkDR0QxQGRUhhrUAhCFNuZQQChqHDA1tpKlBRIrPd4AU54rLdYY/C5qapVrloPSKlwpcWW1RN+aS3eOLRUCCmqlHjpGZkC5TWhU3gEeVZSWIctDMJ6rATrLH6POaCkwsn/Z3IgVLVLN9bsVRhdxWCoRQyKDIylLAzVu6CrfbEICKIqbBYojVIxUgUYcnIMprDYzFRNAqHIvNlDQkOgqpVKGGoCIzBCIKIUEcSVcteHxM0mk3MLNNIazUYNHQR00oggUIQCtPd7BkX20M9VXdR5U4GYBPi9yYpGVnt9ufcgT5W7EFrv1ccE0lXip6o5EIHXgMdLSxhEFKaqaFpv8Aqk3cNG+yoYiooq74Q1eKHxzqGdrKqYH8OrT4wmQHiHMg4lChKfVogrBc6lCFdiA0ckwYkhTsiqPhtECFcSSEUpC5SXlAKcy7ChxgcxMTFCQlCP0CLGO0leFGzeX6LTbEE+otfbZqzTQghFnmgiofBlSWgcnoLC5BijuPjhBaYW5snKglcuvkOj1iapSZLWGKfOnGJqegrdz9m8d4t2c4H/5r/9LRavX+WVb7/Gbq/H9FRMGEi8VKRRhJA1WsWQIwcO0m61eO75x4gbCWP1FrIncTJnbHyOl/7eL5LMaPLtAhkrTOHAl4iawMcFcqAJ1zyjdoHdKLE2YGMwRN66w8zCGEm7icEiQlHVUIsCUPgMEIL1zS49J9i6cI4PLr5PFAacP3eONE2ZmeuwuryETjocOHiy+r0RaW4v3cKIkshoynLA7sAQCs0wLyl3tlnfXcU7xZEDMzzQniBu1rh48SZmmCPCgPFkHIqAeqODowfSVopr60hEDCqkHGWIUKNsJcQJggirMqQOECLCmiFaarxTFHiqH6iP5+V34a/PvcJYWzK7/3GarYyHP32a5etLfHDzDnfNgMf31bm3NCIqdplvaBYefpCLF7fw3ZtMTs9x/eY1ZG2crY+uUm+GCBLe+85lfvHvP8OHHz3BldfOEU/cp1uE/P6/+w/83BcfIV/NaDUtie/gJiIun7vEF//Rz/HR5Ws8/9IX2bj7AaohCNspaj0nsi1Onpxg/ujP8fIHb/Hcwyd4/S/fZHz6LKFd49y755k4cpTfefUe7Yka//zzR9jpKr51pY0t1ri9FTBZG3L2zBz1Tof+9ibWDBk3M4jQkLsBW1s50nj6hWBnZ4T3t4nCOnd21mg0Wxw6qFi7vsLYmIfWGK+/9jpPPXuW4fAgm3cLNpd6vPXGd/hHLz7PtZs3kdrTUVMU/Zzf//dfpd3W9FczTpx8hEJa/uIrb/PAmYNMLbT54q/+JIkP+dPfe5nZx58gW3yDsckDXHr/dVr1mK1Ld+j4HFGbIJ2b4cBkk+MH2ywcf5y1i+f44OWSH//0Y9zbrFETS1y+2We4eY0HHvs8Ny69w073Os88/BJxq06tlrK+scPilZs88/BTLK+tcaknGeZbZNkqD504i6/9PJsfXcCWklu3PmBz4xbf+/AWj545hhNzXNvQuM2S6Ykxrr7yZYKpDq+/fo9//C/+38/Zj7wQ7JYS6zXeUhn7BJi8wDiLDhRKKFZWuwydZaKmKYXDWchNiTGGMArpDkYYL9BSIvbc1aNuD68kopZiEOSjETrWhFKihCAb9JGZRoRBFSo0HouktJbcWvKRwQuI4wDjHSa32LLa00tZEkcR3nlG2QhXOgpXXWqKssA5hww0Oo5RQpAPM7Tca0woRej2Vg1aIxzESR1BgHACUxhU0KI5M0aYJAjrCENdiYuSOsZkjAY5w2yE6A8p+j16ZUZoBbRaxEiSvCDWIUmrjVIBjc441BJk6elt7+KTBu39J6klCWP1Ns12g/GZMeIwIJIV/hjnqnRtNsQi8KKGU3rPsSAZDAbVN1cpEHu0SesJlcY5QHq8oxJWSVntz4VAKYWXHmkcRkhUGiO8QyLIsgwhQ4R24Ctqny0NVlVZjdJV9Uxv9i5rQuKFR0gYFSO0/ng4BEr2CXytysMog3QKHVZqb+9rpM4wTASq1BjhkF7ipcUiEKWFOAARIo1EKo/XmtBX6zOlAqKoUn6H1DDeEkmFsZa818UMBgi5jI5jtu426Q8HTEx2GJd1QlGQC4mpN4GEUb9H3Iz51lvfwY0yZsZn6Uy1mZ15EmmgWWsiC8dufg/ZF5jmkEie4vShM/zMb38WN7RoLXF9h0gkOogQkcUJh+hRsS/KiDB3+KUMa3PyBqjQo4MWxgjCWohqKrR1oKrMjCTHTUp8BxIZ4WTKxo1Fjj8wS5jU6A9y3n37XTauXEeOTWKcJdsd0B7rYKTh7q3bSG+5eu0qiBJRjtBBnVrsMKNtuv2U+niHlY+WWL51E20zvK64FnErZqw1Rr1RY27qMDLR2MGAonyQ+tgUxozo93aQtiRp1jhw4Chf+tOvUptcYBRu8fo77/HsM2fRRIyyHUZFRlSrYY2iFDk+sKisxCUJdVllTDLtCKQmxxIIxagoSNM6pszx2cd3Idh/6gBWLzI2kdJsldxf9exe/4AHj55gfjaGYcadrYgPXvkuD549TC4EW92AU5ObWPkCY3OLvDj3AF/79i1umhonk3k+81Kd77+6zbkLXXY3tvAioXPgDKrhODTXYPHqJt4KHn/gQf7422/wuacPcfbJp/jal17hN/71PyXPutRnjhHnfY4fOs1We53B7S1sL2P15vv0erv84O4V5qaazEX3EekYBz71M1y5fA3T/5Dpffu4vO5pNjQPjfW415ihv7vIA6deQBUrtJI2mpyx5gEasWVt5TouN5hshCAl62/TnLDsbLZI603+u//hf+GRRx5nkK+wbmJOPHCC3Xv3GUQLXLl5n8OtDFUXPPzZl5hamOXu8jbz+6Z59PRJlq5d5v4g4OD0OMefeYELr7/CR+98i8mFY7SPneGPv/Y6YxMxdy9ep9crGJsP6ETr+LCk4zcQC1PkLuFeMUOn6eiOLOHNPpevXmAwzBhuW5K5JxAfLfLdr36HZx9twtgDHNs/Tnc0wfLNezz96ac4/9cDBnnBez94g7BeZ1+7wamjB7h+e4VQ13j80Qf50ne/ypGowdLqNdLaMvNHHuf+W9+idWSC/qjF4UNjbHc9u/1rnJhtc//qdxi2F+jsO8Fg6x7b/PBp7Y+8EHQLW9m+BOTOo5SqPPfeYouC0At2cVXQyisCETDMCmKtkDrEWHBaoUpP7g1KSNze06eOQswoZzgYUjqBsJJRYTBVrQFhHb4sMTjSeg1Q5IUjL/O9CpDcAxZVICBjDH6PK2Cc25MXqSoQuZeilw4QDiErvK/ztpoIeLBibxy4N07XQYgyiiBOQIWQFzgjSDvjBPVmRTgTkjQJ0JHGK4kvPL6b46xllA0qprwOEJEkqbUIw7jaZ2pNWqsjRYBKGui0hikMoieoNaaZnJiinkZ0mk3iOCTWglhUwTdfjQAwZUExLJBK4VVOoB1/S5XUsgIkib/9elwFT7K4amViqqd1ISuIk5SVUhoBbm/6UmUPqpbH3zIYqsmJqL5H1lXIZ+/RvuqkayExxlRjYq3xCMK9zkZVF/1P/5JeYKVCek+gMrxMKD0oGeBlSc8XpEWM8IJSGYy0BFTuCRMLQilxzhDLqpZpndoTW2WMcoEWEmoNSgoiHaHxSBXhHRg3wvkxhBqxvrtDU/UoRkPuO0unNVlBuazA+BGmuw045qamEa4SWpnCY3xGPUpItEYNMqxS1cXPl/R2V8n6axw4OvN3PBC0QJfgRwbX3tvpDyAqYsphiVOOoeth2prGgTGEtJCBCKtmDTiErnI23nnwMV6C0pbN3YL+xiaLN++yvrbB7cW7DPIhOxur5N0B9YkGcVRjmBmiKMZqwajIGUtC8mwTqRIimdAfdZF5jhOW7M5NxsfHOXigQdyYZ2JmjmaQoMMQFYVYW1lFNQpTGsJ2h93NFYgFMW1I67hBFyMMU82Yw/sPcW9lCb3vLDK3jKxHJwGCGJlbfGkQwqNlwMBV4qiw9BgfYLUiVBacQpoMLwLqSY3CZQgVouLyYznDAGVecuz4swx6d6gLQ5AI5ifb+HKXyxc2kHaH7UHJ4YfmCPEM+iOmxjfJ6ydZWx+ycneRLRlx5tgBVlbvc3+nx7vn78JwhyPTm6RpxsL8Pi6dX+fzn3uQH3z9Oq2aYGL/OFcvLnJ0RvDe+ascO2xZODDLzPQcQkjSeoNMxdRaG+Q2wCa72HXLUm+LwcYWY5GiKIbse/ApnnvyMW68923eXNymPb+PT372Ofr373B/a4QJpjg2GfDmYIZdBLfOX+f0c9sEMqDRAFeAlDU2N5fxDPBiQBBJ7MCiXBUElSG0E0m3J9kdbnBuw/PLLxzg8Uzx4b3bDIsm3L8EoyGdxiTh/hYn0gUGfgOfthiu36e3s8GvPd3kmed/nXvXN6i3U2o6Qwfj3Lu3RJHlDEkpoxHl+jbdkcEmTdavblGaAb42T7MxxkwnoOtHbC5+RJq2uPLG37B//gATHUEnPsHbV7u4w4KnRcIoalFsf8Qf/I+v8JmfeInRxjJPfeZnuHrhPUo3ZGPpOibX3NrqsrryPV741EsIlXLtynv41TWGa9/n6LGHeeXCLWpumROHHqYoFONzD/H9b36Lh85OsnnvOp30YdZGDab3t3/oOfuRF4K+iDCmxFlHGidI4ymLrLKHGRg5x26voFGLcHFMHkgCA5mH0FR8YYfES4f2msLLysaWxOTWUvT7lbynrIA92x6iIKRoN1BS4rwgCGIKI3HOk+eiSv3Gcs9YF1Z5AjlC6AStbEXbkyC1REc1FBJjc3xpsLYSFyE1pTdVI0EEeO/RKkarkLjewnkIZYTXmnqjU/EAghRnPLXxcaTQVU7AGrCG0hSURYHyBd4OCVUdEzm0diTtEKk0rUYHXQ9RVBcYS4CQIXGtjVQhtekm6khIpCWtWkVujAJPLC2yzChKEEZUFwJvq/VFVu3sDb4CaQQhaEXpSpSUYEy1HtEaYy3S2j38fPVxvKBSK+9plaWQe6rrvQuAqbrm3jhcaSt6vXMoXwUghZBVRU9XSt9CVpcJ53313giJLaoaphcfT6hQixpeltUKyoQoFxErgXEe6SHwAU4XGKGpO00m/nYXrklcdU4CGRAqR4lAR7LKF3hN6qv8DL1dfKuFxWO9QWmLVHUUIYmySJGiyx69dUkWbCNUyubyIkIIRi4kSkJGO2vgJSII0IEiDFPKckg9DsEawNPF0EQgfABWopShMCPOf/fbCBVx8JFHGB+vk3vJaNfg74yIdAh1hS9zZEdSAEU9JDKwsXgTEScIp+llXW5fv0t/kP3dz8PcwQVkEvDmK+8QOcG5i69iRpbMbEOpqNVbBPWUMEjZNttsfnid/nAL4z2tWoMoSajXNOLQAZ5+/BOkScj85ATGFDgrCFUMcYhujqNHQ0SqkC7BW0e3qLgK28MNgqSOtYamhe5wlel9D9Mf9BDaEueCvNHEjWBr8yaPPXQY4y3D3V3iJORLX/pz/sEXfxEXhpQjQ5FlmGIH1ZygEc0gkoKs9ChKnO2TFaqqoRYClUCejxgOeijhSdKxj+UMAzx0us21a5fo1Fucv3KdJ060WRSnGPS2mZ8TLN4siJs59fo0S9dWmJ4PuXJtjflZSSfZIbMznFqIsL2LTKQd1gYZqpkQ146xvLnCqQceJbv3Pp8LLd/7xvc59OBZTGZY3rjDlXuXeezZH2dhdJW8mfDXX3uZ//pf/SYqloxKQekySiJorTFRj6gfP83v/W/foyxKriho1Zv0BzmbK5fZWrd88uxRzj46x5ULd8h9SCPw7A7WyZqf4YVn7/Pq916hn1vqtQZKGKTNGPW3WLt9i7W1DdY3+3grKZFICZMHZ7l7Z53/6d/+G96/fIMHZ4ds9BusNwK+9a33efzJk8TCcvKpk9y6lpHvZhw4fprRTo9Bf5tGOsZ4OsTHMac/d4aNuzHvX/822Z01jjx+lFtX7nLqwUl8uY+iXWd0N+P+zWusmoLDDz3D3IEpbow2qPmSz5+W9Lc2+D9eWSGwGQdOP87jD53msuzhNnZQgwi1vcjx+f1k+SrXlweotXXsU1/krPojxrNVRjIkunuRqUaLYdLizuY2L33iaQ77XXbWFrhz7zYT47NI1aC1cIC0rhgFEQcn2qxtDKrVSr7FD84vI8bGcNFJjr+4n9FQMt0w9C7/4Ieesx95IWg2W+z0BggnsIFmZAuUCvHe0pWVBTEXksRA4RWhk9i9nj5RgEKQWYP2AhxYqRECSivJcseIgLy01GopUgrCIKpGnT5CyIhmrYXUqhpxWyo+QRBWT21IlA6xeGScY3xVbRP4CmCiJFpVY39VjCilJVF7z8hC4q2p8K/OQigIkzpBFJO2xvAemkGCiwLSepMwCHFhQoAmadRBCtI4qvgHucHYksEoQxclzgRYX1Krj+G8Iq7ViYKQKAoJIoUtSqx15Ba0jkjbHYIgJE1ipCiROJR0CGMqQIsyBFTBR+X1HhzOIPfMiUEUgJJVSFLuWaC8R7BXzdRghUUiq3WJl1hrq4uRqBQ1eI/cMzwKCUJXFTu7x31AsEeX9FVyXFTTogqfW1UW5R63QYiqugggld6TUcmPbfsaelFdXpzCqBCvHMLpKv/gc4QP8QFok5DponrvrEEhcbrKwUgpyVyGNIKyloCPUT7DiYiSEUkZ4Bw4PGlar0yAOkEWoIKIKG0xGGXU6gki8IQ+ZOgNUili6SiHfZCSQCToNARhiFA46QiNxChBng+RxiJqTVKpCAODL0dIwDhHpAuWrl0ivz+GqtX3MjIB+WAVaToUkSXYKbFIRv1tstxz6eJFttZXoRSsdTfIBn1K7ar1iK7CkvsPH+b9d3+Aw5HIBJ+PMEpTTyJ2t7fIl2/Q3R2irSWuJxw9uo+gVefI/H7G221mZ/ahhUXFLWq1GqIEIod3kmxkSEKF0RoXa0ojMUWPAE0QWoZlSRy2cC4jUBG+6JHWOkivaLXb1frQ7RJ6RSAMenya/u4dHjx5hLcuXGJgY+zAIGNP0CsRgSYJQnZHAaocIpTDjiwuAYygFBIZhvgcrNlE6ZkKEhU1MIwoPiZBF8Crb91ibmIM4h5HHzhDz3TxbHDz/TeZO3qIeGwWm61x9d03KUeChSMnYXtIs+3Z3FjhwNg422RsxCeZzje5fft+BaUKJO9fWeNo6x6XLgwQB6cYP2BZW10h27rL4cceZ/7waa6cv8KRTo0r3RoHD80Qpg08Fs0Q5xJqE4coVwrK4j4yGNEf5ix0IpSUNEPJYH3ElZ1F1na2WT33Dg89+E8J1BrNsaMEcZ3hNZho3eT//MN3CFWf4w+cQEpDoi0Cyygfst1dZXsnJ3Ca1nhKtyvxwrFy9wbaDLh2u0AMN3j/bp+x6RY/cWKO3eNTNHXGjU2JcitsrWwwPdtC5cvc2tzBZo5JGeFDeO6LP8vrr7/J507mHGkpBqePkzqNaivOn7/EtVXJ4UP7OPHgk/zMS8fp7eS8+c47FEWdditjsJ3y+uWYWHk+9bQg23F862/e4l/98mFefnuJQ/uaTNc927t1RldXEXWJNm22mg3Obr7KwokjrG/v0ppTZHfX2BI1ksxz+ug0w/4SF997lRs3lxC1adbWt4hbc0yl0N+6ye3rWxzdd4osjej1uiRC8Nzjz7O2usrSvSVG25tEYyGbIuWRTzz/Q8/Zj7wQLOw7xpz1lT7WVXUr7w2UJXnWYzCqEMAyiomCiiYlZfW0iAeHJc1yvKz209oJVBii0hY1oQiCKuwVaIXUmiisI6KIOGmADpAqQMoqIGhdNdZ3QhLpymEgZIAXgkCFlN5VVENrsYXBYlGi2qs7VyGIndxTHouqIy+cxyMQXhAkCTIMiOKkGiMGGiUVKgwRSleAIiUI9pwISkq8c0gvcAYyBTAAACAASURBVEC2JzEq86yKXXoq+1wSoaVESV21K4qKtmipKoxJI8Y7hygNxXCI36v94R1S670Ip0SoiggnBdhAoZQiikEHuvojjqg+Bx4hxd9lBDAV8750FuVlNRZWek/Z5KunUuHxSIJAVmsGrfDOI1VVz0RJ7J7hTu/hpZXzlKYEK5DO4wREQlMoSyj2Lh1SofY4BMp/PKFC70Q1wg8NsRdV7VSPCIuYLFLU8gKTKwwF0kuEi5CxQXpBWQQE2hJoxYA6SeRJZFURtVYhwxqdMEW6kCCNkDKgdCXSBQTKI0NDXE+JpSHqxMh8QOybuHyEjxUECh02iKKQoreDlRLhCjCasCEQJCTCUgjQPiduN6g1YxKlEUpRb9Qq73ugkFJhEs3qYJdseZPu5irvnr9IEEiW15ZY3VghNRYdafYfOcOVS+/Qbo2RqJjMjzCDHKtSpC/xeJJ6Qr0zxfbKHVIv2N7aZHyiSWemxYEDxxjvTONCCSHouAmlJXYZTscIFPV2g0B44qiGEgKdNlG2oChygrBGWWaELY2wnpp2bG0GBIkiiBt0B5uEpSDwCi9KCuMxgyU2t7Zpzx5jJHahz95KTjEcDZEe1ESLxHSQYcFgq0vY9jTH27z+2hWeeP5xamXG5taQKGgQ+ggfawiqyVotichGWRU09ZZBYxwVRBgh0HGlVK+oIR/P6+K5N4gfeRrNgGY7ZGV9k0jV+ZV/8p/xrbeWefhIzIUbCQvzR+kPt9nZ6ZIVOdduF5w42eLdD+5jFmqsX15iX6OkMzmNGxUccrc4+YVHuNNt8eO/8gTf/+bfEEQNOtMxH61qjk5McX/5IpP7D/PupTd55rF9/OJv/i5hoClLic1HKJUgsj6NRkhncpb1jYI4+r/be7Mgy67rTO/bwxnunHNmZWVV1jwAVQAKQBEECIAgCVISSVFkS1RTCpFttxQhW5alaDvc0e5HOxzhfuiwHNGKaHdosLtbrZaopkSKM8gGQYAgCBSqgJrHrCEr5+lm3vEMe28/7JNFv4COkKONfsgVUQ9ZeeOec2/tOmutf/3r/wcolSynnvkQ811Ff+EnXG2X6HQEJ47uZ2VtA6EU5dCQpuNUSiv0231+/mMH+HffvcLvfOaXGKwGVIIGC/M32Fqco9VKQPSoD5TJ0wgqfeqN3fzZH36ZFz/xIW5fvMLU0WmeODpKM6lw/dYFzp6/x4GTR4htn+VrlxGixdjkMGdu3CTUAf2e40ozxiQJ9XuLjE+UuHHnEptmFxfPvEvSWWO4VuPDn/g59s2fo2VLTJkF8v4+TLKJba1x8eUzPPTMaSrTQ9y90aTmUt4+c42nTz1E+fAp/uDLX6Wet5meOMbNdy4xMVCjHS+xse7Yas1RsUOsLe5ncxYGSps0F5ukA3sJylWuX73I7Ut3GBqvsO+xD7NqrjEUdeiYBrWgxLnXbzM2mfPch1/k+sXbyNxx4rGTrC6s8e6bL3HsxFHaFSjVLca1Gc7a1ET1Pc/ZzywIhnfvByGxQqFdYWST9nA2I0m6WAHGgJAKpMJagyJHWjDCkdvcM3mVRkqF0hFBFBNVGt4fQBisMUQqRKsAHZe9zaiOoVApFNIXAxQqhMY5AuXNfqQskrZSGGQBbzswBuMMUgQgHNZZHIVIkfXqelp5YhhSI5xDh6FP+Mp/JUr6tcRAB2jlZYYRws9pESjpO2JfsDjCMADrMOUIcOTGSyPHJV8ls20Ym3s2vnGWQEhk6Cn/LvHkPee8HKzEPGC7q23/56L711oi8V27VsqrNVnf5RdfFeBdF7UTOOd5EbKwlxYuxxmQQqK0wODQwq8LKql+ajVdiD85C0r61UKE8SOILCdQmtR6HoNwIAOFzL30rhYSa0FqgbM5mcn/Pz4S/24hJaSyi3CaXCqUA8sAkPlZsRUoCVb7sYvOvSy2VQGylCHRCCGI0MRSeL6L6IMugbTkqkQcaIzNMZnDaIUOM6xooMIQp6BtHVUsygVkLgUFkQThNGmvRS9TlGRAJjOsiFCRJlQldCApa0MlrCLynKg0SG2oTFwKGRrYjYgrbK2v8O7dOW5cucH8zB2GJoaZuXmF4eFBeksrJFKDgpoJyGyPNDWUanWGx6apxprWwoIvtPsphOBUTmgjqkpSUxljgeXYU48wMFyjXh/EZQ5RatBP/HdmRUa9OoqSEf3VJRLhk2a1XCEwOVmgKCd+xChFQFTV4AwpAXmvT6w1xsboKCcTnoNRi2KMCiBNcBL6vQ7JRodKfQCyBGUj2rZLWYeIao16dQBMF5EaTBCiFUzt28uVO7cZGDvAW2de46lnjhFFIRP1YTpJ11u4W01fhJheh+XuKvWhCY+clVMCY7GlkDCBfn8LGUSoXvK+nGGA3/7ip7l5b55eu4STjuHBMn0pOHP2Ol/69Rd5440rDFcU5Uem+dbX7vHw2BhHTj/JD8+cZ3d7kD2Tlpl334axCXRtiGBkF3devcETjx9nujLE9y63WVu4T224htncpN9psWd6nHd/8grBYIN3z/6Yh46e4ov/1e8QiBK9NMWZBF0OUCJAZRl5MsRAAzr5Ji8+3eDuQpdymLN57gq37nV56pihNr6XPIKXr6WM63HaK2cZOyQpN2osX7+JinM+/QtPMDk5QKAMqTUo6VA0wNzHpj1ko0E7yxgaeoh3f/AyHzq5D+MsF67Nc+HyIofHNPsP7mG1ndI1HZSCDbWXt378KnvHK1w+v8V6N6PXWmBy125kssH9zZxo4S6te/PIkUH27F7hyUcOsjRf4dCTDd488zoL64s897kXeeXWBU7WHa5V4yOf/iwLyyu8+cMfMjYesDY5xa1bZzny6IfZ9chBzr15gYGgyn3R55svvckzp07y3bde49CBKQ7sjfjBG+uMH4yYuTvP/oOjXD4/y+TeEczdJcYm+gycfJg7c22uL64RrNyiMlxhYOwY/furrK3f4tjDJb75nXNM7YITj77A7VXB9Xd+jFAVApfzlb/9Lh99+hHu3Fqk2e8QVPay2r/JL7/HOfuZBcHE9AlU6FX8vDiQ9RbC1s+UHQIVFIlSeSthl6Ve6jVLsdYgjfWOg0qjo8i/TnvfwlxojDF+g0ELZBCikN6fwG3fYLH7jiWzBonwa0FSouKoYMcXsDkWYX3q9SKGAbCdRx3WWoz1jHoZeIVDDL5o8PR75DY8XszTpVL+GloiHdjcw+9SCDIJYRAgRHGPziFM4GHnQKGFIqoEKOWJfTjnVRZdkYyV90KwDmzJUM4ir8zoimtI38Uba5FIlPDw8LZ7IlIghcBZi1MOhEQ5R1r4BggpsIFfFEUoDDnW4KF9JFr7BIcQpNYbQaV5jhSFH0NR/EipAM/PsFZ6wqKQqCAgEN69QSF8QeHwBU7hP5FZi7EW/f4ABGRaIGTZr2TmhhRDoGMIBdrldEoRkUtBKqI8xGqBkEVBmGucdgSBIhMZqJq38o4kcZ76TYrIYZIu9cqAl8GVEilCgjhCSEPgFEFmEHlGP9QMlgcxgS8gddxHqRq2ZwnCABGXqVQHCQKNlSEqiEnbLTqdhJs3zrNl7tBfW8OVLWazR7Vcp2X7VOMyeadNB4FLYrJ8na2Woe36hIEkX+uS5j1c19Lp9Int96iMjLG7OkZ84jBjEw0Gq6PIsIzNepRCgSuPUx8cIo0ljfIYarNNVxiSANq9NlFZopKUXAWEUiNLIW64RCSqhLrsDc6qNaphmcQKYtpsdFKqIgYEDRR9ctbznHxrntrwOEEQe+fNxFCplCAMyV0L7Sx53GCoMkRXJARBmXpXEZQUGak3quoYXKOO6A/ARpPTp44jlWFpfZFqtcYf/emX+c1/+BskrJMnOf3AYftddFhBVWsQh2RZF6EzygMTlJNN2hlgtpjYvYfm2jLvE8gFwNnrHfZOTXL8QI/FjTGyWouq1VTDlJe/c5Ur5y+z91DA4lKDhx85wr2FPiLcZGV2kVt1yRNPPsrKwhyf+tgjvPODHzBdrzHwwREaBwe5eOcOauYG+174BLPNmKXeONpssns049zFJfafGOThx57i7vwd/uk/+UdEjPM7v/8r5LaD6nRYvn2HPcefoDF1gNXFFRo1yf3NjE1juXr+Lr3lDR6ezthcUeiBHlmrz9XFu5jxElu1BiP7V7h6YZbJ0Rqrmyv8zhf+B2x7haSjyNIOaaLZ7G7Q6yQMjuxhZbnJ0OgE33/tJSrlMUYmJG++9jJTw2VMmpOXJzl46jT3ZjcY1zH1wSHWb19n//Qog1MHmTn3Gh985jiXL9Torc0wt+HYNzbMB06P05sO+PbZJSbWJOtmi5vLG1z/6hJadvnwc0+xT80wODrAqy/9EfWhiPNnFBONiKgRMNrYZGJonDfONlgf7/Cv/uwdxsxNRhqWX/u1X+Xdi9cQrsdHnj3FRt5jZGqM3/voaXptx1e+fYPzl2b5r//hh1huD3Lum6+yubGImE1IbMKnHt7H/X4FOpfZdAEj45plXSOrVPjS7/w2Wa/L8soClQh+PB8y3RjDlTSPPjZEV4QkpYhs8SpPPXWIu9dn3/Oc/cyCICyXEVpiizkquAfCQkp42FloWXSfhdOPMTjniEyKNf4hjFa+m9c+eaIUCElgJcIJnN9c9xC5EChLYYHs9e20EDgHcbE87yQPEpKQhbIZ3qrZGc+WFgKk9g6Nzm+d47btbLW3OBYCv5NfdNMCgTU+IVq27YsdCIewonB4g9xZyCw5DkHm0QK8Ja0yzhcj0qsVUCgk+gm9t3H2hcZPDZIEXkdAKuW7cSEK22OwzhJo7UWVrAHpCwDhwBZ2zrIoxoz1WwTbBktIhZDaawAUgkMUmwpCOUzuvEy0yVEqxFgDODJnfALFj3o8yVAWasYKVzwZtw2LXLGJ4opCAPy9OATOeDEE+z6NX4WWYBO0gyzQBE4gsAROYLRG2x5WevVAI8s4B9r2UdahFaRC0iGn6gKwBiEsuu9woUZKS1AgI0IEpAp03kOXJDIzaECGDkIoV0epBBIhq5RLinIAcVRF1keJSjU6rTZbzSY3rtzEOcOdxXt015soUcImCb2kR2m4BkmHLLGIzJH3OxgZ0llromO/ythZXyWQIVk/wzQ79E1OqVRicnwP00cOMlgZZLDSIKyF1KoNXNrHxn40F8YxoRhF522CyVHclkX3FYlsYp33KAkzRWQ1TkOWWnoO8qxFXaZUKoOosAT9No2oiraWtc0tchXTswahQLqcPAsw0pC5LgOlCjIeJu0ZHAmByBkaqNHtGnL6iKRLuRIzqEdQuUX2HJndIKyPYJM+UghyI/x6aN4njCJEpYHptThx/AQ3vvcysVZ0NiRBSdNZMsggJm4ldE1KKbZkGThjiLQkSR3rK1uMDNSIpcCamLX789Trw5iR9/Z9+U8d4yPDNGqCThqQpV26nR6beZfZ2SYH9+9m4tA0w2Mh6bLlxo1VWq026Z4hPnh6hMW5VZormzSbkq/+zY95eM8eJg/sY++BvXz3y3/ActvxG59/ge9+4weUxso83FhkpjXKYjdi30NHeOjgMP/xu2c4duwoN65eY2nrLhN7/lfm79/mxuyrNIb3cuX2RR4fqlIeCbl+cZ7ltYz795ZZiroM6hZaPsrQoRDbSzh3eY6wXmVmdpXjxxu8/voiexsBLlHIdp10qwt5CKqFkT02lmaYu3+PzGZsrs0SjUyykSWsdA2trRn2HX2Wxz74UY5WVrm5NcDdu3N855vv8MzzB/nIoZ/j1rvfI3JVSr3LvPPaPIPHnufanYzGpOPaXIWDh2s0c8nr373OGxdu8KVfeY60t8aRxi5s0ubY/iHmt9pcu36RsdIpVK+NLMVUhw5y4OEBtu6vc+/abS4sr3KqJPh7n3yaP/2rM7zw0SHunm1wZ2mWt773DVoy5he/+CL37iX8+V98natvz7B7qMHpJyr8xq8+z73ZPfyHv71EPLDIYx97nD/5t9/j13/lSdbmFzkzk7Bv9CbN7hhn711Fy4yPnTrM3aszzFybIU80LzwzwfxNydRkHSdyPn70MLke5ievfIvpxgiz+57m4sV1jj38xHues59ZEKig4m2M8UnLOnDaP+Cl9qiBCopOmm0VrwfpCOEEQiiEKqR4nE/kQspCoMg9MCTy6rJF1rA+qQZaAz4RbxvnePKWX3/TfniOFBLjBAovW+y0/qnnAQ7hbLFT7e9LFvLFPtF52X7vjWBRwiKs8ByBIrkq4Ql5ufVlgnMOl0sQlsxmOK08yc/5bthZCJQgExaR+AIjyyhWHmVRgIhCN5GfzvwLPoMxxUhCevEk6QDphx5eH8X70Tvr0QxboBPO+de4zMPeYRhicofNi9+5FJc7L8DivLeBRx48x8C53K9r5t4VMncWQgBJKgzC5UVB4wrUQfp/XykKRKg4N0qRG+f9JxILzmKD90eHwOXmQYEXG4sNBE70SUWEdhnOBYg8Ae3JoHGe4SIwWpJIiFzgXQ6V50LEQYjEUVUhmZYEqk6sA0w9pColKhxFKkV1eJQoEv7/hlG004y0nXPn9jk2mz2aq6tIpRgZGSFJM7Y2FulkGYFJQQWgI2SeQxygnME4RWe5S551UZnFWsFAVAK61KZGqYYhB48fpS6HIUjRUUwUVyDLCSNNVB4kUL540UGdMJAIBdoGhCWLySyxLJMHirynaK2uUWmM07EZVTmEKHfAQT8FkSZIAsKaoaEEnXYXl0GaGSSbaBUz351DRIJGuUHsLEGtjMkkXZd6EicRwfAQNnH0u5skMkAlKTqISPtbaKlQ1tHq9yFN0GFAGIUEQYleP8VsrmOCgKDcwPU7yFKJDEtISDioqMRTpJ0ecWbJsoRMZPyHf/c3/L2//znkyjI967xtJRk6iJFKI41AW0ka5rSyHEohQlpUZYhSVOLOzevvyxkGKAUp2eYq9zYqlIM2qx3NSKlE47CitbHG7bvr2KTE+rrhox9/gZqc443LKZcuzvPUhx7lxtwcRw9MEkWOkcOn+Pf/6utEYYBAE4WOf/FHf83Bg5PI0TLLd9eZGm7zxGN7+Mo3rzM2cph4eIgrSzPsmtpN3B3j3be+z8ytBU5/4BHiuMRff2uNf/xPf5N/9s//iee7ZC0ePTDAG+eX6FYUnfmbtFZ6RKPT7NpVZn0+JZcR124v4cQa7doI11dv8S//939MuQzdjYTm+jqbG4vcuHaDrW4f5/r0+poLr59ngJxTe6coq4xzr71GEPUYOXaKt175IQcP7kNORCzPZVy+eJM4GuTWnbv8g+NDfPXMLT6+/xYuKtNc2SDI2rz+boU9o10+9egefu6Zz9BPBQu6zr/91qsMnj4Nq4Kqs/SzMm/PLNHdbDI6dZzORpO3LsyQi5QDBw6SBA1mz17j1vl/zX/xy0epDY2xdC9muDrBRm+N06enmFlucu3GPJQiNtcFH3/6aWaWlvjyH36ZX/jwYc5eu8XQ+F4GJjs8/YHjtMpVkmCKfnKZqPIYgjXKSvP0yUdJmqs8sm+M+bzEwydP8MYr79JLN2ndf5daucGbVwJ0qcrJjzxHO4fenRmUq5O2l97znP2/iHMXiAAOKyUIT6hzzne6ACb36UFqWXSnPlFYKCBtVcD529Cz79aFK+T1HPidgZ/Ov5X0pYHW+kEBgRA4IYrEV7DYKbTlRdGNC59QKVbqZFF4CKex1oAwSN/w++oGb+LjbKH2V/x1gYIXia/4vHL72rb4BL7o8MndGwE5Y3HWANKPSxCgxIOxgLMOaYt1P1cgClIh8OQ9JVSh0GixTiALsyaF82MBZ7HGIZwqErxDCvfTosi4B59fPOBc/PTaxji/l180Otb570BrAaawdXZenZFiXLDNI7DbOg+FiaFUEvX/UHK11msgWCHJbTGisLknlxqHkO/PnkFsINERQuYPBJXa0hIYSYYjsMqLDSERKkdqSxaESCOJgwhpBEpmZKKMCiRROUI6RajqaJkRDQ2i45BQquIB6x0i783cpt/apGMilMlZmrtPqWbY2tjEqYCwPIDCsTp3h4QQJzJ/PrTG5RLTb2NDidnyniHG5pScJK6ViALH+N79PDw1RTw0SLk+jHYeB1NhAx158mwQKEyWUquPEQqHEYogCsjyjByIdNWfCREShn5MYWVKXB4j0y1ct02pXKFUjkk2EqqVEo42rbCMy3qkSYqoVKjoGt0kA+P9TKLAUNEljHWkaRdpoJ/3kWFAWYR0wggjBaLfK/g1EmUzbJpCnuKyrFAvFQyNT9HtbNDNLK3lJZwqEwwOYeKAmlOkcUxZO9p9vwWSl6rotEXqImxoOHT0CHMLS4gMrt6+y9z8IiO1Qej36XcMuUxxWU6gNYlJMaGgpEukWUpZKTqJwskem0mX4dL7I78NML8wS2N4AB2H3L3XY3iwxuFHT7K5cJ8kmeHpJ4+xOneR5589zTe+9xaHj+1jelIwVjmFEMMsv/1tTv7aZ8lFwtzMTY4enWB9eYXJvWPcn2/zS5/++9xbusHQ+iIHnxjh5TMZ7565QL1U49uvXmVkUPLuy2uc+sJhRkyJxaV53r54icmJERpVx1e/9gpJv8+Ny1dprScsLjriSsL09CQH90nOn19kz3hENJhz+ZphYqxCpSQYqg5yr73KQ4/twVzPCcUInVZCmmX0V9fp9BL6IiHrGkQYYFyPG1dn+dRTI7C2wJIoMTg2xa3L57kz1uTgYye4c3mGsYkKG82clZVFTp3Yx0h1iG+sbvDsY4fAJgS1ANJDSGaYbgSs3Z/nKwtNnj69ihINtAnJcnCdTWbcfsS9C/zWF17g9Xdv01uvkc7OIsKI+r4qS1dnmb19FalC5EDIvumD/PCHTfYduMmpQ7u4fafP2dYEq9+/x6HhDdKhaZ4/OUDw7DRzc7dZXBE884FPstJf57GnTvPC809x6cx11ntNjpoeC/k67b5hYesSo7umeGZomnbeR6RbnD2/Siws76wkHK51SCfqLI88wYA2hKWA6WHNjbdfJRobZOn6LOXhPbTT+nues59dEEi8oQ9eHc835D4BPYCCrQHh6MsMhcAq/zDSQYiToLXCCQ1SYpyfzWqKpGSd3/EHhLWYIkGLIlGhJE4pX71LvzsvnScWCucQxkseb6vtWecFdURB/nPS4Nh2Siv6/SLpbUPombGeW4DF5BaMwimL1MaT+6RCKkesNTjnrWetQ9kEYyxGWE9slOCc8ap/UuGsBaHop34jAWu8w6H1ZQSuWMcLDdIqTG7InVeCdxjPDXASqwS5zVBKFrRIHhReWmoQzo9viiSfOYNQAQJvVITDoxdaorQGY0F6pCIQGqGFR1ykxRpvTOOrPV9cWScxWe4LBAdaeb16hfLcBonnk1iFc9DPMvLcEGpNZhwBBWdDvk868MKgCu2ERGqEkcRkSJuQCYcIeiincMoQuBirq5Qd2FgSVAIQMaUgRtWrSKkphcN00x7zm2uQGtbP/Ig8z8gMBKpENSwhpCNBYUwXa3xSFgFsrRgcGVm/B2ttnAaZbtA1DmVKhJGgXKoQ1GJGdu+iVCnTKJephBXCgZggDIiCAbI8odYYoVGukFe96ZJQMbVIY6QlNKC0IoojIipYlZD0e1Tqw+S9LpUgIJfa21jblJ6zWGHRaRvhJP1sCxdqTEmRS8daexOtOvSNIMpDwijDqIhSaRe5S+jlBRlVOkoIrOkjdAWlNYIQXRU4FeIiRddFqPYGRmjSNEUHJXo9g9R+TNXZ2sAGBqUqIC0mNUSNYcJ2j+7uCjouEQCtXkYugf4WaZ5D3qMSV8itxQpJpiXOaB555AAX3n2barVOKQz413/2b/j93/1dqJeIXZUsgWjXON21+0yqVe65KQ5VLnGnd4iD5SvcdkeIupcplUqE0ftDjAWYW1oh6Rkq1S77jxwilDHvvnkWERsa5TEO7B3izGaJmTtXGBsWrK+3yBLF4GCVrNvh0WdPMn/1bXYf2U8cD1MajFhcb7PZ7jK9a5SwotCqxmpu2ZqroOQcm3mdw7sE11ohaV/zsc//PCMjETevL3Pr+hLXLt6mTEizt8b6wg0GxurcurLI0kKb8niVzeVlXHeLqwzT3ILLcyFjSRclLVtbbRZaEb+4y5HkNWRpiP/2t36BsKxAZZisRVwbxHT7LM+1GagPkeUhwd6DfOSRHi42zLc0S80eH3m8Sm91kqn6JO9e/jFBkDG0axetpVk6rSbvXJjnoT197t3LGJoe5crcKsd0xI/e/h6H9k4wEAYcPnGCblky0+kyNGy5uLjBQx84yVrpCOXUsDE2zf/25+c4NpQx39QcmYLRWgM7MEC6GfKhk8P85TvLiO4EvQuXGBgYY6RW58rtRY4cnKQ2sEnamuDQoUO8ceYWs5FBb/W4Ot9GdrqUaz1OHDuKUEPMXJ8jiDvsaYzyk5stpuqK/uQQsZol36yx0MnorG4g4zUyKxk+uI9AZLRtjY25ZZjfZL0kGKj2ePXObg7t3oWUEQMf+wK6t8lQ8nd0O3TFLN8BSssHMDXObxGowszEWAu5xUhJIEPPdrde9U5iPfTtnBfEMc4LJ0qf1mzR+cpi391D8sX8epshX8DUzlmc236Rv7YQnsEviiQrRFG0UJDtfQb1Sn3Ov9IY47tj57A53vmQHKwjRJLjeRH+j/+81hms9Z26wPsuWOE8278gM9pipODn7YJcWBwKCiKjv2eLNdYPWAr2nnV+W8H4Ef4D6F8UyAnOYgvEA1dwGkTxKa3AbH95EqST28YGaJRXGdQCZ43fElDSr2wi/egEP8bxbsyu2DAIvM9DXhAci8s648mhzlkszo8dCpGj7VGREKBl4ZQZSGRqipXJ94eR1ZEJoQMrciRV/7BxjlxYtLCQB2jtipGTxmFRg3VioelbSaZga6NNd3UL08/IeudxWQ+UJrACowNSlZI7SPsWKy1OWIwB6Rymb7AiJUkTor7FuAArU5yFSIQMNIbZVamwe2y3t82OK0RRlSiWGFkib+2WvQAAEDVJREFUqESUhMQEksiFyHKFSA4SlhokdBCZplyqes2HDEQ1hihHuELMS/QQxiGiiNRmSC3ItCVNWmRtCVoRqxgRBRBFmK0uVMqE5ZhSrYEmpNvrIbspmenSd5qK1qjcYJHgDS1xyqJkmcHhOr1uk16/RaBLuDxFZEOIqkaKkKhUR5ZCNjZbIPw6sA697kPX5VilyTKoBBopITd94raiQ4LKHXmaQhqCLDg/zqBDTd9Iep0eUX0Ak0OsQzrGUoqrHq2oDJI7CJM+OqqjMPTCjDzr0Lp1l1pZMjaekTbX6SYNaqJDjkLlPbbcGPW4z+L8e3dW/6kjCsosbjqOjtdQ/TWuz20QhlVWbq6T2uuMTb3I+J7jzN7pInuXuLd8gZNPPkGv2+How8Ost+vMzw3xt9++xMGDDQ7uO8KeAw+xfP8Sx/YM89Yb36ElB/noJz7OjbPfIBo/QLcvubJ1l3Ie88wHB/jJhQVe/8ElPvjcaR59bB+vvnWGejzI2v15NjubjAyOc2hPHblhuB30OPzwXqQFkcZMDk9ya2aGzQ6YVPH4k8fo5iG9YJ1+rFleukN57MMEAfS6hlJlmPXVW7S3UsqDNUqNKiVR5m6zz9rWApcu5Zw+3OD01AS9hU3KMmU96ZG0upw8NMXNq7dQAw2CuMLWVpOGqPHzv/QC33npNep79tPcXGBkaIjcRTRdl6C1xVqzSmCX2ZKPMF7e5MKcpb57jfaGJu2WSIdiPvdEl9ubXe61YhY2O9i1OR557jnOnrvGE9N7+NGFLXqNIxw7DitLTeq2x+bGPSZrIwwfHiBtrvD5X/0IX/v2jxmpO46vSuKpQc5cucuAdujjH2Z4rM1rr7SJrWR8skLXxsRljU1aCL3AkcEB7os262436WaTzWZAJnq012dwvRVqaogoF4h2j5qd52ZjjIOlFPGTr+AyWD3yd9Qh0EJ6fXsgLQhnHk72sre2IMxZ57w0sJBkuSEXDmcMSgcY47D9jBzhSYNSkCuBzCmY+caTB4ukaYs1QS0UWWYgt+QiQ2n//hQSu77bt2BBF9QDYzxXwBg/Q5fSIJUE4RUKnRAYYXDGr/eZYj4gpEDLsND0l2xv6SvhXyccpD1fDODyYm/fPvAA2N5e2CbXWfzPUjiCUPpRg3WejGe9AZFQksxYT5DEv8aYAhlgG8Uw2NzLDjsrMaogUyq/XWCdf/Bj/WjEoxIOJTxp01rvNIgwSBXihCu+Q+dVJC346g6E1AjnCaGi0BrQUpEX75HnBhlJD/8XqoOeXyFAbSsXOoJAEmhJmucoBzLU5M6itucU/z9HLQCb1QiUxQUWl4W0kx7OChazBNG39LaTpmlC4HC3HUb6kYjQIaHSGCtwwlCrDFEeHaXZarK11SY2MTl9L9ksDf11idAZtdIgshowOVEmjkapDlfQeYAsayKnQYTYQBCG3rBKB5FfCdUKFZWJtcJa6LY3MTqmXI4JwjJhrYFwFkSfKK6RK0WKX1WNSw6bdKBUw5IThFXSJEPXwPSsXwlWjs1+n7q2aF1GB45+2iOWdfJkk3KjTm4FreU5rFOUS+O4dN0XlQQE1QahlvSSDNHeQIQVdNhEqBI1pegphyp5DwxnDM6mNLuLBHkJFVfIOj36xiKtdyBMTIdemtLd6lIqS8JAI4Sil2VYKXBKk5sco0FiiHNFqjJkmtPrJKjAkiQpjdI4adbGmARsjhWGuBzj0oCPf+bn+eaff5veZImkFPNv/vj/5Iu//VtULGgryfNNeqlieatMty8IqhGGMtY06fZyjjYW2dgQtKLx9+UMAySd+3zyhRf42uv3MKlk/z5F0llj3/Q0l68t8s75S8wvtLh+aYaxQUVtqIFJuizcX+Lo7t0s3TxHqZ/yuWcnubGwyvULb5OqOr/2K0/R2co4deIYuS5z9uWXuL2Vcah6lY7R3Lm3wee/9Cz/xx/9GVP7jvDf/N5/yR//8Zf5zX/wq+zeP8nRkwPU9z3F98+dJTGac2d+wuR0jUNJnVfOvstHn3+M6al9ROUqo40Oxpax7RW63YjqgKBZeZhqZnn+dJkDk3vp9BJMD3Q1IqyOQW2dyd1juKDK4oJjuPkT2k8+xyeeqrB59jXuzi2w98AQjx9/mAszd6nUS5Q7M0yNVEiHRpg89ihLF28zm/WZee0VOq0+1XwGGSjKMmO6tsVGN6I0rDg1PYLUD/Ojb/wVs/VDRPWYuLXI7ori7kCVNHb8L3/zDk8+NY3SAbe2mtjKQyy99AafPDlKXwR89ulxZueXWb46z8DYOHnWxLZq3E8Fmdwk6aVceelb7BuZZGJ0kHduZuzqNfjsJ/Zwb/Eux6tlXppN2PvoKbL+KrXhg1y6PMcH9sHq3TrCTLJmq8iKoJrc4shzuxgixqkq9xcFsrsLXdqgMryHzvo6qysdWjeu88q5DlMTg4z1MuYWz7/nOfvZpMJCC8A5S6BCPy83xvParC1m5Arh/AzfFl3iNpvdGIPBPoCLRZEMcRSq+sU83xWoQJGsrHNY/M8Sh5UOkbuisxWFroCH3H2nvO2M6LvvPDNYZ4kDDUhySaFfLhDWbzX4W5Jk1vhNCScLvl4Bl8MDR0CHKRj0Bc/AWKw1hfqeX3H0FGpvneysIy8e0jL3IwxEoefvfFH1YHxhrYf7hSiQgYLDQFFsbHMChEMifWEhC2JjgXL4jYCC8yAouqdi3RJLIL2qoNKyUB4sUBXpf298HeFHMfgP7rGNAl4p3tuY7ffyaIMqoAMvM+2RHmGsHw1RvJ/2pEjp3p+CYCMrk3a6WJPTzzPSPMNlfZwQ9AlwLvfOBQ5EGKAspEojHAQonMmQeUo/UATW0mousdWEar2OERH9dpNcW4YrA1TLEY39wwSRJo7K6FhTlg5jS4RBBVdWlJRCCI2VCqkyVKlMKCRSOwIXEzbqiCyl1e5jXZ9afQ9OJigdAiGhyEBbrK7Sy3ICIYlCvy6ZuxxyR9/mxN2UpCIJVIBpr4OOkSbASUGjXkXnfVpZTigcCE2nu4Jwklx0iYIK9fFdtNfuE6SWSq1Mc6tNoAP6W2sQxrjcEte8NLg1dXKRkZCicwgrAyRbWxiXgatSixU9FSFUDMJiSJFJnzxtkZmUwEmqtRCFJrUWm/S9aFCWUcolm3lCrVFHUqaXLJLaEpHIKQUgTYgjpJ91EVajlEBHCtvvY4QmDAPq9ZhjTxzm5v0FAiHY6Gxx7tzbnDh2GFXK0WkZTYJyfVSmGA5XafZGabU1aWqZaw+wmVWRbu19OcMAUxO7eXNOsXd8gtfeeJXh+iGSnuTkQ1OM7qqyODePSdd4/sUXmb07T5TN8anP/Dr/0z/7Q149f5Wxwf00RlJury3QTkOOPHYYlfT4v/7iP/J7v/v7xHqdZrPCvbs3mVtPGTiyi4lGxPREjeV7LX75E59irVJicuwQR48eoptXyV2dsUaJKIoYqJWRbpOoPEG5FPGZzz1GWB9nuZVg780xNqz47g/uUhsb4hNHItrBKtdvdSmll/nY557htbNX+eCzfqU0qnbACYbGJhnrZdxcuQP9Eheu3mV8ZBff/vK3ePGTHyYe2U2eNzH5KEt3V6miGDj8BO9cvEhtIGQs6vD4dM6fXKtzpK64fHmdupSMfvBzmFvvEKmU7715ni988Xm22hHf/94rDDTKrHTgyRMC3XUEYxlX76wwMLiHoBMxM/UY/VaTzupV9oiYld4ay1mFr74yy+7KFeTeo9xbE9RyjU4M95dbPD0+SHPLcenKEk88+0GWkwVkqcvS6gwPHxphYaHDy99f4pGTw9y/fJPHD2rKeoI8fJT1uWscPFbixoUlVLWCtBl5c5mB4SmGx55mdf4Ol7obXL50l48/e4LS/pjW1hSX3ryCSGaJq8M4mROPlJmdm2UxdejVjfc8Zz+7IKgEWOsICT0xDbDKd+E/NauxBYHQq9xJ6SF5KT2R0JvmSMAWBET/Godn7/uU46F/Y/0MHhxOWESeeUte3zL7y8ntZO23FGwBxWMdSeY1EpQVKBSJ8KqJ0vhbMK7Q8rcOUwj5SOWLiswYlJJI5x0CnfAIgc09895h/MMstUVh5O/HCXBSPIDfrfTsbesMGItNskJS2JMXtdRe11/JAqXwWwbYn3bsctvKeHurQQiPVlgvGpTn9gFCIosCzCsUFgqOtkAw2N5o8ERH6UTh5SAeKAla60cxdnslcbtQ2y6KhCX1UvpgDanJPTlU+HlqEARYZwhVgDHb64YOpbS/D+OIdUgavD/z15k7swRaEWhFInJkosgDhUETpRahoS8cWuaEmcQo5zkRLiVRMVUgLysGlCKIA4bqw4SBplYfQZHiXI1cGOLGAIFWlENNHsTkCLSxlMplwrhKkmwQuJL/D6eVN9IJApzp0G+10ALkgCRLe+TSEo0NULIaK/tEYQklIrrO0M0tgVCEaY4qa8CSdruIMMCFAVFcIel1SVwfm0bIuIyTIVlni77sUY5CQmvJ0ZQrdYRN0Cj6WUoYeI0MpQWm10UGJZZXb/Pk0ReRlSr9rVVym1NWFfKwTZ5liMoALmkTOIkNS2Rpj7S5ToQhiMo0XY/cVSFZJTOCRDXIum22ei0iDUbkuJ5ElkPyOERstQlUxFqnR7lWJkVQ1hHdpI9Ke1glsWkLVRmlb/so0Sa1oGUFmyYesdQhIqzjwhinI8Ksz/HTxzl7/jqT9V2knRYvfeUrPPI//j5GQisapKRgphOjZMKl5kPY2NK2YwSuS880cEFExvsnRPDdt1Y4cHiITz77KO+ceYukKcgqNX585m1y22Z6vEZno0N5932UEJQre/iDf/4vaNBj4/4qM1duEoWS3XvGGGgcYPHGHH3Ro7XS58cvf4c//fev8Hv//S9y8gOP8+mnHufc139Eki0wNHaCy2df5UMv7EJlezny6MP8z08eYfb8O/x3nz3CQjaMiXLIUgbGG9Sjab7+3aucu/Jtkm7OCx97jiw7hhzs8+kvDfPO203OL95i/56E3aEDGXLlzVs89aEPYFwZkxnQFT/C7fbQoWJy1zH6LmTm7tcJgj189NHD1K68zkw/ZN3FHHn+AJVSmY5t0N+8hS0PUhtoMhBPsno/5x99PuKHbwY8fbTF3bzEVmRZC8d54gnJI5MZdy8tIcdGWV7N6TfXmdg9wZs/usRgXEE3xxga30W/r7BBSrWSciP7EEfD25TGxtjbmYXKJCcePcwPXplnt96kMTbFsy/s56++do3Rxh56RjGcL5ONTPG3f/kVnv/Yp1ha2CKSg2yuvUWjOspDnzjOwkKferjM2k+aRI/HvPTXrzE62eDKapPK8BBHdj/FndmrPDk1ysuvv8NmvoyO+3z09BQHxiuUagM0KiP8yV/8JSce0ajuAB/9hQ+zeL/L+tI6d/KAQRmwuDjznudMuPepc9uJndiJndiJndiJ/3zifaJ+78RO7MRO7MRO7MR/TrFTEOzETuzETuzETuzETkGwEzuxEzuxEzuxEzsFwU7sxE7sxE7sxE6wUxDsxE7sxE7sxE7sBDsFwU7sxE7sxE7sxE4A/zcK4uU8KOBclgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["dls.show_batch(nrows=1, ncols=3)"]},{"cell_type":"markdown","metadata":{"id":"Yd2i9WoI1glu"},"source":["Take a look at each image, and check that each one seems to have the correct label for that breed of pet. Often, data scientists work with data with which they are not as familiar as domain experts may be: for instance, I actually don't know what a lot of these pet breeds are. Since I am not an expert on pet breeds, I would use Google images at this point to search for a few of these breeds, and make sure the images look similar to what I see in this output.\n","\n","If you made a mistake while building your `DataBlock`, it is very likely you won't see it before this step. To debug this, we encourage you to use the `summary` method. It will attempt to create a batch from the source you give it, with a lot of details. Also, if it fails, you will see exactly at which point the error happens, and the library will try to give you some help. For instance, one common mistake is to forget to use a `Resize` transform, so you end up with pictures of different sizes and are not able to batch them. Here is what the summary would look like in that case (note that the exact text may have changed since the time of writing, but it will give you an idea):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vb8ifcWX1glv","outputId":"2fcf6aa5-18e1-43f1-ed62-93014caad551"},"outputs":[{"name":"stdout","output_type":"stream","text":["Setting-up type transforms pipelines\n","Collecting items from /home/jhoward/.fastai/data/oxford-iiit-pet/images\n","Found 7390 items\n","2 datasets of sizes 5912,1478\n","Setting up Pipeline: PILBase.create\n","Setting up Pipeline: partial -> Categorize\n","\n","Building one sample\n"," Pipeline: PILBase.create\n"," starting from\n"," /home/jhoward/.fastai/data/oxford-iiit-pet/images/american_pit_bull_terrier_31.jpg\n"," applying PILBase.create gives\n"," PILImage mode=RGB size=500x414\n"," Pipeline: partial -> Categorize\n"," starting from\n"," /home/jhoward/.fastai/data/oxford-iiit-pet/images/american_pit_bull_terrier_31.jpg\n"," applying partial gives\n"," american_pit_bull_terrier\n"," applying Categorize gives\n"," TensorCategory(13)\n","\n","Final sample: (PILImage mode=RGB size=500x414, TensorCategory(13))\n","\n","\n","Setting up after_item: Pipeline: ToTensor\n","Setting up before_batch: Pipeline: \n","Setting up after_batch: Pipeline: IntToFloatTensor\n","\n","Building one batch\n","Applying item_tfms to the first sample:\n"," Pipeline: ToTensor\n"," starting from\n"," (PILImage mode=RGB size=500x414, TensorCategory(13))\n"," applying ToTensor gives\n"," (TensorImage of size 3x414x500, TensorCategory(13))\n","\n","Adding the next 3 samples\n","\n","No before_batch transform to apply\n","\n","Collating items in a batch\n","Error! It's not possible to collate your items in a batch\n","Could not collate the 0-th members of your tuples because got the following shapes\n","torch.Size([3, 414, 500]),torch.Size([3, 375, 500]),torch.Size([3, 500, 281]),torch.Size([3, 203, 300])\n"]},{"ename":"RuntimeError","evalue":"invalid argument 0: Sizes of tensors must match except in dimension 0. Got 414 and 375 in dimension 2 at /opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/TH/generic/THTensor.cpp:612","output_type":"error","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msplitter\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mRandomSplitter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mseed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m42\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'))\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mpets1\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m\"images\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m~/git/fastai/fastai/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 182\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_find_fail_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 183\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Make sure all parts of your samples are tensors of the same size\"\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mwhy\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mwhy\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 184\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 185\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 186\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mf\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mf\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mafter_batch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'noop'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m!=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m~/git/fastai/fastai/data/block.py\u001b[0m in \u001b[0;36msummary\u001b[0;34m(self, source, bs, show_batch, **kwargs)\u001b[0m\n\u001b[1;32m 176\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"\\nCollating items in a batch\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 177\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 178\u001b[0;31m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdls\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 179\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 180\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mcreate_batch\u001b[0;34m(self, b)\u001b[0m\n\u001b[1;32m 125\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mretain_types\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mres\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_listy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 126\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mit\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 127\u001b[0;31m \u001b[0;32mdef\u001b[0m \u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mfa_convert\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprebatched\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 128\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdo_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mretain\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbefore_batch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mto\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0;32m---> 46\u001b[0;31m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 47\u001b[0m else default_collate(t))\n\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;32m~/git/fastai/fastai/data/load.py\u001b[0m in \u001b[0;36mfa_collate\u001b[0;34m(t)\u001b[0m\n\u001b[1;32m 43\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 44\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 45\u001b[0;31m return (default_collate(t) if isinstance(b, _collate_types)\n\u001b[0m\u001b[1;32m 46\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mfa_collate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0ms\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSequence\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 47\u001b[0m else default_collate(t))\n","\u001b[0;32m~/anaconda3/lib/python3.7/site-packages/torch/utils/data/_utils/collate.py\u001b[0m in \u001b[0;36mdefault_collate\u001b[0;34m(batch)\u001b[0m\n\u001b[1;32m 53\u001b[0m \u001b[0mstorage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstorage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_new_shared\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0melem\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnew\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstorage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 55\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbatch\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 56\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__module__\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'numpy'\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'str_'\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0melem_type\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'string_'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mRuntimeError\u001b[0m: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 414 and 375 in dimension 2 at /opt/conda/conda-bld/pytorch_1579022060824/work/aten/src/TH/generic/THTensor.cpp:612"]}],"source":["#hide_output\n","pets1 = DataBlock(blocks = (ImageBlock, CategoryBlock),\n"," get_items=get_image_files,\n"," splitter=RandomSplitter(seed=42),\n"," get_y=using_attr(RegexLabeller(r'(.+)_\\d+.jpg$'), 'name'))\n","pets1.summary(path/\"images\")"]},{"cell_type":"markdown","metadata":{"id":"dkGSPlxA1glv"},"source":["```\n","Setting-up type transforms pipelines\n","Collecting items from /home/sgugger/.fastai/data/oxford-iiit-pet/images\n","Found 7390 items\n","2 datasets of sizes 5912,1478\n","Setting up Pipeline: PILBase.create\n","Setting up Pipeline: partial -> Categorize\n","\n","Building one sample\n"," Pipeline: PILBase.create\n"," starting from\n"," /home/sgugger/.fastai/data/oxford-iiit-pet/images/american_bulldog_83.jpg\n"," applying PILBase.create gives\n"," PILImage mode=RGB size=375x500\n"," Pipeline: partial -> Categorize\n"," starting from\n"," /home/sgugger/.fastai/data/oxford-iiit-pet/images/american_bulldog_83.jpg\n"," applying partial gives\n"," american_bulldog\n"," applying Categorize gives\n"," TensorCategory(12)\n","\n","Final sample: (PILImage mode=RGB size=375x500, TensorCategory(12))\n","\n","Setting up after_item: Pipeline: ToTensor\n","Setting up before_batch: Pipeline:\n","Setting up after_batch: Pipeline: IntToFloatTensor\n","\n","Building one batch\n","Applying item_tfms to the first sample:\n"," Pipeline: ToTensor\n"," starting from\n"," (PILImage mode=RGB size=375x500, TensorCategory(12))\n"," applying ToTensor gives\n"," (TensorImage of size 3x500x375, TensorCategory(12))\n","\n","Adding the next 3 samples\n","\n","No before_batch transform to apply\n","\n","Collating items in a batch\n","Error! It's not possible to collate your items in a batch\n","Could not collate the 0-th members of your tuples because got the following\n","shapes:\n","torch.Size([3, 500, 375]),torch.Size([3, 375, 500]),torch.Size([3, 333, 500]),\n","torch.Size([3, 375, 500])\n","```"]},{"cell_type":"markdown","metadata":{"id":"ML06TPoA1glv"},"source":["You can see exactly how we gathered the data and split it, how we went from a filename to a *sample* (the tuple (image, category)), then what item transforms were applied and how it failed to collate those samples in a batch (because of the different shapes).\n","\n","Once you think your data looks right, we generally recommend the next step should be using it to train a simple model. We often see people put off the training of an actual model for far too long. As a result, they don't actually find out what their baseline results look like. Perhaps your problem doesn't need lots of fancy domain-specific engineering. Or perhaps the data doesn't seem to train the model at all. These are things that you want to know as soon as possible. For this initial test, we'll use the same simple model that we used in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ufG9U-YU1glw","outputId":"3650eb40-de68-4c1a-b170-c0a67e2168ec"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
01.5513050.3221320.10622500:19
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.5294730.3121480.09539900:23
10.3302070.2458830.08051400:24
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet34, metrics=error_rate)\n","learn.fine_tune(2)"]},{"cell_type":"markdown","metadata":{"id":"THedmie91glw"},"source":["As we've briefly discussed before, the table shown when we fit a model shows us the results after each epoch of training. Remember, an epoch is one complete pass through all of the images in the data. The columns shown are the average loss over the items of the training set, the loss on the validation set, and any metrics that we requested—in this case, the error rate.\n","\n","Remember that *loss* is whatever function we've decided to use to optimize the parameters of our model. But we haven't actually told fastai what loss function we want to use. So what is it doing? fastai will generally try to select an appropriate loss function based on what kind of data and model you are using. In this case we have image data and a categorical outcome, so fastai will default to using *cross-entropy loss*."]},{"cell_type":"markdown","metadata":{"id":"Qk0WTTYx1glw"},"source":["## Cross-Entropy Loss"]},{"cell_type":"markdown","metadata":{"id":"jgv5Amvi1glx"},"source":["*Cross-entropy loss* is a loss function that is similar to the one we used in the previous chapter, but (as we'll see) has two benefits:\n","\n","- It works even when our dependent variable has more than two categories.\n","- It results in faster and more reliable training.\n","\n","In order to understand how cross-entropy loss works for dependent variables with more than two categories, we first have to understand what the actual data and activations that are seen by the loss function look like."]},{"cell_type":"markdown","metadata":{"id":"oZ9Xypaj1glx"},"source":["### Viewing Activations and Labels"]},{"cell_type":"markdown","metadata":{"id":"nclR0Vy11glx"},"source":["Let's take a look at the activations of our model. To actually get a batch of real data from our `DataLoaders`, we can use the `one_batch` method:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tRlpKikd1gl3"},"outputs":[],"source":["x,y = dls.one_batch()"]},{"cell_type":"markdown","metadata":{"id":"E2DStq4e1gl3"},"source":["As you see, this returns the dependent and independent variables, as a mini-batch. Let's see what is actually contained in our dependent variable:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9s0my54-1gl3","outputId":"780f4054-28aa-47df-e321-6dde503d6fd6"},"outputs":[{"data":{"text/plain":["TensorCategory([ 0, 5, 23, 36, 5, 20, 29, 34, 33, 32, 31, 24, 12, 36, 8, 26, 30, 2, 12, 17, 7, 23, 12, 29, 21, 4, 35, 33, 0, 20, 26, 30, 3, 6, 36, 2, 17, 32, 11, 6, 3, 30, 5, 26, 26, 29, 7, 36,\n"," 31, 26, 26, 8, 13, 30, 11, 12, 36, 31, 34, 20, 15, 8, 8, 23], device='cuda:5')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["y"]},{"cell_type":"markdown","metadata":{"id":"nE0RcPZY1gl3"},"source":["Our batch size is 64, so we have 64 rows in this tensor. Each row is a single integer between 0 and 36, representing our 37 possible pet breeds. We can view the predictions (that is, the activations of the final layer of our neural network) using `Learner.get_preds`. This function either takes a dataset index (0 for train and 1 for valid) or an iterator of batches. Thus, we can pass it a simple list with our batch to get our predictions. It returns predictions and targets by default, but since we already have the targets, we can effectively ignore them by assigning to the special variable `_`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bjVGFrKO1gl4","outputId":"f3d0163a-45e4-4dbc-a6c2-a640703e4f83"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["tensor([9.9911e-01, 5.0433e-05, 3.7515e-07, 8.8590e-07, 8.1794e-05, 1.8991e-05, 9.9280e-06, 5.4656e-07, 6.7920e-06, 2.3486e-04, 3.7872e-04, 2.0796e-05, 4.0443e-07, 1.6933e-07, 2.0502e-07, 3.1354e-08,\n"," 9.4115e-08, 2.9782e-06, 2.0243e-07, 8.5262e-08, 1.0900e-07, 1.0175e-07, 4.4780e-09, 1.4285e-07, 1.0718e-07, 8.1411e-07, 3.6618e-07, 4.0950e-07, 3.8525e-08, 2.3660e-07, 5.3747e-08, 2.5448e-07,\n"," 6.5860e-08, 8.0937e-05, 2.7464e-07, 5.6760e-07, 1.5462e-08])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds,_ = learn.get_preds(dl=[(x,y)])\n","preds[0]"]},{"cell_type":"markdown","metadata":{"id":"YU8owyRX1gl4"},"source":["The actual predictions are 37 probabilities between 0 and 1, which add up to 1 in total:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EkwsrcCK1gl4","outputId":"5ad105fd-bce2-4ac6-cfdc-0c6a572a3971"},"outputs":[{"data":{"text/plain":["(37, tensor(1.0000))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["len(preds[0]),preds[0].sum()"]},{"cell_type":"markdown","metadata":{"id":"3ElHQCt51gl5"},"source":["To transform the activations of our model into predictions like this, we used something called the *softmax* activation function."]},{"cell_type":"markdown","metadata":{"id":"e0j4IAcR1gl5"},"source":["### Softmax"]},{"cell_type":"markdown","metadata":{"id":"CP5S3URw1gl5"},"source":["In our classification model, we use the softmax activation function in the final layer to ensure that the activations are all between 0 and 1, and that they sum to 1.\n","\n","Softmax is similar to the sigmoid function, which we saw earlier. As a reminder sigmoid looks like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pweLlvVv1gl6","outputId":"89d929e2-f65e-4f73-fe06-eda7e8977821"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXcAAAD7CAYAAACRxdTpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXiV5Z3/8fcXCCQkJEAIYd9BNg1IBEHRtmpdplYdbLUq7rWgtrZO/dXqaNW206mdjh2trTpFccO14saorVoVl1HCEiEsYQ9bSCBk35Pv74+EThqDOUCS55yTz+u6znVxntzBj+GcDw/3c5/7MXdHRESiS5egA4iISNtTuYuIRCGVu4hIFFK5i4hEIZW7iEgU6hZ0AIB+/fr5iBEjgo4hIhJRli9fvs/dU1r6WliU+4gRI8jIyAg6hohIRDGz7Yf6mqZlRESiUEjlbmY3mlmGmVWZ2cJWxv7IzHLNrMjMHjWzHm2SVEREQhbqmftu4BfAo182yMzOBG4FTgNGAKOAu48in4iIHIGQyt3dX3L3l4H9rQy9Aljg7lnufgD4OXDl0UUUEZHD1dZz7pOAzCbPM4FUM0tu4/+OiIh8ibYu9wSgqMnzg7/u1XygmV3XOI+fkZ+f38YxREQ6t7Yu91Igscnzg78uaT7Q3R9x93R3T09JaXGZpoiIHKG2XueeBaQBzzc+TwP2untrc/UiIlHN3Skoqya3uJK84irySirZW1zF1GG9mT227U9wQyp3M+vWOLYr0NXMYoFad69tNvQJYKGZPQ3sAf4VWNh2cUVEwlN1bT27CivYeaCcnQcq2HWggt2FFewqrGBPUSW5xZVU19Z/4fvmf2V0cOVOQ0n/rMnzy4C7zexRYC0w0d1z3P1NM7sX+BsQB/y52feJiESsmrp6cgrK2ZJfxtZ9pWzdV862fWXkFJSzp6iC+ib3PuraxRiQGMug3rFMGdqbgb1jGZDY8OifGEv/Xj1I6dWD2Jiu7ZLVwuFOTOnp6a7tB0QkXNTVO1v3lbI+t4TsvaVs3FvCxrxStu8vo6bu/zqzT88YRvSLZ3jfngxLjmdY354M7RPHkL49Se3Vg25d23cTADNb7u7pLX0tLPaWEREJSmVNHRtyS1i9q4is3UVk7S5mQ24JVY1TKF0MhifHM6Z/AmdMTGVMSgKjUuIZ1S+BpJ4xAac/NJW7iHQa7k5OQTnLtx9gZU4hmTsLWben+O9n40lxMUwalMjcE4czYWAi4wf2YnRKQrtNnbQnlbuIRK36emddbjGfbings60FZGw/wL7SKgDiu3fluCG9uXb2KI4bnMTkwUkM6ROHmQWcum2o3EUkqmzbV8aHm/bx0aZ9fLx5P0UVNQAM6RPH7LH9mDa8D+kj+jC2fy+6domOIm+Jyl1EIlplTR2fbN7PexvyeC87n+37ywEYlBTL1yemMnN0MjNGJTO4d1zASTuWyl1EIk5heTV/XbuXt9ft5YPsfVTU1BEb04VZo/txzckjmT02hRHJPaNmiuVIqNxFJCIcKKvmzaxc/mf1Hj7ZvJ/aemdgUiwXThvCaRP6c+Ko5Ii88NleVO4iErYqquv4y9pcXl21m/ez86mtd4Yn9+S7p4zi7MkDOHZwUqc+O/8yKncRCSvuzoqcA7y4fCevZ+6hpKqWAYmxXH3ySL6ZNohJgxJV6CFQuYtIWCgqr+HPK3ay6LMcNuWVEhfTlXOOHcicaYM5cWQyXaJ4ZUt7ULmLSKDW7i5m4cdbeWXVbqpq60kb2pt75xzHOccNJKGHKupI6ScnIh2uvt55e91eFny4lU+3FhAb04V/Pn4Il504jEmDkoKOFxVU7iLSYapq63h55S4e/mALW/LLGNw7jtvOGc9F6cPCep+WSKRyF5F2V1lTx7Of5fDQ+1vILa5k0qBE7v/OVM6ZPKDdd07srFTuItJuKmvqePrTHB56fzP5JVVMH9mX33zrOE4e008rXtqZyl1E2lxtXT0vLt/Jf72zkT1FlcwancwD35nKiaOSg47WaajcRaTNuDtvr8vjV2+sY0t+GVOG9ua330pj1ph+QUfrdFTuItIm1uwq4uevr+XTrQWMSonnkbnTOGNiqqZfAqJyF5GjUlBWzW/e2sCzy3Lo07M7Pz9vEhdPH0aMLpQGSuUuIkekvt5Z9FkOv3lrA6VVtVw1ayQ/PGMsibFa0hgOVO4ictjW5xbz05dWszKnkJmjkrn7vEmMS+0VdCxpQuUuIiGrrKnj/nc28sgHW0iMi+G+i9I4f8pgzauHIZW7iIRkZc4BbnnxczbllXLhtCHcfs4E+sR3DzqWHILKXUS+VFVtHff9dSOPfLCZ1MRYHr96OqeOSwk6lrRC5S4ih5S9t4Sbnl3Fuj3FXJQ+lNu/MUEXTCOEyl1EvsDdefzjbfzqjfUk9OjGny5P5/SJqUHHksOgcheRf1BYXs2PX/ict9ft5avHpHDvhWmk9OoRdCw5TCp3Efm75dsP8INnVpJXUskd35jI1SeN0EqYCKVyFxHcncc+2sa//c86BvaO5cV5s0gb2jvoWHIUVO4inVx5dS0/fWk1r6zazekTUvntt9NIitNF00inchfpxHL2l3Pdkxls2FvCLWcew/xTR+tG1FEipJ19zKyvmS02szIz225mlxxiXA8ze8jM9ppZgZm9ZmaD2zayiLSFTzbv57wHP2RPUSULr5rODV8do2KPIqFu2/YgUA2kApcCfzSzSS2MuwmYCRwHDAIKgQfaIKeItKFFn+Ywd8GnJCf04JUbTtKHkqJQq+VuZvHAHOAOdy919w+BV4G5LQwfCbzl7nvdvRJ4FmjpLwERCUBdvfPz19dy2+LVnDy2Hy9dP4sR/eKDjiXtIJQ593FAnbtnNzmWCZzawtgFwH+Z2cGz9kuBN446pYgctYrqOn743EreytrLlbNGcMc3JtJV0zBRK5RyTwCKmh0rAlra3zMbyAF2AXXAauDGln5TM7sOuA5g2LBhIcYVkSOxv7SKax7PIHNnIXd+YyJXnzwy6EjSzkKZcy8FEpsdSwRKWhj7RyAWSAbigZc4xJm7uz/i7ununp6Sovk+kfayo6CcCx/6hPW5xTx02TQVeycRSrlnA93MbGyTY2lAVgtj04CF7l7g7lU0XEydbma6O65IANbtKWbOHz+moKyap6+dwZmTBgQdSTpIq+Xu7mU0nIHfY2bxZnYScB7wZAvDlwGXm1mSmcUA1wO73X1fW4YWkdYt21bAtx/+hC5mvDBvJtOG9w06knSgUJdCXg/EAXnAM8B8d88ys9lmVtpk3I+BSmAjkA+cA1zQhnlFJARLN+Yzd8GnpCT04MX5M3ULvE4opE+ounsBcH4Lx5fScMH14PP9NKyQEZGA/CUrlxsXrWRUSjxPXjNDOzp2Utp+QCSKvJa5mx8+t4rJg5N4/KoT6N1Tt8HrrFTuIlHilVW7+NFzq0gf3pcFV6bTS3dM6tRU7iJR4OWVu7j5+VWcMKIvj155AvE99Nbu7PQKEIlwB4t9+siGYu/ZXW9rUbmLRLQln+/h5udXMWNkMo9eeQJx3bsGHUnCRKhLIUUkzPwlK5ebnl3J8cP6sODKdBW7/AOVu0gEej87nxsXrWTS4CQeu0pTMfJFKneRCJOxrYDvPZnB6P4JPHHVdK2KkRap3EUiyNrdxVy1cBmDkuJ48prpJPVUsUvLVO4iEWLrvjIuf/QzEnp048lrZ9AvQZ88lUNTuYtEgLziSuYu+JR6d568ZgaDe8cFHUnCnMpdJMwVV9ZwxWPLKCirZuFVJzCmf0Lr3ySdnspdJIxV1dYx78nlbNxbwkOXTeO4Ib2DjiQRQuunRMJUfb3z4xc+5+PN+7nvojROGac7lknodOYuEqZ+/dZ6Xsvcza1nj+eCqUOCjiMRRuUuEoae+t/tPPz+Fi47cRjfO2VU0HEkAqncRcLMu+v3cucra/ja+P7cde4kzCzoSBKBVO4iYWTt7mJuXLSSiYMSeeA7U+nWVW9ROTJ65YiEibziSq59fBlJcTEsuEJ7ssvR0atHJAxUVNfx3ScyKKyo4YV5M0lNjA06kkQ4lbtIwBqWPGby+a4iHr5sGpMGJQUdSaKApmVEAnb/uxtZsnoPt541nq9PGhB0HIkSKneRAL2xeg+/e3sjc44fwnVa8ihtSOUuEpCs3UXc/HwmU4f15pcXTNaSR2lTKneRAOwrreK6J5bTu2cMD8+dRmyMbpEnbUsXVEU6WE1dPTc8vYJ9pVW8OG8W/XtpZYy0PZW7SAf75ZJ1fLq1gPsuSuPYIVoZI+1D0zIiHeiFjB0s/Hgb15w8UpuBSbtSuYt0kM93FnL7y2uYNTqZn549Pug4EuVU7iIdYH9pFfOeXE5KQg9+f8nx2jNG2p3m3EXaWW1dPT94diX7yqr587xZ9I3vHnQk6QRCOn0ws75mttjMysxsu5ld8iVjjzezD8ys1Mz2mtlNbRdXJPL8x1+y+WjTfn5x/mRdQJUOE+qZ+4NANZAKTAGWmFmmu2c1HWRm/YA3gR8BLwLdAV01kk7rzTW5PPT+Zi6ZMYxvpw8NOo50Iq2euZtZPDAHuMPdS939Q+BVYG4Lw28G3nL3p929yt1L3H1d20YWiQxb8kv58QuZpA3tzc/OnRh0HOlkQpmWGQfUuXt2k2OZwKQWxp4IFJjZx2aWZ2avmdmwtggqEknKq2uZ/9QKYroaf7j0eHp00ydQpWOFUu4JQFGzY0VArxbGDgGuAG4ChgFbgWda+k3N7DozyzCzjPz8/NATi4Q5d+f2xWvIzivhdxdPZXDvuKAjSScUSrmXAonNjiUCJS2MrQAWu/syd68E7gZmmdkXriK5+yPunu7u6SkpKYebWyRsPf1pDotX7uKHp43j1HF6bUswQin3bKCbmY1tciwNyGph7OeAN3l+8Nfa7k46hdU7i7jntbWcMi6F739tTNBxpBNrtdzdvQx4CbjHzOLN7CTgPODJFoY/BlxgZlPMLAa4A/jQ3QvbMrRIOCoqr+H6RctJTujO7y6aQpcuOqeR4IT6MbnrgTggj4Y59PnunmVms82s9OAgd38XuA1Y0jh2DHDINfEi0cLd+fGLmewprOT3lxyvDypJ4EJa5+7uBcD5LRxfSsMF16bH/gj8sU3SiUSIPy3dyl/X7uWOb0xk2vA+QccR0d4yIkdr+fYD/PrN9Zw1aQBXnzQi6DgigMpd5KgcKKvm+4tWMLB3LL++8DjdKk/ChjYOEzlC9fXOv7yQyb7Sav48fxZJcTFBRxL5O525ixyh/166hXfX53H7P03QhmASdlTuIkdg+fYC7n1rA+ccO4DLZw4POo7IF6jcRQ5Twzz7Sgb3juPf52ieXcKT5txFDoO78+Mm8+yJsZpnl/CkM3eRw/CnpVt5Z30et50zXvPsEtZU7iIhWpnTsJ79zEmpXDFrRNBxRL6Uyl0kBEXlNdy4aCUDkmK598I0zbNL2NOcu0gr3J2f/Plz9hZX8sK8mVrPLhFBZ+4irXjik+28mZXLT84az9Rh2jdGIoPKXeRLrNlVxC+XrONr4/tz7eyRQccRCZnKXeQQSipruHHRCpITuvPbb2meXSKL5txFWuDu3LZ4DTsOVPDsdSfSR/uzS4TRmbtIC55btoPXMndz8xnjOGFE36DjiBw2lbtIMxtyS/jZq1mcPKYf808dHXQckSOichdpory6lhsWraBXbAz36T6oEsE05y7SxJ2vZLE5v5SnrplBSq8eQccROWI6cxdp9OflO3lx+U6+/7WxnDSmX9BxRI6Kyl0E2JRXwr++vIbpI/ty02ljg44jctRU7tLpVVTXccPTK4nr3pX7L55KV82zSxTQnLt0ene9msWGvSU8fvV0BiTFBh1HpE3ozF06tZdX7uK5jB1c/5XRnDouJeg4Im1G5S6d1qa8Um5bvJoTRvTh5jPGBR1HpE2p3KVTaphnX0FsTFfu/85UunXVW0Gii+bcpVM6OM++8KoTGJgUF3QckTan0xXpdF5asZPnMnZww1dH85Vj+gcdR6RdqNylU9m4t4TbFzesZ//R6Zpnl+ilcpdOo6yqlvlPryC+R1d+r3l2iXKac5dOwd25ffFqtjTuG9M/UevZJbqFdOpiZn3NbLGZlZnZdjO7pJXx3c1svZntbJuYIkdn0Wc5vLxqNz86fRyztG+MdAKhnrk/CFQDqcAUYImZZbp71iHG3wLkAQlHH1Hk6Hy+s5C7X13LqeNSuOGrY4KOI9IhWj1zN7N4YA5wh7uXuvuHwKvA3EOMHwlcBvyqLYOKHInC8mrmP7WClF49tD+7dCqhTMuMA+rcPbvJsUxg0iHGPwDcBlQcZTaRo1Jf7/zwuVXkl1Txh0uPp6/ugyqdSCjlngAUNTtWBPRqPtDMLgC6ufvi1n5TM7vOzDLMLCM/Pz+ksCKH44F3N/HehnzuPHciaUN7Bx1HpEOFUu6lQGKzY4lASdMDjdM39wLfD+U/7O6PuHu6u6enpGjDJmlb723I43fvZHPB1MFcOmNY0HFEOlwoF1SzgW5mNtbdNzYeSwOaX0wdC4wAlpoZQHcgycxygRPdfVubJBZpRc7+cm56dhXHpPbi3y44lsbXo0in0mq5u3uZmb0E3GNm19KwWuY8YFazoWuAoU2ezwJ+DxwPaN5FOkRFdR3znlqOu/Pw3GnEde8adCSRQIT6Eb3rgTgaljc+A8x39ywzm21mpQDuXuvuuQcfQAFQ3/i8rl3SizTh7tz+8mrW5RbzXxdPZXhyfNCRRAIT0jp3dy8Azm/h+FIOsZbd3d8DhhxNOJHD8cQn23lpxS5+ePpYvjpeG4JJ56bNNSQqfLJ5P/e8vpbTJ6Tyg6/pBtciKneJeLsKK7hh0QpGJPfkvovS9EElEVTuEuEqa+r43pMZ1NTW88jl6fSKjQk6kkhY0K6QErHcnVte/Jys3cX86fJ0RqdoKyORg3TmLhHrD+9t5rXM3dxy5jGcNiE16DgiYUXlLhHpL1m5/OatDZw3ZRDzTx0ddByRsKNyl4izPreYHz23irQhSfx6znH6BKpIC1TuElHyS6q4ZmEGCbHdeHhuOrEx+gSqSEt0QVUiRmVNHdc9mUFBWTUvzJvJgCTdKk/kUFTuEhEOroxZmVPIQ5dNY/LgpKAjiYQ1TctIRLjvr9m8lrmbn5w1nrMmDwg6jkjYU7lL2Ht+2Q7uf3cTF6UPZd6po4KOIxIRVO4S1pZuzOe2xas5ZVwKv7hgslbGiIRI5S5ha92eYuY/tYIx/RN48JKpxHTVy1UkVHq3SFjaeaCcKx/7jIQe3XjsqhO0Z4zIYVK5S9g5UFbN5Y9+RkV1HU9cM52BSXFBRxKJOFoKKWGlorqOqx9fxs4DFTx1zQzGpfYKOpJIRNKZu4SN6tp6rn96OZk7Crn/4qlMH9k36EgiEUtn7hIW6uqdf3khk79tyOdX/3ys1rKLHCWduUvg3J07X1nDa5m7ufXs8Xxn+rCgI4lEPJW7BMrdufetDTz9aQ7zTh3NPG3fK9ImVO4SqPvf2cQf39vMJTOG8ZOzjgk6jkjUULlLYB5+fzP3vZ3NhdOG8Ivz9OlTkbakcpdAPPbRVn71xnrOTRvEr+ccR5cuKnaRtqTVMtLhHv1wK/e8vpazJg3gP7+dRlcVu0ibU7lLh/rT0i38Ysk6zpo0gAe0X4xIu9E7SzrMwWI/e7KKXaS96cxd2p2788C7m/jPv2bzT8cO5HcXT1Gxi7Qzlbu0K3fn399cz8Pvb2HO8UP49Zxj6aZiF2l3KndpN3X1zs9eXcNT/5vD3BOHc/c3J2lVjEgHUblLu6iqrePm5zJZsnoP3zt1FLeeNV7r2EU6UEj/Pjazvma22MzKzGy7mV1yiHG3mNkaMysxs61mdkvbxpVIUFpVy9ULl7Fk9R5uP2cCPz17gopdpIOFeub+IFANpAJTgCVmlunuWc3GGXA58DkwGviLme1w92fbKrCEt7ziSq5+fBnr9pTw22+lMWfakKAjiXRKrZ65m1k8MAe4w91L3f1D4FVgbvOx7n6vu69w91p33wC8ApzU1qElPGXvLeGCP3zMlvwy/nR5uopdJEChTMuMA+rcPbvJsUxg0pd9kzX8O3w20PzsXqLQR5v2MecPH1NdV8/z35vJV8f3DzqSSKcWSrknAEXNjhUBrd3/7K7G3/+xlr5oZteZWYaZZeTn54cQQ8LV059u54pHP2Ng71hevuEkJg9OCjqSSKcXypx7KZDY7FgiUHKobzCzG2mYe5/t7lUtjXH3R4BHANLT0z2ktBJWauvq+fnra3n8k+2cOi6FBy6ZSmJsTNCxRITQyj0b6GZmY919Y+OxNA4x3WJmVwO3Aqe4+862iSnhpqCsmh88s5IPN+3ju7NHcuvZE7QBmEgYabXc3b3MzF4C7jGza2lYLXMeMKv5WDO7FPg34KvuvqWtw0p4WL2ziHlPLSe/tIp7LzyOb6cPDTqSiDQT6ufArwfigDzgGWC+u2eZ2WwzK20y7hdAMrDMzEobHw+1bWQJ0vMZO5jz0McAvDhvpopdJEyFtM7d3QuA81s4vpSGC64Hn49su2gSTsqra7nzlSxeXL6Tk8f04/7vTKVvfPegY4nIIWj7AWnVhtwSbli0gs35pfzgtLHcdNpYza+LhDmVuxySu/PUpzn8cslaEnrE8NQ1MzhpTL+gY4lICFTu0qL8kip+8ufPeXd9HqeMS+E/vnUc/XvFBh1LREKkcpcveHNNLrcvXk1JVS13nTuRy2eO0Fa9IhFG5S5/V1BWzc9ezeK1zN1MGpTIMxdNYVxqax9EFpFwpHIX3J0lq/dw16tZFFXUcPMZ45j/ldG6FZ5IBFO5d3I7Csq585U1/G1DPscOTuLJa2YwYWDz3SZEJNKo3Dupqto6Fny4lQfe2YQZ3PGNiVwxc7jubyoSJVTundB7G/K4+7W1bN1XxhkTU7nrm5MY3Dsu6Fgi0oZU7p3Ixr0l/OqN9by7Po9R/eJ5/OrpnDouJehYItIOVO6dQH5JFb97O5tnl+2gZ/eu/PTs8Vx10ki6d9MUjEi0UrlHsaLyGh5ZuplHP9xGTV09c08czg9OG6s9YUQ6AZV7FCqurOHxj7bx30u3UFxZyzfTBvGjM8Yxsl980NFEpIOo3KNIYXk1j320jUc/2kpJZS2nT+jPzWccw8RBWtoo0tmo3KPArsIKFizdyrPLciivruPMSal8/2tjdS9TkU5M5R7BVu0o5LGPtvL653sw4Ny0QVx3yih9CElEVO6RprKmjjfX5LLw422s2lFIQo9uXDFzBNfMHqm16iLydyr3CLElv5RnPsvhxeU7OVBew8h+8dx17kQuTB9KQg/9MYrIP1IrhLHiyhqWfL6HF5fvZPn2A3TrYpwxMZVLZwxn1uhkbcMrIoekcg8zlTV1vLchn1czd/HOujyqausZ0z+BW88ezz9PHUz/RN0wQ0Rap3IPA5U1dXyQnc8ba3J5e91eSipr6ZfQnYtPGMr5UwczZWhvzHSWLiKhU7kHpKCsmr+tz+PtdXv5IDufsuo6kuJiOHPSAL6ZNohZo5O1Q6OIHDGVewepq3fW7CrivQ35vJ+dx6odhdQ7pCb24JtTBnP25AHMHJ2sG2SISJtQubcTd2dzfhn/u2U/H23ax8eb91NUUYMZHDc4iRu/NpbTJ/Rn8qAkXRgVkTancm8jNXX1rNtTTMa2A2RsL+CzrQXsK60GYFBSLF+fmMrJY/tx8ph+JCf0CDitiEQ7lfsRcHd2Hqhg9a4iVu0oZNWOQlbvLKKipg5oKPPZY1OYMbIvM0YlMyK5py6IikiHUrm3orq2ns35pazPLWbdnhLW7i5mze4iCstrAOjetQsTByVy0QlDSR/Rh+OH9WGQPikqIgFTuTeqrKlj674yNueXsimvlI15pWTnlrB1Xxm19Q5A925dGJeawNmTBzB5cBKTByUxYWCibnohImGnU5V7UUUNOw+Us6OgnO37y8kpKGfb/jK27Stnd1EF3tDhmMHQPj0Zl5rA6RNTGT+gFxMGJjKqX7yWJ4pIRIiaci+rqiWvpIo9RRXsLa4kt6iK3YUV7CmqYFdhJTsPlFNSWfsP39O7ZwwjkuOZPrIvI5LjGZUSz5j+CYzsF09sTNeA/k9ERI5eRJf739bncc/ra8krrqSsuu4LX0+Ki2FQ7zgGJcUyfUQfhvTpyeA+cQzr25OhfXuSFBcTQGoRkfYXUrmbWV9gAfB1YB/wU3df1MI4A/4duLbx0ALgJ+4HJzzaVu+eMUwcmMhXjkmhf69Y+vfqwcCkWAY0Pnp2j+i/u0REjlio7fcgUA2kAlOAJWaW6e5ZzcZdB5wPpAEO/BXYAjzUNnH/0dRhfXjw0j7t8VuLiES0Vq8Omlk8MAe4w91L3f1D4FVgbgvDrwB+6+473X0X8FvgyjbMKyIiIQhl6cc4oM7ds5scywQmtTB2UuPXWhsnIiLtKJRyTwCKmh0rAnqFMLYISLAWPp5pZteZWYaZZeTn54eaV0REQhBKuZcCze+4nAiUhDA2ESht6YKquz/i7ununp6SkhJqXhERCUEo5Z4NdDOzsU2OpQHNL6bSeCwthHEiItKOWi13dy8DXgLuMbN4MzsJOA94soXhTwA3m9lgMxsE/AuwsA3ziohICEL9LP31QByQBzwDzHf3LDObbWalTcY9DLwGrAbWAEsaj4mISAcKaZ27uxfQsH69+fGlNFxEPfjcgf/X+BARkYBYO3149PBCmOUD24/w2/vR8KnZcBOuuSB8synX4VGuwxONuYa7e4srUsKi3I+GmWW4e3rQOZoL11wQvtmU6/Ao1+HpbLm0f62ISBRSuYuIRKFoKPdHgg5wCOGaC8I3m3IdHuU6PJ0qV8TPuYuIyBdFw5m7iIg0o3IXEYlCKncRkSgUdeVuZmPNrNLMngo6C4CZPWVme8ys2Myyzeza1r+r3TP1MLMFZrbdzErMbKWZnR10LgAzu7FxK+gqM1sYcJa+ZrbYzMoaf1aXBJmnMVPY/HyaCvPXVNi9B5tqr86KxpuMPggsCzpEE78CrnH3KjMbD7xnZivdfXmAmboBO4BTgRzgHOB5MzvW3bcFmAtgN/AL4Ewa9jMKUqi3l+xI4fTzaSqcX1Ph+B5sql06K2cH3BsAAAI1SURBVKrO3M3sYqAQeCfoLAe5e5a7Vx182vgYHWAk3L3M3e9y923uXu/urwNbgWlB5mrM9pK7vwzsDzLHYd5essOEy8+nuTB/TYXde/Cg9uysqCl3M0sE7qFhm+GwYmZ/MLNyYD2wB/ifgCP9AzNLpeF2itp7//8czu0lpZlwe02F43uwvTsrasod+DmwwN13BB2kOXe/nobbEs6mYW/8qi//jo5jZjHA08Dj7r4+6Dxh5HBuLylNhONrKkzfg+3aWRFR7mb2npn5IR4fmtkU4HTgvnDK1XSsu9c1/tN+CDA/HHKZWRcabrpSDdzYnpkOJ1eYOJzbS0qjjn5NHY6OfA+2piM6KyIuqLr7V77s62b2Q2AEkNN4L+4EoKuZTXT344PKdQjdaOf5vlByNd60fAENFwvPcfea9swUaq4w8vfbS7r7xsZjum3klwjiNXWE2v09GIKv0M6dFRFn7iF4hIY/rCmNj4douAvUmUGGMrP+ZnaxmSWYWVczOxP4DvBukLka/RGYAJzr7hVBhznIzLqZWSzQlYYXe6yZdfhJyGHeXrLDhMvP5xDC7jUVxu/B9u8sd4+6B3AX8FQY5EgB3qfhangxDbcf/G4Y5BpOw4qBShqmHw4+Lg2DbHfxfysaDj7uCihLX+BloIyG5X2X6OcTWa+pcH0PHuLPtU07SxuHiYhEoWiZlhERkSZU7iIiUUjlLiIShVTuIiJRSOUuIhKFVO4iIlFI5S4iEoVU7iIiUej/A4awfmYB+Gr6AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(torch.sigmoid, min=-4,max=4)"]},{"cell_type":"markdown","metadata":{"id":"_UBG5oMo1gl6"},"source":["We can apply this function to a single column of activations from a neural network, and get back a column of numbers between 0 and 1, so it's a very useful activation function for our final layer.\n","\n","Now think about what happens if we want to have more categories in our target (such as our 37 pet breeds). That means we'll need more activations than just a single column: we need an activation *per category*. We can create, for instance, a neural net that predicts 3s and 7s that returns two activations, one for each class—this will be a good first step toward creating the more general approach. Let's just use some random numbers with a standard deviation of 2 (so we multiply `randn` by 2) for this example, assuming we have 6 images and 2 possible categories (where the first column represents 3s and the second is 7s):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4NuoILSy1gl6"},"outputs":[],"source":["#hide\n","torch.random.manual_seed(42);"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OcBdZLub1gl7","outputId":"96ef7088-316d-4eab-df4f-c11c58b299a4"},"outputs":[{"data":{"text/plain":["tensor([[ 0.6734, 0.2576],\n"," [ 0.4689, 0.4607],\n"," [-2.2457, -0.3727],\n"," [ 4.4164, -1.2760],\n"," [ 0.9233, 0.5347],\n"," [ 1.0698, 1.6187]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["acts = torch.randn((6,2))*2\n","acts"]},{"cell_type":"markdown","metadata":{"id":"jwHqNN4u1gl7"},"source":["We can't just take the sigmoid of this directly, since we don't get rows that add to 1 (i.e., we want the probability of being a 3 plus the probability of being a 7 to add up to 1):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gt5c-q-k1gl7","outputId":"9edb1433-7f24-4183-a6f1-f20cb18cac8f"},"outputs":[{"data":{"text/plain":["tensor([[0.6623, 0.5641],\n"," [0.6151, 0.6132],\n"," [0.0957, 0.4079],\n"," [0.9881, 0.2182],\n"," [0.7157, 0.6306],\n"," [0.7446, 0.8346]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["acts.sigmoid()"]},{"cell_type":"markdown","metadata":{"id":"l3u9RbUj1gl8"},"source":["In <>, our neural net created a single activation per image, which we passed through the `sigmoid` function. That single activation represented the model's confidence that the input was a 3. Binary problems are a special case of classification problems, because the target can be treated as a single boolean value, as we did in `mnist_loss`. But binary problems can also be thought of in the context of the more general group of classifiers with any number of categories: in this case, we happen to have two categories. As we saw in the bear classifier, our neural net will return one activation per category.\n","\n","So in the binary case, what do those activations really indicate? A single pair of activations simply indicates the *relative* confidence of the input being a 3 versus being a 7. The overall values, whether they are both high, or both low, don't matter—all that matters is which is higher, and by how much.\n","\n","We would expect that since this is just another way of representing the same problem, that we would be able to use `sigmoid` directly on the two-activation version of our neural net. And indeed we can! We can just take the *difference* between the neural net activations, because that reflects how much more sure we are of the input being a 3 than a 7, and then take the sigmoid of that:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bIUjugVI1gl8","outputId":"ed65c3b7-93f8-4ed3-c9bd-9471807b9749"},"outputs":[{"data":{"text/plain":["tensor([0.6025, 0.5021, 0.1332, 0.9966, 0.5959, 0.3661])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(acts[:,0]-acts[:,1]).sigmoid()"]},{"cell_type":"markdown","metadata":{"id":"G5N33RrY1gl8"},"source":["The second column (the probability of it being a 7) will then just be that value subtracted from 1. Now, we need a way to do all this that also works for more than two columns. It turns out that this function, called `softmax`, is exactly that:\n","\n","``` python\n","def softmax(x): return exp(x) / exp(x).sum(dim=1, keepdim=True)\n","```"]},{"cell_type":"markdown","metadata":{"id":"EauYOFfd1gl9"},"source":["> jargon: Exponential function (exp): Literally defined as `e**x`, where `e` is a special number approximately equal to 2.718. It is the inverse of the natural logarithm function. Note that `exp` is always positive, and it increases _very_ rapidly!"]},{"cell_type":"markdown","metadata":{"id":"bePO4b861gl9"},"source":["Let's check that `softmax` returns the same values as `sigmoid` for the first column, and those values subtracted from 1 for the second column:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uYMmJg971gl9","outputId":"9e0e7f15-7622-4d2f-c479-ae2d626fbd66"},"outputs":[{"data":{"text/plain":["tensor([[0.6025, 0.3975],\n"," [0.5021, 0.4979],\n"," [0.1332, 0.8668],\n"," [0.9966, 0.0034],\n"," [0.5959, 0.4041],\n"," [0.3661, 0.6339]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["sm_acts = torch.softmax(acts, dim=1)\n","sm_acts"]},{"cell_type":"markdown","metadata":{"id":"0cj0XHRQ1gl-"},"source":["`softmax` is the multi-category equivalent of `sigmoid`—we have to use it any time we have more than two categories and the probabilities of the categories must add to 1, and we often use it even when there are just two categories, just to make things a bit more consistent. We could create other functions that have the properties that all activations are between 0 and 1, and sum to 1; however, no other function has the same relationship to the sigmoid function, which we've seen is smooth and symmetric. Also, we'll see shortly that the softmax function works well hand-in-hand with the loss function we will look at in the next section.\n","\n","If we have three output activations, such as in our bear classifier, calculating softmax for a single bear image would then look like something like <>."]},{"cell_type":"markdown","metadata":{"id":"W0rlmlB51gl-"},"source":["\"Bear"]},{"cell_type":"markdown","metadata":{"id":"sozU0sYR1gl-"},"source":["What does this function do in practice? Taking the exponential ensures all our numbers are positive, and then dividing by the sum ensures we are going to have a bunch of numbers that add up to 1. The exponential also has a nice property: if one of the numbers in our activations `x` is slightly bigger than the others, the exponential will amplify this (since it grows, well... exponentially), which means that in the softmax, that number will be closer to 1.\n","\n","Intuitively, the softmax function *really* wants to pick one class among the others, so it's ideal for training a classifier when we know each picture has a definite label. (Note that it may be less ideal during inference, as you might want your model to sometimes tell you it doesn't recognize any of the classes that it has seen during training, and not pick a class because it has a slightly bigger activation score. In this case, it might be better to train a model using multiple binary output columns, each using a sigmoid activation.)\n","\n","Softmax is the first part of the cross-entropy loss—the second part is log likelihood."]},{"cell_type":"markdown","metadata":{"id":"GCRDI26R1gl-"},"source":["### Log Likelihood"]},{"cell_type":"markdown","metadata":{"id":"jCuQnlCg1gl_"},"source":["When we calculated the loss for our MNIST example in the last chapter we used:\n","\n","```python\n","def mnist_loss(inputs, targets):\n"," inputs = inputs.sigmoid()\n"," return torch.where(targets==1, 1-inputs, inputs).mean()\n","```\n","\n","Just as we moved from sigmoid to softmax, we need to extend the loss function to work with more than just binary classification—it needs to be able to classify any number of categories (in this case, we have 37 categories). Our activations, after softmax, are between 0 and 1, and sum to 1 for each row in the batch of predictions. Our targets are integers between 0 and 36. Furthermore, cross-entropy loss generalizes our binary classification loss and allows for more than one correct label per example (which is called multi-label classificaiton, which we will discuss in Chapter 6).\n","\n","In the binary case, we used `torch.where` to select between `inputs` and `1-inputs`. When we treat a binary classification as a general classification problem with two categories, it actually becomes even easier, because (as we saw in the previous section) we now have two columns, containing the equivalent of `inputs` and `1-inputs`. Since there is only one correct label per example, all we need to do is select the appropriate column (as opposed to multiplying multiple probabilities). Let's try to implement this in PyTorch. For our synthetic 3s and 7s example, let's say these are our labels:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"g_7HhJJv1gl_"},"outputs":[],"source":["targ = tensor([0,1,0,1,1,0])"]},{"cell_type":"markdown","metadata":{"id":"gBYm7R0Q1gl_"},"source":["and these are the softmax activations:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ywEsTYTw1gl_","outputId":"d264ed78-fdcb-43de-b18e-62e980ab97c0"},"outputs":[{"data":{"text/plain":["tensor([[0.6025, 0.3975],\n"," [0.5021, 0.4979],\n"," [0.1332, 0.8668],\n"," [0.9966, 0.0034],\n"," [0.5959, 0.4041],\n"," [0.3661, 0.6339]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["sm_acts"]},{"cell_type":"markdown","metadata":{"id":"RjIL5Xru1gmA"},"source":["Then for each item of `targ` we can use that to select the appropriate column of `sm_acts` using tensor indexing, like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"G8V4dWaB1gmA","outputId":"b0a4c1bb-6047-4630-8775-bcc9b8223dbc"},"outputs":[{"data":{"text/plain":["tensor([0.6025, 0.4979, 0.1332, 0.0034, 0.4041, 0.3661])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["idx = range(6)\n","sm_acts[idx, targ]"]},{"cell_type":"markdown","metadata":{"id":"XLmHFZkP1gmA"},"source":["To see exactly what's happening here, let's put all the columns together in a table. Here, the first two columns are our activations, then we have the targets and the row index. We explain the last column, `result` below:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Uq--X6DB1gmB","outputId":"b28db3a6-bcd1-4750-a742-c4d1ed099874"},"outputs":[{"data":{"text/html":["\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
37targidxresult
0.6024690.397531000.602469
0.5020650.497935110.497935
0.1331880.866811020.133188
0.9966400.003360130.003360
0.5959490.404051140.404051
0.3661180.633882050.366118
\n"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","from IPython.display import HTML\n","df = pd.DataFrame(sm_acts, columns=[\"3\",\"7\"])\n","df['targ'] = targ\n","df['idx'] = idx\n","df['result'] = sm_acts[range(6), targ]\n","t = df.style.hide_index()\n","#To have html code compatible with our script\n","html = t._repr_html_().split('')[1]\n","html = re.sub(r'', r'
', html)\n","display(HTML(html))"]},{"cell_type":"markdown","metadata":{"id":"XjXExzBO1gmB"},"source":["Looking at this table, you can see that the `result` column can be calculated by taking the `targ` and `idx` columns as indices into the two-column matrix containing the `3` and `7` columns. That's what `sm_acts[idx, targ]` is actually doing. The really interesting thing here is that this actually works just as well with more than two columns. To see this, consider what would happen if we added an activation column for every digit (0 through 9), and then `targ` contained a number from 0 to 9."]},{"cell_type":"markdown","metadata":{"id":"qOwFHn9P1gmB"},"source":["PyTorch provides a function that does exactly the same thing as `sm_acts[range(n), targ]` (except it takes the negative, because when applying the log afterward, we will have negative numbers), called `nll_loss` (*NLL* stands for *negative log likelihood*):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9LJFWyu81gmC","outputId":"5d17876a-504c-4bda-9b03-15a8cb47c917"},"outputs":[{"data":{"text/plain":["tensor([-0.6025, -0.4979, -0.1332, -0.0034, -0.4041, -0.3661])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["-sm_acts[idx, targ]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GEDq1ywp1gmC","outputId":"30fa398d-8574-4fcc-e382-81bfb2b05e2b"},"outputs":[{"data":{"text/plain":["tensor([-0.6025, -0.4979, -0.1332, -0.0034, -0.4041, -0.3661])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["F.nll_loss(sm_acts, targ, reduction='none')"]},{"cell_type":"markdown","metadata":{"id":"UM5YIUCl1gmC"},"source":["Despite its name, this PyTorch function does not take the log. We'll see why in the next section, but first, let's see why taking the logarithm can be useful."]},{"cell_type":"markdown","metadata":{"id":"6SkPeN321gmD"},"source":["> warning: Confusing Name, Beware: The nll in `nll_loss` stands for \"negative log likelihood,\" but it doesn't actually take the log at all! It assumes you have _already_ taken the log. PyTorch has a function called `log_softmax` that combines `log` and `softmax` in a fast and accurate way. `nll_loss` is designed to be used after `log_softmax`."]},{"cell_type":"markdown","metadata":{"id":"QsmfOXsi1gmD"},"source":["#### Taking the Log\n","\n","Recall that cross entropy loss may involve the multiplication of many numbers. Multiplying lots of negative numbers together can cause problems like [numerical underflow](https://en.wikipedia.org/wiki/Arithmetic_underflow) in computers. Therefore, we want to transform these probabilities to larger values so we can perform mathematical operations on them. There is a mathematical function that does exactly this: the *logarithm* (available as `torch.log`). It is not defined for numbers less than 0, and looks like this between 0 and 1:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"J7Pid5991gmD","outputId":"45d11d52-a50a-4f4a-b92b-e7a1fe958416"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYYAAAEMCAYAAADAqxFbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAhJUlEQVR4nO3deXhc1X3/8fdXm2Xt1m7JlmVblndsbGGb3QRCgLIlKQkJWduEBkLbhCRNt/wCIWmTtL82bRogtNC0EEJCAoSQQhICBhwWY4xtvEjeZFuWtcvad83pHzN2JNeLxtbMneXzep55rLlz5fkea3w/uuece6455xARETkqwesCREQksigYRERkHAWDiIiMo2AQEZFxFAwiIjJOktcFTIb8/HxXXl7udRkiIlHlrbfeanXOFRy/PSaCoby8nI0bN3pdhohIVDGzAyfarq4kEREZR8EgIiLjKBhERGQcBYOIiIyjYBARkXEiLhjMLNfMnjSzXjM7YGYf9romEZF4EonTVb8HDAFFwHLgl2a2xTm33dOqRETiREQFg5mlA+8HljjneoD1ZvY08FHgLz0tTkTEYz6fo7l7kP1tvRxo62V/Wx+3r51LZmrypL5PRAUDUAmMOud2jdm2Bbj0+B3N7FbgVoCysrLwVCciEmI+n6Ope4Da1l4OtPWxv7X32NcH2nsZGPYd2zc50bhheQkLimM7GDKAzuO2dQKZx+/onHsAeACgqqpKdxsSkajhnKO9d4ja1l72tfYeO/gfDYD+4dFj+6YkJlCWl0Z5XjoXz8tnVn46s/PSmZWXRknOVBITbNLri7Rg6AGyjtuWBXR7UIuIyFnpGxrxH/xbfn/g39faS21LD10DI8f2S0owynLTKM9P58KKfMoDB//y/DSmZ4fm4H8qkRYMu4AkM5vnnNsd2LYM0MCziEQkn8/R0DXAvpYe9jb3sK+1l70tPexr6aWhc2DcviXZqcwuSOeG5aXMzk8/9pgxbSpJiZEzSTSigsE512tmTwBfM7NP4Z+VdANwgaeFiUjcGxgeZX9bL3ube9nT3MPelp5jATC26ydzShJzCtJZMyePOfnpzCnIOBYAU1MSPWzBxEVUMATcDjwENANtwG2aqioi4dI9MMye5h52N/vPAPY097CnpYe69j58gdFMMyjNmcrcggxWzc5lbkFG4JFOQeYUzMLb9TPZIi4YnHPtwI1e1yEisa2zb5hdzd3sbuphd3O3Pwyaemjs+n33T0piArPz01lSks0Ny0upKPQf/OfkZ0TNb/9nIuKCQURkMnUNDLO7qZtdTT3UNHazu9n/dUv34LF90lISqSjM4IKKPCoKM5hXmElFYQYzI6zvP1wUDCISEwaGR9nd1ENNUze7mrqpafT/OXYAOC0lkXmFGVwyr4DKogwqi/wBUJozlYQwz/yJZAoGEYkqPp/jYHsf1Y1dVDd2U93QTU1TNwfaeo+NAaQkJVBRkMHq2bnML846FgIKgIlRMIhIxOrsH6a6oYudDf4Q2NnYza7G7mOzgMxgVm4a84szuW5ZCQuKM6ksyqQ8Ly0uu4Ami4JBRDzn8znqjvSx43AXOwJBsLOhm/qO/mP7TEtLZkFxFjevmsnC4izmF2cyryiDtBQdxiab/kVFJKwGR/xjAdsPd44Jgm56Bv1XAicYzCnIYMWsadyypoyF07NYND2LwhiYBhotFAwiEjK9gyPsbOhiW30n2w53sf1wF7ubuhkJDAakpySyqCSL960oZXFJFgunZ1FZlElqcuxOBY0GCgYRmRTdA8NsP+wPgXfqO9lW38m+1l5cYEA4PyOFRSXZXDa/gMUl2SwqyWJWbpoGgyOQgkFEgtY3NMK2+i62HupgW30nW+s7qR0TAsVZqSwpzeb6Zf4zgaUzstUVFEUUDCJySkMjPqobu9hS18GWQ51sPdTBnuaeY1NDp2ensrQ0m/cuL2XJjGyWlmaTnzHF26LlrCgYROQY5xz72/rYXHeELXWdbK7rYMfhLoZG/TeHyUtP4ZwZ2Vy9ZDrnzMgOnAmkely1TDYFg0gc6+gbYnNdB5vrOnj7YAdbDnXQ0TcMwNTkRJbOyOaTF5Zzzowcls3MpjRnqrqD4oCCQSRO+HyO3c09bDp4hLcOHGHTwSPsa+kF/BeKVRZmctXiYpbPzGHZzBzmFWboIrE4pWAQiVE9gyNsPtjBWweOsPFAO5vrOugO3DUsNz2FFWU5vH/FDM4ty+GcGTlkTNHhQPz0SRCJEY2dA7y5v52N+9vZeOAIOxu68Dn/2cD8okyuX1bCylnTWFE2jVl5aeoSkpNSMIhEIeccta29bKhtZ0NtO28eaKeu3b98xNTkRFbMyuGOd82jatY0lpflkJWa7HHFEk0UDCJRwOdz7Gru5o197bxR28aG2nZae4YA/4VjVbNy+cQFszmvfBoLp2eRrLEBOQsKBpEI5PM5qhu7eX1fG6/va2PD/vZjs4VKc6Zy8bwCVs3OZdXsXObkp6tbSCaVgkEkAjjn2NvSw6t723h1Txtv1LZxJBAEZblpXLmoiNWz81g9J5cZ09I8rlZinYJBxCP1Hf38bk8rr+5p5dW9bTQHbjVZmjOVyxcWcf6cPNbMzaM0Z6rHlUq8UTCIhEln/zCv7W1j/Z4WfrenjdpW/zUE+RlTuGBuHhdW5HH+nHzK8nRGIN5SMIiEyMiojy2HOnh5Vyuv7G5hc10HPue/7/CaOXl8ZM0sLqrIp7IoQ2MEElEUDCKTqKGzn5dqWnh5dwuv7G6le2CEBINzZuRwx2UVXDSvgOUzc0hJ0qwhiVwKBpGzMDzqY+P+I6yraWZdTQs1Td2Af9npa5ZM55LKAi6syCMnLcXjSkUmTsEgEqTWnkFerG7mxZpmXtnVSvfgCMmJxnnlufz1ygVcWlmo7iGJagoGkdNwzlHT1M3zO5r4bXUzm+s6cA4KM6dwzdLpXLagkIvm5WutIYkZ+iSLnMDIqI8N+9v5zY4mnt/ZdGy5iXNmZPO5yyu5fGEhi0uydFYgMUnBIBLQPzTKS7ta+PWORl6obqajb5iUpAQursjn9rUVXL6gkMIs3ZRGYp+CQeJa18AwL+xs5tltDby0q4WBYR/ZU5O5fGEhVy4q4uJ5BaSri0jijD7xEnc6+4f5zY4mnn2ngVd2tzI06qMwcwo3rZzJVUuKWTU7V4vQSVxTMEhc6B7wh8EzWxt4ZXcLw6OO0pypfOz8WVy9tJhzZ04jIUHjBSKgYJAY1j80ym+rm/jFlsO8WNPC0IiP0pypfPLC2VyzdDrLZmRr8FjkBBQMElNGRn2s39PK05sP86vtjfQOjVKYOYVbVpdx3bISzp2ZozAQOY2ICQYzuwP4BLAU+JFz7hOeFiRRwznHtvounny7nqe3HKa1Z5Cs1CSuW1bC9ctKWD0nj0R1E4lMWMQEA3AY+DrwHkDrDMtpNXYO8NTmen721iF2N/eQkpjA5QsLufHcUtbOL2BKUqLXJYpEpYgJBufcEwBmVgXM8LgciVCDI6M8v6OZx9+q4+VdLfgcrJw1jW+8dwnXLi0hO033NhY5WxETDMEys1uBWwHKyso8rkZCrbqxix+/WcdTb9dzpG+Y6dmp3L62gvevnMHs/HSvyxOJKVEbDM65B4AHAKqqqpzH5UgI9A2N8MyWBh7dcJDNdR0kJxpXLi7mA1UzuagiX+MGIiESlmAws3XApSd5+XfOuYvCUYdEh5rGbn74xgGe3FRP9+AIFYUZfOXaRbz33FJy07V8tUiohSUYnHNrw/E+Er2GRnz8ansjD79+gA217aQkJfAHS6fz4dVlVM2apimmImEUMV1JZpaEv55EINHMUoER59yIt5VJKDV3D/CjN+r44RsHaO4epCw3jb+6egE3Vc3U2YGIRyImGIC/Bb465vlHgLuBuzypRkJqW30nD62v5RdbDzM86ri0soBvvb+cSysLtDSFiMciJhicc3ehEIhpPp/j+Z1N/Mf6WjbUtpOeksgtq2fxsfNnMacgw+vyRCQgYoJBYtfA8Cg/23SIB1+pZV9rL6U5U/mbaxbygfNmkj1V1x2IRBoFg4RMZ/8wj7x+gP/8XS2tPUMsLc3mux86l6uXFJOkZa1FIpaCQSZda88gD66v5ZHXDtA9OMIllQV85tI5nD8nT7OLRKKAgkEmTVPXAN9/aR+PbjjA4IiPa5ZO57ZL57KkNNvr0kQkCAoGOWtNXQPct24vj244yKjP8d5zS7lt7VzmakBZJCopGOSMtfYMcu+Le/nhGwcY8Tn+cMUMPntZBWV5aV6XJiJnQcEgQevsH+bfX97HQ7+rZWB4lPetmMGfvquCWXlazE4kFigYZMIGhkf579f2870X99LZP8y150zn8++uVJeRSIxRMMhp+XyOJ9+u559+s4v6jn4urSzgL66az+ISDSqLxCIFg5zSG/vauOeXO9hW38XS0mz+4Q/P4YKKfK/LEpEQUjDICdW19/GNX+7kue2NlGSn8p0PLuf6ZSVax0gkDigYZJz+oVHuW7eH+1/eR1KC8YV3V/Kpi+cwNUX3TxaJFwoGAcA5x6+2N3HPMzuo7+jn+mUl/PU1CynOTvW6NBEJMwWDUNfex11Pb+e31c0sKM7kx7euYfWcPK/LEhGPKBji2MiojwfX1/LPz+8iwYy/uWYhn7iwnGQtcCcS1xQMcWr74U6+/LOtbKvv4oqFRXzthsWU5Ez1uiwRiQAKhjgzODLKd3+7h/te2su0tGTuvWUFVy8p1qqnInKMgiGObD/cyRd+soXqxm7ev2IGX7l2ITlpuq+yiIynYIgDoz7HvS/u4V9+u5tp6Sk8+PEqLl9Y5HVZIhKhFAwxrq69jzt/spk39x/h2nOmc88NS5iWrrMEETk5BUMM+/nmev72yW044DsfXM6N55Z6XZKIRAEFQwwaGB7lrqe389ibdaycNY3vfHA5M3N1jwQRmRgFQ4zZ09zDHY9uorqxm9vXzuXOd1eSpOsSRCQICoYY8j/vNPDFx7eQmpzIf/3RKi6tLPC6JBGJQgqGGDDqc/zDr2q4/6W9nFuWw323rNQaRyJyxhQMUa6zb5g7frSJV3a38uHVZXz1ukVMSdJKqCJy5hQMUay2tZc//q83qWvv45vvW8rNq8q8LklEYoCCIUq9ureV2x7ZRILBDz+1hlWzc70uSURihIIhCj359iG+9PhWyvPTeejj51GWp6moIjJ5FAxRxDnH91/exzefreb8OXl8/2MryUpN9rosEYkxCoYo4fM5vvbMDn7w6n6uW1bCP950jgaZRSQkFAxRYGTUx1/8dCtPvF3PH180m7+5ZiEJCVomW0RCQ8EQ4YZGfPz5Y2/z7LZGvvSe+Xz2sgqvSxKRGBcRayWY2RQze9DMDphZt5m9bWZXe12X1waGR/mThzfy7LZGvnLtIoWCiIRFpJwxJAF1wKXAQeAa4CdmttQ5t9/LwrwyODLKnzz8Fi/vbuHv37eUD+kaBREJk4gIBudcL3DXmE3PmFktsBLY70VNXhoa8fHZH27ipV0tfOv9S/ngeQoFEQmfCQWDmRUBVwLLgBygA9gC/MY51zjZRQXerxLYfop9bgVuBSgri50D5/Cojz/70ds8v7OZe25colAQkbA75RiDmS00s58CO4CPAslAY+DPjwLbzeynZrZosgoys2Tgh8B/OeeqT7afc+4B51yVc66qoCA2VhF1zvHln23lue2N/L9rF/HRNbO8LklE4tDpzhh+APwDcItzbvD4F80sBbgBeBA4/2R/iZmtwz9+cCK/c85dFNgvAXgYGALuOE1tMedbz9XwxKZ67nx3JX900WyvyxGROHXKYHDOrT7N60PA44HHqfZbe7pCzMzwB0wRcI1zbvh03xNLHlpfy/0v7eUja8r403dp9pGIeGfC01XNrPIk2y+cpFruAxYC1znn+ifp74wKz2w9zNee2cFVi4u5+/ol+DNSRMQbwVzH8IaZ3Xb0iZklm9m3gCfOtggzmwX8CbAcaDSznsDjlrP9uyPdlroOvvCTLZxXPo3v3LycRF3RLCIeC2a66lrgv83sWuCfAo/D+A/mZ8U5dwCIuyNiY+cAn/7vjRRkTuH+j6wkNVlrH4mI9yZ8xuCc2wKsBmYCvwbedM5d7ZxrCFVxsax/aJRbH95I7+AI//HxKvIypnhdkogIENwYQynwDP4ZQ38O3GBmf2dmEXGRXDRxzvFXT2zlnfpO/uXmc1lQnOV1SSIixwQzxrAZeA1Y45z7N/xdSFXAxskvK7Y9uuEgT20+zJ1XVHLFoiKvyxERGSeY3/avd869dvSJc64euNLM/mzyy4pd2+o7ufsXO7ikskCL4olIRApmjOG1k2z/18krJ7Z1DQzz2Uc3kZuWwnc+uFz3VBCRiHS6JTGeMLPzTrPPeWZ21lNWY51/XOEdDh3p598+fC656SlelyQickKn60q6H7jXzLKAl4AaoBvIxL/I3Vr8C+r9behKjA1PbznML7c28KX3zKeqPNfrckRETup0S2L8Gvi1mVUBV+OfrpoDHAG2Ajc7594OdZHRrrFzgK88tY2Vs6bxmUvnel2OiMgpTWjw2Tm3Ec0+OiPOOb700y0Mjzr+/03LdGWziES8Cc9KMrM5J3lpEGhwzvkmp6TY8sgbB3lldyv33LCY8vx0r8sRETmtYKar7gEcv1+6wo15zWdmTwO3O+eaJqu4aNfQ2c83/2cnF8/L5yO6t4KIRIlgLnD7NP4b6MwDUoH5wCPA7cBS/CHzvckuMJp97Rc7GPE5vnHjUq2YKiJRI5gzhruBCufcQOD5nsBqq7ucc983s08Auye7wGj1Yk0zz25r5ItXVlKWl+Z1OSIiExbMGUMCUH7ctjLg6JKgPQQXNDFrYHiUr/58O3MK0vn0JScbmhERiUzBHMi/A7xgZv8J1AEzgE8GtgP8Af61lOLevS/u4WB7H49+ajVTkrSUtohElwkHg3Pu22a2FbgJWAE0AH/snHsu8PpTwFMhqDGqHDrSx/0v7ePG5SVcUJHvdTkiIkELqusnEALPhaiWmPBPv96FGXz56gVelyIickaCuR9DspndbWb7zGwg8OfdZqZFfwJ2HO7iyc31fPLC2UzPnup1OSIiZySYM4ZvA6uAzwAHgFnAV4As4POTX1r0+dZz1WSlJnOblr0QkSgWTDDcBCxzzrUFnteY2SZgCwoGXt3Tyku7WvjraxaQnZbsdTkiImcsmOmqJ7tCK+6v3HLO8a3nqinJTuVj55d7XY6IyFkJJhgeB35hZu8xs4VmdhX+WUiPh6SyKLKupoUthzr53BWVpCZreqqIRLdgupL+Av99F74HlAD1wGPAPSGoK6rct24vJdmpvHdFqdeliIictVMGg5m967hN6wIP4/eL6F0EvDDZhUWLjfvb2bC/na9et4jkxGBOwEREItPpzhgePMn2o6FwNCDidt2H+1/ay7S0ZD543kyvSxERmRSnu4Pb7HAVEo1qGrt5fmczn7tiHmkpWiZKRGKD+j7Owvdf3svU5EQ+rplIIhJDFAxn6HBHP09vPsyHVpUxLV0Xf4tI7FAwnKEfv1nHqHN88sJyr0sREZlUCoYzMOpzPL6xjovnFTAzVzfhEZHYomA4Ay/vauFw5wAf0kwkEYlBCoYz8OiGg+RnpHD5wiKvSxERmXQKhiA1dw3wQnUzf7hyJilJ+ucTkdgTMUc2M3vEzBrMrMvMdpnZp7yu6UQef+sQoz7HzepGEpEYFTHBAPw9UO6cywKuB75uZis9rmkcn8/x2JsHuWBuHuX56V6XIyISEhETDM657c65waNPA4+IuuPN6/vaqGvv5+ZVZV6XIiISMhETDABmdq+Z9QHVQAPwP6fY91Yz22hmG1taWsJS3y/faSAtJZErF2nQWURiV0QFg3PudiATuBh4Ahg8xb4POOeqnHNVBQUFIa9t1Of41fYmLptfqHsuiEhMC0swmNk6M3Mneawfu69zbtQ5tx6YAdwWjvomYtPBI7T2DHLVkmKvSxERCamwLAnqnFt7Bt+WRASNMTz7TiMpSQlctqDQ61JEREIqIrqSzKzQzG42swwzSzSz9wAfIkJuAOSc41fbG7lkXj4ZU7S8tojEtogIBvwzkG4DDgFHgH8EPuec+7mnVQVsPdRJfUc/Vy2Z7nUpIiIhFxG//jrnWoBLva7jZJ7d1khSgvFuLYEhInEgUs4YIpZzjue2NXD+3Dyy05K9LkdEJOQUDKdR09TN/rY+zUYSkbihYDiNF6qbAXi3LmoTkTihYDiN1/e1U1mUQWFmqteliIiEhYLhFIZHfWzc3875c/K8LkVEJGwUDKew9VAnfUOjrFEwiEgcUTCcwuv72gBYNTvX40pERMJHwXAKr+9rY35RJnkZU7wuRUQkbBQMJzE04mPj/iOcP1fdSCISXxQMJ/FOfQf9w6OsmaNuJBGJLwqGk3h9XzsAq2brjEFE4ouC4SRe29vGguJMctNTvC5FRCSsFAwnMDTiY+OBdk1TFZG4pGA4ga2HOhgY9ikYRCQuKRhO4I1a//jCal2/ICJxSMFwAjsauijLTWOaxhdEJA4pGE6guqGL+cWZXpchIuIJBcNxBoZHqW3tZaGCQUTilILhOHuae/A5mF+c5XUpIiKeUDAcZ2dDFwALpuuMQUTik4LhODWN3UxJSqA8L93rUkREPKFgOE51YzeVRZkkJpjXpYiIeELBcJzqxm4WaOBZROKYgmGM1p5BWnsGNVVVROKagmGMmsZuABZO14wkEYlfCoYxjs1I0hmDiMQxBcMYNY3d5GdM0a08RSSuKRjGqG7sZqGuXxCROKdgCBj1OXY1dTO/SMEgIvFNwRCwv62XwREfCzTwLCJxTsEQUN3gn5GkgWcRiXcKhoCaxi4SE4yKwgyvSxER8ZSCIWB/Wx+lOVNJTU70uhQREU9FXDCY2TwzGzCzR8L5vo1dAxRnp4bzLUVEIlLEBQPwPeDNcL9pU9cARVkKBhGRiAoGM7sZ6AB+G873dc7R1DVAcZYubBMRiZhgMLMs4GvAFya4/61mttHMNra0tJzVe3f1jzAw7NMZg4gIERQMwD3Ag865uons7Jx7wDlX5ZyrKigoOKs3buwaAFAwiIgQpmAws3Vm5k7yWG9my4ErgH8ORz3HawoEgwafRUQgKRxv4pxbe6rXzexzQDlw0MwAMoBEM1vknFsR6vqOnjEU64xBRCQ8wTABDwCPjXn+RfxBcVs43ryp0x8MBZkafBYRiYhgcM71AX1Hn5tZDzDgnDu7UeUJauoeYFpasi5uExEhQoLheM65u8L5fo2dgxp4FhEJiKRZSZ7RxW0iIr+nYIDAxW0KBhERUDAwMuqjtWeQIk1VFREBFAy09Azic1Ck5TBERAAFA01dg4CuYRAROSrug6GxU8thiIiMFffB0KR1kkRExlEwdA2QnGjkpad4XYqISESI+2Bo7BqgMDOVhATzuhQRkYgQ98HQ1DVAoWYkiYgco2DoGtSMJBGRMRQMnVoOQ0RkrLgOht7BEboHRxQMIiJjxHUwHLtBT7bGGEREjorrYNA1DCIi/5eCAQWDiMhYcR0MjZ1aJ0lE5HhxHQxNXQNkTkkifUpE3shORMQTcR8MurhNRGS8uP5VeUlpNuX56V6XISISUeI6GD57WYXXJYiIRJy47koSEZH/S8EgIiLjKBhERGQcBYOIiIyjYBARkXEUDCIiMo6CQURExlEwiIjIOOac87qGs2ZmLcCBIL4lH2gNUTmRKh7bDPHZ7nhsM8Rnu8+2zbOccwXHb4yJYAiWmW10zlV5XUc4xWObIT7bHY9thvhsd6jarK4kEREZR8EgIiLjxGswPOB1AR6IxzZDfLY7HtsM8dnukLQ5LscYRETk5OL1jEFERE5CwSAiIuMoGEREZJyYDAYzyzWzJ82s18wOmNmHT7Hv582s0cw6zewhM4vam0BPtN1m9nEze8vMuszskJl928yi8m5+wfysx3zPC2bmorXNEPRnfI6ZPWNm3WbWambfDmetkyWIz7eZ2dfNrD7w/3qdmS0Od72TwczuMLONZjZoZj84zb6TdiyLyWAAvgcMAUXALcB9J/pgmNl7gL8ELgfKgTnA3eErc9JNqN1AGvA5/FdNrsbf/i+GqcbJNtE2A2BmtxAbt7Sd6Gc8BfgN8AJQDMwAHgljnZNpoj/rm4A/Ai4GcoHXgIfDVeQkOwx8HXjoVDtN+rHMORdTDyAd/4encsy2h4FvnmDfR4G/G/P8cqDR6zaEut0n+N47gV943YZQtxnIBnYBawAHJHndhlC3G7gVeMXrmsPc5i8DPxnzfDEw4HUbzrL9Xwd+cIrXJ/VYFotnDJXAqHNu15htW/B/OI63OPDa2P2KzCwvhPWFSjDtPt4lwPaQVBVawbb574D7gMZQFxZiwbR7DbDfzJ4NdCOtM7OlYalycgXT5seACjOrNLNk4OPAc2Go0UuTeiyLxWDIADqP29YJZE5g36Nfn2jfSBdMu48xs08CVcA/hqiuUJpwm82sCrgQ+G4Y6gq1YH7WM4CbgX8FSoBfAj8PdDFFk2Da3AC8AtQA/fi7lj4f0uq8N6nHslgMhh4g67htWUD3BPY9+vWJ9o10wbQbADO7EfgmcLVzLhpXpZxQm80sAbgX+HPn3EiYagulYH7W/cB659yzzrkh/L8A5AELQ1vipAumzV8FzgNmAqn4+9pfMLO0kFborUk9lsViMOwCksxs3phtyzhxV8n2wGtj92tyzrWFsL5QCabdmNlVwL8D1znn3glDfaEw0TZn4T8r+rGZNQJvBrYfMrOLQ1/mpAvmZ70V/3hKtAumzcuAHzvnDjnnRpxzPwCmAYtCX6ZnJvdY5vWgSogGah4DfoR/wOpC/KdVi0+w31X4+5sX4f/gvMAEBmsj9RFEu98FtAGXeF1zONoMGP4ZOUcf5+E/WJYCKV63IcQ/6/lAH3AFkIi/S2VvNLY7iDZ/FViPf/ZSAvBRoBfI8boNZ9DmJPxnPX+Pf7A9lRNMmpjsY5nnDQ/RP2Yu8FTgw3AQ+HBgexn+U66yMfveCTQBXcB/AlO8rj/U7QZeBEYC244+nvW6/lD/rMd8TzlRPCsp2HYD7wP2BD7j6050MI2GRxCf71T8U1sbAm3eBFzldf1n2Oa7Ap/VsY+7Qn0s0yJ6IiIyTiyOMYiIyFlQMIiIyDgKBhERGUfBICIi4ygYRERkHAWDiIiMo2AQEZFxFAwiIjKOgkFERMZRMIhMMjOba2btZrYi8LwkcC+Etd5WJjIxWhJDJATM7NP4165ZCTwJvOOci9bbp0qcUTCIhIiZPQ3Mxr/w2XnOuUGPSxKZEHUliYTOvwNLgO8qFCSa6IxBJATMLAP/fXdfBK4Gljrn2r2tSmRiFAwiIWBmDwKZzrkPmNkD+G8S8wGv6xKZCHUliUwyM7sB/x21PhPYdCewwsxu8a4qkYnTGYOIiIyjMwYRERlHwSAiIuMoGEREZBwFg4iIjKNgEBGRcRQMIiIyjoJBRETGUTCIiMg4/wsk29CRKJuN7wAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(torch.log, min=0,max=1, ty='log(x)', tx='x')"]},{"cell_type":"markdown","metadata":{"id":"oiB_6-711gmE"},"source":["Additionally, we want to ensure our model is able to detect differences between small numbers. For example, consider the probabilities of .01 and .001. Indeed, those numbers are very close together—but in another sense, 0.01 is 10 times more confident than 0.001. By taking the log of our probabilities, we prevent these important differences from being ignored."]},{"cell_type":"markdown","metadata":{"id":"TaShcIxp1gmE"},"source":["Does \"logarithm\" ring a bell? The logarithm function has this identity:\n","\n","```\n","y = b**a\n","a = log(y,b)\n","```\n","\n","In this case, we're assuming that `log(y,b)` returns *log y base b*. However, PyTorch actually doesn't define `log` this way: `log` in Python uses the special number `e` (2.718...) as the base.\n","\n","Perhaps a logarithm is something that you have not thought about for the last 20 years or so. But it's a mathematical idea that is going to be really critical for many things in deep learning, so now would be a great time to refresh your memory. The key thing to know about logarithms is this relationship:\n","\n"," log(a*b) = log(a)+log(b)\n","\n","When we see it in that format, it looks a bit boring; but think about what this really means. It means that logarithms increase linearly when the underlying signal increases exponentially or multiplicatively. This is used, for instance, in the Richter scale of earthquake severity, and the dB scale of noise levels. It's also often used on financial charts, where we want to show compound growth rates more clearly. Computer scientists love using logarithms, because it means that multiplication, which can create really really large and really really small numbers, can be replaced by addition, which is much less likely to result in scales that are difficult for our computers to handle.\n","\n","Observe that the log of a number approaches negative infinity as the number approaches zero. In our case, since the result relfects the predicted probability of the correct label, we want our loss function to return a small value when the prediction is \"good\" (closer to 1) and a large value when the prediction is \"bad\" (closer to 0). We can achieve this by taking the negative of the log:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"q2HOvDvs1gmE","outputId":"294ac7bf-f8af-49b6-8f6c-6a9e09a12d42"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXwAAAEdCAYAAAAPT9w1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAApwUlEQVR4nO3deXxcZb3H8c8ve7M2e9Kmabq3dKF0oywtmwioXBQFURBRERB3cLl471VUrle9XNQriBfBi7LrFWTfN6FsbYFutE33Nm2TJl2ytUmzPPePM6lDTNtJm5mTmfN9v17zaubMmXl+TzL9nmeec+Ycc84hIiKJL8nvAkREJDYU+CIiAaHAFxEJCAW+iEhAKPBFRAJCgS8iEhAKfEk4ZnanmT3ndx1+O5Lfg5ltNLN/HYC2B+R1ZGAp8Acxv4LLzK43s7WxbjdRmNlaM7ve7zoSnZlNNrM/m9kaM+s2s9v9rmmwU+CL+MTM0vyuIc5lApuBHwFLfK4lLijw45iZTTCzx82sJXR71MzG9lrnU2a2zszazOw1M/uImTkzO/ko2i03s/vNbI+Z7TOzl8xsVtjjqWZ2k5nVmFm7mW03s/vDHp9sZk+Hnt9qZivN7DOHaG+LmV0edv8PoT6MDVu2ycyu7vW8K0LLm8zsYTMr7vX4mWa2INSHrWb2v2ZWGPb4nWb23OFep9drvgSMAX4QqtGZWZWZnRr6+cNm9qqZtQFXmNllZtbZ6zUqQuueGrZsrJn9JfQ7221mz5jZ1IPVcZDaZpjZk2a2I/R+WWhmZ/ex6hAzuz3U3wYz+5mZJYW9TkroU+CG0PtqhZld2Z9aBoJzbqFz7lrn3F1AY6zbj0cK/DhlZkOAZ4AM4JTQLRt4qmfkaGYzgXuA+4BjgZ8DvzzKdg34KzAR+AgwB6gDnjWzotBqXwUuBC4BxgH/BLwR9jL3ATuBE4GpwDXA7kM0+yJwRtj904D6nmVmNgaoBF4IW2d2aL0PA2cD04Ebw/pxOvAwcD8wDfgoUAU8FOpjRK/Th/OBjcB/AeWh25awx/8L7+8wCe/3eFhmVgq8CuwA5gFzgdXAS4fa+PQhF6+/pwIzgKeBR8xsfK/1vgpsw+v7N4GvAN8Ie/x2vH5eGerHj4CfmdkX+lELYQOVg97683oSAeecboP0BtwJPHeQx74A7AWKwpaVAvuAS0P37wFe6fW8qwAHnHyIdq8H1h7ksTNCzz8mbFk6sB34fuj+r/DC1w7yGo3AZf34PVwG1IV+Hhfq978Bfwot+yKwrdfvrR5ID1v2z8D2sPsvAT/t1U5lqG/TI32dg9S7Fri+17JTQ6/9mT761tlrWUVo3VPD/h5v9FrHgHXAN47k/RO2zhLgX8Lub+zjPfMToCb08yigG5jYa53vA+/2ep1/PUzbYw9368d75CXg9iP5fxakWwoSryYD7znnGnoWOOfqzGx16DGAY4DeO31fH4B2dzrn3gtrt93M3gxr93+BZ4G1ZvZs6OdHnXP7Q4/fCNxuZpfh/Ud9xDn39iHafB4oMbMpwEl4o92ngK+FRuOn8/7RPcBK51x72P2teBvEHrOBuWb2lT7aGwe8G+Hr9NdbR/Cc2cDMPka8Q/BqjUjo08AP8X5fZUAK3ifEkb1W7f0eWQBcZ2a5wCy8jc2i938QIgXoirQWAOecDgyIMQV+fOvrVKfWa3k0Tod6yHadc++a2SjgTLzpkF8BPzazuc65Jufcj83sHrwpktOB75nZz51zfR7G55zbYmbr8D5dnIgX7ovx3r/TQm18r9fT9ve670I19kgCfgbc1UeTtf14nf5q7XW/u491UnvdT8Lb6PW1cerP3PWdeJ9ivgNswPs0eD9wuJ3HvX9v4P0d9vZar1/vtUimbJxz2f15TTk0BX78WgFcZWZFPaP80FzveP4+x/wecEKv580dgHaLzOyYnlG+maXjzeX/pmcl51wL8BDenPhP8KZ8TgEeDT2+PrT+b8zsn4FvA4c6bvsFvMA/HrjROddtZn/Dm28u5R9H+IezCJgcpVHmfiA5wnV3AMlmVuqcqwstm9FrnUV4Uz9bnXP7jqKu+cB3nHOPAJhZFjAaWN5rvd7vkRPwpsyazGxxaFmlc+6xo6gFvP0hEkMK/MEv28ym91rWBtyLN2/6gJl9G28UdiPelMMDofVuAhaa2Y+Au/F2tF4beuxwo7G0PtrtxgvWt4B7zezLeCPMf8ObGrgVIFTPNrxpkb3Ap/A+7lebWTbeyPoveKPMoXgj/fc4tBfwRuOtwNthy24ENjjnNh7m+b19H3jGzH4B/AFoxpseuQD4ylEG6wbgJDOrxOv/rkOs+1ao7Z+GNoxjQrWFuxlvn81fzewGvJ3AFcA5wOPOudcirGs1cLGZvYq3QfoRfW+Yppv3PYJ78aZwvo63HwHn3Foz+z3wOzP7Dt70TxYwEyh2zv0swlqOekondHDCMaG72UBB6D27P3zKUcL4vRNBt4Pf8D6Cuz5uq0KPTwCeAFpCt8fotaMLL2zXAe14/zkvDL3GzEO0e/1B2m0LPV6ONxWwB29a4GVgVtjzr8SbcmkK1bUQOC/0WAZekGzA23DtwNtAjTjM76IEb4PzcNiyqaG6bu/j9/Zcr2WXeG/39y2bh7ePoxlvQ7IS7yimlP68Th+1zgr1f1+ovir+vtO2oo/1Pxxqex/efPlZhO20Da0zEm8nfH3ob7kJbyM+6jDvn+fC7k8FXgu1sxG4OtT/O8PW2Qj8O95+mCa8jdV/Aslh6yTjTQutwvs00xB6D1zQ63UOudN2AP5/VB3kfbrR7/+7g/VmoV+cBISZXYr3n7nQObfH53JEJIY0pZPgzOxbeMex78I72uNnwJ8V9iLBo8BPfNPw5u0L8OZ+7wZ+4GtFIuILTemIiASETq0gIhIQg3pKp6ioyFVVVfldhohIXFm8eHGDc+4fzrM0qAO/qqqKRYsW+V2GiEhcMbNNfS3XlI6ISEAo8EVEAkKBLyISEAp8EZGAUOCLiASEAl9EJCAU+CIiAZGQgf/QOzXc/Uafh6GKiARWQgb+E8tquet1Bb6ISLiEDPyy3Azqmtv8LkNEZFBJyMAvzU1nz94O2jq6/C5FRGTQSNDAzwCgrkmjfBGRHgkZ+GV5PYHf7nMlIiKDR0IGfs8Iv1YjfBGRAxI68OsaFfgiIj0SMvBzM1IYkpqsOXwRkTAJGfhmRmluuqZ0RETCJGTggzets0M7bUVEDkjYwC/Ly9AIX0QkTMIGfmmuF/jOOb9LEREZFBI68Pd3dtO4r8PvUkREBoWEDfwyHYsvIvI+CRv4pbnpANTqWHwRESChA98b4etIHRERT8IGfknPCF9TOiIiQAIHfnpKMgVZaQp8EZGQhA186PnylQJfRAQSPPDLdHoFEZEDEjrwS3MzqG3UTlsREQhA4O9sbaejq9vvUkREfJfQgV+Wl4FzUN+sUb6ISMwD38zGmVmbmd0d7bZKdWimiMgBfozwbwEWxqKhv3/5SoEvIhLTwDezi4A9wPOxaO/A+XR0egURkdgFvpnlAj8Crj3MeleY2SIzW1RfX39UbeZnppGabNTq9AoiIjEd4f8YuMM5t+VQKznnbnPOzXLOzSouLj6qBpOSjJIcfflKRAQgJRaNmNl04APAcbFoL5yufCUi4olJ4AOnAlXAZjMDyAaSzewY59yMaDZcmpvOqtrmaDYhIhIXYjWlcxswBpgeuv0WeBw4K9oNj8jPpGbXPjr15SsRCbiYBL5zbq9zrrbnBrQAbc65o9srG4GJ5Tns7+pmQ0NrtJsSERnUYjWl8z7Ouetj1dbEslwAVtY2M640J1bNiogMOgl9agWAMcXZpCQZq2ub/C5FRMRXCR/4aSlJjCnOZtV27bgVkWBL+MAHmFCWoyN1RCTwAhH4E8tz2LpnH01tHX6XIiLim2AEfpm3s3a1RvkiEmABCXzvSB1N64hIkAUi8MvzMsjJSGHVdh2pIyLBFYjANzMmleVqSkdEAi0QgQ/ejttVtc045/wuRUTEF4EJ/AllObS0d1Kze5/fpYiI+CIwgd+z41bTOiISVIEJ/AmhQzNX6RQLIhJQgQn87PQURhQM0aGZIhJYgQl8gAmluQp8EQmsQAX+MeU5rK9vobW90+9SRERiLlCBP6uqgG4Hizbt9rsUEZGYC1jg55OSZLyxfqffpYiIxFygAj8zLYVjRwxV4ItIIAUq8AHmji5gaU2j5vFFJHACF/gnjC6iq9uxcOMuv0sREYmpwAX+jJFDSU023livwBeRYAlc4GempXBshebxRSR4Ahf4AHNHF7JsayMtmscXkQAJZOCfMKZQ8/giEjiBDPwZlfmheXxN64hIcAQy8IekJTN9xFDtuBWRQAlk4AOcMLqQZTV7aGrr8LsUEZGYCGzgnzKhmG4HL67a4XcpIiIxEdjAP25EPiU56Ty1vNbvUkREYiKwgZ+UZJw1uYyXVtezb3+X3+WIiERdYAMf4JwpZezr6OLlak3riEjiC3TgzxlVQH5mKk9qWkdEAiDQgZ+SnMQHjynjhZU7aO/UtI6IJLaYBb6Z3W1m282sycyqzezyWLV9KGdPKaO5vZPX1upLWCKS2GI5wv8PoMo5lwv8E3CDmc2MYft9OnFsITnpKTy5fLvfpYiIRFXMAt85t8I5195zN3QbE6v2DyY9JZkzJpXw7Ht1dHZ1+12OiEjUxHQO38x+Y2Z7gVXAduCJPta5wswWmdmi+vr6mNR1ztRydu/t4JW1DTFpT0TEDzENfOfc1UAOMA94EGjvY53bnHOznHOziouLY1LXaRNKKMxK44G3tsSkPRERP8T8KB3nXJdz7lWgAvhSrNvvS1pKEh+fWcFzK+vY0dzmdzkiIlHh52GZKQyCOfweF80eQWe34/8W1/hdiohIVMQk8M2sxMwuMrNsM0s2s7OATwEvxKL9SIwuzub4UQU8sHAL3d3O73JERAZcrEb4Dm/6pgbYDdwIfMM593CM2o/Ip+ZUsmnnXl7XhVFEJAGlxKIR51w9cEos2joaZ08pI++RVO57azMnjS3yuxwRkQEV6FMr9JaRmsz5M4bz9Ipadrb8wwFEIiJxTYHfy6fnVNLR5bjnzc1+lyIiMqAU+L2MK83htAnF3PnaRp0nX0QSigK/D186dSy7Wvfz58X6IpaIJI5DBr6ZpZjZ+WZ2R+h0B2tD/95hZp8ws5js9I212VX5zByZz/+8vJ4OnV9HRBLEQQPfzK4E1gNXAuuAfweuCv27DvgisN7MropBnTFlZnzplDFs3bOPx5fqLJoikhgONUIfD8xxzvV1OaiHgJ+YWTlwbVQq89npE0sYX5rNrS+t47zpwzAzv0sSETkqBx3hO+euPUjYh6+z3Tn3rYEvy39JScZVp4xhdV0zz6/UNW9FJP5FtNPWzC7pY5mZ2XUDX9Lgce6xwxhZmMmNz6ymS6dbEJE4F+lROj8wswfMLB/AzEYDrwIfilplg0BqchLf+uAEVtU289d3tvpdjojIUYk08KcDTcAyM/sx8BbwGHFwuoSj9eGp5UwdnsdNz1bT1qHj8kUkfkUU+M65VuB7wC7gX4BHgZ865xL+mMWkJOO6cyaydc8+7n5jk9/liIgcsUjn8D8MLAFeBKbhHcHzipmNimJtg8aJY4uYP76Ym19cS+O+Dr/LERE5IpFO6fwW+Kxz7uvOueV4lyh8GlgUtcoGme+ePYHGfR3c/MIav0sRETkikQb+NOfcsz13nHPdzrkfA2dGp6zBZ/KwPD45awS/X7CRVbVNfpcjItJvh/qmbVrPz8653X2t45x728zSo1HYYPTdsyeSm5HCvz60XFfFEpG4c6gR/lIz+46ZDevrQTMrN7PvAO9Ep7TBJz8rjevOmcSiTbt17VsRiTuHCvyTgRJgiZlVm9mjZnZv6N/VwLtAITA/BnUOGp+YWcGskfn8x5Mr2d263+9yREQidqhTKzSETpswHPgC8CSwHHgC+DxQ4Zz7rnOuISaVDhJJScYNH5tCU1snNzy+0u9yREQidtjTGzvn9gOvhG4CTCzL5apTRnPLi+s4e0oZZx5T6ndJIiKHFdH57M3s8wd5qB2oAd5wzgXqIrBfP2M8L6yq57oHlzKjcj6F2YHZdy0icSrSC5hcCpwA1OEFfAVQinccfhWAmZ3nnAvMcflpKUncdOGxnHfzAv7loeXceskMnUJZRAa1SI/DXwF82zlX6Zw70TlXiXce/Hfwwv9W4NdRqnHQmlSeyzUfHM9TK2p5SCdXE5FBLtLA/zRwc69ltwIXO+cc8J/AMQNZWLz44rzRzK7K5/sPr2B9fYvf5YiIHFSkgV8HnNtr2YeBniuDZACBPMlMcpLxq4uOIzXZuPqet3VGTREZtCIN/K8BfzSzBWZ2v5ktAO4Cvhp6/HgCOKXTY9jQIdz0yemsqm3mh4+u8LscEZE+RbTT1jn3jJmNAc4BhuEdi/+4c25nz+PAM1GrMg6cNqGEq08dw29eWsfsqgLOn1Hhd0kiIu8T6VE6OOcazOxlvC9ibe0Je/m7a84cz+JNu/neQ8sYV5LD1Io8v0sSETkg0vPhl4fCfg3wILDWzP52sPPsBFVKchK3XDyDwqx0Lv/jQuqa2vwuSUTkgEjn8G/FuwBKgXOuHMjHOyTzt9EqLF4VZadz+2dn0dzWyRV/XKSduCIyaEQa+CcD14YuddhzycPvACdGq7B4Nqk8l19+cjpLtzby7f9bqlMpi8igEGng7+Yfj7OfAOwZ0GoSyAcnl/Gdsyby6JJt/PSpVX6XIyIS8U7bnwPPmdkdwCZgJPA54N+iVVgiuOqU0Wxv3Mdtf1tPSU46l88b7XdJIhJgEY3wnXO/Az4JFOF9AasI+JRz7rZInm9m6WZ2h5ltMrNmM3vHzM454qrjhJnxg3Mn86GpZdzw+EoeflenXxAR//TnsMwXgBeOop0twCnAZuBDwJ/MbKpzbuMRvmZcSE4ybrpwOrta3+LaPy0hKy2FD+h0yiLiA/NOhdPHA2Y/iuQFnHPfP6KGzZYCP3TO/eVg68yaNcstWpQYJ+BsbuvgkjveYuW2Jm67dCanTijxuyQRSVBmttg5N6v38kNN6YyI4HZEXyc1s1JgPN5ZOHs/doWZLTKzRfX19Ufy8oNSTkYqf/zcHMaVZnPFXYtZsDZQFwoTkUHgoCP8qDVolop3ucR1zrkrD7VuIo3we+xq3c+nf/cGG3e2cvulszl5XJHfJYlIgjmSEX40ikjCO+nafuArsWx7sCjISuPuy4+nqjCLz/9hIc+vrPO7JBEJiJgFvnmXg7oD70pZH3fOBfJ0yuB9G/f+K+YyqSyHK+9azONLt/tdkogEQCxH+LcCk4BznXP7YtjuoDQ00xvpH1c5lK/e9zb3vbXZ75JEJMHFJPDNbCRwJTAdqDWzltDt4li0P1jlZKTyh8/P4ZTxxVz34DJ+8Ww1sd6nIiLB0e/AN7PH+/sc59wm55w55zKcc9lht3v6+1qJJjMthdsuncUFMyv41fNruO7BZXR2dftdlogkoIi/eBVm3oBXEXCpyUn8/BPTKM3N4OYX17KtsY2bP30cuRmpfpcmIgnkSKZ0bMCrEMyMb501gZ99fCqvrW3g/N+8xqadrX6XJSIJ5EgC/5DHzsvR+eTsSu76wvE0tLTz0VsW8Po6XVhMRAZGvwPfOXdvNAqRvzthTCF/vfokCrLSuOSON7nj1Q3amSsiRy2mX7ySyFUVZfHXL5/EGRNL+PFj7/GNB95l335dPUtEjpwCfxDLyUjlt5fM5NtnTeCRJdv46C0LWLuj2e+yRCROKfAHuaQk48unjeUPn5tDQ0s75/56AX9ZXON3WSIShxT4cWL++GKe+Po8plXkce2fl3Dtn5bQ0t7pd1kiEkcU+HGkNDeDey4/nq+dMY6H3qnhQ796hbc37/a7LBGJEwr8OJOSnMQ1Z47ngStPoKvbccFvX+eXz1XToW/nishhKPDj1OyqAp78xjzOnVbOL59bw/m/eY3qOu3QFZGDU+DHsdyMVH550XHcevEMtu7Zx0f++1VufWmdzsUjIn1S4CeAc6aW88w353P6xBJ+9tQqzrtlAcu3NvpdlogMMgr8BFGUnc6tl8zg1otnUNfUznm3LOCnT67Sl7VE5AAFfgIxM86ZWs7z15zCx2cM57cvr+PMX7zMC6t0GUURUeAnpLzMVH7+iWO5/4q5ZKQm8/k7F3HlXYuo2b3X79JExEcK/AQ2d3QhT3xtHt8+awIvV9fzgZte5lfPraGtQ9M8IkGkwE9waSlJfPm0sTx/7amcMbGUXzxXzQduepknlm3XGThFAkaBHxDDhw7hlotncO8Xjyc7PYWr73mbT/7PGyyt2eN3aSISIwr8gDlxTBGPf20eP/nYVNY3tPBPNy/g6/e/w5Zdmt8XSXQ2mD/Wz5o1yy1atMjvMhJWc1sHt760jt8v2EB3N1wydyRfOX0sBVlpfpcmIkfBzBY752b9w3IFvtQ2tvGLZ6v58+ItZKal8IWTR3H5vFHk6CLqInFJgS+HtaaumZuerebJ5bUMzUzlyvljuPSEkWSlp/hdmoj0gwJfIrasppEbn1nNy9X1FGalceUpo7lk7kgy0xT8IvFAgS/9tnjTbn75XDWvrGmgMCuNL8wbxWfmjtRUj8ggp8CXI7Z40y7++/m1vFxdT96QVC47sYrLTqwiXzt3RQYlBb4ctaU1e/j1C2t59r06hqQmc9GcEVw+bzTDhw7xuzQRCaPAlwGzpq6ZW19exyPvbgPgI9PK+eL80UweludzZSICCnyJgprde/n9qxu5f+Fm9u7v4qSxhXzh5FGcOr6EpCTzuzyRwFLgS9Q07u3gnrc28YfXNlLX1M7o4iw+d9Iozj9uuA7pFPGBAl+irqOrmyeWbeeOVzewtKaRnIwULpg5gktPGElVUZbf5YkEhgJfYsY5x9ub9/CH1zbyxLLtdDnH/HHFfGbuSE6bWEKypntEokqBL76oa2rj3jc3c//CzdQ1tTN86BAumj2CC2ePoDQ3w+/yRBKS74FvZl8BLgOmAvc55y473HMU+Imjo6ub596r4643NvHaup0kJxkfmFTCRXMqmT+uWKN+kQF0sMCP5R61bcANwFmADtwOmNTkJM6ZWs45U8vZ0NDK/W9t5s+La3h6RR3leRlcMGsEF8ysYERBpt+liiSsmE/pmNkNQIVG+LK/s5vnVtZx/8ItvLKmHufghNGFXDi7grMnlzMkLdnvEkXiku9TOmGFHDLwzewK4AqAysrKmZs2bYphdeKXrXv28ZfFNfzf4ho279pLdnoKH5paxvkzKphTVaDj+kX6IW4CP5xG+MHT3e14c8MuHny7hieWbad1fxfDhw7ho8cN42PHVTC2JNvvEkUGPQW+xJ29+zt5ZkUdD76zlVfX1NPtYMrwXM47djgfObac8jztChLpiwJf4tqO5jYeeXcbjy7ZxpKaRsxgTlUB5x47jHOmlFGYne53iSKDhu+Bb2YpeEcF/QCoAL4IdDrnOg/2HAW+9GVDQyuPvLuNR5ZsZV19K8lJxoljCvnw1HLOmlym0zZL4A2GwL8eL+zD/dA5d/3BnqPAl0NxzrGqtpnHlm7jsaXb2bRz74HwP2dKOR+cXEqRRv4SQL4H/pFQ4EuknHOs2NbE48u288QyL/yTDOaMKuDsyWWcNaVMc/4SGAp8CQznHCu3N/Pk8u08ubyWtTtaADi2Io8PTi7jrMmljCnOxkyHekpiUuBLYK2rb+HpFbU8vbyWJTWNAIwqyuLMY0r5wKRSZlQOJSU5yecqRQaOAl8EqG1s49mVdTyzopY31u+ko8uRn5nKaRNKOH1SCfPHF5Ori7RLnFPgi/TS3NbB36obeG5lHS+u3sGevR2kJBmzqvI5fWIJp08s0dSPxCUFvsghdHZ1886WPTy/cgcvrtrB6rpmACryh3DahBJOnVDMCWMKyUzTFbxk8FPgi/TD1j37eHHVDl5avYMFa3eyr6OLtOQk5owqYP74IuaPL2ZCaY5G/zIoKfBFjlB7ZxcLN+zm5eodvFxdT3Wdd9RPSU4688YVM398ESeNLdIx/zJoKPBFBsj2xn38rbqeV9Y08OraBvbs7QBgUnkuJ48t5KSxRcwZVaDpH/GNAl8kCrq6HSu2NXrhv6aBxZt2s7+rm9RkY0ZlPieOKeLEsYUcWzGUtBQd+imxocAXiYF9+7tYuHEXC9Y1sGBtAyu2NeEcDElNZlZVPieMKeTEMUVMGZarY/8lahT4Ij7Ys3c/b6zfxWvrGnh93U7WhL71m52ewuyqfOaOLuT40YXaAMiAGgzXtBUJnKGZaZw9pYyzp5QBUN/czhvrdx64vbi6HoCstGRmjPQ2AHNGFTCtIo/0FF3iUQaWRvgiPtrR3MbCDbt5c8NO3ly/68Dx/2kpSUyvGMrsUfnMripgxsh8fQNYIqYpHZE4sLt1P4s27ebN9TtZuHEXy7c10dXtSDKYUJbL7Kp8Zo7MZ1ZVAcPyMvQ9AOmTAl8kDrW2d/Lulj28tWEXizft5p3Nu2nd3wVAWW4GM6vymVHpbQSOKc/VkUACaA5fJC5lpadw0ljvi13gnQJiVW0zizftPnB7fOl2ANJTkpg6PI8ZI/OZUTmUGZX5lORm+Fm+DDIa4YvEudrGNt7e7IX/25t3s2JrE/u7ugEYlpfBcZX5TB8xlOmVQ5kyLI8hadoZnOg0pSMSEO2dXSzf2sS7W/bw7pY9vL1pN1v37AMgOcmYUJrDsSOGctyIoUwbkce4khySk7QvIJFoSkckINJTkpk50pvX71Hf3M6S0AZgSc0eHlu6jfve2gxAZloyU4blMa0ij2kjhjJteB4jCzO1QzgBaYQvEkDd3Y4NO1tZWrOHJVsaWVKzhxXbmtjf6U0F5Q1JZerwPKZW5Hn/Ds+jIn+INgJxQiN8ETkgKckYU5zNmOJsPnZcBQAdXd1U1zWztKaRpTWNLN/ayO2vrKejyxsUDs1MZcqwPCYPz2Xq8DymDMujsiCTJE0HxQ2N8EXkoNo7u1hd28yyrd4GYGlNI9V1zQc2AjnpKUwaluttCIblMnl4LmOKs0nVaSJ8pRG+iPRbekoy0yqGMq1i6IFl+zu9TwLLtzayYlsTy7c1cu9bm2jr8KaD0lKSmFCaw+RhuRwzLJdjynOZWJ5Ldrrixm/6C4hIv6SlJDFleB5ThucdWNbV7djQ0MKKbU2s2NbEe9uaeHpFLfcv3HJgncqCTCaV5zCpPJdJ5d6GQPsFYkuBLyJHLTnJGFuSw9iSHM6bPhwA5xy1TW2s3O5tAN7b3sTK7c08814dPTPJOekpTCjLYWJ5DhPLcplUnsP40hxydN6gqFDgi0hUmBnleUMozxvC6RNLDyxvbe9kdV0zq7Y3s3J7Eyu3N/HwO9u4u33zgXWGDx3CxNCGYHyptzEYXZylfQNHSYEvIjGVlZ7CjErvHEA9nHNs3bOP1bXNrArdVtc28XJ1PZ3d3seB1GRjdFE248tymFCazbjSHCaU5jCiIFNfHIuQAl9EfGdmVORnUpGfyRmT/v5poL2zi/X1rVTXeRuB6tpm3tm8m0eXbDuwTnpKEmNLshlfmsO40mzGl3ifCiryh+iQ0V4U+CIyaKWnJB/YyXte2PKW9k7W1DWzpq6F1XXNVNc18/q6nTz0ztYD62SkehuCcSU5jC3JDv2cTWVBZmCvLqbAF5G4k52ewnGV+RwXNi0E0Livg7U7WlhT10x1XQtr61t4c/37NwRpyUlUFWV6G4HibMaENgaji7IT/sRyCnwRSRh5Q1L/4TxCAM1tHayrb/U2BjuaWbejhfe2NfHU8lpCuwgw83YW93wDeUxJFqOLvH+Ls9MT4vBRBb6IJLycjFTvFNEjhr5veVtHFxt3trJuRyvr6ltYu6OFdfUtvLVhF/s6usKen8Lo4mzGFGUxujiL0cXZjC7Ooqowi4zU+PlUoMAXkcDKSE1mYlkuE8ty37e8u9uxrXEf6+tbWV/fwrr6VtY3tPD6+p08GDY9ZAbD8oZ4G4GiLEYVZTGqOJvRRVkMGzpk0B09FLPAN7MC4A7gg0ADcJ1z7t5YtS8iEqmkpL8fNTR/fPH7Hmtt72RDQyvrG7yNwYaGVjY0tPKXt7fS0t55YL205CQqCzOpKsxiVFEmo4qyqSrKZFRRFqU5Gb4cQRTLEf4twH6gFJgOPG5mS5xzK2JYg4jIUclKT/mHU0uA912C+pZ2Njbs9TYEO1vZGNoY/G1N/YFTT4N3BFFVYRYjCzOpKvKmhqoKs6gqyozqxiAmgW9mWcDHgSnOuRbgVTN7BPgM8M+xqEFEJJrMjJKcDEpyMpgzquB9j/VMEW1s2MuGna1samhl405vJ/KLq+oPXJISvO8VVBZk8tvPzGRMcfaA1hirEf54oMs5Vx22bAlwSu8VzewK4AqAysrK2FQnIhJF4VNEJ48ret9jXd2O7aGNwaZdrWzauZeNDa3kZ6YNeB2xCvxsoLHXskYgp/eKzrnbgNvAOx9+9EsTEfFPcvjGgKLDP+EoxOrrZi1Abq9luUBzjNoXEQm8WAV+NZBiZuPClh0LaIetiEiMxCTwnXOtwIPAj8wsy8xOAs4D7opF+yIiErsRPsDVwBBgB3Af8CUdkikiEjsxOw7fObcL+Gis2hMRkfcL5jlCRUQCSIEvIhIQCnwRkYAw5wbvd5vMrB7Y1I+nFOGdmC1IgthnCGa/g9hnCGa/j7bPI51zxb0XDurA7y8zW+Scm+V3HbEUxD5DMPsdxD5DMPsdrT5rSkdEJCAU+CIiAZFogX+b3wX4IIh9hmD2O4h9hmD2Oyp9Tqg5fBERObhEG+GLiMhBKPBFRAJCgS8iEhBxFfhmVmBmD5lZq5ltMrNPH2Ldb5pZrZk1mtnvzSw9lrUOpEj7bWafNbPFZtZkZjVm9nMzi+WF6gdMf/7WYc95wcxcvPYZ+v0eH21mj5lZs5k1mNnPY1nrQOnH+9vM7AYz2xr6f/2SmU2Odb0Dwcy+YmaLzKzdzO48zLoDlmVxFfjALcB+oBS4GLi1rz+4mZ2Fd3H0M4AqYDTww9iVOeAi6jeQCXwD71t6x+P1/1sxqnGgRdpnAMzsYmJ49tcoivQ9ngY8C7wAlAEVwN0xrHMgRfq3vgD4PDAPKABeJ36vqbENuAH4/aFWGvAsc87FxQ3IwntTjA9bdhfw0z7WvRf4Sdj9M4Bav/sQ7X738dxrgEf97kO0+wzk4V1VbS7ggBS/+xDtfgNXAK/4XXOM+/xd4E9h9ycDbX734Sj7fwNw5yEeH9Asi6cR/nigyzlXHbZsCd4fvbfJocfC1ys1s8Io1hct/el3b/OJz8tI9rfPPwFuBWqjXViU9affc4GNZvZkaDrnJTObGpMqB1Z/+nw/MNbMxptZKvBZ4KkY1OinAc2yeAr8bKCx17JGICeCdXt+7mvdwa4//T7AzD4HzAJujFJd0RRxn81sFnAS8OsY1BVt/flbVwAXAf8NDAMeBx4OTfXEk/70eTvwCrAa2Ic3xfPNqFbnvwHNsngK/BYgt9eyXKA5gnV7fu5r3cGuP/0GwMw+CvwUOMc5F49nGYyoz2aWBPwG+LpzrjNGtUVTf/7W+4BXnXNPOuf2423YC4FJ0S1xwPWnzz8AZgMjgAy8uewXzCwzqhX6a0CzLJ4CvxpIMbNxYcuOpe8pixWhx8LXq3PO7YxifdHSn35jZmcDvwPOdc4ti0F90RBpn3PxPsU8YGa1wMLQ8hozmxf9Mgdcf/7WS/H2V8S7/vT5WOAB51yNc67TOXcnkA8cE/0yfTOwWeb3Tot+7uC4H+8C6Fl4H+Mbgcl9rHc23nzuMXhviBeIYCfnYL31o9+nAzuB+X7XHIs+A4Z3hErPbTZeCA4H0vzuQ5T/1hOAvcAHgGS8qY118djvfvT5B8CreEfzJAGfAVqBoX734Qj6nIL3KeU/8HZSZ9DHwQYDnWW+d7yfv6QC4K+hP/Jm4NOh5ZV4H30qw9a9BqgDmoD/BdL9rj/a/QZeBDpDy3puT/pdf7T/1mHPqSKOj9Lpb7+B84G1off4S32FZDzc+vH+zsA7hHN7qM9vA2f7Xf8R9vn60Hs1/HZ9tLNMJ08TEQmIeJrDFxGRo6DAFxEJCAW+iEhAKPBFRAJCgS8iEhAKfBGRgFDgi4gEhAJfRCQgFPgiIgGhwBeJkJmNMbNdZjYjdH9Y6Fz0p/pbmUhkdGoFkX4wsy/indtkJvAQsMw5F6+XkZSAUeCL9JOZPQKMwjvh1WznXLvPJYlERFM6Iv33O2AK8GuFvcQTjfBF+sHMsvGuK/oicA4w1Tm3y9+qRCKjwBfpBzO7A8hxzl1oZrfhXXzjQr/rEomEpnREImRm5+Fdgeiq0KJrgBlmdrF/VYlETiN8EZGA0AhfRCQgFPgiIgGhwBcRCQgFvohIQCjwRUQCQoEvIhIQCnwRkYBQ4IuIBMT/A9Il7rAp/3hbAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(lambda x: -1*torch.log(x), min=0,max=1, tx='x', ty='- log(x)', title = 'Log Loss when true label = 1')"]},{"cell_type":"markdown","metadata":{"id":"q2RUtNYk1gmF"},"source":["> s: It's not just computer scientists that love logs! Until computers came along, engineers and scientists used a special ruler called a \"slide rule\" that did multiplication by adding logarithms. Logarithms are widely used in physics, for multiplying very big or very small numbers, and many other fields."]},{"cell_type":"markdown","metadata":{"id":"JIdRVY941gmF"},"source":["Let's go ahead and update our previous table with an additional column, `loss` to reflect this loss function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tVnL36bA1gmF","outputId":"26c8941d-b756-4b7d-ff55-a788fbf75d1a"},"outputs":[{"data":{"text/html":["\n","
\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
37targidxresultloss
0.6024690.397531000.6024690.506720
0.5020650.497935110.4979350.697285
0.1331880.866811020.1331882.015990
0.9966400.003360130.0033605.695763
0.5959490.404051140.4040510.906213
0.3661180.633882050.3661181.004798
\n"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","from IPython.display import HTML\n","df['loss'] = -torch.log(tensor(df['result']))\n","t = df.style.hide_index()\n","#To have html code compatible with our script\n","html = t._repr_html_().split('')[1]\n","html = re.sub(r'', r'
', html)\n","display(HTML(html))"]},{"cell_type":"markdown","metadata":{"id":"wxSAWUaL1gmG"},"source":["Notice how the loss is very large in the third and fourth rows where the predictions are confident and wrong, or in other words have high probabilities on the wrong class. One benefit of using the log to calculate the loss is that our loss function penalizes predictions that are both confident and wrong. This kind of penalty works well in practice to aid in more effective model training. \n","\n","> s: There are other loss functions such as [focal loss](https://arxiv.org/pdf/1708.02002.pdf) that allow you control this penalty with a parameter. We do not discuss that loss function in this book."]},{"cell_type":"markdown","metadata":{"id":"fvfXaVr-1gmG"},"source":["We're calculating the loss from the column containing the correct label. Because there is only one \"right\" answer per example, we don't need to consider the other columns, because by the definition of softmax, they add up to 1 minus the activation corresponding to the correct label. As long as the activation columns sum to 1 (as they will, if we use softmax), then we'll have a loss function that shows how well we're predicting each digit. Therefore, making the activation for the correct label as high as possible must mean we're also decreasing the activations of the remaining columns. "]},{"cell_type":"markdown","metadata":{"id":"YrsQv7-51gmG"},"source":["### Negative Log Likelihood"]},{"cell_type":"markdown","metadata":{"id":"9S7d2QNq1gmG"},"source":["Taking the mean of the negative log of our probabilities (taking the mean of the `loss` column of our table) gives us the *negative log likelihood* loss, which is another name for cross-entropy loss. Recall that PyTorch's `nll_loss` assumes that you already took the log of the softmax, so it doesn't actually do the logarithm for you."]},{"cell_type":"markdown","metadata":{"id":"blzPwYW81gmH"},"source":["When we first take the softmax, and then the log likelihood of that, that combination is called *cross-entropy loss*. In PyTorch, this is available as `nn.CrossEntropyLoss` (which, in practice, actually does `log_softmax` and then `nll_loss`):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_JeY5p7T1gmH"},"outputs":[],"source":["loss_func = nn.CrossEntropyLoss()"]},{"cell_type":"markdown","metadata":{"id":"m-TIqLE21gmH"},"source":["As you see, this is a class. Instantiating it gives you an object which behaves like a function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RlXCcCRH1gmH","outputId":"7478efd1-77b2-47b2-dfe3-7699e75cc727"},"outputs":[{"data":{"text/plain":["tensor(1.8045)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss_func(acts, targ)"]},{"cell_type":"markdown","metadata":{"id":"R_ouTJeJ1gmI"},"source":["All PyTorch loss functions are provided in two forms, the class just shown above, and also a plain functional form, available in the `F` namespace:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"j-tHlPsI1gmI","outputId":"d4852f6e-32b5-4604-dc26-5071cdde6a99"},"outputs":[{"data":{"text/plain":["tensor(1.8045)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["F.cross_entropy(acts, targ)"]},{"cell_type":"markdown","metadata":{"id":"41Hn6puv1gmI"},"source":["Either one works fine and can be used in any situation. We've noticed that most people tend to use the class version, and that's more often used in PyTorch's official docs and examples, so we'll tend to use that too.\n","\n","By default PyTorch loss functions take the mean of the loss of all items. You can use `reduction='none'` to disable that:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cmzcueRF1gmI","outputId":"ce1d5d9b-6f3e-4ca0-8f41-eb479cfc2925"},"outputs":[{"data":{"text/plain":["tensor([0.5067, 0.6973, 2.0160, 5.6958, 0.9062, 1.0048])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["nn.CrossEntropyLoss(reduction='none')(acts, targ)"]},{"cell_type":"markdown","metadata":{"id":"XJlNMsdM1gmJ"},"source":["You will notice these values match the `loss` column in our table exactly."]},{"cell_type":"markdown","metadata":{"id":"7FYoqaQ31gmJ"},"source":["> s: An interesting feature about cross-entropy loss appears when we consider its gradient. The gradient of `cross_entropy(a,b)` is just `softmax(a)-b`. Since `softmax(a)` is just the final activation of the model, that means that the gradient is proportional to the difference between the prediction and the target. This is the same as mean squared error in regression (assuming there's no final activation function such as that added by `y_range`), since the gradient of `(a-b)**2` is `2*(a-b)`. Because the gradient is linear, that means we won't see sudden jumps or exponential increases in gradients, which should lead to smoother training of models."]},{"cell_type":"markdown","metadata":{"id":"pAHv2oII1gmJ"},"source":["We have now seen all the pieces hidden behind our loss function. But while this puts a number on how well (or badly) our model is doing, it does nothing to help us know if it's actually any good. Let's now see some ways to interpret our model's predictions."]},{"cell_type":"markdown","metadata":{"id":"5pxCPgdy1gmK"},"source":["## Model Interpretation"]},{"cell_type":"markdown","metadata":{"id":"QzZdu9wi1gmK"},"source":["It's very hard to interpret loss functions directly, because they are designed to be things computers can differentiate and optimize, not things that people can understand. That's why we have metrics. These are not used in the optimization process, but just to help us poor humans understand what's going on. In this case, our accuracy is looking pretty good already! So where are we making mistakes?\n","\n","We saw in <> that we can use a confusion matrix to see where our model is doing well, and where it's doing badly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bCO9AdzI1gmK","outputId":"449c9c2a-3ea4-4e94-eafb-3af4a9fc68b5"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsQAAALTCAYAAAARhhSgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAJOgAACToB8GSSSgAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOydeXhV1dm37x+EKAoiOCEJlgQEJMggCGKB4lBHsE4M4sDUOlSrb/ta39ZapWorH0qpFlutrcW54FQVK+IAGgFlDBAGsSBKghODSJDQJDzfH2cnPSQnyclJyDknee7r2lf2Xmvdez17B3W5WGs/MjMcx3Ecx3Ecp7HSJN4BOI7jOI7jOE488QGx4ziO4ziO06jxAbHjOI7jOI7TqPEBseM4juM4jtOo8QGx4ziO4ziO06jxAbHjOI5TYyQ1l/SKpJ2Snq3FfS6XNKcuY4sXDelZHKexIf/smuM4TsNF0mjgZ0BXYBeQA/zWzN6r5X2vBH4CnGpmxbUONIGR1AH4GGjW0J/VcRorPkPsOI7TQJH0M+APwO+AY4DjgD8BP6iD238HWO8DxBCSUuIdg+M4seMDYsdxnAaIpFbAncD1ZvaCme02syIze8XMfh60OUjSHyRtCY4/SDooqBsiKU/S/0r6UtJnksYFdb8BbgdGSiqQNEHSRElPhvXfQZKVDhQljZW0UdIuSR9Lujys/L0w71RJi4OlGIslnRpWN0/SXZLmB/eZI+nISp6/NP5bwuK/UNK5ktZL2i7p1rD2fSW9H/SbL+nOsNu9G/z8OnjeAUHc8yVNlbQdmBj+LMFzbJXUPrjuGfR5fIy/UsdxDiA+IHYcx2mYDAAOBl6sos2vgFOAXkBPoB9wW1h9W6AVkAZMAB6U1NrM7iA06zzDzFqY2d+qCkTSocADwLlm1hI4ldDSjfLt2gCvBm2PAH4PvCrpiLBmo4FxwNFAKnBzFV23JfQO0ggN4P8KXAH0AQYBt0vKDNqWADcCbYCzgGskXRDUDQ5+Hh4878Lguj+wMYjlt+Edm9kC4GHgMUnNgSeAX5nZR1XE6zhOnPABseM4TsPkCGBrNUsaLgfuNLMvzewr4DfAlWH1RUF9kZn9CygAusQYzz6gu6TmZvaZma2O0OZ84CMze8LMis3sGWAdMCyszd/NbL2Z7QFmEhrMV0YRofXSRcA/CL2TB8xsV9D/aqAHgJktN7NFZlYS1M0kNGiuii1m9scg1j0R6icS+h+KRUHbP1dzP8dx4oQPiB3HcRom24Ajq1nb2g74JOz6k6Cs7B7lBtTfAi1qGoiZ7QZGAtcCn0l6VVLXKOIpjSkt7PrzGsSzzcxKgvPSAesXYfV7Sn1JJ0iaHSyv2An8CIi4HCOMzVVVBgPx6UB3YEo193IcJ474gNhxHKdhshAoBC6sos0WQpvjSjkuKIuF3cAhYddtwyvN7HUz+35Qvg54JIp4SmPKjzGmmvAnYAWQYWatCMWnoK6yzzFV+ZkmSWnAHcDfgSml67Mdx0k8fEDsOI7TADGznYTWzT4YbCY7RFKzYFPZ5KDZM8Btko4KNqfdDjxZ2T2rIQcYLOm4YEPfL0srJB0j6YJgLfF/CC29KIlwj38BnSWNlpQiaSTQDZgVY0w1oQWhz9J9K+kkYERY3VeElnxkRhIjIUmEZocfIbT++jPgrroK1nGcusUHxI7jOA0UM/s9oW8Q30ZoULcZuAH4Z9DkbmAJsBJYBSwLymLp6w1gRnCvpew/iG0C/C+hGeDtwPeAH0e4xzZgaNB2G3ALMNTMtsYSUw35OTCG0KD4buCFsLi+JbRpbr6kryWdEsX9biS05OIOC33wfxwwTlJ165Idx4kDnpjDcRzHcRzHadT4DLHjOI7jOI7TqPEBseM4juM4jtOo8QGx4ziO4ziO06jx3OvOAaFFehdrfmRa9Q0jMKjTEdU3qoTQxu7GQ232ADS2d+U4juM4AC889+wyM+sTXuYDYueA0PzINE646s6Y3MevPzXmflOaNq6/9Cgu2Rez29jeleM4juMANH9OG8qX+X8RHcdxHMdxnEaND4idA0pqU/Hw6J48emVvHruqN+MGHLdf/U2nZTL7hgHV3ue6qyeQ0b4t/U7qEVMcc16fTY+sLmR17cS9kyclvFubPmvzrpLtPbnrrrvJGa+77iaca2Z+1OMBXEQo3WfX4HoIMOsA9XUtcFU1bfoCD9R130f2PM0GTcm2QVOy7awH5tugKdk2ZOp7tnrLN3bN0zk2aEq2/fDJ5TZ79Re2e29xWdtBU7JtV2FJheO1N+Za9sLFdkK3rIj1pceeIqtwFBQWW0Zmpq35cIPt3L3XTjyxhy1bsTpi20Rwa+LV5btKtvfkrrvuJme87robbxeYWX7c4jPE9c9lwHvAqAPdkZk9ZGaPV9NmiZndeCDj2FMUWuea0kSkNFHoD57gusEdeCj746juMXDQYFq3bhNT/4sXLaJjx05kZGaSmprK8JGjmPXKSwnr1qZPiP1dJdt7ctddd5MzXnfdTUTXB8T1iKQWwHcJ5bUPHxAfJulFSWskPSSpiaQJkqaGuT+S9HtJh0p6VdIKSbmSRgb1kwJ/paT7grKJkm4OzudJ+n+SFklaX5o+VNIQSbOC836SFkhaHvzsEpSPlfSCpNmSPpI0uSbP3UTwtyt68dK1/Vny6des/byAi3u1Y/6G7WzbXRT7C42SLVvySU9vX3adlpZOfn5+wrq16bM2JNt7ctddd5MzXnfdTUTXvzJRv1wIzDaz9ZK2SzopKO8HdAM+AWYDFwP/AFZKusXMioBxwDXAOcAWMzsfQFIrSW0ILcXoamYm6fBK+k8xs36SzgPuAM4sV78OGGxmxZLOBH4HXBLU9QJ6A3uBDyX90cw2R/PQ+wwmPJlDi4OacvcFJ9Az7TCGdD6Cm2auikavNcHSkP2I9pNj8XBr02dtSLb35K677savT3fdbWiuzxDXL5cRGugS/LwsOF9kZhvNrAR4BhhoZruBt4GhkroCzcxsFbAKODOY7R1kZjuBb4BC4K+SLga+raT/F4KfS4EOEepbAc9KygWmAllhdW+Z2U4zKwTWAN8pL0saLmmmpJl7v/6yws0L9paQs3knvdu3Iu3w5jw9vi8zJvTl4GZNeHp8nwrt64q0tHTy8v47ds/Pz6Ndu3YJ69amz9qQbO/JXXfdTc543XU3Ed24bzJrLAdwBLCH0CzwJmAz8ClwGvBOWLvxwNTgvD/wEvD/gB+HtWkDXEFoLfLtQdlBwHnA48DbQdlE4ObgfB7QNzg/EtgUnA8h2NQHTAduDM47hLUZC0wL638WMKSq5y3dVDf0Twvt3GkLbNCUbDvj/vmWs/lru+WF3P020UWzqW5XYYnlrtsQ06a6XXuKrENGhq1dv7Fskf3SnNyoFujHw62JV5fvKtnek7vuupuc8brrbrxdImyq8yUT9celwONmdk1pgaR3gIFAP0kZhAbLI4G/AJjZB5LaAycBPQKnHbDdzJ6UVACMDdYmH2Jm/5L0PvDvGGNsBZQuthkb4z3244hDU7n1nM40lZBg7vqtLPx4R43vM+7K0WRnv8O2rVvp0vE4br3tDsaMmxCVm5KSwtT7pzHs/LMpKSlhzNjxdMvKql6Mk1ubPiH2d5Vs78ldd91NznjddTcRXUVab+HUPZLmAZPMbHZY2Y3AdcBnwFfAicC7hGaD9wVtfgH0MrNRwfXZwL3APqAo8PMJzSQfDAi4z8wekzQRKDCz+4L+bzazJZKOBJaYWQdJQ4LyoZIGAI8FsbwNXBm0GUtodvmGIIZZQR/zKnveo3qdbrFmqvuXZ6qLGs9U5ziO4zg1o3kzPWtmI8LLfECc4ASDz6lm9la8Y6kJPiCuH3xA7DiO4zg1I9KA2P+LmKBIOlzSemBPsg2GHcdxHMdxkglfQ5ygmNnXQOd4x+E4juM4jtPQ8QGxc0AY1OkIHo9x6cN5Dy6Iud85Nw6M2Y0X23btjdk9ouVBdRiJ4ziO4zROfMmE4ziO4ziO06jxAbHjOI7jOI7TqPEBsVNvXHf1BDLat6XfST2iap/aVDw8uiePXtmbx67qzbgBx+1Xf9Npmcy+YUBU95rz+mx6ZHUhq2sn7p08qUZxx8s9pWdnzvhuH84a3I/zTo9++UkyPqu77rpbOzfZ4nXX3YRz453BzY+YM9+VADnACmAZcGo99t0ByK2qzUWXXFohM9prb8y17IWLq82gFp617qwH5tugKdk2ZOp7tnrLN3bN0zk2aEq2/fDJ5TZ79RcVstxFylxTUFhsGZmZtubDDWWZa5atWB1V1pv6cPO2F0Y80tsfZys/yqu0Pm97YdI9q7vuulv3brLF66678XaJkKnOZ4iTlz1m1svMegK/BO6Jd0DVMXDQYFq3blMjZ09R6Du7KU1EShOF/tAKrhvcgYeyP47qHosXLaJjx05kZGaSmprK8JGjmPXKSwntxkoyPqu77rpbOzfZ4nXX3UR0fUDcMDgMKMuHLOnnkhZLWinpN0FZB0lrJT0iabWkOZKaB3UnB20XSrpXUm6Yky1pWXDEnjEjRpoI/nZFL166tj9LPv2atZ8XcHGvdszfsJ1tu4uiuseWLfmkp7cvu05LSyc/P78KI/4ugCRGXzKUc08bwJPT/5rQ8brrrrvxc5MtXnfdTUTXP7uWvDSXlEMoXfOxwOkAks4Cjgf6EUrj/LKkwcCnQfllZvYjSTOBS4Angb8DV5vZAknhC26+BL5vZoWSjgeeAfrWz+OF2Gcw4ckcWhzUlLsvOIGeaYcxpPMR3DRzVdT3CJZ57IekhHYBXnxtLm2PbcfWr77ksovPp1PnLpxy6qAD1qe77rqbnG6yxeuuu4no+gxx8lK6ZKIrcA7wuEK/9bOCYzmhtcVdCQ2EAT42s5zgfCnQQdLhQEszK/3479NhfTQDHpG0CngW6FZVQJKGS5opaWZ+Xl4dPOJ/KdhbQs7mnfRu34q0w5vz9Pi+zJjQl4ObNeHp8X2qdNPS0snL21x2nZ+fR7t27aLqN14uQNtjQ22PPOpozjn/AnKWLknYeN111934uckWr7vuJqIb981hfsS8sa2g3PUXwNHAFOCaCO07ELYRDrgZmAi0Bj4JK+9R2i6ov4/Q/zilAMWR7hXpiLSpbldhieWu2xD1prqhf1po505bYIOmZNsZ98+3nM1f2y0v5O63iS6aTXW79hRZh4wMW7t+Y9ki+6U5uVEt0K8PN9JmufWbt9m6T74qO+9z8in2xMyXq91Ul+jP6q677ta9m2zxuutuvF0ibKrzJRMNAEldgabANuB14C5JT5lZgaQ0oNLFtma2Q9IuSaeY2fvAqLDqVkCeme2TNCboI2bGXTma7Ox32LZ1K106Hsett93BmHETKm1/xKGp3HpOZ5pKSDB3/VYWfryj0vaVkZKSwtT7pzHs/LMpKSlhzNjxdMvKSmj3q6++4IdXjgSgpLiYCy8dyWlnnpWw8brrrrvxc5MtXnfdTURXwYyfk2RIKgFKF9IKuNXMXg3qbgJ+GNQVAFcQ+kzbLDPrHrS5GWhhZhMl9QceAXYD84DBZvbdYN3w88C3wFzgJ2bWQlKH8HtF4uJLh9vjT82I6dk8dXP0eOpmx3Ecx6kZzZvpWTMbEV7mM8RJiplVOltrZvcD90eo6h7W5r6w8tVm1gNA0i+AJUGbjwgtoSjll0H5pvB7OY7jOI7jJDM+IHYAzpf0S0J/Hj4BxsY3HMdxHMdxnPrDB8QOZjYDiG19g+M4juM4TpLjA2LngCCJlKaxfdWvNuuAJ/wjp/pGlfC3Ub1idmtDMq4D3l1YHJN3ULP4fOkx1j+LjuM4TuPA/yvhOI7jOI7jNGp8QOw4juM4juM0anxA7NQrc16fTY+sLmR17cS9kydVL8TotjmkGb86syOTh3Xl/w3twtldjgTguMMPZuLZxzPp/C7875AMmkfxV/j1FXO8+6yNW1hYyPeHDOB7A07iuyf3ZNJvf1Ojfq+7egIZ7dvS76Qe1TeuQzfZ3rO77iZSn+6626DceGdc8yOmLHUlQA6wglB65lOD8nbAc/GOz8y4+NLhFTLDFBQWW0Zmpq35cENZBpllK1ZHlX0mWnf0E8tt9BPL7cfPrbJbX11no59YbuOfWWFbdu6xn7+8xv69dbfd+fp6G/3Ecnt4wSf2wsrPypza9FuXbjz6rKm7dVfRfsdX3/zHNn22w7buKrLPtn9rJ/U92Wa/lV2hXWXZCV97Y65lL1xcbRbDWN1kfc/uuttQ/p3hrruJ5BIhU53PECcne8ysl5n1JPRt4HsAzGyLmV1avrGkhNg8uXjRIjp27ERGZiapqakMHzmKWa+8dEDcr/cUs2n7HgAKi/exZedeWjdvRruWB7Huy90ArPpsF/3aH54wMcezz9q6kmjRogUARUVFFBUVISkqF2DgoMG0bt0m6vZ14Sbje3bX3UTp0113G5rrA+Lk5zBgB4CkDpJyg/Oxkp6V9AowR9IQSe9ImilpvaRJki6XtEjSKkkdA2+YpA8kLZf0pqRjgvKJkh6VNE/SRkk31jTQLVvySU9vX3adlpZOfn7+AXePPDSV77RpzoZt37J5ZyF90g8DoP93DqfNoc0SLuZ4vafauAAlJSUMObUPJ2S2Y8hpZ9Ln5P5Ru/EgGd+zu+4mSp/uutvQXB8QJyfNJeVIWgf8FbirknYDgDFmdnpw3RO4CTgRuBLobGb9gnv8JGjzHnCKmfUG/gHcEna/rsDZQD/gDklVjybLESzr2I9oZxFjdQ9KacL/DO7AE0vy2VO0j78s/JTvdz6Su8/tTPOUJhTvqzp1eTxijkeftXUBmjZtyrwFS1m5bhPLli5m7ZrcqN14kIzv2V13E6VPd91taG5C/FW6U2P2mFkvAEkDgMclRUql/IaZbQ+7XmxmnwXeBmBOUL4KOC04TwdmSDoWSAU+DvNfNbO9wF5JXwLHAHmllZKGA8MB+vU/pUIwaWnp5OVtLrvOz8+jXbt2UT1wLG5Twf8M7sD8TTtYsnknAJ99s5dJb28EoG3Lg+iVdlid91tbNx591tYNp9Xhh/PdQd/jrTfmcEK3xM3wnYzv2V13E6VPd91taG7cN1/5UfMDKCh3/QVwNNAByA3KxgLTwtoMAWaFXc8D+pavC8ovCCufF5xPBG4O83OBDpXFGGlT3a49RdYhI8PWrt9Ytth9aU5uVAvlo3VLN8iNfmK5vbthm/1rzZf7lV07c5WNfmK5XR7UP7zgkyo31dVHzInQZ03d8pvl1m3cYhs2f2VbdxXZ5i+/sVMGfNeemvnPqDfV7Sossdx1G2LaVBeNm6zv2V13G8q/M9x1N5FcImyq8xniJEdSV6ApsA04pA5u2QooXXAzpg7uV0ZKSgpT75/GsPPPpqSkhDFjx9MtK+uAuJ2POpRBmW34dMcefndeFwBm5GyhbcuD+H7wCbbFn+7knQ3bK71Hfccczz5r637xxWfccM14SkpK2LfP+MHFl3L2uedH5QKMu3I02dnvsG3rVrp0PI5bb7uDMeMmHFA3Gd+zu+4mSp/uutvQXAWzfU4SIamE0DIHAAG3mtmrkjoQmuntLmksoRngGwJnCKEZ3qHB9bzgekl4naQfAFMJDYrfB042syGSJhKamb4v8HOBoWa2KVKMlwwfYU89M7OuH71akjF1czLiqZsdx3GcZKV5Mz1rZiPCy3yGOAkxs6aVlG8Cugfn04HpYXXzCC2HKL0eEqnOzF4CKnyjxMwmlrtO3MWhjuM4juM4NcCnTRzHcRzHcZxGjQ+IHcdxHMdxnEaNL5lwGhS1WQeccf3zMbsfP3hJzG4ycujBsf2ro7hkX8x9+jpgx3Ec50Dh/4VxHMdxHMdxGjU+IHYcx3Ecx3EaNT4gduqVOa/PpkdWF7K6duLeyZMS1m0imPOrM3j8+lMBeHD8yWT/5izm3n4mv7+qDylNoksFGWvMyfKe6sq97uoJZLRvS7+TetTIq22/7rrbUNxki9dddxPOjXfWNT+qzUpXAuQAK4BlwKl1dN/pwKUHKu5ImeoKCostIzPT1ny4oSyDzLIVq6PKPlMfbturnys77pi5wp7/4BObs2KLtb36ORv9wHtldS988Knd8uSy/drXZcyJ/p5q41aWSe61N+Za9sLFNc42l+jP66679eEmW7zuuhtvlwiZ6nyGOPHZY2a9zKwn8EvgnngHFCuLFy2iY8dOZGRmkpqayvCRo5j1SoVPHsfdPfbw5pxxYluefm9TWdnbuZ+Xneds2k671s0PWMzJ8p7qygUYOGgwrVu3ibp9vGN2191EcpMtXnfdTUTXB8TJxWHADgCFuFdSrqRVkkYG5UMkvSNppqT1kiZJulzSoqBdx7D7nSkpO2hXmsGuQ1C2LDhODcqfCLLYEVw/JemCmgS/ZUs+6enty67T0tLJz8+vwoiPe+eIHtz9/Cr2WcUsjilNxKWnHMfc1Z9HMOsm5mR5T3Xl1oZkfF533a1rN9niddfdRHT9s2uJT3NJOcDBwLHA6UH5xUAvoCdwJLBY0rtBXU/gBGA7sBH4q5n1k3QT8BPgf4J2HYDvAR2BuZI6AV8C3zezQknHA88AfYG/Aj8FXpLUCjgVGFOTB7EIA0wpurW49eWeeWJbtu7ay8pPv2ZA5yMr1E8a3Zv3P9rKB//eVqf91oWXrG5tSMbnddfdunaTLV533U1E1wfEic8eM+sFIGkA8Lik7sBA4BkzKwG+kPQOcDLwDbDYzD4LnA3AnOBeq4DTwu4908z2AR9J2gh0BT4GpknqRWj9cmcAM3tH0oOSjiY0GH/ezIrDA5U0HBgO0K//KRUeJC0tnby8zWXX+fl5tGvXLqqXUF9uv45HcFbPYzmje1sOataUls1TmDb+ZG54dDE/G3oCR7Q8iJ8/tOyAxpwM76ku3dqQjM/rrrt17SZbvO66m4hu3DeN+VHt5reCctdfAEcDfwDGh5U/AVwADAFmhZXPA/oG52V1hDbVjQtr9y6hmeWJwH2EltOkAMVhbf6P0CzxB0BWVXFH2lS3a0+RdcjIsLXrN5Ytdl+akxvVQvn6cMM3ybW9+jm76L55ZZvqfvbYElv0763W4foXKrSrbFNdrDEn+nuqjVvZhrldhSWWu25DjTfVJfrzuutufbjJFq+77sbbJcKmOp8hTiIkdQWaAtsIDWCvkfQY0AYYDPyc0CxvtAwP/AwgE/gQaAXkmdk+SWOC/kqZDiwCPjez1TWNPyUlhan3T2PY+WdTUlLCmLHj6ZaVldBuKf/v8t7kbf+WV/4vNMH+r+X5TH113QHpNxnfU23f8bgrR5Od/Q7btm6lS8fjuPW2OxgzbkLCxuyuu4nkJlu87rqbiK6CmT8nQZFUQmipA4CAW83sVYUWxUwGzgUMuNvMZkgaAtxsZqWb5OYF10vC6yRNJ7RBry9wDPAzM5sVrBt+HvgWmAv8xMxahMUzG/inmT1UVdyXDB9hTz0zs07eQX3hqZsPPJ662XEcx4k3zZvpWTMbEV7mM8QJjpk1raTcCM0I/7xc+TxCyyRKr4dEqjOzsZXc9yMgPDvCL0tPJB0ClG60cxzHcRzHaRD4lIsTFZLOBNYBfzSznfGOx3Ecx3Ecp67wGWInKszsTeC4eMfhOI7jOI5T1/iA2HECarMOuP9db8XsfvDrM2J2HcdxHMepPb5kwnEcx3Ecx2nU+IDYcRzHcRzHadT4gNipV+a8PpseWV3I6tqJeydPalBuakoTnvpRX2Ze148Xru/PdadlAPD38X2YcW0/Zlzbjzf+dyBTR/Wo9B71GW8iudddPYGM9m3pd1L176Yu+3XX3YbiJlu87rqbcG68M7H50TCPSJnqCgqLLSMz09Z8uKEsg8yyFaujyj6T6G6P29+0Hre/af3vnms9bn/TTpr4lq3c/LVd/pdFZXU9bn/T3lj9hd36fO5+Zcn2rLVxK8tC99obcy174eIaZ6pL9Od11936cJMtXnfdjbdLhEx1jXaGWFKJpBxJKyQtk3RqFW0XBD87SBodVt5X0gNVeEMkzapBTEMlLQ9iWiPpmqB8uqRLo71PhPseLunHscYVOHcGn16LmcWLFtGxYycyMjNJTU1l+MhRzHrlpQbl7vlPCQApTUVKE4VSpgQcktqUfhmtmbvuq4SJNxFcgIGDBtO6dZuo28c7ZnfdTSQ32eJ1191EdBvtgBjYY2a9zKwnoeQT95RvIKkpgJmVDpY7AGUDYjNbYmY31kUwkpoBfwGGBTH1JizBRi3u2xQ4HPhxdW2rwsxut9Cn1yLdPyq2bMknPb192XVaWjr5+fkNym0imHFtP+b+fBDvb9zOqvxvyupOP+EoPti4g917SxIm3kRwa0MyPq+77ta1m2zxuutuIrqNeUAczmGE0hiXzp7OlfQ0QcpkSQVBu0nAoGBm+afhM62SvheU5wSzvC0Dp4Wk5yStk/RUkHI5Ei0JfQZvG4CZ7TWzD8PqB0taIGlj6WyxQtwrKVfSKkkjK3mGSUDHILZ7q4pL0u2SFgf3/EtY+fSwfjcF7d4Dhkf7ks0qpgmv/HUkp7vPYORDizjr9/PpntaKTkcfWlZ37onH8NqqzxMq3kRwa0MyPq+77ta1m2zxuutuIrqN+TvEzSXlAAcDxwKnh9X1A7qb2cflnF8AN5vZUAgNPMPqbgauN7P5kloAhUF5byAL2ALMB74LvFc+GDPbLull4BNJbwGzgGfMbF/Q5FhgINAVeBl4DrgY6AX0BI4EFkt6t/wzSOoQnPcKi7uyuKaZ2Z1BuyeAocArEd5foZkNDC+QNJxggNyv/ykVhLS0dPLyNpdd5+fn0a5duwi3rkiyubsKi1m8aQendjqCf3+5m1bNU+ie1oqf/mNVQsYbT7c2JOPzuutuXbvJFq+77iaiG/fNV/E6gIKw8wHAakDAEGBupLZB3ayw8rJrQoPlD4AbgfSw+jfC2v8ZuKKauE4EfgosB6YHZdOBy8Pa7Ap+TgXGh5U/AVxQ/hkILfXILRd3xLiAS4LnWAXkA78Ii+HS4HwT8J2qniPSprpde4qsQ0aGrV2/sWyx+9Kc3KgWyie62+P2N+17k96x7/5unvW4/U07+c63bemmHXbDk8utx+1v2l0vr7WXlm/ZbzNdZZvqEjGVDdUAACAASURBVP1Za+NWtmFuV2GJ5a7bUONNdYn+vO66Wx9ussXrrrvxdomwqa4xzxCXYWYLJR0JHBUU7Y7hHpMkvQqcB7wftgFtb1izEqqZlTezVcCqYHb2Y2BshPuo3M9IVPcMFeKSdDDwJ6CvmW2WNJHQDHos969ASkoKU++fxrDzz6akpIQxY8fTLSurwbhHtjyIuy/qRhNBE4k5q7/k3fXbADi7+zE8+t6mhIo3UVyAcVeOJjv7HbZt3UqXjsdx6213MGbchISN2V13E8lNtnjddTcRXUVab9EYkFRgZi2C866ElgscAwwibFlEeFtJfYDfm9n3gvIhpW0ldTSzDUH5PwnNqH7N/ksspgFLzGx6hHhaEBqIzguuzwT+YGbdJU0nNBP9XLl4LgauITQIbwMsAfoTWlYR3u8RwDIz+075uMPjAv4JfEhoRrkp8D7wnJlNDI9B0qYg1q2Vvd9Lho+wp56ZWfUvoQHhqZujo7hkX/WNKiGlqW95cBzHcWpP82Z61sxGhJc15hni0jXEEJppHWNmJdUsvl4JFEtaQWjAuzys7n8knUZotnUN8BqhpRjRIuAWSQ8DewjNwI6txnkx6GMFoQ983WJmnwcD/DLMbJuk+ZJyg7hejXQzM/ta0iOElktsAhbXIH7HcRzHcZykpNHOEDsHFp8hjh6fIY4OnyF2HMdx6oJIM8T+XxjHcRzHcRynUdOYl0zEDUkvAhnliv/PzF6PRzyJxs5vi2J2Wx3SrA4jiZ7azPKe/+eFMbuvXleTVTnxx2d5HcdxnETEB8RxwMwuincMjuM4juM4TgifrnEcx3Ecx3EaNT4gduqVOa/PpkdWF7K6duLeyZNq7JeUlHDmwJO5YsSF9dZvfbjNmooHR5zIXy7rwd9G92RM/3QAbj69I3+5rAePXNaDO87tzMHNqv9HNtGf1V133a17N9niddfdhHPjnTHOj4Z5RMpUV1BYbBmZmbbmww1lGWSWrVhdod3nO/9T6THxt5PtoktH2plnnxexPlLmmmj7jZd7+gML7PQHFth5f37fTn9ggX1/2kJb89k3dv2MlTb0zx+U1T+7LN/+Mn9T2fXpDyxIumd11113695NtnjddTfeLhEy1fkMcQ2QVCIpJ+z4RR3fv5ek88KuLzgAfViQBa/0OkXSV5Jm1WU/kVi8aBEdO3YiIzOT1NRUho8cxaxXXora35Kfx5uvv8blV42vt37r0y0sCn2SLKWJSGkiDPi2qKSsPjWlSehr0wkSr7vuupsYbrLF6667iej6gLhm7DGzXmFHzf/Ov2p6Eco6B4CZvXwA+tgNdJfUPLj+PpBfx31EZMuWfNLT25ddp6Wlk58ffde//sX/8us770FNavbHtjb91qfbRPDwqB48P6EvSzfvZN0XBQD8/IyOPDehD8e1bs6LKz9PmHjdddfdxHCTLV533U1E1wfEdYCk8yStk/SepAckzZLURNJHko4K2jSR9G9JR0qaLukhSdmS1ksaKikVuBMYGcw+j5Q0NkirjKRhkj6QtFzSm5KOCconSnpU0jxJGyXdGEXIrwHnB+eXAc+EPUs/SQuCfhZI6hKUl8USXM8KUkCHv4fhkmZKmpm3eXOFTs0qTm9WkxmwjDmzX+XIo46mZ++TompfV/3Wp7vP4Jp/rGTk35fS9ZgWdGgT+n+We9/awIhHl/LJ9j0MOf6IhInXXXfdTQw32eJ1191EdH1AXDOal1syMVLSwcDDwLlmNhA4CsDM9gFPApcH7pnACjPbGlx3AL5HaGD6EKHfxe3AjGD2eUa5vt8DTjGz3sA/gFvC6roCZwP9gDskVfcx3n8Ao4LYewAfhNWtAwYH/dwO/K7atxJgZs+a2QgzG5Hevn2F+rS0dPLy/jtQzs/Po127dlHde/H7C5jz2iz6nng8146/gvnvzuX6H42Jyq1Nv/Fwd/+nhJz8bzj5O4eXle0zmPfRNgZ3rHpAnGzP6q677tbeTbZ43XU3Ed24b75KpgMoiFDWC3gn7PoCYFZw3h5YFpz/AxganE8Hxoc57wb3GQtMCysvuwZOBOYAq4APgdlB+UTgV2HOWiC9umcAlgDjCA14h5SL+UUgN+hrXflYgutZwJDK+om0qW7XniLrkJFha9dvLFvsvjQnt0K7qjbVfb7zP/b8rDdqtKku2n7j5Z7+wAK76C+LbNhDoQ105zz4vq3M32m/enmtXfHYsrINdDOW5tuMpflVbqpL9Gd11113695NtnjddTfeLhE21XlijtpT6Vy8mW2W9IWk04H+/He2GCpuj6pmuxR/BH5vZi8HSxUmhtXtDTsvIbqEKy8D9xEaDIdPO94FzDWziyR1AOYF5cXs/zcKB0fRx36kpKQw9f5pDDv/bEpKShgzdjzdsrJqepsaU5t+68s94tBUbvl+J5oq9Nc773y0jfc37eAPl2RxSGoKEmzYupv7536cEPG66667ieMmW7zuupuIriKtt3AiI6nAzFqUK2sOrAcGmdkmSU8BrcxsaFB/CaHB7BNm9n9B2XTgaGAooRTO7wCdCC2fuMDMxgTtxgJ9zewGScuBH5rZUkl/BzLMbIikiYRmfe8LnFxCM9GbqnoGSenAJWZ2fzDAvtnMhgZppZ80s+eDe481sw6SBgKTgYFAGrA6iHVepH4uGT7CnnpmZg3e7n9JxtTNtaExpW52HMdxnHjTvJmeNbMR4WW+hrhmlF9DPMnM9gA/BmZLeg/4AtgZ5rwMtAD+Xu5eHxIaCL8GXGtmhcBcoFvp+uRy7ScCz0rKBrZSS8wsz8zuj1A1GbhH0nygaVj5fOBjQsso7gOW1TYGx3Ecx3GcRMCXTNQAM2taSdVcM+uq0FbGBwmtzy2lJ6HNdOvKOfPN7Kfl7r8dOLlcu+lB3UtAhY/pmdnEctfdq3mGFhHK5hEsjTCzhUDnsOpfB+XG/ks+HMdxHMdxGgQ+Q1w3/EhSDqFlBK0IfXWCIKnG88Av4xib4ziO4ziOUwW+hrgBIukI4K0IVWeY2bb6iMHXENcPZz3wXszunBsHxuwWhmXQqwkHN6vsL1kcx3Ecp36ItIbYl0w0QIJBb694x+E4juM4jpMM+JIJx3Ecx3Ecp1HjA2KnXpnz+mx6ZHUhq2sn7p08qcZ+SUkJZw48mStGXFhv/cbDrYmX2lQ8PLonj17Zm8eu6s24AcftV3/TaZnMviG6z7PFGm9e3maGnXMG/Xt3Z0CfHjz04ANRu7Xp11133U3OeN11N+HceGd/86NhHpEy1RUUFltGZqat+XBDWQaZZStWV2hXVZa6ib+dbBddOrJGmeqi7TdR3Jp4g6Zk26Ap2XbWA/Nt0JRsGzL1PVu95Ru75ukcGzQl23745HKbvfoL2723uKxt6VGbfnd8W7zfsXbDZps3f5Ht+LbYPv1ih3XsdLwtXLqyQrtEecfuutuQ3GSL11134+0SIVOdzxAfACSZpCfCrlMkfSVpVjVeX0k1m1qrPpYWkh6WtEHSaknvSupfl31Ey+JFi+jYsRMZmZmkpqYyfOQoZr1S4UtylbIlP483X3+Ny68aX2/9xsONxdtTtA+AlCYipYlC/3ALrhvcgYeyq85uV9t4Adoeeyw9e58EQMuWLencpSufbck/4P266667yRevu+4mousD4gPDbqB7kMUO4PtAtaMDM1tiZjfWcSx/BbYDx5tZFjAWOLKO+4iKLVvySU9vX3adlpZOfn50gyaAX//if/n1nfegJjX7Y1ubfuPhxuI1Efztil68dG1/lnz6NWs/L+DiXu2Yv2E723ZH99WO2v5+Svn0k02sXJFDn5Oj+/+uZPv9uOtuornJFq+77iai6wPiA8drhFIxA1wGPFNaIamfpAWSlgc/uwTlQ0pnkSVNlPSopHmSNkq6Mcy/QtKiIKPdw5IifstKUkegP3Cbme0DMLONZvZqUP8zSbnB8T9hXoVySR0krZX0SDDTPCdswF/qDZc0U9LMvM2bK8RjVvETf6FcJtUzZ/arHHnU0WWzkDWhNv3Gw43F22cw4ckcLn1kEV3btqBn2mEM6XwELyzfElWstYk3nIKCAq66bAT3TP49hx122AHv11133U2+eN11NxFdHxAfOP4BjJJ0MNAD+CCsbh0w2Mx6A7cDv6vkHl2Bs4F+wB2Smkk6ARgJfNfMegElVJ5BLgvIMbMKH42V1AcYR2jAfAqh5CK9KysPtOOBB4OZ5q+BS8LvaWbPmtkIMxuR3r495UlLSycv778D5fz8PNq1a1dJ6Puz+P0FzHltFn1PPJ5rx1/B/Hfncv2PxkTl1qbfeLi16bNgbwk5m3fSu30r0g5vztPj+zJjQl8ObtaEp8f3OWD9AhQVFTFm9HCGj7qMYRdeFLWXbL8fd91NNDfZ4nXX3UR04775qiEeQEHwcwmhweXvgCHArKC8PfAikAusAtYF5eFtJgK/CrvnWiAduAHYAuQEx4fAxEriuAB4sZK6m4A7w67vAm6sorwD8FFY+f8RmnmO+A4ibarbtafIOmRk2Nr1G8sWuy/Nya3QrqpNdZ/v/I89P+uNGm2qi7bfRHFr4g2akm1D/7TQzp22wAZNybYz7p9vOZu/tlteyN1vA100m+pq0m/5zXLbdxfZyNFX2LXX31ihrrpNdcn2+3HX3URzky1ed92Nt0uETXWemOPA8jJwH6GB7hFh5XcBc83sIkkdgHmV+HvDzksIJVIR8JiZRZMOejXQU1ITC5ZMhFHZ3yFU9XcL5eNpXlnDSKSkpDD1/mkMO/9sSkpKGDN2PN2ysmpyi5ioTb/xcGvqHXFoKree05mmEhLMXb+VhR/viCrGuogX4P2F85nx9JN0634ig/qHZqJ//Zu7OOuc8w5ov+66627yxeuuu4noeurmA4CkAjNrISkduMTM7pc0BLjZzIZKehF40syelzQRGGtmHcq1mUhopvm+4J65wFDgEOAlQksmvpTUBmhpZp9UEstMQrPIt5uZSToe6AZsBqYTWhYhQks6rgzOI5XvIDR73T24781ACzObGKlfT91cP3jqZsdxHMepGZFSN/sa4gOImeWZ2f0RqiYD90iaD9RohGBma4DbgDmSVgJvAMdWofwQaAv8W9Iq4BFgi5ktIzTwXURo0PtXM1teWXlNYnQcx3Ecx0kmfIbYOSD4DHH94DPEjuM4jlMzfIbYcRzHcRzHccrhm+oaCJI+AA4qV3ylma2KRzy1obHN8taGl68bELM7avqSmN0nr6z596Adx3EcJ1HxAXEDwcziko7ZcRzHcRwn2fElE47jOI7jOE6jxgfETr0y5/XZ9MjqQlbXTtw7eZK7dezl5W1m2Dln0L93dwb06cFDDz5QZftmTcXkC05g6kXdeOCSLEadFMroc163o/jz8O7884d9aXlQdH+RdN3VE8ho35Z+J/WIOt5Sku334667ieYmW7zuuptwbryzuvlR4yx4JYQy1OUCzwKH1ME9rwWuqss4I2WqKygstozMTFvz4YayDDLLVqyOKvtMY3Jr4pXPBLd2w2abN3+R7fi22D79Yod17HS8LVy6MmLWuB88sth+8MhiG/n3pfaDRxbbxX9dYh9+sct+/s819j8v5NqPnllhX3xTaFc8vrysbemxq7CkwvHaG3Mte+FiO6FbVsT6XYUlCfOO3XW3IbnJFq+77sbbJUKmOp8hTj72mFkvCyXI+A+hwWxUSIr4zSsze8jMHq+rACtj8aJFdOzYiYzMTFJTUxk+chSzXnnJ3Trss+2xx9Kzd2jDW8uWLencpSufbcmv0iksDiUxbNpENG0iDPh42x6+LPhPVH2WMnDQYFq3blMjB5Lv9+Ouu4nmJlu87rqbiK4PiJObbKATgKQrJC2SlCPp4dLBr6QCSXcGX6EYIGmSpDWSVkoqzYI3Mcg8h6QfSVosaYWk5yUdEpRPl/SApAWSNkq6tKbBbtmST3p6+7LrtLR08vOrHqw1Rrc2fYbz6SebWLkihz4nV73fsolg6kXdeOyKnqzI/4aPvtpd475qQ7L9ftx1N9HcZIvXXXcT0fUBcZIiKQU4F1gl6QRgJKF0zr0ILau4PGh6KJBroa9QrAEuArLMrAdwd4Rbv2BmJ5tZT2AtMCGs7lhgIKEU0hUW5kgaLmmmpJl5mzdXuHGwPKO8E9XzNia3Nn2WUlBQwFWXjeCeyb/nsMMOq7LtPoOfvriGHz6zkuOPOpTjWh9co75qS7L9ftx1N9HcZIvXXXcT0fUBcfLRXFIOsAT4FPgbcAbQB1gc1J0BZAbtS4Dng/NvgELgr5IuBr6NcP/ukrKDNM+XA1lhdf80s30WSh99THnRzJ41sxFmNiK9ffvy1aSlpZOX99+Bcn5+Hu3atYvqoRuTW5s+AYqKihgzejjDR13GsAsvitrb/Z8Scj/bRe/0VlE7dUGy/X7cdTfR3GSL1113E9GN+yYxP2q8Aa4gQtlPgHuiaU8oecd5wOPA20HZRODm4PxjoGdwPhaYHpxPBy6tKo7wI9Kmul17iqxDRoatXb+xbLH70pzcqBbKNya3Jl75jXLbdxfZyNFX2LXX3xhxI135TXVXPrHcRj+2zH7wyGIb/ugSW/3ZN3bX7PVlm+dqsqluV2GJ5a7bUONNdcn2+3HX3URzky1ed92Nt0uETXWemKNh8BbwkqSpZvalpDZASzP7JLyRpBaEvkrxL0nvA/+OcK+WwGeSmhGaIa754tVKSElJYer90xh2/tmUlJQwZux4umVlVS82Mrc2fb6/cD4znn6Sbt1PZFD/PgD8+jd3cdY550Vs3/qQZtw0OIMmTUCI+R9vZ8nmnZyfdTQX9WhL6+bNuP/ibizN28mD2Z9EvEcp464cTXb2O2zbupUuHY/j1tvuYMy4CVU6tX1ed911N/niddfdRHQVzPY5SYKkAjNrEaF8JPBLQstgioDrzez98PaSjgVeAg4GBNxnZo9Jmkhoxvc+SdcBtwCfAKsIDazHSpoOzDKz56qKo5RLho+wp56ZWXcP7kSksKgkZnfsU8tjdmNN3ZzS1FdpOY7jOPGleTM9a2Yjwst8hjjJqGwQamYzgBlVtTezz4B+EdpMDDv/M/DnCG3GRhOH4ziO4zhOsuHTNY7jOI7jOE6jxgfEjuM4juM4TqPGl0w4BwQzo7hkX0xubdaZfro10pfkouO4Iw+J2Y0XBzeLmHwwKv4xtm/M7lkPvBeTN+fGgTH36TiO4zgHCp8hdhzHcRzHcRo1PiB2HMdxHMdxGjU+IHbqjeuunkBG+7b0O6lHTP6c12fTI6sLWV07ce/kCpmjq2T6w3/k/O/1ZeiQvvzsujHsLSysl35jdePRZ03d1Kbi4dE9efTK3jx2VW/GDThuv/qbTstk9g0DEipmd91tqG6yxeuuuwnnxjvzmh81ylJXAuQAucArwOF1dN8OQG41bYYQ+g4xhDLYTauq/UWXXFohS9lrb8y17IWLq8xkVlk2s4LCYsvIzLQ1H24oyz6zbMXqCu0+/Gx3hePdZR9ZWvvv2IqNW+3Dz3bbOcMutnv+8FCFdrXpty7dePRZU3fQlGwbNCXbznpgvg2akm1Dpr5nq7d8Y9c8nWODpmTbD59cbrNXf2G79xaXtR00JTtpn9dddxPZTbZ43XU33i4RMtX5DHFyscfMeplZd2A7cH28A6oJAwcNpnXrNjG5ixctomPHTmRkZpKamsrwkaOY9cpLUfslJcUUFu6huLiYwj3fcvQxxx7wfmN149FnrO6eotDGyZQmIqWJQv9SEVw3uAMPZX+ckDG7625Dc5MtXnfdTUTXB8TJy0IgDUIpmSW9JWmZpFWSflDaSNKvJa2T9IakZyTdHJT3kbRC0kLCBtaSDpb09+A+yyWdVt8PFoktW/JJT29fdp2Wlk5+fnRZpY85th3jr72J0/p2ZWDPjrRoeRgDh5x5wPuN1Y1Hn7G6TQR/u6IXL13bnyWffs3azwu4uFc75m/YzrbdRQkZs7vuNjQ32eJ1191EdH1AnIRIagqcAbwcFBUCF5nZScBpwBSF6AtcAvQGLgbCv7P1d+BGMyu/yPN6ADM7EbgMeEzSwVHGNVzSTEkz8/PyYny6yARLNcr3F5W78+sdvPX6LN76YDXZOf9mz7ff8tJzzxzwfmN149FnrO4+gwlP5nDpI4vo2rYFPdMOY0jnI3hh+Zao+oy1X3fddTe+fbrrbkNzfUCcXDSXlANsA9oAbwTlAn4naSXwJqGZ42OAgcBLZrbHzHYRWneMpFaE1h+/E/hPhPUxsPTazNYBnwCdownOzJ41sxFmNiItPb0Wj1mRtLR08vI2l13n5+fRrl27qNwF2XNJP64DbY48imbNmnHWeRewfMkHB7zfWN149Flbt2BvCTmbd9K7fSvSDm/O0+P7MmNCXw5u1oSnx/dJyJjddbehuMkWr7vuJqIb941iftRo81tB8LMVkE1ohhdCm9xmAM2C602ENsr9FPhNmP974GbgcOCTsPIeBJvqgH8Cp4fVZQf1Q6jlprpdhSWWu25DTJvqdu0psg4ZGbZ2/cayhfJLc3IrtIu0qW7mq/OsU+cTLGfDV7ZuS4FdOHy03Xb3fVFtqou237p049FnTd1BU7Jt6J8W2rnTFtigKdl2xv3zLWfz13bLC7n7baKLZlNdMjyvu+4mspts8brrbrxdImyq80x1SYiZ7ZR0I/CSpD8TGiB/aWZFwZrf7wRN3wMelnQPoayE5wOPmNnXknZKGmhm7wGXh93+3eD6bUmdgeOAD4Hovp9VBeOuHE129jts27qVLh2P49bb7mDMuAlRuSkpKUy9fxrDzj+bkpISxowdT7esrKjcniedzNlDL+Sis75LSkpTTujek5FXjD/g/cbqxqPPWNwjDk3l1nM601RCgrnrt7Lw4x1R9RWvmN11tyG6yRavu+4moqtgxs9JAiQVmFmLsOtXgJnAa4SWQzQj9Fm27wLnmtkmSRMJrQX+BPgKmGdmj0jqAzwKfAu8DlxqZt2D9cIPAX2AYuBnZjZX0hDgZjMbKmks0NfMbqgs1osvHW6PPzUjpuf01M2Jj6dudhzHcZKV5s30rJmNCC/zGeIkInwwHFwPC7usbAb3PjObKOkQQrO/UwJ3KdAzrN3EoLyQ0JKI8n3PA+YF59OB6TV+AMdxHMdxnATEB8QNn79I6gYcDDxmZsviHZDjOI7jOE4i4QPiBo6ZjY5Pv1C8L7blOClNY+83GZc9FJfsi9mtzfKS2hDr0oeBk+bG3Od7v0iIT2I7juM4DRD/7JrjOI7jOI7TqPEBseM4juM4jtOo8QGx4ziO4ziO06jxAbFTb+TlbWbYOWfQv3d3BvTpwUMPPlAjf87rs+mR1YWsrp24d/KkBu1ed/UEMtq3pd9JPWrUX236rE83tWkTHhvXh6d/dDIzrunH1YM7lNX9eEgGz1/Xn2ev7cfIk9MSJmZ33U1kN9niddfdhHPjnX3Nj4Z5XHjxpbbj2+L9jrUbNtu8+Ytsx7fF9ukXO6xjp+Nt4dKVFdpFyj5TUFhsGZmZtubDDWXZZ5atWB1V5ppEdyNl63vtjbmWvXBxjbP6Jfqz9rnr7bJj4KR3rM9db1u/3861VXk7bcyjS2ziy2ts1orPrG/Q5swp2WXtk/F366679eEmW7zuuhtvlwiZ6nyGuBZIKpGUIylX0iuSDq/De/eVVLMp1OrvuUnSqiDmVZJ+EFZXUJd9RaLtscfSs/dJALRs2ZLOXbry2Zb8qNzFixbRsWMnMjIzSU1NZfjIUcx65aUG6w4cNJjWrdtE1TYR4o3F3VNUAkBKE5HSRJjBpSel8Uj2Jkq/T7Lj26KEitlddxPRTbZ43XU3EV0fENeOPWbWy8y6A9uB6+vqxma2xMxurKv7hXGamfUCLgXqdMBdEz79ZBMrV+TQ5+T+UbXfsiWf9PT2Zddpaenk50c3mE5GN1aS6VmbCJ76YV/e+Nl3+eDj7aze8g1prZtzVrejeXx8H+4f1YP2rZsnVMzuupuIbrLF6667iej6gLjuWAikAUgaImlWaYWkaUG6YyRNkrRG0kpJ9wVlw4NZ5hWS3i1/D0n9JC2QtDz42SUoHyvpBUmzJX0kaXIN4j0M2FG+sJrY+0h6R9JSSa9LOracO1zSTEkz8/PyKu24oKCAqy4bwT2Tf89hhx0WVbBmFb9pLKnBurGSTM+6z+Dyvy7hvPsXktXuMDoedSipKWJv8T6uenQp/1y+hduHdU2omN11NxHdZIvXXXcT0fXEHHWApKbAGcDfqmnXBrgI6GpmFrbE4nbgbDPLr2TZxTpgsJkVSzoT+B1wSVDXC+gN7AU+lPRHM9tcRRhzFfrTkQmMqKJd+dibAX8EfmBmX0kaCfwWGF/axsyeBZ4FuOiS4RGzchQVFTFm9HCGj7qMYRdeFG33pKWlk5f338fKz8+jXbt2DdaNlWR81oK9xSz95GsGdGzDl9/s5e11XwEw98Ot3DHshISM2V13E8lNtnjddTcR3bhvvkrmAygBcoCvgbeApkH5EGBWWLtpwFhC/wOygtDA+WIgNah/CHgD+BFwRPl7AO2BF4FcYBWwLigfCzwS1s9rwMAq4t0EHBmcdwyuWwTXBdXE3h34JnjenCCOOZX1FWlT3fbdRTZy9BV27fU3VqirblPdrj1F1iEjw9au31i2UH5pTm5Ui+wT3a1sw1zuug013lSX6M9aukHujCnZ9r3J71qfu962U++ZZ8s+2WE3PbPC/v7eJvvNy2usz11v29WPL7Pc/J1VbqpL9Od11936cJMtXnfdjbdLhE11PkNcO/aYWS9JrYBZhNYQPwAUs/9ylIMBghnefoRmk0cBNwCnm9m1kvoD5wM5knqV6+cuYK6ZXSSpAzAvrG5v2HkJUc76m9kGSV8A3YBFYVURYwcErDazAdHcPxLvL5zPjKefpFv3ExnUvw8Av/7NXZx1znnVuikpKUy9fxrDzj+bkpISxowdT7esrKj6TUZ33JWjyc5+vwruzQAAIABJREFUh21bt9Kl43HcetsdjBk3IWHjral7ZItUfnPBCTSRaCJ4Y+1XvPfvbeRs3sndF3ZjdP/2fPufEu6etS5hYnbX3UR1ky1ed91NRFeR1ls40SGpwMxaBOe9gZcIzby2BbKBLoQGlDnAb4DngEPM7Mtg+cS/zayNpI5mtiG4z3JgHHA4cLOZDZX0IvCkmT0vaSIw1sw6BGt7+5rZDYE7C7jPzOZVEu+moP1WSUcTmnE+0cy+KH0WSe0rif1p/j97Zx5fVXH+//eHhAgKCqgVISghKEgkKgiKC+K+gVYlgFTLVrdqXSq1ftW6tf2JaGtdWq1tlbpUBawbKoIWFBEEQTYRQRQkwVoCiAQIhvD8/rgn4RpukpsbQu7Jfd6v13lx7px5zzxzQg7D3JkzsBi41MxmBFMoDjWzT2LVdcFFefbkM88ndF+bNE5LyAsr20q3J+ymp4VrGcAJo6Yk7L5/88m7MBLHcRwnVWnaWOPM7AfTRn2EeBdhZh9Lmg8MMrOnJY0FFgDLgI+DbM2BVyQ1ITLiekOQfp+kQ4K0d4hMqzgpqvjRwD8l/RL4Ty1DnSKpFGgM3Gxm31Rox6pYsZvZ95L6Aw8FI+LpwJ+AmB1ix3Ecx3GcsOAjxE6d4CPE8eMjxPHhI8SO4zjOrsBHiJ3dRqNGSrhjW5sO4rqi7xN2WzXLSNitTcc0bJ3a2lCbTm3L3v+XsLv+vXsSdh3HcZyGj3eIGyCSPgT2qJB8qZktrI94HMdxHMdxkhnvEDdAzCy+7d8cx3Ecx3Ec36nOcRzHcRzHSW28Q+zsVia9NZHcnE7kdO7IfaNHxe1ddfkIstq1pme33ITq3bDhW64cdjGnHHsEp/Q6kjmzZ+6WehNtb6JeqrhLXryJ2U9fx8wxv+D9f1wNwIUnH86cZ65n0/u/p1vntkkXs7vu1qUbtnjddTfp3Pre7c2PKnfCu5XIa80WEHkf8DHA34Eu9R1bdceF/fN22hmmqHibZXXoYIs/W16+g8zc+Z/svNNMjB3Z3pw8xabNmF3tzm0rC7fEPC4a+BMb9cBfbGXhFlu2eoMtWP71TnlqU2+sHXPibe+u8hq626TXzeXHitXrrO1Zd/8g7YhBf7CuA++3d+cst+OGPfyDa2Fsr7vu+jPDXXfrxiXGTnU+QpykSOoF9AW6mVkucBqwysx+ZmaL6ze6xJg9axbZ2R3J6tCBjIwM8gYOYsJrr8TlnnBib1q2bJVQvRs3fseHM95n0CVDAcjIyGCffVrUeb2Jtrc29ynV3Gg+W7mGZV8Vxp0/jO11191kqdNddxua6x3i5OVAoNDMtgKYWaGZrZY0VdLRAJIelfSRpE8k3VUmSloh6f9JmhFc7ybpLUnLJV0Zle9XkmZLWlDmS9pL0uuS5ktaJGlgkN5d0ruS5gRlHVjTBq1eXUBmZrvyz23bZlJQUJDo/Ymbr1Z8yb777sfIX1zO2Scfy03XXcXmTZvqvN5E21ub+5Qqrpnx2p+GM/2Jaxh+fo+46qnvmN11t67csMXrrrvJ6HqHOHmZBLSTtFTSXySdFCPPrWZ2NJALnCQpeqLrKjPrRWQb5jFAf+BY4G4ASWcAhwA9gSOB7pJ6A2cBq83sCDM7HJgYbNP8MNDfzLoDTwC/rxiMpDxJYyWNzV+1aqdgg2kgFZ347kYtKN22jUUL5nHJsMt4c8pM9txrT/7y0P11Xm+i7a3NfUoV95QrH+O4YY/w4xuf5IoLe3H8ke3jqqu29brrbjK6YYvXXXeT0fUOcZJiZkVAd+ByYA3wgqShFbINkDSXyPbKOUCXqGuvBn8uBD40s41mtgYoltQCOCM4PgbmAp2JdJAXAqdJulfSiWa2AegEHA5MljQPuA3IjBHzODMbYGYDMtu1q3iZtm0zyc/f0VEuKMinTZs2NbktCdG6TVsObNOWo7r3BOCcfhewaP68Oq830fbW5j6livt14UYA1qzfxKvvfUKPw3b++5ZsMbvrbl25YYvXXXeT0a33xVd+xHcQGeF9DZgKHA1kAZ8DLYPrY4ChwfkKYL/gfCjwSFQ5K4D9gD8AV1RSVyvgEuB94HagKzCjJvHGWlS3cUuJtc/Ksk+XflE+2X3OvEU756tk4dqiJcsTXlTX49jj7D8z5tvKwi12/a9utcuvvj6uRXXx1htrcn+87d1VXkN3yxbItTr5N7bfqbeXn89YsML6Xf9E+fV4F9Ule3vdddefGe66WzcuMRbV+cYcSYqkTsB2M1sWJB0JrCQyUguwN7AJ2CDpAOBsIp3leHkL+K2kZ82sSFJboITIZi3rzOwZSUVEOtSjgP0l9TKzGcEUikPN7JOatCk9PZ0HHnyEfueeSWlpKUOGDqdLTk5c7rBLBzNt2rusLSykU/ZB3HLbHQwZNiLuuu+6549cd+UwSkq+56CD23P/w4/Xeb2Jtrc29ykV3B+1asYL91wacdMa8cLkeUz+cCnn9e7CH395Hvu12It/3z+EBcu+5rwbnkyKmN11ty7dsMXrrrvJ6CoYEXSSDEndiczbbQFsIzIafDkwHhhpZh9JGkPkVWxfAFuBV81sjKQVwNFmVhhMszjazK4Jyo2+dh3ws6DKIiKjwh2B+4DtRDrIVwV1HQk8BOxDpNP8JzP7W2XxX5Q3wJ59bmxCbd9Wuj0hD2Bd0fcJu62aZSTspqf57KO6pmXv/0vYXf/ePbswEsdxHCfMNG2scWY2IDrNR4iTFDObAxwX41KfqDxDK3HbR52PITKdIta1B4EHK+jLiYweVyxzHtC72sAdx3Ecx3FChg9rOY7jOI7jOCmNjxA7SUdtph/8aJ8muzASJ5mozbSHrKtfTNhd9tAFCbs+lcZxHCcc+NPacRzHcRzHSWm8Q+w4juM4juOkNN4hdhzHcRzHcVIa7xA7u5VJb00kN6cTOZ07ct/oUe4mUZ2p5DYSTLr1VJ66OvIilz8P78G0u85gyu2n8cefdie9UfVbfV51+Qiy2rWmZ7fcavPuipjddTfZ6nTX3Qbl1vcObH4ktGvdrcAnwAJgHnBMFXnHAP13d4yxdqorKt5mWR062OLPlpfvIDN3/idx7T6TSm7Y4g2D2/ry8T847hg73178cKVNmr/aWl8+3gY/9H75tX9/+JXd9Mzc8s+V7U745uQpNm3G7Cp3MQzjvXI3fG7Y4nXX3fp2ibFTnY8QhwxJvYC+QDczywVOA1ZVbSUHs2fNIju7I1kdOpCRkUHewEFMeO0Vd5OgzlRyD2zRlFO7tuZf768oT/vPov+Wn89bsY42LZtWW/cJJ/amZctWccVZ25jddTfZ6nTX3Ybmeoc4fBwIFJrZVgAzKzSz1ZJWSLpX0qzg6Bjl9Jb0gaQvJPUHkPS0pPPLMkh6VtJ5koZK+rekiZKWSRodXD84+LyfpEaSpkk6oyaBr15dQGZmu/LPbdtmUlBQ4G4S1JlK7t0DcvndiwvZbjvv0pneSPQ/9iCmfPLfGOauIUz3yt1wuGGL1113k9H1DnH4mAS0k7RU0l8knRR17Tsz6wk8AvwpKv1A4AQiI8tlE2r+DgwDkLQPkV3x3giuHQkMBLoCAyW1M7OVwL3AY8CNwGIzmxQdmKQ8SWMljc1ftfOgtcXogEjVz9VMNTds8YbJPa1rawo3bmXBV9/GvD5q8FHMXFbIh5+vjav+RAjLvXI3PG7Y4nXX3WR0vUMcMsysCOgOXA6sAV6QNDS4/FzUn72itJfNbLuZLQYOCMp5F+go6UfAxcCLZrYtyP+OmW0ws2JgMXBw4PwdaA5cCYyMEds4MxtgZgMy27WreJm2bTPJz9/RUS4oyKdNmzZxtTuV3LDFGya3Z/a+nHHEgcz6/Vk89rNjOKHz/jwyvAcAv+x7GPs234M7xi2Iq+5ECcu9cjc8btjiddfdZHTrfYGYH7U7gP7Aa8AKICtIa0xkWgVUWFQHFEWd/xq4AfgQyAnShgKPROWZAPQJzvcksphvOXBgVXHFWlS3cUuJtc/Ksk+XflE+2X3OvEVxTZRPJTds8YbBrbiorvXl4+2C+6eWL6r75T8/slmfF1r7q/+9U77KFsxtLC61RUuW13hRXbLfK3fD54YtXnfdrW+XGIvqfOvmkCGpE7DdzJYFSUcCKwmmNxCZEjEQmBFHcWOAWcB/zeyTOPLfCzwb1Pc3IlMw4iY9PZ0HHnyEfueeSWlpKUOGDqdLTo67SVBnKrrR3PuTo8hft5nXfn0yAG98XMADry+p0hl26WCmTXuXtYWFdMo+iFtuu4Mhw0bUaczuupssdbrrbkNzFYz8OSFBUnfgYaAFsA34nMj0iY+AJ4FziEyFudjMPpc0BphgZuMDv8jMmkWVN5HIlIrHgs9DgaPN7Jrg8wTgfsCIdIiPN7NSSf8GXjOzJ2PFeVHeAHv2ubG7uvmOkxBZV7+YsLvsoQsSdtPTfFaa4zhOstG0scaZ2YDoNB8hDhlmNofIArgfEEwa/7OZ3VUh/9AKn6M7w3sCh7Bj7jFmNobIyHHZ5+hR4GOj0i9MrAWO4ziO4zjJhQ9fpCiSTgOWAA+b2Yb6jsdxHMdxHKe+8BHiBoKZta9h/reBg+omGsdJLr7880UJuz99Zm7C7lOXdEvYdRyn/thWuj1h16dKhRP/qTmO4ziO4zgpjXeIHcdxHMdxnJTGO8SO4ziO4zhOSuMdYme3MumtieTmdCKnc0fuGz2qeiFF3bDFmwpu4zTx/87txOjzOvOH8w8j78gDAdi/WQa/P7cTD17YhetPyiKtUfXbhIahve6Gyw1bvGF1r7p8BFntWtOzW26NvNrW6+5ucOt7pzU/GuYRa6e6ouJtltWhgy3+bHn5DjJz538S1+4zqeSGLd6G7uY9Oaf8uOTpjy3vyTk2aMwcW/q/Irtlwqf2wRfr7IGpX1jek3Ns0pL/2eMfrCzPH8b2uhs+N2zxhsGtbPfJNydPsWkzZtd4h8pkb2+qucTYqc5HiHcRkj7YDXX0CTbKqIlzp6SRwfkYSf13RbmJMHvWLLKzO5LVoQMZGRnkDRzEhNdecTcJ6nQ3PnfrtsjK87RGIq2RMIOcA5szc8V6AKZ+vo4eB7VIqpjdbfhu2OINqwtwwom9admyVdz56ztmd+N3vUNcSySlAZjZTptlOD9k9eoCMjPblX9u2zaTgoICd5OgTnfjcyUYfV5n/j4ol4Wrv+ObjVvZ/P02tgcbfq7b9D2t9mycVDG72/DdsMUbVrc2hLG9qeamRIdY0suS5kj6RNLlQVqRpHuD9Lcl9ZQ0VdIXks4L8qRJuk/SbEkLJF0RpPeRNEXSv4CFZeVF1XeTpIWS5ksaFaRdFpQzX9KLwS5xZaO2D0n6IKh7pxHcCuwt6SVJiyU9JqlRjPr7B1s2V3VPzpK0RNL7wIVR6a2C+7VA0kxJuUH6/pImS5or6a+SVkrar0KZeZLGShqbv2rVTnWa7bxNeLDDXrWkkhu2eFPJNYObXl3CleMWkb3fXrTdp0lcddW2XnfdTbY6U9GtDWFsb6q5KdEhBoabWXfgaOBaSfsCewFTg/SNwO+A04ELgLsDbwSwwcx6AD2AyyRlBdd6AreaWZfoiiSdDfwYOMbMjgBGB5f+bWY9grRPg7LLOBA4AegLVDcDvCdwI9AVyCaqMxsvkpoAfwP6AScCraMu3wV8bGa5wC3AU0H6HcB/zKwb8BIxNvUws3FmNsDMBmS2a1fxMm3bZpKfv6OjXFCQT5s2beKKOZXcsMWbiu7m70tZ/N+NHLL/XuyZkU7ZOrpWe2WwbnNJUsbsbsN1wxZvWN3aEMb2pppb74uvdscB3AnMD44NwLHAVkDB9buJdG4h8p+Eb4Pz8cBSYF5wfAmcAfQBplSooyj48w/AZTFiOAmYRmRE+UvgsSB9DPCTqHwbq2hHH+C9qM/DgT9F1x+c9wfGRLV9ZFRd/YEjK5RzHjAhOP8Y6BB1bRWwT9D+rKj0dcB+lcUaa1Hdxi0l1j4ryz5d+kX5ZPc58xbFNVE+ldywxdvQ3bIFcsP/Nd+GPDvP8p6cY4OfmmuL/7vR7pm8zD748oeL6v5WzaK6ZG+vu+FzwxZvGNzKFsxtLC61RUuW13hRXbK3N9VcYiyqa/BbN0vqA5wG9DKzzZKmAk2AEtsxtr6dSAcZM9suqey+CPiFmb0Vo8xNlVUJ7DxmH+mM/tjM5ksaSqRzW8bWCn5VVCzbYqTH8z1urBgrq9/iiKta0tPTeeDBR+h37pmUlpYyZOhwuuTkuJsEdbpbvdtyz8ZcfcLBNJKQYMaK9czN/478b4u5/qQsBh11IF+u28J/lq1NmpjdTQ03bPGG1QUYdulgpk17l7WFhXTKPohbbruDIcNGVOuFsb2p5mpHn7BhIul84Gdm1k9SZyIjnWcRGRFtFuS5k8gI6/3B5yIzaxbMNz4HyDOzEkmHAgVEpk+MNLO+UfWUOWcBtwOnBR3wVma2TlIh0AVYD7wBFJjZ0GCu7wQzGx9dTiVt6QO8GZSzMjh/3MxelPQ5kSkQnwHjiIw0D41uW1ldwbEUONnMlkt6DmhuZn0lPQSsMbPfBvU9YGZHSfoz8JWZ3SvpDOAtYH8zK4wV60V5A+zZ58bG+VNynOTlp8/MTdh96pJuuzASx3F2F9tKtyfspqelymzU8NK0scaZ2YDotAY/QgxMBK6UtIBIZ3FmDdy/A+2BuYrMyl5DZH5wpZjZRElHAh9J+p5I5/cW4DfAh0Q6sguB5jVsRxkziMwz7gq8R2Q+L8DNRDq6q4BFQMxOdRBjcdDZfz3oqL8PHB5cvhN4Mrhfm4EhQfpdwHOSBgLvAl8TmXvtOI7jOI4Tahr8CLGza5C0B1BqZtsk9QIeNbMjK8vvI8ROQ8FHiB0n9fAR4oZNqo4QO7uGg4CxwWvevgcuq+d4HGe38MD58c8vrMi5j85I2H39ql4Ju7VhU/G2hN29moTvnxTv+Dix8J9t/Cz9OvEviw89MNEvy3c94Xt6pQCSugJPV0jeambH1Ec8AGa2DDiqvup3HMdxHMepK7xDnISY2UIir0ZzHMdxHMdx6hj/TsBxHMdxHMdJabxD7OxWJr01kdycTuR07sh9o6vblC913bDFm4rusUccyqnHd+eM3j0555TjqszbOE38eUBXHr84l38MPoIhx2QCMPKUbB6/OJe/XZzLHWcfSpPG1T+S66O9xcXFnN6nFyf16sbxPY5g1O/v2i311pd71eUjyGrXmp7dcmtUX23rrY0btnvsbsNzbx/5c/oc1YELT9sxu3PDt+u4YvD59Ot9JFcMPp/vvl2fVDH/gPreRc6PhnnE2qmuqHibZXXoYIs/W16+g8zc+Z/EtftMKrlhi7ehu/nrimMeme0OsgXL8iu9nr+u2E556IPy45xHZ9opD31gpz8ywxZ//Z1d/cIC6/voh+XXx80tsMenryj/XF/tLdxYstOx5rvvbcXX661wY4l9vW6zdTu6h018Z9pO+cL4842109ibk6fYtBmzq9yNrLIdyfyZ4W6qufO/+s7mf/WdPTHuTXv+9fcs+9DDytOGXnGdXfvrO23+V9/Ztb++04ZeeX35tflffVdvMRNjp7rQjhBL+qCe639DUovg+Hk1eftImlDD8u+UNDI4HyOpfxV5r5e0Z03Kr6ScKyX9tLblVMbsWbPIzu5IVocOZGRkkDdwEBNee8XdJKjT3Zq5iVBcEnmbQXojkd5IGLC5pLT8ekZ6o8r3j9wFMdfGlUSzZpFXm5eUlFBSUkLk1ex1W299uSec2JuWLVvFlTcZYg7jPXa34bndjzmevVu0/EHalMmvc17/wQCc138wUyZV3xWqr/aGrkMsKQ3AzKr+jrKOMbNzzOxboAVQZYd4N3A9UKMOcdl9jPqcbmaPmdlTNSijRosyV68uIDOzXfnntm0zKSgocDcJ6nS3Zi5EOomDL+rL2Sf34pkxf682fyPBXwfl8uKIo5mzagNLvikC4FenZjN+RHcOatmUlxb8t85irm17S0tL6XNcdw7r0IY+J59G9x7xvfQmrD/fRPFnhrvu7mBd4Rr2P6A1APsf0Jp1hTE3t02KmOukQyzpZUlzJH0S7IiGpCJJ9wbpb0vqKWmqpC8knRfkSZN0n6TZkhZIuiJI7yNpiqR/EdnlDUlFUfXdJGmhpPmSRgVplwXlzJf0YtkIajDa+pCkD4K6qxp57SPpPUkvSVos6bHgPbxIWiFpPyK7xmVLmifpvipuy96VlBPdjv7B9so1udfXAm2AKZKmBGlnSJohaa6kcZLKtqheIel2Se8DecH9/3+S3gWuqzAqnS1pYvDzmhZse112//4Y1HVvhVjyJI2VNDZ/1aqdYjXbefgr3lGmVHLDFm8qugAvvTmFiVNn8vTYV/jnP/7KzA+mVZl/u8EVzy9g4JNz6HxAM9q3agrAfe8sZ8ATc1i5bgt9Dtm3zmKubXvT0tKY+sEcFixZwdw5s/l08aI6r7c+25so/sxw193aUV8x19UI8XAz6w4cDVwraV9gL2BqkL4R+B1wOnABcHfgjQA2mFkPoAdwmaSs4FpP4FYz6xJdkaSziWynfIyZHQGMDi7928x6BGmfBmWXcSBwAtCXSIe2KnoCNxLZKjkbuLDC9ZuB5WZ2pJn9qhblJISZPQSsBk42s5ODTvptwGlm1g34CPhllFJsZieY2fPB5xZmdpKZ/aFC0Y8Dvwh+XiOBv0RdOzQo/8YKsYwzswFmNiCzXTsq0rZtJvn5OzrKBQX5tGnTJq52ppIbtnhT0QVofWAk7377/4izzj2PeXM+isvb9H0p8wq+o8fBLcrTthtMXbaW3tlVd4jrs71l7NOiBcefeBLvTJ5U5/UmQ3trij8z3HV3B632258130S++VrzzX9ptd9+SRtzXXWIr5U0H5gJtAMOIbK72cTg+kLgXTMrCc7bB+lnAD+VNA/4ENg3cAFmmdmXMeo6DXjSzDYDmNm6IP3wYGRzIfATIHq7qZfNbLuZLQYOqKYts8zsCzMrBZ4j0pFOhF1VTnUcC3QBpgf3cQhwcNT1Fyrkr/iZYET5OGBcUMZfifwnooxxQTtqxNE9evD558tY8eWXfP/994x74XnO7Xueu0lQp7s1czdv2kTRxo3l5+9NeYdOh1W+o90+TdLZKyMySykjrRHd2+1D/vpi2uzTpDxPr6yWfLV+S53FXBu3cM0aNnz7LQBbtmzhvSnvcMihneq83vpya4M/M9x1dwd9Tj+HV8f/C4BXx/+Lk08/N2lj3uUbc0jqQ6ST2svMNkuaCjQBSmzHWPZ2YCuAmW2PmosqIqOSb8Uoc1NlVRJ7KcoY4MdmNl/SUKBP1LWtFfyqqFh2NctealxOdHoTao+AyWZ2cSXXK97HWPe1EfCtmVW2OUhlP4sqSU9P54EHH6HfuWdSWlrKkKHD6ZIT37a4qeSGLd5UdNes+YafXToQgNJt2/hx/4GcfNoZlebfd68Mbjq9I2mKfH337rK1zFyxnj9dlMOeGelIsLxwEw9OifV//vpv7zfffM01VwyntLSU7duN8y/sz5lnV/8PW33GXBt32KWDmTbtXdYWFtIp+yBuue0OhgwbUb1YTzGH8R672/DcX18zjI9mvM+369dyes/OXPXLWxj+8xv41VVDefmFp2jdph33P/bPpIo5GsWab1EbJJ0P/MzM+gXzTucBZwETzKxsLuudQJGZ3R98LjKzZorMNz4HyDOzEkmHAgVEpk+MNLO+UfWUOWcBtxP5Cn+zpFZmtk5SIZGR0vXAG0CBmQ0N5uhOMLPx0eVU0pY+wJtBOSuD88fN7EVJK4hMCTFgrpkdHKuMOMr5HOgHfAaMAzYGcZbfo4oxxyh/IXCemX0paX9gDnCKmX0ezJ3ONLOlZTGbWWHgTQ3u60cVfy6KvMXjATMbp8gEnNzgPxdVxlLGRXkD7NnnxlaVxXFCwdqNW6vPVAk/fWZuwu7rV/VK2K0Nm4q3Jezu1SR8m59uK92esJueFrp16Y6zy1n69caE3UMPbL4LI4mfpo01zswGRKfVxW/zRCBd0gLgt0SmTcTL34HFwFxJi4h8VV/lE9bMJgKvAh8FX++PDC79hsi0i8nAkhq14IfMIDLPeBHwJfBShfrXEpmesKiaRXWVlXMzMAH4D/B1gjE+DrwpaYqZrQGGAs8FP4OZQOcEyvwJMCKY+vIJcH6CsTmO4ziO4yQ1u3yEuCERjOz+YGTaiQ8fIXYaCj5CHD8+Quw4qUdDGSEO39PLcRxnN7Jv8z0SdmvTqe08skZ7+fyAOb87K2E3jJ3a2uCdWsepHfXVqd3VpNaTrxIkdQWerpC81cyOAabuonJqjaSXgKwKyb+uuAjRcRzHcRzHiR/vEANmthCo7I0Ku72cKsq/oK7KdhzHcRzHSVX8uyLHcRzHcRwnpfEOsbNbmfTWRHJzOpHTuSP3ja5uk8DUdcMWr7t17zYSvD7yRP5xWQ8AMls15eUbjmfKrSfzyJBuNE6r+pXqxcXFnN6nFyf16sbxPY5g1O/vqvOY3fVnhrvuhsY1Mz/82OXHhf3zbEuJ/eAoKt5mWR062OLPltuGTVuta9dcmzv/k53yxTpSyQ1bvO7WjXvwda/94Lj7pUX28kf59vai/9rB171mr80tsGvGzLGDr3vNnnl/hd06dkF53sKNJTsda7773lZ8vd4KN5bY1+s2W7eje9jEd6btlC+M9yrV3bDF66679e0CYyv2W3yEuAZIah+8H3l31ddC0s+rydNHUuLL0RNA0p2SRlaf84fMnjWL7OyOZHXoQEZGBnkDBzHhtVfcTYI63U1ut/U+TTilywE8P/Or8rTjDtmPN+ZHXl3+4uxVnNG16l3oJdGsWWQPopKSEkpKSojsuVM3Mbvrzwx33Q2T6x3i5KYFUGWHOEysXl1AZma78s9t22ZSUFDgbhLU6W5yu7dfkMM9r36KBa+Nb7lXY77bUkLp9kjC198Wc8A+1e/8XlpaSp/junNtEJKeAAAgAElEQVRYhzb0Ofk0uveI7wU4YbpXqeiGLV533U1G1zvENSdd0j8lLZA0XtKekm6XNDvYre7xYKtjJF0raXGQ9/kg7SRJ84LjY0nNg/RfBWUskFQ2uW8UkB3krWoXvGZBLEskPRtV/6lBHQslPSFpjyB9haT9gvOjgy2cy0Z+n5A0VdIXkq4tq0DSrZI+k/Q20ClWEJLyJI2VNDZ/1aqdrpvtvAlMvCNUqeSGLV5369Y9pcuPWFu0lUX5G3bkZ+f8MYrdibS0NKZ+MIcFS1Ywd85sPl0c3xdeYblXqeqGLV533U1G11+7VnM6ASPMbLqkJ4iM4D5iZncDSHoa6Au8RmRb5iwz2yqpReCPBK4O/GZAsaQzgEOAnoCAVyX1DvzDzay6V7kdBeQAq4HpwPGSPgLGAKea2VJJTwFXAX+qpqzOwMlAc+AzSY8CucCgoJ50YC4wp6JoZuOAcRDZqa7i9bZtM8nP39FRLijIp02bNtWEk3pu2OJ1t27dozu04rTDD+DkLj9ij/RGNGvSmNsvyGHvpo1JayRKtxsHtmjC/74rjqt+gH1atOD4E0/incmTOKzL4bs8Znf9meGuu2Fz633xVZgOoD3wVdTnU4CXgYuAD4GFQAFwc3B9IjAeuARoFqTdHOS9FsgM0u4HVgDzguNzYERQ36JqYuoDTI76/GhQ3xHAe1HppwL/Ds5XAPsF50cDU4PzO4Fbo5xPgUzgeuDuqPQ/EtnSutK4Yi2q27ilxNpnZdmnS78on+w+Z96iuCbKp5IbtnjdrRu34qK6g697zQY+/EH5oroJH9dsUd2SL1bb8lVrrHBjia3633d2bK/j7dmxL8e1qC7Z71Wqu2GL111369slxqI6HyGuORVHPg34C3C0ma2SdCdQNpnvXKA3cB7wG0k5ZjZK0uvAOcBMSacRGRW+x8z+Gl2wpPZxxrQ16ryUyChuVd8RbGPHdJmKEw9jlQU7t7vGpKen88CDj9Dv3DMpLS1lyNDhdMnJcTcJ6nQ3HG40o15bwsM/7caN53Tik4INjJ258zSlaL755muuuWI4paWlbN9unH9hf848+9w6j9ldf2a4624YXMWab+HEJuigfgkcZ2YzJP0NWALcRGQ0Nw2YSWRU+G7gIDNbIakxkE9kusW+ZrY8KO9lItMaNgO/JTK9oUhSW6CESId0rpkdXEVMfYiM1vYNPj8CfAQ8DywFTjGzzyWNAT42sweDecB/MLM3JT0AHGVmfYLOfJGZ3R+UtYjI9I9WQZzHsGPKxF/L8sXiorwB9uxzY+O5rY7jxKDzyMRfHjPnd2cl7O7VxMdJHMdp2DRtrHFmNiA6zZ98NedTYIikvwLLiExRaElkusQKYHaQLw14RtI+REZrHzCzbyX9VtLJRDq7i4E3LTLH+DBgRjD5uwi4xMyWS5oedEzfNLNfxRukmRVLGgaMk5QexPVYcPku4B+SbiEyfaO6suZKeoHIdI6VwLR443Acx3Ecx0l2fITYqRN8hNhxaoePEDuO49QNPkLsOI4TEmrTqT32rskJuwvvOTth13Ec2Fa6PWE3Pc3fhltfeIc4JEjqCjxdIXmrmcX3Zn3HcRzHcRwnJt4hDglmthCo7n3EjuM4juM4Tg3xsXnHcRzHcRwnpfEOsbNbmfTWRHJzOpHTuSP3jR7lbhLV6W7yu8XFxZzepxcn9erG8T2OYNTv76oyf0Z6I8b/ohev3nA8b9x4Atee0RGAY7Nb8fJ1x/H6jSdw78CupDWqfmvTsN2rVHPDFm8qulddPoKsdq3p2S23Rl5t63U3Tup79zc/Ej+IYye7+io/1k51RcXbLKtDB1v82fLyHWTmzv8krt1nUskNW7zu1o0ba7e5Nd99byu+Xm+FG0vs63WbrdvRPWziO9N2ytdx5BvlR+4tb1nHkW9Y55vetHkr11vewx/Y6vWb7bRRU63jyDfs4UnL7OYXFpTnD+O9SnU3bPE2dHdjcWnM483JU2zajNl2WJecSvOEsb1hdImxU52PEDu7jdmzZpGd3ZGsDh3IyMggb+AgJrz2irtJUKe74XAl0axZMwBKSkooKSkheHd5pWz+vhSA9DSR3khs3258v207Kwo3AzB9WSFndj2gzmJ2158Z7kY44cTetGzZKu789R1zqrneIQ4/6ZL+KWmBpPGS9pTUXdK7kuZIekvSgQCSLpM0W9J8SS9K2jNIz5Y0M7h2t6SiipVISpN0X5BngaQrahro6tUFZGa2K//ctm0mBQUF7iZBne6GwwUoLS2lz3HdOaxDG/qcfBrde1T9oplGgldvOJ6Zd5zK9GVrmb9qA+lpjTg8c28AzuramgNbNK2zmN31Z4a7tSOM7Q2j6x3i8NMJeNzMcoHvgKuBh4H+ZtYdeAL4fZD332bWw8yOILLj3ogg/UHgQTPrAayupJ4RwIYgTw/gMklZ0Rkk5UkaK2ls/qpVOxUQTMOgghNXI1PJDVu87u4+FyAtLY2pH8xhwZIVzJ0zm08XL6oy/3aD8x6Yzom/m0Juu3045IBmXP/sPG7pdxjjf9GLTVu3Ubq96g2awnivUskNW7yp6NaGMLY3jK53iMPPKjObHpw/A5wJHA5MljQPuA3IDK4fLmmapIXAT4CcIL0XMC44/1cl9ZwB/DQo80NgX+CQ6AxmNs7MBpjZgMx27XYqoG3bTPLzd3SUCwryadOmTVyNTCU3bPG6u/vcaPZp0YLjTzyJdyZPiiv/xuJtfPjFOnp33p95K79l8KMf0v/hGcz+cj0rCjfVWczu+jPD3doRxvaG0a33hWF+1HrR28qoz6cALwEzKsn/JXBEcD4UGBOcrwXSg/O9gaKo8hcF5y8CZ8YbW6xFdRu3lFj7rCz7dOkX5ZPd58xbFNdE+VRywxavu3XjxlpUt+SL1bZ81Ror3Fhiq/73nR3b63h7duzLlS6q63nH23bUbZOs48g3LOfmiTZr+Vq77B+zrecdb1vHkW9Yl19PtOlL19glj86sclFdst+rVHfDFm9DdytbMLexuNQWLVle40V1yd7eMLrEWFTnG3OEn4Mk9TKzGcDFwEwi0xl6mdkMSY2BQ83sE6A58HWQ9hOgbGLNTOAi4AVgUCX1vAVcJek/ZlYi6VCgwMyqHlqKIj09nQcefIR+555JaWkpQ4YOp0tOTvViirlhi9fd3ed+883XXHPFcEpLS9m+3Tj/wv6cefa5lebff+89GD0wl0aNoJHEm/P/y5RP1/Drcztx8mE/QoLnZqxi5vJ1Sdled/2Z0VBcgGGXDmbatHdZW1hIp+yDuOW2OxgybES1XhjbG0ZXweifE0IktQfeAN4DjgOWAZcChwIPAfsQ2Y3wT2b2N0lXATcBK4GFQHMzGyrpECLTLQS8DlxuZm2D8ieY2eGSGgG/A/oF+dYAPzazDbFiuyhvgD373Ni6aLbjpASbircl7B571+SE3YX3nJ2w6zgObCvdnrCbnuYzWXcHTRtrnJkNiE7zEeIQY2YrgC4xLs0DesfI/yjwaIz8BcCxZmaSBgEfRZV/eHC+HbglOBzHcRzHcRoM3iF2ALoDjyiyFPNbYHg9x+M4juM4jrPb8A6xg5lNA46o7zgcJxkpLilN2G3SOC1hd68miT+eazPtoev/vVkv9TpOMlGbaQ/bqnmNYVWkJ/7IcGqJT1ZxHMdxHMdxUhrvEDuO4ziO4zgpjXeIHcdxHMdxnJTGO8TObmXSWxPJzelETueO3Dd6lLtJVKe78bv5+avod9apHHPU4fTqnstjf34o6WOuqZuR3ojxv+jFqzcczxs3nsC1Z3QE4NjsVrx83XG8fuMJ3DuwK2mNqt8WNQztDbsbtnjD6l51+Qiy2rWmZ7fcGnmp8MwIvVvfu635sWsPonaXq88j1k51RcXbLKtDB1v82fLyHWTmzv8krt1nUskNW7wN3V2/edtOx6fLV9nU6bNs/eZt9tU36y274yE2Y86CnfKFsb1lO9Z1HPmG5d7ylnUc+YZ1vulNm7dyveU9/IGtXr/ZThs11TqOfMMenrTMbn5hQZW73CV7exuCG7Z4w+BWtpPcm5On2LQZs6vcbS7VnhlhdImxU52PEDsJI6lG62Fnz5pFdnZHsjp0ICMjg7yBg5jw2ivuJkGd7tbMbX3ggRxxVDcAmjdvzqGdOvP16oJqrPqNORF38/eRN2ykp4n0RmL7duP7bdtZUbgZgOnLCjmz6wFJFXMqumGLN6wuwAkn9qZly1Zx5y8jVZ4ZYXa9Q9wwSZf0T0kLJI2XtKekUyV9LGmhpCck7SFpH0mfSeoEIOk5SZcF52dImiFprqRxkpoF6Ssk3S7pfSCvJkGtXl1AZma78s9t22ZSUBDfAyGV3LDFm4puNF+tXMGC+fPo3uOYOq93d7uNBK/ecDwz7ziV6cvWMn/VBtLTGnF45t4AnNW1NQe2aJpUMaeiG7Z4w+ruKhryMyPMrneIGyadgMfNLBf4DvglMAYYaGZdibx/+iqLbLt8DTAm2KGupUW2eN4PuA04zcy6Edm57pdR5Reb2Qlm9nx0pZLyJI2VNDZ/1aqdggqmdFDBiatBqeSGLd5UdMsoKiripxcP4J7Rf2Tvvfeu83p3t7vd4LwHpnPi76aQ224fDjmgGdc/O49b+h3G+F/0YtPWbZRW887VMLU3rG7Y4g2ruyto6M+MMLveIW6YrDKz6cH5M8CpwJdmtjRI+yfB1s5mNhlYCPwZ+Flw/VgiW0JPlzQPGAIcHFX+C7EqNbNxZjbAzAZktmu30/W2bTPJz9/RUS4oyKdNmzZxNSiV3LDFm4ouQElJCUMG55E36GL6/fiCuL0wtndj8TY+/GIdvTvvz7yV3zL40Q/p//AMZn+5nhWFm5Iy5lRywxZvWN3akkrPjDC69b4IzI9dexBZVLcy6vMpwBTgvai0U4F/B+eNgGlAPpAbpPUDnquk/BXAftXFEWtR3cYtJdY+K8s+XfpF+WT3OfMWxTVRPpXcsMXb0N1YC2TWbSqxgYMvsSuvvjbm9aoWyCR7e8sWyPW842076rZJ1nHkG5Zz80SbtXytXfaP2dbzjret48g3rMuvJ9r0pWvskkdnVrmoLtnb2xDcsMUbBreyBXMbi0tt0ZLlNV5U15CfGWF0ibGozrdubpgcJKmXmc0ALgbeBq6Q1NHMPgcuBd4N8t4AfArcAjwhqRcwE/hzWX5JewKZtmOEOSHS09N54MFH6HfumZSWljJk6HC65OS4mwR1ulszd+aM6bzwr2focnhXTjymOwC/ueu3nHHWOUkbc03d/ffeg9EDc2nUCBpJvDn/v0z5dA2/PrcTJx/2IyR4bsYqZi5flzQxp6obtnjD6gIMu3Qw06a9y9rCQjplH8Qtt93BkGEjqvVS4ZkRdlfBqJ/TQJDUHngDeA84DlhGpAPcC7ifyPzh2cBVRKZBvAL0NLONkv4IbDSzOySdAtwL7BEUfZuZvSppBXC0mRVWFcdFeQPs2efG7uLWOc7up7ikNGG3SeMavYglKej6f28m7C685+xdGInj1B/bSrcn7lYzr74qwvjMCCNNG2ucmQ2ITvMR4gaGma0gMv+3Iu8AR1VIWwocFuX+Mur8P0CPGOW33xVxOo7jOI7jJAu+qM5xHMdxHMdJaXyE2HGc3UZtvoZMT6uf/7/X5ivMME63qM20h3MfnZGw+/pVvRJ2neQnbL/7takz3Wc9hBIfIXYcx3Ecx3FSGu8QO47jOI7jOCmNd4gdx3Ecx3GclMY7xM5uZdJbE8nN6URO547cN3qUu0lUZ326V10+gqx2renZLbdGXm3rrQ83P38V/c46lWOOOpxe3XN57M8PJX3MNXUbp4k/D+jK4xfn8o/BRzDkmEwARp6SzeMX5/K3i3O54+xDadK4+n+CwtDeZHDDFi+k1u+9uyFw63tnNT8MYAzQP0Z6G2B8cD4UeGQX1XcnMLIu2xRrp7qi4m2W1aGDLf5sefkOMnPnfxLX7jOp5IYt3pq4le3s9ObkKTZtxuwqd38KY3tj7UT16fJVNnX6LFu/eZt99c16y+54iM2YsyCuHauSvb2nPPRB+XHOozPtlIc+sNMfmWGLv/7Orn5hgfV99MPy6+PmFtjj01eUfw5je5PFDUO8if7ex/rdD0N73U1ulxg71fkIcRJjZqvNrH99x7GrmD1rFtnZHcnq0IGMjAzyBg5iwmuvuJsEddanC3DCib1p2bJV3PnrO+bauK0PPJAjjuoGQPPmzTm0U2e+Xl2Q1DEn4haXRN4qkN5IpDcSBmyOeutGRnojqGb/gjC1tz7dsMVbRir93rub/K53iOsBST+VtEDSfElPB8m9JX0g6QtJ/YN87SUtilLbSJooaZmk0VHlFUWd95c0JjjvJ+lDSR9LelvSAVFldZE0Najv2lj1SRop6c7g/DJJs4OYXwy2c64Rq1cXkJnZrvxz27aZFBTE1xFIJTds8dbWrQ1hb+9XK1ewYP48uvc4ps7r3d1uI8FfB+Xy4oijmbNqA0u+iTymfnVqNuNHdOeglk15acF/kyrmsLphi7e2hLG97ia/6x3i3YykHOBW4BQzOwK4Lrh0IHAC0BeobNLLkcBAoCswUFK7SvKV8T5wrJkdBTwP3BR1rTNwJtATuENS42rK+reZ9Qhi/hTYafN2SXmSxkoam79q1U4FBNM1KjrVVJt6btjira1bG8Lc3qKiIn568QDuGf1H9t577zqvd3e72w2ueH4BA5+cQ+cDmtG+VVMA7ntnOQOemMPKdVvoc8i+SRVzWN2wxVtbwthed5Pf9Q7x7ucUIvOCCwHMbF2Q/rKZbTezxcABlbjvmNkGMysGFgMHV1NXJvCWpIXAr4CcqGuvm9nWII7/VVFnGYdLmhaU9ZMKZRG0ZZyZDTCzAZntdu6rt22bSX7+jo5yQUE+bdq0qaba1HPDFm9t3doQ1vaWlJQwZHAeeYMupt+PL4jbC2N7N31fyryC7+hxcIvytO0GU5etpXd21R3iMLbXnxn+e+9uON2YHWJJr0l6tbIjrpKdyhCxZ85trZAnFtF5Stmx02B0eU2izh8mshCvK3BFhWuxytrGD/9OROcfA1wTlHVXhWtxcXSPHnz++TJWfPkl33//PeNeeJ5z+57nbhLUWZ9ubQhje82MX1x1GYd2Ooyrr70hLqe+Y66pu0+TdPbKiGzXlZHWiO7t9iF/fTFt9tnx2OiV1ZKv1m9JmpjD7IYt3toSxva6m/xuZVs33x+X7STCO8BLkh4ws7WSar6iYGe+kXQY8BlwAbAxSN8HKJs8MySecoAfSdoXKCIyfWNicK058HUwteInUeXGTXp6Og88+Aj9zj2T0tJShgwdTpecnQaaU94NW7y1dQGGXTqYadPeZW1hIZ2yD+KW2+5gyLCdZuUkTcy1cWfOmM4L/3qGLod35cRjugPwm7t+yxlnnZO0MdfU3XevDG46vSNpinxd+e6ytcxcsZ4/XZTDnhnpSLC8cBMPTvkyaWIOsxu2eMtIpd97d5PfVaz5Fk7dImkIkSkMpcDHQfIEMxsfXC8ys2aS2gfph0saChxtZtcEeSYA95vZ1GAR3r3AKmAR0MzMhko6H3iASOd1JtDDzPoEC+WKzOz+oKxFQF8zWxEssLsW+DLwVpjZnZKuIjIHeSWwEGhuZkMra+NFeQPs2efG7orb5TQgtpVuT9hNTwvfDK/iqLcq1JQmjdN2YSS7h3MfnZGw+/pVvXZhJE6ykWq/+05y07SxxpnZgOi0KjvEkg4B7gG6EPUVuZl1qKsgnYaBd4idWKTaP4reIY4f7xA3bFLtd99JbmJ1iKv7W/Yk8CiRuaUnA08BT1dpOI7jOI7jOE6IqGwOcRlNzewdSTKzlcCdkqYBd+yG2BzHaWCk2khPGEd5a0NtRnlbXvBowu6a8Vck7Kba38na4KO8TkOmug5xsaRGwDJJ1xCZU/qjug/LcRzHcRzHcXYP1f2X7XpgTyKLrLoDlxLf2wocx3Ecx3EcJxRU2SE2s9lmVmRm+WY2zMwuNLOZuys4p+Ex6a2J5OZ0IqdzR+4bXdmGfO6GLV533d2VbqNGYsaf+vPi7WcD8PaoHzPzwTxmPpjHF2N+ythbz6q2jKsuH0FWu9b07JZbo1gTjbm+3fqKtzb3OWz32N0G7ppZpQcwBfhPxaMqxw8/zIwL++fZlhL7wVFUvM2yOnSwxZ8ttw2btlrXrrk2d/4nO+WLdaSSG7Z43XV3V7hN+v6l/Ljpb+/b81OX2uuzvvxBepO+f7GXpi+34X94+wdpG4tLdzrenDzFps2YbYd1yYl5vewI472qrzp35X0O2z12t2G5wNiK/ZbqpkyMJPK+3F8BvwHmAR/VqKteh0hqH7xDF0lHS3qoirx9gnf37jYkrZC03+6ss7ZI+rukLtXkmSrp6JqWPXvWLLKzO5LVoQMZGRnkDRzEhNdecTcJ6nTX3WRx2+67F2f1OJgnJ32607VmTRtzUm5bXptZ9YYeACec2JuWLRPb9ygs96q+44XE73PY7rG7Dd+tbsrEnKhjupn9EjgmrpJ3M2b2kZldW99x7Cok1cvydDP7mZktrouyV68uIDOzXfnntm0zKSiIb8O7VHLDFq+77u5K977LjufWJ2ewffvO78g/79gsps7PZ+OWkrjqTpSw3Kv6jrc2hO0eu9vw3So7xJJaRR37SToTaB1XydUg6RJJsyTNk/RXSWmSiiT9XtJ8STMlHRDkzQ4+z5Z0t6SiGOWVjwBLOikod56kjyU1D7I1kzRe0hJJz0pSFfH1kPRBEMssSc0lNZH0pKSFQbknB3nTJN0fpC+Q9IsKZTWVNFHSZZW1PUgvCtr3IRDz/UWSRklaHNRTttPcGEmPSZomaamkvkF6+yBtbnAcF3Wvpsa6F9Gjv5LOkDQjcMdJahbvzzcWZjv/A1fFjyBl3bDF6667u8o9u8fB/G/DFj5eXhjz+oCTDmHse5/HVW9tCMO9qu86a0vY7rG7Dd+t7rVrcwADRGRzji+B6jcarwZJhwEDgePNrETSX4CfAHsBM83sVkmjgcuA3wEPAg+a2XOSroyjipHA1WY2PejEFQfpRwE5wGpgOnA88H6M+DKAF4CBZjZb0t7AFuA6ADPrKqkzMEnSocAwIAs4ysy2SYr+/qgZ8DzwlJk9VUXbnwrav8jMbq/kvrUCLgA6m5lJahF1uT1wEpANTJHUEfgfcLqZFSuy6+BzQNlUhyrvhSJTPW4DTjOzTZJ+DfwSuDtWbIGTB+QB9Dzm2J2ut22bSX7+qvLPBQX5tGnTprLiUtYNW7zuurur3F6HtaZvz/ac1f0g9shIZ+89G/PEL09l+B/foVXzPTj6kB8x8PcT46q3NoThXtV3nbUlbPfY3YbvVrkwCmgSI22P2i64Aq4h0hGbFxyfAXcCW9mxnfRA4O/B+VogPTjfGygKztsT6UAC9AEmBOc3Ax8SeV1cZtT1yVExPApcUkl8XYHpMdJfAk6J+jwNyAVeJNLxrJh/BTAf+El1bQ+ubQPSqrhv6UF5/wAuBDKC9DHA8Kh87wFHAvsQ2VlwYVDX5uruBTCVSKe5L1AYFedi4B/Rear6GcdaVLdxS4m1z8qyT5d+UT7Zfc68RXFNlE8lN2zxuuvurnArLp47/eaXf7Co7ppHptrTby/ZKV9li+o2FpfaoiXLE1pUl+z3qr7q3JX3OWz32N2G5RJjUV11I8QfAN0qpM2IkVZTBPzTzP7vB4nSSNsx3l1K9SPYMTGzUZJeB84BZko6Lbi0NSpbVeWLyMh4rPSa5IfI6OvZkv4VtC1m2wOKzay0knIIRp97AqcCg4h0rk8pu1wxO3AD8A1wBJHpMcVR16u7FyLSab64snhqSnp6Og88+Aj9zj2T0tJShgwdTpecHHeToE533U1GN5q83h25f/zHcecfdulgpk17l7WFhXTKPohbbruDIcPi+4IzbPeqPn8+id7nsN1jdxu+qx39z6hEqTXQFngGGMyOjuDewGNm1jmu0iurNPIWg1eITBv4XzAVoDnwiZk1C/L0B/qa2dCgc/uUmb0g6XLgj2bWTFJ7IqPCh0vqA4w0s76Sss1seVDOy0RGUL8tux6kPwJ8ZGZjYsSXASxhx5SJ5kSmTFwL5JjZiGCqxGSgbMrEacCgsikTZrZO0goio62/ITKae1VlbTezlZKKytpfyX1rBuwZ5X1uZq0kjSGyg2BfIlM33gU6AvcA+Wb2B0nDgCciMy123KuK90LSVCJTTlYSmTJzipl9LmlPIqPtS8vymFmlbxy5KG+APfvc2MouO47j/ADfujn58a2bnYZC08YaZ2YDotMqGyE9ExgKZAJ/YEeH+DvgltoGYmaLJd1GZA5uI6AEuLoK5XrgGUk3Aq8DG6qp4npFFryVEvmq/00qWaRWSXzfSxoIPCypKZHO8GnAX4DHJC0kMr1hqJltlfR3Ih3jBZJKgL8Bj1SI/wlJo83spkravjKO0JoDr0hqQuRnckPUtc+IdIQPAK4M5g3/BXgxmNs7BdhUg3uwRtJQ4DlJewTJtwFL4y3DcRzHcRwnDMQcIS6/KF1kZi/uxngqi2NPYItFhjcHAReb2fn1HVeyEIwQTzCz8fUdSxk+Quw4Tk3wEeLkx0eInYZCrBHi6v6Gdo9+k4GklpJ+VyfRVRMHME/SAuDnwI31EIPjOI7jOI7TAKlu0drZZlY+RcLM1ks6h8hX57sNM5tGZGHYLkfSS0Tm3UbzazN7qy7qi5eaxGVmQ3dLUI7jOHVEbUZ5rxi3IGH3H4OOTNhNNXyU12nIVNchTpO0h5lthcgGE8Ae1TihwswuqO8YYpGscTmO4ziO4zQ0qusQPwO8I+nJ4PMw4J91G5LjOI7jOI7j7D6q/P7DzEYT2SnuMKALMBE4eDfE5TRQJr01kdycTuR07sh9o0e5m0R1uutusrlXXT6CrHat6dktN678rfZszK2nZTO6X2fu7duJMzvtB8BBLZpw52SAbr0AACAASURBVJmHMOrcTtzYJ4umjav/6j9s9yps8brrbtK5cewqdyQwmsiua1OAa6pz/PAj1k51RcXbLKtDB1v82fLyHWTmzv8krt1nUskNW7zuursr3Fi7m705eYpNmzG72l3QBj/9sQ1++mP7+fiFdsvrS2zw0x/b8Ofm2+oNW+xXry62zws32d1vLbXBT39sf/1gpf17wdflThjvVTLU6a67YXaJsVNdzP8mSzpU0u2SPiXyPt1VRF7RdrKZPRLLceJDUntJi4LzoyU9VEXePpIm1FEcfSQdF/X5x8GmIXXG7FmzyM7uSFaHDmRkZJA3cBATXnvF3SSo0113k9E94cTetGzZKq68AN9u2caKdVsAKN62ndUbttKyaWPaNN+DJf+LvIZ94dcb6dmuRVXFhO5ehS1ed91NRrey742WENkeuJ+ZnWBmDxPZ5MLZhZjZR2Z2bT1V3wc4Lurzj4lMi4kbSTXaWnv16gIyM9uVf27bNpOCggJ3k6BOd91NRrc27LdXBge3asrytZtZtaGY7pl7A3DMwS1otVfjKt2w3auwxeuuu8noVtYhvgj4LzBF0t8kncqO3epSFkmXSJolaZ6kv0pKk1Qk6feS5kuaKemAIG928Hm2pLslFcUor3wEWNJJQbnzJH0cbBcN0EzSeElLJD0rqdKfg6RRkhZLWiDp/iBtf0kvBnHMlnR8sOX1lcANQX0nAecB9wWfs4NjoqQ5kqZJ6hyUN0bSHyVNAe6tyf0zi7lNuLtJUKe77iajmyh7pDfi+t7tefqjAraUbOfxGV9x+qH78buzD6VpeiO2ba98QyoI370KW7zuupuMbswRPjN7CXhJ0l5ERg5vAA6Q9CjwkplNiqv0BoSkw4CBwPH/n70zD6+quvrw+wshioIDdSRBE4KCBCnK5ICIQ9WKWKcA4gBonaoV22Jr1SrWDjjXilq1VRyoCo6AA+AnICrIPIRRQZQErSIIRAEhrO+Pc4iXcBMyQO49uet9nvN4hv3uvfbhEjc7e99lZpvCtMgXAXsCk83sFkl3A1cQbER8EHjQzJ6XdHUlmhgAXGtmH0hqCGwI7x8F5AErgA+A44H348TXGDgXaGlmFpNQ5UHgATN7X9IhwGgzO0LSv4BiM9s6cB5BTLY7Sf9HkAL6Y0mdCNJWnxzWeThwqplt81sDBSmi8wE6djpmuw5mZmZRWLi89LqoqJAmTZpU4tWklhu1eN11d1e51aGe4IYu2XywbDXTlq8B4Iu1Gxn07lIADmq0G20z99plMfvPDHfdjaZb6U1SQGPgKuDdRG/YSsQBXEcwKJ0VHouAgcBGfkyB3RP4d3j+DZAenu9FMPgEyAYKwvOuBINQgJuAj4DrgayY52NjYngUuLic+NKB2cB/gPOAjPD+VzExzwKKgEZh7ANi/CHABeF5Q2B9GW9BTLk+O3pf8TbVrVu/ybJzcmzB4qWli92nzyqo1EL5VHKjFq+77u4Mt7wNcwULl1R6U13vZ2fae0u+sTfnf7XNvauHzbXez860i8Lnj334WYWb6pL9XSVDm+66G2WXOJvqKr0G1MxWAY+FRyoi4Gkz++M2N6UB9uMcfQk7/m7nuJjZIElvAGcCkyWdGj7aGFOs3PrNbLOkjgRrv3sRDOBPJlgWc6yZrS8Td0XhpAHfmll5KZy+20F34pKens4DDw6me7fTKSkpoU/fy2iVl+duErTprrvJ6Pa7pDcTJ07gm5UraZF7CDffejt9+l1ebvnD99+TE5o15vPV6/nbmS0AeHHWCg5qtBs/C7+Cberna5iwZFVS9td/ZrjrbuJc/TiWcyoi/AaG1wmWTHwVLlFoBMwzs4ZhmQuAs8ysbzi4fcbMXpR0JXC/mTUM1++OMrPWkroSzNKeJSnXzJaE9bxGMBP77dbn4f3BwDQzGxInvobAHjGxfWJmjSX9F5hpZveE5dqa2SxJvwP2MrPbw/sPATPM7Knw+kOCpRbDw3XLbcxstqQhxCytKI/z83vY0OeHVeNNO46Timwu2VJt11M3O45TFRrU13Az6xF7zxOTVxIzmw/cCoyRNAcYCxxcgXID8FtJU8Jya3bQxA2SCiTNJliu8FYVQ2wEjApjm0Cw7huCJRjtw4128wk20wGMBM4NN9GdALwA3Bhu6MslWB99eRjPPOAXVYzHcRzHcRwnEvgM8S5C0h7AejMzSb2AC80sZQaVPkPsOE5V8Blix3Fqi3gzxNVa7+pUinbA4HC5wbfAZQmOx3Ecx3Ecx4mDD4h3EWY2Efjprqhb0qtATpnbfzCz0buiPcdxnF1Ner3qr+CrySxv50Hjqu2+f9NJ1XYdx0kufEAcQczs3ETH4DiO4ziOU1fwTXWO4ziO4zhOSuMDYqdWGTP6bdrktSCvZXPuuXuQu0nUprvuprKbUS+Np/u1479XdODFqzpyZZfs0me/6prDy9d0YvjVHenZITNpYk50m+66W6fcRGeA86NuHvEy1RVv2Gw5zZrZ/EVLSjPIzJg9r1LZZ1LJjVq87robZbfdne+WHp0HTbB2d75rHf86zuYWrrE+T06zgSPm26jZX1j7sMyp900sLZ8s/U32d+yuu8nmEidTnc8Q1yKSsiUV1LCOc8IkIVuvx0tqXwW/iaQKk2pUoo6BkgZU1Zs6ZQq5uc3JadaMjIwM8nv2YtTI191NgjbdddddWL+pBID0NJGeJszggqMzeWLiMrZ+Qenq7zclVcyJatNdd+uamzIDYkmR30AY9uEcoNWOypaHma0wswvKqXuXsmJFEVlZTUuvMzOzKCoqcjcJ2nTXXXchTTD0l+0Z+9vj+ejTVcxbsZbMfRtwWqsDeOaydjzYqw1N922QVDEnqk133a1rbuQGxJL+JGmhpLGSnpc0QFKupLclTZc0UVLLsOwQSfdLGgfcFc5sPi1pjKRlks6TdLekuaFfP/RukzQ1zBz3ePhdwltnY++SNEXS4jDDW3lx5oXlZoVZ4g4LH9WT9ISkeWEcDcLybSVNDsu+KmnfmDb/JmkC8AfgbOCesN7csM78sjGFs9ETJc0Ij+Ni7heE530lDZc0EhgT3rsx7PscSXfE9OcWSYskvQO0qM6fndn2SWDCV+tugtt01113YYvBRf+expkPTiKvyV7k7r8nGeli4+YtXPrkdF6buYLburdMqpgT1aa77tY1N1ID4nBpwPnAUcB5wNalAo8DvzazdsAA4JEY7XDgVDP7XXidC3QjSEX8HDDOzI4kSJfcLSwz2Mw6mFlroAFwVkx96WbWkSA18+0VhHs18KCZtQ3jLAzvHwY8bGZ5BAk7zg/vP0PwXcJtgLll6t7HzE40s78CI4AbzaytmS2pIKavgJ+Z2dFAT+Cf5cR5LNDHzE6WdFoYX0egLdBOUhdJ7YBe/PjeO8SrSFK+pGGShhUuX77d88zMLAoLf7xfVFRIkyZNygkrdd2oxeuuu3XNLd64memffcuxuY35au1G3l34NQDjFq3ksAMaJl3MUXzH7rqbbG7CN19V5SAY8N0Rc30/cCvBYHZWzLEgfD6EYLC3tfxA4JbwPA3YyI/pq/8M3BCenw98RDAwLQJuCu+PB44Pzw8EPqkg1t7APIJZ3cPCe9nAxzFl/hDGvzfwecz9XGBGTJsnxjwbAlwQcx03prDOZ8M+zAK+j4mhIDzvCzwVU9e9wLKY9/gJcHn43v9c5r0PqOjPKt6munXrN1l2To4tWLy0dLH79FkFlVoon0pu1OJ1190ou1s3yJ1y30Q78e73rN2d79pxfx9vMz5bbf2fn21Pvb/M7hgx39rd+a5d+cwMKyhaU+GmOv+Z4a67ye8SZ1Nd1NbVxpv3TgO+DWdi4/FdmeuNAGa2RdIm+3F+fQuQLml3ghnm9ma2XNJAYPeyPlBCBYlNzOy/kj4imHUeLemXwNIYf2sdFS9Ii9+HssSL6TfA/wiy5aUBGypRt4C/m9ljsQUk3QBs/3uIKpKens4DDw6me7fTKSkpoU/fy2iVl+duErTprrup7u7XMIM7zj6CNIk0wdgFX/P+J98wa/ka/nJOK3p3asr3P5Twl1ELkybmRLbprrt1zdWP48HkR1IH4DHgOIKB33TgCYJf4z9gZsPD9b5tzGy2pCHAKDN7KfQHAsVmdm94XWxmDWOfAf8GFhHMpNYDJgMvmdlASeMJZkanSdoPmGZm2eXE2gz41MxM0j8IZl5fC+NpHZYZADQM654NXGdmE8NY9jaz38S2GToPEcwePxVex41J0gNAoZndJ6kf8GQQirK3xiCpL8HA/7qwrtOAO4FTzKxYUiawCcgimJnuFL73GcBjW99jPM7P72FDnx9W3mPHcZykwFM3O07q0aC+hptZj9h7kZohNrOpkkYAs4HPgGnAGuAi4FFJtwL1gRfCMtVp41tJTxAsNVgGTK1muD2BiyVtAr4kWJKxVwXl+wD/krQHwUxyv3LKvQA8Iel6YLtvi4jhEeBlSfnAOHY8y4yZjZF0BDApXIReDFxsZjMkvUiwjOIzYOKO6nIcx3Ecx4kKkZohBpDUMJy93AN4D7jSzGYkOi5nW3yG2HGcKOAzxI6TekR+hjjkcQWJKXYHnvbBsOM4juM4jlMTIjcgNrPeiY4hFkmnA3eVuf2pmZ2biHgcx3GcylOTWd6jbxtTbXfGn0+rtus4zs4ncgPiZMPMRgOjEx2H4ziO4ziOUz0ilZjDcRzHcRzHcXY2PiB2apUxo9+mTV4L8lo25567B7mbRG2666671XMz0tN44ZpOvPLrYxnR/ziuOyUXgGNyG/PStcfwynXH8OyVHTik8Y6/dt5/ZrjrboLcRGefS4WDIA3ymYmOozaPeJnqijdstpxmzWz+oiWlGWRmzJ5XqewzqeRGLV533U1V94g/ji492t3+jh3xx9F25C1jbPbn31rPRybbp18XW7f737cj/jja7nhtvr0yrbC0/M6MOdnfk7vuJptLnEx1PkNcRSRVZ911W+DMnR3LVqoZU60zdcoUcnObk9OsGRkZGeT37MWoka+7mwRtuuuuuzVzv/+hBID0eiI9TWBgBg13C348N9o9na/XbayoCv+Z4a67CXR9QFwGSX+StFDSWEnPSxogabykv0maAPSXtL+klyVNDY/jQ7ejpA8lzQz/20JSBkFSjp6SZknqWU67AyU9K+ldSR9LuiK8/6ykX8SUGyrpbEl9JQ2XNBIYEz67MYxnjqQ7wnvZkhZIekLSPEljJDUIn+VKelvSdEkTJbUM75fXvxPDPswK+9ioKu92xYoisrKall5nZmZRVFTkbhK06a677tbMTRO8ct0xvH9zVz785BvmFK7htlfn8a++R/HuH7pw9lEH88SET3dJzFF6T+66m6xuJGYWawtJ7YHzgaP4MUXx9PDxPmZ2YljuvwSpot+XdAjBt0wcASwEupjZZkmnAn8zs/Ml3UZMiuQKaAMcA+wJzJT0BkEq6d8Ar0vamyBtdR/gYuBYgjTVq8K0y4cBHQEBIyR1AT4P719oZldIGhb28TngceBqM/tYUieC7HYnAw+W078BwLVm9oGkhsCGqrzfcPnINoQZ8dxNcJvuuutuzdwtBucNnkyj3dP558VtaX5gQy49/lCuHjKTOYVruOyEbP5wZgtue3X+To85Su/JXXeT1fUB8bZ0Bl43s/UA4ezrVl6MOT8VaBXzkvcKZ0v3Bp6WdBhgBGmkq8LWttdLGgd0NLPXJD0s6QDgPODlcMANMNbMVoXuaeExM7xuSDAQ/pzge5FnhfenA9nhgPY4YHhMP3bbQf8+AO6XNBR4xcwKY4NXkCY6H6Bjp2O261xmZhaFhctLr4uKCmnSpEmlXkwquVGL11133f2RdRs2M3XpKrocvh8tDmrEnMI1ALw150se73f0Lmk3iu/JXXeTzU345qtkOghmYu+Iub6fYFZ0PMEM79b7K4EGcfwhwPXheTawLDzvCwzeQdsDy7T9DPCL8PwPYWwfAXnx6gTuA66KU282UBBzPSBsay/gi3Jiidu/8NmRYTyFQMvy+hNvU9269ZssOyfHFixeWrrYffqsgkotlE8lN2rxuutuqrpbN8gd95d3reMd/2dH/HG0tf3TWJv26Sq7esh0W1W80c64d6Id8cfRdstLBTZ67pcVbqrznxnuuls7LnE21fkM8ba8Dzwm6e8Es+fdgCfilBsDXAfcAyCpbTgDuzewdbFK35jy64DKrLf9Rdj2nkBX4Kbw/hBgCvClmc0rxx0N3ClpqJkVS8oENpXXkJmtlfSppHwzG65gOriNmc0ur3+Scs1sLjBX0rFAS4JlIpUiPT2dBx4cTPdup1NSUkKfvpfRKi/P3SRo01133a2+u3+j3fj7Ba1Jk0hLE2/P/ZIJi1Zy26vzefCin7LFYO36Tdz6cnk/vmsWc1Tek7vuJrMri7PeIpWRNBC4EPgM+JpgdvgiYICZTQvL7Ac8TLCuNh14z8yuDgeJT4feu8AlZpYtqTHBgLU+8Hcze5EyhO02AXKBQ4C7zeyJmOdvA6+Z2b/C676UWZcsqT/wy/CymGCdcQkwysxah2UGAA3NbKCkHOBR4OAwthfM7M8V9O8h4KSwzvlAXzOLu236/PweNvT5YTt4247jONHFUzc7TjRpUF/DzaxH7D0fEJdBUsNwhnUP4D3gSjObUQvtDgSKzezeOM/2AOYCR5vZml0dy87AB8SO49R1fEDsONEk3oDYv3Ztex6XNIvgGyZero3BcEWE31axEHgoKoNhx3Ecx3GcKOFriMtgZr13Zf2S+gH9y9z+wMyuLSeedwiWUDiO4ziO4zi7AB8Q1zJm9hTwVKLjcBzHSSY2l2yptpteLzG/7KzJsodLn6v+Lx+fubjir2+ra1T3s5Goz0WiiOLfoQ2bSqrtpqdV7vuFK0tqfVocx3Ecx3Ecpww+IHYcx3Ecx3FSGh8QO7XKmNFv0yavBXktm3PP3YPcTaI23XU32dxrrrycnKYH0fHoNlVqr6bt1qZbv574W7cW3H12S+77xRHktz0YgP0bZvDXbi148LxW3HBiDvV28OvhKPR1Z7o1+WxEsb+p9HeosHA53c84hU5HtebYdm3418P/rLRbo/4mOjtcqh+UySRXV454meqKN2y2nGbNbP6iJaUZZGbMnlep7DOp5EYtXnfd3Rnuug0l2x1vjR1nEydNtSNa5cV9vvWIYn/zn5peelz87EzLf2q69Roy3RZ/VWw3j1pgHy5dZQ+MX2r5T023MQu/ssc//Ky0fNT6WlO3up+NqPY3lf4Orf5+83bHgiXLbfwHU2z195vt8/+tttzmh9mk6XO2K1eT/hInU53PEDu1xtQpU8jNbU5Os2ZkZGSQ37MXo0a+7m4StOmuu8nodj6hC/vu27hSZZMl5uq4GzcHm6HqpYl6acIM8g5uxORlqwEY/8kqOhyyT9LEm2gXqv/ZiGJ/U+3v0EEHH8xPjwo2jjZq1IjDW7TkixVFO7ACatJfHxAnB/UkPSFpnqQxkhpIukLSVEmzJb0saQ9Je0taJikNgoQdkpZLqh+vfFhmiKR/SvpQ0lJJF2xtVNKNoTNH0h3hvT0lvRHWUyCpZ3i/naQJkqZLGi3p4Kp2csWKIrKympZeZ2ZmUVRUuQ95KrlRi9ddd3eVWxOi1F8J7j67Jf/u1Ya5K9byv3Ub+f6HzWwJ82at+u4HGu9RP2niTbRbE6LY31R7V7F8/tky5syeRbsOnarsVhUfECcHhwEPm1ke8C1wPvCKmXUws58CC4DLLUjMMRs4MfS6A6PNbFO88jH1Hwx0Bs4CBgFIOi1styPQFmgnqQtwBrDCzH5qQbrntyXVBx4CLjCzdsCTwF+r2slwicg2SJX72pRUcqMWr7vu7iq3JkSpv2bw+xELuXp4Abn77Unm3rtXqq2atBlltyZEsb+p9q62UlxczKUX9uDvd9/PXnvtVSW3Ovj3ECcHn5rZrPB8OsG64taS/gLsAzQERofPXwR6AuOAXsAj4f3yygO8ZmZbgPmSDgzvnRYeM8PrhgQD5InAvZLuAkaZ2URJrYHWwNjwA10P+KJsJyTlA/kAHTsds10nMzOzKCxcXnpdVFRIkyZNdvRuUs6NWrzuurur3JoQxf5+/0MJ879cx2H778keGemkCbYYNN4zg1Xfb0q6eP1zkfxuTUhkzJs2baJP73zye11I93POrXzQNSHRm69S/aDMpjpgADAQ+BT4aXivLzAkPG8IfAY0Bj4H6oX3yys/hGBmd2v9xeF/7wOuKiemxsDFwPvAbcCRwKSq9Cveprp16zdZdk6OLVi8tHSR/fRZBZVaoJ9KbtTiddfdneGWt/mlYOGSam0ISvb+bt0gd9l/Z1ufobMs/6np1vuZGTb/y3X297Ef24efbrup7okKNtUle19r6lb3sxHV/qbS36F4m+pWfbfJeva+2K6+9vq4zyvaVFfZ/hJnU53PECcvjYAvwuUKFwFFAGZWLGkK8CDBDG5JReUrYDRwp6ShYZ2ZwCaC3xqsMrPnJBUTDK4HAftLOtbMJoVtHG5m86rSofT0dB54cDDdu51OSUkJffpeRqu8PHeToE133U1Gt98lvZk4cQLfrFxJi9xDuPnW2+nT7/IdiwmMuaruvnvU59rOh5ImIcGkZauZUbiWwm83cMOJOfQ66mA+XbWedz/+JiniTQYXqv/ZiGJ/U+3v0ORJH/Dif5+jVesjOaFTOwD+dMednHbGmTt0a9JfWZx1Hk7tISmbYGDbOrweQDAL/D/g9wSzwXOBRmbWNyxzATAc6GpmE8J718QrL2lIWP9LYbliM2sYnvcHfhmGUkwwK9wcuAfYQjBAvsbMpklqC/wT2Jtg0PwPM3uivH6dn9/Dhj4/rKavx3GcFCGKaWdrgqdurjyeurlyRPHvUKJSNzfavd5wM+uxTX3Vrs3ZKZjZMoL1uVuv7415/Gg5zkuAytx7NF75rYPomOuGMecPEsw0x7KEbdcfby07C+gSvxeO4ziO4zjRJbX++eQ4juM4juM4ZfABseM4juM4jpPS+JIJx3EcJ+Gk2nrPmqwD7nTn/1Xb/ehPp1TbTRRR+2wkai1v1N4TwO716yU6hFKi9/Ycx3Ecx3EcZyfiA2LHcRzHcRwnpfEBsVOrjBn9Nm3yWpDXsjn33D3I3SRq01133Y2Om5GextAr2jPsmo68cm0nrjkpB4CnLmvHi1d35MWrOzL2d515oFebpIjXXbjmysvJaXoQHY/e8Z/JzmzX3UqS6ExtftTNI16muuINmy2nWTObv2hJaeaaGbPnVSrrTSq5UYvXXXfdrV23zW3vWJvb3rFOfxlnbW57x44e+H82Z/m3dtHjU0qftbntHRs7739288sF29yLWl+j6JaXHe2tseNs4qSpVc6ul+z9jaJLnEx1PkNcSSR9mOgYdgWS+koaXM6zNyXts7PamjplCrm5zclp1oyMjAzye/Zi1MjX3U2CNt11193ouet/CJIapNdTkKQgJs/WHhn16JizL+MWfp008aayC9D5hC7su2/jSpdPdMyp5vqAuJKY2XGJjqG2MbMzzezbnVXfihVFZGU1Lb3OzMyiqGhHGaZTz41avO66625i3DTBi1d3ZNyNJzB56SrmFq0tfXbyEfvz0dLVfLex4kxgUelr1N2aEMX+RtH1AXElkVQsqaGk/5M0Q9JcSb8In2VLWijpaUlzJL0kaY/w2W2SpkoqkPS4JIX3x0u6S9IUSYslnRDeryfpntCZI+mq8P7Bkt6TNCusa2v50yRNCmMaLqlh/B6ApA6SPpQ0O2y3UfioiaS3JX0s6e6Y8ssk7Rf2b4GkJyTNkzRGUoM49edLGiZpWOHy5du1b7Z9mvDwdeyQVHKjFq+77rqbGHeLQc9/TeG0+z+gdebeND9gz9JnPz/yQN6a+2VSxZvKbk2IYn+j6PqAuGpsAM41s6OBk4D79OObbgE8bmZtgLXAr8L7g82sg5m1BhoAZ8XUl25mHYEbgNvDe5cDa8ysA9ABuEJSDtAbGG1mbYGfArMk7QfcCpwaxjQN+G28wCVlAC8C/c3sp8CpwPrwcVugJ3Ak0FNS0zhVHAY8bGZ5wLfA+WULmNlwM+thZj2ymm5fRWZmFoWFPw6Ui4oKadKkSbxwU9qNWrzuuutuYt11GzYzddlqjmv+EwD2bpBO68y9mfjxN0kZbyq6NSGK/Y2im/DNV1E5gGKgPjAYmAPMIhhQHgRkA5/HlD0ZeC08Px/4CJgLFAE3hffHA8eH5wcCn4TnLwGLw/pnAZ8CpwFdgE+AgUDbsOxZwMqYsvOB/5QT/5HAB3Hu9wWeiLl+C+gcni8D9gv793FMmT8At1b0vuJtqlu3fpNl5+TYgsVLSxe7T59VUKmF8qnkRi1ed911t3bdNre9YycOmmDH/228tbntHevw53dt+rLVdt1zM63Nbe/YnSMW2OszV2yzma68TXXJ3tcouuVtmFu3ocQKFi6p8qa6ZO9vFF3ibKrzTHVV4yJgf6CdmW2StAzYPXxWdp7eJO0OPAK0N7PlkgbGlAfYGP63hB+zBgr4tZmNLtu4pC5AN+BZSfcAq4GxZnZhJWJXnBjLxlE2lorKbLdkYkekp6fzwIOD6d7tdEpKSujT9zJa5eW5mwRtuuuuu9Fy92u0G385txVpgjSJMfO+4r3FwYzw6a0P5Mn3lyVVvKnuAvS7pDcTJ07gm5UraZF7CDffejt9+l2etDGnmqt46y2c7ZFUDNwCNDezX0s6CXgXyAmLfAocZ2aTJD0BLAT+AywimGGtB0wGXjKzgZLGAwPMbFq49GGamWVLuhI4E8gPB92HE8ws7wcUmdlmSTeEdf4VmA6cbGafhOuWs8xscZz4M8KYeprZ1HD98HrgYoIB+3VhuVHAvWY2PhzwtwcaAqMsWPaBpAFAQzMbWN77Oj+/hw19fljVXrLjOI6zQ1ItdXPUSFTqZqfyNKiv4WbWI/aezxBXHgOGAiMlTSNYvHI5bAAAIABJREFUorAw5vkCoI+kx4CPgUfN7PtwcDyXYPnB1Eq082+Cwe6McH3y18A5QFfgRkmbCJZvXGpmX0vqCzwvabfQv5VgycW2wZv9IKkn8FC4IW49wTpix3Ecx3GclMZniCuBpJ8AM8zs0HKeZxMzg+r4DLHjOM6uwmeIkxufIU5+4s0Q+5vfAZKaAJOAexMdi+M4juM4jrPz8SUTO8DMVgCH76DMMiBpZoclvcqPa5u38od4G/Ucx3GcaFGTWd5zn/io2u7wyzpU202lmc9U6mtdwgfEdRAzOzfRMTiO4ziO40QF/2eM4ziO4ziOk9L4gNipVcaMfps2eS3Ia9mce+4e5G4Stemuu+5G162KV7+e+Md5eTyc35p/9TySiztkAvD7U3J54sI2PNrzSH7TNYd6aTtOeXvNlZeT0/QgOh7dptKxVidmd93d5W6iM8Cl+kHwFWsFu6juZcB+u6DegQTfoVxumXiZ6oo3bLacZs1s/qIlpRlkZsyeV6nsM6nkRi1ed911N7FuVbwzHplsZzwy2c55fIqd8chk6/avj2zBl+vshpcL7E+jFpQ+H7f4a3towtLS6zMemRw3s9pbY8fZxElTK8y+Fi8DW9Tesbt1yyVOpjqfIXZqjalTppCb25ycZs3IyMggv2cvRo183d0kaNNdd92Nrlsdb8Pm4KvB0tNEepowM6Z+vqb0+aKvvmO/PTN22HbnE7qw776Nd1huZ8Tsrru70vUBcRIhqZmkmZI6SbpH0lRJcyRdFVPmxpj7d4T39pT0hqTZkgrCBBxb+bWkGZLmSmoZlm8s6bWwjsmS2oT3B0p6UtJ4SUslXR/T7i2SFkl6B2hRnf6tWFFEVlbT0uvMzCyKiorcTYI23XXX3ei61fHSBIPzW/N836OZWbiGRV99V/qsXpo45fD9mLZ8TQU11IyovWN3677r3zKRJEhqAbwA9AM6AmvMrEOYge4DSWOAw8KjIyBghKQuwP7ACjPrFta1d0zVK83saEm/AgYAvwTuAGaa2TmSTgaeAdqG5VsCJwGNgEWSHgXaAL2Aowg+MzMIUkaX7UM+kA/QsdMx2/UxXG5R1qnU+0klN2rxuuuuu4l1q+NtMbhueAF7ZtTjT2cczqGNG/DZqvUAXHtCNgVfrGXeF+sqFXd1iNo7drfuuz5DnBzsD7wOXGxms4DTgEslzQI+An5CMBA+LTxmEgxKW4b35wKnSrpL0glmFvvP+lfC/04nWK8M0Bl4FsDM3gV+EjOIfsPMNprZSuAr4EDgBOBVM/vezNYCI+J1wsyGm1kPM+uR1bTpds8zM7MoLFxeel1UVEiTJk0q9YJSyY1avO66625i3Zq0+d0PJcxZsZb2TYP/BfRun8neDdJ5/IPPK+VXl6i9Y3frvpvwTWWpfhAMUhcDY4Erw3svA6fHKXsfcFU59TQGLgbeB24L7y0j3FQHtAfGh+ezgGYx7nJgL8pslgMKwvhuAO6IuX8/1dhUt279JsvOybEFi5eWLnafPqugUgvlU8mNWrzuuutuYt2qeGc8Mtl6PjnNzv/3VDvjkcl29mMf2dwVa+y2NxbaA+OW2Lwv1trZj320zWa6ijbVrdtQYgULl1R5U13U3rG7dcslzqY6XzKRHPwAnAOMllQMjAaukfSumW2SdDhQFN6/U9JQMyuWlAlsIljGsMrMngv9vjto7z3gorCurgTLKtZW8GuF94AhkgaFbXUHHqtqJ9PT03ngwcF073Y6JSUl9Ol7Ga3y8txNgjbdddfd6LpV9fbdoz4DTs4lLU1IMPGTVUz57FtGXdWRr9Zt5P7zAvfDpav57/SK11/2u6Q3EydO4JuVK2mRewg333o7ffpdvsv66q67u8qVxVlv4dQekrKBUWbWWtI+BDPFfwE6EQw8BXwNnGNmayT1J1gHDFBMMCvcHLgH2EIwQL7GzKZJWga0N7OVktoD95pZV0mNgacI0jt/TzAzPUfSQKDYzO4NYysAzjKzZZJuAS4FPgMKgflby8Xj/PweNvT5YTvnJTmO4zg7BU/d7DjQoL6Gm1mP2Hs+IHZ2CT4gdhzHST58QOw48QfE/gl1HMdxHMdxUhofEDuO4ziO4zgpjW+qcxzHcZwU4dUrOlXbPfKPb1Xbnfv3n1fbdZzawGeIHcdxHMdxnJTGB8SO4ziO4zhOSuMDYqdWGTP6bdrktSCvZXPuuXuQu0nUprvuuhtdt7bazEhP46VfH8uI3xzPm7/rzPWnNQfgmNzGvNb/ON74XWfu6nkk9dJ2nC43au/Y3TruJjpTW6ocBN/vu7PrHE/wPcMJ71/ZI16muuINmy2nWTObv2hJaQaZGbPnVSr7TCq5UYvXXXfdTaxbW202H/CmNR/wprW5ebQ1H/Cmtfz9Wzbrs9WW/9CHtmL193bqoPHWfMCb9tCYj+2mF+eUlm8+4M2keE/uurv1IE6mOp8hTlEk1XhDZVXrmDplCrm5zclp1oyMjAzye/Zi1MjX3U2CNt11193ourXd5vc/lACQXk+kp4ktW4wfNm9h2crvAfjg45WcfuSBSRWzu+7uCB8QJwBJN0qaKmmOpDti7v9WUkF43BDey5a0QNITkuZJGiOpQUx1F0v6MHQ6hs6ekp4M25gp6Rfh/b6ShksaCYyRlCbpkbDeUZLelHRBWLadpAmSpksaLeng8P54SX+TNAHoX5V+r1hRRFZW09LrzMwsiooqTguaim7U4nXXXXcT69Z2m2mCEb85nsm3n8IHH3/D7OVrSK+XRuusvQA448iDOHifBhXWEbV37G7dd/1r12oZSacBhwEdCdIyj5DUBfgO6EeQslnAR+Ggc3VY/kIzu0LSMOB84Lmwyj3N7LiwjieB1sAtwLtmdlmYDnqKpHfC8scCbcxsVTj4zQaOBA4AFgBPSqoPPAT8wsy+ltQT+CtwWVjHPmZ2Ypy+5QP5AB07HbNd38NlHmWdSr23VHKjFq+77rqbWLe229xicPYDH9Bo93Qe6XM0hx3YkBuGzuLm7keQkZ7GB4tXUrKl4iy4UXvH7tZ91wfEtc9p4TEzvG5IMOBtCLxqZt8BSHoFOAEYAXxqZrPC8tMJBrFbeR7AzN6TtFc4AD4NOFvSgLDM7sAh4flYM1sVnncGhpvZFuBLSePC+y0IBtZjww9SPeCLmDZfjNcxMxsODIcgdXPZ55mZWRQWLi+9LioqpEmTJvGq2o5UcqMWr7vuuptYN1HxrtuwmY+WrqJLy/35z4RP6f1okBa68+H7kb3/nkkZs7vulkuiN1+lykG4qQ64D7gqzvMbgD/HXN8JXE8w+C2IuT8AGBiejwdOinn2ObA3waC5RZw2+gKDY64fBPrFXL8CXEAwYzypnH6MpxIb+eJtqlu3fpNl5+TYgsVLSxe7T59VUKmF8qnkRi1ed911N7FubbXZfMCb1vH2d+yoW8dY8wFvWt5Nb9uUJd/YFf+Zah1vf8eaD3jTWv3hbftg8dd28aOTK9xUF7V37G7dcomzqc5niGuf0cCdkoaaWbGkTGAT8B4wRNIggiUT5wKXVKK+nsA4SZ2BNWa2RtJo4NeSfm1mJukoM5sZx30f6CPpaWB/oCvwX2ARsL+kY81sUriE4nAzm1eTjqenp/PAg4Pp3u10SkpK6NP3Mlrl5bmbBG2666670XVrs83999qNu3u2IS0N0iTemv0l4xZ8zR+6teCkIw5AgucnLWfyklXl1lHbMbvrbmVQOOvn7GIkFZtZw/C8P/DL8FExcLGZLZH0W35cp/tvM/uHpGxglJm1Dt0BQEMzGyhpPDAJOBHYC7jMzKaEm+7+ARxHMLheZmZnSepLMLt7XVhXGvAI0AVYDOwG3G9mYyW1Bf5JMOOcDvzDzJ4I2xxgZtMq6u/5+T1s6PPDavDGHMdxnGTCUzc7dYUG9TXczHrE3vMBcYojqWE4U/0TYApwvJl9WdN6fUDsOI5Tt/ABsVNXiDcg9iUTzqhwI14GcOfOGAw7juM4juNECR8Qpzhm1jXRMTiO4ziO4yQSHxA7Scfmki3VdtPrea4ZZ3v8M1U7bNhUUm139/r1dmIkzq6gJsseWg4YVW134b1nVdt1nMriP+kdx3Ecx3GclMYHxI7jOI7jOE5K4wNip1YZM/pt2uS1IK9lc+65e1ClvWuuvJycpgfR8eg2tdpuotyoxRtVtyafqyj2NxFuYeFyup9xCp2Oas2x7drwr4f/mfQxR9GNUrxpgjcGnMB/rugAQFbjBrz2m+MZd8tJDO5zNPXr7TjVbpT6625E3ERncPOjbh7xMtUVb9hsOc2a2fxFS0ozyMyYPW/7TDMbSrY73ho7ziZOmmpHtMqL+3zrES9zTWXbTRY3avFGwS3v81KZz1UU+5sod/X3m7c7FixZbuM/mGKrv99sn/9vteU2P8wmTZ+zXbko9jdZ3CjEe2j/kaXHn18tsNemFdo7BV/aof1H2sgZRXbdkOl2aP+R9tz7y+yWYXO2KR/F/rqb3C5xMtWlzAyxpLMl3bSDMk0kvbSDMtmSeu/c6CpPZfpRxfoGhsk+djlTp0whN7c5Oc2akZGRQX7PXowa+Xql3M4ndGHffRvXeruJcKMWb1RdqP7nKor9TZR70MEH89OjjgagUaNGHN6iJV+sKErqmKPmRineg/benZNbHcgLkz8vvXfcYfvx5uwvAHh56nJOO/LApIrZ3dRwU2ZAbGYjzKzCuXMzW2FmF+ygqmygygNiSTtlC3Vl+lGbVKVfK1YUkZXVtPQ6MzOLoqLK/Y+xJtSk3US4UYs3qm5NiGJ/k+E9f/7ZMubMnkW7Dp12ebup5EYp3tvOzePvIxZgYU6wffesz9r1myjZEtz44tsNHLj37kkVs7up4daJAXE4a7tQ0r8lFUgaKulUSR9I+lhSR0l9JQ0Oyw+R9E9JH0paKumCmHoKYs4nSpoRHseFzQ0CTpA0S9JvYusNvVGSuobnxZL+LOkj4FhJ7SRNkDRd0mhJB1fQp/GS/hHGWCCpY3i/Mv04WNJ7YYwFkk4I758R9mW2pP+Laa5V2N5SSdfHxHCxpClhPY9tHfyW7VdM+XxJwyQNK1y+fLs+mW2fFVHa8VqxmlKTdhPhRi3eqLo1IYr9TfR7Li4u5tILe/D3u+9nr7322uXtppIblXhPbnUA3xRvpKBwzY/l2b58nGpr1K677laGuvQ9xM2BfOBKYCrBLG5n4GzgZuC1MuUPDp+3BEYAZZdKfAX8zMw2SDoMeB5oD9wEDDCzsyAYoFYQ055AgZndJqk+MAH4hZl9Lakn8Ffgsop8MztOUhfgSaB1nDLx+tEbGG1mfw0HsXtI2h94AuhiZp9Kiv09cUvgJKARsEjSowTvsydBKudNkh4BLgKeie1XbCBmNhwYDkHq5rKBZmZmUVj440C5qKiQJk2aVND9nUNN2k2EG7V4o+rWhCj2N5HvedOmTfTpnU9+rwvpfs65lfai2F//mVG+275ZY05tfSAntTqA3dLTaLh7fW47N4+9GtSnXpoo2WIcvM/ufLV2Q9LE7G7quAnffLUzDoJlDB/HXD8DXBSeNwNmAX2BweG9IVufh9frYuopCM/3Bp4F5ob+9+H9rsCoGLe03vB6FNA1PN8M1AvPWwNrw7pmhfWOqaBP44GTY64/B/apZD+6AJ8AA4G24b3uwNA47QwEbom5XgBkAdcBK2LiXQQMLNuv8o54m+rWrd9k2Tk5tmDx0tLF7tNnFWxfrpzNTQULl1RrU11l200WN2rxRsGt6DOzo89VFPubKDfeprpV322ynr0vtquvvT7u84o21SV7f5PFjUK8sZvkDu0/0no+9GHpprpRM6u2qS4K/XU3uV3ibKqrSzPEG2POt8RcbyH+THhs+Xjz6b8B/gf8lGBpSXn/ZN3MtktPYhc/bTCzrambBMwzs2OpPGVnWeP9Imm7fpjZe+GscjfgWUn3AN+W45eto4TgfQl42sz+GKd8bL8qTXp6Og88OJju3U6npKSEPn0vo1VeXqXcfpf0ZuLECXyzciUtcg/h5ltvp0+/y3d5u4lwoxZvVF2o/ucqiv1NlDt50ge8+N/naNX6SE7o1A6AP91xJ6edcWbSxhw1N2rxlmXQyIU8dOnR/O7MFswrWsOwydsvuUuGmN2t267irbeIGpKyCWZtW4fXQ8Lrl7Y+A+4F2pvZdbHPw/LFZtYwth5JDwCFZnafpH7Ak2YmSe2A+83sxNDtDNxNsGwhE5gHnG1m47fWG5bLAOYDl5jZpHAJxeFmNq+cPo0HFprZ1WEbj5rZkeESjR3141CgyMw2S7qBYOb7r8AMYpZMmNkqSQOBYjO7N6yjADgL2AN4nWDJxFfhEotGZvZZbL/K4/z8Hjb0+WEVFSkXT7Pr7Gz8M1U7eOpmpzw8dbOTTDSor+Fm1iP2Xl2aId7ZPAK8LCkfGAd8F96fA2yWNJtgycI/gE8JlkAUEAw6t8PMfgg3vf1T0t4E7/4fBAPo8lgt6UNgLypea1yWrsCNkjYBxcClFqxbvhJ4RVIa4Rrp8iows/mSbgXGhOU3AdcCn1UhDsdxHMdxnKSnTswQ10XCGeIBZjYt0bFUB58hdpIJ/0zVDj5D7JSHzxA7yUS8GWL/Se84juM4juOkNL5kIsFIehg4vsztB82sawLCSQp8Rs7Z2fhnqnbwWd66TU1+01KTWd6b3lhQLW9QtyOq3aaTeviAOMGY2bWJjsFxHMdxHCeV8WkTx3Ecx3EcJ6XxAbFTq4wZ/TZt8lqQ17I599w9yN0katNdd92NrpuoeK+58nJymh5Ex6PbVMmrarvrvv6Cl2/tyzPXncWzv+7OzJHPlj6bNeo5nv7VmTz76+68P+TendquuynkJjrLXKoewG7AOwRZ4HruwnYGEnxbBQRfE3fBTqp3PMH3Icd9Hi9TXfGGzZbTrJnNX7SkNIPMjNnzKpV9JpXcqMXrrrvuJtatrTbjZXJ8a+w4mzhpapWziFal3f6vzbdfPjnBLrzvJev/2ny75vmptk+TQ+3ih0bYeXc+ZU3bHGPXDp9l/V+bb1cMmWj9X5tv/V+bnzR/Pu4mn0ucTHU+Q5w4jgLqm1lbM3sx0cHUBlOnTCE3tzk5zZqRkZFBfs9ejBr5urtJ0Ka77robXTdR8QJ0PqEL++7buNLlq9vuno3354DcVgBkNNiTxlnNKP7mK+a+9QLtz/8l6fUzANhjn5/s1HbdTR3XB8SVRFK2pAWSnpA0T9IYSQ0k5Up6W9J0SRMltZRUT9JSBewjaUuYSpmwTEfgOaCtpFlhHadImilprqQnJe0Wll8mab/wvH34/cRIGhiWGx+2dX1MrLdIWiTpHaBFOf25TdJUSQWSHpek8P54SXdJmiJpsaQTwvsNJL0gaY6kF4EGVX2HK1YUkZXVtPQ6MzOLoqIid5OgTXfddTe6bqLirQk1aXft/4r4aukCDjq8DatXLKNo/nReuLEnL91yKV9+PHeXtetu3XZ9QFw1DgMeNrM84FvgfOBx4Ndm1g4YADxiZiXAYqAVQUrn6cAJ4SA3y8ymAL8EJppZW6CIYDlDTzM7kuDbP66pRDwtgdOBjsDtkuqHqaV7EcxAnwd0KMcdbGYdLEh33YAgXfNW0s2sI3ADcHt47xrgezNrQ5AGul3ZCiXlSxomaVjh8u1z0YdLLco6lehmarlRi9ddd91NrJuoeGtCddv9Yf13vHFXf068/I/stkdDbEsJG4vX0vPuF+jcZwBv3fPbuHXXtF13677rA+Kq8amZzQrPpwPZwHHAcEmzgMeAg8PnE4Eu4fF3goFxB2BqnHpbhHUvDq+fDr0d8YaZbTSzlQSpmA8ETgBeNbPvzWwtMKIc9yRJH0maC5wM5MU8e6VMHwnjeQ7AzOYQpLDeBjMbbmY9zKxHVtOmZR+TmZlFYeGPA+WiokKaNGlSiW6mlhu1eN11193EuomKtyZUp92SzZt4464baHHiWTQ/9mcANPzJQTQ/5mdI4qDD2yClsX7t6p3arrup4SZ8c1lUDoKBYUHM9QDgfuCLcsp3Af5LsPlsd2AScCtwXfi8KzAqPG8LvBfjngK8Ep5/AhwQnncGxofnAwk3y4XXBWGMNwB3xNy/nzKb6sJ4/gc0jalrYHg+nnCzHLAfsCw8fw04KabeGVRxU9269ZssOyfHFixeWrrYffqsgkotlE8lN2rxuuuuu4l1a6vN8jbMFSxcUuVNdVVpt/9r8+36V+dZy65nW9uzLindNNf/tfl20tW3Wcce11j/1+bbpQ+/aQ1/cpBd/+q8cjfVRe3P1t1d4xJnU50n5qgZa4FPJeWb2fBwHW4bM5sNfAQ8Ayw1sw3hDPJVbLs0YSsLgWxJzc3sE+ASYEL4bBnB8oS3CJZo7Ij3gCGSBhEsvehOMHMdy+7hf1dKakgwSH6pEvVeBIyT1Bqo8nfspKen88CDg+ne7XRKSkro0/cyWuXl7VhMMTdq8brrrruJdRMVL0C/S3ozceIEvlm5kha5h3DzrbfTp9/lO73dFQtmsHD8CH5y6OEMveFcAI67+AbyTjmPsYNv5bnrzyYtvT6n9f9bhb8ij9qfrbu15yreegtneyRlE8zotg6vBwANCZY3PEqwVKI+8IKZ/TksM5FgnfDNknoDjwCNzWyLpK4EM7dnhWVPAe4lGMROBa4xs43hprb/EMzofkQwK9tV0kCg2MzuDf0C4CwzWybpFuBS4DOgEJhvZvdKGhL24SVJfyFYa7wMWA58ZmYDw017A8xsWriZb5qZZUtqADxFsC56FtAcuN7MpsV7X+fn97Chzw+rySt3HMdxkoiapG6uSfp0T93s7Gwa1NdwM+sRe88HxM4uwQfEjuM4dQsfEDt1hXgDYt9U5ziO4ziO46Q0vobYcRzHcZwdUpNZ3ppQ3ZnefTtcV+02V08dXG3XiSY+Q+w4juM4juOkND4gdhzHcRzHcVIaHxA7juM4juM4KY0PiJ1aZczot2mT14K8ls255+5B7iZRm+6662503ajFW9vuwjfuYOqwm5n8wk28P/T3ANz2q25MefGPTH7hJkY+ci0H7793UsXsbi27ic4A50fiD+Bs4KadWWe8THXFGzZbTrNmNn/RktIMMjNmz6tU9plUcqMWr7vuuptYN2rx1pa7e9trS49lRSsts+vvt7m3//G/Kz3/7V3D7PHhE0uvo9hfdyvvEidTnc8Q1yEUUOU/UzMbYWZV+ydYNZg6ZQq5uc3JadaMjIwM8nv2YtTI191Ngjbdddfd6LpRizeRbizrvttQer5Hg922ThAlXczu1o7rA+JdgKRsSQslPS1pjqSXJO0h6RRJMyXNlfSkpN3C8ssk/U3SJEnTJB0tabSkJZKujqn3RklTwzrviGlrgaRHgBlAU0mPhvXM21oupp07JM0IY2gZ3u8raXB43l3SR2Gc70g6MLw/MIx5vKSlkq6v6ntZsaKIrKympdeZmVkUFRW5mwRtuuuuu9F1oxZvIlwzY+Qj1/HB0N9z2XnHl94feG13Pn7rTnr9vD13PvpGUsXsbu26PiDedbQAHjezNsBa4LfAEKCnmR1J8B3Q18SUX25mxwITw3IXAMcAW9NAnwYcBnQE2gLtJHWJaesZMzvKzD4DbjGz9kAb4ERJbWLaWWlmRxOkmx4QJ+73gWPM7CjgBeD3Mc9aAqeHMdwuqX6sKClf0jBJwwqXL9+u4nj/+q4o53yqulGL11133U2sG7V4E+Ge3O8Bjut9F+dc9whX9TyB44/OBWDgwyM57Od/4oW3pnF1zy4V1hGl/rpbddcHxLuO5Wb2QXj+HHAK8KmZLQ7vPQ3E/u0bEf53LvCRma0zs6+BDZL2AU4Lj5kEM8EtCQbIAJ+Z2eSYunpImhGWzQNaxTx7JfzvdCA7TtxZwGhJc4EbQ38rb5jZRjNbCXwFHBgrmtlwM+thZj2ymjalLJmZWRQW/jhQLioqpEmTJnFC2J5UcqMWr7vuuptYN2rxJsL94us1AHy9upgR786hQ172Ns+HvTWVc05pm1Qxu1u7bsI3dNXFg2Cg+VnM9cnAOOC9mHunAK+E58uA/cLzvsDgmHLLgP2A+4CrymmrIOY6B/gE2De8HgL0jdNOe2B82TaB8cDZ4XnXmDIDgQEx7RQA2eW9g3ib6tat32TZOTm2YPHS0sXu02cVVGqhfCq5UYvXXXfdTawbtXhry926Qa7xMb+x/Y77ben5pFlLrPuvBlve2QNLy/xm0DB7ZeyMCjfVJXt/3a28S5xNdZ66eddxiKRjzWwScCHwDnCVpOZm9glwCTChCvWNBu6UNNTMiiVlApvilNsL+A5YE67//TnBILey7A1sXXDTpwreDklPT+eBBwfTvdvplJSU0KfvZbTKy9uxmGJu1OJ11113E+tGLd7adg/4SSNevP+KwK1XjxffmsbYDxfw/L2/5LBDD2DLFuPzL1Zx/V9fSJqY3a19VxZnvYVTMyRlA28C7wHHAR8TDICPBe4lWD88FbjGzDZKWga0N7OVkvqG59eFdcU+6w/8MmymGLgYKAFGmVnrmPaHAJ2ApcBGYISZDSlTV3vgXjPrGtumpF8ADxAMiicDHcIyA4FiM7s3bKMAOMvMlsV7B+fn97Chzw+r9jt0HMdxnJqwb4frqu2unjp4J0biJBsN6mu4mfWIvecD4l1AOCDeZpCaaviA2HEcx0kkPiB2yiPegNg31TmO4ziO4zgpja8h3gWEywhSdnY4qmwu2VJtN72e/9vS2R7/TDlO4qjJLO/B/YZW2/3iqYuq7TqJw3/iOo7jOI7jOCmND4gdx3Ecx3GclMYHxI7jOI7jOE5K4wNip1YZM/pt2uS1IK9lc+65e1DSu9dceTk5TQ+i49Ftdlx4J7YbtffkbvJ/ptyt227U4o2amyYx4c6f88Jvu25z/65L2rP8iR7xpQTH7G4V3URndfOjbh7xMtUVb9hsOc2a2fxFS0ozyMyYPa9S2Wdqw123oWS7460AmJ9XAAAgAElEQVSx42zipKl2RKu8uM+3Hjsz5mR/T+5G7zPlbt12oxZvFNx9Ln5um+Pm56bZ8A8+tbdnFJbe6/qnN+2FiUtt3foftikbxf6mmkucTHU+Q+zUGlOnTCE3tzk5zZqRkZFBfs9ejBr5elK7nU/owr77Nq5U2Z3VbhTfk7vJ/Zlyt267UYs3am6TfRtwWttMnpnwSem9NIk/9zqK21+YkZQxu1t11wfEKYqkbEkLJT0taY6klyTtIWmZpP3CMu0ljQ/P95c0VtIMSY9J+mxrucqyYkURWVlNS68zM7MoKiqqwEi8WxOq224U35O7yf2Zcrduu1GLN2ru3y5uz+0vzGTLlh8TmV3xs8N5a2YR/1uzISljdrfqrg+IU5sWwONm1gZYC/yqgrK3A++a2dHAq8AhZQtIypc0TNKwwuXLt6vAbPusiJIqFWii3JpQ3Xaj+J7cTe7PlLt1241avFFyT2+bycq1G5i9bFXpvYP2acA5HQ/h8TGLKtVmddp1t/ZdT8yR2iw3sw/C8+eA6yso2xk4F8DM3pa0umwBMxsODIcgdXPZ55mZWRQW/jhQLioqpEmTJpUKNFFuTahuu1F8T+4m92fK3brtRi3eKLmdDt+fM47O4mc/bcJu9evRqEF9Jg3qxsZNW5hx79kA7JGRzvR7z6bdgBFJEbO71fzZnOjNV34k5gCygc9irk8mmPn9BDggvNcZGB+ezwZyYsqvAvYrr/54m+rWrd9k2Tk5tmDx0tLF7tNnFVRqoXxtuOVtbipYuKRaG6CqG3Oyvyd3o/eZcrduu1GLNwpu2U11+1z8nHX7y5htNtVtPSqzqS7Z+5tqLnE21fkMcWpziKRjzWwScCHwPtAIaAe8BZwfU/Z9oAdwl6TTgH2r2lh6ejoPPDiY7t1Op6SkhD59L6NVXl5Su/0u6c3EiRP4ZuVKWuQews233k6ffpfv0naj+J7cTe7PlLt1241avFF1a0IU+5tqrsLZPifFkJQNvAm8BxwHfAxcQjAY/g/wP+AjoL2ZdZV0APA8/8/emYdJVVz/+/2wCYK7JsqiDKAgKKKAxB0jUaO4JLK4RQETY+L6VUz8RYN73DUuicYkiltUUBMFI+AC7gqyo7iLwkBUXBBUFIbz+6Oqh2bo6b7dPcNMM+d9nvt03+r6VJ17+y7n1j1VFRzhZ4HBhBbj7zKVf9TAQXbf/aNqeStqlpUVqwrWNmns4fjO2vgx5TilyTZD7ytYu+jO42rQEqc2aNFUo81sjQGkvYW4YbPKzE6pkvY8sEOGvEuAg8xspaQ9gP2rc4Ydx3Ecx3FKCXeInaRsC4yS1Aj4HvhVHdvjOI7jOI5TI7hD3EAxs3nATnnkfwfYtdYMqgf4K2qnpinFY2r5ioqCtc2bNq5BSxyn7igm7GH/654tWDvxnP0K1jrFUXpXa8dxHMdxHMepQdwhdhzHcRzHcRo07hA7juM4juM4DRp3iJ11yoTx4+jerTPdunTimquvdG09qtO1rq2OBQvmc9jBB9Bn153Yo2d3bvvLTfXe5oamLTV7G4K2WWPxz1/syt1De3LfSb345d7bAXDBIZ15+Ne7c9eQntw1pCfb/6BlvbG5QWvresY0X9bPJdNMdcuWr7SyDh3sjbfeq5xBZtrM1xPNPtOQtKVmr2vXL+0X36xca5n73nyb9OJk++KblfbRx19Yx07b28tTZ62VrxS3d33Qlpq967v2R1dOqlz2v+45+9GVk2yvq5+1OeVL7KS7p9rYWYvs//17zhr5Ukspbm8paskwU523ENciki6R1C9Hnr6S9syRZ6SkATVrXXFImidpy3w0UyZPpmPHTpR16ECzZs0YOPhoxo551LX1oE7XujYbW2+zDbvsuhsAG220ETt07sKiheX12uaGpC01exuS9tsVYXKeJo1Ek0bCCpgLrZS2t5S17hDXImY2wsyeypGtL2GmuFpBUtHjIEmqkeH5Fi4sp23bdpXrbdq0pbw82U21IWlLzV7Xrv/adD76cB6zZs6gZ+8+tV6va/2aUeraRoK7hvTkv6fvyeR5X/DGoqUA/HqfMu4Z2pMzf9yRpo1Vr2xuqFp3iPNEUktJj0uaKWmOpMGSRkiaEtdvl6SYt7JlN7aoXixpmqTZkrrE6ZNPAf5P0gxJ+2Spup+k5yW9Lal/LLOxpGti3bMk/Tqm95U0UdK/gNmS2kuaK+nvkl6XNEFSi5j3V1E/U9LDkjZMs/16SROBqyRtEXXTJf0NWOsMljRQ0ihJoxbMn7/WBliGR+O4q3LSkLSlZq9r139timXLlnHCMYO44urr2XjjjWu9Xtf6NaPUtasMThw5lSP++jJdt9mYDltuyK3PfsDR/5jCsLunsXHzJvyiz7b1yuaGqnWHOH8OBhaa2S5mthMwDrjFzHrH9RZA/2q0i81sN+BWYLiFyTFuA24wsx5m9nyWetsD+wGHArdJag6cBCwxs95Ab+BXkspi/t2B882sa1zfHviLmXUDvgSOiumPRNt3AebGMlPsAPQzs3OAC4EXzGxX4DHCzHVrYGajzWyQmQ1q265d1Z9p06YtCxasdpTLyxfQunXrLJvcMLWlZq9r138twIoVKzjx2IEMPPoYDjvyZ4l1pbi9paYtNXsbonbZdxVMm/8lP+qwOZ99/T0AKyqMsbP/R9dtNqqXNjc0bZ13viq1heAkfgBcBewT044CXgVmA+XAeTF9JDAgfp8HtInf+wBPxe8XEZzjbHWOBIalrT8H9AAeAt4GZsTlA+BAQhjGxLT87YF30tZ/D1wQv+8HPB9t/wC4La3OE9M0M4AOaeufA1tWZ3OmTnVLv11h7cvKbO7b71cGu0+dMSdRoHxD0paava5dv7SZOtV9/vUKG3zs8XbKqWdk/D1bp7r6vr3rg7bU7F3ftakOcgff+KL1u+F5+9GVk2y/a5+z6R99aeeMnmWH3vxSZZ4Hpsy3u17+MGunuvq+vaWoJUOnOp+6OU/M7G1JPYFDgCskTQBOBXqZ2XxJFwHNq5F/Fz8ryH/a7KrvAYwQtnC6mY1P/0FSX+DraupO1d8ifh8JHGlmMyUNITjTKaqWUUB3gNU0adKEG268hcMOPYiKigpOHDKMrt26ubYe1Ola12bjlZdf5MF/3UvXnXZmnz49AfjjxZdy4MGH1FubG5K21OxtKNotWjVjxKGdaSQhiWfe/JQX3/ucm4/uzmYbNgXEO58s4+rxb9cbmxuyVpYh3sKpHkmtgc/NbLmkI4EhwB6EVtjGwCvAQ2Z2kaSRwFgze0jSPILTvFhSL+BaM+sr6RxgYzO7MEudI4EfEEIxyoBngU7ACQTHfKCZrZC0A6GFujeh1TkVa9w+2rFTXB8OtIo2Lga6Al8A/wXKzWxIuu1RcxPwiZldJumnMe9WZrY4k81HDRxk990/Kp9d6zhOPWD5ioqCtc2bFt2H13FKnv2ve7Zg7cRz9qtBS5zqaNFUo81sUHqatxDnz87ANZJWASuA3wBHEkIO5gFT8ixvDPCQpCMIrb3VxRG/RXCEfwicEh3yfxAc8WmxI9+n0ZZ8+CMh3OPDuA3VBTNdDNwvaVq046M863Ecx3Ecx6mXeAuxUyt4C7HjlCbeQuw4xeEtxPUfbyF2HMdxsuJObXJWVqwqWNuksQ/ytL5SjFNbdurDBWs/+MtRuTM51eIOcT1C0vnAwCrJo83s8rqwx3Ecx3EcpyHgDnE9Ijq+7vw6juM4juOsQ/ydjeM4juM4jtOgcYfYWadMGD+O7t06061LJ665+krX1qM6Xeta1xav/c3JJ1HWbmt23617XvUVW2+p7SfXJtM2Ekw4/wDuPnVPAP4yrDfPX3wgE0f04/oTetKkUe5piUtpe+tUW9czv/lSegsJZtfLNFPdsuUrraxDB3vjrfcqZ5CZNvP1RLPPNCRtqdnrWtc2VO3S5RVrLU88OdGef3mK7di1W8bfU0tN2lzf95Nrk2u3PvmhNZYLR820h1/90CbMXGhbn/yQHXvTC5W/PfLqR/a7e6dVrpfi9taVlgwz1XkLsbPOmDJ5Mh07dqKsQweaNWvGwMFHM3bMo66tB3W61rWurRnt3vvsy2abbZ4ob03VW4r7ybW5tdts2oIDdt6af70wrzLtmTn/q/w+Y97ntN6sRQZl3dlcylp3iOsRklpKelzSTElzJA2WNELSlLh+e5yAA0mTJN0g6TlJcyX1lvSIpHckXZZW5tlRO0fSWTHtUklnpuW5XNIZ8fu5sb5Zki5Oy3O+pLckPQV0LmT7Fi4sp23bdpXrbdq0pby83LX1oE7Xuta1NaMtBr9muDadSwZ157KHZ7PK1p4vokkjMeBH2zLx9f9lUNadzaWs9VEm6hcHAwvN7FAASZsAT5rZJXH9HsL0zWNi/u/NbN/o3D4K9AQ+B96TdANhFruhQB9AwKuSngX+CTwC3CipEXA0sLukA4Htgd1j/sck7Qt8HfPsSjhmpgFTqxovaSBx2Ljd+/xorY2zDCd19O9z0pC0pWava13r2prBrxmuTdFv561ZvPQ7Zn30JXvssOVav1957K688s5iXn33sxqttyFr3SGuX8wGrpV0FTDWzJ6XdJSk3wEbApsDr7PaIX4sTfe6mS0CkPQ+0A7YG/i3mX0d0x8B9jGzmyR9JmlXwlTQ083ss+gQHwhMj+W2IjjIG8VyvonlpOpdAzMbDYyGMFNd1d/btGnLggXzK9fLyxfQunXrRDumIWlLzV7Xuta1NYNfM1ybYveOW3DgLttwwE5bs0HTxmzUogm3DOvNaXdM4ez+O7LFRhtw7m3T6pXNpa6t8w5avqzVYW1z4HjgBWAE8DHQLv52EXBR/D4J6BW/9yU40KT/BpwFXJKWfilwRvw+GLgReBA4JKZdB/w6g01nARenrV9PAZ3qln67wtqXldnct9+vDHafOmNOokD5hqQtNXtd69qGqq2uw9ycN98rqFOdXzNcW7VT3dYnP2Q/u3ZSZae6s+96zSa/u9jan/rIWvlKcXvrSkuGTnXeQlyPkNQa+NzM7pW0DBgSf1osqRUwAHgojyKfA0ZKupIQAvEz4Bfxt38DlwBNgWNj2njgUkn3mdkySW2AFVXKaQIcBvwt3+1r0qQJN9x4C4cdehAVFRWcOGQYXbt1c209qNO1rnVtzWiH/uJYnn/+WT5bvJjOHbflDxdcyIlDT6rVektxP7k2uTadq47blQWff8OY3+8PwH+nl3PD42/WO5tLUSvLEG/h1A2SDgKuAVYRHNHfAEcS4nfnAfOBD83sIkmTCK20r0nqG7/3j+Wk/3Y2MCxW8Q8z+3NafbcBX5rZeWlpZwK/jKvLgOPN7L04rfQJwIfAAuANM7u2um05auAgu+/+UcXsDsdxnHrNyopVBWubNPY+7c7alJ36cMHaD/5yVA1asn7ToqlGm9mg9DR3iBsosTPdNGCgmb1T0+W7Q+w4zvqOO8ROTeMO8bohk0PsZ2QDRFJX4F3g6dpwhh3HcRzHcUoJjyFugJjZG0CHurbDcRynlPFWXqemKaaVt8vwsQVr37y2f8Ha9QU/mx3HcRzHcZwGjTvEjuM4juM4ToPGHWLHcRzHcRynQeMOsbNOmTB+HN27daZbl05cc/WVrq1HdbrWta4tXW2p2eva2tc2Ejw+fB/++aveALTdvAX/+b+9mHj+/txy4m40bZx7SuNS2t6itXU9M5sv6+eSaaa6ZctXWlmHDvbGW+9VziAzbebriWafaUjaUrPXta51bd1qS81e19aOdrszx6yxXPLvOfaf1xbYU3P+Z9udOcbGTCu300ZOte3OHGP3vjDPzh81qzJvKW5vMVoyzFTnLcS1gKQekg5JW+8rac+09VMknZBFf5Gk4Qnr2lTSb4uzuLKsf8Qh2WqFKZMn07FjJ8o6dKBZs2YMHHw0Y8c86tp6UKdrXeva0tWWmr2urX3t1ps058ddf8gDr3xUmbbn9lvy35mLAHh4ynwO3PmH9crmuta6Q1w79AAOSVvvC1Q6xGZ2m5ndXUN1bQrk5RAr0KhKWmMz+6WFIdmSltM4n3oXLiynbdt2lett2rSlvLzctfWgTte61rWlqy01e11b+9oRP+vGFY/NxeLca5u1bMpX366gYlVIWPTlcn64SfN6ZXNda90hzoCklpIelzRT0hxJgyX1lvRSTJssaSNJzSXdKWm2pOmS9pfUDLgEGCxphqTfA6cA/xfX90lvAZZ0hqQ3JM2S9ECaGV0lTZL0vqQzsph7JdAxln1NLPNcSVNimRfHtPaS5kr6K2GGunaSlkm6RNKrwB6xvl4x/4GSXpY0TdJoSa1i+jxJIyS9AAysst8GSholadSC+fPXMtRs7VkRpdwxTA1NW2r2uta1rq1bbanZ69ra1f646w/4bNl3zFmwZHV+1s6fodii6i11rU/MkZmDgYVmdiiApE2A6cBgM5siaWPgW+BMADPbWVIXYAKwAzAC6GVmp0V9C2CZmV0b1w9Iq+s8oMzMvpO0aVp6F2B/YCPgLUm3mtmKDLaeB+xkZj1i2QcC2wO7AwIek7Qv8BHQGRhqZr+NeVsCc8xsRFwnfm4JXAD0M7Ovo1N/NsHRB1huZntXNcTMRgOjIUzdXPX3Nm3asmDBake5vHwBrVu3zrBJa9OQtKVmr2td69q61Zaava6tXW2vDpvTb6cfsn/XH7BBk0a0at6UET/rxsYtmtK4kahYZWyzaXM++Wp5vbG5PmjrvPNVfVwITu0HwFXAPsDOwIsZ8v0b+HHa+vNAd2AIcEta+kXA8EzrwDjgIeB4oFXa7+en5Z8LtK3G1vYEpza1fi0wD5gRl3eBk2K+D6poVwKN09YnAb2A/sDitDLeAP4Z88wDtsu1DzN1qlv67QprX1Zmc99+vzLYfeqMOYkC5RuSttTsda1rXVu32lKz17W1o63aqW67M8fY4JtfquxUN3Z6fp3q6vv2FqMlQ6c6byHOgJm9LaknIQ74CkLLb6aXC8na4bNzKLAvcDjwR0ndYvp3aXkqSN6aL+AKM/vbGolSe+DrKnmXm1lFNWU8aWbHVFNH1XIS0aRJE2648RYOO/QgKioqOHHIMLp265Zb2MC0pWava13r2rrVlpq9rl132nSuHPMmN5+wG+cc0pnXy5cw6pW1Qxvrg811pVWmeIuGjqTWwOdmtlzSkcDJhBCGVMjERoSQiTOAbmZ2kqQdgCcJrcv9gcPN7MRY3jnAxmZ2YVy/CFgGXA9sa2bzJDUFFhDCGs5izRCLOUB/M5uXwdYtgGlmtl1cPxC4FDjAzJZJagOsADYExprZTmnaZWbWKm19EjAc+BCYSmj9flfShoQW6rclzSOEgyzOtg+PGjjI7rt/VO6d7TiO4zhO0XQZPrZg7ZvX9q9BS+o/LZpqtJkNSk/zFuLM7AxcI2kVwZn8DaHV9OYYD/wt0A/4K3CbpNmE8IMhFmKBJwLnSZpBaGEeAzwk6Qjg9LR6GgP3xhhlATeY2ZdJA8ABzOwzSS9Gp/kJMztX0o7Ay7GcZYRwjEwtwdWV+amkIcD9kjaIyRcAbyc2zHEcx3Ecp0TwFmKnVvAWYsdxHMdZd3gLcXK8hdhZZ5gZKytWFaRt0thHA3TWDwo9B8DPA8dx8qMYp3bvKycWrH3hvP0L1tYn3CEuEWKs8NMZfjrAzD5b1/Y4juM4juOsL7hDXCJEp7dHXdvhOI7jOI6zvuHv5BzHcRzHcZwGjTvEzjrjNyefRFm7rdl9t+4F6SeMH0f3bp3p1qUT11x95XqtLTV7XZtc6+eBa2tDW2r2urZ+aps1bsRdQ3vyr1/15sFf787J+7av/O23fct4+Dd9GH3K7gzu3abe2Fxj2rqeFc6X9XP52VEDbOnyijWWJ56caM+/PMV27Nptrd/Sl0yzzyxbvtLKOnSwN956r3L2mWkzX080c02paUvNXtdWr810fPt54Nqa1paava6tf9qelz5Tuex95bPW89JnbPfLJ9rsBUvsxDtes4see8PGzlxkvWKeftc9X5m/FLeXDDPVeQtxPUXSPElbZkg/XNJ58ftISQOKrKe1pIeKKSMpe++zL5tttnlB2imTJ9OxYyfKOnSgWbNmDBx8NGPHPLpeakvNXtfmp/XzwLU1rS01e11bv7XfrgjTFjRpJJo0EmYwYLc2/P35eZVT9n7xzYp6ZXNNaN0hLjHM7DEzy+/9QfbyFppZUU71umDhwnLatm1Xud6mTVvKy8vXS22p2eva/LTFUIrb61q/Zri2tLSNBPf9shdPnr0Xr37wOa8v/Io2m7XgwK4/4O5hPbnx6O6026xFvbK5JrTuENcDJLWU9LikmZLmSBocfzpd0jRJsyV1iXmHSLolTd5P0vOS3pbUP+ZpH9OmxWXPLHW3j7Pcpcp+RNI4Se9Iujot37K07wMkjcxQ1kBJoySNKl+woKh9UhWztSeQSTqjX6lpS81e1+anLYZS3F7X+jXDtaWlXWVw3D9e45AbX6Zb643puFVLmjUR361cxQl3TOU/0xcy4rAu9crmmtC6Q1w/OBhYaGa7mNlOwLiYvtjMdgNuBYZXo20P7AccSphGujnwCfCTqB0M3JSHLT2iZmdgsKR2OfJXYmajzWyQmQ1q07ZtHlXmpk2btixYML9yvbx8Aa1bt14vtaVmr2vz0xZDKW6va/2a4drS1C77biVTP/ySPTpuzidffcczb34KwMS3FrP9D1rVS5uLujbXdecrXwxgB+AD4Cpgn5g2D2gTv/cBnorfhwC3xO8jgWFp5TxHcGg3Ae4BZgMzgG+y1N0emJNW9t/TfnsC2Dt+X5aWPgAYmW2bMnWqW7q8wua8+V5BnYmWfrvC2peV2dy3368MlJ86Y06iIPtS05aava6tXlvdMe7ngWtrUltq9rq2/mlTHeQOuO552+/q56znpc/YnldMsmkffmFn3j/T7nxhnl382BvW89Jn7OS7p9mc8iVZO9XV9+0lQ6c6n5ijHmBmb0vqCRwCXCFpQvzpu/hZQfWTqFR9P2DA/wEfA7sQ3gIsz8Oc79K+p9ebXk/zPMqrZOgvjuX555/ls8WL6dxxW/5wwYWcOPSkRNomTZpww423cNihB1FRUcGJQ4bRtVu39VJbava6Nj+tnweurWltqdnr2vqr3bJVMy4+fEcaSTQSPDn3U1549zNmzF/CZUd25dg+7fjm+wouG/tmvbG5prSyDPEWzrpFUmvgczNbLulIQkttD6CXmS2W1Au41sz6ShoS00+Lcbw/APoDZcCzQCfgCmCBmV0naShwh5llDKKR1B4Ya2Y7pZcdfxsb650k6V3gMOAtYDSw1MyGVLdNPx8w0O6+78GC9keTxh7J46wfrKxYVbDWzwPHcdYVe185sWDtC+ftX4OWrBtaNNVoMxuUnuYtxPWDnYFrJK0CVgC/AZIOhfYWwRH+IXBKdKr/CjwsaSAwEfi6Bmw8DxgLzAfmANkDiBzHcRzHcUoEbyF2agVvIXYcbyF2HKc08BZibyF2aglJfkN31guW5BiAvrbYZEM/fxzHWTcU49T+9qHZBWv/OmDngrU1jTvEDQRJOxNGnkjnOzPrUxf2OI7jOI7j1BfcIW4gmNlsQkc9x3Ecx3EcJw1/J+c4juM4juM0aNwhdtYpE8aPo3u3znTr0olrrr7StfWoTtfmpwWoqKig3969OX7QketMW4r7yrW1ry01e127/mk327Ap5+5fxmU/3Z5Lf7o9/XbYAoB2mzbn/H4dueigTow4sCNlm7eoNzavwTqcje0sYMME+fYBXifMsNYCuCauX1NE3fOALfP9HTgcOK8Gtn0IcXa5PDQjgQHx+yTC+MDV5f1DDf1HlwD9aqKsnw8YuNbMMMuWr7SyDh3sjbfeq5xBZtrM1xPNPtOQtKVm7/qu/d+S76tdLrr8avvZgMHW76BDsuYrRFuK+8q1fs1wbcPTDr1/lg29f5ad9e837MJxb9vQ+2fZb0bPsUVLltv5j79lsxd9ZddPet+G3j/Lrp/0gc39eGmlpq5sJsNMdeuyhfgsYMME+Y4jTAbRw8y+BX4N7GZm5yapRFKNxUWb2WNmttbjRU3WUUP8IV+BpMZV181shJk9lUcZee2HKZMn07FjJ8o6dKBZs2YMHHw0Y8c86tp6UKdr89MCLCxfwFPjn+C4E4Yl1hSrLcV95Vq/Zri2YWiXLF/JR1+EiXGXr1zFoq++Y9MWTcGgeZPgcmzYtBFffruy3ticTq04xJJaSnpc0kxJcyRdCLQGJkqaGPPcKuk1Sa9Lujim/RIYBIyQdJ+kx4CWwKuSBkvaTtLTkmbFz22jbqSk62PZV0naQtIESdMl/Q1QNXYNTjP7dEnTJM2W1CXmHyLplmrqaCnpDklTYj1H5Ngt7SSNk/RW3B9Iai9pTtp+Gy7pojz39ZVAC0kzJN0X046XNDmm/S3l/EpaJukSSa8Ce0iaJ2mEpBeAgXEbB8S8PSU9K2mqpPGStonpkyT9SdKzwJn52LpwYTlt27arXG/Tpi3l5eWurQd1ujY/LcAfzzuHP15yBWqU/2W0UG0p7ivX+jXDtQ1Pu0XLpmy7WXPe/+wb7p++iEE9tubawzszqMc2PDzzf/XS5tpqIT4YWGhmu5jZTsCfgYXA/maWGuzufDPrBXQH9pPU3cz+ATwGnGtmx5nZ4cC3sbX4QeAW4G4z6w7cB9yUVucOhNf95wAXAi+Y2a6xvG2rsWtcmn6xme0G3AoMr2a70us4H3jGzHoD+xNmmmuZZZ/sTmj97kFwPntlyZsYMzuP1fvoOEk7AoOBvcysB1AR64XwcDHHzPqY2QsxbbmZ7W1mD6TKlNQUuJkQstETuAO4PK3aTc1sPzO7Lt0WSQMljZI0asH8+ZlsXStNyjijdIPWlpq9DVE7YdzjbLnVD9hl190S5a8pbSnuK9f6NcO1DUu7QZNGnLrXdtw/fRHLV65i/06b88D0RQx/7C0emL6Iobu3rXc2Q+05xLOBfpUovdsAACAASURBVJKukrSPmS3JkGeQpGnAdKAb0DVBuXsA/4rf7wH2TvtttJlVxO/7AvcCmNnjwBcJ7Hokfk4F2ldTf3odBwLnSZpBiPFtzmrHOxNPmtlnMQzkkSq21yQHAD2BKdG2A4AO8bcK4OEq+TNNJ9cZ2Al4MpZxAdA2hwYzG21mg8xsUNt27db6vU2btixYsNpRLi9fQOvWrRNtVEPSlpq9DVE75ZWXmPDEWHrtvD2nDDueF5+byKm/OrHWtaW4r1zr1wzXNhxtY8Gpe23LKx9+ybQFXwGwZ/vNmBq/T5m/hLItsneqq6vtLbrzVJYOWpsDxwMvACNI67gGlAHvApvZ6g5kQ9K+D0grZ1na98VA0/i9KfBpNZoZQFna+udpda9hV0xLt60XMCl+H0LsDJehjqlA54T7YghwV9r6JYRwg7bAG2npFwAXVa2P3J3q0vfR6cAVufJV3e70OoGdgZerKSOrLaklU6e6pd+usPZlZTb37fcrg92nzpiTKFC+IWlLzd71XZurc9zDY58sqFNdLm0p7ivX+jXDtQ1Pm+ogN/T+Wfbi+5/bhDc/XSOt/Mtv7cqn37Oh98+yq595zz747JusnerWhc1k6FRXK53DJLUGPjezeyUtiw7hUmAjglO7MfA1sETSD4GfRkcrFy8BRxNah48jOLWZeC7+fpmknwKbZbGrUMYT4o5PNzOTtKuZTc+S/yeSNge+BY4EhgEfAz+QtAWwDOjPmmEcSVkhqamZrQCeBh6VdIOZfRLr3MjMPsyjvLeArSTtYWYvxxCKHczs9QJsq6RJkybccOMtHHboQVRUVHDikGF07dbNtfWgTtfmp60rSnFfudavGa5tGNrtt9yQPcs2Y/6X33LRQZ0AeHjWx9w1pZxjdmtNY8GKVcZdUxbUG5vTUaZ4i2KRdBBhuLRVwArgN4Rwh1OBRWa2v6SRQB/gfeA74DEzGxnTx5rZQ7GsZWbWKn5vT4hn3RL4FBhqZh9l0GwB3B/zPQv8nBBG0LOqXWb2mqR5hFbPxTG291oz6ytpSEw/LUMdLQix0XsSOu3NM7P+1eyPIcAhhBjeTsC/zCzVkfAM4AzgA6A8lnNRen2SJgHDzey1asq/ijBE3DQLccSDgf9HCIlZAZxqZq+k78uoq9zuuJ5eZw9CjPYmhBkN/2xmf89lS4qjBg6y++4flS2L45QES75ZUSf1brJh0zqp13EcJx9++9DsgrV/HbBzDVqSnBZNNdrMBqWn1YpD7DjuEDvrC+4QO47jVM/64hD7THWO4ziO4zhOg6a+TTBR0sRQkauqJH9gZj+rofJfBTaokvwLMyv88cxxnKx4S63jOE71FNPK2+7kjINWJWL+7YNzZ8oDd4hrEDMbT+hsV1vl96mtsh3HcRzHcRoqHjLhOI7jOI7jNGjcIXYcx3Ecx3EaNO4QO+uUCePH0b1bZ7p16cQ1V1/p2npUp2td69rS1Zaava51bSYaSTxz4YHcd+Y+APx5aG8mXnwQky4+iDt+uyctN8gd6VuwzcXOSNcQFqrM8FZEOT2AQ2rBvj/UUDmXAP1qoqxMM9UtW77Syjp0sDfeeq9yBplpM19PNPtMQ9KWmr2uda1r61Zbava61rWpZcuhD6yxXHD/NHvo5Xk2fka5bTn0AWv/m4cqf/vruDftktEzKteLqZcMM9V5C/G6pQdhgo6a5g/5CiQ1rrpuZiPM7Kk8ysirU+aUyZPp2LETZR060KxZMwYOPpqxYx51bT2o07WudW3pakvNXte6NhPbbNaCn3Rvzb3PvV+Ztmz5ysrvzZs1xnJMnVGMze4QA5J+F2eMQ9INkp6J3w+QdG/8frmkmZJeidNNI2krSQ9LmhKXvWL67pJekjQ9fnaW1IzQAjtY0gxJgyW1lHRH1E6XdETUD5H0iKRxkt6RdHUW268EWsQy74tpx0uaHNP+lnJ+JS2TdEkcvm0PSfMkjZD0AjBQ0khJA2LenpKelTRV0nhJ28T0SZL+JOlZ4Mx89vPCheW0bduucr1Nm7aUl5e7th7U6VrXurZ0taVmr2tdm4nLj9mVi0fPZFUVr/emYbvz+g1HsP3WG/GPp9+pNZvdIQ48B+wTv/cCWklqCuwNPE+YcvkVM9sl5v1VzHsjcIOZ9QaOAv4R098E9jWzXYERwJ/M7Pv4/UEz62FmDwLnA89E/f7ANZJaxjJ6AIOBnQlO9Op/OA0zOw/4NpZ5nKQdo24vM+sBVADHxewtgTlm1sfMXohpy81sbzN7IFVm3PabgQFm1pMwXfbladVuamb7mdl16bZIGihplKRRC+bPz2TrWmmSMm1Wg9aWmr2uda1r61Zbava61rVV+cku2/DpV98x68Mv1vrtjDsms/PZj/H2oqUcufu2NVpvOj4OcWAq0FPSRsB3wDSCY7wPcAbwPTA2Le9P4vd+QNe0nb1xLGMT4C5J2wMGVDey/4HA4ZKGx/XmQOrfftrMlgBIegPYDljby1ybA4CewJRoVwvgk/hbBfBwlfyZRsXuDOwEPBnLaAwsyqHBzEYDoyFM3Vz19zZt2rJgwepNKC9fQOvWrXNuUEPTlpq9rnWta+tWW2r2uta1VenTaUsO7tGaft23oXnTRrRq3pS//qoPv/37qwCsMuPRyR9x6k+7cP8LH9SKzTXauauUF+AZgvN7CTCAEJf7ASDSOtXF30bG74uBFhnKGgmcEb+3B+bF70OAW9LyTQU6Z9BXzTcW6JvF9nT7TgeuyJUvrs8Dtqxi9wBCq/TL1ZQxCeiVa39m6lS39NsV1r6szOa+/X5lsPvUGXMSBeg3JG2p2eta17q2brWlZq9rXZtaqnaq23LoA3b4lU9Xdqrr/fuxlem3PDHXbnlibtZOdUnrJUOnOm8hXs1zwHBgGDAbuB6YamaWpbl9AnAacA2ApB5mNoPQQpwKWhmSln8psFHa+njgdEmnx3p2NbPpBdi+QlJTM1sBPA08KukGM/tE0ubARmb2YR7lvQVsJWkPM3s5hlDsYGavF2BbJU2aNOGGG2/hsEMPoqKighOHDKNrt26urQd1uta1ri1dbanZ61rXJkGCW07qQ6sWTRDi9flfcu49r9VavbIM8RYNEUkHAOMI8bFfS3obuM3Mrpe0zMxaxXwDgP5mNkTSlsBfgB0J4SfPmdkpkvYA7gI+JbQ8/8LM2kfndDwhhOIK4DHgz8CehJboeWbWX9IQQivsabHOscC1ZjapGtuvAg4HplmIIx4M/D9CjPgK4FQzeyV9O6JuXqxncVwfCYw1s4ck9QBuIjj3TYA/m9nfJU0ChptZ1qPyqIGD7L77R+Xe8Y7jOI7jNEjanZwxAjMR828fXLC2RVONNrNB6WnuEDu1gjvEjuM4juNkoz45xD7KhOM4juM4jtOg8RjiEiKOH7xBleRfmNnsurDHcRzHKYyv0yYcyJeWzf3W7awfFNPKe+itL9egJe4QlxRm1qeubXAcx3Ecx1nf8JAJx3Ecx3Ecp0HjDrGzTpkwfhzdu3WmW5dOXHP1la6tR3W61rWurVvt8uXL+UnfPdhvj93Yq/cuXHn5xfXaXte6tj5omzYWfxm0M7cf051/HrsLJ/ZpC8DwH3fk9mO68/djunPhT3egedMcLm9dT4jhy/q5ZJqYY9nylVbWoYO98dZ7lQNmT5v5eqJBvhuSttTsda1rXZu/dvHSFWstn371vc1b9IUtXrrCFn3+je3Wq7eNe/r5tfKV2ra61rW1of3xTS9VLofc+or9+KaX7Ce3vGxvLPrKTn1wlvW/9dXK30dPK7fbX5xXuU6GiTm8hThPJLWXNKfYvJIukdSvBuw5UlLXGiinl6Sbii0nG1MmT6Zjx06UdehAs2bNGDj4aMaOedS19aBO17rWtXWvlUSrVmGo+BUrVrBixQqyTAxV5/a61rX1Rbt8xSoAmjQSTRoJA75ZUVH5e7MmjSDHKMPuEOeBpMY1VZaZjTCzp2qgjiOBvBxiSU2qrpvZa2Z2RqFlJGHhwnLatm1Xud6mTVvKy8uzKBqmttTsda1rXVszWoCKigr67tmTHTu0pu/+/ejZO3df6lLcVte6tia1jQR/O7o7D5/Ui6nzl/Dmx8sAOPeAjjx0Uk+23awF/571v+xlJLJuPUPSpZLOTFu/XNKZkq6RNEfS7DjbG5L6Spoo6V+EKZ3Ty+kgabqk3pK6SZosaYakWZK2j9kaS/q7pNclTZDUImpHxlnvkDRP0ghJLwADJXWUNE7SVEnPS+pSzXbsSZih7ppYb8fqtLG+6yVNBK6SdJGk2yVNAO6O2zk25m0p6Q5JU+L2HRHTh0gaLWkMYdrqvDBb+/EsSetHQ9OWmr2uda1ra0YL0LhxYya9NJVZb85j2tQpzH0j9wvJUtxW17q2JrWrDH79wCwG3zmVLj9sRfvNWwBwzdPvMeiOqXz4+bf03X6LrGU0SIcY+CdwIoCkRsDRwAKgB7AL0I/gZG4T8+8OnG9mlS2xkjoDDwNDzWwKcApwo5n1AHrF8gC2B/5iZt2AL4GjqrFpuZntbWYPALcDp5tZT2A48NdMAjN7iTD987lm1sPM3suh3QHoZ2bnxPWewBFmdmyVos8HnjGz3sD+cV+0jL/tAZxoZj+uao+kgZJGSRq1YP78text06YtCxasTi8vX0Dr1q2r2R0NV1tq9rrWta6tGW06m2y6KXvtsx9PP5m77aEUt9W1rq0N7dffVzCj/Ct6b7dpZdoqg0nvfMa+HbM7xHXe+aquFuBJYFfgYOAh4AZgWNrv9xBaX/sCE9PS2wMfA28C3dLSjwVeB34PbJ+W9520PL8HLojfRwID4vd5wHbxeyvgW2BG2jI3y3akl1OtNuY7MU13EXBh2npfYGz8/howJ62Mj4AdgSHAnUn2b6ZOdUu/XWHty8ps7tvvVwbKT50xJ1GQfUPSlpq9rnWta/PXZupU9+b7C+29+Z/a4qUrbP4nX9mP9tjL7hv1n5yd6ur7trrWtbWhTXWQ+9ntk+2w20IHuoP/8orNKl9i5z82146/a1plngenltuDU8uzdqpryBNz/IPg4G0N3AEcmCXv11XWlwDzgb0ITjBm9q84k9yhwHhJvwTeB75L01UALXLU0Qj4MrY050subdXtqLqeQsBRZvbWGolSnyyanDRp0oQbbryFww49iIqKCk4cMoyu3bq5th7U6VrXurbutR9/vIjTfj2MiooKVq0yjvj5AA766aH11l7XurY+aLdo2Yzf/aQTjRVCK5595zNemfcFfz6qGxs2a4IE7y3+mhsnfpC1XmWK1WgISGpGiAluSghrOAL4NXAIsDmhlbQP0AUYbmb9o649MDb+Nh74a3SGOwAfmJlJ+jOh1fc/hFbXnaJ2ONDKzC6SNDL+9pCkeUAvM1sc870E3GBmoxUCZ7qb2cxqtuNmYJqZ3ZlNm15fzHcRsMzMro3rfVPbKelPwMaE0AuTtKuZTZc0JNp5Wq79e9TAQXbf/aNyZXMcx2mQ+NTNjlMcxUzd/MwZe442s0HpaQ01hhgz+x6YSGg2rwD+DcwCZgLPAL8zs2q7JJrZ10B/4P9ip7PBwBxJMwhO9N1FmHcccJKkmYQW6COy5H0AODd2fuuYp7Y6LiU8KMxSGDbu0gLKcBzHcRzHKQkacgtxI2AaMNDM3qlre9Y3vIXYcRyneryF2HGKw1uIawCFiSzeBZ52Z9hxHMdxHKdh02BbiEsNSecDA6skjzazy+vCnlxImgq8V83PbVk9LF2+uNa1ri09e13rWtfWrbbU7K1tbUcLw9Oupq6HP/Ol4S1kGO7Eta51bf2u07WudW3pakvN3rrQNsiQCcdxHMdxHMdJ4Q6xUxeMdq1rXVuUttTsda1rXVu32lKzd51rPYbYcRzHcRzHadB4C7HjOI7jOI7ToHGH2HEcx3Ecx2nQuEPsOI7jOI7jNGjcIXacGkZSI0mDcud0GhqSGku6pq7tSEopHsulto+LRdIGko6V9AdJI1LLOqi3saT/K1DbSNKeNW2TsyZ1cf4WeVwUrK0JvFOds06Q1AbYDqicc9TMnltHdTcGflil7o8S6PoD/zWzVQXU+ZyZ7ZuvLmoz6pLsL0kbAEcB7Vlzey8pxJYE9d0MVHsRMbMzEpTxQ+BPQGsz+2mcSXIPM/tnbeiitp+ZPVUl7UQzuyuXNubdPEPyUjNbkUD7DHCA5XHxlXR2tt/N7PoEZWwHbG9mT0lqATQxs6UJdMUcy82Bk4BuQPM0e4dl0eyWrUwzm5ag3nW+jyW1BL41s1WSdgC6AE8kOSaivtDzYBywBJgKVKTZe10OXU0cU5PMrG+ufNVoXzazPfLUFH1sxHIKvSfkfd5Xo6nEzD6vRlf0/xPLKej8lXQnGa7t2c7dNG0xx0VB2vifjjezfoXUC2kHg+PUFpKuAgYDb7D6gm1AVgdP0mwyO1sCzMy6J6j7dOBC4GMg5dgakFMLHA3cKOlh4E4zm5tAk+JJScOBB4GvU4nVXfyqcG7a9+bA7oSb3Y8TaB9l9c3xu8TWApJ+DlwF/ICwj1P7eeMsstfyqaMaRgJ3AufH9bcJ+y2XY1uoDmCEpKOA4UAr4B+E/ZXIIQamAe2ALwj7aVNgkaRPgF+Z2dQs2unAo5JGs+ax8UgWzUbxszPQG3gsrh9GjvMIQNKvgJOBzYGOhFmcbgMOyKWluGP5HuBN4CDgEuA4INd5lM2RM5KdB+t8H8c8+0jaDHiacG4MJmxzEkZS2PHc1swOTlhHOsVuL8CLkm5h7WMjiWM6IZ6Dj+Tx4JI6NpoDvYCZhPOvO/AqsHeuAoq8JxRy3k+N5QvYtor2I6Csmrpq4v+Bws/fsWnfmwM/AxYmrLOY46IgrZlVSPpG0iZmtiShnWvgLcROrSPpLaC7meXroG2X7Xcz+zBBGe8Cfczss3zqTtNvDBwDDCVc1O4E7s/VsibpgwzJZmYdCrChHXC1mR2TIO8cM9sp3zqi9l3gsDwd/6KRNMXMekuabma7xrQZZtajNnQxn4BzgF/HpBFmdn8eNt8G/NvMxsf1A4GDgVHAjWbWJ4v2zgzJlrDlZQJwVOr4k7QRYQr3rA6RpBmEB6tX0/bVbDPbOUGdBR/Lqf9G0iwz6y6pKaEVJ4lTWzB1tI+nmdlu0eFqYWZXpx+bCeot9Dy4HbjZzGYnqSeDvqDtjXknZki2JP+vpKVAS0IjybckewBPaR8ALk9ts6SdgOFmNiSBtuB7QpHn/W3AY2b237j+U6CfmZ2To86C/5+Yv0buRZIaAU8l/G+LOS6K0Y4CfgQ8yZrOdM43leAtxM664X2gKXm2WCZxeBMwn9BiWhBm9lVsIW4BnEV4Sj5X0k1mdnMWXXVP/YWwAEjq5L4kaecCb44f5+sMSxpD9pCJwxMU87WkLVLlSPoRyf6zQnUAmwF9gPcIraXbSVIeLVW9zOyU1IqZTZD0JzM7O4atVIuZDU1YRya2Bb5PW/+eEB6Ti+/M7PvwHACSmpDlf0unyGM59Sr5y+i0/I9k9iJpQ+BsYFszO1nS9kBnMxubQ1pX+1iS9iC0CJ8U0/K5xxZ6PO8NDImOz3fk8QYtUuj2Ymb7J6wjk3aj3LmqpUv6Nc7M5kjK+SAcKeaeUPB5D/Suon1C0qUJ6iz4/4n11NS9aPtoS5I6izkuCtYCj8elINwhdtYF3wAzJD1NmlOc9Kkt3hhuBnYEmgGNga+TtCQQnPFJkh6vUneS+LjDgGGEV8z3ALub2SfxRj032lRV82MzeyaGH6xFjle2qTLS43IbAT0IrwaTUMzN8TVJDwL/Yc19lc3maxPalY2zCa8DO0p6EdgKGFCLOoBXgCvN7A6FeNqrgBeBpB19Ppf0e+CBuD4Y+CLGsWWNOVeIL70V+KGZ7SSpO3C4mV2WoN57gMmS/k04Rn4G3J1A96ykPwAtJP0E+C0wJoGuKMcUuD2GEPyR8F+1ApJ2+LqT8Lo59Z8sIMw+lbPeOtrHZwH/j9CC+LqkDkCm1q7qKPR4/mkedWSi0O0tNo5fhIeHMjO7NL4J28bMJieoeq6kfwD3RpuPJ3coToqC7wkUcd4DiyVdUMXmJK3UBf8/UPj5G1vwU6EeRniY/X3COos5LgrWmtld8Xq+rZm9lcTWNer2kAmntpF0YqZ0S96B6TVCPO9oQtzYCUAnMzs/qzBoL6ym7osTaO8G/mEZOrNJOsDMns6QfrGZXVjkK9v0/bUSmGdmL+bSRW3GMJMkre3F2Bz1zYAd4upblrAzUdQ2IcTKKR9tEbptrUonGkn7Zvqvq9FvSYhD3DvW/QJwMaHlaVszezeL9llCnPjf0l6NJw51kdST1bGSz5nZ9ASaRoRWywOjveMJx3bOG0B8SJoKnBCdyxbAy7le5ReLpNfMrFeVEIKZZrZLAm2x+3g3YJ+4mmgfp2lbmtnXuXNm1CY+niVtHN9gZey0ZclivFNl5X1MRd0TxLhnM9sl2j/dkoXi3EpwIn9sZjvGB6cJZtY7gbY58Bsg1VnsOeBWM1ueQFvMPaGY837zqN2X1X1oLknyPxV5PK7z87fI46IY7WGERppmZlYW3xpckvBNpTvETv0n7cY4K9XSKeklM/NhezIgaRdWXzyfN7OkrcvF1NmX0CFtHuFG0Q44MYmDKemETOlmlrUVRNJAYJyZLY0tL7sBl1nynuZFj3yiEGO+ysyW5aEpOPY55i2oh3yhFOmYZmwNtgSjnkh6idDp70ULsbkdCfH7uyfQFruP9yaMyHGnpK2AVmaWKRYzXbMHoQNcKzPbNp6Hvzaz3yasM6/jWdJYM+sf3walWvJSmOURI1roMVXMftbqmOu8j6tSI+7fK83s3JyZM+vzPh7TtMWcvwVdI4s8LorRpjqfT7I8+0qAh0w464D4iuYKoCtrDr2U9IL9TWx9nCHpamARoTNGkrq3An7H2sM+JQnQLyZUA0mHZqg3iSNQ8P6SdCbwKyAV5nCvpNstS7xzmjbvIbLSuA44MPWaSuGV9f1AzwTa9Bah5gQnaBq5Xwv+0cxGx5vFQYSWgVsJscFZUYEjn6Tpd472bR7XFxMeAOYkkC+Ozl0qVnQA4ZhOUm96D/kKVr/OzBgSo+pHagHAkoXSfB9blVL2diR5f4D0ltLmQH+Sv9q+EBgHtJN0H7AXMCShtph9fCHhTVRnQktVU8Jr7r1ySP9MOA4fAzCzmapmCMVqyOt4NrP+8bOoGNF8j6kqFBPHvyI6iintVuQOO0jZvBdwEWs7a0mukcXcEyaS4XzKpbUwAkKSa2GmOgs9HlMUdP4WeY0s5rgoRrvSzJZI6c+GyfpKhJxmvvhSqwvhtdIBwCzCBewi4OI89NsROrVtTLhwX08ImUiinUBw8uYC+wF3AFcl1L4GdCIM4dSYMNLE5Qm1txEcpvnR5tnAP2t7f0VNy7T1lsCshNrRwKWEjmYnxn13Y9J6k6QlLGsTQm/sXPmmx88rgGPT0xJo3wI2KOKYfgnYP229L/BSQm0H4ClCbH15/L/bJ9S+C2yRh53bZVsSlvET4FngU+A+wluAvgXutw0Io0wkzb8FcCjBkd4yD12mfZx0e2cQnMLpaWk5j2XCCB5U0c3Mw+Zijuc2hFjrfVNLHvXmdUxV0e5GiL1fEj/fJowolER7HOHhYQFweTwnBybUvkmInf5BPEa2SLoNFHdP6Jm27EW4F12dUHtd3N5fAD9PLbV1PKblLej8pYhrZJHHRTHafwLHEu6D2xMatG5LbHchG+uLL/kswNT4OTst7fl1XPestLRnE2pfy6BN6vTMqvLZihAfV6v7i+B4N09bb55eTg5t6oacsrkp8ExC7R3xYtQ3Ln8njN1cyH/WFJibIN9Y4G8EB35TgrOVyAEBniC8diz0uFqrnqR1p+VvCWyUp2YiYUKNguwuYnsLckwzlLMZ8E6OPF3i526ZloT1lFXdx6m0BNrJ8XNaWhlJHOKHCE7pNMIbpeHAA3nsm4KOZ0KH0HnAfwkdJceQ4IGypo4pQgttN8JIOE3z1HYBTgVOA3bMQ/dqEfYWfE+opryk95M7Myx31NbxWKWMvM/fGrhGFnNcFKQFNiQ8XE0hNGhdTtr9MNfiIRPOumC5QqeedySdRmix+UFScTWvfZcQDvjLLPt4kqlOKYtiCMNCwjBbSSg4VIMwrmaqjNaE3sRJX20Ws7/uBF5V6JEs4AiSTVQBRQyRRejgcipwRqz3OeCvSYRac+i2RoRQkVEJpIMIY4Bea2ZfStqGNSc1yUZRI58A70v6I6EHOIQe4x9kE0g63szuVZUZqFKv9yxZL/eCeshrdY/xdFLn0Dlm9n4W7UkWeng/HtcbS7rQknVCSj93GxNGTsgVNnQ2YRKRTBN0GMkm5niY4Dynh2w8RLIQnlGS/gZsqjChyTDCA14uTgFuJLTWLiC0RJ6aQJei0OP5SMKoAXkNa5lGMSPxVB1NZwdJSwgP4Z8kqPsd4Cti2IMydHathokK03M/UsXmJP0HCr4naM0OjI0IoQxbJ9Fa4UMBFnQ8SupiZm9q9ex+qZChbeN+zrWv8r5GqvpRlnaQhGUZsagYbZpt3xAmtsnZ4T4T7hA764KzCE9uZxBeyf+Y8Eo+KU8QYpj+FdePJjhdSwizOx2WRXuZpE0IkzDcTAi7SDpX+i8IF73ToqYdYVrkJIyVtClwDaHFyAizoSWh4P1lZtdLmsTqHuNDLXmP5IKHyIo34+vjki/pQ7etBD40swUJ6vxGYYaovQk31pXxMwmPsXrmp0IYRuhd/girHwBy3fBSD1PFjL/6UVyaxSUp1xNu/P8i2Hs04Ub+FqF1v28W7QEKM4qdRGhpupPwCjYJ/dO+rySMdb0ym8DMTo6feY9HKqkLoWVpkyo31o1JixfNUf+1CkPTfUWI2xxhZk8m0C0m+ax0mfSFHs8FjfOeRqHHFIRjYg9WDy/XlzCk4Q6SLjGze6oTFhm7nIqr7pWWlvRhqZh7QmrWOYgjmCSVSgAAIABJREFUALF6zOmsFNpHo9DjkeIfLAu5Ru4HPEPme7Kxum9LjWol/dnMzlI14+KbjzLhrC9IetHM9sqUlk8P0gLrbkZ4rWeEYZC+zyHJVMYGhNc2BU8Qkmd9u7B6aJ9aHWWihjptFVr3hcTOJma2Q2yJH131WKlG2x/4r5kl6sRTU8RORGeY2Q3ruN5XrcosWpJeMbMfKUGPc0mDgb8QWo2OsYTDAEZtwaNiSNqT8JYiXVttZ0tJRxBaTA9nzZv5UkL4wksJbB1vZv2S2FdFW8zYx3kfz1o9XnkbYBfCdNGFvO1IlbdRkOU1YsoY4Jdm9nFc/yFhH/ySMDxYtcPcqchZROuC2Dntt4SHFgOeJ/lwb6MJsc/HkjaNuZmdmUN3GnCfmX1RgL2NCGP4Jj5fiyXWOcDMkrzlqxGtpJ5mNlXSfpl+N7NED/DeQuzUGjX11Aa0ktTHzF6N5e5OaL2E8JSezYYy4HTWvqnmrDu+TruNENMnoEzSr83siSRGV72Zx9c+2W7mWZ/GE9qcGmXi4WhzzlEmqnuVn1ZvtlbfVAtg6tVwqkXoOILzlM3WTK/xiXab5R7N42fAroQWeMxsYbypJ+Fo4EaFWQjvtIQz9FV3LKfI9R9Z6G1+OFCQQ6wCe7kDqyQNIoQNwJoTPmRtFVEY9eRMwjG1I/ALhSGRsv6/UZveCph6+EjUCijpHsKkODNYs5d7teeQmT0KPKoMY0orjEyQlfj/fCNpkwIeYP9OHPs4ljVL0r+ARA4x+R/Pr8XPqRTxtiOGR93DmiOmnGBmryeQt085w5FPgB3M7HNJucYEL2oWUeU5io+k31mYTjt94qNKEj5A3EVoqb0prh9D2HcDE2g7mdlASUdYmEDiX4TxwHOxNTBF0jTC25zxlrAl08xWSbqW0IqfCEmjzGxQdY0duRo5Yp2nkSzsrUa00RluDPzKzI7Pt94U7hA7tUnKOSp2NrNfAndIakVwlr4CfimpJaFHdjb+Q4ihHUPCIX3SuI4wksC7UDlczeOEEI6sFHIzJ1y05hOGK3sV1hhXNCknEVpdvo52XAW8TIZZ9dIo+FW+xQk/JO1VpSXrPIXZtqq9QVlxU7cCfG9mJsmiDUnjuzGz4xXGED4GuDOWcSdhnNulWaSpY/nnhBvVvXH9GMLr0yS8JOkW4EHShiVLGP84PO17c0IIT9aHwshxhPjWvxKOw1eA42OL12k5tGOA08zsKUkivIqdQnBGcnEmocWzkFbAXkDXpDf/KvyZ0AkvnZszpGViOTBb0pOs+f/kcpg2NLPJWnPIpyT/TYq8jmeLExvFfMvNrCKuNyZ0yEvK7cDZZjYx6vsSnPsk47w/L2ksYYQaCMfjc9GmLzMJ0h68i4ldvo0QVrY/IRRtAJBrhrvUQ+9rWXNlp3OVtykTJSV9A1dQHw0zu0Chv8KBhLCsWySNIoxa9F6CeifEkKdHEp5LqRbr/llzZedJScNZ+xqXZLKYgrTxYXYrSc0KeZML7hA7tYiZTY2fSeMNqytnCrBzjPuSmaVfaHM9SS43s5ty5KmOT2zNmYfeJ7SAJKGQm/nWhCFyjiG8Vnuc4KAlaalJIVY74LA6Nq9azCzVopWzk1QWWkra28xegMrW8cQOatRsSOhQN89CPGYuCu38BICFWb4eJgzpdxahhe5cSTdV16KeOpYlXWpm6WPMjpGUdFKPlKOR/rCQKP4xdU6l8aLCrGy5dO9Tfaz9Cznku5vZV7EcA67L9TYjjWJaAecQzolE4wcDKEyOsSewVZU3HhsTOvUl4fG45EvBYx9HCj2enwb6AalQhxaEDn1JJy5qmXKGAcxsUh4Pl6cSHg5TM7fdDTwcj5PqYsBTD8LFxC7vaWbdFSZruljSdWSPT8XMxsTPRDOkVsN0ST8ys1cAJPUhDA2WhGL6aJik/xGc6JWE0VoekvSkmf0uh/xswrV4paTl5HgDZ2aL4mfW2U0lvWxm1bU8p+Ki0zuVGmE4xFwUo51HuCY+xprOdKK+Le4QO7WO1h5EPXVCJpqYQyEG9yhi+IFW98rPOckF4bX4hYQbRKLeyFrdGed1Sf8lON1GeC02JYnNFHAzjy0844BxcZuPIbSgXJIt5KEK6aNMQIinTDTKhMJIGpcRRsgYR4hLPMvM7s0qDJxEaMXfJK5/yeoLW3X1HU549fg5cAEhRvVjoL2k3+e6cVnhnU1QmOJzGKEV/x6C0/dJdMrnkr1FHYLD1SE6mqnQnK0S1NuIEHOY9+vEqK/ay70nCXq5q7hJV76VdAarp8l9lhBKlK2+olsBgS2BNyRNrqLNFpbSjOBoNGHNNx5fsWaYSLUU4TCdSmht7SKpnDDqSOLXt0Ucz80tLe7XzJbF4zgpeY+YAmvFWz+ctLIiH7xTFDyKj0Ks93DWDqNL0iGvD3CCpFQM/LbA3FR4QbZwAjNLdap+lv/f3pnH6zqX+//9IZkVoVRmIgkZSo5GcZKohJJSHQ3SCQ2caFKaSJ1KJ0NECR2UDMmYsQzZ2qboV6FBnUYibWOf3x/X997rXs9+hu9zP9Pae3/fr9d6rfXcz3Pd93etdQ/X9/pe1+fKc+6q8e5LFFX/hYiGH2D7kXQv+QXRZKSTrYBneTSdLNsWqaZxvdEN8pYHsU38Pn0tQoMVz+IQF8bB8UQV7yymRy9zOYuIMs2i/0rqZxNqES9leg5jt5tfPZL2R6L6FULYfPluB9NUjumy9P8wr5z/HQhneA3CYewpN1Pbf11lQvSnMrGd7QMlvYaQjdqVqB7v6RCnyOXGKQ1BmfmXhxLLgE9Ix9nI9h2SViaiXj0dE9sXSbqWqTztFTKX5XYF/tsteaaOSv8cJ/G9hKNXyZWtAbwzY7yN8+sSVZW7iEjRneRVuZ9EFPT8O7WCnsxjHkWoGFQyem9iqnCqE8OIAh7S5+erCP7lkk60/WtJS3u69FpHhpA7eQfwshRdXaRH6k2nfVwEZE3qajwgadNqkq/oiDanh02dJoopg+Zbk1JSdq1W/FL09Nu2/z3DfBAVn9OJCd1x9P88enmfn59La2Cn2p4R2FmRaOAxLWKb7iVd0xpSZPlM8uQG+6Xt6qcb5C0PwzZN0JZxw/bYUFQmCmNAbSrc+7S/xV2qlXvY3k44Wo1yihocr22Va0W39BFJ3yCEyH9APBhy2gBXtlsQgus/aNm+E3B3m6X2dvu41fazJH2NWPY8X/k979sV5P2dEMGf3cGm3qt+mlpI/b0ux3wn4dzNISY7fa08DEp6wK2fXt7uTB3YFI2bQ7P8ukZUf8+0xLyRpMWI6F5Ou9p5zoHc82JSpNSJ44kH5GoK5ZV32t6ni80qtv8gafV272csITd1eCr7nYkmGysT53JWcWm69r9NRMYAVgFel3PND4oil3VLwonvJ98aSbNtb9Kyred132Y/fan4SJplexQOYq/jns9UYGeuI267nSxaq+3GwAvSy76UgyT9D3CiI/VwaEi6wXbbnHxJHye6xeXmLQ/L9hLb2/RjU6dEiAvjYBARdYgipGfbvrnBsW8kuj7l5v7ORQ0UKjyVY3qY7f9q2d9hdNdvfRPxUHkGsK+minNyHoyfA97SZvvPiGXcnOXAs9MEYg6wj6SViAKjHDZPX+ek1zsQ6SV7Szrd9uFtbBZJUaFFCBWE5ZnKd14k45gfIJYDc/KNpzGA89EqGl+xtjLF4xkgRy45su9iKn3hMuAY270q+gdpuvKYpLWdCngkrUVmZC2dQwcyb6pGjiO+JZG68kwiurwo8ECv/1Hii0Q0/Ox0vBslvbCbgTNzJ7swyEoWwOHAjs5UPKmw/ROF/vJ6xHl8e/18kLRtt9SLAVMImuZbQ5xXcxtxpIlIL8WTTtcffVx/50jaBziT6c+jkU1IE0+33XeEOaVMvIOplcKeykEtvIS4D99FPF+qe92gkpjdalOqvOXHJM0h8/46BNvZivzh05k+QctaZS0R4sLIUUhFteLMGy6SfgasQywPP0QfF3RKH9iIcM6yUxeS7Y1ElOlmagoV3aK8Ndt5Zs9VdK6Xbca+l3eLJmVrhLXlvRyd2UWISM9twH1pObRqe/t/GWO6AHitUy6jQhHkDKJQbZbtDdrY3MVUZLeVnpHeFHHZ2RnyX21sf0kD50PSCV3etvNychsj6TgifaFKJ3kT8JjtbukLSHobkee5EZFnvgyRo9o1FzjZbpNs6ukhb3WtEKuL7YVEJPwDRCe3NwN/bp0sdrC9npDHO52YbO0JrGv74Azba20/r2UVIne1o5EjPshKVrKfR299GHSL5KX3byRSCFojl1kRZoVSyWq2f97nuF5OTNar++kLgXfY7ihFNozrT1K7/OiRryxJOhY4st/AjqSbCC3hSjloaeDq3GdJ0xWPjP1u2M8q5jjocH5k35dLhLgwctyg41QL2w9g+7EBbPtWqJD0LkK4fe10I6tYlvxq5F5cwrzyUUt2+XzPinFH7tbnXasaTjfgrPxLoriknpbyCLC67TmS2kbLbK+Rs2NJz3J7pY2DiNWDa+m/IcEf+3WG076btl+di6Lg6X2EE/EOhc7verbPzTDfosWp+6EyZJ/csKAn8SNCW7daijyGkPLL4Um2j5e0n6fye7NVZ2z/UtKijoLTEyR1baxR47cKpRMrmuvsS37O9FeY1xFfJ8NukJUsgOsl/S8hFVk/n7NrCDrQS77xUdtHNdpxFKceQUwc1pS0CfCJnICDIyVrU2IiLuC9vVZ7hnH92c4qvhsBWwNvSQ55P4GdvpWD6jhy6bcmJpMnpFWbZXrZ9ZoYdnOGFcubewBr2j5U0qrAKrZ7SeMNZDvo+VEc4sLI0GANH+qfa3pBLwp8xA26TiX6VqggWuP+gNBH/mBt+/1DXJJrdzO8WNKngA+7tuyT8rF+mLnffvUq65wCXCPprPR6R+DUFM34WZ/7auUk2uvHHkP8btMi+N2oLbk2cj46ncs1+5xz+gQiGlfJYv2OcL5yHOJG6QuKDmKfBp5qe3tJGxBRpxwFkm8SygeHptf9NCOolu7/oGik8Hvg6Rl2EAoCjyeWQQ8nFFty5cD2JnSXn0b8fS9keopKVxo64k0dnorliGY229WHQh9FtR1oey1rSrFkkBSCQ4DnEqk72J6tSDXriUJ9aLbtcyW9EThY0pe6RS6HdP2R0oY2YHoaTzeN+GHQNLDTWDkIQLUOiGlfixGF0r1WI5pODCEKcP9FpOodSkgC/g+wxShtNWC3yOIQF0ZJ44YPdZpe0B6wCpoGChW2/67owPbsQZekutDuAfd+omr6l5KqIraNCRH6rsvpNRrnbqWZ/A+I/4mAvW1XAvh7ZB6/E52iIY/a7vqAbENdQaSJ8zFoMxGAtW2/TtLuACmKnhvxOYDIyb+D+LusToYiAHAice18KL3+f0QqQ86DdZBmBJ9USPG9n4g2LUcodOTwJiKX/D+TzapE0VpPUqSx6XnX1BEfZCVrKNHPPqkrlkCcW3OHQ95KwqPpnlffljuZPopQptk4HfvrxOSrW2Fydf2tRzhIlR72joQ6Rk/S8+TFhEN8HvF/u4ruTZMGIqWkfb9JSo0HUw6CATp6DrBC8zzbm0r6adrPPemaGrXtQN0ii0NcGBkeTsMHGKxFb9OuU9Vx13KfChUp/eBG1QpGRk1Kb9g9RQyrDmK3OunkVnRJP8ADdo6zfb1Cn3OJdKxh/f6dHrCXSnoHUciXFdka1OkYwrkM8HDKu6waOKxNZhGW7UuqFAumCqhybFe0fZqkg9J+HpWUKznVuBlBLQ3k73Ru1NDJ9tfpQbgGMVH5ee61qME0tRs54k1XsmpjHkQruht3tds4pNSBWyS9AVg0nZf7ArlO06O2LelVwJdTas2buxlU158iN31TJ2k7SYcw1S2vF7sQ58NPbb81rZ7kSrY1YgjPhDsJmcXHEVkFc2X2Mmja0XOQFZpH0gptdcyVyO8UO4jtQN0ii0NcGDkDPpxggBa9DFYF3VihgpA+ulWhQ1x3xHvm1mXQMZqYHOA7Or1P5/SDQfO+diJaXT+V+HutRuje5rT3bcob0veDatty1RrWIpbUt0w2VxPnZM+GBMn+BNpr1eY4L4cQ18Gqkk4mour9OOqbMaUIsLGiur5XdOsBSU9i6iGzJT06yGlKj3cxppoRmIhKZ6XBDPJ3SikWRwO/Is75NSW90y3Sgh0YRFO7Wtl5kNDnzWKApemKRlrRipz09xM56W9XS0667Y7KDMl+V+B82/dL+jBxfzg0Mwr5HmLV4SGi5fwFTKXW9OL+NEF7I/DC5AQtlmnbWrPwMPmqKXOSg/qoQjf9T/SfV9+ERs8ESYcSCkK/YupayupsmWjXATFnAtB4hYbQzz8TWFmRyrcL0aFv1LYDdYssKhOFkaOkN5keTq8mLq5Lnaljquhrvi7R1vgzxAV9ivNlZxqhwRQq2i77ObONdXo4PJnpMkiVPFFu84l2++2o8ynpKFLulu1nKmTQLrSdk7t1I3GDvtihd/sSYHfb72gyzpZ9X2N7y0H307pPIi/t1LTp9cB7nKmXrci1rliCWE34febKA8k5rYqJrnGmdJykk4juerOZyh12r+MqipeOJCYotxJd9XaxfVMXm7bV6RU5KUGD/J0UEoCvdGqfnh5037e9fndL0GCa2q2dNQFwb9WT2aSVLE8pW2Qry6ihVrQiF34WsGfKm1ySUCHYpJtdzb463tbE/fUI4ODcayHtYzniPMxuRiLpKcSk9ie2r5S0GvDijMkdkj4E7EY4TibOq9NsfzrD9qvAwcQ1/34iR3X2qFNWmj4TJP2cSMFrrKWv6IC4HXG/ucD5HT0fT2itmz5WaJLt+kQhroBL3EcRc1PbFOg4lqjPuIeIrO+Rc68CwHb5Kl8j/SKW7iHye16efr6xz31sS2jtHgFsm/H509L3mwmR72lfmcd8UbuvPsb8ZOCV6WvlPuzeQ7TpvDWN/+bcMWfs+4Ze7xFLidW2rP8TcH31eaJLF8B1fYzraekm9sLqK9NuQ+LBuGf1lWl3bZtt1wzwd10E+GHmZy/J2dbB9jZSIKPP8S1BSJ9dRKQfHEA0Mxj4nBrh3+mKltdq3dbF9rNEtPWnRNRxpXb/8w62txN5pSsDT6q+MuyuS9+r62jpfq7bmv0V6bxeEbgjw6669vq+but2hDP8htZ99bDdIt2f7kpfNwKbjelc2gzYL309J9NGwKq112sQjZvGdf6vDrws/bwUIWvZy+Y79PH8aGN/WM62Np/ZAfgtUTB5OdFxcvvMY56Us20Etmum75Vk6NxtOV8lZaIwDs5R84YPADi1NJW0ItG3vhf7pe9dW1v2OOblKb+sipBeZzsrfULSboQDfxlxEz5S0gG2z8gw349Y8sz5PYfJILlb9yq0h68ATpb0JzJztxQNS15HLMPPjXrSo0hGgxXHXCrpg0SHL6fjf1+p8t79R+DXJZZxu413CeIhuKKmNyFZjkg1yeEW4Cn0sQyYqJQiqghaP0oRw6Tn36nGrZLOI9pcmxjrT5SUQtxFEcT2B9N5VWlq/xN4VfW+ujer+Lvz0jJaabc0/bU+7I9N58VHiGKxZchbKm6ck564O437ZcBhis5vOY1xIIoy97F9ZTr21kS6SI5GfKPmODVmE9dB1ba9Z36ubUv6HqmVse27Mo81MOmceAewArHK8zQiJahXZ7XPEHn8t9DnSmViW6BV93v7Ntta+TzwEres0BAqSr2YliqXniu53QEHsf0OkVtelws9I9e+pEwUxkK60VcPp6WA5dyj4UPKc/ws8DciL+0kImqyCBEJPL/PMawI/NWZJ30bp/YFQJZTm1IItq0c6ORcXuy8JdtLk212MUAu3dIPJO1BOIabEo0fdiFk3HoWqyjyuucQ/5s9gCcAJ+c49WlJcCNntj6u2d3MVHHMxmnycpztHXuYoilx/upcqOdl272Xx+9nqkLfROe3g2x/p4vNfsD+hPN7d+2Y9wFfs/2VLrbnpOMsC2wCXEcfD8d26QK5KQSD0OTvVLM9ocvb9gDFZmrfOKd6vRuhudp3Z82mS9PJtqrm74t0zA8TE8MLiZzlt9i+LNN+KeDlwM22fyFpFWKJ/sIM23maibTb1sG2UXOcZPseQmP+j0zp8tp5zZpG0so447izCYm6a92hZX0Hu1sJ1YS+GkRpShN/LSL/uGJZ4Ee239jD/grbL6y9FnB5fVsbm4OIdJQlCRUfiP/Nw8Cxtg8ake36hCN9ONPVUpYjntlZtSzFIS6MHLUv2vhkrweMolPVwYRzdSyxXHNNOvlPdZee98Nwpgd0aqfd6BSyOzf2uvmlzx5PFOZ8n+kP5J4am+mmtQehjvGJlJf3FGcUxiX7xnlfLftZFHi97ZMzPvsDYFenLnd9HOM628+VNItQMLgfuKXbzU/SFsBvq8mYoqr9tcRy7yENIsN9I+k97pL/3i562Sn/sCLj4XgicLSnK0W82fY+2QNfgFCbXHq176hZYXfJ5U3n+wVurnmOomjxfEIO74e5E/dk2ygnvWY/jzqGuxSY1iYPbyJWPU5laqXlHtsf6mRb20fjznzJmX5ek1U0RefT9YhrfpitjHsdd1r3REmPI9Jruh5X0uW2u17/HeyeACxPD018tXQ+1ZRW+7ZEikd9hebntt+fcezP9HBgO6odNbFVKJW8GtiJKSk+iGfCt21nKZ8Uh7gwctSwaEOpGC/9fJvtZ9be61gclt5v7EzX9jGIU/s5YtmwKtp6HZFPmNOy9mPttjtD8ksNCuPSUv7ehOj6zcDxudFpRTHNu4nlv7OJHNV3E7P02bZf1cW82sd3iEjvJfTRcU4NimMk3UDk8P1N0guJlIn3EFHXZ9repdd4a/vamdAGNXCl7e/l2vbYb9dWuz1sr3at26CmK0WsR+QBzlWK8ACthvsY09OYt0Ctp2asBlen6bbvjn9jSWt5XrnCeba1sTsbeJObaZ6jSHvYkTifNyPkBL9t+6oedlWDiwcUDS42Bbo2uGixn6uOYfsZkp4KnN7NWR1k8lDbx5eI9J++O/MNsoqmEbUyzjju4cC9RK3De4jo7c96TR4kfYH4+5xNnysWmeOadi2McmWm0zGHZSvp+bY7dtGUdJDtz3R8vzjEhVFTmxF/hliWO6WXQ5vs5p74bS7arhfUIM507XONndpk/1qmGlVcYfvMHiYDU/1d6r+jeiyNK6rUHwGuJHLL7rK9f+bxziKqea8mIsvLE20+97M9u5ttbR9vbrfd9jdy7NM+1iDScDqqJqTPzf1bpKXTP9s+JL2ee85kHO+rxASifm78ynZ2N7Qu+846P3NsOz38K8bgBLTND3eeUstA6jQ99t3todounWKW7a55iJJOI6K0TTTPW/e1PCELuIftRXt89iZisrARkSv+dWDn3KiiBlTHaEoHxyvL4RpkFS3Z9xURHwYpoLIXtZQaIsWrqxPWYfKRNenIHFfj+80kjjmgbVe/oRTVFcZB06KNjSXdR9w8lkw/k14v0dkMmF4MNqflvaxZoO0DalFAEXlM2U6tI0+yZ65kK+kGfSDzCvTn3ACbFMZtUEW904MmK70isVbN9jhCHWM19yG/1I/jm46zvu3ba8u29fd6CdYvKulxKbK0DVHkUtHP/fBFwIbVw0zSN4jo+jAYJEoxzXbUDm8GryYij33lhycqTdpXEKs6f1N2Q7+e3NW6QVN5iE+oLRtD5CH2ut/AYJrn1RheREwgtifkHnfLMOu7wUULjXXe0738tUzpYgNg+xO9bLut5GTwm/T1+PSVjQbXi26EQ/v4G8C1TMmY9bzWbffV0KbJ0OovJB1o+3BJR7a+l8bT9wSv1zHHaNv1BlIc4sI42I0o2jjC9r2Koo0DetjQKzLSg0Gc6foYvgt8V/nqFnGQwSqoTybyCF9JpDK8Gfhz5qHbiZp/uIfNI9UPjg5mmYeax/YxSXf24wwDKBoJfIYoCqpPADoVtr2PcGQ/X3205f1uE4dTgcsl/YWYKFXV8evQo1FFCz8n1BIqh3NVQtKvMJ07CIejiUM8kDqNpK2Y11H7ZvrerlnFesQ190Smt/i+H3h7xiH/CpxnO1eZpXW8dxLKCacRhUAP9DCZOz5FQdKbgBeovwYXMJg6xlnEdTOLzP/xMBwuD9YxcpDOp43RAI1mkm1rgKTnpKMhVd3I9SPa/yTpHo0vKROFUSPpCOAEd0iin2loOAV5g1RQz7K9WX3ZUn0UVqjPwjhFC9/q4Sumqnx7OvGD2Nb2cRVRMf7fhCPyVuLe1DaXWtJzgd+4YWFc+v+uQuRWP5C2PYNYNu1V6FmpPTyBkOO7Lr1+HvBjD1BUVTvGdzs4bDm2Y1/+7DCOytl5Gg3yw2v7qavTVNqi1f+9o3SamjcwWRT4L2c0eGhj+y3g+cSq0An9XvuSlrN9X+9PzmPXuMFFbR9NGzfc4j7z0CXtaPucQVKlUhpBO2c6J3e5Ksat0suWJhqZjDpFpFGjGUlHE4WLLyE6zO1CSIDuNaRxTSJlonGzpQFtu9ceFYe4MGokvY1wch5HLFGd6oaFJ+NAwynIG6SC+hrbW0q6gIj4/h44w/bamfYdu9zNRGoTgLlFjJKutP2CDp8fWmFcg7E2VntoWYZvZ5tTTHSYW3LY69skbWj7ll77GTW9luz7TZPpcIxuecC3EalAfT/gJF3adJlaUWS6O3G/M1P3u56rJori1r2YNxKYk1O7OpETe7FCRm3RflZqmtpLOhY40nbjdCE163JXz+degpgQP2r7wAzbSXU+7VvGLH2uKkqvvi8DfNf2dn0cu+/OpylI8AHmXWXpprbStVCuV8Chtp9GhbgZ+z2422S3OMSFsSFpPeJBsTvwI0J7tVu18kTQYOoWldPzIppXUL+SWMpflWi3uxzwcdtndzUM28b6nJNC0o8IjeczgB8SGr2ftb1eh88PpTBulKhF7SFtG7h6u50TqDEUQM1Eul2Lkk4+ewWfAAAgAElEQVQH9rXdbwMTUqrRE4i0pXpxXO7DfEXgjYTm9G1E8eWXezlcacy3E9HeTxDyibfZ3q+H3dyGD7bXTilIR9vu1fBhYHuFhNk6RIvch+jjfiNpc2LCsGyyuxf4D9uzcsbdZn/9rKI11otuMK6BZMxqEe1rgJ2Jlcubba+befz6M6FK5+n5P1LIjh5NpMPM1cfu9v/RcNRHBinEfQZwFPBkRxvzjYCdbH+yly2UHOLCmEgz1PXT11+IFp/vSzlUr5/o4OZlkIK8eu7hP4mbbt22p0Ns+9z049+JZbJ+mFSXu0HYn1gS3JdIUXkpkTfdiWEVxo2SefLUPUARkWoi+wpVgYplicnljELSabZ305Ts2zSG5MDPs19Nb2DyM0l9NTBJbJW+13M0TffcdCTtSEQb1ybSrJ5r+08p4nobMbntxjq2d5X0KtvfkHQKoUTQi3eTGj4AOJprrJxhNwz77fs4Titfp3mXuxVqLxchZOqekntg2xdJupapLndto6RDov5M+CMRLIGoC1k+w/4cSU8kmkTdQJyL/XRAbPpMeNT2Uf0YNF1ZaWGQQtyvEfVJx6Tx3JSuo+IQF2YGCh3FnYg8wk97qknEYYouZTONxgV5Azo9w6ju/S39FYdNHE91jPoHsYLQi2EVxo2Sds7a+7oadJeMOoVomdpVZH8GMXDr9IYcMegOBnio7wr8d+vSru1/SsrRbq0KVO+VtCHR1W+NDLuHbD+sVAyraPjQz9JvY3vbv5a0MbHCA6HHfWPmce+vnOG0r6sUnQ1zmMVUB8RHiQh1Vk6tpHcSk505RPCj6qLYtTtlU3KfCeqskXs78Jjt70jagNCZ7kfzvK9nQm2ycY6kfYgi7fqksuP9ZhhpYQxWiLuU7es0vTA8W6u6OMSFcXAL0QL4n23ee+64B9MLD6BukZYfL0tRFgHHE/ltvyY6g/20i/kwqnvvAC6T1Eifc5xI+qLt/WtRvWl0iubZ/pSkS5gqjKtsFyFyiWcqjSvZHTn3fwd213QN1RUlrekRa6j2S5Wq4IaybwrN1i3dvcPUXW2Oe3myXxqY45C6egaxMtWzmj/ZPoFYYq5yOy8HPuEedQ+295T0FEk7EefzT5wKAG1fknHoYxVFhB8mmjAsA3wkw+5ySQcTk/dtiZWEczLsutn3TM8CULQjfztTK1/fknRsZj7udQp1i3qXu8uqPNRuKSq218wZXwc+ADzLfXbzGwO7EhPeVj5i+/R03W9LqOscRRTydqQ2Ae/3mVCfbEBEXOv3524Thx27vJe1QkqsrM5O9/h+C3H/oihWrCQEdwGy06ZKDnFh5CTH8DVMdfW6ymNoUjEJJN0CPMf2I5LeQHRQ246Q+fmYOxSKtexjV9un99rWwbZxl7txI2kz27PUoVDNPdoRz2R65ZoPsN++u4pNEg0gP9guD7uP484iopbLA9cQk8x/2t4jw/Y7xCS+Kvx7E7Cxeyh/SNqLcKR/SPyeLyIc6a9njrmu6VvJptk95LXUsOFDzX4LoiC1bv9/tns61Sl95/meUmvJVmwYJN9U0mLAu5iatFwGHGP7kU42NdvzicYl7QI0E6PTPUPNG1u1fRZU9HomSNoNON/2fZI+QkSmD+02URkGGkx9ZC2iEH4romHUnURzm7yujcUhLowajbCr10xD0wvyTgGutf2l9DqrXWW7z+Xazu+kCNmq7tFxbqajLmoPiuK6dhHxnKK6iXQVa4oGkx/8OKHt/N1c565mW0lqvQdYMqUiZRVctvtcjm1K/9qqytWU9CRCiq9tcWgb+/OZ0vStFzF9vqPREFCotryluuYk7U60yO4agUyfvRnYwvaD6fUSRGS8Z3v7jH2/uZMTpGgCtBjTJy2P2X5bxn6fQ+QqX0sDKcBR0ekeL+lcotD4ZUSu9BxCdq3vjo1p8rSMM+T9NKVqsTXwaSIyfXDmefHRdtt7Te5q9ksSDZ6yUyrT77aL7dPSxGwR96mJX1ImCuNglF29Zhr/UjQeuYco+PpU7b0luxlK2p7oyvU0SV+uvbUcPfKgmqYfzAQkXUbkmD+O0I39s6JivGvO7STpFfns5Awnzq39vASxevL7zEM37io2If7YxBlOvA9YGnhM0hz6iC4TC1PPJ5QaqtzS3FSoOZK2tn1V2tG/MW9xbTt+RzTxqLifyN/M5em2X97H54G54zuEKZmq6u+UmxO7C3BGWtF6AbAn04uBu3ECcK2kasXv1USa2DDYjymHt5UtWhzCHypUEXI4hoji30zvLp7jpFNHpEaNrebuNAIzexOTrFlEJ8Yv2P5cD9NqUrYDoTpylqRDMg9bbyqzBFFLkHUfUBSnHkF0IFxT0ibESkvXZ1hKj/pP4DTnN7WZRnGIC+NgYerq9VFieXZR4GynZiQpLeCOHra/T7Y7ETeuivuB9/awPSl9H7ioaAI8IS3LvY1oaPAxTVdSmIkcTsPIp6Ol91wknQpcnGk+SFexsaGp4prrJf0vDeQHbQ/SPWx/4CDgTNu3pqXUXInHvYFvKnKJRchcvSXD7m7COTyLmJS+isiTfR9k5fH/WNKz3b+m7/HE/WFaZDkX23dIej3xP/otsJ3tnAkAtr+QJrRVe/u3unudRD90a5n5mKS1bf8K5i6V5/7uj05isi3p32z/qMu2tilxKbXju7XXf6CPvFhCj/s+SXsA5wH/RZwrvRziu9O95mVEAfziRJ1GT1pXNRTNubLy0onJ3XOJNBhsz5aUmzN+kUJnulUyMavwuKRMFEaG2nf1Iv18tYfQ1WsmoqjSXtb2PbVtSxPX2z/S625dthYjHgbrw9ye9w+PfuSTIS27bkdEgz5k+yczOQ0AQAM0Xmmzr/WIjlXrZH5+bBqqTdGU5nK9OKfCmekhIiK8a9o+VNKqwCqeUqkZKYqGEeQsL6fPN8rZ1JQ03eOIhhF30Iemr6Rrc5axuxy3YmUiZeOhNN6s60/TizxXIpbkBy7y7JYmJmkbIjp9B/F3Wp1wxntOehQ6078mCg+z1BOGwaRS4STdSuSInwJ8xfblqmm5d7FbiohM3+woEl8FeLbtCxuMYXkizaOndnJ1PquWJ537PFC0P28le7WkRIgLo6RdtFJENGH3MY9lbDj0ce9p2da6hHMY0MmR2ZZY1mvS835dolJ5A6Z3uxqJpNCQ+ARRyHNVcobXAn4x4TH1onHkUyEtVTmKJuS1/qur0ZTt0sAPHTqq6wHrSVrMGcVE48RJaiqlR+1n+970enkiFzGHrxJL2i8l9Kn/AfwPMaFuyzBShzS9uO1xShJOvfIfOzm8tf0eabudCsqg0nSXSvocEUWsn4u9ip8GlsRTrciTcFAXA74FDGOyOE+EWFPFxXcQk4f10udud75u7RvS94Nq20Ymu5ZSd7YCVtJ06cXlyE/jGYRjCEWWG4ErFF0Je07yBolMt0y2FgVWYrqudzduSek7i6bn2b5AN7WZ+pgHUR8pEeLCeEh5QG8g8qHuJAplRtoqcyaj7l22GvW8T5+9iqh0/29CAuetxHXeNXpV6A+17zqXFfkc8LiN1RMmQbvzvNu53/K5qjCuHinqGtnSEJRLNKLitlFFA9VercHO6Ao2hGOPrMhT0lds/2fLtuqcmG+KjNO5+GIiFefo2lv3A+fYHvvkX1ONjUa1/9VrLx8lagmyjpci0x9iKo/9AkLdouOER9JLbf9QHXSQcwIVUCLEhRGi0P98PREN/iuR1yMPp5vN/E63meifKmc4cQfwp8z9Lmn7EklySM0cIulKwkmekUg6nOgkNAc4H9iYqHL/1kQH1gUP0IAF5ubYVjKEV9rOFdqXo9HDXsCRDvWEYeVsjoJFJC1fpQ8pRP9znzuPKDpcVgWEK9GjCMqprWyO49uFRsVtk2LC99PGRZ6SnkyoFzzV9vaKphPPt308QKsznPhrmgCsKWmenNTMFYDGkm1NSOfi5ZJOdENd7iZIeqPtb6lzQ6CRadM7GrZsSk1qFci9T+1g+0OEUwzEygAdcqwTLyIKJdvpIOfqHxeHuDBSbie6iO1Yi3b2Kg4rwK2SzmN6z/ufVLPfHrPdBxXyM79QVNzeTeQGzmS2s32gpNcQlfq7EgVQM9YhVshL7QU8i+mpKTm5sa0yhHunnPIcGUJpXvWEmXwf/zxRLHYGcS7vxnTllW58meiStXLK+9yFHo0q2uTFTiMzctm0uG1iSNqBec/F3CXqQRikyPNEIs2icnz+HxE06aZSsQOhh3sS+ak3rRxFpHZ8Nb1+U9rWU7JtQBaXdCwpFafaOMJIfjU5aVecOtLUAIXs2q5MOaInSjrddk4L5YOY1/ltt20u1QrooIGKmXwjLcz/vJaIEF+aliG/TffK4YWJu7q8twTz9rxfgZj99prt7g8sReRdHUrkX7YVOp9BVE0IXgGcavtv0ow/TU4iJnz/TuTG7UGmrBCDyRAOop4wdmx/U9L1xHkooiHCzzJtT04pItsk21e7t6pH47xYTS9ue6ukvorbcg4xoH37nUpHE9f8S4DjiInDWAoPbR+hKPK8j8jn/ajzizxXdGjGHpT29aikrkoRjuLiayTtbrtpR89BJNsG4XQiZeI4GqiB9IvtY9KPF7uNusWID7870aCq0qf+LHADsRLYFg0gO1rbx7T8/2p77uSwOMSFkeHoRndmWkZ7NSEN9GRJRxEP9L6rVecnJG3FvBfmN9P3bl2v3t+04tn2T9KP/yDyh+cHzkl503OAfdLS+IMTHlMv1rG9q6RX2f6GQuvzgkzbxjKE1fIrUAnR/8UTbijQi+QAZznBdSTtlZbPb69t+6ztD3Y51iBL0gMVmal3h8kvDbL/LmzlaKBwk+2PS/o8mUvEwyA5wE2UTh5QNC+pJoZbErnbOXxB0tOAnwBXEGlHuZPKQSTbBuFR20eN4TitHElE1XttGyZ3EYGd6j6+OFEk3o1BZEcrzmIq/z+3yHIuxSEujByHwsLJwMkph3BX4IPAAusQSzoJWJtoNFHdbA18M8P82lSscgLwgyqS2ON4XTUec3LrJoXtD0o6DLjP9mOSHiA0XGcyVb7hvZI2JJQi1uhmoOkyhLdJui69fh6ZVdRqLrI/P7KLpAdtnwxzU00WzzHUlJJHnb8TD9z3255HE7xyphVFrL+z/ZCkFwMbkXfddl3qtX1iztgbUGkG/1PRyvuvwEDV9r3o8PcF+mqe8j5Cm3ZtST8ilAh2yTm+7RdKejyhOPJi4PuSlrG9Qob5AcSqZXUOrMF4ggfnSNqHSAMaudybJqBuIelI4rx4iEj9uyi93pbII+6I7RuBGyWdMkA+90D5/8UhLoyVdPEfk74WZDYnBNGb5Go9gxBD/w/gSIW814m2/18Xm+cTovqnEi1JZ3zOQYWkPWs/19/KcUImxbEKCbEPEw/1ZYimLN0YRtOUpiL78yM7A2dL+hewPfA32/tk2n6BiDidQlwLrweeQkTnv044UZ34DrC5pHWIfNaz035e0e7Dw1jqHZBzJT2ROAduIByQkTZr8WBNU6rVjSWI9KFKOu3nuY6QQvv4BenriUT3xyszD/8j4vmzTXp9DHB19uCbU6Wu1bvMjUzujej0tgzh59X/X/eROfFoQJXGMotw/Csu62Mfa0hqKh06UP5/kV0rFEaApNOBfR3ajYPs5yVEcdnShI7kB23Pc/NO1fjbErlbGwHfJ/Jxbx3k+OMgRRUqliAeVDfYHtVNe0Yj6Wrbz+/wXiOR/fmJtIpUsSyh9fwj0oQjJ6KmNs0qJF1je8tefy9NSXsdCMyxfaS6yyRuTPxPPsH0SdH9wKWuNegZNSmHcgnbuakHE6PbeZ5h+xjhfH0GOM99NC6SdBrhFJ6cNu0OLG971yZjmelIOtD24S3b5knvGfOYvmP7tR3e61s6VAM2t6koEeJCYYjUlsWXBX6WlsXry2M5skBPAt5IVD//EXgPEaXahFh+nWc51PZjhGTZ+emhuDtwmaRPeIbrPbulWYGiZe5JHT4+I5D0aeBwT2848X7bHx7C7pfo8l4jkf35jFlMb1wiQl1gB/Ijav+StBtwRnpdn1z1igI9Iml3YE+mZJwW6/ThIS31NkaheLIPNYkrSUdVBU0zmAslvZbQpO83MvckovnHC4F90yrC1ba7qpAk1muZEF06yqI6DUkjdwBeT7Sar9NVtWEMdLuGm0iHDtxkBopDXCgMm2Esi19NOISvtv272vbrU0V5W5IjvAPhDK9ByFaNrbhmiPyTmOXPZLa3fXD1wvY9kl5BpFAMSjfZsC8T/9eKX6dVhAUGD9htKrEHUcT2VeLveQ3wRklLAu30beu8lcjT/pTtOyWtSZ4E4CBLvYPwTSIaXU18dyfuHzM94vk+YuXrUUkP0kf+se17Uw7wqsDTiVzZjpOWFn4qaUvb1wBIeh6xAjEqhqKR2y8zIJWnG90mQH1Lhw4h/x8oKROFwkhIyhpzbP9L0aBkfaJArmcEKc2M+7owFdJdGwI/AL5t+5Ym454Emt5mdxHCoTjddlY740kg6SZCvumh9HpJ4HrbzxrCvrt24dLkNGfHiqR3Aye3ROF3t/3V7pYjH1fb5d4mS71DGs88KSALWhpNK5J+ReSDX0XkDl+bmzYh6TYib/k3adNqhGTivxiOvN6MYCal8rTS7R4naQvi//FEQjp0OeBz1QSmx35nE/U7axCqP2cTKwJt8//nsS8OcaEwfDRAi90OihFVhfwx7ZZC05LhA+ll/aLup+p7Imh6m91HgV+3RMZnHCm/dCdCCcREAeTZrbl6DffdLV+1reas7b3afX5+RtJs25u0bMtt+7wS8HbmlT0cuLV2pzFImmV7M0k323522nal7RcMeswe4zkROLol4vnmPgoQJ4KkF7bbbvuKDNtFbHftWtjFdvVu73uE3eQmMZlVdOYTUawNfRQvjoqc61jS0g6Fqn7221f+fyslZaJQGA3tWuzOzrS9k5AgqjqZvY7IJX4GUT3+plYD24sMYcwTwS1tdiUtKmkPJ7mtmUj6f97MVNOIQ21n6RBLOqw1+t2ybZ7/b42Jas6OmUXqqyWpcPTxmbZnEZHDixm+xmynKNKkukQ+D9hT0rSIZ1VoNIMjnnW1hSWA5xL54zmd29ZR6Nk/2faGkjYCdnJGJ7RROrzd6DSZHcOhtyLSBu4i7lWrSnpzzsRjENKq2Wq2f97m7Y6rfwq5uOMJhYzVUqT7nZkTvL7y/+fBdvkqX+VryF9E3/bnE9HhZ6VtN2faXtFpG3DrpH+3If6NliOKO74CbEfcrP+TaFhx1qTHN8Lf+4Y2227KtL02fb8GeCqhy/uLSf9OI/o7fY4o/NmGcJJOAz6faTt7nP+/tH2L9BB/OrFy8B1gyzH8nVbv9jXp/2Mfv8eqhDJOzmcvJxzon9a23TLp36HHmG9q+b4McOEYjjuLSBuoXj8DmDXiY+5IpLTcmV5vQqyg5dhem86Fvv+3RLrdl4nUKogC9A/mjrtEiAuF0TBIi92VJK1m+zcAklYDVkzvZcsLzQecBNxDFBG+jYgYPR54le3caPpYkXSV7a01b2OCnqkpkt5FqAGslXKQK5Ylv6in0pw9nKluTsdl/wLzF/8FvBN4F/H3vZD83/VcSa+wfd4IxtVW49upS2QKao+tS6SnCopWZvpS/G86Gs1MfkfUQeSwlO3rNF23fNKFYr2oUt2qBip/Y8QNVBKLuRaltf3/UhrFKDmEmLBclo45W9Iauca2f9vyv81d5VnStc6djqLYbOnR4hAXCiPAtRa76fUdQG6L3fcT0km/Ih6+axItjZcGvjHssU6QtTyVa3kc8Bdiie3+yQ6rM7a3Tt+bNCY4hSh6/AzRqbHifud3qzqCcBBfQEwkrgQm0Q525DgKUo8nCqdM5D7mPhj3Aw6S9DDRVXCYufRtl3sHXOptjKSdgM8TKwZ/IiLDtxG5qjMWTXU1gyim3YSQE8zhL0lRoEqn2QUYSPN9DJyjMTdQSVyfrqNKynIPprdGHgWP2v57i1Oby28lbQVY0Y1wX+J8zuFrKR3kZoCUPrE/cE6OcSmqKxSGiKQv2t6/RTlhLs5soZwk1NYnHuS3e+ZrivZNa6VxL3WFmULKE73Jdm40q7JbztFlrm172RynWNFU4H6mZMB2B55oe7d+xjI/kGSTvkEt95EoFssquiIe/Gva/kRaZVnF9rUZtv9GRLhWJ4JGlTPdVT5N0rVEXujZTkU8km7p9zzpF4WG7kuBi20/RyHDt7vtd4zyuIMi6c21l48Cd9nOWilJK27HEvmx9xB1F3t4QvnBOUjaFTjf9v2SPgJsStQe3DDi4y4OvJvQqRZwBfBVJ4WcER3zeOASYuL/WsKpXcz23hm2KxKSiS9jamVoP9t/zbBdi9Ae34P4ffcEXunMRjXFIS4UhoikzWzPalFOmItbCshabOd2FFJLJyFJn3ZN93ZBQNFtqqoiFrAkoUE8PyhjnAwc1M+ytKRzbb9S0p1MNZyo6OlwpX0sNBJbSanlDdVyr0K+8FTbm2XYHkXIaL3U9jMVkm0X2t4iw/Z24L1EFG1uRLrXA1mpO169qn0c/xtJ19vePDnGz0mR9etsP3eUxx0USfvZ/lKvbR1sFycmH2sAKxDNaewZLD+YCmE3UrSd/jQR1T/YLR0VR3DcpYEHq9WVVJy6uO1/jvCYSwEfImpDICTQPjmOwE66T3wP+C2h5T8n17akTBQKQ8R2tRS1SbubPbU0ijbUOwq1dhJ6ObBAOcS2F530GAZgFeBWRSfCudJA3VYAbL8yfR8kb3DcTQUmySC5j89zyC/9NNnek5Zfc/i77R/0O1gGW+odhHslLUOkz5ws6U/M/HxagDcTkcA6b2mzrR1nAfcSqQe/H+6wRkY1udqBkMk7S9IhYzjuJUS09R/p9ZJE1HWrURwsOdwft30A4RT3a9+3ZKKmWjdXrAAsClwrCZfWzYXCRGlys1eHn9u9LkyWjw9irGjjWrXavdL293p8vrrhL8aUxJaJZf2fDTKWGcwguY+PpAdzlWO6EhExzuFSSZ8j5Ozqbdd7LW3vTVzfTyMKxC4klqpHzU5EwdZ+RMv35Rjw/BwlKa/zDcCamq65vizQc1k88XTbLx/64EbL3ZKOIZzTw1KUexxymUvYrpxhbP8jRXBHgu3HJPVcxelCE8nE0rq5UJhpDHizd4ef270uTBDblysE/te1fXF6wGRFvCV9FViHKZ3pvSVta7ub8zSUG/58xrsIh3JfarmPmbZfBs4EVpb0KWJ5PbetdrWEvXltm+mij5uc7zc5o/HOsFBSPCE0yqv7QzVx/qSkvxEdviba2a8NPyYK4FYk0gYq7gduamvRZh+Snl0VT80n7Eas9B3haD29CtO1mEfFA5I2rSZ0kjYHstMIGvLT9Pw7nekraDma6Uu5zy6ltn/dtLajTskhLhSGSHKS1qSNkgBxsXZcyqzl1NbzaUmvl7A9aqmcQiaS3g68A1jB9tqS1iWWQbfJsL0V2NDp5ptu5Dd7CG2fFyQGzX2UtD5TjVMusT3S9AVJl9l+8SiP0Q+SngT82PZ6kx7LsJH0M2JSeScRxa/qDmZqE5KJkRzg/yVSS0yokbyult43imOe0Gazu6U91Gw/SZy3fUsmNqntqFMixIXCEElVzr8mmnL0azs/59QubLyb0Nm8FsD2LxQ6sDn8nOgmVlXEr0p+ZGxhYqDcR9u3A7c3ObCatdj9kaSvEM5HPSo2UhWBTtj+a1LqmJFI2hI4EngmoT++KPBAZjHt9qMc2wLGmsBziHvOa4AtGfGKoxvocGu6tvvBkh5iKhc+t8i679qOOsUhLhSGiAZo3FCYr3jI9sNKOpuSHkf+Q+ZJRGvdqm3rFsDVVYpN7s17IWCsuY8Vat5it3LUq/xd0SPVYtTYnsnavF8hColPJ9JT9iSivj2ZyfJqM5CP2D5doYG8LZGmchRTqUFDo1JK0nSN6bm41jSjzXvLpn2cROQQX9lgVWeg3PniEBcKQ8SDNW4ozD9cLulgYElJ2xId6LLE34GPjm5YCxStuY+bMfrcR4CtkjzWTbY/LunzRIFdL85lupyegfskbeIZ2nlx0tj+paRFU1rMCZJ+POkxLYCMU92icmCvH2AfJxAFx19W6Ar/lHCOe6qPpNqOJxNBBoDrbP8p98Alh7hQGDLDSO4vzGzS/3gvQmdThM7mcR7CDVXS1bb7TrlZ0JC0BfBtpmS1VmHEuY/puJWe8DXAzkQx7C221+1hdwoR6TybOCd2AH5CNNg53UljvBBIuoJIiTkO+D+i0O4tC6Km9iSRdC5wN/G3riaV183kv3OqF9iCWKXZG5hje/0Mu92IToCXEdfgC4ADbJ+RddziEBcKw2fQ5P7Cwku9scPCTtIdXo+pjo2P1N7b1vZFIzjmR4jc1m2A/yEivcfZ/kgPuwuA11ZpHkkb+Awib3OW7Q2GPdb5mVSA/CdCSvC9wBOIDmq/nOjAFjBSmtHLicLdXyR1i2fbvnCEx3wG8AHm1RLumT4k6RJgaaZa01+VG+VVNKfZtvp8klu8ONf5Lw5xoTACJP2QmOE2Su4vzGwkvRI4lHnb+w6cI675pIX1pBnH3ylpxS7hjNavkm4DNrb9cM12tqNTXpnkFBYakmN6NPN2e+y5uiPpv4lI9kNE06ErgKud0XFO0s22n117vQhwY31bN0oOcaEwGmasMH5hKHyRWE6/eRhpEoVGjKRZTVqu3YFadCt1u/pCD9NTgGsknZVe7wicmuTjFtTmKX0j6TTbu2ne7mIA2V3FCjOaR20f1cTQ9nth7grLW4mc4qcAi2eY/yCt1FQa768DsuXbSoS4UBgxklYE/locpwUHSZcC29jO7X7Wz75LNDGDUUWIJZ1HdH67mVp3O9s9J7mp8G9rwlm/yvYgxUULJJJWsf2HlDIxD0VBYv5F0grpx32JdJgzmd7t8W8Z+/hPIvd3M0Ka8gqiqO6HGbb7AvTWYM8AAA3bSURBVL9N9gKusH1m9vjLM7pQGB5JW/OzwN+IJfWTiI5MiwB72j5/gsMrDIlU8HUocDnTb/i9oog5+97Q9i2D7mdBZ4QO8U0lSlko9I+kO5mutFLHttfK2McBhBM8q1sjqw62nySk/G4Avg5c0E8gqjjEhcIQkXQ9cDBRIHIssL3ta1LXrFNL5G/BQNKFRMOIJlHEnYHDgJWJB0fRqG6ApO/a3nkE+z2M6Gw3sqKjQrkOCqNBIQ6/HZFusTlwGnC87V/1tC0OcaEwPCTNtr1J+vk228+svVeWwhcQJF1ve/OGtr8EdmwgOr/QIWkr5q1U/+aIj/ka4FvEqs4jFEdtJJTrYMFF0q7A+bbvl/RhYFPgUNs/HdPxNyYc4pcDlxLd+S6yfWA3u0XGMLZCYWGinlPaWhVbZp8LDhdL2q6h7R+LE9Cb1LHqCCInd4v01WgS0iefJ1qvL2V7OdvLFmd4JJTrYMHlI8kZ3hr4d+AbhOrESJG0r6RZwOGEQsWzbb+LyEd+bS/7ojJRKAyXjSXdR0SVlkw/k14vMblhFYbMu4EDJT1E/1HE6yX9L/A9pucf53RDW5jYHNhgAsWovyAacZQJ7Ggp18GCS7073lEj7o5XZ0Vg59bCTNv/SlKZXSkOcaEwRGwvOukxFEaP7WVTRfW69D/RWQ74J5HnNneX5LUHXpi4hZBb+sOYj/sH4DJJP2DIBZOFaZTrYMHlbknHEN3xDkua3CPPSLD90S7v9VyNKDnEhUKh0CeS3gbsBzwdmE3kqP3Y9jYTHdgCgKRzCMdoWWATorlN3TEdaXMbSR9rtz2nYLJQKEymO94wKBHiQqFQ6J/9iJzWa2y/JKmIZDlMkpYA9gKeRS26bPs/RjHQ+ZAjJnXg1JRjGdsHTGoMCzqSDrR9uKQjad+YY98JDKswBGo6xACX1bY9BMx4Te7iEBcKhUL/PGj7QUlIWtz27ZLWy7Q9CbidKDb5BLAHUIqLErYvB0gd3uak/L9nAOsDPxjxsR+TVNpmj5bqXL+eUmi8oDGLKR3i1YB70s9PBH4DrDm5ofWmOMSFQqHQP7+T9ESiIOgiSfcAv8+0Xcf2rpJeZfsbkk4BLhjZSOdfrgBeIGl54BLCgXodMYEYJbMlnQ2cDjxQbSzFXsPB9jnpx58Rmu1rMOWLGBiprF5hdNheE0DS0cDZts9Lr7cn8olnNCWHuFAoFAZA0ouIRizn23444/PX2X6upCuAfYD/A67L6eK0MFF1opP0HmDJtMw+V+d7hMc9oc1ml5SW4SLp58ABzNvcprRuns+RNMv2Zi3bGmu3j4sSIS4UCoUBqJb4++DYFPX8MHA2sAzQsTp6IUaSnk9EhPdK20au4mL7raM+RgGAP9s+e9KDKIyEv6SGHN8iov5vBP462SH1pkSIC4VCoTDjSJH39wM/sn2YpLWA/UdddJXylY8Cnmx7Q0kbATvZ/uQoj7uwIWkbYHciHaboEC9ApEK6jwEvJBziK4BP2P7bRAfWg+IQFwqFwhiR9GngcNv3ptfLA++3/eHJjqwAIOlyYin/mKrVuqRbbG842ZEtWEj6FlEoeStTKRMlNWU+Jym1fHZ+VGopKROFQqEwXra3fXD1wvY9kl5BpFAs9Ej6ou39a3rE0xi1DjHRsvk6SfVtj474mAsjG9t+9qQHURguSalls96fnHkUh7hQKBTGy6JJqu0hAElLAotPeEwziZPS90npEf9F0tokZ1zSLoy/W97CwDWSNrD9s0kPpDB0fjo/KrWUlIlCoVAYI5IOBHYCTiCcrv8gJIoOn+jACgCkXOVjga0IHdU7gT2K+sFwkXQbsDbx932I0Ku17Y0mOrDCwMyvSi3FIS4UCoUxk3Q5tyGcgAttFx3ihKSb6dKwYdQOk6T3pR+XBBYhIlx/B2bZnj3KYy9MSFq93fYy8ShMiuIQFwqFQmHG0MlRqhi1w5QapWxOSOIJ2AH4CVEAdnqJ5BcK3ZH0dOBI4N+Iye1VwH62fzfRgfWgOMSFQqEwBiRdZXtrSfczPQJaLRUvN6GhFWpIugB4re1/pNfLAGcAryGixBtMcnyFwkxH0kXAKUzVA7yRSDvadnKj6k0pqisUCoUxYHvr9H3ZSY9lfqDNxAEideF6QqbujhEdejWg3nHwEWB123MkPdTBplAoTLGS7Xoe8YmS9p/YaDIpDnGhUCiMCUmLADcVTdssvgD8nog0CXg98BTg58DXgReP6LinEAoIZ6XXOwKnSloaKIoIhUJv/iLpjcCp6fXulE51hUKhUKgj6WTgINu/mfRYZjKSrrX9vJZt19jeUtKNtjce4bE3A7YmHPGrbF8/qmMVCgsaklYDvgI8n1jl+TGRQzyjCyZLhLhQKBTGyyrArZKuY7pG56gbTsxv/EvSbkT+LsAutfdGGsmxPQuYNcpjFAoLGpIOs/1fwPPmx/tZiRAXCoXCGJH0onbbbV8+7rHMZJIe8JeYijJdA7wXuBvYzPZVExxeoVBoIUkmbgpca3vTSY+nX4pDXCgUCmMmSYuta/tiSUsBi9q+f9LjKhQKhaZI+hzwDmBp4J8kBR3mEyWd4hAXCoXCGJH0duKhsYLttSWtCxxte5sJD21GIWkl4O3AGtTS+2Z6t6tCYWGlakkv6Szbr5r0ePql5BAXCoXCeHk38FzgWgDbv5C08mSHNCM5C7gSuBh4bMJjKRQKvbmaSJm4b9IDaUJxiAuFQmG8PGT7YUkASHocIy4Sm09ZKhXoFAqF+YPHS3ozsJWknVvftP3dCYwpm+IQFwqFwni5XNLBwJKStgX2Ac6Z8JhmIudKeoXt8yY9kEKhkMXewB7AEwn97joGZrRDXHKIC4VCYYyk5hx7AdsRxSYXAMe53IynkTrVLUV0jXuE+aQwp1BY2JG0l+3jJz2OfikOcaFQKBRmHGnisAewpu1PJLH/VWxfO+GhFQqFHkjaENgAWKLaZvubkxtRb4pDXCgUCmNE0iuBQ4HVibS1Evlsg6SjgH8BL7X9TEnLAxfa3mLCQysUCl2Q9DGitfoGwHnA9kTHx1262U2aRSY9gEKhUFjI+CLwZuBJtpezvWxxhtvyPNvvBh4EsH0P8PjJDqlQKGSwC7AN8H+23wpsDCw+2SH1pjjEhUKhMF5+C9xScoZ78oikRUkKHEmX+F+THVKhUMhgju1/AY9KWg74E7DWhMfUk6IyUSgUCuPlQOA8SZcDD1UbbX9hckOakXwZOBNYWdKniKjThyc7pEKhkMH1kp4IfA2YBfwDuG6yQ+pNySEuFAqFMSLpQuIBcTO1iKftj09sUDMUSesTS68CLrF924SHVCgU+kDSGsBytm+a8FB6UhziQqFQGCOSrre9+aTHUSgUCqNA0iWtrejbbZtplBziQqFQGC8XS9pu0oMoFAqFYSJpCUkrACtKWl7SCulrDeCpkx1db0qEuFAoFMZIajixNJE/XBpOFAqFBQJJ+wH7E87v3aR7G3A/cKzt/5ng8HpSHOJCoVAYMymKsi7TResvn9yICoVCYThI+ijwRdv3SfoIsClwqO0bJjy0rpSUiUKhUBgjkt4GXA6cDxySvn90kmMqFAqFIbJLcoa3BrYFTgSOmuyQelMc4kKhUBgv+wFbAL+2/RLgOcBfJjukQqFQGBqPpe87AEfbPov5oKlOcYgLhUJhvDxo+0EASYvbvh1Yb8JjKhQKhWFxt6RjgN0IzfXFmQ/8zdKYo1AoFMbL75Jo/feAiyTdA/x+wmMqFAqFYbEb8HLgCNv3SloFOGDCY+pJKaorFAqFCSHpRcATgPNtPzzp8RQKhcLCSnGIC4VCoVAoFAoLNTM+p6NQKBQKhUKhUBglxSEuFAqFQqFQKCzUFIe4UCgUCkNB0mOSZku6RdLpkpYaYF8vlnRu+nknSR/s8tknStqnwTEOkfSBpmMsFAoLDsUhLhQKhcKwmGN7E9sbAg8De9ffVND3c8f22bY/2+UjTwT6dogLhUKhojjEhUKhUBgFVwLrSFpD0m2SvgrcAKwqaTtJV0u6IUWSlwGQ9HJJt0u6Cti52pGkt0j6Svr5yZLOlHRj+toK+CywdopOfy597gBJP5F0k6SP1/b1IUk/l3QxRf+5UCgkikNcKBQKhaEi6XHA9sDNadN6wDdtPwd4APgw8DLbmwLXA++TtATwNWBH4AXAUzrs/svA5bY3BjYFbgU+CPwqRacPkLQdsC7wXGATYDNJL5S0GfB6ojvgzkTHwEKhUCiNOQqFQqEwNJaUNDv9fCVwPPBUok31NWn7lsAGwI8kQbR0vRpYH7jT9i8AJH0LeEebY7wU2BPA9mPA3yUt3/KZ7dLXT9PrZQgHeVngTNv/TMc4e6DftlAoLDAUh7hQKBQKw2KO7U3qG5LT+0B9E3CR7d1bPrcJMCxhfAGfsX1MyzH2H+IxCoXCAkRJmSgUCoXCOLkG+DdJ6wBIWkrSM4DbgTUlrZ0+t3sH+0uAdyXbRSUtB9xPRH8rLgD+o5ab/DRJKwNXAK+RtKSkZYn0jEKhUCgOcaFQKBTGh+0/A28BTpV0E+Egr2/7QSJF4vupqO7XHXaxH/ASSTcDs4Bn2f4rkYJxi6TP2b4QOAW4On3uDGBZ2zcA/wvMBr5DpHUUCoVCad1cKBQKhUKhUFi4KRHiQqFQKBQKhcJCTXGIC4VCoVAoFAoLNcUhLhQKhUKhUCgs1BSHuFAoFAqFQqGwUFMc4kKhUCgUCoXCQk1xiAuFQqFQKBQKCzX/Hxw215Zm6x/xAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#width 600\n","interp = ClassificationInterpretation.from_learner(learn)\n","interp.plot_confusion_matrix(figsize=(12,12), dpi=60)"]},{"cell_type":"markdown","metadata":{"id":"DWsE1GeA1gmL"},"source":["Oh dear—in this case, a confusion matrix is very hard to read. We have 37 different breeds of pet, which means we have 37×37 entries in this giant matrix! Instead, we can use the `most_confused` method, which just shows us the cells of the confusion matrix with the most incorrect predictions (here, with at least 5 or more):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8jQ5Qd931gmL","outputId":"e3a6d91b-934e-44a0-acd6-6a75a3570a7e"},"outputs":[{"data":{"text/plain":["[('american_pit_bull_terrier', 'staffordshire_bull_terrier', 10),\n"," ('Ragdoll', 'Birman', 8),\n"," ('Siamese', 'Birman', 6),\n"," ('Bengal', 'Egyptian_Mau', 5),\n"," ('american_pit_bull_terrier', 'american_bulldog', 5)]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["interp.most_confused(min_val=5)"]},{"cell_type":"markdown","metadata":{"id":"q1ca3zeB1gmL"},"source":["Since we are not pet breed experts, it is hard for us to know whether these category errors reflect actual difficulties in recognizing breeds. So again, we turn to Google. A little bit of Googling tells us that the most common category errors shown here are actually breed differences that even expert breeders sometimes disagree about. So this gives us some comfort that we are on the right track.\n","\n","We seem to have a good baseline. What can we do now to make it even better?"]},{"cell_type":"markdown","metadata":{"id":"ZcEj1DHv1gmL"},"source":["## Improving Our Model"]},{"cell_type":"markdown","metadata":{"id":"W8SjkYmR1gmM"},"source":["We will now look at a range of techniques to improve the training of our model and make it better. While doing so, we will explain a little bit more about transfer learning and how to fine-tune our pretrained model as best as possible, without breaking the pretrained weights.\n","\n","The first thing we need to set when training a model is the learning rate. We saw in the previous chapter that it needs to be just right to train as efficiently as possible, so how do we pick a good one? fastai provides a tool for this."]},{"cell_type":"markdown","metadata":{"id":"9iOm2fr21gmM"},"source":["### The Learning Rate Finder"]},{"cell_type":"markdown","metadata":{"id":"hAfBlf4j1gmM"},"source":["One of the most important things we can do when training a model is to make sure that we have the right learning rate. If our learning rate is too low, it can take many, many epochs to train our model. Not only does this waste time, but it also means that we may have problems with overfitting, because every time we do a complete pass through the data, we give our model a chance to memorize it.\n","\n","So let's just make our learning rate really high, right? Sure, let's try that and see what happens:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gVRRmrdJ1gmM","outputId":"61ac9b0d-b1b0-4610-e2e3-56b84c6a4979"},"outputs":[{"data":{"text/html":["
\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
02.7788165.1507320.50406000:20
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
04.3546803.0035330.83423500:24
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet34, metrics=error_rate)\n","learn.fine_tune(1, base_lr=0.1)"]},{"cell_type":"markdown","metadata":{"id":"1quNDNMm1gmN"},"source":["That doesn't look good. Here's what happened. The optimizer stepped in the correct direction, but it stepped so far that it totally overshot the minimum loss. Repeating that multiple times makes it get further and further away, not closer and closer!\n","\n","What do we do to find the perfect learning rate—not too high, and not too low? In 2015 the researcher Leslie Smith came up with a brilliant idea, called the *learning rate finder*. His idea was to start with a very, very small learning rate, something so small that we would never expect it to be too big to handle. We use that for one mini-batch, find what the losses are afterwards, and then increase the learning rate by some percentage (e.g., doubling it each time). Then we do another mini-batch, track the loss, and double the learning rate again. We keep doing this until the loss gets worse, instead of better. This is the point where we know we have gone too far. We then select a learning rate a bit lower than this point. Our advice is to pick either:\n","\n","- One order of magnitude less than where the minimum loss was achieved (i.e., the minimum divided by 10)\n","- The last point where the loss was clearly decreasing\n","\n","The learning rate finder computes those points on the curve to help you. Both these rules usually give around the same value. In the first chapter, we didn't specify a learning rate, using the default value from the fastai library (which is 1e-3):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9HrFu9Uq1gmN","outputId":"119e2ad7-21c1-4445-9bea-10263f66ea14"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZAAAAEQCAYAAACeDyIUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3gc1dn+8e+jblnNsuWu4t4LxhVscOg1wAuhtwRCCL83pNBSCSQkhBAgIS9JICF0EmoooTcbAwYsA8a4d9lyUy9W3z2/P3YFwshWsbSzu7o/17WXd2dnZu8Vyz575sw5Y845REREOirG6wAiIhKZVEBERKRTVEBERKRTVEBERKRTVEBERKRTVEBERKRT4rwO0FX69evn8vLyvI4hIhJRli5dWuycy+rMtlFTQPLy8sjPz/c6hohIRDGzLZ3dVoewRESkU1RARESkU1RARESkU1RARESkU1RARESkU0JWQMxsgZnVmVl18LZmH+vdYGaNLdarNrPhocopIiLtE+oWyP8651KCtzH7We+xFuulOOc2hiqgz+/w+TXFvYhIW3QIK8jvdzyev5UZv3mdnz+z3Os4IiJhL9QF5GYzKzazd81s/n7WO9nMSs1shZl9d18rmdllZpZvZvlFRUWdDrVyeyXfuHsx1z75KXWNPv67bAcNTf5O7086psnnp6qukaKqeraW1rB+dxWfFVZQUl3vdTQR2Y9QjkS/DlgJNABnA8+b2VTn3Ia91nscuAfYBcwCnjKzcufcv/beoXPunuC6TJ8+vVPHnR54bzM3Pr+CjOQEbj1jMn2SE7j0wXze31jCYaM7Nbpf9sHvd6zaWcl760t4d0Mxn2wtp7quiab9HDLsn5rIuEFpTBmazlkzcxiS0SuEiUVkf0JWQJxzH7R4+ICZnQOcAPx5r/VWtnj4npn9CTgD+EoB6QrTcvpwzswcrjl2DBnJCdQ1+ugVH8urK3f22AJSUl3PxuI95GQm0z81ETPr8D6Kquq5+aVVvLR8Z6BfyX25b2l4Vm+OnziQPskJ9IqPJSk+lqT4GBKD9xNija2ltazaWcmqHVXctWADf1mwga9PGcx3Dh/BmIGpXfmWRaQTvJwLywHt+WZq73qdMmloOpOGTvr8cVJ8LIeN7sfrK3fz61Ncp748I1Wjz88D723mj6+vo7q+CYBe8bHk9k1m9IBUxg9OY8LgNHIyk9lZUcfWslq2ltaQGB/DQdl9mJKdTmJcLI98sIVbX1lDXaOP06cNpU/vBGIMYszI7dubQ0f2ZVB6x1oSheW1/GPRRv794Vae/riQw0dncc7MHI4c15/4WHXliXghJAXEzDIIHI5aCDQBZwGHAT9oZd1TgLeBcmAGcCXw01DkbHb0+IG8smIXywsrmDw0I5Qv7ZlF64q44bkVbCjaw/wxWZw3K5edFbVsLqlhU/Eelm4p47ll27+ynRm4YMMiNsbI7J1AUVU9c0f248ZTJjAiK6VL8g3J6MUvT57AlUeM4qH3t/DoBwVc/vBSslITOePgoQzr15vkhFiSE2KJjYmhtqGJPfU+ahqaSIyPpX9qIlmpifRPTaJfSkKP+mEg0l1C1QKJB24CxgI+YDVwqnNujZnNA15yzjV/05wN/BNIBLYBtzjnHghRTgCOGNufGIPXVu6K+gKyrayGm/67ipdX7CS3bzL3XjSdI8cNaHXd8poGVm6vZFtZLQPTk8jOTGZwRhI19T4+2VrOxwVlrN1VzYmTB3HS5EHd8iXdp3cCVx45iivmj2Dh2iL+9WEBdy/cQEfOvO4VH0tOZjI5fZPpl5JIbEygdWRAZV0TJXsaKN1TT1VdE7FmxMfGEB9njBmQxoVzcpmSHd2fCZH2MueiY8zD9OnTXVdO537W3YupqG3k5R8c1mX7DCd1jT7+/vZG7lqwHoDvHTGKS+YOIyk+1uNkHVdV10h5TSO1jT5qGnw0+fwkJ8SRkhhHr4RY6hp97K6qo6iqnl2V9RSU1rClpIaC0j2U7mnAOfA7h99BSmIc/VISyOydQFqveHx+R5PPUd/kY8nmMqrrm5iancHFh+TxtTH9SU+O9/rtixwQM1vqnJvemW2j5nogXe3o8QO46YVVFJTUkNM32es4Xcbvdzy3bDu3vbaGraW1nDBpID87cXxEn92UmhRPatL+v8izMw/8v2FVXSNPLd3Gg4u38IPHPgFgRFZvpuX0YUZeJoePyWJAWtIBv45IpFALZB8KSmo47Na3+PmJ47h0XuTPpOKcY+HaIm55eQ2rdlQyflAaPz1hHHNH9fM6WsTx+x1LNpeSv6WMj7aU8VFBGWU1jQBMGJzG18b056wZ2V1StES624G0QFRA9uPYO94mIzmex74zp0v3210qahvx+R2ZvRM+X9ZcOP7vzfXkbykjO7MXVx8zhpMnDyYmRh3JXcE5x5pdVby1uoi3Vu9maUEZSXEx3HjKRE6fNkQd9hLWdAirmxw9fgB/WbCe0j0NX/pSbs3uyjre3VDM16cMIbYbv5hXbK+goqYxeNgmjgafn4Vrinh91S7yt5Th8ztG9k9hRl4mYwak8NRHhSwvrGBwehK/OmUCZ8/IISFOp712JTNj7MA0xg5M47vzR1BYXsuPHvuEq59YxsK1Rdx06kTSe6mvRKKPWiD7sWpHJSfcuYhxA9P46/nTyO3b+yvr+P2Ofy/Zys0vraKqrolbTp/EWTNyOvw6KYlx+z3ksb28lt+8sIoXlu9o9fmxA1M5atwAkhNjWbKplPzNZVTVN5HbN5kr5o/gtIOGqnCEkM/v+NvCDdz+2loGpiXx8xPHcdzEgWqNSNjRISy6p4AAvLl6Fz98bBl+57j9zKkcPT5wiqvf71i9s4obnl/Bh5tKmT08kz31PnZV1rHgmvkkJ7SvcbejopYjb1tIbIxxzwXTmTOi75eer2/y8Y9Fm/i/N9fjd44r5o9k5rBMquoaqa5vwud3zBnRl6F9vlx8fH5HQWkN2X16EaeBdp75uKCMa5/8lHW7q5mWk8HPThzHwbmZXscS+ZwKCN1XQAC2ltbw3UeW8llhJYePzqKoqp6NxdXUNfpJS4rjZyeO48zp2XxUUMbpf13Mj44ezZVHjmrXvq94ZClvrNrN0D692Fpay63fmMwpU4fg9zueXVbIH15ZS2F5LcdNGMjPThynjtkI1OTz8+TSbdz+2lp2V9Vz4qRB3HjKBPqlJHodTUQFBLq3gEBg3MRvX1zF22uLyOvXm5FZKYzon8JR4waQlfrFF8HlDy1l0boiFlzztS8tX7WjkuFZvUmM+2KcxYI1u7n4viVcc+wYzp+Vy2UP5fPBplK+degwFm8sYdWOSiYMTuMnx+tsqWhQ09DE39/exF1vrSclKY7fnjaR4yYO8jqW9HAqIHR/AWmvjUXVHHPH25w9M5ubTp1EcXU9v3x2BS8s38GUoen85fyDGZLRi7pGH8fc8TZxscZL359HYlws9U0+rnp8Gf/9dAdD+/TimmN1tlQ0WruriqseX8bywgpOmTqYa48bG9HjcCSyqYAQPgUE4PpnP+ORDwr48XFj+evCDVTXNXHWjGye+biQuFjjz+dMY8nmUv70xjoeuXQWh478onXh9zvyt5R9PjGhRKdGn5+/vLWBP7+5jia/4+DcPpw8eRAnTB5E/1QNRpTQUQEhvApIcXU9829dQHV9E1OyM7j1jMmMHpDKxqJqLn94Ket2VxMXYxw/cRB3nnOQ13HFQ1tLa3hu2XaeX7ad1TurSIiL4ebTJnH6wUO9jiY9hAoI4VVAAF5fuYsdFbWcMzPnS2dB1TQ08dOnl/PehhL++7259NfUFxK0blcVv3xuBe9tKOGSucP4yfFjdQaddDsVEMKvgLTF73fq25CvaPL5+c2Lq7jv3c3MHdmP/zv3IDKS9z+IVeRAHEgB0c8bj6h4SGviYmP45ckT+P0Zk/lwUyln3/M+VXWNXscSaZUKiEgYOnN6Nv+4aDrrd1dzxSMf0ejzex1J5CtUQETC1GGjs/jt/0xi0bpifvr0cqLlcLNED02mKBLGzpyezbbSGu58cz3ZmcntnuFAJBRUQETC3A+PHs22slpuf20t/VMTOXtmxybrFOkuKiAiYc7M+N3pkymtaeAn/1lOfGyMxolIWFAfiEgESIiL4W/nH8yhI/pxzZPLeG7Zdq8jiaiAiESKpPhY/n7hdGbkZfLDxz7hpX1cG0YkVFRARCJIr4RY/nnxDA7KzuDKf3/MwrVFXkeSHkwFRCTC9E6M45/fnMGo/qlc/tBSlm4p9TqS9FAqICIRKC0pngcvmcnA9CS+ed8SVu2o9DqS9EAqICIRql9KIg9dMpPkhDgu/OeHbCnZ43Uk6WFUQEQi2NA+yTx0yUwafX4uf/gj6hp9XkeSHkQFRCTCjRqQyu1nTmHVjkpueXm113GkB1EBEYkCR4wdwMWH5HHfu5t5a/Vur+NID6ECIhIlfnz8WMYOTOXqJ5axu7LO6zjSA6iAiESJpPhY/nzOQexpaOKqJ5bh92v2XuleKiAiUWTUgFR+cdJ4Fq0r5vH8rV7HkSinAiISZc6dmcPMvExueXk1ZXsavI4jUUwFRCTKmBk3njKByrombn11jddxJIqpgIhEoXGD0rhoTh7/+rCAZVvLvY4jUSpkBcTMFphZnZlVB2+t/jSygFvMrCR4+72ZWahyikSLHxw9in4pifzi2c/wqUNdukGoWyD/65xLCd7G7GOdy4BTgSnAZOAk4DuhCigSLdKS4vnZCeP4dFsFjy1Rh7p0vXA8hHURcJtzbptzrhC4DbjY20gikemUqYOZNSyT3720ip0VGhsiXSvUBeRmMys2s3fNbP4+1pkALGvxeFlw2VeY2WVmlm9m+UVFui6CyN6aL4fb4PPz46c/xTkdypKuE8oCch0wHBgC3AM8b2YjWlkvBaho8bgCSGmtH8Q5d49zbrpzbnpWVlZ3ZBaJeMP69ea648ayYE2RxoZIlwpZAXHOfeCcq3LO1TvnHgDeBU5oZdVqIK3F4zSg2umnk0inXTQnj9nDM/n1f1dRWF7rdRyJEl72gTigtbOrVhDoQG82JbhMRDopJsa49Ywp+J3juid1KEu6RkgKiJllmNmxZpZkZnFmdh5wGPBKK6s/CPzIzIaY2WDgKuD+UOQUiWbZmcn89IRxvLO+mCfyt3kdR6JAqFog8cBNQBFQDHwPONU5t8bM5plZdYt17waeB5YDnwEvBJeJyAE6b1YO03IyuP21tbr4lBywkBQQ51yRc26Gcy7VOZfhnJvtnHst+Nwi51xKi3Wdc+5a51xm8Hat+j9EuoaZcc2xY9lZWceDizd7HUciXDiOAxGRbjRnRF8OG53FXxZsoLKu0es4EsFUQER6oGuPHUN5TSP/eHuj11EkgqmAiPRAE4ekc+KkQfzjnU0UV9d7HUcilAqISA/1o2NGU9/k56631nsdRSKUCohIDzUiK4Uzpg3lkfcL2Fpa43UciUAqICI92A+OHkVMDNymC09JJ6iAiPRgg9J7ccncYTzzyXaWb6toewORFlRARHq47xw+gszeCfz2xVWa4kQ6RAVEpIdLS4rnyiNGsnhjCQvW6rII0n4qICLCubNyyeubzO9eXK3L30q7qYCICAlxMVx73FjW7KriyaW6Zoi0jwqIiABw/MSBTMnO4K8LNuBXK0TaQQVERIDARIuXzh3G5pIaFqovRNpBBUREPnfcxIEMSEvkvvc2ex1FIoAKiIh8Lj42hvNm5fL22iI2FFW3vYH0aCogIvIl58zMISE2hocWb/E6ioQ5FRAR+ZKs1EROnDyIJ5duo0rXC5H9UAERka+46JA8quubeGqprp0u+6YCIiJfMTU7gynZGTy4eItO6ZV9UgERkVZdfEguG4v3sGDtbq+jSJhSARGRVp04aTBD+/TijtfWaZJFaZUKiIi0KiEuhu8fOYrlhRW8smKX13EkDKmAiMg+nXbQEIZn9eb219ZokkX5ChUQEdmnuNgYfnjUaNbuqua/n273Oo6EGRUQEdmvEycNYuzAVO54bS2NPr/XcSSMqICIyH7FxBhXHTOGzSU1PP2RxoXIF1RARKRNR43rz5TsDO58Y71aIfI5FRARaZOZceURIyksr+XF5Tu8jiNBjT4/d76xjhXbKzx5fRUQEWmXr43pz/B+vbn3nU0aFxImdlbUcftra/msUAVERMJYTIzxrbnD+HRbBflbyryOI8C2sloAhmQke/L6KiAi0m6nTxtKRnI8/1i00esoAhSWBwtIn16evL4KiIi0W6+EWM6flcurK3expWSP13F6vMJgC2RQepInr68CIiIdcuGcXOJijPve3ex1lB6vsLyG/qmJJMXHevL6KiAi0iH905I4ecpgHs/fSkWNLjjlpcLyWs8OX4EHBcTMRplZnZk9vI/nbzCzRjOrbnEbHuqcIrJvl8wdRk2Dj38tKfA6So9WWFbLkIweVECAu4AlbazzmHMupcVNPXYiYWTC4HRmDcvkocVbNMmiR/x+x/byup7TAjGzs4Fy4I1Qvq6IdL0L5+RRWF7LW6t1wSkvFFXX0+DzM7QntEDMLA34FXBVO1Y/2cxKzWyFmX13P/u8zMzyzSy/qKioy7KKSNuOmTCAAWmJPPj+Fq+j9EifjwGJhBaImf3IzKYG7882swIz22hmc9q5i18D9zrntrax3uPAOCAL+DZwvZmd09qKzrl7nHPTnXPTs7Ky2hlDRLpCfGwM58zM4e21RWwu1im9ofb5GBCPBhFCx1ogPwQ2Be/fDNwO/Ab4Y1sbBgvPUcAdba3rnFvpnNvunPM5594D/gSc0YGcIhIi587MIS7GeFitkJArjKQWCJDunKsws1RgCvBn59y9wJh2bDsfyAMKzGwncDVwupl91I5tHWAdyCkiIdI/LYljJw7k8fyt1Db4vI7ToxSW15CRHE9KYpxnGTpSQLaa2SHA2cDbzjlfsF+jPZ+ae4ARwNTg7W/AC8Cxe69oZqeYWR8LmAlcCTzbgZwiEkIXzs6lsq6J55YVeh2lR/H6FF7oWAG5BngS+BmB/gyAk4AP29rQOVfjnNvZfAOqgTrnXJGZzTOz6harnw2sB6qAB4FbnHMPdCCniITQzGGZjBmQyoOLt2iW3hAqLPe+gLS77eOcexEYvNfiJ4K3DnHO3dDi/iIgpcXjVjvMRSQ8mRkXzMnl5898xkcF5Ryc28frSFHPOUdhWS2HjuznaY6OnIU13swGBO+nmNmNwE+A+O4KJyKR4bSDhpCaGMdDizd7HaVHKK9pZE+Dz/MWSEcOYT0KZATv/wE4DJgD3N3VoUQksvROjOP0g4fy4vKdFFfXex0n6jWfwjvUwzOwoGMFJM85t8bMDDgN+AaB02u/0hEuIj3P+bNzafD5eWxJW0O95EB5fSGpZh0pIPXBU3hnAludc8VAPeDNRPQiElZG9k/h0JF9eeT9LTT5/F7HiWqR2AJ5FHgTeAC4P7hsGl8MLhSRHu6C2Xlsr6jjDc2P1a0Ky2pJToglI9nbLuiOnIX1QzM7Bmh0zr0VXOwnMEJdRISjxvVncHoSDy3ewrETBnodJ2oVltcwJKMXgR4F73RoMkXn3KvABjObY2Y5zrl859yb3ZRNRCJMXGwM587K4Z31xWwoqm57A+kUry8k1awjp/EOMrOFwDrgaWC9mS00s73HhohID3bWjBziY42HFmt+rO4SDqPQoWMtkL8Cy4BM59wgoA/wCYFpSUREAMhKTeSESYN46qNt1DQ0eR0n6uypb6KspjGyWiDAXOAq59wegOC/1wKHdEcwEYlc583KpaquieeXbfc6StT5Yhr3yCogZcD4vZaNIXCFQRGRz83I68PoASk88oGumd7VmqdxH9rH2zEg0LEC8nvgdTP7nZl918x+B7wWXC4i8jkz47xZuXy6rYJPt+k3ZlfaFiZjQKADBcQ593fgLKAfcHLw3wuAod0TTUQi2WnThtArPpZH3lcrpCsVltWSEBtDVkqi11E6fBrvm865S51zJzjnLgUWEpjeXUTkS9KS4jll6mCeW7aditpGr+NEjcLyWgZlJBET4/119jpUQPbB+3chImHpvFm51Db6eOZjXWyqq3y6rZxR/VPaXjEEuqKA6AoyItKqSUPTmTI0nYff18WmukJBSQ1bSmqY6/F1QJq1OZWJmR2xn6cTujCLiESh82blcu1Tn/LhplJmDe/rdZyItmh9EQDzRmd5nCSgPXNh3dvG8+ohE5F9OnnKYG5+aRV/W7hBBeQAvbOumMHpSQzv19vrKEA7CohzblgogohIdOqVEMul84Zz6ytr+GRrOVOzM9reSL7C53e8u76Y4ycO8nwSxWZd0QciIrJfFx2SR0ZyPHe+sc7rKBHr023lVNY1MXdUePR/gAqIiIRASmIc3543nDdX72bZVg0s7IxF64oxg0PDpAMdVEBEJESaWyF/UiukU95ZV8zEwelk9g6fc5dUQEQkJNQK6bzq+iY+KihjXhgdvgIVEBEJoQvn5KovpBPe31BCk98xb1R4nL7bTAVEREImNSmeS+cO443Vu1m1o9LrOBFj0boiesXHMi03vM5gUwERkZA6f3YuSfEx3P/uZq+jRIxF64uZPTyTxLhYr6N8iQqIiIRURnICpx00lGc+KaR0T4PXccLetrIaNhbtYW6YHb4CFRAR8cC3Ds2jvsnPvz7URBZt+WBjKQCHjgy/UfwqICIScqMGpDJvVD8eWryFRp/f6zhhbcX2SnrFxzKqf6rXUb5CBUREPPHNQ/PYWVnHS5/t9DpKWFu5o4Kxg1KJDYPrf+xNBUREPDF/dH+G9evNfe9u8jpK2HLOsXJ7JeMHpXkdpVUqICLiiZgY46I5uXxcUM7HBWVexwlL28pqqaxrYvxgFRARkS85Y3o2qYlx3KdTelu1YntgrMyEwekeJ2ldyAuImY0yszoze3gfz5uZ3WJmJcHb7y1c5i4WkS6VkhjHmTOyeXH5DnZW1HkdJ+ys3FFJjMGYAeHXgQ7etEDuApbs5/nLgFOBKcBk4CTgOyHIJSIeuPiQPPzO8eDizV5HCTsrt1cyIiuFXgnhNYCwWUgLiJmdDZQDb+xntYuA25xz25xzhcBtwMUhiCciHsjOTOaY8QN59MMCaht8XscJKyu3V4Rt/weEsICYWRrwK+CqNladACxr8XhZcJmIRKlvzR1GeU0j//m40OsoYaNsTwPbK+qYoAICwK+Be51zW9tYLwWoaPG4AkhprR/EzC4zs3wzyy8qKurCqCISSjPy+jBxSBr/fHcTzjmv44SFlcHJJscPCs8OdAhRATGzqcBRwB3tWL0aaFly04Bq18qnyjl3j3NuunNuelZW+M0TIyLtY2Z869BhrN9dzdvrir2OExZWBs/A0iEsmA/kAQVmthO4GjjdzD5qZd0VBDrQm00JLhORKHbS5MFkpSbyz3c0sBACLZBB6UlhdQXCvYWqgNwDjACmBm9/A14Ajm1l3QeBH5nZEDMbTKDP5P4Q5RQRjyTExXDh7FwWri1i/e4qr+N4bsX2irAdgd4sJAXEOVfjnNvZfCNwmKrOOVdkZvPMrLrF6ncDzwPLgc8IFJq7Q5FTRLx17qwcEuJiuP+9zV5H8VRdo48NRXvCugMdPBqJ7py7wTl3fvD+IudcSovnnHPuWudcZvB2bWv9HyISffqmJHLKlME8tbSQitpGr+N4Zs3OKnx+F9b9H6CpTEQkzFx0SB61jT6eyG/rhM3oFQlnYIEKiIiEmYlD0pmZl8kDizfj8/fMgw8rt1eSmhhHdmYvr6PslwqIiISdiw/NY2tpLW+s2uV1FE+s2F7BuMFphPs0gCogIhJ2jhk/gMHpST2yM73J52fVjqqw70AHFRARCUNxsTFcMCeP9zaUsGZnzzqld+WOSmobfUzL6eN1lDapgIhIWDp7RjaJPfCU3g83lQIwc1imx0napgIiImGpT+8E/mfaEJ7+aBu7KnvOtUKWbC4lJzOZAWlJXkdpkwqIiIStK+aPxO8cf35znddRQsI5R/7mMmbkhX/rA1RARCSMZWcmc9aMbP794VYKSmq8jtPtNhTtoWRPAzOHhX//B6iAiEiY+94Ro4iNMf74xlqvo3S7JZsD/R/T1QIRETlwA9KSuPiQPP7zcSFrd0X3GVlLNpfSLyWB4f16ex2lXVRARCTsXX74CHonxHH7q9HdClmyuZTpuZlhP4CwmQqIiIS9Pr0TuHTeMF5esZNPt5V7Hadb7KyoY2tpLTMi4PTdZiogIhIRLpk7jD7J8dz6yhqvo3SLD4P9HzMjpP8DVEBEJEKkJsVzxfyRLFpXzOINJV7H6XJLNpXSOyGWcYNSvY7SbiogIhIxLpiTy8C0JH7/ymqi7TJBSzaXMi23D3GxkfO1HDlJRaTHS4qP5ftHjeLjgnLeWLXb6zhdpqKmkTW7qiJmAGEzFRARiShnHDyUYf1684dX1+CPkuuFLC0oxTlUQEREulN8bAw/PHo0q3dW8dyy7V7H6RIfbiojPtY4KCfD6ygdogIiIhHnpEmDGD8ojdtfW0tDk9/rOAfs/Y0lTB6aQVJ8rNdROkQFREQiTkyMce1xYygoreGut9Z7HeeAVNc3sbywgjnD+3odpcNUQEQkIs0f059Tpw7mrrfW81lhhddxOm3JplJ8fsecESogIiIhc8PXJ5DZO4Grn1hGfZPP6zid8v7GEuJjLSKuQLg3FRARiVgZyQnc/D+TWL2zij+/EZmHshZvLOGg7D70Sois/g9QARGRCHfkuAGccfBQ/rpwA8u2RtY8WZV1jXxWWMHsCDx8BSogIhIFfnHSePqnJnLdU5/ii6CxIUs2leJ3MHt4ZI3/aKYCIiIRL71XPD89YVxwbEih13HabfGGEhLiYiKy/wNUQEQkSpwYgWNDFm8sYVpO5I3/aKYCIiJRoXlsyNbSWv69pMDrOG2qqGlk5Y5KZkfg+I9mKiAiEjUOH53FzGGZ3PnGemoamryOs18fbCrBOSJyAGEzFRARiRpmxnXHjaG4up773t3sdZz9WryxhMS4GKZG2PxXLamAiEhUOTg3k6PG9edvCzdQXtPgdZx9WryhhINz+5AYF5n9H6ACIiJR6Opjx1Bd38Tvw/Tyt2V7Gli9syqiD1+BCnOqTBsAAA75SURBVIiIRKGxA9P49rzhPPpBAW+tCb8LT72zvhiAQ0aqgLSLmT1sZjvMrNLM1prZpftY72Iz85lZdYvb/FDlFJHo8KOjRzN6QArXPflp2B3Kemv1bvokxzM1OzLHfzQLZQvkZiDPOZcGfB24ycwO3se6i51zKS1uC0KWUkSiQlJ8LLefOZXSPQ1c/+wKr+N8zud3LFhbxOGjs4iNMa/jHJCQFRDn3ArnXH3zw+BtRKheX0R6nolD0rnyyFE8t2w7L3y6w+s4ACzbVk7pnga+Nra/11EOWEj7QMzsL2ZWA6wGdgAv7mPVg8ysOHio6xdmFhe6lCISTa6YP4Ip2Rn87JnlFFXVt71BN1uwejcxFhizEulCWkCcc1cAqcA84Gmgtf+abwMTgf7A6cA5wDWt7c/MLjOzfDPLLyoq6p7QIhLR4mJjuO0bU6hp8PHL5z7zOg5vrtnNtJw+ZCQneB3lgIX8LCznnM859w4wFPhuK89vdM5tcs75nXPLgV8BZ+xjX/c456Y756ZnZUV+NReR7jGyfwrfP3IULy7fycufeXcoa3dlHZ8VVkbF4Svw9jTeONrXB+KAyO5pEhHPXXbYcCYMTuPnz6zw7Kys5lOKj1ABaT8z629mZ5tZipnFmtmxBA5NvdnKuseb2YDg/bHAL4BnQ5FTRKJXfGwMvz9jMuU1Dfz6v6s8yfDW6iIGpScxdmCqJ6/f1ULVAnEEDldtA8qAPwA/cM49a2Y5wbEeOcF1jwQ+NbM9BDrZnwZ+G6KcIhLFJgxO5/LDR/DUR9tCPsCwocnPO+uLmT+mP2bRcVAlJGc3OeeKgMP38VwBkNLi8dXA1aHIJSI9z/eOHMkrK3Zy1ePLePb/HUp2ZnJIXnfJ5lKq65ui5vAVaCoTEelhEuNiufuCg2ny+fn2g/lU14dm2vc3V+8mIS6GQyN8+pKWVEBEpMcZnpXCXedNY93uan7w70/wd/N11H1+x6srdzJ7eF+SE6JnWJsKiIj0SPNGZfGLE8fx+qpd/OHV7p21963Vu9laWstZ07O79XVCLXpKoYhIB110SB5rdlXzlwUbyMlM5uyZOW1v1An3v7eZQelJHDNhQLfs3ytqgYhIj2Vm3Pj1CRw2Oouf/mc5Ly7v+kGG63ZV8c76Ys6fnUt8bHR95UbXuxER6aCEuBj+dv40puX04fv//piFa7t2WqT73ttMYlwM53RT68ZLKiAi0uMlJ8Rx78UzGNk/lcsfWsrSLaVdst+Kmkae/mgbp04dQmbvyJ/7am8qICIiQHqveB781kwGpifxzfuWsKl4zwHv87H8Auoa/Vx0SN6BBwxDKiAiIkFZqYk88M2ZxMYYlz6whMq6xk7vy+d3PPDeFmYNy2T84LQuTBk+VEBERFrI6ZvMX88/mC0lNXzv0Y/xdXKMyOP5Wyksr+Wbhw7r4oThQwVERGQvs4f35cZTJrBwbRG3vLy6Q9s657h74QZ+8vRyZuT14ahx0TN1yd40DkREpBXnzcplzc4q7nl7I6mJcVw+f0Sbp+E2+fxc/9wKHv2ggBMnD+K2b0whLspO3W1JBUREZB9+cdJ4Svc0cNtra3lh+Q5+d/pkpmZntLruzoo6rnlyGYvWFfPd+SO45pgxxMREx6y7+2LOde8cMKEyffp0l5+f73UMEYlCr6zYyS+fXcGuqjrOm5XDNw7OZtKQdGJijEafn/vf3cwfX19Lk99x49cndNuI9u5gZkudc9M7s61aICIibTh2wkAOGdGX215dy4OLN/Pw+wX0S0ngsNFZrCisZM2uKo4Y258bTp5ATt/QTA8fDtQCERHpgNI9Dby9tog3V+9m4doiUpPiuP6k8Rw9fkBEXihKLRARkRDJ7J3AqQcN4dSDhuD3O8yIyMLRFVRAREQ6Kdo7ydsSveeXiYhIt1IBERGRTlEBERGRTlEBERGRTlEBERGRTlEBERGRTlEBERGRTomakehmVgRsAdKBiuDitu43/9sPKO7Ey7bcZ0ee33v5/h7vnbXlss7kjsTM+8vVkcz7yrmv+158PiIxc2vLo/Uz3fJ+tHw+cp1zWR0NDwTmro+mG3BPe++3+Df/QF+rI8/vvXx/j/fOeqC5IzFzW7nbmzkSPh+RmNnrz0coM3v9t/b687H3LRoPYT3fgfstlx3oa3Xk+b2X7+9xa1kPJHckZm5r+/Zm3ntZOH4+IjFza8uj9TPd8n5P/Hx8SdQcwjoQZpbvOjmZmJciMbcyh0YkZobIzN2TM0djC6Qz7vE6QCdFYm5lDo1IzAyRmbvHZlYLREREOkUtEBER6RQVEBER6RQVkHYys7lmtiB4W2tmd3idqT3MbL6ZvWFmb5nZaV7naYuZ5ZlZUYu/defOT/eImZ0THJMU9sxsgJm9Z2YLzexNMxvkdaa2mNkcM1sczPwvM4v3OlN7mFm6mX1oZtVmNtHrPPtiZr8xs0Vm9qSZtXltXhWQdnLOveOcm++cmw+8BzzjcaQ2mVkScBVwvHPua865/3idqZ0WNv+tnXMR8WUMYGYxwBnAVq+ztFMxMNc5dzjwIHCJx3naYwtwRDDzRuAUj/O0Vw1wIvCk10H2JVjYRjjn5gGvA99qaxsVkA4K/uKZCSzyOks7HALUAs+b2X/MbKDXgdrp0OCvoN9aZF0r9FwCXxB+r4O0h3PO55xrzpoKrPAyT3s457Y752qDD5uInL91YwT8GJoHvBS8/xIwt60NorKAmNn/mlm+mdWb2f17PZcZ/DLdY2ZbzOzcDu7+aOCNFv/jdYluyjwAGAmcDPwduCECMu8IZj4M6A/8T1dmDmbr8txmFgucCTzW1XmD+++Wz7SZTTWzD4D/BT6KhMzB7YcBxwP/7cLIzfvuzu+PbncA+fvwxdQnFUBmW68VrddE3w7cBBwL9NrrubuABgJfrlOBF8xsmXNuRfAXemtNzDOcczuD978B3BcJmYFy4F3nXIOZvQH8ONwzB//O9QBm9jQwG3gq3HMH9/W4c87fTY2mbvlbO+c+AWaZ2ZnAT4DLwz2zmaUBDwAXOOcaujBvt+buhpz70qn8QBmBubII/lva5it1xXwo4XoL/hHvb/G4d/CPN7rFsoeA37Vzf/HAZ0BMJGQG+hI4lmnALOC+CMic1uL+zcCFEfK3vgV4FXiZwK+3OyMgc2KL+8cCt0dA5jjgBQL9IN3yueiO3C3Wvx+Y2N3ZO5MfmAQ8Grx/GfC9tl4jWlsg+zIa8Dnn1rZYtgw4vJ3bHwW86br48FUbOp3ZOVdiZv8BFhI4Vtxmp1gXOZC/8+FmdgOBTsdNwC+6Pt4+Hcjf+rrm+xaYJuLKbsjXmgP5W08zs1sAH1BHZHw+ziHwY+h6M7se+KtzrlsOG7bigL4/zOxFAr/6x5jZ3c65+7s+4n7tN79zbnnwsNYiYDdwYVs77GkFJIWvToVcQaADsU3OuZf4opMpVA40810Emq2h1OnMzrnn6eIJ3zrggP7WzVxo50U6kL/1YgJ9TaF2IJkfIvCr2QsH+v/iCV2eqGPazO+c+0lHdhiVnej7UQ2k7bUsDajyIEt7KXPoRGJuZQ6dSM3drMvz97QCshaIM7NRLZZNIbxPX1Tm0InE3MocOpGau1mX54/KAmJmcRYYRBcLxJpZkpnFOef2AE8DvzKz3mZ2KIGBSF41iT+nzKETibmVOXQiNXezkOYPxdkAob4RGO/g9rrdEHwuk8Ao8j1AAXCu13mVWbmVOTwyR3JuL/JrOncREemUqDyEJSIi3U8FREREOkUFREREOkUFREREOkUFREREOkUFREREOkUFREREOkUFRKQLmNlLZnaR1zlEQkkFRCKamW02s6O8zuGcO94590BX79fM5puZ38yqzazKzNaY2Tc7sP0NZvZwV+cSARUQkTaZmdeXPdjunEshMHPqD4G/m9kYjzOJqIBI9DKzk8zsEzMrN7P3zGxyi+d+bGYbgr/qV5rZaS2eu9jM3jWzO8ysFLghuOwdM/uDmZWZ2SYzO77FNgvM7NIW2+9v3WFm9nbwtV83s7va00pwAS8SuNRoy/fyJzPbamaVZrbUzOYFlx8H/BQ4K9iCWRZcnm5m95rZDjMrNLObLHBNd5EOUQGRqGRm04B/At8hcGnfu4HnzCwxuMoGYB6Baz/fCDxsZoNa7GIWsBHoD/ymxbI1QD/g98C9Zvu8APr+1n0U+DCY6wbggna+pxgz+3pwn+tbPLWEwJXuMoP7fsLMkpxzLwO/BR5zzqU456YE138AaAJGAgcBxwCXtieDSEsqIBKtvg3c7Zz7wDnnC/ZP1AOzAZxzTzjntjvn/C5wSdR1wMwW2293zv3ZOdfknKsNLtvinPu7c85H4Et4EDBgH6/f6rpmlgPMAK53zjU4594BnmvjvQw2s3KgFvgP8CPn3MfNTzrnHnbOlQSz3gYkAq0e4jKzAcDxwA+cc3ucc7uBO4Cz28gg8hUqIBKtcoGrgoevyoNfwNnAYAAzu7DF4a1yYCKBX/bNtrayz53Nd5xzNcG7Kft4/X2tOxgobbFsX6/V0nbnXAaBPpA7gSNaPmlmV5nZKjOrCL6X9L3eS0u5QDywo8V7v5tAS0ukQ7zuHBTpLluB3zjnfrP3E2aWC/wdOBJY7JzzmdknQMvDUd11nYMdQKaZJbcoItnt2dA5V29m1wFrzOxU59wzwf6O6wi8lxXOOb+ZlfHFe9n7fWwl0BLr55xrOuB3Iz2aWiASDeKDV11rvsURKBCXm9ksC+htZieaWSrQm8AXaxFA8LTYiaEI6pzbAuQT6JhPMLM5wMkd2L4BuA24PrgolUB/RhGBy5Vez5eve70LyDOzmOD2O4BXgdvMLC3YrzLCzA4/0PcmPY8KiESDFwn0DzTfbnDO5RPoB/k/oIxAp/PFAM65lQS+hBcT+IKdBLwbwrznAXOAEuAm4DECrYL2+ieQY2YnA68ALxG43vUWoI4vHxJ7IvhviZl9FLx/IZAArCTwt3mSQB+NSIfoioQiHjOzx4DVzrlfep1FpCPUAhEJMTObETxsFBMcq3EKgetUi0QUdaKLhN5A4GkC40C2Ad9teVquSKTQISwREekUHcISEZFOUQEREZFOUQEREZFOUQEREZFOUQEREZFOUQEREZFO+f/qAtDe5s8ZYQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet34, metrics=error_rate)\n","lr_min,lr_steep = learn.lr_find(suggest_funcs=(minimum, steep))"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lhnxUaxD1gmO","outputId":"c925315b-1dde-462b-b872-3c8479f3766b"},"outputs":[{"name":"stdout","output_type":"stream","text":["Minimum/10: 1.00e-02, steepest point: 5.25e-03\n"]}],"source":["print(f\"Minimum/10: {lr_min:.2e}, steepest point: {lr_steep:.2e}\")"]},{"cell_type":"markdown","metadata":{"id":"VXc--WPz1gmO"},"source":["We can see on this plot that in the range 1e-6 to 1e-3, nothing really happens and the model doesn't train. Then the loss starts to decrease until it reaches a minimum, and then increases again. We don't want a learning rate greater than 1e-1 as it will give a training that diverges like the one before (you can try for yourself), but 1e-1 is already too high: at this stage we've left the period where the loss was decreasing steadily.\n","\n","In this learning rate plot it appears that a learning rate around 3e-3 would be appropriate, so let's choose that:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CY_hm6Hq1gmO","outputId":"3330565d-83b9-4eb9-c91b-ccfd3461437b"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
01.3285910.3446780.11434400:20
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.5401800.4209450.12787600:24
10.3298270.2488130.08322100:24
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet34, metrics=error_rate)\n","learn.fine_tune(2, base_lr=3e-3)"]},{"cell_type":"markdown","metadata":{"id":"h6BrfGbS1gmO"},"source":["> Note: Logarithmic Scale: The learning rate finder plot has a logarithmic scale, which is why the middle point between 1e-3 and 1e-2 is between 3e-3 and 4e-3. This is because we care mostly about the order of magnitude of the learning rate."]},{"cell_type":"markdown","metadata":{"id":"0MAGIDWc1gmP"},"source":["It's interesting that the learning rate finder was only discovered in 2015, while neural networks have been under development since the 1950s. Throughout that time finding a good learning rate has been, perhaps, the most important and challenging issue for practitioners. The solution does not require any advanced maths, giant computing resources, huge datasets, or anything else that would make it inaccessible to any curious researcher. Furthermore, Leslie Smith, was not part of some exclusive Silicon Valley lab, but was working as a naval researcher. All of this is to say: breakthrough work in deep learning absolutely does not require access to vast resources, elite teams, or advanced mathematical ideas. There is lots of work still to be done that requires just a bit of common sense, creativity, and tenacity."]},{"cell_type":"markdown","metadata":{"id":"IXtMnheR1gmP"},"source":["Now that we have a good learning rate to train our model, let's look at how we can fine-tune the weights of a pretrained model."]},{"cell_type":"markdown","metadata":{"id":"tGml1Uq11gmP"},"source":["### Unfreezing and Transfer Learning"]},{"cell_type":"markdown","metadata":{"id":"hiJ-Pqch1gmP"},"source":["We discussed briefly in <> how transfer learning works. We saw that the basic idea is that a pretrained model, trained potentially on millions of data points (such as ImageNet), is fine-tuned for some other task. But what does this really mean?\n","\n","We now know that a convolutional neural network consists of many linear layers with a nonlinear activation function between each pair, followed by one or more final linear layers with an activation function such as softmax at the very end. The final linear layer uses a matrix with enough columns such that the output size is the same as the number of classes in our model (assuming that we are doing classification).\n","\n","This final linear layer is unlikely to be of any use for us when we are fine-tuning in a transfer learning setting, because it is specifically designed to classify the categories in the original pretraining dataset. So when we do transfer learning we remove it, throw it away, and replace it with a new linear layer with the correct number of outputs for our desired task (in this case, there would be 37 activations).\n","\n","This newly added linear layer will have entirely random weights. Therefore, our model prior to fine-tuning has entirely random outputs. But that does not mean that it is an entirely random model! All of the layers prior to the last one have been carefully trained to be good at image classification tasks in general. As we saw in the images from the [Zeiler and Fergus paper](https://arxiv.org/pdf/1311.2901.pdf) in <> (see <> through <>), the first few layers encode very general concepts, such as finding gradients and edges, and later layers encode concepts that are still very useful for us, such as finding eyeballs and fur.\n","\n","We want to train a model in such a way that we allow it to remember all of these generally useful ideas from the pretrained model, use them to solve our particular task (classify pet breeds), and only adjust them as required for the specifics of our particular task.\n","\n","Our challenge when fine-tuning is to replace the random weights in our added linear layers with weights that correctly achieve our desired task (classifying pet breeds) without breaking the carefully pretrained weights and the other layers. There is actually a very simple trick to allow this to happen: tell the optimizer to only update the weights in those randomly added final layers. Don't change the weights in the rest of the neural network at all. This is called *freezing* those pretrained layers."]},{"cell_type":"markdown","metadata":{"id":"Iy6zzuRU1gmQ"},"source":["When we create a model from a pretrained network fastai automatically freezes all of the pretrained layers for us. When we call the `fine_tune` method fastai does two things:\n","\n","- Trains the randomly added layers for one epoch, with all other layers frozen\n","- Unfreezes all of the layers, and trains them all for the number of epochs requested\n","\n","Although this is a reasonable default approach, it is likely that for your particular dataset you may get better results by doing things slightly differently. The `fine_tune` method has a number of parameters you can use to change its behavior, but it might be easiest for you to just call the underlying methods directly if you want to get some custom behavior. Remember that you can see the source code for the method by using the following syntax:\n","\n"," learn.fine_tune??\n","\n","So let's try doing this manually ourselves. First of all we will train the randomly added layers for three epochs, using `fit_one_cycle`. As mentioned in <>, `fit_one_cycle` is the suggested way to train models without using `fine_tune`. We'll see why later in the book; in short, what `fit_one_cycle` does is to start training at a low learning rate, gradually increase it for the first section of training, and then gradually decrease it again for the last section of training."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nNsMpjtJ1gmQ"},"outputs":[],"source":["learn.fine_tune??"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zoSaKc681gmQ","outputId":"2fc867c7-0002-48da-8ef2-7cf63548fa1b"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
01.1880420.3550240.10284200:20
10.5342340.3024530.09472300:20
20.3250310.2222680.07442500:20
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet34, metrics=error_rate)\n","learn.fit_one_cycle(3, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"CI0oSVPs1gmR"},"source":["Then we'll unfreeze the model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"W8-dy9zF1gmR"},"outputs":[],"source":["learn.unfreeze()"]},{"cell_type":"markdown","metadata":{"id":"HNYFdI4X1gmR"},"source":["and run `lr_find` again, because having more layers to train, and weights that have already been trained for three epochs, means our previously found learning rate isn't appropriate any more:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ka403c2r1gmS","outputId":"0c8a6a4e-bf90-47f2-e5ce-5224cfd205e3"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["(1.0964782268274575e-05, 1.5848931980144698e-06)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXxcdb3/8dcnaZIuSdeke9KmNF2ha0AQyr4U0RbFpXhVuKKIgOiD31XBDQW5Kl69chEvVMXlKlZAvRbsZVHZodCkC9CNtmmzdE2bpEmzL5/fHzNthzBtk3ZOZiZ9Px+PeTRnm/PJeUzm3XO+3/M95u6IiIh0lhLvAkREJDEpIEREJCoFhIiIRKWAEBGRqBQQIiISlQJCRESi6hPvAmIlOzvbx48fH+8yRESSSnFx8V53z4m2rNcExPjx4ykqKop3GSIiScXMSo+0TJeYREQkKgWEiIhEpYAQEZGoFBAiIhKVAkJERKJSQIiISFQKCBGRJLZiWxXFpdWBvLcCQkQkif3nM29z1xPrAnlvBYSISBIrqaxnQs6AQN5bASEikqTqm9vYVdvEhGwFhIiIRNi6tx6ACTmZgby/AkJEJEltqTwAkJyXmMxsvpltNLPNZnbbEdb5qJmtM7O1ZvZwxPxrzGxT+HVNkHWKiCSjksp6zGD8sGACIrDRXM0sFbgfuASoAFaY2VJ3XxexTgFwO3C2u1eb2fDw/KHAHUAh4EBxeNtg+nKJiCShkr31jBncj75pqYG8f5BnEGcAm929xN1bgCXAwk7rfBa4/+AXv7vvCc+/DHjG3avCy54B5gdYq4hI0tm690Bg7Q8QbECMAcojpivC8yJNAiaZ2ctmttzM5ndjWxGRk5a7s7WyPrAeTBDsA4MsyjyPsv8C4HxgLPCimZ3axW0xs+uB6wHy8vJOpFYRkaSyu7aZ+pZ2TgmogRqCPYOoAHIjpscCO6Ks81d3b3X3rcBGQoHRlW1x98XuXujuhTk5UZ+YJyLSK5WEezDlZyfnJaYVQIGZ5ZtZOrAIWNppnf8FLgAws2xCl5xKgKeAS81siJkNAS4NzxMREWDLoXsgkvASk7u3mdnNhL7YU4GH3H2tmd0JFLn7Ug4HwTqgHfiyu+8DMLO7CIUMwJ3uXhVUrSIiyaak8gD90lIZObBvYPsIsg0Cd18GLOs071sRPztwa/jVeduHgIeCrE9EJFmVVNaTnz2AlJRoTbaxoTupRUSS0Na9wQ3Sd5ACQkQkyTS3tVNR3RDoPRCggBARSTql+xrocALt4goKCBGRpHOwi+uEALu4ggJCRCTpbKkMdXEdn90/0P0oIEREkkxJZT3DszLI6psW6H4UECIiSaZk74HAezCBAkJEJKm4e/g51MG2P4ACQkQkqVQ3tLK/sTXQUVwPUkCIiCSRgz2YTtEZhIiIRCqpDH6QvoMUECIiSWTL3gOkpRpjhwTbxRUUECIiSaWksp5xwwaQGuAgfQcpIEREkkhJ5YEeaaAGBYSISNJoa++grCr4QfoOUkCIiCSJiupGWtu9RxqoQQEhIpI0SvYe7OKqgBARkQiHurgGPIrrQYEGhJnNN7ONZrbZzG6LsvxaM6s0s9Xh12cilrVHzF8aZJ0iIslgS2U9Q/qnMWRAeo/sL7BnUptZKnA/cAlQAawws6Xuvq7Tqn9095ujvEWju88Kqj4RkWRTUnmgxxqoIdgziDOAze5e4u4twBJgYYD7ExHp1Ur21pPfQ11cIdiAGAOUR0xXhOd1dpWZvWFmj5lZbsT8vmZWZGbLzezKaDsws+vD6xRVVlbGsHQRkcSyv7GVyrrmHuvBBMEGRLTb/LzT9OPAeHefAfwd+E3Esjx3LwQ+DvzEzE5515u5L3b3QncvzMnJiVXdIiIJ582K/QCcNmZQj+0zyICoACLPCMYCOyJXcPd97t4cnvw5MDdi2Y7wvyXAc8DsAGsVEUloaypqAJgxZnCP7TPIgFgBFJhZvpmlA4uAd/RGMrNREZMLgPXh+UPMLCP8czZwNtC5cVtE5KSxuryGCdkDGNQ/2MeMRgqsF5O7t5nZzcBTQCrwkLuvNbM7gSJ3XwrcYmYLgDagCrg2vPlU4EEz6yAUYt+P0vtJROSk4O6sLq9h3sTsHt1vYAEB4O7LgGWd5n0r4ufbgdujbPcKcFqQtYmIJIud+5uorGtmZm7PXV4C3UktIpLw1pSH2h8UECIi8g6rK2pISzWmjsrq0f0qIEREEtya8hqmjRpIRp/UHt2vAkJEJIG1dzhvVuxnVg9fXgIFhIhIQttSeYD6lvYeb38ABYSISEJbXRafBmpQQIiIJLTVFTVk9e1D/rCeG4PpIAWEiEgCW1New8yxg0lJiTa8XbAUECIiCaqptZ0Nu+qYmdtzA/RFUkCIiCSotTv2097hzModEpf9KyBERBLU6vLQEN8zx+oMQkREIqwur2H0oL4MH9g3LvtXQIiIJKg15TVx6d56kAJCRCQBVdW3UFbVoIAQEZF3OvgEuXgMsXGQAkJEJAGtKa8hxXr2GdSdKSBERBLQ6vIaCoZnMSAj0Oe6HZUCQkQkwbh7uIE6fmcPEHBAmNl8M9toZpvN7LYoy681s0ozWx1+fSZi2TVmtin8uibIOkVEEkl5VSPVDa1xbaCGAJ9JbWapwP3AJUAFsMLMlrr7uk6r/tHdb+607VDgDqAQcKA4vG11UPWKiCSK1eEG6plj4xsQQZ5BnAFsdvcSd28BlgALu7jtZcAz7l4VDoVngPkB1SkiklBWllbTLy2VKSN79hGjnQUZEGOA8ojpivC8zq4yszfM7DEzy+3OtmZ2vZkVmVlRZWVlrOoWEYmrlWXVzMwdRJ/U+DYTB7n3aGPTeqfpx4Hx7j4D+Dvwm25si7svdvdCdy/Myck5oWJFRBJBY0s763bUMndcfAboixRkQFQAuRHTY4EdkSu4+z53bw5P/hyY29VtRUR6ozcqamjr8F4fECuAAjPLN7N0YBGwNHIFMxsVMbkAWB/++SngUjMbYmZDgEvD80REerXislBfnNlxGuI7UmC9mNy9zcxuJvTFngo85O5rzexOoMjdlwK3mNkCoA2oAq4Nb1tlZncRChmAO929KqhaRUQSxcrSaibkDGDIgPR4lxJcQAC4+zJgWad534r4+Xbg9iNs+xDwUJD1iYgkEndnZVkNF00ZHu9SAN1JLSKSMLbta6CqviUh2h9AASEikjCKS0PtD3MUECIiEqm4tJqsvn2YmJMZ71IABYSISMJYWVrNnLwhpKREuxWs5ykgREQSQG1TK2/vqUuY9gdQQIiIJITVZTW4o4AQEZF3Ki6tJsWI+xDfkRQQIiIJYGVZNZNHDiQzjk+Q60wBISISZ+0dzuqyGuaOS5yzB1BAiIjE3aY9ddQ1tyVU+wMoIERE4u7QDXJ5CggREYlQXFpNdmY6eUP7x7uUd1BAiIjE2aqyGubkDcEsMW6QO0gBISISR/sONLN1b33CtT+AAkJEJK5WltUAiTNAXyQFhIhIHBWXVpOWapw2ZlC8S3kXBYSISBytLK1m2uhB9E1LjXcp7xJoQJjZfDPbaGabzey2o6z3YTNzMysMT483s0YzWx1+PRBknSIi8dDc1s6aihpOT8DLSxDgI0fNLBW4H7gEqABWmNlSd1/Xab0s4BbgtU5vscXdZwVVn4hIvL21vZbmtg4Kxw+NdylRBXkGcQaw2d1L3L0FWAIsjLLeXcA9QFOAtYiIJJyibVUAFI5PzDOIIANiDFAeMV0RnneImc0Gct39iSjb55vZKjN73szmBViniEhcrNhWTX72ALIzM+JdSlRBDhsY7Y4PP7TQLAX4T+DaKOvtBPLcfZ+ZzQX+18ymu3vtO3Zgdj1wPUBeXl6s6hYRCZy7U1xaxcVTR8S7lCMK8gyiAsiNmB4L7IiYzgJOBZ4zs23AmcBSMyt092Z33wfg7sXAFmBS5x24+2J3L3T3wpycnIB+DRGR2NtSWU91QyunJ2j7A3QxIMzsFDPLCP98vpndYmbHGpd2BVBgZvlmlg4sApYeXOju+909293Hu/t4YDmwwN2LzCwn3MiNmU0ACoCSbv92IiIJKtHbH6DrZxB/AtrNbCLwSyAfePhoG7h7G3Az8BSwHnjE3dea2Z1mtuAY+zsXeMPM1gCPATe4e1UXaxURSXgrtlUzbEA6+dkD4l3KEXW1DaLD3dvM7IPAT9z9PjNbdayN3H0ZsKzTvG8dYd3zI37+E6FQEhHplYpKq5g7LvEG6IvU1TOIVjO7GrgGONjjKC2YkkREerc9dU2U7mtI6PYH6HpA/CtwFnC3u281s3zgd8GVJSLSexVvCz0gaG4Ctz9AFy8xhe9+vgXAzIYAWe7+/SALExHprVZsqyajTwqnjk68AfoidbUX03NmNtDMhgJrgF+Z2Y+DLU1EpHcqKq1iVu5g0vsk9nipXa1uUPgmtQ8Bv3L3ucDFwZUlItI7NbS0sXZHbcK3P0DXA6KPmY0CPsrhRmoREemm1WU1tHd4wrc/QNcD4k5C9zNscfcV4ZvXNgVXlohI77RiWzVmMCcv8QOiq43UjwKPRkyXAFcFVZSISG9VVFrF5BFZDOqX+HcKdLWReqyZ/cXM9pjZbjP7k5mNDbo4EZHepK29g5Wl1UnR/gBdv8T0K0LjKI0mNGT34+F5IiLSRRt21VHf0p7Q4y9F6mpA5Lj7r9y9Lfz6NaDhU0VEuuHwAH296wxir5l9wsxSw69PAPuCLExEpLdZUVrN6EF9GTO4X7xL6ZKuBsSnCXVx3UXoYT4fJjT8hoiIdIG7U7StKmnOHqCLAeHuZe6+wN1z3H24u19J6KY5ERHpgu01jeyubWbuuORof4ATe6LcrTGrQkSkl1tVVgMkx/0PB51IQCTuIOYiIglmdXkNGX1SmDIqK96ldNmJBITHrAoRkV5uVVk1p40ZRFpqYg/QF+mod1KbWR3Rg8CA5GiGFxGJs5a2Dt7aUcunzhwX71K65ahR5u5Z7j4wyivL3Y85TIeZzTezjWa22cxuO8p6HzYzN7PCiHm3h7fbaGaXde/XEhFJHOt31tLS1sHsJGp/gK4/k7rbzCwVuB+4BKgAVpjZ0vDDhyLXyyL0MKLXIuZNAxYB0wndvf13M5vk7u1B1SsiEpTV5aEG6ll5g+NcSfcEeTHsDGCzu5e4ewuwBFgYZb27gHuApoh5C4El7t7s7luBzeH3ExFJOqvLaxielcHoQX3jXUq3BBkQY4DyiOmK8LxDzGw2kOvunZ8xccxtw9tfb2ZFZlZUWVkZm6pFRGJsVVk1s3IHY5ZcnT+DDIhoR+JQg7eZpQD/Cfy/7m57aIb7YncvdPfCnBwNDSUiiae6voVt+xqSrv0BAmyDIPS//tyI6bHAjojpLOBU4Llwqo4ElprZgi5sKyKSFA61P+QmV/sDBHsGsQIoMLN8M0sn1Oi89OBCd9/v7tnuPt7dxwPLgQXuXhReb5GZZZhZPlAAvB5grSIigVhVXkOKwYyxg+JdSrcFdgbh7m1mdjOhR5WmAg+5+1ozuxMocvelR9l2rZk9AqwD2oCb1INJRJLRqrJqJo3IYkBGkBdsghFoxe6+DFjWad63jrDu+Z2m7wbuDqw4EZGAdXQ4a8pruGLGqHiXclyS555vEZEkU7K3ntqmNmbnJl8DNSggREQCk6w3yB2kgBARCciqsmqyMvowMScz3qUcFwWEiEhAVpfXMCN3ECkpyXWD3EEKCBGRADS2tLNhV13Stj+AAkJEJBBvbt9Pe4cn5Q1yBykgREQCsLq8GkjeBmpQQIiIBGJVWQ25Q/uRnZkR71KOmwJCRCQAq8trkrr9ARQQIiIxt2t/Ezv3NyV1+wMoIEREYm5VWfK3P4ACQkQk5h4pKmfYgHSmjx4Y71JOiAJCRCSGNuyq5dmNlVz73vFk9EmNdzknRAEhIhJDi58voV9aKp88a1y8SzlhCggRkRjZXtPI0jU7WHRGLoP7p8e7nBOmgBARiZFfvrgVBz4zb0K8S4kJBYSISAzUNLSwZEUZC2aOZszgfvEuJyYUECIiMfA/r5bS0NLO587rHWcPEHBAmNl8M9toZpvN7LYoy28wszfNbLWZvWRm08Lzx5tZY3j+ajN7IMg6RURORFNrO79+ZRvnT85hysjk7toaKbBnUptZKnA/cAlQAawws6Xuvi5itYfd/YHw+guAHwPzw8u2uPusoOoTEYmVR4sr2FffwufOPSXepcRUkGcQZwCb3b3E3VuAJcDCyBXcvTZicgDgAdYjIhJz7R3Oz18oYWbuYM6cMDTe5cRUkAExBiiPmK4Iz3sHM7vJzLYA9wC3RCzKN7NVZva8mc2LtgMzu97MisysqLKyMpa1i4h0yZNv7aKsqoEbzp2AWXI+Oe5IggyIaEfqXWcI7n6/u58CfBX4Rnj2TiDP3WcDtwIPm9m7Luy5+2J3L3T3wpycnBiWLiJybHVNrfzo6Y2MH9afS6ePjHc5MRdkQFQAuRHTY4EdR1l/CXAlgLs3u/u+8M/FwBZgUkB1ioh0m7vz5UffoLSqge99aAapSfrc6aMJMiBWAAVmlm9m6cAiYGnkCmZWEDF5BbApPD8n3MiNmU0ACoCSAGsVEemWB54v4cm1u7j98imcdcqweJcTiMB6Mbl7m5ndDDwFpAIPuftaM7sTKHL3pcDNZnYx0ApUA9eENz8XuNPM2oB24AZ3rwqqVhGR7nh5815++NQG3j9jFNedkx/vcgJj7r2j41BhYaEXFRXFuwwR6eW21zTygfteIjsznb/ceDYDMgL7f3aPMLNidy+Mtkx3UouIdFFTazuf/10xrW0dPPCJuUkfDsfSu387EZEY+vbStbxRsZ/Fn5zLhJzMeJcTOJ1BiIh0wT/W72bJinJuPP+UXtmlNRoFhIjIMTS2tHPH0rUUDM/kSxefPD3udYlJROQYfvrsJiqqG/nj9WeS3ufk+X/1yfObiogch8176lj8QgkfmjOG90zonfc7HIkCQkTkCNydb/7vWvqn9+Fr75sa73J6nAJCROQI/rp6B6+W7OMr8yeTnZkR73J6nAJCRCSK/Y2tfPdv65iZO5irT8+LdzlxoYAQEYniR09vpKq+hbuvPJWUXjgQX1coIEREOnmzYj//s7yUT501nlPHDIp3OXGjgBARieDu3L1sHUP7p3PrpSfPPQ/RKCBERCK8uGkvy0uq+MKFExnYNy3e5cSVAkJEJKyjw7nnqQ2MHdKPq99zcjZMR1JAiIiELXtrJ29tr+XWSyaR0Sc13uXEnQJCRARobe/gR0+/zZSRWSycNSbe5SQEBYSICPBIUTlb99bz5csm98rnSx+PQAPCzOab2UYz22xmt0VZfoOZvWlmq83sJTObFrHs9vB2G83ssiDrFJGTW2NLO/f+fROF44Zw4ZTh8S4nYQQWEGaWCtwPXA5MA66ODICwh939NHefBdwD/Di87TRgETAdmA/8LPx+IiIx9+tXtrGnrpmvXj4FM509HBTkGcQZwGZ3L3H3FmAJsDByBXevjZgcABx8QPZCYIm7N7v7VmBz+P1i7kBzG39eWcGWygNBvL2IJLj9Da3893ObuXDKcE4fPzTe5SSUIANiDFAeMV0RnvcOZnaTmW0hdAZxS3e2jYWWtg5ufWQN/1y/J6bvW9/cRm1Ta0zfU0Ri795/bKKuuY0vXzY53qUknCADItp5mr9rhvv97n4K8FXgG93Z1syuN7MiMyuqrKw8riKHDkhnxMAM1u+qPfbKXVTb1MoH7nuJy3/yItX1LTF7XxGJnfYO5zuPr+Whl7ey6PQ8po4aGO+SEk6QAVEB5EZMjwV2HGX9JcCV3dnW3Re7e6G7F+bk5Bx3oVNGDmTDzrrj3j5SR4fz/x5ZQ1lVA5V1zXzxj6tp73hXtolIHDW0tHHD74r51cvbuO6cfL575anxLikhBRkQK4ACM8s3s3RCjc5LI1cws4KIySuATeGflwKLzCzDzPKBAuD1oAqdMiqLzXsO0NreccLv9cALW3hm3W6+9r6p3LFgGi+8Xcl9/9x07A1jzF2hJBLNnromFi1ezj/W7+Y7C6bzzfdPU7fWIwjsmdTu3mZmNwNPAanAQ+6+1szuBIrcfSlws5ldDLQC1cA14W3XmtkjwDqgDbjJ3duDqnXqyIG0tHewdW89k0ZkHff7vLRpL//x1EY+MHM0/3r2eACKS6u59x+bmJ03hPMmHf9ZztFU17ewdkctb++uO/TatPsAecP688An5pI7tH8g+xVJNpt213Htr1ZQVd/C4k8WcvG0EfEuKaFZb/mfZmFhoRcVFR3Xtht21TL/Jy9y76JZR72D8tmNe/jSktV8ZO5Yrj9vAsOz+h5atr2mkff/14vkZGXwlxvPZkBGKHsbW9r54M9eZldtE3+7ZR5jBvc7rhqjcXcefr2MOx9fR3Nb6Oxn6IB0Jo3I5JScTB5fs4P0Pqn84ppCZuUOjtl+RZLR9ppGLv/JC2SkpfLQNadz2tiTdxjvSGZW7O6F0ZbpTmpgQnYmaanGhl1Hb4d4Zt1u6pvbeOjlrcz7wbN85/G17K5toqm1nc//rpi2dueBT8w9FA4A/dJT+e9PzKW93bnx9ytpbuvaiVBDSxt7DzQfcXltUys3P7yKr//lLd4zYRgPf+Y9FH3jYlZ+8xKWXH8Wd3/wNP5849n0S09h0eJXefKtXV07GCK91PeWrae5rYNHP3eWwqGLArvElEzS+6RwSk4mG3YevSfTqrIazjplGHctPJX7n93Mb18t5fevlTF5RBZvbt/P4k/OZUJO5ru2y88ewA8/MoMbfreSOx9fx3evPPWoN+O8VrKPmx5eRVV9M/MKcvhoYS4XTxt+aPCw1eU1fOEPK9lR08Rtl0/h+nkToj7xauLwTP5y49l89rdFfP73xXzt8ql8Zl7+O/Z9oLmN0n31uEPftFT6pqXQLy2Vvmmp9E9P1U1D0iu8VrKPJ97YyRcvKmB89oB4l5M0FBBhU0cNZHnJviMur29uY+OuWi65MPQB++FHZnLLRQX87LnNPFpUwRcunMil00cecfv5p47i+nMnsPiFErZUHuCuhadS0Km9w935+Ysl/ODJjYwb2p+PFI7lr6u2c9PDKxncP40rZ41h6IB0/usfmxgxsC+PfO4s5o4bctTfKzszgz989kxufWQ1dy9bz5qKGrL69qGksp6SvfVU1h35LGVW7mAe/ux76J+uj4kkr1B31nWMHtSXG847Jd7lJBX95YdNGZnFX1Ztp6ahhcH909+1/I2K/XQ4zM47fC0/d2h/vvehGdzxgen0TTv2SCC3zZ9C3tD+/PCpjVx+74t8+px8brmogMyMPtQ2tfKVR9/gybW7uPzUkdzz4Rlk9U3j3y6dzMub9/JIUTkPv1ZGS3sHl00fwT1XzWRQ/649zKRvWio/vXoO9wzdyOIXtjCkfzr52QM4f1IO+TkDGD9sAH1SjKa2Dppa2mlqa2dvXTM/fXYzX370DX768dk6k5Ck9ccV5azbWct9V8+mX7pG7OkOBUTYlPBNMht21XHmhGHvWr6qvBqAWWPf3djblXAASEkxPnHmON532ijueXIDi18o4a+rt3Pj+RP59SvbKKtq4BtXTOW6cw5fBkpNMc6dlMO5k3KoaWhh274GZo4d1O0v7JQU47bLp3DrJZNI79O1pqfMvn3492UbmP78QG48f2K39ieSCPY3tPIfT2/kjPyhvH/GqHiXk3TUSB02dWTocs+R2iFWldUwIXsAQwa8++yiu4YOSOf7V83gzze+l5ysDO5YupYDzW384bNn8pl5E4745T+4fzqzcgef0P/muxoOAJ+dN4EFM0fzw6c28uyGIw9F0tzWrvsuJCHd+49NVDe0cMcHpuks+DgoIMJysjIYOiA9ak8md2dVWQ2z8mLbVXRO3hD+etM5LP7kXJbdMo8z8hNroDAz4wdXzWDqyIHcsmQVJZ0GNNx7oJm7/7aOmd95mrueWB+nKkWi27ynjt++uo1Fp+cxfbR6LR0PBUSYmTFlZBbrowRERXUjew80Mzvv6A3CxyM1xbh0+khysjJi/t6x0C89lQc/OZc+Kcb1/1NMXVMrVfUtfP//NjDvB8/yy5e2Mn7YAB56eetRzzJEgtDe4ZTuq2fznjr2HWg+NKyNe6hhul96Kv926aQ4V5m81AYRYcrIgfzh9TLaO/wdt96vKq8BYPZJerNZ7tD+3P/xOXzyodf52IPLKd1XT0NrOwtnjuYLFxUwZnA/rrz/Zb782Bqe/NK5ZGcmZtj1Nh0dzuqKGp7bWMn00QO57Ci96JJdR4dTUd3I+l21bN5z4NBoAVsqDxy6SRTADAb3S2NgvzRK9zXwzfdPY5g+j8dNARFhyqgsGlvbKatqID+ir/Sqsmr6pqUwZeTxD8OR7N47MZtvXjGVO59Yx/tOG8UXLyp4RzfdexfN5gM/fYmvPPYGv7ymMOr1Xnensq6ZnKyMo14P7uhwHn9jBxXVjVw5e0xM7z5Pdi1tHSwv2cdTa3fxzLrd7InopvyxwlzuWDDtiN2Sm1rbeWXLXgqGZyX88CtV9S3831s7Wb+zlvU769i4q44DzW2Hlo8Z3I+JwzN57ynDKBiRSb/0PlTXt1B18NXQwpn5w/jUWePi+FskPwVEhKkjwz2ZdtZ2CogaZowdTJ/Uk/uK3LVn5/PR03OjfgFNHpnF1y6fwrcfX8fvlpfyybPGv2P5jppGvvqnN3hx017m5A3mSxdPYl5B9ruCori0ijsfX8eaiv0A/OjpjZw/eTj/8p48zp88vMuDqlXWNfPW9v1gkGJGSvjf9D6hoM/q27Uuwt3VFP4PRknlAWoaWhnYL41Bka/+aWRl9Ol2g2lHh/OHFWX88KmN1DS00i8tlfMn53Dp9BGcW5DDL1/ayn8/v4Wi0ip++vE57xi6uqm1nYdfK+OB57ccCpSJwzO5cMpwLpg8nMLxQ0hLkM+2u/NYcQX/vmw91Q2tZPXtw9SRA/nQnDFMHTWQySOzmDQii8wMfXX1BI3FFKGptZ1p33qSmy8s4NZLQtctm9vaOe2Op/nXc8Zz++VTY1Fqr+XuXPurFSwv2ccTXziHghFZuDt/Xrmdbz++lrZ25+oz8njyrZ3s2N/E7LzBfPGiAvEpbq4AAA8CSURBVM6blMOO/U18//828PiaHYwYmMFXLpvCGflD+eOKcv5YVE5lXTOjB/XlY6fn8dHTxzJqUPSzioaWNha/UMLiF0poaIk+rEmKweSRAykcN4TC8UOYkzeEsUP6dftLu7W9gxXbqnh+YyXrd9VRUnmA7TWNHOtPKiujD2OH9mfskH7kDulP7tB+nD5+KNNHD4xaw7a99dz25zdYXlLFWROGcd05+ZxTkP2u7tUvb97Ll/64mv2NrXzjiql8ZG4uv3+tlAdfKKGyrpkzJwzlunMmULqvnuc2VvLa1n20tjtZGX341HvHceslk+M6qumWygN87c9v8trWKgrHDeHbC6Yf8ZhI7BxtLCYFRCcX/ug5JuZksvhToeO1sqyaD/3sFR74xFzmn9p7r/HGyp66Ji7/yYsMH9iXX1xTyLeXruWZdbs5ffwQ/uMjMxk3bADNbe08VlzBz57dwvaaRqaOGnioh9Tnzp3A58475R3jWbW2d/D3dbt5+PUyXty0lxSDCyYPZ9EZeVwwOYc+qSm0dziPFpXz42feZk9dM+87bSTXnDWetD4puIfCq8NDd8SvLq+huLSaVWXV1IdDZNKITK6aM5YPzh7D8IF9o/5uEDozeW7jHp7duIcX395LXXMb6akpTB6ZxYScAeRnh14TsjMZmplObWMrtY2t7A+/qhta2F7dSHl1I+VVDZRXN9DUGrqGXjA8kw/OGcPCWaHLau0dzkMvbeVHz2wkLSWFr18xlY+dnnvUL8y9B5r5t0fX8NzGSvqlpdLY2s5ZE4bxxYsL3nV/z4HmNl7evJela3bwtzd2Mq8gm/uunh31RtEgNbe187Nnt/Dfz22hb1oKt79vKh8rzI06fIzEngKiG276/Ure3L6fF75yAQC/fGkrdz2xjte+dhEjjvLFIYf9Y/1urvtNEX1SjJQU4yuXTeZfz85/1/9OW9o6+NPKCn77aimTRmTylflTjtneULqvnj+uKOfR4goq65oZnpXBwlmjeeHtvWzcXcecvMF8/YqpzB137C7D7R3Ohl21vL61isfX7GBlWQ0pBvMKcrhq7lhmjBnExt11rNtRy7qdtazbUcv2mkYARgzM4ILJw7lwynDOnpj9jkDrDndnT10zz6zbzf+u2k5RaeiGzPfkD6WptZ01Ffu5eOoIvnvlqYwc1LXPX0eH8+tXtrG8ZB+fmTehS92nl7xexjf/+hajB/dj8ScLmdzF9raWtg4efH4LB5rbuPy0UUe9idPd2bm/iY2769gUbmTetOcAm/cc4EBzGwtnjeYbV0xL2B59vZUCohvu+8cmfvTM27z1ncvIzOjDzQ+vZFVZDS/fdmEMqjx53PPkBlaWVfPdK09l4vDYN+63tnfwzw17WPJ6Gc+/XUnu0P58df4ULj915HFfkthSeYA/r6zgLyu3s2N/06H5ZjAhewDTRw9i2uiBnDMxO7BLH2X7Gvjr6u38ZfV2DjS18Y33T+MDM0b1yGWW4tJqbvhdMfXNbfz4o7OOeca8u7aJG3+/kuLSavqkGG0dztgh/bjitFG877RRTBmVxbodtRSXVrOyrJri0mp21x5uVM/OzKBgeCaTRmRy6fSRnD0xO+hfUaJQQHTDM+t289nfFvGnz7+XueOGcPb3/8msvMHc//E5MahSgrC/sZUB6akx60TQ0eG8WrKPsqoGpozMYvLIrB4fsNDd43LtfXdtE5/7n2JWl9fwuXMncN05+VEvub2+tYqbHl5JfXMbP7hqBucW5PD0ul387c2dvLRpL20dTorBwaftjh3Sj7njQu09U0cNpGB4ZkxGJZATd7SAUFeATg52Zd2wq5bcIf3YXtN46OlwkpgG9Yttj6SUFOPsidmcHdN37Z54NcyOGNiXJdefyR1/XcuDL5Tw8xdLOG9SDh8pzOWiqcNJT03hN69s47t/W0/u0P787rr3HLoc9ZHCXD5SmEtNQwtPr9tNSWU9M8cOYs64Ibo8m6QUEJ2MHdKPzIw+bNhZd+iGryDuoBZJVH3TUvnBh2fwufMm8KeVFfypeDs3/j405PykEVm8vrWKi6eO4Mcfm8nAKN2FB/dP56OFuXGoXGIt0IAws/nAvYSeSf0Ld/9+p+W3Ap8h9NzpSuDT7l4aXtYOvBletczdFwRZa0RNTBmZxYZdtQzI6ENaqjF99MBjbyjSy0zIyeTLl03h1ksm89LmvTxWXMGrW/Zx6yWTuPmCiepldBIILCDMLBW4H7gEqABWmNlSd18XsdoqoNDdG8zs88A9wMfCyxrdfVZQ9R3NlFFZ/HXVDsyMaaMHdXk4b5HeKDXFOG9SDudNyol3KdLDgrx98gxgs7uXuHsLsARYGLmCuz/r7g3hyeXA2ADr6bIpIwdS19xG0baqk3b8JRGRIANiDFAeMV0Rnnck1wH/FzHd18yKzGy5mV0ZRIFHMnVUqNGt8xPkREROJkG2QUS7QBm1T62ZfQIoBM6LmJ3n7jvMbALwTzN70923dNrueuB6gLy8vNhUDUyKGIRujhqoReQkFeQZRAUQ2ZVhLLCj80pmdjHwdWCBux+6i8bdd4T/LQGeA2Z33tbdF7t7obsX5uTE7vpoVt80cof2IzsznbFDNJKoiJycgjyDWAEUmFk+sB1YBHw8cgUzmw08CMx39z0R84cADe7ebGbZwNmEGrB7zKLT82hrj8/NSiIiiSCwgHD3NjO7GXiKUDfXh9x9rZndCRS5+1Lgh0Am8Gj4i/hgd9apwINm1kHoLOf7nXo/Be6mCyb25O5ERBKOhtoQETmJHW2ojcR4SoiIiCQcBYSIiESlgBARkagUECIiEpUCQkREolJAiIhIVAoIERGJqtfcB2FmlUANsD9i9qBuTGcDe2NYUud9nej6R1re1flHmw7yOBytxuNdtzvHoivzeupY9NRn4kjLjjWvN/59HGlZd/4+Ok/H81jE+u8DoMDdB0V9J3fvNS9g8fFOE7q7O7BaTnT9Iy3v6vxj/O6BHYfuHouurNudY9GVeT11LHrqM3G8x6I3/n0cz2cgkY9FrP8+jvWeve0S0+MnOB1kLSe6/pGWd3X+0aaDPA7dff+urNudY9GVeT11LHrqM3GkZcea1xv/Po60LFm/K2L993HU9+w1l5hOlJkV+RFuNz+Z6DgcpmNxmI7FYSfTsehtZxAnYnG8C0gQOg6H6VgcpmNx2ElzLHQGISIiUekMQkREolJAiIhIVAoIERGJSgFxDGY2z8weMLNfmNkr8a4nnswsxczuNrP7zOyaeNcTT2Z2vpm9GP5snB/veuLNzAaYWbGZvT/etcSLmU0Nfx4eM7PPx7ueWOjVAWFmD5nZHjN7q9P8+Wa20cw2m9ltR3sPd3/R3W8AngB+E2S9QYrFsQAWAmOAVqAiqFqDFqNj4cABoC86FgBfBR4Jpsrgxei7Yn34u+KjQK/oBturezGZ2bmE/oh/6+6nhuelAm8DlxD6w14BXE3oudnf6/QWn3b3PeHtHgE+4+61PVR+TMXiWIRf1e7+oJk95u4f7qn6YylGx2Kvu3eY2Qjgx+7+Lz1VfyzF6FjMIDT8RF9Cx+WJnqk+dmL1XWFmC4DbgJ+6+8M9VX9Q+sS7gCC5+wtmNr7T7DOAze5eAmBmS4CF7v49IOrpsZnlAfuTNRwgNsfCzCqAlvBke3DVBitWn4uwaiAjiDp7Qow+FxcAA4BpQKOZLXP3jkALj7FYfSbcfSmw1Mz+BiggktAYoDxiugJ4zzG2uQ74VWAVxU93j8WfgfvMbB7wQpCFxUG3joWZfQi4DBgM/DTY0npct46Fu38dwMyuJXxmFWh1Pae7n4nzgQ8R+g/DskAr6yEnY0BYlHlHvc7m7ncEVEu8detYuHsDobDsjbp7LP5MKDB7o27/jQC4+69jX0pcdfcz8RzwXFDFxEOvbqQ+ggogN2J6LLAjTrXEm47FYToWh+lYhJz0x+FkDIgVQIGZ5ZtZOrAIWBrnmuJFx+IwHYvDdCxCTvrj0KsDwsz+ALwKTDazCjO7zt3bgJuBp4D1wCPuvjaedfYEHYvDdCwO07EI0XGIrld3cxURkePXq88gRETk+CkgREQkKgWEiIhEpYAQEZGoFBAiIhKVAkJERKJSQEivZmYHenh/vzCzaTF6r3YzW21mb5nZ42Y2+BjrDzazG2OxbxHQfRDSy5nZAXfPjOH79QnfQBW4yNrN7DfA2+5+91HWHw88cXC4apETpTMIOemYWY6Z/cnMVoRfZ4fnn2Fmr5jZqvC/k8PzrzWzR83sceBpCz1N7jkLPTlsg5n93swsvO5zZlYY/vmAhZ7At8bMloefHYGZnRKeXmFmd3bxLOdVQqOLYmaZZvYPM1tpZm+a2cLwOt8HTgmfdfwwvO6Xw/t5w8y+E8PDKCcBBYScjO4F/tPdTweuAn4Rnr8BONfdZwPfAv49YpuzgGvc/cLw9GzgS4SegTABODvKfgYAy919JqHh0T8bsf97w/s/5uBv4QfXXMThcYCagA+6+xzgAuBH4YC6Ddji7rPc/ctmdilQQOi5BrOAueEH44h0yck43LfIxcC08H/6AQaaWRYwCPiNmRUQGtY5LWKbZ9y9KmL6dXevADCz1cB44KVO+2kh9KhagGJCTyaDUNhcGf75YeA/jlBnv4j3LgaeCc834N/DX/YdhM4sRkTZ/tLwa1V4OpNQYPS2Z3lIQBQQcjJKAc5y98bImWZ2H/Csu38wfD3/uYjF9Z3eozni53ai/y21+uFGviOtczSN7j7LzAYRCpqbgP8C/gXIAea6e6uZbSP0uM/ODPieuz/Yzf2KALrEJCenpwmN0gmAmc0K/zgI2B7++doA97+c0KUtCA0hfVTuvh+4Bfg3M0sjVOeecDhcAIwLr1oHZEVs+hTwaTM72NA9xsyGx+h3kJOAAkJ6u/7h4ZsPvm4l9GVbGG64XQfcEF73HuB7ZvYyoQfTB+VLwK1m9jowCth/rA3cfRWwhlCg/J5Q/UWEziY2hNfZB7wc7hb7Q3d/mtAlrFfN7E3gMd4ZICJHpW6uIj3MzPoTunzkZrYIuNrdFx5rO5GepjYIkZ43F/hpuOdRDfDpONcjEpXOIEREJCq1QYiISFQKCBERiUoBISIiUSkgREQkKgWEiIhEpYAQEZGo/j8fO/IDy1Hj4AAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.lr_find()"]},{"cell_type":"markdown","metadata":{"id":"yEXnBeyR1gmS"},"source":["Note that the graph is a little different from when we had random weights: we don't have that sharp descent that indicates the model is training. That's because our model has been trained already. Here we have a somewhat flat area before a sharp increase, and we should take a point well before that sharp increase—for instance, 1e-5. The point with the maximum gradient isn't what we look for here and should be ignored.\n","\n","Let's train at a suitable learning rate:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NVRWLI491gmS","outputId":"78955153-1132-4e92-8c1f-720335df10c3"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.2635790.2174190.06901200:24
10.2530600.2103460.06292300:24
20.2243400.2073570.06021700:24
30.2001950.2072440.06157000:24
40.1942690.2001490.05954000:25
50.1731640.2023010.05954000:25
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(6, lr_max=1e-5)"]},{"cell_type":"markdown","metadata":{"id":"bEkxl3JQ1gmT"},"source":["This has improved our model a bit, but there's more we can do. The deepest layers of our pretrained model might not need as high a learning rate as the last ones, so we should probably use different learning rates for those—this is known as using *discriminative learning rates*."]},{"cell_type":"markdown","metadata":{"id":"Qc17HqgR1gmT"},"source":["### Discriminative Learning Rates"]},{"cell_type":"markdown","metadata":{"id":"OqiVx-cO1gmT"},"source":["Even after we unfreeze, we still care a lot about the quality of those pretrained weights. We would not expect that the best learning rate for those pretrained parameters would be as high as for the randomly added parameters, even after we have tuned those randomly added parameters for a few epochs. Remember, the pretrained weights have been trained for hundreds of epochs, on millions of images.\n","\n","In addition, do you remember the images we saw in <>, showing what each layer learns? The first layer learns very simple foundations, like edge and gradient detectors; these are likely to be just as useful for nearly any task. The later layers learn much more complex concepts, like \"eye\" and \"sunset,\" which might not be useful in your task at all (maybe you're classifying car models, for instance). So it makes sense to let the later layers fine-tune more quickly than earlier layers.\n","\n","Therefore, fastai's default approach is to use discriminative learning rates. This was originally developed in the ULMFiT approach to NLP transfer learning that we will introduce in <>. Like many good ideas in deep learning, it is extremely simple: use a lower learning rate for the early layers of the neural network, and a higher learning rate for the later layers (and especially the randomly added layers). The idea is based on insights developed by [Jason Yosinski](https://arxiv.org/abs/1411.1792), who showed in 2014 that with transfer learning different layers of a neural network should train at different speeds, as seen in <>."]},{"cell_type":"markdown","metadata":{"id":"WjkOpt-k1gmT"},"source":["\"Impact"]},{"cell_type":"markdown","metadata":{"id":"fPoQEWe31gmU"},"source":["fastai lets you pass a Python `slice` object anywhere that a learning rate is expected. The first value passed will be the learning rate in the earliest layer of the neural network, and the second value will be the learning rate in the final layer. The layers in between will have learning rates that are multiplicatively equidistant throughout that range. Let's use this approach to replicate the previous training, but this time we'll only set the *lowest* layer of our net to a learning rate of 1e-6; the other layers will scale up to 1e-4. Let's train for a while and see what happens:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3Yhk4SO_1gmU","outputId":"edf019c8-cd08-4234-8258-1f8ce2725dc7"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
01.1453000.3455680.11975600:20
10.5339860.2519440.07713100:20
20.3176960.2083710.06901200:20
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.2579770.2054000.06765900:25
10.2467630.2051070.06630600:25
20.2405950.1938480.06224600:25
30.2099880.1980610.06292300:25
40.1947560.1931300.06427600:25
50.1699850.1878850.05615700:25
60.1532050.1861450.05886300:25
70.1414800.1853160.05345100:25
80.1285640.1809990.05142100:25
90.1269410.1862880.05412700:25
100.1300640.1817640.05412700:25
110.1242810.1818550.05412700:25
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet34, metrics=error_rate)\n","learn.fit_one_cycle(3, 3e-3)\n","learn.unfreeze()\n","learn.fit_one_cycle(12, lr_max=slice(1e-6,1e-4))"]},{"cell_type":"markdown","metadata":{"id":"oCBWNQmW1gmU"},"source":["Now the fine-tuning is working great!\n","\n","fastai can show us a graph of the training and validation loss:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WjMOSh8s1gmU","outputId":"17216f72-9671-43ec-9d22-865318fa6e05"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYAAAAD4CAYAAADlwTGnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3xV5f3A8c83e0NIAgmEPWVERlgOhlILWpVWVFy1Vmtta6vtz4HV1rrqaqvVOmutC6TOigqiLEcZEmSFHSCQECAhEDLIvs/vj3PuSHKT3EBCxv2+X6/7yrnPGfc5Xjzf+2wxxqCUUsr/BLR2BpRSSrUODQBKKeWnNAAopZSf0gCglFJ+SgOAUkr5qaDWzkBTxMfHmz59+rR2NpRSql1Zt27dEWNMQu30dhUA+vTpQ1paWmtnQyml2hUR2ectXauAlFLKT2kAUEopP6UBQCml/FS7agNQSqmmqqysJDs7m7KystbOSosLCwsjOTmZ4OBgn47XAKCU6tCys7OJjo6mT58+iEhrZ6fFGGPIz88nOzubvn37+nSOVgEppTq0srIy4uLiOvTDH0BEiIuLa1JJRwOAUqrD6+gPf6em3qdfBIAP12czd43XbrBKKeW3/CIALNiQw3/WZrV2NpRSfqigoIDnn3++yeddeOGFFBQUtECO3PwiAASI4NCFb5RSraC+AFBdXd3geQsXLqRz584tlS3AT3oBiQgOR2vnQinlj+bMmcPu3bsZOXIkwcHBREVFkZSUxIYNG9i6dSszZ84kKyuLsrIybrvtNm6++WbAPfVNcXExM2bM4JxzzmHlypX06NGDjz76iPDw8FPOm18EgABBSwBKKR74eAtbcwqb9ZpDu8dw/8XD6t3/2GOPkZ6ezoYNG1ixYgUXXXQR6enprq6ar776Kl26dKG0tJSxY8dy2WWXERcXV+Mau3bt4u233+af//wnV1xxBe+//z7XXnvtKefdTwKAoM9/pVRbMG7cuBr99J955hk+/PBDALKysti1a1edANC3b19GjhwJwJgxY8jMzGyWvPhHAAjQEoBSigZ/qZ8ukZGRru0VK1awZMkSVq1aRUREBFOmTPHajz80NNS1HRgYSGlpabPkxS8agUWEag0ASqlWEB0dTVFRkdd9x48fJzY2loiICLZv387q1atPa978ogQQqFVASqlWEhcXx9lnn83w4cMJDw+nW7durn3Tp0/nxRdfJCUlhcGDBzNhwoTTmje/CADaCKyUak3z5s3zmh4aGsqiRYu87nPW88fHx5Oenu5Kv+OOO5otX35RBaTjAJRSqi6/CAA6DkApperyiwAQINZUqUoppdz8JAAIDn3+K6VUDf4RAALQbqBKKVWLfwQAEa0CUkqpWnwKACIyXUR2iEiGiMzxsv93IrJVRDaJyFIR6W2nTxWRDR6vMhGZae97TUT2euwb2by35qZVQEqp9iIqKgqAnJwcZs2a5fWYKVOmkJaWdsqf1eg4ABEJBJ4DvgdkA2tFZIExZqvHYeuBVGPMCRH5BfAEcKUxZjkw0r5OFyAD+NzjvDuNMe+d8l00QscBKKXam+7du/Peey37ePSlBDAOyDDG7DHGVADzgUs9DzDGLDfGnLDfrgaSvVxnFrDI47jTxuoG2ngAOHi8lIoq7S+qlGo+d999d431AP70pz/xwAMPcP755zN69GhGjBjBRx99VOe8zMxMhg8fDkBpaSmzZ88mJSWFK6+8stnmAvJlJHAPwHM5rWxgfAPH3wh4G9o2G/hbrbRHROSPwFJgjjGm3If8NJkvs4FmHT3BuU8s54ejevDUlS1WG6WUak2L5sChzc17zcQRMOOxenfPnj2b22+/nV/+8pcAvPPOO3z22Wf89re/JSYmhiNHjjBhwgQuueSSetf0feGFF4iIiGDTpk1s2rSJ0aNHN0vWfSkBeMuR18epiFwLpAJP1kpPAkYAiz2S7wGGAGOBLsDd9VzzZhFJE5G0vLw8H7JbV2NVQCt25HLuE8sB+HD9gZP6DKWU8mbUqFHk5uaSk5PDxo0biY2NJSkpid///vekpKQwbdo0Dhw4wOHDh+u9xldffeWa/z8lJYWUlJRmyZsvJYBsoKfH+2Qgp/ZBIjINuBeY7OWX/BXAh8aYSmeCMeagvVkuIv8GvE5wYYx5GXgZIDU19aQq8gMCGp4N9Cf/Xnsyl1VKtTcN/FJvSbNmzeK9997j0KFDzJ49m7lz55KXl8e6desIDg6mT58+XqeB9lRf6eBU+FICWAsMFJG+IhKCVZWzoFbGRgEvAZcYY3K9XOMq4O1a5yTZfwWYCaR7Oa9ZNLUXUFllw2t1KqVUU8yePZv58+fz3nvvMWvWLI4fP07Xrl0JDg5m+fLl7Nu3r8HzJ02axNy5cwFIT09n06ZNzZKvRgOAMaYKuBWr+mYb8I4xZouIPCgil9iHPQlEAe/aXTpdAUJE+mCVIL6sdem5IrIZ2AzEAw+f4r3Uq6lTQRw63nAkPhXHSyu5672NFJZVcvB48zTkKKXatmHDhlFUVESPHj1ISkrimmuuIS0tjdTUVObOncuQIUMaPP8Xv/gFxcXFpKSk8MQTTzBu3LhmyZdP00EbYxYCC2ul/dFje1oD52ZiNSTXTj/P51yeoqaWAKb8ZQWZj13UInl5c1Um76Rls2x7LkeKK1h8+yQGJ0a3yGcppdqOzZvdjc/x8fGsWrXK63HFxcWAtSi8cxro8PBw5s+f3+x58pORwPU3AvvSPbS5VFU7+MvnOwE4UlwBQG5Ry5U2lFKqIX4RAMTuBuqtGqjSnif6nAHxPN3C3T/TcwrrpJWUa3uDUqp1+EUACLBbz70VAiqrrcRJg+LpE+9erLkl5g46cKxunX9+SYsMfVBKefCXucCaep9+EgCsv966glZVWyWAoIAAEmPCXOnOwNCcducV10l7esmuZv8cpZRbWFgY+fn5HT4IGGPIz88nLCys8YNt/rEmsB0BvLUDOB/0wYFCt5hQV3ppZTUhQc0bHzPzS+qk5RWVszuvmP4JUc36WUopS3JyMtnZ2ZzsQNL2JCwsjORkbzPxeOcfAaCBKqBv9x4FIDgwABHhgqHd+HzrYcoqq+kUHtys+Sguq2JIYjQXDEvkmaXuX/7n//VLdjw8ndCgwGb9PKUUBAcH07dv39bORpvkV1VA3koAv5r3XY3304cnAlBa0fyNs6WV1YSHBPLbaQN5YlYKT85yD+e+8qXVzf55SinVEL8qATTU47PCbguICbN+9R8vraz/4JNUWlFNREggIsIVqT2pdhjSMo/xn7QsNmQVYIxpkeHeSinljV+UAJzP1B2Hiuo9przSCgCxkVYAOHaiolnzUFpRzcbsAsKD3dU8gQHC47NSuOOCQQAUnGj+oKOUUvXxiwDgLAFc9sLKeo8pr7KqfDpHhADN/zD+zfz1VFZ7/4XfN95qAD5UqIPClFKnj18EgODAxqtVyu2FYGLtANCcJYC0zKN8sdWa6vVERVWd/YmdrN5Hv3hrnY4MVkqdNn4SAOq/TWdPn3MGxAMQFWo1i5SU131Qn6xX/7fXtV1ZVbchomu01W83M/8Ejy/a0Wyfq5RSDfGLRmDPAFBV7SAoMID84nKqjWFQtyiCAgIY3y8OgJCgAEKDAihqxgAQGeL+zzxtaNc6+7t5DEDbfqjudBFKKdUS/KME4DGgq6zKwZHicsY8vIRxjywlt6iciJCa/e+jQoMoKvM9APz+w828vy673v0OA907hfHxrefws3P71dkfEhTAQzOttT93HS7WdYmVUqeFfwSAAHcbQFllNTOf+5/r/b78E4TVCgD5JRXMW7Pfp6HjG7MKmLdmP//37kZ2Hfbey6ii2kFIUAAjkjvV283zugm9efaqUVRUO/jpa2u5/MX6G6yVUqo5+EcA8KgCKq2oJrvWpGyeXTM9FftQDbRqT75r+3tPfeV1eumKKt+mlUjsZFUFfZNxhLWZx1pkMJpSSjn5RwDwePg6u3t6qh0A7vz+YAA+2XSwzrG11X5Ie6s6qqw2PgWAhKjQGu8PFJxo9ByllDpZfhEAPCtdyr3Ur4fWejj3ibOmhb7ng811jq2trFZAKSit2320ospBSAM9kZzio2sGgMOFOlW0Uqrl+EUA8JwDqMrLNM+1q+UvGNYNgEmDEhq9tnMEsdPkJ1fU6etfUeXwqQQQGRJYIy86JkAp1ZL8IgB4tuVWORrvYRMcGMCkQQkcK2l8MFhpRTWJMWG8/lP3Is27Dtec97+82kGIDzN9Olcuc2rqaOTN2cd5dOE21xoHSinVEJ8CgIhMF5EdIpIhInO87P+diGwVkU0islREenvsqxaRDfZrgUd6XxFZIyK7ROQ/IhLSPLdUV7VHw6y3hV7CvDQCD0iIYlduUYMPU2MM/0nL4lBhGZM9Sgtvf7vftX/EnxazMauAEB9GI9dWWGqVJMoqG28MNsZw8T++4aWv9rB4y+Emf5ZSyv80GgBEJBB4DpgBDAWuEpGhtQ5bD6QaY1KA94AnPPaVGmNG2q9LPNIfB54yxgwEjgE3nsJ9NMizCqjaYehu97ZxVrdM9lLVM7p3Z8oqHSzZllvvdQvrGSswf20Wf/hvOhuyClyNwvuP+tagO/em8Vw1ricRIYEUllVSWlHNkD98xh/+m97geVlH6y43qZRSDfGlBDAOyDDG7DHGVADzgUs9DzDGLDfGOJ9wq4EGl6QRqzP8eVjBAuB1YGZTMt4UkwYlkGQ/9CurHQxKjCYluRO7H7mQL++cQmqfLnXOOW9IV4IDhY82HPB6zTdWZXLu48tqpA3rHuPafnP1Pn74vLsvf/fO4T7l9ewB8Tz6oxQ6hQdz7ESFa1rqN1fv4+ONOXWO/8N/03lr9T6yj7kDTFGZziqqlGqcLwGgB5Dl8T7bTqvPjcAij/dhIpImIqtFxPmQjwMKjDHOn9D1XlNEbrbPTzvZJd3CggN5+bpUwGoErqo2BAUIAQFC77hIr+dEhAQxulcs+cU12wHKKqs5WlLBHz/a4ioBPHjpMAA+/c25vHvLxBrHR4YE8vJ1Y3j6ypFNyvOArlH8L+NIjeqfX7+9vsYxxhjeXL2P+/6bXmNsQ0ELrGWglOp4fJkLyFvltdchsiJyLZAKTPZI7mWMyRGRfsAyEdkMeJvwxus1jTEvAy8DpKamnvSqzkF2HXyVw0GlPR9QY+KiQuqsIXD/R1v4T1pWjbSxHiUIz4XlrWuEcsGwxCbnd0zvWL7edaTBKSmcbQQA2cdOuKq0dF0BpZQvfCkBZAM9Pd4nA3XqIkRkGnAvcIkxxtWB3RiTY//dA6wARgFHgM4i4gxAXq/ZnJxTQldWG6ocxqcpohOiQjlQUFpjSojlO+q2CcR7DOCKjazZlu1LA643cfZ1Dh6vWbfv2aD95S53ieiZZRkkxYSREBXK+v3HfJrGQinl33wJAGuBgXavnRBgNrDA8wARGQW8hPXwz/VIjxWRUHs7Hjgb2Gqsp9NyYJZ96PXAR6d6Mw0JCrButcrhoMphXO8bktQ5nLJKB8+v2O1KCwyoGzi6eDz0o0KDuPP7g7l92kDAew8jX8TZQcVzqglwLxqzaPNBflOrSig5NoLconLW7D3KG6v2ndTnKqX8R6NPQbue/lZgMbANeMcYs0VEHhQRZ6+eJ4Eo4N1a3T3PANJEZCPWA/8xY8xWe9/dwO9EJAOrTeBfzXZXXgR5lgCqHQR5eZDXdsFQa0DYk4t3UO0wOByGvKK6o3NrB4VfTR3AbecP5I4LBvGHH9TuMOWbnrERAPz7f5mAe3qKr3dav/q3Hqxbi5Yc625oXrU7v85+pZTy5NN6AMaYhcDCWml/9NieVs95K4ER9ezbg9XD6LRwTgjnagT2oQqoX0KUa/vAsVIiQgOpamhleQ8iwq3nDTy5zAIDu0XVeD91cFeeXLyDOR9sZuaoHjVmFZ08KIEvd+YxtHsMY/rEcu+H6T5NZKeU8m9+MRIYcP3ir3I4KKmoqrFIS0Pm3TQegD1Hisk9jXPzhAUHMrZPrOt9987uxuWvdx3h8y2HAPjm7qmuCenOG9KVa8b35srUnmw9WNjkdgBjDEu2HtaRxEr5Cf8JAHYJ4GhJBdnHSokO8y0A9I63uokePF7GYXtunmlndOXnk/vxvaHduHXqgJbJMPDaDeO4cEQiX981lc4RIXzwy7MA+OvnO9hu905Kjo3giVkpPHTpMFeJZWj3GI6WVDR5Mrn31mVz0xtpvNvA4jZKqY7DL5aEBFyzcT69ZBcAe46U+HSec4rmQ8fLCLSrXe6/eBg9u0S0QC5rigwN4vlrxrjej+5llQi21+qa2ic+kj7x7vEMzgFpa/bmc+nIhoZs1LQ+qwCAE7oOgVJ+wW9KALWnfPZ10feQoADiIkPIKy7n4HGrBJBQa9rm06mvx4P+/ou9NzCfkRRDp/BgXlixm9yiMgp9HBnsDJIn23VVKdW++E0ACAiQGnPyXzO+dwNH11Re5WDemv08tWQnXaNDT7prZ3O4e/pg13ZKcmevx0SGBnHTOX3ZfqiIcY8sZcqTK3y6trPN4HChTkOtlD/wmwAAEBps3W6XyBAuG9PgdEU1ePaoSfJxTp+W0jnCPeYgpoF2DM8qoaM+TGsN7qqftMxjJ5k7pVR74lcBwPnLvVN48Elfo6GH7unQz+PB3rXWtBOezkiKrvE+y4fZSE/YVT+HtASglF/wqwDgrAIa0aNTk877nj0gDCAipPWqf6DmQ7+hQDaga80AsCXneKPXdnYnPXaiQruCKuUH/CoAHCiw5tXxbEj1xcvXjXH98p86uGuz56up5v1sPE/OSmnSObvzGu71ZIxh2fZcexuO6YRySnV4ftMN1NPUIU17iIsIG++/gO/2H3N1xWxNZ/WP9+m4+y46g71HSliwMcfrFBaejteaQjq/pLxVezsppVqeXwWAK1N7UulwMLKn994zDRERxvSuu3BMW3bTuf0AWLk7nyPFDQeAhz7ZBsBlo5N5/7ts8osr+MviHSzYmMNXd01t8bwqpU4/vwoAjzex2qSjiIsMqbOwTW3vf2eN/u0TZw1wu+aVNa59eUVaGlCqI/KrNgB/FR8V2mgJwGlA16g6aZn5vo2aVkq1LxoA/EBsZAi7covrHeFb6dHjJ7FT3a6lh45rt1ClOiINAH7AuWD8Cx4L23jynBZjQNcofj6pX439GgCU6pg0APiB+y6y5gyqXZWTfuA4FVUO17rDT8xKITosmNum1VzHoKGBYQ6H4X8ZR2qUIpRS7YMGAD8wODGacX27cLDA/SDfnH2cHzz7DYPuW+QaJexc0D48OJBxfbowZ8YQ+sZHNhgA/r0yk2teWcNie30CpVT74Ve9gPxZcudwVnusL1zkMUPom6ut9YOdDcAiwju3TASsLqSZR0o4fqKSmPCgGiuRAWTkWlNTazWRUu2PlgD8RHJsOIcKy1xVNSUec/4vSrd+vXsubu80JDGaLTmFnPng58xfm1Vnv8Ou+Vm/v6AFcq2Uakk+BQARmS4iO0QkQ0TmeNn/OxHZKiKbRGSpiPS200eKyCoR2WLvu9LjnNdEZK+9iPwGERnZfLelausRG47DuH+pe1sPofaaCWAFACdv1TzHTljjC77eldfkJSiVUq2r0QAgIoHAc8AMYChwlYjUXolkPZBqjEkB3gOesNNPAD82xgwDpgNPi4jnMNw7jTEj7deGU7wX1YAena0BXtnHrPmQvC0aX7t6B2B8vzjXBHgrduTxz6/2uPZVVDlYuduqViosqyK3kekmlFJtiy8lgHFAhjFmjzGmApgPXOp5gDFmuTHGOd/waiDZTt9pjNllb+cAuUBCc2Ve+S451lrH4Kp/rmbxlkMU2L/c/3H1qAbP69E5nK0PTneVBB5ZuM2179p/raG4vIprxvcC4KudeS2RdaVUC/ElAPQAPCt/s+20+twILKqdKCLjgBDAszP6I3bV0FMi4nWuARG5WUTSRCQtL08fMCerZ5cI4qOsOv6fv7mOv3y+k/DgQC4akeTT+TNHub/yb/ceBSDHnl31lsn9CRDf1hxQSrUdvgSAuvUC4LWyV0SuBVKBJ2ulJwFvAjcYY5wdxu8BhgBjgS7A3d6uaYx52RiTaoxJTUjQwsPJCgwQ/vCDmjV3pZXViAjzbhrPP3+c2uD5P5/Uj6vtX/pXvLQKgKFJMQxJjLaDS6guJKNUO+NLN9BsoKfH+2Qgp/ZBIjINuBeYbIwp90iPAT4F7jPGrHamG2MO2pvlIvJv4I6mZ181xZjesQQGCNUOK36n9ramtj5rQOPTS4sIgR5tBFlHT/D51sOu94mdwjhUqG0ASrUnvpQA1gIDRaSviIQAs4EFngeIyCjgJeASY0yuR3oI8CHwhjHm3VrnJNl/BZgJpJ/KjajGJcdGsPvPF9LDXtf4rZvGN+n8n53bj55drHP/sSyjxr5uMWEc1rEASrUrjQYAY0wVcCuwGNgGvGOM2SIiD4rIJfZhTwJRwLt2l05ngLgCmAT8xEt3z7kishnYDMQDDzffbamGfPirs1hw69muNZJ91Ssugq/unErf+EgWbKxZCEyMCSPr2Il6J5xTSrU90p76bqemppq0tLTWzobfe3ThNl6yu4P+7Yoz+dHoZJZvz+WG19YC8N0fvud1UJlSqnWIyDpjTJ2GPh0JrJqsX4J7TeURPToBcO5AdzvCNxlHTnuelFJNpwFANZlzUBlAdFgwAEGB7n9Kh46XnvY8KaWaTgOAarIe9qAywDW2AODFa0cDcOi49gZSqj3QAKCaLMlj1TDPX/7ThyeRktyJbzK8D9j7ZFMO2w4Wtnj+lFK+0emgVZOFBQfy+wuH0L1zeJ19UwYl8OzyDCqqHIR4TC7ncBhunbcegMzHLjpteVVK1U8DgDopN0/q7zW9Z5cIjIH0nOOM7hXrSnfOGqqUaju0Ckg1q5Rka7LXK15cVSPdc5oI50hkpVTr0gCgmtWgbtaqYlW1HvK5HtNEOCeRU0q1Lg0AqlmJCBelWDOMeq4dcNijBKDjBJRqGzQAqGbnnGTukYXb2JhlLRXpWQV0RBeOUapN0ACgmt1lY5Jd2698s5eKKgeHC8uJjwohOjSIg4Vl7MsvacUcKqVAewGpFhAd6v5n9fHGHJZtO+xahL5ffCTz1uxn3pr9PHDJMK4/q08r5VIppSUA1exEhL9cfiZnJlvzBDkf/rERwUzsH+c67pmlu1olf0opiwYA1SJmjUnm2atG10h79SdjaywtWbunkFLq9NIAoFpMr7gIZgxPdL0f1SuWsX260N2eSqKwrJKqakd9pyulWpgGgOZQcQLKi6y/VeXgqIZ2tM5CS5ruEQCcVtw5lXsvPANj4HhpZSvkSikF2gjcPBbdCevfqpsuARAQBBIIAfbLte1Mr31MkH2e89ggezsAgsJg+GUw4nIIbB9f3aUje3Db/A18f1g3V1pIUABJna1SwOsrM/ndBYNbK3tK+TVdEaw5ZCyFw1vAVFu//h3VHttV9rbDY9uZ7qh1TCPnluTC0T3QpT9MvguGz2oXgaCiykFQgBAQ4F5U/uDxUiY+ugyAzX+6wLWugFKq+dW3IpgGgPbEGNj+Kax4DA5vhrgBMOkuGDHLKiW0M88tz+DJxTvo0Tmcq8f34ldTB/DCit3ERgQze1yv1s6eUh2GLgnZEYjAGT+An38FV7xpVQl9eDM8Nx42vWuVGtqRi0ZYU0YcKCjlycU72HawkMc/286cDza3cs6U8g8+BQARmS4iO0QkQ0TmeNn/OxHZKiKbRGSpiPT22He9iOyyX9d7pI8Rkc32NZ8REal9XVWPgAAYegn8/Gu44g0IDIYPboLnJ8Dm99pNIEj0WFgGYMbfv3ZtV55i76AlWw+zek/+KV1DqY6u0QAgIoHAc8AMYChwlYgMrXXYeiDVGJMCvAc8YZ/bBbgfGA+MA+4XEeck8S8ANwMD7df0U74bfxMQAEMvhVv+B5e/bjUYv38jPD+xXQSCsOD6q6325JVQXF7FbfPXk3mkhD/8N51XvnZPLudwGFbvyae+Ksyb3khj9surmz3PSnUkvrQgjgMyjDF7AERkPnApsNV5gDFmucfxq4Fr7e3vA18YY47a534BTBeRFUCMMWaVnf4GMBNYdEp3468CAmDYTDjjEtj2Eax43AoEXz0Jk++GoTOtY9qR37y9HhHYfqiIZdtyKSqvAmBgt2gmD0rgg/UHuOPdjVw1rifvrzvAnBlDuHBEUp1ShVKqfr48FXoAWR7vs+20+tyI+0Fe37k97O1GrykiN4tImoik5eV5X2tW2QICYNgP4RcrYdarVqPxezfAC2fBlg+t3kRtzICu1voBN5zdB4AzkmIA2HG4iO2HigBcD3+AbQcLqax2cMe7GwF4+9ssKqodPPjJVm6d9x0ApRXukk9ZZdsuBSnVmnwJAN7q5r2Wu0XkWiAVeLKRc32+pjHmZWNMqjEmNSEhwYfsKgICrPECv1wFl/3L6kr67k/gxbNhy39bJxA4HJC/2wpESx+E/1wHS/7EpxcUsfnOUVw60or/N57Tl4Zag/YfPUHmEe8ziabtO0Z+cTnLtue60rKPnWjW21CqI/GlCigb6OnxPhnIqX2QiEwD7gUmG2PKPc6dUuvcFXZ6cq30OtdUpygg0OoiOuyH1oN3xWPw7vXQbbhVNTTkBy1TNVRZCrnb4NAmOLTZfqVDpf3gDgiCTj1hx0JCHVWEAiNj+7D1zNFEVB3gdcrZRi+qPP55Xj+xN6+v2se8Nfs5f0hXAIYkRvOj0T0oOFHJ8yt2A3D7fzYwdXBX13kHCsoY0DW6+e9RqQ7AlwCwFhgoIn2BA8Bs4GrPA0RkFPASMN0Yk+uxazHwZ4+G3wuAe4wxR0WkSEQmAGuAHwPPntqtqHp5BoL09+HLx+Gd66DbCJhyNwy+6OQDQUl+rQf9Zjiy0yp1AIREQ+IIGHWt9TdxBCQMgeAwa+qMgxshey1kf0tE1krY8QEfh0KZCWaT6cd6xwDWOwYyKakHr9sfudT+hf+nS4YxoZ81u+jQ7jHcOm89uYXlFHhML7FgQw6TB2nJUSlvfBoIJiIXAk8DgcCrxphHRORBIM0Ys0BElgAjgIP2KfuNMZfY5/4U+L2d/ogx5t92eirwGpP6qNcAACAASURBVBCO1Wbwa9NIZvx+IFhzcVRbvYS+fByO7rYeypPnwJCLqLf+xeGAgsyaD/pDm6HwgPuYmB7uh3xiivW3c2/fg4sxUHiA9DVLCDv8Hd2L0gk7spkARwUAFZHd+bywF7mdRvBJfg8e+sU1DOvl/rV/zwebWLj5EJec2Z03V+9zpe/+84UEBmgvY+W/dCSwqqu6CtKdgWCP9dCeMgf6nw9522s+6A+nQ3mhdZ4EQvwgSEpxP/C7jYDIuIY/72RUlVufn70Wsr4lZ8vXdMfqDGACQpCkFOg5DpJT+ex4T275OJeBXaMprawm+5i1+Pyy/5tMv4So5s+bUu2EBgBVv+oq2PwOfPkEHNuL1UZv/7sIibLaDFy/7EdA1zMgOLxVsnrNK6vZmZHB6IAMnp1URUjOOshZD1XWw/6w6cx6x0AORQ/HkTyWJzaFExEZzUe/OpuKagf9NRAoP6QBQDXOWSLIz4Buw6wSQWzfNjWG4E8LtvDaykwAMh+7yEqsroTDWyjevZLPP/+UUbKLvgGHAag0gaSbvqx1DCbNMYiX770VIuNbKfdKtY76AkDbn0pSnT6BQXDm7NbORYOcA71qVOkHBkP3kUQmncm720bzuz35TOsVwCvnQ9GOb6hIW8L1gZ9zc9Cn8ORTEDcQek2AXhOtv1361d/2oVQHpgFAtSuDullVOI/9KKXOPhHhyctTOOfx5YwYNAAGD6TL4Bks4mquW7mL4bKXsQE7+FVkHjHbP4H1b1onRnatGRASR1hBRakOTquAVLuzMauAlORO1Dd/YHlVNYEiBAVaVVcvfbmbRxdtr3HM9gcvIKxgN+xfBftXW38L7J5DwRGQnOoOCMljIVTHEqj2S6uAVIdxZs/ODe4PDao5ydy4vl3qHHPhs/9j2f9Nga5DIPUGK7Ewxw4GqyFrtTWXknFYq7EljnAHhJ4TICapuW5HqVajJQDlF3KLyng3LZuNWQV8vtVqIN7x8PQ6waKG8iKr+6mzhJCdBpX21BKxfTxKCOMgpjuEddK2BNUmaQlA+bWu0WH8auoAjDHc8NpaVuzIY1/+CQZ1a6BqJzQa+p9nvcDqbXRokzsgZCyBjW+7jw8IgvAuEBFnv3zYDonSoKFajQYA5VdEhDsuGMyKHXlk5BY3HABqCwyGHmOs18RfWSOXj+6BA+ugOBdO5Hu8jlpTYji3TT2zkgaGWIEgvEutIBFXK2B0gdAYq30iOMz6GxiiwaM+BVlwZIc1YLFTT/3vVA8NAMrv9EuIBGB3bvGpXUgE4vpbr4Y4HFB+3AoENYJEvkea/ffwFutv6THqmSDXMwM1A0JQmDVAz/kKCm9kn5f3oVHWQzMk8tT+25xODoc1cn3/Knej/nGPWegj4iBpJHQfZb9GWtOWaFDQAKD8T0RIED06h7M77xQDgK8CAiA81no1FiycHNVQWgCldmAoOWK1SVSVWrOtOl9VZVa7RKX91/m+4oR1XmVp3X2NkQCIGwBJZ1qDAZNSrL8RdRvTW0VVOeRsgP0r3Y32ZQXWvqhuVtvMxFutEev5u6yR4jkb4Jun3CWxyAR3QHAGBz9s2NcAoPxS77gI9h9tw2sFBARacytFxmGtmNpMjLEeoK6A4BlMSq2gc3iL1daxbyVsftd9bqdeVjDwDAzRSS3/S7rsOGStdT/wD6yz8g7WoL4zLobeZ1kN8rF9a+an32T3dmWpNS15znrrdXCD1Y5j7PUxohKt0oFnYIju1rL31so0ACi/1DU6lP9uyKGkvIrIUD/630DErhZqYOnMoZe4t0vy4dBGa9rug5uswLD9U1zVU5EJ7mDgDAynOn1I4UGP6pxVVkAyDmsSwqQzIfVG6D3R6o4b1YSpvoPDoedY6+VUUWJNNpizwR0Ydi523190d3e1kTMoNOUz2zg/+pevlJuz++ffvtjJH34wtJVz04ZFxtXsCQVWVdShdCsYHNxkBYeVz4LDXrozJNpdbeQMDPGDvI+uNgaO7HL/ut+3staAvLHW4kXOAXnN3TYREmmPAp9Q6/42uwNCzgbY8al7f0xyzZJCdKIVoIwBjJe/1JPexL+9Jjb7/es4AOWXDhSUcvZjyxjULYrPbptEgK4XcGqqyiF3q7uUcNBeJMiepZXAUOg21F1KqDzh7k57It86JiLe+mXvmpIjpe1MyVF23A52HiWFo3tObx5+tRYSBp3UqTobqFK1PLpwGy99tYc//3AEV4/v1drZ6Xgc1dbMss4HpzMwOBtsu/RzP+x7nWU1kLennjmlBVbpp/SYnW9p2t+mnpM4AkIiTiqrGgCUqqW8qpoR93/OhP5xvPHTca2dHf9gjNVFMzC0wzewtiX1BYC2M9G7UqdZaFAgM0d156udeTy6cBsFJypaO0sdnwh07qUP/zZCA4Dya33jremlX/pqD59vOez1mHs+2MTyHbmnM1tKnRY+BQARmS4iO0QkQ0TmeNk/SUS+E5EqEZnlkT5VRDZ4vMpEZKa97zUR2euxb2Tz3ZZSvokJd3eEu+v9TRSWVdbYX1nt4O1vs7jh32s5UFB6urOnVItqNACISCDwHDADGApcJSK1+83tB34CzPNMNMYsN8aMNMaMBM4DTgCfexxyp3O/MWbDyd+GUifne0O78YMU9wjQXYdrjg4uLHUHhL9+vuO05Uup08GXEsA4IMMYs8cYUwHMBy71PMAYk2mM2QQ4GrjOLGCRMaYND79U/qZrdBj/uHo0H996DgC/eGsdv3vH/Vvkb1/sdG3vzz+BMYYcLQmoDsKXANAD8JhZiWw7ralmA2/XSntERDaJyFMiEurtJBG5WUTSRCQtLy/vJD5WqcYlRFv//HKLyvnguwMAbD9UyNw1+wHoHBHM/qMnuPCZbzjrsWV8ln6w1fKqVHPxJQB465jbpL6jIpIEjAAWeyTfAwwBxgJdgLu9nWuMedkYk2qMSU1I6DhDsFXb0jW65u+PvKJypj/9tev9rNHJ5BaVs+1gIQCr9xxlydbDVFU3VOhVqm3zJQBkAz093icDOU38nCuAD40xrgpVY8xBYykH/o1V1aRUqwgIEJ6+ciQDu1q9gsY+ssS1Ly4yhJmjahZ6X1uZyU1vpLEw/RAAazOP8uzSXacvw0o1A18CwFpgoIj0FZEQrKqcBU38nKuoVf1jlwoQa2XvmUB6E6+pVLOaOaoHj12WUif9nVsm0jfePQdLzy7hru3fvL0egMtfXMVfv9ipJQLVrjQ6GZwxpkpEbsWqvgkEXjXGbBGRB4E0Y8wCERkLfAjEAheLyAPGmGEAItIHqwTxZa1LzxWRBKwqpg3ALc10T0qdtO6da86S+dnt59I/wSoVPHPVKMoqq4kJC+KWt75zHVNcXuXaPlxUzqrd+USHBfH9YYmnJ9NKnSSfZgM1xiwEFtZK+6PH9lqsqiFv52bipdHYGHNe3aOVal1xke62gMvHJDMkMcb1/pIzuwOw90hJjXOG3+9u2tqXX8Id724EIPOxi1oyq0qdMh0JrJSHkCD3/xJPXn6m12N6dbEm5Jo6uG6nhB2HilzbWh2k2joNAEp5kdo7tt59gQFC5mMX8e8bxvGE3WbQvZNVdeRZOhhw76KWzaRSp0gXhFGqlp0Pz8DX5QEmD06gb3wkt04dwP0LtpCZX3Oco8NhdK0B1WZpCUCpWkKCAggK9O1/jW4xYSy/YwqXjUmmW0wo+/Nrtg98vKmpPaaVOn00ACjVTLp3DneVAJ6+0prbcOk2nUVUtV0aAJRqJucMiHdtd42xehMt2JhDfnF5a2VJqQZpAFCqmfTs4l6uLzQokEHdrPEDzy7LaK0sKdUgDQBKNZNuMe5BZKFBAbz9swmANW2EUm2RBgClmonzFz9AdFgQcVFeJ7hVqs3QAKBUM4kOC3Z1H+0Za1UH/fq8AQAcOl7WWtlSql4aAJRqRl/eOZX3fzHR1fd/xnBrtbFPtDuoaoM0ACjVjHp2iWBM7y6u90O7x9A/IbLeBeeVak0aAJRqYecOTGBLznGMadI6Skq1OA0ASrWwHp3DKamoprCsqvGDlTqNNAAo1cIGJ0YDsHSbVgOptkUDgFIt7JwB8QzuFs0LK3af1Pm5RWWs33/spD8/p6CURZt1EXtVlwYApVpYQIBw2Zge7Mot5mhJRZPPv+yFlfzw+ZWUVVY3+dxHPt3KWY8t4xdzv6OorLLxE5Rf0QCg1GkwNKkTAJ/Zi8g3RdbRUgA2Hzje5HP/+fVe1/buvJIGjlT+SAOAUqfBxP5xdO8U1uR2gI82HHBtX/7iqiadW7vX0a7DRfUcqfyVBgClToPAAGH68CSWbs+lz5xP2ZhV4NN5mUdqLjDTlId4SYVVZTTtjK6IwKo9+b5nWPkFnwKAiEwXkR0ikiEic7zsnyQi34lIlYjMqrWvWkQ22K8FHul9RWSNiOwSkf+ISMip345SbdfscT1d25c+9z9+/Oq3FJxouE3gRGUVIUEBfH3XVAC+3Jnn2vdOWhbvrM2q99xnl+4CrEboS8/szgffHcDhcJcKqh1Gxyb4uUYDgIgEAs8BM4ChwFUiMrTWYfuBnwDzvFyi1Bgz0n5d4pH+OPCUMWYgcAy48STyr1S7MbBrVI33X+3M477/ptd7fFllNS99uYcAsUYYR4cG8fCn21wP8bve28Rd72/yem5+cTkvfbUHgLioUIZ1t9og/utRpTTovkX8/sPNp3RPqn3zpQQwDsgwxuwxxlQA84FLPQ8wxmQaYzYBDl8+VEQEOA94z056HZjpc66VaodEhB0PT+cHKUmutIzc4nqPX7P3KABV1dYDv7zK+t9rUfqhGiWH2r17Pks/yKOLtgPw4rWjuWhEEleP7wXAh+utAFBZ7aDaYXj72yxKynWAmr/yJQD0ADzLmdl2mq/CRCRNRFaLiPMhHwcUGGOc//LqvaaI3Gyfn5aXl+ftEKXajdCgQG6Z3B+wRghvP1TEjL9/TUVV3d9OH36XDcC/fjIWgHdvmQjAr+Z9x7lPLHcdt+2gu12guLyKW976jvfWZZMYE8b04UkEBAiRoUEAfL3rCCszjlDkMSr5lrfWNfNdqvbClwAgXtKaUnHYyxiTClwNPC0i/ZtyTWPMy8aYVGNMakJCQhM+Vqm2aXiPTmx/aDrPXDUKgG0HC3nis+016uerqh38d4M1g+j4vtbkcmf27Oza7/kA35Lj7h56xzsbXduxkTWb1ebMGALAt5lHKSx1lxq+3nXklO9JtU++BIBsoKfH+2TA57ltjTE59t89wApgFHAE6CwiQSdzTaXau7DgQMb0jiXa/mX+yjd7+dieMtoYw4B7F9U41ik5NrzOtbbkFLq2P9viHmew7WBhjeNumdyfYd1jWLLtsCuAOK+n01T4J18CwFpgoN1rJwSYDSxo5BwARCRWRELt7XjgbGCrsboeLAecPYauBz5qauaVau823n+Ba/vJxTvIKSjl7W/dNa4PXjqsxvHPXzOaV36c6no/vEcMW3IKMcawNtNqM/hBShJ94yNdVU2ehnfvRPqBQuav3Q/AE5elAFoK8FdBjR1gjKkSkVuBxUAg8KoxZouIPAikGWMWiMhY4EMgFrhYRB4wxgwDzgBeEhEHVrB5zBiz1b703cB8EXkYWA/8q9nvTqk2LiBAGN4jhvQDhWQfK+Wsx5bV2D99eGKN9ynJVjXQ8jumEB0WxNNLdvLW6v30vWeh65irx/XirAHxXj/v55P78Z+0LOau2U90WBDj+8UxsmdndhzSQWL+qNEAAGCMWQgsrJX2R4/ttVjVOLXPWwmMqOeae7B6GCnl1975+UTmrdnPw59uq5H+2e3n0jU6zOs5feMjAbg4pTtvrd5fY9+wHp3q/ax+Ce6uqAO7RhEYIAzuFs0SrQLySzoSWKlWFhESxJTBXQEIDnT3j+gS2fjYyPH94pg5snuNNGe7QmOuGmd1DR2UGE1+SQVHisvJLy7X9Yv9iG//UpRSLWpA1yjSH/g+JeVVXP7iKlKSO5EQFerTuYmdajYMO9cjrs9Dlw5j3b5jXJ5q9e0Y3M1ar2DnoSKufmUN3WJCWfP7aSdxF6q90QCgVBsRFRpEVGgQX9nTPvjq1+cNICo0kDG9u5B97ESjx183sQ/XTezjet83wapOemrJTgAOF5ZTXF5FlI8lCdV+6TesVDsXGRrErecNtN/FNfn8xBirnWFtpnvRmYWbD3JFas/6TlEdhLYBKOXnAr1UGb381Z4aA9NUx6QBQCnlCgK/nNKfM3t2JiO3mEH3LeK7U1iKUrV9GgCUUkweZE2zMmtMMj89uw8AVQ7Dj55fyfETupRkR6UBQCnFP64exXNXj6ZfQhQzhidx8ZndcdYM/fadDa2bOdViNAAopYgICeIie5rqkKAAnr1qFOvu+x4Ay7bnUlrR9AXp24uqagdvrMqkvKrj3mN9NAAopbzynE308611F7OvdhiOl7b/6qGPNuTwx4+2cMe7m6j2s4ZvDQBKqXrNu2k8AN/ai9N4euiTrZz5wOfsyy853dlqVhXV1loMH2/M4aFPtjZydMeiAUApVa+zBsTTJy6CuWv2k3mk5oP+s3SrVLBse26d8yqqHDy6aBuHC9v+tBJPfLbdte255rI/0ACglGpQlV0tUnv9YOcv5335dUcfr9qTz0tf7uH3H/i25nBGbjFz1+xrUr7KKqtZv//YKS1sX1Xt4Jjdy+mK1GTyi8tP6XrtjQYApVSD5t00AYCVu/NdjcHGGNeqYq+tzGTJVvdsoocLy/izPbPp0u25rMxofK2B37y9nns/TK9TymjIP5Zl8MPnV7LCx1/txhh2HS5yPeDzispdC++M7tWZoUkxFJZVkVtUDsDeIyUdfr1kDQBKqQb1iovgrumDATjjj5+RlnmUskqHq2QAcNMbaey1H97XvLKGHYfd6wt8vvUwCzbm8Pa3++udq+hEhfWg/TazbluDN1XVDv6xPAOARZsPNnp8WWU1zy7L4HtPfcUjdnA6eLzUtf8fV49mkD0p3q7DxQBM/csKZr+8usHrVlY7KDhR4VOe2yINAEqpRt1wVl/X9qwXV/HSV7vrHPP4Iqsu/WiJ9UB89qpRDEmM5t20LH7z9nru+WAz5zy+3OsDMyjQehRtzSmss8+bPR4lhU83HaSssuEunLfP38DfvrAmu/tkkxUwSsqtcx64ZBjdO4cz0A4AOw4XUWlXb20+cJyjJRVU2e89HTxeysRHlzHywS/a7bQZGgCUUo0KDwnk29+fzzn2SmNPL9kFwL0XnsF1E3pz0YgkvtyZR1W1g/LKaq6f2JuLz+xOn7hISmqNIfjguwOu7ZLyKu7/KJ2MXOtX92srMyn2odplT547AJRUVDPkD5/ZAWZZnWM3ZBXUWCv5UGEZf1qwxVXqGNXLWmUtPiqE7p3CSMs8yolyd55HP/QFf164vcY1S8qrmPjoMo4UW9VFe44UN5rntkgDgFLKJ11jwnjrpvG8fN0YV9qMEYk8NHM4kwcnUFpZzao9+ZRUVDPA/jUdEepe0P7Gc/qS1CmMBz/ZyrS/fUl5VTXD7l/M66tqNv7+nw8jj52ljM9uP9eVZlUxlbp+vTvtP1q32um1lZmuwBQRYk2KLCKcNSCeVXvyOVqrlPL6qswa759cvKPG+483Nl4N1RZpAFBKNcmkQQl0Cg/mzz8cQXJshJU2MIEAgddXZgKQEGUNIrvt/IEM7xHDDWf34b6LziA51lq8JiO3mFEPflHjuleNs6afzilouOvo17vy2JNn/eLuExfJqnvOq7HfWYfvVFRmNVb/+Ycj+M/NE1zpm7IKAIj0CFKpvWMpOFHJ1L+sAODWqQMASOpUc2nOxVtqDoz7+9JdXquJ2jqfAoCITBeRHSKSISJzvOyfJCLfiUiViMzySB8pIqtEZIuIbBKRKz32vSYie0Vkg/0a2Ty3pJRqSWHBgWy8/wKuHt/LlZbYKYwRyZ1Zss0aE9Al0lrNrHdcJJ/8+lzuv3gYIsJfLj+TK+11Bk7Uqhq6/qw+XDgikZKK+quAKqsdXPevb3nlm72EBQcQFhxIUq0V0T7acIBPNuUw5/1NpB84zr0fpgPwo9E9GN8vjoW/sUoNr3yzF7DWU3BytgM4jUjuxI3n9OVIcbmrnj/r6AkOHi/j/ouH8rXH4j17m9CDqa1oNACISCDwHDADGApcJSJDax22H/gJMK9W+gngx8aYYcB04GkR6eyx/05jzEj7pTNOKdWOnTPAvRhNbESw12N6x0Xy+KwUenZxP7R/PqkfveMiGNQ1mqRO4ezJK+Hlr3Z7nYX0WIm7aqay2t3w6iw99Ogczuq9R7l13nrmr83ishdWuo4JC7Z+6Q/tHsMZSTEAxEWGEBPmzuvAblE1Pm9M71gGdI2irNLBgQKr19DyHVaQO3dgPD27RPDwzOEAfLD+AO2NLyWAcUCGMWaPMaYCmA9c6nmAMSbTGLMJcNRK32mM2WVv5wC5QEKz5Fwp1aac3d9qIE6ODa/zS7q2FXdM5e7pQ/j77JHcc+EZfHnnVAIChO8PSwTgzwu3M+2pL+ucN+7PS13bnsvYPPqjFDIfu4jzhnRlo121A1BeZT2SXv/puBrXudoOGLUXw/EMBv+4ehTxUaGu7qHPr8igosrBw59uY1C3KAZ0tdKvndCboUkxvLBiN1f/czXPr8gg/cBxnxqzG1PtMDWCXnPzJQD0ALI83mfbaU0iIuOAEMCz/9gjdtXQUyLidQVsEblZRNJEJC0vz7+GaSvVnkzsH8fcm8az4o4pjR4bGCD8Ykp/Lh1Z81Eyrm8X+sVbaxTn2QOynDxH6F40Iom37HmKPH1vaLc629eM7+Va78DJGWgGJ9YNVH+fPZIhidFM7GeVaEb17Ez3TmF8vPEg9y/YQkWVgwuGJtY4Z5J9/ZW783nisx384Nlv+OvnO8g6eqLOdBilFdXM+PvXvLEqs85n1/a3L3Yw6qEvuPzFlY0eezJ8CQB114uDJnV6FZEk4E3gBmOMs5RwDzAEGAt0Ae72dq4x5mVjTKoxJjUhQQsPSrVVIsLZA+JdffpP1vVn9XFtewaBw4Xu7cdnpTChX931j88eEE9ybDgPXTrM1b0zJKhufrrGhPH2zybw9JV1mx4vHdmDz26fRFyU9Zs0IED4+eT+FJdX8emmHAB+ObV/jXNmjan7m/irnXlMfnI54/+81FUqqahycMd7G9l2sJA/frSFQ8fL6vRa8uScm8hzvebm5Ms3lQ14rg6dDOT4+gEiEgN8CtxnjHENqzPGHDSWcuDfWFVNSik/N2tMMr26WL2L7vlgkyvd2df+sR+NIMqj4dZTYIDwzd3ncd3EPnSLtnruRIQEej12Yv8410O+MRcMs0oThWVVzBie6Oo66jSgazTv3jKRz387yZW2O68E5/iwX7+9nrLKav6xPINPN7m7jE54dCk/fP5/9U5DPciuZpo0qGV+/PoSANYCA0Wkr4iEALOBBb5c3D7+Q+ANY8y7tfYl2X8FmAmkNyXjSqmOKTI0iC/vnALAzsPFFJyoYE9eMQ99Yk3hMGVwV5+uc8nI7tw1fTC/nDLglPPk2dNo3T7vv8bH9unCoG7RjO7Vuc6+/UdPcOYDn/PM0l119qUfKORTj+ksPBffiQqzAs1fLz/zpPPeEO9h1IMxpkpEbgUWA4HAq8aYLSLyIJBmjFkgImOxHvSxwMUi8oDd8+cKYBIQJyI/sS/5E7vHz1wRScCqYtoA3NLcN6eUap9EhBvP6cu/vtnLhEeXUlbpriZJrNUnvz7BgQHN8vB3WnDr2Vzyj//x+wvPaPC4t24az/8y8vnZG2kA/HbaIJ5astPVIO312hty2JhVQERIIM8uy+DCEYkkRIWSV1ROYkwYCdG+lVSaStrT1KepqakmLS2ttbOhlDoNvtqZx49f/bZG2tybxnO2PR1FW1ZWaU1PAbByznmc9VjNKSoW3XYu1/3rWyYPSiAqNLDOaOjaMh+76JTyIyLrjDGptdN1JLBSqk2aNCiBsX1ia6SN7dOllXLTNM4xBwDdO4eTHBvOrDHJAMwYnsgZSTGsvfd8/nJ5ChP7123MPl0arQJSSqnWcuM5/VibuQ6wBnl569HTVq27b5prsZlv7ramq5gzY4irAdtq/oTpw5Nc5/zue4MY1C2K8ioHt823xsbePm1gi+VRA4BSqs0622N08WKPHjbtQVxUaJ1eRvH19Dq698IzSIgOZeYoqztpXlE5InDZ6GRunzaoxfKobQBKqTZt7pp99IuPatWqktaQX1xO54iQOqOVT0Z9bQBaAlBKtWnXjO/d2lloFb6OUTgV7adCTSmlVLPSAKCUUn5KA4BSSvkpDQBKKeWnNAAopZSf0gCglFJ+SgOAUkr5KQ0ASinlp9rVSGARyQManjbPu3jgSDNnp63Qe2u/OvL9deR7g/Z3f72NMXVWlWlXAeBkiUiat2HQHYHeW/vVke+vI98bdJz70yogpZTyUxoAlFLKT/lLAHi5tTPQgvTe2q+OfH8d+d6gg9yfX7QBKKWUqstfSgBKKaVq0QCglFJ+qkMHABGZLiI7RCRDROa0dn6aSkR6ishyEdkmIltE5DY7vYuIfCEiu+y/sXa6iMgz9v1uEpHRrXsHjRORQBFZLyKf2O/7isga+97+IyIhdnqo/T7D3t+nNfPtCxHpLCLvich2+zuc2FG+OxH5rf1vMl1E3haRsPb83YnIqyKSKyLpHmlN/q5E5Hr7+F0icn1r3EtTdNgAICKBwHPADGAocJWIDG3dXDVZFfB/xpgzgAnAr+x7mAMsNcYMBJba78G614H262bghdOf5Sa7Ddjm8f5x4Cn73o4BN9rpNwLHjDEDgKfs49q6vwOfGWOGAGdi3We7/+5EpAfwGyDVGDMcCARm076/u9eA6bXSmvRdiUgX4H5gPDAOuN8ZNNosY0yHfAETgcUe7+8B7mntfJ3iPX0EfA/YASTZaUnADnv7JeAqj+Ndx7XFF5CM9T/WJuOgqAAAArFJREFUecAngGCNrgyq/R0Ci4GJ9naQfZy09j00cG8xwN7aeewI3x3QA8gCutjfxSfA99v7dwf0AdJP9rsCrgJe8kivcVxbfHXYEgDuf6RO2XZau2QXm0cBa4BuxpiDAPbfrvZh7e2enwbuAhz2+zigwBhTZb/3zL/r3uz9x+3j26p+QB7wb7uK6xURiaQDfHfGmAPAX4D9wEGs72IdHee7c2rqd9VuvkOnjhwAxEtau+zzKiJRwPvA7caYwoYO9ZLWJu9ZRH4A5Bpj1nkmeznU+LCvLQoCRgMvGGNGASW4qxC8aTf3Z1drXAr0BboDkVjVIrW11++uMfXdT7u7z44cALKBnh7vk4GcVsrLSRORYKyH/1xjzAd28mERSbL3JwG5dnp7uuezgUtEJBOYj1UN9DTQWUSC7GM88++6N3t/J+Do6cxwE2UD2caYNfb797ACQkf47qYBe40xecaYSuAD4Cw6znfn1NTvqj19h0DHDgBrgYF2z4QQrEaqBa2cpyYREQH+BWwzxvzNY9cCwNnD4HqstgFn+o/tXgoTgOPOImxbY4y5xxiTbIzpg/XdLDPGXAMsB2bZh9W+N+c9z7KPb7O/rowxh4AsERlsJ50PbKUDfHdYVT8TRCTC/jfqvLcO8d15aOp3tRi4QERi7VLSBXZa29XajRAt+QIuBHYCu4F7Wzs/J5H/c7CKkJuADfbrQqz606XALvtvF/t4wer5tBvYjNVLo9Xvw4f7nAJ8Ym/3A74FMoB3gVA7Pcx+n2Hv79fa+fbhvkYCafb3918gtqN8d8ADwHYgHXgTCG3P3x3wNlZ7RiXWL/kbT+a7An5q32cGcENr31djL50KQiml/FRHrgJSSinVAA0ASinlpzQAKKWUn9IAoJRSfkoDgFJK+SkNAEop5ac0ACillJ/6f5sVULxwbJAwAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.recorder.plot_loss()"]},{"cell_type":"markdown","metadata":{"id":"466TfR1E1gmV"},"source":["As you can see, the training loss keeps getting better and better. But notice that eventually the validation loss improvement slows, and sometimes even gets worse! This is the point at which the model is starting to over fit. In particular, the model is becoming overconfident of its predictions. But this does *not* mean that it is getting less accurate, necessarily. Take a look at the table of training results per epoch, and you will often see that the accuracy continues improving, even as the validation loss gets worse. In the end what matters is your accuracy, or more generally your chosen metrics, not the loss. The loss is just the function we've given the computer to help us to optimize."]},{"cell_type":"markdown","metadata":{"id":"XCY5gsTP1gmX"},"source":["Another decision you have to make when training the model is for how long to train for. We'll consider that next."]},{"cell_type":"markdown","metadata":{"id":"fg5OG3lB1gmY"},"source":["### Selecting the Number of Epochs"]},{"cell_type":"markdown","metadata":{"id":"i9f7MCPx1gmY"},"source":["Often you will find that you are limited by time, rather than generalization and accuracy, when choosing how many epochs to train for. So your first approach to training should be to simply pick a number of epochs that will train in the amount of time that you are happy to wait for. Then look at the training and validation loss plots, as shown above, and in particular your metrics, and if you see that they are still getting better even in your final epochs, then you know that you have not trained for too long.\n","\n","On the other hand, you may well see that the metrics you have chosen are really getting worse at the end of training. Remember, it's not just that we're looking for the validation loss to get worse, but the actual metrics. Your validation loss will first get worse during training because the model gets overconfident, and only later will get worse because it is incorrectly memorizing the data. We only care in practice about the latter issue. Remember, our loss function is just something that we use to allow our optimizer to have something it can differentiate and optimize; it's not actually the thing we care about in practice.\n","\n","Before the days of 1cycle training it was very common to save the model at the end of each epoch, and then select whichever model had the best accuracy out of all of the models saved in each epoch. This is known as *early stopping*. However, this is very unlikely to give you the best answer, because those epochs in the middle occur before the learning rate has had a chance to reach the small values, where it can really find the best result. Therefore, if you find that you have overfit, what you should actually do is retrain your model from scratch, and this time select a total number of epochs based on where your previous best results were found.\n","\n","If you have the time to train for more epochs, you may want to instead use that time to train more parameters—that is, use a deeper architecture."]},{"cell_type":"markdown","metadata":{"id":"LbKkLmKy1gmY"},"source":["### Deeper Architectures"]},{"cell_type":"markdown","metadata":{"id":"qWqrrwci1gmZ"},"source":["In general, a model with more parameters can model your data more accurately. (There are lots and lots of caveats to this generalization, and it depends on the specifics of the architectures you are using, but it is a reasonable rule of thumb for now.) For most of the architectures that we will be seeing in this book, you can create larger versions of them by simply adding more layers. However, since we want to use pretrained models, we need to make sure that we choose a number of layers that have already been pretrained for us.\n","\n","This is why, in practice, architectures tend to come in a small number of variants. For instance, the ResNet architecture that we are using in this chapter comes in variants with 18, 34, 50, 101, and 152 layer, pretrained on ImageNet. A larger (more layers and parameters; sometimes described as the \"capacity\" of a model) version of a ResNet will always be able to give us a better training loss, but it can suffer more from overfitting, because it has more parameters to overfit with.\n","\n","In general, a bigger model has the ability to better capture the real underlying relationships in your data, and also to capture and memorize the specific details of your individual images.\n","\n","However, using a deeper model is going to require more GPU RAM, so you may need to lower the size of your batches to avoid an *out-of-memory error*. This happens when you try to fit too much inside your GPU and looks like:\n","\n","```\n","Cuda runtime error: out of memory\n","```\n","\n","You may have to restart your notebook when this happens. The way to solve it is to use a smaller batch size, which means passing smaller groups of images at any given time through your model. You can pass the batch size you want to the call creating your `DataLoaders` with `bs=`.\n","\n","The other downside of deeper architectures is that they take quite a bit longer to train. One technique that can speed things up a lot is *mixed-precision training*. This refers to using less-precise numbers (*half-precision floating point*, also called *fp16*) where possible during training. As we are writing these words in early 2020, nearly all current NVIDIA GPUs support a special feature called *tensor cores* that can dramatically speed up neural network training, by 2-3x. They also require a lot less GPU memory. To enable this feature in fastai, just add `to_fp16()` after your `Learner` creation (you also need to import the module).\n","\n","You can't really know ahead of time what the best architecture for your particular problem is—you need to try training some. So let's try a ResNet-50 now with mixed precision:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vNqQQaFe1gmZ","outputId":"abc7d754-61a7-44a5-dc71-056b0ae7ead0"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
01.4275050.3105540.09878200:21
10.6067850.3023250.09472300:22
20.4092670.2948030.09134000:21
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.2611210.2745070.08389700:26
10.2966530.3186490.08457400:26
20.2423560.2536770.06901200:26
30.1506840.2514380.06562900:26
40.0949970.2397720.06427600:26
50.0611440.2280820.05480400:26
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["from fastai.callback.fp16 import *\n","learn = vision_learner(dls, resnet50, metrics=error_rate).to_fp16()\n","learn.fine_tune(6, freeze_epochs=3)"]},{"cell_type":"markdown","metadata":{"id":"Ao2I8f7x1gmZ"},"source":["You'll see here we've gone back to using `fine_tune`, since it's so handy! We can pass `freeze_epochs` to tell fastai how many epochs to train for while frozen. It will automatically change learning rates appropriately for most datasets.\n","\n","In this case, we're not seeing a clear win from the deeper model. This is useful to remember—bigger models aren't necessarily better models for your particular case! Make sure you try small models before you start scaling up."]},{"cell_type":"markdown","metadata":{"id":"8wMYbumJ1gma"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"M9xqqoc51gma"},"source":["In this chapter you learned some important practical tips, both for getting your image data ready for modeling (presizing, data block summary) and for fitting the model (learning rate finder, unfreezing, discriminative learning rates, setting the number of epochs, and using deeper architectures). Using these tools will help you to build more accurate image models, more quickly.\n","\n","We also discussed cross-entropy loss. This part of the book is worth spending plenty of time on. You aren't likely to need to actually implement cross-entropy loss from scratch yourself in practice, but it's really important you understand the inputs to and output from that function, because it (or a variant of it, as we'll see in the next chapter) is used in nearly every classification model. So when you want to debug a model, or put a model in production, or improve the accuracy of a model, you're going to need to be able to look at its activations and loss, and understand what's going on, and why. You can't do that properly if you don't understand your loss function.\n","\n","If cross-entropy loss hasn't \"clicked\" for you just yet, don't worry—you'll get there! First, go back to the last chapter and make sure you really understand `mnist_loss`. Then work gradually through the cells of the notebook for this chapter, where we step through each piece of cross-entropy loss. Make sure you understand what each calculation is doing, and why. Try creating some small tensors yourself and pass them into the functions, to see what they return.\n","\n","Remember: the choices made in the implementation of cross-entropy loss are not the only possible choices that could have been made. Just like when we looked at regression we could choose between mean squared error and mean absolute difference (L1). If you have other ideas for possible functions that you think might work, feel free to give them a try in this chapter's notebook! (Fair warning though: you'll probably find that the model will be slower to train, and less accurate. That's because the gradient of cross-entropy loss is proportional to the difference between the activation and the target, so SGD always gets a nicely scaled step for the weights.)"]},{"cell_type":"markdown","metadata":{"id":"m0g-uba31gma"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"9yatNXAV1gma"},"source":["1. Why do we first resize to a large size on the CPU, and then to a smaller size on the GPU?\n","1. If you are not familiar with regular expressions, find a regular expression tutorial, and some problem sets, and complete them. Have a look on the book's website for suggestions.\n","1. What are the two ways in which data is most commonly provided, for most deep learning datasets?\n","1. Look up the documentation for `L` and try using a few of the new methods that it adds.\n","1. Look up the documentation for the Python `pathlib` module and try using a few methods of the `Path` class.\n","1. Give two examples of ways that image transformations can degrade the quality of the data.\n","1. What method does fastai provide to view the data in a `DataLoaders`?\n","1. What method does fastai provide to help you debug a `DataBlock`?\n","1. Should you hold off on training a model until you have thoroughly cleaned your data?\n","1. What are the two pieces that are combined into cross-entropy loss in PyTorch?\n","1. What are the two properties of activations that softmax ensures? Why is this important?\n","1. When might you want your activations to not have these two properties?\n","1. Calculate the `exp` and `softmax` columns of <> yourself (i.e., in a spreadsheet, with a calculator, or in a notebook).\n","1. Why can't we use `torch.where` to create a loss function for datasets where our label can have more than two categories?\n","1. What is the value of log(-2)? Why?\n","1. What are two good rules of thumb for picking a learning rate from the learning rate finder?\n","1. What two steps does the `fine_tune` method do?\n","1. In Jupyter Notebook, how do you get the source code for a method or function?\n","1. What are discriminative learning rates?\n","1. How is a Python `slice` object interpreted when passed as a learning rate to fastai?\n","1. Why is early stopping a poor choice when using 1cycle training?\n","1. What is the difference between `resnet50` and `resnet101`?\n","1. What does `to_fp16` do?"]},{"cell_type":"markdown","metadata":{"id":"SwETd0to1gmb"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"kRF7xL6L1gmb"},"source":["1. Find the paper by Leslie Smith that introduced the learning rate finder, and read it.\n","1. See if you can improve the accuracy of the classifier in this chapter. What's the best accuracy you can achieve? Look on the forums and the book's website to see what other students have achieved with this dataset, and how they did it."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wRZ31kg01gmb"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/05_pet_breeds.ipynb","timestamp":1712447693351}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/06_multicat.ipynb b/notebooks/oleg/Education/fastai/06_multicat.ipynb new file mode 100644 index 0000000..cddbe7a --- /dev/null +++ b/notebooks/oleg/Education/fastai/06_multicat.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"oaRpJd--1n7r"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"L2RV5NRq1n7w"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"mnBuEbvI1n7y"},"source":["[[chapter_multicat]]"]},{"cell_type":"markdown","metadata":{"id":"XHFycaqL1n7z"},"source":["# Other Computer Vision Problems"]},{"cell_type":"markdown","metadata":{"id":"BwIH_pD81n72"},"source":["In the previous chapter you learned some important practical techniques for training models in practice. Considerations like selecting learning rates and the number of epochs are very important to getting good results.\n","\n","In this chapter we are going to look at two other types of computer vision problems: multi-label classification and regression. The first one is when you want to predict more than one label per image (or sometimes none at all), and the second is when your labels are one or several numbers—a quantity instead of a category.\n","\n","In the process will study more deeply the output activations, targets, and loss functions in deep learning models."]},{"cell_type":"markdown","metadata":{"id":"0G_6IItx1n74"},"source":["## Multi-Label Classification"]},{"cell_type":"markdown","metadata":{"id":"FWgxhYpG1n76"},"source":["Multi-label classification refers to the problem of identifying the categories of objects in images that may not contain exactly one type of object. There may be more than one kind of object, or there may be no objects at all in the classes that you are looking for.\n","\n","For instance, this would have been a great approach for our bear classifier. One problem with the bear classifier that we rolled out in <> was that if a user uploaded something that wasn't any kind of bear, the model would still say it was either a grizzly, black, or teddy bear—it had no ability to predict \"not a bear at all.\" In fact, after we have completed this chapter, it would be a great exercise for you to go back to your image classifier application, and try to retrain it using the multi-label technique, then test it by passing in an image that is not of any of your recognized classes.\n","\n","In practice, we have not seen many examples of people training multi-label classifiers for this purpose—but we very often see both users and developers complaining about this problem. It appears that this simple solution is not at all widely understood or appreciated! Because in practice it is probably more common to have some images with zero matches or more than one match, we should probably expect in practice that multi-label classifiers are more widely applicable than single-label classifiers.\n","\n","First, let's see what a multi-label dataset looks like, then we'll explain how to get it ready for our model. You'll see that the architecture of the model does not change from the last chapter; only the loss function does. Let's start with the data."]},{"cell_type":"markdown","metadata":{"id":"zr9Bdku51n77"},"source":["### The Data"]},{"cell_type":"markdown","metadata":{"id":"--hYXZ731n78"},"source":["For our example we are going to use the PASCAL dataset, which can have more than one kind of classified object per image.\n","\n","We begin by downloading and extracting the dataset as per usual:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"amvkAr3i1n7-"},"outputs":[],"source":["from fastai.vision.all import *\n","path = untar_data(URLs.PASCAL_2007)"]},{"cell_type":"markdown","metadata":{"id":"t4LoBT971n8C"},"source":["This dataset is different from the ones we have seen before, in that it is not structured by filename or folder but instead comes with a CSV (comma-separated values) file telling us what labels to use for each image. We can inspect the CSV file by reading it into a Pandas DataFrame:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6UqssY891n8C","outputId":"e65c8e81-4441-4b68-e623-44c7619553fc"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
fnamelabelsis_valid
0000005.jpgchairTrue
1000007.jpgcarTrue
2000009.jpghorse personTrue
3000012.jpgcarFalse
4000016.jpgbicycleTrue
\n","
"],"text/plain":[" fname labels is_valid\n","0 000005.jpg chair True\n","1 000007.jpg car True\n","2 000009.jpg horse person True\n","3 000012.jpg car False\n","4 000016.jpg bicycle True"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df = pd.read_csv(path/'train.csv')\n","df.head()"]},{"cell_type":"markdown","metadata":{"id":"eTtH4Q4f1n8E"},"source":["As you can see, the list of categories in each image is shown as a space-delimited string."]},{"cell_type":"markdown","metadata":{"id":"AMj2lVU91n8F"},"source":["### Sidebar: Pandas and DataFrames"]},{"cell_type":"markdown","metadata":{"id":"m3anqfcS1n8F"},"source":["No, it’s not actually a panda! *Pandas* is a Python library that is used to manipulate and analyze tabular and time series data. The main class is `DataFrame`, which represents a table of rows and columns. You can get a DataFrame from a CSV file, a database table, Python dictionaries, and many other sources. In Jupyter, a DataFrame is output as a formatted table, as shown here.\n","\n","You can access rows and columns of a DataFrame with the `iloc` property, as if it were a matrix:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HuH2fCjO1n8G","outputId":"6db6cccd-0aad-4a05-e558-da2c29f79944"},"outputs":[{"data":{"text/plain":["0 000005.jpg\n","1 000007.jpg\n","2 000009.jpg\n","3 000012.jpg\n","4 000016.jpg\n"," ... \n","5006 009954.jpg\n","5007 009955.jpg\n","5008 009958.jpg\n","5009 009959.jpg\n","5010 009961.jpg\n","Name: fname, Length: 5011, dtype: object"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df.iloc[:,0]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ETvG67Kh1n8G","outputId":"557ed0b0-e008-41c1-8b66-ba4265fcbb96"},"outputs":[{"data":{"text/plain":["fname 000005.jpg\n","labels chair\n","is_valid True\n","Name: 0, dtype: object"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df.iloc[0,:]\n","# Trailing :s are always optional (in numpy, pytorch, pandas, etc.),\n","# so this is equivalent:\n","df.iloc[0]"]},{"cell_type":"markdown","metadata":{"id":"7c5jtace1n8H"},"source":["You can also grab a column by name by indexing into a DataFrame directly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"A_gSvQhy1n8I","outputId":"64206296-f818-4d5b-b986-60468d1a29ae"},"outputs":[{"data":{"text/plain":["0 000005.jpg\n","1 000007.jpg\n","2 000009.jpg\n","3 000012.jpg\n","4 000016.jpg\n"," ... \n","5006 009954.jpg\n","5007 009955.jpg\n","5008 009958.jpg\n","5009 009959.jpg\n","5010 009961.jpg\n","Name: fname, Length: 5011, dtype: object"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df['fname']"]},{"cell_type":"markdown","metadata":{"id":"WjKbvZ0P1n8I"},"source":["You can create new columns and do calculations using columns:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"iDFVN_5U1n8J","outputId":"42946474-f358-4d23-f3c3-70435b133fe8"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
ab
013
124
\n","
"],"text/plain":[" a b\n","0 1 3\n","1 2 4"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tmp_df = pd.DataFrame({'a':[1,2], 'b':[3,4]})\n","tmp_df"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"I6OYe-iZ1n8J","outputId":"ad0a6daf-6fba-47c1-88e5-c1ba138da8ed"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
abc
0134
1246
\n","
"],"text/plain":[" a b c\n","0 1 3 4\n","1 2 4 6"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tmp_df['c'] = tmp_df['a']+tmp_df['b']\n","tmp_df"]},{"cell_type":"markdown","metadata":{"id":"8Xoe8WlP1n8K"},"source":["Pandas is a fast and flexible library, and an important part of every data scientist’s Python toolbox. Unfortunately, its API can be rather confusing and surprising, so it takes a while to get familiar with it. If you haven’t used Pandas before, we’d suggest going through a tutorial; we are particularly fond of the book [*Python for Data Analysis*](http://shop.oreilly.com/product/0636920023784.do) by Wes McKinney, the creator of Pandas (O'Reilly). It also covers other important libraries like `matplotlib` and `numpy`. We will try to briefly describe Pandas functionality we use as we come across it, but will not go into the level of detail of McKinney’s book."]},{"cell_type":"markdown","metadata":{"id":"RTM0lMqB1n8L"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"Vln0aFs71n8M"},"source":["Now that we have seen what the data looks like, let's make it ready for model training."]},{"cell_type":"markdown","metadata":{"id":"XRz3y3dc1n8M"},"source":["### Constructing a DataBlock"]},{"cell_type":"markdown","metadata":{"id":"FsBEhgV11n8N"},"source":["How do we convert from a `DataFrame` object to a `DataLoaders` object? We generally suggest using the data block API for creating a `DataLoaders` object, where possible, since it provides a good mix of flexibility and simplicity. Here we will show you the steps that we take to use the data blocks API to construct a `DataLoaders` object in practice, using this dataset as an example.\n","\n","As we have seen, PyTorch and fastai have two main classes for representing and accessing a training set or validation set:\n","\n","- `Dataset`:: A collection that returns a tuple of your independent and dependent variable for a single item\n","- `DataLoader`:: An iterator that provides a stream of mini-batches, where each mini-batch is a tuple of a batch of independent variables and a batch of dependent variables"]},{"cell_type":"markdown","metadata":{"id":"gsmwX4mA1n8N"},"source":["On top of these, fastai provides two classes for bringing your training and validation sets together:\n","\n","- `Datasets`:: An object that contains a training `Dataset` and a validation `Dataset`\n","- `DataLoaders`:: An object that contains a training `DataLoader` and a validation `DataLoader`\n","\n","Since a `DataLoader` builds on top of a `Dataset` and adds additional functionality to it (collating multiple items into a mini-batch), it’s often easiest to start by creating and testing `Datasets`, and then look at `DataLoaders` after that’s working."]},{"cell_type":"markdown","metadata":{"id":"2Hlt246D1n8O"},"source":["When we create a `DataBlock`, we build up gradually, step by step, and use the notebook to check our data along the way. This is a great way to make sure that you maintain momentum as you are coding, and that you keep an eye out for any problems. It’s easy to debug, because you know that if a problem arises, it is in the line of code you just typed!\n","\n","Let’s start with the simplest case, which is a data block created with no parameters:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kg_d1Ptm1n8O"},"outputs":[],"source":["dblock = DataBlock()"]},{"cell_type":"markdown","metadata":{"id":"WEBiQaZc1n8P"},"source":["We can create a `Datasets` object from this. The only thing needed is a source—in this case, our DataFrame:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pmCwkaK21n8P"},"outputs":[],"source":["dsets = dblock.datasets(df)"]},{"cell_type":"markdown","metadata":{"id":"ZbTLg4K_1n8Q"},"source":["This contains a `train` and a `valid` dataset, which we can index into:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pZLsFEQ-1n8Q","outputId":"b0151096-03d0-4500-fb95-9d53c44b5ce1"},"outputs":[{"data":{"text/plain":["(4009, 1002)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["len(dsets.train),len(dsets.valid)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3nudLuVE1n8Q","outputId":"e755ee79-e212-42e9-d085-29dad80473d5"},"outputs":[{"data":{"text/plain":["(fname 008663.jpg\n"," labels car person\n"," is_valid False\n"," Name: 4346, dtype: object,\n"," fname 008663.jpg\n"," labels car person\n"," is_valid False\n"," Name: 4346, dtype: object)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = dsets.train[0]\n","x,y"]},{"cell_type":"markdown","metadata":{"id":"lXYwqPP71n8R"},"source":["As you can see, this simply returns a row of the DataFrame, twice. This is because by default, the data block assumes we have two things: input and target. We are going to need to grab the appropriate fields from the DataFrame, which we can do by passing `get_x` and `get_y` functions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"JUowU7nA1n8R","outputId":"85586533-fe38-47bc-86d1-462d6d23bee1"},"outputs":[{"data":{"text/plain":["'008663.jpg'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x['fname']"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fXzkIcc91n8S","outputId":"11ff8d42-934e-4bc8-a290-148782e5a98d"},"outputs":[{"data":{"text/plain":["('005620.jpg', 'aeroplane')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dblock = DataBlock(get_x = lambda r: r['fname'], get_y = lambda r: r['labels'])\n","dsets = dblock.datasets(df)\n","dsets.train[0]"]},{"cell_type":"markdown","metadata":{"id":"5zO89CUe1n8T"},"source":["As you can see, rather than defining a function in the usual way, we are using Python’s `lambda` keyword. This is just a shortcut for defining and then referring to a function. The following more verbose approach is identical:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"UJM5skqb1n8b","outputId":"013e97c0-5838-47e1-9270-da2be5649412"},"outputs":[{"data":{"text/plain":["('002549.jpg', 'tvmonitor')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def get_x(r): return r['fname']\n","def get_y(r): return r['labels']\n","dblock = DataBlock(get_x = get_x, get_y = get_y)\n","dsets = dblock.datasets(df)\n","dsets.train[0]"]},{"cell_type":"markdown","metadata":{"id":"dLzxNbPn1n8b"},"source":["Lambda functions are great for quickly iterating, but they are not compatible with serialization, so we advise you to use the more verbose approach if you want to export your `Learner` after training (lambdas are fine if you are just experimenting)."]},{"cell_type":"markdown","metadata":{"id":"jzzskCS01n8c"},"source":["We can see that the independent variable will need to be converted into a complete path, so that we can open it as an image, and the dependent variable will need to be split on the space character (which is the default for Python’s `split` function) so that it becomes a list:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"v7niaXK61n8c","outputId":"d5aa9a4b-2662-4b2c-cbd0-f88af2038ef7"},"outputs":[{"data":{"text/plain":["(Path('/home/jhoward/.fastai/data/pascal_2007/train/002844.jpg'), ['train'])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def get_x(r): return path/'train'/r['fname']\n","def get_y(r): return r['labels'].split(' ')\n","dblock = DataBlock(get_x = get_x, get_y = get_y)\n","dsets = dblock.datasets(df)\n","dsets.train[0]"]},{"cell_type":"markdown","metadata":{"id":"LHlBL-Xr1n8d"},"source":["To actually open the image and do the conversion to tensors, we will need to use a set of transforms; block types will provide us with those. We can use the same block types that we have used previously, with one exception: the `ImageBlock` will work fine again, because we have a path that points to a valid image, but the `CategoryBlock` is not going to work. The problem is that block returns a single integer, but we need to be able to have multiple labels for each item. To solve this, we use a `MultiCategoryBlock`. This type of block expects to receive a list of strings, as we have in this case, so let’s test it out:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YKmNBgaT1n8d","outputId":"8addd2ff-ea33-46b8-fd93-df3c9ea72a07"},"outputs":[{"data":{"text/plain":["(PILImage mode=RGB size=500x375,\n"," TensorMultiCategory([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),\n"," get_x = get_x, get_y = get_y)\n","dsets = dblock.datasets(df)\n","dsets.train[0]"]},{"cell_type":"markdown","metadata":{"id":"yF1h6kMK1n8e"},"source":["As you can see, our list of categories is not encoded in the same way that it was for the regular `CategoryBlock`. In that case, we had a single integer representing which category was present, based on its location in our vocab. In this case, however, we instead have a list of zeros, with a one in any position where that category is present. For example, if there is a one in the second and fourth positions, then that means that vocab items two and four are present in this image. This is known as *one-hot encoding*. The reason we can’t easily just use a list of category indices is that each list would be a different length, and PyTorch requires tensors, where everything has to be the same length."]},{"cell_type":"markdown","metadata":{"id":"rmsaxBL11n8e"},"source":["> jargon: One-hot encoding: Using a vector of zeros, with a one in each location that is represented in the data, to encode a list of integers."]},{"cell_type":"markdown","metadata":{"id":"BAVUbklV1n8f"},"source":["Let’s check what the categories represent for this example (we are using the convenient `torch.where` function, which tells us all of the indices where our condition is true or false):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"osn7KDx31n8f","outputId":"4c212d14-31ea-4792-b21f-448f76c9a38d"},"outputs":[{"data":{"text/plain":["(#1) ['dog']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["idxs = torch.where(dsets.train[0][1]==1.)[0]\n","dsets.train.vocab[idxs]"]},{"cell_type":"markdown","metadata":{"id":"BIWQVAgb1n8f"},"source":["With NumPy arrays, PyTorch tensors, and fastai’s `L` class, we can index directly using a list or vector, which makes a lot of code (such as this example) much clearer and more concise.\n","\n","We have ignored the column `is_valid` up until now, which means that `DataBlock` has been using a random split by default. To explicitly choose the elements of our validation set, we need to write a function and pass it to `splitter` (or use one of fastai's predefined functions or classes). It will take the items (here our whole DataFrame) and must return two (or more) lists of integers:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WI5XKGhq1n8g","outputId":"61c4cce5-1e9b-46a6-918d-e0bba9bba53b"},"outputs":[{"data":{"text/plain":["(PILImage mode=RGB size=500x333,\n"," TensorMultiCategory([0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def splitter(df):\n"," train = df.index[~df['is_valid']].tolist()\n"," valid = df.index[df['is_valid']].tolist()\n"," return train,valid\n","\n","dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),\n"," splitter=splitter,\n"," get_x=get_x,\n"," get_y=get_y)\n","\n","dsets = dblock.datasets(df)\n","dsets.train[0]"]},{"cell_type":"markdown","metadata":{"id":"DxzWw_8l1n8g"},"source":["As we have discussed, a `DataLoader` collates the items from a `Dataset` into a mini-batch. This is a tuple of tensors, where each tensor simply stacks the items from that location in the `Dataset` item.\n","\n","Now that we have confirmed that the individual items look okay, there's one more step we need to ensure we can create our `DataLoaders`, which is to ensure that every item is of the same size. To do this, we can use `RandomResizedCrop`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"sWO9FjrU1n8g"},"outputs":[],"source":["dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),\n"," splitter=splitter,\n"," get_x=get_x,\n"," get_y=get_y,\n"," item_tfms = RandomResizedCrop(128, min_scale=0.35))\n","dls = dblock.dataloaders(df)"]},{"cell_type":"markdown","metadata":{"id":"51VaMKl01n8h"},"source":["And now we can display a sample of our data:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"D6rS3qCf1n8h","outputId":"cd854cdd-b135-4380-9cba-82557bcf14b9"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAgQAAACzCAYAAAD2UgRyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9edBuW37Xh31+a+3pGd7pvGe455479+1Wt7pbtNSSQQIMGIjLMVDYweWqODjGsUzFNhVSSdkuJwQn2BhIVXAcE0IZEhLHQyWEwglgYmNbVgQhRApIqNVq9aDbdz7TOz7DHtaQP9Za+9nPPs97zu1W9z2SeH+3zn2fZ49rr2ft9fv+vr9hifeea7mWa7mWa7mWa/n7W9TzbsC1XMu1XMu1XMu1PH+5BgTXci3Xci3Xci3Xcg0IruVaruVaruVaruUaEFzLtVzLtVzLtVwL14DgWq7lWq7lWq7lWrgGBNdyLddyLddyLdfCNSD4yCIi/7qIfO15t+Na/v4UEfkxEfmzT9n/50Xkr3+M7fnNIuJF5KWP657Xci3frjzr/bmWINnzbsC1XMu1fEfkf8A1wL+Wa7mWX4JcA4JruZZfBeK9P3/ebbiWa/lOiogU3vv2ebfj7ye5tih2iIiUIvKnReRcRE5F5E8D5WC/iMj/WES+ISKtiHxdRP7g6BrHIvJ/FZGliNwXkT8iIv/Hj5PWvZZfdaJE5I+JyCMRuRCRPysiE9jtMhCRf1JEfkpEahF5LCL/qYgcicjvE5EzEZmOjv/DIvKLIiLx+yfiGD4RkZWI/IyI/I6rGicib4rI/y1e+1RE/jMR+fx3oyOu5ZeXiMhvj7T8SZw3/2sR+QcG++ci8r8WkffiWPo7IvKPD/a/Fl1Q/5SI/FURWQJ/9CPOtW+JyL8Z34eL+H78cRG5Ur89q73xGC8i/4KI/Psiciki74jIvzw6Jovu5F+M79mXROT3/1L783nJNSDYLX8M+G8B/zTww8AS+BcH+/8F4I/E4z4L/C+BPyYi/73BMf8H4NcAvwP4h4CXgN/93W74tfyqlt8DHAO/EfingN8F/PFdB4rI7wP+z8BfAn4A+C3AXwM08B8DHvgnBscr4PcBf9Z770XkBeBvAkfxPp8H/hDgrrjfHeAngAexfb8O+ArwYyJy65fwzNfyK0PmwJ8i/O4/AnwV+GvRMBLg/0GYD/9J4HPAnwb+YxH5raPr/HHgPySMtz/FR5trAf4A8D7wQ8D/EPiXgD/47bR3dNwfBn4c+EK89x8Xkd8y2P9ngX8c+P3AZ4D/RTxm3L5fGeK9v/43+AfMgBr40dH2nwS+Fj+/A/yJ0f4/CXwjfv4kYcL9rYP9eTzvrz/vZ7z+9yvvH/BjwFuAHmz754Emjtk/PxxbwNvAv/uU6/07wE8Mvv/DQAfcjd//CPAhMLvi/N8cx/hL8fu/Dvyt0TECfB34g8+7/67/fbz/CMbmKQG4/uY4px6MjvnfA38pfn4tjqc/NDrmqXNt/P4W8P8aHfNHgXcH33+MAHaf2d7BNg/8O6Pjfh74t+Ln1wkA+dOjY/5nwN993r/Bt/PvmiF4Uj5BcA/8zdH2nwAQkX2Ctf/jo/3/NfBapGG/N277W2mn974jgIpruZZvV/62994Ovv8NoCCM2V5E5DbwMvCfPeVafwb49SKSxuqPAn/Fe/9B/P5F4G9675cfsW0/BHxRRBbpH3BJmOg/+RGvcS2/QkVEXo/U+tdE5AK4AA6AVwljowDeG42P/w5Pjo2/PbjmR5lrk/y/R8f8DeBevMa32t6h/N3R9/eAO/HzDxJA70+Onutf2/FcvyLkOqjwSZH491nLQI73y0c45lqu5Tspu8bcUK4cf977L4nITwD/nIj8MYJb4Hd/1PN3iAL+CwJVO5brgMdf/fKXgUcE1+o7QEswogrAEsbAD+04bxw0uAuAfpS5dizPOuZp7X1a+zwbV3v6+yPAasdxv+LkGhA8KV8jDIJfD/zcYPuPAHjvL0TkXeA3AX9lsP8fBH7Re78SkXTeDxMmSUQkI1hdv/Ddbf61/CqWHxIRPWAJfpgwVr8+PMh7/yCO0X+Y4Lu9Sv4M8G8DJwT3wF8b7Psp4EdFZPYRWYKfBP4Z4D3v/fojHH8tv0ok+t2/F/hveu//n3HbS8DteMhPAodA5b3/2Y963Y8y1w62/brR6T8MvO+9v/g22vtR5afi31e893/5Wzz3l6VcuwxGEie//x3wb4jI7xKR7xGRPwF8enDYvwX8ARH5URH5ZIwq/e8T/FZ4779KmIj/lIj8pkjL/hlgn1+hyPFaflnIMWFMfUZE/lGCn//fu0Jh/8+B3y8ifyge/1kR+ZdE5ObgmL8Q//4h4M9574cBg/9bwvzwn4jIr48U6+8QkX/kirb9u4SAxb8kIr8xRo3/hhj9/SO/lIe+ll/2cgo8JADIT4nIDwP/EZCA4X8J/HXgL4rIPyYib4jIF0XkD4jIjz7j2k+dawfyhRjt/ykR+W8T6nL8yW+zvR9JvPdfI8RB/Hsi8nslZNn8GhH5Z0XkX/lWrvXLRa4BwW75VwnR2f8+wad1SIhITfKnCYEj/xqBRfhXgH/Ve//nBsf8PuBngf+UENDyHvCfE4JrruVavh35CwS//E8QMgX+KvAv7zrQe/9nCRb77yH4QX8c+EcAMzimJozxDPhzo/M/AH5DvN9fBb4E/JtcQcV67+8TrLJHwF8kZBj8BwSf7Ae7zrmWXx0SgeQ/QYhl+RlCgOu/TfzdfYi0+12EcfG/IgTm/RXgH2XEbu2QjzLXAvxvCGPtJwng9E9zBSB4Vnu/Rfnn433+J7F9/wXw3wW+8W1c67mLxKjIa/kui4howovwf/fe/4+ed3uu5VoAROT/Aky897/zebflWq7l2xEReYuQQfBvPO+2/EqX6xiC75KIyD9I8En9HWCPkBv7GgGNXsu1PFcRkSNCvYB/DPjtz7k513It1/LLQK4BwXdPNPA/Bd4k5Hf/LPBbvPd/77m26lquJcjfIcQk/Anv/Y8957Zcy7Vcyy8DuXYZXMu1XMu1XMu1XMt1UOG1XMu1XMu1XMu1XAOCa7mWa7mWa7mWa+EZMQS/7tf9uif8CWGdiiDOuf5vcj1orZ84dlDjGaVUv2+4/Vmui1Gt6K1rpXYM7ysiOOf6tqXzhu1P17XW9p/TtdI51lqMMTjn6LqOruuw1vbXHn4ft+9atsV7/1EqjH1H5ff+W/+RV1pTViXeg+kM3nokU3hnKauMplmjlEYpjfeCVhnT2RTw1KsFuVYoLVhrqdc1lydnKAQ3KQGPUoISjXeKrqnBGHI0qq2pTz7ArheUZcXB3bvMbhxz89aLnJw9Qilhf/+QajLBOotWhOsB3lgynWG9o27WmK7j6MYhs/mcpu2YzedU1QQvitY4vBI8Hu8deZaB97Rdzbq5ZHF5yfn5GfXZOcvFAr+u0W1HhkLNpxSzA1rnMEChS/ZmM2azKXlZUVQleaEpqwk6y1FKgwim61gvlthlw+rDx3z1b/9XPDp9l9Z7dDllMp9QHd6gzeesyWhNi/MOxOOtpa2XzKYV0+mM1XpJW18iZo3Ua9rzS7q6gUz4zCd/gJu3v4cXXnmVo6NDFg/O+M//8l/k9PIdOJixd3zMjcmMsgNfd0wL8KWw6Fo8iq72KApUUSATmO3tgc1xrmF/MuPyYsXJ40sWZwsW9YJqJig8nXdonWO7jrZdoZVFZcJf+0/+wsc+hgH+8B/9814kQ3obzoe+jN9c+tT/2Z7vBCFljIrAplR/EtmaG4efh3OaiKCU2p5HxW+fO/g7vG+4jn9iDg6HCIiQdoW5XcZN3Nm+cRvH28O87knrcimlUaIQUYgS0juc9iXdtGnHRqf01x3cXimFFvXEMZu20j8XSlCiULLRk/25gBcJz5n0FbEP/aY7PJvfXQB8+P299zjv6DpLXXe0bYu1LVqp+E8jSiFK8y/+vt+6cxw/FRBkWYb3futBh3+HynwICp6m6J1z/TXGinx87qZDtwfquNOVUk+cswsAjAf5zsE9Ot851wOG4b4EAqy1dF3XfzbG9PuMMRhjnuiXXc99Ld8dyZTGA13bhgkA8DicdRS5QotQVRPyvEBE0bWGrutomwZE0DrDmBbbdJi2o14tkJMPyXSOyCFGF1jReK3IM001nWOMA6UQq9Fuj4YG5w3HpWZvb5/GtDiVgRYaZ/Fti7UGb1rwlrquybVmPp8znU2Yl3MWiyWPT0+w3jOZzGjbFqUV1aRiouH07CFNt8bYlrZuuLy8ZHF+Tr1cUCjNcrFiP5+xX0xQe3s4pemQMEa94K0iR5MpiUqwQ5cl1lpyl2FaQ2eaMLFZj+scDnAFFLfmfPIHfoj8SwWXF49wGrrOcnH/Q27cu4cziuVygcWhBRSOKQa1WrO8eMRqvcAbh1gfgErTUBUFL3/2+/nE93yWwxt3mEwm5HnHwQsZn//BH+DH/srXsfUli3bN5O498oMblPszRBm0aPatAlG4fY9SGaIViKPKNT7XFNNDMhHKQrO/P6dpPMtlw/nFOU27QMf3NstzMp3RNisKpZ8+2L6LYpwNyqlX5J60uK+L80qYk8M2if/z3iMILirDoHjifOcTcOi3DBRhUuRxPo7n+fhf+OzSTfr7x5uEazkQ/ECR+/7/wxnXew/eIyroFKUUzllADdq4PfePQcqzDLHQ3s39fOxDHIgKgEEErH0SbIT+2CbTvfM476OyF7z40NZBP2zrm9gtHrx3OAV4QUnsRw9OUkvTMzrER6AQrzHAVwBY60hHOO+xUe90XYcxdtNWPIJHCfin6J+nAoKhtb95ML+1fxcLMP6+Cxx479Fa7wQA1tqdP/B4MIwt/+G/XQNm18DZGshswMUuUDJkNVLfDJmLISORAMLwWRLTkI4ZgokhwzAEI9fyS5OsLFFaaLtooeJxWJq6Jsv3aDsTJ6IOCBNYUWQoFdC2ihaNdQ5nDeIDil+cnJMbUAeHTA6OKCdzdKYRZ2k7gxWHMwXZbB+/vKBentE2S7w3TKp9yErauqZrLKZdopRnUuXUqwZjWkwDCFgMDs/DB4+ROO6MNWitsH5KZ9dcXpzw3je/wfrikkLnGGNZrRqaVYvrPEU1YbZ/g/3jm2R5gbGW1hi8sahoOGkVwFNZFuRVRl5qskxwtqNtBNoO0YLWghZB62BxOJ3ROoe7cZMbr38SuZ9zcfEY14Fp4PTsjDWebtVgTYdXnjIDXIdZN6h8QuFhUkzIvEJyT3V8hzc/+3le+74vMpvv0dY1SkGeK5wIN24dQ1YgbU17uWR9uGK6t0dVFmhdobUmUxqHwloPohGle8VS5BqlwHqP0x5VeEoNqAylZzStYrWuWa6WiAhlPiUrC7LnSP4Za9FeB+ULiHhwGwXrvRsAhqj8ZDM37pr/NoZUvKaXXtlYN1Bi8SYBTCiC8tmeowXBJ+XoRh01QCkysH7HNxAXzrfWxrZZhtPwVcbd+Pv4WTf7hMASpHk2MgZeBn21bfQmA3bTpoHuIQInF+aKse7ZMNUeER+s8/T7RaDmRXDIFkvSm/2+b9aALInGNOH3926zQqH34TuO+Nf35zkXnlcDIldHCjwVECRUdJVCHyvT1IHDztgl4+sMzx8ChV33HivgXdd9GlNxFWgZ3v+qdu4akOOBuOtfkrHiH7ojxmAiAYox2Njlmrh2U1wtKstwzuC8T4YV1jqsc7RdQ5ZlKK9wEWlnWqN0sJydNxjjwdqgWFRGVs5g7yZFfogqS9R8zmQyI59UgUo3DRihUBk2c9gsB4R2tebx/QcUs0Nu5AWzvWMypWiaGms68B7TWaxxgMI7Q1s3WGswzlAvl+RK0axXhCxWx/nZhzTrFYvzcxYnF+S6JJtNqMoD9MwzrYKSyMqSYjphsr9HWRbU6zWsa0RabALZOKoyR+eKYAg7vO2wxoVJJyso8pwiL8hzjRLBWY81hlYJ2WyKLXMa72lagydjdvMWy9Ul68VDpllBs2qwxuImBbmGTBcc3nyRzmvKIo/365gd7LP3ykvMjg+YlTPwDoUjyzTGeiaTguneEcuVI5+VIBrTtdgyh3yK0gqUIssKtBe8l2Af+TB5Kq3wzuG86xUfeLT2lBOFzgq6dk2RabzKyKsJ+V6JN91zGcNAZCntgKuOijxZ7yJhDG/NR+4JJjdJmqufxsYma317/9UM51DXp/O3dIBPzfdb5wRxER9sjL5A8z/JTo8/D78PjbYtQBCVfr/d2/7avrfBw/Ml5nj4HOnvEwalqB407GLS04N778G5COYiqxLbFYgBgcTKbKgMVGJgiI+AROIkKv84rUmiEFzUy14iI7rNUqSxfpU8FRBchSyHnT72ue+i6q+i5a9yQ+xSpmPFepXy3dWGcRvH7R1b/eNjx9uuYhl2MRbjvhha/7vasAsUDNmGYfzC8LmG38f99fczYFBKaNsOZ10ch2Es5nkOEHyI4nEm9Z3HWBOoOPE4a/HOIyiUzlC5QqucaVYFv32uyTJNspo6Z0BBnuUo51hjcbbDNA0nDx4ikxm6qiiKCpVpMicR0Tu6psM7hxZFY1vaZoV1DussOIvPNNbUXJ4vaes1i/NzmlVNoUpm5U0Ojm+RT6ZM5vuIKLx4VKbQRY51jkxDphS6M+jM4HEoHSYcY1qU9oDBWYXtwESa2IkiyxQ606hMI+k98RYI/aqqDKcUdedYrdYY7zk8PkatM1h1TPfmlEWJm2RMDvapypw817zw+vdgamjqFavlKXW7wOQZj9cL9hbnKMkI9pDDWodzBi+O6XyPpVtSzWcIHtvVeJvhXQ6isYCo8JsJwWp1NrgsHB7vwHoiWIiPowSVaQqBXClyneG1RmcKyXKsfX6MnXURELDtNggS5i47UExArwCHMlS4T3OVjuez8f6ta0YLd9e+nUaVDI6Lz+IJ9Pv2HBavPppLdzG9Q+P1yjb7BKIs3g0YZS+9C2EYf5b01q779dudx+F2gojNts3v1Lth4ifnI+Uv0j9r7+9xrgey8abhTB+v4NJvKL1LwUfWANm4eBJQE9ndP0N5KiDY5Tsfdsh42y5lu0vpjzt1KEMQMt6eto1dGbss6CRjyztdf6xQh9e5akDtatewg68KbtzVT7uR5JP33PUMw/iEtH8YrzDuh+Fz/X0HDrwNr4t3KAmBg0JOLhlZrqMbIbpz4oTfdZayrILPWEB0CBrUImjxyKxCSQ55HuIRXPD/G2fpuhadZ7jMYduOtr6gaxc419K1lscP7rN3tI/taqr9GZkqguHXGZQO/mCcY7W8YLG4oOsMWmfMZhVkOV3XsjhfcHm6wLee+ewmL957heN7L1Ee7tHaNrAcKk4SIuRFgekaunpFu1phnY2UsqCzDGctnTHYVUteZGgdqFElmqosowXqsdZQNxbVCVqpaIl7iizDiWa2v09WTlnWhsX6jG4y4XjvmKOjV5jNb1Du7TM7PuLg1jG5aDot3HzxZWTZ8ujd9zCd0LSey8UK8833mc1v4q2iEg+mBWfBeWpTo4oMJRZsi21afOnIpURsi3U5VuXgPYUKbcURPd4eYywmWdOiwkSpQkCZ7wy55JTVHq25wIjB2hXL9RLTPD9A4JxD/HA+9j3bnuaTbXY2HjaaXsbG11WgYBflPpzTr56//BOW/va9k4Xuo4IL56Tt43nS+21AoJTaGTO2q+1bbfCAODbYIAABkPiueHxvwW+MWKUUolSw0kfz9q4+Guu0zW8SfoxIDmz6wfkQR6AEcdv9Gnz9g36O/eYSLUDc3Y+DNO+He1rn8N4M2iRbv80ueSogWK1W/Q8w/oFTZw33jX+IXYhpOKDGoCHJLms7XWM4EMYRoEqprbiG8TlDK3wYLDjePnzO8ed0n10vx9OCG8eDafzSPU3Scw1lGJswBgtjd0OKVRgGPe7qz2+lTb9SxNmGSZlRFhrnIjASwViHtS3WGZy1OBOQep5n7M3nGOexKke8I9dZYPO8xTuDc4a2rclnU8oyQytwzuLaBmcacB2Pz9aYxYLz++9weXKftl6gfIZbLXn09jc5yTK8FnQ1oZrOqKZT5tWE5nKFx3F2fk5drxEPRe5ZLqHyJY/rmmm1z73XXmb/8Jjp/j5SZKhpBpkwz+bM53O0UlhraVuDtR2ZFLi2DuNVC6hgMSvRdMbRtCHLQangJxY8putweYZSwuryjCzLKYqCoshReUEuis51SJaRFyU3bt7kw9k+OquYzm6Q2ZIbL32SOy+8xPzgkKbrcM5Q5II2hunhPlIJ07Lg9cNPcvv8JR7ef8D9x+9TzEq0n7I8X+G0A9PiTBfGrAj5rCC7b7EXC9R0Qu4zSsnJRFHXHWoyIdd58Nk6G3WOAYQizzCmRlQWQI3EiHZRGOlQxjPbP6K1nnZ1QWc6tGTk5fPL0rbG4Lci2T0pah62jZHNnJws793G1a75dfg9bRvT4Wl72qeVHvLRQdEPmJeeEh989xB93L4HBWEOs/FSPrJ5m/sN7zts23j/LqNNCD9zIldCUKBEViI0ytqgTEUksEtKIWJ7gBVAsuqfUQ/m+zT3C0kXhfiAOOMjKoK0FKuw0eKR6g+gANnsE+/x8X59AGfquz6UcOPw8D6FfEa94IOhGLKgEnLYzdYneSogaNs2PvtuhXwVKBgq6uG+pKyvUrZj18IYhY7P26XYxvccU2RDhZ7n+db+oTIdKtwxUzKUcX/s6qvhdbz3fft20VC7nudp9xwyAVmWbV33KiCUvieQkP4lhmF4/K90VsGaFm8l9A1hwumMjZSdIssyOmswbR0QuSvIcxWChcTQWQHlwBpM02Ca4L/PNHRqwcP7D1HKYHzLYr3GtHB5/wN001LlE9ZtTWM7VJlzUMyZSMb68pSVM4hXWDROZWRFwXw6JfOCFBlOhFyXTLIJZTZBlOb4xl0QKGcV1WyCLnOkUOzv75HnGd46JmWBVj5YBniqQmOtp2lMiBSLAV86UzivMZ3FGIdzEulGTa5LyjIn04JpW3xT01mDmkxoTYtpMsqyxE8mIEKWCVUmPDo7Yb24QOmc27fu8MO/7b9BeeM2vlvTtIYcASnIck2J0DU1rTh0UZBlHdkB3Jwcs3d3n8lkwlTDer2iXl1Q5IpyNsVYR21rJJ9hspxMKzontE6QomRS7eGNAp3T1esApjMdJ0RPZzuwQl6UgALRm7huAck0iGGaQ57vMV9XXCwaLtcrrG2e2zgOQNYhJAU1fi8380VgQuNm2cxLffQ6PX/cHzOUXYbL2PBJn51zkFwVid5/4pohFFES3e0HXvtIf4d5ZmjBb55prOSH8/EY3KTjt55FBqR9MqJSP/jEGCcw4p9gCJISH87dCsEPDVDnYupyzGTain8ITIcX2U5XjEDDEm7hk0tKBBVZDRdjGgTpcWuCftHJEIizyMyk4M/AIKkNEGHjMniafCRAMLScdyns4Q+zC01edUzqzDGwGPpuxgpuFy2f/g4V2XiQ7Ar8GLYpDbrUjizbdM1wAI6V7K42Dds6pu6H546fY3jN8Tm7nheezIp44mUYbBv2cQJE43sOWYUEEoaplLv6Ylc7f9mIN6zWdV9jwKNQWc5kUtG1DZ2pEe0QZWjXK5qloV7lhKjtHC0TWuUwdoWxHQ6h8Q3N5Sne16wfPcB3NYjD4bGdhdqTi2cpBUr2qPQeUniWApfUdK5GNRbTWVAaL7C8sFyKcLR3k6qoUKWGas7k4BYv3nudo1s3OV8uMF2L1uBsh7cK5UskZkigPKu2plIVSuvenaFEUFrIMk1RFBhjcVawxtN1IXq6mpQ40yHiMbZDtR5iNL73wfeeCSG+whi8s3RdQ1aVTPM5F48f8NYvfImLswccv3DMa5/+LJP5HNO1LJYNIh7XBUVgsawzR54VTKWADpSEqHKNZ1IWiHV0ztKtLwGDcYB1OK+pu45pNaPa26OzLdY6Wu/xKOZ7+5iVZdUaTLdGlEIXBVpncVwHilY5Q56XgRWBMMs6TwAJAVw5b3Au9FNdL6i7i+c0iKFrHVnmCeoDGIagJ0s6mN29lamiIgzvezxUQrAZA+agTyZMRghDel7iNQKIEATvU8R9dMJIaEoPOvymjoBEdJCS43ogEZX/1tzuk+tgML/Gpw2KVgjp+xvKfGB0D643mCOFDdOwpSPC/bwL97AxxiSegigXmTIbWLPEEKgQW+CVipEtDnBopXDeYp2Kij4wbW5zwaCRB5kfiNqAHe+30gE3IDVa9xJcCvHpA2iJjJFzDudDpoNz4VmssyA+xtD43m1q7dPn6m+pDsFYWT0tLW6M6oaWef8Dy3YgxnDbVWzBUIbKfdffXcr0iXxS77fcDLvAzK5zdinhq5Rr6iet9c5gwqv676NsHzMJT/uxrzp23M8JCQ8BwzCgccgeDN0Uu2I4ntWm77bYtsO2LZ0jvBxZhu0M68Upy5MLdDWls0u0bVFdgzYdVZPhnWXhgCwnF8FbgxPBlRNM3bB6eMJ0opGVRVuFZIJRJlij8wzrHMiMsrjJfH7E/uEB+0d7XC4f8NWv/z2caNbdGYijyEvKrMCsLW61wtYr2kxT3dnj6PgmL7z8Yki3Kwtc25JpcN6GSdobmvUSYzRZUdKhsPUKhQeX6mFY8kxTziZU0ylZUSGXlzjrMd6Q5Rl5pjCZCvEEnQHnsE7hcWSxXkMbM2J8DMwyRjC2pWtb3v7K13jw4SN0XnHnpVd4+Y03yYqSTIdUSsRSToswSXqPFwe64LJtyXLNBIUCnDN0xqCzjLZtQByaNPEJ4hzHB3tc3jjgww8mLNq2j4EIwaOGKtc0DbRGIAPfGTpjcd6Tq7xn0gSHi7naWaY3aXs+Q2eqj7/IS4UsL4YM/ccunTF4rwdzkcf35YiG8yBxS/islcb1Fu7GegzHRoXp0/UGxkQKFLQyuF5UTH7obohWvyQlFo63xgXaXaKFHUmJXvlFxe0jY+7dcD4ctoTgw2d7zvJxntlMXbG9LgXsJYo+sCmxy0Biuql1ff0G74PbYKiccYKSaGVHRkMiwAoBhzHNM9N02PC+E8CHEumVtYrtQgWWqr+OCEgIGnQDWsTHDpH+N/V9Pw4NWuc9NrJFzoeR4JzDGodzoR6Bj+9aaL8LwM8/fT5+KiCoqmpr8h9bvbty58efx1TPLks2Kf9kfV6lsK5S2sPPCUwMZdiRu4BGyjHdBRjSNYey6xmeBhDG/Tf8PO6ToeU/BFzDNj9LwT6tXcN7DEHe8B4JdQ63J9B0VSDmrsJUz2JRPg5ZLpbgPcqF4ELRgncWdXmCvzhlvRCctYgzZM4yUZ5pmWG6mmXjaR0suxbrHCrPyWdTtFMcTqYszYLW5pRqguQOqxZY66l0xf7skHv3Ps3+0QtM5jPKKiNTgnu35c7xKxwf3uXBgw95fPohbbciy3OwFidCbVq80xwe3uT49k2KWYWIoiwmdKsVXbMKMRDehZoFpqPIY3CgF1rCMwbDROGMwWrNdD4nz0vyKZTW0LQ1utPB4ss0Va5w1mA7E1kEi5dAbaI93bqO2RqhDgF4WAvr+j4nDz+knJQcHt/hzsuvMTs8QiTDGsd0PkVJqKCoREIOu84wxqLzjK5rsW2H8RZrTCjShMd2DZXOUZ4ekALoUjE52KOxFuMb0A02y7DKoJSnyjLaEqx3WELMSBijhmpSkvks5I63FuuDUjXOhngQrch0hree3GumXuMtLC9L1ufPDxGYzuCdhCJLvTtgAwhg2y2alKF1SWlu+RB6y5mhUh2879GOh8g09GcHbYZ3qjd6N5eNhiNRIbswRontkTiWNvMECDEF1Lk+Or4P7lPBlz9kFnzMpx/PT30kgk/gY9MPng0Vn46xbmDUeELCDD6wLeGoMPbVkBkXxEXlKhJAQWIV4n6lBC0qsgqqt+6VhPcmXZ1o4SPSBwluP1OoYBj6waPF9X3BsA97N4yLtVJC37kNiRJAAQnQbIOtsTwVEBRFsXNiHzIE4+27QMJQwaf9uwLwxumBYzfFLkt2/FlrvaXA072GinbMLCQgkM7d5VIYf97FgIwV8fC49EzDYkwJiOxiDYZuj12sxfBeu9iTXVb6LoU9PHbXdYbH72Jk0vanpWyOXQ0fpyzOzsiwzLQjr6Y4V2FMh1ucopePqX2HIkNicZFOwcqEEsSmEbTKsV1NjQWXUWnL/t5tDg/u8v7jD6nulBzu7aMLy6I9Aa+YVwfszQ+588LrTPcPQ/aAa7BtS55PefXVT3P71j32Dm6z9+gWFxePWa+XNIQaA5YOpUqyIsO5hsXilL3ZAdCRlxKqBNpADTsfYkFq09F2NmRRKIX3YTLVmaB1TpZnqExjo8WRF8FtYrsu1jZwiNJoyYK5FAPxRATTOZTvww/C2DUGY0JFx/vvvsP54zMObtxCVRW17Xh08oA8L8F5Mh0mSKUVOsvIpAClQy0Cn1E7R9M1NG1N29Z01lJNCmzX4Kwmz3LwcbITj3dCOSlRZH1KoMoyrA8ze6agLDKcTKhNh/WgFDgraAXaBQa360ywyqL9ZK1HMglVJr1Fa/DaoehwpsY9pzEMxPgeQak0D8GwdLGPSqFXhCopnhRQFgBAYgUQ6V0FvcL10S3gg0pX0eGt+1OC0sMJTnmUk+hv8dFXHV0KpFtvrF+J7RBFyJWHQCvgAgCwqQ5BnD9EUKjIQPgYpxAAgd0yQNJzpJtCxCCbPvK+b2OCNqFQT2QG+v6Lz7Lpun7Mp27zRIs7XkqJ2wJDSgIo2OiZAIK06BiwO2BcVGRckpU/AjkhbiCwDXZg1A7jMxIAwrveBRLiI2JfRLCUmIdn2JLPrlR4lbU5lDF1vIstSHJVul9SLFdZxcPzr7LQgRhV+WROarrWeK2FoYtinKEwZBTGn5/mrhi3/6o0Ga31Vl2BIWDqqaERKBor5uH+4b5dyn8XgBu29SpGZti/499o13OPt+0CNB+XrB8/QLo1xUyCe0BVXHYWWV/C+hyFoygqxHucMbTG8mgN1oAiY29WYnSFE4vRGsknzI9uc/vFN+iyI/b3Drl965g8g+XyAp3llNMKrRydczR2iak7XNugvKesKo5v3aaqJqiq5ODWMedn53z4/gc8evg+rj1HaUFLRb1ecvrwA9pmhb5laU3BrKpADIIlI1gPIpbGOFrjKPKMPM/QWREtLMjLgslsgs4UXWPAWXKtmU6m+M5imjpMdmHeRLQik8A44KFuW1y3oUyN6WjamrqpWS2WvPeND2haS6tn1PKQB+cX6DJjUk0oi4L9vSllnlFNZ0z3DphM9xBryRW0XRvGnnM0dcPlYkFjOqamwpoADsqqotKaLE6nygnTImNezOlkAdohFHSdwdgGrUuUaMoqx9Ye7SVUKnQV1jQo3YJzOGkRH55VlMZ5wUlG5xQahxKwpmG5POX84jFOPWM2/S5KsIptVJrxHY9+fQhKMBT3iUo9AgJRoc5+UIhRCfmr56qhxpAYDOiT3ida7HEgOJHoRtkGBCSlTkwkkM09epdB2pEOci4q8sheaJUYfpz3qMjkiN/4+5ON3PcRiYFI90xxCOEYpWTTmAgA/EBBBxfCBlS5dBChE0LbR0pbbebKpPyDrrD9rZQSMpX1wGyrz6Mx5b2LWQ6xRfF/WklMlaYHD73BG+fyFDCbmrsBBDZFD/SgKLAyV8/FHxkQ7LJIh8pmWMo3dIJ64rwxvbyLTRgDhjE1nSr7jZVfOi4p2PH2xBSMLe9xRsL42kMgMdw2jHOQ0Q+Vvu9a6OkqIJH6etg/Q7BwlVzlzhiDkTErsws0DPt5eMxVBY92jYNdctX2j0Pa++9gvIOFxYun9pomm7A/PcCTMbWOeZHT1mtsW6ONpVYVPp8y2Z9hc0emhJlkZHrO3vQmh/Mj9o4OeCHfo5zl5FVGVRTMb93EOMtycU69WlIvL6jXNQpNVZSURUZeZFhvqd2Kcj6lmOSU05LpfIr1lotTjcKAFdbrlvVixaSasF4syJmS5wWdg8YYcgxV5pkWhiLXrLtQYMjiMM6GlCUVivT4DLJOxcp9DqWgKDP8vMKYGa2xONdhrEHE4cTR2pa2aVkuVyzWa5aLmsVizWpVs67DegedsYgVrM54/PYZ6p3L6GIgMA5KkWuYz0pu3jni5dfu8fIrr6AoKHXGenVJledkSCirSgji+/D+I6xrMc6TKcXebMJsOiErMpRR3NyfM5vsUZtH1HZB3XYsWoXD0LYNndWoctJbbKF4VI7pMhp7xvnFQ6qipMpm4b0QAdGILrBW8Aa0Fep1w/n5KXVzGaoiPicJ84EbKLVAaSND6zba59Fnr7UOqWvRu+O963Pdd7G3u+6pY9qbGxyblFOypj0pEj5eR1QfTT++brh3cA+IqKCgfLiB9xv2OCtCHQlxCWykwPAQ55Eqj0ajPtwL3/vaiT5151MxJOKz908ADIIt/bZh6kkMQgQAfjNvD3qoD/SjBx0hgFGpwV2UYPQmE2MzHwdlr33w+4ciaMFNI3HcBmbAbvSGbIIzE7jagLlNn0f1T1/YeKvtV8/HzyxdPFasQwV0Vd7+WPmNafAhbX6VIhkrzSEYGB4zZCZgkxEwBhvjTIkxDZ4U8C4L3LmwquHwOceA4SpXRHperXUfzPS0vh72eerr8WqMVyny8e8wPmbYn+N1JMaKf3j8EKyMXRzD/htONGN5XqDALRdUezPa84bOdEimmVcGt1yxaiHbg4vFEt9atAupQYtmTZ5VeHJuHL3A2jhUMeP49ou8/OorKA3n9QIljvOLJacXhizXVFWJFjh/+BC6FtuG9ROKosBJAUoodEa9XJN1CjOhT4s7unHAZz7zKb7yZY+xDt+tsd5ydrnAZxmiSmhbVk3Hwf4N8lmJbdZcrC/xTUsmnvnRHpfLBbmeIlLQGMOqNawXKy5OBJ1nlJOKvNCBxkdhtIaq5OLRAx49fMDjR4+4vFiyWjXU65a26WiNjx6EzWppSmUIJSpTkAte+7AgAipMQlohWnAidAJnnef8m2e8+94Jv/CVr/PZ73uTT772SbIaumbJZDaj2p8wqTTLuuP9h47zS0OZKeZFwVTnFKLIs4x8UmLJyPYL6uUe67WgTEc9CWmcCo8xhjyzVLmOvtUGpEPrAuMneHLycg+VT4AMEQ1KaOs1mQ5pn87B4nLN4mLF3mTGfD5/LmMYYkU7UVER+sAO9LEDEJSIjzR2WlFPkWndW/WhQuNwPvCDcwfz0gAkOIkWtg/lcHEbSj1y1Vvnpjof2wpoY7UrlZRwuGaYXze0fqDXBWdsNLroEyvCHNO3vI9VSJ3gvQc11Fv0oCHhAO8T8Ni0DcA71yvrzhjGRrT3jrTSZK8Dnug3AlXjR64GlypNpm1RR1hADNoGKNyXHU5zKiq4+OJ5vY5JgYqejWto09AItiIISnERQiyN/PS5+KmAIJ28i5ofPtyzJvuhBT1WXGPq+iqFJhJyyROo2NW+BBDGMQRj4DEGCMPvY7fH2ApOP8o4R/8qYDRkIsbWfF/MYgfjsKvc85h1GAMD59wTTM3wecaKe9zWccGlXb9BavfYlTEGClf9nh+3HBQZvllQTXK6VqgdGJ2hqpzZnuf95QX6wjDPK7IiQzLF0cEBt268yvHtl7ioO1599aVQXa/MaU1Ds1zi8Lzx4gssmiWPHp9wenrORfOYfJLRNCukc8yrKZkWiqKkyMoAKr2hyCrq1ZrM+BD1XxVorZjM57z5me/lK1/6Ep00tLZhfXlJY9eUZcZBfhNV1yy7+1SzfcrJHDU9oKtr2uU5Dx/XeFXROcOshJkWMm04WVywdoa6banXIQ1wsViyvFxweXHBarmmbixhzsoQyUHlIBWeAtEeMoJ1JoGCtAOFFPRQqAboxeHEIlYBofCPlZDGq4oc4ywfPqx59F/9XVY/UPOpN14FsSjpmBQF07xiWoZKkNNqxsMHH9Aow7ScMz3YZ1IVGBwrNPnePkfNisM2R2vLZJazqlv2pyX7+4c0ncETFnDyXuElrBGh8dw+vB2eR4W4irZrMT4o3kwZlHdoB04p9GSKKibMbx4/t3Gc/MCCGyjbYLkm6jwQBtGChFBNUqQHBc57rMT0YZeI5WCpb64QlGOyPDfvue+PxwuaYOkndSuSWIw478hg/iOUDFdKgqIUH/RmTJPzg1C3kPefsgo2Frz3PlYV3RToYdANyWpm628ESxGNbOsC+r8bN8fAINqyjeI5Mprb8WxOCe451zMwG/CT+qY/L+mKdHXn+mcWkfg++S2QEuZf94QO6Q3PBLS8J/VeCmDsQVQy+K4wSuEZgGBYqGZsEfdddYWVOiwxObaq+44ZXXeXMhoq53FswNBiHlv2Y6AytmTH1ni61y6ffdr3tHs/y3ofW99DRmIINIbtTbKr8NOufhv3MbBl3Y9/p1T6eFd/X8U47Gpf+p5iIsbPuev4j0tWjWP/xhHFZAqdD6v8KYd1HXk2o8xyikOPkhZxhhzFrJjxuS98kZuvf4JHl5cs1g0+U0imEDK8zvFtx+xwzmG+x/HxPicPT/jwgwecnJ/3dC3icQ7atkNEszefkBUK21rmk7CWQZ6BlkAVVkWO3te88sYrnD7MWVyc0rU1vjO0iwUah1Yem+UYLHlVUM5mTA/mrM5zVh++S9uuWZ8tWC0XrJdLFpcrTi+WLOuOurZYA96HySMsjOaxrgBcKDQQFWcIWIuTsmwHi0GgX6NuwIsPk5gPn10MvAoWYFgfwOAwWWTKdIZrOn7q7/wCHsun3ngFo4QOT1Vq5rMcCo3Xjtn+a2iEPMvJJKNpPa03lDl03pJXCuMMtm1oFh1nuWI+PcRbh8T3SufBj24JNQysZCAO5SzYLkzqFrxTWITV5SW2uUR7z7ppkEJRTmdMqr3nMob7PpeoLJPG7y389D2oAR8pdWssKlNYG6tt4mMBmw0YgDQ/AYNfOBTWSeWd6RW2JMgh257oVAU0BBCHmhwJBISA0kTv+/74IXUfL9m3SvSG6vaR/jdxbunnQx/blQABEtclSN0RWRM2x4X1MFINhB7S4gcIwHvfsyypNsKAZwjHJ50kikTQh+yLgeKPfhOviJkasgUqUncoNZ5LU18Nf5PEWA/ZncCYhNTIQVwBkSXSWXzuAYjil8AQDBXW0BLcfqAnaX8R2fLlD7cPlfLT5Cqqe/x5HLA3Pi4pw+G9k3Lede7Y7z98/l2W765tY7bhKkZjrCyv8tUPj7mqH9L3q4o67TpmDCISMEltGfbV8Nme1RdDAHLVuPm4RG6/xFrCqodFmXOI0DlL0zWsPGSTGToTMCu8qVEqI5/OOLx7k3x/QpV5XLFx+ZjG41Zh5b26WZNlFXmmmExz9g8qvLZ8+OAhnSgmKvicPQ7vO5zL8RaMrdG5ZlpVoBXWtmHikQJEKCczjm/fI9M5y/NTnOtYLJac+4a9IlTlO1+3qMtLqCbUdc3Zo1MeP3jEet3QNCaULDYG04XKjKFYCWGS9Fmw6AW8CusRBHtiME5hoGQG43HkVRI2lhb9RBa/pEIqxkYK1SPoAKjKktY6fv4rb7E3m/LGy/dQuaZtWvy6xqHItGU+2+vBVWctq9pjbEbbXbBandLVa3zrca3HtC2LYoW9ZalNi/Uhzau3bpUh06Alo21qWtshBCpcnKCMRTnH8vEDnGtxIhhRFHtzXnjhLtWO5eA/LvEWRCfV1IeKgdekqD/vk2UeFaSLCtB7nA/raYfPPvrWN0rR+23VkyzoXhFuWOpgvcrGXx9+f9cr2wQItFKIznq/+ugO/T3TbbzyPfjwUbGJD1VF7UDPbM3lKe6AGODnAJss5sA8bM+/sZ8SPd9z79vzWYBMbgM60nP7bQPbDV+IBDLieyBx2WPvBBczJkJbkkuA+LyBXUv7XKz0JE8YU9L3Y5hjQ8cp8X21yNS7Sm/WaRHol11Oz3eVPBUQjBXWWNGMlcau83ZZ7E8DBMN9V1nrw2N3sQrDAjrDcsGpVPEutsD77cDI4TXHwGLXs6b2pusMKfRdbb4qPXPXj/WszIokw2fbBXbG+4ftuUrSdcYgYnzeGAyMXS/PS85aDbbDOMfNPc3+bEKWaZqm46Res1isWMdV8rRTWK/IastXvvE1ytPHtJGiLLIiFGpCoZUnA+r1Au9qgp1tqGYFVhzTxYQuVSH0sf65aLrOY10oKWycpW6bSJGCKMH5FiuKfFJgxWK1pnHQrjsWdcP5pafU0LaO1p9gsw9xomnbjmZVs1yt6ToXKxSnyUGCEo7fQEApfPJ/9tT/xtqUNPNvWUWA95uqcIm17Y8b2Fjpst6FGu3hDIQwlowHlWfkZcWqW/H2ux9w+/gG06pEORAylNIUZYnzFuUE5zs609B2lotVw+npA5pmRa4UZAWtCZUJLy+XPD7NybNDVDZD6wItOVpFO9AblCrQEEo2E61BPLgO13Q0l+cYH5Z1VpMZVVGgigL3/PDAJojOJ+o6pOHFrL+ouGR0DhjvgqK04W9vL/vI7kTf+OY93TBBPWuQCgsl1wBp2CRjIawB0IMB53EIeRYXExOJynSAPtgAyV5xI5FZ8FtMo4/3GBtYG0AQG2QFr8D5bssA2YCWDRB4cv5yz9QzuwywJ4zFdEx81gRsQp+ntNG+CwIDknBXundk3Dbgo38hGTYtATZHVPhJ3w70Z2/g7XjmXfLM5Y/HFuk40HCX9Txs8FX7dym45LMaAoJdborx9dO5EGjwtm1p25au63q3R5ZlzGYziqLYaa0O7zMEObtcG2OKffh33Fe72jjsk12KdRc7sotZeBo4eJpFnp5hWDlxzEDs2jb+vOt+CTxcBXo+bjm9qPHeYTuP0OFUxqwSnNd4JzSrFbXLQWUo0axFWJ+uuPzJn6aaz1BlRlHkFHlBkRfkZUVV5GQinJ8XYVlgHX8jJNQC0ArXGppY+jtTGu+ji0YcRQ52bTgxF2ilyLIQjd85T+M9nVMsLpecPDrh8uySdt1gvKMzYblh0zmsFawLtKQi5D8HqyYo+0Dzp3KpMtDgxP1p1xY/CQwmHed7PODFo3xQOX54OR/BRLKj4jHOC+JDjnayfsQqvA7Fj5TL0FWBZDnvP3jEg7NT9vZmzIqKXOVhyWXvWNUrmq6hri9YrS9Ztg0Xq5azxw/xboUqprjO432HdTVtu+aD+5dMJ/uUk1sU+RFVcRhSSzE0zZo8C+tISApoU+CwtM2C9XJNvbpk1a6ptTARmNkjFqs1ZfUcEcHAWN+8/2nuD9pd+n3DuYyY4rd1Amln2JXA4EbxhN1+63tqBmlu8EPlugEEHolLT+vtdnjfj7vebZXmCEn4wvXPsTW/EVMNvd8y+JJYtg2qjZt10y+p9sBWe/CDftttPV9leMJobhYGrrUIogbX3gICQ7ZhAAY2rpD06qUD/Na56RmG/dPzCCJ9MaJx+39JgCBZzEOlOE5d2+XX7xt5BQgYXnO4fXyNZz3Arus3TcNyuWS5XNI0DV3X9cF2N27c6EHBcKGl4XPsat+Q9t4FkhIS29WeXW6D1LdXAYFdrMEuBfs0oLDLXeO97wHS2KUw/j7enmJCxkxBOmaYcjl0OwwrMT4PsTHE5rTxnLQL5PSCTAm5Kgk18jXWQ8jth87Dci2cXLYouQAV6Nk+zkkJWkOZZVRVQTUtQ95/rHCXlxOMs7SdIc80oRiMCmsBaEB5tFasVzXrZRvqpzuHN0Hhr0zHuja4Nkyu1kcLQFSw5CLbkFYtk8iSBgWtek2dwECIQg4TtsTZJ+Wve0mTpRvMLuN04WR+bsDBUHy/L/qmnevLx4ZzXZwYI5gmsCFKK3yjsaViLR3v3f+QG0f77N2uMF2LKIXp1njnOTs/5eGDd3l88iHrukbrir1KqHlA00xp1xbX1hTKMZ3tc3nxAavLbzKbHVBNPwEHbyBaMPWS9XpBkRVkusBFf3tnHNa0LBZLLk/PWCwvuLw4p1Ye6x2zakouGl8U39nB+a1KjBbvQZwPmE0NFGivgEW2FtIJIC1yRAMljd8Q4kNJFjXE4EGJRwRNiohgnRu4G0Icgosav8jz/jowmNMSwIxrCTgbHyTSHcGuspu5LSlONvPaeO4Zft4Yk08q743/fatTt+a8bffCbp22y0gNcRlhPY4tJkWGDNnY1UpEMsM2DtczGBh228hhwBykNm230VhLpvVWWeSPIs9MOxx3xjho7CqL8aoUtqtAwHDbULYG+RUAYbi/6zoWiwVNE+jY6XTKcrlkvV5zcnISHjrLtiLlx2WCr5KrrOddn4fXHjMFV11zqPiH/TF2nQyV9/i8cebE09DhGNg9DUWOX8Lxc6dnHVaKfBo4/FglWbPRR+mco3YdiEKRR1Qf/jOkgLgQSe+tD6DAhfO99XStonEtF+ctsABcnGjjKys+6NW0lLCXSIWnpV0FUFiJa4X4lC0sOBUs/VCKJAtpX2pTPiW4i6O3X/lYiWwTlZ2o3UF5EkARpqsNnZiUeOiQwe8ko/cgmIT986WNkhS/J3z2DodDbAAF1hs8Li4c5DZ+WBeKzDhxOAUqU2RlxodvT3jxcM5xpehWNd55sjJjcVLzi7/4DR6dvk/X1JRMmWSQqQua9VfwcotS3+TWC/e4e+dFytlN3n//Q957929xsfgGrXsHlVW0tuZi+ZDL5n3m3OSouhOyNJSms4ZFs2ZlDJeLJcqGWII9MsplQ/PgPgtryQ9u/5KG4S9JYuGkzYJGkAoM9HN+PHRrniJgxI2LKCrv/n2M4yZeYcui35DdsWhQ/A39WDlvruEJ2Q1pfrLWxuv4Xqe5IfHQuyM2gCNlKgDRJeC2iIpx6vmT7K2iD4h8iiSAvOm97Tiq1Ifxrn2/bPpts8YChNUSEwCQyNolUJWeZXPfgQEWgc/m3Rz8GWUkJFDt/XBrqHuQvg+XAHAu1DtI5z1LPpLL4FtRlknGee675FmKaqxQdqW1De+dGIK6rjHGMJ1Omc/nTCYTPvzwQ7qu61mDMRK86tmvav/4/KvcG8O2JRlmDYzP3fXsw99gOFiH9d2TUh9fY1cmxK7nTJ8T2BlnVVw1Bob3FZEn+nb8LB+37M9KltbiO0dfpCO9SCK93zJZPmFvCt4xYckdF5fEs6T/bU8MXoMPa59J0suOuKiMDffxCuVziJRi30UCXlSCFEBMX5IAJlSyjno7TmGJeGNgtA+twd7i83FHnLdcVPZx3biY3rQ11z4hm+C1OHElNsG7uJyyxRuDdaFGiLIOcRZ8yJxw+HBMX+EtpI558aBCxobUmsuHD3nrq7A+f8Qkr7h391W61uLWHS/dvssrL72MUhrfOjLAuZoX+TTTvVsoMpwxOCyUGbdeusGdF38P99/7Bb7xzt/mrfd/Gieek4tzanPCnfmbmL2GA/MCUOBsh+tWtKcnOGspb7+I3ruDXi+xdk3XrdBd/VxjCEhK2FtiAnv8b1tZJCXc13xRKqHUjdZ9QlEO5tnkY99yHWx88N5vFHi86+aTKLIs6ow4Rvzo+kkRPnFn7xOZFFkBH37PtG94iQhWhuyl90MFb690me5iR8ftszauzRiDUbfSEeMxoT8su+b8dB/vN/ONx8c0wKELemM4pfUMtl9G6eMCtvXBdj8m4OE9pJUZt7rNxcDDZwAk+Ah1CGCbKRhalbuUS0JYV1HZsPEb7VLKT6ODhpb8+PpD6j4tXWytZbFYYG344bIsI8syrLU0TVjbPBULSsfsKm18lUtg3MYxgHmatX1V3wzbkI4bsgxpSeJhAOOwT1P/pO3DTJFd7RvLrhcpHZuuNQYZqe9SO4b9MhwTz0N+4PaUr521PPIdTXSXuMHcaFMEuvebyVJU8LvGCm9hsuppht5K66cTAUSjyKN1sJmwfVLMvdKPN1YSfaY+WnBxV9+GpIpl+z2Ok0FUqyTLZjORREvAx089LvD93qAfXPTnBlYiPH7Ic09sRJigHXgT6s07Qi6zs3hvcc5iTINYh1gDzuBcWCnROYf1LWA3y7amBwmLv6NE40XRGE1bV6xWHW2jeOHGEbNS01pFmzvWhlAtsiqYHJRkXnAGXKbIihLTWlzbYZ2lIVRNnN2YcKQ+w+Thu5x/+D61OSFnRqkP8D4Un1ktz1G6oG1blssLxGbceOEVpvdeopzMaB494vTD91muLiimM1T5fMYwhGWnPRqUgbg0r3dxgIpFeHINl20Gz/dD5WmKYZeL84nV+NI13fAem/vqGOG+Sz8MNZ5sTtoAbCGs1OcTZxd2pLQ9fByDQlSWm2WYN+y6PPEMwz4ZgoK4Z3NMX1EoPVMCBYPnHl3zqrktzYs9YzrIzEhLMvukp62LKxQO75FWTdwYBJvmbgyxFHAqg2dUSmFMZCxE8ErirPF0eWaWwS7rcdg5T6OShx02pLjHyjX5mtPn4TX8aBDuillI/0SEsiyZzWasVqueLYCgIKuq6oMKn+Yr2hU4uUuJjy3pYT+MwcouhTy+1vg4733v3jDG9EDgqlTG8e8ydAXs+m3H7d71mw9/o3H2wFX9smtVy4/CMn035Nd+4Qvw5W+wfuc+XRfAQP8mDq2bBMLCt0HVvXHs9rby3WwOLx6popkiEe3xjVexjny8okhIs0qf0+8wmPi2bifSK+q06ItPWCY9UjRqAmZI5sHmQmF+8wEM+M1WNbDOiBOxxEnaO4N1TVjcwQneWryz4Lug/DsbwYIDZ8BbQllDg/JdeACnNiBEESvmgRaP8ooX797ls9/7fdy4cweV5ayN4vTygqwsQ6S69azrOkTMFxkzKcIaDirkj+tMcE5hOofPc0pX0a07Vq1FZXNydYgxLTqbghImWtPYc5r1JW3rycoZxy++ysuvfC9FcYBMKpquo1YFklUUF6dYu6I9u/iWx993SlysHeC9DzSy98Q0AVLBmmFK8NhIIinjkZEV/qU5ZDOXbK41rOo3nI/DKoh9wGias5OS6z3L2xbr5jqQaPikd9N1rQ8MR3p1RFLdjO3jUw1/H8e5c37z7vlt90f/Zo90S2xNvE4MxKV/WyJbsbnvBrhvHioseiV9cSDpwcQmRic8QzhmWAYf4tzqZeMNGs6/PtWIcJu5wBONWIfWKsSGxKDSNOcnMJJcGN5v1lkYAqCxPBMQ7FIYQyU3tAjHvuOrKv4l2QUurirQc1U7hmxD6ui9vT2yLKNpGowxfdvKstwKKBxef3ztsVxVI2CsEHcp1F3Kd3y98TMnCz9R8MPI2vF9doGK8faxPI3ZGD/L8LcdP/d4AtnFDg3HycctS3FcdC3dYILptSfAkEoloez+wH5aSLKBERIL8Wws8bBZ9XaN3zXGZDPpbFiA4UTdX72/oZfN39CqjUUwsPk3QABiGlK6QLT+I2vgvSflNXmCVSRJwTiH9zZQx87hXRf/Wby1YE0EBOE4bAc2TJppu/gACILqj1rDO8S7EItBqGJYTXLuvvQyn/vB7+fl116nmMxZNYb16pJV0zDVHRoVSkBbi9caayzLboVtGsg1WZGjdRZ+Mzxt06DzirbpWF2cYYyhmNxAxxTGzl4E14NXdFoo9ve5eedVXv3E5zi+/RLea2pjya2hykvyvKKYzlitLjDnp9/y+PvOiQcCw9VrhRjA5pGgLP22n7h/Bwfja2y0bT4PDBtPXDXPo3VkSWM9g/7dHugVFb/49HZY1y/kk6r1pTEXMPPGd95fxG+YCBdX7gsZueM3cPDOqYER5RzeJ1I+vCiSFnsAQiJkUsDDrDHwPdiKSz3LYA6TqF/iMw/LFyeF3befDRBIG4Mijise6lgyXKnNEX7wm6TKklkGBDBnTXC3DX/Y5FKJnRbxTCxXrSQ+X3yv2dg/fvDMV8lHqkOwS0GOZReVMlYEV7ELuxTSVe0ZK5oxwNBaU5ZlzwgMAUtSWLtQ4q4AyqeBkV3PPmYFnvYMY2CVJNVLgE2MwC5LfFfbnsYEXNWetO+qZxz/ZsNyy7t+g+E5CeANgx0/bvn/ffUd3j25oLEmRtcPSoT21nff8B599yhBgOEL6SVU5ktTz/DcHi6ElzVMEElts3EfDKSvXJYmhv7o4UH0ir4/x6cWpP/5wbXT5OX7AC7p96eCJxtK1jkLzqGcwieF7wzOWbwzQfE7j7Md2BAf0AMCFyv9JUBA2C4x1sBH0KMIkdCTcsLB/hGz+SEHN4+494nXefWTn2A236OzoDqDVwovBdaE4LdMCVghsxa7XrNaN9i6wYtQ7U3Jy4osK0Nltrqj9jVNs2Zxcp+uXiK6RJc53q6hWWOcQsmE6uCQO3df495Lb3L7zsvkWUFnLaZV5JJDMSErKrJJRbneo84mH33gfYfFp3iULfQax0FvBW6C77aAQQQEw0ygJEN6egh3fQSLEqsh+QgS/OCopFjjSI8KVBgubhQvliAyIpugwlBK1/fH2AQS0qBOlf6G1r0KSq+HEgOFHJRyVIJqE3UTQLCN774aAAI2c0Cou70NPEiLMJE0aozjTO0Jn1MtkRAzsZk7Nha7RmcarTRKB6WfnsyEamFhVUpCQaE8z8BDZ8D6LvZbMgV8D6b6X8OnuA22GJuUVqIUwT0ZwU5vkOyQjxRDkGQ4kIYKdFflu2E2wtByHSufsaWftg3/jrftAgLDY0Q28QK77rFLSY7TKdN5u4DOVf2yS7Huavu4dkE6X2tNnucURUFd1zRNs9WWXco37RuzMUPQs6vd42e7CvwNWYIku9aKGNchGLfteQGC/8/PvAPK4pXd+LBj7v5GkoUTPssgerif5NJxG8N9cFak+3rlL/3LmiwAejAgWxPZsJLptoIfta5vevqNYwt6tmNgbT3xN97OB0u+LxoU6VBvw5LI1nhwJoCACAiwNswmzkFajc07PAE0eFxkMwMz4CNYCEvWhrK1eZGFxAsNt1+4xfd+9nPcffFVDu/cRk0rPB5rWtbLNYvFEpRGV3Os67CuY1ZVdDRh5cV6zWq1QjlFZwwOKJ0wmZVUZYnJYLVeUa8uuTh7SNus6XyHNWFiV35O1ypUMeH4xmu88Or3cnz7LkqyOGeFxag8gio0Ki/RZcHU7NEd3HjaUPuuSkpr21DzyQUUaGhjt+fPLRgayxeOmQHYuGi3mAeR4VCPc0sYL+Eaae2DMH4cEivhhXNFgR8gAkljL8DPHrtuAEGcF/u5JBQ06p8lIMoQS6XD3G6s7VmLIYh2zqPEjTJnJI798N70uGMLzEeQE5mX4fsUXAnx7Uy4AkhrO4fsHRvf+pRZoFAqQ6kMrbO42ma4SwIKHo+3jpDtBBJLe+tI+St8z1ioGKRvrB0sUBX6TMmm9c7HkGHZVvoh2kSF38WNJpiBPDPLYNf34d+rUsx2BQ7uuu5YQY8V/diiHiuuqxT2LgCxC4hc5Z54Fjty1TG7LPkhANj1HEopJpMJVVXhvef8/HwrSHDonhlu2/Wc6Tl2LY70LHkaqzG893ihpqtYil39+XGLVaGgTqqIkmx78H3WXdr9hB6NqBog1PYH2AQKejYKfei/j/ZBnCjS9XqKoYceW97KIWuVbhm3e/F9Cfv+gDRh+wRAhjuJ1L/flCz1BNrf2/DZ++Drdy7EBxgTXALe4H0EBdaDc2ESdR3edxEMxId3gDfxeuE5lISVEJUIGkVRZbz08ot0lzWN73j5jVf4wo98P4c3brFqFdYL4i3tao1dLmlOHtEoRTGbMy8rXOvRtgtV95qWh+dnrC8v2SsqVnXNcr1keuOYI8nQugqBj53j7NEjvHPY1tG0DYaGonCU6hDncvLDA8hLLpcr9OljJmUocFTkJXt7BR0Z4oUsN4hWiAJjn88YhsAWBkU5AJjiUVr1P/nWnNYrfN9bsdtzoe33b5Tvk++qMWZjjQpbq+uJFpxN8xEkbtr11WFjpc54ce83gcn0pYUDmATXh0YEZUoPMjwh1kSpMMasDe6rdJ9U68M5G0CFDYNTYnsl1udwPqUHD3SWxGwblcf3xPagYfjOgupf8DT+JbIYQSnHeRhLstilB+sqPpvDK4nP53uGwrmQjhyqOtK3Pc81WhXhPkqHFRNjfRKRyOz5qN8l4ThNoDEC69AbGSrFOMm2FTKSZzIEu1BlkqHCu8qCvyqobXz9XZb7WKHsUojjtlwlT1Ps4++7o2M3+3cpwGG2wlVle3cpbaUUL7/8Muv1mvPzc9brdX/8sLDP0NK+qlT0sM/HYG1o6afnGVOIwz4ct3/4eZjumM7fNUauirv4OMXj4prikF7wQM0n9Z5kkzMcFH0/y/ZgINpb/fFhoozX3BhW/XVTkgLxvFTtoLc8RmDgiR5SG63vIxXYJzK5YbCjH/wfYjpAmPRdtMi8A2/x3qA6hzgfIputxbsOCJS/cwEQBLDA5lxnwHc9mIkmHhkWjyLTJXsHh9x+4S73Xn6V23fucXlywuPHb3NwVLJ4fMpiWZOjWZyccjibMs0OuOhajO0gy5jN5nTLNQ8vzqmbhsIozHKBzyGfVBzO9pneuM35gwc8eusbLJfnlOxzcHwEtmNxcUaeaRYXj3h4/11KLPt7B+RtResd0+mc9tJz/Mox+f4+XpUslqtQWnruETJUXtJiwXtstKREZXjxGMwzx9t3S8L7H5S7RGXSL4ojUdn4ZHCEjduL5qR5LbJCfvPObpZX335P+zlgYE57u53Sl6z+VPRnOI7D6y9bbjGISwGneVBlOC94J9GyjWDbuTCyVAA9Sm8MHBfbqyOQESWgPNaazfLQPmzXEpdTjrf3RCDsARG0VugsR6HxsU5IcHsld1uaMyxKD+YOIUL+oHxdXOwrIXfvY6YDFmME5QbP5kPmje7jK6DrDNZ4smyjS0IAYrQoFHgRdKbInGBMYDFCMnXIikprG2idhTEdV8b0KizaJZ4AXPS3CQiSNThecneseIc1B4b/kk9/uG0clb/LFz22sMdKeJd1nP7uAhbD+wyfY3zM+NiPYmGn/tnb28Nay2q16qsjjq85Pu/mzZv80A/9EF/60pc4PT2lruut5x0XGtoFVoaS9g/Xbxgq+OG9U7t3sUAflVnY1d/Pkw3YJaqfnlSff4+kECrilqH1Hv9Giyep8I2iD2rcJWoVwgQkoXYAkXkIc0lkE9i4KOIUzObLFX3dNylNPuGzJPpz0NowyRNnYL/x+3vfAwKcw9oOnMWZECfQZwb0TEGkPSOgILoHXPRjwsC4EMjykoP9Az79vZ/n87/mc7zw8j2q/UOyaopWOc1lzY/9xb/Ihx++w4tvfIr9psOahg8enXF054h9HGbRUnuNkhyV55SzGf7kIe7ihFU55eKD+7x/8iH7R4ccH99Eq5y8KlhZw0lTc0sd0VlLs17h20sW56c8evyLFCjmeze5WD1mrVeghbVoshtTZi/cxNmSlbGYukXUmiKrwmqUGdi2RumStKaCyjNEK8xqA9Y/brHWosThRYU6DwTfsPIp7bgbnSG9Qg5G24YVCGBCDeb2NJ9uzt68w/ENGAGFcB2J1vSuAOnIFngTFgCK1mmIQ4gxJvE4kZCBE0J1BgaiRMXtCNdxm+Xdt95bT7CKlSbQ/TqEBFhCMacErEfTkhKNjiXLpX/mbcie+lKJkKkstnPIgMcsA6UQpVGi46OH7eIdggueN6VwKjyriITFs4zFGou1DqVSRkdgQwLTEOdTl+bbsD+4ZOJvbyW+qpFP8R6tHCr+17UJQILWlqdN789kCMZ+7uGPfpVLYcgcDKPPkwWdlNVQ2Q2p9SHrMFRsuxT60DWR7jPM00/XGyuvtH8YJDfcPr7PsJ1jwFIUBVmW0XXdTiCUZVm/1HDKdrhz5w6f+MQn+Omf/mkeP368s6DPuIBRkvHzjVmHBAp2uRvSM6d1DMa/bfq+6/e9isFJ9xhmQgzPf54gYV5NMA46b3olHVsVDnDDeWL8pvitfb1F7/sptPcG9DRtDDpMyj6xBptwwZAaNTA+NncYAthBE/v2Diy44YSN92HStdF3Gn35vlf0UbHHWAGfAgOdwzuDuORzdZG+jLOpT9UOAtBQKGbTGUeHxxzfus3RC7d54ZOf4KWXXuXWjUOm0wqHxvoQOFXNC37wt/0mfvJv/A2sU6hqgvY53brjm2+9yysv3mKqp6xXDca3iPXU60suLh7z7odvcXjzGHN+zvrsMVW74PLslMuLJWs8p6cniBjO3m1YnT6iqKZkeQbSMVGWi/qcqezRdTW2bQL4xWF8C96SZY7MQ2c99bphkV0wmRbkukKsw2GCTzfPyIsc6xzVcyxd/ODhfTJdoSQLVHBUxjoLoD5Llq7qSWKGC/lAmq82QGB7DtiuujRkI9NqkT6yRUG5hPU5QlR7YCesDX8FQetg5Trv6Fwslx7TJL2tMd2S1rTgFUU5papmiMroOhvZi2hJS0qf1midhUqoEqC9VkGRixJUpiAGs4Y4Fwksg/WgU/pkCjiMDIfSOJ/hbXhJrRvqAbtVMdFrjTEWj+CtwxiDtSZmEIDOg6tMRMfAR0WmBSfgtYB3kenIkCzDI1jj4r/ATOR5Ht1CBu/D0ss6whPrDG3XYa0D0fjYPqWy8O7G1F+PxTqLF4VWOegiMijgxGBai8quVvvPLF08pqiHSmBsYe6im8YKdZwrO1RsQwU1ZhOSwhluHyr1qqpYr9dkWUZd1z0NlkrpjpcF7mmZHXBp+MzDz7ueNYGXVB0x3XP47ClzwFpLURQcHx/z8ssv8+Uvf5mTk5MtIDGWsWIdU/XD/hr21bCdu1wXQ7C2S3nv6p+x62HcJ1e5dJ4nIHjzZslpazivYd1ZTFyHva9HNDh2FzAYfwo1BFRUki5WCetr/wWmIF5rnNG84QiSC2N092EfRSYAGMQp+M0hPlGjwUJzPqyHID5SojFDANeF2gHeRZ/jACgkl0J03vroNkiBgZHvoMhLXrhzixdfeY0X793j8PCYspwgRc7RKy9ztLdPoUJ9BO/BO0unQKuMwxdu8qlPf4Kvf+NtnFMgOavlira9YL085bUXX+fs0RktgcPplmt8XVOfPOZ0tWC9XOKbmmVrqNU5Z+eX2EzjRYM3NK0Bq1AtOA2NXdHsCZP5PtYY2qbBWYfyiqZbQFFweXFCkU0RPUVcWA77cmHpupoyz6iyEmMtudJYZ6ALc12uv6UY7O+orOsFuCbGZwQKPcs1mQ3rZfiiCEBOEnUdLO/tuKXEDmyeI6Wo9UGq0BtuycVg7dAAiRZotNSVUlhnMV2H6QzOOzKdM51OUUrR1DVN1wa/t/cIHtctWCzu0zRrBCGvZkymB1STPUDTmWgcRowdovIVWZZTlmVfmS9Q4IFWF2VwrqNuasqyQomm6zqs7RAJVjoSgIE1QbkKQp6X5EXJ4Y0X6DpLlhVkWR5KPLiW1nQYE1xqgaZXiFex8FKou6HEoZQnyycoVaAkAJc8C6Agz6CtF6ybBtEZ1XTGZLYHXmO6tPaB4JwhqJBQX0ApMM7gbMPp6UMuLy9wHmbzfQ4ODsm0YrVacnZ6SlkUVFWO810IpG0th/vHVOUeojXGtxjXoLRGu+rKcfbMoMIng1G2reldSiP93WXBDq1s51xv7Vpr+9UJx+wCsFWUJynedK08z1mv1z1V37btFrOQBm5CxelfKvqTniFtHz7LkJ0YsxTpmYAnAEh6gYYrChZFwWQyIc9zHj9+zP379/t7XBVrkTIlrgJmQ3laG4d9Pi68NP7d0v3G7Mn4N951/+Hv/MvBdfD9b9zjwWLFVz444eHlmpXzwwDkaKWP/fe7OTXvB7Z+b4hF5Z7KDcpG9Q+v1N9BBtELQ7fAjttv0ZaJHUjHplLAbqPEvRkwBLFyYPocQIMJVn8EBN67fh2CUJYglhjGoZWiKqcc3rjFy6++ymtvvMrNF17g8OgGk2qCoGjxlLMZZVGCNcEPGvvXiscpD0pxfO9FVrXh4eMT6vUSvGdxcsblWUtBSV3XrLoWZz2+s/iuZSaK9vKS1XpNJrBcrxCC8lFeMB5yVeAEMsnw1lN3ls4ppscHzA9uYxthOm0xbQ3OYkyH7RoWJw8opGK6d4zOJ1jJqJ2hXq+5X97n5uEBSKht4DxkmYeYCvy8xHRt9N8HN0bmNaCxNqyWqQSsVT3IFVSwhH2gkTfvsETLPr7bKgXrDXxBBD+/s8nyD9ZwAgMAITAvfLbptzeBhcszS17kIMEIMm1D1zahRLRtsd2C1fKMzjSAkHVtABRtQ1HuYZzGuA15L0Sjypo+MDAxXkqC0kW11OtL2mbFpCrJdIYxHU1XY02L97YPcrTW0bYd3kNZVsz3Dpjv74VVRE2NL4oIihrq5SV1U+OcxThBJI8uBo+3HcaswTVY11GUc4pqjzyfkmUFXabQytE2F9TLM5q2Q+cTpvMj9q1QFDN8XNvD+5ZOQiBmluUUZYVWmrpecnryPmdnD1ivlniE1XKPSSl0nWO5aHj08EOyXKiqDHxH165p6hZn1uwf3EQrxXJ1xnJ5hs4rynLvynH2La9lMPw8Ls043D+0ZJNiT8oxoc+u63oQYIyhrmvauGTsmHpO7EACDklSql66R9u2WGt7xTy0WFNZ42SxpyJF6VmrquoVMOwOiNxFl6e/w3um8/I879MH5/M5RVGwXq95//33ybLsCcYENop9TO0n8JDOGx+f+m1YtWwIBhJA6UteDq47rtcwBH9DRT92v+xiC4Yun3H7Pm753k9+ihcXC04uf5bzxZq1DwF6saGDQLzNti3xu76GWbf3lY4ARO/b7FmADRgIgT5qe/qNIGI7V2D4eRMYGIIJPSnv30fa33sTAYHbsAOJPrUBDPhYLIhYQAg3ABVEWlMpysmM/YNDbt2+y2uf+BTf87nPcvPOzeDOtTYEamkVqqT1ekbRdu3m/XceqyxoTTY74KXXX6duG+rVBVpBu1qzXl/yNt/k6PCAdnnJumkwFpxx7M/3OH1c45XglKKzjkyE6XSCUsJ53TAtj7AISgutd6yNR6mKaXWHLN8HcRzqEtus6JoVXVOzqi9xqwXWtXilUROP6CrEfyjFowcPwTaU2YSpV1RxZcmBn+i5iOkMirRcMTG6P9TWcDYPfmwZpIL3y3MGN4HWOroawtgT0/XUdhrHwznE2eDXDuyAxUZQCQn4qwggPdYMliOOc7VaKcqiCOebBtNc0rZL2maJty3GtPG18LiupfMLXGdwcw96gvWhYmFYPTCU/PWuwNg2prd2dF2LEkWRa5RYzs8f4W1Duwrj0zlD2za0XRPAQ5aTFvYwJqQQma4k03B58QDTObq2Jc8ysjzD2o7Li4toYCq8KlFZcNvgDLZbYbtLTLvEWENWTJnMb1BNDynLKcYqrF1z8vhduvUFIjlluY/3CqVK9vcLqqIiV4aubUOsjgNrclpvybOC1fKCd9/9Rer1RWD0ROiaJfvzCYvFmrbxrJdndK5BiIG/rosgrqVuFygFi4vHXJyfoHRFWXybgGBs7SeFNNy/izVI9fZFpFf4QK/I1ut1DwDScSLC5eUlsKnDn5RaUt6JWk8AIEnTNE8U8Bmmx6X2JRBirSXP8602Oud6mivLMoqiCPnIA2WZ9o0VYAp22aV803Hz+ZzpdEpd15yfn28Fa6bnSsemZ9Za92xHlmVbbMM4hXGY2ZAAwTA9cHz9tC2dl/pv+GxjZmFXQOOuc8b7v50UyO+UzG7cQR0eUnz5awQ23eNjEFHgHUdM/eh8GVD3waiXnkrvOdjEEsT9mjQxp/1EKy0pFb91TQ+brAYgIRYf27hZUMj3gX/WxQJCNgICt0nFIlUK9NGFYFP1wG4ABFyIZ/C+13VFFjIFXnz9Nd74ns/w+puf5ODWTVSWUbdtXLPeBr8oCmPB5zmdCsrFOkjpnWHVSEfpfVDaZcXBjds0dcPF4/dwaNZ1h33wkHk1wxloG8u6s+AVsxsHmItzCtdReE8mwUeuywIRj6Jl78acpvMsLhesuw6jFcobVqs1PteIVszKium0wpsD2uUSf+LZm06odE7nHWa1wGUdqqgoywm2rvnw3Utme/vcnkzJZ3O0tzjLVsrdxy3WtHjJUCqMB2M3rqJGKTKdk9LpNkaahGVwVU6WFaH4TZaRaY1RhiwPc4q1BmQzt6f523YWZw3GhXHlEivlfQ8O0+uhVGQkJCwn3Zl1KBJXFJh2RVtfUK8u6Lo1eaZwxgbjS0LdAudbTNviFoZqtoexLgLfCDoQfJehVI73HcbUtG2DEkVVVuSZoq0vIbXX2/698QDig+tM4jLNMT6ga+Hi4pS6qTGdY71aAZ48z1BKMLZDYpwD+YTMOUQ0pl1TL8/ArfAuMB3GNCH40TZ4u4fONJeXjzk/e0AmjiKr0EVJKS2zzHI419y+dchsmlPXU5Qm6seO9cqglMaYnKoo6WqNiXUyDA3377/N5eUS5yW4OGxL3axwpokuDBXufXES4hywMbjRc/GU4NiPtPzxMD0tWevJbx+CK8IA6rqO9XrdLzcMG6o/KcA8zzk5OemVaKomuFwuAZhMJk/cez6fc3R0xOnpKQAXFxdkWbalqJJS3aTQbFuvyYef2p9AQAryGzMfTdPgnCPPc9q23VLGybWQrl+WJW3b9uxDUtJVVdE0DbPZjLIsOTs7o67rJ9IBk+JPsQ1FUWCtZb1e98xDkiEIGcoQuAzZmV1ugfF5w2DA4fZ0v3Tt4XoT4+uPgeG43c9L3n30kJ/+hZ/jK998n7NVS0eGR6H7uX1jwY9BS2/8JqXfH5n2DdOvgu7vgwclZCg4oS85vLmw70u79kofttODo/Xk+yAp30f9B/AWUwT7GgIhgyD4/210AwRmIa0+KINJMt62f6r53j6f+/4v8snPfZ6bL7xIOZ3ivWe1WqIFiizH2wCmV6ah9Zbp/gG5yTDK4rwhGF2xhKoOPuvaOJTKcFozOT7idq452JvimhVFnmNMcBVkeUU+EWpdYyw8ujjHiGNfK/arCeu6Y9F0IQAs1/guWpZW8Dqn0AVaPO16xenFCT7XVGWFVS6sWZnnlEf73JxUTMopRaa4WK4wqxWmXuHWC7wucNawbBrWXUtxdEQ230NlOeLdqJjVxyw+UPZu8G4DOBzegulWIcKdEDughoVpdImJrKoIfclfpRRFUeCI40UCsA2LVoUCODgX2Aif4lBi5b7oj08XlVBBpyfYutYGX79NDE1gBnIdCgeVuWBMOwASIU3OmAtM3WJNC4T8fiG465xkGBeyZRw2piYKtdG0KsN1La6zm3GdineID0F4zqGy8C77uBKjOINpHaZdI17FuAQCOIl1DYq8xLRLlIRluwWFtQ3O1zhXo8SGgEln6BqLtSua+jFFXrJeLqBr0GXFK/fu8ek3v4fv+dRnePPNT/Hya6+SFTmPHj9mvao5Pj7mxo0bVEVB0zRcXiy5/+ghb7/9g7z1zW/y1ltf5513v8njk0csF2dYG9KAl8tQM8Tb4H7Ic43SEuKHnKOzIeNICShlsE/Jnn0mIOjH4w5LcLVakRZSaJqG1WpFXdcsFgvatmU6nVJVVe+v11pvWfpd1/UAwBjTK0WAvb293gWwXq/7fV3X9YqmiL6eoZshWfCJCUgKfz6f8+DBg15xZVnWW+FJkZdlubUoBEBZlv3ze+/7eyXFPZlMaNuW119/nbOzsz5bIDESRVFQliUnJydbijrLst76FwnrL0BgC9IKjdmOaNCh0t6V5z9W+mMXxlCGsRFXAYwhEzHsk+GKjMPYjuFxvxziCP7kf/iXqFuPeIUXHQLzMBgETUq5GrZxk4QY9oTwwTTTbZT2SMsPYhHGV4ToEhgAjvA5FkdiO72xP9dt/P0uRf5bizddXFPAhLUEnI2LD6Wlh1P6UcwQSBkDni1mQinNfDLntU9+iu//tT/Mq2++gS4ytBOccbS2xfkQCd3kHlMvWSxO+eDRBzxcnPLCnbu88tKbvLeoObxxiFKasppR5tNIS7dcrBY96Fg0Na0Hk1cYp/CmZjadkZNRNw20DUXXkBvL/fUltbRUxrE+WSPOB+tqXuCV5mK9wKFwXVDeojQ5GeuLNQstFIdHKOPQyxqXZehChXK23rGqa1qd472iKAvKMkO6lsfvvItratZA61o+KAuMcxwf3iJzmr2D/W99AH6nxNVhHcpYdRDSu+7DQlwuVusXiemuab0Mj+1WcfzRjzMVAetKQFR8D2KcSsrlz1QIlu0ZScKt06LGaTiLljDE/GB7dHF1bo0ShxaLocO4DuUh0yEAzjvwrcKjUUqwGFoXfP6pqJZIfF+UDoWHnA0pl5mmj3FoG5zzuFilx3lw2JjLr7AWlBacBZ0FwOpi3Y1Uf0zpIqb7QXC1JOYuuOBM02LtGnwohaxULO8NhAJFYbEvZVuwGb7L8daSq5wy32e57Pi5n/8qv/C1tyjL/5K7L7zIb/yNv4Hbt+6wXlnW5/e5fLTk+MY+RSFMC8WnXn+Je3eO+eIPfB/r1YrHjx/yjW98g5/92Z/h7/3cz3L/wUNc69AiKB3SEdfrGo+jmpT4sHgI1jlaEwyGPLs6W+YjVSocsgQpaK9pGpbLZZ87H1ImVG9ZJyWcFhlKitI5x/7+PlmWcXZ21iPVabRIkmWZMgUSkxCoLdvfB9hSSsmCT0opKfI8z5nP55ycnJDiBBKFnZR6qhSYrPc0sIcWblLQVVX1LEOe57z++us8evSImzdvkmUZl5eXfZsfPXpEURQ8evSoBxpVVfUg6Pz8HK01k8mEruv6GIrUtl0LCo0/j90XQ5Zk7O8fg4ld+4fAYggI0vXSb53n+VYbrbV9/Ea6fipgNGYfPk5Zdj5MjonTT5MosdZAb76Hbam2l+rjC9LfoK5TEGLasgEF44oGcacQArzibfoSxPHU9M/5Tb53SBl0MR3Q9syAtyYAAdNBZAd8X0fAhuO93VwrxhoIfpP6gKAFDo8OeePNN/nCD/wQe7dewOcVzgmZDcsiWzqMrTGNJVfCYvmY89OHPHx0n/cfvMfZ+WOW77zFh7/w8ywpePGVl7mslxzdvMvrn/gsN49f4Ku/+DW+/vWv8OYbb1JlJev1iqZe0y4XrIzhfLHi7myPtuto25rzy1PO1xfkOiMTxQRNOa8orOOgLCnKkpWDxdpy+/Zt1m3N6dkZrXUU1RRdZeTzCdPZjOO9PfK8RHuPsy744EXQymPMmtavIzaKVSC9p9g74IPHF2hpKEuFO5mxyisKA5NqznRv9h0enR9dvK3jinYhDkDiipepMp9PGR6E3zgp/16jDgBsUOqQXFrehUp6DM7Fe5L9ItHSFu/7XHcIRXFEBG82gX+iVBiLIuAsTW2xrgsxLITPSoWaAaJVZABCMm6KZ+m6uCCd6P4dFS+I9zRtA1qDAVEuvnMpeDK2X2dAqtLpsd6F5/Xhbe7aLhAS0R3nHDGiP9YwQBIKCW2ACDw6JJT4gTiufOxf7zMQ3bs4nPUYZ0MR0M4imeXmdI4qClpnaVrD4u13+Mb/6T/g9dde5zOf+T60Dm7sTMPB0Yx7L71AWU5Rosm0JstKXrh1j5uHt/j+7/sCy9WKL33p5/h7P/f3eOubv8iDBw+4uLzEeY3D03QGnUmIHdG6z854ylIGzwYEaSJPE3xd171LoG3b3mWQAEACAakef1VV7O3thXSRqGxnsxlVVW2l3DVNQ9u2vZU+tDYTaEi+8fHiP6l9VVX1yx2Pc/GT8kosBWyUXlmWfYBjAhPDeIf0N4GMxC7M53NeeeUVjo6OcM6xt7dHVVW0bUtd18znc0Skj1UYxgGcn58znU4BuLy8/Ei0/S5afmh1pn1XMTvDa+76PHQfDIMSx7EIQxZluD+BtWGtiXQPO6I6Py7xbqi8B0rbR5U8UOjpuBBC5ukTBbe1/MaCj9Rpf4APTIBPdr6kjASJRZE21tWGfxjEE0Qw0NcIsHaraFBgAjqwHd52MXYgBhLauLpgWqMgLS3rN3EC3gvT2ZzXPvEJPvXZz/D6m5/gxvFNqvmcdd2yurzg/skZKsvIy6JnG+6fPuSD99+lUIrVcsl6uWa1WCHrhst1jcz2uP/NltXlkvO332N5/z4vfuKTPHjwgPXygtXFCQaPMy2u6zDrBq8VrqwwyiPe0rQ1XV3TrmtarSHPmcxmWA8GzcJpdOcxXlDlhBtHN/n6175KiycvAsivu4au8EwnOatmxUTBJA+lX5OnJM8zOmtwxoINVfDSL5HPphzdfZH68iGtafAXJ6EyXObQM4cUt74TQ/Lbk/5ddbGW/abAjE+rBUG/YmAIIEznCnFN4IiJZaBAPaJcP9bBx74K4Nh7j44ugQReU0vCMsW+Z828izX3QyUhTBdWm7XeYbFhrEvw33emocg0XtGvnYH4SOkHcGPx4FUAA4RYA52XtJ0JNfv76n++X9nQQ3hv4r08hDibCP6Cd2Lz7ol4JAvgxBr6okPgUTqy5BJSNZ1LKxcS2oXCWYd1giIjU5q9+YyDg3329mdonfHo0RnOCuu25tHjB1gXwIlSGbnOUMbw6PEDHl+ccvfuyxgH5xeXzPbmvPDuh5TFlGk5YVaVzCYV06og1x4Rx6TK+b7PfYY3P/ka733wAf/fn/wpfvwnfgLrBVxITVVKQv+74AISpWjM1T6Dj7z8sTGG1WrVswLJ6k9KDqCua7z3TCaT3gpOvvXDw0Nu3rzJe++9x+3bt7lx4wYvvfQSDx8+ZLVa4X2o4V9VVe+CaNu2V05NE4qLJAYiKexhIN0weC35+L33LBaLLas/1QlI56Y4B9j2mSc2pIg+neQyODg44PDwkKOjI1555RUeP37MBx98gIhweHiI956HDx+yWCz6+IEhe5HnOcfHx72LZXj/JMNYgauU+NO+j8HEWIaMQlLqHyXVMLE86VkSGzIcL8P7jRmMj1+G1QAkuRSjf1EGmMD3f4drf/j0v4He3/AA6ax+B73Nvzk4wQo2Bw0m5shUJKvLx+JC3saCQjZa/jasLBgAQctWhUEfmACfyhVLgCV+YDUppbh1+wXe/PRnePVTn+bWvRfZP9xH5zkq0xRFzhrH6uIc62EynzOpCtq65sGjD7j/6ANmWYntWnIPEzKyzpMV0K1WnF0u6VoLckm9XnO6OMO6YI198N5bVBqqTKMFujpYi1lZgAjOdbSmxTiL14LRAeTozqGcR1RG6yyK4NbTZBRFhfMKcoXkwYpzJsRT1OcXOOvQOiNXOqz0Fn3GYQ15QXuFaMjyUD8+lL0VZgczVqtL2vYULw8RLvDuMaIXvHz3xe/AePz2xFgbCvH4kDUAqRJhyprpKaDwf+dD7fqeoRrOAT5a/IFKTkAh7QsAymN8KsXlUS4aILHcLhL87S6u1hcMZdfT+z7GujhrIyAIIDUw/7FwT16gFdFKj7U0YjODQRING+/71TN1FgoUuc7jvfRrkKR3UqlYGrkvMpTaG8CSJJCeXAIieByd8VgTGUQfy0LHVGLrHEIoOkTM9AksYkaWKXDC4fyQz3/2c7zx+hvs7+/jcazWNQ8fPcZaz9vvfoP333uHi4sLmrZDZTllUZBJqIz5819uWCwXFNN9FusW//iUR6cLjg9vcri/z3SSM6sKpmVBVQgKh1aWalJQVhX1esVqvQrzcpxNwrRhElfY92f4zXbLMwFBYgDW6zWLxYLlcvlEzYBk9bZtS9d1PaV8eHjY+8O999y5c4fT01Pm8zmvvvoqEPzRiWZPqXghQjJkHKRYgPU6RK0aY3oQMnRjjCvvJYCQYhOGmQvDIMchMMjzfAsMJEZk6GJwzjGfz7l37x4HBwfcuXMH5xwPHz7s3QhpCeb5fM6LL77IxcXFE/3VNA2LxWIrQ2GXch9a2buU9C7f/1CGin+8f5hFAJvKiMkl8jQ2YdhHw1TGq1wQz02ikt4i9IUwoUXdnSCDj1TpMOVveKGektysKDAo5TtU+PG4AVbYAgL9NdMEvqH3vbOITYDABCBgbYwZiOyA63o3wYbrDYWS+oJC3vfsRFYU3L5zl8993/fxie/5HvZv3UGVBcY7tDW4OlRPRIRcK9rFiqUzOFdRL1ecP3xAs76k7s7IVVDq82qCtIZCcrr1mrYzGBFQGWaxZPH22+g8WKXL84fsTStuHuwzyQradUPTLFA6uGaMtXTOYlWGlHOyIqMq95jmM+rLc6xvaZ1BvKA15EphvUNpjWhwKrIgOHLraZdLZFIBGmsc2gcWxuEwxlPmOVoplERAoARnBNNZVFXg0XTGoPJLVGNwjx/haahf+sS3Ovq+Y2Ksi6payGJN/bQ6YFJ+3vse5Kb4Au+DkkySwGlPSuHiintPHuMiCHHehvdEgo/aex+C1sIFNjEF0TWlU7o3YL3vXViBek9lk0OZXyUCyoM4XDKMErXtB3OX94E5Ux6RkAHg4wX7azsfFDmJSVUh0FIFNqN/Yh+YARUBTqhp4LbWU+hf3fBaBnCk4yJGEYiJ8qAzDg8P+LXf/4P82n/gh3nhzos45zg9O+Pk7ASlSzKtWa/PqRcLbG0Qu8L7kHprM8B2nDx8gKA4un2XrNpjuVqhyNibzGnaHEiZFTnzSUGRwdnpA7quxVjD2++8wze+/o1gREfg4xHaNjBJWgmiJYDjp5C1TwUEKTVwsViwXq97ViBlFAwjz5ObIM9zlsslh4eHHBwcUFUVi8UCpRSz2YzXX38d7z337t3j/Pycu3fvcnR0xOXlJTdv3uxdAgmIpAj8lIVQlmUf1JZeAmPMFntQ9IUlbH9OAgdDt0ACBCmTIFnJCYQkZsJay2Qy4c6dOxhjuHfvHm+88QZVVbG/v0/Xdbz99tv9ucYYJpMJt2/f5u7du3zzm9+kaRqqqqIoCpbLJV//+teZTqcURcFqtXqmAh5KUsbDgL/hsc9iBxLQ2GW173IvDN1GQ8ZiWPNgzLyMj31uIpF2HPgFQ5S/762mlC411NbRUAj7B+6E4czpB321xQKM+zXNLD0TwGa52KjIfVo7wDmciamExiApVsCmFQi7WHDIxBoEvocqkIq2BLpXRJFXFUc3b/FDP/Lr+fz3fz9N29GZFoUj04qmtqxNS1ZWeGuY7k2pmxXnF485X1ikc7SnJ5S0nCzOyXVGVUwoqhwjKiiTxpBnCqtBdIZWOc50mHZJvV7Q4ukOD5hXBQWKdrVkeXFGPptgXYVxIMWUIpuh84p8usfNOy9yNDngva9/iZPTd3C+AeOpVy3VXsFifU7nV4jN8JKHmvXeMZlU1N6xd+MGVTVFGYdzMd2yr/SoQyAcFqdUrAqnyLCUcWVDtMcXFpfVYGuWjwve//pXfikj8ZcoEkrVisf3ZYGjm9F5tFY9COyBPj64nobrDUSUmlyCxDEovfLdWNKbO4f3xsf3w/moWFSqhtgHG+C8x5kuxjAE2n8T00IPVtrO4J2nzDOUVljnaZsQoCe9dR4s8YBxQrtNa/E4tA5uX5ewQmQZsJEJjP5/nWUIEqxiH+OrfHAdBHdRWIMgC/wFmRrUeIlZM94JTsI4ynQADc45MI7pLOfzn/scv+t3/E6yfMr9+4+4/+ABp6enLJaXmM5wdLCHaQ03Dm9Q5RPqdc26XvPBhx/gbIdpW7zxnJ+eUlZTbs8PUNMqltJ2uK6m9QqsRmMwRQBVJ6en1M2at7/5Nu++9z5nF5d9v+V5QVYUgbVzoaATLsYCXk0QPB0QLBYLzs/PWS6XWzRySvlL1vfQQj88POTOnTtASA8UEQ4ODrh58yZt2/K5z32OH//xH0ck5OYfHBzQdR0ffvghL730EmVZcnFxwfvvv99f2/vNegCJtk/KLinS5GoYUuCJis/zvA8mXK/XeO+3shCm0ymLxaIPZDTGPOETz/OcF198EWstL7zwAjdv3qQoij4bYn9/v792VVUcHx/z6U9/mkePHvHSSy/RNA0Aq9UK5xwvvvgiTdNw//59VqvVExT+kxHp226E1Pah4k1sQQIFw4qO6fxxBsCYQRiyK2NLP4GsccGmdO90rWEcwvgZPm4J4UXp3RaUAi2gfEfmDWiFyyq8xCVKXVAadthcD8kV4IW4etumIsGWy2DLexDoh423duOWCJRtsOhJwG4QK+Bth3PBNSAusQOOvvqg35SCDW6NRBlvlMJsb597L7/Gpz//OT75uc9CXmBbQ9O05M7hvOXBe+/wwf0PObh9g4MiZ93VLFc1y8sLlqePsc2amXZ0XuPzikI0OE9jWrworDcouyAv58wPb2OsZr1aY51lOpuj0awXF1yuGhatocgcrQkAaHW+oFUV2WSP23dfYLJ/TFZOAk2bKbQTbt15GeM6pr5Di8KvGx4/ekjbXuCcJe8ylCtDKWPJKPIC5ywHs30yFBYX/OouuApChLUEPysCXaxZkmmmezPsyrLszlDlBC8a45co3VLojK999ee/W8P0mZJL3lvKwaD2iHVgY7R8jClQKJRXUakGlSyiY2yBxIW3NqhXElsGPWgIr+pmxT+tNBs7PFDo1lp0lsXYGB/ofhc+G9vFucmGKPzE2YsAQfmLh9a0zKZT5pMpbduxWtYggjVd/z6ICEprMpUMjhAfEAzGTaEmwh2wxqOzUHzJOBeUrQdru1jN0YBApoNizGPWhneeTAlVkdG2hrbtMDYUEbMR0Kg81EMIgQ+K2WTOF77wBX70n/3n+ODdh3zjra/x8NEjFsslTdNg2oZ6seDiJOdicUZnOqoqBL0ul0sWy0uWizOWdY1z0FlL9jhjOpty79U3WNYti+U5Xa3IlaD395B8wuOHZ7z7zjexpuPVV1/h8OCQ1brD+YyLywU4x2y6z2Q6oVm1dC04ayJL4kGuTgd/KiB4/PhxT9UPq98lH39SnkBvHS8WCx4+fMjBwQFvvPEGBwcHHB8fc+/ePV5//XVu3brF4eEhk8mEr3zlK9y9e5fDw0OMMXzxi1/k4uKCd955h/l8vlVTIAGBBAqGinsymbC/v8/p6WnIqx1Q2QlILJdLqqpiPp/37oik7JNCHmY3JIt3MplQVRUHBwf8wA/8AE3TUJYl0+mU4+NjTk5OyPOc/f19zs/PERGOjo54+eWXuXXrFq+99hpvv/02Dx8+REQ4Ozvj5OSExWLB48ePyfOcvb09Li8vnyhQlNo47IMhOEhW/tB1MrTqx1H+Q/Zg6DoZA46xG2F4/8QCjAHM8PyiKPrqk+OCRx+3TKqCdWOxypEjzHXG3WnOp+/d48a0ZN12vHu54INly1ltWRlHZ9qeUt3o+I36d2xPQolccGqzDUAUcf3zeGaiPtMWH/nIuLywN20I5Ou6yAR0hMpjKWbAbRrQt4bB3/BZZQWvvvYGb376M9x77XWK6QyV5xR5jprNmFUVWItta472j6jXC977+pd5p75kaRpyXaKdsL64pKVjXeQcVVOOqhLfNnhr0HgujMLVHbpdk8+n0C3oOsNydcHl8hI5h/3qFjOnsLWlWay49EJnWorZlFsSGAM/rZAyw9HSrGq6pmVSTbAe8qLk1Vc/jbeW5eUFD5sPcF2FkoaqstCBUV2gtTvP4/NTbt65zfHeLFD/a09jhc4FS7UqQj52F90tFoc4TaFylGScntxHqRXTMqeqjsDfimV5LYPiFR+7BNAdfueui1H8qOgO8GFlQIJSD4sMbWoChJTBQHmJhMWBkrWfVtHbpNb6yCAK9Itd0dP3vbWefP8ivSvAb7GCqXIh9IE4/ffBPGPDAr6icvAp/THEIAgBfHrv8ZmL7xIQYxx8eh9k+8WzJpQpTs9uYmqg0hl4ekYIEVob0hi1+AAwXGCZ267DOY/OY3wUwYMnSqEl4+DgBt/32V/DP/17/xk++OAxP/V3f4aTk8cx4Bq8azi/eMTi8oIb6pBV0+Cs5fziEq0089kM7x3LxTKAIAzOOi7Oz3j04ENevPcyrmlojeHgeJ+9eUFTn/ELv/ALPHr4ENO2vHjnLj/0a76f3/YP/XaWTcfDkzM++OA+7733Hm+//TaPHjzgaH7Aul7TdOFa1vlNf+2QZwKCPM97azr9E5Geum+app/8h8omyzKWyyXHx8fcuXOHu3fv9oWIUu5+WZasVqs+uO4Tn/gEDx484M6dO7z99tucn5/3wXwi0rskhgquaZqtAMQUw5CyCbIs6y13oGcXEmjI85yLi4t+/3Q67QHB0dERr776Kl/96le5ceMGh4eH7O3t9S6H2WzWA4S2bdnb2+PWrVvM5/N+GeQPPviA8/NzHj16xMnJCRcXF6zX696FMp1O2d/fZ29vj7Ozs941MnzGXYGFu1wKY6WbYi2G1xiDgzFQGGcwDBmL9P1p6ZBJhjEcw1LTH7cc36p4fLKG2lGJ5pMv3OW3ffHzvPTCPqI0Yi21rfnqe+/wd7/+Lj/37mNatwEB0dzeUr+KbRWcXBE6nhIdrpvVDGXrT/B7piwCGyoMhtoCFtoOZ5ow+/iwHoF3wcepXLAOI8kLqMBWOI/CIFiKvSM+9b3fx5ufepNbt29RTqboomJdd2S6pswFnQne59g847Casnf7BqJavvzln8LYsCCSsQ7rG3Cars6p7tzm8vFDFqs1qJy8qjDdGQcTwZc3eHBxzvr0lNaBUYKeZjjx2NJRr9dURYmzLe0KzKrGKriUjsxrismEahYCrXCG1ta0jaXIK6zyQUEI6MmUG3dfojw8oll8QH1xTptblGrRBEXfdobz+hxjW2bFHkw81eGcvCwx1kNXI43BdS3adqEMc6ZBHGcP3mHCgpcm+3Rdg1m1SDVlfnibYjYnK6bfrWH6THGEKnsq+v97qry39lVk2AMQsBEAQbCYAcJaENCzSIG/D3ErEhR84gGCLRb8+Xjdp+1FdAAS/NJ93ALSMwoQYh5crKQY4gWSYQF9Ho/3rOsW5y9DvQtiDQ0f/fvpvYnLJlsTCyd5YvaQjgWRYvBczA4Ic17slsiaKa1RWVht0MYiRS4+P6k/CaAhuS209pSTgrarcV2Klcgpyhmf+9wX+J2/43dzdrbkZ372S7z17jdZLhZoAecs6/WK1WoRKoqeC8tFQ900mLYjU0JnLHdeeJFHj08odQldg3ehGuR6teD88QNEFHdff42L8xPe+vp7tE1NkefMp3OyecZkss/f+ls/xeGtY+Y3Dpkd7PPm97zB937+M1jb8ZUvf5n5dI/JdIYoRWsM63XNcrm6cpw9M4YgWc7J2s6yjP39/V7hpWyClIc+jD7/5Cc/ya1bt7h37x5HR0fcv3+fl19+GaVU705IsQgQaga88sorLJfL3qWQZVlvwRtj+pTBoYWb2jpMVUyKMAU6Wmv76w1jCdK5w5oHiQ1JhZcODw/Z398nz3Pu3LmD1prVasXFxQUvvfQSP/MzP8Pl5SUvvfRS/3zvvfceP/mTP8mrr77KarXi5s2b3LhxgwcPHvDWW2/1aYcpe+Lw8LCvZnh5edmvfzBWtkOQkIDNeH+SoYtgV/bAmDEYuh3S/qtSHHddY3j/IcOQfovnITcKjzqseHDWMqXg5sGcu3eOKScZDoXWwrQ84vMH+9Re8c37j1nUGi9hJUPlFdslBIP0AEE2xYiCBSbJjNocSAp6IwZehVrxPSAwHZguMANdCBoMRYc2NQbS1OZilNMQkoUiNCXTw0Puvfkqn/vi57h79wWqcgqomCulyIuCXIdgOhBUIWGp39ZTllP29m9wcvGQVbMKRVhqz2R6yNHxMUYLJ+6crjTk6v9P3H81SbKl6bnYs4SrkBmpS23ZanqmAc7wnAEIgLBjBqPZueMVz4/gDY0XvOQF/w/5C0ADSDOQBDAQ09MzPd29RaldInVIl0vwYvnyjKquvRsGs+ny3dVZlRkZ4eHh7uv73u8VCu87XFPTFpLGeGaTGWlVs2taShwdAq8kSZGQVSOO5gfk6Yi269i1DbmSICxyUtB2a4KhWxaOkFdYPyHNM7QMi4xXkOgUmWeIPCH3W7rOMsoyEjpMvWPX7bA4TL3m5vYFB49/isoKisUho8UCAOkcqzcXbK6u6Oqaqq1wXQdtR7dbcTpKsK3EpXPy2SGTkweMDo5oradtP450Fujn9OFci9HC1gU5GbAHVfm+KJAhOtcHsx4h5LBYCwhchDhmEn2JIHWPXAH9DF5K1de3YWH1LqQFeu96KN31KEN47fBflL7aQGSLO7d/n+grmrwokAq6pgYRHi97IGHIT+qLCNG/f+vC0jygm94jhML3niI+wvr09zAA24/6vEd6gZISpUJyZNt2GO/Da8i0H70IrDd0ncW5kJehZIJA8yc/+Tk//9nPKauaV6/e8ObtG+q6xLqWzlrapqGuarouKCyqdkfbOWwXXB/DCyjy8YTZwVFoSAnqgMBbq1kvb/js00/5+re/oqkqsjRjPp2TpClRZbLcblmVJer6LTpLkYlGqYQsz8myjNXqjvn8kNlsRpHlIa3Tw9Xl2+89z/6gU+FkMuHo6IiiKN7R8t/c3OC9HyR5kWcQ+QVt23J3d8fZ2Rld1w1d+OvXrzk4OEBrzYMHD8jzfOj0l8sl5+fnGGPIsoyTk5Oho9ZaD8XDPhqx34XGEyTaFEcnwDhP3w9VirPwiFTE/Y9OiJG0WBQFP/nJT4YFPUoqx+Mx19fXzGazAaGQUjKbzbDWsl6vUUpxfHw8ECvv7u7w3jOZTKiqavgzGo2G14qw/HK5fGcWvz8y2J/Xvw/p7y+8HyL17S/y+7+7HwS1/3zv/31fybH/9UMIxv5n9LEKAldumBdTzCyFWoTF2AUHPw84oZFSkxc5aZbgRZhvxpuPE32H0ucQDNyAWBKIcCNh+P59LRD9DOKNUvQjA9+HD91bD3d4E8YEwoUY18AduDclEtD/fu862L+CEIosSzl79JgnP/0z8nnG8ekJi/mUNEmx1mE8IFOSJMOYFj2YSRmapsY2DbODE44OjmnKHV0VHApFqnBSMj0Y09RN0E0XAmsNdV2RJ4D1bJZbpjOJ1hJhPMZ1eJWg0gQhA2kyT3NsZ4KvBw7nobWWVIzIEIiqoa0bOmvpkMwP06BC8L2JTe+mZ6zF4XFJikDhnKDpSzKlFa72aCTLu1vq8y2LccE0FaTCYoRAK0nlHaauWV5dUVZrPCHqWHjJncyRp0dkxYjJ/IBiPEMlKVrYXiP/cbbJfILso3e1DgiocRYTR3Lcx2PJd4r3/gwU7y7IQvR6ely/kIbj63wgDSIVic7I0qxXg/TXtLMB5u8XLtsH7ggPxnY9y91iTHvPnXGE857eB0DIIBgQgiTR4dqQmjwfMZ/PydLg7OqsGVwTQ6EisN6j4vu8F/sQnA57QyIxGIjfT+pE4AMEUyePThKKLLjo+s0W33UgQ6x5WK9jURE4aN6BkAnz+YKzswckacqbt696cz2L8y1ppsALhAj3F50lWOspqwape3RVKKQOxUbdVMwPFpRlQ9e1RGfRtmu5uHiDkg5rW7RSCBKcs1gTeE+dtXS9iZhvBGIn8UisDw6kSofsg8u7DWmSkChNqhVaaTab7feeZz9YEESlwHQ6HSR578+G3/fv3+9g3759OzDpnzx5wmw24+LigqIoBqJhlmUYY1iv11xdXZHnOV3XcX5+zm63e2cE4L1/x8Y42hTHRTO6Dr4/3ohb9Dt4v6CIRUy4UN7tiJum4csvvxy4EEmSDJLCaLx0dHTEy5cvBxQlyjI//fRTZrMZSinevn1LVVWkacrh4eHg5zAajXAuZDnE506SBCHEUEC8P9v/Ich+H1X40CL8IcLi+6MBeHdk8aHRwveNKeLP9n/+/v7+Mbe63DFONYu8oAV27Y4XF2/5MjtFqDC37GzDzfKGq9s7qtbipUJ4QbRr8f3YII5dByyzl/n1g8zw6P6mQ19U9FNZBmccF8OIuh4l6PkCpsXbUAR4Z+5zB+7br3BcCdnu0ofXyooRTz59zL/6n/8VR598yXdv3yJlEoiDwjPKU4yXNF2QjXXeYX14rta2tF1NV+3ojMEZj7ASZyUWhUwTjHR0ONabZXhNZzH9mM56T9IKhFW0VY3MJE6D9wqURCcJHkeSajpjaLs2+BggSIREZ5pUpxRJjlYaR7hhCiEpipwi0zgr8FKB7DtABFol7ERPpxQCKVNE4sE48kKSZJJ6XXJ3fcMoyciVwDU7OsJi1KyXVJs1TdviUeg0JRuNSPIJ2WjGaDxFZgWj0ZhEqaCkQNL6j4cQzCc5IhYEKtxznXeYnh8ghpNz7xr3gTTo+8K1b+L7CVeE5MP54HyQCFrnCVw6QZpIijxBqV6l48K5KAl5FeEcCMWp8+Ge19Q1Hk/T1oGj0f9OXNhl5AG4MBZIlerDsnKkVBwujsJzlw1d1wwKhohcGEdPpI8qoXANOh9lkfcFgdwrIr3wQziVABKtSbLgAJh1Gq19H/7UN0lO4Hw4x7RSeCSLwzM+/+wLPvnkEyaTMdvtmmKkaU1CvgvES2MsSIPUgd+gtMShyRA4k+J6lZD3LWW5JuZJ2C4hgAcKrcB5x3azZjTO0IkE4TCmDYiQVjTGBIRGhtEhVvYFkwipif09q2q64T0rKYId9X8vh+Do6GhAAFarFWVZ0jTNYFHcdR1N0zCdTofgon2b4e12y29+8xvyPOfx48eMx2NevHjBbDbj6OiIg4MDpJRDdx7Je2ma8uWXX/Ly5UtWq1UweugXwihhjKS5/bl4HBVEzkBcoOPitNlsfs+Dfz+rYD+AKbohLpdLRqMR0+mUo6Ojd/gTUWnw5MkTnj9/PuxnPCaPHj2irmtubm549eoVo9GI8Xg8LJIx62G1Wg0ZCRGBiIXC/s/2t/dTDPe/HxfkfcLg+0XDh353/2cf+nc8xh8aEbz/2H3S4/e91h9j25ZbhBZMpqDygp3d8ndPvyJJIc9H6DTB0PDN0xd89fQ1VetwMjC1g3RPRH+S+MYCUiB66N+ZMGoldFUC1bshy3cIVaI3NAmJhFFKaPHmXkoYkYPgrBax0v6VXdDRR/jBI9FJxuHpGX/2P/4F//P//n8HKsX9V8Hd7ZKrmxVNBifHU/LRlLbxCGfANuyqhsZ0dNZguo7t3Q3Lq7fcXN9SVx2dhRb60BbLptqxvLtmnGlMFWKEOw8bIOtgPp1QtyXOWrpEIZTGC5BC44wh1ZrNZo0XoAXkSAqdUsyngeyYZWRJBkpRKI1IcybTBbnO6ETwNwjj63A8tJJYIRCpYjQZkaiErtpSWstsNEFay931FVevLhGdYzu5Q0tF5ywqS6FVOAT5fIFUmjTLGU3H5JMZ43SM00CahXh0RDA8qjvW2++fvf5Db6PUIv2934IIuDZW+XC+SdlLUPtzUYgQyCRC1zvAVmFAHnT8ePAC4xyt7YJqgT30qUewrFMDf0D0aIJKEka5DHkSLqToaalIVYYQ0HUK36O5ov/88B4Vyen9zqSpxkvIfYDwi1RSVw3jURIEN8726JjEIQIHou/kwQalTj+iGALxRCjFldaAoOtMQEjkfSERbKxBCoeeZQifIGRAX5wPBlbOBi+DLCuYzhb8+Kd/ymeff8nR0WHww8hAaUfT7SiKhLIqabuS1tS0tsPaMMqQKqRRylThjMeZkKFguo6m9iQaRJHjRALKk2jJOE0p8gylesJ4b13uncU5SeccrfUIFY5bkNSGDAvvfe8suXfvxmNcIE7uf//97QcLgn2IvmmaoTuXUg5z/aurqyEnIE3TQTWwXC5RStF1HZvNhtvbW9I0ZbPZDNB7XLSj4VCSJIPev+u6IdgoShq//vrrgZV/d3dHXdcDfB7n8FJKbm9v3+EzjEajd0YC+4tpWZaDT0GWZXjvmc/nFEUxIAxxhHF+fj54JEgpOTw8HDwH/vE//scsFguapqGua87Ozlgul7x69Ypf/vKXlGXJ559/znq95vnz59zd3TGdTtlut4xGo+F5o/vjJ598wsnJCb/+9a+5urp6R4IZ9z1+/T5534fm/vv/3ldxvL99CBWI24c8DL6vMPghtOKPsd3eXIe5o3CMph6lPK9WFc//3SWTdESaKm53FTfrinVj6VDsp9y6PXQAGLxLpegL0a7pO0iF1Mk9r0AGiDP8qg831D0iITb8PdgT92MB30sO9/ziw004SAwV92RCkaRMj495+KMfcf6jH3Nxt+JoOuLgaMq6blit7ri5vOLyyvGzn/0YKQuUEJSra75+9i2rqkIlCd7D6uoKv13SNR0OQiyut1Rti8JibIXsGhJpqZuW2lhckZKNpujGUglHMymo6y7MqR0hJrlpaOqGphHgYDIZkxYFQiUkkzEkKTtj0CJowYVMkEnOaHqAkmm4efqeXS5C5oCUFu8bkmTM9Egwn06xVcuy3uGkZ1SkdKsVSkm2dxt2q6ZH3SROGc6ePOH44AHnJ0/YVTVlFdxVfVKgkjxo/KVFaEWSZ0g8bW0x3gyJgR9jk6JFCYlAYbpgB6zTBC1lD4f7ni4iw2ihb6mlEETr4n1b7QH/6nkyUiR43Y8WRJDthaf0ILvhXMSDtx5nZJ8ZAODQChIt8JkI3X8RgoKc6zvzfuSglcIag+ytkEPYmB+KaO9KRoVkMsrwJP2+hjInQP/hXHG9VbcUgUwqesTM9YWBIJheiVhTCxWIi94h9pw8hffBq0AE7pjSGufBGAdeMiomnJyc86f/6M85f/iIqmmp6orNbsN2u2S1uWNXbem6FtvHH3vp8NLStjVN3WFai0ShpSZLEvJMU+QpXdtxd3tLInMm4xyvRCBW9qFM1oZ9DUWOD5+LEFgRxgPb7Y40zUgyD6ofTPr+8/b9iJF7BNj1KOV/d0EQXQGj30CcaUepYZzFAwOEH+fov/jFLwZb4sViMRDxtNY8evSI6+trptPpgDZEr4DdbsdkMuGzzz4byHVHR0copXj69CknJyfsdrthEdRaDyz/uG9RJRDfQ8wjiO8lHqC4SK1Wq+H9xM56Op1SFMXAdxiNRnRdx2QyGRCT4+Nj6jrEVl5cXCCEGMYrd3d3fPXVV/y7f/fvuLi4QGvN5eUlk8lkSHyMdsd5nrPZbAbHxkVPgPrJT37Cj370Iw4ODliv1+x2u+HP+/P+79u+b5wAH+Yf7EP973sWxO/vf33/5++THP/Q/v1Db7vtBtS9f/1kOmNUTNgqxde3K7a165nXEiGSuMcDX6APTxvGADjIhIR6g682zIXAdA2N85hkBDLBe4dwHqSGnrmNCyOskD1AwD5NsHalHxWIPtSI/kblfbwJ+977ABAKnUhOHz/i+PEnyHHBf/nl3/HV18+ZLeaMDhcU4wnF4SlNa3h9+QJvf83BbIZXgqu3V6xvl5RlRdeGa0VIz5OHDzk4mPPN82+orq7odkF6mU8S0DXFQYJsBTJJoQ+CkbsVeVIQjWKUVCjjoAk3R2s91BlK5gjd4gV0GEyaclxMuHhzideaYrwgSyekowlZnpEnCdJ6BB0pDa2TeDTOC9pmx8WrZxgPSZ6xu35F3XZU1uNVRrvakjrP4aQgy0fo4oDOBS37yfkxxw8fULUekeQcqIIsqai7AHNXbcVsNmY6OcCnRUgN9AapBDrNWZwcf4QzOGw6PUeJYF2sk1AACNUXhwTEyjl/b9hG6G6979HjfuQ6qBIArfQ9miB6l1Ip+yLCo4S6J24LMXgZKKV76NkHRAsYkIV4XxD9/wkZyHL9aE0JGZQdKox2lewdZwWEYKG4zzH62N0XDP2up0lO1/OApPcowr56GbQ2DvDWooUkkRJJQBhabzFROYEf9sN7jzctKklA6ZCEqlMW82M+++QLDg8Oud3d8O3Tv2W5WrEpSza7LevNmnK7oy4NTa/OabqOujN0PS8IH1IUlU5QQmKBbWuwdSgwhZYkypMk0BobfBJwGGUwdOAV/awLJyROKLwKIzSHpWlLvEj7f8NQuBGOoaJHF7zvJ5Y/fC/+wYJgPp9TluUQUJSm6aDz77qO5XLJer0eRglt2w4Jf59++ik//vGPqeua+XxOkiSUZcnBwQGvX7/m8vKSTz/9lLu7O4DBlGiz2XBycjIUIdGFMM9zvvjiC968ecN2u+WTTz5htVqRZRl/8id/wtOnT3n06BG//OUvAQZ0YN9SN6IDsYiJ85v4+K7rmE6ng1XybDbj9PSUL774gqOjo2GkcHh4OKAOgc0Zxinj8RhrLVdXV/zmN7/ht7/9LWVZ8qMf/WgodNq2ZblcMp/Pefz4MdfX17x9+/b3OA//9t/+W/76r/+as7Mzjo6OGI/Hg8ojHusPqRDe3z7U4e9vH1r04d2kR+AdJ8UP8QY+RFTc//6HCoU/xvb5z/+EixevuL64pilrTGOYzDrG4xlPDhUXW8+u9HRdcGhz9ETCSBzsb2wBaRU9f7DjgdL8H/6X/4VPPn3Eplryy1//Pf/ur37F27bFExIxEb37YHSUi7Cf7UKH48MNLSz8vYXsUEDE6GI39HQIQZaN+PJPf8rhgyN0nmKdwTlBooNDoG09tatRUjOZn4GF12++gdaQZhmnp4958umPgyFTf+Ntt2uUgqasGOcZ0yLF+JTOCQ4PC7a7krIVSKtwOqG1HW3nGBUTrJKMXcG8S6CQHEzGKATPr67YSUM3keTZGNcmKJ0wmc6Yzg4pxJjjByNEnnB8fEo+mSJUirOepjEUOsxxjU/wWISwCAfaC2bzQ7bLO9zdNZ3ZoZ0iqx2iaRhPFCJJqFtL1Za02y3Z5ICjR58wPX9E1XoSlaN0RpYl4SaqghnM4eECLYM2XrThfLcYRKqYH8xp6+ajnMMAn37xI5RQ4XwidMXIKD+0CCyqnw/7vvtFgJK6n8P7vcW6Dy2SEmts8Mt4ZyHprW65v6bD0ix60pwKxZ8QwZ9BmF7aHpoU60JygVRxXCuG51ZCBN2/VnjX84ti90osTOCeOxMWMuvBOINwHo1llCZkSpIriZYSJyVlVfPo9AGjJA3jEkBLgVbBbFxpTZqFQq+sW9ZlxbLccbtbcm1uaVpJkk558PAzzh88JisKbld3/O5vv+J2dctmu2K729BWJabr6JqO2+WKugkky1RLLDJ08AIUwQVTyCQ4HHpCwS9AKkUiXAhpwqETResszvTnnYTOhiJPSo1OUqTUASHoj4nUGpyhM22f6BiOsRQSKSTCOQwMaKMHXN/Uf9/2gwXBbrfj8ePHzGYzgHdsi9fr9bBIFUURnJe2W7qu4+rqiv/6X/8rf/7nf85isRiIiXHBu7i4YDab8d1332GMYTQasVqt+Pbbb/kn/+SfUJblsNifn5/jvef29pY/+7M/4/r6epABRnj+9evXA2dhf8QQZ95RORCh+bZth7l8rID3eQlKKc7OzvjFL37BgwcPBj5AlCNGDkEkFV5dXQ3Fxu3tbTCFuL4eEJGmafjiiy8wxgw8BiEEv/zlL4fjFUcui8WCBw8eDGjLb37zG5bLJYeHh4ONc3wP+4TKuP2QAdCHlADf95h9MuP+c++TBP9QsbG/vV9g/LG2P//f/ivefPUtu+UqQHnCYdqGcr0OuvZckgnJroS6c3TOYZF4kSDouwv6kkAECC83jv/pn/5zvvj8x8yPpjzKH3J2es5ifsT/4//5/2aNwmgB3oYOx/V/eiVBCCgyiN6OWLh+jBCrdx8gTdsjFfjAyM7HM/7yn/0lJ19+RjZKKbdrtustTqRYabDCkghPVhQkSYbNchBQJIIJK8ZpiiwKnNZ0zlN3HV1VM00TwFB58HkCmUaZnFROe5+ECmscbW2xtsNJgS4yXCpoEByoGV403NV3bNoNqR5RS0XZNsgkATR5keLp2JgdXQUmc6BTRlmBsxZT7dC6RQqFM4aq61BCkySKttrRdkHKtVqvKasd0jgwJV25QxNy3qVSqOKMctuisjmLT5+wODwjL6aoNCcpMrIkZ7PcUjYV47MZx/MpwguSRJFqTaIUXV3TdQ3YLkC1PqVtWnar3Uc5hwFevPhrpOg7+phbIfcB9XunStgv0FVArCCeyAT4PTzWORe4HtFowAcOQiT/haZKDGu6J5IS6Tv43tNf3BNoYwES5ZFRJhdHGLJ/At+/Vl+G38+9+xm/J0QzKy/IpeZgVPB4ccRcSGTTQFXh6xpvDU6C6Qz56k3v3+XxEioVjpFEU5UVuGDrm41G5LMpnx7M+GxxzFo/5OnFLbOTRyidc3l5w+3dDavNLcvtkt22Ztc0tKbB2g5vAm/CywyfNLjW0roGL9U9CVZIvNeEys2E4y56LMWFVNNECZSHsqqoW0NrQ+NgDJAlPDw749MnnzCezNBpRt0ZblZ3pFlGVZdcX16wXN9hTBcaDi9w3gwoo7PhPAmcUw/OhyLue7YfLAhitG+c5UckYDweo5RitVoNPAOl1OAuWJblMOMXQgwSxCj1K8uSqqq4vr7mwYMHeO8HWB2CZbJSii+++GJAFv7Tf/pPfPvttxwfH3Nzc8Pr16/Z7Xa0bTvYAa9Wq2HeP51OB/Z+NCHSWg+jj3iyW2sDy7M3KUrTdLAd/su//EvSNOXk5ISiKIZsh32lRYw6jgu23avAsiwb1BSj0YiXL18OCIcQYpBTjsfj4Zh0Xcdut2M8HvOzn/2M+XzO69ev8f4+RTKqH2KB9b7KY3/7vn/vf91/zPvFxfuqi/dVDPHP+yOG99GLHypU/iG3k4dfMpue0faMaGMadqtrLp59y263RiWaTCT4RCOBynhaB947EDFQJszuAlcFJlLz+MEDVJqCTFE64/Q45X/1px1/9/VX/NWzuzC/dKKHS8NNMki2ejJh7zEg+mKBHiWIxUCYf/aGPFozmk958NmXPPz8CSefPMJrib7RYB2tsbSmpq42QTWThPAXqTV6NMJUIyQtQngSrSDVmM5gWoeXkrpp8bala1vytGA+PkSJGmMtm80tTUNQDeTgGhNkmd5T1yWjZEbnaxIFPkvZWUfVtTgvkSoBL/Dak2QSYRKMc5RNxc5UpCKlYotSC6Qf45pkmG5779DCY7Ydtzc3bMuSbVlS7zYcaMnWONrEkAsZ4prTJHgUFBMWByNOP/2E6eEpWT5F+J5slmrSfERnPd2qDeE9SqN0sPpt6oqb1ZosSei6hmKUUaRpuMlbw8G4+CjnMIBwFcH6KhQEYQ7eowHEsKJAmIvolvAeP9hqxtFA/3zxib1H9imFA28Fcf8c8v6x4TH9tex7YqP3iCErJHAOIgcn0AAFIdI73gvCGCGiXpFsGIORECIYcQkFJAivKKTmSCkOdi1cPee6LDFNg+tasF0oSkQAyFUyYnZyzmhxRDKdoooCkaRonSE3a5rtDukdHZ6ucWxuN3TLHWpxxtnpI95sNixXr9ms1+x2K6pqw7beUbaO1nk6ZwLh0ICwEoEhoUGnBiUEBkFHIFsqD9I7vAOr3DDCCbklFuU9ynlMZ1hvS6yXqDQjz0PjOs5T5gdHjMdTDucHHJ2cMJ7NaIylaYP67vnzp3z9zVe8uX7DZruia7tghuRcz5OwIU29Pz/2QjE/uP1gQXB4eIj3nrquh9FAJPHtRxPHG3+E5/M8p65rlsvlMFNP05S2bYdZeHxslmXDorZPrEvTdCD57XY7iqIgTVPOz8/59ttvWS6Xw0ghKh+i78BkMuH8/HwwD4rz9phtEBesuA+xe41IQVxoo+wySi7run6H7Bg7dWCQRcYCaTqdAmHsopTi5cuXvH37lqZpBinmfD4fXjMWWxH1iO6G4/GY09NTNpvNgMocHR3Rtu1gwfw+SvCHtg/JB+O2L0H80O+9//X9RX+/ENj/+8caGah0zPggp+iJTN5bqtkcjeZ3f/1faZsarzokmkQE3b13IriZiQQvFa6XLMVGJ9GKrEjxMmYJCNIi5/zshJ9+/oj/8vQG20OfLsKE0ZHQ2T6TwN2bDu3HGON6h0OBThLyUcFkPmd6fMjJ44d0SrLebZnM5mR5TlFkqDqMQkxV0glF09vOJnmBVxKvNZ1J8coiZZj7Sm9RHjpjqTpDIqFpanbbLU1dYbqW1nQ9HCmBENeaihxjWlpbY1zQlWcjgXEG0zmqtsN3NZredKZI0BqUhHExwjvHtt1RdcEMppUJVb0j8RLpO6yxOCyJVnRtxXa9Znm7omwaOmtQLsSpd01H4z15VuB1ikslItf4XLA4f8BkcY5Oc5IsIdXBzKVzYe6eJJpCp0jvw8jGWtq2wbZBCrozBkkYkyUQzovOflTHTe3tgAXEpVT4CBL74YY/oFkw8E+GDl32ZLM4DiM0j7IvBgLvIPxqeEh/HUciwvCD2HVH8mLo9MXeVKJvSe9Bif63Qs0RY44jSuDv92uQRwpM66i2W3atweExjUFtd+zaEusswtpAlRQgUMhsRL4YM1mcoR9/Sn5whCzGoFOU0ky6lrSqgnrCW6wzNKbBNg2Ng9vrS767vmK5WVOVJW1d0XR1kOdaH7IRvMNYgbcS6QSZaDkYecaJQYqUXSvYdoJmQFwM3odgKs994S9duAd0XUtVNdSVJckKsiQjzwocgs5AXXeU5Y5Rqql3GaMi53hxyHS+IM/HTEcTTGtBCtIkZbvd0LVNb5QUUAPX8wcg3JCE/++UHUZb37quh440KgK6rnsnRTASDSM5cLlccnNzM4wLot/A9fU1dV2/M2oYjUaMRiPatuXly5dorZlOp4P98Wq1YjKZ8ODBA66urphOp78nx9vnBmitB7Qizr4jGhAXpgjbD1KV/ve990POwHa75fHjx2w2myEKOToY7nY7lFKD42IsGIwxQ6phURRMp1Pevn3LixcvsNa+kwK5nwVxcHAwvMZms+Hm5oanT58O/gdVVbFeB93q559/TkxijNbOcZwxXI794rxPPBzYpnvGRvs/e/9348/i1/3HfYiE+KHn+9BY44+5eXePXigEUqeo6QL9qebi2Wvurt7SmhIvaoRI0D4l9YLO9zGpSgdyYB9oBAIjYddUCNkznGU4n0ZFytFi2lsYB5mg7y98PxQBIeI4MHz6YqAn/fTiOoSS5HnB7PCAw9MTjk6OGc3m6GJMZTzV5TXOOhLpSROF6BStJCyydU0jRIj69RaVZP1MPWUseiY0BJgcqFwYk8geXjSdxVqHtQZjG5QC7xXCKmbjQ3COXbmh29mw6CvNZDLmZnVNV5WYpgvKCSyTTFNkIXFurAsOJzMUkK0FW2MwrUA6Tdt0lK5CWrBth3cN2TjH7Dbc3dxSVi1IRaYlEk2XgMoShGmRMkGlI5JRRjKWuESQTMcg06BNl5I8z1AqoW4arPDkqUbkKVIIdL9IWuvQSpEfHLBcr8iTBHC0TUtXWTbLNTc93+ljbBKNRA8kPbxHON/LCuP8v7/GfCQPRh5An11go4z23es7BAC6oXC4L+wZFnB6Xo2H+8Ulugd6Hxby/WKA/tpDDPbCcd8CcdD1+xWKEdGPE4Jat1dTtI672w317Zq7rmNhLInt6HRPKAdUvy/OO5Q3jJ2gkBIrFYVUKKERaJRPyMYT5JTAL5AgnaGrS9rlDVeXr/nqxdesyhBM1LUtbWeCP4fwCN+Pyzw4L/FOIhwI0ZFLGPUT0UY4pLe98igYOTkENnbo3iN70rHpHG1ds6tqWgNKZ+ACqmOcxXnPZrNhlIKwNU2zY7PdcFrXzGZzRkXB2ek5Dx88oukapFRkSUbbNqxWt9TNjs60oRlhKCPvwZoPbD9YEHh/7/AXCW1Rnx8JdnEssC/9i14Ay+Xy93IEInwfkxFHo9E7SoZ//+//Paenp5yfn3N6ejqQA6M2/9WrV4MCIHbscZGLngPR5CgmDL4f/rNvlBMX1jzP3+lwV6sVL1684JNPPqGu60FdEMcjWZYNKor5fM5kMuH29hatNefn54MlsZSS6+trlFI8evRoiEuO6oeqqt4ZV0ynUw4PDzk+Pub58+e8efMG7/07RdV4POaLL77g9vb291CP9zv87+MBxPHGH1IovK/I+CH04PuIh/FnH2PTOJSSOBTO+T7cQ0Ge89mf/Zzkd5o3b5/TtLtQwQuHcALlPNpajNGgUtAJOI3zmlJ6nr55w6NPHoAKBCyJo20b7jarQJYmEKWc67PW96yKsb3fwF4SXLyZKikZTcY8fPKYh19+ztGDM6aTCZnO2bUdTd1Sbu64evuGItOMEoWSkjzX1G0ozF1bYaSn854096Q6oyOhcR1UFUoJHBKcIk9TurqibGvybMT56afM66YnUN2y2y5pvENnOUfHx2zbkq2vsDVgBIvpjEzntE2Hqmpy5/FKh/TB1pF1joPJhPn4iMl4isSTUVDUhg0NDQ22M+yaNb410LQo1yFkQdo2tF2DyjTjgxlSCu5ub6iEZ3o8x1wvSZMRk+mC+ckh2STnarPBKEcxUaS6YJxP0DJBeE+uNQZLMhuxMS2ND/e1VCfkWU6qE3Si8MKTCkdV7lgtV1xdrnn+8g1vl8uPcg4DpNkCKdMwggEisTCmF3pvhy5/P5Mgop+uH/7fk2VFkO+Z0CkLAldAykBIU4PVuRw6/4iHDW5+QvRmQP0II8ySoH9cuOYDCVFI1aMJYeF3ziHkvXPg8H4EPZdAIrxjMgHfSuqy4sKVKOsQNigeJP3jfSA82rJBX19z8eu/ZXpxwfjgkNFkRj6aUKRz5gcHJGmCEgKtFJ013K2XPH/1ghcXz9hVG+qq6tc8h3M98uI9mr6rj7xiHEIEL4TlBmqpMLal9orGS4wXwWjMWhAa2+sfJb1xn/XY1lBWDXUbQofK7RprLSNjSYvgkdJ1Dbudx5kd23LN9d0tL1+/4vL2ml/84i8oxlMODg852m1o2y4QT3EUaR4kkeWWpgnjv0gA8fz+/Ttuf9CHIDr5CSEGn4BI3Nu/0SdJwmg04vPPPydJksF74ObmhocPH3JwcECSJANMHhf15XJJWZbMZrMhDtk5x+3tLZPJhKIoUErx5s0bfvOb33B5eTl09rFIeX9mvd1uefr06VAoRIOi/YV/PwMhFjfRKCjKBv/6r/+ao6Mj/uIv/oKyLHubypD2eHd3x/PnzwfZ4eHh4eBEGPMXIrnxu+++45NPPhneu7WW29tbvv3226GgisXAfD7n4OCAyWTCz372M16+fMn19TXb7XbYt6+//pq/+Iu/GCKU9xMF3+/i4/Y+ArBfQHzIrwB4B11439J4v/h4f5TwQ/kKf+xNJ/fnR2BmhxuhB04++YLDk2Pkf01Z39xRNyVls6Nut4hWolwdqnWvcTqDpECmBZWH//Cbv+dkNmXy53/KeCzZlTXfPv2a/9+vfkNbBNTMdw7fGlzX4Ux/c7AhwTCMBnyP1wZqlVaCxWLGkx99yvH5Q4rJFGtaVpslk9EMKRWJ7tDa8fblBdYYFgdTzk+OyFJJoRNa43Gqgwak98G2uEgh0dTGo9NgtNN0jsYJhNAI0zIa5+gkJ8vHWOs5qCvK7Zq7q7e8vXrDZDxjvb3GquBgN8pyXFKASnl9c8W2ajman9G4jrWvUfOc0XSCagSzYsxkNCbNEuquY4vAJhlZAaau8SZYsrqqw9QtHsvlHcwkFALG85yzBwd4JWjMhre3G/JRx+xoxMH0gCQd0zaeVrQkozmPDz9ld7tBLCQ2z5DOI6wPAUHO4kxAUKQQeOmRWcJIp8EPAUtXVtzdLnn1+pqXF3dclS1uPKV48icf7Tw+e/wTlEzD5yVijLe4nwf37H4Xba0FA/vP0xP5pBjm9r5H75VUCFyIBI+8AQJTPY4bpIw/C0qc+JJSqAEBCPeB8NpSqfsx9XB/gbgUxZpEChmKAlSPfsTMhDCy9S50+MZZbjc3fPPsd9y9eYW/24RZuexROyEQSocCRyVUTmM3Dbt2RbZuKUYlk9mO23W4ZpQQTCZjyrri+evveHt3RdnVIUfE9rbmvUxSeosWngxDkob3oAjonFYgSFlvoKxE4PIIRycExrtASvU+cD8E4XlFGBt4C13naazD+MCcsbalrYNEFilwpsE1Ha6TpEl4nw4JKuHVzSUv377l53/6CxbzAx48OEPgcCYg90cHh1xdX3Fze816u6brWqQQFNmIyWj6vefZDxYEcYuWwLPZbJANRu1+LAQODg44Pz8f3PyqquJv//Zv6bqO6+vrwe0vzsiBIcBnt9vx5s0bkiTh5OSEw8ND6rrm+PiYpmm4vLzk9vaW1Wo1BB9570NoQ1GwXq8HYyOlFHd3d4PBT57nQEAnIg9BKTUQBd++fTvkBkRPg+iN8OzZM/71v/7XjMdjZrMZl5eXgwVxdCq8u7sbVAu73W7o4GMS5NOnTwdyYUxqjGqEyCXouo66rrm8vBwSDx89esR4PObx48fD42NAU0Rdzs/Puby8pOu6d0Kivo8fsM/3iCjB95ER76/ne0Th/a7//UTG+Prvkxz/W+SR/2Bb341EFq70IVs97KOl8XD6+FMePvkErWUg0t0t+eq3f8/V5Wtc1UDre7qyxuqMbZ5jqhn/93/z/+Jvfvd3HM9zdk3Jt29veFM6Ou8RuxrflmEm3hm8MaHDsDYUAF4CkkQJRpliPitYnB+TnBxx9OQh9bamKxvSJCUrNDebDaZt2G2D1Hd5uyGRCVma0TQtYy2YjFO2O0PrAyJhTIdrKiwJiVBUxlB4yyTXpJkgswG+NThSpSnyUWBH40iyjLE8YDqd8+kXP6JtSr59/g13qw2usRRpSj5KWJodlbJ0QFmHeatVBm0Syrpm21lOpaNyFatlRVN1ISRIwuxgSlmtmWZTbGJp0g6ftbTbktumY2s6sJ7dxYZt6yERbK43sK6YP3zCuJhQVVBMM5RO2KxKynXNs+w54+kc1Vl2VUWe5SgkbVnh24ZsNGJ+eAYkuL4YM8ay2Vxzc3nN+q7k6ZsVl62kPnhAcV6QCMVHArkA0CJDkgKqX5x9CPnpa0qkApmg4zU6NAbvkgn7oONwXRMWeEFw9PM9rB2nBHjfqxQ8rudbCfaNbsLTKyGRKrgfip444/rIYe/7mbXoiwm/N9bsTXgCebcf7eJQgzOYRmKRwjMtpvz5n/2vUf/of8CbwPWw3vb7H7wRpJSkSYaWeu/eFl4vMFMIxkvA5eU1L1+95cXL19RtDbQITQx46L0LLArLyTTjIHV429E1hs5YbM8jMLbEdIbKqsBRMoHp74XGC40UQU0gvO95IOGas07RmD5npEd1BB7rGuoq5EKAJ1OWJgetg2mSlBqvNOvthss3b3j+9Cs+e/yE+WRCU1dsl7fslKTtDQFN1XBycMDp+WMePnrCyfEJqU74vu0HC4K4EMQuOyoNhAhJhNGK9+DgYJAXpmmK937osu/u7ri5uWE8Hg/xxScnJywWC1ar1aA+mEwmGGMoy5Kjo6PBNnm32w1+B9Eo6NWrV+8s3nEfgYGMWNf1O06DsTj4y7/8S77++msODw85PT0dIPv99MO2bVFKDZbMz549I89zjDEDihHJgOfn5wOqEQmNkUNxdXXFarXi5z//OVmWDf4NwPA7kZ+htR5GIJeXl8xmM0aj0TuOiPGxUkru7u54/PgxV1dXWGvZbDbDc++bRQHvFAHvowH7C/f3jQU+xBeIKMv+GOZDVsX7RcPH2OLYSAiBdR7TdRjr0UlwLlvvSlAZ4yIjS8MCMZkfMz8/ZXt1xZvnz3n+zTes7u6CBWorEHXBrtzR5hm3u0tUnoPUeA+2dfi2w3YtztZgLMJ6MEEa54RDSZgVYw5Pjjk+PeLwbMH0bM709Jjp/Ij1csPzr57SujY4GnaGRCcoNWY8TXGyIMnndHVF07UsV0smkxNSrckzhTdgvQwUBSxOtIi8INEJ40yjaWm7FoxF6YT5bARJgvM+OK714w7rLFqnKK8hkxTFhNVqhTUNnWlYrm/xEwVG47WglhatNIWRtMsGYQxSWZ599ztUMaPzCa6FxMCkSHnyaI6cpdwtb7ktt7TekyY5xXyEFgl3L1+FGW0i2e5WdD747CeTMS6dks9PKd2G2jco1+Jp0Z1nt75CFykTJgg8bdfiXDB2UdkIp1KwhnqzpCpr6ral6SxeJaTFMW1Tsfj8mEOlUVIjpULImDj4cbbxdIaIEjYhECKS1AZy/v22X4i7YEYTrtdQGAyjARnSDKVSCBmjBfsF3wWFgHNmMLbBMyhmrIsZAr37prNhhNCjBTFwORQLIXhI9AZEYV2Rw74S1Q0C6EmCzvWue4hBxSAEwdlQpr2RVyxuekI7EqWSHqEI5L1QnLjAm/CBfNh2huXdmqbpmIyndLZPv+0MToQiS3jfc35a6rLiO+uDMgiPgeAFAAjhSSRMc92r+zzG9MdIKKyHVIAexjke7zzGejoXfAYiibIXauC9w3QdWgm8tDgrMM5iO4sXHQ4ZHBuFoq1ryvUaKQVt19K0DTJ4MhPcFyQyDetRU7d8/dvfUlUV/5f/8//xg+fZHywIkiQZbvZxJh6d+6y1LBYLFosFT5484fHjxwB8/fXXKKV4+PDhcGJuNhuyLBtkdsYYZrPZsNBG2WCcvVtr+c1vfjPo7YuiGNIF1+v1gDZ0XTe4CJ6dnfH27Vu8v09d9N4Pi3EkKiql+O6773j79i1lWVKWJUVRUJYlSZLQdR0nJyd8+eWXg9nSbDajrmsWiwWHh4eMx+PBEyAaEkVZZdM0w3P9+Mc/Ho7lvm3ygwcP2G63PHr0iNevX7+jNohSSu894/EYYJBRxuMWVRtRgVBV1UAwvL8v/H73H19/n3AY//2hsUJ8nv3n3I9S3h+/xN/70O98LFJhVK9IEeJiTU8UaruOpqmptzXj0QgrFV0/K5VIRjqD+ZTZ8SHj5Q3JKEN6KLdbyvWWdrfEmBTTKYROkTJFS42TIWAkBKhH5CS4jynhmWSag6M5j7/8jPPPHjM9OiQtcqQSFMWILM2p7l4zUhkqlT0BUKHQVG1NawzOC9J8RJGN8G0TcgRccHZTSqCMw7p+1iwEtrPY3OOVQiQeLVOEVoi2ozNBviSzjNaG2arrOqztCMmKQT9dtQ15MSfP79hWGzpr8MZB7aikIck1wkk0ApE4nG2CO1xn6dyOTFhSVTBKJoyLCUIndB2kTuJrg/Y9zOwEPvg+U0ynaFGQJY7bcsuuteTJFOcMq92aIk2wdUsnHCbRdE7QekmuFFIollc3mHHBeDojK0Z4LfHWsdttWV8HG3Z0gs7GTGZTkrxAJxnT49BJKoJrn5ASpETycc5hgKo1fbbGQNkb/jjuEw5Fr1AJUH9vx+sDDB1SC2P0rxrcC6UMsP+HCMPSB3JlQAT6QgOQKhIKbb+oRWJjWNDoF76oibDc2wh7PG3vGIuPlkeBfyCHN9h36jKMFSRqKCjiCFyqwHeI3wtfVG/QBAProS9mrHdIoahvb9msNqyXd9Qm5PEgoCorvLB9jSJ69UMo5JVXQ8hocAcOUmQpPN46aluDEEGN4FXgLBFULA6PFX0B44NzYOfEgLAEs6eYjdqjLz3/QmGxUvSW0mHMGPI+wyjH2xZjVyitUVqh0xytFV3bYayj7Rqq+pLLy2vw0LU/bMH9gwXBPhN/P/RHa83BwQFCiIEEd3JywqNHj9Bas1qtEELwL//lv+Rv//Zvefny5WD3WxQFh4eHw/NGXkL0DpBSDshBPEEj8W+z2XB9fU1MNtz3QJBSDujBfvca/x6lgl9//fWwgO7r+OP7jc8deQDGGG5ubob5fZRcxufXWg8BUBEBiPsVcx0uLy+pquod3kMkaE6n06G730cqohwzujTGogcYcg4iijGbzVitVu+gIvsX9v62v/B/H5T/Pplwn3PwIY7C+wTGDxEPP5YxUVEUvRsafZKgo+sMXdtye32HM8EUxblA7IldTtdUvPnuJevlmizNOVqccLBYIIRgu7xjc7Xk8u6OumtCZnpXB4mvDHN5iUN4SKRHJRqtFYlWTMY5n//pjzj58lOK6ZgsH6FU0rskhmPWNDVaQYen6QyNMT1z3+G9RUsVOh4HUqcICdaJIO9T4UbmnQ0Lq3RYDMr4oDawNVoIpNJI7bFdh5KBF5MoifWeDoczQQGjRWBId8aCkOg0DZr/LkEmEryhyBSZyJFWoKzD2xbpDUYotOuji21wlEtFMHvqrGV9u2Sya0i9ZJpPkXmOEIq6qnG2ZTxK0SLDuI50pPE5IcvetHS7ko1zWKOwiUKlKbLIWGQF00lGkWpMC3XdoHWNFj1xueuwxqFVQjadovKcJB2RpiN0kiCk6BcZGXzy+8UVofr59sfZhNIIkQTSWA8z35Px7uH6eP7GgiBaEsuewBcKHEFIAgyLZN+Ihw7WRTLs/XOLPtsgFiDh72FMAArZpwJCXJTvC4Ow5sfut78/CDEoEKK6JvgqRH5B5EaIYZ/pxxWRLOm879MIQ1Hh+sVWqbB4xmCy6I8QVEY+qGtUgjUd282GbV2ya0qEFBjbITCBX+HjOwnEQd0nK4ZiQfajhzDTd7HYkeFaMaIv5AHpQjppUCqEfbcOjHVh//v3Gd5fj6r6wKNwTuKEo+vC5+pFsJ9yPjifSxnI6J11CG1CoSdDKFvXdngIceEDCtP/sn/33ry//UGEIKIEceGLXX5cICO/oGmaAdaP3gMPHz4cOtxvvvmGsizfWXyj2iDKBOMif3V1NUDl1tphZNA0DTc3N0OXGkcYMZjo7u5usDreRzXifLuqKt68eTOQJOMWF99oUJRlGdZaLi4uBt1/0zSDgiLKBSNZMUmSYTGOPgVaaz7//HNms9lghjQwfp0biiClFIvFYihs4shlsVgMxyoWEKPRiMlkwpdffjnsR5qmHBwcDFHREVl4vxh4f4H+PjXAh7YPEQffHzXsFxAfk0T4/vbufjmcN1jTUm63rFcbpuOi7wQc3hvapqLZbVku71heXZNlI85OHzA/WLA4OmI0HlGu7rg+uGB8e0BVVjR1Q92EBEHvHIlK6ZoWvMFZg040aZ6h0pSjh6c8+dmPKQ5nPYOZAL9KEWJgpWByOKO6XeJ2hrapgwTSJGRp0iMYDDdoj0AnGZ2BTAeVghQEwyNh8TbYqZrOQppSthUJAea01mNNCGLRSqFlsHvt8MGjwHpab0IsrAoscakUOslIU0+qQQmHyjWu6+fZ3uOcxAqHlzDyCSrJsVqiZB83bQLxqiw7CqGZHZ+THh6RT2d447i9eMtud8e4SPCdZVe3FFgSLM52pIzZrTdsd9cIPWI8nZKkKflownw8IS8ECRInoOlaqqpGeBUWDqHQ+YhiPCXLx6gkaNSFVPeQuu/h1j5QKWjse2j8I21K615CpwaEQPSde+8b3HMIo/3v/feI7H1xL0aM8/q+RQXoWfVuKAoEUf0SFyzCMRm4BIGQ6MW7BUGE/fH9CDH+LpHoLoeu3ftYeIhh38PYgX5PRf+a9/cU53o4/53N318TzoFS3L8qfZEQFA1FngXlTpayKdcIfFhAfQcYGFIDxVAs8U4x2I8j+v1zXuC8HozEXI+CSG+RzvbHPRztYRJhfS9FjoVSHJnQh5uFcsP2yIvokRDf2yJbG4KapAyIQ7Qpll4gemRS9uFTAh8IzH2xtX9c3t9+sCCI89f9WX0sDiB8mF3Xsd1uB1fAxWLBwcEBjx49GvTzz54949mzZ8NsO/r613U9LO5pmg7duBCC4+NjptMpVVUNZMIoQYySxtgNR27Cixcv8N4P+QSxYInOgPG19t/DvndBdDKM3f9msyHPc87OzgaDo321RZqmjEajYRwQ5ZMx2viLL75Aa83V1RVVL2fZH73EUKNohxytn5VS76RBxv0rioKjoyPOz8+5uLjoL44wCjk5ORnkjNGg6X00IH5m7y/YH1rsP7TtEwi/73vvP/9+wfAxtrqp0UL2XY/F9AXb6m6Jsybo+HE4B12zo7y94OblS5bLHbOTM5589jnFZIqWCq0lqQQjJWmR8/CzTxEOTFdTtRV12+DqlkwKVss1Xb1ms2nw3pJqgR4VHH36CfPzs2Bl7D1tZzC2QxJmrS2O008e87pqsHZJ17SBpCj6rs6HzzxJNY4o4RV0nQsdtBQ9ZNo7IzqBFzKQKsWYuhOkvsMKizVdiGJFkBbguw6dCAoJTitMa2g7g0xSsjSlbRvytGCUz0AEHf8kSfBOcLu7wHUOgUb7FJQlVY7MJSiV0uk8yMMcoCQqHZNPF+TTKfPTUw5OT8mKEaasmY3nXF69pMgl5WaLSDt0s6OzJTJPGCczfNmxXN4iEs/cOSYqIVP9YukVpvV0jUEojfWS1glGxZh8eoAejdE6EC0FYuiaB7TaB/TF4/AmMPedMbiuBr78KOdxkPS5HnKP3WQP0/dZGQiPiwXB0BkrECEyer9YkCrICaVW/fXad+U+dMKD26Bgz1I4LKpBmhjJhdHnhWFuHwmHAanqx5Nxfu7D80FY+OJXQbjXyRi4RITQGd6r6D0jZL9Ae3zPpwAdtL5DQRJUE0Nf3D82HMesyHj46AHbaoP1Bl3t2O3CqNY7Hwf5A/rgPZi+shIhkIDBHVGIHiGIEdH3x0H04wEpGd678yEBMnAkeHdp9vfFWbxdDsFrMqQ8Sq1DIJOwPYgiY9k0yEClCp+TSsIaZ1wXsg5ctDL+7ywIXr9+PeQYCCGGBTPC4hECj/PsJEl48OABn376KUmScHFxwe9+9zsuLi4Ga2Mp5TuBSHVdkyQJi8WC2WzGdDrl4OAAYwy73W7gCWy3W968ecN8PkcIMXTxsSO/u7vj8PBwkOftdrshrjlC78AAx0fyH8DLly85PT3l7u5u2JfIEZjNZoOCYT+COKIEcTyyXq+HQiPLMj755BOOj4/x3nN8fDzwAqLk8smTJ0NK4t/8zd8wmUwG/kBc2J1zA6chz/NhrLBcLof3EW2eR6MRRRGsVWOhtF8MfKgwGM7DDyzgcXu/kHhf4vh9iMGHfvYxNtd33950WGuwpqM1Lavtjul4RpYK2nrNerdifX3F9uaGRGhOHz3i5MFjismMJMtxztC0Laat2DUN1gvaXmYqdMI8H3GWpdjtkpvLV4wLyaYNzODOe2SWcf7oMz59/GOkS0lzTdlsA0fMC0xnMV1FYxzT6QyHpu0cTdNCokmSHK1Tql2JkAprBc6C6QK9qUuTYIWsNVJrRBfgyhCO4nBdh5ES23nsdkUuO7JEo4QK/v1ViVMaKQSjRAeEoHZ4oaitRVjBfDbhYDxhs9txtbxlt90wSlNMa3GdpS47nO1Q2pONPWkG613HKBPYriUhI8kLJvMZ+cljvvjZL3j04JxEapqqousNy2aLBdbUdN2aLJEIPaUYj3GmxrqWRBc8/HzMtqyw3uJNg9vcUW9WrLRmevKAYpSRjcbk0zn5ZEZWjEl1jtJJT7gKdhEqxiqLXpJnHG3XYhpD05Q0dRnCbOoS15XA//hxzuOuCZkB7KUSQs8xFKDu5+bvXoMWRCDCAYGgJ+4XdDpBv2qHaxoGiF0KgVMK6VS/IEmEcOBFyFWInbPfI8z50PHa4HbUz8P7YC8AIXqHbj8UY6GIcFgvsEbQDSOH+7FDLNYih8E4dx+IJGUgL/b3qlBY3ysi4sI9ECuBs7NTrLdh5Pfdd6ixpMskbVthre8X7oDedaYJx1UIfJ/A2Lf24WChiBbBcYkXhKKoI3iPqf79OB8RhB7Y6WEDFVHrvigTKqLbgaCpEo1KkqA0UAqpDLbpwDp0qtE6GRrNJEn7xlNirMFVHtN2eAsSxeJg8b3n2Q8WBE+fPh0g6fF4/I4DXxwbjEYjjo+PGY/HAzHv3/ybf8Pz58+5vLwEYDab8fOf/5y7u7sBgn/58uUgydNac3t7y+PHj3HOcXx8zLNnz3j79u0gbzw6OuKnP/0p/+E//Aem0ymfffYZd3d3vH37dpiRxTl7XCRj/kBZluFDEmJAGXa73YAAPH78mLZtGY/HPHz4kNlsRlVVgzVw0zQcHh7y8OFDTk5OkFKy3W5ZLpdDURFjidM05fHjxzx48GDYr/Pz88FzIQYiHRwckOf54MoYUYI4Bon72XXd8DxRmvjy5Us+++wzfvSjHw3OkFprFosFdV1ze3s7cBrgXRlg3KId8w8t2h8iBr5fUHwfB2H/5x+LUAhgNztqpVA6GHa0XcVqt2JTlzw4Oefu+i1Xb5/i6x3CesbjKZ//5OeMF1O8MdRNTbnb0XQdbWfDBe0sB4eL4K7ZtCHf3XtwHevtimW1ZlNu8dbQ+hahEvLJiMPTI3xnqK5XMCmQWpDpHCsdje9ASjpjkV7w+tVrlss11lgUArOrcdQ0bUs2KqhMi7UmQNlScLvaMB0vGKci3Dxai7DEuyrgA4FQay6/u6VZ3zIaFTx6dMZCBfXFuupQZYrSfbOiNdrnCNORpSmjRJIgyZOUfFSwXm9CZ9WsOCgSdkmBVzlSeKzd4FTKT37xmNu3l8yOH3B4/pCT83MOFof4Fra1wVu4u7vGdW3Qgbcd3hl0qnE2RYqUrMhRoxEScLsGa8HQcfzoEcv1inXV4OWWo6MzTs8+pzh5zHhxzGhUBCManSBFiNbFdHRti7MdtbFBz961CNeRYJDWkGqJ0oK0LZFVia4rTNMOrqIfY6u2K4TQMSOHAR0YOsp+ztz/SPQraD/5ZpD79Xnesi8sghdAWHAjuTBK82LAUYDx75HNvlfGuRDfHY5Lzyzom0TXL9zByE70aLVADIXL8Cth39y795r7MUavUoqP9/04Q4p+/BAkh+FPPyYxvaSyn5dHRYVKgtJBS02iU06OzvjR5x1tHQjGF1evSZIRWgdkRfYmP3VdUrcNvXYLcIh+pCJUCkJhurL/OMKKH0EXpOx/LxRSjn402I8gkkRTpDlJmgV+U9thrCUrcsaTKW3TUpUBXRYStJLhM4yjBgeYYCGeaE2S5ozGY87OH3B2dsrhYhEKKGPYbXdcXV7x4OGD7z3PfrAgOD4+Hsh1u91u6BCLohgIcXVdD4vvbDbj+PiY+XzOo0eP+Gf/7J9xc3MzjBPW6/UQ9LPdbjk5ORng9jRNOT09Zb1e8x//43/kyZMn74QOnZ2dcXd3N2QBvHnzZui45/M5dV1zcXExeBwIIYYuviiKd5wE9080gOVyOXTZUYEQLZXLsuTP//zPefbs2YCM1HU9jAFOTk54+vQpVVUNBcf19TXPnj0bbJvn8zneew4PD4dRxOvXr4fMgsijiOgCMHgb1HU9OBquVisuLy8pimLgS0TfB601n3zyCQ8fPqSua66vrwe/iDhC2N/2O/0fgvO/Dy14/2ff97sfm0/Q7baIVOOLDO87unJDs1qRWMerZ1+TtreMuxpEwuTkhLPHn3N4eoaxNa1OmI0nVHWN3e5wPmZs5GEB3Wxo2g6BRHmPb0pMa6mbCteVtJsWqQpmh484evQ5Nsm4vbtlvbxBJZoOQTIqyCdjkjTDWk9RpFx+94bbmyUeQZJmmM6wuVuSpglZkYebsg/6bu88jQnpJdu6YzSCNFEkSSguAgQajFKatqbICtJiTLW6Y7Vao5Ukf3CCa1vWux2IjDSVjCcp0+kISw5rzzgdkWgbcmgFpCLhcDxnlBc8vVlS1oLWduhcItMU4SeIVmI6z5/8D/+cL37y85DW2dSYzmClJp2n3K2vEFVNW5YkHnKdYGUwrVE6p5hIVss7dusd6BR0hjCeclsjXMJifsjs9IzDh58yP3tMPluQZqNgS+wcriyxNihLsIZcSgrVUbcliVSosqXe7NhuVixXN1xcXrFcrik3d1S7FXVV0jZNGO04z//t//p/+jgnspeBVKhjeoYPa4yzeMw7UHXYBEqowIVQSYDwB2Sgh5f7xdnjh8V/WK19b90dyAB4H8yjbJx3+3vFktL3HiW+h8MhkOOapu3bYYbXii8Tf18ioPfXVz3ZUfRKARUXfnkPjcdRQf82B4VEeH+KqLZI+kImEiqFjOTIYA0sleL09Jwsy/HO8+3Tr0kyPZjQBaJ2RaoSklzjZRh9xLulFIo0zRFKU5X54MLr+2wSIcP7ieNKKcRgoITwKOHIlO6lnAFR0FIhPJimY9XeYZ0jOp2rPKUYBaWcaVvOT045Oz5mPpsxnUyCtD/P8ECaZT0fxA0F3MF0xuHBnO++++57T7MfLAgePXo0QNVxgW2aZvAgiNwCgPF4zPHxMUdHRxhjBu28Uoqrq6sBLTg5OeHt27ccHBxwfHxMkiRDnPDbt2+H7ITf/va3NE0TKiMhuLq6Goh7zjkePnzIbrfj+voaCEFMUYEQuQNCCOq6HtIIhRCMRiOaphlGCZGDEGf8USngvadtW7Is49mzZ+8EGR0fHw8GTcvlEuccbdsyn8+HccPV1RX/+l//a/7pP/2nnJycDN4FAHkebupPnz5luVwO9tDxT0Q14kilrmvu7u64vb1ls9lQ1zXT6ZSrq6vhMxiNRsznc9q2ZTKZ0LYtFxcXpGk6vKdoirTvMvkh2+Pv6/rDhfyHTYY+NDb4WFvrWzLv2NzecX35ipurN2w2W1bLCuk958eHCC9YHB1z9OgRs9MDUI48GZEmCY212NYhE0cuEzSOpqqoyx0O0buMKbwUpFnB0YPHdMpye/kS6pJidsTx2RmLo0OEEpTLNbnSdDYw7etuy3ZThkAl6zC+I1GK8WRKU7e0TU1rOupqx0G+QGcpWiuscX1wWbjJeAF1a3A+JBpqrVAyKCfwIQina1vkeIRPMqwMZNt2W/H1Ny+ZZhpsg8Ojxzlkc4TLSbRhPE7B1WjrMMbR1BW3uy3ltmGz3rGrdnRColJBmiim0zHH52ccnT5kdvaE6XzKdJLR7DbUzZKmKhHZAZaETIY5fSYEqYCkn81OxhO2fod1lsnBlK5paK2nxdBstrTtltMvP+Pg4afks0PSfEKqE1IMqlkjmhZhOtq6our94jebLettybru2O0a2m1FvVlS71a09Zqu2dC1NaZXStCHw+AJUc3z+Uc7j48WD0GmfRcfbvDSB7hdyB6qFyCERUmPUh5nDcZYms70rHzfL1oOYy1t2yMe/Rgh3gNiEQCiJ1yK4JI48CwCnyWaAUXOwn0tcc8pkP0g3/cohY8cBXk/yhTIviCIJA4CBO/u+Qn3pEbRs/X7UKOBtHhfvDjX8w0iIQ+AHoXoSXVCCrSWjGRGlh7jvWQ+n4XxmrdUdcV2u2W72fbN7Ianz55SNXUvvxQ44YODoOmDluL9Lrqh+uj0qCBJkK4vmIxBOkuKZ14oDJ5icYxKMqRW6DQhy0akWUqaaIp8wtMXL7hbrUFAnmeMDxf8b/7yn3B8eIhWCtV/NojwGlKJ/t4eSKIRdBmNEg7m4+89z36wIIjd6Hg8HhbZqAaIC9FsNiPLMmaz2ZDsN5vN2O121HXNq1ev6LpueI6Liwucc4N/QUQIrq6u+PWvfw2EyjGSCIHBoyBWoZvNhhcvXnB8fMyDBw8GF8N4Mkb/g7ioRrJiVBrEBTDKCyFAKvvSviiPjIWE957lcomUkocPHw4/894PcdBZlg2OjBEF+fWvf83x8TGnp6ccHByQZRl5nnN8fDwQC1+/fj3wKqL5UNz39Xo9ODXG0UckYcaiJh4jCIVZVD5E1cZqtRosomPkclVVgxHSvpHRh7r/99UEP2RNvG9EtP9c+14Ff8zNyY7bm0uuXn7H7e11cMf0isw6FgdjUp0yWxxx9vCc+eFB6MAEyCxFJZqm7FCJRJkQaeo87Ko1oyKn6ww4T9ta2sZQC5iOClQ2IS3GYDTTxSF5UYDpsJ0JZCc0XWexTYsRDqEVoENzZw2dtUiVojPIxjlZlmLaBoRgWozZrbe0bRNeH4HSGu8FbWtx1qGyhERplDK9VXLPQu46LBI5miOKGW1Zs9tUtNUGO0kYKUGWaYzv2PSyxekiRTpBWVdsqg3r7YZ1WVI1DbaFy1UFXjKeHXB4dMDB0SEHi0OmBweMixHF9ACvPK5ucWUNTYv2Hp0Iyqaicw2FzED2UjEl0VIgtEZbRyYk1iTYztNs1+yahvHhgkcP/4TpYk6SZijAVRuasuVmvWa5XrPdlNRNw67rqI2jtTZ4UHQNzW5Ht13T7TZ0zQbTlYEwaFoiVB1qAEUxmbM4OeXB409YHB9/lHMYoGq24HXgEQgXJ+Th2lIeJYPZT6KDvFMqAcIifFh8QlEYuvlUJAHZHlyOxXvFQPhu7K4hMP/jYtqXBIGwiBgY+MMkYI9jBP29yTsQwR00EOoC6iCRwWzI234EEN/x/UhE9uMQ+qLDxz0YkAHu99H74PET+RQusPGH8CbR2zIPlQcDbyJNwljJI1EjQZ5mHMxmdMZSVw1VVXFze0tnLUolTMYTHj9+hHcO0wYL+V25o+vJ40mSMJvO0EmKSjXb9YYXL55xcfEGuo5MSJ48eczdbsfPfvELZovDwCXQEqVStJIoAVpnnJ0dU/Yk/CTRjEdjTo8PSZOUSOT0LoSoOTzOuOBkCQOB+R3y5/dsP1gQxEUkktqiD0EkCEbv/+hUOJlM2O12AyzufUgOnEwmHB4estlsuLy8HKR18e8RZn/9+vWQsBh9AuJJuR+37JwbcgViSuJutxv2ERjIhvsJhpFTECV+sSiIM/aYdwAM3IZIhIwR0NZaxuPxYFAUjZYGA5xeAjmdThmPx7x584btdkvTNFxdXaG1Hrr00WjEyckJWusBAYhWyE3TcHt7y8XFxTAeSNOUPM8HK+VIHowSxFjsaK2H4ix+FvuukfHYxvn+/vggXtD72x9SEez//fuIhR9LZXB585brb7+hvg4XslcpWiecHcxYLMZ0csTZg0csThakmQ5NhJQIDU1X0nUlXVvStDXehosTrcjHOXazw7ZdoBUpBQQHsiTJKYoJicjJRmOQGtMGfbNSwaynaRu6usJrUCJBJYpiNEamI5q6o26DQmA0nXByfkJr2gC/Nh3dyvRomUMIFTwCkNRK0bQd41EW5olaUbddgC9VkDkZ60iKGdn0mHrXUG5usXWFUx2lTvBah5u2rajcHXXnWG7WbJsSZVvKqqG1Jsirggszk8MTTk8fcnR6xOHBnOlkTJJoBJ6mK1FW0JgW09bhJtdD+k1rEFhU6hH9fBohcZ2hc5aqrbF1w67c0nUNSZ5zNF8wXhySpCPubrdUu2uasqWuWqpdzbas2VQVZdfRGYPpY2udNfiuxXcVtlrhqhW2LQMS4A3CuZAJKCW6yJgdHHB0esrByQmL4zNOzh4M47yPsTnbIkXocoWM16rqkwTtYB0MDus83gS3QecEQmpkz2KTUofZuNhLM8T/3vXp+xFD+Af96MnfA+Y+FCb7IthhnRFB/hpHBUCPQATEwLke+Hf3skcfUpoGBUIg2MV8vv1CJUoQ79GA+MK258zsvez98XNuMDEaCp9hf4fW+p2xixCQ6BStIE0yfvTlj1gsbrm7W+GA05NTvvziM5y3Qa3TO89GVDvRCaPRuDfDE7x69YqLN696JLijFpKbzYZt0yCUYjqbU+RZr6oIY4VQKEkW8ynz6XgompIkDZLkvkgIxzM2bf29dzhu98iOGIiQH97+YPwxMMDpsepLkmSY7Uf+QGS5R75AJMJF45yiKLi5uaFpmmGB9N4PBMXNZjMkAN7d3b3jNBgh72jxm2UZ3ntubm64u7sbooQjoeX6+vodCD4+R1RJ7C+E+/P7OBKJi2qURU6nU6y1lGU5dOZd13F4eDh4CcTjEmH+7XbLbDYbRidxMY7vo23bd0YJEXV5fxGPvgKTyeSdIkwpxe3t7VDoRKJknodZVrQ9FiLYTEfPhDiOiGOK96OJ98mD748HPjQGeB8JeP9x/618g3+o7dlXX3H3zdfMtGY0P4AsxRnLYjKiyDRSj5gt5iR5FmBIHxLJhO+4W14Fb4fdjqoOPIORSklHGXVXU9U7yl1DlhXkRYEQYOsO0xgEijTXCKUwxuK8Ie2Lwc42dK7Dehus3I0kSTzHZ0ckk5TduuTizTVt16K0Ih8XJLJAVjX1akU+HbHZ7bDG4m38HCFTOVXTYl3oItIkQYom6J1leG9d25GlOcV0QbndUnUVfiuxxrMT0BiBxWFcQ9p5tnXDy++eYazlcDYhz8fkWY7xnlYaRlJwcHbK0aMnTGdTsizc/KQ3GO8p65o8TcG2KO1JshxUQlc5EusDOxrwQmC8oDOWpgrxs7e3d+xWO3ZVSZpp5gcLiukxXSO4ePWc2/Wa7balqlqaLrweSiMTjUhDgqFyHmEbfOewwmK6BqcNbuxxeUiwxAeIWScJ2WjE9HDB2fkZj548Yb44IkkLhNR0e3Hrf+wt1QqtEpTsb/iEBE+kxHvThxQJnHXBW8LbHqIXINSwODjhCSl9YfOevnu+75ghRhqLgdkfEw7vF5N+kYmMRB/Z9f2i7kOBfL8I3/9qKFxEX5T43nfvfhsUBf0O+n6xgw83ILGo+T3ychwzEAuc+8bk99xV+9HCO/cpEfcx7O7jx4+Zzw94qV9RNy3z2QytFcY48tGov97EsN8RTQmbJdXBRREpsBIqPL95/QqU4tHFJaPpAdgJ0jtA4YQLfwhjknj4PWBaw75kdtjl+H56wqgU9548Ydy0R+r8wPYHOQR1XQ+dNvAOq73ruoGNH2V9MbNAKcXFxcVgsLPb7Qa4fLPZDBbFq9Vq0M5Hid9utxuY93FBj+TAuCBHo59YeMSiYX9fowHRvllRDDGSMiTSrddr8jynKIphXLD/XLvdbjAmiqZFSqmBVzEej4cuPRoDxT9d1w3kxKOjI5IkoaoqXr9+zbfffss333wzcASiOVLs9F++fMloNOJnP/vZEGwUzYxivkPTNPz2t7/l7OxsKGim0+kw/oiLe0R2FosFbdsOCEyUN8Zi6kNd/D5q8D4Bcb9g+xD5cP/vHwshuHr6gqw26GlQx5BkbLZ3bJYtavQAkWkstv88QbgAtVkrubp6jfMC6wyNqcGr3uzD8fzlc0xlSHWOQyCT0JFvNivevnpGomEynoCsw6xWpyQHi0Ao8pBkGShJ07Z0nSHNHWcPT+iUp8gL7i5vsFJim4bN8o7DB2fsqh3jwznH52eoPOfiu4tAtpOKtq2pTMq2NbQuWCRnWYqWktZa8A7lPF3bkE3HyEwhE0mSZnRJwbJp8KmmM471Zo3xjuOTUzKpMW3HeDRhMjvk7MEndF5xcXsXTJ62K7q2pGtqTCXpfEA7bC+nxHhKUzGZjRhlCXhBUxuMDalzWV/4V23LpulY1y1N2aJNx+2y5uWbNePRiJHUbN9u2PzumqY1JNqjM0WaKqbjcF9IsoIkLdBpgtQeaRWi65C2QrgKZztMW+Nsh/VdWGS8x2NBQz6bcvboMadHp9B3lJHbYV1Llv83ZcH9g2xSOlIddP/W9vcnA8aDs7Z3FARPLAY6fGS2ez+QCgeuQD8SwPug/d9zNFRS9eu1RCvdL6wqfJ5if34f9qvH4YdFvO/dQ8cqQsHhvB0cEK0N1MS40kbJIkSXPgY54v12fx95//4Su+CIdLwrt5b9Ih0+64BC3fMdwuMIcsx3epb7EYrtCyLXr0Oyf87tdsvf/t0lZbXj4dkDHj18SN5z12IrL6KREJaj0yMOFnOSVwlt1+GEpnQGKTTbOuRpGOdDOicOFHgVFnVF8BeRUekhouojKKiG0sfvDwQ8PWWTKO38oXEB/IGCIGrjY6cfZ+Mxuvjm5mYw09lsNux2O87OzoZwn2g+FK2HX7x4McT9Pn78eAgv2mw2WGv5/PPP6bqOi4sLrq6uhsIixia3bcvnn38OwM3NDVdXV4NDX1xQo70wMHj/R7XCbrdDKTUEBEXCnfeeL7744h3r4YgufPPNN3z11VdD2NCzZ8+IioGiKIYxhDGGk5OTgVB4d3fH1dXV0JnHMcF4POazzz5jsVhgjOH29pa3b9/Stu0gZYzx0p9//jmPHj0aIpBXqxWvXr1it9sNHIGLi4vB1TF+RvuSwn0nSCEETdOQZdk7Fsv7BMP9bX+MEP/9oe2HHvPOHPEjbLPRjGJ+hBSO9aalbbfUTYmROWOVMS2CZ4UHslTjrKHcbRDC0WyXtBiqpqIydSDoXb9mdbehLGuUKDg/fshYKbwJAVNXVxd0jSVPE5yp6XYeJxNUAVIJRpMxm12JNxYpNEiLdZa2JzKl45TL16/wbUcuFdI4mrsddbYJSgYFxluefPE5s/kht5c3mKpls1xTbtbcXS95sFigxwl5CmkiaawlUhDbtkGIKSoJo4Fqe0tma3yegtNoNLPRlNFkxJPPPgkWwE3DycMnHC4WbHclm/UaUs1sdkDZLLHVis31azJxhmaM7XqSk+tIszHSJ1QdIXLYeVxnMKbFC8+mtlwv19TOoRNNrhKyBJ69veWuqnh4ekBRpGTjETorEDIlFTleJ1jvaJHYXonlfTCYqmpLV66pd3eU2yVtvcW2DaLpoC+EW2uQqWe6KDg+PuDh0SHnJ8cUMmEkBMl0jHWerrN0rUF0BlPvPso5DNDZJd7XYSZuLcYES9sQbCSx/l14GGL33ksGue+MpQh8g35C03fL8XcFCNebBQVkC6+CoiFKAX0oOug9DoI5Thi7DvHLfv9eECHs2OX3kDzBancwPoqciL5QuVcPREOloKaSQr7zXgdfhkgkJCKdPZmOQFKM33+Hp/DO5EAMiENESIChqOm6jtevX3F5eY2xYfzx4rsXrNZLZuMJ//yf/TOePHnCKM+D9DA8aVAmKI+SiiIrGKUF1bYOYzKhUTrl5OiEk5NTFotZ+FxQfUHUjw/48LjWex/uS7yLyvq+MBhkon2+hPNxVPPh7Q9aFx8eHg4z9pg2+M033+C9Z7PZ8Gd/9md88sknQ2DRzc0NaZqyXC7ZbDZE0mBk7EeL4d/97ndDdG+MT765ueHrr7/m7u6O09PTgbAYRxNN0/B3f/d3gylRJDUaY4ZuNy5+0XEwyzLatuX29pYsy1gsFsNIIc7k27bl6dOnJEnCv/gX/2IYCRRFwbfffvtOxz+bzRBCcHt7y/Pnzzk9PaUsy+E9LBaLAQlZLpeDWdFuF24mUZ1xfn7O9fX1oM4YjUZordlutzx//pwHDx5gjOHZs2es12s2mw1lWeKcG8YCi8ViIB2maTrIRKuqYjabDQt+HNEIEQyUhBCDJHK9XrPdbt8xXdofF3worfD9UcCHSIX7j/2YWzIuEEKQJQrTGSYHU84e/ynTo1OMUxweHaBVgtYSaw11taNqdixXl1zfvqJsdiiRYkVC46BrS0zXoCWkUiKcoa02VKuO9d0K2znG44JEgbAhHMh58F1LVVewUWx3JaAx3jE+mPP49JDD4zlpkSCB6WzCbrlDmBDItFtv2K63IYVQCSbzGeWuRAtNKhKM9xTjgnqzYrtcU1UNQkkynZKmGtm0fa/g6TqDNZ5MF+T5mLelA6NQGIyu2G53SCFxOC6+e8F4fsCPfvHPaW3N3z37ezrbUBRTJuMDutpgncV0Nbar8LZFyV4WZRqyIoxhEjxd0wTOnvO0bceuarnetKjZEeMv/oTH8wljCbKqqLdbTn/yJSKfkmcaLX1wzPOEFDof+Ae7xvL01Zrr9Yp1s6NrK9rNluXylvLuDlNuEW0FXY3vWrAGKToWizmzxQQ9shw/PmU2WbDbdfz626ccTFNOVtccHh2FHAylkc6HOFr//aEw/9Cb1gdIkeOFRUiH0oI8jxyCCOfv2RXT2xDTfz+SyVxEECxCuJ6sFwqpsAbud9jh91z/vgWD237YKRGtnPvunF42p+7RhvA8Ym+/wuOVUn2nHdUNsakOfxF7cP++pHEoLPz+zzzOdYE74fu5u4sPiciF7ZGK/jEu3rd64p0XQ+RzHyI57E8g7YbXOzs7oTMdy/UGnaT87E//lJvbG169fMm3L15wdHw8rBGqH6cIGSSQSio+ffwpV9e33K7WeBxKaQ4mE85OjkmSgPQFk2PVRzD7YaAyICn+/pjERss6O8gMe5NknHVBbrt3r7Y28B2+9zz73p/AsNjFOXbTNLx9+5ajoyPm8/mQVxAJgs45zs7OAhvz5gYp5WD+o5Ti+vp64BBEI6B9iWDslJVSg8Kg67ph0RqPxzx58gTnHG/evKFt22H2nuf5sGjHGX08Ia21/PSnPx2+H5MSo8QvFgU//vGPh0Xy8vKS58+fMx6P+elPfzooGaJzYlEUPHz4kNFoxG634+XLlyilmM/naK0HwmGSJNze3g78gmhAFDv3PM9ZrVbvaEPjft3e3g4EQynlEAl9d3fH9fU1v/3tbwcFx0Bk6V/n9vZ2GLXEYu7o6IjHjx9zcnIySDZfvXrF9fV1kNj0n0ucOe2PbOL2oWLgQ4TD7xsn/LG3yrWgNNW6Yj4/4PTxA84eneFkhvWCfJQEbb0LAULRka2sK8qm4u7qBixkxRRdTFGil+K3hsU8Y/n6FTcu6P195xnlY0Q6ZldWKAF5rpE6QagEY0PXkaQJrQEhFfPjBQenh3SuxZRbMp2yODzm9nLF+m5D07Q4H7IvlJc0bcfli7dUdY2WilQHljEKHv7oEzbLO3beYLVkWuSMtgXrXYW1PdPbO5quIU80WZrTliE2OPGeg+kJM6DaVTS7jnKW8OM//QucGKHrOw4PFwihyNIxSiSU5YZJPsEKwXg+JxuPSUdFIBTW4aYmjKfIYLVrudvV7FqLSzLGR+c8+ekjDo5PyfMs8A5EKFqO8CHKOZXkSpL2sKfF03rw1mKM5eL1W3737A3bmytu767ZrJe02xW2XmOrBtFZhLCkiWByNOPw5IhPH59zPp/z6vUbVAGPf/IF09kZN9+t+Pu//iuKkURm4x6pWzMajUh0jugs+gcsX/+ht+W6RIouLG8iLvP9sJ171UGEw70YlrS+uI8wfRwBRhC+75L3ruNoEQz3C25ITuyRTpn0Frrh9WU/y45zhMBFjDwB3pvl++H1ERKP6L3796IE+/25n8OH9xhHwSFrIS7qQePvfdt/7aOHrcXZXt/vLNbexzh77rvkgVegFIlOw/EioLmqT8YNcu0EjyPPAon+6vqWv//Nb0nznMPjY3SaUZYVd6t1CMmKn48M+0vP1dp1DePFjNliTl2WpDrl8eOHVE3F1dVFIN32FpRCiL6oUwN/QAz3UoHztieOhiJoGMvYQJx3PkhMA/rrg+ti22H/ewuCy8tL5vP5EO8bXfQi7H15eYn3fnDGm8/nw4w/LrLRyW+1WvH27dtBBhdli/sEtvV6jTGG8/PzAeKOcr5oa6y1fscIKJIMb25uBr//SAyMC6vo5z3RSCnLMoqi7xyzjCdPngDBbfDi4mKQ/EVTppubm2Fhrut6kAvG8UfkM0TOQZzZz+dz8jwfrJSjTbNSaiBD7na7d5IKjTFD4RDHJHmeD6ZMRVGQ5zlVVQ3JjvH1Ivkx8guis+R+YbRPSlwul2RZNhRkERWI/I4PORy+jxrs//kQOfF90uIfe7NViS+mHJ8/5PhowfxgggKKVOKlZH1zC1aA8wG6tzXr3Q2b9RLZKUZ6itUdAo+tdzTOIJ3GtQ2Xb19Rly15lqFlgreerqqosBjpKEZTaidJhWaUF4xGE4QII6TWGY7PTjhYzEkT3TsUKkb5mNurG8pdGWatUiC8pDNmmO2miQaf9XCgoOks49GYk/NzvHNUdUXXGbJFymQ6QV7fhmEzYTbZmoY0Ueh0BCQYD0We0TpLAiA82aRgdv4AVYyRbYcxLaNihhM6ZM47RyJBK01tWowQOBFIbV6E+XtbWqpdxRUOlxQk8zNO5oeMDw4ZHRyQj8akOrjQSwRKCVIlKDQUw40x1DHOBhtZ7xxN63jz7CX/3//PX/G7b16wXF1Tlxu6psLaBiVaJnnK/HTB4mjOweGc2XTGOB+xmIwZJyHf4eXlW65eX9NsDO02HOvVzYY3ncSbjlEOs2nFqBhjnaT5iE6F3oKTflg8RU/yc3tM/RCjy8Bji1yB4Oo3tMz9FjgHYt+xsGfzyX4Rj4t6uP5D2I/t7XyF7Xq43feufe/6AjjrhmLintTu4//6xV4Ozx9n/OFeErr2iFrQjyICSZKwCPYFQ+AlODymrz3k3vOIe2Sktzn2Q0Ek778vAOMG0qiL3sL9+3e9hUFEVsqqpCx3dF1LZzukltR1S5W0PH/5HTfX1/Q7+g5vwlpLa1rKukJrSVHkaJVwd3vLr/7mVyQ6BGxFOWUsqO75HXG00n/ivVOkcw5H/9Xb++PSH69genR/YtwXWb+//WBBsM9Ejxr2SD67vr5+x1Y3Su4uLy8HeWEkJAKUZTkUDhHaj6z/SM6LMHvXhYz2Se++pJQabITjLD3OmuI+np2dDS6GkX8QO926rinLEqUUDx8+HDIOsiwb4PrpdMqvf/1rXrx4MSyy4/F4cGiMJL2mabi8vBzMlcbj8SBRjAVCOKnu0wvjOCB6HgDDz+JIZLFYAAxFxW63G0iUcXQTL/Lb21uAweExwvwxdbLuPeHj68aRynq9HsYoUZrYNM3wO5G4GD/z6Ja4b9n6oc5/f/GPW/z3+wXFH3sr0oSjk2AMNJ8VjIsssP19YN27uqVtDFHJ5LBgBcIJClFAApWvgF7b27QgLQ7DrmpIVYoxLUJCluUoJF3b4LIEp0LSn87HFKMJSZYFTg0wGhfMZpOQYEhQBSRCUW52LG+WeNtHz6qo0+47NxuUBYkMC2ivBmO72vLm2Xds12sS4SjLGuNcsP3VGtH2dqteYtsOV4DMC/RoQbXc0lqHb5qQjGhDYWAc3N2tOSxShHWkOicIBcOi4BxIZ3snvw7TWaqypvJgrME6hRrNKWYHjA4WFLMD8vGUNCt673WBEpBoyKQY/qi+wzQuzEe73hyq2dWs7+54+eIVv/mbX/Hbb37LervF2QYtDGkBiR4xnRxxdnzO4dGM46MDsnwEKITzjLIULTpOzo5Zb0vuru+4vboDoXFaULeedWtRSGxr8duaprF01tP4j1fYOheCdsM66Hpi3163SFzD71nk90ThYJ418M4Ii8I96U72z3W/qIvfKwjokYk92mC8B3hDwNnvr/UoiY7BRQMIPyy098WIj0qFWMhAzwnoCwaCBz8ED4Hfv59EiV34uXhv4bs/SrEY8AP8HjkFgYzp3rm3ud5IyFgb/piQXhpdeeezKXfrFeVuBwiSRFFXO7q6DIiA75VuzoV0w0iudA4tBCpJkFLRtS2bbtWvV5ETcS+N9NxHWg9jlPBG7j0GiPyNe96G6z+rvnYiFhgx8+FD2x+UHcbON87sY5LgcrkcuvGoPIgEOynlEFMcyWv7YUMxDyF6EOzPruOYYR8RAAZFwNu3b6mqatAER0j7yZMnvHnzhtFoNIT/xO59f0H85JNPhgslLtJlWQ6kxMiBWCwWQ5ETT5I8z2mahru7O16/fs3x8fFgR3x4eEhZlsHHu19MhRCDIiOaBMX3GrkFx8fHwzEYqsg+rAkC5wAYVATL5XLgZ8D9xRslm1FRERMggWF/YiKj98FMaT6fDwWVEGKQL26324Hz8CGuwIf+/qGxwod+9sfezs4ecnL+AKVBy0BiUioJvbKDRGlausEsxXqLVimpzmi7FuFFiDWN/3mHcQ7rTZgBJhpvHSIRFLMCbxzltkWoDCcUQmfoNENqjXMeY0IRPZtOSbQO8zzpUUrQtQ13l7fU2wqJREs/xK/G/cN7nOnQUpEIiVAK0pSLmxuq1RZvOlIlubtecrSYkxUJqU6oRYXtOzlngoGR0CnJeMbyOiV3DYnzOAFSa3RPTK3LGq8DqayPsMN5F7qjpsXbvoPvLE1j8N4hVIJMc7LxjOnJA+ZHp4wmE3R/PeFB+xDBnCaCNBFkSpB4UN5jHdTO03SWpgnFfLnasbq+4fXLl3z9u294+fwZjduRKE+SS7J8wmhSMJ9Mmc/mPDx/yMFszGw6xnSOsmyw3qETxShPUd5zfnrGdleyXN30xDFQCErrSVSCFxLpBG1lqLY7Kvkx+TD9RFwEMBpcT8aLhMC4mMthbY0dZbz+IgJ47+oXu9BwXjMsIPuPp//5/dw+/sw503f7IctgKFY8w3OF5aynDPYLXZTDiT5jQMQ/8ecyxm1H46N75GHwNwg7sdcvy72aQgzHK+63C/8gEh9djzYNpOc+qjw0MvbeTthZpBFgAG9xSLxXjIo83D+tASFJtGaUJyEsa69gU70Nt1CSd1fzviiToSBTUr2TuulFLH7Ce7hHcO6PZURPhs9qmPOEl3D3p03Pk+gLoB84y36wIIjQeGTqR2ndvu//zc3NkBUQLX0vLi746quvhrHA1dXVO0S+GJgUcweiT78xhizLaJpmQAGiA2F8TFQkJEkydKT7ccYRtYiLZOQkxMLg6uqKg4ODgUcQ7X0jNL/PE4hbLGYiWqGUYrfb8erVqyGiOZoVSSmpqmB7GVGMGHoU9y3uz2az4fHjx4zHY96+fctmsxnQguVyyatXr8jznMPDQ9brNd999x3Pnz8fjmeUegLDMYtJjlG+uQ/bR4OnKA0FhjTL6LK4XC65uLgY4qWHk22opt89nYabzN7IIX5/X7L4sbZPPvsJUgvqco3twKZFyC5PEpwxJHlO4gVtVVP3fgMqUyipqe2apqvwwuKkxQiD1wECbI0h1Ql4j8412SRHT1PaqsW2IJXEEObenTHUVd0Xy5BqzWQ0AmOpt2VIrJOe9e0SU7bBN8D3EbQ9fOsFOOPA0N9QPYlSZHlOkkuuVreILhTAd1dLXudj5rMZD54ck+UpcleCN0ifYGwI9fEWhAYnNUkq0UKgs4QsVUwOZixmM6azKaat8NbQ1E3vqujpmpZd3eDliNGkIEkneFkgRwvGhyfMT044OD4kzUfhZuYJynlv0EpQpJpRoshi4+oD6lB2jra1VE1HWe5Y391ye3HJ9cUFb16/4tWb79hsN6ixZJHPyLUmTzWT6ZjF0YKjxYJEa6bFhFFekMoET0uaKFSWIQQsDqa0ZcnZw1N2dYNFsN6tWa+XKC0Rnaa1DpGPSNMM1xg29YaN+3g+BLGJCYukx/uIBNz3wXGMH7vf/vINsrthke5he++HsYAgFgRh27+Ow2+9S+SLi1AcQ4T9iKMHNSzqA8wtNUKG8CGlQ2iQ7gOJAjchKB/unQf7eObY3e4hF/tNhhi4D3FcErt7148V+q/OYV2A/I3pBo5BmK/Hx5geAQiqH9fLj13f4Uflmeubtq7rmI3HjHr/ESkDofL+ffTvISLoMkg7EffoR1gLQkEQx3+xIID7r4Hc+K5kNPAL3rvX9smTDPfd+4IoFnrO3as9PrT9YEFQliVXV1ecnp6y3W6HMJ/j42P+6q/+ajDLMcYwnU4Hj4G/+7u/G6DpSFaLUcZxnr3dbrm+vv49K+GoOtg3DoqSwf1uNna6EWL/1a9+NUDh0dgn8gyiJXGE7w8PD4duP4YUHR4eYq0dCiCt9WAs9Ktf/Wog80UIP5It3759y9XVFb/85S/58Y9/zD/6R/9oiD2OBkvOOQ4ODgZo3ntPXdc8f/6crut4/PjxcOLEn0US5Gq1oigK3r59y9OnT3nz5s3gSxDn/BBGDXGkE2WFVVWFD7mXPXrvB0VEWZbvjDf2RwfT6RTvPev1esh12N+/4UbR/33f5GN/lBAv4P3C5Y+9KZVgzBbvPFplpOkIlaRYQu+CDBdu1xk26y3bzQada4wtabuasqqRqUKNFEhD3dWITtJZw3g0g7KDuqXxPoQTTUak85y2c7Smg6YBITEukLq0VpydnoCzdG3D7e2K1XqNFY50knJ0uMCsgnGUQKKEAhlmslIlVG1N1xhkKrHO0lmDE4L5uGB3u6W8LSnXDW9eXTGbj5iNNcUoR64ltBaPRSDZbbfsNiXb3QYvIZEpdbVjrBNM0yGM5Wg+4+DogLvXK3blmto4cj1FeI3DIkcLinnO4vSEw4dPODp7wOzwiLwYBUtaY7BVh1SCcZGQZ3pAA1ICgdB0YKygs47adOyait1mw+ryiquXL7m7u2a9XrLerCmbkiyHLJ1gnGU0GXF4eMDRdMpiOmVcFFgRirD5wQTXdDRliQOSLEHlCTiHNR1KeFIlOZhPuVstuby5wBhD3bQ8eHRGtSkZq4wsHdMKizoWTNrmo53Hbdsgpeuvpb4PFr4vEICo+6efIcE9Sgp7C/dep9h/w/r9OPP763a4roXAE+WBfTBSD2+rvruXUg0Lm1KqLz186OhFjB/u91wEO2TbM/udtwMHwXl3D/vvNR/hnrKvfOo5Ct73C3coosNibrDG4HC9TNPgncU6s/eYvlGyPTqNGLgDbrjHCYRngPdJ0+G9DyqK6KyIGySREA2Awlf65xiOcX9MBxRH3jdPcXEPKZT996RkgAr3CoR3GjThQcR02yhTJCZbE+kc3H/54PaDBYFSihcvXvDtt99yeHjIYrHg1atX/Of//J85OTnh6OiIg4ODwXDnd7/7HY8fP+aTTz5hu93yJ3/yJ3z33Xe8fft2UABEXf5msxm68thVr9frgaEfpYPRZyAaCsVCIJoORQ+Ew8ND3rx5w5s3b4aFMH5wTdMMBkJSSiaTyfD+/uIv/oJf/epXnJ6eDrJIYFBAbLfb4b2/fPlygOTjqOHy8pLZbIaUkru7O7766qshPTGqIQ4PD0nTlHkfjhJdDOu65uXLl1xeXg78h6IoBvvL+O/tdsvV1RVlWQa2eU+0jCTPyJOIcsPIddh3mIzHIkotI+EwEiuPjo44OjrC+5DZEMczV1dXbDaboTCIxzUu8u93//t8gveJhh9j67qGsqwosoQsz1CJxNiO1lmaukIBq9WSsqvR85SD6RHlZkO5q9iua2wbbrSdNRhlyWRGJw2p86SppmxavLNI6+hqR2tq2taCy9GJwhWijzVtESiEEuR5hpCe3bairGrSPOP80wc8+uxhgPqajt/9/VeU24rOhLQ4ITVGeqwG2wmshabu6FqL1IpUSl68+ZpyndHahmxbsbp0bE4zjh8+IfNpeN/SYK2jqjYsr+/YbFek41FATDpHaSUSQSo0lfdMPVgvcU6RJGNam2FEQjJfcHR2xvHnn3B4ekqm0+AGaAx2u0MmilmRMp9nFFqh+6wCvAgEQeMojaM1jqqu2axX3N3ecHt9xd3NFZvVHW21o65qmrYOx8EFZPBkcUyapyyODsgSRSIFRZ6SjQpQKabtMGWN9GHRRAqkliRZRiYUvqupq5qqrvBAlo+Yzhbk4wnGhHvHaDzCixA2lRYpp+MTcB8njwPA2BLhNNbKvQ4+TNchzOr3C/ahox6eIXSjcVIQCXjRiGjo1PvQIiEkWof7nJAaBvg6JBCGbc9Dv//h8HqeIeVPeBf2snfKi02rAJwXYeH292RCiMZEe1A39wRDoC8I+pd6Zzxphx2QeLyMWQia4PSzH+oWxhv3R0kMMdneh0VZ9cZM9OTI0J3vyTsjvPXO1o919goayZ5iokf9ojO0GD6viALJ/jX2x0R7Xf8e6O+5/7z3ZwE9h/LeyyF+KB/Y2/3tBwuCv/7rv2Y2m/Hw4cPBBOfVq1fDYiGEGBbuyWTCYrHgq6++4m/+5m84Pj5mt9vxzTffDBJB59xgVdx13WBwFEN8YoHgvef58+eMRiOMMe+MCWaz2YA4xFl5lBzG7jrC/ZGrEAl/xhgWiwWr1WogDUZ0ICIWm81mKFjKsiTPcz7//HOcc5yfnw/qgzj2iGFBcdYfsxDOzs5YLpd89dVXvHz5kizLOD09HcYK2+2Ws7OzId8gvrckSbi6uiJJEv7Lf/kvKKV4/vz5cMJH5CPaNeteGgNhXHJ3d0dUVUROQjiRwu/HUU0ssiJhME1TxuPxcALGUUckG+52uwGdidv3ORS+rzD4mDwCIS3T8YREazySprUY79nVFd5ZhGu5vr1gW24pyy11uUMKResbnFVMpwe07Ya67WeOzuFtw+HiEK0ky3JH09Zko4z5OGOkE25uG4rJmMZCnia9jbTupT+W9WZDVQcpYGs6ZoWkGKdU2xUKRT4Z8/DTx7x58Yb17Qpnwg2VRJClGuEy2rLE2sBRkUJhqpZ2u4N6hbeOmozr6xUvXr1G5yOyRLKrPVXdsSlL6ts7qstr/O0drbZc1kfsyg6HQwjHd29XfPXVa+azQ04enJIfHjE9OOXw5IzD01Pmx0ekoxHCgWkt1raMc83/n7k/e7bsuNI7wZ+77/HMd44RCAQGgmQmk0y2MiWVssusX1QPeiqzeqs2k5n+Lpn+hn5qWZt1y1pKSZnJzOQMggACCMR453vPuEd37wcfzgkkCarUpozatEAE7z1nnz0dX2t961vfN5yWjLKEgXJ8DYx1zo6dN7XpDZ22bOqe+WLB9eUpt9fnLOe3rJcrqvWaarOmairatkb3mnJYsLe/z3gyZjaacjzdZ7PasK7XqFQwGgzJ0wx66Oo1pu+piwKVZKCUs/G1AtVbKtOhNxW6rtFdT9e1tH2PRqHRIB1MvX94SJFIR+QTTvY4CMS8ja1pajfutwPFb9sITmHIQfD+53IbbbbB/k2FvvBaY5wr31YcyCMHvXFSz7Q77QXhUQQnzBOmDHbJbC7EblsM1kPWLvD5MWa7M6ochHX82wM6EQ7VkfG8dH6YqgiBOCrwaZSfWgsnHs7VWEtvpa+WJdY4xDRJJCpxATNNnOy9kilKJpHTwM4xuN3KmPzgz9ShGoKdfCX2+I1xI6FShvHKcHhBVGn7x+6MhIZzcKZS/n4JyS464RAc66+42PIIwg5CyyDcU7sVevp927cmBKESD/3kMDEQeADn5+exag2CP1dXV7G//9vf/jYK6wRDpMlkwmg04uLiIu6zrus3kABjDOPxmDzPY3UaJgqWyyVSyjiSF1T61ut17NuHEw5iQWGePyAZ77//PsfHxwghOD8/Z39/n+vra5RSse0BMJvNGAwGTCYTHj16xOeffx5bF03T8PXXX3P//v0ofnR7e8tqtWIwGPD+++8zn8+ZzWZx8iKMYC4WC16+fBk5CWHMr65rlFKcnJwwGo3427/9W/7+7/+ewWDgekbGMBwO6boujnwGnkYgItZ1zXA4ZLFYAETUY1fBMby/LMsY+Odzx3INrZ/Dw0OGwyFHR0dxqiI4Lv6u4P67OAa7bYa3hRToXmN6ge4tbW+QqsUgaPueVAnQBoWgtw2rds5qNSfpXPZutKRfL2hbV6kLAXmRM9mbkk8nXL66pO8M0khULxCbno1dYqwD5rPhEJulaAkqEaRIRG/pascTaOsGi6VbNyxuF0wP3iGRAqM1m9WGpm7QxvVpO92jcNMPpnfthyJNyKWlXt4i9Ybjo2NePztHDUd0QnG90MivzpAiZTybsVo1zG9X3Fxesby+pJ7fYLqW0b1j9mcTRoMldduhrSQtCyaHxxw/fMydR484uv+A4WyfLCtdH1gKMJpxnjMpCga5Ik2cloC1jrDZto6A2fWGtuvp6g3VeslysWB+u2C5mLO8vWK9XlJtNtR14ycWGhCW2cEedx7cYzKeoITAtD2262mrCisErdGM8iFWSNrO6UiAoUMgkhyjMqR1I3oYS11VKJnQ1BWy60iVBKvpdYexFpVIbC8YDXISqUAopDBIYUmspH+LOgTj4T6JzLx0rQ8IylW0NiAGETnYEvFCVS0IVaPdqSYlWtstnCxCMrBbjYb32/hz4StPi0v4he9SuN3sJP++xeBIudv61AV1z4z3s4VCuL9178iSfefe4YR5dsacQ0WM8DbQ20LcaHdObt1RMVlSiSJJU5TKUCoD65Ijx9HZ4Uf462BD2yCqG7rjNjGR8UhpvDvG6Q3Y3QTCH+VuUrHTFnD/CMiHS1j9D+O5SuVkk4V/jcEg9Lb1EDgT7sNMTJLC6/3uwAYOSWgj/f7n7FsTAq11DJThIAJjPUDLm83mDQOjwJgPQSfICoeJg9VqFR0CQ9UeRvRC1hNg7qDzHxKC8CeMBQohaNuWi4uLuH8gVsy7vbAw4hdkgcPxhp//3d/9HUBEFILiYSAiBgnl0CIRQkReREAWws9vb2/5+uuvmU6njEYjXr16FacjApNfCMHZ2RlhjDAkRbPZjNVqxWazYTQa8dFHH8XPCAjK0dERZ2dn8RzD+YaKv21bDg8P45RBaK8EnkAYWwwJSuAbhGsZ3BTTNCXPc46OjmKb4cWLF2+gMNsvwLdPFLythKAoC2xnsMKiraE3nVtUlZs6qOoOqwRWGBJpGaWKxEia1NIIg61AGYmxApEL0klOVTd0VzeI3pAnCWmekySSrulodEdDguo6Civo256WFuthU3rrEgGTU1Ub/z0WnH19SiIUaZHSrDdcnd/S1h0C16fsu4a+dhPoGEO7XpE0grzIyEyHNh3DwYRytGL/6ABhBLZp6Oqel1+/QJyesdlUrG+XbBZz6mqB7hvy4YwPfvhjhoMpi8vX9Ciy0YTx4RH7J/fYO7rPcDalLAYUWUaWJxSpYpBKBpmkzFy7QiAx2tJqS9e7JKBpvbfHck61XlJvHAKwWa9ZLxes10uW6xVVU7npCwRFlnF4dMJ4OmU4GTHd28MpuQtECX3Tsrq5RSRJlOkWwukYGClZdz1G5SQyJxGSvqnBExmlcpMT2gc4i+NUYLRDiwAlwPo1qRcKIwQKgbQC+fY6BhTFECmccE6oLsHPxweFPu9GuAXAPXHACi9o4xUfffQO8/yuGg+mRx4JiFmCJwyHcO+zBPeXiaZDxKAfIP1wDGKnUvW/t0FDwXoxIYPwrB5jnE2zMVszn7BDY7eoRqLSN9occpegGP/4/68CSVGC3WqrBFW/bfvFBPrkm8Q7P5Ms43XYHpbHTBDSvlHZs/N78MXRN2+qcPLM1hqCYBS+knfIgmt7EI7MJyMuBzA4hUmPkqB3EjevpeAPZVd3ILSSft/2rQlBYKmHwBA08tu2jb3rsiyjME6Y/Q//X0oZq9ugDNg0TRQ3CpX2biCXUsYqNLw+9Ox3K82maZjNZhhjOD09jchCWZaxPRECZAjUR0dHUUFQCKd9EPwWDg4OYhW+2/8Ox3d7e8v+/j5HR0dkWcZms4kQ+s3NTWxphEXq7OwsTjPstjIChD8YDFgul5HgFwiRQfXw888/5+TkhDzPWSwW8bzD+aRpGhOzkPSEaQtrbZRIDv3+MHoZkoTAOQjXKLggBk+FpmmiDsRoNIrqikEnIoxQhm1L9nlzJHH3929jk1LRS0dAUsIpf/V9g0U4kZDVkvVyQb3aIHvLKCsQwLrZoIYp0iikG7yHFGQqEa1GrypymdFKSHMn19pUNW3XuqVNt4hmg/QjWVpCr51fed87+2DhqzyjDaubJafyNWmRU28qNqs1IEnTzEunGrqmR+sO3Vb0m1saKckYkpUFSTbC9DWz2ZiDO/skKmUzX3B7/orz16+oe2fs028qdNdgMaSDEfsP3uHR9/+UrBwwub6HSArK6Yzh3j6D0ZRBOaAsMwolGSaKIvN/UkmmPLSsLW3XOSJl01E3DVW1Yb1asVwuqVdzmvWcqtpQVxVVVdNUG+p6Tas1VkCWpowHA/amMw4O90mHA5K8IEtTdOfcHIWQqCynMxaFZToe+nFShbTQtR19Y9DSYoVC9x1t12J1h04kRSbotVdzA/fZ1hcORoN1+2rrmqSoSLxdsAWktai3qEOQZDmC9I0qFC9RuxuihGfu2ZALhJ/5XrkQIdC60CeEiugCdhvwwky+63PvBvlvwtF+i/8OSYn1EsC79sgh3PoDsxaQzk/Bj0sqRFRKjC0RtucUijWXEARTJuUCvvQeCB7kCPuMR+2POY4dhrXqDYh9C8Lj2yMyEge3iVgIvPFueILjNtiGrr3jDthwM+KxvDn+Z4SJxYF7jVdDwsEvxmwTAieQ5DkXNhyLic+BfwS23IPQdQjJwX8vQhCg/hCwA/zb93203Q39b601q9UqJgnD4ZCyLGOQcT2brUNimAQI5kdhlDFNU5bLZfwc2HIBgEjW22w2HB8fMxqNWK1W8VjH43EM1iEQhomC+/fv8+GHHzKdTqMxUZgeuHv3bjzeMGYYyIh1XccK+d69eyilePnyJcFPIEwOrNfrSCAMLpC7QkBd13F6esrNzQ2PHz+OCVfXddy/f5+yLLm+vub29pavvvoq8gDm8zlFUZB7YZvb29voWRB4ArtJTEBLQgskODSGkcOyLCMvIyQ8oXUTkJnVahXfXxRFTKDG4zGr1SpOfHwz+Icv2TfVDL8tK/0fuVXryvUXE4VKnaoi/AAAyaRJREFUFX3fsZ4vkCKh6WsWF47EtmmWJAlkeU5vNevFmmEyQ2YJwmpEn2ClgaZnoFJs5zTChTSYzLgWQ+0kjIU2kNYknWSgBgiboE1C1zsOgUwkne0ZjQZkae4rIkO9aag2zr6414a+7+g6TZ6lWKtdUrlaopsFQmh0UlALicxGqOEQ218xbcdMRwOG0xnrQcL65muWt2c0XYf0Y1hSSbJywvTuI9753p8yO3nAaHbA4YMPEColSXMn2yohTyzTUrI3KBjnCZlf+LS1tF1P0xjqtqOqG0fU21RU6wXrxTW38znrzQbdtvTNhratqZuGumkwfY/EUJYDinLAeDBkfzJjfzYjH+as+9b1ez0M3OveTTYIgU5cIpXkzg44SRJsr9G1RliN0c48SXQdQbJVd9pXxU4LQhvj0Jve2z5Z3+sVirppkPWKMskRMqXHItG8xXwgsvQD21yEUCOEh5u3RLcIQ4vAat+tWEPV76txKR3W7oPltsL3TH4jcOz10EMnJg7W2K3d725NLdxInCPGmYjrS+kIq8GBMOzvjapeKRKlQAjniyC27Q+BcOOKSYITNVLbAO7h877vXMD06n0OWbDYoOL4DRTTBeuQFIZz2woiuc2NeoazFFvJH3893lQCDMnENjELrZhtXyLkQ0LH5on/CLFNnEIyExEMn7D417l9b70g/ECi4+7giqHdM3XH/+0P8R/089wd/dtsNvFn1lqm0ylnZ2dRTyCQ3EKAfP36NavVCiAG8aALcHl5GRn7aeqIV8fHx7FlAESL3jC6tre3x/vvv8/Tp095+fIlFxcXkSg4HDr9cSklh4eH0alxPp+zv79PVVWMx2Pu37/Pe++9F02RQi8+SPpeXV1xeXmJtTYaFf3kJz/h7t27TKdThBDMZrM4TljXNcfHx/ziF7+IAkwnJyccHh7yxRdfRIh/tVqR5znT6ZSbmxt+9rOfRfRjOp3y5MmT2FK5vr6m6zqur68juhJEogL6EBQKQ0Jxc3PDfD5nMBhE18WAuASEJ4gVBc7HZrOJLYaQAFRVFVsY4X2hZRSIlEEz4k1Ws3hDYCokKt/0QvjH3m6uLpjsDZFasG46lssVq6tbEqtY2ZrrswvMaoNF0ym4abS3xRVUq4rpDPJMQJqjMfTaUi9XTriob8hmQ+QgpWsatDYk2YC+MrRtxXBUMs4EDT1N2yBVTpIVpGmC7luKPGNQDkikQhtNkqbM50ucVJ9boLTuabVGdzWry0uaTUOSJQxmU/LplHI0I82H1H3LdLrHermhaxvKBIrRkPl4n4tixGw/JSlL+k4j0wHjo7scPfqQk/c+puscFyUtBnStRlkYJIq9ccFklDIsBLkAqS1919N2mqrTbNqOzbphvrjh9vaa1XxBtd7Q1hv6dkPT1lRdS1s37vr0HUb3IKAclNw9OeHw6BipMvpGk6kEpLNgTpMMhEKIjN62WOUJcNbS504ERtvOqUfqnr5pqTZrdK9Recri9pK98YgkS+l6aLuWddOQpymbtqNvNW3VslrVrOoaqwTFoEC3Fdo4FDTrO6TMXE8ZlwS9ra3arBEiIQZ+tr38EF1cruYB753vZYTALbEHLjxaFpwFrfES8gRUwX2u248G9LYvjmPB696R6XaK34BJY8FNK0j3WqnceKJSCamv8reQvqvwZXitlO54IgfBn3FcW1x/f1sx+4C6A6tjt62AbbXsji+GbV9BWwxSWqyQWInTUhBu0sB4CUgbKnBhnVWyN5QSAt+3Cc6CIl68gMwQUJmdpGu7JtpoiR6u4u5MgCOMeo6A/QYCa7w+g3+/a4P4KTAptz8PqIBvE/13twyCYE+o1nclbMGpFU6n09iTf+edd1BK8atf/Ypf/vKXUbq4qqrIB0jTNDoTBsOeo6OjOF73+vXrCIEHY55QmR8cHHB1dRWZ/EAcwQv/vn//Pl3X8d5771FVFU+ePKEsSx4+fMjJyQl3796Nc/rgiIOhYr+8vGRvb4/VasXV1VWUMQZ4+vQpt7e3fPzxx8xms+hl8Dd/8zcxcIZRxJubG6bTKV9//TVt28YAHdovk8mEs7OzmFSFqv/s7Cz6PUwmE/7pP/2nfPLJJ7x+/Zr5fE7bttGvIYgXhWsRkoWAeFRVxd27d2MLpCzLyPUIugRHR0fRI+Hw8JCqqjg/P4/WzOGhttbGCYT9/X3CFEhAGXbNkMIWWhUhIXhbScH0YMZmecNqfk3X1DRNy3qxYbOu6aVlOEopJwdoJJtmQ9OsKFRKU+ekCFLTgZUIDakBpUElCdmopLu6xXY9fS9otTPz2U/GVHnL7M4Rm/mKwnQYbelNS1YolMqxVmC1pGstapQyGA5o25b5fI7uLZmAViZkZUZqDf1qycXzF272/ugYUQxIswIhErqqQ7cryFLqpmJ8cIgxS15+8nPSruHe0SE/+p//73z3g8dUtuTzF+e8Or+m7i1JNqLxnAbTdYhBz3icMStyZkXGKBMk0mB7TdsZqqZlUzcs1xvm8yW31zcsby6o6pWTbG0a+rajazvqxpuM6Y6+25Dn0ut6nLC3f8R4MiXPUjTQ9pY0d2qHq7ZGWYkQCZPhkL61nt/hlsmm1yipmBQF7XpO17VRMjqVklY31Os5SZZhbY4QKVIosqwgyTPyrMSaAWtRY+oFbb/GWsGgLMnzhJaeUTkB3SCFBqGRMgPyt4ZyAdiuwop02yDwlbMJ82UBiXOvjrwK2PabrTe3ivvcRe4itC4ihB4CnhAqBk8BboxTKpI8QQnhA/oWtldSgZJu1C9g1dty1ynweU+GXmts1xD69+G4ZBi7i8vGm+vHbuANiUpsn+yg4qElENgRUoit0+Eb5L7eJ0TBQCPsU8bXBF2GcCWkb31Ya3njbTub0Y5foMQ2EQvHvPs4OUGnnfdhvUZD+MStSFywmg56A2gDfr3N0oQkSXee1TCFEi7RTovkd2zfmhB8+OGHrFar2DcOiUFY5CeTSSSfvXjxgufPn0elvYAohDG5EIBDzzr0pQOT3xjDxcVFtAwOFWcg733yySdRm//w8JCTk5OooPjd736XqqrIsoz9/X2++OKLCH+/8847zGYz/uzP/ixqDQQ0IHAD7t27x2q1ioGwruuo6b9erzk8PKQsS87Ozjg/P+fo6CiOTP74xz+OFsm7ffwgL5ymKV9++SU/+MEP4pTDfD6PxxhaGoGRH8ykzs/P+S//5b/EiYuu62LiEK4VEANx+HIHyeQQ+A8ODjg+Pubw8JC9vT0ODg6o65qXL19GdCU8aEBEPoKhU2gJBcGoMCkC8OrVq+j1EDwqdsWO3raxEcCri5fMr25oVmuUdYFFphIzAOqGmh6rLW3V03cdQhiMdvK/eeGgS20ltteuJdBb0tGIrrGM9yYwSGiFxgqBSTNq06KbipuzczJRcHPbQG6hKEmQ6M55DJRFCcKy2mzotPaz4Cmr5ZJH793lvaNDvvPBQ3LT8tknv+Y/ba5J9++iZEa1qbBSYJSkFaB1y1QV2DJnuVqjGCIG9ygzwezOIQeHjzi58w6bRrNYdtS3Ndd9RWs62ramrStubq85KQVFJhgmGYU02FazblqW6w03N7dcX11xO79mtVpSNxVt07qpgLamaSuapnV9/M4pvkkBRZ5x5+4JJ8fHjKcT8nJAkuUUWUmWJFRNi9Yb0iJBFArTKUf1s5b1cokVMrq4CWMRBmZFwWY5p+82aCzSpqg8JVUlptqgBOSJcuaOykO0tkP3hmXdI0XCdDxEmo6qylhXDoXrrOPNNF2P7RpUX6AykMrNpr/dTftKNHSMA4TtkblQKYe1wFqkUo7Rbx15LnwVhYcXErVVFQSigqCUaud3AilSH9y9aI50DP9oaui3AINrC0JbOt3sMPP9ix3GTxh/M5EI56cNdubmY1WN9Zw7G6V+7Tf6N7FN4s7EB+ot/O6SjDfRgSgGJJ1fiJvi613DYAct8TAAVruxx5AQBCtlrEFbFx+dx4fnZyDdcytAijB+uNsuCcHdxPU/ihR5UqQQvtJH+fuS+ERgd4TQTSD4k6bvt9yywJlwyWAgSfz+NflbE4IXL17EALFbYQrhzI2C1W6AiENvOfSZA6s9JBFAlNANxL71es10OuXu3bssFgtub2/5oz/6I7qu48WLF5FQV5Yl7777bhThASJxsWkajo6OInweNBGOj48pioKLiwvquo4CQrtKfOEzHz9+zOvXr6nrmtlsRt/3fPnll5GHcH5+ztXVFbPZjP39fQaDAY8ePeLly5exhXB6ehor/HC9Li4uODk54ezsjOvr66j+9+DBA+q65rPPPgPgu9/9LqPRKAbRMPe/G/BDgpQkCU3TkOd5HEMM17jve4bDIcPhkOPjYx49esRsNkMpFVs+gVw4GAyiDKcxTmkrjBmORiMWiwVVVbFer6NDZNB9uH//fvRHCKJT39QpeJvIQNgWNy/oa0sqBMMsJ08Ela6pNg2tMNTLFqRxi6GVWCNQ+YCT40OKIqHZLGm6DbawMJb0RjKe7CFMw2Z9TddbkiQnyweIVCHLAdWio51v6KwEkyB6hWgNnawhkxTDkulkRJoVaO3U0oyFvu1JVcr/7S/+jO9/8JBMCJ5+/QqR77H34APWmxq0kywOi4qSikwlJEIg04I+79Bth1aS3hjEzYLDyyua7h5ZrijGBdmgRNUdaIvte9rNipsXG8zmlsF7j+glrDaGzWLFzdUtZxfn3C6vqauKtqlp24a2a2nazuk6tC1d51oCQkBZpMymY6aTGWUxBiEYDIcU5RCVpPS9pRE9nTHUXYv0MtoShUgSurZ2C7GU9NZVWS4YOuMEYXrW6xVJAla5kcyk71FCkuWZ/774QkgohLTQdZi2w/QtWV7SVw3N8oYMzbQsyZRFS0uRF9TV3E2V+Hl0ADd3//Z0CHTbIWTKlkLmq/jYL3aCP1IlRGpgqAjx5kdS7VTzLug7dT2B8joGYqdM3Y74Sb+rUFnj1ABN0BIIjoNh89W6kBij409CS0P44+39iKEQoS1gMdpGNn9oRzjtA9931xY8o1/Eo9yOAgaTo9iCF34KwAf8KHgUXA4Rnj+iwDgKJEEgSYRWi29FePg/uBjGKQVjcC0Vn7iEHr/XEHAqjsqLGjpkw6kQSvLUjZImIvHPmxM0Mv4EpcAnQ16wiDDxF0yLAkfDIyEh8OOSGJ8y+s/+w+vxtyYEq9UqQsZ1XUf1u+D2dHJywmq1iiZF4XW3t7exN73LrAeiEuHDhw8juXC1WsWWQghEAVEIpLi7d+9y7949Li8vuXfvXrQADvbH4d93797l+Pg4jhMmfjzp+PiYwWAQTX1CUhJg+zAy+fjx44hQPH36lHv37nF1dcV6vebdd9/l+vqazz//nNlsxmQy4f79+2it+eu//uuozxC4AT/4wQ+4vLzk1atX3N7eMp/PI2kwEC131RSD6+J0Oo2yyEGAKXA5gMgfCGhH0F8I1Xw496ZpompiQB5C2yYkFkH5MKg+BtQlJDV1XbNcLpnP50wmk8hNKMuSw8PDOD0SfBrcdzDAYjtZ6ltCCqSxKG3JhcS0G6qqwWhN0kFlFGnqErfxeICQCcYqhsMpaZHRrSqSTJAlqZsGQqGNJcsknUkpxIyhkiT5EFQCWPIsR90Zsb6cc3Z2jmuZWxRuEbWdYJjvU2bO9CopErIsRynJ+fkFJ5MhpYVqWfP17ZLPn19yvjGkeUnaO+BT5alr4Rkn2GJSxbrZkJgMJSVauSBqekNFx+18xWbTcLA3oVCKNFPIBETdI/ueZrOmtYYygfXlOa/nl7TVhuV8ye186cm/a+q+p+la+s4lHV3X03c9whqyNGE0HDAaFIxGJcPhgDTNQSp6a+mMS3oSlaCkY12b3rk2WitcsEpzpFB0UtJ3jV8YwZLgRgQN1mpMu6FtGxCJI9RJi277CA8L5Sh3bauB3gcVhe0twhiq9ZLbyyuWq5WfUZekJKSJYlAMMFkLBvJUkig8Q1ztFsP/6FvXaa9BoLwInl87pHIeAcpB9cr35QPZLELT1mKlEzAKvQC5gw4gdlwHPebuv80IEfgHECSGEYKgmmysRb5BfDNeRGfX24Q3IGtrLUlqQ5aw7YvvFhEhObHbqhzcxEcI/7vJQGyXoLfwAv4zPUJiA4wRNhEEfeQWiQjrltkeKyJoJ7x5bcIUgZRZyIPi9RXStVMciTLxCY7/IwUCV/FvPQqccVLMKoQzW4uyzj4pDkmb9UnU9truXGJvjx0QIxPaL9Ha+Xdv35oQ7C7yQBxdCyNpYQRuOBzGgFUURWTPB5fEAGeHdsKjR4948OBBrFjX6zWnp6cxsN3c3ERC3GAwYG9vj/v37zMcDmmahvF4zMnJSTyWYMKUpilHR0cEkmCYSBiPxxweHnJwcBCDNhDdFANPYjwexzHJ6XTKo0ePODg4YDQaxdbBq1evOD8/5+nTp+zv73Pv3j3eeecdvvrqK7766qvI2t+ddAgMfyCaGgU9hEAWDOTLkEQNh0Pu37/PF198EdsR4TqG0clnz54RCJe7ds9d10VzqOBCOR6P4/jm7tTIrv/DLkchIBBhdLGqquiVEJKsMLEQ9vVNFazIcn6LSMFmVTNMpwzyFGpL0zhp4VYrsnJEORxx5/5dJrMRQkq0FmRJRrVZYfMUIQbYlQGVoIoUYzv6pqEcH5ApCV2FSDJkOSDNC/IkZTCaUE/3aCXMr5cuEKZeArU3WM94F2iKNGVYpkilqMuCD+8c8/LJ11Trhpc3C17dzGmNJityhBJ0vTeq6hP6vnNjdFqjwRvIKFKRkaY5ptdYrak6y+2q5nB/z5kB5S74SeGCed/VGN1SreH8tEcYTb2pWK83rDcbKq/q12hN23fovkd4v/vBsGCYCcYDN35cDkoGZYlSKdqVpd7FzenXWwPa9EgroO+wAlTmiKtKOiKXEO47o41xTGkfAISVIBStVLR9hxCWNE/djL1Hx6zu6bTACoWyGkTrZu+NcYTIpkbrlkZ3mAB9S0kmMgfyeqhZIVDW6RdaHFNdf4ND9Y+5JWmGVJkPMD4oSYFUCRDY5YqgWhiDUgheYgcwgBjoTAiQAvROwCLsNfSfQ0AJULrfT6jiw89DgN+O6hHfH1ACCAp+4QfmjRaAa3m4fzvHZT9VEX4WK2YLYVLfIwFgfAIT1h3ftvSEPN17F5PgOeCfTSH09hwDuhDcIhF+VNF/Pgohk8jFUkqRyCQenAhWxT4xc5ctBH3CThxfIU4nWI/ESH+lXEKA8KOUbzwNofDySIC3Rw8EwlB8Cf/zYL2MRw++2W554zn7vb/ZuTlu5yJC8sFZcD6fx2AUVAellBG63iWcBYb9bDZjOp3GajZI7wa1vNC3Hw6H0bnv6Ogo+gDs7+9HEmPoyWutOTo6iiTFqqqYTqcxuGdZRpIkzGazNwJU2H9odZycnMSJitFoxIcffhgRiPv37xPIjk3TRPW+R48esb+/z+PHj3nx4kW8Dk3T8OmnnzKdTikKZ5UZqvgkSSLyEVoEQXshMP739vbY29uLY5/hegShp9lsxueffx4RhXC9QxIUXCI3m40jd/mxwqBqGFCBXTGjMAIadA5CYhWufZiiCDLNu94PsQcm3nQ//OZz9I+9rZYtxX6CthJBglAloizIVMn08IR8ULB3cuIMgJR0VUTXs1mvUMOStMjpGw1KkRYZvbZ0TcdoeoeySOnXF848ZzBhMDkgSRTDImc8mdIgSMoLmrpFGEO7qTGNc6HMxwNEnqB7CTajyFIe3jnmg3fu8JvffMEXn3/J+WpDIwTpoESIhDxLqZuWtu3cfL5OaX27x1jr5VY1WZYzGI+wxrKeL+mM5HZdY5EUecqgyCnyjE3VeyMXjTUdm82S3kv/tk1LUzdUdUWjO+gsvdEY4WDVLFUUg5Lj4wMKOoZFjkgSP7KYYbWgx6BUQqKUq+OMW5C10Y7HYTXWChJAWjB9T68NwhgypWiNq+4NPQgPJdsELZTnXQhSEgS+RWA0wlr63qKldOhD3yGsUzHsO82mqhBoZJaSANY6ueJM5XSNs3TWxoC2dFVDIhJUprDGWSC/rS3N3HUVMdi7gLGrRqiNJtDnpPDjdGzth12g2yYKFi+p6+JqxPVDwJU+QCG8rkAMxMSgIsMkQNiv1x2I1Svb1oN7Y6jj/b7Cu98IlsJbbQsfDEVMEHbjkc95fHD1ELmAoHpojZuodKqjnqcQpyWsr8jdc+gUqWyE9R3ykjrBI5VgbO+kj5FIkaKSzGmEKOUkkIVyaIFPBBA7bo2hleBvW2hDAM6USfi2RfQwCC0Sg5CJT5C21454TbeQQEwIrEVKJz+OMD7pcMmXFF4hwm4R+29ufzAh2N3Coh8SgqCyF6SNQ987tAJCtZmmKdPplHv37sWxtmCgEyreO3fuRPnfoKQ3mUw4PDxkOp3GwBWCZAhaATafTqdRFyBUy0F6N6jzBdJbqJRDhmeMoaoq7ty5E183mUwiynBxccEHH3zA3/3d39G2bay2X7x4EQPobDbj4cOHLJdLFosFq9WKX/ziF/zFX/wF1lqOjo4iIjIajVBKMZvNOD09jboCo9HI695LlsslV1dXcRpjNpsxHA6Zz+ecn59HxOHw8JCjo6No8rQb5JMkiQlKuDfBKyIkd0FtMYyM7iZy1lrSNGV/f5+yLHn27Fl0fAwJ1XA4pCiKeDy7X9pvPjtvY9M6ZbFsWJiGLJWUoxHD/X1O9k7YPzzAWncdNm3n0aMCbROywRSRJiRSgEixtgepEZViMJkxmExJsoQkA7Qly0YM8jFIUElKWmS8+/6I8f4Rq8WK1XzB1atTmk3Ner0huV1gRyVoQ55m3Dk65PGDuzw4nlKOh/w//p//H64Wa/LxhGJYYK0hEc5kRkiJShLIUhiUSKWo2pa+M3TVijJL2dubOjKcce5uVdXSdYYiyxiVJWWekyYNTWci9Ny2rUMB284lHk1L29Z0GJQ2pEnCsCzIy4KiyJmMRjw4OeHq7JS+0+RZjpAKrV0v2AroLGRSQa/pmtb1ubMMmeZYBKl0BLCudTLNxjr/B6UEyhq63plHOaU3iek17bpxa6FwvW3d91hcdZwkgsRYOhTaKKyu0X2N7hp0b9DGwb9W+MpPOza+ShN66VoiQkm0TlkuGmy/YTyWWKNZnF+8lWcY8C0r4/X4hVcldAHOvQB8RHd+DE5LF1cN+8BrQ9yXMbjoaA0gXVa2BQKw1vl/xIQAQsnug3Fg7HsRIKkAhxRL4bQiADCOUCekh+VN4EMF1r7XRdiphHeTDHCoTSzfd6SMXYWPD8AWcIRW4YOjO2fpSXf44O6UAe3Oa0Jy4sTCEpI0Q/nkNs0LksST+kTiPSVCv999ZphOMEFOANfuCmforqA7/qg7IPA+EP4Gej2JrSKiQchgwuSPzwa3S98+8ZmSJCRHbu9SGqQwKGXJMkWWJKTS6yl8S3H2rQnBN0fJQkIQFOuCbkCQMN5VrxPC2Q6/++673Llzh8lkEscYv/76a9brdazo8zyPJMWyLNnf32cymXB8fExZlnGfWmuurq6iy2JRFJGkWNc1i8WC4+NjNpsNSikWi0U0Fdrf34/qfkFUKbQO8jyP5MNdZcYAo//gBz/g888/J0kSHj9+zMHBAcYYXrx4wddff83HH3/MwcEB7777Ls+ePYtKjlVV8R//43/k8ePHnJ2d0XVdJPhdX1/z9OnT6LEQoScP6b9+/Rogjvu5L4WNIk1Pnz4lSRL29vb46KOPIqciiA2dnp5GH4jd0c+QoIVrGdo6u0ZRAVEIdsiBLDgcDqPt83K5pCxLiqKIo5ohEdiVun7bxEJBQlu3TPcn3H30gMM7J6RZQZbkNH1D32qUsd7GVGClQuQZo6PSZedAMT3C2B7dbtDNhsFwjBYZIskwmRt5S2SKSpNYXSmZoixMJmPKomQyHlEMC77+4gndzQK9WLFpDdmeRA9bFoslbXPI/e98QH6v5gfLFb/57Zcslht002J7Q0NP1TbOh8EEddCUNFUIkWIKybxeYkyHNg0yycmLjDxJEDKl6XuKXFIWKWWekkhBY3uUUMg0odo01HVDVdc0bYNte0RfkyYuYDx48IDRcIS10PQdBkvbNmitWNcVWklyLElSeGSlZbNekCR7CCnoPGyfSoVS2pvIJDRt4/rintVupaW3HV3XgNEkQiGEQveaar2i3tyS565y62vorSbNHYLT6gatLda2YDrWm1s6XWOkCwyKjKauScsSkedYkTh+gxYIlVNmBbk2tF1L12TU0iEXAoMo8rf2HPe6c2qNqG3PWJjYPohRHFwhHCtoF7RjxQoEYsHuJBeYLUwvcAGTDqyTbXZiN9YnYhADS/zcwGQXPuBoTO+TBxxnxCHWAbHYcf/zUxBhs9Y4uN0jji54W19FG2eXHBUUHRIQbI6Vkr73D8ZIMP5iKYGQmXMwFAHCl/EYhErI0oxEpR4ZcLoJeJIf1h2LQXr/hh6ne6RxssuBjOlZDdafh79Z0m5TAveaHdlkB9cA3lpaAMY4fMZfd219m1cohHUIkJLu8BJpSVPl14KUrHB6M4lyyVYQ5+o7Q9N09N3/Hy2D7U2yEfofDodkWRYDyjdV69xD5Ubgnjx5wu3tLe+//z4//OEP+c53vsOvfvUr/ut//a9RFjdU68+ePSNJEj766CM+/PDDNyrbQFx88OABo9EouhJOJpM3xI2stTx8+DAS8eq6jpX5bDbj8vIyVvjBTChUzUHUJ1TZwe3w/Pyc4+Nj/vW//tdRuGi1WkVuwXw+5+7duwgh4qRB0zQxUFZVFbUIrq+vmc/nUf735OQkmjCFBCc4QVZVRZqmPHz4kPF4zGKx4Orqivv376OU4vXr15yfn3NwcMAHH3zA/fv3AXj+/Hn0SQjXMAR7Y0zUKQjtn9BSCUlJQFtgq0Wx2WyYTqfs7e1FZcmgOhkEpna1C8Lf4Vq+tU0JUpVw5913uPPOQ4YjB6UrYNOs0cKQpe7Y27pGG8FgOEEpB9VpbUEmCCNJ8pTh8ICsyKmWNfRu4ZOpQCUOD9TGk36sUyxMjBv/SscjytGA8WzCV599htlsGOSSUkGzqnnRXfHg6Ii1EVyuW1otGJVD6AxN2yLShLrpUAgSKZxHu7XYuqPetG5UTilyVdDWLRevbyhHI8bjCSfHRwxTSY8lSWCQpwzz1DkgVholoa0b6rqladw9bdZLdF0xkJAoSz4omaSSVFhaC0VeMJvtuUUvFUxHU/IiIVMJQih63aFNS29aqvWSJCtAQKokKkmpe+j6ljLtQWukkJjeLVwiVeR54kYXpUSIFGslXdNSb9akiXbsdZViZIZMUkwi6LuOvllTNT2dsfT0pEgSlaCFxCiJUgWTg0PysqTXlrZzYlNGa/q6QlmD7TsOphOu5kvqvsMqRQpMpsM/8LD9j9tWqyVKZii5tePdgm67MPr2T0CYZehpE+cFIq8sBCxnjRww7Z0xQYRP4KKqge9ZOx8CV6GriN1H6N+/PiTI4WCjSVJkx/t/e6U+42OINpZWeza/daZVIr5bxnOK/XfrOABWOzlmKRVJku5U82ksVBB4Tsu2vYnypD4DvfFiTXTELCkiJP69PvGRISmJbYjtKGBAaBzNMWAeNtb3QVsDu3s5PA8C4z5bCpJEkSlBkkiKUjEe54yGBXmWYb3vQdtpmrajrlsWi4q+s/SdU1A0xqUsxrcWvq08+4Nuh6EvHKSFx+MxQjgDH/egrqJB0e4WxHNCRXx6esq///f/nv/8n/8z/+yf/TP+9b/+1/z617+O7YQAQ3/11Vfcv3+f1WrFxcUFbdsymUzY29vjwYMH7O3txX538A8In3Vzc8Ph4WEcpwsPwMXFBcfHx2itYxsgGCYFZUUgKgUGyByIbYqzszOUUtEyebFY8NVXX/Gb3/yG58+f86Mf/YjDw0M+/PBDFosFk8mEo6MjPvnkE0ajUbRDPj8/j2OQYWojJEQnJyekaRpFkOq65uzsLKIet7e3rNfrOBmgtebOnTu888473Lt3j7Ismc/nMbiHc9idAlgsFiyXS7Isi9MCQRxqMBhQVc4PPsgzB1QicCdC0hBUDnedKkO1EdCB8Ay9TYSgSEve++AD3v3wA/Jy6EaEhHaOekDfaTrdkvk2WFvXQMKoHJIlCb0EUkd2Q2uk1VTVKnZHBQKMU08T0i9KgNa+r40A6aZrSpWSFyW17hkXOUnXszw/5fryHKFy6v5DJIJuU9PWLVhJXgxQac56U6GyFJMqTG3oPHysLFhPqrba0BlNUgwYjmbsHR6zf3LMdDIgaypm4z2GqmWdtRR5SpGnKAVVtaKta3qtQVq61YLbFy9YLxZM9qfcPzogsYbl9RXj2R7ZYEiSpeTa0mjIVEK1cdfNpk4XoWobEgtDkWIsaGtRaYaVyn/fBEZaem2RVkPXO70BY+htgtGtJyZqhHGjjW29xpoWgaHrNNauyUyFBjo/vmZaTd20rFZLyjKlTRNUmpMVI0ajGUU5pfMiUnmekqREgx+JZTOfs1rccrvZUPl5blCgcsqy+Ed/fsOWZTlKpmCVf8ZMrEBD6+SbiFxAc40Qse0iBJHkKaXYGW0OD9FWyyBsvQqyyMF2N3APvFqfwesDbMl01hfNpncjfNY7+4ViOHxGmOMXXocgIBhOldKjzfiKPjLzQ3Df9txFTGocCTLM8Ie4vNuydMZJJiZUbojAEwetR0twdbw2PY5jo31PH49YuO891iKswUrtZJlD0hVlkK1vZGhPUnRJhBCgBaSJIkkE5SChyAqyvCDLcj9RIv0UwhZJMdZxYa6v1+iupmsFvXG6Hcbi/wiMdQ6vNnAWPCrhJKV//3P2BxGC3Qo6MOgD1GSt/QcmN+Hgw0heGGFbrVbc3NzE8bsf//jH/OhHP4os//CePM+5vb0lz/NYye8SCYOo0d7eXhyDC4ZGd+/ejTP2gR0fphuCCVKSJFxfX0eBnUCSCz338XjMcrmMExS7EwwBkQgExe9+97u8fv2aqqp48eIFZVly//79OIIZPvu9996LfIGbmxvWa0dOCnLC4AiaFxcXdJ3rZQeC32AwiJbLxhiyLOP29paPPvqIruuiaFJAQqqqiklNkiQRNVmv17ENEM4rJEJCiHhdQ8tk976GxCm0M4LdcxCqCihReP1uMrD799vYJsMhB3fvolSKNRrd93R949Tv8gyzqX2/U6FkgrbQm54ejUSS5QW91vS9Nx9RCtNpjNVu0cGxvMEvwF1PZztUr1ivXdKRKEHaW0QiyPOM+wd3EFjqakE2mTDoDaa3ZLkiFbDWhh7pNfhbOt3R2x6V5ejOkaKs9pMKwiccSqDSHNvBZP+Ag+O7TPePGUzGZKViPBpghSJTGQrpKvy9PToS6k5zcXGBsD2jwRDVNDQXlyzrC+qmYb7a0JgW48fI9qRCqpyrqys32z3IyMZDbxjUQt8jTY9KUjfKKRNEkiKUG5kzQG+cBGzdNKSid5MAUriRQWk9e94gjCaRgs62aNOiJC4wbjqqZsnG9A5etcKhDAag4PXTF/Si4e7j9zk82SMfTsnzMakqMLoFJHXjEjiX5EqSJKUYWDabiqbvKIoSes+GV4LGtP/wAftH2oqiQImMAE3HcTvPB5K+Ko0Wu+Cd9Nz/c+tRqKzZSdyNpx34HjVht8Zr/MvQTYv9/fgi8PtS3kjIv9C67wnWYkL0EW6fxgQbYeGV+EILQfnCU3rpXeWP373WTZ4kPhlR7BIbwwdY4fUWsF7/IKDWuyqOvm0Rz8dB9saTEK1vTzhgIxDwwpRCv+3vW4E1bg/G9FihEd5aWgmn65AoSZoo0ixFqjDN4AmHUkUkAyxp5sS1rJQ0fY9pez9R5IsRE9ZSx/swCLR2pGATuBA7oT9wNdwIqED4ds0fWom/NSEIs+phlC0EurD9vuovy7IYZMJkQehxh0D05MkTptMpH3/8MYeHh6y8M1oY0WuaJgbAwPQP5kdhf7PZjNlsFqvdNE0jITFMO4QxvqurK4BogKSUommaSI4D4ux+URRvTEi0bctsNotBNrQv8tzJmd7c3DAcDqPD4NHREScnJ5yennL//n2ePXvGZrNhMBhwcnLCfD6P2XY4pkBEDIqAu1LRuwE3TEHs7e1RVVV0aVwulzFhW6/XMRkBohaEM//o36jkwxjkZrOJCVFICEICFEZMb25u2Gw20fxosVjEdozZqSq++Vy8zYTgzjvvcHDvLipVdF1Dp10CI4VwZKEs8yWCIstzkixnXdWApe07R5iSCoxjBGsLRodAokjTZKsEpq2D8YVgU1X0WiKMoO80DS21aCgnQ6R1C4BOU9KyYDCbkQvFdDp2XAaBmxxzXrVIBFmaoaUiSxRZkjt3PoQbirOGQimGoxFlusfhyT3Gs0Py0Yh8UDIcpOwVkkmmaZdX1G1Hp0GI1GkFKEtWDJADxXQyRjWatHzpEv+up7WOVNhXLTfnV2gNe3cS0qzE6I5yMHL9+6Z2KmkCEixJ4sfi0gKRZOBHsLRxSU1Xd2TK0gvjGNCeAGalINGaNJPQW2zX0lUburpCCuMBVUPVVEgEiUxj37YcjSnaAfOLa4qDguFkj+H4gCQp0UbStB3abPvUxnhXVQt978Ycy8kU1WXoekPfb9B1S98b6rfY+YqV3k5UDmh2lPkNL4xY/XZiAP+j6JAX+AVeZCeo+Dni2ja5CPPsYYxwdz/beXqDZlutYwUK6d+XuMpYCLzEEyFBCYQ+IbbHI4V7+KXcRRqd6ZRUykHunkhorZc7tts1xlXyIfnQ/vwsVnvI3HhUg8Bv8EmFCeN6vur35MnQmpHSoIQmVZJUKa+noZCJQqUFKk2RUngPgdDjl6hk26rptSO1aiMwVmKMcM+ytqwrwabZCh0Z42Sdg8gWJhgkiYi0aNtjcW6q7PAhiOfncQ7r72lEYH7/c/YHWwbAG0p437a4hyATZH9DDzwQCuu6jgqFRVHw+vVrxuMxjx49ipV5CGRBGCf8CUJI0+mUyWRCURQRIQj7DBoFYbY+OBaGKYLJZBIDbhiVDO8NegABHt+F36y10SY5y7IYlIPhUpAf3rVVDqqKDx484Fe/+lVsa4SqOlgoP336NMLxocIOrpGh5RHsnMOoZkiqDg8PmUwm8fyC/kPgQ4SEJyQWIckJidKuD0RABPb29iKvI4xszmazaIW8XC65ublhsVhEQ6Ugl/zNdkF4ht5mQrB/fMxoNKTVHU1jIgMaY0lkQl6UGO2UvGSSkaU5Xae94ZBBdx1Wud62Ndrl3tqhR4qtRnlvHJSXCoU0CcvbDSIp6BtD01Z0uiKViqnVDPOcPE/J0hyd92AUwyxnsjelw5IqiWg32L4GDGmauFYCihpD4hNRawy677BdjxAJxWhEeXDE3v4RWTkgLQrKYcF0kHM8EpwUlstmhZEZra6oqpamapxaoFTk5Yg8G7BAonECSLrvSIoUmSjaVlNvVtTa0CvJ4ckJUqYkMqFQGSqHVjnbYaREWoNMJDJPEVJhDBjjZIgToOs7eivR0k19SQlSWlKLY6b7x6bvOtpqg25rkjx1yUSvsUYhk5SsKBFSYYWgHE4xm55q03Lv40fs7R9TDMboztL1bkZdqhQrbHSF09rQ9T297cnzgmIwJG8Lrm8rrk+vWN1eI4oUMZi9nYcY6NoWLVziGipbV6iHJCFUiNYjR1vRs/CyUCnH6l76wG+Nk4AOoSugCiK80usKCJ8whLgj3WtjK4Igv6uQMvGom4rkwK1WifTqfi4T2CYtb64VjlAYWg2uTRHinMuB5E5wC4iF3KIHwk88GINVIKzFRlMi3zbwCY8KeZTcJiM+N0FJSJVBCUOmhIP5VYJKlHu+0xSpnOooniVgcVoYWPworaDXPX2v0cZiDA559ElCr4PUu/atknAt/JikvxmRAwFY0cXjF2J7r0P7Bht4H/jr6NGEb9GI+4MJQVjs/5Auvdy56YGhH8bfQoB6/Pgxo9EIKZ3RycXFBS9evEAIwfe+9z2m0ylVVXF4eBhFkPI8Z39/n4ODg+hLEJjyAcYOwj5CiJgQhMC5yxWYzWZsNpv43gDZh6rfWhtFlmDbex+NRrFvH3r3gUh3eHgYIf1wrcK5HhwcROJgGBcMsr+z2Yzz83NevXoV9RtCRR+q+OC5EHr30+mU6XQapxDef//9iGAsl8tot1yWJaPRKAbnMGYYpgWCzHTbttHNMHxmVVUcHx8zm80IFtWTyYSPPvqIu3fvcn19zdXVVWwDzefzSM4MYlL/Z0oIZJpg+5a+beh8myNLvLytEGRFAVZgtFsS+04jUaQqIVHQtx29dgJAAkiERFhNkeZ0fU/XaIRKsMbzNNIcmo5mXdMKzWq5ptos6XRDlqZ0QpAe7WONQcmMLDEYZUEkDKYzamvJkgSzuqW6uUDLhLwcIBBkiaIyGpUmqDTFhNaUFsh8QDrdY3Z8hzwvyYqMcpAzGRYcFgn3h5ZJJlmUY6ysqJob5vMlN7fXrDZr8tGEFEG1WDK/uqZpagaTMYv5DcNhiRSCal6jO009X9Domt5sODl5RN+2GBWcMRM6qUAl9F2NkAKldoKPsSTCIJTApIJN3XvilBMDSqwkkwlC+HYk1gVr3YHpSWzCurE0vSFVQ7I8IS9L0rRAkWFbyenZGZ0QHD54RDnaQ8gUIzqMcCJeMtkayUgShHC9YtO7ajJBYmtYvF7w/POvubh6QXE4ZXzv7UkXd22DU11UW2g/sNECOU0QSXDCV6tRG4RQ3GyDvHMtDD1zi/UaAtsgHVrAlqDIR0z8JUK5wCN9AqB8200liVPmk8n2tR5NCMmLDRoH2zNxx+eljt9YMfyIpbFEuF5rYlIhQvATzuVPyTCJsYX+pUc5wt8O3veSxgIS/2yo4LwY0A/h3pNKA1bjhv7C4KCzWO61pao1VdPRtdpB+lZhrKQ3bhRR2e2MAda1IozRaN2jrRsN1rr3qEaQe3aVffApCPdYhOsgnAmUUgKCsBLuvlvhhMDi3RNb8yj935sQADGI/KFFPfTMpZRRWKhtW87Pz9Fa8+DBA/74j/+Y73//+5ydnZEkCV988UWsRD///HP+6I/+KCIMgR2f5zl37tzhgw8+iCZI3xS8CQE6KASGSYGiKDg8PHxDijeMHUopox7ALiu+KIo39hvU+4QQMdEJMstlWSKl5OTkhF19gxCkjTE8efKEuq75/PPPefHiBZeXlxGtSJKEP//zP+fm5oaLi4uoy5DnOX3fs1qtojZCXdcxQQoISgjG1tp4TEDkZJRlGV8fBIuWy2XkPey6FYZzDPc6tESC/HFd1zx48IAPPviA6+tr2rbl6uoqBvzdFkVIQN4UEfkWJsv/wK0yNauqidm40RaVQFYUrOuaYjikzJxzpe57emtAuWsQVdh8VWWspTc9aZrQ9b2bsDAWlaQkaUaSF64HWK04Phjx5MUly5sLtG6RmaI1lkZbOplStR1KCNqup+4NNpGYdEBjJEVWYNqG68sLqlpTFgUCy97hESUKlWTUbeNMZBCkwwEHDx5y8OAReZaTZSnDYcl0mHNYSO6PBQeF4vRizadPzvns6Stee2+N1eqGHkMup1jTcfrVU86ePUWgufvOA5Y/v2FQ5GRWYKlpsBjdU80rzvqKeycPSDOFKBJkkpBaZz6DNUilMDgkLUkTrLF0wtJrjVSWcpTRCkPVaGzvp+USBSp1SVjfU2YZnZ4jcQIu63XN+aaGIiVXjqypSJE6o6skt6dzXrx+TjJWfqQwQUl3TYzqSdOMqqoZDAonCiPxgStxkwm1obutePXlMy5On9PRMLl7wNE7j7hZdm/lGQbA1AjccW7XK7fIC7Ml0MWkQLtxM5W4AAcWpCS0o91knsEY94NQEQdeikQihZsukEq44C9dz1v5/rdj+6uIRri2g3P3c7HfABJrNdoS4XorXGIIgc0fFPR8HInJoyMkuv1KrPbVPK5NEcSZAJf84LkgqUv4klSQpoo0UeRJSpYkFHlGmqWx0vaUB6xRLjhrJ47VG0Pfa7pOYwzoRqC15/Vo6wiwQqNN79tgCUJkRH1kv19t3LXocetJjKNCxUQuwRl0JYlXVvTWzlKCtTq2DqL9MR7t0AYjLF7byCdUvm0hpE9wpGs/Ir2ctCL5Fp+uP8ghgP/2HnCaphweHrK/v8/HH38cYfvhcBh73c+fP38jCKVpSl3XXF9f89VXX/HP//k/5+HDh1GWOIzHnZ+fR7Jh4CIEP4EwV392dhbJi4HwmKYpd+/ejfD5LokxwOWhOldqWwGEIBeCfkBHgu5B4DqMx2OOjo4A4lhgkBpumoabmxv+43/8jwDs7e1xeHjIfD7nF7/4BUmS8Mtf/pIsyzg8POThw4f0fR8Nk37729+yXC6j/PLBwQGDwYDT01Pee+89ptMpQojI8g9GUnVdR1Lm3bt347H0fR/RA6119FTo+z4aUYUKPyBCQSTpJz/5CYvFgsFgEMmbYZ9hxHE3Afjmft4WSjBUgvn8CplkTnAkc62ATdVQlANSmSAFKCXptaDRPbrvaWzDIHOCJKa3kfUrXL5Ar3uSrEC3HUiFVCmZzNC65er6mnbdc7FYsllXSKspRM5wOmZ2cI/HP/gR1fqMy2dPef36NU1vuffOmJdXG9K9GYkwKCl5/4P3WbU9z54/56vPPmf06jmj0ZD84JBkOEFlJeVoytH9dzm+/w5ZmpGlJdNJyV6pOB5K7o4SJonl5emGv/zpV3z+/ClnF+fM57fU9RqRwGQ0pigLJIauWtDXK9JcMZyMUUnG86+ecTCbUPVO50IK55Sne0NdLdDKYDKJTRKEtmAEfd8hkpwyz0BJjO7o2w5jLGmSkuUpVkjGgyGLdUtVbeh6h+JssEyLlDwrkX1Hv1iyuL2i6ntEUTI8mKGM6yMPyoJBMWEzbzl99ZKXr1/yvf/5/8L5pwdcXK2Z7m0oglOfdMS00WiI0T2lT/77tqNpOjqtKUn5/JefcnrznJv1DbZI2btzzL333uNe9fZIhXnqbJyFUL5Nb8EqrPHEwWhKtG3dJWrra7AtL6XnqQhvZuSiovQuels3Qb8G4gOKlD5hEFv4Hp/s+11bq52iX+++677Yd/3sXetlEciOyicfGiE0icTdI28FrLJA9lQkiZO2ztKELHHkQicWFI7P4sR7wv5N5AE47pShbmuqpqHz7aOuM3TaBfy+7Ylohd1yNqzVsQUQjKSsk4D0v3d/K9H4JGiL3oTmTB+Lph0uhm8LIH1CgyNPgsJaueWMAFJoP4HjUFw3oeGVDeOy6q6VTJ1vgitkHP8g3gdp3ed8y/Z/SKnw9227rYI7d+7wZ3/2ZxwcHPD8+XPKsuThw4c8fvyY/f19iqLg6dOnsX8doP7333+fjz/+mNlsxnK55MWLF2/Y6wYRo6IoYs/+/PyczWYTA9ezZ884OzvDWsve3t4b7YPnz59zcHAQhX4mkwnj8Ti2L0ajEVmWRX5CQALSNOX4+DieZ2Duh0Rmt/oNnIbQari8vIxqjZ988gmvXr1CKcXNzQ1nZ2e8//77/OAHP+AnP/kJt7e3sRUSEg6tdbxWxphokhS4A0FQKfApmqZhtVrF+5BlWTRu2g3Qy+WSPM+jm2HTNKzX66iYGBK70HYIycLr16+5d+9enJgIDohB8GkXLYC33y4ASIsJpjPkSY5KEpquYV1VjAduxt/Su3ln4eRhEwRNXbkRQw+5DgYFFoHWhrZu2VQ1aaooy4LReII2hrbrqOoNujesW8HLF5cYqTG6ZjO/Zvm6wq4f0BUn6Nowmh7SHGzYVD2bTYe1Kc9Pzzl+55CRtBSHJ1y8PEenJQ+/86fIw0eoskBZSIXAaMFwus/hvfscnJwgE0GZKKazAXsDwcOh4Kh0ffzPXyz4y5894fNnL7g8f81mfYuxPYNh6keJp/S9omoMe4dHmK6mKBR37t7j0ySh6nqy6T5J1tC1TVxspdE0dUdZjEjUwOntZxKVG1TfeutdgdFOCjlViiLLMFbQtj0yMaArlLAI02K62pPYnDPdYn7D2cvntPWGJE8Yj4YUeUmvFOVkjGlbhtmIxUXLs+evuW0W/NN/9S8YlnscqD3+8q/+C+eT15RlznQ4oTeg+46+79xEgnLJatO2tG2DbTTPnj7h2YtP6OwSIVLkYML4wQk/+tGP+fL/9fO39hxrZCCau56xh+9lmiIICJ8P6L6Sx/eegwy5je0AT5wLI4Rxmj6Q+xyU7u6zG6eTvodtI3TtA5ogkl8d+Q8IrZlsa9nr+u6CJBVkeUBSvYCXTEj8pIL1SUevQxD0hlamw2hN1xqaxqA7B9Vr47RCtPGIgk+QtkWIb5V4JUQIlbvxY4ZOA0EIx+FyKo5O0jh4ZxhjMaJBOqMLgpKAC8gS7a8TNvwmiPNtRyAtKvI43O+2ts8iikIFbYXwJ1gsOxMzawNS4J0VjfE24zsoNyIicoGkubVUhm+TLYY/kBA8fvyY8/PzKEUMby7y4SDCaGKwHP7444955513ePDgAYvFIhL4NptN1OF//vx5dEUM7ocHBwecnp7yt3/7tzx58oTz8/NI9Lu5uQGIlXwg0wVDJaUUt7e3kRx3cXERRxKFEMznc66uriJpMAgszWYzHjx4wBdffBH3F8h0o9GI6XTK2dkZJycnHBwcxJZAMEnarYZ3YfEgpvT+++/z5MkTPvnkk6h8GFoDu8ZFu94Cbdvy/PnzaBy1v78fDZGCm+FqteKzzz6L1+/g4IC9vb1IZgyOj6GVERCTpmniNEFAWzabDWVZRsQhjGAGbkSYUgjHOZ/PCZbUk8kkIg1hkuH/LBoEAL/8m793M/BJQpI5NnrX90zKMcNiRJqnyDxBqhSlEgc9Ckei6lVPV7tWk0XQNj21bz8MioI8ydFGo4QlkdBZg9ZwdnbBYn7F4eGY6dEYdbekXm/YbFq0rXj17Bkf/+lHDCYz9o4M2aJCa0FTGZbrDUL06HQCI0HbO6/EyWxIU23odA2J5OD4kKOTO0z29klSN2EzGRUcDhUPxoq9TNI1Hc9Pb/nb3z7ls+cvOT17ha6WdPWCosw43Juxt7dP2wo2bY+0UIzGyDRjs1oxv7xmOBlxs1kjhiOm+8c06zVtvabvavqqYrleMFBuEcUoZJIgpcb2LaZz1zopFGXuzJmEylAyxfQttu9JpCRJDEhDU62Yz2+57Q3P65qNrsiGBdlkhhBOPKhtOoQsWW80AzJefX3B+cU5apLx8Q8/YjKcImXK8M4Be9M9NosV68WcUTFAG6i7luEgp2kr1rVGkmB76Fc9V8+f88Vv/w4KKMeHDGRKKxSb0zmf/n9/yq9/8p+Bf/N2HmSRbu2LpRuxxLPelPBtgcAZEl6oVzh7bE3vA40NDWg/vucCv5I2Bg4pBU6gT3qUQaLAW27jkAWfSIBBKIUkJZohhFE9ITDsrokiJjF9B03Tea2Oyiv++UDuJweMtdH/Ilbsvjp2nLYwcmcj4mAjxwB3rjt9eytwvfhIqvQ9dRHWqpTAn/A/2CanwiJJiHoJYTMm0DDRPvnasvu3RE4nra09imLin8DdEAI/FuhvGiJyPcIUBYQxY59IuPjulBltSOICN8LroVjp7o/a5UNseRu/a/vWhODHP/4xVVVFf4EgQhQqyiDaE+Dux48fc3Jywv7+flTq29vbi0EsCAK9evWKX/7yl+R5zr1797h//z6DwYCf/vSn/PznP+fs7Izz83MuLy/j6CEQx+BCxgsu8C4WC4AoqgNEdb1AIFwsFvE4gGhsFObz1+s1dV3HFkVoFwT55O9973scHh5GsaXhcPgGOhD+3nX9C+6JH374Ia9eveLrr7+OkxQHBwcsFovoA+EeIBuDd3BDDIhDCLjgErCzszN+/etfs9ls2Nvb4+DgIAoMjUYjTk9P4/GGRCMgF0HwKEwrbDabyJUILZXgYrjbCgjtmHAOAS0JHgvhdb+LfPq2OARPPvuUoJvuMnaXcacqIVeZg0kjmcj9rbKULM0oipwsyxmNx6R57ujGQpCWuWP3Y7DSOkgzczP363pJ0xmywZC7Dx9yeDSlSAVSd5i252bdcfXyKav3HjDeP0RmJelgQVdVdK2mrXsqZehVghwMEa2hqRraekO1WpHlKeO9A/bv3GE0m5EWric6LQccjBIeThSzTLBe1Hz9+oZPv3rFk2cvuTh7jWk3HBxOub6oKDPJwXTA8dGM0/M1lexcgChSRJazvr6mO7tg//5dbj57wrCcMhiMSLMCIaYkaG7OnWLn9dnXjCbHyGzM5XzF+atTbi8v0K2GNGUwHjAZjZgdzBjt75GVqZvhNtDXK9bzG85ev+T0/IzFakOS5ui+R5UpgzQjyRSkCShPhVMpXd9zdn7N2elrRkdTTh7eY392QKpSBuMJTWN4550HfPn0CafPX5AoxfTgwClVdj1ZOUCKBGUFdbVkfnbG6YsvIRMMj/Y5ePchdw9OuHl+ycsnzzltvmJ0+HaeYXBWzE51T8XFPcD7SiqEEqjEBX3hbY2VUiSe6JckiSPLeatk6YNDQAR2N+MTeecMiBPeMZbeQ9Wdl9w1WnvVvoboOkgIZN6u15EGtoHWV+xOi2Br42utQxocr8HsANu+0R9e6Al2xuiIeOCpc+6jpAcuwnuED6QgrfSBWIAJwdtvUm3bDB5RIPx/KbB260ogPLHPHb+Kx7bVRfDHg8CFbRPe4JAK4dsOUePYd1TYCeyBR+HxiKDzENogHuRxP0fGey79+xACYxzS5q75VihNiN8f9r81ITg9PY0w+nQ6jWz2q6urONr38ccf8/jxYx48eBCD0cHBAVrryMwPJjvX19e8fPmSZ8+ecX19zTvvvMPBwQFlWfL69Wv+6q/+ip/97GdROyAQ5rTWUWhIShl1BHYJhaGt8E2tBNjO4e9W8yGpaJomJgt37tzh9PQ0JghBoCgo8wWr40ePHsXz/2ZCELagAhgMlj744INYbYeEIMz0h5YAEFsMoZoPo4TBnyEYEF1cXHB9fc16vWa1WnF5eRmVJMN1n06nHBwckKZpPL6u61gsFnRdFwWXwnRAaAEEyeegs7B73MEfIRAfwznsjmj+ruD/thKCVeukOz1QCITMX6PonHUuftnx/5HKVUGZlKRJSpHnTjgkSUizlGIwpBwM2N8/oBgMGI6GFIMBmVIUmWI6GlAc7HFwuMdsNKBMJLppOZ9fU62WyL7j5uyCd48/pJiMGUzHVPNbLp+doasOXQj6tqfdbKg2NZvVmmazptUw3Z8xPTigHE9ICufHMRpkHA5THowFe5lguVjz5ctbPvv6nC9fnHJ+eUHfbJiOh+wfHKDbGmUbikQwG5XMbztuxcYtgkKQDwfkkwkylewd7TN8dcloOCLPcpJUkueKIpHQCc4vak5ffM10PKfrEy6uFszXa4rhgGKcorG0/Yabm5r57Q356TnTw0NmB1NMV1PdXHH+4muen77gdrnEIhmPZ1gpMdYtxL0xGKGwMgELCsn64obL09ek44SjByfsHR2hZEbfatqmRZGwd7DP4OVz1rdzLs/PGEyHpFmKESDJQEO9XHH9+ozL01dsTEV5dMDJ4/d494OPGLQJG7tCaI3Mej74J99/K88wwNHhAUpmO8z9betAhGpcbitf9/sdop/t3Sw7gl7v9P7BB1dPNLSuKncGVU4N00lyBxth3xt/IwCGALz94/YXJhNkbFVERX9rPcpBCHnRn8DuVNnh7yj5K/xrjHE/CUTI8NK49oe0xP/C+uo89F18II79/h1Uc4sibJUTjf+Zu5ZhzfCvs2BDfz9wAxyxA8GWz+BAhNC2sB5h2E5vqJDEJUFGGrdW4ZCeeB2ibYIXkwpWy56k6FAW1+I0cV028d5+MwHc3b41Ifjbv/3bOCZ39+7d2GfP85z1es3h4SH/0//0P/Hee+85WNX37g8ODtzOvRxsMEO6vLzk008/jVMGQUHv2bNnfPXVV/zyl7/kxYsXkeEeAtSuOFGY/Q8kwdBzD4S4YOYToPIwUhdaByE4FkXBYDBgNBrFscKHDx9iraUsyxhoAyLy6aefRgGf0FbY5SF8c342VNDB7jm4Eu6SDsN+iqKIEwKB4Biq967rYu8/jGyu12sWi0V8f9CJWK1WXF1dRZEm1/8eRB5FqPYvLy9jwA/iTuHeBmGioNAYRhHDiGK47vP5nM1mw3w+j8cSvlDfDP5vs3VgyyPcimG2i4b/YxCezGO34kJOgQhrO9amQ9YVYr1GWIPEoqQgkQlZljMdTplOpkwmU0azCeVkiAUmmWJ2sE8CtKs5Xd1ye73kycszRtOM/WHOZn6NtIbJdMJ4NmJVJlw9e8bmdsHweEpXVWxurljOl6w3G7SxpJMZo9mM4WhC4kdmR4Oco1HG3aHkpIDVquHLF5d89uyCp68vuby5pm4qxqOS/b198qxkPJpimgXC9JSps2sWwkHNWEs5HDu530HJeFhwfP+KvMhJhCLJEvIiJRMwHE4YVgdcX89Z385ZXK9YNR3Do0Pe//73mExmtJ1huVizmS+4en3O1cU5F2fn3Ht0HyUNN6+ec/rsKy6XN7RYRsMxo0yiZUpL4mstr2lvBFZDW1dcvz6nFw3vPn6Xo5NjsnRA1xrH85gvGZVDkiLj8OSYi/NTNosFq+XCO78NMbVheXvL9atXXJy+4nZzg9ofsffuO7z33e9xZ3TEq58/YXN7y2iac3L3gPsffvxWnmGA6d4UQYoQqY97Pvgb7aY3jMZE5TovbmMt1gd2bXXsreugAeCDmdZ9DJ/WGyAY/wNhXbVqfSCGnWQkcBFCsI9JRmhfhEC9/b3bS5AODglCaH/4zxB45UWPLsQEQng+ZGgR7HyZZRiVdJoiNpTd7ohd8RiuSezjiy3z34JA7kD0oYjxKYwxO7j+NjkICQPGoRZubHAruhSTlHio/uJZEMI4dAfr1/3Eu/gmO5W+9S0BEfcjpSe3o3w6oTyi4NMp7YiQKOVaLmZ7PtZakL9/fPZbE4JAVPvyyy959uxZNNH57ne/y+npKd/5znf4wQ9+EAOalJJ79+5FUZxQdQY4/vb2lqurK7788ksePXrEb37zG37xi1/ECvjs7CxWwkGIpyiKWPGWZRkr4KZpEEIwm804Pj7mxYsXsW8fAnmA2kejUSTRhYQmJAv37t1jf3+fi4sLnjx5wnq95uDggDt37nB5ecnFxUVsRZyfn3N9fc2rV6948eIFH3/8MR9//DGDweB3IgVCiNjX//TTT7m8vIzTEgEZyLIs+jAEl8HgThhQjaZp3uAYLJfLSGgM9sNBjyGQDENiExKv3SSm6zpub29ZLpdcX18zHA4jSTEYPAUiYkBgQiskTCe8fPmSqqoiMgNbIs/vQgPeVkJgyP1iIX2lIt04j3KEIYRDR9yogUMH3PdWYBPtdMdNjzAaqztM39DVSzarFVenLxEvviaxlkwlZKVLMAeTGV0F7Sin2Vxx8eo5i9tb9u4cMRjeZ/9on8x2yHqD6DtknlMOBkwmA86eP+Pk5Adov7ho09P1PVom7I2nZMWQNC0pipLpOOd4mHBvCHcH0KxbfvH5Kc/PTrmer6g3K7pqxWgw4N0H96mqNXXTgFAkiXN+y6RwzoeJRLQa0Vuyckg5PWAwGlEA9x6/72bAk4Q0LxFSUrcNVpUcHN3h5kJT1SuWVQXCUGaGgbAoJKPpMfnAUDyA5v4Vz7/4gl9/8lu+fv6Mg+Njrl//hma1wioLiUD0GwY0NF2LHUzpm4pymLvEzWjaRvPq6SsW/ZKP/uQDDo5PKLMMrEE7ZSN67YxetICTdx9SDgpuLi5YvL5gtrdPIqBaLHn9+W84ff2M2jakRzOm9+7w0R//MY/vP+LsZ19y/fIJuVpy550jDu4/ZnX29qQKz65vwaYY7aBgawLrvPdqi4ERH4Kga5EFTw3hs+Gg/IeHoKVwCFqIVbGvHnF8izA7roD+P1JsA3dIDlzsC1yBZKdA96OFsRL3mID0bQZv6BO8EfABMqIOfu2QAoRfb2JLwlsGI7eQesQWfI4RUAFtNNraHcElPy6JRFhX78vd9TsEZXDcgXhZgi6AC9ZGa7DCK3CaHZRBxPMxwo3hSu/J4M7HTU4I3ESIk20W8bytT4B67dUIcdW9Ng7pddoLiVP5lDLaS7uxSJw4mMxQaYoSiVN7lGEM9Xdv35oQ/Jt/82+4vb3lq6++4ssvv+TVq1e8evWKzz77jP/9f//f+Wf/7J/RdR03NzdMp1Pefffd6IYXZvzDeOFgMIjjhW3b8tvf/pb1ek3TNGw2G1arlbtIvkIO0HmwOhZCcO/ePUajEZ9++ukbPgZhbl4pxcOHD6NMcdM0aK159913ub29ZX9/PyIdgWQXeAbgBIHG4zHBcTD00e/fv48QztDp5uaGm5sbXrx4EUco//RP//QN7kB8oDxKcXh4yD/5J/+Eq6srzs7OomnT4eFh9HsIHgVVVcVRzTABEJwKwxhnONbZbBaTl5D0BERglxMQiJaDwYD9/X3u3LkDwIsXL6IMcdu2DIfDNxQLj46O2NvbI0kSjDGcn5/z5MkTXr9+jTHmDS+G3XPflUYOW0ga/rE3u1qAkNjEE2xkAjJ1PcNEY5V0FQpuEXXmMQpEghQpQklInVyZVIpESRJhSYxG64pNvaRe3LKaLxDLFYvbK6z5Aqt+QV5OSNKC4bDk5MH7vPfR+2TTkuF4yGq9Ybm4JTvcI0lzDDlH9+7w8uefokXOvQ8+oi+GtM9fUGnjLFnzHFGWjGYTjiYD7owk94eS4yKhqlr++pcv+Omnn3M4SZgOMsxsSELL3sExaRr8MTqkVGgDVdXRNh1F5iSRTV/TGoOWKVYkGJG6c89TskFKkaRONbBzwUANC6q1Jj24g2hWDGTC5YvnPP/iOSezIx5+pyQZ1Ags3WpJs5lTlpIHD/a4+tUTnnxRUZaKtBxhvOCSzAbcdIKBSjFtTcuabJ2Qi4y6bnnx5TOurk75/p/9EakaO90A0WOFoOo7WmOQncUMBSJxFraz40NSIXn17CXPvnjOnekBrz/7LU+/+g1rDMXxMScPHvH9P/kjvnf/+3z2n37Cs9/+jI/ev8vg4D02KiGfTEi6t2d/vFg7UyeBcoktAmyCJfHW0c4aOCSzUrggp31QlvH76Nt6fr9WOLnoEIbisFxoCQhfXu7k89tmA/FdxKr8zUAakhDnE6D9O7wRjw7CQq6ad/4DjgOhMXFEL8grg3MIVDYkIaHlgH8/Ho1w32cX6sNhWKzQET0ILAWXCEi078drv0MBSBN3jsZLIpudgsds26RahyRgB+jw/X2EINmJD2L3NYjIA7DGma21beeug3JTF25aZ6eoEsJNV/QtfV8jpSJNUlTi2ppJkpPEUdsEpbYCS/GDf8/2rQnBv/23/5Z333032hFvNhuePXuGMYb9/f0YlAPsHcxxtNbM53Mmk0kcSxNCsFqtePXqVYSgAwQfdAFCANtl3Yf+dXDye/HiBUFPAIis+SzLYnvh4cOHMdkI8HlQKby6uoqOgW3bcnl5yd27d2M1HoJikiQxuQlcg+CDEMiHv/71r2nblvv373Pnzp3fG/SklDx+/Jh/+S//JV3XRaGh4N8QSI/W2ihpHCD9cD1DlR9m/7Ms4+DgIDpBBgOn0OII92UXaQmTGUdHR/yLf/Ev+OSTT/jiiy+4ubmJnI3hcIi1ltvb20hutNZydnYWxx6ttTFBCe2FXWJk+Dv8+20lAwDm+lNfHvlqSCggcf3otMAkGWQZUmZIlSLTDJFkyCxH9BkqTRBKQOKqEKsUbZJhZYEqhoyHh0wODMa2nnm/obuds3r9kl44ed7qpmG1XDG/XlDkKYaUd/7kR9x5uGK/apBDixaCbDhltV7TtJpsMuHd7044evc9bi6uOD+/RKcDpncOOdzPORnCUW4ZCMN8vuGvP33B3/3qt5y+esnCdmRK0GcJDHKavmLT1Ohe0+ue1WZDXzdIo7i+XTCe7TNIU6R1Pc2+btA95GlGJ5XT8i8SetPRrxtM1yJSiRoNKEYDkg0kWcakHJCpnMsXz/nJX/01RjegLcPhlE275nazZr7esFptGA0ytDBYRnT9ratOtWFZ1Sxb53cvVM/DD94ny0Zcnt8yv7wG0fD9H35A9+qUpTYM0odkiSHLSoZZSUGGKNyI3mKxRChJnmcUezPG8w0//+tf8vUkRXW3fPePP6BOC5KDQx5//7u8f3iXz/79X/L69W/4s3/yEbYYQjlmko64vG54fvnyrT3HWIUQW+Ev2K3KbQyCAafe8np3CIhyi36597lpBCVUfGsIWtoEXhYE6+Ftki+2hDYfgGOQFO7nkd1vwnhiSDT8BIJfb0OP27XUHTSvfUXs5vydHmBoAThug31jfXFOiluFQ2vdOSnh9BAd6hFGAXEGWr6frsPvBHTWOxbuBO2I8mO33hG+rx8kmRHScTi8f8NOyAdc+0V5/QjhURXpYXvj0QshvY+Bg0zc/fOS0tY4kalwHx26LYAEpSxKpaRp5uKs9FqK1r028BZDQ8ElX/8QwQ3btyYEl5eX3Nzc8Mknn0TC2sHBAY8ePYpBPkD8YSY+BNrQLghEtJcvX/L8+fPIUg/2xbv+CKGyDOTB0PPYtSN+77334lid1jrqFDx69Iiqqtjf34+GO/v7+5Rlye3tLbPZLKITXdfFlkEYtVNKcXJywmKxiGS+5XLJyckJm80mTiQcHBywWq14/fo1bdvy6aef8h/+w3/gf/1f/1cGg4F/6P6hsmOapjx+/Jh/9a/+Ffv7+/z1X/91dHJ87733EEJEW+cw0x+SmhCAjTFcXV1xcXER1RZDuyIkNIF4GNQMQ4tkPB6zt7cX2xTHx8ecnJywt7fHr371K169esVms4lJgDGG169fA0SS4Tc9FQKSs9su2TVgCvf2rY4eqh15VCExYVxLWYyqkLJHmg6oMbhgbXWG7FNGZUmRlAgrsR2EJcII0EJh0xyR5Ng0QyQFSZqTlTPMZB+Zl7TXl5iqQuieTrc8f/6EMGr06vwliV4y3htzMtmj3xg6bajajnGe0a9uSJISspw6HzAeTVH5lL3RkLTv6BpNLSSLVnO7WHPTGKresjI1YlCyP5tQFrkLFsaQGJxpUD7ASkGjQPcNp2eXjKcziiwlSRSi7WnXa5rNLWZdM3h4D7va0CrF6YsXvPrqKV3Xsn/vDg8+/sgpbuY5Uli6DvaOj5Ba8/S3c3772VPK0RDdX6BSgUozUpkxygRre8HBXsLleY1WGUmmkcqNUeVpSodlcnDMXrLH+ctbqs2S8Szl7v37pNmQdnJItVnRVJVTnpM5Umk6bUnTnMXNDSpxCV6almA1UiaofsWz5xf88R9/l5P7DygHR7Qmpfrskl/+4iWb+VP+r//8T1iKFDEb05uE26s5ry6vWKxfv7XHOBG5R60EYXQwjGJug8/OQh+w/ThuSODRuQFBFxl3EgTh9xmEhzLw47e7m8VX5hEO/2b48+6FUmGNQSZJJMa5Q/FrvXSJgbT/MEC5fr3jQgQio/uFD/BWY7X2fADf6hDGJQURPbFeNRDfFokqSf4/nvlv/YEJ6+ckxM7riMmK9SPVQoazsQjhTKGkEqAS0mQbTreCUA4RCdyH0HgRIrg2Svq+8zoDzuPAGsercA6tAiM0SSIQvr0pZVCF9SOHMdnzbRbhhaOEmygRgcIg3rxTv/M5+7ZfhqCy2WzibPpgMOCHP/wh3//+9zk6OqIoCrIseyNABA5AgPI3mw2Xl5c8e/aM1WrFer3+BxVluIgBGQgjgkEvYG9vDyAeR7Dx3SX1FUXBeDzGWhvFg5RSPHjwgDRNYy98OBxGjsFgMIjz82GaIQp5+OAYAm0Q+xFCxFn89XodCYdBDwHeTApCwMyyjHfffTcaPn399des12v+5m/+hvV6Hf8EfkTQKwjJWKjKg3ZCQAbm83mciAiJVDBLClyA4D0QzJnquubi4iImT0F5sa7rOKkR7mH4dziXQPIMLaGQXIXX7k4lvG2lwvzgke9TCt9nTEApJ0/ss3spVHDWiWpkQkq0SmiRqNhrdCIuiQSLQZkG1bXouqduWpZ1j0wyiuGAlJQuG5DlBUJ3dJslpqtgswGrWd9eMT8/o16uWN0sePXimqOZRGUpOlP0XUORZmir6aoVpjUMBpJM9LStJSkLlHWI0XzdsGl7rFKMR0Nm+3sURYGwYLremzc5TfRMue+qGgywLVzdzHmwWZPnKUWesvaeDev5nNNnLzB1g9UVeqN5/uQT1os5GoU5T5jcv8N0NnELjwAlMqyUyLt36HTPk89+y5995ztsNhW6aairmq5r0UYj0wRjIM3AaImSAikMCsmwHKCFYJKPOPvqFcvNhr2TKSf3jxiOpiTJAJW21H1HKyVaZWiRorVgUzWUIkHlOU2zAaOp5xuqqzmvX36JLGCqDjg9u+H9BxtkM+fqasnl7Tnv3jvgT//kY6o8Q5Vjbm4qbi9vWC/nDpJe12/lGQYQuD61jVUoBEJfgLhddbz9ngUi4G4IiMQ+34sPjIPftcndyp+APQSRG/e5FoGzBfaB2e9bsK3cI9KtA4HPoxh2y4IPI4BRolfYqMrnP8hpEHiCXxhNDCN6cexbBTTQmyyJwAvI4nEr5QWcIkcBNz1ot9fGXSuiAZY1oE0XkQ6nidDH/y9CUmMdr8DJCTvkwCEv/c69dKiKMT2BIKlU4v9IsC6hEjJxQ40+kXDJoEvelPScqLDHnWTO5TAuWTI6TDIE/sPvecD89q0JwV/8xV/EnnJg7k+nUwaDQaxgB4NBhOpD4Aw3NrQFTk9Pef78eRQ5CgHnmz3m3fG3Xe0CpRSj0Yj5fM7x8XF0LAzvD0EvMORD1R/Y94PBgKqqmM1mALzzzjsIIaL7YtiCpW84tkCoCyOUwaMgTDfsWi4vl0v29/ffkD/+XeS64K9wcnLC3//93/PZZ5/x7Nmz2EYJvIfwWYHtXxRFvC5hXPD4+Dh+ZqjUdx0TQ9B2vWP38zzPub6+5ubmhpcvX3J1dcVyuYzHtysu9LuCeGjPhPPcfd3uuYfz7/vw0L+dhCD4rHs7Q4RQDk6zuP4ezojHkQr9IqJCNp44P3cl3RhcGOMKEGIgFgkJPVg6mqpGih6sQRjr/ekzZDYkGbTotoLOoPuerq7pm4ZqueTi9Wv2hwcUecqghEttkVZg24bNzTX12jCdTKmXS2azEYNMkiSWVSW4WGrmq4qq2TCdTiizDKstnXErnZBu0TRNQ9d26L4HC70VrOuOm8WCwWiP0aBg1XSkSmJ0z83lBc8EPHj3kK7rqddLZCpRSYkFqs0amSYkVmDaxi2vSlEMRuzducvg5SnzqzmHD+6yvJ5T171ju6uE4XRGXW3I8p626sH6uyEUwgoyIWlubmnaiuH+mOHBhHQwRGaF04vQinw4Ih2OkcUILTK6VtMbZ1utAaMVzbJic3XD7dU58/qW7HDGO5N9lOl4/fIV5/YSKWBvInnw4BA5nqFVys31krOzOav5DX27prPQ1m9PurjvahAJgcEfesHCV8MuqIo3im0bXyc8VO31B9gGUOuikX/HtjoOhbS1Oyx3EQbtfGXtCXbWB3AhPDzve/zhvQFFCNwE7FbWd7sshJSGGAAd0hCCtptNEALMN3vxWNfPB4zVMcZLIQjj/qGtYbRr48VPCJ+/I8UcEwLpg7AFg8QY/cZcP+yQIK2v0ENA9tCFdCpPCOWI7CGhkl5R0pqtXoPylsrxWlt/P3e4CSJcphhb3PEFQiPCJQHOGnonYWLnnn7Lc/atCUEQtQkyutZaxuNx5AMIIaIt7m51Hy5s0zRcXV3x9ddf8/TpU+bzuWNHfmMLmU0I/qG633UtDL+bTCbM53PG4zF939P3feQyTKdT6rpmOp2SJEns9QeyXUADjo6OIvFulyMwmUze0DLYnb0P8rwhyQg3tSxL6rpmsVjE3v43t2+iIGHcL5ge3dzcvFFJB45ESDjC6F+Y92+ahq7r2N/fjzLGgasR7lVd10wmk4gchDHKMHZ4e3sbrYu/mQB8W/AO9wGInIXdSYMt5CjjfXubbQO9uXbfBJ9xO1GOALsKrHQa/Ajhk4EEqxKQCTbJIUkwNsEkjkugvFIcUmKFCDIpiDQnzwtEXYNSCKPJFfF7o1SBsCPMeonVzrYUYxBGo7uWulqDOqAYZAyVRngVNKt7mmpJt+lpN2s2C4Xam6CURGNZdZLbSrJcrbGmZVBOUXiNdiuddoISTtBcOCthG9A7bemRXM3nTPcPGBcFt0nlVekEXddwdXnOg4f7GONFcRJFWg5IshLT9SgpSVF0tI7CJUGkimI04d4773D6/AXH7zxEZTlJUZD6iQ6ZJQiVoGzDqloilCLPFZlXXqM33Jyfkh6MGR9OSIuCXluP9Dji2Xg8pZzMyIsRphfQNiiVOOEXYzGVYXlxzc3VKZtmgRhlTO/f4/0PPmTY9Pz8P/0Vi8U5s/0hD997j70791jaAmXg1YtzbhZLjGkRWDojsetvsYn7H7x1fYNToJPE+XtPStuid/7FIdhH6k5wJQymRV6PxQQA28TK00dcl3PsoPWx+sQHFB9dXMVvfJAOn/fNQshrCARE3q8HVrofbt37QrKNb19onJWRi7BCuQRcRwlfu5OU+CQFjyrYIABk4zFZi0tIzXYuP/AmYmYQTkKEvMsjF9ZB7w6B8Ofk0QcH8MsoIWx9q0aqhDRNUEmGygrSxMUy6YN/mqYumOtt8A6/t9YGRQmM7j0axDaL2h6mmzDRYHDn5mScvUCVCBnR9p592/atCcGvfvWrKOEbxvvu37/PaDSK42yhmg6Z1S7TfLPZcHFxwdOnT3n27FnsUcfH5hsVdKh0QwW8OyLY930URwqQepAQDsQ6IPbxR6MR4/E4zvzPZjMuLi7eqLDDOGOY6z8+Po7/PzD8gxBQ8EvY3QKcP5/Pmc/n9H3Pt23hfIui4N133+V73/sef/mXfxmTjd2sPVzToij+gSxw+HdVVTx9+jRyIgLHI5x/eG9VVczn8yhmFDQPdsWE/pC64O4xwTbQBT2F3UQhbKGV8/v2/4+xdZszjGdnK5milDM5MmLLXDYewhS+feDmelPICpKiRGQFIitQ+QBVDpBZ5qYPVOJHmAxSZJTlmGImfL7RI22H7mq6rkbXDUYYdDagq5dIoZHCkijIC0UxGlCWBYNBTjNfIE1LmliyTJClUNmO25sbiuGIrodGCyptuakFlRa01ZLZqEQp1+JAgLZh8ZFo61wHrXDfM216hE5QWcntfIUQliJzC5hUMqKRve4xdYVBoVRB02zIc810NCRLUsKqmiVpJE71xn32vXff5dVXT7k6uyQdDUmHQ2SegYCm75lM9umouLypycsB40lBJgVd20PXc3Nzw3haOiJZ02NsB0UHUpLkOcPxlLQYorISk7ig0jcSoQTtpmNzecn12QvWZk06Ldi/e8KD9z7kw4++h35+w92DZ3SbJV1TsWo0KzmgMyW3l6dcX9/QmxaVS2SWk+uS5edXb+UZBjAmoKp+yiB8NQ0eUdyp+MN6vENEc4HFB3RffRoCgVDE1sNu1e7m3X2y/wZKYOO/wVfyXi3PVeIhbQhxwWzFfKRzODRWE1QIhJ8DFLjvYuRJ7KAHInym33Uw9jUBqfONcutNlCzeWC04BPokQAdJwHCy8Ri3HIOoUwAx6Bvj/tZ6pzL3m7UeJbRhvFkhk5Q0Uw5RkxkqGSAS5xQppVeX9J4Tab5FPLYn7dBFB/uH9roXhjImjkcK8H4O/Rvn6tCMLek0/A92EsffsX1rQvC//C//yxtktdFoxMnJSQykQohoBhQW/91g1XVdVDYMc/a78HKAuIUQkai2+/cuwW1/fx9rLdfX17F3H/gEQrh5/9vbW/b29uLYXiA75nnOixcvqKqK9957740qPAgUBYJeIBaGNkDbtnz/+9/n8vKSsiz52c9+FlX+Qs8+yzKur69/J/rhbsCbdyBYL//5n/85f/mXf8lvf/vbqB4Y+u/h2ILccAi+YV8hgQjtACFEtDS+e/cufd/z9ddfx6QioA1ZlsW2xDd5At/cdomdISEK5MddBCCgOLvJ4H8r4vA/enPa5x7otG4xFF6uWABGO1KhtdqJi9jQ85OIXtFWCjfalaHSEl2OSMZT8skUkRZIby8b9pcElEwlCDkgK2bkpqNvV3TpDe36Gr1IkVpCbxgouHMwZv3+AyZ5QY3kb3/2a2aHR5SlJRMpDw7GLC8WLJc37NUHbExPD2xqw8WyZt0u6NZzTu4fU3UdSerMZPre0DQ1y3UDwo3/huluIxI3QYHk9uIFdVW7uWjvKif9IqytZrO8Rq+WNF3LanFNkRgm5R2KvREKZxhE35GVrm0otCXJcjoheP+7H/PJT3/B+3/yR2SjkiRPnK9Bb7mYL8kGLrHIipJsOKRIJYW2dHVNPpmyOp+zKm/JT3JEIam7Btn13Ln/DoPhlE3VYWyHSBR5lpAJRTtfcf7llzx//QQtIN+bML1/l3fe/4A/+fCP2Xx1yad/9dc8vDvkcPR9Xl3dcHpT85CU65dnrFenZElDYhQqGSDVkOq65dOf/81be451b0AohB+fC2FLCIFQnpDNtkp3Yje+et2tdm1wIAWscbC1DVUw2z464bsjtoQ1Dz+76jno4lsXAKVAWOlbBe77s9228rvOOMgFLPwEQ4Tu/TLhRYmJZERwdr/GcxJwcL0xOjr/BTGmoHMQAQP/X6f0Z0mSwAkwsep2Qj4h4QE3hrxzQAiU2iYswXdhm1AkpIlTrlVJRpLmpFlBkhUMhkPyvCRJt1MG4R5ZY7ftmW82+IWIOZEMH+6FuuQW4Nwmcf6JiOmK9etuQBPENjH4tqbBtyYE/+7f/TvyPGc6nfL+++/zox/9iJOTEye+4ivxq6urmBgEwhoQ3fE+/fRTnjx5wuXl5RsVdDA8cnCqinD3cDiMrYIg0pOmzpXtq6++4t69e5F8J4Sz/n3y5AlHR0copbi+vmY0GsVef0hmqqpiOp1ycXHBaDSKycndu3cRwgkc5XkeyXcBxv/www/RWvPll19GtCSI+wSk5OXLl/+HYXEhBA8ePODDDz/k9evXMQkIMHwwDgrwf2Dth2tirY0thBCIw8jhixcvODo6ikZKYTIgeEGMRqP4md92zCHR2J0C2bWRDm0NICYIYQvHFUYS31pSYFtfoRisluheoQO0LeJyw7Z/GRYERyFUXu/dAqYR1GuJuM2pkwIlMpdcJBJSBYnzRE/zKbIYIouMJM9QiULYHtX0HA4GvBItvW25nV+wfPmc8Xc/4I+/8wC7WfJ1renLApmXNJUlbQz7SpCbmttNw3q9Yn9S0nWW23XLfLVgef2SMlekIsGmljxxw1aq7+h1C1qDlCiVkCjpFMwwlMmAk+MTPllcc321YG/vgCJTpMoibY+0vhKxLX2zci0TIWjrNav1NYeDR6RSsG5qTN+RKId+SQHzekPbdxzev8f+85fcnJ6yf/8e5WjIerGiTFKsNfS41oSbE3dz83meUI72+eG/+Oc8++Q3nL14Rms098pHFOOCveEYa3pUqtgfzui0pW0burpFr1u++PnPuJk/x4wKysk+J+8+5L0PP+Cdowdc/epzfvpX/5l3jkfML+H69hYxznnnw/c4fXrK1dlrbpdn7A9LRJmTF2Pam4af/6f/Nzf907fzDPsHU8T/biVyZdCljxHVfwctmN6jc4R1NyQHW2TQ2nbb+3YfE4MRHvp2cUv7LwF+TZVo3Fy/kCbKg1vXyI9HvUW3Q0K+LRCce58mUAtc7Pgmkuile3HIgwgogIfsESGOeunfNPGftUOEDliEAXrX4timC1skwwmU+U81xmklRK0BvU2YrETKhCwrKMsBg8GIwWhCWQ6QSsXWowjujfH8nfvnti8SWh42JgXhykmh4t30AOabHILw8+3jQWzhsG3xEN6ze8bfshZ/a0Jwe3sbJXQHgwHHx8fcvXuXx48fv9Gn3mWZh3n2169f86tf/Yqf/vSnPH36NEr+hoMJ1sKhsgzjcFLKOJsfoP31es0vf/nLN8yAmqaJvgnT6ZQvv/wy8gSapokWv4eHh9ze3mKM4dNPP+Xx48cxmUiShOVyGUclr6+vkVJGY6W+73n69CkffPBBTBRC/z/wBYIMc/Ba+G/dAiLx8OFDqqqKWgC7ffcw+RA4C3mex2QkVOohgQjJVuA5XFxcREGn4IsQ+BBAbIP8oe2bVX44pl255oD0BDTpm22hcD5vY5Opk+U1tvfZuUQIhZICtBP4sKFSCfLGWkc9cOG/QNYvaMIKVLfBiIROOEa+kC7ICpVgRcJKJAgyhEhQInGCIWlCmiqKTDtNg65HSgtthZpfMxqWNIMhe+895vmrc3TTcvrinHZ1S7u8ZjbJmDcVhyf7HA0zzm9arlet8zq4nXP3YEaWJOi2weoe0/fYvieThk6BkXiC7cg54Fln16qbllE55Pb2lsneHlkiSZRg/2DMn/7Jh/RtQ99vULLj6P599GzE8uacF69ec/h4yezIMp3N2KyXniTl7nOZZ2SpS6Y+/N7H/OqnP2V+eeUWSiW5bWuGw5zb19doIdhUFcUgp5hOSMqCLEvBSj764Y+ZPnvC6csXfP2LW+R3vsvhR1Owmr6pEUnq+ru9pbte8Zuf/pTTxXMGR3vMRlMefPwRjx8+ZtxnPP0Pv+DvfvJfuZk/5/piTDocMJ5N2JuNUE3H5eIlF7fXtKZlrzxif3pIdb7k61/+iour37j79ZY2V/Hq2KIJyn+98U+p/35JERrGIXnY2UIF/EYhuqNlIEOFvO1RW6sJ4johcbbW0PcaIaDTfWAIEIKN9X2HQKALlar17YOtTLgNJxaDnLEGlYTWoytIlA/ULlbgTKmUaw1BWJvETlrv/yulq+iNcYiXcmtWUAwMn6eNoevdcUnCWuURTwkCiRRQpBlFMaAsSvK8JMsK0ixDytTzk0REGQwW4SF+IQXBfjJC9xEQCO2J3WkQ4doevqiy1rVVQgsh6Dxs6REitj/9u99wmnRdkv+2Z/dbE4I7d+7E0b6HDx/y8OFDTk5OIhx/eHgYe/ywdbkLaoN938de/DeDzzdH8nZPHohEuN259jChMBqNqOuao6OjGEyVUtFTYTQaxVZDMGgKKMHLly9jNhheGyYN5vM5QghevnzJzc1NVDD8+7//+9gaUUrRNA3X19eUZRmd/waDwT/oof/Bi+/Nof63/+1/i8lGgPRXq1UczQwJUCATbjYb1us1V1dXXF9fR1+BMBFirY2joruBfBf+/+/ddjkBu0TIXSfGXYJhuK9vi0OQDkpXVRjjST+u/6pSMNoior4A3glO0Hcd2vQoBIlK0Bbnz641MrQTFPQa32oAtAXTAQ1hPAwUvRB0QiKzDDuYIoT7Xggr0FXHetmxXHTIYoPpDauVdtBur6lWa1Y3c/RmA8ZQjqfcv38AxrCuO1brivV8zvLimqmEaZnRdRW9dDKlSaLIE0tPTa17siSnb2oabakblzjmScrR8R1ePvsMY3oSJclSxWQ8YDAboLuazz//Eqst09kBy95g9BV933iXUQHaMkgLrO7RnesNKyxSpKDgYO+AwWCIsZaubSmzAitSssRJ8aZZwbDIGZU5gzxHiYS+sQjTInLF8eP3KMYTLl6d8vTTT+nrDR98/8fIpAdb0607rl6d8fWTz3j27FPs3oThdMrj7/6QR3cfUp0u+ekvf8FXX/6Kq5uXPHz3gO/90z+nXfYsFi2rdcN6dYZIU1rZce/BffbHh9iF5vWTr/jqya/odOXNg97O1nYtQiQ+KQmlOl593wfkN6rRAEd7XEH6YGx2e8jbfnVg/IXvt7ZhggGPL4gt5BzEdEKV6ycBQv8aG45oOyUg/BsC+33343e68agAle9IEFvrWnnC8wuMtT7h3V4fIcIa56r6IA8cPqH3v1NSofWWZxDCMTJxoj9pSqISkiQlSVIn+pPlCBn6/8qPLSpXxQsnU+S8TnbcG30ygzVY7S+x2I134foF/MKdRDjq6PgY4qTx9xWLFeaN6+rQjK0mQ0jPtp+zTfr4A0j2tyYE//Jf/stYfU6n0wjjJ0kSR/uCdHAIQLvQcYD2w2z7N7fQl97tR4fgHxADay2LxYKzs7NYEQctg+vraw4ODtjb26MsS6qq4ujoKKIW4cSDbPLdu3dZLBbs7e1FT4AkSbi9vSVNU16+fEmSJFxeOlvXMO736tUrhsMhq9XqDbJhIEGGtsf/0S1UzyFxCuTAoGIYrIkDt2DXKyCYTj18+DC2EkKrYz6fR8QBeANx+GYiBrzxgOwSRH/fg/NNXYGw75BofZNkutvW+Mfe3jsZIrB02tBrvLwpIC1GO/K9scI5vfkmn1ECYxIwfuzQGED73q0fjZMKITRRjtWPK2rdIMwOuccaX82lqDSl3qyhr5FC0vWa89tbXlxe0pUlerPk+nKOUC2bteX65oqLVy+p5jfkgxHZyR3uH41Zrjs2bc9mveT67JTXX33N+vwVpv2AydE+SZq5hod1JjJFntKtN0ic0lvfW+q6oaobxFBysD/DWEvfNqQqJVPSJ0OKshjR1g2dsPRdy3K+YLOuSPOEZt2CFfRYirzA9O457bXG+sBjO4OtjSNjWZ/ctg1pWaCMYr1aM5oNmB1MmExGpDKhblqStEQoQZbnaNMxnO6hVMZqccPl6zO6+ud89MMfszQrlucXjjz4/2vvz54kOa40T/Snarvv7rFH5L5hBwgSVSxWVbObNd3zcFvufZj/s2VErkiJ9EhPS7M5XVXoIkCCIIAEEsjMiIzdPXzfbFW9D2Zq7pEEwVuUnsl+SIUEgIx0Nzczd9dzzne+833TLltbLa60zZ03HrLf3mX4tMvJk2/pXRzh11Ie3LrH2++8R6t1g358yTjrM1ssydSCRqfBzvYO1UoDmblcHD3j7Ogp0+klSodFB/cVrbU+sHGrM1C8KHBkIdZ73wWiVQbr68iAqU7zgGG+6wWz3Xz3S2halEG85IBJWfSpFSjTcijY7awKEJRB5dZfe5VQXCf3F4l5UQmbahvEau8r0f783FVxrTnhryBXihz9W/X4RUkmdOy8DWKQPWlZhSS5h+3Y2I6DbTlIy8aSNlJa2LZTiP8UyIJBS0QxeFwkK3kSs5oQEJDzOMr9rwzTK7LmS2tV9P+Rz1pxzbK4BwbJXCG5FE2QtXv9B4nXH19/cuwwDMMyqPf7fer1Otvb2zQajfKkDWxt+v1m9E5rXULY3ydOU35oWBHYzFhes9ksIe9ut8vl5WXZMzdtidlsVgZOYyfcaDRKsqHW+YjeeDxmPp+XssD1er1EHKSUXFxcIITg6dOnSCnLwG/Oxxx/uVyWuv/G0tkoNv5LWwZAmVCZUUdjCGWSJzMRYTwMTEI0mUxK8mWlUin/v1ar4TgOm5ubJcFwPp+zWCzKhGMdxVlvN7ycLPwpbsHLCpPmeX/sOl+VfPE7d5r5Z0ZpklTlgiEUrcCCWJxpRZplZIVEqFYuKtOkmSTVOaEryxSZ0iRaoTJBmllESUqmHYxbmygrLXJWtYYszc1n8vGfjCxeIITCcj2CdgO36qN0ymI+ZrpMmE5mbGxWWS5DxtMxg8mY+XRGxfJ5a7NFu+LyrL9kGcXMx0P6ZydcHB/Rt/NxvdvZPbZ3t3ADP6+mMoVjW7iWwBIQJhnLZUKaZdiOg3Rs4jTFcT2i5YKg3sS1rJzFLSVBvYIUkChRTKyEgCSoVIkWIQiBtBwoULYcgclQaYzUGeEipnfSJUPgOXnrxLJtbAvC2ZI4zdjeqNNsNfAcD5UqdGZUCwWOsFFpgiNt3HoD33NRacZ80ufom6+wpEs4m6LSBZ2NFlv7B1jnU5xIMnh6yvT8HCsdc+NGg+rmPs39XVrBNsOrGYPBnOliQUSKXfHxmi3ajQ5kFourBefHh/SvTkjTKYiU3Ofi1ay8hy1KYNx81oQWSJkH8Pw7thbQoayUTaBaDxb5cVeVvnECLJ9b/PsaPA0rvgEmsVDowpXQoODriKQQq33++n9FbjxWPOna9qHXCxVj2aTMX5XtgSLmFwTKvB0oS/leo5oock0QpRCWW8rjSylzEq1lY9tu3tqzCgMgaeXHEis+UT4aKYubZq7VJE+mwch1LsCavkH+U97FvCAW8g/A/NV7uXa/X8rmjOSxUtnq/Vh/yNqxyvvAn14/mBAY3wEzLmiq5s3NTXzfp9VqldnPOlRsJg0MJ+BlKeL1C3+5H21aFHt7eyVR0PM8jo+PmU6nZTVqNP3XiYnG4McEURPser0eaZry5MmTkrhoTH/SNC0tiQ050CRBZvxwY2ODarVaah9ALvBjEg/jE/AvRQkMGdOYKBlugNa58JFxMjS8CpMUGKvj6XTK5eVlSQ50Xbe0Wt7d3S21B2azWZkUrLsopmlKGIaly6K5tj9FkPy+loEZPVxHC9av81UhBPs39nNOslrb1AoYTZIrG2c6Qam8JaCyDKHzQJpmigyFThRZqokzzVIplmFKGME8TogzSZpBkiiSOCFJbFJhgc4r9JQodysTijSeIkmwPZdKs8nNB3e5eeuAVsVDLacM+jPiKMWWNaaL/DMYZyna88ELuH9zE1LNOMyYzxdM+l0GZ8eMrroIW5JqRRhFyCxj/8YuTiVAS4FQELguwnIJo5A0zRPaaq2K7biEaUy90WS+mFGtN3MROqXBsqjUqtSbTZbzEK3zzdH1A/ygynIxQyuF5TukKtddF5aNLe180woTrnpTDk9O8ao2ju/ieS5BpUa2nHPR7eNWKzTrVQLLgwyyNCvI5ykogY4VdpaPzKlMYWubg3t3mQ0HnH73HW7QQPg+7U6bg70dNrd3mE8vOfnNE7wk5eZ+lf07+zQ2OyivghYe58+7HJ2fMZwtiLIIp2rT2N6g0tym4jpkM8XZ8SHd3jGz8ApNjBSmGn01K46jnENQbux520Cy2ldzF8CXzrH42llS5rbHej04rarXsp1YNLfzLros5+zX1+o7XvSry4CYpwRKraBpE7zN2OHLLUWDAggTuNbQyXIfKrkP5u/JE3BRBPuCMCtk3uKzpP3S/rPiEvj+Sg9ArCHT+bEKgnTRWhRiJRJUhtMCach5AOtI6qpCx7xLouDzClGII5nkwPi7yGIk+g+LpZf30DXsgOtJn0nGBC+fw/pT19/DP7tlAJRVsVHMG41GvHjxgp2dHba3t6lWq1Sr1fxgRSVrAqoQgnq9TqVSKXvi65XoeoVpqkwzcWA4BOYcPO8PncayLLsmvXv79m3m83mp4W+q7kajQRiGhGFIEAQcHh6WAR4o9RKMJK/ROpjP58RxzHg8ZjKZlAhEtVotCZFSShqNBru7u997jn9qZVnG119/zSeffFLC/CYwm9aMuYeNRoNOp8O7776LELm08cXFBb1er/SHCMOQs7Mzsiyj2Wyyu7vLnTt38DyPMAw5OTlhMBiU6I35cr6cqH1fUrBe6Zsv9jqyY55r3suXWxGvYp3pB+SQvhESyb+sUthIwLXMjLPGQmGLDEcqbJlhkyB0gq0TLJ0gdJonDlqhMk2cwDJNWMQJ82XEfBExmceMlopFJAiXKVon6FSgyCWEc56Iw82bd/jg/bfZ3miRphGLRHE+GKIsm/l4wmQ8YT4ckYUxfrXOVrvNm7d26PdDwjRlNh4yuDhheHVGEi9JlwlahaAihM4FXfZv7uF4Eq1lPgbl+MSpxvHdHCZ1XBzfR5OhPcnp8wEiU4SzGePxADvYxHYc9m/fQvXGxFHuKhhFKdPBFBHYLKZTpLBz+FbnLUBHWjiWxWia8ezZKVbFQgYaaRWe9spiOrG46M+4++YNPG2h5nl7S4uUKI0QtkWGjZ0k2BmIDMg0OlO42Ny8fR9HNlikEAtwaj5aOkxP+nSfHdObHPLv/s1H/ORHP4KgziBWpJnm7Ltznp1eMMuWLPQCq2JRbTdoNzaQyiJL8nM5ff4dk1mXjBATePkz2oL/o1YcR+QDeUZxf00fX+SaAys74ZW7YVb0trUR1BGFVkCBJiilQOWCO6qoyjX57LtArcyBoEQPzHc9Fzpaq/iFWMUtWcDyYtUyEIhSCni9/VlK667xjIyy4IqpLxCy0NDI8nFJaRnIP/cRsB0H13Hzxwqz/5gJgrzat6yi2hereyGLc2W99SKKKzftCTQ6M39nAv5ahQHl65b3g/wh8tq0AeV1AWVQF0K+1FpdC+45AQDDC1k9b30ZhGWVnJQPFpTSyn8Krf3BhOA//If/gG3bbG1tlWNs4/GYs7MzxuPxtUrRMO0dxymh+GazydbWFq1WqyAgUfIM1s1vDHw/Go0QIlc/TNOUi4sLzs/POTk5KScF1pf5MqwTDkejUTk5YOB001NvtVolGXI6nfLs2TN83y/1Bj788EMWiwXdbrdMIiaTCXfu3OHOnTtkWYbruuXI5fHxMVdXV7z55ptlJf8vXe12m7fffpvnz5+X99RYRhsUo9/vc3V1de15nuexs7PDrVu3ePfdd8myjPPzc7777jtGoxGQTxw8e/aMw8NDPM8rdSTee++90ta61+sBOTKzPiVgiKDrbQQzmQErxcL1pMAgNy+vV+llcLUoiIAyKwxQNGAhhfGJX2mlo/OA5To2tnBwZB3HdnAsQSAyKmmEvZySxiHasrADl7qX0WlqLJkiRATEJGnKbBExGC24GIy4Gs8ZLRIWEcSZwFIBH777kP/lZx8R+E2++PoZv/7md0ySlLt7O/ROzxgOBoyGlyRCsNXe4M0HN6nVanx+NCAOF4y6Z3RPXzAZ93Ht/D1YLmaoKEbHGVGcMJ5OuXfvDtVKwGwxIYpHCNsizFJq1Tr1ZgvpOGRoluGSLJUsRnP6F10GvR71VpVkGbKcR1we9pCOQqUxSRwyWkzws4D+xSmtep1Mgc6yohpLmY3m/Pazr1F+wvZ2nVQlNFotql6N5WjB8eEzNjoSkc4I0wqeo/NjRyESTaPqEy0ls8kCB41r58HEs2zm05Du5JJMWHjNJlYmWIznfPn0KfNxl1ZV87/9f/6WD9//iFEkGIY2oxj6V13icMhwcslCwuZeh067Q9Wr4Vouvu0TxpLvvvqSwdURKpwiVYYqIGn5Ay5x/3cvrTNy2W0FBcycGTVLDGnXiOsYgRxzvhkyyVbxYa1SLVeiy6BYtnHRIFdJkGHmG0TYPD2PQ6ZFIQuhr7xdsRLEuU6YK69r7blmL1ltFavWBMIUiy6OQ8HZWZH8bNvO9TNkrqOxjkaveE0mSRErp8Lie78KuqDJEEKVA5A5FUKU17TOkxJWYR2tDbS/4kGAKAWEkNc/O6sJgFW6ld+KVdBHFfvVWtj7/n10fY9enXP5OyMaVbaN/kyE4N69e9RqtRJmbzQabGxscPPmzRLOj+P4mueAEeox43kPHjwo5+pPTk5IkqQc2zNVqhHKqVartFot2u02BwcH2LZNvV4vhYjWe+Dm5pi2AVCOChqSYRAEpVqfEevZ2Ngo+QgGDTD+Bb/97W85Pz/n9PSUxWJBEAS0Wi3effdddnd3SZKE5XLJZDIpeQY7Ozs8ePDgeyWL//9ZWmtu3brFv//3/57JZFImXKenpwwGgxIBWYf5DDRvEiaDJOzu7vI3f/M3OI7D73//e46Pj8vXiKKo5IE8fvyYdrvNrVu3uH37Nv1+n/Pzc8bjcfmlXOd9/LEfWPEJzOuoa1m+uPbFfBWrVakQzhaIWBH4Ln7FQ0vozyYkaUg4WSK0lUsb2zbSssikwHYcQivClj62BUrNqEcDdiZdvn38nBcLh7lbAcslERnKkXjVgFqrwfZOnVbVYX+nwt5mgyRKWC5jBrOQ/iwiaOzxv/67v2M4j/n1V1/x5dMjjvsjXCH58vkn+JUqo9mQhY6otNrcPNjmpx+8yUVvyTjWTAYDLp4+o39ywnI2QSqQ0sJ3fOI4ont5wjKcs5xNmU5mHNy6iV/JnUctIdnobFKr1vB9D8d1kJZFxZZcecd89pvf0+t1aXYa3N7fZrGcsXdnm/F8Sa/bzat8KyOJl4TLhOOvvyObWWwc7FEJ8t7sZDTn6ZNjlKU5uL1FNJsQVAIc22Uy6HN5eERry6e5v08yXrIcD/C2NnNeS5xiSYt0kRAtgThikYXEwsK1XbBhoRXCrxHIOvNexOD8lOnoDCkW3LrZ4v/9//p37B28xdkyZJZaDEczrnpDhtMrRDYncKC1s0tncwtH+ogE4lSREbI8m/PkyW9YRleodAlFjxYcjGHeq1hJEudwNcV8e/GPsdE1lb2BCExtYoiG6bW+9IpHVEL2JhEoRBCNRa+p6FfEwDzICSmKqjOvSNe/45Kco7PKOHShFFgkMX+QVxkYPGdHWFb+OSqYf3mSUsjwmuuVBcxftqSh6JOLoi0Clly1FSgeW/b7jVhZ0SKxLOMFY4iWXEMZ8oPK8u6Ze2SKcm3+LNYh+5Vtsc6MhTNr9/46KlDew5eC9vX9cx2NyM9Lmuv83seXjy7bLj+0fjAhmEwm1Go1bt++zf7+Pp1Op7Th/eKLL+h2uxwcHJQmO7VarfzQtVotOp0Oe3t71whty+WS7e1tFosFWZbR6XRwXbes0uv1Oq7rMpvNqFQqbGxs8MEHH9But/n666+5vLwsA9D6UkoxnU4xlsZhGDIcDks3xslkwt7eHmdnZyXHIEmSEvo3okDrssWmx/73f//3HB8f0+l02NjYKP0CPM/j5s2b7O7u/lnogNa5QVSv1+Orr76i38+lUV3X5d1336VarZYTFpeXl4xGo1KUaP2DZHQG+v0+33zzDY1Gg7t373Lnzh0uLi7KNsF68hTHMb1er3SSvH//Pmmacn5+Trfbvaa6aAL9+n3/3g/dH2kLvMqkoFETDLpXVIManu8SBD6QMp0lzJZjrnoXxHGKI/NxplBlJAiEI3CFTaO2wa0HP2Ljxg430oDqt6ccvLFPs7XPYDZmPh4zmcYs5jHL3pCj8xO++MYlqGyw0WqyuV1le3eTnftNHmw0aTY63Ln/iFmU8fi7Y745OudiMCBLFY6t+f3jzwiTBTgunYNbPHq0w/tvPaBRr/Pl0YAkjrk6Oeb82bdMr3oQ553tTOQsZ9uxUWnGdDQkTbIi0Alu3btNrebiOT6O5aGRZBp82yFJYlw/oLOzz9Gzr3nwYJ+aX+f4yQv2HtymWWvQCkacRxfYtoPr5xLGOsvodS8ZhA6b8ZyHNw9Qs5Tz0y79WZ+dm1v4toNVreM4LmQWcZwRqoyq4xMtY0KV5UTC0QyhFFEYYzk2nla4nsUCSbKUZFoT65RMWVhWAJOQi+4500kfLUK29wLefvQBP/+rv8RyGgyWESpMmE+mXF2NuRwMmYVjpCfYfXCPRnOTJFKkcT56IqRGTS1Onn5LvByQJUvSLC6Crg2FO90rW9pGkJvhaLEaOVwPAhKKytcI+xaeXkUgLPv50iorVxOYDNwtCyMsKU1bUBSjikWFzKowAUPwWwVWCqRQXAto+TMNxJ5TAHIuQNlyJFc+lJaR9ZUlTC6EKGfvs0KTBa2LcxMokZIZ2XHLytVCTZA0hENtkqcV4z9PKPJEQekEIz0sS2locwyZC0AZ0gQmYRDXCIRlMVQkNuZ+rXQXVsV/WthW54TAIilbO67W1+t4k6Cs0ID8WjB+EBgMpvjRau04OSG6YHj8+S2Dn//852VwPjw85PLysnQ7hLz/vbGxUTrgmQ+esfftdDosFotr43Bmbt/YFhuFQ9/3CcMQIURZbRsRHSFEiUhkWUa/3/+D6tVI/qZpWo4TGptfkywYVr6p9M34oOu6/OhHP6JSqZT9eyEEm5ubpaxxo9EoPty6ZKnats3u7i61Wu2PBsMfWoYMef/+fUajEZVKhfl8zng85vHjxwAlSvHee++hlKLX6/Hs2bOSYHmNUVxkwQbFMIjOw4cPCcOQ09NTzs7OyokQoGyLGAOoZrNJo9Hg4uKiNEZaJ/qY1/lj12PW+qbxKkmFUgp816JWCbA9h0Sr3A0vUyxGE6LFHK0yIpWS6oxQK2IBlUqToLbJwRs/4v5b7/Ngt8nOtMl80sXZbZE5HXZ8SRIuicMp0WLEctJnNBvTn6QMo5TmjSYffPQhb755l729DdqVKhYOk0XMZ9/8nhfnF0TRknbVxvYTlr1jbDkmSmMqlby989ajBzy4c4veKGQ4V8yHA86/+5bhxTHRYoIwfI1ixzBjWFoplvMJ3dMXaCAILLbeebMQSMp7rZawSaKUKEzIHIVXq7O9vc/g5JizZ6fMw5DNG9uI2KZ30SPNMiqNBpYjiKIl0XJGFEfIcMrg0uZFAlkUE8ZL2ltVXAtYxpCmxLEiFTFCSFqdLRbTJXW7hmvnY4XhYo6wLeyKT2B5TKcL/KBCliosYeWiLHYuADPr9cjCKVbV4cfvvcFb925we2+XRqVJGGYMM4twEfL020PiJGEZJqgowvFstvd3qAZVbMtFWBlpluRz3YBapFyeHJIkY7I0QhebqqnksldIKsyhe2sN1i8ChLAKo86VYuj6d00WhLv8aasq3/xdHixXhL31PrSR/c+/+2pFmDOPK8hqeXVquAamyb3WszZVenk+1orIJ2SBpusyuF7rc5s9rhBgktYaXG9eqpA0Rq7OnWx1HMsqnAXL/UmvHcP08gVFdM2/S2UrwYRZU72bazb3Ir+fL7dWyykKBELost0izb0qjp1zb/TqPV07Zvl62ugq6OLcjbMkmCao0qqQksiTQaUVVvEmrQE1+fN+QBPmBxOCOI65urpiuVyWKoAG1rdtuwz0i8WilLQ1QU4IQbVaZXNzk/F4XAoEmbHCWq3GbDYjTdNrhkNGUMgELcO2NOOLJqgbVvz3oQXG0MfA6waJMNW1UookSUrUwvS/5/M5jUaDW7dulWN8hjNQrVbRWuN5XpkQGAOlP4dMaKY2nj9/zrNnz0iShHq9XlbsrVarJAoafoSZwHj77bdLbsX6fTf8A2M7PRqNmM1mtNttqtUq+/v7bG9v8/TpU/r9fsnjMCOchkRpzqFerzOfz5lOp6U2xHpf7uX1B9DXS9f7KpbKFNKySbOMaBGi0IRpxHK+JFmGSK3zL4FlgdLILMWRFq3OLvce/QVvvPtj3ri1z0HNhV7CSf2A7lzgt3cRWpNkC4Tbpt7Zo5FOqIwuaM2XNHb3eOOtd7m5d4dapYGdOYQziygMOe93WSwSfNdjo66x0hQ3CVmGC5I7dQ77CW7ngDfeeoOHD+4SBFW+O5owjxOGF2ecH37DbHJFlkR5u0MU1Zewi80lv/YsjZlP+iiVUHEt9ra32Nzfy9XZslwyNo0UcRQzGS1wHBuUxcVln5PjQxzfYT6bMVkuuLzqInwbt+IjLAgqDaLFMhd3CpfMleQyyfB9gRfYuK6NsG2cICCdTomjsOwiC8tCSclyPqfSqKNtC5UVnxEFlpsnAJa0SLQEC4Rr49TrBLU6tYqDJTvcfXCLD996wJ3tHWzt0r9acN6/YEbG+cklp8MpaTRD2hZ+pUKzXqPhV3GEg1Cr1qywLCwFo16X6bhHmizIVFpUbbLYlFdyt69iOa6by01qA+FTRg+JSRBeHm0zQVFc4waYwLAOi+d/VXgcYEbVQAnKkT9DsDO1qOEKWJYsA6AoLcJXCrSGiGdcFi1LlhC9CZhC54ZHxpBpVcmXXRDz0is0guIv1oPy9+495l4YMqQsUYcySRJ5rz3/+sjidfLXlKvyfHWPy9c1v7s+JrgiH8pVBS8oXnOFAGhNPoFhxpXN+6hX79UKK1iNm+bvjy4TJqWNo6S+nqiVPYy1hEb/mQmBCTgmUBkd/Gq1WhLQjHiOESYSIp/JV0qVffxKpYLv+8AKVjFkviiKsCyrFAEyfALzX8iJiIPBoITUK5XKtSzYVO1m7M8EOaC0D/Y8r0Qr1h9nUIUnT56URLpWq1WSBG3bLt0ezTUbAqW5J+tjkz+01h+jlKLf7/Ob3/yGf/7nf8YoJ/q+TxAEdDodqtVqec6GQ1Gv18uJBiEEZ2dn11QJzT0TIrefPjs7o9frlZyBvb29kvdxdXV1zXBqfRLDeFast1SMp8J1Nuxqmd+tozfro4mvYqVxQhaljOcjbJ1vSInUzGc5MiAFiFTh+j629JAqwKm3uX3/R7z7o5/x1t0b7AU2LBecTzPOqNEPZxwkKfMwoTdaIn2P7a0ttvdv4jU3qTmK9z98l3Znl9kwYnA5ZjyJiOKMjJj+6JJIaVzLxfOy3EJYCKobDXxbQ5BQu/2I999/k92dbSazjLP+gvliyeWL5wwuXpBEC7TOiu96ThrKMdhVpQWQJSGz4ZLjbzWd9gaVegPb9xGZlesrJClZEhHOZ7j1XE1wslwwnE1oiFoulITFNJzTaW8jXRdHCCr1FpP+IGeZJzEJkigRVGoBvmcThxG2F6AdO5/tjHPLGqXy2Wnb9wjnC9zUxa3XQGnSKEalKZnK8IIAoUFJC+04eI06ja1N2ptb1J0DNtsuP37jAbdam6RLzcn5mOeXc84GU6QQPDu9ZJIlKJVS9z1arTqBX4NEY3kWOkvz8xG5dW0WZ1wenxFG09ysCV04X2owevav5BOcL8/10UoWQSuvDU1EN3P81yeGVkFAlQ5/+eNEkUBoBFKJos9dGPes+RBI8YfQtfmTJQutfWnssvIgaQJebjpnROoKSLyIivm+kK3B6rnMr1YrB1VdnKfpe5tLyp0H9fUECOM3opHC8AOK5KMYL1xHK6W0iwBtiIarZCbf21bcCoogXl5nkWCtkAWKxGctlJoEoqz0C0dGjFFU/jwzxipUDuVjHm6eX7RqVi0ZVR4Piu9+aVG9pg1RooYrAmqJwIgfLs5+MCGoVCrcu3ePIAgIw5Crqyum02lZPd6+fZuNjY1rFbIR1jHkQgPlm0TBtm36/X45XmiCv4F3TPZkArU5nkkeTOCP47hEIkybwgT6NE1LhT/DFTB8CFNlG1TAJAzPnj1Da43v+yUpsdFo0Gw2y+Maf4RarUatVkMpxe7ubnnd/5JlWh9ff/01n332GYvForyWOI5Ln4ZHjx5x7949qtUqy+WSXq/HyckJm5ub/Kt/9a/453/+Zw4PD5lMJmUyYK5r/bWMP0On0+G9995jZ2eHb7/9lm63y3w+L9ECc7+Pj4/LdoXxi7i8vLzmlLi+Xh43NMdbnyZ5FStdLggnY6aTGVIJfD9ABh7L5YJMKBKdECUxtu9TqTRpNjbZfPg+7/zlX/Pu3T1uVW0WownfPX3Bk2eH9CdLrAyOvn6MqFUZZRpXVjnwN7j/4C5heoM7Ww2aFZ8vHh9zcdFjtpizzDJmiabWDLgcDplNI6SAwLMJXBfP3sQOqui4SnNb8v5PPuCth7cBh8OTKdNZzKR7wsm3XxHOZvneIDVax2htIY1ojjIVYg6BSmGRJUvG/Qt+888fs7m3y6NGA8fxCOMIlaRkSUijVcV1LDZ3N2m0m8gXVk4aPDvn3v372J5FJQjQQiIcm1prE8s9w6/6JInGdgVBxSFwLESasUhmOfFL5X4P0rLRWmEJlY98qhQ8yXI5Z/NgD1TGYlZIKqsUwphlAlngUmm3aG/vsbW9S6fdYKcheedWh4Nmk3CScXQ85dnljBejkLOzAV6WMF6GpDKlsVGn3dmg6tWIo1xZ0q9I0jjM+822TRYppt0RZ8fPieMJmdJYtk3hbpNXrkZ68RUt3/UQ2IDMg6lWZYBFQ6ZWE0JarxJwpa7/GSjDsFhvMbEi/pVtEmGRqZUngYHPESIX8rEsLFuumPSsIHbHcXOhr6xwJzRqiHqdVFi0EaBICFYCZytIXpSpjRACC1mgunJFphMKISwsK0+KVzP8K5je8AjW4X0NSKXLwJ0HeVX+f05kzAm7ZdIgV2gIrLdoVt87Ic1YZ6GwWKY+L7VhDKpQBPp8rLNAEooT1HqNrIgokYCyhatNQpSjhGUyoCHL8sQhz2OKa/4Txdmf1CH4/PPPS0OharXKwcEBlmVRr9fxfZ96vU6z2SwdBi8uLqhWq6XPgLlp9XqdBw8esLGxwePHj3n+/Dn379+n0WiUTP/z83OUUjSbzWsaA2YZ8RsT6M3vjGKgCWbGEtkI+QghSrTCzOObat9U+eb1zAhlrVZje3ubIAjKloi5lizLsG2bvb09Wq3Wn7qFxRu06sGbgGn0GoBrIktGLTGOY87Ozvinf/ondnd32draKhGC/f19FosFP/vZz2g2mzx58qREUNYD8MsQ/2Aw4Fe/+hV37tzhww8/pNvt8vTpUy4uLtb6iKJMpHq9Xu5LX69z69YtptMpV1dXJElS6kqYH4NSrKMC69f9KlacpqTJAp0swfVISEmmEanOWCQJlpRsbW+jbJdg6yY33/kLHv3oJ7yx1+Z+w+LkrM/vvvyWwxeHzMZDiEK++OzXjBZjNjt73Lj5BhtBnQ0v4Ga7xeZek+VwwX/+P37DSMXU6g6Veh0RCypBg1BqNt+ooS67jHt95vM51kRRcT0qfo3JfM6bH/yIv/7Jj7GcCk+Opzy7GLGYThg8f8zV8ZekyTR3sBMSKR200LmxQiFcA3ZuRastED7CkaTphNHgiF//X/8XtUqDje09lmGI69kIkdJqtklIaW9ts7m9T63yjMV0zNnpEXfv3WZna5PAdZnHKbYb4Laq2EGdvYObXJydYzdcKlUbLAG2Q7tWYTGfEy0mOK5Hc6ODRpKlGUJpVJjRbFS5vBgQ9mdYgYtGYNsCr+IQhQna92lutNk6uEO7vUWrEbDZsnjn1ib3W02GVyG/e3rFi8GCq/GMwWDEcLpkPL9EScXW/j4bnQ0c6aIz8CpeWQXrLPeM8GyXRRwxPD+je/mUmCtsK8grYKEK5cqit/2K1DYB6rUaglzwKkeAVkx0LSiU6/Lgr7I88dEFl0RpUVT+BcEtK6YMhCxFsxAg7PVA52AXM/1aGwKeLAV98rFDM35o2imarNiPwyi+lozowqkQXbgXWrJsD5gf0+dfQfgrZMb8qDQt4qdpFedqjaKA/23HLsyLjFheXkBKK28H5AE8KdoAq3FEhMSyVFF/S5SW+ZipIWSqnJQoWfEx1hURVyvXKzCWylqr4jqLFF3KMrhTtvcMepBPVOjCx8CkQirLEYTVvVBonYDWCBzyLsHqPUDn+6+0TCJToETGEfPPTQh+/etflyQ8M+vZarV44403uH//fmkjfH5+Tr/fL7MlI1CUZVkZSIzUbxiG5QifEKIUN5pMJhwfH5ekvvl8zmg0KgOxmVAwFachppjzMgmC4zhlUDUZs5lY8H2fwWBQwvLNZpOdnR3m83lpmmSmFFzXLYV7FosFo9EI27bZ2Ngo2yD37t37F6sTGgKkkVL+xS9+gdaaL774opwEMDwL80HLsoyTk5NSS8G4UD548IBHjx7xN3/zN9y6dYt/+Id/4Ojo6NoH9GUioPnzixcvuLq64t69e7z//vvcv3+fTz/9tERrXm4JTCYTBoMBrVaLO3fuMBqN6PfzgPbyGOJ6YmF+96rMjdqtNvF4lEOtCrROybIQX8M8BU/YyEqF/Td+wq13fsK9h4+4u+2zZ1v8/sunfPLZd1z0TpHpHDUdcfz0GZPlBCUF43mf0Vef0ut1CSTc293AseF///9+zH/9zWc8enDA5ryDsF1iIVHpHLdSw/YatFoS36+Txgui2ZTZYMioN+Cd99/i3/4vP6MdNPn02yFfHl0xmFwRXj6jlTzh3bsJz08Eg7FNkubmKqkUYOU2x3mVkZsn5UWBREgH6XqoLObF8yd88g8Nbt9/RLXdJBOwu7NHmiYI6WEHAZ3dXVo7W0ymY0hSbGJqFZs0ipBYSNdH2B6WU+XkRY+g7nGws0WqbbTUCEujVYSUmlRBuJxTjWu0m7soLRlM+ghiWCjEIuLs6BlbN29QqdZIhUcSS2TQpLrTYe/GPVrVGp26y+0dj7cPOmwGNU5OFvzmSZez0YTeaMxoNGA66rMIxwhL8fD+bTobu4BHmqWkRKg0xXE8hIBatUKSpri2y3w5pntySiamSMsD28lFetIi2YU/mCP/f3qlaUI+DV8kBMYjQ+QVad41yINBnrfkwjpYKy0AUfblLZTSuLaNlC5IB11Y+korn6gAGzMC6LoeruuVMu3rbclceyQky/J2sbTyoiyJo9K1UJWCdCt0QBT7YB5scxdHI/NbIo15TZwnZGYPWYtnJkgKDZbIha/iKENaa8mLkAUUsEp2bMvOWxvFWKVt2wjbIcuSvD2QFfoqQqDMyKIQIJxSAMokP2jKP1/bN0WuPygtiS4JgS9xUco9uUhEsrI5wIpDWNIGMW8xQpUVv1GAzBO/tEgEC6Q4S1ftjyIxM0JSf2z9YEJgquV33nmHd999l1u3bgG5IM/z588JgoD79++zt7fH5uYmnU6HVqtV9sPXg4YZ0TPa/VmWUalUcByntBb2fb/8wE0mk5LsZgKMcT80SYfRPTBvhOEEVKtVgiAoEwJTib948aLkBpgevBCCjY2NEnI3sLlBO4zoUaVSoV6vlyN6t27dotlslvfqh1j0L1fJWZYxHA754osv+Prrr7l//z7vv/8+p6enPH78mLOzM6SU11wijTZAt9stv5C//e1v+eKLL7h9+zYPHjzgpz/9KbVajS+++OJa5r0eoFdEn/x+ffvtt1xcXLCzs8Nf/dVf8fjx41KsaL3aN+dxdXXFaDSi0+mws7PDcrlkMBgQhuG1JOxlaeNXtbRtkdgWTr2K1GApDZ5PSEo4jqnv3eHuT/6Wh4/e4f7+DgcNDzdO+fjTJ3z21Zd0e+eoxZQsmjEYdjkcnuK4DpmtmScz4nmfNF7ybc3l1l6bZRZyIVOCzYBeb8jx+QC/0aKzvYUvIRwlBBUX1/fxai6zsSZWM4KKy8Gth/y7v/vX7LY2+OybPk9OLrnsXzAfXWDFXTbrddr377K5MeH8csZ5b8HVJEWlFrg+Noo4CvPRrLI2EAgcpMhHbbXKePHiW7yKx/3W21i2zdXgksDLODi4hfBc9nZ32N/f5fL8kAdv3aHV7jCdRwwWS7QfYFU9LOlhuTbJYITtVHBtF1d6hPGCJI5R2mExT0iSiCzJWE67nOoBWZoSpguUzmjVHLAz3GrAPEqIRYL0XLx6ldbOHjf37+L7HrsbLo8OmtzdaBBoh2+fT/jtt6d0Rwt6wz7D8ZDJbESczKg2XG4dvEGmis1PJbgoPNdGBhZprLA9B5TCRpItIya9HoOrUzQJju0DkixLSFWSJ1dCIKSFV3llH2PCaFkqQmqlyFSGUmmJXEghikkDvSLwGV6a1hQAwqqQEgKBlaMO5Cp/lpWjArbjYTkejuMhLRv7pX22OGjZs26IdgmJ5/++Lm1sCmHz1ExlCEPm1oqsMMQqn68KvknRRljfS5I0H4fOMjMCmlfjZCkCSNO4sDTOSAsU2BKSLNWkmcK2HbI0LVQLLTJpkWYpts4KroBVmOyJVdWOzuUQshDjlZD/N3+8UH9I6jQihqr4nSpaAev3TaPziYaieNdao1Co4trJVO5mqQ1nIEdrFBlC5vdGahdt2oRGZE1oMq1KkagSsSjuuZl4+L71gwnBv/7X/5q/+Iu/YHd3l6urKz7//HNevHhBHMfcvHmTJEn47rvv6PV67O7ulr+rVqtlMrG9vV2O0s1ms9KoaHNzkziOS3VCx3FoNptMp1POzs5KxUFTsZqgYsblTJ98PbiZ6tsgCKueWv5cgz6YiYV1Lf/pdFpyG4wokRmRgZwEeffuXR49esT+/n45NvkvXVrnIkEXFxd0u13efPNNrq6uSn2En//85ywWCz7++GPOz8/LazUtDkPwM8mLUooXL14wmUy4d+8eP//5z9nb2+PTTz8tE6j1tZ64GA+E0WhU2kjv7e1hWVaZeKwnE+ZeGv6DGdk0QlP9fr80SjLnbI7xqpKCKE1obe+ShRHT0YhJv0+4mGFVXPbvv8eND/6KN998yL3dDh3XIRxO+fS7Z3zz7XOOXzwlmQ+p+zaT6YCrqx4CRRQuUIEFSYwUijCbc3R2yKefVmjV63TcgAGSw7MXuM1NLClJEAS2Q5KkREkCwsazBSKJsVE0N7f46Cfvc3Nni9PzOV+/6HHe7TIf9skWMypelaWUuFKxu9WgVpmw0Rpy0Z1w3A0ZhYULmm0DougH66LKSAo79rzPGoYLeleXNK522L55QJQtGCxDti0HmUG1scndh29j6YRHj+5z/LSHrQXTZYTX2CCoNnJ/hEaF5VygpGRwOcKvt1ksY2bTMVppkjhXfMuEQooI13NwAoemX6HZaqB1RqwshGWTkQe0Sr1Fe3eXnZ09KoHLjR2fN25ssFerQAjfno95fHzF+XDCoD9mOLpiOhsSxzMcR7HdaeM7NsLyUFmKazuQWehM5B4LMkXoHFrOMsVkPGbc67FYDpGWxLZs0jAmi0O0TvJ2jBA4UnDzRuOVfIYBsixCS43WAlRe7VuWyL0qKCYNpOmbi7KHbUyHLFtiSH6WlRdTju3kyn+ui+24BbRuY1lOofFtlf3z8p9r1bZBH1dlu2G12wX8beSNy21HgNJ2LhpUtD+UzmtarSnJsfnh1loORW9fKbUGqRfFR5aSpTESSJMYrRVpmqB0ViAKmkwZ8bSiDVT04kWhu2Aek0+gxcW1mERG5KhDMR1hW7kLolYSJVcyzmgjj76eCeUtiRz2NxhFkQzoQrhI5c9NdVYkA6B0iszAysRKYbVI6jKpQYIScd4aVPnopiQ3ZtVAgkAJXbRzTNJRZCV/bsvgzTffJIoiPvvsMw4PDzk5OWE+n+P7PhsbG7iuy3w+LxGBer1ejuoZ4R6jWWCcEJMkKXUCcl13t6zil8sl9Xqdg4ODMkAZHsK6Gp4J/Kve00oK2bgcrjtamWUCl+u6tNttNjdzdbSTkxNarVZ5LcaHwegpHBwccPfu3VKEqV6v/1l2x+uVs+u67O3t8eLFixKBUEoxHo9xXZd/+2//LY8fP+bJkyfXxiXXg+x6MjQajTg+PmZzc5O9vT3eeuutUmTIJFVwHdI3yYIZwTRTBkZy2lT+L08VmLFNo35o3sdms1maQq37VrxKhEBmYAsbaeebTJSmpMJic+8hdz/8K9546y3u77TxdErvvMvzwxc8PnyWtwYuj9jYaDKejBgMBkTzZW58lGocR9Cst1ksQmItWERLXpyf8OXXjwmVTe/ymCSL8MjIkogoDNH1BkgKMpEiCWMEGZ1Oi7v37vDmrZvM5ym/f3rJi26Xy4sLpv0rZBritAOkXyexBUQjanUH33OpBR5Vf8yz8ykXEw3CKja4nMxlRrpMcNAIdJYLF/UuL9m6eYOtg33qtQ0yISDNzVL8oMFGe4/h5RTHgv5wjrJs3EqA6/tYWrJz6w6Vuk/T8Rh2L0mXE7QlcKo2aRIRVGzq1SpYgizTWI6H7Xp4rkez1SQKQ6w4plrzUBmkWiMyi3ajTT0IuLlX552DFtuVCuEk5exyxtPzMae9MVejAcPhkPlkwHIxQsqYajXAd3LqXU6oUvl4YZb3zYWtcGyBKPTwXccnDq+YL+YoS2NZDpq8ykTlED2FWE6tanNnf+OVfY4tWbDnjc5+QUSnENSS5D1xbcR1ZD7uJwvfAtNbty27TAhy18k1hz9LlmQ6XQS1vDVhet4FsVCJ3KXQCPoWfXCzyqC4/rvivxpWY5AFgdFAGUoXuv96/dHrBY0ujJRyVMRgYFrnaElOxNMFsTBbf9baXqRKhGW1r+WBeWXUlpVBM4fzc4hDF/yAJI2v8Q9UcXyUKoSO1iSLAcvO2y9yragyvASlV5/RVKekWhlGIKmwcNMMLSWpBKE0UmlUIUklRYIqEg9RJkwWWuWaGUqmWEKDlOTCVjmSZH+PmZJZf9LtsNvtcnx8XBrvuK6L4zgsFgt2d3cx423j8bi0RjaB1QQcEwCr1SqdToeDg4NrAhUm2IdhyPb2NhsbG8xmM0ajUTkxYN4883hDYluHwMs3oOAV5G/oajZ/HT43s/paa4bDYYkMGGKimfsPgoCbN2/y9ttvs7GxQa1WK0mL/9JlpieM1sL+/j4nJydUKhVc1y3Fkoxz43vvvUe9Xuebb74p78V6oF1vmZjr+PLLL/nrv/7r0utAKVVqSaz3/14+L5NsdLvdsqVikB6TFJjHGZTAJGZJkuB5XvkTx/E1YuOfc6/+Ry2hRSne47gOtfYGdrXJvff+kjfeeZtHOy2cNOH8vMfTwxc8e/6U45NDes++peJloGtMpzNmi5BUkZOM8q9Wrl3gONhC4rgOoU743ZMvyWJNfznEdqosJwOyLCVNE6rVBnbg5xtWEpFGC4LA58bBNm/eu03F8fjiSZcnx10uLy/onhwz6Q1zTfm0QXu7Ra2Sz+0L5eLYDpuOQ9V1EFIRZQuG06LnLVhrG+T3wRCzhGUTxQmT8Yg0zdjZvYHv1ouqIyNRGUoKhBNw/vQZzWaVwWSBv71NUK1iWza27bNz8y71dh0vjphMh0hP4Fd8pPSI4iWu59NptgHBIoxB5Gp7IlWkYQrCo9VwaNYE8TJmsozQ6RLPhv3NgDcPOuxVK8xHMUfnI55djDgdTBkNJ4wGQ8bTPsvxgHg5IggklvCQWuFIgYVFlKVkInewNMptjuOipSRZpkjLJYxiwiTB8lxUZpMmCVmWgM5y3klBVNvYCNhsbb6KjzCQy/AWtDQMq10WgdvMnCOsEgq3LBspCo1/O9f9N7+3isCfawEUWvymn40GlRVRvajDy6hvEAeBznJoupTvZRX0V0sUevwCZY5fEgZNKyE/f9NZN7V//nTjr7A6tpFFluZROVOvLNCkkBjAwsD4ZgxzZcm8phxY3D9UgRxQcBh0jsJolZNPVYEgZGlWxDWTkeX7Z5zGeQLOqq+P4XsUpMAM1hIPVUwc6MIiXRWOoRlCK7xU47gaR2csM0moJShwlMbWEBT8glkOGOWtLRS2lrgKElJCmaGFBVJga4mHhWtJMv54MfuDCcEvf/nLEl5fD0CG0W9kjNftgg0j/+rqina7XQZVI/Rz+/btsjXQ7/eZzWYlcdAkDbVarfQyaDQavHjxohTNMeN0JtlYh9LXCYam554kCVLKcmwyCAKWyyVHR0ccHR2VjodHR0elmqH5cjiOw9bWFu+//z4PHz4srZjXZ1pf1kMwv/9jy9yb4+NjHMfhjTfeYLFYcHZ2BlAqIn7++efcv3+fjz76iNlsxng8LkcTDfKxLhQkhCg5BqPRiG63SxAEbG9vo7UukYLvq9Zfnkg4OzsrXR2DICjRg5eJg+ukx8ViwWQyKd9z09oxx31VSUHu4mujLahtbNK60aR94wH333qDN7ZqVLOIbw5P+eq7I07OXtC/fEH38Cnh4Iz9N+8zGg5YzJdkWqAdBylBZAmppejOR9iOTy0IqFZ8sDRPLw5J5gnSBUcsmM6nSD+gvpxSqTbZ3DsgJYV4juMKtnd2uH/3FpvNOmfnUz775oyLfp/+2Rm9k2MmgwlCuiRxTGRl7Ns71JwW89TG1ZKqZ7HRsXFdSFSXJ4dLJvOs0K8ROWSamjlohRAulhuA5RAnKfPZEt+u4cjcPjZ2LFJHol0JvssiS8imcxLXobO1TVCp5f1Tx6FZ28b1XGYXL3AaNSq+S8XzEVISpVX8Wp1KpUYWJyRqkbcx4ph4PiecTKltb7C3u4WrxsyTmNTV4C2w5Jx3b7e53Wow7i355nmfw+6Q8/GIwWTCfDBjPhkxn/SZDwdkyQwpPZKsgco0tgQ/8OmNp8U+kc9fq4JgaarTKEyYhwtineAGHunUQM55a1EW/3iBxfZuE2G1XslnGAyZrEjstBmRK1AAmesCSMsuqn675Fi5to2QFhq9hpiuQrgJnHllvS5qpBBaF0iDYC2dLKYxC3TAyoO6LEkCec+dNfEbgy6YI2Dgdci/oADCDOflP+s6AAVjkjI5URqEohRuLvrnmjXFvuIv8qevbJUtq0imLLt0hBTmBgt5rbI3Q/4Sw/Jnbf/MEwJVnH+Sxvl0h1L5WKjKENL8fV5ApanRvhAoJXPCpzajggJh2UgUjkppSkWrssRVNt04Y6AhkTYu0BYhO1KQpHCcaeaphdJQEYqOk9HEZik1Z3HGUllYKqMpMzatjKojGP25HIJqtVoKChkdgUajwebmJrdu3eLo6IiNjQ22trY4ODig3W5zdHREu90uq93t7e1SEdD3fVqtFt1uF4CdnR08z+P8/JzFYsHOzk5pQfyTn/yEVqvF8fEx//2//3e+/vprTk5OWCwWZQ/dBEfDJTDB3FTCURSVKn8msL3cbpjP59RqtdLgyIwwdjodHjx4wF/+5V/y/vvvU61W/yAB+KH1fUx/gxAMh0N+85vf8PTpU37yk5+UydLp6SlPnz4tDZX+43/8j7z11lv8+Mc/xrZtPv/8c6bT6TUBkpfNnsIw5IsvvuD999/n7//+7zk4OGB/f59Go8Hjx4/XYLGV3/bLI5GGV2C8JZrN5jWU5vuSIHNfLy8vyxaOObdXiRBkWASVAMuCaq1DZ/c2d27f5u5WgJ9F/PrzJ3z15BmDq0smwwtG3WPC6RV7BzdAWhwdPyeKwfcq1H0PQcbSsYlssJRFo15ns94kDSNOT09JsnyGXaUxmWUhMp1b+M4kg7NDKp6F6zj4VsrtO7d4+/5N9jtthv2Qjz8/5kXvinB6STo9J1r0CZVGCJf+YEZQt5lVaihfEdRqhJlFlghsC9pt+OB+iseUr1+MGS4gKdjZOWs8r3Qcy4YsZ5RnieD89IJhf0i72cxl6XwX36+hOnnfMnvyLd5ejQfeHTRVpPTAssEWOL5LNdhn2euiNITLJSrWOE6AE9TwnCpCW8gswbUdsigizVKELXCcKlvVhJ1mlUWUorIQv2VT2W5xY8fnZqPBpLvkt08ueHE1oj+aMBwNGE8HZMuI5XxCtJgSJUuEpVG2RYYoxt4ihA6pODZ24KMQhFHCbJZzhoKah0ATLhZE8RwtEiwJtlJEcYIR4dVIbAvqFYt2p8Ek+fMMzP5HLKVdtLbyKQ+ZV/qO6+B4HtK2seyVHfvK0nct+derYCvlKujmAfF6wF+Ly0BRyZayjoXKX9G9yLsqZh8xsPgaaoEJy0VoLirmvOde+CwYs6Ui+JvUYH1vUwWXQEgzQgmGQa8LIp1BOkra3hrYoIuEJE1VHvS1ICvOx/AeLGmjhVjjMZipiOL4xu2R1Z5mpJ8tY25XoBHriEt5DM1aUpHf5ywzwgQQI0hVhKfm7IuYG26ApwK6yyWHsc1U2wSW4qYfshNUcr7PeMyziUClKXsVzcMNj5YbgLb4x+MLjpYWDUdzv+Fxu17BEorM+TOVCi8vL/MH2XYpZ2tIZ//lv/yX8gN448YNoijixYsXbGxscHp6WjoemqrfjCIOBgM2NzfLKrLRaLC/v1/aHUdRxMHBQSkM9MEHH/Dw4UMuLi747rvv+OUvf8nx8XEJS5vzW1cqrNfrpZcBUCYZtVqt5DZonQsAGRVAc5xarcadO3d47733+Oijj/jxj3/8B1oDfyzAvTza93JSMJvN+Pzzz/nHf/xHOp0OWmt+9atfcXBwwGAwYGtrix/96EccHR3xy1/+kp/97Gf80z/9ExcXF7zzzju0Wi3+23/7b2WS832iP1prjo+P+elPf4plWaVokbE9/t3vfndNgGi96n95TadTkiShVquxv7/P+fn5tdbBy0iBycLXLZANV+FVJQWNVg1pVfDb2+zfvMm9g2326g7zwYz/89OvePL8W3rnp0SDLslihFQxNw92eXD/Pr/56guSNEVrhR/UqFYcFrMZsRVh+XW2alv40icZL1hMJ1iZwqr4ZNOc92L5bo5OJCnTQZdvpzOmkx5vv/02jz58m49+9Cbb9Sa93px/+vyYb0/PmY5P2Wg73Nx4B9+Bb591GS80CZrlNGR3d5Or6ZB0oQl8HxHs0AtdtrRkuy3w3rBxXMVXLyZcDmMyaeP4DmE4AzRCZVgqBqVILIdoPufy/IxoPEA5Adt729iWoFoNqFR2+Td/9xfs7W7zzbM+5/0xws43P+kEaG3nzHYdIZVCak2mlyASbK2QVEiTmHC2AJkzvTPpYFd9fKGwZZ803afqNrGCmKARcHDzJrd3b3LyYsDXzycc9id0R1dMJyOWswnRcsFiOQcb7GpAlkwJvBrgMh4uaNSWtGt15tMZllPDRiBtiSWcvEoVFsPxCEcLslhRqVVoNGqEI8E8i9FZmN8nbDJsAk/SrgfU/Ran01fyEQagVt9AWh6O7WJbVg77W0WvH1FW8kYzwLJEWQHD9SCW/1mUrDnDPzBVeamaV5DeZNlSKBIJjO4eq+SiPL5BGVZWySUjoOjvCyhgdHK0ptQoMKdU8CCKJCJPXKzVHmVRVub5gcF4J2htWhm64A4YHGFVRJl5BiPSYyYDUpGUQT9/XZ2T9cRqiqC8f2JFtAbTklslGMJwAMu9WRdJRnHnpFwlP4W1tqvBlxZV6RFYNs+TDlU1o1Wt0fJ9fKWpWxFtW/FN7NPUGbc7bdKGh600GyJBEvP7acpNz+bR7g7pHKq2wLEFpyl050veq/2ZpML1vnu73WZjY6N01MuyjP39fXzf5+nTp+zs7HDnzh16vR6LxYKtrS12d3dxXbeEyWezGfV6nfF4TBRF7O3t0Wg0WCwWDIdDKpUKw+GwHPe7e/cu7XYbIQQ7Ozu88847/OIXv+CTTz5hMplwdnbG5eUl8/mcyWSCUopKpcLt27dL3YCdnZ0y+EVRRBRFxHFcJhFGYMmcy927d3nnnXd46623uHXr1p/lU2A+eOuBejgc8vvf/55PPvmE3/3ud5yfn3P37l1+8YtfcHR0RBzHfPnll7Tbbd577z2klPzX//pf+du//Vs+/fRT/vEf/5E7d+7wd3/3d/zn//yf6fV614Kz+ZBCDuEfHx+XIky9Xo/pdMr29jY//elP+eSTT1gul3/AC3i58s+yrJz0MCTMi4uLayJKL1/ry1+UV0koBLCcAypbG9y/v8+trSpumvD06zM+ffyUi/NnzC5OmfdOGY+ukAK2tjrcvLnPZa/PbDjOCVuWhW1JlFBM0wyn0Wbn4IBld8zp1RXxIkIIie15KGVjBxVUFBJPx7iujy4k6OtNi5u393nnvbf5Nx+9S6vS4PDFmM++OeerkzPG0wt2qh4tLxeTqdcbbDbmVN2Urc0OG9sdgqDCpuXSveozmc6pVgIqwSYXM4XjQbsJb99zsKSFa004G6coJJ5TJUpGJGqJki4qDVFxigo7nDx9wq1/8zcsl4p4OiMNExKlcGsuQXsHmUo2mlWG0zmplHi+R9Co42hJy0rodLaIlyHhdICUGifw8CoBjarNYp6SSoUgQ9sW0vHxqwH7jQCZDInDHjfvHuB5DWpVD0v6fPHxN1yOGuiaS79/znQ8JAznJFlEkkSMBj2sioNtO3Tam1ipJl2EzKdjzmxBp9WkVa8QxhEZYDsWluNQb1ZZhCk1u8psMCGJUqS0cGwXlSjiJKWEpkmRQhH4VSpBjTB0WSxenf9xrdpES/taNW8KTTBtOWlifBF/1qrVss25dtCCoJdPpxQ2yvmjVtW1AMogKVkFejDWypjnlGv1/6Yfnx/7eks1nx6gvKL8mYXFcNnjBzCTAflRTDJTvsp60lHcF6Vzmew8Ufl+iFx8zz0xUw05aJCPAZr7KeVa0sG6Oq05//LurV2jkYReodKQ85o0YOyclcrbfKmQzLIKOkoZOT735CDncmQ+EgtfQ5DGKAGJtvAzC1sEaJmRCYESNrZfJdVTHHtJM2ijtc1IaDI7pdX08Zw/ntn+YEJgguatW7dK50JjmRsEAQ8ePGA0GrG/v1/OtPu+z+bmJu12u+QHmF634RpMJhPeeOON0kkxSZLS6a9erxPHMUEQlJbIlmXhum45yfD++++Xo2/Ga2E+n/PNN9+glKJarfL111+X7H0DZ3c6HbIsK/vjzWaT3d3dkji4u7tbqg9WKpVyYsHwEIBrRL719ccCX5ZljMdjzs/PGY/HTCYThsMhaZpyeHjIcrnkww8/xHEcnjx5wsXFBUmS8ODBA9I05YsvvuDu3bscHh7y5MkTsizjb//2b/nVr35Fr9e75s5ollKqVB4052VGHYUQfPTRR3z88cfl9ML6NZif9cAeRVGJYBhSpyFWmp91xMCgMy8nCq9i1W7u8ODGBi2Z0Xt2ytllj+fnZ1x0z3Cn59yuaKptF506IF0cp8JXT47o9vvE8zmVoEaCJhICaTm0tvepVasMuz0m/T5oiQhsdApJlGAjEb6N7waoTKGEAktSb7W4f/8t3nnvHf7yw7fZqLX49mjIF99d8uz0kuVkgG9pkixlNlcEgcP+wS0qlU3G0wjl2YxlSk1aOPWApmcTjicki4hIS+xgi+4ypVITtFoZD24lKK1YpBMGc43juiTaJU1CVJZvckmUcHl6hFVrkNRaVHfaCK3RaYJKIrI0wk0yhCPptAI2lg1iWcWuNnH8BhKLWTQhIR+rQoAMPKxqDSEdNBYbmx2wbSbTOUgbt9qg1mjgBxnxOECRkagFW809SCLOj4/57mTB48uAWs1CZXPieEmlEbDV2cB1HSqnVU5OXpAuElr13H1ROQlhpojiGCFtsG0c2yl1/oVWCKVo1avESYyjLWZ6Rq8bsphOC71/idY5adTzPeJ0SaYSogRmscdSO3/i0/Z/35L5cEFRcRtDnlyqCLHqlpdIv+m7G2Gea0tjJHqlzC2DDeyP1sXM/HpxYIJ53nbKirSEUi45h9aNlLDhJuRL8H3f/HUeFmt7zXrhr1SGcSLWJSZRHjaX8V1LBlR5rqJ4HwGlc6JicY7lZJp4KYi/FMDReZiXssxnyIrfmwdmWVomJznfWBTmQkVSUpyoQVG0EYMw10tug2wJgdQZiZCkwkJoic4Strhk27Y4jVLGSYxUkthShF7APLVAhQhLYiURWsdgx8SOZKJqNKSLzZw0TUiRCEtTkzF35RKR/fG9+AcTAt/32d7eLiv38XhcCtDs7u7S6/XY399nOp2WFroGXjeiQkbzf7lclnbG9+7dw/f9UuVOKUUcx+zu7paQvlElNAmFZVmlwY9h5QMsFguazSZ37tzh0aNHjMfj0pbYjPCZSYNarUa/3y/VBoMgKNsXm5ub1Gq10nXRGBYZMoghM67LC5v/fl+rwExBzGYzPvnkEz799NPSSrlSqTCZTEqVxyzLePjwITdu3CBNU4bDIU+ePOGtt97i6OiIxWJBvV4nSRIeP37M7u4uH3zwAR9//DHD4fAanyL/IuU2yeYerpP/zs/P8TyP+/fvc3R0xGw2uxbMzf+v6w6YhKrb7ZKmaTnVsX7t69oDL9+HdcTg/+n1YKdB2O3xuD9mOJ0xmk0Yjnqkw0vutH3qtsayG9iew3SZMpotOO12mcwm2GnC7e1dxkmE9hysSgXPcelfnTNZzIjSKHfwtARKgE40buYgtMhFXlyJsqHSqHNw4zZvvfM+H73/NgcbHU7P5jz+7pLnZ6eM531suaDquvi2jS3AlhLpaPzNDu7tDtX9fSxf0mnUsARkaUo0HjM8PePi6AUVx0fYLfphyk6lTqeVcStOmSwzZkdTUmVhuwEqjXPZXpmPl8VpzCJaYAcNgo09LJlXSVmakEwmDL/7hmbL52Bvh+bGJuOFZhIJZqkiFRbSCyDVpGGE61jUKxX8oEaaSeazhCSZMl+mKDfArzeoNdvUghppMqHWeEgtmOP5guUiJJzGDIaK2RRsEREtlyhSgkaVzvYmzXYLW9r4XoVGvcXTrx+znM1wLIs4TYjTjGyZsZwsqPm5ToiRudW2wnIFaZIhpIUkN2Ybj4ZMp2NUlqJUitJ5i6G9sYHrSDxfYvt1lsLFrb46HQIp8iCej+rJEpIuK+Bijy/Do9YrOoAQBXqwrpJnpv1UwQ8Qps29Ok5xjNKHYA3CN3yAHN7Xa49fPcZU9KtzW/XQjeZ+2agUgH6Zo6XQhRq3mUZ4mce0jmxmRgRtbasRRQvDbD+GdFi+TnF6WhVoQGEfbNALM5SVj/CaA4nrxy1eM9O6vN8r1CK/DysZ4UJeWueTC1qra+0DrVOkVnjE7DoOl4nDWeoT4hCQJw2xsEjSBKUnZFSJMxtLJyBDMiUImaJ0hlCSUCekAjpCsSVSMmVzHPl/9HP2gwmB0RVYtzk2I3GmSkzTlF6vh1KKra0tHMfJ9dmLqt7YGJvZ9K2tLRqNBuPxmMFggBC5z0C1Wi0dCY2ugelFCyGYTCb4vk8YhhwcHOD7Pq7rlq6GQRBwcHDAxcUFV1dXZcvCcRzCMGRvbw/Xden1emxtbZWqiK7rlm0DE7SMrPJ6FmuIci+T6EyiYPgLJokwfAkzIfD8+fPy9ZrNJmdnZwiRb0qnp6dUKhUajUbpAdHtdul0OnQ6HcbjcYmOXF5eslwuqdVqPHz4kC+++KK0J14PvuPxuBwJXOcHJEnC0dERt2/fptPplMRLc20vkw7XA38URde0HV5+/LqZ0f8sCMGs1+XstMfVeMosXDCfj1gMLpCTAZm/ia5Z1GoVbN/Dmy6I44ggcFgsMurVKlUvILUkqWOhlWI6HjKdTsgynRsKCYGSGm0DjiYlo9psUg8quc2r69DZ3uLhw4e89+4bPDjYZzpO+OrpBYenl0zGYyyVUHEcJILFMiwmWRRYLo2NTeo37+K1d0AIfJ1gaYWyFRXpo6OUq8suizCk7gVMogpNBVUvY7udcnc35nK44Gyk8iTFckmzMK+Ycuo90WxG99kFi4GFAFSaq8eF8xlXx13SpoUvNWmsicdRHlQDH29rh6Ba5yqoID2fNIpACWzLIs40caKYhxMSyyVotml2OtTrTQLbQyqLWlZFJmcMhzFTvWA2Cjk/GzPoTYkyRdAM8AKXer1GUAnwHR/P9Qm8KoH0GF916V2ek0mFcCRWmo9Tnp5d4AVVqrUmUovcrEiBkBnz5RzLcrCER5ZmRRtxSZrFaJ2r4ElLUN/aolVpInSKtgV24KEXr0Z+u1wm1hXaAHnEKSrU9UBVQNh5sa6Kyl2XQdGM86nC6hhRfBYwUwd5tqDXI+vqFEDrko2vtNEi0DlHo9xrTDuhOLeybSBMVnAdqzdBv7iwMl7rwmdhHfZf21fKQmO96NDl/EFZjef5jl5rU1BI++dqgTkyYGSfRZlUFM2Z1fUZxEnk3AuT5JiLEOuiTWXiUdAki6Qnn1vISbuaAulQ+ftokRLokE07xVOK81QjMh+kRIkMLRSOFtRIaBKilEcswNESqSSe0jSzKTVLkOl8uiQQCR0UdaWYZDDPVhyvl9cPJgSNRqMc1wvD8FpAC8OQnZ0dzs7OGAwGOI6D53lIKUubZOOSaMyEXNdla2uLi4sL+v0+y+XyWiug2+0ymUxKieB1qL7f79PpdJjNZqXGgAlUSZIwn8/LkcIvv/wSx3Fot9tlH73VapWVtml5GIEdM0lhxvLWbY4NOiGEKEl45nUNOQ9WCQHk6Mjl5SUvXrwok6Zms8l3332HMXryff/aaN7z58/Z3t4u3QXn8zlPnjzhgw8+KFs3Jmm4uLjgyy+/5Cc/+Ql7e3tkWVZW+mYZ9GWdeGiCe7fbxbIs9vb2qFarJXlwvV2glLo23riu9WAe97Kb4frv/mdZX3/zHcNFXv0t52Omgwtm/VPkcsELnXJzv0W9U8cVUBXQ8l32NlrocEKnuYHj2Hg6A52xmE0Y9rpIS+Dggc7d4LQml491BeDQ2t6l1W7jIKhWqhzcPODttx7y5v3buNLjs2enfH10Rn94hQrneBZIyyNWiuF0Rk1pEtvCrTbZaG6y0+4wni4Z9RdMkwW22aCEIg4zXC9gMZ2Quh5YVSZxhu9n1KsJBxsL7u3M6Y2WpAgs2yVJolzGNMuQZMTTKV/9t3/Gs5qkSUoaZ6RJSqJiEj1huGnj6pjp5YxoGpHoBKvts+tZBLUqTq1OtdGmezzEXUZ49Yw4VSRKs9RQabZobm7TbjZpVAKqvovn1kmGCy4PhwxHMyqeYD6ccH5yxjQckzk2O7ffxQ08XMdBxxlJGOFJr9iGJe2tTRbRgjSLsVRu0hPNl5x3L2m0Wth+BVs6+d6sNDLLicRaJfheMZNfGOqkaQw6K1rkglQLsHwskWG5EHgOvf7ylX2Os0yteva6CCWCVWAuwtw1IqEWhmuHCW3FXxTHWfXQ82ObUj4PWEroMuCVY4CGLZ8D8ygKPX/DUygpA+tjh6tADJQkxRV6sUIcVujr6tpXLQsD5V9v0WpzESZRKe+POa7EFPImgdJrr2faKyZxEawZM5vzNnbHa8FesVboFPcw95XQpcaALI/DahxSF3dB5OeW/0qCFjhaURMxbReII3xLsoXFlbBLSWNLZWw5iqa2iVJFIgUoh0yDR8Y+ETUBF5mFJSyaMqUhMpziHWi5100D19cPJgSe5/H8+fOy12yY/1prKpUKYRhyeHhYwuwmyNdqNR49esRsNivH1YwzYhiG/PrXv8bzPNrtNltbW9RqNa6urnj69ClJkpScBBNozDSAQSlGo1Gpf2B8EIwscpIkfP3110RRRLPZZGNjg06nw3K55PDwkHa7Ta/Xo1Kp4HleaTRkWgPGDwEo2xLNZrPspRs3Rc/zyiBpEhTIofPRaMRXX33F6ekpb7/9No8fP+b+/fssFgsODw8Jw5AbN25weHh4rS1hJIjv3LnDdDrl4uKC3/72t3z00Udl8nD79m2Oj4+5uLjg448/5sc//jGQ+0sY34eX4f/1EUDD5zg+Psa2bZrNJkopjo+PS1TAyCObRMAkPevB3iAkL5sZmVbKOjrwKomFg9mcKBOQpCynI8J5n0wvmKsFz64inIpLLC30csFyMiOaRzhAu1Kj0qxjWy5ZOGeymDAPZyTpEk97SEcgZI4IoHI4UFo+9eomW9VNqo0WwoatnS3eeHSf9x7co1Np8vWzPr/99pjuuIuKB6jlhDhVTPwqXquOdCRRlkvmqiQjms6ZH55y8t0xL15coOxCEAnT48yw7JTADVguFwS+xyC2qHsOVS+g3ahyb6fO46OI4SJD2DZYDkpHoFIQMUk848nn/1iY0izI4jhPGKSDW/Gx3LvE3m3Ooi6zKOTqssvy92N+NFkQvZsRRZqqFSC1JklS4liRJjDNEvyNbTb2btKpNWkENlvNgJ2NBgiHF7Mrnp05HJ5mtBoTktklo8EVQdNl7+E29z94yOxqznw6J5zNSMKI+WSK63gkOkU7Np2dPWaTAfFyiqVs1BJQKYNej1qjQbXaxLYdlBDEaYIf+LmTolZYjoXjeghpkWRJyVxPk4zjL58w3zznxs0N9lo7sEwQ2atzO4zTbE39b/UjhEBauhARNNWnCUMKuWaXTFmTmt67yCWONQUPwFS3KrcuLoJ+EbmLtkORSIj8+FrmwU8VQR5tvu+rSlmVQTU/bWlZmJHBdaJePiK7ShDyJYszyhOPTGWlNXAJI4iciphzEFSRoFP27IXIWQ9SSIQlc7OlIhGQYo0kwEpfYVXZU5yfaRGvUOOSPyElhoxYKiQW+YjBI6SQq3MsX83K72dxfy2tcRBYOMQCLE/QsSwSZbGIFfMEFplkqDMqlRpCVRjMYjLXQkvJBImjoVqrsEwSBomFsG20lRHZ4FoWTW2zwR8v2H4wIXj69GkJE5vRw1qtRrfb5eHDh3zyySel1K3v+yVxTUrJzZs3OTo6Kj0OjE7BZ599xtbWFp7nlWTFwWDA559/XkoI+77Pd999x82bNxkMBhwdHbG/v88333xDFEWlql+lUimdAI2T4Y0bN/Le4Hhckvh83+fZs2d8++23vPfee/T7fYQQ7O7ucvv2bQaDQamTcHV1xXw+L0cQDSrQaDRKJMFo+K+v9eo5DEPOzs74T//pP5EkCUEQcHp6yo0bN0iShN/+9rdAnnAZ50LDOTg7O6PX6/HRRx9xenrKfD7nd7/7HXfv3qXT6TCdTmm1WvR6PS4uLvjiiy949OgRtm3z1Vdf/cE44Lo5kjlP8/8nJyc8evSIjY2NMtFaXyZRMdf1Mvy/Huhf5jC8bGr0qloGic6YTUdE85AsnmG7Dr7fod3eJAlT3FaLb54fEi1mzKdTxpMJiRRIYfPujXv0rq64mg5JrAy76iKtKp5ysFyPUC0KuVeQmcDFIfDqKGUhtEut1eCNRw94/4277DaanJ7N+O+fH3I+uEKEY7YbHkvpMpgtiESGUhm1ZjMn9iUJ4WzKs96Ez6+GfPfV7zi5eM69dz6ksrmFEMUGZUGl7nJ3f5fL0zHKCwhllbmGJimBX2OjtWB/UzJ8kROYDKSvdIZjOWTaBQecBjiZTTwOicMY4Vl4gWTSm7PZ2OYke044HJBGc0JC/uGfPuahVSXzBLPTI4STgZR0p0syy8Fvt9k9uEsjqFGz4dZmje12HR0KDk9HvDgfUN/awumPiOw5omPRbm2ys7PJz376c5JUIJs2aMUiXBKrkCRNkTIniFnCphpUsFGEts1UjIntKZ7vMlvOGQ2HeWJLBVGI9uQyv5o0mZNlMZ7v4PuVPIiKAmzXmkTNcy8E6eE7HWZZjPoz5Mr/Ry2VZUXQNeS4FQSvs3x0bTWTv6YxIlS5/ZdhWuTsdp1DJyWqkK11REzwy+2Ni4CHRoscAlBZYfhTeD1QKgQaxEyUkLkJ/HJtpE8X5ABlHLuLREUKq2Tkw6ptIYvgapV7T7bKGQqbYlO/K52hM7M/FUgKEkWGTstLzM9nDeGXReslx5/yXxe+jrkyqaA8bzDJh6agM+aJgWnDAJYwn5ec1CqFBCkROlclVKa4klautqgztHaY4rBYpjjhBGRK4kAsNCkOsfCZZxbOVCCkTWo7CCQZikEGk0zjxKDxSbHQUjGXLqkWXEUZKlPYafBHP2fiVY+FvV6v1+v1er1er9fr9erXq8PAXq/X6/V6vV6v1+v1+p9mvU4IXq/X6/V6vV6v1+v1ep0QvF6v1+v1er1er9fr9ToheL1er9fr9Xq9Xq/Xi9cJwev1er1er9fr9Xq9XrxOCF6v1+v1er1er9fr9QL+f64suEjRelz8AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["dls.show_batch(nrows=1, ncols=3)"]},{"cell_type":"markdown","metadata":{"id":"E9oKyms31n8h"},"source":["Remember that if anything goes wrong when you create your `DataLoaders` from your `DataBlock`, or if you want to view exactly what happens with your `DataBlock`, you can use the `summary` method we presented in the last chapter."]},{"cell_type":"markdown","metadata":{"id":"87p7yG-n1n8i"},"source":["Our data is now ready for training a model. As we will see, nothing is going to change when we create our `Learner`, but behind the scenes, the fastai library will pick a new loss function for us: binary cross-entropy."]},{"cell_type":"markdown","metadata":{"id":"tI8IPX0h1n8i"},"source":["### Binary Cross-Entropy"]},{"cell_type":"markdown","metadata":{"id":"aC2QDKo71n8i"},"source":["Now we'll create our `Learner`. We saw in <> that a `Learner` object contains four main things: the model, a `DataLoaders` object, an `Optimizer`, and the loss function to use. We already have our `DataLoaders`, we can leverage fastai's `resnet` models (which we'll learn how to create from scratch later), and we know how to create an `SGD` optimizer. So let's focus on ensuring we have a suitable loss function. To do this, let's use `vision_learner` to create a `Learner`, so we can look at its activations:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pllECWTQ1n8i"},"outputs":[],"source":["learn = vision_learner(dls, resnet18)"]},{"cell_type":"markdown","metadata":{"id":"Dhl0z9yf1n8j"},"source":["We also saw that the model in a `Learner` is generally an object of a class inheriting from `nn.Module`, and that we can call it using parentheses and it will return the activations of a model. You should pass it your independent variable, as a mini-batch. We can try it out by grabbing a mini batch from our `DataLoader` and then passing it to the model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0e_UmZH51n8k","outputId":"4d8f4846-7f59-48cc-c923-a0f634109403"},"outputs":[{"data":{"text/plain":["torch.Size([64, 20])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = to_cpu(dls.train.one_batch())\n","activs = learn.model(x)\n","activs.shape"]},{"cell_type":"markdown","metadata":{"id":"d3L3gn8E1n8k"},"source":["Think about why `activs` has this shape—we have a batch size of 64, and we need to calculate the probability of each of 20 categories. Here’s what one of those activations looks like:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0dfALZm-1n8l","outputId":"5c7650be-5a31-4373-b1e7-a3cf10ccaca1"},"outputs":[{"data":{"text/plain":["TensorBase([-1.4608, 0.9895, 0.5279, -1.0224, -1.4174, -0.1778, -0.4821, -0.2561, 0.6638, 0.1715, 2.3625, 4.2209, 1.0515, 4.5342, 0.5485, 1.0585, -0.7959, 2.2770, -1.9935, 1.9646],\n"," grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["activs[0]"]},{"cell_type":"markdown","metadata":{"id":"aycZy-h-1n8l"},"source":["> note: Getting Model Activations: Knowing how to manually get a mini-batch and pass it into a model, and look at the activations and loss, is really important for debugging your model. It is also very helpful for learning, so that you can see exactly what is going on."]},{"cell_type":"markdown","metadata":{"id":"NNMi57Ch1n8l"},"source":["They aren’t yet scaled to between 0 and 1, but we learned how to do that in <>, using the `sigmoid` function. We also saw how to calculate a loss based on this—this is our loss function from <>, with the addition of `log` as discussed in the last chapter:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-MJmMbjT1n8m"},"outputs":[],"source":["def binary_cross_entropy(inputs, targets):\n"," inputs = inputs.sigmoid()\n"," return -torch.where(targets==1, inputs, 1-inputs).log().mean()"]},{"cell_type":"markdown","metadata":{"id":"tnuigK7y1n8m"},"source":["Note that because we have a one-hot-encoded dependent variable, we can't directly use `nll_loss` or `softmax` (and therefore we can't use `cross_entropy`):\n","\n","- `softmax`, as we saw, requires that all predictions sum to 1, and tends to push one activation to be much larger than the others (due to the use of `exp`); however, we may well have multiple objects that we're confident appear in an image, so restricting the maximum sum of activations to 1 is not a good idea. By the same reasoning, we may want the sum to be *less* than 1, if we don't think *any* of the categories appear in an image.\n","- `nll_loss`, as we saw, returns the value of just one activation: the single activation corresponding with the single label for an item. This doesn't make sense when we have multiple labels.\n","\n","On the other hand, the `binary_cross_entropy` function, which is just `mnist_loss` along with `log`, provides just what we need, thanks to the magic of PyTorch's elementwise operations. Each activation will be compared to each target for each column, so we don't have to do anything to make this function work for multiple columns."]},{"cell_type":"markdown","metadata":{"id":"XcqbwGb81n8m"},"source":["> j: One of the things I really like about working with libraries like PyTorch, with broadcasting and elementwise operations, is that quite frequently I find I can write code that works equally well for a single item or a batch of items, without changes. `binary_cross_entropy` is a great example of this. By using these operations, we don't have to write loops ourselves, and can rely on PyTorch to do the looping we need as appropriate for the rank of the tensors we're working with."]},{"cell_type":"markdown","metadata":{"id":"8UHNu7zc1n8n"},"source":["PyTorch already provides this function for us. In fact, it provides a number of versions, with rather confusing names!\n","\n","`F.binary_cross_entropy` and its module equivalent `nn.BCELoss` calculate cross-entropy on a one-hot-encoded target, but do not include the initial `sigmoid`. Normally for one-hot-encoded targets you'll want `F.binary_cross_entropy_with_logits` (or `nn.BCEWithLogitsLoss`), which do both sigmoid and binary cross-entropy in a single function, as in the preceding example.\n","\n","The equivalent for single-label datasets (like MNIST or the Pet dataset), where the target is encoded as a single integer, is `F.nll_loss` or `nn.NLLLoss` for the version without the initial softmax, and `F.cross_entropy` or `nn.CrossEntropyLoss` for the version with the initial softmax.\n","\n","Since we have a one-hot-encoded target, we will use `BCEWithLogitsLoss`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"52SZ2jWs1n8n","outputId":"ac62f05e-93fc-4892-adc8-4b3fe2839b5e"},"outputs":[{"data":{"text/plain":["TensorMultiCategory(1.0524, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss_func = nn.BCEWithLogitsLoss()\n","loss = loss_func(activs, y)\n","loss"]},{"cell_type":"markdown","metadata":{"id":"Lqhyrlam1n8n"},"source":["We don't actually need to tell fastai to use this loss function (although we can if we want) since it will be automatically chosen for us. fastai knows that the `DataLoaders` has multiple category labels, so it will use `nn.BCEWithLogitsLoss` by default.\n","\n","One change compared to the last chapter is the metric we use: because this is a multilabel problem, we can't use the accuracy function. Why is that? Well, accuracy was comparing our outputs to our targets like so:\n","\n","```python\n","def accuracy(inp, targ, axis=-1):\n"," \"Compute accuracy with `targ` when `pred` is bs * n_classes\"\n"," pred = inp.argmax(dim=axis)\n"," return (pred == targ).float().mean()\n","```\n","\n","The class predicted was the one with the highest activation (this is what `argmax` does). Here it doesn't work because we could have more than one prediction on a single image. After applying the sigmoid to our activations (to make them between 0 and 1), we need to decide which ones are 0s and which ones are 1s by picking a *threshold*. Each value above the threshold will be considered as a 1, and each value lower than the threshold will be considered a 0:\n","\n","```python\n","def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True):\n"," \"Compute accuracy when `inp` and `targ` are the same size.\"\n"," if sigmoid: inp = inp.sigmoid()\n"," return ((inp>thresh)==targ.bool()).float().mean()\n","```"]},{"cell_type":"markdown","metadata":{"id":"h408g1dC1n8o"},"source":["If we pass `accuracy_multi` directly as a metric, it will use the default value for `threshold`, which is 0.5. We might want to adjust that default and create a new version of `accuracy_multi` that has a different default. To help with this, there is a function in Python called `partial`. It allows us to *bind* a function with some arguments or keyword arguments, making a new version of that function that, whenever it is called, always includes those arguments. For instance, here is a simple function taking two arguments:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qJiwyFR51n8o","outputId":"3472ad7c-6fa4-41e7-aa83-9c32eb16cfb5"},"outputs":[{"data":{"text/plain":["('Hello Jeremy.', 'Ahoy! Jeremy.')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def say_hello(name, say_what=\"Hello\"): return f\"{say_what} {name}.\"\n","say_hello('Jeremy'),say_hello('Jeremy', 'Ahoy!')"]},{"cell_type":"markdown","metadata":{"id":"wFgBmp8M1n8o"},"source":["We can switch to a French version of that function by using `partial`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MjpB7_O41n8o","outputId":"09419775-52e7-4d51-a529-949b2715cc43"},"outputs":[{"data":{"text/plain":["('Bonjour Jeremy.', 'Bonjour Sylvain.')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["f = partial(say_hello, say_what=\"Bonjour\")\n","f(\"Jeremy\"),f(\"Sylvain\")"]},{"cell_type":"markdown","metadata":{"id":"pXZsDZwK1n8p"},"source":["We can now train our model. Let's try setting the accuracy threshold to 0.2 for our metric:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ycWPmmws1n8p","outputId":"fa5157c9-5e0f-4fca-9a70-6afbe98477f3","colab":{"referenced_widgets":["c484136db37545eaa1d12a678f33a5d0"]}},"outputs":[{"name":"stderr","output_type":"stream","text":["Downloading: \"https://download.pytorch.org/models/resnet50-0676ba61.pth\" to /home/jhoward/.cache/torch/hub/checkpoints/resnet50-0676ba61.pth\n"]},{"data":{"application/vnd.jupyter.widget-view+json":{"model_id":"c484136db37545eaa1d12a678f33a5d0","version_major":2,"version_minor":0},"text/plain":[" 0%| | 0.00/97.8M [00:00\n"," /* Turns off some styling */\n"," progress {\n"," /* gets rid of default border in Firefox and Opera. */\n"," border: none;\n"," /* Needs to be in here for Safari polyfill so background images work as expected. */\n"," background-size: auto;\n"," }\n"," .progress-bar-interrupted, .progress-bar-interrupted::-webkit-progress-bar {\n"," background: #F44336;\n"," }\n","\n"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracy_multitime
00.9429990.6983090.23089600:05
10.8225290.5675670.28715100:04
20.6045350.2001340.81832700:04
30.3597540.1230860.94555800:04
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n","\n"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracy_multitime
00.1337480.1167840.94372500:05
10.1171250.1070550.95083700:05
20.0980620.1035510.95087700:05
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = vision_learner(dls, resnet50, metrics=partial(accuracy_multi, thresh=0.2))\n","learn.fine_tune(3, base_lr=3e-3, freeze_epochs=4)"]},{"cell_type":"markdown","metadata":{"id":"7zTNEeJ-1n8q"},"source":["Picking a threshold is important. If you pick a threshold that's too low, you'll often be failing to select correctly labeled objects. We can see this by changing our metric, and then calling `validate`, which returns the validation loss and metrics:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ty54rlYP1n8q","outputId":"446a868c-4da3-4c0b-b00c-4b959a194566"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["(#2) [0.10477833449840546,0.9314740300178528]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn.metrics = partial(accuracy_multi, thresh=0.1)\n","learn.validate()"]},{"cell_type":"markdown","metadata":{"id":"hSn_taT71n8r"},"source":["If you pick a threshold that's too high, you'll only be selecting the objects for which your model is very confident:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nprCw02m1n8r","outputId":"68292d07-b465-4eed-c0c5-49050cd267a4"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["(#2) [0.10477833449840546,0.9429482221603394]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn.metrics = partial(accuracy_multi, thresh=0.99)\n","learn.validate()"]},{"cell_type":"markdown","metadata":{"id":"SLrQ0Zv41n8r"},"source":["We can find the best threshold by trying a few levels and seeing what works best. This is much faster if we just grab the predictions once:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Gx_fF0Bh1n8s","outputId":"a6134c3e-0b73-4f98-df25-e6141b6a40b2"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["preds,targs = learn.get_preds()"]},{"cell_type":"markdown","metadata":{"id":"NZoCW14x1n8s"},"source":["Then we can call the metric directly. Note that by default `get_preds` applies the output activation function (sigmoid, in this case) for us, so we'll need to tell `accuracy_multi` to not apply it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Rh5JwA0Q1n8s","outputId":"f4dbcb23-9e62-4824-cdd0-843facd88890"},"outputs":[{"data":{"text/plain":["TensorImage(0.9567)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["accuracy_multi(preds, targs, thresh=0.9, sigmoid=False)"]},{"cell_type":"markdown","metadata":{"id":"wnlZTucu1n8t"},"source":["We can now use this approach to find the best threshold level:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_0GZAVxw1n8t","outputId":"d5ca733c-4149-4ff8-8a4c-e96af5dd861b"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX4AAAD7CAYAAABt0P8jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlbklEQVR4nO3de3yU5Z338c8v5wMkISQkEgiBCHgsKhFRV8Weu63V1m4PUrpdtfbBWt19ttulz8rLrlu33XZfq+V51K3dduuqpa67Htu1tbaiVVQEBZVWAkgSCGDOgUzOk9/zx0xojINMQpJJ5v6+X695Jfc1V+75zU34zpXrvuYec3dERCQ4UhJdgIiITCwFv4hIwCj4RUQCRsEvIhIwCn4RkYBJS3QB8SgqKvKKiopElyEiMqVs2bKlyd2Lh7dPieCvqKhg8+bNiS5DRGRKMbPaWO2a6hERCRgFv4hIwCj4RUQCRsEvIhIwCn4RkYBR8IuIBIyCX0QkYKbEOn6Rqaa7L8xbh7o52N7NwUPdvHWom+6+AXIz08jNSCU3M41pmWmR7cxUcjPSjrRlpadgZol+CpLEFPwiwMCA09TRw/72bpo7ehhwGHDHHdwd54/bA9HPsBhwp6t3IBLsQwL+4KFu2jr7Rl1LikFORhqZaSlkpaeSmZZCxpDvh381g/6w0z/ghAec/oGBmNthd2bmZjC7IJsT8rOZXZBFWUE2swuymTU9k7RUTQAEhYJfkl5Pf5i2zj4OtHdzsL2LA+3df7y1RbbfOtRN/8DoPpTIDGbmZlKan8mcGdksnTeD0rwsSvKzKM3LojQ/i5K8LHIyUunsCRPq7SfU009HTz+hIduRtjChnn66+sL09Ifp7hugp3+A7r7wka9tXX30DNkGSE0x0lNTSE0x0lIs8jU15cj3GWkppJhR39bNSzWttHe9/YUpNcUozctidkHWkReGkrxMiqdnUjwt8nVWXha5Gan6ayQJKPhlSgkPOG8d6qa+rYv9bV20hnpp7+qnrauX9q4+DnX10T7s1t038I79ZKSlcEJ+FifkZ7FsfuGR70/Iz6ZoeiZpKZFwSzHDbOhXACPFwMzITEuheHom6XGOlvNzUsjPSR/DIzI6HT39HGjrih7HbvZHj2d9Wxcv17VysP0AfeF3vhBmp6dGXgyGvCCU5GUytzCHuYU5lBfmMDM3Qy8Ok5yCXyaVvvAAB9q62dfayb62Lupbu9jX2kV9Wyf1bV0caIs9Mp+WmUZ+djp52enkZ6cxvyiX/Oz0P95yMijNyzoS8IUBD6dpmWksLJnOwpLpMe8fGHDauvpoPNxD4+EeGg53H/m+sSPydVdjB8+/2fyOvx5yMlIpj74IlBfmUD7zjy8Kc2Zkk5mWOhFPUd6Fgl8Sri88wLM7m3h4az1PbH+Lruj0BUSmUUrzInPRZ5XPYM6SbMoKciibkU1ZQRaFuZnkZaVpfnqMpaQYhbkZFOZmsLg09ovDoO6+MHtbOqkbctvb0klNc4hndja+7S8uMyieFpkSK5uRQ1lBdvT7bOYURL7mZCiWxpuOsCSEu/PK3jYeeaWen796gOZQL/nZ6Vx2ZhlnlhcwZ0Y2cwpyKM3PIiNNoT6ZZaWnHvWvB3en8XDP214U6lsjU0qv7mvjl6+/c0qpMDcjetI5KzqlFPk6a3CKaXomRdMy9XtxHBT8MqF2N3bwyCv1PLJtP7XNnWSmpfD+k0u49IzZXLS4WNMAScbMmJWXxay8LKoqCt9x/8CA03C4h/q2TvYdmdaLTPHtaQrxUk0rLaHemPsuyEk/cp5hQXEu51UWce6CmczIzRjvpzXlmfvoVjJMpKqqKtf1+KeuA+1d/OLVAzyydT+v1beTYnBeZRGXnjGbD59WyvSsxJ/slMmrt3+A5lDPH88xHO6h4W3fd1P9VgcdPf2YwSkn5HH+iUWcWzmTZRWF5GYGd3xrZlvcveod7fEEv5kVAj8CPgg0Ad9w95/G6JcJfAf4DJANrAducPe+IX0+C9wElAMHgS+6++/e7fEV/FOHu1PT3MmmPc1s2tPKSzUt1LV0AnB6WT6XnjGbjy+Zzay8rARXKsmkLzzAq/va2biried2N/FybRu94QHSU40z5hZwXmUR559YxBlzCwI1RXS8wb+eyOUdrgLOAH4BnOfu24f1uwl4P3ApkAo8BvzK3W+K3v8B4N+IvDBsAk4AcPf6d3t8Bf/kFR5w3jh4iE17WnippoVNe1pp6ugBInO1VfNmsGx+ISsWz+LEWdMSXK0ERVdvmM21LTy3q5mNu5t4rb4d98iKo4sXz2LlOeWcWzkz6Vd2jTr4zSwXaAVOc/fqaNs9QL27rxnWdzPwT+7+QHT7iuj23Oj2RuBH7v6jkRSv4J9c+sMD/PfL+3j89YNsqWnlcE8/AGUF2SybX8jZFYUsmz+DyuJpSf8fS6aG9s4+XtjTzLM7m3js1f20dfaxoCiXzy0r51NL5yTteYGjBX88k1+LgPBg6EdtAy6K9TjR29DtOWaWD3QAVcCjZrYLyAIeBv7G3btiFHwNcA1AeXl5HGXKRHi6upFbfvF7qt/qYEFRLpecMZtlFYWcPb+QsoLsRJcnElN+TjofOrWUD51ayt999GQef/0A971Qxy3/8we+98QOPnr6Caw8p5yl82YEYrASz4j/AuABdy8d0vYlYKW7rxjW91vAxcBlRKZ6HgGWAbOJvAjUA1uAS4C+6P0b3P3v3q0GjfgTr/qtw9zyiz/wdHUj5YU5fOMjJ/Hh00oD8Z9EktcbBw/x0xfreOjleg739LO4ZDorl5dz2Zll5CXBooPjmeo5E3jO3XOGtP01sMLdLxnWNxv4HvAJoAf4IfD3RE705gEtRE7m3h3tfzlwo7uf+W41KPgTp/FwD7c+Wc3PNtWRm5nGDe9byKpz52nZpSSVzt5+Htu2n3tfqOO1+nay01P5+JLZfH75PE6fk5/o8kbteKZ6qoE0M1vo7jujbUuA7cM7RqdsroveBqdrtrh7GGg1s33A5F8/KnT3hfnxc3u446nddPeF+cK5FVz/voUUJulcqARbTkYanzm7nM+cXc6r+9q474U6Ht22n/s372XJnHxWLp/HJe+ZTXZGcgx44l3V8zMigX01kVU9/0PsVT1l0X4HgHOAB4Cr3P2J6P03Ax8BPkpkqudRIlM9a9/t8TXinzjuzqPb9vPdX+6gvq2L959cwjf+9CQqi7UiR4KlvauPh17ex70v1rGroYP87HQ+tXQOK88pZ8EU+f8wFuv4fwx8AGgG1rj7T82sHPg9cIq715nZhcB/ALOAvcDN7n7fkP2kA98HrgC6gf8Evu7u3e/2+Ar+ibFtbxs3PbqdrXvbOOWEPG786Mmcd2JRossSSSh354U3W7j3xVp+9fpB+gecPzmxiM8vL+f9J5dM6utEHVfwJ5qCf3x194W57cmd3PXMboqmZfK1Dy3m8rPmkJqiE7ciQzUc7ub+TXtZv6mO/e3dlORl8rll5XxuWTklk/BNiQp+iWnr3ja+9sA2djV08Jmqufzdx05OitUMIuOpPzzAUzsaueeFWp6pbiQ1xfjYe05g9YpKTirNS3R5RxzPyV1JQt19Yb7/m5384OndlORl8ZO/OJsVi2cluiyRKSEtNYUPnFLCB04pobY5xH88X8v6TXU8snU/7ztpFtdeXMnSee+8KN1koRF/AG3d28bfPLCNnRrli4yZ1lAvdz9fw0821tDW2cey+YV85eITuXBhUcLe76KpHqGnPzKXPzjK//YnT9coX2SMdfb2s37TXn74zJscPNTNqbPzWL2iko+cdsKEnzdT8Afctuhc/s6GDj5dNYcbP3aKRvki46i3f4CHX6nnX5/ezZtNIeYX5fLlCxfwibPKJuwNkAr+gNIoXySxwgPOr7Yf5I4Nu3i9/hCleVn8y2eWcF7l+C+VVvAH0L7WTlbf+zKv1bdrlC+SYO7Os7ua+PvHfk9NU4jvXP4ePrV0zrg+5tGCf/K+80COy9PVjXzs/z5LTVOIu1Yt5bufWqLQF0kgM+OChcX89+rzOGdBIV97YBv/8sQOEjH4VvAnmYEBZ91vdvLFf99EaV4Wj331T/jgqaXH/kERmRD52en8+xeX8WdL57Dut7v4y/u30tMfntAatI4/ibR39vFX/7mV377RwCfOLOMfP3F60lxUSiSZZKSl8N1PvYeKoly+96sdHGjr5gerlk7YB8JoxJ8ktu9v55L/9yy/29nIzZeeyr98eolCX2QSMzO+cvGJfP+zZ7B1bxuX37mRmqbQhDy2gj8JPLB5L5+8YyO9/QPc/+Vz+cK5FfqAFJEp4tIzyrjvS+fQ2tnLJ+/cyJbalnF/TAX/FNbTH+YbD77G3/zXqyydN4OfX/8nnFU+I9FlicgInV1RyIPXnk9+djqf++GLPLZt/7g+noJ/iqpv6+LT//o86zfVsXpFJf9x5TKKpmUmuiwRGaX5Rbk8uPo8lszJ56vrX+H2p3aN24ofndydgrbUtnD13ZvpDzs/WLWUD2nVjkhSmJGbwT1XncPX/+tVvverHdQ1d/KtT5xG+hhf818j/inmxTebWfWjTRTkZPDIdecr9EWSTFZ6Kt//7Bl89b0n8uAr+3jjwOExfwyN+KeQ53c3c+VPXmJ2QRbrv7ScWZPwgx9E5PiZGX/9wcX82dK5lM/MGfP9K/iniOd2NXHV3S8xd0YOP/3Scoqnaz5fJNmNR+iDpnqmhKerG7nyJy9RMTOX9dco9EXk+GjEP8k99UYDX753C5XF07jv6nMonKB39olI8oprxG9mhWb2kJmFzKzWzK44Sr9MM7vVzPabWauZ3WFm6UPu32Bm3WbWEb3tGKsnkoye/P1bfPmeLSwqmcb6Lyn0RWRsxDvVczvQC5QAK4E7zezUGP3WAFXAacAi4CzgxmF9rnP3adHb4tGVnfx+tf0gq+/bwkknTOe+q5ZTkKPQF5GxcczgN7Nc4HJgrbt3uPuzwKPAqhjdLwHWuXuLuzcC64Arx7LgIHj8tQN85b6XOXV2PvdcdQ75ObqcsoiMnXhG/IuAsLtXD2nbBsQa8Vv0NnR7jpnlD2n7tpk1mdlzZrbiaA9qZteY2WYz29zY2BhHmcnhsW37uW79KyyZW8A9Vy0jP1uhLyJjK57gnwa0D2trB6bH6Ps4cIOZFZtZKXB9tH1wTdLfAguAMuAu4DEzq4z1oO5+l7tXuXtVcXFxHGVOfY9sreeGn73C0vIZ3H3lMqbrg1NEZBzEE/wdQN6wtjwg1tvJbgFeAbYCG4GHgT6gAcDdX3T3w+7e4+53A88BfzqqypPM87ub+av7t7JsfiE/ufJspmVqwZWIjI94gr8aSDOzhUPalgDbh3d09y53v87dy9x9AdAMbHH3o328jPP2qaFA6uoNs+bBV5lbmMOPv3g2ORkKfREZP8cMfncPAQ8CN5tZrpmdD1wK3DO8r5mVmdlsi1gOrAVuit5XYGYfMrMsM0szs5XAhcCvxvIJTUW3PllNbXMn3/7k6Qp9ERl38S7nvBbIJjJlsx5Y7e7bzaw8uh6/PNqvksgUTwi4G1jj7k9E70sHvgU0Ak3AV4HL3D3Qa/lf3dfGv/3uTT63bC7nVRYluhwRCYC4hpfu3gJcFqO9jsjJ38HtZ4CKo+yjETh7NEUmq77wAF//r1cpnp7Jmo+cnOhyRCQgNK+QQD94ejdvHDzMXauWatmmiEwYXaQtQXY1HGbdb3bx0fecwAd1TX0RmUAK/gQYGHD+9r9fIyczlW9eEut9cCIi40fBnwD3vFDLltpW1n70FF1iWUQmnIJ/gu1r7eSffvkGFy4q5pNnlSW6HBEJIAX/BHJ3/s9DrwPwj584DbPAv3dNRBJAwT+BHnqlnmeqG/n6hxYzZ8b4fKSaiMixKPgnSOPhHm7++e9ZOm8Gq86tSHQ5IhJgCv4J8s3HttPZE+afLj+d1BRN8YhI4ij4J8AT2w/yi1cP8NX3nsiJs2JdzVpEZOIo+MdZe1cfax95nZNKp/Pli2J+9ICIyITSJRvG2Xce/wONh3v44ReqyEjT66yIJJ6SaBy9Xt/O+k17ufqCBbxnTkGiyxERART84+q2J6vJz07nq+89MdGliIgcoeAfJ6/ua+PJPzTwpQvm67NzRWRSUfCPk9ue3ElBTjp/fl5FoksREXkbBf842Lq3jd++0cCXLlig0b6ITDoK/nFw25PVzNBoX0QmKQX/GHu5rpUNOxq55sJKpmVqtayITD4K/jF225M7KczN4Avnzkt0KSIiMcUV/GZWaGYPmVnIzGrN7Iqj9Ms0s1vNbL+ZtZrZHWb2jkluM1toZt1mdu/xPoHJZEttK89UN3LNhQvI1WhfRCapeEf8twO9QAmwErjTzGJ9ZuAaoAo4DVgEnAXceJT9vTTiaie5256sZqZG+yIyyR0z+M0sF7gcWOvuHe7+LPAosCpG90uAde7e4u6NwDrgymH7+yzQBvzmOGufVDbXtPC7nU18+aIF5GRotC8ik1c8I/5FQNjdq4e0bQNijfgtehu6PcfM8gHMLA+4GfjrYz2omV1jZpvNbHNjY2McZSbWrU9WUzQtg88v12hfRCa3eIJ/GtA+rK0diHV94ceBG8ys2MxKgeuj7YMfN/UPwI/cfe+xHtTd73L3KnevKi4ujqPMxNm0p4XndjXzvy6q1GhfRCa9eFKqA8gb1pYHHI7R9xagANgK9AA/BM4EGszsDOD90e2kcuuvqymalsnKczTaF5HJL54RfzWQZmYLh7QtAbYP7+juXe5+nbuXufsCoBnY4u5hYAVQAdSZ2UHga8DlZvbycT6HhHrhzWaef7OZ1Ssqyc5ITXQ5IiLHdMwRv7uHzOxB4GYzuxo4A7gUOG94XzMrAxw4AJwDrAWuit59F/CzId2/RuSFYPXoy0+8W39dzazpmaw8pzzRpYiIxCXe5ZzXAtlAA7AeWO3u282s3Mw6zGww9SqBjUAIuBtY4+5PALh7p7sfHLwRmULqjq7+mZI27m7ixT0trF5RSVa6RvsiMjXEdSbS3VuAy2K01xE5+Tu4/QyRUXw8+/xmPP0mK3fntl/vpCQvk88t02hfRKYOXbJhlDbubmZTTQvXrjhRo30RmVIU/KPg7tz662pK87L4zNlzE12OiMiIKPhH4dldTWyubeUrF2tuX0SmHgX/KNz25E5m52fxaY32RWQKUvCP0N6WTrbUtvLF8yvITNNoX0SmHgX/CG2ojqw+fd/JJQmuRERkdBT8I/T0jgbKC3NYUJSb6FJEREZFwT8C3X1hntvVzIrFxZjZsX9ARGQSUvCPwEs1LXT1hVmxeHJfLVRE5N0o+EfgqTcayUhL4dwFRYkuRURk1BT8I7ChuoHlC2bqKpwiMqUp+ONU19zJm40hLtY0j4hMcQr+OG2obgBgxeJZCa5EROT4KPjj9NQbDVTMzGG+lnGKyBSn4I9Dd1+Y599s1mhfRJKCgj8OL+5pobtvQMs4RSQpKPjj8NQbDWSmpbB8wcxElyIictwU/HF4urqRcytn6hLMIpIUFPzHUNMUYk9TiIs1vy8iSULBfwwbdgwu49T8vogkBwX/MTy1o5EFRbnMm6llnCKSHOIKfjMrNLOHzCxkZrVmdsVR+mWa2a1mtt/MWs3sDjNLH3L/vWZ2wMwOmVm1mV09Vk9kPHT1hnnhzWYu0mhfRJJIvCP+24FeoARYCdxpZqfG6LcGqAJOAxYBZwE3Drn/20CFu+cBHwe+ZWZLR1n7uHvhzWZ6+gc0vy8iSeWYwW9mucDlwFp373D3Z4FHgVUxul8CrHP3FndvBNYBVw7e6e7b3b1ncDN6qzzO5zBuNuxoIDs9lWXzCxNdiojImIlnxL8ICLt79ZC2bUCsEb9Fb0O355hZ/pGGyPRPJ/AGcAD4n1gPambXmNlmM9vc2NgYR5ljy915akcj52kZp4gkmXiCfxrQPqytHZgeo+/jwA1mVmxmpcD10facwQ7ufm30Zy8AHgR63rGXSL+73L3K3auKiyd+jn1PU4i6lk6t5hGRpBNP8HcAecPa8oDDMfreArwCbAU2Ag8DfUDD0E7uHo5OGc0BVo+o4gmyYUfkrwxdn0dEkk08wV8NpJnZwiFtS4Dtwzu6e5e7X+fuZe6+AGgGtrh7+Cj7TmOSzvE/taOByuJc5hbmHLuziMgUcszgd/cQkSmZm80s18zOBy4F7hne18zKzGy2RSwH1gI3Re+bZWafNbNpZpZqZh8CPgf8diyf0Fjo7O3nxT0tGu2LSFKKdznntUA2kSmb9cBqd99uZuVm1mFm5dF+lUSmeELA3cAad38iep8TmdbZB7QC/wz8pbs/MjZPZew8v7uZXi3jFJEklRZPJ3dvAS6L0V5H5OTv4PYzQMVR9tEIXDSaIifahh2N5GSkcvb8GYkuRURkzOmSDcNElnE2cF5lEZlpWsYpIslHwT/M7sYQ+1q7tIxTRJKWgn8YXY1TRJKdgn+YDTsaWThrGnNmaBmniCQnBf8QoZ5+Nu1p4eKTtJpHRJKXgn+Ijbub6Q0PsGKRpnlEJHkp+IfYsKOB3IxUqip0NU4RSV4K/ih3Z8OORs4/sYiMNB0WEUleSrioXQ0d1Ld16TINIpL0FPxRT2kZp4gEhII/6unqRhaXTGd2QXaiSxERGVcK/qjf7z/EWfN0bR4RSX4KfqC9q4/Wzj7mF+lNWyKS/BT8QF1zJwDzZuYmuBIRkfGn4AdqmkMAzJupEb+IJD8FP1DXEhnxl+tjFkUkABT8QE1TiJK8THIy4vpcGhGRKU3BD9Q2dzKvUPP7IhIMCn4ic/ya3xeRoAh88Hf29tNwuIeKIo34RSQY4gp+Mys0s4fMLGRmtWZ2xVH6ZZrZrWa238xazewOM0sfct+Poj9/2MxeMbOPjOWTGQ2d2BWRoIl3xH870AuUACuBO83s1Bj91gBVwGnAIuAs4MbofWnAXuAiIB9YC/ynmVWMtvixUNMUCf4KreEXkYA4ZvCbWS5wObDW3Tvc/VngUWBVjO6XAOvcvcXdG4F1wJUA7h5y92+6e427D7j7z4E9wNKxejKjUdcSWcNfrjl+EQmIeEb8i4Cwu1cPadsGxBrxW/Q2dHuOmeW/o6NZSXTf22M9qJldY2abzWxzY2NjHGWOTk1zJzNy0snPTh+3xxARmUziCf5pQPuwtnZgeoy+jwM3mFmxmZUC10fb3zacjs773wfc7e5vxHpQd7/L3avcvaq4ePwulVzbHNKlGkQkUOIJ/g4gb1hbHnA4Rt9bgFeArcBG4GGgD2gY7GBmKcA9RM4ZXDfSgsdaTVMnFZrmEZEAiSf4q4E0M1s4pG0JMaZo3L3L3a9z9zJ3XwA0A1vcPQxgZgb8iMhJ4svdve+4n8Fx6OkPc6C9SyN+EQmUY16jwN1DZvYgcLOZXQ2cAVwKnDe8r5mVAQ4cAM4hsnLnqiFd7gROBt7v7l3HXf1x2tfaxYDr4mwiEizxLue8FsgmMmWzHljt7tvNrNzMOsysPNqvksgUTwi4G1jj7k8AmNk84MtEXjgORn+uw8xWjt3TGZnaI1fl1IhfRIIjrquSuXsLcFmM9joiJ38Ht58BKo6yj1revuIn4WqbB9fwa8QvIsER6Es21DZ3Mi0zjcLcjESXIiIyYQId/IMXZ4uccxYRCYZAB39dc6cu1SAigRPY4O8PD7C3tVOXahCRwAls8B9o76Yv7DqxKyKBE9jgr9FSThEJqMAG/+BSTr15S0SCJsDBHyIzLYWS6VmJLkVEZEIFNvhrmjuZNzOHlBQt5RSRYAls8Nc1d1JeqPl9EQmeQAb/wIBT2xLSih4RCaRABn/D4R66+waYV6QRv4gETyCDf3App0b8IhJEgQz+usGlnJrjF5EACmTw1zSHSEsxZhdoKaeIBE8gg7+2uZO5hTmkpQby6YtIwAUy+WpbQpQXan5fRIIpcMHv7tQ2derErogEVuCCvyXUy+Gefl2cTUQCK3DBX9uii7OJSLDFFfxmVmhmD5lZyMxqzeyKo/TLNLNbzWy/mbWa2R1mlj7k/uvMbLOZ9ZjZT8boOYxIrS7HLCIBF++I/3agFygBVgJ3mtmpMfqtAaqA04BFwFnAjUPu3w98C/jxaAs+XjVNnZjB3MLsRJUgIpJQxwx+M8sFLgfWunuHuz8LPAqsitH9EmCdu7e4eyOwDrhy8E53f9DdHwaax6L40ahtDjE7P5vMtNRElSAiklDxjPgXAWF3rx7Stg2INeK36G3o9hwzyx99iWOrtqVT8/siEmjxBP80oH1YWzswPUbfx4EbzKzYzEqB66PtI05aM7smej5gc2Nj40h//Khqmzs1vy8igRZP8HcAecPa8oDDMfreArwCbAU2Ag8DfUDDSAtz97vcvcrdq4qLi0f64zEd6u6jJdSrNfwiEmjxBH81kGZmC4e0LQG2D+/o7l3ufp27l7n7AiJz+VvcPTw25R6fOn3OrojIsYPf3UPAg8DNZpZrZucDlwL3DO9rZmVmNtsilgNrgZuG3J9mZllAKpBqZllmljZWT+ZYarSUU0Qk7uWc1wLZRKZs1gOr3X27mZWbWYeZlUf7VRKZ4gkBdwNr3P2JIfu5Eegisuzz89Hvhy73HFe1GvGLiBDXaNvdW4DLYrTXETn5O7j9DFDxLvv5JvDNkZU4dmqaQhRPzyQnY8L+yBARmXQCdcmG2hZdnE1EJFjB3xzS/L6IBF5ggr+rN8xbh3qYp+vwi0jABSb46wavylmkEb+IBFtggn9wKafm+EUk6AIT/Ecux1yoEb+IBFuAgr+Tgpx08nPSj91ZRCSJBSr4taJHRCRAwV/THNL8vogIAQn+3v4B9rd1aSmniAgBCf59rZ0MuC7OJiICAQn+wYuzVRRpxC8iEojgH1zDX66lnCIiwQj+2uZOcjNSKZqWkehSREQSLiDBH7k4m5kdu7OISJILSPB36sNXRESikj74wwPO3la9eUtEZFDSB//+ti76wq43b4mIRCV98A8u5SxX8IuIAAEI/j9ejllTPSIiEIDgr2vpJCMthdK8rESXIiIyKcQV/GZWaGYPmVnIzGrN7Iqj9Ms0s1vNbL+ZtZrZHWaWPtL9jKWaphDlhTmkpGgpp4gIxD/ivx3oBUqAlcCdZnZqjH5rgCrgNGARcBZw4yj2M2Zqmzt1YldEZIhjBr+Z5QKXA2vdvcPdnwUeBVbF6H4JsM7dW9y9EVgHXDmK/YwJd6e2JaSlnCIiQ8Qz4l8EhN29ekjbNiDWSN2it6Hbc8wsf4T7wcyuMbPNZra5sbExjjLfqeFwD919Axrxi4gMEU/wTwPah7W1A9Nj9H0cuMHMis2sFLg+2p4zwv3g7ne5e5W7VxUXF8dR5jvVNEUvzqYRv4jIEWlx9OkA8oa15QGHY/S9BSgAtgI9wA+BM4EGoHQE+xkTRy7HrBG/iMgR8Yz4q4E0M1s4pG0JsH14R3fvcvfr3L3M3RcAzcAWdw+PZD9jpbYlRFqKUVaQPV4PISIy5Rwz+N09BDwI3GxmuWZ2PnApcM/wvmZWZmazLWI5sBa4aaT7GSs1zZ2UzcgmLTXp364gIhK3eBPxWiCbyJTNemC1u283s3Iz6zCz8mi/SmAjEALuBta4+xPH2s8YPI+YTjkhj4+cdsJ47V5EZEoyd090DcdUVVXlmzdvTnQZIiJTipltcfeq4e2aAxERCRgFv4hIwCj4RUQCRsEvIhIwCn4RkYBR8IuIBIyCX0QkYBT8IiIBMyXewGVmjUBtouuYBIqApkQXMUnoWLydjsfb6XhEzHP3d1zeeEoEv0SY2eZY78ILIh2Lt9PxeDsdj3enqR4RkYBR8IuIBIyCf2q5K9EFTCI6Fm+n4/F2Oh7vQnP8IiIBoxG/iEjAKPhFRAJGwS8iEjAK/knEzArN7CEzC5lZrZldcZR+f25mW8zskJntM7PvmlnaRNc73uI9HsN+5rdm5sl2PEZyLMxsgZn93MwOm1mTmX13ImudCCP4v2Jm9i0zqzezdjPbYGanTnS9k42Cf3K5HegFSoCVwJ1H+SXNAf6SyLsTzwHeB3xtgmqcSPEeDwDMbCWQVIE/RFzHwswygF8DvwVKgTnAvRNY50SJ93fjz4ArgQuAQuB54J6JKnKy0qqeScLMcoFW4DR3r4623QPUu/uaY/zs/wYudvdLxr/SiTHS42Fm+cBLwBeI/OdOd/f+CSx53IzkWJjZNcAqd79g4iudGCM8Hn8LLHX3T0e3TwW2uHvWBJc9qWjEP3ksAsKDv8hR24B4/iy9ENg+LlUlzkiPxz8CdwIHx7uwBBjJsVgO1JjZ49Fpng1mdvqEVDlxRnI8fgacaGaLzCwd+HPglxNQ46SWrH8WT0XTgPZhbe3A9Hf7ITP7C6AKuHqc6kqUuI+HmVUB5wM3EJnaSDYj+d2YA1wMfBz4DZFj8oiZneTuveNa5cQZyfE4APwO2AGEgb3Ae8e1uilAI/7JowPIG9aWBxw+2g+Y2WXAd4CPuHuyXYkwruNhZinAHcANyTK1E8NIfje6gGfd/fFo0P8zMBM4eXxLnFAjOR43AWcDc4Es4O+B35pZzrhWOMkp+CePaiDNzBYOaVvCUaZwzOzDwA+BS9z9tQmob6LFezzyiPzFc7+ZHSQyzw+wz8ySZZ57JL8brwLJfuJuJMdjCXC/u+9z9353/wkwAzhl/MucxNxdt0lyIzIfuR7IJTJ10Q6cGqPfe4Fm4MJE15zo4wEYkdUrg7eziQRfGZCR6OeQgN+NxUAn8H4gFfgrYHcyHYsRHo+bgGeJrP5JAVYBIaAg0c8hoccv0QXoNuQfI7Lc7OHoL2YdcEW0vZzIn7fl0e2ngP5o2+Dt8UTXn6jjMexnKqLBn5bo+hN1LIBPAruAQ8CGWIE41W8j+L+SRWTp54Ho8XgZ+HCi60/0Tcs5RUQCRnP8IiIBo+AXEQkYBb+ISMAo+EVEAkbBLyISMAp+EZGAUfCLiASMgl9EJGD+P+JvJw/Xtq2UAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["xs = torch.linspace(0.05,0.95,29)\n","accs = [accuracy_multi(preds, targs, thresh=i, sigmoid=False) for i in xs]\n","plt.plot(xs,accs);"]},{"cell_type":"markdown","metadata":{"id":"oW_XoQDC1n8t"},"source":["In this case, we're using the validation set to pick a hyperparameter (the threshold), which is the purpose of the validation set. Sometimes students have expressed their concern that we might be *overfitting* to the validation set, since we're trying lots of values to see which is the best. However, as you see in the plot, changing the threshold in this case results in a smooth curve, so we're clearly not picking some inappropriate outlier. This is a good example of where you have to be careful of the difference between theory (don't try lots of hyperparameter values or you might overfit the validation set) versus practice (if the relationship is smooth, then it's fine to do this).\n","\n","This concludes the part of this chapter dedicated to multi-label classification. Next, we'll take a look at a regression problem."]},{"cell_type":"markdown","metadata":{"id":"4JJouOes1n8t"},"source":["## Regression"]},{"cell_type":"markdown","metadata":{"id":"KfuSG6mz1n8u"},"source":["It's easy to think of deep learning models as being classified into domains, like *computer vision*, *NLP*, and so forth. And indeed, that's how fastai classifies its applications—largely because that's how most people are used to thinking of things.\n","\n","But really, that's hiding a more interesting and deeper perspective. A model is defined by its independent and dependent variables, along with its loss function. That means that there's really a far wider array of models than just the simple domain-based split. Perhaps we have an independent variable that's an image, and a dependent that's text (e.g., generating a caption from an image); or perhaps we have an independent variable that's text and dependent that's an image (e.g., generating an image from a caption—which is actually possible for deep learning to do!); or perhaps we've got images, texts, and tabular data as independent variables, and we're trying to predict product purchases... the possibilities really are endless.\n","\n","To be able to move beyond fixed applications, to crafting your own novel solutions to novel problems, it helps to really understand the data block API (and maybe also the mid-tier API, which we'll see later in the book). As an example, let's consider the problem of *image regression*. This refers to learning from a dataset where the independent variable is an image, and the dependent variable is one or more floats. Often we see people treat image regression as a whole separate application—but as you'll see here, we can treat it as just another CNN on top of the data block API.\n","\n","We're going to jump straight to a somewhat tricky variant of image regression, because we know you're ready for it! We're going to do a key point model. A *key point* refers to a specific location represented in an image—in this case, we'll use images of people and we'll be looking for the center of the person's face in each image. That means we'll actually be predicting *two* values for each image: the row and column of the face center."]},{"cell_type":"markdown","metadata":{"id":"tf355FnF1n8u"},"source":["### Assemble the Data"]},{"cell_type":"markdown","metadata":{"id":"whRwZrUX1n8u"},"source":["We will use the [Biwi Kinect Head Pose dataset](https://icu.ee.ethz.ch/research/datsets.html) for this section. We'll begin by downloading the dataset as usual:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"xaoZnWjr1n8v"},"outputs":[],"source":["path = untar_data(URLs.BIWI_HEAD_POSE)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PIA3ZIVb1n8v"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"markdown","metadata":{"id":"yxr2Ahdy1n8v"},"source":["Let's see what we've got!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qoLa6eIp1n8v","outputId":"98f7e072-4277-4228-e0fe-8accc0203f62"},"outputs":[{"data":{"text/plain":["(#50) [Path('01'),Path('01.obj'),Path('02'),Path('02.obj'),Path('03'),Path('03.obj'),Path('04'),Path('04.obj'),Path('05'),Path('05.obj')...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["path.ls().sorted()"]},{"cell_type":"markdown","metadata":{"id":"WEmKQRXl1n8w"},"source":["There are 24 directories numbered from 01 to 24 (they correspond to the different people photographed), and a corresponding *.obj* file for each (we won't need them here). Let's take a look inside one of these directories:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8pQveivj1n8w","outputId":"8baeb8b9-22b6-48c7-e272-1768a8386be6"},"outputs":[{"data":{"text/plain":["(#1000) [Path('01/depth.cal'),Path('01/frame_00003_pose.txt'),Path('01/frame_00003_rgb.jpg'),Path('01/frame_00004_pose.txt'),Path('01/frame_00004_rgb.jpg'),Path('01/frame_00005_pose.txt'),Path('01/frame_00005_rgb.jpg'),Path('01/frame_00006_pose.txt'),Path('01/frame_00006_rgb.jpg'),Path('01/frame_00007_pose.txt')...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(path/'01').ls().sorted()"]},{"cell_type":"markdown","metadata":{"id":"y0FeVBod1n8w"},"source":["Inside the subdirectories, we have different frames, each of them come with an image (*\\_rgb.jpg*) and a pose file (*\\_pose.txt*). We can easily get all the image files recursively with `get_image_files`, then write a function that converts an image filename to its associated pose file:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Z5ufvWbl1n8x","outputId":"f89426dc-c6aa-431e-fed9-a0346a3eb51c"},"outputs":[{"data":{"text/plain":["Path('13/frame_00349_pose.txt')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["img_files = get_image_files(path)\n","def img2pose(x): return Path(f'{str(x)[:-7]}pose.txt')\n","img2pose(img_files[0])"]},{"cell_type":"markdown","metadata":{"id":"V2ea1b3y1n8x"},"source":["Let's take a look at our first image:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mwG_lbzI1n8x","outputId":"efde6601-017d-4fc5-b554-204e7005884c"},"outputs":[{"data":{"text/plain":["(480, 640)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im = PILImage.create(img_files[0])\n","im.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"u2yWVXwe1n8y","outputId":"f5404b31-8368-434b-d0d7-dd110b76d5dd"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAKAAAAB4CAIAAAD6wG44AABe9UlEQVR4nM39aaxl2XUmiH1r7X3OvfdNMeYUOWcymcwkk6Q4SKJUsqzS2C6pqlpuw3C7baAHN+A//tNA223YBRsFN2DDcBvucrddqEYZ1XbJrRooUUOVVJIocSZFMpOZJHOeIjIjMmN48eIN995z9l7r84+9z7n3RUQmSamq2geBiBv3nmGfvfaavjVs+Tt/5//+8Y9/nCQAFwJQQgCHYDhWnwCAa99z/C9lPFfEV1dQiJsOAhDc+v2tRzmHEIBlGFIfKxCSJB0wM6fnnNzcPbibWWdGd3d3M6fT3Zzm7kY4Sc9Og4EA3Qk6xWkEQYcTQJ0TIyAgOfwLkKSwniOQ9e9JA+gE6YJ6DgkCZALgJoQDYHlUhjOZ5Vnb7JzcdC93EsLK7cpAyDqe8kw6SQF8OAdexgzSHXASgJ4/fyH+2Cc+/lOf+akfPNf/bR8EHHDCjTRYtmxm2VL2vk8555QTmXO2nLIzWxYzz5bdDOZkds9mZurZMplJwtWNpJs5XACS5p7pBEHSzFI6DDGCNHdhY+6guzs9DxQlYfTxM0m6F0p3QP0NFCCSdEM2AHRPZtnEYOjMTp254yNPPdb3ybKXhezOYZkVApdlQVJAIYW0gboOEITTh6sEEFJiWU0jh5RP5T8ysOcaP4JeliWcMObxtRKUdApBJ6RwNMmYDYS7uxOidLhDIDQxJ0kz9jR3p9MGhjM6zLN15ubOnLN55+65nJFp5maWU7Ls7uaFSszmvZsTQiZzKywsZqQT7jRHItw9Ox0mJJwEPdIAkg7x7EXIwN1p68sslylxUlg/ExABK4UB1pkkCWiZM5DuBmhhcTdxN2N2T+YJCYvOZie2CqncnRRAK2nLdA6cSvpAXSkPLc9yL+Qv/xb5AoHGN14/PHvm3a7LZm5Myc3K+nMj6x1inwUghKSb5Cr+6Jnu7ubm5sxkdiS3npqHNwRZ3x4kEMgq9IbVRwLueXw39+S0YTEaCALuJjKIOhI0rljGyqJjFWW9u4OxTispoiiLHS5CKQzmJgIpIg6kU9kCEGHKfdf3sYkxNnSnUUREim4olIOTIlAJlQfEKyOQFAepKiKKgT0IUVFhJEihqAtUfeLSaFgGELB2GoEgDCqhTHXlL2G5/yCiV0cZVfm+fAZUle6VuiIav/H1L1+79o57gjA4ASur2K1cQJLwOnt1aVTNSEGRZUIQCIXoAIP0JJ1F1Ii7ZzM61QNAIkEc1HFwFigiObtAGzik6KpAiYUfBFImVoSgDwzjgEIFCjoBF9EilwRJCAFERRSqIztBpYUSwVQBgQi0nIQgAg1ilmbTuFgsQzsTBIEIEEIAEJBFVCQItQxKRSCCJgMiiICUp0gluYKiKhABlTAgE+amdKeTxgSDJ/O8c/Ys3LUoa4iNclMqLVWVdFKreBWwSE3AARQCi8MpUqSIExavXX5t1vaq0vddEyey4ieoSBHnWtZv/VtFVABVFU0iQaRRBJVUlq0IIBQiqpTXh6q2ASMfyBQQgapqua2Lxja65+VysdFOIBQIoMTaVWoiI0niSjNrEIFIIXAodyYhamW0w3SrSBCoKEWAQTENs1+eI0UexMCuT7GZaWhk+AmAM6gSMIC6prhUfZCK4gPbCTwn0r1pGlE1B2kQc5pl0IliQzhgKZm1zZbWB61z5E2MW36vBqqIQBWkuANlDAIoxKVYuyJxZ/PkHafumkymi8WinVBFNMS6PBWqQUQCJARFfdOoKgBURYQiUthE2K+GJSLlFjIcZbJDFSkCoaxEX59T27TzxSKEMGlUECEi4pWDKyXIeoVwWGhOEgqwrKrlso8hNs0UIGHjtXVFU0kh+mrqQwb7AygaT7hYHIlAhRFNbKaxmWhREiAAkwAUgenKNQJD6C4DI1Wh5wgBGqKoEBAFWNSqQhwwoxjhZrnrl31uN0RER2KO4rdMI+swIIBXVSEcXBgRkAZoWcdgz5FaO2cmJ87OptON2bLZmjZBQwgNoCKF2KqiqlJEhKCQG6qqoiJRlaJ2Y383xFNnzp6tukeDig5klSqkBFEaVYpS1FVFVFTV3V94/pmNjenZ02cvX979wGMPbm+fBgjJkLi2flUg7kKHax6MEZqjeAvm6dLFdzc2Nra2dsyKV8SVn0QjM0GypddFz2pYgXRxh5AQDUHAEBhiKxoFKwclSFkcSoZ1Di40YzHBpKwbhUJoZZGD5XsQAQQkQwlxJ9x78y6bcfBMpazWgXLlc1VTGKRDIf+ayzqYxJVxx/vERx96YGMSP/zkh15/48177j93//33QyRoDBpFNMYoqkGziIZQaCJlQYtAEEUMyNd2r8Rw4tTp0ytndW1AP/Bw950zp7rDyel7u0cfvifEeLuz6OZOmlk25mwpJZK5GNbZsuWtHTt16iSAnK0cxVwsDk/xiulWDS11upLVy3amQIYQtIkKMeQQY1At0r36vjLDwFZr/4JwgMIAAZEDBQxOepEUIYAIVCl+jhBiDnFVDao5KCLgoupQhxCEQgr5WARNU59TbHQpbi7BIigJSLGgpFJdQQABaOJDDz3+kY88dfbs2XPnHjx59mTTToZ76Q+mTLW28p13PgSEkdsGI+yHoy55x50Pbp7c3OPy1LnTIUbeYi6WQ1TFXVWVEoIUl1NEzVREIRJj0zTFGDZVUzVWtMNDCO5uZqBx+BZUFl+IDBAlVWIIjULMEENUDTIAMnUp1I9c/QMoQIpoJQqEpJIuEqRacJUFy+8qg36SYboEEoIUAVseSUH1k24zE1UTjjK8LIvx1EJ3UYHE2EzvuvschCdPn2radm1yVzdmNWNvD0ARkSyo1l/4iEaRoIM39Z5HmRVVIUOMxcGvh7urxhDKYldAB7jA3M2s2Fygl2VRVku5qvCxBneVELQRIChDaKSIV9anFMdnQB44EAjFDJUKXDVF64s4EFRVNRSlPJ5eXqQskGpWFWACQaDEwKiig7O0mpOV8YXqS0ldCWVabloTjBpUo7ibhML4txOsUh2rmw4KKqP/ZYgLUAqyoJTw/mcW+hazeSB2QQ8YQrEXQmGtECjSuFe6lqtJocDNVcUpChaTrfjp5ZwYI81FVDUAonXVce0+dSQrZiiojrPyqUDEzaiqg+EDiIkOdpgUHlZZHSpSMOIiOEfciWuA062zUWjKm08oRq4IgCjF05NQnJbb34i3V6cymJd/mUMAChowCCKcEt7/lqripGqZdC/+1sCUGoIWCayqpJUv3alagCmnA0HdrfpiBZkTFyeVDKIqQngIIQRzoTgoFc7gIBkxuOOFxsU7MIdAq4hTkUhmVagKnRQDHUKgkBYqFAkm4ioQBC1GX1kCuqYBKGoFngSEUA641sD9PvizVUi4K8uyEsSVxSW3p+K/+kOa5rZW1XtfIBgpV9bvyAhF1xaSlyXrXtixak2oirtIUDiFpLh78XQAhtiIKMRVJZuF0ErBF91XtF0Tg9WZKaPSanoN54hI5eCiIkWErA7rLe9EESk+uqxuM96/eFoVR1uJ6fHi0fqpiGb5Xaoz+yNN7r/0QwRt0xQlxNWy/UEXiQAIQUII1Y0TGZGT8Zvx+3K+qpbPWkGYY2eJBNWYkgmQc54fHakq1lyO8SjCcV3mrYY9OocixSstuDGKVoFiUNgVJijMVT7SCS9+9rE7UyFKCr1ch5ueO46kjhMqCIIAqILwYoD8xWn0lzwkpdR3nYh4CQr8wAtWi3I1m+s0vunLW7+RgcgDbVU1AkJn6lKZfg2hQDrD5Vi/2y0jud04a9Cl/FEUmFMCbjZVy4rRwZ6q0cXjN5eCLWPtdW73zNGur79GkG4eBtTph3Vu/mUehINQh9EixdFqMdffcyjig/UhsjZXIqIaSJj5SI91DV0CNZWboU4C1PLWQqUUKNihDq34JQIqfFjt1io2JaCKRAddBpur4ABVwKoQHjR6DRhK9YgkYAgKCYKIClS14rIcvFvSi0FOUZJUBwFb0wrQ6h2xqgGSWmP5Thgkx+I/1LHevGr+NR3FxXR3g1NLiO1HkyhF9ha7A1VMKmByTGDefBRbpv6hiTClXlhBnBGpqWDhcWN17YZ6zNLkcXxpODgYdUVFF7BdRKAZcEEIOgUCSvBkyCAY1e549x9iMlhoDQooa9aNCN0l/OsmcOEyWlYVao1rvP+blAWuIrYWEB2h6tGlkRpiHHhucH8BHZf1MAYAAiKEqAUJFAkaAAjCQBdCbBwzORg0t7zO6JmWw2uWBjAs5bLe6ruOryQilBJkG5d3NdYKOkABKAo6Zc1JG/zven6Jr0KKUgi6vro1/BDo1b+ao2BSP+zJNWvCj315y2SPFLhJH8uaFXbsApECx45rZVDVxZe9zfCG2IqOiNUwwjHb471War0SjEARq2nQ1uuae/VHpMZqZe0pJUJ6821H9qBozux6IyRnt2z/+kU0iYOjLllPQz/ve5q8rwJmySpxjODcSMVygogA4hBCIMpBcQ7UDauoy4CcFFefIp2RoSHY9125ikrqaNkKxzw0uWlaqyXlCA4dWFKOj6oo9cF3qodXIApxZEVXmJqrQYzMTqvUlAANlOCMRAtGutIDGAglFKIsT2cUBBHX63vXL126KCqHR0f7B/v/con3wxwkLl+5AsCczvwDYxQlPWSUuusieg0cqJL//Z37dRKUTynnpm0AzGaznZ2d4W7DeWOU9fYafU1OiPhg2R1DkAY4etD9fut9hh/X+Xj1iKLAsTK0bsYyAQABKKa66KnTJ++7/153397ZXHulf52H33PPndsnToA4eXJ7Opu8zxhGcOc95J+si+410t0skNfF9fBZAEwnk9lsg2TbTmKMFVQ4tuiGC2+R/GujOca44xIEUC1zYckfHAPSay7ZuEAVogON1w8TuIgTBphoAfXWAtuihXdFCITYNHEyac0svDdU+a/0INA0QVeuyA9xyXvrth9JxaybKuMxhL3f7+bF0B6NqfcZTHnE+goY6FzYt36jcpzRgYGux3VqPUqCyiAMhCVwcvzaKh5iWe9mVobyPoj0v7JDyBJwsx9I4BGKG3NIfUy+G+ZxjQx1HRSVTQGCuhlVylXHjNjxowgQVRoRFVgJpVGGOGsdoY95HrzZCPDxv45iTlQ/rFhIrHCVQEKRpa7iTkC85hMNT/NqUKmouwMlTbHEYyoSUpMpb/YrpaToQvr4vpbev5aDq7TeH3zuIJmLKB6IPRCyRHmHM28ys3+YY2S19bXCISngtuM5dtralz+aJ6+yjpq9/1FiqreIn3U6GgAwgE1NbazpL2Z/sXn5yy0RutWc3ve/z/jrumc5TjxLKusQPVz3RImbpv5mE2ykkNPl+DHeZN2zWlexN6nzkeTHnrVufqkc/xUggoaCwY2q+jh2sgKgqnYYlvrw/cokGP5bbGmtHLwuqNfVxv//HEPuDf145MR9ZXHdVqf+UMfNq+Uvfqxor3J8Dt8XvSnn3vL7DyNfWbGzNbeCLUioQ7KSYkYSXjLNa+6SH+eSH/CAvwDTrx++jkbdTrIVQjrhNVkOY2nG+hQYWJLyHD4UGryfdCmeSPFwS+hfCQcNRiGk5O1WF7NWbFXLaE08cJV14STQSFXVBsHtbBoBwhAYjsUd1xpYvM1QB5YTIABxnf2qkccAxMG3LgGJRKTiOo8cTHfm7MVhIP14wO2/TW52X6WarHPtaF5hTf+UvDr/4fm4mEEF/HQnebNPJQO0e4zNV+K3frXK7mABD394WVKsaBG59YJbHLBbTrh9Ed9qhHEowTOSoLgXW7qqtJHAIYR1Mt/0yJLV9kO+zy0vQHcjSknezS9WBIk7Ofi4o2G1PhiStQwF1dfkAHINNtlqNawuOaaVy2Nr2lWd7lJIIYR6iWOua9n1y2tiFyA1d0BUwzGweQwxDdNa1G8ZnQwW1k1a5vggj83/racdn9j6Ia5Nopt5LU0oRrvcbFnclpv/8iK63mdNQFWh7asKpDVvaKDjQLyiTnzId/rLjGG0gNbuU/Pm+aOFUo/ZYj/wUFEVsR984o98RLdSqefuzOZQF4GQpQyFJIQqNftQSjLmzYS+FW350Q6z4vfIEAoZqVpyY6vSHQS1j4uSQwmbg44RpqbZzdVa60tjnY9Xf6+MVQ6+a/HLtQ5FApXuDg0YvLLCqnBb3VxT5cqCDAugBb+mSCAykAABg8AAAxQCxQwCK68zcPogZwsGW7KJExlrWtagl1hlTSVBLRRmSWLR6A7LtMxqnBhr1kBZsuICuBQApJRb+RpD39aI+AsQ2IlBc62J0+P/Gelx7AxfRzpW9dAr4t0qvm57DFSsMORNXungnBw/pArZ2/4i8kOn/t/Gqb35fnXNVeTymAXw/i8YSRb2NfOcraxICMPApyo6VMxBRGyIousQz1w3ZY/x9Xvo7HXDZLiwUscHmq39euuHFVHXYY2iIzmU9nLtueOl6yNZH/PqS7+NHB5dx5umshqyQI3UHneCy3FM1I8hv2MCsAomGWomb5oxEmCpw/IBxsL6U273OlgZWaTUoursORPiYWDxUpFE5SAoS8pXNbBLiW35pRjhpI9pbzjunq8f67zF8U2IYhwDcPOS0lBEdCXfcSW8IjOGZVH6JgjGb1YcLcem4JZjteBE0TQxNjE2jWrIZjelZ+AHccx45l/A+zg+whWyAWIErn+YO4yZOQRjNsvZslk2y7kXaUpahXuJdjGQItWSKhQHgmpZiah1b3QSo6U1VMfeFKNdhaEB+EA8d2bLzuDIRlqu9ctrltSoVyqli7r1sraqjTXQs05I/R1DwvA4BqcVc6xUatfK7SCqYlGXNnnt1cPvv/La9qm7T5069fD9Z5tmyWSCJEiOMFrCZFnfRbsSQ2asuxReNFpEg8FlEUQXI0EEB3M1GgzIIET7ssDIcZwJHIL5kssrONNAeB1FGgCn10CkwL0wBlXp9FjKOoqzlHNed31LZigDVUDWlFM4HF6yRorIAcRtZYoDACrgV0wzDKu+9mappJOaikZalQA+hhBWlwznrJbnwPf1ibyFtd93oYuIUAokSYVCgoQb1w+fe+bi8y8899bb5y+/e2W+uNF50862f/GXfu6xxx+6586zJ7cnwvxe0VtgpRV+GK5dr9ApsnEtVvgjWOo/zBFrs4ucco6FxoNrRLLiuioSh1wtVZgVEw+qqMvVMSpOYIx235SoJsXeq/R1WSNhdXYLmuYDCxO6TrGVbObIzaXjSJEfo4m1Nn83u5IYspSDCCD9tctH3/rqC//8dz7/9juvS1hSOtKTd5N2I/vsdz/7DxDO3HPPvb/4Sz/31EcfOzlLUrjwuAU3EnVlExyzg8hisB53hTkCUhAt/reQsMHLH2uCVxHlqhMBVB22esraa3JAPkEw0j3nnHMFKUcvULUYDjQziGZKoDCArEXlInQvdQJeKnHHEQ+ZLRARG+U24OsZNtBhTF7I7HQ61iHG2iCl9n2pWODQVmNk1zXWrWC1j5/LvQbBweFnhBB2d68fHS2+9pUvfO4f/+N+sdja3lwsj7plBzQ5SuiXmvrFssty5Wj/7f351d2jX/y1n/u4Vp4T4ftiyz/iUZK0SSNXdQ8CeS9Irrz46vN7S61o2a1PzMGiFSu6pKSNK14FHliABIJgcZILdoOiRN0KVkzUKhKgrNNa9wxyTBYehlhVY6mCplGd6mYlnbeM20eJzfJc+mBtAaDTvZhjo7Ws7qVAtN69sjPW5DgYNP75N57+/d/9Q3B6cPi8hnTq5ImD5eHh/IiuQA/vl865MyXLkGa+eOX6jctX907fcfYzH3002NyJyGAiEFdm53FTY5j8koldxPdoqnNYGQUjpWgQY2xrYbA2xcKQ+pqKApCDQ2eWQAy4tY1ZXFzvmQUp3Q0CiGiSO9fsnXhMKQMi4qUehGQIKP1GVGEl/uyig0xQ1YLru3s2JwsQNpKZdSEWgt68CIcy5kFQ+3HGOxbZLRQb5AQGHTwY2KNbhUHMr9to63dl2zRPf/Nbf/c//78sj+YSFeLzRXsj7S2W+32fp9NJ27bLJYCQUnbTGCG+FJ9ffuvwP/s//2cv/81f/xu//DN3zbwrbXsgYDNAIjcv3yLS3F3WVuFqya74z9czMutnyYMBbQOU9H4Cg2vBtDIVhc3i9dcPDs/o9Kz02VPOKqKh5uyrFli1WkkhBDPDUNc1LE/UGJQFkqKFuuuR1vcSMvVaVnNpCGE53Y08ptTdSx3A8aP0qBMfYp3u5qjKWG7VlCRVpJsf/PPf+20gzzZbejqc99euLaZbq2KInJNZdpflsmubSdtM4iSin08DwsEbn/uNv3/hzTf/B//9X3/k3h31uXh2xipxBnla6HeTBwGutA8w5His2ShDLvBYQusQYOhUNL7IgD2sK59jU3rTf+M3fvvpw9dOfuZvfuDkAyfc59lM3EKIQQMCBWI0Ol0dpchpWJWqWgIMQ7iCJEsrkzVBLet4wPDCwyysGcY+OPnlVnLshCr0bibwcOXafbw0TrsJElsh7zH+0e/9wYsvvbQ0GsJMdxyXmmZ5cvt0P8X+jSORGEPjTZovliEwNgJpErDsIeBsK5xsl68984X/z/zw1//NX/vY4/eK91lzgVh9zeAiR/toJXLeg/cAiIYVclb5Dyv5t37tuiQ4Tk66c3XO0FsyvrN3oXn6K3vvvP2xn/v0uac2405jeiQW1M3d4UE0MFoYqgHGlPBCkiIWSkOMUSjhGJxZhrhOYAEwgK4kUSO4o7HmRU/JmmG8IqKPqDOdoDkFg5NFgFK7S2IllsXVNMUYvvfMs7//u/98cdRdub534swZzmKXLMQQ45Qx74g2urWc9+6qEmMr0+nEez9aHpplCkJvgr7JR28//+w/35zd/8j/9E7Mek0oa6gUQQ19KMu7jrJEoFKLtQfVIyg9QjIiA+lqrizNc9yBWKSRKCA+5sqCgCSSYHGyR3EWit1a5mdoKSTxytHViU33jw4v37j48IsPP/SxRx/52B25SQyNANE9itHUqxkMGYTzCFoV87tkgxRpKbpKNL91oZUPNqyGQqcSwi2I6TEAck3AYkzWGaW1k156s2AEXAe5N64MlEaUy/nin/6jf3K0OAit7uycmE02uu6gT4vJtIE4rY0x5tQtlvuL5bxt2xhjSokeYtAiJiwvjpIFnTShf/Hbz37j29/7+c98su3203tqR679eU+ek8FgKd5TnUOIF2BgaMlVzlclqKWWfDAtSn+CIUxynL/j/tG1dxO2m/0Oezkt/vy5b/77d/z1h+870+XGJ5tZNVg2hFrgaqZrE81BXI//rbEHFqt3FTJbJ3Yl2LpfW7rBHkeYR4qOQm94l7Fx4QrlGN7fx6Kj4xFME8HB7v61d67qpBXzja2Y0sJybps2xrhcLpMx933fLcxS08bZbBJjnM8XvZWYj8PhoGhs2yalo35+5XO/+dn7H7j/qTt3xBY+PHGMQ0NQ2tcO39xk9x3z1Ac3aVAoFRz04nBWF6S2/zRQh3a0I8NUv3kQigRLRxGJTN0S+56XCzs8SHvX88HFVx+8W+615gR37mm3z2SoihcbzlULmQEUmVyGNXJwpSXJoeeI3GpurQ0KQAlWDmCa3ZQttKJ3eYcCOK+r40JO1kwaH1zJtQkEaW2IL7/00vVre3nD+2xmC9KDTDZmOxCk3rvuxnK+dPcgIail1C0WR9k8thubs53F/GhxtNQwaZoNEaEudXq099Ybv/+5f/aB/+B/GNYk03HPdZ19V8v0Vm6WOmAfs24BSGnWUFqfsuadFJ4uSv94VIVrTxxXkscsXfYt0evZFtf2b5w9i3ffeuHre2+c2Llj545zdz78EZ4813gWGggN5FBPXoTzui09giSlX3SJaujQvE1kDRdeW7zuvuaoVrxlPGH87KNPOxgaRe86C1HLT+UcH3vdVu6XYIv+q1/+aq83uo6pz6TG0Ja1l9J8sTiKhqYRQdxq2zbCk+/nxOASOmPbticgk2m7oUG6/kjJxY05VS+8+PKN+fz0TGHDtJblXXpaD5VMBAkjSCkFDSJQZQxsks/p2nrwakSU+aoAIau7U810gKh9PAR1kuV2WS5GQCQAFg9tIZhP2XpCO+3vf+DM1WsX965utZPrZ65cm8+7Bz7YN2fvyQolA1ZpKOtSt7DdqHeHDyJS0atqiw1SfZz9URoPfcvWAIlhBQyccayrweg0D/NCGzifaxxezlfVw4Nrr77yojZtdMvMIiLwZMtu2ZOIYTNubLS+3Ig4d/Z0E5v54eHs4PAg5T51lvtlZwD71KuhbZu22Tk8PFwc3bh2+dLh4fLMxtYtVUa8+X8V35DBmBn/SKlnXIuVyE3XVlv0lnuuhzbXVdWgDgSQ+As/98mrb79z8Y3Lov3dd9+d0uLdd9Mk6NZ2FPdu2e/vH3z40z83PX0SwjZXSGYk5KgpC1vXDhiiDq/tvsgh2Lmag3WtCWA0wsewx/o5K8fjFudqmBZyFSQep6k8yAmNguvXLl679g6n2woNGlPqsy/7fpETY5y4IefFLCzO3XH2Jz/+lGU72L9+/u13rtzobiyXewfX6ctsJWuCyyWbJrZtm7r50Y1rN/aOcOc2xuFJWfErGwPVqFYW1pVAWAGnBiiDOgRxC31JYqWnjgm9YeJuY7atMYyg9gWW+NM//yv33LFx4+r+UXf+O9/48xeeuyK2sXPSILMALpO/e30x2bn3iZ/4pOWaaVIS8IZmT1IotN4cg0PvrJqjMdTLr8vndR5dp1DRw8edQmLg4FuvwrFVvIoRl1ke8hulXx723ZHHjY0QLFvu+z53feeA5NzBlyemcsf25JNPPvZjT30kz/cP93e22/itZ187NAZBOwnIkrq+vIMZJ61MW+k8XbmyK4/fA6la5hYthHUdPHinaxzMAW08duH7haSO0Xs1DyuJXXi3RNPjotew9ciWdm89c7j7btycyeZG2tnaguS9w11I0zQnJxubad5LDHmizLXySbVCP4WquRJABKKl9KY469W7KvbAbeJt6ybVyiCXQZmuAT3j+4yW3XF5zhqAcVlTwxDA0JupMHvqMpuUcp+cri6JWdS40cq9p2Y/+alPfvpTn9nZ2KJOWm3vvzdfvvL27o1rExeXiQRZ6gJmTZDZRGPA3CIUb7z5mv/0k+DYDcJLwss6B1emW9EjOOgwBwVGBQMFXlo20FxquyyAxbe2wo4kwAare1ZpVSUEWdSjewIACRCPuZtffO3Fb37pz669fQHgqdOnZ9NgWbrlEjE++NijH/nYj584c+bwaDGZTRGCRCkhxSG1VIamVGN8EAaTsdHfIGFFbo+m+lq2fZE9Xqq7a5rdgK+uQXS3CujxpyHhvTYcL6JDEfd2F7ToGYs071Of+76uCXdlvufOu37xZz/1+KMfai3kwywSYjvbOXnigQfO7V7rwuVrc/PDvpNoEmXSNqdO7kzEL1zqlot+7/pe6Y5/kwX7Pjw4GIr1v1K6dZREuJWpUWI363Vx49XrXsix78scoHI5QcY//8oXGk9czGeNZFo23DhMXZdO3nHmEz/+M/c9/ATiZJFyo0FSDjHqaqJVBaKorueakVV8pJWeHrT1EFk6plIKXXPO64K6imUnOPrBay7mmiM+SDYWe3PFM8P9C7GXh50nJPQ5H+WcUW1+F9rJ7clPffojjz/yaCCO9g8Clto2CCbSbG+deuDu+UbbJMHu3o13rh4tul4Zo03uujPc2JtfPfRHH30sRLWcCtgwDu/9OgeiBmtX0nVwNjimZHNMHYasSWDSObhSY8CeZBF/A2mqUiAQL1+8cHZrBuOiy+QhJJ44dcdHP/zxhz7y1Obm3X2eRQSLEkinW2krIKIhkLSadVkWnKkGdw0hqFaOVBnRjlH33LTqVjbUetUMhrddmUvDjAxfjy/GwU+zkadXcDdJQaC1rYLsu7mxp7sCBfLanLZPPfGBh+67a7E0BT0tSAlRIWJwxezs2TPTzWlmvvOOE3efXtw4ONLY7pw4ee997buXD+Pu8o6zp2uPwrWVdRzIu8UAPjYDZT+HYkCMdkZlXtwqCMQH0+zWO92Gs+Nif36lWzQqOzsn777/yfsefvSOex+abp4gYsoMIbHsKQR3eEZWb+FUuIz1eQJS2KlEfONbLyTs/5Uf/3gbo5AuVnKMbrectVTZmifzTJR+3BXrGMa8LqI5sucadY/b1e5CKKTvsscwCSQsS6P07bO+FIolaZxJnUv3QMStjZ177jon7ovUicG6JOYonbGhQpnMNsOkNUtm6dQmF2bNpJk1DUJ3dHT0yEceePLJO4r4WZ9r0ugOaaFAUDCYdfS1JMKVtakCAaxsBCMyBvlj8aUHQ6JeN5jegQSRhsoV0oMgsBoBXlUlGLdPn3jiyQ899Mijp8+cSwwxlhYkDAEh3mb1OQlzErVTvYiILBbzV14675af+eazh0fXHrn3zvvuPSd0VUJretgQXDp2s4Iq32RnmXnJURo1yk0Lc00Br/+3MrYlf+abT8ts4+Mfe1IDnEtniDz52J3x+oFcneuS6pJUVFwnUaet0nPqEhwBMLqlrBpLxJqaVEgE1RhbYU6AiLTZ1DD5pV/+5ZPbW3nR47j7SrpDXAjnq6+8vb+fP/TkQ00jZA/m1ZkCwqFBpLYzfJ8+f+UV5Vgf76ElTJmH42ZXESHxZ37hlx546EFIa9Ysl11DxiCqLK6WDJ38y/B9ECOoe4+hCJcQ9NHHz3aLxeuv708mnLRtSilWitaKktsReEhcGEQrR8Xjx8g5EnhcBxyQ+pGDC+/v7l65dP6NV156OunmqdPb991/jm4ZOHPy7GfOPfLi22+nfs+SeJwKMAl86N6zp7Y21JugQlBU4qQNQAiRFHeWoFZnyQkNYUq6QETmi+6Oe+/95Kd/3PuSo4njAgYAiXTxjZee+eo3F2l2cHT59KkTjzx8fwhYzwF2GCUghGN217EXX5sugNUCLeQNNy10VD1d5KoCGhPbLkkAhR59oRrBwFqRuFooddxlPziASrUaGCTobortttn6sU/9FfHt2LTZsoYgJAclPSR7YBiElYA2a8v9mne3Ln7XIY5bCXzL+wscW1uTe+8/+e4704XPmmnb9T5BQ5HUX29vbP/kEx9Jr39n/uZRalSIT3zk4U997IntdhrRTCeTtm1KMFlEY9MGDSoBlvt+uWzndHcEdWa3JbOk9Ku//tdOnDzpy47Hx4ZqZAlySkeX9y4/a3H74iV74MHPkEavIq1wnMMLGJTz+9V3jcsBNRO4pm5xJM+xY+ymJhE0VjQ7G0WhrFsRDSOmCA0UusCHBkGuFCkb2pSUFG2YrfvC558Wzn713/qV6axxuDgIlVXm7MjNtRUWh8xIr4K/uMJjFdYtMagipo63ruGQAti4OBXTU488+Ve6pUUKU2dtnDIYZifP7Vzb358ezu451b19dNi0G48/dv/OdEMyp5uTzc1tjTFZzma5TzlRYa0koXtmEza00cwuOwRtQ5u1zT2PfqhNcMlEBClio8VXFnQmjvo7fvJn/0bnyxt7mE6mfU6txtEHJBWIUXS53126eOPOu6ekkTr0WMTx15eanCV1m5kBGinp0z7GowZ+UNBjzXRSFwk+RC5Id5pSzUwkwVSllqwoEWIoGJbrkExLabJ46unzw4NrXbc0m5aAYUF9B5NyXfCuN9Oowypxw3XK3XYhY4zNrQGZDk8xTdsJF/hnn/39k3fe+0u//AuqSlgPCRtbG9vbL7/+2vbEP/Xk3Zc+f3Vja7KzsUOX3tl1efdo/+DwcPf6rtFVNLSzNsQGHoC2bSbTRhW9z43oTLKFjTN3T2ZK7rPsZzaYvuOYRUTVXeKVXTtY4rGHH4oxDv4pZDSOCJGQLfX9nGyH31eCam2tv7d+LvJ9dXKZUCdZ6oNZWtmOYIXTAXMXEXWX0p1eatdhEqV/vjaZpXe5g8mTBPnZn/sZy2wnTbfs2jZAFUKlDi1fV/TgwM1V9tQaZSf1eCj3GAevf771byggUYCNaWnFn4nGHRAL080w3dg5cfJEuPOeh09MvvAnDz+wc2pz01PaPdg/f2lvd29//2D/aD5PllNOjubE9vbZE9unT57Y2tqMUeeL+e7u/Mbh7o35suubD338J37s57bgMG+AVFKobhIzIbDrDp5++ukbc3n0g0+0kwksOYXIpK2657m4m8TO3UGKRPCm4ApuQ93Rtjquwkb9Vs461mq9jqxAyO7UVbuCEu+FQA0MKtqYYwFPXeq7ZYxNE4Pl1GycbFwODw+nTePWNjHE2DCE2tyEdUGUkPb6Q1dhJbcxlnwrB69fsvbyKCZkZOOZs83pX/+3/o2eMTTZHYoIMDaTrTNnP/TxD19+52pabjxwz8kn7//wpGlE80yJ5dL6g7bx5uTMzA+Xi929/cPDbnNifZK+5+FBOn/+4sGRh6nNNuIdd5/6+f/ep5s2oEvQBRiGYNGxw8gY7GMffvDq9SSxBSTULdDGMo5isWm3nG9sRICqcT5fppQ3NzdkxOIwNvK8vZ7mMUqvzRIYK4AAiAoll/IbhQfEMm4S7gkSYColXCjy5a99+6tf+16e23x+lK2btNPZxsl2io3ZyV/8lU/tbBG5dWc7iS0YEZSqoqIiLioYQw9jOJPIZHKfihiHsNp70Lccsm5yFeludCHdw3TrrpBytj6lXqQXbaYhN/ef2Hv6XSKp6md+/FNnJieRYtOcPHtK7YHDzd3F+Yu7V3bz4RJH+VDB7elks212NrbuOLXxxuvnD/euz3Ncptkdof3QfQ+du+8BmJm4FhukJsYKoGQarN2wtXXnXefuv36YJiFBzNEiLCWDHug9mGmZbZ4fXF16c+LkqaPLR3/+7WcXwT761EdOn5wyd95b7123iNPJ9tbWxGsih7O6TLLWP6vYOl7VnwClqUfpWz2Ea8ccRBbBbu4oAQomUZkv+Ce/8/nP//EfO+buPUSa2MamZbCc0v5eaiZ7v/qrv5zc1JImVU0ASwpmaaFLKR2v6+E1T9aGuD3G0PKxVmXHeZo3Sydirdm1D63PSLq5ih5Fbt937sb332ymp5JpszGzKF3uRaaT2fbdd98XZ1uQTcjlyVF3WnY2pxs7s63t2eYD9971gYfv6xfzw6PlInluth68+/Rdp7bdHHWriWNG7GgWlO+3tzf3blzd3LozixNUAUoNB+EGN7oBbLY2Ty1vLBri6uU3L7zxzObZ7UvnJ5cvuHWLvd3dzMVi2Tzy2FOPP/lE2aytPsvHWvVxEnCTIImOXKq/hmKWUXg6kUmB0yyQDtKD/vZv/8Ef/eGfbk0Fsi9NE5tJUBGhpU7ZbMzyF//0qx/+2MefePwB0OjIKZOMMaLsxzU0CBgx7RpjqIkKqxJYDgDs7UytmxSw49Z6xrpzDRSqQO+hPXEqnjt945nLoQlhGmhpCXeXibeCjY2J3HFamma67JYUb7Rtw3Rnc+eBu+8+tXni3N33Lno3Ik62zm7PZpsbwyo73gykmFkr7YOt7em1a4vzr76+fdc9Z++YwkyplISSLOl0z0CYNJOmoRvP3X/Hh564/+DoYLOVzc2TKifvvusujRLb7dnmyZxzuMklqz4xx236BgKvdDAhpTTUSDpZLGM6XVzEBaJUd4jw8PDwu08/G8NhKTbbmW01bcy5N5unDqoMcX502P/u7/zBAw/8TzbaaMyU4YWLrVksLhHXIecDJIw+7OHsa87PGrMePwTrlV4sXOtDdkclcJRYJLkwNhRIOvcTHz37wXNvvP7KpTcvCIPkvlvaXBrPOeUlPGxPd7ZnO9QMSBOb0yd3IuLyMLe6cWLndCJEG7iIbmiI5G1CRqMLV2Y6BOR++cU//crP/LW/aTwRfNidtKBIotAEmFFDEIM2m1uf/sm/cnRwdLjoUlIAFKPONExAqtsqyXvFBhis9+J9cdBfxS4p6YwuIpFUwAhxj3VTT6cGd/YNg0hz1PWL5RWVnJwhBCAGnWYyp5zzMsRFkNBEvvz9p7/6pSf/6s//d3JegjGCIqJsQENg2cdAiiVVcvmpnsWzwMSPORuZFUSTscnNMHX176GUqUarnJk1xlZEZZGipRRYdXpy676T27vXLqaXMuk5M3fwBg6Ytc1kc2MzNuysu3F9HownNrY2ZjvBLSpDDLM463PfL+zUHaebNlhOBNarrob6QS1hWaJNcT6J+tSTD06nno1TiqElXcRVVaVRiQpapMQAIbHN5Lpxarvt+2Vfmx+plP2gyNLKXWTcH3zAzFYA1kBwEVAYayZURbmd1FqeWUW2kwL3LJjE6bPfefbGjevT6cRgEOm6Jcmcu5QSaUOzrqyy+Bd//Pvt5uZTH/nozlZIlgVJGxEGmlAIc0rdaKgm3Y1cO+gIESlbTMvarojry3aQRxxm9phZftytKmUgIGkqk8nUjR6kvHoUjW0zbTaaOGsngeyvX9m/duXqk088sbm1vbO1jX5xYmPz0u61EDUw2ubkngfOcW0jjuNjGxLDSBFXCdvbp+6+xy9fOHjwkbupvfimDBuKll1UVNTcczJhY1x+/Wtflum5H/v447PNKZlL1hGGpiqONWX0Xm7G2qFDpB1jympJZxsqdYuOhKlc29/70he/qOqAkYXj2XUL90yYM7uRLiGIsr1+9cY/+Pv/8L/4v/79b/7591LfZA9LW+acS96k1RtXZNJs9blUj426GcUoWQM0jhPSb9LTKxG9dhRuL/8YTZsG2qQMiVFjgDrUHJ6Zl/1y/3B/f/d6DHLi5Knk7SInF0ym0xBClzsz7jxw7+bJrVKrs77mBhNVx/lXWpBGddJMZi89c2lx2AIBWBStMmouSGkiCfe5+/7hwdtHRxeTZdEgIUqIw3ZPx9pjjFMx/j0Wd6xmiaid7uhWdH5pJO3kuIGauwMUbb745S9duHBhaxbNDBKC1t2SiWKXlzJwhqBxpibJ8vVXn//Cy688/9M//VN/89d/5a67N7JliIZS1zjU0xFcOfWl6BhVua2rm5uYcrh2hdfdxLhcQ7OHo5qRsWlCbJcLm01Eg8LdYclKKbN1/fLM6e3DRfflr3yD3Dx7z+zs1lSEy5zM+ka37nrkoarKVvJwPRt6ZcyrQKHmsnNq+76Hdvv8rvGMMA2jqQ6uipQ0H7gotz/zE381TzREUigoW2SnW1nzFgtgNZ71I3oGneaEOpFYAxSJbMb5csH8+sG3vvatJkZhQ3ZN1EA4c9l/cSibN/eg2oRWJ3FiqRfL+0eXPv+nv/XmxZf/3f/Zf/jBh05l+hTaeHZpCppXVjNhKwduNXO1MB4lM2C0TktgigBrI+xx6+y1dV0gTwBjt7/aUUpnYTYJRwfLpDGUDSMVJhBZiltsJmHaSNC8f/3aO+cvXQkbmzt33XvP2TtPcHkY79w5e/Yscm1WUE1acG2XicIVRkQTVeYOTbO98Uu/9kvuAmZIAPriu5MOqAsUbIgMSuDWXfc5zUxqGQdYAr11yZbZKiEfHg8dggMSEsYlrmspUcZjxyqQJ6qvvvLq1WtXQxRngkiIDTimiK5Fc0tUiApo0GY225zEPA3pjZee+3v/5X/+4hu7yEDXZV91ua3id40fbl2GGHTbGo8e8xZu4u330U1CCaobszYGLFPf5ZTpveVFfzhfHh0tu3ev7D1/4fwip9NnTt19x6ntNuxsTpOlyzduJLR33/dwCBN4qCmFtxknVzFsISCpV9XNyWRn0m6GEERlqN8e9qpEOHPm7Pb2VsFqzZw1C+A9j9vKs9sesToXZTjkYGGh1DmRTggyv/Pscyn1TRMzcqPTECcVikCt7i0iwkk3z8kEEgVN207aJh8tZs3s0hsv/7/+3n/1P/8P//2H77+LZlGgQ/UpOZglw+yM+VwY3KH1bwYelXUzx483fLlpOoYPCCI0C4oQeND30TUqSnat53Tj+v71qwdO7d898sPOlkkn7QHnkry7zgceffDsPeccZV/fIajFmto3MhlWKTsUou8TIF47NReDNQDG4qXARMLW1k5epDzvAWHFgTgkslWX6ravdiu9S0r2+JO6u7kN8fJyoo9FXe4UyP7+4YXzF2JQCCHeTKaUYIMaH/OZi4Z3t5Ty3vW9a9euX9/dK8k42T0GvvPKM//Pv/8PXnjrqrNfrzYrceGanbI24tvrXVYod/01ykTI7de9lKB06cRId08pBp20MZnNu27edUeLxWKR9g+Plv1i68TkzJ1NO03tLGDaotHNnXD2bJzNujseuHvz9I6zF+RB4PC9RA5QK9bcF8QcpZKl2vxjQLBAUWqZZYGWTYtvq02P0/JYCtitczVyjLpnt+w5MxuohdIggVRjG0G++9z3rl95dxLgbo1OBJ7ZWyhr1oBM5qEQ24EMX6Ruv+sO54uDbmkhtDSHS1C8+d1n/vCznz1Y0Ohgac7oQsBKgpcNPSlZoYvjJB/ySUokOYNZhn4CQlfJUvpWEOIQp9IDbNIgLeXtK7tRIYeXpsvchI3ZZDKVWKob+twfpWvL1EloNCKGWTOb9tHmkrxtJIbFspttnsmTM29c6LTZ9ECBE71L9hruFjAAKnXfIqhQAAsWUu+klv2R3AVjG99SBRJEXRV162FSUXaxEMWwPctAs7EpNBAgSpjT3DnuYFsCzKuiGGgs7sp62E5EnCKMpBPMKb/wwvMUiGoQaZtp0b0CSIk2WiaVLnXbQQZhVlWzCouHEN3FLNHsycc/8JOf/HA/37fJVu0DsoqL3SYgcxMHH7eKAYDSgSoS6FFyCBoFiTAGVY0k5/P588+9/cd/8O2P/+zHfubf++hrX3m+QZpNm9g0O7Owf9B3CbGZMEe6xUabttmebc5OxlMn0nxpk9mGaH9jfnjfQw+88b2L/83/+1v/5r/zKx/9xL2nJlBTyYCr0g0wEbIRKTNbXkZL4q9qWA+g1dkTKVVJpb9vlek81rL/PWXDbVh73FLv2FVxLLhwctx7ZbA+TSRe3z249Pb52AYXmcZJaGYEnAavHZ14PG/E3XVoMKNaWgF5CJpzfupjH/vpn/7J02c2aH3xsbEGTJbblNgMavBgvTXJCqNZZ2sIUQIsMInUGIWx6/Pu9e7Cm5df+P7b599499q1C1euzD/2V3+h3b4jSxRZTjfiZNJsbc3OLrcuXN5dJG+D5tyHJkw2T2ydPLERdX44t6ZvWoQw226ns63tFz7/5UtvL//u/+O//uDjj3/6qQ899oEHzp3b2dggGOlz0IRNSVVjxQsFVJVQyg5Ebg6RlReRVcrpsQW8ZmHUE9+TuCQQBivaRUpWkLM0qS0EHq3Ueg16QkUmF958d354FGcNEGJsveavQgiXRHFgKJEuBKYLCpCJpm2cOWcLIiLqoW23tiYbs2bSoqwpJYcUnOHpozXBQWPd1r6Q4QQVlRA0ZN87susX9l97+Z3XXrl44a13Dw73zHsRiiybzcU/+uzv/ezPfuL0uceuvPGcxjBrJ4vJZHtz+8xWd/Hq1R6iDY72+kUXFp1PlFoaJO3nbmln7r7/lVcuvvLK5TgJMR+8/uzB+Zdfaqeb5+699wOPP/zkEw+fu3u6s9W0Gt3TmskJAKWO+r1oU95k7Cd+6yJe++p97rE2ITVDewg2KCAOCKXs0DdMNSjOYI7XX3/F1SChiQ01QgQwkJAGyHBXCh1gVkQozN2gEmKMTdM0GqTv+77rEPC97774s3/15yebJ2JTaqbLys1AKFgBXbCyX4ovK0BpNj9yrQchvAEkNr4kdq/2b77x7isvv/jWhaO9vetHR3tEdrhZci8NjjyS19558e/83d/4X/wHf2N65tCWR41e21Cxdnpi+2Rv/Y39G8t5dot7+9d337mBpmknEtF715y688xkZ+urv/fVjpxpoEmMKepRmh++/vy7F179/hc+f/rsmZMPPnTuscce/uAjp0+cjBqEDCLeXX392e9/6+NnzpzZ3iklvUKSGRRlqH65xqFrwzEkbpXe5QARUPVZgSbIocdwKT6gwUUQCCWzEmUb++h0h4F0BqyEP92gyv2DvTfeeCXEKILYNCrqSEQPFZKCgFXVQiHLihJSyzFkNtsQQdclIfuuK7rZnW6u5T7rUBTIofPu2urFSrUQTtNAkekrr1798teee+XlC/N5Z7ZUkZS77EeEpWQ55xDKLhYWaCem+OYX/9lv3nXHL/zMh07e+cEN84P5qyHKxnR2enZaPM7jsk8puWXvSQmcTOLO9K720SeeePr5775+8e12MjN31ejIue+L3gySyAu7u7tXL7/7ra9/78yZrUceffDDH7n/g4+H6xcvzK9fOji8dnh0g9wBeLMJUbOhRW7vVP/AY4X9jJOzpi8FkGjixiwaXazUzBdhTkJUXn/j1et7V8KkCUHpbuIUI0q3/yAQgWarGpSsJV+VIO7JPSVMp9PJZMN9mbN3fZf6nFsGtaKmCReqjdAuV4tlIO+xdyA9NvHgMP3pn33x20+/sL+/P/jxTlqfFjn3qkg5u7uGgpYBkNhwU5e//Vv/1ebmv/fjH33i1LmdB3fOXnzzlXzp4tSxI9shxN468+y+Ackuhkl+6ImPvXXx8E+/9C3RlpLJQKplN2QAsQnmPbtATTEeaNAb+3vf+ta15559/t4Hzn7yY+eefPQjj3xw2SJYtlKPOXiGA1JLYi0bctS7N5kmtz+oIxqPuhkbQYjo0DZbIyrHcPQwtUSFIWb+4ovPk6ZhUuYPnguHFf6MgSUgcquGHIkiIjmZwNumFUnLbtH1fd+nEBjUGFa2JTmW6+P4BrNc/7tt23fevfKP/9EXX339MuKC7FM21UYQlt1B3y1FxB05JwDuGoJGRXI1MCO3y+U/+Yf/+JEH/6MTD212/vgDTz14+p5Xzr/8fH71AqSZscnOfpkWKc1O3nnvBz9y4crF3/r9PyWnk6hQJZUejAp4CFIaCyiCm+VsIQaVCN3r0+Ebrx9evn7trXfSI/efi5CcUzs5lgFXjhpGEH0/Lf1+x22u81pKIoBEOoUCF1qF2ZxZSMjs8MbR229eEp0UB1wgRAYi2JjnnDudaKPRCCBDWjIqRSm1MbKXHRSt77JA23YybTdS51231zcawpZKJ9qogiETsUS0ityjsMASBKWahSKSJ83kzTcu/cPf/JMrV3fJvp8v6Ck5Z7PAZItumXMKqhCxLABVXdUoEUKhqUuIcb576b/8v/2d/+h//795/O7Th7uXN+588qFTH7jj7mcvvvDcwe6+ha143w5OnJqeuuv5517+vd/+XN+lSTOBCNhoDekUWDe4F8jCRdQyVUKGuVNDjmExv9r90Ze//ZlPP/WJRzVxe+oTRTFPGy/dDxlBeDCx4HBBRk1NH2rZRAjaClMX9zwiIQLq2HWrMq8V0IgCiDs8Fq5RHA+IAIC8+OKLe3t7GxsbpXqFpBnIRJLMonDLjpBzHpgVqspcUuKr6xVEY4BKKNj63vX9nJmzWbYcPZiTCALWnJvRL6jCfhiMg4jN5vMvnP///sbv3Jh3IlguD82s7LvptNQvU+oHQVcLbknmnMuOPyU+iWxb03b37bf+j3/rb/8v/1f/25/5zFO2uHp0Y76/sXH23seuX73MOE0Sl/RvfuNb/+L3fqfvc9O0EmIxb1SHyR2apBc+LJEW77u6HQ9iYlblhvTf+cbX96499m9/4HHGRFvSpusqE5CbKvNWSVM/ojc8ivf1pDDFUFcPDhFgEmDO+aWXXhKR2ESVqBpLo0K4wZPCoyqAim/WFAEpSewl34CgM5MSYxOiirDr5q+/9ub8sE/Jci5bWFVUqjQzWw/urjlOABhjfP21t//hb/zu9f0OYNcvum6Zcw8I6H1aLJaHltLQ+9ZKDDXGGEKoud4YelPDZxPdu3jhb//v/g9/9Cff2jr1UDM91cusOX3/6Ueeak7f3WycfPqbz332N39rMe/ayWaIEyJAmhDasrWY1I3K1F1Kkz6z2ni7RFvMreDO6Jew/PJrF7741e8ZZo5YureOGkfWcuFqwvJxtft+Svh4SHQ1X1V1V+gLgmMOdtHbh4cH165dnc1mMcYYo4agqqUfn6qEELVssVOySVDSVGBDE5AShQBo2S0bAA0SG333nSvn37yY+pzzkF9gNb4v1Rn3m9ZsAdf2dm/85m/+1vUb+66erE85pdxnS4C4++Hh/mJxWMpHafS8yj0ct/QiIVAGMSXFt6aaDt78W//r//Rv/e2/t9vFRx+4Z3M6nTbTzWbjq//iT//Jf/3fpIWh2TSKuThUtGR4KaklXKYaVEOJgq9N8PBaKTPjKDdd9piu/8mffOHr33hD5LTosda0dIroADetqdRjqNd4+/cqCbgZwBqPAl3G9WhOWRSXL1+eLw7aiYSgTSNBKeIaKAqVRtCQosqmZRNLNkky78gs4kILpBjVhNonlkbUsybOguYXvv/CwXKZrDcazeAOV1QQG6BL2T+QLhTxoJJA+af/9IvnL1xBgEnqrU+5s2w5WZ/NUu9dD6uruZLTPYbYxomiUcwCWoUERaOhDUEFTo+KRq999jf/3v/pP/0v3r0xeeADD546kX7/Nz/3j37js6A3bdAgQYLU1vaEpNpwhCVjjSJ1lziSogKhKCB0GsWzZHhn/ZIJPNj/7O/+4Ze+87LrTDQTRg+CBELYKPJNrErCrQSaRRiVInSh1W0UucoLH5zLgj8X8Fpr5XgFnGtrOHE3MrqTtLffvtg0bdO0MTaEuidVIUumStkjO6pKCCHVPvPirgLVEEvbq/KAEjXI7OkeGhVtLl9+9+23L506seNm1XJ3Hbr9O4+JHQe0iZvPfPuNr33jm+1s4m6qaqnPOZklLe033VhCMRILKqIiIYamKbAMUurcjChAbInBKgTqaJCbKb/2hd/5T/7jy//uv/M//v3P/YMv/cnn2+lUob2biorX3sgqxcYsVweg9q4IobT9rBoKKzABIWgI7s5slkOW/b3f/9wfnb77337i7BR26B6saL33C/0KMJB67UyRW2Q340pIr90vlsI+KXt0wQrb9P3ynXfebZpWJQhCKt2+3UkTiLEnJKAZHNdiCslqo8SymmTALUriv9AyJOQ+9a++8voHHnlwOmmmTSMSKgfckhBKUiTnFD7/x1+ZL+cM3srUzSz3cBN3CZJSSn0y94hYoyAiqhqbKCEM8chMrQitBDErbSjULNERgm9v4sXvffs/+Y9fAG80sxkB90YlhCjg2BmbZkZhCCpDSxKyeIyrTpMcGnYWPMfMRELJhYrS3bh25XO/+8f3/I/+2k7Tae6xauc5NKocrZAxBjyki4gIXYZeh8f0mA/bPQ2X1AkscYEqwWvzPUIkLLvu6GgeNGqITpAWAkQyJIkasQQ6s67rOrMisihikCxiZPLSRbPu9FS6Z2R6cppZl3P35hvnd3d3U0oFjsBateBNCzgEvnP54vef/65EON0tkTn3nVsWoZA59dkyWezapOohIIRSAjm0OmYugWDVIBpEgxMSYpg0iG02uCPovGmvazNPVFOFxhjbqCGGRqBBoyCEMGviRpBGJYYQm6bYcKEYdOXDwGFjtLjGBWMfEnoJi/Pf++6XvvOKtRNoVs0QqChXZtdqha++qcEpwbHy/jU2F0IykYCEKmbqoaCCwS3QW7CkGOru3rLv9zUwufXsQyyAeCuYOABpknuyZd93i6PsWYlEr51ySoKHSgQDPQjons2yO5GDuDWwg2vXXnzlfEoHOXnvmTDAyVwSqQZKCwiNePpb5/ePFmCAhpSzdX3Kfdf3mcIQAl1NAoNC2hCFalQ2kxAamrklyz0SYALAaUVCF7cvSGybRkMENIrQoDaNDrgrsooHKD0RzHRXZVAWBYhQm4UFrRVcDs+lKbTX/FRzZ3ZPZW/VLBlUeBDa88+9tHQRBmcAQnCxUAxooZcOl0oZRWBpaWaOVPc6PJZ+hYFlvUYkKIpOmMSpDDevCAHM7LvPfS8bnJJz9pxyztWVKrhXSeoRbZpJiGqWMLYhFfUKWw4+oqDIK7eaWmvm7v3LL714eJhSSutNj7HWC83dJfDK5YMvfPErqtHdSsPwvu/dio5n0FC1b8kqFRHVpmmihpxS3/dmNpaThxAKJ4ShV31ZSkE1xqhh2kwmsWlEVUOheq2DK/tHhRAqQi5aovGklmbOdQDDrp1lokUEFNVA0jwRFFF3F5WL58+/8upVNA0kcWiLVPH2Wmt0K0OP4133HsdvBWiHSjMbgsKEuNapHNRfCOHVV189f+GCxolTLFnuupxSznnoA1vUUlSNMba1mMDLy60JqGEEPjR8zmbuaeiMmi+/c/HNC7uJmblm72BNRBd9D4mf/5Nnrly9Ss0pd8VqNetznzzlKMpsKeeKtCio0k7aNjbM1i1LGnbdXgIg3QEopfbuDcqhUbOIiLZAJESCaIwSmiLMTWBkQKl6FHcINMRWgwJREHXIExKRYbea0jU9lFp9EZaiSnfP2QS0/uBLX3lp6U3BpqryZWmOZ6zJeGNvxNrhZKTR8cQ0VjepRqrKDulh5HIdjIJ69eHR0dNPP02yVABbygUTMzPLuRYtigo0hkY11FKRWikiTivwQpm49WXobs48LMOcuuX3vvvyMi0t56FN+7AxOwkgxPD229e+/OXntBGTpQjMcp86p+WULOegIaW+UFdEmthMphNAlovFcj7vUxp6nJYd+UrLp2KtgyKOoYG4FEtfzEGVujknxCFQjU1TZ5OEaNCAml8HzwRCGGC+MvklPgaMpreSni2hALEgmBVHL7x0/vw711UmKBk80Br+kzWnVla0HP3YNU6+aZcPI0kP8JJeX+pyTUMIbdsAPpmEtm1efumV3evXQnAw0TNUqbFfJEsdmIRG9Bq8bdummYqIZa8ykCWm6xIaqkpQGaSmiBSRaFYZVaCtyquvPPvu21cAdyZnLvZ8qX4XeBPCn3/1O/uLdzIcCNm873o372nZ+/Ju5r0ECW0TmlZCa1m6ru/TIltHG2IXIhLqbsigJWQXVy2mfrGEnUxgJ0ilAY6Zla0JAQZqKGlQIioUUY0RAaoaImoSGay8KSCCGEoLJh8dG6HXveAUoLn3kg7ffe6Vyx6io6S9JNLBCMahfYewbChFY4mRc6y7FDKCoWzYboS70MQz6UYmYzaWnxhTSsvlUlXNPBvvuGt27r4Tb7110AYAHkK0nGWo5outqotqAOhuJaXIcwkgJstsJlsqjduC9NFpqsJflZ7pmRoJCP3Mic02qJkJIn1QYIwQhKZ5/c23v/r1PxdR0JHhnjLYtk0Bc0JQJwFp2jaEqEFSTmbmngGGoFo83SB0WHk63R2iOjRpKhVdPlYSl3Gal+1VQykxLh6JikI0MxXJZGawVZZuCAEQy4PpMMDg5VeRQObqUtIJdaeyf/P1C4tP3ifCksUOycMu0MfVKwblJevbYNUt2OiYTmeT6Qy+LBuMEm7eFAOoaWPZP9hEJOfkjvvuu+/ylWuvvfoM1YIKgwPSTlpzmplKEGGMsU+de4phYm7ZXUovIEaVUMv9BotpFFkAmuJA0iBcLO2Be+8+sTXtug7YBgSIguBEiGH3xvI3fvMP9ucLjZEpKwHPnumqtaY+ytDDOIgEs5xSci+dMaJIJCyEiAoslV75DohQ3GoCjHnXNm3hOUo1JAUQiGcrOU4SZOxwr6IqtYXIkGQjIejgm1YFuf5ZVIoCKs50LQMjJ+rvvvXOW+8u7j0ZRIvNgVGjjU4ja2qHDcnSGKzREvUFgWR5ZzY9deK+knQNoTvNXUVuHBzpAFPA6UTul+3bF26oegji7ovFYrmcHx4e9H3fxIZ0EW2byebmZtsEd099XySzZUzaDRH06TClVA2XOjVVO53c2p7E1lJOyVR0azYR5sVicTjfc8/LRd67vlRJhP3e7/3x+fN7GtqUMoioTRC45dQnOlWlaZqCo8UQSfZ9yjkBHoKGEAczp0zKsOEB1B1l8yygpq4Ww1EQ6hSX3m8i4oPRglUfxqZpgpYK7GpaF0tjZNZBXxa4Q4Ym6TU7ZSSbg0pbHi2e+/4bLo2gAZrjdShrqnbVEosswcbB0i7D6/vunStX3r50qctJYoQG1VkIGzFuhrARISUhl+bOaIsb+7vvvhPVQQdMxLIlcaakOeUmNpPJVEyAaJ2lNHfvBCaId997z6OPfvC733120SVmV7SqIYTiVXYAgrSb29OJzezacmv79BMffvADH3g0Z2+CZUtuSdElS7E59Wdf+s7Xv/bsNE6OlktPyUlXFw20ZJaKoxeiggDc8jylBKAZLDtRaCybi6pKUIhbRu2ep3TToEPWghDuMFppFVVdPYASJLuBQGIsPfvExSKdAcHdER2AGwDxUrHjUA2qGOwDlxCEFDCqFGeyWKMQcQkt8ve/9/yHn7r3MRXPAcj0kqdXTGjHADgL4rCASNfBcHaKU8KbL78om/c8cP902V84c+bsyZ0z0CjMCJDSgaasKkIUbebVZEfiDQRlY/ARG0tpmfo+pc4ym7bJufcyBd7+2Cd+8lf++q9+/Wtf6xZ9C+QQivkaYlNLsckYfXM7nDx95rEnNje3Tpw+eUc7DSFCxdxAZkjXTsNbF67/4R9+McZpdnM3VZh5tizSiDrZQxhlCo/udGe2ftCCCBop6mSUEBvNqfRWK5UTLsPmTEOCz6D2ix5GpksMjWh05qAqQrMstbRczMyGbcEoLOpAQ9G3Bcsr60B1QNDorkMeVt8vY2xINVMJgRD3dLi3993nr/z0pz4+7a8FlyRy2z46JRzrHK22EYsElEcHN777zGs3nvrEEx98xPoraZ5O33l300RRiIbotJS6tm3dKSbzLmWKpT65QarHLeJly2mIZ+sODveatomxPmR7Z3symf72b3/u/OuvF+UUEApCmVNSDVEipZ9OdGN2atqe2NjYms222raZTCYxhhCiiBIOEcXsD//wj2/szyezTeuySKkmzmZJEFRRQPEmTN1pnt16d1eNY0PtGGJoJhqC5YSiOSBgdrfiCGpQDZL6JLUt89DzResWt+JZRJ2uEiQIh3UAINO09O4uPSggEJolM2NJ3617doZSY8Aa7i3vkEW19DOB09RVpDW+9PyFdw/l4YllKelwAxjAQUKz9qZDLe9HyQohnWVheQ5ILz3/nf3dyx//+EcpfrA4uvOuu0+dPKUSI+lmiYg5JXJ58e3r8zl3NihZu74v9ysqYKj7cYiVxopuUYSQ7tnnvt71fYwtlJmDywB1t9wvJU4Usr0129ramEwmbTubTrZns+0mzoJOYmxCCIA2ceu559565jsvhDZkXxh780wWAmfVFErjWpfQKsRyXohabKZBQ4gxhNCElhpF1MxpRjpcAQSl01W1lLOPnWlKh0YAOWdxhhCciW6qG3SSOQQtW3LK2B9OKKW7PTTn4toVX0wHi1tKjRRVsqcRqQgqpBFKmiAYXc0nxLVLF57+zpsPf+ZM0j31mzOzWPuDu0jdX3fw5KudBZCeA6yNy6vvnv/TL1z7yMefeuDc/W+88fryrqUbNWqYTqZwtrHNXfPKC8/fdcf2L/0bP//f/eVPbW63JJUKRlRwBKVDZZV5gEq7XFhKWUXdM53C6gVK6ZoUmC07wmR6YrKxOd2YzTam29uz6cZGnDTtZBI0iGtowrJPf/aFb0BikMiezATDuFGsefYKElUsMIZJE7dDnEEa0VZ1Qm3cg2XL6chyH4AggJsbhEoXuAojsigUDmFQqpYqdomsUHBwS6SpljBJWakQaKOqyOKZGc5EWM6e+toQqWykXkxvUgWNECKNIGpUwZAWrUHEAghoQgg2//bXvrm7DI1rYAYy6PAyJgPckYEKuIqEgmyWFEqHE72l5eHe/tEyxyipu/ytr3/jue+8nPp89fKldy5eiBgs+xD04PByyke/9iu/durUiYP53iQ+f8QkYQ0lG3CyMa5eUTotaw21JabX/4pAtSUDCRGdTGbT6cZstjGZTJo2Nm3btIHmEkxD+81vfP/8mxdnW1P3THezgtmPngNS6lQ1xolI48YYJiUuq0FpTDk5urKdsog3MjECkiHuXtE+d0rtEkj3TKaSfCNS06dJhBjW22iKBC1uDFCcCNFIRwk2lIYIWENkzTvU/uCiiqHQQcGa/1JGMvSFkzaG86++9NIbP/bwqdbSEuOcvu/BYQ8M0s3y3vW9/cvXH3j4ka2tSTB/4cVnr15/+xM/9rFl6sfSFYhoO2k+81Of2treSL33Rzl3FiSMW4mOBK7yV3VA5ryUPg5PrcboyhZAPnFy57777myaSYxt0KgSRIKqiLJtQpxOjg7si3/2jaJuq68MH1QRS4Q35XlEIKcYGsNLacFgYpbJsvJdIJN2A7GAvF5a7EC0sFZVYVX3ePE+Sr3eGO0o23hW9JSmomVrCiIHaQTK2kY3IEJJN46Iqbu5Z9JUFV4271ZBUFUpQY6CtJCooArSYu/Zl84//JOPC5asGf9DH+0R5RiwphWNvWyPWEMJRwc3Xj3/1k//9BPdlXcQZ9cuX/rKl+bT2TQOKwIkd7ZPnTp10iyRnvpDejfu1yRStzwbCUyy4rsobzVS10taRa0lRxLFbEPbKVSClB0KZL0K1ps4ffnFt9955xpUs4kAOSd3Y401UwSKEIMW+qU0TzmDqqIZhgHElhBVKRJVxNmLCKiiDSQ5Tcpas+TuQ0vFAECUkAwPWjI0CXMLIYyF585cDTFUMHtI8aeqmuXyofAePQDmxY2hizgQwBBDNHrOuaR1GUXgFDU3dX/1zUv9px6PwJBdw2GFSckGrV0chsD+8LNIiTIKQug95g9/7IOL8/78ixfJ7e6ou/T22zqEKQQMCniGMAB+5JagkKhQQQMGMIo0hTYiJUKY3R1UlenQqaOMakgDgojGKO3mrNUwFdFhV/GsEELJRjkV5be//VLvNLW+TyQEIaeyTYeRBpiKCxUm9Jz65DmbddmW2ZY593RXidCgcRYnmyZKEaq40mBGcWp2cQollZCmZdBZg68WShepoQTehqhJQy/Rs5JzOClwMglnHtH+2MS2jSFChEGDSFSJbqDXTW+LVEvZcu4t9yRKTY1ClCqcXXrhte++dZ1tBBIoLj1LKMgxdMIsTZmtNIuuWpgOZ1d6MjE0sdW49dgHf+ITn3xgNp2DC1WNOfclEce9r4APQUXuS+ed4npxTTUUzqv5wNWMF4cYpPpqo0gXhUgAdGNjUzTUAgopkjER0RFEsLu7//rrbwBMyUTR16DV6KG7uym0NMIzM/O+Gh2qJd2iaWaQoBqaapML6epw0s1sGE7xWzSE7FlVVj5ScXOtCAPRoO6uoQptERGIuakMoru8BstmDjEGJeAJYIYwlowRUbqaLwmHJPPOmVQaSAWxix0qkBCXqUtf/dJzj577qQ3tkYyl9rtEREaWXUVTB0eAJRW+5CxrG6eKkD2cu/snp5vff/aZ7x1czTEtM3MJesli6YvFsojE61dvKCKCZUta7ecC/Q2h8tKdBoDQmQQr8H1MBys9H5o42dzYUo1QpUrpLjSWOauEq5d3l8suxpAJgua54IdYy/W0Yk+LZMvuUI0lyA6JIbQxTlVjiI2qFvmhrCAwREgPoRh6cIq5oxRVDpQfty8vNrA7VSMAsywSY4xA9WBKYftoahQ9NTRs0ximjk5EFA0dpEp2iJeKALEic0OBQUAJQSQo4G1oXn/51edeeuTHnzwlqS8jHV8fjLWik1o6rQ72TSjShhQEaaSNbF1Sb7a99dinP3mX9V+OF16/tH/9SAO2tzdiLMXaMcb2+tU9N0cAa+U+hpsWwpSVPXSLQWEYERRVPeyARQEkNHH/xqE2GyE0IYTYhCbFJkxjBIOgjdd3D6xSVFYZmSBdUdIZx90eABpV2rZpYwwAqEG10dAKlLFFFDI7gewMZVt6FjSqIP3F8C7WF8xLfd9oA4uoBi3yyb2sYDHzWolUJrVkSg6GZIUysoOlPKAjXCVqKDh8JAQeTecAwQZsnFA6IE4HXXwCl6TXv/HMix997MdnNXen8Gz9B1ILjkopKKvl1bgZK8E5aWZBGkdPhN4szE6ce/iJuLd7fnE9A+4IDoUSjOT0YOlER3etvbhGX8kL2US0pvrBIBAJpKtQSddGREQccGFONn/zDd+9tHjyE01kWOaM7tCmy36+s5hMeTaZ3UjWNdPWuj6ljoSqFtFcJH+xtJyUoNpOosQmtjE2Ws4TISiB0FxewM2RKeKKUnRceumTnummoqAKlEgAzQszxeIyefZat0CSJsLaaYIS4yplpUjZYuELGpEMzYAFaa3sSgBTTGJD0t1cKZqoyqBOZC9RjNKZWxNUWo/vvnrxnWuLh09vwhes22aUWgevjbvr7tAj+3Ruh8gGmEA5EYUhk8gidA9mElvFRhtUokMpKuJBmNP8oLhkZfsVyRggNBlbQawfpFY3xAhaYpkuEYDB3V2XXd+9eTGc2Dm5OdvYmE2ms25zM882TklspyG3sgwMojHxyAl4A6iI+dBemezdc9Tp5nS7bVpA6aVvSHbS6SLKQY/SvGovEiLmTh9i8gXVpUHcaXAVCVAvaUIhlFgSBJItAxiSt0oqmZS+yGtOIADknEIIEKG7iMYgzhriLTyvKqWWGiy4ZomE1eBIaSMJSl7sv/b6Ow+eeRSksweVDHStuYiVrlVuF8Fs2XLKNQ4Wag7+oDJI9zidYNpSYA51mJuaixVXtnZzKWbU4CYMxlb1egsgS9BzENTSOHUtDZvpIsGRQcspX3llb1eholGboB5io2GmOonToJwsu8M2bsc46fveaWQGSj4QSQpdYZ5TSt1k0sQQ3QIphEOhEknCcgneSbEvSbcCIrq76+D8om4dU/I6AghnykbVIMKSyO7OwaRwKx24pBjDHLOgR8FeShmCRNZ2kAP0gSrYgJz7zkrLZVVtJqVc1HJWBcRIxADR/q2Lu8aHMbQOA+tDhwlfEbi4SV72MPWad8CyTlFJRjJub7UnZjmoJJcl8/Ub3DtCRsOigcQhSWoThQJRHkucB4aUMFKAqBpKX2IVDUKXPvegacSkCZMQY8xNQBOlbUJsGVpT1aP+pB/1i7TIbJqwqW3T5SPLS4CqsfYCcKUj27xPKeWjne3TQWf0ULZ1VA3mFoKydN9yN0sQZW3j5ao1R4m16sRFCAleUqq17gmbcgq66hihKtViFoZQ4WAO7lSVz1KhQDMTDSoFEilxvwgoxLq033X7oIjMVKITzFb8nRAEkrXKTt/fT8lyS8CbUhVCDB3JhpaeA5eSGtzcs5sTghhqVJFr7nQMsZ20Yh52b4RLV4+I1mXplBgEnrOboMQuFAilRdtIXyKBjQgIc40CEQ1BxU2DFiw3SLZaatgGOi0FJVTYw5BnLueO4h2HKffYE0bLHXMMIUwnmx0kpaUbxaFetFEAO3B5eNiFMJlMIsUjSjAK4lICpOZiBkhE7fhrRHaPpFF6eizVxqoBrkQWVZQqjcottcNq0FDaPAZtROHoco4lo0NENIwWt5BNSWgUJcpucGWXQgZBtjw/2r9uKcd2htBImAYlCqALEckiCFFF3SxGC4lsqeIFMhq31RWWnOyBtWvjjZxzyi7qgqhBHLmgXS4QFYYYWg/TeHCtm8STJ05x9/ocSkUUdYUyMZuBAQKBUUwoY6PYW48qyWMpriLIafQmhBgxaQJCDopJE6aTEMSJnV5Pue6EyWKykbVpu26R+v0uSYwxxqlgklNnvii2utc+rQIypz6ETkMge4oUJZWSDSKU5rnMNUG6OE1qO5DSf0JJA8PgDplqbd1cMs5KoaQ7VFvR4O5EBOg0EKoKC+YeNJScpFJiSYOIxBAzs7AAEnmxPMqpxi5VM0JuQltaEoiohmq9qgqdB4d7y6VOGgJpqCUsEwmUzpHUsm12sb8se596p9WQAnJ1mCklSSdeuMjDE372zNbh9RsH815Cw1Az5oKGpmmKwAPqxiLVqBvpCan6vgKZcHfTHgjijOpta20jTZRpm9vgTcB0wiaax53ry1NXbiRtbhiz0OnZcufsRdWdOUMlNm0jyDmboy/bEgBoYoiKnOZqSmwUu4igsS/KspgP2YyZ5ZuyEwpWaZSsEggAJMQh3QlwL7i1u/kQ4e2cFNEQMG7BV3Y4MXdIgPeOIBpAUAuLMwQ4+76bmyVVoZGWMudmfepjiG0TZiFMNIQSCyEJtd3rly+9c3jy4ZNwG3folBLpKEa7qlKcpVcE3D3nVGYmBFf1odyxuKwSL+3N9zreWLqa9n10D2a9excKIh8khGDsSYhHQInMUUhTKBlwCt0dRN+5CnJAhCgCVFIuBY8KUVMxUbMCCG288c7h7v68waFV8MSdZjVKkwRLAioSpDg7uSSFl6SMnHpjL8KoaTR8nTXJxUmBFPhCQwDNsYQQjMJGVS0XNKZ4tyIi9EBSSmChtg+k1A4NyZ2CSYWQCBExeDFUU09VDxpLwz3UJEMCYpZSWqLawMW37uk9hdLHXhcxTkMfNaiqCiiKBP+zP/s6+4cnVmriCcJKDAwOOhFYk2pFFEfXL167tttnI3l0eOPV115BtmoWo3n33cv/P5kiucTM13uqAAAAAElFTkSuQmCC\n","text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im.to_thumb(160)"]},{"cell_type":"markdown","metadata":{"id":"s-Ex95Ah1n8y"},"source":["The Biwi dataset website used to explain the format of the pose text file associated with each image, which shows the location of the center of the head. The details of this aren't important for our purposes, so we'll just show the function we use to extract the head center point:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vT5EndqO1n8y"},"outputs":[],"source":["cal = np.genfromtxt(path/'01'/'rgb.cal', skip_footer=6)\n","def get_ctr(f):\n"," ctr = np.genfromtxt(img2pose(f), skip_header=3)\n"," c1 = ctr[0] * cal[0][0]/ctr[2] + cal[0][2]\n"," c2 = ctr[1] * cal[1][1]/ctr[2] + cal[1][2]\n"," return tensor([c1,c2])"]},{"cell_type":"markdown","metadata":{"id":"pi94sgnb1n8z"},"source":["This function returns the coordinates as a tensor of two items:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vq_SyjHN1n8z","outputId":"215620dc-ff32-41f3-c179-df5f881046c3"},"outputs":[{"data":{"text/plain":["tensor([384.6370, 259.4787])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["get_ctr(img_files[0])"]},{"cell_type":"markdown","metadata":{"id":"GCwczaMH1n80"},"source":["We can pass this function to `DataBlock` as `get_y`, since it is responsible for labeling each item. We'll resize the images to half their input size, just to speed up training a bit.\n","\n","One important point to note is that we should not just use a random splitter. The reason for this is that the same people appear in multiple images in this dataset, but we want to ensure that our model can generalize to people that it hasn't seen yet. Each folder in the dataset contains the images for one person. Therefore, we can create a splitter function that returns true for just one person, resulting in a validation set containing just that person's images.\n","\n","The only other difference from the previous data block examples is that the second block is a `PointBlock`. This is necessary so that fastai knows that the labels represent coordinates; that way, it knows that when doing data augmentation, it should do the same augmentation to these coordinates as it does to the images:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HYDGl3_V1n80"},"outputs":[],"source":["biwi = DataBlock(\n"," blocks=(ImageBlock, PointBlock),\n"," get_items=get_image_files,\n"," get_y=get_ctr,\n"," splitter=FuncSplitter(lambda o: o.parent.name=='13'),\n"," batch_tfms=aug_transforms(size=(240,320)),\n",")"]},{"cell_type":"markdown","metadata":{"id":"taCRZiQn1n81"},"source":["> important: Points and Data Augmentation: We're not aware of other libraries (except for fastai) that automatically and correctly apply data augmentation to coordinates. So, if you're working with another library, you may need to disable data augmentation for these kinds of problems."]},{"cell_type":"markdown","metadata":{"id":"8ePsfdIG1n81"},"source":["Before doing any modeling, we should look at our data to confirm it seems okay:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8OpK8IpN1n81","outputId":"9bbb85b1-aab6-4925-e154-3fbf6bced88b"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAckAAAFUCAYAAABPx8fsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9V7AlSZrfif1cRMQRV2Xe1JVZuqpFTevRMxjRmCHkEiBhAIYAbbkG7i7JJcGHfaQZjEYjH/iyRpotaUY+0IhdcjmwxXJBAAR2MArTg0HPTI/q7unualVdMrW48pwTwt0/Prh7RJyborq7qitnaelpN8+958QJ4f75J/6fUiLCk/FkPBlPxpPxZDwZ9w/9uG/gyXgynown48l4Mv6sjidC8sl4Mp6MJ+PJeDIeMp4IySfjyXgynown48l4yHgiJJ+MJ+PJeDKejCfjIeOJkHwynown48l4Mp6Mh4wnQvLJeDKejCfjyXgyHjLsoz48OjoWCZoQBO893/72twB48cWX0FqhtY6vRrFarZjNZnjv0cpQlBZjNEo9+Nz3J54IMnpXiwICwTe889brvP36W2zvnOHw6JDDg3ssF0fUdU3XtXSdp20dTd2yWtUcLxa03QoIWDvFlhPKyQRtC6ydMJud5vz5S1y4cIGz586ztbPJbFZRTRTWEJ8JjeBxXUvXeL7+9a9z594d6rrlwvmL+NBx8eIFUIG68RwvliyOl+zt73Pv3h0O7+2xONynWe3RtktcFwBPURZszLfY2NxiOptRTQq0NQQXsEYjAkUxRRuLAlScDFQ/S8Q5FYWIAhUgKFBCoCP4gDEGROE9iAjBd7iupWlr6uUxtfc8e+U5RMALSIjHiaj4GoQgwn/wH/39h6zeD3a89u1viy0sRVlSliVFUWCtxjnHcrVitaxZLVfUdU1dL6nrBXXT0DYNTdPRNC3OOQpbUVYTqqqgrErKScVkMmEymTCfTJlOpsxmM2azKQDL1YrlYslqVbNarVitaurViqZp4k/b0LYNnXNYW1CVFWVlKYqCsppSFiVFWWC0wZiCophgClBacB20raPrOpxzdF2L61qc83Suw3UO7z3OeUJwtK5DJO47nCMETxDBB4MED8ETQkcIgRCE4AOd63o6CV5wzhFCQKQleEfwQhBPEIeIJ4SAl4AESevv4u8BRDwSXKSfdJz3If7uA77z6LLiJ378M2ilcE4STcY9LCIEht972hJBxEMQRHQ6zvefEYT/7f/+P/nA6e6X/4v/XIy2GFPQtQ3WahRxv0kACSHOjwjegxcHAkoE8ULnPCFA1wV8CATicwoBkUCQgFIaFCjifChlEAFtFEobtIr8VAHKGLQ2KKUxRtCmQGuLVhowEDRKKYy2KG0wVqOtQilNURRxzxQWYw3GGIqiQBuDURatDMbEexEVEAJag8agtSKEAAhKgVYqPgOBxeKQN15/nTfeeJOdnW1efPFFTp3a5s033uSbr72G1vD80y9x7vw5Vsslt2/foalbNrc2mU0rvOto2462aXC+xbuGrmvwweF9G2nc+UhfzuG9wzmHdx3ee7xbIcFz+YUP86lPfpq2bREh0lZQCB5E4n5IPC0I8ZgQooSRQPCBo6MFEmBra442mr/+N37poTT3SCEZbyARL0JdN2gdjU+lVPqJxF4WE7Q2SBCMMaiHScc01pi+xHfU6ENRoNBoM+PS5Ze48vRLKF0QCDjX0q5qjo8OONzfY3/vNnv37rJcHFM3HXViRk3bUi866tWS+uiAzrcgnn1tuPF2yavVnHKyQTXZYmPzFDunznB6d5fd3dNsbk2ZziaUlaawmpc/+mFecI6u8xwfHXP9+lW+/vVXEfGsljWXr1xhWhl2Ll/i4tmzHC2XHB8vONrf5/DgNkeH96gXxzTNgr29Pfb39rDFhGpasbExYT6bUU503AxKE4JDaY1CQxC0UqAUSsV1QXScMQEhQM+AQmI+Ic5j/75EoRhCnFelccEjooHhcxF5gALzwQ5jDEYbtDIodLrfgtl0ymy6CafjJo5DoqKQ/lSi+k+UkkRoiaB4ME16FZ95a1aytbuTThtZpE6nFhGcgPM+CrMOnDOD8lE7urajaRuaxtEuOur6iKauaboVXdfRtQ3O1zjncK7Ddy0uMwLf4n2XhFBkEBIcPnRI5/u1DSKE4CB4RKLwjMIJgndp3w0CSwCC6xk2gIREN6IQJDLwPF8CiUf2SmsUxMOPl4B4QY8IRecpI3/34SMuiQLR8TgR4qpJf48f9Dh7bpOuFU6fOs/du3ucP38GrXV6ZoZ5F0UICo8jeI94jwrxWUJI+1AJEBDxON8lxh1QKgmgpHBIIJ07KkgheDzxO851eN8gXtM5F4/zcS2sNtR1jSnUaI9rEBV5hlIoFa8XeYghWytKCVprBBX3ltZoDcootEr8RukooJOQ1joaDsqAVfDyC8+htGF50FAf3WZip3zsox9HKTCqZHG0pG0jnYsI2iiqScFy2XL95g1u377DxYsXuHLlabRW3Lh+nes3bjCbzTh3cZfJxLJYrFgsjnGuQ6s4f6tVTdfsYWyVlC6V+F0AdL8Pop4WKTA+tQw8Ms3/bDJJAtRHY+MR49FCMkAIkrQooSgs8/nGcFPp8gSh6xxt1zKpbLo/C8q8K3Gq/r/xLzL8rwRdGFCJCJShKCeU5YT51g7nn3oGxONcS71acLS/x/7eXQ7273F4cMDR8ZKmaaK12TjqZsVqtcJ3Hft7d1gcHSByHWU0tigoyinlpKKsNphvbLK1vcPO6R22N7fZ3NxgMplQFAWXLj3NxUuXCKHl8PCY5fGC69ev07Y1GxsbIHB2d4fTOxV1e4rloub4aMHx0QFHh3dZHh/SNg2r5ZLjoyOMUpRVYDbbZmNrk+l0SlVNMNailSIom7RPicIyCQdFgMRi0h5NDJBkRUjP8CNBCBA3Ui9mZG0RHvu48vQlQCNq8AYoUT3nDQwCINKn7p+3CVGQRKYTBYDzDnGe4CJzci5A6/Hp785B2wltm628Dtd5OudYJS3WOYdvWrqmoXMdXVfj/Arn2ijgQof3kXH6kCw/Hy08xBOkIwTfr0EIAXoLPik3Sdul37wdIh4zstBCpgEJONcR0FhbxI0uiTECOjFLAKWiwqF1Zp7pPa0TU41MkMw6tY1MVaUJT/cYQrpPBDxQ2HjODG+kV1EKgqDwvcUUvxCVlSgSszCJ1+xrmqjH4wH6kR/+GZxzTKczFosVm9tbWGt7AyHyPAZLmWEdg/O9NR9CiIpU8ATfslwec3i45PSpMyilonXvGyT4xF+jJe99tKCCJEs0hHiO0CJBEYLHeUfnAkprVssFVVklpWqg5bxG3kd69CFEFCFE5U4EfJe+430U9IRIUyHzgLg+USnXgI/GUFqrKHAVWmfkwhKwaA1GmfSZTt+33LlxwN2bYIxmY2rZfOYplFLcu3MDrRRGC+fP7VIUtkfTmqblzp19bGG5dOkC29vb3Lm7z5uveV5//Tqbs23Onz+H84579+6xWtZsbGyytbXZKyPZIs7rNqylQwgsFzWbWxPkXfSydxGSqtdeRWBvb5/Ll6+kzxKRx7nEe4+x8eZE6eGG0jR+byw4bnQRicxcotWa8Y9spKq4O0EZimJKUUzZ3N7l0jMvICFCpavlgqOjAw727nGwt8f1G1c5ODpClGLn3GkInrZtWS1a6rqhWe6xOoyMWBeawhqsLSjKkmKyxWy2xXzjNJubm8zmE+azgqK0FJM5z77wIkbAuZYbN65z+9Ytjg6PUUqxdWqbU6dn7J6d0zTnWC5XLI6POdq/x+L4MFocqwXNcp+9O3cxRcVsNmNja87GbMpkMsPYCJmAQlRIsxp6os1EEUIYCcBsgXSExLx1USbGl2loXTl5tB3wgx9f/toN2q6jdQ1t29K1HaEVnAt0XYd3jq5zyTrzeBehxc61BBc/d84TfBehRlqca1CoxChCFFgZgknKRJAIiQffke2ogRFGK80nphYFsEqaqaAlwvNCFxlqEuJxehWobPm7uG9UgRGVIK0Es+nIlJRSiClRahqZCEmTVxptdDxOC8ZEKCwiLgW6R3cURmnU6O9oVaTXvN6KdL1ENxKtm6Iok0aeBIFID+26NLfiAl7rxETD2gZXEhmpJKE9tix7UfxnRycDYHPrVPxFYDKdP5BhRX6U/xofEPdS/CzxJBQQFR0fFNZUvYDtL9S/JgYuEpWrEAjeJ4EpSFD44Fgu7vL2G6+xfeoCt+7scXZ3l8mkSkLSJwQiCeokFKMQzspkEt4h9NfxzgMJLfDxut57gvh4vB++E19d/12RFh+E4BV4T9e2BGWQtMeUVohEd13UCEOkNSVIMKA8qBAVPKVQ2oLoXsDOKgDHretvcuu6IgjMZyvObuxy+cpT6V7z3kg2o4BzHe+8c5WrV6+xvb3Jlaefoqoq7tzZ48b1mxitOLN7hqtXb/LRj75A57pH0sYjhWSQrJlERnHt+nU+/elPIxJvWIlEeEuEpm6YzisQwXmHkeHU72U/ZEHZn6s3PTMxnrxIJFClNUVZYKs5m6fOc+lKIATHN//0y1y//g62sly7dpXdUxepmxXL1TFN09A2bRRYjaNuGprVknZ5xOrIE+QmSpuI9RcVtphRTWbMphOms00msymTjSmTakI132FuhVNndmnrGuc9169fx1qDc56qmnD27FnO7p6lrRuWyyWLwwVHR3ssVwe09YqDo3329+9RmIrJZMpsPmNjY850NqUsS7TREWXI2nlclOgnyT8hJB9UslRCoDQ6wVonYFZZ//txjf/HP/zPkBBQdEhw0RLz0tMjJCGXfFjRp+bj+5ItE5283NkaCukYyIxJZSGRmZoCnfwwQGT0WlEVBV3nKKsSWxS9whZ9QlloDQJOp58smFD0MBjBo4wBZeIxsHY+lV5lLNDUABXnzzvXopXgncOaksKWEVlQ0QrQMrbIZIDp8zvpj6iEJsVBfG91RhqI80kIoIkWEwEXXGTKGdUQ1RudIBm4WLtmz8SyrivS7+I83s1F84Mc0ZrSj2RW999ftlIGBt2vE4CKcKU1D/r++rnyR/qh4Juwvb3Bzs4u1m6ye+6AUzs7WGt7S18ShNQrdsH3Pz5kX5+n6yKc3zQtt27dZHt7BxC6zvd+7KhEpj2X+EfI+61368SfznVoAl3bYowFsZHvBD+CkkOynn1StkIStMmqDR3ehYT2gE9KmQ/Zf9/RdSu8W9J2Aa3jfZRVwblzZ5O1Hd8zxvDcc8/y7LPP9NcIIXDq1Clm0xkSPMYY3JtXOT5ecvvO3UeRxrsIyWS6Z2d9URT95pGEzWutE+4cN1eQBMSqiOPrdTz1fRwPJtiTf/YbUWmULtnYPs9PvPRRbt++zQsvf5zTu7vJ4jzmYP+Avb27HB7sc7w4ZtW0tPWSrq5jQEjdUK9qlvWKplmwON4HJDJKYylsSWEnlNWMajZjWs2YzqdMpiVFWbJ79izWKsCwf2+Puq65ef0WmxsbGGs5c/Ys5y+eZ7Vacnx0yHJ1yPL4mKZuWDbHHC/2uH1bU1UVs9kGG5uz5DedYayNDvYRhpqFR5Do0/CJcLU2CSYPRN+JSXDSSYvy8Yw7179F5xymKNAQfV9qEBBaa4zWkeZ0tK60MSgV18Kk91ExqExrPRJcCYo0qj+X1tE6z/48paLg00rRdS1lUXG8rJnNJhRFFoTZUtPJExBQyvb+H6UTU0w+UqOj1X90eMRsvoOyuofFx5CrUiRFINqy0cIYAlsieCJ45ymsQasCYyzaFCgVeuGj0PSITFKIsqEz4DtpYhNUGwPANOjIeFUwKJL2T0jPlCzdZHmrZCWjZLBQ0z2SLUo0Kvm+Uek5lB7UXFGg3Aka/KDH93rdwRLsEa37Pvt+zvuwodCqYj6bEIDTp3djYGRS7u6/ijzopacj7z11XYMuOXXqFK6LSEznHME7XIJinXcjCzJam727IJ1rsTiksJqiDBhTYKwmZGhWMqqYYd1otWZFSUJEHoI4gnOEIDEmQxzOO4IPuLah7VY0bYtrW8TqFGBEsuATtKsDSvL+UekzQ3QvBcpCRQg9+fyff/5ZdnZmnM5xCA8ZjxSSCAQfHfVt27Czvd1PkEqQaowkitpKfI+ojqMH7fL7oJPv3ZJRD/2zZ/0iiFbYoqKYzDl39jRKa8pyRjXZZL59jnNPPYvrGurVktXiOPkQDzhaLFguFrRNQ9e0NG1L09SsVjXNqma1WtI2NavlAtjHJDjMWIWxFWUxp5pOmUynVLOKajLBYHn6yhW89yilEjww5969e2xvbbO5vQEK6lXL8dERy+ND6uURbVtzb+8O9+7FSNbpbIuNzSnTWUlZTqiqedLiJUVERvhFUiSkKWy0Oul1YaKw1AyRiI8ngALgqUuX6VxLWcboPasKtA694FIpsCALuOhbA60EowzWKIJ42s6xvXOaoigwxmC1QRuDNRZVxN+NNVhtsUWBNQZtNba0ES1Qii/+0Rc4d/Yi71y/x6XLl3j++WeiAE4IUsi+wpDn2uOD4IOkgJzsb+pwruXWrVtsb59OGnjW2kMfuJH/FtJr/sk+lSCAw9gaa0tEovZeWJsB4rR3FBkGNMqsm5G9MpUtIU0f+JEUAJAYVR0iKhNCgUIijAsoPIgGNCoLCjX4TuOeK6PwVTlALCsmg1KQObySHOPw+OjuexvqxOsHdE0lyQh5t3gP9aCX3prNxk1VTZhMpnSmwziLdTGQzIbBj9n/hOTDlBzE5VFBaHSMpHU4bFnFPRlixJvSWZgaenozye+uUjSqKDSGYAxK4r0FCVhJ1qybULkZVbfCNQGPT0hMVLpCSMqbkCBcSbScFc0E56JRIqAsSik2t7bTxDx6Lh8pJGsfcE5RN8K9vRW1szhRKBH0CM47Pj7m3r17bMw3cL6jrjvKyvZa5/czBoz5/bNqeu1XE0O8lRqi8nLEl9IobVFmQjHZZLp5mtNnW7q2oalXrFZLlqsly8WCerXk4Gg/Eo/zuKajaZYRpq1rmnpF29a09YJF2EepgNYFxhbYsoopDkXJZDpjNtlkZ/MUZWF56uKUw6MjggjvXL3G6d1ddFlx4fIzEDz1asXieMFquU9dH7FYHHJ0eIDWmrIqmc1mzGcTqsmEorRpbwW0AmUMVusIsUFidCfn+PEyqmeeucT+3j7PPH2F7a1tqmqKniiKqqCwBVU1i1Z7UVAUlsLGoABtNFZZjIZmdcydvQOuPPMcRVkkWrTkiD9U9qc9HOYLQdCm5NnLV3jjjXs8/eJT2MImiCj6SDPz8C70kaquy7BWl3x4Lc53aGeZTOdM51Nc59DW4N0gGCMsFmGpIMP7A8QV0QFEYY3BWosPDmttRBIkBWohwBAXkIN8RdIv6Gg8SmYmAVHxWtk/iiT5piKUOrbiVY60PsmB0x8x4j0qytGCtdGC6AX46GiVAmJQICZZZf9tHz8owRnXLxrq2VL//s9mTEwPsTaKgbH/2ojGe4cxZk1QBjMocyIGFUJKMSkJIaKNWpsYdZ3uuXffJHmhk79aUkyFkuQyEheDaIyO7gJvCCqAUeAhyJKua2l9m5S8tH919LsqIjoRAx0z1h99oCSrVqkAWqMCHB0dsLm5gbGPnsRHCsl/9q/+iMO9Bffu3OX173ydulliitN87IeeY3sWJ0AJTMspFy9ejDCOUrRdm0xef9/kf6/jpE/yvYwQfB+xln1Gg4oVY+40cVKUVmgbcxWdNiht0brEFjOm85qtrZa2bbC3y8SgoK1rujqGLbetjxBGGwVn0y6p6xX1qqFrW+rjJUtZRAsoQX+FLSnKCmtLZvMZMz/l0vnzoC2TUnH37l1msyl39w/Z3T3DbHMLrYXV8pDF4oB6uaBra+7ePebuLTC2oCoLJrOKclJiTcrpK0qG8OlMxIz+Ft5H3eR7Hj/72b/A3t4+L770DPP5PMKJNgIUfUg7I6tlhPJlljtxjlOXNFbb9E4WHuOgkUfTlVIw3zjFZDZlc3vKbF4RQg6QitaY0grtVYIlo+BQ4nsBEoWyoD1AhKMKWwGJptTgA/LeoYOP15AhQi/4aE1CQkYTzGmMxWiNtTHvbVjTyDBChmiBnN4B6fsJVhbRUftOH+bgHknCLhrNAR00ohSevJcZ/KVCEoxjP2Tc/9E/rBA18hCP/JSSHZjp2qz5Uj+48Tj9od/16Al9gHrfi5SMiqNBGzCik7UX58L7uM7eubXj8/tap9xPH/17xtpoiVpL3mPjnNksJDPaoLUdeA0BURCCQ1sV009C2jcEnIDRDqMtWtcEF78TU1mypagTjYXe2Mk6RMwA0KADhKi4aa25dv0Gz1XPUlXVI+fpkULy//p/+E9woUPrQNcd0vnA/+k/PeaHf+zP8ed/8cd54YUdNirN1JZMbEUrntl8SlHmCYgbPedWDpP93S3s+x88otjY2Bjd04jIssBUErmxABKFplZRkOlCRejKTYjLp5lMtpjPpzEpvGrw8znOdTHysnMp0nKF72J6QOdaXOdo25amWbGql3R1y2pxSN2sqBcGIbB3LyYIF3ZKYUvKasJ0OgXvuHThPHXtUAZu3rnN7ulT2E64uPsUbVPTrI5ZLfdo6hXHy2P29vejBqeFcrbN7u5T0R0pGsGlR9UnhOPjk5Jnzp3n9JkzzDaiAmKsjR42lfKg4D5Bl+9bK0HQiCqiQFmzTPT3xFKUAtExEEW0iZqvov/RWkfhpRRaD1HYqi+0kYptEH2+KitbJka2IgplVQ+3o0D55McLUfBqAjEiNj2nEkRiArm2BtVF2FhpkwK2VB/Snik8Cic9KAp6OAaTo3hT8FE/tykAh/R+siqjC1OluVDJD5tPNpprFa0d6a2fnAmZPx6vRIQRB5j4yfhBj3GQWPTT5/iS4RiRrLPoaIWRINQk6FTwgEYbi9WGzliULdASBV7vR88wfO9XH9ZZKSGEuC+1jgI2xkwAuRxFGPn/0/0GCRhl0ll0z79V2muiFGgVhS0+Wa6kfdShlGFjtoVWJe9Gc49OAemugyxpGqGuwRaGO9e/zK/887f4g9//PD/38z/PT//Up3nlw1eiU5Yc6BO1YaUMufJBn5CqvjvrcKyFvF9anneBg/1DjLHJ4bxkY2MOxE07EM0oMjHj3UQMPCu7xliUchTFlLKcoXWD1gpnTGSCtsOWKWnc2T6HrnSpSorvCLIdq0m0LS6sqOsO1waauqZetbHKy3LJKhyD8jFgxcSqIOVkSllO2J5PUSJsbm6wXK4oioLjlefc2WdZLhcY7Vksjjg6OqBeHHN4tEipOz7ls5GIN/upUmJ6eHxC0qiAtRqDjv8kK1brqQN94jyJsaeNqJKtuS7nvz8a0jnvS6X8Q5WsJiUpsjj+HpVZhTExoE0MqBCS60iDMShj0TnIJpACDUJK64l+G9Gx2lTQMT+NRHOkqi0ABIPWETrWJlVtUVkIQp/lL8msy9+THMwwKA8n0xoyraMkVmORbCGOLGN08gGNEaLsA1q37EnRSbK2biZjhvT2//8/oKw/6JHMcKVUjOJ+H9hi9D8nq82Y3riJfn/N2FDJAZoxOCYkv6LCWBuLEiiNdwFtbf/ddWsyZHLo7RMRAzpaq0rMkE004sVRgKefFKy0rk+lNKQeKRpcSJLRHZXg/1w8BeHSpUtYa3g33vBIIbm/aPDO49qGum4oywqhYTZbsX/9gH/2j1/ni3/8O/yP/8O/x6c/8SGmdhSZlyKohqTmWAUmC0p4d4uy11jeJyHpfEfTxtJtAM6NfDh5MkfX7itWhGieex8DRYJk7Vhi2ScLghk0FW1QTkVtXxu8toQUUeVN9CNJKJAgdKoF0ZSqZFIJWhfJHxXzPF3b0qw6VsuGuomVLNqmpl4dI+LRJpWespairCjKKae2Z7iuxdiCo6MVW1tnaLzi9JmL1HWHsdHZHcQzmGbxuWNu7Psy3d/3ULqIfjGdLTfFwzmCOvFrYur9W+8Nvqsmc0Qlmy4INkfLyqDADQwBRGtMktDeR59N9pEM/tD0HZ02bcot1noo0qElbeVkqQop1UKDEKNvXcrdXC6X7OxUiXllhhHvIc+C9Ax2EIxZ+A1VlnIVk/St8fSPTOgsKHOBjz6dQ6mkKD9gImW0t/LJMwI8KhTxZDx6SE4feB9Yosrui8SfVYIhBxg0pwINdE6AkFwLWidIUynqukEphWtayqoEP9zgIGgz3QzpKoqhMlimrciLw8CD083GvWNQRCVBNAlxSUhIT9NAMtiyGh0/y3xEg3IUZVQK3m0uHy0kD+5hvMfiKcUTmpYFM1woqMoOOb7Gt79+xD/8hwH+3v+MH//0h1J5reiLjKH1od+IxhhCyPlpag2GPSkIc9WE9wtyzT43rXUSjiHm9PQH9P9Fpgb9Amlt8F4GSI2BuVhrUy6cRumQksoFJRbFIHiDGqIyTbAxcTsl7wYbAxtMUFhTEog+r7KcouYedkj5Qx7XdbRtG6HZekG9cjG/c9VRL2uEPZQKWGNSgNCU1TIwmRR0nacoJ3zntTc4t7tL2zl2tjdjZcYUfYi4FBTwvkz79zVivcrvP+grnuP9UaxEaRbLGsGwf3DI7qmt/ElvuWVtNyqGI8sqw66ADrpPGzFaR3rQMTVCAVoEsq+V6D4RHWtPoqOGna8BHgS6rsWYBAMn5qO0pLJzSfnr4a3hnh8oKMNA132Uerb2RAgp+ifXy0ECmpgHmKHUNGG9cchofkzOrUaNrMp0f2m+MqLxOMbe3h6bm5tYa+m6Lu7r/zb4Kd/zGCDR+HNC8dM6wqGpnB1AEAuJR6m0psH7iK6RxK3K0ay5xmEG/rPCFT8TNUC4KtOxwGAdpv2lDJoCrSyx5m30p5KqT42XKiNi8csZpRhMIEk02LiOg/0DLlw898gZehe4tUEJnNmds70x4fC45ubekiMfODRHlOIpuhV//AdfoHMTLv2D/5hnL21H7VKpPA1kWRgty0FAji3NsTDs87BCWPvsvRKtSKAsq94SLAqT3h8K4p6ECCJbGK6fNR2d7qsobRL6uodotWiC1kMEcBKcRimUT8Iyhca3SlOUZay7aSzGFpgU9h8kIERoSheCLgNFVTEV2JKcqBur0DTNIsKzq47VMqWlHNU4dxxrbaoYubh95ile+ciLNKuW1i25cf022lpWdcPu7hmU+H5eHtfw3qGUxRg1yq7+bv1V2eJ5P/xbMU9SnEdUgWtcUngiI8hCJSpzgxariJi8EpPuxqN0yr9Ukn6iUhL3b9KeVW4IEI/RKhWL8DHXq2c6KkNX6TwCOSUrfzdad9Jr7Sr7hhjSVvKlY3pGsljXgkJGNJ/ZX66nq0wS8Ln8WGZOw4nHs5+zKCUrYJL8Fr00vj/y9YMcxgw0P/al/dkaMc1IrQmB93ZGvVYG8P75VyopZ0TEg0TfKn6Qcq3Tsak4evRe5hsb8mMzkhH5eqLLhDDG72vEh35vZNqTaPLGh03FP0KIdBR3+oBOjq3WfH2ViHNcBlEpQ9cFbt26y4ULFx45R48UkkppSiNszitsqdnYmHDr3gLfNTHiDoUXj/PCl37/d/jP/7PL/Af/4b/LmVNTVEgSPgUSjPOjYp3I4aGyoBwTZWY+7x+hCsvFAqNtXEAh4dF5cz94k/Zh9yMCikzC4jvNdBbNf61cLMenJOaXSQzqUErF4sFoAgEtFqV8oq3IGI1WOIHCltFpnQgjdyIZIlBVXwpQJJb+xgimqCgnE+bBodGxc0nb0tQrlstFrBl7fMxqtSSnD0hVcqq0sD3HB2FVp+Lth3s41zGbzd+nef8+hihc59FGY2xEI777rm5JW+yZ7/cv8JUCJOcwanwKAo0w6CgtI0GMssZkTtJtitpTrFfhkcx8huMjkqEGPpgDydJ5RAZNP9LxqLqVegDzHAEDinXmv2ZF9DheYmrJKlQJJlO9T8f0x8atI8M107TnX/PH47/HsG58X3pr4nGNzc3N/vplWT62+3jUEBEODw7Y3N4mCATfMZlU702gP+BrY/8zvYWZ6DUQg8lU5GcoRZmU/B6JS0GRGQkcu82Gex0su0zLa9kGjI2SQRHLKKSSuC+iUM2FzeXEc+SoWjV6VEHwaNFMiglnd8/2OboPG48UkvPKcHZm2a4q9hYNpYGq0DQOdAgx4i8EuuYI5QO/8k//KX/1L/4Cu9vPxhZMOvpRotOVGMxDGDaIGqzGcUHm3qxPOTjvx5Ag3Lh2jYuXnsa1DZ1r2T21NbIa03ESIa5c+X9gtqNFSAvpfMDaIvqeVC7pFVcyKIkCTyQW4E6CM2pUOioMISV7mxLvFbYoI0NT9KH+wsgBLinqKyiUuAizhQRhKImVZ5Si0Bpjyyg4NzfYOd1Sr2pWTcPm1ln6BPD8v/ZMpiVVBRuzcwkuf3wMKxdBcE4oSxvzFbX6LhhB3tyM1vW9WQRlWdKuXJRhKlk+2afCyDKKf/QKDVlwjjfuGHFgeJ5egKX90supBNniB+UoPl+KAAyjEzMwG/Kt5s81g6Inkf5idZ6k0WfaJ1nI2SpUOR42U0p8T6WQ/XyPETXSKXLQpQVQQC4WcNJPmYNOsm9K97DZ44L5/+xZjQ8YSrG9vY1K3Zaqqkxvf3/33ltqktOERoFY6TW7nmIuUFJmwqCySlLovCgMmkATj82Kj1ZI8CcEZbb+RuhH+vcAW3ZNaOffY+BQbmeWeXSyK/O+klgxKhFujwxmHKgqS86dPdcL64eNRwrJrQLObFVszkpa59icWPaPS7plh3TgReiCYE0UElYbpPMQXEzmzKYuWRCqPjF5PYhH8D6shSFHMzxHKqUFeQ+waxBhd/ccp3e3uX17n/PnzvRMJbfDGRK2swU53PtYmKr+NQbueC+JAeb7ytBZhMO0MqlTUyDk3ktBpSox0UeVC1hnAyKobI1GuDekxVYiiDKp3F9mcoKI731e0R2UyEdCPN5orLVMpxMyRi8qJOd38gOkpNs4L49RSPbwG33ngnhf60jDg76ZPo1/vR/wnShC8kf3LancWABGqyhk5UoirTkJhCRMerrNdIEGUkRfqmCTUyDG6RVxvRVeRYUzWrAKxOBcjHBFupTSZBlq06aZSNHZkabSnIZcjD2ef6ysKiQ14Yi/h565ZGhZRrqTgM6wGckSHisp5AuP4EF5ABMcj3VL4slYHwpQRvdK8fvRMSWx3zWgpg/EysdoHft0kegktRAbCtkLZRUt2s3NWTouVsEaoyQRHYTUPiIqaf2CR40uyEgY+sHXOBbeACGnTTHcq+rpFZAE5ZIfcPQjun9w51wsuPKI8chZroymtJYuBMqqoDAwsXB2Znlmu+LyRkGRep9hFNV8ybff/AaNi3X4vJNUlktGFUqE1DMW74h/pxp8Oa8yhFRKrfM9hn1/OPH35sMIHpQpiQE2mskkdjoIIbcAkkFgylCfsC/2K/m4fP1UYLvviTdCne6DDHRvOShNgtsU6KGVUy5NNmhNo++q2E9RqQKlbPJvRRgi1yPNASFaDTl6RiVIFoX3gabpIsSsInNT5H6NhuhrMqBKRJXJ8f54RqQRwbtIK1FYhiQw323NhV4yjLTQ73fcvblP2zjEORYHC4IXxEcFMdJKbuwqiQYk+oCJWvZAN1lQ5q4IZEnWW5cDR1jX6vs6sbmYugIhUE1KlFKcOnVqzWWx5rrouWA+MdEUyMyCgYGh6FNdGLGvKP+G+8uBF7FazpBs3p9nPKS3udcFpOo/7i0U6DPjnowHjKRbR+Xm/aqKpfLU379PJK/7+OCxlZlozhjDdDpFK01hZ2uGDSfo8UE02r+m/8Y9i/vrJrh/HCSXheS6gZJ9l8N96/4nugpQSeFU8Pqbb6756B80HilCSxvhvdbHBsCti1F1m5OKqYa9ZRsNZQHlPU+de5pL5y/FwrikkHZN6pSgexgsoitponNz25SYrXRIln3qvRaKNb9Jnrw8kd+toHQutmVxqTXMuoAktQPKATNDRfncJiz7nsYCNFu7cXU1So26TPQElu85Q6yJeWsV2w15hy00wXu0teRowoFo4+/Z+RyJNB2TClLHwBAG31XfWsyglEMRrWOdokbzPffWOqlHYGaifUmxxzPapqVpHFo7yuo04gStpS8CkZt6n/Rjnxzv1ZIUEaqJ4vTpHfb3j7jw1NkY06dibdaQUIeQ+gCGVNMya0tDagVEy1j694ZPpBeww1BZxA8Ck8wYYv6iNoqqKujacZT4WP8/cT6VLTlFzksUEiarhuPQyZLtaVAGJGt02MAs82dJMZGcUpLz1tIXlErFBeiRmLU7Tr/o98E6+n6GDyEhFSOG/Wdt5IlT6j3Tdn9KlS3H+MSDSynORVDSu82ypZbfi71So5ItolLueLIi1RBPIirnJqZC+9lrMbpmNgiyQghJYUq0lqsDZV94iIEuZPg28t/xnn/wCvaBoMlgOTg84N1Swh8pJC+eO0uQjlXr0NrjlaIqKjAVt2vHrYN9gggTozk1tVx5aofdU6cQL3jdETvsxOLKKm3wXIx2gFbzRKUgl6ASJBknIlsPJzWQHNRzUhsZQ7Jja7Np25j+0XnMGswaddfeWk3nGBoWZzOdbO6S+73pjK+PCHbA3MnGDNnxnSGoaFkKXnyfLtP7ZfFkGEV6rCpwkruo9Fm2YnWyKsOaQpGtQY8iJgIX1hK8DDcXHQc9HIcMmP7jGtrA9vYmQdqU0zpEG44jD/tuH6xbMHlNsgL0vTzOeC2jkDTMZhMO9g8pK0NAcEHwUbOKVmSCMcUnoZnpbiQse7QCuW/7rtlYY/PthMxTSiGYyIASjK6U6SE40Km3sUThl20EFWmpR2LIEdsZClNkizCj7NL7McdAlerpLmplqRl6smr0+EnyvlH07fTUSFDe97xy4vUDHm/f2OfSxdNYRdoLfwbFpIzZwHtXAPPr8DPipQ84fy9ghjeIiEI2R5PBo2Lw4VggxU9jIOLa8/RCOVXNGVnI0Z+ZDIqof6W2dCnNbqzc5WhpxnSf7iETlVI9Tcc/Nc8/9/y78rt3aZXlEGVw4imIGvzZ3Rn7i5Y337qFE7Ba89LLH+Fv/e2/zad+9JOcPj2PjTy1RulUxT2lQ0R+FmGa2IwzjFJAsragYo5Y0ky9T9uzFzY5tH2dMZ4UlmEUmiwiNG2NMZaua1FGR0sghJ6BZQsx/h2F9npt0yEgI55fsEXE1bNlcAI5yss3Yh0qWW9pgbP2hcaYIr2n6QkPUla5Gj2P6o9hFOmqlEl1TUOMLO6vGWsyBugrvuRItEjXwlq9TCVrmv7jGEECpvD4BlwIqTRgrjUa0vPG9dA6zuUgLKFXAPr1+t4Y3piBwITgHRI0TgSdmtcqkVhgwI9gdwEJEW2REAZh+bDrcP/nOeZvZGc+4Ju5AlC25mLwTAxI1UnRyfOVr5HnjUGTzvQmgvT+m/W5epC1rjIkm/fgSJ6vKalxEu/77v2ukodZwB/c+Af/6/+E/+Xf//f55CvPYpXv3Q2PW2G8bwSJPCFIb1W+59HzrDHdn1iRHr4/cb2xMFz/4IG0s0aDZHrIvNvzsAL3Pb3p6E8Mwd+PbozOGRXrtUckp4rEa2skCLu7uyPHwoPHI4Vk27Z0olmsOjbnkwhVWkVpYXcDDo4DoiqefuFlPvsX/iLaJD+jC4iJifVBxY4h0fIbStPFv03KmyRBqFFohsQMg8SAHhEZ+d50Pwm5ZF/WjfNmjYuxPtmtc8ynE9qmoZjMUveG7CxOkGvIWj+DlSkx+CUkwZM3eNt2GJOFSxgxAxnRU4bLdEanGHr+CU2zRBsQUjUfYt3WAXIdoih1qreZtfnI+nMLpJxDp+LvITuzG2I/w3iftijRomKqClnGDlauSt+XFBD0uIZz4Dw4L+BSzqCOgjL6W+N8hJCF5JDoHF9VWsN391uf3OBjFEEk+sZz38QwQhIkjJSpkFvGhURHg4DMba56cSdjS/PEzTxQeJw4hMH4W7NJRdZ9K2vWQKSNAbEffy/bf2P/ZGZm47lJm+s+xXSEnGRrIkfFymA3S4+wJM1eZaHai9f+Th/H+OqX/5j/zf/u/8g/+F/9L/j4R5+hNOvFTv6sjbER8F5GXyFJFH2cBZC07/u/kBUs4vqHFN8QMt/KP/n8awjPEN26xqwZCEjWgsNG38+0l+hXwknEy68p+CdvfW1X5XtQ0LZNKnrz8PHoPEkPq3rFwWKFUYIuNKXVbGxUPP/cZV57/S7PvvAKv/S3/iZFAU3rU05kZAkh5Pp/OfhE9ZsvCgy/XoFHKbRJDCm937U+CogkYHIxAslrMbIolRo227Br499N07I1n7HoOsqZPiEEU5mj3j85tiqHDtpZmAI452KX6zFjyy95IRO01FfdyshWOjQEz2Q6wXfCxsYUrWModUbKBkgh3uPYIu0vlE7WN/klaZp+pBWme5ysVbtPFiumv04YMbXv1fp6P4f3MXjHB1BOQIXYtFipaPhoQUzanEElH7ak78am0rlbR2YmY6ThJDwOSTiO5qoXln1bIInQr5LUsT33UY3HZWSi7+je+7fzuaIFKiPF5+S4XxfP/8vae5EkhhqU8X2FzqhTYjqZ+iULs3ymkSWeOydEJuNB25GsG4XNq1xrRzFAY6q/dr7PaPf7VIid/jtDAf1EYyqlgikFfYuvB6UAfDDD1/e4+tY3+U//z/+Qf//v/Xt84pVn2JxHN4bSOen98bsiHtQw4r2MwbIf3lv7+0GwK+tIRy+0TPwkGwQDAjdW/nLQTxb0snbOMTw7vrZOKXakNLv4kQVaetrOeqEQ10tl5Uwl1azfEWTF8d69/Xedz0cKyeuLmk55FtIx8S3TYgpaY0rFTqU5ewZu37vHQWtpnNB1HRBLnEVhJr11qLWJpbjC2CKMrzkHzqPQQfVC0lqFc76P1lTEFIr83SyMstB9qB4qgu86lNK0nUMrlRLEs4VIbxUMka7599FCB4+I74WmNrovOn0/hERerSTEIr4ezWmF8gqhoCxnNL5mOivwPtBr/GoQV/m0Sg3pASoJ9ZwH1FdegZ5I+4snJl2U5YipjqwS1qPF7rM2PuDhfMA7wXWxT5zWEgWjHpCmCN9nhWpMBynMXGIUqfdjH8UQFDCGeyDWo5SsKI0Qg6CiRRsEOh8otI4CWMCFGPCRBWWQQCD6K4egryytAoInJYbEAKAxnP+QuYjLk2H6cRHnBAf2rpxssYVYCzYTA/kro8TJNSuT/jg1LvIxIqZcuWcNtcm8LAnLnnGqnLKTcx+HMz54SP+Msm5EfKDj+PCYqg187Y/+gH917il2T//3ePGZ0xhl0Tb1Yv0zAL16ASsZVfre56tfhRED6OF4HmLTP8g060+Tio6HsRK/vh/jKe5XAQcelZW//M8Q05my0FXEAhYRjo2oTq7Mc/J5krIlCW3LBV7GiqEMPPJkEfcHjUcKydu3V7SqpsPhW+FQtxR3l5jCYpUndAFr4dqrN3j52RcIugXTYXyJCQqlHDkSNQrLcehwjn4aospyeK9SmhA8WtkevsoFr7WMvrsmILMlOSzS2LfkvUeIqRCKIfUEMiwX+tfI0wZLcw0+6wVozPHJkx6yFi8jMnugJjWy8HJIv4kakoxg1p55jyCK+N4oYVypyG6TGpXbKa1jC4N2VpbVIBlFGCeSrw/10E3xQYzON3ShiCXhJHYU0AZEfGr4rdAhQ/C6T4nRKYJaa0FSyoj362wk05qcmGdROVp18FPntffe99C/STQUchS0j5BsRg1iSkjoz5ODdbKWnC37QcAArAf6pLfWmU76WUtfTUwmw/q9RajDOP5hOLxnWPnv9P3IftYQkD4YQ8GQJxmiBTgSwCNwZLjxDPuvRbiuj3XyGmyTx0V1bdfiXItvWl7/9qu0zV+lqTsKq9AS4usjak1/UKPvvvEeJ0oy6pQETqzsFXuQxlrO0tM03C/khoAbekGrje7j5AOSuuOsK6Pr5xpQK0lVfIZG6DkENvN4A8r3++Z+3/dYwYMhXuOkKjF2IwinTp96V6J7pJDc1Ju0oaQNDZYCJZagC4wtwVTMdEEVJvzWP/5vuPrqLX7iF36UZz6yC3YVC+Nqk3JaQg+LgcJok7TWIe8FVPIzaYwRnPMYo1BJYwiiIKhkPWTrc9BYRgb7eCkBkkUxdHpfh1HlgT9DDtxgYQx5kwHnHKiR/wkeCKQNVm+2H4b7zItljBk08iyfVNKxJReJhz7gp2fynhgtJglXH18/EX4gFUeAwtoH0MOg7Y8Z5MMgwQ9i+BCVmM7FACOtDTrE9lFaZ/9k6JUvlYt/B4kFvkUIPgoz44ZQdKVCrxitjR6+SfEQOTUICD7SYsiCUQ0wrheFDyO6CiFZln6NxiLUGnooCJJiNpp74AQNydr78T7phV/WhHvek4SapN8frgBFsSgZbs90BaN5iqhEZHhDgEQOrst9OhWKoBIV9g+X234NzzbQfQ7SAzCDEpuf8zFW3HFdjSjwaF5/6w2+89p3eOr8JhI0JvEAm6Kp368qYN/XyHP6XgvBj4XMWIlXrEU1ZxQqK3lAzyN6gU1UDjXZ15cU0fTzcBB9BHVkDfABKUCqJ3aJHZaURnzcDIHoiup9WtmalICMhKOocZDlsM/Kshjylh8yHikkC0qCiTcy1TNMsBg0NlgsEypVYI2nXR7xzpe/wm/cuMmn//yP8KGfepnJhmC8T8Ix+yOjdikiqKAhWYQ6RIsqiEKpgE/+JONUbxIribmWUZAIOUqqF5JqiAtcDzaQGG1LzLvM1l0UmtIf/1BBSRKUpI6ZMlSFOIndZ58WcuIeRmCCJLjASRgKAmuTzhO/E5WFJCkVI6gtny8JTQXic8rHSLvMVkCqEBOFh8GaMvqMM4NOWr/k1zWu+vigpeCFrgt45yNr1blsYYLvlcIaCFqSzwiinqH7XncS4noblws5xEcalI08t/E5U/e0wfLry7gFvCe2L3OBjmg9BklBPaOf3noMJ2kp9KUOIacbpe/hyLZm9qmE/Hf+XdY1e0laOsrTK0YiiSlphkTzdUbYDzXkXZKuE+dozKB6/CqfJWnrg+0oCdYKmfYZzre+B4YxIC2DYqvIRsOjGOoPdmgx+FCiVMe5HYW0C1Z1IISOSlROoqJQgu4jrO+P3hyPIVDl/fNlep+tvnQN3n2nnpzRTFtZ6R4LwUEQMtAx95uuwzOptb+jjEwITxJcg5vg/nES3YgCM/UmTvvzpD9Tad23O4zfDcN8jIS9Yv227zdg4nu379x96NzBuwjJqqgIeFCKSlcYZUFFJq6VR8QgXYG2nmV7l+5mze/+Ssfdq0d85i9+iK1z017I6VSmjR5SDX2wSVAh+SpH/sngsWIgxOhYLdJ3Xl+PFn14rmR+r21j6a62bXsNaGxF5qjAXttHRtZCgmDzscRqK9ra5H8aVQMamQonGUQWYkmME4LH2Nib0trE2LLkI1sIgxAeP1tsT+RjTVhRMU8uMf8BucoMzyO42HfSFIh3o02VoY2TLckG+OtxDOcanC/pfCCkohTRF5GtR433Cm0iOqFNtOBi02PTB/K44LHBD8xf8rMl1q8Gh34/dWOaiJyCtk1C0QXQ5n7hKKN0ohQ1nYXgOJUIsg51EoJfxwDGCs/IIBsdy0gI5YNPaOBK9c9z/xivr4yuJ2sfZSbYq3iZCTIUOV/v1zm4PpKcfOToSyqevKXHMLwDwWEr4S/9lV/kxZdfYFk3yUoxWHyE+Yn3mVu5PUoAZl7z/kGz+Tx+5JP8bsRkHD1GkRU2ISqTIVCiUv/1EVSeUCulFCTF/f61Sgig5H22zv+GOIpcyF8SGjIYTFmw5vNlo3L9mTOfj+bKgFyMnisdnpGzQYXIfDRZo4Mtgwi88cYbj5y3R1fcMQVdsJRFQUWF0TZpsBqrLEZbrLZYpbHKoEzH3b2rfPF3F1x78xqf/Ts/w+7zU2wIGGwvFEWlGpGaXijmWqdZCAYJsdwdoERjxKTWUylXsheQg6CM2uiIKNLfnYvpGl3XoVSsvpOLFAjgR8E3ZCbW+yHDmq9KROhS8M+4+s4YOsrwa/57sDgHphNr1Rq8d7En4Jhhyvg7WT/PtKJ6qzITTW4tk6lLRBHweKS3RKytYufw0foOtH6CQ/WJuY9neOehafGdi308zXrJNaMVQRtMip7WXhLTIlVtiudxLuBcTmdJlqMaZUWtmd/DWmXtNwvLruv6yFX8EPQ1Xvs133U4WdpwSBsBRrQA42Cx4Vz5/u67xfw2AmvVSdY5S+QUmfkM1tsAr+aTDLcythAZsZ0xI0rgWSK1vPdIoUgKvZYbev+9C4OfMke7pr2nsqX9eCSl0oHZxPMLv/iX+egrP07nBGkdSrURydE2Rt/3Cnn83ncTafp+WpJDMnxCO8x3c94xP5JY8CLlWQ6K3iDYxr5IyKQ19uUN/GJsAWodY0keeAcyYFcZMRmKWoxUtl7xS0qGSF9IoJ/0FJEdxk81omtZu7eBrgdyHp5Oa8329s4jZ+/RlqSZsAwrKlMxYdLnPQalE/4cLSIpJPolFscURYmXPfavdfzhr1f87N/8OSabLQGPTgnvWsdoKKUVIRX5VsnXKAlyFQk4Fx/OmEF4hd4vORS87oVkev6RQYYSRdPUGGNi9K1ShJCFZNqcI0hhEGoysgYGyyJ2p+gGTD7Pfs8cRppUb132pBKZL4IPnsJaui4uVPCeddIcWY/DVRKxZWg5nivnkA5Qg+q/kQtul0URNTAiVNcrdCev9W41mj6A4ZzQ6jaulw4RjlfRea9Tw2JMQCT6J4wZgk5CGHJxnYv1X7NVni2dfrOvRV/GISdowHsIKtbW7ZyjMKP0oeSDzHTR00rSXEMSgLlk3YhNMKAT/ZXvM6bGfr21eyQQVOoQgyWkykrx0FxoAkZtQvrrAvR5bDokmk+wfEJ6pIf6A2PfV7wdSefNlZDicw2qh4wC0AZfryAnnmddAGeG9riob2NW8eylD/Hf/5t/DynjvlTG40yHMwXWCcEIrg849OQOZbkF2oPGgy359zbG9PkwK/IEJ1njbeulNhloNAz+ybWfte/JibOPlXsZ8cTv/tkf/RSx+lrmhLHOdDSUMnGNhbpI9oK++7XzEc88/cwjj3ukkPQu1mBFLDpYlDFMTDbLE3GrwMItqZcNO9MpSllaV2NC4Oo33uDGN65z+ePboGK0ai5Hp5SJgTmavq2U1pregtGpqkJvLgsiORBIJxM/w0DA6JWRkARoupbZdErdtVTlhM77CJPmcpNkIZgn+mRwz+g9if7MojAE8b0gfBBxjYXkWPBGuFXQxoLqGEfqRretnMDi41jXRrM6NvKL5BJha4Qcr1sUVU8YeXP1DCzfV+4VmPuwPabhnFAbR+MatCrQPhUB174v4B68wpiYhmND9OnqRDORacXaks4NVnd2qfUwolrfTHHaMvwaLUKX2vw4hM47tDeDJZktxpAiAhnWPkhIhc5DD8/CujCF7LN6dMBKBpmGm4ywUfz1pPWXH2b0fTWs9fB3YpSjL8RjUhsthns6yXD6a6kRvJr3Qc5Zve+GGOb7oc/6+Gjuf/r3/13OXXiZU2fPcXi8j7IB6z3OaZyNULs3IdU/TnEFTjAm8gZjBoV9PN5PKxKiT15ERzeYBL6bGsuS1JjoY4yw6djXHUJWjkcWZRagDMZCJqJsVEiy4FQqLxqPH+XT9us5tuYyvLBOIElHGnIb13cmkKL3FcTcbr+G2MFYcRg9c3+V4Z7zUOlZ3i0Q65FCUlvBBjBK8HSsXEPhYDLZoNQFzjta6ThYHTGtKlBQr2pEWcSCbo64/vabXPjwJxHt0SrCYjlBV4JCmwxXR/gxQo+xfmcnuZJKLmYOseFshl0HqCn7TLIzVkaE2blUoL3tqMpJjEiUsWAcNKtBIMuaFdkniCM472IXkTz1Iw60vlD3MxiUQgl9xw/d3+foyGwVR2MRZOw3GhY4w3GZjapMSD2xR+J3EijKatACFT2hDuccNAuRfPePZ7RthzaWrnMoVG8ZKh3nyxiDNwYrghaTStTmQhM50CcG7hSFSVZm2nzqfka2NpLytwanEhlhPF8xQPUyqskqkhLoI7risxAd+SVDiAUJsoDKgWP9GC3yQ3UUNUBR9LR3Ei5f185PKjzxr7R/kgKYrYvYCSbCWSe+MLqFYd8lvWK4Dxm/2b8M+6yn8yF9alADHh/NnT314wQxOBcQFwPrfBEDD71XOEcP6ceUI0MOSJFRN5XMcH9QKSLrUPaJhV4/cs26yoVSJAm4Pu1tZAyEUZWqTPPjeIzxT7YYc8RokORC8w/heyPf4pqjZwTh5u/EwMgYJT1U70kPqqXfJz1+kf8WGZ0r8zLpnzkqltEyHY4V3nr7rUfO+SOFpGAQov9RmwKrPK6tubvYZ2ZnlNbSdh2d76AVjIN5MUfhaVxH0czwS0/rlyhRGGWIVqCJBZoldQHpLcmRwNEGlU33vCdVJMisneUAnrxZ15JXsyBQCu9i8WbnHErnPLccITYICkm7ehCMIyGZGZ1IPJ9S8fMxvPAg9RnVJ5lHzcaAuLiQkSsho3tYm3958O/xWoogGpRNhQpGm6b/jvRzUFUludy9IpVYW2Ou43qwP5gN/t2Opl2i9BTXBaDt8x+VJlXTCZi0NpZYSA/RozquJCHpo6DNSmwqjvyw0dOeDIyiD+AKAaU6gi/v80NmRWlNmQpjJELWLM9YanFchGIoVScjusubOzOPAYnwaf0FQo4IzR6eId0iPk8AYjefoBwQUicanarjBPokbgUkr/VAI8MYrMa833RvSWBSDdiooY72FHmFGBLWpT9hb7XI2icf+Pi1/8uvsDXb5tqH3uSpj73AqeemaCsYGwhWE0yMH9BaUC4W8bDW9MoKJNrKyu+oS5H0yn4c348APamIr72uH9kretmaizSYLckhra1HN3xINDhYkjK69/uul5XtERo1xIUMC3/yu8PvD3zC0f+KVGF/JP+HVL/8XpDwAHqJtH3yvCfncHxPN25cf9AN9eORQrIJDW23wtkJxges1hgMrWo4bvbRzuBUx3G3oPIFRaEpiwlGQRccbdtw/cZVPtS8gLWaoEO0JCXEGqJi0H2NyCHUXEhaSSbANCsRaiNpbpAtJpTqO7ev50zGJNXsTPap1Zf3bsSEGGnvw+ugKWUii9BqH8CRmOJ6kYH7NfZe8+v9LZEoI7OXPv0jKtTqPgp6GOyZyTQ36ZWRspCVtbwhYm6XjcoFo0tkxBailpVgucxyH9domwatLG0ToWht9Ej4BYLR63MeDKJjtGv0T0YLwLkO50ea/RAdcj+jkoFBj8891PgVXILpvYz7i8qIFgbh2Kd4hOi/E4k+Z60i/WUlKTbVJtJ/1toZC8whvaKHSMUkBVZi1GEUgfcpW0NgRNKsJVXBOQG/Zgg6C+E0HWsH9BHkkPy69Nus55nQa+xx665fR0aEN94bPWN+wB76oMa8NJwqKuTaHrdXr6HVM+gPC4XxOF3QpcIoeajMWyTSnBaFSpWftAYlDq0MPgw5he9HObm4P+N6hkBCnUbVuTihdAtIUGvuAD9S3GIqU4pdCNIr2z3NEeHZtuk4XtZszOeo4BEV3+9cw2LVcHf/CDFFpMpR1bKcwzhY3fcbEjFAJ0cKk64bUjUzlRCgDJ5GbTmQS6COU/FMPwNIth7TpKF6qTCQWKTry5cvP3LO31VIijia0IGLG1FpjxFF51uWvqHWHV6g0iVOAq3vKFUkIO9bnO+QoEYNc016KN2/xmjWCJ2JSbpnznsjJjaLEYIiJfZG6E2lCWbUhHOAI+KU5FZUQzUdGd1LhqwYLeCISE5q9khvOWY4TULoiW9Yn5wL2ouyNT0ph4Wv4+HZtzQm9/z26L10r9nPFOswRH9Br2Ex5NqFEFL6h8G1bRKs6ZyjIJ0x4axBbY9htK2AWdE2gkGhrEuwfPRDWrGjoCaJCIwx/Rzn4BwfAi4MUZ5RPkg2gx56/RzZnLXw4D3aaFzn8MmqzOlC0h8na4JxzdKUUTRsgl1j3dmwpoyNBWOmvazdjxlLCAHvAq4TmqajLOcoo3FtHWmLwNHxMdVkSlGm1KvcOSbTz+iMA1OEIXAHTkJj+fOeHvu3x4xvFCn+AH/ZAMv2bwwvcuJaH+AIHuq2jW6gwyP23niH7WdeoDUKa7oU2ZqbnKfgQrKAz63/Et15wdiY2uaScSF6ULzfLb/yUaNfmd5vN1L2WbfYWKuXOyBiQWKqUvYz9k3fQ67mM1ZYBOdabty4yre//SblbIvK6t41tljc49Y7VzleLSiqip2dC7zw8gtsbE6prEneAVm/+ZPPNOKd8e+h9GiQ9a/l/OZsxeZ0L+mtg3ypvAezotiffLhmotVLl84/cs4fKSQX7QovUIcGmyR719UgHk+gEceybZjpgoI4GW1wlGoKEgiqo5OWrvWYIhAb5ya/pDYYkxZChehbSjevNJiQ9E3JPSdTR2oMGkmVeFTP/HJYej+RaWTfXyRQ1WtPWf2VNHEn4YzBjxT6ep65RFkWlkO1nXweBwKdgAsecSE2CEZAurSwOhXhjoqDLYueceTnRPkRqDAKkxaF5LJgQrISx87pgU4kUZdIbHrdE1OPXcsa/xseP/k/H6Oc/OPf+BrPvHKZycYEOwlYFKWvwKgIFUosvyZWMBh8Yq46pb9k2NU7j3PJgtOjnplKDbrHwHXI1uSY0USh6NfWP+TI6D49aGAoQyPvsaDMrx6fyuXlnqY93DjSsof1HBSBrIAvjxe89eZrvPP2VRaLFcvVgqqaMJnO0Ao0nqoytG2DLac8+8JLnD6zi1lDBjLNJu1epWjZPm9xsFpjCH4MuA9j2QYoHffuUEwABn9Pthfz36qfM6SgV/JHGMvjHMXE0rkWmhbBUywt9bJFWzCmwagUla+zGZ1oIPn6YkeguEhKKfDR8gk+gePe95bkuF7oSWF5X+GHE2NNmZJ1Wl3/PKm7WXlj9L3ez54+80PKkqQ0nP78BNp2yd2713jzO1/mzr096sURZTmjSK41Y1KnHGO4e+tNbt54jUtXXmTn1Bm2t7fY2JhS2bEIGzbe+vOsC+c1pIH8vPH+EBISNz7OjYyfB83boNSiciMCeZS+DLybJelrULDyDotGlE7ZKR4vHoePfh5bpbZVjhA6vCzRtkLpwLmLGyCO4BSoEP36FowVslUZUz/iA2gdW2w5F1sjZX9GJKbBQU56T2m1ptxG63JIanU+Vo+P6R8x+jH3AMxpI5lRZetsYHChtyqyBeC8iw2tfCwq4BGC89TLJcvFksODA25cvcHR8TFt1zKdb3H23AUuXznHxkaJiMN1HcZA4xwTNUmMab0qxUiED5rSqOJJZqRK23RkXJeAkDONM4MuJmUiukhxOafoPnh47Cd7jK2y/vBX/jXf+sIGVz70Mp/42U8gG7FikAq6F5J9NG4QuhxhaCN9RHRC4b2L0Dp5jXMx+AQdjqz0AekeGH4UEj5GzCZ4KQflZMUqhPVNvRbII2O/5Pg1VsqJ10hQ7KiiUmZisY4mtJ3j+tUbvPWdb/HVL/0J+/f20CYGKHVdizbRNz2dbLAxr5jNKyYTS1PX7J45F+tTqnWB24viBItmzTwdtPZLps+xAtFjG2MaOkEy91s3wsByBgYeBUu6xmNKQdo8tYVynmZ1SO1hojzLtsbUYIzFJBiVrEj0DNsQBWaODlcYo3tlLeZDK7wf7efRRK0BRSQomzR3w3/93Hufi/arPo0t+JGyP3odKzuRlumVuJD+jtGufi1gJ9N2/BK0dUuz2qc+2uf1r32bg7077OzucursKUo7AW2YbWxQ6ilWw/7dm1y7+jreGSbz05w5e4UXX36Rp6+cY1rF+ts9LY2Uw76t09giHGn/kgIzNSbytyARSjsB7Y+Vhwz5ygil6JXOpPSF8Ggp+ejAnbibUErhQhu1BWUj/i4xqEKJp0WxVJo6aDRzFl2DZcpcTdCnZrTSYL0hpOTnaAtGbcoYEwMyUAxRmfE60fUY0HKCkrIOqjSpLm4SlNlCkJ7AnIu+hLbteggu95HMkFnmE2qsyfTO7VGem8TzeS/cu7PPtXfe4Z1rb3Dn9i0O9/Zp6yUhrPB+GYmr62g7h6iC0+df4FM/9lN85CPPxijJskKNSiuNGdOaBhUl4YmFUf1xqnezZUYd5yy+E/B0TMvN+CyMN8FATCc1u/u43Qc8nBzTHhXc/OY7/OlS8czHnmPnBU1ZxApMMT1Bo8SiQkDhINFUrP0bkpD0qcZuRhJyYE+eT1lTqCBvXAa4tRdihuBj0E1IEL7IUGJu2KCDFTkE7fiBEYUU+JWS7NY055R1EXqlSbE8PObz/+Z3+OoXv0jTHNG2C1arJdZWUel0UQH1zrEo77HcmDPf2mA2n1JVGqGlrhvm0wnJ3dMLyEjnUamIboRxk+ZMe2TSWiOLXvFIWv2gtT1oRUfSVxKcv6akpbk+Ge37AY7re19gop9HU1BRowtoVseURrDGYpPPO5bSHFuAMb/QSGxurpPrJ8YahF6wBSUYkv8tpRUNxUAyg5f+/fsV2GF/eh8tc+fCUBjgxDFAVpmTtbuObPiMbpDXcrAkM94UVKxatVotqesl0LExFdrjmr0bb7M8XFBOSigKRCm0LvC+oW1rmuWCpm04e+YCbxVf44tf+B1efuUVfvrnf5bd7TmFsYAlImzrq54NmP6DMf8f8ckgjiGKlbXX4WSqF8b0xwxzgeSmBw8fj04Bic2r0EGh9QRPh0vpE4oIgwmKy+fmfOTF8wQHdaNouhWNX1Fo2Nye4l0glhSLuZBeBPGjCdERWzapzJjSNkUAglI+wrFBJw1A4yVbjzEyT/dNhPPyDpvPO4fWOmrcKWm/9wMx0oQlf5+07wcfkmQhGQL1asFb3/5TvvQnr3Lz5i26+hjBU1j6DRKC0LYtdb2iaVpa57m3f5t33voOV3/8s3zqUy9RzStyROFA5ANVnIRQgF6LJXc9UkLsAxjWiGcN5guKspz2zatTDgRjshyu9fh8QuOxbBa4LrDqjjk+OuDmtet85Ic/yZVPPYXZWFH4aep34foNJD2TiilDSiVY2/ukPKmezrxPW0spFD7STm9dJ00zKRx9eLwOOD8qdN6v2brPcPhssCRFhnQPIQZOaBmOX1OM0nHOwVtvvMHv/9vf4vXXvkG7WqKtQlvNZFJSlVOcW1CVhrmdYoDgG46aPY5vH3N0r2K+tcNbb76NLTeYXXqK3Aw50ndizCONu2+WnJAdlB/5rTM4mqwdGTR6LcTek0gKNAqjb6RSZCIgBkUOmsuISBc/CusWxAc9funvvMi//GffYG//PGpjSqca2qahsQplY063MWboPJMj68kIF+S0NKNBTOJVCbWKbhFFRmtzx6IB1RiE4+AOWh/ryESkpQf5tftjle6VvjWodaTI9Q3DR6lJ/XcUON9y89pb3L56nZkN/OyPvExYnefenQOuXb/Ntbt7HBwGVh2xCrGCwhqMil2HjBFCOGT/5lt87uZ3uHe4x2f//C9w5eJ5SpMVNiIdjhT1tWcZT0KKGlMEvGtRRTkSfvd/X3q/eMy5P2kUxL33HoSkUmDRsSC2iwEgla2IjWgdHoNVnq35jDOnNpiX82jC+pq6bmCyw6ntOeIdvo9C0igxYAfGpEbltARS8fMIm4YQa5oOwiQRl079E7N3l3WYNc+Dc8lH03WUZTlK7F4XkoqxNpLhpVG4tAht03D3+nXu3bnB3r23OTi4i/eezY0NnAjKB8RHmK9zsfVO3SxjrpV46vot/s1v/X+p65/nMz/6SbbnBVMykJWtQwUnhFVOOI/a0FDAup+NEZMWiZ0MAm2CUBRlMTlRLEFOUF667po69/jK0nUhphUtvFA1hyybI5a/fcCd/Q/z0o/8EKfPgiscQ5SzIiITqToTIdV3dZhQ9LSkA/hYgWJkCYwS4kMWj0Q6FlJBAp/qwzqC+EHhIG/IQVDe51/pIcVRDlqvxQ6v4wLhR0crvvD5L/C53/hXWONR2iM6W7FC6wOhWTLRljM7m3zomYuc3dxgYi37hze4eusOb9+5y2GjuXP9JleuPMf64sa1Vuj0tJ6+gk6/zzRrlUuSGRqVh5BAsTRJo3sfQ4mZicfvx32aBXNOTUHUqGbyWGH7YMfO5lP82M85/sm//BqKZzlfBrq2oS00qqsp2xJrbXLv5BQPIbNQIUa4Rn9jSP1O9YBaSXIpaZ0slyGmIo6hgtia8p5HUt6y/zdH1buktI105HQ9+rrSsC44xj1zI82O4NYRLyGACYGju7dZ3LvLj3/yE7x8+SmOb99if/8WN2+9xTdfv8p33tnn+t2aRd2x8h0heGoMIXhud3eZzacoJSz2bvHGq3/Cr/uaz/7iX+XKhdMUVqHEoMQQ1AC/6qx4ZFt3VKEqKrUWwcd64rTpvsd0lCJrM5dcg2PXDRGRB5fSy+Nd8iQthZmkwrQBJx3BBQpj0NrQuaiFl0UBIUZ1xQivMkKg5SaeAlxA9JA8rCWXVYvCTvU3Gbde0IKoGEmrRPWdHWJh70AuyaZULDjsU7To+DyZ9pzrqCYVruuoyjJZkoOGkiFLyZRFEkijBZMQq6e0LnDrzl3+8A//kLu37mG0oayqxJwNIaQqlgJdG1KB5EBpCwI2Fuxe3eNLf/gbHB3t8bGPvcKLH5oz7/2z8d6l107Hfsp14Z/9ZL0wG22IgUiiD87aAt81cOKMsF7Zon/eXtN/PGPVLUAibS3VkmW3oukWHP3xIV9/41v89b/xc5y6sEPHJCkOClQm5VwiTCefZNcztsBQcIJRaFSe037TqDwXUWB0XrAiOFfj/Qa5FRYkQRoy/PoAhpSLCGQNPoyhngFqJSlLXXPM5379X/CNr75KWcS6vrH+bApsC55CaYwIWxszds/ssHP6FGdOnaJUiu2NTS6dvsxHmgVfv/YOV48ce7fvEJ59Fn0ydabXsjSkkpAyIrfeZ5TpIj9w+rwvU6ai0OsVzl4hHjH6XoPPI1WLET0oKT2T/uDHm1fv0NSBra0ZrRdMpQi+wzmL7Trarsa0CmVAWw1OIVriIyhL8KAlYMSgJDaP10al4BKF+IFGgui1GrA57SGkdJG89U7osYhSeIkQaCCWtgzERsz53P3ho/Xqg8sYaDJbjJE+XfJzxguNbS0xhs3tbZ69cpkXLr8AXrOxcYHCTinLTTY2znP+7G3evnWXm3ducf3ObW7tLzg66gjKAjGgbDotmU4mXHv7TRD4nFh++uc/y+VLZ6isSu62fO/rBQxG9uYwUszBOLWuv/+x/zHT8ciiBhmR8Um6vH88Ukh24glKURUTVHBoiVVwvGsRFdAWSixKCc4FOjzKRCi27hxbkzkuKCRBnn00a7ov8bGGaK6UEgWDxoUOpQtC6DjabzmzO8eq6HVSCWZUIVZf8WqUCsK4Nmd8hgx3xFQQ1TOrfgJhbUP3xJEst1ifU1geH/DF3/s8n/uNX6P1C6bTTawNmKKKkZTB0bWxvmdwnnrlQFm2N+fRp+taTOvpfAvdPt/84ud557Xv8LEf+yl+9qc/w7zK0b0D/DbADcIAI0cNMIgjF+4W6XX8kaCDEKI/TusYYIQaFJVstfd1O++DWh8TtwJW3SEqCX9tNEEcgQZ/eIenNjYpVs9hDxeEyQ5+soNQUGq/NmfG6NR02UGIkHy2IBXR2d+LyRGThpFNJIM1mfMls28xM7WTcOtJIbQGbWUrwHuwtq9yk9c7dB2f/9zn+OarX6XrOnyqMdx1HaIU1ujoPlCK2eaM6daEcjqjcSWdnzCfF1hpUaFgpie8fGXOGV1x4cMvY6xlvQfhWPjFqGEZiGPQ4MeKlGR6GSz4mMoUBldAL2iz5plz5YZ5jfOk1+5hQIkeD919441v4hcb1HsFu88VeIm044MnOI9zHT4UuOTnjoFTQ81oiyantRFUjChPa+5TmzeloygYWtXFoVL96jwkW5Rjqy6NXBZzsApDEnAjUTHib3B/Lve4oHmQwf00/k5SewhK86EPfxx/apOwarC6xBgLk0020UymczZOnWH33E3evDFHvWbouEMbDlm5aMys6iVKW7Z3TtHWN7hz4zpVIfyu9fzUz3yWSxcvUJihWMAw1v21cbJUj2A45xI9DhbmMK+DEhJG891HZggpA0D10PfDxiOFpMXRtStQgaIo0GpC6QSho5UWFxoKFEYFWglo7yk1mBJMMMy3N3ChSxsnJ3rm1Y4a01pthKS53r1zi+OjJcvlbW5cP+CjP/QKH/7wRwipF6NJjpGgBiJdK1GXJnKM4efUDR/GjIDhdcwgRXomISIsjhf83m/9a/7k938HCR3WWrRVlFVF2wXatkYATYE1FifCbGNOOSuY2AgndV2N98JyVYNYgluwOHiDL/7uEu1X/OzP/xxVESNVT4bED1rgSNvLlrWknoJjgR9SJJsErI2x16Ev6TqGGUbPfyKi7PGJSGikgQBaGayPjaI717Extzx3+TJvf+dbHN65znxnl9n55yh3zuNUkXJO853HyjwulSSMnWfWBaSkTahT15k81pn5UIwi01FmSoOAG17X4VdSqpAMaSISN21kdKFP6dEo3vj2a7z6la+xajrqVUfXNoj3aGtwgT4dCaNwXvCdwnXgXaRxpUuoFDY0FAgTX3D2zC7T+Tw+38iCXZNH2ZqVMZMJMZJdGCxMgWz9AX0EtCh1Xz7bWNGIY0RfWfiOFIjxPD6OcfPmPodXj9HVaUyl+rnqBVG/9vknp3LldnNDCluMuxiUrs67VFZZo3MxlfitePEAflRs/z5rOkcmS1Lak1WaabFf27UvZ/dN5g1jATmm1XzNaNmHjNRlv7JAaDrC4ZK662i1QWuLrix2UqELReNhOt/k9M55ZrOGsmqZzAS3WNG0qxgDYArmmxWmLHEO9g/2mN54my9/8Q/Q5kc5f+4cRZqPEBSiY/mDkGDq6BxIaq3Oz5hrVY+eONHQyeIYef5ybWsR09P1e2q6XOkpBSWuCyxDjbGGuZmhdYHyFvE2pnsYIfgOT0k1mTKdW6QM2KoC7/Eq5wXlbgWC+Oj477XOflsFtjY2KdBce+trfPOrX+fKM0/jXJdyKxU+MErqPRENpumDMiIsFuGEWI4rO7xHXr8MtY0mWXI6vgiu6/j93/k1Pv+7v4U4j+vAYujwHB2uCMFhrKYsLEE5RIOtSsqiQluFVSBBYcoq4uzqMEbQVZa2WaHlmO+8+kds72zzw5/5NFaF5A/LjGMQ3tGIHiwcEvyc4YXB15iIXARrC0RU3LRkyGFcuqxfEVS/iU74Jz/gIQqCaXnx5Rc4vb3Fa996jS60PP/0eULbcf3eHfaPj9nY3+P04ojdyy8zOXuFUFZIcOTqNSEEVIgRsLHYjEqBwiq72ABSR43R9Ud/xY3q0maKvvgh2Ib+VWSwxcMoUrQvUddbkqBCiMXxSXCXUjTLhs/969/i+vVr1G0NKILzWGtpnKepl2jAmoLSGkJpEefBe7bnUzY35uTIJGUKMFDZhvrggLBsUVMLoY9vXrd401z0GnZSVvN7/TGD+4wezieM0meGORtgZDKxrl23v05/XCqR9phSQJaHnu3TBcWZKdgUW8EQ3b6ucIc+0llrj1KxKL8IqfZ0DFTMqUi46KtsfODtt29yenfGmdPb/TNHfpUBx/XI1nEOn0AvIFVKSfLBjwRfvAfV87SxsDhhSUJidgrEAgHvHW9efY3zF15kXqRl855b77zF6s2rBOdYOYepTrFx+hSnd7YorCX4JVYs25M5W9MJVgnedbHiVdvigjAV4fhoiQsOUYrlSnN8eMStd97k7d2zGKU4e2Y3NSlwiFO8+uo3uXmv5eWPvsDpzSpmVPTyUfBRiIyC7sa0va4EpKlFJJdIHO3x+7SS9fFIIRlCSWnnTEro/JKVbzn2SywaYwzWTtBKURWWaWHZ3Njg9O4WphBqWrwX8B6TGFN/U8kSHORmZiiCNgF0h51Ynn3xFc6ce4annrpM23aUZRKKEPMz1fB37wQfacfexw3cV92RsL4JU3TsukUVv5vD8N/4zut88Qu/RxdamqZDeUPbeXJB4MmkxHvH0jmsLVFK0XWe4IWiMKycB28oypKytBSTOV3TURRTJtWcEBy6W/K1L/8x5y9e4tmnzqVw/BPWZFrl4fGSHwlJJfn0yDQM/bOWNm6ACLhKf57xiSPT8qkNWlwgeZfcoR/kEAfTzRk/9CM/yqmdHV5+5cNcv/pN7l6/ye179ygLw6QoKS6eYm//Bq3znBFheu5pggEbNFIkhuF8qtc6BJn02n/m/SM/ULyBQThEzd2lzh/r0YRj7V3IaSODxpo3apCcR5fmWQCxSAqcUcAb3/4mX/vKl0E7lIn1hQmBbtXQ+g5FwJqSymqm04rZpGJ7c8JLz17i/M4mMUo3Rn4vGsdx7ZhMJxSuY7l/m9nkStICR0Fg+XFHDDaP9XZD99uIMRUipSB5P2I0Y8HHmr8/B5zFLg5RwObjslavHhPZGRRHbkG1us1GYQhs4lWypnOEc0r/Cd7jvcH4gNcuPUNBTBWCXJouK1F1veT27bvUy4avfOkbzLcNf+nf+ctUZYFRCWpVQ9pD3yO8n4+xVTgIg9zybwyXjn8/OdbqUY8iYoM0HB0tuPrmLb7xzVe5c6Xj4x9/Ca3g7vV3+JV//s95bvcUsyLwtW+/xfX9FVunz/DcM89y4ewmZ7cmeAeF0Vw6u8XVmxvc2tsnBEfnOoIolssFXVMTQgygDMEjzrM6PODm228zm86YVBM2Nqf40NH6mte/9ltcvbVAs+ATn3iFwtrBEFAQpKNJvV5PCsNBCYtvZJJUufypksQA3mMxAScL6qCp1JTKblIon/wkHa1zOB0DbybVhDO7p5hvbTKdFtRNQ9O0WBdQPhep1f0D5PgarbNMj0wst8FC5mjV8Ud/+Eesmo6LTz8XHdTBJ41L+pqv/U+G0kYh696nHLm+6s4o2g6JWsgJLSIzOB8s3q34t7/2m9y+c0DjO5wPqOBQ0mKMpiym1E2D9x0mFXsvbGzO2jU1trAJCouXm85nFJOSznkQT2ENShmatmF19xZ/8Adf4ML5v8LECH6YsV7zGaCyE1qQ5Ny6+FEQl3ypPuZjhjBKHZX+zGtwyxojDDzOIueFtlx56mnmsx26RqOrc1x+cZezZ97mre/8KXev3+Kl556jmBQcr5bsH73Ftdv3+MiPTJjtnqIMqq9ZizPRh5KjB2UoVbgmJBnmYFwFJSS4NTMjH/xI0RpZRf3fmYbUyIJMpeky3EMqHi4aMTHP883XvwrEQB1Ph/cw14aXnt1ltVxw7c4RW6d3UMagdUlZlTx18QIXzuxSKougaLvA/v4+d+6+zTs37+JlxvmLZ5l5zeTULrqqUiGJ6CsakqwjtIWoFFnu6QLkUnYqP1u0ZQAf0wtSDMFaIQTJmn0WtEQBmQtAoOHEnsvjXRT6H+hodUu1tc2lF1/m9vX9oWtGpoykeOY86wy55hxt7wfHUa6ok3+UCkxnimZ1xLUbf8TT1cvUdY1WghiNSUpcr+gn94rKUT2jicnR/kan9JIkwMdo2snX8e9D+gi9EhhEobVlc7OEcIjIimW7ZGpLmtVNjo+vs9qxvPTiZV57+3Vcc4tlZzHTlsXyCNc2bM4NhdLsntriwtmzvH17j/2jBVa7VHIUlstVVFKNQeua48ND5tOKO7evsX36FFvbm1TVuZTVUHHm4ivsnDtmc2sLH8BmRUupmBHhAu+8fY/Tp6dpnlOEbFJO0pMnvW7wkfcSs0cwHj0eKSRRsHINDsEagwGMiota2FhgwNFRTWbRKuqEhTtg2bTUtWcm4KWDYEBycq2JJ+6tmbgpVVaftAYH4jpKOmq3wjuHDx06xMoBWlSElVTsfZd9kDlKDCxKBbxzKKXXEsr7HCQVHehhdCc9ISIgjr2bb/ONr/8Jq6amdR1BQaELrC4ojMF1HXXXxY4mQbDWYiV+d9W2NLXp4TfnPMtmSVlVkHxaKuX0aRWoV/scNp4Pf+wzfPT5CwQVckkMcvkz+g07Jv4R1DCygCItJLg1Q6h9xOxg5WTByuh3JZ7wGIWk1ZanLl6O1pZr8T5GFRabl3nxlU3uzL7GdFZy994xx8uGVdPg5YDLLx5QzudQaILEcnxog6ColzWT6YSy1P0myf5JZGw1wUARIaY7+ZBgViH4XJgg9PMNrP2eq8b0tTJ7TVeRunwTlGJ1dEQXarZObaL8ElMUOC8432FCyc9+/COcKjyWkqNnHDdWS67e3cMHoSwnTMsZlaow2tB5x+HxIddu3Ob27X0WruXu3du8c+0drjz7ApPTlzj11DkEDypVLJHx8yZoMUC9OuYrX/kmGzunuXjxHNOqIPcBXNPRsv8/43snRkhwXvyO7hlV7MOa5oJc/Po+efDBjlCizTZldYGiGtTTHmZNEOvQVioKSm1S8L/ya4Iq92SVlHI0n21T2Ak/8wv/HTY3n+oDcGIRHyFL295wTObSybkViYFfihjVn1tdnRwPEpD595NBikYUqIJqe5MLz3yUza3TEU42genmDrNqi5/8qZ+iPbjF1s4Zzh55ts49i2ks169+mzMXz7A5u4jVBtGW7a0ttje32T86ioFOXVTMuhQXUgZhUhiOF0dMDi26MNy+eYOt7W02NzeoqorSCvvHjjeuHfLzn93FxBSHPCuAwTtFCA0+WNTYlSepLX1KnesLpT9kfh5Eu+PxaJ+kKfHEhNIQwOgCExTBOzyBTgXKqaYoLa1zKOWo6xVHi4als5wmNibWqUpKEBMDFQK0jefweIUtJ1irqApFVVXM5halO5Q4PvPjP4KgsGWg6xoUVXLcRmYfUbNsew+QWWR5MTqtKid0XbT0eiHZE0jW//uZS7qFYIPn2pvfZLG4Rxc0bddhigJRlqqaYLTQugajBOeEylgK0WzOKpqmZSUr6rYFZeg6hxdBdY66aZNVF0PDu85TVAq37FCN58tf+iIvPf8XKEalz3qdSFJfh+GGh/zRpD31GmyI7ZSssbEyR7rmsKHWhaAk9EEHzdBG6/GMWTHl9JndmF8bBK1iVY7gYXHzLtNywv5ixf7eknq1Qix8/Ec+jZ5XLJc15WRCpcCbwPG9PToHX/7Tr1HNpvz0n/txrJIY/JUj6oYchDSNCf4iVcvpYaqYp+hDLCI++O0gm1DRrx0tARn5syBp8USBe3z3kDe+9RqNEz70Q69w4+ZR0oYjA5hVmzxz/grPnpny+3/8Fea7W1yqLKvVijtHLcF5tqZzVACtbawMExyuOcY7YW9vweHiiJ3JBm5xzNtvvMXW+XNok4TSSNL11lIIuNBy7a2v88a3vwjlNsfHL/Dyi89TlkVfpxgyLcbCDFkp6C3oNaacFeJMU0PU7FDQPNPa46O7698JPDMvENUiugW1ERltr4Tmlmm5pFtUJL1XfWqaMAhKk4qdR/mnQFsWy0N+81f/kGef3ef8+V1CML17Ywy3Jv9R8i1mhS4JyESLSg8+75P1R0/62B7kc1vz4emAMhBWwud/49/ysR/7KS5cOEcIAVue5u/8jb+Lahe0QfPSC89wansDZbZ54Y1v8Ylf+03e/Nt/maNzO0i9olkJ07JgY14wqxTNMtDiaJqOeVVSt4LWRVTsmpqDvbsUhaWc3Obw8ELsAKQNtijQYcHEdIhotImNz4c6yQEfWlAdQSrcsuHWvUPOXDhDoRUECD4pwTnALAfqjC1pyTT68PFoSzLE0GatAy50dEFAm9jINkXo2UqhraXzHmM1nYPjZUNrLB4FXuNVwKuAYFgetrz15rd49avf4OBgSex15yhKw2S6wfapXXZ3z3Dq1CbPPX+BrWmBPu4Q3xImCiqLtblVUNziORR7iFqMeZ0ZmnDeY4tiSP94kOabCYaEW0vgcHFMnbQVpaNygCljLca2YWoMhbUsxDErDFp7NmdzxENVlLRdS9N5mtalJHaJ/odUf1Rrjw/QdrGBsOuOuPHOd3BtG6NSRwJyuMUM4YwtyKzx5r8jnCc6RuH6xidW+CCNM76qXJKM7Ht7fNjX5uYG1XxCcB6vHE5pdNCs9m/im30aVhweH3O0XNEF+Ngnf5SNs8/RdB6lWjBxU2mvOF4esloecu2tL7Gxuclq+XEmpSVKST2yhMbKUnpVI3+UZEsrBYAlf8YAtdL7kk9a9WMhEgJ4H3DdMUcHVzk4Dlx+9gpHxyu8NAQfu9xrZSl0ydVrd6mqKcHBM0+dpQ2Oe0fXY9swiQ2qlbaURnNuZ5vq+Utc3bxOFzoUiqd2d9jd3eTe6iAmuIdYriwzZpEU1CYkBdYjyvL00xc5Wgq7p3diYFPykUarO+4fJTEq1FpJRRweUNaO9aCS+F7qPTmGxFDvyqx+kGNSzNFSRoGnTV+msodXUsWtHF3qfWzUkC3KPLK/O+RAHBEsBvGCwbN7akJZdjjvcC5GCpvUhH7wSaokJNPf45kKuUG29C6ArJDlkZWttUAeGK3Lun8zUrJhtrXFz/3iTzHfPUvuXFOFgF0uuXHtJuW85NKFHXZPz6hrxaf/b7/N7O3rvPhPfp1X/9xP0nYNWikKDZXVbM0mVDrGpLhlw71Fxz0fg8262hGCY7FssPsHlJNN9u7dYlk/jdGGYlJy+ZkP89zLFaYwKFUCXa8oKAmx61TdEoLi21/5Cm/evsWL7YewvmPv4JDVquPlD3+c7a2NwWUwWByjOXkPQnJWzTGuIHhPp1qCtDjx1J0jqFhiqdCxF5gLQug8LnhaX6OqeWzy6jyiY/+x/aNDfuWf/Sp37txCaQfaYZXBWEPbKupFyeHeTd54TdE4zyc/9Rk++9kfRrsVuiMyPh03l5GEbatU7kmrVFZOUMpD0vpFAt51iFS9FdVbkWMKShMXGYDDi6JpGlzrEa37Q0UCXeOYoNmaz5nNC4r9mkkZKGyJUZbC6hg67QNd5+laR0AhOMTHcH9EUNoTgkaUixGL3rFYLPFOEKMY323+CRJ9s0qlFmInCb4XmNEnZ63B1amgtgzMKId8D0x9qDP6uBnW1ukdxEJoU8l27Vjt7eGOb1Pqljv7R9zdP6LzHS//0KfYufAMwQnQ0ZkC7WP3D2MVG5vbTCYTPvOjP0FZVYmxmBhynxX3B3ru8ybKdVddhF6lSyUKWYPGxgpM/nrfbi2/IVmxVVTzTZ7/yKc4OKzBL1nW+ziJ/narS6opHNWHzD1sbc45OGo4t/sUd+oao25RKUNT1xwYxcw7qsJSKM2k2mR7q+EX2hv8pTff5vcunePe8y8gW9sEHE4ZdBB8qqGaq43k/aABUVM6tUM5McxmG73Azw82CDthVS+YTovk+hi7UfIcJva0Zs08uO/Hu3XA+EGO9qjj+PaC0CZhNd5LKUI+omE+RTsnZCrVYWWESIgIVlTs9RkkFQAQTFXx87/4WbQuaZoGFQJFERVt1XcZ0SkKe11IjkcfoZotyVQBCaXWFLKxsnIyyrU/V/7Px4C2Fz/0UTrv8F2H6hqaGzc4vnPIarXAB01RTZjPTlFZx/W//de5+I/+CW/9tb/E/t0DVqslR4cHLI+OMQJbsy2Yb8aYjJmmKG+zqO/QuJY2+Ohm00LbrFgtj1gtDlgsj5kYS3BTZvMJq6ZBwkbk+ejU81ZwPioi29unkRA4f3nG3nJFaI4xRcnu7jbVdIPZrGK0JenRNkY0+V4Cd468Y0ZJaWdMmCGqI3b58LS+pQmx2G7rHK7zaFGs6hVNV7O7sYMXARaIj9rZjWtvcf36N2P0ly0QLOUsRn061xLE07olIbSA8JUvf55XPvEiL1w5h0qdR7zPZZ3SQxpDwhwzSkEOTY+IZRQQMYrVD9Gs/cQMzDLDZkF7SMWzO9cgKvoOrda9JTGdT9jc3OD0qU0M+5QpmlJ0zO9DYuK3dy75MgR09Cc4H3P2dNJUgwhdKuTeOZ8isIbos6iND7CdF49RJgUzpT6KyvfRWiIeCS3WlAnyy5GtYyZ0UrAOXcBF4Ojo6NGU8wMcs40Z4uJzOt+xOLiBqRcgS67d2uPe3hIXFC9/5BUuP/1SFOjBx5q+ISaAuxCiL1wr0AV/+qffYmNji7MXX4ih4yGgMCPmnnlcVkpiCL+MIlMjs+zipidZVJIVmDSyQEkWSA+XZ8spBZlNTMWffPXr3Dxq+emf/DSVNlS2QMSg0LSu4+bhAZ9++gW2ZxWvfv1PuH3zGnXdodHMqinL1RKNx3WOwhRYZSOg6Qv+u9/6DhcOj5n80Vf4bz7zo+i643j/ELW9Ndwoo+fNe0JB29V859tvMN86y0erKVa7OGcy1sRTqL5IyhHUfcGOsdKxzqxPBlWcVPIeDA1+EGNebaBaTVe73lrJ+2IQSn6ghwS/R7jV9/7ZtvMcHKw4bjsO9g85OjxiUs0ojCUoYTqfc+6sZ9I2uElFWZVUZSx5Z41FS6xlrVIloizcMuKREY2IiIXhfsgI2IOLoz9USPYSJBKAQqNEI6qj7vb5yu//Kle/dY8Ll5/iyqktlNqjUtvgPdeff4HX/uP/OY3rqG/v0bQrlosj2rZlqi16c4utzZJ33rpO6zRb0xlVUOw3dTRqdMdkYhBp8d2KxcEe9WpBW01RotjZmfNHv/kFNnZf4szO8xQp0DNGDys636FUSdAFZy69xI+cforjRU3XuOgyM5Oo2Oocs5JS3gYtL87Hu8TuPFJI1vURTmogJsEaNUSruZD8Ra2LbagA7xzL5YK6E6rZZirnFn3SIQjX3noDH1yCElPLKbGgC/Im811st2WMoVks+b3P/zHP/q2/TI4lj5GGwyYca3E6+wCUjAgjDIiJhBH2cPJps30phFQKb2O2E4lfx+oOiMF0nmAdk0lFVVVszmZMjWZRr2idxrmG4CIT9q6jcwkiCINDOeDxQWGUiRAYEUYRLRRFidc+3V66pxFzykE8Sjx7t2/y6jeu8uKHXub01hRDiBZ9iM2By0kxwDMnfT8jYpEU/doHmAi89fZbj6acH+RIrYVCaFncuwbtESoErl67xe29A6rZJq985tNcuPwMQRXR520jih1IzxViHV1RGoJna6NAmYbONRRdiRgVc9z0wICikpXpYKi3Gnxev5ToLBEXiDJymNOTkFd+lWxppsmNMVSWM2d3YNJQVAUXzp3h5t19XFC0dYtVsKiP+M6NW/zQ8x/h+Rdf5vrRPiF0vPDsObbmM9puxTENITQUpkKLReuCSWn5g5/4FD/2+1/k8z/yaVbLmkpAHzb4RYO6uJsUv8HSyBAxSjEpJ3zqkx9m1RmU1mhlokUtEY4lVYXy0tG1K8K8JNQrvvGtNwnlBs8+e4EiNDgvtG3Ae8vG1jReTyJSk+k7zQ45gOexWZJdiw4lDo8Thw8OL1E5yD76vlWadzit0N6k92Mqz917B/zX/59/wTe/8SbdaoVzDcYqrIlwYc0SZWb8vf/R/4AXn7+IMt1QVTIJr1iZTKeeqCNXQOJnPgcP5YAwhjgDpR6eunVSQJ6EXgerNQogo0rs1ile/olP8vrX/xFf+9PrLC48w4sfeob55oRCWdq65XixpPYOQWibji7l9s7KkompmE8sO+VdvClYOqF1ga51KKsxFpSpQBdoFdOdjg7usbm1iTXgleHS6TnHvqaTEB1sKkLaRmu088lA8rRt4LVv3uDp559hOh3iLpQyA8vP1lHvbRtpfI8Y7xK4YyhSQe2gHBqNUSVGG7zS1DqgqOnaNjZ5DYqmdehyA2sniPdI6hTwxptv8JWvfrWHCfO9ubalU7GthXgXK7v3MeSB177xZV5742O8+OJzVJ1PvYJ9cnRLLyCV1gRyuHpuh5XC/WUsbIYJWYfZRpq1aBDPleee5uz2nGXdcth0sXVM1+GLOG2GqPFtb21irGVZe1Z1hzFdtIYl9AWxQaf+Z3GRgwSCj9G3JC1Pa8PGfIPCmt7y6Ik5M26RGP2rGq5952tcfe0d2mafT37qU8ymVe/YDwHKYkIu9bdmBcSHBwmxefXItM6FgS9dvPBIwvlBDqUE3BKWS6bdCifCO9fvcO+w5tLTL/L8hz7CfGcX0UUKmhjWXlRMUuiIoe1BPJ3r+MjHPwYK6maJSvV0jY29/5SOVXf6whTJkozzESFuCcTSbSELvlT0Iahh361p6Pk4BitytKaC4rmPfJSnugjlPvfyS/zJV16lbh1t0zFRGh9a7h3d4XN/9Hl2tqeoSUXtFGVpEYmNu+umwaPYmBgQRxE6NIavXTrPH/zCzxCCRV+9wztXb7Cqa7aeuciHz/wkqhz7u4cAGiGwuXmacjKjqJNfDp1mOFpWQ2m+AvE1eMXicJ933vwW5eYpfHuIpmW1qOl8izEbfPSVH6IobJqn3kPUw7iPSzjm4bWwd3iP48ND0IMFud5iKpz4iVCr84FXv/YO/+iX/1/cvXUbrfdRpojtsrwGVeBDQFTN6jjwT//rf8H/5D/696hmZWqdJnREQyNWjRqE4lhQ9tGaYYQqJb9kzhEPJ+dR7ncnrJehW3fPZCFUKA1sMD39PB9+5WOUWrN7eotT29u0zQpvKpz2eHEQHCF4NEJVFCgJ2FJzdLxgUs546uJl9g+OePWrb3GrcdTi0a1nYgoCOkbSqxjkef3ttzl95iIiGm0tZ85e5p0vHtA1iskMYq1fk9CL2AXI+xYlNXdufJsLVy6wsRHh2Rh0pUb7DyCX4aR/fbfx6LJ0epogHOmLjQcpYy1N1eII6CCETlF3ADWHy5rTFy/FUlXeI8pw585tPvfbv01Tt7ExrooautYRIeyaJsGgkfC0Un0vybbe43Of+7eU000uXTrNVBsIGuUrYgC1752yuQasIlbDUGica1FKCKFNE5VTUB42PbnwgGLn3GU+9rFX+OqfvorvHMerloABXxJczGnrXIfziqqoYoF1cVTVFK0OUEHAZ6YgEfoTwSjFRFusir5XjMUaFSv3lCVmLBizAJOkSKSV9d5iq6d46aMzJrNNjLGIp08W9hJQ2tJ2Lp1pcOQPm2PYRCEMG0aAzc3N74J8fjBDy4p2/zqToHASuHnzLq0p+eiP/ii7Zy5g7IQgGusF0SEyNRTOd7zz5h1Wy456dUTTNFTVJrYomVSWp589z8bMIdUMX80pywJbpCCfcXEKpRhSZVLwjnTkBsxCgu3DePOdGGtCchQJKzKk9lAkBclz4anLbM5n7B/dxXvHdFJgSs2kUjSrmut39rDzTbCKoowFuoqyQGlL1wUWoWFSlijd4hqhWTWId0DH1etvcefwgK1LF7j8iQ8hlaFvzA2MnTKCYjYtOdi7y2Jlac8qJsYnFSTttJAsSixVNUdhmW9v8uLLT9O2wubOJtpq9JmovJbVHG1SGlh/pZE7Qdbv4XGMpl0x355SVQVt0w1BWiPYdVC0Q5/WJUFwdcs//uX/imvXv0Kh5jjfMKsqqnKCD7GoSd2uqJSl1Ctef+NP+ef/8tf4pV/6K6jCQGiJ0L7CWMFKSNZnrNQT7YCc2xwSouEif+2jPTO/GJ5pXMM6jwfBrdmVkCN56QWMYGTK9vwC1azAzANHyZfoVsc0q5qua2m7jiCCtTE9z0nHsq7ZPzrgwoXzbJoNXn3rBl966warEIuWiCfGa3SOqiyo2xj42RwvOT5eEsSgCZhim53dmyxWt9ic7qJUiiLWUXPVxuCdw5an+Mmf/RmCrSJULSCpu03PRxOqFKVjCioQRSwI/vDxSCF5yx9hdYlVCusdEhxBTPQVSUsngS1jKaoZdRNo6pq2M8w3TuESPNM0Nf/2936Xg4PbWIq0wIJWKbclhYiPC9lKWjyjo0X3xre/wi//32/zwz/20/zET3+GnS2FIVf8kAiZBRmq54vgnMea2HhXK5vqG0JO5o7HrcftJNJKJ1GgZ/zwT/0U33ntmxhd9q2KrAYkFp4mMT2NpjCWWTFhe7bJYnPB8eGCVevIpd4UGo0wryrOb53izMaMW4d7fP3WXRQFRamoKosnCvg4GyQrMP2EvLhL3n7nHfZqx5/76eeIUc9pIydosG1jDuG8sKCG/NT1jbJe2DrDSteuXXsk4fwgx8XTMywdrXiO62PmO7s8/dzz2HKCKE2QiCg4pdGpomNdd3zpi1/l1a9/neBbUA6tYuK9EGu//vSf+0k+9alPolWH0g0gBDHYIhWk1noUMCEMBSiSn5euhx1zjuVDLaDcX7Gf67x+WemJq6G1EIxisrHJlaef4q13rseUjsrE9CsJTGYTiollb9lQt4HSWWSqKLTBqGh5d65NfQxzilbXQ9CzU3Mq4/nYz/wUG7vnsV5w/X32/yWftkEby2p5wDe/cY2zT5+LvRFJiE1CbZRy0Zo1CjEeMROefeFFVqs21p31sbKQFhsVMB9LNuaiH5nmhpKl9zP0D3JU1jCZVtiywNdDk/UczBaCJW8TSXV08YIoxdFiwd3bb6PF42SFtRVFMcEWBb5Z4XyDdx2NBq1LCCu+8Lv/hg9/5Hk+/vEPM7EBS0FBQ0mBwibaSJWhtPSFL3KlL+9D3/Yv09n9gU+xSMEDfZCMBKYiCR+5T9B23R5/9PnfplvOsZsVG7sVF58+w7QoUK6LLrIEezrnaLuWo+MV9/aOOTpe8aUvfR2rPb/6h3/KUbcCpTC5kUUndHXAFx2Na1k1NUqX3Lt5m+NmyeliRrAVn/ixT1NoF9EeGWp1C4HJpELXAcFhqk20SJSDceYYI4TDc41Qw/daTKCWA8QbdHZek5MyFaIELZ7AFGvBqJZmuQRtMdUklm5Sge+8/jbXr74TvQ8J4kMptE5MO0kqgVFOWbRslNUU0wkmBJaL6/z6r/4TXnv9G/y1v/ZXePbyBWIRghjWnmIp+tzJrPmFEDCFTli9DFpDcozLCThC+p8IkV5+9iVefPkK1954m4ktOTpqoz9yOsXYCbaYMJmWGHTE2kXYnM65dPYc4gLuxi1U2wCa+XTC3Bo2qhkb1SZntrbYmZd8685tnKRkZWV7rXF8N/mfl5h+EMSwuVVQzguqyRSj6f0UuYddjMgzIwvxxGZJKWtj2CH2cIE6+ZkfxzBaWNXCweqILgS2rlxAxBBcQFkd1zCoVGvW4wU+9zu/x5uvvY5WDRiFsQWCwvs2RabCH/zeH/P0cy9w6cIc8R6nukQPGrEaix1FFiaotfdFOpCOIDFvK4oN1QvAOB7iD2I4Zqh5Gg83WqNUiTYb/Mxnf4ZvfP2bHC5WRB+PJ1hFUZVICLS+ZVW3CBNsYTCNoiws1gAS6LyAVAQ8R6tjDhZLgkzjJp9uY6otCDrt4+ST7APdYlS4KI8Yz8bmlGcvnaJtV7ipQYshoFGpcbrWJRaNM2ktTMH1t95CVzucOrUzgmRJ8FjqhJFmJBLdEB8wWGrvMzF9t6Oa0i6E9niFSIPIrLcYgwQ8Hi8Bk5sUh5AsosBXv/ZVFsubGJsi2KWkSW3yuq7DOUcIDaDQugJp6JbX+X//8v+Tb7/65/jMj/4Ezzx3hvmk65tZKzVKKyFZQcQ97r1gUteWXLBivZDBKLDxEZbkOGgnw61jtEkpYbZxhg99+BXuXb9N061YHO/x5uuH7J69wEYRfZjKeJwT6jbmyN87OGTVriimFT40vHHtFkd1F4MIVUrZS4GVuR+ma2pWyyWFLrl3+wa3b91iq3oa1wqF3aQy0e8ZpGO8z+bzOYUxLFYNuSb1elGKwSDqZUB6/7uN4H907Vbv48ZJDnaygzfDdCKc3p6zs6ER37IsA11VxWoxPrDsar721a8RnIu97NI9aaV6LWks4fsFlJiaq8WgKLBWUKrFuyO+840v8cv/xYK/+3d/iStXzqONYEIijDAIveADFNEnWeQWNj2zSpUpBxoZnLt925T4uS43+Ok//1f549/5De5cf4uq0Kw6GwmhFpQ1FJOCjUmBFmInlLJkS2/QnDvD3tLB6h7OGc6e2eXs5oTmqEWCZj7fRGqDxsTiDJ2jKOdocng+PSQW5yam22TmfOnyU7H0nImQOKFLQTsOgtDWgem8omkcTdcym1eJgNSajrUWYZiszctXrnxXBPSDGEeHSw7rY1bKcurCFTRTghfAo3RiDqOi5MeLFVfffAtY4YNQlTOKssS5FucaJKXMHC/u8rnf/jf81X/nr6EmGkvMCYwQfPQF6VTRSencyinCOyGkyMIMlyrIykumFTWCJIkfD3BsVs5U1Hq9pGpPojHJStvZvcizT5/la19/C/EdSjoUMXqxcSma0rXUTYSCfempylhxxyhonVBqRQg1t+/u41YNhQrc21uw9dLLVFUF4nvdWWS89pFpKAGjDZPJHGtb7l6tObu9hcJExgYjSDrl0waPuBV3br2FKmpOnXoJa8t0jVxtaFwKMe7BcdBIfG+o5fpBj7sHNymakhfVs2nv5XrHQ3RzrzSFmALUKU/T1Pzr3/xNgrhk5UTlO4ijaTwKjU8ul+ADYjymMAQnHN+7x+d+/Vf5rX/9O3zi05/ir/ylv8Czz+0iesVElWRun8wGYuhGhoFznMEg9B6UQpNWiSw8MqLRK229ohSPHr6f0JNSs5h5rtW3mZQzphtblDNN09yhOyooihJtPE0XOK4XHC6XHC1WaK3ZmE/xPgYSdt7FHr0SrWFt4v7ywdEGxTRY6tWCSTFB07F39y7u0mWEhhBqMIZcKzgqXLEnp3M+7tm0fzNTT/Zmz/I1ffmP3uxQovt5fNR4pJDsDayM3Q73gBIoleaFZy4zrQyuM1ijmZdzCNAhvPHtG+zdvY3SuRJpXChjbCwrx7j/Y87Ro4exQuhwTjDGYnSJtYpQr7h59XX+y//yv+Lv/g//Nk9d2o3BFxIweaEhhemn0mOkBFQyIztJOMNz9UEFadMGUeye/wg/+ee3ePvbn+MLv/mFGLzTNbQiXL8R62VubWzw4/f2+Gtf+zq/+emP8a1nnuor8lTljMpo5rM52zunuHt0i27Zsry3wJsmlaWKflDxQiBWKcpP08OhPW1rtIa2rlm2cOZc7gYSCdB3DmMsrtOo4Pnal77IUuCFj76A8R7fgS23mM+miQmngBRieT2XAqQe17h2e5/ZmS3OXHgG5zydd2gCOllwJqf9ENnq4eIA544Tw01QmCSG4mPRaWMUio63XvsWf/LFP+GTr3yM+QYU+CgkVREvbmIdVCW5GXf4/7H3p9G2Zdd9H/Zbzd77NLd7/XtVr+pV96pBoQoNSRBgEzYCqdaUSMqKSDOSbSa2k1hjOGN45EO+RBlJRmyPeEiOE3tkDNmWh6NIjGRKpEiQIgkSBEESAAECBRSqf1Wvb297+r33avJhrrXPudW8gi0B5Q93Arfee/eee87ea681m/+c8z+7iEKKd0Txq5gYntRqq87bxsHl78eMbGS0pDNTyyhKRXywPPHkBd66dIdKKapS9ue8aWh9wBiLUlLsNm09tW3RZo4xQpNYFgarawg1J4+fZFBoJuMaW5U89KGn0oSKt0URgFBDClFAagIAbRmu97i1cxnvPyaV7XElElz5IxBQseLik88TrE15tOxk5BO4jByjXEB6hpG3K/YPQtbXjxFKSxtschjydA0hJsm5vw4yDwGnPJ//whe4/OZb9Gyf4Ns0iGVFrwX5CiH3eHvpi6wKCqVpmzkH4zv88eev8a1vvMBf+umf4id+4pOooUzLsEoBheTeY957IeXdVPreYYRoWa2aULrOKGbH5HDhTn4Gh5+D/N1jePR7nuPmpdcoBgFt5+AGqKDwoSa2jno65WDqGc9q5n5BWRScPL5Ov1cyHjlUsNLFoFI+N32uIhB9S/SWGEqCNDQRooHQ4n1Lz0qbIUWOirWM6tIGnVo6BI3J96mW5jDm+0jfV6QZkhnmj92r7yf3Z9wB3jVXECMGePbiozz75CPgZrR1JFpLNRzSxMBkNuHll18SD0vJzUUi2lhiGp0VFSn3lqrIyA84eTEx0jYtcye/J30uLTosuHHlNf7ZP/sVfu7nf5ZTp46hlBRT6Ey/H1fx+JQTfEcCchVaWEI/+c+urzBGdHWMxz76k9y8vIe5fIPJpGZ3MmbRSunyYjLnz7/0Cg9Mp3z66y9y5fELVLaS3Jn3lLai3+9Lj2XR46FHNgku8vUr1/DRo7wBHbDW5dBxRbmklgMi0XuM1gQNu7dvs7uIPPrYI90BEvixpSwqgpJRMoOhYX4wY//GTagbZrMJG6cv0D//0Ns+R4zywf5e50x8EDKaLzi+doEQjbTUaI+JRqoFEzTUGUkFb156QyrclEZhicHT1AsypKwQPF5FRWxnfPH3P8vlV97g+Y99lCeffhyGCukzlcovnZh4tIKo8lik1Gsagyg+EhWYWl5LdzC7w7lEYKR2Kysjugghc8AqFTFVyfMf/1EiFa//6Qv0y1LoD1NrTmEL+v0+s9mMtmlY1C0+kgqTSnregIoUCkorFZX7oyl3Zi2Pba6nyvCkKHMUnK5LRHVeulI9TjzQ58z5LSwtYISjmDTvVCmiClS6hBjQKPqbx1J1dYog5S27z5DbzvsqdhEaKZKFtxvv757sNzvM5g3nDraohjZRz6n0Z5pZEhOtIB4XYX9/xh987vNYHDEaQkAMoI7EYCDruRhkhJuKOKdQqqQsC7QuKGhYG/TZ2x+xf/A6/+gf/tds7+7yMz/7FzizEVBlgQ2mm6UYyQGmPL9DA4XfZe2WBnNZ1ZonvKy+fpVAYQlRRgia3mCTjX6P9cFx1jYHuFAzmR4wntZMJwtGown7M0dUmt6wz/HNLTbWS4yGxbzCFpbCwDwkYnKlcB6MTlomeBZNzSBKnnM2OyBqmbxjjMG5lRYVqcxMe5SuYKjrEV+ZFyzfW6FkiVnHrXIYvVeSZCnfhpF8x6oDipOba3zqe57HKmGTIVqMMtRNg/aBK1eucDC6B4Qux2a0wqYWkM6nVLlRfjluZ4mVQ/QR7xq8a9FKepaCkh7LS6++xG/82kn++l/71yiHkUApW0DJPLclc9hheGd1YxzC71fwa/kzVzimJW01m8Um47UZmAmqkKijsIpez/Krz17kr77+Fp/73ueZNy116zBaMZnWVIMCrSr6haHa2qDoGd68uc0bd293EMLmxhonTqx1M0U7cCD/O3E06rSea+tDWKtkjmVyzJWW+9CmgCAMQI89/TQnD6Y0C4fDsGktvf5Q+iOVIpJZV2Tz9KpeN67ng5Abt3c4+YhjvWpkCrwWUnFjMuSlkmFS7I8PuHbtKhkzitoBKjUI53mZYmS0LhPH+4KbV1/m2rU3efnlp/mRH/sxHnzgNEoJr24oNEaZLm3XKfKQJ7pk4wLZC9epIjYbBtVBPclz75xCJawhuER7FsXDlrfC9Ld49hOfhPEYNZ9jlLBZWaNBWwpfYkuHd4G2aXGtY76YMZ9X9HslZc/QL3pMasdgYDlz7hRnh8c5feLYUlF0+yrdh8qGSoyVigXBawrTY9AbIjSHK2chGXqtFGfPnGF3bycVDSoOTXpfMX7ykWlk2crnL9XVB9cjCfDawVWK0rI/3ef08CQh6vQlg9q7XGQUdIlQ8I2vv8je7gFWG3xoUVphrRArLNs1EmOTwDwIv6tHtbpD06qyhzUT2lATmxGf/c1/yny+z1//+Z/h7PEN+mkmkFZqqYugc7ZgReVnRZDUWe4a6NY9f3/FYVrqYiAxceXn7H2NUn04scXLL12jqBTGOmbzOZN5y2y2wIdI0e+xvtZnfbhGryqxpqCwoK1lUGlODCw3R40M7IsxtX0oXFS0jWcwgBg1rlW0i5q9O9u4R72wpbmwcp0pD5pa/4ILUiGc0B9RA8se4HzfMcqc2aw3Yi7k/Db23H2NZMwnN+ZIK7+h5uGzW1jVSpRkCsqioKgj++MJqqq5fOkSITRpTJF4ylpptNLSrhBJU9nlMzIMddjzyUwxEk3lgh8fIsZqHjl3mqcePY9rJ/gwQOkibSKHSUl1rSxdnyQrESPv5bUuFVbOkcToUdozvnsHVTuG/XUKY1jvVSyaOUEZ1oY9rj/8IP/Fh5+kdYG2bmiDNE1754Rdx3kCBbWvOdje48Ur11AWSl0SvKHaOM7DDz6QNmzs9FhWxFlEAQd6a2tcenOPJ54uKdMII/HYpf2jbRwxKK5cusGxkw+ytuGpfUBj0VkxpntNYCAhQm8wQH+ARnLiGvbHY/rrfZxrUoO1QJkxJhowrYnK8OalSzT1DK0NIcqUFqkNjkjTuhMkEYWyyGR4XYFZ4OYjXnv5a2zv3OPP/aWf4snHHkCXLVqXKJ3heIUKMvkx5xxjqm7NnT1ZJ+X/ZmMUV+Gw7nnmvC/pN0IyFvJ+QStMNeDc+XNsv3U15w2wuoDghfZQWygKtAIVPdFJb2XTFNh5RTvURArG7YI9taCYRs7PFgzXBun6VvOmS+9a/i/nrXUNRSwhFigVpHp6hYsjawNrBfrK3kGOcpaiVvbxMrexdESXjukHibqG2BBCYH9/j9OnjyMFOJ4Yi0OvEwUPTTvna1/9Ir6doasSqOmVfYw1qQDGJ4XtU+tQ6FCuEAL1vOZgPkJFT1EkRK2tIDpU3OVPvvBZRuMJ/97/8m/y4Ol1lLJIv3PaM1hk0cNK0AF5vZfqujOp3fXzLussxT/JHCTCCOdqxuN99nauwXDIrfYWzW6kXgS0Nhjt8N7R6/cpqpJer8ewL200WheJz7dgbTjg4XNrjJsFk1ocBp8u3fuA85q68bQ1NEYzUJZ20RDigjs3LqG3HuP41hms0t3QeckyZrjVLvPBSXdK0djyRt9+y90M2fhuPz0s33YkuVQC4v2s9TS7O1OC1zxw0gpcFBU9W3D56k0O9kepglV+0xiLMSVKi6clIbPkQSTkE0qrFXyGbCyslc+UsTPCSPHs8x/j4x/7KA+cOYkyyZRmyNa3GArererrXSvA3mUp49v+rnDM726jy5KyjkQdMKX0NoaoKW1Js2hpY0vrA23wLFyDLQynjh/nxPGT9HsFSllMVTGf7aBMYKPfp9AldQMf/8RzPPzQg2lN8vXEQ48wJk9RRUdV9Xjs/Bo6uhQNijMhXqLB+wYfPKPRNhsnz1FUFSYs5//FFeeh+7QIO7vbnDx58tvdGv/KZRFqRuN9TrbHZCaoDP4kEtEhGS5T0LjAvbs7XaSjlEk7VKd7yb2AEgUSUq41MdMUpiG6mv271/iNf/bfE3/qp3j64kMMKNBlmn3Y5SVzC0CKurOyUclLjytOWG5n6h7cuwA6KxDnMugUasKIweglRBZRFErysFZbBr0+uqrwoWU8UUxmkRgXzNua2aJmtphzMB0ju6Bk40Qp1b4ruagO9IyKzA2qQGBnAsRWCnJUhvrlLGWHRS7PElXm1EzPadUBWIkUMy2kKPDlWZWoRSW0KY90++5LBGF58jmKaumc5LeRCOgYuH3nFrduXsZol8aygS16EE3XlqGVQLB4ldpucyQDMdY08xEAbaMpTIHRwjimYkWo59hmxuRgn3qzXMm7LZ2wVaq595L3CwpWjeYSwQv4tqGeT9m5c4e97TvMazh27iS9Rwq274zRsYRmTLNoKGzFoD9g0Fuj35OpToUt0VrGy1X9AadOHeNDMXJ7Z8TetGVaSyugaz2N1SyamqgCLi5o/ZyiF7l99wZN63GjPbw/JS1OaQFUcluXHkKelCLfywWK+emuhElvq36F95ud++3DrfnpAFZDCWzvjLl+4x695x+iZzX1pGFcO668dRMVHaRKRGOEISHnO5YeqzQkJ56uBJPmQ5Mp5pBG++SdtU4Gjd68tc0P//gJ+psDtKmQZlwxujEiUzuikKC/fZMsGX3euTirkWz2+YMPNLMx7WSccqMNTd1iCihthfORuq5Z1C0KQx6d56Lm2KmTbClNUVQobWjaQGE11hgGg5L14+u0c8+Fi6f41Kd+mNIaUH7F06bzF0Iy+gGPcwZbrfP46dNS8RrSPYWIwmAM9HoKdMEzz38MwU9Ngi6Xa7F8/yXctrOzy4kTJ77trfGvXGKgrqd476QnMuRILBKQfkatPPv7+0ynY0gtDdaIF78a8eWctEpevXORNiTGpjSBhthysHeT3/y1f4r6136Gpy8+TN8UWAqZyECGDVWKLlQXeXXROKsIbFz91yEbqZRCxWUVZ66yVnmvxYimpa2lz7CNsh4+SpV5VRZUZV/ar3ykspbGRw6mgbad0TaexaJhtphR9SrWNio+9omPUfVWJm/E7IouTdjS/VWQEB8Vzcp1Jjh/NWbpzjIrkO3he11dH9J7dK0hSM5PlmypwD4I0SFC9NTzGXhk+HTIBTv52cthCd7zlS99hfl0Rq8sCFFhy1IKTqJG4UAhnMkh870mhzftH6IocufEKXEqYE2Jj1I49D3f8zw/8qM/QGWF3jKEaonmxZx2WMLfWVYN59trMA4HCF0mU1zKKMib9462qQmuYTLeZz4f8eijT7GYtzy+8X1UVcX23T/CxJZev4fGEiiIUdM0MJt5en1Lv1ekDobAYFCh9DH65YDTp8aMpw0HY8/BdMz+dM7CGeaLwO7BGBjSd4Fef53jx04wjX3mMeJcoCh153AJdZ7ChyDpJxW74KLrRSYvlz6E9HS6lS6hdV/5No1kXP1MrILYeHZndxluWg4ODrg5HhFi4Pq+Y/9ghFI6VZRqIQ5YIZKOnQeevaEOrxJvOjfRIgZPyHA11liUdjRNjWuF8UalSscYhKUnRk0MMgrJe4+xNpUMiV+9vIuV1ZKdQxe5rSyiSsapmYwY7e0ymsyZz1tm0wWm8KxtVGhtUdHhvFsSEKOkr8xUaGOIBFrXom1F3yqMtmyuD9k8dox4yvLjP/EX2dw81n1m0r+dl9+hAgqi8sznEV2uoYzChiBTHTJcrTVrm+vo0ZiAwVqbDo4/dMvdo10xxKB4+OEL71Lk9N2USNMscF6UTEDQhqikoThEQwyKO3duJp7fFF3rbAgSWftKHk3SLUJ92DSt5Ha1UFyFENDAdHeXP/rd3+Pc6Z+mPLGBVjYV7+iUk8tw9lLJy+WmZ6RUmkQj90B61aq9XL1HEYGIogqgPDu3Drh16Q3W3DgZE1EIqDT4XEsVOV6q+gYMGQ4X3N0eUzu4+OyzPPb4Bc6dO0V/bUjRG1L11g9FjN0VdJuh2/CyDUKmMjy8B5bj6Jb/fkfby6H3Xb3t+I6fLZfvXX72XRbZHy3ezdAqpHay0J2Z5SxCz3w65bWXXkVrJXzLVtOrhkhUnPLPqG5qDMqRay8gwdbEBFVrSRUQcTFi08jACxefYu3YBr1BX/RHZwxjUvyK9yIzh3dHyg4/Fzn4eXJS9AG0BARGS0vaYlGjVZ9JHbl5d8xk5njxhc+zc22PZ57Y4tiZAToWzOqWuqkhzlFKY4tS2NBiRKmC9fUNymqBd2tsxk1OBSc9v82E67cO+MbLO8zbwKIeMdpfMJ4XnHms5cO9DXr9FuaBuo30ihQlpmk5hjzblWXAE3Php9ylUhGChc4xXer3dz2W7yLfnpFcGVqZ4atJ7Vhb3+TEg2dZbN+jjTDzc7YPZji85EuQHKL0nCUvvAuLxZMXixCkIsylGvscCXQPV7DrGCPWGkLUbGwN8G1NaAMUnqAF9tQxJk5Fu6IcRYl28xTf5mV1Hq9asRgxpikdUtE2PHYCtW4Y7xxw5do9tLKcP7uJ0QoXI0K/q3GkSfZKRuT4qClURQwNOhrKShLZg36Ps/0eH/nBH+LBBy/Q76eRRDFXAaaH3F2jLItGosb5fMba1qZEQ0qDatO9+jRfsMdcz6WabPVorPgHuUIu+5W53aEoLN8OE8V3TiLNvOkmLcQoikUrgbkV0LaB7bvbUjATMwn3EooRb8JDzK0IovSVEvrCXHWYRxTFqNja2uTDzz6Nb6QB3BjJzch1rJIyQMZsDjkTq1FTh1Z0x2fld5e/ohDu3NAG9rbv8fuf+TW2BobB2S3xiVJkYI1CG00bA3VTY6PMSXXeUTcNwTuGm8f40Md+kEcffYheoSFaIQcIbvl5nUOaif+XhThd5S2Bej7D9tYAs9QmqTBHVliBVp0DH8NKXpJlqwmZGqxbmKWXv4R/7w8JfjdEJpgEBgPJ2wbSeLTUJyvGUhOj5drVG4z27mJKRTRaqPlUiewzl0ak5fxhRNZaWkmIihBatAZTGAxW+leBZlETg2I+GvPii6/yie//fnqF5CJjCIRUaCjgRn6O74ze328N87l/N8dFuGg9o4M9rl29zte/9jq3797m+tU3mS2grQ9wTeD1m5rzD55mzUa0GjNrGlo/Y15rjFasbZS0IaIKy9rGgI2whls4XBBSgda13NiGyzevsVBB6lO0ZRE993Z2+J3P/DaXLt3jQ08+wpNPP8mml7XTEWT8g0mDM5aTZ5aV4+meYiYM8O+yBt/+3nh/Ixnp1KisYmThPS/fPuCTFy5CUaZmdcf+3DOpm3QRCqVNGiCa0L7cU8YSctE6VQYmwtqYIkzpnM3GNUCqNGtjwNqCkyc2id7TNg1t55FpfMKnl4c/EqOW6n780tocvsXud1B5gVmhzApUg2M8+yN/gcJ+lju3tyn6fRhUBGvwjTRoOwUupBmIQSDArjKTkl5RstYfUFaBjfV11qs1zpy/SH84QKciJbp+tFVjmT18mRKgpR4dow8bslxAYmyZ1lCtRFQKMOjsfXYN0qv3a6gXc7a3t3nooQfff/d8pyTK7NAYW1ZnHmZAEKUYH4yp59OUnzQYU6zA5+L1xyWW1z1MyRXpzpMGyR0VZY+nn32SEyfXKXJVawhE1Uj/ao52umuMiUFKlP6qrcwk6Z2T1v2mrHuXngqRejrj9uXL3L1xm8uX3sDqGRcfu0Az85RVSds4iBGjUx4wRcyhdcwXCw4mY3Z3p9hC4ZsZn/mlf8IDD1/k2Q8/y+mzJ1jfWqfsW9BRSBLSNUDoRsCpVLEZoyF4z8HObd54/UVOP/4cG5sPpPxjPodSxp/vsbum5Y5d/q+DGN/tIX+QSMU7JeJQGLSS1E0XecQIeGJsJHbxkVdeegVoMbbE2ErQLPIZsrKtlHBOEHSC+1KfOOKcyXQkjbWlvI9WlLZkNpsRg2MxX9DUTcqHSsRErsZXnqCFEFyiyYS8vYeBXM1fdpJTBXGpVwiaGBpm0xFf/OKX+fKXv8aly7dYzGe07Vxo8JwjKsfN3btc3z3Lk2dPMIiOoKGuW5pmSm3AsCn5yLLPYLhGZTQmWlo/Z97MuXZ7ly9+8zo7M00sIjYarC3SdJ5IcFNee+VLXH39RX7/D0/xfd//PfylP/vjQlwTAhFpsfHeCyIU03qnylyVW5DQXQ58KSkt1zFP3V++Tbg19R4mAxbQlOub9DbXCXi8h1ndcG/PUXsv8xS7qQq6I+mFJY6eMX7RM0v2CIXu2E4EosgFEVY8NC8GdTF3tK6lcXNKN8R6j7WpF5PUl9R59n7pwK7+ubJf0tXJbWbll6INxHbSqJLh2QuU5QuoqDgYzTAGyqIUWDlmBZQiGCUHxBjDsDdgUFT0qwplGvqDHq2f8Sv/8P/HIx/6Ib7vex+nLIQpp1O8GQpJHmPwAaNSOX6UlogV14mYoF5bFawOSVv2e8oGWRbuHHYmiDJurLAWFd9/83ynJBIZDPpEXBohlr1yEqRp2NsVeF9pveyhlZtKjlb23H16wLk0U5w3rRTGgPeRGKBpa+7c2ePZD69TJM8+f7aKXsrLQ0QFT2SZOoCEeazsp5g/LwZICENQHryjnc+YHIxZTEaMdw+4d/Muezt3cL5mPp9hTMnB1LLeUwmCNbR1QCtFr6yEMjDW7OxPube3z2Q2RRvPoOhRN46D0Q5vvj5h59brDKse65snOXXuAc488ADHTx5jsDHA9gssqcipg2sceM/t2/cgzDh+8hQqn9fuPOQlXDqa2dmVHO9yry6jlOy7qMOKKi4jSvnn8nc+CFEE1tcHPPHEI+kb4kBktaeC7Id5M+XqlcsoW0GQghtpl2rTvatkzFJvY6qt0Pmokqf+iOMaAzS1QylF1Svorw+Yjj3ee2aLBU3TYEqHTZzCWmfikCXJhcjh85oN43K2+NJJFJKD0OnXoALgcM7x6stv8Xuf/QNe/ObLTOpd2jAXfZN4tFFaRoPFli994wq2GHJhq88wGgwt3nm08uADOE+vN6BXrdMvNQUG9IDRrTv8wR+9zO3RHFSgUD2MEZg2OwJRRwyB4BdM9m/w+d++y63bO/zNX/hZTq6nEWHKyLNhqa9ziqAbk9jB1IdWR55TDhDeR/4H5yRlG0Q2NoZCERYUejjk3q1b7M0a4QVHNom1BmNsVxLdHaj0njotiELhg08HyqAwKyQE6fkqn8r35Zs3btxlf3fKxkafEFpCtIQQUV6q8ULyBIXdPh/ItIAsN0veUPmDFAmSSgc9hEDbBObzCXvjXb72ylVu7tUM1JRSR1S/oOz3sL0KExN1l3O0LUQsRWUoeiXGGIyRylyUVPuW1vDQ2j1+45f/G966+mn+4p//EY6vpVmSaURZF5GEdAfRMx7tcOnSLdZPnaBIcJ6OEZ9ClKoowKexYpG0Frm4P0XLYbkSS/GUheH0qROg3glRfLfEas3aWl9I69N15x4oosUH2DnYJqZ8jla5HD7fS3JQUmTdEUnE2DlvxggspLUQMzvvmE7nAs8oUiWjrHs3bDfIe2WQ+lC++PCnp6tRaB+Y7e9x98Yt9u7dZrK3zXwxp3ELvPNEH3G+pm0bNJ7paMqrr93h2Q89wKBviDQ4XxOCzOlzwVO3LdPFgtY7qn5JWVhG05a9/amkJdScxcKj/IS63uVg7wrXXq8oygH94Rpbx09y6uyDnH30IXrr/UR35pmNJzR1y4mzW9zdGVFGyVFFpZdn8ZAiiFJrQEAlEEwCFNMpLaVC8vtypLU8iznOzv/69soovkMSPefPn2F9fcBs3qRCQ7VktUGKby5depN7d7cxhcJamcKyrBKPxKASM9KShCXG2PlsymgZYJDgWNGJAa0CdR3QVtMbDAihYT6fMVsswPRQRCpVyoppVhxdg6QNlrUcq5Lcwm5iTbdXu2X2KGW4cX3Er//6b/H1F15gPjug9RPa1gmlXocKJCYhZFDyZHyPL3z5VaZPP8qTD6xR2QqvWrSWHL8xhrI/oN8fMqwKqsLw5vWb/OPPfIFr+0Jdp0wlo+q0RpnMohPJvfVBBQiBEBtefvHL/INf7vHv/PxfpE8DRLx35FmweXwdYXm97y7LSVA59Xc/eX8jqVh5I/nQsiw598BZQAsf3/oG9xaBFo/Cgs7G0VJYqXJyToY3k6oz8zDMHG0uPfNcfWlTLU1SRD4QosZo6Vuaz2a88fpbnHvgtDSXZwUWVGK8kAKW3FTeGUj1TvhBoCP5TFQiNE5Kc293xHi2YOFqrl++wtf+5GuUBAYD0NpgK0vT1jTeURQ9vPc0TS0RtJUpJ65umPvAwBTk4crWWqwqOH/mFM+dv8kr3/oCf3Jmk09974dY7xfp8S0974A4ALdv7LNoDmjcPgQHsSBXLOaKt1yoozoi7u60dgZ4qYzSuicqrtmspter3ndbfCelLC1Vr0zN20jynWTxgdmsZjKekSfA5CyFiKAR6UiTS7bkJ1lJQx6gq7WhKGQNfWiYL2a07RpFYTBaRsEJd2sykkGl/t7AknJtKfmp6eBo9ve4fvUqN996i9HBHvOmxgWpWg0pT2i0hSiQr7YGa2fcvH2N8XTK44+c5th6D2MNvnU0rUNbpJK6WaALQWnG4wW37u7J2LXEUkmCUFUMEDRtE4hhjm/3mO3f5u71S1x5/TjnHrvI+cefoL9uuHtrj61zJ6lMy1qvj4kB5wOlWeZXV7HTmFiuSFRpJOhPKNRl370b5deSHlktFw1SZfYHI5tbGzzyyAWkDzdHkak4JmgIFucc3/rWN4g0GNMTXRSV0KZFkrEUONAW2YEzqbdPajCUkoHzGimkU2kuqIuR0HiMU/R6FVYbZtM583pOUQxoCyEqkPkNkaBDbqHt9Fg3V3JFuoqD/PxWXg8wm9b87u98ld/57B+we3CTpp3RtjIf0jlHzMWIPpI7ELTWOC+V4aPJHn/yosfHx/iep2XCzGIeKcoKQqQ3HFKpPkT4ytdf4Z/85u9zdzLBadAx6/0M9SuUjLUhnyQfhBwErTB1zTe+/If8/sWL/JlPXMSqCY0XpENOYkKcFJ1OVKmPNBc5dffepfWAQ1DsO+V/OOMOsLW5zsb6miiOCLdv7zCfCcu90qSmbXmoRVkQghfvKj1Io2TBSYzw4j0YXBq/Q9cOrrqIUCOGMLiILSzawNWrb7G3/wxr60MCBcTcTiITvK01dGTUOYek6EiyYYnjS/gu3tzoYMrBZMJiUdPUjsYtuHvnHq++9CYRxanzD6LrEdE31C5QtwEXPKoWz4uosCaiXIOqPZU1bKyvo2PA+RarFUVhCS7SeMs89oGW6eiAVy9d5cnHH2atZ8nVvaLoPeODMW0xw4aKU8e2OhL3zpFIa2WLIlG3pTL2vEFI65Bg1069x6UxuXv3LmfPncUWH5yhPHv2JNboBCWtbu5IVJ7d3Tu0biZNxBikoMJ196NTK9HhXNnb/MqUp4xBpjtYY4jBUdcz6nqONakqW+fxPGKwUziZw3qW3rUcU6cCsZ1z69VXuHv1MuOxzLVsY5MO5irNHXhSekILSrI2rGiDYzK5y9e+ucewP+TU8SH9XsGJrSH9AeyPF4ynNXPXMp/OqWtpaSkKUdhaKaymI0DwaYYfPpGMK0dsJoz3WmZf3+f2pbe4+PxTBNdgqkhTG0IcUJQ+PYNMHt0tcbeGS0TGpDVWXZSdFZVsOKn8VJ2SWsJdq5RjqwOBv5vy9DNP0R/0lm0WSelGSNN1FKP9CW9dfgtjNcpaMClIiALrh6DxrhEURpVYXYKP0pyvHWgvUD8eHXPFecAHMNZSFLkATbO/N+fm9XucPrmF69U4Z/Depvxw6p+N6m3o3GEDmOPb5b8zcuYBw8svXeOf/vKv8fobr6BMS/A1vk2G0TuCk4HxMhpOVkVQwpzXr4i6ZrrY4YsvNOxMxnz8icfZqmRv96xmrV9xd3/M5/7wT/nyC99iEWfERE6xJL2XZ56hZJ3Mkg9SmGaQ8xFUC82EX/9nv8rxYz/Hsw/1ZW3JxABq5X5zzjHKXgtZR8Zu3TO6Ef/ljOQ7k+5KKU6fPI418oDqxnHz5g1JlCoF2qBNgTFGJpGrpSImJkw96fU8DSTPCVt9yCrvhnQNISphQQkNoW3RoWQW4fJblzl79gTe91JCF9BS1q9s8nIzx1q+l0BOlHSLGoiM5g13bu2xvztBa4GJGlczPjjg+uUbzOY1x06eYrB1nMW+Yj7eYz4fC/zuIs636eFHQkiwYa/HsBxSGYNNnLRaWyESjy2vXd3m+t2acm2Lslcwn8157fXLPHjuNCe21rAqinGNsL094/wTD7J78y793haxG3eUHQHZnGVhaBYOafjKkeQqNh9XvlY2E3Dy5CmK4jDLyHdbNjfXxRZ5T0xsLikDRgiB3Z0DNGkGpBJvMawUIcUYpPAHWIVVOsWc7z1KSb9SSiaxhMhsNmVej7FpD2stzDbB55xvgrny9lxp0UJp4nzKtZdfYPvyVSbzKS6KA+V9rrwTxzCicU6MUONblLEUhaWwlq2tdSazGfW8YT4d8frBPiF6SnsNU3iaOgjJfgSLoSwBJXuKQmOMwhgxlrpDbBIMHBROeXRU+LjAtjWxaXjhS3ucPfcot64GfN3wwPmHqJsEt6XagXeXZRtI7nvM51sWKr0m5mfxTkVOXHr7304hxXdCTp46Lg6R7oNupMc7NY9F5Yk4XnvtVeazBcN+gbFWerGTIid4YpCqXq0SIb6KKRXUJGgaiQJDoOvcS46Xc40Ma9dCWrFY1Lz4zdd47NEHGfTWKXtisIzO1a0xRfCprSsFX3lSBqwYxXyTUfoWFYE7t7f5r/7rv8fu7gEhLghOjI0xBu9dZ0wyybuoTJX0ssIWRSpOLPE+4uOYVy69xVtXbnF8bcgjj5znzNomo8llXrz0BqPFiBYxeAYrkCjLtJgMLVhuGh8crauJUaFVxLkGZZRQn+5f5b/7//wj/je/+LM8sDHEOZ+Cz8Bhg7WC83QoSI6s03pkerr7yPsayeWfUiVqdcmxjRLinBgtd+/tsD8aQfIfrS6EOsvaLhqI3YxDvfTmkyceQkClsv5Vxb16o2Jo2+Q5ydDOSIuLkatvXeW5D3+IYX+It4lGfcU7zQ9aYF2W752igRiFG3M6bxhNa+qmZV5PKK3kvqazKbdv3mEyGbO21ufEiWMMB0Os1fTOneXujevcunmX2WTBZDLFuRbnZBbj+qDk1IlNqoGlsJFeVRA1eALzWc2Vm3d54dJNGmV56sIFyqqHMSVtC69dusHZs6c4f3aLvrUQF2gDi1nDrK5Z2zpBUYg3Kr32kndQWIyxMnj4EJQa3wYrLDNn8hUgWgaDdYzJ3uYHI5JDEWPWRR5ItDKb1uzv76dJC8l0Zm7MlYhaJi+Erv2nK/1NOdxcOKFNiVISBU3GC3a2xxw/cQxfCcGyD2alOm4FusrFO1EAbWIktlPeeuGr7Fy/wmi6YJGoCVFKWpWyAks5GGuFstD7wGKxYDoFVKSqLNaW+EKMuPYO71vmcweLFrAoY7Aa+oWRvFhwaKQgSemVgeQsKx91aqr20aMppGgED6pGzRpuXn2T82sf4akPP4uxNXeuNLjKE6JKfMHLrkiFwoTk+wpE0f186XZ6icdSJeFybFYO5JehaUZBPiixphD4k+zoKlZulkWz4MVvfANrNDY1ysdIt8di8F2VqLFCmiLOmlTwBwxEI0gTNjlbS77aGKPwFBeWoigoFexs3+TlV99g49gxes4JIhC0GPCQmZ9Cd76V1odU5ztzbYlNCfjsZ3+X23euAVpIO7rZn4oiIVFah+V9ZtpQTJq3ajC2B0gPsXc13re0bsTdgynbL+6hEMrCyEJmcSaijxAi0YcUN8WuD1jGsQn+IXqb1BedjF+UdhgfA/O7V/jdL7zA//zPfSqhg11Cja44sQMyVvUc3X0Oh5tU/SXZzHvujfv98HAjKkCkrCz9wQYxGNo2cv3aLQnHjZSDWxUptE7wFXJI803iu6guBPFSQwg41abcUpqAgek8jcTntKKkhGXBpL63nXv32Nvb4/ixTWneTZMicjXtYYObIqeVk9r4yGheM5u3LBZSYdi6FpSibRbs3tthb3cPrRWbW+tUvQFlMcCaEqUC6yfOsTd2uDimdB4/C0RaYnDsTwLThWL3IKBUH9vr0zRzxrM5V29sc+dghjcVD164wLkHz1MYg3dCklAWBbs7B3hXc+b0BsPScvbMgN29O5w+d5LRyKW1SZBiyBGUTbBVCm/e5tGLZ5C/saqYZF1u3b7N+QfP3Sdy+M6L9x6VOH+XbSyy4/f39/C+pSgzo0c69gn6y/zAmbw+q+6O5QQ6eB0lnqzRQvYQQ8vVyzd44IFz9CtHVXo5zCbNAkSvwIFpPyoFKqCC4vql17h59U0WsznTeUPTtDgfZJKB98mwy96U4cVS9i5P0LEIDXXrmE6nOC99trGbXRmkty4ZdaOFWL9IEbO2ZQcVKnJWNoJKcG4i9QjRS4ZepUghRpyOFDEQmjHXXvsWDzx8nhOnBhS0lEWGxJaRMJFE85fP01I/JJUvX1F1zsvScX2PlhCV3+SDgVsVAaPEidd61dKIud/f32O0t0OvV6CtFi7dHDWHKBXYaXwTgLGGwhiUKlBNJUPoE8ohe0Ag9+y7xQDBeWo/x7tWHGDlefnlV3jmmWdYGw7wVSCYJWLS1VVEurPwdsN4OEcpz2U8mvGnX3sB7yTnFyM4V9O6BmsKyrLCWgsYjGnFWfQyp1a2Y0boMhqo0GWJDVYIVXxAxYYYWpyDmKgMs8OWA5RcravE7gO5JM4nTaXp6Auj2BeXeJStbnn9pVeZ/vj3ixHNKFFYafdYCQxS3LpchhBZtA3DrZNsbG7cd298GznJZSyvVOTcAyep+kNCVOzu7LC/uycLpqViUBuFTlBszhOFkDfHEkrpxrYolcirc9grlXEBlzzhVe8zT3MAH6QCarEYc+3qNc6fP4v3fWEjSb+TuVvz9a9W06ECi8ZzMKmZLDyL+Zy2XtDWLTGIop5OJ+zt7ooxXB/S7/ewtkArg4+B4LxwaQ76RO/olQV1XdO0DfPZlMVsQfCe8WzM1172vHTpLiFIBaUyJbo/4MIjF3n0scfSZwp7h9a5ijcyHs+ZzGpObG1w9uQmD28eo6lrbu7tcux4b8WLFyjXFlUyGHljyKFSKi59lRUUYvmYE3y+WKSN+sFJCBFlWfFvMs4QOBjtp31mMWmf6dSqkfsSIaJMaj9qU1Scb7zLIaVXhpaAxxppTt7f2+b2rXtsbm5JpWgQb1fOmuSeZJhAKuUnooKlHu9z6bUXGY1GhNbT1A11KxCZNYWMQzNLAEybiNYRqw02VYAboyldS1lpmraldQHnEzlFWIZtRkNlVUISlh76asytIqk1wS6jwCi5IBOXx172nbzWREec7XHppRfZ/KHvR9lIUVhRgmQ/S3Wfkr30brdlo5ErXZVO/Wq5EjP9Xsy/l64BIJE18AG1Hhkd0KrA6AqFWxYTKgXRcPnyDWLUlEWfwhQS6TuP1REseEfnmCG3SVFa2S8RcexXeqdVclIzEbc4LLJXone42BJUy91bt3nz0mWOHdugX/Ww1lIYTQgx8fvGTteh9DvO7SFjqgRp+uIffY0bt+/gg+tQrxiFrLxeSKV1WRZoVRATI1WmIAxOPkeriIu1pCP0Us9EpVFWo3TRGVIVDF0wpyKJxkqKN7WQhIDsG/E9ZY2MBh9S3z2g0sBpYyWSPti5weXrd/nQ04+n/m+f9tWyDiOTDeQ0TEiOXoyRa5cvsz9tOHOihY+/9974tgp3YlyeDaMVQUH0Dbfu3Ma7BmVs8m7LruKrbZvk3QhuL02f+f18B3+uHpzM7C4bzS/LqHM0QU5Y52rVgPctly+/yUe/56O0ztErpSRb62XBR/aydDLAUUWch/19z2hWs2ga6sWctqkT8wa0rmF/b4TSUvlmjHj9JpEjhABt62idZzhc76adgBQtQWQ2mbJ75y7z2ZzWOYJ2lP0BvV6fza0tzj30GFvHTgh0ZU2qBJb+NR8ihTEUlVT5zmcNN263HDs2ZM1GNtZ6ohxjnqAi+S1TFdJakA9Hl7BO7kHMDkT+Sols5HmcP39+xZJ+MBJ9joJIHqfsCecd08lc8jIGgZeClz/9YXhYJQ9XJedB9vAKj2/yThUSFbkYUcajoxSEPfzIeQYDqVY2yQCDcKvC0mNXRHTQXH/jFSa728wmi/T8hOTepwKqqDwmasmtq5i88wAmpNyqTjRlQppfFBqXejhlRmOq9IsyeaPUWnhcVtqoskObDaTKa9exsobOUQzJkEkHQsArTRMCNnruXb/C3vbTeISLVMfM9JKauMnFSmnCD3ROl0DQuX0psGTkyOmPfJ2HGz5W7+ADEVWAKpGNlZR7yucHH7h54xb9fo+iFAOZ95VMSJHnkOcf6pW+3pCa2vOYKyDpNd99jvfCRx0zAb+2YAIuNiinePEbL/LUU0+wMejhSksoUhQbUuVt7g9jebZVgovfXgy1s7PLb/6L38Sl4Qcy/USepdEWrz11M0PbnjhGMevcKJF24YUJA2k96aBaDSDVvDrtuajS0IUuVMyGyifIdklKkZ9+vn5r5Ty4RUtuCQlOjKRXQSg/Q8u3XrnGT/7YJ1FIXvhtym0ZMGT2rpCZ3wI3rlxi5/U3+fjzH7vv1ngfI5mjsMx/aZkeLLBFyXQxZXvUSLO1EuhIGcmPyOQGOYDetRLoxsSjpwClMMhEDIlwHK1L876SwTTGCjIonFfk45Mb5o3JRyqwvb3NvZ09Tm1tEINDpoDbblN2EESIKB3wwN5Bze5oynw+E8i3dbSNcL2WFUwnY4L3rK+vdzRmJt2fRL9KprCbIf3BOqI4sjcv1xtD4MSJ0+zt7tI2DVGVrG2uM1gfsDZYl9E6XT9pou/Tsu46ebFCtCHfrx3cvjdiaAO9YQ+rLEq1xGAIOEKAnu2Tq7w6LD4uFdUSclDLn6U1ci4sf+cDlBB9cow6TQ9APa9xTuBL3eV1OPycFV0eM7PzdKFzjCxzsRnGX3EGgsYFz717O+zs7LI26NMrC6wuCCZ50/nQZQOLYT67y7U3X6edSTN1GyTf4rNyUsKzCqvNSKI8QohS9KFJEZ9UOBotBVueXOGtKAuD1hGCkD3EKOQSpL47k/rEotJI32LsDKTO65D0WUDQkKjkeiWv6QkxUM9mvPXKq1x45HHquqFfVhALUE1aqBQ5CM59KP+fjUP+9/LZdFst3/3y7/n3Vl7/3RajU19k1xMayY3G0+mUg4MRvV6BNRqFwfkFdA6YOKXeJ0fVytoW1iRjtuQSVmpVl+vlVowBHxtZAyPUk0o7YMHN61e4dOlNjm8OKKsSX0Iwec0DSxIHkVXDs3o2FJrf/9znuXPnTpfu8j7inESlIcSUAxTD7UJDDLlvUXRnYYTMXIyNkrOKFF4ao7vJTyE2ScdIKkOuJUOfpB75nC6SNqhMCBKjEBtok+oBUiTrwwJIjqoCQ8mrr73JdO4YdtBz7P7Mfw/d9xSa1IKFp1COg3t3+cMvHPC/+1u/+J5749so3MmFM7Iorm2ZTifM6xZX1wl6WgInQpWUemnatlNcOSKQ8FGlkNqkkN+l6kHp7zLWLkl+tLQxrJY6d/hyig7axnP7xm2efORhab9f2RirWH1IxmveBHb3R8wXM+q2JRuPEAMmwQt127C2vo7RSox+JEF8Bb1eX1pb4kCUeb6nFPUSl1WTw7UthpvHqBc1Nlpa73CtZ7Q/ZWrmVFVJVfUpikJm0Rkrm02RyAdsB79qrSm0YaEtZWpKtilyIDkPRVkkYobDpc7Z2cjnPxdKZIUPgf2DAwBO9bYOG4/vsuRpJwIfLVGEuqnlmRqT1hxWTE6KDpVA4XWDsbo7HMKSsxwmKyK/m2f9yVTzgKtnXL50lTOnNxk2a4RC5gpmMn5F7ArxFJ6bb15lOpowbxb4KKXrjZPnL6TkGaryHYEB0OWvQgiSsyKkgcwSjQWlMEr6xPpbJ2inM2E7ScbKhJwGSYw+UUuTugrJychN04n1JVW6+hCkcnjFcWq9R6Nkzl903Ln+FsdPnGU4WMPjyc30sCwKghX/6z6RYOz+u9xT74r4f4AO2jKyocuTiQMAu3v7eB8oK4UyaXCDJOTS+Zf+RZ34Xl3TSD2GCx2qJA6K79IegVxLkGst5POcE6dXm5iaahyxnfHNb36DZ565yGDQpnFeqYAnjxhcieTf3geefzibTvnyl75MGxw+tHinaNsU1UZJDTVti9YK7yLBt8TUy6g1KUpMhWJaYEDxkxKcn3iRXdpbWoHQ/WUnNRXLEUFJO4zoIpfWXaX9meOigFWBOjiCKghBJUdVp15lx/6967x6bZuPPzJ49/20ioqFZcqNqCkszMfz990b30bhzhIWVcjYKu8di1r6aTI02jhP61qU0lijk2IQ6Mj5kDwMaNs2jTZxNM1C8O50iIWYHJQuDz3c1YdvkjcvzUWi2E6e3OLhh85IhV/6nKV3m6pqlZKSbBR7+1Om0xmzxUxym4kXMyRD2baOiKK/tia5qi7XoCiLil6vl/rcEnyQmt6z0lExoNEEH7BFxbETpwRayfyNSkEQtgjv8tRx3VV6aZ2G2arEbauFvcJYnYoGLOORDGtdr+juMyKzN71bElp3JfXJkJL7g7pvJfMSoSqrVM0WDkGT323xIaZxY0lpqpaoLNNZjVKREC34touSUEbAw6hS/iQpYRdXFLhaUfLLZwXLUneV+neDj9y4cYXdvUdYG2zRcz1iucxzwzJ6ddMZVy69RtPUNE5AzKYVVhwpftC07ZyyrKTNSYnhCjFQlAVKRWbzGV3zeueURgwKpyzHzp3jez/2HF/47d+idgG0pur3qEeTZAMjnj5PP/MYr730AjpalnWoyygj15CLxxpShaSFqGlDg825Te9oZiNeffklzmM4sXUWxSL9bo4iUwi0OhuyQ1Lj4a9DBjIb12WeMrdZoGPXz/bdljzGL1Nimhgpouycne1t6e1WltZ7opJahNiFhApwEhmFFlSkLCuKoqBNSBrpPrXW4qQQkx6UzRiRCmKfIEylIyEI0hZ8w5Url7l85RrHN9fwzhJ87KrQY8zUn4cNZNdgr6QQ5ut/+k1uXr/NomkTYUAQyF8hY7Kc6KOy30stS1ITglJC/6hs0gsS4ChUQjQEVo0k6DhFre9G76mR+pW4UitCt3c0ihJrHEG3gKcoitSKJET91pquMjhQouo5n/vcn/Dcv/mjZIYyYVlb9r93aSVyW0+AILUzN67cQq0P77s33idLng2NJsNUPhqgZTpbpP1sBOrROsGSjrpZMF/Mqes5dS0kA8Zk+iSF0hItlZX8GWOLDw6lLNb2BLpw7h3Qi1IKozT9okyRkyj8kye3GA4Mvq273Klc93KB8sNazDzTaU0k0rYO5326Rjpl2bYOrQxlWdHrC5VXbzBkMBzS6/UE7jPZGOuOVsmY5HGl6l5tVMoXRoy2lLaiV/boVz36gwHDtXU2t7bY2tpgY3ONjY01husDBsM+ZVlgCzGMxgokq5UmOGiaBQu3YDJZ4EI27hJxlIXFOb/UTfkvalkr3PnrXcQtTkq/36PXK1kqtA9GQvb+usvQLBaBnXsjpG1Iigy8bzvkQhHJ02SUVhhruwgm58a6c5mh8Xx4ur2UIFg89XzE1at3aPwc79JEiOjJEwXy79166wrT/V3qWs5D6wIuSIFA7RyNc7Stx/kWH1s8UiUYVcEv/Du/yCd+7Ieom4B3QgRgKo22UFR9nnryCR57+hP8R/+P/xKjT/L9P/q9KBSPP/sp/tf//n9AMJL78Vr880//1X+bJ598MtF4QaKhEpSE0LXK+JjOoDaitGIrjFZeUrs+COlFfXCX6cE1dnZ2O8hKFK9wM8tu8h08ebiqMMeWq7JEN5LVQKFYX9/ixKmzHD91luMnz3yHdtX9RRSoWiIoURGiYjyecfnKmyjtcL7BuQVtPaOp60RnmCPsRIKidOqxFd0WUuHV26O7oii6yLVD2owQFLgoeT4xUYoQHb6Z8s2vfo2mbvABQlCdfls6Hss/OwOR8pTT6YLP/MZv41JBZfQ+nZ9WSNRjqvQ2grYEnwZka5JuF4dPAg5QKZKT4CGRuAdSkWaK+DLKEZW0wChDMIqghZmJmKP37OxGlJbRYpKnLyDNIZa9KzouBI8KJRpLpOalr3+NW7tTOgcu77Pl0ogoeY8cvRdlgdWRW/du3ndv3NdIZnx+9WEaY9HKMxvPExPDamFA8jxSIYn3MvtxsVgwm86oFw1t29L6hojGmgqjCwIwHG7wxMWnOHZ8S5h1fJRKKgCj0SaVVpewsTlgOFxna+MEzz33YT70zNNYbfHBs6hnhOCZTqa4FFHlyjEXIwfjGYtmkZSssJ9MxyOapulyCjGCtYVUslqbZlaKp9kl5kkEwpl4OKW/dIINsqEUW6pwbaRN1Y4C2QnnqNbyftoYtJbkuUlOhNEFWpUQNc4FmkZyXs576iYwnTsmc9I4pIDSAu2FpOyzUsoKLBJWDo8oS58ahUNU7OztJLuq35VO7LsloWt7ACGJh7t3b7Fo5CCElAeCmA6PJOIzZGPM0qteQnhy/6tk+xkyfOdrIyE6rl6+xGQ8xrk2VcnJPvJ4iB5fz7l+6RWaxYK6bXG+FaYSHyR94CO+TV5w9Cnq8vjY0gTHv/itr/PCl17B6AhGoXuWZ7/vw6yvDfiBH/1r/B/+7/85T33fj7Jxcp1xmHHi1DNY2+ej3/ODjG/cRTctgwpUC/11y9/7T/8Ttm+ZtGfImBWr0Zvzcp3OCW1dyJBrkD497wPeRVrvcX7GdGeb0f4B03lL6kLujGB2ALMBXTodHFrP+A5tRfe9GBWLeYu2AzaPn+XE6fPfqW11X+mQJ1JQoxRtNHzzWy8zmU4IStpZ2rqFFGU55/FOirNyy5UxFWUxpCh6yWDEDsWKKtJ4hy0KTOaG1Uq0sBFjorWMJgsBgvdExJAZ4JGHHyC4OhkoUfTGFMBy/x7OA3fwFt/61su89dZl2lATlXQO6IwCREf0LfhGSP/TiDCU75x+nSpOl/3meThFWFlDvQwQkkKMMRJ1BBOJJhK1Jeb5wtn8KBBQM+dSC7JpqlvXOfTCriUpNm00MXhav2Cyd51vvnotRayxex+Srut6PBObm+i4gLYWWwbCKvD2LvJtVLcuIRutYDgopfy3kXxMjF6w8Ujiw3ynco1eFHsX5jU1jZpTFtLrVhU9nvvo4wyHG3zlS3dARWFMCRHvWrTVRCXFB4O+4eSZLS4MTzJc22Tr2CYb6+syiUOrHHCzTBbHrqBmVjvG0ymtawgh4lupsiIGZrPpkmtR5cg3SptH4sg0WvhYs5eSpyMoZdJDjKlgQxq7lTYYIFNfgsDNbeu60V7G5M2X4QmVaPMyCYM8bDGmch9t21K3jsJqJvOCYRmIsUGZNHcuihIPIXnIYUWRkYPqSFARW1Rsbq4TouP2vRscO7WONprZZPGO5/jdEq00VlkM4kAsmoadnV2x+9oSQ43SMveOGFl2FknErnWZuFbzAVapos6wbG4RBa5WIssMC4kXHGkWYxbTBe6EE085Rasx5f3uXL/K/v4OddvQOIfzwnUaUguR0tLrZnQkYBOkFaAs+Zl/469x5Vvf5MrBNlvnHuJ7P/FDmGqd3TvbXHzmGD/91/8C5y6c4tM/9n1sFj1+/Ic+zosvv87Hf/j7GU/v8vRHnuXpjz3PRz/143zuM/9f+usX2b38IvfGd7EaTCpQILKEqHJwHkPKnaZoThtQLc75lEfyaG+IOrB/Z4+T5xbMj80Z9otDsWGH9Bwyknlts3OKwHnp5yEZRsm9SkSzfWfEwnvW5zNOHv9gIkkF5BY1rRVRaW7f2+Xy1aupx8/gGskXyhSiWUKzUhFftGDAFhZTVOKQhBrva2JoiUrjWkdRVlhjpV4jF56FkNZdrsQohVEJHQkKsLR1y+bmENcuGI/2UyW0YTbdZ3NrjWX9xQrcqtJ6N/DFL/whrZ+wSDBrTBEgwXUGJQRFqUuiUliVyAnIQVJ+32UOdcUG01VSJ+MXkv7SqkCp5CCGjERkuk3IRaEhJvg4LNvfnHPM59OUu5cUUIgtRhWCJoWAtgqc4+VXrvKDHzpHIlhOpzvvyVx/kQ2oWAljTJrpef/U0v2N5Ns8QGs1g0FBcIHZdAGIImq9QHakCQrq8ElKUNjqe0kPTGmNkOga+NaLr+PaNDUeycOhVeeNK2solebY5hrr6+sM19ZZW19jfWNIr18KIbXRqXGahKXHrigDYDyeUzctbetTqO7xLlKUJdPplP5gDUo6A6a7Jti8UXQia3eHyqqXRQjytxDEazQ6t3WHriVFfh46qDhvQmstublWlk2iI+mhy3M5BXqpm5bgI95FaV0ZluAU2ppkHGpBf2KmmtapyTZtmPxnUCzcjKLa5PTJB/j4R49R9Xvc29mmrvfvuzW+o6KkeR+bIBgV6fdLFotRKkyBGA1Cu0fyLnUH7cTUKpE9fCm/TwQXKYeklGHJKiTPQbOi6COc2DrOsN/DtbW8NmpUTOUUruHqq6+yaOe0vqX14tD4GPBR4UJAKQepMi8iBR8ahWWdfv9h7tz4Fn/lb/y7/NzP/QyVrfhP/uO/y2MffZ4f+ZHv59HzDzLZVzxw7hy6tJy+8H0817tAb2ub/sYGW+dP872f+rOsn/oeNrY+zwtf/yyF7qOUpjfoMbRr7IxuQVCcOfUA97bv0sZGUB8NOkTQMVUKigIMPqCMkfw6Gh8U0c3YvXWHx555QkbBrZjJCN1sUwEuEqAfVac8Dz/XVRhQ+JqDX/D6qy9Sbp/ksUceYzGZfqd21X3FFqUYPC1V684rXv7GS/jGoXVAaSnIsqagcQ7vm9TqYCTNFKSwL3btbwJrOl/jQ4uiJMaIVYaubRdJz6ySQCgi1mhOnegxHs+ZzSNGax6/+AibG0NC8NR1S+taMbaNJ/gWnfc2uZgrGSKleOvKVb7+4is4bXF+niDi0PGfCamB3HtR6ETkobqewo7ZKpKqpLPRsuRCrmyUlTJSvUtGH136lFRQJu9ErnxbZsKkKwGUkKmnNinn2gS9LgugQkSGomuJolumXL30JpP6kwyL1H8f6YziUj8DGQlBC1+ute+bXLqvkZSiVrG6KspEj8GGZncP5vUBpdZ4Is6l/ITKfVgr76FWL3H5d2sNbYJ+YlDUizb1di1nOqqUMFZBoKuiKNg6dpz1jWMMBpusr28wGA7oVZLD09p0UYDWGeiX6KBpPdPJHOccTd1iDBSFYXQwpd/v49MA536/38F1uaAoRqFHy1WJOeeXo5ClQljmSUNIlFwJpw4hbyKVjOQytxVCoGkalFJpw2oKazFWfs+amA6BeEiLejkepm4dTWuxwWNtnxBSpXDI+YjcG6Q6+KeDwwJcfvMSm6daQgisD9e4fvMmb156gxMbH1zhjk6RPzEQg6WqBqytrbO9vcOSECJgC0PMEBWpuEArnKuFsSmE7hQaXSGFPalHN0I+7Pkze2WRGvjlPYfDAd41zOeRuumj9TqL2Yy1jR47N2+yv31PnC4f0tqSpiVIdIBKeRptEvIp+dLoD/gH/8X/jfXjF7j41PO8/splfu+z32LcnuPNl15ntrvGh58d84dfepm4qPn5/9Wf4Xd+8y0mu1/h6oHnR37qU7zxyh9z5epLXP2dN7h25wZ9+rRaY0NkMWlpwgxjhAZxf3/SPf/k8UmBVhorFxHHMDP8aJVQocQMM5tO0rlKTdqsKJ3OI1ZpLR250WUJt8bu9ctckUSUIQZ8qLl14yrTgwMee/zx79i+uq+s0O4ZU9H6OSdOWfb2G6EDTBGaUkLrV5RVSp2AtuLMl2Uv9U/P8R5c6/AOiT6BqqowWtPUC1rfyPSZmPl1DS44UJFSaTbWSzY3j7NYGB6+cIEnn3qcqlfKcyN2kGge1hBXjNmq860JfPMbX2MyHoEBYzMNnceFzNSVnqhR+BgplMXoEulpdClKTQMX8nIlZitxLbOzqTrdLbnLjMykgrREcQcGpaTSV46oBoTlLIbcBhIhyjCM4BxoLfUGyqb3TGmSEAjKcfvam7zyxl0+8swpVGxlfyWkpNN3hJTLFT2gtcaogvcJJO9vJEOayKqjwqjIsfU1FH2uXr/GQw+f5PjmOvPa89al20xnB2K31RLff8c+TEYFEOo3JKKRSijHkjU6eS7JC9faSu+bBlv16A/WGAwH9Ps9qmpAUQykMsw5dJTo1rlIUaWIEsV4XMvk7HpOcDXT+Yx+v5IcX+1QUZrVE0ApqjhmQmvT4fFN03S5Tqn0ShtMpabbbsNIJKNsigyDJ6ISFVkU4ugQ8DFXW3qc87StTKJvjaXX62MLRfAOEOq+GBXOeaqqlFYPH2gaD9FRFXI/HQIg6GBnMMlQV5SDHmNk+/YdLl3fZrFoqBcLJvMpN958g//ZJz9y/53zHRRjOn6XbpOPRqMuhxGCw0eP9yoVSpRoYzBK+icJC3xoO+h0Y3OLrWPHuXXrOsE5FKkaMMEekYiJikHfYmwPH0pOnznLQw+fQWkPsUfrAqWTvRR8y7XXXqVpFiknlYqiMlEDUnyk0rQPWyy9VZUy+E2En/mb/wt+8ic+zhd+9bOM711h0DvByWeeoxlf4vq1OXOzT1vv8OU//iq3b77BZrWgV+/z4md/n+Obpzn31NPsb3+Bv/CJH+E3/9Evs6Dh5LmHGdgp16/uUBjAG2aLCTknupSUk005JQUpPx0oM7F38sRn0ylN0zC0Mrezy/tEcUTkdY7MdCIbLxnIEDqlt0RbYBn1pMkgPjAZHfDNb3z9O7Gl3lfquqawPcnLRktZlnzo2ae5fPkyzbiGaJJjO08FOX0imqqqyKCSNQVFZZnhWdQNdV3LHoyaja0tPvzch3nrrTfY3b1HiC1102KNzJqV9jgNKlJY2NhY5+TJhxisHWe4ts5wOKSqhC7OpP5BSGPxMnDZcVQvUwo79/b5wz/4I+p6QRsV2hisrVCqIDiPC44QnLR9RJjPa1wLRREoStshWyIh+VhCMiFGOp2jrrxFzpTYgTxrk0R6knSrTihaahmJId+BE3QjpStk7F9J7RbdXkOnGtUVHaEoCH7Kb/3O57n42E8zKEKnN0IQBGiZElgWPGlTSB3I+4SS928B6fJ6QgJx8tQp9nY9VdnjwQceQAdDVLMlZLPSW/duhvLdvyeLT4qMpDLq8FXk6SHnHjjB1uZxrBVcXxuV8ogSjpe9vkS9SvKHKgjY6IPiYLSgbTzWlEzaKYvZmMJolFHMFhNZTE/n+WT8Xa1wudV1TdO0h2jj5OGJYQwhSjFQiN2/IQ2dBsErDCniFbJ2nWi4nJM8ZVmWtE1D8IH5bIYtCnQa1myMok1FJNJFIgQCzgWsjhS26Ho6s/eUVHYaHrtUbioihMRNS7NY8M2vf11yUiZSqMAH2AGCzoU3SdnG6KjrOXkv5BsU5RtoQkQ7RSg8NhRSPBMEij1x8hTf+8kf5NLrrxBDi1GhqxiUaFygF208/X7JxtYG/f4Gw/U1er2KouhhjE1RvPCvTrcP2Ll9m7Zt8DGPk0qVfQjnqlQLejrmGSAXFLhUyPPVP/0qn771lxicO8nHf/wHKIqKz332W3zyBx7jW9/8Gn/+x/4yL3/163z42Ue5+updDvQ+W0+c43SlefmlP2X/Gy0/+/N/ld/4b/8pf/nf/bd46fd/l40P/SU+8kjDZ3/7NS48qvjtX/4XSH93TnnQKYwsmQQ+AjE4lKnSEkd8dMR6wc0bt9m4+DCKNmVO9ApF/jJSzM9oma/K0YN8burPRwoqAALBLdjdHrGxeZyyaL8TW+p95ZBTrD0xluxvt4wOpgk2F4o97xvahScizE9ukaa3FD1i2eDxNIsFs/mIEKRq/oEHHuFf/7l/g1u3bvKtb76EjSXRyl7wvhF2LSu5dIgMhiXDwRZVNaSqegyHfQaDAUVRLo2kzgiWUCcGFVPRj7Q56OjwwGf+xR9y4+4eUSvcoiY0nmUBzvIrhIDyUlgW2hbnalyoKIsqpYKyLsloYJraEVW3r2J6rivso+Qee9AYk+tF3LLoRyG6JlhCirhjdEQkV1rYPqonwUnu+VZaEYOSS0jXbzRs37zGeDKnt5m4v0NyzmJDngsqY89SL7YOKN1gTcP95L5G0oAsgo701yo2NnuUZY8zD5Zo5QgNQuLsEsSiDhtJpd5pNHNiP/cdKsUyykmvO9zwHSFoitJw/OQm1kpFbM4Z5ocmZf8mvbf0ahICUWkm04a6qZnNx1S9ksGwYr6YsL9/QNkvmU72cD5SqgofHIWtyM3qbe0IoSWEmRS6WJvKt013+LNBFRhVvudc2xkqa21noCR3Fskl0rk6rCzLtD5yYJqmpqkT6XBivw9RPF6tDUYb2qZFWZt68hTWFLhm1m0wSVxnTz/n47pVpWkW7O4dsDtvOXHsGMTI9u4BJwdl1+LyQYjShqBizqZKyiuIVxhCZg1a9aQE/m5bj3N1B4tn6P2P//ALzKfjBPlI43cIKbpXoLTFFppeb52qHNLvD+j3+1TVQKgITUwN5gK7X3/rLVxdC+FzngKRzUUqEgjInEClxGgSFUF5qrKkaRqMsrzxtS/wH/3t/5g/8xc/hrU9+nbI/muf496ZH2A6UUyYUs9r2raEYY9HNtd54cobrJ99kJ2bV9i7e5P/1//5yzRzw6lnniHqj/GDf+aHON5e49bN32S2b1LqINIqS9UrqKfjBLnqNGFNzo8PUYpEtEo9ZrKyIQSsbrn+xiUeufAglQlJ0QjN3op1fHeJb/t73n9xqTBDaJhOxoznDU9cfOBfdvv8j5J8aZ5IUAGD486ta8RWevPQEnX5IP16IGTbzsFioVB6ymQ6ot/vI3y6jhg8RTnk7AMP8Tuf/Rw3r1+laVtQadi2krFVPniaZi490EozXFtjsLZF1RM2r7XhFr3egKKqKMsePniIUiHatDW92CO31qigMBGiNtT1gpe+9U20kX51YzS4luhyywfETLARpO1DehgjLnhik5E81RUNKhRBBbR2wvYUjTg8HSlCBvCXuhykJ1Tp5EiGVBDU4ZxiKbWZp755iQ5zGqVXVqDG1PVMeqeVks4DrVA6zbYMnvlixGjmObVeoFK7kzg+2Vj6lQctP7Mmje66j9y/TzI1uyoiJ45viuIoCyrTQ4c+EcN8URPxqDy3TufG1txTs/y7/NsgnI82LZIkv4kphD906PJiW3r9HmUp09uVNnKYAY0DGiQaNckbES8nqIAPmtFoRuMdbfDs7u/TRsXGsePgW9zCMV/MmE6FXcL5QNAKjIbU5yg9bhlizV+abhI5MREKLOnzspGRPqnlTUkUqLv8qdYGY4r0ZcmTIcqyoihLrE1RVarGdY3DFhVaR9pWKsjaVtj5jVE4v6RaE2jBEKOhawrpyqEDTbNgMp6xtz+iv1FQbfa4d+suJpEZfGCiBG5BycBgaR9qqXoVRWnelhvJdIcSMcco/YwxkQOM9veZjHYJITktZANKqmwWqK+wFb2B9MP2+wMGfYG3hOC7QEcp4FpMDti9fQMXa1waXZTIQejIDUJIKS5FN6YsOB7+8PP8e//hz1MWlspqwmzCZt+xf/MWX/29l/jDz/4mz/34c7y58zpnzxf80T/+HNWw4df/+99mGPbwzRme3fowN1+9zff98I/z53/qz2Jmc4yp+fKv/RI3F2/wz//+P+B3P/N7NHcvs7e3DabAKqiGm3z6J/4y3pHakSJ161k0LU3raZuA96qDo5YoiSIqR72zzc7OQTqzYk6AFJVmVqeYvrXSjpCj/hWnd1kVC3J+JCr1wXHh4iPf4c317hJTpC3pDwvasfA7oFuCC9T1nEU9l8r4jnc1txGluoemYTQesVgsiM4QfYnWFW9cusybr79GvZhK3UaCIgkGRUGhKrSuiImr19g+1XDIYH2DtbUNer0evaqirISgoN/rdeQBVVUtoe3U5hBSuV6oR0z2tmlqT/AKrUtJXSlDxBDIbDsCuwcCujDYKs3LVDLKLfcQL6vkQdwJh0w8yuO0DvcQw0qwlGdsRsRBU0rmA8urJEeJ9EZqXUgPb0LcJCcqUbJWydgr+RznHPPFgrquqespX/nqi/ggejt/xbh07GJwUm1M5g93XTHee8l9jWSO+gCqqiQqR+NnLJopi3bGop0zm4+JOGQa9zKhKguU32nV619RaLlvLy4X8529PqCUZziskvdgUkldft+c+4gE7yQHmaE4pZgtFoxns2UztNLs7uzStg1rGxvMp3P61YDZdMRiPsG1rpthbLSmrEr6gz5ra2sMBn3KskxTS+iuPXSRxIqCyOz+5HFBcjOrvZj5/nK1bIZqfWrulYbvUg5WbKnrBUQpD9/f26ZpGiDSOp/ya75jvMjXEFc2S1jdLDFQL+Ys6gVVr8+J4ydZ3zwJ0VOUpovGPggpMqSEEOrv7e6xtXWM5z7yIZ548qGO5u2wqO4rpiIpYp4CsHQMDilpIPcCGy35pV7Vp6p6HWNKURTYIkH7UbN/5x7TyYQQVBr15lfeG3EAQyF5EFJvFxBVyUc/+leYz9ZRYY3CRAiWH/7JT7M1PA32Gptbm8zvgBmeZLED7uwJnnz249y++i1e/eYbxJMbTNuWS6+9wdzNufLWLX7or/5lPvbJC5x74mmeffYsL//xP+M3fuMzHDv/AE8+/yGKQtNQUtDyW5/5VcnlKHFAXPC0zrGoa9o2E1Corkc2pw2iioR2wY03r+LzdAWJlYkrxW2wjBCX/Wh566d+tdyktXIGgi5Tf7HB2vV/5fvp25GlUke4dCPs7s+kZ7SZ0bQLQpDxdKob67X8UgSUChA9MQ3ZVlh8G2hmE0Js8NGtKOrU3oU4JsKsFbDWsL6+QVUOKYs0dShX2ycPXZCsJUqVjWOMvjvjKjouv/EWo/EOTTvHZwdRJ+MIyZFLTkwQdM8WBWU5oFetU5YDtDZJZ8QOiRJdXRBD0TlVasUhzC10qbIEUOQaunw+xS7rZGhdCjByUJV70eWBeC8sRKm7A+8DbbPAubkUn0UJvKzWvPi1r7MzmZELE4XgQBO81DJIIVKgaRzzqadZZJKQ95b7R5IxGylom4bZaMR8fMDkYI/Z6IDJeMx4PEfybgW5TGjVAGRtpsjJ3HjIA3vnJl3i5Pl3tQmUlQZsyiPlXrbDxldFL7yAqdHcx8h4OqMNXkLytKms1ozGI6JSFMaAj1jtWczGkg90TooJYuzyhGVZpsiiQGmdlONhY756L4eqzd7GPRvCctPlr2VVbPJ8grSN6ERGEILCuZaihHs3bzObtF1lm095hhjb7n26aCAppbdH6DFGptMZzjf0hkPOnD6Fc2BtoKpsF3F9ENIpBPITdjz8yDmZwlD0V3cUS+O4snf0sjBnWSDybjnxhEZoxbHj64cqpFdnUsozV4Q6sH3jNt7JnDzSfMklrLMsjlHJMPuIKAXt+LVf+s/5+3/3vyIywkeDNfDFL/0xb127x6c++SPM5pbhAw9xVgX2Rm9wniFf+P1/zoMXhqydXOP1L99jf2/M8eOneO4TH2Vr6yRPPv/n2Dr+MT72Y3+eT33sY1gChXHUvmDWnOTcQxfR1Wl+7K/9FJopVVFgjOFj3/N9bGys0S8r+n1NjC4ZPSFn6EihkZJ7rx0Ht68xm9ZpR6mu5/GdO2UZQcI7z0Y+95FURZteoJVMHPkgZD6fd47qYjFmdDDn9o0Z1vZ48pkLnDi7KdOOkP7dHAxkcgohFFFdq4LSEWMjqBZ0LToryqoZFYm03XBsUn1CCDBcqzh9ZjPNqxU0J6q4PMMpJ6fRqJB6z/P3kT+jCty6dZf/7h/9KkEVRCLONaDS1BKbhp1IFU73NLSGquhR2B5F0aMsepRV2VGMduxiUSVWJ2FKC7hUva07h2m1RS4eUj7y/EMyXhlBlFFpwiREGg6OptuPokM13kW8E0g2hkwnKciX0ZrZaIe7Owc4LymVxaLh1u1bjMcHHBxM+eY3XuH2rW0W85Z723vSy/k+uu59CndEQojcuXWPg1u7iUkBUJqgDfN5Iw8zIp7UuyYpZNq0iprc2/aOz8qhOpmIOREUpMO6d3OXE4OT9MwM3QaML/He07g5javYXNvC6oqohQAg4HExMJ/K5AhtCqqqYjabs7a+xs69uzS0VGt9RuMDrKmoFwuaxZx2MMAWxTt4W6NPPY4xRXqpRH65CQRwEwLpTNEVJKjQhg62jxGVqdSi3HvnqeXCGlIcquR9ZdM5tu+M6fd7mKLCWsNiPsX0KmLRE9LqZLzDocR1UmpBJc9K8gbT8YLGR05uHmfYG7CY3UAry6C/RvyA5vrBYWOmtObChQuJ3EERhIMttScdRizebgTFiUiQ6nucg0gq+ioLlhWGQl5BKl03gDWGe9evMdrZxocW5xvaxLZCIj2XWZOpAs9HWhfxsaWspJze+AMZshwsbYhEt+BbX/xTPvZjz/LapRIb9piP1vjEpz/N6Vfe4PJrY37+F3+RycFdtvcDw03LS994g1/43/4c62sDvvybX+Yz/+RX+Fv/wU/zL37tJX75s3+AGlb0W8ugX/PWl36HZ37kJxnu/Cm//g9+g+AVlTWU2vLayy9DGyjLIQ+ce5SXXvkGvvXYCDHmyQ+JFSVEYmhZzPbYvbPN6YeOy74NqaI7c3ceglWTJkj/OYQQpWgksx3kClit1PsqrO+U9MpeKioKaF3w1muvYWPND/3oD/Pgo6e5c/cWv/Erv0e7aFB4mXh0qOZiyRm9LOwT7uUQWiJtuj+DVgU+NELSHTWERHavDP1+IYUy2ggcqVIvsFq2M3WVnpBgUjquUil48/zJV7/B1Rt35feUkigqhERSXhCVF8OdimgCUToFyirdQ0L2UGn4BEuDrDhkBDtniJSRzOiaFjg3r1JYgfHJ9SjBEPFJD+aCveXUlOh9Sq+kNjyidDB46eeUuZPinLi2JTjHtRu3qHfucPLEcbaObSW2IMNw2OO5555JyJ/m4vACN6+9xq17k/vujfsnnhQC72mV+rq9NGtHiDhalzxBVBpPlJXR0nvn8PJ1b0te85gjzPTdZAy0NoTklUmFqme6mKPGB/RdQ+Og5zYIrUF7S2MdkQlDvYYLislozsItqH2EEJjWE8pScpVORfrDdQ62dxmuD+mtDdjf22U2O2B2bMxgfY0q9CFR0MUY06xJISYIIQjbg1YdHNHBxYhhMsZ0UR0xezxyr5mAV8elgs8EA/nzdCoLjzGP8Zpz784eVW+Aspp+r2SxmNCr+kSlMLbAtSvRaGI/6vqDcnVX7ucLgclkjguejc017ty9w3QyQRtNWZR8kFNAJD8kRR3SfpNK5GPEhYjHomghSjENrEL7kCGsrqEZ3qHAs/OBUkLIb1TnXksbT563KNXLfl5z69qbNO2Utk2k1SrlgELOA+uuJSKzMYFHU0ouuSqp09SbamOdh557hp/+2b/BK1/5XYZPn+aBxzf50y9tc/XalMfOfIivfe11hqcf4MyJU5yKoBegwnFOn7/AC//8t/jQ809w+/bv8cqL9/j6F36Hj//op/jRv/IJfuWXfh3DJoTrfP2PP8vmwPLAAwVXXm8ZbJ1hdHCPGBoav6CuWy69eY3pvCFkDs4VcugOqg5iLG9dv8HxBzaTss657wxnZz2eHVwQpejFwSH/GzkTUUmxSGZz0XqlmOO7K7YoQKW+Zh/Z273Oh55/iEefeJS2jYSF9GvrVI/AuxQmrhYrxmjEKGpNCA5FGkCf0AcZypNQLyVOmIqG4aCXqlfjMq+d1yRFaTGNVhMeB8/bhxGYCKO9Pdpmhout6GnvU86wTn76Mv8cYkQZTdXr02nnrM/C4RSFBC8uIYx6uU+iTCMJIRvANOItplxlBhZUTq/lPaPT+zs5zyqhGWmmrFZL6sTsmYU0JFwrK7oNYT2yheQyq6rH8889geiBQO/smbQvBWpVykjEqjVrGxtY+y8RSeZLK7ViUClU8EKuGxW+U8J0OQ5WoK3DEpEm4/x3tfLuJA8ITILKlI7SSxgi0ctQU+c9t958HWtJQ3cLotFUpaIqS4piiLEDylJyl8OtE1z82PcRlEmzyyLz2ZyyNDS1ZzAc0izm7O9t0xsMKSvD/qhmd+8eG1vH8ANPMFJdJRy0wnDRtm2ilFoZl6MFg7fJqC4JA0LaLJHofYIR07y1II3Akoi2h/KxPoQu7yn1K4rR/j7aKNY3N1lbq/CNw+hU7eZbyqLCNcING1KSPUeUPkWsufo2xtiNPIsRqtIyny9omwVGCetGbmv5IMS1EWuU5M9Sw3m+H9fUy8Id1f0HeLuhFDkM9eS9lmDC1HNVlmUHqZJzZqt5nhCY7t1jsncHF1q6MUepx7UrziFCOhs+KYrSapQKNHWT8lBpJFtvyMc++cNs9ta5d3fB7s5XuX3+GG0x4nO/9BU+v77F8x//FJe+9XmYnePg4C3u3fH0T2xx9tHzfORHvp9YFLz19a/w3/yn/0e8VrzwrQcp9WnuvnkdpW8RdZ9YT9muW7Z3wMfIzVvXAalsPJhMWLSeJogjalSm6Y54PIoolF1BDFgksL9zm9Hug/R7Vlh7orRHZEMY0ziizOuaI0XBTSR6jCkKFbhVis+6SOX9Zi58h0QnONEYjYqO555/lmOnThJ9wIZAM1vIeiQ2GuE/TY5Y5q6WhKbsg5SvFRKRRHEZXIe2xcQFnD8bBDUZDAcJ6o9koosY1BLWX23+jxKcuLbGqYAKBhM9ewdzXnjhBYheoqvcphGWZykjVllPFUXZPQ/pXdRSmhVVbqXtdBMxdNFdiBmulRRYjmhR2TFd7gPJRwrSlatlBaa1gCdEGXqvlUUDbSv0k6rjWwZIUa5OhT/J7AgNpEarHlVRSrtJQiKXHptQCtKlCDRra4NO176XvO/QZY1i2LNsDQ34QIgaHzSNCzSLAF3lZmo1WGqvDjLtKsDI3H1v+5QUYVmt0chDslrjvCd4jzWK0mhKHbGFKNDCOqz1lKWmLFoKO0cbK42qQXPs+A+DEUUWvccoTe0cbduidMl0Omewvk7b1owPRlRlCVFx79YOJ09NGKwdSxGVEBlrrXFeyKpBo0zKr2rB6RU5AkrMEnl8VqrS7Ibedg6FRqU8gKiGxKSRGuBjGvtUNw2Les50OuOhhx9Ba4OrW5raMdzcoHUerWTAa2jr5DGFJbyaNsgq404IMhZnNp2BMmys9Tl9/BgvvvI6VmmKslzCOR+AzKb7WDMQom4CrlnmbOfjkRAzJyow2T+rv/12BwyyslkS9Xc1rgmK0owOGpSeYlTEoGl0i9GTlHkL3LjyRkITogyq9W7JxJZYR0JmpFnJMddtREXH0Fha16A19HoFpTZ8+Z//Ll9sf5U6NJw8ts7tbctjFx+ht36cwfAEH//+p/nE9z+DjZEvfGafX/r8r/Hv/+//Fjtv7VOeK2hngYfOP4RTAT1Y50R/n9/7tT/GKA+FJrQLXJRChxzBHaJEjIrWB9oQkcbulMOOeX/qdH6TgvQeN59w5eUrPPbsBar+qsJe5r3zXM6E99PFpFEgs67gLQpVX84r5UjpgxWFMnDq9ENo0wfv8MyZtfNUDe1koAAQ05ACpUyHpGUkKO9J0RcBYZhRSJWnF2YjnSFb2TMy/xRGByOMLbDagINYt8SFpSkWzMo+68fW6a8PUD1hb9q5ewcVFYXpEULBr/za77G7u48tC0qdW6OcRMoUkpJKU23ylBCikqLFNAqLjLyonFvPuntVx/sVR1GGK0OGfCOrjGVCO5fPISwWLULHWeJbBzpINGiLBMVD2atkrVhG6EEpUAajFSjhVEYZIYJRirLf5/zZM2hlpFo3E2MkIpaImCwFGNVjMNigsPcflfU+3K0eY2DQ76FQ1F4zbyONhyYYFu0KzCq/kL5ye8Qyp9YtfN6IOfKMUvpLyllqg3gIXoP3FBGKGLEq+e9eCMNNCNCKJxeVEwL0aLFWo8t1Nk+cQ+s+3i9QyqKisNSMRjO01QSvmE8n9HtD5pMZk4N9gou0i0g9XVDPFlTWEkOkdS7RnUkbgTYV1gg0pxD3OxPy6WJJEECCkrUS3F8lxWSURSlLQHhvCyOsDz6RcmsNvm1oXUu9mLO/v0fRG7C/e8DW5gY+Bvq9Af2qx2IxpyqFFalxCfIKedhwVoyKmK5RWlo84+mM8XSOMhGjYTafMp2MISpqF5jOPziC8zu37rF9VzzswpaydlqjdcH+eEzwTjgFOi5I1X0t4a7lgcxKSKVcR0yFF/l183rBnVt7KCxlUaLDAqOCTEZoNKPxDvPJBB8kt04qcgnepX4zQ4yJ1JnYefweaJxEaMGCwtPr9amqirqZcuPGN9CqIHjF7vY2pvCM7t5j/2BEWyue/aEP8exHPsSaiXz9619lMGz4/Gf/gPHOLSYHu5w5c47P/uo/gmCgrnnjzSs89uzHeenrf8K//gt/jT/4nV/lypvb+OA7gycFE7IvqqJiXLeJCSVHw0EMZBQHOQSB/eQ1onCmu7e4d2OdBx4bdumFzkB2mGtuLUjuc/eauKI4ZQpPh0gRxYn8IESb1IMncJxkjVq88jg887pOuSxR1CoIb6g4vZIWWBYT5uBA3rqr4NeyB7WKAu3nmYsK0IoQGq69eYN79h4fev5D9IoKg6FW4NUC4yK68RzMZtBOMDi0M+zvTKinCxb1HXZnkRcvXcXHgLF9rCoJYSZ6K+9LL6xTSknKR4xbSwiF/Dz6jgksG8LM4yoLk6P9pM2jvE4piEp1gyOMKXCtkEMYu4oQKMpudq3C9ITJSeDWBMWuTCMJPjsUiME0SvBWRUp3ecDgo2Pr7DnOnNoE7dAh11jTRdKQaS/la21tgC3uj17c10gWaNZ7lkFVMW9qRhOYLSIeTdSGSJuMgE4Nrimo7jz7d1ZVHi6uiAk1kE4prTIzTSCGhlIHjFUUBspSUxhPWSiqAgorUFbVE1iuKCJGO6xVlIMNbHUMfEBHhUvXYI3MZZzPpgwG67jWMxnX6YFBwFFWBSq2LKZjCG3KD2TqpVR5SStesjeJ7zLlAo0mekuMkTb17kjpckgz5YS5yNoyzZxL47esSaz+mrKwXYtD3bbMJyMm+3s457GbW+zs36KeO/qDHjdvNSzmcwZVgXJjiJ5Sa2x6v6KwWFsglFqRqIQRqHWO0WTMbN6Agp2dewQfmIxH9NHsHYyIHyDlTnBCzRdiILQtKJmSQNQ0TUjshe+eR1jut+T1JtHJKZP/+RUifDF63o+5c3PGzt2bFKXBWoU2FZvDLR483qNJTkNUKS6NGVbMe1yiUh9jSkkAMTAoC9b6FfgWoy0xaGazhhBbdNQUZYXD8FM//ws8dMbx9/7Of4tdl77hf/j//M947Stv8eyzJ7h06VuM7m3zlbvXuHv9LZrGcObcGWazMbrUOOeZ37vLy5MFznn+8Pe/ws6NaeeY+bAcGbQc62RliLpb0lfmXG5M96KVIhor3JnJIWy1Y+fOddZOnaXNxjcGVHpfMRK6q1pNmBqKZWN3NqAxVZTGzrh8QAiGSg3vICPkCOAavHc43zLaG3W5vxBl+HuuslBolr2KStZAreTAFUgvuDgOWqU+caOFUF4lxClGom9o45zXX3uRNy9Zcbh9QOHR2mMNlFbRMy1GeQrdw/Q0ygZs1XBz5xizRUsbfOoZl5ymGOMIscYohdYW7z0+OY7eOYz18qzSIwgZDVCxcxBiyBNE6FJOhbaSG9WgbYlJukwpTdnrJWc9E6JDLjCSNo8ECXXcuTkHK4w4Gpv2jUcbBTZg7HKkoEqOjcyeDPQLKznGpCN0QtAUhmgcIebhFhCjZjgcUhT3Ry/uz7hjYG04YNpGJjNH2a/AL4hBpkbnYZk5vF4l0M4Gctkzufx+x8TQHSLSphKOxBgVVglbiE2kvKYw2NJgrCJqaKLGR0PTJO9u6lOVYskg9hnfuEFV7WIKK4leIrYwlGXJYrZgMh5RFJr9vQOIjslkxGw2prB99nbvMD6YYooiGZsSYwvKopRBnaWiKHoURYXVZuV+l/e12uYiiEpeh6SYcz5D5XmcmSyYFJ1E0BpbVpiioOwNqYo+W1unqBeOrWNbmMIym83YWit49qkHGe/t4V2b8gDLHGcI8hxkDr1G64peYbDa0CuGPHjuQVofMC98kxNb6zx18XEGg7X7bpzvrISU6hXPG5WLQoSD5+2yhLcOG8ZDP08zPlXM0GLes9mRV1gdMdRYFymiRocptDOa2SmiE1iwdRI1ZJJkqRROUXoyjgKbSwQ2rApC2+Ccp0YxXQiqYE2kKnroKO9R2E3mc0+xtsHZB85w/Y3rzPev88KX/zFXLh3j9pVLBJeeo5MijBtX92QMloemERh12u6hrebNV74J0OW3QmjFYUvQmvwwsjnoM6+nuLRnQkSmOBiWa0auxoaYxmqpMGW0N+pyPjFHGhnmTuseEnoUEwLLyt8jWsr6g5wVrVKo+wGIb2t00RPftw3S/x0DBC1Gcn+E0VaebxpFl9MmpNFpXXTQTcXoQP0UuQFR9rYLDUSNjlIkZwCtZKJHxOMPFtjCYEtNWSl6RUNZacpen7LqYauA1QodGwhg/RCn15lMFYt2RlM34sjlsWSxJcQ6nSl7KEWR0wOuEfQsJH7okAg5SNxXSme0RubfKpuKlQCrCimkSTR0Wqn0+uRIKJt+F/IZzYw6InnYQJDNR0QFYU3TSqNtIUMxogyxlgy5GHClIlHJhJbQeIF6dcwtoEgSL6SnYFOXgXyuLQqqXnnfvaE++BzAkRzJkRzJkRzJ/zTlg2uGO5IjOZIjOZIj+Z+4HBnJIzmSIzmSIzmS95AjI3kkR3IkR3IkR/IecmQkj+RIjuRIjuRI3kOOjOSRHMmRHMmRHMl7yJGRPJIjOZIjOZIjeQ85MpJHciRHciRHciTvIUdG8kiO5EiO5EiO5D3kyEgeyZEcyZEcyZG8hxwZySM5kiM5kiM5kveQIyN5JEdyJEdyJEfyHnJkJI/kSI7kSI7kSN5DjozkkRzJkRzJkRzJe8iRkTySIzmSIzmSI3kPOTKSR3IkR3IkR3Ik7yFHRvJIjuRIjuRIjuQ95MhIHsmRHMmRHMmRvIccGckjOZIjOZIjOZL3EHu/H/79//L/HUERAaXg5Vde4aknn0IpBQqIEYioqHA+MpmMGQ571HVNVVVobVFoZtMxZdXDWpt+R0ShiWgINc1sl9dee4mNjZMMB5sYq9DKUlZ9eutraGvRWCASYyQSQUVikPeLREhvHWOEGFHkf9P9nvcO7xuC9937LC8pEn3o3i+g8ESCrxkd7HJve8RwbY3ZbM6xrXWUguFggEahQs29u1e5fWeKL/ocP7bFsfV1ooospjN6lWV3b4fx1KGKHmsbG5w/e5phWaBQKNUtC5F0bfk+AQKg8oXKi5VS3ZdWClAoHdPzUSjM8nWo7j0hEmJAXmZQQCAQMRAVIUZ8CPyHf/tvr1zVd0/+zv/l/xpDjOzvHxAJHD92TH6Qrutg/4DhcI22bdAaelUP17Z47wkusDZcAwwxyp3JxtCAQkcHKhJwzOZjXn/1NYaDAevDAaU2KNWjWlujt76JMRZzaAUiIYTlMyHvNflZjHJOZI0DpPV2zuF8g/ceYj42sfu5AtLDADQhtNT1hBAU93Z3iDFSNw0b60NiCKwNB7SLCdeuXWNvEil6G5w+sQahZevYMaazCdbPubd7wLQOmGrAseOnOH/2OJW1sl9YPR+RfD6IsHJ7LL+hDu23iEZr2W8ohdIahepeR3eLck6Dj2il0EYRCd3zCQS8D0QUxhSgFP+nv/N3v+v77hd/4d+MW8e28AGMttiihzaKsuhRVkOqfsH62oD+oMdgsM5guMXa2jHW1jbpD3oMN0q2NvtUPYPV+cytLuPKnkn7SCvNdDbj+vXrPHT+IW7fus0bl97gUz/4A7z66qvMZjM++clPUhYFIUaInhAUzgXqtmU+bxmP5uzvH7C/v8tofMBkNOLg4IDZaEy9OMD7mhgcwdVEPChQSlP1evQHA3q9PoP+GmVZYAuDUQqlImgFRIqij1Zl0j3yPUXSMaK5lveoYnqF3G/Wyc57lFIYYyBCCL7TuzF4vG9p24ambWjqOfVsSh0MF598Gg14J2sX8n7KyxnVip4UOxVjsgkh7+m04jESo2KxaDjYP+D0mdMoFVEaFIZf+MW/8Z577r5GUqHllpXc+KJekM4Bb3/HerGgMAXBK2KUDa/yTRAx2kA0LE9gRCVFHXRJNTjGU089y1uX3yAEx/rGFuhA3UTCRDFY20DpiNagVCTESAiq24AK1Skv1f038nbR2gCF/Jp3hLD8WYwKtErKQjaAAYwu2FjbYNgbgNLEYxvMFwuc99y6cxdbKPbu3mMyWRCrdc6fPkuhHaODHU6cPE5vQ3Pt6l2mLVBWrK2vc/7saQalTQpbYdL1xpiMdN4MWZmtLriKnWHNW5VVQ9v9ZfX+Za1Rcn9aaWIMoqTTwYkxGVcFRn2AIEO67KZtktVZGvqmbelVPRTgnGNtfQjAYjbDGkuv6pE0QXIMYLkXIqKOFUoVDPobPHXxCS69dYmoYH24RkVLPZsQVWSwtok2tlP6ssZaHsXK84lqaSDfLp1ywIqCiAHCyqEGYnJ+5Hk6rDZgS9p6xpljW4CYehcck+mM/dGIy5evMJq2DIYbnDgxwFhF8AYVWvo2cPP2PaatQffWOHHyNOfOnKA0yTFCgQppnbUYbkK355a3ka9Q8/YTL8YxsvwFOedZeaIUWhliRAyCFqcg+CgGVanutBpjCEGep9YfzL57/MMfodcfcGzrBBvrJ1hbW2d9fZ214YDhekV/YOiVFf1eQVHY5Cxkw7EUpbL+EG00m83w3tHvD/jGN7/JcDDgwQfP80d/9Ec8efFiUtZykB974jEefexRlIbv/Z6PEyP4EJkvHLN5w3i8YG9vj53dbfb39tjf3WM8ntDM9qnrCU2zwPsFMUQUGmM0Va+i11unrE7Q7/Xp9XqYwlAUBcYUaG3RRnSqVtAsFknfa7TWWFslByi7Sqv6dVXLLh14lfVYcpDE5ipEpci1EeTvUSl5jQ4o7dBayR7wAed9cuoi4Z2qPH2kWur+tF1FX5pOt4lO9QAURcG1G9c5febU29/oPeX+RlJxSMmcOHmqU1bLJZPXuLal1+/jvacsKoiK1nlc22KtXSqXld8RdRXQKKIqKPvHePTxR7l6+U0mo4rh+hBLxNUL5igGKULQWosXkN5n5ULJa6VWblx+vDQcWhtiCAQVUCrIq3NUnByDkCIQOf+KwpRE74lRrnet6oFSbA7XxAloG+bzlplzjPZ2sDpy/PQptnf3qGdjJrVHlWusb2zy4LkTDAvbeWES76xstRgPb7zVZ5gdFMWKsVx6LYci0mQMVbdz5DComNffAAof/eHn/m5e0HdZlFKUZUmv1+sMZYwR17YURYHznsJYCix1XROjQmuDMZbu4LzNT5JbEkdNRYVSJf3hMZ544kneeO0SkzhFra1RBo2bTJlHzXBjE23Myp5naQhW9pxKhiJ0CEba50S01sRo0Vocs5gdFhAHL+/NGIkaolbYoofzDXjfOWtaG06sbxAIFBdqXnnzNmVVcrC/x8bxLVofCAd73Lm9TdCGojfk2OmTnD11nL5R6KhlTRCvOhIgpv3/bntt5T6UUqCX+0irmG1hEo9Smg55InaRizY54hYH2oeAMR6UTgpOlKhEnOHtF/BdkX/7F/8tBv2KwlqslSgZVs4avOvahBBQSrFYLLh27RoPPvggOzs7vPzyy/zgD/4gt2/fZjQa8dzzz/HkxYtorRkMBvzZn/yJzql48sknJbqMkbb1TKcNB6MF2zsH7O/ssrt7l93dPWazXZrZiKauadsGQgsqoI2iKEo214b0esfpVRVVr6KsKoqywFiDKcQgKqVRenljnUuSAo3gszaKaF1QFFVyhpK+j3T7VfZMcrZUckiVPGeUhhg6faNUTDpbNk3QQAio9LnZcZLrE7sQfEAXCg8rDolK6IsiKptOZUDFpK9VjigPP6elUwanTp7COU9Rmm9Lzd3XSK6GjN57qqqSw5IXSgFR4YOjqAq0UjTO06sqYozMplOKwlImI9m9Wb6DrGyyElcFVXWSxx7rc/XyW+yPPFvrGxQ20NaBKYHhcAOFJiY4oPPcVq53iQwsI4jlYdZiPLRBxbCEhFbvOkchOcxUCqUsuqhom5oUkKEgmVTNqZObTMZ76IXhxKlTGFqIAe8d2zsTFtEzMJZT/TMYFM57rC3SJhFl1SmXdNk52uhOZ44c04fnDSc/StFB3rjdxshKJ8ebed3FeIYYQOkOIszPSalvZ/t8Z8QqjVeRe9vbPPnEE91Gds6hlHi47WLBsD+AGJnPZlhbYGyRkIIIeLlfjShn6CLSTgIoVdGvNnjq4kXeeON1JiGyPtxEWU89PUCryGB9A7RB6RTvp0OaRd4z0n1XQYyWZSQW0BqMSc5JbLs9p7UmwxkCFSmCiiilKao+YTHrUgqkg66i5tjmJqe3Drh7sOD8+QcIoWZ9OGAxHeM8TOqWrTWDjoCrWQRFVVZ0ZixBq5ElfBx10nFheZ7ECYugM+KwjKoBgsqvYiWaluvPZ1POG8QgCg9t8CtKLe9jpUAb8y+3ef5Hyr3b13n6mWeWrk1YKlyiRIRt2zIYDHj55Zex1nLhwgW++MUv8sgjj/Dggw92a/Pwww9z/vx5tNZcvHixe9Z2rSACrYem9dSLmv39Mfv7++zvjdje2WE0OmA22WM2nrCo93FNJEaPAazWFEXB+rCk6q3R7/cpq4Kq6lEUJSiLMpbh+gCtFUZblNadkYtADFnnpRtLOjDdNtr79HkRra2gIOnhHkppEVM0aJIB4zCyELO2SW5QBKJJijNptpxiSHtAK5PSPwaUx3mPweJVwOeosTMhUfRd7PCYQ89TpYO4ahsUct5mszl1Lc622Pf767r3gVuXHrnzntlsCpxaKtt0ad57ClvgfcAYg1aapm0xOmI1FLbo/PBDgE5c/aTsmRYUxQYXHnmSq9cuc3Cwz9bmJoWFUE+ZAf3hZlrQ5c3lCGz57suQK8OK5AMPKG0IJCOX8pNyKGKy2apTSslFwpqCYALBt6gYk2OliCqizBpnT59heuUGO7vbDKuCYb/i3OnjKD9nf6LRvQHD4YCDvX2qfsXe7h4nT53Cty1ra0PJBxBkfbvItotnxe/rcgEsc0Sdt6/JeYGl8eTQn6v+gFKSegghJuOYc5V6Gd18AKIRT1RpjVUaHcETWdQ1RmuB5RKMmXOR1lrZZyobyfTVnVt9aA1iinRUNGh69Hrw5MWnuHTpDUaTfdY31ilUYD4bAQL3RyWweIrNxSh2y7QatqqkJOTv2VHRWiCwGDXeh6wvQGtRXvniknFRusDairZpcuJDrl+BMkMePHuK/dFVdnb32FzroULg1MkTNIsJxWhBZQo2NjaI0bN7MMXYAu89/X6PXmGo0rnUqM5oduuWz0I67CnekztKHv/bA6vsLOTd9nb4tttvMXQGNAQvkYPSkq98R7T23ZEvfenLPPDAAzRNy82b1zl79iyTyYSXXnqJH/iBH2B/f5/d3V0+8pGP8Pjjj6OUYjgc8ulPf7p7j4sXL5JRLUEPoGk8s/mCyaRmd2fK7u424/0R+3u7jEZ7zOcj6nqEa2q8a/GuoSz7lOWA9X6f/rEeZa9Hr1fRr3rYXil1GlWPMkG/VdlDa8t83hDR9PoVIXjJnwc50zE6Qkg59ZzHixCjT38GVEqThaAwSp6RwN/ZWfcoJShEhlJFVAdtAofsVUSnqJIuwlTKQwoG5DME2VNotDKYVCfhgk8QrRIDm64hfWRCQZYfuAooLl+T/5FOUITNzc0UBIH6Nnyy+xpJnQ+CROC4xolxSgcpRHkAzjvKoiT4QFmWRGCxWGC0ScU7AuuprPSz/coefr6jCFEFUApb9nj44Ue4cf0aO3t7bB3folCWUM9REfprGygj0GtUqisCyIvVPaSYD/cSMlAq5U+0Qq94VeJBqw4GSSGB4OZRFG1RFDTBC5SQHpAYFM3a+klObOxxezTl+LGH0SZSN5GqHGKY451nPpvx4JmT6KA4vrFJ6zzj1jGZztnf32dtfYh3jo2NdbSKFMaI4VQKnTYuyYh0m7eDMd528+8pKWrMz1lLPjI7ChlC+qBEK0vjHVtbx2S/xYhWkeFgSAie2WxGVfVQCikS6/UxWndQa1bN4nAslfYS3o4rHqS4SoqSoq957OJjvPXGJaYHU4YbAwo8i8kEjaW3NiQm6DWvd1f0kvZvFpUcKIGxsnMTUzQZk9JKhzwiyiNKVNc5bMpiyh4hBIJzy+g1ytOrhpucPrHO9Xtjto6vM6sbah/oVSWlmtHMZkymU46fOclab0BUikBkPJ3ROM/tu9tsbK5Tz2u2NjfRIDmgdN0JcVyJ9PJXJOolWrG6U5ZFOyt7SC3PnwaJKmN2HWS/oWKCOD+Yfffyyy/z1FNP8cgjF8h55AsXLvDoo49ijOHUqVPv+bvORxrnqReevYN9Dg5GjPYn7G/vMR3PGI/3mE52aZoJ/3/m/jRGtyS978R+EXHOefcll5uZd6u9emNv7GaTbO5qUqRamtFoLA00xnjgBcYIhj/5kwDbHwwLEAzPwPAYrZLG7AABAABJREFUGBgYazSLRoIxJCRR1EJxF5dmk72Q7KW62VVd+93z5vLuZ4kIf4jlxJt561ZRYtd1VOXNzDff95w4EU88+/N/NpsV2jhlQUlFUeQM+l060x79wQBtDOPxiF5vSK/fo9/r0+316ff7dHs9sixHqhxQWOMS2YxxVpdliRCCPM8wVmO0QRuDtQZjmig4w5ejQ+k9GM5tmqmM2monLLU7G1JIrDAYG2hcegPQegMkWYxETwzqfch/gG1BFhR9An15lyuepuqqTN6HVzwV1mp/7ShRkhu33wXSGTDRonTK33g05s7dOzz//HPeIn08bbxLTNJN1gjIspzd3T2kkNHEFVh03bg3eDeNC8Ib6rpGFTl5XrjJpq7P8DDJAYtmsfWxJKFQWY8bN25w59abnJ+dMplMERnU5Qqw9AYjRJ5HF6H0mm5ckHS//E/OUgxzMUihXKwF67Uqu23xhl3136RQ5FlBU1dbBOGsN8WVgyNOl29yfP8hO/2MzmDAeOcKm/o2Z6uK2fmM/fGIQZ4jDHSUopgMMdYyHfVdJqQxzBdLLJblcslwOCRTkuGgT55l3i0FWI1EeYbsBXyqvYvkGWjlZ+uBEN5iBUS8gheaT0ilB5CSutIsF2vEFe/OsYYsy6gqjfTMxRpLXTcURZdut0/I5oULGiVc9MYEW9z/5qw4aTM6xZjnX/ggr3znZebnSyaTEUptWC/PMELQG/RBqTbsEBdVXGIWwaK3trU9EaBUmyQTMxKc1HYU7P9mjNuLvMipvVWAn7UTO4rDo0NOz1/l+MGMg50RnazDYHJE2WgenpUszmZsdnYY5CCtQArJzmCAtZrJtS6NMdRFl8VqhbGWzbpkMhpijWHkvRtSOKZohWiZmgWkQGx5Lra5TRD2cfGlwdo2MSdYk8LTmzZmaw/fz/G3/tZ/xrVr18nzjKtXjy4lEAUju2ka1quGxaLk9GzJ6emc04cPmZ3dZzmfsyoXrFdzqvUCrAYkShm6nR6DXoe9nRGdbkGn6NHtdej1uvR6PRbzM4bTCetlyYe+76Ps7O+T5zmQxXtrbwka7b601gij0dqZ6Cpzfg6VK4SWIDToBmNBCKdA+hSwqAxHq1IIMBaVZWzKNblSVFWDlBZZBJ7vPQkEHuv9EJFNGmICWNCPQlwqGduCcjuzHymc8SIUdWOxImRN+5Q7K53Sidg60mnYTQiXod8K0kQWCJAqQ6nCPY/Q7usx4/ExSRH8uILNZs14NPaaJNH5opSi2+nQaE2RZSghqZuSonATUSoP8tALysQmF4k7LIl1OEvaazFZn6vXn0fdfoP56QnjnR2syqB0G9UbTVCqQAqcCyhkHSbaihUm6hvCpraF9EaZQnrLGGPinGyyv6lvW6nMuTG09msR4jqCvD/kaLfHW/dmNNOnGUiNadYMez2Wi3PK1ZrT8wXd/anX1CXOiWcQGIpMkltJdzrGYtmbjjAWlqs1Zd1w6/Y99nZ3WK1W7O/vITB0QhkJqUVpEzJqg9lC2He0NqV3sVkbYpNPZkgBUgkGg75P6MDPx1BVFUXhFKO63vgkLuGSw5JTIwFhE6Hpv0fBlbgPo0Sz1ilBRZcXPvAib7z+GrPZGdPxiIyKanGOwNKJwmN7HV3CgXcjxixl0jsjkQiZQeZ+NzZ19W8rjQINViJkB5lrdFW5OGrkQJKiM+DawS6vvnlCtTOkqFZsTI/RYMx8cZv1esnD03O6B2NCsF74fwWQC0meSXrjsaORMRjrrM3Zas1ytabb7dDJMvq9HnmmyJRzOYccDSsShrTl5vdembDWto1TOjK1SOmT5IQEI1vr+n0ezz33XMziNNZQ1Zr1pmE+W3N6esZsds7D+/eZnZ+xXC5ZLGZs1ivqeoPRIXNS0ekoxr0O3ek+nX6PotOn21UMel2GozG9Xp/haMhoPKY7GNDpdsmynNtv3mKyt09VNezsTwkMyyWJuoQmKVykXQfPF9LTscvklMplUCsl/d/d30JuTZvJruI6t25Xtw9KQlNX2Dzznj7hts60qtmjuEerEF1UlNzZ9eLTnxlFmy/h6MYpYv5LusSppmmwuNfw8iAINOGzssOhb+OlnvK8sRWL6IQFYcAour0uVV1hrPFVBY/ndY93t0qioDw7O+PqtWtRMwhCRykFSlFWJZ1ODhjqqiGXBXnmSi1cQok/njEzKrhx/CNeMlyC2JHIrMPRtZtk9+9wfHLMZHcPkNhqA4uM3kAhvIW17WpNLifCCyJ4voj1XliXlGENxoIRhpCGERlY/I6zcnPnMsOm2opFoNjZv8nJ6WucnjxkevOIPBf0en3KzZrTxYbT8zN2JkP6eebX0rnjTCBKv2bCGl+CYtkZ9QHB+OnraGvp97psypJNWUb3aL/fpZMX9LpdsMK5r6xFogmx5agAIsFeJmhHlJY24ef9H0IKZvMZe7s7MevRSkHTOPrpFM7V2ikKVssVRVHQUiRxP9poLZHO4i9BayAc0+T+5BSF4Jlnn+ON17/L6fycyWRMoS3l3CkZ/f4QlExihYGubYzluFhva+FH6xOFQoKERhist6QSe9Mf7OABEORZB6uNdzW1MxXk7O8fcHxyzPHJGaObN8jzgn6Rs1zNOTlrmJ3O2Z8M6XeUV3KNt3CFF+Y+A9GCsAYpBDvDAUjB7mhIY5xr9fTsnG63w/lixv7eDtZYhsO+z6AGiWn13hi3DEVMFqy8fM6F8AzPXUHKJ0N3t++dsFiseHg85/ThOefn58zPzlkuZqzXc+pyDXrj3HdS0Ot2GHd7dHcGdDoF3Y4rr7A0XDm8ynhnzGg0Zjga0R8MXMlF5hNpgkqb2Aud3oBOv4eQlVOk8Azel7sFI0NIb03516QMiVESpVRMOHK8ULS0CEhrnazxirKISWM2OpxsZTC6iefB8UD/c8JcozUp4sejxda+z2eSY9G42HNqYYpI334+8cspU6ap/d9T4ewUrhBCt+lR9p6x1hgznr8K/5ry97GU1coLWHWJD14c72pJgmNadV2CddoMClej6N1BWjsXmMoKTKOxWiNl5uqJCBZkKhS54P4SOH7ul/lCwB8EqD57B9eRSnB8fMJouofILbpcsrGG/miMyoptdvcIASy8rR9TYkTrMmjNcu+GtCZeQ0jRWpjWuV0zVdA0ld+c8GdJlnc4PJrwxtsPOT5fM+pm9ArFzmjEYnFMtVlzNlvQ2911Oox3WUl/7WCXBrZpjbPmvbxASUGmJJ2iz85wGIllvlxisLzx1tvsTKcsFgtnbQoo8gxFcI95HS7V/DyRBe1s25nxPg8pOJ+dMx1P3C75Z6/qmk7RIZeObCth6XR7FHkR57vtdmkvmdo37Ta35Qrhry4pQQAFeZ7x9DMf5K23XuN8Nmc8GtHBUs5c9l9vMACpgpoVL22s9tpxoqiJUJ8amB3OBWaN05itJrERo8gPbi1FTpFZKr1KXOre+sy6XLv2NMvv3ubh+RnVoGCkO+zv7LA8u8NmteR0tqJzZYrCIMN59M9qaVrlKTBLz9wkko5ycf+jgz0EgulkQFXXVLbh/oOH5FlG1WimkwlKCbpF5mvRna2D8BmVWxnuaeKPZ5jSJpm17+/47/7+f8tqtcDUNcIopDBgNf1Bj17RZXfUo9/bodvv0en2GA37TEZ9BqMB4+keveGETrdLsykZ7+0jsi0VzectbPkzHEP3RCoz5WkmvC/5bBB6UiCNwEoRY4kOfMJ5fpRUGGGQMsMajZXufsb4cy+DMkOrbCUxmCCgpCtGR0rntpRCYL2XLtptwiW+YEP9tW0NILu1s/GppZSJtdcK2GCIuX+V9+wpmlqjg2IgPT+mne8jKSU9QP6KwdzCBuXDcHR0yHw+90k8j6e59wAm4H7a2d2jyIPG7hdFujhgWZZkee4eLpMURQZopAqPHgRM0Ii2tRK3XqlFJhJXQtAdJKgOe1euIkTBg+MHDMc9bG6gbFih6Q13kVmBSlw+xrZL5YSZE9RpNmt4txTK1alZDdr4+bjsLxnnRrT+VJb7YLiO9wsIL5PplPHJOedn99l/7jlylZGhGA4WnCxqzs4X7IzH9HMVPynCxgY1KdYYBXeCc8pKI+PBQThmLICd4QiA4VM3MdbS7XYw1nB6OqPT7bCcr9jd3QFrGAz7QJtc4c5mW1v4eN3qezyEYDyZUOR5dOFYq6mrivFwhPLum7p0Wa1KBgu/tbxics2FA2CjEuD3PnXR0Eo1KywISV70eOrm87z9xnc5O5+zO5nQoWY1PwOgOxihZELP1vsm0hICgvvVM0TR6sVK5YCzkrWuIxMJfMcpdY55ZFmONRlVXSdC352XyXjI3jTnwdkpu+NnXSKTlIwnHe7N1pyczZlOBwwKhbU+zitC+ZG/jvHXjGfGZW57fTtaL8IK8rxDv9NhPHQejrrRaAPHJ+d0Ojl1UzLo9egUBd2i8Ke5TbSQsT6Z+AwIcSkW+H6NzdkDekVBbzokL7r0+12KPGdvf8p4PGUymTKZThmNx/QHffKicDHAi+mRY2CL7tKTJC681DJxKYOVvy1o0vPpjqjnqfG9ifUlJTQ+VBK8d4lVmY74u7cmg7tSyYwsyzHC0uDk0kAItGPa3noMTDw9M6nRQWDyW8/iGXn7WenPhwmWpHQlXL6W09Q1xjRkMYPM3Ut4Ib0tAlvZEW8WBWlYPJ9oBFRVQ11pl/39jlThxrsk7ih/ZlymUJ533BSsO1zSWx4urbzn/iYFQmVtwk6c5IUH2LoR7Tmx7mBKX8/YaiVuhYXssbt/gFRw595tJpM9ZCaw5QZrz+gNJ4g8dwlGWOeaEC2Sjac0v39t0oHbU+Uz7CTGNljTbJniQag6NAkAh0hR1+uE4RoMAiF7HF7dZ/7aLe7fP2dvd0yvsOzv77NY3WGzWXG6mNHd3YkaO4Fxe+Z0cYlaZ2woXpHe4hTxEAHOTSsEqsgRWIZHVzDWsj+dslyt0Qhu37lPp9OhqirG4xFZpsiyDBniGfbJMCv3AIL1ckVxVPizbqnWrq4pU1lUIozW9LvdhAFcEO0XY+CkinMSvyU5xF6TF8EMFIIs7/DUs8/x1tuvcno6Z2cyIaNmsZihkQz7Q4+qE6YvknPj5rWdVEYbGvAp7i4upJ0lZYM7NNTrgUVjhEAVPfKQtYgX5kaiZJfrVw85e/kNHh4fo/b36fW67B8eMFu9SbmecXo6ZnBl7ARW+tzJumwhMFjPa2WkSufeCrBrwmUdg6WbOy19eLSL4w6WxXJFrS133rrDzs4Oq/WK3Z0pQgg6mUR4UAUdpyLezfP1PRuf+cFPMhpPmIx3WC5KRpMB3V6H5z/wPEXRSzasHeGIpnHYrRKyrTc//v6doqCuGrQ2VGVD0cm9TGj3qIVAZIsvRreqEDRbexq8KkGYtlmprTCGaMl5l1RdNRT9ngM+GPhnp47WZirAHY83SRgHrww5pT7hnv7vrcHirpEIcukFvhQ+IbpB65pcddqnEkGxEonQjKebIGusV8JCyGzbuoXdnV1OT0+35v1O4/FC0k/aGMPp6RnXrl73kFq+7ktAVVY+/V65hfHuEhePbNFeUmUiEezJxBMtK31dXHgBAbLDZPcAJRW33rrFcGdCt1CIak25ADGcIvIsEkXMwElM9LZQWOAS6j2heG1WS4vGXMg+TK7hCUvJDJtl1HXp3UkuG8sg6Q0m7E3PeHh2jtmdsq4qOkoyHhScLDecni3YGY3pZMoLOYFAuUQjL3BThtXGMGwy51C7lqxdsAQFhLiAc39pxv0Cg2A07GEtVHUDwPHxCcPBiOPjYw6PDiir6nGk8T0dQkrKytVECgENhmpdMhqNEMJZQU1ZetiszCMItYe3LfZ/Z40+xHKcQiDi+gXL0ni0GOdxkCjV48aNZ7l1+03OFnMm4zFKl6wXJygB3d4wJhEFZhJGqn1H5hQ2Che3VFJgpHRJLFbGw2EJUT2vhguFzDs01cZdz4byEkW/N+Job4e3jhfU013Mckm/q9gbD7lztuT0fMnubp9hFkplLkZBw5c7E+67jC9ZPOiObWsoI6gIwmv3IKwlE8Jl0WKZPHWENtDt5qzWa7Q2rNZrRqMhWEt/0He1cT5s8STGj33uZ+l4fOn1qqLby13tbZ5FxakdIjlfFylLbL/wHkeja6cbWYdlC2zRc1Do7cXX/bSckIn6leMNYtvibIWliMIuempo45edbpdu0QENRSGhgRaiNNCIz4wVqdfvEUaQdclZIoFuTAVta+u1c5NCIaQD1aibxsFQCoejbROpZrfuF54jscAFtLZRKJdzby+Kgtt3bnN09ejf1ZIMkl1SlaV7EJ/pJK3LcKvLim635x9eUjcOhk5K1QrGqDj4hQr6dSjsjwva3jc8+EV0k4C0oETOeLKHlIq3b78BwxG9og/lGnDF3zLPvdCxLtPRIzRY0Wp725sbfhIomQMu48thxKbCMZoj/r0dtNRb2opzJxUc7B+ymL/BycNjrt84osCys7fHfHWbar3mbL7kYHfK9iEMha+eWYqknm5rwZJ1s23dGp4gWtey17pEQpLWPX23cCRw4/oBjYbR+CnKsrrknnk/R1VXXD266hJCJDRlTSfL6WYFWjpggaqu6XV63tvhhYVpD3BQVm1iGW25giJNJkIrIQURNGzh8VaRSNnn6tWb3Ln9Nufn54zHYwSwmD8ELJ3eGKVEzBIOwiTQc9zhQHvWaffggL8zHBh66r5PWYkNxdh5l8wYdF3GC1oAlXN0uMfJ+YKHZzOuXT1ASctotMf5bMFm85DzsyG9vaGDuUutI7uttMZ1iV4XIr2HHIPgQQ4MOSij1kPWpawrkyBlTjfP3ZrsjGiMZbZYsVyumc9WdAbdSxnD79fodvvOda8URceBo8iYZAP/VpLvzzA8iblM2Tx5PUkuS7Om4xBgjU3e127p1tsuCMw0uYygbAvrvATK17eLBoVwSTeBpwQFKnGlvpOLuD2LlpgsH+7vrTt3DowzDFyJAlJIX5onIzh6uJq7hic8G1TI9uC2PJ1kDukXUV84ODhEa+NRut55PNanlprxhweHWwstpXLZe1ZQqAxFRiYydO2wW0OGUvjuFvHSHd7hyz2cIGQHbn/EGXQKKzr0RzvcvPE0q9WCVbmhsQ1ltWK1WGBqh7Xa1ur4DYrCJLy0rQEF019KhfCdTJzDTKKE8tln7VyFcIDB6TkSnkl2un2u7I2pVnPOz9asVxWZLNgZDxHNirPzU5pGO6K5uDKBicVkEu+Wi6yn1TJTgoTto+3tgfDk/kh4QWk98LyRMWmgUxRMx+PHkcb3dJzP5jjB4eK1q9WKbr8PysVdtAcsLorcx3KC10D6J1Xe3Z5o1ReZXLpXIj3Yfu98xma01j2dNFpw4/pNppMp57NzdFNDU7Kan1Ov19jGtIwjIed07ds4k0JYB8MlkA4GTGZIoVzHjGCZJkoN3rLNi8Ktj6eRkKmtOl2uHe1QL09Zzhas1huyboe9nSmyrjg9nVE2PknIXliK1DyKdZ+epkK8Uri1T7OfW3eWn5+3NqMTxCpskukY/C2FEOyMh0zGQ25cP2I6HDIeDP6s5PLnMkIsNPALCzHR5b2Oi2699z48oVgLUkYgcHdNf+ZNyx9aBLGWp8Z7B2Wn1X22+cpFl/H25ntXp/Q0FSAq3dmSUm4rVuF6yVdr4Dir0wqfaCS8K92vrU0+hsd1bVOscfcTgkY37b22ljZ4YQChvEXrK57bhcKG4pOQxe2fVErJcrnwxt/jx3sSkpvNhvFk7DMs/eGVkqqpyXzNmpTSx1Mc8ICUPggbBIxQvhYmaDKPumH48tG39L0Js2kRdMCSk3XG3LzxNNVqQ7mpsFpTl0vWizNMU4LRrYAPTC8RF6Hjx1ZaMsLPOU+YVRBKohWUfmOlLMizztYeur8rdveuMCxgcf6QSsBq09DtDigUVOs1p/Olw2Nw/hbHDN+hTlF4hnmpfAMBKPc9KWzfOkzW/+BOnXsh8DYjwShCBpj4tzrsfz5DKpekglTUtUZYiex2QSmUkOh1Sbdb+EMbBIs/xP7LHbKA4MG2IeB/D/QQX5ItDaTCVSA886lRUqCyHteuXuNwZ8L83OFrmrpkMXvAZpNknwZ6ikJRbM8h/igISQvKY9BuCe1EiRNYZzHLjKzT23KlSSuw5Ozu7LMzyFjMzqgazcn5nLw7oJNnlJs5p+crTMjI9aUXIhZtX55fHBYXqw4COw0HsK0ERw+QlZ5mpVPGfL2kQWFCKMBaJIYiy+i8i1b/vRpBURJCOExlbATN/t4PS61LwNLUNmJGb8PH2UtC2PqzHGN0eB6Cy2lwGC/2PcV5o0IYaD9xiQaeDFFX9/xJXuJTUUUXF+gi4a3hncLXLoqIC4x7TeKtSuuUUA96HqUrQRkO7MvRcoIEGf+WPlf4ozv3MJ1M4/o+bryrkEQIzpcLyrqOQkv6Ys+6rim6HYjFny65IjApJ1CFL7KWCKGQOE05WEdRJG25Azw7ENIhLvgDnAo6978F62p6ev0pN556mqpcUm6WWFNRlwvWi3OaunJp0ikRXOCcKbOJ1xcSJTOUyvwzhffGtyYM2IEMKOnrNWOihkSqAVf2+zTlOZt1jZQdur0ho0Ef21ScnJ2zbkJqhCeolj1vP3dCBNvnt7UA0oSVy27T5JnD/eLF0kLhJyckdaPZme4gEGw2Jb1e30HOCYk1YCpDtxghZb7lrQh0Ga2whA4fzfW3x6V3eSYDbs+11i5xCIEQXa5ceYq9/SvMN3MaXWGbDav5CZvVwqOZXFYIUyWs9XAQX5PSpfIrGe7jPTJegLsD7ZQbqRQq92EEYb23UyJVl6tH++hqQVVbVD6g0+kzGfUcjvD5Oeumxrr+CvFrSzm4xNS8ryLWOobP2Tj78HyX42CxpLv1eEUtLqDh+uu/B4b+vRkyKpdNU7suQRddm48Z/64IVbPzOUoplBIUnSJe0yUKXv6KaDnuna0yHKE13euE74E9XJjnZedekFZ4VA9fXy28NZju94VzFYRPet5S3mW3ri+8EA/piN6j4rOFrT+/TVP7SwVtPvwYrYAt7eyiQhCi+eEdBqdjGgTD8Yjb9+76VgjvPB6fwugftmka6qaJL0nhCj2VEOSZ8jCigqpufLNluXVYnJbvmFer2QfmcckR5iaWMJOw2I+YIMZoD8eU0e2Pufn0s2hrWa5LtIG6rFgtVujGmdyttYAXtO28UhdsypiEVEjlM8O2rA3BNgOWTgsViUD1fxtOjxgPeyzOTthslmzKDZPpiK7S1OsFs/nCpeKkVmIUhu4egaBccu2jGX/6XK1bj7jW7XXaa4Q4L1isEa4TxZPjVtx/cJ+iKNC6oa5rut1ORLgpq4qsU5BlRQS5D0qJU6aUt8pE9HyE37ddqpfHowRDS52+Ua7McDV+ClSP3YNDprtTlqslddNgmorF/Jz1ek1jWygtmQq8Cx6LlN8IISIOrZSZt8B85rP3ALgYlGuSned9MqmQNuymACEZj/bYH3VYzE6oq5rVxjCZTulmltXGJfGEDOZLzC2VfUBbnC3i9VtFTCV0FuKVoR4yZU8XmFz6Gg70XVxgeO/ncO5Mt8dt4gy8F+Xqz2NMJrt0uoWPi7aZ/S1A+UVBGeSD8XFF/xzxD+FbqzQH1mK8wDMXWIj1jCIKs0T4XmS/22dlW1DGujUvF5DSfQmZCElPI6LN2Y/GQTgnQNNUhMS3Ldfy1mRSohJOENLaC8HYMv67jZjk8j1BcD5WSErPgIbDIaPhaEtrL8uKbrfrtXZBY7Tzp6uMcHDS92/9zPbvF0dUZC5sTusK8NsiAOtcom6xJVlnwrVrTyOtZr1ZUtuaul6wWZxgmtp1ICAY7IngJt34LfXeC/kMqbLt9yOQpDFKEFKhZH7hrEukGHDlYB9pNiytYlNrbKMYD3sIveH8fE6lLdIQ2/ZFAe5MmpQUk2t7p4JVnpkG4mOb0SWfdRaBgx8LB84YEZnh+8kcHjXG0ylSCDarNZ1Oh0z6dZeSTVXR6fXie0PM3LleZRQybRxFXPJspHt4sST5sqsUhPAuMBOUNwPCYIVGygH7+zfY3b/Ccr2kqkuMLlnMHlKt52Abfw3fWcVKJ/iScclLAtGilEpG3tIKfv85IxBk5Fk3icEGD0TB4dF1hF2x2WyoV6dsas1kMiFvNszOz9k0NirplsRFShs5bE0QN9MIpk+LoXm51KZl4u7vwUXrnqP1+jthb7RDggnhmicxjPFABjZYPdLzlH/bOOOfYYS1eoSlGASkuSQkE8FJaDZhMbZpwUhse21j23xqICpkXKC9LQUu8WL4FxLmu224hM9Z3zwiMuj43gSbKmrtrRKPF4rRQPHhEq01bX63T6QULiIeIuN2y+3fZrFuPe/FtYZYAhcS5d5pvKslaQVUVclwOIgPaIylaQxF0QXhEBKqqorF3+9kQYZDLmW05L1mepEhJ4ubbEA8h8IHbHHEEg668EkDWdHh6o2nyKSk3KzQpqSqFqwW59iq9LE/EZUAScucLgpK4bUeKVR0u7bL82irMlO50+5pFQ0hLMPeHnvjAcvzY4puB2Oh3x/REYZyOXPWpICkAMttkdxeIkfuIXh/MQMvfLkEFmultw6DVuoZUkgIiF9uX93ahGbUT2YIz0nrqqI/6COUE3J1VSOkS1oRAQhZtUkF0eWaJhpI1f6eKlmP3Lvtg5/OxxrrW3FBe/RcRq0kZ2fnkP2DQ5arBXW5xtYrlvNTys3KMbp4H2IWX7i2U76lB29Ozo53v0mJF0jOFeWmkIizPCPLMjJ8VrUwWAHdXp+jnQnrxSmq26PRlqI/oJPlVKsFp/OZy1uMSlErFN1xa3+3l/6NajrhBLn4Y8hD8MPTl7agjUNBM9ZDJBvpk3p81rkH8H4SIwiVRms2m4qyrCnLKonpv7ug/LcRpsEqisrqlqAMCqwXdMbGryAooVV4Q1cma42/Tjun7Zk9QgH2bKM1XlQr7NpDsyUkH21lCi4eoXC+zMX1Ea25YoXA+ASfoJgKITHa83gpIxbrlvsYG6/hhr7wtImr/xHzKqvq3z0mKSQ8OH6AylyGn5SSqqocwo5PNhAIdKMpOoXX+C8zoIvCU3mm5YTlthbdTuAd5uX/YIxu3WgR8sotmsx7HF69gZSwWm+otaEu16wWc6qmIYL9BoGcalY8ysJ1iTxKKpTvAhH/ExcIQwhUVoBMwBQAi2R/b5++LTmbzTA5qG6XyWiEbUpOT2fU3pUa3aVRAzDxS0QIKEdkNlHAU03UWOtieMZGoYj1NZiJJhr2Oia+CMWTBDifzWaUmw15ljnMS+laopVlSa/bdUJGSpCKVONqk3YUsYFrApgcAMgv0eQFQtv2Jrjv2mi379DSN0HoCoTImUwOuHLliNVq5fpc1qVLnik3ziUWaSy5j2jvIbzgEf7QO8UsR4bs3YQmhGcYbvsUWe4SmyIdSLAq58qVa/QyxfG8QlpLlhfsjkaIpub8bE7Z+BR9myqj3oKKilKrk0d3Hu2fWkXL05sGrQVGe8ZuccoaEu0BhB0jN1tCUYhHINi8X8MLGN00vv5Wbbk93VsuJ89sX+K9CdSL17HWoqNF6ASe6/hBIhDfKTZpowUaBULcrnfYs3QeuASf1hZraT9eRoj2uo8cqSJFtMYvrks7p/Dl/Xlbblj3FXiq1o3vvZpe71Fz8CAo8UlayzJ+s0TBH652eHDIYjF/pweLV37HETTestxEASmkYL1Z0enmDl1HKJpGO8GnPNMKTCY+rNxyeW0x5Avxy3eQi8mk2h+tb+0SPxcNKa/dqi6HV6/TzTuUqw21rimrNevlnKYJ3RfYFnjprYK2737xz+HKDtKM1/De6HJAOExPlW+pWVYIVLfH/pVd1vM5q2XNelPRm4zo5pJyueF8sUjcLIbGGBoD2vh2Y/HLx4XC4fCauPu6EMPwaxV+d+sf8GBlZEwuphSszCcnJJ+6cZPVasVg2BboG6Op65pOpxMFX6BP27oliO6hJB4ZrMiQzLO9d8nnUmEVLSt3yI02HtMysVwTixAvKKc7B1w5PGK1WVHXpROUpw+pNivf2y854e1Hk5/bQx0Uykz5mj1huXhWrPUWmcpQRQeRuP6tBVn0uXqwh16esGwE60XNaNhjmNVUiwUn53Ma0SaIBAatvbeh1faFV7CMU7BSF5+P4znFrMHaBl8z4i1GA1ojrUZionItvcLZruWjLfn3Y4QGxVmW0+t1UZnjqtq3pNJaRxeoW9tEWD5COL5Xy7NNwLHx3BsbLEYTretHftl2D0LWvfcxETTnlAckd740v9SiDb+7c2cib02tzCjQZBvrdEOAcCG3i1ZORD1L5uFTaZJseuGFZnvugzEUPp+uW/s8DvUntlpLrodlGxPYy3shnLdqsVg+dp/eQwkIHBweRmajG1dOkeeZQ1KQhqra0O22tZFBQDrzODCwREDGBIvwlRz8JIs0PGOi3LjUZj91o/GxmHDd1DIQIBRK9Tk4uEG312e9WaNNQ71ZspqfuSw2awk4tE5raucZ1iBo7g7OTvl6NtVaoOCSM6yrpQxxRKWyGCuCwG8Uk+mEfg6bdYXVEl0Zh4Gp55ycnVNqjTYNm7phuVxxfj5nvalwrvO2QXIbq6DVJoNZ6ZlZcN0G92So/2sXN/wk/syH/Hs1psMpQiryTtd1Z5GSzaak0+04ppp6JJJYZGsxesdCUpwspPJ7J+M1QzZspJkoN9v9d4xSJwIx1GO2rtv4UWH9/l7h8PA6m3VJVZc0esPs/JiqXHp3duAx7r5Rgxfuful8hFc+3XO3cUf3Tu9dQIO1jt5UQIjxQtZaJtMBo37GarWibhpWVc10OkWYNefn51RNgzaaqm5YlBvOFyuWZU1jABMEZKC74C5tmZQIWerWNQBu+wr6OUiBytp2SEEBEWQIX3aUJgc9idG6Ms2WmzNYcqlwarRhXRoWq4aqbtrEGvMIwXPJ8jOXrpcKw4sKrvYKiNb+Z2NojLM8tW+6bONeeEFpEuH7iDP9OGs41Bo7aE3hhVdA1YGAI/zIjh4Xtm5Lboo28aZ9g08WxDrAF7yCKiSILJ4D3aQKlBei2ytN8L+1r7Q3a42XsA5hbWBnd+ddKe5dYOkkuqrpdh2On0SyXC/pdHqEAu7Q+Lbf7TvBmCJ0+CFxws3JI5kw9PD30FLHLVQAXAsaVvqwDj7JRtNZRGR5HHMLMQ7h/45EZpb9K/ucnFiWqwW9To+msiwX0BtOULmKRbLWuwRMvN4Fzd86QpJKIa1rfupJjxC7ao0BSaaUa5gLvlOIRGV9rh7s8uqt+wyHAzYbQ6/boVucs14smC3WjDpwPlu4xqNYGq3JsjG59JpNIHhjfWGuBzqXSRG9J1ybWhfhK3Rh8BMLWuSfJQbzvRqr1YrhcOQFm9Nml+sV0+kUmSkw23iNUlq3T2abVozxGKwm4OF617RPk0dIrNWtF6LNi0sOtLtO5j0W4TUhWm0b/M9B5xQFo/EVpFTcufM2AkPHGhbnDxE7giLWN5KW/OL5EV4lDjwPEB4b1tBoG1ujtfEmC8YxtSwvsLaJcWchwOYdDq8e8errt2DQY75pmPQH9LoLFqszTmcTpsOM+WzJqtYYLEp1EGNnxYam5EGgC4QHpTYxhiQJComIzCwmaUf6ClmFrQswWjApR30CQ2vrLGXPY4KrGDTW1w4jLHfvzPjHP//rfO2bf0xZLxkOrvPjn/ssf/kv/QCjXhbdx9vuwXcSVHhhHOKMXsA1uGQm21qTFicQo4UZspxDWMVbUpB6RVv62Er0ecTRjvP1MIfGWnc+aJO7tq6dGmaPcuXGT0aiJjloBE9D7EQUFTv3ntb1XlFVNb1+7q/iKTCl/9g8oD2f7QHamqr/s0UIB+xfdAru3L1zeUGS8S79JCV10zCfLbh2dA0MlNWG8XTq25kI1tXGgQcolbResk7AeFMXG6R8q+20y5gsot/Mlr5MFIbx+fw/xtYoJbaIEX/V2H8strSQSCXZ27+KOLnDcjGHQmJYAYb+aIrICn9AIhsIjxEu7DO3nFYtRIbDtG4wWnuBY5NrhDXMUcrS6KZ9XUgGwzHTwSmn56fsjYYYrRgPJ6yP55yentI7GIPR5CpHSEm313XNVL07RkSm1GagyWSVw1pEqLDgggkuVaTXaHVkXPgnlyptY/T+D5UplzktQyb1hqIoyHIvqLY2hdZalx7txjMMKb3glEGQGYxPhPLSEkVrlbu1SiykMCFryS62YUuH992kTb9BMhhOOTzS3H9wFysEuZCcn50wmexRdLpt1mAYiYAMzcEj85DOkWSM8QqnjenroSRI4LGEVZfKVO5yEgSKwXDIzmTA+fmC0WhEVcNw3Gd5/4yz0xm9zgStKxQ5ubTkufCYwi7O45Qxl8ovBa3HJCaVtQAdQT1tlycoxKmAEC2j989uPWN+EqNutGvmHpi0t4Td1mqQ8Mqrd/m//53/B6//6VfRtUbmNU1j+d3f+sf88r/6Wf5P/8e/xYvPH0WvkxuBn3hYucDTrCW0uzLGKdvBWjTGoI2OiXbRYxRKf6xhO1ZptizH1ssUpiFIgeujEpMKb1rFxc01kKMNnDlRs7cux5ZwEokQFiQ/i3YeibAU8f1hTuG6ISvd0tR1e+79xLYV+lYIB2Us8IbQjCKlR+Kzuvj/zs7uY2njXYUkFuq6RklJWW5cJ4bMFzpbKMs13W4PK9WWUEmXXz7K1A7rlsCSBn3VehgwZxw4ZtYKSwlWu67SmYqbEeWPaPFerU9wceLY+dJ3d4/IpGR2NqPb7dNgWQtBfzhBqiLRqFrhLLYeyjFda119aAgXW90Km5icagFc8oWx2jfhFX6duhzsH7J87W3KXh+baXq9Ab18znq+ZD0ZMhwN6XQKJ/SlsxQxijS3YWu+0bpJGRNE1ONYY2edsKB1UbYLSdyFJzWmkx2UkjHRZrlcORBsnySGbLVXIcQ2Rm2Ie3irMliS1sdxpW/gYgJcoTQx7uIsmlAj6i0dHLORHsu3xcay8cyGeSQeL7feRjEc7yKynHv3b2OBDprVGbCzR9YpULFLu2WLu4hWlQzXR3gkosb61Hg8nZsoX0GQqY5z0Zk6TkiKnKO9febntzBaU9uG8WjAsFiyXMxYLPsMBwMKVaAyj/4jwYF1SKTKXIauD4fEjHDPRAkxbM8Ag4UJYUucRa59PBMhXM2pEKhQtJ6Q7Ps9/vSVW+xd2WF/b0AmBDTufEgjQFoenq75u3/nP+fb3/gtZNOwbix6YVEyp6PO+epv/4/8XXPO/+Xv/J+5eXWH0NjaLYCN34Iwci+5NnxGGxqtaRrtBaTv8hKTnoKQDMlOiXD0gOjh93dysb7bCKq9e7fBmib6VUJVtcFgApdOLtu6UhODx/O57eHPkjvAbCE2JQal2MongLpxLeQkwmeKhzMRSnecbuXW1iu9Acf5EXNwN5PeZpCcnJ4/dm0e33QZyPKcK1f2EUKwXC5dSyzhrJawaUXhGHk40GEa6bTSEXiItY4Ao98hfoV3SlznQNkyfWsBhdGK3INzi60tbk1x0XKaODNJl+nkACkVZ2dn9ASIcsUKQW+444AJvKUhQkG95VLrKsckQ/875wIMWmJq6QSXnFIZ1tatAEfQ6Q3Ynw65M19xsDOgaSSTyZjVwwWnZ2sGV/fIc4WwrquIC4mllqptFzsQqSfY2JlMEAnOPxhu2b3mFq6WKAX45IonNYq845ivhNp3u+h1epfeJ4SIWMutsPJ05ev5nKsfb+W5fbS+SW1gVm67vTKGxLXYc3E1oxunRIhUiF2YR4DMEsE74gEbhAQK+v0dDq8I7tx+E9FpkNYyP7MMd/aRRc+JmxifCeseVMYgQJ0LSkmwyu2UMT6+GQD4rVMihXCgFrpqiFikVlF0hxzsjbj7cM5oMmC9kUym+yzvPmA2mzEcHtDvdePaOGgxz0yCHeF9wtZL5baDimenNpCjW0sTrBMfj8xUFtfMuAsm3qAnp5j9vf/mHyGzPj/82R/ik5/8IDeORvQKVwOt0fziL/wzvv0nX6DIMkSW0zRrhxFdrRCDgk4GX/3Cr/Ff/pd7/O2//X9gb9IluqO2LLbL+QTBctTWxTsb46zKkMDTWoc6CoBYP7kVM7WXLErwGbDYeNbDTzFQZHV8rw1AKLYGBMY6ZOEgwS5iTLvPv9O+iQvv8ZZmrORs4/HC18gGb6QLeXohWVf+NYn18XdIDIRw/iOPDnw/nNtUMXHUKby1aQ3s7+w9ljYeH5O0ltVmxXRnijVOy+l0uwQ333K1osgLXMePlNiThRGXnVQXf08eDSFU1Igcw5MOHioISBMYmEaKIjF+EslgvXYTXw/RFLfAVuSMxvsgck4ePqDfA2NXWAuD4cRjZ2Zc7hrSCtv4LMIVr1slsToQnXTuGoI7wePASu3RPBzBWQp29g84m7/GbKMY5jW9/pD+YsFmNWdZTun1Cw8uILbuHOjSWREyavBuDVvEitiR2boDGjT6GOjfirO5JIuIPvyERmgaa4VlOV/S6/a8S1WCBywOkvFRpTpOgfGMHq9lBprwLlcRGJT1a+dpK6LQ+H6SxmryPI+WQcsP/H2CEGsNJwJjdJcVCBT9/pSjQ8NsdsKqaejZNcuzE8R01zcEEKR5dO2Vg4YXmIxEKddJw5raCeUkLupVNWSWkdmCutq0tCJz9vb2OT19g6aSwIrJsMe4m3G+mrNcT5gM+p63W0jcxy3dufkY4YEVpMZ6YIE2niRcY2yJVxdkVMLcMXbdJ6JSnfCJJ+XB+P3f/CdoJfni7/xLdnZu8hOf+xz/2f/2P2LYNzw8mfHz/+gfUK3PqWWBsRopDeNhl2atyYxGCkUmVvz6v/yf+MT3f4K/8R9+nkw2BJs7FZNBqGnb/tz4LFrj8xy00TGBKLqko2BNk39CRmz48sLVi8EQI21joF6wxtecAuYv3w5rER5721qfsR+NPi/sPE9JxV1yAf890FCI4zuzLwhHG5Vz27KjSEeOj+nG1TLK2OPViwMTuoEEdpDwZSscn7CJgN6al4nAQDevX38sbTxWSDZNw9npCaPBTdarNZ2i4wSiX6iyrBgOBq0mnc4hWew4cZGy+lYLCKUMLp6UmEY+O1PikRwMGO8vk2KLK23NIQSMxdadBJARmhMIcgaDKdYaFrOzaEksTUN/NEXlvdjyKAjIIGxbhgvgWjVJ5YS70WH2EiFCMN1p5ErmGNMkWXASVQzZ35/w1v0Fw70rVGXDeDxmfe+U0/MZk1GXIjxr1Ij8WgWgBumUFtLMVU9P1qNJBEg76bU062v+ECG7MyHcmDX5ZIbwVG+MpmkaJuOJd/0HJJiwHMHaSYjOtuUdFhOPMOEgIpHS46pa4x0ZvmWQBGk9AIM1GC2wtkYqj6XpbxyubhNNNc49Tdgg4IQAVpB1+uzudbh7920qswY05ycNk+kVl8yDinHVaJLRKkhhTwUSJQuswrtU23uHPpigyLIC48sXwoxU1uHoYJc33n7AYHeX5aphZ/cK53fucnY258pkTJGFpC43j8BQ4/PFEhxJ8FTgreEQzzIIQglkFLTCMUghkjiy0+q8lQLvhm/yvRqZKSkXFaaz4o2zt/jFf3Kb3njAf/zX/iJf/5OvcPrwDpgK3WzQtUFkko0W9ETBYACrpsHKDJolv/CP/lueffYZPvmJD5N5GoweBttagTpahW1csWm0syqjC5VL5157kktRs4Jw1EZ7AWuiMIXtzwdBnV4ff/6NNRghqcuKTemy7Hv9Pt2+QmGRRqABHZ0r7flKk2keOYS7vhIZW4dm6zcRZKQ/awJtHFJaLC+0LW8P9/Ur4vNQEs+jv5Y1oRMI7flK/v5Y2njcH+uypKlqpIX1as14PCWk0za1cx3mRSdOPGSjhkMdFy0VlPHfsDvpAguEiV5vr+A4oSgsGOGShRqryfMixvciASbWlKW1NGz0ASWZt17QdXsDVCY5eXCMLTzhCslgpBBZTtSAcFrQJcvF+nintC7z0jYu9ugWwMt6Dw8gFJmy1LaOYUIjBOPpFYZnM5arFYNeTp7l9Ls5q+UJ5/Mxu31nMUvliETF4lsbCSkyNZxwCDE5rRuEUuSZs1YCJq7deo4EtSf88wQtSVMb8m7OfD6nKByajJtYyGQO7nSL8O76qEkmmLPBTW89AcV2OcIh5bQuV+vjG44G22SIoMGqRGBcPlki0P+jrCCBd5e7hLS8yDm4coV7925hgALFbHbKcKooim60O2zyWacsp8LYA6ErhSUwRCd4guXhlEvpBWWFdS1r0UiGk11GJ+dsNgvo9ymkYNDLWa4WnM3W7Ey7YCVKtLHaEFoIFm+s0xQBScWXojQuTqSKzHlUAriDlAS8RRFr6ILwjGoHPGoN34fx1JU+syV8986CdbNhtf5T/rv/+r9g0lUofY+9jibrFlit6ORQ6Ya61uxPpghluXt2zlobtDW8/dpL/I///X/HR/7u/xWRy/RJvfciWJDbdaYuaUf7mlMdY5KQCjm8NyRF32lLSYC2rCTS9eWuIm6p21j4elPxnVfe4uWX3+Th3WPeeO0VytUa5Iq9g6u88JEP8wOf+SH2djso2SBMAegtwdgKyG0h7HhnYE8X3+vOXJvm7RRZISxCNiAl2tZo49C2LsZc/d1whyT8XfvXZILyk9BWjIuDNdvG1qPG44VkXbO3t+cYgLF0Oh2MEAglWC8c+omUiSme3K/NEEy04HBhn1DTCiyvIgcGRsv0IqMTrp2OMa4koMjTbFSidReWQ1gbM7DaerR2gwSOWIUo6HQUu/uWh8f3yTsGUUnEXNAbTT0UWZv16h+l3SjhNHssSGERyj2Hixd5cS1bWLgQmzE00XI2ssPewQ5vvXWCbly3i8Ggx2Y243w2YzI6opOJdi0DQw5apr9HkG9KpuhDxsUZgrVJVNL8/B0klFNygkVgn6iQzAuH3FSu10ynI+f6trSu5eRASYIbNOyHpwHbFt5vHSxv3bvMUuuK4YLtLwXGyCgwjbEURcdnkZp2vVOriqCEXbYoE4cpxrdr09bQ6w85unqTu3dvIewagWB1doqaTJGh9Zzwil4Q/pbknm4eTkiq9vmEa+HmwhMWK1xPTqkkjW9QYIULDewfTHn9zbcRUnD37JTpaERVnnJ8espwdI1+LpAqi+ckmLHWpnNqz4SzBJ2bXJuaQhU+2UkkCWVblBdDIqkgflJkd306ROoSa0qsadBNyeLh2yxn9/kP/tpPoB+8zO/9+r/hfLEhL4aMOpDnGkPOYrVm1ZSILEc2Bl3O+NNvfJk3b93i2ZvXkB6W0FoXh70UV9TBimwicIELy3jvmRcuQegEtyqJBRrjnJeyXFsbJRpQFp9MZTB1yVf/4I/5/d/7It966RusN2cIVWGaBlM3IDPmZ29x6/WXeP1Pv8mP//RP8eKLL5DLFUqFjO+WOwZacXzbRAFpCDH6VlmFy7xZBOXfK+rO3aqpmybyfAhnMDUVIYRjnBcsdOG5IFC3hHZAK3u8YvZY30ZVV0glqaqawXDokU0kwgiqTUWv13cWEq3LL21btAUSILaL/WNKr38N3+zTKtGipQSUHl8wniKlRGi4eL2tpYgWVioRIkAAeMvC+qwoyWAw5crhEXVdUtUrymrOan5KU28IWK+hGSnJM4X7heQY6Ts4tEX7XvAk95cePkxbTa01Wjd0e3uMRxnYgrzoIvMOvU7OcnHObLX0iITWuQ08SbpC84zMfymlyJSK8Hlbe0D4TnwGRGuBClos21jM/qRGBmW1RgJF3iU0ZBVxfsR5RjQY2vW/RHcR1zV5PfRGFS2ogJSurjUgQVkrXFcb1SLERJSoR6xPpK/UMrKANWhbOdpGgszo9kccXb9KZSrKek29WbI4P6apNy6qeGEPIi37KwufmBT2/uJzA97F5EpqQt2o0RqjBUV/yM54jN3UdIo+UuUMe102qzlnq8oBOkWma1rt3M9BSonKPGZslkUIwSwTLjM5QDsma3K5C0rLB1oB+WToblVZskwyLAomuUBZhyLW73Uw7HH03MeobI+11RwfnyEoGI2nFDls6oq6lpjGWZJFXqDXx/w3//Xf52sv32LZKCpbU5tWCDZBGDb+ZxOyW13mcnC5ap8cGTJedcRlDW5V/Y6IPKnQvJTQYw1NueZLv/eb/O5v/BNef+UP0foBQq3RusZoUJkkzwW2mUN5zJvf/iL/+uf/B7711S/y5u3b3Ds7IWAIW3yMFZIvnxcr2n1O8VvjvNDEGmXb8raWr1tMaL4c3MV4j4mxsXtMsL4xCkzuFdpWSWhpyxt2hHPyeCH5WEtSW8vdO/e4dnDEZG9MiEdUmw0SQZ4Vzoqhldfp7awQLv0+eW1LtgcNZ8vitU5IGie8HG8IGwtCm1iXiW0D11saftBMgrsKtpJvgvs0CDdwCA+93g4HVxT3799x4ClWshQwGE1RWX7pGVrN2ASxhRWZc71K0Lb2StE2s5A+A1GiEJmIcz68cp3vvvkqSh3RNJrxeMj6wZLT03Mm4yG5VFtlZClDbOO9iYbulhLHTtsY5IXl31IebPL7ExsKFrNzRsORE1ZYhHU9SLc0ztSdjt16fmfNJ56DKFBT28W9FOJo0fVq/K4a47KSQxqEL2Vw3oHG/55Qt91eu1RYurwjSYvNCr1iwtGR4c6dW06rRWPPBYPpvremaT0uccrJqfdeDKkkykoaH3u8qG2nykL79z4HR9c5f+V1iixnU9dMxzvMV2ecnZywMzlkoJQHp3AL4pQoRWyPJZKDK0gYnEnAAd4pueriS09WMTs+nlGMBMNegchhOVvSK7qo3LKpVhTTfdbWYCwc7RRkNCxXgrJqWG9qh1i01pRVQ9c4ZfoPv/jLfOe7b/HiR3+SH/nsZ/jIh69zZVogbeMtGKfEpEk6xliHqKP9PovW/R/clS2tXhaKFwViOtqMWouuNb/zG7/Ot77+B9TViiJXFLrAVpZCdcmLHCUNeQ5WBw+OgHLOS1/+HcY7VygG1/i+H/0sR3u75NaiQz1fcr9HJX5ddKtbrwR7Z0V8f6yiwNIYp7RIIdChvMOfCWttezTC9wuNJdO1aK3Q6J55LG08PrtVwMPjBzxz4yZ5nmOk68W12WwYDIbOPZVKR9F6nSyeJXloo+DixD98Gyd0H27T9h0jc+fZu6siT5AYi+vZKAVYVyIirPQaiTf3U0kcrEjr6ybDCyZoxdIn6ABW0OkOOTy4yoP7d6nsBmstS2Aw2tnGiU2eOdVUwnpLpbBGo62vKRLththkc6LrF4vqdNnfnfLwbMFg1Ke2BaPektlywXK1oTseuOdIXIkitZiJ0Uk/jxDoJr7vosIShXec/4WFewLD1payLtnZ20cIhcsUDsWhMRvEM9Z2bM/YIfG4txqMCQqTiMX4ITnJKXqyfR1L01RkmYv7GSOw0ifhWOGVMpfBHDRju6XpJRmn4KHafA5ogLezFisUvf6Ua9cF9+7eoyyNS3jhlNF0l6LICTH5Rz1lUAalkJBlWFyyXbx3UqhtCPc1vuxYIouCK1cmHD+c0R1OWDcwmOTM5jPm8z0Gu30X80X5TEDrhaSIitjWeuNCwkIQexOmBS2B3t2PYY6JnH2CytnVwxHnK4dJfevBEm3hh3/4+/noRz7KZr3iwb0ZqlewPpEMD3Z5cLygOZ1T5ILNumJTljSNcUk164ZVvSSvhsyW3+a1V7/LL/+z/4H9w2f5j//Tv8lf/Ys/RCEMoQmU1o1X+BuMaSKo92XG3v4cQAW2Xast3B2J4heW1VqLFhZp4Stf+CK/9S/+JfvTHl0jGQhFr9Mj64/pFoJRr0sG1I1hXS9ZlzUGRd7JWJ7N2JwvWDdv8faDO/zwT/40zz9zk0K1AivFaX20gApnz62ZY/cXT3Oo4XaIY9KHlFpBi0tTCAao8/YndBkEQSKsE0MqQnq+y3hXMIHxcES/P4hYl8ZYNpsN09HI3Sy1TLyAClp+mCa0jCG+22vJwc7ZSokQwisWNnliJ5HqpqbodqOGQYovaG0UyNEtGazGIEz89XSMp8i2Ds4zwaI34ODwiAf372GqCoRwgnI4Qeahd6Wfk4W0V1q6dpBjbe3dXoklaQV1uUHmynVDiW7knL29Q85nr2PI6BhL1hsz38x4+PCcybBPccGV2C5n0AbCGjrLRCC9+zpZAz93u8XsUmvyycWGAGbn5/T7Q7KscNajtVtKRixHhTDbSDMp4kdrZUoHXWcSzdyrcc5KtRhhwGqEwCt/JoKph5ik9UJRWREzrYUJrXnCfbe1ZHAtolzs0Ftj8R0GV7845uAq3L19C1NrrGgQ55bxZJc8L7wiFpLBrAdT8PBnzjfikrmyjBDjCpZfiP5sqholLJl3KyshQRYcHOxzPjtzxeOmodcbsljMOX54xs50xEBorO8aT7hjUKwuIQaFLGtBUBhFQleGwC9aumsVt5BA9WQI79aDM4a9gl5RsCpLrl8/5N/7D/8G1maUsxVvvPQNBt2C4/mKL33nDYzNGPc1N/pjqkaxaRqMlkhVsG5ACbBNjS43GGvIlOL0zin/1f/zVTrZ3+Yv/eQPuNL8KNg0ja7R0SX7aCETfg9ZpUGYpt1U3M+h7MY3/oYYxzRVw9e/8Ht86KkdPvj8mPnxGctZzngyotOZ0B0W9Arn6VrMV5zM7nP/5JTFSrNq4MFiQ60ttdHUL53x9q1b/PRf+Zv80Pc/R4aMFuVF+RP5vLWkPUgDulHCqN27I9YvLc524PuEn8PH/DVjPXPrYbKJLArVCcEc01zE4rk8Hu9u1YbRaEyv13VJAEKw2SwpCoXMVGuMXViKS8uz5YqJao2bcFgQ692mfqQxVyd0BcI6hqQyFS2qwPAcSnwiIKULcEdmGq7n5bfRbRmA8AXOYY+MyMg7I64cKu49uE1ZNYSam8Foisrz5JA7BtrqLO1DSylRKHRIZXVPihKCTCkHs5aGhYVFyS7XDg54/fZ9ym4fdI22hsViwfmy4mDc37IHt+KMBK0xmLMWaSQa+YjSRxG/0o94FM7Le/g+js1mxdWr19v622C9hUWWzioMuLqJnkqaEGYje/BPKsXWgbG0gjQACjhGbWkaGPR7SBncWj7ByTf3swiEdW4oYz2odyj8vvA8RhusFlS6ojPoJ8pKSHrL6XRGHF27yd3bb1NvlggjmVsYTXfJ0oSFMPtQ/GkDOpXzvijlvCpYXEzfI7cIAXmWo4QF77ZCSGzR4/q1Q1574x5FP6fCYKRltTzhZDahvzdxzZ0FhNhhnMIF17KN3prMNzGQyV5s28DtHrQ7JORlF+H7NWbrBabpMewUfOqjH+Kv/yf/CTu7T1GuNY1uqJtTZusZUDOvDP1xzdkCXnhuzPKtYySW0kCjaw/ML9hsNi75RUDWHyClpBCn/Oqv/So/9JmPMyzapC5tLY32X812x5FHsdTUMtqKNRKwfXEKJjjvAUQBVS6WfPRjz/P5n/4MLOac37mDyCtk1sXYIcV4TKYky9mMaj1nPr/P7du3OT2b8/KbJ7xdPeRsuWLTGHSlqR8+4Jd/8R+zd/C/5rkbV1C2ifRtknm6qbTGSTivQUC2HgVa48a64rS6rpy8kTaUr/tF8dCJ1lmnMYVIqK01aw23VggE8fhuFPcudZKuNZEKMHQI5vMZw8HIJT5cKKWLmrv1TxofxDMFj/QeDMTUgkG4GjWSRd3KTBRgtXWCRSovNC0Bsk6YUEtpXdJBuI9tkSXaYSPsU+g9GMsDAGEsFkle9Dg4vMrxndvU6w0hJtYf7UTA69CwtmXXXnh6qBcpFFZZtHWBZ4lAWxv7Nl4cVmT0JxNG5yeczlaY8B694uz0lIPxwN3hQkeI9ntYU4cE5GoebSvU/bYE12Ng2Cn+YdyQJzS63R553sEJfS/ErNxmoNH4b4P7j+zEE5QDK1qoukin/ssz/7Y+0qKw5LmKLhnlD7wQPlNZWIxxZ0Ia7zyK6FH+8FnrQDgahxii5Lagbu0si7U5RT7m2tFN7tx+i81mhcEpOJPpDkWeh8duFUgRCqYTBUw5xaJJeqZa60EIRSqUwjUkw8mY6fCUe6cLGlk57FsJD09POdwZ0ZFtM/V0/S+OrWQ8vJAOmnywoP284yMEovR7+KQsybrUZF2BzBqO72z45hdO2RmuGY8zVuuS6eQ6Sr5EN+9Q5Q256PPxT1zndL5g09QUeUGlNcY65UDXlXOjGgsKLJqmsahM8Mo3vsk3vvEyn/7Esw6py0DT6Da71WjnDfAjiJWUJ0IreLaTcvBu2DZzGG/VW2swwtLvS/7Cj/0QzWKDKQWD/Wvuekb67O6O83qoHt2eQqgMlXfpje7x+oMNZXmPxXLBpm4Q5Iis4eHdl/k3v/abXP2bf4NhIcC68qR0njEbHKeUuuMY2qqFdn2aVoUMvSZNW+sbiMjaJCv/EcpV6pLdfjld0S2v5zuNx8PSSUmn24laadM0NE1Dt9uLC//IEW4sAjOmnbBtNYXtOG+rLqXWX7AYDYamhCzrRExZpxhIJ6x9Np6VFmuELxcwrrjami1B6VxSGpDkmWr12tTa9CZLng04PLrO8YO7rKsVRjhtaDiZkuVFTDJqLx8YgiMGIQRKOkHpgNCtj5uqKCRDFqSwOBeMzDg6OKRa38JmiqLbYdAdMhqNPLMT0UpqrUg8QbXPIkwo9uYS87GP2LsQD94CKX4CYzrdcWfGtKU3Ucukdbe0P/u/ie3fwwj05IwvkTCb4E0ISodzwtS6pucbiBshXBs04XreWSMwwrQZcUH5MI7ajOf8rcXqD7TRDtScC+eBRMFBUvQGXL1xk7fvvMGmXCCsZWYN4+mur0lm61C7ZDH/fLg6YqXcM2rtEKZCQr4KrnXrQOOEtQgrsbLH0eE1zuavYDXOJVvkFFYjLTHhB29NpnO++HNwuca2ecGFGjPOvCugfYD4bTsF8P0dw0HBXFvefGtDUe/x+h+8hLkHn/zRj3Plw3vceOaIKy/vc294n7OZ5qm9MU8dXeFb33kdYQSr0ru2hXLOBlMTGptLFNbUGC2oNgIhZvzO732BD3zwOQayoQGP3epikbrR0TWaDmtbUPvwO+DxXYlWmQPG8JF227Jja0FaDasZ6wf3oWmwSqAyRSayiCEr6hIhDKapqKuKTdmwKaFuoDKWqtEOdFxbUJZGG1Sz5q3vfJvz2ZzB/iBardvz97zXGo+ZXFPVHQQdD2UQgDFsVLaQzrBoandWt9EyW1OrHSL52/b3VGzG9KH3wOseKyTH00lML0cKFps13aKDyhQG0XbZuGDWpi6t7elvHwKR4pDaFu5WpJ/2cGDKSta1odvtIkKA1mtHTuAmWWAENwYIH6gW1ibL5OoKm8Yh5cRbBe3cbh9XkffZO7jG8f3brDdLl4l2bhlMJuRFxwWUvVEbDXjbPoOQbv7WWvDQdS5TMNQtWu+mcq5FhUT1xjz/Yh+Z5b4xbY7yTEoEizwC/V5mYuF3gYzWbsqKiM/nXk9dlFGReUKj2+uxVV9My1pbgzecfC68of1MmuWZVuS1r4skliMI+KN1Y+l0Cw+mJHy2q8RZ5N7967Px8PEfI4RrVyUsxipCmyWNdXi7xuEgt0KhXeCYvCXAoFCdPteu3uTO27dYr5c03hsy2d2nyFRrOXtLsI3dOyEvBR4r2LYp915YBbqOy2SdGZz1hjzz3AsgFP1uj7yTI2WGlEmLsHcSku6FqHy0Sub2++z2B6J15KeXaM/v/3jreIOsYar26Ko+ZbXk9O4b/MmvL3lh9X3c/MHnOXjqBT49HPCl3/ldPvD0Nb7ytZc5ns2oDGwaB9QulEDrGqyzfIy1CG0c8pEosbYgkwt++7f+Jc888yKf/6lPYUSVZKnq2CMSwh5tK/jp9/DzJfer93akeR1GgKgblvdvw9kDpFJOQGY5lYePc9BvtQPBr0rKumSxXjJfzXlwNme52mCoI/Kabi0UTk/u8vD0Pteu3CTGRKMgD+Ue1jeQlzy4dYcvfeW7HF474urRiN3pgEzl7TPQklxTOwEa4+DJ2WbrLNEKP2z0HrUeSenDcEEWXPCQPGI8Vkhu1muODo9ASCSCzXLBzmgSL2oEPl4RNHPaw3jB3Up84CCE0gJ9x3CctypxJ3hrITYPlpqs8Ff0iyWs9DHbQBxBS3CaiPDXNCFmJJzfP9TMSSV9DDk6uqMbLzJoa5EqY3fvgPsP7rFcLXzdkmWys0seXGHpI4vWKsNa16jZ+oShYGWLuCo+9rW9VlleeItz20JsXa0tsYQM3UQUxLV/fGhabH3q/x+GVDK2AwvJV8Gtgg0WtJuzIRFytO6oFI/eJn8PSTihI0soMXFav8JiaZqaQd7HYlGxF6IXyhiv4ISrBiUjoJpkjiYxPnxpfYZsi9YULV57Yc5BxbIFuZxydCS4c+tN1qt5jHvu7l0hz7JEUCZMInFrKSlBZTQIqKt4JrezUoN7ziJExniyGz0fDreT1oVKS2/vxFRiSZTwbt6WDaXvaud7caQAI+/zGJY7dLI+wuZgnMA4Pn8LoyvEFy1WST724c/wxp/+PvmHP8x6VfHq7bssS41VyskEIVv4s2AxYdBGok2OMJmzvKyhU635Jz//D7j59DU+9PQkdv9wbbP0ViLO48ZFYRlAzp0wMd6QEAiPPiM3M0y5IC8ckH+n8H2BaWODWjdsVmvW6zWbuuJkOefh+Tn3Hp5xPp9jseSdAqUtVVM5v4A1WF1zfj6LVuv2HD0vMmDMBqM3vPLNP+bOG9/hzbcsH/v4D9D90AsM+mMiKACBTypso9mUS+aLczpFn5g9G5muv1f4Sl2wW+7YbZf+e/GYPVZI3r93j+vXryOURG9qTN1QdDuR8EOcMbX92nIEfJlFIvEvzEhsfTIxiH2sxb3dY3Y22ltUyrsrgxUrYjmHS1NXWA+OTRCYTql3rlgPDyalRCqdWFDRBoyHO2q8FqxVHvfyGvcf3GGxmju0fmOY7rosxAjuJvzzOjolmDhSZjEBK83yc4yoTdUO14gMKmrZbMWGgtYe5h1jQUDIHmtrOR/B3OyFX0Rw4D5ZYSmkb1FEq1Rtv4EoBGUCZA6tZyI69zwkYLswLv4qLybxCImwirrZUHTymDQUMmuFCF03gmVuUQqsdK21hHE1XcY6i1KGPb8AcBAfwdNvUKqCazJDoNFopVGdHoc3bvLWm6+zWM6omxrdWPavHDjFTATRb9szF61o6eaHY0xKZT6dXrm1kcK73K2/v4rrFNyr1lrfgT6ht635tyOqWRdou80kDlnK2/gl7xbnfL9GIbsIFI1paGxDU0MuBeerJfbeXe798gM+Zj/N1ac/TqeE7771CmUjsSr35TVhrVvc1ACCYayhaWqUyhytSElVVXB2i1/6F7/Elf/0b9BVOIBzE4DOWzU3/Q7Ecw5BGEBru+MtOEHTuHaCSggfHjDYqiIvCrImQ0lXBpQVmcMs1pq62lBWS9abJWW5YVOVrBZzju8fc/zwjOV67cralCITFilzGuNg46qywgEF5QgaF+qKhkLLq4wBYToMpx0+8qEPcLyYMZ7sIYRC6xopssg/AyiLMRVlueH0ZM7BQZeg4LljdJlwtmuF29HGbe3Wz48bjxWSVVWhhCITkrPlisFg6N04fiMQcX6BUaWM+yLRh6m0mjMEh/nl9O9gLzghVZmGPO+4OJ5I3m9xv3tBGTVr4TR+a3xyg7RYtM+QEmRZ5uxN4cLIwiZduBPHb9gDByclEapg78oV9L27zOen1JsN5WbD7pUDet0uKkHaSTfR+utKXwqQZblnnmGhtrXodi1SBp8s7YU40EUyaS/ry4CDmyIoHrSCpV235NPvRcX6Hg0XwhK02JIQoAu3am5FOH8+gcpaQoalDG4WuS1kA+MXnmmHmjKBdXGSqqLodJAycz0nvQvfzcuvSzxgoqW3sJrGu009/QkpKIoiovWEOfgnbYVcO0N3NQ9hmBddrt98ijfffIPZ/JxNWbOuKw6v3qCXK+fi8/RuzYVQgbcojbFkWYaUSSmHEDHjOSq9UUsT7VkOz/UIQRk3K1nb+FSRABPviL/eRcpKFdInpaBJoZEUFEKx0ivmzYyu7LBuNjSmZjfbYXZ7zrMfvEq5WbLcbJwIEE4Rc2QahCNsH2YnJIWQZOSQSayUaFPxtS/+Or9y4xo/8xM/iJIl1kKjm61liOvWSsb2j57JpO5WYy1VWfNHf/INbly7yY3rh0hRY5qSarmknq8ocMlCWmTUVmGR2HrDsFdQZO5gWaHJFIz7OeOu5E5Vsik3GOMEXZFDTpeslpR2TVlDf9Bxc/aVCAHEBVqAcSwoKZDyBqpfIvV9BqMRUilH9z6QGr0ewglJoxswGXXdoFTCFPHu5cgrbEtUQUC/w9K1oZh3Ho8VklevXiPLFBg4n884PDzCZVQEzTW4Q9185MV4ZBoTCq6tlMmF8Sgfi5UxE9Aql1rd7fSQKnOmfbA0hWMoRrbmNNJZkUiL0A6HUwpHPMK7vRxots+estGx6422oKK3rwsvxCwKKbvs7R+wKd/k7OEDsk6P+WrJzZtP0e/2yKQvuG4fJjLC0NfRlX+0zPLycngOFvlW+l6x/b74uUQQCpEQh79OtGoTV3BivYuUXJ6gVu8aJV9GTIxuSg9HRVRrthUuGYW8vfR5YywhDVbIYPG5nqUCSVNLeoPQMzWUV6RF8DZeuxWyfqsEMTYJAmNdnaqQEiXxdcYmmU8roNpkInwNsFfXREZW9Lh2dJVXvvsdFpsFy9WKpqp56sZ1ut1um1hD654OMduQQJPnhY8AtOsa8H5T5RVIIw3E5LBtW2ZrtDSz7dJ11wu9Kd06tg+eCs9WD3pShGeRaKPJsxzd1GzMCmMraluiTUNjNN037nHyRodNtWS2XEacLQjlGk4wGLvNS8ITad2QGY3VCms1VSMRueFXf/EfY8uav/r5nwIcVF1rkVtCQt6WgmIfkaJmXRJNs1rz9hvf5tt/9BucPPw4+/s/RbfIOb7zNl/77d9imAmuTvY4ObnHd99+mwdnGzrdDpNBQac/5PrVa+xOCjKP4TweTnnh2YzT+ZLbD+9D44ATiiynYxusqV34qjNhOp6CrZ1HJTGAQvik7b1q0HbGV7/yB1RkfOQj34fKMqQN5zN4OES0JhtdI7PMeX2wlKsNd+6dMppMmI57bv2Nqx2tGkNlJL3+gByPW5wqkD508l6o7bFCMssylFTOolSKbre3hb3nqas9lGyT+COtnvTv72ASe99Wq73itP8sd9N18bckMKyEW1yCduAAhV2gWCCkQwlWJjRp9p3XhUZJRWxsGik7PJq3GuLrARBXIVXG/t4e69mMs7P7qHLE9RvXsLbZsuy2xaBXEDLlhbN5hH7QauzRQ7GlxbcA8FH4PXKNvSKTuisTjnhBx2/X3T//k7Mj24Nhk4PSwgoKrGwFYBRerXvDvU+GOiCfTeWhOKRy3oX4edlmfFoPB6aybOvabaQgCOfwN+u79zgXbhCU4cvVcLkQgVXErGwTmeqjh/VxUBkUHSso8g5Xr+zxyhuvcLZYo2SGuXaA0QopfZeUwEhFmJ9Pt88UQvkEn4tsIaHVtIwoPK4U0mWKv4NCdvGKLTh+qlik6iJeeCd0GXiIvWhVv39Dig6N3VDWFoOksk5QGaxrhiwNgwc97r28ZCPWnM02aOOQclqmHrwSEDw4AIgchMFS84HnnuHtt45ZNxmZFAirWZze5l//i3/OM09f5yMfegrZhHhwOAtelfJ70C6no+O4YuFsS8HR1Wv88I/8EHQOKcuSTAq6Obz99jeYn2f8xR/9CFX1kAf373K6XNAbD6n1EH0658HxjKdvHHHjaMp40KUjOxSZ4qnrB7x++xazdU2pNV2T87Fnr3GlCydnNV+5p+nmfaDBIP05CzqpC3VFLwySwbDH933kA1T12pVJib7jVxqvBKTtmQV1VbFYrhkMcwpl+dYf/xF3750zeuYqR1d3yRvN4sGMxcOHzFYLahSf/bGfQfYKIu+NClpoYfbuvO6xQvLhyQkfeOFFzs7OGA1HsTgZglQW2yck+hfxzM0zNdokjK3axy23U+LSAvD1Xu6yAikyn9ruft+K/fn5WGzEfHWxR+lKL3xJCCLMwSfDZB4hRPpWtZ7YbXRHhpNro84hPHAYVoFQDKcjlps5i8XKuVpFKn5Sl3BgHKbVLh8jIONvWwfCWYEiaWGUvt8+4jPuUy7eFgXn1l8vzEC4Z36iQlI6iDhXWuMFhRd2ke6SzFenC4SYlxeU4dmMExWhgbC1IJQvffD74tpRGWpT0etLlHIJ6ZFOfWcQ56q1UTkLNOcsSqLADA4A03hhDb61G3FOsZURTgHYEhqtVwrpr22sANVlZ7rDW7fvYmicJaj8O4MnILRPEyLiRaeA7FF58wrU5cV3/1xyGXI5pr31W2A+seH3hWfyH7jQLMV/VER+8d7SVb43Q0jFslqx0Atq1mgU0HUJNY1gzSlGFaw3JQ/nK7S1EXLQBsW1PfqJe9R4T1rBj//MX+brX/4DvvxH36Y2GmkzhBKsFg/4+je/zgsv3CCTLQZvtKQSXuf2Zhv0I97WaqeAqxF/+t1Trt2ccu1IOTSl6SEf+OjT/No//xo3r19DrWv2hwvKjeTkzoZyvGIwsKhOiWRMLnfod3IKISk30Mm7FEUfWLHT7/PRZ55iqrqYpaGzOubj13bp5YpGAFa3Zy54X7xHwViXWLSzu48go9ctmFUVIbzGlnVOct4008nYw0QalNTMz+9g3twwFiW9rKAjM3oHh1ztXWU4ndApAg1uK7fWpmv2eLp4rJAsGw3WIUfsXd9HCOMwmn09TtA2w02j0IzWpRuSy64z4tvcyRG2jdfER/KHqqkastBZQxhs4jJqkytwzE76DFch2xIRDNa4FH7jKskAQRbaT3nEHGNdjZHF+MMswBfEEk11L+yMpWksxkgGgwmyo8ik8pVqXhjiebyv4YxW0UX30yM0/GBJhp/D+4RvAxN6+qUxa3mBiYX7XE7HSexb/4fw3nj/RwjQ92u0tWAiAlaElmmJI8sJl1BI7xU0EdxQMVWcoMoSCEpGSKzgYraApCo1naLvINv83QzWW67tHkZt2Do3bVi70I8yHHJj12SZqz/Ls8J7abXzbFD5MpH20G5RQxI3Bd8ZQjcImTGZTBkNh7FzCZHOXe9GaLYEUdM0rgWXk57JXR4xEqsuKHmP8gRtKXJbVxTxrFwUkuE8tM/VXiHe4h28Tt/rUeuaypY0tqJkjbYOjMFkBkONtTXjvQM0JZtNxfmqckATrsgHt4etc7otz8I/uKTX2eGppz7E80/f4Nbt/zdv336IzSyZGqCwfP2Pv8rnf+6n6aQdjoLS5S3KyDesIQ1aRZc1jnaUqVkcv81qZwo4PiVlzvd/7HMMywE73SOqnQ0f/T7D1Yc7PDyZ8ZEHd/hr33qT73z+J5l97CNIkWNpKFcbVvUKoSQYQTfLePbGNQYdhbUZz37gkFtfP2f/6IDhUAGZDwW21lrrDQuCytAfdLl/b8OgN6QuV1ibgWic5ewFgLWufMQai24askxSN6A7Hb7vk5/g2tOHrI1F2QxhJIYMg0JmoEWHumnIMs8b43Kptn2hDfz0ncdjheRTN59is96glCLvFK7LfbxeQL5rmX+6EAShGRlbezhibEkEViR8vVmy2+AmLyxNU9Ipus7CIFgWfhb+sIVOIPjNCeUe1sqoYYfAulLOqspUFq1PjQtlOjVftO61RNoLKVwBrXXX0rpyhb8a+sMeSoqIKU5gBFG4utiCtf5Rt3hUSuyJ+ysuZrs0jtE50G/H8x6tgMQL+OdGtAImrZRMMWXTcRkL6H0covUUbKnnYTuCopFkzEXPRGDwYX2N8Bqt8XpqQIEJzxzSzaHcbBgOB54+W2sIGzTPNn7rSjpSi9O/DwnS4JBDcEgsVD6z0T2AMRqPluAErYHoFsa6GkwCDQZsTlds3tQWbMZgMNjas2BVxGbatqVDjPCKYQqpcXnfH/Vz6maNwu0xgixNqLvsUg4SIxGg6aW2TLH3d5zrU0q9obYVFSVht2tTsjPqcrQ7YW+3hykt8/mSTVkhjHCx8yTDf9t6DIqwQAjN7n6PwXhIv3uFn/q5n+Qf/ve/gLVQVkuEtlSrOU2zoWly35JNRcGYCkk3ZHtOINKz8L90egX/3l/992myLhHtR4EqxvzIx3+Y9XJBp8g5OrzKtX1Hq5/7r/6YycmM3m98id/+yA9Si4bGrllslmyakk2l6Q26HOwOeOZgh/tv3mEF2LrHwf6LFDeeQuUOm1qEGmE3u8SYCbShUFnO3t6EL//+F3kws1y7eZMsExi0TyoTvu1fhlCuy82w16FZrhFkZMWEg8OCWQ12U9GUFY3VDkJVSp8c6e6/RbNeud0yFh4z3kVI3uT4zl12dnbapBvpER2EN5G26tRa7T0yKpG8TlSw4t/jkZDS8ziPBiJaqw0aikK5fpZWbp/RoLVGLFeiUAzNZ0XIfsUd3KIoaJoKlSnX/NTPOfjQwxaH+UW3XGRFLq5ktEY3JZu6YpJlXrNvYxLthz0iqnCfVNuN2du1eYTWHvX1qIOEonD5CEvzwvVs2J0gDPxhjrSRMq1kSQUx9vYkhvTxSCGI3SQiUoMNlJYAUYC35MLPXhkwNrQXIHQtF4A0Ks1fwVqHJpXluWdMRKEYgwVeoSO8HsMGAZ/SRpxXYaVv5+N6OSqT+f6nwWnvSkla3dB4KzTQMhAwYT1ctDENjdZUlaYuNd3uoO1tGREWLMYmVqQQIDQqD4ycLafFo4RiqMlNs80DPceknPTzWzFaQ+wz5oXrFl2ltMc70e2Tobu5PvclPhaFxPrwRC9T3NjvI1G8/PaC55+C+7Nz3zDZRJrYUtbaXwkCAiQf/OAHyKSkrmvK0qJkjrEZ1jZgG/YmI6Ch0TXKZvGyUoYErG3lJai87nfnvXICyKCR5INdbEDyMQYlYdxA1u1Rz85ZrCuapqLX7zEednntL/8cz/3yr/Odn/lpNpuSUteUzZxFtWLVbLjz4IxN1XDj6g7XdoeU97tkKBYnd9g7OGTygacRSPDeOPf0xC2VFleSZZ2yaoSiWyjscs54OGFjF3TIUHhIO4EXdq5fqbWGTEmq0jqlT2149aWXOa/GPPfCTQaFs/iNkGHl2DrocUdo5cF7oI3HCslOUbBaLjm6etXTfEga8TaJEM71mZjGYcPCRsYNjMTk/xbQ0a0LzqYGb/wcPlFGF0jZwQgTGVh8L8k9bNDqjYMzsmk2rbcyJKhMYIxLeIjZgKYtTDeE/oEGgfCbur3MDuPTucAq3VBkOVY6qDlBYBg2Wi0ALWDh47dm6yCINAdWtOD5SVzW/eOTBkSi7Vu3hm3wPxpbcb9awyNsnv/n8crV93TIYKE5qCSvlYgIvf6o9bPg6wDxZRuQWp2QGCoeIQkfS0JKqrKhN+gjMh+rtDYqcnGNouXqEwrCfSIjtFHYGSMcmpMUZFkX6YvznadDggmaEu4gS1+H6S1SIyQGQ6ktjYaqtmzqJZv6nMaC7HRAtBm4YU2ksGjrBRrCgesHxRF7aV8vlXaId3g9fiDR7y4Ziu6eQfeyQiGNTlqTPZ6ovP382Pd8r0ZuJVa6s2uspvaoVl0GaC1YmTPevDPj1sOC1WbhysLSvkwJbwsvRm+UEAiR8fyL34fRmtX6lC/93lcRIgOtwRg6nZwf+8kfRgnnVnR4r62SEVoHQqIEBqMgua8xxiOk4fdCeH1MY2zFydtvcHs+p1zW5DlsFhvuHz9gZ2/E2XM3eeV//79B64rN+pz5csNscc683rAsN9y7f0pTawrVQZeG7//0D5CLgup8xWY8pnvtsPW4BN4bvI0XhxeUqtPjmRee5/ZJzewEBgcZisrza+GtSZch7p4NNpsN1vaoG83i/JjXbr3KwY0DipFE2hxhc6yok3BWuj6JUnOJrz96PFZILs5nDPtD8k4BtXbp7cJ6nD0vIAPSTeJGTTzzcQTrINJQMn9hXeJOm8cUnklQliWdbo5V1j+UaF2MW+fOJkKSOCfACzv3u5QOUcT4bvNWGIewEdVfd0xV1LyTrKhk2ICMYQ3WaHrdAiW2mYrwhrbFeNAgRdoixus0EAUZ8XurhQtC1jThPcnfwhpaX+QelIFIrJ4YCN9s8rn0eZKXhLCXs5jfx9G6kE0r5Ly8jErSxUdILaR4HW+3eei1yN5FUBbc7xLBcrlkd3cXPCh37Oua1EM4WeRuJCPCk1NAAopPQE4SwpJlHQdHl6nYF89NSCLIcO5P5xWQpsHahtsPHvDyG6+zLkvWqw2z+ZKiEOQYTk5O2NRrhpNdaotTzYXDIA5KolOL8PPyGeBGOKUqKqvbAiv1YKQZ5xc9G+l7WmuVWKtqfMa5FMrH/rc/m1q4IrlH3EIhtpCS3s+hZEZtLVoYl5kZywYKusMd6tlDjD7lwdkZ1ioyFQD4VRKaMUnjgGgxAJJOp8PulR3W9Zp/89tf5Nb9uxFFCQw/8/mf5kMf+QBGG7QH+bbWIYIFpTYgm6X4re7OYgtSs42d4/IkfKmTMIJv3X6FV770DY4XNZNRwcHuiOefu8bp6V0enpwhCkFdZ1SbiuV6w6rcsLEly+WK89mMvCjQVmCz3DVtmFcc1xVPffwHQGZgeSTvsD6umPrjlBLYokdnMKBYzvnql/+In/3LP0KXDNfor4mCUkgwdYPFOgB4WyNQPP3BD7N7c81koCLfcCSVe7UwhEq0538y7pdpGeJjx2OF5MmDY46uXvVpe+7gO9xKQ6tShsNvw1b6ifrXtzQdPwKDt15sGpfck2ocwaWlm5p+v4NLQs3jAQ/xkWih+ksKvxDOEgiC0TM+rd01tSXLCqRyrgkrFHgrVeB7Z/jGuhiLFdohqyTaorMkG5el2DR0iw5S0Aq0QApBCRAurtRqL62V1AbofWKOn0gqDIPVaIWzCYIqH+jR0CaxIBrv2Q2uX+WeJVoS7d5c2hJ4L3TzPR2xPgyHsxieXST0dJHBthZjUKRaC1IiMdK7ohKlAYiuSimlQ7HxtbkqvM8rG+2a+DW3Jmyu21PjFCtjgsA05FmX9XpDd+AObHSXBWkfZLYAIyX37j3kl/75v+Tu+UPKcoNzzXextqFbSNal6+OXna+59q1XmXzyQ/QLtS1wbKj71FivHErfK9NNP8zDRubjF6JlYI8QmiKsMUGNDPTtz6OHhzQBd0q41nqB7FKtJv50gS9Ia/3n3/8RvEZudhJhc5RP4MMOGI9KiodnrBrTeqAAJyjDb0EZ9XQYeaBlMt6h6PZYna14/Y//iEwb1rrBGs0LL7zAp37ws2gjsFYjveKznVAioqfkYtKTS0j0ZXAXDARngEqEyBHC0tsfsn9tzIPv3oVixN7Vm4wm+/QGOaezBQ/OzjidKebrFbVukLnC6IrlcgFC0+0oGmPJB0OstNy3K579yR8l299BaJ9dHdfi8YzEnb2Gbm/I0VMFp4uvI6oNVZ7jEjTdM4Y6SfdsGpUZnzlu6U/2GEyEB43xYtFbqY5SLyaABE3brZ5J1uqdxmOFZF2WjMdjKuFSdoVHQHHFy46g2mLqbcYlwsEQYWrbf4txQ2O5rD566wrQjSbLCmzogZf6mIXwWY3tPVoiCa4Qr/ELA02GyjqUm4rBIMP1OHLi2Ycj2/QGG0AGvOssPJ+/j9HG4y065tPp9LFS+nVysSqL8NlAHgHG++plwtCDFeBGaiFLj/Rj/ZzAigZpAhNs3y9t7dypBpS1SFnQsMGQRYinthQFWn9YSyCi9eN6S+pJWpKtSSiNj09KYju0+BzJ9zbz9VF2slfCvJIX4p0AFkO5Lun3uzHpKjTRDsk4IUEoZtwKoisnYAL7E+etSkFdGQeSjiXPc4xpWk0k1h06/bPBYoXkWy9/m7vHb7NoarQX1JVx7qpS+1QiKzD1hi/94e8zHY/47Mc/6OrtRANWRIg0KRx2bIgRWqfiE7wRbp1bPbcVhq0VFH/2PSuD5u2zBghalRY6QpCFcy6tJmaG+5UOwjP8dtGija8/gdGXQ2pTUdGgQw2dEGzMknsPbtHJKopMUChJYyzGbGgFgVNcHS+QCf21onNnZweEwa5O+ImPHvCVb8/59mvnHNx4mv/of/E/p9PpohsDyvikMP2IUncZFRUpAh3G2xB3x+AgCW3yB2mxtmDv+oe5853b7O5qxtMxi6rkW2+8CVK7xhWZYFMtOJvPqOqKbr+H1Q1VXdPpuISi2WLJ1195mZ1BD3FwxPP7+z5BzuWDKwIlJPOzuHKoCNxuXcmcBKV6jPpjPvcXfgopcoJREMWbACUKJ9Ck5uq1KabxCFOBn4k0iSmg+6TrF7yVwX/03sdjheR0uuPwUnUgZn94RJvqvoWis6XZp5tnHZOy7ecF4RD6hqDe4gqWViWATQNWIrLc6Xf+RAdrR8QbeSZpWyYagc+jkIRK1+R5TlPXqFyhLQhvw4aNtFa4OjqjkDgMWKEd6Lb1wkMI4dyt/kvIjE6Rk3lB3mZOebL1TEgqCxK6vYzVqnKJPmngS9RuY4UAa5xmKCwIidIa2VikkmRSkheKfi5Zl6c0+ZiRqni43PCpH/lZdg8OUaLmN37pV1lUNSFz0tugkdmHvUhH+O38/PzPQEZ/vsMVsIc4VhCKInbl2BJcF8n9At/dFp7i8vuFYrPeMBgOQ2iwtQ6DCzOc1IQhBaVQIlyCo5G+GYLLRm10Q09J8izznWbcPlpc+ylH984FlAnLrbv3+MrX/4RFs3KJB9rRu6QBJEZ6kSMUoDlbPuQ3fue3mJ095APPv8jzT11BCYPymdkGH4dW0O3m1GWDRfhaTsectpVWt8buHJkYFRChz6pNekMq18zbSokwa/LKuBR8pVnK3IVlIiWloYHEEnqCStijRmVLRCbpiy6NqVmbDRrLxqyYLyrWylDWJRLls5NDlpg/rta5XkO7uYgI5hWo/av72M2C5f17jHo7fPDwgJ0rh3zsL/wsw8EA02iHACUCGH4oTfCajPGiQ+Jq1aP3SWwvZWIY+J+ip8ECvZ0xtapQZs389oZTY1mUJRtdM94Zsnc4wIoNZb2gLGvn5bCavJPRaMPp+QqV5YiiQy/v85GPfsoJtphjEuYRuA1xnZy7tbW2LWBlDqoLIifrZEgbSjO2k0KlcPnZWhgODvY5Oz6jbmwSmkllT5vEGQ6tm423LkOS53sUlY8VkkfXr8bDIn27n4sT2RacyXRbPtwyqS0rk+3XAgMTTtBlwrDWS3ojV/ohIqLJ5dTxKCADQxSOWQlvVRphkFZR1TXdQcdBhGX4WGSGCYzLevPctLqQJXFJWekxNV0af2MaGmOQSpFlikw50OA2LuAOivVg0tYB/yBzxYYGjEbKDpktkUK7zg1YiiyjyHLyQY/ReAeZF4x395hODsh7PYpuj05Ponoj3v7WL/HSH7/O4bVDHnz9m8jdq+w/fZN6tiBDoKzFeHd50HmdRXJZm0qJa/YEhWQ4bNH9lcrxIOBbw5eU2C7q3o6uWq0yFZrho+WmYnev5w0mEw0+8G44n5vmABlSDd1Z7w5q0jF+awRN01AUrl1Nt9f1zEwipatlDG4ka8Fmhs265J/+s3/G7fv3qa0gx7LTVez2uwx7fXp5DtqwaDS3Ts9Y1A0Zkvn5Cb/3h3/AG3eOOfjrf429LuDBM4QHWleZQHQLTjZLrCyQ0qAo/NMrpDII0yBQYDQC43pI4mI8mZIo2ZAVBd3+BNWB87O7TCa7NJtj8p0P8n0f/yyDyYDZvTf4lX/xK9Qy8xnqvkzMBqpLZOPFEIwf8iJRvk+jm/epjGajKxrrLHmERLOmbgy1tlRWURnHC01wPfkYlwOawCvaFqJRIJBZzuGVK2zu3Eatl9w/XbAqC37oc5+js3vdwdChEcI1bzDWeEHoYpzW91XVaFde4VsXuqRCL6V9qYO1DaF5eCxfEiB8tn6W9xlPD2jeWDiFqyvZ382wWcVaz2nqDU2jKTcNxkqqWiOkwjSWqm5YrSqE0Ex2BEV3xGTvqtdhw/lrE9/wRlAqPJ3zwNfEA9ZmWDKaWnjPl0Up66IZVoL0begEIDS60ghylFQ0svZXSTL3/XDwd21CnY38vR3v5mYN47FCcjAZU25KF4IXtFiqQUqLYA26CSResphiuxWYTyzJYOFF94+/oPExDkVGowWDQd8xmHQj0mt6K9UkWXzgrHrrwW2l8xU5S0QKh3ovRBJA9FlipA4SifYZblZkNEZQNg3Gahqg1t7VaqzTgKRC5RKVuXY50dpBeavbu2Bt5rR5vWbYzzg8OqI3ntDt9xiM9ygGA3qDMSJ3mZYq76GUBZvjHsCvsAWs4fqH/xKvfefvMa86PHV9n69/8de59vT/kgxLoyyNCslCYWdC3KmNZxKfuX3h4PDwcaTxPR8xCSxqy60GFjTAELONJRp+zYPmHDbUlR54N2CaDSpgs1nT7eXOexCRiYjnTSof347C2sZSEwChkm4hWDDWCcmuA0jPO52YtBO8LwGdB1wm9d17d3j1je/SGEMhFDfGPZ7bHTLsDRiPR+xMegx7I7CaV994jZdv3+fVh2tmVsBmxquvfIdXX32do48/Qwg5GCsQWmBsQ64UVS6oqyW9zILV9ApBoSDLO2T9AUU+YLozJRt06U8mdHp79EdTRru7ZLnraaqKDro54Xd+4b+gGB8xEgXfePuM3Q9/mGm/h1AWJXJqEZQxj3wVFjOGK1KTY3s8KQNzoysK2XHM12Zo61zIKypWGvIsZzidUJ2d+Ybtbi9jgpMEG+K+XkkPDFFKS1YukUvDer5kPl9y41OfoNg5QNY1Rjp0GpDYkNFv3TWMlQjrmnnLEMKxPgSUhL2slT7ZMLEiE2XOOrcACMXO4U1Oh/fQqibvKjqjAistTZ1z/2zF2fmas3WJRaBqQ0Aoa3TFfLFiNByhckFjahZlQ7ebt+E12nMa99sEa7Zd75CwpIxC5A1VWTjlLMbsiXFtJaQrrVOgawf+nmUZVdP4qxmC0pncgYs0FsyEIFBbw+7xRPdYIYmwSduibcKOVkc0ZbdHCDJvXS6NW1r/u88MDC4YFeNlkk1pmOYdQsJQMJujcKYlBBnUfb8Y4feYmm81We4YYFb0XDNZ61L5nZANj+xdTUjmszmvvvoa33rp2zw8PqOuNJ2eQhWW3qDHzqiHaRp6kylCCDrdDpmSCKs9kDogrWuC691bKi/odTIe3GkYjjIOP/IZrj37IlZYlMzAqiCi/fP5fkdC+1X23NULy6Iz5ft+6HP84a/8IqO9m6zffI1XXnmVDxxeQdZeUJiLxJLuRzjLgajcHt2+deuxpPG9HV7hCYeblnYIrvooOFu6dIcqUca8S1YJFct72piYu3K5LukNhk6rvmC1CrzXQ7Z0ZK33qtAmSrWF0vg4u6HodFmt1vTyzBdXS2+VNq6kyMtqieDhwwdoq8EaRp0uzxweMOkIUF2M6lLkY3qyR79b8MxnrvI5Kn77D7/IL33zNkvtkimOjob0BooM6RNJBEpkKAV5ruhIzcGNguc+/mk6vT26wx6qMyDvDMmyLsjMJ3dInxwmHynKMjvg03/xr/O7v/RP2Xn20+zIL/Kdr36Vz/zoj5EZRaZBKoEO2r2FqOmLbX3/UZr8OxiY3/MhUTS69nSgMLahNGsa2dDLexxcv866XFPXG5TsOIsNdyZzlVFrHRV9GRKzPJWNux12MkuzPOfB6UN2n3+eybUbaK2dy9pmhG5EIHxOmIkdjIxwHiGXS2ghAKR4mgtKoUlcfamgjOfbenjNTs798h6UNbnt0BU9Ot0OpyvL2w+WnC+WLMqSRptogeWZoi5rTA1X9wsKkVHPT/jdX/t9fu4/+ClGUoDNMLIEAttx3jwV4em8kBfteZJW0ikED0+XQI61PkcjKMfCWc5SekHd1C7MoTJacOvAu1Ty/I9WuFJDyHpD493GY4VkQCmR4cHCjYTvpkBi1UXKb5lYulkkn33UELEvoPt73WzodJ2xF1Dw3ftaAeluKxJrIWGQ6WZY4xIhlEIbQ5HnSRq1d6FpC9IJyPWi5Pd/74v84Re+wNnJXSwlWaZQWR+1dptXNoKdnR3Gw4LBwTUMlqLTIZcCYY37EuBadrl054AC0e8X9Ht9FssTXvr930bJLodPP4cwKWPKvKvba+I241KCk3CHaP/Gh7h281d54+277I8HfPsLv8XNv/o/Q6gMqspb7XKLQQVyedR2WGu5dv36I/fp/RjWOoss8thkON3gskch+fD2635B07T5oNhJm7OYV1y9tuMPJlF5i/fyk2gVikRAButViJiFa6VFN1D0ulg2ZMp10YmhAp9xik9gNKbipW99i9oIrFRMh13yIue1kzmL8oxBf4WQPYpdSV1lqOGI3emQn/sxwZtnv8qX3pjx7POHfOjFq4yKAUpapBIo6dpk5XlBf9BlUy6QouHszPKhFz+G6rhsSCsyEC771suxVukV6UkjWva713+IZz78MvffPmdv7xov/+Fv8MInPontVNRdEVtHEfYqKq/tdeL2JIk8hqixve9jkA3ceRKu24QVllKuyUTOeHcPkXc5fvsOIanLgTYYJJIi74BZc7Qz4Okrh1yZdFksl1hhOJ7N+MBzL7DXybj19jHFlUNGzzyD1QotHYOWibfEGuv73gYUMRfiMViEtDEm78DCZWI0BC0/eFfsltOpXWVBrzeEbofJqKBQOVnWpaxqTk/nnJ6uON8sKKsKo30CJF6WNJqd0Zjd6ZSiyMnVhj/+ym/ywqc+xkef2UNSO33cBelbnu3v3BqZITSmEWQUmaT22dwgk/f5d/twBbhOKtoaH5oKxpuzSoUXfMIL9mgzRhjVYNSlxt2709u7CEmfFh78u4ioKYdiZRuluI2SPQgut2cXJ9EK12DFhMLTcE0BLKuKwaDvLNKYuZSk0bMtgNN6tjQF2v0sMU1Jp+ixWi3Jenmch7N4vY/cCO7fe8j/9x/9Q1761teRaLq5pFA5rhPfhma9YVVBIyR31wvebgy3zzRXD5/n+vWCTNZOG/JlHwKBFAYpBZlS5HmHoijIcqjOllh9ztd/918h+DwHTz/vcUNNwiyS9Utg2NrntijZ5wM/+je4//P/HzZ6xPrsFV5+6SVMY10Cr/CUs8W7Eq3HrQSBVT3JpB1wWKNtmWo8KtvCK6GrSzWs8buNTCOivoWTYy3GVuSFc7/H7OstZQxCmUeq611OABL4QgysMdSlpd938WmllPOWeGSdgPUacnnOT2e88urrWCAXgkmv4N69u1S1pshgdfaAt1SP3f51msUxv/all5gc3uRzn7zOJ154gT+59SfceOZFkDl5plDK0bRSEiUVnU6HXid3cc3FjLe+/kWkVXzoh/8C5NIniHj3oQdxeLdhRY8PfPrf5/WX/29YdZVh/jZf+4Mv8LHnX6SzqakKGRkSMUcxatGP3Lfw6snJyXuYwZ//uG8eok1NjctSdTkNFd1ewWAwolzX1HXlDYTKJ0C5UIZpan7sw9/HM/tDrk+P2B278EudGea6ZDbb8Nbd+3z59fs8M7zKTlVQ5xolBCLPXNa28clqvs7WethDcA2YsdIlDQmZuF3bJMYAou5cFC7LGlK92no6LpnsjhiNhyxOT+h0MjJR8uDslLePjzlfLllVFU3TxFirFK6xxbjf4/DKlNGwj1DOuOix5P6t78IzXaztYUTuEYsa8Kg5bYzSTVVKSdP4unjhah83q3OM2Ef5ebbeL6+2CektSbANZEoilcGYHJdM4DqyOO+ObJ85GFCGuCbpleHRHo10PFZIbifceGZhEk09VRGs8DFLERnao27uBGPLxtxFFLEdjH9ttajYPzgi1nOJy5bPVuEzIjLONm7aZig2ZUN3OELYNTJTjgiDhubdymfHp/yDv/f3ee3Vb5HJikIqugam4yE7uz2ErZifW+6fV8xNg200pm54641X+JXf/B0++KHn2BtmtI16XRKI9BsspSLPFYXMyIVA6pq1sTB/yNd/71/xEft5rj3zvM/iDa6UC5b6xT0SLk45Gj/PRz/7c/zGP/0F8rzDy1/9bbAjjwMa9ohWuDyCLsJ2uR6FT0ajB2jq2pfL4IWUm4sULW0p2YJAE6y0xB3rHrV91tBpQwY9UsByvmA4HDkrE7YsdafcBE9Eq50Hb8WWohbrJbV3qUrKdUne7Xm8Ye2vKBCENlwu6UI3FWVZgxAM84xpv8vKGKyQzqKxDbaZc3N/h/OzU46GkmFnxu9/ZcVzT+3Q6yq+/IUv8v0f+iiHn3w6QiMqqRycV5GTF4qsI1gvlui64c2v/R5C5nzwh34UlWfxecOTv9sQwtIZXeFjP/jDfPnf/CrT4fO8/pVf5/rRlLoocFm7SX1aPNtB6Qnnvs1LCO998PD4z04wfw5j2ZxxMbZlPCCEEn1OT29FHmXDPlqLUoZPPvsUU9VBbnKWK81mI7CFpjvJWZUNb9w55puv3+I790549XjBcOeQp5+7QsfKFmNai6inGiwiAaYI4Qcb3o/19afa10e2LnZr9BYfdCNklRqEVeTdHkdXD/mVr34L1BCh4Hx2xsP5GctVRd1YQhxeCIHMBKNhj6tXrrA73aXIcqSAurEM8y5XJpq7t9/i9LxgcuUKe+MxVige3LuHyHJGozGDQpBZgxEKJRq0lhhrXTKbWXNy7yHL6jnGRYP0KG4iKLj+fEshPYALyCxzvwftN0VDiWGY+ELc15jPIETLX95FNXx8TNLaaEU6AW+j0HJ5MtsyWXjMPEF66NrRCs5Uu2w/20r2hkwaVEch067w0fQODx7eb6NJnd4nxkytpapLOraPUP5eAg8m6FwXZlPzr3/pF3njjW9DVkKjGXQyblzd4+rRPqNhj6Zac6vRzNcabQWNds/SrebcfvUl/uCPvs7nf+IzKBqPHiJ8/ElGwOIsUw42weAFNTSU6Nl9vvE7/wL057n23PNIFWIUj17L7W1yD37t2c/w/Id+k2Yzoi4rbp81IBTSCteH+h2t+3AN94bFcsH+3v5j7/m9HOVmjbE6FIfi2gK54L2rrRJoqdyaKhercMgkqQaVCDPhIApjqMifq9lszv4V95zCw37F0o5LsU+2S4xo4+shR0ggKcuS/qhAL9Z0h0OXoON7MoZmsS6LEbDQGE1pK7CC/emIUbfDZjZjvdqgNRRZh/FgQFcVvH5vzo1XXud/Zxp+/zOf4Dt2SJbnNAhG07Er13IJgUhvxTqQ55zCZsy0cZiy5UNe+9qvY/KMD3/qs6hc0Yqxdx5pHoBA8MxHfo43/vTLvPbt76AtfPl3fo1NKgPfhfm0OnTr9bl5/cZ7IZE/92GFx2tN43pCk+UFpS5ZL5fcvL7L7LzhbHmC9a3O+t0OfTHgtF5xMj/l7PZr3D1eY7OGXkfR7+Wsqoq37j7EyoynbhywO8oRdYOVOSa64m1csyA4jXHoZkJ5GjTGl/aIdonBKSQiGAqOztrm3hbXP9CgrKXfbSi6gh/73Md56aUv8I2vv816Y1htLOt642tAfaNuKShkRjfLmYyGdIuCbpZhRUNTNzRmDVnFcvmAa0fX2axPWL1ZM37ecPXmhN1hyf/0C7/O8WmXnYMpn/j0x3h6fx9TzrFWoXSH2VnJnde/zevfeYmbn/w4g6td792gdVAGYS0l1tYeni4nJu6FJKkIpJHKpQv1kjbhdVvoZ+88Hi8kERFaLYhEITyzFemhcdqr9UI0tMa6jIwSHkrEn1PNDR9kritNp5shqJEyj9fazm6NK+iTf/xsbLJA1glI0TSoTDhQ8zyL/QIjIo+V3Hrtdb77p98kU7BuNINOj2eefYorOyMGvZFzZQnBeDJguKxgs+bcSDJVkOUaaxf8yVf+iB//wU8z7eHdrQJhWmarpHKQeGgqo6mNb/slwDYl1fwOX/vdX0KLz3PjuQ+jfEbuu+1jiJPJbo+P/chf4Uu//E/o9g7Iz6ESLnZhw/rT7iU4OrHemrZeeG+qCp6gJVltVg6yy1gcVoNrAaWk9G4W5QDDpatBzJQDRVZeGQFHBmnrsFa5wsUCtUZKR2fOWG2B80NWnTccWve9aIUjEEs4PSI8wgrqqqQ77rNZGjpF7ksarG/u7LKeZYw1NRw/eEBZVSipONrfo1tIjnanTHsVVVWSdYfsjscgcz76sZv89B9/mZubku4ff4PZ3/wrKO2ybTMR3G0h29JBmmWZwmrn1bCAMNr9tD7nzS//a6SwvPipHyXPnGuvdVU9bv+9Vycb8umf+l9x9uD/xc70Cvdv30HaAQaBCgDXtq1lcyc2CMQkYcIGOoSzJ+Xq97kL8WcBSgiKImc+O8Xahg+++DGKYsCd+7f56h99BSMM61XJvc05u7ml3FS8OROMrz7Lg+PXuXd8TFHkHOztY6TiuQ9+iB/44c+QdyXWKIfz68MhEebQXo6SWeujddZbhBENDF8KAvjav4AEpfx+aynImgJ9NufBa2tW8zPWmyXINR97/hP87M9VvHXnNj//D7/BfJlTG01dN0gp6XU69Dsdiixj2O/S77l8CqRm09SUtSTbadjfN8zOXuP6NcUbr7zK7tii1yuUtXzwep9v/MHv8/WvjPi933mTn/yZH+PHfvwmijmb2zNuv3mbvevP8cKHH2BWM4wusEpunzPRxiUFUFUl9AqPk228IeT5aPCYEUSBN/Ji6Xqs02kX+F3i4I93t4ZYoDS+bsWp4rHdZxCWnsm06Dvbmnay3e7vCQRdC0zQxn0WszW97jTRFi4KyHSS4V6p+8vdKyRUGN1QFBnC1HR7fZQQeDhLhJWYsua1V/+U08UZQmh6MmfYHbA3HdPJc9568x5ZlrOzMyLPh+zvCnrzU9YnS0qpyJVECzi+/Ravvf4Gn/zIU04DtH5jA6SfdFqhqSusqVz2GA6UWiLQ2mAXD/jWb/8SAsv15z5MCE+/pyEydg4+zgc+/jqvv/K2u58J7azD+m9fLZKK1zuMsezu7r0r4Xwvx2a1RJvGo2qAEBlCKqRwOKhZ5koSZFaQZTlkBmszBzMilS/KFhdopdU0EZrNuqQ7GCAz6dLsvRAN8cbt/nPbdBdozPoSIW29UiQlJpd0spx15mLZ2jhQiJCJazGut58BZIGsDDuFYmMle+MxBQ15TzFUFedLwaKsODs948HxKdf3+3ztU5+k/63v8PqP/zjDTg9rNI2uEKL0z43zXHjN29XtamqhXQamH1pr7HrOG1/6ZazRfOjTP+Fcr9YgkFuu58sUGBRmyXD/A7z4iU9z/5W3ODoYcv+8wXiUp7Bu0aMarxX4QtBKHICBAKq6+rclm3+nEVssRAbrslYzqTg/PafIBaPJLoNuzisvb1Bq4EIydNh59kP85A3LS9/4Juu9D9MbjilsyRuLE4Ts8OD+Q4y1LBYLjMxoDGgjUMZZiyLEIn3Ck/SWjhUGh3Tu1spZkzqYBy4zllAHGYwF/x7puLSsGgaDCiXus3j7HoVuOHlwwvxMM2sKPvypv8CLH7nLS1+e8yffusvBsIupNggEKisoioJ+t8uwP2Q0HNLtFmzqCm00FZajZ5/lM595hj/6wkOu7AxZ7zR8+Q9fojS7TPfGdHeOePoDz3H80hlNx/Bbf/RtJk/v8Nnnr1Aff5cryiJrweHNHVgdU9U75MK5c7XUDlpTZAh0BBQwdY2UhkxkaDYIG7C3W4CHVEA6cRAQ2EIuTeqOfvx49xKQcFdxwTIUIVPPCYKYeBM08HCJRzHbxAoNlClwmWUSQV2v2NmfuNoYfy8ZnLgxzrTdGy+dW3S/eo1BG02n32e9XNHrdJyIlm5RpbFsVkvefOO7lFVD0YV+1qXfLciznN1Jj7PzU4QSZF1FP9+j2xsg96bcPvkatcopEJRWo/SS77z6Kp/40FPt+RetJhQYV1NVCDRWWwdmLGx0qWttMYtjvvlvfglpBdde+HDUbJ27Ly7hhRFqOgfc+MjPcuvO33f97iIGpL+HcPWA7ccsbWKKoKorTk9PGAyejNsLYF1uaKoaXVUeSc25VJWU5FlOlmVkeYbKLbawWG2ctZTnroktrtt7yPyLjynCd8FqtqI7noCQZAhMYmnKAJTs/xUJQYdEhhSxw1qL1RKjDQiXxp51uzgAAQ/n5grdAIeqAq7F1jSDF8dD3lhpMiEx2lkXVVOzqis2RtBXktlmzZ6Z8MW84M5f/et86KMfYXT6OiJT9Ishh7tHbCe3EWPtVVVjTY1pAKujB0ebGrue8dpXfo1cCp7/1I+7XqvB3cU7uKM8LYJzfb/4qb/I8Vv/OUo/hRDHzoNDaxm1m+D+2RaaQXVz2MZXrz6h+lzr50XIvLQUeYFuNHVVcvVwH2U08wdr3nzrVYRokDJnZ3LIeHoDuThm2ply9egpVN/Q711F1jPEeMLrr7wMwNnxA3StXZKONU6BN8bnchjffst5xZwXxGdkBz5sH3HqrVNZosfCun6kZQ7HZ6c0pmE83MEoSf3ikINPKaZzxf3v3uL0/hkH1wSq1+fTn32WL3/jFtoUjIf/P/b+LMjWLLvvw357+IYz5px5x6pbc1VXdXd1N1oNNAEQAAER4GBwMEVScohvivCDwxEOhyP85lDYsiQqwqLCpi2HSFkiCRIgiXkihm50o9FD9dw1V9268705T2f8hj34Ye/vnJO3uqoo092lh1wVWZn35MlzvrO/vdfwX2v9V4tEhjFvWqd0Ol267TadVhvwjIopHolIBa3lVaRKyPWQu7f3OSg0X3r7lK3HLvB8T/DY1gU+Y1Nk6zYi6wCawxvfY2/jx+hsPoIoahif8szVFzm1Y7zQOOFRwqNcQjDFnsA/KxEy9CE3+hSI+3GOUJ7Zt40DEddrTuDVBFXuA43lB7aA0ESTUcI0j4CNfL/oTja0E81FfT8j2XhrC9FkeCDwTWqtSZLQr9W8fzC+81aQ2XX5d7+Oj9iN9x6pNaWHJEuZTKYorRHGxF63sFlPT064deMWzlikkJSFQxSnXLv0KC1R8t3dVxiahOtin7/RzvjrN27y9U+/wLfShNopEAZTC/CWnQcPKEpDJ3v3OjTRjTNgTE1lTGDPWODyFEJgnGc82OfbX/hNjDNcfuqFUB3rwYr3YiURIEI3oMyWePKFn+T2O3+CcIo5ZVB43gxqXbwZUbSWbG1uvuvxH6ZURUVdVdhqEiKeaMCVTEiShCRNSZMUnYJzljRJF+CThSpVuWDwBOBthNkVrijpXshQIZSfRZFnct7RQw1Hbp4bj9mHiGAQ80ZhTqCUGWVl0WkauB+cRMay/sardQ688nFShqOrU1ZaYVJIWdbYumJSVRTGkamcfmuZVt5F6ASVJtzbOeCRZy2T0rGVtlh/9CorvdbMKM7g1mikbT1FS4N3BoddOEIBvWByyFtf+wOQiide/HMovaBWFkhCGnnY+UjaV/noT/51Xvujz+NIUd5QIVCNg9YQgM9etjGcsVAmOngnp6ehBuLDEL+o5UL1cZbnlHUohHny8jWsUOxsD3j+yecwaUmSpci6yyPcZCm9y9GVPtJPcBNBr3+ZRx7znNhpOJNakaQK6yx15UiUQcYKZIjbt6mjcDFKbNIkLhTqNM5NMIZuIW3lcUIgwxRcRtZQmZpv3n6dXr/FZj6mrmF8sM/b2w6lNFn3IqtbayRLAi2WePqjT/Hs06/x1s2avNOlk4NSOuS0dYrSGYlKqaoC6aHd6SNbGZ2VFYRO+fSPXwNX8vrLA377999h6+oWBxN46a134HTIJz/1DCvLG/i6wnhH5hVlLcgurrOuTmj3h2z2HuV0aKhLj61ji9IMtYjBkoC6qsO5UxJRx/VY2K9nco0LBnDRWC7KB+24D2wB8S4A4otMO8ETXjCS4R+zx84UsD0UMzZ/4L2fRYezDygU01GFVqG5uzkwgnk0Ni+/D0aoycfNL5rQtBohMYXE1JJWK0WKLECtUgZ40zusmXD31nXu7D6gl2c8c2kVVSiuXr3EC489xe7O2/TbCfVYkGQd/vKbr7ExGPKj33yFf3Z1jaPjKkQMBFJdMx5Q1pZuCk3F2ewzCxeKiJzBO6iNRUiLFMFzDcrNE0AFAyc7fPsLv0PtHE888zG8AOXE972rAvC+AcIlvbVHyVJFVTgiUSeLRQnNffFi7j3jYWdnh431DRKfvN/W+IGKqSrqsqCuS2wsRQcQoqaqFbrSJElGlruYu2z4RS2QxdyFnLHayFkOO1QCV6VBdzQ+jY6XdGfy6DMbIARNPWxQWE26gHko5AmwmQRbWdqtFsPjEf31HrNijMZWxIhVShlgWJewduUqeaa52O+ghGRaW6w3OGER0pMlipbUdHWKMmOcNGRLkmlxwu3b9/nzz3ycxz/yNN00rhFzZ0xKGVLLFmxdYeoqKtugWAUhj2mswE2OeOPLvwsy4YmP/QhSxzzPuzbb2RBQYPEIVi7+OGtPvIV6+y2mMo81As2auXjm4xXOHGk/u2YI46Q+RN8MaBxuT5alpGnGycmIlf4S0idkSc5jl7t4vYFaWeed67fI/CkXVzV745zK9xkfj3lu6wInxZT2+gZ7997GWINIJXm7RTmdMJZpqELWEu101KsO7xUucjZ75/EqlO4FVy1qy6bOQgToPgKQCO8ZOtiupsi8xk3HFNMJm2sbiFFFtzjgmcuCV+5PuH+4zt7xNrrwfOo5jdIFB8ee1avL6J0d6kogew7VFMc18H1M7W1trJP3OjxIJCtrayRO0+70cFXC1lLFijpm99VtyuKQk1NPt9XjMPNcbadstHrY0QAxOqXT9qx0x6hxhs5zTkb3ePzKNQ6PLV996T5Xr66jY67fi7nTV5sK5+O81jP2o9FlRF0XjJBohlXMUgBN6pDv6wQ+LO9rJI0xMyMJLBjJeeQmhZwVeUixMNGigVSbytgmRxQjP7Hw4ZoxWUpIiumQpU6PSB0dFZ6aJW0bj3+xamkGrcb3JbaheOERDRG5tegkiYYoGljnqYsxb77yCsOy4s99/DkutiX4Fs889jgdJdhYWeOFjzzL0fGYVqvFrctr9L/2Ta7/5Kdp3X2bunLkuUJIhxIe4SoqU+JEBzW7ZSGKIFa0WgeT6ZRpUaJ0Q5ggZkZSxsjSCFCn27zyhd9AVJZHP/rxsHEXEKyF0LrxMXHSIwxQNqooHv2ZsZmv1Zy+IKzhysoKSZrwgTvnByjOGIypsLbCNlMDmuIxb+OXD/fZE8rl8eBTEmTIX0oViqJg9lmkS3BJxXBnQt5dQsXKbdF47aKhNiTAO9GJO7vvgizS5EmCYzgenbC8uYGtDEmaIn0dct94fGhYnZ0PJSU4wdrVK1x57BJ3d04wlcEJgXEgZEav3yLPcjprGd21jNXVPqW15Bvr1ArWVjRX5QbdlYtBWQozu76GStJ7Ec+xpKwsKMLnJpBchFYfgQXs6JDXv/ib+Nrw5Kd+FKVMiAJ9EqPH72fBNBKHkzkXnvwZcn2bwiqadNq7Je63Wc9acHgblqtOp/0/cbf8/1OCQddK0Gq1AIE1lqcfe5JKK9zJmEu9Te5PLHk1wlclzz2yQm/tGtO1TzG5/w6fuNKD0z3Gx45Lzz3B5PWXwuzDSuEqmAwG5HmGsa3ZJKFGR85MtA8MYbHmLppIf2b/NY33nhrv4KQuOKg9k2LIipCMjgcsqyXSicIOxpwUht2pZFJ3GRw7ilMojg4x/pRyotnZN3z8E8/jfcnt12tk0kILFQqLmloTD912h/VLa0zVFOklj1y+gq5PSHWL2uSsrGc8fa3LN1+5yVtvKS4+cY32E2scjRyDm/d57NIWj613cMMB1XTE2tUJn/v2TaqvpfSfFowP93nnzZv80VfH/MW/9pd5bK0FBARIxeI646qg/ZWMCxQNol8ISmZ6l0iY3kSaEUz3C3r5Azyz9zWS1bQA38zcitVxkY+0gXNC2XnoWQssCHJmIGfwwNxuziKXcOYaqEXMlJOxBaqzhNeW8dDhnWNtKcXLef9PMD0LMPD8zDXBOQ347JwjSRIm04IsbUWjHoyV8J7JySkvv/4qmc7ZWF6hPN7DOsn+zgl+coMsV+zvDsg7XdaW1/DPX+LWz/wMR4c72Ds3KF1BS3ZQwoEUSGGpKjMr7Z5VrRFyDc750HBejbF1gbcqtKVEb03IwPUoIwTovMAND3j5K7+B9RWPv/DvIdUCpCAWNwWxACJMprBK4k2IsBoGoDmsO7/PIW0UrvH09JROp/OBEMQPUowtcK6OsxkfAodjb6sTEidrTF1Sx+krQkiEskhj0fpsrsGhQFQIHMV4j96FRwGJqWFwOmJ5Yw0hK8KglqZSLshs1zX7bzH3jQ/IivIkaYxapUEqj7Ahh9JEkT4Ovw1DoAVCQZL1ufbC83zzld8lNQmtdiwhkRqLQugWabtNicfKlPUrlzBSoazm2saTFPqYpcf7EAmsQxHMgoLAY23JpBgzKWukii0iws+oEmWEacHhRnu8/eVfR0jL45/8MbSCmbZ+eFfM4D+F8J5MpqjKIKXCCRP+rrlvvkF/3i3NxIx79+/zzFNP/f+6bf6dxEcaSImg22rTzrtMpp61tXU6vTVOTk8ZTSZsS4lwms7olGfWDMvLFxhO1immFflqn8lr+6S1JnGWNIOjw5Mwz1YIxuMJuzvHLK1uBMaemV4IDp+fGcoFoxnTAXMd72fQLE6jswBfkuZ85pERg23P7W3NZv4IG2sTvKlQK2u8er/m9ZfexI4VeS7Zfuc+/ZZlb69CFEOeenaDjeUnWe7k/H75KrJosZRnaFHjjSBDo9OM/lYXk425/uZNvvHygN1XS/53//sX2cwSNAa9vsInX7zIH//B1xjWCZXNOZ302LwqWL24xo2dY07GGZdWc57dXCNPKqrJANVPeeGZq2jV55d/+T6jsePPvvIWqz/7MXqpRBBTU4QUgbEWqRYAHT/bacxPLLE/unm8KeJp7vrcTryfvK+RnE4mQSnFQydiQzxext4/EYiPZSi/R+m4IWT8QPLMsfLREjbjZGbhcfyEzkJZeu7d3qGlBTeuv8btvWM+8Zmf4pmnrqLlXMM3JnJWxTQDnH3k2hQoIShGBUmmmZ5OSJeW5pCtlAjrePXl73F3dw/d6lAWE+rSoLVg+/4DpHWoVDCtSoyQrLk1HJ6qKjgdHHMyKMPoLGIwLSTeOspJGSaMKBMLNmwgLvAOqMFZtHCkSmGcw1iPdA4fYeBw00U0lhJvoRju8MpXfxcpBI+/8CMoOWcNaiCisD8U0nukDcUaDR3d3MOa59wW90rjwTYH+sPEvWwcZh2MZHzQB3jQE3N6zuK8wdoa6xTWKoxNUNbgrcU5i3dqtrd0wKooa42Ulttv3qHf7XN6fJ8//sIX+LGf+It87GPPo7O5Im9g/oeZjhb3tEDglARfoRKJqaa0u2nARmLBWRj4LBAuDH+WXmKJbEi0WXviY9ytf5OLrqKru0DYV7WpUVXNyWQCSUbWW6aXS7wxfO+NG3z240+y/okXEEtreAyigTWj4nXe4fDUtaWupkyKEq0CRaKWAhvhWBF7K4W0eAuj4SGv/NmvY5zhmU/9OEo3TmlUQLMCkhk0Eb7pBJ+miNi2s1jc1NzDpnBq9rfx/Hjg0oWtDxPAQCDI84R+r4vSKV4YnvvYp9jZvoeeOg4TQWtzkwtas787wMoe96pHuNjrs7JxhN+RDE/G7I8s5YUuB7vbTAbD8MrC41zJvXu3uPrYVfpL3fj5F6/Az8kCRNC7s9mzsyk+ECCp0Nt6sHvKG29e5/LWJaaJ5bGNDSblCdOqjRMtXN7i9umAByeWNFnm1e98g3p6zNbFDS4/s8b+7m36PXh09WluvWP5R//tS5zUNR97+gKdtRU6aUlqSigUOsvY3tvj3sEDrr9xyPFoymD6EkfjF3kiySNq1+ITn/5R1ta/xcFeD6+6jPZHTI4n7Nzb5dGnH8NWPcbmhH4/Z3lseOSRjEeeuUZPLvNHX7/JrR3H3r0jbj/4Kle2Nvnsj1xBCxM+vdT42oU5wwnRyH1/fTUzmgKY8YPDe0Ac7ynvayTHo9HMGwVmRlKKJCSdlcIqGzhJlUZ7j1J65qEK/PwANRM3HgplGm9fKsFoeEQrc9y7f4PP/e4fMK4Krj12gW99/l+ye+ujfObP/Qy9pYzGYPsF4z07v8TBSLG5tqoKdDvHOYvSMtTrx43mqwlf/tIXKCtH2rJo6SnRnAxLLm0uM5wUMBgjRXgdYyuOj0+o84T79+9xcDTCmBqBRwmFFhLvZUgsx+79kIdsQv4AW1gcrXaLXr/NeDylMHVo//Bz2rIQqYS2moYEuRoc8upXfxuZKh5/5kWaghxByM0J0tm9E95GuJcIO4ZI9gwev+B7gaCqKpaXl/4nbaAfhFhrY8HOQh5hASaRkRoxNHS7+fMXvpxz86njcS94qTg5HCJ0zvHt7/Lrn/8aZVGyvNbma5/7LXbv3uOzP/sXWFvOg/JeSB0syjyKDIrVCrCFhTTF1CXtfgdBArFyWbpYJDbLmbiwP4XBSmj31/nYR55nOtiNv5fUdYF1luHEcvdByWha4qVkrdWh37HsFQeoR38K2W1hIowbSFhCFXPI1YboMhBbOBIV1s3g8VahZGipafLhOEEtAwrC4Ji3v/JbKJHwxCd/DK3j8OtFyi9gMTo0dYDHrRB4C141Cuqsczvz6hdQAlvX0PDafigSoLxuLyfLU8aV4ZHL18iMoj485Jlnn+FkWPD4lWc5vf4Gb21XPPbU41hbc/OVHZ5/Yod7N27iJgl+NWFgDad3blPV5WxsmNSSaTlme2eHzYtbgcCAsLfxgTlHxog96FxL0wIS/P9wb0N0aTg6GvBr/+r3kB3D8rLnnW+W5J9q8fzjNe/cEhzZNg8GY24fDnHes317iFctKjHk/t4+f+2jn+GTn/wEK6sZD+7WfO5zf8TdOwOq1POtl7/Os89fY3PtApvZEp1Ownfe+h5W1kxLgWp12GpvcTod8Su/9BLir3yMo/0pX/jTu9y4scPtQ4lub6BlH0mNsILR7gnXB29w6dkrfOyTfY4Hx/zu9SGXkpwXO0vcfu2EL3/7FifjPeqypPJDvvjFL/Hix/4OS1rghUSiwdeYytFKU6RXcThAA7cy0xvzXlwVCBZ8w00Zq/2jHnx3Z+rDO+N9ZDI6ZTwZMJmMmE4ms6+imFAUBVVZUlc1dV1jjAnf6xpjDdbaOSt9c0Zk9MibHBxNNaFEKk1RWlY3L/DJf+8z/MIv/AiPXVZce/QF/sbf/Zv44j5vfPMVFB4R4d2mRaSp5gtwopzTl0mBFw6VSHSmA79mfG8lHLt373Hj+nWErEI0mLXprSyztt6ju9Tl8mOPc+nyZaaDEUoKOp2cwWBIUVtu7xwxLWoSodFSzqJpRahcRcTF9fOb5gjweVVbRmODTDK6nZwsSRDeYmpDWRiKaU0xrSiKgrIsqMqCykyx1mDGI25+80/Yu/9WVDUWKBGzKSGBDM8pF0LzJufRyJmfF++2ZzIeURSLE9c/HJlHkm5hwy9sfhZ+jpCsi4jHbK29m/WdeQRGhYHVo5M9Vte3+PRP/CQ//uefopMfsNTv8x/8vb+D92/xO//6nzKZTELlXLOvpJzvs4WvBjWRAsqpIc96lIVDZ+0QnTV5+NlX088Vy9elQgrB3bde5f6dOyQiw1TljNbQ2QpbTqmLAlvWTAcTlDT0l1b4ib/0c+jlHlbGPlwa9LOB6yLziA0OVCtLWe1lZAqEtaG1wVgqExwMY2xw1GyNsx7raorTU177yq/wzne/jLMmrqUFDGDwgek0KCMBSZqglQMTGF4CJNgQVs+jzwZOXKx8N9YyGA5+qPvsYZFS0M1SZKLBajIruHfzOomEajrE6RaHJycUyqI7mvbKGjrLWGrXbJ/skexXbCx7VtqGPHHsHRxQR5Jway3WhH19/+4200nkZGUe+cd/LMhiTqQByuZO483r3+a1V1/n8LRg5EZce0Jx++4d8vYTPPHcMneP9nlze4eyduzfOOB49xQv+mSdHqYW/Mo/+Ra/9fvHXH+zzUufe4XXXvk2Tzx/mYuXl1hurVNOcw5Him+8dZ23Du+xXRZ0NnoIlbJ2ZZ3Lj2/w43/+Gj/2yRXK02123/kuN65/he9+7zUmXESkCiGmgMa6GulrzKRgcOt19m9f5+RkxO3bD9g1OXY65e7BAwpbU52MMWqM9Jbd+2/x2tv3kQKcVCFNICx1XUb9//301LwQcg5pMzuHD3N7f5C8byQ5Gg3n0KaQgeFAKXSSolWK1aEkX2sdaeEaeEzMinhEhBBnVEoLOUmPn01TwEmKiWX9Qh8h4OOf/ds8++KfZzL1tFYv8bO/+PdCxKg80je9XAGSjJ828rDO4SDlHSWS3FlUngWFFxKSeCf41rdf4XBcgIBpUTGuLWvdHFsa6mKKqAsuXNoi73yKSVnTaS8z5Zjt4wPevr/H2Ja0Wy2SRGGx6ETQUCqFQE3TJJ3n+eHQpnHnzh61kqz2JXmeUZuSYjLFRm5cJTXaS0QSsDChFDKR6FRAPWD3+vdYX38ElcxzwAiLpML7UG2LCpGzp2mknUf280M4X79Ot0ui9fz6PyQxzp7dvB6a6QAzA9nkDJuN//1eaMEhQwSihFaq6XRzHF3+3E//XT7ysRe5d3fI6tqj/C9+8X/F7nFJu9MO+14+vFY0F0DTD+xVYGMtJhVLG6sYe4xKMvA1s1z7YsHabMnF7L498dSz/OzPfYbbb17n9GiK8A4tQCpFK8m4uHWVra0N1laWubixwtLaFVpbV9ANNWRoEovX1yxSyDF6X2Mt4FPanS5SeoanE6a1x5g6Vnj7yPkqUcojlQ25cOVhAG9/9XdodXtcferjhGpWB8LNctnChyIp68JwYkTD3tOkAJqq9IY+LRRceG9nSJnWCZubWx/avhPC08oS2q0WVuWstLsU5QkHx0esbV0g37zE8GjAzeuv89yTV/nE5ctc2LjGjW99mwtLN9l3PTy7dE4fMMi6SLERi83mZyxAqRUnxwfs7e6yttqfrxHijNMw+5s5xnpGJI7ieJ+q2Gf3Ts7XvtLnkx9/kWxwwks37yKyKYX0COu4+9rbbN84CkWXyiP8Kq2WYufeTX75n/53vPPdJ3hk1fG3/85H6fav8MaNE25f38ElbYSz3LhboDd75JdzHn+mjxIp+coy6yspP/vjT7HVT3j7rQEFFZ/9EUWp9rl1P0XSw4saLypwgR0nz0es9AWjm/f4xisFZdJhaanmaOC49+AomDdJhEcN3kz53nde5pPP/jxaFFgVUlbWloRB1QsV+wEmm9kaYh1Gs4bBRrkzzw1r/P6G8n2N5HA8RvhAM9dUDCql0ElFkmQkSYa1NpRuA94n4COhtwyNxpJYPahkhMwaj3chryEErjBILJlUGBt638T6ZXKboYUHFTgvxUwhRBh3htmLyFQxf9xVNfiUauJIsna4Dhw4yXQ04Utf/Dy1rPFGMawn3D04ZeXyCkp5Vpba6DSMw9lcW2FcW4rphMKWfPvNmzw4GVJSsZJ2A+uLDVROzdzA+cK7eMPDZ/XeIeqKo/1jhjJhOvH0ex2E1Kg8C5B1E5Wq+KVV6O+UEmRC3u6zmtSU73wF3e1CK0NkGSJNQYkAu9oa4QPtnW94HRdNSVOI4V3YaEJw/+5dHn/88WjgPzwzGSr+3v34PL/VtMvI2OM4j+qCsyBm32kKU9BMxzU676NkjrcVaXuZzfzTrF92oDK02+LCZYfkbIvTojR7t+EvDVGRoJrW2MqiVIKSAmkDJRiOhVYmAS4U83gXe44lqGSdz3zqZ7n/yl2EDX2wiVKoRHHt6lWuPfIoy/0+rVafVpaStDugFFY4pF887CAIJNhIH+F6jzOWW3f3scrRa+V0ugn1YEA5rXBVbJ+JtH9Ke3QS6NhEJLmw5ZD73/1jlrp9+pceC2co5ojj3QiGTnky6cE4mgHE8yKUqJfCg2eUv0ewf3jI6soq7kPadt5Dr9siyXOqQlEWE07KU7ydUhVT7u8dsbGUc/WJdQ7u79PShkK12XrhRaajNkf3vkhrTVDuWY6njpErkK4Gb2coiJQS52rwI+7fvclTTz8Rb92c4Si0dYTKVRp/I0ogPQ+PO6AyHi8sp8d32DtY5sE0YcnV/O6/+QaXHr/Ict8zvnGbwc0ThGiB1khbYp1CZD26a5f4iZ94jMu9Lheeucinn7tAljgeu7rF9aef5GSq2Ns/4XvXd+lfWEfQ5ZEnP0o77ZKsZXz8muZid8Ldu3u8/vptpNog27jCT/8F+LMvf5vbdwosGu81UKOFYWMNem2DOaq5++o2I5WydaHHjTsJh6c1Do9uZ5hyihAGJWpuvv0q2yc/yaN9kCQgNKZyeBRC6DlqsmD0zhq+hn1tIX1Dsy0faiH8PvL+1a1VMStQC31nCqUl2qSY2mATQ5I/1HsnJCpWFjbVibNLEItcL7F6k6AsJtMh3Y0OxjqUSqhGu/Qf3WJ4Smj4FjIsiHCzKLLBoBdJqJvcAsBoaki1pBxPWN5aYVbuIzzf+eY3uXX3dgQWQ5HIzdv7PHtpi1wYWp0+yytrdHKNsQV1WbJ/cshbt+/x9s1bOGqMSFBZHnILQiNljkDOqLXmG74ZCwPOerSA0/GUsuVZcimj0YQsVaRZjl6gFJPSR8WlUUqRpSntdps8S/HW4aoBuqiwvoWwbTAZXgssGcYEhprGVXcLwUazccKNbVosHBcuXIgw+P88ZHFDz7c0M7iT5udI5q0ir6tUcm40lQoFUVoyORnS7nYpbU1blrR6K4hOwsneSYCrRRIQEN5tIMVDnqeUEu9A4SnrkiRToWinnYX917yOEoF/VrigJH1AEhpaRC8CaFkWUE5PCeOKI5ogMlaW1lju9uhlHaTKQk1A3o6IzGyl5gh583iMTgJxd8mt3QOqqWRrS7LcbZGkKWJaYF2FELFCV2qkDHtN6STwHKcpOk2Q1YDq8DZ+bSsUokkLPrYKiZpAQm2iIXTxGvzMs29g1oerlRdW+AOV1Q9SlBL0Om10mnG6OyRLU1rtVVY3INEtTvfuof1FPvvYZ9m4MKWdDPjyF/4ZfdthKT3mYs9Q3NrhtIbrI8Vpvcve7oOZYxAUdzMNxrPz4D7D0Sm9XhahweYshgg76Hw1i9ZhYcU8eFOz/WCXVppiizGTaodXX73NZ57ZArXHK994k5afklvHxppm57imdjmIBCkcTuU88+wjrPUvM02G7F6/w+eP9vjE8x/h2hOrtDdLvvFSxpe/+DLt1Q3660tI02FnMEakGesrGZsXlxgeVHz9W/coXEKrl1F3LpFXgr/280u8c/sWX/r6dzk8yhEClpYtvbbEFhXv3Npmah1LXYWbTrh59z55K6djLVdW+qjBCIBECcbDfd6+/g5XP/UkUpahRsSV4EPw5WPeu1nncC4cTelFSAdEPlhUsBvCxUxUKEp7P3lfI2ltxcy18yCcQHsVCkyaJGgVSw1EQ7smsEbilEJ69ZCiW1Ru4QIlwRAMBhVrV1eofI2lppxK8jJByADRyNiRHf4+slRE72FeWBT9g6gsqtGI7lKX45EhzdJQHCBhfHLC7/3W71DHwxw88pq7+zt8++2ca6t9hDXYuqDTTimrgu39Y+5tH7B3vI/VNcZ7ECGn5GY3ISx+UVdxqnj4TxBCfUngbJzWFRMhSHRU6tJhTBVyIbM8l4wVh8RhzZosz2llOYkOn986R20sUtU4ylD4oDVeWOraUxk3L2qKMypj0D1TZs1i1VXNcDCk0+mE+/19sf4fkriGTYRZTqHp5xQyGkM5/1IR5ZCRQD7wugZjKaSIs+8URTVgZaVPVVXkacab3/gWz/65H0EJEELhpZ9RXX0/I9moqgY+RUqk95TFlG4/oxiN6CytRlh17mw0MH9DQRaGazcwuOAbL32Nr//Z50mFwynwNnzeLM2wtUB4FXpwhSRVGqf7aGlDFMnCgIDGCPlYpIXDOIMzsL99TJ2kyH3LeJTQ7bRRWUJHJUjRTFQJxkIpRaIVWikEmkyndHpLyGIfc/PLqHYHkbchyUAHzlwvEgQGFQsr5qmX2aXF6DM4qdGToDmvS70eWZLyYRXurC/36XRaCBTD0QlT6bFGMbV9Hr28Sl9VHJ+M+MY3vkuetsiqV7iwsYe7FdCm3d0ucpzx6mnBkZvgZMm4qgKqIRajmwCDj8cn3L1zi4sX1kFYnAuRjox7wnk/R4KaVJaIY569BztC1vtcXs84Oqrwacr927sMHm2zmSu+/pWX0b7NEy9ssLqeYpxg77jGxK17YW2Nn/rsp5BS49whdmwZ7p3ycvs+dU/QV4o/+5PfYX/niN7lLYYHY2w9ZXlpjc//66/yl/76C3z8qZSX33wL3V6lI5eQ/S4dFMlSG+P6PK07XNha4w+/+Kfs7kxZX8rQ3nH/7hGng4q0m3Lp2irUgv2DgvXVFVado3+1hzvJqIxEJB4qy86dW9SfeDbyonhqFyYFKSVoRtHROBtnvInwPR6LgLQ8ZBPFB6Bm72skA+y10MbhwVmHETb0o1mDszXOCFytcUrilcQ5PSu8mBdfcKbQxgkXJmRE5TMdFuQ6RQjD0JSsb25gKo8UCUoYmhojGXuGHiZPb8Ln2bQGISjrio7W2OihhSpQz623X+Zwfwe8JdSahqrS2hV87dXrvJJmPLrc5ZGNLkudFA8Y67G2IslAlI5JXaHTNsI6nJeEuneDdzWT4TBMz268+gVk2XvHtC45KkoudNsIKdBaYq2LUcwcKhSiGXmkybKMLElIEh37UYnk7ZakDu0QeHDGgtRwci+2Uoo4zaLJj80NQPP/xo3J8tbc0fgQ40nXQJkzLRuvMUaGIo4dUzJFqRSVxKgnUWHOnNZorWcRuJCSqrQkaQudtoApJ0XBUy8+ixmWwSmRi/297zaUs4rj+SPRKVLY0pAvtRkMT1hpJ4FOUYpZC1agcnQLEfCcLerl732bX/v1X8FWQy6ttEkIv5dSkmcZaRJJprMcoRP29/Z548E3+Jmf+RRpHMlGhHXDNTejgsI+MtZha089rZkkgjTpYLynMnWYb6qTWSuXlAKlw3snWpBoRafdot3tkKYJ3lV4M4bahXYRbxE2ASVxUmE91DI4ry62YM2h1sZoemYzJYObj3eeBw8e8OQTj39ovtna6ipaK0ajgrKcUguJTjT7h9vs7O6SKUertcIjT19D2Tad9kkwqnLIndOaNw+G2JHloBIYWTEcnrJ4hhqi9/BzKCx7551bvPjxT0EuZ1F2WKKHFP3sRcBj8WiSxNHeWsIWCesbW7jVNqY4Zf/OiP2be2yt5ty/M+Ttt2qe/shF1laXcNTsHTv6Gyv84s//FL1uStrSmEJi8hy1OmVaHfPyd25x//o9bt3fY7k7RbLC6PiQV7+zS2/lEawf8Ee//3le/cYWzz99hbXLG/T7j1KMpkgkWgpS55F5n7p2/PWf/Vlu3PgCr98ccHw6YX97ik4SHn30Iq2WZjwaYZaWSJb6VFbDlqW4vUc5DbMshSrZPdhhXJZ0VUjfGeOwzkZ6UYtA0RSszZbtjPMYDOmsiIczacn3lQ+YJ9m8wVzL++gVzYxf7Gezzs5K8ZV1WOfClOnGg1yAyJobDqGHzJaWpRUFCqxIWFJJ7N9yeGniHL53ZdXiy4iFF/RnnqPSBC8gybIGfcLXhrdf/jZOjBFOIL0m8YHP0nqL8TXDquZ4ZFntK1rdjE6akmDDjZlaxlNPbQW9JA2z12SY3E2MzsajAZUxpEkDCcf2BaD2DlMVbN/ZYa3fQ4g0etaaBoIm3k5BUF5pEsjWEy1JlESr+KmtB+uwyiBtuD9CaqT03PvuGxRTjUjUTPmHDbRgsefLxnRa0I1RpFhQbh+OLBrIIMHYRGUeDaHUGqVTVJKi0gSVpMhUI1KN0AqlQ3SZSM3h7j2SPMEJh07aOKUZlhapQnXyw/uz+ffiNIvZtcRwXCAQDoqyppu0UGka4B8gjEALik/4mesTphvENq2de7f55V/5J6HxHsd0XKBaOVoEhimtJWmShChXKEwx5QvfeYVq/RGK6pNkqUBgz+T3mgDNiUC4IK3ECkshIYn0TkKCsTUqJgPUQrWuFAopFEoKsjSnlXfJ0hwlA4JkrEUYi1A1PqIX3obiMu0kLQdhILGNxroZkyUWHLDmns4L/ZaXlqJv9uFsvDRN0FoxGA7D1SrwIlSgOmeYOENhjrh96w4vPPtx9ocV5UTB6REHTnAwqhmXHlMOGNcV3rtIaDgX723cUwqB5Gh/j4P9Pdb7T8xOpfMOhUJ6HUZjxTPrY6Ww1zXOJ8jMUnuDamU89aPPUtoSfVpw6/W3KSrH2sVNKrPN7vaEG28c8dQzmq0NyaWtJ/nRz7xAv9vGt9vkboTJc1w7R6YCM0h4++vf4bd+4yWy5RW2tnJ6G47Hn3uWrHON0WSJlQ3J9o0jXv36Lb712pBf/Fsf49lej7zfQtoKV1qcrpjWJbqv2Wj1ee7Rp2m3XuXXfu0Bxk3ZunqRpX7CdDKmtpas06G1BplT5CzTXe0jB5DqhLIcMRidsHu4T2+rHXaU9eHvVIjMfQxAQiTSJGjmaQjf6L54QJriawAW7dL3kQ+YJxk3eePxxZvYzGFcZIxYjBxDhOPOVhLNvs2A1/B/KZgcT8n7PTyBrksQufqkmk8CeVgWU6FeRM7DuZduK4NQCdYY2p0+wtsw6cEb8kSBhyxLqN2YVCYMqwopwbgmJxVaR4QUAVYTHuU102rKYFTiEeQqPB5maMY5m15QTiaUhaGT6AiZBG7PxuHQlWVTlqTaR67WkLea2aYYAUqlZlMvVJyb2PAohjxnaHNwJtxwiY19xpITJZloSSpE9D6Ja9MorahZo9c6Ho9otbL5bf8QI8lGFg1lM0RYNlCq1ug0QScJSZKSxkKyJMnmaybVjOavrKZsbVwM/JPSI2USokfJQsEP78rJzv71kIc262QzHmMltvZImYZo18+5SsO9b6C2wNNZlVO+9a2v8vk//E2GoyN00kbosBdLZ9BZi8DZoSirksOTY+7c3+WNt97hMF3msd4Sp0en9C4u0RTQzMZ3hVE6DciPsTXDyZi7J2OuLnWRKo4cikbRi+Zz++isgVSQpposz0jSjCTRsz5n7xzeWJAWSUko/Epw0lGUx1TesDgEdRbVekLuQEDTpyais1HUFd1e74x++GFLpsNc0eF4GNahyec7T2iqEjhn+N73vs6br79GnnlSIdGmYiqS0OvsCJNVImrgH/o882gyRDWdTkarpQnroWIw0axZUxQ1/1tQeOcRwpGmCcWJJJGAUxSjKc+uZuwcThjaBJkoLj6yhKkc+wcHvPU6/MIvPMZ//Dcvc3/fsW9XadWHeKUojSNttRmVJUcnCZ//yluMbMnoeButVvnEzz/LZNpBtVuQKGqTcv/OAVVtOd475l/9q8/zV/76T/Px5y+RJyGJMxqU5HZMP51waUugzCYfuzrh6JMDvnn9gKULKYIKayyShHavy/pqj+1RSks61pZ6yKJAoRBKUyE5PhkiLvRAJHhb461F6BTlZSQpjevrF+DtBnX0i5F6hK9dKG77oD33gZHkYjK9uYGzBLxvGuAXvi/+3Ixfh1iFeLYt04uYjzwasPX0VvBmEZHeTS4orabfbEFxyrkSQgQqMTHzXC3jUUmSdZgWA1qdHkY4hMiQ2tJZvRwYa5RBq2A4ZFWH/KIAicJ7HSdICKyzKGGprON4OKE0DqUk7SQwl0gEwilMHYK70XBEWYyx7W5QIj5UTDoH2BqXSK5eu0q3m8Ycm0CrJk8T8mJKKhKdBXIGpeKwYRm5NsO6em9xziBdLFYyLs6QVBztj/D1MiKdRzGNr7EIVTf3c3llKXC2Nov7IYaSril0oqliVaG6WumwHjohSTJ0kpGk6dw4JhlJkqKTALdKFRyKqvZ4lZO28tir2/TRLuyxMyjHw4hHEM9iBBnWxxQFrbxFOalIs9Y8omucQSGpCsPRwQE3336HN954k529+2xv30EmoNttBsOS7b19NtZWuNoVpFLgZcrJYMTJ6XWs0vhkibsHJ0zTmquPX+PmrV063YyljgpUevHgO1yogvRy5kHXVcXOzhEba2uwniNlkxtUs17OsD9CTUGSJKRZGiauaB37f+VcuXiHczXKROWjQrbh9NXrDAcl5O2oLMS84Gl29s/gYAAMxyNA0MrSD80101pQO8e0KGdIyjyP2ITqwXg5V+KMxkjNVCa4ysW2JTvTR0Hm4/vmMHujwxy9Xo92pzMrPBMipl6iHg1PXmyti9ciBJNpSa0ldS2xpsDVQ65trWF3FLvjEmMqjIT1y11MXdJfbfP8Mx+nm1/lEy/C3Xd2eTBc5nRckHeWqV2NMzVf/7NvMTDLtNZbVOM91rZWWOkssz+Auk5xTOgtr7G8nHIyTFAyY3y8y2/9619jMvzLvPjxLVQ5xcsWuvWAJx/R9LoFt+9Y7uwrnn7haf7D//hjfPPlG/zpVw45NZraVmjdIZUOaoXJJWknQ8hh5Lo2SKvZ2z1EPX85krM4rDGQZEjnsTOj6OMaE+0Ps/XzDfWfjy1KwtNUH7/v3njf374L3zwbfQTIdfEi5t9nT5+hemcVkURQK4/yjqQ1Jc9yROTZa4jTxaKxnCmdxSo4PzO83jU1SsEYV/WE7lKfo31BWShOj4ZURcnRwT6vvX2L42lBZcPYmNoEpRw8bBuuSQUWIeFDHtZLz2RSMBpPkSi0iMVKKglRoFcIQu++tYa6mmJtHgAt70AovFc4K9i49gl+/C/lvPnKdwO5uwgQWPicId/WDBYORlKGgoqFNgfvA6+r9SCcCRBbpIp3eMqixsyXCSK0tYDMzW6O957t7W2efOKJhbv8YUaSC1BwVDCh4lIjdUKig2FMk5QkzWZwq8w0KtMkaRJaZlSAwqenE5K0jVRZIBqHMClGzBv+pZQPKbSzkey7JPoRo+GAVqfD8HhEb21pYX0du9vb/PEffJHXXn+N+/dvkWpFmmUhupUOVMJwOGZ3Z4/S1+zsO9qtSyjrSKoRVeHQ3S2e+MgnODjZYfet7zC1nr3hJ3kyyfjWt97m2uMXubrRI5Wh2El4gZIO7+zMmU2844muYKlVolUPQSBe0A8PJBDRQKYpiW6HdhYlZ+hO45h5Z/B2oSrQeVCeohxSuAJ8zjyIivjve24nQb/XnztxHwB9/aBESI+tmPU2WmsDY9YMy144TMLivURRY62hEpZmmHfDwdqsa0Mg771Ha4FzDms0SZpz9epjKJkwnRS02mFySl070jwjQIhyvsb42TIKLLfuDtjZh2FtuVynrK6scDodkPU7+LsjrFRUfkiiHX/vP/ks19qXuXUy5qVX7/Ojn1zn0auaya0BpMvUTmEmU15+6TZvvTNEp0t4X7G5tcVf+psfI7GSpUeWeP32lHGd0L2wyV/727/AS19+g1t3BRUF5TDj93/7Dzg5/hE+/amLrPfHvPjUFdLpCZNRztvfeQOXCS48t8H6Wotf/Ol1Npdf5b/7H+5Qqpo0dxhXgqzx5JDllF7hjWZaJwilOTwahJGBykDpqesa2oBo2Lfm98vP5gkvOjuN6XIxAHSzIOH95APgVrGAqosFGzmPJud8eIsQLLON0njfZ6CsuOe0kEwmlqS9htYh5xHgRzkzlFLK739pjcRoV0QD07RalOWE179+k9/73T/hreu32T3ep64m1NMKaY5wYop2Bf1WTmFrmtKexEvaCpY6Gq1FgL1smK4wmU5xPvS/GW+prcEDpg6/t85TlTY8XypwDVDjaSqwal9y8zvf4/W7Y1pZC3wBIkAoAma9qM1XaPJu+gDjGKS4vs55rIgVvyLOCfRxkLP3eOnwIkTXVgSAdpbbjR6vR+A8XL5yNRjrD9k8BglwciMyFurICDnPINY0RpJpgk4TklSj0/D7MDw4RKX16JT1tdUIm0PE/gKUv4BSzGdPijPf4azB9E1kJMALS6ubsbe9zVq2ysnBIbdvvM1bb7zOt7/9bd65cQuZaKp6yvLyKqNyRJIkKK04PTpme+8IKRUdAcI77j54gLu4TttMuHj5eZ5+4Sc4GpwwPhmz0l1GFgO+/a2v89HnX6DEs7s74t6N+3R7mkeurLLaSxCuRrgwdqqqLUu6y7VHNsl76zR1PiACfWTzn5AhckyS6JhptAooR8Nm5b3FIwM5t2vgxHByHILTyjIlIRUh29lk4ps+yrDu/sx6eu84OT5ic3MzPuXDQTCEbJhpw1oIGfqLnQtsOTykB73wTJ3HeoH1AZ1o6B8bZyI48HP9lSWa5eUeUq5z5doVrl17BCEcThisMQhUqICOhnaxNWFWrOgFzgv29gwHh5pKWh5se5576lHeuvk6S4nkZHRMTU6eGn7qpz7CX/25nyDD0H3jbR7sPuCVtyzPPnOJ5z+6zOs3xzzYEbz95i0+/4WXMK5CKg1a8tmf+wmuPbrJ0VvbaFa4sql46+42RiVsXX2Bv/W3n+O3f/ePeO2NIagKieebL71Mmgz4j/7WU6TpmJSUr3/zdQatKReXDZ99/AKyvYovpjx5ZZUnLm3z3ftTbt2UTKs2N/emSJFztNPmwW6KMILaJggtKJhwOPS0VaAmNXVII0klEC5C3NbFO/UQjCpCpN8gHOE+LpBevI98ANz68B834X7zPWwWL1z8mtlLZiXus63VQDphJFGtIMEzPD2m3emHZ8SKzvnBXVBW4qFLEPMWi+Y5RtQoq5gOK/7FL/1rfv8PvspxsYfHoJKMqphiTRkMk6tIpcLXYGxoj5AeEinotBKWeqEfMdWK2hmMsRRlRe0cpTc46THeBSLtOJy6dAY7teRFCy8jXyAVwgW4VYjQAmLrmgeH2zxyQaE18VAGr1MloSpTKjEryZ/lZWUY/9XcFdfkgptoyFu8kCAVbd1C1bP4+6xHFazpLNA/OR0gCENm5/f9A5yTH6AIoaKSiNF6Q2KhdJiWrnTIz8ZIOxQ1hfxkk7+dOVcOirpipZeH6C28wxkYf7GyNbz/uyPJh4t4mhYLJxwyEXhn+NV/9St87c++iiAUBB2enlKLEm8KHBbjDHXtMNYxGg0p64LV5SWW+ms44yiLUw5Pjzk4OqHd6vGjH/9zJK0e4ug+Qkkeefo5ut2cr3/tS/yTf/5P+NHP/BiTfIpznm+9fofeKy0ev7LOZz71JN0YGTsj6T/zaf7m2grf+JM/wmFRSsY1CJ8tVLM2EHUseGr2XiBixguBQ+Iswflq8tzehgjKJgynJSeVZbMNDTQ5J8xbPMBn13M0GrK5sQ6Ry/TDEC8SjJkG4waxS6Wh1F+IRKIRdd5F5CikUxqKucWg2Tl3pqYizXLWNi6ztnaR/vIKWZYhREjnhOpLOQPq5rLosvrZPR0MRqisQ+prBkcl46pDrjfZO7lP3muTK3jxmcf5q3/pz7PU6pBow4995kW++tJ3ubN/hOz0+djSOo9dyHjtpTf58he+jBW7bGwt85Gnr6IlPLWVIA5LpjfuMd1ZZu2jG2wujxkOR2jXore6wt/8X/4VLnzpG7zy2g6DkceYY1775jG/nd3j53/mE5w+uM3xoKLXXuHKoysYmZCMBiTtNiL9CFtbN+GdQ05PStorCYWbohR4tURVb4O11MbgjaAG7u6VPLZO5NOuwwoJGVsVI8mFJwQlfmYdomHUzJw05hHl+8AcwL/F0OX5YVrE54kR3MLNwz20wRuFE58sA41jKHIRaARKCUw9odNfjzDr2RxReGyOwDyM/DaGclYE5CXD0Sn/xf/l/87nvvAnVFVJZY/J8tUwjd41htuTADpJmBqDEZDJwO1qnWWj32dteZleuxMKfqSiKA1F7RnVBuM8GRJTeXzbY0yFkgnOVhwVhnGp+NXf/jKfeuE5nn16i+W8WQ+B95aprajEFMjxIhhPKRVJU2kpRYSaxSySFA3NX4wCXPzPEpLP3oVmdYnHW0jUFFl3FyCvBXy+uSfxHuVZtkDBFuGK9902P1jxBAQvMDUFxS2Uio3uSahojYZSRcOp9NkIXMQqtmJicDJF6DRMWoncpo3jNW+HEWcMJZyNJBf/3aAVrrBYEr725W/yK//D/8ju4X2SbpeLW89w5eoa97/0RyglqeuS5ZU1+t0NrLNU1QTrHF3RJUlz1jcuMh6NKcaK8WSKx7G6+SRFUXK69xajkwOKsuKJxz7Bxc2LrPdbfPd73+Pu29/EXHiSj7zwLG++/VWgxa/+zncodYdPPrtFp+txpuJ7X/1DvncHltotunY820OCsMe0UuikyX1H5p3I+CRmhWJzJ8u7wAcLhNynBOc1rVREpy/0DeMFXsShwCyop4c219UrV6Kj8uGhGIIwQ1LrBGOrWXuVsWbhWfPWpIZqMwxvn0N5s9eLa+acDzlgIej2MzqdVfJ2Tt7qoLQKrykEDUmKFGJB3z0MBQb9K6UHMcVUFVp5hgf7DKcXWVpaYjo+QcqKXq/Nxz7+LN95ZR9R7nL1qSUu9C2PP7bB8OAWd7/1He5ff5W7dx7w+hv38dWUFZ2iVJf93Tt8/LGa4Y3vUZtnGe3X7Jb3qdMuT360gzu5w+63TzhYeZze5ZRLm6uMBiU3br6F8bC80uf+/W3+5a+e8OyTF3nssascHhxx/d4R6E22llMYDHljf41p51ny7i7CFCgMuUip0YhEI/GhQc9blARnJQ8OS66sJQgR5s16LELN72FTmRLsUdP2IaPTLc8gn/+28r5G8mxf2Gw3Nf97SOTsCY0qiS8ys3JnmVLAVw4hNUnWOjPIGRk5LsVcIZ1pAJkNjwyGsaleKk4n/Ff/13/AH37ui1TeYM0E5xOUamOqwIJjvUV6TyJkGEZrQ1l2qsNg2RbQy1ssryyTJxpbl1hnKasxg3FJYUMEp6QKPWjeU9UVaaKpSsNoMqEwJ7z++i3eePsBlx+5xC/+7Kd44YkWVimshcHUgEpCBR0WpRVehGrMhm1HNcayWbOZoxKUlWuKpuLnD4TeYZ1qYTguPaV1ZF7Mtk3wLNyZwmCAwXjIxvrGbO8EuPzhZ/3wRCk1yw/KCH0pqWaTZwJ5gI6FPA2ZgJxVwM7zQTA82WZtpYsmsM+AnfMKRydkVoyzkJ9b3PjvormK56Ke1vz+r/0eX3/1m1RMIU1I8x4r61eBAuE1/d4a03LM1sVHKYucfjvj6PQ2/WQJhcWQ0253oTJ4m6O1xlnD1voGh9u3yJLQIrS2vsHyyjJTU2HTPlcfe55up8ej156jLo8C4Fl7YMLLL79BVVtu3z3kwvoyo7Jie2+b9oUEYluSkA4hQWs9M5AyfjUw/8Nwc9hvAu9C65ZwgjC3IxJ+eI2qwUVCgQZPOhsLEQ0ogGNalhwfH3Pp4sW49z4cM+nx5HkLIYhD2s1DRTjM00VA02YgBPNpTfGVzjxfBMdYioROt0O316Hd6pOlaSg2jIPDvZ+fcaLKVFKEVjhiBXOEyqfO0mplmOoY3V3CVhUnRwVXltukosdHr0359E/+CMfHt/j137hJ6dr81M89x3/4iy8i9m+yduM2LWNJH7vIWstx9XKHw+Ocuk6ZToc8/cKz/IWf+SiU97j1xjZ/ODpldLvGvHKbT332Ao8/c5H/9F/8M7YLyYQlsJ4XfvwCP/ncU1hyamvRyuO9Yntouf2Vm1y9eImV1SFbF9pQw0vfNtzcn7D+yDU2bn0bY8ah1U9oHBaZK2QqqcYWoXKSLMVKyTt3dvnk80+j3RhTl8EJUTH8DlAlvhkSLZpCnaaqdZEq8d8eLXv/SPJhzzra6vCPZjPMv8/plRajwTmk1UBg3juQknI0AZnS9E/N8mELxjTwoc7ffzZuqMkLRc9geDrm7//9/xu/92/+iBpHaWqMr0mzJZyvMa7CYgNM5CyVciR4EulJlMa64H20E4lKJGmWkmmNFZ6yKhhPCgbTiiJW7BprqJqchYFCGCbllNqGaR6tusT5knv3HvCPfr3gb/2VH+ff/9F1hKjxlUFLEDKU2igZ+td8bEkI+cfQK8dMicuHDGSolrUR1oJwoGrASs/SUpvjgZqt3AwAd800+rhdvJ/BFrOS6Q81juRsAc2ioVRzY9gocRl5gZvHzzhiUjJ1hrXlDoI6sBkxzzs20eb3jR7F/FoWn9/k3IWAL7/0ZX7pV/8ZF65ewvsa4ywXLj/KxavrvPG9P+J0fBAqanWLtNVmUo8pnAlQmfM4X+O1YzAcUE4nFFVBkmakOmHr8mWq0zFVccrg9ISV9ZTd7ft0ej2qQUGuWkipMEbga0evv44SgrX+Gqe7N7mZ57itVV5/43VW+mD9FE8NIq6dtKE4TIfIsXFAmrWV0VGVs5ahpvUrjkh1oRdTzMrsLS3l0aIOKkH6OZw1y9k1RtDPHJFZ0dRs/X+QO+u9RaiE0aQKE3xoRio1aEvjNYWvpuLaOYt1LjpfzTmMSEyzh2mMqwQ0rVZKmqTBP0YgHFhvsDoJjlddkaYtvAwkJfJM1KMRXrLU9jy6OWWpM6W7Ckmqyd0tVjde5OTA8sRzj/D0411e+lJNLkD3KtpLgrzTwe6tsCJ6rG102fyRT5MvrSGFRsZCROsNXqWopIUtN2l/4oA/+OrvwIOSrit540/2WfrpjEqN6PXX6eaBHSzp9MmWepwOp3T6G7TzFJFPuXf9gJfffouXr1/n7/4HP0OS9RgWE+rkIkl7Qm0kTz//SbZvvEKuazKlqawj0Y4kNVSjKULmKKtA1Ty4v8/J6bMsJzKgfE6hdQtBPRtk3dynJmVz1lL5WfAlvA/37gPy4B9YuHNWFnIZs/xheJpc+BnJrNQeKWYk1HNoK0AGR6NTlleWYw2EjPUU8wueKb2HrigoqrnpLIop/80/+If8zh/8MVOmOGupTR0rITVlWYS6T28RviLRjlyG4z+ta7yxWONCIUPeJtUJ/X6PtpKUpeR0dMzRcMLYGTweJSRKwaguqOsq8ABaS2kqEBIXR4VVxoM0JMWU3/qDl3j08mWuLGmUzuj0llFyipKCNMmpqjIsVRwDNoOa55+aWWm6CF69daG/SohA2o50eGERJmV4MqSyGakEkWQBDBcCa0MfW9P3ZqxlaWkJv3C4weM+vEByFrmJBQdJzhYkcPU146sah0o8FPkgwBYeW2l0kgN21tiyCLW+q/0DZsaw+XnxuoQQCO8Zn475pX/6z0BWjEenVEVB3mkhdcrR8QnTccm0dFR2QjtPcZVBWoNMCI3MsQJVK0lhKkoX9vTK0jKtriaVGqc6FG6X2jnWL2wxmVRMhqccHuxRmyl5p83G1hXK4YRufxOpoVeWTEbHHNy7zdNPXGKyN6HYC3C9bIpTlEDKCFc/5FzMv5r1DTCgELFi1kmckDgZIQdnEV4GJYWisJKedzjUDLRv8nqiyQ2Jhps0zA5dWVmJazt3Sn7Y4lHs7+/zkeefRWnBG6+9zXgSWlPmaY6wJiGnG3WrCAT6zodK+3BuFj9DMLKtdsba2nocVOBn0YzHkyZx8o4gQNxzGO2swyosgoJOK2GllwSOmbogTXvIsceokk//xBKTk2Pu7R9yOq05Gk/IkwwtHXUxwAyGVFKS6BZZ5wJZd5Uw+ramqqckagkB1GWJUm1a2RpyWPDs45bkUHN4fcjvHe5j5DqkSySpQlpLNalIdZck8SHfPk1ItOD4qKC/uYrOBd+7eZ/cV1y8sEEtOmytZRSFYanvWOvcYzA9YdJq48oUJx0rPYUfG1QiEMZgmVKPK3a2D1m5IrG2xlmQQkdEbWG9FiyjiDdrZjADaXL4t7f4D2DVf3+49fs8MMtnLHj6s5zg7HDJhWhw4eDFvA9C4KRkaiqWe6254pKNMfDz/q1FBXamkALAUpUV//C/+X/xa7/220zqgtpZsBbrDIlqU9U11thQLGQMmQ85u7G11NbijEMr0CrkI0sjqCtHkrZp54HnbzBxHA6CQWtLRZ62qKqSiVdYpUmomBQFxoVaVusMxtfh+oyiS4uj7Xv89h9/ib/3Vz9NpR3t7jKpqFA6DOBteFrP5mKjMo9rP68IDBFhiNwd1gVl1nDhemo6uUQWHuctzlimVUne7gaU37s43BWqsuTw8IBO+xEgTrN3LvQQfkiyyPfbEJU3u9FFL9ALHwZbCzEvGGNu1IQQjI5O6edtpEg442hwFiFZ/LvvJzOjGQMKBfzOb/wqt26/RZpKBoMTEqXIW6u0Oy3aWcpoPML5glbSItEOZxxKZaRpGBotpWBaVjg/RSQJWaZZXb9IK08ZF2OK6RFeOqbjAQenQyqvWeq08bZg25Uo7bFmyqQacXB0RN5JcK6m3e4xGB0wng45Ho6QrRUyZXFFhRLglEOmggSNUtGZVTLke2cR+iLMuKBIZKCbFMJhBCgf+5o9OGGpvMVYgVEu8uY3CEZzf+JQ5Rmk79nd22Nrc5MkSThrXH64cnp6SqvV4tLFy5T1hFne+iEjKSO+qrSMtJ0LqQxk5EINyEzElhEI2u00wLmE+Z/4+VBwKWN6gVCkFgp+mtec8y3jJd4lvP3Wfe69NeTw6BR3XJKqI1a2pohv56QXe/Rzh90UrK3m5HKKLVKkTXBVgSkmmMqjEQjGjI+HlKVEJxmtdh8vLAcH99FJRre7jDCnlG7Ki59ocf33DznZLjm4fUq91EZ1JcJpqtoxOjpEy0fZWNnEyxJXT9m+sU91UpCojAubmyRovvryHfR3t+lkm9TmlKPBlG53hU9/8tNcdddZnezz1uESdjrkpDXFrzr6ffCuwpaGUtXI7Ji1jRV2d0bUZkwrkyF9YM+mRubF1H7BCZsHV/PujH8HI/nuTRuLumfJT2aGT9AYxsYOnoVZF+FWhKSuBVXpwoSBMxsx9q41kcJshwDNv6M45/nlX/qX/Ktf+Q1Ka0OO0duQT3ChbcBYi5DBqOA9FkVlK3ykMgoQEwhhEVpTlIaqqiiKmvWVHuXpiDsPjiisJ1MqtB9IzaQOVYWToqKvBWVdY7xEqQTvwbiSPG9R2prReEiiM1594wbfefoJplqxtrKGPtyLHpCNObFIviv9Q3B5kw9SWO9C5Z0PzC7NODUfp06EX0oMAlfXVELgXYk1BlPHcVvMIyWlFBe2LsyLMuKXEh+wNX6A8q4cYPP4wz8vkKA7Px+6DKGdY1QNWNlYxYo6VBfjQfgzrR7vMo6zrXaWGi8gGOHxG69d57d/4zfp9jooITGjEdZV6KyFNxkKT20qFB5TOoy0DEenZJ2lWDWq0CpEHv1enzRfptvusNTv4Klp9zqsrm/hiyn7+4q83aadd3GFQCuYTAqyVGJri/UaZMJSv8/u3gOEFhjjmBYFew8eYHXG6tYa66tt0voOIiIX0pq5Q7boyAo/r54XoT3IeeKo5RgRehcRyQYlAu8Enc4S3c4OYZpp5Lr1Ib3i3Nz5m6GXwPLyMirOMP0wUf61zRXybBmhElwxxjmzYCShMZYQ1tc7E/YbDToxd+SEkDSEKmEdVaC9kwqBCuPSvIx9mAJPgDsVKqJywfkNnnFzDkNLjUVTT0ZsH+xQ1Q6HpDIlSXdMPR3x5jsV9fEpS2sbSKVJlWQqW6RJh7IyVJXB2gmjYsru4SlVVaGSlHarg7E1J0fHKCnpr6SMxsccPBgykWu0Li3TunKXg+/sotJVpEtxtqa2htoU1KeOjTYcTvcpTJu87vPkpQ5utMM3v3WT7bcKurml2wEtDMo/wPkpO6dTeqsXuPb4x2kvaSbDY+oxHDw4ZH97H60UdTGhKCcoldFfajMcHpF1NpAyFE2SB87vuPgztLGRJp/e3B9/xijOXbj3kg8s3Jl5lGcQhHkVavgei0wa/F7MCyFmhAA0cFU4KNPhkOWlLsmC1zrTV2dgs+aX4VA2WQIv4HN/+EX+2//nP2ZQTTCRmcG5OrDQyATnLYlOwSdYHAIdmDEAj0FKHxPmml4noy8NwhjquuDuvXtk+QXefucu2wdHpInFGIWzjlE1YUKICCZliXCakYXaQ5J2SSKhdZq3sMWUYlqSrrRx5ZSvfu81Pv3sozx9aZN7h69hZKCasyxAXNC08p25lw1Zg/MO5w3Oq/C8MDgg2FXhEViq2uBlipQp3huSRAEWJTShNzJ4wds7O6yvraO0mkVX3num49P33Tg/SLEuJNhd5AWeG28CbNK0vrhAcvzw88LfeiaFZ7PdCYVgfk42AQ9BrbO9tUCa7xeiywbelzAZT/hH//gfs3+wR5InFGVJbSrQnv7yKtcuX8HaAZNJgUYjvQ2tKVmbTmeFNCnwzlOZKbWxpK2EXrfP+voa7Zbk/t27CLHMZFAzPDpmNCoRCOrC4F2La49dYXv7DlZMODwahLFVQiB1O+x1WaCwqJZiOhnyzAvPUR4fIqSnn2p0LHQikkPPoda5AZvZsZmiWdh3TuCEmLWxOi8QIiAPpjhmWha0WjFP5yPUKlRsmWgaQsJOc95jrUVHI7nILPzDlnbWRatAkl1XbrYH44mY7QVPdBqsCQ7FTDHGCJHGYMbmdmFRhBqHkLps+vJ8QH/iEOtmb8+LEuO/F95COoHC0l3ZYiI36Gxcw5qaajqitBqRbZK2W9x+6zbDwZjVNYVzJkS8sVrZYXHWogj5T+8tVTmimIyoqzCmcHNzi067x+HRLjtHu5yUijffOmacKzqPreAHfaQ/ojYlqUrQeUotHM88doVh8Q7ffaWinl7G1BVXLnUYjktefe110tYGIlW42Opj3RJZb5ml9SVqkzEtl3n5G99jZ5px/8Yh+3cHsRDvFOcsKk3J751y60bNE1vLLLW6VKWH7rwIEr+gLxbu75mffTOSjEjz9/574wOMpFpIdgatLWhaExbyGI3r+XBeo2mAj98bJeSVZjIasrS8BDMlFX8niQ3wfnZqg6dKNM4G4eHV77zO3//P/wHHoxEVNd76mYH03iF1ULJaCaRIwVuyrB0MXaRzUzp4Q4Up8brDR164xpWVPLDWOMHe7h637zxApob1bs7RacnQSApTg/dkQlLUhrI2VMahkxSdrdBdWmV4PMTJHEuJtYqqNCRZzv37+zz62KM8MhhhFw+WbByOGMWcgbsaPL2pLgw8ky7ySganxAYyAAFgmE4thVS0lCbMSQxRgY3E0857vPP0l5YQKkDEQoR4SwkQyYcLtwaj5WiiaOctRCjdu5AfczZ+LfIGW49TlmoyJfMpqZBh4swiwCrOGskZYBH3NszhQCAQMUR48Wtf+FNeefUbpLlGqgQvLNY7RqMJB/uHTM2YRCd02xmTIseamrquKIqCPK9w1Zi6mqKUR6mEdifMhrTegE+RvsXmxkU60nPnnQcI5dBK45xnWhYMpicgBYnKcC5DuZRLFx/n6mMrDE92GUyOMdajdUZ3aZX97W3efv1Vfvov/iSpOEIIg1QZztQzp2xWybq4QDNnIt6ThRya9X6WF1exrF5YidcKbQ3GVQiVUoxHiCQlSTrBcVXQKCdEYIvaOzxiaWWVJryc9Rv+kMV6ibUG7yyTaQkuOJWN1luUZm86ZxFxhFlTfAjNms0RtxC9JzHkrAmtCQ28HKDXoNLDsOq4PDQtcfP3JSBPqsv+IEVkq8A0EJMbw/GBZ+vJNv1ezsnJKWvrq/T7XcYTFya1uBqlwxB3LRVaakSaYqqK8XSEUoKV9TW6Sx3qquZg54iTvRMmgwHbNw+4dWOH3UrziWvXGG7fBhFI4UFRlvDma2M+9fxlHrh3+NKtr1CScPXKBtc+tszyox/j4FBhXYJ3mrI21MYjM8mFq8vYGkoj8FZRTApsLRE6wQqwxgEJtpa4yjGcnvD6W/d4/slH6S0ZhEgIvLaRQWdWzRoy4fN6C2Y6dB5uCT6okv8Dc5IxkzO78TAvkpgNto2KpvFMpYz9VU2flZyz5/g4G3JwMuXCxSt4oVhsIZ7l4pp/xFJdIT3IGuFh594h/9n/+b/k/s59Kh/aOJwzeBu9JuURUmCNYVqP8H4Ye59qvAed5rS76+AVQhjKcsjuwPPFV/f5Gz/9aV58bJkHd+9wf/seRVmwvtJntbfCyE2ZHp9QibBwMgk3p3YCmaTkrS6IlLKStJfXKY2lKh15pqnNBKkVk3HF3e0THr2QoIUKh8K7UNk6B2/i4fBEr2EeRTpoJsY7OXsg3JNZUO6xZYVNaxBtHBLrG8c0DGC2LkBmx6fHXNjqYH2cpegJUyD0h2ckG2hrsWes8awDKXEk0feBMtCaALE7q0PBs7QMjw9Z32oH+IqEWWO7iMw64mx701kjwRwp8bOjxPHhEb/8z/85RT0hy/tUtUPpULhhjWN7e5uRN3SlZDAaYYwBL+h2++RZDt4wPD2mLAt0KrF16G912iJlysnpMdv799m89hgnwxHG+tDWIwQeg1cVRelptXOyXHM8nDI6HZMvtymLmo31S6gh3BXb9DprrKws88Z3v4lrJVgjob2CcHtIWYWo7YyzED9nXBQXP7hzYeyVPMPu5MDpaA2aEWI1eIl0LtQFuBJnbODjUSmh9UjOGXUiPH7x4sVZpDO7zx+CDPeP0TromdOTA4RQSJGGEXQ0KFjDeQt4NXOk5nnwcIYXq7N9XNDJeEJVluRpiVMtrLIxykvmzqAIkJCIX9KD9E0eV0SHTDEupxzuT9CyDdrjbYU1hnJ6QmlX2Vi/yuH+gCuPLJN1Esywjudbk+gMLUKEaYsJutshy9porWm1W3S6XQSOvb1djg5HHBwZBlXF6diz3MoxnQ7Xfuwawy+8w73BAGyCsVCMBC9/+R7FzR5lprh8MWFspyR9sDrFqhaVDETkXji8q5HC463j69++y8WVjE9/NGNtvce+b5FPHHndobJTMAYpc1Kpkc5SMOa4SHCJobZD8D2UFFSLmyeiPzb4IMxo6sIvzxRYfVCx2Adyt8488AUdEgYsx8HAQiBnbQtn6eRm/X6CWPEaokRrKrJck2TBy2+IkIUU8xmIMItMm/yT8Amj4Yj/8j//r/nOy69QuDooItMQq/uY9JahPNsYajsJj4kEKTRNntN60KFygXZ3HWdKhtMJv/z7X2Hv0x/jUm9KWVS0l9rQXuP+RLM7KjDE0UyS8J0E4RQya6OzLjIJ8wRlmlJNDjF1iW73qb2lqicopbh96z7PXEu5FO1iiJzUArJ9FlqceUJu7sHPqk+lCBBrnM1JnGbuCHmRJMsYDIvYzh2qWZVSGGOCAnRQVS4OMg7PSWSsXvyQJHDiNrlTaDZzUNiR3cQv5iJDZCmNweoaXMZoaNi40J1DyAtIR2MgZ3trIYKcv1v8OeLZynp+41/+Mrcf3AhDhhFYX+HtlKIokAhGgxMOt3dZf/JioCOMcyytheFgwHh4wnhwiEwUaZaDUKRJF2SLpaU+EznCiYKjk3vs3LlDPT1lOJnS6a4wGg8YDgfUQ8H+3j4XLl4kzzO6PUGr26W31Odo+wBhBdeuPc3hyFJOT7izs8PjH32eYjxgqhM6OkClHmbFWWIRBZJhBZqz5BvHRLjAutM4bwKQcqEly1HXhrHUbPiE0hkQHudDZKkTDT4y2MS9PRgMkELg8zzc0w8LawVuvPbN8JGU5NTYUAw3g+gXHHcAfGDIij5qk+OK2bAIe4V2o4brtjgdUo1KajnFW01loKxqiqJESEuWaSxtptOa8fCIVEtSLUl0w0OcoFKBkoJyPKAqCxwKvESoBEmPVtpmXJZsbK1SjnbQSY5uJ5iqwFiDqT3j0YR6aijTgmw0xXtHt9um11+mlffQWjOdjDg9PUKoEseQ/mpGa22TS9ee4ROdDv2La6w/ssXdb91gWjoKU9NJekyOh7z08gmdixkv/Pwyn/rMk3zv+i3eurfK4WmGkxbnPGVR4kyFUJDlCZnqsbN3l929VZZXltFHmqSbIvUIrCXN+ijZDqQixiHJKcwaeW8La2McFfdlU9QYtSgNl+6cbSyicfM/+nczkp4Fuq6YSBYiToAXEkWYRRcbQ+YTFhoj2ZCUKxkcxUi9Njye0Ftu4ZQDdFBEUXmFvMU8TzRz8CWY2vM//ve/xB/84b+htJbaWZyrwpgqF4dEE8rKnQtfAFplobUCPYvVamNwBG5Kax1K5az0e0yLis+//IBPPZ1jreDUrXB63GZSlsi0S0sHeMxJEajnZEIiJXmrhVQpDsFodIgTKtArueAxGlOTqzbeWsrRgFs377P5eBLyIIJwM4ljunwDbc0nOYTCB4/0ixshLIz3IraPBDihri3DiUX0DHhLXdfxeubRoVIaY0qW+30as1BVdXAwYnP4hyXzVpfYRj3b1NE4uhBhzUmNQ1RpvEIKh5xazBRkkhMOS7MvF16/2dcL/35YZmkioXjtu9/lT//kT0gzTd7to2VG22aMhh6lh6TSU5qK4+MD3vneAYcHx6ArhMsD1CYUimDgdaJx1uOdoK4lWngQFcW0Ikl7pGmGRLK0tMzx8Ji8laITSafTQZgJxpbU9ZS6dgyGQ/aPblD7dWoKjkdjNi9cwOzvc/f2O0yrKZcvP06iQ+uGIkcIjaeMbE9nP3tjFOe5nTg4XcrQ5uBCkZmLzoOIBA2NwzIpHSSKBI2O59gLEWHUeTWo8z72JIY9i383rPnDFC9LhAxrZM8Yvub/DZ7gFx6PYFejszwzxdwEFQ1F+WQ64c7923SOM7J2lyxbJc9a9Pop3gzJ0i7StDHGYn2BVQKjJYmMMLVUeKXI1AaTwyHGV1ihMXUJEFp6kpyiNKQrq+zemfLaq++gEzDlKeW0pDIlTlkcU6wRZKlDdiSra6t0WuskSZu6nnByckpR1PT6bfJWQp6BoabWXU6Opnh9yNQbXB1QA5UqVOIZjPfQRYvhLYnfucKmvsaPP7/G3t4+d2pBbaeYquHCBWssQhoSX6PSmu2TQzqblqIcI5OlEPiQIGU7QKpCxALFnKNji3U9rK+x1geU0s2nB4WbGlCzGQQb916wiU3wFZzs95P3NZLGBab1uq6pqgJbW9Isp9Vq0W636WiJVjJChVF5NRtldqlz6LSBaE+OhmxsbSF8Gg3k/D3fVXE4q1aCP/7Dz/Hf/6NfoqhDJCWdxDsdkuwzNgWH8zU4gZQJWmWxqChEE6GaNVBlOW9DFCgFznpqFK32CnU15tXrNcKlTCqPU2OUkCASvLeBMo2g+IRSaJ2BTECG6teOa3F8dEC3nSCUojQ2QqUBltO64vbtIc9eXmWjbRA25GIbqHVmJBcwdO/n3r2U4LDgknhAHbv7B5T1hGJasbR+KQys9gYZ+SOJUHiWZXjvKcqS45OTUN164UKgJtMaay3GWnR0MD4UiYpH4mNvnsB5NVfgMSdpsThvCelKh/GGDMXw4AFLGzmzShSY7QGY54xm3+dvS6PdQmATdvB0NOVf/PN/weHxMbX3JLXACYcxlsGgCAZQg5YKGDMel1hqtBQokeLclKoydDuasirIdAslBSJVrCyv0u8uhSkOO/fQugelYn15i0l5TFmWeKeZjkNvsTUVnjqgErrH+uoWRaGh9hwc38dYSJKUq488wte++DlWL13j0ctPsH/rdWwN/c04QkwqFnAiZp73wr/BBqjVg43waugTBYELFeRxDmWgcQuE6k54hEjxxHsWe9icc7MI3jlLnuXoJIkEF40T/uEYSmskLiILzjkQepbqCcvxsDMBZx8gIDrIOMbPBjgxRqPWGgZ7u0xFRLpEuA86AaUlkhytcoQMI/vyRNPKUpRuo3WLJM1JsoRHH3+OKkvCnqchAQlcwsgMIRQlkizrMhpYestrJOKYclKFe5GG6+z3+lzYvEzVVkwnJXUxoNtznJzusLuzR13KMPDYdtHJBF+NGe7fp1Bd3IMKXwtKJ1HKk6RhTqrxoGXCE1urTG7VfOnXd1l/5gqrueTq+h53dlPGskJojXdga09dldTlEdYPqcU6h2OL8ClaSVwdpidZ5xHa4n2N8BIlHcPTIVUl8KnCuYaQ4qHiPd/kmBYeb5C5SHLeFPy9n3xATnJOTxxmLc7LoH30EKdVGTyPacl4UlAby/rGJhcuXGR9a5OLly7hsYz2hgyGQ04HR9x+4x5PPPs0K+t9+svLLK+shCkgzmKtwViLdx6lZCCs1pobb97iv/jP/iuORwOMbaCg6Dl4F3KSDaNODKWbfs2Z+hMavAKvkUKFqDhMygNpKN0UW1vyVkZRjrHe44TA1iYeIBOSviJMk9CKME8yvo4SikSk6M46J/v7DA8npFmKKSaoNAl5MxlyUaOi5q1tx9LjKaquII+eNgHKa+BEFgykj2TmzvoQNka8R+Lo9XNyo/D1MVoLkjR4/kVZUlbgpEHKMC9vPJ5grY3esmB/74Cl5SXyPAPvUd7Sy/L31yo/QGmqHEPbS1QCLlAAWu9CW48ziEjaYK0BK/HOgtMMRgUXHt0IByJSezUiFvbDogPX7GkhxMw4eh/Q7K9+6Ytcf+s1LBUqCTynAokxjrKcghDUxoE3VNWQ0clxmAjoCMxKQJKnLC13OTjWZGmKForKgMdgpCPvrNLurNPrD0lUSqU1vg4FMa0spSgGJImgKsaBbH8ypTSW2gmE8qgkFPhk2rD3YMjEThhMC/7qj/8cG+tb2MNtjFBYdS84HguFJosyr3Bu1p2QFo8OWojymxqEMKwgvJKL7FiGJMkwtWJaBh1hXdPiFFAehMJZz63bD3j0kWsIH5itpGxg9h++tNJQGVE7jzdzB8k38DCNc9XIooGMjemigZKjcxteIOhRKZDKk+gAmSrpSFQYn5UkHqGmKFmEyEqEwhrhLbLyyEpgpjCxkuLCMvnyFfqdMHXI+9BKV5YV5fgY3elgvWB9Q3K0N2JSSAQppycjytowGhcUE0t3rCjHLXTLMxgdsbySMR4dcrh/xHhqyJIcKVMcLUTeIu9mdKSn2NvhoEgZjkcY48jynAQJ1IheycV1RccZbJnw+kuH7H9pwoVPr7O2tYIvD7j+YMCkCmdHClCioLIlSuXkWUJFn3J8GxIFGGSs0A8ohAEXuK7rYsrIZPT8gMp6Ei9jF25T4OgjXB48XhlbaJpcu58RCvDvFklqKUnyDNHKgA4N3JrohDRJSJUmSVKW13ukWYs0a5G12rRaHVqtFmmek+c5aZrQynPWVtewXKJFn6dfeBqViDBhXmvGkzHDwSmDwSknp6F/Z6m/xMrKMp1ul3/9y7/Kvbv3KdwUZwzWucgeY+NomRA5OWdmlaEuTvGeR6c2ApqB6FpEAlznJBD7G71lOq1IkxYCRWWmgA/RqjDBsCodmXEUQs6H+0ohAptJktLrtTjY3kclAmNBJgpT1yiRYJVH1jV3HxR89NoKuaqR8abNoMWmSkfGsKaptHB+BgN6XFR2kU/TafYOR/i2Y1oajKr40hc/x2ntabeWEVKgFNRVhfeSg4NjNjbXSbOE1mEHrVPSNEWguLjSet+N84OU49NT0izHWIupQyVxp9Wh1+3R6fbJvcRJMZsXKYQIxitygZ6Oaq6mwcgvQngPV7SeiZoEZ7RgU3wxGU/57d/+XbwEIzzKtbG1JMskpi5nzghGIJGUw4LDwxMEkixTdPMevf4mhZEYA5PCIqkQ3lE7weD0hLy3jK0FJ6dTNtcu0O22cEpQuRHdfp+8lSA0rKwuMT6tQEt6rS7DwtDuaIaHI8aTkvHI0F/ustK/wJtvf52sv8SVjWsUx7scj6esXdhApR2cO40RTqzMDB94BpnKWc43KJMm0nOekPuWocXBWhvpzEJbxGQ6xVqHlpIaT1lWCCmjQ+bRiaI2JUiFRNDKc5yzTOsS4T2pTvHVh0P1NLWC2gtMVKVE3UCT14otLbNWkFn0EdaRZj81sBfBwGoR6HJTERr4w2SmEHU572LuWqCingrdvA6PCuP2vI81HiC15sKFVXzLsLFxSquV4p2jKmuKac3Kak3/YsrFNcHFi1f4vde/RWslkIEf74453i/wRlE6z/jggOTmXZbTPiv9NXSSc7B3xHDgkDJFKUVRhGlJSgp01uby+hOsr+4zGRn8/QHiZhr4k4VAKIWThp/+j65x+q27vP1Kzf7xMpNqyq2vPuDRFze4+NgmSSa5sXPEqHA446mLGiEs7VaGli1OJjl1rSFN8U6hpEdjwcbpjwq8FNR+zGA8ZLPjKKuKTId9bKNynEWN82By/iXmPzfsO+8nHxBJutlhEXEuYTPkuMHoZynrpsKSJr0oYmWrnI0vCo916HdP6HTbCFTMS0Kv12Op30fKq/PKMD/XW3/xF/59/uWv/iamCLTQ1tdYZbCmBmfCAja5gNnfLvTCEXMfIjb5+pqqrvEuQE5KxWpcETySshZUVUVVFbNNHwxjUCxhnJBAKoeUFqnCawgEzifotENt7iJrhUUjrEKrlNrWQaHahOF4yv3DPp0NQWuRKomQGxFITANVRbhWNWwdCJSbT2iQIiHRjicef4w8b/GGM1RVwfFowvJ6DyhQSfCW80RgK8uFtS6pL1FVwbg4wlpNXRtKd8Jx9uEZyaV+H2MCx66TYSxRU2xTFCUnJwPGkxFlVdHvr3DxwiXWLl7GDw45fLDLnXfusH10j6tXr/LoI4+ytr4+e+1FAzmziSER3MRQYe/EwqU//ZMv8Oqrr6FSx2g6Is8kbloynWq2d3exVDQ5tjRJSFSCkJput4WpHcZ6LJKimiJdILD38QwliWA8PEGSstRpo6VBCc/h0QmVrSjGNZAyPBkzNUOcV4xPp8gkxeUSmbZYWtrg8urjjKd3uH9rl7v3ttn4kavsb9/mqWc/wrUrW1RDj0k8eadP5i3Cj0HUC1CUC/nvBbjKxby3ihM9vCU4aCoodyFCdO+kx3tLaSX1tCb1CXVd4byitjW5bkV4V6IkJFlESqzgwuYlkjyhsgWYAEk2PMI/bKm9wHjwIgw4F85jbYCKQzTSrA9RKc15WhFx2oRvqPjCGio8uYZMCVINSjm0hFRLlHKkiSDRnlR7EgU6kSS6YTEK9JFeeaQyJBKMgzS17J8cUIwLhFckiSJJQrqntdwi7yZ43aHdzRiPp7SXPcpLjg93mU4u084VRheYccH44BbLTz5D3soZjQYU1RSEQeoCoQ3OFkwGO0iboZKc4+OCPF+mt5RzVQrefPs1EpWESn8pQcHatS0+euUC+4Md3rqXIqVFn2bc/voJw3FOb1NydbPP3umIo4Mhk3KEtyX9zR7eKIoyodtbZhKHfdcyw6lkhg4qFwbXC+G5f++Yp55fYzot6PXaM1s1L9bhIWePGDnGtM2se+L9jaT4sLgSz+VczuVczuVc/ucuH2Yz3Lmcy7mcy7mcy/+s5dxInsu5nMu5nMu5vIecG8lzOZdzOZdzOZf3kHMjeS7nci7nci7n8h5ybiTP5VzO5VzO5VzeQ86N5Lmcy7mcy7mcy3vIuZE8l3M5l3M5l3N5Dzk3kudyLudyLudyLu8h50byXM7lXM7lXM7lPeTcSJ7LuZzLuZzLubyHnBvJczmXczmXczmX95BzI3ku53Iu53Iu5/Iecm4kz+VczuVczuVc3kPOjeS5nMu5nMu5nMt7yLmRPJdzOZdzOZdzeQ85N5Lnci7nci7nci7vIedG8lzO5VzO5VzO5T3k3Eiey7mcy7mcy7m8h+j3++X/4X/zv/bOOwC8dwgcUmo8HoFACI8AhBALf+Vn370HvA8PeY8PP4THib9rvnmPc+F3ze99/KF5eSEEQoTfCyFASgQivKMXOO9weEZFwd0Hx9SjUzKmbFxcIc9WmI6n1G6Cz1fYuX+MqE+4fKHPxuYWlgSHQnrH7NP4eL2A1IokzRFS4eOaSBQgIH5EIcI/AQQCpJtdf7h2jVIKKVW4fgECGf9oYQ1F+HsvPA+LWHze7EHx0D9FcwcAgXNxnXFYazDTCdPRCGMM3oPzYIXHeYv3jroqEb7mn/zqH3yfN/vBy3/9f/pP48aSYQm958a9O2xtbpLrFOMsTjikACkVoMB7rKuxziGFCOvtm6UJqyZFWBPvw2fFC6RSs/2npAx/4Bzgziyr82E/CiHwzsUzAGE/izN72nsPIqyl9xK8iO/pQLjZCRFIhJCzeypE3AtC4IXAi/D6w9GI/aNjMi1wWrN9OKIYnKDNmMeuXsIh2d05oNVeZu/olAt9y5NPPYtXLUT8vGGfCqSW5HkbgQI8znsEPu5PgZQSkAih0CpB6yQ8JsT8WgV4Ga+ZZh8v6AEhsNYyGY852d/G2jFFbZkMBjz7zAtkeRcv1GwFBc1eDX/7n/wf/7c/9H33//mH/w8vhMBZh7AV49M9Xv7Omyytdsi6OTrto6RACQ8iI8vaLK2sk+c5SkpkXA8fz9BMfKMtZfy84X4EzRJ0jRISAVhrQAikkFFlOpzzWGMwpsRag3dxpWb6VICXeByeRlfP376uK8rJCO8s1jusc+H9bdjmzpfs7tzn1v1tUD02+i2ydoLWOdV4yJ17D5hYT9btc+nCJr0kARdfx8U9jUfGNQhfEqlkXJfwlSiNVhqtNVJLlJIorVAqfGmlUEojlUJJhVQSpAj7yxucczjvMCZ8d9ZjrMNai3MG6w3WOpwFax3GGqxzGGvj4+G5xhqEsUzrGiUEeZaCUvy//+mvvOeee18jCVG5h6OG92CdDYdZRGsW7vtcx/vFvwu/mB0AGqMXjeHCpuFd9mD+wMwofh+Zv7bDC09ROfYOBtTFCYkvWFpuo1SOE9Du9xlONfd39qAo2Nzqsbq+gUMHBfLuiwAEWifoNAUk3gtAxssTC8YOfPy5+bvgSBD1nkSqBCEViKiMRXP1jZL8fp9+8UrEXK2I937ebF0axe7BeUdZFUzHI2w5xloblXH0YZynrkuGg1OEgKeeeOQ9XvkHLzI6Dl4Ew+YAYy14j44HyHiLtTXWWZQEEOGQyXAwnLHBGYlrFpyrsFqycbacwxmHkBopRNyH0WB4OdvXHn/23oi5YxQWT8wdqoXvzb6e/Rz+GLng9NE4QkLixeIdFoh4vvrdFr1OCwMcjwuq7SMmRYEZj/D+LluXL7OyuU6epIxKw+HgiEuDQzrLF2nAorhdg6IwFUmSgWe+n5rPFq8fPNYZhAMhEwQ6fJa4Z4UXs7WZeYhxvQQgpaTVbmP6y4wHJZmXuLzNjRtv8MRTz6HTDh41Ux/zy3ivHf3DEaU1Xie0Vi/w3Me79FvwxmvfZpxWLC0tkUiBE4pqOuK4Kul2l+gtrSC0RkiBEhKPnK2jPPsJcQTd6X3jaITzKbwnafTKbN8EHamlIpEptRVYbNxPNujPWVAhZvdg7oRBojVJllGXBdZLUEEXzZ2SFuudLn3lubEzQiYdWqmgLguuXr7EheU+12/doUratLt9nnj0EXoqOgRChLOEA2fmi+hj4LLwuYUAKeI5EhIkyKgHxezyGz1o8dgYQIRVEyo8yenoFM8CC3HmnYJ+jmc5nul5cObD61rP3uEJeM/mxgpevT+g+r5Gcr74TSQko9ccPFAZP2DwkMOCvZ/MzNDc7T7j9TSPzb83i7YYaUXDdMaIesBSO8XB0YDRcABmTK+bs7K2SeVhXAyxIuPgYIQoJmytt9jcugAymdn6+e6aR7BaaVSSIYTGzsLcucd89vPNfxJi/nsp1cyjEjNPXeCF4+wLPLx+Z17xzOo8rNzmzxGz9bXe4q3DGcN0MqYopjhnEd7icCGC9A5rLKPBiKoqWF5ZZmNjA5l3+NCksSK+iTE8vV6PRCcIGe6/Iuw3aw3WGqRQCC+RQpEqhRMuRMoiGMX5PW1eWyOER0qPcw4rRIgkafbTwgoHqzD/3ZlN2yiEZo/amXILB3b+vEVrELawnL/HorMpooGcicciGU0N29uHqLKmLz3tjRX6yz1UkjAcjjncvYfxCSdFxc0HD3i6t4KSXaQwCOxMoZoSEpXgpXy3MmuULSEqck7gnEBJRbCLPqA2uLnT1jgY8TNE9xClFJ3+CnVV4yan5C3PYDjl3oM7PPLIU0i1EIHPHM8PT8K1OJQDLxJk0kXnCc888ylu3XyVg/v36K9dppU5tLR4bxkPHGVZsbS0TN7KQepZNOWdn6EBYAkGUYU1EmKuSnyINb1kbuREWGfiPpEiQQsBxmCdwTs33y+NGll02GdOXEKSKaRImJZjXDTewksQDrzDyZRL1x6jMu9w5+AAode5uLZF6SQkKetLbXaOx5zsHLKd5mSXN0gbJ1w2+z58XmbXvqCfmZuysL09eIlrHhcyHC8Rf9e8ovMIKfFi7mpIMT8zjfELu7Jx0qKDHT1AN7uA8JgloEBFUc5RyQ/YFx9oJEW8nBAXBs9PNDfThxBeShHXJVhv+dB+FzEqOGNgFj4qRAhgwQvy0U1vDOSi/ZgZoGaj4bFecXwyZHh6gjQTOu2clfUNispjhSPvrLCze4wpjthYbrN5eQupkgCHzRZ7HjEIQOoElaQg1EMKr7mORuH6BQMn5opOiBl0ECArufBZ/u01wntBrI0Tc+a3nrANvMVaQzmZUEwnOFPjnQUcxvsZFDGdTqjLCd1uj6tXr5C32gip+bcAGX6AMjdQToBznvFoxNba+uwZEgEirK3zDmvdzDtuYMM0TbHWhqjZN95sc6sUAVL1KBWgfmttcGSEwDU4R3PumW+MZr3n0eH3+QheAGoG0zbXNfeO5xFjOF9ytodEjDybM2ORHI9KHjzYZXx6hK+H9FLY2Nwka/c5ODhCO7hw6Qnubu8hGDGpHHe2d2i31ki1oN3KSBIVIGdvqeuKNMvxCFx8Lx//k97PFagLsFyIysM5CEfBgfd4ocCLMwrH4WZnQ2tNf3mN2pRQ1XQ7y5ycnLCfP2Bj8zJSaZx383X5kAxlg140kZz0kCqLkDl5b5mnP/Ipjo8PuHPnDqNTxcrKGkkCSpT40nJ4OKXVWaK7tEySpGgkUsgQZQFhv4Xo68xH9GLhBPsFPSmDqvfRMREgdYgqhZHYOkCdQecuujqNTl1QpghUkpEJQ1kUMQUg5+8hBFL1eOzaM9j6de7vH6JISOqSlbUeVx5/FHfjAQdHQ+7f2yFNU65u9MMZdCIasSZC9oCJEaIH52efzgmJ9ALhxQyhFIDwbqbnPQ3+KHEiPNeL+WuciRx9c5bOWjrvFpBODw6Bt+E+WMIZbHe60ebI8Pz3kQ8wkvHQnL2+ubcoVbgdzsYFDxa/yYEBAZY5c/Pij67xNvwsYph/+kZfiJin+X4iZjCW94LBqOT48BhXjuloz+rSKjLpkKQaP7Xc3zuiOD5lrZNz6dIFlMrxLiF4eM17NT6IQCcaoXNc47mIuA6z65vfFS/m+dnwSkHRSiVRSkdYbdHQn42EF5f23Z/yg6LzZsNEv8o7vDVUZcFkMsbUZfBofcghGA/GOabTMZPRgH6/x5Vrj5O3OyBUNJBzhf2hyOJbR697OpkE4yXievsmLx4Pm5YhIrThfioVlJLWIc9h6hrnHF6B9CAXonhBgAfDXnY452Z5uFkecuaQCHzMW8+d5UZJPaThF8/uglJo/j1/92Z/nIWHnBdYBEejgvv3tymGp4h6RK+bc3Fjg5PBlImdsLS0wulgzN37R5hiwuObfR67dhWRLlMbgfUVRyenKK0py5JeNyfLapYThZJJuCq/kGPFRc877CecQTiJ1k3+fOFTe48QM5ciutMNVCwQUqDzhP7y/5e5//q+Jcny+7DPjsjM48/PXu/KdXVV9/QYYIZjYAYEJFDkAujEJVpRWlpLb3qUnrX0xlf9AeIbl5YokYS4IBoIgiFIoGe6MTPtu9qUuXW9+fnjMjMi9BAmI8+9dW8NMN0XUavu77jMDLNj7++2scfxUU3hWmazGfcffM5wWDHbOQApwzx7hv0mWtSgIzgxrQk0AEYqamC2f52v7Rzw+MHPuH//AePZnOlsAEooUCzPz2g2DbOdXcajEWhvnfA086L8z4FXtF5EzRw8WMo1Ti0aJV6cK2cxrfe7RS+3BJ5Idl9cx+KrYoQaatbrDbkLQXCIE3Q54itf+QrNT77P4ydPuHbnDrW0nJ0brly7hGk/4/nFc+7dKxkPBxzMJ6gAKJLZlKgLRctJBzZ72yWMLamZSa7HTvU1baI8iPdO8+T5v9ierhr64QLvi2Zehw7X70ynwRqqXty3W+2VQlJrHRyjNrjQomM/jDSYXJ0KwQnW4hzBiR2DAlTmw5HEzImYIb3vb45OOHYoHKKpNTCkYPtebmqePjuh3qwZKMvB/gHVaJfVusaYFcs1bE5O2R0rbt68RlmOgm8grmi4fzAbF+UAVVQeYREmcVs4Jv9j5/NSgIg3raIF0TEQQ70g7ONi5qzyi1uGTuJVAajE5bXWetNpU7NeLmnWa5xtvcnMOYz14GW1vuDs/JTRaMidt95mNpuhVYVxjs26ZjAqgtn8DUF6tgAIYJ3j6pUrHdjwP8Jl5K2cIEp5E2wQllGjVCJUVUXbNjRNjVJCqbvnRK+dxdOycy7QfC64gtnWdavmySebpwheM/znf9cxA4cLvpgIrl6y8uF5LcKzkzMePnrG+uw52qzY35swmc0wFOzP5zw6OmVj4PjZMcpc8PbVHa7duI0qxjg0qrAgmtHlfZzz5qeL5YJ1U/Pzu5+xt7uPNZb5bEahNZUugo/MD0gAZyytNIgSlCoJDqKwVnGgOeMK2oDz66VEGI6mTKeG85MnlGXJdDLhZx9/xAcffMB4eDUEudk3JiQT0HTej2iMQRdB+3OwXKyYTaYMBmNu3/51Di7d4+c//SnPHih2Dw4YDYRSewvNSbNiM5kxm+8zKAu09jRoM17TWcxevs+cdR2dJfO3C4BOo3Tltbe29ft8G3RHE3jUZAWEgrLUgGKzWXoAJJLc4lY0ajDh/a98hfYHP+HB5z/n5u13mc5GFNJw9eoN6s/vcX7ynM8+q6jeu8N8WJGiTiTfGWmASajFfRT5pt9jXrlySKKXtCCJpHJ+EOIFcoUrE4ygsJgQVOT3to5zL6S9VxYKQwjmU6+mudfa1LTW4JSPCsJBYh6xc2ExRSEqSO6g2qrIyFz8TXdfQWHzKDDcFxKMJGYiGYH5zVk38OTojHp5wsCu2L28hx1MWDct1XDI0WnD8fFzdgdw68YVymoEzkf2iZhM0HhkU5QVqhxgg1bc68eLPes+FG92UKrwEZeqI/AXtYf+vXITb3z1AtH3/u38YM4ZbzptGzarJZv1Cts2HskHs6qxls2m4eTkhFFpePvWTSa7e0hRoVThUZg1tHZDJV241ZtqCoXFJk3s4vycsqq66U4+sE5gio0uAedNsAqsabHGBD+mClqlYJrGM0Gtg2k122bB8qHF06e1LkTZgQm0/yJl5MyuE6oBvGbALgd/L9oIohYp4mic4tnROQ8fP2FzfkJh1uzv7zCb7zAcDrhYbVjUBimmPH34iIlacvP2FQ4vX8PqIQZv6vP90IEeLBrYn+5SDAaooqQ1lsa0PD8+ZjCoOD0753D/kEIrpuMxnqV6c5VTxvc7Q4VRd8xVghg8EQbl3Q5aMZ7NqNuazflzhoMRTa359Gcf8/4HQ3Q186D3DQlJpaQDN+KFZFEUQWhaxBoKpbz5T5dMJnf4xtcv8+zpPT759GMW5Yzd/QPKylK04rXKdcN0Z85kMqNQBUr7tfDTEqwFgc6howhHpmVt+XqTBqgFLRqkgHaNMU3A+yq7n8O+sI+FshygRNisLoKpXaLhFYdmMDzk6x+0fCvC4xkAAN0QSURBVOcHP+X+vfvoWzeZDkqm88vcuSP89ONPOTl6wt0HA967fYtJIZ0wFNIe8jwxgEHwZnzA2S3hT1IKewbFDqpL9z3ZF9lnznmh68Rixe87lW7oLRrEvef8zB+fnHBlf/+1+sBrza2RCRVF6aWzaUEsSgU7vtOhswGVCHgfnvWapEQTleuhgxglmkcD5hPXzUaOEqLi50AMrVUcHZ2zOD1HmQ3T6YThcAKFBqs5OT3n6Nkzhrrh+o3LVMNZMgtJXAk8MYkIuhigi4rgIUpNBe7c2765Jil4LUZplPbmSgmIJTqiX9deFMh9QZmbZnBeu7JYXNuyWa9YLS9wbR3Mz16rbI2jrlvOT44plXD7+lXmB/vookJEe38ShICBsJ1S1OIbbN5I4PGlg3VdA6Dmku2/Plrd1sgUgioKT4emxZoG0Rolgi4rHI62aXq+ESXRIwKIZ0IRZIA3yca5f7kC6Drh3d0mvciveen14Z/GCU+PTnn08Cn18pyKNQeX5uweXMU4xenJOdV0h/PTI86fP2RaWt579xaT2WXPNIPrw0+Wd4V4ZqUodMFgMEApn4JRCZRFxfjyFSyOw919Fqs1xpmgae5SbzYc7O8zwDJWCi0m7H3JrGqyPZLA/LogCl0Js70ZbbPGrpdMpoqj0yWffPZz3n77Q7Qebd3nl9dyhgzeMlNojSiFaY3HBCrSn/i9Xo25dv1d9vcv8cmnP+fp47vM5/uMJlNK3SL2grPnK+rVitnOIdWw8qBDOk3Iv+q0Rn/3ADbCs3LlIQkWJUErUonHWGtDelIufLLrJen4FEWFGk1ZblbJchEVHyuW4fQyH34VvvfDj7j/4C533n4Pc3bBeDzlzu0bfPLpfZ4+echgOODt61eo4syJIOKVEGddJ5iC4BI6ud+1TjC43l6OezMKO9WfD0fid84FRQ2HciZYbDS96G4X5jpc/+jJE67sH7yWNl4pJEWCShyFnUhAVz6M3KHRuudpya4Njlzj82iSBhhz9nIrVdDBJfP/pXUV7YVQBjWcA+uE04s1p2cnSLtkOhqwf3DAqnGcnR0xGMw5Oz5mpBtu3bjEYDLHOJXSPKS3KJqyLFHFIJHry7TGHl+On4VINlGF9z8oHe6usl91vpaXsoA0VsnfvvTXLhCGtYZNvWZzsaDdbMC1OFqsExrrqJuW9dlzrLVcuXSFg8NLFGWF05qYj5cLYhEfvh41n4h430SL6+39D47heESpddKjLaBRYXNnyItovUh38pqfFN53E/yV3iyrqMqBD/pp28BMYo6s6gnjIlg9rDE+GCNjPNvWjwT2vnBsHeCKuZbJD+PAWMej5yc8fvyEZnnGQGouX9pntnvI+bIBFIPZIZ/fv8fm7IjdmeXtt95mON7HRcGVEF3XRxFFOaioigpEfEhAhxLxyok3ee2OJjhx7E/nGGdojOH07IyiLLm7uM/lS5fRSrMz20EHHxkuAEJHoPWMVQczWiEFroDZ7iEnzx+ixTLfmfDs+RMmT+9z+cotkOpLUsmfcRNJfM5aTwcSgriMMRS6QEL+YrI9iM8nHQz3eP/9r7I4O+HTj+/zbPWIvd09hmVF4WB9ccam3jDbOWQ6mVKo6AN/Edx1Ak0Sk+wJutB8ypK/jzAApzFmQ0sTYqoyDT89I7uHKFQxZCSKzXrhI/fjVyiMaGa7l/iV92u+86OPuffZZ7z71lvUpmY03uXW1RV3H5/w+OEDRsMBt/b2Ek9NwEkycL/1/JdZF+NY49/eV0GKR4XLWYuxUS4F90Vw/4lorPIUKFYF64BLN3KuDSlv3qcrSvGq9kohqQIziYmcgkumq7KqsK0NEYFCTJ3cbqI8M/PBPC4tuLWZuYxICGEQ+fURCTgQsYjzEUrnS8vz58e09ZLJQNjf32O9aWmMYj7b5+HDpzi74saNS4yneziqYPnOmapPgi2KAVqXflJfQpDdYmZoL6YixOIASnfjiQzKERiEShpKZPQvTlUXJJIz0Ni85cWjpqZpWS8ufKSabcEaDBbjvHa0uFjSNA2HezscHF6mHEwQVSSzR4RVrhcVF7CaUt408SZ1SYlBVL4XZ2en3Lp+02+QuPFc3IBxvfy6dkIf/M4J+ZaZvzL3NypR6NIHjhhDSo5OdBl2uxaNYH3uIB4Y5QFq0VKiemubWUckjitHyVGo+N81Bu4/PeHo2VPM6oKhMly/fgldzbhY1AwHY1a145PPP0Muzrh2MOTmnbfR1TQIx2AN6NEhaKUpqiG6KMKc5Bpz+Cf0z0ULSJhdpQoqVTC/ctULjStXWdcbNnXNJ/fuMplMqDc1lw4uUYSI4rjPu2bDmilKpZDRADM/4PT4MZUu2N+7xL17nzMaVIx3D3kzTaibJtBVLFLRaZXR3E/GcD1g9SqSKvaY7e3y4a8d8PzJp9x78IRlNWE62WGgFUWz4ezZI+rllJ3dA6rBIAjhHJYH3pRpfn0ISNL6cqEh4kCX+AB6wZqGtg2RsZGfZFazTlkXCl0hQ8dmvQx+OwGncTiMlMwPb/P194Xv/+RTPr73OW/duMZgUHFwcJV60/Lk/JQH9x8wqQbsT6cUzpvbY96xC3mdfr8FwBQGlsbhB0buUouWHd/LsM+tB8XG+sjqxKecIOKD7fwQVJZC5fdz3J82+Gi1Krl2+TqC3pI4L7ZXa5Jh82hVoJzBOuPz7MLiaF1CQeh8dB5nmqULjEAk2Px9QIRzNmmNvUTruIwuKtedDVkgCchl23L07BSzXDDWhp35Dg4fSYpSPHryFNUuuHH1kPnsAOcK36tAWDF6T0RTFiVKeSd4DNBJtv8e0un8X/5tzH3UKK0T8utmIP4uH9nWvbbnOu4KAmgIP7IupHS0jU/pWC7BbPCVNnyu48YYVssL2s2a3fkOB4e3KUZj73OUuOFd9r8NY+kIqheQ8irC+AU3QdDO55E64PT0jDs3kmqHCpThN5kLU58JH9fdyX9p0ttCa5xStMbgoo8x+I+11lgrWzSZARwBrT1obE1DrJgTf59MrLFv0vU5Ce30i8C8xAOiprU8enzE8+dHmNUJ4xKuXr1GKyU4zWQ84tnJKUfPj9HNgts39jm8dg2l5p6eQ5S2SBS6fh7KoqKshkCBdQqvZvg9IGT5zRI1UJ8aAy6Y9Dwg0LpAiUahqQYlbgiHuwcYa6nblvPFgqZtWS4X7O/uA7C7s5Mqsfip8cJSK810OqNpahZnRwwKxXx+yGd3P+PdQfnPRTv/zM0N2KxXlBW41lJqnxttAeMcw1JlwKMA8bMkgs99BBBFUU65cuM9dvav8fnnn3L2/D7T0R7jyQxdGtbLI9qmZjzbZzIfU2qHksrTr+tAmb+f7WmT0e8XFPa0X52K8RUlhfL+eKTFBEHZWUggMhUPNn1Qly6GjEbCerXCiksAXfCFE/avXOeDds33fnqX+3rI1cs7zIcVV27cYPXZp5yfP+fu/Yrh228zr0qUi1dHIG6z/RSFfGRu5HFgxL2RgiXFBxwaHNGtIqn/dJoknVXJy9AoQIPxMiyeBPp2Fg4ODryX8DXFWV8duJNMhL4jKpikrAmapeAjkpSggkR21gX3ZNSHwsSETnoEHtNEUjppmkQDtMYTR6kFlEtFChxC7RzPj49YX5xSug3z2ZTheM56s2TdrFica9y64erVPXZ3rxBrXiS27wIlivYObK3DRG5rj/1qEAm5iU/tEPHCUcXEu8hoXIf9JEVN5ag99CFjmDn/9NpS0LqdnydnLJv1ivXyAtOsca7FhLk2xrLeLFguNswmFVffeYtyuINTZdL6Ux96/h7VPS8MUGmVzCQvC075ZbVomncojGk53D/EoUAl2JRASV/4wMusAB4t2kSLohxlMKv5YgShCo9S6KLwlpMY1U2cthBk5vw+QPkSZtZ2uZXOxjKEnhasywPSI3Dq9oRHuIq6Udx//ITjo6fYesV0pDk42KV2hqIa0ljH0dEZR8+eMFYL3nn7OvP9a1gZgmtQYWld1K4diFJU1ZCiKH3UrnMdWKDvF6PXRwCFKHxZMa3Qukw+TBcBpHhWVihNUWnG1TAZTtZ1zWK54P7DB5RFyaapuXx4CaUUw2rgC64Uwnxnh7besFmfMxoWmHbKJx9/+s9OOP9czdE0DaPxhNVmyWDkhbU1BmdJlqa4M7Z9Z/4WDlEaYcJ4NOIr70w5Pzvi7ic/4+h4yXS+y6CqsG5Fc/yIzWbCzs4ug0GJUp4uxYY4gXjfTA3sYT+i5S2yHg/WlNIoGSI0CG3IToj9izaSfL8EoKiHDIeKul5hnEnZnQBOSq5df5u2Mfz4s885Gig2G810NOTWzVt8fvczVsdPuFuNeO/2DYZapz4FzuKBnAvpRVjolenTYTyxypXnjybOvwv5zXTWNq10Nu1xL0HcU8la6XxBAgkuFHGheF9Q2KzygPxV7bU+yY4IBIJpQBcaZZUPHrE2aWgikqSytb7CxIs22CBwlcEYryGJ8749K46mhdWqpWk2DAYFk8GQMlT7sCI8PzllcXKGuBU7O0NGO3ssViuMEZoa2vVzrh7usb+/D6nsVaSmQHpKU5QjbyINE7TNbNOYI9OJAjJojxIiI/0vX1ItJBN68X38Sb+C0Iu/8+jJgrG0G5/SUdebYFptsc7SOKFZL1ktzhkOKt5+623G44Fn8pQ45Z3n/XnvOuYSu1MBAIU+Ko/3/8WofO9o2zZFofoxSGc7AnynJcjMUAWmB0boUGS4p/8srmWJaVu/0ULOmS8h6H231njLR7Z6QRgpdBCUpmmD6SwELDiLcSEaFgk1Pz2N+/KHvoarQVg2LfcePePs+BnUF8zHQ3bnO6hi4N0KizWb1nHy7DGz0vLOnXeYzPewDIkFCzzrCbVmnaPQBWU1QqnSA9cURd43g4oUcSq8KSwQn1K+pm2h/fyIhCAgj4r9HKSSip34j6UoR9WA0WAA+wdYa6nrmvVmw2K5YLPZsDOfATCbzZnt79M+raExjGdTjo+X//xk88/QrG2D4A81ZYPF4PzklNFwiFZlmJ8YNxEAURy38xq8ByOeFnQxYG/vEpPZhEeP7vH04RPqwYTRbExZKDbLlqf1itnsgOl07uuX+ht65k5OtQ4k5xmdcpHzDv868qcaaBCMLzyQ3c/vI6+EeMuCQhUVA3E+PQSXPVth9Zibb71L2yz56f0HDG+9xaYWVKm4efUS9x885eTZE+4PKt66dpUy5c52PNKXmusUEMLdffkTBc5665jJosODJUfRlbRzoZxdNNd6Gek1SWt9XIYV5QP1QoUdcbabU+X35LNnz9nf2fVpTa9or6/dSjDfOPBRmyGXKFTZUeK1Geu8GUeJoMShdYgsdC3WuqR1duhHoZQD54tTpzwWoG1qnLWsVmts3bAzHUNZcb5Yc/L8CFcvmE8qhrMdFmdLKAuaBi5Oz7m8P+DS4R5OBoi0OKdC/o1Ljm5dDVDi47FCdtxLBp4tcDI56a60XEhClUTK2aK/SMtkYjBd88I34ou0G2uxbc16saBerjGuAecd1dY6NnXDcnlBUSpu3LrFfLaLSInTvkoFbrti5Cuay1M+OsDwokH4l9dyH4ExhrPzc65euQaQz3Ji+MlUhQ5M3CXTVLxbmo8IbKLpClBlibWW9WZNY2oGg6E3UytfpNla46O6yTTV8JhYdMBai7EmWBYUdd2yWm9o25bRcMh0MCCCNhGFEcdF3fLgwXMujo/Q7YLd+YjBbE5ZTtjUDStrWK8aLo6PuDZV3LzzLtVgiom1KzP/NWE+qqJAl2OvWbAVIZ0FRfhro7XEp52IeN+6Vr7otEfgRTfYbIUIVVMSmu+e4seYwKdiNBgyGg7Z3dnxvl9rOD075dnRc1ZNzXq5QjsLqmW++/pow19Ec85SlSXOGJTzRQDaNhQcD9VzYlRmP17AJROpkliazURLH4imrCbcuvU+hwdX+PiTH3NydMFkeshgVKDZcHH8kHq1YLZ7mdFwGABrWB9cKJ6R6RvO9fFfNP/kYaOiKdQQKQta2dDaBmsNzmZxCeK1Lt+sJ6myYqAEtVl6oO668Yoa8vZ7X6duvsPdex9z49bbtKqg1HOuXlI8ePqMx0+eUA3G3DiYUUhLKkziBQnOabrCCXGvxu47MCGSOJWfi3EwfuYTbYUxR62wbYPvM/JpFyxkIZAtyqxo/hfrOD4+Y2e6w3DwajH46sCdJK37KCbm8MRaBaI1xoGzvvq6wnp1GJ83KHizlBekcYVc2mQS7McWKLUwGWnWqxZjBdOuqY3GWMfzZ8+w6wvm45LJ7h6LuqUcDlitHCcnDzjYHXHp8jXQw0AIPsczltASLeiiRElEhVv6XOSkmcb1goAMNvAUQPKCOOkWMw01126yXyHdYjvngvnOsl6tqZcnWLPCOF+WzBpLW9csFhc4Z7l27SqznR1ED1DiAzKsitGNEeVmKJQXn++yVw5/CoapG1RVpkpDb6J1/bVoLeztzCFH0j0EkAfDdNdnIt8zlegXjIEP0TSeXWut9fmRxmCNQ6vCa4FBWNhQnCEGeOUMRGsFwd8efZDL1RJrhbo22LFlMhl7n5FoztYrHj18xMXpOcosONwdM5rO0GrCxeoCiiEXZ2e050fcOtjh2o1bSDnyiD+Yjl0cF8HsWQ58TdaUWhXpIGo/HbhI1ozgi/TaY4FWRXKt5HuAbMq97zKnjyg9OvzfoZku58+fwuKfvTffpW1bloslJ5ua9XrB2dk59kVS/aU01xqqokSsoxJNiWIdU4SCb9ZFvvUCaAhzEi1OifJiUQVfdWs01nztg9/i5Nkz7j38mHq1YDLf8SlrqwtONjX1zh6z6ZyiKEkunK6XScBEHvMCY+k6hAMfpyEgRtG2dYpifTEnPdUaRemKQSVBozRpXZ0TUHO+8tWv07Q/5NG959y5dQkzspTjEZf3pjw+ueDhgwcMB7e5PBv5jGeRAI78/yC+Dm3ou3EuRRar0HfEBbdWhsIkWHGi1uigDZGuMQ8aCPvQ30MIRdi1pH3padAxHIxANFtO0Rfaa32SCZiEgUo2wZ25EVAKp4RmVWNdG6rNx98E532IknUOJEZRRzQvEupqCnpYMSxLVutNOOnB8fz4mGZxwrgS5ju7rBtLqUtW9Ybzowt2ZyVXrl5C6eHWIGyyj+uy8mXXevVa6RNaZKbigOh37I58yRF8dlF++cumMfwqgIIe2ePzT21LvV6xXi1p61XwO0JroW0aVqslrm24dHjIfH+PoqxAAkMMBK46e25vC+cyJcp/l2sDdIaYpmlQRYF+g6VbnYsCTTg/P2dnPieG3duXAJM4hO0x+x1hM3QdH9BdKCGIxQT/Y1mWKFV4V4A1tK4LbPFmGa9ZRh+nZB3Q3laGtY5COybDkuWqxiKcL84plEWPJ1ysGj5/9ITV6QmlqdnfnzKaTjB6wHJxiq5mPH78ENUuefvmNQ4uXcepMjG+SL+ifA5koUrKwQAJxfoTqHX9mcrNokRzYTAt61AEQ1J1qL5pNgED6ehJkqYaBUR4djbZSSAHEO1PITEsl74sYluvUDQMqxK9u8um2fxpyeXPpBlrKYuCpm4oqxInsLpYeMaroh9WMiGVgwi2DEiZR98BorDOB9aIGnB4ecjO/oz79+7y7NkTRpMZo9EUEcvZyTM2qxU7O/sMh+Ng9heShSQEwbwsdSSBYnHplBYQtBRIEVe/Da6w0LnMMILrap5qXTEYwKZedEIH0GIoin0+/PBruB98n3tPHnLj+jto5Zjt7GPNEc8ujrh/XzN46w7zQeFdEs6yXK1ZrmsGwwHj4SAISh81kqwSytOkT8sIcDfMYSxfasXgggVMKUF0EbTUbh6SQpNXiFMWcf6AQyfC4eEBZVmk8xS+qL3GJxn3m3+xBeB7+yFuGJ8WUfgAHQMxUCZuTl/qzldGiKg+Zu35jRYRvEeey0ZxerpiebqgUC2zvR1qo1DWstlsOF+cMB1rrl29gS5G9AsBeMJSSlMUWaHybCBxE/cqU4g3nYjWiC5CUIe3jMd+JmkTBWBYtKScCFk/cr1N0vuIrpq6Yb04p9mswDY4WhontG3LarWibQ17e/vs7e1SlRVEc29kPlnUl1+XvhDJvQtdjzrHd6ROJSpE0roQofZmWl6V5ujohMl4SioQHf7pNEVStF+6HrrKLZGBJRrurxlOMOJoTO03rAr1MbX3u8WyjCA+ulNKRBVYZzA0EeB22hqC0p7e57Mpg6rmfHGBa1aIDDheLnj45Ij12TMG1BweHDAYDXCi2awNlFMePnzMkAV33rrFzvwQKIM3J9Megm+wLAaU5dD77J0Bqzr23f2TNnNkrkr8iSlKF+GUmpjCpBIBByrtGHLGTeIrJaoDzQiiXKZhe57QhvMA28ayWpyzujinbdYeNGOSC+Hs4shr5G+gtW1LVZQ4a9FlhXUu+Ah1OCZvez9EBSH+7YAJdOMXXAiO8TTkBKxyFGqP22+PuHR4iU8+/Zjj0yfMpgdUaGp3xlG9ZjLbZ7KzQ6UrYoVLm9XG6SuDrgPgHv+SAl2UQiNI4QFQ29YY0+Jz/VUQLJ3lweGvV0XJQKbU9QXW2DBaBWIZDKZ8/cMP+ZMf/oBHjx5z89oldFWyu79LbZ5wev6cew8GvHPrFqVreH5yysVqg4jQtC2DMpbI808UcSl4rgP5km141zHXYM2LwUrxay/cdSo95wMAMz5Ax5sdjul0msb7qvYafSGaCTMnvYu5aqHvynm0HraUwqFD3qDfQN0JDTFK1Veu0Bjra+zFnJpUIiz8rlVwvnScnpwg7oK9nQO0KqnrFuc0FxcrRoVw9dp1ymJIqq6QyztdUBQlIhobBINnolvmksxfE4W5KI0/2DnMRZztbL/0neb5pz1dp/evtf6A1LYN2uNyiTVNCMoxNNayXK+pFxcc7O+ze3jFn/8XzqIUF0/6kP5zv0Cu5SK6P+butbOEMyaDyHxDZi/fYo4VzGc7oQh3EEKuC1GPmuD2td53HkFYZhRPRBt/KjjdJSeXRRF8IcFXJw5dCBKiXY1tkw/SFxUoaVvvc9fS0ZDX0DVVWVDqgkpbNk3JRWN4+PyY5uyIsdRcuryH1gNap2g2hgbNyf3P2B2V3L71HtV0F4tO7ohufN7HX5UjX6WGaN1R6flk9Bwvi+AjuQ+CgCRpjv6HveCeF+j7xfSo3MSY8wzvy/UpIqvlOavFhReOzmBsQ2u8a2G59BG9d27dYTrf/VPQyZ9diwLFWosUGqzBWYMuK0rRKREoWjiECE4zcem66kKRt8fvXQB5AmADIJEhw/kVPvz6nGeP7/Pg0QPqYsxksgNFw9nZIzb1OTs7lxkMx+hk9o300Ae9Pf9z2D99mvRRul5Tq2nbJuOVQnfmFum10gWDasxms84yEryVrRrt82sffsif/Oh7PD5yXDnYY1wpLl86xD5+wvnRU+6WI24cDDGbBYUUlIViMh4wLAsfzBboMoE/l0mbPK1LScoWsFlsCy66Crp79LXsuPvDKik/BnE+77JpG8rh6JW08RohmRcZj6pXYFDOeV4SmBIIzraoGJafIdZYxcKf2h10AJGQs+bAdOH5znWGrOXKcXp8jKuX7O2NKMsRTW1pbctisaCQlpvXrlENxkTGmjdRhS8zp7pCBWlk0b4t2SSK768uQpFy0cmXJWFB8snfNq1GH0T+HjpCtc6FXNOWZrNmtVzQ1isIJfysMaw3DYvVCdPZkJvvvcNgMMXbPsUfsxPznJznbS+4FrZaBLdRPvRnoXsf/XgYn3LyRk/KCmwgRuSVVZnMe5kJIPy0C6PoF4Lw2pa4PgPvmEF30oVtjS+ErLJC9JksVSH1xAbNEpw/Hkh8uUYvDELkXtToY2CQUqCGXNSWx0+fsbk4YVo0XL10gJGCpnWs2haD5fjoPlfmI+7cvIMZ+PxHIYJSLwQdPvy9rHzeogun0keInJS9aBoNZqvo89GqCMLRV4dKlbDyfQDZnIWpjCsg3lKRfPKZoIx7zAb/etvWLC8WLC9OMW0NtsFaobGGxWrBcnXGfDLjvXfvMJxOQSrkNZGGv6i2s7PjKy/FohMm1KklBOSkX3Z01+WXdi2ZOQV/YHWauaz1TXCoYsy1S++zu7vPvft3OT05ZTwZMxhCvbI8bxqm0wOms7l3BwRQ4oJ1IO7fpDlCVjgk+uDjmvq0tRDXjDFtOiWo62UQsIGGlaoYDLX3UdomnPpR4IBqcoWvfXXDD3/wKaenI9aVsDebcOnwKu3jxxw/f8hwcIW96QitBgzGY1SILg0CJO3KiCxyuS3BxeXH6AGpc4VPmRHnC2RIyPnF88kuoC9PEVNhS5iQgAK2aTk+PmF+ffxK2niNTzL+ke4NhljFxOddeRU8hj9HddflC0Usw0TSLFNCrIh3XDvPgJx1KAWr2nD09Ay7PuZgNmY4nrFqVjhVsbxo0a7h+o0rlMM5vkJEHqaP97MUFaj89PM+uXaJqN6UqkN6hw727G4DBA01TbhL95Kt+3Wfdy0WrrbGULdr1ssF7WoFxuDE5zI1TcPFxYLJaMKdW3cYTieI7rRjiBi+M6XwwpO6ZUtAKxOMqfupY9kFKm6hcGDsG80B6VIWnj9/wvWrV9N73wI9RmYdAwvovu5YUxAW0XcQJsAFICfW4oxBi4QgM0kCI4pfT6cKHXJ2jbW01iThoovC13k1LdbYUEwZT9MIz86WPHn8mHp5xqxSXL9ylaapaa0CVbKqL9gsnnD78iFXrtxGdNU7wLwbtVCVVQgii0F1rT90Uwnxv64GR2cGjSbVQpdddaiobaYnZcCvI2X/Nv52S4vqBKx/ojWWpmlYnZ+zXB7Tmg3W+BSL1jQsLjaslxfs7g956/bXGY7miC4xzqeKFIMX6fmX0UTFCMhwzJ3SvhRhlj5DJgDzWUsm91T3OCoC8IKbKgMW/p0/IJwSWrvDnXe+wcXZI+59/jl1XTGaQoVjcfqUer1itrPDcDRB6UCrWJ+FmKPh/gP74xR8xL+UKCUYEa9RWhWqqvW2SRif5+mD4YhmLaHUaAChKHZmt/jwA/jRTz9FD3a5WMN8POXa/h53nz3jyRNHdf0Ol8YTqrLofKoZ0MUFa4gARcd/u/n3ilbb1uAs4/HIR1+7ogOkW7Qap7s/KdHv7hW2i4uLLc3zxfYaIenSGCKPidpXEh5Ju/Imq7T5QqRlnPGUl4Oi0K474zBGNYXUiqZt2GwMT5+dsl48ZzwsGc13aBqfx7RcXEC95vqNS4xGE3+QZ6SOEFmolQ4Io6vUGvso2SR25iUV/JY6vN4WfOF329ODS3OUPKtOpcpL3skegEHTsFouadYX2BCObZ2haTYsV0vKsuTmrRuMx3uowleFsaLDJotU+6LD/iUysrcPX6VpJj4Y1ik6vP1avkl7q59XEct8PvOm04x5d6BNXgBjss0pMkBBAjEE9kKoydpSFAUxbzC/zs8P6ToCrZZKMNaEkwe8BaIsSw94auPzTZXw9NkJj548olkeszdUHFy5xHJVI7qiRrg4eY4za96+cY39g6sgk+AKCIXJ42iVoixKf9BAFH8OBO+870yeCdkiYomJ11p5zTMKyAQctlqaqx6qCnO2bYaNWmgwUzZ1zerinPXylKauccFqUreOxeIMY1p29ie8++6HDIazoDVqrAjKGcS1LzGf/3Ja1B594JZCqwGz6TyM2+CczmiiK46SFw/J2ExYCUmaek+fdFHzI5hog7+9NchgyM7+NebTPZ4/e8yj509o9ZDJsMC5c46aFaPpLtP5LlUx8CbY8KwUV+Hll087TGXvwqNj/IIIWI0qfNhf07beikRcZwfSWfg89iqoBkOa9ToU2vCmS+cKdua3eP/tmp988oRib8ji4py96T6XD9Y8Oj7l0ZMjBqMRh1XfrmODq8Piuhz0TEO2wZoiyqFViRJoWl/DOPpHvfk7GMRz+ZgUndzCp1K/y7JkPpu9lja+lFEtIsf44GhaSadRJwEIaI0NB7n6ubaZWTJuOF9dwrnODxBD560UnC4uWJyfUhUtuhxxcdGgBo7N0tGuVty4esh4OidGdUaDA+JDnnVReIQWCYNcIEoaB5ASpz3SDt7x7PuXzcU2kgx3JnAeBDAxgbdtqVcrNssFtm2wrvaaiLGs1iu0dly6fIWdnT1ECla1YiADBIvOo4ACko166svSOl7a3wxg9saw9TqezN6B5TfDrFJziuVyxe7uXsZkoBOAWy1srE6b7yrKdBAjgiT/j/dLeKCmlUbohGSXP7slYAPaFYc/dDzWNg6Vd7RWyAAumpbHT4959uQJdnXMwazk4OASZ6sNZTlkbeH49AlTZbl95xaj+S4u1IdNFoOw/LrwBfhjgW1ctqYiWU6ZJKGK+JqtSvlDp0UVgZFIJyTT3G1P5Ytw8EWLCTTOFw2x7YblxYLF4py2WeBcgzXQNC3L5RnGwuGlqxweHFJWFU4KVMhp9QInmA7DqRZvokmIkRgNRinaUkTCvHvw3PnBSMxX4vv8XuHfzh+4tQO3TLQk3opn+DJAVSWXr46Y7h7y8N59LhbnDIcDdFmxOH9OvVmwMz9gNB4nd4y/vm+uzJUY/wwJjwzaFyooFEIrgmlb0m6T6ODoDpNTqqQaOOqNB0FgcdqbMPcO3+Y90/LT+48pdm9yvD5jNtrjirE8Pn/Ig4cF01s3qIqQPGhDbqYKx34RKp/FvHqgUNqf5hH2rBVQbYOlQalhUIwsMRvBDzI6YEKAo+skTxSkgqYqSw4ODqJw+ML2p/I89Wy9BKLGILjuQNGeX8el19ZmTuGUaCwg1ps3raO2jtPTFUdHp2g27M7nLBvHer0Bo2lWF1y7cshkZxeHz3WU7DlKF+hiABIqkBCFXkRPmeky+ZTCqRjS5eS8KH4yos5pPX8VCA58FSFM9Dte+OIIxgcCWNuy2qywzrK3v8d8dxcpK8+graCofUWW7Kl+atPW85oLfWJPve4D1tTPLzqrM/7SM1aX6OU1dPNLaMLFxcKv2zzWE4XO/Jwz+heZum8dsu6KoMd59WtlTBNoQCCcL0qooJQLnG6eIdVpdoKIQxXiq/UYnzKytvDo+JTnT54gm1Mmo5LxeJfl0ngBWcPzZ4/YHRe8ffsO5XBGKxUKi8K7IqwIogjaoy9sYINHIemMEscRTU2BcUuo8qM1IkVWnlCy/+McdvtyWzh25tjA8CX41cNp721jWFwcs1qeYZoah8GYlrquWS4XFCJcvXKNnb1DinIchLOA61IKEmjGM8s3RnZhbEqr4Jf0+7goxgheexdJpjQ64nsJBb5UQ9/+IOOlAeCp+FxMKKakGY92eeedMWenz3j46CE0NaPhAGzDcdNSb+ZM5rtU1SDwuEifHY91Me0u1jgNzwwZvogotHQR89b4Iv5kvMVXswrpZrqkGCo29crnKAb6cCIcXHqLpnV89ugpe/v7rNaWyeyAXfOE45MnfF4V3LhyhVKgKHUyc0soJRdJWmmNEg/eYyS+Uw6xPvc+KlUqO63oxYCzGIQXo/+77534+R4MqtcqBF9KSHYq+FZnEt9wyfYendnpwsCYlOpCxWOOXhyMEjBasVyvOHr2DOoF+/tTGidoMdhhxershMPDOZP5FEtAxVlYsNcgfQJuVw4pCq9swweEGI+2UjocbZWkQ+hx4rMRTdExySiggFjOqwtOammbmtXigrpeY2zrzzO0LXVTY41hOp8z392hLIfYEBzkUCA1ohqQwgvN0JnsadnTw/xnotC5L6dfStjg6ZDf8LlpvQk4FWx/Y82PxaP4l/UjbtzutefhLxl9fnkW8SciCbSUuvA5kOlZNhQgkT4yj7cJ//ifx7JZCqsK1m3L5w8ec/zsCbpZcjifImXB86NTCj1Cj0pOzp5zY3/A9RvvoPQAK0VKIDGhzyKKqir9oeeI9yPRRU92m74LKhEJgWe6SPm9L/jRXJ9ZdNMk9Cv2ZpajDJC1zlLXG0/fF2eYZo3BR2S365bl6gylHbdu3mA+v0yhSpzqcnk9wA4aowMn2gdR0B1D9iZaPNFFhzNHsRpny1B5yWVMIdAevAxN93jjC5/F990dEjhzlmDCVL3rnVgoSub7V5nMdnn2+HOOjo+oBgMGlWVx1tKs1kx39xhOp11+YABwgfumG2ZYjxRrQQzq8qb7tsWnfNgY0RvSTjLCV1pTVQOaOvTb1w0Fxly99i7W/Iy7R8fs7x6yeLZEl8KkMDx79pBqOOLm4UEAIhHIdtVwfMF2CaApZ8guFduPAXRdmcBo4ez4ZB9ApsXorcXJySmH+/svLmTWvlzt1szU6t9GVB5YrGjAeIERUhS2O9Uz17rOSOpLByqWjeHRkyPqzTm7OyVKBpi2xRaKzfE5lw53ODi8hLGkQtKIz2XzTCFW0YmT5LWPXEDG5yulkaL0OUJ0rCH3Vfb9WH3h6AVx/NTDe2NbTGv8KR3rBa6tQ4WJhrrd0LQN0+mMvb19inIEUnai3Dm0DTlQEurJShTc22bGbJElpIFkWmKKVsyE37a51eVrSowcE0QpJsMhZVl+SWPuL6ZFQjfGsLu7S0IKW/6qHrN/ocPdBzHirwNC4tcmlJpTyU/X0XuPsSVwl+2B1AdQTtEoWDUt9x4+4fTZAyq74fLBHk4KNqsjJvMdlmvYHD/j7Wu77F++gdMlNrN2xL7qoqAsqxTs5r8IeWoSovSS5aIDgVr74COl/Gk4IDGAMHtE9JNFs5OEmrLxRz2SBwTrfAGFtq1ZLM5ZXpxh2zW4hsbCelOzWp8zHCjeunOH8WwHrUb+RrGEmESAtxW9KHElVRDy2+v4y2nWGg+WQl1Q41r8oUKSQCVEjrdd2zgA5R7fy172NJzuHt0dSXMhqjf5wdQJiEaXY67efJf5zgEPH3zGanXOaGhwrqV+tmG02mW+u0dZDbp5zKRi0iC3omsDzPS0rBRlWWDEBXAf8jsBH7TZRcGqUES/rusgtFocGkvB4Y232ZiPeHz0hJ3xjM2m4HB/gn1+zKNHj6iqgis7c7SSUP6wo4HkFsg0YsLn8bmmaQMQyEByoDOXLCyxqbgQSTkA/7tHjx5xsLf3cqII7ZVCMiKHHq9OzfcqMmVrbUhQVh3ypC8co5k2VooTfCj9xjoePX7O8uyEyahkOJyw3qyoBmOeP3vO4c6U/cMDjzp1gTjjI2EdFFXZlXAiR8ndmYHRtCDi7e9a61AAvD+eXFfLCTkXjpJ+Hf512qdurFesFxe0zQaLwbiGtmmo6w2jyYjLV25QDUapP/EuOkyUAlqriYdA+wdkm0nAvSSoITKZtGaS9S3Of48rbX0feuFoKcqKoqwQ0S89G/SX1zzBPX7ykMODfd/HHpLPfpa418u1yBhklrTOdAtH2zZdJDMvzq2/R2dJ8PeJ9OzvJ0ArivPNhrv37nH2/IhS1RzsTxGjqNsNerLPyckJyjS88+5thpMdWkq0xZv2ooYbzmMs4rmP+bhE0j7sWUWC0FNae3+oCqUYM8bs56+joyQcu4Fkww3PCSbA1jiatmZ9ccLF4hzTrsB5QLisl2zWNTuTETfefZ/haIoK/vSk4UYmlvoSYJlEmN19Y0z7RosJlGWVDlq2zqI1qY5q3EM5LeQtt868vm2BX+c1NVEOn84QrQfRrRWeKIK4ksn8gHcmOxw9f8TR82coaRkMLKsLw6ZeMt87YDKapGo98WkxZcS6WPilK0ggkfNFYV0oDArnGlKxgSRs4wRo7xIowbo1xgQXhgXrSq5ef5fWfMLpYsPOzojVynD58AoPnj7m4YP7zEZzdsYlqfqTE+JxarmQjCbZ2EutCloab+otQv5pBhq/aAV6B6KHf5qmeWEPbLfXFhNIOEO2P+93xVrnywzlv8o3arC5+zcQz7zDOZ49P+X05BgxG6wZsdq0SFFycnLM4XzE4dVDRCpaa3HiyzvHe2ldJXMAOfPY6ovPD1MpeToxCNcjV6KpNgnIJHzpCUmHT5ZuNw3r5Tn1eoWzjT+hwzSs6w3DYcGVg6uMxjNEVVsbK9P+lIQcSutTaVQnsrtggS1tnu3Wib6I1TP+Sir1tq3ZIyC+joc3xem04d9Ui9Q1HOYlBoN/oddym1YYyzaT2jaXBqRpbAPWUBQ+MMD7VOjbo3LzLPG77IHOh96fr2s++ewe56fPKFzLzuSQUhQbV1OMJjx+8pR5Zbh+5y0m0x0smtbYlFuJhOjYYkCh85Ql+jRN7haQFPCgo+YYjm3rhddnU9XRcre+ORIHCTnFDmcMTduwujhnuTjHNiuMNbS2Zb1ZUq82zOZjbt98n+HQp3EkwZglgSegFwVI0io9jfcAiHX92IVfYjPG+NQK8VYF01qKUqN0roGFbFXp6Mz16IUX+M4L7SUgVlAY23bX5zEbxJNl6PYuGrTm8NJN5vNdnj65z2JxRjmYUmA4fbqhmewy2dtlUA783s74RvT9+uCZTvBF4SQiOO2tgoQKPYT+oZS35GXAW5QPLDPtJhQk8Tnwqhzz1lvv8vEnH7FZtlTjMeum4dLelCdH53xy7y7vv/sOs8JbIm0EtRnNx8dEM7L/wCb3nfezBoXIxWjwxDT7U5/IMghcES5fvsqLfKXfXn/o8gvsuL+pJGS0q9BxUoAAL5qt6GuWOB/iu1md45oN4oT1qmG9adDKsjsdcPn6ZZyaoKztwu6ND7vXusiYRhDpmfYYn6OC79GHF/vZ2i5X1L0Qog2/77sJ2pVYsBbT1KxXF6zXS6xpcbalsQ113VAWJdcuXWU0nYGUISUkSuOXzWfsf5eCEQGKZP1zW9dHk3Xey57FJ5MZSUMgosit8UswQ4sOBVjenCrpnD/bb2e+0+viF/y6/zYGV2SrFwVRZ1r2WosSHz0XTZO5Ed0F0BXvEVdliyficDx6cJ+z4+fg1jTOcnJxRjseILrg4skTrszH3Lh1FavHtBZEXDr82Rp/iHlZDdAhBaVXOSXRQd+uoULFHH8YcpFpZH1NJ17fm8QXJlRA+XqYphXaZsNyccZqeY5p/BFtxhjWmzW1WbO7s8Ph7XcYDCZYHU7TcV4zSRq/w/MGsWk8UStyktO4l+2WYMl7QykgtjWUukqL27aGyXjg9wXe6ywQCnqEtLWwvzr3D5k508/7qzTLCLz9flQ4K+BiZZ4ODEV3gTc5hQoizoEqqIZzbt4acnF+wtOn91mva8rBCLc4YlMvmO4cMh5PE/jytBSq8yR0kvGSDDwppaGwiJTY1qXKaV1aSxoFWhcUpclu6dPItKp49633+PknH7NpNrhBRSUjpmPHydlTPr035P07t6li0GDgzxHQ5ebuGDzmnPanTNk2kLafExfLnxL3pp8zCf5v4hx6aY9zcPnS5TSGL2pfInAnN56mdet9H0++VqKysnIuqffOxQo3W0JTQKO4c+saO7MRz54+ZbVYgzXMJhXXrl5GVEU8z887l300VmNaGtMyiAibeEJHJiBDUXKt89qUQVtMTDNTwXvj7X7jBxyr4jTUyyX1coFpNzjXYqxhXdeIduwd7DOdzCl0haPAhbAEv/Z99tUJSEkEK73/tlZi64OIw3PifkFm9C4KDDcXzCoUDo/pJUmYvrnmgLqpOTs/5/DgsCe6XkfQnvG49FtJ21+lS511mLaliIclE+cvbsIu4vAFjS720cWIObhx5RDaNU+P/bmmdWs4Pr2gVJbrVw64dvUGToYIPh/MtC0iLqUflWUoD4enM/84ybSKQOHiBY+EPGB/wK9KRynlwrDTFvsetAhOXWYdEhFaA6bdsLhYsFqcY9oN2Ia2bVlvVgiOvd09dvbfphgMaRuFZYCEFK/kO0pmmTBf0WAUPpOURNyxMkeotOXeXH6uwgeN2CD5xAmFHvqZFwIT7tZfQXJJ5FHzXgh1ZsxwcZrzfLPmFizwwCfxJOlmSJDO8pZuK3QW9AGz2WVGowkPHz9itVxgS0NlLWfPHrIeTZntHjIcDIMQ91kJvgpNDN7r+JJzkUuGIhTiz2d00mCNwcefhPSpDNBrERrb0oYiA6XyOadFMeG9dwp+/PFPWK8NaxTrusHammfPnzAbTbhz9cDzx0AaLvFyP1O52TjmtbdNm+rsvEA1kXdHbt5zdgsuHA3mDZJm++pe+xLFBHIqf3mzId+lM/WEXm6lJ7zA9p2vw1fokv29A+azCRdnZywvztk/2MWWY3A+0TiacjyCEzQ6Y+qSzK9RKHikHarnqHgKdpigjOBki/Bw9O4TBWRrGtrNms1qSbPZQDA9beoVSgn7u3PGswMfDSc6E8S2h7hyLTH/LIWXZztHiPmofe3iJQu19aqX4Zd9ofq/ldgfvCVArNcGesXP30wTURQ69MNFrW7L3+BIXDgNJUxrd+Zc8PXgP1cCtmkQ6087ca/Ky8s0yRzg5WStnDAbj/jKu29z6Xyfh/cfc3p6RFnC7Zu32d3fxUiRSl4qEVRZ0hpD3TQoJVSDAV9k8kmIWiSUTCwRXQRfpo9efbGmSw4CX7KQ4oWCw+cn13XD6vyMi9UppvU1Om1T0zZrlCgODw7Z2d+jUJOQ06gQNr40WKxzm81RYpw9LaoDZp15o+MLMQ0huWR+ya0I5d4QobUeEKtovga/4Nbzw8iwY6CIby7962sq+/0cuBE+6T3/Pdmq+bnqDhd/ce++CJkBbIqLciiknHP5SkW9WXB0/IzlxYLBYEDjLHVTM985YDyZdTVgQwcih+qsfDETwQUQ5vlpqTRtW3vLqzWdVhvHqBSttZRVFfKOO42wGkx5/85b/OTjjzlb2xDVLAxVi6JOFb861hhlSR65HniAi5WRQmqK1uSFkWRrTfKxxYfE3PrFYvFamnuNJum2/uYL23XG2dYH7Kg+E+6u6Xe686uleiIo5U80mM93mU1nPiTb5tVm4vjCFYFpbAvHnnk1I7p4g46lStrQua9H400rThQGh0/pWLNanNOuvJZr8P6aQmA4nLC7d4mqioxO6FWAJzIr2+tnb5YDM3fhDMOYDhCGu70E2awm9bM3RsnnK94kbdBO+MeTCbr34Y5Zus4bac4H1RzsH2zbDjsQk1Jz8pzSAOpcf7oiM/MgyOfy+VqtvipTfwJDubVtjZwtunce7XpR43O3dqY7TN4Zc3a2i9YwHO/RotAmBj74OzkcRaFQMmCz2SDSBVgoUV0wXqBLJf4QZO97DFVzfEe2xh6oQrL94IeUNOWoqRhnaJuGZfA5OlNj7JqmXbHZ1FTlgMPLV5lN99HFEKcyvG6zvLP4Nz077GlHACA29SPXnNIBA+GLzB70hWTxi2yDQZVoxFqLDvELydLkAqkQgGvOjHPBT2ToNtP0HC6YBJNtIwI/F4opgAfKyiI2Wj0C53f5jk6LSaodKXT3VIpiMObqlWucDY94+vwpqlU4azg6almvV8x39qiqivyuIll589C36AeNYEuJpixKjDhaX0miJ/S1LhBVUEjRAQv8OIwUlOND3ntH8fEnn1INxxweHrC7u085GHX0GYNBJXM9SZzijseLknT8oiuKtAbJ+pKCneKYSNp3NL8651gsl6kYxxe11/gkuwf0PtxiIM55IYlTPhrMxcs6YRgH90IR8lxoKI0uwFqNmDYjvIy5x586UiRcQgISo/w682o86NX1SSJjIrGPcfMGDukstm3YrC9YLy+wbe1PnzctTVszGo/Z2T0ANGU18jvI2WBSjQuUo8ZtNpF9J0IswIvqCjB08wu91U4spbtH9tQEIvoTTSckc3Tc60c4N1O+OELsl9WePXvG1VizNdPgejQhIHS5ZU6ysloZLyFZN0hrWGh/uPDLEXpsyRNJlJyJhoOJM9bR9RaNEiWa3b1LXR5XhLgJkMRAFr9+RTEKEdsBYqk0tLAeRTjrsUhBJVGT7TEit01PgeYE4uGzDktrFWazYbk8ZbE8w4Yjq5q2oW42VFXB1as3mM8uoXSVGHim8wAh9ehlNNYhiTC3W1WxXtpCAY6YRP8GWllV6XBl09QUg7Krqhmachl8jUCkHx2XVhjxtq/cPykdY0xCIfFzB6nMZ7a2W3DXU0/mBohTnkfMW+dLqexdvsp0Z4cnjx+wujinHLQsrGFTb5jPd5lMZj4iOlTU8aEInZssD5xJ/VCaQrwfum1bnDWpd0rpUK3IdUIqjdrTwnCyzwdfm1AUg3AiiU6czFt8vFUhAcDAC3vl9JyDYB43tkGoQEnwabuM13W977G6LMq10MVred1rA3fyDdL7Lu5N580IojtfVpfu0X//4j0kOb2jycUpIZYVis7fhGqye6Ri6irzRSYBGYmyI5x0HAtZplZmToudt9abEjbrFevVgrZe42yDaWvWTUtVDbl8+RrVYIBTBaaNZffsCzlO/ZnMF831fpeWUgUbeYYQcd0v+qkK238j43wJ48rG1xPcAsmMTWdOfG2E3i+8uXRyS07XPbJ3AvijvbZDrCCOLWdQ3l9urAFnUEXVm8IOgnSCzPWXqaPrLXruokZ9hGkRtL9Ym9hF1SNjkuALSpdF6eN245FsEo8o0qnmqkim8eaKRG+cfUbZmwt8Ufa6bVhdXLC5OKVt11hnqJs1pq0ZDidcunyT0XgHUT4YKDGXpJmHiYq1Ml9CJ8mn1ptc1xPiLy4Wfs8rhypefUr8L6ppXQTBB6Ztgwk8411pb0UmnQkzsmA459K+6kFXZ1ON4Y5+4jz50moRLPuPM1ASBSr0BWTUQPH8UGWCQVQJUjEYFNy68R7n5095+OgBbd1QWcdRs2azXjHb2acYFDGmPfzro+yts6mPnZ3C8wtfCU/5amLWBMuCC37zDkAl0ACBP2rKchLyeb3dLgKOBAnC9dLjVb2NiD/NRNHYFptcIcEu+ML+yC4lAlwPUGazWYh5+eL22sCdnDFtd1hQAQF2ZtOXMdqcsbzwt7dj/GsFoEqPwnVn7sgH409/9wcio8IJHiHaNREzkZ4zgSmpFG74VTzM1x9jZeqG1fKCzWaBC8f9NO0arYWDy4eMx3OUFLStCcWNA2H1eEB4dvZvfDY9rTBv+b2iSH2REff1xZcRz8veSvcnfeiIdTJTbx2hPNWbFZTWOiaTCVVZdmApTzDOtZL0J9P4tmYvZ2TGtiHpPqfjbv3SiSJBU8we0WueQdksnzT6zH0hLdEqCMhQJDoIzLiRQXCu9WkGkWIERHy+Y7KGxG+TdtzRcT9qtOtX3mdnLZu65uzslHp9hmk2WOdYtxtoDfPJhPnVG4xGc9ACrgAXx9JN4LZJ1Rtvtqwezmvz8QDy/uy5KF+7Pmc/EaUZjideWL2BpnUn9FtjGId6pkA6kUVcLFfom1+zLhK+zysjnwvvJKPJJGRdEnCIC9aNfI/3W/pG+lwzan3iQIvF9MC4N8/Pd68wmsw4evaU45NTirLE2Zb1es1sd4fpeOrzc5OAJ2gM+dPjX69xS1H4ammNr0ft3TQGqAKICqXjkqUsAAvl5zRq0/kIE5X1rHD0iTE0pSq0qf1B49qXn/Pdsz0ZAF0pvjQvYTKHw+FrXUtfrsD5SxlmGFBwcEeNLj9Oqov++mIEHt13EXH3AmZye0cqYeRNPRZ8AEMIzkn5jznjS1OyPeEkorYCGIttalbLJZvVAmNqjK1pG4N1LTs7O8xmuyg98NpuOsOP4Nzvz8tL5+nF6Uu/leANsMYhRYeIQkeRHtEE32EvlypNaP8ROVCR/CfSydkERXOAk5+f98tv1lqeHz3n0t5BiHqEcMx0tpYxEKI73Ty3DOT9j8jUOesP0g3BVTkgSddkCHi7/EtuHYnMKteaJNt8EgNqnC/m7Jwi1dB08TDylqrqAhziKQjdUVihbmVKP8iEYCa4ks9KQp+dA2upm4bFxRnLxRlNs/Z+x7ahkZL5ZJfJdMp4PA2ncRS9g3pj0ETeEj35ODq68+7inLgkRCOA3A44ywFLZw72tZt7dZ9/yS2ugQ2CoQjVd1Lvnd8XhLG5uCcd4CKQsT1rV5dJFczN8SgqJFi7PE/zB9eLj30R4VV7rweCIj0mmvVWLe+z7vzcHrwUFOWUy1cqJrM5jx4/4GJ5wnDQ0j5bsR7Pme/uMxgM0jFsohTOGLpH5ILf31tHRaVtscagdem1Wi2IFL4/wXza8Rd66xzHIFEWvHTM0d8dQSwICi0Oaxu0HuLQpMIEcZJcf9+8bC43m80rZvx1FXfyzR8HEjZSOvgzCrYwyK7ofKb2BoDfE4KuEwXbnc6FaadB+Yo+Pt3Em099QXOdHX66JSCzRYlcJDcFOOcwbcNmuaReLGibDcY1NE2NdYbpfMZ8vkuhBwhF558RQj1KQxcYlQur+Ocl4vGFjzpc2juFpJuUrbmBhMoih5LeFek5uQnjBV9PnJMMXXnm+ObqZ8bmBIzprAaefqJfy//ABQHXKY/dmkdG5NcbUo3K4D9RopPw8cTcPShnOpHF57LA5URNxrRSBG68sg/InHPh6KIACI13F2jtT8xJxwSpIiHueDJL1F4S7W5pErkW01qLqdesLs64WCxo2w22rambBmMNu7MZO7uXkKKiKKru6CxChDWZqT8bX958vIbymlVkQGmCsnVMi9MJxI4eM7oVSakhbyq6VYvy4NsYvK1JZf0i22M2BKt2/Ze0ApJVhwmXBXQjWOLRfV31KIfXelQWsRnnyZPYy7ScvN5peg5xO8RC5FHo+Js5sfhzJAdMJgV33hrz/Pljnj19RlmUWNuyWV8wme8xm+34uslEONO1GBjTKZji/ZSlwihDWQ6wtg3KgwoaY39v5gLzhbF1M9OXB3GMKko+ELEoLb4Qg4CvHObSXXLhuw3V/C+8ovPgyZOX9iW211bc6caSPTzFwIccychYJWo5dKLcdUPvMxQCevKEJziwim1NM15NMjX5yS+KsjORZMIguzhNUjxgN1Vtcc6bGlYr1ssFdb3Bmpam9f6Z8XjC7t4euhoilHQRkN0S5s/906BfDxZe/Dx3TOeCapuYOtAg3QaIaxUfIOnH3XW9/kM8pqgTCsF5H4oMmzcY3dq0LZcvXwaiZcqF/nXr0PGJKLRIQ3tBd5FgOm3aYPrpGLOksdObr/Q+E36+K/1U/4626T88ydJMmCpflN/igj9yEIJydKa90b323C1tdFLXt5iMA2MdTd2wWJywXJzQbjbe51ivfN7xfI/5ziXKagB47VyCHzT+78gtMd185Pu2gyDd3vNd6M96Om8xgmnpC8qUuhDHkwTHy5nnL7yJ50Wmseiq8KZntviKy/aRdFHEYlX3ObwwhKQJYQPvpLMEhfxdXfgEeV+v1/VAWLcV3ZbyEDvl6cSisbYMdXbXjIZzf424BGg8L/XPOTi8znS6y9Hjx5xdnFOOBtRHLevlkr29fUajse+3i3mE2yblbnzW2lD3taJpHVpHQa36tJS97o8j0jV9IRpoTKXroqboQAqUsr4YexCafkpCznEKlsvBa1/5EuDZ0RGvaq8pcN69jrK5m6RoMgneIitJq0o1jR2ZityPUkpd/hK8uJtYb9+2DqpBFUys+RRs2bl7C+A7Zq2hqTcsFxdsNits23gTVLuhGg44vHSTwWCMzxWMpdCCYz2NIQiiBBa+xBgS03zZ6OLcmZRUHgtZd9dnWnuqfB8INAGIaO5Kk9Z/TopIdL3v0ppKxrS+1Kh+Me307DSkE/km0FkeUvinSTQRYzcD9+ltSL/nBOcarPO1Wr07rfUHdseSdHTAzfMx1z2bbYSbfxMFSB/he/LYKp4RrteiaBxUg0F3WgfpUrwp2dNeFIiWHER197Q2nMpxccHF4py6XmBNTVsbkIbZbMre7iWKcgpS+IN5UxxBxqR62EqyvuStE5rJvfLSn0giMwnnRvqPsxiEQGeeiB3KCkg8lecNNO3paF3X6KrsqjDZLQoQoTuCjzSuXNvP3Uz+yqhcdPnHiaHjT0hxRtCV9sAlArEUwBhoKwX7dBV++qjMB2j5g7/r+KBujIk+8ccwUjAYTLl+Y8zo9BmPHz+gYY1tN9TrBbPZPrOdHZR2oS9Ftw+yx0oAk4L38Zll69Nn0m/6YIv0cf9zD6Kcnxspetd5WrGkOrKEdVAabI2z1uc95+Ain57+g9NLpYTdnZ2X/KhrX6J2q2ce0SeaOo0LgTQW0eKDXLAQTFlRsEkQKC7BGAJAd+l1bC8fTzRfdETpj1HyYch9M85LFiO8tNbRNjWLxQXL5Tm2bTGmYdNuGFUDrly+ynA0RrQPXEjaYRbK3M2ABWN5mQa77Xf9ovGk+ekBBpdMrh6BqfhNBFTdmMPYPAF1fUy3e5mQjARNTkAx1NsgIQBKRGK81BtpxtoQNJCj7hgtaNL4PXX2TfZ+SNuRug5j1iAtSg3RzkK9xBQltqjw2bEq0WqkVwnJ41HoxTlMQlT6oCeBjfg+08Die8nuNR6NE531GUXHiNOvQ/6kDUzYGRs0xzMWi1PsZk3rNqybJdppdnb32NndoSzG4PxxVUDgr4ISG0686ACXpx/pk05ufAj/Ouf6xpWs/73XCa3HoIo4O96UGcs1xshqn/vGG2lRi7GmZTwa+wA2HKLi2ZeRw6g0J5oMuAppv/a0Juhj0sCrXLcBAU/zsfiJC4AwEpd1MegpCKP0VUzXyDSkNJ6OrjKulfiPUoJz3uVgtGU232cynvHsyQOeHz1mMJr4gK/FBbt7uwxHA4oClDSIK7wQIxx27Fyi1qIsgwk/7tdufrfnW2V00gNmItADjlFIdiGXXqmUUFXNjy6mdMW5idD5hQUg0qIgTnH96pWXkURqXyq6tcdsu1UIplaHcpqJPsNKQd1orCpxUvQi2eJ+iiWbIvPqBMqX84VFVKV0rmlsbdAoGMEfhGuE88U5y/MzjPEnajfrmqLQHB7sMZ7MKIsKS1YlQrqx93oVNLl6s/GCunjZrt4mkPzyF7UBCYJAhcCFqC12DDInMom2rISWJIWPk7SONBdhg3egrv/cSDTJqyJBQKtXl2r6RbZhOWBQDXB4LbkPSKMJRSXmQUKN+bhd0gawFmctWjwIqGzNex++z+efPmDVLLGisKrESoG43NQNAVkQz970LUOMqW/dBy/LBe6dQICiKKpQezjmhMUEfRIjTRQoyvu6xNcubjdrFufnLC4WmGaBsTV1swYR9vcusTvfR6eyiLn2kvtp8ly0LXAZNeE0zvBeCACkG5tKNNjR5/b77Tly8dlCAHj4iisSI3p/+U3E79q2qSlnc6KZuCtZJkHc960O/fV6WXMpWT0WUOiAULDGOV9uU4XqYOkowUAzKmmRpEA2cY78VKDIT3WpaW2DaDLXQgbs6CyBkeaUExqn0NWYK9ffYjKfce/zT1guLiiWF5wcP2Eym3HlyjWGwwFadfwmxZ6E8WilX1laMF4XfZU5rXQuO+8fT77VeK0TkDIUcoBWtTjjUGhwDRK+I/ktIx/e4nniZyHGLYzH4y/sL3zJ6NZ8cP3mUuWD3/nzv83bv/FbfP/bP+CH3/02F2YDTvuqNZkjPEVRJrNYNJORIva+qOBArPrui1N3pqj0u+yvw2KblnVdc//+Q9abJVos1rZorTnYPWBn1/sdHX7jSopSc/07bo3dWRsCCO1LTWr+bW4udXRDlgzl5T23IZAjq9oT75Gq1pOZTLtnOclOjkgbtkO4MTpyi156LUbyRdJ5g4okR8+f8fZb7wDRKAgkfwORUNJY+kfgbA/Q05O1llJrcHDpyiF//t/4G/zaBh58cpe73/4md58/9iYbp3Ciw1yo5Ldj+945/fb8lG7rr+9Dx1RCX2KKQaLhbVrrrCROBGthU284PT1mdXFG26yxpmHTrKmKksv7lxnPd9G6AoqOEUp2t8CAPAPOmHVPi01ysc/4k1yQTuvrFWOQtF4d0IzmQchr50bgQWKuEKsOva76yS+qKREaY3yt56IIYwBEEZFaEpwZ6IiYLc7gduv93uXrkTNwR1EKvlaEoFx8ZJxT71eMwR46grYgKHPRlwSfSp0MfffXdsdvhSe7LghTRHCqYDI95N33hjy4/wkP791DVyXLi1NOj4+4cvU2+4d7DErtzy3N6rwmQa2yM4V7vMrTucpYmIpR0mH6JOW4BwtDWIeE951LOZxi/SEFUng/rAe4QPSh9oCaZPvUv4+87vT09JW08SUr7oTFlP6XKYG1NezdfI/9t7/Bb995n3ow5aNv/z8Zjw44WW5o2gHE6CoUIt1jY53AFMuTaUEvmC1FvLkpFC2PRWt7BBqkgTiHs4a22XB09AhMg3Ute3v7XLt2g/FohhRFer70Fi8s1EuAgQihrqPfzL7eYmd28/3ua4vxnl1hoIwRhu+sDRqc+A3qQgJ20iKzfuX3SNGWdFqVJIm4tZI9oRz9wTEJOjsF5A0xqthW6yUu6MM9ARJRgIsh4DH4yAOLhAGcC3mOzoMla9I8DhrHrbe+glQ7lCXc+NqvsBTD/f/6P+PmlV2OTlcsTYmzFVbA2jbQbN9HvK2Zd8Fo9Ohhu4koTNswHA36NBIZV08jtbR1y6KuOT49YnF2ijENOIvZrBkPK65dusJkNqcsKm+9IWKqjk5yl0QbDppOJ+jkg5Ktv/kYE5n5+daq3NofUatSHbtI0jaawMLrLa3ZX2u66M430EQJbW18+k2PK+P94y7MY54qBX0hAC+iy4wmup9HbbQTfM5olFTBSml9UFm4lze94gVDNLM6OuuG88XhwVEUBU1dJxdV3zfXJd2n/SLgrIQyfALW4URhywlXbr5NWVV89uknLNZL2tOH3L33CdPd6wxHc3b393nn9lXGZdT+LYJloP25uGZLXvjxu7QXJaiEEmrAeprIimpIBKCWDgi3VBhKBYPRgNq0LNeODfGEEk06qDpaLF3Q4qXfGRHBaXj48MEraeO1QvILNQoXGYMwUo7Dq1dQDn72g5/xg2/9V/zKO7dYqhntxz/mxldv8uTzU47OTnFlhXHGm4HiQFCd7T/4TDoB2ak/cVPpIjKsrQTRbmb8PUTYbGrOTk7YmQ05PNzn0sEVhoMRiD//LjrdO/PKFxtO4qyIeASkonKcnZDthWEnZDvTCkTNI/o/+veMKCs7KieaZ3KNebtzEp/V3SsPg04qQH/pAqoNJg3xkaOdttEFJryJdnBwQAxOcC7hybQyURA4Z3Mk12ewgTatMxizCd4ihR4K1z98H5w3S33vO3/Mj//O/4sP3xmzf/0tBsdLnvz0pwyv3ubi6YJNu8HoAhuS7CUkZjiyCM1oTYgmsS8amCMIEUdZxDy2joNG85hfP4uxvkbw3Y8/5eT8MU4MYlrms12u37jJbLaDLipv1QhlISOmyDWYXPi2TYsudJ+mtuaMdFknuJNW60CpeCxeBC8q0XTyETsSiPXMOJock10jYL5MmMuby5O0omhbQ1UWqEyzcQFA+n6qBOYj840KmzebkuHRzMSetLrOeBhlcEwZUQiF0ljt7yOx2E38E4B8PJMzViNzoZKPCs8qdElZDqjKQRxCBujiEit85E70qbrAA/wV1jkePHrCp/fu8ujJPR7d/YTVYonCUBiHuB9QO9DTHT78c/8S//Lv/R7jUqMwiCjG4wHrzTqdLBSfLfHcRxFULEEXNRMJBQro5tPacDalc5QIumyoSsPB5dtc+cqHzC9f4+nPf8SffPNPwhmfNSLVFtAkZTUl4BDnJLxYrdevpI3XnAJC4LEd2o2I2eGQUAh4OJ4w2jvg48/v8ff+1n/Ku9fn1INrnNz7CX/pf/7n+Opv/4esL9Z8/N3v8NPvfpd7Dx+ysS1WCqzz1Tf9uGzy97oYNJF8QWFwzpc+UrnOnnc5bv7w17SG2WzGfHfCeDhDijGIR9EqRK6qRLw9uPeFLTq+u2dGof2iPysyvq5PL3uE9+/GUwA6BtcxkHx8udPfF9nOGGJcp0QMXwB1EoInCXFRnSmtq3b8y2/rzTogYNetiutCdKIvB3rD9i1okRA2mmtxtkHpAmUdh4d7DPfmnLUN3/1H3+LRP/1P+ZUP32Vn/0MeHx9x9OD7/Opf/XXu/Mrf5Pz4gp98+w85uvuIs9NTWoRGFbSivWnHRf+JSqYcG6bb5RyutzagiyKtdZeGk4NC/7+1La1pePTsMXX9lMlwxM1rN7h85QbFYBZqudKtdqKdDlz1p8bf19kMUGxNoEgosi652TQjRweuKLIoVI/+u/HZ7MfSadb5BIS+5QUuPOMMlVPeQFMiNJua0WDgA09sQhtbAyADk3R1tGPN1VxQbhf86EV5CWRzVVSC1hGkxHNvM50vBfFE8Bg1LE2s2OP5kqbQZXpu0th7OyZqxf5zlApmbqGxhn/0zX/M3/kH/19OLk6w1jES4cZ8xDs3LnE4njMZFTjrzZQPvvMP+Lsnz/irf/1fZXdUIuJQpaCNom2zlBUXXHOiQ/GZbhok9QvAIs5QCBTKMioU1VRR6AuuvfVVLs5+zmZ6wOytD6h0wezSTUq+R6uzYjTb7C7pTf0g0LjVrl65+kraeE0xgb4Wkk+zDUE7zsF8UPFs4fiv//P/G/NxjVX7PHvwCb/zF3+Tr//uvwHsMt93fOP3r/DV3/2LHN//nG//w3/Ao88+5/j8DFuUGBdP4PYqczzKxdpIIHG3CUqKEGLc+YISuosMMtrssVTDaBqS9Gu/OIHdxtevEI7JTOLCgb0hty1WR+nnNmbP6Gl6GUORDNMIWOtzP7dNTh2Cd+m9pwP/eRKQW4TR07C7Cg9kbpHEy4I+k6wDPS3kDbTz83P/ItFzp6lFXa23sYIGFOlBMnO4tSaBLmdr3nrnXdZNxR/97b/F80/+DnfeeYdS3+Duo0+x9h5/6d/819m59heAITuXL/Fb/9otNos1j3/+Y+5+9BH3P/4Eay2tKjz6tqHoeOh7F3/ntQ5LDFv33zrnQoWobW09WFKS1QGcDcdYrc44OJhwae8qu/tX0cXQe/mj9UIFukqLu22piM1HaypdoLcCZKI/sNPocndBFBa+IIJygjfLh2f1xqFI1XTiODJycpIBHIkmv+hHe3PmVi0K07RU85kXbikVqzNNphiBZHnK9lBSDV23H7PfgqfafF/qoCAYwEqJC1WPekAn/NaFo7ZUFvHudKZZOq9V6ljggQ70qgisU/CP70HkI0LU3Cz/5A/+Mf/Vf/Nfsm5XGFo0Gq2GXD7Y48b+ZebDCZPRgPloyPzdEi2GTx/e40ff/wN+6zf+MsXAoKSgKCx1s86CNH1hARV82SqpdwLSomgpgUI1lJVmMtvl4OZt9m/fYjidcu9Hfx89GHLn63+Vz/7k7/PsZ/tce//XGe3vM5wPWJ/boHnS4czwpluOuGImGREFuHb5nyO6tROKW4gUfGRrQO360pT//m/9Z8yW9xnuzLn/8BN+9/d+n6/99v8Spyc+2AhBqYLhcM61d77O33zrq5wdP+DnP/gW3/uDP+Tk+TlLq2hR2BTyHzaSi4jEM56i1ASjfCcc6TZimAYcwmq1xLQNzg3xCC1uREn3pscQ4gTnZoruOxGVDsn1RdZDiTPJBOHLhGSiyhxddv32pgiP6vryTl4YY085+QKNoPdddq+XC79ATLESjSSx+UbalctXXhoQ5bsZZiAIlIgBul9GWvGMwRpDEcCTG2jk5g7/3d/6f6CffJc7N7/K5tzxs/p7XL92nV/7l/8PVJMbPjrOxUCTkmpWcufXf5Pb3/gGpw8f8Nn3vse9j37MyfICKyMMgj/INjDW0NfkMgj7RAWT3mg4RCnttYLkwItRo8E+FC6t6zU7OxNGwwKtByhVhud0ORiSEUV8dn/aInAEKLxQUhaJmmgmGNWWkOw0Tn/z1rYhWE8l8djFD2SVUbI+xCpDUXvsgrH8a9czw70ZTdI5R2taX7IwackOn5ie8RaXOWW6LZze+5KOLmLf9F1Mm+kFmakQB2+CFliocGiMS1po93vVo6noj+xojOCaCDwxAA4fLewjYn1Zxni0qSRp6SGW5g++/Qf8N//df8uyXiSzrAgYp1nWULfOFxS33lU1GO6wM55y9dJN/vCTz1ieHzMY7KKUpSwF2Tgwfr6UEl8zWTyvUxgQR6EUhWoYDwZMZvvs3r7KwZ13Gcz30OUQJRqL5c6v/3U+++HfgqOK6x/+Lp995+9SVFMO79xmNp9xer7E4Q8v0EGGRBbhx2i9W4yMHsMKFcWrDapfMgWkoxm/KUOwiyiscnzy8x9TtWc4NWC9fsBv/f57/Npf+3eQctIhIbrNigC6ZH5wi9/4y1f58M//Ho9+9j2+861v8umnD7hYGURPsc4G9OUJgGD61VphndkyJ2whX+ufuVmvQ0UGBaLp8hAhnk4QTQ3bJqhE5JkA9K07x1LndRIjag5VJjohGe8nCU3mTCQHIaIkl85h9rZhyhesz0t/0PldX7hASEw6mnk9PhHkzWWAcLC/vyUgszmhz4xfAALOpvm1tgXT4rTCKoNIyx//93+Lzcl99vdv8/R0Qb3+iA9/8/f5ym/+RxTDoZ9r5/DFIzyDTF7iYsTerXfYuXGLD/7CX+Dj732HRx//jMefPaAVTSshsCwIrew4xaDtej9LURQ4a7xPFa+tqDhOAZzCig9cOl+c4WwLbuBBTDz1JoI8Moa91fL9JgjWthSFoih0OHE+F4aRqfrXMZcxkX0gaJE2nG25JTwkW5MXO0Ky8iSa8/dzAjq4KfT2+a+/xNZag9KaoiySkEPo1i+saTpLSPp/429EJJww4VJwb+cCisXu6XiMA4Wl0GG+dSKVcEv/4Oh/90XWXeqjdyl4gSdOo0MlkZhSogvtT1qy4ChxygOzFJmPj6R9+PgJ/+3f/W85Xh5hrQ3Ax4O/mprT5YrzzZrRoEjjtg6cKJSq+AvvfcjR1B82r7XPOy4LoW794cxaSkQspUApBl20jMZDprNd5tducPmdD6mmU3Q1yiYnzrnCVTu89bW/yec//rvweIfbb7/NZ9/9L9Cz/w37lw65f/9hIC3P6xMoI064/5srLe6VnLVrrz0qa7tFc5a3uyi0bbi6q5jtXOfJ00f8zu/9Pr/2l/99pJxkN9q+T6elCJrBZJ87v/Y73P7aVzh99Dk/+eM/5nvf+RlH5zV1O8bg/TNaKabjiWcUqbB4FxWV9zxipPVmRdSrlVaZSSfCb5WZjvIud5ug+5+EsJQKYeLxb/iNzQV3gIsi3Vx2PcuFp3+OZ14qm56XL2D6dFvt7cF31+3FrY2cbuDIgiu6gKLYn38x2rY5j6T9+2/Th53JM2g21jT4KDmNso5pccH1nT2a/Zs8vvuI+bzlX/rX/y0uvfWv4rQGpxGiyUa9fPqdgFRU80t8+Ht/jQ9++3d5+vnPePCTn/DT736fZtP6+DsVcxTboEl4iFRVvgizz9vMGK1k41Q+zcmiODs/x1pQdGXLOk0P77tXQmdS72YtTlCkzaKIp+RoCl31aLwrjRdBnk4WKxHxASUINAWFLrPDzgP4y+b/ZVPWew84icWoXW+PqTdEd3Vd+3qlQeOPWpqPowv7zOE1vOjTzUFw1OQTEOi2Z7cWHQ/x1/hEeKcNZaXQqeh51rFkNsz4myUr0hKfQRB+AuLTWJQStFLYsOl9jqWgrPOFKSCeDcg3v/U/8eT4OU18hAuVbfztaGzNpq2xOFprsOJY1mvKeojSikor5m3LGYIuhJISMxiyWl1QKmFSNIyqhsFkzO7lW8wOr7F3522q6U46tzQGsb1ouTSARqp9br7/N/j0j/7ftLVwcPUrfPw//m0Obr2LP9zCYK1Bq9LPY6TNOJFZap8/RdMHLb3OePHlz6WJWmTY8M46nIZCGWazEauLC371N3+Fb/z+f4iUPn+mr33Fm8RAHJ/v4mgR1yCuxUjF+NJtfv2vHPD13/gNHn36I378w8/42ccPWKxKBsMZZZlrFcH+HvO1AnJwgAQTxmazQocaztsCT0LB9FxybPtictOsUoK1LhznI5lvJ2qmPocpN1H1UH4ieHqCyzMNhVb+iJlQN42s8vaWEMyQbux7HjFA4OW59pgL1EQ8XWK4c93KdNr5m2n9E2G6wC0grTPE0dj0TfzM4QOhnDHEUmxDt+Kdm3uMZpd49uw+b3/tBr/6V/5tBtP3wxFRMele9dfpJc2vShuQ/5grb32Dy3fe54Pf+V0e/PA7fPzDH/Ho0QnGjgCojQPXMpkMKMqSqKF1YCpqGkAwmVnnsNZxcXHu/Tg6ML7sVGbPTGP5uryHkv4qkZTTGItfe2Grt/ZDrkV60NkF1sTIQ0fjbM93KAkISm8F/DqSEWHWO5Hgm1ReFGfa7IuA+pfTNpuNPwEjBg51W6VbF8GXqdOkKY6avMrfx/WM5swOXad96INsAj+1CkWRouKjhhhZQG4aTE+Jv8FrWuIchOMDi5BvrZQv8xeLjXgDicViA3+usQjL9QUfffR9rGkCjYQmghJHKYqBM5TOgDEs1mvWtaVU54yG5+xM9rh57RJ7Q8vQGuY7M7RdM14a9MYyGgqX3r/D/PIN9m7coRjPcbpEuViZLdvD2+aIAFj9SUkFajji9m/8VT7+9v+d47s103HNySenCIPA/9tQPD83AUAHVSQBClHdPnxV+9JCMne24xwiLULBQA9w1Hzw69f49d//36HLuZf8Ai9ntRahwbk2yHKDo/WIpq3RdYu0AvPL3PyN60yv3UfP/xGf//wJVTllYyzGQEqilYyQgwLtAKxHFaZpqHSJFqEIAROSAm1IY9r2wSTHfA+5+/PSop1fa43o7mTtPEs2Mr98eXq+s9jpFHQC0czVpQV0C/yCENy6DXQRrb1rssvS96Ff+UlQSnzOp4aAPt9cy4nWV3WK77JgF+mIPaHQ9BuNsy0thkqEVoSd8YD5ZMajZx9x5a23ee93/gOq0QFgSEcd+Ru/Sj5mWpFGnGCDlUIYMti5wdu/e423fvP3eHr3Jzz82Y/42Z98l/OLCXo6ZDwsCC6nZJZPUD3ul7C/rHU0Tc16vWAyHqEUFEXZmVsTbUUDYEcRuWVDMiHpA26UP+g5u48XmHEf6G4NehYIX/+kCGddelNW9C5GqdEJxHikUgRi3RFLEYNk+a2BiSul+kT5S2yrxZLDw8Pk7hCRdOB7F4wE6G2BJd1/rtvjfoyS5TpCXF7PQ0EkHAuDS0E24Za9fRt/T5jHOEexFzGu0eGDqnRRonQF+Go/TkBUyKWMVgurvd/OCYvFCacnx9iQlmGtj9zWUaw4x7ASxpWm3dTUqzVFUXL50gFW1/z4k+9Q1+/x/u1b3Huy5F/5K/8Os0tDnBGOPv4hwyGMb32DavcqGt3RVW9f9z54SQv82pYUo6u891v/Lp8X/zm70/ewOM6+dZezekg8t1WU8see9RhumrGkgbuXgLjt9qWE5HZSv6MFcSgnqOKID371z/Phb//7qHI3MCu19ftwAJ1zCA2wQdgQA2+ss1jT0NoWVZTY4Zx2WfPDf/pP+fn3/gitNozne1w+vMTFYsNquWGzMRgbbOsZizQuakl4k5VpEalQoil0OO4qMCTPQHw6h8/VjIxrW3DqhPLiZm+axvt1om8m5UbmI+8LpW2vjQSE6jeP8/lnWqXr+ukbWxszCNFoV4/MKGP1KSYkLML2smTPCRvfuRCB9i+OkNzeONF0EhlSF50Xp9KDDGuNR59uyKBV7I1gZR7x4V/6PS7d+eu4YuqvdX+6Q377ICSPZu1Ww5Z7HLz1G5TjA8pizf2fH1NUu9SNoWl8lRTjOgaMxLX29zH4M0uXq0U4K29MoUtv5oyALa15R3OdvyX6FwPAC2Y8ZQu8JqkyTTK6G/r36fw5pOchgNIonZ964f1WEoFarj0R2JHEz7PC3HHsRDGDF5JvqL65NYbhKPrDwmqo2Mfeqvd3YtS8g8mzV+AkmVxjWlJm8hPAFV5QKktRqXQt0B3RRQAYKvIeSZ8RnhGPEPXAy1u3IshRWmEVOOMLESirkqlVbIlSDusaQvQHEyeMtGLTNtRiMU6AklE5Q+HN0fPxlGFZcnq8ZP/yFVbnpzx4cJ/5uOTJyZJaxlR7N3BOmB0vWD7/Acff/0dM7/wK02tfRcqq41NfwnLQ9/v6cevhdW584z/iyUf/P2ajXXbnY06eGcRZfMUdHcjTBuAZJgsXQKlkO+7VgvLVHMK95GJHktDKWr76wa/xwW//B1DOQRqcDLaQFqSTNFiBW/gqJqF4gBhCEIOgyxltW/LJRz/lB3/4jzl79im2bdjZnTIZjRkNRiFVomDYNDStoakNbQsmmOiUi5tWqOsaF8xDSuuAgGPVH4WIC6fU+5DkhPJUF0CgRGXBEoQjYQqMsd7Ho7ti7t2i9hfXddwmMbe4PFGDEOVIR/sRmd1LbQ9pTqOpJ92rVzLWbRECfBEx5E9IIVZvyOwFcY4z57vLN0pnRgmsNV0nSWuxPqqVCoqWgTvj8P0rvP9b/zFq9hYwDChZvsweeX0LKN6KwrUti6f3uPuD7/Ds/s85mGkms32u37zF6ekFy4sV601N0xqMEZwVbNQQ8CZIG4Z4fn6KKB8IUeghRVF0UaUKX0YvnD8pQjAf5WZUlYSqdZaiUBhjgpugSLSmYhJ/EpTR55bTtKSxqqD5xoMAto+3S0CGWBMp3ipU15JOmCCe70W3qn5D0a3WWgqt+2PuuTTCZ2lfhneSae7bN820GHkJL41zYp2EdVT9rboFOPoWFtf9dSRfbgeWBdHK8ycXfL3Wu7iIhQqUDiVEfOGKAcKfu3Sdw1JzYVb85Og5R01LhfNuJGcZFCWXDg4RLHtqwKUrlxg3b/P550+5d/9zfr1pufQ3/xfIf/KfwL/5r6EmY5rnI9z5Ryx+fMTy+SP23v51BjuH2Vzn/uzXu3pSQN30kMtf/Suc3PvH7B/MuPvsAmiwUqNl4lNCiDIygorMfbMdIfwF7U8Ho/Gk76yP6lSm4a23vooahHPLKFMll/DjVBQZVsA51vjcGWdBrKPFomSIVSMePjziB9/8Bzz59IeY5gxr/KWFFiajMWVRUuo2Oc6VthTa0RpH21qstRjrME5hRbNZb7yQ1EEoZrZ6H/xjEacyIRm1S50YRidQo98oVOvXPhpOsgCGDoVK2lzR1JQYcpgXyd9DqGavgu8o00Az30MKOHLeaN2J0ghjUxcy8SoJzX5xyzeh79ebDtzZTgF5ISUkoOfc6CcSKmK6FmhBKSyWa9fe5v3f+7cph5cgBNO4cPJHvNeX61T/jadtf7E1htPnj/j8+/+U07sfwXpJ68Ds7DMbjxgMh4zqlkILo6Zks2loGkPTWFrjIwyNA4fGNB79Hh+fBAEZIlIDyItnfooQ/OOd9qekH5yWXhvxRx7hUuBNP3AnRLQCBPNn7mWUMN/RZWEEdCzVlq8TLpQz7SJvJXzu3TQuuX39tQqUwYmi0PqFIJ9fVhsOhhRl6aNcXVc0pdtFZOPprE35X2/G/IJ9JkLI78iu8RNhGoseFH2Ta1QNt1oHHLPn2AhLHJEVqKBeqog+Qrk2i0WjEaKpVxgNJpS6oBwobk8qBk4xGSh2d8bcffacRW0YF57ejDGsVmsOdmccTHc53NlhV7/NxfGS46NzfuP732N4doL7v/yfaf6Nf4VyMGQ4q7h4ZrGrFdX9P+LZyUNmd/4ck1tfQUWtUpxXbpL6/UXT2H2nnEYmV9l7+7epF3+PIRdsmKCMgcL62Ltt3ifZeqZFfTXRvTpP8mW5aoRwZKsoSsP+5cNwTloUENkRRyigBVZgF1i3AdOEckq+9qorp5yebPjuH/59Pv/BN6k3pzjThoo7ghaFckOmw0HnjBaPjHQwz4gCpS3W+siwuvUFcFfLc7QSLxB9CYeArouAnv3xKjqi85hDqSIK95tYMgEKQcBqX+BXSdEx2XjmZM7Lk6BLs9fdy3WmTmdC3VYVGL8N7EXhQ8ozZB410qQnis81i/d+mXb0MqG3vb5JRmYM8l/k1gHRbk6stZi28QEHroTVBddvXqUYXgZKfL6UP2btTz/EDnq4oDHZtuHk6UPu/+CbHN3/OXa1wNkN1joUBRQll/YOUKqgKDTORJ+fpiwdbWNpW0NjobUOYx31psVYuDg+oag0hSopy4oiRLd6Aeft50mzjEIy8zXm4M5ar2H400e2gnYggD1NzFvoAngyXu1AFVFQS//0q25VvIFSojLkIYzJtAZf5coTm0N8pGugZ8ObyT2aDkbpON8YMBZbsmYAqYYrW0Iy7CWJts/etS5FZPdJzlcYM65BFf1yap1Wn7fuesk1SZ0Lcp/uES0BWnlNEucCsBZsMEE66/MmJ+MZw2pA3RqKwZDxYMDx8TOq0YDrB3ucLVqGeoBtHRu74eLinNGwYj5ybNaWshqzWjQ06zV/59pN/lWtGf+f/o/otkEGmulwzsIJ1rWsjUPOH3D80yNWJx+z89ZvMdi7Qt9x8WWbA7Ho6iaXPvyfMf7xf0l97nDWx7tIrEXbTV/449JfK/RM2y9rX67AuV+NQPkGFYJXBtWQwc4A5IxI/KEKIT4J1+BY49igbAN2gzEWZR0ymLBqCj7+9kf88Nt/n+XJfZypcaYMztRgfhLQRUVZFTjlQAX7fhAGESn55H6LcT7h2WFZXpx1TEPpUB1HB/Or6rQ3HRlNDIONVXRi6TpJG8DhA1ysVcl8m+YqCqiwfqTPYpBCdBh3ml/0BTqsF/ohKktUJ2wj6WRbJPWpa1sBHFvrLtIJ2259oxaQX+NBxfOnT19FGr+cFkFEHGdg9Ehg0BkAidqK4CNbTagsNh0NeevP/yZCNC+q7al5TRf6pnEIBt+25ujRAz77wbc5f/ARzXqBa+vODyyKYVUycXMm8zmbxltfjFKI7cLOhQC2HBQhYGexqNk0G+rNguloSqkrqrJCQsBNBH4uaIr9fMf8/843aYzxz1GZJQV6v485yanoRpyDMHhjLCJFEJBBg1ehkm1UNbtpSnvC9eaxHwkKLkXgooSf/OSnf4rV+bNrk9kMpwTt+vTRKRuZtuj6ey83Tb/w+VbLU1wcPrCm0IUPtglEse3XfXnrNM68oqFTJEWCwNu83uJQ+EMm/IJYnNI45RgMBowGA55dnHEmJYONxW0stnRUgyFFucTS0DQKlGa92bBYbjgrzynLAfOBY/H0M+xol2/ahqO/8W/xv/83/wZ2fYFYg2mFohhQm8YDButwqxWb+z/iyckjdu78KrObvwKDqZ9v1/GjV4P1mNUA5egKu3s3OT2757+yNsmEnA67FihSXjfPr63d+jLtwztHnVMcTjXjaYVzpwgmJD2D6BGgca72vWhbTFtD3aC1pta7fP6Tj/mTP/gnnN3/Gc7UWNeEDoeUjMjQg2AqypLauoSau+nrjuxxKC9EncU0LXW9Ahz1uqapmx6DiEJQKx2EkwpCMr72TCZqKPH34iyF0rSiUipInPTeoio6zS+rIASE1JfO9OLHFx33YUl6wjagUIkekRc1vfy9C4Cl/z2pf0lQpv56VhC1UFGKJ0+fvJI0fpGtQ+gRRMQxSQY+MjN2+FchGFODsyhrUa5h99KAamcHePVGeHmLoVOezVs0tq05fXSXz37wx5x8/mNMvcSZTSjTKPiAAe97m8znGKcoB0M2gRZjYJFEgaScF3rOZya2xtK0DcuLU5zUFIWgVUFRVekoNaW0t54oFYI0ovkv0nVfaEbmq5SiKMueJpm0myioIkVEs4KLdE3ww/siBDbWrPXTFOhT9bQoH1jlyAzigdpUWsq0gkETu3n95j/DOv3zt9F0jBHx2UDhs57pM36WgGX3m3zvdfyp3xJN5/syXNvWrU8lk3zuX2TeuYnV0VmVVFwnvIVDFL6IgNATvN4VaZFgpdJWY4OQvHKwx08eP+ZPHtznL968xdWrl1m3a1auSYXHI1iw1lLXG9arC1ajinEx4YOvf5WP7p9w+fYdvvYX/zK4BrdZIFrYtJa2KLGrYKXAK1u1c8jpMcc/+iesnnzG7Cu/w2j/VheR+5o1kwy5OjR716/x+ecPsab12RMSqpclWu/PYdh+fXPsS9qX9El2pb6sMz5kxLbsHexgCkNpL4AW17Yop31koSpQIcHYta1nImXFo0fnfPeb/4B7n3wPs74Aa7z2KYF9h5PKbRjgoCxAKaQU3Dp6nINzOm3yTrNyzlJbw/H5KXVjaDeGi/qUzbJlOpoxvDHKCilLCIbQRP+IiPZnS0oMUAivlULhc5u0UijXVe+Jc5QLmrQQabW3AhxCWLl/7XOlQt2qLbMLwcQTqcKb2V7Xev62JGTipt5Gq1nfnf9uu7bnL7P5yNXIRV0S48mO9wXNWes3iG0pQgj4B1/7ACmn5KbSravyJ7/0Kx+Q03D64GM+/tF3OP38h7SbU2iNdzOpbk67ai0ONRihR0NwkgpTQ6a9gQ9gwx98K05RK1+67uT0GaJB6xKtC8pqkKqoKOUT8bVWWZ5upz12BQeC0AzPVEr7+sBa9/uRCcx8KiKgivMvytc49QEf2TTFAwKErpxanE4XTGLE11H4xmd0c4LA4yePv3B9f5FNVSWIwylJ1oAOj71EO8ysHLn5tXci00ub9PZ4tFCpLc3+C6+WbH4zgJj4iVhUqdGlxjgLylvDomtFxNeK9WzFBdA/4WvvvsO3fvADni0WPDc1o+GAQleo2jIcDtI5olFZMNayci0nqzN/zqmbsL9fUVUzLtY1m4slg3aDrfAH2lcDbHiwJHecAVpMu8Y8PGd5esTOnV9l/vY30MNZ7/zN2DKM/MK8TvfnaGloEJytUVSA7pQCp+gKlnbG3ddF8n8JIekSQSicZ0Q4CiyXr+5A2/pOmBrX1lgKpABLGzS7EnTJ6bMV3/2n/wMff/971BenNHaBWO/vU8oSY79drIyvCEuvfCSeCgniREdIROI+QlCCOn26bPnRz+/y/e/8iGePHmFNw2AgDIs1P//pTzHKce3GLcpqhlCgdQyBD/7I4IOMyDr6ZnxNy1irVVJprj6LjQTckXB3GrkKZ0T6otfx9zGz01dgiYS+vfwq/Tbd+BUtIaj0e/ui3V16F/h5dxYlis2mYTKbv/ohv8DmCTcEgKiMCZFBEhflv0sAwlofvKVFUUiFrtYcfvgNhPJVshW/TVRPXsZ1q5uak/s/5+4P/inP7/0Muz7H2dpfkc4Y7JiWU95KIKJBV0ymk9Cvbu2c5xSBKapgKFA4FKbZgAgnp8fookLrClV5n6TSGrROCe9FUYSj1frm1SQsg8B0WIqixFo6s56Q/ILqFQIyFdSO0eOhtGMP4IUEdO9fzEjLD9N/20um7/YIce2MZVOvuX3n1uvI4xfSpFAoY7MI8SydJf9dMrvSlbPM9lYEP8DLUzbSHcPkBGyMyqxF2TVfZL6NVaXypkRhHaFYRIENBzFEMWBtH6g5a6FwYCp+6/f+Av/N//APObto2ZiG45XD1DVSFeiiorUOnAVjaaWhMZZl02Iv1uixpl2sGMmAcrVhffyc9cWSgW5xyiAjjS4US1N385MsZD6GpbUWOX3Isx+dsnz8U3bf/12mV9+DHKy/CjwAk/1rjCrF2miwmwDEfG57BGTJRxwvdK+8LfBl8yQzgnbWb4gBJfuHl1GrAjtwQIu1jsK1OLvBOEFVU+pG85Pv/oDvfuvvsnh+TNOuca1gRYdIMEvTOn9WXhR8EgjIKQqlqYphsqv7CYnfeyYlysdsnW4Mf/cffotvf/sPmDcL3rsyZzqd43Ccnq85fvyQe1VB29S8ffsdhuORP1FBymyy+6YoQhRhRIk6FA8oy5JY5LwvtDoDJnTaRWSmfrG6XA3BozmtVBCSNjunMC6gpP+iEO0JzRdaxvSSfT8Xm/3+eC3SR3uKwMn5KaPR6MuQxi+k5WXnfO+yLMKeySn8DRYEa5u0Idp2w1vXxwx3LiOuBYqtdcpbrv34qL92vebpvU/47Ad/yMn9n2FXpzSmCVqAZ46+dFeG/KMWgmVQVIgrmM7GGONBEHFzSgdkOkrw3HKzrjHOcXZ6QlGUaK2oqsILSeUjXHWhwUJZFIkWBO3r6ajoHugiYY0xlGVJ0/i6sUR6zk2FmWRLlXa6bxNVx4huwXT0nLTHXMuxae16dPqS9YveovPFxZ/SY/xn17TWoQh4Zu0RSZaM9FnktvH7uDOT0MrLoMXv8+u7CN6oVFsnKClD0YeXC0XJhGJyu2xFTXXaqUaJ98fpkNZiXQjbcZ35vcAHxlqBKzff5a//zm/yX/y9b1EOC0bV0Ge0tw0oRcztbXEoa2naDawaGIzReodrNy4BiqYxTOcD1hcX7E4VxcrgxjPG1Yyj2uCUCyedWCI4jVHqYFHNOW61YH12zPzOr7D/zm9RTHc8qHRdtant5gA1HDHenXO2OqUlnEcZtejAL7spC2v1JcjtS5pbO2TjwmGdVdWwO69wz++DrmA0hKLCia84r6oxRydn/Mn/9D9x96Pvs1msaF0dUj8C6nTxniH8PakHgqCwzqGrypeiM4FBRmtWJEYnGBGenC342//dN/njP/xH3J5b3n3nJhM9ZD4dYRvDuJpRjRacHD3h08Upi9Mzrly7wZ233mE8KlOOlLguLzIh34C6rQNVlDjlay6KIgX2xPkJkLo3ddJxHXB95z2E6DatfbKYzbQmiTfINku+Sb+AoeRbtcf8cmFDt6li7pQo72taLM546/ZbX4YwfiHNG39fElm9JTzjb30VP1+QQpxBGFC4De/85m9SFlOcMt3Y810h8X2cU4vZ1Dy99xM++863OH74EfXqAtP6ilDORdZv+vOIp+eoYYkT9ucDtAwoy5L1xiRNLPJgl13tYjk2JTSrDZumpd5sGM1nPid4OEhnUMb/ESi0P48VpRCnKK3G22ijZdpbQ4wNPirn0rWyRQO9Oc1yGHPG7NOxdEL/adokCMieLIwD7YKt3EsEpL+5T5Zv6oZx+ebAWe4LfyFrwPV/0/v91lymaNhofs3H7tI/3jomgmmMX5d+YPwLbheh8/kmQbmlbWqlsdZH3YuzvpQmgnKdRmZNqHAkKp1/0Mqc3/+X/xW+9Sffh7KiHI6gaTGmpm42GAqfz4ujaFtks8I2muVG4fQF7x7MmY2nmKZlOBiyWa4w4yHKNZTaUKghm9UGK9bzJrEJuOssn9fgC5mo06eYj/6AzfNP2H3/d5ld/QC06kz722uHoHXFwZXrPH7w3Oda29orMsTiI4F/xEqkuH75zi9oX0JIZhTi/IGYIpqdYYVWI2x94Rdp6WitsFZgygFqovjpt/4xz+79BGvWGLehbRpMOnFb4Vw8xsUX3nXWm1N9HqUEhKUoKo01DuclqUfkAZK34vjokyO++Qd/yPf++A94Z2/Ab//qV7n8o7v8e/d+wv/wa1/nH1cVx2fHLOoasULdGC4uzhifTzh5/gx1KEyn8+AXyE9tV8ERHs1qPnkbEcpCe0FJl9fY+aMyk2tmf/KJ1P08p3gQrg3gA9kmgU4v7ezoWzpkLpjjs8g3Zfwq28Thy6iVKx19rD63arNevp40fkFNRe02IcxuDvKWNE4RnDM41yA4tFgmNFy6/VaI6CUg1who0iIBHpfYdsPzR5/z+R//Q57f+ynN8oy2dhiyE9Zt1PA9/dnA8ISYt+p9HmIdw9ku4+EQi8a0dTp1wRH5pMOlaksSeug1yfPzC0xrQmBOybAcI9qnKhUUWGNo6iV1XdO2DlVVVMMBBQXatBRaIWoQgJZP/yhL5fPjkkkPINOCE93Qe5/7wJx13eEC8ZSvBFnDWrlsfIEKewfd0s0hoR8WfxbgpmmYFMM/PcH8GTTr2kzwgGSWl2hhebn5M9e36X3XmRb7gDVZHwSsa3DS4sR2dXnj9XSYMNqdch4hbIOYwFtsi5MWpUL0f9CmVKxCE+OtnMWKr8pTWcPOjbf4X//H/y7f/ub/iFYlpigY2IK6XtOmmBTr90NtaQVWmzUbaxiK4qodcmk2ot5Y1ssNbVugXEvVGFonNE1L3dToIioZob+CP+c0xH34DIaWTe1wjz+jWZxQv/uc/fd+E6pJ8LZtz7kDUewcXkJZ73e0pqFQw7SKeYQyCYS7PiJ6SfvSxQQk+A1itNzhVOM2S1bKUhpv97XG0LQNm7rmfP0J2tQURemRbqGwrS/nZozBWn94soginSQfKiT4NBLNoBAG1QhVFjSmxVrj/TuBLRkHD56e81/+13+Hs/s/Rpkz/twHfxEtY/5Xd+9za7XkL/3x9/gv3r5NU9fUAbEOR0OePn6K6AHz2S5FWTIeT1BF2Ssq4Oj7eKwJtgnVFYkGFTTFLnih217d+kUNIwm4sD4i4KzKNs6WluekdyslQoq5jPI340G5TygJ7u1NHNBTHhUZ7s5m2SCNcPr87MuSxi+gZUw36WmOcCRDaPn8+oAd6wyFL0XDna++w2h/H8cKaMHpMG8RrvtzGS2CuTji8Y//kPsf/REnzx6yWTe0gd689mixzt+XoBFa5xG6C7UifUF1f/9CwJVDJpMppm2wbYszXpsUZzs/XeSC4k9sr1tL28Dx6ZmPaC28abUa+bJ0IpqNWdM0jsV5y9nJfe7d/YQH9x4BBQymTMdT/tpf/QtcuXrFI3Q0rnG4MqQ6ScfAo0bpMm6cmC+u83u5QFdCqoSUg42e1hj+dtGWcZ2y9Ke4euG1csK6XrE4PeXW4asPwP1FtVxbVAFEJqHoOia7HVgjRKHV15STFSiKN8mKfkDQiEBZYTQY47RGOdXFMASBkfsnXdqn3Tr1/JQhWE2LAdUmLTauuY876AohRA+lcdb711XF137tLzOsSn74re/QDCoKbdDOgLFY4xALVhx1Y1hbw7I1rGrQVrFuYe1m7CzXHCw3mGaEo8U1BkZTymHFpq5pW4OEAE1RCqVDtTHj6zRrIZQLbbCFxq0s9b1v04ws1c3fxJXzl8ASP9XTy9eZDEdsVitf+jF+5ToNNAYowuu1SPgyQtKBLz9lwLVEXLk5Pccuz1GqohGFpcUYS9Ma1q2haWuMaSjLEq1KhBatLUXhHcjGNNRt7TuqiuCTA60VRVFSDQumkwqpSjQFbdvSGosNCNxZS20U/+MffJcnn/+UYenY0RP2ZlMqPeAf/doHlD/4Cf+fm9cZlxUX7ZJRWdC2oFtDe9Hyk+//iHa15sOv/QrD4YRLl6/6RYtCMqtKggKpfa6Zbb1fSoKZC8lNmZAHvUcTbLeJBLYWzwFl5QsS92090efa90eEr5Kw67UMrfrf2y0ja9en2C/PALwMOn1+zGg0YjKe8KaaC566Xrj81rZImnDY/Cb4C5XSFE3Ntfff9b4UTgOIEXDGF3k2Fle30ApGD1k+/hknn/0RTX2GKsCphrbe0LTGnyTkOpHty3j4ObU2apXRwuF/M5tO0KqgGo9pm5q2bVNQUSx44YekQi1h79/c1C1OKU6Ojimrwp/oUJaUgxFaSi42DT/8/kd8/NF3WZ4fcXu3YGc84Kt7wnJ9xs8f/Zw/enTE8yc/59/59/59rl2+hk+HarBmhFJ9wPSFka3pexIoMDYIDxUsOh2xhz+dZaSXW9pbtM4Csh1f4JxhMqioqsGXoJA/+yahKEMMQs79jFFf7PZLtw+jxQmAtK06YJBv99w8GufcNAIhUl6SvzvXJDPImwnoF+eWaLFHtKMsClwVDsiOvEcpn/KA58ExV1ZZbxXRorGUXLv5dX72xx+xkSVOV5SVQW823rKBL4hp24bWNjTtmsV6zWaz4Hh9zufnO/zFD/4cTW0wxiAYbNughxWXDsYou2K1amjbGuM0FhOwrzcxOuvQCnQpDAcDiqqgqBRat9jzR7j2HMrZFvTPXk2mDGcFxdp5ZYwWkcIHrW2Zs73S+nq/5GuFZEfyIeE9lDdaXjyhNmBUizbiT9wwlsYYL9Ba4wN5ioLhYEBbN4GZaF8bVdVsNsEE22xAawaDAZPxiHI4RJcl49EEJRUKhTE1xhiMcbTOYoxhuWm5+/knTAaWxhRc2hFmowHYkk/v3OH/ur/P2dECdbag1CNUVVBNNFYUz8+PeXZ2ivv4Z0ymMw4OL2NaQzmQlEvpJEPcomgtVFVBva5TBBkElJKOBvOLFk0hnbkq2KHC6naJ/dpr4U4QKTzDsFGwBgKQbNNmIu8lfO0luyee4pp9LZ6pdxs8lAtzhuOT5yh9yK1bt19HGr/AZjrtO2MSOQiJ0yngI66t8ak5SnNpZLh2Zx/XXGCVQxnxhY+tAdvimhq1XiHrNbLaUC4uGA5mWLegtaB0iSr9UVu1aWkbf6lfAw3KIuKFnXL+c6UUZaEYFAXXrx5SFSWq0GxWDW3b+g1rbHAp9PMEHZ5Jr1YrWuc4X5xTllCokkFZUlYaEcenP/8R3/nD/55LA8Otwzlni5rZ4QG6FYZSoS9rxFrufvYT/vbf/q/4j/6D/y2jwSgJysE4pjnoVAItRrrmdNbNr6T9L0Dbgo/Stltalv/exl9H/2v4LDbromm6a+IsThyPnj7j9q03E9kKnfbY31PegtSLhhRJ1W76WmUUmqSymV9UFCAHJ44NZUXQrCRZFiQ+S7z5VykvyNJ12yZC8VYNEaEoSwpV0egQZR3KDPqa232NOFoGYg65xVGNJ1TK+9Nbo5loRe18NahSfJ6vKwQ2ltJtsKJY2TVnZw2b8ws+XC54x0FrHEocttlQDYfM965imobRqGF5fsHZakVTb2g3rQ9sA4qyoBqUlLpCCkG0xhhN2xbowdzvPVbA+MVFFCh1yeGlQ548P0daENOAKuhWMM5fjGZ38JoqT68uS5fd2r/3SLIxDjsf0ioHTU2D93tY62iNobUWYz0yUMoXJC/KktYYlIaCeBrBgLZtaNsGR0s5GmOKMW3TsLjwNQ33rpQ4HK0zNMZQt5amadm0luenG7RVLJoNGLhycActpQ8E2rRslmvKSlCVpVk0sDFUehIWoqIxDefnFzx8cJevf+NXMNamJG0RhesdXxOEiXZAiw4H2Eaiz0PiY/1GJ51kigg7Rrp6AUDQjD2BKK2xxnQhj9IJhgAre9cmQSlsrVR2jes2aXy2xDQb8WYf50hBBGfn53zwwYeUZfVKwvnFtpjJ9QUQz3nNK+YAGtsSaQ0H03mFrdaoZu0LZ+N84E3bJiHpNhuoN9hmhd1cIFiGVcV6qWldy/+/vT97tiS70vvA39p7u/s5585xb8xTZmQikchM1MACUSiyJrKqjBStZWpRMsko6Vlv+ldkbW3WZs2WtfGBapm61SWymiIJqlCoQhUK85QTMoGcIjPmiDue0d331A97u59zIxOZNKMVQg+xgci4ce+5Z3Dfew3f+ta3FAatB5jCApY2trRNGtMmkhyy0SYFgUXJcFgwGFQMCsP2mXPJOQWPc22SWfQhyzF2CjT5jEoXUEGzaLDeUS/GbK+XaGUYDEYYNcS3lnDykC9eOUc9X9C4kkEx4OTIsrGeet+MUWytDyiOxrz91pu89/57vPz5lxAtRN8gqswBX0In1KqoQLckXd8eY0XARwIWZWIPB/ZBX59BLj9U6HgDK8FMf+tY1mWFBN1BZG9vj83Nrc8qD/3NLUkIweqO6zPAVXh1FarrDh+nMzxZcTzpeZZZdh+Y5MfG6DGDIpNX8tD2/NPHJwsJ8ZSDW12RmKoBeeiyiCKGDI+vvHbvJHPmmtp6FD7v6RgCUZdoCpSuICwwRUnZFMQsAj8aVIxGQ4J3zN2Mf/Ht1yg2t1mvBGLNyfEREbDWUxSB0DboomTSlhxMYDQ0DDbWCVpojhqcd2ilKIuSsqqoqoqiKClNhVElhSlZG40wKqLclFitAxWxH+a1vD5RNOXWdko4dEY/c6KzzBU6XJ1UJvmMrfEZThK6ocSSqX2iYb5oWL+4QWhTJhLE53FXyUn60MGiyd5ro1NPl9ZZkkslzTwhqY0UJa2tmTeRxdEhtV0wriu2nx+gdWIVtm1L6y2TWc3JSc3NO7d44833ePTwHt571k1JoTXedSm7sLW1zmQ+RbRQDQoa3+KDQwXDaH2EFo0PgenJCQcP73H+wmViHOXouuufzNtZRaIWyrLA1nWvWnLqenWnKst2rJDBlzfysShQiUcyDN0NR032KR+oxwxYMi7SO8DOOeaSN0sIciXV6n89/9JqWtllygpa69g5s8fO7t7SwT+h9UlkiG4lsyp99ByCI+U4GuUD7bsfIpMAI0fQDhWTkxTnwFnEtYhNfb0JDrWISsISVVniXWajZnF7IxqjDNZYWuuw1hN8RJkkvD8cDVGF4KmYLgIX1DpVNUpwrfO5Bp+g1tBnaEsDG0OaHt82juliTvQtWg/RWhgNh4j17H3jT/nvvv5V/vS5G3zdrHP7zj3+1hevsTEaYpuAa6fYxqb2Kh9o3Zy3Xv0xL37uRVRhEqymDWSBgaUG7GmDu6xzL0k3MUaspBqlRvDETuK134OJcLf8Oz/FqUw0JVmnYfSYCZsnJydcuXQlQblPYsUVFSRWUSA59e8+w2N5llcxjk7O75NYw3A6+xQRgjV56ovK/8+YaaR/rm51zvWTnze3cSlFDCo5y9CJSuTrLtKX5FNtPHHzQ6fqqtIEmiCCFY8jEJVQmoJhUVI3DUo0w9EG1y5fYntzHWen/E/f/BEP9w/ZHq0xGikeHD5MyKLzYEisc2sZz1veeHefzVFka61gONCYcshaMaDQkvSJjUEbTWFM1io2DKohRVkmrRXXQGyJWJbtNL3lI0YPN9/HWE9rIHqHkpjKTkmzjyip/SQFqauFsk9enylw3m2OEAJRhUTCaVsunb+Go4EQ8sGPeB/72ktMTUe9LqNojTYF4lxmj3UZTWK3Wt+SuK6OJggnxyeIvoxoRbNoeLQ/5+79+7x380Pu3LrH3fsPOJmMmcwbFFAVJWWRFIFiDBnnLtJHzAIBRpnUFwREFzCp6IISw9GjCbZxfdO3WoFbpXOSStLA2qLCKN11a+SIcAVa7VIDOme5vJaruoQp4Nb9VJXVQyp00+AfM2Af83MdBLsCl8Xlvz/5ROXHZZFsITNam4bLly9TFiX+SRkrWMG8ZPWjnjK+vcuPWQRBCSiFdwu2XtpBRhXBzzHepY6F8LijtIRMqgk5mlSiKUyF0R7nEgRtdBfNK5Q2mCLgwzDVpVXEGziZNYybhvkMhkZ49gXFoBphXcD5VKsP3Tnph4WvZCFIGp3lAvsH+yjlUUaSkfCBw3ff5Pf/4t+xd3LMH7zzDj/927/B5rN7hNbxaHqAjUBwuOiYLCxzm2YU3r71PnUzZ7i+lfrWe8UedcpJ9tmsLEGMZZ01EcQSD6BgGY5lKLbbj+nO9Oe+Jzz1P+lv4hL1yGdgsai5fv2ZRAx8QoNMfUiFuUyhWzG7+a3KcluKLEddL5nCK2zJlXB0NTXuM8gVJ+namqJKetVBFArpR5GlOuVy3z+e0Z5qqZECJQ5FgQomVSx8OtcRnVXSAkGlEE3l6CTEZWYa8t230ynTxRiLRSmhqgbp2sTkwAtTsLt7jku7uygsL547y935jHo2Y38Seeejh9igaKxifaAgtKAL1HCd+/dOmG2V2MWMcqCoBlBVaxil0SqJY2i1LHkZoynLAmNMuhvBQqxBBoBBuoHfQuZnaMyVXfy9YwRDkFQXVaIJQdLczGVMk67lZ+yNf4+a5NLwahQ+akZxzsbmejKksXNMMU8xCKn20uP43cSOpJGqtca5JT6cy8DEUBNEiFrhgmCcZ2ttE8TwaHzCu+//nJ+9/TYnhyccHE04Ppwwbhc4nwyNicL6aJu6aZGs1+K8ULchNdIqUNkhhRgZ1wsW0WNiwEbLo6M7fHTnZ+zsnkkCAt0g5hW4NXgQMUtHlAOA05BmOkyrjL/u552TDDEp4KTqVIr8knK/zuO7uudaHo5TUe5jd1eWX/SPX8Jhy3X6+7kO2T2DQF3XPPf8c/kzPLlMMrCEo5Izz58wG4zV9xczrC8Zndh/cJfN3/syoYXCB6AholIjbohIcGl+aYjJQYbUliSRfDg1pigR65CQeroU+lQGL0rwWKKLTA9OaGcwdnA897zy/FlUWSBFiavHPbLi4+mItYe4cyDVNC0RODo8wBhFIQUDpXHHR8z3H/G1G8/z9955m7+88TkGxSbjyTEPHz2gcXNUNWAyW7C+tc7+yTEupsx6OpkwGR+wvrmTCSnSC/p3TrJHEk4FaPk6h0DIELYiYIrujXMqIOvvS8ZcTwWDHQ4ry3i//yqZDxZ1DcCoHPDZJutvZgXvs45EbgEhMUWlR1ukR3ZODUdecXj991aOZ7dXPwbZdn+LwwwqtEpqRuml8s/zPfmk3139eumWU5akVAAdEXGd/4AO5g0p0UmfrWM7JzuktEGahltvv41r29TDGaAsh+xubLG/v08xGnD9yhW2NrcoqzV05fknf/g7fHhkmdy8ybu3PuT45ADvHQsXiEWBCoJoYWdzAz9bMF0vuFwqoqhUkrAWPyjR0r1ZBST4uaoKjM6qawjJgLegGoSO5LVkvUcBdeYq+8c/YGf3Il5ihlyLvj6ueouZN+BnUFz/vYYupyjDJ+ZnCAyMYzDKTlKSg+zgJB9i7qXxp36/O5RJzi0Nxe3OQwyBQo8IsULhmbcOpzTFaMDh4TEf3rnDowd3GFQFdlTROM/MW2b7LRGPjVnrNQpHxxOCb6nrmsm0pmkWBGzKtnSB0gofAk3T4nJkdXAyY2fHc+f2h1y++ByXr671h6InzEiCMDqdV2MMy9pvXBqMFUeVfhT7vyWme6yyRJ3E9EepDJWsvl4P/yyN2Orh+HjhfuW2ET9R9zA9LH9futpmep4QPFvb230W+UTR1t53L8P3cCoD79oTAiG0CdIn0gRHaE64dv0qyraIU6A8EvPAxhiJ0YFPOsPBZ9ZpjP1LiRbQCl1onLd0VeR+8kxIqErd1JTlgBbBVIZZ03JyeMKF3ZdRgyLJMtpUi8xpVXYK6XlUNgRERRRNu2gIIXAyPcYYRakMIyLNyQGHBwfcKob87Cu/Q7COjz74kICnjY5FCIRmTlUZZpNDrFsAiTSxaOeMT8Zcua6JUWGK1LbUSSp2kzd6ss7jSynEe0TAOhCKLn9Kt0noe0fpE8+lk+zu2SocK1luMpn0NCx9Npty6eKl7E+fDILhre+RrxU/vhJAqB5dSkjA6tzO045tNTp9vLfy1GNFaGrDYGsNI2n8WeykBVUWBIwfP+/LwF1W3nOqx6WRZz7rwS4nCkm+HxIlqe7EvP+UJ0ZHUIr2ZMZrP/khP/7R9/IQasEQiCKcu3yNo0VNtXUGNdriYNLQ4LAnYM68yPbiPh/deo3zssP6wRHf+H/9S278yq8xf+UaF/cM26PA1toa589tcdsnbRiFRkvEe0eUpUZTytNVhl8LtC6yDQ4QHOItoi1Iu7JfckgdhY3d8yATQryIism/iFbp7OcX6vf7v8d++1Qn6UM32SCx+RBonGNoPE4lok6KUDt6Oz3U2h+W1Q2l8lBYrYnO9/UKH9LoLeeT3uu9wykym9O4iBLLbHrIaLTGovGY0ZA4a5nNFggKLZ5WhJP5gu+99TOunz2Lcgt8cNi2xfkaFxKcJVGjioLQaNxigQmRRgIzO+fw8CF7Z7e5desDNjd32Nk9v6zZQFLZcSABSinIRNR+Rlu3eR8nO53a4B3EnCMiFRLATBS0yULqnK47/KIDtnoW+9aSrA27CrX+IoZd9xwREBVZLOq+L/BTodpfwvokiLVbXQQMkvpqg08jjiioF2NeeeESw8EG2noiidAlOSsihjRrLgSCbwk5y+uVcIR+r2qV2ctiWZVYg3TPg2+QWKAo8coxdY5NI1w5e5m14SgJCLiQnKSPyRlmxxglT5EBokrklUXTULc189mEnUFBZUDbBXVdMxwVaDaorWU6OcSGOUZH1quC2BbcOzxhb3uTuXXYmM4oWrDBsZhOkAhFUaILkyGt5ai4x9GIviG9O78hZPjVkUqa2ZqJ5GuabxgB8KccZfd8iRy2zB6lUz7JgbxS6R7pDop+AutkfMKwGvTOm3wNlKTAWInOjii9x5SE50wvHyTVZ0LLw7MKsT6+l0WE0DaMtF6y42VlJuhqdi+nSw/5m30Q2f+ugAwixdDQNIaoDNKhLd2vKCHmGZMZHuPN732Xf/X/+RPKzSGtStwNQxqszdRRzT37dSA0U8ZSsWZGFPN9tBE+ePUt7v3oBwTvqIMn1C1vf+fP+P5f/TnlcMT57W32Lpzl/LUrTKczQhmpN0YM1xSUQ1y9gOwYu3YapRS6Gz4hywHpMST92NT73GabKqQwOQ1UL7e2KaotvAiidOod1T6xsoMQ9cp17CHyX7w+syaZKMIdeccSg+fG1Su0Pk0DCb2TXIkgcy/YqYKodDJIqo9kfUcaj6EXEowx4mcnXN0a4jzcvXUH11oOjmbcf3DEZDZmPKnzvc1QXPA8qBc0DyMv3LjMmcGAGIW6XjCfW6Ztk+aXzRsW0zljG5iH3MAKtN5zOJ6wv3/I3t4xd+/dZLi2ztr6Ft1QWy+BEJsMZ+TPk7feqv/pM8rHLn13SHpx6KBApaGn3vssnJ6ecZUBu/q7p87H4z8/9b3VqLO/m/03+m3RJZXA4cEhFy5cWHm9T9sZf7OrMwar0Orqde0eFUKShws6DTO2h/d56Xd+A0Jqq5HYGfHU/iHExHL1Fu+blb7F5TUTSULRSky6J7ZJ5YD+VdPrlmZARGOAOihOJnBlMKBYX6cshnjb4rynbWG+qLFOEbXC6AJbOz54631YePauXuTiC1dpFg3j2Ql4h9EjVEzCG03dIiGymM+YtzWTeko5LNgYDhMj0NQYPLWt8daxcJ7GO1Kds2U+TaIQqohoNEpLD7d281G79bF9FlPQJqRgROuCvpbdQ4iP7fXYx2rLAK27n90/ur9EaJpFmjF76ge//HX7zi2uXbqSm+oz0zU7LJ2dZO8s85tUKrUS9DDsSgDbI0y/ACrt/q1HkVA5gkqKSd0k60jKtEStNi+s/P0JQW/nLowqEWUQXSWS1ootFq1S4KYghMjhQc13v/VN/uSf/w+Mx8cMd7fYvrhLUZS4zJb1kyn6wSPK0SaOiAuKMBjgcLz97e9w7/W30MHjiMTo0QJGKRQ1D07GPJwfcPn4ER+89gbKCBTCvR9tcPXyOV7+rc+h1mUloYKoBFMWvZ51l8GrSAo4fQp2lbasqmgJgYBC6YovPHOFj24dItUaDg+EpPoZAiqkUVxdf+Qnoigr6zNrks5a2mbBoCrwMeKbGWc2t/E+5KkW0sOtMZLhqyVxJ93PzOfLm0lJFgpXDvEdLqxQ4gHP9b2K569fZLYYI9GiY8lkus+d2w+Y1TOsTe0ggZAp5MtN6e2Cwc5FtNKUww1U1WAnxyysBeNompZHi5a5TaxSSHPy5ouag4NH3L2zxvrGDuO9Q0ajDaIREqcvUJYaJaTBJlLkC7+SvbG86H0FKn+83kB0xATprk86FEpnWFXk9HDk+MnZ4KkbK0sHuXRwjzMgcqaZXZDKAUbM78V6lxq5e1/6ZPHW0/W7FDGnd5/k2YieGD0oRREDjoa94YLPPXcDU4M1FhNUqsuEkKLpkJxlUm5KpYHYE2oSHK4k71cV0VrQ2mBdp7ST3ouzDmOGtM4TFRxOPe+99xEvfeV5xGiMVkxbODie8sOv/4TF5IjgLF4CMRZE59m/+yHOaSo750v/8X+EOXuNg/EjtGoR1pgdzdBG4ectddPgo2c6nXI8HbOzvY6Umhg1UhQUgxFjFzhpPfu1xRIpg9D6wHx2glJQDNI8StGnma2PE+C7zCeEkBnWoJUiWIUul7WfDG4RpDNQy4AxZvivf2wPRZKJEwnmjRLRhWH3zJllhvqEorM7tz/kwvZOEgfJIu5KNFoLQQe0jmidNohkbc2Qr2F/3ldg1M6RrWbUy59JCpCVItoSpQxKp+0Zg0KZdJpVjKezxU/7AJ3qlwjBKmLQ+HC6xScF6Ro3b3n9B6/y9a9+jTff+AmP9j9KUzNwNA/HjE8OWNvaZrS2Tjlco4yetm1R5QBthKZtsIePuPnNv2Z85zZGgSPgSAQ6CSkfr7Qg2jF2jnYauFQNqIJnPGsI8xluWnO4P+Nv/eEzbG8nBxdJ3RCpD/00+1qiJOQotOArUC1dPVEoSLQrg0S49PkbvPOzhxQDlTsz0hAJ50K2e7Fnxn6sdPXY+vRMMngWdY2KLrH5AL+Ys7b7TJpskM3WqTpESA3TPtpTPYDpXidKMgJKg9KKYD1aZbceNVpV/IN/9I8ZVJr33rsN2uFV5P79e0ynExahJbiE3/uYAos0sBZKBcF5Wgdbm+sQAspBEEOMybiKknRDJaBiyhGMSj9zwXM8PuLRvTusjTbZ27uMLot+xBWlAQkUgzI5JSWfHAGfTub6H4fui0iXskACjXt2a75trLaCED/BacXHv46n34PE/qX6A/RJx0xSvW8ynVIURRJ470PhJ7uWhmUJ4XXRctpXAbRgQuDBbM6vXrpAaYZEb9HZMUomlREzNOt97untdCjJtc3QZ+OwZPylw+qTTF0yXXhbU65tEFyKemfjI7bDnJe+cJWyrPAh8uDY8q/+zfeob7+DnUxZ39ygMIAU2Kah3Fnn5P6E69cvce6lF3jwaML44CGayOH9u2zt7nJy7MA52rbBRouuYMeMGI4G1G2Lc7Dwntm85f7JgtvTGbPgewgwBJhMJjjvMUUBOkGHHTGtC5Y+VpPM+02J4JUgQaG8RVTV79/U0xf72KtTSUKWvXwqdtsorNTWs6PItck7d+5w8cLFTJSjV7z5Za+HDx8yX0xRUSGmSCxRrSmMIxaGENK0CnQ3iaIjv+Rr2X1buvDhNHR92oEmayAhIE1LVBHvHO//7G3eee82v/alL3H50jmoEsTbXbPPXJKDOAcQEZ9IZ0F5EM3B3RN+8O0f8td/9jXe/PG3aNsjVNQU0eLxeAI+RKhntPWCY12ii4rR+gOqFw17z7+CYLnzzlt89OZPkfkJShQ2Qow+KUd5hZPk4E00rFHQSsuJn1M0gWujIbXzeNXS+Ib5wQnvvXbAxWuXKLQgojG67OuyHbkIISdeHceghZCHQkjiDhBNQotE2Lp0iYfTAy7s7qa6amwRGeBXBt7/+0jSwWc4SdEwHBqCS/0nJsK6AVOURJ+yuI4tmRxkZ4CyuElYZbl272pJSEnz8RzKgPOeIBqH8Nqr71ENDPuHD1nMHzE+qTkZH+OCTQ0LKkX1PqocIUSKGNksE6RrfaCxKVKzHrzLzDGl0+aOef5dFEQipVIMB1Wf2M3GR0zG+xwf73Nx/SqiwFlBpCBERWE0/Sy4sIJZrl67T4RISb8TE4wRSIQg1xoY6RVMagmpnDJgnwWfr/5u/9/OeZ7ChFd+JTKeTDh79uwn/fiJrCVU1+2tLtCSLNgMyfAqtAR8HHLy6D1e/vu/SvQh9YDlGmSy26k/sSPpdG1KPkR89LkFpMvqOwfJ0tgrDeQaeghok0TttYrgFGa4xu88d5EXLn+eclCxsPBv/upH/Mu/+Cu2ZEFRezb0PV66fhWtLC0O3cL04B47f+9lGhng5RHtdEF7fMzVM2cZDoccn+xzcnSAFklZrRFKvU7bepyztI1j3sw5mjeM53NcrhHGKASV2jHm8wX1Yo42uqfV6/w3ZHMueZ/k5YNCSUjPQyJMxCLNUiWGpCGaRy/lJ8k1tQ6ZyKzQkPGA3O+XOgiW19dLZHdvl+FwkBuRurv/y1+m0NT1IrU5GJN6Y7UmOkMMJVpXScKMCOKJYbCcJpFjyu6arqI/sNxHy6AvkuQNI6aAj372EZOjQ25/+A5v/+w1Pvr5Dzl/4Tm++OXf4/NfuEJRmE8onUUeP9NeQAdJAhbREwlEI4zvHvON/+1r/Ls/+Zc8uPM+dZjiSELlhpakP60oYhqDbCUQg0dZj/MN83rG69894uYbryNBCPMjihzj67CU7UszGiJBIh7BiKJSBQPnscC+b9i2AwRh7j0zFxnInDs/v8v7r57lC791re+np6tFqm6kjU9/YgCfgkdUkjVFdxcn0qnnlFs7XL++k5jsOpGZQnQp8LM+IZe6a4H69MjsU51kiCmaMirJedngGYwgSAHBZaOdY8Vc5F/CWMvoP8ZI6Eaj9OlzjtRFEiXZeZx1zGZzpuNHaGBhGxbzGY8enbCYNykVR6i0wseIDoGtM+uUpaY5mKJipPEBFwO1bRGlsNbirM1RSNrXSRGEBHMqhdEKY1IfZVM7VFkxOT7i/p3bXLh8HpGSEDVKSoLX6LJYsvRU54wea+Dv/s5fd3DwKiyVNHEjSjcoPVhCpt2j4mNHIS5f4xMZrj1BKK6QvgTpcfuwRG/ykyoRmqZmUA1ylpYz2CeYSmZ8IkfgpOgRg1FCjK5niIoIOmjaOOfXrm5y8ZnnO+20PLPudJ08/UkSdiGjCMk9poAvq0fmfZovZ0Y/lFJZ5NlTFAbv8m4M8Pt/+2WuPf+rqeZXjLh9MOdrX/tLYmg48g1GPLWL3Hqwzxk1pBxVNMdjRuK49MLnmR6f8Ohowvvv3+RcKextrmOdR2twztK4NEqtLDWCI8akkdzUSc1nGByXSgPR8FHreiTfhgRhWWeRlR7JfhRctw8BcpdyJEHN87lw64MPuXRhGzOoksaoGCQ6kh5wd62Sg0w9t3mzi/QRPbB0nl0je59VRh49esCZre0cbC5Van7ZazQaUjc1hVJp/qgyEExuMUqO0yuHVqnZHgkEHVYE35eZ4+PB7GoWGTOEGhGcgDORuHjE9//qX/L6j9/i2rPP8Uf/zT8kTm7xxnf+N85d+i85d+5cbxO6bDxdvY4Fn/5N5kuIpPdZKPjpN7/D//jf/1+5/eH7tG6OwlEiLELEkQQDCilSvS8HOkW23YHYB5ChDczdA7SCUhXYkGxx4mYsw/IQUwNXmmwYMEphlGInaKxveGgbdqXE+jlz17CphzSLE97/4XtcfP4C28+ZXO6QFTuVnz+GVGbxFrxPf3Sb68Krj42gFLvDgtsHY4pygJhBFlY3iBacdznz/KzM4zOcZNum+XNGa7SC+aLlXFXhxaO89Jlhb4TyRQqxQ+m7f3cZZY7Xe8Od+heLwlC3joCn8S3WtYhW2Lbl6GDKZDwDD4UyuBhwXnHlyjn2ttdZXx9x/9ERDw5rCm8YnyzY2kr1xoinbhusawjRE1C01hP9MqrVkiPrrMoAkZPjKZcvX+bw6B4nRxO2z53HO4sRRdt61tYGeeMv4990e1YOSGc8up/n6Q99ZkPMLToepe1jxmH1OVfLNJ2TXTrBVUiyd8iZUdjDprJ8zu5xki2pQjh8tM/LL72cHU8K1lanrf+y1ynnH2JSaSqSdFa9mFNoTWkUMTisCCf1AS9vRQqVxCo649xljR2cGmIk+LBs7s9aqh3icTqFluwgY3YwBoUnxpaiHFLPWjCRxWCXNz8c4dyHPP/CNbwK/Nm3XuXR/h1UTGaoVYE2KD44GTPTNbvtgPn0hJd+9yuMww7f/d73+NEPv8f+3Tt84Uuv4K3HWo+KAVNoZvMZzrvMSC1wAaZtgxbhTJUCuDp6Ft6n/ltJGpxKItFbhDTQHEWv2dp9xGW9K9WyT46nvPH6a7z1xk84eHifP/rDf8juhfMUWEQ7PLGXuuyCqtXgsIOwYv6HZEPacRJWHUldL7hy+cqp53lStXAlCufcUmg8E89BUMqjVYt34HUakUe/tz6eMXYs2Mezve6xAZXaMxpP3VR8/pUvc+HqGf7ue69x99ZdtrYvceXFL/OFL9eoaiO3c8nKtKE+xl8GINC36FWjCgnCd776p/wv/+M/4+T4AaVEvERcCFSSZo/6Dh1RmVAY6KFIRKERyph4F0qpVB0KARsyiqAUKnbJT2bmB6GjmXgiSgJDpZgHx7opOHYNe+UGBlgESxtKTmzNwcmY1/7idc5d/G2GgxSoZc+9ZEtn0l1wCtGpfIAvE/wqJKX2PtgLnL1xjQ/uvwNFQRECs+MZZrSW1Hu6rDN+QrLx2PrMFhBrHQNtGG4YptMJO+erJDcUdepbiSETGpK4USdJ52POKIGOudJFk0gSEMhJJCYLhSeWtWZze4PFvEXEUg4Mg4FChwJRmkVrmUwiN28f46VktHkO15xQO88GBfX+nKP1Q7b2wPlAU9dYZ0GgsQ5fO4ba4HEY0RADPgZszkDKQYE2cDyZc+3aWe7d+oidc+cQnyL7pm5Qar13KD3WsrK6YxGJrA5cFjE0znNyeMhAC4OdDYJo2tqgzhRJvDfkY9AzZJdP3gUanWFb/ixFu6dqH1301XvPsOIg6X/mnGN9ba0fi5Qe8xiU80tep5REcm6N9zjb0C5mmEEFWhOiJYSCcLLPc3/vt4jWkTWcST5Pcl08Z5A4XIx4Ii54fFhKKHaPi+G00UvZVtd8ny5e7Oj6QXNwvODo0Wv8+ud/A1MM+cart/iTr36dQjw2JKdFVLRBeBgd8+BoCfg14X/97g9pvvNjvJ2gXMOZaoiJnrqpqRtLa5sUqZeaMGuobUPtFxzbwGHr2a5K5iHyYDZj4l2qBUmkIGAESjG09SLVYkmSaarLivvN0JHuhajgRz/+PqW/y0uv3OBf/8/f5d/8yT/jD//Rf8aF88/mlpe2J/ushL3k6Kz/V+8wpd+J+fvZ0As0bZPc43CZiTyp1TZNHmeWSjBxWVAFkn1Loiep1U31UeonPFn/GU9PB0k/S6G1RuNpGQ5bRBnW9l7ild0X+dUveaSoiGVEy2avviOdV1wNyzvT0yE/KtnP8aND/tn/5Z/yo2/8OfP2kBrHRh6a7DN5RymbJQBTrTVpVWf3EtJd1GgKEUSyGIbSVFIQfCBIFuSQRN5S+c0s466c9YqiwIA41nTJgbPM8VTasIgeS2TqGyZ2yqMPP+LH37zJ7/8nLyaZgFiAckTKtLdiyCQ8m4TLnU4DwrUgygB56DigQuTCs89ivv46DCpqO8OoBldbFBsYU9GpSv0HsVt7irc4ggc7nTNa3+pFBMgZIpElfPUxUYHYg1rL9xJ77eTOmCU1CMHvz9l77iIix1RVyWCkQUdsGyjKislizmBoWSw89+494ODRIzZGJY7IxLX4caR56y6TvSmjvU2CRCQmyKmeN5TeUAZPVSTHEQEbPNprGmuZzaeMhiMQjZaSSB4B4R1lVdC4FqW7aFj1m7X/XDGufLAUHXsXePDwkFs3b3L79jsc7N/li194iZd+/beR0iQ5KQlZGF1Scbnb/Y+tj38/9v9NWefjGRF8nOm6XE3TPHa/09/hCREogL5mvHTwUNczbFsTY4PzEWkMWgTvWy6Xwt7V89CGrAmc9m2//0JMSEL0+EBShup/lttAQhLp7/ZqRp/yqY/930VhsD719bY+cjypqWJgZ+8Cr9054v/2//h/Y8d38qSIlEkFT8+iPbEWP/fY4DipFxRKMAIaxagQgmtoQqCxlrppsiOJKGNovedRa3lY17iYJrg/XMyoszB/gVDqNIl9ICk7WrSuryVKL7DTRUrS/Z/sz/j9P/hdtIN3336T//yf/CPOX/8c2xvP8PD+EaJC3xvZn+cM7T6uMIUsGd7d9I8YIKrcT0hkPD7mmavPIN34MOm64X756+TomHDh4nKeY2+gyPU9nctGKSPreL6dgX2cFPcxJZ64AiVLJKJxXhhubBCURtmW4c4GjQE1t2gGJMH13H6nOtZ6FyCvriT1LR6CBL72//1jvvWn/5Y2LIg64KOwICmmBZImdR80owgxOc8kFSFYyBmWxyqFyUx+6zyFEgqt8NkOhQx19drRInmOY8wS1gotBqM1hMhAaSbeUiqNj5EQHa3zzB1EL7z97dd59uULvPjKmRyUGLrSCyH2TFW8Q3wad5cub0jKZR05NASGm0OqUmOVRoliWGwkURils69K+9Z/in2Ez3CSLgS0hmqgWcwXlLFBG4X1EVHLVDXSYdhZxNmTBAVC6puJGfJKj0s3OEiqU4YszaXjgJOf7TN//z7u2gWMGjBaH1GWFeNJzZwFVRa6LQoBCo6Px0njVSmcaGaSaqfzVnNwp0buH6ErjZEI3uGco40ei2NnM6X8k8mCKBoVhGADA11Rz1uwlno6ZnNzEx8jTgWqUqFd6ptCNCt7ttur2QrFzNJLCvv74yO+/Zf/it29IRevnuXhR+/y13/1HT66e8SzN55hb3ubgKcIJlPqff90XRBCl+nQsTyzCZYV49S/n8e9ZOwf8vhhfvDwARfOXzj96E8PrP7Gl/fZoEcwMREEqkJRFgOEklSjjJgIJ7blV6/vUXhDCLY3/uk6ZRGAEAl0IuPkeaZLmLWrVfaiAvnz9zVKAgFPVJFqWFGP50RRzEPKFl+8tMtBo/jnf/xVmoMPcwaZJpnEEIjiCRLwwROCZX/uiHgM2aCEyIZSnNkoQYS6ramtZb6ombcLfBs5bhx35zVHjaUlUqKYu9DvQQWJ4KNSH1xVaIISGrdYaimzdIxLbkBa3VcKQ9SRZ158ERVepG4CwdYokwlOIctQrgqGxNj/O3Ss99Apt2YnIqQbGaTXIF5fW+9fN7Aimv4EVtOkrD2oVZEz8uVasp2X6/TnXz1WH4OMpX+i/HcK5oIViBXeA+2ED94ec/nlK4jSRBWyOIH0AWMHraaXW0VbOlsAk4eH/OQn32ce57TSUImBALlLOEmyhZj1LSIqeoIk0fpKNCaAI8slZnhWRFFm2cc2uVmMCCEmH6VDun9aJDm2mCXvkBxfRga6oA2ObVOwb1uIyylKlkBtbarzuznf/P/9gCvP/kdUO2HpY0Ika4qmmrt3BOv6yyu5hS5KIuXECGIKauNYOMVmOUxZpzJpoEBI7GSXyy+ftj7VSf709dcYDYfs7W2yPtQMtCdqzXe//UOee/4sG8M9RqNBvjBdtJ6ykK4WmSYfxBxtLveMIhtBAo3X3HvzEdOfP0RJSzuZ0hYGaaEoBmzvnAUOEIGiWKMoFUUxoByUbG9vsb6+ziK8x8G9fYxEqqiI4nChZTGL2eWkgrJTiqBge3Od7Y0RRMVgtMZ83vLo4T4uRHbObNDYKZPJCdfK5/GikyK+UXgPSgpyG/vyDECqtXZ7d4m5sru3w3/6n/0XIIp33n2fqlqwfabk2rWS69d2mUw0SIFXyZhGv6Lz6nOAkTPz/kmlYw4mOHBVqurUUe4g1NUT9diBLsvVsVjyxL1kCKZXL4mZLScaujxDYoqwrcDBRzd59g9+A9uGXB85rVub9mXAE5NjzGWAbiJHCMsg72NKUd33O+iISFFUhDgjxsi08cSoCdu7/N//+b/lo5s/JdIQc/wfQ+rldCHNy3NZUN1HRyGCUjBSgZ3BgEtbu1w8u0PTBCb1gkcnc+4fTZm0C1ofaEJg7j0RSYPmFLm9JWT4LhnROnpKrTBaY0RTaMViPie4DuWA1Q2w2sPYMYpjDBQbI0LjYH6A9UVmeUoO1ljuz67eG0JWMMrtMsFle5BQlzRM3SAmaXIu5i3T2YyzO7t47wiha5v4m99fn7Q21teBVVzmsdXbriV83P/VH73HHSkrZB1WAhPJnthTlikR8S5yZnNKYX1Pmj0VyHQO9lSA3CFHmcQjwp/9r3/Mw/u3COJpYqSIYEMavux9ZN1UNPm+6Jy5h0hmpObP0O1/lUTQXfCU6GQ/Y9Lo1pmFpXJw6aKkiU4SskhFhCi9yloRBasCAyU94qNjctsWoc0BLLHh3gcf8oNvfcAf/p9eSJ/UR6IO9LJyXkAsBMmZZFZ/6qQWM1uX6Hjmxjn+8tVHbF+8jI/rLGrwIdLYpr/L1tpP3Ruf6iRVnHG0v8/DuzUvv/g5zg5LMAUXzm1TaMVsMaGsknImdDXIFbp9L1EHIaoMW6SMM0KPAu7fPOHwzdvoIMwJLPZPUBe2QcHGxi4uRhpb472jKkZELEVRMUQYlJHNjS0+//kbfOfkmMmipgVKDIUUGPEscDjAieCiYq3SnFnfYHd7j8H6BlYKJvce4NQx5WBIZYYM10a0IaBUpFAKrKLQ6wQ/Sxuyl+HudvAyYo6xg7HS44qocGaLGCLXr17jwn/z36L1CF0MCSEwnj7MWUVX80iMOR/SqKXUWrOEtjuKfUJ8kyqH6jQfAz3jNjEVOziig3uWXjKEwHQ2w5jlNugyqycpJmBbR1EUxJhGNBmTVJpStgQKT/COcevYUnN2z15MMocKfKeyQ/r8XXDhJf0sGfOkbNUpXPkYMtMVQkw1x65ekXmadKQS5x1a6zQWTm0ia4Gvffd17t+6hYktTkqSdmbEe0sbkvwdPtC6NDVHS0IAjI68cPYMVy+cR1UD2rZhPJvzYDLh/QeHHDcWm3JYVIYuOycSsrJJX5+WlDGnYQLJkK+VmvXRBieTE5xvgPVlMimZiJH37mm3IEi9YHznHhZBqSGFITu+lCF2oPSqo3Te0dqGtm1wvsGFhCIllS1FWZaYsiAWBhc9O1tbuLZNPddZ2/Yzx8T/Da3NjY3U98iqi4z9n+QAu4kTuc+zh+HTox+HWD+pRzItBaKx3jMYVejS0FYDqtEmvrt/j48x6wvt2bas3LBuGzz84CP+9f/yxzlwImWM+V55AWJgoDTHriVImqGBZBhc0ictSOUe16EAApGAixGjUqN+m6UgKxFMSLNM6T5r1+NGIF+klNxIRHkgaoxSjEPLeVXhYsDGiFEhdWrGgHee7/y77/HrX3mO0cVIiLpn2mofEuyPR4nPQWkeCqF0GijeBSIBLt64Rvj2B5gRyDyyaPIeDj45/7KiKD99du6nOsnR2jobW1vcu3eX+WLO9rlNpidj6sUCObPNaDjAh3yVs3OMMWmxdkICS4Zh7A0PASQkHLyeRu784A7WzqiV5tgu2KxPGMkmzqa+y8FgxPE08HB/zGY1Y23DEMVkAVxhMCy5WF7kzMYZZvaAaFt8tHgEp1LkYAEVhCiOCxfOc+niVcxgnUYU3/7uDzk4OGatErbXKur5jLA5wsUFZliiJKmsSLK0qRlbOEXKIcrS3OSfdaYnQGZqtRSjNTZ3t2gXlkXjQDmMEcjUfu8DPkfk3oc8qSJlDKssTJUPqlIF2ui+1qPUSpNzH8UuHaUsPTtHR0ec21v2R6Z7tHzsk1qihLZt0/sREKn6iTOViuxtjzgen7D/6BG//7kLCAWEls7EdcFEl1GGXHfojLn3kuvmuX7uE9N1iXh0lJTV6xEoC828FUpdYCUigz3mD2/y4P5tPLbDwRDAOYd1FmddatTOJKGOD52EMAzrWyMG1QjRmklo+ejgiJsHRzhv0yCAGMEnma8kn5CCnB6oiF1wJt03EuwqwtrGiLWtDUDRtDaXRJJG5tGdQ/bf+zmf+92v5NaakK91audoW4MepD6z1tZQqBzgLgOpuAJXW29p7IJ6saCu57S2xnubLkkeeTQYDChCRfAlH9y7zeXzF1iE3CPt0lmX02DnL20NRgOatmVQVggJWtRZcahvakd/HLVZ+bN6Hz7uGPPXAolgItgGqkEBtIzWd1Eme6u+eLziINMXvRMXoR9TlpTsIl/743/B7bsfEaJLgukINiTxz9Y7Kq2RCHVIsoWqLxkt+9l1TIz/QNp7SoSIxodEClOSikF1dEgQSqWXHP+MIqKXIhWSna8WzcgItWvZ0JpDaymNZtrWQGRgyhQUhyRqcHT/Dt/6+hv8n//Jr1HqRBxSMaJDKp2JCPhOejISo0oKbqogikndCz5y9swa4mvmC8/OmmD3Z6iyoChLBlqjjaaul7yMT1qf6iT/6ts/YXNzHRdqzm8azp+7ztndM+zubEAkNRwHlyJvlpBqR7dP8Fboi64dExYiXllCI9z8zh3aw2Mc6bDNo2V/MuFi60F7vLNoVbCztc7DR/scHJxwdCjcLx7x0itfYDgYoUSztb7G5vYZFrPEZi1DpMrxd4hCEFDKUAhcv/YMxx7e+uGr7B8f45sZhYpU2iBxTlOfsP8wcunSJRa1xbpAjJ4QW7TyBB1RXtFT3GGpysNqXrlaJ4wghrWBIaDYWjPMpveJrNE2ihAE5y3WRpyzOO9wLmVMCcZKTrRTnekEgLUORAq0TkwzndV70it2yj09eHgKzmpty9po7VS029U+n2QmWQ6qlJk4lzJq73HOoRHW10uqytC4msX4Ab/6yt/FOwf4BLFAn+F0NcZIdpJhCf/3DrITE3gcbl11ljESvMMMSuzM5pFam2ysPctH3/wevp7mkW0B7y3OeVpraW2LzoQhZ5Ph8vnauhBpGs/dccPehsdE4aRp+ejwABMio0LRBJiHiKP3v4ik+pJSkUppWhdwREye9UdM0+OVCFdvPMv6xhYRxXyxSA5XhKAU99//gK/90/+BM89cYO/Z6/3EiTQkIRLEo4eG6Bzt1BOi6YOP1GecSwD53jRty2KxYDGfUNdzrG3wIdeMsl6zD45Bru+ujYbEGJjOp7jW4azNCMaToe5EInVbs8XGqe+y9E99bbJjCHeyaR3zue//XHFqPbFHpJ9PG2KgQNPMxuycXSdIgVaBSDdLcgnqsupsM7y6ejJj6qTj5OEB//tX/zWLYIkERqIptWbqbAoexbOmShbB0cRAqVQSToikrgQSlNrmQVIqe2GVi95BUv+5yUUPGwMLUhdDhekUfkEEFQUdBdHL4CHVMRWlKVhzkQrBKMW8rRERBqbA5bOYssYF3/qLH/Lbf/ASmxeTPYgujQJLijsk4ZDswiQm9Z2oYnaWgvcBg+XCQDM+nnBue5vSgNd5T6qS8ckBj46OPnVvfKqT3FwfMTmZULdzlLrKognUTUgCtiZHtVlvcdUw9bXIsIzeO8IEWQjFR+HRO2MOPryPkwkxlkCkCJ7CDDK0oTAiRKXY291mZ/sVDo+P+PDmAxaLKYJkNQqFwnHpwg4nhwfghtjFAsFTRqFSBiLY6FlozWtvv8fRfMFIoAoLynXFxmiN9eGA4bBAG4+3DYf7h9y9+wGxKBiZIT62mEIynv/YtI7+QHQVg2XdIGR1kkjENx7aI3w1xNnUDEtsaYOjbS3Wepy3tG2LtW3KRLxN42ToRjoplNIU2mAKgw8JxtLapIw1ZviVrl0hH7qV0yUiPHz4iF/54oUcBWbq92OzLJ/Esi5QlAWVMenzO4fWilA3GT48Zr6Ys6UahgOFjy7VRmQZnHQ09pQ9rUCtIeAi+JjnPPqQ+QCZnJPLAWmj0mGAWYBAJVk7BWcv7PL+vUPGB/eQqPDeE4JL9TWfHbxAS6S2FomRMqX+uIziuSj87O4RO5tDLmye4dF0hvWR3YGG6LExz0UQwUn6TAluTvc4hogxGh89KiYqvlFLfeRze9fZPXs+O79I8AI+KbLcv/MuxjS8/Vff5O9cv4xI0V8v8sdOTlARY52dnO77SkPXOhU8rW2pF3Pm8yn1YpazyLZHNAiSxDi0YF0BVnj48CGDosQ2Dc1igXN5nNkTis2apuXjSksqozPLOZJKqUQS6SBRrUFrolKEDHP3Qjw9nN3/I9uCpPZi1gJilrW75euTZfrklJPuv+gQFkBFwevI69/+Dnc/+iDB8zFiYmKihhhxGVo1opgGm4OlLAAD6JgEEhyBVhQmv1zKBtOeUF3wFMnXJgWbdUh9yYXS6CAoOR1gd7VPyRhBpQ3eJ5ZrjJ4jPIWUVKKwru2Z7T7Cyf0H/Pmfv8bl/+q3GMTMeQlpDydENS6HfseQguQQmEyPmMwOufvmbXafe54LF4SfPxrTtg4nhvlsznx+zGQ8Zzw+Yjx59Kl741Od5K//ygt4UXxw80OU8myuDzieLFBFwdHhhHNnt3DtjI31qq+ZENK065AVhELsetHoafCeyPRe4Pbr7+OdJXgDeLRENnRFqD2iHUYNkrHTGVYKwsbaFi+8MGQyPUkSRqpIE+W1YXdvl6DeZzgcsmgayMr0joBXmrmChQqsHx9x9cwO81CzNlxjOCwZjkYYXWKMYTCsKIoC71s++NnPWUwmXLpyheHQUA7WVqK8JfDVwaB9QrnytciyUbr2gtIVDw+OUEVFdBalAo2tsY3F2pbWtrRtnUZ9OZuJDX4ZlebIPGpDDEX+mScWFUvFAt07yvRmOqee3m/btmxsrPfw7KpqSPriU/fN3+i6ff8+W9tbrA1KtGhEa2JwDNYM1UCzf7fGzY946fo2Tmke3n3Ehd01StNJC4b+I4SQmYQd1BpCqkP6pbGPPXTYIR9JaJ8IXgJER4XC1klKMVrH6MwXeffP/pLgGryLxOgS2pBhcucdPkba4NBKUcVIEz1tTO0emsTyPLGOH757ly9e0+wfTIGAE4OnYOobXEhGrxvJZrIxtSExEgsilUjaAwHO7O6wUVXIYsru3i54xcnJPqNyjZ989c8Z373P5PCQ+/feoq3nfPvrf8qZF57nC1/5rR5xSFl1J8IQ8U7QlWGVaRhyMGytZdHMmC+mNPWc1i5wrl2qWuWwI/qAC5oieKazGTvb21jb0tQ1TVPjvT+VuD25tXSUqa6hM9s0Sf0FlUUahDRvcyWjXCVBJSd5unSx1G1N2du8LlBmmIQFOog1r55PsHJBlqWTJdwuEtHW8d2/+HNab/ESaWPS7y1jYjvXpAwQF5hnabYYE0KBJCcJXTCZGvO15CxypRaqMioTSc455ExykVWwKlFZ7WmF+CZZBF+EQtKcjqHRrMdUk12EyFALEkMa8aaESjRETR0WfP/PX+WP/sEXuXp+nRg9PqhekzuxZ7OQgJZELBONtHPWgufy2RHlmuK5Z2/w+oe3+elPf8Kffvt1CrOB1gphQYUg/yEtIIfHEyoTGZlIUW0xmS545sYFQvCcXd+isYFxK9x7OMUUhvm05uzeBsE3lEaywgnErgZEMlaujnzw/Vs0JxN8jk6ISRYO8YzHC7ZnDYPtER6Von3SaJpSF4jWmLKgyCLDKvftDKohujB465KTiBGvhUYrHAJGsztSXDm3R+0s5UIzGpZ9a4loRVVVlOUaplD4UONVy+HJfZ5/8XNUgxGRCgkBL2plSAt9HXJZLFr6GWEJ3QUVcD5SDbdoXUPTwGzeMmgsTb2gsTVt29DaBm8t3rmcRYa8VwWtda98EWOgiBGRSMyMs9UIdKnkE1YiW6FuFhSFXtEtpS9ydJnlk1p3332Lg8E6okqqasRobUhZCUoMO1tpbmSY1Hz+S59jvGj5xtf+LX/rS1+groWttR2uX7uaP39qDvekTLJjC3eoRi9R1zNdIYSUfQef2zei4JzHjEqaqaUU4UCG/E//4qv87LUf4kIg+mXd3XmHDS6TECI2JBLFMBtTay1RSNmkKSBYDhaW7773YWLnAvszm7JdoFCKyiQ9YogYJaT5wCG3PnkMKtWlfeDKhfPMjo8oq4qiUNTjBc/feJkffu3PuPfqD7H1lOnRIS62NAJrReDWW2/w8pe/nNoCYtf0koymSMxN5zqXHLJMWYbDm6ZmsZjRNAtaW+NcGmSdiAdCXDkHwaffd84DkZZI0ySnmh7waR29f7NrMBigJDHf+3rkioxfN1psmWUus83H65KrPADooFJZwZlSLKtcgymSJCZxhQa4At2urt5x97Brur7jR/u8+5Of9HVER4TgEaUpUBAcUSlmuKT2JeRextPOvCtWhNjpta84StK98d3773AzlVpBbPAJ7RcBPAFBY1C5ZhpVGggBoHVkyxfctQ0+QqFTW1HjHRI1ZZFA3Zm07D98yHe+fYtL//Hn8SogUSOSFKTE5/KT6mq5GiSwXmxhG01bWL7/9Z/xpa98Dte8yfjYMTAN6+tDinKIMuuIH3ymqftUJ7m9c4nJ+BCjGwbDEYeHU3bPT8E7RmvrVJXmbDFkd6PCx8B8pGlaz+FJi3WBQWUI3rK+VuXBswHvDLffeMjR7XsJnootSX0nbSInnpmdMZ/NOXNmlyCa6aImOE+phUJrhIgqBzjb5poVlJWiHJQoI8yjTeLrKmBNidUGLZGt9ZJnrl2ktZbFZMxoUDKoKnRhUNpgipLRcANjDCF4lJSUpgQrGLNJMdwmWo/obmJHFnHqvSTZuWSwVUjRt7A8HTFCUMRgidZh/YJAwNY1bVvTtos0isa2Ocv2ubaTSCQdQzVmlmGUmJQyLBjJEWZn7HSSFdRadyhNf53v3bvHlSuX6WiFnTGLK7//pJYeOGx9jBeYzoS79xoCNfPJjFD/Chub66wZOLO3y6wp+fKXvsyZs7soUZRGE4LLhjm1aLiujgY5aIs9AS8xXDvWayeG0bWGpL5Aby1mWNK6OV4qvvXGXd559ybBjvGuJXrwLsO3zuMkpCSEmKo1IjTe4XvZuDSux3jLGYQBKVMZu6S12unISky09i4v9jHSZkm4QoQBCrTgM2HCFCVHxyesF4oLFy6zs7lLGMHNn7zOwXs/52Rywt75PaYP7lNtDRCjMFr43Msv9oScrlzS1aajCFE5lElCDDE/LoRA0zQ09YK2aWhtneqQ3tEz82IuOaB65xsjnJyccP7cWZrFDGvbrI/KE5VCHA1H2NaecngiyzrksvaoeiLPal2yz/o6W8ASRUqx6QqRjkiQlmooeSyW7km9qw1cHTfgFOy6gk4RU63vwzfeYnqwnzLdVBjEhrTBjeSJoDFS4/AxpHYhJLdXLfVfu4wyvRHVecMk05cD7JjvqSf25N5U5kiIXUThSRmjj4E1VJITJTHvEah9QKOZ4rA6UonChcAseEoh8VMkgg3ULPj+N77P7//ec5zfFpz2KL/MIkWrnhyWGK4eJGIqzZm9M/yd3xkyWNvk7LbhxwfHbJ69xLntM9jac3R4zMnshEUXpP2C9alO8sbnbuDaq4wGkcnJIU1omDcRN5lRliVVUSbIQRQShPVKMSo8G8MRrXU4Hzk4aZnMPOPxHDGB5ijw7o/fJbbz3FydNlCIIRmPmCarz+saEYULKZpRqqDrk9MqDSQ15TAV+5XKE6wD3g1QvqaNmrnReG1ACRfObXPl8i62aZicTFmrKoZVRVEOKIoCXVQM19aoBmuIKGw7AytEI7haePU7P2L73HU2qyGi1VI4PkI3JSjEnK2tOBjJB6eLAiOZbek9zre0dk6koW1nNO0C2zQ42+Jcg89ReYwdHVty32SKEntprL6QIUk/cQXm6jAsRaqhhKzbppRQFmU2iCyJKj3a+uScZCHAQCiKAUpHvC+IrHEPS1s3nMTIS89sYKqSV7/7Ks9f2CTupekuiiHBa6KyQNZq7Qw0S0WoBL36rAy1zAR7JnZ2lDZ6og9E55iJ8NrP7/Huu3fwzRzfOpJP6FiznW6sRjLJYV0Jjsg8+tSGpBQmetZi4AKKXRUpypLFzhrh5ISJdclBR8GRhj8XJtXAunF1o0GFimCUgEmqOkqBNiPmreP6hXN85e/8DpeufY4HH91m9uAWi+kJs5N95otjRmslVIa10RqXrl3l6ssvZ0sXe5Jd79RQNDYyUgXRtz1sba2laRraJjlH65KDXGZRqncI4OlUkGIMDIcDvOsGD2S+bkz79Um5ycFgwHg8Bs6sOEm1ktX16uy9UxTFUg9X9Qe9d6ywolfL0umlJUhRJUSqc0bCKaeYxNPpHWTn2FZ7sRWR17/7feZNjc7arQRSDTumiCrBq4GGVJtWXYAfe/CIrnWvROUyTbK1PqY6OCSma7IoPitvJ1WnDkALkrPRzINofBqfVSihJGDxaFHUvuEgtLn1KtV7J65hFmyCTWN6jzFqFr7lwYe3ePOndzn7m+cRBcELojwSVMr40xsB8clqKYGiQMeKzbIimIIb19f59k/f53tvfERlRhyfHDGezbDOYT9j03360OWQbkyhNaNqxHx6xGggPNgfE8MaQQYYMckYSyCqXJSOqXkYPLtbQ5wLbA7WWLQ1+2PH1Ne0KqnQEwNljjK8SlFxS2A2W1CUQ0TS60d8hu0FIykdV9ojojClIErjvcN6RyEWP1K0CBICz167zKWLZ6lnc6aTBbpQVFVJYQYUZcVwuMZwtMZgOESrkqa2WGsJvqVgxHQ84e0fvMaV5y7zm7/1e2m7St5h+QJHVuY1xnjKyQiymqLRC277gHeBpmmpygLbWqyzWNcmAxI77wWdxmIX6cXoVxiP0hdCeshHAlDQ54daI5I2tbeOxXyRDnDP6Fx1lEsCx5NYR5MZw3KI1sJwOEgN/LrkzuEJ3jUMmfErL/8qlS74vd/+AhLTMOxEDUiyzZ2hT5qtOa/ss8UUpPhVgll2ntBdg/w9azFFwcHU8Fc/eJ8Pbx8QnaWuXb5Hubc1OrTJQho+0dsrFxgFR5ACm9mdWzFwNirOiLARIyqA1ZqNvcvohSW049SwTYSoKFVBZQpcsJRaKKtBCsi8x2UoVCgQDYVJhvzlX/sNrtx4BSsF9z+6nYhfOAYkw1/tbBADzI5n+MslyoyWDN+43A9pQzhibHsormMb21w3b9sF1i7wzvYlhXwR6fZeh2BAIshMxmMqo/G2Tdevf0zKUp7E0kYznk640jlFpUEb0IagND6PGOvaZDoItXeYy6OfHObKZ368RSSFsgWujXmSRuyD3A51etypdplj50D79jLb8P5bP2URHQphKAYlMI0ps2t9qvPlmThZEiB1FyqWMz9Dfv+d1lfuCE0ZIzGfr1TWkZiYsFmWmKLLTPMFEBUxkuTuau85ZsHOoErwaACnNEetpSGiY3LEY1ezwFPlVq0E90ZUFOq65sffepPf/PJlRi7idX6jKpUDdEeyy9coeIhSMF947j04YPdciRqd4+GdR9y6eR8xJUURqcqS3a0t1jc3P3VvfMbQ5RTReqcYDivu3Q+MyiEXLt3AhTl+NmNne4fQ3dkgGaP26Gx0hezptWCqkt0LA65dOM/hBzepo2YWPVYLdfAMRLEIgRYQZVC6SDqZWqNVgdIQsShVIkqjlafQaxij8BI4nE5x1mcdTo0A16+e48a16xyf7NMsLFoZqlJTlAVlNWR9bZO1tQ2GwyEhKiazmtn4COvmyej5yPHhAcwX/OCr3+Arv/cPlhBKd51OOZQOg+jRin710GxuKI3BE4OFmITkXabT93Wdx8k0ZBZxWB5E5yUpY+QhupJD0pAPXuy+K4L49PP9/X22d7ZPwWu96EPIDuIJOskfvPFuHoQtDAYFg3JAFEO9mPL87hrXL2ywt7uBD5ZCpx6pSIIGHUDOTsJKhAy57SMqupmn6UE5U+zIO4Fct0wReXAWvTbkBz/Y5613H1KKxbVJpcPnGlsUULnPyzkHJOlCa2BsSggBmVoui2YPxYgkDuCzXnEoS86cv8wLwxE/e/dtHp4cQzZOhTFU1YgiOkQ0McJ8MUvwmNZZUittOB8jwRecu3CDYrDJ8eERR/dvg/e0wYMuKUn1WG0KpBSa6QLvW5TSnGqdoYObU+CbhEE8wYfeQVpXY13bZ5G9f3yssihdjJhPw5mdnVRKyP2/+VHEKH0G80tfAifTSXZQS2SmO4Mf63/Mv7bKBu4gWTKpRYmcfon+OSCGmkGR2uiWWerp11GS9vWq6s6yBSTZoKNHB9y++QENDpdruqVoypi7aru6cMwQqYTkCOMyyw1If94daV5owRI9djE5cyVCicYSaEhN+UUuAZnYOcpk27Tq+i098zCHNnC2qBDX1erTey2AuXfYYAkZBAtEkEhQYEQz84Efvfoeh4eW4RlFxKbezyjUjWO0NuLu/SOOxgtuPH+dN376Dme2t7h29RIiikJ5rpwZ8LkvXOO+FV56/kWGRYlvW5zVRPn03txPdZJlaXojq43HG4OWwLnzG6i4SQiSjUno7jCEND4lRIWEgBKNUgEdMkGkCJx/8SyHtx+h22liFwUYRI0KacaAj4HhaI2HB0dsbGym7LmqkOgxWlMWZYry8GmYMhAp+PDDByAL5lgKiQyHJRcvXWI2a3CtRZnAsKxyY/OQwWjE2nCD0WhEjIHpdMZ4MmZ8coAxsFmt4aPn+OiEIlge3r3JZHzA7uDSyhY6vSKdQkv6V/93PP0nZKZvCCmK7RreffTE6D4Od/b4bo71okpGJfqkSBGS8LL4kMZFoRCx/YETtYSLWmvZ3t7Ce798LyvU/hg4NQ3jl73WqhLnfWpQn9QchSkxBAYC+8cn+Ot7vPVgwZmdLcYnE+rZlO3NETtbayhCajLu7kRMTciRJK8TULhO5CJGfBBsUPiQCAg+RHwg1XR8ZN7U3LzX8NbPP8LaGq0CizqxjiMB0emVAoq2aYBEJNPK4L2haoSynbEXNcMIIknTFSSPZBKuvvQ885CyxF/5jb/LX3znG7TzSbp3OqEWKUgsWCzq3BeaMmPJQZmOFcQEk02nC0xRcfDwXerZMdrb9DwbhnK4jveeZj6nGpYUW4O00+ST0YTg03CBbgZnyiJTD6izDc7VON/Sq0HxOFQfSQpRqeyxf7jP9vYW5AADVqsTyUQ+iSUiVIMqfd29lQ6qWX6w00hLV+fuWl2WWBJanXaQsJIZCjhvMVVB1CrX9uRjDnj5iyvfFICAigVRRb73tb9k/9EjPKm1KWZnlUiNKWgMZOeX8a5Iqml3d6q76klxKukcl0IWPE92xktq5TAxySKaCK1I7tElj81aOnkVoVCaUgtz72hsywTFjhkQW4uTgI/pNU98QmQqpSHGvgRSxIJKaQ7dnOn+A37w+kfo33iOt9+5yc7ODhcv7HLrw3t84fnLXDq/zcW9ddZGnr//WzfShYqeM2tnCKbiZ6+N2Vg7w/kzEzZGCU0L2qJjjZfiU/fGpzrJwrg+9XchYMo1fOtTwTpqujl1qQE406IRdNSESOpty6l6kCRZJBLYu7bD+vY2JwcLdEzqDkqgUIKOkRJBS+Ts7i6tTe9h/+CQwWiIszW7Z/YQ79LUjDBnfTTERnj06AESQYtH6Yq93V3W1zZYxDGmEspijeFgjcFwRFVVGF2k9xiFRdMwm0+YTo5wtqEsRxSqpJnXxFmN84HZeMztd97lzMXL/cSO5Q7OByl0UGVHhskHCbJO4mq0nsZ5WR9TlrwC851K5LqD2tcgI12LQsp8PCH3dAWfBIqXbSq5v0skGSo8+wf7nD9/Pvf2LR1klxkFHzKj8cmsv/Xyc5RmhDIGUdA0gfvjMfOH97h+ZY8vPnuBG+c3qG3LrCN9iWHuNLfvHHDr9n1293a4euUis9mMu3fvUxaayxf2qCrNYl4TvKMqsshyp1MX86gy75HgqBHeutPwnVdvMxkfo4gsbKBxNSHaDP9rBMW8rvGupRqWhOhTb50RRnPLXgyUdHl+Jw2YlhkO2Lx4id21CwS7IJiSZ64+x5tvv4kSj9YmtelEwYdI622SFDMmP1sOVEn7xzvP8cExojXjwwdoHFoJm5sbDIoKhcZ5hyzmtO0C37Z471be1SrknF6zLBNf0bs0rsxm6bmUTbYE73LQ1v3+6t5ZBtCRpGyjO5ZvDsg4dU2eDNwqCFtbW7DyThLaE7pDRowKYjKZnUzaatCrJDezdwmorLrN06/V1tC0mkRhcaedcVcy6bLIfPQ7wfN+ZqJree2v/5rGt0QfsKRqYUdDCQIuBhqSLF03j7IgBV7ZSiVcIzOHOlwiISSaAo0jZvaqz2ICqU3D4dNIRNKfktTar3TKpiNpBvCWqmicx7qGsUS2tWYDxTQGrAjzzOUwSjElUrsaUZpgNI23zKJjIFDPF4yM53d//VmqzAp+bu+ZrBkroAeJXaski8AFptNDzMYuB0czBuUm1WLOzVu3UbKeZiUrTfD/AcSd6JOorEgqEBeDislswZ7sQZYuQiSNuiFmpfYURagYCUGlEVBd461KNZhyEDn34lmm39pHi4eQdCgTPh4YVCXDQYWSiFEgSrF3ZgchEoYmqXvUC6YnM7a312mc59GsZl43BO/RGDCR83tnaOoFxaCiGp1DK01VDglBsC7gfIPRihgVs/mc6XTOfDrD6JiJLgXjRw+QtqUlUEa49dbb/Nrv/G7PRluag+VElFMO8rEMsvtfqiukGM/oBIMsc9B42kmeeiWBKHQlUVTITba5mTndEpzLsIVKQYoj1Q9c21AOB7jgE+HEhyQLlh1mcpy+Zxw+iVWNhpioKUtNVZWEoaLcHLDfTinLEcdHE0oF2njW9tYIsWt9adh+ZpNXrm7miNiyoRWb5VliFExZMp413LpzSGsdZ8+dQZuCD2894uh4zPlzZzizvcls0jKZTDkJiu+/eY/pfILzqebWNHNcsESJaEkQZWtr6nZBZQwoRbAegkYTUNJm1mCuPT12b83mFlaGHNx/QFUWDIeKX/n8y3x0+yMWswlGJ8JajIGmbXBZjDmEgGKp4KO14IKlMppmUeOCY7Z/gDaGShUMi7XM5g3owiBKUaH40h/+PuVo7ZRv62X9YiR6D2Lw3uFcErlo2oamTYQd5+yyNBAlz5jNtlxSRSvJuaVoezyeMCqrDLXGFcdK9+K/jC32CUsYDYY4H5IgQ8brJeYBA13tOctGik+Dk733fZuVqI6s1NUel9lhfol8fCOhqSkLwXhP10cNkssm3cM7Fio9YpAUewAV8FPLo3v3mCmHD+k5ujp1fhNpdmTwuBAJdFrEeTAyp5gUfeacesuzNF/Mw5SRDNkLVRZ5WQtCHcFKRIWsD4uk/kwU+BTAKgrWlcIVChsjcwVnR2vsL2a4ADZmubvce7KmDCYKTQhUqqBAqPSQ55+5yPpQUWiFKJNmSCpFVtzIJFIBArENeL/gh99+i+d/4zdhOma4scULL7/MQbPOzuYWZTnE6JLaTj91Z3w6cQehaRwKR6GFjYFhMlmgdYb6RCOZGKGTDkiCFGIaeqlWCtsp7PaJnaUde8/tcPvVIe6kJskxaTplybXhiPX1IcG5dEPbBkVAaSiNphgM2Fwbsj1cw0VH8JG79+9j6wW+9RS6RGvNaGMDO2+wdcvaaJ2oSc3OQfDBU+iCwhhc66lnc9omHXqdM+PGBY73TwhBaGOgUPD6d7/Nb//jf8zO2bNpi3WSfCsHvYvQ6JxiH23mr0NingkJb9BdWwcdjPM4lLt0WF1NoqPsi6TRSFHFnrlKbhvSPoDPxK9UhWexWDAYlKnh26XJDTaEpCTTa5i6TOV/MqsdexodmC4avD/CFIFFPefKpYsENeRwmjL7+aJOSh+mXKr/CwRDqgPGQFWaNDbK+1TD3BC2P3eWTujc+cjmjbO07gwhJqm4eUgsuZNZy2Q2p6ln1Is6OcS2SQ3XuU4XoqNuGgIe0SaNfyNNc0GV1KZl4hrWovRkCMnONQgML5xNPWva8sEHdwnRE3Xgheeu8u57HxBEJQMXAt61IEl2TkQRXMgT5SOtsymCB6aLBYf3HuAXM6rKYNCJKBItIUqCipXnj/7Jf82N3/xDiKlfFumEy+kZv9a21G2DaoS2aWmahjq3fVjbEoLPDjLxHZcElqwOBT0TdFE3bG9t5d95vB5J94u/rG12ekkSmLDOUhUlqSdU9eUkn2eIJrEIhXiF1j45TBGMNggrmsmn8vLsNIX+51KSgyqPioYoKhNRVh6jlvBrV6sNKaVEx8jELtg/vAuhw/QUJtL3QXZ1xo4Nm5r/wUvs6/Wwoqyjlt/zMavlEDEiNCjaaLNd0AyVyvBoYB4cHmh1QYHOjNUIOtBEUEWVejWjZ6RMas/LbUYKKEVQMaJiYBBhXWsKUbTtnIkPrBVDzm5vcO7sOko8Shm0ivlPSAbOCIgGpfK1rMFHnv/CdbbPwVyEtdEOf/T3X+Htj+ZIESn0CKMUNvwHaLcqramqAd7VqNw5LwuN1kVPlV82yuapGDHgQ5c5ptYQyel9DzhFw2DNsfPMWZrX9/GAJtB4j5EBW2d3GQzSCC6XYbCmrTGFTllTVBRVSTU0DGLBoKzYm8z58MNb1L5JkXVpWFho2ohvFylC1JqyShFIBFxMEbXD41zINbpAiJJo7ZMZB0dHjAJYPAHFyYP7vPHNv+R3//F/Abgs7dRFaKtQ09Lp9WPDYrc5u4cI3kPwKm2qjgRA7A3IJ2modtF3zLhOCk5Sj1LX0kHMWaW1iQiWlYkfPLzPhfMXaNuGmKNilx1kFymHLMb9pNbGmYtYG1PNO7bU7ZR23nLuhT1EFThrscDXv/EzXrq6weXnr6IlUhVDkjh1Chp8nl24hPB0uiZJ1iLPeYxEpVBaIASKQtjZqthYV5g1YXNtRHAtXa9fCD5HKClKb63r2bPJ0KaeVhcsLkDUBWNdUIdAEaEkqeRoUZhhyeDCecpqiCkG6Bsj7ty9zf7hPltbu6yX60hMKijONji7IEjWqwwJAi160keaOO980lF9dOsOqZ94CK2jbWoWizkzP2X9zDp/8J//V9z423+YqfxLiJW43H8xRlo3RxWCayxN21I3M9p2gbOpNppakmAlDe3vYwwKpROjOtmCHD72rClyLTTX9DqM8kmsGJhOxmxtrhPjgBhVVgtLCi/iPUF5nHKp/uY13oWElOU2+078vG/j6JzcioPs/l03gaocguoc3BJx7Uk7caVPMq+uxWtuW/78f/4XHByNk0PMnA/JgxZUlxV2jpKu5BOz+GIqj+mYc8tTgXn+RBEKFdAxMiDiRVHH1JXgglAqQ9BC0MLce6Y41o1BYmAQIyOl2UCjXaBC4WOgDS0jXXC7rnuIuhJFGVObik8tFRiEgWjm3iN4zp3dY2dLIzrJkKbpR0nmMfUEdtqtGk/g9v5N6nbOw5sTPr93jvGsoThXEpzDtXMKNcDHFgenpiB90vqMTBKKoqAoDME1aBTjOM8HMnlN7wMqT83WpIOmtELF2PcPiYREHc6hZZD0s/MvbHH08x38YkoUWFBTDUvOXdoljfKJaGVYtHOMaLRK/ZQ2NMRoqcoRWg+xwbFWFURHIvJoS6kq1kqFamHSBBrrGM9m2UlWDKqCYZmECBo3JwSLUUnNxnrHom1ZTI5o24ZSTIr2Y8RZy19/9X/nS//gHzJcG/Y1g8Cy3/DU2euL/J3xSRGeBDID1aHUso5J7GBY32FW/cbtn5MIkiBaEon8Y840htSQK7kfUAUPQaXo0KiUSXaM2hDyOKel3u6TbAH5/K+8jIREGvGhxbWRc7sjxI159GCfASmK/L3f/zVicwA5RxNJB0dJzDUW1ZNDkpRYpG90V8lQmJhg50SMSpGzE4WKBevqmOeu7fLGzxa0dYNSghaDDz6XIKDQJUYcDkeRB8sWuqTQA0qtGbQzBiFk2Ap8Zh5HiUQtvH3zLjeul4w21zmZnUBh2N7b4+bND2hdw0CXfS0yKkGroh8r1QtqKwExqFhQlIq9s3s8uPsRLS5NEHGWenqMc3Ne+Xu/xd/9h/8J2xc+n1l9AfHLa7/UWo5411LPHbGNtNLSNAvqekHT1jjX4p3LwdzSjHd7MwEiKouBa0Q0+/sPuHzpAsE1fc0zZaDxifnGbkUC8/l8WacXT1CSlJGCQkQnaHu1fUt5lHYp8AoQwlLwPKHrHe4MXTkmvVakbVrWyxE+Copc3llpFenqmUsyz/L7iDD/4D7/9v/5T9mvJ9gERyEhiRcqkSygkQPdvus//UkQfXaosWsLWdY9fYRGlubHKMM8OGYxwbl1SGLnG0qhiSgfGKGoMAxcYKASHIuPKB3R4lh4x8x7toshHqHO70mIDESzY9IUnNTTnIIEnXswI4rLz56jqqpeG1bp7ChzHzzKgFGITmLrl59/BV0V3PhigZ8fMm1Lzg01NiRuhnfgxeKcwxSfTtyRJ2kMn66n6+l6up6up+v/yOsJNSU9XU/X0/V0PV1P1//x11Mn+XQ9XU/X0/V0PV2/YD11kk/X0/V0PV1P19P1C9ZTJ/l0PV1P19P1dD1dv2A9dZJP19P1dD1dT9fT9QvWUyf5dD1dT9fT9XQ9Xb9g/f8B6fFb82dq2B8AAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["dls = biwi.dataloaders(path)\n","dls.show_batch(max_n=9, figsize=(8,6))"]},{"cell_type":"markdown","metadata":{"id":"Y--X9Aww1n82"},"source":["That's looking good! As well as looking at the batch visually, it's a good idea to also look at the underlying tensors (especially as a student; it will help clarify your understanding of what your model is really seeing):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WUOj1Z8L1n82","outputId":"e864996d-a3f8-4217-a017-da0183c7fe74"},"outputs":[{"data":{"text/plain":["(torch.Size([64, 3, 240, 320]), torch.Size([64, 1, 2]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["xb,yb = dls.one_batch()\n","xb.shape,yb.shape"]},{"cell_type":"markdown","metadata":{"id":"X6M8ZO021n83"},"source":["Make sure that you understand *why* these are the shapes for our mini-batches."]},{"cell_type":"markdown","metadata":{"id":"RRtw1JIP1n83"},"source":["Here's an example of one row from the dependent variable:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VFxXIh9j1n83","outputId":"ae3b3f60-17cb-4ac6-e361-37182f095f8a"},"outputs":[{"data":{"text/plain":["TensorPoint([[-0.3375, 0.2193]], device='cuda:6')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["yb[0]"]},{"cell_type":"markdown","metadata":{"id":"Bcz5u4cI1n84"},"source":["As you can see, we haven't had to use a separate *image regression* application; all we've had to do is label the data, and tell fastai what kinds of data the independent and dependent variables represent."]},{"cell_type":"markdown","metadata":{"id":"rmFrGhS01n84"},"source":["It's the same for creating our `Learner`. We will use the same function as before, with one new parameter, and we will be ready to train our model."]},{"cell_type":"markdown","metadata":{"id":"ZlobY3Ti1n84"},"source":["### Training a Model"]},{"cell_type":"markdown","metadata":{"id":"KdGNpEpv1n85"},"source":["As usual, we can use `vision_learner` to create our `Learner`. Remember way back in <> how we used `y_range` to tell fastai the range of our targets? We'll do the same here (coordinates in fastai and PyTorch are always rescaled between -1 and +1):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"y_qMjbRt1n85"},"outputs":[],"source":["learn = vision_learner(dls, resnet18, y_range=(-1,1))"]},{"cell_type":"markdown","metadata":{"id":"UpqQihOM1n85"},"source":["`y_range` is implemented in fastai using `sigmoid_range`, which is defined as:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FMlv4A5C1n85"},"outputs":[],"source":["def sigmoid_range(x, lo, hi): return torch.sigmoid(x) * (hi-lo) + lo"]},{"cell_type":"markdown","metadata":{"id":"t-BBl0AL1n85"},"source":["This is set as the final layer of the model, if `y_range` is defined. Take a moment to think about what this function does, and why it forces the model to output activations in the range `(lo,hi)`.\n","\n","Here's what it looks like:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jY0XfiuR1n86","outputId":"ef1c874a-90ed-4999-d31f-29040c388c60"},"outputs":[{"name":"stderr","output_type":"stream","text":["/home/jhoward/anaconda3/lib/python3.7/site-packages/fastbook/__init__.py:55: UserWarning: Not providing a value for linspace's steps is deprecated and will throw a runtime error in a future release. This warning will appear only once per process. (Triggered internally at /pytorch/aten/src/ATen/native/RangeFactories.cpp:23.)\n"," x = torch.linspace(min,max)\n"]},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYgAAAD7CAYAAABwggP9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoHklEQVR4nO3deXxV1bn/8c8DYQiEEAIhjGFGRpmCsxVr61yhYlsUEaRKRW21t7Xqrd62atX6a+3oRKvizNWKVetUZ4taMQwBQQjIEAYhA5CRJCR5fn8k8caYEAI72SfJ9/16nRc5a6+9eJKcc56svdbay9wdERGRmtqEHYCIiEQmJQgREamVEoSIiNRKCUJERGqlBCEiIrWKCjuAIPXo0cMHDhwYdhgiIs3KsmXLstw9oWZ5i0oQAwcOJCUlJewwRESaFTPbWlu5LjGJiEitAk0QZna1maWYWbGZLayn7o/NbJeZ5ZjZQ2bWodqxeDN7zswKzGyrmV0UZJwiIlK/oHsQO4HbgIcOVsnMzgBuAE4DBgKDgV9Vq3IPUAIkAjOB+8xsdMCxiojIQQSaINx9sbv/A8iup+ps4EF3X+Pue4FbgTkAZtYZmA7c7O757r4EeAGYFWSsIiJycGGNQYwGUqs9TwUSzaw7MBwoc/e0GsfVgxARaUJhJYgYIKfa86qvu9RyrOp4l9oaMrN5leMeKZmZmYEHKiLSWoWVIPKB2GrPq77Oq+VY1fG82hpy9wXunuzuyQkJX5nGKyIihymsdRBrgHHA05XPxwG73T3bzIqAKDMb5u4bqh1fE0KcIiIRpaS0nIy8InbnFpGRW1zxb14xPzhlCF2j2wX6fwWaIMwsqrLNtkBbM+sIlLp7aY2qjwILzewJ4HPgJmAhgLsXmNli4BYzuwwYD0wFTggyVhGRSJSz/wDb9hSyfe9+tu8tZMe+/Xy+r4idOfvZua+I7IJiam7j07aNMW1C38hOEFR80P+i2vOLgV+Z2UPAWmCUu6e7+6tmdhfwNhANPFvjvCupmCqbQcWMqPnurh6EiLQIeUUH+CyzgM1Z+WzOKmRzVgFbswtI31PIvsIDX6rbqX1b+sZF0zsumlG9Y+nVtSO9YjuS2LUjiV060jO2A/Gd2tOmjQUep7WkHeWSk5Ndt9oQkUiRX1zK+l25rN+VT9ruPDZk5LExI5/ducVf1Glj0LdbNAO7dyYpvhMDuneif7dO9I/vRL9u0XSNbodZ8B/+1ZnZMndPrlneou7FJCISlqz8Yj7ZkcOanbl8siOHtZ/nsjW78Ivjndq3ZVjPGE4amsDQnjEMSejM4IQY+sdH0yGqbYiR100JQkSkgYpLy/hkRy7Lt+5l5fZ9rEzfx459+784PrB7J0b3ieWCif0Y2TuWo3p1oW9cdKNcBmpMShAiIvXILy5l2da9fLQpm6Wb97BqRw4lpeUA9I2LZnxSHHNOGMjYfl0Z1SeW2I7BDhaHRQlCRKSGktJyVqTv5f2NWSzZmEXq9hzKyp22bYyxfbsy+/gBTBrQjYkDutGzS8eww200ShAiIsCunCLeWpfBO+sz+OCzbPKLS2ljcHS/OK44ZTDHDe7OxKRudO7Qej42W893KiJSjbuTtjuf19bs4o1Pd7Nqe8UdfvrGRXPe+D6cMjyB4wZ3D3xtQXOiBCEirYa78+nneby0eievrN7FpqwCzGBC/zh+duZRfGNkIsN6xjT6tNLmQglCRFq8bXsKeSF1J/9YsYMNGfm0bWMcNzieuScN4vTRiS16HOFIKEGISItUWFLKK6t38fdl2/lwU8UWNZMHduPWaWM4e0wvusd0qKcFUYIQkRZl7c5cnly6lX+s2El+cSkDunfiJ98czrcn9qVft05hh9esKEGISLN3oKycVz7ZxcL3N7M8fR/to9pw7tjezDgmickDu2lM4TApQYhIs7WvsIQnPkrn0Q+3sDu3mIHdO3HTOSO5YFI/4jq1Dzu8Zk8JQkSanR379vPgvzez6ON0CkvKOHlYD+44fyxThvdsdreziGRKECLSbGzNLuDetz/j2eXbAThvXB8u/9pgRvauuQmlBEEJQkQiXnp2IX94M43nV+6kbRvj4uMGcPnXBtM3Ljrs0Fo0JQgRiVi7c4v481sbWLR0G23bGHNOGMgPvjaYnrFat9AUgt5yNB54EDgdyAJudPcna6l3PxW7zVVpB5S4e5fK4+8AxwFVW5XucPejgoxVRCJXfnEp97/zGX9bsonSMufCY5K4+utDSVRiaFJB9yDuAUqARCr2kn7JzFJrbhfq7lcAV1Q9N7OFQHmNtq52978FHJ+IRLCycmfRx+n8/vU0svJLOG9cH356+lEkddf6hTAEliDMrDMwHRjj7vnAEjN7AZgF3HAI550bVCwi0vykbNnD/zy/hrWf5zJ5YDf+Nnsy4/vHhR1WqxZkD2I4UObuadXKUoFT6jlvOpAJvFej/A4zuxNYD/zc3d+p7WQzmwfMA0hKSjqMsEUkTJl5xdzx8qcsXrGD3l078peLJnDO2N5a3BYBgkwQMUBOjbIcoEs9580GHnV3r1Z2PbCWistVM4AXzWy8u39W82R3XwAsAEhOTvaax0UkMpWXO0+nbOP2lz+l6EA5V506hKtOHUqn9po7EymC/E3kAzUnI8cCeXWdYGb9qehhXF693N0/qvb0ETO7EDgb+HMwoYpImDZl5nPDs6tZumUPxw6K59ffHsvQnjFhhyU1BJkg0oAoMxvm7hsqy8YBaw5yziXAB+6+qZ62HVB/U6SZKyt3Hlqymd/+az0d27XlrulH853kfrqcFKECSxDuXmBmi4FbzOwyKmYxTQVOOMhplwC/qV5gZnHAscC7VExz/R7wNeDaoGIVkaa3OauAnzy9kuXp+/jGyERu//YYrWeIcEFf7LsSeAjIALKB+e6+xsySqBhTGOXu6QBmdjzQD3imRhvtgNuAEUAZsA6Y5u7rA45VRJqAu/PU0m3c+s+1tI9qw++/N45p4/uq19AMBJog3H0PMK2W8nQqBrGrl30IdK6lbiYwOci4RCQcewpKuP7ZVby+djcnDu3O774znl5d1WtoLjRdQEQaxUebsvnRohXsLTjATeeMZO6Jg3Sn1WZGCUJEAlVe7tz7zkbufj2NAd078+DsyYzp2zXssOQwKEGISGD2FZZwzaKVvJuWyXnj+nD7+WOJ6aCPmeZKvzkRCcQnO3K44vFlZOQW8+tvj+GiY5I0EN3MKUGIyBFbvHw7Ny5eTXzn9jx9xfG6h1ILoQQhIoetrNy569V1PPDeJo4bHM9fLppIj5gOYYclAVGCEJHDkld0gGsWreStdRnMOm4A//OtUbRr2ybssCRAShAi0mA79u1n7sMfszEzn1unjmbW8QPDDkkagRKEiDTIJztymLvwY/aXlPHIpcdw0rAeYYckjUQJQkQO2dvrMrjqyeV069Sex+Yfy1G96rubvzRnShAickj+vmw71z+7ihG9uvDwnMm60V4roAQhIvV64N3PuOOVdZw0tAf3z5qkxW+thH7LIlInd+fOVyqmsZ57dG9+991xdIhqG3ZY0kSUIESkVuXlzk3Pf8KTH6Uz67gB/PK80bTVzfZaFSUIEfmK0rJyrvv7Kp5bsYP5U4bwszOO0m0zWiElCBH5kpLScn701ApeXbOL6844iqtOHRp2SBKSQJc9mlm8mT1nZgVmttXMLqqj3hwzKzOz/GqPKQ1tR0SCVVJazlVPLufVNbu4+dxRSg6tXNA9iHuAEiCRij2pXzKzVHdfU0vdD939pADaEZEAFJeWcdUTy3nj0wx+dd5oZp8wMOyQJGSB9SDMrDMwHbjZ3fPdfQnwAjArjHZE5NCVlJZ/kRxumarkIBWCvMQ0HChz97RqZanA6DrqTzCzLDNLM7ObzayqN9OgdsxsnpmlmFlKZmbmkX4PIq3OgbJyfvhURXK4ddoYLtF9laRSkAkiBsipUZYD1LYW/z1gDNCTit7ChcB1h9EO7r7A3ZPdPTkhIeEwQxdpncrKnf96OpXX1uzmf84dxazjBoQdkkSQIBNEPhBboywWyKtZ0d03uftmdy9399XALcAFDW1HRA5feblzw7OreDF1J9efOYK5Jw0KOySJMEEmiDQgysyGVSsbBxzKwLIDVZOsj6QdETkE7s4t/1zLM8u286PThjF/ypCwQ5IIFFiCcPcCYDFwi5l1NrMTganAYzXrmtlZZpZY+fUI4Gbg+Ya2IyKH509vbmThB1uYe+IgfvyNYfWfIK1S0Ns/XQlEAxnAU8B8d19jZkmVax2SKuudBqwyswLgZSoSwu31tRNwrCKt0sL3N/P7N9K4YFI/bjpnpFZIS53M3cOOITDJycmekpISdhgiEev5lTu4ZtFKTh+VyL0zJxKlLUIFMLNl7p5cs1yvDpFWYsmGLH76TCrHDornTxdOUHKQeukVItIKfLIjhx88lsKQhBgWXJJMx3a6ZbfUTwlCpIXbtqeQOQ9/TFyn9jwy9xi6RrcLOyRpJnQ3V5EWbF9hCbMfXsqBsnIWzTuORG0TKg2gHoRIC1VcWsa8x5axfc9+/npJMkN7xoQdkjQz6kGItEDl5c51z6xi6eY9/OnCCRwzKD7skKQZUg9CpAX6wxtpvJC6k5+deRTnjesTdjjSTClBiLQw/1ixgz+9tZHvJvdj/im6hYYcPiUIkRYkZcsefvb3VRw3OJ7bpo3VKmk5IkoQIi3Etj2FzHtsGX27RXP/xZNoH6W3txwZvYJEWoD84lIueySF0rJyHpydTFyn9mGHJC2AZjGJNHPl5c6P/3clGzPzeeTSYxicoOmsEgz1IESaubtfT+P1tbu56ZyRnDSsR9jhSAuiBCHSjL2YupO/vL2RGZP7M+eEgWGHIy2MEoRIM7V2Zy7X/T2V5AHduGXqGM1YksAFmiDMLN7MnjOzAjPbamYX1VFvtpktM7NcM9tuZneZWVS14++YWVHlJkP5ZrY+yDhFmru9BSXMeyyFuOj23HvxRM1YkkYR9KvqHqAESARmAveZ2eha6nUCrgV6AMdSscPcT2vUudrdYyofRwUcp0izVVpWztVPLScjr5j7Z02iZxfdgE8aR2CzmMysMzAdGOPu+cASM3sBmAXcUL2uu99X7ekOM3sCODWoWERast+8uo73N2Zz1wVHM75/XNjhSAsWZA9iOFDm7mnVylKB2noQNX0NqLnn9B1mlmVm75vZlLpONLN5ZpZiZimZmZkNjVmkWXkxdSd//fdmLjl+AN9N7h92ONLCBZkgYoCcGmU5QJeDnWRmlwLJwG+rFV8PDAb6AguAF82s1pvKuPsCd0929+SEhITDjV0k4qXtzuP6Z1cxaUA3bjpnVNjhSCsQZILIB2JrlMUCeXWdYGbTgDuBs9w9q6rc3T9y9zx3L3b3R4D3gbMDjFWkWcktOsAPHltGp/ZR3DtTg9LSNIJ8laUBUWY2rFrZOL566QgAMzsT+CvwLXdfXU/bDmgOn7RK7s5Pnk5l255C7p05UbvCSZMJLEG4ewGwGLjFzDqb2YnAVOCxmnXN7OvAE8B0d19a41icmZ1hZh3NLMrMZlIxRvFaULGKNCcPvLeJ19fu5sazR2rjH2lSQfdTrwSigQzgKWC+u68xs6TK9QxJlfVuBroCL1db6/BK5bF2wG1AJpAF/BCY5u5aCyGtzoefZXPXq+s45+jezD1xYNjhSCsT6M363H0PMK2W8nQqBrGrntc5pdXdM4HJQcYl0hztzi3ih08tZ2CPzvxm+tFaKS1NTiNdIhHoQFk5Vz+5nMKSMh64eBIxHXTjZWl6etWJRKD/99p6Pt6ylz/OGM+wxIPOFBdpNOpBiESYf63ZxYL3NnHxcUlMHd837HCkFVOCEIkg6dmF/OSZVMb27crN52oxnIRLCUIkQhSXlnHVk8sx4N6ZE+kQ1TbskKSV0xiESIT49UufsnpHDgtmTaJ/fKewwxFRD0IkEry06nMe/XArl500iNNH9wo7HBFACUIkdFuyCrj+2VVMSIrj+rNGhB2OyBeUIERCVHSgYtyhbRvjzxdOoF1bvSUlcmgMQiREv37pU9bszOVvlyTTr5vGHSSy6M8VkZC8tOpzHvvPVi4/eRDfGJUYdjgiX6EEIRKCrdn/N+7wszM17iCRSQlCpIkVl5Zx9ZMrNO4gEU9jECJN7I6X132x3kHjDhLJ9KeLSBN6bc0uFn6whbknar2DRD4lCJEmsn1vIdc9k8rR/bpyg9Y7SDMQaIIws3gze87MCsxsq5lddJC6PzazXWaWY2YPmVmHw2lHpDk4UFbOD59agTv85cKJtI/S32YS+YJ+ld4DlACJwEzgPjMbXbOSmZ0B3ACcBgwEBgO/amg7Is3Fb19bz4r0fdw5/WiSumvcQZqHwBKEmXUGpgM3u3u+uy8BXgBm1VJ9NvCgu69x973ArcCcw2hHJOK9vS6DByr3dzjn6N5hhyNyyILsQQwHytw9rVpZKlDbX/6jK49Vr5doZt0b2A5mNs/MUswsJTMz84i+AZGgfZ6zn/96eiUjenXhpnO0v4M0L0EmiBggp0ZZDlDbfok161Z93aWB7eDuC9w92d2TExISGhy0SGMpLSvnmkUrKS4t556ZE+nYTvs7SPMS5DqIfCC2RlkskHcIdau+zmtgOyIR609vbmDp5j3c/d1xDEmICTsckQYLsgeRBkSZ2bBqZeOANbXUXVN5rHq93e6e3cB2RCLSkg1Z/PntjXxnUj/On9gv7HBEDktgCcLdC4DFwC1m1tnMTgSmAo/VUv1R4PtmNsrMugE3AQsPox2RiJORV8S1/7uSoQkx/GqqJt9J8xX0NNcrgWggA3gKmO/ua8wsyczyzSwJwN1fBe4C3ga2Vj5+UV87AccqEriycufH/7uS/OID3DNzIp3a62420nwF+up19z3AtFrK06kYfK5edjdwd0PaEYl097y9kfc3ZnPn+WMZnljrvAqRZkPLOUUC8uFn2fzhjTSmju/D9yb3DzsckSOmBCESgKz8Yq5ZtIKB3Tvz62+PxczCDknkiOkCqcgRKq8cd9i3/wALLz2GmA56W0nLoB6EyBG6952N/HtDFr/41ihG9am5hEek+VKCEDkC/9mUzd2vp/GtcX246JiksMMRCZQShMhhyswr5kdPVYw73HG+xh2k5dHFUpHDULXeIWf/AR6Zq3EHaZn0qhY5DH95ayNLNmZx5/ljGdlb4w7SMukSk0gDLdmQxR/eTOP8CX213kFaNCUIkQbYlVPENYtWMKxnDLd9e4zGHaRFU4IQOUQV+0ovZ/+BMu7VfZakFdArXOQQ/b/X1vPxlr38ccZ4hvbUfZak5VMPQuQQvPrJ5yx4bxOXHD+AqeP7hh2OSJNQghCpx6bMfH76zCrG94/j5+eMDDsckSajBCFyEIUlpcx/fDnt2hr3zpxIhyjtKy2th8YgROrg7ty4eDVpGXk8OvcY+sRFhx2SSJMKpAdhZvFm9pyZFZjZVjO76CB1Z5vZMjPLNbPtZnaXmUVVO/6OmRVV7kCXb2brg4hRpKEefn8Lz6/cyU++OZyThyWEHY5IkwvqEtM9QAmQCMwE7jOzujbj7QRcC/QAjgVOA35ao87V7h5T+TgqoBhFDtnSzXu4/eVP+eaoRK6cMjTscERCccSXmMysMzAdGOPu+cASM3sBmAXcULO+u99X7ekOM3sCOPVI4xAJyu7cIq58YjlJ8Z343XfH0aaNFsNJ6xRED2I4UObuadXKUoG6ehA1fQ1YU6PsDjPLMrP3zWzKwU42s3lmlmJmKZmZmYcas0itikvLmP/4MgpLSrl/1iRiO7YLOySR0ASRIGKAnBplOUC9K4nM7FIgGfhtteLrgcFAX2AB8KKZDamrDXdf4O7J7p6ckKDrxHL43J1fPL+G5en7+N13xjE8UYvhpHWrN0FUDhp7HY8lQD5Q83aWsUBePe1OA+4EznL3rKpyd//I3fPcvdjdHwHeB85u4Pcl0mBPfJTOoo+3cdWpQzhrbO+wwxEJXb1jEO4+5WDHK8cgosxsmLtvqCwex1cvG1U/50zgr8A57r66vhAAXQSWRvXxlj388oU1nHpUAv/1Tc2LEIEALjG5ewGwGLjFzDqb2YnAVOCx2uqb2deBJ4Dp7r60xrE4MzvDzDqaWZSZzaRijOK1I41TpC479u3niseW0T++E3+YMYG2GpQWAYKb5nolEA1kAE8B8919DYCZJVWuZ6jasPdmoCvwcrW1Dq9UHmsH3AZkAlnAD4Fp7q61ENIoCktKueyRFErKyvnrJcl0jdagtEiVQFZSu/seYFodx9KpGMiuel7nlFZ3zwQmBxGTSH3Ky52fPJ3K+l25PDhnMkN7xtR/kkgronsxSav1xzc38Monu7jxrJGcelTPsMMRiThKENIqPb9yB398cwMXTOrHZScPCjsckYikBCGtzvL0vVz391UcMyie2789VtuGitRBCUJale17C5n3aAq9u3bk/osn0T5KbwGRuuh239Jq5BYd4PsLUyguLWfRvMnEd24fdkgiEU1/PkmrUFJazvzHl7EpK58HLp6kGUsih0A9CGnxqjb+eX9jNr/7zjhOGNoj7JBEmgX1IKTF++ObG3h2+XZ+/I3hTJ/UL+xwRJoNJQhp0Z5ams4f3qiYzvqj07Txj0hDKEFIi/X62t38/LnVTDkqgTvO13RWkYZSgpAWadnWPVz95HLG9u3KvTMn0q6tXuoiDaV3jbQ463blMndhCn3ionlozmQ6tddcDJHDoQQhLUp6diGzHlxKx3ZteHTuMXSP6RB2SCLNlv60khZjd24RMx/8DwfKynnmB8fTP75T2CGJNGvqQUiLsKeghFkPfsSe/BIWXnoMw7SftMgRCyRBmFm8mT1nZgVmttXMLjpI3TlmVlZts6B8M5tyOG2JAOQUHmDWgx+xNbuQv16SzPj+cWGHJNIiBHWJ6R6gBEgExgMvmVlq1a5ytfjQ3U8KqC1pxfKLS5n98FI27M5nwSWTtEpaJEBH3IMws87AdOBmd8939yXAC8CsMNuSlq+guJS5D3/MJzty+MtFE5iiTX9EAhXEJabhQJm7p1UrSwVGH+ScCWaWZWZpZnazmVX1ZBrclpnNM7MUM0vJzMw83O9BmpmC4lIuffhjlqXv5Q8zxnP66F5hhyTS4gSRIGKAnBplOUBdo4TvAWOAnlT0Fi4ErjvMtnD3Be6e7O7JCQkJDQxdmqP84lLmPLyUZel7+eOM8Zx7dJ+wQxJpkepNEGb2jpl5HY8lQD4QW+O0WCCvtvbcfZO7b3b3cndfDdwCXFB5uEFtSeuTV3SAOQ8tZXn6Pv40Y4KSg0gjqneQ2t2nHOx45bhBlJkNc/cNlcXjgEMdVHag6iY5aUfYlrRgewtKmP3wUtbuzOXPF07g7LG9ww5JpEU74ktM7l4ALAZuMbPOZnYiMBV4rLb6ZnaWmSVWfj0CuBl4/nDaktYjI6+IGQv+w7pdeTwwa5KSg0gTCGqh3JVANJABPAXMr5qWamZJlWsdkirrngasMrMC4GUqEsLth9KWtE7b9xYy44H/sG1vIQ/PmcxpIxPDDkmkVTB3DzuGwCQnJ3tKSkrYYUiA1u/K45KHPmJ/SRkPXzqZSQPiww5JpMUxs2XunlyzXPdikoiVsmUPcxd+THT7tjx9xfGM6FVz/oKINCYlCIlI/1qzix8tWkGfrtE8MvcY3XhPJARKEBJxHlqymVtfWsvR/eJ4aHaybtktEhIlCIkYZeXObS+t5eH3t3D6qET+OGMC0e3bhh2WSKulBCERIa/oANcsWslb6zKYe+Igfn7OSNq20R7SImFSgpDQbc0u4LJHUtiUVcCtU0cz6/iBYYckIihBSMg+2JjFlU8uxx0em3uMbtctEkGUICQU7s4D723irlfXMSQhhr9ekszAHp3DDktEqlGCkCaXX1zKdc+k8sonuzhnbG/uuuBoOnfQS1Ek0uhdKU1qzc4crn5yBel7Cvn52SO57ORBmGkwWiQSKUFIk3B3Hv8onVv/uZZundrx5GXHcuzg7mGHJSIHoQQhjW5vQQk3Ll7Nq2t2ccrwBO7+7jgtfhNpBpQgpFH9e0MmP3k6lb2FJdx41gguP3kwbbS+QaRZUIKQRlFYUspdr65n4QdbGNozhocvnczoPl3DDktEGkAJQgL30aZsfvbsKrZmFzLnhIHccNYIOrbTLTNEmhslCAlMXtEBfvvaeh75cCtJ8Z1YNO84jtNAtEizFciOcmYWb2bPmVmBmW01s4sOUvf+yh3mqh7FZpZX7fg7ZlZU7fj6IGKUxvXqJ7v45t3v8eh/tjLnhIG8eu3JSg4izVxQPYh7gBIgERgPvGRmqbVtFeruVwBXVD03s4VAeY1qV7v73wKKTRpRenYht/xzDW98msGIXl247+KJTEjqFnZYIhKAI04QZtYZmA6Mcfd8YImZvQDMAm44xHPPPdI4pGntLynjvnc/4/53PyOqjXHjWSOYe9Ig2rUNaptzEQlbED2I4UCZu6dVK0sFTjmEc6cDmcB7NcrvMLM7gfXAz939nboaMLN5wDyApKSkBoQth6O83HkhdSd3vbqOnTlFnDeuD/999kh6de0YdmgiErAgEkQMkFOjLAfocgjnzgYedXevVnY9sJaKS1YzgBfNbLy7f1ZbA+6+AFgAkJyc7LXVkWD8Z1M2t7/8Kau25zCmbyx3f2+8xhlEWrB6E4SZvUPdvYH3gR8CNXeTjwXyvlr9S+32r2z38url7v5RtaePmNmFwNnAn+uLVRrH6u05/PZf63k3LZPeXTty93fHMW18Xy14E2nh6k0Q7j7lYMcrxxGizGyYu2+oLB4HfGWAuoZLgA/cfVN9IQD6JArB2p25/PmtDbzyyS7iOrXjv88ewSXHD9SaBpFW4ogvMbl7gZktBm4xs8uomMU0FTihnlMvAX5TvcDM4oBjgXeBUuB7wNeAa480Tjl0q7fn8Ke3NvD62t106RDFj04bxuUnD6JLx3ZhhyYiTSioaa5XAg8BGUA2ML9qiquZJVExpjDK3dMry44H+gHP1GinHXAbMAIoA9YB09xdayEambuzZGMWD7y7iSUbs4jtGMW13xjGpScMomsnJQaR1iiQBOHue4BpdRxLp2Igu3rZh8BXtg9z90xgchAxyaEpOlDGP1d9zkNLNrP281x6dunA9WeOYOZxScSqxyDSqulWG63Ujn37WbQ0nSc/Sie7oIRhPWO4a/rRTJ3Qhw5RGmMQESWIVqW0rJx30zJ58qN03l6fgQOnjejJpScO4oQh3bWzm4h8iRJEK7AxI49nlm3nueU7yMgrpkdMB+ZPGcKMyUn0j+8UdngiEqGUIFqoXTlFvJi6k+dTd/DJjlzatjFOPSqBCyb147SRibolhojUSwmiBfk8Zz+vfrKLV1bv4uOte3CHo/t15aZzRjJ1fF8SumibTxE5dEoQzZi7s353Hm+s3c3rn2aQum0fACN6deGa04Zx3rg+DE6IOXgjIiJ1UIJoZvKKDvDBZ9m8sz6T99Iy2bFvPwDj+8dx3RlHceaYXgxRUhCRAChBRLiiA2WsSN/Hh5uyeX9jFiu37aOs3InpEMWJQ7tz9deHctqInvSM1d1URSRYShARJqfwAMvT95KydQ8fb97Lym37KCkrp43B0f3iuOKUwZw0NIFJA7rRPkoDzSLSeJQgQlRcWkbarnxWbt9H6rZ9rNy2j40Z+QC0bWOM7hPL7BMGcOyg7kweFE/XaK1sFpGmowTRRHIKD/Dprlw+/bzisWZnLmm78zhQVrGFRffO7RnfP45p4/swaUA84/p3pVN7/XpEJDz6BAqQu7OnoITPMgvYmJHPxox8NmTkkbY7j925xV/Ui+/cntF9Yrns5MGM6dOVo/t1pV+3aK1kFpGIogTRQGXlTkZeEdv27Cd9TyHp2QVs3VPIlqwCNmcVkFtU+kXdju3aMLRnDCcO6cGwxC6M6N2FUb1j6dmlg5KBiEQ8JYhqysudvYUl7M4tZlfufnblFLMrZz879hWxc99+dubsZ+e+/V9cFgJoY9C7azSDEzozdXxfBvbozNCeMQxJ6EyfrtHadU1Emi0lCOC/n1vN2+syyMwrprT8y9tatzHoFduR3nHRjO3blbPH9qZft2j6xkUzoHtn+sZFazaRiLRIgSQIM7samAOMBZ5y9zn11P8xcD0QDTxLxQZDxZXH4oEHgdOBLOBGd38yiDjr0jcumhOG9KBnbAcSu3SgZ2xHenXtSO+uHUmI6UCU7lskIq1QUD2InVTsBHcGFR/6dTKzM4AbgK9Xnvcc8KvKMoB7gBIgkYrtS18ys9SqHeoaw1WnDm2spkVEmq1A/jR298Xu/g8qthutz2zgQXdf4+57gVup6H1gZp2B6cDN7p7v7kuAF4BZQcQpIiKHLoxrJ6OB1GrPU4FEM+sODAfK3D2txvHRTRifiIgQToKIAXKqPa/6ukstx6qOd6mrMTObZ2YpZpaSmZkZaKAiIq1ZvQnCzN4xM6/jseQw/s98ILba86qv82o5VnU8r67G3H2Buye7e3JCQsJhhCMiIrWpN0G4+xR3tzoeJx3G/7kGGFft+Thgt7tnA2lAlJkNq3G80QaoRUSkdoFcYjKzKDPrCLQF2ppZRzOra4bUo8D3zWyUmXUDbgIWArh7AbAYuMXMOpvZicBU4LEg4hQRkUMX1BjETcB+KqaqXlz59U0AZpZkZvlmlgTg7q8CdwFvA1srH7+o1taVVEyVzQCeomKNhHoQIiJNzNy9/lrNRHJysqekpIQdhohIs2Jmy9w9+SvlLSlBmFkmFT2Sw9GDipXbkUZxNYziahjF1TAtNa4B7v6VWT4tKkEcCTNLqS2Dhk1xNYziahjF1TCtLS7dZEhERGqlBCEiIrVSgvg/C8IOoA6Kq2EUV8MoroZpVXFpDEJERGqlHoSIiNRKCUJERGqlBCEiIrVSgqiFmQ0zsyIzezzsWKqY2eNm9rmZ5ZpZmpldFgExdTCzB81sq5nlmdkKMzsr7LigYhvcytvAF5vZwhDjiDez58ysoPLndFFYsVQXKT+f6iL89RRx77/qGuszK6gtR1uae4CPww6ihjuA77t7sZmNAN4xsxXuvizEmKKAbcApQDpwNvC0mY119y0hxgUN2Aa3kTX5FrqHKFJ+PtVF8uspEt9/1TXKZ5Z6EDWY2QxgH/BmyKF8SeUWrcVVTysfQ0IMCXcvcPdfuvsWdy93938Cm4FJYcZVGVtDtsFtFJG8hW4k/HxqivDXU8S9/6o05meWEkQ1ZhYL3AL8JOxYamNm95pZIbAO+Bx4OeSQvsTMEqnYNjbsv44jhbbQPQKR9nqKxPdfY39mKUF82a3Ag+6+LexAauPuV1Kx/erJVOybUXzwM5qOmbUDngAecfd1YccTIRq8ha5UiMTXU4S+/xr1M6vVJIj6tk41s/HAN4DfR1ps1eu6e1nlpYp+wPxIiMvM2lCxqVMJcHVjxtSQuCJAg7fQlaZ/PTVEU77/6tMUn1mtZpDa3acc7LiZXQsMBNLNDCr++mtrZqPcfWKYsdUhika+BnoocVnFD+tBKgZhz3b3A40Z06HGFSG+2ELX3TdUlmkL3YMI4/V0mBr9/XcIptDIn1mtpgdxCBZQ8QsfX/m4H3iJilkeoTKznmY2w8xizKytmZ0BXAi8FXZswH3ASOBb7r4/7GCqWMO2wW0UkbyFbiT8fOoQca+nCH7/Nf5nlrvrUcsD+CXweNhxVMaSALxLxUyFXGA1cHkExDWAitkcRVRcTql6zIyA2H7J/802qXr8MoQ44oF/AAVUTN28KOyfTST9fJrD6ylS3391/E4D/czSzfpERKRWusQkIiK1UoIQEZFaKUGIiEitlCBERKRWShAiIlIrJQgREamVEoSIiNRKCUJERGr1/wHI7lOMx0S3pgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_function(partial(sigmoid_range,lo=-1,hi=1), min=-4, max=4)"]},{"cell_type":"markdown","metadata":{"id":"YKvCIchL1n86"},"source":["We didn't specify a loss function, which means we're getting whatever fastai chooses as the default. Let's see what it picked for us:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XYGJSZOB1n87","outputId":"5edb0886-1399-4c7d-dea0-fc29ae80fbb8"},"outputs":[{"data":{"text/plain":["FlattenedLoss of MSELoss()"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dls.loss_func"]},{"cell_type":"markdown","metadata":{"id":"bLRX2EQw1n87"},"source":["This makes sense, since when coordinates are used as the dependent variable, most of the time we're likely to be trying to predict something as close as possible; that's basically what `MSELoss` (mean squared error loss) does. If you want to use a different loss function, you can pass it to `vision_learner` using the `loss_func` parameter.\n","\n","Note also that we didn't specify any metrics. That's because the MSE is already a useful metric for this task (although it's probably more interpretable after we take the square root).\n","\n","We can pick a good learning rate with the learning rate finder:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"JGNDlldE1n87","outputId":"bd6cb514-1324-48f0-edbd-72c3776a50ca"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["SuggestedLRs(lr_min=0.005754399299621582, lr_steep=0.033113110810518265)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAZcAAAEQCAYAAAB80zltAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAA320lEQVR4nO3deXyU5bnw8d+VhSRkhWzsIEvYDUgUBAUUBLFaF9T3qHXpaavVY9vT1ta259BaW+3y9u1p9agtrbVqLbVWqBu4sAviEheWQAj7ng1IyL5MrvePZ0KHYbKR2ZJc389nPmbuZ7uekeSae3nuW1QVY4wxxp8iQh2AMcaY7seSizHGGL+z5GKMMcbvLLkYY4zxO0suxhhj/M6SizHGGL+LCnUA4SAtLU2HDRsW6jCMMaZL+fjjj0tVNd3XNksuwLBhw8jNzQ11GMYY06WIyIGWtlmzmDHGGL+z5GKMMcbvLLkYY4zxO0suxhhj/M6SizHGGL+z5GKMMcbvLLkYY0wPdfhkNTX1roCc25KLMcb0UD9Yto3rntgYkHNbcjHGmB6o6FQtG3aVcMW4zICc35KLMcb0QK98doQmhesvGBiQ81tyMcaYHkZVefnjI0wanMKI9ISAXMOSizHG9DDbj51iZ1EFCwNUawFLLsYY0+Ms/eQI0ZHCNdkDAnYNSy7GGNODNLqaeOWzI8wZk0lK714Bu44lF2OM6UHe3VVKaWU9NwSwSQyCmFxEpK+ILBORKhE5ICK3trDfXSLiEpFKj9dsj+2VXi+XiDzu3jZMRNRr+6Lg3KExxoS/f3xymD69o5k9OiOg1wnmYmFPAPVAJjAJeENENqtqno99N6nqJb5OoqqnhzaISDxQBLzktVuKqjb6JWpjjOkmTlbV8872Im65cDC9ogJbtwhKzcWdBBYCi1S1UlU3AK8Ct3fy1DcCxcC7nTyPMcZ0ey99fIj6xiZunTo04NcKVrNYFuBS1QKPss3A+Bb2nywipSJSICKLRKSlGtadwHOqql7lB0TksIg8IyJpnYzdGGO6vKYm5YUPDnLhsD6M7pcY8OsFK7kkAOVeZeWArztcD0wAMnBqO7cA3/HeSUSGALOAZz2KS4ELgaHAFPf5X/AVkIjcLSK5IpJbUlLSoZsxxpiuZsPuUg4cr+YL0wJfa4HgJZdKIMmrLAmo8N5RVfeq6j5VbVLVrcDDOM1f3u4ANqjqPo9jK1U1V1UbVbUIuB+YJyLe10ZVF6tqjqrmpKend+LWjDEm/P3l/QOkxvfiygn9gnK9YCWXAiBKREZ5lGUDvjrzvSkgPsrv4MxaS0vH0sLxxhjTIxwrr2HljiJuyhlMTFRkUK4ZlOSiqlXAUuBhEYkXkRnAtcDz3vuKyAIRyXT/PAZYBLzitc90YCBeo8REZKqIjBaRCBFJBR4D1qqqd5OcMcb0GEs+PIQCt00dErRrBvMhyvuAOJzRXUuAe1U1T0SGuJ9Hab7rOcAWEakCluMkpUe9znUnsFRVvZvVhgNv4jS3bQPqcPpsjDGmR2pwNfG3Dw8yKyudwX17B+26QXvORVVPANf5KD+I0+Hf/P4B4IE2znVPC+VLcBKXMcYYYOPuUoor6vjpRcGrtYBN/2KMMd3aqh3FxEVHMjMruAOXLLkYY0w3paqs2lHEjJFpxEYHpyO/mSUXY4zppvILKzhaXsvcsYGdR8wXSy7GGNNNrdpRBMDlYyy5GGOM8ZOVO4rJHpRMRlJs0K9tycUYY7qhkoo6Nh8uY87YzJBc35KLMcZ0Q2t2FqMKc0LQ3wKWXIwxpltataOI/smxjOt/1tSKQWHJxRhjupnaBhfv7irl8jEZiIRmakVLLsYY0818sO8E1fUu5oaovwUsuRhjTLfz5rZjxPeK5OIRqSGLwZKLMcZ0Iw2uJlZsK+SKcZlBfyrfkyUXY4zpRjbuLqWsuoHPnT8gpHFYcjHGmG7k9S3HSIyNYmZWWkjjsORijDHdRF2ji7fyCpk3rl/QVpxsiSUXY4zpJt4tKKWitpGrs/uHOpTgJRcR6Ssiy0SkSkQOiMitLex3l4i43KtTNr9me2xfKyK1Htt2eh0/R0TyRaRaRNaIyNDA3pkxxoSH17ccJaV3NJeMDG2TGAS35vIEUA9kArcBT4nI+Bb23aSqCR6vtV7b7/fYNrq5UETScJZFXgT0BXKBF/19I8YYE25qG1y8s72IK8f3Izoy9I1SQYlAROKBhcAiVa1U1Q3Aq8Dtfr7UDUCeqr6kqrXAQ0C2iIzx83WMMSasrN1ZTFW9i6tDPEqsWbDSWxbgUtUCj7LNQEs1l8kiUioiBSKySESivLb/zL19o2eTmft8m5vfqGoVsKeV6xhjTLfw2pZjpMb3YtrwvqEOBQheckkAyr3KyoFEH/uuByYAGTi1nVuA73hsfxAYDgwEFgOviciIjl5HRO4WkVwRyS0pKenY3RhjTBipqmtk1Y4irprYn6gwaBKD4CWXSsB7as4koMJ7R1Xdq6r7VLVJVbcCDwM3emz/QFUrVLVOVZ8FNgJXncN1FqtqjqrmpKenn/ONGWNMqK3cUURtQxPXZIdHkxgEL7kUAFEiMsqjLBvIa8exCrQ2rafn9jz3eYHTfT0j2nkdY4zpkl7bfJT+ybHkDO0T6lBOC0pycfd9LAUeFpF4EZkBXAs8772viCwQkUz3z2NwRn694n6fIiLzRSRWRKJE5DZgJvCW+/BlwAQRWSgiscAPgS2qmh/oezTGmFAor25gXUEJV5/fn4iI0Eyv70swG+fuA+KAYmAJcK+q5onIEPfzKkPc+80BtohIFbAcJyk96t4WDfwUKAFKga8B16nqTgBVLcHpp3kEOAlMBf4tGDdnjDGh8FZeIQ0uDasmMQDvUVgBo6ongOt8lB/E6Yhvfv8A8EAL5ygBLmzjOisBG3psjOkRXt18lKGpvZk4MDnUoZwhPIYVGGOM6bCSijre21PKNecPCNmKky2x5GKMMV3Uim3HaFL4/KTwahIDSy7GGNNlvbb5KKMzE8nK9PXIYGhZcjHGmC6ouKKW3AMnuWpi6GdA9sWSizHGdEGrdhSjCvMnZIY6FJ8suRhjTBf0dl4hg/vGMToMm8TAkosxxnQ5lXWNbNxznHnj+oXdKLFmllyMMaaLWV9QQn1jE1eMC88mMbDkYowxXc4724tI6R0dVnOJebPkYowxXUiDq4nV+cXMGZMZNtPr+xK+kRljjDnLR/tOUF7TENZNYmDJxRhjupS3txcRExXBzKy0UIfSKksuxhjTRagq72wv4tJRafTuFbR5h8+JJRdjjOki8o6e4khZTdg3iYElF2OM6TJWbDtGZIRwxbh+oQ6lTZZcjDGmC1BVlm8t5OLhqfSN7xXqcNpkycUYY7qAnUUV7CutYsHE8K+1QBCTi4j0FZFlIlIlIgdE5NYW9rtLRFzupY+bX7Pd22JE5Gn38RUi8qmILPA4dpiIqNexi4Jzh8YYEzjLtxYSITCvCzSJQRCXOQaeAOqBTGAS8IaIbFbVPB/7blLVS3yURwGHgFnAQeAq4O8iMlFV93vsl6Kqjf4M3hhjQmnF1mNcdF5f0hNjQh1KuwSl5iIi8cBCYJGqVqrqBuBV4PaOnEdVq1T1IVXdr6pNqvo6sA+Y4v+ojTEmPOwqqmBXcWXYrt3iS7CaxbIAl6oWeJRtBsa3sP9kESkVkQIRWSQiPmtYIpLpPrd37eeAiBwWkWdExOeTRiJyt4jkikhuSUlJB2/HGGOCZ8W2QkRg/viu0SQGwUsuCUC5V1k54GshgvXABCADp7ZzC/Ad751EJBp4AXhWVfPdxaXAhcBQnNpMonufs6jqYlXNUdWc9PT0Dt+QMcYEy/Ktx8gZ2ofMpNhQh9JuwUoulUCSV1kSUOG9o6ruVdV97mavrcDDwI2e+4hIBPA8Th/O/R7HVqpqrqo2qmqRe9s8EfG+tjHGdAl7SyrJL6xgwYSu0yQGwUsuBUCUiIzyKMvm7OYsXxQ4vRqOOCvjPI0zMGChqja0cSyexxtjTFfyZl4hAFdO6DpNYhCk5KKqVcBS4GERiReRGcC1OLWPM4jIAndfCiIyBlgEvOKxy1PAWOAaVa3xOnaqiIwWkQgRSQUeA9aqqneTnDHGdAlvbiske3AKA1LiQh1KhwTzIcr7gDigGFgC3KuqeSIyxP08yhD3fnOALSJSBSzHSUqPAojIUOAenKHMhR7PstzmPnY48CZOc9s2oA6nz8YYY7qcI2U1bDlczpVdqCO/WdCec1HVE8B1PsoP4nT4N79/AHighXMcoJUmLlVdgpO4jDGmy3tzW9dsEgOb/sUYY8LWW9sKGdMvkfPS4kMdSodZcjHGmDBUUlHHRwdOdMlaC1hyMcaYsPT29kJUu2aTGFhyMcaYsPTmtkLOS4tndKavZ83DnyUXY4wJM+XVDWzac5z54/vhPNrX9VhyMcaYMLNyRxGNTcqCLtokBpZcjDEm7LyVV0j/5FjOH5Qc6lDOmSUXY4wJI7UNLt7dVcrcsZldtkkMLLkYY0xY2bTnODUNLuaMzQh1KJ1iycUYY8LIyh1F9O4VybThqaEOpVMsuRhjTJhQVVbnF3PpqDRioyNDHU6nWHIxxpgwkXf0FMfKa5kzNjPUoXSaJRdjjAkTK3cUIQKXj+na/S1gycUYY8LGqh3FTB6cQlpCTKhD6TRLLsYYEwaKTtWy9Uh5t2gSA0suxhgTFlbtKAZgriWXjhGRviKyTESqROSAiNzawn53iYjLY5XJShGZ3d7ziMgcEckXkWoRWeNevdIYY8Layh1FDOoTR1ZmQts7dwHBrLk8AdQDmcBtwFMiMr6FfTepaoLHa217ziMiaTjLIi8C+gK5wIuBuBljjPGXmnoXG3d3/afyPQUluYhIPLAQWKSqlaq6AXgVuN3P57kByFPVl1S1FngIyBaRMX66FWOM8bsNu0upa2zqNk1i0IHkIiKXich57p/7i8izIvInEWnPtJ1ZgEtVCzzKNgMt1Vwmi0ipiBSIyCIRiWrneca73wOgqlXAnlauY4wxIbdyexGJMVFcdF7fUIfiNx2puTwJuNw//z8gGlBgcTuOTQDKvcrKAV+r4KwHJgAZOLWUW4DvtPM87b6OiNwtIrkikltSUtKOWzDGGP9ralJW5RczMyudXlHdZ4xVVNu7nDZQVQ+6axHzgaE4fR9H23FsJZDkVZYEVHjvqKp7Pd5uFZGHcZLLz9pxno5cZzHuxJiTk6PtuAdjjPG7LUfKKa2sY+64rv/gpKeOpMlTIpIJzAK2q2qluzy6HccWAFEiMsqjLBvIa8exCjT3cLV1njz3e+B0H82Idl7HGGOCbtWOIiIEZmf13OTyOPAR8ALOiC2AGUB+Wwe6+z6WAg+LSLyIzACuBZ733ldEFriTGO6O+EXAK+08zzJggogsFJFY4IfAFlVtM0ZjjAmFd7YXkTO0L33ie4U6FL9qd3JR1V8Ac4EZqvo3d/ER4MvtPMV9QBxQDCwB7lXVPBEZ4n6WZYh7vznAFhGpApbjJJNH2zqPO8YSnH6aR4CTwFTg39p7j8YYE0yHT1aTX1jR5ddu8aUjfS54jtISkctwRm6tb+exJ4DrfJQfxOmIb37/APBAR8/jsX0lYEOPjTFhb3W++6n8cd1nCHKzjgxFXuduhkJEHgT+BiwRkR8EKjhjjOnOVu4o5ry0eEakd4+n8j11pM9lAvC+++evALOBacBX/RyTMcZ0e5V1jby/5zhzusH0+r50pFksAlARGQGIqu4AEJE+AYnMGGO6sfUFJdS7mrplkxh0LLlsAP4X6I8zKgt3oikNQFzGGNOtvbO9iJTe0eQM7Z7fzzvSLHYXUAZswZmzC5yO89/6NSJjjOnmGl1NrM4v5vLRGURFdp+n8j21u+aiqseBH3iVveH3iIwxppv7aP9JymsauKKbNolBx0aLRYvIj0Vkr4jUuv/7YxHpXk/+GGNMgK3cUUSvyAhmZqWHOpSA6Uifyy+Bi3BGhx3AmVtsEc7cXd/0f2jGGNP9qCrvbC9i+shU4mM69Khhl9KRO7sJyHY3jwHsFJFPcKa4t+RijDHtUFBUycET1dwza3ioQwmojvQktbQ8WvdYNs0YY4Jg5Y4igG61MJgvHUkuLwGvich8ERkrIlcC/wT+HpDIjDGmG3p7exHZg5LJTIoNdSgB1ZHk8l1gJc6MyB/jzJK8BmdNF2OMMW0oPlXL5kNl3XqUWLOODEWux5nC/ofNZe5p7atwEo8xxphWvL3daRK7Ylx7Vofv2jr79I7nQl7GGGNa8ea2QoanxZOV2f0mqvTmj0dDbYlgY4xpw8mqejbtPc6VE/oh0v2/k7fZLCYil7ey2R6gNMaYdnhnexGuJuWqif1DHUpQtKfP5ek2th9sz4VEpK/7XPNwJrv8vqr+tY1jVgOXAdGq2uguq/TaLQ54UlW/JiLDgH04/UDNfqGqP2lPjMYYEygrth1jUJ84xg9ICnUoQdFmclHV8/x0rSdwRpZlApOAN0Rkc/MSxd5E5DZf8alqgsc+8UARzjBpTynNycgYY0KtvKaBDbtL+eKM83pEkxj4p8+lTe4ksBBYpKqVqroBeBW4vYX9k4Ef0fYotBuBYuBdP4ZrjDF+tTq/iAaXcuWE7j9KrFmw5nrOAlyqWuBRthkY38L+jwJPAYVtnPdO4DlV9R5UcEBEDovIMyKSdk4RG2OMnyzfWkj/5FgmDUoJdShBE6zkkgCUe5WVA4neO4pIDjAD5yHNFonIEGAW8KxHcSlwIc6kmlPc53+hhePvFpFcEcktKSlp520YY0zHVNY1sq6ghPnj+xER0TOaxCB4yaUSZ/ZkT0lAhWeBiEQATwLfaEefyR3ABlXd11zgbnLLVdVGVS0C7gfmichZPWiqulhVc1Q1Jz29+057bYwJrTX5xdQ3NvWYUWLNgpVcCoAoERnlUZYNeHfmJwE5wIsiUgh85C4/LCKXeu17B2fWWnxpbi7rOV8XjDFh5c1thaQlxDClmy5n3JKgLCagqlUishR4WES+jDNa7Fpguteu5cAAj/eDgQ9xmrhOt12JyHRgIF6jxERkKs5SzLuAPsBjwFpV9W6SM8aYgKttcLFmZzHXTx5IZA9qEoPg1VwA7sN5JqUYWALcq6p5IjJERCpFZIg6Cptf/CuhFLnnNmt2J7BUVSvOvATDgTdxmtu2AXXALYG8KWOMacn6ghKq6109apRYs6Atg6aqJ4DrfJQfxOnw93XMfnw0aanqPS3svwQncRljTMi9mVdIclw004anhjqUoAtmzcUYY3qM+sYmVm4vYu7YTKIje96f2p53x8YYEwSb9h7nVG0jC3pgkxhYcjHGmIB4c1sh8b0iuWRUz3yO25KLMcb4matJeWd7IZeNySA2OjLU4YSEJRdjjPGz3P0nKK2sZ8GEnvXgpCdLLkHwwd7jLPjtu7y3uzTUoRhjgmDFtkJioiKYPbrnzv5hySUI/t87Bew4dorb//QhT2/Yx9nzbBpjugtXk7Ji2zFmZqUTHxO0pz3CjiWXAPvsUBkf7jvBN+dmMWdMBj95fTvf/vtm6hpdoQ7NGBMAH+w9TtGpOq6dNKDtnbuxnptWg+QP6/eSGBvFly49j97Rkfx21S5+u2oX00akcnPO4FCHZ4zxs39+doSEmCjmjs0MdSghZTWXADp4vJoV245x29ShJMREEREhfGPOKOJ7RZJ3xKY7M6a7qW1wsWJrIfPH9+uxo8SaWXIJoD9t3EdkhHDX9GGnyyIihKx+ieQXek+LZozp6tbkF1NR18j1kweGOpSQs+QSICer6nnxo0N8Pnsg/ZJjz9g2pl8S+YUV1rFvTDfzz8+OkJEYw8Ujet5cYt4suQTIko8OUtPg4u6Zw8/aNrZ/IuU1DRSdqgtBZMaYQCivbmBNfgnXZA/ocdPr+2LJJUBy959kdGYio/udtZIzozOdsh2Fp4IdljEmQJZvO0a9q4nrJlmTGFhyCZg9JZWMzPS5kgBj+jmrLucfs34XY7qLf356hOHp8UwYeNaq6j2SJZcAqG1wcehENSPSfSeX5N7RDEiOZafVXIzpFooravlw/wmuzR6IiDWJgSWXgDhwvJomhRHp8S3uM9pGjBnTbazbWYIqXDGuZz/b4iloyUVE+orIMhGpEpEDInJrO45ZLSIqIlEeZWtFpNa9NHKliOz0OmaOiOSLSLWIrBGRoYG4n9bsKakEaLHmAjCmfxK7iyupb2wKVljGmABZu7OEzKQYxvY/u4+1pwpmzeUJoB7IBG4DnhKR8S3tLCK30fIMAveraoL7NdrjmDRgKbAI6AvkAi/6Kf5221PsJJfhrdRcxvRLpLFJ2VtaGaywjDEB0OBqYv2uEmZnZViTmIegJBcRiQcWAotUtVJVNwCvAre3sH8y8CPgux281A1Anqq+pKq1wENAtoiMOefgz8GekkoGpsTRu1fLs+tYp74x3cMnB05SUdvIZWN67gzIvgSr5pIFuFS1wKNsM9BSzeVR4CmgsIXtPxORUhHZKCKzPcrHu88LgKpWAXt8XUdE7haRXBHJLSkpafeNtMeekqpWay3g1GqiI8WGIxvTxa0tKCEqQpgxsmeuONmSYCWXBMB7Mq1y4KwGShHJAWYAj7dwrgeB4cBAYDHwmoiM6Oh1VHWxquaoak56uv++cagqe0oqW+1vAYiOjGBkRiI7rVPfmC5tTX4xFw7rS2JsdKhDCSvBSi6VgPfg7yTgjL+sIhIBPAl8Q1UbfZ1IVT9Q1QpVrVPVZ4GNwFUduU4gFZ6qpbrexYiM1pMLOP0uns1iT63dw49fywtkeMYYPzpWXkN+YUWPXhSsJcFKLgVAlIiM8ijLBrz/kiYBOcCLIlIIfOQuPywil7ZwbgWae9Hy3OcFTvf1jPBxnYDZU1wFtD4MudmYfokUnqqlrLqeZ9/bzy/ezOeZjftZV+DfZjpjTGCs3en8rl42JiPEkYSfoCQXd9/HUuBhEYkXkRnAtcDzXruWAwOASe5Xc41kCvCBiKSIyHwRiRWRKPeIspnAW+79lgETRGShiMQCPwS2qGp+AG/vDM3DkEe2p+bS36lkPbZqNw+9lsfcsRkM6dubny3fgavJJrU0JtytyS9mYEoco9rx+97TBHMo8n1AHFAMLAHuVdU8ERnifl5liDoKm19A81f4IlWtB6KBn7rLS4GvAdep6k4AVS3BGZX2CHASmAr8WxDvkT0llSTGRpGeENPmvmPc8479aeM+sgel8PgtF/DglWPIL6zg5Y8PBzpUY0wn1Dc2sXF3KbNGp9sQZB+CthKlqp4ArvNRfhCnI97XMfv5V5NXc/K4sI3rrASCOvTYU3Nnfnv+sWUkxpCWEEN8TCRP35lDXK9IrprYj8lDUvjV2zu5Ort/q8OZjTGh8+G+E1TVu5idZf0tvtj0L362p7iqzZFizUSEv3z5Iv7x1emkums6IsJ/f24sxRV1/GH9vkCGaozphDe2HiW+VySXjrLk4oslFz+qrGuk8FQtIzLa7sxvNqZfEumJZzahTRnal6sm9uP36/dwvNLWfDEm3NQ3NrFiWyFXjMskrlfPXs64JZZc/GhvO+YUa69vXZFFdb2L5zYd6PS5jDH+tXF3KWXVDVx9/oBQhxK2LLn4UXsmrGyvkRmJzB2byXOb9lNd7/ORH2NMiLy25ShJsVFcmmVP5bfEkosf7SmuIipCGJra2y/n++qs4ZysbuClXBs5Zky4qG1w8XZeEVdO6EdMlDWJtcSSix/tKalkSGpvoiP987HmDOvLlKF9+MO7e2l02dT8xoSDtTtLqKxr5JpsaxJrjY1z9aPdxZUMT/Pvw1T3zBzO3c9/zPJthXy+A/+Y6xub+GDfcXYVVbKvtIojZTXcOGUQV03s79f4jOlpXt9ylNT4Xlw8PDXUoYQ1Sy5+Ut/YxL7SKuaN9+9KdHPHZjI8PZ7fr9vD4D5xfLT/BJ8eLOOGCwadteqdqrLtyCn+8fEhXt18lJPVDQAkxkaREBPFf/z1E35+w0T+z4VD/BqjL2XV9dz/109JT4zhJ9dNICHG/qmZrq+6vpFVO4pZOGUgUX5qoeiu7DfeT/aWVtLYpGRl+ncluogI4Z6Zw3nw5a1c/+R7AMRFR7Jp73FWfWvW6edjAH67ahe/WbmLXlERzBuXyfWTB5I9OIXU+F7UNTZxz/Mf8+DLW6ltaOLO6cM6FMfu4gqOlNVywZCU07O/Fp2qZcXWY+QXVnDb1KFMHJQMQElFHbc//QF7S6pwqbL5cBm/+8IUv382xgTbyh3F1DS4uMZGibXJkoufNE+d37wImD/dcMEgTtU0MiAljgvP60NZdQOfe+xdHlm+g1/fPAmA9/ce57erdvH57AH85LoJJMedOf13bHQki++Ywtf++ik/ejWP0so6vnb5KHpFtf3ta11BCV95Lpf6xiYiBMb2TyI2OpJPDp5EFWKiIngx9xA3TB7E7RcP5Vt//4xjZbX86a4LiYoU7v/rp1z7vxv52Q0TuW7yQL9/PsYEy+ubj5KZFMOFw/qGOpSwZ8nFT3YWVhAVIZyX1v4HKNsrOjKCr8wcfvp9RmIs98wcwf+u2c3CCwYxfkAS33zxM4alxvOzGyYS30ITVExUJE/cdgHfe3krj6/ezfKtx/jJtROY7l7kqLy6geKKWkakJxAR4Uxfs2FXKXc/l8uI9AS+O380nx4q46N9J6ioa+A/52TxufP7kZEUyxNrdvPMhv28/MlhEmOieP5LF5Hj/gVc/vVLuP+vn/KfL37GpwdP8l+fG3dGUiupqGPL4TK2HC4n7+gphqfHc/u0oQzu27lRdyer6vnsUBlHymo4WlZDWU0DV0/sz8UjUm0uKNNhp2obWLuzhC9MG3r698O0TFRt9t2cnBzNzc3t1Dm+/OxHHDpRw1vfnOmnqFpX2+Diyt+sB5xnYtYVFLP03hmnm6basmZnMT96JY+DJ6o5f1AyheW1FFc4swFkJsVw1cT+jO2XxA9f3caw1Hj++pVp9I3v1eo5Dx6v5s/v7eeGCwYyYeCZcTS4mvj5inye3rCPC4ak8Msbs/n04EmWfnKETXuPAxAhMCw1ngMnqlFV5o/vxzXZA0hPjKFP714kxERR0+Ciqq6RqrpG6hqbqGtsor6xCUWJECFCnIEVq/OL+exQGc2TS0dFCDFREVTVu8genMK9s0YwKyvdnq427faPjw/zwEubWXbfdCYP6RPqcMKCiHysqjk+t1ly8U9yufSXq5k0uA+P3zLZT1G1bePuUm774wcA/OCqMdw9c0QbR5yptsHF79btYcOuUoalxTMyI4E+vaNZtaOYtTtLqHc1kZWZwJKvTDujb6cz3thyjO/+YzNV9S4AhqX25vrJg5g+MpVx/ZOIj4niaFkNz206wJIPD1Je03BO1zl/UDKXjc5gxsg0hqb2Ji0hhgZXEy9/cpjfr9vLwRPVAPTpHc2AlDiGpcUzfkAS4wckc/7AZPq0kUhNz3PXMx+yu7iSd797mdV83Sy5tKGzyaWyrpEJP3qLB+Zlcf/lo9o+wI9+tmIHJRV1/OrGbL9W1U/VNrBxVylTh6e2WWPpqN3FlSzfeowZI9O4YEhKi7+oNfUu9pRUcrK6nhNV9VTWNdK7VyTxvaLo3SuK2OgIYqIi6RUVQYRAk0KTKmkJMWfN1+ap0dXEmp0lFBRVcLSshiNlNewuruTwyRoAIiOE2Vnp3DhlEHPGZrarX8p0byer6rnwkZV8+dLhfG9ByCZdDzutJRfrc/GDXUVOZ/7oAHTmt+X7C8YG5LxJsdEsCNAzMSMzEvj6nLaTcFyvyLOa1/whKjKCK8ZlnjWUu7y6ge3HTrGuoIRlnx5mVX4xfXpHc3POYL7ghz4g03W9mVdIY5Ny9fn2nFh7WXLxg+aRYqNtqG2Xltw7motHpHLxiFS+M3807+4q4cWPDvHHDftY/O5eZmWlEx8TxeET1Rw+WcOUoX341c3ZJMVGt31y06W9tvkow91Np6Z9glbfF5G+IrJMRKpE5ICI3NqOY1aLiIpIlPt9jIg87T6+QkQ+FZEFHvsPc+9f6fFaFMj7AthZVEHvXpEM6hMX6EuZIImMEGaPzuCpL0xhw4OXcf9lI9lVVEnekXKS4qKZmZXO6vxiFj75HgePV4c6XBNAxRW1vL/3OFdnD7C+lg4IZs3lCaAeyAQmAW+IyGZVzfO1s4jcxtnxRQGHgFnAQeAq4O8iMtG9amWzFFUN2lTCOwsrGJWZaMMTu6n+yXF8e95ovj1v9BnlN+UM4t6/fMJ1T27kiVsvYNrwvvbHpxtasbWQJoVrrEmsQ4JScxGReJy17RepaqWqbgBeBW5vYf9k4EfAdz3LVbVKVR9S1f2q2qSqrwP7gCmBvYPWFRRVMDrTv3OKmfA3fUQay+6bTlJsFLf84X3m/nodv357J1sPl1NaWWeTjXYDqsrSTw4zOjORUdbs3SHBqrlkAS5VLfAo24xTA/HlUeApoLC1k4pIpvvc3rWfAyKiwDvAd1S19JyibofSyjpKK+tD0plvQm94egKvfu0SXvn0CG9sPcb/rtnNY6t3n96eGBtF9qAULhmVxiUj0xieHk9MVCSRVsvtEj7cd4LNh8v5yXUTQh1KlxOs5JIAlHuVlQNnfRUQkRxgBvANYFBLJxSRaOAF4FlVzXcXlwIXAp8BqThNcS8A830cfzdwN8CQIec+kWOBdeb3eEmx0dx+8TBuv3gYJRV1vL/3OCeq6jlZXU9JRR0f7T/Bz1fkn3FMZIQwICWWa84fwPWTB9q34jD1+/V7SY3vxU1TWvxTZFoQrORSCXh/tU8CKjwLRCQCeBL4hqo2ttR+7d7veZw+nPuby1W1Emh+YKVIRO4HjolIkqqe8jyHqi4GFoPznMs53hc7Tw9Dtj8OBtITY3yu81F8qpaNe0opPlVHXWMTtQ0u8o6e4nfr9vDk2j2cPyiZn1w7gezBKcEP2vi0s7CC1fnFfOuKLGKjbSaHjgpWcikAokRklKrucpdlc3ZzVhKQA7zoTizN/0cPi8hNqvquOBuexhkYcJWqtvYId3PSCFgbxM7CCvrG9yItwZ7oNi3LSIrl+slnf/stqajj9S1HWbx+Lzc89R73XzaS+y8f6bcF58y5+/36PcRFR3L7tKGhDqVLCkpyUdUqEVkKPCwiX8YZLXYtMN1r13LA82vfYOBDnA77EnfZU8BYYK6q1ngeLCJTgTJgF9AHeAxYq6reTXJ+s7OogtGZiTZKyJyT9MQYvjjjPG64YBAPvZrHb1ftYnV+MVOG9qF59oxRmYnMG59JRmJsiKPtOY6W1fDqZ0f5wrShNhXQOQrmUOT7gD8BxcBx4F5VzRORIcB2YJyqHsSjE19Emn+bitzNZEOBe4A6oNDjD/o9qvoCMBxnMEAGcAqnQ/+WQN1QU5NSUFjBTTmDA3UJ00Mkx0XzP/9nEleMy+TR5TtY9ukRwJnOpqK2kUWvbCNnaB9mZaWT5R65NKRvbxsYECB/2rAPBb586XmhDqXLClpyUdUTwHU+yg/idPj7OmY/Hk1aqnqAVpq4VHUJsKSTobbbsVO1VNW7bBEs4zdXTex/xlLUqkpBUSUrth3jzW2F/Ortfw24TIiJYu7YDK7JHsClo9JtDjQ/qW1wseTDg1x9fn8G9bEpf86VTf/SCQNT4tj8o3n27dEEjIgwul8io/sl8p9zs6isa2R3cSUFRRV8vP8kb20v5J+fHSU5LpofXDWGm3MGWxNtJ23YVUpVvYubpliLRGdYcukk7xUfjQmkhJgoJg1OYdLgFG7OGcxPXRPYsLuU36/bw4Mvb2XTnuP89PqJJLSwYJxp29vbC0mMjWLqcFttsjPsX6AxXVh0ZASXjc5g5qh0nlizm9+sLGDL4XK+OGMYA1Li6J8cR//kWFJ6R1uNph1cTcrKHcVcPibDRux1kiUXY7qByAjh63NGcdF5ffnmi5+x6JUzR/n3iowgPTGG0f0S+e/PjWV4uk1X5MvHB05yoqqeeeP6hTqULs+SizHdyLThqWx88HJKK+s4UlbD0bJaCk/VUlxRS/GpOlbnF3PVY+/yX58bxxemDrHajJd3thfSKzKCWaPTQx1Kl2fJxZhuJiJCyEiKJSMplsleMxsVltfynX9sZtE/t7FqRxH//bmxjMxoebSjqqJKj5jxW1V5e3sR00emWp+VH9gnaEwP0i85lme/eBHPv3+An6/IZ+6v1zN3bCZfnTWcxNho8gtPseNYBXtLKjnoXhTN1aRcPCKV2aPTmZ2VwZDU7jk8t6CokgPHq7ln5ohQh9ItWHIxpoeJiBDunD6Ma7IH8Of39vPcpv3c+Lui09t7RUYwNLU3Q/r2ZtrwVFxNyvpdJazOLwbyGJ2ZyPzxmcwb349x/ZO6Ta3m7bxCRGDuuIxQh9ItSPMUEz1ZTk6O5ubmtr2jMd1QVV0jb2w5Rkx0BGP6JTE8Pd7nSKn9pVWsyi/m7bxCPtp/giaFpNgosgenMHlwCklx0Ryvqud4ZR2nahqpa3RR19hEZIQwfUQa88ZnMqKFgQSVdY24mjSkQ/uveXwD0ZHC0vtmhCyGrkZEPlbVHJ/bLLlYcjGmo45XOoMDPjl4kk8PllFQVEGTQnSkkBofQ1JcFLHRkfSKjKCyrpF899IUw9PjuWBIH8b0SyQrM5EDJ6p5Z3sRm/aUEhkhfO/KMdxx8bCg14YOnajm0l+u4XsLxvDVWdYs1l6WXNpgycWYzqmub6ShUUmKi/I5Au1oWQ0rdxSxOr+YvKOnKKmoO71tWGpv5o/vx86iCtbuLGHqeX35vzdmB7Vv5z/++gnvbC9i9bdn2ZQvHdBacrE+F2NMp/XuFQWtTB48ICWOOy4exh0XDwOcms/OogrSE2IYmZGAiKCqvJR7mJ+8vp05v17L5CF9uHh4KtNHpHLhsL4Bq82s3VnMG1uO8a0rsiyx+JHVXLCaizHh5GhZDc9u2s+mPcfZdqScJoVpw/vyi4XnMzQ13q/Xqql3Me8364iOjGDFNy4lJsoWBesIq7kYY7qMASlxfH/BWADKaxp4fctRfr4in/m/Wc935o/hrunD/DZZ7OOrd3HoRA1LvjLNEouf2eQ5xpiwlRwXzW1Th/LON2cxY0QaP3l9O7c//QEnquo7fe6dhRUsXr+XhRcM4uIRqX6I1niy5GKMCXv9kmP54505/HLh+eQeOMk1j29g25FzX2D20Ilq7nrmQ1J6O0sVGP8LWnIRkb4iskxEqkTkgIjc2o5jVouIikiUR1mr5xGROSKSLyLVIrLGvXqlMaaLExFuvnAwL91zMU2q3Pi793h9y9EOn+dIWQ23/OF9qutdPPfvU0lNiAlAtCaYNZcngHogE7gNeEpExre0s4jchu8+oRbPIyJpwFJgEdAXyAVe9OM9GGNCLHtwCq/efwkTBybzjb99xvqCknYfW3Sqllv/8D7l1Q385UtTGTcgKYCR9mxBSS4iEg8sBBapaqWqbgBeBW5vYf9k4EfAdzt4nhuAPFV9SVVrgYeAbBGxeq8x3Uh6YgzPfPEiRmUk8B8vfMKuooo2jymvaeD2pz+gtKKOZ790ERMHJQch0p4rWDWXLMClqgUeZZuBlmoujwJPAYUdPM9493sAVLUK2NPKdYwxXVRCTBRP33UhMdGR/PuzH3G8sq7Ffesbm7j3Lx+zt6SKxXfkcMGQPkGMtGcKVnJJALx738qBs+b6FpEcYAbw+DmcpyPXuVtEckUkt6Sk/dVqY0z4GJgSxx/vzKH4VB23/fED/u9b+fzl/QOs3VlMWbUzokxV+cGyrby35zg/X3g+M0amhTjqniFYz7lUAt6Nm0nAGXVZEYkAngS+oaqNPqaRaOs87boOgKouBhaD8xBlu+7CGBN2Jg1O4bFbJvPIGzv4/bq9NDY5v84iMGFAMplJsazcUcQ35oziximDQhxtzxGs5FIARInIKFXd5S7LBvK89ksCcoAX3Yml+ammwyJyE/BJG+fJA+5sPpm7j2aEj+sYY7qR+eP7MX98P1xNSklFHftKq/hg33He23OcdQXF3DRlEP85d1Sow+xRgjb9i4j8DVDgy8AkYDkwXVXzPPYRnFFgzQYDHwKDgBJVrW/tPCKSDuwG/h14A/gxMEtVp7UWm03/Ykz31eBqIipCbEnnAGht+pdgDkW+D4gDioElwL3uhDBERCpFZIg6CptfQHNnSJGq1rd2HgBVLcEZTfYIcBKYCvxbsG7QGBN+oiMjLLGEQNDmFlPVE8B1PsoP4nTE+zpmPyBeZT7P47F9JWBDj40xJoRs+hdjjDF+Z8nFGGOM31lyMcYY43eWXIwxxvidJRdjjDF+Z8nFGGOM3wXtIcpwJiIlwAH322TOnJ+s+b1nuXdZGlDagUt6X6OtbS3F1NLPwY6vtZh8xeWrrKd/hq3F5ysuX2X2GdpnGOz4hqpqus+zq6q9PF7AYl/vPcu9y4DczlyjrW0txdSOuIISX2sx2WfY+fjsM7TPMFzja+1lzWJne62F96+1UdaZa7S1raWYWvo52PG1FlNL8dhn2HqZfYb2Gfr6b0cFOr4WWbOYH4hIrrYwv044CPf4IPxjDPf4IPxjDPf4IPxjDPf4PFnNxT8WhzqANoR7fBD+MYZ7fBD+MYZ7fBD+MYZ7fKdZzcUYY4zfWc3FGGOM31lyMcYY43eWXIJARC4RkbXuV4GI/E+oY/JFRGaLyCoRWSMi14c6Hk8iMkxESjw+R99j60NMRG5xPzcVdkQkU0TeE5F1IrJaRPqHOiZvInKxiGxyx7hERKJDHZMnEUkWkQ/da1BNCHU8zUTkERF5V0T+ISK9Qx0PWHIJClXdoKqzVXU28B7wz9BGdDYRiQW+DSxQ1ctUdVmoY/JhXfPnqM7CcGFFRCKAG4FDoY6lBaXAJao6C3gO+FKI4/HlAHC5O8a9wLUhjsdbNfA54B+hDqSZO8mNUNVLgZU4K/GGnCWXIHJ/C7sIeDfUsfgwHagBXhORZSLSL9QB+TDD/e3sUQnPpQVvxfmj0xTqQHxRVZeqNseWCOS1tn8oqOpRVa1xv20kzD5LVW0Iwy82lwIr3D+vAC4JYSynWXLxIiL3i0iuiNSJyJ+9tvV1/+GtEpEDInJrB09/BbDK4xc8nGLMBEYC1wB/AB4Ks/iOueObCWQAN4RTfCISCdwMvHiucQU6Rvexk0TkA+B+4JNwjNF9/HnAAuD1cIwvEDoRbx/+NS1LOdA3SCG3KmjLHHchR4GfAvOBOK9tTwD1OH+IJwFviMhmVc1zf9P3VVW+UVUL3T/fBDwTjjECZcBGVa0XkVXA98IpPvdnWAcgIkuBacDL4RKf+1x/V9UmP1WqAvIZqupnwFQRuRn4PvDVcItRRJKAZ4HbVbU+3OLrRDwBiRc4iTPXF+7/nghgjO3XkXlqetIL53/ynz3ex+P8z83yKHse+Hk7zxcNbAMiwjFGIBWnvVaAqcAzYRZfksfPPwPuCLP4fgG8DbyJ8+3xsTD8fxzj8fN84NdhGGMU8AZOv0unY/N3fB77/xmY4K8YOxMvMBH4q/vnu4GvBSKujr6s5tJ+WYBLVQs8yjYDs9p5/FxgtXaySawN5xyjqh4XkWXAOpx27kB0CnbmM5wlIg/hdKjuAxb5P7xOfX4PNv8szhQdXw9AfNC5z/ACEfkF4AJqCVzHb2divAXny80PReSHwFOq6pemRj/Fh4gsx6k9jBaR36vqn/0cn7dW41XVre6msneBYuCOAMfTLpZc2i+Bs6enLsfpGG2Tqq7gX51ugdLZGJ/AqX4HyjnHp6qvce6T97VXpz6/ZhrYuZ868xluwumzCrTOxPg8zrfyQOrs78lVfo+odW3Gq6rfD2pE7WAd+u1XCSR5lSUBFSGIpSXhHqPF13kWY+eFe3zeulq8gCWXjigAokRklEdZNuE1nDPcY7T4Os9i7Lxwj89bV4sXsORyFhGJEueBwkggUkRiRSRKVauApcDDIhIvIjNwHvAKdBW+y8Vo8VmM4RBjuMfX1eNtU6hHFITbC+f5DvV6PeTe1hfn6foq4CBwq8Vo8VmM4RljuMfX1eNt62VT7htjjPE7axYzxhjjd5ZcjDHG+J0lF2OMMX5nycUYY4zfWXIxxhjjd5ZcjDHG+J0lF2OMMX5nycWYEBORS0VkZ6jjMMafLLmYHk1E9ovI3FDGoKrvquroQJxbRNaKSK2IVIpIqYgsFZH+7Tx2togcDkRcpvuz5GJMgImzBHIo3a+qCTjLRCcAvwpxPKYHsORijA8iEiEi3xORPSJyXET+LiJ9Pba/JCKFIlIuIutFZLzHtj+LyFMislxEqoDL3DWkB0Rki/uYF92TFJ5VQ2htX/f274rIMRE5KiJfFhEVkZFt3ZOqluHMTzXJ41xfFJEdIlIhIntF5B53eTzO+kMD3LWeShEZ0NbnYkwzSy7G+PZ14Dqc1f4G4KxT7rmQ2gpgFJABfAK84HX8rcAjOAs6bXCX3QxcCZwHnA/c1cr1fe4rIlcC38JZ2XQk7V8JFRFJBW4AdnsUFwNX46wP8kXgf0TkAnVm4l0AHFXVBPfrKG1/LsYAllyMack9wH+p6mFVrcOZsfZGEYkCUNU/qWqFx7ZsEUn2OP4VVd2oqk2qWusue0xVj6rqCZxVNSe1cv2W9r0ZeEZV81S1GvhxO+7lMREpB0qBNOBrzRtU9Q1V3aOOdcDbwKWtnKvVz8WYZpZcjPFtKLBMRMpEpAzYgbP2fKaIRIrIz91NQ6eA/e5j0jyOP+TjnIUeP1fj9H+0pKV9B3id29d1vH1dVZNxakB9gEHNG0RkgYi8LyIn3Pd5FWfeh7cWP5d2xGF6EEsuxvh2CFigqiker1hVPYLT5HUtTtNUMjDMfYx4HB+otSyO4ZEcgMHtPVBVtwI/BZ4QRwzwMk4Hf6aqpgDL+dd9+LqH1j4XY06z5GIMRLtX/Wt+RQG/Ax4RkaEAIpIuIte6908E6oDjQG/g0SDG+nfgiyIyVkR6Az/s4PHP4vQTfR7oBcQAJUCjiCwA5nnsWwSkejX3tfa5GHOaJRdjnG/rNR6vh4DfAq8Cb4tIBfA+MNW9/3PAAeAIsN29LShUdQXwGLAGp2N+k3tTXTuPr3cfv0hVK3A66P+O0zF/K849N++bDywB9rqbwQbQ+udizGm2EqUxXZiIjAW2ATGq2hjqeIxpZjUXY7oYEbleRHqJSB/gF8BrllhMuLHkYkzXcw9OP8kenJFa94Y2HGPOZs1ixhhj/M5qLsYYY/zOkosxxhi/s+RijDHG7yy5GGOM8TtLLsYYY/zOkosxxhi/+//ZtjWAZxUUYAAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.lr_find()"]},{"cell_type":"markdown","metadata":{"id":"rQzyENQR1n88"},"source":["We'll try an LR of 1e-2:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pZE4AMTU1n88","outputId":"070fcf06-993e-4f78-995a-07c331200474"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.0496300.00760200:42
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.0087140.00429100:53
10.0032130.00071500:53
20.0014820.00003600:53
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["lr = 1e-2\n","learn.fine_tune(3, lr)"]},{"cell_type":"markdown","metadata":{"id":"zStpSAYB1n88"},"source":["Generally when we run this we get a loss of around 0.0001, which corresponds to an average coordinate prediction error of:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NRduXP7-1n89","outputId":"fe16e072-70f4-45c2-ebdf-caf66690d10e"},"outputs":[{"data":{"text/plain":["0.01"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["math.sqrt(0.0001)"]},{"cell_type":"markdown","metadata":{"id":"4WHQd5Jj1n89"},"source":["This sounds very accurate! But it's important to take a look at our results with `Learner.show_results`. The left side are the actual (*ground truth*) coordinates and the right side are our model's predictions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"08wlFluq1n89","outputId":"87e54a33-3a54-458f-ab66-c0d54d77539b"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAV0AAAHzCAYAAACDns4pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9ebBlSX7fh31+mefc+9Zauqq7qrun92X2wTbEAMROEoIhCgxKlBkhyVLQDjls2RF2QA6JDppB0yGHQNqWLdkUrTApiqQl0iAJYEhsg4XDwQxmBrNjZrqn9+7ppaq6q2t/2733nMyf//hlnnPufa9eVTe63x0A+eu+9e49ay7fzN+avxRVpVChQoUKHQ25ZRegUKFChf44UZl0CxUqVOgIqUy6hQoVKnSEVCbdQoUKFTpCKpNuoUKFCh0hlUm3UKFChY6QyqRb6I8VichfFxEVER0c+1Q69ql34PkP5ueLyF/6gz6v0B89KpPudyCJyLcHA/dmn7++7HJmGpT379/k/Pek839BRH78gLpsiciTIvJXRWT9iIsP8C3gC+nvbdFBk3eiaXrWF4A337kiFvqjQtWyC1DoQPoa8Hr6/h7g3vT997FBDfDaW32oiAjgVbX9gxbwLdKfBybAJ4A/MTj+IjYx3Q98APjPgO8H/tzNHiQiI1WdvZOFU9X/1Tv4rAvAD7xTzyv0R5BUtXy+gz/AXwc0fR5Mx/6vwJPANaABzgP/ALj7Jvf9NCbFtcB3AwL8NeANYAv4/wL/28X3pOf8a8AngRvAHibB/Uw69+DgnrnPQh2+Dvxy+v7jg+v+Ujrmgd8bHD+58Oz/FPg4sAv8l+mes8DfBc4BM+Bl4G8A48F7R8DfSu10BfivgP98sYzAp9KxTy3c+1dSO0+A68BngccH1y9+/tJCuf/S4HkfAn4RuJTK+xLwfwM2DioH8L8Gvp3651eAs8vGYvm8M58i6f7hpJ/GpN9XMW3lvcB/ALwfkxQX6ePY5HQ+/f6PgP9T+v468BPAv7l4k4j828A/wSbp17DJ5/uBfy4ifxGbhL4AfA82SV0CXlh4xoPAR4D/51uo36LK/p+ld78AtCJyCpukHwB2gKeA9wF/Gfgg8DPpvv8zNnmBTWD/DrB2m2X4BeDfSN/fwCbt7wfuwRjYo/QayBfS3wPNCSLyfuDzwEYq7/NYn/3vgB8UkR9R1Ti45U8CH8P6dwP4s8B/Afx7t1n2Qt/JtOxZv3wO/3CwpPsRwA2u+Q8H1zxywH1/Y3CtB15Jx78EjIEa+PQB73kx/f4fAEnH/k469tzgmd9Ox/7+AeX/WSAAd6XfPz54zwvY5HlucOxfpOseHBx7CjgxKP9fS8cvk6R74IcG1/8QNrnupd+/iDGOdeDpfN2gjJ9iIOkCPzp41t/GTDJgE+7ZxfZdqO+w3H8pHfsH6fcO8EA69r8cXPczC+UIwHenY7+Yjr2+bCyWzzvzKY60P5z0XcCXRGQ7OXL+zuDcPQdc/18Ovq8D96Xvv6SqU1VtgH82vEFE7gQeSj//XSCmd/2H6dijSeK8Ff154HOqevGAcw9jEt1xTHr8a5g0ukj/QFWvAahqSPcA3AGcT+X63cH1P4BJoivp9z9Vox3gV2+jzB8bfP+b6Z2o6nlVff0m9xxG2Y79WVV9OX3/R4PzH124/puq+vvpe3bu3fU23lvoO5CKeeEPGYnID2OSk2CS3rcwFfT96RK/eM/CRKE3+b7vVYPvLwEHTZr1Lcp6CpM6//JNLvmfqurfP+wZiRYnuly2bczmukjXDivWbbzv3aLbTel3bfA9Oz2XWe5C7yAVSfcPH32MfgB+WFW/H/iHt3uzqm5h5gWAPycitYjUwL+9cN1FzGwA8ATwI6r6A6r6A8BfBH5uMJnvpr+L4V5/DmMCH7/d8t0mfTEXE/ifDMr1E5hz6hcwu+kkXfcXxGgNs4ffir4w+P6fiIgDEJGzInImHc915jbC3L6U/v6QiDyQvv+7g/Nfvo0yFfojQmXS/cNH3xh8/6aIPAX8J2/xGX8z/f0BbGJ9Cfi+A67736e/PwNcEJGvicj5dM/PDq57Ov39t0TkKyLy36Xffx54QlXnnGvvAP0tzMm0CXxLRL4hIs8BV4F/itl/d4H/Ol3/FzD79LfpTSY3JVX9NBYxAOaIOyciT2ARElmjeHpwy5Mi8nsi8vBNHvk3MKl8PV375KBsn+P2TB6F/ohQmXT/kJGq/hamrp8HVrHB/x+9xcf8v4H/I+ZtPw58Bvi5wfm99K6fxyTDT2LRCe/HpMd/ikmUmf4q5hCbAd8LfDhJlT/JOy/loqqXMIbxdzGzx/uBY5hE+VewaAOA/wNW1xtYGNrHsbCx26G/kO5/CrMd349JpDkC5FcwW/plLIriY9wkMkJVnwJ+EPglLM76cYxp/BfAT+l85EKhP+KUPdKF/hiRiBwHVlT1jfTbA7+OTZIXgHv1DwgMEfk3Mc/7R1X1K3/AIhcq9EeGiiPtjyc9BHxBRL6ExdZ+FxbqBPBX/qATbqId4K+WCbdQoXkqku4fQxKRe4G/hy1qOInZG78M/D9U9deWWbZChf6oU5l0CxUqVOgIqTjSChUqVOgIqUy6hQoVKnSEVCbdQoUKFTpCKpNuoUKFCh0hlUm3UKFChY6QyqRbqFChQkdIZdItVKhQoSOkMukWKlSo0BFSmXQLFSpU6AipTLqFChUqdIRUJt1ChQoVOkIqk26hQoUKHSGVSbdQoUKFjpDKpFuoUKFCR0hl0i1UqFChI6Qy6RYqVKjQEVKZdAsVKlToCKlMuoUKFSp0hFQm3UKFChU6QiqTbqFChQodIZVJt1ChQoWOkMqkW6hQoUJHSGXSLVSoUKEjpDLpFipUqNARUpl0CxUqVOgIqUy6hQoVKnSEVCbdQoUKFTpCKpNuoUKFCh0hlUm3UKFChY6QyqRbqFChQkdIZdItVKhQoSOkMukWKlSo0BFSmXQLFSpU6AipTLqFChUqdIRUJt1ChQoVOkIqk26hQoUKHSGVSbdQoUKFjpDKpFuoUKFCR0hl0i1UqFChI6Qy6RYqVKjQEVKZdAsVKlToCKlMuoUKFSp0hFQm3UKFChU6QiqTbqFChQodIZVJt1ChQoWOkMqkW6hQoUJHSGXSLVSoUKEjpDLpFipUqNARUpl0CxUqVOgIqTrs5M/93N/Un/2Pf5ZRXYEAms/YD9H8HVQi6UB3jaidHh7tSGXuWRBur8QCqOveCxAl5oem4zL/E7X/VYkqaHSoRkKMaFBCGwgh0rYtIQSapqVt7dO00LYNTTsjxpY2XRtCIMZgzwmBGCNRA1EDGluiBiQoRIga7d1BUBSN0f6m78RI2za0YQfnPKqCRiDa9TFEQmzQGFC1SqlGu04VpUEj/bNVUWZz74oxoNGuDzEQgt0Tgv2ObaBpAxubx/non/gQtC2hjURxKKDRelFTn8f8nqhdObouclh5VPtP6oMYA1Zl5Vd/9RN8/Fd/re/II6SC7YLtZWH70EkXUaraE1RBrTFEBHGaMNIjzwrnEgYUokBUFIiqxKhWmfRf66zAVtNceIhBcQp1V8++4jHa5apCjEJoIyFEmghRMXCEQIhKDMHeG1pCnHTAa0NLjG0qj9I2LTFENEaatqFpGmu8EO2vtoTQohrSX6uHNXC+JqbRF9KzA0pAQrA2SJ0jafCpgojQEuxHtPeDIuKIESCi0nTjy2kEtfYTBCWmAepQMmA1/2/tTwKrarpeUtu1RG2JIQOzgSbQtBFXg/OCqEtglzQXSP8OBOecPVdIz83vCXaNOCufhm6SUFUQkPxxS5lvjQq2C7aXhO1DJ90335zwzNPnmU5bQohMw4wQWuMkGgecRpGYypwARmszPgohRFQjMShRAyEElJaokRjtWaTGtXPgRBKHTR0QhRADIvMNhKpxW0gcKho3ztxKY2osrDU0lSXGxOXaxFkjMQ65ljW0Sxw1xNTgWPnQ/H43KE8CVIxAzL2R3g2hnaafHo0wbadUvqKuqjTiApA6VADXgy0jWkQQSe9RxYlDNU8WklHfvVPE4SQBOU0lzjmUmojVzzuHk8CoUlZXVxEqUEGIqb0z2BJIFZw4Ugt2VRxKaNbcAuLShJbrYGC3q5c36RZsF2wvC9uHTrrPP/sNPvFrH6fyo/Sitqu3aTax447WUDFxPUmAksTJIRIQqTr1APFoUEQVDbHTxBQlmvBhA4CANhGJCqKoGjitQ2wQNKKgHlRxEqhkIP4DKtI1nsstCzgnaIypsVMzS42IB1zqgEniut6Oi3Wwc1YGEQ8JRyKYGioMAATeOeN8Eq1zxYMK66uO3d09XD1CRPAEhBqRCofDuTjfwYCIIk5xSdXMzxI3BI8Q0wB23kMUBIcyS31h/RHbgIZA0ACxJaoyWj+O06QQC3iENr/LYIhkV4BaW+DoJiW07lQuTeUxkaHX4WVOVV8OFWwXbC8L24dOulevXuLC+Vep6zHT6YxR7boOd04Qjd213kkCjP1VjFM5V6XOa3HiETzOC44pzjmcc4i3e/pOMPHcOgmcrwxERERMJRNxPS/xDu9HtEFp2wljXw2eJQmNpGPWisYR6Zo8l1kk2fgIkNSWDDJNd4iYCtI/lO64DHyT4rpT6R/jillKqlxg1rT4eoyvfCqJmg1Rc1lzGZ09WdMAlawA2+DvRYakisYWUKqqtjooRGZm60q2Lw2R2LY0oUHDjDZE6vGKta30fSt4eptmz/1FxOxhg0HY15TuekkTg7WvS8e0q98yqGC7YNvef/TYPnTSPba5zj33nGF1ZY3J3pTxyOO8x7vUudCBy7sESmfcKIv/gnFMQREJVkFju4hziHNkWwj5PhQn2t2begYlpOusS1wqx3Syg6/WmDQB50+yPhqnc5I6MWsmMgBJVlXs5bmxrfHyOyKT3QlVVTEejRInlQRQkh1noGZh78yG96ya5QGgas/e2d3GCzipqN0IX43wVZ0GmtnMrL6uK6vEiBcxhwHW1qrm4JEkQWVpygmo+NQfrpPIyKqPiklX2CCPAUIbmU5nUIV8GSJiz8X1dVSdg5249OwhWLs39ZoqZHUxtQNZvlgOFWwXbC8L24dOuhtrY9bGjhPH1tmrazaObVBVFd5XPRDF1JGq8lTewOK862Z65zxOPI4acQ0qM65eucJofIK77roLV1UdNzEuJIhY4xoXMlXHp3c4LzinnfSgGnnmW18HGTFaPcnFSxf58Ac/wNrqqoGeDEwDUOaipjqaAyPE3oEQQotGJUTz/F588zzraxuMRiu0rRK0Tddmh0P27mqnkvYfs9tl76iNyWgDufJ4BA0RV9WId3iNgDeVb8jtUXCxk26ELIl5Q4QEHOZJRpJzJw9M55A8MjWpi1GTZqTdYI1RCSEm65j1nWYWnwZ1Z1Lr1CpN59JQ1TTpDABnUpSdm1O8BHSJkm7BdsG2fTl6bB866T7w4H2cOXMXH/rgd/HtF1/h4Q+8l9OnT+O9n1OZTCIgidWywHXpOsV4VWA6nSCywmg0TmrLrSWeXK3FaxXlkfdG1jc22bohPPjw4xw/udGpSAddnx0RIQTaoISgybNrgAvBHCJt27KyepzN4yeIMeKqQIy1OURUk3c39EANbRfW0js71LCmmgDaJulphMMAZYPdWdhM12qCJw++9BwxyGRPquB79Ut9UpvMyeGi9Y0X37VeVOtuR7QBKpEoCYAZx0mNVPHpvGZmPtcLiENDQqqGdD7bw+xjSnNyukgWyQAJAxlpOVSwXbC9LGwfLukeP80P/8RPsrlxjDP3PMD6sbXuXAZm7vrhTC+DKvTyfEZGZGVlfGih3iqtrd3BytqYWTNjbWM8b5M6gHJISFfeNKByTGJnjxOhrkeMRiNCiHhvoHUuh+X4FLto3uHo/AIww5x0QIq+cc5RVeZFdUS8r6zMiTv2KkpW25JEMGhkoU51EWKsE5u2IML0lDRJOFPTBmphxJlE4Hqbnt2RpYMkceBw2d410Kk6D22WEJKqa5JLJk3nqv7ZKEqb7n0LHfwuUMF2wfaysH3opOucY2Nj07jVmoVn3BRQMizS8JDOSeVzxvjDyzb/+MWr82hQEJfUON937s0kDBkMFEl2OscAPPTc1wDq8b7GuGxILxZEIiIRp46YvkvisAamkGIvB1KBgGq2E3o0Ct7F9Hw6ACYnMSRnTvaaIz1QjfOm+Ec8UfJ0YGWQXD/J7teAc46YPNoyQIZIrlOyReLJfmAD69C21zP24b1WTsgDoiu3xDSohsYxUrmWN/MWbBdsLwvbh066IkLlvVXSv8UBogcdkB5Qb5H2qWADYSMFz7ylgZxVxxwELd2nP5471jnzvvYShCASsGDvAVhJ3anmJkBslYqQ1S+7XsThfEWUtrMbGienU1NMg00IyJ2qYKFF2r0zRuvkPNxVhGDRO51E04UXdZXPzZRDg6Srv3OdtmV1ShFPUfv+G7aw2ROll1xI9rcE6OxwMduYDTDRLDW8DSC8Q1SwXbC9LGwfviINSR7YXJObd7roIecAhuffJjgPpwzZbIS/zbucIKr7gJlVsWEIjfce1dgDicgwfUVMaobTFK6tyduqSl41I67CuQrnPJGAE0nLI4cNYiA2p4N1bPbmGj4S50+B5org0v0W2sQc2Pq+U0NeVxbzwGfAd5w8q2GDgZj7XvIA1ewJBzSrYulRnbSQhqqkx0vySnfBj72n+OipYLtge3j/0WH7UANR7pjOgfBO0e2AUhZ/3twpMV4Z9Wey+H+rl3TaQB+bmOsLzIGy/y4HHs+ffMyKsXivQxw4V1H52tavJ1vbZDJJAF1Qc6UHW2ePksSRE/Dmyn1oF6XnDs1YGcwI5qww731uw2G/3woD/TkPWgM1gsWxClk1tgEtaRmlLjHfUsF2wfaysH1L1NuKnIPr+K7SEFeSD/X/9aessWdNY+2ejP35+sMo25K63wOQDYHVA1b2XXOzzyJo7Rimtqkwm+516hFgnHnh+gPBlL5pF8LSFX6+bjcB0lzbDQDfDX3x3XP1Js039+x9F0VEWpAWJKTnO7IL2eyeGaTvNogOp4Ltgu197XYE2D7cvKBKM5vhxysmPmfupLfiPG+NbhYyM7jgkHtNxQmNuU/b6KnaAJW35Ym3EAoE0vptI2cstgfMAGTD3zHGfUA0G5TinKIaklqa14crGk1JETSt2c+G+TyQBE2rkRRwYvayHF9odiWzLeXVh3NOEkn1Tcsn8zp3Qa3/sNU4ojGpVwPApHXuTiqQvKpGU9gOkJbJqrp5wHfAy/2X6qX9Sp3e0TDU05Y85RZsF2wvCduHTrp9/F3isknkT614OMltXPMW6WDgascZLbGHNYZ7CypjvrTr8IFVfgjQg1SSmx1DJAEz2axI4KIlhra7LsaIryr6Etgf0WHvaW9QwnKF5NVDWaLQDtxgUeI54DutqsmPEmfgFmtPpa+uqqmI/REZCBlCNm7tl7IWG9ANjudkKt0FQB82tCwq2C7YXha2D590o851zO2Mko6z38T5cBDnv6kU8BbIMjj5A56UeuUm5TDw0YHLOJ4O7k3fBu0wVEszwHqPsHRgkNyXuXedIEHMwZHS0+UlnVnCyO+aU88QsgCWa5JB1Rv9+zrmuEdzJohlohvWYfiv9K0vImkZbH9tJw1ohSSHBDrox8Hyx/l2y97lDFRd+MBtWLfeNSrYLtheFrZvkU9X8N53399x9v6O0PyAuZmt5jDpZH+jzp8bcvxhvOOhpRLpwnWGz0KwOMYMHslhNex7x6Jdrg+n6QF2YClUbV06KQZy8cqDJKVcn7lTg/vUJ6mjmbvIUttVXfnsA2BLUa0WybOruVZDcC6JCrYLtpeE7UMn3aiRNgZLuqwKeT3zIXQrzv5OcP5FmjVK0IggxCYSKwuBzg1B930/qaqt51bd190ZNAacPrYx2+dzKr6hRGBqiyVJTv/0dRcQ8UQqSOAMQRnVFTnQe94WlqUO6VfdkNWt/WDOK2OsbDoAdl+fA8eTSJ+cBSEnkM51Vlpy2j/SecXwsL9BzaGgWUpRTblJ8/mcIvHg8XFUVLBdsL0sbB+q3+3t7XDhwnkQuLG1xc7OTm6nA0kX/ns79NbvV964eJG2tWWOk8leCmC+jTs1B0YbdYmiO66mcyrXzRpyOFh78DqckzngSgLJ7u4e3ntiVOqqZjzOS0fnr7f5QBbexeCaQcC8SA9EtRVH3rt9ZT4MDLJQl76hZO67dtfJ3IDqnqLz6mKWenIbLHGu7ahgu2DbGurosX3opLuyssqZM2cAWF9fZ3V1tXvRdxKdvOMYx48fR4ETJzdSR98O6RwIe/VhXi1bPJdpPyDnHQ+LQDNQKeNxzerqCk6EtbVVqqpeuE4Gz+yfb0B3+8DT266015g6dW0OIul65t8zOC/OzV1vE0TOrNXXKd3Y37evDYbvPKi874ZcePtUsF2wvSxsH2peqKqK9fX19N0fykns9X/wYfR2nlFVZp8Tck7nmz/lMCnjIBVFD/g1r/ZwcytOUmnmbWoWruIr16t8t6xyVsl69RBkvi5ZGiAHqw/VwoU6JbtUf3+2wS1ID8K8JLDvQQcU8ZBLbmUrPEoq2C7YXha2D5V0NdmNQrBN5g4MJv8OII01pAw/mtScW98zDMeZdzZ0vxNQVRwRSR/LTh8hpY0zp4IKRFGiRKJEAn0WpswhA+bxFPGo8yAV4ivjwHM7ABykuqWVLilGsVdlhpzbKEZFRWz/RLFyWjK95GmVaB/sr0v2NXUp/tNhdZf+udY+Ob3eoB2Tba87LzcfrDagKxRvVr0liroF2wXb+blHje1bTLr5hTrHsTq71NscNLe0a73F5/YDJkkBt7pfUxlUuy2k58GZr1uQBRavu4l4NK9yDQE3+L2ozg3u2/+8vkrSqUA3U4MOKtYQKpIAOlDPBmVxPoXVLHD3DmhykEQ1LNMB5We/JKDdP8uhgu2C7cUnHBW2b2sZcO6MnOC4e8nbGTS3A7q3+Nw5+9Rt3D8Hxji4d8HJ0KlYg0YdgmcRzMPjvTOAwbUJ60qHoB6Isg+YB9mQOguXdgrcgPrVR3M2KAHtdnAVsmRhCUEkPXXowMgFnX9BV784rLfYNiuakph0q3yGTpP9HXKgU+OIqWC7YHtf/Y4A27dckWYJjft8lSGkHUtTGMZ8s9zeQOpDR94B6sbIwYMlc7AkAnTgUO0bOOZbVVOe0HmuPwTfgVLDPkoB5YtlSKPG4v8EDmiHmz5ZrH1NisnHjJOLsduuDQ7g1SkHdD8Iuj2qEvBtrBwsjcwVP/8YvkiErhHzhcOBTpZDBvVcsn23YLtge/D6I8X2LVM7xqioWm7LDMrMKYeJL26HNIEjhGDZ5d8JEhYAdIBuQ1YhciNZR0Ry6IrVMW8Pojq/JclBv9MLFwAMfVq8lCZZ6OIkRQYxgCpETcsI87tTjk5NeuSc6iIHh13POQxS2XFJUhhINLaRidnkzKanlpRaWqJT1Jlk5GXA0bv3y9x7Jf2rHQrN3tVLGwuq55In2IOpYLtgeznYvoWkm7c8tvybIZh3MqchVQ19ejdxXdKQvgL7AXsrbpqb8bY9vToPzP2P7tWyoRoUY5xTJRZVsK6cC5LAXD1ur4S96oImBixdm3VbUct+0HXHtQdI3+EOHcRsSlLphmGc8+Wdb5P+bT0QnRsazfqQnuG9N/Mad/eA4UAXrJsLdrTu2JKoYLtge/Heo8L2bZgX+n2RQmuZ4TU6xPXZ00UEdfNLCo/EZicZZIdIA7pg51LQpGbZ8b7jDxs0t1IZDj5/wEDNaldvHkp/k/1pCGJNdx0AkIMoRwjus5+lfzS/RzT1n3l+c2E0lzGprDcffAdNALkNk8e3k7t8N+qUw9v4KKlge/CYgu25er3b2L61pBvSrB4hxvRbIk6xZBPJhhNjzlDf5+pUDrZvHVawtxcPqXNSQVbLNFXCwDgAZk7NNichzKtbwxCifRLC4LXD84t1XKxmVvW6vJ6Wcj5xyv0g7rlpz0r7wdcnAzGVqi+SKhYek+5TyFtOpYfPWaDSvwaiTm1L0odd391obUV/amjXylCcu3eh/ovlXBYVbPflLdjO7zoabB+eeyFC2xondUKyfcUus49oz3lyYov8dzEn56Jn9J2kGFMXZmANgKIxOxBI6ol0jZI/WeLJZZsDqM6fCyEM3qw3BfCQenXObG2IHySIs7hElRZbF56fjI38BE97ZkwqWV6DbsCbU99Eus0M8xvsj63ft3IIqMdS0wW6uEZs23AlDCIWhbzCPFdLxSYkA6UAbg6YSJXOmYVx2CZKjgNN1y6JCrYLtpeF7ds2L6gqoTWVxXuzr8hA7bIEwArkPZF03/rsbrO8QSEXaU566JnQgWVLVpabAqvn9HQNlTlV3HfdwRx/KCnk8nXX3aLtWLjC2ieiBOsenU/0bNw2r4WXuXoNOb/qPEPXuXfcrLPzew4636vNvV2rl2byoMrtMf/e/a2gi1+y8e47iAq2C7a7uhwxtm856eb4xdAGmiZSdxUcAs+hLnEql6QAZ40wBGZu5ByeM78z6SFSz0J7Drn1HPfugDgAq9KFyti98/fn5y0+6zDA9sCc/52/9+W0wnd104hlb8rZ6+mkmCE4DhoIQ+pBurCKamEQzTfg4N5D2ntxUO9/wqAcHMzRu6HmJO3dtzCIDxsjR0QF2wXb+58wKAfvHrYPNy8E23ojquJDoA0tCDg1q0xeA+1Ek63LGsvs2Ypq2oMJIF1jlbdPCHHQ8PFwgC7ULA7sWKYmmcczqpozIQ5BmNadK3NSAJj61qW/GwA8aiTMdbw9IGrMSlF3zEJpWuPuKCqKQ2g0oE6xlHCCbffRgkYkOkQdDpeeOQ/Mg9RVtQvIjSiD7wr9Spt9bSgMU9Up2i33zOhQqn6SicN1+n1t93eGdCohqL2ja3M737VSEgg0ez2S6rYsKtgu2F4Wtm+RT1dp035HUaFpGxTFxZTaLdKpVk7BRSzlmsuvVLpgaaQLRA8hJwG2a6xB5jlg1wQ6VPMSmHSeYxowxWIHNYEtJklgwCEPUtOiQkjXG4ePhBi6+ucOSrDszUhZrYhKpE1rwSPTFi5e3OXNC1d57cXzuFHFvQ+c4eyZO1hZHYNEop8Qk9SE9Ha4zlK1IAGYLUpSexrwrUV7w34nmaT6Ifn69Lerg60Lj/SDy+6RPqyms7/1fTT3vK5d0nUZ9HNSiCy0XRo4c4vSl2jTLdgu2M5/jxjbt3CkxU4Fa5pm7neMBqa8mqfyFTizfUnmBGpOCkVT3J5VKoaYJIEh9+u5W5/js+eIqn3i4gzM3BYhhATG2HH1aBtKdZ1+M3BmQOZjMd8LySucyzPPD2OMpJA9lIjGERcvXOXjH/8Ev/XJTyNxl5Gb0eCgPs6JzbOcvf8+Pvaxj3D/vZtU44YWIYgk52tE1HfluBmJiC3vvMkl84MaK/fQtGY9Q7c9SWeLi0ltHib5SM+Rnrv357IkAhrz8sr5+MrugjmAaye27L/26Khgu2AbloPtW066TdMYwJzvvJsGpN6bKyK0GvHOgOd8Pk6XYUhdz1mjQkwc19QyK/xBcZDDBsoJnBW3D2AaY/os2rCsQQ8CpoXP6ByY8zt6726cA3AGOUCQwCwor7+ywxc+9y/5V7/927zy2ouM1hpqp+xuzdhrG6jOsXf9Ka5cvouXn/08Dz5yP+//wCPcdeYe3vvYOuurNZXz+8p3EB0G2pufP4DrSuzAmeMPk9A2V478e95YlVfxDH53Y2U4CgbSVNd2sb9Wh97yo6WC7YLtZWH7lo60tp0hOqZ1FmKDOqJEnM+dbXveI7bsT0VwOLwmO1gCnCbtxbitqT32Oy+/BFR71YahWiZ9ddWki079iiZ9RBX7xEikIgzE/8zNNYkGGVydzWsQJK8sOjAgko8LxMT9gSuXdvmVj/8mv/f5z3Lj+pvsTa7TcJXpTmBUr9O0E0LboDNoghKac8wmV5nsXmHr6iXO3HsnV668wQfe917uO3sWW87YJnuU69PSaW/XSkO4+7eDh5qaNuTUi7azoZoW1RHVY8E2zoDqKnIMZXcvYFuUDF6WbWUDRm/9BogbDI6DBpl0/bDUjSkLtgu2WQ62D510gwambUCYQoDQRtDsmRXU2/NjFLxP4nXsXxZVcdqvYc+VDSESQr9Pkali2lVwPtSkb55hRS1gvQ89iZqljP3Og3nJgT4ZyEFeXXoVLMZIiEqIgRiDGeGJKC1XLl/lv/q//22efep5Zs0NZs0eTdMSg+BcTdtMiarU1QhxStvMmExbZLbL9o09tq5vcf6N17lwaYurW5Ef+6FT3HVqhFOogtU3unlQGSYEOsAOWikN6GxjPMgzTJZkFExdyjlM0yNc2qhxcJ/knwnwVo7hkFiQyoYSU55J5ig5KA44c5RUsF2wvSxsH25e2HXEnXUYb9N4N1DHbI8iTQWyNeqp+QYFzB5dAO9911DDVTEZlDlUpAdp37CSOmMozi82Rhf+E8I8d18EZuyfvfgxaWC+gUlAzl7kqIEYpvzaL/8LXnzuCXZ2r7J1YztJPo425GWIESfeYsBTWI+oItrStoGdrQlh7wa7W1u8/vI5nnvieb7/x3+Kj7z/fu44BhUznO7nlrlcnVK1MIY1FXoelPMQmOfN0vXjPjvjwBFiGNPurr5NmQOySVvRCtZ5fPtLFtXYZVHBNgXbLAfbh0665778Gr87+iof/emHcXeu0rZt4jIRxby6PeBMHVt8Ya7g0JYVY8TMXik0B0DyUstUdekL34O+e+pcA/a2KYulGTpFhipbz6EWudd8XGP+vbiZX1RlNg089eS3+ObXnqCZNDSzGaN6zHhcsTfbo6prnPN472mblhAaZrMZbTtDVbpnighTqZDZFtWe8vKzX+GVbz/P75y9hz/1kz/B93/0g2zW2nP1VI99tMjwNUtO850/HJwHkpBCoGTxcAJldhD05egHr87dYBJEbrc+5nLJ8+wcFWwXbC8L24dOuq+/cY5vfe7L3HjjAt/9p3+YEw8DMkO8UusIcQ6JEXUjszM5Rbz5CwXztiIpii9lcwJo2xbvTdx3SUwX19tpbhbP2HOnJFUkNtNGi81rYySo4oMSw6DxMClA6dWCm4JRg9mFOmeDxXTGYKrjay+9zG/9yq9y/twrNLHFV2NCnLK9u00EVlZXICrNbMp0OjPVTYMNOo/Z19XWmkb1THcn1M7hRi3sbvPqs6/xWVHOnj7B44/eg4sRlWRp69LSpZjRQdlVxK6TiMogMUcekOJQQhfvaC0ZiGKihca06kpAk8XN0tZF8hYkqTuRvHTSnOiIBEi2sayemZ0wqXj4XiRQATU1Fprbwei7QgXbBdvLwvahk+7l7cu8Lt9md+cSb1y6wmPf8wgPfORh7nxwBak1xcOBo8UHNaN1Bxw35wGW3ED04TrZbuVcz4OGK3k6MC5wspzDc3g8q1shhE4NY+GaIQhv9onJztVLBDNCbIlRufT6JX7+5/8xLz77NE3b0sYWJOC8MqpqmkaBiqryBG3wPgXMRBuq3juysV0VhBYNjthGWkkSQjvhpfMvolU9tCqRoSQwCB3UjFPyYNMc4K6u3zkggbDn7fNSVhI1UiIRe+BQGuvUJvrQpl4KyXYwsz32jz+Y9WseMEumgu2C7b7Njhbbh066u9MbXPLnmbZjdtpd9nZv8LVvPsNf/J99lDNn7iTUI2I9QlBibAHf3xxM/O4A5pxtHTcAUWdbyW0zOJbpoBCbDMy+0Q62YbFwzfAZB12f7V75fM5LGgjE0PLr/+LjfOOJr1NJZNo0tAFEPKOxR0RxHvZ2p0xVGdejtJJpBFRMp3uICN5L8pQbpxXnaJqWpg34ekQErt94k2tXt9EHTqeyWJdKx2k1xVFq1/8GxtRmyFzXC73klJ/XSUkZSDJsq35dvD1A0/sNhKqa/B1Dp0OeRJJNcVDuHo5WZyPHMqMXCrYLtu0BR4/tQyfdRqdsNVeZRFiJE7bjJfbeGPPa0y138AGa1RPEzTsZrW4kb2+YN4LT72Of1QWwgO+2bbsk0Sb395WbU8GklxRijCCyD5RZuhg6GYbA3CcZgDX+TfaQ6gYIgkRPVGV76wrfeuIrKC3bO7tMpoFWHU5gPK6JUZk1E3wFaytrTCd77O3t4r3r1vGj4H2FxkCrEUnNP2smKMrI1Yw8hMker3/7AvrdD9Bx+QTLfpD1nD7jM3NtY9ihT7i8j/nq/l8q3SQxd/2gPaw7NAsP+XR2LvdSg4k6g7YdOn3MEWG/D1a1j4IKtgu2l4XtW4SMTQg0iO6x28LW9nXW1wOvnz9Bu3ed4yfv4vid93LHA++nWj/OKNVKJRCkMiaTganD9ek9t84cpPfwWqWGmfrnJf7++BCEB32G1/Wg7NW3zPmjWvB56GIeE+DVEsEFIk998zlee/0czkfGKxXTpmXFgWrDZGcXVcH5ESHA9vYuqi0hNmlHAk9V1UDFqF6l8jCbzQhxQtuYPdB5h4YJMQjqRry5fYMZjooAeJA4X3fcgMfGgZFfcSKJ+9MBTYdgQhNohbyXtarHu5FNLilVHnPgUSCkZ6TVRem93fr/1FMiKexqMfs/FoJluF10axwtFWwXbC8L24dOukJFG2dEEWKc4qTh7L0nuXjpHDeubbJy4Rp33nWNyaTlnsc+SLWxSYtDgsMR5gq0z8M7ACYMV+/QAfNmTgcYcPYEzrZtO6kge511AcSdajBQs4bHh89TVTRGXAyE3T0++8nfYTyqaWNgOpvinWM8XsW5dWCLtp3RtntMpy0xwHi8SuWr5NlVQrTk2E3TAjmpScR5a4O6rnASiK15hb/xza/yM9t/htU1j1eDxFuRDAXpViANGuFmF6PdoLRBOicFdJw9L4kcth1JqjpYnerbtx8Z3X3cpDxHQAXbBdvLwvahk+77v/seVrzywrMXaeI27zl7GjRw8eJVVkcN6xsTNM7Y2d1hZ9bw+Ee+l7C6iqemSl7AITBjNIP6Yuq7vMY9X6eqHTCH8XX7VqGkv4uq182kgQ6Ash/Yw2uH9wQN7G3vsXXtCsdPHOfK1S3adg8FZs2UqILzNSujEbFt8DKhbSMxNIxHI8bjEU1j6+dDmBFjQ1WNqCqH4hNQbdliVdW0qrgw4bUXn+all17krg88bJw1GacWbXid2jUEQ5JoekdND47Fe7tgfYnY5oELW5HbxemLy/pad96EuKEDhf33L4C5u3F5c27BdsF2bpT05eiwfeik++Cjf4Kf+tMf5crFS+zsXeTpbz7P0088izSBkycmqBxHaNiaTrg6iZy+936OnzlLnUIpPFntMtUqA23Icec8uh0QdSANHF6Dzq4yVJ0GHuR8TXdtthMtdNDw+1AFa4nMdm5w+eoldKzIYJVLG1smkymqghfPuKoY1yusjaFppjTmjWC8vg54WibE0BJii4gjtJEQzEljqlNtdQ0TvJtRuZZIizpvdq+Fvh7opZi6M+8k0OFlvWlxX527pCDprqixN2Z1KqtAN0AGE8hcP+RbBpIE+9t52BfLooLtgu1lYftwm65M0epOVjbXefGlS1x6ZYuNsbB2rGZ9fQ2JkZ3tHZjC3XeYR7OZtsmmoUT1eJ8dCP221hk8c6EzLllCMrOQbEPpm3heJdNBQ1u8YNQwCPzWfFVq2P0N05fBnrVvlQ8KzuHihL3tq9wxOg4r0DQV27OW3e0J7XRma7x9xLsxGytrjBNXD6K0GtlrQ4r39CCOldUxqpG2vcHKyjqzmalt02ZKDA0intmsYTp1tM4z0mi2KYagG3Zsbu/M4R1RBgMRJa+pV2wdP6RlnxrIcZEA4ioUG2wmlbVY/GGFpi1QNMViJgymf2RQspw8JnbH+k+eLFiqVbdgu2B7Wdg+dNJtdwOvPvs8T3z1y1y/fA7xe2wcW2Vc17SxZTbd4dgd9/DYh7+fRx7/EG0U9qYz8gqcHGRjatYQUoCzbZrRFAkXey6T//ZA7NWIIXUqmMYUqN1LAxl0Q5VrqGrl+xfVuDmVJVqKu41jxzl79908+J7TnDv3MmEyRRtondKuRMTXrPiKO9bXOHPHXdRSsXN9m431ihBnvHr5Che3tpg2e4C3tf7BbGCjkSXDbttAiC3EYJBpA7tXruNbIUpeGTUf8L7YHgfVbfFzs2tTo+M6iS0dQoia1nuiJhVIBmeVOnN+by2yukVWyYbvWab7rKeC7YLtZWH70En32Se+xuTyG8TZHo4ZSkto4UZj4LvvkUf50Pf9KJsn7iG6MbMAVRsYtUKsPM75brXOXG5PzLHosT2pBPYFRR8EzJs16kHe3Q6IvYBxU2Dn73OgzPqEwnh1k0cef4yHzqyzqlPiLozdhLUqsDMdodSseM8dq5vcsbbBiY11RnffyWis7GxfZ3d3myvXdixbksJ0b0JVm7o1m80QqTp7UQyRygv1SsXGyTW8BCKD2MSbgeuAOs3HgR5yU5IkZMCpQVPbpYFLSOdd97BuHfrgvXODQG8midGpacuigu2C7WVh+9BJd7JznRvXvSVlm81wCCvrG9zzwAM8/N73ceru+5BqkzY6XMSWKaqtfGlDRLyJ/VHBOVMNclWdKsSKra0Jo1HN2loFeTuUFDLSU0yqxTwnyZWOKVt/DAmYKU5RUysovZ1meHf/e8gx59ejE5UoFfe+5z5keomzp+4iNhVbe9ts7W5z7eqMnd0ZG6sbnDl1B8ePr3F8c4211QpXK+srFZcv3+D8xR22moZZaFJuZe0SPNe15XRFA60q3le4umbz9AmiUyRGA0SWivraDzh57vSkhqV2z+oXA+DsI3FISsStUZO3d8C9dZGHeyBiKQ8FdOCdB0SGksCw3bOz5CblOEIq2C7YXha2D510t3b3WNuZcMfxYzx0/0Ocufc9nD5zD6vH7kCqVZQRgrcSOLO9uLSAMkSgjTgHzpFiGQ0gbRvY22ohTvnqV74I0vBjf/onWRmZ7ctLtRBWo8n23XdCB6loS/QsyYh0gFoMKRmCMP8+iIPt+0hEvePD3/09PPWZ3ySocvr0JsdmY6azDaanpjSN4t2IlfEqo3rEyniMcxUSYWXccPfdp3jp3CWuzHaZhhYVR4xTc66ADaiQk047mljhGaGNouqQmFbMyCBmERtEPWJ0WFk02prxplFwHi8ejS2iEdEIab2+pVE1Lu+d75a09hODN1EtZYWSgcdDk7TUlUhjZxvrN7XJ/ZLvyh7lm0t4R0EF2wXby8L2oZPufQ89wI//+E9w+q57qccrNG2DczVBa3xwXZB39s4O2qVXgYaNlTj6dLrH+fMvMt2Z8NXPf4bV1Q0++rEfxG+u4J23jPwytIHpvAphIsPBQKK3Yc01YP9r37GDbGKQABNn7G41zCYNjRq3FKkZ1WOcrFC5PbNZBcU7oa4cGlvaJiCuxvsxd9xxikcevpft2YR4ZcKeRhq/h1dPCA4XlLEX1mvPSDyXZ1NO3nsPJ45XoA0GS+mKr3OSTK5L3wa2gWHL9atX+cLvfZOVjdN84Lvex9pIGFeakn2kZyUJCCx5d7ZZ5nND6gdy/ki6Li60nwMV8p5T8zRUxZc36RZsF2wP6Sixfeike/d7HuLUmftw9SptFFvVogLO/IO5gpJLm0MtckEzWDVlaEobt3lX8cC972M6u8qP/eTHqKox4hxtMNuKaOz3hZvz9NrvIadX1YVtTCIxHibi98A8KN6xCxdJHDE2SiSwu7tj6lAqmPNKjUPiCE+L1IJ3HidpXAlED+I9I1a4/957keh54dvf5uWLl7nRVkQngGd9XPHY2VOcomI1Op69MeEjP/DDnDp+wvKVJnUrh7UcVLcOlMnJMmumPPfUF7jw2nNodQd7sys8/ujDnD1zuuf4XRtoAqRi6m5vzzqo+frkL30e2E7FTeE38/fPzSrWNgdMBEdJBdsF2wc131Fg+/DoBYQQBRcxcIUIlW1/oYS0WV8umIG1sxuFkLgYBBE80ondGgN5C42tbc/m5jG7L3qiRMQFiMMM8ToUNqzOAztP1Jg+qdMGHTRsmDR2uvvmQJhaODdYF9DuBF+vceL0HZy59wy7r13BOSEyJWqDtms4hMpl9U+wvg4JoUp0cGxDuf/+U5zYjBx7ZcrvP7vLVoSREx66904evOssoxlMXrvIA3ee5rEPPobXrMaktHWDDt4Pznmjf4yKrze4+94T7O1VnD11ks1j67Z6SCykBumT1QmKRnjz8rYl8R4+f6HtTdXCnrFwQa/oDnl92p4G7S4wZXt5CW8Ktgu2B4/uvh8Ftm+xR1rmDAoIcQ58ECJIawAKLm1P7YUQHIJDJNquxCJEDMSSbDdOPHu72zz5xNdZW9/goccfYFxXBEn+TPEHqmDdKpOsRWi2cxlAFRaM5X1zZUN3X795MA6Pm+E9mkOgqlDv2JtA4yYIHhcdMMbXHkeFxtZUUjfC+4qRB++EEFrbT4qWdTnGSrUKdeC1N15l5/oN7jy5xqP3n2J28Tpt8Nx/9h6a42s8+OCZtNssZON+nzB5HqC5Xt0gNr2IEO/g3gc2uX41sr5xrHPCiMtbekfQPvtUiHD+whXuvec06GAV1eA9g1aCtD4dzat28iyVzw8HvXRlzCrccvdIK9gu2F4Otm856UbNcYF+cLwX36NYjk9xgjhL4gxWr6iKozKOGrN9zJ4RgFFd8+EPvw9f2bPbNgUrJ5Dn0JoFs1pXYStLHkDzKsi8R7cH5nz99v8ervRRbAA5D7t7u3zpS99AZzPW1lZYr2vWvIBTZlPLU4qDBg9+xLG1NTY3V4GAF0eQEc55xuur3Dt+hPvu2uLS7g4P3n8vjz10L69ee4HtSy2jjZOceuBhTqydOrCMi2Xfb/uz83Xl2N3a4Su//wSuvouH3vsoo8q4cpzLjGSAEpzFbrqcyjCrm4IOwHs49e/vn58GU/IEm7f54PY/SirYLtheFrYPnXTnbh40xBBgeWbPM31O0KEI6hwuBEQ8IYn7GmxnVURoFR55/AMgynQ6RTQyqj1V5XFO8d53wIR+WSULXsbhZnw5dnIIytsB5Hxj5u8RXAux5vjxTR567Bi//auf4ur2KvfcdZr3nB7ho3L9xpSr169z+cZVtqYtuBVObh7n+PFNVldGnNxc547jm5zYrKlXPRv1MR677xSvnLvGe+66j5PH72FyesIda3u4asSZ9z6S9qUa1JEslc2X+6DOtUxIIM0Ox1ciE22gqnHOnAqRnJQkf8yZMZlMqGsPEiCmsJwIUu23Uc29W6HXixfKo3lCszCc+Z1dlzfpQsF2wfZysH2LSddW1nTcNSj5v6iKp+fYioWFtK1SVR4JQnCRrb3A17/5Kns7DXs3ttjaukG1OmZzc5OVlTEb65s88vhxxvWM2K4QRmPGoxo/slXTzlleT0STd7X3GvbQk8TBbLlkpz50tqD5Bp0PrN4PSvsduwEg2uLrFX7oz/wbrK6s8k/+3i9x9c0pvjnBXSfW0HYXiVO0bWn2dml0l7qKzGY3WB+vopMT1NFxavMko2qEB+4+cy/f9V7h7hN30Mw8G2fu5uzxDdqZY/M9Jy3sxUX6muq+MsPAyI8jZ9BXHEEdJ8+e5eEPPcKFN3eopE3bUDtUZ8lZlOAUFRVhNrtBXqtOE3nqqee50bQ8/r73sblqTqAYnaUFDFBXvpfSMtC6omY9q3MXd5PX8L/lUcE2vHVs/9j0Gn/5jVf5b+64g6+curNg+21g+xapHRc6jz5Lux+I0TFGJApRjCOEYA6Gy+ev88//+a/x3HMvoXGGhEA9GiFVhfqKNuwSmhH//n/wP+a9733A4h5FEQdV8gJ6721lj7AvO1MHqJRKTomdrapbJol5HDtb1gHcc6jC9CpHUlMQLPmcI7rjPPL49/G9H3qKl15+DZ1NufvsA+xtj/ASEYmsrThaDfx4s8f//Pw1/tkjD/LK3Se4+65THN/coKqE2DSsrG3yvg88jIoQY4MTpd1V/JnjjE5sIjlmHEVlOMgOUielA4PZssBTsba5DvUq1Urm1UmtSm2WpacQAi2euvLs7m1xKp7k4oVXeOHZb7Fy8jiXLx5nxzVM93a4emOHSTthbzfyvd/zUY4d25yTFDupYAhQ7JK8tTgoA4FyKVSw/faw/VdevsBjTcv/5sY1/soHHuH0iYLtt4rtW9h0s2qjOIkdUFITDM4bMC2sxs6ef/0y/93f+++5dvlNKjdDRalGNS0NtVaEGYgE2tkev/3rn+X++9/DeGVMwFb8IO1cw+cM9UNg9glG0gqbxGGEPtUeKBr3d+pBWZqGdV5U3ey9DmTEvfe8h2Y6Y6Va4+EHH+LSGxeYzSIra6tMp3tMZlP+F994ngf3Jvx7r57n//cTP8Kx9Q0UT0jblwTVBHglRs/m+iqhHXHy4YfBV/PxmGp8c3HV0mJ5rcOtDRxw7NiYN69cYjpZpYmOVdUEm15V0pidGBUr401WV6dAw+ZJx/E7Wnb2zrF34yR+PMKL4/jxdY5XG4xHJ1hdXTVV74Ay5efnhNPAgmq8zCm3YPvtYvufifDvvHaRjz/6AHefPsl7zp4t2OatYfvwSZdsmDZbSbYFxTgEhdlSMjDNGxv5+pef4uKFC4zGU2ZNZH1tg3p1xYDbNDSzHRzrVH7Cq68+x2c/9/v89E//CG1wqcjtoJKOGOkyOfVboSQuo3ldujXCfOD6vAo2bLyhdND/HagJqdPzdSLCyAuVc9x7z32sjo+xUq+zuXaC45szqumE1ZUpIQR+5XHhz7/4Mr/zPd+HjyNm2zNaVVoNzEJDJBKjEFS5Ptnm0t5VHv7eH2DtzjNmdnILezlxkJo4OC9qqmeyEbYCKyuO11/5Nt948hqnz/40xypvG/SZeLEgWXkskbOgrmb1+Am+/4d+lN0bU6atxwUlIowc+KpmPNpMZQgg2VM7lNJSG9N7iAddwr69qo6YCrbfHrZf3riD//yhRxmN1ji1cqpgm7eO7UMn3agWPB20sSWQXUf10gBOQYKpXwpOPcE73rzyGqpTQhRwHqlr6mrMbDZjFpU2tjiZ4cQTdIfP/c6neP/7H+aB++5NW107lBY0IniLrwPEmSdSZZAgWoOFtaRsTB37meu0/qikfzoVbUG9yZxVNaV7i1kVg3ptE6lrNl3FeGUViYGVlVU21lbYm06oqhXWVhyvPr7B337svRZUfvUaznvUSdoG2zyp6iqiOgKBldOnuefD7wVv5xP/J6uQWdKBPPD62gguPTdXMsVA+oqVquWxh+5C1NGoWP4AcdngZX0jQhUjQVqcT/fKcca1J54U6smMZrZHiBFVZ2FFXVJo27hwTvWak6SSHS0rgUmFP8TkdSRUsP32se1E8eqJswlXr7YF228R27c0L8QYCLSoYxCykuwmorbCRrEdUp2Ac1y7fp0XXnwGV9n9Ve2ZzqY472nblqZpLMjaRUQroGF76xK/8Ru/yk/+9E9x7z33sCIjU6ZEkFgj0hdVnEkMIeSUd2bvyp+DQuRyQ+VlnfPeyXlOqx0wzeFg5yxAxK+ucub++7j00stsrFSsrzrGtSe0Y65c22Vvr+X4XWcY12NCE5hNZ8zCDA3O1rqL4r3Diy01bdtI1ICrKlRsVY50gd3zfTivEqZzcxsQpnNYPKP3NXeevpvo4fr1XY6dGBO0QqmBWT9CRbqg8ja0iCoiu3zty5+nXrufRx9/gNHYp4Qh3lTRrhwyNG/tK2ceTAMf0XcEFWwXbC8L24dGp8cYByEroVO5hvk5u/ye0RqpiYGvffWrXHrzYuf9yx08ne3RhlnHuTSmzEsuEtnm6See5v/zt36ef/ZPPslr5y4xm8GsUdp2PoHzQWnuYlre1zsfdK6cQxo6F3Tht3XVfs9w3xOeE/ecofWR9dVNKn8ckXU2Nk5x/30PMZ1OmE6nVOMx9eoIv1KhXmhoaWlQicbrRZg2DZNmRosSBdomeRg0b36nA+45BKUsHkIkASatjPLY6hzvjxGD8vIzl4E1VCJCkxqifx4oMZiHOGpL2+6xc+MK1y9domnNO+yqGl/VeO/TFtxuznw1VFmHnt/eiTMc/Mulgu0DGqVg+0iwfZuOtGixdYMOzOvP++WGoEF588pVPvPpT1P5ERpNbXJSp4Jme5QBPmKOgno0xjFG2sBs5xU+/clXePKJr/Nn/+xP8rGPfTduXXDSUlVVAvL8vvLCAgc6AFHG+BY8vJ260DeVOS0iWY0Q+vqhikRh/eRJ3OqI85feIDQXuXbtTXZ2r7O3O6F2a4RW2d3bxTlMYqpdUlOyeuVoozJtZsQgrIwtkXMzaxmvjHONEihlrg5dUTMIur2d+lUxIiSO7lBWOHP3jK29F5FwH6Le1L8D+9v+BhpgxHd9z0fRao2qrpK9DNQ5yLkH5lTWYQlzEpOD++Q7QeIt2C7YXha2D4/TTcZns7P0MXNz3DR9WhUiwte+9Ptcv3qFUT1GtUkS/ioxVHgvgO1sGoPiJNha9TjGjUZUoym0DaN2yqXXn+cf/ePznH/zIj/zr/8kJ48JSN5C2afEG9ZpUeOAgybPbqda9QkuDnCQGvcUtXtTG2cVLDe2dbityW+lxq2c4PjpEzz1xSe59OZldi5dZxojGydOcN99Z1hbHRFmU1qH2QOdR3yFBHtHxFYohRDxzlHLGN9G4u4e8fg6VbR4xL6vNResyzwKtoAyrxG3Y0mSIIJUiMKEde6+7zSn7z6NJxKdXeO0SffaxoG2WMozRpFg3uyNU+9BcWiS9BRTfYfbpVgTZitdRNO/+ZwN7QxUIQ96BvcvhQq2KdheDrYPNy9oJOTkyTEkNSyg2pI9dJ0apLaR3TPPPItlS2otU3w16gHUqXR964YQiSGkjrf96VdXarxuEyeX+dRvfpxf/ZXf4up2y147xeLEF5N57B8o3WeQ1d+AerNrF5cP9vauYfOpmu3q7P33MmOb8UrF2voKp06sc+auYwSdcX13m1iNEOdtu+7Y4Jh1yUtmbcN0NqVt27QyCbzAdPtGl90qpxbswNn/GbhHYK4x50hS+wZ8NWJlfIK6Htm22C7MXWm2NmFzc5NTp06l+HvBti0ZeG8XXtV7h/O5XDL75JCaXotceMAS59yC7YLtZWH7cPPCwG5kqpYBlJTwYx4AnnPnXuH8uXOduibOU/lxirowG1cIOhdbGGO0td3NFKKtKqnTNs4htmi7x7/65G8gY8dP/9k/Rb0aGUvoVhMdRJ162FWkt28NSZJxP6sNXUMN6iUDTcL4WiSgbN5xHxt3nODci89Sh1Vmu3vsbr/O6uYae2GGH29x9s4TbG6uokSatiFER4iRNvZxoZLK4R3sbF3hdPsgOJfsU8MyHdJP87VK6pFJR1GDOS/U7GIqwRJja+jbQ8F5z2g0QkcN01lrql1anz58SScB5FCj7ryQl1zm36k36FXvzhi2ry+Omgq2C7aXhe1b2nRtu+eUVUlD1ljIWZpU01pn3/LC888TY5vSpzWMR6sgjqh5q5KBjaw34KAamUxm3Nib4Zxl2FOtaYPiFCLX+eRv/TrOV/zMT/8od1SrVCm2kf4xifN0uhc6sM3kwZUbtZcg6Mw1Q1OO5P9EoMtGlZpdPfhjfO8PfIzL516j3fI4tS1ZKmk4dXLMTrPH5RvKNLT42qMEJDoUy92qqG3rAlTO4RzMdrbZuX6NzWObIELbRlzlcZp2NM3qoShmP1sEZa/o2LWR0M7Q2JJBJjhTiJxDYj94JatVqrapoiwoQfNmrEF7Y3lRh0w+J3jOai1DaSA/5+BJ5aioYLtgu6Mjxvah5oVhqIqJ5VlVSS/KFg6N3Nja4Rvf/Dpe2pTRx4FXIg2aOIulqAsojW0WJ2YH0RBwbYS4R2j2aJrGgIKgcYaPM2Rvmye/8HnefP0asyYSFULazkQAYrS3aN/AfWsNbUOQt2bO1hoz5Eh6Z7+yRXA4NUdBL3gEvAZUGk7f/yEe++gPE8aga0JTV8zEM21avAoxTLixfZ2dnV1ms4ZZ2zBrZ0zbKXuzCW1sGFeOce1wLjDWCbOLz3HltW9y9dWL/Mt/+ftcut6apUhba2siQdVKqR5SzKeQtivp+HELTPGhwceYMltFRFv7m6QpJ9LZEZ14LOFWr9qaFGeoNJtjTCs4tef4ApJiWlH7aNZdc5b9wTDK4VLLnHgLtgu2l4XtW6xImxHjBJHKVK7M0VMOUI0WxqESuPDaOa5fvYavBCRSj0epkiFJAnVaC91a/F3HtK2x6TK7W6NEDfhKLKtThPseOMOf+tM/zErV0kwnjCqXpI608C9z/cMq1NWrt87MZ4gfXpEGoTPka8psjzhmU7j85jbPPfdtPv/Zl1l3x3n0sTPoZA/B07QTJpMJ2kxodcY0CI33VAn8IViYkB+vUPuKShzeOXzt8XHC+shz7o1L/OYv/0u+8q2n+dGf+GHe9+j9bKxWltxDZ4h6q4EGHJYbIC8nzWixLaUd+xIqJ9ANVVhxSS2OmkDbL2vsVfD+d3cfkianIZiH9q9FESKpb0veI61gu2A799FRY/sW5gVzOHQrdnKXaVYBZkStkeB54dlnQGeo91RuhK9XcVmniQpuYMjP/w0q6kSpakcIESdphY4K3o05fdcZ/uSP/DCn7jxB5SXZ3EK3tXJXpvxhviHn0vUtNFPOFG/qIVjoS271AN4TtWJ7K/DGhWu88MIrPPvMC5w/9zqT6ZRJs8No1HD6jhGbPjKqV1gbHWM9TPE717i2NWE2ixCURhzaBmIIrK6ssLayQuV8SnxSUdfrjP0Kzp3mM5/7NNu7l7j+wpTXXr7KPXed5YGHzvLY4/dy/wN3cuKYo/YBFyNoRedXzTplskE5lwCcO7Rrj3lQCP1lZHVscGjoiJnHyACk2Y44B9D+nNFgiaTcHJjvNhVsF2wvC9uHh4xF0ChpiZ8VwmdTU+cRrZjNWs6fO0flLRxkVK8gVHY+hGSHseuzaiMaOl5hYTGKiKeuPXU1JgQLHHfiuXLtBpeubvPo+48zWl3BOb/AfQbcW+Mc+DpMdsbvdP3QyJXXa2PeW8HRzODSm3u88splXnn5DV54/hxXLl9nMr1GG6am9migjYG96Yxnvh144I4xjmuI3GA6mzHRGXu7Uzw1IMRodsO18Qrr4w1GfkRVeaqqYmW8wuoKuHHNi+eu8PmvPkNkhLQTJLzJlYs7XLz4El/60pjN46d4z7338MjDZ7nvPSe5685jrK9XOEkJmtUWKIbJlOvXt2jinYzUI4lDG3hkvk2Gdq6Mmzng9cAaUneNLh4cPGgI1oQBVJc55xZsF2wvDdu33q4nRtvbKTkWstHYClyBwpUrF3nzylXEreDFd1KAxRHaHkii5h2VxKmcKqSll5nzOBlR1xW+8lQjj59NaaYNzWSXa5d3qKp1Km9qjEaFtD1KCkWnT4YsixWxgZEM7clbkprMbG/WZp6Ll/d4+qkXee7Z1zh/7hKT3SmT6Q6z2RZRZ0ynDU3bUPnkONCIti2vnJvSTDc5eVxopjfY25oS1LHiHbXMEK+MRzXra+tsrK6xMR6x6keMRzUr4xGjaozUm1Sb9/CL//DvszO9TjUeIa2DGprZxJKeuD22wh5P37jIc8+uUldjNjbXefTxh3n/e+/j7jOrVCPY3X6D155/kiefvMyDH3qEO7w5X3pQCERnfwk4t7DOHO3GrbWpRVEqQ2dRWsqqkWwtjCrdhJHMmoPmTlJKfv8SqWC7YDs1IEeN7VskMU/g6tSboaqTwldc5JlnnqFpG6Ry+MoTJVUjqwOZ+4KBiZY+sDutyU6VV4U2BJxTRuMRqBJngRCmzKZ7xFB3+TIl23rSu7JRPP0/AH3ifqlhGapoKqhEbmzv8oXfe5YvfvEpbty4QYwtqgGNM/YmOzQzW+I5m+2BeoSxLXt0EfXm+Hhta4eH/8SPcOeJVXYvnufqaxeY7mzjY8NqLVTjMePxKmvjFVZHYzZWV1ldGSHe41ZX2HjPY/zDf/ArfOuZl5A60AbFuzExCEFblIiot3Xy2kKcEhvHbHKFL195na9/dYOz99zJR777AU7VLeubaxw7eZnYBGJ0iE8DM9GB6fRiz/2HXt9OncU06gPRoou/06qigQqoGiwiQNMgWRoVbBdsLwfbt7TpZupsTINCqsJ0MuH5559HECpxxm/bYE5TTCVyLqWs8yngnHbOHt15VcWSAcc24uqAd8JoVBHjlNBOaaYT2tkqbdXaRoHOWz5UGKxVH+T9SQ2fvb03yzP63DMX+M3f/hznX79E00yYzaYpFEhoJ3vs7u7YsscYaNtoiaddwHtnqg7QBGW6PeXTn/oqP/U/+klO3f0Yx07chWpLu3uN5sYVRq2yUq+wOl5lc32T9WMbuPUV7rjvQU7efT8//0//Of/qdz9NFPMsO1dZGcIM1bbzyGps8RGiNunYiMAOcbrNq9++xsUL53nk4Uf54PuO88BD9zHdu4IeO9UN0t7u1EEQS/Qh3YDugCVDbUpAcopDujhP7S6Yx0dCTiftMZgUlk0F2wXby8L2LaIXkrNBAxJ98uzmj6ktF9+8yJtvXqSqBOdM1QFMNQFUAyF5Gp3k2MDeceFSIaNd3NmeNET22j2qqqYerxgnnu4xma7h/cg2BPR5F9bUBClpcWffifktmmSOpGp168+Fb37jRX71V3+Ha1sz9pptYpzRNoFRPSI0gd1dC/Opa8siFUNIAfKhH7ipY7wGbrz5Bp/65L/ip//1n+DEqTN4Hzm28RgbqyPipXNMLr5BTcXasdOcfPhB7nrgYfbU89//o5/n13/518E5nIxwrsI5RUmp/TqOmpwxwXSboIG6roltheqMykWmIfCNp77Oq2+c4Cf+5EeZTpIHOHoDVpK/6IawS/9nlczEKZOyYC4xtA4U3BRqJWmpab7GrstQzCpv/iWD3riJWHEEVLBdsL0sbN8in27qxAykYXJeNc7+zDNPE2KgcnViwT5JAdZxIRhQnURcXduKnZjWUOMR8eZB7nKJ9itlVIQQFalq2hb2JntMpnvU1RhfWR5S700Ny5mZOqRo5k7piOQVJrYeOwbPV7/8FL/2659hb9aabauZgohtMFi1hGaPNkxQjbStSRqmQmoKbtc0WDPgTUK5eOF1PvGJT/Izf+7P8/jj93F8/TgnT6yx8ZHvQm9cYbq9w4m770dXVtmdBH7pH/8TPvHLv0obPc5VVgZVSxGIOWHy+vmoQBtQb1Vs2gBu1qtIosR2DxrlzUvCb3/mq/zJj32Yux86yzjOQCHgkTkboUM9iLoOQFnyk8HAy02bM0HlHQ3yiU4C667JKljCTqdy98rwsqhgu2B7Wdg+dHFEpiy2Dz9Rlb29PZ5//nkqX+Gcx7ka8MQAoQmEpkFUjeNH0DaibbD8wp06EdEQO+uImEEN7z11XVNVFTEoF9+4zPWrOzTtjBCMK1tMoJUlgzJLKjo41iXLML2Q0Aqf+/yT/PNf/l12Z5EmzJhO9wjNFDSgEmmaGXt7u7RN29VZRPBVZWEwzuGcgEZLMB3sOueh8srF8+f5pV/6NV69sMUdZx7i9B1nWFs5y8l7P8w9H/wBNs4+SBtG/MN/+D/wC7/wi6hWODe2NHPp2SIOoSavgsntY7YnpQ22zrydNYRWicHsSiIRbSNxuseVS5f54le/xcWrE7PTSSBKUoNzvlj6GMhhMM1QVVoMqRn+HCpYi/ct3qRigzsnJFk2FWwXbB81tm8x6WrfwQNbUbYxXXrzTba2thiNRtS1x1cgElBJa6JTFSvn8C4g0iAuINJCVMvgE2wZYGwDGgykGpW2bbvKKi03tq7z4guvMJ0EmqalDX0O1Jz4Y+gImW+2BqVFtUFV+NYTL/Hbv/0ZJs2UWZgya+wTmhlg+VV3dreZTHY7p0YIgTb026yIJFN5bA2U0fJ1IhEngdo7di69yd/7O/8t/+Tjv8WeHOP48Q38So34mq2L1/hv/i9/l1/7xd8w9YmVNHhy71rylRgDtion4DR1WDRQRtTqHgIxzlDMLjebRaahpZ1tE2c3eOO1V/jEJz7LG7s1kYpaZ3Sp+HQBZRlA++xXA7VqkGhlKCjka7p7F+yMdHcMP8uigu2C7eHho8P2LaIXHHk5ngWAx3RMCBFePfcqjoj3mC0qNSjiiU4tsUXmDM52Po3e0UqyfGjTN4pg6k0O3YlKaCNVVTOua3ANL770Au/74HtZX99gNUZzSiCII8VMamIwkuzimcORQkYc5y9c55d++ZPs7E4IGlB1tE0gtA0xtNRtJDYNzWyPGC1DvYi3NdvYmvh6NMJXFRqVSlaAqRW/C9bWlJZTafa2+eV/9vNMru3yH/+n/z533rnCs088yf/rb/7XfPlLT5oTQ3O6u4BIQPBYBiRTv3L79IHw0VSb2FXV7H+m85IahBhM7ZFWef6Jb/HxesS/9VM/yJ1rpm6JCLgZIhGndWo/7erQgyp2mNL0yd7fXo2TXmoZqOl9bKldI2q6qugBq4mOlAq2C7aXg+1b5NMF1ZzMOXalUo0QHRcvXmNUr1BVYyo/RmPAibEsW3Ln6UNrHFU9QmNkwh5tsn+Yx9Alw3YL3fI+iCHQxCnajvBjZXd3hxdfeIWzZ+8ihOQ5TOn0Ykqc0XOegRqQDGkhOH7jN36HNy/doKrMxtS2U9p2YmpddMQQiSFC8Hg3xnlsbyUP4hxVXTEajxFg1jZE5xFG1KMah+tCfpxTgoKLEQnb/Nav/wLXr13hYx/9Hn7x5/8RF8+/BJVlROo6SMCWKOZ+NZXRpaWLUcFFK4+oS8sNzd7nNHm7HbicmDTZHYMqXuDprz7JZ04e5yd/7IOs6Q6odqmnBT/oeBkALwHRhkkPjAFSF4WJ3Pp9X5gzYgjonHRlaVSwXbDNcrB9y92AF2PZ8vfdnRlXL+8ZMH0NOGK0rTIs4YezVTfJfmPczaXK2V9NQcQuZQVCweL1DNi4AE5pA8RZjaumvPTSi3z4w+9jfXXM6miEd31QuzWAldwEAUnMysr+8ksX+PrvP0Ub7BrnlOlsxxwKKE76fa5UwbsafEC8bXDnvacej1M4TwRxqAZ8ZfGV5jsN3XbMbWhwYhv5ObfDlz7/m3zpc59CmOFHe6BjNAPP+7QaCQvaT4k1vHO25h9Bok0Qtm242Q5DVodslBOCEkOLEtJ1nlYDREc9nfC5z36Ru+85y/c9tonTyQBAqf07Dp8AJmk+6gB5M7UKuMUk2i9fTU6gJVoXCrYLtpeF7cOzjB0wzWdgXrt6jelsZvYZiYON9NQcCASQlhBnhDijbQNtG8jrwCsiTlu8BvOUKh3XtsDtaEHcsUWZEkJkOrvOxTfPc+HC67bzatN0UgFdhRcbSbrPV77yDbZu7NLGPUI0723bNoQQsOUlLc2sIbQNSIP4KWrsGHFCVdc4V6UsUJag2oWIi8JIaiqpceJBbV14XZvjILYKQZE4xbFF1F2aUAFiTgtvnlWzL5rKKwJVSgJt7Z7UM2d/s80qpwC0XK4geFO7MggECBFCJOg2Yfsan/vU19lpRohWVNnmL33fDiciC/aOc1hYvKYD2gE46ajDrA4+y6OC7YLtZWH7cKOaDL1wxr0l2ZUuXX0d0R1wFW1UIhHxHrwglRDFNqQLMdK2Dc1sh73dLWazaS9lYGJ93mrawjoSB8eyNpk3F2KcgkI72+XJp55gb3ePdjajiS1Rm84BotpCF9YT0veW7e2WJ558gSgTRCIhtsyaKW3TEpoWDQEv3ryjCEhNFJ+SMQvejaj8GK81sVFiEyCopcdLHDwQCQLqHQGIboSrRsbNK0mZ9AXvKjyV2buihyikNChd+Z1U5BR1tlNpSBJLlaSb1gLrw8xsemKTgUkBgRhTLli1Y6qRoLas8fXzr3LuzW2CS4lExFFFIabmH4JrCBPrMdti28yAWTrIEsI8gOcpYCn5mLtnaVSwXbANLAPbh0+6qnRrvkVRaVEX2Z3s8MILz6WVLEpozcMZhwWTYYYkcE6oKk9IO69qLqBYLtIcD4gOnASq5O1UNLZoq2hoee3Vl3nz8iVmiZPn3VzJzTenMlroyde+8iQXLrxhYTgp/V4zawmhIbRme/LOEWNIO4GaMVxEqHxNXY9QjcyabWKcYKtoki3Iu6xhGmdP7Z7VGfEuheNUVH6EozIHRlVBVRFFCJjdLq9wyiSSOH4nKUXy/l7iLBbUPklVSkm1SRJBDjmy9HbmqY7thC9+8ZtMYk0kdH2d23z418rQgyj33E0AM5BeDpAkUfJKLrpYyiVRwXbBNsvB9uHmhe6fNHerpW1+4ulnuXzlBhFHGwLtbErTzGiaJhntQwp3sYTPOS7RUrHN20tywHHfADJXKVPtDPiigsaGye4Oz73wPJOmIbbtXJjHsFE0Af7alQmf/p0voTS0bcDsbY4QlKaZpRAeT9POaNvGVCsRnHdUVUVdW1YpU/v2iLHt3iXemQBjuwlauI0YuBxqgHAOiT4NOjfY4rm/XsR1uUiH22vnEB7vfeLsKfC+U7VcZy/r2hO6deYxGABijDSNSU2OCU8//SKvvbFLHGRguhkj3w+yYVsffO3istS+P8JAylzepFuwXbA9bM8FZBx4zzuF7UMnXQGc9/0vqbh0ZYunnn7RklUk7qIxgNr2J3knUI22ZNGlRrWGNe9pz61tyaE4ofJVqlBfmcwVY2xBQ/KetoS24emnn+LajeuENnQDAbTbLiR3LuL4vc9/gzcvXifoBIi0bTCHQlTatqFtG5x4mmZmW7gMBlNVVbRty2Syx2w2pW1CWsEjOFf3KovIXJlVLbwkaLAuSA6EGJukErUQAhIiLipVaqeu7Qeg7TvW1EqRCshxj6Zq7Q/a1rSaKQzut3YPYYftrS2+9s0XCLFG1AZKbvubq1H5OfPvGapeWYIziU8Hv+Ogf2P3WRYVbBdsH0RHge3DJ11xCTBKXZtN6MVnn6ad7qA6w2NhLeJqW9c924FoITdeK7xUjKqx5SAVC1nRaHtDOQXUkl1UvjYvsGSPcAVaJdVCbFdVDeAsB2klDduXr3Dh2xeIIaRtUjKnjLTklSmB69e3+eJXvkaj21hoRyA0EzQ2aJyhbZtaOhLV4arKAOk8EpQ4bWinU7SdITEiklcoCUq0DnUuBZgHQgo4F5fUN3X4SEo951KoEcSgXdylSkoMmMHoHJokCYuPdKh6vFvByQi0BVGqymWLUydlWKYj8/DauvE2SS8R5wwUoRV8u8OL377AVqtEmaCuRaLZ0CS1o6U/pFOZO9Bq9gaDBaJnW6OYeqimbmXVWjRCtNVNMZqFz9TU5cXpFmwXbC8L24eGjLVty97eXuKIEY01jzx6lstXz/P661vU3ifTlW00J+KIMVJ54/SSbS/RDNS2pUnobSxBGK+uIAghDNQaxK5X4/BOPQRvFXKKqmNjbZ1jG2vmjdU1NAq2H5LHvKRKiMIXfu9rXLp01To3ejTOaJrkcAhN6jBnnanKqK7x3uOco2mmafNC6dQmdb0KpZpWGSG2qaFYFqpso8oaxlCViklKMhAaqLJkNFTJYgpzkRSXKMlGmM37SErhJ5qcEZr2ipKUtATMa91nqbIymISCTrh++SJvXLrOvSd71XjOETRM9DFUpXKZJR+W7kz+WtVj1jc28SJJLbctumNUQpwCMF6pD4Pfu0oF2wXby8L2LVak9epQCLbVx6lTdzIer9I0VwhNY8Bxjroe4SuLBXReiAGqytK3zWYznLdcojEEyEZprVA1DpYbPvERbKM4RZziVRnVnlloUfW0M2VtdZVjG6vMJhNC2KSqUqKKaJwdL3zj68/x6U9/rWs0sb4nxBYTAswZYPtRxS6oHBWz47UNw5UlxqFdp1ZAWqEi1nHDsCLU1MHs1bV4TTUnjKqppCn4O6tPLjleSCB2zg1ygBrJ4JtqHrwk0AdyVmULRE85qdKEkUOfRIRahDCZ8sS3XuHMn3wUIeUKiAeoRQsDLNusTDLAJAAgRwNEhNAEqlng9OlTjMfj/kGqaPLIbxw7cSv4vatUsF2wvQxs3yJOd2AriQ1Rp+zciFx8fSvttGne1+l0wvb2FtvbW1Y5jSCK856VlVXqUU2MgbaZWT1SQ24eO4HgmM6mtKFPvuGS+oJaUPbqquP4sRohEIJS+Yp77j6LSKRtZ+zu7tK2gclkxvVr14Epb7x+kV//xO+wN4E2TGnDDHExSf22KaB1JIxGI5x3uBRC0zQNs6ZJ9YCqrqjqGu8rvM8JO6xtBIGoaV197LbxFsB733HBzg6E9ipIshnFGLr655UsOQg9AyJvzDf0ZOe1+SDpqSaBOeeRFCMpzlm6vM42paaKRoE28uwzr3L1+jRJFjk/02CQafbK5p5b/ORBQr4TRGlmM65eu8G5C29wbWvLIOs84kaIW8H5VUQyYI+eCrYLtpeF7cMlXVEsHjpiae1qblx7heneFUQq26ZEJTGglhBbdpsWP6moxiNcVSNtYNpMaaZb1pB4Vlc3+OCHP8Tm5gZf/MLnDXCxRRkavW1tvIuO8Ug4eccJ6tExnFvnocfu48EH70OqQKQhhhkaWnDmRZ1MG375lz/D1Rt7NOzZypYY00Az726MZhdCapQaTSt5ZnHWhdY4X+MqIUqL4KiqFXChGzzEtPV2VDP3xJwCDvICRLxDO3uYgaeua+vIYCtvYow4Ib131Nmt0N5TGkKcc0CEYOpMVO1yuea9u4K2qHjQFlvrHmhbW1GVPerRC8g2O9fga09e4P2PPUpUoSUOMJeAlpewavLAkweN1XHobIhq2Z5uXL7IMy9f4n0f+R6aoOzt7nHXXaeo61U01p3KuDQq2C7YXhK2b9u8IJjNpNWUxCI0hKi2njutDbeq2OqcNs5om4bxeJWoDXmJX+U93/VdH+EjH/0+PveZTxPbQCWOIL1drKosuYaI4CplbW3E8RMbvOe+O1lZPc7q+hqrq6vUdY1PGfYVa3hX1Xz+957l+RfOgXfEYM6EEJJXN8X6WXiHJoeGIxIIYUZo81YpLnV2bUlPnKlSiuVLbZq8KWHisGmpZLah9Q1iapf33nKZKmlXWD/nlLByua7eMYbExXUhttEkgqE61QEuvdQkCgfiwTXMmm0Uj3cVMXpUbMcDoiLMeP65V7k69ZyWGXVQmpSQpLOV7cNETnLdh0RlrNju0wqh5cL5V7i6M+W7PvQR9M47mO1NOH3mLJubJ20N/T6v9NFSwXbB9jKwfXgS8xiZTCasrq4S2hbvK65c27LkwrGlDb0Ynteai2hy30JoYS80VHUP2/HKmNdff4On/tE/ZrK3i5A6LnWQgbPFuQrvKpxM2NjcYGVlndF4zHhlxPoAmPWoxldmQ0IdVy7v8anPfNHCopMzIccHhhAIobEtScTS3NX1OIUDTRM4bHmj957Ke1y1QlVZPWOMhBgGtikMbBk0zgz9+dBQlQGQoDhXoS22IeIgU5V04OvVrqgxhSMltU37MJU4AExWwmzgJLubm2UzE1FbU+lQbBlmsq8FEBq2r17iG8+c59E777eUeiJdNqXsN0mvT88IdHlcFebCY9TKEtoG0ZbJzmW++qXP8tDDj/HoY+9leuECx7cnnD59uqv7Mqhgu2B7Wdg+dNIVsZU21iCRtgm88sprVFXF/fffzcVLlnzZ1BfpOKB0TWW1icHEdeccMQTeeP18d50C6khLBUkdq7RNQCoYjcdsHttkdXWd8WiVtdU11tbWGY3GVFVNVVlgujV2zWc/9yW2drbxzgKuQw670T7m0Xkrq0boPa1iGfvdGFRshU01wlUejQ22Msg4ceW9hYzEYHtY2YPMvhWS4T/ZsETMAZI9u+gAYC5tT0JvP4tqqqFzLkkOIQEOW44ZQhpAQoamOAHxeA9OhaAgEpMa6/AuxYmmdNrZXxBQRALSbPOFL/4+P/39D2MbXYdeBescCvl30sS6g6kXexMYqNgeV2nzQ6Xl2Wef4uqNHT7wgcdpZi07O1tMJ9PD4PeuUsF2wfaysH2LSRcq75AUwnHt2nV2bmzzoz/yo9z7wHFePf8Kv/PbX6GJKZmdOGvglCezL7/F5DnnzOg/4AKm5nQ80NQfD8IIZYaTdUbjFVbXNlhf22RzY4O1tXXG41XG41UQSVKJ57VXL/Lk0y9Ru5F5cUNLjNgyy7RWHVraVpO0USM4Uw2r2tQuqk4tCiEwDTdS/KUZ7U01i3lIpYGVwCUK0TilOVvN1iUKVQqJCWoebu89ASFitqvKOarkIYeuQRIXNwcGYiuJYrRAfO8r4/ZRiZgHPqYlpy5KmhAE5ypCE3GVubidsz291PQgRr7ijdde4VvffoW7j1eIToHe2dHVU7MrxJvUkd6ZpRAwKSYAQRu2r29xbRK5++47cb7l0oXX+ML1K3zgg+/l7jvPcv3qzmHwe1epYLtgOxfmqLF9+KRLb+z23jGbbXPffWd48MEHCXGCb1dSDF+ytczZYEwPkeQNFRmsZhGhS2Ccq57WkRv38UBAdMz6Rs3a6jFGozVGo5UkAVRUVVKVKk89GhFax+9+5gvs7e1QjytrwOx5VZMwQFLcZYNQ4cTAGEJDjtuzOEChmYWBdxYqXzMerQAWHqTOwlCIFsKTwWS5VjWpPyZFoRlgMQ8/y6ecuKilDlXU6aA9kgrkXArdMbuWFwtCl6QSikjKWhUIreHZSY5xTJ5eqYjSdDGanaSWKAQIu9t86+lXOfuDD+DD/Pm5fiLXq1ctcyTAsNyxbdE2cOncm+xNZzz46IPUssN0d8rXvvQVbjzyXqbTJUq6FGwXbM/TUWH7lo60TM457rzzDHeduQcV8/g1ey0aFKHKRe6uF6nmDOHO5cBm84jacm7pOEm+1oDpwM0Qxpy9Z5PxeBUnY0TqDuD5ud55fCW8ce4qzz33Mm0UvMOWJTZtsk9Zxg4RxcsIvK1N9yMIoaFpZgPDvUtqkzlHTH1xBGeZpSSmoOxgBvuIQjS1RGO0lT6kDPnWcF29s6qHmncY2t6uNOzofe2RQCoOcTbYJIla3UBPtjCNijohOkGjS1n0a5y3TE4ZUN716fFCnDHyytPPvc4Pf/RBKnrubuXqAWdjaR6UmWwgg4plqnJRQSKXt27wY4/cz+z1Z7h8fZugazz77Ld47bXXbhd+7yoVbBdsp8IdCbZvuQU7WNybRo/3KzinFgKjgb1mihLJCSoYNGiCTtfwMQZTb8QjtEQNuGSHiZqX5ukAqJ6RE8bjEc42qALRAfQdikM04p3wxDdfYDINRKc0DR0YmqZNS/ZSBqZULksdJ4Q2EsIAmGJJqM1m5dKurBWucmhs7XzH6QFN4TNKCr5OHYmtIhJNKebU4cT39jNTmFKbeYQUYE4vOZEdCpJ2jkXxyanj6wrnsSxYmsN8LAWfqhJa7Y5X3tb1tyHifMT7urOFqSpRArSOC6+8xvOvvskH7z8FcQIpTEfSyLMYSDoTp+FaByAGUQv4b6J5gU2lHnP61GnuvneTZ55+ilde26GNjhD3DoPfu0oF2wXby8L2LVM7Zi5vKpIZujUtYZw2DdqpW32sXY5HlJxxR9Jqjmg2GkvFFlNQel7bPJAknOJZYX11xLheszRvXsHFtI2HdTxiQeyTyZSnnnmJNlpA+axpzObVNZrlHYUmrUtvsCQjLTHMiKGxDfhCSw67qeqauh7j6xWq0Qp1PbJQFMFUqThIuxdj2slUUvo7TfprlioSWLpk2C0iLX20+bwUEPPeS2mQ5xVCLjkxvDe104+qwaogc45U9RhfWVnFtYhriLEhpM39lIC4PnmJKc814jw6u86nP/sk21NnbdctlRxIetmnlAZiXjDQqWVJLVUv5gd2Qu3Gtj3M6A4+8IEf5PH3n2I0voxfXr6bgu2CbZaF7UMl3el0xnQ6o64rS9A+sw31LGVny87WFo6KkBsZ2fcMSeJA5yiMibswzLTUh5f0qlBkZdVSzy2GX2RuHKOCg4tvXmNrewt1VjanFk9pGf6jgVBz8pCYBpwkj69tNuicORkQW/ZZVSML66lXTUJREBchtkNNs6tDDqiO0aQnEUVdWomEGBhTiE+WsMzwryiRNsxM6hBSwmnp1DKLj9QUzmP7Qpn6llYa+RzzKPiUDd+1KRcAgMTOLpnbsm3bbp09UmGbBirnXnqdbz5znu/78J3UqdOyNGUVl3mVrOuTDFzzPIcYTT11UDmhchVBHeId9z/4PlZX13n93O8eBr93lQq2C7aXhe1DJ93d7YbXXr3IeFyxubmGhmm/R5EGrl+9ineV2TnSHlI3o9TOQJIIJB+XfcDLToGqgradDVQnugYyYAYUx9VrW7QxgFcIZvMydchS5ineqqqATg2wYBKCqG0+WK0k7y62SyqWy9NXZnh3IqbWpDIjzA2mEGwQWGB4ldqoRfEpfKfFY+E/GSQqztRPp+BtRwJV60iyPUukB4Xmd9v5GIPZ4pwQWyUETbbAClet4l1OlD0jh+bk8ip5jT3gGkTBBSVyjS9//Vt84L0/RuU1qdikNk9cP/pBf5AcMgmwmCTUhJASNjlGfkTtBJUG24p7ndOnH+PMPa8cipl3kwq2C7aXhe1DJ90rr7/M9OorqCq+qhEfUFHE10StuH5th1nyBrpFS4XEpEIk43ra3TMLDLbcLuJUkxd4UFmBKC0XL19iZ7vhPffB3feeZrqzQ7O2RrNzg/H4OKPxBpNVx97eDorHSU2Me7aBXQK/LTsUugTDUVIxHN6vgK/TVtgj24o6ASemhB7gcEJygxp3t7a3pBukzrAOy+qUhc5YXLVxcERQLympCGgUXCqXw9tqGm8AbIOpW26wv0g3ePOhJF35JKlUvurVY1XEjaicEOIUiYL4CtThxWJTo5oNj+xBxqNOcAQunn+DNy7vsXFX1dn3BEnfZQhV8iRhEoIjKMCMdpYSagt4XxFTXKVTT9SWqJ4Yl5d7oWC7YHtZ2D500vU+sLZS4RSiqFVEbD+g3VlK6CwCKnOeV2s/O96BEws30WRAlxQgLQSzk7gW72oDl5rKogqzyR43dq6ztjtmXVeQKoJfRaoVCCMqxmz4Fp1uUY9Wic4zne7ZfkvYGug+m5FxtKAKEhmPx6yuHrMiRk2xihYfKJJiChsLoQka7L4cCJ5i/SyFHt2WIcZgQ9cG3RYpCqqmInpXgRO8CBFPDNp7esW4dRsClfNUVdVJA8PUeTGpZm7Y7pLXy0crv6Z0gK4yh1BqZ6JC3gYFxbkUmxhtVtDpjJdefp2H7rzPnCUxuRQ0SXTJLjeUzHJwvaZMWDFEzBme7Jzi0CgpmN8mh9xOy6CCbQq2l4TtQyfdUSWMq4gQCAQ0WDLk7NGEzKX227ssUXOyeXXqA71KoW2y8ST7jikroJZyTsCcAUx585Utrrz2ArVXqkqoWKUejalHltGnXglI9MymiqvGVJVtymcb2s1MGiFtAZ0cIzEGQpwgrFFXY0LAOi8BOO8GQDS7nKZOJNnb8soZW2UjJh3EPswl26u6pY5qgeRePE7zwAzJRiagkdjGzo6WATiMEUy4nVNb8/ui2kobW6tPcgIYoNomEJompeWzgSIpmDzGhqYJOMxh4aTCVXDu/Ju08SFqnaVBSFcPK5KmwUaStrRT7VAltMkxBYNEL5pUYrvPL8SzHiUVbBdsLwvbh066x1cqTh8zg3QTI23wXL6mXJ96pgGUxsR9+gbsKatfyXYiJOnAKiWYtuK9Q9QjWtm6cReYhYY2Ck4idSWMBEaVUlfKqFYqN8HXe9TjGu+Osx2OEcSxN5tSR2E0qnEu0jSTlOMUNPq0lNG2lo5xxu61K4RJy+axU/h6haiCF/CuV3di5Wgb8wjTeWiz7c6SSqtCG7JdqE8qojqwLWEaoNoQt1hCF5MkJSjRgoxU01r1wbYsJEFh8NxFEoGQ7E853ygIIeyxvXOV2Ozh/bhTHWNoTbLx2h3T5AyoRNjantAEoSag0jsYcj7VLN2oCgHfTS4hKsSQ0gumUCnnTAXVFG+p0OcpXQ4VbBdsLwvbh8fpOsHXguK4csNx6XqkjY4WoY2KeI+LZtfKG8vZrC9066MBJRvYuyaGFGBtxnlTQZxPYTkBYms2NhSohRDsGc4FvEZUa9rqNDvuDNut0OoOokLbzgiqeF9T1avmjQ4zYIpqg+KIibOrTtmbBKSqWF2twFkmpzb25YwhpJU/lsLOdIc+BtMcCmbrUiXZzuz5eWFh5uoxqSwGyhSK5DAJQwOoBcRDCsFBU/uYx7db4w6m+kq/Ikqy00HNi+ycJ4RddnbfZDbbSktDBXEjfFWnnUc0jT/BV9a+4iIapgbS2BDcyLK7pLIbAJN0QGW1jNK3Q4wQItoGmrY1Fbh2eEgJVDLIY/f+ZVDBdsH2srB9+Io053Ajz861DVbGFeO1G0x3JqhaYLX4nMDDArCHNi5NwdGQFbS8HUc+ZkmWxVkWJuN2QIhUGtisAyMfWa0dlXN4EUa1sLJSUxEIbpOZP0PDHUjVsLrhYLLHdDKhmU1oZYb3NaNqTKCmbfcAy8ykKSbTyheJoaFtJzhf08aYOtvA0rZtUnssgDvGXvUxbtjQjblu4JmTIy2079aMi1Q4cQlIDlS6WEfobW7aqWhp/yyNXfiNBksgjVYI9gybEAbLIJ0FjDezPdpm2u3jFNsZEdsDy/mxJa52tvTSO2fvSs/avnqdqzsT7tz05oxIS0ZTKciZt/oYRpMGbC2AMptOyZn/nSgO2+RRU73RrqmWQwXbBdtLwvahk+7l7Yi7uMrJO3aZbcHeZGLcGvPyORzOm8g9y1neO/Wgj0+0kEMZSAS5F7VXUxLndzEwqhxVLYwrGNWwMrJkz5VvqStH7Ta51pzi9asB8TeItLShoWl2ado9cmKOEAPqakQrqrqC1jOLU2zX0txopnbFdkIMU3DjgZ3GDO2SlktalvmprUAyfQliQ3Y+mIqUW9zao7dRaTdgO/CRkoZIWs6ZA8mjxSVaG5kkAjWOGsuIZY4gccmpIQ6X7G4u2ZeiztDQUDuPpuz6Ic6Is0DTTpBpTV2vUNcrVNUIKt+VJWjL3tY1nnv5End86G7qJNtYf6U1+7G3d2ruzrQxn0Zl1syAgIaQHB9N8miTYjJ7aWQZVLBdsL0sbMtBNpRMzo10bRXWxusQZkynrfF4VUuxhjWmE2XWhhRSMXj4IEZRqIxrilXOia2Crp2A2JruGhhL2rmpEnMsOBhVFbUXnLR4Z+EwF3ZGXN4e4XQbVW+OBW2x+MSKtC2ASRiktfEobTshxmmy31iO0bpeh658IwMJESESZWbPwaPkgHd7j4HOWTvkMBs0eU77mucUd8Ojlp4vzg/UpHFqtiUiBjRCL20k+1O2gdn78k6sGdi2IkrjDLSlaYwzSy5YCqdxMsK5GoubN2kENfXQs87KyZN87/vuZNUNPbokaaCvTnaEoELE4XXGC88+xeWtCdNGWTl+iu96/0NUagA3yc/z4ksv8ewLz/UgOUIq2C7YXha2D510CxUqVKjQO0vLdSEXKlSo0B8zKpNuoUKFCh0hlUm3UKFChY6QyqRbqFChQkdIZdItVKhQoSOkMukWKlSo0BFSmXQLFSpU6AipTLqFChUqdIRUJt1ChQoVOkIqk26hQoUKHSGVSbdQoUKFjpDKpFuoUKFCR0hl0i1UqFChI6Qy6RYqVKjQEVKZdAsVKlToCKlMuoUKFSp0hFQm3UKFChU6QiqTbqFChQodIZVJt1ChQoWOkMqkW6hQoUJHSGXSLVSoUKEjpDLpFipUqNARUpl0CxUqVOgIqUy6hQoVKnSEVCbdQoUKFTpCKpNuoUKFCh0hlUm3UKFChY6QyqRbqFChQkdIZdItVKhQoSOkMukWKlSo0BFSmXQLFSpU6AipTLqFChUqdIRUJt1ChQoVOkIqk26hQoUKHSGVSbdQoUKFjpDKpFuoUKFCR0hl0i1UqFChI6Qy6RYqVKjQEVJ12Mmf+xs/pz/7sz/LqK5BAJW58zL8LYoCgh2zX2q3pSN2Xf4q9HO+AmH45PShPy86+OnmzkeJCyUfXIuk6yFakVBV2hCIMaJR0RAJAdo20LSBpmlp25ambQhRadqWtmkIIRCD/Q1tIIQWjRGNkRgjQRtUW1Q1PZv0vUU1oLFGFfuukRgn6bcQY2TW7OKdt3uCQvTpuojGFgjp+oii6dkBVUU1IGLvijFY+6tdo0CManVNZWtDi8b0PTZoE2jblrVjx/jo9303UWeEpgbarnwiYvdrSO0o9sxUFlUFdag6RBIONKaPpj4IaFRCgE984jf5hX/xK/OgOiIq2C7YXha2D510EcFVjqARQVBN/ayKE8ElMA4LIFSoCqigMVUkKlEMCFY4pXWSGi6m+xVViDHiFGok4UtTw/TXoEKIQgz27GlQYojE1OghtMQQCTEQNRDCLiEE2jYYuGIkKsQEsBiUEJRm1tC2jZ2P0c4zsY6O9jwDYUjvCWgHjEiMM5B0jWoaaz0wRa1z8+ANGq2dVBLY2q4tQXFYfRVFNKDEwbiLCXy5A6qu421CyCDKnWbtnsuqMRBSXdowRUNLG0ArxVUCQVGXwIbDOdcBU1I/qIrNVZrBSep71wN1brrQNLkJSC7bkqhgu2B7Sdg+dNK9dDHwzLfepG0Ds7ZhFifWWaFNlYsd8EQVCQAe1NuM3wbj88G4R4zGvQwwLVGnqDYYl9OusxFFHAkECupBnQF70AiSQJ57J8ZAVCWE2AHeuGWLSL7eOji/D7UyxpC5WYuk58fMdWN6ntrzBi2dQJY7IRpgcueTB64NVKcZxI7QBmZhB+9rRqMxIRhIBEGc4MQhSVrK7xbAJS6bOzZzXSFCJxUJiCDicORr0kSiSUqQGicBlYgXQV2grhxra8dxVKhWCH4gdA2Ztgeke3cq5AB+PeDsEunaKx2wci3RulWwXbC9LGwfOuk++8zX+M1PnKCqRvYSZ6qDIyKZ0yQR3zrPyifius7MIAqIgS1xOjA1w0WBmCsTUSKRQBTj8KDQgkRTMzJHFEnvUSVgXDaEYPV2LqmDJO7VN4q1y6DhCF2jRo0gNSIZEApesT4XvDjjzM4ZcJyBUsQ+iEecJ79cEEQizoFzI4SIuL7cayv3sLO7RzUeAw5vNxn4RJAEKnEOr+AUA4MIeBsGGagqDnEGbBvIEQWcM+nDlOFI1NBLBSEQ20CrEVVTJ0cbx3EIUWscEagIRHtnUrnVpcEbsyQ3VJkdJgalRhdBJUl2Ju4dBrkjo4Ltgu1lYfvQSff69dc5f+E5RqMV9vYmjMY1Th3EpEQk7mPiObhky3KuwtCkeJdmfDe2DnWKc4InUOHw3iM+d7JBxfkanLfbxCHiEATnrX2yKufSs9VFqqomhEjTNNSjum8nFbzzc1xpyMScM7B2zExAus5UlIDgcOKtYzpgSwKwDbgMIlJZO5I0mKW2axyE0CbOrhxvW6p6jKsqJAFPkporub+1Kxq5Aq6TQIzioF4xGuhUlbquk9qabWCmeoWkYsbWVNMYGtoQqEbr9DIOg4YZ0IL900kCfteG1jYxRitXaku6J+fLDjR5HQkVbBdsLwvbh066mxsnuPfuB1hbW2d3d5eVVfDicTi8eFMVkj3Epc5x4hGpQGLiki4VyK4XUTSrGuIQ51Gk46jG7LIKkW1EDufEVBQxuBhYrRH2ZtuMRmNm04CIY2Vc47zPMEycsJcgrL21e88QRyYR9GCd7O7gq5rReNUaWenUGESSBBQ6MHVqRrbRiRn+BY+oIER2drfwWbvxNb4aUdUjJKmTHSzEnhezyilJ3cu1Uut2q2VEk71JXAtUCArOmTSDAKYK2yQgEE0lDTHStg2z2QytV/r2R3oMdvi0/qAD2sChJCyAtge4JEknt7XIAYA/QirYLtheFrYPn3TXatZXhBPHVlmpHWubq9R1hZcESPX4ylNVNVUFTsA5j/dVzykTGFySBEC5cuUS4/Emd955BlfXHRDsYwV2CfQKeHF456gqj/MOl9QSl4zfTz31NVQd4/FxLl++xAc/9H7W1tbm1JMMGk2NHJPdLqh5fkNok+1Jk9MiENqWN15/g9W1dcYrq8ZFQ5ucEaF3SmjvdGDgRY1ZrdSIqiDRIRIgSUBeQIPiqgqcQ9RhfL1XX9A04DUDNuNkaF+ya0V9GhDBAKFiKiFZDXUd3k1lNPVIJRK1JcQWJfSc25naJd1Q6KFJ4v6asZgbVvrBKc51x7tB2yPzUGC+21SwXbC9LGwfOune98B7OHP2Lj7yoe/hpRe/zUPve5g777wTEJzzIH4gDfSc3Lh4LkSujrdGl5bJZBeRNUaj8YDjH04HifBgHPjRRz7A+sYmN7aUhx55nGMnj3fq2b7rUyNlT2/bKiEqbdtauEwy+reteXtX1o9z7PjxdE9LVJfu9eZVTp7nEALZcwqmJmrnXEgdE230OeepqhVEGwRTH72rkOgwj0329Pq+Cbs+zu3AnAqmGkAcKgGiECXaABZJADOnCtEGiENNoxQPUoE4TIm2flWJCXRpcCsGOiKiwQqUJLqQPT+phUHInuF+NkjUadouvXM5VLBdsL0sbB866W6cOMUP/fif4djGce68+z7WNscDW4Uw9NAtvlvnjuSjHvCsrNTp+ztAAivrdzFaH1GHCWvrow6UN71FBO99uk6RqN2xtg3E6Dp7WF3XjEYjYox47wjB4V2gDQH15hBRVXuWRlR9LyXE1BIZmCmm0onD+wqiUqF4X+Oc76WXzF6zFCPYc4TOwJ/rYdcrIt64P6Di8d5UJRFP5tIS09/sHMEcIVkCU8B5h1Al/ERETVqwa7IOlW2AKcwmq1cH0lB9hC40aslUsF2wvSxsHzrpelexsbFpqo/L4vzcO3sa2DEOf6/rOuitKJj7JIbMJRXEOUQU76TjMDeTMLrjyU4lznWGe1U154dY+IypjUJVVUlyyCAwzqnax2g654ih7RyYvdMgLgDTJbXVE1tFiaayYiqqqidzWtDeniYRQYk3U13UOLOmv6iYgyQBU2NWorSzVYkkT6z0wHHOYU6kCDIIDJLM4QXBk61vJhEc3OOKpnL1kou1i2btcmlUsF2wvSxsHzrpikDlPTm2sOvRt0XzVpO3fveCCjb3uIBo3523SyKCE5J9KquQdHY6Sd5llwak9ylIO5qRP3acWRI408AdcHELDlc0ZrtbAo8TxIPg8T7dl/DAQIVV1I4lADiXAvm1bwZzDkTyCQ0ZlFZ2C28KnVnK3jXv3MkDqW/BpG5BkjTo1L9cr9SIZMeKRpkHW2fnyu3bpoEj3a3LooLtgu1lYfvwFWkkg3HyLKI37/i5ZZO3olzWd4pcfqhbjPg4pAjWQOoU162c6bmVOU20A6mpWRCjHKDiGVfM/laJ5jCwuMbUcUTQiKgzNccZYB1VusvsViRPea+mCCrZR+06jk7yLmcoGAZS7GO2YUm/ZFFcij0U0uqhfmRLp1olJxIe1RYL3kkPH9jb0jjpznXqlYit6GGoJoKqS0PMpA8lg3OJs27BdsF2fvgRY/vQSddUkKTSvJNiye2AcgG8hzkkxuORdcrcKxakh5u8QxJ3yuDL4Ta57plT9uB0C0Z+peem/bUxRoOR9NdrNLWlqmoUC0FqQmQ6a1hdqdG8ElJzh2a1xZlXFuij4XND5knDJYcAva0rlc8AZHZKC+B3CYbBblAb1Nk7P9dEksqDgORVUn27WnB4VhdjD+Tu3tgDHJsA6KqwvEm3YLtge1nYvqX7OIR+aeDQZvSuj5cheDutq/9veFJVaWYza7hk6J8r76HvGCw3XADYQQBdHKCL15rdLHFVJ3PXZY9rjJHpZJq4rphNSlzvkV14j5AnhvwZOHk6431uJOkkne4ZKpj9y2MxjmZb0+5Z6bkq6dz+iWif86jT1IRsx+zUtoFDSlHMjiaA7yQVc1gsN8ldwXbBdm77+YrnE+8Otg+VdDVah/sVCyruOGy3euWdoVty7ltJDxFCC7bu3BvnVPI/h98r0LHRzuA/D9bM3Rclg/y9K0ac92ZKl5FIMfQZG3RY1ietXfKwOtAKpJ0rbbcqSXUgIeT2yquKstiUlyRqt7hoKKmgLjWFgQfSslL68BbV/M5eHR22RefNJXt27Xl994g9S61Odk1Fpxerhy7OcplybsE2FGwvC9uHixrWCtaumhsoFeNWYHkXRpQM/hsUMpXNVqC0QYkDCeZ2SOkdDfai/vnDjrFT81LC8NgiJzcO7xJ3TiBVCG1IWIpEbRCJiNP5d7AgEUjWWmTfRzPXRefUpPm6DOokCmLp9CQFrOd3eVf1g+kAEkn90J3Os4C9o7eh5d9uoT2xBDK8KxC5fSrYLtheoKPC9qGTbpwDYrbBHI64TkW6CXD3q1AcALa3QnZfTNmeEiQGlqGDCzIsR+acefAN63oz1Wt4fvH3QWqcfbekIc5VeGcB9eZl7cHRPW/f6/oWsuuGf/t37yv/QY8ieXedSSjdK53gfD/Y9vWTDNS/gbTUn58v70EVkW4w3Wpme3epYLtge7G+R4XtW4aMdWrAoY9ZLuXK2l9ME2ChzDdncMDQfjT8rd334btijPOS0e2UEdDEHS1pimCB2oJIjUhKpDJ4f1c3esHsVj0x1xb9QeYrJ5jdqUrSQHqvLj5+viG75aZz9bZa6dz5udMMH7JYlGVRwXbB9rKwfbikGx1tgKjz8XOH0a04+x+M8x9MszYSUqxgnCUppsNoetfNyq7DjGxWyaG9aL+XO6tTeangUFrI5zzmZZ0Hh4FGLcmHq4kxZWUSsGQnzqxiKQ5xXgLpuTZAn3LOjPc5Q6lLGtG8FxqEnCEqiUyabG1ZfhpIIeYgEHrHwOC9w/jHtBhgMGz7FleBmNtAsXX6LTkX7LKnuoLtgu1lYfvQSXd3b5fz588BcGNri+2d7f79B5Au/Pd26K3fr1x4/Q1bX94GppOJJfzQWz9BdTHDux7IqW7G9Re1sgzO/P1Ae5gok8kezlvoS13XrKyM2aeCpSftt6UNnk/veZ7n5MNQn14t7Z97k5YRW8apCbzZqXFzkv2NgHbwdJJBOmyvfP1bDfd/Z6lgu7/uICrYfvewfeiku7o65u57zqIo6+trrK6u5nd/R9HJk8c4dvwYAMdPrjMej+c6+Kak/WcueQc5PMd+Z5Ur01Atyr8X33dQjCNYfs7xeMza2hogrK2tUVVVD6I5EGcQDgE5z7m78gzuZVCuRfD0Usv+9nHiurSBeUnoPrvfUB3rHjo/iDKsNKlf84PNAtSFLFEthwq2C7aXhe1DbbpV5VlbWwWUqrp1Eo93QrV6O88YjSuLIezuPvwpnZyQtYPc5rrI/faPwNvSRAVblZOSjXQ2LJKVSATvXfem3KE5dCY/pPfzpDtdBp2Vcy6gpQOOzoG0B9CtZ5O+9rLv+FzlFqQEQbr9pPY/cXisWxk/B+BlUMF2wfb+O48G24dOupkLWhaigwOLvxNIowfapDrkxrhJOVO79tyfBW6/34nQcf/0iWqLAW2PQkmbE6bfTvp12rkPMznQaLGDlvTa9Yk7BESG7xboVt9oZy/KyqnkepDqkgajOm8rhSQHzKSS52xLUbq26SSMtHOqJhUsp8JTze9OmBPX/7bRN7hGUE3nJYLass+09ReWc8pGnqZrory18Kd3kgq20y0F20eO7bclanR2qbeB0duya73F58Y4SI58m/dnYGYb2e3SvGd34UU3GbT71LN8q2JqiBzASBfuv9mEMHR0ZJAeyM3TLrYHcfuhmpX3ndovTSxeP3h+J+308lgWWg5SQ7t7vsNUeSjYLth+97F96KSbJYG89DAnR56v8VunWwLhLT43hLyJ3EBDOezZA2mADNAuVIaF39qXWRcdAjcPvdlHiQkvhuNIZzPaD8CDAJmvW3zf/GUL76D3Sgt+f/k6UPZbUefPQaDaV6+5xh0cPPBcX+ZlUsF2wfaysH1LSbc3uKftn5O4bq96ax7dt+v1PfSZi4+8yStyGSNKGOQB1QFIFx0O3d/BoxcdD7csX/dN9g2avtV6taj7Obj7QJzfqmOHa+rdICnH4m2S3pOx5A567s3qm5dLDrh8HvkybLXsOf/OEm0Ltgu2l4HtW0y6yaYTzX4RgxASQLNk8FY6Cayzw1tcyng7z+w54M3LkweYqhC7D+R4wC4/6ACYKmbnCtqH4AxBnekgDo0zIGSbGDjL/KTZ7hP71H1iSwqj6S0dYCTZ8bIU0CNIkg3J9sFCszMo2nbV0if7UFVwKSk1ISVecimyRVEJFl8pkoIhLU2ddO0yULOGTg2CvS+VPW95MrcXFrn8+Xsc9NUyE94UbBdsLwfbhye8UQaqSEzBzt7yPqiwL0PRomT/NgxjPX+8jXuT7QjV/Gcel10bDtSs5DlVVTTOSwP7rh1IC/ncW6rLwuX7ireo2gzLmzjtsGx2qewri9CDVocPOqgsuc3myO4VsQTRdm26MKerE+nUVV14jqoe/NhU63dDCvyDUsF2wfaysH2LSTemTekU7zwhRFvDjM3ki3aR3mB9qzw67+wgjDEmkMV9jbBow1JVYgJbTDuZLqpec2Vc4PC5zkMJ5Kb3LtY5fVzHPZNBP4Ew6iABSZfHswfi4mO7chiCO1O/9Bd05Rcx/i7ah+P00pOkfKc5QXQ6n6+RhXagz11gz/BzrZ7v7gfJfNu8w93/tqhgm4LtJWH71iFj2e6laUO60Hdkv+3HfLq4fO4gB6hJGDcv2duVIGTYeElt6iQFHTZkDvXI37OjItczqWmDx83ZxA7gbgdJCwepgwpETRnucQmbef1/nLs2x/rd7F25v/uQH8ven8NdumbMfxO+kIFUksCaLxSqJA2E/q0CqJDDekTE2jYPqiRRdRJZuinHLGoGfm430bfVx+80FWwzd65g++iwfQtJV2lb65CqUmKAIIokcDlnO25agUm7jNpLhzk6ew9k5my3LNdbor6hk3pFAgAk54i9u2fI2n3P9cyfEDWBGIIqYSBJmAoXB5LEwVy///TH+oqnXJ+aObWY4iQBSTam3KDd4JBO16RTabSPVLTLI1EUDQLUZNuZ3Z8BHgdZ+i1HqWYpwQUIYxDbdyot958f8OQ4zj6Ep0+9l+spxJTp32pmbZblNOmSPs/JLUdOBdsF28vC9i0mXek8vOZgSJws0m0iF2Mw0d9JAmtWzaywfVINZdFwfZA9pFdBblKm4QlNR0KE9NyocR845t65AMZhkHy+YFGlmgsl4iCuP3+s/72/Ep1UkjpXbmIxeqtqqiY2bx0fyF1rT59vs/0SjZXVsPz/Z+/Pgm070vtO7PdlrrWHM9wJd8BwMaMA1MxiiaRESqRISa2B3W7b4QeH3PJDd3Q/dPhFfrP94oh2hMJPthWODkVHqNvdUkiUehAlkqIoTmJxqplVhQIKY6GAC1zg4o5n3nuvzPz88GWutfY+B+eiyMI5elgfatc9e++118r88p/5jfllb89+NlGl38f+ApN/LT1wgrVBVfrTqPco146btfN0aMC20YDtk8f28QdTqhCjokmJXgnBzglyrpwQ2jmpvXdFAOVDP62jZeC78+itUn2Mcck/tuR0/4hj0oKqvPIWkX7+peaI7lFAXQXnqgQ/DoD93y6xLH8vRTPpA6zYoJKlbOmoiFVPuk9/PxysJRqbWjC0/Oz5vtAeTLpHZ5glEDtZtT1au713biPZtC235nCbtVc4OqUj+qTS3pcVs/NEacB216QB2yeK7WMX3ZgiMQZUlZCEJkTzKSUx10ref20aQMoaQkSyaWYmGW1DnbPGFADE2D9zqNMeljh3BCkZXEVTSXb8sWkCOf8yZUmUljUBA1MHOjMpeiDtawjZFEHyvcvAa9/HQ+/vlP3yFaqBMoIhJZImvESSNIgEPHYiqV0v9hton8GK6WM81Ixr7a6hC4AUp1aBXzfVWydZNr163G01M29fO4EI5ucqUr+AtJh1pcfl5brnaM90pPN4lWtVJI9NC/lToQHbA7btu5PH9n0CaRBSQJPioifEphw5lH1ZiveelBTvSi5glmwKquWIZzJTzRSz/MgiNbv7lQ6rLh+zsfx9qYHaAxc2WVp/TWIZfEvg1KWXga8Lpix/b96aVP6lJM73aEnaZl1IFgjKolnw7vVbfOc7bwJTHnn0UfYO7nDuwgR/dsycKY3zOF2gGkh4GywRVv1aHakdSZKHnQzBVHhH0TYyj3oyW3MTrVyp9u6gqHqQVaM48697jHVVIuWQQGuv0mWmu6zZrLa/tM8AaX61+xea+bhowPaAbTgdbN/Hp+toFvaAquoSvy2yuwwqMhBz03JSs5lvWYgYwJ2QYu9U015kWETyMzSPt/bakiODQpb8PeDl1J+UUvt5F7ldjiivAvMoU6vvC1uKRuuKgF6hJAbm/Z2Gl797na9/54/4/tuv88r3vk+zUCbTCXhl48w5Ll5+hMuXH+LzX/gUX/zcU0x9oqTS/GmoBHOK6Vd42hVWtg70INouHppTbfzKVskjnmJ30Eh3+iokbTLvZOkp5Tf2YTYRtadFHcfMj5kGbA/YXnnKiWH7I2QvRESEEGIbtS3kepoB+bhlVcH7jkHOaXtNMSFSf7ul6kr1eg6Bst8epNMGymdmjpnEjjGRfN8fJb3rljWClE2jtALGZR9ZB9D+Z0e9kja88sqb/PN/9Gu8/eYP2JndZm//Hs18D++U/QZ8Jcy3HXff+R5vjc/yne98lfR//D/w5z7/LCOafmePMVDKTD+CR3QLRp+nLT+L+ZTPrjLAmE9r+YTW1oYyqa/57grgMx96R7D0xmgZ2CXoUBau1Gv3aS66A7YHbJ8Oto/36UYlhAbHiOiDHa2stD4ta1zKHYr5JE47c973OmnXdqC2YEOX7N12QUoVIJMoXeSwxEGVvnArfipUiWrpHCkm29ZYfnEIQB1/DZB50BRS1GyOdMC1iWRbAg+DsryPLBaJb3/ru/yTf/SPef/6NZQZi9k+zXxh902eycYG9dhBmKOLPZr5Pvvv3+Wf/dI/5dbd/5hPf/IxrlzcZN1BpUog5hSWkhloeaOalKMc9TZByWDrwNj3O5k65fI1EZWIknAJxPf8V0Xd05xlqSU/sRxjks29rCHZ3Vfb1PF7dStp+5xTogHbA7ZPC9vHLrohRRZphqNBwnoPmNpGdFXLPuhke5uTIn0fiCTrDCXKa9pAzNLVOZfNnK7RfbOsdLDrRAcIyOaVlgCCTZQCuqM0gMKoValfTK1ljaCfQB8/xH9m5uSL332Rf/5P/hnb927i/JyDgwOUxHjsSCqEqBzsz0i6Ru0mVG7EwXybkLZ447tf4Y2XX+fylWf467/4s/zEj3+Ghy9dYOQFoewVL/0vfqYjNCYtg33UgBce5t09Bbzk8IbaotL+fCVCrAVkkP1e5dd2x6KpFaWB/r+stPX01tqWBmwP2D4tbB+v6e4pi3sV1cYC5xMhWLTX5zOQljJhcqChfG/HRtu2QNXlsnEpKSmWaGlJNO/89pZ+00WHO6f6KihWTKBWei8HDpZ/Qzuoh7ZQZjNu1Yzo3svK5wbcV156lf/+H/5D7ty+TdQZTQgsmkiKARRGkykSIik1zGZbMB4jzoOrqCsQPSCGd7l34y7/5l++y7f/5LP8hZ/+i/y1v/x5xpKWUm6K5lL4k44YcDk08F0/2ondXwjyv1ZvtONPZ76lfJGZ2uR08O4Ovtc2WcJlpzGlFtgdD1e1g5OjAdsDtks/Txrbxy66b3/ldb4yfYOf+JtPUF1ZEELo3djlXEZ6g9bzRxWntTPtoH8mUYxKjMYcl/1hLG237Bhqn3VgKJ/3AbIKxNX3fYC1JsMRoC4Fo7v35d/Y0zaWgbloFvz6r/0bbr53g0WzYLQ2RtwE1YhQEVPD3m5DUvBiAYmkwqJRDg5myKiiclOci4QQOLjzPtfnc34/7vLUcw/zzIMbFMtISuCjpyQdHZ5YQeaSVO4+K/1Y1r5Wd+EUfvdurVVh4gqPZeUhKw8vb/XIb06UBmwP2O743bv1CWD72EX3zt27vPjVr3Hv9jv8+M//Oc49WuHWBPVzJE4Qn9AkJCd2J4s2mAbvPaoWFbYOJ5w3c81yJC1arH1AuuL7IjvDj3CWl75pZxYkTCqGGIkp4UIXmdW2WZl5eSQL+Mq9W4BqzAOR0F4gIqWEqMMlSGryMCwif/Tbv8d3/+SrEPdQGprGk1RwlUfU4X1lgRrmNM2CxSyxOEhMRhMkKWF/RvTZ2S+B/dmC+aLh4OWGf/Lf/hP++n/8i/z4px9jqrYVsh30bCqlLNmLiZY0mFGlvsczWzSMn9jGxcx3ybtoEoCvMk9LSkxhlu1ZN/9jhdLkRQjKGVetPy1zvWhe/Yls35TxhMMFUE+OBmwP2D4tbB+/6O59wPs332Bn5wa3PrjJ4598nKe/8AxXnlpHfSI5A5nXRCVCSSQ+CkzOezSW3RypBWz/Rc5ZVrTNmVzWAjKgVsGU02liBlB/1w4r12rPv3XkK3XbLVOu7lTAaVsGozE3Cr//O7/Hv/if/0fW1iZMph4lsrW9YH8+Q0h4rVg0DYjgqxHe1TiZEUJg0exQOcsDTSGCE1xdkWIgxDl+vsW1V/6EX/3lBQ9d/E948vK5Q7wgj63Nt2Jb2vC3/qq+lO7BowNHNsugC9m3fEu932p5UPv7ZV1E2sv61KXp9J4tR1x4wjRge8D2aWH72EV3b3aPm9vX2NufMJvvsL//AS+8/lX+0//Tf0g9npD0DDquEfFWoan3sDLQXaWgLm0jxmgnnObvDtcuVYjL5kGf+nmMfTOsgLQv6ftt6V//YSZY/x6q5p9L0aRjyoOeUObbu3zpt36TEBdULvD4I5fY3rpL3A9o5ZnHRNMEYliQJCJRGLsRm+Maxo7ZLNDEBF5YBJsQzSL3LwWaxT4Libx/bZ27d3d4/MomkksOqhY7pqcd9AfeOtjr/zIvDlHvI8m/7ZuZuVXt+6KFHUWrfD38XfZ/tUWhT4cGbA/YPi1sH5+9EAO7zRbzdI+Z7rMVb5HuRa6/+hRXH3iAtHaB0cVLyHjTggV0Jk3bUcnFL3pALZX5CxD74IJiinW/X+oYHR+PAlX/faG+qfVhDGxfLAO3/L4ITsWjErl9+z1uvn+N29t3+ekff56f+6nP8LWvf53FjvnJJJg5V40rJEIlFZc2zrOx6dnf3+Pe3RnbYUZUpYoVs/mcELNAFkjiCKJIE/B+ZCZTb5xVDZRa/HS5gYXHhwCiR4OyhbiaD3KJv4evYglMK7c7in99v6W9Iqpy9A1OkAZsD9heuYqTwvbx24AJaNojxpq9tMud8AHPXq74/stf5ub6Q5w9f5aLV5/g/GPPkdY2qSN4hVgrmizudzhFpgsO9IHZv05jZ4LZh47iZ7drrVOp+KZSd8RK0TQ+TBvov9d2YE3KJVY0AS1FMvKwSEKj4FT4YPc2N2/dYn3N8dd/5ud45KFLzPb2CXuvcHH/DPf27nFvf4tFM8a7DTbWN7j60GUuX6658/4Wu5sH3Nu/xTt399iajUnjiDQ2aYVcASs4mtmMppkDNUuVi7QkdQtoyts4e9mE5cjrUrS57UP+urtN++8Y3+6AkmLKUSaBo0R3s4eNUv2p3W2U/WVKomwg0HZCFP4X25rWB3YaNGB7wHbh10lj+9hFt1E4SAnnIjHtcOGMcObMWd65/gHj+oDpzQ0e3NrjkYPAQ5/4FLK2iThwKqRKwXfVlixnsZPKpRJT3wxreeos1tACNjvVWyblnllB4mVgrmoDR5sBHcP7BUHaCkSqS7mQ7atN94ns3b3F3sEOf/Ev/EXOndlkfhC5ePYSn3kuMpsri7jgvZvvc/PWFpWbcvHiA1w4t8H5sxs8c2mN+eID3nnvB+x86xVu7y5oVPG+QkRomib3I0JouHv3DqqP3VcvLLLY5m1Ov29rm65ct8qHpG3e5mHzSSkONtMcLPBQ8FbA1/KQPAvoaSX0xy0vRqe46A7YHrBdfnHS2D520f3iTz7M1Ne8/YMPSCy4fHmde9v77O0ENtYS602DhsD29h4HjfLMZz4H4zW8ljPp/FLni/TvA6nUJO1Lb7LEb3Mf+1WBWqaVztoAlvv1zbFyPa3E739Gd79ixpRk8SX/V9ukbOKY5nD9jWu4eoNnn3mO/d1dKjdmXK/z+NXHaZpIExoevnyBnd0ZKTg2Ntc5u7Fhp5cGRyThfMO5V99iLAGtptRVzcHBAaPRiJACkBBRdvd2WgT0+9Hxg068o9k/VoI/pc+pA8gKL4QcWXeH96Yv/b3CzxLiuD91z+z4qYcmzEnSgO0B26eF7WMX3Qef+hx//Rf+Ghp2uHvndf7g3/5rvv/GB4yqTUgBfAAC2/tzdgM88vjjjL3gqjF19KhoBp5vTS6gi+7m45OVUvCjmGHLwFRsm54sCbYOmH0JthrhLYMhsMyU3neF4doOfF/C9YCumrUPuPfeXabTi6xNNpntH1D7iDjwrsJ5oRaHr5S1yRqacmk5BNUZUT1Rx4wm53jw4mXeuLbPQpX5fNEWyiZqGz1PMVAKai8Ndk/Ctp/2JO/yuGuXJdOTzYfvp3lh6OWltjwzzWwVTz0u9toiK++P+Ov0FN0B2wO2u29OGNvH+3RV0WrKnZs7fOuPr3HvgxEXL6yxsVkxqseEkNje32E8Sjz5yBXm3sEiMKIiH9SB92VveqcNKErQhMsASClHd3upGatnU8FhRheJlFZSZaImypEmtJpDGTT7zaoJ0v2+PJOc4tMBUxIkF4mibJ5JrJ+pcHUgBkWSZ+QUqbNkFXCM0YrWB5ViJAQIcYZKwvsRDz5wFu/2mM0rUlTAghUqCQ9oTJzdPGNjKZ3YNyikDhBaQCC5f3GJJ0jMKUX5F9Lb8ZPrqSYJOBez6abt94pk81N7POzdq/efPdNBcihNj9+lGIgc0gxOgwZsD9i2Z508to9ddPe39/jOV77M97/7As3eXUaTmtHkDM55ZgcLUoKrTz/Hc5//c1x65Enm8wgs6Jb5bgvdEjC1O/pk1UQrVI5E6W+xXKXy275Jl1JCegEDWk2g96yeOdcfvKO0ir4vyH5r5uCTn3qayZ+8gSMxHtesTdeZjmrEVe31QrCoqVpR6/nigINFJDlPVEF0waXLD/Dw5Yvc/P4tGl+halsWfVVBDERVvB9Be9JpAUe/TR2llBC/3D/7uxdVYNVEFRSHkwqh538sl69oUe0zjwSW9q5f/re0rz+5TosGbA/YPi1sH7vovvridzi4eYNaE0msas9sDnE/sLZxhuc/92N84vkfp5pu0gSHeIghEatoEk07f9YqMGk/70BXEpbN1LJGH/KJrbJBl/1UKSVc7zN7Xu9vWBmUVWD233dbJyEPEomURjz81HOc3/wGo8k6vqoIVc08KjQN4oS6qtrCzSnlgR/XjKsRPsxpFgek6JlMRjz12IO88fYH3Aoxm55WBYso+NozGnva7Poj+r9KxY/Vn1DmCysa0vLvi1ZlUZ7eWV+yzJvDz+tpJyvtWD0yvJ2sFpA+1I6TpgHbA7ZPC9vHZy8c7LPY2zafTFxQV8q5C5d58qnnefwTzzE5d5EkU1K040pSVMoxzyFGxDk8gqVZdOBUVYgLkJrtew31SFhfG7dmRJfHWCokaQusVSb0pfeqJC/ft3JUNQurMhgdEKGTVGWbZDmDyupk5rBzHoizFx/joUefoHEV73ywx97sDj7NmFYV08mIyahm3jTMF4GU8p71esTGWs259TXGE5g3EedGPHH1YZ545B1u/eAetid+gTrBpZrLl6/w2NUrOImo+qV+G4+Wy8rZpBZUnWkuufh0OeXU+i+Hxblimksyf9uymdotDMW0br1a7bNzO3rqQ/E1ro5dp8mc3qo7YHvA9mlh+9hF92B/xmzRcPnyJR557HEuPXyJcxeu4Meb4Mek6BBveXQ29AaOiPm0JJpvxmn2A3kHqoQmMr+bSHLA17/xElR7/Pwv/DyTujZjwIGVzjNQiCwDs0+qupRS0wfm6qCVEVgGtv3b/T7RpdfYfmxRgVhz/f23WTt7jjNnhKqaIuuJL/3hH/Dea+8zDw1nzk548sHHeOTKWVxacPvODjfu3OHW1g7b+zO0mnLp/GWeevxRHn7wPGemSmKdMxuJTz/9CC9d+4CdULPua9amU/b3AxcvPczZzU2cJlKOjrdI6sEFJZfoS/n0WiEJNEGzeWVA6MI7BTAFeN05YKncsgVvWVAs6NO5FHUJmAWufU2gfHtIq0DpZV6eOA3YHrB9Wtg+dtH9xKc/yS/83M9y9vwltFpj3jQk5xEVnHYm1KGdNT1fUYxmijlH29j54oB3b7zOwd6Cb/7xl1hfP8NP/uRP4jbWqZyYROlFePvAPBpsq2bUsslw2GxY/l3/zKliphSAx3TA7t4Be/ca3nztFaoz5/jkJ59j4gPjtOC9G+/g/B6OxP7enPeu32TslPVJYvveXfZ3ttnbucdsPqeeHLC9NefV17Z47/2zXLp8gauXznFmMuGxhx7lgfpF9lLguatXeEDG7M1HrK1PSCJEXDeLem1f7pX1RSShacbW1h3+6CvfYW3jAT73meeYjD2j+mhtarlWAC1PTBvy+QEliTwewWPTQlbNu5KhfngcWIlYnywN2B6wfVrYPnbR3XzgCtMzF8CNicmh0SrnH3XcUYnQlodpSiRJrd9KsQCliOCc57FHn2M+2+fn//oWtT+DiBBDwNUeSdK6eMpWu74vbJVW95aTZCmNp2VS+++yNrDMZNrvVRNRG0Jo2N76gBdf+EPOXHqcRx97jNHmmGefepC9d17i1RuJ3fmCtWnizsFNrj50lk88+yQp7HFva06zP2f73gFu4vAXA5JuUssBs2lNc3ZMvXmGzTMPcHZjg4cmnucff5Tp3pz33tniuWceZOQVVJcl61K/Dm+NbOIB33/pa9x6+1W0Pst8dpvnPvEMD1651NN2cr9VQaxwC9LdMz+BdocO/c+X+dr7pP2s27mzkqaTn/lh43kSNGB7wPZpYfv4M9IQEhVJBVFFNFpmh7pW+pR6oa0GntufNCEptg20r+xLA00EN2Jn17G5vo7tW7YiHOIEehHetjW9tBy6R+WzoPILRWMpYVd6suwv64O8MO6QlpBND3SEq2suXH6IX/grf4tFElyKxBC58tBDPPnEFfb34d7dOaNxhZeax68+xLNPP0ezM+PenXs0sWEydjSyxubGOtNxxZm1KefXJlzY2GBUj5AUOHPOsy7nmd8LXN68wvjKOl/44o9RE3PrSvFRXWluMaMyCDDfVeXWefjBDfbmicsPnGPjzIbtlsIWjvK7JApEUkzcvnWAq/L9i88PMPN6eZDbtJ6iKRRurwQ6us9LwKOHl1OiAdsDtk8L28cuuuTk6XKWUSIh4nBS7qutZFK6snGaLG+vDDyIlccT2xniVMB5DvZ3efGFb7O+fp6nnr/KeFQTE+Zncp006e9ht62TZVoUyagtMEuUuC+ROunel/iHTZHynT0LlIQnUVVjFrLgldevcfHhx7lceZTExpkrPP/8Fzh75h2uvXmTZuE4e+Yszz7+NDIbcXZ6nk8992nO3brN7vacRaNMNs/wwOXzPHj5HOemUwSIsSHguHrlUS5deoR4a4u4PefBhx6lXt/Mfc1S+UPNz26HUanX2nCeh576LHfvLdjcONfzB9rYolbSr/yXUuL69ds8cvVM5mM5tkZ6kzyDiqxFtDPEru9rA+X6zpTrI3HZXDtxGrD9Z8b236o3+OLrL/IrzzzDNx+4MmC7peOxfZ/TgK2zKSW6HLdukIvJIzGSciGOUoHfZbc2zirrt1ZVruMpCcajEZ/97PNU9cTMhqYBr4g5yVZ8MT1/VzYZyvvVSkyHB+1oDhwHTCWBgkeoqJjvH/DqKy8xlxFPPfM4EaUerVNxnkubwujJc6CesR+xOdkgHCQcNefPXubTt3b4/Nf+iK/99M/w9iee5fyFc5xZGxEW2xzMZoQmEKPyxJPPMq3HLJrI2voak8ceZjKe0HRz8ci+dX6nFpk4J2zt3OOr336JevwQTz/7KTs+RYpU79/HxijGBciCmCz4IHkk+2lJq1S0M03FtPowvmfzrXx0iq4Fe/yA7T8rtn/mq9/m/L1t/nfX3kV+4a+BHw3YLow+hu6z6HaRz+L8lyxpS9I24hHtinyUqvkOh1cFLzgHjXQNFsAhLGLi6ec+BVTMFwtQJdUjkvc4L+3e9dXdO9ITLP3BWa3w1PXjMFiPel8G2N5k7cI5onjOXLjAL/zVn2Vy5gKVNEh0NIuGmzduMUE4t3Ge5G3CTTcmpFnCuYrZ/ozP//a/48KNG/z5L/8xuz/x50n7C+5tbTPXhkVqWOiCRZgjooSUOPvQFc66c8gzj1qxFLUTTaMcnkiHx6zTgkQPOLOWa5pWNZUPmI5jg9v5vWxc5/N9fJ1y6kyO1seqPWr86Il82Bw86rpCqUwiioZzOjRg+8+O7a/9zF/iz/3RH/D6f/iLPHTpIvNGB2x/BGwfu+iWoW3PjCeWvG+cq1C1ZGOT8BHDZMy3dSCBnYMdvv2dt9jfiRzs7LC7u009GXFm4yJ+rWbzjOe5Jx+lGs9I4yk6SuhoRDWqcKo4TRmcDjEVwcoylQiwHsEI0aIwYObY4b4d5QBfvo+lkQQNjDTiKs9Tzz5vFfxjJKRIo4FZ2Kf2E3xV0czmnDt3AVdNaJiBd4gEfv+LX+Tn/uRbvP63/iYxLNjf3WNxMCNWQkNknhY0qSEoVLXD12NCNeXC5QdoPMbn4oc7YrBzi1GCvbRCk+fSlSs886lnuH5jxkgi3goSEmVhOaeaslcrEaloFg0iiUjALQLfe+k1dhbwiec+wcZ6hWQtLmoixRG+qhCXcs3mYpJ1/C3measJtKoC2ZJbruZ/kjRg+8+O7Xc+8SQvPfwgjz3xNJPaEQ92B2x/BGwf79PNUtckuKBJrPQkCTvaw05OVY2kWLZD2mdJJtx85zb/8l/9Cq++9gYkRUJkNK6hciRfQxNp4oK//Xf+Ns8/9yTOLbJfy0y2qnJIgqrySC4wImUQ0rJJ0CWMp/a7LBfR1GkSq4BcYuIqwLWcIpqyBLPtnTEpKQXUQT0Zo0nZn+2yf3eHrTt3ePutt9jZ2QNVptOK966c5+bf+ducf+ACad6gXolOmTcLFinQ0FjSdpNIi33chTFrl84yWlsniOJTpw0tSeElyikvuQKTCKxtbOD8mPGkq8hEx0E7DyslYmxIOqauRsxmd3DqufneO3z/1e8xPXeB2zfX2bkLi/1ddra32Q8z9vccX/jxn+Ts2c28MHFkuzo4Si996eho8YnSgO0fCbb39u9x5+Z1wzZxwPZHwPZ93Qtl0EUyMEXRlFAnIL1CyNrlBDrnuH79A/67//Yfce/ODbzbIwAjV5NSAK1YhAPqIMR55N/+5u/wxOP/KeOxkFBCTNAEwOG9I0Yz48q9c+taRsQYe+BajuAW9hy13fIoTaD/bykssup/K69qNKJanzK/t41PC8Q3vHf9Xb7/g2s0QZg3wsUHzvDFzz+HcsDO7h2QikYCjYssYiBiZhFO2SdSn7lAunKe6ZMPE3PCfbfr6PDgd77AAkgHOJTImc0pt27fJsynBPUkkp1Q26tub2YrKMJkPGU6XUdZsHnec+Z8Yv/gGvPdc/jJGpVznDmzwUa1wWRynrW1kUWKV9q1ys+Cj8LLtsmn7F6AAdsDtk8e28drumgLOOcSygLVCqiyiWKgzLsZ0Qgl2fvbX/8uN65fYzQ5YNEExutT1icjUE+TFGYN8wpSHXj3B6/w+3/wZf7WL/4sIUWEiOXPuWzmaXvulIFz2afV93lZxZ9O6kse0A/zEy31dhWgK1qC5WE6qqrKJp4w2dzg7t07iCjVtGL93CYbm2fY3drnzKXzPPjQA4w3ptTeMZ/NERdoNBFctCOrxYBXqW0vPf/881x9+kl8qK0vkohSJlU/4EJvWBUkIQTMBI4oynjsef/da3z7xZv84oO/yFrtcfR8ey0ZqM3/5VCpGG+e56d+5uc42NlnHjwpZahIRFzNaDI1k1wFp13xl1V+dnwtz+m1+/TWXAZsD9g+LWwfX9oxSR7kfGooCZF8fEap2p5y+FGjFXgWT0C5dfdtcPsWLXQVVTXF1ROaZkETZyzSAhezL0sTf/iHv8cnP/Mcjz36IFT7qIzRMLHvsahxOaqk3e3hnEmjBCk2QIOlAvWYU1T94qhfShFZZmLLyLKvmwhStJ3ODPK+wmK/kY1z57j5xms0Cvd2dhgBV86eZ5MxG5cucu78Re5sbzGabLBR12icoySCQClRF9XRNIl5gOl0ajyXBi3RU2sgXV6h5ueX/hUA+GwCG4/EO6ZOePapBwChSY7K5W+zRlMmfKWRwAKpBI9D/RqTidD4i1TzfeJiQWyCLRa+xouHaJoHLtlxL8lTqvr3UJTxkROxlrSu09sGPGB7wPZpYft490Iqx0kHRLuk4LIHujsf3jQGxB51794er7/xKs4LMSaqqiIsIjNZEOKCpmmImiAqlfegif3tm/zGr/1r/oO/+R/xyMMPM50o1LtIrEFGiKRWGpcao+VAQIsaRptAqZyAt9STJQAe5eRe9ntZWk2pk5mSTUSld40IqGOyvkkEdnd2efut9wlbM3SnoWbEzevvsHFhh2pzQSPKI088ypkzE3CQdEGMEFIiaMNssaAeTZmMJhmYPQPlCBNHKJFSA2ZWXloTVAScr7lw4QGCO2D33i4Xzm6COgRv2kMvYu6wRPxFE5AYERW+/bVvIdMrPP3sI1SjERpTngyVRdkRS9Pp5Yuaqd4HnJWFUQnYxna/MiKnQwO2B2yfFrbv49ONqEZSskr45v/KxSOSQ52imogppw6LoC7xzT/5Jndu38ZXReo4kiqLxRxIbXTRSrKZQz82Da+9+B2u/eA6n/n8T/CzP/cXeOTqWVIdgYBzVRdcEKH8WUyl1gSzD4/p1WrlouVthrKUbte7T/5iKV1HhHptg8m5s9y5c5eNtYr1MxdgX5FYU/saKpicr7i3t8XNm++Df5DRuKZpGkJyNKFh1sxYNA1nLlykqkbkCE8b6OGooZScMK5gQZ9I1zS1Lf6uxtVTYlzw5vdu8uijl1E5YDURvdR3TZpw4m1axobd7TvozBHiQ0zGI6wyN9Dzm9F65YxFnYDvJtFqIe5TDaBlGrA9YPu0sH3fRTdpRNQhvUIfKSniFEmpeKdQIDnhg1u3+dKXvmSSM2UAtrmFuTxezKXlRFGn+GpEVXskNhzsvs+/+51f54UXXuQXf/Fv8FN//tO4dXChtEnBO1xhiLIErOKrQlZKTvQAVUyXVprqCtNaQLRiGG0HsxvQhOD8iPNXrvCDV19j8+waIyds7e/wwc0bTDbXuHjpItNRxcXpFfb3F+zv7LG/X0EKaErMF4HZomFUTxiPJ9m8MyNmaWIoOcfQckGtpmv2V5VQfK+HTpQkFfgRV65usjN7naTPmJnm4grMFcSi+CLODF6JfPYLzxP9BiPvrZpW5lyUaM/VKmMztFqh1WoqRpgCsWeC1RTN5bRpwPaA7dPC9n18uiVdJeWzoMy6Ecoec4eIVVqKmtCofOtr3+be3VtUtSMmKwBSzKZS/k5E0BhIzpO0wiFUleDHI2j2aeI2d268yC/90lu8d/MX+cVf/BucO5OYuAYvHkkOsjmmqpAioopHcGoH45ma0RusYpu0ZlSpsS/5uA7a78r3xsCqM72WfDXFkHNceuQqGw9ssH3rDlU95eHHr/Do0w8zGTs0Knu7c+a7gYVCCA0482bFpmEWA855xqMRrkpYLmLqHbtXmia5zVnytlI45lffhDTQON0npClXHr3EpcuX8RJRsVoDdpxMLgICgMc5z0gDmiLO1axfeCxrHL4I/tb0NBSEFoCCgMQ8ifsa14p/Tn3+9+htnydFA7ZhwDangu37nJFWCib3Cv8mRb12PqdS8UiVg9mcV1/5XgcYhaqyR0jPtjGVXPLfuSiFmqPauSmTMTTzbebzLX7nN38FEH7xf/XXOOeUtTSBqrbLixbQSu28KyS/71djKm2ELLVKbmMPjGXIyzXL5oIu/QO5IIoK9fgBPvvjX+QPfu/f4sZTNs9dYH1cU+HwlePsuX22tu9ye++A7d05iyYQo7AIM6LA2rjGOYdXsdUgu5FWcy7ptaZccxwJjhhrKr+Or+vcfSXFnMrT/704Njc3qdSxP9tHXYUwytMvdnw66uGap1EJ5Gg3SVSXTdzy3NNccGHA9oDt08P2fXakdVE5TVZ1J6lFVEVcrm9pD0lRuX79OtevX2t/77yjqozppRkl77A4q2OMCI4QFqRk2yKrakLlDogaIOzzu7/167iR8Lf+1i9QrynORZy4FROlJ7F7PrF+cKCw0/V9V5nZ7Q4glm7Zt9y6z/J9yAVIEsL5hx7j+U/+GN/9xot4N2E+rXDJotILXTBLiVmEnf0ZiwYUjxLwVcWoqhlXFS4pKeRUpSJhl8ZjZXxa4C6bNebwt77FGHLwwbdjJZJIGun31okwGo1I48BssYDskywYYAWSK6zn0AT+ECrfHrXX/SRpwPaA7dPC9n3cC7Yt0HlT92OKrQ9LNSEkyGdFqQivvfoaKTb4qiYlZTQaGQhUyXXzbPBz5Nh789toihwcHDCfLwCo/QjwpGaB8xF0i3/3m/+Wyq3xH/3Nn6byNUjVJpMLnXRpzaUP4VUXXGD5mvbaTmKJgDhoqxy1CkHWEtQkZXIBZcwjDz3Nt5vv8OL3XmNjfYRoJCk0CE1MNPszAHxd433FpHZM/Ii1qmbiKpwm5vv7jDc3wWXQtT6jLEXJR6vktCarF5B3FpW+ZuQkbYhhD2UOWrfdFHKkPOoS2AvInYxac1XyBoHj1Y+ufX3StkFLn3J4ip08DdgesH1a2D5e001mEahoyYbIg1oGStBUgSZ2ZnO++92XbQd0avCuxln+SOZGk38TkaSUkzRaCZXNj6SRJgW8r3NUOVDhkIN7vPCV3+OnvvAs609cZCw++1rynmzGeUxix4xejcwl3JV3AlJy7/LnXR6e7W4R7RzoFqh01hcx8yItPNdv7fHglXUWBwdcvXKBnVv3eOetezRZqoeUGI1HTLxS19kkVUXqKWujCdO6pqqEyit7N97m7s33qdce4Ma9bT75ueeZjornyMruoQ2io3ZCSqpQiUgCUWd8Vwgi1AHbpuq6bpsf0iGuQdQKuNAGhEAk5otLNf3MkXywn2i3U6c/G7THu67cnflNDfQ5r5E6M//08nQHbA/YPi1s36eIuaXVlP3dBZD28pZa4yPq4N133mbr3m1c5UEd4/EU8T7nuWUppglNMYOnBxTtSemktgdeI855QlDQxNVHLvJX/upfYlopYTFnVI07P0rB2YoZpRaDbe9dosytCagC0nfSr/RfwatFN5WAk0QSR1LPbD9w/b2b/OHvf4f3bwb+3t/7L7l3520urK/x5GMPIPUBH9zZYhGU2lW47KCPoUFTZDIesTGZcnZ9nXFdMRqN8FXNSPbY3FDeu/UOv/RP/4BnX7/Dz//sj/HIpXXqUcSlhAtrqDQk15BwqKgV7JBuoiNCAlS8AawNqBTTK/Mjj4/thJKWN50g77i5yqcj+abl8+VEfckTuTuaoWg5p0MDtgdsnxa2P0IgLeaBjZbrZl0ywCIksSjt66+9jsaFlVlzE3w9Qpyl0aDgpCKlJoOlA0cJWDix7ZDOFbMn4sTjfcXFy5f56Z/9GS5cOkvlc1WovJOodK1/QuoSu6RT+vtALkzrzATJABf6N0i+IbkRoanZ2dnnnesf8Pqr13nlez/g3tYOu3u71BuXubOXGJ3ZwE0mbG5s8PDFi9RVzdbOPvNFAIl4XzMej1lbW2NtbZ3za+tM64rJqKaqHK5yTKoJ07XLvPDyl9navstXf+8rvPSt13jm6af5xNNP8swzl7h0WRmNK0Qr0IgjgpRcTjvs0LjsEFeZFpH9XVbQpTeZ8/9Jmx/a8wm2WtLyAlD4c2SRkmKNtWaussTQXvCiVTFPgQZsD9g+LWzfZ9GNJA04tRM4y4Aa1jRrC8p8Hnnn2jWqyqEiVNnMUBU0Jw+n1Dm3uxQLbTGhJJz3iFRUlSOmhtAoznlu393m9r19nnn+LPVkgnN1boep96Xftj/duNOaE30UIr3/N+bZWBRJmE0EcWiCg1nDB+/u8d7127z+2ru8+84HbG9t0zQzlBmqAXTB7du7/ONf+g3+zv/mz7Hx0LvMD+acWyQ01dRul3kzJ4pS+Qnj0ZjxuHuN6jGjukYqx3Q6oppc4L3byu9/9RWiNozjTfZ37vLCS+/w4ovfYjq+xJVHHuCppy/z1OOXefjyWc5u1vhKUcnpRDiSRGKzx9b2PiFB5XrgKFjRjh/iHNLmRbruuqUfHEU9IPcuM/Zn0yxrB8UQ7gB7ituAB2wP2F76wVH08WD7Pu6FDL5U9SRljh46R1KHS8rWnZvcuXsT8R4nHuez5GhP0Mz+D7VculSYkRudVFEfcb7C+zHeOypXI66hWQTi7IC7t+ZU1QTvoQQ4SnUm2gCCcUXaZOfsx5Ky1bEANT9fupmmkoCK/dmMt9/+gDdfv8kbr1/nzt0t9md7zBd7oJHQHNCEA0Q8qmZWjtIOv/tbv8Kjjz/Apx55nrOPzWnijPUUcD4xm9WElBBXUVcV01HNZDxiPBkxqrxpQaMKN11j9MAj/Np//8/Z2b6HG63RqJUNdKkhcY+9Zpe33niXa2/WfHkyYW26zsMPP8zzzz3KU08+wsZGjdfA/u5drr3+TV743hZXP/cwo7UR3hW+BETNBLLzwRQVZ4cmqmvN5Q5wnTnVpchAd4RJ6rDRGwfTG4v2Z7iRbHpZQno4Dn4fKw3YHrANp4Pt+yy65G2SKfu8pCs/1x534nj55ZdpmgbvzWRSXM51TNmHUup8OoOKYmDQ7A9JgiRBHAi5Qj4wHk1AG9A5Mc5ZNHOSrrVl9iytxyLGXXm7jlFd+qK2kg8pU44sjASVyKKJvPTiW/zB77/OzVsf0IQtlDlJhfl8xmJhxTyaRYNqwHtFs9QVl2C+zf/8S/8zo7/zv+axS8/x8OYlbr71XfS9D6iqBoJVXfLeMR6PmYzGrI080xGoV/x0yvnHP8W/+Z2v8NU/+R4qNTE2iAhePCEqaADXgB6QvIfZiMVsi627H/DqKy9x5swVnvnEVT7zuYeQ2Qesrz3AmXM7SCCbuUUaa8eKTM52BpjJXCa1sHR9B1Rtf71kwh66hlbps2v6dQFk5f3J0oDtAdv961tcnAC2jy/tuFSJKWBl74oZZRJ2MW947bU3EAHvK8txjFB2nwB2/DF17mhkuRqS5M01zioqEUiqVFWFd8JkMkVTQ0gLFos5zWJBrMf4VBhnDF9NUtbMXIrvRvsFnnsmmQQ+uLHDb/3213jjjXc5aLZZNA0xgEhFiDvM55YOk1KiWcxxPlFVHic20SLgJbL9wRv8L//s1/hP/rO/zYObl7ny3F/i4mPb3Ln2Bls3rqFNpPY1o7pmOhozWVvDjT3TSw9z6bFP8e9+96v8j//LrzFPDbUXnDgQj6WPWj9qgKRoTIRmhjihqhxBa+7eafiTb97mlVdf44tffIonHnyAx598hGa3gQ2P5mh2Z5EKLbc6u7Tjz4oPsfC3K5pdbrMcWOg+67SCsjCY8lU0tQ8PNnzsNGB7wHYPDieJ7ftquiWVmbyim8mUIBmgbtz4gFs3P8BXHuetcIedXhqx/DpFQ0J83jYJiCbbmy7aJjsX0S0ZqCkGZiFSVSPGEytsMZ/tM59vUvk5iDIa1XhfSuiVpGnTUizlpt95MydFHSW9Q/G89fZ7/PIv/y433tuniXOiBkJIVJUQ4x4HB3uEJuC8J8ZolZ7EEYNSebFJIY6QGlwKvPP9b/Ev/tmU/+y/+E+pxweMJg/wxMVLxIOnufvm9zm4c5uxnzCanGPj4Qd54IknqCYX+de/8jv8o//hnxJisONcRHH4PImLb0+wEncujwsQHepGqAqJXaIeELf3+f0v7fDGow/xl//8J1ns7aOsI+10LX/FDI98ZIySv1mZvFmbS9r92/chqpIDyEf5xlzLfStj2AUYPsyTdhI0YHvA9mlh+z4Fb5Sk0dJKtPg4TJqYeaa8+urLhBiYjKeW9CxAKbaMElNAk4F1VI3RGEF7+5pFrF5l7qEmq/SUNII6UmxwfkKMynw2Z76YUdcVvnI4Z+ciIRHvutNdW/MgdpKLPCCUCKdWvPr6Nf7Vr/wm97b2mTdzFot9IlY7s3JrxEVgMVuYSRgtJShpQLSiCY1JV7EB1hRIGqiB177zTf6H/67iv/gv/3OuPlSzJg9TV5/imU//OFvXr7F9Z5sHrjyBbG4QFiN+59e/xD/9R/+c3WZmp8WS9/NLlsCtdHbEFEnZLBOEqIrExg72kwLiGbGZ84MfLPgDifzYZ5/mQXcF0ZBFeDdZ7R9puUNKlquYOVaomMVwWPr3q/UfxlC5v53EsGS6neKqO2B7wHahk8b2fU6O6PwXfd+HgVOYzQ544/uvUtc1XiocdmKqxkTMppt1pALNJepaaW2nprrcyDalQ9WKj9SjfGif+WI+uHGbe3d3OH/unA1OSq3vy1d5X3prHtr/tX4bitQysaUqvPTSm/yrf/Xb7O7PCaFhPt8jxAbJZ1bF2DA72CeFAJJjn94TVfHezD/nE6jPZgWgjto5auB73/wKf//ve/7v/7e/y6c++yCzRWI+v8D5Tz9ODA0RYWt/jy/9+u/yP/zDf8xuM7M8UJPNlIRu1ZS3hQrilreHFh40KYHPSeAOUq5pWs+U17//NjOnPP7c01QTh5fQA3t3r/720XacM4IOjT0UjtJGyT+M2t1awjLcTtG1kGnA9oDt08D2R4tkaOfz6IPr1q3bbO9sMRrV1FWNdw7vPK26gJVTc67CVxVOnPmKxBjhRNCYrDBw1PZMohgTTbASbVbwOLCzs83337jGbBZpmkAIIZtEqX2VSG9f1GhuS98f9tbb7/Orv/rbbO/MCQ00TWC+OCCEBkFJKbK/v8tsfkCKEZISm0BYBNAatKKqary3gskpKYJHqhr1grjIuFauvfwV/q//l7/HL/3qd2hcxQPnpozHFdWoRuOCX/3n/4S//1//v9ma3yHJQU4ysR1NXhwWPzFQluzw4k/qJqbldJISkhIaI9pEdJGYxRlxMefaK9f4vd//LvOmMtNLSt5nD2j5ESuZoPQDCx0/+1He/nXL7+2znPqUTb2lQMbpr7sDtgdsL78/AWwfv+iqYuc4ZbWZnICcd99cu/YOQoX3Na7yuMrhvOAqh3dmJnipcSgeR117fOUys22/e0wpZ9/Ybp5EQCRBCsQQQStGdUVdwxtvvMGdO/dYLKJFeZNCirlOX7QdQSn7v/IroxtnNiNb9wK//C/+HXfv7hNDoIkHzJt9Qgg0i4YYE6ExH1toGptAzpkkdg4Rj/cjvBtjpd2yzygnu4uvUV8RVfAk3rv2bf6r/+r/wT/4//0qW7FhtCbM97b5+/+f/5r/5r/5R8w1oJVFi4m2ZVRcN6EoO13UdtY4T05bSiCY30/AinIHYlyQou0MCouG0DQ0sxlf++Nv8Lt/9AJ7jeZrhVKarvgNbWuk9aeb29m/Jd2/gpiPLDO5aH2qRyFNjnjla09xR9qA7QHbp4Xt++bpkoGp5T9NgCPGxI0bNxmNxlS+pqpqOzMqJZyv0BSyw79d/6nrihibfO8sMcQhzvaCl8wYwXwpGiOLNIPkcL5mf3+X1994gysPXiaEaNWhknWw+Ls09WwvSt9zcWQRfvO3v8Tb197DSY3zEOOCEBtCTGiIpBxQSDGYU9+ZmFRAxFOPauq6RkSIUYmadybliWg7nbI/TB0+NcT5Df7hP/j/sndni7/5l/4c//1/8w/5wy9/FfUjygGITkb0qyUVUauqObm7lPPL9mvectj3H6Y+A83aJAQ7CDHt7fA7/+4P2Tw74Sc+9zi1HoDazv6UtbZ21LVEw3s3W4JaZ3517Wz/XCHpJlgZ82IjnyIN2B6wfVrYPt6nq11DSzX8cvOD/Tlbd/fNFKksEhmTUiS9CMQUzL/lq64jlETu3BFRO0Yj5x8WU0myc8x5sd07KjgvvPnmD/jc5z7L+nRCnIypvJ2q2jU4YlHQjqkJ2799/b3b/PEff515E6lqwaVEExZ2CkC0YtEpJZrQEHPun5K1AFxOcPemGSTbIROTnakF5Hg22V8naBMRoJKEhh3+2T/+p/zyP/0l4mzbtpHGks/pcGI7luyokkRKVrHeOdfmGZqPKZsx2Z9UzM+qquxomBiJUTvg5mpQPjnSwS6/9Vtf5cErV3jisiVwq0AqmgAWBe+PU9+UbTWUArk2daYEXfqpNHS/o+Aom38tiE9vR9qA7QHbp4XtY90L2kqGTgUvDbx7d4vZLLTfxaRZKtNu+NBcKDrGhiaYSVUOxCvfm8smkrQBiYgkVBuSzrIpgYE+BubzA27evMX169eZz+csFgtCCGSMZEmpq53AacJp4ltf/w737uywaOY0YUETFiyahhACpUDGYrGgWTRQJCKmBYivcNnXVcr3hdgVNxHs9FGfE+ydc/i6IjrHIijaRJLeZB7v0MiCkEILSJ/PyBIXsSpIARHNOaBZmFLaI2jqhq2AI4aUd8W4FvApnx+eNKFxgVvssvPBLX7nd7/OQRzh8FSaK05RAhkpT2pDT+sb6wGuz+FVXPSv7d73j4PJ5mOJtJ8SDdgesH1a2D5+0c2J3p2ElmySOW7dvoUScK6mSYGoDc7ZkSfOd+xMKRFCYDFfsL8/JzQp5zravSR3gKQ4dTlFw54RUyLFxhgcE45AnM95+XtvMJ8tiM3C/GYaSClkyail8UDMZfYSsybwwgtvEHVmR4qomV5xEQmLORoXZv7EgMZgmojzeMmFNwRG1RjnxkSFkBqT2AlI2ZGe8nMFVOwIl4mvMQgIdXLIIuJSmT+dVFeEoJGQ7Jjtkq5j35u5CcUitL9TytFwqYFucptEN5PMi+DU7hkQSDPefP37fLC9IIrg1TQNr0oSIanr2NcCwWHHGXgo+ZVFa1DXu1a7/uTvbIy7Qi4dsjsf2GnQgO0B2/bm5LH9kbIX2hUdu+HBwZzX3/g+3gsxA88Ok0vty5KMy+0F7yucq8w3hgIhd8JB8m0HTfoKZD9MjJEUGmIMpBBJYc61t3/AzZu3mC9Mkqd8RLUloyvljCLNoEXglZff4u1r75u5plZ1vpnPLcUlBEvPcZb+41yJRFsyu3OO2lcIappEM7f2pITQ3z6q+XdWVCRmqezF432dd+yM8Nmsslc3OMvagYfchnYQtWUnIlg0PX+X1CLjKfv9Ci9SDsIgSlJIGljs7/HCd79PQ0WiQTWfQ1X8mmVutw1LIHZeVanp2h713dO+RArU+p8tm2bdQvfvBw3YHrB90tj+6JvfBZImoiovvPgKt2/fBSIxRhYLS3XpTCLbRmnPdzgxf1FV2QmbJZPODBfJHSi7ORKqsVXt7QiUlIsYA7rgYG+b19/4PrNFyDU804rq35tMGtk/iPz273ydJgZiTGhMOIQYIjHOCKHBiVV3CqHLkwSLqo5GU3xVE8KcZrEPyXa7GDA6Rktbu89SiRCP+NrUo14eieQcTSs55/LHkoEs7SsXDaXydfusPBRoyqcd0NULdS7v6MmagAitdiSixKzBOAl88xvf4+Z2k/dkZY1DoyXzt6NTyEymtgatJrTVGnqmWd9U08OfpWIrl89P0b2wRAO2B2yfILaPXXSdOMvXK40U5fadO7z8yqtU9QjVRAhNzuVzvfxCNUaJpdx4X1NVVc67yzs31I5jTmppNN7XGYwGir6UXa70EyA1vPLqq2zv7GWpHNvoZvGxFCe3iuPb336dH7z5AVGz5IuJ2DSkEGgWM5pmYZpKtAivquaJVFPVFZqE+bxhPj8gNHNisN0vPp8GWw4rNAuj+IFMZtqR3lbdqA/4FmJZBbL8TpPuJaggzucJawGGElgwH5nLgJN2rNo0ot4E6HJQ8zZPFGHB7Vt3eOF7b5FKapCTDOROG1hup2vbYStEnmhtXmT3Iyvakuj8XR39+7LUDtgesN2182SxfbymK0pdW/Hl0ajGifDGa6/SLHZRXVhhM01U3hFCQ0xzkjaWT4gDD752VONSFWlG0rkBrBV2DleNUK/gLL3EyYRy0qYTJaSGRkMuD+wRadi6/R7vvv0WIXa7V0wLEJRk0VYVDg4Sf/hHXyUkK1+nLJjHhqDRMifLgInSNPkcq7rG1SPwFVEdi8WMxXyfGBTVCkRyVfsS8QUkoWIpLM4pThIuNTgNEK1Aipo91/Vd80GGDpxEKgde1Mr6lYBD1gJEUlYqOl+kAVRRip8um7GpFHyGGAP2NIcwIiWhWSSqcJtXX3qfeQQhtdsyhRrNx1LbnDEzVttorGR4lVNXCzhTuxjYGmL8UGJrnpPvkiSSXEJPsYj5gO0B26eF7WNTxkJo2Nvbo65rmpDQVPHk0w9y88773HhvF+8UcYpDCUkR50kpUrmcf5d36KSUcCqEGIghYEnpiRiVyWSKqB1uJ63kUBDzKSEeSXb2lO3ggSYJ5zbX2FibQBMyMyUHOop5EFEcL774MteuvYu4XH0+QbNY2CCFiOZTX1M29epqROVrnEATFrZrBwOE99m88ia+Y0zgDEjZY0d3tDc4b9LYYiU2cEVzsJMKik8o+xRz98W5LHC77ZJL/iwt+Y3a9qkAVTNYSulBA2eiKiMt1hZJwo33r3Fn51OcH1vkOLXRdzVAUqR8kf6A5u+0aGfaNZysAeHxdc3G5iZezMdYouJJlZgWgDAa33cX+sdGA7YHbJ8Wtu9T8IasvidiaADPxYuXGY8nNOE2EXNAO1dT1RPEqjDjKzMHvK+AyGLRUGUGJbWkbymD7Twx5q2GYpKrPZYjp4lUTqi9p9G8wycIG9M1zp5dZ7FYEKMd96xqDn5xESfCtbdu8hu//geZqdFcT2pVnqKUNoBz9lurmTpCxBFioAkNaC+fUFtvej5x1HjUVfXvFybBqirVFeKdlfgrklr7JeS61CVf9p8XP5qUbZGKuAJgtTQfuqR+cJlf2V8oORjgFA1daTsrju1IJCodkRa7vPDKdf78Zy9Z39SkvPbatQS6vl+rBWIGqxbTEUSV0ARm88ClSw8wHo9aPIk6VBcoiTNnzx4Hv4+VBmwP2D4tbN9H1dDWvZE0oBLZ3w7cvHEH50I+UTWyaALzeYOrhHpc5YpFwshX1PXYBmnREMIi+2aM0Zubm4QQaZoGnMN7i6jaVkHzgYk41sYjppMxt+7eIyJMRxOuPvQgkFiEGXsH2zi/yXzuaZrAmXNT7t1b8C9/+TfZ2QqEJmSTJgc3VFvfFapUoypL+zqfJlqSyAO+8njvsiPfItUqodshgxUk6b9vgedsdxMZPhpXqhkl+504k9B2RFbOn8wxiPJrJ6YZZdSQ0xQpArxNWYGccG4mqWABjWKmhhBQB44RKc757ovf5zPPnqf4tkr+agFlH4fZRddN8OJrpAsgOMClSNNEdprAYhF44IEHOHPmLOI8Tp2ZeCRExsfD72OlAdsDtntoOEFsf4TjelL2IzmSeLa3bnGwd8/w6op0iyhWYCM2FcE3VOMRsa4AZ5Hf2Y6dRZ880+k6n/zcp9jY3ODrX/0qKgsbNB0hlQfnLSlcDhAC4wlcvHSG8fQi3m/y5NNXeeLJR/EelAUh2S4bHxWS7fL5rd/9Gm+/dxM0EFPIeX/mYxK1HUVgAKp8jSVQm9kVgh21UbnKHPYi4Mr+84SjpPwEVKz6VBk5EWklvd0z+3tShGSgKwGc4gsLeftpiGZaRfPu2QhIQr19VuS/OCBGA1k26/r+MEXBJSRZik4McyJNBoO3HUMukNKYrVu3ePG1Ozz5+JP4VBGzOdgHc2krmjdJ5uCPOGkjyEqeYJqIDu7deZeX3/qAT332C8Q4Z29/j8uXH2Rc26GDqiCryf4nSAO2B2yfFraPXXQLk7WIAU007JBYoGlsB+xl5nRQTpZ+Eucs5nOmkzULQGSJ4SvP537sx/jMF3+cP/qDL5HigtolAs4isCHnPQIqDghMp2POnF3j4asXmK6dYX3jLJPJxIICkqOYRJAFzju+99J7fP3rL+L8iMWisW2exUeU21rSTmxPuJBSQwzZMY7lCTovJsEkv1yFEHM+pg2eYlWlYk4ZaaO9+TneefMziWR/EaSUj3YRS1InFsNT8Q5cyjmc2eIrKUfSy3tMJXczP6uAM+YIdVsbwCkhzs3szX0te8WTRnRxwPdeusYv/NxPE2WHOsEiuXZbrI1qGb/l5PKi2XUuMW01hhQbbrx7jXu7DZ//7Od46JIQZnMeuHyZM5vnbHVwp7foDtgesG2jevLYPv404JSYzWZMp1NiWOBq4e69OTHWaGiI2oGyyL8S7RMgBTjYj1SjLqI7GY95/8b7vPTP/gmz/X0ckiOl4AhW7CMkvPNUziOa2NzcZDpdZzKeMpnYEc/T6ZS6rhmNRhZlRUArDvYbfuu3v0wTEuIai/WqJbmXtJ8SNVVNOFeRUiTGhphyVDmD0jkDZlWN8nU5IbtnopivCbNWe+AwAGD1UbWYKilLWcUKjhjfvPN4FNsBmZDcZhWhcgLJBr/w2tJ/0iHtox/I0KT5PoGYFtknCSIjGyu1It41yu0PbvH2W1tcvbxpif85St6nTtvIne2+oZ8+U/xgEgOewGx/i298/Y948smn+MTTz3IQDjh7dp/Llx48VffCgO0B24VOGtv31XQrb4WMSUozD7z1/Rt4N+GJTzzAjVsfcO/uDhrVnCGrKrVYg2MkRycdSSPvv3fdIsOq2bAQvBNigso7UkyEJiB+xHQyYnPjDNPJJuPRJmuTs0yna4zGI6qqsuRqqfPU8HzzG9/hxo3buFpIurBycGq5dSmXiBPxrQSvq8qioCkiUuEr8335qrKzrOoxqrnaf7JIsAVJcmEQ8k6hPCCad/LkEbJBAqtAVfIaU8zmSy48Ei13suw2arfZ5+CE+Yo0pwCVXM/yzMz6PDucK/4oa0PZGaTZg5ZUcck8ala1SkmzXb7yle/yE1/4y0QUnBVz0ZyTalskzYdm90gFk20bWsp/p9RATIhvSLLgtde+x9b2Ns9/6pM0MXKwf8D8YBn8J0kDtgdsnxa277PoQlV52zsuFdv39jjYucvP/sWf4JHHL/H29bf40u98haZ4vnstlCLqsLQP5+x+oZmbKZOyAwrbeZJi3ssslgsoGJgcE0bjNSZrm6ytrbOxMWZtfcJoPGI0mlCJJzYgU+X27Tt84xsv4jxojMRmUewEbFdKQ0oNoUkIleXvEYnJU/mJVYRydgChiCPhczGP0N7HqVgyfE4VaccmJUsAD3ZdSImScg3Y3ntX5esSQoNXi8QWCVzlJHMRwYsz0AFtzqOqFXJWSzEqRUtShEpqyu4bkW73D3gcFU2Y4+uRoUnsBAFRIQrUEnnl+9/n2vufYwNBWEDelSNqkW3Nk9tw4dr3pgR00WqrzpcIccHe1j535gdcfug8dQ233rvOl7f2+eRnnuehS8K9rTvHwe9jpQHbA7ZPC9sfOVHSOWG+2OXqo1d46qmnrKNpBMn2bYtEyg4Oa7y0DbZiIWUvdQYJMUsyyX6n4tTugVtgfWPMdG3KqB5T12N8VeH9iMqPqaqKka/w4wrVmj/+8jfY2pnhaigFQmJMVlc0BCz9pCKEiPcmgc20kryv3Fz8TiCGQFgs8i6jHJSoaryv2mBElxIjkPMIU8o5gDGSxDYi2oTrpcKkAqzOcZ9SwnvjV0zLvCn8VO0CFaHsj8/fN4um5RkiFqQI2Y/mPJIqvKtwYsn81k+xYJEPHOzc4FsvvMFPf/5hfOwKfWhOPj+KukBExwvN70NjqVjvX7/F9myXp595nLHOWOwFvvXV73Dv6QP2w+5Hhd/HSgO2B2yv0seJ7R9i0XVcunSZy5cvolgR5+ZgDqkUHy6SomOkFQ/O5fOocp0Pq6cprhSWKNG+5cIR9kzlyoMXmYzHOFcZg/GIVnY/SuEOz927M775rZeZx8TYi0VUW4xn/xAO75ztGkkB5zwpBUI+iK+kzoCSct5l2e/tfY2vRpTczsKTdiKpEpMVfvbYkSSqQE70FmdaUTthxaS84Ck7d1qQ9yyT/kR1ThCpKFHcGLvJnFKTwWH9wJkkT5rMjyc1lvzue30w315IkZGLvPr9W/zEZx/HJwUpx4x3QYbyLP0wUNobgHxUueIJbO1u88SzTzJ77xXu3DsgJccPXnuRd9+59lHh97HSgO0B2+VZJ4Ht490L2W9Drs5TV2PEmYRNWEm5ogkoXaGL8msDaG+XirgciVSzaIqXXsvftEwXairnGY0rXM4xbAsiUww+e3blPd978RX29vZIDqRxCN6OJwlNzjUszLOE8bJzJIZge9XVTmq1LpdaohW+mljgw9sZTGaFuOxWsoO4U7RosSa7f9QCWofkaKmZXrTtsL5aakr7n0AIAe/9Um4kdHmD3ltRbCeVHdiXq/NriaLnHT4awYmZdhYhDoTYkBa2u6p2dq5X8Y+lMOOdN9/h5p3P8MhZwXxwAjRoKXGnZHMxA7X45noWeFLTHxq1sIkTxVdjzj9wkYcfPsOrL7/I29e2zEQMzXHw+1hpwPaA7dPC9vG1F7T4aBIQSVhStRJRZ8DUbFgsH8zmeuaDmR/kCKVJMA9aUepi9svmGZhNek0nE8bjGqQGqWwXiiRwASTaZj5V5osFL7zwMqqRGBaEprGdRsm25mlyS1IrqRJiJMRg18aAxgUpLCyCK4Kvaqp6jK/HVOMJrq5IWatQNTMqhIaoCUuQNGDVrbSN2SSz7ZiaSlGP2P5e84SRDJBiYvVNqzJZEdqdOyJCXU+oc2AEXDZLzUS0n1oEN2rK/V1YJSY1P6Pk6lCq4FQQl9jbusMffPVl5lQkyaaX+t4ykLqFRKVXhCTnT4LlfeJI3sxNcRW1X8PLiLo+x6c/9VM898kr1KMti1yfFg3YHrB9Stg+VtM9OJgRQsQ5R4yBRaOEOGsHeX97G/EVKYVDD1n21+SOlcigmilh+9k1MyvQ+skyqNemU+qqNvNEciK75LzFNi9QuH17i9v3trFyo5GIkNLcTBrNvibVNt1FSTgvIDZgqtZHnEOktgGu7JhsPxq35zipQtkuk8pEyiDQrDUlsCCKFC9XNyGKTdimIuW97arFJCzakk1w711PK8imjZIrNkWcV/I+GYvcujLRlSbMSZoXB81BkcxXA3ikPe9KBKgQF3jppVf5/Kcf56lHakaqKBX9FJulRPU8YTrgaqsdxFLRSRyVr6ldhYpDqzGPPflp1tYu8N67XzoOfh8rDdgesH1a2D5+0d0LXHv7BlUlbKyvI6mhibvZV+PZuXcvS2mXc+dk6fcdOKE4c8zEslQUJ8ZMq55kwQAzb6zQsq8qmqYhpBlJKpKOUPWk6ElJMjASt+5t0STNPjDBSs0tsvVo5lLxw1m01IofRxWSClU9ofJ2eJ5Koqqm5mfzlvAuzsy+GEqx4wQ5WGC2l+ScxjL5zHyJPalexjAlbQGoWA1Q4ycUf1QLzl6wodsKWaFq6Ulog/muHJJTXypvpeyolBjEJrEuEJGsGaW2rcWstfHwuLhN3Ip89euv89jDn2MkM+Nzxl63wPR9lLZQdMEGC7aEJqBao3i8eCqpsika0TTh4sUnuPLwG8fB72OlAdsDtk8L28cuunfev8b87rsGLudtm6AkYEJ0Y+5u7RKzr0daqWADlb1mFojQbHbRA6gU8yMXxJAJqEdJiEaizHn/7h32duc89pjy0FVHGAfiwT6LScV89zzVeI3pesXe9hYkyYM2x9JnYs/EKW3M+7qzn6nCga+pqjF1bcVArLKS1eF03uFlgqDY8SVdbVM0mzHYVsqUJHe/NUaKAM9tsDqhVSX5M9u2qCiW81m8eVUGp1XqJ09q253U+cdErACKy/ewKHlqJ0DlKnwtpGjSO7oFolBJlYMQli5U6Rhw5iNLHuciP3jzTW5tP88jGwFyuT/NJpgmRfJ2SpVSvSlXv1LzyYk2aDCgOlFcXVsh7dRAcgjBNDetj4Pfx0oDtgdsnxa2j110a5/YGDtIaoV6nMMrqDbsziOhONlzxLIEJShRTExaZMPKAC4m2bwTSiK0paAIlR9Zk9RAoBoIiznbu/dYOxixrmNUJuDXcaNAigmfYCy7SLPNyE2YNzXzeNCaMaC5hJ2douo0EoOBYjQ5Qz2a5shpOV6ka7fDkZommyxq+8t7pqYmzbuCSooMbXpQkeIxdtK9SMzuFFTBTiiw4IFpBMUHuGriQDmxwDmIIeG9JbcbgM2MbKPPjOwsK+ewjyyxXTShUUlZEyOnE6lAUk+KidnODtfevceDz57FJfNqWjpQ1gi0QYvWpZa/aJqXaQqiSliYj9RJsjwlBM2lq1RLUerT2xwxYHvA9mlh+9hFt5JEJQ2+AiuLHEk4M2tWj7RQ7TnItZVKOYDYgrId1Hwgni/AJuJkjjm3LTjgwoJEw81rO9x59y0q56i84F3NaLRGPRrjawf1DA1jUiXU1Zh5mOUKSHlAzGFlTElZeiHghPF4kgdPl5z8kivIq4RetaO2d3nHi7QFQVz2jSGd76kznzqfW9+8gqIplGsU55RyKF9VCb6ySWNnREWsVJ/x13xgdjhesqP52slgBamzjy4FYlxgwZ2AODv9VaSm7GYiFTNVqBGuXbvBF565SMUCSa5dd1Azsoqny0wzac3HpAlSOUzRXt4BkojRTonVJFYg5hSLmA/YHrB9Wtg+dtHdWBtx/pyj9laJsknCB9vCztyzCAamVSr7so+mDplOzE1eeQc5cllVAXGJ0IDGRE1k5GvGlaPy9v2ohqpuqOsFde2pfM1BuoQK7C/28JUyHk+Yz+dWICMlvFgeoZkdiSARjQ172zfQkFjbONcDTJcwbke11LZrh4CdzJpa8OVRMUmfI7kpo7ef59geQ9JqCDHnTRZ/VvY/qZljliTuM3/tWTHG9sgTEHwFqjnfUFx7X81BB4igFpXfP9gmxDlOKkSsDmxSD9FA63JeYznrq3KRO7fvYDrUAtG8XbbMUKyfChbQKLt6yCDP1a/KoYDeu6w1JlDXTjzt4eGkacD2gO3Twvaxi67zNfXYoRK5e0e4cS/SYKdzJk3UPhJiJKYKxLUyogwsmdk2HjEzW7Kfx6HYSaneWfV9M4WUQLCthol8LcSk+OSIIafwJIdyhpm7yE6zxoItK0fHAbWvGU8qmkZZLCCqYAnRATTgUiSmhibN2N5dQBUYjc9AT1p3kr0harTUG7UIs4iSnGkWoomUHOVgu5I7mBI4n9NgcmJezDwQrfB4q5qSwRqCpSvV3uM9Jr1TIgaX/XE1SR3eCYls6uItWCMlYJF3P+V0KDQwP9hitr+NeEwD8JOslSRICwQ748p5O2pFRVHXQANRZ0jsUpHIYIw9c0xYNhtJikY7NqWJgroRXip8Pua6RIttkp6ee2HA9oDt08L28TvSqoCfKHv31hiPp4zXYbE3sxs7R+0qK26x6Hw0xfTQYvZgAqRvfrUFLRCct73SOR/FtACBUa2MfWI6SrkAs6euI5OJMNFIdJvM6ofYS+dodEY9rlGxhPHZfIFQUVVjxqMRi8WBJVWXnMZSFh/b7TI72MfJGuJGqLMdNDnDnRgOch/MxIgaKQfnmXYQAZclXcpbQrNkjNnflfkvvph35gpyUluwJpmPzeqhelKTB1mFlEBIOJ/Tj7J/LqkFV1L0iNQ4B5VzRI2taRTCAQcHu6Q0xzEhiprZO7LDFMHMN0Ftm6ZkEzAKs/0Fs5kwqST7qnr+Pu2n1vT/BU2CJqFpGjRXqbIdWoFShERb3+gp0oDtAdunhO1jF92bW4pz61y4EJht7TOfz9vdKCk5UOtIVSlNMD9RGcTybzE9VJNJ8awzuLxbpR10zGntEerKM64941qpq8i09kxrj3eJUa3U1YRducT7WyOoBE0V3k8Bqx4fk+0mSg3daa2SCKnJINF2ajhxVOIIixnOR9R3/h8AjflUVIrJGYlNzIwdoSmYf0k9ONMIlk+ZlVygSmlrh0rCYYWfJUtRVzSQZDmdVS6iXI4xIVU4rUyiikNlga8aIOKwgiCCgsugjEoMDW1MI0VSmNNoJMaaxpdKViPqaoLDg1qBaSVxZ+sm79/YZfPqFN/6tzKotKKkDxUfZ556WXOzcoPiNG83DShzrDBLAXVqx/80aMD2gO3Twrb0V/lVcn6iG5PE2nhESsp8brt0Ykrm6EbyThqhCdpGN9ub91Z8c96XHSABn/eaV8VHI4JHqQCfE6urylF5R+0ddeUQ7NiPUT3i1myNmzsjvM5IYk7uWE7m1CqbgECpRiQK2hDCnBSbPOAJJzX1aB3FoqSleEfZW78sBc2ctBNWc9QSNcZnE8PiCC5LcUNnF4MpMs4ir6Ymlcr8HkuM15Z3/aEpwQ/b8WR9ExcQsbJ9lnZjGoztDhJinKO6oGlmFnARybtqyuZMO4q724pqz1FRkpvy+NUnePqJdapoe/2VEuTIplRZgDJv7BqH08jrr7/Cnbs7zKNSnznPFz7zCXxMlMVLxPPmmz/glTdePZWVd8D2gO3Twvaxi+5AAw000EA/Wjq+9sJAAw000EA/UhoW3YEGGmigE6Rh0R1ooIEGOkEaFt2BBhpooBOkYdEdaKCBBjpBGhbdgQYaaKATpGHRHWiggQY6QRoW3YEGGmigE6Rh0R1ooIEGOkEaFt2BBhpooBOkYdEdaKCBBjpBGhbdgQYaaKATpGHRHWiggQY6QRoW3YEGGmigE6Rh0R1ooIEGOkEaFt2BBhpooBOkYdEdaKCBBjpBGhbdgQYaaKATpGHRHWiggQY6QRoW3YEGGmigE6Rh0R1ooIEGOkEaFt2BBhpooBOkYdEdaKCBBjpBGhbdgQYaaKATpGHRHWiggQY6QRoW3YEGGmigE6Rh0R1ooIEGOkEaFt2BBhpooBOkYdEdaKCBBjpBGhbdgQYaaKATpGHRHWiggQY6QRoW3YEGGmigE6Rh0R1ooIEGOkEaFt2BBhpooBOkYdEdaKCBBjpBGhbdgQYaaKATpGHRHWiggQY6QRoW3YEGGmigE6Rh0R1ooIEGOkGqjvvy7/29/6f+3f/z36WuK0QAPXyNtH8p2rtAkOXLhWXS/nqvQDy+pf3fq+QPtH1yeW/PXX6YioJCUkVV0ORQTaSkpBhJKRGD0oRIEyKhCYRgryZGQgyEsCCGQIqJGCIhRlJMJE2kFOyliZQSSSNoQrTcP6Aa0Wjs1qSoktuQCDESU0DjAc45tG2nXZs0kWK0nqqiKZGwZ6vdCGUBqD0/JWORKil/T/tMtWdpJMZo/YwJjYHYJKabD/CTX/wcpECIAbQbGWsX1i6151t/XO/7hJIQBMTlvto4Fd7Yzxy/+mu/zr/4lV9bRcaJ0IDtAdunhe1jF92kEecld64MvSKOFoQCOBU0CUldCwlNgiqIGF+aZAAozGpcKr01xqrdMSXFK1Qd1lBV8k9RNWDGBDEkYoqE6HsDmIgpEaMNZtJISLM8CJEUAxojSZUYI00IaErEBIt5IMaGGCOqdo+YIinFDL4G1UCMsQNhSgY6tX/RmN9HNOaBSgE1lIGAE+ON9oAmqjbhpAxwRCW2k1tUkQIEAJoMVJ8nag88gOI70ObxM+AqSfNESomUIjEYMENQxI/wlZBCHldVnBoGRAQRRQVUHaIO7bcZe44ikL9TUjuhEG8TFogpHVqrTpIGbA/YPi1sH7vo3rw55+XvvUcMSoiRRXNASIFEJGZJJFHRJuIQNCWK2I7B26ovJkFCmGdGGCBUGmI06aokkJDBEAHBi8uATBmUkgdfgbSkeZBskGNMBlwCMcUsibJ0zswRBZf/TlmimWSNWcylngRTYgs6YzDJtdKtaB5KBh2KJs0N0gy2oiUlk45ZCwgxMg8LKucZ16NWKxEE5xziXKfrWFNwOMSJLRJibXIioJ4k1kcR05REwInPd0ggdjfnsqYhNUmSvTSBC8Q6Ml2vW+gj1kf7L08JdbT6l61Q7b11aTGRVksQ6RYhEcCBtBrd6dCA7QHbp4XtYxfdN994id/+zV/FSZWlWGjVcJGsiyfNgFQSqR00E1zSqd+kDC6XGxRbcKia0VTAQFJciqQMkJQBp5JM2majQHNHRYQoAVWPUlG5BiXYs1KNiCNpHnQBIfWMtgzyzFUR35qPJsE6zceJaw1L5xwiipOYme1w4mwwJQ+mSCv9EcE5G2BxDk2JyVrFwcGMuhoBkh3sgnMeEYeIgZTcDsnjaJ+Xgc6Q6T8TA4bkdhZVLiWAkLUBMU0mJSKKxjkxNYw2z5qWIi5rAOX5C+OYVmDLUI8/KZu9RRvIamB+dF9bESkT+3QX3QHbA7ZPC9vHLrr3bl3nnR+8ynSyxsFsTj0ZUUwiMJOgmGDiQJy0zBSXAIeTEUKFuIg4h4jDO4dgAypOEOdwZCYgiFMQh5P8nVSIeJwUcBaGl4F04IWYIosmMq5Lt/L9ijRqAdX53Ep7WwmfAVEokbrfYUwXuzDLSGknB5LsWe13WRprfo7Yb1PKE0PMLKzrEc55cH2/XQZZHkN7Rid1HT5rCQYCR6RI8WIaglBVvl1MVAXTlBbZrEzZ7wUaxjRNQ1VtIFIBAZGs0dmd7NnZh9jySI0j9tY0DftbeqZfR0INooiEtj+nQQO2B2yfFraPXXTPnjnPo488wdraBvv7+4ynLgPFmOYFvHN4BPGS/SLlZeASvAFTkkliZ8BOohkERS7kYRYBsd/YgDhEYlbzo5kT+brCnPlil2q0xmxmfrrJuMY7k7Bkv0sxT0QcWpxxIq0MLsBcpb3ZPlVVMZlM6IIABr7uN5IHqDyru59hxzQR0YSIsL+/T+UdQkJcoqpGVFWFSqBMpiIppdwx/7bVTDBfXytXc3u09Cu/VLL+Ih6S+TJValTHZp6mhhRnhKZhPm+gLgtE1nwElIhobWaodBoIbdsKAMW+1/JMW7BacJbLVDIu/HHw+1hpwPaA7dPC9rGL7mSjYrIBZ8+OqMeRjY0z1HWN9z5LVTMvKufxlcM78JU3ySbOoJavceLNbCBy995d/HiTK5evZM1BcCsmS5G+iOCyZuBrj3OC90UCOyDx0ve+DowZjx7g5u2bfOYzTzOdnukmCL4FUzEYinmnKqSkhJCDCCnlAbMo7o3332dtfZ3xeGyR4CiEHIywiKWZMa0E7pmVKQVEsvRXhZQwZ70gvs6TNeHrUdaI8vTsmSxlRJXCj/JRgmwdmR/QZdAokuwZZG2qBDKSA6cONKE+AgF8g8aGpA1JA0rCzNDUSWuN9nxxiATUZXNOWn0oAy7/LabVZEONEvE1TU5zH5y1+ZRowPaAbXvWyWP72EX38cce48qly3zmk5/h7Wvv8ORzn+DipUt450ys05lcTsBJak0Y8yW3ssycy1miz2YzRCaMRmOKj+h+1EWU5dDnzzzzedY3NtnegsefeoZzFzZbE+2o61W1BWGIFlVuGovsxpjyvw0+BKbrc86cPdv+xqeAz78tgDPAGlhpAyaQcmBCXRe8QBubxL7G0QA2mcV5RDuTzfxz2kp4yXaY9HxLFmUl81UQVZPcgMv38s5MNVFFUokYe1QSKtkPKM60BUmI83QaSQ4OkCO5RdMpfi2F4txq54u0s4VuFjkzXZ3LMRk1U07uP+4fFw3YHrB9Wtg+dtHdPHeJv/jzf42NtQ2uXH2ctc31nvO73LQMfV8Np+1ES+31ymQ8/pFOuLW1B5hMRyyaBWsb455P7GgSEbz32aQBSNR1jXMO7xMxOmI0jaOua0ajESklvPfEaBNxFZjee1Qj2v6tpORIKXbgUhtC5yq8rxAUh1JVFhDpBjS3U3OQpYDaPs3/q7rLtTZTT5KZPwK4LlKM5oBQiTtoTpVJ5ps0ntitfAlOLJFpctYWD9kMLs+Xdswp1i6d706XrhcXAMkT51j4faw0YHvAdv70xLF9LOqd82xsbFJXnqpyZlr1enEIWj1A9r8zvBZ1Xj7898fQIY2hCCfFJJgTxBct5YjrV+8jFkBwalIVCgBynqHGFrzF5DQpf9jvFmM0kCf7VqQMuknTDpgWNXXiqXyNJsW7hHMVkk2oLmXHzCYRbc2Y0kbzcVXmD0RR9Z0plDWGJII6Z69UfHw2EUVTu4hIa1pJr1/dxLb2OLo08s4n1/K05wM0TdB1ixRp+fvW16Ug99k08DHSgO0B26eF7WMXXRGoKm8+Jv9nld426C2gfuhfr5hgPeGYUNCjd+x8GBUJJlJSc+zlnFhAQb35pZzDe9/6w0waWtRYxPxjRfsosjVp66Vq25OSaUtOK0Qc3jsCDtThXGUd6msDKojLwYWUTSETpxmwmP8KloBUeuckS30SSUCdJfmbOQTLQYMCa/JnJbgDq8GP/gBK7rfdl/Yayfmr9IIvBs5yTQJJyP12an2MNGB7wPZpYfu+i65kh3WbSvOhA//hgDAlQZY/+FOA8/gHFLDpsW1ZbYMTh7q0bFVig205hV3ajXOelBTn+gOVfUGqZpoBTlv3enud5DxPUQvGiFNQh5cqm2xNm8LSbx+QraScrG5ItMBFLwBRBl1abQi8s+CDyxqDRXsdKooTIUmJBLedtuAELE1W046yf6tvbRVtTMh+MWk/lFaz6Qbarku94fmzLnZ/ehqwPWD7tLB9n0W3RFrlI431R6aPAsoV8B4XkJhMRq1U7x5x3CTq7t0HngUUtAtUlECK60y0TjMo13XAbJPlU2ondAkYdJLXUdWV3csJi0VgNlMmk5q+SVKSs23gTUMpEVcBi0Zo79r8hWSklt07thNpmQ9OVuWwaQmWL+pBKtCY25Oy2ZQ1EwXE5V03be8peZeaH2n8K1pBb1R6pt9p1lsasD1g+7SwfV/UxxjbQe77jD52JaXfISkfdf/1v1SFZtEA0qWwwMp1h6kPXKHL/ysvSx3q/FtH/X3cy/VmSv/zGCPzxRzEdgxZxo8/8jkGrsKE7BtjdW+3tNdZdLjzZ5FBtTxgy+3qfm87hgyUauBR317fpc8Us8ye0QV0V7SLbqZ0XM4mJPisQZweDdgesH0a2D4+fJwH3E8sLaI8RPRHqx18WMpMvx3HUlIrbIH5qzREqHy7l/tYyhK3bYN0EdxygTnju733bXK2lsEB54oW0GkTFlSVXERDQSMpWtqLRvOSCSVgAIjP5i4ZGGX3ezbocsBCUbtnNnlsOKx91gsDsLU9+9R6wYocEjn0MgXEtYajtp9rBv2qGZ5abaC7R6L1d4m1t+xpL366j31R+yg0YJsB26eD7WMXXS3VckqjHJ2U+ogD/qOko4Fb8v0gpQihQr0uSeLj77ny3sb6COlu4OxrClAGy+U520UzO4l+OLcvxVweLg+69+Tfdb4la0TqTdnO5On4YNOptJcMIJPsqf1dZ6HlCVb6sxpIUCzdR0ruYifZ2+dq99xic4lUGZAxP6eyiVG0MsHqGHwcoPhT0oDtAdunhe1j3QtJtZWKZe+53GfAWxPpQ55/2IQq7PuzqRcppvbu+UGs/HFkOw5920o9o77fC1bNo2X6MJOt+yyD2mcgq0WUD1/H0oxZMhXLNdK///I11v6uCpO41P7Gvl/uo5Rn5LYdJ66teSvft6ZU0TJqRGvQqvtOpHtOBvdpKrwDtgdsr9JJYfu+2Qv93S/5fv+e0YcMDivBho8oiPqX9AMIP3SrMsBWfy/kqLKUadEB9oi7LLVlqY2920pB+dKjskklSmciHW6frLCoa/eH9owVLoHE/FH2kUkuadhGeLtCKqtR39OiAdsDto9u08eP7ftous62EubCyqpHys+VZh8v2X8Ukn+V5k2kSRFUSY2SpJgk9kTgw3mhvf3jK9eUQepHfBP20iw9+xJcEZK49qVL4DGNSl3+zteoQowB7zst4hBApTwHM2tyC0pjy/VJFLX9qva560oDLvGg3fJYwOrzy9lUFivW8WEaj7HUd7/LBUSWTjzQ0LZP8/O7KrH2DLtXWr39idGA7QHbR7DrRLB97KK7v7/Pu+++iwLbOzvs7u5mZh19va7896ehH/73yvs3PiBGK548mx10R33c75c9E7N9dv5tu9NGWLqmuxY6TWTZLCqm2DJwOxPoYDbDVzY4dV0zHo+X7t0BvbSTpXu1ryVtR1rRXvpuEyo/Wwtgl83Ivg+tPLXsXjpELVilN2FyJFm6+3Q/XenHEVrJadGA7QHbKw0rf3zs2D520Z1Oxzz08BVElI2NNabTafvsf5/o/IUznDlzBgHOX9hgPB5/qDTrkykAHQhNKyjfdUGM8h6WB1XpchRXgWIAPez3cs4xHo+ZTtcAZTpdo6qqI7SBzhSyj1b9RAXofZ9aaZ/9203OnkaQKyy1qUeaqzeJgXZ5a//KQH+kdKX+s7r7tFrg0lw6vQV4wPaA7UMM42SwfaxPt64rNjbWcxTy/onsPwrT6k9zj9HIt3vJpQzWh1y7zNSeL+lDtIflAT50s/uTSDugplnY39befnBCez8pYHft5OgqIXX36zeiNyXaO/ULWJuJFXP/dWUS5Pvk3Tz3HYLe41dZI/eB7b8vi9qA7QHb9+v3x4Xt4w+m7FUa6vt+/n0jTTVIojsu5SP8picNu7+hM0E6UC5pACsBiCXQik2JdvdOBkGSPB7J8vzsKBRs26R42jJHcaWIcskBpOy971f4L54kyd9n7QWztlT63jElucbSjorPrrRdyBWigFLEu/QdyWd0lcLN7Q2PnKztb1r/Wvm77REfGZkfMw3YHrB9Wtg+VsT3TZOlz8vN/xQY/Uh+rR/yvlZwQzvR9BF+3/dtdWDrTC67ZvnatHTtRyHp+YNKw3ovLaabAfqoSd83347ScTp311GmT24/UCraoyUwsPRl+6yl0oErbipt0bnSpUMflA/16IvKfU5xjRuwvXztgG04KWzf164KIbTA7KrPZ2D9kEpLAeN9B/aHvG9pX+unut/ti7ROaQWYuZXtZyuBB+Cw6XL0vaFvSpXrHaouS/nCemn/Wb1v/720/3aBDZa+tXuW40j6bemCHRngh9oFrAQyVtvRfdZFjltdpKdZmSpSNEc7AmWZSonC0ubTowHbA7ZPA9v3RX1fI+gXNy7g/GEjuT+cNP0oN1z9YxmZq1Fn60sXWOiOpC4Kha70cflR/f3vS4/PtASmIySlaBkr8xCZW6zHkxZDyz/W7hZFdq/eujUBl4BXwOj6u3SO+GF558pR2v2PC8D77cmGmWaNZFXTyR09uiBh/9rTowHby48asF0++Xixffw2YIVyzlI5a8k+11Zd70umjxoo6PvR/kwkHZjsvw9Pp+k0ACXlfhk+BC0gLdrECkVVYjbB+vcqIFEw39bKb5dcYiKoM+8VJHAOdbHLuRbJEye3iezrWnnWUud735dghBJxJJCq86ehrW9LJJIkgrNjTXAOlcqemQ9cTJk3xp+Epu5o6TKR6KUuqQpWncnRbofUsijklJvWfMv9X1lATpoGbBsN2D55bN9n0dV8PpIB00rD5Y4KqMZ2K6GQO7bEuiPkwH2CFUX+/jCRXjs07/6mXZc2Iz3Talka9/9dynNc0WI+DMT3I5VyKF4JYvS+WzJlVu/fDWQLDnuXP+tSghDaIsyr9z76vYHOOTu6RMgqi8JRxpC2bSjPzxPE7LG2nWqVS/KY9oF4uhouDNgesA2nhe37ZC90ppf3nhSV5Io20BXz7ftXlnwkK1qCIB85ufuHob7fa0nCZOGz7N+iDRqkJS3gqFd37VFUTLoPNytXP0uolsr1/WpIublL0V37/bJvSpcmYD8dR3PFfS07FPs8oLuO1kRbAWY+UcCu744vsfqhh/WQ8omx3OX+WN9KWTvBDgS0giFlbHqZAj9aGPxQNGB7wPZpYfu+mm7n9ypmWMJ7M7ucdN/1E5db04yO2cXHcz+p/afLhyxemNSKKpOoHAKYHVdyWBNofXvl7yLd6AFesDOZymd6mE/H9c18bLS8sgneve9ABiVqu+R5y5JV0c6sKSjp/9uP1GaA046DXWLJ7b1nSj6eWqyEnZYrV4dDC8Tyd9q1sV0WMjjb5rRP6Y3Xj3hx+mFpwHbHhwHb/TZ8/Ng+ftFFaIKt5D5BjGqqPpkv4pFkHXTOonmrVYu6HEgovfzRzjeFFDMj8umk5T9VNFkh5WIuqNK+Ly9rk/2R8m+jJqL2dvGgpBTyb7V9zkdqYb7eDu8zZkj73XJfiuS05lp7CxBKDdASNS3g0YwWBdsP7o6a3JLvkn1aSxJagIBge9MTKedhpvy4HrQE7JCUZP7DXNykXFEAqaIkjbi2ir6uvGgny2nQgO0B26eF7fsG0myXSdEGDJyuDJaLWZJZVFBcJxElHw5XAguGT6tlWXauHDWwR6nm5bplE6WTxku5ltr5q1JKWQJ3GkA3OT7M7Dqcu9k+70geHf58VdvoOkcrnYvEd64/Wcuk7iK/HV/yNYdFa751/uJDx1qP/HPpA7ETAZKd9pfBu9Kvtn8rT+69V3SpP6s+xQ9vx8nRgO3+bQdsnyS271PEHGI0syY6pVlEqCE5EFFSyoEGMcngUgZnShaUyOZF6Yg52d3S4Lem2lHq/mp7VHv3OwymVhPo3b8wadWfdcj0KilDLH+29JuUpW//t0uRzmXTYnUguj52nsDlAS5J4sUE6ibk4eM/lu/dteHwc3vwXnq/fJ22AOv4U36lLINrFVEdAPtfSxs9P4onp6flwoDtAdvlVyeP7WMX3RgDoTFV3bmGJgTzdzly4eeE0+y3sQwNnFqKiVOTdC4fKxKzhgCRGCMxlkr1XecLkPsgPcRkNYW/ONWTKiFHeFO0lBlaLYZ8XcfYlHT5vWrvRQvMI19gQGylrmbzxBNpsFqbdmoqGkgSOkBJAvUmsMUmqVPB4WmNriMHvaN266aNyLLGIOXYEIW2MpJ0Ej1HlVUNglHLb6Rtdz6hBSKtL7PwyHhf9r630O6PTO9VxqptOMVg1TImx/b046cB2wO2C4+M9yeH7fu4F5JpA5gPI6YGiWRflxgQS1qNCElzal670Jsa30V+lxtt0r3r1JG7SehJ0RY40mOWxRbLbsmkWH3UFpDLEvKQFqEQcyClL91XX2SzaHnC2D7xJNH6idCEhjt397jxzi7vvvMBo+mEq489xPmLUybjQBSIUhN1BOKzb6uLgrag1w8fNnNDSX/k6YrXlUZmCZ2/t2tiCxCcoDmQa5/nRUSU7iwoWbpHu09dC8jLNX1QFrOtXXHsG21HuZ2Iq0cQniQN2B6w3b/HSWL7PouuEIL5tmIoIA0dEJO2wHTO49SOZXYeUjTGlcF0UgArpGg5kv0UnO5IY2ODk8LYDlCddFqO0sYY0ZRImogp2d9L2yflw4GZDoNw1fTq/26JP4CKpcpIqrl54yb/0//0b/n933+JGG4ibovEhNHkCmcvPMjVJ57mJ3/qU1w8D/V0i4AQnfFRRdtdhavPOZpSD8BKAUhXTd9Ebl9+68rvLTiTYdLyd8W32FK7MrTXH33d/cja+sP95kdPA7YHbHd0sti+T54uLTCdp921YwGELjWkG3wDs1ex2hNanOkKvTSOGDvgdBHgPnOFWERVv0utKeSW3pe/zVfV+awsd1IPXbd0vfa3Th7WBlIqe/L72kWnOTTB8cG7M77x1T/mN/7Nv+bNt1+lmgYq8cy292lCxFXvcfeucv29s7z07Us894lP88zTT3PlkfM888yY9ekIL4IQl/p6iErEQbNvrBeBLjw0312O3q5oFUVud/s1+9KbJVdU//mdqbfMd/tMVj7r+NSqAitjdXr6bUcDtgdsd489WWzfZ9ENhCYgkqjces5ljDjnUdW2KHDXCZ8bL6AOdeYnMvMsb48sJk87uP3dK5rNreVBkbzdTlU7gUQnzVGICmoPpBgQ1rbst9GsWfSB1WtHqwXQB7kdfZ00kYjG9JRyyohw9/aMf/Orv8VXv/LHfHDrHWazO4S0RdwXtK5o4gGhiaS5RyPEJtHs7fNK2GF3+20uvXeZe3ff5ZOf+iRXLl3CqUcRokQggJrEt8kIKCtmi7RYXUrmV+n4lSPmnbYloIKmZRPJqYD3ZqwlM+HK9s1Ugh9lsZDyf/nHkrCTU0uN1FC4b9BfSvBfyc88JRqwPWD7tLB9fCBNE/MQcH6BBE/TBLz3eE9P+hc/VTGLHOW0TtHiHyuO8XKMs6XnmNpP63zvmN3Krfx3osuHs/tAr0BH1kZiMtMuaZ39YKkdqFUza9XU6iLEXWS3JM0nTaQU0Zid96LcvHGLv///+ge88dobLMIOIcxYNHNSNNY3miB5vHdUFTShYXZwgMic3Z1d7ty+zdkbl3n/7j53Z2N+5qcf5PJGwmlDlaxaU5DYDm/nzyK/axNp8v9rjz/aJrq3W1i1C1RQANqCSyxokot5l+Oo2q2v7T8doLTXlvacPjq/ZV9LLG0qY9/e7SiN54RowPaA7fb2nCy2j110w15F2vHImmPuF0tFQbx3pCR4X47uSC2o+ikzzrk2n7GAKcYuiGEV5g2YbQRzSUcv7+NSR1YB1k+jWU2JKYOyLJVWTYkidY8AcDHLsIBKXMz4l//L/8gbr32H/dk+9+5t5f5CSmayzhcBJ0LlPeKUygshKZoiGiM7W/eYzffZvrXFD159mxe/9TJ/6Rf+Kp9+7iHObji8RkieVv1ZySvsAjDF1Op9J52WkJnSLgr93Ujtl5mKrzGl7A/LUeOj8VPMbund4rDZ3FqN7U0kt+eoe54cDdgesH1a2D520X3rK+/wh9VX+Ym//lnGj9Q0TWMdcA60QlzRAuxB3ksGbTHR3NK/JVhgtUsrUPOLlR0ih31gtO9XQbn6bwdEloC5bHIdBuYhjYA+2OMKQK0a1cvfe4nvfudbzGe7bO/cRcSzvjFhf38X7x3eCb6qSMHusZgHQogUP5VmEynOEpXfonZzfvDSe1z/wQtcvvIpfuFv/GV+/AtPsu5LWws/ioZUGNEbcO14U4I6ReIq2o5Rd69lUrIpTN5y2u6hp73Ph1POxWkDIJ1WUHY5dRpC4nBe5snTgO0B2+23J4ztYxfdW7fe4btf+Qb3bmzx+V/4Ihee8YgKrt4D3cRXIKrgKjuxuLBDZNkoUIVeNDelRIoFJMsOdmMO5kuhqPPdAKy+h5yPCDQxElPChdTlMq5I9vt9ljRlkyu1uY0kJUXLlbzx9rv8xq/+Bjc/uAPiWVs7R2gCs4MGTSPG4zGqiRQji6ZLTI+a8FJyC82kFK1ZzBvGowrEMdu7wfe/dxdfz7h0+X/Ls49dwCWhBFf6lDISU9YIysB3hpLLvFVYKuDSctu0m3zEdBSYigOBKJrzMaXVpFDNEf0MupIK1E4cUPVL4Csl+Yo/rDwXKa0/PXV3wPaA7dPC9rGL7r29O7x/6xoHewfcuv0+T/7Ykzz5uee48nQFVSAieAc1jUVl6cBXBrs1yaTbq24J5AbILs9RciZI9oX1T9bog3ApXSYPCJ0PLMZoVaPy+9VdPv3fHgnM1ANmMoCFaFsud+7t8Ou//hu8/MqrhLggpgUxBppmkZ134H0NJJpGiSERogVrnBN8DtIUbSnREEOiWYyBCiURmj2uvf0mzlXmu9ICwz4AOmhlJmb8dUk0bd+yEvFh0rz9VPr+qgq0FynGt9cVkHaajbWvDTKtgK3lc6/97SNPb80dsD1gm9PC9rGL7t5ih9v77zFf7HKwuMfuwS7ffOEV/vf/+V/gkSsXiNUUHU2NyVERfFujtJhekqMJnU9LlvxU02wsVwAAS4BJREFU/cIhncSn5f4q0Je1gpVtjn1w9QDc32++an71/+6DUlUNGDERUySGyK/98r/kd3/vty3YIqY5eO+Zrk3QXJN1Pt8HHHVdM5nYoMXU0DSL9lTXwiMwgRuTEmcLKg9C4N6dO+xs7cLDZ/Ngxp7hVJz8hR8W3CgXHAJgC4rlvi+ZneU+PY2tu0sxxTQvFgYwyUEKa9Kyb8zu12knIppzTZWP4vM6CRqwPWD7tLB97KLbpBk7zT1mzS77YZ97cYt9Ud5/fZ1LepU4egB//iFkuoZ6xRGP8KjQgrMANcZICBYtBpPkfQBawLiTdLLC1D7LyMwtGkYfqMuMWvbdpLxf7yjNYJWiJra3tvjmV7+CyozdvTnzRSAGM0lGozG+9hzM9lEC49GIlJSDgwO8F6raABlixGceqIK4CkGYz/ZQYDKaULtEs5hz4/2b6PNX0VYTAOg0m06Udn6tMuJdNaxOEvfH5ahe6pJPMGCqmaBqVZfKomJMi6iWFCo6zaC3OHT+LQN2p0V0Vpse2ZKToQHbRgO2Tx7bx+fp6gxNkSS77MXI9v42588mbrzzKvPt65w7+ygPXLnD2cefxm9uMlLbN54UtMoCSsR8Y0XK9KRQn4lL2yQFK+PWsvGw+g6d2XVUesxRwLS7aU+S9jSDvO+83TJZ8hxTJDHney+8yHt33ifEBU4ghQCqxASzeS6/p8mOClElNHvEdECMFU3jcC7h6orRZIpGZTFfEHVBDAKiVJVFVhcEVA64c+cuDZoTlCpUwpLJ0vqcNA+vWN8StvtHtWgcPb5T/JGS+Vs2Ltrx1U4qA1SONZRfdNoEgLP3Uu6ZQAOWTlX1xrJ7pZI3mX9PBu5p0oDtAdunhe3j83SpWKRF3gq9j6+Uyw89wPs33uXOrSmT6R0u33qfhw/2eOS5z1BtnCEAEsEX7bwPuAKCnrQuKTf961Rogdz1aBmYq2ZE3/RLS1JpxfdFBucR5kj3+/x3UgKO2cEBv/87vwVxRuUrgiaqqqIejRCX2N3dJ4QIeEKINPGA0cgCMyE0OGeHRYkmYgw4TDtIhgecM5NN1OUcz4avf/Ob/JW/+XNcnFT0TmfqkbSApAVgmXysXFmi6C3zWi2h/97GI3NoVTNSpQh3+6ozzQr4S0S4mHT26o0FHY9PmwZsD9he+s0JYvvYRffzf+EJJgTeevUDmrjHlSubhLDgxo1tpuMFGxtzNDXsz2bszxOf+PyPM9qYmryQUiDEGt1PrYkxHspxXAIm5I0nxQ9z2G/VMcBeH2aC9YFqD+BIbWAV0IX1kNi5e5cP3rvO+fPn2d7ZY3++RzSHFRXCdLqO4JjPGzTs06RAM4tMx+vEOtCEBZpsH/piscBhppdzNSk1lqaonrquIQVUI9fefI1r197igaefLKc+L5mMRdKWgwcLNlQVtxRR5VA/20mvPX4X3mt3wkA7oU3HaEEpONuNtZJGk+PCrYl5aIqoHqXUnQoN2IYB26eD7WMX3Ueufo6/8Vd/gtnuPrt7b/HdL/8JL75wHUnC+fMzRM6QnGN3Ebl7AA9cfYzz4ytUvmo5ZeCyc4YK0Apw+hpCPygBHTBbDh7RI2P4qiTvCoOsDkqhtPS77l6HXwnRBfPdLZoYYTTCyX4uaFIRIzSLBYLHO4f3I6ZrkTX1hIWl5VSjEaPRCFVHo017b+c8XhyhmQGOmMysqbwnxAVeF4yIOG0gVagT0D4PyvsCshIoUcQdwasl/hWAlPBFf6xKUMit/KbP95LzqBmsvaIraLuLp10LSsqPdH04bY13wPaA7aPoJLB97KJLmqPuEtHt8YPX3uD6mw0bayOm6471tQmJwM7eHjKPXL1wlaryzGdzGLus9Hdl8lSXO140grbhLm/+y9fR65T1p+8ncUiOsEo+OkNJvX/tVRiwVOFIOhOsA233fVeZyHL1Ao5mscPdnQ944PwFqkoZj4R5oxwsIvNmDxfAeU819kxqmHpPcI6wmJG0IrkxflzhdUxKEbPIlPnBnOm4ZhECMUXCvCHl3M75bJ+DuSN5cJqQ5NDezqUypJoRoJLaT5UcE259U3lqi12XYkmUh5Qcigd1eWFQENPmNEl+ZllAsrQvPNNOW0Bse6fmMaDAtA04YMBcOoDwR3BU+Z+WBmwP2D4lbB+fvTBruPbqy3z3m19l+867uPEB6/WIUT0lNIHQ7HP28lWe+fQXefKZT7FICeYNInUbNOh8TtI7vkPLBmjQ7NPpFRY+yle26pwuZd5KGkzf/JKetlH8Vx8OzOUgSP+FKi4JmxubTEfCI5fWuXk7EZsFSefsH+zhNeK94n1gvZpy6cwZps6xv3+An55H/ILb+ztsHYyZhwiCRYA1spjPGI1qvIeYGhapTCiLBu/d20EVoljYQdKyVtOZSX2vF0vfL/ugun7Rlk6JqEZEcihClidrEeCHTTrpve9/Tgu8/sRfaktu62lqugO2B2yfFraPXXRffvE7HNx8HwkzRBoiiSbAfDHDVY7Hnvksn/3xn2Lt7CWaeoRL4JtE8JGq8ji3nC5TVn8rOWdRRnPDuxyV1MyMZWB2XVliO2U7XwFlYc6qiccKUwsw+8zsfGPLjvckcOaBS3zq05/l6QfPM06v0OztwqjGTScsQoPzwrSuObd2hgcvXGBj5GkWDZP1KZoO+ME719jf3WW/CSCOg1A0IWXe5MitRqJYyUHvKkbTMRvnJthMEkjaalfLg94LGvT6U67p87A9WK/ws1cCr7890hYB11l5S2zvm07ZZO59lop2sjLxuzYdcc9ToAHbA7ZPC9vHLroHu9vsTTyigXmIiIP1jQ2uPvkYTzz7LOcffAJfTWjUW51RNcamVEysLjk8qeK0SyB3IiCO7Z0F47GwPrUthsV3LUsFKZaBabzODMAisjH7u1JKiOtSazq29MyI/GGXetMf7M5/Ziadghtx+cqDnF2vefbRR5DGc2d3xs7BAXe395g3kYmfcnZ6lo3xlIvnzrC+voafwHx3j527O7zv9tmWfC5XSlB7NAYiFb7yVFUufZcitRfq8ZgzFzZBFB+dFbful7hr4ais8sd65ECSKVx0vxFd9WYV01ez5M/ak6Ye74VW3xBBXFdRaVWiCx3wiyWt6Sgf11GLzcnRgO0B26eF7WMX3d39Xe7twYWzZ3nqyWd48OqDXHzwEaab58GPgXwuUjZVUPN2ac8salVvZ4cbi1jF/sX2nAblG199nbo64Of+yl9gVNd4yfaELEuyvlKxtKcd8oTIfhwF6UV0k3ZXdibCsiawbHoVkGbNQgT1E37sC1/gvRe/ja/HXH3kChcXexzMZuxuX2DvYE5VTzl3Zp3NyZTpdJ3JpMZ5GG14rjx0nrfe36KezwkaLMUlRlRd9iEJISZIkaTBmhfJhURsxw7iV4Y1dUhgpR/lMC2BplHAW31YVZyI+bPUdwDM2xydeOt3othN0JvayxO442kn4XMAQnqgW+IxLV9VE3pE5aaTogHbA7ZPC9vHLrqPP/U0P/9zf5FLVx5ExuuEEPGuIuoIl3wWy8Kq07g/0P1E7qi5NNx8xvX33mH3YJ9vfuPfsj6e8MWf+iybGxvgcwqO9E2xZanT94cBKxXxE+mQf2ipdUu/Ld91JlzH8JQSKeyztzNjVI9ZLAQJMJlMqEaeyXjCmWmT96JDXY8ZjcY452xnkgpORlx84AqPXZ2zu7fH9RBonEeS5WxGwMdArZF1Z1X29xYNZx8+x9mNqZlemiX6yvgc9kV1O6CSLti+fZevfOW7TNYv8unPfYLp2FHXGRT9MdJkpx94j7T1YXsP6plZq6arLj1f80qRo0v5fWdal2v7YD8dGrA9YLs3ACeK7WMX3QevPsnFy0/hqgkhCSnNESrrRK7SA878VrIMTtMG+tv2aAWLd8Jjjz/E3mzOz/61n2DszmM5jgGPy9Kv8MQivKvgXH1W5+9Syta8DsDdtS0D279X/UjQSTnFhQZEic0BTpQYalQsoOJ9hVQNJKXS5QkTk5pfz3um0xFPPH6JxWIf99Z7fLAzYy9prl2tjL3w9OUrXBmvM1Z47d42P/nTf5kLZzZwpT258EYLqKX+dItByQ9tmgWvv/IN3rv2Mjo6xyLe5ZmnH+fK5YvAMqCVMpTlCBiWeLKkin0IdWAu1/bDH0soR5Y0vdOhAdsDtvMgHA8UfvTYPr6IeZoTCTiNVik/RijHi9Btt4Nc+z2nTahGy6kT67TFLEs9eDvR1DmHkw32djxubQqYbyyiuLx3vMurWwGmdN0vMGuDBUcxthfF7TOq83Ox8m/3uyhTfOXZuPgg5x75gP13riNuRNQFKQVCNWY0UiqxsIm2zDehKM7yHs+dPcsnnr3K5fNT3njrbV66dpf9JDiUhy+d4amrjzENM2bv3uYTly7x/KeeoKJfRjBzsjfeH+5LUlKK1H6Dhx4+w37juHjhDBubG63P0X5rEd5Utl1GuH37gNpjEyFre/3JLIJF47GAESrZlOoDUbDFoaTk9E25Ps9Pb+EdsD1g+7SwfZ/TgHPTc6pH1Ijg7GFqkiOpQ9UTkyBR8MlZPl5MgM9gFKpUnNWlintivrfL977zAmvTd3j2+UcZjWpCSjiVfMKqMaU9ALB02y2r/q0JlmxzfMrgWpU4HRAPaxUdkDvtIOWxqaua6IRFWuAmUIlnpBsWOBjbIYEm2K2Ihj1WcuZQIKSKmBac27jAWl1RT+HOduLNu1tsrtU8/9RFdGePRVAeefAqemadJ568givA1AyUViOwMV3aAqqr/VKadI6rT36eO/fmbKyv23hFcL4UZlbKQX4ORWPk/eu3eeSRc1g1fm99Wb2/GvDQ5d05Vte0v9MnM7BdZKQ1/zhiDE6SBmwP2D4tbB+/OQJIMaKurObdzVJSA0FMBAKI4JwnhIBqoqosQiuYuRbENAZXssmTMKorPvu5T1BX66gqi2ZBpQ7vHCqe/i6fJZAlWkGyuhfdIrzL5fRWgXg8MJc+hdyG2cGMN3/wDpMwZuRn1NiWROeVmAs740Y4P8a5ivFowmTk8GJnQ4V8HtW4usB45HnkyhY3d+c89vDDPP/kVW68eIPtWzPGVy6z9vBjrE3OHPJz5Ya2Y3EYkA6yOey9Z3d/h699+yV8fYlnnv8EdeUQJ/mMLfOkGUjIGl6D8wuShvycZbOv0CG/GN37NhCkYMGobjHoQJxNyNNddwdsD9g+FWzfX9NtD4HrSx9b5YupU56QtER1cy4c4HAIQvBmR2mKoIoTaBSeef55NFUcHMxQTaSRp6oqKkcLzGKCtbVJc+NWpWGpnlQivEf5vY7SBo4CcLmnZDPk7NkzQODLX/sym2uXObM55ezmCK8Vu/v7HMxn7M0POGgaUhTW185w9uyUcTVifbrOZFwxHcN6NWVtLP//9t7s17IkO+/7rYjYZ7hDDlU51DxXV7Orm92cKZMSaZOgKJGGYAE2DNiC3w0DMuB/QIZf/GLAD4YtUKYA2RJECrbFqdkT2WRP1fNU3V3znPN0845n2Dsilh9WxD7nZmVllQhW3pcTqJuVee659+wd8cWOtb611rd46rH7ee2dm5w5fYbTZ+4jX4FjOmUwHnH26ScRF6j8XQXRIVfmXW7Y8r1axDbFPTbH0GWH+iHBWyfWVDrL1nQXK32E2XyfMMjlc+umz3jvDn/OLUC9FXSIlrZXdb0qT1cv+j0hd9fGCtsrbB8Vtt/X0j2siqT0WpLaw3FhdudMSgp4uqTgM7P9Kd/70TvMdiIHB7scHOwxHA7Z3DjBaLzG+jHPE08+wDB05LTGMA0YDJUcTIXeObe4vbyoUoGae5d7rUso5ZNZDt9Drfgpp5j0XM7ye5Ynu9wnCTQCCdes8Vv/6B9z9uyYP/vDL3HhWsPpe45z76bnYHefnZ0Dru9sMUuR8caYrf0trm41DP2A9dExTp28h4fu32RzuIbzI+4/e5aPPHyTB8+cJaUR6/ec4fHHT9C1yr2PnyVLxOliQWXpz/40ZflhIVh7aOOwcobTp8/yzMc+wvnLBzSAL8ud6WxONCFk0I4EzGczW0PNuBh56YVX2WszTz/zEdbXxDT2k9XS5xzwwSHullJK1aVNkxcgKg8O6duZlAU5wrHC9grbR4HtOz50xS2JRDhnSeDYB3gx96qCM+dUOJSS+O0aLl3Y4k//6M945fW30C6iec5o3ODcAOeElIUuJv6rf/Jf8NFnHqPtPOL1UAK4tcUu5L0sTmdblFJnXZWXpCxZsVJquWav5KQ2Scrt3bKFVWCcjWruW6tkBD84wUMPfJKR+yJXb2yT9mfc9zNnOXlsTO46Zu2IdueAye6U38wz/unuHr9/+hSvPLLGxsixubZG0zQomfF4nV/4+Z8m+SE5KhICXUwM7znJ+Phmr4ZU17WGahaWwe3cxgVoBcf65gbOB0bjkX1PzT1z0pKKVZdzRnMiaaDxAyaTPe492XDl3Dlee+EF1u85xbXL6+w0HXE6Y3dnn2maM514PvUzP8exY+v9fBvU6vrcYr2U68u5BKxUOMqH7grbfzNs/9LVbf77acs/v+cevnvyBGEUV9gu1/dBsf2+lm6dgGqOaxHksMWtT/kFKK0O3XHhyk3+1e//a3auXwE/BYHQOGLuCJLpYodmYT7NfOGzX+Thx/4bwjCjGk38+FBU1pVW2PVrybQvqsQ5G9+WNSG9XhzmLrCoVRcOc2LL93jo9SXXrh/iWFtf5+/8wkc4/tJbdPMxTz38CO2khexwQ1jbaNjb3+efvnODj7SR/3Znh997+te478w9NCGQsyOmRALcQNCU0OhY39hEk3L8kQfQwQBZ4vbea00OXfMt+YEKHNsccP36NbrZOl1WMhEvvseLqvGaOYGKYzRaZ23cIRo5ec+QkyfhYHKO7uAYfjTAO8+J48fYDMpodJK1tTGWBF/EQkpg4d3XuTSvS+/RW998BGOF7TI+ILb/hxfe5uku8t9tb/PPnv0Yjz503wrb/4HYfh9O124+5YR35Zf3skZW/ZElg0QsadhinZrhB99+nquX3mEwnBFzZm28yWg0QDOkCG0H3kWakDn39ht8+avf5nf/4W+QopSkjAgKPnhEzKWofZgqD4ZqD86sqagY3eaElOWF/CCc1/JmXAYmMBywPj7NE482kIc8cOoB9ncP2NtPNOMRJ491dHHGn46O8Z+/fYkvfvITnNzcICDEeSRmoY1zIh2ZBBkODubcONjj0aeeYvTgGVonjJKQRfuPvZVnut3fly9UxDEaOS5fPM/zL9zkdx74B6wPHU4Pg6dGXu2E9qawL47h5ia//Kt/l9nBhGkckPLix1xoGI3X+jldzk2swYsFHwkLTNpn53etwt0fK2z/zbD9Zxr4x6+d48+ffpIHztyzwvbfANt3bteTa0JysoRoc0xYqPgUg1uFrJZW4ySTvLJ98zwiE5JG0BEhjBgMxsznM5LOiWmGYupMichzX3mOjz/7LI8+dAYTnWus/BKzMnwJNFjvqUzNi0QFyd5O1dxZas2CpjsUmL4dMJfH4vsLN8cqYBYAGQ/HdLlhc/0kftiACi4MWRuPrE+UDBmNxrz95DH+16efYTRcY7wfaadClBYlk3K0VBYRYp6RRGhOneDhX/oUMhgQNJnG6G3MgVs30jIgcrGMhIyKQ51jJPD0Y/fiSlk8Ehe5peKMVwyZJicSHerV6uDDCYbjIbHpGLctcd6SogWKCL6se4kEF31SuyY5xCseVtNSVGtLE4Vb1LXu5lhh+2+G7defeJL/5bHHCK5hhGe6wvZ/MLbf56GbCzeSyolsgBSR/hRWtTQNlxPqHFkC29sHvPHG6/YzSXDBMZ+3WGVOZ+6XJnJ2iHiQxP7eJf78M3/Kb//93+HBBx5gNMz45gBNQ5AhEhZmvvTmAMVasWvUbBxYrdys03RoUYvm5e0W3CYzvxsPSydbGG9w+uGHuHn+bUZBGIUBYS3Qnlhjd+caMcLm8eMMgkdTJnYdewd7ONegIRdX1aKm3jVEVbqUGQ8HaAiWetTzie8G4q1uYf/64QsGwDcDTp+5j3SzY2tnzuaJEQP1iAaUebGqBCHgxHJQY5zi8nFEIj/49ndw4/t58qMP0TTJ5rbMoWloubIOxZ9b2vdVoalP4bmt1XJ0Y4Xt/psrbN9lbL8vvWB5hIVbUkU0k7MDSSC5JE7bokVVcnZ873vPc+3KFZrBcgekzLydYoGJWH634r2BR1Pm1R+9wIU3rvOxT3ySX/+Pf54HHrqHEYpIOpTX6JxbLIQadwNND6g7TUJ1Ed7z+0vBivr+5cVX8Zx69CGuXXiTzfGYtdE6MWfulVPEbspPXnqNtLbBePMYmiOzeUvXdcQ0K/OG3bNAzNlU+3Em1JGhj27Ua+Hd4ITqOi1et9O97ldDiHMDJIyIMfHWy1s88shTBsjS9vrw50gfsCG3JPbY3XsHaSHG+xkOGlPt18WprxYFKS7cwuzqXbOlV5ev167/vdfgbowVtlfYPipsf6CHLiRc6QRavyxRWyzQ4BSyJ6twbfsGX/7ql3FeUSvssKqb0j9eZHmSM5qVMAgMJOG6A9q9t/jqX7/NCy98n9/+nX/E3/nFZ3HrGQhI7Y+kikoRjlZ6kC9fH0gPVCl/19I2pFBmt7vj8t/SPS7zOTkjmlg/eRw3HpFEOGjnHEwiB9MZMUPwMJvO6LqOEATvbQE7TG/UpONsk8+jWUajwRopZtp5x3jN3DpdcgWNW1qsZB/pXd40aj+Rc4YCfJFAlob7H9xkMnkZlx8y14zDro9ItfIcaCDjUdb51M/+MjGsMQiC19xbKalwZVLBSVnbOs/LFkpB5q3Xe9Rjhe0Vto8K2++TvWA9iRbqRpS0tFyCCq7cqCM7SKo8//0fsLd11douq4A0CA2qvtRFJ3LqQDsgkJMSJBCahrDmoWsJeY/rV17mD//tv+Dy1X/I7/7Ob3LsmCeHzLhEPhVrhocqQsIhoL6Xu7MKeulBLIVkl2KZ9JXkYqWHqovFXUxrrbH2aAFLpsGNjnP8zHFe++Gr7O7ss3Njn93JLuLgvrNn2Dw+YDbbIfiR/S7ncI1pilayv4uJLnWICCFA0JY42SdvjAjJ99fQs19Zl5cF2/WlNxelhYnaHCCCUw95RtLjnHlojdNnT+IllRMdKuWfyNZaOzo8joF4UlacD6yffHRRu64ljiuuEGj0HNvCXyylkNRmfwKS7ateuOoCS7dskLs7VtheYftosH3HJlWmppQPlSPeWppYv5ImZrN9Xn7xR+BSXzMeQqCmFNb8wKx24XbAWpVPBYVznvFwgMtz0mybv/78H/Mnn/48u/sttBNSihZtrNejefHzWoIEFWD1tWzandU1WW6PsriHRW8le/12rk85+UQ4+9DjHKTEXtcy1x2CZI6fuIewNiBKIowG4BPZdSQSWTwJu94uRdquI8XaMdYSq+cHE9tAWHVNBWXl7qRe2PLoT9i60UrqUQFejEoIY0ajdYJvEPEsuMB6s4J4YX1zyOlT60X3tLjc4np3qW5g+5yln7+NTyvLH9HruNb5NXbvTq7whz1W2F5h+6iwfceHri3qYVDWrwqG6vpkVS5evMTF8xfLQ9/hJNCEgPeUE8FyFVUzueAkazJFoxjpug4FQtNYRDe3aDzgK3/5WT77mS9w8yAyT3qoZ1TlfPo5rgt1aOOUYIQebn3S31MBMlomtP5jeYLr90lklBOnH2Ht5JitrYsQM0EafOdJE+HyhV3OXdhlf55QF8g+ENWCIm2MdCn1fJcTb10IJHOwuwVJDZxy5ydSDRTYZR3eiHX+beN3gIm5eBdwLrDI5yy/I2ec8zSjEcPBCNfnjN6OnDp8XQuwHf7uYu4rCM16BF9cvfL6EY0VtlfYvg0q3o2RDwHbd+Z0s7UJKX1NF0R/BSwZFSFnISO8+uob5E7xgwZFrdf90ukrrp4AxnepVJM8EWPHbDZDKKkzEkgp4iTiZ7v81Rc+jw5G/Gd//+/RbIidas5cqmp52FVWHmZ5Ams29nKp5dLC1O9KdcMW1oLrj8ISFFHsnv2Qj//sT3Hx1R8jB2tMZnO2rl5iuNswOLHG/mzO/Nqce+45STNsaLs5qFGEmiuUrHY/eId3mXayxWxvl/W1E4g0xNzZBj10L3qIuNPl1w+tnSdnJaY5qi1IaR2uWlG9ZDnYDKgGyA3edeX6+lk79LuXy1UXxFa5JFVuefuSBXDYqjrKscL2CttHhe07W7pZ0ZQX/y+nagWbcUKZTOZgf58Xnn8e7+zUdw5rx6zgskdU0FQoE02IWk8jsqLJWnnk2JJjS+zacn+CpkK2z7d58Rtf49qV68y7WE7wyrDYTDgFt8QPLU40E8lQqgRbJcmln8xqQYhka71Srk0IOPWIOmvdIhmfhSSZM09+nGd+6RdI40BqArkJMHS4Rlkbe0RmbG9fY3tnm1k3Zx4jsxSZxZb5bE6XMgMfWPMNjXialJleeoMbbz/Ptbff4s8/+3Uu73Qk8SiJRCxurOUUWmpLIIvdnaO2jVFELC+RLDb//cle8h3FTmWnAk5w4gjiwGVEEq4oZ9ELelcgVjDWL0s8Xyg2ifGht2gE1PWov6O2AT+qscL2CttHhe0PkL2QynUJueQxWuTTo9mXVlKJc+feYnt7CxfsOT4cjkECCvZzeGqgYRGNLfXv9WQQIadkt1wk3FJK5BR59NGH+I3f/FVGLhK7OXkQCkdkp89y65RlvqpGHW/N47g1arqwJhY/W92LTEZcKs38PO3cc+XKDq+9eo5vfPWANd/w6NND0t4MsgGl7SI5diRNtOLwMkCIOBwaM7FLDAfKwAec84gzd9WlAzaPbXLu4kX+8tNf5ZsvXuE3fu3n+PjTD7KxOSZIRLQ1gQ4ioopXpRbjLEpCfTmFrftBNQKWT+EFn2X8Vn+Yiyx7obfMW/3G0ldNmSlgPuSS6a0/v1jr27t4d2essL3C9rsxUb/x4WL7A5UBW0Q3m8vUv57BZYviRnjjtdfIOeLCiMY3eD9CnDMwasKpQ7WzckYVRDImDJwh24nkvbd0GXF9pYz3nlP3nuU/+ru/wr2nTxAaWwHNShbteapDwYfF1JfJejcA66rcOveHUj8E8JDVcbAXuXjxBq+9fpGXX3qTKxev0M4PmMU9Qphx/+mHWd+Y0jQDhqMRXZyxs7/F/qRj1iW6dk4osnBpnhk0Q9YGA4IIXqxr6qCBYVhH9T7+8quf5mC6xc5rL/MHb5/nvtNneOTR+3n6mQd55PGznD6+waDJiJuX9fGH70+FKgJicMksbr1s1n5elkGy7NTd6nzV7+vheerd2/ITh2rljRvtV6S6vEf3vAVW2F5h++iwfeeHLrlwXSVdopwmi9SJBOpp28iFCxfxjUed1ZSD9j2JjM82103A3LHCLkmfWyc47/HNAO+DCWd0Ee8cN3f3uLEz46mf2qQZj3HeF5fJletYPp0WTsKhWe0nUemPOhFztcob7R4TiCd2cP3qhLfPXeXtty7zxusXubm1y6y7SewiqJ3KMSvTKbz69hUeP7NGaJWmzbRxn4MucjDrTOSkA5c7ujayNtxgfbzGoAkWaAiewWCNYTPGDQa8ev4c3/rxS6h4Rmkb3IybN+fcuHGe737/h6wfO8lD953micfv59FHz3DffafYWBdcKcW0RilKaufs7OwR9UFCXxVeCCqt2k7St66WJaDahAiLAoA7I8Xmr4JyCeRLNJiWua4BkaMcK2yvsH1U2H4fS7dGcgUt6R+1Qt3SYxRP5ubNa9zYuob4ophUIrqiVQw6WeJ0olgFqeTFldbLpZ21uEBoBjgf8AOlcy2p62jnU7auHxCCgdL8OrEcxZIrZ9dlX6XdavUnlk5IEFHQcm2CAVMy4CB7rl6f8uKLb/D6q+e5eOEGB9MJs/kBbTdBNdLNpyU5PJBRupwhZt443zKZKJtjIccDuvkMVc/ABYKLJJcYOGFttMax8RrjQcNwEBiNAuPhkKYZIMMN3PoD/H9/8nu08xkuBCINHqFrp5hm54T5zgGvH1zjzTffpAlDNo+t8/iTj/Gxjz7CA/dt0Aw8B5PLnH/1ZV586R0e/8STDDYLn4daIn2RGBAVywP1DlcxSw1wVF5rSRxF5DagKu/Vw8A27lJ7a02gBJhKms1tbI27NVbYXmH7qLB95+IIhb4JXy7HulpJnxZlppzhpRdfpesyzgveBcAD3k6m0lvIUjmWyOVC+EvhpOo0WKpMxDlhNBoxA2uUl1rifI6mNWo6j0gu7VY4lGaz7GocjvQurIRF+omddtu7+3zr66/wzW+/wO7eHqqxWEMd09k+XWxBM+1svuDMpEQinSPlxKXdOQ8/+ylObmbi9j5bl28wnezic2a9cQwGQ8bDMWuDEeNmyPqoYW08Ahdwo002Hniaf/l//jGvvHWJ3CheHWTwWYnJAjDOeSLgiOA62hS4uXWT7a1r/OQHL3Pm/nv4xKce4Z71KRvrxzh23CFxQkpDxBnQtLcMFrDyfYnmwrKqwYGs70Lie85v/wzoucd3Y+oIn7WLscL2CttHhO33oRcqx7H4UJOhk/4JP5+1vPbaWwimhC/iSxRXyRotWugsiZxeONoAIeXULq3vUFVriKeZQeNRzQxGQ5J2pNTSzqd07TqxGeJdsigl2XQ+li/yDhZ+Off7yRMVXn3lCp/5/HNcvnKTNk1ou2lJnoZ2NmMymeCcI+dMjLFvreKdQxQSpkg/PdjjW9/5Mb/1D/4TTj8Ox848SM6Rdu8a3fZ1fJdYG45ZG2+wub7O2sYGfn2DM098lPXTD/N//+v/l+e+8XXEg8gAsGBN6trCHTmc8xYVjx1JEoJHGkeWGbM84fw7O1y/coXHnryfjz31MI88/gTTgxnHN4am7lROeXvGFA4KsbL4mi4jeckaODyWHbLD3NcSbpZeq0bZLcA68rHC9grbt467he33oRcW/EVWW9J6EjunkBOXr17nxvVrBO+XmubVXEVLAUkdiDS4mjxM4V0UE2XWhfZQTYWJMdKlGeIHDIdr5Nwxb+fMZ5Hg54gIAxq82PmGeVZmtdTp0xqtLL8bQdQZt4XppP7w+df49Ke/ws5uy7Q9IOmUFCNNMyR2ienkgNQlCIEUW2rrZS2dWS2AbL6L08z2tS2++IXn+K3f/hVO3HOG4IRjTzzO5tAzu/IOB1eu4LPn+On7uO+jz3DfI4+zn4Tf/7/+kL/+7F/jnJqbKaaOhGZSIeudVOtMINtc55zwzhG1QWkJPjFLkRd+NOfcxRv8xq99kjizhnqazd1apLMUjsrVBwSg2j8wKj+46NyqtwWlrWFFTbU0buG/+s+rgi5HWQK8wvYK27b2R4HtD0QvwEIQIue0CD6o46WXX6aLLePBiEXYrpYdJqosXYwtjfclpaacQmqtURKCL2IZogpOSGoKTCb9vkZMynQ2Z9bOaAZN3+qEJIgkcmqMC8uLBHBx7vBpJYAk0ETK8N1v/4TPfO7rzNrEZLZP181BSmVPSHTthK6bQXakqMUti4gIKVt9PTWQoqZiFHzmxpVLfOFzX+I//d3f5aknn+DY8TVOHF9n81M/C3s3me9PufehJ2C4wWQy5d/923/DX33286CB7H3pCtMh5OL+mCWQKeYYCV8WPcYIQHJW625u7ASfpuzcmPJXf/UdfvkXP8kDj59hqC0qkMWVIMvS1LiqGailO0GtZNJlr2wxj/1fa9Cihyw1YV8qoEXNZwdqHmbFyZGNFbZX2D4ibH8AemHxL6ubNv4qqzCbTHnztVcIIYC4ngfJ2cofLeeRIizSkrInp1hiAGoJ5pX1tilFETRnfHA4N7IIsCYuX77G9vYuJ04eI6UROTekZG6YusXJVGOVQK+kdFhs2JLPn3vuBT7/uW8Qcyamlnk7JedICFaP3bZzptMJOeVyKptL5oPDeynlhBSBC+07xYpTnArXLl3lT/7o0/yX//U/4dGnPsY9myO8D4xPPEIThNAMuXbpBr//z/8lf/EXn8dpIvuAkhDbm3YvSwr79Ce5oOp6ni/GCN5hWfv2c22aEaYdN2Liq9//CY888wiPnVjgS/p5XwQS+hO+4qz8u1oC5U0LfEp1xW/h0ao6E9YCx95reBS6/n3uKIsjVtheYfuIsH3n4nddXKxdoH1YzRe8fuMGk/1dhoOG0AwIIeC9K0S8iUNbIjh43+Ccx3kQF6mcWio9qPoKoALqCjoRBxLZ29vmjTfeZj6LdF18V416/5Xfm4ux1x0/ef5N/uIL32QWMzF1xNiSYkeMHSJKyh0Hkz3m8xl9EnkRSEEtcd4aEAZgSSbPQtt4SQwC7G5d4/d//1/x//zxX9CyyaljmwwHA8QHbly+yv/2P/8ffPHPv0JO3ipzxIN6JHs8wSpfSgWMBTis4ibnVDbCEqBShpTJMZG7SEyJ/TSlizOun7vEn332a1zcD2QaQo7lVK7gtE0nS25Y717V1+gR3Y+qU7D4HfYGKynVssaHwSflHWSPfLAWfR/OWGF7he0jwvb7KI4sn7LFvSmiHqrKufPnUQ+ucTQhWOK4CF7A+4ALAfGunAjegBv84mLV+C/NrvBWkdrmIudMilYd1IQRzVB48823ub61R9uZC2Vq+qmcjAmlLJaWxHQSUFSY1KqBLl7Y4Y/+7K+Zzeeozskp0rVzYjchdsZ5xbYjth2iFCENE+/wbojzA0IzIjQjxDWId4hziA80zZCmGRGaIT54a9Y33+cz//7f8Xv/+7/gxqxl48SIt157iX/2P/5PfPmbX0WDQyUAjfGAYpxXxip5wJdgTel26jziPBalNqAadWXHbU7m4mhWcqfkLiLzljdfeIk//tzX2N4THC2SrXy0nvpWCup5VxPAHqAsLJNipHip7pdZAFrTqCj3UUtU1VwvJQEere4Y736A3L2xwvYK20eD7Q+UvVD+0WMJLBJ75eo1wmCAbwLOW0QX1+EHSmotmMDSxYcQ0FRrmQuno1WYogYI6pGTSdH6QoWgSEjs7e/w+utvcP/Ze4hxTM4NJCvXXJRK2maS5YvGXL4U4XOf+zI3tg5wDrx3pJh6S4Cy+XKpyRexpHZXJlmcIwyc5R0W0txpwAchVJdMU1kIhRQJOSJxwl995o+5eXOfX/7kJ/n3f/AHXNu+CE3Z+FnxZRGry2i8YZm/8u+s4FQtwlz8NLOAMnjpAxEGZLHcxJRoNePmc179/o/5yonT/OavP8WYOapW8W4zXnVVC2e4lDJT7UBbIl0CYw+IHpzLc76QvVsWbSnBJrnlvXd5rLC9wnbFwd3G9gfQXtDCURVzWhtyFqazKds39wje2herOnL0aB6RUsZpLIQ8iC/cUx+MqK6D8WLO+UPldFrbXjuBLKQ4w6lDwpS333yTT/30x1hfXyOnEdlpOYV0aTJLCWXvMxgA3nzjAs8//xJtUgaDQMod7XxGTh2qdh1dF3sC35feIxKKa+UaBoOBNRxMqbiNZvlYArzgcrk7gZSScWZkvMz4/jc/zw+/8WWcRiRMMIk6LW6rWRy9q1j+LyKIc6bZJPVeEoL0qT65lEHW+7c+XTYPufB8XgMym/DVr32LMw+e5ueeHln2DL6IOVNc5lw+4864WI7w9hvxPd6zzDvmpZ85yrHC9grb74WLDxvbH0DQ1J7mtbix3C83b27RziIgiBMkR4JmgmZ8VrMEVMgpk6MR4immnri2AEThumoaTo+j4lrlaCDVjpwy7Xyfa1evcPHCNeazjrabk3Lbnza3E5moLgHA9777I/b3JqjOSXmGakuMM2LsrNoIZz2fynUiUqQxBR8CzcC4LjvAq36pK9xewLtgwQ/FgDYYkf2ImB1JO1yeIbJLZJ+USvjA0W+iWxfXOVckA8vcVPeouELLQih9S+0+V9T4McTmUVoh64R2/wZf+9IP2IseJwMa9bjycKhrfatrtAzCD/L68rA1qV8sDL4jpRbqWGF7he27j+0PqCJdQWlqTBkLNCgzxHlytDrm5JTsBUKJukpCieTcEtsDpgczutaUjVBHTa8xEWZFpBDsCOBIyVo6p5TRFHF5QJ63vPTKS8zmU2JrEnK5TFC/OH3U0n6Xasf+/pwf/+R1Yp4Z0GNLbOfkPCfmOSlFxOWlyKcFD7xrEPU4aQhhiCCkGEkxUjvJ2qlbxUg8zg/I6oCG4D1+AC4YuCuIe15IS4VT767Yb3He4b3iXKwooJZ4Snb9e5d1YGsAwsS5TVIQteT9LJDU4TVx5cI7XL4+QyUCESXgciaRyepKieu7QbcIOhWtAZFy7QAlXaZKQlUwFkvDNlWJ+L/7+XGEY4XtFbbvLrbfN5BWv5Z5i+lszuuvv1kUk6ySJUZLochq7U368rriTjjn8MGRc+xfPtQYr34ch1+vkdyUEzllUup45+23uHbtOm1MfcuV+nPLpr/lTWag4Tvf+TGXr14x6yPZBLbzjq7NxBagwcmguJwlgCBWheS9SdNpTszbKV3hyOwEPRwFdd4tTb6B3Usg+DHON4TGIt0iFsjwPvSLaJxViZBXCwDXv1ZXw7jECvCqVF+xazmVzpdSUs1kTX0j1pwTGud88xs/ZpYCKta+xBbEVrhabHUNbitTdxuAGTeWQSLQ2VfZuJVd0/6+jnqssL3C9tFg+31Txpauo1/wF194hZtbu4AnJ6Xr5j04DUixvFcQsZPPO49IJtMdOmkqud4vyC2TkXMVlLYTKOfE5GCPV19/i1mbyZ0lqL9XfytVZWtrype+/B0SLTHVYklHztB1iRgTTjwxZrouotm6wTrnCH7IoBmgqrTdjK6blxPXpu8wt2NWE5LxQVhI7zk0+1JVVEDlAt5bGrgTy42saUKVI1QVyMGCHU7I5VQ3g8mRkwUJpIirOLect2k/n0skPKt1MFCNOG156cW3uXBtTrLkR2wvVABxCIy3WgUivaf87vcuuYX2syW4QLT712Wr4gifvitsr7DN0WD7zg9doa/Ftl+SuXb9Bi+++HKf6hFjJBUgppjoYncImM55QhgQmgYlFWtgcXremuS9+KzFZ5t7k0pTuUTuOl5+6RW2d/d7V+hwf6iliQG+/o3vcf36HjFbn6oYE23bklIippYuznHOgJdTQpzDO0/TNPgQiDEynU2YzSbE2JUUHnBFjLpep81XTSxPBRiF3yp6nIuqJSGVa86qhzan3YtZUJVnQ+x9GbUgTP3A8jtZtoQykAPeDcnJYR1fTaUqayalAw72J3z/R28Qs7eoawX0ctBn2UpbntN+jovFkPPSv+3z0IBqsDmoil5LJsSRW7wrbK+wXSfxLmP7jg9dEU8I1mVzOBjhnOfNN940KTiZgUYkJ4ILZG3p0gGqLVk7kA5cNL5nGNBeLMQ0Lh1AboFoboh4cAp+Mcl2DUKXMlFBJSOuY+ASO1s7nDv3JjlFksaei6GvarGNtLe9x3e//X06JpbmrHO6OCXnjqxTNM9Q7YgaSSTLy2wCwXlEla47YN5OSKkrdJwrXT4yiYQ6QZ0Q1XpupbxYAO+ctYWmiB2LIsGhTulyIqmakpSnXH25Z2c8ouWPJ7IYpxQQmx5rGbsI2JCKrnO5b7W24uYnzVEtkXYdgnpSyjTdLm+8eZ6DqMCsuEqWG1lVqEBL6WkF5AKgi1dzH/yguGCVGYs9uM36EomoRLIku293dE/dFbZX2D4qbN8xZSx2HdPplKZpLOqp8PhTZ7i2dYGrV3ZJEvtTPKbW6sGzx/sRSCT4XFrJR0QcOSuxswT0ekPD4QARbEFLSwyzDtzCUshiGh7ekcWRVNnYGHJsfUROEdECerIlV5NQhJg8z33rx1y/MUEkQLY0k64rNd05oSihCf0maMLQkt9F6No5XU69tRJ8gOKa9QvB4Ujr4kResnIKZyXiSCn1P1vdENuDghD6n8kl+u2ccYmCpe1o4RDrZ0HVzq/zRrkX+yOl1IMoa0TUkXJGtGP72h5Xt/Z48Di9dbawAIoJAtBHfWUJkHcYahbgic3jOJfIuSXlarXFYhHBcOTf/3d9SGOF7RW27e93H9t3rsMUc30UV9JXhHvvOc1wOGY+v1rSMSzxuRk4XPB0rRB8Q8pKCGb6x9QhhD5wYGnKESGASiHDrSyyVp30MwU0TgjBEZO5KjEpG2tDTmyMmM3m5DjH+wGKI2cTCUEc33/+Vb70le+SXcZlJYijEzULIvne3fDOl0hpSRZXoUstMUa01N1Xst/VSMJt+DWhvF5cqFSir4LlRWbNfUDEF4GUFFPZ3A7vHbXHljjXR24r0pbdI1hKpbFvk2LCFw5NS/lp1lTcukTOc6ABPIFIN9vl+Rfe4ewvPwEiJVK+iI5Xjooijt3/2z7xMIdVXq9pOTEK83nLqdP3Mhg10Ftr9f3C5ua974vxD22ssL3C9hFh+470ghbCo0YJlcRkD65e3rYUFDGFpXY+ZX9/n4P9A1RjmQDFiWc0GtM0ATQb2V1OFRFhc/M4itB2M2Jsza2Qw6etE8faqOH45ghRqyX3wfHgA2fxArGbM5nuklLHbNZxc/sAzYnLl67wuc99kem8pcsHxG5mHkI50WLsiqSfGL/lnEn4iaPtOrquQzXjvSOEYGWervBcYr2ulBpkWKqe0cpGSRETscXL+fDCCqZZSiX5s6UgiSv/r/OEJZa7Uqu/HIQxIJiVgBZrAEqgRHpwg6Unae9iWV29yD4vv/w2WzvFqtMiQtgDbcm16kF7S1BniRSza8ogHV03YWd3mwuXrrCzO0UZIG6M9+s4sS+R8Z3g96GOFbZX2K7rcLexfUdLV8ofuUQpQdjdPs9schOHw0nNbExoysSUyW0i+o4wHNCETXIW5rOWOJ+Rc4cgDIfHefYTz7Kxsca3vvUcaCKlCOpL1NPSWjIRl4TxwHPq3hOMBhu4MOSJpx/jsccesQVxkVRIfUkRNDGdCZ/+06+wv91CatFOiCmjGTxDMkWEWj0ixutZJDSStCOmOd47vB9QGwyKeJpmUBbPFjg4h+ZMjpX0z1hE29SjtIAlF2DWNnoh+BJ1zQRR0xRVIXZpkZeY46God+5FsRVx9BxbtZocFujIGok5ouILqBtSbo1jyw4VRwgJJwNIMNm+wfdePMczH3mq32CWlwha69UVeo1YLNtzmQyrfcBExH5UMjvXr/HKWzd45qc/ThtbpgfHOHP6DG5opa2i9Kk+RzFW2F5h+6iw/f4yT0rhZhRHpk2ZrKA5kbA8xmqy2wQmcpzRpTndfM54bY2c5ihzVMHJiJ/5mZ/n4z/3KZ778pfQJDQ0RG98UIwWfBC101Qks7Y25PiJMQ89fJrx2jrj9U3G4zFN0+CcJZpnbU2MJDQ89+2XeeXNSzjXELO5J1lN9UlzsgXIlhtip6UrrqJxMs7Rg8JJwIeA9w2CL/qZ2EbCQOcEqx33lgLTxQ4RU6MD01H13plakmK5lDXKLR7vISc7wSswl7k0c9uK+4dVQlXLwvkFd+ScQ3JDJpPqo0WKLqkYSLXMg7iMS4AkXnvlElutcK9MCQk6DVhZbLUGFy6WYXHhhlWQKMues7m5ly+cY+vggE9+4lk4k2lnB5w6e4bNY8eBhTD4kY0VtlfYPgJs3/Ghm3NmNp8xcuvE1BKcWCpLVut731fblBODwpFgCu0pKpODSAiVE3GMxmMuXTrHT/7Ny8ynk6J27wneTtOUErHrLOrrHM4nNjY2GQ2PMWjWGA7XWFtbZzgc0jQNTWOVMZY36LlxfcaXv/x9sw60Q5MJfmhOdF2LajT1JLH69EEYkFLu02UESxi3PMaAD5ZaA54YUwkCLLq/5mQ6o5ohi+DCsoukSy5WUTsqQZe6sNbbSQoPFll2b3rerPBElqpTk8IXQYH6WKhCJapiegJ5wV+5PlBRgh+qSFZImZ0bN/jhi+d5+tSjBnh8AWVVt1qAvwYbLJLcX0L/96xqmzdHvHbM93f57re+xRNPPcHTH/kI84uXOH4w5fTpM72lcxRjhe0Vto8K23emF5zJ2mnJ/G3bxFtvvYNzjsefeoSr16+zs31gpxwUFwFzW1DA6s5TUsAjeFKKXLp8zs5CsZQR1YynAUxgI2kkpojXQBh41jdPMBodYzDcYDzeYG28xmAwKAr7vohmgCbHc1/9IZP9Cd4pObZoikC2yKJalNE7KTOZQEr5HkLTBJO0E+OOQtPgfDDQJRPXyJrwZROZiwWUOnVULf1Gc+++WvTV3C0DZs1dNPDapSgqubi7apAv7UxyWgQjculSUFtzOx8sWFGsl5oj6aSc+OVs9s6iut41xaUytynXstQ85Tvf+hG/+0tPEklor90P9AngC2jWTbWcBK4FrGY5igmt5IjTCDnyyisvcmN7m098/KeJUZlM5kyn7Z3g96GOFbZX2D4qbL8PpyvmDhWQbm/vMdnf59f+3q/y4CP38s6Fc3z5i9+my9HYECkydqWpnmFVys15RMTqwKUAQzACHTG3rrY6cVKU15UQRoThiOHGmLX1MeubY9bW1xmNxgyHI3Mxkp2EF85f5qWX38T62yltThZX7Hs+qakWxda6u3qHD5Bzh/dDOzHdIiF83mVkPusXRMRBiQZDbfocrWSy8kXZOKh0aLM6PILzdv92Kvuyce2enVPwvvxcea2m5dQr0NwHFlSjtXPBXDujzkrVjyviK6mk9mA8nEjAcgoTzmWyGAAHAa6cu8CLb7zDgydBUqbK4Fnblq5PcVq421p927I7C9jLxkq5ZX9vl63ZPmfvP0UThK2Ll/j67gEfe/YZ7j97HzvbW3eC34c6VtheYfuosP2BpfudE7o44cGHzvDYY4+TUkvIVZzYgEGZREtD8f0N1DpvocrUYS5T4XFqy+rqvtWOnU6EjfUN1jc2GQ5GDJoRIQxM9cgHQmgs8joIxNjwpa98h/3ZATK0dJ6klqjdlyiKx7lYTtQhwQ0QBubaSBHQyObepGQtWbScqt4HBsNxcV8KMDO2GGXBHEIv0oGdjlLcqSpVV92rrLlXWUJs80idMTWy3zbuQtrPlYgwVHdVe//H+EerSnJiSe5SFLSc871Wqf0OA54QQSCpEKcHvPDKee77xScIvTCKUhNclmv/za2sDBdmXSxFrjO571hw9dINJu2EJ558hKGb002UH3znu+w/+RHaftMf7Vhhe4Xtu4nt933o1kkR5zh16jSnT59CiZCFbhohp4LHWzkMV1yAxZ996WMhu03wopQCUnmbrvyuBnGOM/fdw3g0LKWZ5sZZ38/yf/EE77h4bptXX71AS2aYhmhK5BjxOGJRfadEPJ0rVTROSDHRxklZiECfj6imj+m9g8JXWaBg4bY5FyzyWhbIgLwQKanWziJNaGlec+EHC2dobqTlcgraz2kP5GzRX+cdVYS6/131sym8mQyKFRJLClDAebuuLOYWV2k98RBzpnGJl1+/yK/87JN4krmE5YSvgY06agJ4/fAajKqgBevNhShOW7b2tvj1p3+F+eVX2L45JeY1XnnxFc5fPPd+8PtQxwrbK2wfBbbfN2XMgpQJwTEM9nYrB8xM2w4tLaZre42ab2fzqlR62k7jhXCFarR0lpov7lzJLSwLhtD4wHg4sDpwB06MTxJZLIzThPjAj198nWnXkl0mtIKIQkolaltz8BKo4GgWPFhMpNRiFT9pcQiWTSPOmQXiAklTnzCvOZOJZeHs6M6lwkdrmWLvlNicePGIFIk6jNcCAy9l+3rnevcnl+h05cpUwVFEp73dY05aZsvmzwIWbTEyrGzTiSNFK5dUzYRQatIpSfReIUUuvHWRV96+wccfPY5jjmoAjT3V1YNPpVgt765WqshJ6vqot282OXHqfh544F5effmHnD+3T9QxOU3uBL8PdaywvcL2UWH7zsUROSJi+YGaU1kIRWlRN2ce2zLB2MKKlokUxNX0FPrXrTnfopLFekDVXk8m+FEJfCfSR3GdDOgbvRX3zJY8IySmBy0vvvAKObWkti3KUF0BTTSXQxMpWRQXtYRtNBKTqUilZBU0WRVxnmZgvaIGgw2awTpNqc93ZGvxnDM5dcb7GGm3pKhUT0uL0pokoImRpGotKEvcklkr1shwIfLhSlAkl4iyqrVbETGFqFrWaVFpTwhDBsMhobGAQzFHLCqdU5kLi8DWunkF6x9FROe7fO3rP+GgC+TiHmt9VGg98fsXihhI5pCloApZyBJKgFnw3tzmMDzGs89+imc++ihNMzfQH9FYYXuF7aPC9h0t3dl8QtfNcW5AjjDvHDHNUKyi5WBv1wKRSxd2u2FlhtpfuCY1ywFLwFakTyaup7zgSr6iB7EGgJbLnFGpgtORrA3Xrtxkf3cfL2Z15Gy81WLhDaBZo3FCqiBFyzRa8CMEKyEUR+HWhgQ/IISR7RQVy00sqk9qF0tfT17uwzCldlKjxj8BmnJxpZYsh6UjL6WM98UiKK1UKj/mnCv5jyUfs4hIG/A8PniLpnpPztZ6JYnlZqqmBcfoqisqpSOt4l1pHCgtaObcW+/w/Ivn+flP3Uujqbf2bh3L6VTv+q5WZX+7+UY8Q1cFoU/w8GOewXjAxUuX7oibD3OssL3C9lFh+44P3clB5Py564TgOHZs0/IC0xQRR0zC3s423pnXQn73z/cXjy1Wf9FalJjEiPB8650pdiKHQNe1JJ2SnTcVJJSs5lwkTWQG7OzPyM6RPQZg1V7wgyUBEu/rRjCOKGWrgLFOp2NQj7pMCA21DbU4q1vXbH2hDhE+1IJGSgS0BlgEJJM0AQ7JCacOXH0POJdBiuCHlr/3XFhxf0u6UNZUDnbFaxH+kFTyKIuACsVFk2C1/pjVkNU0Xk1cpOyxjOUbSiJrQGjJGVwOqEz43o9f5dmfOkkIGctrXC6PLButzEMxDA4lvCsQy1w55wjO0didmD2pY86eeZIHH3j7TvD7UMcK2ytsHxW27/jQvX7pPN3WRZIowQWcxyTo/ICYR2zvHxBj4XD6UdXhpZxouUy2UsstjdAvQhy+JDVjeX796SKRra1rzPb3efiRGfc/cB9p2NGN92hHuwzHx2iGa0zXItPZHkkVJIB2xJRKUGDJdcAXl6Gcbc4hfkBwnqYZ0YSxRVwll8CCw0mwFEUaMpFEiyxttt4VKQtV3UtKZY+r7ZhzyT3E4Xx10aqISHHFVBFfcr4Vgq86oTZv4rQENgTnSjS4cIiC9hU5CmgyLq1pGlJS48+cVUL55RbXWcBn0Fr7DpIzVy5e4urNGZtnQi9/Vx02i1ovxEoO5TNqKenUiMZEVk+WDG6AUjBRYJeyI+oHTp75Wx8rbK+wfVTYviPqB0HZHAidK3RT4bFUbPFjrE2O65ko/cUKbuk17b9XI5fOhaK6VPpAOfDibLIRNEdyzLRZ2NndY+34JmOF5D34jAwaNAWCtqyFCTrfpWnWUZQuzRbAKZzSIVcp2ek7HB5jbTy292RvQifO1KE02xbKqShHqfanYr0XoO/dtBAHsUoXhy/VhlUGr56YFbze5lK1uEN1c9o1tl3GO+OzoPysiLmjmkgplVr+6gYulP6T2ikuCOKHvSuElgR3atCnKQ8Ny8lM2qLZE6cHvPnOZR479TCiackSqMGGRWAhl81TqMCSlJ5MVCVXji2Ye5oVNJaEekFJHNVYYXuF7aPC9h0fusFB8BEJCjlahlvJO0zKolxP6E+29yp/q51E7UxJJHU4Z1FPyCayV+q5ycW+0ExKE66e3+HGxTeNUG+EgazRNCMGgxHON7hRxOVA187xrsE56Loa0SwTr5lehb/0ucrdDB0NCGGIOk9NbFdAvKMKYai2dsRmyum4qB8/zPklypvIWmvNq6SdJYZbS+oa5U4lXUZ6a+K950/MYqhz7d3S5wum60rvxqm44mpm2m5O203tfqQKrwQgkVI54cX0YZ04vCgXL14nfeoJQpE97KO5ywCF/hoKXs2lpAR21IDn+2st3J8qqlLq7Y9mrLC9wvZRYfuOD93xWuDESUduMmQlJuHGNuzMHPPkkL5Gwy740ELJ4sy0073yNcVkd4Ko0ATjhTKZUBKcY0zkZOBsQmYYyiZplKbxDMKMppkwaBzerbGjZ4nimbUzBr5lMLByx67rFgCiNLFTA0lKE/b2D5h3EzY3zzBo1qymGwUpXUMxCyUmA6bm1Edfl3keWJz0iJHsTqydR0oRapoRi2aE3teNGsr3LWq9eK/lfC5IfUXEE5xn4fTQJ6E7X/MZs1kB2XIJY2yZHuyQcov3DbUdtaUadXgX0BxQcZZ96huCc+zvz4nJEcgmtF3cO4rLtZwIb/9e1iCNpWeVRaZrvb/lb9pGlVLJdVRjhe0Vto8K23emF7wwGASSZK7uJm5uCV0OtECnHc5Z4zxNpeWyGK9kM1sTy2FxbpjLhYrlIBYPzXnwZMtVzEC26KQl31T+SkoNdyRpg8sNLSeYNw+w2zk69kkk5jniuwbnAoOBo53PSakz3k1NuDqTSwePjna6zdQ1uDWPuEAIRoprIeAsSprJWcm5lApqTa629/QLUt0rVbJE45igKDVZnmdVUxJx5oLUBc4GKC/WmSDladkjHlFzvYzAMpWn+gBwYic4LHg0iwoLmhKT/ZvE+S7eNXgRQvBWFiqhgL6uQe2JBTnPicmjuSNXTnMZeELvclUHPBcJP0oSfYpWSeQQ1HVGr5WIlBTTQfTw5r6bY4XtFbaPCtt3fOiq98jQM99aYxw8e+MZ04M5SLaEbueRlIid9snffQpGMbOXfptdVEnFIHnwyYjzQqpZ9DHRSGbQwMApo8YxCOZxBO8YjxpcmJP1Xlr3MHM2CQ421h3BC7P5PvN2gmDN65pmA+8iXZygauLOJnJiV2XJ74mumyK+IacGQaw6Ru007TeYGjgrd2edWuv9GW+l2ebF+KzqHsni+0jf8M8qIi0/ESgneodKLG5ZLce0ZHFTy4/WWoUiBFJq8K0M1OrPa4nnfN6S0hzo0CTEimQJ0Axxzjq39sLVha9MAjs3t9jZm3B2Y4B1WKhulpB1wbEtghCU+VDI0M5bYupsc/kMpF4j1Ta3u11SwF0bK2yvsH1U2L5z9sJuwrkRp+6d0G47Jt0cLR1BRc1V8d70OnNXPkaqs0HvltmyJarCr6nIh6XTS8F5nEIQcF5oGs9woAyDYzTKDJqMd45BEJpmk53ZPVy5mUnNHi4ZgLp2Ruxa45IEUracQe9MIV8pEnPoIgYCiCgxzUFb1A2NG8IVRyfadltKlI4pGU9USPy6/bSc8nWD2klbSkVFqFaG5fn5/qecM1dqkexeXDHRkn9o11v5sZQjsuSqWcJ+7YBg0fRER9YO7z0xOmoZ5bxNtLHDtTO8HzBoxjShIfhAfWaownxvi5ffucLJn3qURmqi9yKYdGuEt69XVyEn614gkk0EhoTzCadSG5tYhdEhzvDujhW2V9g+KmzLnZK/vRvpeC2zNhijWZm0c1BzBVKdPGemf9fd/oMW5LlgSkCAdBbNBYKrjI/QoAxE8GLr1gQjqhsvNMGq0p1zNGHM5X3hxsShuQVdmjC77bI/7DSuTfEoE5WiaY+iCecCYbCBqqWbuFK26PoNZqC0Fiagy5qjRRUJ6h4UnJR0GC2gLF92Kbl3e2rqTj9HFbjF3TODw7guSjpNv+m1FEeWundLr1mOxJbASjLiv+sOsK6pDi2RZOess4BzA2uZ4hZK/pTE8sGJ4/zMRx9i3dcadft2Ljdc5zvXqa5zQOS1V15ma3uPWRaGJ07x0888jteM9lnzjrfeeovXXnv1vSMOH+JYYXuF7aPC9h0fuquxGquxGqvxtzvuqL2wGquxGquxGn+7Y/XQXY3VWI3VuItj9dBdjdVYjdW4i2P10F2N1ViN1biLY/XQXY3VWI3VuItj9dBdjdVYjdW4i+P/B2p0ruAV+buUAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.show_results(ds_idx=1, nrows=3, figsize=(6,8))"]},{"cell_type":"markdown","metadata":{"id":"5ca6CT361n89"},"source":["It's quite amazing that with just a few minutes of computation we've created such an accurate key points model, and without any special domain-specific application. This is the power of building on flexible APIs, and using transfer learning! It's particularly striking that we've been able to use transfer learning so effectively even between totally different tasks; our pretrained model was trained to do image classification, and we fine-tuned for image regression."]},{"cell_type":"markdown","metadata":{"id":"I89Ba1px1n8-"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"93VFpFYx1n8-"},"source":["In problems that are at first glance completely different (single-label classification, multi-label classification, and regression), we end up using the same model with just different numbers of outputs. The loss function is the one thing that changes, which is why it's important to double-check that you are using the right loss function for your problem.\n","\n","fastai will automatically try to pick the right one from the data you built, but if you are using pure PyTorch to build your `DataLoader`s, make sure you think hard when you have to decide on your choice of loss function, and remember that you most probably want:\n","\n","- `nn.CrossEntropyLoss` for single-label classification\n","- `nn.BCEWithLogitsLoss` for multi-label classification\n","- `nn.MSELoss` for regression"]},{"cell_type":"markdown","metadata":{"id":"4NX7tYlV1n8-"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"4F0s2iKB1n9B"},"source":["1. How could multi-label classification improve the usability of the bear classifier?\n","1. How do we encode the dependent variable in a multi-label classification problem?\n","1. How do you access the rows and columns of a DataFrame as if it was a matrix?\n","1. How do you get a column by name from a DataFrame?\n","1. What is the difference between a `Dataset` and `DataLoader`?\n","1. What does a `Datasets` object normally contain?\n","1. What does a `DataLoaders` object normally contain?\n","1. What does `lambda` do in Python?\n","1. What are the methods to customize how the independent and dependent variables are created with the data block API?\n","1. Why is softmax not an appropriate output activation function when using a one hot encoded target?\n","1. Why is `nll_loss` not an appropriate loss function when using a one-hot-encoded target?\n","1. What is the difference between `nn.BCELoss` and `nn.BCEWithLogitsLoss`?\n","1. Why can't we use regular accuracy in a multi-label problem?\n","1. When is it okay to tune a hyperparameter on the validation set?\n","1. How is `y_range` implemented in fastai? (See if you can implement it yourself and test it without peeking!)\n","1. What is a regression problem? What loss function should you use for such a problem?\n","1. What do you need to do to make sure the fastai library applies the same data augmentation to your input images and your target point coordinates?"]},{"cell_type":"markdown","metadata":{"id":"541Sk_0x1n9B"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"HS_7T_g61n9B"},"source":["1. Read a tutorial about Pandas DataFrames and experiment with a few methods that look interesting to you. See the book's website for recommended tutorials.\n","1. Retrain the bear classifier using multi-label classification. See if you can make it work effectively with images that don't contain any bears, including showing that information in the web application. Try an image with two different kinds of bears. Check whether the accuracy on the single-label dataset is impacted using multi-label classification."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"z3ufBCQE1n9C"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/06_multicat.ipynb","timestamp":1712447724782}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/07_sizing_and_tta.ipynb b/notebooks/oleg/Education/fastai/07_sizing_and_tta.ipynb new file mode 100644 index 0000000..7d266b8 --- /dev/null +++ b/notebooks/oleg/Education/fastai/07_sizing_and_tta.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"IIIm3ynB1vDc"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2tKYdI6h1vDi"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"6TgrjX8m1vDi"},"source":["[[chapter_sizing_and_tta]]"]},{"cell_type":"markdown","metadata":{"id":"QXXF-c9-1vDj"},"source":["# Training a State-of-the-Art Model"]},{"cell_type":"markdown","metadata":{"id":"K5-NYA5g1vDl"},"source":["This chapter introduces more advanced techniques for training an image classification model and getting state-of-the-art results. You can skip it if you want to learn more about other applications of deep learning and come back to it later—knowledge of this material will not be assumed in later chapters.\n","\n","We will look at what normalization is, a powerful data augmentation technique called mixup, the progressive resizing approach and test time augmentation. To show all of this, we are going to train a model from scratch (not using transfer learning) using a subset of ImageNet called [Imagenette](https://github.com/fastai/imagenette). It contains a subset of 10 very different categories from the original ImageNet dataset, making for quicker training when we want to experiment.\n","\n","This is going to be much harder to do well than with our previous datasets because we're using full-size, full-color images, which are photos of objects of different sizes, in different orientations, in different lighting, and so forth. So, in this chapter we're going to introduce some important techniques for getting the most out of your dataset, especially when you're training from scratch, or using transfer learning to train a model on a very different kind of dataset than the pretrained model used."]},{"cell_type":"markdown","metadata":{"id":"G7lQLOKM1vDn"},"source":["## Imagenette"]},{"cell_type":"markdown","metadata":{"id":"jIhmveDv1vDn"},"source":["When fast.ai first started there were three main datasets that people used for building and testing computer vision models:\n","\n","- ImageNet:: 1.3 million images of various sizes around 500 pixels across, in 1,000 categories, which took a few days to train\n","- MNIST:: 50,000 28×28-pixel grayscale handwritten digits\n","- CIFAR10:: 60,000 32×32-pixel color images in 10 classes\n","\n","The problem was that the smaller datasets didn't actually generalize effectively to the large ImageNet dataset. The approaches that worked well on ImageNet generally had to be developed and trained on ImageNet. This led to many people believing that only researchers with access to giant computing resources could effectively contribute to developing image classification algorithms.\n","\n","We thought that seemed very unlikely to be true. We had never actually seen a study that showed that ImageNet happen to be exactly the right size, and that other datasets could not be developed which would provide useful insights. So we thought we would try to create a new dataset that researchers could test their algorithms on quickly and cheaply, but which would also provide insights likely to work on the full ImageNet dataset.\n","\n","About three hours later we had created Imagenette. We selected 10 classes from the full ImageNet that looked very different from one another. As we had hoped, we were able to quickly and cheaply create a classifier capable of recognizing these classes. We then tried out a few algorithmic tweaks to see how they impacted Imagenette. We found some that worked pretty well, and tested them on ImageNet as well—and we were very pleased to find that our tweaks worked well on ImageNet too!\n","\n","There is an important message here: the dataset you get given is not necessarily the dataset you want. It's particularly unlikely to be the dataset that you want to do your development and prototyping in. You should aim to have an iteration speed of no more than a couple of minutes—that is, when you come up with a new idea you want to try out, you should be able to train a model and see how it goes within a couple of minutes. If it's taking longer to do an experiment, think about how you could cut down your dataset, or simplify your model, to improve your experimentation speed. The more experiments you can do, the better!\n","\n","Let's get started with this dataset:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ih_sRCVv1vDo"},"outputs":[],"source":["from fastai.vision.all import *\n","path = untar_data(URLs.IMAGENETTE)"]},{"cell_type":"markdown","metadata":{"id":"IJpkSq1z1vDp"},"source":["First we'll get our dataset into a `DataLoaders` object, using the *presizing* trick introduced in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NJ34vd3c1vDq"},"outputs":[],"source":["dblock = DataBlock(blocks=(ImageBlock(), CategoryBlock()),\n"," get_items=get_image_files,\n"," get_y=parent_label,\n"," item_tfms=Resize(460),\n"," batch_tfms=aug_transforms(size=224, min_scale=0.75))\n","dls = dblock.dataloaders(path, bs=64)"]},{"cell_type":"markdown","metadata":{"id":"8d_bmSid1vDr"},"source":["and do a training run that will serve as a baseline:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"etPmNIBs1vDr","outputId":"20fc443d-03a0-4ab4-f8ed-90b3b0790848"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.5834032.0643170.40179201:03
11.2088771.2601060.60156801:02
20.9252651.0361540.66430201:03
30.7301900.7009060.77781901:03
40.5857070.5418100.82524301:03
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["model = xresnet50(n_out=dls.c)\n","learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), metrics=accuracy)\n","learn.fit_one_cycle(5, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"ooGtvriz1vDt"},"source":["That's a good baseline, since we are not using a pretrained model, but we can do better. When working with models that are being trained from scratch, or fine-tuned to a very different dataset than the one used for the pretraining, there are some additional techniques that are really important. In the rest of the chapter we'll consider some of the key approaches you'll want to be familiar with. The first one is *normalizing* your data."]},{"cell_type":"markdown","metadata":{"id":"gtje9iA71vDt"},"source":["## Normalization"]},{"cell_type":"markdown","metadata":{"id":"40RWqPab1vDt"},"source":["When training a model, it helps if your input data is normalized—that is, has a mean of 0 and a standard deviation of 1. But most images and computer vision libraries use values between 0 and 255 for pixels, or between 0 and 1; in either case, your data is not going to have a mean of 0 and a standard deviation of 1.\n","\n","Let's grab a batch of our data and look at those values, by averaging over all axes except for the channel axis, which is axis 1:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ijtp_VQR1vDt","outputId":"1c345c4e-8401-4beb-b92c-fb18427da297"},"outputs":[{"data":{"text/plain":["(TensorImage([0.4842, 0.4711, 0.4511], device='cuda:5'),\n"," TensorImage([0.2873, 0.2893, 0.3110], device='cuda:5'))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = dls.one_batch()\n","x.mean(dim=[0,2,3]),x.std(dim=[0,2,3])"]},{"cell_type":"markdown","metadata":{"id":"pc0CnowT1vDu"},"source":["As we expected, the mean and standard deviation are not very close to the desired values. Fortunately, normalizing the data is easy to do in fastai by adding the `Normalize` transform. This acts on a whole mini-batch at once, so you can add it to the `batch_tfms` section of your data block. You need to pass to this transform the mean and standard deviation that you want to use; fastai comes with the standard ImageNet mean and standard deviation already defined. (If you do not pass any statistics to the `Normalize` transform, fastai will automatically calculate them from a single batch of your data.)\n","\n","Let's add this transform (using `imagenet_stats` as Imagenette is a subset of ImageNet) and take a look at one batch now:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1se2SPB51vDu"},"outputs":[],"source":["def get_dls(bs, size):\n"," dblock = DataBlock(blocks=(ImageBlock, CategoryBlock),\n"," get_items=get_image_files,\n"," get_y=parent_label,\n"," item_tfms=Resize(460),\n"," batch_tfms=[*aug_transforms(size=size, min_scale=0.75),\n"," Normalize.from_stats(*imagenet_stats)])\n"," return dblock.dataloaders(path, bs=bs)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Xp6aUeTn1vDu"},"outputs":[],"source":["dls = get_dls(64, 224)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RGeHENMu1vDv","outputId":"761a1b16-6b9b-49e7-c713-d1644820ddf4"},"outputs":[{"data":{"text/plain":["(TensorImage([-0.0787, 0.0525, 0.2136], device='cuda:5'),\n"," TensorImage([1.2330, 1.2112, 1.3031], device='cuda:5'))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = dls.one_batch()\n","x.mean(dim=[0,2,3]),x.std(dim=[0,2,3])"]},{"cell_type":"markdown","metadata":{"id":"yscN_wOP1vDv"},"source":["Let's check what effect this had on training our model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6xa6V2OX1vDv","outputId":"48bb02d1-aad6-4697-f2ff-7ccd06bf590a"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.6328652.2500240.39133701:02
11.2940411.5799320.51717701:02
20.9605351.0691640.65720701:04
30.7302200.7674330.77184501:05
40.5778890.5506730.82449601:06
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["model = xresnet50(n_out=dls.c)\n","learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), metrics=accuracy)\n","learn.fit_one_cycle(5, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"ATjdXaiR1vDw"},"source":["Although it only helped a little here, normalization becomes especially important when using pretrained models. The pretrained model only knows how to work with data of the type that it has seen before. If the average pixel value was 0 in the data it was trained with, but your data has 0 as the minimum possible value of a pixel, then the model is going to be seeing something very different to what is intended!\n","\n","This means that when you distribute a model, you need to also distribute the statistics used for normalization, since anyone using it for inference, or transfer learning, will need to use the same statistics. By the same token, if you're using a model that someone else has trained, make sure you find out what normalization statistics they used, and match them.\n","\n","We didn't have to handle normalization in previous chapters because when using a pretrained model through `vision_learner`, the fastai library automatically adds the proper `Normalize` transform; the model has been pretrained with certain statistics in `Normalize` (usually coming from the ImageNet dataset), so the library can fill those in for you. Note that this only applies with pretrained models, which is why we need to add this information manually here, when training from scratch.\n","\n","All our training up until now has been done at size 224. We could have begun training at a smaller size before going to that. This is called *progressive resizing*."]},{"cell_type":"markdown","metadata":{"id":"DP3c0sSH1vDw"},"source":["## Progressive Resizing"]},{"cell_type":"markdown","metadata":{"id":"fmK7xZW41vDw"},"source":["When fast.ai and its team of students [won the DAWNBench competition](https://www.theverge.com/2018/5/7/17316010/fast-ai-speed-test-stanford-dawnbench-google-intel) in 2018, one of the most important innovations was something very simple: start training using small images, and end training using large images. Spending most of the epochs training with small images, helps training complete much faster. Completing training using large images makes the final accuracy much higher. We call this approach *progressive resizing*."]},{"cell_type":"markdown","metadata":{"id":"eJ3oKrKJ1vDx"},"source":["> jargon: progressive resizing: Gradually using larger and larger images as you train."]},{"cell_type":"markdown","metadata":{"id":"qxViacKV1vDx"},"source":["As we have seen, the kinds of features that are learned by convolutional neural networks are not in any way specific to the size of the image—early layers find things like edges and gradients, and later layers may find things like noses and sunsets. So, when we change image size in the middle of training, it doesn't mean that we have to find totally different parameters for our model.\n","\n","But clearly there are some differences between small images and big ones, so we shouldn't expect our model to continue working exactly as well, with no changes at all. Does this remind you of something? When we developed this idea, it reminded us of transfer learning! We are trying to get our model to learn to do something a little bit different from what it has learned to do before. Therefore, we should be able to use the `fine_tune` method after we resize our images.\n","\n","There is an additional benefit to progressive resizing: it is another form of data augmentation. Therefore, you should expect to see better generalization of your models that are trained with progressive resizing.\n","\n","To implement progressive resizing it is most convenient if you first create a `get_dls` function which takes an image size and a batch size as we did in the section before, and returns your `DataLoaders`:\n","\n","Now you can create your `DataLoaders` with a small size and use `fit_one_cycle` in the usual way, training for a few less epochs than you might otherwise do:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"xPuR5MM-1vDx","outputId":"c04c5f87-690f-4731-8d6b-8ca7cede5e77"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.9029432.4470060.40141900:30
11.3152031.5729920.52576500:30
21.0011990.7678860.75914900:30
30.7658640.6655620.79798400:30
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["dls = get_dls(128, 128)\n","learn = Learner(dls, xresnet50(n_out=dls.c), loss_func=CrossEntropyLossFlat(),\n"," metrics=accuracy)\n","learn.fit_one_cycle(4, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"3tB9iCuZ1vDy"},"source":["Then you can replace the `DataLoaders` inside the `Learner`, and fine-tune:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"79-mukEj1vDy","outputId":"17373102-3e76-41dd-e9a7-6baad1f1c3ff"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.9852131.6540630.56572101:06
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.7068690.6896220.78454101:07
10.7392170.9285410.71247201:07
20.6294620.7889060.76400301:07
30.4919120.5026220.83644501:06
40.4148800.4313320.86333101:06
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.dls = get_dls(64, 224)\n","learn.fine_tune(5, 1e-3)"]},{"cell_type":"markdown","metadata":{"id":"c7-g4r7K1vDy"},"source":["As you can see, we're getting much better performance, and the initial training on small images was much faster on each epoch.\n","\n","You can repeat the process of increasing size and training more epochs as many times as you like, for as big an image as you wish—but of course, you will not get any benefit by using an image size larger than the size of your images on disk.\n","\n","Note that for transfer learning, progressive resizing may actually hurt performance. This is most likely to happen if your pretrained model was quite similar to your transfer learning task and dataset and was trained on similar-sized images, so the weights don't need to be changed much. In that case, training on smaller images may damage the pretrained weights.\n","\n","On the other hand, if the transfer learning task is going to use images that are of different sizes, shapes, or styles than those used in the pretraining task, progressive resizing will probably help. As always, the answer to \"Will it help?\" is \"Try it!\"\n","\n","Another thing we could try is applying data augmentation to the validation set. Up until now, we have only applied it on the training set; the validation set always gets the same images. But maybe we could try to make predictions for a few augmented versions of the validation set and average them. We'll consider this approach next."]},{"cell_type":"markdown","metadata":{"id":"fZU0ZNXo1vDy"},"source":["## Test Time Augmentation"]},{"cell_type":"markdown","metadata":{"id":"0z5H54641vDz"},"source":["We have been using random cropping as a way to get some useful data augmentation, which leads to better generalization, and results in a need for less training data. When we use random cropping, fastai will automatically use center cropping for the validation set—that is, it will select the largest square area it can in the center of the image, without going past the image's edges.\n","\n","This can often be problematic. For instance, in a multi-label dataset sometimes there are small objects toward the edges of an image; these could be entirely cropped out by center cropping. Even for problems such as our pet breed classification example, it's possible that some critical feature necessary for identifying the correct breed, such as the color of the nose, could be cropped out.\n","\n","One solution to this problem is to avoid random cropping entirely. Instead, we could simply squish or stretch the rectangular images to fit into a square space. But then we miss out on a very useful data augmentation, and we also make the image recognition more difficult for our model, because it has to learn how to recognize squished and squeezed images, rather than just correctly proportioned images.\n","\n","Another solution is to not just center crop for validation, but instead to select a number of areas to crop from the original rectangular image, pass each of them through our model, and take the maximum or average of the predictions. In fact, we could do this not just for different crops, but for different values across all of our test time augmentation parameters. This is known as *test time augmentation* (TTA)."]},{"cell_type":"markdown","metadata":{"id":"zBgTQQ3F1vDz"},"source":["> jargon: test time augmentation (TTA): During inference or validation, creating multiple versions of each image, using data augmentation, and then taking the average or maximum of the predictions for each augmented version of the image."]},{"cell_type":"markdown","metadata":{"id":"KvbnWUt01vDz"},"source":["Depending on the dataset, test time augmentation can result in dramatic improvements in accuracy. It does not change the time required to train at all, but will increase the amount of time required for validation or inference by the number of test-time-augmented images requested. By default, fastai will use the unaugmented center crop image plus four randomly augmented images.\n","\n","You can pass any `DataLoader` to fastai's `tta` method; by default, it will use your validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"213GLB0l1vD0","outputId":"8684d85f-72b7-4c8d-f45c-eb0c31a21a05"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["0.8737863898277283"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds,targs = learn.tta()\n","accuracy(preds, targs).item()"]},{"cell_type":"markdown","metadata":{"id":"LzriM_Ia1vD0"},"source":["As we can see, using TTA gives us good a boost in performance, with no additional training required. However, it does make inference slower—if you're averaging five images for TTA, inference will be five times slower.\n","\n","We've seen examples of how data augmentation helps train better models. Let's now focus on a new data augmentation technique called *Mixup*."]},{"cell_type":"markdown","metadata":{"id":"_FDK2aS81vD0"},"source":["## Mixup"]},{"cell_type":"markdown","metadata":{"id":"QVthWxbz1vD0"},"source":["Mixup, introduced in the 2017 paper [\"*mixup*: Beyond Empirical Risk Minimization\"](https://arxiv.org/abs/1710.09412) by Hongyi Zhang et al., is a very powerful data augmentation technique that can provide dramatically higher accuracy, especially when you don't have much data and don't have a pretrained model that was trained on data similar to your dataset. The paper explains: \"While data augmentation consistently leads to improved generalization, the procedure is dataset-dependent, and thus requires the use of expert knowledge.\" For instance, it's common to flip images as part of data augmentation, but should you flip only horizontally, or also vertically? The answer is that it depends on your dataset. In addition, if flipping (for instance) doesn't provide enough data augmentation for you, you can't \"flip more.\" It's helpful to have data augmentation techniques where you can \"dial up\" or \"dial down\" the amount of change, to see what works best for you.\n","\n","Mixup works as follows, for each image:\n","\n","1. Select another image from your dataset at random.\n","1. Pick a weight at random.\n","1. Take a weighted average (using the weight from step 2) of the selected image with your image; this will be your independent variable.\n","1. Take a weighted average (with the same weight) of this image's labels with your image's labels; this will be your dependent variable.\n","\n","In pseudocode, we're doing this (where `t` is the weight for our weighted average):\n","\n","```\n","image2,target2 = dataset[randint(0,len(dataset)]\n","t = random_float(0.5,1.0)\n","new_image = t * image1 + (1-t) * image2\n","new_target = t * target1 + (1-t) * target2\n","```\n","\n","For this to work, our targets need to be one-hot encoded. The paper describes this using the equations shown in <> where $\\lambda$ is the same as `t` in our pseudocode:"]},{"cell_type":"markdown","metadata":{"id":"1-hBLDud1vD6"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"vt08wm401vD6"},"source":["### Sidebar: Papers and Math"]},{"cell_type":"markdown","metadata":{"id":"DPlV-viH1vD7"},"source":["We're going to be looking at more and more research papers from here on in the book. Now that you have the basic jargon, you might be surprised to discover how much of them you can understand, with a little practice! One issue you'll notice is that Greek letters, such as $\\lambda$, appear in most papers. It's a very good idea to learn the names of all the Greek letters, since otherwise it's very hard to read the papers to yourself, and remember them (or to read code based on them, since code often uses the names of the Greek letters spelled out, such as `lambda`).\n","\n","The bigger issue with papers is that they use math, instead of code, to explain what's going on. If you don't have much of a math background, this will likely be intimidating and confusing at first. But remember: what is being shown in the math, is something that will be implemented in code. It's just another way of talking about the same thing! After reading a few papers, you'll pick up more and more of the notation. If you don't know what a symbol is, try looking it up in Wikipedia's [list of mathematical symbols](https://en.wikipedia.org/wiki/List_of_mathematical_symbols) or drawing it in [Detexify](http://detexify.kirelabs.org/classify.html), which (using machine learning!) will find the name of your hand-drawn symbol. Then you can search online for that name to find out what it's for."]},{"cell_type":"markdown","metadata":{"id":"KaUW2l2s1vD7"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"2i3oyEGp1vD7"},"source":["<> shows what it looks like when we take a *linear combination* of images, as done in Mixup."]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"cecd4Ts81vD7","outputId":"e24a2499-9514-4411-8cda-f5c0f9e6f759"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAqwAAADTCAYAAABEKUENAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9abRmWV3m+dvDmd75zjfujXnIyHkgMwFJTEClsEAUoZd24bBUlLbsRUt1UQ5VKikWZdlSa1mW3dVdit0Cir2cUFtsBZGZTIYkSTIiMmOebtz53nc+0x76w3kjkvpgfuiF3fnhPnetuG/E2e/Z++xz9tnPfv7Pf4fw3rOHPexhD3vYwx72sIc9vFgh//9uwB72sIc97GEPe9jDHvbwQtgjrHvYwx72sIc97GEPe3hRY4+w7mEPe9jDHvawhz3s4UWNPcK6hz3sYQ972MMe9rCHFzX2COse9rCHPexhD3vYwx5e1NgjrHvYwx72sIc97GEPe3hRQ7/QwXvuOOCJX4ZpN1isbyPaC4yCl6ObNYbnPkNnYYr8+jXGKubo0XtZUzGBSbFyijDpUIzPkSQNZG+M8SGB2qUYlowsTDWmKNnk+nNXGY3O8YpXvJ6vfuFp5u97kEYwRS/fYL61zKYs8EbxcGeFC/4Y9sZFClcjjoaUtQOkW5sEoaV35QIzd9+JWy9pDE6xdvhlNHUdZ0pyp3FxQnnl6+ij9/Oag32evQIbJkTnKWWtgzElloJGEZB2L6Ln7kP7EUUQ4fMUHUY4U+K1R+KQBJQFEBi0cYwC6F14hqUDx2mIaQa9pwhEDPEsKxs3OLx0GyXXycR+gsBSZgNq6Q59NUcS5siwQ4LAlwN0fRq7dZbVi2dYuPfVFGVJWFpsUTLYuEZZmyPzGcV4jZaqk117CnnoJOF4yHj3Erp5gPLK5/jEJ/+a9/7a7/OlCz1UkDPsHKS+8iyi6fF5REdozNRxLpz/ODNHX0sju8T2wNI88ghSdNk980Uac0vMnnw552+s0IkkWtUJyCjSPlE0RdOss1EkpDeepnPstYy2v8b5T32I++5bIFi8myc+8WXmFhpM3/69yN5ldnqeWr6GPnocyRq9Z3Y5+UPv4unffQd3n3yQ7XzAiVlJ6GfoHE74i7/+LPtvfxPtpmL94rOo3TPc/fqX8nv/ywf5o9/5U/7tX/w99nqX26dSLi28gkBpsq1rvPbBWU49/gydpTZf/NRnac8d4aG7Wjx91jO9tMnPvP1H+ZnH/k86Bx7mxsUnSOYKRjvLJPYacRwj/Q1Wr64StKaxecFg0OPgwYN8/vOfF/8fjc3/V7Dg+2PDL//Ke0gSwTjNkb0tuoMu3avLnD5zDiHP0WhltOsxeIuQBYEMCJ3HUhJGnk4nwtuISBgCKSiVR0lJXIu48OyQdGgRNsRLRSgU3gJCIqRDymodLDx4AUIINAIhBOCQEgQghQYkMnBIoejZEaubW+AAUZUPhMQIjRQC40qEEHghKLMB1lqUqhOGMDevUUGBwxMIBziMA+89gggpChzgvSJUEmsKtFc4JbC+QBiJ1CFCG4TXeCWR5QhHE8sIpSTCOqzXKGHxLkBGKcaEIEq0qGFtjsTjECA8woFDInFULfIIIVDe45THmervwnnsZHdBqQTelyhCvHc4KZHG4bVAIbE48AKPAaNASRAW70AoifMlWImUEuccHofzoFSAt+CFQaLw3oKsHmUhFM5YlFJYWyKUrvrNu0n7FF56Su9QQuCcwwoQXoIoUQiMU4jJMSlBofDOYUSJ84JQBxTGgyiQPkL4Ei8CnDNY7wjDEGs93lukCClsCl6iVIi1tqrTWoJAY5yv6lECrCcrHCqQeG8xpSSKYmb2Sb73kfsxruSf//rjL9ox+4m//5gfly3+4E/+mFatJHcSl0rGZUbvsmBtYxOXXyCsW2anZ8kBSY6SCaHQGNsjihWNSOJsRCgzpPPkwhMFETpyXH52l/FowHR7iV53SL09jfQBxpdEYUgpASeY0hlDUYM8RXiFUg6vInxZIKXHZhlBs4UwlsCO2IkTBv0R3nkcEpRCpkN8fYrZmqU/MhQocI7SlVhjETIkVoJGLUfVaoBBSsAZHBLvHMgASYlH4pxEK/CmBCEpsiFhHKJthPVjlPIgEjJTUNcaC5RC3PqOMA4nNRKBjDxYjfc5WjewWZdiPCBszeK8Q1qPc+CKEVZFGG/xLidEYYoehHWks7h8hNcJbrzDI698OWfPX6E/AiEMZVhHj/oQCaRTSMAHdUajdcJoAUVKaS0qnkYoSzHYQumEuDnNIE3R0gMKLSW2LJFKEfiS3IItBgS1OWw5ZLh5lU4ngaBGd2dAECmi+gLCpJSFRPoMV0tQoqDo5dQOHKN/9TStRh3jLLFWKBGiYsnG1g71xhJaesZpD18Mmd43y6UL13jw/vu5sNbHj1MaoWAYtgGPdIbpZsBgt0cYJ2xurhKEDabbMd2+Q0cZR/Yvc/bCOjJukw530InHZhG2HKNDDX7MeFAQJnWaHXjoxAGiOOC97/+Hx6t67LHH/sHB9Hv/64ceO3rnK/DXPkVGk2jhTmb9FpuhIOqlLIcdsqbDd/v0utfotA6DzRmORky5MVo1GKW7uKRDGAT0VBvqCYtaYje3WDn19yzNz9OqLRMVQ2Zf8krWs4i2LEiijN2Boq00RkgeumMJsbHGbD1jtzZNnqeEq6cppudpkdA4dA/B9nXc4jLCN6GM6XrHVD7CdRr4UlFv12i4EXrnIhscwq+dpdGYZ+QLAl/Q1gqnHLXmElHQQ9oG37I0YH3XYLMUGScEFqRyFLYkCB3SKozWCBFRz4fMh5Zt3UVawdy+42zJhNmghggG1NFQQplljPIhevp2wkiDD4h1iBqtQg5+9wK9nRvUp47TrtVxq5cZqohk6RipnKLvRywfvxu/s4nWIZ39x1BmSEcmCCeoScvK5nP859/+MCdessh/+6qX8elPf5bbDsLuqEfhZliYmoJYkDuD7BxkumlRzeP0d67TFAaV1KhNR4xFjTvVBeTcfWxcu8xUvUHgLFdWt1DjHawOWL16hkAJkqZh/53fwdzwWZ45f462KOks3kuj1mLf4Zdw8ern2X94P0qXJF4xuNRn9vA8cvcsIVOs9M7RkTlf+OqTfPXMU6xc2OWtP/B9XGOKVncV7TcIdcj5557jIx/+E77ttQ/xV3/7KdKdVczUAUw4xfj6VfZ32nzh6aucPXuJZ774UX7o7d/P2pbjrtuOcOb8RZrpgPVLG1zYKuh2d+gkY2Z0j+tOwVCyuvolMDW89fR6Jc2GQBDR6/d45zt/+pe/edPVNx/z8yce+9uPf5wPf/C3+cCH/ohI5hjjkNkM//3bfpVfe/+P8ObvfTv9nWM8/rlVnDxPksQVsREFXhnqiWS63kD4EhVLXChYvdJn5bxj7TpIFyFchBOSQEmkEAjpQTikVEgpkQiEkoRSEUqN0gIhJFoHOCkIlCTUAVpJnttcYXPQZTRKkUoCAi9AKkkuHKEQGFeAN2RZRlkYms0aMzMJMwueZsvjSUEqlJA4AcYYQhWCBIlHCoUDFIBwCMBLWRE+6RF4pBRYYwgU4KEQDuUcKAUOhJRo6THegABNhBMWZ0FKj/fgBFgBEofwgIRbW117kELiAWf95FrB++r9rLUGURFILRXGO6QK8M7i8FW/eBCS6t+Fw3tfndN7PB4x+bm5v7YChKiIgBACj6/IrWDyB5NzSrzzCCGxzlXtFVWbS+exOEQQ4KwFIfBOABKBRniBr6bmyaJEYIVHIlAIlJQYa5EBWBMglcULiaPqH4HAmKpOISSlKVAqQgiJMeWtczJp8qRZKATCgxMKKRW4qn4pNfP7mhxfnsYLwUPf8bYX7Zh91be+4bHnLlzlXT/1Vj72yceJ4ghlc0rT4o2v+UH++Tu/k5d96+sY78xy6ukb6LBLGGiMLdEiBy3QytCsNVFYXBTgIk26lbJ1OWP18ha1oEEgGwjnqE3NUDhFIC1KGqxVhFKBkHTaCUFRUA8ENgzx3hOUY0wUEUtNXJ8iMDnX8xG9NCdPDUYKQudwgUIKiQskMRZf9Ml9RDHYRXhNmAS0m5rpKUhqDhlIpLIoAjqJYZwZFBK0QjmPlBLr/YTAAVLipUbhiLSjlCUS0EGMU5pQKIwsCbxHIHHG4bxDh3W8rB74gAjcGGdA2hFlkSHDGlIpRD7CIlFJDUOIwRDXmghTVu+tsIYUlgCJ9wIpPKVJuXJthUanxoG5GTa3t2nWFWVZYL0mDEOQolrChk2CwIKqYU2B8h6kRAUKh6bBCBG2MWlKqAOEc2R5Ca7Ae0GeDRFSoLQnbswSuRGD4YhAgAwbaKWJa23G6S5BHOOFRamAclAQ1iPIR0hCMpMR4Nnt9+kNe2TjkuXlJcYEhGWOokBLxWDQ52UPP8T09Awb25uYssAGCV5rXJoRSMVuP2U0Sulur3DwyCGKEpI4YpiO0dZQpAXjwmHKAq0ssTBkXuKtpCgGYCUCsFYwM1dj30yb0hj+yZv/u39wvIoX+o8D7n7oJ/wo/Rx3PvxP2dxUbK1eYN/hg7jAsUyd0owZhDn5OKKpFWU8TzI/zdb16+StOWpJByUzbG8EwxtMT7XZCOaR3WuELkbsfI3rVy5w8GCDZOFRcpGwGbdYjFIGl59lQa7TThLWt2Ne9aZX8PGrCxRb5xht9ylrdTphRCMs0EkHJZqU4x12t9Yxm3/H0vSdMHuQbV0jGqT4KEG0NGZ1hdd9x1E+9niPcatD5FuMvEN6iF1KIevk4x5RIyAsIcpSsggQAaVq4bxFByHOWCLtMV7jyyHKbjN+6m/4lkffyBO9JkHRp+heoXPgYUbd89SbRzGjFYaNGmJ1h6A9h2jPkG9cozF/iKK7i7bblLmmNp1jVy+yns6wePQAjFO2Ro5MShbqAYO1a3TqMfH+h1k79zEEEd4IhA4QvfNkrk+4vkL9vrcwa1f5wmf/mOnbj/Db7/h53vk7f04dSaYLVtYEyx1LNnMbYnyDxtQRxuc/x76ZBdb1FCJsMT1zAJNuYWTGc5f73Hn4CEXQIuut0N+9TDC9n057hmw0RCRjRme+wrzcRQrBs2ee5PYH3o5paMqdVcrOMcTwCuMbX6W+9F1k0w7/5EfZyjboHP9ubp9q8NkvfojYxfzUO36IP/2TT2NPvAm58wz4eeqJp3/p47z0vkO8573v49te/e0cvesRBquGnh7RbC8gvaGzcBdnzp2i3UzodEbUjCQLIvLV5+i2buN/f/eP8a73fpjdra/QqN/OIA4JijHd7g7DnYJ/9paX8Wcf/l1anWVG6Q5ZljE9s0A6Ljh3/vSLVq0B6OWlb0bwyN2P8eVTn+Hk3YJ/9fO/yA+99dsRXiCEqZ5ZkWNKRagdqxcKfuNXPsJHPvIuGu2Mhx44yumv7RIJhZIhyoNUFkGAkB7vPRqN9KBU1R1S3VQzFQBqQliQAicgQuKkx0vYyHvsbneJpMZ7KLRAO3AIpPQIwADCG7JhTik1iQqYXSwJIlPV40K0KrBe4LEIIrQA56gUXgXeWIw3xKHG5AoZCaSzWFepvkqCMY4gEFgncbYkmBBFryQawe44o5XM4UqDdwUyGhAQUThbKaUClNRYV024TlS0ETw4iRAehK8IKlW9AoUT4HyJYEI2J+/hmwqtlDc/aZwzz8vVVSFw4JkQS18pphWxqw76CYl1oirjvUe5ieJNgKdSVL33laoqqs83VVKkxNvqnMLLihwLhRAeaz1aSJxwWCtAlQhXqbJSVkq0wRMogfUKay1Sq4rJiwIvNBXLF3hfKcow6atJHxWlR4hKtTWmQMoAqPrJTYhpaS2BUuAlxjiccDhfLS7ueckyj95/AOsEP/6eT75ox+xf/d2TPlQ7/Mq/+Tinzp9mfmHMP/vhH+XVr7mXxGs8JYUAay3CKVQQ0tsR/PHv/T2f+/Lv02h6Thyb4+rZHoEriMIEIyKkrQiKMD3S8YhGEqLDGZCKQmli7TCjAZEoCZSiLCWzi9NsZRG2HCEKiw0UgZIM7ZDRKCeUVZRxbAtktkkYtpBRTCkU3liQUJaWsijYv9AiJ0MkEuEVzmmUNOAdDoGzEAQSYanGkQZvPUYIAi1xRiM0aBzGCYS3lVq4s8HswgI7RQgmQ5ocGbcwLiXUdQajPmFtGj/KEEoiagaZG3wQU4VEC4TXCF0ispTMBYS1GlhDYSbvKi0o05RQSVQyRTHarhZYziKEgnKI8SUyzwhaiwS+oLu7RtCIue/ISb5+5QYKcMKT5RCHHqcbeDtGBzXsqEcUaHIZIkRIEEY4Z3AYBmlJs1bDCgVFRlmmyLBeLWa9B2ko+tvEwoKH4ahHvXkQH0hsnkJQR5gMk3dR8T5c6LC761hfouvz1FTATv8yyoUcOrzM+touPpnHlX20jBFSUAw3mJqqc/K2u/jCFz5DrTmHSQ2lcigdgTcEUYvRqI/WijC0uBK8DHD5iFxGPHDyCKfPXacoukjZwCpZRaitxRSexfk2N25cRemKwB84MsUDJ5cpjeffv/8L/+B4fUEP61TjMscffDNDuQ8rM+47rBn3CpL6Enr/vfR2N7GDJmVvSJTuMNi8wle//BR1PcNsp4OnJDEZZrxB2Frm2eeeI8nXiZfvJa6V7FvukPdXmbr7e9koDKabcahleGRuFT24xu7id3Np8bW4u97EbccOkad9+rqB9glJu4kIBUY36W+s0nU98o0ztI+fZOm272SrdpzLF26w/uTXWFntcfbcx9HjBuHcEXav7LJeKCLRJrcOPR5SlkMKrzigL6GVJ5J1pI7YaS9SqGkK2UZ5XykKIseRcn3lDGWaUYYR81IggpBnzp9i1L1ILdKEtkYv6xLPHsMEGhF3kOvQOHwHul2jm49R0TR5sQ2DTXZbizSnW8SNuxiODDNHTxCH81w9f5HYXEbvXCSUITYouby1xdc/9ftEY0N7dhE1vkzz6AGS/fcT1JdZevTtdMwKG8uv5OBbfoviXJ/v+pc/yXt+7g0syhTpO8zNBGTjHrPzJ5CyQ7ZymmDxXtLpI1ibol3MZhaTuXnmxBqHdUgaOla+9EHW1wcsHTpBqxBYRmxf/gKNnYiZe76HZOowhXR8y8Pfxm2Hd8ijfXQOvZJs6zy1cExcX2KUXyS/+HVqr/5xlNyHu/5JnjzzaV72wOto1SLuPnEnM4cOsD8aMjV3JwfnHNvXHufIoTpubh8rG9dpJh0updMMOpJ8e5N4bpra0kNsZUNKc5Wvf+4P2SqOcPrcU1y/0WXfkbsweZ8ffccvcMXXUQdfw1qZ4Vli3HO43PLWt5zkbz/6NZwVFGVKgKTdmkP4mGwcfLPnq286TKHZ6go+9+R7+Z3f+lV6V47zm+/7Bd72E/+Cs6efwVuNKXOUjwiVRpiQfcdCfu13v58TR9/GuPcynnx8i7oM0CJAOk8gBNJplPAoPIEUaCVQMqyUVUCgUBOiJQEldEV2hKjITSAYFhnXtzbY3tzCK0UuPeWErFo9IZreTkiJI08LdBAw1awxM++RyuOsBqfwTMLyUiNEFVr0UuEnYW5blCAcUZTgnENrjff2FqEtncc4i5AS6yviKpXHeTMhb4p0VOPIiW/n+Etex4mXvp6Dd72avAiRwiFEpYgKJMaWSBVivcdNSGwFN1FGwYuKXlZlDM6ZCcGsXsJKqVv2CaUlxlTHb/bFTVLrBVjrwFnELUXxedJ7s8wt2Oqc0oNzDie4Vc5ai/X+VjtuQgiBhFvndd5P7BQVmVWIitTfIrgWOeHTzplKCxYCe5OES4k1vlrsCF1dj3CAxDtZkWsBzqtbvytZuqpDqeAWob/VZ/L5qct4g8WibinLEiErUi150XJVABQ5Vu/j3/3Hn+AdP/mDqOEyH/mjD/A//+cPsbq5S5kZTOYRpSTEYdMSlYx5209/O4f3v558dILLZ7qE3qJ1g/FgSOgKdDRFoBy1WCNtTtzeh/EKrCXRnpmwQNkMm+wjjeaQzSUa9Vql5ssAlKbEsTXs0euPKU3JWJQUZkic1Alb8xjdYDwak3V7pGlBd2cNLSJanSnisKCEKhLjJNgCZwGhSaRFClstQqSi1BHGSpxUhDrEu2oh7H3JeDwA7ymFQHmHUIrecECRDdEa8GC8QwQNsjxm4cBDLO1/gAP3v5r5Y/eR5gKpNN4XKG8wOkEogQqmKIxH1+oIFZKOx0g/gnJUKcXSMioKetvXwRiU1kiXomsxOm6jgzrRzCECn1PWZwjn78CNLU+ceprbjs4RYcBrwlBiyoIwSJBe4/IhKm5jdNXXeEnuFI6QiJyalzgJxe51srQkqtXRFrw3ZMMtRCGIWovIoIYTnqnOLI1aiZcxUW0Gmw8RwiBUjLFjzKhHOHMI50NcukVvuEO7OUsgJY1GAx2HxMoSRi2iwFGkXer1AKsi8iJFqZih0ZQhuKJEBhEqniJ3Buty+rs3yGyD4bBHmuVEtQYCz1e/foYxGpnMkjuLEAm29HjnWVxMWN/oIr2o3oNIgiBAofH2hdOqXvBorx+yeu0sfmeNheX93CiO86oHT5D3CnrpiGBuFnP8XoajbQoVMNVqcuSOE/jFOYab1wlGa6xePIWQdTa6O+w/cS+Xn3uGNB2QRDHraxop97Pe7ZNMH+e1DyZsPfOHfPhLEfF9P8J4cJVi/RLj609y28HbqIWzKB8jZiyBSrAyJPOendVLFHoZX+vQG+5wcaVLkXRYfvCNHHrFGzjysvuYb76M7d0nGXuPHebgR2TFBnm2Q13k1JzHpY6nv/wMtSgmM5axFyQ2BVHihaPA4WWJKRSsXmc2qJHUNK7IWdm8xKFDJ+mogJiI7u46buoQSZKQypLdnT5etQgbBXZnBRHN0NQBYTNk7ZmvI0LNYhSje9cY2i4jNK6Xc/nSFzlx4gG2u00G3ZTdy19i7fwFjj38Kpq1gFTGXN9dY27/ccz2GsO+5eChb+XG5jaD3jk6tZjIbpGcfCNTwXF+5t/+Km/6/u/HN5e4dOZJShqsrV9ChDVm7ngptVoNKRJS18K0YqTaIVrQXHrmLFMvfYAbn/8LWgv34NPLdG9sUdOXKc5+hbixiJjdx6h7Djd7B604pgg16aCP7t/gxrXP0h9vMNrZJmo2KYoC3WqT9zJmGjGrI8vRl76Fjf6IRqfBdr9LpzbP1VOfYXvrKunwBmHQQAYNdjfWqDcbzC5MM3NkEQYjcjLK3W3Go6vk4y5Nn1Teq3qLWv025mdOcvbrnyHZfI6ZB97AVHuZ7Yub+EGdZnObMNlPuzPDX3/8q7SXp2gvzDLTaCHjaUJfEtc1qhF982aqfyQICVGsGWL4rh99Oee77+d/+62PcPFLUzx0z0/y2jd8L3/5F3+F8VQEAoMiRErNR77yi5zt/g0//vNvRwYapSSBlOggIAircLsSGiUmEp8qgBCtQ5TwaKkIhCRQIUIopBY4DaujHU5fvchKd4vMlIiwRiAnBNeDkwrtNc6VDEcZo3GOtIpGWzO7UNJub6N0VoV8vQA/8WgicQ7wFqUiSuMRBpzyKKXAhxhj8BicSJFe4wOFkwFBIBCyhlQOvCTQEmsVXlW+TCE8s3feTzLT4QMf+CB/8Acf5q/+5pMcu/tb8cLgraqUT0AKhbUFfuJYFUbi7U0iXxHOSt2uvK0ASgj8RCA13lakVwosntJ7HB5jHQ6LUBKvFA6PdB7hQYoIJwzeVUTU+AIsWFsCHm+rqoR3k/pByLAiltxUYyekcUJEhaj61nuPd6LyFCqNm9gUKoJaqezSAxOvcCiqVAhJRXSthGrtYQEDUiAVE89s9R0hQ5wV1TWJsFJJPZXPduKDxXuUkBNLhcdbB656zpxzBEphnMM50DrEiwAlHWFkqUcKrTVSv7gJq7ESazOyYswrv+t+fvMPfp5f+tl/x43TNd7xU/+Jd//79/HEqbPkpsBLgdaCRrONSBJ+7n/6Hv7L7/9rHn3DK5A6xDhDo9Emz8Ygqv4pc40UNfKyRMYhs+0IO9pgtScJ2ocqlbIssPmAZqOBCEK62ZhrvVV2xiMK6/A6xOUZiAShAgpnyTKHFQKiaWR9mnp7inZ7hri+TVwbIHxW+VJdgbOGYGL9cMbT7/YIdExhPJXDZOJj9ZrSWrwwVfQhKwmCAKEDlPDkpaPeqBGgCJUmzw0+qqNUFUlIFg8Qttp88tOf4JMf+xu+/NRz7D98D0J7st4IjyeSEmlySpdi8IjSkw761JIWZamxpaUY7VCMUupTs2gFTkhyUxBEdXyZk5cVwSvKisALKREUUJtHy4QzFy6wsP8ATkek/S7ea4qixClBUJ9CSIHDYa3GSocQOUILxv0RYadJur1KELbAF5isQIohftxD6RARJphijAvqBErhhcKaEsqccbZLicGUBSoIsc4hgxhnLZFS5NZRm1qoIiSBumWbGg23MWWKKcfVfZAaa3JUqAkjTVgLEBasc9iywLkSZyzCq2pMSoUOGkRBnXSwi8yHhO15AhlSjHKkC1EqJwjqSKVZ3+gR1RN0nBAFiiDS1AJBEGpkqF5wvLygh/W3P3/tsdncMBZb7F54nHuXDrC1vUpt8S52TM7dLcPOQLBvvkV3IBB1gZ+7E1WmqDSnse8A65uXaey7A8o+fuoAc2FA4+BRitNPM3XsJEsveTnfWjvPl890uZa3CTp3ER6+nezik6TBPsJmTNRZpr76NCujFqnZptQdZNIgGZwm6J3mYJDRW3wJ2eoaY60pDp7kpOizutOncIatNCWUA6ZnDtO+8QxBQ1J0HsTakrA+RV4WSGWYlynB0UcxVAZwhcBqjfUSKUAiUd5hpIRxhkoivN5HduoTzB66j74KMFYTNA8y3rxOY2Ef462UcbHDgbkDjGNBGsSgW6g0pxAebSQIiZ5fZibcRU4t4IoxQeYgtuj2SbrbG0SzCfe89BG2dj2dWkK2coPRzhbN47MML51iZraDqLWotxe5+MRfI+dOIGf2s/3Vp1h68BEyU9BYuofelWd44mLIu995P+NTATsna0zXjyPtmFE/o6ZjXLIPkgC5coo0mcV2x0TLJzH9EcyfoG5TwvI8tWPfQSIXGZXXiEpL3FrAK8HK6pB6fRm3c5qt4ZDzF84Tzmk4ugsAACAASURBVN3N8tIJVs59nUOPvIGx0xycS/jqn/0GYS3hrmMvx87NYl1IniwyuvAFbjBFlkc01IDtfMDi7CxrG1s0E8WD9z/A61/9Gj72ya8wP7eIS/vslgOy7S5xkiPa07z89W9ma2OHXNXprX+aGSs5fud+Vrc0kYJw/z5mDh9n9bkneeCOmPWrzzE2bVrCMuiNaTcFm0ONa87QXb+Ec5b/8Z3veNH64QByKx6TsgrRa+3BO+aXNT/8E6/iF9/zI5z+ouXdP/cB/sN/eB9//Ccf4i3f913ESQ3vPFJ4bJ7x+U99gvXTVwFBGAQopRBUJLBSthRaBmgVgCgJ0EhZERmnBASC0mWc315lp9vFOodQcvJdTzQhXwag1OT5EFM4tBa0pnIaLUsc56jA3DRbYp1AavC+rDyfovKMel/5HsGjcTgtkMbeUncFAiVr2EkilHIgRYFHIygR6IrAeY3zVCF651EyhN4Kl89/hbvuPszxozPsm0/Yvv40lAonDUrVsLaswuAC8ALhJ1YIwYQESrSodD7BxNQqBG6iGN4so6S6qcUiEOAqNUIrjbOWQEic83iquowvsTbCi5BBnlFmMbn1yFBgrUIpWylbSqOcpBSV37O6BWrSbwLnmVz3pHZfJc15N+HWQoCtdGIpKzX1ebesokolC7BiYoyVqnIveFA6quwF3uKxGOur5DUhKI1Hhw4hSrAeKUDgEFKDt0gpUTKskquEmCT0TfrVe/wkIcw6R6Ak1hmKovIbCuE5cHiWg3MdEIJ7H/3hF+2YPb+VPRZ7j5cFNtuhFcXUmobXfs+38Oa3vobuRcv/8f5P8H9/9C/51Kc/ySte9TBBcxbhLNJahFQ89ZUnGGxk4A06aZBohU5qMB4SNVrE7RnmdM5g5MmcQAdtVL2DT7sYHSNjhVeKjc0rbPUzSpuDCpE6QNkBoR0TS0sWtXEjQ2ZyyqBGSxlkmBIlBq8ytC4IwhpBNgAlIO7gXBV9cN4BntA7VH0WVy2HqnIemDzXAoESEUYIcKYaO1Jhh7tESQ0rNNZ7lKpjihQdJZjMAJ7EpKyun2f5yCL79k0z09T0ti8jjMIJi0raKJ+iohicRVoB0qGCBqYsIBC0OjMYIysymKaYskTXI8rRgDDUeKnQQULW28aHNUQQU/b7xK1prLWEtQ7FsMcgVZw43MQMFKapkCrEW4ExksIYStvECIE0QwoRI20JUbOKAAVNwCHtiKAxi6KGsWmlLqoILwR5XqJ1git6lM4xHI6QYYs4rpMN+sTT83ghiQNBb/UiQita9Rl8EOB8gNEhdtwlkxHOShQGKyRhoMnzDKU8zXqLffOzbG33UCpEyhLjM2xWEmgHWjO9uEyR53ipsUUf7TyNZkJeKpQUyCRGxzWyYZd2Q5GOByBCpDdkWUGgJaUVzCzP0omrt9C3v/HH/sHx+oIK6/z0AmLKcGD/65l7zf/AUzvnOVueYHswJNo6wxN/93Hmi6tc/dKfsnT4KKMLF1i7fBpsSdhqsXXhLAdOvhqVd5krhoRbKxT1Burqp1gtd/niZ/6crYun+FL6IM0jS4StOmXcIcwH6KVl1OgykS0Z7PR55Rteyfr2E+ioRWNjG2X69LODdMs2a/FdqM2L6KVptHcsDLtcvnCZ+PA0pe0zG0uCZIarI0em+jxxacTOlc8yozqEaZe4HhOIJmXeI3S7dHsjtPJ4KRClq8KGWMIQxh6kzSkW92Hri6yv/D37bztIWZaYYIlBvkuvv8bU/N3YdJto4RBNNUVv8xp61Cd0GukNqTZIDN5YomYdZM6V89e5uDLC766xW4SIwtLSQ+qHD+CF5MqV67gwY+rwSyi1p/7S7yTvOY7c9zqEvBetZuhfe5b5ZITbPEUZ7ie58x6e+tC7ydOLTHdKavUOjX1L/PTbfpGHf+go7zpyjGKnT2P/MWrWI9oRvShn8+KzeNOkRZ3mzCyLu+ew3csEaYg8eCf98TJWpWxf/Sxi4V6wHVa2L7F7sUunDdYrzl65wMrZK/zLt303cRKwM9yktnwPOze2qa88QbcXcNeb38VUcx/p8h2MrjyHLUMOH32AOx54lMFQ016aJly4nWQ0ZLfboKEV3/m61/Poq74Tn3kQAV2WWFicIq4dYSoucaMrPPuJP2SwdZndCx/j+146TRDM8OAj95FLi4sabLsmJvd8S9NyQqVcvjEkqu9n8eg+mouHOfDAI1zv96kv78cMtvjZd72Dfv/sN2+m+keCEDdzaQR6sgmIVBGekMxofvl9P8hu9lF2+l/hve9+P8fm38JtRx7mB37gbRXpVBFm6JAirhQqWfkIlXr+d6CrxEMlLEpGKKXQQeUbPXvjImeunufi1kblcQ10FRZXVTKU0xLjPYNRxnhYYq2jM+WZnhsRRF3wHlMYrLV4Z7CupDQVvbXG46yceB89yIqUuom30QiBdhqvoyrzfeLfxFmUd0hnMVi8CysS5gTO5zh0pbQKMwlbgylTxmS0G03y7jrjzVXy3TW8dbdUAOfz58PmE0XVSYGV7nk/58Rr6QDLN4btfeVRnbyBvZ8wx2+AEpUp9/nrq67ZOSitJHchZ57NWbum2dyQXL4CFy9UdoOyACENGEvpTRVOFaLyQk7C6s4+H2J33zAVOOeqbG1AuJvX4fG2vOVx9YJqpwFfqaPyJsm2brIDgaIsy0o9pVLmdSAxzgIQhAJTSrxT2IqqIoTC2GKysJGM0rRa2LjylgLsJ2RVqeoefKM1IIg0gVRoKYhrCVILpHxxK6xxGCICTxwvUJs9Tq8cMRYdCgM2HfP6776bP/3jn+X9/+Vn+Ym3/Rw/9uZf5Efe+nbe9+v/ERXGlFlBqKdRXpAIjyoLvA5Q+S6FN/S7G9h8QI8WYT1AhzEiiAiERdRiVjcvcWNjhetbW8zMT1PaQZW8aAxgKKmRO023jCh6fXyoaTQ8s/UhRbmFSgLKMkfjEEIxMobCleyOC7LhNtqHCGeQSiBlgPcGfEFZmiqx0isQGiErT7SUlZKnnIEgxKiQfNwjSSKcBSsUpXMYlxJEdfAFMq4hnGdU9GgEAXbYp+htk412KuuMEkit8eTkac4oM7g8o3CTJaQqkUmMEJIsyzGU6KSNkR7VnsOWjqQ9ixdNpAwx6ZBQGsgHeJmgGi16158DNyZUFqk0Kop4+mvP0jlQ50hco8wcLmpz41pBtxewPYBrl4esrQqUB2RIbPv4bIizHhXXsS7B+pIy24WohbeavEwpxyVaV5GRYTomHYw5un8eJUV1L2otTJ6jxlsYI2ksHiEIIkxUw44zcIp6rUOjOY0pQEcKkbTweYYxMVpIFuf38fgXv4g1DoTEBwlahQjRQEmPMymj7TXybIBJt1nqRBQltKaalN7ghKQUAc55prSjqTzj3KCDGlEtQkc1GjOzGOcIawlawYkTR7B29ILj5QUJ69VTf8mzT99gdXgVs73BvoVXMps4XLvAzN/H1Nw861GNejINO6fpqojDywfoGs3a9bMkxYCttWcIUihqC3SWDiHrSzAEHy7j0xZm6ZWcun6KxjhjXAqEyxG2MtgvLx1mtLnF4vElRJqjVJM4u4Sd7ZBENZKaRMWzdMotdGMB1c8Ig5iZJKO2fAi21rG9krqTjLyiE46oJ9PoZoO2DcjHV8h6XdKxwZc7dBvLpNdWmJ2eIp4kkSglkc6jpSQf9WnGHbQKCRHIsCTaspTCYef2IeKUeBSSjIfYGNaGQyhzdka7iHodpyWpq/x+GokTEtWqIZMQk+YUaY5Oe4zKiE7iEVqRjXex6S5RIYjrLcor57i4dpZg/20Mb9yg1j7E9avPsjk6S3+Qow/cyY4t2N58mv0LHtOeJwgWGH/uz7n81Q/y4H2vYmfli9z+krfw64/9Kg/+6Lcxs6+JXe3hOjX6V27QQnPHvS9l4RWP0huNOb4k2J25Cz3TRESe1fULHLvjDrLtARvDbezGDVwi8LnhyO2H6e6OUDPLHD/xGnJl+Py5Zxg88wlcHrCzc51jsxEXrj1DbhKaUYddp9AqYmr/IWZa02Rb52nVHPtmm7iuIVu9RGPxMPuPHSTwOWevnOe1j/5TnvjYl7hnRiOm2zTqM0zNLrHcrFET89Sm93Phif+L+WM/wLE7OgTdFbL1jMMzJxDpaWbnMrIdy9fPfYz+sYdIg2lurG3SM5LhyjMY2UCNJNnmNk0t+KVf+gW8aX/TJqp/PLgqW9+Dtc/7EHUAWoMOq+2h0jTln7zxCP/63/wrst2DfPQjT/KOd/4L/vwv/owySzFkVThOCCpXqryVpCMIKiIiNaEUEEq20h7nV69VWb5KIZ24RcKkcZXf0lVkdJwVqFDQaAboZIyXo8pzqDVOFFQqY5WljJdIEeAn3lYhZEVmJx5ML5j4aN2k/PN+T+krUuV8UfULIGWIl1XyhJAWL8IqkcgbgqBKXlJKoXQMptrBAykpTI71BqkiClMQqGCSKDEJ8avnQ1k3iRVwy595EzfbVlkbxCSIzq3y3PSJTtRsay1aa0pnUDJ4nqgTUJRDlBJIPGk5xHvH7Hwb79QkOU7e8pbevP5qpwD7DW15/rO96VV1t1Y91a4HPO8fvZm0jfN4r/BijCX7r/zBN323KtCVEjz5jpso3957nCmRSKTUKKUw1k9UXIn1Do+cLJhkZS+R32BbcM8T/+dRKfgWWy0qJouFFzvSwRrDwZjCpJisIIlnCKRDxh6ZtIjrEWPhscbzwP113vT9/w3aHuDxL1zkN//Tb/Clxz9DOtjC2QIZ1gmTGlInYAVC1/BGQTTPKEtRroo4oDz9PGV1d5O4VscbQ1xLwNrKi16OQGsUEu8dhRWEsqTWrKHlGKEKQm0J6w1cOcIbhybAeAiEQ+sYlEQ7gXcZpsgxxmNNRqFjXJ4SBqpyF9+8h65KSrSmqHZqu+mj1hJhql0liANQAmUFwhaoUJKZAlntbgaEeKGxQmCswftqiywrPDoIsKbEWIuwBi90tRuIEHhr8LZAOhAqwKUjxvkIGTcwWYbSCfl4RGFGGOMRSYPcW4q8TxyC1QFaJ/ju/8Pcewbbmp7lmdcbvrjiXjuevc8+p0/qczoHNWohaCQaSSMhxjAyIxtKDBooUZixwTM2zHgGewQTyuVhqAklY8LUmCCSB4QICkhCFlJLaqm71a1udZ+c99k5rPilN8yPb53TAsr9w4ayvj871F57rfri8z7PfV/3FqP96/RmFsgmu7RnVrl47gKdo/OEcd2llZHGTnKczWm0O8zftUpVQTPxVEEbFWhQnrwYkTZbuMpSmBxf5jgJ3hrSZkJZGlwQkTZmsd6zPxlhhjs4JynKjDSUTPIh3tXTsMqJuoWRKpQGWwxR0hNHAb7y2GxE2GgRJjVObzwZM9ed42CnTysALwWBjojiBo0wAB8ig5isv0WQHiJthmhX4itPGrWQfoTWBlfBYLhFlXSwBORFifECk49ABjjjsHlBqCTnz58D/5qk1dfmsA43hyze82ZM1WbmxCr2/HlGaszB5QGzvYrOycfxX/n/SI88yubaTZ54/F4uXF/j2MIs1yJwZUw6f5zxtWew6TINkaIjQb50mjO3XuQL1bOI60dJK0n3rqPIg5K1zcscXdYMzl5gK65YPDLDKEtIUoizfSwWFo+TWYeLPGZ7AN1TVDcv4k3Gw4fGPJ3dTas1Q1DepDeXsHblKjPNFo0ZxVxsuOpnKJeXaeWKrHEFLSpUc4bUp4xmLVXhMCYjDmIiaRAywXrwQQ/lCvrZHnHcw6y9gp2d4frzL5EcHdIcV+iTjzDcWaNpc5YO38fe2jm60QyF9CjbZPngCvuiheilBFFEVlSYzJLIAenSCqqQXNu8yuLyPC46hhyO2RmdR04ks26DxqkTHDEVg43nmI8WsZc+R6e3iCkO2Fi7zAOnHyObeZDekR5f/dJ55MazdI88hn/4cdITZ/j0r/4TCnWIyw+tcuaJH+Lvve/X+K1f/mH+1g/9Fmpxnixu0di9yXB5kVaVo299iavhUSayi7v4FJNT38XxxcP0J/u0fY4+8XoOH7ufYuMVLj37FLo1YXWmwfDC55i5953cNbzE/tmrfOd3v5Otg1v88VP/lq+tnKLzzT9FZ3aOnY0r9GaOEZd9TGcR4Xa48NznCN7+Tq587nc4dPo4IpbsbqZk46+Ql3vcs3Kc/+1TP8c//emf4bMDyYr7DCMVcev6y2yNC1pJH9meY/XMcS5c+ALPXDqKCzKWHrub3/rwc7znB9/CH/3ab7J/kLLz6Lvwbo+D9assHDvFbKPFztUR4wufZGblELlziPGIR1/3BC+89NR/8APqb3pTtVixhhsJjxeyRj0Byom6mNWKWKfg4cd/9nv4yX/2PZTFhKAR8ba7Z1mcvZc0TRj3SwIP84cr9voGfBMVKXb2b7F7sE9eVegoIFJ6WkwkSG+wzkJQm4ZMUVGVnlAL8B4ZVASNEcJIjNcoKSmqgNJIhDdEoUaFCi8qqCS2MojA4axHKIPBIJ3CaYmnNlZJ56kffxqjLM5ZLK5GaVUhXjisD2pGLCCcAGFwlUIoj3UVBLW7XQldu9qlQUiHp8SZEiWmBZGr3f9O1A5+KWtElRevsmdrYtS0aPWm7joGeuqQ9ihZj0HvFG9TgQKAvU1uvY2WkrLmtcoAb2wtYPAOtKHpJCsrAhfPIRwc7GzRS/awQqFUiHcVpXcEPsQ6gRYlXioqO+1y1uqEmlfL7dpB1hxZapmAQOB8iRIB1teYKi3r7qxRBuEDEBLpJOiqLsaVrrE/VQW+LjgRCiktziqEAusdSk3NX1NTHL7+e+c9Qjq0VJRleWcxcLt4F0LW4/9A472rC2dEje5Sdae/2QQvPSJ4bU3cf+zNlRVxax68JkhifDbBSU81yYh1hEw7qP46YXuWIit479//dr7/vW9FSkcpK37mfe+hvXgGrSuywtMgoTtnGQ0j2nnFfpAz6l9lbzgibDbxCGxVEIURflRSqYogUrVBKgBXZhTGozoNrHeIwKBFn0g2yIodJI5UePbLBlpIIpETpJI8HxLUYCpCWTImxkUp3olaeuMcqPq+ZJXEm9t8YBDeYoWc8lhj8I7SOpTSiHwEOiQbHNTad+/wcRPjCqQ1JEmXYjwk0CFW1idyVAypCJCRxiGnhAVXG0aTBG8gK3KiKACZIoyldEOEFYSiQCYJsfSYok8gQ/xkDx1EeGfIsj2azQ4+aCOTgMHBEFEM0HEHWh1U2mT7xlmciploQ2fmMC995RoPPbLKl58ZMtNLqWSDWMCgzGgEfSbDbfJxG+sFZrgFrRWSIMW6Ag34pE2UthDFiGywh1CGJFSY8S5Bc4moyshHGXNLC5SmYH13k2HSQHZPosOEqhwQ6QRBgZMpQlVMDgaoxVkmN9aJmilCwGRsUarCO0szaXPmjWd45eWL7BlF4PZwMiDLhmSVIdAOGQSkjS7D0QEHkwZKgWpErG+PWF2d59b1G1QuQDUWMSanKicEaUqgQgozwo62CdMEJMSJoT2zxP7g4DWvl9fUsH7gI197/xl3lYNil8mVS+iDlxmkqxw68hiTyQ1SBbpYQ4XzNJfmuLg5xk0K8s3PE7VOceAMjXaLbuMY28OzmHFBNf4anRtrvHz1KU48+CSyE7KxU7BdOWZkxiSb0JKwawYsPPZO1q7nFDtn+eYlxydfWWM4KpntdDlA0ckvMejnJPGYKurQnmnSK3awE0G29TLdlsYfrCMbjoaekLqA44dL1ooFisKw379CZCSJ22U/X6QIJyiTgN0nCBqgA2wQYSf7SF+CsjgcOugwkziGgwmNVodD6QE7G1uki/PsvvIK1ZEHCMnqB8SwpJ9t0OweBTHEdg5DI0TYGG8KOo0mF7/wOyw99p+x/me/hZtsM7n+HPn2Tfaufhmze4Uq26a12GT75leZb3YxwTLR4fsoG0eJZw9TuglFFnHy3scwjRXk/CHm549x7G74lm/5dp76sw+iOycYfuZfE7Yi3vSm4wzOfobRjVdQbPC/fuAD/E//43uRN7fIokWcDygOCkTomVlcZDc3lC5id/MsrUPHyJ79fXqzb2SlfIW+X2TvytPEnUWcDpiUTYLWMsHsAvuDmywkGWfuO81XX3qZlgiZf/wnkO1Z0sSxdu4pfLpChw2GByNES7G3NyF0R2jaPbKb62R5n+3hDGl2FtdZwlWaj3/kT/ju730rn/yVP+DKrYxJ1eLwoqTTOM6l53+f9oknWLj3YUp1HLv7MqOLt1id6yBbh2kVQ774ypDg1Lcwu/I4e9kubUoKJYnH6xSDA5z2DNYvEesGC92EB+9e5c8+9xk8ip/6yX/yDauHAyg875ey1lwLUfMCJQIxlYqJKStT3u6guYzQa7wW/Og3hbzv7383Z58rePKdIa9/fY+Tpy0LhzXntrbJ/Tb9ap3dbIIPBMNxQRSougBk6gKXEIUBrjTk3hPEIUZU7O6OUMrQngsoKoFWIchiqj91CFGP0rCe0la4qSQyDDVVVeGdrElRzoI0SFUbb+Tt8bScskGnWCklNMIrEAa8qYMKZIV1Eu8s3ju0dlhn0CqqNaWOunsp6+L6jqZU3NadWhA1utXjkLIu6fAC5QXu65zzX6+hlVLWr/WAUFPd6238l5h2PadSPl+rQm8XtPVCADy1MPROB1MqojBAxIdpd1ukjS69uVnyyQipaxSVEBr8tEspa0hWjaaa6mCdRBJMC3+NEBrpxVSmYGuNoXdIqWtzGw6cwABeheDqEZ2Q1I2EqRK2NnGBDupjI3SJkK7mu4oK4SRSy2k33CGkqo8rdedZSElpDUiJ1iHG1iW0UvW5IJWqGZZSYa2pTSShxFo37U4L7ntgmblmikdw/ze/5xv2mr2wMXx/S+RYV2KzCcoMsSolTro1qQWQvkDKCBUFDPMJ2ghMtc+/+qkf4Ml3vp6Nq55Hv7nNXccFS0uGdnfC5sYmu5OriFQxdBW59fSzkjTwWOPQAioqwt4ithKYSZ9m5NkvDIWtyDODlY52syDLHYGWeF13KgOf453DVxMCKTDFGC89WlpirQmDiszEOOcpyxEShxaWwtSad7zCC1NTeqXASVXrcT14aWoNs9BE2lJWNds5lCXW5IhQY8c5NmkhvUWK2ohXmRwdJPW5HKSgb5v1HKFWjPfXiGcOke/eAlPhJwNMMaGc7OOrCd6VBJGmzIfEQYgVITJq4XQDoeuJr3OSVqsLOoEwIggbJA3o9mbZ376JCBpUu9eRgWR2NsUMd3H5GHzG+WvXuf/eYwjbImp3iaIWjaRBWeZEaURlwIugbhwkTdxgHR3OELkJhoQqOwAV1x1jB0I3kGGCqXJibWm2EkbDIcpD3DsJKkQpRzbcw6oYLS1VaZBaUFUWfIT2FTbPscaQVwGhGOCDCIRle3uD+aVZdm6sMck8TgQkIWiZMBluotIZwmYLLxpgxuTDCUkcoqImwlQcjCp0ax6lWxhv0YJ6MVlOMGWJDAXlZAhIkkhx/30rlNkIj+DJd77v33m9vmaHdfWuR3juc19ipneE7vHjXHnqqxyNLiDDGOFG7F/9GrNH3wSh5OorX2FpaYmXz32VB9/zI2xd26Ezs0QzX6efJnRa97F81yr52ibveFdO+ekFjI3Y3hvx0H2LbNGhIKTXdBTjCUfnDrO7eRM1H9GerDIzexTGZ5lrJhSTPk0alAMwC4sUhafMtymHEc/YLuLeHuniEthd9l3AiVaDm3Ie4wwzLcNLn/gEh099K0FnFj/apVp4ghk/IKTD+uQ87fYq48EOSdLDkePiWWqXakkGLNBn/ewlescew174KNHxu2Frg8ahR0nSy2RNie5rRDBL43CDGY5gywN8skRocgZZReXWSdKQ8dpFlmdPcelDP8+Ze09x9WBMu/kwjYUHiYxjd/88cvYB5NVLHHrwh3nx47/J/PwmUbWNTyw31jZYWlmi5TPOf/yD7A89ze4Ki0fv4iC9n8t7H2Xv6ovsXj1LkniG/ZK9zXWe+NFf5NYLn0XYlNaV3+af/8P/hsWHHiFSy1zVZxjnN5DrRznTHtHorJCJkqh5kuTiVxgv3ssgLLD9Njl7NMb73BpY5qKQXGgG2T46aTIzexy79gXOvXKTR44d4aMf/QTz73qMie8yeeEVOjPLiMgTLp2EosHg5S8RtA/BkmHlzBIf/ZMd0mCeRvU1mseewHtP93BMNgjojyr8SoveQgd7FaQuOPv5/5u55ceI5l6HMyX9a39O3NbEh9/Io62STz33IlV6jPbyXZRrFxjOCjrRHL7YJPURe3sFi809xmM4tHqSk0dinvnyWa6/PGB+/ijedv/6nlR/Q9tfQRTVVeq0WP2rfxvLFBRYH/D9P/x9PPXlc3z7O3tID4PJAWmc0u4qXHkTa0paaYPRcIQTsLjQZW9njJYQRgrjS3wJhSgQSqOkYO+gT1VadCAZjjzjy0MWD8cM+0MajQbKT0eI3tXGHSlq/IutWaI68IShpCqnEh2t8L66k6jkAOE92GlHklq2IAE3NWfdDg2osbB1ocS0SBRC1aNsIRFTED+AkGJqHvJ/oQi1dlpAemrY/nQB4P+S/vTOZ5j+XNfA8o4OuKpqB3QtaxB3jpufIly//hj5KYpKMMViIcEJxoWluzxLksQU1mBNDirGuQFS67o7LeqwAQRYL26HW033XzBNjJJTYoGrDVW+LjrrM+b2qF9jXQZS3+kMCyFqvZ2a7rMpr1UIj1R1oILWBm86OJujtcK6DKEN1tbnx23jF2La5pW307JkjciSgiCKcWVef24BcnqMbGlfnSjf7ki7WgOhA3VH7/qNvKWNDv2960RhQpCmTPYHpHI8XRVZqrxPmPZASrJhn2YUMZwMiVfu4lvf8R2cu77DI98UYAVUlaDTmyNQFXNzGbmxKJ3QH4/odUIqEsaDEkU9Gg8CTT4aYqQjiBKiOGU42K0XEYGlHAVsDjLShYTxMCeIOT5aOwAAIABJREFUNMJVjGWKaEZTjXWBqTSJlOQyRipPLzaMdraJGz10FOOrDBvMEYkKSUBRjQmmAH0p4xrvJMO6S+7LOpAEQzYeEqbz+OEGqtHEmxwdz6BUXifAOQkiQEWKQCR4V9USH2cxzuN9AUJgyqJ2sG9cIW02yEqLVm1E1KhlSmYCQQsxGRO1VxlsrxFGOcJWoKHMJuggIFSCweYNKgM6TIiSBFSLcblFlQ2psjFSeirjKIqc2SMPUgz36rF8ts7XnnuR3l2P0FCOgYwpq4ysUmhdoaIGxhqUTpGjA2zYpBQe5zSOElkVlKpFKMCrVxe9QRjj8l1GQ0c7abC1tUlwaAanYqr+ATpKQIEIUrSTVIM9dBRjY0fSTNja2kQFIYHvI6MeWnk0LYa5wdsAooAw1thRnWI4PrhGGHeRUavGjeX7COXRyRwtadjt9yFoo5WGPKNSAYEMa0B2BWXhCFWFrQRR0iCNBOPxmP39fRY6Mwj32ujI19SwVsrRPLLM4dlTmIkhnFkhbx0hnW8wMxxSVh38zacQ63v05pboDzboBad48fOfxV/4NJ29S+ye/TJVf0I5MezuPEdjfJmf/9mfJWl0Ia5Yufduzj39p8x4y6gKsLqNLbcYhAEqCCk8+EaXs5efZ3L0GAOXIotbrByeY7BxmUMqxJoJUauDm5uhWlkg3jpgPDHsbxW0u6tcm5QU2QE2jGgvHeOxuW9ivrtMWka4dI5scIPBgWWrGBEUAZW0IGojiVYK6Uqkqm/QC5Fje3ubuSP3IfwOSI/PSkZiD6UUSenxNqSSisJbDnY3yEXMaOcGo3yC8xkujWnNLHPz8x9hZ32Pw/c+hhxPuHXjOjNzq/TzDoSSSSpoliUnDq8y/633UjUktn+Dw297D7NvfA+q9wDNmVNsX9nlyrlt2qvv4KF3/Xc8+d7/iyoIefbLv8RLL3yOk498L69/y7sR1rL6wPdw3xvezfWXX6AQXfz8HHd/709TxKe49sqX+Yn3/l3ya5do+gZ3n5ph1/W4ev4lyv6I/s4tGsuL5EVFVxvKQlDhmIkCZjSM1q6R6x7VZBcpEpSbUBUW3enw5Juf4MnHv4ODLYcb9BnuXqEyA9qioFzfxmcbzB05Tnv5CGZnjxtrN7nn9CMEpeDI6W+D9iyVmbC/36e72MZkIw4vzbN5dgsW91lbu8KBmCU49QitdJuiyHDN01T6BPlokzc8eT9WjElnYdv22bRNhBFot4fXEuc1RxZOkdkWe3t7HFlZ4ItffJ7MFMjGTB2LF9i/1ofV3/Qm5KuVj/Yg/V8taJ2w/Pc/9jj/8scfZXtzjyMnV+k1Y/rlFk8/d4H/59c+zQc+8DTb+xv0+wXjPKPTDIiiChUXzMwp4qZkMCmxJOTOM8wKDnYPGOwOMaVFSYdAIae4qb01SZ7VLNdcWMY2o1QOa2oovRAKpepEpDIXZFmAExYdBiAF1tTd1bIsMbhavzYtWKuqQlLD5hH1uNg4iUdjXX2jv63hxAa13nO6T4QQePmqe//OfpwioLwXaBlMO5WSytRjaoe9Y/C6A97n1WIVpgWnqDWj/uu6rlK+GqN6+3VKvKq/FFNXvZQSoSSGOkFMCY+OGsS9hLjRJU47BI0GvaVlEA7hq2n6mKn3g3uV11rH40qks0jlqGyta3XeTJFXqh7jI5G+foBYXzv4vas1s8IVwFRzOhWp2ilCy3s7NXQpvOtS+CEi9NMUtBBrQ4SvkWSVca8yZ0VtuBFCoH2thfbOUhX5dLFgCFUwlQHUvNsgSAiCAGPsHQSWBOJAT7XI39g6VidAJzFx0KhJHUGM0wlhoIgqg/cBZPuQl4RhRGkyfvsX/xm//c//C/prV1meTYjsmFG2x9nza/zJxz7Hx/7web7y3NPkORQ2pzffoRxvEIUlSUsTpAGTfEwpYyohGBeG0aRga2ODMqgT7KSrSNMAV+VUe4qiqK+/IlJkocCZkrJ0FLklCBoUXoIvqIzCiRbtsE2aNFFeYYkx1YQ8q5i4elri6ixnnKuPm5ter3iJAorCoOMOzmX19WodxtVZddoLoOb3WuGpqqIep5fZ1NTnaq1rkFAd7FEUhrg1gy0tk/EYFUaUTtVTEyWQ1tKIY4JeC6fAVxnx3ApRbwV0AxU0MFnFeJgRpot0Vk7RW7kXi6B/cI3xcJ9GZ5nu/DJCCNLOITq9FfLJkIoQEce0lk9BNIthwulTd6McRFGDpcOLlGiy0QHeVlTVGJ3UMcXhVHrjp13iEIsrx5Q+xNm8XnBPqSkiCJmbm2W+u0hVgK1KbFXUSDEsPhuDzYnSJjKM8WXJOJvQSFsI64jTWUQQ42zMpBwSNDQ4R5o0yAYWEVqyyYTcaXzcIFAVzlucTPGyCaZidqGmQkBJ5Q2ZhUBo8AWeGg/WaswgVESeFTSSuMZ9OkcYRQjha7LNa2yvKQn44Ee+9P7o2BNE13+X88MOHTshmVtk2C+ZFIr5boRIlxjRoXXXEv1z54nkOq1j30JRxExah5g7dppW2mDnykeYGa7isz8lPP39iN4yZdhjOHLYqI0P2izMt8hlSN5tk048M6JibNu0hn3e992P88GnD1AmxwaecNDHto/RCA1jO8aLhM7udYKZe6iabXx1QNVsoNOIUSWIW7OI4YhqdJb1PGHcW2SumrCzf4FOewYnBc04hbRJfrBH2JjFk+GNwAV1tKCWJc6Abi/g4hA5Kem0ZhgUmnD+KOXmTZwcQxgSJl12b96gyg1BKmnOLZJdehE3GNM5dphLH/0QcecoKvCc/cLHaS2eJqJP3DlOh6vo9DDOlOiww/b2NUxzFTcacqSd4lxAb24O0V0gaR5h9qFvp3XsEVor9/Dyp/4l5eVn6HbvY/6xb+Xmlz9Ge/YMM/f9J3Tn7mVj7yyHTj/J0EBTDnC5wezfYObRJ+gcfye/8f738tCblgmDXS596Hc49NB34ruKdnOeTtpi7cbHifQcdy+O2YjuYXUxYHt2icb+DhNXkbt5mnKPcOlB3NY1gs4KaX6Njz37eYZZieyuELaaFFtjCFuo9ixLx09SDfYoNy6yOdwmasxy7ouf4Kf/239K5SZcuLlFuxhT5QVxK+HcF1/gF37zg7z9zX+LYSnIVJtg+zrBfY+zrDs8/Ue/RHshYVZ5JrHkTHieX/6V3+P48ddz81rO4tIcPgyIZkK2fMioGgFdVHDAd7xhmXy8zyc+/gmOL69w6MHvIi9cfTO0kn/wD/7dsXHfCFvp/PsVNdaK2w7vKWAe4aYM1Xr0WvkxBs9Tn/koL3/1Cs+9vMmN6zvc2hhzcDAhUhELsy1OnVpk9yCn1ZaEd/LjHdorRKAIA0+7E6P0Frt7Fd7VKTVK1BgmL2vzVp0MJadaM81k5DCTgINhSRKGtBsxRWXrGbM0YCOEMiiVY0lqBqCtx+WhdrXZolJQWYw0TLUBOF/hRK1JdVR18TMdHSpVazadl+hpbKqXHkuBxSKsAlEbkISXSKlw3iJ8/dq6L3sbtUSdZoVDKFEjoTRYgrpbO9VVAvV4Ho90Ei8ESgqsBW4n6KgaGC5cTSnwt2UBcKeLW7ciHVJ4jJdMJhn3PPgmymKCjB3kkp3Nc2hjMV4iUTjtEM5hhMDLuguqPDhXTYf+NWVBoetFBRZrQEmDx1F5N+Xl1iguL6efTfgpXqxGYeE1HoNSdde4FD2WznwHQbPH2WtjNgaCpVOPsrhwhPHBDaopDsx7gZSq7lA76qLY1+gqUxkCoaYYL4dSEc6aqQnPEGjFpCqnRU9tUnMyAA+PvXGVVhADcM/j37iSgKsbe+/X6Sy6uMW4UoQ4dBDWJiUPcaAQOqrPqQTy0YhzLz3F+lbJhWsDNvZLhoWmyA0+32c+mWF5sWLMAkk3QYoIYyuEVEgREiUhUguiTkrAAfmwwrgI7Q3Hljrc3K8LSSToymCDBlI5rIMiF8hhycQkBFFMGglKLxBaY7Ao2agXMn6fiU0opSSwhrIak0TT2GEf1PcekyNUVEtvrK11rbaWjEgnUUFQXyfO1exXKwniFFtkOGlwwoJSVONymsxGLQnIxriqIkgi8p0NVBAjhGO8v42Om0hvUTomkBnIiNppFVNWY5xK8KYi0Yoa+h8gVYwMUqLOPDLuoJM2g+3L+HyACltE7R5ZfxsdNgma8wRhi6wcEbfmMA60KME5TFng4gbH73sLV7/2RTpLIdIY1s9+mbQ5h9WSQMWoUJFPNkFGpLGlFG3SUJIHGllVGO8xPiQUFhl1oRyDjAn8iK2DPQprkWGCVhpbVHilETokbKS4qsIVY3KTI2XMaH+T03ffg7EV/SJkbvl+VJhya7/i5q0hfRdz94n7GQ92KL1AVQWiOUOsIvY3rqIDSSQlVgoaYsjlKzdpNXoUuUWFGqlDUJ5KBBhbomVEaSfMdkNwlp3tXZK0Sdxa5PjdcyRS4b3g297+g/9+WKsAw/orX+TiUDLr1/C2yXDtKrOqj56PGF1fx1YHxPkVrjx3hTJ+gO2BoakWWHITerMttl/+ImV2k/t1zNkr/ydi4T9HqBZ7Oehyj3h0i4iMYPcqGzd3mC0vM5OPGfU3WR9fpSd22ZpL6Y8nVGadTncZ2bsPH1mq7ZcYHLqLdPFB2gFsrpzCuS1k/xJNU5KKJlp2SZtNlJOopR7VvuDQkUNEgyF9eZXZ1nFM1MGqjPJgBxAkc4u4KsPZqD7pKk1ESKx7GJI6v9k7XOxQIYjBLgcbG6hWDEmXfGsNpwSzR47TPrKK216nOtihfe/j7EVdXv7Vn8H05ohnQpYWj2LTFeZmeohj304w16VafBOTF3+H7NkP0V1p8eDrHqfZbDI891UOTJPN4ZCdoSWTIWYmRacppbeMRc5D3/mPiB7+AeJewUzf8aYf/y3s3Y8STbYQouDuh97B8PLH8AcXaIqK4fA62je4tb5FaYbMP/leNj57jU99+Pf42f/jZxiXG/i9EXbnOjfWrjObhSw89Dhnz2o6q01eOPcMrfURZZogo4CF1ZJJVuClI08OMeo9zOb+NqlLmVRjwoPnOJZf5M1vvJ+FM4dpt2KufeZ32b7+Ag19lNbgBksrR3jHk49y/uYr/PlnP8rmYEh/5zyVzLm5foWlw0sUY/jsn/8hz33qV7nx6X/DlavPENo5nv/SJ7nnXT9NliVU/Vscac1z8o3fzJve/v18+iP/L/feG3HcfpXHFtZ4WL3AQ3tP8XPvOsFDwVcI+y/zi7/0K3QX5njvD/wELpxna3fMwf6A3Ackae+v+3n1176Jrxsv/+WvdzZbFx1SJiihefpDf0pvaYGVlYTF+XmCuCBJImZnexxePcRkNGGwP6HI/TTjPSAIIgItkTYjCOviRavGHYNMzfzUU7dvraOVcjqxQNzpGnpKAhWzu5WxvraHVJ68mFCZOmvc2xhsGyXMlAigQai6K6g0QUit2XQ1VcB5c6eLWKdmCayvH7jee4wx031Sm32gJipIEUz1tFPpgRAIHNaUd7p/9YNR1bB+PHKa5lV3GR0CibN12lONW3KvYqNcDek3SkBlpxgncQd/ZYy5Iz9wrh7Je/GqAer264WQNV1ACBppxLDYRlQea0JUU0F2cGcsL4RH2jpuMkCivEd6V+t1p8fmTgoYVf0+Pph+LlHLLcRtM5j/C+fTXz7PhKzfrzas1SNdn+3gi4ojS8s8eOYMuhpy89pXKYrsTmF7W1oAIKe/qwMZHEK/mv6lhaxNXEBlir/Qyb7NlPXeo4xDe0GA/ksUgW/MTQooRvuMDYQU4DWmyAiFQYQSkxV4UyHthGxgQHV58bPP0e0tsNxTLMzN4ootAm1Z6XSIGgcUfpbJ2DLJPRpQ1hAoSWAzqsmQRI0JrAUrqHxOSEkZqPoaoSAMImTYRmiQ1Rgbpei4QygleRKhpGe4u89gp49WCmMsngApHQQNXJ6SphphDEaWhLpFRYBXIH2JkAIdNPDW4FydpCZdPQGShFhfY87wvl5EShC2pMhzhJ7isapa4xwkKTqJEVWBr3Jk0qRSIYO181itkaEmChOcionCGNGYQ0YRJpjBDtcxexuoSNDt9mrJyniI8Zq8qiiNoFT1ApNpEp3B0F08iW8eQgYOXXl6dz2KSzsIW+FxNNsLVKNNqCZoAabKkdTRquNil6i7SrZdsdff5PSpFYzLEJWBakIxydFOkrZ7TIaCMJb0h/vowuOVwgtB0hQYW4HwGNnAhh2KskKisN4iqz6RGzPXaxM1E4JAke/dosyHKJkQmJw4SViYazMYD9jb38FUBdVwvZZ9JTFnTp5AlBnnX3manfVLlPtbjEZ7CBcyPNiheegU3keYIiOSinSmy9zSKjvbN2i1FC1GNNWYjhjQyLa4d7lBkwOEGXH16nWCKOLw4WNIrzGlxVce4wVS/QdIAnbKgLkjRzly6F5aQYzxW8RLd2OCNmU1jzp+gqvPX2YxLnn3297CD/ydU7zpidP8l68PaAdrqKsfITTwyd/8Bb7t3U8QFPdjRU4zLjjR2ifKbhFnF2hqjXD7zDU9g36TsVqidBO68gTbN4aYV/6cf/Yv/hU9n+NTDcoyyMAmq1RbfYqiIDcpan+DmIQonWdYhVgbULkK6SUuCGlWfYbWU2WwGNzANL+JfH+deDKhnc7SaoUUomY2RklImEQIWeFEiZKWAX1ys0eVlYwuP48rLdfWbiJ6hzEU6CQhUCE6iSiznDGGKAhANyitZH1rk5X2Fqe/+79iPmixcuQok8Jw7IEHkE1B5AOG2QSrPO3Tb6WqBBuX1+HKs1SX/pRj8wFRdQ43PEeoSmJChHdII3HjCUePPUSUBviDp3j5078BJ+5nNNwhHI/ZuHEVeewkG8/8MdHyN3NkdpZbu5aZxePEq4vMzXTZ2Fon29tgsHAcOfF88Lc/THuygQk0o1uXac0dYUJEVOTE87NsnX+WmSJGc4nceOaXV9m7fotm1GBv4xLJjCYc7nLx0jY2N9y8dpGF2TPo0RqDtQ9jd0PKnWvM33WYVu9hrk9u0FhcZTSCX/iV3+dYq4MNlghax6nKEccXUlQFVy6v8eY3PsqLTz3PY3/n+zjzhreyfOoBWkqxfKSHECNOHD3KaDLkYOtlAu/52+95gH/8j/4hk9GLPPdyn2fOFnzyhZCzo7v52Q/8NnujPcbZFocWT3H5wlX2di4Q6JwjqyFBZGhqyWD7lb/OZ9XfyHbbbX67KLy9CfztkCUqIbDCoArJ33v3m/mv/+e/zZWv3uRbv+0IRbFFFFn2N0aMDyp67QaPve4EK0sBjUZEaakXJMoSxJ5mKySS0EgnVKpBt9uj3WyhhcRSFxoaj8RhpEM5CIRE3sZPybSG+QcxpUm4ea2kv6+xVYgMNIYCGVZgJaGK6gAA5TFOkZWeohAYBFqVWGvrws9YyjyrI0UrQ+WhcraOcLztzHcOqcC6irIs6wLNcqeAul0M3R7XS6lhitRCqqn2tY4Y9V4QqHBaXApCLe/oR5HqLxSt2llcUMP1bxd9tzFWtcNe1kD+aeLUbVmB9wKPvPMwlzhCKq499THWyg22185z5bk/RhHXZAFncMLVo/lpKMTXx7fWI//b/7vGhzlZ1ulZUtzhsgrh78S53u7yOse0qLZ3cGPeV3f2l/UOzZCty59n58af4wbPMd74Atn6c4i8TxBE9f+TNU3AGYtgKueQtwMm6v1TOXsnmtbaCqEUqHofmGmxXe+72kxigEp4iKZ6YfGaj7j/6Jt1kjBJaURtAqnwFKioOV0YhYg0ZTCYoFXF4e4Cf/Tr/ws/9BNvJTzY48EHWpjBeULtuPLSWRrtDu1onpMnF1icE/QaYE2OyQ5Q2qODinZTI4xGx4JSarrNxTrpbrTPK5euE+ORCgSOwnuETJClxVuD9RJhIHASFTbJq4TtTctoKPFWI4IA4TOcNrhK0tQGq7o4m0PlcT7Ae0Ul6g4+00mCd4aqygBHaQtKX1EZQzk+AA+TLMPruhvqBVhTh23Yqr6mlayXxM4LyqoiUjmtQycIZUgYRVgvaLQ7NTUCMNailEY15usFbV5ih3v4yTZppJF+jDcj8JbAg1eixtBZS5p26gGQ7TPYvoFotbHGII0jz8b4tEHR30REPeIgZlKCjlJ0EtIIBDde+Dxbkw12R/tsnv8y67f2CHyFxVEVY5ROcF6gvEWGAfnoAO0kUuRYD2EcU04ytNAU5QAZOoStGI4rvPUU+ZggbCJMhik28YXA5BOCOEEHTSZmjAxjjDFcu75Bc2ow01qwv/4SdnAWP77E3trztPwOw811Zo/cRaM7R9zqEkgII43A1uZab7HVGAksH+5w17G7qKo+/WHF/qBkZ6QZ+SbnrtwirwrAkCYtxqOMbDLACUeYCEQEgRC46rU5rK8pCfj1P33p/SLf5EcePsHRkyc42a6YebDDsx//It3jK3RmOjRUh2Fb8NUvvMjarqCa6fGpj36cnfgUfmfML/7vP8jV8EG+9rnz6OXjlLsX8C5iqX8D1dijmAx54PBxOuxzsHGNoLzMTK9LNHeCydmLJD1Nb7bDsTRlbesK3WiGUO4jyzZbN79ItHiCOL9KyYSoeQgdG3Z3xrR6PezNF2iYCaK1iFOWt53s8Xsf/Q3mkpPsNVew2R55NE9gc5zuUuQlYehxxRipNHJvnUoIgkGOKjOC4QE+jNHbN+kcO0k+GRMbwajdJRqWtGVAjkH1jiODiJAAZx2220APhsytrnLh3/4BnZOvY+PyS4yuv8D8g29luL9JNHcvrD+L7yxTTAasnX0BNbeEKSXlwikqOcOBXqSddAmOPIwscny1Q2f+BLNRRqM1y3h/zG6WEc2d4sTqAxSmR7zcpVVMcHOCxiQiOHwPl5/9JKK5gl85ghpdpJgYJq98ktmFBaQ07N58kZV73kFj9ihP/cm/4Ed/8Lv49Z/5UX75k1+B9hHu2vxDtg8u0W7eS2P+NPv5hEZvnv3167g4xagl4l6PbrrAaLDNwgNvYU6eRQcNiqAkr9pc414WEs3GpU8xunaRIG4gidmvxrQaLY71Aoaiz7WLV1ieX+Di5gW+5b7jnLu2j6k2ePvffTenT6/yRx96Gh9N6My9jmrvImLuOMHBNXbj+2jOdfhPXx9x/+IZ/oef/zDP7VlEeISNa58nbgl+6B0PcPPGH/CWN38nz6wf48rLG2xtfInG7DLj+H5Uscu1q9vMHz1Jk4BIVfzIj/3YN+x4EcDg3i+mMYi+ru3qKM2p++oO3xCw0vL0p36Oj/3uZd719gf4N3/8Vaoq5+4jp3n0dSdZvauFjg0IyfmL20ipCQJNGAXgApyF7e2Q58/tgp2tiQS2Zn8GYUSn3aTVaKG0pMgNOFNDzYWrQzmkxDiPUAIweJkTqzYIyWiSMxx6RgeKoqxImg3yyRAdBXWCiptmzAs7HR9rnPcEQYjQAmGhmGpVrS9rV/OU02ps/b2xtUNdTTPna3oASFUXQxY7ddTXBIJX2aoKicQ7U8sFpKrH5DgEwRSe72BaFBpbu6zBU4qKgDpSVGmBpzaASanrMAF3G4Fav5ecGr2UUjhfIYXEe4sEvAUdBWQ71wjtAE0AwmG9v8Mt1dMErXKKIXC+jjt11uJVbXi6HRNbywPc1L0PtwUJU1BXnU4k6iSwVx18Eqy8U1gLIadUATdlQEa1ZtdrUBrjyjqMAj81sMk6besOw7V+Xz/9nbr9PRAoRVE6PLUmV4h6jGynCw2lFNYLrK944sl7iLxAAKdf//3fsNfsta3++wUFR9sNkmaDlvaEHcVgex/dSAjCgEBonIaDgz4vPPP7PPvFPU6tpvzZs9vYLOPtb3oDy3efJgocuhXhqglrt0YktiSILFJ62lEbZSt2tyqu3tggUD1UlOIGGToQJGnCfLOJEJ4oiLBVjjCSvBwSRCnSZzjh8DJCBlCVJTLyBKVB48iNZJI7mj7mxq2rtBo9xtYjpcOrEOUtQsU4b2rJTVkvxrQzoASycHVzyZj6HMwn6CStY0etx2iNLw1a1tICGTamGs6aeFFLCkqiJGWyu4FOuuSTAWYyIOgsYMuy5tLm+4gwxdiKYtRHhA2c9dgwxYuISoRIoQiaXYQzGD8hjlooDGEYUlUVpXPouE2atLA2QMUB2hsIQTuFjxrkw128ChBxCmaEtw4z2CFppJTDTdx4i0bzECqM2dm4yLEjSzx0apW13RFeJ4TFBkU5RqkmYdSirCpUFFFmGUJrHBEyiFA6xFY5YWuOUIzr60k6rAsY0yDSkmK0g8nHCKURaCrrUUqThhIrLXlWEAUBoyxjrtNhNKnv1Qurh0kamq3NQU1m0W28yfBBWrv9dQcVaBa7ilbY5JWL6wwrQCRkk33CULI00yTL1pnrLdIvG4z7GVl2gAoivO7ibcloMuGRN5wh9hKF541v+/eUBDySXOIn3z7PC+uf5SvP/R5rqk92bY13ve31RLf2ufn8F/CH2gh3lHFbMmoIbl74Gg0FC2zwg997Nz/2j9/HWKfstQ4x3xhx+J5HmG/uclUuc+7KIdTcG7k8GPD0+Qnu7texfWuNS1/4PDvPfIrm8TbpiYdhcMDVrevEjZAig1Ff04h3OTX/MJkRFGKBaGDJXvkzLn/lZWYOtRGuJG/MIZrzbO5v45zj9HJMQouf+tFHqURIECSkaVpnbLsRpAnF3oAmMcVwn2Yi6UYt4iOrjCJDkVUw3EAdvofx1i02diqCTpdUlChlGZsDuu1ObcqY3sHDMCQuDMSKrDLE7ZPIYc7cyXtIkxlKXRA1UvLqJmVVm06azWVSuUvZHzHe3WV3uEtneYbZo7MM8pzEQ9mKsL2H2C8OuDEK2XKgF3p1Z1gosqJkGGRsXziPmF0ivz5hGJTsnT/PXXfdRefEcRaqEjmqaMRLdBbfjBMLVIXknjf8BPOHlrnwtWscO/YIf/DhX+Nff/ZT9K5+gb4/4PDJRyj8w9zK9imLdUbbN7h+7SI+HzOfLmOQ5b6rAAAgAElEQVQHt5jpzrK9s8attctsXb3BresR/bXLdGRApvZod06wHcS8cj7j3d/3bv5/5t40yNLsLu/8neXd7n5zX6qy9urqvdWLdrU2tCBLQgQSiFUI2xBjbLA9ZhTGwbgxBGZmAoyxBw+BHeMZsYxYBoQWENpbEq2WWlKrt+qq7lozK7Nyz7u+6zlnPpxb1cI2mogJiOn3Y+aNzLu///f5P8/vCU/fSjTXRWdbrG5cI2yMGe1XCCL6ewUn508w3O+z2VsjSxt86Dd/mz/6Pz/OqXnJ4tw82uyys7tF2S/ZHYYMd55h4+lHuev+V7JxkLDQmSfQMblrc6x5iJNTbX7rP/06a6tw4epXaOXPcN93vJ0aTS4/900WFw1BS1HJKXa3d7BV6lE7L/LDSeGHr4kq9l/93jkf3DEVkoDP/9lVVk7NcuT2WapySD5OCWSC0/lkuE2QIiC3Q1RgCZT3O94Ixbz85a/ida+4m/2tPS5ubiOjgHozplZXE6ZpSZwEdGemadYbXiExJXLijVS6wjqBswHCdHHkWFvcVByVNuRjxdZaRqszTVGVFLl/HcrSTBLt3r4qlF8bW2uJQs+fdZUDYX0wCndTrfvWr77KeTQSkxR/VVpvCbDWhwisu9kQ9a0r+xtw/5uDrLvhV/U/9yqqI9CRV2aBGEUlLEpwcyUO3LQESF5Qd4XzNAAp/ACIulGH6i85CuEoigwpQso0oJIxNsxRwhMKpJRI47DSK41KOJRwvghA6ZtDXlVVk9CYBLQPv8BEoRQTr6q6+fj/yvvJ+mH2RhuWtZVf3Zc+TFOanCAU/sLCVgj82v/G83Hj/1hrMaacvD4wQTrctCVoKWFCDwAmKq+/zy9YKSzSCqQVhCL4r60wL8Kjpcecmo3o5Xv0eutkosSkGQuzHWRWkvb2MFGAMBFWax5/fIdGW7J4pI02B8xPhZx99lkqbSl1TKwUteYUUvbJdEiaRahwlry09FPHLfe9gluOLrJ16Sqrly8QtCPq0zNEypCVOUL4i6M4adOoKepRi9L48JeugHSLYW/oG7NMDaPEhO3r37+tOpg8ZKZRI663Pb/c+pCUqUqclJiiQgofqMNZlFBErRpOCUxpwaSQ1KiKjCw3CK3xjH+HcSVSS5+xnAyrzgr05LNWmRKp6tiiIqw3UVJjnPXIPJHjg14OrWMkObassGVFZUqCKCCqBYDyDXNaEgRdMluQG0lqLSIMPFXDWG9fEZZsOIAgwo4dFY5qlBLHCUGzTuR9BGiZQDRFWQlwAUn9JCppMUz7NOotNjfXuLa/SzTcoxAV9XoXaFHagspmVFXBeDzCx0cDbJUSBBFFUZDlI/I0Jc8kJh+jUBhZ+TAckuHQsLS0hKw3kEHo7RVFjtIVZV5hKkuVVjTjBvmkNMZYwbVLV7m+uksSOF8i40qKIsdVjrwUFNkBaW+PZrtLViqiKAYhcSKgGSbUtWJ17QppBsPxPrLq055ZQKEYD3uEoUEpCS7EFj4sZ/8b56xvPb6twvqLv/GFh762NcWnP/4h3OJ95MOYTXmCYvUSV6/+OaeO305/c598ep7pzklmsz5O9KnVlhhd+yp//omvsHj332e4+ihzMwv0Ln4Vnc+j5u5mtHeeDEU/3SW0OWEtoi5nCe94K9ef+RhHX/tDDHs5e70RaX9EWxp2Lj1C55bXYLtzVKlmZ/Np2tMlUa+kChaYmZ9j/vQyu89eYqhCIGJsUqyCaG+D73z1YW45tsK/+vQujLZwwTS2yAjCFkk1QIYBcu8Kon2YoNEgGxVoAagRpWvRXW6idnsEe+fo7e+xcPw0xeWvYPf71EPDaOMKgRVUnUOU1mFtiRICFUiqrKKuYDTeptgd0p5usD/KyMIutj9guHmd1vQyVaRJkpCDUcro2tN0pzo0F04zSA2N0BE3pugXFfW4gXYFg/0+SaSwpqIscqJSI/UB1UGPzvwKrTBmjEC3mlTbKe0HbmPvyUdpLdxLf/NrtM2AtLPEwXCV7sIK1/oOka8STh9BTy2zN66xf2GVL33hE7zlu9/OP3vtLfzqb32M5l2vo15PuPzEF5k/8XJkZ4nB889QhDn1+hS7O6vEQtKYPoYuK4KTtzKjcnJVsdQ5zuOP/Q5Hmg2OrCzxqU99gWy0j+itEmmFyR37584yHBW85M47qdw1GGecvbhFIxqzutXjJ3/sB1g6ehvX9sYE6TaNumWQQ3LkNqwpmO4s8/p7Yu5YXOFf/sffoz7e4v5755jW1zh3/kmurl2jXWvTfPU/R5enubr6f/HqlyyxvbrNy7/n7/HnH/wdastvY7DzWY4fXWQqKjnY6/Pf/dQ/etGqNQDO8hBS+DW78OEYPxBIhCwnXyiAFXzg776DwUHBvadnKZMB155LIUg4c7RNrR159U86pNKcf3YNoUOMlQgqhHJgBWG7xdLtd/LT73spu09f56kL62zu7VPrTBMRISdd4UpALY6pNSIMirIUOFuB9H6sQGuMq9AyQKImeCKQQeRDN2hG4wGtdkSoJaWzyMAryYISiPEpJYkxglKCx4ZbqkoiJxgrhUIKgXDuJj/WCYcR3kuK8+Ek6/ypQUiFE24CNXcoCRID0lJhkU5OkvWOyvrBzOOxfDDLOnCu9LxJYxFO4129E1vARFUUwquXCLAuQogCp41nLko16WL3DFkpJZUDpZ3HVElJRYrAIKoQJ3xgzD9giTOTid5pnBGTgXYSCsN5hBe+5UtwA2c1eT9NFE7fMOaQARN53t3EekmkV81MiZxcMKE0QlqEU9jKoaTymDH8YK9lgHXcJDxopT1qzE22Ac5CKXxVp3MYN1n/4iidIHQBBu/JNc55Lq/z9ym3lje94Siq8sPsLS/9wRftZ/b8pd2HDsqIvc11ZNzCGkkh6phxSpZt0Ki1KIsKq2N+9z/8CrafcWK5jkssWxe32Nobc/LkrSg5IgwDqvQA6WqsbxcYm1M66XvohUFKRVTrMHP7/bz5pW2qUZ2Lqzts7ffQcUJCQJXtE9SnkWFIqCKQOSoQ2Nxh0QRJRJBoTJpTCjepW/XyvShy5mebNOsJZ3cM+eiApFFHC4cVCi0rhJSIcoAIWkitMMbhrMAog0QRxgqbGVQ5oixLknoT0h4UJVqAyUZenQ9iv4qYsJOZfMdpKalMDpVBa4mxFicVmJKiSAmCBCsdSgvyylLlPcJQo8MaxlP1kEpSTd7X0glM5Z87rO+1k0YgZAGVIYgTlIiwwiAigckswVSLor+HjjpU6T6hMBQ6xriUME7IjMTYHiqMkKpBbhTVKGNvd5u55QWOd+tcvLKFbs2hhCIb7BLX2xDElKMBTlm0jsiLMcoJdOiraWW9SSAsBkcSNDjYW6Mea5J6xM7mLs5WuCpFT7Ya+eAAZx2dZhsrC4QzDEcl0lXkpeXI4UPEtQZpURE4i1SOwoCM6yghCIKE6ZakHcecu7KGKgq6nQhFxmB4wDAdE2qN6J4itG1G6TVmWhHpOGdq+Sibq2uoZJ403+ZVL1shdl65f9Vb3v/Xfl6/7cD6Hz740YeYbdDIWsTT0zQbc1wPHQ19iDQNCJygPnU7F5//Im+6rYUoz7G39Twz00eYu+ulmKk5Rr19wvYSKQqW7kJcfITwxGmC+jEGvcucWDxMWj/GXrpFrwgZDNY4dvqthBvfYDTO0fNzJCunKPspD7z+XlyRsH/lKUxrBl9s0UEVBS4Z8jPf8yo++chlBkGbpnZEM1OQQ1tq0mLE2+7s8qt/9AQz7dswU03qwz1sHDBcu0SzPc2oyKA/wtqSuMrJ6w3yso9OFd1mnZ39LcTsSTKlQYdkVy8x1y4IdIOoXic8dIKW7FEmXbSK0GHI9fV1Gu0WhXWItfPkxqBqTXQBtVO3s9hsoBuLTHdmWNu6TCdpUhUQhjGJzZhfvAfbbbHxzBMkMkY2ushiTFgLSI2iVks8/DuIyeyIUT8n3e8xNd2ld3WNywfbHJpdoD09xfrl82TrV5FJQr0r2B/FyNEmZWZoHl9CrZ1j/sidZPkOg9XnmdINpuIBot0k0F0Orl3gL578Oi971V088dXnmDl5mnq7Tc9opvaeozCS2TMPoFTMaBhQFpu4Rk4wLjGFwi6cpnXwDC6D1sptrCzO8tg3n2Dl7lezf/6L/IP3fT9PPXGVeP44F55/hHe+50H2tg+4pE4S7F5m/v7XkcSS937/9zKOU9T1krx+C5UbsXW9R2f6EPnaOQ729pmbH/Aj734Df/GRT7KyFPHoY1/k+nrG5UsZweF7mJlf4rnzexy5+04O+iVEh7nw7AZkG+z2+5QRzPIMTq0wZVOe3d2kOfcSfvz973nRnvwAnBAP3UiXCxxyUhLgqHCV8mt7Aa87EtE+rHjwJYtc2rrAN792gB/eBPfctkLSUD55PcEqPXfusvcLIrHCDwc6DFhYvoWoHrK+7WgdO8H73pRwcjHgF37h7Uzd/aMcbszztcvn6R8cIJsRU1GdJAlJohqNRky7OUWkQpytMAY/dEnPWBVCeCUDPzCaQjDqVQzGit6eBSfotGsUhQUFyk/ifmhyEmP9+gvnu+t1KMiyitIYLGBFhZ2gmJj4RQ2+OcuJFxRAaz3mrrJ2MgIL7ASOL0XgQ1jCO0tB+MGTyfALNxFRDoHQwlsSsJgJ6xUsReVHRWelf+08QhYl1YQ76m6uP4UQWCqUFZROoZxBqxuVpmpCGbA44ais9woK5T3FDq8oe6oBfqi12m+EnAQmNZjClyLYiaXEOa8wY14gKzjrvdLe/uAfp7F+wHRICjtRjHFUxkxsCtXkdpMVlHMI7bFlrrIYmKilbkJQcEghvQ3E93wRBglCMLFyAGGEQ6J0jAlqhFGTN7x+BVV5S8bpB168loDLa1sPESoCo1FhSKBjCiV8s1jplUUdNvnH730tR46F3H4sZG37AteuGKJmGxfGrCx2iJs1XwqRtBHjfa4fjNBhE1dlJHEdoxKMMDS7hxBBRWZmqbdrvPYuzdJijff9vddTP/w6Th46wvPXr9Pf3kA0GzR1RBglRCogrkvuOnaEg15JJSTSOVTow0Sh9MUZs3XF8xt9orCBEQFVP2Ncavo7Q7SOiJOAKvOBIW0dTkugQhqJkiFpnkFQRwYSFUiy3gClKhDaO2ziBOkKnPKeciehSFOU9t9JZEPftKdDnHGIeotQa1AxgYrIiwItvX1ISoVyjjju4IKQfDDwPOYgQkxa0+yk4lc4sNoTQ0xlyPOKMAwoRhlpWZDEEYEOKLIUl40npReS0kqEyT2SLYmx4zFJUgcqinRIIEICVeG0QsiALB2wPTigO93h4GBMWG/47wwh0fkQ6yCqTwGSqlI4l+I0SOO50y5sEFR9nLEEtSZJGHLQ6xN3pigGexw/vEy/P0JFNdJxj9mFafK8ZCQa2HxE3JlBKlhYmMdqi0srrG5hXEmRleggxhUZRZkT6pLlpRm2rm8TR5L93j5ZasjGDl1rE0V1hsOM1tQ0VeWQqkY6zBDSUpQGEYRoVaDDKe6/c4pRVqKjNq9843v/v1kC6BxheOEsWwdP0Jk5w2DvHOPHnkHGniAw3B+ye+3L/NSPvofPfuMsz109j9gu2DZTrH7z09Q3L3BmeY6dQUZX15jqzrATQbpzgd54SBBEHIzBhj3UwLIw20AnhxjLAS6aIdMBMXWwFUWYsXL8Vr756Gc5FBoiIdjeWWe6bnCnjiBNzqc/90fU63W6h45SO3wKq+rUp2ewOiZpdfjsE58nOXKaA52jSoWeXqAWNemcuJVBOUQ2pxkLA7UGeZQgojZlb5Nxu0E2WifduIYSLUT3ECsNCOIxeW+HTLTo7Y7Jrl1h//o18nEf8Gu+w4dX2N/bQooSG4QkOmb+jtdy5fKTGBz7ecHYjtjubzO9cJS+yRmODlC2QI56ZC1Je3qeW+88QzKzgNaS5nSHXm8Pmw58ypQCVxbUVZMwMCShYry/R9LpMD09y5XnnuNgfYP5+UXmlxaZ68zT2lxn+fht9OMarXpFePEKe7v7rD3xCYZlEz1ziNXRRS6sr1KL59nd2KSwMY9//izPba3xrlefYqeXkw92Odqd4dnzFygbIbGus9brsXjmFHH3JP2zz9OIFFmxxfXzj1JZx162iaLksefO0+lYXLlPsxHxoT/9He46fZL1s5/irrvu4ezTVzm8cAyTpSzNLrKWVuRjx/qlyzz8ua8xLRXPrH+FnesbaBchwmlqy3ezcvgIdx5Z4Uufe4xSOx7+4jdoN5dYufU1JLEPqWVVzKE7X0++uUPf7VIvQ6Zuv4f5M3PUC8nM7G2cO3fAfHOHMTW0y9nb2/sbO1H9bR03NyrC/pUkt3IKEQiMg/e/4w7+2c//HdbOjginJWtrIcZZCuNZiHEQTHBDctL37lFUUuL5hs6njn2ix1GPuyTNBq1mncvFCU69/F7OfuUib+p+iievfo0ff/9P8qGPfZ6f+MEP4PQsV7ZG7PYGBLpOFGiSVo25uQUOHz7M8vJhpqfnUTryqrAQJGGCnFR8GiuwxjNas1HMpQsFV69apApwAkpTeA+omzRcCYFQirKQZGNBpAPCUPvVtbFU1YTVWlls5XvoS2uoJmEfv7b/lh57JtB9hw+W2RREhZh4XG+spm9UrvrbVzeT7zeYo4D3tVkf2kLmvrXHlTibgfV2AeMcpbNYoBL+Z6UxPkg6CbNZa7FGId2ETOBupOd96Mu5G8pl6VV2JM7eUMYm7xs5oRRYr/xibhAA3E2Qv3MeueUflADnVVM7+fvWgMR3lwvnyQQ37Q03CgzwQ6hFUBrjh9syR1QWpSEKQStHoCVKlQSB8bSIIISggwvnULUlRDIN9Vlse5mwNk3cnkU2mkSR//+BACWsryp+ER9OJ1SjIXnVIwgbmHKEORh4Zq1yFEXF//IvfpB/+oF3cu7pHYpgzM66JHOawcF1VDGk26iRV5ZIaqIgotKSshxhXIXQElsZpDaI0hBFiiSeQSWaWqPFdbPE4VtOs3p+g7taX2drtMkr73sZ/+ND/5q3ve57yE3EwSClD2gZ0uttUmvWmJlfYv7wUaZm5ulOzyF0jFAhu4M9kuaUVyidwukYQUTYqJGmkq1twfVtiwgizIQr7KocowW2GmFz3+pViRrKCMJQIJ2hcpOLzfGIMisoixJnLNYYwigiK1KcMxgHUmjCxhRpOvD+7cpgnaEyJTpUVJQ+FOksriqppEMHIbVmHRVGgEVqSVXmmMJbowwWV5mbF41KVdgyR2lJEAjSwYAiywjCCBWFBEGEKMZESZ0cQagEYjymKgvGvS1KE6KChNQMGWdjlIooshyHprczYpinLE5HFKbAVhWJThgORzgtkUKTGm8llLpJNRihEFibk4/3MNZRuRKw7I9G6ACcKdFKs3Z9nUa9QTrYptFoMxrk1JMmGEs9TEgrz1DO05SdnR6hUPTTffI8x1iwIkAGNZIwptNIGPQOEMrR6/WJwoBGp4MODMgAK5vEUyeAJlUYo8Iuev449ekZkqRN1J6lyA1JMOHeYzBl/m0/L992YDXrX4dwhrve/A8oywEz869FHjuF7F3gyvplZo4sUoy2+PzVHi87PMORapaZ+9/L5rOPkB77bjIEq4MGJ7o5UTTAlCUznRXSUcju5a9Sk03aU116Vy8xf+/tFNfPs2R7lJeeZ7XbJgolVT0ncDmVPMTCkSkWXvq99F1E3LtCYlfZ/saX6KSGPFyhSroUhLhMkKYp7YNVguuXaYYD0n6f7ef3GfS2ccJQpgapY3ZXr5JJh0p3KbKUhZN3UdWb9EXIxlc/S9k8QSIcyeJdnJ41pF/+JbYf/hN2twZkJ15HkRwl6rRpn7yFZhzSuOvNKFGj//zjqHyfyhlm5jokWcHZs1/DqGlcdo07X/pWYursrK8x3Nti/uhJkiimFcdEOqAuI8KuJKPJoSf+OfuhRmcpmDGbW6vU4lm67Q6hitE4YuXVsXGRM3YjesMeolGjpSK6R47Tzwds7u+SIzHdZa7rOaqHP0YoO+wfDOjV5+n3+3TvfCNhuEPj2mOcuOPt3HbHGygO9ll68F0Mlh9kYWmRK08d0D3V4E/+8YPIfsH5q09x8vbX0Aln2bpyniNLUx5vtLcGts5BNiaszTG7fB91V9IONTPRiNPnn0aEJ1E2oHJnaB/7LhqHDIdOzlJPZphbmCKL1znWKfja1W+y8dXP004ilu44wk+/84f58IVneNNdR5k58920ZyR7q8/ghhmvvneJYtzjDz/823zwf/8sybHvJFp5HUOtCOZPsdC22L3LzN+2gsmeJZo5TFWrMd4+x+YTezy7/g1m2/Ocfv37qEyXfr9PvfYSwjj5mzpP/e0dk4Hiv+XfEwiUzFE71/j1X36YqWadj/zJ13F2H1M43+cOKKXQk+rQmwgj59fqCoFSkzW4ktTjtse7aE0YKkRc4+xqnbA7xeWkzTvvGrDV3+TS2aepzbb4+f/53/Lzv/SviZvTfPP8s1y9dM2fJBRYVyClpF6v++F16TBSatLR2EOlVUQY1LBmiHQ1inKIoyAMNVcuZORFSBA1KaoKKxQ3eJKOSaBJGLJcYExJrR6AFVgjqUp7cyi11hcR3PBIfmuyHrg5vFnrkVcwSfBb4b2f4oW6gBsDp8dR3Ujlv4DOukF0sEi0iqgqDa6DlB2gRlFZnPR+WmstDj/g3SAU3EjyWwSI6uZ9kc4rjzd6I4QQ3qs3QX5JKScQdn97O1GTbxRNvPCYX/DY/pXh1oNScW5Siyu89+xbB/ZJNOrmc3Xj9v4CwHt4tRRo6dCBRGnj1WFCpIiQRMhoCRcuoeJD6OgQJC1UvYVRAhFHaK0IXAmVIR+mFMOKsjRIGU6QYzf8vi/ew+U9kCHtuWM4VxFGU1CrI8oRaZYS1xVib53//MHHOdxt8eQjq4StNun+PjSXMUBhA1ohSFkBjihIcJWiSnsEBIRxSJkOibptQudIVIHMM8okREYxV/cDwnqN69E0r7mtIo1qXFtdI6kLfvhHf5h3v+sd1KMmFzZ22doegI4AqKqc0OQkwrIw16HT6lCmltGw77FqaIIgIR/v44ioih7G5jTaXTa3LWkVUo1GFCL2Yb24RT12VPsXyfc2vD8zmMGIkFojRtca3i5UmwGnKIY9qAoqN/FYVobB4ABLgDMprc4cwknKIqfMM4IwREqFFgqBRAmBDLzVIe4/SykEznhfbVHmKBUSBD6EJXAEfr1BZR1IQV5YUC0C2SRIumRlSWZyvxnQEZnQmN1NpPDKbqFiyspXlkqZorMeteYCrcYslCXJ1AJVPE2UxIz2M3RNcP+xKaSB/qhPvTmFFhFZ1ieJA8/aLjJwitIYhAwIozYaX70bSkNjNABRQ1iBdXV0bQGVWKJaiJIBQRRQiZQ4MOynPfLeHkoIokbCsbll1gc9ZpoxcXOROJLYfIDEMTMVYo1l/fom62s9dG0Z1TpFFUyjG0dIatM4AcnMNMYNUY0mMgwQ+QH5fsb+wTaq0sSdZYSoYY1D6+7/K9bq21aztu59G2L3AoNyQPHEo1yahhMLr2T7yje5747bifUeyyvHKb/xOM+JL7BTzHBPJOi+5nvRG5+iOthj9vAal8K7qF34HAvHx+SZgcOHae9cotatM9i+hBrHlGmO2RliWvtMHbqd3eKAdrnFeCNmWFtGTdc4PtUkqm3AkVsQ+zkL3U3ydI00FHSyDT7/7DPcsuS4NCrQOmaUSGKajMcFooAvn3uaer3D/kaP2i0P8OynP8pL3vouVnd3ycMaxkGfBi7dYTpSLD7wVqTaRJUDrj36OZLmcQ56bc685TXsbI1Y0Dmu0SHqLrD39CfIajVmttaode4guq3J+PmvIZY7iNKiF1YIs31Kc50rT29z7PR93lzdauMKMKOSMFAkjQ61WHD1iU8zo5uUVDy/16d5bJH98nnS58fMrRxhUA4QQhAof4IQWiGcQUlIRylHptqMiozm1BxFZYijOiYs0GGX/YuXyMZ9Zh98BXnmqF+8wOBgjZnjryJNe8RpDbP0Etaf+SQHB1ssL55GdxYYpSPCeJ7WqbfwzLXneOS5p/jf/tG7+KnffxjpBC5u0V/d4lhnlioY0T7S4dBSi0F9lr39HrPtGsG4xV42pNe/zN997zv4zceuYPMe7VYdXZvhwx/6CMvLda67K4y+IVCZJTo6z7Fj34VeOUZ65XPElWEoB8S9AevPP0F4x92M1x3RzFHe9JpFzp97hC8++jnSgxnu/qF/gskG7OXPkq3uMNNqUbaXObR0Ozv723S1ReUFWcPSHTc4ft9ppoI34TYG1KZnWN+5THPpfqK4YClu/w2dpv52D3ETQ/TCydpJgTPwliNNjr3qKO0KXvvgUf7iiymD/hglDA5HECaImk+7Cz1RFS3gPExbCA8KFzioLHWtCeIQoQTGCHRZI4hjHl+13Jef4/lr+/zYjw9Y6x3hi3/5CUygCVzMB37u56iSgHkX8au/+IucP/ssffrcduZW4jiiNBlhIFg6tkRUCCqn2djcYJAOiImQ0oDQBM6voaXU7GynmBLq7ZCpWbx/13g8vrUQSIFRXlEdDq33o2pvIyhyboaoEBXSOCoReDVFVz7IIHwZgrUWrcBah7MTNJN0YJiEovzaG2GR1iJFgLEVZlJ3KkSFU2CqCYLMOaSrM33qDj7/xSdQImBuaZmVRcXo2gVK5UdT5/fuSCqsk94/ay1O+NdWCK+ClsKircDgsEaDKBFaggkR0jdRKSn88Gt9c5adtGEJKSZgAOuLB2zlQ6TVhBs7wZVZ6dDWIMoSLTTZhD1bWU9WsNYQRRHWVkR6ovBazxY1QmMICAJNRUKlQ8IgQDpJIby9QFlJVWU+RFdVOJf6xysUgVTY0D8jVgdY6WH7QQWVqrClBWF8uEy+uAdW3Z5DlGNKW8KgRxpCPeqSj/u0601+/sfewczpRcp1y7FTkkcfrxFWCtGex6bbqNnARJUAACAASURBVMoSxCm57KLybSLlV8MirKPzISrUVFXuKQ1VRWQgCCBKOmQ2RxkIVMj56xEn82v0yoy3vGLE7uglPPPEY95XrjTv+v73Ym1OzeZ86sMf47nLW6Q6Y2V5iTiIKUxGIASmHrBS65IR0K8cu9evMju3RFaVIENfu2w1gbNk/QJnuySqREtD1ttAyRhb5TRmpjBlRawrhI3ITYgZb+LCAGXHQBNVa1GlfUSicKVF6ARXlBg7Ju3lxI02zlVI5cklzvnGPR1IpBakB9tEMsQ5w7go0bWQyg5wmUDHIYWpUE4iZelDiZOwpXAOWwXMHbmFx8+tE4Y1mt0WM+0uo+tXsUFANRxiXEk8PeXDgkMwRU4YT1PZCl0qXNQh629RVhn1qIHTkQ9/ipCgOcdgnLIfjrnz6BxPb+x5e44IsHlJEERYLLV6gLWSSoZUxhAqAVVAXlmESFlZWmR8kFI5gw483WRntYeMIBOerS2tQMQBjcYSxBEi3SUUDkFOfdKuJZszuDJG1jpMzbXIsgF7/T1y5mifOoasLEW6RzXOCZSiNJIgaZENBiSupCoMVlqUiKnNtFBiEUYVNgrJ9vYRQQCuoibDb/t5+bYe1v/0qace2v7KH9MRV2gmhxhdWUVUPZqztzLa3+MNbzvEn/72J4gXjnC910ZlA85few5x+csY06G1dJg9fYbd9a9z5Oi97A4qgsO3ESuLDSuunj1HTs7iVIedtes0Zw6RNVfQg6uU84epyzq0DqEiC3aKn/2h+/l3H3+WfFTS1DnXH/lzlh98H+HVR/iet93G8ztT7OhjJP3LHNgONi+xzVlaUYQ6fJKpeJ5dazneDulvXqB95A6eevxR7lrZo7PxJUYpZFWLue48+XDE5c2nCMMFAtFgy7VpLK9wICvssCJut2lFIUrXuXbuK6SN4xyZmSdqnSAvKogSqvoCtcgwHYYMt9bIazVm586weeEs0dIK5TCj3moTtZpUAMUYlxkOXEZX1ulf/TJxs8GrTsOU+Spu47PYqQfYM4Kp6TlUGFJR+ROO9anoatRnZvEET339q5y54y6ub2wS4L2Lc7MR5eoF9sY5tW5Ing6YiyJEUKOfXibJDugu3cLFwZhRbY79px7hlpe+keLKF9C3vZlzZx/m9WcO0bFn+crlFbYuPsnP/Puf54GXztNYX2dPLBIFJVfW+7jBBru1efpXVulnGaocE0vBpp3F7XwdaVt8brPHv/qhd/OJh3+Pn/qHf5+Pf+QTrLzl+4inFhlePIfotHjDg6+gl2l6cUJpZuhd/TxxIVBxwDNPPouhTtZb5S2vuoVzz/4lX3jkSfYHO9x/93ehbnkFIDGNNunFR5g+dIaxlbTm5nj+0gWmA8szax3C0iG2P8z2tR6urdhfXyOVgqjbQYcdRpuXKUyH/mifn/yJH3nR+uEALEw8rO4FKhEgjKBUOf/5t36JZrDIe7/vVv7g/34EpRS1RKOFRWpLlhe8+p4z2Mih5AT35CrOPr1GHEbee+akT8soWD52N7VOlyiK0DpGad8QE4SKzWye+tQM2fYVXvoyy5998COcePXbuX7tKs9ePM+hziy5UNzxwEt43Zu/g3vuuJdX/Z138NZ3vou3f+8P0gin+ORHPsOz11cJo4Aj8/NMdVpEnRpT3Wma7RZKKCgq9mxJrAQikJhSMNjPGfU1u7s5Fk2t0fbVoa5EKIFEYsxESTUCjUAHft1H5agqc7Pj3jmBsT7l7vAhKWN9cEqKyeAqhPdfComZpF29bqmBCuMU4HzFs1F+5S59P7dDgs0Z9ddZbFRMN8bEap/hwQYR/u8K3CR45X2lViqsnXhxpfeJmhtlCZN1rDV+JQwGUBPN0034lxLhhIeiT37rbDWh8GuMdR4nZfC2AnxATDmBFhBIhxYFSigCpRAyQQcJYVQjas4QJF103CWO2hDPIuJZVNLBhB1KEpyq4QgJwwjwPl0dakLjkEpiJ8zcIAgn6n3osTxSIbXyoTYkwvmKTb9REJMuS8Wb3rCMzf1jO3X/X++J+//7uLwzeKjY3yAQKVrFmHEKtiQImuRmzDcf/wi9jYrXfcdpPvPwBRSW0maodM+H8VTAyRNnyM0B9XqXyjiIa6yvbhOEmnQ4ROCIlKbIc+YPnyFozxKKCllrE+iQIG6gI8lBMcudZ1Y4//xFTp6wPP75L9NdPEJKzPqlp7jj2DIHRcTiLXdw952nOLxyhjP3PsC9r3qQVzz4BpLmPE8/do6L+9u0koBuLWBqZoHUpCzPRrRU5mtZS0GhNcoaUjMEG5ONHP1xRFpqciG8T1kpHxBUmnzYo5I14iBCyLoPQIYaVIRyDuUcZZ5itSAMm4yHPUQYYiuH1BpUgEUincFWlhKHEooy64GSdGqgOcDlB7igSe4UQRD6al/rN0xOSKR0OGMJo5DtjYuszNUI6RPLEdloj0aoqNIRlTVIDdYYAilxMqSoRkhboJMGI1NRqpCiv0ujO40bH0B9mtF4n5lGiHYj9scx+bjHM5fP0+7EBFlOToyUjjwrceWYQkVUaUFRGbAG4QQ5Ma7sIQjZzytuPbTI/v41Th5bZmdrh+b8YVTUwuUlQVJn8dARnG7i4jZadahMidJtZNygP3aU1LDWMjPVIc+H7O4PMWXO1PQyYdLx84fS2PE+tUYHpCKu1xnnGZESjIrIX7gXWxSZgUBSZRkGgdQSKULuPJNgioDSlLzyjX+95/zbXn62ixHHGoLCrNBcOY5ptmnqJnIqIev3+Y1/91Fe+ZYfQNUtr333P6G+cged6SUGeU7T7ZBfe57WkUVO3/dmtq89zfaVT2PyIdvf+Dxu4xory/Okzz/JwfYlyDYJ0udwZou6NmT7GSKaxSlNmGWImkKOCvLdc9SqnEGvT/fEPDvrF9m+8Ayf+sRj7O0eUA8M7bk5Fg9PkYeCWukYmj1sbrh84SzSxqxnks6pV9OaVnzvg7dw5dOPsVee4NDyMeTcFJVbo9I5K8dfQlIVbO/to+yI3GraU4dwtSYDKxmlBWNhKMY7WHYZ7u5T1RTDpqKoSkSgyfOY81/5JD2bo6uIosgolaE/3Mdpz6IMZECkPOPtYDSgzAuuXfgMhxqGeft1erbiY39xnifXOizNrNBo1igLyCvBlecu+RWdDpAO4noNmcQcP3KM3d1tkkAS6YCk2WKUF2xuXGfl2AqVrWjkPUSgEWUPnXXpz9yGCh01mdHo1mk3Onz9y19ma2ubK5/8XX769ffzpS/9GbIKuO+B17I0f5QTzXke/u2P84H//id5leyxfMf9LJ26lankEHGWkeVDsv0domiRsNGh0TlEt9FhtlUjSgK+44feQ7k14C8e/QP+5U+8kY1LW4iozaFwhjOLXZif5vzZR9nfuMjB+DKt2jQ2gJe/+gFUYxqrUo61HemgZHl5kaXFQ7TDFme/+jRUAem4wu3uEeomw7FjarrNlbPPMldbYGvjgDtf+Urq0zV2NzbQ0hGIeeKgRlybhUii+pfIc0UzOYaohn/zZ6y/4eOvA/lU5ZDf/9BvEKpDnD61jBEpOqwDTBR6cXMFfgPgfsP+J+ULffZS4us6A7/iDiaqpFQKoRUoiZIBWofgSoa0GJg5fu3X/pSf+5ev409/81dYaHV5/498P0Vm2NzeIqk3OTS/zMqZU4i0YGNtg6tX17j3nd/JZ849w0O//AsEw4pL11fZ1yVJs4E1JVQlzW6HqZUF5uIapnJUuUVgkaKOtZZAR/T7liuXdhiNwWGoSocjIJgA0uUEQl+ayneRK4kMNCCw5kahwKR56uYq3bywAncO4/zaG2vwMCZfOzp5BvG2AO/3NDgfWppYCay15J5oTmoMGZIyq9AiohIasF6dlTd8pTeU2RvtQDeA/j4o8q2Hv4//5bviBTC/cAJnHNa8oKA74YNvSlqUdiRKkuiSWGeEqkJLi1ICF81iazOY1hxhZ4lw6hCquYAIa6ADcluRm4qiSCnKEXme4ypLHETU44Q4TlCT1jSlAsqyJHeGoipvclwFAYIAnJ6guW54adXET+u9hTc8xkIIjDFeLefF72ENbEWiBM4l6KSO0xotNUYWPPyZP2XtiuGOe+7C6Zy5ldtQSROlI0+1cDk2HSJCTbMzT5EOKMY7CGcp+3uIIqdWiyiGPYzJwOYEpAhRopUPDQodIVRAgEBIQ2Zihpnmo3/yCO9+9xm+8fCfUZeCB192LxvX9tje2SFJYhbmlzh08iiuquhv73F9a4PjD9zHv/jV/4kfeN+PUI0se4Uliw1HD80w2tqlqCKmZmZpLs/RCizGWaKgiXIVZSlxtkSokLKK2NoZM8wElakoJl5VJQtMkYOSFAqKqsIIv9IfD/eonINq4kcHSlNNWBjCF6cgsNa/vypjyIY7xNIQc0AFXN8a0U81cVhH6QCcwFjBcDTyliLkpD5YUClJLYoYZhlGSmzlCIKEwgnyPCNKajjhUHZCRrAlygSYoImU+GIALQjDkN7+PkVekG5f4+h0m929bYSTdDrTxGGNuo7Zu7bFyRNHmaYiqrcJkzaBrKOsxbgSa3K0DtGhphbVaISSRmQIA8f84QUoDVvDEadOH2dMTNCap9leotWdQ9SbDMcDxumAcTkEB6XNaDTrIAKCQNKdWAhqSZ1GvUmoYw52Digd5EWFzXMEIcYowjAmHaQkKqHKDc1uFxkF5HmGEBZhAm/J0JEPfxZDcIpAJSj37dGR3x5r9ev/9qHFUw/wxOc+ghHXWXQdVre/SbdzhFe8ZA8bvQHhdti3Xa4+8widcUZ7cZFk+SW4w/ezdvUpute/wdrVy8QyZ3ejZK7umKsnjJduRc4c8liM3h7RsXuYibsE0Qym3KOrVxmbNmNZY0pabCY5rM/zR+eHxOmQqRnNaNBGBCmvuPelfGncIli5nWy4jV29ynYZ0Uw6EAxhZLm+uUbr9gcI5pbJ4gVOFl/gm0+tkgfHCc/ciejB9b3nCV2MkwkWiwkSaklEsbtKMjtHpxZR6RqNZpt8nLHz5B8z30iIVl5DfVQxjGuonfOY+AhOWyILYT3k1NIs5vplFu65h/3+CLu+Rpk0aTdbRFECzmJNSTrapNFepBNogrDDlx57kpnb38Xx4BLBa3+N7fUB3VNniAJFmucoJVlaWPDpauEoRz0IFO0yg2bC/sYBzeklTFWQZSU67ZMsHiFcOA5GEAaKUjcp1x9DnzzB6PIFeutr5Cans7tOLC9R5iEP3nKaX/mZ9/A//Jvf5rZ3vp8vfvz/YOvSV4lX7kEs3MLS8Zfy0Y/+Bg/91i9zr9nlM88OMN0GV68+xkwDkqCD0CFlOiLbeo7V819hf3jAQjLHh598hHs7t/Fwf4bP/eFn+a1//938ys9+AGYTjM34Nz//EB/+8y0WFwtWFo6ycekxXv+KV/J7f/D7LLSnOXbrIXZGPb76yGPUxDyD/nm+5/t/hAu7ElNJmsuH/YoxqU8+NILSlszKEdHsAjvpiGY9RPUVWf8xWvU6YVKnGvaxjRZ5NmT+xHdi5HV2nvgz/unP/tyLVq0BMI6HYEIImKyQnXMUsmLvc79GVhle/x1LfPB3HyGIY9yEBWomMP08t7z65WdAggcUKYSUPPX0BeLQr2uk1LiywinJ8aP3EbSbqDBAC4mT/oSrpcKplFi2GZk69x7t88k//gbv/4ev5S+/8B+xgxWCoqLTbTDY32dzfMChEyfQxpGOU2r1OsfmlkijFr/5K/8rb3nP93Hv7fcTUuNgvceXnn2SsXUkUUjQimnVazTbbabnZkh0AOTkpWeo6tCHyMpCsLNliOsJcaLI0pRAB5NaUfkC09V4nmIQgprUrtob/HznOY7W+mHVC6WeICDcjeS9v7Fg4mO1Po7vV5KeF+AmS343GToDW+GEQ4sIJz3DVDiLLEvfPDVRe+0EV+XsDZeo8P9Pygl6ipshEZREoPFtQuImJ/bGIa1vCdIClDYo5a0C2iWEQR0lvWeYxgKytohT81DrIJIuVteRKsSWEldCXhW+cMBUSGIUllBrpAhxWAKlkYFESDlRgn2NpJUSY0uUmJC3AC39RY9XnyusLRHSYY1/nTyGC7+adXZSAyxRShMEAVSOt7zxMFXqg24n7nvxUgLOXbz0UNzo0N+9jtfGQsZ5zyeoV/+Q3E1x110NPvG5C5T5CF2W6CiCsAlxm36/x93HWqT5GCUcZSaIA8H1a1vIRhcRxf7zmv0/1L1nsCbZXaf5nHPS5+uvd+V9VXu1l2mp5VAjQGJoCaHRCCfMNprZmBkEwzL0MAvDBEtogRl2xDAMiMUIIQdqdUstoTZSq72r7nJdvq5373tfl/6c/ZC3W+wHtBEEs6vNiIqoiqqoujcr38yT//P7PU+MrDTYMXUYu1pHSI0nYnLhgXTwpECTUZOGiz2L/aM9TjxzgTe/4zpOnbyfunOAbiyojI/T72zQ3lqnOjGNi02SDvFsl7ofoFvTfOVLX+OaN76Vq+daDHuaXhtOdzZIU4MxKXbgEngBXhBQbTbxbQedddFKYUuJtB2UZZMmhvUrC1TDAK8+RjFMMLaDzPsYGWBE+dkRUuC5NrKI8BsNkiRDxxFGWdu4tFJ2YXRBVqTYToAAlLDZ6HRxKhMEMkK2jpLGOcoPUbI0YpWlT6eMWQhT7loIgVdkGFuiE1CuU16LRYFMY6QfgBsAJVLQYFFEbUTokUdDsihCY3DyFPQQYySNSsDR/TOcOr9EZWKOjeV54mEb5dfBreD6DdaWL3D42iM0yWhHKcIVpMkWnnJw7SpSuiWzWdokuSTVIW7QYiXJqLqjtHXA2pVNrj48yemXj4Mt0Drj2IGjrK3GhIEg8GrEwzYTI6Msrq7guS5exSXNCzbbbaTwSLMtZmbmGGTlrcfxA5RU5W6OLIkgoLFMjnJ9Uq2xlUBmkGcdbKlQloUwBuV6FGnGLbcdoUiHpN0Vbv+en/x7P6/fMcM660pWVzW3/ei/Zemv/0/6+3eyyzvDCy9/i3b/Rkb2zbD15ScYOfY2smmf4coS9vRNXPjyH7Bvx2G8kX1UWy4zsWZp8TKz05OY6aPMr19meHqR8PBRTO0ojiwZqMPOOZKiT7Jwgsqeq1krEnaMjpJf+BPsIz9AZ7NPrXMF5g4hs4iZekKv0+X7/8kHWPvEf+bUkqY1sZ/BbMhsy0IuXyLqb9AvYuacaW6aMPQHD3O+dx2b5iiHjnoMlQ9Jl6giyPotCp1RVRnZlSUG+0bYSiLcnUdwRUYcw4TvsUVE08pp7rqBaqPKcOMKqdvBy2v0Ni9Cawd+z4JWHdp91uoNlr1Rdl05he9OoUdCWhP7sHxJjkKosu0bOhUKnRArlyTq8fr3/Cz9tEs4anHiiccYPbyPpZefwpo8hKNTHC9kkCUYbXAsB6tWp9vZZN1o3FrA6Og4va15PDeku3QW3xsj3DXF6oVXqNsFa5EhvPgk7vhB1l94honpo1yYf5HxuduYP/Uo9RCQQ774t5/mZeNgNp8hPn+Uxtw7ue3wGF8+/QzTR26lVt/N/PH7OX9xgaOHW9z+R/fx9PhbmD5yG3snZ3nsj36X5tU30dx7E/kLHQYzNzI6MkXoLHHhWyf54R/7MR753N8gDlzPT/2rB6maAMevcWxPnaFJ0XbOcy8+wd5jswjLZWb/Pt5/9ACf/T9+nycefhF/fJxGJcQNehRZyk994Pv59Fc/QXXPLL3NBfA9atVRlpcvs/vYbQTnXuLSpScIx6ax66P43lH6+SVmrn43g81zqEGGcQMY9tD9guX4Plx7mrlD1/6jPqz+RxyvFm3kq9MmNN949NOw/AC/9V9f5J57rub3/9tjSBkgDGxs9pBS4gcW/X6ORBH4gn5ukMJByxRL2ViyvGFLYyheA/tr3IqHtEAGNchSZJFCodFaIa1x8jxH5ZpT3WMwc5izJy6zb3QHE/6X+NRzLa6/6gjNzMfyA4b9QdkmXt2gt3CeU889y9mzC0w0ApJej6kD+9ixfy/dt9zBVcevw2+0cE2Vq2+5jv7SEk+eeJKvf+ozDPKMSrXGzomZcsFnyu3yfrtLkeVstTM2NxKK1EW5KZNTATof4Njl7VBTIpPSqEDYZRFDWQIlLOIkK3+uIcegjIOW2Tb2qYTnl7YsjS7KspU0Bq22F8O6dN1roaEA6WhyDYYywwUJxhSwvdDMXA3aBQpUWi4otSkjAFrYZZkJG6FLNaplK3SelA9kW6J0CkpS5Brp1siFg2fXSui4EYRuQJGldOMhHpIoL3Dschs0kJJUlixfdFbmXottFVchEMiyMKUUMs9fBQug80EpHUCVpiJLlTHorMAIqyQOFFkJf5fl/09uNNJytq+zssBmS7tEbdkQp9H21FdgKMhyMBgsS5ZFHClKy5jOwVJloUa+6nT77j18AVlsGJk7QLKyQBZ6XDh5P92V49z3N2u85+6jfPGzj+LWx0HmbLR7KKtG3l1AEiBUhbBWwaSaNMnxAgcZNkmVhTWIkGEFlI/lp2gpkE6OMUO00VhuBQpJ4PiYwTp+dRwjYnyRMZ/vxW7upL28xFzY5NCuCzzzwDoT8jBN1WTg+kgyHKegs7bFSn+JhVdOEQ0Tdtb6qGEPf3ovt80cop/n7LywG8uxkLnDrqOHMf0up84c57lnj5NmKUFtgumKi0kLLClIyIk3O6jaCEki6HQ75LlBqZR6JcMwwBUWOBY6zckdh0FuEwx6CMqpoOdVyXRZVFQGClNygbOiLEvqPKE1MUeuM5St2drcwAkCkm4H/ArCaLRQZGabv6pL1FaaZqX3XiqkbciyPpZwSOMBmWVh2SHpsI9rcnJtkEkbnJBka4DjVhhGA1yvxqC/iesoyDNW19YZKoHKN5BpgFcZZaTZYDlKqTZmCbw6W0sO+NM0woz6xjmGwTi5M0kl9GlfvkhYryMrdXR3He1UcGwPS0ZE6z2mZmdoL61AfYQT57p4ygPLJgxt0iIiJ2ew1cYLbFAWTqXCVBiwdGme/qCLsp0yfiVitCiYnRxjYS3FCQOKvLSVua5PHCdUGk3irQ3iwSa2LF+GpaxizJCwOYlO45JkomzIczCSLFlFF4qg1vyOn5fv+GnW45M0J6eJdJu9b3kzUWeRLz5wnNtuez2VfA3Ov4T/upvZ3HgRVygqVgPPKRjxqiRpn7F9R1jJQ6IoYsfRG5GWhVm9zNbSFWZuvx5vssLOsT4T1f0kSZvTJ1+mvutWmvvuYPP0yzSmp1lbOcNw9k3kp78Mso+Ni7+0QN+zwW7iuS5Pr21x4aUFZm2H+UuvIHxNbdila4bEq4vYA8nC6lnClQfJ+zXmzDl2OS9Qzy+SXnmCwtJkS5fQ+QCv1qCQFYpkDSkcLOORy5T+YEDFVbQ7XZT08SsNUm1YWToFUR9P1AgmDzN27G2E/iw0ffLuInKswuriKer+GIOkdKJbhaZSN1huWN5ohUApG79SR1oC5ZSWoG68yLC9Sm81Jay55ElMY3Qn0doirjsCgCUtHLssdaQ6Z2ZmClOAE0doSyNjRehYzFx1K07YROcx4+OTJMZG5DGmoiiG8xT+BP3OEoHbgH6X9MJpbp6bJWxdhzc5SX/hW1y9Zx+nnv0Gt1x3iONXnmLScXG7A4phh8r4rfzqv7iHJy92+Q8P/Bee/fzvkbz4Eif++g+Yu/YO4iJmEK2xygARzVObvhahUnxLM7ZnAiknaUyNU9Qc5g5fxe7mLBeWtrjvz/+CYO9+Rhuz2KHPMBvy0ukXmW01mdu9C3t8go2ViKyw6PV6TO3ex6kXXsEaGUWsHofMZqo1RhoX+DP7GcRbKGtAxQgqE3sRG5p44WXW0zUGS8sE/hSVmsIvQoxxqU/upb++huON0Yu7/ygPqf+3DqNTlMn59Z98P7//yfsJPZfPff4x8kKQpjF5NmRivEm14tPvDwm8kNBT5VTMmHKBKkv70auOdyHEa0YohSRKhrhOBdtkOLLMVkrHxbHs7amXQipVlpMqkqVOi+ZEleruXcypp9iINfbkToadDcxazjMvnaHWGKFWmeDqN9xCZWwC33Nxg5AoH7KcbOFpwZHrbiJdjRivjPL4o49i/Ao3X30Hf/CX9zFb200ap5y+eBmkhdYFSZJQbdURQpWRByGwHQmFx/ylAWEwSqHtEhmlthedlnxtclfkhjTPsJ0yClFuQZcGLF1AiWviNQuWMaZERb1aftLlJBBtyLfb+qX9pyyEFUVW/l26VJ2iBWiF0C4UOabQpEgiDakWUEiETpAywbJSPDvHs3PIIzyh8OwKQteQ3gSWN4Nb24MfzuL4IxjbIZcCipStjRX6gzYVyyITBdWaj7bLBXpqQyQzsiyj0K9+nd/m075qFyuMfo0+ANsFP2O2/6xEF9+eVr1qy0pzXWaGLYVj2ziWXd4LpcEITVHkxHFEnAyJoog01QhZRhaksLAcB2lbSGmxDbRAmxytSyxZiRH7/8HhutiuhzYZwUgDkw34T//2l3ny+QuEluFbf/skVJtEww0oUkaaTcLAoUgLbMui1qyTGZe8KAiqdaSSkCYUSYI/0kR5Fr6t8awK6ILNzXX82hR+2MAMe1h+QF6kyHAcMVxHKo2SFjLK0KFic9ii1gpJGi3CwXGyDHI3JI27qM2EU5eu4FoOodNkct8sFS/DlgE1t8Aya/STddSww9ze/aQrW9TckLNnzqDdCgd2HOCjH7uXsWCKLEu5tLiMZVkkaUqeayrNBgbBcLCF1AWO5aDsFr24ShiMoy2HPB0ifUUc93Ecl7LArzBF+fmznbJ1bkwpyEDI13BvGEGax+RZRpZolF1O8ZXjkccRSjhgDCWEbZthXGgcd9tcl2fl72RlVMWrjKBkgCkyHMshRZLqgkxKTJZgpETnPRxb4JgEK+nSdCS+0yytYFFCvTFDFAnGJ/eRGEXo1RFGlEUtu8rzjz/K0maH6267js2V87h5Qnf9ImFzlFQWRHrIsEjQeYRy86d5ZAAAIABJREFU62hdqnmdwAXpYQcehSXwKlVCJ2AYZ6wsLSL9AEs5SGWRFwWdbofAcQjCAOG4DIdltKEwmkq1RjyIEa6LyLoYU0bD4jihsCyiaFAixITC8kJkJiGPyGWBTnMs20VZAqlBa4FwPLI4QiqX/P/BJvmdxQG/+V/vtRv72HzoC8x7AXdfm8E1P4ja7HHy9HFqR2/FOnecwO5x/sQ5RlsN8jRBFxGTFQddD9Hri2TrF3B3HGB18xLR8jq7b34HcmjR3thAr14hbezAOONM7r6a6tLnKJo3UJnZx+CFx2hNjxNFESN7vpfuyWeZm+qyOdQsnZtnojXBYPIQn/zUr3PNTR9E+ONkYYjjzzJR2eTylZy50b2MiJdIhmd4Ub2djpmiPX4M4czStZqomYMMXjmNnS8y427SKFyGo3sIJyaRm+fIWnVkEmDpDmlkyLItkpNPMBxuMTEyiVy4zPrkIXobF3HG6xTFKErFxAR4/gjx4iqe38Cr1REqJcIi1VUS28bzK6WeLi9QOERFwcrKFRxb0WqNs7S+gdESp/0I2r8Zf8d+OldeZmx8B6Juc2VhhVq1Vl7MRoAl6Ed9JltNVhfnSbMh9ekJUstH5jbIASKH9UGbK89+lev230jshgRug9SzqOQLjLzpbmaHL7G0eBrh7eGV5z7HbK3KVgzTu6cZ6gm27BA21jBxgutOU/MMhXTYc/uP8R//px+Aes6XPvmX/Mmf34+cO0ZRNdhZjUBFrLz8HLt27OZsJ4G10wQ1n9Ven956yPLqFUZbk0Qbq9juBa4Zm+Xuf3MPD//517h1t2LM9VnbXGZ+6QqTrREO7t7P+fMdiliSmQ7ff+c7eOGl4zzx9JOE+96L47isdOaxtyKGmy/gejUKFMWFF4grLfSwzerSeeJoDSufw50NqPpV1i6dpKi4NJ0xuutnIF5HN0I2ogn+9c/c/V27vQhQwL0CQEJqNFah2Vh9hBNP93jHWw9xaX4TJSS2sJHYDIYDhMxxXIVv2dh2zG03Hisb5LLMtUmpePmlc9iOhRQSbXJeBRBM9cGzc6zROfKqwNUWWoBtORTaoKRAKQuzzTbM8FhaGyHoz9Nrb3L3Oyd5abPCINJMHZzjmhuPsfd11zE1O8vYjUex0gFBdZQkatNZXSfvJQzbmxy+9gaKukvouyQ9zY1vPEZQDbi0ukprfJq7vveD/OLvfJxf/18+Rqvewql4mDzH8wUjrTGKXJBlCVrnKCXYbGf0tjRCW/j+qzdOjVQgdVk4EkjytDwfllQYoV5Tqgpd6pgLwzabFEChTbbNKS3lBKUZi3JCarJyESctyu3DMn5QbKtYjdDkBqRW5f+ZKgUKlgJPGYTlY1senjMKwSi2M44TzlC4NQqnQq5ctLboDxOQhswGxyiMbWPSjK24IPBrCMtn9fIGhW1h+RbkChdFIiRWYSG2JQ7agNxejNq2/dqiVCm1veWqsaQi18VrWDTpWDhKIaRASQWiPI+2tBGU2URjNDmmBLrrV89OaeNR25pbJWVpHTN5ifMyBqPNdnnOlGUyypcpjeGdb54mj8sIxJ7rv3tLV+fPXb5XWiHZ5jI9KZirFHTNBvMnehzYV6OdWqhhH0cZol5SSizIsCyoujbS0xzaOUGRDlBBhTQfYNKc9W6BJS3yLEcnfYzjg3SYkjWCbBE5uhfRrCC2trB8t0Te+ePoQZfA12SFJklilF1lLZli7dzj2HadN9w4wYUoJM1dJnfWmZydY/fRY0yOuFT2jDDIq0hvnCGCYTcliSHNDVMTkxAUNDxgCHuuO0zQqLO2tkg4NsGNN9zJ3R/5Z3zqj/+I0PeR+YAiTahUfGqWQ2RVSKIuOBIhXPr9lP5QoISPta3olZaFVNuIOmFjhMS89nItQCiyvCCOIxQCy3KIkrQ0sKUboEYQnksa9XEcDyxIohRlWWg0bJv5Cm1w7bLElhcZ0g/Jt9sDBQWyEBRFTtpfo1Fpgq3wbAtju7hSE04cxLcEeW5hh3N0h1s4XpUEG9cLGcSSXElynWIVIJwQZQoGGTQnD3LuxItsdbq87nU3srS+jnDq2+IQGwdB2t8i9EN6WYHMBtvmLsgTSRQP8TyfIkkQYkDDC5jcu5PO0ibNQOA6NrrIiLOIwPEIgwrDqEBqC0PK+MgIW70tNjptnMoMIEmyIWSGPO1iKQeEQkY9tO1h8pg4idBFiig8lGchsUiiHtpS2MIlTftcf6xCbiSZdrn9zvf9w0xXn35m9d6BWuWHb2+xePIFnjuV0S/Aqu9hdrbC1ovfxDQm2XJKpEa+63VMBw5h3OdCa5QRZdOrTjK6+2bWX3qA6tQRxkTOsDZGd/0iSubEdhV7uEwwMUvROclZM8ZoGOIkKWIkoL2+xYh0yR3Jlz71e/zyr3yUzqVzLLWHFNUalfPPc+jY9xK1L2Pyy8RJjWztJX7zQ+/gjx/4KvXWGCeGmh/9vrdxKpomyzq4QUAy3CCJNHLYQ06MYjsT+DuvJyrGUfkaXHkGpzpHr7OFm/dZufAMNRlSHx/FWDbGC7EHPXrxJluxy+GdI2xlknEJuaiytXyOip0RSwtPFWS2hTIu88/dR8vXtCOotsYpCo3t2GxceYXAlcztOIiwXVKdIhK4tnqK3/yFH+Dtoz2eW5pkK8lxx2fIM2hVqiBFqSXEYCkLPYiIe12W2+vsGJ8h3VzCquwmNpuEOmB90GemWWVizxFWttYYWf8Wpj7OZiTpDAZ87I1N/vTZAcfe/RFOPPhFrn/PjzO56w2E+27m5YcfQIcFhw69m9VolalrfpDG4BxrOmFzpc2AhMljd3H6kf/O2soCH/qZN/O5z59Eddv0XIWIFAd2triUV2lZDv2Vs4yOWVw+c4X/8HPv4ivPLuDsPABXzqHtJvPzZ2hNjvG1z3yWR5cVldkbmT/3NT56z89xy7Eb+MX/9EXc+gTxQOOP7+TOtx9g68olltfW6WQtehtLiJUNXjn/dWp6nbvfvIOjYZtvXnEJk5zawWOMV2fxZg8x7F9k52iThTOnqFZr2GlOXyUEu+/AseuktkKtDvnnP/fd+/CDkhKwjaVHZxFfefCv+OTvfp633b6fif0FJ17cpNAxRmTkxOhcYYQg6ue0WhWK3Oa666bIigwpXJRdFo1OnbqCY1OWXcyriwPBVCekuWJjv3yS7KGXcG89ij3ISG2BI/5OYQuJJV2QMUIV9FLDngOKb33lCYZbKdoaZenKPNfc9lZcW6MIeP6hh+gvtmlM1On2utx+5128srjMSDBBbVeDuck5Tl5ZoEhdpnbtZN+Ro8xcexWV6RHmozVeePRxPvqvfom7Pvwe/vtv/DaDIqVRbQEa15XYts2w38MWCmk8pEwxRtPe0AyiAtsKsF2PPCvJAhiDUK8WezRpUeC5JZMyzUo/ut7OiWqtKHTBaw4DKShMuajV22Urw/aOWFEgjAVaYtkZlimwFbjKxZES2wmRTgjuKNKvo/wRpDeJ9JoIp0YiwBQSlCDLY4z0EAg820ZLgRf6ICWqUPihjSgEF6/EPHXyDG/9/vfxoXv+Od/30/8zP/njHyU/v8Wph18kHnFwZEKmUkTGNj2gXHi/KhFQSpW8ZcBSVkkREBLHsUGDUqW1q0AjpdouvkiM0FhOWUwt7WmixGEhUEJQmNKKpYTCUMopDKbMwW5zgKWALM1RtgUoRGk7QElJlqTc9dYdpFE5Kd97w9//APz/+ljopPdqkTLdsok6azz0jW/w4N88znVX72Nyj+D8i5cpLEkmJVr3KbwWrlIUgxTVrKO0zc4DU0ivSt7r4IQ1bFNwabkHerid3lDIIkU5Ps1OjugE+AtLmBcu4Fy1B92NEbZCKVhfusTBg3vIo4i8kOAY7LiDDMYZH0s49ezzRL0SyTbpCayRGXzfZqAd8tUl1tZygrpDnCYcOnYN82ttalaFcK7JeGuGxUFGloWMjDWYGq0zduAwdtVjM9nk1NNP8J73/jC3vetNfPUzXyTGUHX8UrUqLepVn8EwJhASgU+edlGioNsrrwVpedi2x6C9iGNDWhgs1wPK+Mhw0MN3HTw/JNdQlioNdavP4b3TjFgp3dglyw3S8yi0wJJWmRNHlK6MQqKzDJ0Z4jSjEtiIZIjtBEgJHjaFVPh+Bbc+QyYtPHJkMEGuquTCYeeozXxbU53aSWdlntrUXrxgBL82Rre9hhPahNUpsjynNjaLnQ2ZX4v5jY//LlfdfDvf88M/wdGbr+OON76NKdfn6a++ROYbhMrJTUHFthlqhSMVedzD9SRRf8jRvVNs9FKkX0GlMSiHNB4ShAHri8t0MonlNxgO1ti7ey/Nap1TF9cQjl3ujFgO45M1iihiGMfk2kVnCTqOiaINHAqmRl2qVspGJHCNxKnU8O0Ay6+Qxn3CwCMZDLFshdAFRgF2jZuumybLgLjgtrf9/c/Y77hg/a1PP3zvG8eneOaZKwxaNt31DWbCnM6FJ6kVDnLv6xioFludPlF3kYkd17Je5PhhgKtCNnspTiroda8wMTLF3rFxeo6DI1yKjSt40/tpBIbm5F4GhU28usFE1aPXmWct1bQcqM8eII37LDz3EC1f8Kv/7uf5zV/7JLUwwowcIG9MsVb4mDwl7w356bvfwPzlx/mTr51gtLEL3wxY7qeI3gbd6j48HePKOltbizi9hJV4A187dOMY3x8FvUWUCTrREHtkFDdQDM49yf5r3kBHaYw7Sr+7gdeYg1aVZm+J4NprydY2UJUm7aCFnbYJRsZpb1yhNjJBWBnBdWyMga2hwbV71EIX4Y5jOw6YgnTQodYaAddm/ZXjLC1sYLePszM9xZm1F5k+EHD8uafoVW5COg6FBkuIMpez7Y5H5zieC1lBnsYkm5dh6iiWUgTJgNyxaDhD+kmK35yGfoeNrk0cLXO02uZ11x3jq6u7qY5V2PjWXzNz17/g0oOfoBuO4AmfF19+hCYWVnacaHMLd2SSjYWnaJ/8Wyb33IpsjWAri/rkO3n5kd9DFR47t/qcae2hc/xB7N4l8mAnva0Fume/wZG3/Bxrpx7Br1ZwZqe4YXKEhx95irDexK34LF45zg0HDnEpruNlfeo79hGmHV5+5Tn27Zjh849dxnT7DK0+g80Bi889hvGmEc2DtKYOE5mYPNYM+4vU97yduHo9X318gVe++of8/C//Ig9//WlW105iRg4S5BqdJ2h3wOIrF7CbM6jKIfzmBCJbp1KpcGn+FB/76I9/1z78AITJ78UY0mwL127w7Gd/GpF53HjrJJ//wkmGUYxjByhlI5HorM+gr6jVfWw7xK0f5NiREApwPBuEwmg4efI8yvUg19sKUdBC8NBGxK/86QhPfVOyq+px8aEXsa+dwSqqFA4gJLZQGNJt5bfEsh3i1Gaxa7H/wAS33X0vB254E3uvOYawJVmuQeTEyYAv/eWXCK2Q/ft3M3A0UbtPJiQ33PpGJvbvZtexIwSTFb75ta+wubhK0W0T9Za5dPZZTrz0DE8++ADHn3mRg7e8gbs++H7u//M/xfVC3NBH5SlBo44fhvS2NlDKJslzbFehNSSZob2eoWwHz5ekaZndRRSlH8AI8rw0NkkHMHxbQlAUZEaAsdEGTJGjdYFBYBtdgshVucATtgN2gLRDsMcR3gjKHwOnjl1pkeGilcRoVepSNdvb4BqtCwpttief5fkWJsdsRxAspVHCx5Oac6dXedsdP8S9v/37vPsnfpzeVkJeCLpbQ3SS0x0MGT1yiHf9zEf40F3v4/N/8SmqYxNQZOWCxljkRTkVzrIMJWSpw0R+W5ggIN+mJ+SmLH5JXW6oGinK3KowCG0Q2xECsT1BVZakIMNSNkaXpieMLCe82OX5E5pCl41vZZXft1ISpWyUUmWBDpu33jlNNswRQrLn+u/eBev5hdV7W67LxsY60q9w+uH/HQ+LXTsEzzy+QGIHSKtCUYDJE2zboRsJqjUfxwrAnWLXjEeeRoRhSOD65EKyML+KMAXSDrAVWE5AhuSF9T4f/liDky/GNFyH9ssX8Y7sgNxmONzAVpIjBw9w9pULOJYGp4L0K/Qzh42BYGqixjvuvoeR6RmKagvXCzFFRlxkZFGPxx8/SShtZqdn6ZuIvDNgqHMOHLqKysQYU3v24TYULz/3PO21zfK5nXZYOvsMG+02J154hovnF5ncu5+b3/4OnnnsGwQS3PFRRDTEqzcQYZW4v4ntBgzjPl7glwVALeh3CwoUnqvBaKTtlZpnbdB5jlAuBYYs6ZJEKSbewi/6dOMOVmjR6/RJVQNDWUQVCNT2S6glSvmychyQTmlz0g6iOo3yGijpooIqQkoyQFoBFDlxKjEmoWol1GoVVuMA27VI2iv443uJ1s6TqVJ7PRis4woPly3mL65z/Q138kP/9INce9t1aCpo5RAPUyw5wsrCaeqzO3nD297Kzbe+g0fv+yxh6GCEQ2FS9KCD39pB1t8sy4y+R8212djYQtkW0lLEcY9KWGFYKNApdljBLnJ6/S3C0GdxYwh5jianyDXJ1iZYPtKt4gY1MlIkijzLcCqjaNVgfStmuL7Inv17WF9vEyU9hFPBFqakBFiaLEqx3ABhh1hOwLVXVaAQRMmA17/1R/5hWKuwu8GxnYusSh85X+DkmtXjX2N69gCLW5fwHEXqbWGFLjKcJhjxkFEPUwSYRNGwKgi3YAafrfHrOXHiUZx4wObKAtXJ3ThC0b94jv7mMjLpYPmCk6s5l06cZUd9DLvXZlB0SLRLZ/0sXjADeUGbmDPnL3DHEZdw4iiVYohoHiJN14jsNQbJBLOzB4h1D2/csNsX6KCJrYegHDrJJknhE3oRtcYoQobIQjGI1qmaLjrfoHX4GhpWTHz8OCMH38mZ558gH1ro4RqtapOReo61fo6uZ8i6EcnYHrK4g9UeULHqZL1F3lH8IUJK4jim299CmozR8UmStR6tsLk9iRBkuWJs8iCqEtJbWeX8+YtUHIulzQXywRbzqymf/vOnsfol8N+2StTNt6dX5dufpZztrJzE9Ss4wThsnobhEjpZZ+vyK0RbgqZfY7B2nvbCCa7dJ/mXP3Ibi6sx33jgM6SDNsc//RuM3Ph+RJGz2V6h0dhBLiJet+taZvddw4nnXkZtXeG5P/kVBsuXWLy8Ss8ZkGbg2T4DZ0iWHqSbF/zKf/klJs48wJHXf5g97/hZxiZ3YtsTHLr69fTHawyzTaJehK0d3vfuWzFWQDhWoYgiGiO7OX76aVwtWI8y8qRDpe4xHGTkTpWGMkRezFzRZbKuGPFbFGyQJQUba8s0duxnvAXT0/vw4wHnL5ymVfd43e1v45tf/0tuP5zgWiFBs87K0mXC1i7UYMDM9Bg2NkVFINIunc4GLjHjo9V/xEfV/5gj1QqhJK5d4573vxGnvoPmzhrPvHAKLTLCwCFOegwGA6IoIRc+fihxlIWqjtOamsborMybbwsIEKY0KYm8XERsI5qUMAinwtfuW+ae+5/m+Csn2eE4DD7xAPWZFl4hyu1iextPJJ3ymkXhBDlh0OLi1gTO2CzkXSxbYhuDMIaNQUIWpXzgZ97HVe+8iufnr7B1aYvXv/FO3vsT72ct6vGVLz7AZz/xhyw/+SK33HI9zZmAL93/GX77t/43nv/a49hxwVVvegsHb7yRiZk6z37rfl53/W42V9psrbexHYnSCY7KqdYDsizDd1yyrCwwZWmKZUk21yPWlwWWFZLrnG1qK8oCqcq8py5U+X05zmvEBWk0Os/QWckrtYQFToGxS71hqipot44TzuEFdWw3xHZtbNsmTVPyPKfT7m5jxqzSQGZZKCXJsow8LzObtlSv5UctywIhsO0SE2WERElNZODXfuc/8zO/+xv0pYFBqUAsy3OGPC/B/0EQ4GrB5oiPta65/Mw5etEQkxdA/tpUNQgCpKW+rZndjgcU29SJv5tX1eLb9qxXp7P/tyzs37FpCVE64Usl7DY6TItSdqDUNjLN2v5R5qSLoiDP023LFq8Zy149J9/Nh8lyamGKsat84ld/AccfxfaGzC+3GeY9Qs8m1j3SLCUtFLgerl2ghINwmzRHxkFkBMohc+v0ehtInZMmAyzXLdvuw4giT5AmRboe3/zmJh9/6AVWVlcYF4bB/U/gt+qIeIhtBxglyBEMopSxmoXl1vGcFK8yxXIvQDaqFFlBWKkidI6yDUWWkxeCN3/Pbey8YQ9nVhfprcZcdfVVvOGut7KVpjz35HN847776J05y4EDczR3jvHCs4/y+U9+kvlzm8TrG+w4fC0ze3YyPtHg8tmn2T9Xpd3t09/sIsIK5EOcIqUahmTJgBm1TF4UFIUmTiKUgjQRdFYKPKeKwSCMwhiFF1RQjkBnKYN+jCUVhcnJs5QoLlieb0PaI08iLFHGcLA1xrKQlksuPXAqWO4IjhviuCG2G2DpmDzuU2QRnbU10rjAtVxMHlOkEc2qZOdkjUGUsb6yiNAF/eXzOPVplBRkeYrvVcnylHrQIKhU2Njq8aEf/TC333Ur/XRI0h6QiwKERApJYlKginIcjh7bTyo71K0ZBlsuhZAIY1OpNTC+gxEFlrJQ0mJmsgVCoRxFkWUoy6Xbb6MQZBp0kSHtsqSphcJRklwWuEWKZwts5aBNitaGNIlx/Cq2Db4XIIqMwbCPrRT15gidzRVGaxLbcnA8jzxPsZwQk2XYtgQEWgpMnpGmCZYwuM535AB85wlrb/nT9/7RF55CVW9g+dz9eI0aVI4SewE7b/xBugsrbLRTzPzT5JdfornnAAxSrCDBVhbtoEIzWmHdbpCtvUJ1fC+XXzjO+I13kUV9ejohbV9B776FzsIiDbfKwCk4cPNdrD73VwS+R82fYaXfYbIbEU0cZtJd5OHTQ3bbHk+0m+xMHmY9OMABC/7tR9/Fb/zZEnb9IOrk58im5qBf8D03tHi8PYa0Z7BlhO3VqYgUUWSY2iTaUbhJD2ekSlY0WLpyGjfKuPj4A1Tf/gGsrRUao5PY2SaJDDDhCN2zL8D0UdKT36LRaGF7AcPLp1Fzc7jpFsZk3HLI5snhEWwvJMwUbd3jygsvUmlaOOEeUq+CrSjzZeRkyYAwrDG392qWl15gx743Yjqv8NiLHYa08Q9+DLtepRAuGoWV5+SybB4Ly8IWkkEcY4VVup1NfNfBb02S9sGWAyr7ryVr1okvvESj8wi2V+Plcxd49hxcXDjL3hvfSyosZva9iSvdBfT6CsXYIXqeZKoyxvzCaVYvX2Dfm76HYNdbGBupk7V284bv/3m6y2skcZdm1UOkMc0Db+AvfutfMz7a5Lf/4ON8/Nf/jHCsyupaH3u6RefyKpvLJ2mNH0LlC3zoIx/mr/7kz7jlhus4uz4k3riMG68w0RxnbWhgsMDplx/F0hGvu+Yavnb8IlHPJxwu4k3PUNFdummVl049hz17AyoISQYvUQybpCIi3HctumNwfIuJkSrztSkuXx7l5j0bbJx+kkaySjY5wspLl3n9Lddw/MQr+HYN5VSwig5JuobbXeYnPvJT37XTGoCHvvD0vXv3jvHoow9y06F57v21x7nzjVUee2oNk1sYUyBVmae0LMXWIKMWhFSCiLHDdzBIEg5NpgjLRimbckgmOXniMo7lljB5DFIItDH8+4/s5PvuOcP6lXfxQ79+jndf1aJVVJn/8kP4b7wBS1OiC5RECo3IDULYWM4sp55eZOHEPG+/+72cX2kji5TzJ49z6cw5nn7wYa6srHPzzW9mbMc+Znbv5dSpU5w/cZzu4jJpscb5s09x5sTTPPXUIyxdWWCjPaDe8Kk5GWm0yMbyS/ROfI21c88Szb9I1llCyR5zM4qpSY8TL/cIGiGObyOVoFFrYiuLJE4QSiILg1Kl3rXQmm43Iy9cvKB8MYySAku8yjPVFIXYViRKtLBAqbIoZHlIv4G2QmxnBNttINwq0vKRyi0nEHggFMIu5UyWZSOMwHHKRRlGoiyF1gYhNZawUdY2A5cS9QRlBMNIgdBg2zbakgiRk/UtPnDPv0FGoIRFZgosS6FkuQhO06T8taVI4xShJbf/6D/lp3/hl7jvM3+MjjOk0gipyuJakqFliU4Tptyyt6SFlAIpyrKapRSWkJTVq1KUgBHobVRXmYW1MCiUUChLIoRFUeSvCQ6EtBFSYlkCU/IbMOTl1yFVqfTc/nfLlygLcsnb7pwg344EfDdPWJ975JF7C6E5cfoCO1sn+NTnznHNNeO8fL6PX50li6ISExR1EOmATHoElksQxDR2XE1Pa3bXBmS2j8gTlB2S9Pqs9spBRmY0OhsiwhZJFPPhd01z7+/P8/nP38Wv/sGz3Lq3RlM0WXzyWaqHdoNdwVMRG5EhlIJObBGYDoW7k865TUYsSWX39az2DXLrCktrK6xeXqJ78TRnVmMOHrqJxtg4o9NzLM9fZvnSBYbdIRk91uZPsLRykTNnzrB05RKDboRIO9SmJimGi8SDFeJLT9NZvkjSWSRevYgKFC1ni4nxkPn5FFvm2PUKFgVhEDBWs1iLXaRtY+dQiIKo10VYECcOGT6uZ2GMJs5yhCmwLBs/qBANuzh+A/Ihmz1DIQtU5SDSCxBuDa08LFVB2RWE5SFsD6VshskAqQLyvMByJJbjIoxCCY1Xb2Ech2LYx9VtEIr+cEAvsojTiEpzGpD4lRGiIkbkKcYrxUEVN2CYDUmjPm44yZ13/yyesRBOhdrEHkyegdF4jk2eJXi1UZYvnkYJwbGrjuHuPMD3/sgHeOyhr2CkIo9j8nSI49Yo0j7Tu+ZYnl+gVa/TT/LyejEpvu2RG4HSKVG/jTEFzXqdjX5MkUlk2kcGPspkGOnS7fewghbKtjF6SJFJCpGjwhoUpdgj8GwiyyGKPBp+TDbs4pgM47mkg5TRVp1ef4AtXTAW110dksUJMku46S0f/IdFAt7/Q//x3r3v/TnCqd04M3OrwaJqAAAgAElEQVTkScLckatIz66DiFnEpd4/xc5rfoDmyAgb0ZCpeouFbz5C87Y3sXbiBLI1gVYeo8pGhzUstY5nuehmi5bnk2DhpCmOMijLUJ/cg0n72PEAf/IocWsv7fPPEO67nprf55/dcQP3P3We9ajD9HiN818/QVu0MdOH+fzzfbJqnWDhEZKxI5hLr6Bdl4NX7+Tc5hTCKYsBjhJYFKSySt+rECiXjcWzIBWiMcts1Werspv63G76J59FVMfoFAnO4nmqjSmkk6N8Dz1YQ24lDJpz+L1N6vuPMFhf58NvitELX2VhM2XwzMcRzTswfhXaK4zLKrPXXsfa+mWqrekSOJ5phLIBCy0EmhyR5mytbtDxd1AfnKN5x7+nHwVoO0emmsS1SlWk3uY42tY2O9IhkBZWpYqUOUPRJazvACnpmjWKUy/SHUb4YzczU08QzihWGOLZHvXpfbiVJu0iQzpjbFx8iaAxiowiTBGTvvIw9b03IuwWJivY6C+we2ovasxFe6NYJEh3DjUxw8Vzz3Hde+5h2DnO3/71A3zgZ9/G//rBd/I7X3yakXCc3sIJZPcS8ysrhKsbLHbW6W5EzM565OcWWVjeoJcJtCdYH/r4+SV27TmEFwZMWQEXlhV5Ms9S1mC4eoL3ffi9PPKVB3H9ClNjexmSsXHuCpl2qUw2cLM2Vq1Opz9kfZBgFi4hmlUudOoMN9uMjtSxtUdt7iDPnlrBqY7x0z98lCeffYGty8+yqzVBHgZ8+Ee+e5mOAGP7pu4F+PoX/iX/7Xef4gfecZhHnzyNLhSuLdAmQxpJXhTkuaYRSBq1EFm7lvGJcSqhoGX3CCtVXqWJCiE5deIctmVAGTCgTblo/ZvPnWLdHePLD16hSFy+sLTCfReXuSnM2PlPvg+TFwglyHLNsB+xvCigmOUtd70JXfcYSIv+esTcoVlUvcozz59ifW2DwPfYt2OGyxsn+Ks//j2++Kk/YrOzQJRvMWwv8fyjf0X75BOkqycJi0vkwwUGi8+zceoxNlfPUwzXsdHkuSaPI/pxQpJGpIkmSxVZHjE+rqkFbWpOyNmLGzRaI0hX/l/UvXeQZel53vf70kk3h04z3TPTk2c2zmYAi8DFYgnAIAlCAEWCFCmSEgXTMknbtEuwpPJaKtNF0zSDSVsMoACJ4AqGAUIAEYmwADZgsYvNO5jZydM5377p5PP5j9M7sFxF/KGiquBT1VVdt/uce/uePve83/s+z+/Br2jq1RpetcooHJSmnsIghSBLM4aDlPFAMBhJvKCyZ8QQaA2leQpSU0e7FYzroXWAMX5ZwGl1A2+lXEOR57ieQglTjvX3gK9FURaBlhIOa21RdkGRe93W7wU9FLYgiWOkLDuvRpvSHS0gl5J/8s//T97zKx/E1wbtvuaSLjWmljJZSqu9zsYeVzbXAk9K+qMhf/fNP8ajj36BIi9AUjqP1Z4RSog9r1NpqpLitfjZ8nB5XiBe6+AKQbZ3DLGnby61vGVcrC3KbouUuqTYComUeypYW3a8hLJI4e2hv8rmvxQlxk0rRSYKSAVve6BDGpZ/0OE7fnCNkheXth4Opg9z9vlH+MpfL3Lvbfu5vNInG2QYVTCmwEnHuNXJkjOrLZ1GjThqMDF/GJkNqfsFrl/BEaIMkJEpy4vrKM/gaFkyRPNycfX0U4uE1Rm+8+waNhY8Pcp5aidhvthi5m0PoUmYm2yxvDVkOBoSjhzG6w6n7z5B0W5zdWAZjwumuwJak1x85Rz94Yh2p0GjuZ+N0XUe//JneeaxLzMcbRLlCaNxn+tnn2T74rNku4v4aoDJdxjurhJuXae3dJ4ijylshh0NEUiiLCYrMtIoJg8hlop2JaHeBreQqKxHRUfEFlR0jaA2i6lUiUe7mELh1tqkaYiQhjBMiUeCMJYY19+TpliksGRxQqZ8ALzp27DKQ2pTmgKVRqo9OHBhUY4hz3NcV+MIU4aL2IKcHKX9UpNuYxjukmYZVtcJNAjtoUxJuNBugFCacZKUi9VBD9cL0HshGNl4h5/6hQ/y+h99P46Q5CIhcCvgSaTxSpmHDtB+hXC0S31mniIfsr6xwfz8JAe7VfZPnuT82ZdJx33IQ8ZRiEkzkiwlzwo8X2LDmDgp46KtEqS5QtoxnldBSYkpIIwFWRoSY8iTIbMH97G1tolUEtf4ZIUlHgzLcAHXQdoM5TikWUqcgYhjpKsIs4AsiXAcjbQS41XpDxOM4zG7v0Jve8DNxwoc62K14u43/c0a1u87M7nlwZ9k99pLbC1epms9fGW5dv0y+o6TJDZiqt0gyyO2Ns/RPX6G1uQphpli7i0P0vvOCxw7fRQ5XqUhIKk3sLqG7As2hlsk/SW2RmPi5QWk5zAah3jtFq6jMWSIbJs0XWc8WuDwsaP0h+vkmeTS1Wvs9npM7q5T8at8+CO/zfSd7yIJI9wgpBAFfcdlONygcCxO2GewFYKwZGm8N/5SjAcJuRMyk2yh2CIIJCI1GDVgU7eoeIIiy2m3Jkn6PYQTEHVOUSjNwpULZGOYap+gSCOawsFpT3PumXOkgxGucnj1lfMk0S7rwfsovBwcyU7vOnauw+5wBEmGVZbCSpRbgomlzFC2INrpk5EifZ8DjUmqzS75zippxWITEHlGkArconTuWqNJkgSKsuMRy5RRMqSSZ8w7cwgDvoLKbsa++ZtJFl5E12usXlsjIiAfrWK6R7l+8THS6jQIl2rgcPy226nU29RrHiQZ7v6bqc/fydLSEv5kExumDHc3GfZ3kdEOw60x2peIXHNw9hS9tZBv/OWnefzFZ/nmX32Rf/Q/fBATuMg8RFe7tG77IcQgYereh3jiq1/jg//rwxyaOcCPvPN1TOw/QH1yhrX1ReaqbVKpufDUU5y591YyR1DrdhDRKgdPH+f+M6eZqnZJkMweuIWiFlAMV3EahqnDJ7E7EdHOVVQ6pOIJXGEpKk2CepUjwT7c5gTJxCmurl5jZek5WvtmqRw9xe/+qw+zfuHL3HziFnpxzrho/i3eqv7TbFVT4BjBJ//4KzRbFfYdNsTDCKEgKwaQ5yRJiKtdxqME43vIzKM22aJQVbxKDdeR5bj3tVhXIcCWnTVrFVLqvdGz5Vf/4e38yW/dw8JfX6U9ux97ZZNP/e838YdPPkO4uL6XbpRTk9O8/p7/jPf/0vs5eEudj3z4U/Q2Ct717vcyfcdBvv3tp/mrP/0Y0ybnDXedYmI24DuXHuORD/0Zw50hcweP0/Uy5NqLXHrhU6Qrr1KkvT3d3jQ6CUnCiEgUqCQjiTOyJCJPEzIsVuRIDJ42OE5cxn7qNrk5yjioMDszy/lXL1OIAtdzsDYFLJNTXWwhUDovuzNCYAtJbi3GKVhdGbG9G4MRZFmxV8BZPGNwdBkSIHSZhFUUkGfsoZgEZNleF7JaPqbNXtJYRpqmNwpSKUuDmN77eZZlxHFInmUoKXGMoVqt4jiaWq2GVoo4jknTlKuvLnPzW96IiVMyKcmVKDuwtpQD/L8TopQqR/yFlgS2DFvwU4k9Oc+V77yElWpv7F6O218jAaDK6jRNU8bj8Q2pAoDQZaGptf4PnkMIcYOwUNj8Pzzm3mt6LaHreylreu/57V6S1Z7sQAB78bSvHfu1rx/0bXJ6BpIBX//Uk7SqARMziv72LrJVJbNDXKVI0xCbx1hdwa+1KTKX9uFDJIOUVreLEQmOklhlQGhEJkjSDJsnJJnFxgnKGLIi593vOsGv/OIJtp9bpdauUaxs8MFfnOTRhRXGa+skScZoMMTkVW6bv5UH3vkAD/3YXTz2zGUGOxn3vuE+mkcnOHvxEk9+7is0TcFNh6ep1DWXVl/h0S9+iXAY0pmYpSIzRP8SO5e/Sb59BckYz/XxnFq5CMxSEgo8NEkYURQ5mfTIgTAcIHJNzWugVIQjJMbv0B/WCJVmsj3B+fOXyIsE6x3AygwkBBWD9RwKUsjzsqlflFMHpS29nZDhKCG3eYlaUwrfOASejyoiUOWCsygKRA5kAiFKKL5Ns72gjbLoLUQZvuEWTikVshaZWvxKA5mO0a5LNI5Ic0ESDUB5xGEP6Vbw/QDPNXSnpnAct1yQJimbWylH7n096WAInkuBJc1T8jRD2Zw0TpGqjIqtVBpkScHm+jqj3RFbaxucO3secXCGtYuXEcbD1DrYJMdrT9Lf3uHo6eMEfsDUZAtlHHIEYTjCVRqLZNTfpdlqIrTCuC6SlKBepdOsoVHkFlyvQiEFoigxf64XQFaQJyHCZmhVmieFdpFK4UsX7frg1AjjiCjuY3wfWaly5foiyXiTerVOZiG35vteL98fa/WhDz287+g9eEXBwsJZRmlArdHF1fuI1i+QCINMYupzt7CzeJlG1WHYnGTzwndxZ2axCxusrj1J88iDRKsX6KVXmKgdJe0P2HfsTvory8ze9UYG1xeQs/sYxyOS0Qg53CC//E02txdpjLdQRY3Ud6E6yfbZx+gcmMVzQY1e4IP/+i+49baHsE5AtrBIPNrENRXs1ll8VWV+5jDXckhshUwYsiREG4OQOXPROTIkgZpgc7OHXn2B7vxhjHEhsyivytbGMqLiIsY53aNH2R33ONadZ3freXbWrjPVmSD1fCJ/lu78JF5jkosvbTF55M3c1NpiYd9PI7IqxXiTjZVlqqpPEQlsvo32mii3AhQoBSmSQkoqDZeDEy1a0VO89U3HOfXm11MVy8xNbzPtVfjuQo5fDRBkSGNujN+sKDtijq0hspDCpgzdKoF1ULVpdLjB2pVXaR19A4ItwuUFtqkznW3QmDhMMHmM9asXqU9MQ5KyU6S0Kg6DzS1SZdka7rB6+WVmqm1qB2+G4Ygw7jM/0WHz4jOkm8+j9t2C8tq8+s2P8v4zu3j3PszS40+Q5TtsXV3lJ47McaXRJcuHRHGH9vGTfPPf/iETM10ilfHgfW+ifbDGpx75KI12B3aXmW0a1nZ22HfTaYrrG0wcO8mCezfj62fJdq/zd977EG0sT72yhu8tk3tHidZfwNkeM3nXvVy7dpVwY4uiMUGj0sVzWiilWFo9R95qY1euYTREwqNSa7BveoadpRcQYUr36DtZ629S11tMTPr8xI+/7we2WwPw0X/7+MO//I55Jmb38Y6HTvC5rzyJMk1slpHnMB6VhpdRFtOqNakHTZpH70U4mna7inHqtN1lPLdS3vxkOdA9e/YCjtkbM+bfi7ucP9ZkqgFvqs9yy9uavP2BDm/8+3/J//hb72D48Zdp/PD9tOrzfOkbz5FmFq89RfvEEfq9XTZXFwh7Q6JwhaWXL/NHf/wviNMh58+9wvLKKwyuriD7Zwm3vgNrLzEarpNEPWwak1hFkhWEScgw7jMOnRJTlWTkWFxZlHpI4yNNG+k0EEEH5TXJgxkwbQqvDkbjmSrtTpUDt82zr9nh/MuXMY0ujgZlMyqNOloURGFGQQm1l6p0GMtcIHEZ7mRkwsHuFW8IjZEuSmrEHkZMSFmaHfbCBcQNSD4oLffMQxopwPf9Pc2mJC/KKFS51/FRSpaue1F2WfOi7MDmeUFeFCRSIWyKFpp/+UcfQyqv7HjaHKM0WpeFqjbfKyKLoiz28iyHPC8DCIqcQTQiG+f8d7/5L/ijh3+DxmSthKYXBTn2e4VvXhqsrJS4SlNYWwYi2JKCgFAUotRDlzrWcj/taLRVuMYlswVWAnuFaGnuswgUtsh5LafLklKgUNJ5jWQFumTaKsAKyUNvnqQIy47MwTM/uB3Wj3zkiw//2W/9Oq1Om9MnGzz13AWM10JaUyYDxmV3NHN8XAT1Sh33wM2kcUij20JmCqe4RNCYpUgiUka4usq1K9epNprkUYypt8nDEDyP7rRH3c252alx8ETMzacM/+y3v85P//37GD+5QOXuMzi5wyuXlikAx5Ms2QItK/R3d4g3d4jGa+wsbPD5z/wpRZGys7HJ4vZ1xut9GC8S7b6K6F8njnYw0RpFlmGFzyiMSYcbFFqQpg55mmILQZREGCMQhcDUW2TCoxZ0yaQlLySmNk3hNMi9Dk4twPUaSKuYvfk0B5suF9cU2m+jiMmiEdWKQe5pLJEOQpXGvTIhTgAOaWxxXR9te3Q7VardLq4oqPgFnjKEkUQZg9LihtxGqL3RgBBoZZB7PpJcaXzHQ7s+qkgJRwPcWhspC2wSkUkHjwzjVhHGJxwO0Y5DkeXEeY4wmjweI6TiJz7wayRhhGcM2quiCguiwDeaPB5g0z4qaILQjLaXmanGqMZR0n6PvIjZ3e0zpVze8Q9/ns9/9BG8WgNVqbKzcAXtGgoBU+0u2lWsriyjXRedp7haMI5T3GoNOwpxq3VGqkER9iGPmZmZwJWSQZhhZIJ2miTxLiLPcZttwjCkSBOsMhjt3QjziKIB1khsFKOUppAKZTRe4BOPd1G5xVSmOH0yQCUpniu5/Q1/8/X6fQvWTzwrHh7HI9IsI1cNanLMdipZ296g3m0jNzcZjzao+Q3s2kUurZ+nu7yAdUOmJ29mc6ZBmjl4jInOfo7pO36MwmvQzc6ztrSLbU8TRSHxd19gvDPivkMNrvcsbSfk5Stb/J2/9wHOL/Sh9zxOYaiLRTY3FvidP/51fvM3/4ROYw4nNIwXvoxvt2mLDivn/pKq69Lbdoj6K/y9H+3y7x+9gtc+QBhHmCJnfXGB5v4TvPriS7QmpwmKRXaX1gnTAfrQHfh5wbUrV2i0J6nIPi1VQ7fr9Ha3MbpDZGMcU6EmDC8uvspkaxLRnWQ43CFLcmIZM0Azb17kfHE3o90tkvEa3ckmpjKP0QndubsJoyFIh9iREGXce7LC/Wcst8wVXO9dprfR4/yFK0xPTCNaHa5cXsGfqvDQnXWm2xvcdHKaF88PcZ0Gkpgs28PHiIzxOCK+9DTu9DGqTQ8Tr7O7usThA/NsrSwjRz1kq067dYTrmSELLNm5RzEzp3ArTUAx3tyht7NEML0fVRjkcJ3Zo7cQBS527bsMvvsI9X1vhc4Rin23IypTzB88xauf/a+5/U3/JV/49jW8Sh1555vZXtzA613jlWLMw2+/j6e2FI2WpFU7hHvrKS48+hG6rYMsr77IickjfP3VaywPaph8l9OnDvLdcxfYF9Sotet87fFnGA4ifBPxa7/2fk5OH+UP/9232Nh4BTX0qHdcFpYX0JOTmMJh4eo5Dj34I1SXV8h2ljHzRxlev0zz8Blotql25nC8Fttnv0qndRPXVy/jaZfK4btx9YCxnCFMYq5sKH71F977A3vzA/jjf/rgw4Ms4wP/+Zv55CceJ8094qhAGUmax9giZ5TkdKpVPE/TOf1WvMClFlSotdr4foWOWsTx6kCxl26luXDhCsqUHdYSpG1RQnHqQJ3OXM6Fj0te937Be3/hcWZbs3zhsTE/N1Vn+UoP77BmfX1Iu+Ny8dwzPPJ//C7R4CI6vsLqwjf4/If+lJ/8tf+FzuQUvXOfJ9q8xPbSNaKdZeJ0TF7A7ihjOEwZhyNIBZIMW4RYW0U5dUTQxfgzEExi/RbSTILXpVbt4FY7+JU2juehPfCMQ+C7NOtVKr5HperjuKCkj1aGgzfPMjXX5fTpw1x9cRHhuvgVTbXiEgQ+RWaJwhjHM+Q233PIC6IkIYoF4UjQaDcoOa4KQRlLqrQALEmaIKREIjDa7DFEy9F/mqZopUo+KaURScnSoOA4DpYcpWXJLC0jsko9cV7mp1sLIlU0Wj7VqVO8630/RzRK8AIXWxR4ngeilBF4nrdn4lJILTGOIk5SPNdlPB6DANd1SXXB+bOLvPutb+QrX/g0VkBCXpo982IvcUpDVuDsMXctFqWKG5gvoSVaqzKJTQi0kN8LTdGKNE/RRiOlgzai1LNKgTaqZOHqsjBV2mC0i1YWRF52xHWZCuY4DsJCFKU89JZJ0lhQIJg/84O7yPzwH/yzh4dpwg+//SaeePIiwkrGkSUrUoQWEEeMopBWpYaxEWrqMBWbEQSGZnsGUa9SFTs4xqEYrOI1p0C6bC5dJksKrPHJ84xiuIvNCm49UEc3CzafsOy/O+UjnxjjqSbPvrDOg40K/fVNaCfMHtzP2voyW2uLPPaZzxBtv4TJFhhuvsoTf/lveODdv4gXtOlfeZzJYIuLr14lT0KiJIQCdnpDMuuxtbmBUR7GjkjHQ7LCoBozaKdGkrmY6hTSdXFMB1lpo5WLE3TQbgXH9XFcQZTG1CoVKo0GWglc10E4BYVwqakxwcEj1Joes/ta9FZ2kV4d1xfUmxNoXcpOoixDS0WjKmg3CuqeoB/2GY8ytrfHtDptMJooSlCOYbLjEPgJ1arL9m6EUg7SFkihyohmCvI8Jx1sof0aUoPIY9IopBqUekwjLNYoPK9KgibHYodbKK8Oe7isLEnIwoRap4HfPMC9996PUj7Kd7HRABlvoL0OhfEx9Q7KqVCrNBhvnaU9dYSljQGe7xN7VdIowSWjp1IqUc7J0zdx9qWn0CagqAWMtxYxyiOM+tT9Glv9EXnhImxCteYzHg9xpUQbzdZuHyxoUXD4yCx1r8q1lR5JOkRZDcqSZgnKq6ClIk5GBJPTuGkKeYSqVciiMW6tXZ5Lz0MqRTLcIHAbjOMRrnFRQYM8i7n11ini2DJMJK97y998vX5fScDai39GduFbWJVw6NgxhFsjXl9havtbzOQuwf7D5N2b6Rc5+eGbOHjwdQwP3src4XtZ3V6mGRVMVOcIGi3m7/4Zxt/4BCtXX2W4U9BuKSbqHnccOclAXGJOXWF7ELHP2WLxa/83s7Uen/vzf0XXbpOpDn63zcUXX+Adp27lJ3/q97n99EGuL2wgk5BK/STbWz65WGHm5vcy2lzipptOcOzQASYP3IkXaIyCle1FOn6FN55WXPvOk8xN7KfYWqQ/toTVBs23/RyD555jrb/MYb+P6m1T831iJUlymGjPULG7JONNctWBxgTHGvswHkQrS5goQfktahM34eRjpNPFqpDmRIf9nS5JFOIGhoksZDga4SQJxnV4401TvPlBn8/91Yf49Mc/x0vfvkRy7hwrS5cZb6/jjndYf+l5pgvBcHWZ7+72qXUO863H/pp3vmHAm2/fxrghVqQUaYEtEjzPx5+9jZpX5+ynP8zqWDHIXZYTTXumjdveTxMFVcX84aM0oxXk9O3UO1Pk0ZBCpbQn2kxPn6Tue+RhinEN/Y0BydZ3kULx5v/qC8weO8Ti1bOkwzJGz174DPW7f5lQwP6Dx0nyMePLF5m8/V3U3/FfEK1c4l9+5E+In/koeV4hzyKylW0K0eTxb36eo8du55vnzzE+f4XJm29jexBz9033UOSSLSG4ur7G8ZvuoD47RYU2T3z5S0zUJVdCB8froman6V1bpi0z0qVzZNEaR+9/iP7lBTaFg5o/wly8QDDfxY4GiCLF2pS165eZPXaaTC9QK8bMdKZo7z/NxoWXcHpbJKlheu7k3/b96m99e9MDp3FElbWdJVyvgjEGv6oo9tzto5Gg6jigDY62CCfEdQI8L7jhAH/NyQ2U4zBp98ayrxlb5PfGrdqinBxSsPmYL3z1Z7m0ucv9hzv8/vMvYjbX8NIat95+mMVLr9BbuEzTVHjlsef5yic+yeqzz9GuuuzGA/AF6TiiSDOMsGRFQjzMyPpVYlWl7lkC7VCIglB0Kfzj2Oo+rDONazykKHC1oOpoqhWPwHfRQYByU5ST4jkS16lQqzWoVJs4nktQraGUwq028R0XXfVQmcKXDr3RmB/6ibdy6dI1hmECe1n1rXadVqtOFCVorW+M1bWQ7MVeUQBS6RL/VZTJTa/RB4IgKAs8KUiS0t0uhSDPc5w9d/9rBJDyfS4L3zSLbzyeFWmJtNs7D47j4DgOruviBpJwmPLPf+u3S02rKTmKUgmELIvg1wpVsfe8AGma3yhiwzC8ga8q0hytLI3paaxjsEahi++5+3PKQvu130+z/IZTX+wRC17byn1e+38q/8+SJCn10nsygTTdIwgoWXIatQAlMca9IWPIMiiKEvUVZyk2s8RRSlZwgxzw/4ft6CFQ44jeaIN6q40yHlommHgTzxpSyjz4TCp0rUpQqyDrE9QbUyR5govENQFKG/zmLPn2Gkk0JE/BcSWuUbSqNXIxxmdMYnMCJyJcW8GVQ375l4+w1e9xaqbD55aWiBevM+tPsbUTkgw32Fy4TkUYli6s8/SjT7Fz+SzdyQP0R9vUOlVcpTGmhqME1mYM+yNUXKFeD2C8QzOoUqRjRkWdNDiImbuNbCQpbEFVpThFSs11cD23/KyqNXB0BHKMMS7Gq9Otd/ArVaTN8BwXZVz8+jSekqhKBVFAxQvIC8tNr7+ZtfVNijgmt+BISa1R5eB0i1qjYGtziZWlNQa7Y8RoRDQekielATsdDXEKSKOQfhKDdNnZ3mBuWjHRyhG6IMtSbG73cq8ETqWFsILR+hJJUUatRwU4gUehNK6UoAWu76LyEOk10I6LlqCMIqhUqNZrFInl7/7sz1PYokzpSkdIKegevQ+v4pMmYygKpHHIB8vo5iHivKDeaCEEhL0d3MY0ojNHNhpyefkanhhTKBcrLTJMsGi2t9fxqzXWd3cpRiEqqBAmGfVKnaKwpEKQ5DnVWgPtu0hr2N5YxzWCsFAI4ZBrRRpGOMKSjnZJ05BKe4IsioiVQNQq+MQ4tQBpLbbYoziMQ9ygQWKH6DxHolBOjXQ8wMYRhRV4fvX7Xi/flyFQad7CcP063vIlMhMj7TJHOpNsXNlhuPwy9tYfotLv4/h1vLqhSCp4jYB+EmKIuHb+Gxw58WaWd7eoxSnrheItByUH6/u5tvJd2L7O1sbj7I8TDpw6yObq85yebjNsW6Io4dbXvYvt3g5K9diKDcnGMme3loikhx4qKk6C9qdZ28o4dO8xaj6srG8w221z7eIT6ErBV558FE/WUeMtzrTqHKy9wgujExy+p8h3mJkAACAASURBVEU7W8Ipmiy8uEh7ok5lILBzEzQ6R9lcfI541GDSH2MmjjLqL6ICl22R0dUWx9mk0AG1/ZNsbWxTP3WKrfUl3CInHG7S0YJeZMD4DHfXGQ226Z99imr3Fi5nPk3PI+utY8N1nv3GBsN0zLvf8SA7w3VeOXuF7NkXOXroAKdO3cK73/fjXDl/gX2daXrLa3z6yUe5cGmBIzedxA/2sb21xf1HDdcXB6yEASujCDVMaRar7KzDqTteR+oq/FpAvxBk/S0cfxbpdFDsEIVd+j3L8VvvIMZheWuZ9lSHJI1AG7K1LZSnSLY9VMWnWB7it+q88vy/x6FNUNN0jh5h++mvcnntKabvvI+IHlZ4xL0B7twM8XiMzAQHTpxg9dUFJo/fze7OBsNam6Azzb0nbmVh+ypfeu7bvP/et5E4Dtlun/HmJpmKkUUCIuHIscNcXkvJiow8aPDud72eb7x0hSOnT3Lpy19hd32H8TDnwL5JdJyx03cx/bNM3no/2xfPM2GaLCVL2FjTj8bIzQ2MrTAx1yYZVNF6iDIrjNIYlV+ne+TtsHEOx5sk2tn+W7xV/afZPvzI05y56TSPfvYqg2iA4wQ4pkBkIG2GccCt1ak5YxL/DL6ewPE1uuJgHIHjKMjKeNIsL/mapRFI3ohrfQ1bhBDYtACvztThIcnYoea9yvO//jZ+6GPP8Bvv63DwqsXsa+Jt7nLbracQxiCsT6F/GJE7RFnM733wf2awvsD+yX18fTmk2qkS4+HUNF4lJ0uhYST9UYoTlHiomnbRRiCFi8TieDl5oTFSILVF6AAlBI4jwXZKAD1QGIUjFJmwFHGOY3ysECgt0EikgmjPTGFERn93yE/9/I9j44wvff5R2p0awub4nmY2mGZ1dQ0ob8BKlKD8jBwjSje+2nPMyz3APkKUnVEB7IH1hZBYBEobLGXx+VqxB4A2IBU2SsiKssjNyVGeV+J3EAgryEVRQvZTzWh3FdPeT761iSkUdm8U/xoaK0kSkiS5kVjlOi7raxs0m03C0ZhqvYaUEtd1Wd8ZMjPRoZ9lFMrDxmNyJdEIpCk7Tq7vkEYxrnbJJBQ2xxalHCBKy8I+twVGa6RRN77PswLheOR5uvc+JWViGCVrtcjtDRSaFQUUAsfR5fnLUhSUHNtCoCh113km0dopwwis/f9eIj9Q26NPrHFo3wwvPLZMoXKszaloTThyKGwP5bVxlEvg5hTBERx3AqfmUjgKR0iSeAftC+IiReSWBEHXg07LJ80G2DQkCsEvLEEjoAh7VL0WEwdi8rFhqhvze++9h3/y9bP8zOsadM5GhFWFSlIOzx4g3pchqRHJiEq9iyXlkT/5KDbcJdCCtY0+2tNEeQO3UqE7UcFVCUNmEI5AOAkOkmKU4fkGowPypsWvekS7awgpSqmRXyPPYyqBS5wZnCJFKEmhA5w8I0xTHK9eSk9sGRLhOwYpDNIPyNIIYRPC1Q3e+Nb7ycYDXnr5MlUngWJMOA4ByWS7RZKn9AcjRH9I3fcJahX275smDmMCxydPEtb7O0Rhn2qtjhQOWZHSrknCUUqKQ1IUJfyEhLyASq2JFSC1IlMashBRSHIMSTQiLTSFFTQbLUAxDkdI15BbC4Uh7K2iG12yZBWjDXk+wngBo8E6SjgoLZGuQzHoMR7vUJmcZKe3g+cEhKMRQbsFhcVRHolbISAh87vkuSXLUvB8WtUGcRaxOehzaGKGFbX2vQLQkXufQxbtucRpQS5yHMdlbrbLThjR6DQZrO6UiX+2IPA9rEpJM4EaDXDrbeLhAEc4REXpF0rzrOTXKoWqGIpMoYwDxAitkDrFre3D1QorJXkSf9/r5ftKAj77zPbDlX3HyN0ZRLuK6YVshSNasy1aMzextbaC7V1l6s43Ivt91tdexa036NrrDMc7REu7/OMH7iTUz7Gz6tJoV1l+9mv0ZIdHn3gOWTlO6+gDpF7OwivXWVu8jEhhoAr8+n5kf4XpiSlsOuaf/vrbePHigIvxgOG65NTcflyb0FeK6bsf5MKFp9DRAjuXLzPa3iRJcx48OsPVhQUmGlXyuEe2/26uLA5JCWmOd+lffZKxd4La4DwZikTWsYVg5Bh0pY6Th+RZRLj+HLnxIOpT6Dq4k4x7q+j1S/TxcA4cYJhX8ERGoS3RwleYK77AP/jAu1h54iOsVh8iz1PWn/0r7joTsLP6HNHgJRrhJnd3Jzh19CDz3QnWL1ylKS3H2vuZPT6P67hMdlscO3yEo5PTJCJDViucOjLPTQfn6KJoB5r7jh/izMED3Hmgw3cf/Ti9K48xW19CVOt4/hQjXSMxls31AVPaY3D9Mfy545w9/xiT6YjFy2c5/cYf5sVnv8OgKmjXOvS2d2k1miT9HXTNIxvFdKZbRDub1Oonqe5vM1GpkjUCwt0d1Lc/Qvvu97C9rXBmThOPR8hAUKlNo+sSd3eb9bWLROMadvAK4ajH6sJFKkdfh1haQns11q8+RuI0uHj2PO1Wl5e/+QVm7ns747OPEwpFkaX8ws/9I56+XLCzch0xvMI73nE/f/Dpyyy8eI5GZYbu/FvZv79NtzHNtUtnOXPf7SwtbKOSEVvhJpVJn6W1HZSRdOdvRRcuSTFksPwqSZyjUpe46iA8l1HSZrxwlvHaS0ycuJ3RcJdf+ul3/cCOFwEe/diHHv7hH5nmuZe2cByBVpZoLAjjMaNI0mw1qaqURB9m5ugxao1yXON6AdWgiXCgFq+gHIMUQCHQWnPh3DU8pchkDgVIJFYITh+s0din0VTQUzC4oLn2FzG/8rs38TP/zUvMJ9tkc5PUu22EMXt0gYIkzciznCK1HD9znN7GIh9/5ONMHzhMvTWD75f51K4T4BkX1wtwjKDqV6k4Bq9awfMDXN9QrXkYt0KjEpRpN7UGSmm8oIKWGowm3yNp5GmBxGKExHUMfjXAZhkSKEQ5hjbKoJVESRfXcxmmMY7nMntwHzbPOfviZfxaDc8IKr7GqftlJzKX5DZFKkPQ8rESjKNRRmG0RjslsknudQmLPMMYUxI+kvQGZmpn0EcrRV6UY0e1x16UjsHIsivjOgZHSpQs41rRpSFJC4njweJqytvf+T5qlSrkmiwaUdvfJUgFNu2z2euz9rkvsfHVb7H51DMsf+YrePv2oyaqjK6u0vvGM3TvOUk2SFG67LoYW/DpR/4Ia/LvFdWqZPhaYcvoVS0RUuJog5DgGAet1R6VoNTZgyzd/WX2KrqA3Mg9E5XEcZwy0Wqv0BdCIPfMZ1LrvWI2x+bqxkLE2hxpFVYW5FnOO980SRILLJJDP8CSgC9/5rMP3/OmWS5dT9CBxuQ5ozCnUAWFrGOMws8HyPZpOhMTKJ3hBBUqToHRDkWWcapRgBmRJRKjDelwh+uLPfq7g3KUHHRBwngYMVWzVFoKK1xM1yO6ntL/luRHfnE/n3l0hL/bo9+p4ro1arVqiWuTFlVr0d/dRqRjJqab9DdX+Oaj3+TYoYOgfKqBQpGjq1NkmUA5ZcKTyUO00yTQGdr10I6H5xtwA6qVcpysPA+bDjF+UEL6tUsh3XL6NR5SIDFBBaFcfN8piRLhBi6bHDw0Tba7QmamECiKcBuvUlAUY9otjc4i+ks7dLptGoGLyGL8wMEVBtevIESB5/u0J1sEnos0EukamvUqzXoFXRQ4RtMMPGquS7fqE/bWiHc3qLgJyriM4wKUQ0ZBFCZ4UlFEPXStQTjqUXc0eTKmNTHFcNAjN2AcnyRJ8IyDFClbA8uZM6+j0ahRxBnCaqr7u9QxFCJmZ7fP7pc/TXh9l82XL7HzwmVUo4FqeWTbIeNzF2jOTxL2drEY0ngXsoRvfPETyHoDnWUgFUm0g1Ieo+EQ1/Ho727itaeQ4z6FFGipOHRwnl4IeZpg8xGTkx2uroyJd4dox8X3JjBVF0+7hKMhnYkOcZSiKUhthnYVcZSitMSttrBWYG1COg7L9L9CkiuLkIbMatLRLmeOSqTbIMty7n7Te/4jNayff+nhzCvQ1YDx6hLSOPiVOWpOi2iwxvTkLP2tVXaNwzDKmKx3mFi+ys+/516++8IX2bjyEp9fjdj48lcp5u6ASpvxaIuJM+/CHfcZ9zY4++2P0dvoMdP1aU2fon7oTpJgkuTyWRpz93J5Z5P9cY+PPXGO4xMOD9x1D2sL3+blVy9TzL+OINzGLba488gRthcWmbn/A9BbIJ24mea4xx/8xZ/xS7/839O97W2Mrz5DsP8UVvnorXWcuXsZXHmFTQH4Bl2fZne0QRRmtJSHP3mAoFrFRIZ6dZpYNzCBRxqPyPqLJBaCieP0X32FRFbxGk0cVzAzeTODy3/Bha89x2DqPYwGOUYPaGXXOTJ/M/snZugIRbvVpuUHpHlMkSQ88Ib7uOu2ezh86ACrvVWOHz/Gv/vk/8XbHngrfquGdhxq1SrdyQ779x2gPTuNn+WkUUJ/NGIQjZmY6nDmjlt4/d33cefRWb7w4d/AHL4HX3eIty8Rei1kfQa7u0mQKyK/ysq5l1ndHHLX8ZvpZwWyVqPm1kCkrG/32Lx8jcJuIscj3GaTeLiCLBrsioCd4Q7e9gIXVi7Q7M4yaswj03XytEAgwUaMN8Zk9YAkHtGavRm1717UpRc5euoQ2+uX2c1yGnMnCAZXqQYOsQiI+0MGwvLCtz6B6R7FdS2O0gR1j8999uPc+tCPka08zzit8fi3XqCy7wQtVlhbfIKNnQFpeBW/vp/zqwkVx8eaCoOLn+S5Z57kyMl34iiJW6lAVRHuXGd66hZs1sMbL6Bbc4xXFslGa0zf/HpG2QT99cdoTB/j597z1h/Ymx/AYPErD3/yM0+XgOwsLbuhNt2Dt2d06golZ2nfdDO+a6g2mnieh+u4GOOglSCIryO1Lk1BexnZ589fLR3cAvIchChRRKcO+qgQZm7xKNKIF343YvJwA+5L+G9/dobeisKsQXDmFGDLMAL2tJZAlo4pBIg85fTx/Wxs9anUa+SZyzgaU696uL6PqzWOMgSeh1SaequJ53sEfoDSGmU0OaCNxpMKpQ2OcW7wPR1T7mscgzYG4zg4xiCEolovj+H5DtooPMfBaLnH+RS4rodVZZfArVS44w23cfr4MS5fW2CrN6IR+DhVScUE5ElCHmW0p9plJrqUCAGO61AIWx7baMCitWE8HuH7fvm6tEZrget4N+D4r5miSjd9yYVN06xkvNrSSV9kOViBcZyywzO2fPY75+iNx9QmGlx46ot8519/irVHvsTRn34bW498jamj+1i6uMTh224njAROsoE/f4LKVAOtXZJXz1LMzbGysEBQqSEoWLxyhZee/hrKlziFg3VKs6coynAA8mKPV1WeW6nk3okuzVgSgdwjCwgpYe+9yaRF5AWpzVGU6VnWWjJRxsEKQOR7+4qykNVKYRyD63pIJdDa4BhT6l0xPHBfizgsyK1l/gfYdHX57GMPP/HMqyhPkY1HZbdfGpRyyNMx3VaFIqviH5pHKkmj0aJaZByemyQc75DFA3YHq6Q7OxA0QTvkecL6QKBtQZ4l7G4tkyUJjiOYn+vg6iaNw1XywTYLX6pi2gbvWMh9ZxwYaaZsE/bVGAxH2EoLlafIIqFZqRANezjtQ5AMmJ0/xLjX56777+OFFy5hvRouY7x6p0SrZTl+fYoiHqNqVRzfxQvqFHtkXiUUJqjiGweFwXcrIFy0o1ECjMhLvnjQwEYhypRygKDq4QdNZLZG1BsiK3NgBUIVOEQ0Gm1cz8dViqBW49QtR5ndN83q2gau47N/Yop6OwALgeeyeH2B+aPzBJUAqcrFZVANcL2y++pIiS0KrIVhOKJWq9LutJjodGnXfHqr19C1Do72KLIxGA+0Q5EmGClIrCAaj4jjnEZQL1nNSuO6HkIJxoOED/5P/xvDaIBfc1m9/BKvfvFRdr/+Et233MnWV5+l0w24fuU6sydPM7YVTLKBM7Efr1lBKkl8+SrFzDSb66tUm5MIr8n2lQtsrlwktyEUGl2r4tgYLSATiiJNyAT0d1eQTlAaOwFlNGsbqzQmZiAZkheKnd0hOqhhRMw43iaNE9JsiNEBgyhHCkkuFdl4lX5vh2owWWLutEIaCXlCpdLCaIEmQntVRJZCEePXJzl9vE042ES6Fe56w7v/4zSsW0XE+uIiw+EQFRh2Xn6GqGZY2lxEzB3m2nhAY+IW5Pnv8g8mE2bURZ555bP8yu98ld3Yw5+7FzfSBKfewMp3PocfxtiJo9gwo3BSavtPcufP/h77WhXU7FvZ2V3m2rmnMGnBTm+Zt5+Gf/M7/xh7zxSVydM8/cxZfv/PP4kd5ZyYn6NYep6goimCBotXNjh7/gmc6BrdVoeZesLFlZd56emvc9vtbyO6cJadYAo9tMy666z1VyiKjKsbK4TNA2Rhge52aBQZTj4mspLNyy8RrqxgJ7sMVUa1MYEcLZMbjdc+RX97AfIM25mhMTWJzXNyYRima6wnt+Dd8lOstN6AO9lCnP0iG5sDvCSj0fC565Zb+NUP/BIP/shD/Oh7fow3PvAWOhNT5MpiOgFXLi3SmJjhvjP30J3q3jAogCXPoD8a4BWCZneC6UMHOTp3iMMnj3P/61/Pg/fejycU/e1tfv5Xf4Xrf/5PWbv4CtNTs9RNQkXmeK4kmJ6gXmty90/9Oo1sk+XMx60GMA6JMosN+1R6IY1uFeG0GQwjHFPQcOtEbCFqFU6MLpXFy8iD1jwtBenuEL/RoVINSGyOcWDWq7CzsEKufEY7O6wfeYCnn32SQw2Fv3GljFj0DKPdHFWEmNmjnLzjhzhx04/jFiGZyjBtl5p0uP2Wd7H+9BeZnqzy1BXDoXvewealryIO3UXQ0jQnZxmM/h/m3jPasuss033mmivvHE6uqlN1KpdKVSrJliwrWZJly8YRbGwM2OYCDbhHwzDt221f2uAA3UBjwISmu6EJNg6AARtsjCwnSZYVrVhVqpxOjjvvlee8P9aW3H/QjzvocTXHWGP/2efsc/ZK3/q+933eAcsrC3hZn3rT4sR9f0ivb3Nw31GIe4j2eZLuFnG7S6Wyg0HWotqYZt2fJhQ+sT9HY+omgu4m9tQEql/DjIf/ireq/zOrNp2RKhudZLmr1RCkWpFlGs90kdhY9WmECrHM75tuvr9ZL+TE/+9YIDm6UhiZfkHDKoRApxkbixFxSZMZCto9mjdKysEiUZTQHFOknXUAzFHRArzwux3HQmUG0rAIeyHzl89z8eJlCqUC0ixQrdYxTQNciyBLsAoebsHHNi0cy87/NikBhWfZOJYFtoljyTyJyxgZgshH7QXPw/M8fN/H9X2iYfDCaNw0TaRhIcz8fzNNE8PIx1+2Eri2g+95BP2Enop401vuolQscnFxle7GkK1OC+lLxrePvfC3Ffz8s9I0JQgCUp3mXVMp8TyPRqORF6Sj/RSnCUkagnhe/2ljmtYLW17DCcjUC8lSSn9/P2mtaW9u0YozbNPk1Ne+Tvl8G2ejS33vDkwhcn1qrci1P/lm3DuuZvfP3k02yOU/WudaZT0I6La7NCamcByHlaUlCqUSplMgVRlZlmBq8QL6TApjdMz8b9rWLMuLTq0xES8gsfLucq5zzfh++pVl5fpYwzLRRk6keF5SYbsOjmXn+2h0DKUqYRgGI1KDRMhRmpYYDTqNXMLyUl52LWEYpKRRjGEZJP0OiYRhGGAXq0QZuI2diN4Wc55JQYb0BhucvLSFwsTymxiZwKo0iTpryEyBXcDQCgyFbReob78a1zYxvDGSaMjK5TWUq4nSgHEj4NYfmsP3+yjDQ+ku586chlRTKRYQYTcPzzAtwmFMGPUQaYhr+xhpxOX5M5w7fYqxiW3oMMEuNzG1wHUzevEA6VikAgyniIlE2Da2EDnFQpq5vCRLsHwXbaj8wU3nwRKOX8MUGY5t4ZTK+OUySRiRpBkYGamoYlZ2ELkNDMfCHG7l+ucswzMlY/U6B/btpVyuU55o8LofuJNKpcLKVosgTFlb38AueezcPUvB90GA6zo4jkOaKgbBAJRCmiZesUCtUmVyaopms0mz3kADQRgwNTtDsPgc8bBPwS/imAJbSizLRNo2lmVTndqFkYUMM0BKyLJRZHNCuNUhNAwsy+XyY09QWB3g9xP86SrSMrGHLUTRZfcdN2Jfd5Adr7+WtB9guB6GNPOAjSRChRGe42PaLhurK4jGdnrDIY6pIezm0iEhcpqGUEi/RLHSpFCcxNCKTGf5QyiCWmmCsLWGbRlsDQRuuUnYX0d5ZSxbYtouGgizGFOC5Rj0Ny+hM0m5VME0BZaKMLRCJBmW5RGrACUMEjw0FtrysJwaKs0wXCdnXev0Rc+XF9WwJkKwc9d2Ur/EU/d8i6NT0wy1g2jWsbM+Zn+FeqXAh/6ft/Knn/09nujcTnXyBg5de4CHvnaS8W1FHD9l+dkTbBsr06nUCBZ6ZKmNGijkTI31B/4I5c1hFFzW+xEv27+Px648xm1XHaW3fYZ3ffCXmI5L9NztNPwa3U5GUa6RbPa5uNZl91Wv4PzJC3Q7xykVDqHPfZNhUiEYbHL3a3+KYBixUp7jhsoGW0YBJTd47LETHD12M7hlpud2U959gI3vXYI0oTY5QzaIqVcK9Eq76Dz7OJWxKpvdFo1SjW4qqI/VWF/bxCrOocI+lXqdMB2CStFRxtLDn8JPYz7/6c9x1W0G93/1s1x/dD9S97n9B99ANVNYEzXWO10uzl9mbnaOHeNTxCh6vQ7DbgfPl1hpQJz28H2fMBiOEm8y4jimVCnR7/cpVMvITDOI+vnuVJrzy/Ps3rOHyydP852nH+UP//h3+I1v9Oi1r6DK+6nEmssXTzO5Zw4dRVy6dIl64yCdtIsdZFh4FOvjDDpdzMlJ0sEijWaVJDXp9DYw0gFqUGeaTdrtCxQO/RQ3lhsM+6ukqorOUgzfpb2wjLRMpO+yttWi0pzIL2ZJApUqe2e3sdlfxDEGtFeWaHiTtDsLDEMXuXgRsXcPB4/dQnj2rymWttNvrbBt+07a//wICxfP864P/ThfPNWgP0yp1w8TxjGumGalD42Cy6Grr+Liepl+d43y9KvZ9bKbmRmbYOXiKdyxGptrHQp7d7L17HEqxTE2PcVYrYnyHey4S1ZKySKDRmGCZGKCpPDSj3r8/KeeQmUSw4JEaVRskCiBSgRWySd0d1GdqVE0Kziei+M4mLaFtPJUIsvOO5IogSG/n2plGKBEluNhVApagBIMU415ukZ265CiLPGy9+6i+dY2Dz5e585bNGf+cw2HLH+7zo02llDEwiTKMqR2sWSAcEy8aoHX3nkT0rZ4+LtPYjkFnj55huuOXJVLCWKFY33fXIQhQI0KEhWTjgoc25CY9ogXa7uAygsxU+bvV/lFMTFgajo3r+RFFGiVIYwQsu8X8lrluCitFCpSuL7AMWyWo4yX33kd9XKB5dYGly9sYKqEilcikQItFFrlxWnZ9fBHvFFTSNI0IUPlXWyl8yJMCDCNEevWAMMkTbNRfIDKUTpKgCmwpflCwad1jirLlEIoTdmTDDshrm1Rfuoc+3/l37Lnja/l6S9+jW/91//F7koJ37R58uOfxGkPSTIfkWYUZhoQJcSkPP6Fv+V1P//TJKubnD5xnMlt24njmMHyMm69iOFLVDLiqEqJoTWZACUFRpYXpwIjTwKTxugBQDAi0+Yl54hZK4VB5Ep0nKKFJk6TnGbA94tfUCgpEGlGrBRSSAyRx1GnOkOkAoVCYJGkEVmW5YZBoXgpr/u+dRHX8bA9wdbqOkXpESqJMGxsU5IaFUrjNvu3z7HaWiLNZnGKFrVGmeHWFn7VwXQh7PbxPZPUslBRhsBAZRlmwSLaOo+WBYQh6UYZjfY03dYqU5UJzDfs4VL1OPNnHPZfDYsLNewkQ2pFFmcEUUq5WaPTHRAEW1iyjgw289AaC1776tdSHy/whXtO0KgUWFlcYffcLP1ewFhjEsdxqTUaeLUGcXcd27aQsoKV5GxY5TnQ72J7NkmSUikWiWKDklMkSVNc3cQy87S4WEK1XibVGcnWRUxtsLK0RmlMs7G0RK1axjIFkzu2IZVCWCZBf0CiA3ztEBoWB19+EM+SbPTaRIZiolZl6DuUq1VSlSdJGYbAtSz8Yh7XbFs5girJIcqIVBNEIaVCkbjfo91qceSaw5zf0iThAKwiplLEwRDP81Dk7ORCoU5k5VHJhs6nDCqGQtkjHiYUCh7plRaT77qL8WsOcuHhE5z+u68wLvr45UnWP/cZhvHDJFkREaZ441WSwZBUK8499DDXvfFuhMpYunKZSrFMpBV2GIBnYDuCLIqwDIdYR6hUk2VDdKlIudJE9RdzfXEa4hWKZJttsihgYsd2VvoOWabxvVp+fZUF+hhYQlKslOgHAoHGK07hVWq4tkMyHCA8iySM0J6L6g8wLZNUSKSVT10MYjAlaRJiGhaG66HNF2cnv+gduKoT5oOY9cV5po7eQkuU2B0d5/d+/Cp+4NAm6SDkoe9+nf/1j+e4eLHC2EyBPa9+A8+cWuPI4b3E4UXKp+7l5jf/DG59Bu/C19k2PklPLTHodFl78hEK0zfQDBY5d+pxfvsjP0e/sECxcJCTY7fyta8+Q8O7jtWVJfbsnaXd3eDAK+/AvO0d2GNVrto7wRwrmDJl9tDdZGmb89Eku/a9jI0zj9Mz4fobX8VUVdIddMhaT9NtP8XU2ASyM6S1fonJ3UcJowwxdR3+YIuNpWV8O2brykl01Gdm3xx+W+EaRdpmSHPyIMHaOvMnn6CfBoxPTZJkDkfGbW49EPKeVxV40/t+jPG7X4d7zSFOrTzGO97/Xo68/S3svO1O/sN/+o988A9+B6dcwzdtnnrqKUQcE5uSwfoW93/723z445/grttu55FHH6fs11hcWECrFNu0kIZFe2sdlWaIIES3oSTx7AAAIABJREFUh/i2w333foOtfh9lSybHJ7Bsk8gyeOU1R+kFGeNnPsvUgZ0YWUBgZmy76hrSCydZ6XaZ3n+QBIVfaiAGArM8RZK0qFaruDpk+85j9Ocvo9183Le10qd15QzV+nXE2+/g4c9/gsa1ryR0x/KpoONhJ32EW6FYqOA6DsVqkZLpsLx4Cm96inQ4ZL14A1lrnXLDx3YkZv0wvThks9filz78Xt65bztZ2kUJm63WWY5ef5Q//9TfIaxN7rrrOrZvn2F1eYF2d4H6kRsYbK7QN2YxZMLK6pDvffefiLIrRGunmJ7YwAyXSNOUs89+lWD5SWYmfJwgAa05ft9HKdouqVMkUjaBU2XQ28QuTzI0B8zUS5TcF4cavxSWNg1sW5GlAkN7ZDoGVaBc9CgUbSZmZyn7NYq1Al6xgOv7uK6HbXng2TjSyKPThEKT728MMKRGYpDpvADR5K8f/0IHGj323bnAO975LF+wNtkxdx+//tPf5KN7TnLz55uMS2803gY5SuPJneoWqVA5D9Fy8DwPr1TCsh1uvfl6rj08S5qZtCKTJ548S6VcolguUSwWcT0f3ytRqVSo1ivYpQrjkzNMTM5QnhinUG7gF8uYponl2PkmTQxTIx0bw7SxhSTRYNgeCIlpQang4tglbNcfweoNXCnxTRNX2lRKRcqlOoZrU5ICxysSJgbVYpND++fYNrudUqNCpVSgUiji+z6264wkGXkXESkQtollmNjSxHU9pJF3gJNYI6RFFCZkcYJKUgzT+L5EwDCQjKD7o26laeTGLYnAsiUboUMW9yCMmPrxN3P/O3+Rh377D9Ch4o5f/EmiKxskScKhj36A+u/8Mjv/4AMkcZfybIOWiBhcPMn+170Z0wadKSa376RcqKLjDptJjzCSdIdDtDCJFWDbGJ6L7/sYGmxbYll23rWWFqYlQRooBQkqJwlkCXESEcYJ3eGQNIgQZt7l9l0HISSGFKPYVRPLlCgFSAPX9/Ii2DSxTLAcE9MC05A5yNwwUYaNITSCF+/Y/P+9TANSIyMYhHjlSSLAz2JevrfJjjFNpd4gGoasDzIyVaRY8alNb2cYQLlZReoQc7BOfWoHhuUigw081yUzQnSqCNptLL+OnQUMhl2Ob4yRVrf4t78S8eFP9vji5iI/+zPzfOa3HuUf3r/B3ve7zDSnMce3YzgmlYKLL1MQimJlilTHxDLvzIlkiOH7NMYmufboPmZnaqTRgPawz8LCJgXLxjSh0phAmjZOeYqSY2FZEqfg4bs21UqF+sw0BauI75VRJvilGmhFPOyjjBSvVADDpu6aVAuKHZM+E7u240+NUxivE2Uxs/v3UJmZotAc4/yZ01y4chnX9ij5PkmsMEwDRxoYSFbWtliYX+e6I4eRlkmpVsUQmoLj4rkelu0QJ/lDrBQCnSmkbdLZaKGVxnIcfNfBti1iBfVqnTBMMdtXsF0Hw9BgGhSqdXQ4IElSLM9HaYUhTaQSGJaH0Cmu5zCIJY5tkXW71O68geP/9U945q++RNzpcd3b307Us9m4cobdP/eT+P/mPYz9zFvJVESh6TGQkG4ss+P6G3E8idQCr1igWKmjoi4buETDlFinGNIkM0ukhiCVgsOH97Ct4CGlQpo2SofU6nWWllfBTGg0K9iuw2DQJ4j6iEKRYDigGxmoOCJKod/dwLJSVDzE8xKkTgCDcLBBGnRwPRPXtMAQ9FvncUyJdByEFGA6QIpj+yRS4NsSy3jxB8wX1bDOhXzkfW+rEK6dZ2z4PXbVHR5bLPLdSymf+7uvcmxuF97cqzlx6n4mr3stnacepBQvMdF+hiUrZeXJE9T3X0esYtztB5AbpwmWn2G7U4HeOoMjt4M02BGtcesN2/iLP/ki9WvfwvJjf8veZoxd2kF7A6b2H2Tx3LcgCplrHEK1T2LbDRaWN6k1BOtLl+iIAka4hVWpI/0xLgwM9PpzXH/TPr5232WG7WWi9QvY47eTmj5CbFC1NO3NDFOnmKpP4lTpr56mvONlhFdOEGQ+nu+y3moTrJ6kWZxmy4gwzATLL7Jnbo69e0u88a4ZPn//Z3n4+NPMX1qmMTeHYWrC9XWGly+z8sw55OYm44bija9/LYXekC98+x7kMOH2m15Beec2/uErX+fEudO87UfezutedTNf+NsvMzYziSUSXn79KxkOBvnoTIDn+di2w9fu/SrffeIJtu3exdj4GPtmZum22hQKPlGWcvHcBW599au59tgRHnniGZa++Xdc/aa3E4hZsv4i7W6fOMmoVZr0ayWsbpvOYJV6YxplBAzmNxGGRb9Y5OI3/p5dc2UmwiVWF84wuf0GeoSc+84XOXLnW7l89jnKToVeqIhVj0ALik6RKOgjpSSNTbobV9i+92qSBKrFIoGw2e8PaHVabKxvEZe3kXbXmKiX0J2IS8tLrEVF4u45mvVpups9FuQOCv0r/MiPvZ3OhTPMR1XMoiZJ1xBqjPbq4zTKEmttkUJ1gtbaFZRRobe1Qr91msHig/S21thz5Hp6gWRw5XGiznkKTglncifl5gxgsXblHOMzNZRt4yibcPER4t4E7/mR21+yejiAL/z5734EMrTSJHFGpgdI6eF7KcqYYmpmF6bv4bh5Z9V1fEzpYJp5l9U2wByeR1r2aOyfY4IunLmIFnkmtwDI5YV0BzYbos+Dz0Y8+w9zfPCXv8PdVzVZYYr37dhJ9e6I5X9M4bbrGPnkc+1qlmHA9zuXKhu5wtMcXZQmSN/jumPHePSJU9TKZZplF7uUGzVsx8m5njJ3t9qmheXaoBVK5I79HMhvjj4xf9E6Ix1pPqVljeD1FhIDTS6dkEJgjsxCpm0RxTFZmpKmWQ7Yl8YI2K9AaXSeDYopJIYW2KaFeh45ZQjiJMESEtuyUJB3DzW5qcgwGAwGWI6FUhkahWu7uG6+JUmCHrl30fn3lmk10hOLvHDTYjQK1whDMHv4Fdxww404lSqlWpM07FK3bIKxCaYP72Pxq9+icdMR5p8+wco936R9cYPo9Dl0oLk4f4bO4iLldkI8ZtJZXWRsegedjQ02Vi5weWmRSrlBfXKcSnOMYaLwSyWK5Sk6m0tYpkWqYnQmSbQm0xlZmsAIg5UpPUqmygtMKfJUtfw178RKQyAMiSlycx+GQCsFwkCpDIVAmibmSFtoSAuUlbuchSZLFK+6sUEW5aEDs9e8dE1XT977pY/snJJk4QAZtnDMhF7sM8xSFlYTdm7fhVWbIYy6+I0pRDDAIcPXQ2JLoHo9XCsAaSC9EiIZoKIe3eUtdJaRluogBJ6KadQ8zpzZJKhWeOrpK/zZx8b59F9d4OqpMkFxB3f4JsVjIeFTHvrABKawCaMY24Zg2CfDRGcRQppowyTIDHTYod4ssbbWR0vNrm2TnFsIKBRKlH2NV3DQqchNh4bONbbRALfYQKQBmTIQpiBNM7Koh+v4xORSHiElvu/iugYTTZfl9iqdQZ84TnH9IghFGkboICAZxphZhm9J6vUaIkpYWFuBNKPZbCBdh+WVNbq9PpPbphkfa7C6soHrutjSoFKt5oYgQ5BmKbZp41g2a+tr9IMA1/fxXJeiV6Df6+G4DqnKGA76TE1N02w2GAxD+msLlCZmyISLTkLCOCZVGa7tklkmhspI0zgPJxIpWZQwPnuQuUOHSYY9GuN1rHALO4kQE7sozU5y5d572XbLjcwfP0nv6ZN0ljpEC/NkMWxsrdJbW8UfKuKSSXd9gYntuxm0uwS9DVa2thgvFXCLBUzXIxAutimpVsYZbq0TJwlBqlFxgGE5xHHMUFmYScD0zBTRoE+gLIQFggQDlyzt5ZKrNMa0HbIkBMNBpxEqHpJGLdI4pFCuE6eaNOiMJGgWhu1iuUWEskiCANszyZTgyP4KSa+FTj2uvfnN/+L5+qKSgH9+/L/ztT9dwDenCIWDTofsfOWNJJnHDde+huVzj1A52uTA4d1k2SJj19/Cya/9GZXpSTYefJK61cQq76M+MYOxFXBxa511s8bYxvcYzL2F0mCd7uP382vf+i1e9eafohZaDJ97hpldt7Pg1ohPfI/xhk2f/ehhxL7Dt3N67RE+/MF38ak/eRh/doaFi6dpizq7r74RV63Snt7LMO0yptrsPPwavvypL1LZ83J0tMB8z2ZuzxzDpMXZrz+A9hvsvOUo0fH72AgFe2pV+sUaKwtPoco+QnYQokB5pkG02KcbdJG6SeLVGPcVe6/SPPjol/nMZ85w7S2v4sZX3IaZxnzxVz+JiiPGSmXuOHYDh192HRu9Fs8+8l1Onz/Ph371l3nVy2/mV37+P9Dvd/mrz34OJzA4fuIZ/r5e4e6X38RPvu9n+fvPfJqtzhZrq6t4nj2KyMwwDcnxZ57m9rvvJuwE/Onv/Dc+8F9+mZXldUo7pti6eAW/XOLWW2/l6UefoHDnrezdt493vucd/OjPfYCr73wfF9Z7ZME6E9Uqg+EQTAPbLtPYmXelgsjGkA7lHTWyqENjPOX0ow9z4dR3ePMH/4b1hXOEq2fYce2dBFnG9PQ48+stGlNTdFs2vu+Q9ju4pTJRNKTo2dRrZbqdLfqdELusmaxMsHAa+r02O7dPUB7zOXFmSNzp88zJs1zurnHnDxzjxJKJ6ygcx6VzYomqE/H1b36F2w/fSBp10CurrK7ey/QrfoVmd4KVU9+hKBO6gy0KlRrSrNHpzRMMAnZO7Mbzprhy7mmaB36AZOssnZUNTEuTbZ5iWNxONhhQGZthGPRo+OP0wgENp8XljbV//TvWv/bSxgtIISEl0cCnWTdBjTN16AimX6DguTiuh+WMNIFSjDaJYfBCvKgQxgsMVlAYhkboPOnKMCBVGf/5Awd4zTu/zr5tu/nRTyxx75deydJWzDf+vssHv/AMn+4dJg4TXJ3rHFOhMVBYI6c8hhihlTJQGtf1UWmOOMpSSRD2uObYYar1aQYbz+JLmcdNkht8hDBQAkpeGcw8BrUf5MczWqMAx86NOUIIEu3naV1pnGtfR1pQwzQRwgMzRcb52Bk0URwgDXJjj2GQZDrXjY6iR6VSz2P/0YDje6RpikmuL0XLfDytNCrLQOQN7ILnkCRJbrAxBYYwSdMU23JROsUw8tQpQ5IjYQDDkGRmjtwyNCCNESdVgQVS5BrRpx+/h9T7Ldwk5qt/8j9540//An/7o7/AgdfNQJQSBAmDYcz6Z+4jGi4SG/NMjc9y4jc/SfnQQbqVCpsbK1z8ib/EdyYYfuzfI5Wkvu0qPv+FZ8EGKCJtMdI7C5LeSd72mnHCMMQwTTQplpQkWmAaJqZhEsXxKHI17zQ/H3+pURimiWmIvINPfvwZGCgh8v99RAeQMu9WWyNdsmU5CKEwHAMhBWmqkYmJVrkk4/nggpfqWmtdYf1yPy8EMAkCweSOCqgqc4fHSLKUkgumU0NaCqc0xmBrCbdQIO30KBgOhlHEdjyMVDNMIxLDJY1bqOI2nCwkbG1w8BUH+c6jT/Ljb97Dx//oMru37+RX/yHmQ78wQz9SPP2k5i++dp7/ZF5Nu7/K4dlJlq60kAWfKOihDRe/UsdWQ1K7QppEeEJRrM+wtbyB16ii2oL+YINDVx/ELZTZOv9wzuusVBFRh0QbFB2LxLIROkW4bp5MpgWm75BFXWKVYps+2B6+leBXBZ12i7OXlqk1x3A9D52mrJ6/nEcTm4LxagOvXCFOIzbXV8hQ7Du0j+/e/13Gdu8lSRMW5heQSjBotVkxJWPVGtt3zrK6uEioFanKMGRuElIjZFWn3aIxPoaJwdLCArN7d6PijHKzShrEWKZkenobnfYWttPE8z0OHDnEUydOU2nuZJhqMDS+KfMHWGmCypC2C4bOj1EN84vHMRwXVybc/9d/zlU33czKiU3GZkxUv4v0agzChOjhM3R7WxjeOKXqBItf/DL+9AxhuUKnvcHG79+HpWyyd/uoGLzGNI88ukIWrpAmKU6piGmVGXSWEdFFbr9hks6wz9jULL2ghW1qtDBQvQTTNFjfWKNerqFVjEwzgnANr7wPK7WJh20cCUmWYpk2SIskDEiVouL6OJZLFHaxi5NEUSv3VBhgifzaJi2FrBbROsW3HZTKsIyIYfTisrsXLVifzl6Jd9DEWrxApVLHbe7FNBzOf/MLNF52FcnELSxfOs7k7AGs+SWCyRqHXv0TLC6fpji9waFb3sPW+hJb61doXV4hLk6x207R/Xmmt/6MX/nor/GReJ6f//V7md13B92ghd6+l0KiMGMDc/9hnjv9HONTM0TZdzl36gFqU/sYzqdcvvA41epVbLvhlWx+5zhOskZQOIAultk6/gil7bvZ53e54W3v5ku//k+sPvYA+665naWnHqG/dQGrth1RniTob+LtvJ5Gq8/y/BWywSbhxhrVZgNZmaUw4dC5539SKBXYvSthdnvC8toCJ594li998gzThsubX3ED+/cc4NLZc6z0NhmvVqiNNdizcxeOkFy5dJGKZfKu17+Ro6+8nicffJi73/p6/s1PvJuoXObD//4DFIYZjz38MO9509v4dx/8D+yY3sW+KZ+bbnwTJ06e5M7X3E4cRvi2hTJM9u7dhbJsZucmiHSCi83v/+WnWV1Z56Mf+2XiKKDd63DLra/kni/9E81amfu//QBveNW1nPjW71O7+WPo7hKTszs4cXGN8uw+nMkyrYVLtIOHqG4s0VUhtYPvoTW/SeHQawie/AY/+qtf4dJzxxHDTZzmNrxGg+Wzx2k4E0zM7SDt9ylJk2AQUZaKLIsp+UWuXL7E3vEJtnoDZua2022tcHH9BJk1y7Gb3sj9f/dhBsm92NrhmYUlDhwT7N2/j2v2FFl8ZoqdB2Z5/U2v4OzH/pDf/N1fIlzZ4MOf/CblG+/me/d8nkK2QanQ5+mnv8Gxm17PuUf+kampKnESgFiiO+xwqD7N1++/j737dmGmmiuP/iWnz1zixht/gMHKFdTYGGHcoTY2Trp8ERlmhNogWltkcclibH/hX/Ne9X9kdXtD4izFc0yiIKXS8AlljbkD1+E4JpVSEbfgIm0PaUts28Y07VEMqMQYmX1yvfTz7NUc+SRVXjxpBXlIqSQREWMlOLO+ylevu5U4u4jrHOIP/uo4v3Bzit0VGDMehjkq3PKMLNAKLQSONEl1mhucEHnnAVhYWeFNb30vhfoEvbCHiDVf+vNPYBRCfHwcy8Q1JYlhYDo2URBh2xZaQ9X1QadkSmNJE7RJphKEBEsphsMhtpBkmUJoUGmCWXDRscRTJqkNXpIRhkNs00Fb+WhcCBMzCXPSQaawDIuuE2JnChSEcZhnfksDaVpI00LpDMfITURCaQyREad5SpQpbTKVkKZ5mpNEIKQkTYHRviiYhRHuSSCllQdASIM4ShHCwPQMpCcRKDLDBKHZHiimpsqce+Qh7nzLe3n0c1/hNX/4MYZKs9EZsPfX3s8g6rPnQ/8XwzCmUHYJY8X+t78as9nATmIWF5a5afqDxL0OZqmJkQ24cuZ7bJ8aZyuIibIUA4UwTSKlMIRNkqVIM+8EC0OiM41lGJjSIEkzPN/N8WKYKDK00CgTXABhEKV5TrqBiTLyTiojUoNAYJBhGha2zB9SALQlEVqPeKsCy5SYdkKaRaMJgfwXzpSXxloZ+oSGh5uGKG1Tn2qQyDJFv4BRsPHMCdAhllVGJjHSNahN7iZOhkgB5cYUam2JNIlIhglKevgSVBbj9ubZf+AAz2UBJ85v4BfGSYsulXqB5TDio/sOI70rxGGTLz4w5A37Y6K1FvZYCRULBkEHyyzh1hoEq20MHWNYFYRlkQ06eKUqzYJNdWoHFx87zdEDx2jM7GGYRGTDAQ+tXcEoClzPwS1vy+NSVUS55BP2+/i+B6aHU3QI1y4iiyaVho/vegzDAf1ej9Z8DxElbKvnKXxhf0A/HOAWHKRRpOjm+LgsSzGyjNmpbZTrVQb9ATM7d3Lq5Akyy2Tvrl04StLt99izcyfHTz6HlCaeCVO1Kbr9Ps2xJlmWUDR8tGHgebmL3zAkYsnAsz3OXj5Nvz/k4MF9echFpmiMNVlf38RxHQb9ITsm6/S35imOXYXqJHgln1YnwfJLWCVJEoboZIiVJqRkjBXqlH2H+fmII6+8i95qyFXvfStREtFPYMdPv5Nee43JH7qLKhaOnZ//1q3X4VRKSK1pbXUoeQ5OlpBZBSxbsHzpFIWCQVc0KdcKtFZOkbFJpiFqD2gPBxQKHhVfEjsenu8x0ahz5txl9h/YjaEyTl7YoFSbYmP+FFIrHFfQ3+xQa0zR3lzMG2kaNCFDlVF0fDY6bUrFAlplJP1VkjCkUh8niwKMoocALNuFaIhQJsI0SYIeOjJwCi8uu3vxclaUCM+f5NsPPZLDvMPTnLz3v7Hnhpsodxdp+iETL38tm/PzbPoVWpef4MrlJSaQdOOEp+75S05ePM7w3PcoF1KqlQbju29lStZwDpd5y/t+DlUsI+VezDSks9Fn44G/ZuP8N7F37eHSpWUa0zvx1s/nbt4gpt3r4psRPhFvuK3OV792H/7efWxeWqFlZgRbZylPzRIkO7nm2qv40Ad+icnKJNdevx9/YoxOGrLzmtso+yWq5WkWTy/SC9v0eqv0oyL18aug6DNlX2IseYq9zZDC9BRZbHHmn77K+nee4rDf5Kbde7ntptvoOYpnT36Ph779AO2lZWqh4h0/+Cbe9xM/zs+958d469vfyOtedxuz+2fZc80R/FqFW+64nYO79/IfP/xBdrk2/+XXP85jySbHXnsT7/nBHyYYJpw4/ixvfOOb6YZ9du/ZRTQIc52a5SKFQFoecT/gmWee5eO//hv8zm/+Bj/yth/mEx/9OEEY8exTz1IoFUnTmNvf9Dq+/dAD3HHbHVw5Pc++O99KcekpworHWrvF3qtmaRZbbDz2Z6jl57A32og919AzpvA6GbVd40h3hlRmLKzFeBaYcYwWBdqtIekgQEQxw6CDKUy6WYDrFhDCBENy6dxxZqamuXDpPJXJGaJ+n/L4JFP1XWQqZtjwsOIuk/VtTExOc/Wh/XjlOt994GGylsISiquvuRHTq1AtZSjX4/7vnKc1fhXf+eP/m6l6j+Wgx4N/+X5m5/axdf4EZsnj0sISrW4LhcVUZZwHz52hPr2Dfjug5BbwtcPVe6/lxOnHcI+9ijGa1MQS/dYSqXCQUYK7uQ6bF5GFAluLL/3gANMvUyhbDBJNqjNMneH700gTXNfHcCy0MLAMjYM9ctjnY38w0CJDC0ESJSAy0jQFlWGPMu4BlCGxDImJ4I8/e44bj01gOT46srF6Zcb8NXS7xTt/5hq0C3ZPYpB3E/KceDPXcQqB1tmINiBIUk0wDGlv9rnlrh9CFwp0+336rYBEZVx1+1uQWQXbkPilOsIuIQ0TEonvemQjw8TzYHyVpaOEJ7CsHCovyN3sqdC5YUlAqjQOFrY5yrk2LFKVkCQJvu9jSQfbdpFy5DVLM5IkIUNjKjAQpCNear4EwjJGXVmBMDSg0IYmk9bou9C5mSvLsC2JJSxsy8UyLGxpI20L33bITBMhDSzbJUax1W4RRCmm44wc+YJEZfTjmChNyPoJW60eNgm1md0EjQLNW48hhUXaH2C7Zp5ZkEpSy0QZBiozSFJN5rto1ac9GFIbmyJot+ltLGEkHZbOXaRac7jp+m0kMqcJgEClKabWKCJMx8ayCtiOi+u7+IUCfsHDeN4kpwVSQ2bmspJU50zcTAjUKAbWMm2EKVGZwHHtvPM/isKUwkALRZjEKEZGtZGcJNOKTCvQCYHQuNIiG33PL+Ul3TKWDljcaCEsA5F1Sbo9Ss06ntA4rsCu5mgoLT2yqE8QhLjCIFHQWb9CN+gTdTYxzTQPe/CrFKWLWTZ57NlnUZaNZZQwteIr984zVw3I4h7CqhBvGYxVYoytVW66axYlFfQUptAYWjHRsFnbaCPLRZIgJiFDJUNMyydKPVzX4fFHnuLYy2+nMtkg1opeL8AuVdl97CYco046iJGOS4qB0g62WcH1PCwxwKFHyRNoKVGpYri+TtLuUHNc6n6BRr2Jsgza/Tabm5vEUYiRKmanZtizcwdzO3ewY2aGZrOC7drUx8ewXZ+JySkqpQK79+/BQ3Pq1HNs6Yhas87Tjz9BnKQM+n0mJidJs4xCuQCj8A9D5o/VSINUC/rdHvsPHOD82bNMTk5w5NBB0AbDQZjHiwqD8W1T9Hs9auPjhEFEZWoHOmzTiQJ6w5ByvYxjJUTtedKgSzwMSNwCcWgStId4vqQ0tpOo4mDt3YVlmKhhgGk7pEmGiDXKEKQ6AyUJ0xR8D60jBmGMYZoYacbm6jy2mbExv0ilUeTYVTtIhUFqSYTKcjSg7VIsOdieR7cTYGLhuBbN8Slcv4Dtmpiuw+bmkMwusbF4AtdOGaYJrcXjOIUi0bCH7brESUqqMpQyKPoFOsEA1/NIkwR7dK1zXJ9uv41ZaWIrC6mHJMmQTAtElpAmEXYao02TOIhf/Hx5MQ3rH/2P//6RiUYdtz1PIos0anO4zYMMNi6SWttYSVZJ5zeoTU6zdvIe/K0t9h/dRTQYsu/1/w7/8D6mp6YRw4zNZIC5cYXfe/+7+NQDD3B5STA5txOx+w7mzzzFJFtszB+HiZ3UvSrbskfZyOYY276XjfkTrC61uPHm13Ols8ny49/kzOJFXvtDP8KlDZP60pOsTB0mbbdp+AnF5edwq2Psv3qS0z2HcycepXL0Lk599fPM3fKjnHrwr+j3VijsuwbXtzCBcsmiZBbwmytceuizVN069TTj4Lbt7J7dxcT+ncwvXuHSwgJrS+ucPXuWHTPbcdG84c47eNe7382rb7uJuUP70TKjVKoREbOweIXBYEirtcbBA/uwRjqRa45cwxOPP87k9BRvef0buHL2LDe94jZuueVleK5PpgXNssPaoMN1h4+NHxGqAAAgAElEQVSitcJ1fDKdIg3JmXNnKVcrDFodTpw6wcuufTlz+/bRiwd885vf4IYbb8S3Lfphwj333EO81uXwLa/g2YcfZDh1J51hgrNxhcGV05jmGFl9kow6iedTqtbBlIxN7MKqGmxevEKlWWPb7mvRUQeBQeSWKLtVzh7/MvuO3MXSlVMUxveBmXMQwzigVGxy8rknmN27m7jVR1oGdrVAX2XYmUVBwvLKFVQKVmuNpY3L9DpbNJo7SFKFb0WcOHGRzX6HG49cxfyFS/Qyk1anyz8vZrjdGB0cp9/pcej6Oylpm0LJ4JFHv0HTLlGo1ul0u+g4YBgNaYxV2Wx1cIs+cZiSyQFbw5iGXcWeGSfaXGXhob+neOzVRJ2UTn+Z9toypckZUC5jTsAPv+NfZsS9FNaXP/OJj4jMpNOJmB73KBVcJnYdpVD08Qs+fqGAZbtYro1l5aNyKUeOeMvENFKMwQVM08YYMS8NQ3D+7CUEz5vy87g9IU3OnOjw6f9xDDYSbn+nR1yK2Thb5YMf3MVy3Kfo+Sz+k8a+7TpMQ6IzhTI0IxkjQkCiUlw3v6Hd9dp3M7H3GvxiERKNNsiz5S2LyfEdWH6VdmeVMGqh0ny+btoSLfIOLUpj2SYIgWW7GEKQqhzWLw0j13+O9KmO46AB07YwbYtev49h5ZGplrQwLRulNf12hyQJ8w7pC9G1348czbufEMcJUkriOEHHOQM3d/nnnFCldF6EGYAwQGRonadCGYbBMA4xpQFSkmpFGsQIQ6KSnAyikxjfLxLFEZnK9apCiDzmUZp5x1PD2FiFx587z+6d+2hfWWBibhutfhvXLyAMg0F/gBpFtKZhhKEyhoMWll+kvdgiShOk3iJVFvXxadYuXaY2s4vHvvgZfvtvnsY0FEKOAodEzoLVWcrRfRW0NtAqRZomWhvEWYrIVI4HS0dUAXKXv0LnbNZR0GXeJ86LeNd1cq2xAKWf5woYI7KAgc7yGziZynXF5FICAcSJ5uZjPirOj4kdR3/oJXvO/s1f/O5HXOkStLvUqj6VYpXGjqsxDYXtVcEWyBTcYhEVtDGzhHK1BFpTmt6DXXbxaSORJFoh05Cr57bx2PHncr6u74HfYNhr4xqKS6dX+cVfPIzdN7j+5iEDzyJsTfCmNxRY6XeZntzOwsMx2fYKQRwyNjHFIBHYYYfELaHTBMNI8VQEpsvNr3od5vhu0iTCLDTprS9SGp9h2F2jVCjj1KcIoy5p3M+14dLA9hMGrRVsaWNnimqpQMEvUKhWicKAXjAgiVOCYTB6iDGZmhhn586dNBp1yrUqhiVzvJUUhHEAWqCUolAoEAUBSRxRLZbp9nq4nsfk2ARJFFGvNmg0a1imzKOIbYthFFLxCqNEv/xYNKVJbzDAK7joNKU/GFCplPAKRRIVs7W5hV8qYJmSTAuW11ZJeyHlZoPOxgaRrJLEMZ6AsNdCY4PjgHAQlsR2XAyhcewC1UaBk2cusH3bTtQwoTpWYRAMkV4By7TZXLtCoTJGMOzmP48ijoYIyybqxLTaWxR9RRJpSrUm3dYWbn2c8w/dxz8+eJEkHuRehDgmSoI8rtm0mZ32kWi63T4pilqpTK/XI8tyrfzKMEMkCp11UKmiUG1gaYllCVrtDVzDxLBM4ijCMg3iJMF2LKI4QZomSoEWGbliyQTPRUUBwdYyZnkMnWrSNCIYBhw5VEEnFo6hOXrT/8fggC8v8JGTD9xLZe4Ik81tXNhYIwm3UH1NYXYb4VoPPV5Brq3gNncwve9GjHKFZ779Fwwn9mFutBFGhfe9fi+7x+G+80vce/9pZHMOhm2qzWt57t4/ZrpZYeDupFjdAf0u+w4f41QwxTbZ4elnnqU8NsH+ozeTDC6y1TfpzD/Oxz/2If74c9/C72ziju3g0omHmPCmSIUgmz3K1vwlziwugTPLRG0/1tY87vYDrLUuUmxvMbn/MDroUbAVG8OM7vHHqRy5juFym0NuytT0DEEa/b/MvXm0Zndd5vv5DXve73jmU+dUnRpTlUpSGckAAQKEVlEUgwwyKG0vF6JetZW+LWpfl3Qr6mptbVu8QIMK2ogICC1TIJCExMyhklRqnk7VmYd3fve89/1jvynotW5n3bWuLvmtdVadWlV/vOc97977OzzP5yF3LNYXT3Px6ed5+ctv567b7+C1P/J9tFtrfO2B+xG5xWYn496HH+Xz//APfPBjH+KNb/hRTEPTabepVqrU/SrHnj2J53vsPXCAIAyIs4SrDh5i+eIlusM+dc/nsW89zu//zSe44dB1rJ9fYu9VCxjCYOeuOaQsME2FzCFNAob9Pssbm1haUalVmZ+fI4gCjh97njwXTE/NEGcZeRTy23/8nzm4ex+qgJNPHWM491Isp0Z04WG2ul2y2ZtQtkWlosGwaJ07RS8Dc2yMweWz1CYmePrTv8++O9+AYzk88Je/TV6bxjFzZvdcxcaZk4TJEKnLSVTeX0U6VSbnpvH9cbJBj14SMdEcJwwC4nYLI9xmbGaBAJBBQFatM4bP1VfVGAZDzi2e5+r9Rzi3+DzTzSorZ0/QiVPueuXdPH3ffTzz9Fc4/vR9WAV0hkPW1y6QZU36w3VqlsNYpc7msIVvuKRKUHMU0vJx65OoKCQrEg4c3MPK8gqz83u59NxjtC6fZ9cNt6OKGmv/+Gf4/jWkww1cW1MxYyxp8MY3vu579uEH8MmP/PFvJmmAIS1cq4q762ZmZnbgVD1cz8Nx/RJdZYwkAUbJ91Qj/ZYkRgfnUeq7ijEB589epChKklRWCIQU5HnGG/7VLFYtZ2zVZMfdmo//hwD2+kzOG2RFj398X4pKQN51UxlFqkpYPEVxJZZUCYFAoWMLa3oHQqVoFBjlv7uWR3/QxzAVpuPiVOcIW5eRmpGLXGAbDoalEFKPTFgaw7QQUpbmLFlqWodhUCblFAXD4RAhSkRUMByWa9iiNDZqWRaNBaAsE6UV2rBQSlMIgWmZV1z6kI8CBkzyPMNxPJSpkap8f19IeBJANAgJk5QCgWk5ZEmJrVLKQKhyja6EpEgypKnRQlBoWYJwRblqN7UsnfSFwDDKqa62DGxDYRoW2spJh9s09lxPTdsIS2MozXDQZ9DtkiUxEgiCkCyNydOUMOhTBAH+uM9g4xyVsV2sXnwexx5j5fRjnHrqq9x333OcWh1iyYw4LeUhCF2aoeKQa/ZXKfJyepqNomVfKErzvCxahVZAgTZM0ihGaIVWqlzx5wUIdWUSP9IWlDrlIh19X0pUBBJtSPKsTHzSSqFHjVeaFtx5vUecxggydh753g0O+PTnv/Cb7Y0lbH+Mqtskq++kVqtimhZeo44WGuVZqAy06+LXJlCWQ397mdytoOIAlWyzZ7qKZxVsDyO2t/usb/chTTCtOt2NRRzLIBEWL7t1B4YVM52OYV3n8shfDeh6KWM7XNyKw/Mf65NFkO0f5+Ch/SyubKPSBGnYBP0WlnJLtJ3bIOsnxI4H2sI1q4g8QLkVICfpd/HqNZRWuN4Y/c4G+bCNWWtSxClN08CvuKXsQynyOCQZRIyNjzE5PlbSd+KQy6vLkAviJOfy6hrr6+tcXlpirNHAdWyyOENpjWWYtLs9lJZUGnUKCoTUVGs1wjAEUaY4bW+1OLt8iVqlSp6kOJ6NbTl4FR+pRHm9SklORp5m9LoDsjxHGQaVao00Tuj1+gipS719liOKgtNnTlOpVtAI+v0+mTtWSoLCDnmeYVbHEEJhWRKEIovDki/supD2kUVEVhRMTMyjLZP28jnCrCANBximRTLoE0RhqfvOC6KgjUhzapM10uE2tttkc+0CFW+MzUvHuXziMZ57+gzrQYnRypIcTAtTmFR8kyQKmGiA71YIgh6GVkTDPnFeMDE+QXt9g35vk35/e5QCKBj2uyBtyMvG3JSaOM/K5nPUOKMMtGFDllAIqFQcoijCcXziYYd4OMBvTKKlSdq9jGnUSOOIa/c5UMRIUXDkjv99g/mikoDhE88wvf8mKr0levkyOyYm0abBzFULOBb0WhtYZp2MAJMBa1nO0rOP8pK7f4W5YoAq+ojBCh//xJ/y0c9/g3177qJRm2bWdxizHDbWz+NPTtBZO4NqejTG59m9MM+x5XX62ylZFHDLDfPs3HmQ+vzNyNpuqI2zd+EQX77/Ecarswwsi+7mKkZXEDoDgmALN+hj+prTK8s0xAonVi4Qt7ZYP/YUgWowrM/QV1W0VgRJTlNKzHgIQYvz57/NtbfeRmwIzl+8wK7GJIdvuIUffsPrmd65i2iY0A76fOuRR3ntrXewe+cE97zlNXiWjajUuOWWVzA9PYtSgkajwXA4JE1THFczOTlOGidlMk1e8Lm//TvuueceZBBz/Ngxzpw8ys5KnYFrYE/42J6LiMsJhMgLsriMIUTkLCwscMctt2NQgn49z0NrxbVXHx7FFeasrq6wfnmV//TLv0ZiKs5cuAAixjRtti88i6iMUdRmaUx4iCJkc60FkULGXcbqYyRZQme7T6+7jdSwcmGZ57/xZeb3XktexDQmd9NtR0w26uxdOMj0eBMpEppT+yBN+PYjj4As6LXaFBqKNGJt8SKTO/eQWz5PPPQVotWTaKFxRJ0dd/wIne0ehRD0gz5JlrAwP8f1N96COTbFS2++HtMQbG9tEbQG2FowSBIcx6FSqTA21qC1to4vFZvZAEdCkZamlH4YMexusL1ynlJJqTl7ZhGFYGv9EiJoY/qSsLvI2aN/g9Yax22SJZo86tPtLNLaXvsnekz9853ltTZxUkL1KxNXk+ocVFoWo8r4Tp68kOgRlP0Fzep3BwVAuf4uioLiu3SALxSwLwQHuJZJ1qjxWB9+5leP8zsPd3nnLz7HH77/SXw5RVP4PN/aujJJy7Lysy9EmXRUGq5Kpuvh215JlqRXwgyEEKR5qfMyRrGu7c1tZud2YGqF69VoNMdxHI+8SCnyMs7UMBQKQRKFDAYDwmFQfkUBtlXiluI4xnEcZAFpmpYFlVBXfq48z0sklmGMQgXMK4D7NE3pdnogy/ctz0GI0qxRCIjilCiKiOOYIAop0owoisrJhmFgmroE2mc50pBXDEhQhiBkaTqiEsTESYjMy/fshddiGjamWSZzmdoop1BCkmUFYZoQ9SO63SF//d/eT3PXDnpbW2xcXCQeDpCiQGpBkcSQxxR5TJ4lSG0QhH0Gg23yQrJ26Rizuw9TrVsoI+Lf/8c/otBGaRbJbGz1HVSXoEzdykW55hdKXpmoavGd5CohyvsYQJqV0Y0ASV42EEKrMm2n/GiMfl5VxpN6Lq5r47senudhaXXl/XjBKJhTjMDo+ZXXRfGiNo1/8bNxYQVljWEXKUZ1EsMxkLrAqZX38yxN0doqjYoiJ0YQ9do0p/ZRlnsZpCGXly6wuLaF64yhDQdbKUypSOIA0zJJ4yHC1PheBXtinKfaMX/8kUU+9Xyfj35qja9+fpWKu0DFaLIYRfhOhc2tNlqaZEKQJQkikwgTsjRBpRkLh6+jOxhiq4RhHFIkCcPOFjEKYXskaIa9AfWxJq6WOKaF7zqkWYxfr5Ih6Q8HVByHWrXB+HiDQgrCYcQwGLK2scaOiUkqFYfxyTqubSOUQaVSxzQtpFBXIoLzPMM0dYlWExIlNVIIVpdWmJycJOgN6A96BMMetjTItUYYZZOexjlpkpAm5XVbZCV6zTRNJsZGHFgxCscwFI16fXS9FiRJQtgfcmBhD0mR0el1EEWKFJI8HqItB21XcDwL05QUaVFub4oMpQyiNCHoBXS7fR744icxfI/182eJBxFJNMS03FKLL8tULksLiiLBckoz8/rqJXIEm8tnac7sxHEVadLlk5//Orlh0WmvkwUxpjQRwsBqTJEmOQJBkqekRYbrudQbTQplMFGvgaCUVCUZqihIRz+raZqYpkEQBkggkeXrEhTlXFoIRJGSpyGGbWFZJlla4Ng2RRqhRYFpaYo8YNhbKVPrtEmWQpGlZGlEEr84hu7FOaw75nDrTTYJ8FOPyJvCkwmbK2usPfZN5g9di076OPuuZvehm3ERfO0rn6HdbPD1+5+g2kv4T29/CcPx17Jr/+0EloU4+K84fvkCRX0XVt1DTd9KEm3Sf+QvoP0cfWOGl08YdHorbBSzPHNsm0p2koef+gyxhEJpjq7GTE3vYis2cNrLFH4dpxnS9MbxZ66hlw+RSYumbaPTguldM6SzN3HtS+9g3h0ydsOddFZ7OLtfyvDYfQRWDSO6yObFsyzsvoU3v/0nSeOEqZ1zbA87HH/2KK1Om5UzF5i77gD/9+/+Pq+745X80Lvewq/86ntpNsa5++WH+Y13/xSe4/OjP/ZWVtfXyLIM3/cplOamW29jEMSEYXglcnF6xywPHfs2N776Tg4fuoofe/tb+JFX30V67gwXLi1SJDETc2OjxBuLJCsLViWtMiDgzCmMMZ8oK9Nz0jRlGJUj/zSKmd8xx96br6ExOc4dN9/Cq156Jwu7ZrGyhB079+M6kxhRaRSp2uPUd0ywNVhi/PrX0NtaYsKpYM818KXiyOt/GeVk7Lt+N9MHr2J/cwfrF59hz6H9xEZB0OvTDgdUquMsXjrH+fPnOXTdSxBk1CZmmDQ8Lq2eZ8/sTpSX020tYU/OMLv7epzGJH4VokrK4lqP/nDAzOxuojQBnXFm+RKvePVdpGHOw089ype/8U2Uzmn3Wmgh6XX7BO0+afciOlOEUtDtbDHh1rE8h267w1Y3RKQFvqUxpGDQazPsDhn3ayxeXmZycprZ2hjuoIU5yFhZW0P7CfsP78Zq7iVBY9dn/okeU/+MR85waTlGminju2cxhcJU9ogAMCpWZQnVB66wRv/fCtYXMGpXio0rX8VIGyj483uXede7j/E7n13k458IuLG6we27Qh78xjZPfuwCMzsUzbe+AYMRPH4UzVmmHpU3fD3SRKa1KtIAQ2lyo0BLg4nJOsoSVKpV+mHI9MQ0aZLjmBZK+4RxWgYSaIHUBllW0O/3CIKAoihGIQPOlWQpyFFKUK/XSdLy5igRKNMAJSmkQBvGFe2jlBJZlKlNpmmOCkYLx/euFNW2baOFpN1uE0URaZqOjFIFylSj97fU0SpJSQVQpdO9GE1ylAQhitIcJkq5geu6uK6L73r4jos5CkEosV8ZoigfLGmakqdJCTVXEtN0caRJI+3QnB4nS1JqtQqW0hhyVFjnOTIv9clZGpVUhiyh19qi0qwTBQmGzLi0eJokTPiFf/vv+Orjz2PHBQkhUR5T5IJs9NkoHc8j5FdWkGXlFCZNEgryK4V+UYgrDVJZvJu4noPj2Jimie1Y+BVvxGItG5wkSQjDkCAYMhj2GQwGBGlM1B8SpvEVqcELjUaapkipKYQB8nvbdGW4s7R6glQnNCYnkdrBkpo0Tok723jVGpoCXanj+nUMKdnaXCM1TTa3O+g05+BcncycwPWbZEqCP0E/CsB0kYZG2HXyLCJrLfH1xy7ynz+4xn1PbXLv17rMOxGzzoCTR1d5/DNHqY9JKq+4g2EEluWSoVFJSKE0UqdIJKbbKHWLTmkAMoTCrFgId4y53fN4dk51Zo5eb8j4zB7i1gbadFFAv9fDdurM7doJQmJYFt1+l+2tTeI4IYsSKmMNLp07z/zULFM7Z9h/YB+NeoNG3ePArnkMpXnq20eJ0phcFJiWRYGg1qiP0qPKBkgbGtf36A4DJuZnqVWrzM7tYH52BjEcsrm5QRJFKKPU2EtVhnIIIVFSolQZqart0syoZDnpT5IEQU5R5JimgdeoYrsuM5NT7JiZoVmv4xoGfqWBUqXkME9SDGmCloTxAMNvkKYRlmFg+j6uNJidmKY6VsXxLJqT49Qtjyzs43guOQVFHJOkCVIIoiik3++hpML1XUDjSsmly2cwpcHr7/lRHn/+FLa00K5NriVKQaoKgjgjSUv+9QtNZ2/YY2JygjROSzLR5iZ5kZGkKVKIkUG1QJFgWzbaMoEc33VxfRclSnpMnuVQlA3AcDBgOBiQpymdQR+Zl/dTEYWINCeKI5AZtmuhrAoZBsp0X/R6edGC9dL555EyR0UGndXjjNUKBrmBMd0gSSpUzJzc8Rhu9VjrtbGnxrl23yF6GHzgx+/mt3/xB/ncg1+mN1xhuD0gj2M2t0/i15qoZI31YUCqXBzps7XeolGboNUdcLSzzdzcVfjT4/gzU2ycfordzVm6kc3Oud1UdEBzYTdicJnQMwh1iiENlNOk04+58My9OM4ElWGLS2fP0FlepL32PD1vggE1dDfmxpfcweXnHkJXxvHiVRpzBxibvApLwdHjT3L7bbdxyy23sOfwQdpbq0hD8fLXvppvff6LvOmN93D45bfwyFfvJc0KDK05eOQWEhHwltfdxc0334Lv+8RxXE5gKJDCIk4ytGmMDC7l2/++n/1F/v2vvJd73vwmnnziKd7ylrfwwH1f4p53/QRpkHDi+DNkIzKLNhVCKbKsxNfsmp5h++wl9s/tKju+vLxpO7ZHu91mZWWVuNPn2088jnA07nQdyzHQYcpKWlC4kyjdpXAs3FqF3tI208pFKAPTd9hst8k6mpPPPoAswO8NsahTm7+GME/J8oS1Z04wtX8/W5vt0nThamamJzh48CDbg00GwZCIcgo14fkEosvig4/iTx1m18Q8rd6AWGviwTbp8jkWT5+nVqsw6EcE/QENr8HBXfvYvXcv//jNbzJZHaM9zFjcbLNv9zyWttBZytYw48LSIpYu6PbaZBi0hiGnLy5iIKlV6wyDiE4/ZNDvUa2MYdkuURHQmN9BKlJid5KzKx1aq1tMHNpPsL3F6uIz9PKQ1vaQKH7xFI7vhfOS7/tB7njDO9HubnzTxjcdbM+8khCllIFU1ghjZSBGJICiKKBQIFKkshFSIjOgUMiC0dSr1G5mhUAJgaTgwJhGuDNc+LM6ceeVfObRI7zn/bdhhQPG1qb5zEbOwsuuIVeCoihX6EJ913TXkOgsJ88UucxwvQquqbBci4d/90958L3/hS+/431EeYiJJFU5iIR2JHFEjmOU60CtXIoio1rxsE0by/WQuizQEWWjF0cJpuFgaJs8K/A8D2EYCMPA9TwQBaZlYMoyHlQIQZIkDPs9hCglBGEYIvMcz7LKmFpDkuYJuRK4ro9tujimKHWx0sDIRtd6XhZTmShNThW/gWGaWKaH7VcwXY9KpcLm5ibKMkEWJFHpdM8EJGmEJsPSFkIWJFlOGEcgxZXJrigKLCXLSagoyByXH3/JTrz5KQZZRtTfpNVaIhm2CcNtsrBHMmyRxR2y3jIVO8DLh2yvnGO86dFd22Rqdi8//rP/hd/9vc8hvCZJVeEoh8KyQBaYyiJmiBAGnuVStZ2y6HQr2JbGtq0y9MAyR+lVOYZUFEAuJZnIkblAFxptKARylAtf/t0yzDIS1ywjdT2/gtYaU5cNhpaqLIbzcooNYFoGRZGMJtPZv8h1+P/1zB88xKHb70Ib0+gsouqYSMvA8hyUcjC1QhiljjLJC5RpUXE9UgSHZqc4uGec9XabLI8poowigyTuY5gGioQoy8nQaGGQxjELTYdEVfmDnzb50t/fxm/8yVW8/qeOULTXmBpM80BbsOumQ0iVYzgORTIkNxVISoqIaZHHGYPONlJrPEOTxwEUKc/+9d/wzF9+mcf+4K/J4pCx+hiDwRbCkIRRjO+4+G4VS2v6g4BGvcbszDT1RrPEvRmS8alJttdWmZ2Zwa769La7SGlCIRibnKLQgh2zU0xOT6O0QimJIUvJjBCqDKWII4Qoyq1GnHDqmWc5f/oMs9Mz9Ppdpmem2GxtsLBvP1oaxGEXqTVKaIxiFC+cQ57nWLZD1I8Yb0yglEYrG9NxsVwPrTUbGyXqsNtpkeUp2jZBCfIkJilyDNNHqIR0tAFIowSjkBRCoJQcFdcG/d4WuWnxh7/wTpzxCTLLJwo69PqbDDfXEEZOOOiSp0OKIsDI+0w0DVTSo725jF+xGba7TE3M8bt/9hk+8eEvoWuzGHUPkSty0yTPY1Qc0xu0SumQMLCkwnVdxuvj1OoV+r0urmWTy1Kb67kWpjIQ5ESFoB8O0ECRlCEISVYwGIZIWXoCJOXvQQuJ5/k4no+Q4Pg+hRIIbdMPE8IgQloWWZKQpUPSIiaLkrLgfZHzogXrzJE7kWMNQmcKozrP5WcepDq+h6zVx7hqgdVegu5F9FdP0s3hgU98gB//vjfxhf/zLv7sqVP80scf4pvfDti750Zot3AbJlNmH5EUhN4MV1cMCp2hamPMz47TNyaZ2jEN6jrGOc/q8YeY7x8l3o45NNmj9dhXSTc3uOqGH0AN2nTPPofrTtI9fYkqCaee/gKivYKwDvNbP/dG0j3vROx7FbY9xC7WaV9YJFk6xbB/jtPP3Q/nT1DfeSsnH/oci90euxbmmRjbyYd+5wMsLS2yb98+9swtcNsdd3P58hL1WoW5fbsRtsOB3ft5w1vfwj1vuYd/94vv4bEHv0G9MU4v7DM9O8fHPvV1troDoihECYlhjDr9vBixCzW33HoTf/vpT/GRP/swAO/5mZ+mu7bBz//cL/Ga/bv4ow99kN37rsXQgiTLkCjiNCn1dVrw9w88wF9+7evY4+MIIUlHqTdJHHPf/d/g1InjPPfsca65/ggH9++j7vpkskp7+wTzIsSqOITVQ9RMhYoG7DlwkOXFixTEuNrBsxXTVshwa43cMTDqLrE26PYTHMdjfu4Q/lyTr37yrygcl8VHHmWp3SUREnKJBsaaVbyaiTExhjF2kCBUHLrhJZgiZ9uukF88ScOJMaZuoPPcSV7xr3+Tp598Fu1IFnZOMjfVoFJ3ePDeexk7MMs0Bj/9/g8zUZliaSWjOwzANhD9NrruYzWbTMxPUUQJ/Tyl4nlUxmsUUpAIgW2aCEyyLKPXDWm1AtzMoJBzdFa3WZhLLT4AACAASURBVB50ecnbfwlLjTNoP8Wu3dfx/L1/zPTMTjra///9gPrnPoutgrXNjE3raoyajzYMbN/HdjwM20Fb31lzC60QpiyLM60QMkepkrEKwAvrWVFAoREyQcgMLUpnPwpu2g9LvXV+7QPLfPQXnuO5P1/l5BMrqO0Bl+96Bbf9/NvwlB5Nb0cT2qJMMdKFQKSCQRQRXB6QPH8GubnF4x/8JCf/5ov0u0Nsz+PgO36Ih/7kL/F8l9OLF0iSnBQfZevStY8YFWzltMB2Kgipcd0KnudRqTbwKlVs1wMJw3AIQJGnSMEVRmtRFARhSBAEkKXkUYIs8tLhnpec2jxPUZZFmuUIWWBKhaU0jjapVn0qrotpSizLwKv4OL6D6dhUKmUqV7Vaw7ZtgmBAnITl2j+OCcIOcRyzY8cO1Mhg6boukjJK1jQ1WZGTFyXLVBmlFMCyrHKSiUAjSYuUMB2iTYVlGFx980tYPnGWZrUBKibbPkuy9Szh9ini3jnS4QXi3lmSzmm2L5+i29lkbvctOLMzeLZic+0EdnUvrq9YqHtkPcWbf/gmZvMOutXmF975KpSolbQHWUaz6hGKClkmXjmWjeeYaNugUKBMA2WXEgstNXEeUaicOI4Ro/tjlmVkafnwemHyn2WjVX9BGflslOlfpmmPZBv6CldYFpJMpiX09nv4dGWDdqho2fsxag2SYQe3NoYhNEajRioERiEgDUmlZHvtHHOz87zkwCQXez2OL2+z3ctx3RpkKYYlsWWKyBS51lSMAiUzpGFiuyYLcyb9IuTjn0544EMnOPX3Z9k+cQG2A6KbD7HnZYex0hS/PoXIUtJhDy0dsiDEKmDQWi+1jtsGexWQ1jh9//OsPPwo8aCLyAt23H6YZ//+f5IlfZYvnkMYNTqtMgrVcR0M0+Xi2TOEQYDrutRrTRpj0xS5oOL7NCcmsX2fRmOMmblZHnrkIY4fe5b25nopASDDth0WlzboDwPCMEQUOaTlFFBrY3S9aqo1n1tuv41rDl+LELBv925EknLV3gPsnGiyurpKtVbDNDWmbWE5FnK03XA8j24Yst7plCbILCHLErI0IQz7rK6tYlkWg26XsfEJxppNTKUokBRFgFWkoHJyo4JpaAwlqNUbJFFERoEpNMgcUQRQJGjTYNehQ2wurWGbLsoosNIeJMssn3yMNNqgv3qSfvcyyXCZ/uYywbDLzNwhnKkxHN+iN2yjrBnGpprMeBZRbHLnddNMiT460Xz/LXuZ2HkD7XYbqQWOZ+HZFoap2d7axqn5VAybA9fehOO6BHFBLkDaJiLL0KZFrgWGZ5DEcanv/S5+bS7KQBSQ5dY3yUjiHENqhPbI05xMCMZ37UdrG/Ievl+lv34BwzFJ1ItvRF60YDV0TBoUDLKC6Z27MXQVVXERGKTDIZVGFUtndFcvQidicqPFL//2T/Bvfv1XmN9/PRvBJrZTYXl1CffAPnQvoZ9V8U2TYvwg4XaLxuAMpsiIBx2efvIzyK0LTLnrLJ2+jNGoMoh87MmX8uilnOkJTWXXPAd2VFnebqPHXYabCQsHb2F9a5O9sxNMz42RWxLbr3LDDQXehM2h/VczNyGQW0fZuecGatZ11MwaUdUCq8buqSlSt8E3v/BHbK4f5c47b2XPvn3kwHarRbvb4S1vfxsXLl6kXq9z7tw5Oq02Z06cxLEsfNejVqtx8uRJZmdnee0rbscUikcffhSty7VXHMejG6oJlGZXQ0gwNd1+D53mFEIyPjOBXXE4ffEsCwvzdOPBldVmCTgvYxnr1Rp/9P7f4iuf+3v+4E8/SJFmV1aRSgnm5uaY3zHH5cuXMSwHkKRJztz8NJh1MhVAUOr46GesbW7w1OPfYtfCDtIwoDo2yXh1gqVLl6E/4NKZ05x45jkGUULVt3Bm51BRG7c2wXVXXYOnBly1p4ktKLFCacyg06WzuU6RxBRxjmWkiLyg2+1gWAZOr8UwaXH2yW+QkNIWAVMNh/4w4OU330oWxRjKYGN9k0N79/PQU0/yic//LempL/D6N7yXg9fcxkZ3iazw0IZF1OmzsrJCEspSdxWX+tb+MKTT6RGGIf1+n63tNq3tHkoLalWfJFyBbBNFRNUzaW8e59iD36Rar/Gtr36cPde8FKO5QBSE/yQPqX/OkxcRpl3jFUdeUxaiknJVPDJWiZFOMxcvFALfuQVckQSI8iH/vyCBRA6FCYVEoV74LxSqgdnT/N7v7uId7z/Ada91OHJ9Dbvqc933vwq3WmOUjXVFUqDUKJlJCYSE+liT4XPnmT1yFWOzU2wM+hQbXd7xx+9j/603sPu1L+fIT/4onXaXsbEx8jzHrzbp9/skSbn+sywL27avOPc9r4IQgiiK6Pe7V7TkaRJhmWa57kqSK3rJJElGnFhGTv8S16K1idQKy3ZQhqbWqJfrQUuXqTxhBEV5cwYoZFESF4QkiqJSVzmSPnS7Xbr9LnEQIoQgTtMrr7tkrJZGJa31lU221iY5khxJVrxQuCVkefl6syxDiAJH20it0FpTcb1RMahQImdt+SJFLlC6CtIgi2OKNCCL2qRBhyQcMAwjpHZoNueI4i7F2mWCuEe+dYm5Spv/+Fs/yc+8980QrSGdPu952w9QJabqxWTGEChDDKI4JouTcmUsKKfqFKSj6XqlUikNUznYykAXAsMyrzz40hHov2zq1ZXPpBzRKl7g0b5wikJcka288NnNR9G15XlxcuO/+BExSrkcWjiCU6kgpYEwNEIZiAK0aaEkxHGAyHKsKGXvwTmOnnwe168R5zFSKcIoRHouIi3ICo1SgFknj1OsLChz3NKEdreH0Yl490/Vuf0NTfa8xGN+oYpdn6V29bXU6h7ScfFtTZSkSEtTpAWOVyNJYzzHZGyySXhpjYl9C8ztrjMoYvxU8f0//yZmd4+z8NI7OHD39xEHCV6jRiEUY/VxhnHG2vIZoqjD1NQk9UYdpXQZoKE0O+bn6HQ7pGlCq9UiCkO6nRa2aV5pKofDPo5j0xyREtrb7bKRzArSLC0NpFphmCZSSfyKX24hRIGpTdIkxbRshBAMhiUF4AVjYJZlJeCfgiQpV//Hnvk2y4uXOH/xImmaopTGMs3yT8vCdZySDqLLC1YIhWXbFMIkI4csR4iCPEkJwpDW9iauZ2EIhWE7OJZT0keynGQYMOx12dpcK2OG3WbJGEZScSxE1sXRCUUSEqcZhTBw7RrBsEWxvUEUB4j+BuPOgLe++RW87o0vRwUb5LrHK69fwCHGsCMMOyHLCmqVCnEUQ5YThCGe57HdbnFpdYm0v8rk1B4mpmaJ0xiZKyxtIJKMNEvJUhCyvO8pJUnSlDwvN7+l/r5MBhRSlDSWPIIiLtFhWhLHPXpbW2hDs7mxhO3VEKZLnr14g/miV3O3NcCzFft3TtJbO4fZmKTfbuPMzmLqcQQ5/UQxfe1rmahPMT0huOcX/oDl4w1UmFKt7qc2eZjNyyep77oZIRTtC0+z9PQDbJ99lPbkAra5q8zivu3N7LzqZbQ3A84dv4g69GrS1fMMfThwQx0vjLHnbyQ/9SkeevpbvOxlL6NS2cW5YpuLF55h/623sLzSYdiJGJud4NFvfoYTz6c8/o0HWDu7xulsGmFMg++T6wtY4y6zMxatpz7L1PV3ceOrf4Jxv4F2K2Smg2tVmJ6aZceOHRi2RmtFb6tFFEWcOHaC48dOcPLZY6QR3P/Y0+xc2Mv4eGkAmRivs761wgMPP0a1Wh89VF7QV0WcOn2iNFcIsFGM1xpsBX2++Pl/IMgyXnrb7fS3uxw5fA3N0Uoxjks+mVVIsiIl63X5jV/9Od7zhrv59J9/AsvzSxivyAnDgNXVVXYu7OKeN76e9lYL13XRWtPuDLBVxPmnTlA/uA9vrEE2O4ltO8zsPEAxsUBlYpZuPGCpvc7M3mvYeeTVNGqT1CdmCNOC1uIZBDnnkoInvvgpljprhHmfixsbqHhARqkdGpuZQSU5DbuCoVLarRVMkWHqnDjtIKo17AO3UT34Crz6JONj0zzy6Y/S9Mfpbm/QTkMq9QWWli/z+f/xt6wsdvipf/0mjmf7+OoXP4/t1zi850ZU1EPKFN+fYd+1t9HrtVHSoDvoUyhFBgyHQwzDwrFsHA/cmiAItjHsKXqDlM3OEL9p4fo1eicfo757jlPHnmZzfYPG+G6yYY8kenFG3PfCWTqueOfrfpi3//IPlUQAbSINE0NbSAlKm0hDX9G0XikiR9NPoFzJjtzaWVHezqXQ5cNVC9JRXJPMCuQwJCg67HljB2/n/aSJz9Z/2yL1PS5fXkRlCSrXZWFRlHlQUgqkUMRpRDBskQmTLJWsLa3w2N99EdersOtNr2F9YwvnNTeysbFBxa7RGwyZsKrkaUaaSgwt8VwfCkGv1yGKg9I0MSpeDGmidLmWdhwLrSWm9Miz0ibg2D4IjWHaOJaDZ7nYloOpTTzXJxOCKEnxKnWcionpmKRpjh6ZhTIKCqXRloW27RL2rw1yJUjCpJyMJaVMx5BqVFALLMsuNcSylPdkWY6SVtnYjpiiaVEWXEUuMW0D17PxfR/LqWBoB9swyYriirlJkKMsG1s5V4xLtmWQ5oL7/+JPKMw1RNSiqNTwJ/ahzQnC1CEsPFLRxK0dptAVNrvnWX32oyye+hLPPfpZPvKxT/FDr7yeX//o/XzgPR9jcn6Bj374EbZnxvjpn3kr/X6OyK1SVqFNbCnBUCihUJSSCVFQyidygcqBNENRkIm0jMNNC7RSmEqj9Ihfa4zICiOyRCGK75jgdPle2baL53k4jlU2wI6HQGNbHgUZsignPd/LZ+1czt233s7r3npnaayyXfICTLeCUiUnOZMapzaFbTpYluDJY+eJeyYiL9DawzArJOEQ7dTIKYiDHnG3TTzcIHM8CuGWiW+1WTyjwiDq8eO/vsmP/R+rpIOc9pd7OFM+7fU1tOkje2tstVs0mg20dghEQhj0Mase3W6bOJVow+b8qWM89ZXHCfoB1RsPsdyOsW64ms5ggG0JojxlquITby+j/QnGpnZSdatIWaKkXiBHWJY9YhYbFFmO1oo4ikoJTj8hSwWbrS612him6WBaDr7nIQro9YfYloNlWuRCkKQZlu2S5CGmXWraDSUxDYMoS1lb3wStGZ+aIk1zavUGWgrSJEXmBaQlXk0JgSEEhw7uZv/8LKtLK0jDBEQZyTxqUrVtMTUzSRiHZYOFAgGOo8njFLc5jmX7GF6JlHO8CpmyMEyTXEvyDNxKFbc+Xm5UDJujX/ufxOkSIu0zsF2isCDGJkwlnUiQFw6muwtl+QRZm/b5e2mvHuXSqYf5hy99jduuXeCvvv4sn/rTL1ObnuW+h9YIdu7mB15/N3lm0l5exbRc1KiY1rZHHEVsLC2TJBm75mcZZC5bq2toaVCxKqg8pRApSpvYXp2iyDCUQc7IZKlUyaLW5eZDajAthRA5huGDKIkifsUtAyOiHn6jzqDXL7expo1IsxFa7H9/XtRCWatUyTOBR0rmjbN+cZkDR65hbZjhBBeoNG7gudWjPPz+n+QjX/mvXPiBn8XxdlKbsHn4Y7/Cjde/lov+LGZjhs7p+ymah4iUxeQrfwLlSrLuFjPX7mPlG8+hJnZjRyFbrTM0fI/uiSfYt/dGTp59lpPBGINiFdvYzWblLo5UjzIrDVYKh6unryccrrFxaRllDDGQSGuMQ/sO8mAK17ivJgsE4fnHcH2boTbonFukt3mU3TfdTTQBG2ePYj35Fa6/9UaOHXue5nU3sbG5xm133MrRbz/FtddeR7ffI+z3mZib5fpDh8jJePPb3srHPvLfsRybWq1Gp9fmiSce41d/7X1Emck1196CaRsMg2AUcQnt7W3G6zXW1tZI05RPfupTfO4zn+XhRx9j5+wsw/4AU2te+cpX8qV77+Xi6ioHskMl2iUvoe4oeO7EORq1nRy+UfGzO/dwdmkNW0S4lQphHPOOt72Zdi+m1Rlw+Mj1dLaWEY7GdnyU7+Ds3sHSqfO0Vy7hTV5Nf/UyjT1XkXZ72Frg169iq3+RBz/7X7n9R99LkG6hnBqeoXh+ZY0bDx7BPPsMC4fvJEhDlMjJlo4TLh6DycOMT06RBBGxErS2NsnymIbhcXn7EjsOHuDp+59kx3V1ZqYnOXP2PM1Bl9Vz5xmfnkU4OUESU/PHaAdt/q9f+w9cunyBdxkGU9Khd/ITtAYrZCePkyQh1ckFJnTC5dZF0rZN05vg3OYpZubnsKVmvF42Dctr69QrPnFaIIKCLLdobW4hDZMsHbK5vkZ7o8XcHYfpHH+AI7fdyave8W9YPfl5UlVhbu/cP92T6p/pfO3hP+Br//gtvvx3DzFWqdOxLKpedTSZUhiqdKh/t9lKSkkBSGmg0phCFiAyhCrQeQm+FzJDF3a5EhelUamQmliZfO33rsaqaYbJbp7/vRo7vQne/dvv4vgT32Z6dgd5njI1NTWahJogFXEcowwLVxlMzOyh8fO7OPqhz/Ly33g3kSyw4pzIVmQFeIYFfkFzxyRnHvk203t3Mjk3R//CBq7vMIxCbNMZOfZLA046igJM4hhDmpiWjWmA8ArEaNqXZDmWY5fGnqIMArCMMjIVCvyRsSoMwzLmdcReTaIY0oyM0iiVplEZ5lGkhHGKLBSGLUjSCDKJ4xpkqY0QkixL6YZDdF5uV/I4wdMmg6ic3jeb42RhTJiU0bG+a5NkpZ4ODWkcIW2LJAHPMynI8HW9TNKSGUWeESY5WlkkSYRMI6xxjz993/v46Nf7JBvLyOICj526yITMkYXBoDekl8eceHKRrXMd+rVx9sxWWBxucfa5p7jx5+7EePJR0pomloo067BQNfm5j3yBf/u2G9F2nbQbMYwDDMtEiXLSWxQFSRIhFGRZSZeQUmI5JWHAQoIpvkvTD5ICmZc8VWWVumcpypyrPM+JoqQsMOKsLGiFSRSVk/KMDCTEUYo0qhAXCL63o1k/8Ifv5tsnnufow8eo+A221lvUPZ84BztPsaRNO9jkzoM7ubR5kc3pPUjDRdqS9tJpml7GMBwgTZM02EIZFdI4wBzfUT4zkgBdd4m3emD75LbNb77Lw/U1gzBl68sNGmrInW97MxfOnGFqaoEoz9lZVziFINcWNaNCMOyRJiG249BoTmP/8BwbDz7P3h/8fqbSmzCjgn7aRamyUUzzHlKGrF3u4TcrOE5CuHSG8blpVjc28aaqZFlBpVKj027juj5xmhKHIY7rM1YfwzBtpnftZHNzHamqOJ6HkcZ0u12eO3aMLIN6faxkJ2cZjmMhpWIYDBBCE4Tl9PDS4iJLl5d46Z134jgWcRyihWRirMHSyirhMMH1ZEmXyMF0DESiCIcRVX8chMFe3yfKc0SR41s2BTC3Yw6UJosiarVx8jTGqVjYnQrDWGNWJdFwSJ6n5FmBpEA7FmZiIk2NxCSOBqxcOsf4joPEyQCRKZy6w6c/9GEeW6owuHQGQ3f5/Q9+GFvmEATESUZgOKxsbNNZ7tO3asw2XdYHHbYuRSzcPYm5ukY3j1GANjIaKuPjX/gmr77Ww6mMQRQzjMvfZy4KDh8+zDAYIvIUE0UyuEySxYTDgEJlmGYVT0CYBtgChOUxDAY4joNGXjGXBlGIOWIwkwuSrJQ85FlOnoeEYc5wEFAdaxK2t6k2m7hjOxCyRw44rvWi18uLtp9JliIwWb10gX67jzQk589dxqvYdKVN5Gp+8uoFFpOT3P/QHFpqHMskHg7YceOrOHnsKGZT00xbnG918LOQvUduZHx6gmTQQ6WK+MQTtJYHBMM+VqLx916FaWcEC9OQCszaNIOt84w7DUw7Y2ZikovnTvPYfd8gCFMKW9EQAyqNJjU0fdNmePwk1V07aG+n9DcWyc4/hlYpSVyQr5+hcctNFJEgb13g8vkeY3N3UHg1vvH1+xifOsDi0WOYpsmJU6eRhsnaZovu1joXttb5y7/4CyZnplnYtYtqvUI8DAnDkNbmBsEwwnE8srRgbekCE43mFdajFJowDAnTCFlAY6yJ71cIBiELO+exDJN9+w+U6xHDACmZm5tjYc9u9MjRrZQiThlloGfc/orb2D0zy+F9V5EkJag8ThMqlUqpixsOmZ6d4tSFC+U0DIXtuWy0tgiHAbkIGWwuYeZ9Kn4NNdIAtgY9WsMtGr7J/N7DOPVpRMVicvccsdXgwJFb6Wy1EMJCuBaWcqg3m7g1FzsTgEucFmjLwXNrXF5dY3p2P6vdmMlajZPPPslVB/cyYXpsDTOumV3g3MWnkMkqjz/3KDff9Gpa7XUef+Benn32Wf7qrz7BMydPcfzMCc6dP0mWRzRsSX97mySKCAar2GaCKuzyoRZu8v8w955RlmVnmeaz9/Hn+vARGZGZkb6yKsuoKstJSCUVlCzIY4REwxIM3T0z3YBAajHNWpjRqGmgQTNrhgYa28AgqRlAErIliSq5Kqm8SW8jIsPfuP74vff8OJEpekz9abSW9s/Mletm3Ljnft/+vvd9n4X9s2ysrbO+vk6n1wOlmJ4Yx3EcouGAA8fvBl3BdkZIy2IwGGCMoTJW5crpU0wtLnDwzneS64LR0CHrLdGsvrSD8bvhfPazX+CZJ9dJsl2C1O7Q9B9PU4EbhKvr2s3/55/948SA66as607s60cIgXYV9gyoQDG+4LC9vo1bNfSTLnfeeZL5+XkWFxcRTmkmifOMPFfY9q4TX5caKS009/zMe+hcucbo7BLtjXW+9e9+j//y4+/HqYX81b/6JTqb2/jNGliS0bAPQJYluK6DHwb4fmnssV2PICxd52NjY9RbNWxHgigd5CWZRVOo6yQvc+P9GY1GZW6qKc2URZ5jazBZAbtxVXmeUxRlMofjOCX+U5ZaSt/3sS23jPwKqgSBR5FmdDodRqMRWZYRYuE7bvl9GQRoSqmPsGTp+jcaxyl/luuRW8aUa3UpyyljeYnYdejLkhhm7SYTBFIiTYFtudhBSZDSUhPFQwpT47d+80/pj1xaM3upTkwyNjeDJTL06Wf4wff9NDXjcuGsi23vYZjXefTUFmFR4FYU0WbE219/kvXzbSgMs4cOEVTACItqvVZKI0z5/0FzI+EkCALC0Meyyu8y13WxHBulFHFWJitkWUa6m3qQ5TlxmpDnxY2/y/MctEHp4sZnupzScWNj4LqlyQuz+3n/LtewPvHE01y+0GM4GKIKhZGCKEpwHJtCWhhbslANSUVMuxPs1hKBVoqwNclw0Ee6ApecKMuxjCKs1XE8B13kCCPRwx55otBKISxw56sQKMK9If2dAW7NYzDa5PiR40xOjbFvYS9JmtLrdYmzjEIbfAss28bRglxaFMMBN//wG+iubDO6vER/9TIX/vozfPU//AmWVfCNj32SYaeP4xqSRKHxwbJZX18jrDRQaYrv7UrlXK/UyGmN5bm0u22CSkAQekgpyIvyeUuSpFy/CwuBIEvjG4kABoNt2eRZ2aSSq9LcZwxpmpUXZQONegNjQFg2juNSr9ep1epIUU56Pc+lyIoyDi+JqdVrNP2QsXoTgSyleaYojX3CkKUJjueSZBmu45S5rFKSZhl5UZRwD51jiQLHKWmBRkBeZCiV4zqCRrVeaq9dl6DpY3khYbPBaNhHU+G9P/U+ktSjOTVHdWyMRquFFAa1dIlXvu2NVKXPpUuaMNxLN/E5vxaRd3doTPgwUJy8/RBqpyAa9hibGSPKOjSaU1iOZGdrg0F/wMrKEoPBkGE0IstSHMemFrqYokwUEULhOAKtIS1yijzGcSyGoxGjKCJOEtIsw7r+nicJblADLTFkIARKK7Q22J5NOorwKyH1ib1lQkkhMUX8ba/P/895yQmr3/BYW7nA5IkHcQOXzUunOXZsP2fOPsftJ+7gX52c5oWdb/Krv68Yv/dOdra3Sk6453Dr3Q+yHErGKxNsDEccG5sn6cX0cwtr4zGm9x6h3+3Qv3SKhe99A57loY2FFyd03YApI+h3rzI9tkBaO4rLkDjv0u94jO//Xtq9S3Sff5SwehdtIWkMEq4UVU5G6+SVLr/wbz7AYPEdtOoOq8k4+/cd5oVvfo65/XcynsHE7AJf/epjfM9D38+Ln/9djr7pzdxy6D5WLj7Na9/1IMWow/RYnbQw3HLTMdY3lvnkxz9GEFQ4fvPNJBo81+XctSscXjyAcC06qx1c16XZHKPVCrh64QxxPKQoDFLYOLaHKRIy4O/+z7/kLT/8o8TDAa/9vodYW11hz955HnnkEe66++Su1nKHeJRw/KbDu8WxDC3P8wIhDR/+5V/iwrmz3HXXK3nw6B04jmRpaQUkKASXzp/j4OI83/+Wt/L4Z/4OnSua1ZDJhsXGqcs077yHPbU6hZTktoXv2ITNOlrZ9AebbCUxJ1/3FjbTEZXNIReufBmNoBqOs9bZZKFRZf3yGaZn5ok3t1jZ3KKzssS0dqhOP0CR94j6PeaPHiTNIhz69Le2qR4+ip9bPPo3v82Dr/8Jrq5fYefSKW6eX2DuplvprL9Awx9j6uQsr3nVKyj6XWSS8aVHH+FrX/0mrl9F2xnGkWyuthlreqijb+Te5lW+duYsTXsOaTapNutkccQgHlDzJL00x3EdJsZnuXL2G7TmDzCK1+n3dygyRTSKCV1NX0huPXEHqevjZgXzJ+5k++znKdyXzoj7bjgbI4vF2UNYdR8n7ZQRalLeiFITQpT5d5Z1Q6oCZfFXeY7ICxxKcpERsuQL7U5h0QpjFLa0d/WWhlwlmExgZwmf+7k2s8EUOkmY2neARBdY7Gper2NSFRhL7xpnHDJLMT43z9pnn+T5rzzFq972eh7+04/SOL7IKz/w3/Hxe95FnMVM70TEa9vM3nSIrbV1ZBbj1iVFkWN0hhE2yhgMZRyNMhl5nt1oxl3XBiSWdChUhhYFtiVI0zLjtNDqho4VQGc58LWY/wAAIABJREFU0pYIXeaDOk75RRxK60bTGscxjuuhinIKmOcJymjyXWd6lhVICrSyaDQaDAY9bNsmzxSFUriuxyhLcP1yqnD98iCEKVeMuyAAVJmrXKLGvp19qvMcAGXAEgYtLBAaJ3ApYpc0MhyZkxza12P/QYvf+ZU6jqdor7wP3VGYJ1x8r44vHQ4XOQffFeJefi3/4jVt6rLNaKT4iYdexr0/dJ5WI0CE+6jtcfnit5Z4fOkMew8f40P/+2P4oUCNNci1wXG8Erea5hhhoY3ASNAolOLGNDXP8zKHVkpsyy5pVraFpTVKG6RjIYvyd6cNWNJG69JEZVkWlrRLHZ8RiBuXMhtVGBDF/+vS9d16BsqmVWvgzs4RqGXE+jXCeoUkHtFotDjY8hnkHS4sZ3itJkWRg5BIWxC6LZIsxBc5aV5Q9UN0rjDYFFEP3w3Isxwdj/AnpgBBYXJkalCp4vQfdWhJF7cKzdnDFJbAFClaSxx/jDyNUN020oVMgIWkY7kcaFa5dnaJz/zhX3Lse9/E8mOPI6cnuOvHf4TPvPcDxNpmrJdjohzTCLFswXDpLM3pOqawiIY7zExOoYscx6ntynZcotGAlaUlpGWxf+8CudK4js8oSQkDD8sWxIOs1HUKie87jAZ9tC4oslLLKyl18dKz2d7eZH5+L47jsGd+niSNqdRrbG1u4/sBaZ6SZClZkuMHHnmusIRGa0kQBiRRxLkzLzLo9qnVW8zuC0nzrNx2CADBaDgi9D2+9o2v872v+h4s6eK5NoEvSDsRVrWJZ9kYLLTOsDUgBRY2qsgpKJiYn2MQS3QfgsYOB6YS5vb4/MgP5NQCn/bGR3BHLupFUIUiT3Mmwzrzr57D2fhFHjq+Q9VLUJng/iNT/PyHLlOfbOFIh0yvc+6i5uzqeZqNBp/60hIzrUnyKEYIh+b4FFPjLYo0QZHT7ra52BsgpIWRGiUgjXO0VljuHGM1h53RCC08hFVm1apCUQiNYwmULmEfnlchHnVwwgrGZCVCWYEqdAkywNBotCiMBJMS1JvonW2MeOmNyEs2rNlIM948CN0V8vok+xf3Yic29dYcP39HwPv/8mFqk7chpwOGgy3EzjZZrY5au8Ras4rXOs6Tn/hTJuam6DuaTAekacHEoftY/fSvMvnKn2etusDY+jky22HQiwhmZ0jyCZygz3ho2NhaItnYxBqr4x++GyEsdp56jP13voxXvGuengnxV15kZt9RoriGIaF3+qu87Wf+Lb/3iUewD98Bm2usj89w4OAJ2t/6FLWH3sHps09y7L6XU7HHWNtc42arhWyMs2c0yW2H9vHpz57j8tnLBGMNhoMBjz3xDcRoRGi5rC8tc/DEbXz8rz5ONahxrdPhbz7+X3jtQ2/gySe+wWanT5L0eNktB3CdCtGoS71RTv8cu8Ko12XhyGGKIuedP/gOouGAM2fOcOttNyOMwgt8pFeal1rNJsrkCEuSZBmeVTpo+8MhE4tHOX7oFp5+4ZndoHOHPQsLbG6uoxD0hgOGWcZv/Nr/QqwjxkwL4fpsd9YwjVkmmntZpUbTrbD2/Bmak9NQaDIK/IpkYXyBlWGCzjW9tWu0Dt6B8KG9fJX5WhPFkKmpvUwEFa4M1wmn93HzsXuJ6rMk2yuMTS2ydvnrLNZeRrffxjI+yVgLq5/CzBT3vfaf8ZW//g3ueujdJM06ldu+j+3nH8EeWCwcnGRiYoxvPP0Ev/jLv8w/v+9VjGYmkK5he9ij4nsMRxnTsxP0sogL3/w7rvgeRb/D+B2znH6ug3RzxoMQT1hUJ5uofpnh6AcujjUN/UtMzLXQQ5duPMB2BNVmg2RL015+geXHH+X2N/8km099kWzQ58nnT8GH3/dPVqy+E6fVmgYLfCGxjYPlOniujSVLs5/tSLQRYGQ5QVQJvh/S6w5YurxMy19joapwHQdhGXShbqykSyd+ueqVEtAGP4X6PsVTvwyv/NVxrvx6DaNG1GemMdFwN9RbgyVL7dduOkDZ8IKrJKeeeoapOw5w0z37oRGw/s3nEGlM9oZXMXnPTXTPL3H1wimOTFW48K1vse/WOzn/4hMcapSYQ2MktuURxT2KIgVjyimnKQuPMiXuUwqLOB+Rp6UxyPd9PM9DqQKTGmrNVikVyHOcSjnNEnkpMZC7KQR5kSBdB7NrogSQpqDQRdmEG01GipQe6AyQeL6kPxxSDUOKXJN74AoXWxf4oYcjwPKrN+AHniXJtCqpXIVEWrIEP2Q5kc7whIUX+OjCw3c8cnI8S5IUCs8P+NX//jJxMkMeD8mTFF2MKIohK5c0UgkobCwRol3DKI5wpE+hYozIiCzQ2AzMHhyridrs87F/+wzpyCZPj/He/1RnojGBHAiq01UWpho0gxoHb56BzpOlmc8WpLsZqlgWRgikFmRFjmPZ2I6NUQazSx+zbNBpSf5ybYfCTiE3KN9DCImUuzIWAagCpQy5MXieTb/fRwgbY9Ly8iIzoq5BFR5QKSe938UnDBoQSpwiR1g21UYNV9gYr8rhpsvZ9TaW20R4HsbkmCzB8gNG29ss73SpWSnpcImwGqIdiUKgCoMMmkQbZ/Fah0itBDcbogHTFXiTAef+s8vx93h0P2pRJH1cVyNUgQwbpSEwTvGbDcYWXIxwseIefqVG3bVZWlpHzlW544E30BsmbJ27Sn2ny/D+u5i94zi90y+wsXWNwLoJvR2x//BtvLD9JaYmb0IFLlVSxuotlleuAl0s2yJLXbqdDp5VmkPjKKNSq7O0dBWjNP3+iM2VdcanJ+l02hRFaYisVxtlVJ9TTjBVobAdm6IoqDWaFLpgz94FkuGQOI5xXQdhCgwFtmWVK3MbEAIpDFqD4wiGUYJtWfiVBtVKjf5wiBQa23exBWWd9hxsyyLwfe696y6UznGVi7RslMmx7dJMmWmJ6wcMo5R6o4rSBVJKskJSr1R522vXSJMmydY2xg7RWCSjTUbbEBmFRRVhe4z0sIzECybJhCBqt3H9kN5ORFYbQ+oAM4x5/7tXUJmPlIf4yGfGSNev0rIWqDVrNKamkWnE3FyDwCxh2w7DOGL/gUWeefSrFIGPsUrToik02gjC0CdXiri3RSIlghw/9InjUiLlhRYSie25FNdRyUJgyQoUETgeUZSC0eRFguu45ElGV69SrF3Eqy6QbOeo1Kbb773k8/KSDatQCmNB7Pi4ScJgc4nWuMXf/OwtfOh3f4NTXz6FbRJqk9NEnQF3v/ZdnP7W49x24nbWBhfZuXCGu1/3k7TTNpvrVxkUEbfe+WqG3Q3yI69Hba6wZ/ZWRHWMUy88zJG5BVTeoGu2mN/zKs594X9l8uD9bC0vUT88SZ5A1u4wOXeIL376M9z3htfy9UseTO4jDycZ7qwS0KNlW3z9saepVQ5RTzJmGh6ZLxkZh0N3vIJ2f4cfft/vsfGVv2d7Z5t3vu8jnHr4Y4hjL+cmf4KlrR2q4y2m9kzT6/W4eOki49WQwg1Z2l7j4spl0sDjpqM3kUhDxQja7S2++JVHOHHsENGgQyWoUgkDtrfWmZyeRiuJ6wikzqnW61y9tkK/P8ASsLOzw+te/yZyWbAwO1OGHtsO/U6XI8eOljFAKFzXKYO/RTm1et19h+l2BU8/dxalochygsCn0BaOljzwwANUgzqDuMfGagfvUAuMiylgenKCp774UUwWoaKMqYOLjKIBvuvhZQMK4fDYJ/+S6Vf+AMVgi9r+fUzNBbx44QKT03O4vkdR9EguPMXDZ55l7KaXoeOMzZn97Hz9U7ziPf8jyy+c5YFXv5XluIsJG4ybBJP4rHcuEiUDLj3857zy3f+eU889TLjnIKk/TaimKCrL7N+7j0ZQwQ1rTLsh1foEge0SN+dY3bnIWG0aS60TehArh6oniaI+zYkKl85d5MCBGVZWViikJKg1uLa6ief4+G6FnX6PWs2iUp+it7nD/MI0swv7uHLuPKFfoVopaF/bZrM/YP70E2xtbbDZGbJ339w/WaH6Tp0wCL7dSCUCW3xbCnB9hXxdB2SMIQxDlpZW0Fpz4sTN+CZEdCOM1rth8OUk9TqlqMTH72IzkQxyi9Uvhdz7ixX67U20GmEsTeBKRqPr69j/Op7o2wCCMkQ/VQbbtfn8L36Yd37kl+hv7zDR6fHlH/vXdC5dIfmtEf1RgdraYN/iMUbDbaL1i2Tjt5Gmw/Jn9co0Dmt3gpelBZ7j0u/3b+gpbbsk4RS2g6ztxq7oHCFA5YokSb4te9AGrHLVnOc5qlBoo1C7DZO6vopUZTOs0eRpXk4OpU2cxFjC3HDxl6AEXYIMXB+0wBEQFRk2giTLSgKXKugO+ti+h+965QV9Z4fmWNlIVNyQXOcYVdJ9hPAwBYxSiWc7xIOC/maLqLhGlnXL11ZgYeFdR5+6ZTyelZc42EwrkNZudqmHZwwZI4ZFj1SPuHrhFvbfvIHeOscv/+gPMwgOIFs1gmJEgSLLMtrXlhkoC2yHoogpirJwWRIMBiPACwMsyp2o7ZVUMgAjNX7oYArN5auXsAILBxtpe7sTb420BHmmkWb38pPlBKELxuC6BmntInSLlIE1wGIPhRDAdzc4wHNK7K8qLERs0GmCNDknD7a4sHSB4U6EMArXC9GFYnLPApcuXqBWrbF/YQYxHFFpHiQtUtI0JleaerOGVgVUpjBZjO83ELbNqLeNsmr0nqlw5J0SS1usjlap15tlooPjYDSYPMPzK7Q3N2lNjNNPXIwXgu1BnpDnCY2qy5c+8qe87L0/Rtbt49Vczn3kD+hdW8WMMobDhNmJvTiFpD/YZmxsnFG/R+4HVKVNlGb4YUi1WiHPc4b9Pr7rMEpSMIr+oI8SMDE+juN7hJaFwrDT7VKrVtCqQGHv6poTnLLrLL/7dtM20jTZpYXlJGnCxMRUqaN3XLTRmKLUU1ZqNbIsR6JRutSxClFepuYmGxRGkmYazw8xFDiWRV4MsLBotVokSUqSxnhuDeMLolGM0Qbf84i7bbTQJTgg8Eo9qzGopMCWHhtXVhl1KyTJKsoM8eyc0WCE7wa41m7EW9Rhvb2MXx3HGM3Ig7y7RWvPPtJhykxrhoGOSemh/Yj+pVtozF5DRUv8wM0HcF//Q4z0kKAYIKsNkq0NejvL+KJM18GysI1EShdPSJRtk2YjwrBKnqXYlkRIC0kZLSddt7wQhC5L11ZwQ5fQDcgHUUlTFoZCF2AsHCnIzQBbCFzPI4kSfEsSegaDQJgcN1ojz1pEqcYPXlrD+pINq3IynExQsXxk3cIb7OOfP1jnX3/4V3j409e44/63YFfrxLFi7+0VZrjM7W+9m09/4wrTzpB+f41Ar7N/dh+Xk5TKVIv6eAsv6xNLC+/IAYrVs3S3ChYWFoi2r2GmGoTWPLEV05m5hX0TE+zNe7jBGML3yObqbH/hL/B8QX+wg/BvQ6UK5YPqDLECzW//+gf52T86TeCvsbJdoWoHqMc+w/77X87IncLt9fnEH/0KD7zhh1BXTtHe3KC+fwz/0ALf+rMP8fa3/ho3HzpCmiSMdM7a2hrnzr3AYDjk0OweLpw+j5I2r777HtIkoVJ1+fvPfI5f+MAHaLfbZDpHRQO0EMzsnUclBmxBpeIRRSPqjSp5npNlKQbF+so1dnZ2CJpVHMfDKI1BsW//AUZRhNbqxodFKchzhVepcPbMCvuPzCNQCGlK1ruURNGwDC9Wpf5kbGyMZr2OJSVjkzaBDVdWV5jct5/ByiZKpQySiMFgwN69i/RGXfbuO85afZyKG4IfsNxdo33FZaoxzjCKSJMucxMzjL3hfdz6iks8/cU/xp28m7k9C8xVHuLc175MaklCU6O/3mPPgk97O0P2ryKHbQozYv+tr+fS5X9gLHBIYws7H9I8fhOnv/RNnn8O3v7mNzPacnnxyReohjayUmNre52x6UkWZlp0uhtI4yDJEdJhz2yDta11Dsws0Jiq0t62qe7qTq1dDjnSIIyhXq+zurJCGLrkShNlA6TrEoYhrgJpFyinydrWKmP1BkK6DIcvffv7bjhrS6tUKgFBo0Z9lyhkUa6KQXy7IRMahCBJNbOz0/i+j84ERVIglWJX6LXb6GqsEgIJlHpTa5f1bgceT/3mJWbvmEQaiRcKTOaS5qWJ6Hpj+o9pWTdABUJQqJyJqQmyPGFubAGFx5F3vIHa/CR7KjW+8YXPc+Dl30v6+By5qBG5Oae++nVcJ0DLmEpYvSFviPopvu+X+aiOj23b+GFwg350nZqU5dmNplSZYjdfVd9ApF6nWuUqR0jKjEdhsJE36Fy62F37FzmSUlJgjCHwK+RaUa+4aFPGVhVFwmCUlhNWXcZSGWFQWuzCGLihtfQ8B8dpltFVSlEUOZYliIYx5ezTIjU5nrBgd3JtGZvAK2OLhqOEaLSFkQMcoZGFxpIBSmlyKXGkXVKohCgnn0JjCYHWctfcJBgh8KSNjDPC2Kdz9TLnzobcfu8MLfFxTp/eTyedoEhGWLbEKiTC17hhHVfHSMumUnF2EwzKfMlcKwzlxQAMYrdZla5FocpLwaUzZ6hOjxMnCWGlRShTNCVVyPMcnIpG5RlK52gHDD2MyLGicmWZa0VuMtQgRZsT3/6cfRefnfY2geOWYfSOxLYrLE54vHjhLNtbCc3xGaTtYAzYjo3II04c30dnWODqnDgdgZvguyUMwwoljufgWzaREMgwpEgG6MzFD3wQBef+boM7DzWRMsTU60gZYlsaZFBeBiyHbGsFKcvnE1nBCB8joUhTWmNTHD08w7VgGoRi/K4T2JNNptCY8SqTN99N8uI415ZLg+3Sk0+XHoqKod4YI1m9iGtPUtglEKAM/RcMRyN83ydwS2NjEkWMN+qkWYaxHVbX1lg8uEieFyitEFIipMT1PDCCwihsS1LEu3KeXepVUeQko4i8nsFuNJpSCqEp19JaEXheKXdyHIzKUXFKpVYnjWO8QCLQaANSlpIqrXMQZZqFY3v4foAly2g3z5cU/ZgoyfEdl6zIQSlUkZPmeXlhdSI812NbG4psiG3S0uQ0NNSdkCxXpKqg4lfwJg5QaYzotdewvEZplLKmiDsdjLDoew4607hCkUc2vZWLXDovOHxLyGTjHM+f2yTOGuRxD7/aQOaaYX+ZRqvFwtQkBT55klOvV9FCEOuCsFal4nt0s7QErxoD0iKoekRxSsWx2N5cxfXtUi4gbRwiQN+os5WqTTwcgNBYlk2hh4RWQlCMQGvSUiNAnLaxrVlcpyRkvdR56RxWOU5H5YwvTFMMY14xJbjnTW9gz57/gRNv/2laN93L+J4jrFx4Fn9iH599MuOZrb1MOFWC7grf9yP/kotxxl//wf9EvvMclV7p8MssmLCqdFSB5UwQLsyTKpeRiQg6S4x2zpCubJGd/wbpYB3bDBmde5rN3jpO5zJubYG0olg58wSuLci8Gmqrx9GjR0muPs7hV72DQBZcevTLHBwPOXLfK+m4k3jBFKOzT/OFz/8fnLzjDrYuPkvn4pMYI/DyCtlmm6mTb+P/+rO/5crqMl/+yiOMuwE/+u538ea3vAPLlrz8wQd4/JmnmZya4AMf/ADjzUaJapMOjmXzxje+kfFqlcCGsXoTlYwQlubqhTP0252yOYqGtNtbtMbHyI3mwQcfpNKs876fez+N1jjJcIAxil63SxYn6KIoA8R3f2O2A1kUcf8Dx1m5cBF0caPYFkVxwxRSFDlCSsIwpBL4ONKiVZvHtywWb7qLvQeO09ozRnNshooVMDc1TaYV1dY+Tn3ry9QO30bUazPsrWPHI249cRt5MqTe2sfibcdoxxEr6xf5h2efpTp7lOe++jG2Tz/FuSf+mFkvJ+gs4+oa4ZRP3LMIRYY7PkmzyGllOTOLR6j6VWrH7mOnl+A2G0TLL2BXAm655SQf+5tP8p4f/H7uuf82tvtdUkcwylNcLeh0OuVKt+pT9VyuXdugu9MmjTMGgz6bWzvUaiUV59rKVbKswPU96q0mvW6fYhjR7fSI0oytzT4yV1hGoeKUzcEOwiS0woBRb4dR1Gf2wM3cev+P/lPVqe/YmV2YZ2xiHNuzsV0HLBtjyd2oo/8aw3o9OcAYUbKjhSnd5kIgdwlRUkowdvnvhMEYdUOHqIxh+x86vOmTxxgNQjAOxnJJs5hKEO5OVPWNpqF8zRJ/WjbSAkvaDNqXSbop4z/1RjY2tph9xUlq83sY7Zll5qEHGRBx/L3vYBS3aV+4wF0Pvp47T96C64QondHr9egPOhRFwWAwQFA2sGmakhUpKi/X9debVCEEtuNhhN7NP2U3OondXEGLLE/LKbMpiTli15jluj71ShXfcanVatQaddwwoNpqlRFLoYfnWFQqFXy/TCCwZEi93sTxPKIkJooier0ecVxCCuK4bLQHgxFpFhPFSWm+vDGJFni2gxESZQk8ywZHYFsucZogUeSFCyKl4VqlbEEJZOGTG5tCKLRIykKsCooiJTcRWhmEtiGHAlBaICyBIUIW4NsBOTnjhw3veEfEzUdWOHRkxJtOXqUibGYn69SrdapjPqFTxSoE2nbLIr5rSpF2iZG1r+MuEVT9AMf3yLKMKBmVZtR0SCBiKqMVZu0OlfgcWf88ZngFPbpCtHmB7uoS/a1r9DfXGG6tMtzcYLjRZnunz/ZOj053wNY2rF4b7SZdlM3Fd/MZn5jFq1fx6wESwVhg8ZUnvkVYWaQxtx+vPoYX1kiiAZYX0h5ALw2Q2iDymIn5RSJt2Fg5j8m72AqKXIMUeMIiNwrL8rGCgEILdp7vce+/GWfUy9GxQscD0qRP4NqoUZ80TxDZCGEHaNuQjvrlZ8J2EFlBvdZgtHEGx5+g+do7Wb10iT23H2Py8BEGkzOM33mS4XAT//Y9+IGgfeEs+w4d4uCh/XiyQpFEFE6di+cvMByNWF5ZwRU2s7OzjI9PoExBs9Wi2+vheR6nTp3Ccx2kLOOibMtmcnIa13VKs52UCEqkcTQYkGdZqTPdrX9BUD6Hs9OzVOs1Ll+5gl+t4vo+nu8iZZle4blemc+sNVJ6VCoVpBSEdZdep0M0GlLkpekyTTJs22EUxWR5SprnGAyOZSGFwHWCEiZSa+FWa4ShjxP4uFZpIjMokDWGvTUazSZZOkKlGTK3CKstCpNjuTZB1SfJc0ZRl83+FtKpMGhvkPV69HvLOMJgqQRpFI5tYWkPQ05jv8sD9yccnNli8ZDNfUd3qFYnqIU+1XoDx07xvQqNsMm1zR327Z1lYmqMtMgxTpmp6iBQhcKxLMIgwPNdhoMRw9FgF5M8wGRDKkWXMXsE/Qtkw2uIbBtLdRhtLzPcXKe3vc6w06a3tUnS6ZB2e/R6I7a7XYbDIdHIYnNjQGFyvEqd+thLJ/G85IRV6x0cO+S3f/o2Pvi+3+T3H77Em3/m91giYqLVJBqsY9s2R+9/FetXLrHnrrvptK8wPrtIsHiQR5/6FtOiz+w9h7m8coXZuUXU2hrXnv0mYmya5LOP8sJgxL7bXkHc6bGz+TzDyhRbl8+y543HqVouS1deYGbxVfijJfy1T+F6hzi9dZX6zD7+8EMf5K0f+jTpzgZJtEwvDvjof/xL3v/rf8BG0uP+e78HE12kd0Zzx5Fxlh79O0ZxxP3HX0Hn1HOcMwk3+Q2S7QtcvbbF5nOPc+DAzfzcb/0cP/lTP82PvOfdfOLhh/ng8X9JUKuxf26OS6dPke70Ga1t8+QzT5ZhugHs2zPPnbffSWtsjn1Tsyy3V6m3Jmi1Woy6MdMzCxRYNNxytN5r73DHbXfw/p/7GfYdOoAMK0xPTxLUQ1auruA4DpYlWF9f4+YTNyFsiavAtzyGaZmH+YlPfRmZh6TRCIQgCKoIk5GmOTovY4mgbJAtxyVXkBcRSaap1j0G8Q5elFGzIBpvMBwM8Ywg29likO8w5h4kTXJGacbssXvY3FyhMrlI2j5HtL2H2sQccZJx4MgiausK9bBCbeoEfmuKoTbUnW2WPvVrNE+8krx+gOrEAt/D4/xxfYajtf1cW7tIpj2WP/2fOHrTMZ766P9GHm1Tb4QsX1tBmoQ/+ZM/4sMf+g+sb29RXdzLdLXJ5e11Du9b5MrlNe562R3E8QCgzKa0HVJR4I8KtHBxvZBCW0gBnXaPayubTO2ZoT0asjA9i0yHJBVwbcXBE/fASKEGK2x3ehw6ehfTMzNkySZF3CY1o3+qOvUdO7XAx6AIbSAC37FxdnNDMRZGg7RFudAXZXyQ0KWJRTgWJtldX1/X/okysF0hSrOAKGmX2ghcW+JM1XjyJwZ4joaKTWN8jJWldSaEtztVLVey1zNYQe5iYMsmNkdhy4gk2sLkHltFt2zSlCZv9whCmyIIUOttxusBV069QO/qM1T2zuGZAsuuYDsCo30cu0QhG1FijJMoxfUd9PUUAAMUFtKUpqAoHiGlQ+CGN0hJWZLiuPbu1MZQJDleUGYYp1mCwpBlKWG1glKKJBrhSosiTymKDKUsHMch1Rna7Jp/rIQiE6S5ploNiYYCzwvJ0yGWAiEUWap3i6Sk4rmw++z6BcSejWscpJZYBnJhSiNHKOl3e4xieOCOS1TJ8awdfL9Cr7uJKWpoMUOcj2HXjtNRc5y4415QLZAV5hYPIVBIBNs9yU53wJNnX+AdD93H6ufnyUwBjuCVr56ncAps08DNugT1NT5wzOf5xx9lO9vHV5/1yC1Bc2IKk5fGxCiJy/dcaQpHIrKsnKTZAhwJhcYREsv2ScnRRUjFN9iuy4sXtnGdClplu5IKC12kmMLs0nMkShnYDXs3hSQrcowlwYzoxWAJRUYJFvhuPr4LhfG4+/A4px//ChfWL3H05CtJUHiOR5FnuLak0honjWOCRpMiTfHdOnatRXvreUKd4TV8omRE4FcgSxm1V8C2UO02g0zj18YweU7maJ7/dxuYbEBj7zHCep3t3jpVp4XiGimWAAAgAElEQVSUCW66hZQVBmmC44fcc+wgT1zYwKQpSsUkBZy87WaeffF54ijBtyVptkOWx1g6o4gjjJPRLAKkGnJp5TL15Rx/fp48jilUiTs9ctMxnn32Keb3LrDe3ubowf0gBZUgYDQclFKbPKc3KFfvWpeykMAPcJ2AWlghUzmW7eB5LiIrqFRrmFztgjjK6LwvP/oI+xYWaNYb5FmOMAZHSkbDCEuye4ErKEQBKCwhdhOFFFmekQ4jlLLKqahUONi7z6uiUSsxrBU/ZOD6+EEA2CWi1XKpBB66yDBSUnE9LMdm0OtTpAU3LywhajvUqxa27dIfdPDcSfo9m0wtIuxxErWHfYduJs5D6pZLq9Uk3FqnNXeQ3jBnMIy4unyKk3tm6V94H6n0kWHAAy9zuZKGBNYEUdahNdXmtfU1tleXuba1wourBjybTI8hTcHy1SUOHTpKFMVUbQfLLiVNDb9BoTVhrYqb5RRxiu26SJGjC0MgNdJ2WNmIyDMNKIzO0BqkNOh2F6ENOsvIhcC2LKQTYFJBkhVkShFWfJKiiutKcpWgzH+DJMAqJE25RXThi3z+m0Pue+v7wQ+JewOqswtY0QitDXjjTCwWuMZBxTkDLVm99ATF5iXW/SpXTg04Om/zwuNfoTJ/P+fOPsGD7/oNKq3LJH6TePZW9ldjei/upVKVHLn/7exsb2LNzYEcx2SXMbbh/FeXuPUHDnO4EbDe38ZqTJGLBGMGVBbvp33hEuOzPo8/9xkWw714tiFVmosXz3NowmHYe4zL6ylTmYdblax84QvUT76R3vInOHrv63G8GSZp87v/8Xf4yff+ON/42iO85c3v5OOf+iQHFo/yzFNPIu69Ex14zC0eolmfZnl1jZmwRrfb5dKFy5xfusBzV5ZotRqEdYf//Pt/wWvf8v0Evkuv32dmcoY0LZvAzbUtbGFj+QHFsMddt52g4ldoNGpIBOcvnOGO2+/CMiAyjTKC2NJlJqQ03LK4wNLakLBZhyzHqkooLJAay5NkUQHGxndcsHQpNi80XliaFWwtaedddHedoNYk7nXxbTi/8iITc0dwqk0CX1Gv+2xeu4YJfA5OtLjcSXEZUIx5TI816UYxG8srzJ24ExNfQKsprl7+EvPzd9MfSxDnvkg8V8eSAYu3HGJyJSfyE7qj8jY/26hy/onP8T1v+nEe/vPfwalXeOwbn8OJPL7vNS/nW2efIpbQ60S0dzboRSP66YhXv/Ierl1bxa7Y7JuZocDQvbyKYzvsRANE6OH0oVGvoLMU5bnUqgG1iku0M6AAunHM9OQkWTYk61+DdIwsTgm0y569VVYvbYKClc4yN0/P/BOVqe/cKWSCwEeS43guuQ0OLplUCFXmN5vdwPlyzWMQjkWBRmqJLRKEJXcRwgojJEabknAp5S6aXSElGFVGloxP18mrKU7PYfX0BU5HOQez0Y1J7PVEgbJpVWjp4AhV8ropG2Zh+qTUkIVTogBNjlGKOOmQJQOoVLiytEpzcoatlZSGMuCUcg9bOliexCgLKMEaRVaSk+I4x6iCLCubRy9wcfwS3+n5kxS6XCeb3JTFyWhGcZ98WJRmrOuUOS1wLZuMjNBzMbsRcLbtUqBIUdiWhZGizILNSupVagp0FKONRZ4bGkEFR1pg+7Sq/u4aW7KzuYHn14mTDt0E0ClFDsZSGCS2dJCWRsUx4eQiuU4wMmWsMcaPPfgZZidL9HASSfRondrhP8SfuIWrXY+XHT+IpOBXfvOvWHLHWGxYnD93GvPFr3FtfZWN5Wu02wMs20NogdtocqBTpxLsIEiJh20s6aGdCJV2IIdI76CDGrPWVb7nxAJfOVvDoowcymyBmwsypXBcF0sXIEpjhlaaPM6wXIfcMpiifI+NYyGNRKqYwVZCrxvjSBt0Se/DtjBYCKucHFpSoqSF0jmOthhzKySeiyRFZyNMYSOMQArn//M5+W45mhxbghpt0RlCfc8hXCskVUUZpk6E0QZhuTiOKTXaCjIM8bCLyLqkyhANFBUf+t02ltdiNOwyseco0o4IhIXy6thS45mYmdY8qmLQXcX2RoflzGFf1gEJo52E2lRI1ZEkeYqwd59HqbC9MdRogOc6dLsXcJwxpHZQ2hClPTxLEw2W6Q9H1BtzbO9soFVBu5C0dtapT+4hT1N8oVhdW+LggYN0dnaYmp5m+doaYVBha6tNvV5jGCeAheP4pHZK1fEwRmK0ZrO9Si+OSrSzBRfOn2esOYExpWGyXquiTHmhybMM3ym12jrPGGu1ELYNjkQaQZQMadQakAPCkBlFmhYopUnznIYf0C8SEj+kWa1h2YZCS/K1DYS0SZI+KjcM+x1MnoIlyJKcUTbC6AKTphjLQ2QpwhXUwgoP3fksrulgBRWM9CAe0Tr0QYw7zWbsccuhvSSDPh//1GOsWyELTY+lpVXiztfo9LrEo0/Q62vStEfgtche9wDzGxFOXSJtsIWFk9jk3jZpvIPKFbaOGcZDDi2MY7IB5zsB/c4aVmbjztgMR/0SP2sERZailMFow0Szxag/xPYc3MAt85ATjbAtlNI4OmbUjukPFBalwkMKie3aqJxyh58bgkpIoUqil1V4VESA7dqMNRu0N3cwuUWSp9TclzZJvmTD+ptvOk67fpq3f/gUM5OHEdJm1N4Bx2LnwrM0pg+zOdxhrCrJjSTWCY3JKaJoh2LpBURewgHueuM7qbWaXPnb32W+ucZdd78J1V9lbbCG1TpOxWwh2gmebdEfCiJhmDp8glPf/BRvfuM/4+HP/jGmcZixkw9y9olzPPiql+NtwJnHP8dE9BybeppqLqgfPsGZ7U2aLHDq0jKTMzch7YSi3+G57S4vfPNFfvhtb+KFpWUqqeR17/n3DIhZbLyGMVuSJU0qCy0efPkBXrxyjofe9Ga2ezvsn5xmYqzBwkSLrz32LIfmF2l3Nzl+cA/PnnmWdpIhLcnM/B7mF2YIbMPOxjpWnvKa17+RNIkoLIud9hb3nnwZm1vLzMxM8Qvv/1m++Mgj/OSxmzCWS5TkDOKYrNCM+T6TE9O8+OKLHDh0oIwZkpJAWKTCxg8b/MWffZS9Bw5SCPtGA3J9nmCMIfRKzZLj2sRxSs2uUxhNkuZs99q4tSauaWAHVdLBiObkLFm+xe2veA2b7R1s41DYkmKgUHlCK/SJMovxO+7h7Jf+hkPj30dvMKSwMpK4Ry5nOf3o49x08jBHXvEu8s5ViqeeYvbdv8HZP/9F3vv2f8GvfmaNufmbuPjI37P35J0Mu4aLl1+gRsHf/tX/zHxzjnSYcPDo7fzEj72Lu171ANNScHRmD+HYLDlw9M67GVx6jvPtdQaZRdHdxkawvb3J3oU5AmE43+7gxyNmj97MxaeeZmH/PiylcLRkY6sLacbiwYPs27+XF555nrmF/ahc4Yg2zvgkfivliccfoVELQQvqts3mxfP/zQXqO32kVhhyrLzAsQWu8YhVio1V6jH/MdEKjSXkbvO1a+DRFlqVesa8yPE8gdhNBUjVbvNw48UEsVvj/2buTaMsu84yzWfvfcY734gbY0ZkRo7KQbMyJUuyJduyPM+Ai8lgiqEpqAJTNN3QVV2wqKYLmrGoLqZiUdCFMdgYDMYjssHWYCRLaSk1ZEo5RGZkzNOd7xn33v3jhASr1mrVj4a1vP9GrBtrxT3n7O98+/2e59zCUSbmDzB2ZIH52UlmohGDXn+vu2UoOqsv/12BxJDvGU1cVJErs4Z80C3c71ajtAVr6O1cwQ0MOp7hda9/P48//hf4vk+lXkNaUMpFa83GxhrjYw3yzCAV5LlBSIvOUoQs9IEvZ121zsmkZdTrFF0/6ZBECcpqwpKHMSGqmu0dxyt6/T4OOa5QqEyR2xxjDdJ3MYMebhggpUtQlqTG0t5u4wkHKRysjkmMRxSNUCbjmWsvMVGfxgk1WVbDEZCnQ0IydtfO4QiDzFJMNsJLUgQaJwwx+QhtSmgd0zp4iG5sMSNFx+8SNI+ym8aQW8xI07rnLHe85j7e+y0/SLUc8oXPlTh49Bive/39VKp1MkdwcGwCnQ44rBqINMeImDjPUBaGcU5evhmdf4FcOdi0QzkMMdqAyEhTy2D4EtfWNcem+tS9y2RXDP4tb2To+YTSMlTZ3stOYcRxhMA6RRTFaFsQFaSDH/q4SU6Sg3V9hIDZ8TLj+/Zh0widZggLaXuIVJo016QIhOtS9T2kCtjYGRBb0N0evpcSSAf9D67xb+R142SZxIk5e75DKawwSkZE8QjlKPJRFzeokOoMTwoKya3G8UJynUI8BA0mjmlMzYGwxDsrlJyYZnOKLBthdAReC0WCyCD3SlyamKUyPcP4wn4q0Rb3NybZWLmIdSq49TEG3QET42PIBAadLXzdJTEu0kJQrjPIMzwC2js7eGEFQYIeJaQmZXXpIvsPTJDFHW48dSdXr18hiTOm9k/gC0HsWRxPEciENE8LwYzOihyvp/ClYLe9S+hX0DanFHp0OjlDrUmSCGsPUCqV0HFCrnN8ByYnZ8h1wSi2UqB8jzzP8AKfYwtH2NraYS6sIAKPPMv2TmB8Kr5POY7Y3umwb7oMQmJ0hrYucTrEGM0jX3uS6dY+cpvQj2YIXYHOYnwyhu1FFCBUGzFcQcaFMEMYg2yvE+syRlhacydIfYUZabLA4FamkGKSJE6RqUv15K/xox/+ce44/XpqlTIvnLvE5P4DLBzeT2tmCu1IJo6XGG44TLnj2MGAcsMl8xuQReyuLuIuvJX82kc5eGQ/z6/vUq+NMdxdx6+VGKY5G5sX2NrR6PQc9bBK9twmrRvOMHFigcmJcWyaUA5LeI4LoszYWJM8HpBrQ24UeZSSZAbIKZcCjIaeFajMMDleQYYOgacwaY4UglF3iHANXhBgpcNgOKJeqyGlpduPsI6LzVK2NpdxrUdmDY4QpKP+q94vr1qw/tjHzuKMT+ONj9G8+TRnf/t/5uRrf5hR1TKz7wTXV64wdWg/g401pFuiVCqRDttcX77G3PwJEjmJO3yR2vRhxrIud5z+AP1AUSrlVIN11LZDf/FLDA7fTSZzpr0hfeETb26x3mlzy033sbrjMHXruzh5y7t5/txnmX/Xh9gRIKMX+fmf/E1e86F30j23xB99/vd44H0f4Pf+qIc6eDf33DbG2uVn8G2fm+94HV+69DD10jhj9Qa2+ywnjr2JRTlizu4w6rtc2LnAoaP3sXH5aT63/SxRqLjtjtv5rd/5be45fSfffscZbr7tDtYeP8vEvR/iDa+5ly988lMc3jfNmPQ5sP8wz5x9nNbkm5icnmRfpUlkYra6beZmCziuUopebxesy/TUPI9/7Rw//bM/Q9n3uHTtIjNTLWyW4IjC4lKr1ej1+jjGkJscYzXGVWBS1jc3OHJkgXIYsjZYIyz5JMkIXxUwbillwUTDQeyxKd3AwXMDQr+ESC0Tk0d44fGPUDt2M06jiqc1SceybtfZd/Ag2VAjdEokBDbP8EvjpCInjIdMTM2gPJdy6KBp0DpxH+VsSKc6VjxwxlbYurKFf/z9LH7qj7n12/5Xfva/fh4xyNDVGvN33M1Uo8L1Z77K0dvuY7D0VfYPGwyjTaqVCcZLLr/2c7/IDyufD775LfRGQ1wnJmiOs7HxJLNjVa4v7aKzIVOzM2irSKIeK8ubTM9MMNEcQyhFtN1mrF6i5AQMsj6pyKg7JSq1JhXH4erlRSYnJ2gGCrRDxdVcW1tn6FfYWbxO6dghkqygL4TON/bxIkDulwgzRVkqogFYmSAdFweJlRq156UvwvEKY4tHgKAYrsp1jC811hZDSEWn1RZkCuv8gyLUFMNXpTFueNtbERgCkdLubCFzQ+j5GJ3x8qBXsSTW5rhWoF+2G2mDBZQwVFyNjkd0dla5vrWMyCQq8Dh27Gakr/izX38/rcoRTt7/dtLMYF2XZDRCCMvY2FiRO9Wgs+yViXyLBmuQqmDRIi1IgRf4RTHo+iAcZDNnMIyJRxFpMmBrfYednR0EBWEgjnrUq1U8N8RzLHk6pNfr0N1co6QyTDJAYsnyiEpQQisYpSmO5zDMRuhYE6WWCppR5xyhP05iNRXfp9QICaykXleMEpCOy1CG7KQ5UWTJ+gNyHRHHmtATzBrwlEMsIrysSjR8jsAUxIJouINsTPND/+EPOXFwHm0HCBVirEXFPoNkCO0+qBpSOSTZOhW3SqKzArQuFfRihBhDuxKVdpFqohATyAChFUp12TXfzIWB5GMP/Q0D5THnrTAjcmw6YGcYo1yHRmucPE6KuIks8sHCUUWRbg1hGCIdiXJc8lFGlmdkTkFncBII73kDvuPjWIHMLVpIJEVcxfU91l48z+jSS7TO3MfRUyfIoyErf/NJssGouE4FBYvsG3id24rxZUhYyrDhDJ3zn6LVegNYSVAKSeIYv1QmTyOkdJDCxeicJEoK4oWt4tkAxw9wbYaqz5ADMmzg2iF57JBGO2jRQAuoByEzp28jzzU2GyCVQ6cfEzRnKVda9HubBFNzpEIgzIiLL1yldWCWtDdiZXuZ1uQ0SysdVLnObGWcUWeTqLdGNIrY6bVJophmZYbdfptn//pXcUqHOXbjzSSJpmsiArdK1GujXEtqc0qlMotXFmnU6iw0FqjWq8SdDkFrjqnxFrvbW9QqJULPR4lGUaQGIVOzE9gcUm0YjAakUUa/PyCOEhqNGnE0RGc52zsdjh4+gI06XF1+kWG7jRdvkEUDep7L1vYmGEumV4nTFOkoEnLyKKW73WVcdDC7O+QjRVwB4UjCSkCYbjE1MU2cQuC4DFyfDEOiFcN+THuQ0R1F1GsN4qiD58+QuQZPBySDDsoUCLo42UWVG7ztu3+c6VoJL3CwykUiMJ2YWKeoOMaRVYLSBFYPcWohaRohnJQkMchgktFGj/H9R7l8fRGVV7HhiFJjEiUEvWQR03w3a4sdHnnsLEMLU+EA1zFcOf888fAA+2em8UIf6Ut8yuRmiOspklQXz0nfw/E8siwi1yCUwlMSXA+dJ4T4VE7cikQgEYxrkMrB8xyGwyGzgc9wY41kdZWJ40dpTE6R5Rlrj38JTymy3BRkhv+BSfnVM6xlwfaFr7Lv9nvYfvFpZg69Be/wNC984ZPMvK3K5GSVqLtF0JxGpxnEmr7qU1p/hPU85NYFwUvhHLWdDn/6mT+jefJmbjw4TbT6MFt6mqO338PlwYg02iUwHsu9PpOhZWw8hPEj7D79CKZ2jf0TN7AzeJG1K+dR1TrlMsiZ19A69hQffPCD/OzZ/4173/x+fuKfvY5//hP/iamm4Ktf93npsd/mvQ98Dyt+jNPJufH+b+HSxjJH7vw+khsPYz/xEdbKDtvtRfbdfTdZbRZdvcxr3/oaHvrKI5w7e5af+/f/B9eXr2GzBOW7nLnzTbz1jacY2ZzZwzNcunyZ53aWmTxylD//zKf5wkOf51Btko2ozdzEPtTIsLWxzNTMPu699x6yJGI02uXokcN88IPfjqcs0ncpuWXcRpmVjXWa1QrGGLrdLnedOY0VkGMJPBdDMSQT+gEnjxxnexBhxRWSPKGkim6Cch20MSjXAwztzi75zASDflLYftKMxvgEhjaN5hFG8S5JO2NmaoG85iG3hwwGOUbkRNGAspZUT5zEqBJjjodVAi1cRnmPbDklHW3jlhoM6nUOzR7l8pN/THDNJR9coTScpDxdZ3jhOWqiwxvun+eKc4hnLvwdMwfuobK9Runo/Tz/0HVMNedItU6rNclTT79InvV55KEvM1hdxi83CF2Xi+df4j3vuJM//6tHKNUDhga2NtcZDnPqZZew4VILPXbTnO3tHdquQzksMRz1mK6PYYyhk0Z4nsewMyg0j3nOtY0N5mbGGGSW1A/wTcTd997G85dXcX2H1tQCvTj6R9qm/ulWKxrQr0+zEw9xtl9Euh5KgBIOOZqXnwivTOvnxcuNwPKyFktYXh7x24sPFDB7IS1Cy0IPjEBZgc5jdNbFCUuQl6nJGK0sOk//O3D73/9dKOpGANTf/47nK9bbW9jQQ8oW1rNMTU5x9uzfIbI19s3ewoHTb2YUDShXQlJj8N3CPBMNRyCLnBSA61KAxIWD4xZQeWuKoskRkmvXruG7DmnaZjAasLx4idRofBw8EZLkQ5Q0VKtlels7uOkOyXCJPOsQkeE4kkAIHC9FCo9Ua/rDAQbJxuY22tGUgjJhrqn7NcIWeKUSaIccRWYNeTpAZ4blqwPiNGGUpFhiUm32MmEgjI9SLllSIsraeM0xPEeS5pZQgnUEgSiRqw7CKoTyyVWOFC5KZZCW8FzBMM/xqwm7gxi/FKBVhB6uErvTmJ0V/OZsIVVQFkyKtoaSU6ZnIqTcIz2QYcmxCEabGxw88SDN5jiLlx4nXV0hBQwK1/ORxhR6VVHgw14ediviIbL4PA1SqmIoTggycsp5jmMkRgnKeMUglzGIwCuKVpuTpTlxlrL/2HHOX7vC7ffcTWd1BeVajDQFoinLi+L7G3xVdUzfGNxylfzSY4S1WZyyz2h7Gz9s4HseeZag3ABrNDbTaKlR8Q5JHlCxCakMMGnG2uYaXqVGreQhsl1SrSjXx9B5htEZjlWM0hFu3scLS3hqHNXfwHoRjlshzYckowFIheMohN/Er+wwNzHHS93zjLemOTo3ztPnF/FdQT8TLC8+wWRrntQW8xPzhw5x7vxzOMIyvnCGanmSbq+PdHLcehPlVxAmolrz2Gq3GfT7nDx+iiSNEFIglUurNcPkdBONLdTmA8Hla0vMTE2xev5FsnPn2F5eYZjHHJg9QFpukouEMPSZm24yaHcg2sIzlgmnTbS6jeu7hHGEX7bY3OI6gjQbEacJgeOz2e3gui6htZS8Em7NIwh8VN4izmF7Z5dyLURozfZmxPJaj04kQeRI5XJ9eYVapYISJawxjLoeucjQRhMGVVKdIpIEv+TjuAE67ZAZHyMdEpviWodyLURrl8BTxEbjlHJG0QBfKnK9iTE9Ym+MWhxjTI6bJFg7RCURyndQowxpBVPjHolboj/qUanUUGlCbmJqY5McveVOBptXkFHKdndIagzdTo/rWZEHdqWi0+0zPdVgfXMX6TmFmStLyFKDHzhINEJIRhhEFJEmBuE6uBpCpxhcyz2BQpHt0VlGoxHl1gTR1hqHbjjGzuYWjjI0xqt0tvvYLMer1F9B3f1/rVctWLvdPidvfSNrgw3K2Qgz7dEfGR548N08/cLTHJo/SDrss7PdZ25ujl5nl+sXX2CinxFMH2AYVHCGI/rRIqffeBfDfo/02iIvnXuak3e/C5tHVBo+riMZ6h7VkeXq1Wc58obvY33lMvL4GfrXnuPy059k7tBJFqbGODFTYqMX0158msUXl9B1weZ6j83h3/HEuQmak3P87cOf44M/9e+Yji6ztHuVZjrgwfd+F5/+/Z/Cu+kubr/pIJ//w1/m1Jvei2kvId0BOt0i3X0BnZW4ttrGIrnpllv5nd/6Db7j276T9e1dOlsdkqrPmUNNPvGpv+K7vucHefLRc5zcN85dd9zC/3T3v+IrX/xrst0Otj5JozXFDWduJc5iLi0t8fDZc7z7TQ8gteVvH/0Sr7n3tWR5zr5qncdWFlk4chPZMCILfPI0Y6xR42tPneXtb30QaSVpmuOXEqTrkOUj7rjzFJcXVzj7uEQbhZWFNs0VCldQWLG0Ic8ipPLJTUYUpxgvI8kzGlbiVRx0Zpk/eIg4yqhYgTu3QKYk2faAuL9L4Coun99m9uBx8prPoL1LhmCsXCV3QpZefILJG47jLO1wPr9AszzBvtkFhjIgVIpS1SeOe/TNGP/t9z/Nmz5YYm5qnnNPfobW4dtZurJNY6pB2VW0sxF6dY2JimLu9jfxnR/4Vi5vrqGMYGNrE0vCPbffy5995lGSLKdRDkmHCV49IIpiGrUym7tt4kiTpIapsQq9QZ8Dh2/g+uIqZa9EUPVIhh1qrRkcOyAa5HiOyzBK8aWHHI5Ybm+jXI+xms9ON2ZzfZmpiYV/zL3qn2S5L/wo6ZV9VL/7P3L94f+Mc/uHEbkillkBaBcCJQGrEFKQm2LQQOx1j60tmJlSKcgtCNA22ytcRcEtxdmbmTLkJkF5JRztk6p0z15U/LzghP5DlFWBkJIGEu3jewMia1EyIMgDtE7ZPx9i82uYXTh8LGFzbZEjM7B0rc/J+97H+vUdgkqVTBuUlFgbYbMySsRkLrgCpFdGWb3Hma2AyBkNY5pjdVZXlhj0Mq6uXCZbOsd4MEIqw7ircKzG5jlRmpL0Je2kx25qcK0gN0V2tdFsUamEBIGPcVJcWyLVgn6SEV33iKKIvhrQ37akcZdYa6TaRqTghiVsJkFkeLpBjsA6Dp4soXSVRKVo7YLpoWOLI1wiJyYdReTaoglpVMAqh0GnjeN77K5fQZsEhQsIlOOTpyDylMyCUYpcGx7//vfyjp//FQ7edzfPfPRrXPv1H+eG0zfh/uQvIJ59Cjs2hjbFkWpuDUoWWlghc4QwYIOiYakyJC55opk/UeXQbJ2DR+ZY+uqAxEDqaDKdo6TFRRI7Ep1r5B7nRADaGtSetlVqi/BctI7xAONIrCi0mcIATjGolcd5gfpyi85jlGjCsMmg02GjfQ1P+Hsa2xzjKRwpCvPXN/iyV36DoHsQ+frvovvcp/AOvgOdCmpjLQaDDpWwhrA5WWwJSyFJHJH2h/gWcDzyXCGswRDTbI0VA0TRgH6vS63RwlB0+UVGYblKM+IspV6bI0p6UKph4gH97hZBWCLwPKqhQ5wZ0uEuOkoQDkQjMGKbrb5CBWU6Wx1mDx+izCy5WSPretxxzwQvnXuM6YkGWSJpNErkKPyghNECYVNMtovJApIkwypBs1lnZX2d/bMzZKlGorCOouIq2r0OrVaLq5eWGcV9utc2mJuq0O5uUmpolHLw1Aq1oHAebsAAACAASURBVM9gaNlc2eHahZh9rRZZOmTQ73Ng/wJhIKlXa6yxTLXcAiQ5km4nRakRa/1tqlmLLM3IjEG5PUihPxoxXqkyjIZsLQ/ojaZQjsAVHlG/ThDW0NbDURnZoAdOi9jJifoD+pEmFQ6NCgjPYdQfUK5W2e6sIU2O61cxViKMIIsyyGJ6fYUXNkDD87/6M9z0gW9l/jVnuPK3l7nyBz/HodtO4b7rOxguXiA4uIDrhahckbk5riwVulcky8vrTB/wCf0y/d4GXmmcwUrEzMIcftqgOzdF+6Uvk2koN8eYnpwmTmOcHUGsM4w0NBvjrG61wRqUkpAVsw7ktlDRxnGB6hIC5XjkQhTc2STbU8db0myELIX45YAo1oR+jUGvz25/C7RlGMeM4hgndIrYT5rie+Gr3i+vWrAOFy/TnpolGsVcWe0xi2Biv8/zixdoTs4RjR+kJFZozY/z6Kc/xv6jN9C0GjF9kjQQWNdHiYjO1WWO3/EgyeaT+JNNbn/jDzOqFFDooHcdU7sB1QvIhxepHr+PoY5Id9rcNFPhqaog717BaU8Snn6A569v4PU3yeszzL/mHfzez/8b/uXb78e7+Saee26Ry1/7KA/c/1q+9vH/myMPfDfNfpuN/cf5/Ed/kfrcGRpzb+bS03/L7u42zz3+FK1KjVazgT9xnN5QMTNnuLz4HLceP8njX/oK5bDKo199jJeev8DcseN8z4e+F7esuP/MGQIR8L4Pvo9yo8EXP/WXfOFvHibtdLj/vvuYnmiwf1+Li889y81nTlNzPU7ffDOKhP/2Wx9lWHXZuPoJGvPTfOu3LzAxNg025/DBg4ySGOkofD9kdnYGMLiuKoLQ1hb6QQo80MKRI2zvbqKzHCstQhiC0Cv4jKbgsloj8DwP6bk4jsTmIDyXxaWLbOy0uemGCWKTolyHpQtXOHbX6zBJH+n5OIEiCV1unL8Dv1IiG/QxvVXGQofOzpALn/9dTn/nj7N6/m+ZPHk7s8Rc+PozPPfpj3P6m76bfH0T0TrExrknmZndT+vkv6CjS+gnfhsd5fzwz/wY+8ZbvPVt/4l2yWM0EBw5XKFeGefb3/0uXv+W+/kvf/oxrl6/yo1HXsvRE8f4lV/6FULfwbOQDSP6WYxHwDCO6CYjDkxMIZ0Cch+NUspOidWlddzGJFtb24zay9x69ARWZ2Qjy8KBefrbm1xfXuP4/GH6NuHWkyfpDkeU6w3CkoHyPFvxN3YeDiBfipk5vsTOl95MNeqx40ikL4tAvLUIDCBBGKyVxYAVEp0bXN9g87zoiuV5MVhlBVhwJGSpQEm3MDK9nI23FokDNkXZECv6BRcY80o0peAVGqxxCxuRkCxMZ0ilycwOevQ8JBs8uvwhTiQ/xonbTlJfGOJZGJsZoaTLPUfKLF58H846jIbQTR0yUSfwZnFqBzhy7/eztuMUAwZhRpbvcT6lQOsC3wVgUxfMEE9Bc16zfc2iB5bF7RX67YQ4FUSpxjUpJpakgUczLOOoBgCuNkhchB0x6MZkXp9oNCBPcvKZcZAerXiSUa1C6+QBQt+jXGrSqNYJwiZW9CmXxkisJstsURSmhsQkZMLS7fbx0xydp+y2N6gGZZrNJpaAStVl7YsfRYrie3SsolapY7mOlQ6IAcaG+J6DyXKE1eALVJqQ3fJabLWGDTTs7jJca9PffwN/eLzFD37yS7hT83jru2TGIJVBqTIyTnFwi+eKzLG20NNqA46jeOYPPol75ACNI7djsKS5REiDZxyQoBwfZS3KeZnj6CJtEUXJ7R6AXWcFLUAppBI4biEByI0u0s/WUBwMCJT0EFLQXt9hafkil8OQaqOMzIocshSWWCps2ZBqg1Xf+HrW9FqH2skVdr/+b8l7PTJNMXMQ9/C8EO2FqDzBCz12N9bwKxVcKTCyglQCm1mUkKSDIdVmC512kZ7L2MQCqS3ONZQeYpwKIhPYPMerTJCbFFJBtWLoOgab9Yr/cXOC3ijFJUGqEk59gqVL57nzhgZOY5J2b4P20l/TmpJ8/YLghurnOb5/mvWGQ7z6FQ7OWoJ6hhMNePH875PEdWTukAsPU5pBinG8ahM19lpqTovd1S6eA1vb2wz7A0rVCvv2zaGtZtxvMGhHzMy2KNUV/bXHeOb5VfJeSuZKbO6ivJAo7TJWL9Nrx9gwQOSwvNghdyRXL63ihRX2zfpsLFsotQlcRZZkMNGkN/Apx1OMggnqBybRjkMYVih5JUaxZqwpCfw6zzz/PHOHTyKtRuQasbtFfXyM0TAmFIp+pYVwJWU/pOm6jFYHuOUqW089RJKleK4LVlAKK0SjK1THJhBmgBVFdlcLQ61WhcCHeEQ+fwi3UiYlpfPSsziqxrA5xWM/8S9457/99+S1KXaXl6nMzJE6EhWMk+1klIIqpj5FjodtX8OkMQcXFgirU/zxR76EMzdNMHkYg8WKgPmpKR7/6uPccuYOkjQnaFSoVSpcW1wspBZYrBUk0uA4ijhN0KnFdVxczwFl6GGRCEZRgvQC4jQl1yn1chWLoLPTpz/cYWfzOlKBoyWxMDTrddpCoSoSx3OxTon0fyCme9WC9dQdt3PlynOMzRzkyJH9TFTHefSFL3Dm9rfQXfoaMppCd7cYCZd73/4eLn3yo1Rm58nyVaQ8RtLe5vjUPM84HtdWnuTm2+5nef08eS1n54mHeCmx3H7nW7n6yF8w1jqOnJ9nDLeYsNOG1ace4Y43f4DPf+1ThKduQaxcxCoXb2wfs1P7WXr4k/zm+b+i+UMlrn7kLFfaq2RZSEydwBNk2y+ynuUs/sGfMnd0niPhkCee+TRHb38D973eglNjVddZWnuaevI85Ztv5+LiGh96063MTu1nfLLHvn3T/Mqv/Ufe/d73kjoOv/XH/5XFr59jcWsNvzHF8fEG73rXOyjlGcdOnmB2bp7Td91DuVxmMBjgacPH//AjnDlzhvbmKsuXXuLD/+ZfUpuZ58tf/DK//gu/xDd/4P285Z3v4uFHHsbzPHJhiZMB3W6X8fFmwYezf2/XgaI78Qd/8jmUgVC5WFMc2zmuT5ZqbG7JZFE0JFmKUkVHTTgSJ3epNioEro9pHkBrzbNPPcOZ21/D1NQUAYJ2t4Pt9nHjAfum9rP49NOEE+NEOUw29/PSSw+xb37Ive9+K5sXHqFSm0cpS73iMLdvhuNnfoRKqc5GlqJGQ248tMCXH/8yp+58HcmoTxoc5eD+Fu9/9wcZnzvAXXe9gaW1axy8bT9ffvhRTtx6ig9/+MM8d/ar/NLv/hcOzU2zsbrGzceP8IV+l4lmC4EljiOazeae/lPRrFRY29igWmqgk5jKeJ1ep8v82Cyd0Q7NmssMRf5WJjkOgrWrV/FCl4npCWoTNfaraRIFtYkWw60dZDXk8LHbCSea/1j71D/Z0nlMKS/jZDskfoBnQFixB6ZXr3Q7gb1i8++ZrFIUE+5iTzjwclxVoF4B///DPCpolCnQRYgEoy1GFRpNKyWeV+Bo0IYsLTpsoySjFjboX/9xfBxyvUGQQyeu8fpbb6M1vJGra5pGrUpm/EKkkWcgHIQsk+VDMuVTkgbh7JDFfeLu83zxN77M/T/6WeK1XcweS/ZlCUBhSyoKdjeU6KEgTQSXnkl4+rnziNww5jcJVI2GG9CqSox2oKxIQ4dou8cAiPo9VC1jGGTc5VVYPVRhdv4w+2tlAuUTTMxSDkt87H//17z9J38aco1WiizXiCxmOOoBOd3RNkplmLTYDELHQ0qNGaW4yrLeXSLfTrjrja8jTVM6O7toq/GDMq7nkCRR0fUQRc5YoYru5Z5lxgIIg0DhmR6JqNDyHEadlOTZiPLJwxz9v/4dswun+emvvI8sdBhcXyO3OTZw9zS8Lz9nLMpxiu64AyQeWm6j85w8kHjGwcgUR3l4gY91DK4QuJ7DKBkVrF2nMBJJ9mQRGFyhEAKk56FNwWu1ttj4tM6RjnwF8l4sgTQajEQZTSkIKVWrJNdzTJ6ipY9jDNpKcNmLA+RFLu4beJWrIXk/wrUpXr1GUK3T62/TbIyRRV2kyTFZgrWC5sQUo801VFjC6AgpaugkpuEHdCSM4h61Woso7mKUIdvdYaAt9UaRNXXdEk7QwLNgTITVKaNeTG1yhrizhdccw6YjhAHjhPhuSGdjk246pMZHya5Y+sk6YnvEMN7PLYdPMiHHWd6KEHGXoDZBzRO0hzl+Yz/jrXk6OzmDPMT0u7jxKoQJ7eUXyLcvcPqbf4F4q41f9bh48TKTk1No4Mr1qwzbXawD/WGMjWKUI1m6mLK23Sb0fOYm5gnDEIGkEQp2d7qM12eJlWVno8/M/GGMsbRHXc4tXeOG+RmGtxwF6TE7PYEUCrfWJB4lPP6x/4fXv+f9oDU5Em0NIkuJkz6Xr/TRbBAP+0T9Lo4qMquYHBvHSGnZHWyyvb7Oa9/4enKtaW9vI6wlDALCsIRAIaWh121Tq9YJ/RAJ5GkOuUZoTeAokt4AJxsS5wFjYYX+dg99aZfZMzcTHPAZmz3Ft9/zZpySpN0ZUZ+aQfku0lGgc6qlkI3tVWphFZ0lWCek5NR44smvstEpUZtsYtwy460qKy9meDWH8y++xINveiPXVpdRCpIoplEdZ9sagj17WJrnhL4PWGQYoqRiOBphddEgQ4CxBsdxyE2G50oCJ0BJCtudMZBrSpUymeMgFfi+hzYG6frkJsFISalSwfFfHWv1qnfz0+efxpcOg2GEpyTdLOeB172PrZUnaPgldHeFsblTpGlKb/kiUWBYmG7i2xIkq1y7ssrm9pNMdHeYrntc3n6cclWSri8yuXAb1VKTjZ0rLExPkmW7uHmdpUsPU99dQ4irDHTE5qUnOXj4NN24w4WrK0zvP4YJQjaiq+y7/x3cc3gfd957F24jpLOcc+bB72PxwmXCELq7bYwnoeqgSrM80S6GLv7mc7+Pe+Burq2/RL06x8LJdzFWzhDbi9Tqh3noj/6C0bDP/MEFnnr2WYwjOfvkE/zQj/wQF7/yBDeeupma9LjhwI0kqsTzy4tkSnHrnXeiXJcXl69iXIFXKrO5usaBI8dpTuwn1YKN9TWGWvLM42f5/u/55/zeJ/6E73jTO7n7vtfR6/XodHpkWrO2tkYYlPA87xUzh1KClyMeWmscaUmNJZeKPM8ZDAYo5RLUKqR5gfVxnYJHZ/b8xdpkKM8nT4uN3CtVSZKM6elp8lxjhMfqVptyUGP6+EnK+07QCWapnDhAWKpSaU2SlQWzJ2+kM8oJxw6wm+bM7T9Me3uDs48/TRqEDLs94u4GvnDJfcGTz73I/IlbCcbmEbUSN7/nBzl+aoy/+shf8ud/8gmOHTvG4cM3UK9UGKYjGs0JvvDQQ3zmTz7Oow8/yoGDN5CPYpaXrlOuN6gJD4Ol4Rcc2kLRl5BpQ6lUojU1xihJiZKEarmC70lmWlXybIjOYjY2d8gzQb02RliuYoAgKHHxxZcQuMX3EMd4pRKq0qRRn+CvP/HF//871D/xMstduk+sIRND0o9Qe0Wj1hqsLIpPIxB7ykqjM8gLLeEr14jWiKKUfeVzBeoVGxP25aEtQSJyjGOLwS7XEnqWqi+o+YZAdPDzVQYbT7F77tOsPPobbD/8m3Dpl6mGIb7fwvemyYNDeBNvoOfkrOzkeMOEzqYh7u0y2lxi1L5Mt3uddFRjNKoQd6Hbzxh2K4yiHIskTV3+4he/g5HKSHNFkuV73FiJcoos3GAYEQQBlWrAwSMzjKsBB/dVmXBmyWrzeKfuwH/NPVTueQMH3/Y+Tn/PdxK3WnDLCV7/Qz/AxswMt73/2zh1/1vpacEd97yTxvgsQdBAuhV0r8f2zhYlAYNOl340oNPZZdTdoT2IaccZOmljY43p5aRJjLWaxKQkSUKgfJRfYrR0jeZUi2jQJxtGCAuu43NlcQlhNOVyiDGFzSvPi24sdlh0w40liyGzAwQema4gGHHigz9IPjVLpjPKrQYTh+9F1122yOgZh8BRaK+Kqz10YsnjAVJKMhNhsuIK0FaC6uPYGtKOEP44S49+BaUyUkNRmKMIHAdfSXzXwfWcvZfJogA1WCwGIzXdbpthd0A0HDEcDhHCImWBo7LaFLlqUxAFjMnJhUFLQ21qHOMpVJKilGBj8TJJOsQoS5ZZtOsihQNGYfU3dsHaubpOfLGDiXPyOEUrwXhzkni0iyMcyFJcv4a1kMdDcpFTciQKidUj4ighinfxs5zQVQzTDo4jsEmCX67hKJckjSj5LtZmaCsZxjt4Okc5I5TSyLTHeKOGtB2S/io2Wae/dJbV5z5Buv4Uze5nmZmewi81IK9Tnb2TTB0m8TQbuzFOmjMcQJZkbGzvkAzXWLr6dYyapdPV2CTEOuOYxCfpD3CcCmvXtnns47+ArHhsd4ZkxtDtdXj++eeIOm2a403yJGesPoZXCik1Ayoq5tjhGepOi64ooxaO4J+6EXnwGAfve5CTb38bcbVGMjPBibe9lSUhGYR13v2h7+eRR59gfTfFD2sgfFA+o91dBsMBoRTEwxGjJGI06pMMewyilH6aY/M+JtXoyJCmCXmWkVtdxFqEi/J8su0tSvUKSVQIALAW1/VZW9sEo4vhuNxQLlf3YiuGJBnskUUqICtE0uJUalhRwfVg35vehju/QJzllFotwsnj+OM1ttMRa7tDHNclxUUkGnJBnsf0BiPccoiQITgOlamDVOqau2+9nztvv4lKc4bRtav4LsRaI6TL3a+5h876Bv1Oh1qthhIwGo1QnocjFAaLs1c3DIcDRv0hcRST5xl+4GJtYdRUQiKlJXAU1hTxnVGaoLHUWmMI30NmOY6rWLl8iSxPSU1GlmnwfaTj46qQrZWdV71fXrXDevj4bWwvrjDdVKz3Ik7ddCPLn/wdJm96K4PhLpsba6S6RiMaYJJVvvd9N/HHf/kE0XafAwtThJOaJx89x60f+Ek6F57n+vYKHTL86Smm5vax1G/T7e5wbHqMtLuC3upQHm6TxoYnv/TXPPCObyFZGREEGhsnHH/wW9i5dhYGm5RaNxDtXON7f+R/4aHPPsf5p64w8cZ/Rdy7wpvf/DZ24jbB2lVeOHuebelT6UK33WGuOsbhU/eze+1pJpstov4zlGaOMIp2COdvJnzxL2hHHX75//wPzB89xgNnTvPam2+htW8/H7/3daTjZX7/3/0CP/erv8ov/dIvcvqOB/B92H9gDs+t0t66yuy+ST7zqc9x6tRRglKFWrPM1s4Sc7N17r7rAzhSMz3T4tGvPsL60iru5Bif++xfcen8JYQn6XUTqtUKOld89eGHOXbyBLUwxKJJjEC6gmapgpycYf/CHN1kRLvf5ulnHuWP/uhPaZbL3PcHHyFJulg029u7pInFL0PZK+OGkjD0aLd3kCIh7/RozU8XJANHEDqWfjKi385Z/+y/5qd+4sf46PkF4qRPvebSTUaI7VX23XIL184+wYnbHyCNNhGlKqEqQTzkpe1nOVg/RPnATZR624ztn2bf/EF2OivUKlNcXFlj6Xf/Mw+dnIKeoR0lnLzzjfhTB/G9L1GtlvmmBx7kff/sg8h2j+e2B9TrdbrtAXeeuInF6ysE3YwES6nR4PrSOo7VbGUZ2veZigWVeo16tUxDusUgjABXOLSmJ9geDBl6hvb6GvvnF9jeXEUmKakRDEcRVsB2NGC8fIh941W+fvYLvPl17/3H3Kv+SZacPIC2fayvaTguWzYnNQm+V+RKi8zqy11VibAaQWEEKrqoFoNFsgf7FwXAvli2MFVZUej3AMdE+HaH4fY6ropob2yRRBGj/hDf9pBmQL3isv/og1QnFpBegGmfZ9hdRDvXcVSFSLS59umQi6s/ytt/oI0a8wjzFOX6dDdjPN/DTQ1puom1XkE28CWpMWAUWSoQZOTda5Qrk4h4QCqDwsoFCOGQpDkgkNYQ9XOMK0ikIHQdLvbbvPP7f4Q0TcniBAy0s5RSp0csUk4cOMlnPvqnvOcND5BkMRee/TqnfMP0TIulaz0cKcjiHOuBcCzCuEQ2xU0MGokjPXxH4pOjjEMoYahyfOtitMEIgVSQ5Rm5gKVL6zz4bT9Ab3WVWIEVQ8hSDh0/wvqlR4gGEdVqHc+r7EU6DEJowMNaS5potM7IjMVVA7Qo4VY01nhF8ac0XsnDZBmpsVQzTW7BdyI0xQtye3eHZtPufc8GKTwMOdKUMOyQJzB35rWMLRwmTzMQe3GBTOMHeypWqzF743smNxgJFosUBSsawPE9bK4xssjaKuUVV9rLrOC9S0+IghSAEviOQvqKnZVNSjZDxxE7O9tMTrWKl7KXr2VpvuEjAZV9R4iHbVzPwRcCU/YYbF0hbBYNhCQe4VuFZw3ojIWZKmvrHXSuKSkfJ0hp727T3HeMdNAlSmJym6Gx+L4PaUaW5ZR8hc1jbLxJkO8QtTvsbL1I4JXJYk0Sd5ACnFKZwA4YnzxJZWISR0pmwxmWFx9jd7CGO36cod4lvepz8cmPcOfruwyzDEKBckt0O0OqQUAtrLCzcQXPdUizISIMSbIE6TUwnQ1yDS898xjTt38bE6WAqfEWnu8zNdYi92Dx+Rc5fuokl1+8gO9UEKQ45RKu63Oxu8Ub3/NNtDsDPNfDU5JMWvrtXVQouO3U7Tz9yGPcd+YMuTQ8f/4F3IrD29/+Zq5euYJyBEmUIR2B5wo6Oz1SYfCsLU4hVUDgSqrxAChTLTe4xgisZXN7k5W1DTxX0mpOkpuMzbU2h06fRmhF7qo9O6Bm9sA+NleeJo1jAsfHrzSKBoEwONKSa1k8c1bOMeO1MWYeYQa4fhkrMuxwRFCtMert0pycwmQjcqkIM4tONaneQLp1cAKiTp+G7+N6kjwbEfhlBvGI6PIaK/5Vri5CPnYfs3dOYt0qUnkoR/LEI49xdOEQNknpJRrpOGRpTq1UIYpjRAZWSJSnSLp9fC8gzzIM4pU8q+sUudUsyzG2iJT5nkeW5hgHyDPcUkBvbYOyzsjSjE6nTbVeNNYCWcJ3PXq9DSZbr846f9WCdbJRoXbiJsbFBtHmGr21TbbcGbqXLxGOSe4YNzz52d9i/C238f8y917hdp3lufb9jT5mL6t39WLJKrblItxwp5rimIQQCDVAKskO7CTkJyQhbNJISCAkoXgHbIwptgE3XDAusmVbtizJqkurSKvP3kYf338wlx1Ofu+DH67Ne7zKnNeYY37veN/nuZ9UqHHbQ/OQGmV4TT+VA/eR2rKdtRtupjE5z1xjgZ07rkYm2xhSp3byNGcOPcxl513MfLNMUjQx7GH63/Y+bv/kb7LhnEuZnl5m3dbttNhONpfC7JTwzz7Hure+l3v/9teYuOC3+eQXXuAjb+5n88VjvPDMrfRf8l6+dc/XuO68PSyTxu7rYbMxwt6dPbx4dCOdUBDPn2Jk77WEZgv/+H7qczph725aM5O8772/xcn5KSI3YmxslP2PPs77P/S7HDr+PE/89Gn0hEXPxgleeu55rrvmRr773VvZes4OCE1OnpjkB/d9m7nSbj76u/+D6ekZ1q/dwGNPPMrll17G0ePHWDMiOPTCUYZHx3hi32O87tqruf3WrxGFPppl8/C9D/K617+ZQPX5wz/+JJs2bOR//PknWVxcolarMZjJc/31NzA8OkI6Nczho8t4vsZtt38dt9Hg/M1bufiii6h6dUZ7B1CkQrqnQBAEgIob+l0RuO+R6xmm5rWJwg6mZiKDkAAVEbcoZPtpOwo7Nm9geXYRSxnB65SYPbmIaFdQCsO0Du4jO3I5raUF9JROVgPfVihXlxno3UZ5+TCOkUAqKs78PMaGrVjxAJ24gaYq/N1tX+fCXet46KFHOD5dozJ/gsLGAtlIsG/fI1z+lrfy6f/1GaYeuJ9pCfWoTumFU5TNBOm0jXSaZAq9LE/Pk8yluHhiM6c6bU4dPsIZy2HL2rUcPj2JtAwsTeCi4ccRnY6LZarEpRX6hkcJmx2GBoY5feoUiUwaK5FBCT3SO/eQ8UbIbNnAyOwCuXP7fm4H1S+q0ms9ps9ci3XtnzD95HqGNAtLMbrwcRGjiG7SmpABkVQxncN4Wi/tpotfOkbWaiNTFjIIkK8kZHXXzyBAxChCEq0OWztmmz9435+BV6VW8RgZXM+ZmUkG7SLDvUXSRZuiZWEkfwqxj6rAr7ynzAtfdJi98jdRUECzCfpNnHSFn5x5IyLqTkQj0+a80juR/TahLyDuamqVcooH1KvJuCrLy8vkWgpi4XH6toCmxARxRBS6AF12ZSzRNaUbW4yOlQAnUFHpxikn9ASdavWVSbSUEdILUXJ9pI08rY7Lmm2bOX12hmQyxaWvvZqVO79DEHaYm51hZHQIzdZQNA3LShIoIV6lhJourHIaBbEXEMuQlKJRVSNsmcbFxzIMZByjoOCqDsITbN5zIaXZM2iawGs2uvGtXhMta+N1ArKpLA0nQIl9dF0nkiEaFkHkIITKoR/9JZeOX8XhfY/TDGrdxs9vsXX3TjLZQTRNIZXQaZRD8DzO3TJGIZ9AE90Eqdsf/zLnXnSA1nywKgtRiKXXdf0qASpJzll/jO9WlsCI6BEag/3DTM47CNkkQsHQNGIthlgQSV4JkYAuidf3PHTNQsiQmAjiiMhc5bMKhUCJCeMIpECsonJ8RaIjWDwzTbC0jIpLKDWkUyNabHNy/hhoBUwrgqgDmgb8chuvcqOShaXL0C98M5WDN9MXSFCSuK0OqiHIG4LG8gxWXxpQWZybJFRzxEKwcvxpMgUDOzVC0GjhRC7ZTA9SCbASZYJmC7e5QiGTwwsDVBESWDG33fE0c4efQJKkWBik47TJGFn6e/KkMhLTaZKdWGL51H5S+TXs2btEcMBhavMbaU5GmD3rWYwXyA5pPLuyk9h30a0UuVSavuAviRIBsrmIbWdwUgJlxuPJ1k6s2KY+BUNRzwAAIABJREFUs8yW4kWEzWcZGm4zOjxAaW6OwZEhmq06K5UVhKJgZ5K06jWKvSNMnjyMGSWIIx3XcamVK5ydmmZ8Yg2tVptEwmZ5aZmR9WtR466hy85lmVteotNx2HXeeTQjlzB0qFbKtFQYHBwCTXD6+EmafocXn3sGFB0/iLAtm958EdMySIkkCw0XoiQzc3OoQD6Vo1gs4OJhCIvRjZvo1OtkenQCx6PjuDScJnE7A1InlUrT9sJuQAQKkZRoqKiKQBWS6rEfsn7iMl44foRGq0SEQLoNxrZsQY+a5JI9WHRwgphcGDA+mse0VQxjgMBp8OQDP2Zw8wlaZ1uoto0ibQLpoAmVLedtI2nZrB0NeWA5Q9Cuk0pZ9GV7WKy1KA70sWHLFjrlMm1FEsYhbrtFqGpomgpCYugm7UYT07QpplO0ggCvWqctQvrsBPNBhVAEGKujjlDG6JFEqqD6Pp12k7BUJmEqOM0YJXIIG8ssVeexCuMkswZ6Mg9+gJZ59aCPV21YDz51kP6+HNXmSfzUMLX5AxSG12HOPY2/0qY8dDkTr387lWQ/puaweTxLbWmGg4/dy66t28jaA4gejRNnzrLpnD0EcYvA78OMFwl7CuzeOEDpuftwMgPk88PI2vOszJ3gN97/Z0zPHiCRL+AqKVqLh+nfcgNKrYQ9PMrdn/pVrvzIv3Pm+YdZPzbBG667jkeeOERZGcZfPsplG8YQkcfWCY9jkx6l6hS3fvMn5PM5Uv15tLTGsz/5NqNrxgjsEUw/JCmbTM2f4MziOAf3vci7fv1mFpcXiIiYbUxz9Jln2HnBOTx4z0M8+vhD7Dh3N5dfvofRwTzlusett/wnYeCQLQyysljlC//wT3zsjz/OwtI0tqoyPzuDGqvYdpJiroczZ86wcf06hKnz2OOP8cSj+9i8YT3PHnqWG9/9fppTL7Frx04GRtcQhA4ZO4PnBjSaFV548QVOnjpNKmkTyZjeQoq1o/1kk2n6h4cY7C1y9MBBStlZ7nvySVJpi1a7TtazurnoqKhCEElJptDPytlZ7IROpy2xzQSG3mW5qmaMmpIEhmTYW0EODFE+O8muS68ilDFTTy0h8xKCItXyFD35MVpiEZlby+D4GhZaJcbGxigvnEEfGqQeBKzsf5CJvW9HKb/IS08c5ivffoi56RNctXstN7zj/bxuz/l85E8/TqnT5oH/+Dr/uG09I2vXMLU4TelUmZ6EzYbzLuSZZ56mPz+IGoeIniK9a8/jxPxpSBVJpxRMo8HMTJnRnhRztRa9KYv2Yp2B4SFqbhs1Vunp7eHszFmKhTxzU9P0F/tWzTkeUeix/Mx+Jt6xGZHoZ+7096mtPAO/88af32n1C6j6QoK1H/0kCysnyZ17GZ6qEglQiHn58O42D10JwOSBhynL7TRaKq+/ZoygehQhFAxdxyd+RbP6s9rpLrCoO/qytCRrVItM3xDpcQsra3PZpnG8losXRYQipLm0wGRQx2/7BG7Ar7xngrYQrL/6OtxqC69Vp+1L1vZtJm5H+NJBCyWh45COdeIYwlXXvyIVQtNgIN1HJH1G+xOoIkXrG/sQoiuV8X0XoairEbNdmUMcg65388JLiwGJVAIpBWEYo0h+Rh/eldJoto7TapOyExTyfUSBgyxIZk5PcvThR9itGzTrLcbGR2i1WmiaRrPdJowlmVwe20xQXVlGUU2yfT2kkzYdr0MUdMhk8xApaCjEYdTVcyHRtCRSRrQ6TncVrkl6e3to1hucOPAiAxPDQDc5TEqJqupo6svBDKxeE8Ga5Fcwtn+KHa+RBFKiSYHsDtFREBhaTAQ8/8yjiE6T8ozP3MHn6TRmaNaX2d1/N/W6gSm97io/DkAaSDxe3u4bSY/7P/9tekdzbNt7BX2uixRtpC/B7r5GABGLLoM1CIlXH4AUha5GNVReiV5VFLl6nbrvTRMKcdSN85WyKw2QhoIMImZOHsVMGUREWLpKrGk4QYCqSra+9hpWZh9D0TRiNJC/3A3rwqRH8c1vpFI+jr3+PDpBEzs7iOqVkb4ksHpJDgwTqBoxIa3SPBU3ZHG+xFWXrkO4ywhdxXM80ul81xAZG8goIjYMsmkLv14iUA0M3SKWHubyMpduvwoiBzuXRAiDdq2Mni8SBw5+1eGxR+4kO7CV1pGjXHn1KLIvx+aLr2S+JPEbK2j2MIViDiNsUmvHRK7P8ulp+gMXJQWRKqkuzhF6OXyrQMHMdrc1WhJlpIfW8y3GNmUIg4Ag9HBDl2atQTqTorxSplQukV2fp39ggMCpIzWNQ80WkYwxdBPXcTl96jRr1q3BD1xs06RRrWIbFtlMERUFz/fwHJdDhw9TbLQ4+NyL6BrMLy7SMzBIfXmFdqtNT/8gxVyRUrmChoqiKgS+i+O28fAhmSORskirFqpQSCWT6IZO023jhREvvnSUzZs2EEmfTCpN6PuUSlOke4eQSFTNQHZ8NF1HkQJVUVCEThR7CBUGkg+QX/Nhrt9s04o1vI5DJpdDInGrFcxcmkiqnDiyH1VCfaVNpzOLRovq4jTbBo/jOQGWqeIBUW2RVO8oSlSmUXaYakX4Pjx734Os3b6Rk6d+wo7hfoJ6i+XTM5wu9mLaNu2oQ9AI0FWVZDpDtVnH1A1iEaPYJqaepOm0EJqBoSv4akyn3cEyVDqARBD4AaZp4vguwlDQVZOzkydJZGyanTYZ2wLDwI8CBBFDY6MIo4EwbNxamdB79fjzV21Yz33NDlqNiHKnTTqfoD7lkRxQedMbL+W/HjyGNdxP6eFH2Pz2i5g/OcXMc89hrFnPyAV7WfSbWG6T+ZUScatD7G0k3Zel3FS6ObSpJEemV1hjqAQC1KzC5g2v4Z5vfpGlNZsIAh0dn9b8o1y69RIe++5fYVPkQx96M33B9Yxnp5lvHee8qy7ENEAb7Wf2uUVGeiwMx2J65hAHZo6z9aJ30jsiGNsQMX1qH21RxGwvYKkmQukjl0whbEGtVmFgZAtP33Mf6b5R7vv+nWjpBPMrCzzwo/t5/8038Y07v8fk5CT//IV/JZXJYyUzzM7OMDg+SqHQg42KU2ly6SV7+dGP7uUzn/t7Pv0XH8dpu5xdXgSpc+rUKU6dOkYQB1xx1XV88fP/wq4d23nfb3+Eg089g+3G/OcXPs/b3/QGyuUyx05OkU4mSKVSZBJpkpZGbz5PjEo2m2XjxnVk02k8GWEoGuVqlbHREY5OTmLkUkwdfIHLbn4zqm68kpceBgGKrqBpKkEkMfQEtUoZ3c6gaAI7kabttrGSOuVylbij4sYd/ESRhG1S6/gkFJ38ujUogUbLaqMLDSuXp1/2ojclc2dmyRTTLC0usHJ2DomPMGcZ3boXzT2CbNbYcPEFuL0O37zla/zkvu/zCRyuu+4G9u3bx0c+85escUO+/MX/4LMf/BCT37mdJSuJiAKef+ZZwiDAdTvYCZNiuhcndPnAu9/Ngw8foKTH5BNZIiOk1aiT0EzCOMY0ujgORRXk7DRCqAz39hFEIYlUipbjEPk+Wkonk8yBqHLwqSdYM9ZBNQapnj7wczyqfjHVWjZYmlnADFVGLngPCwtnEHnZzW9frRiBApiaSrJP4VMf/AdsFR7+0iCf/utr0IYj3AgUtdugCkUBqaCswt+ha+KKI5BazHLSwhwYomOp9IyuoyEUEgmTo1//d3a97w84O/MC5w5MoChQLa/QcA8hLB214/LS5/+JTa/dS662wsLkCuv+8COUZ310YjTLotWKsWMNZBsh1G5yWxSSTlm47RiUBJ5bQ5rdr7KO59NuNtEM/ZV1sJQhtm0T+AF+UMYwDGZmp3g56SuKAoSmosQRcdxNjItDF6EYWJqK06ogpSREpdXqkM9mMXwHQ9VwpEImnQMpyaYz5Hp6+fZdd+D6EZlCHl03abUa1L0SlUqJTaPjRPU2nlAIWhWQ3UADQ1c4PXuWwfFxpIgwdYX9+59mYnw9pm2z+9wdWIqGpnevQxeFqxIRgAiRMkYRAkmEmZToh9Yxv1hHmE0s1USmBEM9Gf78ltdyYiVguHcdyytz3PLnL7Iy5xDTQUnp+IZPKG0st0nD9lG97lRbKBHEAkWJiZA4bfiHX5/CcQ1OLC5QnalhDV6Cr3jEIkLRLSJCTE101/qaioji7rQ3jAkjD8PUsbQMQuvGZjZnVl3tsmvWkBFoqxpsKSRhFJM0LIykCqFPLARxKHFkRBIdV4GXnr6HRNEiCgIUQ31FuvLLWoZaYKHhgJtgYOu1LM8toGRhoL+HuVKb2DLxKxXSg4N4sUNMg7tufQY1djj+eIYPvGsnQTZA+hGWmcAwdYJAASnQdZ1KycNWBIqQoEEqk6cSlsmlDDwseoaG8LwOPRs3ceCOr7DhmpvIretnT7iLZCHL9KmT6KmIyPTQhODEt+9g/fmbyVaWmHtsgeJ1lyGUPuyMJJnpwV3QMaQNYR1VaARCwxYKqXSKdqtFOtVHZWEazdRZWVykVKlQrdUIZMzY0BBziwvUqk3O3b4ThIIfdAiCgEargq7rKEFA4Plk8gVWFheZPD3Fxo3rCD0P1+0gZEy1vEi71eoGKCgapfmz9AmFkXVrWTx7lrSRZGluntHhQcJY8NDDD6BNrMdK2FiGTcdzaHfaNFtNJgaGsK0EaDq+20TGUKvV6O8pMHt6hsGxMTrNGomkzalTk4yPTRADa8fH0V/m2YoubzgMQ9AkKF16Shx1N0JS8dFOf5CVSoBnAH5InE/Tm0ly2wMbmW8Isvl+qsuLfPy9ZeqLFTzFRUYqhV6XQKrQqNNQO5hOhJXqQZF1CEJShQyBGvLiCzO8ZmSOscwKJ+oKS0frDF18I0kpmJqZYtvaDbQWzxDqGsQxzWYDwrgrq5Giq2PVBBs2bKZUbaJIl7jZ/d6SoYemCeIIdE1bleMoKKjouk4qYyGjEKHpBB0Pz/OwhYZimixOPoXa04vXKKIoJqH7/yPpyrCHcFZmePzOf+OSbT2Exk4acYV7XIvhYj/tOEdh01qmDu1jcGQ3S4fvp6czwIqnESzFWDvPJ1r6KX19Aj9M8eg9d7Jx7WtYMsqcOvAMO8dsyvUkGzdezPzJh3j22Iucv/tSzs4tkMmZLD5fIbt5gMHBMr6xiaH1F/KFr9+PWhil1dyMVZzn0PEp7hRNXvcrb+BLt9+G0SwzO/UsM8eOsO2CaznbWsJemSIyimRzvQyd92Zqxw5QdussOJDRVTzpkBm/mKB2hvUDIRv27qYxOcujTzzKOWvWMjAwyIMPPUoykeUt73wnKDq4bfY9/hMuufS1PPr4j9m6bRNnJ0+x7cJLKNdjbrjxCh647zkefOApvnHbLfzqr93MuVvHmRgf5dzdu3nzG97I69/0Nm686S04rSajA0Nol1zInr0X8dLhQ7zjPe/j7rvvYnpyCjfwVidHPpqhd3ETqkooJUoU4AVBd32mdJ16nozZvWsHkycmedtNb2Wgp5833/Q2Tp6cRJurYqMSJSLwoO57pIcH8VstNEugJ2xcv0msJ2lEDfKZPgZ6U7xw2kbzQ3r6J2jWVpg+9SKhmWZ0axG9FdG00sTtGY7e/mXOaBm2X/+rhLWI3m1rGBwaR/PmeO6OL9J5+8cZ9zP07NhGEC4zd3I/hi646XVvYv++SRqLJxCmydRPfsp00OGrf/T7nFI03IUKu8/bydq+Xu7a/zy5VJotY0PMV0u8dPAI7cVT/MvM81gyRJJkrlrnHb/2KWZPHGB65jmSzSoMF6m0axRsG8+PwJA02y0KhTxRw8e3VAaLQyR6+zl0+hjr111EumeCILIpDvaz1Or/uR1Uv6iK3v5ZcokkcRQTehpSj5CaQFO6U/NVuSpIjUCCIg3eev12jh6uc8473gc9DaCFpipIERN3TaCrZiyJikFIALFAENGp+Vzy1l/B77RJJi18HGRkoCsSKzTIxSEnvWV6B3eiCo2+wQJoL2HrkrYVkytm6dm0BXvieo7+0Z8w/Xt/xjlvuZEqTUYuuBJjSem+TrqifhkLLFXnyDe/T8JrkxweIr1jO54MUICcbaJm8igaCEUSRhFK3HX+GqZGvdKk025hmtluoIIqUNXuxFhoKqHXnch2EPTLCCKfQCqvzDA3bD4HIST+wgKN8jKulHgdj0wyQRwGdNwWsaFgWSnq9RXaLYehdROYyRhDtWiUFzFHRwlLdcxUGk0KfN/Hd2OGs4PYpsae8y8g0FU2nXMu1fkFziwsMT4+ThTE3UARp40iNaI4RIl9NCFBytXGziTqkr4xCgZS5gjDNGHk8Rv/dDm3fOUWPvrOqzl/wxK/+rmH+OxffJKB/u9z9QaHIHTR9BhihVDoGKFGGMUEagcjLiJEp8tRjbsa0aqj0bPrf/Evf/jXvOeikLSi0E5liEOfwHdIpNLEYUAQhshVk14cR0RKjCZMVKEQqxJN8RFCxVIMdBGhSIXYkFi5JJHnk0jYXeNp6OEqEku1aXg1VFXBUAQigI7nEkeSnr5eBCWE+jIR4//Ayfm/XPLSD2FrJkvVOTRRIQ47hEGbUkPH1E0iqWOkknQaDXQ7SxxHXLpzhOOn64zuuQKlz0B25rBtQYxKaWmBdKKAHwY0qxWytonra6QSOZz2Esunm1x0w6/RdAJ60xZeu0UqnyOdidFkjlyyh8OnHmLz9ktQ0kOMrddoOs/iVuv09aVJJDWyAwXiNQMsPvE4lVsrDOy9AiUq07fpfCzVxMwNEjZUVFfgthUSUuP4Q0+QVA3MTIK+df0ovVnsRAC+S1++iJVOdg1QiQQTa7NIBLoqWZibI5FMUmm1yGZSlEslsoUCQRjTN9zL/HyJlXKNyZkZdo8Nk7R1zESCRDbPM/v3c8F5F1Ds6yM4chDpeyQyaQzLIvJ9ntr/LJdffSXrNq5j7dr1tDp1nLbLyPgoAkHUCZBuHQwIGk00y0JD4Pk+nh+zZnCCkJDLLrsUK5FgfqXEyNAoi8tlkBaSGBnF1J0OumUShR66UNA1pcsLRiGUkNAsNBVImGiooCZxPJdP/1c/v/f7v8UtX/4cG/srXPzrf8V37/gGWuubbBp2SBWH0WMPO5VDsfqwgwqV2Sn84SyGTGCkkyDbdJp1hIBccQg3fxN33PY1rt7iIKtVQtPg3IG1dIhQQ8jksuiKxmKtipVIkLItOqFLUOsggzqnzzjoSgRCJ46gb3QtzUqZGpBKJ1fjm8HQVMIowtMlQqqERKixRFcVbM0iVDTqTpPBoXGEESKFhmEpeKtSrv+velUL5cLKLLolec37/5R1v/G3PHnfNxjYdhWbr7wJN1JYfvYbtOptTj3/IGazzcD4Lo7WyqTFLP0Tfbzw7A/ZdMnl9G/+dUbGC6wZHaPhHqL09D3s3liktuKQxKBVPcZCzaQa5ZnqdPA6KV573lYq+iyHDh/jsZP9TFx4GT3rz2HDFW9jw+YtPH/Pl3FWysShweknn+T45AKzP/gcp5+4h4W5eQbzOS7Zcw7vvCTPzkGD7ecUWN8XsPzi91CdGTYO9zA0vg5r8wX09G4CRaOxeIbiUA/9eorJlUV01SA9Nsqj997LyMRadu04jy0b1rO4VOaue+5mzyV7WC6tcPLoMbbv3EH/cD8f/eBvYqUl93znOS7cex7/9a0vc8nei5ibX+ZDH/5j7v3xg9xz37189StfQVdh167dlMtVgiAgYRnEccjunTu547bbuPvO79GVz0douoJt22hqFznk+z4C2aUB6Bqq2nX0xXFMLAWmabJ+8yYu3nsppVqd/T99jJ1btzC2bpR2p4oQGcK4TSKZhUDQ09dP23e7FAKpEYYNelWTdZsv5iU/IJEbJ2MbyHaH/MAQ6y6/huHiAJKAZD6P3nQw9AylpMX2869ndHCC1Mgo9eUqlh5z9PBJ+q/6PfSFeQo9m5iZPMbzJw7wxtfdyO3/+nd89E8/xQfe/27e94H3QiB54Mf3c+5rLmd0+w6+9fWvs2XPTl544mkW5xfR4hjhdHhs35OcPHwYTAth59i8bhd+oBE3YG3/Br7+hd/ixw/dQlxf4USziqPapHKDdNQElXaTpYUFAiGZX1jEUk10FJzIo7pwlj5bpeSfoae/j/RAjuzYMNv2Xv3zO6l+QTVgpgndNjLsaoHCsNuAvYylgpfDAX4GURULTCNJGPrIKFj9mVVeq/zv3xGKRIrVVe/PBALouoplGUSxhyY0dFVFyq4cgKROwcyiquoqjzMCzUWxYtKRwdprr6ETCVbOLlNRJdpED2s2DpANEjjTM8Sqjo6yOilTQUREhobnBjAwwdnFZV760QNIVetKAvhv/FYY/DfWLYoiTNPsYuOiGERILMDzPBQhiHyJDAWmZkOkkFRVpKZgqhpJXcXWBLYmiCOPQInxRBs1lyLwnNV7EoSu0mjWsAPouB6mnQQUasslYi9CRJK+wRHCho+VTBG02zS8FsemTqCpBlWnwszJUyzMnWR+dhrbMJmZPYnv+Ji2ga93mz7L6tIBpJRdSL+q0p2b66vXRkFKkLHoTjlMFSOWDGWH+MD7P8hf/s82+TDge4+8xEBrjr/9kgtSQ9UhCOPVkAf5M/gzpbsheZkSIbqBEEHUJJUo8omP/DahzNGMY0zZxaJpWtc8paoqhqm/st3RNA3DMDAMHaGAQBLGshtYEEcEprX6P2MWnnmEuWcfYf65hzn903uYfuwhzj5yP6ZXY0DV6RUCXQiMeoP+2KU/8LFKFfpNE+HS/fz+n7Ie/y9XQoKMXArDW0iObGVlcQYr00uyOEgsBX7tLGEQ0m6UEEGIaWdoeQG2JtFMhXplnmShiJEcxrJNElaCMG7gV5fIpXWCIERFIQpbeIGKH2t4SDTVopCxiBSfTrtDuaVj5nMYxRwDA+tJZzK0SjOEnocUIU6rTNSMyA6lqZaWWZ5bJLA0ejYNc962PgY0G7NTJWErRM1FlLhDyrKwEhbkighhQX6AxcVFFg8dwVANOr6LFAqanaC8vIRh2KRSaUzLxHFcypUKvX29OK5Lu10nlc0gVIW1E2OAZOlsnb6eXs6emWWoWMQNAo4eOU69WqFWXmbPrp0QByRzadpBE2GbyDhAEZDLZTh/z/lMTZ1CCyVu4GOYFoqq0ak3kWFMHMbkCkWCdoBhJ4g8j3bgcGZxDlXRcMI27UYTpMfC/BxXXXY537njm+iajlAlkdaVXll2giiI0A0DL/RXJVnd+8sUCslUgUYkUdQEuqKhColtmIyObuI//+0/eOfbHbKKwlMHpil6db71QEQmO0AymUAYJoHnI4Sk2Whj9qzp8pMNC9dpUm/V6e/v4/ztWxlZN8qmDVv52G99mChOMru8RLGQI5HJsjS/SCqXoVVvEEUhmqqiAvVGHd9xuhsrTSedzBBGAhkJTN1m+uwxVkpnkIHLmaPPsXLqCPXZ48wdeZ6zLz7H3DP7UIM2dhCSV1R0IRDtFkmn0R0I1FboTyXRFR3dTpAuvLpP5FXvZk34qLHGQKGH+amzXPb7f4FI+hx46ilSosWGXZdy5sgh9l50A08/fCuN1gqbRoZYs/lNuLUZJka3c2RymWMHvo9/8Ads37qOvvQWtl1+E43552lU2rS9FQ48e5xir0LK97j2+o140Yt8+b/uIjHyekY2vglDmKyjTXjyy1yQLlEMjlPoz3P88IMUgrN8/t4Huf8rX+ajH/sTPMMml02QTie59etf4YvfuIMXnjnK0Wdf4Jl9T/Oed1zJrhGD4y/ew9npB6hPHaEtJIk1wyQGipw5tsjn/+2feedNN3PTu3+D9eu2ELk+btg98DKZArl8krm5Bf7jb/+SM7On+Z0/+Bh3f/9uzJTFD777HV53zZXc+v1/Z3F2lre8/iZmp5d44ekDvP1tN/Dkky/w9P79fO+Ht3PH9+9iaX6ePXv20GiWyWbTHDv2EqZtc+dd32HPhbsRSoSidLEukghdM1ebBP0V7FCwmp2uKV2Hogx81Bh0VccwTK655hpOTk7ymc/+DYvHpjk1ewzpRkixmreuQavtkE4kMQyFhrdAWtfJJBcJ+wbYe/5eGgdv5XSpRGil6HRcEnaGtufSmF8gDkJS2Yi544c59/UfZt35uzGNCL9TJzda4NmHfsjQjqux0gKxNEtp4TjpoQEmegfZsvMcvvq1L3Hs8BEWJw/zwx/+hGanQVLVmDz+EgOj6/m3z/8TF159JVYqzYuzMwStGsdnpyg1GgRxQBh5dFaqvPP3P8SOdduI0xELpUWGN+yiYCRIZyw29w1QXpjBr1WZmZ8l35PBNHWyuo6mC9zA7zrjowg3cCmVVti080baTZBtn+r8DLXpwz+XQ+oXWXPJGMvWUWaP0Go0X2lWY+QrXMtIxqvaQYEIYwzVgEhBV+kGS7zc3Erxiq6wa7qSxD/TsCJUNAVMTSeZTHSz4bGxNA3dNEBxCGwYXbcdGUEsJbEiiESCjh+iASJVwLFVPKfNBb/9W6RHxtn39JPMJaGWUZHEBHoIsMouiPE6ButuvoGRC89j89tex9Z3/Qph6HeFDiJCNXSEULufbSmQSkgouyvDKPAZnViDqsguM1DrrsBaTosgDgjiAFToSB/NC6i7bpdJLMANI3ypgqKi1DVMaWBpBtrquk+LFISp48gIVeviYUxLJZ9M4nQaOG6banOZpG6iqDGZfI6g1uLcLedQay5jaGnKU1OkMsNk0zlWVkrsOO+1jI2NUKs0WVlYAiFQEd3roIJpmt3tCjEIv5tMJUOiuIOiBKhKgpA2fQMxn/7sZ/i7j+UpW1/nmP4RXjPwVt76D1/lxrd+lCiKiOOw+3eIkUQgIhBhV3IQqyC1VQOeB4DSirn3nh8iYoWaU8fWNGLfeOVhBileeWB6uVFVVleFqq6hmQZGLF7BcyEVskGIFzvoTkSq6ZFyfESpTqLaIuN7ZKIACxW8Omk/Iq0aZK0kukiS0dMkNQsjpaGY+s8wg395q2JFGIaGVV+kVqpBQIt0AAAgAElEQVTSs24zqDG1agVNiUlli7QbdbLZHurlOSLPI5dMkUgMImKHVDJDs+3Sbiwi68tkMyl0JUm6Z4DQreEHAVHs0ai3MUwVg5ihwSy66bGwXEG3R8lkhtB1g4ToEAYzrB8dRA/baIZOs1VCQ3JsfonymRnWnLML19KRcciWN7+BSsflvocfZsptsRS0qFYrDI7mydoKzcYKTmcZp+rQe+l59O/axviVF9N7wQWcPH2SkaERhkaHSGezyPjlKGW1K3vRJc1mnanjL5FKp1m3bi3zC3OYps7S3ByZTJId551Du9NicHCIWqdNa6VCtpjnzNl5qrUaMwtnmV1YxvMDCnoREcYkTAun00YCK/OL5HoL+ERdBqnnohuCjJ3AczuEoUfLqWOpOogIO5kgbnusGR2j1a6iKzbt5WUSyV4mxiZYWFjkhjfeTMZOsLyyQr1URQrQFAWpSKI4xrZsJJIwdtCUCF3vIA2dXCZB1JrFDQWhGpLOhLzrve/l3W+yqcYf5oxyA9t7/5pdN/8m1775o1jpNIKQOArQbY1aaQErW0DRY/Bb+E4HzUxgGzbprMXsmRk6yw2efPQhlhcr1J0GCVWjVXOx7BTnnrONfLEXELRcF0XGeIFPEEVIBEIVICXjE+MUMkUiEeJ5PkUrBURYkaA3UlGaDWS5TlyukhWSFDEJRUWEHUw/JKFoJHQTIXW0WKWYH+3KhYSC73YInMar3i+vKglIREvMTLsUN21moKfI7OwsB7/612SuuImQCp3ZFBv2XkJleYbixp1kxwapHj9K6al72HDhTh546F72vu5mJvJX8NLj99DsxGRtlaefuo2kI9GNgLRI8Z/f+lc+/JH3MrF5C/fc+TSb01mONEoI9xhbhvYilUUm0gLfWMuP7r0fKQWp5jJ/+Ae/y+m5ed520S5+95Of4P1/8gkG0iaW1svp8jTD48NsGRnleLmC1HyufcsbmTx0hNsee5SsHhPPzvE3n/hd/vHL3yIxD4XxUaaf3s9Vb3wDM/PzmHqCjRvWcdH117Pnwgs5PXmSYnGIlVqTkfH1JCyP/U8+ju/7vOs3389jD99DpV0i19vPSy+d4Hd+5/eYmTzOhz7yAX74ox9z7PAM7bCBi0d/Tz+TpTnO3HkX175mL1vWrOf01DHO2b6Ldtvhfe/9MF/6979n+wVXIL1OlzeqCDzPQze7zuIYVqMuJT4xRF3GG4pOJB0UpQsB77httmzdjmVqPLt/P6/fNcFXb/sjrv7tLxO2qvhCJ0RFBi6RUHBKdep6D9eZNuTzZAOfoYsnCOctvMDDTJkc3v80ugq5QpI4lDSaLiKZoJhWCbwO7pEnSK4/l7MP/4CBnbsRYYf+Qh/2nsuQnRpupPLkk4/z9//2n5xzzha+9q3vcfLFZwmDiB27t7Hp/J3su+tHzH38D/mDt7yL2488xf23/xdPnpqm4jqkDBNfkeSyaZbdiLVrTW7758/x7OmjbFg1p/h+A0/X8Tsd+ocmyIYumWQKpVFCegGVeoWmadCX78eyddoth5xmcrI2z6UXXk8wP89s5SwX7riWlTNt7L71P59T6hdZuoInFegZJ6+u4CyudJFAKLDaiMYyRlVUgjgmVgwioaDpCsTd1JxYKMRR3P2iUlbnVIpCFMXdlvHl6ayIUVSPSnUFr1XHDwLCMKRvbIAv/estvHV8Pbd/+05GUgm2nb+ZwHHI5PIoPTWKoyGdz/5j1zAhTIJOjTiOWR/FEElC9QCu20H5RBeLL0UEIkDVBGe8GtFdjxFmDJKFXmQcYEkNREy75RC5AVKRxF6I02qi6BoC6IQuUjdYWZyh0DeKkOC6LkEgMSwV3+/q5WzTBBmgSAUrlUYp9CCBpKUSBAEZw+QlWqyTKl42jWFY2LqKrkHfcJFHFI20BRk7R6fVIA46RJ0GsuEQV2Kmm5PYioqeS+DMLjN/+CBC1VDxGBQGtZ/8GAUNIQRNVRIikZGDapsYOqgaqKpEWZ2idifnGkJxIfYh1hBSQ8aSKPYResTZWZ0f3PfPbB/uUM0fhpknuGdpmelHfoC3cBxd+ARRt1ntmrhWcVSAkDGKGnS3LyJG0J2Cjl6Yo/7sU/zNn/0Ln7jlu8wfuBvfC1GlirJKk1IUjSDsBpdEqw/Y6ip6KnQ9Ik0ldjvEgcS2DBQtQldsfBFTuOhqUCWqjJk8e5pC3wB5LcnUqUOYhW1UKjWspEqlVEXzA3o2byGbm2C4t0KgO6jylx9rpao+rXaIkemjqDVxpxdpnDmJURwG6RO7Ool8jjBwURNpZCqH587glUskzU00mgvkBouk1ALNyjJBFGOognptERGAqsTowmDT7u28eOgARsbi9KkZ9MCn2u4gjApjo+u45+77uXa0j33PvIjleoyvHyHsNBlfvwmFY2zckGLo4BGeO3yQtC+RfkDDa7NGVUkbFvXwLOG+J+l/7xBus8FcZQViB8WR9A7oTP74CSj2Ushm6FTOMNQ/hOM5+F6IrZukCgVM26ZWLpFMpZCxilB01GSCmdPHyQ+OMToyxtSpU92Yz5RNtVZhYKCPKPAYHx9GXSyxXA6IUzaulBRMm6brUStXcP0Gw5pNR7QZGB3DUhUGBnqptVeIpIqhRqQyKRy3Qxh0iH0X2faJmzHLnQVMRUFJGrilBs7pgFw+j5AeBWHQOvQ8ilCxY9B0KFerFKslzh56guH1WzB08LTV1MkoAmR3o2PE9KgSXdfQY4GZTSCdmDiWlEsWP338f7Om6OEWzsLSCZ5aqLCceg6acyjSw6+WUZMp3JV5zEwGZIShm5C1EESEsU61XubY5BQJa5CW0qB04iHu+MFJ3vupzxCWjrFydhFfneDoc89zwVVXsjw3y0qz0Y2oVbqhJKZmECIw9YiZ6VNUG3Vsw0JJ6WhKiK5aBHFAcccetMDBVBVOzk6R7uvHCGFl6QzJ4Qk6nQ6KJvHbHk6nxZptF6ClR0kkVlAMjajlolqpV71fXrVhDY9P4WSGiVFZXDnFum3n8fAPbmNvWGHmJ08ydM1GMHVkNWTHddsoNwOyO3ZRQrJQDRjsWc/ykVPMznwXNVY4M79Cz1g/1XKJ2NdI5lO843c+yM0fvJl+12Jx5jAp6VHWVDaMr2V+pY1rniC57Rz+n3/+M264/kYuvuA1LNWWOXK0zqNP7UOVbU6emufTn/4EfYkMel4lkDHWnEVmosDiSonW0gqFQpb9+57iugsv4WMf/iD/9Lm/J5fr4ZnHnmJzf5rG2Wd46qWXeMtVF/PcI89wZnCS973vA7x4+CDFfAHHcVB1jYbT5NSpF9m6ZYLHH/gx+WIfDz/8MFu2nsvA0CAJw2T/40+wY/cesnaS/ZVlOH2KH3znG1x5xRUE5YDKksOReJoTs2dQTJienuZv/+avuo1DHOHGEqmrnD5xkisvfz2BphAQd7VdIlydbnW1hUJRCIMAoXfNCYqidF3PfoCqdwXQquhON6IoYNe2HQSqhmy2Waqfou6YmJkUVkdDmILlWoVEJkvCSLJh1yANP+a++77BNTf8Og8+4TLnNvH8CF1RyRZyqHGAjEIMRZDJ9dJwII3L0Q5srDaxCkV6Ev24asTSyjyZZA+VTpt0KoPXcNlzwV7mp2fYsnEDs4efpFxeIGPupjw7z9TsDHff9n2ueftbOHHkBVbOLFHsGaDpLaBLFROdbCJDqT5HcXCEI0eO0JfK4gQelmbhtlpESkzDdUm32vhhwFK5REIzSJgGhVyGdrND1PFoS0kUSUpOm2I6jZY1qS9NotVDHrnzH1l3wTsJnFeHGv8ylOkrRKqP0ZMhrq50J++aRhx2D29FglydmqqqShQKlFWGZhz6r7jqiUKE0BB0xfRxtDpVjf+bFiBl15jVbNYJnSambVHIFyhXlhjs64d0ilyg4IUdcrkspKyuGz8MWXtVyLd/+ECXR4hCrDnYikUoJIaqocUxMhtRLOSpNeqr704gRMTg2ojDdx5kccYi9lxUVWHtJXmEEBiGSRBKYhU0qaCmEqAayNVQBCli3Bq4QXelbhgGceyQ1XViJUIYOr7jYngB9cjBr3VItVv4nQ5+EAEqS57DWDrPoZ88wEhvD34UU6pWiPyIg1rAuePrWX7kUUzdIo5jhAq6lKRigRNrDOoxCBdvtsZgKoUX+QgZoQgdNxKoZgLX7RBG4Ltddm4U+vj1DutHLYI4wtC0VdiTfOXhQUgL8BHCQygqcRyiq11NeyYRseSnuEDUWD74PKfrDr+6WbBSqSFbp4kjlUh66LqOlDH/PZzsykIk/mrYxGpqGAE9VoEbr5pm9/9L3XsG23aVZ7rPHGPmldfaOZ2cpJODwlFEAiTABBEkjMEGGhsDNu1uG1xtcNO0wXbbxom+bvs2mPbFBq7JGCEkgVDOOjo6Oaedw8ph5jn6x9pAl6uuftxr36K/X7tqV+21as850jfe93nXruMXPvKb3Lr7Rsa3ZlCAFIowTvpSEMPub1BV3z2uEoUSfSlJLPp/zbD7neI2KUQaOIpO6NPuNMhZFpop8Ko9lKsTLLawcnlSr8FsvUXQqqFbWeLFaSyjiFEMIemhicxPAQo/o6U3fDzTxMoX8RoLONk8fruBrSK8ah1nINdPAev5FEcGqVYN3EIJaQd4foRp2ERdj2p7Bg0dP4wwDEnghxhKIaXO2PopDh09hJFAGLXxm1V8DXLZPFJaNGozVAaHOL1wGaM8SjaXYXB4iHZTo9Go4ptN3I1dHvjml0BIVKRIZEDSTZA5i2YPwijAyAuSOIslLNavXcOh545hGDrCrKJ3l6muzFKr1RgbquCMQ60akMvlaNbq2I6DEBqOayMNnSjyKZeLLMx1sHXB3OISCkU2myWTiQmbLUq5PIauMzdbxwgiLlw4jWbnMPwWPS8ikZKuF7KcBJRIuXTyJVyhkWiSxU4b23Q4fPIQm0cn6Z04TSANVKpQmkIXGnYKQSopyxSVBEQrXUqWTahD1oQ0FcSAppvEcUiiNPwgxbBcpJ0ha3aRUYcgijAMHS0RaEIRRBFSl0jNJlMATYflpTkGBkapawbtNMTREpqxi2tGLF28wELX5/q1Gr4f0+kukISKVhRTiBOEYWBKi1j1CPwQKV3i1EfXBWkcUSqU6LR8xkZHKO46xWShwN//jy+wZ/MuEiOltlRjbM0UnXaDOIjIZHN4fj9dTWgSXejEaYDjOLS7bSxDoglBkio6SQQJxFpC1/eot2s4uo5uSpJuhJIGUb2LyuSJvDbtoEvsddBNm0a3BppFUQSszM2RK21AxfHLj5eX+6XaeQ2FH32XZkens3iB7W89yMFXbGH68ccwJzcy+/wP2XnwToI1m2i2Y0KvgWm6lCbHmZubY9/1B7h4/FlKGyc4cvYUk6UKLF/goR98i+989St89+GH+f0/+it2VbaRdUJWuiHd1jKF/Gas8hpMvUWnMEAS2dz99vdz8fIJYtNE9wLKmQq2aXFprsbIWIEP/urv8ud/9d947sTjXHvzHYw7OrffeAuPPvMkbrXJUHGQq/bv4aZXvIoP/OovsWvXLmItQc8a3LTrZn75gx/mu9/8Bt9/9BEODOTZunYrl86fIwoCqktV6rUVhKZz8cwlDhzYx2c/9XsMjI6zefs29u47wHNPPc6mzeu5//4HuXrPLh598H52XHc9Esn73v0ePvtXn6XXDWk9XMPKFbEcmz3bN3P7zbfSaTZ44QePkx+tYGRNylaF3/7d3+HWV76aJ599gq1Xb6Xk5AmiPrcxStM+IcTQicMITUpIFFJKgiQkVglxnCKN/mKnq37+ez5fYPeNt3L4scf5p3u/w5/9pzdx8LX3sO9Vb6GUU4TeIoefeJCu36Pai7h5229y4uRRpib2snz8WZ4/1mbDhn2kekLONWg1uxiJT3mqhGU56LrBWClPb+EcC9/4LPt+509pxyUaYUD1/AlGNl3NcmuWpFHFc0pkDUH10mmeOvw8w0uLdGON4dIkUdChOu+zedMGHnnued7/+tfz3je/ldjJ4TZ9Yj9laHKKyYE8l6+cYWJ4mFqzxfDwMNOz80zYo8zPL2FlTEwbiHQ8PyTj5pAqJTJTTl2YozI0SGGkwg07t3L46HEacUAmkaCZWGnA3tv/kM//2RsouAkvfP+v2XnnG/4Fl6p/nVIqwUCn5we4wkCXEhUmq4B5SCUIJX5C+wmCiDAOSb2Ubr2OKS1CpfXRZlGfpacZ/XcrThIQGipdnVRSDaHpRLrEzLhopsGXv3MfZTeHX1/C79ZJhgs00iwPPXsZ6QlabpvXrNcp6Clv/UsH08qTxB6LP5zEOznIln97jDQ20LBRekSz1ySQGYy0jqalxEowfRxufp/e19lqGmkiWKm26HX7sgdpapAohDRItRCVKnRpkqQRKRArE8ex+qinGA5s3YZ17EUcaaDJvkErjvo68clUEaiEnIC616KbKLzAJz84RHv6POfr8/R6PdI0JrGzJFGKsAxagY8Whbi5DEkqKYyNsRiFuL0e+sAQ06eP01EB2kqbLftuI9V1MpZBHLdY6fW4auu2/uFCwXK9QRLFrFQXCWePI1FohoGp5/vRp6lBqnmkpGiYJGo12U4ziWINXfq0PB29NscD848gohLtyzGHMm/k0oU/5KPvrROlHkJTKOWD1o9xVgloKkFqJirVUNIHZaDSLuBTq9VQ+QKltS4P/veExW2f5tE/+yJB8RxRO0KmDqlMEMoADQz6neE+Fk0DBCQpMtVJ4gghE0gEsQEiFqRpgh5HJIait1ylFS9SGhwh0Japn6uSoiFFTM9TuDKkcfkM5488y56PvgVd6av0hJ/tDqvK5bHrK3QDhez4WLZNRrh49RrCyeK1V8iXhkizOZI4JfR9oiRClyZeq8NAJUez18TNZ2m02jimgRZ3ufGGa5mducxStcrZ8xfImS6SlF6oE0idrFNAulkee/oQA7lCv+MlXS76dTpJkd7xOVQvwndb7ChDKSN5x6evYnp2iXp1DmbW4V1y2PXuDisrLYKOjZMxcB2dXGmSEy89TqGQI0mhOqtx0zuGeOnIce66Zg+Ly3VarRRD5Ol5PRCKuBf2b3A0Sa/do1KucP70SYRuYudKrM0XOXTsUSzdopK10S6eIVQCu1Km2Kxz7OgZtm7bShKnLK3UyBgmQdTD1iBfzlFyM8yfP4HjZhEopCZ5enqaUjbH2eUFhGVg6gmGbZIqiVMqU48j7CjCz+ZZnr2MryK0tsfIuu3IUhFDA0VI2/dYu2YNpKBLnX964EFufOWdLD37BJuHstSqV8hXxnDcfqRruDJLTIAfJxTdzXhBHcvKEHZaVBuCbM7CC1KsXp1njx5GRi5ex+SSPMhy9eu87TUBsd8hXLiI3LKNSAkiFeG3WhhWhij2+yEbuo/UdIJug3oroBsGGDJDZcLmkx/SaUzczeGvfp+Gv8JEfoAjz71Aqkv0sG9udWwHyxR0u11syyEKw58gxSw9IQz7SYrK1NASnTiJMTUNIRWq5zPTq1EeHAY7xAzqNLw2mgqJA4WUKd7iNM1qwsBuHV1Bc/kCucH/D8EBVx75AeWJSa4arXPvhVNMn3+CgckbmRxLWay1IF/DGRnGbDaJhE4adHFKQ8ydfIFBWeXZ+x/h2n0HeeShR3jFNXu4++33ECyc4HV33InsaoxNjFPIWNSai6RJlmy2RAUdXyziXe6SX7sGOTDByvR5fvkXX8Xn/vgEVmaESjbibLfGuokhrn/tq7jwzAucOXuCN93zRn50/7fpaSFbpnYyOLWGg7kM3zr9OYqWS7Xd5L7v3ssf/vGf8yef+A/ceONBspkSv/bhf8vbX/82AhVStC2W2wHPH36Jffv3M7Fmistnzvc1aoZFq9vggc/di5sfpDxQYmG5xfb1FQ7s38/582eYnJzEtG3WTK4lm3V5zWtex+TwGhb9KvlMkd/53V/jI5/8C5p1gZDwreo36fVa/Nqvf4B73nY3Z46/yKVzs+RNh0MvHWfP7t1oYUwramG4JlEQIAyBlOZP0mDCsC/k/vH1lzR0BkfGaLaamOYqU1XqfPzj/5EDO/fwR3/6n/HbdT76if/AbXsnCJafQY0VGc4P0Qh62KHBZ/7mL2jOHmJw7QQ3bLuW5fPPMqQtEtgGLDQxBJQrBdorAYkmkJqgMFRkeWkW7cpJdr/t3cjMELULx8lMbiE/UMbNOyxdruNVG4jRmMTzqQyOkMSSc5dOQ+oxNDhOs9mkkhsE4EPveTff+L+/RLk8QhPFwsw8195wkLDVJWMKBnNFpttdLFdSW6gyOTbJXK1G3s7ghwFWxmJ5bqHfZUxjCpksXhSSXz0lJyri/Ow0WdPg8lKLsTUWrTBPu9nhwqOfpGgqIiEoFR0uH3/qX2iZ+terRAPCgIzQEVL2DTnyp5nsij6mSK0yVg1LoBKFbvCT7qlK49UfV5Ot/tlnrKooSVAgTJ4/fIW83Xe+Zk2bbrvB/gO7iI4cJytt7vn193P/9+7Dsm2E5qLL89SfWwsXUuq+IvUc6sfmMfQGM/91PUnXxXVi0FLc185glVf4qdc7ZngiJgpidOmQpGFfc5tItFRDFwZe1AGhIURfS5smAqX6ml2VJBiGQb1eJ40jpCZo9Xxmlpbwo4hQl4hsBk3ohBLSKCFstxDSJhQ6A+s3ETk6E4sL+Bt3EwUxQpdoKqBQLCM1HS/wKUuLOI7xwoD64jyFoUlyaUrGCFhqRBRKI3hLcyilsE1JGKR4YYd67Qpbd15DY7nVjzlUCUm7138uzTYqSRFIlEpJtIjYp69n1VJSuuj006ygv9lNjS5JqCH0iINDD3Nv/Re4Mf85BguKTvY2btj6NXpIHE2S4pPGCVIWSOkilCAhWT0YRKjUBC1a1UUndBdqSC0kr00xuWUjb3r1VTx+tMEnf/Xt6MMlpDLR4nC1G98PcEilQNP64QCxABWrfnDCqtZal6vINKVIQg80RatWpdVYodXqEDTrJCJGKqP/Lqcpnh9QLOeII5+iaxP7dZK0iKT/WT/L1a0tYxkGI07KcrtH6Pm4+UGcjEYQRkCEMG20OCRRIGV/U5fGPqYKqC+3yJaKNJebVIp5xicnSHp1vvWte0mjGNt2MKROHIUoIdENh9npFlbWR0RL5ByTIEmYmhimFHdZrDc4eNcbOfb884RSI5MpM7k2pnMkR/eKS5aNXHw2QgsiCnaW9g/XkbQ12nOXIOPAzR1i/xJbt13NoWcOk3OLaBnJS4cPMT6yliRK0RGoBJqtNoZhY2ha37wE6KaB54fMXJlBNywQKX4Yk/Z65HNZmktNlOZwZX4JXeponoeTy2KvmeR4r4EWC7IFm1PnZok1SX50jGVlMH5lFm3Hdp549nluv+1Wut0OectBaYK845CxHNIkJVIJ7VqdgUKFDGDpMY1OhJspEjZrAJi6QKaAUDTqy0yu20Sn0cPUJcfPHiWv25w/dYKk2eJE9Qo7bt5PHNRJjRBdWYSrRJNtOzehunH/ZipbIux2MPQOoXIQyueq4lGe91/JZv27DAw49PRd7Fj/Ip0oxPJ65MZGSBGEQYJlKUzTQuiSoO2RpgmkLiqNsGyHNPWozi7glk0Gi5NkK4P8/n/8EJ/607/jhYe/x0yjie5miJOYMAgploukYf9WytJNwjTtJ4T1QmzTIoji1cRE0ISGHwRofo8kjoj9kHa7QbfVxkgjUhHT9XpIodHzQxISpJnvk4/8i4h4lERlMAwdv1N/2fHyshvW8rbbufCj/4uR3bvYuvVNdMwEZ+ZJUk3R7GzGWXiKZdvk8vlphoYnGNx4NfNLZ1GxZHAoT2HrFH/6ifdw3fPHqOdGeHjB59g/fpvBwhSqaOJmLQqDJV48/DzS75HWPPRsgnGlypqtt2KUx2mVHDYUbmDh8gJv/Tfv4N9/5Ld48/W38Oiz57h573aeeehxTh15ivGxMeaCGoPlDHOX69y673qefuQRlpsdJq7eyJMvvsirSzfxxLMP8so33Mb1t72Gf/r6l5DuU9z2ylfSCBu8+Mwh6stNnnro+7ztF99FxrV57PGn0UxJrpDn+aefZDgzzDvf925M3eChb36NMwtzuMJmrTvAzn17OH3yKM89fYjBV91BdGWGL33nb7n7/R/Fbldotuf4ytfvZfe2dbzhzXfx6CNPMTY2xm2vuInP/Jc/4OO//ZscOXqGQ888R2QLaldW+P4D9/HikdP8/Ht+kVv3HyBQPQQxaZxiWJl+ZrqWIsRPH6VGyua1mzh18Uy/zR9p/JsPvofRyfWMjQh8r8P67RuwLEmQSpq9FkOuS3HI5p33vIJ1O6+hdekZdGeAN161k7Fyns0DtyJkha+e6lEcH4awyPLCFQqFAsILqFeXcEujeD0dkUj0dTu4dOJxNKUTzl+BTJ4kDpnasZfewjzjpRLfPzvPxZln+MD7385nv/BFctLEchTjExvZsXMb3/niV3jiifs5evYsU7kiabdLWHQYyOX49sMPsGFkhEjGBAH41Qhhuxi6oN5oU560ieo+YQvueePr+f4jjzM5Mc7KwjyutIh0xa41kyyu1Fmq1Wg1fTYMrSGIJfXqJcTEWi4feQxlpvRqEsuW7JzY8f9+Zfr/qTIiYc3UKImW0ppvsrQKcE+SGEQ/g7w/y/QNVUpIVNQkFRbN2jyWXE8sDFTYN92oFISmk6oYTevTAlKtz8rsSwx8KuUS1dnT+O0quzdNML51H3/9377MaysFNNcglyhyToPjz7YoT25GpBF//EcXsX7hXcRulsl1Ezwff5+JrVP49QZpzmbPNddR77XI/95v8Ko/0ZAyg6YiQKGpEFMaKK1/UBOaAmWiy4AkCdF1kzAO+rndcV+XKYRAlzqdRgulwdT4BGfNLF27wdJsg6GbbiNvZIhlQqKB6QviFEJDEXT8/rXsqqkxqdfRpI7f6RK1uqRaSqniUl9cJpcv0lypc6FaZXJyEpRg3dS6vkkj4xSbZo0AACAASURBVDB7+DjulqvIr19LV8XESUDXb6NSgzhNse0CqVQ4eRuCCEM3mTkzz4YNG0jTsL8R1yV+HOOIFIzVa3plIHFAhSSpjxCrpqNYA9kjDh2mth/j49ozfPW7OjPhOn7ttR/BbynSFFTSo/9qZEAFP0kzU6kG0kYBmghJYh+lJIqYv/qK4O7XwnT1HO/fnOUNd72DX751ir99eJqPf/TdCCPFFX381o8DATStD2bvO6UFkpQ4SdGkQEOQkhLFKbYtmbl8CWEoTASubuNLBWaMHumE6Eihk6YGuh3hJxphJNCUjq5HpIlAKLUqY/jZrVyuTIYehbwLyRRz1dOIqEaiFGGcRQ/rREL2DXyWg9J0/N4yKRpx0GYwX2Tj1rU8XusQSYsVP6Uzv9w35+oWUvaJDZ1mHeKEOA0wXZv2yjSWMNm8fi2F9Wv5wfeeYmhQZ2zjFK25KxhqmReOLLB3/16ay0v83edPsebt76KLROwe49K58+w8cDVPLC7iK8H6m9/EwtICU3//DdbcVacyPES5MsbpE5cJ/R4jQyPEqUer2ULFEfXFNkMjZQQptWZ7NdhCUK9VsaTFxNQkUmqcOvoSvSBkuFgBzSIzWKDW7KFG11IcnURJWFq6wtTVe4kihac8aos1JveNMzw2Tq3egDhmx9gI9124wNjQEDMzsySxRyeI0TWDhZk5Zmfn2bVnD5VCiZHhYfygjW5ZdC/OYIxO4I4MEZCSqhg/8rBShx/94GFuvfk6Uk1h2AYvHTqEm83R8erkiuM4WRM7NDCzLqHvYRsCXUomRsu4hRJRr43QLAZzORxTgFlGYTDX9RCGy8TWZTYE3+Tx53SqaZFXX/vXCM0kiDWSJEDL5PG63f7JNFAooZOmCic/AHGAbWksdlq02gFTk5N85jvTvGK/xuWLc6y5apQ7Xvcm/uIjv8Sn//77/PmffAJX6BhKkuoRUtNYrq+QcZ2+KghJ5CcITQcFURSjSY1ExfhBwtToJCcX5nGzNqkf4gqTQFrkcyaBl9KLUtIEHLNIFHt0fQ+h5ek0q6CXiQIXw47J24WXHS8vSwlwXJNNd74TaefZswGqh59lJZ3i0IWQqOIy/Jr3MbnhAJu3bSA/UeDf3bGBz77zam69RvLcC8eomiP8wse/wTU//+u8eOglnvjRw8zNnQI9pbowj2FIzh49wlhpmMKaCczcCo6r06j2mJs9Qa19jqA+x6OPfJHlZp01V+2jXNnEuvWbWVlYppQfpe4F/Nxd9/DZz3+Oe974DspWjivzZ/ny332B0aFBrto0xUq7y+te/XqGNq9n2+7d/MmffIao2+aet7+bd773vVy7YzcTUxN4KuIVr7kNP01pVOvUmw3GRoeJwg7PP/9MHzo/lOHShYs4jgOWS97O0Et9KsM5HMPlqq17+K2P/juyps39X/vvvON9v8uD338APe1x83U3Mzw2yU033szpw0fZtWMnk5Nr8LyAvfsO4tg5zp07ix+0MQNFt9emkB/gxmv3MJIr8eGPfozTly5h6S5IHU0lJGmESjVioZEKsGybJJHs3bkdkQj82KDjLbNm3V6k2cY0bYyMTpIEmK5FJm9gaQm5XIFOs8f+W15N3Gkw31BEuqLsOiRainRcLpx6nPmTp5g5c4IwDuikimy+Qhh1cXMllB6Sc2w27LmZqWwJL7JYMzZFZ2Ee4VgYepGlo4/RvnySE4/fR7WzwvatE3z2r/9PMoUMbrbApYVFOmHIhTNncCyTbz/wBLt2buWWO2/jLbfcTBwmfO979zI1OUl2vMxAaYxGs8VCc5nywADFgTUMFHJUhjfjOgXWjJb47r1fZ3i4RE91uX33WqJ8htGRMY5cuMDltkJoJuMDw4RpyMrCRTas38yhE88wPLaBDWObGBzOMjgwSq9T+xddrP41qlB2ePa5xzj0xKOsrCwDq3GjGv8L1qqf6pSmKYbQIAHNVEi9//s0ob+B0PqmK0Xyz8wrKSkKBdiOyZWLJ/Cbi2wYH8EqFCiNDPKGm2/BNE0cyyI0NF65LWDTVaNgBIjUwZSgMi7ZosSQIWs2bmP24iJaqONaNuenT2E6eaRhoVuFVbvOqo5bxQgp+2EGq99LrE5lhmWuOtP1n35nLSVJoz7ayjaxbZskjoniEBUpFIKZhVk0Q8fUJHqg6BLQ8Ro8+aP7MXUbqenoIkUQYpkOUvORfopbyJEtFJG6jUaE6+q023WmL5+j222iiQgv6pDPOqRpim+aRLqGTAWJFmOaJoXMCIVcjoyTRWgKnZReq0EUBLQaHaYmxvqxyVH0k+6paZp9OakWr4Y5KFLl9SH9rJIelIYSECcuyA5Wr0q9o3P3myPed9csvdllEgLMNCFME5QWIwV9dJmyUKKvNVVailrVkGjajwMZYtyCzde+2ODnXrOem+9eQYu67LhpP8/ONihbRYqGi2n2A0ssy8K2nJ+QAtKkfzukIVZvP1YTxpSG1PrP0rF1stksmqb6cD+VkkQxSaJQKuk/e6XQkpQoDLEsC+iTE6RYRaGtUi1+VitXdJhtNrlw5jRa0iRs1vESi2YvRZk61uAUtpPHzbhIS7JpOMP20RwDA9Bqd4iExQsnFihNrqfValOvreAHLTQBYeAjNI1uu4FpmEjXxnZTaisz9OpVShkdTIWbtdg4WiRVikJ5EM3JcnCLxcBQBsOSxLHB+NgYF5cW2bBhEkeHbLnE0eePYguHgWKeK/OXGRtfh1MoUBwY5cL5C6gkZHxsirHJccrFEo7jojRFZXAApSAKI1JNYRo6KEWz1SBNEjRLo9Ntg6ZhWBau7RAmEUIHkUoy2SKFSqF/U7IwzdToJmaW5vCDFkvTl8lk8gxUhvDaTYo5l3yugEoDSm4RN5fr3x5pApnGSF0RRxFJ1EMlEcdPHafWrpF1HFIg0nViofosZ63vB8i5FVzbZWhgiFUJNt1ODdNw8XpthgcH0Uh/YjaUuoalS3RhkMQhuVKFNInwooAU+odvFELo9Ho1eq0Iz1tGek0anuDWmwWvunaJuNkjFQGOBmauhKP350DHsYn9BHQNTej47SpRr0dn1YSXy7pcvHyRTMHh6cdCrt5e4iN/0KDXrLJ+x2YeOzXNWHmYqdFxJoeHEZqkXq+Tzxewsy6W5RIGEVESY5o2tpNFlxLbyWMKg6xjsbg0Ty5rY9gGgwWbRJcYpkWj1aYb9rVNrtnX9IdeF8u06AVdTMulmCti2/05IkmClx0vL9thDZyQdc1l5uMYLTXYeP3befYf/pzC+k1clc9w19UZptbm2Lbv9/jwr7yGX/3UIbbvuQXd3MQ1r9/OXBhSfe5+lJulktGotI8TFfKYSYZcLkbYJqXxMs25Kk7WxZbDtKp1JjZvZrnbpXF2iYGt42zccjUnnn+BobLDa3Zt48UXX+Q3PnAPR04epr4yx9e+dox//+EP8Z8/9inaQjKiD2INDvG9Hz2JazhMbNvKd7/3bW644Sb2HLiWNw2N8/l//ApXqnOk5y2u2389l46e5pqbXsHZs2eY2rSBx558go9cdy1PHHqObrPJnXcf5NN/8Ble/9q3sDxc44EHHuCZp57mtz/2u9z7rW9z7tCLLKwss2//tTz23ItojXP88m//PsvTl3jLXXdTb9a4NL/MHbfeyGK9CYYkCDroFkSJx75rdlOpVJidn+cFr8f6TRV+/UMf5Dd+4zcwdJvv3PcwNx44wMpynZUJj5LrEPTCfmdVV5iqH7yZGAa67bB2y0aULhgql3jv73yE9cMWsXAxLQ2ZyWKbCtu0iIFmzSdTXCJj2Zw/eZQ0FgT1GQY3X0WqC6Sms7y8wvDUdtxDTxMW9+BFMSOVQRZWlpgan2BlfhGBINYkNVIqg+uoVC5hFlxGZYa5Jx8iHRlgYP1+GrPTrL96Nz/87mcRZsqOXftYXJrHjyKu33cD937rm0wMD/Pw00/QbnaIgw53XH8jXtlhbXmAzWunkIbO/rXreOiFs5Q0iTMwDih+7cMf4GO/9Vs0a7OYmSxRAOXhScJmi0QT/OOFM7iyQlqwcRyHjFlECB+fmJV6jeVagH/2Cpsmh1DZHqeOzFIZGyFK6pybnv8XWaT+NcvEZNPGrSil4feWaLbM1W6WhqZY3WaqVYOeRCQBgWFhopBJiEAgtRQIUEKgpeqnhisgUaAjUSIhRdFtJrzuNa/j0FPfY+u+DdRnG8xWl9l03WYunj5Ot9ZFj0xMN+LO65fxPA9fttDQyRaHEWkMuTK2foWbbryK6dk6xVyRU88fZu3aq1FBFxILjQBNaqQipt4u4doB6DFxILGNlDCVxAnEYYSQ6SorMP4Jk9XzPEr5wT5rN47IZfpGIJkKpGaRSg9bS6h5XbyuIKwvgKHIZl2avWWE6MsrtCjEyOjoOOiOQRzHFNws0jGoLtcoexGVYoXS/gPous7ilRmmNq9HJSlho8m2beto6TZLy+exTYGUggd/+C12br0KJ5fFsiXHnnuSSnmEgcFxyhWHVjUlVjFBr68Z83otDMeGyCKMWiATFBECRYoELcKUOoSSrnwnF+cgkS6tABarManpoCudrrJR2MgopFIaZM8NBxlo/gNG749JkgAj0Ym0hCSJkHoKmo2W9hCpRKUeW8cthvZUePDeNqK0Dc21acQFPv+x9zKyoUKGIgSdvmZVCiI/WEWOaSRxRCo1lK5hCgtDE3iGJJQKIwWUxHJswjBGWRaOYxLNLKB0mzDoYhVKBKlCExJMQS8OMbMOiQ/lko3QJPDyBo6fhRJSsHFkED8so4RPZnCKsN3CdDPkdMlITuA4kocePcX6tSMcO3WG83MRXpihPDGI5pSIG4uEXophKsywjSf63Wdd10mFwLZtosDHQBJ4Brt37mb60gkG1w/Ta4Qs1+ps2reF5ft+gD8zy+6xjfSaNd56Z4bIP0UvrjE/v8zVb93NhXOzmPkcOaPFut1bWFlpkNdM/GqTemYJUa+Sz48zUilx9NRlGl6HlaUSI4NZGi2ffH6QVifCcHMsr9QxhU4zCYjCkLHhIc4tLjE0PEyHDo1qi3a9yeT69fSCgF6rRbPWJo1Hqa7MMZIkDE2to1nvUjRsotBDaRqZrE4U+yA1/G4TK2OhKUllqNyXSaHR9loksWLLhk08s/Ica6fWU683EVFMFCYEcUzi+4yPDdKVFo3WPLauIaXgpSPPsGPbdkwzRbckC5fOc+HiFUaGBsnlXAIvJBUaJAm6rRNHPlEUEYoYpXx6vQagIPQwrGESLUEXgtCLUe6bmD/XIHYGiYRJq53gLWlkrQxtXyG6GQgjivk8W3btQZ//OoLvYloxUbVOaGro9iAkIdn8WpZnL5BIjVw2x5oBi9w6nctnHZY7ipVmk70H72TphR9Snqpw+PGXSLUQ27BwHJs0SshZNivNLjJJUaYFEjZt2cjJE6foNENSw0DECYaZIRWCqBcym/gIleB3Wxj5vtRCzzgEqSJMEnyliFtthgZKBGGnT2QRGVIV0vXClx0vL7thfW1BEo8k3GBo3P/9L/LIMxfRI5fIH+XY0w+xXL+ReniEez74KczBIa6Z1GiteHRa0+Cuw1mZZ8cd7yKvGxx97G+QHYeCGRFrIbHX4PIFj/HJNZxNFtDnFtnwitcTHPkh03PnWT+yHnsCGvUXePbhH+HKHMeeeZFszsUp6viXPLq1Fiv1BiIRPHXfA0xsWEfv+AJuQefgrq0sz16k6ORoLc/zkY/9B55/7GEOPfUIXz5/jun5Ftdfez0f+8R/YnZljuNPPcmLzz3M3mtv4I47X0djZZkr1UUunTnPyJopzlyZ4aY3vJofPvkga8qjbFy/mS+d+xsOHXmJUydPkmYEZpzS9nyM2hz7bn89f/bJ32f3NdvJOTZf+Mwf8XO/9Ms8euZ0P4kGSFRMNuvy0gsSVMJ73vsrzMzM8NZ77uaRHz7KQw89xJ49O9i8+RrCxjT/8I1vc98Tbbr1Nvl8lgcfeYxb7n4zV46f5q5X34aOYrAyxD988QtsuuoqnnnpEI2ZK4wOVLBdDdt16KHIZjSUoRPHMVIzMLSEZjVi282v5P77voXrFrn95jexb2yIerONzAs0qTFRGeLd77yOv31IUXSz9OKQ8eEJzl86z3B5iHzOxShILs0scOa7n2d0zz66jRql4R0Ur7md8tggql1HlwHnL53my1/8Fh/8wC9x7uJpNCfD1UOjLCyvcMedr2Vq7Si3HzzAGz/0Yd69+0YaWZtNlVF6vQ4NO8ar1jl39jKV0TypDSr1GS5v5rHHnmA0X6ajSxYWpzkzO881W7dx5sRpJjZNMTG5BccpMT9/nmwhj+FKgpkemY2D5P012OkC5kiexcUuucjEjyMSzWTfDXcRJv8bLIAKsrZDomJUYmEIidQ0EvW/dlhBFxKlgTKLiNCnGQgmZJYoFkSyh02GmACUQhc/vYiRWp+nqpRApSlOIYfz1CO4VhbtxTNszxepHr6AoRmsGyqz0TU59tlPk9Ny+F6HSKXc9NsC3RFk3QwiTRlxM5R37Oa+f/wGdl5nRs3xznvexZKEnupvOFNlAhFaAkNljyTp59qbRl/niFRoUsewLNIwQOoSpUy0vqaBKI5p9+oUBoeIVlZodVtEcdw3ownQYgNNdxgu6Xz7vi+QHZ4ia2dZt24DSdCl0+vRaFbxqit0g5Bdu3Zz8eRhjFSw7DhUMi6G0FieP8fc7AJJqmFbFoEXUp83aC7oJCpmZhlaaPRUiG3YkCaMV4bQwoTG3AJX791Cu9ZgcXERz0+5Kr+JVIvpdTsIVydKY0wnT+hbpHh9SVDa76CTCjQRo5MnCrvE2w/zT1//Mkns86N7H+aq/fsQcYrQe/gqxtGtfgdIOIQrVU5+8XPsOnA1t5ZiLF0nTXqIUJIquYpFC0llQir640DqbZQUGJbJK9YN8PPv/Dhf/vwfsbHkMZHfxlJ7gVgadL0upib7XdIwRGr0SQepQZSEmLYDmkKIFJM+9SQ1Yvyeh1ARkKK7ZSoVj1TrkKQOQkXoso/gCnoeUgcCE4KUrG2iRITGz7iAFRiRGpRNDEKmpxdpzhynkh0gTWzajSphXCZK2kyuuwppWRSG18KLx2l2AxwmUV6IOziMqzk0q9NoQmCJvixMJTGB18UyHfwElBeSG51EP30KQ0vJXF5kolyiduYU9WoDGQc4l2c4cvZzZAyXNOkShCGDbwgQUuE125TKBWxTo7xpAxeOnQItoO753HLtQeTwAIsPQrNWZabbptnoIpMM1+5dT89v47dj/M4sllFicLiE3zOJVErQC8gW8oSJYnhijFa3DXHS76jqBp2ex0p9hY7f13LHKkV4MaWtk8xcvsDJl55ldO0mlqZn2bBzJ/NXLuIHAd1um6DdJE5TKus3cGT6Ausm1tLo9lg7NoKXhpw/e5TAq+K6JfSkx9zCDG2/RWtpGaFrnKlWccbGaLQbTI2MohLFULHC7KXLEPVlUvWVKl6vS62ms7Y4iReEJEkP4erEqYdhuHTbAb4KyOSLdFoddENnoDxGwTJJY40wjYnW/iVHHryfuJjn3vuOsnnH1aRxP4lvobZI3s5iqQQpLJZqTU5+8fNs27+D7Tkf182DkfZ1/SGQKnq9Bnv27eXFF17EC1OUSMjYNlHU4/Yd27nr59/H17/4fzA6ajMpb+Ml/RgZPUPH64IS/bS06QUsRycgQsQgTZNqtYZt6ASGThJ61FtNCpUcrWYbxzVxpA7lMr4XIvSURBoQhJhZG4GOvhpJG3R6pHHSj3cVKcXyxI9tFP+P9bIb1vnaP/Hp//I/GJrcx5b1+9l27R0MFDLINaOsnDhFkpGI5Rg9iDh2+jzl8hDF0Qk6V14iET1mLl1kzC5y+NCXUc0m5oYsqhNRzOiIShZfpYR+j6mBDdSbC5w/8TSTJYtmU9HtVgmvzFCobGDf3lcyHC9gj4xTrzd54dhxBvJ5ap0OSmnIVNJsdXCqZ5nctAZXGGxaO87sxZPMNlpkCiXOnD2NbulIDIJWgNAstu/azAvHj/Gdr36Js8cP86nPfJa/+K9/yR/+4R/z5NNPsHl8LYW33MWf/d4nGK2sYWjc5gdPPEXxYJ5cscJdb7ubWMHeA/s5+tKzXHf9zVx/4Doe6jR54fnD3H7nq8kUs+QGB9m+fScz84ucO36GervFdbfcyNjYur7LLhJ0Oy1OnjxJPp/jwoVzbN++nUvTV9Ck5NLcId7ytndT73b58G9/nN5N10EAr731JhZmr7Bt/9Xc/vo3MHPhHC899TS33HgjuiaZW1nijte9lkOHHyORKcrNEdRX8MMBVCpwrJQzZ48idYOnHnuCmcvT7L3lDppely2joyhDMOz2T07tbptszgV3iJJcpr68QmZ4gLDtMzg4iOVmWFlcotfrMFIc4Xx6GdvZQSL7ukpRzhG3Ay4+8yBbd72ay36HF84eYsi0aWLgpyYrysI2JFIT7Ll6F3g9rr/uBo4cP00mk6PR62LpJrpMWbdhhONHLyLTfoJOTnc5eNttDAVdHo98fJmllN9GaA1hZC1G148yMFJCdQKWG/MIpRN0QkYmhzByA1yev0ihMsxstU3YDRnJDJLSIZMZYNutb+alJx7DybzscPnZKKWhSdFn6PmyD+0EtFVcC0JDaH0HtiYEgR+DIdlYKjMoNYQWIoVBHIZo5uqS/+OAo3+GtQIIIp9QxFi+j5XqtP15rESQaAJHWSSdhKyyMQwd5SpM6aDrvX5qlurTBzyvP+ndds+bWTswQjv16SUxGc2mt0o30LSfmgrjxEPoCamvoWkSQxfEYUqSxnS7HYJeG030k5Y0lZKodDUNCqK4nww1PT+PQPS7zknK8NgUP7j/O2yaHGN0dIyxjesI/ITFhTmuXDwHQiNVIa7QEBF9EL4mSUgIPY8k4xAL0HVJkMaYwiII4z52TvkQC6ShY2azpJ0OlcEBWtUmTsZBNgOSOCIMfWYX5un22nh+SIogCCdI05TA80ijBBMNU0jiJCQVMYZureK6kv7/NOmzcfVAcOiBp1i/4QCev4jlPMfA0AhC9NmoVtpHmUW2Bkpimga5rGBk8xqMJiS+IkogjZO+DEHpaKJ/vd4H8q++C2kGqcdc83P7sQaG6bVrFJwBNqzfwuWjM9hoaAmEMkFDkCQJut6nlsRxTKL6gSea7B+AxI9RfFKCLkiDlDgNQShMYdGL2hiujpamSA1Ao5jPoet9Oa9byv1vERjw4/LDRS6cncZ0C+jkyFbWUyqUUbZF2O2iDA2RAklKu9vDawfojsNIRjEgEwKvBWaepepFtCRGmjZEKbrUsE2dJE1JkwTXyhCEHs3GEoY1gtHxMJKUdngJV2aRuk02J8F08TSNrhegiYhE9jXvKQlRHGPGHtLN4XkBB1/9CmSU0I18Aikx4xhN7zc3VAxCE2TyGWrNFZaWpmm22my9eifTVy5RqozieV10TaNQLnDx7HkYn8KyYWVxhXKljGGYDAwPEytFqlK8Voesk8d1CrgjAzzy0A+YGh1mbGKSqXWTGCgWF+a5eOoEUZJQLOfIuw5GouM6GWzdptVukaLR6XVwCjmSOMKwbfygzcjoJMNewMziDOVCDlOYjE+MsdjrMjY1zhOPPsXrX3cncxfmGaiUCcKAanWFXCFHMnuJjqeI0hGSOMQPAuIwRQoIel2kglq1Rq/bZf+6IpEKyTomKA3b1kgDnTOHTjIxuZVeUMW1zuI4GXSnL/0pFCoIIQm1iCRWFPMZ0q5NZXIAswciVWhCJwljvHqDYnkUn4hGt4op+jefWioIlYs0FFt2bmZgfIp81qEyuIZMvkhiaCRxAkojIcHNWDQbHYSSq4ElUKiUKRgGLU0jVgrLzGO5AdI0sRwdQ0IShYSBh6GZxGEXp5zHSlKiKMAybVw3izAVtmkibR0pTLKVUVqNWl/q9TL1sivwuSvX8K5PvIG5WhN56XF2lC4yZ27ne1/9C173pg/jDKzhzKPfQsu65E0BZohdrLBB28yly+cZ3zZBPp7HbNZoN5egViHJmdSaTQqlHL16g7NnLmAUTFwlwWtwqeVTKRXxvZCQiJ0TA9wwtplP/fmP2Lzscf7KNIO5DL0YRDelWC7TjQI6Scje69/GV776NVqNReYuL3Hbrddz5vwFtmzbzKlTJzl1+gjXHbyV3Xt3cWG2xgtPPcfkhm288S1v4z50ApFy7c69xHHMk488xrNPP8OBAwd40y/8InFnheryIHuuvxGlCX7v9z/Jr7z7vVy4coVOa4Xrb/6f1L1nlKxXeef723u/sXJV59x9svJRQhEFkwwiM4DBJoyxB+OLDYwxw3DvwLLHXDPYxjgxODBjGxDJjAlGEggkJBAgCSQdhZPz6dxV3ZXrjXvfD2/ryF7rjj7BWsxeq1f1qu63urpq79rPfp7/8/s/n2/ddQfVis/w6AyX7r+c5eVVGutrnDx6gvzUAkEc8R9+593EQczGxhqFcpEDjzzG6Mgw+/btZdeuXSwunmVueo5Op8cV+y/jJw8/RGPF4XOf/jTXXnUlhw88wme++AUsy+b46mne8PJX0tjYZO/wOLfd9jL++8f+lMEgQhuDAIIwO8XM7d5Nux8xNjVOvd7ke/c/xuLiJhGS17/tbdz2hktxLIk3OcnzRyYp5yShloRpQqfdpVKpsNpoc+zJo9Rbq4wsXE2/OyDvSDzjoGMbJR3mZqeIV5e45rY3c+TIU+zZs4/2VoeT504S2xY3Xvdizpw+yvH77+Z9f/U+Lhqf5q/+7m9wvCo7d+/mwEM/wCiD1Cn79lyCFfb5x7/6S3bPVHjbi1/N33z+Cyxttbhy/wW0myHRIGJ+ZgePPPUEf/D+9zM0PceO8TIRmj37Z4kfOEHUH6KaL1LvpqSpQjmCvOfj2w6PPXgn0ws3knc8dl12JcHWOtXxCTpbHbSjuPbm/XzrU5/kZW9+NycO/R9ACcBgAXEQkurMWMIYg7CybiWmKQAAIABJREFUjKowoE3WVS6EIgwz7mY/7rO5chYnP0d/EKFJUWTZTZNmJhXnHbCeloYKgWUEvX2Xcs+DP8Qe03Au5sZXvZDc6ChHvvIV1s61+OX/9mFK8f+kVJonibsEzZNYKkEqgXAVxaEh8vkimpRWkiCFTc7J0en3iaMEIbJueZ2R6ynVLubwk4vEUYqRERiLKC3hykVsZaFt+5mTujFZK08KUhgSnZIkEdNjE3x7ZYlaqYIwFkG7y9TkGCudEKMkRx5+mCAOSXMuOc8h0QA2mBglU1KRsW2NLXGx0UJgk5l4uEIhROaprZRC4iIsGy0NynYpj7rEsQaVERjStE9jvUmgE8bMMIWSx1azSbcf0WisEwcJOokpFEqIToDRMVh9hLFw3ELWPY6FwJAaNwvQi5pTTw245oI8A7GDuYV97Nm1A9sIUlwiIcBKsWKNMhptefSiJhP5aXIbPh0TZW40xETEGOFgkEjhIGQXmeZwLDBygIyKfP/vP8LOq38ZNVDo4TJ/9oV/4dJdOaRtkRiNSkHLzEs8CAKkEhgMtu1gnj4HCQEyOwxESYLQKUmaEmuDaymE52AZB3QfIRzQBoOgVCqQxgnSynRyQmQUC/4PyLB2BhWm94zR7feJWotU3AAjDRtrpxmdWEDZObrhCtgCG0mcSqRtoRzD1tIZCs+/lDCMCOKIJA4xKpuLUZKgbEUaaXr9AcLKmtBkGtMenuRI6xgqF8FmzA0vuYLhsSm+e/vnSBpdrn79a5ngXvxikXjQgaiBZWUud5WxGcIgQGLRWN1kbGoMqTW1So2NRoN6vYFl7aBUhl5gaG21mJy7FGszRxgus9ZQBIMRoqRIe/MQi0tL5D2HiZkZRBoRxxaVoQpaG44eO8T01DTdzU1K+TxGCNbrq3jKoThcZffuHWy2+4Sp5tijB+j0OsS2Ys++PSSJJowibAta9S0SI8j7OXKlIvEgwvVzGG0oFos0bJdelLCydJahWo09+57H0soaKMEgidmxMMugH1LwPB588CHmJ6ZpNjaITIpfdnE8SRQGCMuh2+2gdUIchnRaA05vbuDPbDE0McpYaQLb8hHuUSb8Co6COLFJtEHbMY2+YX7MI6VAZajC9OwkUguEdDJxixIQRbiWIE00hYsuwadA3hTpxZper4/WKeVqjSjq0duqs+OiOXLK5tjhVaolm2rNp1sPeOqeL3HZDa+hZJfBcfnkp7/IxKzDrpkJHj9yhCCMKJcKpPmUKIjJez6tTpdTR4/TKJXwPQcBFCo+ntAkUYKTcwiimFiD4yqsvIuIY7qby5AbxUaSK5Ypxylqm9rjOBbV4THqZ08xPreTXrf5rOvlWQPW6NQ/Ud71Fvy1LZ578W5iHVEX8zz34itwzh3jkUe+w+6pnTipR39hF44Fx04eQvU3iTfPcOrhB5kY2o0czuGd9KmVNSttgSMTTpw7w2R5hN2XjDBZW+DkiSdRScSxjQbO2ibXXbVAu+eyUl/nwEMHCRODZdv4toXl5DGei20PWO01mR+bxHclVrfF6bVNZmZnqVbLLJ47x9DUKIuL5yjXarzhDb/MnV//Knv2XcJ73vAmTp49w9jUOH/+0Y/xof/6e7z7t97DFVfs595v380NNz2XyclJvvK1r/LaV7ycu++8ize+4KXcfvvfc/ed3+ZP/vRjDHpdjp08xitf+wY+/9kvUfEdLrzwKhb27eauu+6isbqOEIKxyQn8Qp4hr0az1aDVGlAq5kFKNpqbjE9NcvrsGaZnZ/ByBQ4fPcHY2ChrGxso18N2fX7rV3+Na6/dz+e/8GVe8bKXY0mDny/x/e/ew48eepD9V17Cp/72r3nZa3+JP/nIR7cbZiS+U+Av/up2KlOzdFpt+oMmnW6LIX+IyYlpLtxzAeFyHUdOMFquctnICKOlAqmw8ITgxJlTzO9YQBgY2THOPutiPn7L9bz/s09iYkV+fBhwSXsD7HKO+tGD1JcWuewVv8S0sOn3Bzz55A954QtuQycDvnH7R9l99c2ULEG70aKYL3H9jTfw4OOPcNvNV7Kxfpa4F+JUqtz95c/wB3/0QSZzw4SB5q//1xcpD+dYOrHEt778Tfy5KZSJOXq6g41k33OuJOi0KVbnOPDjb5G0W6y2NhmVCWXHpVQepdPp0NgcoIxBVRVxJNhaP0mit1i9Y5F+v05hcgF/KsfZp37C+FSfa59zIatnf4zv/Hx3HP/r4Vg2qeViWRaxMVjGgMmMJqQBIbLu7U6kcPMjrJ7rUc8HWEKCTlFKINJtT3kLhDGZicDTXT8ixaDpGbjhpa/hrkd/yGtvfhFrGy2Mcul3lwlPrrDr2lsIuwEDIeisnWCzVebqSp5UtAFNMggxaUyulKOxskbUa4Fl49RqGGXhakEa2kg3Ik4FWhmWTp9jfq6NJkHHNqkMWFyx0G1JP+4RYvDImncyZrFFmgQ4vk+/2aJUKNMK+8zP7qC9tk6oJINmm6FckWLJItAVxMQ8OjTgW5w8fIhWY51yKYdKJIEMiJNeluGLDZYnMDLTCFvSBjKHKEsqdAJCGhwHCkM1xCAkjjVhP0AITbwdQNsmxTYajCCODUFisI1Gm4il5UXyXpH+oIsxhijoIqwq3W6X6qgNMkXoHIYAKUKElsg0xXIF+WIZmWqGxycoVSbJWQ6Ja5NqQ339BNXyKFauRhxvUUyKGBOTOAky9dBBFyFdlFagzTajNkKkDpgEZSnQNpHpMjtaIdhs8Lpf/22+eecXscUaod6DMT1Ghw19o/FRhGmK4yfYwkKbmDiFKIyRro1tSRxpGESGnAs9IfBtH91tYVkKx3MRFEgjgRYJCRJBRm6w/GwDVUZRzlmYwQCMzc+7c4Dur6DK07iJZqhSYSPeRNs+1UIZ0evRThrknVw2lz2H2C4RpetsNDsYv0uvvkiYKpRvoQKJrQyRBmM0g0GU2SYXHTzHo9NpEemEHZddxY8OPc7LrnouG5s9gkTTPnWQcGWTmcuvRYcxsW0xaK/T3rJxCgrL9lBSYPp9+mFIuVpB9/o0V1dQvk+v18HyPOYnpmk3uhSrDnPzO1jxWrTbHZLoGDfcvJMnDhyhOlKg3VmkVh6iOlzl3NISc2MTbG70GJseYXlxkZWVZfZffjndVgvf9chXy+TzZZJ2F69WxXI95GBAzlbYpSr5iSLFboDybTY31mh2NrP1ajRhEqBNRBAM8EIf27Ho9gfkXI8kzipNQip2zM3z/fvv59YXjDE9PU6ulMdLDec2N1hfXadcKXDlFVfwnW9+h0v37M0+U5GgFUdOLOK7BcI4YnVlFUtmB9qSDZ5SmMgmigyF4Tw1z8aTHpoBlkgI+gGFgotlC0pDNYzncd2VF6K9Eq6wUQUfbQStxhLFcgWRQD+pMzI6h5e3iAYpnUGPWrWASSSri6coDo1hSUEUBVjCo1otI6wOY9Uhgu4SoyVFGgRcdMVVfOveO4jSPoPBDo6utBkeLtPoDQjafYTr4CiJSQU538Xy8qRhhLQ9wkGbgUzpBBFFJwR8cm6BXrdFqg0YiaU8bBOSxANikzBYX0GTUMqPIqRL0u3i2ZCv5An6rfMOef+78ayUgNve+X9zfCMgsX0eP/IEn/3nr/LFT/8XYstlffUYRa+EQ0DH0uTTCNWLmCy4zO68lrHh3bzsZR+gHdSxQ0FlssxgoHAdn6QP85OTJDJk5cwWq6dPM+gXCdwcO3fuZHZ+hI1Nw6BpOPSjI6i8zdte/FKmLtjFxPQM1996HS9/wS8wtmOOiXKJ9uYWx86cRSeG599wDfOTw+yb28H+y69ESoujh4+ye8dOTpw+wTW3voAduxa4+1vfIDWS//bB32dhxw7uue8+3vXed3PJpRcTtLs8+pMfs7G2ymte9Soee/RBnnPTrRw4cIClpQ3e+973cujQQbSw2LN7H1/+0j/xm//hDVx++TV45QIf+N3/xKM/eYRyuYzjeywvLzO/Y4Hq0DBHnjrKwo45XNdBa81rX/lqCjmf3bt3srS6xNjYGKVSia1GA9/3qVSqDNdKmBQcJ8NWKJG59CS9Ac973gv50p3f5E1veQt33XUX//ylL4JJkQoEhiRJSMKI9cVlGmurtDa6XHnZNRjPZqvb5KnHHuLk4YN8/zv38OU7/4XhUo1YCCwNfZmyY8cOdJJltxQ+C2NzPHLwMB6KylANE0VEUYx2AnwtKSsXVVZEjQ7DnqRY8tizcxcnHv8RB088weTILk5/73OsNY/yjve8jyNLhzhwz7201uu8+Z3vIjU2witwx+f+kSW3xD3f+S6tboux4RqLJ9ZZPdXmA7/5q5zodnBSQzBIWa+v4ZeLWJ0OMzumOHHoIcZGxoniBsP5EkrDgJRKv4e9tUXR9QlNSpjECGGQtEl0gmfZTM5Ms3Tseyw+8j3yOY8jT9xHO0rwCNlcO/XT26l+RuPpcqhlWc94um/ff/4LnWGGtEBozfT0LLart5uzOH/7zIPK/5/Hym6LdpF7PvUJfv3t/xcyTdh/wQX41RJeP8TKO8zuXEALSOIuInSpr8yQFwl+EmCT4LoutnLo9QYsr9YJEoPAQkoLqVL6icbkt/FEqSZjrFiksYNU2XNQlmbQk6SOpmA5lG0Hy3qmtCyUxPU84jgmjkPq9TrlUhWtM9S+MQbLkvSMRpsQx3KwtrnGYRize99l7N53Ga1WkDVfbQelWVgKaIOVZtnr7PXNOKMSwdOUBs/N4SiLJA6RQBLHKGVhS4Vlbcs2hMBSikqpwoUX7GXn7szO0GybglhKIVDk/BK+71OtVhkMBudL9VnRTqIloGDQCxAq68IXliJ1XcK4jbISbBOw84LLqI2P4rkKZTsIW2G7DkJa2xgqSEkBvd289gwN919vHXL7/85V83ijI5RGatiJISSi2e7S67axjEUcZ6QGS2TPKY7j7D0V2bwUOjscpQJikxKaiH48wPFt8paF5fl4Xi7LvgqBwEYIi4yKIIi3rVgdW21zqc3PvTXr6PwuepFG2A6dXofl1VWWF4+ghSAMuiihkCTERiNTg4wTpsbGKJbLeF6BsbHdGXIuBduz0dtmHmjIex5aaIJ+RNDvk6YWjlPg+APf5ZWvejVxmDI3Pk0Ua9w0YWF2ipndO3B8n1LFZ7wyQRjOUrYFMugRDLpYymZ8eASJIQoS/EIZISz6/QHFgsdWt0tleph8vsDG2ioGyfHDJ/DcEo2tTRZ2LFCpFgi6mq3eFjJJ2Tk9Q6/Xplyr0e12CaKYffv20WxukaQpOtW0mx1mZyYplrPGqaNHjrDebKIscGyXOArJ5XMgJKXyKLv2XMhgkCAQTE1Oo5SikPcJwgGu7eJKiyTMsHiW7eC5NsJsM4DTFNe2saQiCUNGhkdYXFlhdm6ezXqDa665OqNTSFBSkPNzzExNUquV6HTaxIOYamUIaSviRBMFIUkcEgUBZxbP4toWRmQGLqkQ+PkcCEM4CBHSouAXaA/6CNsBFSNFgtQBY3OzlCsVco6F8mxMqvFdG8txyPk5eu0t2v0mruMz2FwmjNo88dRBekGXdn2TJIp49MknM3qIUDRbddLqEM970QsxYYx0BI16i9Zmm71z87TDEFKN0JCkCUYIRBTj5V16nS1c20WL6DzlIzQxOuxjC0PBdsC2sWybJE0RJBgjUdLC83IMupt0Ww0sSxH0t7IqkUiJo8GzrpdnDVivmBrDGkB5YZhe33DdJRdw28vfzoHvfYsoDrhoz4U8+dRPqJ87yeaJg/R7EXapTESXU6vn2IibiMTm2FOHSCW02l1iHRCZLRwrh6UqTE+NoKRDP11jbaPJ6ZNnWGwnBP2YjWiLodEhzq2sEhrNeLUK/Q7jw0McO3KYnZddhJUaer0eluMSpwFHTxxhYsduUgytoI9fKWHnfQ4dOsTu3bsplMrMzMywuLjIVnOVvRdfiMi5TI6N01hZZbm+yp1f/RqXX7afH3z/AZIoIgwH5PJ5nnPNVdQ3twiTlLW1daSlSFP4lV95M5+7/X9y4sw57rzja7zjHe9g586d5HI5/FyeWq2aIWmkxeLiMr6XZ3V1la2tLY4cPsTo8BD3ff8+oiiitdXg5PEjFAoF0jQll8vxxIHHENt2cZa0kSLbBAPIgMtJyote8IsMBiEf//jHM2zMNn9TKUWSJHi2wwV7LuC2l72Mhx94gDCKUJbP7Pw8YxNTjM3OMDM2gW2BLSQJBnvb6ebpUrBlNFs6ZO3cElJaaGOwENhC4Ks8fdNDzcxgvDKtpEkaGZZOnKXvWNS32iSiSml+FN11UZaLTcSTPznIobOn0VozMTKV+b8nEd/41j384+1fhGaHSrFGYHv4ZZ/S8DCpstg5O8Vmp4UWkr3DI3jOELJWRq81qY7tpNsLGKmOUy6XWe9uULI9ztXX2Az7WI7F2uomnvLIFcooUcKSHokIOHPsFO1BSt/WjA7NMFIaxxr0OHPsBHnP/altVD+r8fR7JYQCac5noP51sCmEybSuQjJU7HH62CGMENv2vVlQIrZ1a2IbMfQ0BssYs+2IlGGJkrTDqInofuVuBmsBJ08/hRM22bQknrIZHh5GaXC8t9O3X0I3sFnZGiYQDgPhYtmSOEoRyubM8QOsHz/CrtlJBnEPRxVQoWbQaRMELXw7IiczJyrH7xP2fGxbIlILIzSuFCTGIdYy015uEwLkdgCmpI02WfY4jmMALOXgKklSX0MpB9sYtEkxaUoURSTa0Oy1sQtF9l1+HfMXX4dXHifSCqVslJ0Fm5bMtHupzrzANYZUZ6YClrRxfC9bh26OnJ/HdnI02gMSBMQhCYZUalIBIhVYJKAMnp3DJCmdZiszALElYRhu45oUvp/PuvYFaEFmoyoEcRrh2Q6JNjiuj+d5DCkbR1msnVrn8E8O8P0v3MWd37iDhx/64bZ0QWArK/NxFyClAvQzc0aY81gtve22p3WCNhGxkQw6HXK1aT70rg9jbE3Q6eP7eTyZQwTx+WvSNN220XXOH6ySJJOIWEZAkuIqm25fMTS9m5H5C5jZdykLe/dy9VXXIRSZdtm2kZYEy0IoG1u6CC2IoiiTBYgsgP95HiXPQWqBk/NIjKFWLDM+MU9ns442KYV8gU63STQYkPR75JwBGxurpCIlShOCJAQj6He7pEKTJCnaaFITAxKBhe87ZG1YEYNBG6fXYev7jzBohJxdPUFOxKzHEUooRoaGkHFCIf9yNoO9SL9Cs1NioAWxdBHK0Gq18Qpl1ldOUV88w/TkKLGJGfQTik6ONI5RSqPjDjLJ3N4sP0ZRRCcRYZCwtrbCULlMfbNNkmZoKcuyqFTKJElKojVJnGK2Dx3j4xMsLZ0lDGO26uvMVMsUiiXc7XVnKUUcx2gjaDQ3cfJFRqYXqE7uJNIWynbZajYRUhDHEcEg2wfSbdOKVquFMZmVsCVtLDcjgCjbxZIWSjl4+TJRajh19ChaQCo0WoAwEqETpCWolYYYHRlh5dzi9vUWlm3jei6un6dcfNrQQmRrPSuqkOgEx9q2hrUtdJJSVBZKKFprLZaOn+bI9w/w0MMPcvzcGaTlkpoEhSTohqRKECcajbWtexUIKZDG0G52aPd7oA2O7aB1TGQMi2fPce1NL+L2T9yO7VkEQYyfz5Nzi5BofM8lTmJSbSi4Lq6TQ3kuRAnS8tBG49sellBokxJHFnZpiNzwBCMzC1SGR9m7+0KUYyGFi205oAyDICQxCqSFa/mobSnVoB9gyWevYj7rau7okPHZPdg4XHXjxZQrOcIfH+DKV70RqQPu+tG3WbjsRgo5myMH7se1B0ihUOsnmanlOfqD7zE5NMpF86PMjOY5s7JBY7VF0Spy8Nw5gkEPO07ophHTtRF2jOWZnZgl2mzS6wdYaYiUbYYLOU6tnqW5tEZhYQ/f+vpXKBWqlOly0aUzvOIl1/Pxj/wOZ5YXufbm6+l3t5jbv49AG6pugRfceitaa4ZqY8TtBv/vRz+Mb1cglfzyW9/KwswMySCmPDRCt97mP33o/0E6Drv37KXVj/Bsi4NPPcE37riL3/v9D7Bn1wKFYpmjjzyOtBMWDx3md//zH3LvvffwzX+5g298+246gz7fuu+7TIyPsXjiNEcOPEYhn+fmW27kxPGj7Ny5k4LnMYjaPPDjHzI/O83o2Bidfo/VzTqlUgkA13fZ/5xrQWbNEVHaRW83lEgrZnphlqDXpxcM+MWXvpjjJ05kIHAtMNjEieH1b3wDb3jrW7jttpeya+9u9u7dy9vf/Db+/E/+ECzF2//9W3jdy1/MC265kTghO0kJibQstFSZHaeAQMfYoebyK64gVBJP2sRGgtLE2qAGMcePPEEaSuit8dhjjzA8MYLAZccVF5J0t9i55zoOLS0howZlx+fAkceZnJ2j3e9heT6doIVHzH/8wHu54/N/S3F6gomcoigUSMniuWPc9/V7sPM+rUGPct6nLfP0uk3e8urX8Su//U5Wzj5GvpDj+Jl14kgzXZ2j0x5QqtZQwOjsdezbvUCl6rG0uoabE6wvLzHoxUyOzTI7NoSV2hw++zjtfo+zqycpjNRY36z/NPaon+l4OkiLomBbb6rP3/dMM8rTAaxB6wHaBChLZLDxp60shdne9AVm22fq6cD3/K8IgUpsZKHID4KQhWv3c9e3H+X06ZMcuOMput0uTgpIgWuvUl/+JOurdS5+xedptTfwRIQUVvahbkmOP3qQL37286yv14kNRHGPTTmMGP0QAW/lVP1SDi+PEAUWaezh+GEWTMkUKXyObXkIZRBpf9stKUEnKUmSYFsWSikcx6FUKZ9ndiZGI9DIgmFrq0EuN0wSxtuuSwqJwWhI4wREShgk7Ni5lyTdzlJvvxZPs26lpZCCrKnt6UBMyqxpS2QNT1GUuXP5vk+pWMwCUSGwECgDKIlt21iOjdFgJAyikP4gJI5jlCW2ZR0CpWz0+cSn3hYpJ1jSplQtEYbh+Yx5pFKKoyNMzY3ygpfcwi1veB6//Jpf5JabfyHLRAuBbW1vpmmKzs41AP9q7jzztzRZMKHT7OdB2OfkqeNccf11OMU87WCTZj8lcQRaivNZeqWyrHKappnxAwKTPjNPXdclSmIuufRCMAn9bpPDP3mQe+/7Ng8//CBCmvPzUAudNRM+TerVnH9stiUDP88jxeB4OdIkoVorYTkS3epQGp8Ek7K+VSdXGsKyJN12HcEg01EnAwqeR3dzE89xKeYdcq7NIIyJwhBLWPTCYPuQYEiMwXdcCpZLrlLjYK/P8K45Hn30GOsbiyw/tsRmawv6IapQoNk4RL/1HXpbW1z8wg9SLCguv3CWIIwYGhsGk9Csb3L/d++n3+5TGxomSQJCdwSTfw0HT8xS7+5msVFmbGwOzy6hVISyHdI4ZPfei1npexSKeZJ4gJKCdqfJ6soau3btoFwsYDsuYa9PruiThCE7d13AWn2DjfVVNrobNFvNDJElFYNen0G3g60ktVqNbrtFPu9jUhgZG2NjcxPPc7FdlyRNGQQDLNtCKomlJMVyGaQgTXXGIZYqW69KYNk2aZLpLufn5+h0OwgEyojM5loIZudmmVmYZ3R0jFwxj+M6jI9OcMHe3UhLMj89w+T4KGMjI6RpJlQRGIQUYDRKWviFHEEcooygXC4TKUOhUqE6WmH/1Rdz0U2Xceu1l7NjfgGBBB3R63VwPBejwS8V0GlMrlClMxiAjrGlpN1r4/keUZrxq6M4RhrN9Pw0jz/6I/Zcvp98wSOKu/RCTS/pU19vIC1FojWuY2OUQxyFzE5OMbOwQNBrYtkW3V6IpSws6TA9PYVlKaKgx8byBqdOHeX06eOEUYiyIAwDkjTF9Tx810Eg6fQ7GR5x0MFyHKI4fdb18qwa1ts/8RcERx6j4tR42BS55d+/lPUHPsmRz9zJS26+iMpVv0lcP057q84l17yasL1Oe3mRJ556iLI+jasVXVOkFQxoNxsUa4pqLuv03LmrxurxgEa7R8WzGNglHGEjTIsrLtrL1tY5rrzqRk4cP0OaOtQUHHz8Ya573k2siDlGJ2r4SlErljl78hTKHXDw4BM8/9JLSJMBQb/HwuQMP3z4YS6/+ApSJRj0mywtrvDO33of9faAkmezsbjMuROnmLj+OoIo5MZbbmZubo7q1ibniiucOXOGV778NXz8bz5Dq1nn7ru/SSmKee4Ln0d/8zClIM/vf+rrdARIWzA6Msn1NzwXTEIQhJQqZa644Rq63TYnThzFtx3yhTJHjhxlYnKYteVNpKW4/4cPcd/3H+bYkSNcfcXF/Mnjh/nwR/6Q48ePs2PXHlqbGwxSg44lRmmEskkTMELS6YV88I/+jD/54HtwSxUkabZBkGBIGKlVoVDGsizyUcj1197AjplxigWXXHGYIA4QUuP7PnK7PKl1plks5fK8+nWv4ZOf+iyusTFFwZwzwcoPPkv5F1+L1gl+oDh8/BGUXWVkYTdCGQgMEyMhXq7IVNnmzJHDXHXdc1laPMtbfu/vyGnD4e/9d1aPHueRlUVc2zB12V48E3Py0YP84vOfy8LsFSRJRM9yWVpdQhHyq7/xRv7xr7/MSC1PWq0gpeLGa/axtVznc1/8Aqcff4xdl17E0uIGuYKgFfdwhM3ei69BR1sgNI2VR2k3uhQKRYYqZbpRxOz8DF6pQLfRR/o15nYukJcpYRiye8cMR0+eJO/nflr71M9saCWQCLRQaCyEMMT9gERkmQRhAGkwqUCqGGnVthmAA4Yru7LsVAqpzLq3Ex1jm+0mIpNZ8GqjkTLzg49FwJW/9GtMR3VMInnv776PJNGM717m7N/+ZVbutkEHfZbrt4CKM4RNnBL1wJN9orAHlsuvvv/9eJaDFoaw2ydVIaoyxenlHTz+eMCpY1usb5W5deEgiRUQdAtMXfc71B/7PeLU594DBd5Ty7HZGeB5Hj3RQ3QM+UKBQTSgcXaZXtyhWKnQDQagExxp0FJhAratAAAgAElEQVSx0U2puAGtxlmUBa12n2SrxXqS0uq0EShsqXETTc+EXHv59QQmQoQSu5DHHy5SyOXxLJveZh8jU9ApG41NnFIFo2OkbSPSPtIRoFJKlkcSa4pejmavQ5oYBgKMDrGFQklFKsngt7bAsXxs0aezuY4zUmHQbZALVYYdM31SQJmARNvI1FAdG0MpRWBF1GrjCNvi7q/exY23XsEf/9dPctGV+zm2dpbffNfvYC93MQmYWBFFHURaBDoIIzFCIVEQD56B8QuDJzx6gUBGEkvaNKTLZCx406tewBe++wNGJqaJkz62ilEqD9hE29G1hUAKO0PFKRdLJBgURsYYIqSweergMeJ+gJISSZu8I+mFTVzpoWVGHXCEzNjAUqBTSagiyq4k7lpI9M+9ccDi2dOoQRsLi81UkyuX6TWWaG+GjI2UEOVpwrhL0OvgFyt0Wg5Jr8Pa6iZj86PEwRZaKsI0wcQp0k7xpJ0RLfIuYU/TD0MsJUikjdYxu26+lUkZEgUhv/brv06n3aM00aRzzx30ex1qkzXoSLrRFdh2Sm14hDCMSaKU9madofERlLD4hVe9irybo9lqYhuPKAwwXomzSxW20us5t3mMXr/Fld46Udwi509Q3fUKxNl/IqbGqROS14zVWD+zxszUAofOnSBuh3R6PXQUYCPp9zYo6xKPPHmIweoqtoTUzaFyFYYti36/i2N5RK5AB13Onq4ThAGWctFpSNG2WdncYGHnBaxu1mFjkyRNWNg5y0ajzqUXX0yv2ccfzeEoSZykWF4BrRNkFmUhlENiYs6dXWT44n3kcwUSHaE1RMIQ6whl2SjLxaiMW14dGaJUKuE6NtGgzyBJCYM2jlQoJYFwe71GCOny+KOPkNtbxZI2iWsYHZlgvd3g0ScPccHFC3z19jsZmqix0mryyte/HrMlSQcprnTQJsKz8/Q7LarVYfr9mNm9l6NMRHvzBMlml1YvhDhHioNMYoLOgMjNMWpXuOWaS/nLv38St6xAJuxYGGP5zBY5RyE8FyEVI5USTQFnFs8x6PQoFisMNkG4hsiEOOTYaA5IBj3SJCJNT6OMphf2yDs5EjR+LodlW0RxinQscrkcloip5lyEdAiiwXmay/9uPGuGtTpSxNcWDVdz9XP3c+7cGfIVH2G5rK9sUnZ6tNZ67J+dRo7UGCSKldWjXHPV9RRti5HSELXJSUynB8ZhYnwX/V6K5zoMBgY3X2BouIjneSjbA6UJophut43Aod1OeOrQYXTYpB2GSGuApMdFl+wi59g0G4ucXDzLJRddRRwZKkMVLrz4Ur7y5a9RdR0eP/Y4RqZE8YC5uTmefPxJxqamueySPVxyyX42NhqcOHkS1/fo9LqMjIygMfzdX/8Nt3/mMywuneXgwYN89I/+mDe96U2MD4/gKcE1N93Eba9/PU88coB7f3CQV7/1LfzjP/wDN91043bHa8Li4iITo2OcOXOGoWqNJx59jC9+5tM0tjY5ceIY/X6fj/7xX3Dvd+7m23fdyQ9+eICjh49Rq9VYW23w1re+lThO2djYQAhBc7MBgO14CJOV/NM03W6scml2utx//3cJw8F57IyUEinh7JnTmDRzxPEcl2KxSGWolqF5LB/btgGx7b+eoWeUkkilEJaF6+X50Ec+jCGl3WoyNjXHeF4RxSm269DrdRipVshXanjKouBKmo0G6411UgxbG3WUgbXGCl6tSm9jk0akqZWHSDCM5KsMT+0k6PXxhGals4bvFYmciDiIKRVzSCkZGxvj1muuYmr3LvZfehmVoRp7L7mIuel5kiDk0gv3YpTFkVNnyA9XmRoeZahUYXZ6hrWlo0TdHqurq0xXR5iZH2FtfZHR4SFKlQqWcuj2++SGq8QDw9Ejh1mpt9Am5tvf/Bdsy2doePSns0v9DIcxZjtzxflsluu6+H5WFvY8D9/NUSgUcBwPkUoQEbZtI2TmPiFlFgAYk57Pqmbl1X/repWmKbZyiNMAT7sY6aKli7ItfFfhqJitJKKvoN5a4cE7H6ATLPLy576IqeEhrJyHtDwgy97argsWSFtie1mDZc5zqQ2Veet738HbP/hhbnnpa7G1hUot+gOfsw/dDwk0+jG7L38OxYJPYkEvjUj6hrs/9ufc/ZmvYTFHcfZ66KcMlTIUjlA2aWqwMAyXKhiVMOjWqS8v0lha5VxjnV67g+vk8P1cVs7PFahVhgjiiKmpKcbGxhmuDeM5PugEY1LyBZdapUy1WsbPeViOQDoOynKwLA9hbEwkMGmM40ps26U2lM1Dz/NwXRfXdZEGbGVhKwvLKFwlSXWmZQ/6PQqFAlGUIHkmc57pOROM0KwvrRGnCa5RBAL8VPDCl/4CaQduuuVmrr7+OVy970KWDx5GJyl2akhJsex024YX9LZeHrFNNTDifNo1NdH2oSckMjb0eyjjUds5T87OE0YRcb+NyY/TbvWJooggCAiCgE6/dz7DajsKpQSGBMtySFODkIai1IxUc1TyikJq0EkGWNc8g1Vj+3uj2Z6n2+5cpOdfj5/nYTkKkWaugtWhMmEY4uVcHM/DaMi7EqktxmpVrFw+C8qjJsNDI9gKXMfB9T1Umm5n7QtoDUpZ2451Ate1UUpiTHZ/lITIWIBwiVKL3mCALVMgpqfDDHCvQk48eph2b5H//K73MT81g7QdHD9HoVhkbW0d33VpB22EBcKCcrFAFAQMjQ7x6jf/O1736+9kz2XPIeyFWMKmN1C0Th/DpIanjp3EODkgpdnv8NSxI0wMT3Hojm/y+HcfYri2j/nLnkd7vUkYWFy0fz+LyytUq1WUMBT9HIOoh9Aha0vnCDo9Ti2e4+SxYxgjs3K8tDi3tEo0CFleWUZIG9u2GaoNoVPBzPQkqc5wcMVCHtexcV0by1FIy86MVaSdaepTRRyFtDqbCCEpFovk8oXMyc2xSZIYoQ1KSBzLxlUOOc/FIHBshySK8DyfOE2RPC3NkiAkoJFK8tCDD5OkCSJOEb5PSQguu+oSTCi54IJ9XHTpRexb2Enz3DLSGHQQMogHmVFKFIGBQdxD2hZpFBJBVjVD4Cgby3MwJsJSEb04RcUJSIv86Ah5N58h/0gZGl9AC4ucn8MAjueBlKRxQrlURNkW/WCAciR5L48lLfych4w6FH0LRUxVOXiuRRyF2Ntud1JsY+1chzQx9Hs9wijGiJSN9RWksHAc71nXy7Ou5kd/cpR6bY47736UdqfDbS98IY6xyRcVqSrDl/6AS4LDnB6kEHQIj/6YStVHrDxCqlza7Tqnjj1Oms8xPzJGtVKkWq1SGlpg99geLr7octbPdVlphlhORDvs09Wa1WaHdscQ9bbYt/tCOr2Q5mYTrzzGDx99kk986rN84u8+yde++gAyLDMyNcFNL383ufIQM/MjvOzFt/E/vvR1Vjc3mSpVaeg+uXKRCy65lLWNOh/70B/wvQfuJDApXqnA8ZMnadYbfPbTn0YnKS98wfPpd/tcd911rK9uUMiVefLxJ0haPX7j3e/hJ488yMufewOve9v7OdkKuO9rX2V6aJgzp07iFwo89uMfs766zOraCqfPnmV9fQMnX+Td/+l3McbguIrp6WkmZi5mZH4vczvnufWma3j3b7+DV/67V3P1ddez2WlhO4qFuWkeevhH5H0bx/PoBz0UCQiN0QnGhGgrJgkGfORjn2RmsorRECc60y/i8NhPHuH4kSfJ5xz6UZDRCDwvK81hZxk3nTUxaG2wtsunWmtuueG53PT617B66Bitdh2ZJHRCzRtfeSO5Uhk7EVhDJRy7AHbAo/d+H5mvUp2dYHh0hOOPf48g6LFjYSerpw5j9fvkiooCXfbuv4Z3/+Y72TFR4/f+47sYtSK+cc8D/Mab35RpdM+t0mg0UF6JjXabobEJHv/W/Vywfw+LUY/rb72VX/uNd3B2cZFGv8WZepNrXvQiLp6eZrPXZKU5wM0N0U8NhaJLY3WDoWqNI6fP0u7GFPM+UdgjaLZJEVixhSX7tHsbxEGDlY3T1DdaXLL/ajYbbQ4eevKntE397IY0ma2qlBKjZMa3RINmu1FqOxCJM1yUkP3z11qu9W+0qllQoEEk2w1EBtD/RhIQSgsT9kiVjVuwqc0NMzQzTi1nSPoOJ//H31B1fUxvjU9+5Y34gwqf/aOYXivCkVmoJUzWhIOwSQWEUUTYH4CRdE4+hFd/G4c/dz2n//lWcsf/gG4vIUwFy8diJkbuJYkV00OSG4oP0emk/PN/+RA5EtzUwZ6c5/SPH+Pzf/YhHvjTDzAI+/TCHr1+HSklnpfJa9bqS8TNPj2j8N0CI8PDTI/MMjo8TqVUJecVKebLuMUqnlsi0gYRhyRBQLNep76yxpkzpzh75iTLK2c4d/Y0Z06fZtDt0VxeYenMGstnVqjX12m321iOjWO5BMGAjXqDlfUNGo0GJkoAgUBSKBSwLEViCxw3T2hS0gTy5RK+nelILeU8jdrN3itjIWVCKiRRu03O85FGonpdUiuB4hDzV+zn2ttexMjcLM95/guZ3rs307DakAoDxgXZQ8isbJfJyvS/KsOTMR8lhN0B4aCGED6tM6eIiZiZ3kUgImxL4uY9/uEf/hd46flyfy7vo1wH23O3rVoNnuchpUYkYHQmE+glhmYvpB3G9LRLFArSBJQlEGZbW70diEkhUJZEGQ+jJbblZ1oK8/MdsHaaPSIvT73RITYpY2OjmQ+GFGhszPIximmXXpgitMb017FthQhbCNsmjkO6nRZaKfKuh20rbEdiO3nybo5SsUgQJASxzuD/BuIooJ8asBX5ms/E/Cy+lRJ0DOvf/S5xP+L0sad4yZvm2Tob8d63CoxWPPTjgyjLIed7TI5PcHalziCOUQj64SDLMvZWMRt/zH1/+yoO3fFr2CufJ0qg2R2wdnpAv3MnaSLZt2OUPc5hPK/MfZ/6e/JKErQGyNIQfgpf/8wn+If3vZ3hiRm2Bn2Wzx4j57okSYRSFmfOnqDfaNEKIpIYPNdlpDbB5ZdfRd4v4Hk5qpUhitUJ8qURbN9nuJxnbmqSYj6PRLC0vESjvkYQtDl27DCb9Q3iKKZd32BzfZPGxibt9hb9fg/pZNWlQ4ePEUUBm802rXYbEo1A0m620WmM41hEUlMoVdAik+b5+TyOlVUtlXS2kwnb1sFG8aMffI/K1CS99Q2UzLi7uj9gYqqMKtYY37GDfTc8h8rYOHsuvwzb81G2i1v0sFyHfruDNj3yhTJRv48yKcoCS2jy5Qrz8/PkfY/dO/8/5t4ryrKzPNd9Zp5z5VA5h865W7kVkUAJJZJFNNEYNrDxxgZ8sIHtANgYHDZgMCIIYxNsBBYIUESt0AottaTO3dXdVV05rKpaec08/3MxS+KcfaExztgwDt/dulhjXaz5z//7v/99n3cY2XWYnfMZ7B+hsbSAZzfIZooECoQiJJlN85Mf3kOqzcKOAjq6ulm/cT1uEBAp4AsodLZRzGQIIg/XDZGkWEoWSBLlaoMAmeVmgG2LOHFOCon8aO1YLSOJkCj0AR/PDXCdkHy+E88NqdcbL7teXlYSIOqTbEsMYN58NadmT7Hyub+DbDe1pQUmXZuCkuDwsw+wa8Nmhv1z7Bu5lPrSI6zKCqph4oiIvFpkvDRP69wSqc4QyY1YOLXMw/vmyXfk0ML41Pf8oTH+9MN/SiUqE9ouk8cmOHT4BKnuAklLo6rKdIcmc6urmFYKJZ2iV09y/gXbaTXr3HT5RRT6BujpHOKDH/00n3r/W5iZWWb++ARbB4fIXLiLitNANVtEHR0ce+YoVjrPta96NYl0kvF7fsYlF1/C4/v2MTw8TDKf4XN/9ud86L+/jwNPHeQn3/wSWy68jJNPPcs73/dBfvnQA5yrnuOW224mnU/x/W9+j007tzK9GF9Hnn/eBSyUljjywiF+cteP+P13vIMf/OAHvOkNt7O0uszRFw7xpte+grt+/J/c9pq3EIYBqiwYzA+R3bqJ9/7xn9DZ0UupNMtf/V9/Sq6jF0tV0GQN3w+Q5BiALgkwpBSPPHgvbbkknreBQBc4LQcVmXp1hlvf+mosPc3dP/s+zz51jE984MPkd+aYHjuLZITY9Rq+H2K7MarHDyMUTSWVyPDhv/xTxl54jnW7B/nhAz/kmst+j47QIdvRydEv/B1de15DMV2k2WwyuHkT+h6ZmWNjdPb2okoWg9svx52fJpPR6e3sRNZVgmZELp1Diypku3v52Mc/gafIFIrdXHPDdfSMrOP0/DR3f/e7/PyX99G2bYS/u/X1PHZgP4+dnsZMF+ntH2H57BQfeuNbWfQdNo+M0J7SeO7IIfoGRtiWSeE7PnVnhdVKhdBrsHHdRpaXFulqS+IBktCpOnVaToAQTdKqhVORKXR0UnRytDyfTCGPj0J7d4gfZH9T+9RvtWJtpYyuysiyGrtCIYZdrukEIT7QGEYTWUoiVIGp6agytNamEzKxiFEWKoI1E8eaDjEMI3wvItID/GqFI3/1Z+z68t+yMFmh2XCof+P7+LJH0KjSqgdMzT1F29k34UjPUFlqoBoZQqmOGqWQNR1ZwLNPPkSxmKfY2YUXqVQaLYopg45cmVwSErqLEbqsLFkkJcF5r6jQnmljdbZG4EZocpWwUWHbbTdx/OnD9G4bYnJ+jItffTWdm3pIpFM4dR9JaRF5ObxWkyAIcCKNdKKIkZAI3RZKMoVie9iRjklEEPrIho4II+Ynxuldvx4lklhdXsEVEpqik9RU5CgmfxCJl9z1mipTaM/hBvHrWm8pZJIJGo4LmkQQhYS+gyxFmGaCKALHtRF6rDnLZDKEkUT3UC8rpUUkv44QCkGkoUkRqgYB8ZRGklSQXaJIRY8i1KSB4oc4gU9l7gRp/TJWjxxlenmFnnWjHNr3BGouy8DoEL2bN/CVT3+SP/v6VxFjStw0Si5SEGeoRwQowkCErTXjlUwUQj4VUqq5PDejsPn4I3T39pAdXkfLb+FP1alUKrzvvW+hVamghG4sWYki4qlSrMtXdInIlVBkGUXxkWUJlYju3n4UEZDQdezAIVMPyJuCuekzRMTa3EBEKCI2mERIRKGLZYJbdkBO/f+zAP+/VNAipVloHUVcr8Xq9Dk0zSLwfOwgQJcVauUS2WSSpGRQyyYQoYwnS2R1AzQZJZJxIj+mQhgRWijRaNQotTw0U0YgEwlBfaXO8IaNFDNpJr73I7re8ntMnh0nEOA89DiOEpCyPepVl5XKGfIr1yJbc6hoCFmnrWigGjpWIsOx40+DvYKWSJJKpTHNFIoAS4N8poquwWppGV+SMNMbyac7aCVm6ekZZOzkMg0ngaq5jL1wkKtufw0LE7PIyTmWa4vs3HUBF2y9gmqzjiopdGkCVcvyVPU/sBIJ5qqCVCJHW0ceu1mjucY1L3YOMjs3Q1dnJ76IqJUrJNQQT9Po7e5jbmGcptvC1JPk23I8e+h5pmdmKS8vs3HdBjTDQFdlMtk0fhDLXjRXxjRMFElhpVxC1STwvVgfqsRmzmarRrG7iKrILK8scXrsLBdftBdDk3HK86SlIr4f86DBJ5IkhIiQZAVFEwxt2EhYr5LuyLKwMEOue5DmyiSD/Rcx9vivmJOSdPUPcOrZ50h2dpLJZcj1dLLvnp/xmve8C3mlDadho2sCSzVjtrMIMWULKWigGQbr1q3nxJhCPqMRyAlmW2nc089QLq9y4y23IRIKvVqOqbPn2HvZRfiuh5WWCFyXYwefx4siEskEhqpQt+sYepJsIrEW4+3jOw2MQoH2QgEpighESN0OSWmCxcVpwtCPm3RZQvhyrLsVOr5jk0hqeJ6PYRhEQnrZ5fKyx8/M4FbuOHiU9arguX1P89P9z3Bydhw1SjCzXOLsaotKqHFiZoZvHX4S/fR/UD55mLOTh1DdEqFbYXx+GsULiRTBxOlzCMkjkU9y4SsuRdd1BvsGqFcbbOod4rGH7+GeH9/Lv37ju/hhmaE9O+gbGuSSy6+gVq5QblWImS0ykiMxW/P45T0/R0sm2bZ7J27DYWFmno2bR8nnC9ScBu/92EfR2npo7+ygtOCST29kdHCI9RtG2L17BxOnjvGdf7mDMd/h7OlxhjdtxLWbTE1NccNrbuKb//wV9l59DScXFnj+6Ud48sDTmEmd1XOTLMw2WJgcx67ZmJZg/Nw8195wNf2Dgzz+5H7OnDvL4MgwN950M88eOMC2bdt48pkDpFJppiYmsSyLN73xLdjNFpqiMbJuEyfGjpLNtbN+6y4uuOwyJGT+4Qtf4n985KNIeoIwcpBVnzAU1OtV/vD978VKZlClDKqZ5pFHniSha/hNGxC8+Z0f5vjZKiKhM9DXyy2338S9Z4/zpe/eydHxc/hEuC/KBczYySxrKmYix+Xnb+Tc5Gna+jrZvXcT7SMjHFk+zo9+8RMeevYRdo20M1zswkhGBI0mzWaTZLGNgXWj+E5IJmFgKgkK/cM0/JDVlTKTp04gqqvMnzuM59k8fv/9/MNXv8xn/vrT/OyXPyeTNVhp2Hi+wyv3Xsw3/uLzHPjuD6h0F9k4uI38uh2s1Es05qocOXSQjs429py3k8LIMEEzojuTpzE/R2dWJgwkVssLDPV3k1ASyFF8Ei9Vy5ybm2GpvIIURBSSBl3tORp2DTlwSOWKsWM1U2Ri4iyaGRE4Hm2F3G9qm/qtVRRFa9PxXxtlXnT0v/hZkqTYnS0EIpJRFGIw/1r0rCyvmbQi6f/1nRfNLnFTBiCjeVCt1FlMwqmDs5x78hhBvUXm9jeiGAbdhXao2syUQsorq0hyQCRF+LJPKwzxPYGsqfiBzYG77+FLn/5Lkn6E7gUxk08xCSQDMBF4CAlCNQRVYMoJQl1BSXoQNpBMhQfufYTdF76Cto0jeC2XC664ify6fvLJPI4t+Pl//ZKzp87ysY9+Es3QCEVEyljLuW5EJIwcRCHl+QWCZhM/iN32LxqsNCEQa8lZgSQQxLo3kNA0jWQyiRAxLUDVNcIwZGF2kvLCPLXlFQLhU62UcBsVWq06rusghwJNVQm82CltWVYc2hAIbNsmaZg0KnHuuqzEqWWaaiFJEs1mM776laS1aWK0dpUZwBqCS4lkRjaOUgkcCpu3MXTFZag9HVz19jdy4U030LV9IxW7wcr0DFFCAclFVU3CMEBWYoTUS6izNU2oJIBIJWGqFLsC1PwIIgix1BS+kJBDlZyVob7UwFmeImrZBOLXxr0Xn8cwDPH9uPmMjV9KbHwRgkgGh5BVt07oRUjCJ4x8gmBNlyqil6gFYu05DyMVVbIQkQJKA0lt/pZX3P9ZyWaKmXqDBFBZLrNQrtBwmiiSGhvt/JAAGdv3mK6uItXnCVt1Gq0yBDYi9LE9B8IY0dZsNBFEqLpKvj2PLMeSoMALSJkJaguLTJyZ5MjiDNOnF2jMV9Alhd5bbyMCUlYCmj4rVUGzWscNAxaXFohUMNIpfDfE831MS2PiuRf4yb/9GxuGRtBlLY4i9hVkLU8ykSOR1Mlk0zTsKjMzk3ho1F2HVJtJ5DdwQpe5uRKqnmZw1zYqtQYdvSP4lkommaZZbfH4vgOcO32Wb97xHXRTodG0GejtQTUtluZXCHwJyzJJagYriwskEhbNRgNZlrFtG12W6enpASEQkoSVTFOpVVA1g2yuQGdPN0LInDkzzsmxMQQSq8sLNKsrtKo13MDhqScfI/JdPDfed8ulVQxNJXA8ZEXh2IkxWq0AQXzoGhzsY2ppnum5ORqOvWYM1RCA58dJVbFcz+CJxx6K+bAJlWwxg5lM03SbCA0mVxbo3bCeod27UduzbL3yUkb37KJt/TChqlBdLKEkVGQ5wkpl8YKAIHCwmw2kMMBt1YhEwGqpxMS5c5w+dZZKZYVChyC02gmDgN62biZOjVOdWkDPZFE8DRG6uM0Gru1Tr9cwTYNcPouWsAj9CBWIPA9LVxBCwXFsLNNAlhV8Ilqhi2272HYD27WJgghNkTF0hTAMYpOZGt9sKYqFawdr5t4Whvl/YLp66LFHeN9bb2f17DhXX3wBDVpMnFtCOBFbt42yUA5ZWK2xfVMvS8ePsqyu4Pt1BnIjtOolwkAwu7JEZy6HripYCRU3lBkd7eLhJ54kEVhUMw6DHd3ouk7Q8OnrypBoppmZs5l94VFq9SZbRtbTt36EhWOnSWby9OaKTM6uxn/i1q0sLy2iKAq5TJrjR46Tb2+n6tfYtW4Tj997L7/65d1Ua9dy/Nn91Go1jFQnPd3t9Ay2GL1hPeftPg+v5fHKG27mlz++m4bs8+qrLuf+X+1j71VX8Kd/8h72bjuPdE8Xr7zqSj7zRx/lpje/gUcPHOeRB3/CJz75Wd76trfw7JEzPHfwaSazOQxNo3ewn117dnPwmWcJw5BmvU5Pfz+u67Jz507m5uZoLxaZm57BtAzyiRS+08BSTUxJoS5Crrr+Ru7/4Y9o7+pmqVTm+MljbNmwDoSGoihs27WDr3/zLrZfsJ18IUmz4fKzBx8mCODk2An0rk5sReXrf/8d5PY2Rkc3093VR0dnGy+cOUlpqoxdb6ApaozgUVWCKEIOq/Rdcjm5/m5SnkPohpw9/AS7bnsbnQNdyE1B/9bd3HUsZr6m2wsomoYbBDTsFulkClWPKHsN9MjFEQFdvR2cfeEYmZFB9M5RFPc0dqOOaZr09/QxdniMfL6AI0K6iu3c++ADlCoNUsODKPMLNBtlnnniYdIiYDZYYcf2LYxPrSKtNLGXqzTcFkdXprn1prdTP/MMY1PT5AoWTtPBTKo4YZNydYVMIkWpXsfzfYb6upmdKRH4IT0jW5mfWSYbCRw/QI5c8vk8c+cmMTSdleXF38wu9VssVdUJhIckIoIgQolkfCFQRLgmDwBlja8Z2/Js1GQGzW6gSz62CJFkHwQxjUJAoMR4IEkSiEhFEv4aTUAQKYKTzx6gy17PgFwAACAASURBVMqQGk7hlFvMPngv/a+8HFsXKD0DlJt1jj/vcsnORUZ3boPoTIx6UrPoQqLptRAtm4998UsoKizaFfRmgOc6+L6HLJuEwkVGJsLHkEzCyKNWb/GL//LYvCmBouhEzVUuvfoynFYNr7xIOptg/vRR9lx+GyeOnmB4eJjrXnMVsw+c4muf/zzf+8rH8W2B22rS1pZh5uxpmiVB18g2/DAktGtEioFlaSgiJhloSQtDUiFy8VoRoeRhWGbcxKLFxiERIoRCFAg0Xcdv2Hihh6y5NL2IxWYlNjHJcfMfqTKIAHlNgwkSTuiRTqaQEbTsOiYyrmejSRqBCKhVl+nqbieRMFFDga+Agk+AQUiEHYAkCWx8dEWhGqQBmcfuu4d0T4YTT5/EzGVYmThDWUvwvve+hw988Yu4C1USgAhbKCi4IkSEEAQRqhwiRzqIMDaDGQZeUGe+mkWNIBLxe1hBIZtMUFpaZftVF8UxuXqIbmjxYUdIeCL8NTFAyAgljE1fmoyCQhiGGCJmrsaSfAGBjysEqgagIEkhGhq+EgtulUhAKCNFHkJ2kYSB+B2XBJQrVUYGOnAaDfKZDLKfptmIWb2ZTArHF0RegGrqSDWXVthANnTSQkKKfFwR4QZNdFVDltUY2SYpJCyL5dVV5FAl1CNM3UQQI+FWpsfpSaUhq9FctZn+xS8Y3nshSjZBqGVoeS7L8wrBaoWeDaOkUy6hX0dXUliqxvLqClEUccs7381rNZ2S22S1uowvfJbmp5mf0RChgudEtFo+ptKOnolxVceeS2AoKzQ9lfZkmvaeTlKWyZEDj9BebGfl3CI7d1zG4w8/yPY9u/F2jDL2wEE++O73sP/eO5mfXKS0NI/S3Ul1eZ4wYTK8aRdn55biKGFJo61QhEiimC/QqK2iChmnVadeaSJCOdbmI6FKKgEyxfY2lmYXSSQEQSioLK9gWWkkRcVQQ0I/pDS7QDqfJWppoKnMlZZi7vLMNLJhYochjdlFZEOj2XKw0iaRAs2mS7PZoFEtUyhkMU0DVUj4RBjCQc93IVs6UeQhCyhXShQHRyDVRkJPsnjmJBVthZkz0yiqQqtapirr3HDdq7j1vX+IqHtIUUjkNxFhiGoauGUHydTQkklkLyAKAlBlrHSSZqVEo5VDigS61qJpt3CrZTKFPLXVMn1bhqlWKhCFhF5IJp3CbnpxuIfrIUcxsaSzu5PWkqDhOqiySuAFGIqFFHiEboiqKIgwwHUlEkkdx3YIQ59UMkPT9dGIExTDQEJXJRqVKopm4LnBy66Xl21YL7jmWibr8PP9h7hqz2Z2bNnJsYP/TntXJ2cXqlx1/joMscrZmXOgyLQ8QV02kEsOY5PzrO/sYLh7kGImx8rCDIWuNgqKySNPHyaX6aVgaqhGEku3KVdbzJxb4NDJo1z/1ltJ1jVa+SLN0GNDXw9+rshY5Th9g0U2bN3E9OLDzJ0+Ste7X8cjP/s5Qd1j70W72LF1Ixs2DjI7ucS2C4eRI3j7H7yfn9xzH73rd3H10AYuv+1ann7oYcy2HLIlcftb38mnP3Ibi/98im//+908/PSzZKwkh86cZffOPXz7zn+nb/0QjQgUw6Jny1as0GV1boyzZxc4fewQM3Nz7N65laceP8zb3v0ONo6OcPjoCQ4dPEhnextPjJ1mx/btSJLE5OQk2y7YjQgjqtUqF+29BNt1ODc9zXkXXoofOJy/aYjtey7ib/7687R1djBQNMi+9XXc+bXvs7C6xLe++S/80Uc+Tq0ZsnH9eiwkWrUWm3duoeW4zM9MUZqZAKFRqS7TM9CBCAO85Uk0xeOmG6/iz+76Dy669lV86i//inWDvXzyzz5LqAiyqSK/9843sW39VvY98Ci33nYjTnWGh3/6CJdccSVHT1WxBrLc89hDVEo5lIHNZDuLtKp1FFlm+dB+6r1FcmaRXCrH0ef3k0unaJVX6Mq2sTL2GAvP19m+dSMzpQVyySytyCfdneXc8ePc8dVv8MpXXcL8aoukkWGlWuHIkaeZGV9gy+7zSOsKg7kuqukELfcFzr9wI/NHjjJVtZk/fZJswufRsVmS6QTbt+/h0f2Psamvm1LJRUkUma+vcP7GUaamZ5hbKePg0mamkaizadd5TJw4hhf6mFqIJUOttEpJyPi++5vbqX5Ldeen3ku9UiKZSOO5Eq/7xEdQgwDZjw1VyFKMIxIykgSWVqC8cpSOYpH3fOAqVsuLSKYbO7WFThgFcbiCnkZWiBFGmo0cSKhRhOMH5KTH0HflaH35q9R27aQw1M+BH99Pa6WFnFhBXpyhOVXmu//rnyhs3oy8vkQY+sgyVN0WVivBUnmZ9sEuDj/zPM3FBXo2bsXQTAxTIwq8GO8kBLIUm72iKEKWdc7fq6JoLiuLPpIdT+1c16Vz3Vb8wOE1730n5UqVwU07CRp1ZD1CbjX48Wc/i9mu0tIlIjmkXvNIWwYNoeDWS3T2r2d+fgHTSFGvh2j5FG7oIMII24vQ0jqSpiL5ISKM1iafMrKkxtPqGGRKEABBhN/yMJIJfAnCICBERjdiaoNsglA0hB8hr0k2NE3D8zwSiQQyMqoM6fZuvPlTaHqSTN6i0GawVGriqwJBPBFHhMhRgGLCz396LxdcuhMigaJqaJrCBZddRn12CumKnayMT/LGj3+Awy0Z1mJ8I7E2UZU0BBpSGCERrkWdqkRSsMZ3jFCVCL8uSFYc5moS048/xfVviJieXEBJpvHNFoNDHQglQPND5JA4yUsIdMPA81xsr4m+FgGdUiFaI1kokkQrsglFjAALIoGpG6RMndqSgpDjJDNJ+GiRgVBjU5gvBfFmG4CiKWsHgN/dOnjfDzng2lRXK2QTaa5/19uo16YwFJ2WE1DMJ6kLn5btgCSjSGkq9RJJo8hFV64nClrk8ik0FXwnQCQEuiyz2vAxkwVUSSYiBBHheSHNeourrkxw0JSJ7r0fr7+HTE8Hc8+fQDiCsFkl1ayhOhL77vkvtM4uzItklkuL5BsNtJRJWtcJCGhGLpWZedxKha6hUZZXqqRzBTo70mSL7UydnUHWZFZXI7p7+hg78Tym5TO7MM3othvQQgfdNEhYCTIdg6Ta8uy9cRTXU+nftAP8iCCoY5crPPCtb+AYVSxToV6vkO/pp7+ni6Vai5WFKTp7hzh7dpx8MYttR0R6SCKfwXJbOH5EW7GdVKOK3WiRzeVBisinkxRybZw7chTV1LAMiWJvNxPjM7QaLc6/8AIOHTtOya5hWkkUSSL0QzLFFJEi4TZaJF2bKPARvoeiyRiqgvAc1MBldHg9i0+cId9+MVNzs0hKi46OIQJVoKoazz53kLSZZnVpiYH+Dg488yx71fNo7+qi2WghD6pkujuI5it0b+rDLq1yxVXXcc6V8SsrhIaK56mkiWjUGigEuK0WlmbhN0q0ajKJhILju+iShqJEEKlEC6scmDlN4cwMr33LpfjLdQJFpew0ybYnSaXzaEFIKpHCUxR8v0pne4ZmeZWq7VBv2hTcJi3bQdU1sqkcTcdBkUJs1wNZoeG5tOdyiNBnuVQjEmBKKnLkUkwWaNrVNRJdiCJCAtvHD2N6wsvVyx4/S8/s51c//jcu6CiiZNo4vWIzsPt8+rqKvGvPJg4eOcL88iqhHzLQ04snFAxVYbU6R1KYNOoOBB5L5RKqpQEqZ+bmsSwDCRd0ndL8DHMrq0yPTfDBz36UTRfvQCxWWFieJZdKM9TWw/HVBZ6+70ESOZ0Pvu8P6V/fz5f/6R/Y9+DdKLbLVVdezZ7zN9F//la+8+07+Pu//gfW7dnFs88/y6YN6zhw8DmK7QVUxWJi4SzPHDzIuamz+NUK3/ra17jhigsxpQ6S6TRf/sfPkU3C7NgJfFQefWQ/H3j/R3j66WdYnBzn2PGTbOou8Aef+Axj5xb4zN/+Bd/+zr9x1eUX8vzJCQb7e0gmMoRCYufOnazbsJGevj5uvu1WBNDf28eGTRtxbZdqtYrjuXiBRxQEbNiwAdu2mZqc5vixMb5zxx3cfMNVqBEcnFwm1THIFX/4VkJT5vLrX0kQBOTyMpu29zM02Ed7LkPRMFFDjz1bt/OKy65haGiQ8/ecx8jgCAP9wwwPDZEwLWZnZ/ncpz/Gq3fvYKBvmFK9xXs++mF01eS1N1/Dtde/gUKHxWtuupqHHvwV2XQX7YUkmVw/A20pEnqW7i1buP3tl9FlLWKKgFwiQ9BqUth8AdUzE1SqJWbPjVOrniWRKlL3ajScGlrfBlbGZ8CG2sIcM6UlJsbOsKVvGHSV6665kvFTk3SMDNLT1sEr9l7Eyvgk/YWA8tgx3vL62xk79DTu3Dk2rB/krjt+iNTewa2vvY1tI+u5+LxraPoupqxQrZTpaitStV2QfExJpqileOyZ52hEgkp5BSUKKRgZJqdWWJqfIpvQSRc76e/fSLJzCD9ZpLOjjXTqdx9rtVRfxsjoNCOHBEmCwH0xjym+5g/DtWvdtYQn3aLQViSdVinXFkFSCSWdSNYJIxlZ0QGZRDqFrKoIOU5JQZERsoQlq3gJmSiy0XZXEI88R+OBx+hoLDJSKFBSJSb33c17rr6O27ZuYblRxdA1FEXDMCwMRSVCUMzmiOpNkkmLYiFL2opd98CaIUsAAklag9ZLEgIf0/QIAxmZuFm1bRvLsnBqdaKmQ9O1EZpA9Xxcp4lsyEiSzejwSMxOFWHc+EQuSr6dzs5OhKbRqDVQLSOeBBsyyZRFrtAWX2UTEoUhYi2cI4oEoRcRReH/w50OwRpVSVVVorW+6cXQAkkWsBZukMokGR4eickfIkBT1JeuupPJJIZhUKvVSCRMZBkUOXYy3/W/fsBD//xDjEB+qaGXpFheEEXgOM5LwSFh4BMEAZEiUStXGDt0Etf2ePyJw2S0BNKayfIleQFiLUVMWnt+ojiOV4iXEq8iyUNoMvO2QIqmWZ8yMdr6QETU600kWX4pbMNKJWNDIDFkwJQVdDn+TUVVMU1zTaYSIYj/FyIHEbmoUoAuCSQljuYNVQlUhUiWCFWJQBEEUUQoopcCIzTNeOmZ/12upflJqtUFTE3C1DLUHBczm8MydfozSSqVKq7vIiKBZRhIqkE2m0HVfOxWjTCQiISME0QxfkzWaToeiVQSWZEQiozreThhQKtls3HLBh545jEip0nYt4J6YhLp+FmU2iKG7dA0FZL1BW69ZC/vueF6tu3agi5LtLd30dZeIJPPMjU9ycV7LiShGziuTXdXO67toGsykiTj+g6VaiWOEg59JifO8fQTjyOhYFmwddMWdFXGbtRxXZ9Go0lvRzer80tUa2XqrQZZRebg4aO0Ap/NW4YI/JB8LkO10SBpWaiyQE5lGRgYIJHNIiLoGehHkRXS6QTFtgJWIg7fCYVPGAaIKCKZTBEEAc16i1qtzvTUBJ3t7UgCVpsemp6gY2SAUJLY//RTSBJIUkgqY5IwdAxdI5NK0NXRQTqVopDPk06myWVzJKwk+XyBbDamPQgRsWXTKN25PKl0iod/8jD/+oWvoQuFZ55+kvb2bnRTpq+7g6WlZUQkYxo6sqxjKLHER8+myeV1lqfOEnk+p8dmsCQVPVPAazTxPA/XbhH4TWRFI5IC/NBHthL4dhNCge+0cFyPRrNKKpVkNYCOgiAXhqS6+jE1jYRp4dsOuaSK36gzPDJCq1ohclokUxYrMwuohkVHZyfZdIaO9h6EJKEg8AIXQ1cIAgchXDQpJKEorNaq+JLAjXwkWUZVNZquT8tvIUsSsqZh6haqkUQ2EhiGjvK/pyz+b/WyE9Yrbr2B737/h3hpnfFDL9C3c4S2oXWIZDffeuKnXNLXxYPzK/h+SKVaJW+lqEcOxXSa8eoC5287j+cnT6JICRIZi5NnJlDVBJMTC+xa10UiHSNi9j/+FH/8kT/hi1/8MqptsuiUEYZJc3kZggDftxkZXsfpmXP80Tv/gFbGYMfGbRgpmYcff4HN69fTkRH84IHHefNNN/DwL3/MBRdfhFsX3Hf/PnZv3YpI6OzdfQl3fvNbTB0/xsnTUzy4/zkKiSQ33HwNk8eO0tadZfL0CcoNl1ff8jrmv/dd/vPBu3ns0BnWbxjhG//099h4WCKiVi3jFnJs3LCFHTu2cnLsNPlchtA1OH36NOtGh3n8if10d3dTr1a56KKLsFIJpEhQLpcZHR5hdXWV5dUVuru78W2HucUFstksg4ODaJpGrlDgiacOcPXlV/LCmTGe/tmD7HrFeWzfuIvlc8ucm5nnQ+9/B6tLi4RCQlYVfK/FuTNLTERnsJIp0okUXuizbnQLQoT4gY1tuwwODnLo8EEu3rmLan0Oy8ojKyqarjM5v0p7m0lFzqEW2njT236fxdk5rr7paqr1OcbPTDG6uw/LDimV57ji0n5+uk+mt83lzEyJrJxhdOMIUaKD5vIKehhSnTqG6duki0nSeor2gVE8L6Cjv49kKsP+iXNs6Blgul6l1azTCHxCCX7x5KO8LnkFbbrG4WPj7Np7Cf9y5zfJWQr3//wnjAyvZ2THEM3KMnf/9C52bdzM17/yRXwREZkyzXoVSZLIW1nG5ydRCxrTy/PkU3kUSaOjo0B/Ry9PH3iSVH87wgtYWG6yafsQx489ycYNOxndup258TMMDK/7jW5Wv4169sg0xYxEW7GLs5OzXCeFSL4CmvJSgxWEIaqsIAGyE3HerZcw1COjyGbMp5GzBFEdTTUIfBukEF0VKKqOFoQ0az5BSPzilwNCV6LiNFFqKue0OWZmmoTZXgbSOgunp0mm84zNPkGkJphP6DTLLoEjCDyHsOFBFkIvZHx2ifUdvVQKSexaA1kykOQAN/SRFRlZVhBRiGFICCGhyAqOAkL1SRpNGo6Cqmn4jodlWYRSiG87yLJKaCgU2nt45JHHuPD3b+XOv/hn2tpAkjSiQMYVErqiksi1UWs1CFp1EoZOpEiATGNmllZg09Hby3KzhaJkkIWEamr4vo/tOmuRyGk0PRG71uVY9+u2bIQSoWshXuCRTKQBCPGIJJ1mK2L55EkSmoWsygg/opDN4XoOjUadcr3Gju17ODt5miyx7MNxfV75/tcjuwla4n/GcgJkkCOEp6MmQ1LpBJECsiRDJNAiBUWTGLhkN5suvxIhuyhqhuWlJVAUJPnFdKv4UBBJEUEUIYSCkGLjDsjEfl8ZEYTooU6yUxDM6qS6t7K6vEoYOPR29dBwGwSNJpal4kQhqqIjQhdNkYkHz4KEmUAKBaEIEbKCKv0aT7Uyu4TdKCETMT83HRMERIhp6aiyhCK9GEYAQlJRdYWllQaKupcoClDWonF/l2vVkaiVl+jt6GXq7AS7XtfE0DOQsphcXaBgGixVndgMK0kYoczoxZvoLsgErkwhV6TmuDGL09Cp1iqAjOs6pBM6imaiyTKlUpmhwRGOTZxFuDKrfh1Z6CxEKywv2YTpNgZzKU7PTHF2oYTwbFLZNmYTGtuNac5N6PSVlmhUWmzavJ7S3CzCMhjpHqLilDEVFSuRJDnUTRBOIVohrZbL3FwZP0wx0NeG02yimCEtp4LbmCSTbsd3XcYmxrny6mvJFrJMnDpFlEwTagpmMs3E8Qlufd1NPPG5r9DXBE0zkOXYkNmTz2H78W1GvVamra1A5MTPT31+AcVQKXZ0slApoyiFOGJUjqVQiqrgeQ6pdJqVhk1XZzf1VpP6SplEyiKdSeM0a9SaDfr7+/E9l5AAIWnYdsDyqVMYio7jOaiKQspIEFkvplaFDI+M0rLr1JotTNOi5c1w3qsvRwQmvnQSxw0wdHUtXjhJ/4CFbpkUu9sII49mo4UhxbhJa7SX127dzEI5JGEmmZmZJVJ0kukEhpGID5hRiOfUIAxQLBVF1tDMBFEkoVkJ1MAgcGtYiRRqKqC1FJDP9VGvNSgtL5BJpknoKpXSKp2dbZyZPIehaZSWFrCSKYx0As+Lta3ZVJqJiTNEkoSqyERBgGLoOJUW5coCuq4wOzuNEsUmq2TSRDMt5ubmUS0DX2nieRGZQpbJuXlUdRNWKonnuVgJ62XXy8s2rD//2S+5etN5bB3o5TuP309PqHL4/vvoslRUX6Gx63y29zdZCm0aS8s0gir9uRyaotLdNcLjYyfpSltomkqtVmX39i28cOw0fZ0anZleTh09zVPP7+fA/v9i/xNHaZTKXHrp5YyfPhVz+TSNyA1IKSpa5JPUDHZcMkpXVxcbLtzCr+59jC985lMM5bJEUo0ffvc/uXDPJZwpLXD6V/v5xje+zZWXXMIThw5SK9c4dtMc1157I/O1Cm6tjClqvOODH+XhX/yYgeFRMsVBurqGuPS66/jHv/qfvP7Nt/GhD72b97/rbbzv7e8i1dfPU7/8MVfsvZHvff0Ovn/33ez71X3s3rGbddt2MnV2jEuuv5UTxw9z4sRxert72LJtK9l0munpaWZnZ0mnM7i2zX333Uer1QIEWzZtpt5sxdMbCY4eO8J73vUufnT3z7FSOfbtf4yNm0d54+vezFe/8jU23nwFl99+C//6ha/ypS99k517tvOKSy/HD33a2ztIpWM3+8ZN61BJYVoqkiIjEU+sHNtj47phkpJM027x+T//Kx7a9xA/e2w/wnH5/fd9iHfd/nZ0M0GhqwuvuUrCyrBxsJ8H7noCN5tkR2kVHIl12a0sLgXc8opB7rzzfgZHdqA6NaqNFM/d+316120lk++l2ZhCt/oRNZeT4weQDIOzx55gqenT5YXs3r2b6fFJEh0FVM3nXNPhuUf3c/Gu83n21AnKtSpveuO72LltEytnF2jb2Mem867g2ROPkVQTVKouo+t38ubX38bX7ryDI2MnME2T+nKZdVu2MDE5w7rBUaQwIOrsRpUFiWya2mKJk1Nj5IsZaDbJF9IoOYuhgsE5q8DS7Di1WoOBLbvYt+/+38Qe9VutVEbDtj2mx5cZHd4Zn1hFQBQpqFHM2hXEky0kF1mBrf3QrEfUvYV4yqVAGAUEsgoiplHMnptH1yS8KCQMdIQU4ocC3wkIAy++TsZl05YsyUzI7o/ewaMf/2+84Y8+xugFV/GeGy/nNe+4nbe+8gYai+/HdWcIIwfdjKeiuXSSoBVQbtZJJzKYGYdytRlP4Ijh8IhfZ9pLIiISOgohkguyZBB5TRJmEnvNgKLIOpghumJhRy4REUO9QyxOzbL1ur3MHvwphqzjhR7rtmzBqTepViooUYgOVKsNXEXBUGKOquQrlCsLRDZE/Z0IRUVVFDTDwHEctFBhtjEHQYBupBCSB4qBnjBQ1RStwCVn6bieSzKQEJKOLBQIHTKJHLguZ589jBAhCcvATFggq6hhxFOP/grFSqO0qdiejQgVyvMNFmaOcdWAIBAKQnaJAoGqOwgR8zddL4S0TKTaRGqIJBTcSo3AMJBpEkYefuSTwieMLHx8iCRkVQI/QigSaiRDFCCpWqw7RYrTxTwPR4O8maS38RjTc3tw/DIhsLQwyeKyx4Z128DxEJZC5HoIOU7/0g0NSUSoQiISAQlJi8MA5JAwWkNnqRpJBVQ0vHwfXmDjRwK5UQJNIwjXDGCShCQFECl4no+uynHYgHgx/+p3t2r1VdJ6BtEUmO0ZJBTqpQUsVUULJUQmS94McURE6DUJIpcNvVk8R0ZVIhZK05i6giCi6QqSlkaj6dOqVDCCDJXmCnsvvZL29jlKyzXcskMum8EJfIQUMDCcxkoK1r3uw5z59zu48rY3sGHnBXz9bz7N3luu55U9wwzrP2Gqv0pXfweLwTQJKwGKxOpqnfG5Kfq6ulmpLVOpNshOz7G5vRPbCUiaLVKGQnp0GDmYxLTSaJqFruqonUMceeYgN1w3xPBgP4cOvcDwwCBGJolTWSWVy7N7xzbkUObMiZNsu/JinKUTRA1Bob2A3N+HFEb4oU82mSTdYbJSqbDSaJDPpPElwerSMiJoEnggDfXjC9BlCc00WVldoa+zj4n5KUJCVspl0hmd3p4BJsfHyQ32YagyrekVxqan6EhlyRXyCCGh6xKFfBv4PpobghCocoBuGiBLDPf10aiVyeSLtBWK2J7D5tENLJdWOHnmOMqrBL0DIzz//EEkoWAmTZA9Jk71srhwPuFyhYXlebpX55FDBTNSCF2PnCUzOTmNbllYIsALLZaXJmn3XHTTwmutgmYgh4JGdRVFNWg1yjhuhCxccgmTmlcnaxTpdE+yaHdTWpoincnx1Mw4pVWHm2++jJxpYvs+pmFgZTKsVksYhkqrYZNOZOjuamdmZpZFKUTWVDzXJ5PPsSRJFFMJFCHhF3sJQxdUlbBSohHFGv3IcZEtE1WXMQgRkUzk2/itJslMjpWVpZddLy/bsP7TZz7LP33tDo6GNudvOB/fiTgzNUl674WEjkN7VGZVkzBbNQ7PTWCm23GrZTbtvZgNG4e58abb6B/u5uobb+HxRx/n8iuuhsDjk3/yBzzyxD6yRY2bLr+GkQ3radol2o0UldI0b37bO3nogftZKS/T29fNYrXKildi/aZRlktVmpR58G++Q6I9xZ98/NP86L9+zC3XXMcnP/XfCRSJTMLCT1l89e8/z/LKDB++7I/5xAf/B7e9+nrGTh2lZ2iA8uhmpESe0uQk862A2uwMi3Or3Dv7APPjk7z+Hb/PD++6iw+8+x3ccv2NzNllnn/uKf7t37/J337mH0l0FHnr697ASmOFXKGTH/zgB+zcvZPZ2XH0VIrTp06xedtG5mdnOVxaZmJ2GtULaTYbnDhxkm07tuF5Pl0dnXhBQKGtgCQU6pUyF19yAYefO0jaVLlg1zZee9Mt3Pnd73P3L+4GpcXe9j4+9ddf5Oo33MTt73sH9//nf/Cv/3k3kV/nO1/9FwzDBHUtAMDwsR37JXe3WHvJV+oVdu7eRatR5amDz9CdynHtVdfx55/7JOtHNvPP//AFGlHApRefx+zsBRkIfQAAIABJREFULB1tnazOLvD0kRc4/MwRwnpEOp1m6ug4xc4OHrjnPi666DzKy8d5fP9+tmy9kd3nnU9maAunnzuIrg1SKKYol+ZIpmX8UGLBcejJZzGMNM8cf4HA8ymaKocPHaG7s8hT+17g03/3d1SfXGCh7DFfnWPq24fwTdipXs2JYwdYl9Z58sRpFNUkMNL8wX97H9vWDxO4ISYahc1DnDhynK3rhwkNk/GTp/EUH8nIcOTUBCOd/fhOFUtNICkRU4szaOk0B8qnuXpDLwdbIY3qBEMju9kx/btvuqqteui6je7JJLvltasYBRFGREIQyRJKCJKI8CWNYwdOoqt2bEJQU8QU0Igw9PF8B09L0Fq2uffeA1z/qj2E2BhySChErIlGJvDBsVXCQKGKQc1N0RGusG5kgFwqzczcDFpC5+47v8XH/voTnPtek65iGmNpiihpkO3sQ8gauuziI1EVULM9ulJFPEVC9gQhSjzhkyVSKTmmICghAgVNk9GEF9/ERxEKIboa4UchjXqNQKojfA/Z9ZlfHGdgYANXvnIj//H8XTiyhGqYHDp0ipQm06qXWFhdRjU0VFlm8/bt2NUKQpFpINNqSgSBjS5rKMLn/2buPaMlu8o7/efskytX3bp1Q9++oXPOygkJCRBgCTyMbcAwYBuMDTiQxgGDPGCPw9ieGYzthU0SIJBAgCSEAI2QhFKrJXW3Wp1z33zr3spVJ5+z50P13+Mvw3z447XYX2utWvWhztnvfvf7ex7MNEmcYJgKih8xkC+g0EdgJSQoqop2GXIf+GafB6kk1KMOapig65I4Vi/TOXSUwCUKJJHQ8eOQXqtJbGhkzCIpU0EhwdINFNXA1m2aaoAbSXT1Mj0FBanFRKFEExJNj9EcnTB0UVVBIW/wvQcOcv0116MXcqwdrrB20y4efuDbaJGLrtgoSkyS9JWTIu7LAoSiQ6KhKMHlkRJJqWzgewGlXMzIq1S8wWvpLdUo5QucPDnNO975elSvSaTqECb/RgecoMSg6gZe0DcJKVKln+4SCL2PCyrmskTaEL4f0ls5QyYlMFSJaaVJZAT0O8eXX2koChimIIniPpCYPtLp53mtWbWOmbkzEBpMrikiJHh+iGHbSJGgKiGBADUMaPo+syenEYlPrlQinytRKRVJpQxK5QFWqkvkKqvwmx6PPvA0qQkdVfE59MyTWJkUfuBiCAXPcRkoT1JdqtNyE6RWoKD0GKjkqZQHmF+q4iO595++yN/c83mOPfIyxfIeDv34Cdbt2IBdTBPEklQYsGXHTqI4IJsaQT15nspIBb/XwbQz6HYaO6sS+B5uJIkCB8ULiToBZk8yMj7GcnWFseEBVg+X8OMOS4uz7Nizm7MnzxDaaVK2IF8YZPPOEe79+0extRyhG7I4s4gIPAw9Zm7eJ5YJnu8zPj6OqUqCrkOhlMZz+u87gcDSBWoqQ+j7DA4W6azUKeYy6KVBLMNmenaWRruFnbEZyxU5duI0UxMTDE6u4vyFc8zMzKOKhB1btyN0FSWdRoYBMlEIBCSRxOt5RKrAVFNYiiSXy1IuFqk2egzlCnQqGzly6rvks0W2b9lGFEsGhrN4jse+pe2sXTNGu+VyPjmBSBTyeZPn9x9i185dNNseW7dO8K5ffz8ffN/7yFtlSqU8mShLrdZFESlMXSV0fDRLA1TCJMEyVOJQJRY9EgKyaZ91413WD27lqu27mV9YZGGuxlVXbSNxW8zX6iQqFAuDtLsNDAmtdo9YSkLPZenYcQqpDEkco8QqqUKGdqvN0NQYUWjQarZw/Q6plIETtMkXMvixj6oYQEKc+AhNo+v1GC7aKLoJioOdLpD1wp/6vPzUgvWlV17miquv4PjJE4yPGhw4Occnfu89PPL0i0S9DhcWQn7pHb/JxJohNu3czb1/dRf1dofHT77Mwqkajz30DTphiPL+32RZgGy3GaqsxspkyIthCmVJ13NZaTdR1RRbd2xmdmaeb33tC/zKO9/F448/TtfzSMUCyywxUBqkMVfj3IVLOFrCptimPLSaT33kjzj44kN8+KOfYmygwlvf9/vc/Q9/z3e+/XVSgwPc/egB8uNb+fZ93+BVt76O5Zk5Xn3brRx6/kXmek1++72/wRc+/xVGR3MMtWucWJ5B7H+RfKjxyP3f5dyFGf7LX/4FsuVwcP8R5hZrfPXLH+Qtb3sXKJKzpx7iPR94L6Zls7y0wuzMBV519dW88Px+bnjndew/8Dy33XwLF6enKZcHmRqfIPB8KsPD/bmrJEHXdaKgXwTaqRRjE+MkmkkchpQrNu945510uwb33f9tvn7vPfzub76DVM7maNPn1l/7NfRuwAOf+xxf+c63+MQffoiTJ86RyeQIPA952Vqj6zphHEEC2mXLhmZl2X3F1Xzs7t9g43Wv49qbX8OBh35Eee0EUkqWFqpYepp6vc5Sp00xW2BkfJQrNm9lfGyMdCqLncvwlltu4+VXXuHQuRcJ2vM88b2/4w1v+Q1mnvghUlOx7YhjR15kbP0VNI4/T3FyK4bUyWXynLxwnomJCdr1Oq4bYCkauUqZf77nbt79+jfxV90af/YHH+WP7/o0FNNct/4KThx4CjWb5fRKk61b9nD69Gl+8N1vMzgxwFhuB1vWT1IczjJ7doHypi2cq81hqwaKqeMuLFNalUEFzlbnuOKKvQTNDq1OC4KA1qWzpMoZfnh0mdHV6xjeNMGzj3+LuNf6mW1U/16rvLZIMTVFV+/SrjXQVJs48vtMQSFYOTeDpUikr6JrPqOTb2RpyUBXBZrw+x1NRaLoAcJvo2UDyuU01+1+LZ0FQRjE1JaX6bZ8XCfECV2iKCCIA+I4JtIt4ljyN798B7EieeTpJ/j4Zz7HH3/2M/zW636JVqtLLAVv/Es4/czn4FjC4r84iLZEcS0MkUJTdbKaRpzLEaYtXOGgxn0zjIxDTDtComGaOgdeLrF9vIsuNGy7P8uomxauG6FqYJgpFCfg4oV5RifH2bprL67XYXFmCT3WONeosn5kMzt0u28DS00RxRB4IbFICCVEpRx+GBBmVbw4xA0DGl2PW7bthFjguj10M6Hph2imyXK9i5XO4Ps+mqETxTGqUIiERUkTeJkUatMh1lQEOoMVgygKqNc6jIylScIA3YwxdMngUIaFeY9QdhChCfQd52ES0mv7xJHTn/El6Rer9DdOVVVIAhcSFS+K6R54hmTPNbx89DjrxsdYadZJtaqcPvQy3/n2vWRygoe++Ne86UP/rT9DmqgkAkSc/OulenJ5fjW+PBQwNx+jpyucfCUgZQ9jWg7l5hKkCoR+wGBWY345wCwZGCjEElRFkLFTKIaGJTWWlpZIpTKoto0mBAoqbhiQTdnU5udRDJUwThiwCtj5/oxe3J1BJgJF9INiUZz0qQuArSXI0McPJabWn+v8eV4ynbB+23aWvRVk0CNOFNZOrKbaaKAmMdWLVVaPDmOnB9g2leKsHxIlCvVmB68jaXfaJMQocpYochD6cfLZFEPFtYQNjSSOWWg08Fy3z02Wkl6vwbFkieHRVVSbbYIwZuEvPw0qnJ6Z5Y1vfRe3v/MdfOYT/xWvF6IZKbJXnuAX9CmOPXc31ccfZKwyRfP0HDONDoZl44SSVDbPrLrCJrN/izhYqeC0a7iRx+T4FAvLi0wvFBktt+n6MYrvIWKor9RpNLps3rYRvxfQW+kwd2mRWSVhfHKKnt/h5ZeWmRgdZ77aZbSYZzCIGZ2cwnEcRkdXc+HSNAODA3QcF9OyaWpNEk1DGdDwo5COG7Brag1JpBD4LgMDWWq6SRAnNNsO2WwaWx1HKjozc3M0qstsW7+ekqlxKQwZGp1EjiSszMzRcVusHRlncX6FweEMSRii6v1kfL5gU1vxiKSDGmugqEhVI53PcuTQYeLYpjw0TGtxGTttkMTgOT6qquE7Pfyw/5+VMxfIX3cjvcUG+7ZsxjANSqrBmZdP8PGPfgjXb/LYN/8bd/zWXTi1JWSoo2gxvXYd0xok6jbRU8V+qFNTabd7OK4JIs+Z8yFJWCI3IDl7+igbJ7ehWTY3X72DZ598Hr2UppIq0mnXUTWdOIFcMUuv0+PcmTNkizmGCwXymTSGZdBuVRkYHGRuaQlV1whiSRqTXCqDoir4Xo18roCMY5IkJopi4tBFNTRq7QAlDFEtm/ryPEn8/wNrdez4KfZtXcfi/ALbt7yW26bW8vhzLzNUHuRX3v0+rnjVLpLQ5XP//Bn+/r/P8PTzx4kbLnOOx+17tjAwNIzdDCiOlwkvnmVqfB1RFLHUrVPK2tRbDTqNLpXxVdQWqoRFk3TOoN5TOfTMT0gLldMXpymZaWZmO5SHB9mwcQ2zzx8ha2VZdNtMVcoUhsd4zzt/i6899Dh/+8k/5c53tHjs4HOouSJnjp/mylvu5Pjhk9x0w00EieSJ/c/yyomTrN+4he98/etkVY3X3Hwjf/KRj3DD627hnb/2bvbs2ct9//wlVpZmWbV6lAcf/h53/sIb+Oy//AMf/J0P8MqLLzA7O8str72NJ370BCPDFVKZPJlUllbgkgCvf9Md/PiZn6DI/kyY4zikUilUVWXNmjUk/B9uZp/tqGDZKRbmZwn8iCgOiKOYXjdkdmaRHbt2ceP1V/PcCwd49LEfcuMtt3L/Z7/Er/ze+3FUwVXv/hX++eOfJOp1uetPP8Wli+cx9L7qLKGfrr78mkSg9MMjiez7e/UUTz7yGB9733vwpucxSjlURWOkMkTP9fF9ldXDqzA0A9ePqAwPceiVI1SrVUZHxwg8l2KxzPhIhc65KvtufxUPfPc7bBxfw/Ca3aycfZaUOcxsq4fUTVaXJhELsximxVCpgJNIer0eZy7MYOoap46fYmRolKFezIH9+/nHRp3hyVVcrC3RCyMGs1lOtRpMZEzmL54l9l2uuuY6Gs0qZuLT9gLaM3Ok0/0ZHz+QaLbOFdfdyKUTp2kuLJK2dax0maMvH0GLI8rlMldffz0vHTzNQm2OLVvWkKw0OT13hrVrN1BLfv4pATlVp1arYdsFluvLpKw0Ti9EUQWOjPjxP95N3hjAVvuhx0QKhBERBwmB0Puzn2GEkVYwAp0Il5XlGebmzxH0dILIJaJvyVFUBT0lEImBJs1+Fx9JLCEWBmEYYxo5LN1icXqRm//jm2m06gjSmJkGV9yhY0tBOxzBcyMiz2fppMTrBfgdl7BW5+pbRzBklRjvsiIUdPXyjGUS0QsthFjBd9XLz5iLIcDQU3R6S6iqhllIs2X3NlRNozFbZXFpjo17dgERhXwG5XKh0Ot28KQkjANMYSKEIBQJWStHOkmQJERxjKmb+F4HveYT2AYZRSD8hKKWI44DRotFlEQhtlL4SYRUJIqEUEqURLKhNIBaXkVI3xQjowTTkKzK9hFXselc1pZqCFVFNRcJEwMrXUSRbZREkoQxtp0mn+uhwGVrTn/G0xA6cRTgBy6aqhOJiMce+hFv+OgnyNgF5hfOsn3fJBenZyikbF566kVu2DvKw/c/xLv/6guo51SETIiJUcW/4fAqgkT+n5nQgQFJrHvsqBQ4OpdQtkp4gYJhpJBRjIglke9hJmmSMCIx+gWUphl4nf64R7FYJPL8fiEc9zWZqtrvSKuGjhP5/feWEFhSkiQqXV9iGxpSkSAFit4fAejTEGySWOl/h9rvrP08r9hx8YKYsC1xzIRVY6MsTi9g2zZDlQonH/wRSzN1FmdP04siao0uyBDHjygVChgpm9CNsLMGbsfHNASnmzPMV6fRohSO3yUII4xsijAIMS0VM2NAZBCGPjnboBl1UW0dxwtIC41iPs/pC9PsufEGap0GaTNNaqCH4x3lrR+5hqPHp5nakMY71EWf02jVWpTSg7Rnl7j29esQskO1MY3Xa5Bgs7ywQEoklEsFnnimysguGBqZwNT6mk/fc8lmc0zPXGJkZIiLc7PceOtNHD1yhG69CbqCaqqYpsbAQAHdEzhxgtdqkTYNLp18hcSPQVfxnQ6lwVGSOCGVMYmSBM20iF0Pve0SGhoZTUPveAwqFk7co5BOoSs6baFhZ9Pk5TDNRpOw00TTyyiNNhun1hIRsXq4wqXjJ2kvNti6ZjM93wUtJE76tymKIhC6B4mGkc2gSKcvbIkTTNOmXm0ymC8gXRdNF8gY0laaMPRJkoi0nUEKh9OvnOQN78vRqDa4dOkYG7ftZnppiULK4sK5aWzZ5MyJ03S9LgWhYKcytLtdhGriRjGqEKTMNK5XQwjRD4tlJU7oMlhWmWlA4ius1NqsHujRqNWZnp5F0wVJnBD6Ibqm0gk88oZBu1YnCENWrx7Hc7ooMiSIIkK3h26ogAKqip8kZPM5nCgiiUIEGhEG7U4P6AcHi4ODdDsOnu+SzhWRQYTba5PN5gmDnz7E81ML1qnJVTz2+Ets2bCe4eFVRJrDkO+z3Gvzw+ef5CsP3cvCwhm8xIJ6RNoqcjjusnFkjGVFUGh7qLrB7NICqjAoCpPZ7grrhkfQ0yWUVBrTXEGXkC9kCX2XMysr5DJ5Xn3rGzhw4Hn2btiIL2O8Cz0unJ+nsGqIj77vXXzzyccxl3t0nJjTTz/Nr77lV/nqd+7h4vIc3/jiFxm0c9z+prdQrS7ypXu/ii7TrNu+hcZKjSEry5HjR0lnc7z97W/n5VPHefwf/ydvvPP19MKEL33ls/yv+yqEqk5pMMvqgQp7r9jHF778JTZs2MeBgy/xi295Kzu2rOWBp57i+lddx4HnDjCxdg0nTpykkC+hIfjq3V/jP7zpF4klzC0sYFkWvuOyZtMGTh57hfLwKOVymTAM+nNdmo6UMZlMhksXZikXCwReQr6QZXx8nHatxb6dW7nxhiv57Oe+yLMHXuGmq7Yyofg4HY8vfe1+dDtFR8/ye3/yKd77jl+Gy1gY4DKsWBD1LysJfRdNN4idgOH8AFe/5kacXpNdu7cSygTHDcjnbAYGBoiiiIunLrB37x5WVUYZqBRZs2YdqVSKs6fPsGn7RkQiOXjwKO9879s4eOQIn/7dt/GVB5+h3b6I01TZuWErL514kZooUFw1QXL6OW667bUcf3E/9z34MGMTo2zbsZsHHngQpGCoWODrP/whm4o5zs9cYGLNJFet3cH4xBRK4nLouweZGyjQ9SUjQxUmhso4q3OsZEcpFKtM19vkNZWwG5FJZYm9iBcPvkQQ2bh+i0avx7s/+Hc899A3SKsOK9V5nnz8xwR+jyhI6PV61JZnWLd2O8/uf4qJiYmf1T7177aq7S6lkTKrjbW8PHcQw9ZwohAtVHFFRKk80PfrWTlUmSD9CCIdTZMYMiFxuv1eVVvQ7TXRTY3Fag0nUlFSoEQmlgaQ9BO4EURR3OcoX2ZmCgFJomCpFioOB575EY/8+MdctW9738oTe+QDiRK5uLKBqRgYQkPJegzstUEJARVFZqgtLwAmQulLCxQUDLtMr7VC7Khcu7WKbsWoro1mRQgJceRd1pbaJLFP4nYRtoVUdSIlpjA4wD1/9g9cc+NadplZCraFpafxFRfFi2l7XRQp8NuCUDVYujiHbacJQonbUnCcAKWigw+Dpkm91abb9XG7IUnoIAwd4SlEymUxQuIiDQ0zSSM0SdLpQCCI1Q5G3Fc+Ct1CEwqGohIqkjDyUSOFJGWzSU+hJuCGCam8gdA1KukU1a6kMbdAIH1MaRLR10RGPviKwuSmNSQyJvLgTX/0xzTbPbKVIkPWBhaqc2RyaUzTplSpk6SG+ev7voezMocaakRKgCl1YiSRAroMEQn9AlGRkKiEbkzSFZyY71A2BukGHsHyRbQ9e7jv0UfYf99nSaXz+E6E1ARaFCNETCg0jJSO74eoCUjNQmg6YBArDobIEqGz1mn3BQJIFEtHen3kFpk1/0oziBBoIiKOBNIwuPb2LM3ZNoFmEsWyP9v6c7wCwItD1o6spd5okM7YmGFAHMHiyjKXZufwe10U3UIEMZqq0/ZisqksQgHZ7aEqArcZ4DseqXSaWq2OptuIlIEZ5NDjACFAKCpJKOl4LrZpM1As02g0KaRShEiIIXbaHDnyAvW5OdYPZ8ioBm4Y0FuqsXrVKOcvvkLotGjOBpTTXbbcMIkfGMzMTzO2Lk2uGGIYJraqstJtoiSCiTWbWa7Oc3Z6jhuvHEbRfOZnZyFWWTfew9AlpibJFipMX7qEbdg0G3WGh8cg9JhZXuLoYy+w7+ocq/JlZOCTsrKYaY3l+SXWlCZxHBcZ6BSVLGHXIzuSp9lso0Vmn2yRFyS+St7UcVyPCJWVehdViUH0Z4BjP6TVa2CKhNFSkdmLVeq9FUpaiLlQRZFdlmaWsAIPaac4d/gwa8fGkKpCHIWIREGaJmOa1Zd7RBLdVlB1lYLRD8BlLBs/WiCfy5HIkDiUfXWyYTO5fgqZxGRSBW5/z3tJpGBiw1qGJsbodFqs27gOSzNwopBsaoz/9KE/YKpsUTsvCGUXEelkM1lqzQ6xKjCMfoe3XKkg4had+iKmVcJVbLKxixuGhE6dxU6NT/3Fpzn65INYqQxCMzDsNKqI6bRq9JQ0UpGYloFlmBiGRmhk0PUUvbiHrqSIIsEYQX8UKvDICY3Y75GKY1ZvuIHawhyaSPD8AOoBudAgpdpM7qqwMl/DTBeoLq+QSv10Es9PLVh/9MST/M1nPsNT3/sW9cVLBDKkOLmKX33967n/Bz/kgx9+P+961/uoDEQs9LrIXsD60WFKRo6lY6cZufYK5heqWInHoqcQKC52rsRytc2h2Rd4674rOZoozC3Mkh9ZRbfTYFWxzO98+AP817/9S1QsKqOjPPPk81y7ZxOqnmL9uo0ceO4JwlqbW257Nd/+zuMEKOzYPMLff/Fr7BvO4Hd9dlxxBf/54x/hbz/5KZB5hJahYGU51ThNamSIq4sZ7vv2fdx8wy10mi3G8mUOnTjFqqEKx0+f521/8Eu0Y5+LJ05yZr6O+8RjdBOTzTvX8+O/fYSde/cw11ihYNlcuWsX0/MLbN+4ERTByTNn6QYeV+zew6X5S4yMltFQ0PQCQo1Jp0sUcnkqlUGSpM9kU1UNIRSiyxicgXKe6soSkSNRbYPqygqT4+NESki7Veedv3QH2cIQn/nHL3Dft7/PtrVTfPxj7+fjn/wUed3k6ZcP8vX7H+bBh77OgUd/zNJyjSTup4SV0EfRdbTEAEVFCIF9WUhuWBaJpmIkOp6iYKkGkRKS0nTWbdnEyvIiVtYijGNUVSFIEibXrWNlqU6SJKweG0FVrqZVb3H4hUMofp3mgku9vcSpaZ3C0Dhb1qylvnwa24CHfvAdVhaX2XPVHlr1Np3WCvu2b+PQmYvc+63v8otvupOlM6dZv2YdPhF//PE/5L//wz8QR/Cq21/H//r+91mzcQudbp0nD86QT+Wot48yMVSmXMpQLqZQQ1j0FWSliNnwWWw1qboOV++7msM/upu0ZVMuDXPx0lkm10zix5JStsipk0dJFYo89fSTTEyswnV+uuf452GtzC8T93r4QuH1v3AH7U4HKSWhJjFQMeKEWFEJfb8Pg9c0ZJIgEwj+zeYexDHCNAhlQhB46IogjmS/wIgkqtrvaKEJTN3qc1E1DZkoxEmIkJKe28ENVL78+bux1oxgJAKhyH/FPwlFJYkEmiGIZQxSA+FeTr1aSLGMKoqg+P2rIpkQxxJFNijlDdyog4aF9AwECUmsYFkWuqrhB/2CWtUshJqm3WszkMqBJkkLjevufDXrtEeRqKhGkzhYQNMNfJkwXlaRmKgywlcjtm0pE8QJThAxNGghyDE/W0cEMW0BipLHdKEbQRSqdJwQN9JQvYiep+ApHjQgQhK0QpZ9l5zI0QsNTCVDu93Ccfvdr3rTQ+gRBiqRpiLqDpH0UIWFkVLoRCoJkqWZBrXqMu5sF0NRARUFgVQkuhmSJFAwNDIDJfRuhDQluqmgSp2RoWEU0++HLmPYWdlNVItwFRfHcbAjULSQxFeJvQhUnVgqQAxoCBmjEKNqOsiEbMrA63RJmyZ+LySWCeePvoI2mOfEgUNs2bWFOAkJAonjJKTzAmnoWLpBIENcz4MwRo0hpaaJk8V+QSzVfpgvDpFJ1P/vICGOEFKgC1CkIPYlifAohjGvfu0O0tkMuYJNt9G5PDf787vOnT7PlVfto1mts2PPTpqNJpptMTYyzFx1ifWTExw8dBQdD7cXoKqCtGmgKSrddptcsYDn+4gkJhQqITGSPmZtpVllVa5AO5b4foCm99/l2XSayakJzpw7B1JFNzRqtQaplEHPjXn+2QOIvMHmtM3A4AAXwhihSXLZFGcvTFPOmCRxSK4wwInTh9m6cRMKFlJ1MDQLP6qhGDrFfI5jx+bIF/vK1siU9LpNLNOi2+4yPraWwaEKQa+FGyYkjX5oaKBc4fiJY6waX01tpUXG0LnudTdRCPczWsnS9UPazVk0kac0oGCnOxRLKTQpiTRJSsuSCI1Gw2d4JA8yRX2lgxIluAIUMhQ0m0bPw3VCek4ERgq32UGoKQIlhK6kMl5EhhovnzlLyw/QTZWdV+zj0KHDRFLQcVocPTdLdWWam6++HkfGKB0fqYQoUsU0FbxEQwLNlR69+UWiDhiqjq/ECEUSKzG60UfI5XSN8ugIvZaDsAVC6x8yClaBYjmDFkd4sWTzji041Q49t8fyUhXCkEiEfYtWkKCbKdJZE9/vIBSV6tIS3Y5HsVzCdwUGEdLU8U2TuZk5Nu66muXpWQZWDXP0xSPc9trbOHv+HDKRWHaJTrdBNl+AJKLRaxH5MbLTIp0kZPU0mtHGEglRrCBsE+GFeLGPH8UUCnkaSxfQhEbKVPEcD9OyUY2IYT3Fli0F0pk03dgnny/+PzF0P7VgXa75GGGPjJ5n91VXcezUcS6dO0tGS7Pv2t388R99gtUjOU6fOsnAyE5MXeHFw4fJr1nLxu0m0DA6AAAgAElEQVS7OX1uloF8ibF8mdO1czRdFxVBGIZsmhjn6Jk5igMFkmwWg4j88GqK+Qz3fvM7jFWGmL6wSOKH7Ni3nQE7RdfQ0IH6YpX3fuAP+fQn7uJV1+/jkadmOVpdIhQRjjHALW+8g+f2/4S1o0M88+xTZLJDtNor1FaqGJrGHb/4Jj763l/n7/7878CAj3zkI2yYWoevhLRX6lTGJ/iXr3+ZvVfs4/Y33M4PHngCQ1XYsXML333wEW5/45189ev3cMdrbuO3f+v9/PEffJjf+9DHcN2+hq1cLlGtVrGEyrZtO5i5tIDAp11bYPeNN3Dqwhk6jR6liotumpf5iUo/LAD/+j2qqvLKiVfYaupUyoP4vo/juWRSaXRdp9Wu0u3WGRud5JWTZ4kE3PuNr/ChD/8B1125lxMnT3LHnf+JG197Bw89+E06jSZhN0ZL9c08CiqKEMQoSHkZHJ4kfVpBHJOI/u9RFIUwinCjkKHBAb5+3738ylvfTqO+QlrLQxRTLBZJkoTAc6lWq7z5zW/m6See5NR8i5HhKZanzxMpM5j6OvY/9Ri7997IQGWM4YEC5cwqnnvpJ6yZmEQ3NCzFID5+gnTa5rsPPMyrr9vJydnTDK+axBwqk8rkOHH6CLdsuZlUfpBWp40h0+RSCmkzy+CWAVZbRS41l1npOPitFVTbZMiq0FC6qDLCUA3isIUaG3hJi1JxCynLZHmpimYYnDp2lJ1btjG3OM+ObZtYWFgknU7/TDapf8/1P//Hl/BVhck1Ff7L+/+EN7zjNnxFoiQRJJLFC4ukh9L0XIecnQXNwNJNkiQhl8oQepfHHhKJoqi4CljFDO5Ksw90FwIZKpAIAilxIhczkyJXGqDd7mAM5lGFRNNNyrWIO9/7Me4++Az+3DxOENPtOGgig2SOOJEIoRF6aYS5DNJCwQIp+1giLU2+JPtp+8t5b03TkL6CTDxMIZBIEuESKQWSxMewTdorHYSms7S0SKE0gO938Vyf6rGTpAd1rMhAyVgcXLyWQqHAQG6UdnMexYAo1FFyGWrTl2i6IZpQsQs2itdk25oRfvU3Ps/55SU+d9dt1EIXK4hohjqy5xDJFXatH6G2VCOXU1GEQq3uYpl5lCmbjNKDJGRDqJAZchDJAK7TIpPN4bR6xDGga1i6AVLF92MiHWQEHSkIPBUZdTCEQpJXaJ6LEJMVlChC0VQUYiQKgVRQFYNfv/FLPPr9nYwODbNtfD2i3SUAUqUiYdPlUq+LKTV83ydRXS4cO86qod3kiyFqZCDxUEwDkWhIJeyHsP6/kkgKFGFhqA4FcrSMhGajRYJJ5Cf4tVnOXDrD6rEJlEigRiqKmnD/N7+DXrDoNjpcd/3VbN8yhW6YqLGNoStEoUSxK/Q0h4ypEyYJmmajqBqJkGjK5UORGpJIBYkGQYAdG1zztklWDw6hKCFhJDFSdp+G8XO83vWu32H7nm0YWsIj9z6MpRu04xBFQj6f5YdP7scu6CxVaxSyQ6iWjtN1MGyb4coQ3U6XtG5iC0Et9oiFip42Ceo+WdvGcXwsVUcoFpFMkEJFz6ZYcXsY+TShpqKmLSqrSuR7sO/1b+HAwgzNc2cYHpvk7NlLVIpleuEcLa8NQiGIcqwaLtFsdEhbGer1FkJoJDJBN32iIGZ4ZIRLZ19k+9YdxLHO8WNHSKctYhSCuIdm57g4O81UFJDJ5vGWW7S6TXIDg5ydvkiuUOLwwSNMrBtm3dQ69h8+CKXrIC4g7G10/CU6sQSpM16psHhphl4QIKOEwdUjuPUqq4qr+OvPPEO10+b9b9tFJw4wgohurNNQAly/zthghrlL85SHC+SzKsu1FVRhoQ2mSKk+JD02BCHpARO/B4axxPtfdR0HXziEYZfoug6F/DaWF09xze7d+EmIjCSeqmFqGWTooAmFJK3Qc2LsoTLEiyiKRJExCpJIgqro3Lr1UV56YYLBYomMMLCiGC90SZVKxD2fpu+hSRXf96i3FgibNRq1PHkBaT2PL+eQuoqqpqk3VigWyliXLX2EFo7TI22qGCJHJwypdToowmRuZhEraHB69gylgUFUzUTHoOe3OPzyaZbbDQLPZ+vmzYyNlVFNA12zyMYpHN8nVDP4kYNtplBNlVgFEaugKygpCzVR+0KPbBZiiR9HGNJmaG+O1UPDRH6PlJXBc5z/J4dVveuuu/7vHzpLd+2+6kq+9MW7UQ2DIIzYs2srzx3Yz/jkOD034NipeQYKk3j1GS4tV5kqj9AUMbXlOQwrTdxrkZUxK20XNW1S0jRmmy3ypQE6kQ9SUHN6HD9zhqKtsbYyysVLFygNDOPKiMW5eSzN4OLsBfZu28ETz/2EDZt3ce7gfiamihTyFhumhphZmseJMnhhxIYt/TY6UuP799+PlcnTCR2qc2d54smnePzxn7C6UqG2fIG5uWXGx9dwcW4JI1Ni+vTLbNq0mzOHD7H/qafYtGc3azaOMjk6Tn15jr3XXMPJ48fYsHUj068c59nDB9mycR3X33Ajhw8fplSpEAchayYnyabTqIYBccDdX76HhfkZHvjmN1hYqqJrCbt27iYMI4QikJeDV77rsm7dGlqtFrl8jkKhTLPVJJVOUcznyebzhEHUd28LnX17d7Bz+1YOnThOHOlUF0/znne8g//w5jt54P77aTZWiOOIp/Y/TcftsWfnbjzHpVRMoaOSyJgkgEMvPE9qdIydm9bgdHv4gU8Yh5TLA/0UZBhj2H0vedrSSeeyNKpV9JSJrRu4vkcYRmiaQqNZZ3h4FB2Fbz30GI3qOcZWryOKVUqmxrpd1+I0WnSWz/DSC89x1VW76XZcVJFQW6mz76oreObZ51CF4Mo921k3tYGn97/AzHKPpx+5l+pcjbgrWazOINI2XadDo9Fh156rqOQzzCwvU51f5tTJ81yzbQtnp8/T80Pqs4uEqsRzevTadcYnxplZWqBZa9GorQAxlm4hlD5jtFGrY5oGlm3j+D6zcwt88hN3/enPdsv62a4vfvbzd6UHU7Q8h8NPPMPr3nI7geOhAYqhERQzBNLl3PICjhrTabdxQpdet0Ot3WSl3aDnuzhhQOh5BI7L4tIcjdhDWhoBCYEtMMaKWKtLDEyNU143jlkpEtk6+UyWTDaNbdnEHZ+hsSnavSah51G0TDbs3YtYeJB0uo0QQGJgWIAU/Q5rf7IbGRsIoRLJJorMEicRvV6I0+37BBQR9g96UkKs4voJfiAZWHd7n/MZxwwMDhDHEdlsmhcOvMCqsVEMirz04n7GCyUKo2NYaRW0hO6Kw0Pf/B7DG8Y5/r3HePQHz/Km3/o1KqtHOfzkc9Rme3zzq4+hxV0mRst8/5kZrr/5dp59/CIdUeKZl85j58c4P5uw7TU3M3cxxpEDPHNJsP9kh/sffJaXz3S52C6x0B3k+FzEi6cian6eV850SCFAC/GlxoVZj55j0BMZmvWYnBFiC4esEBiaQGTXoqcKnDsxA1HETfvmSZQQJYlRYlA0jUT4kHSZad3KSwcOU2s7NObOsbA4w5lTx1m5NM/szDRur8P0xUucOr9IYufQg2lW559HKF2kBDeIURUTocYoqP3DRKQQBf10tq5liTUTP4DS2uuJEazddjVh9TTCSihXiix7LrqhoSgGGzZNMjI6zs03XU8Uh6TMFK7voKkpqtOnmOtIFpsaipWgJCYxKmEsCEONIPAJQ4nnxEg3IfYjArdFzhCcqc3x6U9fT+QKUBUUXUFDRVM1ymtf93P7zD724EN3VSaHOXXuHBeOnWTXNXtImybtZhM7l8GzDRqdFnXHw4l71JtNVKHQ9RxqzRod38PzHOIoxHVcoiik16qz4jtoaRtPRkSGSlKw8G1BabTCyORqQkNFZNJYloUiwDYsuo02k1PrmFmYxjZtFLfLuh2bMLovUirG+KFHHFsITZLJpDHtNFJKqgvzCGGTAI5bpb7iUl2u9qk3LQe3F5BKmziuhxA6TqeLYeVo1ptE5hSFYgHTNqhUKvhej+FVIxx66SDjk+OEbXjh4AGmhoZZvW4Drt/FSOm4TZejB49RHh9h5sVXOPzSccZ2bMbK2Dz3ox+zPN/i2SdfppgxKBezvHSixpbtezh5dJmetLm00EEYeVZaKuuu3MfinE8kCpxt6JxbCnnmuRNcWPCpujkSczWtIMVLJ5u0gwynLiyzfmyckVWDzCxUmV3o4vkqC02XVitkuJRGSxzypo6hChR7CFVPc/LoGVRd59rdfl/ocllmYNo2CSFJ7FJ3d3Pu9AVcL8BtrVBdnGNxcY7eSpNqdRHP7bFSXebiTBU9W0IPVwg7zxKFNSwrjR8mmKpJtpAniWJCv0uz3iSbyVKt+miqhRdLUpkCoTmCVFQ27bgCM2zR7NXRbZsLsxeIowRijYFKjlJliC2bNuD5PoPlIZAxQQTLM+e5tNwDkceJeiSxiueGhFLg+xLfc9ANi3bbIewF+D2PKOiR0TUWOjXe/vbNeN2or4Q3VEggCEKuuOmt/9fn9ad2WMcyJo8/+yzP7D9Et+0Q+gHveuebabYdDj1/mK9+4Zts3DpO2Fskny+SL0W4UrAmNYxuDNLq1PGkwN4yhbbYIWVoLDZ9ktBFSoUhu8jRi0cZHhpi69Q4ImtS7dVItIRL52YxMjBYKbJSazJaGeG5l5/l1mtvIohDjp9fZvuqDeh2iQ+//xfZd+vv8vQTD/OJj3+Sx7/8JT7453/NzMRGbv3VD3DhzIs0Ty+xc9t2FlYa5DSV3VddRShTrMyeZvPWTXS6df78z/+CIyePc883HiY0csQ0uHDqAj947jlu+IU38vkvfonf+ciHyBlpIlWj5jmsXbOeVM7g9NlzFAoFRkdHaTQaTE9P43U7rN++DUVTcD2H3//Ab/Mv//JP/Oa73803v/coX73nHv7jL/9y33yj9E8W7W6PeqvN3NwMw2OrUHQD3TSZn5nD7fUYqIwgpEAIhVj6xGGCpsGH3vvuviBgzRoOvfwyrUOH+f0PfIC9u/fy8KM/5OHv/4Bjx0/xsQMf5w//6D9jqEY/7CAUhJEQRAkrK3UUqWCrOomREMcJnh9hqzqxAUqQ0FZj1mzcjqcpTExM4SURfuQjBGhCgyRgdGiEXKnI1No1aLk8wjSZazkM51McPfYCi88fYtPmLfTqPW5+9et46NsPkisP4CQKUpF864GHyKRtXBeeOfQSZ+cW0ZUUth+xeVRj1Mzxw/OLNE81sQbHyKdyLDsLzJ49QVQwqS40SSExDIOxtavpPHcAPaWw0usynM1SWT1FN5TYmkHkC3TT5MLMLMViCcsKuHjxEoV8CdO0GBiq0Gk7DJfKDBcHfra71b/D2rwpxfHv38ODTx7nl971FlTbRMoEP44xhWDPdVfiX7mL65L4sv4zRCEkcPuHoH7BKGi1lymk87SDLqvqDfz6CrZtgiL7qWwh+lfvXkxMBGFMuCZG/huEmjfU5eTJgyw3OjRq84ysmgTfQ+oq9SWDynBAKHzCyAQSFKXP4QQQmkecKGhaDkmAEquoWh8Er2hqvxOHQSKDPjNUqsgIAhFB1Ad49zpdVFXH9zyuu+F64lgiNI1te69mZWWJnatzdJYj5s6e48Evf5ulhUXufnY/MtFJD2f5s3f/LqETMN/qkMgIkYCeV8g6LmHg8E9//zU2rlvN8RcOstHyaC53uOkXXseffeB/IFIRO6ZWYc0skrZz3Lh1IyN2gihIxoYyXOpFWKdexh68knxocM9jZ7htw1p02eORVy7x6quvonZynsWWw7riIMuFURZPneX2X76FxYNnmdy2FkMPyRSKKIpKEpsgAhT6FkE1LiLVHjeN3MWNYwEzs2mGXvdjjh65QCqVpd3pYPkKbrPOTa/Zyezzv8euiVOEkY9QPeI4DdLHUqM+hkaJUZSEOExACqQEu7waBQ1L2ni9gG7QNxsmvYDeycO09r/EguKSLlUI0wUmrr+OldBCqXVQRMjY8CBoCnpikU9HBBtuooDN6FaQRERI4rgfSvWiEFUKYhlhCoMk9vopcEXygTss2rU2C7M++P3rVSEEoVR/7kcC1k/aHPnRd/jqNx/j9Xe+hlq9TkHXcYKApN7EymTYcctNbAuDvsgjDkmI0WINVZWEUUASA3pC0I2Qekyz0WGssUKmkEdNJM1eC9uy0RSVSIKuq2R6LmEkEYkPioLnB4hiiSPHXsTQU7TbK7SN9OWDrslweT1HTh7m6mt2c+rUBZanp5navBkvbTG4ehyn26HXcSkWxqnGy5ihRmogR10qeE6IbaYJgoSNm9bRcRxOnGqSSINQiWm3OnSaDQYqFWbn5pkSKtu3bydGoZ202LRlJz23jWlLsr6J02xw4LHHqC+vcP6FF0lnihh5g6//7T8xNTbO4RMnGZ+cYHFxGT0lWbNqLVHg8sjDT7J6dJCzJ06zZdCituSx96bruO9zDxAJl7FSjqTVRc+W2Da+ipIFSjqmlDdZ8WN2ZHTsVavJJxE/+t/UvWeUpVd95vvb+80nn1NVp3LoHKRWDgiUCCIJIcCAxiRj7LkewIw9cD04jnG2xwz2DMY2NsmYYMAGDJaIEgoIFFHoVqtbXd3VlcOpqlMnvnnv+fAW3Plyte6aC3dx95eqtU59qHXe/e793/v/PM/vkVNcPjFKWU3SSEJGB6rMnj3FZq/B+ae2qV9yMWqnzaXPu5Dm7Cr1qWEMmWDYmXRH4ICRIBJJqmJMiqRmnwsrn+HIQExzK0/pij9i6dwqlu3S9/sYsSDqdjl26Qy1Jz/Ekaktgn6XJ5+J0JQJ4gjHMuh0GiRdRbFYIgoTBgbqrC2uY+THSLWBhcXmWpN4IEUlCVvrW3SOP4x/4jRtETE5PYTtDcDMXlr9FFeYWIagUioQJz6BSrFFjDlyhJHEYGxihPml5V2qWpzpUA1J0PMpFhz8XozWEWGaYtsWr7zGYXN9i63NGCMVOIZD2o+RyiDvPHsX81kL1hMr8xQjzY2XHeW7ZxYZF+AVBnj5C17M9058n317phBxStkoI3KS2cYaM5UauWqPEyebFIddBgoFllY3iXXG2rZdG0vkqReKNMI1pqf3kTdsHNeg1wwQIykiMminTfItyeTEBLESlIsFOjttfvDEo7zsxTfgR8OUchVOPHKKd/3a+3nuoX28/8/+kK2NBn/8gT+nPrmXz/7Hd3BuaYHXXXItF950E//65Tt417t/hU9+6lOcW2xwxdFDPPzUCd7+rl8hNQS3334Hz7vuGv7jO95C9Td/nfe84+e57+77eeELruVjf/3XvPq1r+bsI09yfnuLdmORTqpoLC/znve8B99K6fchbLdIEsXVV17OQw88yMhgnY3NTZRSLGxs8KLX3sKXvnYv584+xRtv+wV63RaO6yJSwdzCeS6+8Bi2MGi3AsqlGBVHDNYqbG03iOOYqN/DcjNHdhoppM4W5DCJM6OJKXnOlZeSKxR48KHH+OKXv4jrunz6o3/Le977HqZf8CKE7yNUjOWaRKEmTTXFvEtXhYAGCcIQGJZACk2MwpQWfUNSjSy8+iD95Tli2wYlUKaFqROEEoSxZHhohMg0GCznOXLsQuZOnWd6tIRr2cij19J88BvYFgRRytOnTlEaHmRufoPJkSqLK8sMj45w5sxZTGlhImlvbyERGHmH82c6XPvOi3lVcYCvnFzA0YooipgYrRDoAH85IAxaxNLCT/qcWVpHJNDptSkWcggSzpx+CtcQ9JTB9PQeDJXpMz1L0G21ufTSi4j7MVgGUbdPc2cT07QIu/0f0zb1kxt/+kd/x9D4MOXRIl/46O3c9otvIRViN4kie7aFXG63VSowrRymoYndFGFIbNMCwC14uIaLJwYpD46wevokcZhgmhamqRBaZQutAzk7B0lKp99jo7FDoVBge3uHhe+fpHb0Ko5dfw06TWiurpGYGpnaDI52QJWQIiLLy4zQ2kFoE0RG1zJliX4fLDf7X5VS6N2DnTRAq2TXIU+WFapDVC9gJw0pFgaxJGAp8sUytVoFESfc+6l/5f5v38u5M0/ziTjEHapimhIdCRKh6ViCKBBsNrapFEKsFGpVCzM10bZJe6tDXAuJImitLjKXJKi0h5cbohNa1IoCo15jtFwCx6Q00KPTjGiXXQo7bWQvwLvuMvJPdtkyHFYacxiNDocGxvB72yzFCTm7SHvpDIW8S+hWWFteYW1tgZt/7s3ocJ3NzU3GuiPsOThDP+4TpD2kcDM8rdQILJB90IrA3CZnFJkZb/H+D/0DUjiZdtnKkyqJVywy/09P847nnUKaGtOWJIkNUpMqhVa7BZ+WgIEQ8W5BKChYeRSaKG7T76W4Rpb72CEibfn4YRu/5dPxI3L2Oicef4SVbp+L3vY2XMvG933iMMG2TVpBwO1fuZ2CZZLPF3Bdh3y1iGmamKZNoZDDzuUxDYtazQIsYkMRbG/yzOkWvZ6PK3MMjTjYjo2Uksh49oicn4bx8U9+mdroKJMzQ3ztK9/lOdc/F+HlGakP0+rs4OW8DHlqOAhD0IkkRcfElIJOPyFXLGFrSS/1MVFYOQOvUGOdFNdwSNOEcmko2+hFiohjcgUbmWpafof2TotqtUI/COjMrmCOTjE4uYeDA5extryMsE3a2wHzxnlq+TLnzs4SR4ojR/dhu3mWnzpJP9hhtFSjPDzG4nyD/YcnWDi/jN8PcKwi251tpqYPgZRsbGwwMDTAzPQkkyMz9Jw8C8uLTE7OsDS/xMjkMGmSYLg22u9y/pHHOfP4CfKezYNf+leMfJ6859LvBpSqZVbiEMt2aHf67PQ6NLtt9hwYo7/TwbJjqu4QkeiTCEF/u8Fct0s+b+NKl80+5EyNKOUZKQyhVYBbSIiDAL9YwO/1wA8YPbIPdz5kB4P+zhqJMjg2OUPeUyxsdWhu7VBWfZ57yYV8/YlZLAFb82d54atfCfEO7Xabql9mfGqUngGxChAiS03WBggMtAgQCAKrRwGPsdGYz33lmxjSJkkU0vTQGhw3x/o9S7ziaANtCooFi2KxSq/j47ompAKv4NHrriOFRGjodLvYno3aFriOpNPbRqVWlmWtUgKdEO108aMuSZiwPL/GvgMWwX3fYa6xw94XvQhTShzbJIxDhJJ04j4PPPAwNprG+iSdVger6GLbNmnfRRqZn8AWDtXhIkIL2mGXtN9m4Xwnywf3FbmajSkUMQlYkCb/L2KtZGmAsekxHo06HBob4BUveD5fv+cBhsbhW9++j7WNDsP1HImK8WKPklNCSknYg0qlwvbKIr7pMFWdwbUjeu0dcsUy555aZP/IXgxhs9Pcxh4q40mTE/PPcImznzRJ6PZ8cqUqQaQoeCUWlubxCjnOL62wudFn9ewWws9z+Uufx3/4pffw6c9/mqTl8y9fv4t7v/xlRq9+hte84g24RYuPvf/3ee6Qy8Bkjdv/6YtMjg9z+Oh+Hnz0Ycb3HeIbd9zB4SOHWDg/z8Z6i2qtQCEvuOTSCzHcIk8/8QS1sTGW17eJtlZ54c2v4Stf/ypO2KdkCL7/yP0cOHgBHT+gUi5y/JFHGB2uoCyQOqZarnDs2DHiMCTuKE6fepI0Mnni+ONccfkBarUJqqUcBw/vpxd2qVtFvJxFkoS02k0mJqbwPI8oisjlcgRxtskrpUBniELLsrLwcSmJk4R2q0Mu53HBxRezcHaOu+65l//8q/+JdigJ2pskUiJShZCg2eWQK43a/T3TMAoMwwIUcZSSExqdRJiyx0B9iF67k3VyUZkTU2gs10JFPq21BqVaiYFSFbnf5sQTD1Aul2ksLeDaFnNPPk6pYNNc2aY+WMX1THr9NhMT4wRRRKnooVKTQtnB9fKsLC2z0/JJx0p8/58/RxqOs9OLGKwWGSzW6AdNmlsBYZpQrVbZ2tpBCEG9XkfrlMbGBoNHj7K0vMzkxDjNlXWC0Kfb7hJ0fHJ5F9e2icIUpaDb7VKslNGmwU6/y0hlkFy1+mPapn5yI1+v0I/6mNiMDNewpI0QIstR39WB9no9crkcruuRIjAkmGaSBbBrEFLjeR4yNbENE2EKolhlYfqGJI0VqU7xbIvtdpedZhMVxjhulmVqmiblchmnVmB9eZXZ5r3Ynkuws8OrglsQMkVgk+oIBGitQGQLN8rOAAA6IVZtCqUs6iSF3Zu93bQAIXZRocAP559rURkdQYQ+Smps1yHabrP4wCPc+cRJnnjwMWZnn6FYqmCXchRyg7S7ffxWyGaQwRO8fJ5KxcL1XVKdIk3J9k4LPxFoP2bm6qs4/dgjJG6B6sQUIpcj0YJ7FxYpV9v8zUe2WVo4Q/WKS5m47CJO/+s8RbfE9IV7qZUqsLjCvtEZHrzzMerlMrI0BH1oGSauthnP59isWUyW8pxZmkNVRrCUxikOoERMSeYJ2xGxVuQMk1KugGFYP8LuZrKKGK1MEJmJSRORGAbvvPFviRKJTl3SNEc/qdBNDFyjicgHBHEBGcRI00CTZpNhNxZK6yzWCqFAZMjZneZZvMIAO9sdHGcA27YxCgJH2thSY8cxUcFDd5r0Uodc0WBfcYKhgUE2t7YxDANpGMR+RK5U5OCRw1iuh++HRFHA6kaHNM2i94IgQIZxBrZI+wjbIe953PbySeoDNYKCTZhGdNsRu2d4jP8f3LC6gxWEJdCRYnKkxtTkFOcXV/AczeZmMzMPxgrHcfAsj5w0sS2JROO6Fkngo6Qg57n4oY8AHNem3eqTq+cREhLfR1kCz7JY39yg37eI/IhEgO24IAxKxRJNa4X+1g7z248yNTnF9uoa11x9DZXhChddeBXLS6uoNGB1Y4mttTXcSsJofQZpJSzMnqJiSUo1h8byGp7r4Fg283NNvHyBzY0GhVwBv98nDGMENoZnMDozhVQp7U6L4lCRpB+wcfJpgl7MA9/9PkvLC5TzBdJ6jUptkHbPR0Uwu7hEvT6EabtUKjZmaHLgL7AAACAASURBVKKLJSyhaTf7LK1vooKE2pUH2VhfxchXqQ6PkHNsQtXn5GaDMI644xv3srZynsqxCxmd3MfyAw9RKAyRmxqmlCuQbjQYqQ5x5vgcpUIBkS9RiGN6wkAminquSGfMpC4VC2fOsXfPJKVWn23bQomUnHBI/IREZ12pnGcjpIEmydZasigsrY2McCdttA5RhserLr+TMFSoxCLVDlGSw1cSW/TACen7FjkJluGQy0laO+tIbEK/h5SSfruDlAlhECIxCfx1hCiSJgmm6eC5NrYwybs5cB2MOCYyDUTcYfXpWWwnz2CpSqlcIfBDLMtEp4oojikWyoyNjyNNk9JQnVYQsb6xQy6Xx/e3MAxJ0u3jFPKkUR+FxPMcbriyTrXsgrTwgyCT9whNt98nZ7q7Xb7/+/GsBeuR/RPkrRJrhkcdxcTBA8xM7uPec08SqTLT0yZx4DBWt3jy7BImKZs9lyW9hWOZTMxMc/6Zc8wuL3FgdA+BSPjK/Y9jaoiFptvu0Uoi6nFKWFDMTO1B2jnGD1VIz0jKlRwxCedWV5geqnN27jylXI7vP/k4MlZsr6yz1Ut428Nv4A0/80Zqhy7gHeI/8JV77+Z9L3sln3jkT3CCmEuuuY6nnzjL5796B+/+tXfzuU9+nnf/2gi/93t/xj3fuZ18Ps8d/3Y7v/Mbv85/+bM/4yUvehFnTp1lbm6FI0eP8aa3voHC0BhPHD/N5z/yES656lLu/96deE6V61/4ckLpcccXP41nKo7/oMwrbr0Nt5Dj4IEyY6NTeMUix44d45677+U9v/1b9HttPvupT/PNnRZv/6W38vWvfZmrrrmRoN2nVhsgTAyGh4eIE0W5XCaIImzLZXh4mLWtBgPVGnEcYwoDZQrSNEEaIKX5v2zomqmxUVJDcPkFR9lot/n9f3cL/8cH/o446mMoEy1BkhW5uWKByJJoYSC0gFQjtASdZS9KM2ZpY4upqcOcX2nzf779l/j0Z/+J9773vfzFB/+CnfUV7rrzHo5ccIxqPs+5pfPsHb+Kb33+k1xy/fNxhYcfJozu28vaeRPt7RDolDe84Wc58eSTuO42CyurvPaWWzjx4GMUhMm9Tx7nopmjPPbEUwwODLCy2eDW511ByBh/+4V/Y7g+xtbqOp3tHXwhEasL1C84xtrKCrlcji2/x9NPP4VhSPbt2c+Z2WcYqA2ycH6B8ZFRQj/E7wWsba0zM5kdCjaSBv3Ap1QuIkyDp586xdjICBdeeCFra2s/zr3qJzIuvP4ytlubTNg1DuzbR7fZIbs1z0LlBVAsllBowjjClBLTzCFNUKT0ul2EELhOjlQl+EEb3w9R9HG9ElEQY9hAahIlKZaRw/QscmULPwoxLQOVpOhEM3VghnJSJBUmaqjEqSe7BFYfGSZYliBKFVoLUBFZvrsJRheUl7XNZJc0liiV7MIvdgtUEaNVRn3SUkAiQKYMTtd5zXNfysFqhfLQAJYU9P0mbaXpdPuo1KCcHyJwNCE+vXaKoyXS1YwZFs0gJYglllPlhjfeTBynrK2tsPj5f8aVktJImXRhDg9NNe9yrjHHC173GvKuxdrCJhdecQELp09TNWyuvPYq5pYXqV1+Ee5QiSIO44Uqfn2AL339a1z5vIuRpku/32fgORfRbab0gwbNhQ7DustjKA6/7jaM2TmWe2dJg4i1syFzrVUa2yGulBjSwMt56EQiZJw55qWJQYKQCVpJYuWjUgNp/LDlptG0MISkpM8iIgFWEZVaWGKTVEqUNjJmltKgU5QWkBHYfzTPtM5gUqnIUR0ostyN2NnaRjg2cS8iPbqPkYv20G9qgijBkTHdfkjR8djsdzEdmySMSGJFoVwiCSP27JnGMS0My8ued6oQMiXZPTxnGbgu57/7BLYp0K7FQMlifSXFzUtEmCAsQaoThMiKYfVTnp18wVUX4vshrmszMzzyozi/nX6HFAvPU1jSwbYE7X4fUwhSPEIVI6TGsiV+rw+mpOB5dJMeC0tbRCrEtMngEobClhaRVhTzVSwJgzWbnVYPYWhUqoj6PqPTk9DV7DFszKJBugm9uE28vsMJsczwwDhWscK01qw31zhU38PS6lPIxKJcrdPtNLjqqpfw5IlHWF1aZHBggkOHjrC1uYUANtbXOHDwAM+cOYvljWIUDH7nl9/LoZFRRiZHMvDO5hqz8/PsPbCf5Z0mpcowtfE6ykg5e34eF0hNwZGpMfpKEEsLqzDE1Tc/h/GFJWZnz5Bb32A4imk2t1h/+iR7Du7F931a7Q2OPudKivkc3Waf+vgAG0tL5OVhDh45wMLKEkPHjkDOomzlqTk5ov0Fvv/YD9h/eBpp2gRBxGi9ht9JCeMW0YbPuOvTNyUzz3sOD97+VdJCnSQM2VlNWO+3aHdjbCmxHAvby6GVgSAELdDCJDutpwigG7ZxnRJp0OfEEye44srLOPn04xw7dowwWGFrbZtCZRiVmoTBOoVSlfXl81QGBjPJjEqxcx5pLDIvho4ZHx9ne7NF3lGE2mbv/v2cf2aLVEErCbGlzeZwjeFbXkJrO2T/WBVDmpyaW6JSKLHZbmEJSRwnpEGf0uAQ/W6XsbFRdJoyUKviWhYISRB2MUwbpVIsy8Zzcyw/cYY0DfFKRSpFh+3NmHzJwEoMsKDdySQr5VIRP+g96/vyrKartWcef99HPvw3LGiba/ZfTFsHfPiv38/I1CDNoMNDj55ge7uJa1v4SjFUrSFKeaJYUMznuf/0cfYdmaKz2GXfJZfy2NOzXLlvCsuTtP02edNmu9PGkDY7q6sUrALL3QbtxU32jE1wfuU8sUqwHQfpRwwO1EiFomLnsYFKrcq1L7yO51/1XI6fPs387AIvf9kL+MsP/Dem6zYDwwfY3mxwz4P388d//xHu+/rtPO/Gq7joOVdy++f/hWfOP4MVRMhcgVRCs+MTd5p8/JOf4pZbb+H84jO85KabWN9sMT4xwvEnH+eiKy7hxquu4uFHHifwStz3jW9y6uHv8TNvfiedfsCn/+0brDZX6O9ssn98ksQQeG6Baq1KkqacPXWcF9z0Yq68/iYevv8eLNfE9xV3fON2Hnr4e/z3D/wlV11xCSrNwoDXNjapViucPv0M4+PjDNXrBL0eQgps28IQAiElQmTZl/Wh2m7RKhGAJW3CJGBwaIw7/u6DXPjiWym6JqV8MSNdCQPXK/H4A9+j7xS45thhojAkVYpERXi5AgiBNAyqxTqGDHn4nvuYOXiYtfV13vqWt/K3H/kohw/upz44wk6rQ96z+MKXvsRNL34xH/7EJ9Guy+DoFIapCHY2SYRGBCk9P8RQFk+dPoPreSAcBstF0m6PpdUVoiRmY2UZK5ej3dpi78F9OKbkla97Fc+cXyUxPQ5OTdGLQMU9yvVx/CigmMsRhAFhGHDZpZfyzNOzaFuwZ2YG17YZHhmjUiyS6JRbb301J049xWUHjzK3NMfwQJ0DBw/S3Npi7+FDXHzgCOfn5ymUikjT5E1vestPrYEDYOXc5vsO772cUv0gRmGI8XqeJAkzY1+qkQIM6aJUgGE4YFhYjkMUZwtm3w8oFEsgTQxDYgiTSqXM5toaSaywtSARAtOwSRPQQoBQmXnQ1aRhZpryQ5+Vbz2EsdYnaixiLa2gF7bYe8tzsdfvIuf5pHobgYdhaqShAYUWPhoftAPaRiBROkCnFr1uTK+r0KmJUglCSFKVRR0lqY0hPL56PMISmkZrh2YSUTAsCtgUkHi2QcG1scOEXqfLdjfhwHOfR1osM1AukTMhDvvYGzucmzvO5jOnaMyepdOO0KU8e66+nhte+TK8UpnlhWXGSnm++O0Hue/Rpzh57hyz5xvEZo7icI2/+NBnecc730DVdvFyNQq2R2hLgr7PlRddTLvTp99qkxss4eVctptbhFFAZaBE0t9hsFhhvbHB4Yv2kSYpbiqROqaxvc61L7uCgXwO6do4psmegftBql0DGmgjiw8DhUTudkqSDK0quwhlIbQDOgLDRCkfodXuLWp2U2tIm0RFpBqEsjCkRgCJzqAFaSxobkuEU0GaJp1OiqwehShkYP8x1p8+jsJERQm2ASIFr5RDWxYiVKRIlFBYwiJFYVgGSZxgmDaGZWBZJsIwsC0XKQwMW5Df7NE9tULBsXFljqjTYXmhCYFEhgZ+oOj3QlwzRxyDNCVSWoxf9Jqf2nd2ZXbxfSo0oTzB4OAkpbLFubOncD2XOIkzMlwCInPTYTsepucRJQrTMFjd3srMhaGmUKnS6QaM1wfotpqEUYyLJEhSTGkT9gIMaRKkAUHXJ1906XV6aJ0Spwnbj57C7Wni9gbudhvR6DB57THq5jLjw3l2umv4PcXI6ADnz5/Fs8FyLaKoy1azw+GLrmB7o0FlIE+xPMjCuUU2tzuIWGYHSyEJ4hSVRMwtrDE6OsXdp3YYGRqksbNDYhnE3T7D5RoTlRr9Xhfbc2mvrLG1ukJhcJL6wUMstLOwelNFOIbEaPfYbCzjN9bZWVlls9FkYGqSQ9fcwMSBPTiFAhvrWyTdFnfc/QD/9s276fh9VtdbKDuP9Bzu+Nb3uOGGKxgslCiWBrI8ZFOSxDEH9+yl74eE/T52MUexlKfTbZOkMfliDhX5FFyXfhBgy4B8rU4OiWVAq7vDBZcfoJLL0+l1kJbN4bFFFCkojU5TpGVn2cZC45guUmhazQa5XIkwajE5voeF+RUKeQfbyxHHfUwJq6tr1IcGmV9cQpo2pm2hhUZFaZZCoHR2KZBAq9XD75sIq4TrOPQ7EaFZR8URTnWY1soicaLwHBfHhJGRYRIByrIpmg6RkiidaZFjlWDbFlEcgxBUa1UCPwBLUiqWMQ0DL+9R7CX0l7fYMzlB0MugFIuLG9h4FJwivV6IYdkMlAbodHwsx0IaJhdf+/r/PdPVb/3JB7nuphfynX/8DAfe9HOYdHnRra/miccf4dILrmHh5AJBEJDiYIgdDFUlH0bEUrO4ssUlo1NYbZvlbouTJ5/ED1qstlLsnRBqmp4pcMoV6sM11nYkqZ0jXlmkNDDJDxbPUS3UiDtdhqbHMIIu8xtNxut1gu4Kufp+1rZnmTtegSRk8pILmbvnHlbam7z2xS/lZ970dvLDk/zuH/8XfuOVr2X+ye9z95e+wHW3/AI3vOQ5DBQ8xvYe4w9/5zf4g5feQH18L3d98bNcc921vOj6G1nt+mw0evz3D36It7ztFzl1epaDBw+wtLTMt775HQYnquzJD3N4ch+Pfvd+/upDf4LoRrzhFS9jcXmJL9z5ADux5FUvv5a7v/5Vpqam8BzJ6nyDf/z4x3DyRa645mLGJ8c4dvBCXqZvYqOxw5ve1OfyKy5maX6JxcVFDu3bw8LCEmNjY0gp2WlskS/k8P0eqbDQQJJmuYhRkpJolen6ZIrWoIkybKGSpFphEIIySG0DS2nCJOKue+4miWI0kkhbKL1r2lYmlmWh0pggluSNPuvtkOte+lK6O33uuvfbrK2ucPMrXg6Gh5dT3PO5e7jk6BGWZ8+CbeJqSdhsstJYRUsPv70NKXh5QdnNo4lBpmwuL3PogqM8/PDDBL02+WoV3VpjfHSK7Z2INA45ctEFXH/TNXz/G3eSbrfAsLn7OyeoTo2y3mhSLQRcfPHFPP34k/QCn1whz/2P/oCZ6TEee2YWQZbraNs2x586yfDEDH/6X/+EUmWQO+65k/1H9nNqdpbltXWUkJy96z6INTlT8uRTpynk7R/3fvVjH2FqEoYpQgr63YDddRC9e8uaUb98ypU8SQppouh3O9iWRao1pmkiNKQ6QWIgDQslJaZpEkURcZyAsImTANt20FFMEEQYUtLr9InaAYnO9NRXvvAyPATr7SbrZ7bZjlcx0ip+TyJkhKHLWE5C1MuR6ADLTpHCBgSpinaxshLDdEj5YcRahgjdxdIjZdbylVKiVIpTHmDAiqkmBn2dYIQJvg2OaWA5MLvcwDNhz/Ov5/lHLiLe2qB7/jyzS3MAVAsVvKJgeXWD+aSJNir82gf/HEMIFr7/A/7hL/4HiZ8wXhlESsFNN1zFzKE9DFaq5PMeqcpiff7zu3+Ov/zLj3HrTc+nPJgdIpXS1EplGr1NvIJgaGgPiQpRCdjVPK6uMJwzWT+3QLPfYmR8hDCIKI5VmTq4hzNnzvC8G69mu9NkC5NSzSaKdsEgu31wTYwQ1u53JdE6QUoDofMIGYC2QCRoDNjNizRkDnSQmdtUDU1ndzZlMoBU8KPW+g9/aq1J4wSTHwJJTBKVEEXBboEssodlGmBooiTGNSSGsEnTCNu0SLTKIBZI5G4etOWYaC12Y/0yE6BpSSzHZufJ49SqFUQMZt5lOGeRy3skfsTOks5SJ4wyO7tQC0MoTNPgyjf+5N+7/91x/JkFBurDBCtrmPVhco5DfXiUdrtNqVgj7GfIY8fNE8YhKFD9HraQ+EFENVfAiCX9OMTczVz20xRTCRKdEqoUaVoYhsbKeag0Je0HuE6O9eY2ItQkSYjlOhy9/CBpFBOkebYXNuniEweCZqNNrdYnXxkham/Q9wWD5UFGxscxvTynnznN3qEKQadDY3mVwbFRBqplpmamCaMCp07OcujgHlw3z8bqMtWBGscOjxPEMcrMsbm5xuGxGfphSM5x6cQxm9tNcmWXrVaMWS5SHz9EbXiYtNlkxvNYmp+nE0TMjE9QGRvg7PGTxLZDpF1e+nNvRGvF1pl5Hnzwu5QLZfYNT6Bdxf5LLmNwdJCp8TG0UvT6HWzTZnigwje+eR83POdKvLzEMiWpSsjncuwEbSwXSqU6cRpDAmbBxSZPxTbYWd+gF/YZqIywESUMTHhUJobYarW4YP9BWr1OJlHToOKsY6F3210ahZRk3EktESIiTgwGhiaJQ5/N7XXCsEd9eBBkhAmsbXUpFRyCfgtEhhhXcUwc90mVSRKnWAYYpsSSP0xe0QTdHqXRMVqtNt2+jyzK3UupHJZpkRqaQqVMbbhCY6OR0eqkzdb2Dk6hQJwqSCNK1TJBt4tOU2zPodlu4XkO7X6fWEoQAtsyWT9+lurQEOunz1MuFEjTgD31vXSaHZa6PYQ02FhOQbUR2mRd9DLYwbOMZ/309T/7YjbXfOqVQQ7tPcj9t3+Gb953N9tzayzPNShXR6ilEUIIho1pShb8YK6BkYdiKc9jZ+eYnJjGs2winWIhGd0zxZaep9vpMj0zCe0dut027XabyFNUS4PMN7YoGAmR1shSkfnlFVLfp+/3GB6psxlqBhpbVKpVHnj8Cb7z3bv51d/+c2pHLuSv3v9hxlyX3/0vf8Sb3/KzdJp9xvZM8pkPfI7xa27kd377HfzN0Mf53Cc+zgtufimvu+02/K2IpCjYaLX59te+yPNv/nfEYZ93/fu3cXZxnsmxAda3LX7nPb/CRZc+l9OqzeTeCfy0jDlQIjG6/OZ/+mVazYDHFmepJvu4sNNgII0w/Txf+vb9NNY/y5ve+kYuu+oYn/r07Tg1zbmnHmdjY4Nv5r+NsnMM1+r87Otv4777HubA9ACFQo6+H+Hlc3S3tkiShEQo2t0ejmmRxgmGBlNoojQBBTLVKAQqlRRKFXqdFkpnjn8hBN3WNirnMhQHVIay73+8UuDpIGJx7jyW1iTSIrWS7CYkSbAQ5GwLpQWDlRyJ72M6gptfdBPV4SH+x3/7SyzT4JW3vpSXv+4VDBU83j78a0RBijY8/K6PH3bpdhoM12vEsabTS8gXPObOnmdnZwcjTVlYXmJ1fY2h2ggb200uPnQZUpqsbzxOvV5CxWvsNDvsHRzkH0OfMAgpDdXotZtUCnm2W9u04ojRPXs4esEh7vzaN0j6GZ5yYnyURqOBm/PYam6CsBCGxfjQMKHtIoSB6KdIDZ1+h2IuT8lxWGtuUKxW6fbbpIn149qnfmIjVBKUQqkAJSR+PyYVILVCSoNUKxzLJI4UxXKRIIzwfZ8zZ8+R9/KMjIwQxzFnz87iGRIFDI3VWVtdxPM8atUK/XYPL2ejiBHSRNg2aRxmWNcgwbXzxElEx5OI8X2IICA33WBofZNOe4uijBFCoImJogjbdTFFShJZaBkjpEAIm41Vk+pwJwsll7vaxB8WTzrLYBUaQGdQDNOgqE10X3Gisc3LfuGNHJ48ip2Puf++ezjxrXsZytk4pTzq5Gnu/c79NHoBSaFEOzH56Kc+wdkzj3H35z7HzmLCsGFSn/T4wq//Pkt+k0R4/PZf/AGdToP7Pv81NhstLr7oKEIZdHcy53sUhLhOiZJSrCyvUxrN017dpFAq4lg2/Tih1Wqyd2aSXneT4dogrTaYXcXkgWHSKOa6V7yMMOoSozC0yVBtgJznMTU1BVFCeWiIvJkQ6IyMlaoQg2xuar0rlVCZE1lIP0tHECmgEGQ0PSEMwCKzfqRoZFbMyh4CEyUipBakKgVhoYTGFAKh5G6iSabJi6IEy/IwhUk/inCdIkJLpGWgTQNHaZQU2I6b4WqFQgmIox62bROKCENp4lRjmtmBUAiNMASOYRAnWUGcL5ZY6oco1SJNeiSbNpoEwzCIFLuHMYBM06+UABEjpeT1/5+/hf/Px9DoMFGYghK4uQLtrRZr25sk/YigH2NYFp5jkCpNuVBFpwmNZp/N5gZ5J4/tOnTCkI2VVYK8SxTGjM6M0+pmGuGRoWFa7Q7CsoiTFI2B7eboBQGuZRGlKZ5XJoxCNg0He3QC6diIyjr5dkAYBCSdJosLa8wcOIBwPZYW57GNmFOnzjE5PUyaZnvUqUeXGZgscOr0SY4cPczywiK2M8j42Bgq1ihDE8UJW+urOKUCwkk4OrUHt9tmoxdy4Y3Po7fRZl+9xKmnHqf1zDoFx8MuFwiW5oma22x2Appo2rLI29/9c3S726w+/Qxn1zdx4ogLLj3K8X+9nSfmzqLtIrfc9koMI+b0A0/QWg656LpxKoVBlhdWGawXiMMQqW2K0mBrs4lXcehttXFzHo5pE8Qpfq/D8PAgvt+inC9hYGH4mqGxKgLBBVdeQRT7YNpsrwzuvq8u41OT2NImV6kQdbZYWd8kVRqt4kx2JzNpTZaJLjGEAyLCNExUnEk+hodGsGyL8+eWEDJkeHiM4dEhLAOm7UNo7YO0SdKQNE4JgxDLzqOlIk0F0jDx+wFxHJMoQafbAyGR0qbbz4ps186BVDiegyUiVKop5fNs9AKSOMZwbAK/g2Pb9AMfL00wXZexcoWtrUZ2S2wYlPJZvWKaJqkW+FGC3fGJwx69KEGlEVE3pO0HIASmaSCkQRxGWKZNooIME/8s41kLVqs6wEjTx4lM/uvffpiL97hIX3PRc66kdXodx7Kxy1XOnz2JPT3B6lyD8cMzvO21P8Ov/epv8KqX38Di6QWGhuoYtkOhPkJrs0nRyTMwMMCZ1jqTpQHOb8wxXBlmabPBSH2MxV4XxylSzbvMnjtLuVxmYnyK2eU5Tpx8ir17Z8i5BfwgoOwVGR0dpZ/4bDx9FhdNJ035lXf+An//4Y/z1EN3cdP113PdNdcSCIOZ8jQP/eAh9h89wmMPP8Qllz+Xbzx1ivqBGW5+1c38w199jHvu+zpBN+GWm1/A3XffSy8MaPX6DIxMMTVR5pH7TjExNcVNtzyPxuoOe9/w89z+uS/x2re8mqurl3Hy5BxF4yj/dt/3WG82+cP3/jqf/Zev8qG/+RQvuf4aZsYHaasEzxvgT/7wz5mbPY1TKNFubVMtO9xwwzU8feLRTKNkGhw//gQze/fjOC6tTgeUwi2XsxObVqAhSTWGYaMMgbELAvinz32G217/s3TbOximZGBokA9+6K8pFosUKlUO7T/EO9/1K5hOiVwhz56RKqZpYhgGaZhmRhYju/2IY4XlZPhNpRSGbUGiWF5eZmF+nnK5gGW75FJNbAruvO9eJvdPY8gMgGCVq/T9DZrNJvX6CK1WkzQ16ff7WJbDQC2P1Nn2Gfo9quUqUeJTLtbo9wLKJYeNjTbrjTaXDA0hTYFjQGrlKZiAaSHaBiL2eeqJJxjM5QjCiL2HDhCsZwkLhUKBIIwBiSkN2js7xElIFMakqWb27FlyxQJaZq769bUVKpVBun6XSrXK9PSeH+NW9ZMZWmWY1F4/wnBdhAFqV2T/w/miVEaMajQ2KTh5io7H3qlpCqUqSZLg5uCyKy5n7swpyoM1zszOMjExgWU59HptLNcBw4B0Vy+IAaZBqhSK7HkrbSA0DA2PUKJPbnKEfi8kTgMs20SlFphNDPLE6SaSMkKEQIjWCildJvYmRKFNEpPpvbTmf7XQaK35oaxVaYEVp0RIOkrzR5/4O8gJPvDmnyfwU7yCzchIDS/VrDT7LLY2ue5tb+QXr70R4h4f/t338d7XvZ4EzXDF5dDUNPhtVmdXqV56Na+5+VomB4f4ymf+iXNPPI2NpDRQYGbqCI8/fBwhAoIwZmyiSqvpU7ASgqCPIV2QXQq5PEiBImR/eZq5xXmmZ8Y5O7/E3f/8dSrlvczsn6CQL9CPQgzDJEhDhFAkaYgpckQyJefaiFQRKYGQ2XciDWMXl7prXBMKgUDrGL2r/9SiDyjQLojsVjYr+Hc1dOz+nTJ2L2vTTAuvyYxWP8zH1fpHOnkpJcau1lVKKFcHaLd6WIYkDCOknXV10AIlNAaZLtX3fSxrl7DneYSBj7lL2jOMrKCWQpJq/i+QSZKSqoTYFNiGiYoFwnCQCFwzIYw1trSIdYRONYY0SZTc1d/+9A5hGuSVhU4UZxcXGTk2DElKpVYl6UYZiti0CIOQtlZYsaBarXD44F7mzi1RGywT9H2qFxxlY2OVwfoQS8vLDNeHsR2HZreNl/PwkwDHdGj7Pp7h4JsRCIlhKpI4wpQCz3MpDAwQpn0O7z+AjjVRElJ1bDyvQkqfpJegVYuEIvv3TbOwOEtnp8FgZZSDR8qEicaVHjs7LXKFPNuNHQoFm0a7Nc1r/gAAIABJREFUhZVzqY/UWZpboBM3MKSNHw+zubnJL77nV4lNxUc/+lvkvTx+v8vUvkkmR0ZZ2+rSN/LY+w7wphffRByFfOHDH+Fzf/XXbOy0mBmp8cJrnsvy+Tl+8MBx9lxxNS98421UiiXu/8ZdjFWqmMpgeqLO4YMXsrm2jecV2Gp0qNbyBH6WeZqmMabpkuoOtmlh2iaKmJHcEOuNBgNDVdYa25x/8nsUciMMjw3S3N5moF7HUAaJANOxmD17hmqxgnZMBnJlxqdn8IW1u7faGKaBSpKM2ofMUnl0ptXPDKegCBC7OdV+2KPf72NaCVJYIBRaaLa2t/FyxWwekeW4R2FKlITkbRudpGglSNKsy+K62YFQ7WrTy5UafhBiWQZBEOG5Jp0wwgkjBiwbIUBoRZwku14HE8d2QCX0en1EmnVH8nkPHcU/MpYprdEqWycClWCYAh0nCMPAD0IcSxIrsKRJP+xhGRZaxZimTS737LFWz6ph/dBv/vb7/vmO25m85ABn7v8uw7UaWxurtBpwRgX4XZ/c8DitbofbXv1KPn/nney0evzzF77C6HCJVmcHt5Aj0Yq8ZbHa3WFxdQvLEfQSn2ODY5xdnGd0ai+mHzE6PoFdcCklBqvdDsODg2y1W0hhEQQ9pO0yWB/CUyab2xv4cYhrOtSHa+DmmG9LupEiXN9h9tyD3P+9R9gzPs7a4ixPnnya6QP7cUYrvOl1b+DwpVdz1ZWXs73lszh3hpe98tUU3BLOQIGrn3M9Dz30AN++43Yuv+oaDGEymMuxcH6OdrtLrV7Hcj2WT82z5+hRijmb4/PnufGml/GHf/A+fvk97+LgwUMcnD7C9kaDD37s47zm1pv49Xf+e772rbuZPLSPkcFBvvDZv+f+u+/i+S+9kdnZ0xRdl14/pDY4RGNtnc3NFrYjUYkiiGIGBwfxbIN2q00+nydJFaaVtfBtwyBJFIODgxgiQ21efsUVvPVtb+M1r3o1huHwD+//Pf70Hz/L5Zdezstf8lKuv+75nDs/z+hoiccfO0FiWVxx0SH8KMIP/AzN5ngow8wMwwYYIotHMhGkImtFHDx0kHKhQG1knO72Fi3fZ33+PNLwuPPO75DoiDhROFIhDZt2ZxNTarRU2KaB5Zm0ex2kNBiq1vAKOXaaTSoDVX7w8GOYtku32yJvD9FcfJRrL7+Gbz10hsnpUVY3lkgTzUZji3y5yJCb4/pbX87jd30XHJt+GrNvepqljXVMw6bb7eLlCpSLeaI4xM3ZOErz8ltvxrLMTC/o5jh45BCOtCmUHK594fNprK6TL5R5y5vf/FOrhwP45n2Pvi8KQgwESEHVSdAoDGGglMZxHbIaz8b1LBAmURKjEARBAsIgTmKiKMC2PRw3z9DIKBuLS6QJpDqLTUpTjZdziSMfG0mntYOTL/5P6t40yrKrPNN89j7znW/MERmRozJTqUwppdSMGCUEAjMKZLANBg94KGPAZZdNY7vsxnZ7opfdHsrGU3lSmcHGGJCREYhBEkKZypSUqZznmKd7485n3HvXjxOS+0ebXqur3E3vteJXRKx148TZ53z7+973eUkHA0qlUl4CaYuZHVMUinWEyShWfVqtjKHkHKXyMpZt8hAMUwaZo17ypCsbI0LSuAg6AARGJwx6CeFA5EatzaLphdWLAiLL8K2zJczGEucPP8mFR7+BBMIkpmcUkVfi/X/8X9j3ipfg9yMe+YfPcu6Lj3Dx+NNYxAwXfVa6IV5ljJe/790cvPs+duyZ5suf+wLLTzzJ/Lnn6c+vkdgCWSyy3mvx1SPHeMmd+0CkPPf8cb70z8/yitdcz+SWLXzhC1/n0B3XYuFQKgYIV+CIAhcvnWdi5hrSVKKlx/j2Ica3bWN8S5UnvvIcQ/WAnjZEjQ1K9RLnTl+iMjSKJMXSPpkLroQ0SZEattYfz7s0Oo/WFXZ+2EREm+l1BiksjMnyn5MxwvgAGCzy0jUiF46kICSIDKF9lMrIkEhLIYVA6QyVGXQmabc8YuPgWg5rzRRn6iC271Cb2I3srOSUBSGxN7+wJUGxhJDgei4YmQeUaEUhKBDFIQIHuanJRxqklRfGpYLD/DdPUg9swkxiS59MJKgkIUwTPNsl1Xm4gdIaIR1eKMLv/oHv3D37mX946Jdn5xcoVor0W02GixZxHKJTSVfnHWTp+mQZbN+2hcXGBoM4ZnFxBSEkWZYXL2ma4rs+SkrcoESn0SBNFSXXZxAmuF6AZ9vYtoVr22T9Acp2sA1Ylp1jEjMYnRilXBnC0hrhGjrdlJpaplrrIR1JN9IoFWCSPv1wg42NkIJXJIo22NjICII60nfZMjGO45YpBDWSWBP2e4xPTGJJB+lYBMVJVjtNnjjWoWobls6fo3HyDFE4oB+FKNcm80rc8573sveO2wjSjMe+8ijR1UUee+Qhdu6cZmKoTiZcsAIK+67hJa95LXfddROPPPQw4ewsvbUlLh8/wepGg9GZLSw1Vjh18Qp7dm/BcS3OnjvLU988xw0376A+NMRTTx1n3/U7caSDY0lsz8bCZXl1mfrIBEZLNDZj08PUx8aoDRVYvNrk4oUz1MYmSHsD1lfmqIxMMTm9lfHRIUbqk3TTkFJg02y2EAh2T82SKYVWaS5rciAfHeXRu8bkch6MzqVcJqFUrOPYNrYfkCb5wT8eDPLCtdHEkGGUk5sksVAmwhKgjdpUBEg6HUGKQ8EP6IVgylvwSwGZKGJFHZI0xpE+KuowWhtirTOgWq+RpCGWZRPHKQaDJQRTW7fSWFpCSActoFgICNNo0+ioKRY8WucXKDgChYUtXIYnhjBaEWcpvuPhFwMsLIQlGB4bJ44jHNvh9e/9t/frt+2w9gsO7/rud/Kq73sLf/vnf8OnP/c5Xnffq3jPO9/DyDU7+dIXHmJubp5LV47z8Ke/QMGts3uqzkl6dLoG43SZ8Mpo12DShG40oN3tcu3UFKJgcfTsafbs3cvZSxfYMz3D+UsXufuWW/ino8fxHBdHa2QSUXSLbAw6jE1t5crsZTzPwy26FAWMlocxKJ54/Ck++48P8aMf/ggL7Xmu2b6bd7z3Q/z6L/wSY6UxLh7/Gj998EbwYHnuEtsO3MJf/dmfcOncJX7m5/8zjdU5VD9i4dxFtk5P43g2r3j5qzl8+Fv87u/+Ph/80I9x8NCdjIyPcfLpI5w/fZHv/qF38F//4k+59Y47Ga3V+PIXP8/rXvsWHv37z3Dw9lu48dbr+eB//FHe897v48LzZzl9+jyN1Xn+5uPfpOSU+PFf+FUe+ru/59N/+Ule/5Y34NiSqfEJ0IY4HjA8OkqvHzE/O8vI1JZ8/BWluK6LVvnDWCmFUvnLxEK8CH/XGprrTe573etxPQ8ElCoV5s+fw8aiV/TwfYdSOeA/f/gjHDx4E5996CF+/gM/gm27WI7AEhbjIxPgOcRRRq+zQWJ0TifQGi0h8HwmJyfxUoXxHTzHRbg2Y7VxioFNpgxD5RIm8GmuRTjaoVCs0263sMn1bIkxjI6PY9KMmZkZ+lnCxub3m80mGgvbyQgCh06zyeVLC/guXF1a5Lrd13PsmafZv38/jU4T4XicfuYkM9fsZGWjQSQNxihs22Z6aprJiS0sra6x0V6nUCxSLVcYqA5PH34Kx5IcPHiQv/vEp+nFfQ7tO8AzJ54nzjK2Ts+wstr8n/u2+ndYllI4rgvCYFuSC0stto6VGAwiLGFBC+qFIqVRF0sGaOPgeAKtEgSSTKdkWiOEQ5ql2Ng4lofl5FQAyWa2uzE4tsARgo3eGrWhKqsLSzkwOoloNja4545XEhqbQIBxXAQWUq/hlW0sqcmUjyPBSIUxaV6c2n20tsgSG9drk6VFhExA6M17O5cDILNNaoCFEfnnGqpMEg6atHHYpzRrnTX6xSJ3vee93Pqql7G+sMrHP/zrXD75NGXjc92uKazM0FvvslrwEFi8//d+i2Ko+Mbn/4lPP/kUQhv2b5+iNwhZXG0zuWc3N++aQTR6LC02kQ4kGz1K5YBnT5yhVJnhzIl5Dq89z0tfdRfNK8ts272bQaeL7Xto1+bI148wPrWVqZlJegqkozny6GNkgxZLzSXC5wO2zXhIk7KxtE5tbII47ZEmmnbcI6iUSLRGFDxcZWObBEUBo/PuuTQWwlibOnaDoIAgF6ZLK8PovIuh6WNUAduWm4gwjZQ2eYunihHdnOmKQRgXg9rUqxrAkCUhmbGwCiNYwmAhiLMM2wowmwekJM5QlsKSLlJput0WlnDykacjcxSWLpBkKSo1eLYEDYqMwMmjWYUQJMai2+3ilVwCN0CqODeYZYp6pYJKFJkEoXIddn5oz0vx7+RlhGH71q2MTE+wtLDE0bOz7N89zdSWSfxSmbWVFSxtSGzF+nIDSwaUipKOlUEmiLOIAA8tLUySkNoSrS1c1yPD0On1KARBjukbrdFpDPBtgbYlg/Um5UqRNEuJwpjrdu8D2yONI/Sm9lWYkGI5QArN+nqf22++nefOnCTUGQW/ztQNM5w/dQHLLRPG65TLO9BWnzjqYdtFFhbm6LVjdu7eSZIO0AmEgwGOr6mVhiiVMq6sLXH7vn08eewpvLFJ7nzDG5mc2cL60hrf+OwXOXHkSSZrY+yaGSfNetS9Khfn1qjW63zvz36AY1/9Bu25q3zqkUcxGCZqAc1Wg/nVNa596UtRKsVHsH1sG7YrsVJNEARcuHSVQmmCK5fWWJld4NoD19JbbTE8PkoSxggp0bbk3Ilz3PqyYYZHh7CVQWYxF44/Txb1WWk2GCQeyWCARBN1BxTGXcKwgzEuURhj+T7PPXua6ugwjeUGni2QIiAzua/AcwKEyLu5OlMY42IJck2rpRC6gOdbYHoYNLYEJSSu4+LYNhiDa1UwXkyW2kghcO0AncUIaQMKbQyWJUhVTDGYwvMilBRolSfXxUlGpvPpaT/p0+mFCDTNVoNSoUJ7o0mpUiLNMlynwEZzA9cvgJBok3dtHcvG8fy8WywlnW4Hy6tTKhQxcUq72YIsZWpsgvnZeWKtqBdKtPs9MIqS5xMlybfdL+JFVMz/xbp954zpCk00iBkvFymNDtELU9pxTKhSGovrbJ8cptFrUbGKSAmn5pa5dusM20oe6902ke9SLfssX16mWrUYntgJakB7Yx3PLdBRPqV+n9JUnVhByXE4fvE0kxNbsYTMzRe2y+LqKtgOu6dnaG2s0+u32Dqzk6TXwhqd4m2vvIf69v0cO/oYc3NdXnFoklY746577maj26LfbnH53DyV0Sp79u/jzMlTjEzPcPX0aU4ffZrK0Ci3HdzLza/+Lr74qc9gKor/+L6f4Jb9h3jggz/J/a9/AydOnmLnzC7+5OP/OxfPnOK+B97GbftvZ3ZpkQunz3J+/ipvetObiNKEO+64g4/95sco+S733nsPw6MjTE9P87VvPI7r+3z6059GCpdQxfTaTbphyJ/84R+xurTEy19xN8sLV+h3B0QqpFKos7K6TLVeR2hYWV+jUqlgjMF1fVKV5MYaI9i3d2c+2jMGLInrBIThgFJxmJ993QHe+Rt/RrXgMDE+jWfZKF/y7JNPs3fvbt714z/Jn//Zxyk7HgtLy7TW19l97TYcHFIp6aeGwEBMhmdASc14eZj73/EAFy/N8a4f/QEWLs6is5gbb72dl9xxM/fd82auPXSIjUYTy0A8aDMY9BCWQ7fX5Obb7uD82XNUiwUSlbFz2xQXLs/hOx54VU6feJqDN91AqVhhdn6OnZNjnHvuNJljCIoVlJAYoQkchzjNGNsxw5279/PJf/wc112zk689d4T3fe87+etPfCbPuLdtpofHWG1voBTESUKxXMI2Cum79DrdfGzhukSZouB43HDdPo4++wxBEHDp8tx39Izx13//b4xMDbHQ1Osu+uhJbnjDy9EO2LYNEhwt8/AJ26IYlCgWywwGPRxbYNs2a2tr+QgpKHLx4mmmt2zj0Yc/SRAU8ByXUjnA9QLCMIE0Z+h5BZcsjImyEKnzgxSR4eCrXv5iaEHgFzn8xBFesvUkRfsLaJNiCRukAnpoLZFyE3VlXJAhxgQI46OyjLWVDqvLGqNdMBlGQaY0Qlg0ewXW1vo83nkdJ0+e4s7X3sXs144wdf1equUacSJYb68T2dC9MM+b3/4Whgopn3nwU6yfvMTwdB3jSoJI0+r0iUdGufamG6gHHqtHnifs9DC+Q2oMVqGEsaHoBJSHStgDQ5ZqrCCi1xrQbSzkgRxBwGxvQNuv8GPvuJeZqTy5bmKixtzlZYolF+mU+OZn/wXLyagUR9j3kptYf/4UV67OozJBEva4/yfew2KjCVJAmqIzg1Px0WmMKxxevv2jOWZKZ2glEJ6DJOcn57zmDCltpLRRWZ4ClYdI9BG4GCPycaTIZQDSTknCCq7TIeo5JGg8FyxbkyaQxBD3DZfPO8TGwSuMsjTr4V//DqI0Ydeht9E+83V6uodKFHqTPCC0yKc0loUREiMUwgikcdAmod/v426GouRyBImwN++dUpm1B79CphWZo0mT/F5NwwG2sDGWRZqmGDvX7WmtcyyXFPxvjz3yHbtnP/hTHzEqM8RaMVzzkHNLTB+6jkRohBQkSULZ9dESHNvB93xSI3GkoOxKlDFs9Lo5IzMTrK/PMzm1neNHv4YUAs/1sP0AX1h5gZIZ0iQlVBEONqlOEC+Mb3sxOw5eT7lQJE1ipGUxf3mBPfWLBMEJxofr+IUq7c46YdSjXvZRSlMfGSFNQak+/Z7GcQoEhYDFuVUGkcegE9FrNbFsl0qpQG10kouXmrT7EdHo23jwrx/k7re9HmuljTNcZbQ+xoWLl1heXaA2PYnXU9xw843ItM0jDz9CITYUhwrURoeYO32BOEqo7trFzn17GKlUuPTUM6RRwuL6KgoBrkuqcwzk7XfehupEVKtDpKZNvzWg11kDbRNiaClN3ylw9+3XMTk2DpbN8HCF1eUGvm8jrID5588gbU3BqzB93U56s4ssLa8g8Djx2MO8/Wd+is6gj+cHSJXLpPrxgILvceLEab7v3lNYQhKHA5IopVQvYZF3KpUWCK1A5g0jpQ2B43Hk6NP0wxbT23YQ9SO0SqnUKwzVaxw+/C38YAKj26ShTaISpMiwbIiilGKxTqvRo7niEhtJtTbO/NUMf8crSAyURvdjd2dJZUq/2yfYfA+CwHLtnBsrBFLmxlE/KFMr+ly6cpV6rUqz22bb9Bbm51eQds5RrVZqrH35aTKtSaUCY+cM7yzFZDnlWWuN2ryvS8Ui7VYLy7b5q6ef/Df367ftsB68eQ8veeUrWUi6PPgHf04pLtNM1tGdDlsmdlPdltHvhajWgNHbd2NlIY0wwrY0pZrDXJjSXGsRMIFd9ilXR0m6PdppTLudcsPuOuuzS7Qcm5VBysbVK9y5dz+vuPl2HnnsGLv3zuAbj4vL80yOTjG3tM4zR59lescWLL9Mt9VjudfkAw+8i8LICKdOPYlfHMLIJpc2Eg4cOkimBdX6BJ5XRJRrfPav/5Ibb7qN4aExPvZLH2bPjhlWBoaNK3M8eeQJTv7cLxH2M37vox/gIx/9NYZ3XcOB7TtobbR59puPM/7WceYWG7TTlGNHDjN75jK33H0vc8uL/OAP/jCLi/NsGxun027yvnd/L/WpGf70T/6Y73/HOzl98hR/9xd/xa/8yi/wSx/5Waa2befk6TN86hOfZGlxnS9/8SHe/Ma3kCYJOlNYlqDoBHQGbQT5qEArQ7VeI/B8ol4/hyGmOVrIsiRogyLvSqAFxmiyJEJWBUprAttDpwnCcUnCBMdx2Do9w2/+2m+zdf9+jn3rMCOjQzx/8gyeAGm5WK6DlLBr6xiDLEPGhp7OcL0CyjY01juMVMoUHMO20TqNXshXv/YlHv7iQ5hsQGfQxpaCJA6pDpVZa64Q+GWKfoGrl6/QWl3H3TJGEsYsr6zRanXJsgblasq27Tup1UdZWVxgz3W7mDtxnsq+XVw5fgLluNRLNdZbG3gVl0sr6+zeuZfjl88RFCTnVuYpSAdbScJ+hLQNk5OTnJu7SrFcxJIONx48yNWrl0miGBuPRNkEgY0fWKh+xPjkBGkSU6kPMRh85yddxYMQR7gUR3xmf/+PCIJJorfehWes3KTn2OR1g0BYFlpDt9tH2pIwScn6PaQFluWSGsn2nbsRwmF0dCJ3fSuNUh6DQZwzevMATbIkRgqNLXI2qoVFdahCuVhCa02mFViS7qALXhUpXKTKMC/wCDFIYQMZQmiE1BhjA/Ym7SICQAgLJUyesIbGiFyBKQW4TpEP/eL7+cC7f4pHP/FJZJTS60a88d0PMLlnJzUr4dP/xx8SNpp87GMf4/VTYwRxSGWoiqxt4fZ7X8ZzTz3FroFiZX6RtaeP03RFrhsbquNLl4mRKlW3yPqgCamimEW02k0W2w2ySONtGWH40O10ug3Wl5s0mhFxe4G1jTVKpRKjlRpXzi1SGi5RKBVwXMm93/96Hv7jfybrNVlca3O5b5jYc4A46eIEFT75p/+A50ruuv8VWNIjtbIc5+/YOEpiaUGG9aJMIgcnZC9qfvPOtESbEKwUYwq5DEADZrNravGiOz+Lylw5E7Drug5aGSzXRqkYSa6VfaHJkWlBrzvALYBSGXEc4xd9kAq/4NHutrFcC53mrn1b2C/+rhAGlSmyJDcISgn5AFTmCT1CYFmKVCuktEijlPkipL0+3auLVP0KUgmqbsDAVwwHNWLXRhqRj8eLRaIoyu+77+AV+A6jIxOokuT5P/xjKsVJ+rfsxEk0jl/E9h0ypbBS8OtVHGET92OEZaOEoT3okqYxru2R2ZKpmZ0II/ELFbIsI/B9wsTQkynacoh7XQqOS61YpLHewgvya90PE0aGhvEcj7A/wPVdhO3Q7fUI6w47xiZwbEO3t4q0HAyKKBOUa1Ugl3ioDKhaLM0usm37FhzX5dLxswRBgTg1xP0B680GvdMXeMXd93Pi2PNsu2kPpc9Wufz0UXxhE53N2Pk9b2fb3h3s2jXCs1/5Kq1ewmfmr7JDJVwzPkaz06UwNMU1Nx/ECirUhcdzx56h7wa0dMLl2atce91+9k9OMTIxgooyzl46S9SP6C3PU/KLrDSuEnYHWPUS5T376PZa9NY7dFoRaa/BIB4QxjElF1YWG3hFDy/wsB3Jja+6haNffJos7NJsDViNNJXJGZCG2u49fPNL38J1DDfdc0c+kRKGogi4eOki5UqFbrOF5fr0Oq08wdFzECIFDMUgQEmD0YKUECFBC4s4iXAsG2E0gWuRKEOjsc7q6ioqdllYlUxuAa0UnucyGIQIXGwr94mkcUKibPq9CC+IieOMpNclKJUoFH1sU2RlY5lKvUx3o4NVDIg7fbQS+LZDkqVgBO1eiGN5NLIIaUEvjrGEjTQWkJFmhiAo0O50WfUNOoyxohiRAZmm6BcIMVSDItrKKTWO7eC7DnHg56isb7O+bcE6sX83Tx1/BhGllMplLCuld7XDxNYx2msr1EeGOXXuFHtnRmjOXmR0cjvEKT2/Tzsq4tklhkcko/Uh0obi7OIib7jxFo6eOYnjFViJBK5TIKgNE69e5OCB3ay2V3HbilgMiNsb3Hnffaz8yyNUPJ8bb76R1soS7UGXZrONV5NMlCqceOZRhiYO8tp77uOp2bPoqyMsHn+On/yxH+TvP/95ZCKYGp8k7bR59f0P8LlP/AXrK6vU61tYTUeJ03U82+PQwYMMpM9H3vd6uj2bV7/ze7j9nlexcnmVSr3CRqfPkW89xm//zh/w7nd9N2+9722UxutIZfP+D32QRGXcvOUWriwscmB8J8+cPEp89Ty/+qu/SpbE/P3nP8eHfv7n6IQZjcvnOX38FPXhGu/53gfYumU7n/vCPzOyZYozZ84wUiuhpcWgu4FfrpEMUozRGAMba+vYE+NUqlUGgwFaaxwnP9ko88LoFIQx2C90UwDXDcCSCGkhjMpjMgcDomhA0XZJCiXuuONOJCmjI+O4lmGkMkoiNIlWxMbBNjG2r/j8Pz7MG153L2tNzdef/AaHv/EEGxhEp8+uuw7yJz/3m4QjGRudFvWVNYzt0e+0WVsdEKcJ9RGfuJvmEoBeDy/waTdbrK5rrj9wkC99+V8YnpgBpVlcXmZ6bJInH3uaqckR1uZWqJQq9OOUtuhRqdToRwPGRycILIFl21T9Cvfc/0Z+55d/jcef/BbD9SESHZFlGUmq8LKE2vAwq1cusb7RZGJigguX5xgbHqPTboAooFPNc889w+jIMOXKMPX/HyRdDQ1XkInD5ESN9lAVOQBP5Lo+CZvxpoZCoUCyebDRWhHH+YvdGHAdHyFdlDYI10Fg4dhejkWzIctijNDYFBCWwnEc0jSm6DmsNzbIUrC8gJpT5plnnqPoB9RH6gRBkTSOQW5+HmM2/T424GIQCBkDNtrECFwwTp6E9aLdSiONxGwagsymKUgIgUIxPTZCL+2TeSUOHjrAH338D3jsn/6Zf/r13+L8/BW2DE+xdchnfbTOxcsLBDu3MXTLdnYJm7MPfwV3kNASBrcWkGhw3AKudHCCAqWgACajl/bwLMHo0CiPf/PrhP2EWhCw7dUvpRf36Ky3csbppgZxz77dFL2AdBCRVBVKCNZX1wg7RaROGRsbY+q6GRrPXWByagbfsxip16lUSyzPtwhuLbG8cIliqUraD0mzDIxBK5MzjXMV0Ob/z+SEACFy1JVM0FpsHgZAmMKmacq8eO0MuXEzN1WBtGP23donajtYTkqYaoL80YHK8jMyOtezupaNQeH7RSzPI0mSTWMm2LZDGiebxaeVM2FtQb/fx7IsPN/FCfL7yvddGo0GRoFBgMzJDwiF1ppUx9xx/+uQjuLRL3+F7iAk60as9mJcUi4tX6DkeAy7FYzRaM9iMOj/3ybn/H+9RqZGSXoJdVk3hhP6AAAgAElEQVSgUKtipQYZaqTnkMYRXuDTCntMj42SxSFuUMUoRZhkSDwENoWCReAFmDihn6ZMVIawsTCWJJMOiAhp25g4o1otEQ1CkkgjbEOvvUFtaIxE9bGFzBPItMHPcnJKEsd4jkervYbn+IyNjrAxiDCiSNjusn37GEsr66ANgVdCJzAyMcHy4jzrKz0cxyNRHpoYC0mpWkGLDmePH6bbM7xsx3Ymtk/R3Wiz87q9vOUtb+LK86cIT53loUe+yO0Hb2H7pMMl4eO3eyS1KtMH9lGJUzaevwDrbRoSDhy6nlRpZmcXuHbfARzHRxhYX17B8xx2zEwxMTzGo1/7CsPD45CmTN5yA/1kQLfZRloGYRRSCqamJ7E0pFEEpQJmkNFptUlDH2EUweQEw1tH6FxeYmhoBN93CFyXWr3OxpVLVKb30G4u4vsF0jDCpEke7mMEWBZDQ3WUEfhO7oj3/QKbWT1okfNZLSlZWVlnfHSCOEm466UvodlYIwVEpigOVbh6+jyZY1BmwNTWNZLQRqmQftdg2xrblSSxpuAHxHa2mSYIcRIzPDxOY9PUqLQmDWOKhSLraw08zyWJUxzHRQtDr9/DcVyMgEq5kidkuTZRf8D4xBRXL1yisdHEtnwgRSlFmir23nETXuBy4tgx2r0+thYsNzsUHY+ltTlKvk9RBiRJREXVUInaRNn92+vbFqxPPPJlytqhOjPNs2ev8taX3kgqQurFgA1tCNdb3HLgWsphzJfmF7itmDIxOYLnCta7Ya5hsCzavS7xIGTr9DizSwss9nrsGKlweW6W9fYGk1GHYia4dHWVnTummVtZpVQtshzFnDjyFKJYwClI5i5cYOdYlShyMC5cXVnjrhv2UCyN4dR8jn7jSwTbdxMnPaIerHcinjvyJIFdJxq06PQSbrr1Vt749gf44ue/SFZYodlO6F9ao626nL9g+OcH/4HXveFVvPK7Xs3hR7/GPa97M3e+5a38twf/nB/+8R/lb//2L7lu37X8+I/8BMK3OHPkKHfddx+//NPv5+N//Uk++0+fY9e27cyvzjK5ZZpWp02WxAwGAz74k++nNjzML3/4I7zm1a/hJffcyyOf/zTlcpmvPf4Ih26/mXDQZd/+a1lduIzOFEGphkk13zryFK9+9WvRrmJ8YgxhWQziCOHaFByXTKeQ5pgfIQxGWlhGorOUzGSARglI4jbSDV7swGrHwfF8HBssJRGWwMry1KNwkNL3I2zXQqgMKTXS8XjfA28mGdvO2777uxn02nQ31hiZGSdc6jLbuoJ18hzv/P638/lHv8HYzFb8UpnFhcvYwqVeH8XqdVlbWwEtuPOOOzhx7CiL8wOKfkDJ9Tl74RQ7dm7j4rmL7H/JzbSuLHBsdRXPLXJL1fCe3/wF3vbOn6FarrC4vkRQKFN2XZJBxOWVZd58z72cX1vj6ccfY3rrDF2dsP/AHp47fpLh+giZSslSxdL6MsU4w5EOJlK4gUWcxWA7uFYBr2ZjCcni0grDShFF315f852wOhtdcD0u/O6DjPolullCuVogiyMyKTFG4Mc2wpd40sW3XXrdCFtaLK/Mk0QRli0oeiWK9TqkFpZlUPGASCmG6iPEcYss1dh+RlDwQAiiLKLV7yKtgOFqhThTrDaXufXgvRgFWoNTHKbkWmjHh1hjsMEohIg3k18sUAWENUCYIlq7+UNWJghtIWTOGLbkphTANjgalAYjMpAWl48cI+rHDI1PUV68ygfe/CaSpTWaKmH7Lbdx3cFdyI2Y7pETlLZtw7EE3WdOc3F8mKBewSnn6KWxwhjSydBKMYgGtKI2CwtznL20QuRLfu6jH+HQnfsZ+dIB5q+eJpYSaTl4kUO96NFpl2n0Mjxfc/3uHQg8Or0uNHwKxRpT07uRjgFhc/H8GXZct4PR6QlOnTjPjTfsZHF5lU/9/l+y9fpr2T41wrZtoxTLk0SmQ2QWaMwvUBsboVTx8u6H9a9TNI1B6wRLgMDeLE4VQiYYEowOAAuIN58DJYw1wDJsdjohDi2ENGQx+NICDOlmF0Vrk8f46s1YXeMwSBKKWqP6EZYNQW2U1kIDS3pkKgJbIoWNRlEsl3KOq1K5Nlkb1hsbmzizfFqEyTF6L6T3ISSNbhutNa99w1tRWQLG2nw55siznChgkW1qeXWW5ri/7+A1f2UO23KZe+w5BonBLYBXtCl6LpHWmEwzVq4TeA5rMVRsC9/3EMKw3lwnHAywbEEliLE8F7/gE4Z9BtEAx5akmU2r38exLAq2S6YkfqlEp9UkVgkpNmiDFxTphi2mp7cQ2DaDJEN5AUalOEEV23YQjkOrsYZVKGBMiFIZSeLQba0jKaODmFQlVGpFJia30OvOEhQkaWoY9CMyUuLIcNuhW/jqY0dximOcffIwOtTs2ruf5NJZHv6bv+HKieeZ2Xcdt93zGnbs2UK80mJba8Dc2iqHts9w+fCzhJPjlEsB1clx4ixhYngaQ8qW0XE0hmPHj1L2iwyUw2JziXf/yHsZnary2i0T9DqrGMcjTWKELFKcdBj0Fd25ZRy3xPbpCTwvpxDR6uEFJUaHZ8DSYCTLqw3Gt45TGRli7uoSu3ZMsLy2zuFHnmBt5TKHxkYZHa3iF+oI3ScTDXoLLaTReK5NpnOsnMFglCHVajPpyuR4RWnx3NNPYwKLialRVCJJkwzXd9CJIkwU9HpMT0+yst7ADQK0csnSAVlmKHo+mYgJ4xSjNOPVGmvLLaIwRAobW7gstzcIaj6dRovJfS6mV2B5bR3b8qnaipkDe3nm2Flsy8q1rRhQGpMlhFLgOBWMY9HZ2MAveGRaUCxV6Ha7uLaH0QndMGSj3+fAjTejlMaxPfpJbubWOg++EJZFkiSEUYRjS+L/kQ7r/utv4MqzZxit1Nizcw/HL16mMDRMoiXSCM5mHba2M4qyxFQ9YKpe4vJiC7RDd9Cm2+tTrhToRRHVWpmo1+PsSpehehnj2hQ9m6037GPQaFHyHHoqT2sK04TJ8WHCdp9uYwO/5qOMZq3ZYKLkEHZaTNfLBJM12p0BqytNLjeXsdZ6bDcqNyEUHLZOTPHB//CzfOWRL3P06BO864d+jCtXrjCx5QALs5dJEBi/QKVaxlOCrZPbmNo+zY7d+/jG1w/zY+/8XvrhOpcuXCAIPIJiid07dnLh+WO85a3fxc9/5Gf4kR/4IQ4fOcab3/MeTp48yZbtMwyylMOHD/Pyl72CqNvHsgS9Xodt27cz6Ha5/4EHuHjpEqQJuw/s5Td+4zcIN9r8xm+/klLgUCwUUCpPk0iVwXId7rzzToQwaKVIk5Ri2UPFCp1mqEzkcZmbSwiLNMuQVq7vdKSF0TlOpt3tE4wUNs0TMmc2bqJqHMfClhaWkEgh0JtashfHeCpDC0ngOmjPR2vwhUW3N8AYQ6fVZWbLVqRl52iV0TE8x0UrQAoypWl1GzkfcHwEV/g8+OCDjA2P0Al7ZGmWM1lLBaIoJIlDwjhjbvYS1x7Yi2tJrEKR9skzGGHhlctsdSTYFvVymYXlBmNTW/iHf/wMtckxdm+/hotnLtLtdjnVOkm5WmJ1bYmJiUlOnjnN+OQEfmdAR8JAKLaNTzG7skatWs0F9ybDsW1uuOl6xsZGOXXi5P/wC+rfe81eWEaXBZPKcFFpwoLL9//gf2LnxC4uXjiD67qka30++8RniPspid3HbI5RR+qTSAlKx9SGKoRRSqFQIooGlIZGKCEZ9PpY0sEr2mTaMOgnpFmILS2McLECF8tykNrQ6iRoLwfKy0GC1hnNZpsg2I0aCGyhN1ukuXBfiDzRx2DnXVNrADpAmz5C5EahnBGqQeddO7UZIuBZ4GFhuRbtjSbSL3Ku1+ftP/QW4jBi9hvPcObZU1SjHOwfOi6VQgm/GGD7GWMjoyRpD9d1MYOYtdYF4k6PZqNLu1Lg/vf+EFu3T9NYXWCkVKXVXuX4sSP4JYFXr6OTmKmRERYW59G6hhQphdYy6XxEtVYiTWMMioLqMz6yNUfEOAG253LtdQcIigXOnjlO1Ye52QXSfsyuOw+xd/9uNrrr+MUSSWcjjy5MDZVSmeGRbZx//hSH7vIxJi8qNQrPi0nCMoYwR9hg8pGjqoLoIawwZ66aTRObSDefAQqjLbRQ2LJMZlpYxsr/N8ZgSYMU+fW2hIUlFQKBNArhusRhguM7kMW5ttwWhJ0QP3A3Y4Hzz6hUhjBsPn8EmUmplIv0+32EzDb5sYoX0Fr5HWKBNiSDmHLgI+w62qQoI0EKfMshTRWpMiid/z06TfLTzXfwinqKfrrOjLRZ8gusZwkP/9GD7BjfxvzcVWI0Ti/jV37rF7Eyjc4ytFYYoykEZTw3QEpNtVohUxrH9eh3+1TqQ9iWpNsdMFSr5TG35CNYYxIEUPQKZEKhM4NlQb+TEplciqayEK9Y2AznCAjDFOI+Io4oMAxGgyUIAoft2/ewvrZBu73K9PQeeoN1vMooUTjAKAtjCRzbwRaCwC0SFAIq5RIrax2CUoFup4m9VsL0Em57483UZsYxyx3SVoezTxxly8QWVnt9Jq/ZS6QsRqZmqJQr9Pst6uNDhK0O/cEy3WYLpaDj2rz0TfdTKAUUfRcHw3PHn+biJcV11xwgo4wWkkrJp9FoonQRKRWTU8MsLHUpFHySNMayJa6OqJVGEQgcK8CybIZnSngFn7m5SxRcWFtvkPUjJvbuxCspIk9QKhXIBv2cz5pBwQ9QxmF2aRXrRm8TQZeiybCdlCwNMMQYlU/ALEujqIK2sGRCpvIpU5YqgiA3QIZRH8f2ctkPPtBFGIskTRCuwfM8LGNYWFwgcH1cOyHKDFkaI+yAKIqRtkClOYvbDWySMMNyPFR3kJtkbQcvn33huA5xnGF7Lu32Bo60KBZ9wkGI0gm9QYjj2iRZnyAo0Ol2kUJS9gMy20VIQyBKhElKwfPRSpNpg0oTRkZzMkO3/+2jWb/tbr7zZS/h9NICTz3+LHu3jHHbzXdh2zbNWNHTipumd3HNUAUCQRb2qAYWxcBjsdNieGwUY7m0BhGdOKWdCBqdhNKkT8EoBu2Q8aEKhUyhpaI9iFhcW6K73EQWAnwh2T29jdAVHDtyhf4goVitsRJldAIbXxRxBAw6IZENI84o++9+Hd/1+vvxjM2GMBx7/HFuvONOFlbOM7N1G0nc5dD1e0FblCseb3vzA1x4+jG0r5CWze99/OMsLZ2n3Vhhx+QEd73qFVw+c5W9+3dy9eoCvu9x152HcIcnCfsDXvrSl7K2uso9976a2w7cynNHjnLDtfvZt2cvOoq4eOECx0+eQGvYtm0H7VaHK/NzjE9McOOBAyw2lvip//BBDuw7hFWf4rGnjvLEkXPEca4/S5IEofPOQaFQRAjwbQsUOMj85aI10vpXnZaUOZLGlhrbBiybLE3RJi8+6/UqbCbBgEanCZZlISzItMq5iejchAEYkXcrjDEoPIRlaPUiZBAwiBKSOCOTsLC0SGOjSaPZZHV1lcgouv0eWimarQ3SLD+l9bs9wkFKo9knSRLW1tdxCh4aEI7LDbfextj4OMPDw9yw7xp0u4HtV0kSl6o1yvnFeXqZT6Hs0U/D3BmMw6lz53B8ycXZK9x+3914SP7qU3/HIInZuXU7Y/UxHGkxNTGJTmDvjl0MWm2kAbeQj2u/5zVv4Nd/4efZWh/GLQck/ZDZpWX2zGznyBOHqRQr/49fTP9vLbswoN9Z5ly5zmWlON5cZWLXDGtRm9GZSUZnJtm2YyuWlaF0lHMvN0fGtucibQvH9Wl3+oRhTLvdJYryB1qSZfno3WiyLCONE4zSuLZD4PlYUhKGfbrdNiqJGRkZZnl2HvoZbiHIO9eFgCxLNrWWzmYHUP6fEFWbjyQjc8QV5MlNm8adF74HbHbe9GbSU24msmyXeq3MsKtpOBan/uUolx/+KpltszxWYWW9g3Ec7PFh/IKFsCQj42MIleDqlM7KHI21K1y9cJWTFxdo10f42d/5bQ7cug2lmxR8DyUlwilx4eQC3a6i0+pTTH2ePfw842NTGJEhpKZWLQOaoJAbiVzXxWQWh7/5JI5lAxFC91lfnWd59grdXkJ9dJyByuHb48NDiDDEdwNKmUOr2WP+6gLt1Yg48pldXmRiZoI0y/W9ZjNUodOo4bgaITOkpTaLP0BGeUYqAoy3ec31Jgkgv/ZSWmAc4jTCciRG/6ukSL/guBdgUGhhIaRk0F/Lrz8alUfvkaR50WjbL/BVLRAZ6NyAIaVEKUWWZTiOh9pkOv7r0hhto40LxsVoC4zKpQXSzkkxrofv+9jSwRiBdOxci6sllXINr1DEdf3/ORvr32mNTBZYby5xMlL0XZuWZTE0Ocp61Kc0XGNmZpodM5NIR5NlIa6TY7/iTOMXCwjLxkibdi+kH6VstPtoqVFxRByn+J4DWqFUlu/jKERkGtcPsGVu3urHAzbW2xSLRbqtNvEgg8BHWh6O55LEMVoKPFmgPDLJ+PgUFpJEQLvZolqvE0UhQVBF64xaJde12rZkcnyK/sYGRuZHlv0HDxBGPbIkohgEjIyNI41hsh6wkiQsPHeJ9PIsJijSKHkI2ydWivHdOxkbGaLb7bBleppy4GFnCesLV1lYuMjK4ipr7ZC2V+B17/oe9hyYoVwSgOLEyZNUahMsL/WZX2qysNDASRwunb1KpVID8k5/pVwCDH7gvMi/NZnF2dOnsS0JpAgT0+002FhbJooyytVaniYmBLVyGZEkFApFAmXR64Y0Vhv0NyKyzGW91aQ2XCNVMWzC5BCCQbeIZet8b1ogpCbNNMLWKJNPNAwOcRyTpAlpovP4dATa5CEhg6iP2NShZ1mGUpo4zV3/SZLkPG4kwrLwfInneniOTalYxMQRygiUEnhWQD+O0MLGcgyZSjFYSGnR7nQwRhMnKZXhYSSS+cUFlNYUggDXLgAuvlvCKEkx8DFKI4XE8z2ksNg+NcP+vdcS2C6W54JRDKKE0aFR+oOIwA++7X75th3WILF42V2vJFlf55qbd/KZv/sCl+aa/Mg77uYLD/0jbpDjldYHEdfPzDC3MEuGRHRC+k5GNxoQK5dyMSFSgjAMGaoPMzJc4ej5S4xGIWmhzJaSz7m4w/axCfpqQFEUOHllmax/ie1TEzglWFleJ7BtSoHDwoUN5osxWZZw/Z4bmBqb5MaDN/Hkc8/z5DPHKVd8rjz+HC971V30+ivsv+FWjj3zFCsLC9x020t58vGvsHV0inNnnuTDP/w2/tsj3+Kn/9dfpBN2ec1938U9d97JY48/wX/66P/C7Qdu5F/+/jN0Wyv86X/9c376Qx/kU5/4LPu3TjFUrrPYaFBeWubqqWep1Qv8lz/8Y26+7SZmZ2cZmZ7mvzP3ptGWJmWd7y8i3mnPw5ny5Dk5Z+VUc2UllVUUUBTIJCUUFBTKhcYGh1YBtVXQ7qss7VYcutWrdosg2OJtGxUBGWWm5iqoKbNyqJyHk2fe8/COEXE/vKdKe61etda9vbov8S1zf9ln7x1vPPE8///v3+92yYzhwUceZPfu3ZSLZb71ta/xtne8kw/86/czsJooTmlducKuPXtxXcGwOyBJUlrrPcJowP79N5KkMUZbUutSqArCLMFxBWiPKE0QZAgjNjSJJi9AnIBYZzjCQSqBqyRoUEogHQ+ThThKkiQJjnQRFpQR+aGDRJIjsxwnH8sZYXETjQxjSpnAFZA5ks7SOkqC5ymSJMamhgNbtjIxtZmP/7klSYd5B9fzmW42aLU6kIYMjIsrJKu9EUmcMQyHrLVb9DsxVjjs2OTz+a8/xCc/9l+Yn6jyFx/7A972M7/HP3z2U8wah1233sqZy0usnD3Py+64k5VWl0JRcfrpp/G9IrcePMSVtVUKpYDl5WWWWm2mMAyHAwa9HlYIrtoyTevsJdJCgT/61F8xjsc0a5MsLywTZymFos81h27iq9/4Gn7h+z/p6vJqh2w8xlEupaDE/kITTURlKqDoFhiNRrSLkkatRn8wYnVpEd/3KZXLrC8uUyoG+OUAL3CJo43YTyRukBe2Vmf011fxfR/HDyjW6tgM+qMeOIqgVMzd6InGRDEiG2OTPpHj45VreIFLsVIm6cYY4aJtgGMShBQbwPtctiCli9EJ1tZyxqAYAgIhM9A+QoEgy9mwRqBcSypSEiM5dPvNnHr2MpunZlmvJiS2yVJ7jbJSnEpCBqcX8ZwJzjVLzMcjxGhA9bobef3b38TO/VdhVxa5vLyAq/ICPlq5hFYSHRsKBUU06hAUinz8//4c6WjElgPXEbUH9AcrfOGBx0mzAvvmHV52x2G+Pj5G4JeJh6sI5WJ1ypadW1m4eJzG5BTapgjPozduUykHeDJkuuEzutJjYv82vCShWSgSixQ3iZjd2kBEClUsksiQpdNLyPl8kiJFLgkqlAxZZpAi/86A3CBnNUoFGKOBXCaUY8FChNBok0fmQpGTTzbYe/AKxlNYnV9UhPHITIg1AmMlaaqxBqR20FZSLruYoMx4GDLRqLGy5oIZkWVgtcQRLtpkKDfnTKoN05+2BukIhNoIJVB2IzzCRVuNQeIIDRZ0mtGoN0ktpJlFonKMG+C5iijOKJfz5K6AAP4Zq/f7cbU7I3xVQJQMU+UAudimF2bsnJ+j12pjJPQcF8f3qRR8lhcXEK6HRNBZCdE2QwU+5bJHmuWBIK7jUSgV6Q4jVBrTG/SpFDxSJM1ajUwbTBIxilPSOKZUKOIkhnA0otgooYzHaJSBGxDrmEpjDi9S1GtNWr0B7e4Qx1VE3R4Tkw2yLKFam6DbXSMKDeVag077MgW/QK+3zu6tm7m82mbXrl0kqeahhx5jojnNmfNdjjz7LFuv2sLyWotqscEzrQW2zmzh2OlnqZWKrFnL6YtnqXdCBDHNJOLCiRPM3ngje2+6nr3XXU3/0gWqE3VGwxHlagUz6LBwsc3UzCynz58gSobUnAZf+sp3OLn9AtPbdnDqzBqd7hXuf/I4SaLYv73BgWuu4sjRBVy3RCI6GJMhcJienWFt5TLlWhVrNOVymVHcp1jw8FRGreQwGoyoz26icMZjslLFSIOnMhpTZWQKKZLS2GN1tYMScqNYzfXgKtAbIQIKaxQSi9AgjUEJFy0EaRyCsHlaoYmxJqPsF3F9D4Hg0pkisztHCDeXemmRIrQgxiCsIEotSZpPZ9MoJk4tRd+lUCmyvrLOy269me7aZc6fPsHmXXtYXlnCzSRBs0KYpqTjiKnpaaIow3El4WiAcAT1Wi3fhzIvnsM4xrW5JCBNEpIko9Fo0h+FCAQLy0tkCDzXQ6R5il6t7lCbbLK6vkJQeOGC9QU7rKuDdWw4Yvv27Tx+5Bh2us5rDh7g/FOP8fIfvIPBepelUZtRMuLKSp8jC+vMF5vUZ2eBiJ1btrB9qsbm5jTRKGXP/Bxra2soT+N5Ds2tm5msFXjwmUvMlRt57FehTEEJuu0xvt9k0Im45cAewmjI8UvLDMbQzfIM622zcxy7cIL77/s6//Uv/4wnvvVVnrz/y+gk5cDtd5CImPV+lzgJee2r7+LZo0fZtmUbfrHOvpe+hMfuu4/lS6u85NBtjFsDfvT1d9MZhhw7u8hAOTh9uP11ryftDrntjldy+cizGCdgerbJatrjkUcfRCaaYrnM3ltehtiyhzMXLjO3Yxs//VPvZWZqiola7tZ88Ytv54O/+EG2btlJvVHm/MP3Mcw0e2c2sWky4JZ9c1w3O8F1e/ZRbdZIM8No0GPrtl28/PbDWKvxfR9XajKdj9estVhpcTyFoxXkvmmEcXJEkKOQRmNkDlrPsgxtVW7SyDSZ0TkGx5Usr68x6rfQ0uY4GS0Z243u60YnBjTGcVjstDGexSgBOmb3vgPUSw1avRY33XQDs/OzbN2/CzB4Xn6Lmp6YZGqqQZiENJpl6tUa7aV13MBn03STWr3ORKOOQNMPR/Rbq5xbG7Jt1za+ed93aMUjgumdfP5zn2bl2UU+/pnP8dWvfJHjj3yX8bjP6RPHOXHsKKuLS9x195uRKA7dehg3FbQ6XZI0F78Puz2iKCbOFKWgyMzMLN7kNL1wwMhokkHCeruLxrJr7w6EEZw7dYpMKkbD7289HABpSMEvopSlUi8RCY0VAosiSVIIApqOS7vbBSTTs5solEso16E+O4n2HfqjIf1OhNUSacB1Bb31Lu3lVdbX21SbM0zNbaM+Mcl4lDAcjonDiEynSCc3EmRZRlZw+Y1f/xi/+5sf5z/99sdYe7aFLw0PfPbrSGXARihCNCEW7/lu3nOXLlQEaohwXITNTRRGK5A+JpUI6VEqQbHgE+sKlohYG+bndhBIhzQb89hT53j83AVaoWR1NEaUKjRnd3Fg/y6G7S6nrcBMbeODv/7TbK4p+qeP0253aTY2USyXIEnQRhJpiyWj1Q4JdYxf9RmNB2zZPsuVC8dYW18ksg63vPggr7jzas4shqwOQ5S1dFrraFykCPJOo86I45R+q8ewM0QkGpm4lAoeVoHveWy+djvCJqTSMOz3MNoSSk0aGr5137cYdFcYrHQp132kMs9/bkiL44T5oWhzOYC15vmYUmNS8uTyDMgB/VakODbIE/KQCKG59tYOwnpIDDgKkylgvPEssGhpKPjOhosZ4lGMygKUzsA1OF4D4UG5XMQvBFQKPhaNpxx86aEQKOEgFHiAYwPGSZK/N5uTAczGe3akxGjQSqE8sMpjFMW4ymEctykFkqILVy5dzBN5lI/QhqIf4H5/16sk8RBPOpRLAYlOSXzFVL3KuN+n1qyRAa41dAd9olgjCyVqpQp+qUSpWSaolsFoTCLQqaXiB2iTEA6HjHp9wjSl1phAuxUmGhOMxzFpkmHSlDiOcRyfLNVUiwVSBz72ic/zN//ta3zub/+R/pUB1cDn0W8+SKezypXLZxisX6HTXsAaRak+iUGT6g6/EE0AACAASURBVAytM6ZnmgxHqxTLFaQqUWk2aa91iGNDozKByeDk099FKkV7IEhFho4tV+2/DkdDtV7l6afOcGZlnVj4rIZDumFIpbaJHTvmcZyAxaDC0K3wf/zYPdx0YBe6tUIcxZSKNWY3b+bkkaP4fgmUYtRZo9OPcV1Jue4TuJadWzeRjtqMwz6xkey+ahuHD+/j05//Jt0wxpGC8aCXn5N4CCnBaDKtifpjwlEImUFmLr7rYh2B6zg0d8yAzUiFJhznErkETRprjhw9Sjju0llt4/oWZG5uFOR6ecdJ/9l+zVkZURoiVH7JxJqcKKI80iyhVi9SCqqUyiUsAqlg274BgVsk8J08Rll6uI4hi1OEEriBkzcjPAcrLOEowkSWKEwoVgM6/ZhUaYq1Bu1OC5lorrv5IJ3WOnFvBDojHIaMxn1MFDG7aStJmlFvNBHGkGmN3pCaWK3JUkMmFJ6v8Iplko0ifZwO8CQIk7K+tkqlUkIJl7A/yGsF/cLc5BcsWPtLLeIMli+fxSmU2FytcmU0Yuu1+7i4tk6jpNi/bQs3XHM1pUadWrXEYmcdYSMmqhO4joPnWk6fucBso0ZvMGAQ5fqpil+gNeyC42KUZHl5lVGYEI4ihHVwlSQMQ/xigcFgQD/ReAXveeyBVyyytrhGpGPKpYA0TpicbNJvdVjodfGERkcZk36BcW+NUTjk5sO3EscJjgHT77Jj+zxaSJ5+/BGu2n8VfaV5/7vfy/6ZlD075lkN+3zls1/g+OlnWVi8TLlRZLLQZH3hAp/+449QLJXJFJQ9l2jQ4odf8wpqk9Msr65hXAlS4ngBvu+zvrLCr/zKr2CE4PDLXsLF1SXe/q63s2dThT/544/xV3/9Rd50z5v53Gc+g6MUSRqxf/9elBL80R//KXEc0+11KJfLuMohyzKEknksIiIvTqXMoxQ1uMrhd37zwxtfct55dRwn75Zqg1DgOF7OZNTQnGzQaDaxNh8fap27vyE3zPzT+FVTK1c2/q0w1tLrdbi0uEi52qBY8Gg06kSjMYHvk2UZvlfAUw5xNGYwGOE6uSM8KJYwxrBw8RKDfp80SXjmyHFGccSwP0I5Du1uh5967/u49tBh3vWWt6HikJU4Y+feXWSjGK0ElWop1+Q6AbfdegcPPfIA506f4fzZ0xy+9UW5PsctbLDgAhxVRkqI4pCJqTpRHOMXKyjpMrtlllq5glIurXYXpRRPPfEUE82Zjdz67+9VKtSxRpCkgigOKRRdMqtyUoASuBpSC9YIhDXEcUqSZCSxgcyChkqlRn2ygesqgqLPeDymUqvTnJ6kVMkh1kkSEW10YKUySAnFQglPSnQSk6YxSyvLzGzdTugVGLk+BoEUlpWlVRwTIGWGUAki24zRecqRtQJjNZZcvyosCK02suEtQmrSeMgTJ+b53vqbWdrx15TveJjJoIOnPOoqYefcBKeXLvKP3/5r6qUKRe3gRAmFbsTg/DrtK6s88vhjVBuTJFGfD/3ev+XimfOst9qMTUo37JJEIf1+hzDNyKKQXm9Epzvg+qun6Cy1+IWf/hDl+gy//Ku/yAff+27e+sbD/PyPv5Vrd0yxfbrGvfe8hH/83EO4geLU6UuwgYPKsjyUQUqHRGSgILEa13dIdR6v6BQ84nCMtHnhn7iCcDCEKGM8HHHTTTdRLJfwPSfnMaf/XFIBWm/s1419n78mQaSwoSPNl8mTrYzKC1lhUNYgbIbNUmSWIXMBOlLl3SbInzHCkv8t5DLkZr1M6ERkiUHrFOU6DFodOv0BKwvLXFlYZHV9hU63TZRGRGlOExh2+4xjTWyGOAiEUPl7RSJRWG3AWKTK1QQCn631GsV+m+n5zdTr20gTTa8/ZGJigvGwS7t1hStXLjIMxyyuLP9v3X//b5cyLtrAcBiSGU21HDDKDNVqlWGWEog8MrVaruC4OeJtGIZkSYYnXKQVFEtFUJJSwUcoyXgcUihWaDQaSFfh+opUpwyGozxhyeba4MAvIKwFY4jikNV2h+bMJiLlEjkuQjlkcUyr3caTAdgULxDosMI4GeXpeRk4QpBlA3QmadQb5B5fgc1SSiWfNI148hnJovkBVjf9Agde93fMVQbUyxUcQmQ65tTlc/zyr/0MtUqFigjQ/T7tZ86QtMYM2l3OnDuDHwTM1Iu88yffweULl+iNhsRWM85CjM7odlps3bETnSZ4hSJr7Q63v/gAjEJ+9QMfptWL2XHVVm6/+Vpecus+fuhVt3H1rjlm6iX+1U++je89fAwrNCurnbxjaAzG5J1PKRWZzIkcmTUoJ9fdXzx/HuU5pHGMtGCNRTuSeBxCpknjhN2781j1UimgVqthM5FfFJ+/nLMR3MHzMBTHcTculfl+zdKUMApRjkQJB+Xk7GRHACZDWosyBpulZJlBOXmoilQOwkA0DonjBGss/f6QQsFjbEKMzs/Bnbt340iXRr1Jb3WdxbUWqUkY9PrEOsEIizGaaBxTLDdYbS8Sj8aE45BGo4HWFiVcrAGBRClnA8OpmGvUcIY9GtPTlMszOI5LnGRUqzUG/S6jYZtz586gLXS6nRfcLy8oCVjt91BuwCNHn0I0PA7PXYu3p0Gh6DK9alirNCj6FXrhENeTbNvUZGlliJEO0otZXVpEOC6ViRplRzF284i+9f6Yyekpil7CA09fZPfuzfR7Iem4y87ZechSrt63g0vrLYSXkdoirt/g4OwED588wa2HDiEHfZ5eX+XqrTtYaffZNllhqBOmVZGVKGbeNCgXHFr9Af20zNHHT/CGH34rS2dPMzM/zSf/6L/SOXMRud3nDW+4mz//o//ADfv38OE//A0279jNnlqTVneV5MxploqSJz/zPT79ua9z33cf5cGvfJl7/uV7udxepNmY5v5HH+PLX/4Ol3/pt/j7z3yCc6fO8uh3v0drbZmt27fR6/WolgMcr4DUA7J+ysTeGxj1ezx27DS3vfRlfOaLX+Bf/tx7ueMHXoW1GdPT0zQrDbrDEbv27aHb7bJ1+w5WL1+hWm/iIUlEPqpLdYqVksxqlOugpSYzKb3RCD8oMhoMN/aCzA/EjV2RGYMrBK5SOF5AlOZdF2MSECmjUUipUKZcKOcFDoI4jhGeJEkyRoMxReEQj8bceOMNfOehx1hdX6FarCC04eknn8ILfHRiUTrnLpZKJXrDAZJco/vau36I7z3yILE2SMdl595rEMJy8thJzp88xXg85vAth5jZPscH3/MTdK+sMXvNjRibUurHRFWH1daAbXObkXbA9556koOHbuDa6w5w9OlnyCR4joeWglLZR7ng2o0brc5IjEZhCVwPpWGl1aboFrjnLW/ks5/5BzIDiyurjKOE6ebE/+eD6X/Xeu4iE6gAKTSjUYhwBaNU578ZY0i0pl6rbXAqc/6p1vr5bPcsSyAMAUsYhjhOfkFC5gYXawRCkgd7CIHdKKz6/SHhqE+v02PT/BbmgyJHn1nBr/i4gYtfKmMLRbq9IZnRuI4gTQVCLuO51dxNbmX+0BYWa9M82/65AsuClILpesBL/9VfQFGzsrDM0Qe/xhYk5VKFv/3Ul+nEY6aVz7FHH+Ct73oN9coExXKZ6WaVPVftJDQpm2a28MYfuJc0i5jfNk0crpIEhTzppdWBeoJSDqWiB1YwUXQpSZfX/tDPk5Bww4v2sXI55rv3fZuzJ86zbf9OsjimVKrgiAwzGudFniqz3uqyLQpzkzExcZznipvMwxMuaZrmH611SJIEjMgPP51HLCtf4Zhcm+a4+Si9O+hTdAPCMHz+u39Oa+o6JZJkjONlGO3w3CmYO/rzwlWIDcMVBmxutMrpWLnhMv/Mn+sEmY0ghxRrN6IjzT8VxAiBVR4agSMsJstyopaUpFpTq1SJkjCXLBieL66NFcThGG2hqUp4G0QAY3K98nNIKms1xui8CZDBR/71Bwk7a1x1+4u54Z1vQw8VjuPgBgWyLGNubg7moDcImZj4/t6zYRwjlcNgOEBaKIqAoFwgtQY/NURILFAIfIaOxHEkYZhhtcUVufkqSQyu5yKFIt7wJPTjBOk6FKxLrx9RKgekicGkKUXfJ4wjlBT0ohFZGNKYmmFqwqO7ltCLI2ampimVKlxxc89EmGSUC5I4s/iyixEl0Dk2MdEJmZX0ej1mZucJhx38wOP86ippGFKvFnjFj/42vahFutblG1/6G+YdTdEt8K1vPkzR93G15onvfIMf+5l3oK3D7sub2LvvR2lO1lGuolxp8L6f+CWW1xf49x/6Rc6ePMEojEnjmILjkpkQ13UpFIq4ShEUKkxW9/ChX/8IZ04fZd8N+zl5bIFoPGQQWTZvn0NqS7FSYzxOsNbBmJRiucnaaouJZhWjIE00matACozM9cPabDj6rSWM4o1i0+bJahaU6+CSh6cIJXCkZBTl8aZhHJFPEfL9pbVGCBdrNEoZjJF5kSxz3GCWmTxi1WhqtTqtTos4yXBUPjXt9Qd5HKrWCJtf7hxHkqYgZa5hnZiaYnW5g5SAKyiVakS6Ts91CUdDPFXh/gfv5/K5J9gxvxVXKMqNCRxX4WT5Pk9STeD7pHHM8voK85umadTr9Hv9nLstFUKwofU1WJuBzLnxX/rzv2Dh4kU2HTjArpe/hGScmzW3bN/GxfPnaTQncJSkP4wolUsvuF9esGC10jLvFnBf+nJWzj7Ld44co73a5cTmImcvrnHt/nnMoMhEEYyjWV9L2LJtgvMXlljpD7j+wB76rR7N+jQX1lqMe8vctGUHJ0bryLZg61Sdq6/dybB1hX3bd7DcVfTGPaz0WR2s0loaMbNzG0qPqVcdzrV7vPrFt/DkufM4BrLMYbUdU3QtA6txTUBIytZShcE44ld/9n3c+/o30lu7zN1vugdfKP7sLz/Bq1/1SvrdAa/9gRfzlYcfY8+ed3Kp1eHJ5Ud4+Y/cw5XHTrOUhZQrPr/0Bx/lPT/2Lm696VaGoeFTf/mnlJyA3/3NX+LHP/DLvOTOl/LQ/Q/xe7/725w89Tjv/an/k9sObefAwds4fP2N3P/QN0njGKdep9tpUa/XuXJ5kdrWKcpBkRff+SrK5WnOXLxCOGxRLJZAuWRJyrlz59Ab/MTp6WmUYxiGY4rlKtqkaJORGYMUAmyGqxx0moHSSOvyute9NmdeWoM1ua4tDEOckp+z3kRuVMnQxHGMdXykL7BjsxH36tHrDikVXLROcYWPlC6+n2OxTpw+w/V7toHjcO78BYaDiNPPnqHarDNdr3PTTTcTfPKTxG7EMInIhGU0DvEDlygMqRcDPv0Pf0/RL5LZjKlag8e+/hXufMvd7L1qGw8+dJ6XvvJOHn7gURYvXeTjf/fX/MoHfolPfORPGC8usfPADqJOyItuuI4kjVjq9Hnj29+Bp/o8vrRAqz9mx8w03z1/ku2bpgijiIXlZWqlJr5foFJziMOMe956FxXt8qVjTzBfrtHPLMePHCc2GdiUN73+zRw5foxa8YX1Nd8PKwxjXDdHEoVjkwPaY4O0hoGO8RwX5blEUYSWUPQKxHHMcDikWC6gjcH38ijHYrFInIyRUlIM/Jz0kLgbEa0CkyWUigGDfkKp3ESnGVE0ZsvW7YRJiCM8mhMzeCWfVtRHeFAqOATBDNhlEA7KAWE0aRJhZYwwLgKLseC4OheixD5C5ZMVIQRLPc25Rx6iUZtkqbXOtXfciv5KSph1GAnNqZPHSQLBP9x/mscefApPw/V7tvGV1UXmm1M5SFu6NKolrr7hlfzcz3+Y0biHcn38QkC706EWBITxkFPnzlMqVJnbsonJ5hRbGrNUt05w9uQCUb/Hw1/LcALLxCXJvltvQyqIghRXx/zIva/iWw8cYWGlxy1SMk6GxCagGBgylaLiDO1KPKkoVMoYYVCuS9QLN6YzuexHDDWtOKJaKmPSBAv4bg6U93yX5wZlzxWCiwsRm7dmpIlCyAxrFAIHa12EyHWruekjRVgXmUeNPIdyxaLz7ohUWGVyU56XYVEgc3OXtRuUhsySGbhyacTUpjGiWiMaDckQjKMYz1FoV4BV+MIhHo6xmcY6DtE4xXc9vv3th3nnT7+b9MIFDLl2NdfJ8k+mOuFi0xibaGacDDVRQJ96nH98z0O88vf/AOkEKOlRqjRJ47xrXQhKG+bS798Vpym+ENQn6ow6A1pRnzhK8XxJdzimWSsjcdFpgpAWoR3KZUW73UVJj3KpkDNxM0umBXE4oBqUaCuLNRkISaHkkmUpvuviBwXiUYIKyiRRSJoapqdmSbIQ13GRQZndc5tZ6K4T2RTPdUhFFSXW0OR8UITFtYbUJJx85ghzm6ZIopC5+c0oabhwcZHpmSppmjEz1eTiypDCwiXC2HBxfYG9r7iD8Tc/TS/rkblQqDcYW8uphZAkOcv5UyfZMVHjo/ffx8EbDlKr1Vnr9HnRzTfilw/x/vf/e4oFS21imolGnYuXLjI/uwTScOHSZWq1CVwlmJiaYr45S/3mEmutAWSaY987zpYd2wjX15ibn0ObDN8DHRle9cpbOH7qMpcvr3EAiNMxsXZxHI2SAplqjJIEysEr5mfozMw06TghSVKETNFZjnYLbUYzCMCa/FmmcnKPCgKE2oCubnhFVpZCNm8RpDG5vIfcBGutw3A0pFougoDReECWwXg4QHkuvquo1epckQugDSkCLS1ZavEC0NriOIqllWWyVKGNROLQWl0lVZso1SSjNKFSKWI3TFWXFy+zd99+Lpw7jUwtQSHACEm9UScMU1zPo90ecuNth4iOnyTJMsqFIp3RkFLgo21GHCY4qoCQGUpBlYyb9m5BmSHHP/FJDv/kTzFOE8bDCC8okaWWqclpPH9MlkYvuF9eUBLwutfcTeOGazl+/hlcXWTrVJ0wMFSUYqYRsGOmjgoyHrjvGBEKXfARxuf0pRYrqxEXl7u0wyFB4JHpkFJzkgutAavLQ0q+wzhKaaqAbpiRDdqsr3TIPA+hDaOO5eWHr6dWF4gsf2h2Om1WW13WO222NidRbp5JrseawWBAtSqZaPhsZon5GcmW62/kxCDi8tIysbVs27qVq6+9nlsOH2bLrh184cFjjBKY3j7LDVfN0dTTXDc1y2C4SjOReJnP2rmTbJ6oc/aZE/S7Z/jDP/0Ye26/g3/9a/8BBkMunFvh+KkTCCXZved6Op0V5mY3c8O1V9Pt9tizfy9ZbOi3Osxs3sSw36M+N4lv4Rvf/ip3v/Ue3nDX60h6y/TbXQQakyZsntnExz/6l1TcgEqlAlIS9mOa05MUSgHK94jGw7xrY8ERTq5+EQasQ4pBbejNBBlCSjQax3HxXBchLUo4GCVQVpKYjCzSmNCQQa4bFBIlIAoNCBcHQ2ITjFbEYURqNaMoodVaY8f8PI5N2DI3h+gJpBPTWrnCoB+yvLxEpVwmcCTFQoE4TBCOoFwqMTM5QzJOMFZw7PgpbnvFnRRliUFnhI5y/nqWRcxtmUcGRb78N3+TF0cGTl1Zwc1A+AVWLlxmatMsx773KFO6gk0zDl63j4eOPYUnPZbW1pFpxkSlSqUgSZM+UkuiZMRXH3qAtVaLqXqNi0tXWFs+z9z8FNVmAyeRnF1a5OnjR7D6+5/DamWGzSIGvdzolsSGwaCH5wW5ttV38XyBSBKyKCSMNAiFF/h5Zw+BwDA5USPTEYHnY0zGxcuXSOKQRq2ZSwU8B2FhPM5wlI80KQaNkB6uJ/EkrLRX6Y8SCo5H0k0I6rWcnWkzkD6pyTmsucYyZ61acpmBsJJ47OeFkZuCkc+74B2Vsf+GfXjOkCxq83d/9DsgFJPNOosPP46HBVtmm0j5d//mAxR6V3jkO99lymYEKmU00owGQwZmyMqVFqudAdJx0GnI+dPHuXz2JE+cfJZx7HDtNQeRkaDXydi8bRc//r538rZ77+JXf/V9/M7v/wYvvecHed3b3sGe297I5aHl7FrCmXMjji60+fSXHubSwjrG9Vi8vMzJp45x6dmzjHtrxOMeHg6BK/NMbp2QJjGjUYj0XIplhef4FAseGo2PgxmB1jm1Q9hce26EAZshyKNVrXGZ3wFp7AMGKXxAYGyW+49EmpvnLGCdXAIkchmAqyzC5EeCEgJhbW4GkTlqTNrihmQAbCaeH/k5pkixmEtJTGYIwyFxmlItOhQLVYSFcrFEqRwwvWmGcZqSJTGlkotVLi+5/SDnjjxDnBik8EAIpGvRNsMCruchXUngF9GeS9aOSHsZ7k0v45Wf+AixyXBlnuBmsFgpcr1uanN81/fxmp6ZwikFrK6vgVW40mEYjwhcj0qxQLkc4PqW9mqHNE2JNIBLrCGODFGckemURr1MpiMKhRKjOObylSWsTikEJQqOk+PBspRBP0I6PkJnpKlmstkkKEhcYekMevQGY9CWcWdMrVFHCGcDd+YQpRbHsbiuIBBDCp4kqBYZpJooTIgjl0JQpNYo0ag1CUpFVjtDQLPr6l1MVEHFCUe/+gUynTFZKtM5cQ4zGhC4FUrDLm9702u5adc8C4ttbrpqL66J6bRD1tfWiGxEEgnWO12KpRLlos/CxXOEww5nLi0wGhn27LkaM85IMsXk9CYO3nYNb7n3Dfzs+9/Nv3jXPex90Q3c/NI72Lz3FgbW47GjF1hbTVjoRjz0+LMsL3dxikW6nT4LFxZYvrRAMuqRxiNcnDy+2vPAaNIsJY4ThOPgBwJXuXi+wgqLLxxsnNO/jLUIK3LMtDX5hQ2TO66sw+QmSCIn/91vnONmo8lkRUaW5VSAYlBC2IxCwUOkBkdp0jAmyzRpkuAoBRaUA1oLpPDxlMR38ymntdDvhUw15yj6Dq4TYFJDHEXEaUKzXsIvVFhbXKRUquAHLk6hSJpmaGMQJsUrlNiyeYLO+SukiaZRq9MZ9nEcwTgOwViKQQHPlzhKYZVL2gtZXlhHb9nLi37hZ+mHI3QS4xU8lJsTGcZJQq/bA/PCGLoXfPWBL3yeY9/9Nm942V2EbowsBmyfb9LVgs2bpjhx7ALximZ6/zTdbkS1Juivr3Dd/q1suXaWCyuXmajP8PCpk1QrAcgC23ZMM18JGA17HN4xC0ozilMWOmN86bG6doVer8d01eHCpStMl2pY5ZNGA8IwYXGphY0zlgc9Go0KUWqpTExw09WH8MrTtFKPpzounQHc9aof5NCtL+aO228lDTOUdClWKjz91HHufN1d/Pxv/Q5PnDrDv/uPf8qffPQz3Hv3D3PvG+7m5qtfxObdu7juwDX86C//Ij/3cx+gMTPH73/kL1i6dJG3/Mib+foXPkWmApZOP8mhq29mOOjguopKvcbBl/wgTzz2PT75V3/BOC6SiYxL66skWUYSp2zbto3m5ATvfvd7iCI4f/k00ivgqxLhOMORgnOXL/Lb//F3uf/h7+C7DoNOF+lIAtfn7IXzG4kyBsd3SdO8kHpOE2OtRkkXY/IHvpE5y9AKi7B5/vtz7uHnGKyedMBanA2ch0LgWJHrb9dXsVKQCpvngAfPYWlSJpp1tmzdzIlnTzHUGcoavGmH97/9p/CrEyAFbhCwst6lNwpxfQdrBJ5bYhQnRNGYZr1MYAQHX3k7ZQ27dm5n646tpEBsLbv37mN2Yop+t8UHPvDLbN4+yf0PPkyoBOVGmXZnmYXVZUbjPu0o5MHHH0Erl2K5wNvveA2Veg2zPiZTDpmVlFJJ5rgIJVhvd3jzrXdydPEC3/iHr3DzzTfzkoM3s2f3Nm45eBNhlvDYQw+TRjFPnTz+P31A/S9fqWQUZUjXIYxD5rfOcfcb7sKmCY6nKBcqGGsplXLdr8nyaFWlNnSOSDKTXwAhLxB932ffvn04ymMwGOA4DnGc5vn0SpCkMY7jUCgU8IA4jIjTjMZEnUxYVteWGQwGJEmygZ4KNtif+Vs2NiI3B9l/0mKKPFXLGpGPyDb+3wrwA8W5Y+f44ufv48T5Ve599/vASNa7Pd7w7ntZHid0xksceeQhPvDDb2O5O+ADH/pR1tbWmKmWCQd9hqOYbCwZj8dk2ZDe2hLHjj7DlaUWwmtwYMdOAM4ev8ChV9/Ku3/iXq7e1mA8GjHujbhw+gIXTl/AEwVMrBn2Wqw8c4pClOEJTbVa4RV3vpQffP2dvPql15ImksBrEsWCs2cXOXXyEt/8zlc59uTTrCxcoN9ZRZkYmSaIOCMZpAx6Pbq9Ib6qUih41KYU1UKJclDAcV10ZhiPI6T67wdl45FFyASpDONRjrZ6PvHJOhtdy//eQCiFS5palPM/MhY+Zwj5pzQ0g8X3HYSyGBsjpSQK43ycbzJSbTBC4vs+xWIxp0psSEuklGhr6Ha7FAoFCrUKRc/FDxTGZrkkYYOza61FZxk202ThmLJwuVwtcLlQ4vafeQ+FTFIqFQkqRVypcJ1cH+gqhXESlG/+B3/P989qX1ljfW2V2enNhFnI5KYp7rzjxaRpRqkckMUWHVtqkzV0ZlHSkCZj6tUChUohlxQ4LlfW1nAcCVJRrZW5ats2sBBgUY4kilPiDBypGI0HWGuolALSMEJqS6qhVApIjWF5ZYXxaMwwCvF9F6SL40uq5TpS+UQ6o5cK0hQ2Tc9QbzaYmKhvSEdyNFq/P2RyeoYd+w8wSkLu//aj/O3ffR0tS9z7jh+nXmqQAK+6+3V86+kjTM81uXLhPL/2M+9leb3Ne3/hHZw5fZJaqUR/fYnAKxGP8pAIITMc5XL0qad5+uhxtKwxPzNNmMQsXlph1/V7eMPdr2LXXJOZ6RnCQcT5c+dZXWrhiwJZpInHAxZPnuGGq/bS665RLhW5ev9eDt1yPTdfu5N+P8RRJZIEVla6LFxa5cgzT3Lp7Hm6rVXGgy7KZogsRaSaNMoYj8eMRiGuDPBch2JVUfB8As/LzZYG4ihBSYUUIlc+AWkiSbMxQhqiSOepW0rl+nAj8DyHoOAyHI7IbE4CUb7D0989guPnJlchfb/sXgAAIABJREFUJXGS61elVLlsRwq03ohFdhW+o6jPNJA2pVwu4TgO2uba1KBQxPMCBJarr76aSrVEr9cnNRrXd4mTkFa7hVISUfAYjQY4Xm6anJ+cRikPmeXW7EwbZGrI0pSCVFxxBc7MHFteeTv9xXVmZqbZNDtDrVxicqKGsYZhr4cmYRj3X3C/vKAk4KnLx5mf2s2TTzzEoVuv5WtfeZioHXJ5qc1Vr7oZR0t0NGLTljkuXVihs9Zhz6YpvKGgaC0TB6/jyPHzNBs12sMh2+fn+MYDT9NowI7N2/nk/U9hZMqWmQnSWLAaRYgEVHFAz804UJ5jubMGSlL1Fd5cA7dUYtKzZHHGoVsO8c1vfhPXN6SnTrC57lNsHmTSFZxZW+TS5Qvsu+5FbJ3bShzHLKwu87JDh+nblM/97WP8p//8Ud761nfxxnf+Cz70G7/Hh//s49jlFtXpnfT766xbyTvvupf7Hn6Q3/qDP6TVa/H5L36Bg/t2c/PhO3nqwfv4jY/8ZzqXF0gziwdoNJONBg91exjHYUuzglvwmZmdpbW2jus6nD17ltXlZYqFCu3WMllmCcdtJjc3UL7BSEklKDLqDzh48EbWWutUq3V6vR6FoMimTTMUg4BTp56lVKmglCLVz0WySqS0mA0upbA2x10hkRp838/NC0rm7gxyrZjjKZTywFEkWUyYRThegNEW1y9y9txFrtuzi9EoxXcFmbFs37qNQa/HysoKszPTPHHyWeY3z/Fn/+VT/P199/P4ow9TL5cIxwU85SMcj3anh5SKTqdDtV5hx/ZtrC+tEWcpx58+ysFXvJpRHLFndgs+gofvv4/rr7+W/fv388A/fp23/vBb+b8+/Ad89EufpWw9FhcXOXfpPM1ylf5am8e//RDeq26hZgWDcZ+733QPn3zPF6hVitRLFcrNOkeOHeUtb3gTX/rqF9m+aY4vfecbKNfjNa98BeeeOZFnd/tFHn70Edyiw623HObx7z5Bt9P9nz2f/pevZrlAZXqe1tIKTtUnHPT53lNPYzyPsuOhs4jKxATaCjzHR0hFluWF5OrKOp7n4RUCioGHSWK0m5EZTavVwXEcPD9gOOrljE0kWaZxpEJ4imQY4RQlQnsUvADtRmipcAOJErnWbRAmuOUSBg02Q2+MLbEaITfiQsmjQ4WIEKK4cfHaKLiEhsRhoAdcc3Ab933juzz5zW9xrUhoelU++t8+y7jfp+wIwlLGu97/kzz17a/xib/6Ek5W5ttHW3ieIhsMabWuEJabzG3eSj/OKNQnedE1+7j50A340uHc+bOUD19DlmWceuoIThAwVZ/E9x22b9nC8toavbVlYs8jxRLMTqCLDm7qsHDke7gUcJSPV/Ep1wKcchnfpmjHQRhLY2oHjlAsLvRxXJ/RaBlfg1/wMNZltb9ImAiE1cxummDU6eBIQ31ikkqzQr1RzEMJbIYyHoa8U+25PllmQAcUS5o0FUiZF5xCOAiZSwGszXLTDQprfbwCLJ4PmJodbPyaDEqCJY9yRiYbISC5JCDNBMYIhHRINAgrQUuk1USATlISJ0JrjdmIqU1TjeNIskRTKZawRuPiMTaGtB8Rb7yeZCmul0sOfL+AI3Pj0CgZc++/+bcIa0jOXcFicRyXsl9gLDM8r4gQeXSvMQWi6IVHjP9/L0PM1m3bWF9aZuf2eVZX1jnVbTNONfOlBvE4xCkWcZ0AIVwyqwlcidSKYX+A53u0+gMqxYAkiSmXPFZaXdr9LpVSheVBSBgPCTwXYQyjJEJoifEso3hMoaiIM4vnllAyxC/4+CVFMPJJsxQ/KGMdRaQT9DAkUBrllVFSM04ixuOQcrVGIQgwNiZOMyYaNVILg0srPPPMCTbPbGW0eYat++d46vHHSNptdvsWD8vnv/Ug05UG436HnS89zKvfdBePfvtrfP6L32GiOs+DT17kmut20213abdbWAzK9bFuEfwiB669hle+4g5812W93coDTKzh9DPHyIylWW1iSalX6yAydDJiPOpgpaIw2SBRholGk7NnThE4JQQKvxxQb1bwcBl12/heAMZQKRRRUtFeD1GOQxj1iLo9hptioiglNBGPP3qczthlolEDo5FWU6pWcbycWuBUKmTCIIwgMzl31VGKLBMMBppG1SWM83AOYw2FQhGtY+Iow/ddekNNEBS4dGmdwy9/GedPjnAdJ9d4IxCOIkkNShnSNEQKSbFUII3ykI1Bd0h1eo5+rGl6RaSRdFfWqGzeRTEoMOyPeeTRRziwdz8Xl5fQqUbLjNFoSLGQJyYO1zS2VsKJNGGWMLd5jrVTZwgCF6lcCsUSveGI6elJlpYW+YG3/UiOuLqyylS9RDzo47suidGEwwG1eoFmc4JOu0sYjV9wv7xgwbp/z156qz02z07zmb/7PEIVmdk+x9BYnnz8FDPNApfafV6yeQqdxdywYzvj8f/D3HsHWZbd932fc24OL/R7r+P0dE/Ync15dgEsQBDAIgMkQYoFkgJImVYAS7SksmwWbdEqhyqZJTCYlmiRkKUiYVAmaBCBBAmSJvIC2F1gc5jZCTuxc/fL7+Z7z/Eft2cJquj9Q5ZonKqp6npVtzrMvff8zu/3/X6+KbuzGSIraXQq1hfmKKucxCzZ2tnnodMn2d7fwZcNTqzMszcYsz/KCXwHGwMrqKH/D950M2mUMp5FVIlm9eQxPE8wnhWQ5xw7fjOPP/o4g0nMsWPHmOxfJ7RMut2SmIJe9whe2MaoKv7d732SB07eTFNlTHsdTtx2isvnXmLBtfjJv/VT/K0PfZjdqM9Da2toz+OV80/ww3ffyv/46S/xr//Xj3L+qed46vmnWVpc4O9/5B/wwb/xQ/zoT3yAf/qrv8of/u6nuevO2/j0Zz7Pj37g/egi5ezLz/HIW99E4BjYnQ6BYyLLisXlRWaTKX7gYts2N99yB65zOy+cfRrLCVnq3YSpG+xe30fYJgfjIabrsXl9m8ZcF9/3GQ6HNIKQNE254447yJIE17YplaLSqo58e5VlWDv7MWpHY9hqs7mxx/LSfI0V+q7l2DbkCl1VmAiaXkBWaGzHILB80jwmTxNG8azGoSjBYDAg1wWD0RjbCZkOI7725LMcOd4i8EwCv8PGzjYIRalzqrwiTVNWV45iyBaD0ZBXLlxkYWGJywc7nFo+zhe+8XWaCytMqoTekRUMrTjY3eOVdki72+KD734Pl9WYu44c46sNl2g/wTBd4jwm6C7RajT4wUfexbmvPcqZ584yUxUCWHDnuD4eM0wSmkHAcy88S9huI0vF6247zZ+feYbrz72IQDHNErLDSMeV+QW6Sz1MW9C0Gv+fNqe/jpXYguGVq3hhi1KBYVqoStH0A6QEB8kgjphMR3UhqGp0vCEMllcWX+1ySgz8ZkBRRuRxSp4m5FKgtSAIfAzDIonimlCBIE3yQxJFiLB1DbmOMnqhz3Q2QFQlcRpRaE0WFYcyFRNDQKnyusg4TK2qTQl1aIVUJlDeUGnW0wDX4p47XofXafHgm9/BxcsbqEs2vunhmSGzsWBxcQ6zCvjEFx9lulWRePv0wmV2L72I7wZ0V9cJ/TGO59EIbH74PT/IJIqYxBH9fp8Vt8ti7whpNGN5fYnxKKXSRk0RGIxqRJyAynFIdEXYbLD32Fku9vfoLC2x0D1Crg5JG1WGW5hkJMRK4EsXXRZkMiIMlmu0kaspcoEwbKalQpVTFsJFBIpMFnhOAx3Uxqs4hiQZ0d+ZUqZXee+99SgQXWOq8qLANCRKpxSFgWnpOnEIgDrN6tVG9uFExjQLqiJnYSU/NLrVaWK1ojVHCgOtDbT8LlkCBY5tMJrEKASa2vghbRNdKqqivg8sq6YiIBSO45AVObbrICtBoTQYGseyUNLA9uoOrKu8Wqcv66mOqDQ6V1gFYAlyZdfBBQpQgo29PrYU5CohCJv1OweF+dpb3P/vy2432N/ZwgkabG7uIk0D2/FoNSSzWYpnCfamE7I4QlUFoRdQVhW50rhBiGFJPFeDFgjLoqgKWk2HPV3VSCNdEng+QppURVEzuW1JlBe0gwZlWdVeiCLHlCYrvTaT2QQTjWmbbPQHxFGOZRhURY6WGikUSmhsy8G0TCSwsblFK/SxtENhQxA0iGczbCE4dmKdJw5ijpy6lVtvPsX23pDZ1SlH55aIBzFzx09giYrpOOOLTz+P6a/z2JNPcMvJ22iGFS+8cI4jx05wsD/B91t4tuR1997KQ/fewubONlGa4muHdqNDVRaELZ/pNCFOCszAQ5WC0XhApiosv0VBneYYb++ycfZlwlYLz2ng+B6WYZJnMXbhUYgEO/AxtAQNpcpwzTmEFBiWwCohNS2SSpGWKS2/zUqng+fYmKaDKWtWcZbBbBqxuzMhTgfIt9W9VVOaVKo2VNm2TaUT8qJEiQKtAC0pigyVa4qyqjumRUV/NMJv1Alz3fmCq5t5PTVREqUVpSpxvQApJGmWkUwjEA5FldEOQq5vbTPTLlG4i+2YGLZPHqfMZjEIzZGlFVKhaHoeA88hjRMsx6mlDaaF5disLi0zHYxIJweYroXv+3iWRVQUZHmBJQ3GgxGOsEBC2O4xjKdU4wQkzKIDpNCUFbTabUptkBQV8rsjO/+K9dqmq1HEbQ/ex0vPv4DjNzjoR7x08QUaXYeyEKSzkPnOEXSRc8+dt2AUBwyiktFslzsXTzAqU3zfZ39cZ44bpWBrcwcpLbb393CaAl1qhGfQlDY7aYGqJEdXe4x3djl6/AR7usBse1zf2sA0PJJsxHAwI8sEw2TM6toC586dY7HbYTeTiP513GAJv13RmmtT5Am5ofiTrz/G1/70i8yqnFkR8dKVHd79Ax/g05/4OGHYpCzh+rAgdGGSZPzmVx/HCiRhWfHAmx/GRPLo//1lllfW+dn/8h/izFK+8tnP482FiFJR9C/xuc98kmPHbmKl08IzXTy/wXiwjbu4TJLn+GFAFMWsHl3l8oUrOJZmtNtn+9IugSURjoFpFDSXAwaX95GiIAzbNMMxjSAgmc4wLBfDtEBrojQBIRGGiaRCa1HHtwqNrAyM2ryIpSRSKKosYW6+jbQ0ChNNjCkstNRUpUYZIIQG10SNq3pDchp1mpG0mCmJ53g4lkthVJTjnG+cO8+JE6uYlkOz6dDttojHfXLDZlLuYXgeZVKQZBWeruNg0zTGtA3SNMNxfao0R2aKJJpy9Og6RalI44r24iJB6DAZx5x59nluu/s23vzOt/HxP/hdxmcvkmYxgWmjdQSliWcZnL94jqbvcnnzCg8+9H20AxfPkHQX2mxuRai8wsDhtlN38s1nv83i8XVOrB1Bvfw8VQGFrlPBikrhKcGsKFhbXGU4HtFdXPqPtlH9p1qB9Ak6PlWWo20DxzUo4pRMKkJpUBSawHPp9/tYgYfS6hDgfhgODxSFwjF9hKwd6Z7n1Z1Xt05HyrKCqiwwDatGNeUFhm0ilSQdTdBlhKpKgkbA8GADM6hfaGVZEkURlcpq17nI0dpAyNoNf6NgrbWRAsOWNQJGGtyI6TSEJtER5WTCk9/6Mt7cMW677TZm1yR5FjHpLuE3r9NoeHz57IsYymR+7ihZeoCZRtx272nywYDQUWxrxbvf9RZuv+Umzr30In7Y4vjacRrtFllaEOiS/d2K/k4fJwjpdptsXLlKleYgBabt4toGpi64dPZphlmB31sijTOMwMbUCiOaYvohBhVu0ELIkpYIEIc2p9FBv46vPphiSBNDZiAtvKaLykpMsw4AKKuIcC5AT2NKrZmVCQ23hSWdwxxyE3HDfSwqwAJlIeWNQ0mK0B5CFmhdJwDdWEIIKpXXh93KOsRf/RVLy1evE0JQlooiF5hGbUY0Dxm8FdVhB97GkHUErNYlAsiyBNN2KKsKoRRIgSjLWt9XKiyrpgQIYWGakizNsCyHsiwwPYdUp0jDqr+XUlSiRJc1uaByPMrplLKskwLVoXnse3k5pUlrdZ3xYIDl1kXBZDRFOwIHg6KQNIMmk/GYsBmAKg+xdQlNN6i7dAiUkjiOgawqylRjGjbCkPiOy2yWglS4hk2qc8qiIgg9dKUwtKRIk0MbnsHeTh/s2hA0Hk+YxTNsRxLNMhzHIK3ALmKkdDBMjWlZqKqi0pr9wZjBbkpFTqlyNrcj/HCRq9cvIoycq2eew20uc2x9jcFVuLizQzp3C4Fr0e3Nc2nYZ7g35OaTd3J8fY1QaQibWNKiYSp0NmNlucP9999JEk0IGm1Wlo7QW5hHChNLFaTxjOHBiMZcG8M0KJKIbBYTT2JsbeA7Nk1LsLl7lVle4jbbqEpjSIEtJaQxtulgSJBuSKVzfOEhBaBdZtMZ87028TRGYmJSYAmwPRspSkxZEPgeSqc4YRdrFoOA5FA2Y7kWQkS10LQEUMjD+GCpD9F/mLVZEokuNYNpRBA4CFFTImzbIo0LFCZFpRGGrHFaCoSqqR1VPUatUyqpX6qqUORVThi0SCKBKQSW5yJcB9OyiMcxzfkO3d4813auUUURWZZgmxaVyqmUqO+FyRjTEsziCe3OHKYEQwpcz2aaZaBrOsBcr8fu/h5u2CD0AwbxjEpXVEVtqlWWjcrrIt2WNlma4tjOaz4vr1mwHj39AB//td+gd2QZ3/aZzjawGuA7PsqR3Lk6z+bBkMfOb9PzGqyvL7I5HnLq6CrPnH+ZZmOO/uURpbZphfWLbunoMnOey+DqLrsTya3HbiIXBaLIOH3LcSpsZtMhS705Lly8ihCaaTJCGZrZeIRpm9x6/DhnN7Yo0wpyxfz8PJ0g5NjRHuONIdbqcZJxhGUHFJ6HFVfkpqB3512Mtja417Mxw3l+5O2PsDPYxAh85jyb5599gXuOH+fIyjI7m9vsDUf86Z9/mXseeIDpZMI3vv04j/zQ+7AwOHbffbSPLtPs9fjlX/wo337uJdbCLWZBl+sb27z4/J/xtre9jd//9Gd5x9vfyf0PnqZUFStLi3z0n/9zfurDH6Y/GtAfHIBlkGQpURShLQOvgE6nx1e+8hVuv/d+1laOYAnJqMhpBj5SSvKqoCw1s9mYdruFgawTTJBIrakkdQdNQHX41u7MtWqtWv4XqVhaa0RVkKQR07JGz2ilkVpSVSWlglKVWJZV36BuUG+KWUY55/K+H3krbmUwnYzIc5P19UUWfIOdS2eZbY8Y9gcs9bok0xlxkWPbbi3GLisMw6fd6UGaYAgTy3OZDPbxGm0sw6Y/iVg/doJvfuMzmLbg5QtXeOypJ3nuW09z6WCfZnudZE6ybEvOXLxIlhYcXTvOE088yen7X89ETTh+YhWlFE3fwzYlaZyh0FhlRpzNePHM86wu9Ljl2BLVYofH/uzLVMLgpttOcun8K8wpwa/++r/ADkPW57/3C1bTtsnzDCtwMJ26k2DmKSrOWVxbwLXgzMYBvm6QqwrPMymKAlWWRFlRR4i6DkqXJLMCJRW6UFi2R1WUqEpj2rLmg5YVKI3r2mRlSikUWDCNStpzTUSVEZcZLVyWWgvkwynXr2+ybLlIZSCNqs5Krzy0LOuxM3VqitYVVBaIDCEMlCqRsjZfBl6LF7/049y1KrFzm+SpmGnSIPTANiXNbpeN0R533nw3ge8iMLl4LmJWptzug7F2iscef544i3nj6x8kjjIazSWkKdjf3WNvZ5e8rL9vVeYc9Ic0woI4jnEcE8M1ONjd4dK5a5iVhWk6SCxWFkJ0JfDmbGb5FENJFheOEk1nFAastZfYPdgg6xjoGNQ4o7HQJR/PUGVFELoMopimb5AnCsswGfSndLpdRAkWJRNVUgjoeXOM4wgtwEDWsgB9Qwds1Alaos4fVwqEMEEUhxGoFTUpQNbSDDiUBiiQdQFUhxCAPkyTQmm0kSNqWg1VqetOq9Ak1ZjRaIFmHNVdN5Whi5KqShjPStqBi2UZqMpCacH+aAxpheWCY7kgFbLUKNMkKwSB75OmKbbh4LoCyzIohcCoJJ6ArNJAgWGYCGFhSIFlAKXCcf3DglegK4kwv7c7rGGvy+XzF/ECD893ieMY16k3/N58yGLocmGrTzzTSBXTagWkRURgm+z197EsGw1I6ZJndQ69bVs0mw3yWUycQytsUKqCsihpBi6GNEnzGMuWjCYxcVLgeA6yyBlGM0IZsDq/TDyasLd7wJJp4VgurlVg2RYqSZBNG5UXSGGCaSK1ptQGRsOlzCVNYTNrCrqtHqUw6D/5K9zUFSTTmOKCgZYhlpNhoJllOcn+LkcWVqEt6M63Gfb3EaHH8aUWdu8kX/ijL7HTP2B9aZGoUOAG7O72aTVDnv7OU8x12rTac6iqIEoSLrxylZtuOoZpCgxbUBQx1y+fxReSZGkZoSyWej0O9vt0O13SMsaSEt/vUmQ5lSGYC9ocDPaIvQpTSYgrvFZIUWh0pbFdg4O8YE5qsqSsD1RJgaHr/c0sKiJdoYSgaftsJZvEWiDFoRxAUxurMChViTQOnf3SAG2Arn+OhaU5DAzKoqDSAtd3sA1IowllHlMUOa5to0RJUVWYRm2I1aJAaoljm0RxfYjEgCgbMps1sfOcQhh0XIPJcERexOz0YWl4wGw0YZZWGGbANE9xSklcxCAlhm1xsLtPs9WkpKLRaqJUiW04OE6GFJBZCkNrDFUyGI8xLZMgcNGuzWi/j6EqPLtBlNd7yKUrl0FY+G74ms/La5qufuOf/Uu2pwkHgwghLRbn2iw4PtE4ZdKfoPKMSRkRBhaxzIjSnPe/+xGqKOPu2+7iPe96J43QRziadnMZy+yQjyHMfLI8ZzaKeOLCWaajiDMbW1zYGnJ5Z4tEFWSWx+XdfZRjcnTtCK7rg7Dodnvs9Q+IZwlKCypRYJgmuWnx5TMvcyEe0JA2pltjJx776jewPRNDmDR9j7fecoyXsyl/56c/zE/9zM/wO7/9SYqowAgC3vHmtxHpkoP9ISeOr9GYaxEu9MC0ePSxx3nH29+Oi8X23g5mUfDHn/88l86f4z3vfx+N+eOcOThAH2yweOwob3n/+ziYJVy7cJWH3vAGXnzxRWzHZTid8tDp03ieR9BqMEsTnnnxRbAd5joNpgcThOXTHw54wxsfBqW5srHJyy+/zHJv4ZDbVjPebNuk1+thmhZC1Bnbmgo4hG3L2oV9w7ASRVENBaekqorDkUOdz+06Po0wpKqKGpQsTKQ0MLRCalBKMd4fMkszlpaWGPRnCJVQDaZoVXLTTSdp+Tn9/RHvf9cH+Mf/+L/jn/36b3D/qZuZRhOsZkCsoD8eoYqShW4Px7W4eu0yq8fXKAx45/vfi2dZvPc97+JvvOttrK2tc/7Syxw/vo4b+DQsExnNaIYL/OiP/hQ//Pr7+Ycf+TFe/7p70GXBOBrT63Z4/Vu/j42dTUQm2XjlKvcdvxnXd5hOp4TtFkoKfuanf5p7b76Nu2+9nVvfdB/vvPtuTr/ubr71ta+hTfjJn/hxjszPs7Ozx7333o/TtDne7fzH2qf+ky0pa5OUlCYqE5SVILFs3Pl5ru5GXNgZYRkWo8G4xpylJWUlQBgs9JbpdudpBCG2pcnyiOFwnzyNSdIZeRFTVDOEBtM0MSwL07YoKoWBTZVqDAmuJfAck2kS05ibo6hKOvNttnc2KEtJDuSGpMjMWqgvwaj0oQZbH8YBG4csTwOBAaLu3mkB6chibVlTKUGS5mjtIAwTJWNKpcjNlF6zh6wkIgh45/se4b/9J/81f/dDf5NH3vsDvP2BB+l0W8wvrVDmJZubmyz2urR9F1kVOJZBPJkQjUcgDJaOrDC/GKLTiGcf/SbbF6/R3xzgGiFO6OOFBmG3Qeg6GLrAFDmB6SFlrdmeX10jUyU7kwMajQZmZdBwDZyGpsrSOjzFa0GjyVyjSTTLkQKkANsJyJXGt31GUULDD/EqwYSMpZVFzKyi0uLVYIK/QFzV0xKhyxpfh0IcouyMw8/rf+qwWOWw8yr+Egu1bs7c0LrXH6nqsAuuNSWaSsOUE1w+d5Xp9UtoU2CaBgvhPItNh8pUFLqiTCN0kdI0JIFjY+s6+lZWJnGhyNICqUwGO0OKqGRre4+DvT4b1zaJ96fM0ilJMqWIZlimRFChiwxURtAMMA2QpkCh6xQ/NKX43sZaXXvlCpWQFKVGlxLTsMB2kH7I1t6Mrf60vueThFyVxGlBrzePruDoyjonT9xEGISYVv1/GMcxeZSh0oKsSMmyiNFsilIQFyVpqZkmCVpLilKS5jmWLWg1A7KyxGs0kIaJ7dkcHOxRVZICRWUYFKVFfzxjpgpsLQ5T7TQH+wdYlgFCYFkW82HITCnW1lY5cuwYl1/epddSaGnSbLQptUlRKtygzrbHg2bQZtgfs7C6yunT9/KDP/Re3v39b2bp6DqnllY4cdNxOourjOKE/vYmi0sLrK+tUuY5ZZbiOQ4HuztIwyJsNVk/toRUBdfOn2d/c4eNK1vYZoDfDJBS4bVCDKHpzjUxKFC5Io5Siryk2e1R6IpBNCYIfDzTJXBMLA9UUaINA2374Hk0/IAsKV59XoW0ajSgaTNLUjzHwyohESXdXhdHC6obJlJNPSHlhhRKUWYpSlV4rk2RlRhUiKIAVRIELpaswwi+/fh3eOmlc1y4fJWm71OUOcIyqYCsyEBrXKcOBoqiGNfzqIDO4jxCSJoLdyFyBdGEWRbRaAR0wg69wEbpAmFYLPZ6LDZ9bj9+hOWFLqaSlFrhmB5+u810GiFKg/2NPQLpMp5MGPSHjEYT0knC4mIP1zIILItWb46FZkCr4fGm1z+IEzisHV3B8xzSLCNoNBCmwLGN13xeXrNgdTptlo6s8MqVyzzxzIusLC2xsLBEmVT4gYv2DHqdHqNJQVqAKyWf/tTnmFtY59rGdb74Z19A2JpOwwFRMhgPmU7HTHRKHB5BBi4nTh1BVQmeC6WOCTybeDYmy2f0bJ9G5bC3s09/MKJ2iZDKAAAgAElEQVQoCkxdMIkTHKseT1ZRTpXlHF9e5u/92H9GS3o4QYBjObzw0hkefuhhMgN+8O3v4JWz59iMJ3TynO97wxu58NLXSJMC8pLsYMxob4tXtndpNhyefeZ5SFI4THzqdDqEjQbPP/s0rbkmtmexvb3N+vo6J2++iXbTYTwrkMtdqvGs7iBYDvc8cD9nX3ienZ0dNjc2aqal7zM46JOnGb3eAvfffz+2aaFLTbvbBl1huQ5RmqCUIgxD1o6tM5yM+dSnPlVrBYVRO/aEIEmyGt5rGHW8ohSvFqlCyFc3H8MwqKr6pGWI+lphGDXvUCnS5EZy0eHNISW2WW8uUTQliVOEZXDfnXdjGZo8rUjSGNM0+fPP/S6eMtncHpAkGVlW0DbrvOBpPCNKZjXL1bLQUjAcDknjGkrf6nYJWk3SNGU8GOLZDn/6p3+C3+1wbP0UUBdI09mQr3/7m4i5JvevHePf/J+f4L/56C+y2G0jpUkYhgzTKXsXLnFq+QizIkXriivDPRzfw/E94jSj0Wjwf/z2x5lMpuyNRiRpyi0338J999zL//LLv4QqKr786NeYazcBOPPCi+hScenshf+ALemvd1VaUaqq5k9KyLOI+UaDLB4TuBKhbUzTRihRJ55RJ6QpBFESE8cpcZpRqgrHs2l15jCMw8QkKWk0GmhBbY45hIbbto1SCsmNRDTBaDiux8ZVzYWdn+8iEeR5iSxmiHQX0xCYpo+ubLQoX01nglonWY+g6yL1xhJCoK0M27DBqkeaUimiSYLMJDvXRrTdDqZhU5o2f+dDH8TRsD/Zp7HUYW+wyaXtAz70n/8EShq89NJL5HnJ5cuX2djZ5WA45NrmBobXYG5pibA9x3wYMtzc4PLZs9imw/7uAZ7j0WzMYR0m2SmlSOME33UJQo9W2GCu3WVufoHBznW6YQtXWfT3RwRa0N/eJZcWypaY2mB1voMjBKmSrC6vMNfuMEpirLnazXsw6NNqtVBlhS5LGkGT/UEf1QleDQyosU6A0jcCc17dCG8s/Zdm5H/1vPxGOpbW9fH3VXKDEt91/eE9oevitaxgf2PA+ZeuY9oWaRbz6Fe+wUuPvYDeHlINp8iqwHMtLN8i7Li4nkmSRWQKfMsHJFGWoG0D6VgI2yTstGnMtUiKgvE0pqwEo/6YyWRCNJkyGg0oq5x4NsGxBIYUGHXqAlJUWPJ7PJvVNLAcm9lsxmg6xZCw0GqTxxGBZ9byEDegzGvZliEMdnd2MRyf0WTM5sYGeZljGGA5BpbroHVJiUJZHn4Y4IcuRVFgmYJcZTiOTVnkoEosWd9/w/6QoigpyxzLhCCsDUZlWUEWQzYg9F1OHL0JUzkIUyCFZDKd0WnPUWrNYm+BeDYjqUospejMzRFP+1RkmBgoVe/VcZJS5SXT/pTh7pTACjFNG8P1ec8jbyEZj4mKmKDbZG9/i3Fa8N4PvAfTtrh06SqlIdnZ2OSgP2Qax2RlSZwVmJ4PhkHL80hGQzZeuYQUBkmcsdCbJ/DrBEM/8GsueVFiGgaOa9MMG8zPL+IEAefPPE/TC3C0xWwa4SIYHQwopQmWxETSbYVYQpBrSa/TJfBDZnmG1XARUjKZTgiD4DD8Q+E5PpPplNK3/9LzqhFIwJS1Pl2pGnfVbDSRon4PVqrWrx7sbGJoQZoWh58rLCkRQFlVlGVBRX3w10CRF682uEzbxrQsdKUo8gKN5OLZS+zujAkbLfIi4+wLZ7n00gX6l66hsoK2Y7O7t82FjSu0Oj62Y6J0SVyWkFUEjkeUp2hTklIhHZug1cT2XJQQnDt/kSyvGAxGzGbTV2uWCxfOkcUx4/EAxzGRUjObjGu9fvTapqvXLFhPrS5y64njnL7lVt79+jvZ3ZyxMR3QbHsMh1OevXqNJ144z+ryEoPdMbNoSK/bYvvqZSZpSssM8XDoH5SkRf2yy0vF3nBKz83puTbbWyM6KyvMt+so1yqJ8No9Lm9OSaVmezRklpWENihLsbzYYzjN6bRcnNBFSJt7Hrif81e36bVbYEqKPENXFdPhkKXjKwivx7e/8xh/80M/xisjzTgruPX+h/hHP/vzXN7f5MLuVfYmExzXRJNzaWOTN9x+C3GcoWyT5V6X4bDP9pWrnL92jSUr4Kvf+Bp/++//DL/zid9CFxmjg33uOrKI0C7nL1/lk7/3Oxy/+SjrR1a47e676XVaLK0eQ1aaKs3RlolRaZZWFnEdh3F/n529AVDDvauqoijBcKHZDGm1WkxmU37iwx+iKOrRrcDGNOtC7cYmUxYaoTQmquaGao0wFYdeYJIkqlmbqlbR+YFFWmRUAmq+t02VV2hTQaHZ2T7g619/jqfOvMLKkWU2rmzyze88wakTa1iei1F6XL58mY/93r9ijMW9995NoQGrpK8kFia93jyWMrAxWerNM52OcSyXKI+ZZhlPfOtJouGQYZrQDj383jyve+AhyjShzHL6g33m2vNUlcN2ZvE//Ff/iBOra7ztgbt544Nv5oknn+DNb3sro40Djqyt4wUuZuCytnyEh9/wOjZGY9rtNirNOXXTzTTnmlgLTTzPY87zmG7t8tjXv8UXf++zKCG5eWWdx7/4GJ7tIE1BXqS0DJPdwfS1HpfviVXqWg9qmibSNLAsg8lkArpBWUjyKiOrSuIsxnMsTMOo089ME+RfcHyVFpRFrW8NfB8/bGJZHmVVg+I5LARcyz08BFVoXTCajMG2cf1mjTiTAkNKms0mVVUQJQVG73Zi9SCDyZg43ce0FKVzg6UtQdSQ6zqm1TjUZt84gAl0VQAKnRlIbWPggePjdhcY71xl/9oVfvynfpKf+7mf4ZWXz2N4Hq5jUU4mqNwg8AysuP49Lpx/5RDRpimEQWNhhZWV43R6XcLQI7ANXnj6O2xd3cR1fCzHpdlsYlkmcTLFsRyKpCCLcmzDRgqT/sEE13WJoohpMmUUSPI0pXJNwsVFppMBjU4XV2vKaY7VsjjY2SYZjei0WuQqZ3Nrj6DdJFcJo8GAoBGSj8bsHexTWgbJxh6mFigpsBQIfQOSc0MP9913hfz3CtXvXn/xd/33l6IuRoUQdcf+uxiJ+tWurAYFrjQgUxTaJVcVSimqtCSNcl569mWe/taTnH/6Ak9/4xnOPn6W57/9DJsXLyNyUPkEVY5xjBRhakwT0jRGSkESTcnzFL8R4tkOB8MBjdYcqoKi0ti2zf7uLuPxiM2Na+TJmDKNkKrmUCez2X/ws/TXsVzXJvA8Oq0Wi70WVanoT8eYZkiaVPSjCXvjCdKo08W0rvA8lzLLKHSJKSUSiyzTFIVGSIlt1UQWz7YwhCBOSizPwzFtHNOmKgqkaRKlWV3woZGWhy0VpgG+62BZLobU5JXGaK3jNE6z0x+gdYRhaUpDUSlNWVQ4gY8SDsPRiOWVo8wKKLUmbM3x0osvE6URURaTJQpTWkhMolKzuLLK9GCHcX+Pd777nfzADzzClQsXiStFw7HZ27jO6upxDvY2MdOKNMuYDgZIYTKdxVzb3qK7coTVlXWWV4/Qavq0wpCrFy/Q39nHsl0s02Juro1tW0SzMaqCMlMUWYEhDNCSaRTj+x5lVTGNp7ROHiVPM5Rt4LU7pElEoz2HjaZKS6RnMB0OKaIZoedR6IL+cIQb+JQ6Zzoe4Xoe5SxmNJkgHINkf1hHe4uae46qD/ZoQZbmDPsTxrMY13VI45zBcEDge0jDQGiDOI65unmFEoNmq3k4QtHkuo5et+2atyy0wD08QINJqSpKpRgORlRFTl7VjQbP8ZjzWxSVQVGVZFmGgUmWKC68soWRV4w2h4w2D4h2I575zlNQVJTTHMfSSFJsu8L3HXq9NpMowrEtsjjCcWyCZogb+ERxTLPRoohz9vcHjPYOGI9HUCleefk8ukhRRYauShwhmU5ee499TYFPlGaMx9exHJNcK6bmFLM02R4d8LoH7uHZF84QNhsM+wesnWzQT2IMLbmeJNzeWQEr5oi1xPWDc2RVge/a+GHA1u4W0mpy72oDMc147uIZ7lw/jjUeYpoNrm7t4WDh+HXUnHRtLMNhfSlkd+s6jmvRmmvQNkz2pzMefuODLDg2zz76Ve7qumRRQlxqHvn+t1AWFZZt8OMf+QgHO1t4WYHdW+Kj//KfsrMd8dDp0xRRzNPPv8xda0dZWlwhm0ZsRRkAslTkRcWpU7ey2Olx6cplzu5tcPreBxjtDrnj3gf5g9//AyolqNIUN5pw3+vvZXF5gek0YpxE/Na//d/46Z/+L3j8sa/z0pPPsrK8QG95kelozMGVq9x3zz088o63sX39EnE8xrQt8jzH0BKdVdimzSsXLtLpdet7nDotwJC1q1/dSJ2pFI5ro4VElQWWF6KFhRYWAklZFBRFhagUyhBIJLNZRKUV+/0Dro0TirweS+z3xyTRlOW1Y5y4c42j0Tyf/+q3ON6Z5+pgyGBri1seeoDXve8dfOKjv8XLL+9x6uTTHF3pYQMn104S7EZY0yFpVhAPxmjHQVUZhlBkRUorbLE61+ZDH3g/v/5bH+dLn/scpkr5hV/4BcrBgAfe/j5efuZxmq0WjmVw52238ku/8itkezuUVcL21gFPPfUiN60e5cwrT9BoNHj+6eeI3/pmTK25Pt3j937jE3RaXR578nEefvj1fOlLX8VwXfZWjvLsuVdwwgbFE0/x1S9/B8dxMLIcu9tD2g6DOMY2b0RnWmxZyWs9Lt8TyzNttFVnRxuGgfBD0lmM74DWBk0RIqVk56BP46YWdlXhO3XHYX+vX08xTJNObx7LNtCFJq0qVF5gOiYIg9HVa3h+A9NzsF2DpKzRQdpy6LTnqKqKOJlRVAm2VWAJn5Vbb6PcexFzKPi5/+kMv/lxg6tbH6ScmrzlR3+ME6du5sjRHsOLv4kev0i68wUMY0i7aVAZAgwXw00RpkWSC1wjrxmGpgBSAtHht78Av/YvfpZHz2R8+VvfQSQZAsXB9j5CGHhBiGGXxLOI3Z0XiKZjvvbYHt//1jejbBvfEdhodq5c4sKjL+IGzXrTC0M8y0almtWez2A0o5CKjuvgCkXqBjhGSVWYmKaF12kwmo6wKFhcWGU2mTCSCb6psIuKvSjB8yxalkMcJxi5xpCaOEqR4RQxnaFUii/a2FnB2BCUFhSlxg0bKFNgewHRNKIl5+pOzasFZIU8xE4pzeHXGgUc+pQONa3wanA5f3G9OGSgHvZWD4HzAi1ytJAgVP2u0xqkTWNuiUpOkXuKoyeX2bq8CVk9xXnDGx/mT774VdZuOc5o74AoLxCOQ5qk5NtTIr9kf5iiq5rpLC2NYVnoKKXQkGUZWZbhWjZuqZjpnDwqMT4iaPpzr96rrt88/B01UmlM2yYrchzHwTK+tzusBpKiqtFxohQUtkURaxAF3d4ck+kE1zfZO+izurREWsS4jkusMlRcMNYTLNOt8XG2xMwFlRTEUYS0bVqex2S4yzCJ6bZb2JakRJHMcjSCMAxRVUWaJ6BLGoGBygt662tE+S7hGYcfec8G5y4d4fKld/Gd5xR3ve4h5sPbaK03aM1dolC7ZMklji6HWCgMVSLdBpc3z5OX4AdtTB0zGo9phh6WWxEmDn/8eMXf/Xvvw+zezrMvnedop41jOYwPBiSuy8LCElmaYjtNnvn2E6RxzPMv9bnz3rtYPLnGYpnhuxb9q/t84w8f58TNt3P97EWiLCWwbSxhMhd69EcTglaD4yvLGOkMy+hgOIq0ENiGgWN7JGlCFkcsLq+QJglTmeIYCrOsGKcpliUJTJssm2IpQWUcdjoNTZnEaF3iYOBmgNBUhiYzwfZ8cq0QtsN0PAPbQ+la/53nta44aPj4ho9dKnb6Q3zLISoKVD4ijJq0FnocvHKd2SwnCMa4ro3QmsDzMXOFKAoqpSjzGhGoS40QJUrlWKbEcx1avUV2BztEswpMh/Pnz+A4BlVlMtrv01ztcPvtt/H8Sy/z4Ju+n+nePkmRk2aK0WALW8G1so/T8Njdm6CPKQydE+uKnRcvsXdtl8G1baRlc+3MZRwEjbkGWzt93vL+Ercs2RtNapOeMvHb8+DEVNrEcQPyIsey7UMT4f/7es2CdX6ly7UzF1jx59mJpkzGCc2gSbMZ8O0nn6PTaWJKzThOeOSh+7jy/FUavZDjc6c4ODhgOVzmYDRmeX6BSiiGccbR9R5bW5ol32K3sLBFyX0nT3DxwmW0E5BqhSkgL3PKCHqtNhgGq8sL7A8HpBUURUV/OAMtcUzJx/7nj3Lq5mXuvPN2vvFNj+U7XE6YHpeuX+bWXo+11aP81r/6GNrxwDT4+Y/8LD//S/8EEVg8+9xzvOWB05y8eY2nzp5hqdelb+aU0RAPg/UjRxgMDrjpphOsLR/l6M0n+KMvfIovfPKTPPiGh7n79Gk++MEPcuHaNb76pS/zprvuZufyJqPJlEJs0vUCVu++m4997H/nnttP8vo3v4krly/R7fQYj4asH1tjuLlDgeKO0/cxGAxYWphHYFCWGSCpdIXjOBRFwcHWDouLiyDrjhSqzjQ2jdoxiBboQx1a3TWpv9bAOJohDzVdhrTJyxjLcAmdkOXFJWInxrYt4jSlqCranR6yqnArybNnLtF1uvhhi3/z6c9y4fFnuO2OYyy1Fvj47/87fLfN577wGd71Yx/hPe9/hLMvPsfJWx/gTx7/cq3Rcm3KouKOlSOce+kFTEQNmE92+LV//TE8z0crB8t2SeIZq3fewbknv06JhW0YXL1yidvf+X4WPMln/viLfPgffITNdIZt22Sejxu4JGWKn+ekacacZdGxPH7p136Dwvc4cfIWmgvLaGph+023ncJ4+kmuXrrAzitgtkOaoUNnBtOWTS9pkB6OVACajQ6D6fc20xFqnbKUEsMwydOUwHYoZU4UKfK8/vkNw+LShcvc8cZbkBjkRQWYNNstLMtClRWu4xPNRlRVxehgn2m/T1pleH7IkRPrRLMERD3ir1QNkr8xRtalRmUFw/6MhrvKXM9iruOzs5XRaPtcev6P+MBDHea6m7itRa71f5GNl02+/vmSK2dX8RoNTpz6ZW665xTNm46gxk8y3fozYnsP2T7Fuec+xT3HB5jCACWIMofueoO3FxOu/cmvcvub/ntuXno9YXsO16jxSFmWkKYpItbYDZub1+8m+rd/QLvR4LOf/Tx3HFvi/M4OVSpYml9kef1kPUgvCxqOg22FJHJGogXtI4vMBiPSNGVpZYXpJEWh8TxIywIpfcwmVJnPpUtXWFs5QljmJKMpeadBq+lhlYJJmeC7HnmZYbXmKM0Bapphuh4t02EwifAbPguOy+BggL/cZaZK1P4Y5YfM+V2S2aSWTxg3pD+1vMOg1qpWFRiGqI2Yh+NBKeWhTvVGkXqjk3pYuGoJok67UvrG0LK+VulD2pWwsOyArBRYTpPpLGZWRHjtgKIqcW2HKnSQacxoZwc551HGBWo4xVtqUjqS6UGMZ9SGTpVXpKOIpcU18rwitzRKJSw0u8yyBOxa3xnHM0InRMuaDJDnBbbr1PKFqqLMK8oKBCZpUZHE39uHTI0ijmN8y2MWJ2gBpixJs5KNzU1sy8TIDTaub3H3w7eQTDKkNGg15oiNiI7TIUtztGGTpjOSNEWonGg0QRgC1QjpLS+gKk0cxSAEheJQ8wxVWWJiQKkoc/CtLn4o8AOH2STBsAz2Lp9hWVzm3jc16C4e5dzVzzDb7XDhOc3z5R10l5aZZj/LZOSzeGQB3TvPcuOAZ848jmi+gbNP/BmnTzVphB7TSQ6iQXPR4Z5qxv5Tf8Cb//Zb0HoeJwhoeS2yKmNz8yoXL7xI6LcJOw1On3iY/+sPv0IuS5559kUCQ7K/v4/Aoml7HL/5dg6GY5q+Q6+9SBFlBKFHqhS91RVm/QFpWXJq7SiqMnAND9cXZGWBFDbSrdF+29s7tIIGniHJo4Qi9PE9B6OCVOfYpkNRlRh+A0OMKSYJotHCDxpMk4zMkKwEIdkkxl3rElU5jCOkZdHr9hhOZxzaG6mUwrRstAapBdEsqskapsW9px8kGoxoNAM822VjexMhTLZ3tphfXqO30GM6meCHLfb7B3UokCHRhcZzfeJkiKAODsiyjMuDDSwrpFQGltskzTKwHP4f5t40SLMsL+/7nXPu/u75ZmZl1pJV1dVd3dXbDD3MwMBswLBYCEmAgRAOYQbJoS8YGSSFFTYYjEMOG4UUCiwUAjGAsRBjDwgG0CCGETvM1rPRPb1WV9eWlfu73/Vs/nCzi1FgOsKBkOZEZGTm++aXfO899/zP/zzP83OmxlhLHIbMvSaVAr2YMV9N2T57ntViSdhP8GFIvT/FVQVx6jFNja0Ket0hL19/ERdJ0jRh2BuxmC/xImjNr4czvHYs5ksIFEJCN+2gQ4HHYYzH2NfOfxVV8/8FLvmT8boF6zNPP8fxfEn/jOLuvV3Ontnixr09UhUzHA+5fHGD2/fuoVTISy9dZ7IqGV0Yc+vGq4y31pnsHbNv5iQmIR5lBOEKe6qLeuPjV/jDj3+K8aDPwdExpXYs5lOuPXSZRZkT1Q5ta8ZrI+7s3eOTz5xwbucCZTml3++SxQm7B0f0u10evnyZ6WzC9LBh0hyyfXjEHS2ZLmd447h66RJveeQaP//LH2AcwHjnPA9cfICj3TkvS8kLN26wuXkG2R9gliuyJKVerlgJS20NzXyK955pmHHuyg5f+WVfC8uI8ZktnINVVXLj+edIkozVquD29IQo1zzy4BVmSnH35g3+yld/JavFMVs7O1RlgQDGG2uUs5xASB5/8kmqqmE+n7O1OW4NJ2GAIMRp00b6KIWzBufbDobzkkAGKHVKA5KnLmHfBq+3xZa73z3R1hAEbc6Zc+bUvGUQXmK1IU1TlFJtZyIMWw+xNlx/dZcgy0g3e3SHXbqNpz/uIAOFco7KlkRyk5U+4pGrlwmTHuFWwvjsFjrOiK2j1+9SLVbc3r2HcZ75aonWmjRN+bq/+pf5N7/wi2RxF5s7GhVhVIQVEfN8yeZaB2sNt3bvUMyXSG25OznhZLnC2qiN+5AAijhUbaEuBGkYc+JqMp8wWS34vaefZrgxxFaGX/7gr1FVFZ3NDbrSUeWWWGYUekUmU1a9mJsv36bXHVDkS5J+H3Fz98+3Ov0nGK9FVDVNQ5J0KKtVS7gR7eeSZV2EsFw4t0NTV4RBBhK0tURhi/Os65og7DAcbaBNjdGaZDhg3O9QW0O1LAmFwllHbTRJkrCsFyAFR0dHRKo1+62vr7P00JQGKSMcnrx0ZFGM1TV3by0gLDh7YYsLT/T4ii/p81t/sM98fsIzzz7Hpz6Wce2pr+fyI2/iwYe+j3y+4g8//sE2+TUQeB3ilaI/WmLyQ7pxSh04ks6QcTRA+orSNqefRcJgMOAzn3yOq9ceQGvNj7//pymP92n29njujz7G+to5DILaFXRI0aYmz1dsra2xmhfUkQcp0JMZZ4ZDZGZZzQ6wRtIfjjg6mdNgSFKFLGC+Khmd36IxGmsCglEApgKREHUTaAyT2Yyt9Q3KvKIbJfggQSxypBCsr41ZrRbUxjPaWMfUmsxYXL9H4CS6buhlHYJAoT/POOWsB+FRKISw92l29zcUn08UOx1C/IkswHtxKgfw7dHl5wvHPHg8rSzeIZVAWIdII1Q/ui9XMo3mgUceASXpxXHbHVYRzUZEOV1gG0s2HuLzgmqxpPbQ6fc4qVakAvAWkpClq4jShGIyR4xSol6KUQLbNIRxhNXtAudsm1wQhiHOe4LgFE8dvr6J4z/3WC1z6kYjXWtslQHMCkMkJFEcMhoOqOqCjfUzzKYznA0Is4TFYkWWJeiqYVXmZHFAf7CGDFY4XRJ2MnbOb3MwmdDkNUJKvIWyKRkNB9RVhRQwW8wZdHpoXYOQhImkLutWViAlq7zNZ42ikP3dCfkqIE0Czm+mPH4xY5EfEkeSj3ziFif3Mm7fusDW2cs8/Ni76cyu8bnf+ygIyaouiYMuxBIpluhGEwUSqRwqzkhUhvANVV0TRJLtM+fIoi77e4ec7Q3Q2vCe7/6bLI+PSLSmWi7pJgM6gwFNs8KWFWfXRuSrGaPBOY7rE3QAgYrQ0zmjTpcr5y+QL6YomTDob3Iwq9FYosghas+yqOivj9B5CV4hOzHe1iAioqz1YyzKFWvhGk2lSYMQnThEYxDW0e/3sI3GaEe330c2hsQ6XJria4NuNN0sIwgavGlJVNDqVMuiRMiQMBKoqJULBnHQxis7h/UWISKMb+h2M6QKkIkiThOcDBBYwiAAbSirqo0btAbvHAjFxuYW8+tTCMBrh48j6HYwy1XredCWM+fO8eIfP0+EIDQerINOTLUoiWNP0u/iqhpTlpRNTS/LyE1DRevC1Mpz8+AuabdDPV+xNzlCxgEiDBDOEIYBgVBY55G+RdEa06CCAGEtIgyQ4s+BZr05OWZRlCSjTdbGGxTFilTFzFc5q2VFUayIpERJ2N+HaVVycnjC8fExy2rJHbsgi2LEmiM/PuChzTFq6djpdfjtTz7NufNbBFnGsq5ZG3YRAUxWC4QB4w1JlPDqndtEcUa/32d2MkPFMaGoWeiKNz/2MKONMc+9+CKdtU3+4NMfo6imKCfZ2Ozz1LUn6Q96fMd3vIe7d15hOBzyE//8xxivdfjsJ19msr9Pr9Nm2X3yM88xn56g0oz5bIUc9NlZ79Lxips3XqWYLtBe8+u//AEG6z2+/Tu+mdF4nU9+9OOsjUaM14YU9ZLHrl7li689wdqlMb/28/+KhS64eu1Jnrl1nY9+5Gk+8fGP8MynP8ViecL+0SGTqoI04if+8f+BaBxXrlzBNWX7wPYS4zSNbVo3ttaknYSmaRBI4qDlZGvnkWFronLOYV1FSysWCAK0FnhnUHFCWebgBY3VWK1xCMoyJ5MS7UGXNU1V0Etj5tMFK2146uGZybsAACAASURBVK1fzOMPXmIkBLdevM57f/pnySdLPvapT/PvP/xbZOtnCCLLgxfGnBwf8PXf9PX8g7/937AoJgzSCIPh5PCIVVMx7A8YDAYUTY2KI2bFgt/4wAfpdHqcnByRSsk/+l//Z37wu/8258YDlIM4jKhLy1u+4su5fP4y197+Jp79xEdRQURdLnnPt30zrs4xqyXDtXUevHIJ42s+9Gu/xWBrgwcfvMQ8L5hN5jS1I+71+B//7t+DosYYw9lzl5nnR7zt7W/i67/9Gzi7PeA93/nthMZRlTnDQY8f++H/gWT99TPivhCGkIo4SekNeogQIiT/xTsfZzgcEgYpnW4fGwhu7u6jgpAwAq1LnKmYHU8oFgVSeJwzp1FlDYPhGk5LysJQFA6vQhyepq6I4/TUXQ7GGNY310h7CXHa3q9CVdy5d0BuLMX0HvvLKVHYwXpD0hEkgefoYJfbr7zAS8/+ERf6L/L4uU/y7V/zGf7Ot36Uv/LGH+GdZ36QHfs97NR/nW950z/jXV9yDLrERjWKmqZaYahZNBEITTeVLWQ2VIQqYNhNSeOMMIx5+9uewhzd5uYf/T7P/Pz/wzMf+GU+9hsfJkpjIu9IGs1a3EM0DWkYcObMNnWZU5uaKxtn6WpFXWmqxtEZbtK4kHgwbqUJXhBGKRuddWzdcLY7oucDwrpmls/YjPt0STjOZ3in6CmFcpaZLjGxoHEQhiFxv08TeEpXkyQZVjqmyxVSKKg0oZCsRzGb/Q5pFrf64fvX36JOUcxtqn6bFnDfZHn/q40PU0qe5qT+yT3kBK2sCECK+6ZNj8W5NhBLGIFXSbtwSonzgmEyIGkkTdMwGo0poh7D4ZDCaybTEhNK4jDCq4Dedo9pOcNhGaxv0RmOCKIOvThGSscwTUkbT2glPq9alGUFTCqqRYESAu8dxreAA+da0p91DodvISraks+/sHXnpbEIFdAdDInSCGEdb3niMnGcgAsIwwiU4HAyRRuFk5ayWFGXOfPZlFmeEyiBDyzL2YRYSjpJl1iE3Ds8QcgIEUY01iJwhFHcxtH5dr4ORwOMsMRJjEBgTM7JbEHjDPnyCB/Q5okv56S9mOVqyuRkn+O9XY73XubBzSVXtm7yX32D4avf9Cm+/Oqv8O1vf4Zz6r3Exz/El5z/Rd54rcCbmmkxweoCazW1KSlJSWPoRoqqKPDOIaWgmE3pdDIuXtrhjW+8xuTWy0yvv8y9j3yMGx/5A/ZefJnx2pgsDZnevkUaRHSTjLqp8F5ydLjHZHrMeqeLKA1F1dB4wcH+BGMlg42tNoLPQxDE9JMepmlYz3okThJ5x7JcMggzMhGzqHOck2SBQnrHytSY0KF92yAIsw6NgNo1xEmK8ZpVWbXFZq1RQtCRgrUsIYhCnDFY12pJrWnwePqjAf1uQoigylfs3t3Fact8seDk+IQgjpAB9DoxTd2wubXJgxd3MLZBBRInoK4bzGmudhiGmFNCoLWG43uHqDA9JRNKHnnkYZ66eo2+DLHa0O8PKGXC+Z0LqCTCRymz5ZwobAl6Vx9/gFU1x5mG4foZxpubyCBkNZkTpSGboyGisvjKYIsGFYZcvXAFZhV1XpEmHbSpGKz1ObO9RRwpdnbO463DWoMKJE88eAVt6tedL69bsD7x1rdQB6CanNkqJ007NFqTxq3rMM8rNkcdLj2whpNzvvjaYww6HXKl6OiAyfGMpNvh2nibtfURx6spqmspYsnGaMTLr95hspijgoQs6dCJBL2kQ1lodGWJkoiNM5tUdcFTjz0BQpPKhO3ts2zEA67fvg3Ngp2dTfJGEqVb9LYfYlUL7t44QpuG3dsvo4zk+tTyx7/zURox5dlXblOvCnzSoaw0ZdFw9coFtDcUszmrOueFm69wdechPvrCs5xd32T36JA06/Lmd7wNZQV53dDp9Xnzl76ZNIo4d2adfLnk1q1bzOYTLm1c5tG3voMbf/wCxhievPowDz31RRzffJUHL15m+8KD7Gxs0YtTfu/Dv4Ve1Rzs3SVJYoxvuwXQdjtU2DbCrbX0ukPqum4D2G2bRNAuOB7vWiE2yNPYDAG+RSJKGZzSiE7jr7xvA4GtbRcnKbBao5QiitpFqNfrsbE2RFYF0hlmyxkuTHDOsZuX7Jy5xE//6D/ixisnHB7sspxrLp3b5PyZbR6+fJmBTJjP55S1xniHfU1bd7qozIoCbyUrbRFGorVhu5fytne8jaeuPcgsb80GTdMw7Kb89r/5Nb7ve7+Xf/ovf4xyUbJYLvES8s+8SGEENgzItSFzCQPR5bdvvMhaNuC7/873sMxn7Oycp2kavuZrv5Lf/N3fACGYLlfYRrOcFLzpqSf52ne+nR/4oR/g6tmzXDl/jkQGqDTk4bc/RTLo/EdZpP4ih2laCYOuG4z2NMAnPnWXyXRG3InJyxWJ6hFnkqbSGBMQRz2CICLrd+mNeqSdFGMrZvNjFvNjmqaicZaqyrH5ss3UJEDEUSubMG0X39QFZdm0TTkrCLIOH//0s8yWE/Ync8pKIhuNUw1SFTirsMKAN8jTs2ZPhZSggoAgNuiq5t7ebW5e/xTHd19lNj+iLpeIICAwBsQcKSEkoJx6at8hkCmBL2iagqzfZ9TrsjZIeOa3P8zHPvTr3Li7y6LMsZQESYxIJNLFWGmw0uHDiLofI0WAEpK0M6CbJdx4+QZr/Q6Xz11iVi3ZW96lG0T44wnL4zlpFuCmxzSuwqQxRaCZ1kv62xfpD9c4PJohog5bgzWOjw440RUbW2foyYRRnJClXarFgspUpEmCXa0w5RIXSUa9Ps5aOuMBAs/MefYmU5ZVg1UgRVt8qlNdaiDE53VVweHwLT4H7ndI+ZNi9DSvuT2NaXnl8vS54sRrjuagPZXx4AOPklEbn+csHW2IihKZxliv0M6SbZxh+8oDLCvDuJexWM1x8yVhA5ODJeeMwlvHqs4J8wbnNVoIwm6fk/mCWCj6w0FrKtnoYqqaKRUbGz2aqmJvb5/J0REvvfQ8t29f56XnP8PtV19gb/c605N7NE3Jxnj0n3wO/v8ZnV4fJ8DWFVVtcErx4vUjiqJCxQF5WdCNewxGMVpX9NIhWdzFByFZkhFEIWknIw0E2pTMFidYX1PjW2rfZILzDmRIEMdYZxBeYE3rVTDGEUYR3ljW1jd46cZNqqqg0BZMRLFc4qnIOqCtgiAgiFOc9VS5xrqKuspRUlFhme4dcjy9x/XrzzI9uMeqWlFXOQ5BP4nwrHCmhc6fHOVEyZhFXtMJYVksyXo9zp0/Sy+NeOWzn+L6M5+lspbaNESxxwtBaWts44mTmM7aiDyvaJKAQbdPbzgEJxgPB8ymSzaHA85tbHPn3h1OVkdIbZB5TjHPCSOFWy3QTuOSiFpZlk1Bf+MsSdphMlmAihl3ByzmcxamoT8cksqQbhATxylNUaJtTRzH+KqmKXN8IOlmnTYdoN8F71k5mKxyirrBq9aIqpQkCkKiMCRwDrzDWIND4byjNIY0Trnz6nVWK01TV+jGkiUxSZyQpWmbv66b9lTltZMRWomWR2KcwzkwwiMJcc6RSsH2YMA4DDFK4E511J21MQ7B0595huOjeyxXC5r5EmVgduuIoVE4PKu6JKocysNBkZN2+qyfOYOwlvHGGLxj+8Hz7O/dYyU0WSdE1zWHB8coPE2dMxx1mR/tUSyOmU/2yfMZST9ltDZ43fnyugXr4c07DJMxn71xF+ccd+7tYmyDtZokjYjTFBV32N8/BJ0yneyjAk8YCaIoIel0WFQrbtx4lVBF5HlOL+5xMlsiFWyevUhVVRRFxWK1ZNDvU5UFUkq6acZstqCua5xz7B3uMxyNmC9ztHe8ur9LFCrO9EcIbSlXOatAU4aSeXHC0nl6Wcq5c2eQ0pNKwd/81m/h9373D3n/L/wS3X4fIzzDwQAZtbuRQMb4JOTimU263Q6/88nP8O53fw2vHt7lX/3MzzDbP6DRmtUqRwaK8+fPM5lNqcuKV2/doTcYcuHSRaJE8uwLz7B5+Rzndi7QGwxJaAuvncsPsbFzjnu3bhJ2Ymzg+dJ3vA1Oi0Tgvh4L51p0pWkXlde0Z81rJBdn0LrG6rrNh8Oe4jblqQ7tlHpz2mkJgvj+sWAQylZ3eHpTN8aeRl5YIpUiPOi6JFSK2mjmqxV39/ZpnOfcxUutUL0uWNiaNEzYXB+xOV7jX//ce9vMXCl49OoVhGpd3t57OkmKMYZ+v09RFHSyjO1zZ/ne//7vtzoWD7lxFEdThIXZYoFE0E0znDaA49//3u/Tjftcv3mLjsqQUvC+j/4moYVg1CU4jfbYPz7hTJpy72CXQRxx4fxZnNckaUDcTbl69SqdQR+PZHc+YWPc5+f+758nShI+/FPv42N//Gm+5a9+I7UwJF5ycPOAXvCFX7CGpzl2xlmcsSgjWSyWxJFCONsiQRdzDg+OSbK2O1qWNQJFoCKaxtDULc99Y7yOPKWktHhNxWAwoq71/azOQAQ0VY13BiHBW0NVFlhrqZqKBx7ZIQ5ShG7YPz4G22qIWwKLbgOyhcF6gfQgvMWjT9MBLEJaELoNvgfwIc6Ep5FKGdBah4TwxKqlaVW1wcWStY0tMl/y8vOf5AM/+9OcnEw52ss5vnGI8bBYFkQ+pJv1kSzYWr/I2e3zaF3BZEVVVZwZD8mnc4pGMzq3xeFsQr5csbkxpqhKwiDGDTqsjTdpipLLjz0OtaRaFDSNY6lr9u7dQGpNspbirMZb6Pf7bHT67O7uEkSKxhqq1RIRBRDHBLrVlR7R0OCZ5XOiKMSUBYMsJI0sw9GYz3+E+/sF56nD/7ST+trpvz+NoHrNbPVnJwecUs+E+1PveO8R91MJ5KkRS6HDgMI5lHDkeYmSktI0bF/YIVAKW2hSETA1BttJ6I16lFik9XS9YukqOmmIyEtsVSJjxSr27B8fsVCWBuj1ByxxFNqzfe4cTzzxBFcfeYRr164x7HXZ2tpi5+J5Br0uZZlzcLjHfDX/c8ymv/hhm5pQRkzzHGcdTd6Q5zlBQJuXi8fUNQcHR0RhStPUNFqjpCQMIpyHqm6o64phf4izlkAqnG/jjUZrG1R1gzGWRmuSMKapasARBIqmrqnLEmsdi3zJhctnwSkwht2jQ6QXhDLAW4cxNRaBlZbaaKyDUAniROGRSBw757eYTI7Y2z8kCAI8AUq0UU/etfItoQRZHJGGGYeTCYPBGitXM1+skNWS3dsv84e/+RsslzlNKTi5c4Q2lpOTOUmQMhqOUaokkAlb584TRIqgMljdMOhkSAc+DAmymEWVU1YVly5fpDaaIIhwWUK3N0RXNVs7OwgtqPMabTyV1UxO9kFrwl6EcwZnHGka049STk5OUKoN/m/KEhFKOE388cBSOIyAvMoJwwDb1HTigCiwZJ1uW1R6356WeLDWtCAB72mspa4rPJ4kzRBCtXFV3qGEJAoDojBkd/c2UrW5t71O53Q6twkvgWprhCAIsNaipCSJEx648uD9nGWDoLGO2nmc0dR1QxQE1KZhtLHOdDpDaoEpG0oHLomY6hzt28z2zAsK1wCORBuK5YIwDhD9mMl8RhV4nFJsbGzSBJLKQNbvcfWhB/FScPHiJcrjCSjJk088TpLGmKbiYG/v9N78s8fralhdUXDuTA8h13j+1dtcfegRXrp5gwd2LvHC89d56aV7PHrlHGe21lnaJWmm2Ns74LHt85io5tJwxDOv3OXBSxe4uN7n0885VrVgZ2uLZWlZzPY4v7VF4XPKSUE/DXGRRUpN1EnYHGyz0e/zyf0Jk9kJewczRoMMPZ9zbnNAIgNsYdhaW+cTN25yYXOLG3eOOHNRoZD88Uc/xlvf9uX47SHf9999D2mT88yzz/OR3/knlATceOF5Ht46z95iSieM6a53uXH7NutrY0zeHq2d3HyRN7zxKf7SL3wDu7duM9oYsrjVLjLHe4e88Y1v5HOfew4nQpqq5JFHHuXVG3cZjbdJheT8hbO4pmB48SKPdwbUJuePfuV3efJtT7B/74BQQXc8YtAJWDu/gRctCSIO4jbDLZQoIVuMngporGbYG1AbjTGOILbIUCJtiKNGyD7OFyhb0ItDfHlC0AC+wVUVSZi019ZLmqoEHGkc46SnKpfs7t/hyrkdmtpDIPjc5z7HsjI88NCjvO1dQ26/fJunr9/jIeH51Q/8a373M69gbcPNmyueunCGn/zRH+Urf+qLuXP7Hm9/+1NY69uuj5TU8xV365J3vvlx7uwfY51gd++An/5n/4L5akqWZrx4vMdf/sZvZlXXnB+O2T05YbC2xsU0ZH644O/9Lz/IL773p3jp2d8kS2NsI5g3giBNiI1gtZrxh5/6fc4PB+ztt5zj7/v+72cyPeCrv+wd/Mq//RDvf+/7kFnKeNhhVdRYbTieLbi5t8c//b9+ipNXdnlm9ybv/rIvoy5qVn146k3vpLJ/BrLyC2hYbxGnMVCSNo9VeIeNWpBGnpfYxBNWliSMqKoCnCFf1i0MQCmUUmAVGoMKYoQMMMLTSzO88ShvKYo52tRtx834NuReBFglCcMQXVZ4bVmLU/JIU+oZJ8crHn/qEbx/+tQWBJ4GZVOctHgC8A0IjcfiafA2a4skEtrirIULSClAzdvEDCHAO+YLQ9irOb79HJ/76NMoJ/FZRJim9LIx1lo6aYgUGbVu2J8ckpzbgEnNfDXDiRPWBh1Cq2HQpUDzyt4hSRQw7A2IjGRSTxmv9zC6ZhyMuLM8arGiukFbw3S5IowiuhZiKQmChAJDl4DISJw3VM4QyxBfa8ajdWpruLuccuXMObxpM5iX5RFCW3ZGI3oqwoUNhdMEUjGbLvAEBB2LU5421/81A1XbBRH3u6uvdVr/9L3iTzevUrj/UKZ6asASKHDmdNNpAcsp+fGU0OoQtAjnjg3xWKra0rUVzjU4E3Hu3Dlc4PAyohN3afyCVErqRY0gIpIaFab0pUOtHDNr6KPoxF1Wdc76+hor1+rrV82MB3trNM4zWyxomhqlAqzWpEmEsR4R9ukOu/TXzmK0pt99fXLOf+5hrSaKYjwJ+SInSxNWRU7a7VEsc06OF3RGMX0R0E1CHA112RBKRa0XxECeNwTdPkEgcD7AekWUxKhAUdcVaRhSVCvqqiIMZAuawBEFreQgDiUnR1NMXaG0JwgVVTVDV4YrV3dw9hZJlDArKpJYUuUKOq1RczE9YW08wCeKBx64gDQJ84VldrzEIFmucpSIsdYQBjmBkuRVSRQIVktDEBuObz/PnVdu0Yky/mj3Nr3xiCzuIoIA2TjGFy8wny9wpiHsJGwM+0ymE7q9gF4nohuFiCiENGLVeNLxkNV8RYBivswZr68j8KxFPea+RDUFqtI471kVFSoMyVxbDKkwpvSGLI5RrjUb1t4QigC0o9ftor3kuFywPRzigSQKaFwL5lgPM7biPkp48A7hYbVcobVDuxpDQ1lUdJLs1HeimC9b42Sn22M0DilWBfOiooPnYH+Xk0WB8468tAzSmNs3bzB+wxupyoq1tcH90xKJwjaWymk2+illrVuQQF1z58ZNtO2glCJvcq5//DPo2KGQWNegAkEUdhgOR1x69EFmd/epZgVRL0D5oPUhqJgQh/OCepkzSDOmZUkniLlx/RaLImfnwg439/eZHS3YL0su9ocY51jlOZPZlN6gR1NrirJgVuQE53pEyYBemvL8CzeIk/R158vrK1yDgIOjQxazOdViyb17e7jK3kffxXGrU9vfO+LS5Svs3j1ibTCkl2bs3t6lm6QYCTOdE0aeJx69zCc++yLLIifPV4Dn4rlNmtIjlWU0WqMqGgb9GGvg6HDKcy+9CgGYRrN9ZsjW1jqLUjOZ1xwsKl6eHRDECaW1xNKwfmaTcrFgfGab5557FnDosmIwUPzID/8A7/vQr6JkSLVYsTlcZzweo05RaQ7RIgGjNt80SRKWyyWb65s8/clP02hNOctBKqZ7h5w9e5abd25zPDnhxp3rjEY9BqMhDz36MAGe2WrJL73/lzhYTDmYT9h99RarvQmhKhiO+nRHZ3AqxUcdpBjQNBLTFIT9Hk55jNcIa+5rU51r9SnilCiilGj1rEJQSU/gJdZMQEIUrbG/v0CkZwmHGYgIFTdYV+Ex4Jv7Ri5rLcYYgiCg3++jjcFLTVNC1ltnNBwTB7bVk6YJu/u7XN4e8Aef/Qy1q/AesizhhedfwQcrmsIxt0syOUAoSZQmrYNRtgtoHKeYRtPNEtI4JE1TpJQEQUAgAspSoxuPoM0HXa1WhErR+JKOEpx/+DKLuqTUbbRRUayQspVMPP6GxwmNZfP8Vttdkp7jw0MaA3/wkY9yZmuTylTgNcvlktVqwclsytmzZ5lP5uiiYLQ2oF7B9Revt3x24fBGI+0XOJicttPonMMZjabBKI02JW/cGvDEMOPbn3yMv3Hlcb7uDY+zqOu2SBQhaTag2+8TJTEiMKzyKavpEYEw1PmCNIhYzWbovMWBdnp9st6IOOyjZERZlggBmjYf0piaxWrKSy9cJ8QQlwIrMgZnx8ThACniUxKbwtOeGHipAYXgVOYiBVJZpNK0aYMJUjkQ/jTTUJ9KXyQeSxA7+oMO9154gXDQJzk/QtQNceMpplO8rlitVqwCgVaKbLxGUzZka2v04xH1Mufw3iEPX3qYpBGMRYcgFW2ixXyFDgTnts+Sz3eZ3HmRP/jIh1mTGUPZIUmHDHp9qsUKqzXjixfAgCg9UZIxqxcUqxmxCltUptacNI7NM+foRAGbRnA4OWQ5OWbvlVdIA8l4MCBwMNOG3Huq2iOClCTtEUUpxVyja0t0elt+focVWtyqs63O7vNH+3f8GeYrcX9bAG1R277+eaSrUxiB9wLlwGsD/YTYWkZZFy8VjYZ8UdM9u0FcgLKCZZOT6pC6FoSdDgy6qDjB64ooluyvFmx0B4RZgrEN2lXkJqeql+zduUVHBuybGVlToevmNLKr1a42pl10pQyA1mCkhKRpvrA3mUIKqrpCVxWNqcibHN1UXB5mXOrGfMWVi7zzzAUeO7uFD0PKyhJGCVnWQyBJkgSvLMtyRl3MGfYTjg6PkAhWizmmqkjSiCjOiLMOaTIEJ3GuNasVdcF0tcI6TV4sOTk6ohMrKD21DVH9Do0LUDJusd8IwrjdJIRJwGqZIwhwxqMiwY3rz7F3cq/dkBpJEreGrXabqVvOvW2fy0EE3V7G4c2bZMMhRWDxdYMqDfUqp8lXeO+ZNBWFNdigBVV0RyM21rYwZcXR4QnKKnxliKxC2xJfaWyZI+KQzTPbVMWM5WSf5174HB0SMh8QdwZkWUpdFDit6W1ugAVRe6I4IdclTV0SqoA0agvuuXEMh+vEyjJwgmVeMDuZMD2aEicBvU6XQDhWpqHybRymUBFxnBEEEVWuccaTBgHOezyuRV0HUbue4/AWgjCkqiuyJGSymGOdxXtQUrJaFS1kxbY+n0CGSAGBbJM9XpuvSqo2+lIphJIoKQFB4AXCeGwcEBhHN85AKqra0pSGaK1L0gg6WYdlk6O0xGggCBCdBBmE9DoJYSAosAzSDkESUpY5jWu4d7yHkJbjo30SITmu5wR1SVGUpFmCbpq2kFeAFxRFhUC2OHjA/nlSAuqqIcpSXrpzl25niKgLkizixRdfBC9RYUBtBP3uNvPVlJOVp7OccTxbIv2QT12/zlsf2OZwIbh1Z8qyXPHolS1qAb0erA2HzOdLVk3NWq9DnHQJwxlOWxQ1XkYEoeKBq1c42b0D0rF7cEI/Dbn20DZPP/cKl0cDTlYLHt65TIHm4Yev8cpnPkstYz7427/FcDTgL/317ySLRvzwP/9RhslZhmfWCCLFvbvHdLOYnTPbzKqayXTJgw9d45WXXmQ8HpMGAy5dvMzs+IS3vOUtHB7cI+t2uXV0xM7ZbU5OTljfOMPxwTFnrzzK4Y2beCX5yO/+Lu/6mq9lNZnxFV/3tax3Bvh5xeVrD/K5z36E27/5C3zwx/93Lj90hSoISKKItz6yyT/5u9/No+//PdbWY6a2xLgWICBUW7hpa07xqw7pBdYZwjDCaUMowBiLDTzDdMh3fdGI81/yRj70E/+QwBm6W5tEYefUmHDagQsUuFPG8OlrVVVxcLxgd36Mk5ZHLj5KvSqoFivm0zmz1ZK/9lXv5tFHzqH6I/7Lv/YYf/jxVynnGmNBqRgbey5nF3hm9wW002irW2lDpHDacOfuPay1rKZzRKDYnRwhA0UcBOS1IAgkW+MhpqpoKs3R8THTYsH62ph//GP/gu/8zu/iw//u91FKYXSDkhHOaKIopaoqXFGSjPuIQIBzrA1HOBWzd+cW3a4l6SVoXdPNUlRjOT4+Jgxjgm7M5vaD/Nz/+ZOoQUza6xEFYGxFrmu8iv78K9Rf8KiKmigKEFFAgyMpFetpzBlCklGPsiwIvcJL0L4CGxKqAO8tVdEAEIchg363zYdsNNrkzGeH2KbERh363YSyLGlDlBoqt0JlATQCX9YsVzl5npON1nn0ySG/9LN/xLd9W8V7/sa38uM/+V7cF2m8T0G0BbNUJc5rsB2kKsFKEEVL4/LtQidlyGuJF0I6wOAIQZh2cXQC4hwZZlilWFvLqPZzusM1NgdD5vMpzlpUJuk0JbOioVCCJGpYTpb4OGNrfR3dFLx842V64wEChSiWoKC/1sUZyaw44rmXbpHnS4pghEWguh0QGl0bOoMBWSdgdnREMhyQiYQ4NCzXQ3Zne9DMmR+VbF84T6UsgfJUqzmmn5IkCjGt2dzcJDBQ2IJMJCAcsQzRaBbFirX1TarZiqyfUTQ1jQMfOAQSKUGq+HTTUiPl52FWT8lhQra9bQ/3I++EB3Ga7oBsiTbOudP3bdtVdQLv2g2zFQrpKxq6EKaYxZIg7RDMa9x0AUoS1BXBYEQVQGAr8BIXxmyGEoMiDDXzDVtYsQAAIABJREFU3GMygcs1G6MhS1VS4tns96GwHDeGNEoZDVK89sQLQe09TngCGWKMQfkQr0K8UOimIAxSkAbvFLr5wt5kVkVNEClWxuDiCKU9G1mHIK/Y6HRpmobACWQWU5mCsmmxxaZoYx1X+YL1bgftQ7zy6LoiTRSH9QpcQ5z2cNZTVhVBIFHKoalRsUJoj28sdV0jBKRJn53LXX7/w8/z1rd+Md/0DV/N+37xl4kehtq0Mj3jA3r9jOV8gvMhR9NDojBg4/wGgQp5+PHH+eAHf4cw6iJkK1cQDrI4bBN3tKHb6bfko1QTpylxp0uQSVLRpVEp4/Eax0eGJIqw3jKSgoOmgbiDdQ1FPqeuLTs7O9RFTj5fMBqvIUVAkHZZLqaIesr1p/dBGG7u7qGbmmywxsufe5YvesdXkkpHoTVRkhElinyxIO52CAmIAk/ZV5zkU9AriqVmbTxGS99miFc5otvh+Y9+iDTMyA8TAuuwQaulD2lPm0BQNjXdXh9TGuI0pqxqamNBGyqtEXj66RpGa4xusEbTaM3W+gbdTooIYs5uKybTAm1cK+kREic8WdRhWa3wQrTmQy9OM5ktVV3hnT+VE0pyY5Dodp4EMa4sSTpdRNFq4BujaYqC/tqAF+7c5OrODu7gEGTIQIGTAY3QVEJQhI6Obdje3KRUL6OFZ7M/JGxCDlc5WZLQ7w+w2hJVEgOYpibwEV54orjPrTu3COIQaGULCIv1YF6/Xn39Duug18day7nRGt/6je/mh/+nv08WKdbXx2RZqx/TznPjldt0sogoCwnDmKzTpZ+ATCWv7B6SrYUUuWZrfZvJatFqTXo9Fos2BDdNFEcHUwyeSCiyLKPwhqyT0O3FLCYnhHGHRa6prUMpQVVY3vD4m6mFYTabsHvvNocnx/zx7/8m3V6ELivOX7jMq/u7hNogAomgASc4t32eqqnpDvo4KQmT1v3d6w+5c+cOKogoioIoalm8WngWxxNiJGknZXNtzNF0hqDV9nXSjIP9OwjZ7mi+7F1fweJkzt39PW7fuMGnn/44QRJQrkp+6gf/IS8eHlN2uu3Owgg64w1q7RiuXeZf/m8/hA4bQhShVFgVnCJU5X0NKwDCt8VgVeO9RwtP0ovIkHzk3/4qvf4683sTxsMNRK9HMz/mzOXHEErdR2167/GiPcJtmoaqqpBBQFmXyEAxn1XosiSKIm7f20NKSRrFzKYnfPbpF3jTk+/i1//dsyRB28FRgaGopgy7GbEMWOQG5cAZi9PufkfnZNrCEZRsdb1/67/9boIgoKhKrJD3A8N7/T7b29t0u10eeOABmlXBB97/S/yt93wXXjcEtJ3nIGqvX13r9qgyDrl54ybWerpph+PDY46PDnjwygN0sozwdEFfzHN0Y9s1WniiKOR9P/NzfNXb38m41+O5l15oNTtJBykDlHrd/d0XxOh3e0ghqPKKsDQoGfDl73pLiw6tKgIR4FQAtYW8Pr0m7X0rVYhUIbpxVLVFyIAwSugNBjxw9SpZp0e31ydfroiCEOk8roG1dAi1xwqopguGnR7r401GWUiI4R/8yPdTOpjOJ60WVqUg23xMoZq2CPIdlGxax7toWefCtw8yKTg92nb3C6Z2tL9DG9M2GHYw2tHpdJjdXbDMV8RpzKsn9yi9YZXnSB9yd14xPrPGMIowucE1gq21LjQrXFFAFKG8YHJ3D6sN98oFVW6opkccHxe84U1v40ve/KV801e9g/XuADuZ00xmxIOEVEoOXr1N2VhO9g8RgeVgb87N+TFLK9AW3nDtGpGArSzl4GifqlZ0fUBzmDMeDNr/L1SoOGJuKuJeBx0Iom5GmqY0VcGw16Obdeh1M8IwvH/9nXNoW+JsQxiK+x2X9sP+D3Wp6vQ9CW1+swfr/wS/+lqiALymfeX051NDqFC8hnmemAbRlSy6gjBuO0aOtvu93u/jccReIvIlt+slu4t9opkligIKYwikQhcVzlh6MsI1GjOrGMmYuDDUukHjSHopRniUEOSrJQIP4Slu2renLFXV5g3X2qDtn9bhfiGNQbcHgLKwM17j2sNXefzJh1vqo7UooXBSUcxyAm0QUiClIIwiwlAhg4DFqsIKcE7QyfoEccSZ7S063R5B2BpeoihAVw1WewZxF+UkGo+rKgadDlmS0k9jsIZv+q+/lcbDYrlgbTTGyxBjc6qqpDE58+MTApWBr4mThLxZtLcW8nQDCXGctu5vFSGkRMi2x6pUTFmVeO+JkxDvIE0TVscFy+WSOA45KuYQKubLJcIrJpVhOB4QWo2rLRjJAxfPY4oVxWJO2TSsZjPy6Qxdaz77zGeZLEqqMmexaLj8wGM8+tiTfOmTjzHub3Dz059G50uiLCKRkunhMY1xLGZzhPJMJzkHxYLSgbaOS2fPoYBBErHM5zijKA+O8bknlSFxFEMctVCNOCbMElwgWrBK1GJwu50OURgRRSFBGLa41dMc68a00jyta7xou6FaNyzmSwb9NQ4Pl62pklaT7qwmVAECSW1a74d37ffXZnvd6PZzF+Cs4+Kly/y/zL15sG7ZWd73W2vteX/zd+Z777nnTj13SyCBEIMlRlliDoWdcmEBDgZESAhl43I5LoIDOKRCYmNSQJVFKqCkkqKIURAyMrIGom7Uorvp4Xb37b59+w5nPuebhz3vvVb+2Kcb4cSdpIxivf+cqnO+OnXqO9/a+93v+zzPT0hFWZYIIZkXOdox5A2bsNHAdV38IESXmm/+hvdw4cJ5bG0QacJpHjNOZ1hRhZSCrKxQymIxmdbn1fLI4phksmC90cYr6/zX0miEXUfuSQTZGb3u8HCPfq+Hpyxm8zlFUaCkoqg0+t+qq6/rLRvWS70uymje8553cP32Pf7Bf/drnL90nul0WrvNHJurly8ShA5pknPp4gpaO2hZQUOys3WeK/df5ZXXTtg/PeWJp19h8+IFppOI66/u88rNIx7/0+usrgS8/bEHaToanJLptKId+qA1ZQXHowVJlmN7kirPmM1mvLh7xPTwJo7vMUxTrNIwP1qwfuEBznU26HiK49Tm6Rdf42j/Ds8/+SQ//IMf4up914jjJYHfwNKwu3fAssywlYOuChxLgRRIZbO2sY4WmpVOi2k0JWw1sSvBweiUtXYXv9ng1s1bXDy3xtVLV/ju//BvkMRL0jhjsZixvb3Dt/zVD/D+b3sfYAgCl1bbMB4tiMaajz1+g7ATcPu5PwM94dvf+RjvvXCN0G4TVwYtbXxHYkSdq6m1pirqFZfWGtu2cZw6rifPc37+H/1X3Hf/u/jN//pnSQoXIQy7d2/z1Cv3eOq5IZ999jXypEJYEoyFOrvR5XlOdUbBSpIEx/Y53D/i5q273Dpc8MxLr3LtylVSILB8lGVRSIeP/PN/hBuElJmk0Yat821cE1BaNipQXN3YIB/P0EYghIWo6kmesm1MWRDpAo1hMp2hpcKSioZyCBwbRwqWWczx6RFRUfBz/8XPs7KxxXd96IPcfOJxpC3Y2d5CKMnlyzs4jsX6+jpVXrF6fp2G52FVksl8QZKV2NKuw82jhCiKKNKKwG8hTIHXDCnLjGQSUUrN089dJ89rfG6eaxbziCKNMcWXdwg5wGA0ZBlFVKVGVBaFiWlX0PCb9UOmkthVRZ7nOL5/hmG0UcpmPhuTxAviLEUpASVY0gYUR4cDpBNQVBpbSbIkJp5PiOMJqZXiu7AcjVBFl8//ySs02w57ewe4ueTV3/89jFjy7Mc+QzmfUZX10lmYRt2gqvKM3maB9sF0EMoAAilKLCORwoCwkEpjpAFVIiwDxkKoWruZxgqpSgZ7Q6L5kGa/TV4t8XJJpcFZ7bAwmsCymU8KLGMhSlCWYDyespgumc5jxnFEJATt9XWWUQJSMU5ThOuy2u8RmJI8TphMp1SOotvo4HoNRClx20Ete2m2aa2ukrvgNxQPrl9ke6VPKgV3j+6ArDg8HmCLWtrTarXY7LWJ8pRoNqUUGpVXKMtiPB4zLzNG8YxCarSoOB3skS4XFPEcrSvQ1IQqU2OXLRWSl280nH8OCHgDDvDGA+sbN4B6g6ipzJ/nNr/xVSIQ1GACeTbJMVohlVP/D6QgLWOaMiBJItKyqGVjSpJ6HpxdqzJT4dgBraRCFgpta5pewEppUaU5ZAUqFyzHc1RSEIZtAqnJ0iVSlVSmoshyXGlhRE1pqoqSxXRCHiVkyyWj412mwz1mw0OKeMxsfvz/9xH8/1RFlpClKd1Oi8Ui56XXX6XveVjSqsl7lqLl1dFlQtl02yFK2QipiLMlljAo1yaOc5I4YzZPcP2Qk+Mxy9QwWyS1mcmUuBZUxZLcypAYyjhCFg1u3NhH2oKT0wGOluw/+QRFteC5P36KdDIAFHllkLrOfXVDH9e2sYVFVnrM5pBlMbPplBeef45m2KxjFC23JrilCZUokKqmqCklEFJS5AovsJgO53V2bGBjZIlbCOIsJ+x3yJWiTFIoFU2/xcb6OQwVs9mCxWyBNgqv3aK1tkbY6VCUBZYjGS8TKqza8GPB7PSU5XLK6kqHi711PLeJLgVW6COFxPID/GaT0jY4ruBCZ42VZpNSKQbTIVLBcDTl9mt3+OwfP87wcJd22CAtcybDU8ZRzHyUMolS5rMFsS5YpAmVAi00k8kpeRxTpBFlWSBRJHHGcpkQxyXLqMT1QozgzQg6IwQHezffNC5Ly+B7NhIFlgRl8B2H6kz2Ys7QzAKQQqGrCq3ryLs8r0A5SEtgSUVlckLpEacRiySiqCruf+BBRLPFU8//Gel8Tik0rUaboNA0nAY40Gm2aBYSSymUNliFYD6ZY5IS32ugdEmaLNEmq43jFThCIO3681wkeS09OR2SxxHz2ZDFdMBsPKCIZ0TR6C3Py1s2rC+c3KPd7GAtKn7we76Vbq/NdDql2WoTRzFCCV6/d5t4mfPsK/fY35sQOgFXLm7TCDxc12I0HVAUKbYf8hWP3MfBnV2u7JyjynKEJwjbActRwt7uKS/dPcFxPKJ4xmxWN2hFluF7NlUZ4wiF69iEnT6yLNi68hDG77C9dR8PPPp1iN4KrmvjBm0G0ZjT5ZjnXrxBXOZcvH+bf/XkM1TJhOnwhKPJkMV0gaMks9EELEmcJqxvbtT/fCVZ6/axvRBtWax0evhhwN2Du1xcXWF37y6O56Gl4bd/96Pcun3IJ/71Z7hwbg1pQNoOJydHjGdjEseis9Lnhae/AOkYf72D0+vxLe99mF/72FP8k09e5+f/18/xG3/0CTKW/MyP/AAWLkanJJkCan1nTTCqg+GlUOhMo0WJ1iWtboOnPv0ZhJOzEJAnEVXl8sIcnj5ecC9w2J0mJMmCPMpRQiBMDRbIy5I4q5BSMhtGPPHidYzb5hu+/iu5ttXn2s5V7t6+zXQ+Yff0lH4rZHvnClEBotRMF3OiJRweRqxdXefV11/BtiRJUVLZNlIILFdhKY0w9UTXloq1sMtma6WOyjgZoi1JpVJKBBvnL2JJReC4tDyPv/czf4dkOSJ59hY/9p/8OL2VLi3Loagqbu8eUJmS4WyC7wqEbeF4LpWBwPV4z1e/s25ATVVrjYIQv+HS6NROzCxO6K9voiRokzIcHXNw54g4irBdF40gcH1C1/t3vkF9qavVatDr9bAtxTgfM57EnL62i7EkSEklILE1trJo2C5VWVKVJXme0++v4AdN+v1VhDRUOmUwPGF0ekKymJPOJ8zGQyohUL6P12rR6nW5d/2YO3dPaTmCO4t7HB+8TBC2yQ9OufnUi5TLGdVkwahlU7gB2mT1ZFTkKHyElgiZAxJhLUBNQAcoaYNxzyarAiENUjhvYkUFFpZT1lpKGVCVBqVsds6dY2fzMmKRksUGp2PXaRpRwYpnsEKHRTQhsGyEL8kocYIQr9miv9pjIwjJpksiKjYvbdMtbKJ4yo3JiEqnzLKMeSXobmwyWU4pArs+O9Mx8WKMXG2yFnpkgwGje0NK4ZKkEcXxgi2/wV4RkwpNnuRIx6LtKMICrErStlsU0qaMNYk2BHaIMhIfRUs69BstHKloNFugJMryMGjqKNz6cq4cQ5YvqaWrX3yJF4izYG4h6gicN6qmXtW0nzfqDXCA+Tea3Dd/V1VR5QtAc23tEuPlkr7lky1TpAGd5+jS4ArFMsvwA5eG5+K1GlxcX2GpK7JpRGRKrNAj6Xi4haHrBOyKBEKb42XC+oWLSGwsx2aQLpCehxRWTbSyHMKgQ7u/Tmttiws793HlvofprKwTtjss5vMvyTn7y6pSGrrdLpYRdFY80qxiuHuEcp06U1bAJD/Lzk5L4ihFGIFj23Q7XTw/wPP8GqUrNZiCwdERtjDk0ZwoniMcCy0sKmFRKZvh3pyDoyE2huPkhNHgHkHQoBiOOXptF5MliLRi4Umsdh8twXObNNpNlN1ECoWyBHlVkpsZs+iYSts0mk1Ox3Xmap7mZGVGVdba5yIvEFKBzHFcDylctAbf9dlYXWOtv4FTgC4lhcpxlGA5XdDxBNKzuHnnFmVWMJiPsTwL23VxghDHswmlIo0zKkdhuTaNXFOQc5Bl9LouL+8PeOl0wWFseHH3DrlruPHCc8RRTJbM0I2AjudQLhYsBgu0sMnyhGqa0rNcBlVKfhaOP5tOCR2BVYEoNIFqMKksRvOcmRRobdfGyUoQSoum52MJget5VIBSDkVeMlrOQTr0em1aDRvHkaRpTFFWJFmOYyn8oFEPe4yp0wIqyNISN3RZLOupqzHiL+jMhdG8gVSWUuIoC89y6pCzJKGqEowo2exsUCBoKRedlThS8dILz1NmGXKe8KfPPkPYDGi6LpbvEXo2ia6IzrDUyncomx5WCW0nQHd9tCOZJBm99XVs5WJ7NhE5wnFrTbntIi0Lz/GxXB9hh/T662xd2CFsdQibLfL0rWmSbz1hffAdXHvwUX7rX36aX/71j+DbbVyrxXyWos+Ch/sr6/gNH10J1joBlSWZHs+YLiYUumA8izm/c444TXjp5VfpdNrcOzrBchSb7SZaa45PYxZJQlka9g5PULbF5sY6fhigMQRBQKPRwnEcup0WUZTQ6/VIi4jq9ICmrXDXuly79nak5zFaHmBnFfEsYmt1i8p2cbTPh37wh1h0dti8/CDf/P7vRMvaEa1sC9e1aTZDXn311RplCNieS1UZ5tMZtgJ0xeXtcxydHrK5cx6rLFhxbd7/V97N//Cbv8qHfuw/4tLFHbI0otFo0O/0KbOcRqPBbLFgsphz+Vu+FYxFyw/Z7q6ikwTLhg996IfobK7xC7/5YR77hq9htW2hNdhkZ+G6Z0hVVeerllWBVIpKQ6EryEs2d3aQRUVZ5kiT4mYTZqMhTUdyZb0Fll2L9GXtJH9Dt6oc8Fwbz7aYRTFvf/tj3H95kyrOubO3SzIZ8Orte1SRZP3yNu1WEyebcf/lVQ6PRvQutCgWKZutVYrZhN/+7Y9QIVhWMY6lqLSm1WqQJRHiLBqj2WkSi4qv/dav431vfxQjNKQVoQipspxOs8XB8ZBOe4XrL7/CcjrGW+nw3u94L//lT/8CXqPJ2uo6vhVgSQupLVxp0eufZ3jriJ//2X9M4CuUsHjiC0/j+BZRFJElGUmxROuKPE/w/VrXe3xwTFmWVFmGHbSRXhshPIo0QUmN2z9HlDf/Em5RX9rSVcVoNGJ3dxcR10/rfvNs7XiWAODZ3pvNh9aasqhbl0pLLNsnL8zZhAy63TZrmxtsbW3guBar6yuYQpNHKaYUfPZ3P86ltk2TnN/61d/m7Q9e4ru///187g//FYd3T2kETUwUk01SqiilikvyzGDIzpj1OQIHUblUOsFUHqYKMWKBMQqBdWa00rUG0tSRPHWdXb5EgWaBsjRSWkTzBeM0YlyUIAXT05iW32Kl02KYVCSzGbo0JOmM6HRM1+9w72gPozXDozHLSuL12jiOw/HxMW6vje0HPLS2TrPVZ6Xp8sC5NZLD/dr4aIr6fe51ef5gl5PJjMl4gb/Swgkk3bUms9mMcK2JlBYPdc5h4pTz3Sae1ky0YKIzdKtDairsZpOg08Fut1ANn42dbbxWC9vxSOdLbCS2ZRHFMbqqDWhCCDgj55SFwPOcGh2iDf+2Ldub6qKzzGah3zCw/Xm9IQt4o2H94qbVkoo0rWMIOyttcg3C79NqtCnLktAPWOQFeRTVf1qlmeRzFsYwNRVzPUcLSc8JqFzJutfkIF/gOA5NLOZ392k02owPTmiVDjrOauhImb+JmbUsC+W7Z4xyQaUVw9GMrNCkpWb74uW/vMP1JSgvbKENPPvSDW7f3MdWDl7QpCz02UpXEAaNOiJKG2wlKLWhzAqyokQomzgtcf1a72mMYWVtFS8MsB2L9ZUeptBE84Qi17zw+FO0ZUUgKp745BNc3dniXV/3lbzy3PPMRhGBH2JXFeksxdJQJjlFlKJEibAdgjBASpeiKDFlRpUrXKuNkRlCW1y6cJHKrSMtV1Y30ZR1IyUlUqraRBvNQCQoZVCWTRrFTOIlka5q41AmkEayttpnkVWQJqx2ujz04GU2Ol3WOqscD09QSpIuMuLS4HdaGCE4HQxoX7qI5Xhc7vfptVdoupILKx02Wz5u4HLj3h06/T7NbpPbwwHz5YLFIsFu+liuoNENiKMYt+UilcWFsI/OclYCj6bnEVWw0Dkm8CmrDKMUYbNBq9tCBh4rmxvYgYeyHIo4xRISy1Y1SAVBWVa0220aDQ8qw2KZotAs4xgKgxP49YBKF4SBQ5oWOJ5FVWhc28WUJft7B6BFDcgQNSjEshRGa86wIdi2hRbQWemy2mrW8sY0xZY2QeiDssiMS7vZZTqdYUlJJiXtdsgDVx5ACUUhK3IksYFEJwgh6QVt0jzn9M4+U5Ng2zbJdEE6HGPbLrPTMW4p0FmB73mUxqCNIc9ypJAIW2G5HkbYaGMzmy4oK02pHHor59/yvLxlw/oP//5PsX21R6cTIsqYtkg5PT4iL2I8zyFNCo72Trh4aZVmy2E4iYnSCcZWGBMwHRe4XptoNsPxJNKzmMcps2XEua0NpqOYRtjh27/zm1jM6xVbs9lGSZvJZMLB4Qmj0YzxaMHu4YSDkxGj0QKlLCazGTdeeJn7th9he3WLT33846yEDvlyye5gRloJ5smMk/GAw5N7PPnZz3DjuVfRpU0naHHn5h62a1GUMBnPaYQdTAUXLl6pV+/GcOnCedJsiSMVSRKRLKZE0RIlKgZHB2RlQl6VXHrwfuLptG5s7fow1w71OpsySxIaoUdZZIyeeYXff/GYZ3eP+PXPvszbHn2Mx65e5aUXbrN/POAg6PDK7i4/9ws/R2AEuclqR+cZ97soCoqiqNd0EiwM6Iqf/In/mHvHR1TK4sl9w0m1QjIf8xUX+3zLhVUePb/Oj33/u3nl7i2MpuZMa127O43h8PCQ8XDChUvr6GTC4OSUXGcErmRvfMrO9gZzFXG/Y5PkCT/5n/4It/ZG3P/gFm5p0z/f5WRwxM3bQ168/jgf+/jv0ApCXMvQCiTz6ZjGmVZmMBzSW12jPB7x9OPX+cwzr+G6AY2uyyyaEHZXOd3d46HHHuVt7/xKPvCB99NoNCgmMz7zzEvICw06XsBHn/g0cTInmo0oioo0itmfHPH8S6/wjve+h0IIUl2ycmGdKtXkeckiSSkiQ5kZJsM5y+UckDUjOq/QloQqpt/zaLYEW+fXQSguXjY8fN+XvyTgdLIAqVjpNCl0wXQ2YP/2Hfy0oGG7WK6HtBykb/Hyxz7DE7/yP3P7E59hdv15tI7J4xHJ5BT3DOVqqpysyBmNRtiWj86gqDKyoiRo2Hz9930rzz33Ai/88Ytce+hruPFne5yObVYeeS/tR76av/4P/w7v/okfZZBO2D884IM/8N2IfLOeDKh6i1JqiRbF2bo6AZNC5aGZUeqCQtu1MUiWSGGjTIAmAO1TCQuJT2WaeA2wpWCmcygLts+v49mSlmtR5AlFqQmp6oxUU+AHLWzXYTGf4iiHYTEnWPEJdIlOM2yl6DXbhCjOddaQJZgiIy8zjBL4613yqCCLltgrHcpFzJXuNpfWzlMocCuX1c4aOtW0Gs06QSBP8XVOOl2iXZdc2qw0GoxHUywBx8WE4eSEg8k+uihJ4znzyRJVKrrtDo7XoKgkoqrwwwZBI0CcadIxOZq6ySzLvH6wNRXmLOy/MoZS6zfjrN7MZ9UCKfxa324JZO1VrDXzAt7MzREaXWoMJVIKKiURuqBKY44Hp8zzEZZVMh1NEEbSarVxogLjeKy0OhglCcMmbgl2ath2VqhEwbysWAtaxMsJV5rr1OfRJtxax7fAbrr0NvukqsL2HJS2UV9E9qvR1XUupRFg2S6WCnClQxJF/34O4v/LWtvYwG949DtNyiojiyYc3ruHlWWEtgvSIs8rgo7P4bMv8fz/9ikOnnqGaPcuRpckyxllEiFLXVPLRD2hm0wmNMImWVyBhF6/i7Lh2lc/wu7ePvde2mN14zK3XjpgMDZ4mw8i13f4qu/5di5/67cwLyOOTk74qnc8TMPexnN8BoMDbAlFoYnzDA0UZUSWL0mTkvFol+l0RqltLGWRxEuUtBHaJSskSoZUSAK/S2V8LK/OSl9UGVJret0mylQ40qCrlDiOsU1BGqU4DQ+lbAyGNI1RKOZljNu28YymSjNc2yL0POQsodAe82XK3dMxQejTbIbkUrKcxSyKktSW3HjhOucbq6y2e5RCY1cW7bCDzio816NIUnRZ4OqCfBnzwiuvsMhLmr7P3umS0jiMsjHoCFkuaNgWmz2X08EQWSmaYYhle5SlQGpdm1SlxG+4CF2QpxElFZYSRGmE77lkFISyzkZ/4frzLOKMsOkhjMD1bbIsZbksWC6WnAxPcByrVgcIzohRCinq9CDbtanijOl4yngR19AHZciSBYskZjo/pd2to67W1tYSxzGrAAAgAElEQVRpNVuoZcowymj32li2xSSOkEUJcUZfNSl0zjhNELnGD13W/S7aQBiGuJ02ljDgKsJWk4yqzoMuDVLVDyxVVaErjTAGx1EoG4JGo8blNiwcK37L8/LWOayJ4fu+92/w4Q//AUZ6HM4WVHk98RTakKY5Wa6Zz+cIZWGpgiKuuLc85PzORW6+ep3eSgcpDN2VHnmhGJ4coKRDp9XmHrtMJhM++UefwlIhZbUkCAJ0ZbNMFwhLEboueaapyhJlU+cYJjlaCXw/oPQcXtm7Q7t7jtlyzulgn9PRgmTFkE6PaQnNb/3SP+EDf+2vMVkeY4QibAZUkwUSczZOrw1NQgjCMGQACCWZz+dURYFQDiU5xvJBl/VBtEqEFlSFJvQbCCymoxPCwKYRtkjTFNemfjI2BqE1CsFLL79AUroMZxOssI8bndLQMaKpefvlx9jdOyWUNgMkTqOFWoypqOkk6sx4VaEpyxJpCaRSdDodPvmZP+bcxiY2Jdqa8uLUsOYJZLOLszxidHyXvOrxjq/4emxlURXlmzjDJKkn1vNJjO1YqKCBm1dIBP31FQ7unHBaTHGaDZ5/8QVkZ5XhcoQIBYG2iIXLvb19ml4TrRWLpeR3P/57fPf3fh/NZotJtCAvDMoG3w+ZRzM2bZf++U0skaPshLIoWFQO9soa585fYnzvFkfzKWthl73TAzbW1ilVwY/+wE/y+Cc+wVp/i0Znj+/+wHfx5HNfIHQC4rxgZ2OHR77iEbabXT7ykf8FTcG73vfN/NHHP4nr2ijHxrcCFtEUXdUIO4moQ/al5P77djganLK22iYuYwZHJyi/RVA4JJ3+X9Z96ktWlilIooJoWbuI267D3r07RMe76KLi4oUd+pubyLZPYdlsbDUpsgWjWwmvvXoX17JpNAJ2vvEx5tMYz3YIGp2a2W5BWi6ZHR5xcOM28XFE4CvC0KFoN7A8m/D++7j84EMErsvy3DrH947xmm2ODk5ZXwn5/JPPcPkbAloCikJgSYkgwRAh6Jw1ptkZpc3CqLIO2Db2WTxTiRYlKLsm+ACgMMZB5JrSKVm7sEM+2Gd+NMFvhzhbTdJFwvH+AZ1+j3MPP0A0OkELTW+lT5HVBj50SWkLmq0Wx3sn+ElG0G0jdE40mNJdX+Uwm9LHo1zm5GXJ+uYGcTxmORxgOQpfV0TjKb1Oi9vHexQjw8OXr+FIgdfqUwjBospp9Teg0sRJgmx6rG/vkCQzWpXH+mqfe0eHtNsO08Ucu9Vk/2CX7YsXsSwLoSRaC0gKpDDIArQ0iDc0bF+kQf0LqVXybDpqTB2jSm2yEgK0jpHapiyKN02ZZVXx5noRwEiEMigkRtmUmULZHZJSU0nNpdUN5od7zPyQMk1YNDxyWyE9B9u28MZz5mJZr591QbJMcF0PG838dIZ2XIblnCypWHe7DIpFTVjLM9Iip61CTtMJ6WyM5blQmXoLdhaULi2boqilTUYKikpiuV/esA9ZlvQ6PV7MXsGSFqEDg+MTotFpTZ/qrhCurmF3avZ7b2VJkcac3D6gPBwQLWJarQZrj16kKCqUtDHa1JN3KUiKJfF4xp1nniUZ5Ti2odNrULYaGCVxLpxn68I2trJZ7TSZnE5wg5Dh6YR2y+Xma3d44N0+dhojpU9VaYpsQVYsMc4KVamxRcH+67dZ21qj0DFGhAjl1hPis0B7pH0WR1f7Q4zRiBKyMqG1tUI1nxKN5oTtJn7bJx2kjE5OWVlbp3fhHK405IXB81x8z6MVarQu0I7Aa4TEiyVu7qAsh2U8JZ5meP0WE50jS4HICjID25cuMp2NKBYLsCSelCwXSxphwMl0RLWE7fVNLCFwvAaVFCRG0+6t8dwL16mMwPdtums9RvGMpnFY760xGhxilwVxltBYOcd4PKwpbVJiOw55IXFst9am67OUDVXTKR3HIY1SMpPVJrrFHCyHXBcYC6QRlGeAFyXP8o7LnMPjQ1ZWV1BKUVRlPfVGYSmLqsoQwsINPIoMhIKyFGgVoI2DE/g0Kovx/h52f43lfE6z2wLhcuX++5lNZjSMy6hasnP5CsPpEJFXtJRF2/WwnICw1ePW/j5Frrl/5TKvH+5SCUNWFIAglC6zLKJIIizbwVQay7EJglrK53keeVGQVQXYDqZSWP5bbzHfsmG1LIvLO/fRXGlz7+4+loCHrz3I89efxQv9eiJCwXyqERLG05ytjRbbW+uIMufcepfdwYTz59Y53B2TZjlXL62xsbHKwd4+Wxc3oYLJfEK/5TMZFczndbamwMIUMa1OmxkzHMcjCAJGwwleW1FWBfPlnM89+TjddofQcfF9l6tXr/K+v3ofWaV5bf8eJ6/fZD+NWLuwylZ/neuvPMWF7Qf4k2de4ju/4zuQfsj1l18jSota6yEEy8Kgxgnf+E3fxjNPPls/FSQVQWjj+jZbV+9jd++YV557jUWecPnaDuPBPg9d2uTl3TvM54eIUmI12gznQ86v9cgqkI0m2Ks45RGjWcEDK+fY3T/ge951iQ9/+mn+5l//LrZWfALXIxoPSLIYucyoWg5VGSNSi1JUKBRFVpJrm8CDbncDPwhwQpc0BpMKXDfALnLiPGZ/mHLv9WP8xpgLj51yfnWdQhiEKbCUZD6JORicMNgdsNEPGSYRTpliWR6v3rgJoc3O+mU+9tE/4qd+9G/y0Y9/klAFrHZWWNnSvPTKhNV+i/uurfLEHx/wyDsvcv36a/zaP/913vveb2CSFbRaLdAZ//rTT9H3+vzt972PP9w/4eGr26z5PsrWrAd9fvrv/We0bZu//w/+c/rNHi/ceB7XGM51LnL95it0ZidcFxbdTpOf/okfZXJyxPd/8/vRumQyHhAlMS898TmsBx5ClxWOZ/P7v/cHhGGIMQJLGObzaa1zteuLQBBYVMZQmJJH3vEOGrdfZbqYc67lclyCXaQoR+H8BdXfl2dVWUphNLbjgTY8dHUb8/rdOnmhKnn+uT9ja7RNd6XL2toaMmhRZSkYTatUlHnJslhy99PPc+7yBrktCFZ6WEpiV5oyzth/5nUkFd1zbTzXYvzs65iHHuLh7/oPuLSzSZGkJNEMsbJBvxWyv1wQVRUv/Mmf8mN/92cJwmPSNKKsWqANjl3TX4TgbPVvo02GkBqBjTE1Rad8Y4dt7JqQZSSYAl3VJsQs9rGaEdH8hHSZ0u526XQ6DHf3KKVh48ImVl4wurWLdhSZSDjvtxkUKbGrKAXIvGS+mNDutcmLClMULOMMAhdLaxqZrptoabPa7XFw9xZYNtquMMqmqQWq4/Pk3ddptls8snqBeHhC0AhrOY8USC2opK5XfFb9wFSMTxGWQ6fV5IVXX0V6AQWK1uo6ZZxy5dIOyzynygtCz2d0corX7ZDnS7QS/Jt7/7+oNz1728xZfu2bJc9wrSCloqYf1XrWL85n/WITlj77HdKyUdJj4/yjxJMR6+N1Tk53kW6A53lIW2HbLtEiJc9zyixnWaW0fA9RFLRshxMnoyorhGPT6brcGZ8QGUnDC0jKAs/zsKsKJ/Cwo5I4j1F5xcn0BKkrGo0GOpJ4Z4bCrExr4pK00KXEIN80ln7ZVlXieAFuEJBGCau9Vbx5TDqdoAXcuf06URzRmDZod9qU0kMYcFwHt6wx3LPJAvnSLs1eg1QYzl/Zod9pUMQJoVSc7A8Rpaa32QI0y90B5sI2F9/5LlZXWkgEcTRD9fp0GiFH8xk5hrs3bnL/934FUfIs0sww1BCGRqPBStACQpapII+WxFWGE9h4TsB8kRJ0+oxGGevr6ySZzWRao6KVVJgz932yVPRXVrl7sEs+jwm8EMfOmOwfoRoBdhiwHA6ZTOasX9gkKlLWwiaz5ZJI19sZK5dMF2N6qz3ystZvJplEOoIqz2lJQbJM2ei1GC0zoskQoQ2lycnKHCqN9GxeHRzh+z47rTXS6RjP9wCFlgKnMjiuQiBxnPrzVM5mSMulETS5vb9HoaGYp1i+TydKWF/tk+kSXWT4rstyNKesauCK41mUSYUwFQKL5TJCWJLADTk5HnD54nmOTgZIJK7l4HiGxbLAcRyCwGYyzmh1AuaLBXv7d+n3e7UTXyu0NgxGc2zLYXtlhQM7w5MhedFEqQUb/QucW19lfXAfn3/yc9heQJInmKrEsR1GozEiiZimOZkyPHjlEmVWcHVti0kWU2bFmT49ZpwtWJQVgeuxd3iI47poo7FcBxMVZJXB0prJYoIlwHVdqgy6a1ewyoI0T3CUINEVFAV4NpZ86ySet/zpRn8VqFj1FCs75xAGKrPga67scJRHsNHjeO8UKklRFDRCi6blMYoiTk8HOJ7FI/edZ3d3Qq/lkoqQ08Gc0emCQsLXftUVRpMho2FGe73PNBIMByM8R/CVjz3ICzdvk2UpygiUbRNFEd1eC2MqwqCF0SknJwmmnHP5whq7t/6Mr333e9DLEdIzDPZvMzo54Md/7Mf53BeeZpGkvPPRy9x6/VW+6d33M4sLRoc3ONdfQyIYLQeURcpXPnCNRbzgX3z6Y2x01lhbX8fphFTKcOnhq1y+9hCL4gaZe5df+eUP8z/9zu8SlIpGz2Oy+Ge0/SZ+06fZ9Al1xefvu4+T5Zh29zyO45AlMUJJbF9jhORX/+DznOus8S9//5NorUnsDucuP8bP/+Kv8PrRLTxpY0pDs9kmWUzfNGB1bNDG4XB0RL/XYbFYIKnH7JkwmMBiXHgclxb3nT/H3TTno3/wh7x06xb2xz7F2x55FFNJlFPwwR/8W/zEj/w4//S//x+5tr1Nr91GWBWB73D/fQ/y/nf/Fb7/x/8WP/N3fwkdujx17w4PXbvIvcOc1mqH+fCEIi3I8oyGp7ApWZYOFy7usLw3pOO02D0acv/VRyhNwj/76EdJ5hM+/8mcwJdcunSOyiz5p7/0i+zsXGU0WNLd2Gb70gaHu0ckAuzQ57f/99/h3Ooqz00nlK8+zTxZEroOtiUJfQvfDiiN5hNfuMd7v/FtpGXOfLZk/94S26knqmkas7rW5/jgmG4vYDxacPHyNpPBkOvPPUvTd2nYNloI3vauSziuj2v7fPYzn/93vT19yausKoStUGnKaB7TLjcYFAlJWseZ4EmOD/Y4PD3i+RsvIkVFlZZ4foOHH7hGEAQUaUp8suTW0RFIw73PPgvJkgEZbe0hT09x1i4i25f4tp/6YabHA1ylkEiiJD3T3TWRdklawWZnlcf/8JP8wn/73xBsbHHwixFu73u4l6QsyoK3v++Ajfs1dhNmgxFWBcZyEaJECkMhJJYUZFKTSkUhbRRdMmeGyH0K6TCZunz+T+Y80nqQ2ZUljWbAYDyoaV3tED1fMD0dEra6tNa6mLJgWBYclAmWb2OlGbM8JpcVYWOF+WjCuQtbzOMIJQ1VUlB60A5bFKUmjaeMZcLazkUWgwHzaMnm9gV8x8WfTbE3zhFaFqpc4joNLC3IigzHuJjAxTaC2K5wbMUsylCihpWcDCdcfuAhTBGzNz5mHGdYeU6/FbK5soUpCrSqJzxow7Q0WNqiUDlULnU+rUGeYRjhz5Gs4ouQrELUZqo3ovLeaFyFqLNczZmxjapOATASpJBgQFNRaQdtMvIqJ9cJR4N9EnLSsqSVWZRZTjwZoyyJ5zkskzmdRpOoXLJCm7lO8TOFF/jEWUyK4HxjgziZkiYFUrmseR3m0xlNr8HMjWi5Dqlvs7l2HiEEzlmgux8GZOmSdqdb4yzLHGMM0bL4fzRx/PsuS1kgwatKirJkw7GYVjGhpciMxur6jIenDCcjSjSW0jjGwvYDNlZXcAOPviNZDEZkoyFawPjGXUSWshQF59t9vHhBajVx2ud4+Nvew2IwwbUk3VaL0/kUISWe61PYhqQoWev2+RfPPMsH//aP4HY6nH7kSbz2O1kqwSLPeMc3Q2NbIEOIhyPKCC5c3mE8ztBlRavVIE0ier2AeSJYJCmB06d0Y4pUUAqJEk127y3ofcoi2p7R7jSZxwnaVrTXV1FCMRxPcWybYTRl9PKEqKwIQh9dFojKEJkSHNjwWpwc7tHoNMk1WEqgk4zKcmg3AhZRyq29ffxGiFQ+8XxObiq2zl9mfzxjPjolLTIqobjpnlCkJY4lKY3Gx8a4iiLP8EIPIyFJS6RUCEsxjWJ6Wzuk0YykTDg9mXI0OGVjtU+/u352b/IQnsXli9s8+fST3Ls9xg5tHBmgqbAcQdBo8YXH/4Stixd46aXXMUowixOaYUCcVNiOTVHk9fnTFUqCQFMaRRA6LJIcC4sozmiETYRVcPf0lGRRcBwfE+er+L5HaVJuvvYitw4SFnmK7Ui6bk0TjJcLLEeyPz4FKgojuHeyi1+5HNsDRGrwA5e0LLEKG5TF/Wt90qKESqKkS5okBF7ArJjRdRtktmRtZY2iqGi1W2RJUutsTUWr0UQpiefVEVx5Zjg5Gb71eXmrH8bTKX/4qY+zIlziloOlBceTE7Y750gjQZwXJEmBkvVYWynAsiFOmc4iPBVw0Q8o9Ckr/QuczuYIu3bUYglMlfL88/dotlqMRiOE1GxtrdFrNZiMRwSBVxMi4gSkpN1uM5vN6PWbHB+csrHVObvwCrKqZH11jcFoimtLCrukGC+5uLqBG/j4hSFs+KzaLnkh8RyXIDCsdh2U71NVBdtsUuqCKInRVcFjl6/WkxCpydGEQcBsMqWOHa2IJlN++Ic+yGCwYJZpsnjItdYq491DpqMpo0jx+jLma773bTTSlHkcc3d3j263yzJecPPm66xtbFPpBKE0e6Mx3/vt38XD56/y6COX2V0b8mh+BeUHzBcR7X6PLCvIsgzf94mTOdPTmN/78OM0AwdjNJbtoLVHWS1pWrAsFvTX+hSLJfFcIzuGK9uXCdpdVnohs9ES8ojStxEyR6CRDR/pu8TJnOVwTG+lbugbKz5zIrY7Ha6ev8ZyMkA6HqFrcbAoOTgaYDklr97aQ1uK06O7rF59hG5b8an/44+w/Qaz+SmeqzBRjHQFLd/BKUOkLJnOpvS9dm3kEIaT8THSXmE+n+OGDufWtwitJiI06MmE1dCnFTRQtiRLUhzbkIkFVAVCWdiuxEbS753j9q3n8YM2WZaxsbHBYDxESrh27X7S8xk3X3+NzdU1FrOYyckAx3EohCDPNIGf4rpLWu0vf0mAsD0CDKkjubbVIi0z7MpQGANVDrqicDQOFV4lqJTGcW2EMrx+4wbGGBxLsbm6http4AU+uYAknnHj+k3Cq2/n23/jNyiXGYFlkY6nOJaFllAagSvr/EghJa1mE6FhtljwM7/0y8hSUsymlFZFcjJkxdasWRI+fx+Hz3a5kUbY/qu0+znnH5NsnYPx4hTLEoiqxKpcnMwiJcO2K2yrz/WXY24+WXK/aPFuq8/cjfnAB3+A8XTG4d1dbl+/gS5jOqFPv91gOI+xXZtQWXSFIZ5OCVpdnNDHyhKQPq0wYK23xmw6xeQa1WlzunsPr/Jouk3yvGA/T1j1LcrllLYTELb6VNGC0XxEYNushiH3Rqd4nkdVGTxjI5RN6VRM5nOShsvsYITQMQ+eu8TCFlRVQb/fZTIdstHqE+glV86tkuUax/c4HY1Z7XXRZY7VadIwikC2SFWFRNZa1dJC2jUA4v9uwgr8edSVNmf4APF/ef3ZK9/8vq5q3XsddPwGC0tTZjmiyjBSgO3SISCPC1Rl0EJgaUNeQDtcgzRB6pB5U+LIDvNsgCUKTNMhzSvKNKYRdLCcHFFpluUSO7DZnx1jKjBhGy/NQVUIU6+VjYDZbI6lYDqdYisPI2ojSlVorC9z2Ic2gvnhMY7tcGE9RAuDyAuk5SCKFEpNKgtsU+Ge8aIcx0aYit07d5G2pNcIsP5P5t4syLbrvO/7rb32vM98erzddx6AC4AzSIIzTYkiNdmkZctWFRPHtiwpiZJKJZVKVZQHPuTBqZQzV8oPluRySZRlF6lQ0cCIokRKFAeBBEAABHCBO9/bfXs4faa9zx7XkId9SZGWwlTFVKz11tXdL91n7fXtb/2/38/x6W4MsY5D7RgaNWPv7j7qcocrH/v7CAWhB1WW0UkiPM9tu9iuh7Wg0ERhgOu0bMy//Q9/miZXeEEOriFbLOkkLqPAp35+jf1rXe6qgrJM6Q86nDm1Tn+kWebHRJ6H0AKtY4xwEHGJ60hwhtw7Vty/ptgyXd4+2sIfuLzhwz9ImpfMjmac3N+nmk7Z2d6i20s4OZmwsbODaDSVUhSrJb21LWxV4k5nWOOihMu5K5fI0hRRFJSOQy40ga0pKhdXBmQPof+rdM7FjR26wzGdQLLUORsbQwI3YH96QthJcFUb34u9ACsaZsuc19IZ1SJDmIoza9sU1kWriu1+yF42ZRT3UbOaC/0xvhewvb1DWpQk3Q51UeJEPpEMGI1GNM6EwHURjoMqNYaaoA7AWhzfoUEReSFxmNDUNY6USEdQ1IaCEuFYslWBBaoyx0+6uC5Mjo/BShrT4HoGx4JwDK4vkcpHOVCVFdLqdljL93CFpMhLTN1Qa03iB1jt0ul10Ms5gRNiE5fYicnMDOsodCzQdYVWNUnc3oI4VnI0TwlCj+PspLVyqYKgUSTdGKtbKZEX+CwWKY7VsKpxpN8aPF2JaSDwv7ea9XsWrP/6k58iGCXsZxnCdxg4CYva8oXb19spYRSOlDiiHQY6vXuWa7ducWqjB45ALDSv3bqLcqDRNXHiMT7d5dr1Y5pScXxvRqe3xnJ1zO7OGGdZMJ1P6HdDTtIFygjyssC4kqfe+mb+4HNfJAwTjg4n9HoDRv0e9x7M6QY9huubXD19lgIP6Sp84NlsQdeLCHo+Z9cv8/xLv4mKLIuTOW40JAocposcaVdURU6av0LoBgitcR341I3r/LUPfoh+P6RWJRkOjz/yKN0kYWNjk9mdW8zmdxiPe9x99lmoFQMs41HMoOvj+D61GuPrhrVuzNh3qZyARbZqOyuLKZ7XodMLGHbOcHVni7XIZW0tYHznLncQLMuS9PCE0XjMZG+PYb+dti+KDM+49HuCwLVUpW2xJqwg0iQV3D+EH/mRR/jc0zcoY4/Hzu5S5xWrqsTmKUXWwYst6aEiihpUrZnNM4ZRTDFPCXtdjPC4eO4CTujjapdqtWAtWMONXDqbPb72J/tcvlyxuTvk5GhCFCSUyvLG153jK1/6ItLGvPDsiySdNYRVDKNNTFmxtrlDtys499jrGPeG7C+PeOHrL6PLJYETcObNb+Te177Oxfe8k6Gf8Mqtl3n7k++hPLrHtaePubFKSTsuTdV6s7VuN0ada9LFjGWtMNZBoFFVye7OaU6mC5pGc/fujN2zu8wmJzz/jW9ihOHShfMc3H8AXQ/X8amalshQVkuy1OJ7CVX2V3/oqigKGg9CP2C+WCHfcJrZV56jn3SwriX0PRpraKoSHIkrXOq6wfMjtDRgIG8q7j3YJ1qEdOMOvdGY3372Jj/7P/0PjC+cpp4cU7kCg6WoCyI/AvPwqth5yAGUsj10tSGKInpxQllWRFZSakHiejjWoVYNy+NjpJzyhs1tTsrzVDcMLz5b8fzOXT787/fALSlWhjpzyGmQwnI4C3j6Dxes9jweHV0kL0v6siKRI07mR6RFyenL59i9fIWTgwOO7+6xf/0GLgWR06W0UNSC3mAD4ztMjqfEg3WcMEDYkOMHB2it6Q179IMEGw9o5hU26tBPXN46uERRakyTYrseATCb5nSDAOqKQmh63Q5RFJNrTTfsoLUlMg7Ss6hScer0OaqqIF2uWBUlp3dOoVzBurNB3jT0uwOyWoHv4lCztnMKp1ihpMFd5hSObHm11qCNRYgSXa3hRX8xy9CxtIUlrYihzfD/uTTBn1ttISv4N/ms4NCUCxxcXNdnzXMweYWWEq1qpNsDYxi4IUQBziihPpgRCEjrks3hOsezKYOoQ2M0rnA5VAUdRzLPFqzR58HihM3tLW4e7LOqUvpCEAUxZaUQ0kFXijiMqOsK6XoPh89AG00YBf+vIPJ/1+v2nTt4kaSymnrZsHtmnfk8pfB8jNV4UuA6Llo1CGHpBh3my5Sk38NIgdAwTVOEFSjbEAQB/dGAL9444EM//ffZPnOK5WRGoarWgFaXKGPxpYOqW9NSWzD4jEdrnBxN8P2QslhhPR/X9VkZS9fzibyEMPRRRYFsSq4ORlyfjaEQ3P+jDQ63M7auLhB+w2pZUZRQGkPTNJwsLdeem5IdWc72NllUFR0aZoeK6XyKMjDeXGP91A7SGmxVMZncxFY1jgKky3KREUcxCEtZK/rr6zhBgESSTac4wLDXoZxGDNwIkysaWRMHkqvbOxgT4JoMv+eSdCQcz4m8tnM5X1XEcYQrHGQo8RwPYyA0MU6gmSqLGG3QNFVLm9GazcGIBsHlU5s8OFkSdjpI30MJQW0qkkEfqxR4BpYlVWhb6kLdIHFQTQF6iAwWxHHSyoGsaK2Njo90BG7osphWxLEkjFrBj3RaglC3GzObThFIlssU1/UxjcF1fByjCQMf37H0u13q/jbzzDCfrcCGeNJnc7TO6mhCZ3tIGPhUTU0SD4iEQ5VXqCBApTlu3rC0DYmbkOYFURBQFQ3GCu6mSyJHkGZLNntjDuZz+oMBe8fHJP0OnpRURU2lFINejzTN2vNaAUIirMBoRdPUuDLkz9QHf/H6ngXrj/3djxGO+vzyZz9HfLLgYHnA5dGYbNjQpDn3TiqEydC6DbpLAdIKjo9XbXzAtaSp4o1vusiNW/cpVhV79zVSxFjgG7f22N3dYjTewFrL0Syn3/e5v3/M1qkuHgF+6HM4zXj66WfwAsn6Rp+jowptG77x4l3GawOk47CYLfntm1/mH/3DjyGExPU8kmvPc2Z9l1dfekD8lghQ1IWk3+kTBSG+7xM6Pp4LUecMRtXkeUbe5PiuT10bNgYdpkWFcUIc3dCPIlSjWRv0+CYMEjYAACAASURBVOP9G3gI5veO2NlucQzZYonQmjBp2/3UlnyxIF/AYDBgtlyhVY4OIi4/8SZefOYZLvbO84NPXuUXP/273D6Y4B9N+NPbtzj3E3+XoOMTVwLP07huyGyR4gVBi7JxXc5ubzOfrXj3mx9lZ3eDz//pl4mUw9W4QQQBTbDGY+9ep+sEbD1yiac/+ydEKKypUM0KW2hcz3Lj1l1MGHL4YB+NJuzGKG1bU0W2Iuh2Obi3xOiA//2ff4JsWXHlkdOgGjbWt3nh+ZcxOuTCIyPqynD7VkpTKc4MxrxSZDQWZKTpdAY0nQ7ad5kqj1c/+/t0B0OMhuPDWyRRjK5K1s+c5xWj+Vsf/ZtUquZ//IX/GlelPPqhH+F3fvlX+Tvv/SEuPfoGzpy+xL/47GfwRYNrYJFOmcyWRMf36YxG1NWKThyQ5inb/R6e51LWlmG3w+7ZDt1kg2xxF3RF99IY7bZXpKO4R6UNUbIBquHKxSf5g8984ftxRv2lrjOnNzm6e58zu6eBI+wqw8fgWIvVlrop8ZwILQIqRzM9mTIcrBMlMdlsQhAEKNuAsNRFTpqtOFnM+U9+8Z8gG3BPZixywzxboHTDWn/Y6oGFpS4bdPHwCtYRdGRrQrJasbN1lsqrcOuG+SDGzEsaUSNVgzAB2vc4ms5wVhWiLjnXDwgmG7zwTzd40Cia6EXSxpIedjiYVDyxsc05EvRA41UrHD9iWSlqRzHsdgm8Pn4YkkQxa8MNHn30CvaD7yVK1rh7uMfNrz+Lfe158uMVfrdLd9TDs4Js7wG616FyFaErsY1i7+gAk0iS7R7lsiRrCvobI24c3GfYGxNNGwgUo36X48WcYa9PXZV0HY/54QmEHousoN/tsVoW1KHAxyVLSwajgGhtk+XihKqpyWcrOlGHQWBZGEVgQ16+8TKve/z1FIsJiROwTJesre1wlM7ZWBsizMP8r/XwotWf6VbFdz/8285jO/RvrcU6TntD9Z14q2/9rLUPowTfWfB9R4bbSnxXUqYlroTOYIBXFSwo6YUJ0WBAnVf4QYC2DfUyg/2S3NPM04YwClhUivWNLV64d40q9Hi8s02nsug8p/FcQt/j9O4pYiV4ZGOH2jgc3rqJKlsmplLtuVOWZdvw1RptDNJzAQel9Z/rMv9VW0+84XHS+QJtQR5PKLM5fc/FDXyMURRlK7hoBCjHsEjTVlMsXJRe4fgBddMwHHSYZilmNufo5IQf/Y//AY62ZAcTtJBorZinJa5ojZS1MTi+xNYG33eplGYxnSKclrQxHm6ifY0pKrxBB1YNuS5JjxecPX0O63vUBmRVEzmSpFwyniXc/swFTpTBBHeobU21iJnMa84NN7gYDTGnFFSGJkhaNGMSMO51yQqB9GKSKGBzvE4USc4/eoXpZMrRbMqDV6/TW2XopqJaGYIkwpeSYjZF+T6iF+Hh4GuPg5MJjW+Juh086zGZHrO+s4nVJUepIklPcIYlIs9p+n163Q5W53RwyLIV2hE0jiSOYsqixOtGGG2JhcepnQHpqqYqVoQ0FGlDd7DB5uaA2hriZMgLL3yD3e1N6tUMG3ZY5RmbnQFH0xlBEFCXBQiLlD74JVaAUQrH9ahKDUju3N9HN4pON8Yaje/HZOkKcIgTH2MsRaGwxhK5Pkul0Ipv37IK6WIdS2MdlscTShWiGo9VOsd3JW7o4bsuM2u5eOYcF594jFe/+RKuMcTrY/bv3mYtihGbG7huwNFihrQep8ZbXD+4xcqDU07IWHioqiQe9glcl93TG0TWIYl3EY7HvHlAv9ejqnMEim4nwBiLG7QkEGPA7XTAGJJ4yOTfJhLw3/zCf0bfDfmFj/wtPvOlLxKKhEW5JHEsnnC48ZnPsXv6FKus4OhogidAa4s2GsfxMFiiKOCVl+/RNA1+6OP6GkyrXz177hyLZc70aIEXCIajBCt8zp8fszxZsqgKvKzGSEMYhhijuXt3HyzIIOTRR88zDGKcQIBpuPr4kxzsHSClJM9LLo7HbPU6/OzP/Rz/6X/5M+zsXGyxPhbch/rV0WjAPMuZzmc0dcnG5jarhaGsKqI45sVXXubc2avsH95l/co6TblA1GOoCty4g1AWz7VEVpGXBWujMX4ScOfmHXzXoywysnyFG3gs8pR78xztWpxK0axSfvj9P4DsaH7387/Hj731Ck25YHTlEYaPvQG0gsYj7CbUdU3gBniBz2qxIO71cD3B/f19rl69Sl+6dJRmtSogjlh0epRNzfPPPMvf+Ec/g++6/MtP/Bpx0mFeV8SJ2wLXhcNJmtPv9BF4XL74KGVt8UVDEMWkS83tuzcoSxA0SKtwreUtb7/CfLqk05Ncv3GX4XiEUZrD/RmjTagXLcHg2v4t3vSBd+LYkKZpKCuNtAbfDSh0xSvPfpWbr70GfsAjl04zO1wQ7cZUkykbm0P+t3/2S9z7xrNsb+9weDLh597zAa6s90kXDvf3bhB3O5hK8+Z3Psn/8enfQWc1q2rBwXyFnS1xMMRxTLY6wWqHRy49glPPWJ2U2MBHNUe4TojrurhewGpVooqKH/mJj/KlP/4sb3vrW/iV3/sMHz6zy2/M/2rn4QDSw2M2zp3llTv3GMSW5uYeb/gHH6FXGZ79rT/ET0Jq3VAv8hYa3YuwwtCoClyPummvfAVgcKgoaIzBVh73DvbwO10iNJujAZ3RiMoamrwklpJQBKhuq2zGWupVgZSSfrdHvkqpFwua7pAHm+fYfPA1eqMRbgNGGprG4IQ+fpUjjaAqDUpKpLrDjupQ1BfY7Dgs/AnbOz5lVqOFg1E1MvApvQrfC9FHU5bHFVGvA8qANTSqAWtAaYIoZ3djjdMf/iHMT34UUSmKpuGPP/lJlvcPiIOEA9Gwk/Sg1MRBh9hbYbQgO0rB9Rl1xwhHcrm3RtSR6KLClT6FD113TFNCd32EbgzWcQiEoGpqrAAxigmBPM+ohaA2BpNOCB1JbgyDjTUeTCZcXDtPv6pRTc1bHnkDWreIqRNRoqKAXJXMZif43YBaClxsy1EVxbe7jN/CPsGfFaPtQFVLG1FGt0pNIf6NuMB3F6+ObDvniJYa8DDgikEgPUVd+ohSc1xlSKtYnkywlcLrx2R5ymt799HDkKvjDfppzb0wRxvB6XGfk8kBjwxO4UufTJWICjrJkFhpDlTNoBaUw4R0Mm/FHf2o1XCqml5/hOM4OAKqqiBORiDBddsitqVKfO+Ozb/r9exXvkRvtEbkeORdH1UKzv31DxA0hltPv4C2U6LARS9rZG1xuz5FYWhUDdKj0a0mc5UWaPOtiXyFMC6LdE531MdRBd04Iu51KZRG1YphHFLnDbUXtGIXDE1eIaWD0VDVObqoiYYjVltnSG5fJ4pi4v4aDQZdVChP0AtdQiE5tX2Gl669SBi5bNuEWpxGxJJUzljbGrPKGqpaYVRJkvSobYmrXNxsxeHejMF4jSpfIWNJU5d4boCuGhCa9dGQjbe9FRO/C1M11Mbw8le/wuzuPpH0mJiK814foUE6Hr50cK2knuWYuMOF3Qs4iSDbO+GJrR6qyOl0+1TjYcua1ZLOeIBuDAgHHyjLtpB0eiHaGIJvPde0ZpXNCGSIcjy8XsT9ySFvfNNbMUpz7+4dLu6eQyvQwpJSY3yfrCopy4JVUxN0uhjLwyv7BqsFebHCWtE+p2yLfeoPO9R1g+s5LSHAc8FaqrLBCx7GdERrhBysjzClg2oM5qEIy3HAwTIp5yyzOY0O8EOHMrWgYFYu8XyHF158EW9jl3DUZ1EsW+HO6Q16wYDVbMnKtRTa4cqZU1x/7TXW5YANDPMyRZcNfhiQKMF+lZGkHu7GGuV8RuQJdBCwnE+ptSJJejiytV3WVcmZSxeZTSeMxwNu7u2xHnk0Sn3P/fI9C9bHXv82wOUbr9zm1M4WS+2zpQY0KsegWdvZZpmmiIfMxr3DI/zQI45jVlmFcNqHYH/YY//+IRcvPcrJ9A5R3GsPsawg9ENOJndY21jDWo1qCo4OFzhOTZ7XnNnd5W3veYpf/5VfJ0nC1lMtfKQvOT4+ZuGHPPb4FSbTI867EqM01hH4ASRW0OvGDAOHc+fOcTyZth9oT+LLFqq7Wtb4bkCnG+PoCFFXXBivkStBpRTdIKKgoUDz4vVjqJ/lzP373D86ptIKhUE1NVleoq3BF4arm7vcuXmHptFoBH4U0u12KIoCJSyBK7HaMBz1Wemc847HubPb1IuCrUev4HUkTtKlyWtkpVCeg2kUcW+IrWoa30VYy3I+I+x0OTncJ57PyI5CtBcyzaYk/gDrhgSB4NTGJnevX+d9730nt27dQtoWdSmkpWgKwm7IdJ7hd2JevX2dd7z7XSxmh7hhQOBJpumCKIq4++AOg1GPUpcURcEqL8EEqMawfnqdO3fucrC/YLQ5wHEsTWNIV4cI41JUE3w/QEqJNYLjdEXsa970tie5fvc2YRBz78EdkqDH2vompzZO88Lzz/JjP/CDfKYouHbzNd7/jrezeWqdP/nCIR94//v59G9f59WXn+HJR7aJshnm8A53JsdYFKfG69SqIulEJEmEqodYa9F1QSB8uqFkVS9RhebgpGDc66EtFI3B8yR7d+9x7sImk/uHrBaWB4f7zJez78cZ9Ze7OglNVbO7s8nxUcb1tOTepz7F81/d5+f/i58mPbiOqzX+QDG/t48ApM1xgw3ybIHjuIRuCNWCRovWUY1BuRYpJZ6UWOExXxXM03usypxYuPTXx0hf4hgHpTRG1zhuy8Y0VjFcG3Pu4gWyLGfw7/0U9cd+gtWDPY6feQnzqd9mY2cD6VsaN8CxLgQhZnWC21nDuhCbiuPSxwgfr26oPINfphT0ALh5d8bFv/kRHv/oh7DHRzhhi5NryoK6LHGTDp1ejzRL6XY6LE5mDIQgjkJCK3j/D/8QXhKR9Ae4QvKbv/Kr7A5cnrv2TZLA58z2DncODrhy5QrlYoEoFEioLTiBT9k0RMojdD1uNUeMqz5NXTNOInwks8phVdW4kSQMYqxO8Jo5Xhky9QxCOdw7mvLo2VMkfsjewV1GXkCBJvBCVFHRdTqkqwlbgzGlUuxcuITK57hWABJjazAJDiUIHhar9iHfFr6reNMGRzoPMVd/QXcVEMIFDCgwjmlPQNMCGhASR3jYWuC5Ma7O8APBrGiYyIblcsHGcIzvaDrDLpsbG5RpieO7bIuEyI04PJhw/uxl6nLBvMpJnAh3d41Yeuwd7LMbJi0Tu6gY9hJOpjOktrhJxEYwQBlDGEU82LvLcDxgcvyAKO4Q+gGq0YS9+NvClb+qq7uxhev6uEBRDzioFbNnnuPmtSN+9CMfpLz+ErauCYOI+f4BXm3wHEsYj0mrE4Tj4Eofl5qyqkmSBKUrnFAS1iHCWhwvZLbMWBU1ebnCQ+KMWi6rbUB6Pv3hgP38ANeVCMcw6o7pdDqsVjnBO58i/ND7SA8foA6m8JVn6a8N8H1JIT1cL8CLIkLfQdsQMMimJl35aBxEWSA9gd/U1F6CMIZ02bD+1FOcfvsbkQ8jh9YqZrOUMs3pDPogBKsiJwxDVssloe7iex5SWJ5859tJ31gQxh0Ellefe44tz+e1u7dY5CWba2tM9vc4dWaXqihIUsuo46OahqA/QElNJH2MA0fZkm7d5kWHSQeMwFpDVTcI0xBGCbUGv15QGksmJGmtWOUZO5tr+L7PKl8iy5pON6SpFbrKidyIsqrpRzGNUvTWN5jMphR5ztpwjbrOkU4HKWuUakUYRZnj+y7aapQ2aG1bmYc2RJ2IPC+oqgYv8L6tWW5U2eaQK4HV4BiBckGptjDtjQaUtkNgYubTI1y3T+Qa/G6XVyfHbJ7eRTgC1VhG8ZBqrU+wcujEMfkqw68qLq2tkU5OGHcGLLN5e8sUJoiBR+wFzNM5Z91xu1/Lkl4cU+QrXN0qeQMnxCiFdCSz6Qndfoejw338QLJaZNSFQWmNNt97v37PgnW1XGJ9i+s4mJWHcJYoE+DJAD9IeMvjb+TTv/ebvOdd7+XZr32dk8WSqBOzXCwwGgaDHovFEutpkm7I/v4t6kKjTUZdNUznOXWRcfbCOgIfZRqENazSFb1+ggwbZssJv/XrnyQIAlwPBt0B+TynURVb2xsUqqCqKq6cucD+a7fZGG/RHSSsrQ+5u1rx6OVH+Mo3n6dRMNrYJFumCC9CG90yDn0fXINPgxcGuK7LM8+/xOJkivBcAiH5yId/nNdduIzv+zx25QyRJ9k5fZbP/f5vYY3BWsXGuENTFQjrcHj9Futbm4gwopzO24gCLcuwMRrRNPgyYrkoyef7PFel/Ed/+6/z6v1v8OSF8/Q7ghfuLXGEj5EFDhF1U7JczFBW4jig6xztCKLAY9iJ2VtmuC6E0sMZ9Am7PZbzGZEXYOqGo+N9ROiQrWoaleGX0JR3EJ6DJ1w0mp/56f+ArisxKqdpGnSjUKphPNplXqZc3LlMHBq++PkQz43pdDSdxEM4iqijeLC34C1PXcKKnK2rPZ7+6itY31LKCDeM0KZmsixxtAXZ+ts3h+tU6Qq1KOgHHkjB7TuHfP1Lz1HVlmtf+GOOjiZs+h576T4vfvbzjHsxswcPuLK1zSuzZ/nqnz6PcSyb5wN2L12gNIqmUgTBCCkFStc0C0NaZsT9hAAfbS3vessHibtDLp+/wB/83v/FO9/7Pu7duIVpFEezCZe3HbQjOHVxizwr+A9//qe+fyfVX9LSTU0jBcPhJk1VIc8PmVzLef17dzk42ueNV5/A3V1HLDNWR3M6/Ygv/6+/QTnMUYuCcX9IaitC46HReNLFWMMyS0mShLxpcB0Hz5MEQUDitI75yWxCYC0bO7tEUcQqm1NWdUu0EAKrGlbLlOFgQC9y2d8/wOmM6X/ofeyvjbj3+a/g791hI+riSgmOxciIOpQEWcZiOccMx7h+B2SGKiy1iOhHhv07x/zAP/7v8de7FHcPEaGLV7cdNsfzSPo9Ej8hbUrQBmMMcb9Lka8o0gUCgx8GBI5DMV1QFQ1veOqt3Pv8F0lGCaOkR1WWvOWJ1/Pg8D4+gsD3EUIwLy1bm0OabEaWKWb1kt2NU9yaH3GwnBFpyUbSJXQDQt+jrkqKRrT2m34f4Tgkc4XrKx49tY5araiaklMbm0znc4bDIU1R4ocBaVEw7A+odEMQJO20v9N2Xex3+Km+NfEPfBeH1Xn4v/oWi7W1DPAdv/fnh7SstS0dgPbg/FYsoO3egpQuShtmqiIiZBArpBuSdDsI36EqLT0TcXD/kM3xWtvBqypUk9PvRczmR1y7+SpPXHqE2HVJVyu0Fgy6ffLZEVHSQdIyOJMgQIeCbreHMRpdVSil2NnZAWB8aZPDo2Nm8xPquubkeILVmrc9+dbv9zb7vq26LDGBJu4NCOuaeD1ieb/gwhMj0mzF1auv49gWjMOEozt7SN/htd/9U6p4hc4KRv0By7okEiDcdppdaUOatcKb2aJAWE23G+G5PlaA1obZfEbkOiTDIa4nmRwcPPzcCILAQxhNsVqxNhrSNAWrrGBtuInqDcnCmJNXrhMv5qAU/dEay2wBBIhOhMhSiqLEdCQGDyENRSMwStKJDCfHKad/8ichcjm8fhvpu+x6Eb0owvM8er0usR9RGk22nGGNJoxDMIpyVSCweJ5HJwpRxlBmJecfucLi5WtEnZCk36WuSi6dOUc6n+E0ilLA+VNbHKYLtjc2EM2K41lFphrG/T6HRcpJuiBKM3phjCccfFdSqwZdNYRS0oQBhWeJU4P0JeONdao8R8Y+vU6XvcU9Ov0uZbkE4bCoCoLQY5kX+F4ExnD23DnGvbsYq7APXyiNUC2lQSuSKEFKy8lEIh0XK9uzUliD41jKsmEwSEBogsBlPsval1MhwXEwWtNoi2MNOJKqqnAIMFqjqrq9hreW4yyDmSHyXLysQDiS0JekpkQfpayalJ4X0+90mM0mnEzuox1whGSWHrG7fQpfSCoAUzPoJZSzOdJ38VyJMQIb+HTWR5w5e5k4Cnmwv8/a5iZbG+stKcCTNOWSfJWibMHB/Qd0wn8LrFXS61GWCuuqtvMiezRIXCzaKoLEw8Plj/7w8wgLQRC2U6OOg+cI8jzHdT18J+CHf/z9fOITv4N0FV4l2N0+R1ncQFiPpnaYzk/Y3t7BVA1hCFpoTsUOlfLJI8hKj8VsTrosAAloHr/6Pl586TUub2wTjUfcPV7yhZe+gakVxir+5Pf/kAuvf5TPffa3+KV/8SnCoENtMrS2eNZiFRgH1qIAx2iqWhF3exgBT169QmkUg/4QJSXYhsXxkrtJgisqnnzLBxh0TxEkPstsQbo8odsfUVUV48EQ1dTsH01IkoCjvUMOHMmprRGn1nrM05waw939e2jT0Ilinrt+k2ZZMb39DfLhFo90fI6cIWifCknUiWglaQKlJcJx8V2BsTWv3j2mP+ggS9WC2HVFWq34Ox/5MMmgx1ee/hJNbWnSmtObWyhtsLS6Vwk0tvU718sVx55DdDLlkfMXeeHayyRRhy995as4rqTbl/zGL/9zFA5ldoi2Lg8OjvAcQ9P0eN0Tu7zyzX021mPuvHKdMpOs9bbYGveQtkORLyjSPfamUxph8PyE9a7k7JnLvOv9T/H5T/4m4dYGH37zk/x3v/hLfPCDH+Rz33iGn//Jj/FP//Wv8u7H3sE/+ZV/xlM/+EZ+93OfxbBE15JFWeE7Pkm3h/R9ejJgtLuO78VI0frljbZgFWWeI4MQay21sWSHd0gPJxS54td+5RN8/ZvfxHcDHnvyCu998m/w6nNP85aLF/Bzie8G35dD6i9zaSU5tX2O23dexY181GTKI1ef5Nlrr3LYwL/87S9S64az6xs88cQT/OEfP8fobdu8MHcxwy6hB8qDd22to/ZTVosF1ApVaYSUhK4HOOhGUVuFUQ1hJ8GsDKITMZstaBrVahOLlDiOqcuKtY1NtDXMFlOEdUmikKNViqgU0e4W6z/7k8T+EBEHRN0Y40vmN+9z6x//L8Rlg9/v4Psu6Twlm05ZvOP9vONn/h7lyTFnCkU4Ctup5vE6gW/g4f9Ka41tcqarkkB4+IGDQGGNwg8jhBMRBAErqxkNYtThPtQp1559jrsPbjPVNY62xI5HdZyx1RtQl0U7ry1gM9Q0+ZyjpWYcxexePMd8OmNNJlw8v8Pe3h7jjY326rFucP0ALwpxHBDWIqRHLEPS5RxdNCTdLq4jH74wNuRpTlnlBIMuXRNQOIKO6+LpGqQEX6KtRX5rmIoG+PMc1m/FA75Ls2q/K5X67fWw6foXLiFaZq4WDkoXNCpHG8mpzhBGPeZ37vPg8LAtdhtFkiSUJmO8PWQ1mdNLOuBKur7Dg3RGqF1ef/Eqma155varhF7C1bMX2L+/jwkCjuZHdKSPynJ21jcJHmpflTIEQQxCYkV7hVvWK3w3Ym09AlrU4snx0fdra/2lLCF8xqMtjo7vI30fm5Xsnn2EW3v7zJThxrOvcH//PmvdHmfPnOXGjTt0Lg24kznYbsyho9GRw+vW+6zLmJuv3ULo9oU9SiIiz6CNg2osdVXgey1MXjUSGfpQVWRZiZWGqipRjUPaNPT6Q6S1ramxEoy7XdIyp8hqskASvPUxtJvwrve/l+HmmOPZMV//9Gc5+NTv4NU5MgJnlVNkBUWWUj3+Bh79sR+lWiwYGoFwNR08dLdPFHmEvR6ObPniRbEiXaWsDzaJoogg8KnqEmMFQRwhHYnxJL3IY3p4gLQlN1+6xfH9PRrPQauKygiaxQmDpENDg+9IVnlOxyrK2QOWtcdaFLK1tssqXdJ3YrZ31pmcTOgNBght0MoQyZAg9EFKYtfHkR69nkeRr6iLigtnz2KsZnJyTN0osnnRFv5xRKfS1EIQORJX1Qi3NXUVSuE0DZ0kYT7PCQKYzecIR+B6goN790AIVFNihUNZVkgsFkOvG5FlJYEvydMVRoPnBgS+C8KnFjVFVVE2DVa0IgHrCsK4S7LW58GtDBl4vP7Mea7PJgxUl9du3+WDH93gMMvY2tniq/deZfvSKa699jJR4NIIie8KVmVO5ASc3zlPKQx3llMCL+HMxiaLkzn015iqHP/hINV4MEJFrfGsyHIcx+dg74jFKkUpRW/Q48zWJsLMOd8fY2rDKlt+z/3yPQvW3/+9L6NrzagfIp0SNxrw9je9nrIsyeuKp1/8JlZIHMdFWENdVnieh1EaLQxCOHjSJYpDDg9uAwrpuGys73D9xst4ns94bUAUBXTqiCJdMui1U3JhNGJSr5hnxzR1m1NqlCD0fYTvMuglvPjNlzk4OCA9u83tGzM8P+ZkmlEbxRMbWxTlAavjHo8//tcIPQfHrIjwMFbTXethtSUIIoQrUBZ61qK0RdWK173/vew/OKS0NcqBYrpEeAEPTo7RtUIHX2N2fAdxYqkazWy+wHVdwjCklwywWMLQQ/gukvbvcPPOba4+/gRf+vLTCCtaQLpywPpcu3mfJ89tUpuY55/+Eu958zvpr6+4s/TpJu2UtWssRV5SS4m2AqkFh/t7DIcjGgxKG0IZ4AWQVgXbF86TzTKaXCMlOMK2k4hYQGKMoa5LfC+iqEu0MLhIhp2Y2XzCZtQhcBpuvvAy6WLJH33hy3ijMfY4Y/+wBCPoxQIjPBzX8uBghVI1m2unKeuUdz51mtu3X2RjcAFkiRt1eezyac6ujwg9qOuaVFUE45ijF67xX/23H+err73CmcojTVPm8wm+53Bw41VOn1rj//xX/4px2KPZW3Ll3GP4YUytNI5ncKxLXtZo0+AID0867XWgbEHViAZHtNnpWjsIAVrXhEEfx5ecGV7kkvc4b37fe1B1gdWGLz/zCtZ2cI8Uc1ezOvmrHwnojhLu3LoN0iMMEvKy5P7eLTa6Idm0JOwmdHpdskXGp//gi8jEULsDmnqJE0bktaIui4r3ZAAAIABJREFU4AvZklVTsTEcst2LeN3jV5lMphwtl3hWoG3bdTMIHGMJHIfG1BTpijCMqVQDrsdimbVMzDwnyzK63S6R7xEmHda3PRwHlknGcNCjbjT+Q9+4XFWE62s4H//PqSOXKO5x85VXkOWK81vrvLU3QLoGZzxkpTVNUxHEHq4vMUrgyXb6WUuLsQnC03iBT7lqWCwq1tfXEY6L5zpY0+AvD/nas3d47dWbDNfG5LpkNZlx6fwFdrvtIKDwQ6Z1TacTczyZEMchjXFJ/DHd3gLdSzjIMwLfpzfoopqCzfUh0jrcmR4y7I+JMeTTdtAtzVM6nmF/cUynP2YsHL5y6waOrRkMemwnHXzpEtmYXi1Y+h6R62KE5ebeAwZxh7EPrhYYoRH8RV1ScByBMfZhfvXPpACa1o71ncUstEWp/lYn9uHXQog2H/mwJes4LlqVrcJVuMyrnGimmSrD+u4O3SSmqTWO79BzO9yZHNCUNbVn2XA73E1nlIHDemfISbogcX0eO/sIvvXIj6ZsjwasipKdwSkao4kGO9xXGZEWaNkCUbRusGhE47SxCWUQUrcDTNLBd1zGo9H/Tzvv/9talQWvvHgNL3CIEk1dWgJ9xDB0KeYluarprG9QZjlffeElhG9o3C6qWSE8n1JpdA0vHVV4YUPTSVhLQq5cuszx8RFN47TFDBY01EoTBRpomxaLIkcIB1VbLA7FqsQRbRxOFw324BirFd3OFjIIGYYxRWWJ4pDI9fB9EKphzRswHvTwfurHUYGL50dMjg4IqpKN8ZBe0mnFGMGYQps2LnNqm0Y3KG3brlxjcD0HrdvzOFUFdVmzylZ0uz20saAt1jTIKuW16wfcuXOf7qBPIxQqL+gPh4y3tpkcHSOkT9ZogjBisVqhihWdMEa5A6rskHrUo24ylHRJugkOsD0eY43DQX5CkvQIrCWdnBA5YRtPcC2zIiPp9vAt7K9WmLokSSJGQUsZQIRESpB7HoF00NZwvFiQBCEd1+IagecImqbGdySeaMjTDNUoTiYzHN/HVgVFqRFoXBeEdTDC0pQKrMX3PLRRjEYxZZnhe3G7FxyXbkcS2/bZqnLLotCEgUcxS7lw5QqLHCYHlnK+YOX6DNfHOFrhuy77e/tExufo6BhchyhMGDshc5USDCLGssuyyOg6AfHmWaR1qOYZw05CWVeMO2O00bi9kIku8LUAz8UxEAQuYRLTHfQRApQ2LNIVxrrIRmCsQLjfG0MnP/7xj/8/fvN//uVf+nhjLTdu3+LW/X2G22e5eeMWabog6fX45rXXaMoSawyqUS27smnY2Nj4dnjW6IayKhmvrXF4MCVOfKTjkeVLfDdkY7uL67l4UuAF7TSeFIIoCfnmC/d591Nv4vZr93nP+9/N7Xu32Vwf09tY5yd++EdY1iXTwyN2L11AN4asSXnLG56gt9bhjU8+xfFrtzl35XG+8NnP8bkvP91OjT4cHqhVziorKLOUOi+oshXz2YK6aQikxKYFj12+yO5oE+FFLIuSqlJYx0V6XearJcu715ktFqRFxXhri+3dXYwrWS5SKlWxWGTMF0tOpgvmyyWj8TbPPf8NBIIo9Ol2I+LIJfTBcQ1KVXzxK8/wc3/vYzSOYD1yyGQXF8iLlKwsUFpQqIayKWmM4frNW9y+e4xwS7SpkTRI6yH9gLe9+c3Ms7SdkWiZ32htWp+4aUHyritptKZqSnzhUqIJHQc3ClikS45fuc0nX/46RVajyopXrr+CqhpqDadO9dG6odEFnWTAYrGi1++RraYMu0PKbEmn36efnEFTkBcVnu8xXh9jpGDYHzObzjG+w/7+A379E7/GYr7ihS9/kf08p6kUSexye+8uC1Xy1Jvewfs++hFWqxqaEiv81iZS12ht+L+Ze9NYy7LzPO9Za+3x7DPeeaixq6qr526yOYOURVlkBElBEIlIYiuxBSSOgwQIMtj6YyB2DAmEbdhyDEQ24ChyGCGyJNuyHdiRGIpDs8VB3exmT9VDdc237nTmYc9ryI9dpEjBZoyETLiAg3vvwcHGwcVZe33n+973eYUSSOE1N2CjUZ5HUeXU2mBxVGVNpTXaWaywyECincNWmqIoWS6W1NmKsmg6OBpHhaTQGi0bruSn/t1P/fffn6PqB7M+85nf+SsAEtkQAQJFv9+hKjMeuniWNK+wWYb0PJJ2hBfH1OmKIImxuaHTbfPM08+Slhme51HogDSteO3LX8LXK7a6XXq9HRbGUK0ypFOEQYhF4/shSoVIZJPrrmuwBj/yqZ0giXoUtaXIC4RwgCFLU+LAAwetbpcirzC6ZjyfIqM2IgyIrII8Y29vm0gopHUYYwgweIGPrqsHhRxIFIgSXTePPEsJej18LyJQEUZI2q2IpNMi9FoIz6Io+drzXydsJxRVhY9DVAVle522s4RO4AUKjcMLQq4fH3OvykmrnPU4JLA1ftxC5wUg8LSjwhD6IUfHQ9a6HdYHHdoOlmXBRtKn0gV1GCH9iNhvEeqaVNbsdjrUgUeW12TGst3pMlnMuXP3Dru9LtQF2hkCJegEIcaWPPLEG83cy4K1As//Tuaq/C4KQFN4NuWK4Fud1++McBUI5XBWYmuL1T4ErukIS4EpHXVpyc0+VTHHmABjQ/LVWZwvIYgY3b/Dwx/6KH7Qoa4Lbr78AnOtqa3lcn8PIyEQFaHqolY5cdLBSYnRhjUVMUzn4AUkgwF1WhBJn3uLIWc2dhDG8NQHnn0gV2hYq0I1Oeq1pxDWIAgwtkZrjcNx/vyFH9o9+6v/y2/9FQvkWcE8XRC1E4Rw5PmK/TO7DCdzTJ4jpCQMPfwoos4zkm4HXRjiVszFCw+RlRlxFLNKHbU23Ln2BlQrBkmbtbVNcge2KFHCx/c8HJYgCMlSw/qgT5YVrPV7ZNmKVruF9EMu7F8krzXpckmUNG71NFuxudbHCzw2d/dZTReEcczt27cZr0qc5+E7CVVBf9BpeLwPpgVSV1gHuq6IPA9rDN2kQxQ0X5jKqvFGqFYb32+BE5R5jlICL/RJWl2iJESImtdffQMVBmRFia1r6jwj92I6QUA+X6E8CUoQRBEnizlTW1GYko6vWI4nPHTpErquCaTAWoXBooRgOJqStGKSJCKwlqwqUUawWC0xgQLlEaoA31hKZXloZ5dcOMrKUFpHvxWzTDNOhicMWjGYGodDCgiVBGfYO38b78E5VVUaU2QcLmcYY8E6lqsV1jabNoqarqx2Bk/5aN2Y7LSt8ZWPNRov8PBkC6s1dSUQgWi6wlIgnU+eVZRssFpMOLh3QllJxoeSXFic9EhnI/rnL+JUSKfdRmcLFlWNNprd9gYah7IVnoyRZUUYteDBfu14AdN8iRUeYTuhzko8ITnN5mx0+wjnOH/lMvaBHrcqa6zV6FpTy+b/4fDRpm7qM+F4+qln/rX79Xt2WI/u3CaJYt77gQ9z59Zt7t+5zWg6JPEln3/++eZFuhktSyXRWhPFHuPxGCsV2CZb5fxDF9k59xTmq69TVI6ehG5/QF3XLKY1QVhxsphycfcZjHE88ehD5OWITtDi8qVHefOdu3SSPg8//Agf+OhHcGXN4cmIq+cv8+SVx4gDn8o6wtrwz198mfTdW/ziX/jveP/7309/rcMv/fLf4unHrrC/v8nRrXeIvYgwhiDp0JI+d09PGAx6ZIVGEIDzOZqd8PvPf52La20uvu9j9JI2KyMIWhFPP3qJ3/ni80gHMk7o9HqN2WmWIpTCSY2tfaKoRRC18YXClwpnSlpRzHA0w3Ma2QlRNY10wneMnaLyJP/FL/4KzveoswpfQOUqJAGVLUBBrAIw0A48wjDkTBIiVEJeVvTXNnhoLeGfv/4Wr732Lvu7A6RxWCsRgUICgZRU1YMbuhAEUmCkR2ENLalInWOjlGxub/MH1+8R+F0CveTDj1zlzpvXcGGbp9+zz+27Q2bTiv5mn06nwyJbMIhCRssFG9sB9w5SenGLpJeQxAll5RBOoqRFFiWr6pTX7o758J94ilgpzp/d5uU372Okx5OPP0ZZpDz51KOMn/9Dfvzn/lN+7Tf/Lp/80Y/zdpYzmmj219PGfW1CjMopigJrPISssYVEBj5SlDjtNa9TNbauwAUIV1JlGcL3sbpmtVrhSYVUFg/Loi5IgojxZEhVG7wgxPPV9+uc+oEtoSRSNBB6VwkqXTMqZ8RxzP2TIU4bZBSwWq5oJTGxlYRndlktliT9Lo6S4ug+/9knLnP7+gG//o1brK/tMTGa33/pLYI3D1icTHCeI1GCM5tr2KrkmScfoWgrzp57hDjp4lwLaWo8J5jNM7rrAelqimwleLgGRQSgAlbTZjrhLTOEs3Q6HVpJj6gXwTwj6CcEwRonxxOStTPMhvdZTqZMnaO3PiD0fVba4ZkAI0uc00gZYLEYZ5mMU/Z21lGeoyMCvEgiKfnKlz6H9AWrtKDb7+LqGl2XZJ4kH51wWW0QJj5KS5xwJCpAYrk42OCRbp+Tezfwgy5ZXeOXGUVREyUxTjsSL6GuazY3NtBW4nsdVn7GWBZEAcyHK9rdGCUNlpoy1xTK0klC+kHI+YfOwLLA+ILd/T32BhuUVd6MSIui4ezmU3pqgNGiOaABhP2ubukfpwRAw4AQDvS3NKryOw1XgAnAVdj6gazANbGtTU9dIIRDOg+nG8oIVpEpjSoconLsrTXd65oCGYScO3eB5OSYIPC5Ox2xvb1NIAfY8RGy36MOFdUiJQ5DjrMZ24MeWVlRL1aEUcDJas5Gt0exWnIwHTJfLrHaIHGNrENFGFtjsxTiAYa6ifHVBs+X/x/suv/nqywLPKXoDXqky4zVbMnUlMRRyCuvX8PWGqQgz3LCOMQ3kGytk68ykqSLczX1dMzPfOQy+UrzD597iW6yzspK3rh7wltHM6rlVxCeQ9iac1tnMHXF009cJc2mDLqb9Pp9lqUl8gMG3QF+nBC3I+bzCa0koZdETQfU+fQ7CQcnR1DknNk9T39zkzhJWBUFGzt9lAFtK0I/YLFYsrG2S7GYMJuPEUoQtXw6qoV2grLSnA5PiX1IBtv4QUxlKrKs5uLZDU5mE7zAQ4UKz5dce+MbD9jYzT6ztcY5i1ESWxRc9Lp4ocX6HrNV1tzPbc1G1GIrjJiPj8hLSW0d37z2NqW2eK0Wvm3S3IyxVGXBcDQmaCWUVcmizNhstdB1TuKHKOmQkSKsFdN0ySrNaXs+7d4GFDXWEww21lnv9iirAt/z8Ooa3/NYVikt2W5CFRD4VhJEisUiRUoPaTW9bot0sUAoj14vJstLdN1odpXnIYwmUJJKa8JIkeUWX4QoTyJNiPDlAxa2RVpHWResipqw3SYKl4TrCdOpZa4ciR+Tl5qLZ84RC8X2/i4HJ/c5u72LLgps0Ge4WtDtdcHfRq/G4IVoQBcFgfQ5zOckQUhRVuiibvTQizmtsMV8MmE4nzAcjrBaY43GD0I838c5TV1WhFGXsi4aYomx/7dn7PcsWE26RLQ7/OGXfpf+xiZZVlAv58wAz/Oam6EUD1AFDThc1xZrHb4vqUyN8iXzleHaG2/hBwHCgvQUrhbUteH8hYc4GY7Z6fbIiwVCCIoq57VX38CUBV/+w1fxPMVXvvoc2XzJP3rjTd77/mc5GZ7SbrepTJNtnCQdWhsx0fKUy3/yx/jCq9f44mf+Dv/2Jz5JX0Vc/sB7OSlKrlx5Em1LPOmjrKbSNVtXHEpJ0AZrLZ/+m7/Mf/3zf5q//av/G+P3f4hkOmet6wiCCCk0RVqxGC65ureGZwSBCtF1hZWCsjCEqkWRlajIRwBGNw44qyVK+SgcouXRcZaVLkmSCE9KOlGLrFpgpEMVoNseCR510KbSGYNgl9jzkEHAZDZhVVSkWcksrZGhwiG5ff0G97sRsRfw7HufYTw5QFcGp2s8GaBtM9YLPEUtFLbWZFgiL0ZYgfIVxjhkqFjMc969dZNWZ4NC3OYP3voKhWex5YplnVE7RxjEHN+dIaxi/9wOR/dGVHnEyemK3lrI2c45XnnlFfIq5979uwTOo5SOi2cu8/QzV/npHzuLsx5ma5fX3rrNcHnK6PCYja1tBv02n3/u8/zU+z5K3G6Tn9a8e/NN9s9ts9Ve8va79xC+oGCC51osjm9RmBqhBcPxEEON78U4B0mkSKsaJyStTsC5nct0tvZ56YU/AAxxHCOEwPc8TFXjfMFsfkq/18UVNUoJyvKHH2ulZDMClkIStlugHMbUzEYTLl68yOHBAU47zp89y8lkiBcHUGq01izNmE6UcL8s+PQ/fYmd/StsddfRniRAIryQyWTSHJyxR1GsOFxmdDodfvvLL7AVRSweGVKmK4rZlPf8yI/R2z1LEgUI5yGiisQZShmyWE4R0jWmLAsCHwhwoiItSoqiYJwtaXkBW70ORWlpJwFGGDbPnMPUe4zGh+SFJa9ypLZIvyBQTdIWtsJKhVCSrZ5PmmbEUcJ8ccDh125RWUduKzbjHiaUSE+yGg3Jx0OiUnOmvcbUrpBllzfn9xFBiCcM57fO4CsJ2ZKHrj5Kls9JvD6hChHTMZPRhPagg7fImsmGtSyKFYkoWa4qHkra1FXNTqdH5STUNVK26KzBIG5RZ3MEPqM7N9gdbFAuDFUrAAx0YoK8pjaWVZHiSZ+05aO0wKlvIafUA7bqvz7l6lumKyH+VUgrR20qfK9JLywLg6O5dnO7b65tESil0Ebj8BgPR2ztncV3JVkF1BbnGeJOSDLosVzOuD86YjPpYPMCrVe02210kRLaGKTkrXu3eObiI7x4+DaJF3NufZvj6YTt/hovD+/ieT4/+6c+xdb+GVpeAMJitOP+/ft4vmSynMNqgSDGCg3CEoY/3LpzYTUq8FnORrTaHYwDipr5ZMrO7g6T4QiHY2trk9lyjgoDXKXRxpCzJPICJrrmN/7gXTa3zzNo97BS4QcSg9cUjf11NAZd5QzTFXHc4rnX30LmKWf2BiznC+os5dH3vo+wM2BZjFlzaxRVRrsqWSAxdYHnK/w4QNUlycY2o2XO+OAWuzvbFGWBH/hoIdnaOUOlDVHSwWGbMb2+wHI5QdcWJwz3rt/g8oUz3D04ptXt4bwlnh8glaLbkaRpQZkahF1x+uYpBkHtKuIgoVYO6Xlk0ynVcoGvLethm5XNiMuEu6sZ8zRDKctefwMVWKQu2T93AaNLnJB4yiedL1lkK/x2gqg0whmCIGjOPyrKsmDDb3w5oQrRtcQIQ20d1ldsr22wPRiwXC2YD48YJB10ClWgGgpHHOJVGm0seZ3jKZ8q9FFOYa1B+AG6cmR5hlQBhozpaoqV4IymthrrmilJmdU4B61WSJFXWCMpS43vC3zps1otqXPBcpEiA4FUEMcJSZiwtR6wrBRxHDOZpZRacHx0yObOPlJJjkcjnk46SAQeCiMt7X6H4eiUEEmV5lRmSeT7lKsJ4KON4d2TQy5u7/Hq8TGhCtjpD5hOFvSTDu+M75K0unzsE38SL4oIlUJ5Emsck8kUKR3LdIVdLgj8FtpqhHRI8/+iYEUKTFXhlMdsMqK7tsl8olDyQTqGUlia8ZxzDiUkQeBT1wVYx6DfJc0K6spxcnRAGPporSmKrIlvFILxaP4guq9DUaQkScQLX3+Rfq/FwXhKf9Dw0eaLFX4cEfe6vPzGK3hKMR6foDXsnz3Lub1dyuMl0/mKR03Fh9/3NNWTF/hrn/7LzNIE6VvOnz9PdngbL+4QeCGh5+OUh/MUfujjZEhoBR//E/8Wf+93vsSf+y//K/7Zr/8a3Z/4SaQ11HVNT3Z4650baATGNl28AkflNKpyKCNIi8ah6cqiwYqIVlNJkONHjqgVMp3OkWttNALpHKW1pMMhUd9S5T5R1MTmLWYzBqJLmmeExrLwHeHCIw4Uqq1wtUMbQTZPMTj2d3ZpRYbEGKhTjHEPcrcjDA7P83FOYK3GOdnknEcSUxmUbDpyHekTRAEtAlS3BZMS+SBDXAWCvTO7eF5AGDjSadawNruC6XFFGEZIIah1xepYs7V/wlPPfgi8kI/4ki988WtcvXqVq2cuML/9EnLNMc8V6emExx+/zI1b73BiHBZJO+mSpise/eAHOXfpMu/90Af4yue/QOfKPmo+5+Mf+yS/+Y8/w8D2GbqU0tNYJLU1LPWSzU6PwlhUCMJ5eL4kihM2dza5c/sG2XKKDBMMgso2eJDIeuRZRphERFELh3gAJ8+p6/r7dlD9oJZSgtUDR39ZFKCajvbZs+cZDocI5WOqgmWa4rQDY/GjCDup6fkJ2WyOdh5rgy4sxphOC1+DIyCUlrgdUi5ycAHSSKLQ4/DkmLaMsYMeL71+C1EXPP3IBe6+fQP9+htcvHSZ7mPPkumC8XhGaTTrgy5aa6SEokxBKqoyJ+m00VoTxAFSQ2E1w5NTOqEgjjdwcQtdLTGmptsf4HmScrFgrg2J32KVzpAYlmlFu92l1x+gPMlmv0ORL7n/6jWGZcHO1j6RClnNlvitGM9ajt6+ziCI2ej1AUtHdEE69s/uMU0LTFnx6q13ePTcZSIv4vDGW/Q3tqnyipqM6XJKpz+gldV4vT7L5RLjLO1WG1HXrG1uYrSmrdpYLGQrAt+nRuDykqyuIYSZSdkabGKqCmEL/FpgS03oBLWrCYPGNHhgMgbW4MIA5/R3JVH9cdPVt9a3XyO+++/v/F2iMNpyfJjQ2ZjgOQkI3B+7ttYakFghCNs9gjCk1+6Qrlb4vo8B0jRHKL8x4kUSpTUur1EtxfjekHFSEWoPPwhY395iWCyIvIC5MI1Xod/H1JrACXpRh0VVkc4XLGtNEiWUZU6SJHieR9LrU+UFSI/A81C+z+nw+Ae32b4PS0lBkaUNOzxN8cIIZ2Fzc4v5bI5QXhNoUxSNcdRY/CjELpYkfowuC1Ij6PZ7VJNTSGKkdhgrUMoQRI1BCKnwRUAgFIvlHFFBa7PLWzcPkVZzYX+LwzsHOHeH3b19ilaH2sLJeEylLZuba8RhC1dpsqKgbUqSSBH0zvP2O29h8JGpw4tCju/ephX5RGEfGUUYU2KNJopbqLbCZBkbu2c4npTsnbvAyf3blJ0+CkkcJ3hegz8U0jK6ccBSawb9daRUZMsMPwygrpnePyTxfHpRBEBLtkFqNrYHVCdQZDk3Tg7ZX9smVD7DowNarQ5CKUpbsCwXJJ0OKs2Juj3mqyW4Gs8PcFlFv9dpiCLEWOeo0hRPOVqtCKUrdJmjhWFlCnrtHmiDcBW+jbDa4qPR1hAGMdJTjHRBG4dRCg+FkKJplHkSUTcSHfcAQxe2oge8ZE1Va5wEzxdUhX0Qbd8wlWvt8IOadrvHNO+yfXbFdD6n3++QRC2KyRQhHFrnFOmSTqfNYlHhhS08P6DXTkhXK3obG8RJQhi3OJ3MmM0mlNWCc4M97h/cQwUho+Ml86jCsx5SKuJewsqW+J4iUwbhKdqdNtIJkiBCacfR6RG9XpdMG+Iwpqpy/MBH4Fjf2sLWGql8pBAgBdPZ5Hvul+/dYRWSolyxdfYyNTFJrDi9dw9rGy1UVTWZ1UqpRqQvBXVd43keWmsm4wXtboe27zgZnvLI45d56+2b6MogvQaxYrQkDEOKSlNbxyqr8JIecSsA4bG7s8Pp6SllWdBtxVit2T93idHokGefeZrfe+6r7Oyf5fqde9y89y5tEVCOhkw++0/4s7/097lzOuVv/cW/xLIqeOfeMUkYoJwiDiWjeckwGzU51ULSTgJ0pVksS85ttvnCb/8mi+WS7fUNZqMh43nOyeyQ49GEcNDHSo0zFik9rt+ccnz3Lr3QoxtJWn6I8iX97oDN/RA/8qhsl2c+8OO8+uYxTDIuvOd9XH/+RQLlqMOADz68Rfvqv0fgTujvP8U/+NV/yP3R5/j0P/gC7cO3mXpjqhy+/Fv/mMP5mLSYE3kBxlicr/CU42B4n+2NAbtb24ighZIrPF81XSfTGJ1838dTPgKLMwW6EkAASuILn35vjdoKuu2Q+6cZ+90OhZkS5iE6d4yOjwmSgO3tNhvre7z2zXsUmUQFKf1+i2tvjem1PS5d3mbNqxC1RzeCFvDJxx+iKud89rO/wsFsQc8MGKYjWtZwfnWH8fy40csJx63b79IPBvylX/wbeBh+5X/+H/iVX/qb9Os5NxZDXv6Nv8HFi0/x+KMt3ny9YpIa9MIRJCWbvcscV6f8J3/qE/y9X/5HpLZNbVb0qfjSF97lwuV9Mj8i9jSHh6d02hG9tQG2lixXBXHc4879Q9a7fRarJd1ul7L84WY6AqzmK6JBl6qoSAJFWqXsX7nMwa17xK2EylWIQrBMVzgDq8WKbFVgrCAIBd31fabT5iYXJAGr2RKnGpcoxGx3Ik5rQ1GWhGGLWVHQidqcnp7SlxpPSFY24KtvHnM+rOlfOsPR8C7B3TZf+b1/waPv/SBnzu7yf372n/GhP/EJhAtZLVK89RAZRpwOx408wFVIFGvrm0yrFfOFQ9gTlLGsbazjlMIDhPURvsf+1hlMWWCMY17k+JHPuQtnGd6/T76ccbBacjIaE/mCXjSgtBWx7xF22kxPD3DDFYM4wlY+s9mC9Z09BlbjeR73lwuurm0zPjnl0QuPMl0sEZ2A/pk9VsZjI4mp65JNu4VvLGkIJk+RUUAvijEWTKlJJ2P8lodwNVVdYbXmJJMkMiVvh2yrDqUu2fL64Ak8a1ksm0G88n2m4wXa1qgwYnejz04W4WyjDUQ1Xyo8UTQFpZXNT/S3NayeENjvKFSd+6MOq5TfKnAFUhm0gcGOT5YGRL7DOYtQFi2a1whnccpClVA5SVRmlJMpZdgQV3JXomqNiBO2Ohu86jShEnxzdsJeq8OW2KC/H3M8v8OiXHEh2WY97FDWks2uY1c7FsMp7TgAbXn/zkOslCX0YpRTqEiR1iWeH6FN0dyHnYeSIVpbMq3xS00r7v7/sg9u5gWOAAAgAElEQVT/TVeWFUTdBCl8Qs+jtjWDjQHjkxHBg9Q5V/nkRYEzjem2LCuckygPoqRHXhb40gGN+THTRaP7VCH92KOsoDY1TvksHwTQTIoZ3qqZypmgzTv3Z2yomv7ZXWbzU9rdLm9+7cs88Z73E0rB22++wqWrTzRSjaxAFyX1dEz/3GWi9R3uXHsdY2HQX2dkS6gEStxGV4YwCbGi+dLjB34jg4h69NoBi/GMXCuSpMPm+oCT41OWw2Mm8zmLvGAQCVpBQm01ZanJ84ri9BhvVeCZmrKARVaxsbtDLBxCRpROInse4/yYvSuXODk4RiUBnc0Nwihk0L+A0ynQ4ujeAR/76Q9w8+6YjTqHUKM1jO7cYTZPwbf4KqDSNdYZ5oUgLMbQa7ETDVAioK86zSiemjozOGdRviJbFWiryT3NWj+hX/oIDMoZfD/GOo/QM5SVJZQ+1lmkaYIbqqKRioShRxjEzOc5RoOUBs9XrNIapyBJIkJP45ygv+ahC4+dThtna0ajm8wWNeQBo/SEYjUiKixZLQm0R71aMcxTPAuvvvMWHoInP/Jh8je73J/cp7I1n7/+Dc4Mtjm3kaASn9nimNUyZ6vXYSfcYFXXPPHYRQ7ePWQ2mRP6AiMkazZEdEKkHyMQaNdMhcIoxugarWsi6VGWFik0lamJfB/fi7/nfvmeBavfCmjFfQ5uvYktKoQMQIiGg+YpSte0cKVUOCeIlU9qckSzd0AK1gYdHjkTcX7nEtcPTtFGoPyAYjZvDkVhePbZp/jD119ncX+FdiVXH36c4+ObGFOTLleE0iPsrbFcLgmjiNv3DvBCy+996Sv0Oh2uvfYqQRizGM9Y397lv/2Fv8j5h87yt//uL/MLf+G/YW9ngC8CFosFaewjnOTRc1e5c/tFenHIIstotyK0kZS1QAWGUVrhnKG/tcXf+cu/QGEduw8/Tj1fsL81QB7BtZahLH2CwS7X336dQNfUYZd4c0BRl1y+/DDjbMlotCRINIHy0Srgk//OT/C53/gdrmzs4T1xmXfevY1IK16+McYd/E+MDoZ89AM/wkfODnnq0Q/x3D/9dX7uz3+azNZ86mOf4Cd/4qfw7Iy/9vd/g6XL8PwQJ8CTAVHQYr4A4+bcu3uTOI6BhvvolCMOQmptEMLDtwWZM1Qr12h6teStb77EhSeeJenEZKs559qwrDTVMufe6Rzl+YShT+TtsVjcIk9bDDYG5FnNdj/k5vUVFy5tUE1rbt+5z8vXLT/50QuYvTZr0S7/42/+FlHYxpohs7HFbIdcOvcIabbkG1+9S2EafmY6X/Dk0xdZjKbsRus8eXadv/5XP03sK+69dsQ8Axd3mdxa8tvv3GA2XFBmjoefuMidawtUsmA5rPjrb/0mg40OBRnnzva4f2vJ4+/dwFSW4ckEvz9AKLjy2BXakc9wuuSp85cYjZckpU9706d75hzCrRAy+T4dUz+41RrE1HmOCkJKZwlkyK13bzRsPk+QLVac29tjOB5TOkPtLFWd0es1yLqTe4eEcYTvJOPhlDiJQUlsUWECxXC2RErJdDJhfc2jv9bn8PCA7sYaRZ3hB22UL7j68Bnmsxkvvfw2Tz51lbuf+5f0d85w68a7fPYPvsb7rjzE2195jvV+j93HHmV7a42V9ammY1zhcL0OWZphFmOk09jaMs8WOBNS+yvytEBYB0I3KT2LMSpKqPKCh/b3OD0+ZT465vrb18A0Onvf9ymLKcl2D2qIpeXaS9/gqc09bkrB5voZSmpujmoW8xMGnQ6JhfNb+yzKkq1zu1SlZavdRqIpckV5ckK+vY7nSTKzoi19TGGIk4TpbIrX72OrnNp4rA/6pLXha4d3QEkCp7BZynv2HqIvakbDA+IgwWu1WCwWvO/P/hkSLTieHjHod3FSYY1ERAF3rt0gPh1y594dJD7GWaytcbVC+N+C/5tvm6mEEBgczn5r9P+gn/Ptrizffg6ajABMRagECP3gOg8qX+tw2qBNi7wO8aTPQb5ir7/GWqwo+m3KBxOxljZUkUeiHUsB26022+0+aZ3jO5+Hwx1sV+LVkJmaWme0CCicYGe9h5d0wPe4c/OAp69eZmGaz5/FfpsrixWIB5PE2jqkEISqmbT8cAezQtyLQDsqk1HlBmkFq8UUYx3KlxRZzuZgneVySeWaSWZWN7n3GsF0PKHb65DEHkVRUj+Q3GEcRljyoqAVNylNxtYEfsBocsrm5g5pNkULie/g7Lltsjzn7Xdu89Clcxx/9Xnag3Vee+Maw2XKlf1dbr3yEp6SnLl8mWeffRoRd7j+xhu8+cZbtAYd6qxkvJg0E1jjkL5kMs8YCEe6KvClbMKErKUVz6iChKKsObO7ydGNa4wOAk6GE1xZEfgKz2t0okF3E1GF6GLB0ZvvcGmwzcw5eq0+QRJxbzoim43othNaMmCjt4YfREjpiNsd9i94ZOmSutCMRmOKrGGMh35IL6z5wu99iR/76If54tdeJ2q12Ol2WevvcHYHXr95jzdOjxGe10waqopL67tIbRgOj0miiKDVIi9yrnz8xwiNYJ5OaLViUB7OWKyvOLl9hL9cMRkNyaZL4l5z7tSFJZKNrtbUFfUD/blSEiFC6jrDGg8/8DHG4fmSdKWJkwBXW7IsZ546NgctpPOJEdw4PMALPBwFxQqUlbT8mEr1ORlpBCHjqkRg2VvrMlUOZQz9Xpvbb76DDSRuVpBbR8/vkLiQW4cjXA3tKmJrfZ1qUTCq5pRZQTFf4nyffs8j6XcoqibU6MJgm2k1R4iGytPutPGkoigdSdunqh1Oge9LIj9B25pA+N9zv3zPgrWfJORZQbuzibehCKMI4STp0SHLLMULPCzmgaPNkeocnAe+x0bf5+LeHhe2ugShJVvl7DxxmfuHM+am4m4h8EXAql7w3PNfpr+xxfbFfQ7u3ObOwT2GR0c45zg8blrKqtYopSjSjK3tdTwcVTnG83z6/TVmiwkb3T4f//BHUUmLIPR49eVvYmrQOiDLxpzdP0OrHeP7EbPTEU8/fIV7x4dsbm0yOhkSaEtZVrRaHaoqR0qP4XBILwoxUvDu9Tdp+QnTxZSNQZu45ZNEMQdvvUg+yVjpkq11eO3mMevrA1773G3a7Q7UDqc8sqrGyYrFeEq7HfLi858lzSuqqmJre4PldEI1r1BS8fq7L3J5/Rz/wXsv85Gf/fMcvfEFgqjHX335dXb3d/hzn/pZjGni41xd44QligKM0YR+QJou+bXP/K/85//xz1NVBcr3mq64tgihMNYwXxZIXXPn7bfIraIqNeO05JNSECiPZLBHKTpIv0LYGs+3OCcoC81wdAhlhJAaZzJyE3IyrOkOBHWRs7Efskoj2qXizZvXGN/yeXnjHrYomS4yHn38PEV6ymg8ZzJ9g6osOHt2j8cefYLf/d3PIqUljrpk1ZxWYLFKcHTzHs888Qjpusf2tuKNVw/oPlQzOy156NKTbO/0efnFV9je3WB9a5sXTl5na2cH5xwJLbbaV8mT20xPctLFkEvnL3Jwd4hnA25eP+Dp9zzBrbde5fLFPWajjGVecfVKyMWrm/yTz9xma2fj+3VO/cCWLzySQY/FYkTU6uAKR2RBqpq6rIhaCWlVUBvD2lqf5TKnIyKEELS6bYzT35b57O3tcuPWTYRqsHVaCcospRXHbK6tM53PkMrR7rXxlCQMWvTWtsnznJtv36cIPAbdfb72ym2e/cAzvPHudVZOkYQBz71yDVFZnnryLG+8/S5ZUbLbG/D0R97H4+99P6epZhpOEXnOqswI/DaRKnHSsJgMaa+t4aSgSi1Jb8Dh0W1aQYGXtDi4cZvj8ZAgCjESCmvp9drUZUWrtUOxzHFlzb947gXO7u7w66+8zvsuX+VgOefieo8nNnuMbcTpas5qMeOJHZ/xdMTO1j5e5chXC+JOwGKRsre3x+u33uYwn/PY+lnifkjb99DSsrvWR2goTMzaetTEKzvDYxvbtIIQJx2JCLk/GaJKn7P9HW4eH/HET/0MD0eGyGsjWysu9q4ggKKuaEUt8rri4QuPYHYu8MSHHsOufgsYIUSAEOZBhOoD0L/4VtLVd4/+m+4q3/Xcdy6JAqMRaCwNdcLaB7QAIcAK0tU6RX1MKDyqdp+eFdxaLtn2ItbW1siWK9KyYLCxjsWhMtj029w6OuRCfxfdDZCVIfJ87qcTNnp9ZNBieTrmyfdf4O7dKXIyR/genYHki1//Ch9c/zjG1jRc9KZgLcuSKE7IiwqhYsBSls15If8VsogfphV5ATIIWaULwqSLNILQasoipS5rwjCm1BXaGtqdhDwrCXwPISWdbkK3ExOFHh6OweYGx6enOGepbU1FA4v3fA+nNaUuUR1JlMRUdQnW0esOKKuSo4MRta/oJBtce/eIx564ysnRIdNS0w4D3jk4QRcl58+sce/td/nscsWZjXVyqTh7bp8Cj8pNiKWksiVRK6FezdnoxazSJe1ej7KqMLUmbsVM5xMCVaOimMM7B6zSJSrwyfKGt5r4IUpbQtmhXGVU+YQXX36L9X6Xz9+4wcXtHRZVyXod0ROWZeV492hIuso4NxgwnY5ZH2yyOjmlqEpkIKmNY7A24NbRAaNsycW1bbxBn0tbXZ576RV++pM/zr/83/8PbgwXdLY6tNubeFZzptsn8gKcdLT9iNFijqcD1qIO77zzLj/yH/4ZIt/iyQARFmwm2wgEtdbI0KOqKwZxh1rF9DbazFOfdSxKBviBhxUSIW2TOPcA8GyMpaxKsI3h0TmLc4qytPgBWKMbprSRKCtIsxRSy8xr5Jp1WZN0WhReSZkaFumK05HE80v6nS2qMCM2MCrrJqmw20Y4x2y+YL/Xh0AR1z6qEBzPxnRUi3C9T6wU6SqlUI6N/hojm2LrivMXtjgdrnC5xFYVnq944ZVXeOZjH0JXFc468ryg0+kwn84JN/vkWYlG4rcEUSw5OSwJwu9dsH5PC6WixNRTinxMVZRkiwxnLEtdogIfJSRCehjjGqhv4IPQhMpy+aH9ptVba05OlqzSktPJlFoB1qJLQ1EUHNw5QFeWItesZuMH2sqaIPKbnGgEVZYSKMdy0eTtruYzqqogTdNGKpC0cQ5m0ykvvvQC586eJQgT7t+/Rxj6SM8nimKcc+TLFcOjI6wUHA6PUaqBdCvPpygqWklIEAQo5WOModfrkVaaoqxpRU0a1/mL53BKUawq7h+coIXHyqbUylJKxyDZJF2WSClxzpKZFF/WVJNTBhqeunARIw1rgw5a1/S7LZzTYB35KmtSuKY5t4b3+eYb1wndiv/o534erQxYyIqa5154hZCGgWhp3Pd1qRv38GTKaraiSDOM8nDKx1chykqE8CkLTVloWlFAVku+cZBxfTHnteMj5rVhuUzxjCVuyaYr48S3H1VZUxQVjz16ESErrA0xtYd2Gj+MiOMEXMjJ0QzKFtNZyk/8+3+ap559D9/4xvPkuebKlatsbvTJs4yzZ89iteOZ9z5OGEXcunG7+ewpwcsvv4IX+9y8d8DehYe5euURhO+zM9jmaDiiLCs0gsevPMnrL7/GdDTlkUfOcfvWEbdv3WX/YpdbN+7x5JNPEnk+n/vdz3N8PKJIKyBiPJqznBckQQtVO/7wi1/HVo6TowWDXgeko+23sFWH9Y0tFunq+3FG/UBXlWvKsiRptZlMJohQcenhK1jtwDaZ9qPxhHa3w+lojC8auH5Z12TpirVBnziM6Pd73Lpzu3F0BwGPPvUYvu8Tx01cph/G9AZ9yqJGl5ooaqE1LIcjhNMIW9ByBelyQX9zjZN3blGUHqF11KuCVVnT2tjk9bfusFjM+JEf/QC+Svnmi9/ghd//HLPRdbYGHWQrJPRCOv11jsYnFNrR6nWwtUbUBmMrkJa408IIwXKZ8s6tGw37NS+w2rIetXFFjZSQ6hX3X/gGX/nK8/zoow/x1FaXn/nws+xvt7m8s4uua+aVJDaGR9Y2ed/lS+RlwfbOHqtihmsFqHZMWtT4Dxzo569c4ezuPm9mI94eHnJ7PkYYS12UlMoQxAHZfNq837qiFYfMRyNc7bFczCicYHsjQfuOp3/2U+xf2iD2EnqJRNUxxWrJYjZiNZmwGA8pT4+waorozJBLj6rKGj39t8MDmuWcw1nRPL6jbvs3qeEsf6SH/fbjwbWtaw5FaxuzpnEeu8GAW+MJZ7pdhBAcD08f3P8cQnncH49xYUjqLFtbWyxcjXGaVbakSHP6rYQ8y7BVTtjv8M6r19k9t0auU4p0QdvvEa51ee35r6MCnyCIEK6Ro7VaLQLPbzpT/BFT1hqD/SGPZjVVTVVl+J5sEiKFY3dvt5mC0ZjaFssVYRwzmy/xlWxSvozGU45Ou4WnPDwv4P7REa0kQfo+Zy+cRQqF5/lkaWPqieIWRZaja43v+w13dbFAOoPVOTEVq+WSpNthfOeAogRZa6qsQDsIOz3evXWfo6P7vP8DT+N7mmuvvcaN114hWx6x1msjQh/lBMoLmCxnLLKCKGk1WCvrqHWF8kVD05CKLMs5HY/Q1pIVJRJB2w+JvQAhBVmVcf+1a1x7800ePbPB+UHMBx+5xM5Gj61OH2sMWQ3K1JzrdLi0sYarKs7tnSGvV3jtCBH6D9i8gIP1rW3WB2vcWk25Pjzk+skRytS8+PUXqFSDysuWS6ajGRhNFASkiwVoRbpaYYQiiSWlrTn3wQ+xttcn8GLasULpkDovWS3mpPMFZbqkmE6ZlgtSb8ZqVlNUBVVtUTTv6VvhHc6BswJjHMY42u3my5dzssHMYZGq4d7jGtMVVlHXho29Pbq9LrPZGKMtrSR50JU1RFGENZZOp03ox6zSkjW/zelqhV9rpJLcPzmhlXRIWgnC8/i/mHuzmFuztL7vt9Z653e/e/7m7zvnfGeuuaqrmp7cDDG0IXaTmDHGkXHSUZwLEErIIOXGLUWylNxFjpSI2DIkgMKQCAw2YMCM1TRVRVVXUdMZ6wzf+eY9vvO0Vi52wVUoRVYi97rZt3tL+1nD8/z/v3+SVxTakLct3V4PFQQsFnOW8RLXUsgW5rM5rq2pBcSThPF6lyfHT4gXcxx87E6HO994D43Ac3ykhuVsiWu7tPWKJasAhQBjYVkWVfXJPhHx/yTM/4v11LM7xrFcep0udZWyXOTsbA85jxe0VUtfebRaEgQBUhiKRnN+dIITeniWoGk0w36X3e0ek2VOliwJfJfQCWhMw+Q8Jgj7eIHFvKp4Mk158OARvajL+fk5wig6kYvvuwyCgA/uH2KEZHvgYSlJpaE3XCdwbE6nc5I841f+6U/x/DM3cYdj/PUdLu5dIIuXK2yCMTy1v8+0yKnLlqpu0aairCpsabNYLtEamqb6y42w0S1trTGmpSxLXMdBStje3sK1HF566SUaoXnrT/+URZrjWIqrVy/z/nt3KHXF7t5F1ja2ePftP6MX+pyezxisDUmyDGVASIVsS4RQKNvlytY2tx/dY2M0hLTmtFqy5XUxrcSJbGbzOaEd0Bt0aWrNeGNMqyWnk1OcwCFNS5KixDE1Dycxarlk/9p1vv27vwshxMot2qw2dEuvNGlBv4soVjBp3/VYv/YsN7Yifulnf407kxlIm9/5tV/ECPA8j7ouufn0Ljs7Ib/7r95jOB7x/As7vPnGbZQtePrqBeZZw+nJjKzSFPMlTQvKtuhvDzi5f8bmaEBOze7WNu+9+yFCSnZ31pnN5jQ1eL5Flhb0QoveaMx/+w9/ksk3HvHhG3+I6EW8eXzEnduPaGuLoknQlWHn4jYXr2zytd99D9eVXL54lQ/u/jlf/sFv5dd/6Q9BSLzQxjRQ5g3PvHSN+7cf8+lPvcSrr76K7XiUTY7QCmkpdjZC/taPfhs/9T/89sowSEW2SMVfWTDfBOtv/53/xERhl2WcYlsSrVcdU99zmcY5jtL4Njyzv8FinvHhkzNUrShsG6dpcQKfTiegrltmswndbh8hNfEyoes5mI7H9PicG1ev8P67H9DdHrA4neEpFz8MSOOE8dqQStckZ0uqusHt+Ngt1LJl2I3Ii4Kk1di2Tb2MCf0AqVtat8FuI5I2wcxTvuNbrjM5WdK7eZVidsqLL77IG2/+Gd/xnd/DZJrhdyUODmWrWS6PsaUiK2pk3VD6gsDYHBwfEUmH3rjPq7/9r/nMYJvMt6gMZGXG7uaA4+MpodPF9RSWVAjpoIXGouXO3UdcubpH0lbkScqaN8K2BTktVdUwzxI6kYdIUrz+CLdZYerwA6q2Ii1SBptr2JVGIigrDRTQrB5+BT6+LFkMd/nBH/4BludThCNoG4OSkni+gKambHIabdBNuxrHywqlobAtsn/2Czw8f0DjVGxcyvie739CWbTYtkLZEtloKtHifgxkNqJFCzBaYglJYxqMtrGcZsVkxUHrijy1qKqGbsf6S4dvVWniueHofI9ZGXJ4y+KjB4atp5+mSCrE7hrtZM5nvu/vksUJXtBjvd/jN37+n5JkKX1bYWMxXczJRIkymtHWOtXJknvJOd9y5XmGluTBfMJiHHH7vdv0wgC5zHnm6g2u/MC/wxduvLDCACE+fphkVFVBqxuSjxsFGIljr7o1X/ziF75pa/a7/ub3msDvUFcNUmjqusZxLYQULNMSXwlsBZe3R2RpycPzBU1a07oOjtarZL8oxLYl0/kc13GxLEFV1Pi2opSCPM7Z293m/oOHyI7P+dEZgeODFJR5yWDYxUhDk5TMlym27xIqhZaawPcxCCqg1YYySfhrn/40/TCAUPFbv/EqwoVmkfDctW2W84yN61dIF1MuXdrn9p07PPfiSywWBW6ooIZaa9J0iiUVTWugaahtcIzibHJOqBzCXof7H97iqWiMtzagMnB2dkwvClgsEoa9MUWRIwT4QRfbc8iWU05PpwxHPVpLkKUZfTtCWZLa1DStJqsqhoMu2XRCZzDCrgxxnuD6HZq2odIVTifA1QLHtqkqjeMKTNOSpCmN8lC6ZBkM+eIXP7cC/dOuzLwb6+RpimkbqqZcER8+Jg/hgGoMlSVp/vWrLNocvwNZ/YibrxxT14b5+QnCElgIKtMw6Ph4ns35+QLLsYmigHiRYURLx49oZbMiBhiLpswpC0Xbarp9j7qscZRN2bTQujw88Egbn2zic3BQ0d+9QFu3tP0OKst45tu+xN7eNpQCqy74s6/9HieLBZQlUlsskgWlqQl8h/XdDc7unnBSxrx4+RlEkUDX5qM04/DRIZ3QR6YVuxvbXPuez3Gxv8mgP2Q+myGEICtymqZedY21ZvPCGo/uTnAcC4Phv/rJn/wr6/UTgwN++ud/6qvHZ1NCVxKGNqOddbK85nCeIxpBjiGvSzI0aV7g2JJo0KXQNYHt0A08bFvy0cM5EoNv21jKoSxyzuKE8cYeD46OyIoaR2uSZcJGFLHhuzxzdZdMGKqmgaqmdRzqWvPKFz5PnqWkbYky8PB4QVEXSCXIshwV9bm0u8PJfMJP/28/R7KI0cJQoVEGrKbg4DQhCB0O5yfkSUWRp3jKoqwbhv0xeZvTlDXdbp8rl6+uDpaiIOr1EEg818bzPLAkDx8/oihKTk6WKEcy7g+ojcvBk8c4tuLmjeuAZhj2MY6mLFqKLKMXhIReyCKJydKc7dGYi/v7ZEmMpxzuHx7j+h51BWdZyixNMLZEBwG9zXUW8Qwp4P0PbnE0PabrWExODjlfJKy5PudNxcnRBGtvH+E6PHfzOrbjIKVAGIHjOnhCIgOXNm+QQlBpTZMUjLe3ePXXX+VBXtKYFk9aPH54ZwXUr2sc2+boaMJ4rcfpcYnjN7SlJEtz2lZz/GTJ8fmCeF6jy4Jwaw09LVepLE3Lzf1t8nplrFrGC7Z2d1FokumM0WDEbJaR1zX9sMMzzz5Dz3XpODOso4zG00RrIXk8o+uPcT3Bxav7XNpbZ/+pq7z6+6/zE//1f8iHt+/x+MEDpHQ5n06p84JgPKAyDbbw0aLi/HjJ1oUBZ8mEq1evs7O7zsHDU4bDHjiGqjIcPjlhsShY2wzodiN+4sf+829aCDnAz/3ir31VmFVSUV3VCGnhBz5FnuP7Ia4UdIIuh2cTjO+TLUosC3rjDvFshus6LOcpxlrBrsuyRDct4+Ea07MzgiiCpmU6neN6KzdsIF0KoUnSjG7Y4fT4iDbOuXr9Gkmaoqsa+TEoPC6WhMMBy6MJQ8ejsg2i1jj9kCJpyfIlHTck1ykHi5qJdjh//IB5qnn79T/nwqXrfPjOm2ysj9gcbJBYBld5xElKp7OOdG0sUyOMg90JKM9mtE+mlCcnbLsh+UaIa7n4QQ9fdajqilYolO9QGUPRVCyyJZ6niII+loJMCHSu6XY63Dp7xK35KcdxzOl8xp7vEwVd7M5KctCUFUG/i0FjTE2oXJLJBNW0zNIES7ScnSeIbo9Nu0fAjBe/8l9w8+pFFkmMbdtgJLptSJbnKKullR+7+pt21WWxJEkaY4Dastn+/dcZF3C59BhkfX75V1NOsyF9y2L/ksDtGBwlybKVfEtIEFoipUaI1ShSYmGkQBtNS4vQNqYS6Bycv5BuK5umMiR5yzIJePhuyNFdwVpleF9WOFKip1OcSnDlWz6HNJAL6HYDHrzxGr3Q4kFecm/6EU3TEvoDasej2yreL6aE0YiNwOGNg0N6tUWIoheErPsR69sr3eDFF57GtlyqvCVJc5I0p20Mul0ZzYLQJghdwo6H7/UQQrKzvflNW7P/+y/80lfLskZ+HL3pBD6WZRMn+QqjKAWO7XK2WNJYFnXerBKDui5VlhF4DnlWkVYVEtBNC9rQCTpMplOi/pAszZkvYhzLpi5ruvYq3dG2BK7nMZtOadOCrd0dsqKgG3XRQN02FHWGtl2SyYKu7VKy8j90x32SuOTu/dtYWJSm5CxtSLRFfHrEZNnw+P4jouGYh3fu0EwAcOoAACAASURBVI0CRp0BmWwJ3A5JnuG6EY7vEwUuulVIx8LkJXqSoJcL1tyAauBRVw2W7WE+nuRZtgeOQ1JkNEYjbYljC7pBH2UZcg1N3tANQ46TGQ+XE86ShLKq2Ov3cZWN7Ycs4wSjNU4QULY1VVPiWjZ5luFYFvNkiUJzcHhOaSnWnA6yPGfn27/Mld1N5nlK22iEH6Ix2FKjVuW7svCYVbKctFfkGYBaSgbfuMVYeTgHCTLz+eOvFyRlF1nlrI0NlqtxLMlyWWLZiqrSSLFSmGvdYDSUpaaoG5pK0+oaywnQmaEpDJZj6AQeWijaZmVk16LP2UOH04cNa8LmflMiACsvGPhd9m4+jS1q6rLFi1wmj+7j2S3TRnCanuD6HoPeCKc/oDxboPZ6NFrhthX3JnOsosXREEURXcdjMBqDbuhvbRF2QrKsQKqVAjVNCixlYxAfX1JblKWIOl1s2+aVl1/+NwsOSOZTbl65yHbXYjqvqCcJrpJs2oIkb6CteOnFT/Hm628iA580ztAYakuwzCoIFGWSgeNSaMHsPEHaEmFq1nt9zo4OGfodpGpo24qdYURJRVxo8rMlN9a2yEY1w+GQwBY8enLAUJS8evCEazsDwnCNw9P7xMuKQrRE4YAf/dEfYGc8wngRjm2jy5ab165z5/49XFeCZXHlwpgP7j1Ga43rWkjLozYrt/8sXWBrGyyDxvDBBx9QFAWWZZEkCb5n0baCnZ0dTs5OUUoxn89xQ8U8mdHxA8ZdAawYgB89uMdnX3iRP3jnXQLfpeN7iCggy3L64eo7OraN0+1x9+5dQtum3+2txrRtg9cJmZ4u6QcBQht8L6TfKoQbMTlfEq2tUac5mTb4XsSlZ64xOTthr/Z4II75iR/7B+g0QSxiisUSLLFCzuQ5lRBIZxWFWScZQhsqXeNJyQfnx4ioh86gtcyquxq4bG9vcv/+R9jKpTfwuHAjQBtJnickhWLnQpfJPGdgO7Rty+QgZXE8xxoFqOWCF5/b4daTKcNOn7WtLZKTGVXdcPPqVdLlCWvjPoeTE4b9dUaBzYPjIy7v7nFwN6Gdzdm71ufC3jYP7twj79Vc2tjg9PEphSV58s5jPvfM0/z6P/k/2BkP2d/oc3BwTl1Bf2+L/PyUH/mhL/Mvf+s3KR+3KNslzw3b633efv2tlXYq8qmaGqVc6qLl6PEpujUcP4a2/eSc42+G5fs+llQrgeLHyXNVVa0QVrah1i0nsykb3QHx0YLeoE9dlvhuwOVrT3N6eooWFdrUpEm26qi3LXW6YLw+4vjwkO5wRIBiOlsQhB4ZJb1eD2HgfHqO3++Slinv3X6fqDukNYZa1YyiAdKxmU2O6IQ9zvMZaxubVElGnhZgBKP1CFkLSmtljPK0IW4lG50OYTfitddeozsc4b3757z32h9y5cIlLjz/PFv9EBUYtrrrnCxdLvqKux/e4eDhYzZ8j1EU0miFU1pYnosUgg8X51xY67LpdmlES9saknJJYDmU0yXLVhKNxzRlQ7ycUuiG69u7JHXLWbpkspzyOEu5Mhwg4xzbtWhFS5kXCAUGySxNiXoR5ce82nqZo4OA/Y01qrNDlnUfS8dEQmF3QopFTNk2Kx51kdHqZmViRVDl+Sq2UWsGvVUgiIkikjrGDQKqpqBcxvyN7Zd4/+2Yf/HHM/7VYMb+c5KbNyue+ayiFhZxmlCVhrpe8ZgVDa2skFpgf3wkVEJQSdCBxmiFVJJWa1rMivWLz59+Y8lLG+uYXNEfjnGbBiVD7MqgENQ2tNkqdlJYksX0lEvr22T5gknZcDXsYg0kES43XNCtIrJcbM+lcRQmK/A8mzrNsVyXd95+i2//8b+HEhZtsxr1Syn/8lNrqEqDzluapsJSCXmeAy/+2ynG/xdLCUHUDbGFoa41ddWgLY2z0l7QUmOkiyM80lmG63mrpoHlMlrfJY1jyibHsi2yrEJJubrZtAtGgwFnh4eE3R4WgmWS0PFc8qbCdQOEhqLIGa0N0Wji5ZR+L0QA0yRhqzfA8gKODg+wLYdJMmE0XufS/i5SCDw/oDcIERX4/XXSOMUTgtwohsMeRV5w64NbRL0e3uPHPLn3IRujdbz9S4xCH+EIol6PabxkLbQ4fnLE8eExI9+l63uEnT5F1aA+1uBOiph+x6ZvhyjHprZc2qamLUuUlEyKBL/TQdWavFrV0YXxOlGesygyGt3wcDplZ20NtwUl5EqvrzVtWyOVRZIXdPoRlC2dMCKfZ6ioy9ZgiE7nlKbPILJRJdh2xHFyxu7OBqJtSWdn5En9Md9YUlcl0rLACKIwgrrBdX2yOmHc73JsSpqi5aXhZZ48KHj94Yw3w4SLNyWD4ZJLN10G4xBtNTSVIKtb2kYR+IKiabGFQiiLumioq4bGVRhRE3UC8qpFSQc/9Gnrgjy1eXIiuDjs4ODS6ShCaeFZLmX98W8vK8qkwvcVYSdg8eiIrcGQVgyYLzM2LRtpVXR3tjiaHLPV6bAV+EyqCm1JpJE4umVtNGCeZ9y/e5fn/+Z3YrTEUZLlfAkGLGvlkJTCoioNZVlQ1y2ZLCjL8hPr5RMvrOfHOb46oS17KxCxNEilMK6PJWJst8u79+8Q9Hy8boCqLO4+eki/P6TQS3TdolyPeTIlsn38kYMysDgr+fDknN31NTSQVJJaGLZCl2xesL++y43dHo2qka3A70Xcuv+Im/sb+K7Pj/3wX6cWBT0r4NtfvkSSg9QG6ShubG1x7+gYZnd49qnLpHXJwfycvStbLO6fgKd57uoOd07O8ZwO6XzJ5196muU8pTdeJ9ce777x+2i9SolpdIvjWFRVRbfbx3Vt4jTh/t0PGI43KaoKKSWLfIYtFaeLmMViQX/Yx/M8jo4m/Gb5BvXZgnYjYp5k7O/tcXp0ghCC8XDIbDElq1IqCdPJKSfxHCOgQSKynNC2EQYubF+gRZCZhrMiZvfyOndvfYTrSW5eeYqDs0Nef/11Pv3cc0wmZygBTCboaqXLcZ2VDhVtuP3u23zuC99GWWjyYsr85Ig0jXlclrx77xS3N6TIM2zbQekS1wn58pe/xM/89M+tkLKm5vaH5ywSTW0SPv/y01y5UOLZXdRuzfI842w+4bNfvs7x+SNktcZkecrWMOS5Gxucf1hxEp+xf3GMaBIe3L2H8AWBvcG3Pn+ZeFbx4GjC9csbDKqU5Txj99Imb7z/Ea99+Ih79w8ZrIc8ve8jgiEn1SFeNELrhBe++DyR6/ONdx6zc6XD5b0tvKaPKa9y8uF9Birg0nPbKFuSZCVZXLF3cYfT2RnpfEVdiCLND/348/yv//3reL4h6vpMpp/MiPtmWFJK8jxfST5siWVLHEuhpUdSzpHSwrJ9jmYxrlmN+KqqxA8D4uURbVEwGg/Y29kgTXIms4TFYsbu1iZv3rvNlcuXefjkkJ4XsH/pAueLKXWVUBcFW+N1jIBuFDA/P6PRYHseZVMj25qjs1M8S2G7Ln7Xp01TZpM5w9EIUdTYgUeanNIqf5WxHQbEcYquc5bLObSaxnOIs5I3bz+h041497VbmD+5RW40TZbQczsIR/PZpy7Q9Tz2+lsgamaLnKVo6PgB2ckpWxd2uboxYJbMcCKPRZkRRgHj/gbFMqHybc6LnN3+kCSboH3FQDosipKubVMsS8abe7h1y3K+IPI66LLC7wRQtxSWwLIF22GHZZwT2D6+ckh6Ldw7Rf27382nfvDfw5wlzIqKBEOcpVCkJFmCQGIrB0va1HWN0QXCsjBa07YNi9OYsiqw6j4Dy4W6RbcNUkvUYsZTjuZqv4cUPdS7Nct3LN74lQrLCog8m1kN3zg5Z1Kf4++0fMf3GXb2PTpBS9OuUuCQFnX5sVGzUSjboaxiygp8+xIvv+RjipZ5smTvmev89m/+Hle3t+nEJXULvnSoRE6L4e333uX69RuUcczTvU3aRtIuTkkTl3fOT+hFEZd29/ijo8dc7q/xJ2/+Kcrr8Nlnn2ORZ4S64Sv/+L+DWUoT+UgpUZIVU9oYGqNXznokwlKrKExH4vmfnE3+b3vVlSFtVp11y5YIa3Wga79DVi1QyiGtatqyxlOSumlYJDFjzyNLTmkaTaffpdfr0DQtWVaSZQn9fp87R0/Y39nldDLFsxxG62uUVU4dZ4RCsbc9ZlGkBL5LkaUskhzH86iLin1/RFU3eJRcubCFdDzyfIkxikG/zyJOsXSLY9lUlkXdNPSHA5aTBZIKS7QkWYboBCRFzVlcYtk+s9OY5uh9JvMzmqKgF0S01NzcW8OzFJvdNaTSxGnGtDyhG3XJ5nOG62PWui5pnpJKn3wR43dcIjcincdM6pIkzdjodJjHMzzfw61b4qyg73rUswXB+hDKiulsRugFNE2NG0XIugXLQknF7nBEmldYVoNB0FkLmd89RL38As889yXyszknZ1PGUY9lvqSqU/LZKcaAshyksmiaVXBJlmcMhiPquiFbzkniJYQeKi/JHxxgFJhaY5FxQbV4UZfNrSscvv+Q3Ay4+/WGMOpiy12WTcsczbKa440lL3xO0x0opCzw1mxm8Zyy8EmFhaVsRr0ObSGZJQts22EYbXFp22C0pkBw49mrvPH1t+mFHcZaIpsGMLiBZBqnfO2Nb9DvD/CWMVc6PUo5oMhOqSqfg+VdhsMu2+MB7x48YWsc8ejwIbbV5cbeHuezOa4S/MB/+Z/iN2BpTWsEYeBR1hV11YIUCAE7l3o8vN+gLEHgKWz7k9U7n3hhffbFGzw8PGBPKr7l2esczWPeun+P3Ys7ZEubtoZlnLAZRkRRj1masLe3hu14uCagNQZpKWpZroICCCmrnFZJhO1SKY1n2dhuiVCSB5MzbNuhSWacvPmIKHJI2oow9NjtjTmbnTHqDpGewx+89ef0t4Zcj4Y0rUWapnzLzWdYLpc8fe0mX3v96/R8j0s7G9SFJs7mbD5zkfsHjxDKYm1th7w2hEGf+fkZZ5MFp9M5eH1ArsbVy+XKWKbExy95jaUEYRjiOobjk0Ncx0fZNlZRoSyHnu+BLRCmIQpclo5DKH2y0Yg8neO6Doenp3T6A+bzKUmWrIIXUNRVhasc2sYQBMEKVtxWGGOwfJfD02M+9dKnOfjwDhe7YyZHE7QtSBYJaVWgjCIvK04mUz71uVc4WJQcn53Q8QLc1qYxqweAABzLZXrwhFq4ZPNTZqdTjsuYC1t7FCoi9zxMbZgcn7IziLCU4Dd/67dR9uogdRyLwyfnXNjfxuAzf3LAc08/wx9/7Q2uXruAFVm4WUA9L9FLOJs8QrcV928p3v3GAdsXBpAEHCYLej2H/WevEEZ9ZtOCtSjCtWp6l3ahmpNkC84mFQcHt2nFOkk24R/8+I/wP/8v/4TbecloNGJjtMUia7i0PyR0Ax68/whlFnx0t+KvfX7I7/3CW1x6YQ9vHPDixmXu3T4hciOWSYZqE/Y3d3n++mV+54/+kDRt8TseyUzS7wds727x0UcfEQad/88Oqv+/VlFXIEAqi8DzWcxjlC2wRUsYDCiLhMC3aeoSYa0A9GG3w3SRUTYlju+SxDkfvnOX2gHdGGwUp7OYtf54pfMuGwq35uDkEMuSmGkOI5ez4ylhx2F2cMqkWBJoid2VjDpd4jSjM7Y5m2VUyYINW7I+usz09CFJklDUBSZLcC2buknwvIig7yNbSR06LJOEYSegWhocv6XSknxeIENoTUtVJnRcl0q2pGnBr7z2NuvBGsQTtnsWn/n0i3im4f7RKc9s7vPWvfvsjzY5OjyncyUk9FzkskK7ivnJAjnosOZJTo4eM+700K1kWZV07ADL1XQ2RgS2RafTI6hXkctFW3HvwSOG/S16QgMWZRnTc13SIKTWMfW85fv/0T/ETkuO7x7T7fm4joVoNPk0pkyX2I6iaUoqnSNQYBqCTgclDLqGIktXRsvIRxcVVq1X0HKpwDE0mFVQhjQr41O7ApA31cpgmuclxrTcsG1afx03DxC/bnNg+7x3lvBbB4/YubJFu5gwWcz59JUN9j4TcPOpgtlHfV573bA4KxisSZAK33LYu/w8f//vbtIIm34nQtcaqUBUBmkZNrd2oRacJil9r2JjbZP7lcDyFFdv3uDrr36Nk8NTbjx7g6asuXb1Jk7H53wW83A6ZRh1YT6n9DqMXWhaSVKUWNYqirL5mAqAWMkepLLIq5V585t5eaFLlmUEymJrNGQ6j8l1SSfwsN0hVZmjlERrhef5lE1DfzSmbBpaW2F5Lk3TcHRwQqtACoXUgnla0OsOSPJs9dBza6bpFNOutKqFLPnowSFhx+H85IxMl/SVS9U0dIKQvIKqrZgXOa5s6YURntvHanLiOEHZislsgZQOgW1wVYQdOngo4nJJUdcEYUCatniBpq1r8rhA+BKtJU2b49o2eVtS1jVfv/MRXTvCqnPWIptrV1fG5Cdnp1wabXH/ySFjL2A2WRDtdAh9D1k0KGHIFjlOv8sgFEzOTugGHUwrKQVY2tDoGjsKcbTB8UIcy8axHWocTs7OifwenjJYQhEv54yHa8yzCkeWLCc5n/vRH0GlOedPJjiOQEpB1VR4lkNTfjxRQdBQrugbRuN6Hm4QoBtDU2nKslhRVtKMbWHRCkEhLXAMeVni2w6WMkzPz1eBAcpgjM1ymeEHLsq0rGvN5f468TSH1yKm0uXuacJ78YxotEkxn7NMap6+0GdwxeLqdUN6uMGHdzRVWtNfD1C2yzIt2N69yvd8aURteXRci7quqXVDFieEwx6e63Nxb5d3b31Am1esjddZCA+tLK5sX+burducH52ztr1OMq+4fPkyi2nOJEk4rzKura9BmqD9Do69MvYaoeh1u0xmM6qiJQgd2tpgKYEXrAJHlPXJlIBP1LD+T//jP/pq6GrWL+3whJTf/ZMP6LQKhQEKwrCL5ZScF2CslEZLSp0ShV2KtqRqNaeThDJp8EY+ySwm8DrklmGZxBhR0WrJ8WSOowKysgQNVVYTdH2enM4YdIe0laEoa/pbWxyfTknnGWHXYShHZEVDmeU4geDWZM5/8O9/P86og+dG/Mqv/p9kRYpjakLbUOZz1oddHh4/YdjVbG14BI5eaXLW+viW4MHjQ1palBA0dbuC61clZaMZRz2eTJbYVknkueR5Q1xk6LJifeyTZwJt1Ryen7PV6yHrloezc9xKEnYMQrRMkoy94TqTxQLlKgSSuqxBgCNajLTI84rAdSiyBC0UY9/Bjnw64RpvfPghZ8mCo/Mz2sDGl9D1u8TJArfboWobHFlyebzFn926yys3XyDTLcJaFRK2hVECP1rnaHaIMqs/yzfefovuqMO8bajTmmA4wtc27775e8RxQjrPSImxW5dGC9Y3PL7yla/QPHmMNIadnctMF1Ou7m2gPDBNgR9ssJgtILDYHIaMQ5+j+YSN8TaZhk1Lcuv8mGvPXOCjuwmP7z9AlymTvOHZqxsc6RSlDIHuUQU2gQiQoibsDfiD33+Npy/v4gY2l67s8+S4Ymg5HD88J0kLVGgzdMa4fs39gyk3n7/J0a27rK0POT2ZUxQta/sdsryhyFv64ZDZ2Rk3L+2xt94j8iPef2fC6GIPicvh4RGvfOdTfOXv/GfftHo4gJ//5V/7qlKskCF1jdGGui5xPY+qaqiqAseyaLXBtmyy5YL+sIMbWthypTN1HAcrcPFdm8D3UbZkuVhipMQIgeN5xElCX7kMtzY5WcywHYXrOExPZ2zt7tM2FTk1WZzhBj5niynXt3eoJOzv9VmeVZycP2FtawOT1ww3xgzHazRNi2qgRfLy009x7/EBtkpI5zW+69HagF6N3oXSBIMOuhXYRlEbsQJQK9jud1nkCZ1xl0dxzTsfPuCdtx7yvX/rFR7cu8/u3kWqZUq0uYksNEHHJy1z8iJn+6nLNEVCU0LeiUBXFE1Nf9injpcYCb7rY3RLUbaUDWRpQbLM6fX7dDo2OqsxWpO3gocPH3FlPCSrW3o3nmJ/d4dFvUSahqYpyZcleZVRtzVe5JHlq1Fi3a4mPNIY6qr+SyOWUgolIGgahBvg/NnrCKMRjkQKg23kX1qPhVxxswUrx74UrKZkRiOFXB0QbUuaGYrpjAu24AtXLrLnjxnQ4/raRXaTLg9Oehx+NOLt1yGKPXa2+iStRAjFMs248JnPUrYVtrExdU1vuIXtKPKmpigKLty8gjPqo7odFqcT7NKQmZZoNKROMqRnU/sWfb9L1VRIX+FUhnSZsLazSXk245UvPEfsOCynS5RQ+GFAnqfUZfEx7WVllv0L5JU0YFs2u7vb37Q1+zM/+/NfdSxAKdKm5GwSY5oax7FX9WsMjg15Y1CWoMgy/I6NH7oIBG3b0moQSuGHDpaU2I5NnGcrDq3QWLbDbBkTKY+g32WWJkgp8HyX89MZ65t7qwulrtFGoBFMFwsurK8hpM14GJBMSxbpBNXpsDVco7s2pNcf8uTwCaZuALh5cZfDk2MCt2E2TegENnagVqN3abA8i6DjkWYlyki0WaGfHAlD3yMuc7rDLo8XBQ8Pjzh4MOHll6/w5MkTRqMxsq1wuwNEozEKQFMVJf7mEFPmq7uDvzIFS6WwPYe2KjBCYCsbYzRN01JrQZaV1GWN57l4no3VaFACLVzu3P+IYeixyHKCixfYGo+oTI1uSozQFGm1unBbNnlb4zs+WsqPWcgrQ3PTNgjhULcrmYatFOVshh0EcPc2ptEo38FCkM9ntHWzMkHJFmkExkgcV3LxwgVEVYLR+H5IqzWhY1M2hmq5YNNxuTYaMvZ7jOwu+8NNOkuLRTbi9Dji8K5ALzQXLo6Zxi1FXpJmKf2r1/F8tTKGtQ3dcB3pWjQa6qpkc/8Ci6qmN+6TJwmR47MomhU1aRqjpaANLAZ+H01Nrlv6waq217bXSU9n7N+4SNv1iOcpaEEQRqTxAs+WhJ4LBrK0xfYspLQo84LRRp9PPf+pv7JeP/HC+uof/F9fPYsXXB5ERLVhc3ed28enfHQ0xZYOyoV0afAsiWfBJDtjqzdiuSwp85goCNgadzlLF2z0+hStJl+m9Fwb30ievnCRvb0BRlv4voUnHaKwj2NJRCvIKiiN5OHZKTma+XwOtmRhWpwgJNEVvi94PJ+R2x6FLvnuL32ZDTegv3GRX/qZf4xJc1Jt8eDwANEJyaVBOR5xklGUK0yRJQWi1SjfZtgPaJ0WO+hiLIXTCRnubrDMYmxbEmmL0oL5TDHPFwgjUNJlczRgY+8ixTLG9VeReSjJpevPcum5F6inUx4fHdELQ3aevs7k5BijDb3+iJPTCVrYbK0PmE/muP0eJ6dnrK9vIIqWqOOSxyl21GEeL5gmBb3QxTWavGhwbRvPCYjTgsV8xssXn+HDRw84PTvn0198kYHnUgtDXVXEaU6SzTGywNOKrErQouHhw4d4lsXnXvhWHi2WKNeh2/N562t/xOnpMf54hE40eZ6hfM1Lz+5x+xvvcxKn6Nbl9PEBGot4GrO9PSJezpDK5XR2zsCPeP3921R+lx/6j/4668uYauTw3u1HmJ5HnuV88cU97n50gtPvI4KKzet73HrrgBsvXaQqJMJaUlmKz9y4jop84krjuDZ//3u/xO/8xm8zXltnFs/xW4vdC1v0e4qT5TnDwRZ1XXP3vQ+xRgMmi4QXrlxgnmb8+Xt3eebqNrJpef+jBzSVpBQt3V6X2WLOxa09ziZPuHrxKnlacOPmJX74+/7eN+3hB/ALv/wvv1qVOZZtY1gdZIN+l3lW0PVDjGmx5V8MVgzhIGQyT8njhpdefI7J+YQ0z1C2xfR8QWs0daMZDEdII4g6AYt4iSUUjWuRLxL2trZp8hI7dEjTHAJNvsgZ97qsbaxhW4KR7bH17D5mlnF6dkLhWFwer3F2NMXv+ZiqZjY9pSoKiqxG2YI33nyX9X5IKX08V5IWGYFUpHGKbSlsZWG1q4ztqiqZTs4YdCKM7ZFUJYEdMonnhJ5H2ZaMLwz5na/d4mBWcPveI670bTa31phPJxxmJaP+kMHWiGIxo6pbECXNYkbkd1BGoIsK37GIc43WJdgOVRKvGLSWoDvooKuS87MJ0fo6tW8jTUm0uc00a3n6b/8Ndjc3SKqM5GwJaqVvq9IZuiwJHBvfcWiNxvcDOr0uQoJyV3Dy1mjqsgLd0OiKugVlB4R/8jZaSUwpqAU4ZhXzKBAI2SK0Wrm25MfMbGOQq38HSlgrno4U2MKiAdJlSruI0XmMOF+gRMnAjegcFQR1ipUmLB2X1g0QSmEMdJ9/CplqmlaT5gn9jW2yqqRMYhotUBhGwxEb61s8//nPc/Hzn+HKyy9h+x2Eq5BGstnaNB1FNluy7vfQykJELq4xTKXmhU9fx4822ByM8T0P3/foRiGOY5NlGUWZk6U5y+WCuipXPNK64srl/W/amv3Vf/5rX83ylMh3sbTBC32wFGfLjND1QbbQSpQQSGGQvqAqNemy5tLFXfI0A1oaDFVe0WhNVdb0uz0sI1gf9NE0KCxwLZqsZHNtE1PXWI5NmlVoB+bzmE7gE4QBypZ4ymJ8eYcmyYmTOUujWesPmE6W7F7aw9FQVhWP7t+mSiuMkrzz3i16vZBCOjiuRZqnWMZQ5qvUJltIlFiFDtW6Is1SwiBAuB6tJVHCIikyOrZLaWr8fsQb7z3gPK45Op5waeCzsb3Jcj5jXrd0/JDOMMKSEsfvYJqUZDohCjoEnQ5lnOIoSWMsiiLFWA5KN+i2xXXt1bRQSpazJdFoSCVBWRqrEzHNai5/4RXWBn2yqqCMC5Tl0DSaPJnRtTzqugKt6Q6i1RQz9DFotFzJUlpaTN3QNiWNqYnTHMv22TxakrYtopVgK7LphLIssRwHdItuVvHHvd4qOrqsG9CSKi9WGNGqxvNdaDVaSBaLJaqomE7OMWnJ3oUeQ2Hjpg31Yo5qK2Ih6Y97ZEWNsGyCKzv49Lsx0AAAIABJREFUlstilmH7Ar87otQ5VVHQDUOUJfDDiMFgxBe//YuI0ZALTz2FVgplKXzfZ13aZFaDLjVd2ydOM2QvwFQ1ouOye3mTsrG5sLm2ko40DZ7nIT9O3szyFGkU88UU13JomwbPs3n5pVf+zUxXWdmyFfV4cjzDVYqqbHnh8ha+J7Aswe2HMY+nS4aW4akbN3H6FnUluXZtk2nsAmAjubK1RiA1F3Y3yPOaR5OEg/MFefuIV67t0mQpnaHD9q7PbFlQuSstgxpHCMci2liDerWpur5HPK1Wr40qw8pb+sMeqcnY7N9gIA1ZWvHffPU/5jBZ5S43ZYLuKNZ6HSbzGY5Q1C1ULdSeYLfT5Swr6AQtXjdgd3PA0fmULJc4dkiTLfnW5y+jhgpsA6mibVMmxwM++OAO0vKYxEs2ioKeUmxsDekJwTPXrvH2nbu8/rv/nLW1DZ66dpmOq1jOZiAF47BHXhUM+z3msznp3OPZp69TTM/xRiucUDWd0Q73KPIF+0EHdgd0TmLKxYyjWnN1o8/W+phZuoBK8MrNp6nryWpDaA3/4te/RqUNpQBZa1oJlhH0hj1K7VAcPUBQ0tkMKHObn/vFn2Xz5qfYDkMePTrgpU9/K3/yR39A0IUX93c5fHxKJ+zy+PGcrh/iyZCsWdJ2bCYPjvFHId1HMXavz+z0lCKueaISrt24QLqY8drvvUNPS/qtx/d81+dYTk7QxuLh0YxPfdsVNljjUXbA4v4hu90er//GO+zvX8SuHTb9kPNkQVUlvHRjE8cL+NXffYNn/2/m3uTntuy8z3tWt/t92q+/322rr2JRLJIiiyxGEkVLkezAhiM7nWPDSCbxQEoLZJJBjTLKIHASI3ASBJYNW7BiBeosx5RFCFFDkZLYk9Xeuu3Xnv7svlkrg1NJRtJAUJDaf8AZHOy111rv+3uf57Uv8oN3v8lLr9xlOprydL7karGmd4Jk5KO8I559+RYP33qXe7fv8d33Z3g64M7tZ2lXlmA84oUM+ijAask2L9ibTKHP8WpBsT7jhz95l25x/ee6Wf1/8QjtkF2wa7c0lqZrmc+WHO6NuLhe4IfeDnsWGmzT0dYK5TrCyPDWd3+AdJowSPG0Jow8+q5nMIgpsg3Ldc4N/xiBphU1oW8oyg0fnD8hCkI++8qLfK37YzbXC6ZHY2Iz4NEHD3n+hed4unjKd7/1Fp7z8aMx3XxDMVC8+Owd5nWD6FueXC2YjscY2WKF5PbNI87Plgz2fZ4+nXP35i20K2kR5OsV4zTB6SFf+tLn+erv/iHS8/GUR72+oprV9MMKoRpqq3AmZrXMGA+meIMh8/NzvrXs+dVf+32kLzgaBvTbLS+Z22xmM9ASOxhyEu3xqNhibct+nFBUPUksyYTGIqikwpOOPmCnodQ+0SBGoWjXc8ZhSpVnvPoXf4q9ZMB2kRFOEkzd0hrNIB4wdwI/jamLksVmQ+BFzFdzhHVoJ+gNBMbDdS1J4BHHMZ2ylPNrFn0PvaPzQMaaTlh0veM/IwXCKXrRI4XAYtB6V5WTcqeAFL1F9GKHQJMWZ8FIAU1P0kHhWjAparsmtD21iim128USjIfFp2oqyqtHJHoMkyEyg+18yWA0YCNBtAWbzZJcawLf/3DAqIJtxc3pIZPBkGef/RgNlkRqim4nSMhNxeXvfp3733+bAwEqmiD9iKxtUW2Py2scPThJFCaEQUzb1XRdh5Q75bcxf3qL8f/vxwpLaKId49ZCV1cICc+djFhtC7oe8rwkChSxiWgU9CJnOgmZXV9hjEYZQyigkTkSie+HZHnJ1WILSmOArm+JPINzLbP1FcbzeP65m/SqoSwKDm8OCWTI9eU1N2+dcr6d8fjROaKTeDohrHIq6Xjm9h1iP0JKyVe/+lV64aMiQ+cc+0dj8m2NjmCxyJmOJkhb0woBbQ2eh1Yhn/3kK7z1g/cJwzUSSVVm1POScBQQxgrlS1QzRvYlx3tHlBaKzZa3Vw2bh98ALZhOYhIst4/HnD09Y10UmNGE2zfusOxKlvVuCNJZiS8drYpo2w7bQzqIcbS4RmGkxBiFQNFsFxxND9F9xjOfe43EeGw3JcO9FGM8KsA3MYHx8APNJi9YZSXMC9b5Bc6CstBr8LUGAUZ6eEAvHXHqU/WOp08eI0cDksRjWWeMpwcs5tfoUJKYlCIvMcpQlR1GG5y1ONHhtKbKKoSSmKJHGENbNbth6aZlLwzJy4zlqsa3NQMnMIfH5PmKuXBk24xk5NNVDlmt6OuEZJiSr1cEekMU+VitaeucPF/h+QHGD3j8+BydpGTXM+6eHGNvnFBWDUVbcmoFwii08umjjrOvfZPtbEm1KtHBkNgfUJTdDp1Qd9SqAyRKGSajKX3f4ogxxjEcjnes3D/l+VMrrH/3v/mv38w6hY4jwkBRR1AuG/w45cn5hrareOF0xNGdU96/XvLwu2fgFKiOu+OUsswRkY9RHbeG+8iBjwpadKRIxyGeDnn7yRl3b+4TZDWPi4p1XuBHAx6cXRErSTVb4TrJVZmTROEOPSF7WmrqoiCzFTKU9JVhOj7Bq1bsvfQS3/j1X+ViPSfxHKfpgDvTKefbik3d0/Q1r754ir8/QVQ5q/WSdVMS+yPWfU213RBNB+jQ0dqOSnXYwGObVSSdj2cbqiLlmXsdX/jM83z2U89SmA7/eEByesDjqxnvPr7i97/1Ftebmr2Jz8nAMBUBeV8xMQG17PjYrUO6riQdRLz2iVcYTQd857t/zLO3btHZnsq1vPz8x9jf97mzP2A0Enz5976zAxjXgs62vPbsXT549Ihbx4c0dUvjoCtynk8UH/Qhn37jh/m9r/wmSRqQZyt8JKvlCkHAyBiW+ZKP35lyfnXO55894uvfP+eDB9/n4r3vM5tdUbfXfOpzL+Pm17QNhKOUrm/wpKIsaipVEkYJ5bykFppR4PH4+oogHLNcFagwYhQaPnXjmLRt6eSQJ4stYhhTXCy5mhfMrq45uX1AcpbxzScz+q7Glh1RCIO9IYvHFxwd76GUYS8e0TnLepWxrVbUeUey5zHZO+Dtb73NNq/otjmDOGXgj3n86Al9NedgNGZvvE+VF7TNglfvnnJwqIgHA2KT8GQzA6FQFnzj0WQljbMM0oTlNmMzz3n4YMl//J//Fx/Zag3Ar/wfX35TCA/PUyRxRFnkeJ5Pm2/pnEQqiUAQRAFSSpq6RjhJXTlM7FF3DUVV4EuJkRrPhPheQN22KL3L200mU179oVd4+t4HpHFK33YESJbFnMifgO7ZziyBJ/HSAWVTE4xSVFljjUdTF+g0wAjD+ZMPwCla13G4P2GzXKK8nU5QRhGvvLTHO996l3/tRz/P44dPqHsLgc94skde1OyNx4hizuPzp2gl2ZYVRgbIvRghNE2joW8IgxDpFNb1vHhyxOP1Bdu8JJJQlTmul1yXNf/n17/N/SdLEJLbe3tsN0sme8cEviEJYtq25fr6jJGf0uQZZjgi0RF93dL1HV1VUruewNfsq4TOdrRS8txn3mCzusZpQ5U7Ku3RZSXltiBOPZJ0TBwnhEmCQJOkKVVV4ZkYo92O2SwUdbHdrQ8EfbEm6Bzvv/sO7nLFushRfkAK9L1FaL1DHVn7YQzAIeVuRxC4XTbfSnrXg5A7U5YE20ucFnRNSycUkYJeATgKT5JTUxofE0Y0fc+mKtn/5AvIVjOMBkij0H5C2dbYIicXHToIkEpg5U5eUW836F5QaYETYKQm9Hz6HjocfdOwvH+f7/3Kb5Jv1/hFzSs/+XlaqUgbhZU7jYEQDoHB2R6pFCAw2kMIiesdddVw9+6dj+ya/YVf/MU3O2fwAo84Cqi6GukUrmvJqh6EIw0N6XhA2XZsF9lOEtP1pElI1dbUHyp0Ey/E+CGer+ncrljTNi3CeLz08nMsH5/vZkeahkB5XK1nxF6KtRXlymGlJUgS6rYmiANEU9MjqNoClfgoq8nWa2Tfo5IIWecsV0s844ilRzxIOTyOeXj/KS++8gJNmdFrDVriByFZWTEejOmqNZdXl3iBR9XXSGFwQw+kpqoEurcERkPvEYYdH793Smca8romDDVWOYqy42yd87t/9F0eXW7wPc3NyZCuKAjTIYnv4fsekdEsV9eMwoTINwSjEW1REWmzW5tNRRDHJLHhOEyQ2nKxzDh+9mW22w1WSiIVsm5aPCco8xIvNPhewDQO6fyY0WRKmWdY1yNRGAl92yHQ0FTUTUkaeZTbOYeBz1tv36c4v2SxmNE7h28bBsMY+p0YSCi1Q88Bzjqs6FFKYbud7UpJR9W2KBXR9T1OaLQnSbXeISuVoeh60Iqi79i0O+51PBpA0XK+yRjcPUY0kkEUYkIf2wmEFvB/T/wbQ9f3tK6lblpcXxFon0We01mLtI44CJEYsrLE1gXNfMHFN35Asd2iy5xX3ngNFSgS4SGVovoQpSXYDUW6HVEP3w/oOktbd6zXJZ/7/Of+bJGAv/c//t03ewGpZudq7hzShFxfXRPrgGjfZ9Pk1MU1t24ccqV8rh6vWM5zRsM92k4xShOSeJ/3nz7YMUxx9LFB+Za+tVRFT9H23L+6RCqf4/0bPHj4ANv7BIEj8UN0EOP5HuW2gV4xGk6xtfjQlFETjjRSWV775Bdo5tf89F//Gf6H/+0fUq5yrOhZFRVlU5HJDC+FbNNStBmb6yuee+U5ZvkGMwio6wKoaNCU2Rbjg3IK40liafATn8w5xv6Q1pQ8uZxztdxw9fQMUslIK4zpODwcE4QeXpSSxDHvXcy4Xm65f3GF8QIutxlZ29DUNWjJ4f6YqtxwOtmn0ZbtNuNwMmAvTfjBwwe0uWVbNAxHKZ+5d4Ovvf0+JzcneFGM7C15W/Lc3glPiy1N13Nw45Sz7BwTjHntuXvgSYyJePzkgq7vGd884dZLz/P21ROef/EFLt7/FoODY14MfPo7xzR6iBE93l7Mx1+5jSrXTCYTyloRhIph5FP0Ndr4O/xKZzBDg+fHDEMfKyzCghaC5XqJlJKz2YZF7QgiwTDyiAcJN6YnrKsNx3sJxwcHFErRuY67k2OKwuFpgxaabz+54hPP3mN7fUkuWnwnGThBOknoFURtT77N+dyPfIbFeoNRGXGaUhdrXnz2NhNvhDGaCZK+rQijIavNGlvHJN6OcffC6QltXVG1oLRmW+fMthmJb0i8kFm2RYSKn/vZ/+wju/kB/NNf/I0327piMEjZbDZIZej7hihJIdLITuCHPm3dkmUlfhAhDdy5c4vLi3Mm4zF5kXPj5l0urs4xngcSmt5i1M5sV6znLGYzBqMjFpslWkIyHLJZrSmbjl4pJsOEqqrp2516uO1byqb70JG9a1P3dGwrC13LrC4IgcYKgjjmMI3p+prbkULFISk9W08TEvLi7SNm11coLJvNmvl8jecrms7Q9RXj0Zg2L+mKmmjks1mucZ2jbAW+X3M+WxBIHy8I6WuHSgKkUB9qAg1yeMD1dkVVFpxfXHI4jtgsllxeLqhtxyDdI3MtRVYQRSFlntOUFXE8YdtumQwO0F1L27f4TiD6lvDoBOValOo4Pr2D1hI1SqjKkvUyo8nmNMsFaWQIB5ogCtA6IEkTPM9HqYB0L8VhqJqOqiqxPTRNxc0ffR35+c+yiYacnZ9zKg1dW33Ig1RYCco6rJJ4UkJvccIhrcJqsRvyUgJJR9/3eIFPVzdYoOkajB+hlaGTkk7J3UXV8+nTBGsbpj/1RSKhcb5PLzqcU7RS0FcZuetwXUvsexj63UEKB0JTtyV9U+N7IdLsTFVF06CROCX55le/RlQVHN88YVPVfOxLX8DzU2S/M3EJIZBSYQUo8eEhXOyyukrt2o4Ad+/c/siu2X/0j37xza5rGMTBju4hdxcLhEIH3g4BpCVtVSCcwPohbdcyHk3Is4w4Tuj7joOjmzy9fIrSGiWgFaDNThRRbjesVmswIVlZEPkBTgjybUnneqQypOkOnN/VzW52Q0nqxu70t32H0gorekw0xpUFwd6Es/On1M3uYBx7hqarmPgOnfh4XUemHLJxvPjMKbPFDGUEWbZhs90ijaZpHI6GJE6xTQtNTzQI2GQ5xmkqa+lcwcV8has7dOSjOlChIQx8kAoTBZh0ytlySZbnPLm8ZDIIWS7XzJYb6q4liodYIynznGGSUDUVVV4wSMdY0ewuak1H3TZEWjMODIUJiAKBMYLJ5AAnHIPJiE1RkG0KFC3ZekYchhzsp5jQQ6vd/6qUIohTJif7bJsOLwjZrq5RJsC3HdPP/BC8/AqVH7HK19wdJNimwPgenVUILfDkjpxklEZaC273u8IoAs/QS4Gk/7D6uuPvFk1L2bZ4gU9gPITRmCAkL0pkFOINh3R0JJ/6GGMvopcaJx3CKZZ1Q2okWV3uqvHGELgezC7GoZykqguGgxiHRGnQ2lBWJcM4RmuPB++8S9o2jKYjagsnrzyHVgmGXSIpiUJw0Lkdzq23HW1vkUJgtKFsGlCC1z/7+p8tEjC+YYijAYv5FXmZIPyONrfUrqdrt4zyIXWmudx0LK7P+PgzN9gmgqJqeffhOTdvHbPNGr7xzfss1wuicM5wFDEZxxS1pdE9te4ps4aj4yMORhHr+Yy96RGybdnXEdfXV4RjSZd17N8Y0bj6Q5uWz8nxIde+R2gdbdlz6IX8nZ/9T3j7994htGuCUUXfJay7GV46pj2vSEce04kBXROGx9x/5wLyijvPnbCcF3SupvZLIk9zcvc298/OUGVM2a05aFOG0qPTNadpSjTyEJXDyZ6qalhnJX3fY7wVg3SPUdzSztbc/pFn0K7j1sEx98+vGHg+rbNkRU4QR7sP+sjnDz94j03Zgwh58L1zcCWH+wf8h3/rZ/iNL/9zetlRGsPf+rd+FONaHs9nBG1K2Hq0Ycczp1M265z1as7VukK4Fb/9r34L0TcoHXH7xhhZ1QyqjL3mEf/9X/siP/87X2Hv1VuY3jI7FGy/+ZTTWKPjlKv5Gdm1h2kE5+UV66zh9uCAR5dbXF9hdITxNFXekl+vMYmPZwf82BufoSxL3v729xklCffPrnj9jU/TFDVus+LgxhFn8zVh0uJrn2Jd0I4dzaYmloZ1U3CWnfMjp58iKzM+de8Gjx8/YRDHrGqLNg3xIObqyYLIC2mGMb5nefpkziLb8MLJHa4WS8aTKY+eXHPr9AZvv/cdtibkcDhkdTlHOIlUKybjY95+8D6ffPUl8mrLT/zYj3J98ZiT8cv8ym//Hk8ul0SeYhgGFFX5571f/bk/1gpGoxFVZTEm3qkQZYAfDhh6itJU5GWFEzDdn5BvS0wSUi4XHB3fZrVYkgQDzp48JQoHdL0lCD2m4xFtVuLqFjWMqeuSvrEcHu6TFw29EAyHNyhtSV/XO/lGZxlNR9iuY7lcMBwOaaqawXDK5XKFtnDraI9VUXGgBOW6YjTyuLq8pgxjItVzmXSsMTz9YMH0YEg6iPjG2w8wYqf4vFwtoAShFV1tMTKkajps54gTQ9kLjPJAOrS0FKWjrgvSKIVQUbYb/NzBNMKWmnRvQF9uOXn2DnEyIY4a/tlXv8dmsWR/NOEwDLh1kvLaG5/hyTs/oPZatAg4W63wTwQHoyMUhq70QTU8mM8Q2nDiK9556z7D9ISr7XdoOo/5+hrTd+zphOFgj8p2FNYh1zXKT5B+yKMP3keUFTqQ7LsR0zTe4ZqiAGUCAqMR2rDabji8d4v2X/8RvDt3KS4uKS/P+d7f//sML0v2jc/+ZErb1pTbLZ7USNHh+h6hPWQtkEojTEffO7TeHZyM9LHKEVgLcURnLdozBNOYpxcrPvOf/g3q+YqqbxkPE6z0qMoOjWJdFbv3JQ1x1mJUxN4g2r2n9FjnMH5E8CEvuG87JtMhTVnhA9df+wNOXnyG67ok+9CRvrm4JAxStCcYDAYfKmI/VHi3O2UpQN210O8GYD7Kj/Ylw3hEWdU44dG7lt5KvCAkMhJrHduipK4FUWhIhcRNU5St8cIhZdViZMA7bz+g7xV1nZOmMdEwos4btGyJxyOapiXQHseHe2RZhVSKiY5A9FR5RmtL2toy3h/R9y2r+Yp0kO6G/KIp2yJDdI7TwzH7e1PKxtKVDYNUsFxuyZUk9RWLrKV0hsWqZDAOiIYJ33n7EdJ2HJ0cc71coxqL8nb60Tgc0VgLVmGCHtFDrDyc6om1oXE7CoLxDb1QlOUGvbH0Qx/hQsajhC7LuPOxu0RBzGig+ca33qP5UGJSNyWe33Hv3nPMz2tmzQanDbMmp2130/mhH3Dz4ISr+RkXVY7Shudu73P9+AFSJ1zNn1K0gsvZBaLviazBI2LrJK5tOHt0jlI+UimyfI2sKvzAwwSWz9+7wbuXZxzu3UIrQxT5bPIeHZcc35hSLF/A3LkD8xXZ/IoPfv032KstficYDpL/B60prMB2u++20iF7wwk4y3qzAifJql2RQlQe1vVEyieTisb1O/JS6LGZZdz9i29QbbZ0fY0ODMNkSFk2jCOfxXqNdtCHBtt3+H6ERiK1xBmF5xwm2J1XAm2oqorxdESxLRhEIeff+gaDWzdQbcO6q2kaS55dMxmOyeuC46MDyrrg5HCPtq7QwnB2Pdu9+ziUENje/qnr5U+tsP7PP/8/vSltxWA0pixqEk9RtY7haICl3t3ancIYxWQ6ZL26phUNeV+QphGBdCgrONwbIkKF8n0enF9xcjwgPNypESdHI568PeP23gStOp5uFqQmoJOWPoHWQNVa/ChAt+A6ixcapIa9OKLpap6eL8Ao6laxuP9N8srx++98G90VRH6EVALfbwhDjzCK6GXPdBAwECE1Nel4SrmuEVbhB4K6F/jaMNTQS8m22RB5MVo4etdS5jlVWdMKh61KrOejhCTwPJTncZ1tMapDSTDjAV3f0nf1TrGoFLZrkH2PC32clQir6cuOl5+7RSRqnr8xxowGNKbDBYpf/eUvs20ci/mWx0/P2a4cV+cLtD/Cdg1JGlKpnEESIozEGwrS8QTPCzhbXlGjmR6OOd67gUklyvM5GIVcPnofG0OaDFnVCwb+TawH4yDAiJaD8QF10bBYrBlOxrTZhlGSEOqYyUFEV/a76eoi4/RgD+EEk8GQtit59PADkiBkMr3J6ckBV9czhsaAF7Dcrjg5OOB8fgmF5a3Hj3ny+IyLxZYo0MzLglujKUVnOb+egel4+ePPMj0+olitiIchG+m4cXyTs/Wc67Lg0XvvczKecu/2bVZXl8xXGy6zFcf7R2xWa8JYsC0a6s2Gj7/4cc4vL4kPJjT5Buc050+eMDnc58mTc5I05OL6mtEoJWta/ChESYF18Hc+4qarf/ar//zNtm7RnmKbZQixUwzmWQ44sqKkKusPWzEevbX4naN2kl4KvDDAaIWXhBi9a60orchWOSBQoWK1WRPrBG9sqPKKINRI4VF1W4ZBShpHdI4dZF5LiqpEf9iCC4Ndlefk4ICr2TV519H1NbEf0KqWzvXsHe3TlC1pkLL1ptSLBdPplKJt6NuOwTCktjvQ/ybbMh4PyRqD6LYMhh7L+YwWy3ZZEAUaHUrS4R6e9lHS4PuGuqoJGstf/Utf5OvvP+BoeAx+t4sZFT3/5esHRNtr/rv/9SuMpyPCMKHsNmxwVGbAV37n2zydt7z77be5Xs4IPI0a+GgV4tUtF9sZk/0DRN0iCPHTgEePzxCmIwgmaFkxSGKk7Gj7hrmEurfMr7fUXcF2MScJfGTbcXrnLl6cosKUoutwrUUIKOuG1rbgLEfTPXAOM4iYSoOwDeQVN37iRzj4K/8Go7/579K89hqPPMMs37BZLRkeJcQ3J7hQUgQ+Lq8I+wDnC2y/+3/btiOIU1xrcUJT4Whcj02HvPxf/SzGGoajm0R7+6TjQ5LhHulwxPzqnKpeUzcVfhIQeZreSZQWu8pMke9Yqkpjux7P93DWUS23VN1u6vjB1766GypysLyc86W/8tO0vWM8mLB3sI9Smtlszma1YbVaUbf1zuQnJF3TorXGWvuRHrr6J7/0S2/2bYMfBORZgVa7qnHfdTh2hZCm7kAI4jikriuUtVTOIo3GDzy0VMTDGG00QmmqrsV1PcoHZ3YyGEpFOgnpmhore4z0qe2uQ+AHPm0PKIESgrpu0MZgXb/jFtcFcRCxyjaUXU+ZzdHKMCuXWNsy2RvTNT1xEND4Q/qyIE0TnLDIHoJY45SmayxFWTIYRuStRtmaYaLZZhtq29AUHYGnEB54foxEIaRCS0Hb7b5Tb3z2E7x3OSPyU6TX0TU1jZX81RcG+MWKX/vyt4gGCZ7xaLqCQgkaFfGd7z9ktmzZXM/J8hXjJEANQ4Q26L7nrQ/uEwyGtHlFVVmE9njy5ALp7TK8vtfjh2aHaKIn88FJTbZt2FZb8mzLIIkIlcf+ySEmjAnjhE2+xeHQRpPVxS6+IhwHwzHCWeJhSmwlbV1iLIxffYG9N15n8KUvIl56jkuhyPuazWbF9GhAsDfAxIZKSYrlipAQE0X4nqasGoS1eFFCUzf4fsi2ren6nq2Q7P/ln6CrHYP0AOKEyfgAL0qR2rDZzPFDEEoilSAKPRokURzSOsu2yKmLksgPCX0fbE/TtGzXG5RW5HXN7P5blHmFbTtkJ3jhtY+BNkR+wGA4oqkbqrphMVtQ1RVZkeF5mt6J/7crYi2vf+7zf7ZIwK/973/vzVB7zPIVcRrSty1RotlsV+xP98nLDBFYogj8IGOb9ywLhxMxYiCRoWa9nnGVL6C16Nhx57kjVhvJB99+yl4X4gEl8PDJBeHY43QyJrwzwa5nULXsxQkyFAwTQSlK+qFASYtSjvV6y7aruLM/4Gic4BY9r7z6As+88hm+/OWvsL8/AhwHBxNcJqhbS9OWRGFI0XbUuiM1Hlm1JIgcWVFgAp+p19E2DYuqIbCO42BC1dX4sU+re5IkxU8196YxMFB1AAAgAElEQVRDfBHR6YJREDIaJxA6dA+dhGEaMRGK0DME0RH3H12Thj5tl1HmGdFgxPLyirKtCBLF7OKawWiIMJrbI8FhHBBFmk+8fIzwOpLDlMHhAeMbMU0UIsOOMDnkvYeXzHLHO2crvv1HH/Dg8Zrl5prAeUz3Yk4PNOv5FSJYcXKyRz57wuHpkFlXsqgL5pllOhry9OkSv+1A+GSt5XKxZn804fjuEXXdkw5Tnl7MsK6kLRtc02CtYH8/Zt0WjHwfWVVkfcMgidG+D3mOpxx7kxhMj9tcc/vZE5QXMAlC1nVOvLdHlA45uHeKrz22iy1lUyP8iPXsihvHR2xnK7YX1zTWstrWXD++wkSS2fU1p4f73Ds54bzKuL64oAEmpwfc9GK6vmGbb1DxiOPDA5zvMVvMuX3nNsY6Xrp7B1TL6clNHp+fEQ1jLvMl4yim6WpevnnM3ijlg7Nzqr7nZ3/uo51h/Ye/8EtvSmFQWmKMh3OOrm3w/YBltmY0GDMeT5FK0NqOWPuUqieJUnzPYJuWH/7EazvubBzTtg1d1zGapKyWK6ajAVIKVts1XdsRhT5GeiAkyhiUVGyKgr7ruXXzFrPrOVGc0Dc1VVXjaZ8oDCmbisK2BJ6P6mr6fue+7nuNKME6xWQvpCrXLBYb1usM2fYMxgO6tqduKu6d3qK0EEpJPEhwfUued2htsF1HEgbkbYtowToQ0lIUW+I4xFrFqm85e3pG6PlYLIHxdwcqE/H2O0v+we++x+f/wstk2wIhBb7vIbc1i8U1Jg25OZV8sNzQCp/35kvm756xqTOK3nF9fc2Db/8xw8Dw2l/6Iu++94SXX/9h5hdn+MkIgyLPKqJ4gJAG13UERhJGDnTAdluzzgpskVFkOaNkgAwUSRBSuw7facIwwNca6djB4NMhEoeKQposg9EAKTzG0YjICm7dPWH04jMMPvdZxl/4Mb793XdZXF/T24poLyGdBORtTtc6OutACKq+Q2sPP47ptaDuGxrp0OmQ5OWPMxjt4StDOBrhez51UxH4AU8ePkQZQbFdcXr3LlnR4km1G/Jy4If+biNXGqX0brq636GFurZlPBrw3u/8Lp3bxYuquueHf+xztBJsC01boqRgf29KEAT4oU+eZ2y3GbbrEGJnwLJ9z7PPPvORXbO/8E//8ZtaeHR0+IGPtT3QIwQ0fUfohyTDFG3AiQaNJreWwE8wwU4kcffmKY/OHhP4Pj0dQajxgojr8znTKEULwabM2WYFYeITexEq8pHOIh10XY8VlpOjfVabnUjD9i1t2+5a0UajpAXF7oISe4RxynKxQhsfUYPxAtLYp6ozNpstVd3g2h4/DRDWUdU5J4f7lG1PoDSD2Md2Lduiw0iFh8LTmgYHH3J0lQHlWqIgpMdR49hu1hh/R7Yw2uB5ikAHXFwUfOXtObeeP6JrWhw9UgpMC4vZNTLQHIwlj+crhBdynhV01wt6W9MJAbbi6tF7DJOA57/waa6WS05ffpFsM8NPJlRlxzZvaDFsNg1lVgEtgQ9eGOJsx3qzwbVbhLMEShAOfKRR5H0DnSSJI7rWonpHV7XoIKJt252dSzpsGGJMgMbgW8t0b0x844DghReYvvYJ3nvwmCrbYtsKNfBJRyGNa+nrDofD9zQNPdJaBtMhVmsEjpIObzgmufsco/0DfGVQno+UitZahHPkmzW278iXCyaHh2zzBlt3SOFoq4Y0TQgDnw5H13b0OLRnCI2ma1uCwOPi7ffQngEhyfOKH/rsa/QCYi+isxVRGOH5hjAKsQr6tiXPC2JP75i8VUXX93z+jS/8ietVOOf+xMX0b/47n3ROWPxCsi1qhuMBs9WWsBc0keN4NOZyM8cX4E9SLs6WxIFPGEeslxvWWcZJOKa3FTIIcEoyiX3mZUFgAmRfEw4mXG5zLuZb3v7WA0ay55Nf/CTvfOu7nL54i7zecDQcUXeK7XaLSCJSBc4q6qZk3wsopSWMhtzgNrdGBjsY8st/8Bt4PtBB5A2pm5Io9OiVwxifrNiilGKcjpk/fYoyEiIfTzi6pkUpxcH0kKvZiqZ2KCNJBgOEK3YbzWhEUVTEkWY1y4gTTSpDttUW3/cpe8ueislcDU5zlW2QUuK5mtc/+Wke31/yZP4+yThhucnZn45oFxVykDINBrx/fkGsoVeKOs+YphGF7XG2I1YJq3XOtnA4VyOkxOqWyWTE9WxDS8PRdJ8mK7BK0HiSgyRlUWbkeUcaGMpVyWuffIXFxRX5JsfTBqUED84yhmNJ4CeMUPzOe/e5d3rCnpR8b7FiGnj84Xfu81N/4VNc3n9CFQU0VwVmMubGwGeZd7z0yj2+/du/B6FPXzW8+tI98rrhycMn3Ll7iBQhi02ODnyuVkuOQs2qDEnHkr51eKrG9yekScj9x085uXnKZrlhvlmxXF1x7/iUNjKoqwUfrNb85E/+JOVyw2a74t2nT7g9PqCTlvfvP+RjP3SPbQl7MmBZ5KzXKw4O79Cbmr6rWBUZt05Pacua524dcH4xJ2sce0Jxud1wdDRhm2U781KQ8t/+g1//SPcY//q//3NOakVbt4xGKUVR0buOurdEno80kr62JHG081Kj8H2ftqppy5Kma0kOpoi8IW9rJIK62aC8ECEUfduxPxyyzTdkbcV4OCDfZlgrGU9HBFpydnaGCWOKzRqlFEXVYIxBWIf0FYcH+5w9ekgYxMwu58ShJB745OseP02o6xoTCJSV1FWBiUNwhrosSYYe+aIma9cMVIj1Qvb2h3z3+99jb3wEfcHh0SnrbU44SDh/fIHyFJ7twTi+8Inn+a3f/z4qkORlj7UNk3DE0fEeWbFlNptR1i2eliidUDZb0jBACo+6yXGVAE8iaFEywg8Um82G0WRIUWxpKk0U+9B3VLTcOLjF44dvsTe9wXVfMqglvl9z++49XrqZ8LFXX+dJL0h1yLuPrnn2ZIKehHSrAil8hMipNUxcgDMO5yWs5gsW82umYUAQhYTDCcb4DEcxykryJmM1mxMGMflmi5IOHSQcHh9RVy3b7ZbVcs4gjkhHY/ymY92UmMjQmJBHX/8e9//gD1H7U9KTQ27cOOE7X/6XdB88pS9L3Bc+zWd/8i+Tyl3mtWl7rOuo85K2q+j7nssPHvDB04f0zvKFL/00SRRhjKRtLZv1YneoEGCVZhhHXF9cI6REewolJb/98/8YuVpQC4WnDQ8W17z+qed542//B9imo+8kxhiM76G0B87hhKWpd5XJNI2RUuOc4/XPfPYju2b/2r/3N5xQElv3BIFPbx1VU2N7hwkMYeBRljVR4CO0oKp6At8Ha6nygrKuGE2mUNXU7sMIhKvoxe4iYNuWyXDEKtuyKkvowFYF6WRX4RsMI65mV8RxQpmXWGuprSPQCqzAKcfheMz17IowTGhWHeNY4Q9CHjy9wI9D2qbF9w30Dts3yNBD4lGWBVFi6EvYZAti7WH9kNEw4sHDBwzTCb6CMB6S5RV+HLJZbZHaIdoOFWheuH3E9959gsXS9g7lLKEOmOyNyKuCaptTNC1GSVpnaLqS2NNMR1M2m4wyK3YUg64m8BM0jrJpGQ8HLDYrXKvwQg/b1qBgNNzj+uoxk8EBs6bAqyRG1xwcHXG67/Pscx/jrOoIlGG+LjkaRMiBT1vUBCaktTmVc4ylT+c6BtN9VtdzVssFQ9/HC3x6FRIEHukgxreSs/UC1zakXsD1ekOgJdvK8vzzd8hWGVlTs52vSNKE8WgAVYcINUW2ofMCrt5+SHH2FJckEAbcvHnMw29+i+rpFa7rqJ67zcc//TraglSWtrUIWvrWgejJ8oJqveHJxRlV1/Dcy68yHQyRvqIvauarJZPxmK7raK3FOUeb7zLydVMzHCZ88zd/Gz8vKKwDa1k1LS88f8yLP/7jNFWN70VIIRkMItoPL8SecGRlje9rjKdRUiOE4mf+7b/5J67XP7XC+sv/5H95M19vudgUlNYxv15jfY/El5RdyzLbEuqAUBhc39GkESpv0UIQ+BHn6xW2c2itUUqyqAumQcxFVu2GpcKYRT4HWXMyGvLewzU9Afl6wcdf+xSShsiPUMbSNj2+EhglMHjEoY9nFLKRKA+E9Dg6/SSnz+yDrXjv6ilVV5KEMYf7B1ycneEHHhhNiMU1Df6HlhadRNRa4NeWNAzojMZ4Pt2H4Xfj+6zyLZvZAlSMpGFdztHWx1Y1WIdrSnwTknU1m7wkiQPysqGoGoZ+ynR4hG4LAl9T1zXL6zkyigiNQTro25JlUbEfDbhazDjcHzPan7K9viYUgspCk5VkZcWmq2k9TRwPcKpj0xV4nSBSAUGYgFQIbaj7lsCETJMp8/UK6prRKGW2XvDcwSnrxSW+UPhKIzxJVfWsu4Yw8BiME977/juc3rzL/acPOL++5Gh6TJkv2TvcY+oZZo8z/JGjXHdc53NevHmbTd0ye3Sfe6++yMXFEmng3gvPcf74krq2PPfCs3z37e8yPj7FNC2DZMDgxhFFWeF5PdMkpW5bgl6QHiasV1tmV9fIrsNLQg70gPUIbhAwunfEiy+8zG99+V9xcnSMUpK98Rgre9JBynWece/oFLupmBwd8NbTRwz3xjxdrfjgnft86ode4d0PztgfROzFKdlsw8GNQy6ePmYw2sc5SxIJjFY8erri4cNL/vZ/9LMf2WoNwD/6pV9509UN+yfHrBbrD9ssjsjzqOqaG9N91tuM3rb0XYeRmrprqOsK6yniJEG0PbM6A9Hh+QqjY8IgIsszhlHE1rV0UhCbkDRJdorDIKIsK/qupGtBGc1oNKZsGrzQY5AMqPuWrukYjVPyfEvR1ExHI45v7LNpNXv7Y2arOcdHh0wGx8zzGTeefYbtegtVjaLnYrPh0y8+jzfeo85awtSQBB5+FBHGms2iJNvmHB7fYLW+wjOOUeQzTfZB1Lz36ILM1ahaoT3F/mCMU4rVco2zEu1HSGWITMBqfcXxwSl70wlN55BCIj1L3tS4xqBCRX6x2JmIPAmdoKpaoihAG0VRVtRlRRik2MijXyyplSXxDNttyaufeYl/8Qu/xvzqkg/+6CuMtOWr/+KX+fE3fowf/OHXefWzr/DOv/wNnnn+NTZtS18olrMZw8mUKNFkhcVPR1w+Oad1FY8fPeDq6WOiKMUzmihKif4v5t4sxrbsvs/71lp7Hs5cc9Ud+/btZpPdbIqkRIkENUuJ7Ei2LMWxkFhxEgcGYvshQBAkNtCBESvJS5wYiTIgSBwpFmgpGixAEyE4kmlRikhzJrvv0Heq+cxnz8PaKw+nkTxZD4KBdD3XQ+FUrdpr//+/3/cNYnr9AY4TQJOTbJYMBn0GowGu8glcHyvwWFUZpvNok4KX33ydVz/+Ue5/4BVuHB/T2xlz50Ov8+YP/SC3vveT7Owd4vbCrW3Icoh6faIgJM9TpACUJBz0iScTHDfEdVxspei6mjyvcD2faDBEKEXo+FRlRRzHuFGAqxTVeoW9SThbzPmuv/HTTB8/5/rRE/7af/W3WaUrXHfEcNTDdiyKosRxt5EX2/bRXYmyPZoWdF2xWW+4d+/e+/bM/sIv/dJbTVHi9fpsNhm61WghCB2Lsq7oBSFlWSPMVskrHOe9YlSDcCywLGg7krZEyA6jDL4dYpRNlmX0goBNW6Blx8APMcai1QYpBK4fYHQFnUTZCt8PaXWL41lEfoTBYLQmCgKquqBuWyaTQw5PdshbsHyLVbJiZzJmPNhnur5m5+iIoiiRdYM0Leu84P6NE+z+gKrU+K4i8hwsz8fzbbKkpigqRpMdVps5RteEnkfPi7eFq+v1liTQSKQ0DMM+rYTVOkFJC6NsjJGEdkBTF4x7Qwb9HnWraesG6QlaraFRCBuS+RrPtilNi6ve2wwJg622lsiqKFDKobElbZrRORLPkSRZwe17J3zlc18gS1KuHn+NyIJvfuHzfPi1N7h68ozD2wecf/GPObn1MquywCdkNZ8SxT0C39oWep2A6XQOsmW5mnP+7Bn9wZi6qTFIesMhjusQhhFO17BarOkNAnwvoDOCcTygcyyWmyV+NCRfZRzdvcX9Nz/MZLLDeDRm52ifcDLi/ic+wf4HX2U82cUf9XEsC2Ur+nF/a/oqS2zPotFbRFYQR7heSGT7GFfimA6tJMPhmDQv8YMAz3aQCDzfw4tDTGdwtEZtMpK64sYPfCf5fMXVi1O++yf+LJYjqRub0TDGd13ytCCMA9arFZ4X05kax3XoOkGW5sxnS779O7/rTxcJ+C9+9mfeao2mlWz5o46FdDqS0rCzO8TpHNa6YdFWtI5NtVnTdZL+qMes2+D4DsoSaKfdOotdi9ZXjPserawom4JEG/bsPot8w51bfda64tlZzvzFNTf3YlxZYwgIfIdOS8pmu1KiLTnZ3afuNGkOaVbj6yWj2y9zFJ/wf/3x7xGHPlJ3BPaWFVZVDevFGstzqPMK34uYlys8S6DrnP6oT+TH5KWmLCs85dDULQ0FoRT4XYehQYURw2BI2+UIzyLoRwgr4LLOKJuW/WhCJA3KdTnc2eHqaklTFXjBVjBwcb3h5M4Js6tTpNZUtUJZHuMo5slyisHQNTXZ1YaiKpmuCqRjM4jH0AiEbdMThkJBrASjcILuC1rZIaTGcTW1rtFohOjYZClDf0jedEwcjw/t3+Jbj7/FyeFNCgQbW1F1it1JxPm3nlC2NU2SM7VCXK8i1jFGuqzSBBH6uKKiFi4zc81qU/Ly/UOqWYnlGVpTcb5cEGnF0+WKozDi4uySZ7MFl3WB41rkG00vDrlarQjcgHcePaPOCvq2T1kXeKGD34s5PVsQKJdluibyAopVxs6rRxzkhspxUUnK9YspJ3dPmF5fEwQO6eKSmzdvkeQLvu2T30G7zrHHDsV6wf2TQyIlOBoMuHf3mMV8htdqrtoKpxWMbh6xuJqC0QziPu+8+4hhL0Z5AZ4vGe6E/Nkf/yvv24cfwK/+6u+8JW1ru17VBj/w2azXmE5T1Q31e01k13EZTUYs50vCOKDThsjxmM/m2K5DYDkoZSMdF9uDNMnZ2d9jMV3geS63795hs0yo24rlaknXQdM0OJZFpw1ZWdDpDkspuk7T1M17rMkOY1qMNkS9mNl8ht8PePfJKYHrsFgt8VybzSLlKAx58vAxoIh3Jijbwa4rVps1O06PRVnhOQbbsujMduLUG+zSH8Wcnp0ihQ0GeqM+14slVlfh+iOsQYzRgoOjfc5evEAoQa01TdNsG8wILNHS6i1KZrVakZfVNmOZpdhhiBUFFOWG/Tt3QVkk8xWWa+j3+3Sypaka6raj1ZpBT6JzzSbJcbyQZZ2iG8HqYsZgYJOsKzZlwdjpGO0d8Ju/8Sv89b/1Fp/9uV/g7/3X/yPlfMkHvu/H6OqMVmzRN7rNSbMMLwroxyFV26KkoipLXNcBYLPZgBG4tk3daKquw/Z8hFKUVU3VFrS2pGy3E0nfdxns7lKnW1lAXiRo3aCloRcGeK5NicSR0HcdlOshMdhSkCQpsL1UOe9N4iUCZantlL4s6UyL7wYIudUWWMoi8DyKqsIJPOqipKxrVk+e8+DrX6Goa+6Nj8ivZrx4+oRlumTvlXtMevuk+ZrNJsFs6VaE4fbFyVFbA1lTF7RNi+u63L79/s2w/vxnfvEtlKDrDMIYHM8lLzOatkMoucWlCQFKEQ16bBYrPM/bfq6WIMsyLMfenjsMtuOgfLHNeg97rFdrpG1x4/CY9XqD4xpW6Ya80BRpRhw4CKMpG41kq3Zt226boe06XNtBG03TGGzXJVvPiXZGrOY5abamKAscS1FnJWPf5+L0grbpCIZ9BBKn61ima4ZOQFKVBL6Fazs0uqPMCqJoSBB6XM+vsYRCGYMf+2yKAk+CcnxUHKKUxXAy4fz6kg6DkjbolqKqCFyXti5pm+22uG1qNmmB53tk6yWW64C7NWDtHR2Ta02RZCjV4SqHloY8r2gNSGkRehLTmC2o3/Uo2xLLuKTJhiBSFHlNqUsipYkGQ774hc/zwz/+k3zj9/+AX/nV34Q057WPfS+b9QzH8+gM1KYmK2viXrh95uttTilrO1xXYhtFXlQ07+W5tW6ojEBbhrYDx7WoioLOEVS6RViSwHaRQYDVVDRlyjLdULQ1xgLXcvB9l6TRuEptYf5S4QiBoKOu6232NC9xpdputZSF6Qxe5CHLGi3AFYq6avACj7bVBL5Hnif0hgPKIieIY9KzC87Pn1GUBS/vHtGuNySLBUZqgr0JQ2/AukwpswLb92jKCs91kWL7gm8piX4vChNEPm98+GN/ugvrL/6D/+6twXgXR4IlLGxLo4uGTrYkSU40tDgIHRSGLq85cX2CwQCjS2TSECibnbBPpksO+0McAzeDCQ/OnmFXFk7ooRtFnhUMY59GK3Z6Fq+9eYfHL655+yzj6VmGW9eEew4CQV0XDAKbYTRiNd/Q6Zo4kAgqfvwn/gM+8up9Xn3j+/ji1/4ZUWyhq468yNBtS+BaOD2XQrdbc4hlCIMeXi2Z9CdcXU4pyoSRrYjsiGEQgdZcLWfc2j2mrqGRks4CobeZo2SVEyifwNgMlYUnXaQleHG9wK40VZ4SeDbRwGEzXbJcznF9B1WuSBOHyfEhT05f0DqaxbrEyjR92ycXNUYUZAL8wMdpDZUpWVUFeZ7iRD3y2Yz+sMdivSBWNiAoZEebF+wN+sQ4dNJCBBZyscAqCy4WS5ZFguP22fUD3nn4iIlt8/BLX8F0AfbIpqo7euMht4cDZk9WOHHE8TBi1B/g64rj/UO025CUIRNp2Dk5oWwkz64T/synP8H1MiNLC169e5P791+mA7Ru+Njrr9FVCbPrBZqGyI8RviTPUj702iEnRwccHkz40he/yUc/9DKuo3n30RMO9vcJQ5de5FLkBZ0taVvFpkkphaCtS+7fu8siK7gqMg7CiLPzawatT6pa1hdzdm7cQAnJeLzDxfU5o15MUZXce/Ul8qygTtdM1wVPr66wpWK6mVJbNl7Px5U2g2iA0S0//GPvc9PVP/6dt3TR4MYhUgryIsN1XJSS9AcDakti6q3603V8uk6TZxm+79E4W2j7qD+gkhqalrrM2CwL4l6IhaA3GWA0vHjy/D3neIVlebhugBSQ1w15XXDj5ITV9BpLSqq6xfMcqrKkbTW2ZSM6hTQCZRwuF3M+/eFXeXY2RVg2Qtooo5mma+Iwwh+ETMKQJi+R4zH7u4c8evBN4htjzp8tGB/sM7ueEoZDPAcu51N2hvsskkscyyZPG7q65df+8X/Dz/4v/xCymp4fUKcbGgM7O2OELanzjGgY49mCdV4RhB5e7CCxcWxB3XbQSaxOUl9f4Lg+wnJYL+ZEvocfWPR6Iy6v5rx06ybT5YrDvTEvLi6g61CWZDLoEVmGl45u8vjslLfnGz51Y4Tt+xwcT8hrRakV//B/+Bl+4if/Tf7yv/fv8Om//G9wQsXbv/UZGBziRz3aBob9IUgHbVvUSYFte/ihh5aKrEjphKCpGjabOUVZsJzNsJWkrjJsSyAdB9VuZxHz5Yp+f0xbFghlSNqCrKjYJCkUNbOrS66SGf0gRgQuQlgU6WbLam1ber2YJF1jWxZJldIKQScg8H10u11VN3UJQtF1DWVe0FQVXi/C8wIse6sVlW3L7/3P/xtSlxitOX3nMVWW82I95dM/9Ck+8vHvQemtWUkCVVXRi/sY06C1RohtWUyY/8/mdvfu+zfD+pn/81feUihc30NJSdMWWMJCyC2fEk/hmC1j1hI2rhC0XYtjW2gEbdcx7g0oafCEQtcVpmSrZO0k0SimawVX55fEYUjZtASuy2gypCgrFknFKi3YHY0pywQlJXVdE3g2dIayrFFSYEuFMIbjg5foMHzHh9/k4dOn2zwpCqMbVnlKFPh4/YDQdemqBtmLGI92uTp9Qf9gwsXpnLDfo9hsCP0+oWex3Kxw3RCtS6RQlJWm0x1/+z/9d/nt3/0cbVoSuwFdUSAQjAYDpC1INslWHS00VdMSxi5SGdqmw3EkumloG4XvBmwuz5GuQ2MkxWpD7HooVxAEAbPVhuODA5IkYzAIuZxN0U2Dcm1C2yL2LCb9AdPFgtOk4JXdCCkt9g/G6Nai7ix+77O/xCc//km+//u/l3uf+gR9XXD+5T/E6e1Qa4PVSWg0CBfjW1RpheeHDKKAsuiouwbXsbcvd9kKKSVJugJsZFsSRD5G2lRFy9FoyGy5wXUDfEsR9wJyXVNUNY5lQVEyu7pmVazoBTEycOg6g2t32JaFbVs0jcaxBY4tma8WW06yJQkDj6ZpQW45zI0xtKalKko8xwbHwSiLwPVo6hqnha/8zmdpiwzbdZmfXSI6w+nqmjc//ga3X/oAceDSmg50S1aUCKmAjqIqtlgtKVFC/b/63Nff/BdfWP/EDOsnf/Al0zQ1kTMg2ZQoGoZDlwZJmmc4KmSdbIj6AR6GA0vxqe/+AX79s7/BydEx2IKzxRmTcJez2YyedKgczWp1SejGxJMdynVCEPis25Kd4YRstqbqDL1+hN+P+daDJzx6lCOaFldqwq7ize++iVcJVBiStQV7fo/Hzyv+zt/5u/zz3/51fvpv/T3+7n/5H/PsK79HNN4lHvQJPX+LgcoK5lVFb+Jx+vwF9+99G9flJc3pjKzNsP0Aoyy6tOCVm7dI64bN2YzMgflsw83bR/TCgGcXZ+z6Ec4wpq40XZFjeR6bpKKzatazJY7xsHybnu9zvpizF/ZxvYDZckHV5OwcHLJOUpqsoG41ndyyBWNpUdhg1YLahqJp0EVD3WmOBrvEwxhBx9XFNTKO2O1FNNfXHN99maqoQbZ4tc+DzQMWecUgmLC/c8jbj7+BI232giEyMEysGEPNl0+f8dpL9/jW0yWTnsfZ2ZSnl1d8aLRH4RSsLzZ4ewP8cUCXGgpd0R9H3Du+ienZO1EAACAASURBVFUIHj56RBoIksslWgn6g4DbkwOOJxO+/vZDMArhKtqyJHIlFxdXfPCN10FZrOdLhgf7ZPMFNbAXdpxfpgzHEzSamyf7PD0/ZW9nD92sSNdQ0XB9sSTY6aPTJcNoyLTOuLe7T265lMWGUGx/R/vDPvP5nFc+/AZf/dI3eOXeTZSSPHzwlJdfvcODh2dcN1d8dPcVyrbkdHbOcLDL4yen2KHPrcOAG8f3+ad//M8YDif8H7/0B+/bPBzAv/7Tf9MIA9p0pEmB6znErr81eCUJwoBjefihS5blGK3xAh9pKZIy5c6t2zx99JBBOMRyYbMuGe31WF7OieM+pakZxkOWqw2d3kYB8izB88P3Cl4VYRhiWk1e5fi+z3q9xLQGXIt0kzAeD7f8RmnQpmO9XhN5PjdfvsHzd58jOkOlDbLqGN06oJgtEZ6iyTSrdMnhcII1CUimKUmeILKCYLBLVq1QyqaTHW3ZsjcY0DSaxWzOUV/S+GPGO3uk6znZ9YzKDdgkczA2w7GP1BFGahrZsryasjuesFgvGPV2qMoMpEA3HZYl2Ww29OKQ1WaNG8V40qFqcuq6ptU1eAGBY5OmGxpt2A3HLFdXjGOfUvXpO4bL5ZJJHKEtm7KpaZqGfj9mNV8xDAJu7AzAbNgfHiHUjG9+4xR/uEs8GCPmK17/ro8iPcXRBz9KXdooH1TVsE4WpKuOydGIqmvRtUbJBlMX+FHI1eVyu/6TGlsqbM+nM4pBEIFj4Vg2tq0oqpKu6/DcPqt0jc4KAt+iSDOcfoTuYJMs6ERH7EUYI7bPCWmo6xLYMlF936dtOzrRUVXNdgotoExypCVxlUPTaPrjPr/5M/8tZXZOLhSybSnqiq7rKIqCZdPwn/zs30MoyWK2QCFwHIdNlm5/Ts8Dvf3epmmI4yFuYPOv/siPvm/P7L/2F/+iQXcIaZFuChxH0Qs8tJIkaYpCYYwgiLaTKdcY9o+OuF7MQMLe/h7Pn73LMBzTmG3TPhz5LKdTorCPsSW+7VGUFXW7ZZ5mmw2W46IsBcLQth1p0lBVJb5rU2UbegMfqRRVXRNEPrJTVJXm3sv3OX/6hHuvvcmmmPHswdvbcqe0sDqBNYhol2saC0QnmC2n3Ng7oQ0hv9qQlAmq0TjRlj3ei2Iao6mSgjgOKfKatm3Y71kkxmYynFA1BcViTS0tijqjbQRR36YttwB6bRnKTYrnedRVST8akeUJnemwLAdjOtIkwfNc0iLD8QN8aVN1FbpuaUyLtmwcKcmLHFs6jOMhWbbEkdA4PYaeYjGfszuZ0CKpdY1pwDia1SphEMSc7IxJsytG0Q6eXfDibEYUj/GjiM31lNc/+mGyVnNw9z7JRlOZir5QJOWaZFEzPByhLejKbluwE5rhcMh6lm15uVaHqTXKdVGWzU48wAt8ivfUt7Vu0bolcEPmqwWh4+G6FtkmwR8NaKqatEhxrA7R2di2Q17UhIHDJt3gOj6mq5HSodGasqrphCBwbSzLJs1zIt9HKoe6run1Yj7387+I0BvSRhNHIbP5gtD3qJuGq/WGf/s/+ptkRc18PWPkxEglmW9WWJZN024NfEpobNujqGqCKOCv/rX/8E+XYf25f/D337KVIitKlFSoUODYDk5n0+uFtE6HZylu3TzBiO0k02sly6ZkvllTd4ZO29iqo7Y7lNGUBu7dfoWLs0ukNiR1jQBQBq9TWFIy7vfIqoL1ckov8rlxvM83Hz1mVVTkleD24YCmBUtK9nZ2mc3n5Gv47h/+fs4eP+DBF77KkxePcayCVhgOR7s4KO4c32Z6OaNOFwzDPtPpmo9+6DXGvT7asVFuRK0bRCYJhz2c0Ge5WJNWkvFkTDScMOkHWEVD5PmowRBRVjjasFmVhMOQLMuxqho/DNGuzd3DIxaLFTdu3OZsesnD2QX7eztsdI7oDPky42Bnj3g8xBWSsmjIim0LzwC+bRFFHsMgxnQt+bKmqFIc4PFyySTc46WXbzBfLvjqtx4xGQ+4Ppui7Zx8U/NsURKVmnhkM+wfcv3slGgwoMg3NFXFtC44OrzNxfSUT735YeYvXjDeG+EJQWUJUtHwXT/0fcS9iH3l8O7VJa8fv4SyLIrlgqvrGV1so9OcFou9/QmWkZw+fUZX11xnLecXZ9i2hezg8XzBn/nJH+d8/px6ueTG8S0evHjOfj9kPBzjCsnpek6rS8LBAF9Z7O4e8fk/+iNMpqlDC1k1DHt9orjHQa/Ho8U1quzADbh+fk2nDJHvkK9WdLagP56QzKbs793g/PwZnWgIrJBSGkxZs9uLeX56gRQCJ/JAGhpdMozH0FZki5xVssa1HP7CX/qr79tpDcDP/aNff0vrjsnOEC+K2N2bcP78lLIpsVwX27Jo6halxHYt5Nh0uqPVLZaRXJ5fEgYe6zylqErKoqYfh+RFTVW1aNOyWqyoy5rAVzStxhiNkpK8KNF6q8U0UmBQTOczbMfG78fblb0fUjQlSimaqmI+m/PGG69zen5GdbnCcm2SzYbdw0O6pkFqw6bK6PkBWVnTC0OMq5g/fILfH+AISdI0OJ6N4ym6rMERCscF2VksNgu8nqKRPlUmqMuE8+k1tuvhWxZZ19J/j2c56Pm0SpBNVwSui+f7dHpraSqbCstVW2+6NFQIMp2xu3uIbDs2ZbFdy0pJUVe4ykG0DRYdx8e7pOuSnf1dLq4uGPR3mc2v8eMJ9APaNMHuWrT0iSOfutsimc6nKeva5vmTc94+XXPvQ/f54EuHTK+fUzoBWbLkxrDH428+pS0vqJ8+ZugYLp+8zc691+jqCq1LXGkRODa2E6ARuPZ7KKOyBCEpigxluZhWM1/M8B2PqqlASYSUxG7AqNfDmI4sy+gQFJ0mtC0s5eK5Aa4TUbc5Qm7bv7brUDcNlm3T1FsCRGs0Xdth2TbGCHzfp9YtbhAxn13jWzZf/43fwrMF4ckhzWyO0R0WAq0EajLkO77n00ix1Y86nkOeZownE2rdMtmZsJhNGfT7OK5DVVa0uuG1115/357Zn/uFz7xlDAShj+MHDMY9VrMlbdvi+lvvumk7wsinbRuM3Op0y7ZBt5r5fIHnuBR1Qalrmvc885bySNOMzmjWmwRdt3iuxOgOMHiOQ14UVNX279YLPJKsZL5agbQYjHtUxRY3hxK0bUtVbKH0B3s7PH/3CauLKbYjyIqcvf0DaDWR47NKN3hS0GlQQtEf9SmnC5woxlY2WdNgSwsvdKABWg1K4Nk+eVMT9Sx0Z9PVFi0Ny+US27KRHbRK4CqPpmzoxT6tkqhqG2foDwYUZUFhtsIDYxl02dK2LcrxaC3NaDDG1C1JWW3tUVLQ6hbfcXEEKNMx7PXIkoLBcMCL6RWjeBdtarB9Nl2L0g1dUaDVthC4qWpcIVkXFQ0hZ0/PuFjX7J3scbI3ZLq4QkVD1qsZ94/2ef7gGUokmOsLAhtm18+59ca3oTDYpqWpGyZxD9v2aJqGrgPLd2iKEiMkQhgsaZMnKZv1CoRNkiVISyKEoENy9+5dijojT7bDhGWW0fccfC/Aszw0krotsBwLdEcYRkxnMySSxnTYSJQlkVIRei5pXeNaDi3QGckmWRHYDu9+/o+wLUF0uE81m+HaHk1VoKXBGQy49/oHEQYiP6DRevtCMRrQGk0cR5R5QRj4CAR5UWDo+PZPfPpPN2H90Z94w5R5w27s4AY+F9Mlr4xu8sfTh3RJw+3BLmuvYuJHIDq8cMS0SMjO5wShwnNc+q7LJi+otYXuCooi5+bhAa7rUnsO5nrNxlGUmzW1lOhNycuv3uV0NmPPiUjzjLorCKIddgYh8yLnwYNr0tmaaaFZzksO3Iakbvif/vP/jHe+/iUWouLw9Tf4p5/5R0hXMIkiyraBdts8tMIx0TDm+vwFk+GIe6MTFramKVLKeYIXewRByOe+9mV2o4i2bijqGqF8Pv1tH+Z3v/JFUJL7B4ds1gn9/pAiT1lcLZFjn7Yw6Cont1qa+YbecECaprx05xYPrpcUqxWeq2gMRHbMMsu2nLXxCFM1mLxibVtYbYu0LbSQUGrscUSdrQlFhOuB67rbt+FoyHI5J97bpZgWHN0/4sWzOcXqkrRRxJZLMDJ0iWAuNfPzGZ/82EdZv7imoUMrw34/pK0t2qbg4dmSGx+YkF6tOTm+w/L6nP6wx+U656MfeIWn81OeXZ2hltC6Fgf7N3nx9CFR7DLcjciWCbdO7uA0il/+rd/no2++QqsSXr13B1f2ePfJnG89+EM+8cYbJKVgOJzw4PHXubhKONwN8aM+2SJjb3+Hj3zsI3zjC9/ifHPO6HjCs//7HX7oz/0IWZtSLhOyoqJtO64XlwgtYDii1wlm6ylX6wU/+aN/gRePHnHdLhDTgnu37lFbDckq4exyThwr8sbQC0e0SuBJzcAf8OLqCs/RONGIenNJUW/b9P/rr7y/J6x//t/6GybyA04O93j84DGO79EIQ5kmWLZLL4rZJCscx9mSNsqcfhCRVAVeHJOs1oxHPRyh2GxSsA1xvMNquUBaCtcSW+VmqxFGouz3JrdCMBnvIozk6uqKw6N96jxDtwZvPKRON1iWRZpnrKZzbt+5ySJZgZYgBY1uQQtu7g7p9QY8fPSYrC4ID0bY84LOsTk9P2V3sgPSoDwPu6kpypqmLdhkDbbtMJwMGI0mtFVN3/c5vb7G14ZVsUFGPpNwQFU1GN1xvVriewo/DJifzrYXcykxVcagN+Ridk1XNQzHA9KixLZcmragH/UxbUPXQNZkDIdDlvMVWgls5eK7DlVboTAsFgs841EHinQz45WX7vD86Tkf+9hH+MY7D2kbcPWSux/5TqYvnnN+NkV6HQYbC4M0GmUHmLKkEQbX7ZMmG/bjbVMcaRPvhsyyFhrBOklxooCwK7hpxXzkE/eIjo+Jdm/jiJA6T8gsQ+A5dJVmtVoReDbCtQltl026Zr1eEwQBlmXhui6esnHjEE9aiMAniiJM3fLk3UekeUJjOgaeQy/q41o+pWgpi4y60dAZOgxt2yKlhRQWUkFdtfT7A7wo3NJMmpyv/dpvcvr1L+FIgRiMyZcLqrbBdB2FaDn4zo/zr/zwj0AQITpNh0YiSJINtB22baMVdHVFXpXsH96kqAt+4Lt/8H17Zv/cT/2UcZTN0e6Iq6trNALP8ZiuZ0gUk3jAukoIXQ9jBLrbZraTJMWPA6q8ZNSPoDOkWYVRLa4T0bUNyrawbEWV59TGYBoNliRPMqI4xHF9XGEzn88ZjHuYtsOSCkKf1WyJ0YZNXrCcrbh5uMMqS3j95VdI0w1F1+BFfVS2IYwiZtdT8qbEHYTYWQOezypZ4zkOjmPRC/vbKEhZUpc5VWtwHJdaaMaDIW3V4NkW83XKQRzzbHaB8F0OB2OKfHu5XKzXCKNx44DN9RrftckVdFlKvz9kupgTOA44DlmWb4tFuqIX9KnriqZs6GRHGASkq4TaklgoXNeh1i2y68iqAqsVGNehrjbcODrk6uKKV195hcdPnyGUgyw33H7jw1w9P2d6eY22DJZ0sG2DaDq05VAlGf1hH1pFXuQMAhtXSYyx8Ho2F+sS33fZrBLiwRBZbjjyehy9tMv+rVuYoE9TGXRaUNiCXhyTrxOqqiCKXDQwjPqURc7jJy/Y2x0jLcNw0N9e6I2kyjeMdibYjo8lFO8+fsAqSbBsSS/wcJRLFMQEg4j59Yy0ynFch2yZMNqd0GEwrcGYjrrWWLaF4201qrKtePi5z3P++G1uHBxSCsUmWdDkFaEfUMqW+O4dXvvg61hBQNdplLJACKoiw0bRaA2WASMoi4TeYJe2a/npv/LX/3QT1p//zM++ZRA0acbu7h5B5COUw3F/j052qMhDlWL7j19adFqyH4dEno9TgGcUWbblbA60xgl9jvs72LZiNp2y68TsnBySJxnZKsMX4GOj8owqqxBOS1VVuLJHsynxD0Ysnl9iOYLJ0YhbRxGvvXGP3/vyI3pHQ66unrNYzxjaPm++8T3Mls8YxSEv1imDqEcZhgSWw81bL9F2BtVJHj58wFqAS0e7KZjlU27d+gAD3+PO6Ab9nV1s5RPHQ2RTkto2rx7fpTOC4uxdjHTwpQ2OTy1r8mXJ7nBM1hR0aY7X3yewXcb9kIHfZ3YxI3BD7M5hHPdZbRZ0GFxpk7eSUCkODobs9Pao1kuiQY+synn55h2oa4oyxUVRipL5xZrheI+oF/H9H3+T1XzGs2fPON47JMlnWHKLEapHhvVVyag/5uz5Nd/ziY9zcXXKvXs3eb6+Jmsq9mMXIWCerPF6EYd+yLopSDdrcgzDUZ9klfHk3acIK6CqO1wp2O3v4CO5Ws0Ihg7zRYXoJNeLBYumon+4y+zFU24c3GFxkZHnc67OT7lz42Umw10eX84omwVvfvCjlOklx7dv8uWL57zy6qvs90PmdUKnGiQCX/ucmSnP33nOyWDE4yfP6A960GpWTcH+3hi1rpCRze5gwG7cZ73KKJIlt8Z7vEgzOtcmrTSPnjyn0Q3DuM/R7ROK6xnLquD1l19luliwSFYoI9nkOXXT4HseTVPz5//Sv/++ndYA/PKv/dZbWrfMrhfsHu1TFAXZYrV1hBflNkvYatq6ZbNJiQchRacpspx8ucKzFXlV0hoJ9jb8f3l+Tr/fY3p1RSfNVgNYFtiWQy+KaFuD726xStLarhFtzyXsRYjYo94ktFWLBvqDkMnOEUmxAb3NkCXLFaHrU9GRrjd4QcRivaRTgj3lc15lGGDieFx2Jb4WFKs1iRA4wuJsvUbpmkC5VG3B6nrBoi7pspy81Szymn4UkWcVrWth8opOGaRr4WNxtVwigm3D/JWXblHnHffu3+Xq8grLDzjcPWAxX1BXGTv7e9RNi3S3+l7Fljs76EU0uuH48Jj1coF0fS5nMw5vnrBO5whdMx4dkmYZgedyPV2gjcdeaBH4fd758lfwewHKcrEMDPyYqm5IGweZGLpAYDqJUR2OFHSeIcsNldRUxiZL1wjEtsCwWYDXJ90UXF6d8s2vPcKzO5Zn3+L41g7f/Orb3Lz7AabzMyzHIvQDNkmKo1yk49Hv9Yjj3rZBrSw2bU2yXDLbrEiupqxXK5oqJ4xiev0et24cs3N8D5w+uYE8TWkqjdYCobeMzqaqaTuN43qAQdNsjVaeh/Rcnr14wuYP/jl0LdKS5MslSlk4joOyLKRQLC6u+dgPfQ8dZisiF6BbTRAEeJ7LxfUVvudjOy69fsxylhB5ETdv3Xrfntlf/JVffkvrjtV8xe7BPlpv8WC9qE9d10hLoZvuPeJEhR94CCXomoZmneFZamvgs71taUYYiiQlikKm19c4lsJ2HPK8gE4Q+R5ogSsFnucgbajqGsfxt5/1MCSfL7eTbc9mPAk5OrnB6XSK5ThAx3q5JHZ9gnjEZr3lLE/XK5Rj03MC1m2N54fElsOqa2iSjCzPqASo1nC5WRJ6HpHtYUtFVdRkukW2HXXTsGo0u8MxZdVQtxWm1kglkK6NhWC+3OBFEY0uOdod03UOJ8eH5GmC60VEXkiRFei6ZrKzQ1GWCFtSNTXGKKq6YjyMkVIx6vWpqoLOsmialvFkRJKtUKYljPts1ilRFJHlBeP+DqHUdK1gfnaBdAVKWVhCEIQ+eVajRUC1qBgdDCmKijD2aHRNa2mM3haj8wbqtsKTNh2GZrNEOwFtY5hNr3jnm+/iWILN9AU7e32uzq7Z3z9hurjYqqOFTV6UdK2hVYr+aIhC4HshujEkVc5qNkMb0FnJdL6kqRJ2dw/wXMnNGycQD4mGe9vCaJ7SthrTCZSWNDaky2TLxW3a90qtDUVVEkcBUkqmqyn60XMctc1R56sloevTSoGwLbpOcHl6wUtvfhDLsvB8F13XVE3DZDQBYbiaz3BtF+SWOlBkFa7t8sZH/sUZVvknHSZdNZzEAw6ODolchVpW5DontBS34iGB5XD7YB8nsNi5sc/h4YAP3f8woRE8STacpymD4YRbowPStsGvoVOwqBL8/SGXl1ekF1ek11PaThDaQ8q6IFMO61ISqzGB7RF5AqcnuOmGdGXO0A1QpuUyyZgtn/JTP/ZJPvUdr3DjjfsMbh3z+PKUq8dfRBp4MZ2Trmp0V/LyyS16vQFnTx/h2zZvvPY6w71Dbt65t51CBQ79yQ2eXb7LowcPSeslV08e4bmCveGYvaMbHAwmXC+X3L91h/DmG3RVTEXA8e4+GhdnZ8himXJwcICwbV46OqbrBFenc07Pz/CHETIwKCkpiiV9bPYti5Ef4vpQmJTIirhz55iNB1VTMBkM8GKFkIYbByccvXQDXSv6o4jXXv4AskrJr0uePzyjjB0csb3c5aVmthbEpUZYPs9fTFFxwIMvfYO+3efp4xdYRUWgoNcfo6XGc/pUacmsq7Eqw3gY4eiS470DXpQFJva4vphSLisu0w3XqzXvrmZ0UYQlXG71e4RhjJYOX/4nX+TBF7+BNdnj/GrG1x5/laPehMHkhMvLJ3z9mw957c17oOFLj79MsBsTOT44Dp7v8KWvPqRcrsk3GSiL2lTc2zugf2OPLz5+ykuv3SNpak5u3GC5KCjaFrkTIJcJfuhTtjWjXY+shq9+6zn7fsR+OGR+esXt+zfYG+yRJBnrqxnassDz+Cef/xzr9RopW9ZpxnpxTVp3zFZLhv3Jv/QH1r/sr7TcrnK11iyvrhC6pdYty3SD6zjotqVIsy1KZqfH8nqDrht6fo/v+s7vQHcNu5MxRZPQpQVl1hD3e6yml/T3RqxmC2zLx7dtRFuRTlfYjuJqtqTOai5mS8qyRDcti8sL7h8esF6vEZZgGPfYzFI2y0sCxyMMQ7pa0OuNqIyhXK4Idga8uDrj9v37RG7ALKkQec2kN4DRELcFKSXhcATlhr2DXe4e3+QTn/j2rUWukYRBD99sVZ5KgEvNg7ff4aZ8m2a23E55lxvqpKSuaz76oTfo2pRaW3z1K+9QNRuevvuE4bCPZRuuL54iPItx75hO1yTrlPFwhG8rooMd2rrDWB6e5/Di4l2MsiibktePd6mbDtf1EV6fTZFgC7bIJW2wVU7aweliTu/4hHSd0zQNy7zEjlxUJxkHNjdf2aPNc4zu2B32aUzD1bymUlBVDXWaI1oLIQRFmYDto6uClalpbJukyfnsr/82Dx+d8YXf/13a2QWf/d//e7g65WQYcTm/QkUuqzJDuiElgtUmQSmLMO4ROjHSDvDcPsR96gYeXaY8f3bBo2895qt/+DUeffXLpLMXUGw42t/n6NYtdnZ2kJ4LnWTYG7K3d0AQBIRRH9eJMFJRVwVWmjMe7NEsLghcB9N1DOKAURgSBB6ubRG4gpqW3mSEXWfUeU6T5Yy8AJM3KNnxwTt3EVpD2yE7G6UU62Tz//eR/BO/irLGdxwcx6HcrBBVQ6lriqqg7/mIzmAZaHTLeH87iQzdgNgJuHnvLnlTMRmPUbKjyUt0rvHDgNVySm9vxHw6h8agtMa0DU1SI5RhnuSUeUuS1HStRhpNliy5N9khSxJs2yL2fZaLlNXyjDsn+xwdTHCDiP54h3VZkFyf4/YiXlxfMN47xLNtOmNja4GD2DLFgx6u7zPc3cfUOb2dISeHN7lx+5h1UdA0LUIbfAmOZeP7PpEtefLkCbfDBTSSomhJ0gpLS5q24/7LL1OVKcoOePbsHMfquLq8xra2HNY0mSN8SS+c0DYFTV4xiXtEjk0w6dO0DcryGQxiLtaXaAFCGO7uDWh1R+//ae9OeiTJz/uOf2NfM3LPytq6q6v3WTijoajh0DRFWYJtXQQb1sGAD4YPBnzy1dc5+QUIPhCCAdukYQKEKRleZNkmIRtjUZyVM9OzdE9Xd1d1rblnZOzbP3xI+soDL+pDft5DIJ544nl+T6OJ1eoSpSmmrmKbLqIsoYhZBCnjNMTp9SnCgiwvmUcFhq6ioKKJiq2DLqvxFBUFTZYQZU4QFqDr5GWJyCvqDAoERRajWTbkKcJQCCWJRCp4952fc/p8wueffEgyG/Oz//mfqEOfvuuQJRG6axEWOYGfsfAD4qqiKCpyUdKymhh2EyEkgrLGchwuFilHx8eMxlNOH59yeXJMHs7xpxPajkur06XZbIGm4GgWrW4XSVsnyaiGidfoUJQ1WZ6hiBJPd6kTH01V0DQJ0zCoyxrPsnANE6nK0V2ddrcHSUS6CijyHNe0mF6Nqaqc68MtyjynSDJEpVBW1Xrh61f4lR3WH33/j9/+2v4BX51doBoGozAmiiOqMMJre8wnY/Iip23aTEYTHn9wwuHtPY5GV5iYSEIQBEtiUiaxz1tvfIe6VihKCUexcU2LyrCYxRnb3R6YNbpikZc5N3oDpsspntdiejlB1WR6W9sMtrawHYeWbPPqwW2OPj+hZapESYE6ndJxHLaGXRb+hE5/i7v372M3NUpFpoPEYjlDbjfIwoLzR0fsbve4evYMr9ZIk4CGbhDFGfu3Dzkbj1mkGXVas932MAyLn/7Zn7Pf6JCtVmwN2yQiJI8WLLOKoWlhxRlXyoLHXz1hr31AEk1pttvMw5Bc12hmAlOy0WydPK0I6xw/jWlWJqk/oWdt0dvaploWOKZO293i4uqU2NQQaUZZCKLPn/LS4Q3yymR59AjZ6jBJJwhNZ6vZ4+MvH6HrMsPdHrJcIIc1s/mS6wdbbFsGvW4Pw+1wFfr4SUYaFczGM0JbxVZVXrp7QDaa0O42MXsek8WCColXmttESUJjq4Vnyey0m4RlhqIrHHg2nq6jiZra1Li+t8/d4TaN3Ta3O01mV2fYrS4/e3LJt1+9w/99+BUv3d7n/c8e0vNanI6P0U2Ho/CCYj5ezyS5Opf+kpdf+hpHX3zBEri5s0cR5IRRzMCy8ac+uqdy02vTdj2+PL9iLpW0dBNXG/Dk8orpasL9vW2UpsbE99m7vc+jSu5+1wAAEYJJREFUz76g0bFpNdskOQQIVpMlDVvG8brrj4lWn3Ay4caNPV6/dsjR8Sl/+I//2QvbrQH40//6k7fjIMBrtUjTFEXXqQRQ1Ti2xSoK2b9+jTiK0DQVy3awHIPlcsHxs6cY9nrWSDdM8jJG1iAJAnZ39lF0jSxNkWV1fYknK0hFRRSGNLptnp6d0HY9SiqCOKTlNvnq6CmKpjKfzajyks6wh2GZFKKiRqHIC4ReY6o6g50+clajiprp6Rir7WLYDqvAZ//OIbPT8/ViSsOiDGN29g44ffaUIs6Yz6agqOtIJwmQC9QK5vGKru2yM9zh2bxE12zKsgJZwnEcqqJgPBpjey10IdPoeBRZzutvfJ3z03PiJCUtJDzXQJYNsmhJrRvEfoChWYxPL7n32j38yxmarlIVglqWkCqFi8WU115/jXThE0UhN1o9lnFEWVaYpkmW5dQ1aLpMlebUKJRFSafZIgpWDPf3GS+nnF/M2L82gFpnvLzE0HQMRaOqBbVUI5kahiojaoFlmUhUyJqMqEr8WCDbLrGQOZvMMAudUb6i320iNTx+9t9/ypt3Dzj+6ANe+vqbtBoNyqDg+fEThjtDZtMphmavz0nbEu4v53kt3aCz1aZQKxZZhL8KyeOcqhJM5zMURcFrenitFkEcEqQRSg3Uv8yzVWQURVpfFBQFnmlw8f57lLKEYpiINF/PvSJwHQe1qklFxe/9/b9HWJY0u13mswlBHoMm8V/++D/yzp/+Bbe//RqrOCLPM0pRrRNIXn1xZ1h//Cf/+W0DEPJ6HrxEpihL6rzEdR38lU+316UuSqqypEgFrW6D8WzGdDRB1/X1SVpNIcojut0uWZzQaffRdH09uqPqFEKgSgqFJCiyAsO18VdLdEVF0mR836dhO0zmSyzbJo5jlBJ2d7bJ///FowpEnKCaMq5l43gWhqzTdFzi5Qq1YeEYJv5qSf9gF380ZTFe0Gi5xPMFg+6Q0cUZdVHhL5ZYjcY6MksIqCtsRSUuUnI/YLc35HKR4TguRZkjRIGiG2h1TTibg6ORBQntdo88i7lz7z5XVyOSsqQuwDVNFNUgTwIKRSEKQ2zZZH55xeGtmxRxgVJLSDWomkmWZEzigOvXr5MFEdF0zq3+kCAtSIMVuukQZTG1JOOYBov5ElmRUTUFz7HJghjHa5HVGZEfsr3bR5Ftxv4YZBm5lknTjFIB1dBoNx2qNMNxbRRdphAllahQhI5QdYSuswwDGpLFNA9pNV3sRoOjjx5wb7fP6NlT7r7yGsNWC6mWiBdTHMckTlKCDNq2ybKI6LebjJcLXNNGtWWEJjFKl4S+T5mtz8dPFjO8ZhMhBJrrIEsQJTGirDAkmbKoUHSFhqEjA5dxjKYprJ4cISnrI0lZHNFyXIQGsqLimCaL1Yrf/JvfopIVTLfBcrUkiCNUQ+Kjn77Pg7/8iOuv3SVYrdB1BdewmC8WvPXt7/56sVb/6nv/8u3PTh5jtTwuji8Y9vqIIGNRgVRIvH90RrjKEKjIVgfZFMyvYrpOA71KGGwNELbBfLrgoLfPKpowiX2UvGDY7iNJMoZmooiMOC/pdzvcuHVIOpozTXx+69bXCPOEoW7TdNs0bx2gJglfPvoc22iwSiJ6nQauZLLbbXPr1r31STjTwtUNTs8vePCLT6AuScZzIktj9/Auk8+/ZP/l++RVjKkYGKrGqiwYen00z6HdsJlOZpyePOfanUNG0ytEkTIJFwR6Ri1DmubIqsHO7j6OrjPxTzF1k+PTUxS9weG168TRAsuxsTWXVRQR+j6G7VJrFUUJ4XzBjUGTpJLw9vfZbbrUmsGXV8c8n865eeMWo9PndIa7NFMJRMlhfx+r10WYJr1mh4SKrF0SzgKCuEBkEr/7zd+kaagcP/O5/61vEj9/zqu/8QZy5bO9P+TBk0dcLubri1d5ht7vsN3pcGfnBhk5s8spD6YX/Pbf+G22etu8cXCfn3zwIRfBAqmWeOv115lPlpRFzc29PbLlglLWeDaekrUbhM+vsF2dTEq43d3hydU59166yasv3+RGz+OT9z/hO3/rd5mlPkqRcbFM+Lvf+h0+evCQXqhx7be+STAek+QFuZ9y99o1alfj7v4eUi6YLEb0DndxDY/Z1QhDazNTYj48OuFw2OFw94Bhq8s7X3xCc6tHuZywqBL2hwMuTi6YJxVFntJzW3z27JT9g11aoqaSaiRUwjCg0W6SrFY0O0PiKCYSAn804x/+03/+wr78AH704z97e7Zc4jUapFmOaaw7f9QquVxiKBquaxMEMZIu02v3iOIUVZF54+tvcHF1Tl7mxGMf09TJk5TOoMvleIGUJQhFpiwS6kpFSDmKrHDv9h2uJhNu7u0xuxrTabVRqhrLteh2Ozi2x3w+QXcMsihiOp5Q5QU3ru0z831ElCDUmixO2Wo0SKmQmhZ5khNGPlleMJ3PMChwdJ0kzHj59ZdIqpooiaklibQWDLeHSLKCYsjMr66wGjaqsU4sKCRlfW5UlRFSzXBvwHS+wOt1oRYIkaMISLL1/OXx8QmlrlIXgul0zr/4g9/h2fk5tTAIM59hq88yWUJWUqQppqngpz7NZo/UD2j1PVqWjr8KUGsdWSlRJJNYlIi6pBI1iqqgaypxXGC3XZzWFk5bZxWkFHVJsFjQNE1kWSdJI/yswEVFMjUUTUYpBZZpki2WYOjomkEQRMiyAbKGggKShKlpSLJEJmlEcc6ZH/P09JzPH19wOr3k5x8+RjJzuqpBy3P48ff+iNy/Irw8ZfrVl7z51svkjsJut49Uqzx+fERVZJimQ13WWFYDCoFsWNQqyIrJ2WjM5ckFV5dnLKZTVAF1JaiBfq8HUoll2ZRFRnRxzsff/xMKUjo3Dmlfv0GZVUhCsLO7Sx6niKqmr5k8/dkHXL37KY//z4ecv/sZ44++4tmDhyh2g6fJBd/5xlsIVaKmJs8yTE3j3kuvvLDP7A9++MO3zydjGp7HahXQcFxUSaYUMiUVUbpewEviHNlYjzoEqxRL07h184AwDikQhBOfptsgiUP0hsViHmACtSJTixIElHWOaZrcuXWb2WRKt91ELgSWbWEj4zgune0BlmZweXWOYZkkcUQax0hVzfXdnXWUVpwidGl9elWSmK2WYGtkQUxYJCi6xeTyAq9hoSlQZYKDm9eJKkEtaiRNoVZkHNchTTOctsN0dIVuaFSSQlGXlJK8/rBUVQzLpNdvM1lMaTRbxElMLUHDtH656FkwHc/IJCjTnDBM+AfffIXL2YwyA1nO8ewmmSIw+eUCWZ0yDZf0+9sE0zmtQZeWqhLFMZ7WQDVlZMWkVmXKuqJQBaKqkJBIk4q9/SFuo42QQTEdsiREVRRcTca0XabLGfM4oaGoCFVCtQxsWaXjNUmDgEIIkkpgmw6W6dJ0Wsz8gLQq0BWVTrNJXNTESUEiJM4vRxxfLHg+GfHFyQRRRrQMA8vW+Pgn/4vV/BK1jKlXc15/9ZB5GnL78CZFJbg8OydOU3a39lguAxrKek+kElBJAiqFNM1ZzBcUSUS49KmyDM00UBQVyzBQZAVMlbm/Qo5WjP7qYxRNIrdt2vt7lHFKKUp2d3YIFwFZKWhIKrPHJzz/+EsWT85YPTph8eSc0fE5QtWZiRX3btxCsUyqqiLNc6RS8OavW7D+8N/80dsDb4t7gy0qA17d3uV4NGW7NSATKXd2huweHjBJJvizKbrQsIcGV+dTVNVCSDrtTp/d4TamJhFFBZbi4NoOdsNhe7DF0ckRimLTsxvolcKnD97D6wwJi4q6LJFtnaBab6Q++/QRj5+d8urLL2M4Fq4iGIc+g50uhm7x2YcfkRQJXrvJs+MZUb7ilfuv0u/tMw4v2dYcLp9+RWNrj75sshxfIdkG127dJBldEZoqSlISFCVWs0nDdWmaLoohU2Yyt166SzhfsbN/nVQSBItTgtECYRms/JBVvEJ2NdqWxWi2pEYwuZjT67YwvQbL6RLdWK8KOCrElczID9hq99DlkNxu0XYs9pwW49NLep0Bi+SKG/0tZAqKEo6PTrGMCq2GIpxR6gq72Ji6tZ6fG0+IsgjLG9Dxmjgi4OHzBUpaEAgVW1goeU2d5fRrhabjsjgf83e+/Q0+efAF0WLF8P59kjDm7PEJ0WrCux+/y+3dA0xDZtuzCaoS2ZSwZZ3n8xGiWmfEdk2DHddia2ubzE8w0Li23cI1bf7bn7/H5XJFw7PpDw/56vEHvHLnZeZBwh/+/nd55xe/YGDptIe7zOZjrMrh5nBAWUpEaYSCTNt1OBqNiGYzZtMxkzTj2sE+D4/OaHkKRZFzfX/I0RcnfP78nFd2h6RFwBsvv8HD0Yy2arAcz7ixNaTfb2IWBqtViGUZlFFAngoqSTC4MeTos+d0el2KNKDp9VjlKXER8Y/+yYtdsP7bH/zo7e3tHfI0Z293lzRO6Ax76LaJSDP67RaXl1NazRZ729vMZ1OCIMLUVC4vLvE8j7qqsL0maSah6w7RIqTf8WgNB8SrFf3eFrquoskakiITByFZURKT40kWqzheB3JXGdPJeN3FrSU8x2MeRAhKDNOiEBXhfEll6Ch5RVkWrFYBw1aXeRQSXI3QkGhYHu1+B0043Hj1kOPjE+J0STT2sRoNoixmOByyPB+xmi8p04y2N6AoK4pUQkQZ43KKp7tkokKuQSoLynydQdsZDBhN5zRUnbPpFF2R6HZ77F8/YDaeMnQ8/vfJJYUk8/zinH6rRSUkarWg2R0QpTG228PQTYJggeU0yRLwpwv+9pv7HH1yiq7JlK7LnYM9FtMVbrNFp92kqASGprFzeMDo2RH+ckXfapCmCbrnEUQhhqNQlyqKSGm3BuRpRbPVRUemqnPklotSqyTJilart46wolgXlZpEkcZkIqflGBSJoMh8Bts7yEGB5nlUeUAsNN77xRHvf/IZVxdXjFPBg6fPmQcpgxsD/sP3/j2f/+XP+R//7l/z9be+wb3BFkkeU0oCt9lE1jTUosBEopBkrEaDhrVewLIdG8MyyRAsViuWqxVxGBMGEacnjzj/9CH3rh0SnpwiggT/fIRuaDimhZ9E67vlkozab1FSYuQVSAm6UiOUfN3ZvnyGligkx5ecvvMBZw++wlI1HMPk3hu/8cI+s9///g/e3h5sY0gK3X4HEwnFNnFdlzLL2Ol2SLISzdTwXIdoFVKInLqoWCx8bNtBVTRa7Q5VKSHJBkVY0Gk28PpdpKpC1TQ0XcdWTWRJZjq+pJZVorrERiMpCyRJAQquzs4pqpqe6+E6DZI0JS1T3IaLkGBydk6hyuiSTBgmrMIV17d2yYSEPx3hyCpSKWgNeli1Q3e7zWg6Q9YgHi+QHZs8TWk0mySrkDzJkKuahtOiKASG2aAIYjKtwFAN0jyiSkugXs+6xuu/OVEUI1c1s5WPyEu63S6DnR3m4zkd2+LT8QJkmavZHMMw0FQDSc2w2j1EVdB0u9SFoCoLJE1FQyf2A16/3ePos1MMXUKYJjtdj1WY0nI8mo0Gmm5AVdEcdFnN5uRZTkfXWKxCdNNklWaYuoZUKshVRsdpI1UymmKw3W2z8JfUhorlNEniEAUNUcUsVlMsTcXUZNS6JBE5rqVR5xJhNKfZ7lAnOZbrotcZte7w8NEZT46fk8UBYSXz3oPHTFcx3d0uf/UX7/HF++9y9O7PuX7rkG/cucnlbIyqSjTaHUoh0MqalmFQ1DKKoWPrOrUqUUnSusuapczDEAHMZj5VkTG+OiUZTWmbTcbPT3FriWA6o9vpUNQSeZGT5TmuYWH1m9SihjRHUUqUuqSiQNZk1GRJNsuolxHjBw/xzyYokoSmyrz53d/79VICNjY2NjY2NjY2Nv66/cqlq42NjY2NjY2NjY2/bpuCdWNjY2NjY2Nj44W2KVg3NjY2NjY2NjZeaJuCdWNjY2NjY2Nj44W2KVg3NjY2NjY2NjZeaJuCdWNjY2NjY2Nj44X2/wA17ReOT1Z03wAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#hide_input\n","#id mixup_example\n","#caption Mixing a church and a gas station\n","#alt An image of a church, a gas station and the two mixed up.\n","church = PILImage.create(get_image_files_sorted(path/'train'/'n03028079')[0])\n","gas = PILImage.create(get_image_files_sorted(path/'train'/'n03425413')[0])\n","church = church.resize((256,256))\n","gas = gas.resize((256,256))\n","tchurch = tensor(church).float() / 255.\n","tgas = tensor(gas).float() / 255.\n","\n","_,axs = plt.subplots(1, 3, figsize=(12,4))\n","show_image(tchurch, ax=axs[0]);\n","show_image(tgas, ax=axs[1]);\n","show_image((0.3*tchurch + 0.7*tgas), ax=axs[2]);"]},{"cell_type":"markdown","metadata":{"id":"JWspHrOq1vD8"},"source":["The third image is built by adding 0.3 times the first one and 0.7 times the second. In this example, should the model predict \"church\" or \"gas station\"? The right answer is 30% church and 70% gas station, since that's what we'll get if we take the linear combination of the one-hot-encoded targets. For instance, suppose we have 10 classes and \"church\" is represented by the index 2 and \"gas station\" is represented by the index 7, the one-hot-encoded representations are:\n","```\n","[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]\n","```\n","so our final target is:\n","```\n","[0, 0, 0.3, 0, 0, 0, 0, 0.7, 0, 0]\n","```"]},{"cell_type":"markdown","metadata":{"id":"R4dIIj9G1vD8"},"source":["This all done for us inside fastai by adding a *callback* to our `Learner`. `Callback`s are what is used inside fastai to inject custom behavior in the training loop (like a learning rate schedule, or training in mixed precision). We'll be learning all about callbacks, including how to make your own, in <>. For now, all you need to know is that you use the `cbs` parameter to `Learner` to pass callbacks.\n","\n","Here is how we train a model with Mixup:\n","\n","```python\n","model = xresnet50(n_out=dls.c)\n","learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(),\n"," metrics=accuracy, cbs=MixUp())\n","learn.fit_one_cycle(5, 3e-3)\n","```"]},{"cell_type":"markdown","metadata":{"id":"bxTIhhhf1vD9"},"source":["What happens when we train a model with data that's \"mixed up\" in this way? Clearly, it's going to be harder to train, because it's harder to see what's in each image. And the model has to predict two labels per image, rather than just one, as well as figuring out how much each one is weighted. Overfitting seems less likely to be a problem, however, because we're not showing the same image in each epoch, but are instead showing a random combination of two images.\n","\n","Mixup requires far more epochs to train to get better accuracy, compared to other augmentation approaches we've seen. You can try training Imagenette with and without Mixup by using the *examples/train_imagenette.py* script in the [fastai repo](https://github.com/fastai/fastai). At the time of writing, the leaderboard in the [Imagenette repo](https://github.com/fastai/imagenette/) is showing that Mixup is used for all leading results for trainings of >80 epochs, and for fewer epochs Mixup is not being used. This is in line with our experience of using Mixup too.\n","\n","One of the reasons that Mixup is so exciting is that it can be applied to types of data other than photos. In fact, some people have even shown good results by using Mixup on activations *inside* their models, not just on inputs—this allows Mixup to be used for NLP and other data types too.\n","\n","There's another subtle issue that Mixup deals with for us, which is that it's not actually possible with the models we've seen before for our loss to ever be perfect. The problem is that our labels are 1s and 0s, but the outputs of softmax and sigmoid can never equal 1 or 0. This means training our model pushes our activations ever closer to those values, such that the more epochs we do, the more extreme our activations become.\n","\n","With Mixup we no longer have that problem, because our labels will only be exactly 1 or 0 if we happen to \"mix\" with another image of the same class. The rest of the time our labels will be a linear combination, such as the 0.7 and 0.3 we got in the church and gas station example earlier.\n","\n","One issue with this, however, is that Mixup is \"accidentally\" making the labels bigger than 0, or smaller than 1. That is to say, we're not *explicitly* telling our model that we want to change the labels in this way. So, if we want to make the labels closer to, or further away from 0 and 1, we have to change the amount of Mixup—which also changes the amount of data augmentation, which might not be what we want. There is, however, a way to handle this more directly, which is to use *label smoothing*."]},{"cell_type":"markdown","metadata":{"id":"9n7CwVoe1vD9"},"source":["## Label Smoothing"]},{"cell_type":"markdown","metadata":{"id":"MDT8qdrb1vD9"},"source":["In the theoretical expression of loss, in classification problems, our targets are one-hot encoded (in practice we tend to avoid doing this to save memory, but what we compute is the same loss as if we had used one-hot encoding). That means the model is trained to return 0 for all categories but one, for which it is trained to return 1. Even 0.999 is not \"good enough\", the model will get gradients and learn to predict activations with even higher confidence. This encourages overfitting and gives you at inference time a model that is not going to give meaningful probabilities: it will always say 1 for the predicted category even if it's not too sure, just because it was trained this way.\n","\n","This can become very harmful if your data is not perfectly labeled. In the bear classifier we studied in <>, we saw that some of the images were mislabeled, or contained two different kinds of bears. In general, your data will never be perfect. Even if the labels were manually produced by humans, they could make mistakes, or have differences of opinions on images that are harder to label.\n","\n","Instead, we could replace all our 1s with a number a bit less than 1, and our 0s by a number a bit more than 0, and then train. This is called *label smoothing*. By encouraging your model to be less confident, label smoothing will make your training more robust, even if there is mislabeled data. The result will be a model that generalizes better.\n","\n","This is how label smoothing works in practice: we start with one-hot-encoded labels, then replace all 0s with $\\frac{\\epsilon}{N}$ (that's the Greek letter *epsilon*, which is what was used in the [paper that introduced label smoothing](https://arxiv.org/abs/1512.00567) and is used in the fastai code), where $N$ is the number of classes and $\\epsilon$ is a parameter (usually 0.1, which would mean we are 10% unsure of our labels). Since we want the labels to add up to 1, replace the 1 by $1-\\epsilon + \\frac{\\epsilon}{N}$. This way, we don't encourage the model to predict something overconfidently. In our Imagenette example where we have 10 classes, the targets become something like (here for a target that corresponds to the index 3):\n","```\n","[0.01, 0.01, 0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]\n","```\n","In practice, we don't want to one-hot encode the labels, and fortunately we won't need to (the one-hot encoding is just good to explain what label smoothing is and visualize it)."]},{"cell_type":"markdown","metadata":{"id":"pfqPrebL1vD9"},"source":["### Sidebar: Label Smoothing, the Paper"]},{"cell_type":"markdown","metadata":{"id":"tnKcZw3D1vD-"},"source":["Here is how the reasoning behind label smoothing was explained in the paper by Christian Szegedy et al.:\n","\n","> : This maximum is not achievable for finite $z_k$ but is approached if $z_y\\gg z_k$ for all $k\\neq y$—that is, if the logit corresponding to the ground-truth label is much great than all other logits. This, however, can cause two problems. First, it may result in over-fitting: if the model learns to assign full probability to the ground-truth label for each training example, it is not guaranteed to generalize. Second, it encourages the differences between the largest logit and all others to become large, and this, combined with the bounded gradient $\\frac{\\partial\\ell}{\\partial z_k}$, reduces the ability of the model to adapt. Intuitively, this happens because the model becomes too confident about its predictions."]},{"cell_type":"markdown","metadata":{"id":"Ja2_mb261vD-"},"source":["Let's practice our paper-reading skills to try to interpret this. \"This maximum\" is refering to the previous part of the paragraph, which talked about the fact that 1 is the value of the label for the positive class. So it's not possible for any value (except infinity) to result in 1 after sigmoid or softmax. In a paper, you won't normally see \"any value\" written; instead it will get a symbol, which in this case is $z_k$. This shorthand is helpful in a paper, because it can be referred to again later and the reader will know what value is being discussed.\n","\n","Then it says \"if $z_y\\gg z_k$ for all $k\\neq y$.\" In this case, the paper immediately follows the math with an English description, which is handy because you can just read that. In the math, the $y$ is refering to the target ($y$ is defined earlier in the paper; sometimes it's hard to find where symbols are defined, but nearly all papers will define all their symbols somewhere), and $z_y$ is the activation corresponding to the target. So to get close to 1, this activation needs to be much higher than all the others for that prediction.\n","\n","Next, consider the statement \"if the model learns to assign full probability to the ground-truth label for each training example, it is not guaranteed to generalize.\" This is saying that making $z_y$ really big means we'll need large weights and large activations throughout our model. Large weights lead to \"bumpy\" functions, where a small change in input results in a big change to predictions. This is really bad for generalization, because it means just one pixel changing a bit could change our prediction entirely!\n","\n","Finally, we have \"it encourages the differences between the largest logit and all others to become large, and this, combined with the bounded gradient $\\frac{\\partial\\ell}{\\partial z_k}$, reduces the ability of the model to adapt.\" The gradient of cross-entropy, remember, is basically `output - target`. Both `output` and `target` are between 0 and 1, so the difference is between `-1` and `1`, which is why the paper says the gradient is \"bounded\" (it can't be infinite). Therefore our SGD steps are bounded too. \"Reduces the ability of the model to adapt\" means that it is hard for it to be updated in a transfer learning setting. This follows because the difference in loss due to incorrect predictions is unbounded, but we can only take a limited step each time."]},{"cell_type":"markdown","metadata":{"id":"P1nO_ZXM1vD-"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"pcrItu_w1vD_"},"source":["To use this in practice, we just have to change the loss function in our call to `Learner`:\n","\n","```python\n","model = xresnet50(n_out=dls.c)\n","learn = Learner(dls, model, loss_func=LabelSmoothingCrossEntropy(),\n"," metrics=accuracy)\n","learn.fit_one_cycle(5, 3e-3)\n","```\n","\n","Like with Mixup, you won't generally see significant improvements from label smoothing until you train more epochs. Try it yourself and see: how many epochs do you have to train before label smoothing shows an improvement?"]},{"cell_type":"markdown","metadata":{"id":"o2OeD0VL1vD_"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"37b_M_Bl1vD_"},"source":["You have now seen everything you need to train a state-of-the-art model in computer vision, whether from scratch or using transfer learning. Now all you have to do is experiment on your own problems! See if training longer with Mixup and/or label smoothing avoids overfitting and gives you better results. Try progressive resizing, and test time augmentation.\n","\n","Most importantly, remember that if your dataset is big, there is no point prototyping on the whole thing. Find a small subset that is representative of the whole, like we did with Imagenette, and experiment on it.\n","\n","In the next three chapters, we will look at the other applications directly supported by fastai: collaborative filtering, tabular modeling and working with text. We will go back to computer vision in the next section of the book, with a deep dive into convolutional neural networks in <>."]},{"cell_type":"markdown","metadata":{"id":"kmv8WVhu1vEA"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"qf2MZFWJ1vEA"},"source":["1. What is the difference between ImageNet and Imagenette? When is it better to experiment on one versus the other?\n","1. What is normalization?\n","1. Why didn't we have to care about normalization when using a pretrained model?\n","1. What is progressive resizing?\n","1. Implement progressive resizing in your own project. Did it help?\n","1. What is test time augmentation? How do you use it in fastai?\n","1. Is using TTA at inference slower or faster than regular inference? Why?\n","1. What is Mixup? How do you use it in fastai?\n","1. Why does Mixup prevent the model from being too confident?\n","1. Why does training with Mixup for five epochs end up worse than training without Mixup?\n","1. What is the idea behind label smoothing?\n","1. What problems in your data can label smoothing help with?\n","1. When using label smoothing with five categories, what is the target associated with the index 1?\n","1. What is the first step to take when you want to prototype quick experiments on a new dataset?"]},{"cell_type":"markdown","metadata":{"id":"NsdsChsm1vEA"},"source":["### Further Research\n","\n","1. Use the fastai documentation to build a function that crops an image to a square in each of the four corners, then implement a TTA method that averages the predictions on a center crop and those four crops. Did it help? Is it better than the TTA method of fastai?\n","1. Find the Mixup paper on arXiv and read it. Pick one or two more recent articles introducing variants of Mixup and read them, then try to implement them on your problem.\n","1. Find the script training Imagenette using Mixup and use it as an example to build a script for a long training on your own project. Execute it and see if it helps.\n","1. Read the sidebar \"Label Smoothing, the Paper\", look at the relevant section of the original paper and see if you can follow it. Don't be afraid to ask for help!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MfuEhDDs1vEB"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/07_sizing_and_tta.ipynb","timestamp":1712447751342}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/08_collab.ipynb b/notebooks/oleg/Education/fastai/08_collab.ipynb new file mode 100644 index 0000000..4697db0 --- /dev/null +++ b/notebooks/oleg/Education/fastai/08_collab.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"WsWTSBOj1yhm"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lfhW90qk1yhr"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"0j96vqdr1yhs"},"source":["[[chapter_collab]]"]},{"cell_type":"markdown","metadata":{"id":"vUmE4TfV1yht"},"source":["# Collaborative Filtering Deep Dive"]},{"cell_type":"markdown","metadata":{"id":"yQh5VqRx1yhv"},"source":["One very common problem to solve is when you have a number of users and a number of products, and you want to recommend which products are most likely to be useful for which users. There are many variations of this: for example, recommending movies (such as on Netflix), figuring out what to highlight for a user on a home page, deciding what stories to show in a social media feed, and so forth. There is a general solution to this problem, called *collaborative filtering*, which works like this: look at what products the current user has used or liked, find other users that have used or liked similar products, and then recommend other products that those users have used or liked.\n","\n","For example, on Netflix you may have watched lots of movies that are science fiction, full of action, and were made in the 1970s. Netflix may not know these particular properties of the films you have watched, but it will be able to see that other people that have watched the same movies that you watched also tended to watch other movies that are science fiction, full of action, and were made in the 1970s. In other words, to use this approach we don't necessarily need to know anything about the movies, except who like to watch them.\n","\n","There is actually a more general class of problems that this approach can solve, not necessarily involving users and products. Indeed, for collaborative filtering we more commonly refer to *items*, rather than *products*. Items could be links that people click on, diagnoses that are selected for patients, and so forth.\n","\n","The key foundational idea is that of *latent factors*. In the Netflix example, we started with the assumption that you like old, action-packed sci-fi movies. But you never actually told Netflix that you like these kinds of movies. And Netflix never actually needed to add columns to its movies table saying which movies are of these types. Still, there must be some underlying concept of sci-fi, action, and movie age, and these concepts must be relevant for at least some people's movie watching decisions."]},{"cell_type":"markdown","metadata":{"id":"KRkadSZ81yhw"},"source":["For this chapter we are going to work on this movie recommendation problem. We'll start by getting some data suitable for a collaborative filtering model."]},{"cell_type":"markdown","metadata":{"id":"QlXlDmL51yhx"},"source":["## A First Look at the Data"]},{"cell_type":"markdown","metadata":{"id":"UjeSgebM1yhy"},"source":["We do not have access to Netflix's entire dataset of movie watching history, but there is a great dataset that we can use, called [MovieLens](https://grouplens.org/datasets/movielens/). This dataset contains tens of millions of movie rankings (a combination of a movie ID, a user ID, and a numeric rating), although we will just use a subset of 100,000 of them for our example. If you're interested, it would be a great learning project to try and replicate this approach on the full 25-million recommendation dataset, which you can get from their website."]},{"cell_type":"markdown","metadata":{"id":"vPSD1ygu1yhy"},"source":["The dataset is available through the usual fastai function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cgvY1wqL1yhz"},"outputs":[],"source":["from fastai.collab import *\n","from fastai.tabular.all import *\n","path = untar_data(URLs.ML_100k)"]},{"cell_type":"markdown","metadata":{"id":"Dt_FgJ0p1yh0"},"source":["According to the *README*, the main table is in the file *u.data*. It is tab-separated and the columns are, respectively user, movie, rating, and timestamp. Since those names are not encoded, we need to indicate them when reading the file with Pandas. Here is a way to open this table and take a look:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3Rfo2ZCl1yh0","outputId":"cd951104-38fa-4409-cb93-9daa09f89d65"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
usermovieratingtimestamp
01962423881250949
11863023891717742
2223771878887116
3244512880606923
41663461886397596
\n","
"],"text/plain":[" user movie rating timestamp\n","0 196 242 3 881250949\n","1 186 302 3 891717742\n","2 22 377 1 878887116\n","3 244 51 2 880606923\n","4 166 346 1 886397596"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["ratings = pd.read_csv(path/'u.data', delimiter='\\t', header=None,\n"," names=['user','movie','rating','timestamp'])\n","ratings.head()"]},{"cell_type":"markdown","metadata":{"id":"-0Sk4pbn1yh2"},"source":["Although this has all the information we need, it is not a particularly helpful way for humans to look at this data. <> shows the same data cross-tabulated into a human-friendly table."]},{"cell_type":"markdown","metadata":{"id":"4V42iROV1yh2"},"source":["\"Crosstab"]},{"cell_type":"markdown","metadata":{"id":"T5j7AECP1yh2"},"source":["We have selected just a few of the most popular movies, and users who watch the most movies, for this crosstab example. The empty cells in this table are the things that we would like our model to learn to fill in. Those are the places where a user has not reviewed the movie yet, presumably because they have not watched it. For each user, we would like to figure out which of those movies they might be most likely to enjoy.\n","\n","If we knew for each user to what degree they liked each important category that a movie might fall into, such as genre, age, preferred directors and actors, and so forth, and we knew the same information about each movie, then a simple way to fill in this table would be to multiply this information together for each movie and use a combination. For instance, assuming these factors range between -1 and +1, with positive numbers indicating stronger matches and negative numbers weaker ones, and the categories are science-fiction, action, and old movies, then we could represent the movie *The Last Skywalker* as:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9JEoEUxd1yh2"},"outputs":[],"source":["last_skywalker = np.array([0.98,0.9,-0.9])"]},{"cell_type":"markdown","metadata":{"id":"LprU0FNW1yh3"},"source":["Here, for instance, we are scoring *very science-fiction* as 0.98, *very action* as 0.9, and *very not old* as -0.9. We could represent a user who likes modern sci-fi action movies as:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KVF04X2D1yh3"},"outputs":[],"source":["user1 = np.array([0.9,0.8,-0.6])"]},{"cell_type":"markdown","metadata":{"id":"0rSKDPJ61yh3"},"source":["and we can now calculate the match between this combination:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZB9CQEBk1yh3","outputId":"9e862611-c1a9-4881-c0b6-e9d317247e62"},"outputs":[{"data":{"text/plain":["2.1420000000000003"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(user1*last_skywalker).sum()"]},{"cell_type":"markdown","metadata":{"id":"ADG9dp6b1yh4"},"source":["When we multiply two vectors together and add up the results, this is known as the *dot product*. It is used a lot in machine learning, and forms the basis of matrix multiplication. We will be looking a lot more at matrix multiplication and dot products in <>."]},{"cell_type":"markdown","metadata":{"id":"bmqXx0up1yh4"},"source":["> jargon: dot product: The mathematical operation of multiplying the elements of two vectors together, and then summing up the result."]},{"cell_type":"markdown","metadata":{"id":"zTwdk2071yh4"},"source":["On the other hand, we might represent the movie *Casablanca* as:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jkDUXgq01yh4"},"outputs":[],"source":["casablanca = np.array([-0.99,-0.3,0.8])"]},{"cell_type":"markdown","metadata":{"id":"hNWDP0bN1yh5"},"source":["The match between this combination is:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8rJxu8W41yh5","outputId":"4b2ed384-8074-482c-a4ae-077f355e08d6"},"outputs":[{"data":{"text/plain":["-1.611"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(user1*casablanca).sum()"]},{"cell_type":"markdown","metadata":{"id":"nPoB32sS1yh6"},"source":["Since we don't know what the latent factors actually are, and we don't know how to score them for each user and movie, we should learn them."]},{"cell_type":"markdown","metadata":{"id":"efccIeUx1yh6"},"source":["## Learning the Latent Factors"]},{"cell_type":"markdown","metadata":{"id":"K1fXrcX31yh6"},"source":["There is surprisingly little difference between specifying the structure of a model, as we did in the last section, and learning one, since we can just use our general gradient descent approach.\n","\n","Step 1 of this approach is to randomly initialize some parameters. These parameters will be a set of latent factors for each user and movie. We will have to decide how many to use. We will discuss how to select this shortly, but for illustrative purposes let's use 5 for now. Because each user will have a set of these factors and each movie will have a set of these factors, we can show these randomly initialized values right next to the users and movies in our crosstab, and we can then fill in the dot products for each of these combinations in the middle. For example, <> shows what it looks like in Microsoft Excel, with the top-left cell formula displayed as an example."]},{"cell_type":"markdown","metadata":{"id":"TVvpJgzj1yh7"},"source":["\"Latent"]},{"cell_type":"markdown","metadata":{"id":"T_WWE6y81yh7"},"source":["Step 2 of this approach is to calculate our predictions. As we've discussed, we can do this by simply taking the dot product of each movie with each user. If, for instance, the first latent user factor represents how much the user likes action movies and the first latent movie factor represents if the movie has a lot of action or not, the product of those will be particularly high if either the user likes action movies and the movie has a lot of action in it or the user doesn't like action movies and the movie doesn't have any action in it. On the other hand, if we have a mismatch (a user loves action movies but the movie isn't an action film, or the user doesn't like action movies and it is one), the product will be very low.\n","\n","Step 3 is to calculate our loss. We can use any loss function that we wish; let's pick mean squared error for now, since that is one reasonable way to represent the accuracy of a prediction.\n","\n","That's all we need. With this in place, we can optimize our parameters (that is, the latent factors) using stochastic gradient descent, such as to minimize the loss. At each step, the stochastic gradient descent optimizer will calculate the match between each movie and each user using the dot product, and will compare it to the actual rating that each user gave to each movie. It will then calculate the derivative of this value and will step the weights by multiplying this by the learning rate. After doing this lots of times, the loss will get better and better, and the recommendations will also get better and better."]},{"cell_type":"markdown","metadata":{"id":"WZ3_kQX11yh7"},"source":["To use the usual `Learner.fit` function we will need to get our data into a `DataLoaders`, so let's focus on that now."]},{"cell_type":"markdown","metadata":{"id":"zrCoRJ351yh7"},"source":["## Creating the DataLoaders"]},{"cell_type":"markdown","metadata":{"id":"fPndvrqO1yh8"},"source":["When showing the data, we would rather see movie titles than their IDs. The table `u.item` contains the correspondence of IDs to titles:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"K2cayi2_1yh8","outputId":"b41b0a7c-1e59-4878-8e48-14ca4f608c4b"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
movietitle
01Toy Story (1995)
12GoldenEye (1995)
23Four Rooms (1995)
34Get Shorty (1995)
45Copycat (1995)
\n","
"],"text/plain":[" movie title\n","0 1 Toy Story (1995)\n","1 2 GoldenEye (1995)\n","2 3 Four Rooms (1995)\n","3 4 Get Shorty (1995)\n","4 5 Copycat (1995)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["movies = pd.read_csv(path/'u.item', delimiter='|', encoding='latin-1',\n"," usecols=(0,1), names=('movie','title'), header=None)\n","movies.head()"]},{"cell_type":"markdown","metadata":{"id":"jZ6ZL5j11yh8"},"source":["We can merge this with our `ratings` table to get the user ratings by title:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Kn9F32YP1yh9","outputId":"7763b0aa-547f-4dd2-f596-2092d3ab4b84"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
usermovieratingtimestamptitle
01962423881250949Kolya (1996)
1632423875747190Kolya (1996)
22262425883888671Kolya (1996)
31542423879138235Kolya (1996)
43062425876503793Kolya (1996)
\n","
"],"text/plain":[" user movie rating timestamp title\n","0 196 242 3 881250949 Kolya (1996)\n","1 63 242 3 875747190 Kolya (1996)\n","2 226 242 5 883888671 Kolya (1996)\n","3 154 242 3 879138235 Kolya (1996)\n","4 306 242 5 876503793 Kolya (1996)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["ratings = ratings.merge(movies)\n","ratings.head()"]},{"cell_type":"markdown","metadata":{"id":"1qT24RQW1yh9"},"source":["We can then build a `DataLoaders` object from this table. By default, it takes the first column for the user, the second column for the item (here our movies), and the third column for the ratings. We need to change the value of `item_name` in our case to use the titles instead of the IDs:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"sWqJs8GA1yh9","outputId":"835ee840-ab0b-42fd-83ea-6d633e3c5da6"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
usertitlerating
0542My Left Foot (1989)4
1422Event Horizon (1997)3
2311African Queen, The (1951)4
3595Face/Off (1997)4
4617Evil Dead II (1987)1
5158Jurassic Park (1993)5
6836Chasing Amy (1997)3
7474Emma (1996)3
8466Jackie Chan's First Strike (1996)3
9554Scream (1996)3
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["dls = CollabDataLoaders.from_df(ratings, item_name='title', bs=64)\n","dls.show_batch()"]},{"cell_type":"markdown","metadata":{"id":"JDfxBxIq1yiD"},"source":["To represent collaborative filtering in PyTorch we can't just use the crosstab representation directly, especially if we want it to fit into our deep learning framework. We can represent our movie and user latent factor tables as simple matrices:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qFZTKgPe1yiE","outputId":"175255d8-ac0c-4993-9d1e-91a0e9f2462d"},"outputs":[{"data":{"text/plain":["{'user': (#944) ['#na#',1,2,3,4,5,6,7,8,9...],\n"," 'title': (#1635) ['#na#',\"'Til There Was You (1997)\",'1-900 (1994)','101 Dalmatians (1996)','12 Angry Men (1957)','187 (1997)','2 Days in the Valley (1996)','20,000 Leagues Under the Sea (1954)','2001: A Space Odyssey (1968)','3 Ninjas: High Noon At Mega Mountain (1998)'...]}"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dls.classes"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"toFqcMrQ1yiE"},"outputs":[],"source":["n_users = len(dls.classes['user'])\n","n_movies = len(dls.classes['title'])\n","n_factors = 5\n","\n","user_factors = torch.randn(n_users, n_factors)\n","movie_factors = torch.randn(n_movies, n_factors)"]},{"cell_type":"markdown","metadata":{"id":"zJF-oWOz1yiE"},"source":["To calculate the result for a particular movie and user combination, we have to look up the index of the movie in our movie latent factor matrix and the index of the user in our user latent factor matrix; then we can do our dot product between the two latent factor vectors. But *look up in an index* is not an operation our deep learning models know how to do. They know how to do matrix products, and activation functions.\n","\n","Fortunately, it turns out that we can represent *look up in an index* as a matrix product. The trick is to replace our indices with one-hot-encoded vectors. Here is an example of what happens if we multiply a vector by a one-hot-encoded vector representing the index 3:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"O9vDDtDo1yiF"},"outputs":[],"source":["one_hot_3 = one_hot(3, n_users).float()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"f4r4daz-1yiF","outputId":"50ebb507-c394-4c0f-9b82-a6747f9ee4eb"},"outputs":[{"data":{"text/plain":["tensor([-0.4586, -0.9915, -0.4052, -0.3621, -0.5908])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["user_factors.t() @ one_hot_3"]},{"cell_type":"markdown","metadata":{"id":"j5UVhTzV1yiF"},"source":["It gives us the same vector as the one at index 3 in the matrix:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fAAAcUTC1yiF","outputId":"11ce064f-eaee-4195-dd9a-aebaa571f499"},"outputs":[{"data":{"text/plain":["tensor([-0.4586, -0.9915, -0.4052, -0.3621, -0.5908])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["user_factors[3]"]},{"cell_type":"markdown","metadata":{"id":"u6NTVukw1yiG"},"source":["If we do that for a few indices at once, we will have a matrix of one-hot-encoded vectors, and that operation will be a matrix multiplication! This would be a perfectly acceptable way to build models using this kind of architecture, except that it would use a lot more memory and time than necessary. We know that there is no real underlying reason to store the one-hot-encoded vector, or to search through it to find the occurrence of the number one—we should just be able to index into an array directly with an integer. Therefore, most deep learning libraries, including PyTorch, include a special layer that does just this; it indexes into a vector using an integer, but has its derivative calculated in such a way that it is identical to what it would have been if it had done a matrix multiplication with a one-hot-encoded vector. This is called an *embedding*."]},{"cell_type":"markdown","metadata":{"id":"IqhFqhly1yiG"},"source":["> jargon: Embedding: Multiplying by a one-hot-encoded matrix, using the computational shortcut that it can be implemented by simply indexing directly. This is quite a fancy word for a very simple concept. The thing that you multiply the one-hot-encoded matrix by (or, using the computational shortcut, index into directly) is called the _embedding matrix_."]},{"cell_type":"markdown","metadata":{"id":"TXdgBvda1yiH"},"source":["In computer vision, we have a very easy way to get all the information of a pixel through its RGB values: each pixel in a colored image is represented by three numbers. Those three numbers give us the redness, the greenness and the blueness, which is enough to get our model to work afterward.\n","\n","For the problem at hand, we don't have the same easy way to characterize a user or a movie. There are probably relations with genres: if a given user likes romance, they are likely to give higher scores to romance movies. Other factors might be whether the movie is more action-oriented versus heavy on dialogue, or the presence of a specific actor that a user might particularly like.\n","\n","How do we determine numbers to characterize those? The answer is, we don't. We will let our model *learn* them. By analyzing the existing relations between users and movies, our model can figure out itself the features that seem important or not.\n","\n","This is what embeddings are. We will attribute to each of our users and each of our movies a random vector of a certain length (here, `n_factors=5`), and we will make those learnable parameters. That means that at each step, when we compute the loss by comparing our predictions to our targets, we will compute the gradients of the loss with respect to those embedding vectors and update them with the rules of SGD (or another optimizer).\n","\n","At the beginning, those numbers don't mean anything since we have chosen them randomly, but by the end of training, they will. By learning on existing data about the relations between users and movies, without having any other information, we will see that they still get some important features, and can isolate blockbusters from independent cinema, action movies from romance, and so on.\n","\n","We are now in a position that we can create our whole model from scratch."]},{"cell_type":"markdown","metadata":{"id":"k9WPC5Fk1yiH"},"source":["## Collaborative Filtering from Scratch"]},{"cell_type":"markdown","metadata":{"id":"SBP57gAq1yiH"},"source":["Before we can write a model in PyTorch, we first need to learn the basics of object-oriented programming and Python. If you haven't done any object-oriented programming before, we will give you a quick introduction here, but we would recommend looking up a tutorial and getting some practice before moving on.\n","\n","The key idea in object-oriented programming is the *class*. We have been using classes throughout this book, such as `DataLoader`, `string`, and `Learner`. Python also makes it easy for us to create new classes. Here is an example of a simple class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lGDyX9Cu1yiI"},"outputs":[],"source":["class Example:\n"," def __init__(self, a): self.a = a\n"," def say(self,x): return f'Hello {self.a}, {x}.'"]},{"cell_type":"markdown","metadata":{"id":"J6GM98KD1yiI"},"source":["The most important piece of this is the special method called `__init__` (pronounced *dunder init*). In Python, any method surrounded in double underscores like this is considered special. It indicates that there is some extra behavior associated with this method name. In the case of `__init__`, this is the method Python will call when your new object is created. So, this is where you can set up any state that needs to be initialized upon object creation. Any parameters included when the user constructs an instance of your class will be passed to the `__init__` method as parameters. Note that the first parameter to any method defined inside a class is `self`, so you can use this to set and get any attributes that you will need:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YY6OK8cl1yiI","outputId":"547e28e3-ba71-4566-eccd-b882c792d6f9"},"outputs":[{"data":{"text/plain":["'Hello Sylvain, nice to meet you.'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["ex = Example('Sylvain')\n","ex.say('nice to meet you')"]},{"cell_type":"markdown","metadata":{"id":"Rh-F1AvN1yiJ"},"source":["Also note that creating a new PyTorch module requires inheriting from `Module`. *Inheritance* is an important object-oriented concept that we will not discuss in detail here—in short, it means that we can add additional behavior to an existing class. PyTorch already provides a `Module` class, which provides some basic foundations that we want to build on. So, we add the name of this *superclass* after the name of the class that we are defining, as shown in the following example.\n","\n","The final thing that you need to know to create a new PyTorch module is that when your module is called, PyTorch will call a method in your class called `forward`, and will pass along to that any parameters that are included in the call. Here is the class defining our dot product model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"N2GlH0BS1yiJ"},"outputs":[],"source":["class DotProduct(Module):\n"," def __init__(self, n_users, n_movies, n_factors):\n"," self.user_factors = Embedding(n_users, n_factors)\n"," self.movie_factors = Embedding(n_movies, n_factors)\n","\n"," def forward(self, x):\n"," users = self.user_factors(x[:,0])\n"," movies = self.movie_factors(x[:,1])\n"," return (users * movies).sum(dim=1)"]},{"cell_type":"markdown","metadata":{"id":"qPDy9FeY1yiJ"},"source":["If you haven't seen object-oriented programming before, then don't worry, you won't need to use it much in this book. We are just mentioning this approach here, because most online tutorials and documentation will use the object-oriented syntax.\n","\n","Note that the input of the model is a tensor of shape `batch_size x 2`, where the first column (`x[:, 0]`) contains the user IDs and the second column (`x[:, 1]`) contains the movie IDs. As explained before, we use the *embedding* layers to represent our matrices of user and movie latent factors:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cK0tRlul1yiK","outputId":"6eacc4b8-961f-4eb0-fe5f-105d04936026"},"outputs":[{"data":{"text/plain":["torch.Size([64, 2])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = dls.one_batch()\n","x.shape"]},{"cell_type":"markdown","metadata":{"id":"c4mErkqe1yiK"},"source":["Now that we have defined our architecture, and created our parameter matrices, we need to create a `Learner` to optimize our model. In the past we have used special functions, such as `vision_learner`, which set up everything for us for a particular application. Since we are doing things from scratch here, we will use the plain `Learner` class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cc2QbRQ61yiK"},"outputs":[],"source":["model = DotProduct(n_users, n_movies, 50)\n","learn = Learner(dls, model, loss_func=MSELossFlat())"]},{"cell_type":"markdown","metadata":{"id":"Psn487Ls1yiK"},"source":["We are now ready to fit our model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"O9YQM5c61yiL","outputId":"e4922970-9e28-4d2b-abe0-5ab9704e43a0"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9931680.99016800:12
10.8848210.91126900:12
20.6718650.87567900:12
30.4717270.87820000:11
40.3613140.88420900:12
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(5, 5e-3)"]},{"cell_type":"markdown","metadata":{"id":"AZ29BOd61yiL"},"source":["The first thing we can do to make this model a little bit better is to force those predictions to be between 0 and 5. For this, we just need to use `sigmoid_range`, like in <>. One thing we discovered empirically is that it's better to have the range go a little bit over 5, so we use `(0, 5.5)`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"r_B3jpo81yiL"},"outputs":[],"source":["class DotProduct(Module):\n"," def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):\n"," self.user_factors = Embedding(n_users, n_factors)\n"," self.movie_factors = Embedding(n_movies, n_factors)\n"," self.y_range = y_range\n","\n"," def forward(self, x):\n"," users = self.user_factors(x[:,0])\n"," movies = self.movie_factors(x[:,1])\n"," return sigmoid_range((users * movies).sum(dim=1), *self.y_range)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"L2JuP-vT1yiM","outputId":"3634c7b8-03dd-4d6c-ba9d-eec2d9dfbbe5"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9737450.99320600:12
10.8691320.91432300:12
20.6765530.87019200:12
30.4853770.87386500:12
40.3778660.87761000:11
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["model = DotProduct(n_users, n_movies, 50)\n","learn = Learner(dls, model, loss_func=MSELossFlat())\n","learn.fit_one_cycle(5, 5e-3)"]},{"cell_type":"markdown","metadata":{"id":"X61Wdkha1yiM"},"source":["This is a reasonable start, but we can do better. One obvious missing piece is that some users are just more positive or negative in their recommendations than others, and some movies are just plain better or worse than others. But in our dot product representation we do not have any way to encode either of these things. If all you can say about a movie is, for instance, that it is very sci-fi, very action-oriented, and very not old, then you don't really have any way to say whether most people like it.\n","\n","That's because at this point we only have weights; we do not have biases. If we have a single number for each user that we can add to our scores, and ditto for each movie, that will handle this missing piece very nicely. So first of all, let's adjust our model architecture:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4IV0CTWA1yiM"},"outputs":[],"source":["class DotProductBias(Module):\n"," def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):\n"," self.user_factors = Embedding(n_users, n_factors)\n"," self.user_bias = Embedding(n_users, 1)\n"," self.movie_factors = Embedding(n_movies, n_factors)\n"," self.movie_bias = Embedding(n_movies, 1)\n"," self.y_range = y_range\n","\n"," def forward(self, x):\n"," users = self.user_factors(x[:,0])\n"," movies = self.movie_factors(x[:,1])\n"," res = (users * movies).sum(dim=1, keepdim=True)\n"," res += self.user_bias(x[:,0]) + self.movie_bias(x[:,1])\n"," return sigmoid_range(res, *self.y_range)"]},{"cell_type":"markdown","metadata":{"id":"yr00PbNq1yiN"},"source":["Let's try training this and see how it goes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YONQmi1P1yiN","outputId":"17804860-0413-4bc9-95a2-672439b75645"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9291610.93630300:13
10.8204440.86130600:13
20.6216120.86530600:14
30.4046480.88644800:13
40.2929480.89258000:13
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["model = DotProductBias(n_users, n_movies, 50)\n","learn = Learner(dls, model, loss_func=MSELossFlat())\n","learn.fit_one_cycle(5, 5e-3)"]},{"cell_type":"markdown","metadata":{"id":"H1svI63Q1yiN"},"source":["Instead of being better, it ends up being worse (at least at the end of training). Why is that? If we look at both trainings carefully, we can see the validation loss stopped improving in the middle and started to get worse. As we've seen, this is a clear indication of overfitting. In this case, there is no way to use data augmentation, so we will have to use another regularization technique. One approach that can be helpful is *weight decay*."]},{"cell_type":"markdown","metadata":{"id":"JUHrbn8I1yiO"},"source":["### Weight Decay"]},{"cell_type":"markdown","metadata":{"id":"A7aSRr_j1yiO"},"source":["Weight decay, or *L2 regularization*, consists in adding to your loss function the sum of all the weights squared. Why do that? Because when we compute the gradients, it will add a contribution to them that will encourage the weights to be as small as possible.\n","\n","Why would it prevent overfitting? The idea is that the larger the coefficients are, the sharper canyons we will have in the loss function. If we take the basic example of a parabola, `y = a * (x**2)`, the larger `a` is, the more *narrow* the parabola is (<>)."]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"_nML-B4U1yiO","outputId":"135ec9de-e366-4116-b6b2-325fb5d73c50"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAdsAAAFtCAYAAABP6cBcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9d5Qd53mn+Xw3d8453c6NQAAkAnMCs0SlUSQlWcGybI8kh7U9Y+9Zz3hm5bX3jPfIchjLiqRF5ZwoRjGDJAiQSA2gc84531z7R3U1SBEgGuiq+qrq1nMODo4Ooe97u/t2/erNQlEUXFxcXFxcXIzDI9sAFxcXFxcXp+OKrYuLi4uLi8G4Yuvi4uLi4mIwrti6uLi4uLgYjCu2Li4uLi4uBuOKrYuLi4uLi8G4Yuvi4uLi4mIwmxJbIcTTQoiIEGJ5/U+H0Ya5uLi4uLg4hUvxbD+rKEr2+p9WwyxycXFxcXFxGG4Y2cXFxcXFxWAuRWz/TggxLYR4QQhxi1EGubi4uLi4OA2xmdnIQoirgdNADPgQ8C/AHkVRen7r330a+DRAVlbW3ra2Nt0NtjzjJyGUB/m1si0xlJSS4szsGcoyyyjOKDbt3uT8PPHhEYItzYhAwLR7N8vC5BqpVIqC8izZpkhhfmIVgPyyTMmWvBklkSB6tgNfZQW+wkLT7p2NzDK2MkZrQSs+j8+0e6WwOAIr01C+C4SQbY3pHD16dFpRlJLz/bdNie2b/k9CPAL8SlGUf77Qv9m3b59y5MiRSz7b9nznPpg6C3/0mmxLDOe2H9zGNRXX8Lc3/K1pd64cOsTgJ3+X2gcfJOvqA6bdu1ke+fIpZkeXuf9vrpFtihR+8HevEMoO8I7P7ZZtyptYO3mK/ve/n+p//RdybrvNtHs//9Lnebj3YV647wWE0wXoSzdARgF87BeyLZGCEOKooij7zvffLjdnqwAO/9RcJnXXw2wvLI7JtsRw6vPq6V/oN/VOX3kFAIlxa35//SEv8WhSthnSiEeT+INe2Wacl/j6Z8ZXXm7qvf0L/dTn1TtfaNfmYPwU1N0g2xJLclGxFULkCyHuEkKEhBA+IcSHgZuAR403z4aEr1f/HnhBrh0mEM4N07fQh5lrGv0V6oMyPjZu2p2Xgj/oiq0/ZE2xTax/ZvwVFabe27fYRzgvbOqdUhh8CVDOPQNd3sBmPFs/8HlgCpgGPge8W1EUt9f2fJTvgmAu9D8v2xLDqc+rZym+xExkxrQ7PRkZePPyNrwUqxEIeolHkqa+gFiJeDRJwLKe7TgiGMRbUGDanSvxFSZXJ6nPqzftTmn0Pw/eIFSdN4qa9lw0W68oyhSw3wRbnIHHC7XXpIVnW5+rPkD6FvpMLZLyVVRseClWwx/ykkopJBMpfH5rio5RKIpCLGLdMHJifAxfeZmp4dz+xX5AjQI5noEXoHof+EOyLbEkbp+tEYRvgOlOWJqQbYmhaG/rfQt9pt7rLy8nPm5RsV0XmnQMJScTKZSUYtkwcnxsHH+5ySHk9d8Nx3u2kQUYO64++1zOiyu2RqAVCDjcuy3PKifDl2G62PoqrCy2arAoHkk/sdVeMLTvgdWIj4/jN7k4qne+F6/wUpvj7FZABl8GJaUWiLqcF1dsjaBiNwSyHS+2Qgjq8+rpXeg19V5/eQWphQVSq6um3rsZ0tmz1V4wrBhGVpJJEpOT+CrMFdu+hT5qcmrwe/2m3ms6A8+Dxw/VbsbxQrhiawReH9RcDf3OFluAhrwG88VWq0i2oHerhVDTUmyj1hXbxNQUJJOmh5F7F3ppyGsw9U4p9L8AVXshYL1hJlbBFVujCN8AU2fUaSoOpiGvgfGVcVbiK6bdqfVJxsesV5GsVeKmcxg5YMGcrfZZ8Zvo2cZTcQYXB2nId7jYRpdg9DW35eciuGJrFOEb1b/7n5Nrh8Fob+1m5m21PsmEhT3bWDQh2RLziUXUr9mSnu36Z8Vnomc7tDhEQkk437MdfAmU5Llnnst5ccXWKCr3qHnbPmeLbX2+WmVpZijZV1YGWHOwRVrnbLUwsiU9W22ghXmerfY74Xix7XtWzdfWXC3bEkvjiq1ReP1Qe63jPduanBp8wkfvvHli6wkE8BYXW3KwhVuNbE3PNj4+hiczE09Ojml3amLr+Laf/ufUwig3X/uWuGJrJPU3Or7f1u/xU5tbK6EiudySgy3SukAqYt3Wn8TYOL6KClMHWvQu9FKeVU6m38EipPXX1rsh5Ivhiq2RpFHe1vTBFhbttfX5PSDSVGytHEaW1GPr+BDywCG1v9bN114UV2yNZGNOsrPFtj6vnqGlIeLJuGl3+sorSIyNWW4GsRBCXUaQpmFkIdZfOCxGfHzM1B7blJKif7Hf+WKrzUN2+2svivV+K5yE1wd11zm+SKohv4GkkmRgccC0O/3l5aRWV0ktLZl252YJBL1pW43sD3ott0pOicVITs+Y2mM7vjLOWmLN+fnavmeh5oA7D3kTuGJrNOEbYbYHFkdlW2IY2tu7mXlbK6/a84d8aRtGtmRx1OQkKIpbiaw3q7MwftINIW8SV2yNRisccPDKPW2jiantPxZeIp+uO23VXbZWLI4yf2m8Vp3v6IEWA4cAxS2O2iSu2BpN2RUQylfDLQ4l059JZVal69muk7Y5W4uu19MK6cxcGt+70Et+MJ/CUKFpd5pO/3Pgy1DHNLpcFFdsjcbjUTdhOL1IKr/e1IpkX0kJeDzW7LUNpbFna0Wx1QZamOjZ9i30OTuEDGotSu3V4AvKtsQWuGJrBvU3wlw/zA/JtsQwGvIa6F/oJ6WkTLlP+Hz4Skut2Wub1mFk64ltYnwMT14enkzz+l17F3qdXRy1Mg2T7W6+9hJwxdYM0qDftiGvgUgywuiyeYVgVl0i7w96N+YEpxNaNbLVUJfGm+fVzkZmmY/OO9uz1WpQ6m+Sa4eNcMXWDEq3Q0aho1uAZFQkq0vkrRdGDgTTtxo5YEWxNXmgRVoUR/U/B/4sqLxStiW2wRVbM/B41JV7Dq5IlrL9p7yCxPiE5QZbaDlbq9llNGrO1prVyGYOtEiLtp/+56H2GnUGvMumcMXWLOpvgoVBmDV3rKFZ5IfUykuzK5KVaJTk3Jxpd24Gf9ALSnqNbFRSiiVztqm1NZLz86YOtOhb6CPDl0F5lrnjIU1jaQKmzrotP5eIK7ZmoeU2HNwCVJ9Xb+r2H6sukQ9krG/+SSOxjceSoEDAYn2259p+zPVsw7lhPMKhj1et9qT+Zrl22AyHfhosSHELZJdD3zOyLTGMxrxGehd6TQufWnWJfEBbIL+WPkVSsTX1xSKQYS3PVsbS+N6FXhrzG027z3R6n4ZQHlTslm2JrXDF1iyEUL3bvmfBobm8hvwGFmOLzERmTLnPX27NwRaadxdLo8EWWvW15Txbk5fGr8ZXGV8Zd3a+tu8ZtcPCY60XK6vjiq2ZNNwMK1MweUa2JYag9RWaVSTlLSoCv99yIxs17y6d2n+0r9VqOVutWt2sUY3aZ9+xYjvXD/ODbgj5MnDF1kw28rbODCVrD5ie+R5T7hMeD/6yMst5ttp84Pha+ni28Y0wsrU828TYON6iIjyBgCn39Syon/36fIcOtOhdf3a5/bWXjCu2ZpJfCwX1ji2SKsssI9ufbZrYgjUHW5wLI6efZ2u5MLLJPbY98z34PD5qcmpMu9NU+p6F7DIoaZVtie1wxdZsGm5We9SSznsQCyFoyG/YeLs3A19FxcZWF6uQzmHkgMXCyInxMVO3/fTM9xDODeP3OLD/VFFUsa2/Sa1BcbkkXLE1m/qbILoIY8dlW2IITflN5nu2k5MoSeuEbDc827SsRraYZ2vyqMbu+W6a8ptMu89Ups7CyqSbr71MXLE1G+2D2ve0VDOMoiGvgdnILLORWVPu81WUQyJBYtqcCujN4PV58Po9GwKUDljRs00uL5NaXja1EnlkecS5YxrdfO2WcMXWbLKKoWznuQ+uw9De6s3ybjd6bcfMW4CwGQKh9FpGEFtL4At48Hit80iJj6qfCZ9Je2y1SmTHerZ9z0BBGArqZFtiS6zzm5FO1N8EQy9DPCLbEt3RmvlNE9vKKsCCU6RCvjTrs01arzhqXWz9lZWm3Nc93w3gzIEWyYRaa+J6tZeNK7YyqL8ZEhEYPizbEt3RKpK1B4/R+KvUB6n2YLUKgQxfenm2kYTl8rVa4Zz2QmY0PQs9+D1+anNqTbnPVMaOq7Umbr72snHFVgZ114HwOrIFSAhBY36jaZ6tNzsbT24u8RGLiW3Im3YFUlbK14L6Aib8fnwlxabc1zPfQzgvjM9jrZcOXehz87VbxRVbGYRyoeoqR+dtTa1Irqy0nGfrT7MwcjyS2BjmYRXiI6P4KioQHnMecz3zPTTlOThfW7odsktlW2JbXLGVRf3NMHIUIouyLdGdxvxG5qJzzKyZNCO5osJyYhvI8BJPtzCyBT1bs/K1WiWyI/O1iSgMvuSGkLeIK7ayaLgZlCQMHJJtie405qkPHLN22/orK61ZIJVOrT9rScvlbOOjoxvV6kajfdYdKbZDL6s1Jm4IeUu4YiuLmqvBlwG9T8m2RHe0B45pRVKVlaSWlkguLZly32ZQq5ETpq0blI3q2VpHbJVYjMTUlFuJrAc9T6k1JuEbZFtia1yxlYUvqBZK9T4t2xLdKc0sJcefY177jwUrkgMZXlJJhWQiJdsUw1EUZb31xzph5PjEBCiKaWLbM69WIjtyJnLv01C9X601cblsXLGVScMt6gi0ReuIhB5oFcmmebbroUIrVSSfG9no/FByIp5CSSmWCiNrnwXtRcxouue7qc+rd14l8uosjL6mPqtctoQrtjJpuEX924FVyVr7jxlhVM17sZRnG0qfZQRai5OlPFuTB1r0zvc6M4Tc/xyguGKrA67YyqRsJ2QWOzKU3JTfxHx0npmI8RXJ3qIiRCBA3EIjGzUvL54G7T/a12gpz1Yb1WjCEoLV+CqjK6POHNPY+zQEsqF6n2xLbI8rtjLxeNSq5N6n1fVVDkJ7y++dN74iWXg8lmv/0cLI0TQYbBFds94u2/joKL6SElOWxmu1CY70bHueUgujvA5cGWgyrtjKpuFWWB5Xc7cOQnvLN3Nso6XENiN91uxtbPzJsFAYecy8HlvtM+44z3auH+b61GeUy5ZxxVY2Dbeof/c4qwWoOKOYnIB5Fck+i3m2/vX8ZToMtoivF4FZaYJUfHTUtOKonvkeAp4A1dnVptxnGlp6q+EWiUY4B1dsZZNfA0VNjsvbCiFoym8ytdc2OTVNKho15b6LsVGNnAY523O7bK0htkoqRWJ0zDzPdkGtRPZ6rOPZ60Lv05BTASWtsi1xBK7YWoGGW9T1Vcm4bEt0pTG/kZ4FsyqS1c0uifFxw+/aDFpINS2qkS0WRk5MT6PE46btse2Z73FevjaVUrskGm4BIWRb4whcsbUCDbdCfAWGX5Ftia405TexEF0wpSLZau0/Xp8Hj1ekRZ+t9jUGgtbwbBMmtv0sx5YZXxl3Xr52/ASszbr5Wh1xxdYKhG8A4XFcKNnMRfL+yvXBFhYRWyHExshGpxOLJPD6PHj91nicxE3cY+vYmcgb+Vp3+YBeWOO3I93JyIfKqxxXJGVmRbK/rAyEsNYUqQxvmoht0jIhZHjdQAsTCqS0F0nHeba9T0HJNsgxvk85XXDF1io03rq+cm9BtiW6URQqIi+YZ4rYikAAX2mppbb/+NNk809szVq7bOMjo3hyc/FmZxt+V9d8F0FvkKps471o04ivwcCL6jPJRTdcsbUKDbeoK/f6npNtiW4IIWjOb6ZrrsuU+6y2RD4QSo+dtnGL7bI1c7Ve11wXjfmNzqpEHnwJklG35UdnXLG1CtUH1LFoPb+RbYmuaO0/Zs1ItpTYZvjSpPUnaZm2HzB3aXz3fLfzQsg9T4LH767U0xlXbK2CLwDhGx0nts0FzazEVxhbMT6866+sID4+jpKyxlo7dYG88z3bWCRhubnIZojtXGSO6bVpWgpaDL/LVHqegtprIJAl2xJH4YqtlWg8qI5HmzV+nrBZaA8iM0LJ/spKiMdJTE0ZftdmUD3bNBDbtYRlCqSSS0uklpdNEVvtM92c32z4XaaxNA4Tp9RnkYuuXJLYCiGahRARIcRDRhmU1jTdpv7tIO9WC7F1zZsktlin/ScQ8qZJgZR1wshmViJrn+nmAgeJrdYRoT2LXHTjUj3bfwWcNXnBShQ2QH6to1qAsgPZVGZV0jnXafhd1hNbH8lEimTcGmFtI1AURQ0jW0VstaXxJhRIdc11kR/Mpzij2PC7TKPnN+raz7IrZFviODYttkKIDwHzwJPGmXNhEknnPrA2EAIab4O+Zx01urG5wJyKZF+FxcRWG9kYdW4oOZlIkUoqlgkjm7k0vmu+i+aCZoRTxhmmUmp/beNBdf2nwzFbUzb1HRVC5AL/E/gzY805P//zF6e57ysvybjafBoPQnQRho/ItkQ3mvKb6F/oJ27wC4Q3OwtPXp51xFZbRuDgUPLGqEareLajo4hAAG9RkaH3pJQU3XMOq0SeOAkrU2mTr/3kg0f4yx+dMO2+zb6+/N/A1xRFGXqrfySE+LQQ4ogQ4siUjkUqlfkhXumfo3NiSbczLUv9TSC8jsrbNhc0k1AS9C/2G36Xldp/zm3+ca5ne27jj0U82zG1x1YY7JmNLo+ymlh1WL52/ZmTBsMshmZXebZzioq8DNPuvOgnUgixB7gd+MLF/q2iKF9WFGWfoij7SkpK9LAPgPdcWYXfK/jO4UHdzrQsGflQvU/tdXMI2gPJrIrkxKg1pkj5M5y/0zYesdYuW7P22DqyErn7SSjbmRYjGr/3yhAeAe/fZ94O4s28/t0ChIFBIcQ48OfAe4UQrxpo1xsoyg5y545yfvLaCJG4c0NyGzQehJFXYXVWtiW6UJ9bj0/4TKtIjo+OmjJE42KkRxhZW69nHbH1mZSvBQdVIsdW1MlRaeDVJpIpfnB0iJtbSqjMt5BnC3wZaAT2rP/5EvAr4C4D7XoT9+2vZX41zqPt1thXaiiNtwEK9D0j2xJd8Hv9hPPC5ni2FRWkVlZILS4aftfF0EKrbhjZHFLRKMmpaVMqkbvnuqnKriLL75DBD/0vQCq+/uxxNk93TDGxGOVDB2pNvfeiYqsoyqqiKOPaH2AZiCiKYurkgOsai6gpzOB7r7xl2tgZVF4JoTw1rOMQzJqRbKX2H83bc/LIRu1rs0KBVMLE1Xpd813OKo7qeRJ8Iai9VrYlhvPdV4Yozg5ysK3U1HsvuYpAUZS/URTlI0YY81Z4PIIP7qvhUM8MAzMrZl9vLl4f1N+s9ttaIByqB80FzYyujLIcWzb0Hn+V+qCNj4wYes9m2BBbB49stFIYObb+Mzc6ZxtPxulf6HdOCBnU4qi668Efkm2JoUwsRniqY5L376vG7zW3vclWzVTv21uDR6hvJo6n6TZYHIZp44dBmIH2YDJ63Z6/WhXb2PCwofdsBp/fg/CI9AgjW6DPNj6sim2g2tiil96FXhJKwjnFUfND6nMmDaZG/eDIEMmUwgf31Zh+t63EtjwvxMG2Un54dJi404dcaL1uDgklb1QkG1wk5c3Px5OVtfHglYkQQh3Z6PAwsscr8PrkP0riw8Pg8+ErKzP0Hu2F0TGerdb54PD+2lRK4XtHhri2oYhwsfm5dvm/IZfIB/fXMrUU5TdnJ2WbYiz5tVDcCt1PyLZEFyqzKsn0ZRqetxVC4K+qskQYGdRcZtzBYeT4mjqq0QpTlOIjI2qPrddYL7trrgufx0c4N2zoPabR/QTkVkNJm2xLDOVQzwxDs2t86ID5Xi3YUGxvbS2hLDeYHoVSTbdD//MQW5VtyZYRQtBU0GROkVR1terlWIBAhvM9WyuEkAFiI8MbaQQj6ZrvIpwbxu/1G36X4STj0PuMGkK2wAuTkXz3lUHyM/3ctUNOH7HtxNbn9fD+vTU83THJyPyabHOMpfl2SEZh4AXZluhCc34zXfNdhvfA+quriI2MWKbXNupgzza6lrDOQIvhEcPztaB6to4JIQ8dVsfDNt8h2xJDmVmO8lj7BO/eU0XIL+fl0HZiC/DB/TUowPed7t3WXge+DOh6XLYlutBc0MxCdIHptWlD7wlUV6OsrpKcmzP0ns3gD/kcPkEqYY0e29VVkjMz+KuMFdul2BJjK2POWRjf/Th41rsfHMwPjw4TS6b48NXm9ta+HluKbU1hJjc1l/C9V4acvQ3IH4L6Gx2TtzVrkbx/3buxQig5PcLI8j1bLUfvN9iz7ZnvARw0prH7Cai5BkK5si0xDEVR+M7hQfaHC2guy5Fmhy3FFuC+A7WML0Z4qsPU2Rrm03QHzPbAbK9sS7aMWYvkNe/GEmIb8jm+z9YKAy20Vi+je2y1vcyOCCMvjcP4Sce3/LzYM0P/zCr3mTwx6rexrdjetq2U0pyg85cTaL8IDmgBKggVUJxRbPgieW2wRcwC7T9q64+DxdYiYWRtabzROduuuS6y/FlUZBk/EtJwtGeKw/O13zo8SF6Gn7ddIfdnZlux9Xs9fHB/GhRKFTVCYYNj8ratBa2Gi603Owtvfr41PNsMH4lYipRD0x2xSNISnm18eBgRCuEtLjb0ns65TloKWizR6rRluh+H7HJ1049DmV6O8lj7OO+9qlpaYZSGbcUWzhVKOb4NqOl26H8O4hHZlmyZlsIWeuZ7iKeMXSTvr662RK/tuZ22zsvbJhMpkvGUJVp/4iPD+KuqDBVBRVE2xNb2JBPqONim2x3d8qMOQFK4/2o5vbWvx9ZiW12Qyc0tJXzvlUFnF0o13Q7xVRg8JNuSLdNS0EI8Fadvoc/Qe6zSa6sJkRNDydouWysUSMWGRwzvsR1ZHmE5vuwMsR05CpF5R+drUym1MOpAuJCmUnmFURq2FluA+w/UMrEYdXahVPgG8AYdkbdtLWgFoGO2w9B7AtVV6l7blNyXMM2zjTvQsz23Xk++2MaHhwkY3PbTMad+ZlsLWw29xxS6nwDhgYZbZFtiGC/2zjAws8r9Ett9Xo/txfZgWylluUG+/fKAbFOMI5AFddc5ogUonBfG7/EbXyRVXY0Sj5OYlDvW89wCeed5tlYR2+TCAqmlpY3COKPonO1EIJzR9tP9BFTvh8xC2ZYYxrdfVidG3b1TzsSo38b2Yuvzevjgvhqe7pxieM7+Yw0vSPMdMHVW3dBhY/weP035TSZUJFuj/ce/EUZ2oGe7pn5Nfsk5W7N6bDvnOqnNrSXTn2noPYazMg2jr6npKYcytRTlsdPWKIzSsL3YAnzoQC0CnN0GpP1idNu/KrmloMXwMLJVVu2dK5ByPVvD7NB6bA3O2XbMdTgjX9v9JKA4Ol/7/SND64VR1gghg0PEtjI/g4NtZXzvlSFiCYcWShW3QF6tI1qAWgtbmYnMGDq20V+pDjeQvWovPcLIkj1bE/bYrsRXGFoa2qg5sDVdj0FWCVRcKdsSQ0imFL798iDXNRbRWJIt25wNHCG2AB+5ppbp5RiPto/LNsUYhICWO6H3adu3AGkPrM5Z40LJnmAQX2mp9DDyRjXymnPDyLKrkePDw3hycvDm5Rl2hzZi1PbFUcmEmq9tugM8jnn8v4FnOtXZCx+5pk62KW/AMd/tm5pLqCnM4KGXHFwo1XyX2gJk8y1A2gNLq+40Civ02voDXhAODSOvWSSMPDJseL5WS3vY3rMdOaK2/LTcKdsSw3jopUFKc4Lcsb1MtilvwDFi6/EI7j9Qx8t9s3RPLsk2xxjCN4AvpIaBbExeMI+yzDITxLaK2Ihcz1Z4BIGgM0c2xiIJhABfQO5jJD48YvhM5I65DnICOZRnWaOy9bLpfBSEFxpulW2JIQzNrvJUxyQf2l+D32stebOWNVvkA/uqCXg9PPSSQwulAplQf5P6C2OBXa1bwYwiqUB1NYnxCZS4sdOqLmpHhs+Z1cjrG39kji5UFIX4yIgpPbaOGNPY9RjUXgsZ+bItMYTvHB5EoBbNWg1HiW1RdpB7rijnR68OsxpznicBQPOdMNcHMz2yLdkSrYWt9C/0E0vGDLvDX1UNqRTxsTHD7tiUHSEfcQcWSMXXEvglF0clZ2ZQIhFDw8gpJUXXXJf9Q8gLIzBxyrGLB2KJFN8/MsTBtjIq8zNkm/MmHCW2AB++uo6lSIJfHB+VbYoxNK/nWroelWvHFmktaCWhJDb2gxqBVfbaOnXzjxWWEMRNaPsZWhpiLbFm/+IoLf3UcpdcOwzi0fZxppdjfOQa63m14ECx3R8uoKUs27mh5II6KGlTQ8k2pqVQ7Vc0Mm97btWeXLENOjaMnCAouRI5ZkLbj2OKo7oeU9sHS9pkW2IID700QG1hJjc1l8g25bw4TmyFEHzkmjpOjixwbGhetjnG0HwnDByCqH0Lwepy6gh5Q4bmbf3lZeD1Su+19Tt0gXxsLYHfKp6tgaMaO+Y68AgPjfmNht1hOImo2jbYfIcjt/x0TSzxct8s919di8djza/PcWIL8J4rq8gKePnmiw5tA2q+E1Jx9ZfHpng9XsPHNgqfD39FhfwwcobXoZ5tUvp6vfjIMN7CQjyZxo1Q7JztJJwbJuQLGXaH4fQ/r7YNOjSE/M2XBgj4PHxgn/xVehfCkWKbE/Lznquq+MWJUWZXjCvAkUbtNRDMs30oubWwlY65DhQDK6ut0GsbCPkcmrNNSM/ZxoZN6LGd63BGCNkXgvCNsi3RnaVInB8dHebeXRUUZgVkm3NBHCm2AL9zbZhYIuXMxfJePzTeqo5utHELUEtBCwvRBSZXjdvMo/bayhZbL/FIEiVl35/V+VALpGR7tqMEDCyOWowtMrYytlFjYFu6HlOFNmDzJQrn4SevjbASS/I714Zlm/KWOFZsW8pyuLq+kIdeGiDpsIccoIaSl8dh/IRsSy4bMyZJBaqrSU5Pk1pbM+yOi9qwXkQUjzonlJxKKSSiSamjGpVkkvjY2MaGJyPQRora2rOd7obZXkeGkBVF4T9eHGBXdR57aqzdO+xYsQX42HVhRubXeOqs3J2mhqD1ynXad5pUc4G6F9TIvO3Gqj2J3q0Wao06qEhKK/jyB1REvDQAACAASURBVOV5tomJCYjHDQ0jay+Ctt72o7UJOrC/9sXeGbonly3v1YLDxfaO7WWU5Qb5DyfOS84uhaq90PmIbEsum9xALpVZlcZWJFtg1Z7m/TmpIln7WoKZ8jxbM1brdc51kh/MpzSz1LA7DKfzEbXdpyAs2xLd+eaLAxRk+rl3V4VsUy6Ko8XW7/Vw/4E6nu2com96RbY5+tNyD4wchWX7eu6tha2cnT1r2PmBGrU6MT4kT2w1QYquOkdsta8lmOmXZoP2MzWyx/bMzBlaC1vtO6YxsqC2CbbcLdsS3RlbWOOx0xN8YH+NZRbEvxWOFluA+w7U4PMIZ24Dar0bUGxdlbytcBsDiwOsxlcNOd9bVITIzCQ2KG/IyYbYOsiz1b4WmUMtYoOD4PVu7C7Wm3gqTvd8N9sKtxlyvil0PwGpBLTeI9sS3fnOy4OkFIWPXG2tVXoXwvFiW5ob4u6d5fzgyBBrMecUqABQthNyq20dSt5WtA0FxbAiKSEEgZoa4lYQ21W5CxH0RPtaglnyxDY+NIi/shLhN8a77p3vJZ6K21tsOx6BzCKo3i/bEl2JJVJ8+/AQB1tLqSm0R4W148UW1EKpxUiCn7wmtwVEd4RQvdue39h2oXxboTo67szMGcPuCNTWEBuS1wIWzFDFwIlhZJnVyLHBoY00gRGcmVU/k21FNh1vmEyoLT/Nd4LH+mHWS+HXp8aYXo7y0Wvt4dVCmojtvroCtlfk8uChfkMHKEih5R51Mkz/c7ItuSzKMssoCBZsPNiMwF9TS3x4GCWVMuyOt0KbsuTEAqmQxJxtbGgIf62BYjtzhgxfBnU59nmgv4Ghl9cXxTsvX/vAoX4airMsOwf5fKSF2Aoh+Ph1YTomlnipd1a2OfoSvgH8WdDxa9mWXBZCCLYVbTO2SKq2FiUWU1tFJODxevCHvERXnCO20VV1cbys1p/kwgKphQUCtcYJ4dnZs7QWtOK1q1fY+Wvw+KHxoGxLdOX40DyvDc7zO9fWWXYO8vlIC7EFeOeeSgoy/TxwqE+2KfriD6nTpGy8UL6tsI3u+W7iSWNymoF17yc2KDOU7CO65qScbUJdHC/pYaf9LAMGebYpJcXZ2bMbaQ5b0vGI+jIeypVtia48eKif7KCP9+41dkyn3qSN2Ib8Xj50oJbHT08wPGdM5as0Wu+BxWEYPynbkstiW+E2EqkE3fPdhpzvr1X3W8YG5VWkBzP9DsvZxuX22K7/LP01xuwuHVoaYjWxyrYimxZHzfTATJfjqpCnlqL88sQY79tbTU5IXgrjckgbsQX4yDV1CCH4ptPagJrvAoRtq5I3iqQMytv6y8vB5yMu07PN9DlLbNcSknts1z3bGmO8G61gz7aerZZWcli+9juHB4klU/yOjQqjNNJKbKvyM7hzexnfe8VhbUDZJVC9z7Z529rcWjJ9mYZVJAufD39VpdyKZKeJ7UpCsmc7hLek2LDVemdmz+Dz+GjKbzLkfMPpfARKt0OB/UTpQsSTKR56aYCbW0poKMmWbc4lk1ZiC/Dx68LMr8b52TGHtQG13A2jr8LSuGxLLhmP8NBW2GZwkVSd3F5bp+Vs1xJSB1rEBwcNL45qym8i4LXuyrYLsjYPgy86zqv99alxJpeifPz6sGxTLou0E9sD9YW0lefwgNPagLTcjE2nSbUVttEx10EyZUzEIVCj9trK+pkHMn3EHOTZxlbjBGR6tkPG9dgqimLv4iiHTo164IU+6ouzuNlG7T6vJ+3EVgjBJ64Pc3bcYW1Apdshr9a2oeRtRdtYS6wxsGRMPt1fW0NqaYnk/Lwh51+MYKafWCRJyiHrHqOr8nK2qUiExMSEYT22E6sTzEZm7Ts5quPXkFmsLipxCCeHF3jVhu0+ryftxBbgXXuqKMj0840XHNQGJAS0vQ16n4KY/ZYuaA+2szPGhJID6xXJskLJQQdt/knGUyTiKWlh5HPFUcZUImvpDFtWIidi0PW4OlnOrv3B5+HrL/TZst3n9aSl2Ib8Xu6/upbHz0wwOOOgNqDWt0Eioo5vtBkN+Q34PX7D8rZayFFWr602Q9gJ85GjktfraYVuRvXYnpk9g0DYc2H8wPMQXYDWt8u2RDcmFiP88sQo799XTa7N2n1eT1qKLcBHrwnjFYIHDvXLNkU/6q6DUD6cfVi2JZeM3+OnKb/JuPYfTWyH5Hq2TqhI3lhCIEts16MTWv+03pydOUtdbh2ZfnsMuH8DZx8Gf6Y66MYhPPTSAImUwsevC8s2ZUukrdiW54V4+64Kvn9kiKWI/b0NALx+aLlLHdOWtN9DfXvRds7MnjGkiMkTCuErK5PWa+ukNXva1yBrCUF8cAhPTg7e/HxDzj8ze8ae+VpFgY6H1fGM/gzZ1uhCJJ7kWy8Pcvu2MuqKsmSbsyXSVmwBPnF9PcvRBD84Im+xuO60vR3W5mDoJdmWXDJthW0sRBcYXzGmfSlQUyNtr61WTOSE+ciadx7KkhPSiw0OEqipMWSh+3xknrGVMXtu+hk7Bosj6jPAIfzs2AizKzE+eX29bFO2TFqL7Z6afPbWFfDAoX6SDqkSpfE28AZtGUo2fJJUba20MHLAQQVSMcnr9WJDg8aFkOfUmgFbtv2cfRiEZ32inP1RFIWvP9/PtopcrmkolG3OlklrsQX45PX1DM6u8uQZORthdCeYDQ23wNlf2m4xQUtBCx7hMUxsA7U1JKemSa2aXxSnhZEjTiiQkpizVRIJ4iOjhvXYalPMbBlGPvsrqL0OsopkW6ILh3pm6JhY4pPXhw2JYphN2ovtXTvKqMwL8XUntQG1vQ3mB2DytGxLLolMfybh3LDh7T+xIfPTBv6gF+ERjhhsIbMaOT4+DokEgTpjPNszs2cozyqnIFRgyPmGMdsHk+3q775D+PrzfRRnB3jH7krZpuhC2outz+vhY9eFeal3lvbRBdnm6EPLPYBQ33RtRlthG6dnjXlJ0DbExCWEkoUQjpmPHF1J4PV78PnN7+PU+qSN2vZzZuaMPUPIHetpo1ZniG3f9ApPnp3kw1fXEZLwOTOCtBdbgA/tryXD7+Xrz/fLNkUfcsqger8txXZH0Q4mVyeZXpvW/WzZe23V+cgOEFuJc5GN3GO7HFtmYHGAHUU7dD/bcM4+DKU7oND+hUQA33ihj4DXw4evMealSgau2AJ5mX4+sK+anx8fYWIxItscfWh7m1qduGCvSusdxeqD7vSM/t6tNy8PT16etL22jvFsV+Vt/IkNDiICAXxlZbqffWb2DAqK/cR2ZQYGDzkmhDy/GuMHR4Z5155KSnNCss3RDVds1/nE9fUkUgr/8WK/bFP0oe1e9W+bzUreVrgNgaB9ut2Q8wO1tVJ7bR0xQUri4vj40CD+mhqER/9Hl/aCt71ou+5nG0rXo6CkHNPy862XB1mLJ/ndG53hpWts6hMrhHhICDEmhFgUQnQKIT5ltGFmEy7O4s7tZTz00iCrMft7HxQ3Q1EznPmFbEsuiUx/Jg15DbTPGCS269t/ZBDI8Duj9WctQSBDVo+tcdt+2qfbqciqoCjDZtW8Z38FuVVQsUe2JVsmlkjx4KF+bmwupq08V7Y5urLZ18O/A8KKouQC7wQ+L4RwzkqJdT51YwMLa3F+dNReodcLsu0d0P88rNpru9GO4h20z7QbMknKX1tDfHQUJW6+hxnM8hFxQBg5IimMrCgKsaEhw7b9tM+02y+EHFtRV+q13asuI7E5vzg+yuRSlE/d2CDbFN3ZlNgqitKuKEpU+5/rfxoNs0oS++oK2F2Tz9ee73PGkItt7wAlCZ2PyLbkkthetJ3ptWkmVyd1PztQUwvJJPGxMd3PvhjBDGfstI1JEtvkzAzK6qoh234WogsMLg1u1AzYhu4n1OUj294h25ItoygKX3mul5aybG5qLpZtju5sOvEhhPjfQohV4CwwBrxpRJEQ4tNCiCNCiCNTU1M6mmkOQgg+dUM9/TMOGXJReSXkVtsulKx5F0aEkjcqkgfMb/8JZvpIJlIk4knT79YLRVGkVSNrozaNqETWBqnYLl975heQWQS118q2ZMsc6pnh7PgSn7qhwRFDLH6bTYutoij/GcgBbgR+DETP82++rCjKPkVR9pWUlOhnpYncs7OcqvwMvvqcA4ZcCKG+8XY/CdFl2dZsmtbCVjzCY4jY+mvrADnbfzbmI9vYu41HkygpRcri+JiBPbZaQd72QhuJbSIKnY+qvbVeOQVrevKV53opzg7yriudMcTit7mkkj5FUZKKojwPVAN/aIxJcvF5PXzi+jCH+2c5PjQv25yts+0dkIxC9+OyLdk0Gb4MGvMbDWn/8ZWWIDIyiA+Y3/7jhDV7mu0ywsixgQHweglUV+l+9umZ01RlV5EfMmaTkCH0PQvRRdj2TtmWbJmuiSWe7pjiY9fWEfQ5Y4jFb3O59fM+HJiz1fjg/hpygj6+8lyvbFO2Tu01kFlsy1Dy6ZnTuhdJCSEIhMNE+/t1PXczbKzZc8X2soj19+OvrkIEArqfbcviqDM/h0AONNws25It89Xn+gj6PHz4mjrZphjGRcVWCFEqhPiQECJbCOEVQtwF3Af8xnjz5JAT8nP/1bU8fHKMoVnzh9briser9t91Pgpx+wzs2FG0g9nIrCHr9gLhOmISxDawIbb27bWNram2B6SI7QCBcFj3c+cj84wsj9irOCqZUFt+Wu4CX1C2NVticjHCT14b4QP7aijM0v9FyipsxrNVUEPGw8Ac8A/AnyiK8jMjDZPNJ66vx+sRfNUJ3u22d0JsGXqflm3JpjG0SCocJj48ghKL6X72WxFyQM42sr6PN2RyzlZRFGL9/QQNEFstXWErz3bwRVidcUQV8jcO9ZNIpfiUw4ZY/DYXFVtFUaYURblZUZR8RVFyFUW5QlGUr5hhnEzK80K8a08V3z8yzNyKuQ9l3am/CYJ5tgoltxS24BM+Y8S2rg6SSWLDI7qf/Zb3OmCnrWa72btsE5OTKGtr+Ov0DzNqn7FtRTZaq3fmF+ALQfMdsi3ZEsvRBA+9NMDdO8upK8qSbY6huOMa34JP39TAWjzJN1+SM0tXN3wBaL0bOn6lhp9sQNAbpLmg2ZCxjZp3ZHYo2c3ZXj6xvn71XgM82/aZdupy68gN2GRiUSqlim3T7RCwt0B99/AgS5EEv3+TY0uANnDF9i1oKcvhYFspDx7qJ2Lj3khADTetzcHAC7It2TTbi7YbMklKy/vFTK5I9vo8+AIeW+dsNdvN9my1n5UROdv2mXZ79deOvgZLo7YPIceTKb7+fB9X1xeyu8ZGVeCXiSu2F+HTNzUwsxLjh3Yf4dh4G/gybBVK3l60ncXYIsPL+n7vvfn5ePPzpRRJ2X3NXnQtQSDkxeMxd+hArL8fEQziKy/X9dyZtRnGV8btla8983Pw+NTiKBvzyxOjjC5E+P2bnTea8Xy4YnsRtLeurz7Xa+8RjoFMaL5dFdtUSrY1m8LIdXuBcFiO2Gb5bR9GljLQor+fQF2d7tt+bLfpR1FUsQ3fCBkFsq25bBRF4d+fUUcz3tJSKtscU3DF9iIIIfj9mxron1nlsXb921BMZfu7YXkchl6SbcmmaM5vxu/xG1aRLM2ztbnYymn76TcshCwQbCu0SXHU+AmY7YUd75ZtyZZ4tmuas+NL/N6NDaZHSWThiu0muGtHOXVFmXzpmR5DNtGYRstd4A1C+09lW7IpAt4ALQUtnJ42xrNNTEyQWlnR/ey3vNfmO22jq3HT5yIriQSxoSHDxDacFyY7kK372YbQ/lMQXmizd77235/poSw3yLv26D8NzKq4YrsJvB7Bp29q4PjwAi/2zsg25/IJ5qitAmd+bp9QcpG6bi+l6GvvRpHUoLkzkoOZPtu3/phdiRwfGYFEQnexVRSF9mkbFUcpCpz+KdTfCFk227n7Oo4NzXOoZ4ZP3dBAwJc+EpQ+X+kWee9V1ZTkBPm3p3tkm7I1tr8blsZg+LBsSzbFzuKdLMeX6V/s1/XcQHh9IYHZ7T8ZTsjZmlyJvP4z0n5mejGxOsHU2hRXFF+h67mGMXFKDSFvt3cI+UtP95CX4ee+q/VfKGFlXLHdJCG/l9+9oZ7nuqY5NbIg25zLp/VuW4WStQfhyamTup4bqFV/0WX02kbXEig2LbaTUSB1TmzDup57clr9TNlGbLUQso1bfronl3n09Dgfu7aO7KD9NxVdCq7YXgIfvrqWnJDP3t5tMEdthj/9M1uEkuvz6snyZ208GPXCk5mJr7xczmALBWJR+/Vtp5Ip4tGk6Z5ttL8fT24u3gJ9q29PTp3E7/HTVtim67mGoIWQwzdAln0Xq//7Mz0EfR4+dl1Ytimm44rtJZAT8vPRa+p4+NQYfdPmFtboyo53q03xw6/ItuSieD1edhbt5MTUCd3PlrH9Z2OK1Ir9iqS0/mAZYeRAOKz7QvET0ydoK2wj4LXB8PuJdpjptnUV8uj8Gj89NsKH9tdSlG3v5QmXgyu2l8gnrq/H7/Xw5Wdt7N22rIeST9sklFxyBV1zXUQS+m4tCoTriPebO0UqmLG+jMCGRVIboxolTI/SO1+bSCU4PXPaPiHk0z8F4bF1FfLXnu8jpeD4hQMXwhXbS6QkJ8gH9lXzo6MjTCzaZ2XdGwjlQtNttgkl7yzeSUJJcHb2rK7nBsJhkgsLJObmdD33Le9c9wpjNiyS2lhCYGLONhWJkBgd0z1f2zPfw1pijZ3FO3U91xAURc3Xhm+A7BLZ1lwWcysxvnN4kHftrqS6IFO2OVJwxfYy+PSNjSRSKb72fJ9sUy6f7e+GxREYOSLbkouyq3gXgO6h5ICEhQR2XkYQXTE/jBwbUFuz9F5AoNUA7CrZpeu5hjB5Gma6bF2F/OCL/azGkvzBLc5fOHAhXLG9DGqLMnnH7kq+9dIA86s2Xb/Xejd4A7aoSi7JLKE8q1z3Iqlz23/MCyVrIdjomo1ztiaGkY2sRM4L5lGbY4P2k/b1EPK2d8q25LJYiSZ44FA/t28rpaUsR7Y50nDF9jL5z7c0sRJL8o0X+mWbcnmE8tTlBKd/aotQ8hXFV+gutv6qKvB6zfVss+y7QF6bfGVm64/2s/HX6puzPTl9kp3FO3UvutIdrQq57nrbhpC/9fIA86txPnNrk2xTpOKK7WXSWp7DndvLeOBQP8tR+z04AdjxHjWUbIMBF1cUX8HI8gizkVndzhR+P4HqalPFNhD0grCr2EoII/f34yspwZut397W1fgqPfM99iiOmjgF0522rUKOxJN85bk+bmgq5spa+y5O0ANXbLfAZw82sbAW5yG7LpdvvQd8ITj1I9mWXBTDhluYvJBAeIRtlxFEVxN4PAJfwLzHhhELCLTxn7YQ21M/UgdZ2DRf+4MjQ0wtRdPeqwVXbLfErup8bmwu5qvP9dpzuXwoF5rvVHNCKWvbv71oO17h5cS0/kVSsYEBFBND6eoUKXvmbINZPlNDr0aIrVZoZ3mxVRRVbBtuseUgi3gyxZee6WVvXQHXNBTKNkc6rthukc/e2sT0cozvHjZ3oL1u7HwvrExC//OyLXlLMv2ZNOU3cWr6lK7nBurDKJEIiYkJXc99yzszfPZs/VmNEzCxOCo5P09ybk53sT01fYqanBoKQhYPa44chflB9XfUhvzktRFG5tf47K1N1s+Nm4Artlvk6oYi9ocL+Pdne4klrF9o9Caa74RAtj1CySVqkZSeG4DktP/YcxmB2XORYwNqeiZQH9b13BPTJ6zv1YL6O+kNQNvbZVtyySRTCv/2dA87KnO5pdWehV1644qtDnzm1ibGFiL85LVh2aZcOoFMaH2bunYvYe02piuKr2AptsTAon458g2xHTCx/Wd9GYHdiJq8Xm9DbHX0bCdWJphcnbS+2KaScOrH0HQHZOTLtuaSefikOtL2M65Xu4Ertjpwc0sJV1Tl8b+f7iGRtKF3u/O9sDYHvU/LtuQt2SiS0rEFyFdaisjIINrbq9uZFyOY6bPnbGST1+tF+/rA48FfXa3bmRubfkosLraDL8LyOOz8T7ItuWRSKYV/faqbxpIs7t5RLtscy+CKrQ4IIfjswSYGZlb5+fFR2eZcOo0H1b5bi4eSG/IayPRl6lqRLDweAvVhYj0mim2GTT3b1bi5Ay26ewjU1OAJ6Lco4OT0SXwen/U3/Zz6Efgz1Y4Bm/HY6QnOji/x2YNNeDyuV6vhiq1O3Lm9jG0VufzLb7pJ2m1XqS+gTqc5+yuIr8m25oJ4PV52Fu/Uf5JUQ6Ppnm0iliJpoxy/oijme7a9vQQa9R3vd3L6JG0FbQS9Ft46k4yrc8tb7oaAfv3FZqAoCv/0ZBf1xVm8Y1elbHMshSu2OiGE4I8ONtE7vcIvT9jQu935XogtQdfjsi15S3YW76RjroNoMqrbmcHGBhJjY6RWzFmbqBUZ2alIKhFPkUoqphVIKfE4sYEBgo0Nup2ZTCVpn263/vKBvmdgdcaWVchPnJnk9Ngin7m1CZ/XlZfX4343dOSuHeW0luXwz3b0bsM3QlaJ5UPJu0t2b6xH04tAg+o9RXvNWSyhtc/EbBRK1lqVzGr9iQ0NQSKx8bPRg+75blYTq+wu3a3bmYZw6scQzIWm22VbckloXm1tYSbv3uN6tb+NK7Y64vEIPndbE92Ty/z61Jhscy4Nr0+dUtP5CESXZFtzQXaXqA/KY5PHdDtT855ivebsKNZCsZFV+xRJRTbmIpsjttEe9Wehp2erfWb2lOzR7UzdiUfgzC/Vdh9/SLY1l8TTHVOcHFngs65Xe17c74jO3LOzgqbSbP7pyS5SdvNur3gfJNZ/2S1KUUYRtTm1uoptoLYWvF6iJhVJhdaXEUSW7SO2WvW0ZrvRaAVrgQYdxXbqGMUZxVRlV+l2pu50PQrRBfV30UYoisI/PtlFVX4G77nKwt9fibhiqzNej+BzB5vonFjm0fZx2eZcGjVXQ34tnPy+bEvekj2lezg2dQxF0edlRgQCBOrqiJrk2Yay18XWRu0/a+svBprtRhPt7cFXXo43O1u3M49NHmNPyR5r932e+D5klUL9LbItuSSe7Zrm+NA8n7m1Cb/r1Z4X97tiAPfuqqShOIsv2s27FQKu+IDab7tk3vjCS2V3yW5mI7MML+k3RCTY2GBa+09Gtv08W83WDJPENtbTS1BHr3Z6bZrh5WH2lFo4hLw2B12PqYVRXvOqvreKoih88YlOKvNCvG+vfj3RTsMVWwPwruduz44v2c+73fUBUFLQ/mPZllwQ7YF5bErHUHJDI7HBQZSY8VO0Ahk+hEfYS2xNDCMrqRTRvj5d236OTx4HzuX8Lcnpn0MyBrveL9uSS+LZrmleHZznD29tIuBzJeVCuN8Zg3jn7ioaSrL4xyds5t2WtEL5LjjxPdmWXJDGvEay/dn6F0klk8QGjV8oIYQglOVjzWZhZF/Agy/gNfyuxPg4yuqqvsVRU8fwe/xsL9qu25m6c/IHUNgIlVfJtmTTKIrCFx7vpCo/gw/uq5FtjqVxxdYgvB7BH9/WTMfEEg/brTJ51wdh9DWY7pZtyXnxerzsKtmlu2cLmFcklR0gaiPPNrocNy9fa0Rx1OQxdhTtIODVbxqVriwMq5u3dn1QTefYhKc7pjg2NM9nD7pe7cVwvzsGcu+uSppLs/niE1326rvd+V5AWLpQak/JHrrmuliOLetyXrChHjCv/Scj279RdGQH1lbiZGSbI1TazyCoUxg5lozRPtNu7XztyR8Ciq2qkBVF4QtPdFJTmOHmajeBK7YG4vUI/uT2Froml+01VSq3AupvUkPJOlX86s3u0t0oKLqNbvRkZuKrrDC1/cdO1ciR5TihLLN6bHvx5uXhLdRn4fjpmdPEU3Fr99ee/AFU7YMifcdTGsmTZyY5MbzA5w42uxXIm8D9DhnMPTvLaSvP4YtP2sy73fUBmOuH4SOyLTkvu4p3IRC6hpLVGcnmtf/YqUBqbTlOyCTPNtrbQ6CxUbcWneNT68VRVp0cNXEaJk6pv3M2QfNq64oy+U9Xun21m8EVW4PxeAR/cnszvVMr/Pz4iGxzNs+2d4A3aNlQcnYgm+aC5o0qUz0INjYQ6+1DSRm/IEATW716hY0mumJezjbW06v75Kjq7GqKM4p1O1NXTn4fhBd22Ged3mOnJ2gfXeSPDja706I2iftdMoE7t5ezvSKXLz7RZZ99t6E8db3XqR+rW0gsyJ6SPRyfOk5K0ed7GmhoRIlEiI8aX9CWke0nlVKIRZKG37VVkskU0dWEKT22ibk5knNzus1EVhSFY1PHrJuvTaXUfG3jQcgukW3Npkil1ArkhuIs3uXOQN40rtiagMcj+NM7WuifWeVHr+o3iMFwdn0QVqeh+0nZlpyXPaV7WI4v0zOvT+jXzBnJ50Y2Gt/Xu1WiK+oSAjN6bGM6z0QeWR5hem3auvnagRdgYchWIeRfnRzj7PgSf3y769VeCu53yiRu31bK7pp8/unJbqIJ63szgLp1JLMIjn9HtiXnRXuA6pW31YYomFEktTGycdn6m3/W1l8IzAgjn2v70cez1T4blvVsj38XAtnQdq9sSzZFIpniC4930lqW4+6rvURcsTUJIQR/cWcrI/NrfOdl4wcn6IIvADvfBx0Pq6PkLEZ1TjWFoULdhlv4CgrwFhQQ7TG+v1gTrjVbeLbmzUWO9nQjMjLwV1boct6xyWNk+jJpym/S5Txdia3A6Z+q27YCmbKt2RQ/fm2E3ukV/o87W/B47NMPbAVcsTWR65uKuKahkH95qofVmPU9GgD23KeOkDtlvfGNQoiNvK1eBEyakbwRRrZB+8/GEgJTwsi9BOrDCI8+j6bjU8fZVbILr8f4yVeXzJlfQmxZ/R2zAdFEki8+0cXu6jzu3F4m2xzb4YqtiQgh+Iu7WplejvLAoX7Z5myOij1Qss26oeTSPQwsDjCzNqPLQDUWwQAAIABJREFUecHGJqK9vYZXCdtpGYGZSwiivb0EG/XxQlfiK3TOdVo4hPxtdctW7XWyLdkU3z08xMj8Gn92Z6u1NydZFFdsTWZvXSG3tpbw78/0srBm/QctQqhv3sOvWHJ845WlVwL6LZMPNjaQWlggOaOPeF8IOy0jMGsJQWplhcTYmG7FUccn1Ur1K0uu1OU8XVkYgd5nYPd9oJMXbyRrsST/8lQ3B+oLubHZoi1UFsf6P2UH8md3trKwFudrz5kzrWjLXPEBEB5Lerc7inYQ9AY5MqHP8A2zZiQLIQhl+22xjGBtOY4v6DV8CUG0tw/Qbyby0cmjeIXXmsMsTnwPUGD3h2RbsikefLGfqaUof3GX69VeLq7YSmBnVR5vv6KCrz3fx8xyVLY5Fye3AhpuVR8QJgx8uBT8Xj+7S3bz6uSrupxndvuPLTxbk0Y16j0T+ejEUbYVbiPLn6XLebqhKOqLa+21UKjf8A6jWIzE+dIzPdzSWsL+sD4jNNMRV2wl8ad3tLAWV0MztmDP/Wo/YP9zsi15E1eVXcXZ2bO6LCXwlZfjycw0pf0nwyYjGyPL5iwhiPb0gs9HoLZ2y2fFkjFOTp3kqjILrqsbeRWmO9UQsg348jO9zK/G+fM7W2WbYmtcsZVEU2k2799bw7deGmRodlW2ORen7e0QzLVkKHlv2V5SSkqXqmQhBIGmJqLd5rT/2KEaOWLSqMZodzeBujqEf+t3nZo+RSwVY2/ZXh0s05nj3wZfCHa8W7YlF2VyMcLXnu/j3l0V7KzKk22OrXHFViJ/ckczQsAXHu+UbcrF8WfA9nfB6Z9DVJ+1dnqxq3gXPuHj6MRRXc4LNjcR7TT+ZxLKsseavbXluCltP9HOToItzbqcpX0Wriq1mGebiMKpH6kvryHri9c//aaLeDLlerU64IqtRCryMvj4dWF+cmyEs+OLss25OHvuh/gKnP6ZbEveQKY/k+1F23UT21BLC8nZWRLT07qcd8F7sv1EbbCMIGLC4vjk8grx4WFCLS26nHd08ihN+U3kh/J1OU83On6tDojZfb9sSy5K//QK3z08xIcO1BAutlje24a4YiuZP7ylkZygj//1SIdsUy5O7bVQ2AivPSTbkjext2wvJ6dPEk1uveAsuP7AN9q7tcMygmQyRWzN+CUEse4u4Nz3fiskU0mOTR6zZgj5tYcgtwoab5VtyUX5/x7vxO/18Ee36RNtSHdcsZVMfmaAP7ilkSfPTvJK/6xsc94aIeDKj8DgIcv13F5VdhXxVJyTU1tfJq898CMGi+25+cjWHdlo1hIC7Xuth9h2zHWwEl+xXgh5YQR6nlQjRFacaPU6To0s8Ivjo/zuDfWU5oRkm+MIXLG1AJ+4rp7SnCB//+uzlg8psud+dffmMWt5t1eWXolA6NIC5CsqwltYSLSrSwfLLsy5zT/WHd1p1hKCaFc3IjMTf9XWF5Fv5GutVol8/NugpGDPh2VbclH+30fOUpDp59M3W781yS64YmsBMgJe/vj2Zo4OzPH46QnZ5rw1OeXQfAcc+w4krSMSecE8mgqa9CuSamkh2mmw2NpgGYHWmmS42HZ2Emxq0mUm8qsTr1KVXUV5VrkOlulEKqWGkMM3QmG9bGvekhe6p3mua5rP3NpEbsj4wrh04aKfbCFEUAjxNSHEgBBiSQjxmhDiHjOMSyc+sK+GhpIs/v6Rs9ZfMH/lR2F5HLqfkG3JG9hbupdjk8dIpLb+EhBsaSba3Y1i4BCPjfnIFm7/0WwzMmerKIpulciKovDq5KvWy9cOvABz/ervjoVJpRT+n4fPUJWfwUeuqZNtjqPYzGukDxgCbgbygL8Gvi+ECBtnVvrh93r4y7vb6J1a4buvDMk2561puQuySuC1b8q25A3sLd/LamKVjtmtF5uFWlpQ1taIDxn3szgXRraw2Jqw8Sc5PU1ybk6XSuS+xT5mI7PsK9ung2U68to3IZgH298p25K35GfHR2gfXeS/3N1KyG/tvLLduKjYKoqyoijK3yiK0q8oSkpRlF8CfYDFXh3tzx3byzgQLuQfn+hkOWqdEO2b8PrVma6dj8DypGxrNthbqn4k9ZiTbEaRlB2WEZixXk/P4ihL5msjC2q73BXvVfvVLUoknuQfHu3kiqo8dzG8AVxygkQIUQa0AO3n+W+fFkIcEUIcmZqa0sO+tEIIwf/59m1ML8f48jPGz+bdEld+FFIJOP5d2ZZsUJJZQm1OLa9ObL1ISpvPa2SRlB2WEURMWEKgfY+DzVsPI7868SrFGcXU5mx95KNunPwhJCKWDyE/cKifkfk1/uptbe5ieAO4JLEVQviBbwEPKopy9rf/u6IoX1YUZZ+iKPtKSkr0sjGt2FOTz727KvjKc31MLEZkm3NhSlqh+oBa9GGhCuqryq7i1clXSSlby7V6srLw19QYXiRl9fnIkZU4GQa3/UQ7u/AWFeErKtryWUcnjnJV6VXW2kzz2kNQugMqLbjqb525lRj/+lQ3B9tKua7RXaFnBJsWWyGEB/gmEAM+a5hFLvyXu9pIpFLWH+N41UdhukPddWsR9pbtZT46T+/81hcJqBXJBvfaWnzzjxnTo/QqjhpbHmNsZcxaxVET7TD6qvq7YqUXgN/in3/TzUo0wV/e0ybbFMeyKbEV6mvi14Ay4L2Kolj36eAAaosy+eg1Yb5/ZIiO8SXZ5lyYHe+BQDYcfUC2JRtohTGvTGz9BSDY0kxsYIBU1Lg1iFZfRrBmsNgqySTR7m5diqMOjx8GYF+5hYqjjj4A3oC6E9qiDMys8M2X+vnAvhpaynJkm+NYNuvZ/huwDXiHoihrBtrjss7nDjaRHfTxtw+fkW3KhQnmwBXvg1M/hrV52dYAUJ1TTVV2FYfHDm/5rFBLCySTxHqMy5+Hsq29jCCyYuwSgvjQEEokoktx1OHxwxSGCmnKb9LBMh2IrcLx76kLPLK2HiI3ir//9Vn8Xg9/eoc+c6ldzs9m+mzrgN8H9gDjQojl9T/WH4NiYwqyAvzRbc082znFUx3Wqfh9E3s/AYk1OPF92ZZscKD8AK9MvLLlvK1WsGNkkVQoy9rLCIwOI0d0Ko5SFIWXx15mf/l+PMIis3rafwLRBfV3xKK83DvDr0+N8wc3N1KW645lNJLNtP4MKIoiFEUJKYqS/bo/3zLDwHTmd64NU1+cxd/+6gxxqw66qNwDFXvUcJlFBGN/+X4Wogt0zm0t36rtVjWy/cfKywjMWEIQ7ewEIQg2bc0bHVoaYmJ1ggPlB3SyTAeOfgOKW6DuOtmWnJdUSuHzvzpDRV6I37vRHctoNBZ5BXQ5HwGfh7+6p43uyWW+c3hQtjkXZt8nYLLdMoVS2gP35bGXt3SO8PsJNDYaWpFs5WUEZgy0iHZ24a+pwZOZuaVzXh5Xf9aWEdvxU+rvw96PW7Yw6sevjXByZIH/encbGQa2drmouGJrce7YXsa1DUV84fFOFlYtmtvb+T61UOrIN2RbAkBZVhnh3PBGwcxWCLY0G1qRrAmZFfO2WuGWkWFkvSqRD48dpjSzlLpci4wYPPoAeIOw+z7ZlpyX1ViC//XoWXbX5PPO3e4ACzNwxdbiCCH4v+7dxvxanH/+jbE9n5dNMBuueD+0/1hdjG0BDpQf4OjE0S3PSQ61tJCYmCC5sKCTZb91frZ1RzYavYQgFYkQGxjYciWyoigcHj/MgfID1uivja3AifXCqMxC2dacly8908vEYpT/du82d4CFSbhiawN2VObx/r3VPPhiP/3TK7LNOT/7PqFOybFIodSBigOsxFc4PXN6S+cYXSRl5WUEmtgalbON9fZCKrXl4qie+R5mI7PWCSGf+jFEF9XfCQsytrDGl5/t4d5dFeyts+bLgBNxxdYm/PmdrQS8Hj7/K4u2AlXshsqrLFMotb98P8CWQ8lGz0gOZQfU8y3o2Z6bixww5Hy9ZiJr+dqrK67esk26cPQBKG6F2mtlW3Je/u7hs6QU+K93uwMszMQVW5tQmhviswebeeLMBM92WnTu9N6Pw+RpGNp6rnSrFIYKaSlo2XKRlK+8HE9OjmF520DIi8eiywjO5Wx9hpwf7exCBAIE6raWZz08dpjq7Goqsy2Qexw/CSNHLFsY9Ur/LD8/Psof3NRATeHWitJcLg1XbG3EJ28IEy7K5H/8ot2arUA73wvBXDjyNdmWAGre9tjkMWLJy6/0FUIQbG0h2mGM2AohCFp0GcHGEgKDVq1FOzoINDYifJcv5slUkiMTRzhQYZEQ8itfA19I3YplMZIphb/5eTsVeSH+4JZG2eakHa7Y2oigz8tf37udnqkVHjzUL9ucNxPMVqsv238Cy/K97wPlB4gkI5yYOrGlc0Jt24h0dKAkjemFteoygsiycUsIFEUhcuYMoW3btnROx1wHi7FFa+Rr1+bVwqid77NkYdT3XhmifXSRv3rbNjIDxkQrXC6MK7Y242BbKTe3lPDFJ7qYXjZuZu9ls/9TkIzBqw/KtoS95XvxCM+W87ahbdtQVleJDRjT62zVZQSRFeOmRyUmJ0nOzm5ZbLWxnJYQ2+PfgfgqHPiUbEvexMJqnH94rIMD4ULesatCtjlpiSu2NkMIwV/fu521eJJ/eLRDtjlvpqQF6m9We26TW2u72Sq5gVy2FW7bct42tF0VhMjprVU2X/B8iy4jMHIJQaRd/V5q39vL5eXxl6nPq6ckU/JKz1QKXvkqVO2z5Cq9f3yyk7nVGP/tHdut0R6Vhrhia0OaSrP5xPVhvndkiBPD1lgA8AYO/B4sDkPnI7It4UDFAU5Mn2Atcfn7M4KNjerYxjPGia0lh1osxwybHhU5c1od09h6+RWx8VScVydetYZX2/c0zHSrn32L0TWxxH+8OMB9B2rZWZUn25y0xRVbm/K525opygrw33/eTiolv9XmDbTcA7nV8MpXZFvC1eVXk0gleG3itcs+QwQCBJubiZ4xpu0qw6LLCCLLccN6bCNnzhCoq8ObnXXZZ7RPt7OaWLVGy8/hr0JmMWx/t2xL3oCiKPz3n7eTFfDyZ+5WH6m4YmtTckN+/uqebbw2OM8Pjw7LNueNeH1qQ3/v0zBl7PL1i3Fl6ZX/P3tnHhZl2f3xzzPDPgyLgCAKiCgqIrjgwqaWWpZrmtqilpq215tWb/W2l2VWtvlrT9TMMnPJ1EzTVBQ3XAAVFTdkc2FnZhiWmef3x4i5ITPDLKjP57rmet+ree77Pixy5pz7nO/BUebI9oLtjdrHOaIj2kOZVnGILk1wGIFOp6daq7NaGrnqUGajU8jb87cjINDDv4eFrDKT0hw4+id0mwCOTWtyzqr0AlKOF/HCne3xcXe2tzm3NJKzvYEZ2a0lPVp7M3PtYUo1TUzIvttDhqHZu7+3qxlujm50a96NlPyURu3jEhGBrrSU2jNnLGTZJXs3wWEE1hxCUFtSQk1+Pi4REY3aJyU/hUjfSLxcvCxkmZmkzjX8b8wk+9pxBaqqWt5dfYhOgR480KuJaEbfwkjO9gZGEATeHh5JWaWh0rBJ4e5nSKml/QxVKruaEhsYy9GSo5zXmN+OVFc1a40iqaY4jMCaushVhw8D4NyISuTy6nIyCjOIDbSzSlNtFexdYLg68Qqyry1X8PmGLM6WV/HOiEjkkv6x3ZGc7Q1OxxYeTIgN4aedp8nItY5Yvtn0nGLQiE3/xa5mxLeMB2hUKtmlfXsQBLSHLH9v69oEJRvrqqOtcWdb9z1sTGS7q2AXOlFHfGC8pcwyj4MrQFPY5Np9jp6tYO7Wk4yNCaJbsLe9zZFAcrY3Bc8NDMdH4cyrvx9oWsVSrXoYBsvv/MbQGmEnwr3DaebSrFGpZJmbG06hoWitUCTlqrwQ2VY0nTSyptxgi6vS8rrI2kOHcAgIwMHbfCeQkp+CwlFBZ7/OFrTMREQRdn4FPu0gtJ/97LgCURR5/fcDKJwdeHFQe3ubI3EBydneBHi4OPK/wR1IyyllcWqOvc35F0GA3k9A4VE4sdFuZsgEGbGBsWzP345eNN/pu0REWMXZunkaHJq6rAk52wu21NlmSbSZmY2KakVRJCU/hZ4BPXGUWW/WboPk7IT8fdD7cZA1nT+lK9Py2XGiWCqKamI0nd8QiUYxoktLeoY244O1hylqSspSne4Bd3/Y8ZVdzYgPjKdYW8yRYvPvtl06dqS2oIDaEsvO7HVwlOPs5nDRwTUFNOVVyOQCLm6WdWZ6jYbqkycbpRx1uuI0eao8+6eQd3wJLl5NSge5rLKGd1Zl0rmlJ/f3DLa3ORKXYHOBTL1eT25uLmp1E53L2kRwdHSkefPmeHh4GPW8IAi8d08kd32WzIw1mcwe08XKFhqJgxP0mAL/vAvnj4CffdJavVv0Bgzpx44+5v2hv1RJyj3esn/o3Tyc0JQ3nQ9JmrJq3DycECxcWKM9cgREsVFtP3XXAXGBcZYyy3RKT0PmHxD3DDiZ3ytsaT786zDF6irmTewhFUU1MWzubAsLCxEEgfbt2yNrQqmXpoQoilRWVpKXlwdgtMNt21zJo33CmPPPMe7t3oq4MF9rmmk8MRNhy4ew82sY8oldTPBz8yPcO5yU/BQmd55s1h510VhVZqblna2nU5OKbNXlBmdraeqquRsT2abkpdDKvRVBHnas/t31LSA0KcWofadL+GnnaR6Oay0pRTVBbO7tSktL8ff3lxztdRAEATc3N1q2bMm5c+dMWvvU7W0J8XHj1eUHqKptIiIJCl+IGg37fwZNsd3MiA+MZ++5vWhqNGatl3t54RgYaJWKZDcPZ9TlTcfZasqqcfO0/H2fNjMTuZcXDi3ME8Ov0dWw68yuixXmdqFKBXsWQMRw8GxlPzsuoVan55XlB/BXujD9Dqkoqilic4+n0+lwdLRjUcMNhKurKzU1prWDuDjKeWd4JCcK1Xy96YSVLDODXo9DbaVdpwHFBsZSq68l9Wyq2XsYlKQs32triGyrmoxko6a8yirFUXXKUeaK4aedT0NTq7Fvf23az1BVZij+ayIkbTtFZkE5bw6LwN1ZGp/XFLFLeClNnTAOc79PfcL9GBodyP9tOsbJwiZyNx4QCaF9YNd3oLNPP2k3/264yF0a1QLk0rEj1dnZ6C1cc6DwcKa2Wk9NE5Bs1On0VFbUoLBwGlmsrkabldUoMYuU/BTkgpxeAXbSQ9brDcV+LWMgyM4ykRfIK61k9vqj9O/QnDs7BdjbHIl6kHK5NymvDemIs4OM/y3PaDLREr2fgPI8yFxpl+Od5c50D+jeOGcbEQGiaCj0sSB1UaSmCaSSK8sNH4YsnUauOn4camoa1faTkp9CtF807k7uFrTMBI6th+LjhnafJoAoirzx+wEA3hreSQpkmjCSs71Jaa504aW7OpByvIglTWVQQbs7oVkbSJljEASwA3Et4jhZdpICVYFZ6+schaXvbf/ttbV/RXJdVbSlC6QuKkd1NM/ZlmhLOFR0yL4p5O1zQBlouK9tAqzJOMPfmed4bmA7Wnm72dsciesgOVsLU1BQwLBhwwgMDEQQBE6dOmU3W+7vEUzP0GbMWJ3JuQqt3ey4iEwGsU9C/l7I3mYXE+oKa7blm3e+Q/PmyJs1s/i9rcLDEEU2hYrkOnENhYUjW21mJoKbG06tzRPF31GwAxHRfi0/+fvg5BZDVCu3f91JqaaaN1YeoHNLTybFh9rbHIkGkJythZHJZAwaNIilS5fa2xRkMoH3R3amskbHW39YZ/C5yXR50DD3c9vndjm+jWcbWihakJybbNZ6QRAMSlIWdrZNKY2suRBdW7pASnvoEC7t2yOY2YmwJXcL3s7edPLpZFG7jGbb5+DsAd0fts/5VzBjdSYlmho+GBWFg1z6U97UkX5CVzBz5kzCwsJQKpVERESwfPlyk9b7+/vzxBNP0KNH0yieCPNz59n+7VidXsD6Q2ftbQ44ukLPqZD1F5yzzjD26yEIAn1a9WF7wXaqdOalbF0iO1GVlYW+stJidjm7OSB3kDWRNPIFqUYLppHFmhqDs+0cadZ6nV5Hcl4yia0SkcvkFrPLaEpOwaEVBkfrYlzfuzXZmlXIkj25PNqnDRGB9rdHomHsXiP+1h8HOZRfbtUzIgI9eGOocZ+Gw8LCSE5OJiAggCVLljBu3DiOHTvG8ePHGTJkSL3rVq1aRUJCgqVMtihT+7Thj7R8XltxgN5tmqF0sXMKrMcjsPUTSPkCRnxp8+P7turL4iOLST2Tala/pmtUNOh0aA8dwq17d4vYJAiCQUWqiaSRXRSOyB0s91m8KisLUas1fO/MIL0wnbKqMvq06mMxm0xi+/+BIG8ShVGV1TpeWZ5BqK+CZ/q3s7c5EkYiRbZXMHr0aAIDA5HJZIwdO5Z27dqxa9cuEhISKC0trffVVB0tgKNcxgejojhXoeWDtYftbQ4ofKDbeEj/FcrzbX58j4AeuMhd2Jy72az1rlGGSTOVaemWNMvQa9sEJBs1ZZbvsa1MN3yvXKOjzFq/OWczDoKDfe5rNcWwbyFEjQGPQNuffwWf/n2U08Ua3h/ZGRdHO0T5EmZh98jW2IjTVixYsIDZs2dfLGxSqVQUFhba1ygLEB3kxaT4UL7fepLBnQOJDfOxr0GxT8Lu7w0SjgPftunRLg4u9G7Rmy25W3i558smt0s4+PriGBh40YFYCjcPJ8rOWy41bS4aK0g1VqZnIPf2xrGVeYpLm3M3082/G0onpUXtMord30ONBuKetv3ZV7A/p5Tvkk9wf89gerex879hCZOQIttLyM7OZsqUKcyZM4eioiJKS0uJjIxEFEWSk5Nxd3ev95WcbF7BjS2Zfkd7Wvu48eLSNDTVtfY1xru1oX0iNQm01r1GuBZ9gvqQp8rjeOlxs9a7REehtbCzVXg6N5ECqWqLVyJXpqfhEtXZrD7QfFU+x0qP2SeFXFNpmMfc7g5obr4YhyXQ1uh4YUkaAR4uvHJ3B7vaImE6krO9BLVajSAI+Pn5AZCUlMSBA4aG8cTERFQqVb2vxMTEi/totVqqqgzpwKqqKrTaJtB2A7g6yZl1bzS5JZXMWmtZUQaziHsGqsphzzybH92npeEP95a8LWatd42KpiY/n1oLZj3cPJ3QqmrQ1Zo/c7exiKKIurzKopGtTqWi+vgJXKPMSyFvyTX8jPq26msxm4xm/yLQFEL8s7Y/+wo+35BF1jkV74+Ksn/dhYTJSM72EiIiIpg+fTqxsbH4+/uTkZFBvBnTXVxdXXF3NyjcdOjQAVdXV0ubajY9Q5vxcFxr5qWcYseJIvsa07KbQcJxx5dQY9sPJP4Kfzo268jmHDPvbS/cPVoylVzn4OwZ3VZpatHXiha9s9VmZIAoml0ctTl3MyEeIbT2bG0xm4xCVwspn0NgNwix7+zctJxSvt58nLExQfQN97OrLRLmITnbK5gxYwbFxcUUFhYye/ZsNm/ezCOPPGLSHqIoXvVqSrxwZ3tCfNz479J0+6eTE6ZBRQHs/8nmR/dp1Yf95/dTVlVm8lqXjh1BLrdokVRd6taezlZjBUGLyvQMAFzNaPvR1GjYVbDLPinkA0sNLT+J08GOMohVtTpe+C0Nfw8X/jfEvqlsCfORnO0tiJuTA7NGRZFdpLF/OrlNP4Oo+7ZPbT6goE+rPuhFPVvztpq8VubqinP7cLQZFoxs64Qt7Nhrq7aCVGNlejpOISHIvbxMXruzYCfV+mrbO1u9HrbOhuYR0P5u2559BZ9vyOLoWRXvjeyMh5Q+vmGRnO0tSq82PhfTySnH7VhtLQjQ53koPQ0Zv9n06EjfSJq5NGtEC1AUlekZiHrL3LG6XZBsVNux17YusrVUGlkURUNxlLktP7mbUTgq6N7cMv3MRnN4FZw/bIhq7Th7e9/pEr7efIJ7u7fitvbN7WaHROORnO0tzIuD2hPqq+CFJelUaO0z9g6A8EHgH2mIJCzkuIxBJshIbJnI1ryt1OpNT6e7do5Cr1JRffKkRexx9XAEoWmkkS018af2zBl05wvNuq8VRZEtuVuIC4zD0ZZaxKIIyR8ZhmZ0usd2515BZbWO6b+m4a905vWh5k9KkmgaSM72FsbNyYGPx0RTUFbJ2/bUThYESJwGhUdtPn6vb1BfKqor2H9uv8lrLxZJWejeVi6X4eruaPc0soOjDCcXy4gl1H1vzBGzyCzO5HzledtXIR/7GwrSIOE5sIc05AU+WHuYE4VqPhodLaWPbwIkZ3uL0y3Ymyf6tWXJnlzWHTxjP0MiRoBPW0j+2Kbj92JbxOIgczArlezUpg0yd3cq09MsZo+bh7Pd08hunk4Wm4tamZ6O4OiIS/v2Jq/dnLMZAYGEljZUZxNF2PIReLSCqPtsd+4VbM0qZF7KKSbGtyaura/d7JCwHJKzleCZ/u2IaOHBy8syKFTZKaqSyQ2VyWfSIWu9zY51d3KnV4tebDi9weSqcUEmw6VzJNoL1baWwCDZaEdnW1518e7YElSmp+Ec0RHByfQ74A2nN9C1eVd8XG2olJS9DXJ2GPpqHSyromUsZZU1vPBbGmF+Cv47SBKvuFmQnK0ETg4yPhnbhQptLa8sy7Bfq1LUGPAMhi0f2jS6HRA8gJyKHI6WHDV5rWvnKLRHj6K3kHCJwsPJrmlkg3qUhYqjamvRHjxk1n1tTnkOR0qO0D+4v0VsMZotH4KiuUG72068ufIg5yqqmD2mi6R9fBMhOVsJANoHKHn+znDWHTrLr6k59jFC7ggJ/4HcXXB8g82OvS3oNgQENpw2/UzX6CiorbXYfFu3C5KN9vrAoymvtlhxVNWxY4iVlWYpR/19+m8A+ofY0Nlmb4cTmwwayI72EaL5Iy2f5fvyeOq2tkQHmd4qJdF0kZytxEUeSWhDXJgPb648xInzKvsY0XU8eAbBP+/ZLLr1cfWhm3+3i3/gTaHOkViqSMrNwwm9TqRKbXuxkdpqHVWaWovjN2zeAAAgAElEQVT12DamOOrv03/TsVlHWrq3tIgtRrHpPUNU28M0ERtLkVdaySvLM+ga7MXTt7e1iw0S1kNythZm9erVJCQk4OXlRUBAAFOmTKGiosLeZhmFTCbw8ZhonBxk/Gfxfmp0dtDodXCCPi9A3h6b3t0OCB5AVkkW2eXZJq1z8PPDIbCFxcQt6vpb7TFE/uLQeAulkSsz0pF7eeEYFGTSurPqs6SfT2dAyACL2GEUp7bCyS2GCmQnN9udewGdXuS5xfvR60U+HdsFB7n0p/lmQ/qJWpiysjJeffVV8vPzyczMJDc3lxdeeMHeZhlNC09XZo7sTHpuGZ+sN/0O0yJ0eQC8QuCfGTaLbuvuBs1KJXeOonK/ZSqS7SnZWHempaQatWnpZk362ZizEcB2zlYUDZkU9wCImWibM6/g683H2XWymLeHRxLio7CLDRLWRXK2VzBz5kzCwsJQKpVERESwfPlyk9Y/8MADDBo0CDc3N7y9vZkyZQrbtm2zkrXW4a7OLRgbE8RXm4/bZ1iB3BH6vggF++HInzY5soV7Czr5dGJDthnOtmsXavLzqTnT+Napi8MI7BDZ1kXTlkgj60pLqTp2DLeuXU1euyF7A20829DGs02j7TCKk1sMVciJ0+xyV7s/p5RP1h9lSFQLRnazYdpcwqbYfXg8f74EZyzXOnFNAjrDXTONejQsLIzk5GQCAgJYsmQJ48aN49ixYxw/fpwhQ4bUu27VqlUkJFzdD7hlyxY6depktun24vWhEew6Vcxzi/fz57OJeLnZuA0i6j5Dv+Om96D9XTYRgh8QMoDP9n7GGfUZAhQBRq9zi+kBgCZ1D55DBjfKhn/TyHaIbC0o1ajZuw9EEbeYGJPWlWhLSD2byqTISY22wSjqolplIHR7yDZnXoKqqpb//LIPfw8XZtxj3rxfiRsDKbK9gtGjRxMYGIhMJmPs2LG0a9eOXbt2kZCQQGlpab2vazna9evXM3/+fN5++207fCWNQ+HswGf3daFQVcWLv6XbvjpW7gB9/2v4IHZ4lU2ONDeV7NKhPTKFAs2e1Ebb4OTigIOz3G5pZEEAV6UFnO2eVIOYhYmVyJtyNqETdbZLIZ/4x9BX22c6OLrY5swLiKLIq8szOF2sYfaYaDxdJZWomxn7R7ZGRpy2YsGCBcyePZtTp04BoFKpKDRjQPiOHTt44IEH+O233wgPD7ewlbYhqpUX/x3UgXdXZzI/5RQPx4fa1oDOow0atf+8D+0HW10QPtQzlDDPMDac3sCDHR80ep3g4IBr165Upjbe2YL9em3VZVW4Kp2QyRofXWlSU3GJikLmbNr974bTGwhUBNKxmQ1GydVFtZ5Bhip4G7NkTy4r9uczbWA4vdrYULhDwi5Ike0lZGdnM2XKFObMmUNRURGlpaVERkYiiiLJycm4u7vX+0pOTr64z759+xg2bBhz586lf38bN+VbmMkJofTv0Jz31hzmQJ7pc18bhdwB+r0M5w7CAdtMBOof0p89Z/dQrC02aZ1bTAxVWceoLSlptA1unk52SyNbIoWs12jQHjxkcgpZVa0iJT+F/iH9bZNOPbIGcncbqt8dLKeaZQxZZyt4/fcDxIX58ORtUpvPrYDkbC9BrVYjCAJ+fn4AJCUlceDAAQASExNRqVT1vhITEwE4cOAAgwYN4osvvmDo0KF2+1oshSAIfDQ6Gh93J55atNf204E6jYSAKNj4LtRa3wENCB6AXtSzKWeTSevcYgwj4Cr37m20DW4eznZLI1tCqrEyLQ1qay9+T4wlOS+ZGn0NA4JtkELW62DD2+DTDroYn8WwBJXVOp5atA+FkwOfju2C3AKZBImmj+RsLyEiIoLp06cTGxuLv78/GRkZxMfHm7THxx9/zPnz55k8efLFqPdGLJC6FG+FE5/d15XTxRr+t/yAbe9vZTIY8AaUZsOeJKsf16FZB1q6t2TdqXUmrXPp3BnByQnN7sankhWe9ksjW0KqUbM7FWQyXE2sRF53ah0+Lj5E+5ku72gyaT8b5tX2f82QQbEhb686yJGzFcwe24XmHra9J5awH/a/s21izJgxgxkzZpi9PikpiaQk6zsFW9MztBnTBobz0bqj9GrTjAd7hdju8LD+0DoRNs8y9OA6K612lCAI3BV6F0kHkiiqLDJaBF/m7IxrVBSaPXsabYObpxPVWh011TocnWyjjavXi1RW1FimEnnPHlw6dEDu7m70morqCrbkbmF0+9HIrT3WrkZrqANo2R06DrPuWVewYl8eP+/K4fF+YfQN97Pp2RL2xajIVhCEpwRBSBUEoUoQhHlWtkmiifJEv7b0CffjrZWHSM8ttd3BggAD3gRNIWz/0urH3R16NzpRx7ps06Jb15juaA8dQqdSN+r8ulSuxob3tlpVDaJebHQaWayupnL/ftx6mHZfu+H0Bqr11dwdenejzjeK3d9Bea7hd8qGrTZHz1bw8rIMerY2fHCVuLUwNo2cD7wLzLWiLRJNHJlM4NOxXfB1d+LxhXsp1djwXrFVDHQcCimfg9r06nBTaOfdjrZebfnzpGmCGm4xPUCno3K/6YPoL6UulWvLVHKdoEVj08iVBw4iVlXh2t20+9o/T/5JK/dWdPbt3KjzG0RbZpiZHNYfQvtY96xLUFXV8tjCPSicHZjzQFccJTnGWw6jfuKiKC4TRXEFYAc5IYmmRDOFE1+O6865Cu1FLVebcfvrUKMxiF1YmcFtBrPv3D7yVHlGr3Ht0gXk8kb327rZQbLxX13kxkW2dV+7KZXIhZWF7CjYwV2hd1m/CnnbZ1BZYqgDsBGiKPLf39I5Vajmi/u7Sve0tyjSxysJk+kS5MVrQyL458h5vtx0zHYH+4VD13Gw+3soPmHVowa1HgRgUnQrd1fg0rEjlY0sklLYYRiButQyUo2a1FSc2rTBoVkzo9esO7UOvai3fgq5PN9wDRE5ClrYoAjrAnO3nWJ1RgEvDupAbJjUT3urYlFnKwjC1At3u6nnz5+35NYSTYzxvUMYFh3I7PVHSc6y4c/6tv+B3AnWWzcyaaVsRbRftBmp5Bgq09PRV5sflbq4O+LgKKO8yDID6Y2hokiLIIC7t/mRrajTUbl3n8n9tWtOriHcO5y23lbuN93wNog66P+6dc+5hN2ninl/TSYDI/x5tI+NtJ4lmiQWdbaiKH4rimKMKIoxdb2qEjcngiDw/sjOtG3uztM/7yOnWGObg5UBhjFomSvhlHUHPNwdejdHS45yrMT46N0tpjtidTXaDPP1vgVBQOnjQkWh7ZxteVElCi9n5A7m/0moOnoUfUWFScVRuRW5pJ1P467Qu8w+1yjy9hrafXo/Ad6trXvWBQrKKnl84V5aebvy0ehoSff4FkdKI0uYjcLZgW/Hx6DXi0xZkIqm2kYDz2OfBI+W8NcroLfezN07Wt+BXJCz5uQao9fUFQY1tt/Ww9eV8qLKRu1hChWFWjx8Gzfxpu5rdjOhOGrtqbUA1nW2omj4XXHzhcTp1jvnErQ1Oh5buJfK6lq+nRAj6R5LGN364yAIggsgB+SCILgIgiD16ErQ2lfB5/d35cjZCtsNLHByM7RtFOyH9F+sdoyvqy+9WvRizck1Rn9dDt7eOLdr2+h+Ww8fF8ptGdkWVuLh07jCHc2ePTgGBuIYGGj0mjUn19C1eVdaultxtNyh3+H0drj9f+DiYb1zLiCKIq//foC0nFI+HhNNuL/1+sIlbhyMjWxfBSqBl4BxF/7/q9YySuLGol/75rx4ZwdWpRfw7RbrFi5dJPJegyjBhrehunF9rdfj7tC7yVPlkV6YbvQa1+7dqdy7F7HW/Ehf6etKdWUtWrX15TF1NXrUZdUoGxHZiqKIJjUVVxMkGrNKssgqybJuVFujhfWvQ/MI6DrBeudcwsId2fyamsvTt7dlUGQLm5wp0fQxtvXnTVEUhSteb1rZthuSTZs2IZPJLhtSMH/+fHubZXUe69uGwVEt+GDtYTYftUHBlEwGd74PFQWGdg4r0T+4P04yJ9acMD6VrOjVC71aTWUj7m09fA1RZoUNiqQqirWXnWkOVUez0BUVoejVy+g1f578E7kg546QO8w+t0F2fm2Q+rxzhk1kGXeeKOKtPw5xe4fmPDdAEq6Q+BfpztYKBAYGXjak4KGHbD+U2tYIgsCH90bRPsCDp37ay7FzFdY/NLiXYVDBts+hNMcqR7g7udMvqB9/nvyTGp1xUaYiNhYEAfVW8wu4PHwMUaYt7m3LCysvO9Mc1Fu3AqAwUktcp9ex8vhKYgNjjZbENBnVOYOARbs7Iex265xxCaeLNDy2cA/Bzdz4ZGwXi4wqlLh5kJztFcycOZOwsDCUSiUREREsX77c3ibdMLg5OfD9QzE4O8qYNC+VErUNRBkGvm34379esdoR97S7h5KqEjblbjLqebmXFy6dO6PeZr6zVV64P7XFvW1di5GyEXe26m3bcGobhmNAgFHP7yjYwVnNWe5pe4/ZZzbI+tehptIQ1VqZcm0Nk+fvRi/CDw/3kAqiJK7C7kVOH+z6gMPFh616RodmHfhvz/8a9WxYWBjJyckEBASwZMkSxo0bx7Fjxzh+/DhDhgypd92qVatISEgA4Ny5c/j7++Pm5saIESN49913USgUFvlamjotvVz5dkIM9327g8cW7uHHyb1wakQ7SYN4BUGf52HjO3Dsb2hr+fFssS1i8XfzZ1nWMgaGDDRqjXtCPIVff4OuvBy5h+lFOS4KR5xcHagotE1kK5MLKLzM67HVV1aiSU3F+/77jV6zLGsZXs5e9AvqZ9aZDZKdYmj1SZgGvu2sc8YFanV6nl60j5OFahZM7kmo763xb13CNKTI9gpGjx5NYGAgMpmMsWPH0q5dO3bt2kVCQgKlpaX1vuocbYcOHdi/fz8FBQVs3LiRPXv2MG3aNDt/VbalW7A3H94bxc6Txby2wgYj+eKehmZhsOZFqLW86pJcJmd42+Gk5KdwRn3GqDWK+HjQ61Fv32H2uR6+LjYRtigv1KJs5mJ22lOTugexuhpFgnEp5BJtCRtzNjKkzRCc5I2fMnQVulpY/Tx4tDJ8ELMy760x1Cm8MyKSuDBfq58ncWNi98jW2IjTVixYsIDZs2dz6tQpAFQqFYWFxgvfBwQEEHAhlRYaGsqsWbMYPHgw33zzjTXMbbIM79KSY+dUfLHxGGHNFUztE2a9wxyc4e5ZsHAUpHxhlT+wI9qO4Nv0b1l5fCVTo6Y2+LxrVBQyhQL1tm143GleAZCHjyslZ6xXaV1HRVFlo4qj1Nu2ITg5Ga0ctfrEamr1tdzTzkop5N3fwbmDMOZHcLJulPnTzmzmbjvJpPhQ7u8ZbNWzJG5spMj2ErKzs5kyZQpz5syhqKiI0tJSIiMjEUWR5OTkyyqMr3wlJydfc09BEGw7bL0J8dyAcAZ3bsF7aw6zOr3Auoe1HWCYTbrlIyg9bfHtg5RB9AzoyfKs5ejFhoU0BEdH3GJ7o9661eyfv9LXhYoirdV/f8qLtI1q+1Fv24pbTHdkrg3vIYoiy44tI9InknBvK1TrVpyBf94zTPXpONTy+1/CxsNneW3FAW7v0JxX7u5g1bMkbnwkZ3sJarUaQRCok5pMSkriwIEDACQmJl5WYXzlKzExETC0/pw+fRpRFMnJyeGll15i+PDhdvua7IlMJvDxmGhiQrx57tf97D5VbN0D73zPMJ907ctW2X5E2xHkqnLZc9Y4wQr3+Hhq8vOpvpAlMRUPH1dqa/RWnf5Tra1Fq6oxW9Ci5uxZqrKOGV2FfKjoEFklWdaLate/DrVauPtDq86qTc8t5cmf9tEp0JMv7u+KgzQyT6IBpN+QS4iIiGD69OnExsbi7+9PRkYG8Ub+Ealj7969xMbGolAoiIuLIzIyks8//9xKFjd9XBzlfDchhlZerkxZkMrx8yrrHeYVBH1egMOr4Mhai28/MGQgSkcly7KWGfV8nQNSb0sx67w6B2jNXtu6vc1t+6lrb1JcqFloiGVZy3CWO1tHyOJkMqQvhrhnwMd61xY5xRomzUulmcKJHx6OQeFs99s4iRsAydlewYwZMyguLqawsJDZs2ezefNmHnnkEaPXT5s2jby8PDQaDTk5OXzxxRcolbe2XJu3wol5E3siFwQeTtrF+Qorjo6LfQr8OsLqaVBl2V5fFwcX7gq9i/XZ66mobnhvp+BgHIODzW4BUl64R7Vmr21dj63SzDtb9bZtyP18cQ5vOCVcWVvJmpNrDB9anCz8b6KmEv54BrxDrap/XKap4eGkXVTX6pg/qQfNldJsWgnjkJythE0I9nHjh4d7cL6iiknzdqOqstLQAgcnGPaFYXbp329ZfPuR7UZSpasyevSeIj4Ozc6diGaM3LsobGHFXtu6vc2JbEW9HnVKCu5x8UZNtPk7+29UNSpGthtp8lkNsmmmYcbx0M8M2tlWoLJaxyMLdpNTXMl3E2Jo2/zW/hAtYRqSs5WwGV2CvPi/B7pxqKCcR39MpapWZ52DgnpAr0cNQ+ZPm996cy0ifCJo592OpVlLjSpcco+PR6/RoNm/3+SzHJ3luCodrdprW1GkxcFJhqvSdBEG7cFD6EpLjW75WZa1jFburejub7x+slEUpBmq0LuOhzZ9Lbv3BWp0ep5atJfU7BJmj42mVxtpCLyEaUjOVsKm9O/oz6xRUWw7VsRzi/ej01up0vb2V8GzFax8xqK9t4IgMCZ8DIeKDhk1nMCtd2+Qy82/t/V1tWqvbXlRJR6+rmbNWq1Ljyvi4hp89mjJUVLPpjK6/WhkggX/7OhqYeXT4OYDd7xjuX0vQa8XeWlpBhsOn+Pt4ZEMiTJ+qpGERB2Ss5WwOaO6t+LVwR1Zk3GG1363kuiFsxKGfAKFRyB5tkW3HhY2DHdHd37K/KnBZ+Xu7rh26XJRO9hUDKP2rHlnqzW7Elm9dSvOER1x8Gk4yluUuQgXuQuj2o0y66x62fGlIbK9+0Nw9bbs3heYufYwS/fm8tyAcMb3DrHKGRI3P5KzlbALjyS24bG+YSzaeZrZ649a55B2A6HzGIMY/dlDFtvWzdGNEW1HsP7Ues5pzjX4vCI+Du2hQ9QWFZl8ltLHFVVxFXorZABEUaS8qBKlGfe1OpUKzf79uBtRrV9WVcbqE6sZ3GYwns6e5ph6bYqOG3pq2w+GCOu013216TjfbjnBQ7EhPNO/rVXOkLg1kJythN3476D23NcjiC82HuPLTcesc8ig98HFE5Y/CrWW61e9v8P96EQdS44uafBZ5W23gSii+ucfk8/x8HVBrxdRlVg+lVylrqVGqzNLPUq1eTPU1uLer1+Dzy7LWoZWp+X+DsZrJzeIXgcrHge5Ewz+yCo9tfNTTvHB2sMMjQ7kjaGdzEq1S0jUITlbCbshCAIz7unM8C6BzFp7hLlbT1r+EIUvDP0UzqTDllkW2zbYI5jEVoksObKkwdF7zh064NiqFeXr15t8Tl2VsDV6betaisypRK5Y/zdyP19cu3a97nM6vY5fDv9CjH8M7Zu1N8vOa5LyOeTsNDhaD8vfof6y6zRvrDzIHRH+zB4TLY3Lk2g0krOVsCtymcDHo6MZ1CmAt1cdYtFOy0st0nEoRD9gSCfn7LbYtg92eJAibRF/Zf913ecEQUA5cCCalO3oKkzr/b3Ya2uF9p+6PU3tsdVrtai2bEHZvz+C7Pp/QjblbiJfnc+DHR80286rOHMANs4wpI47j7bcvhdYsS+Pl5dn0Dfcjy8e6IqjpA4lYQGk3yIJu+Mgl/H5/V25rb0f/1uRwbK9uZY/5K6ZoAw0pJOrNRbZsndgb1p7tGZR5qIGn1UOHIhYU4Nq02aTzlA2cwHBOsIWFyNbE3WR1SkpiBoNyoENjxtclLmIAEWA5Ubp1VYZfoau3jD4E4unj//MKGD6kjR6h/rwzfjuODvILbq/xK2L5GwtTEFBAcOGDSMwMBBBEC5OD6qjqqqKSZMm4eHhQUBAALNnW7ZS9kbFyUHGV+O6Exfmw/NL0li6x8IO18UTRnwJxcfh7zcssqVMkPFAxwfIKMwg/fz124Bcu0Tj4OdHhYmpZLmDDHcvZyqsENlWFGpxdnPA2dU0ucGKdeuReXig6Nnzus9llWSx68wu7mt/Hw4yC0kabnofzh4wCJcoLNvruiajgKd/3keXIC++fygGF0fJ0UpYDsnZWhiZTMagQYNYunTpNd9/8803ycrKIjs7m3/++YdZs2axdq3ldXxvRFwc5Xw/oQdxYb48/1sav6bmWPaANn2h1+Ow61vDoHkLMCxsGApHBYsOXz+6FWQylAMHoEpORl9pWpSq9HGxWmSrNLHtR6ypoeKff1DedhuC4/WFMBYdXoSz3Nly7T7Z22HbZ9BtArQfZJk9L/BHWv5FRztvYg9J71jC4kjO9gpmzpxJWFgYSqWSiIgIli9fbtJ6f39/nnjiCXr06HHN9xcsWMBrr72Gt7c3HTt2ZMqUKcybN88Clt8cuDrJ+f6hGBLa+vLfpen8ssvCd7gD3gC/DrD8Mag42+jtFI4K7ml7D3+d/IsC1fXHCCoHDkSsrDRZK9nD19Vqd7amppA1u3ejLytDecf1U8iFlYX8cfwPBrcZjJeLV2PMvHBwMSx9BLyCDdOdLMjv+/N49pd9dA/2Zt6knihdTFfTkpBoCLt/fDvz3ntUZR626hnOHTsQ8MorRj0bFhZGcnIyAQEBLFmyhHHjxnHs2DGOHz/OkCFD6l23atUqEhqYfFJSUkJ+fj7R0dEX/1t0dDQrVqww7gu5RaibFPToj3t4aVkGOlHkwV4WEhNwdIXR8+Db22DZFBi/HGSNSxc+1OkhfjnyC0kHk3ilV/2/Z24xMcg9PalYvx7lgAFG7+/h44K6rApdjR65o2U+H4t6kYoiLa07m5aKLV+3DsHVtcGRej8e+pEafQ0TO01sjJkGRBF+fxJUZ2HyOoNgiYVYtjeX55ek0aN1M+Y+LEW0EtZDimyvYPTo0QQGBiKTyRg7dizt2rVj165dJCQkUFpaWu+rIUcLoFIZxst5ev7b2O/p6UmFiRWqtwIujnK+Gd+d2zs053/LD/DdlhOW27x5R7jrAzi5GbY2/s48QBHAsLBhLD26lMLKwnqfExwdcb/9dir+2WTSYAIPX1cQoaLYctGtprwaXa3epMhW1Omo+HsD7n36IHOpP/1cVlXG4iOLuSPkDlp7tm68sTu/hiNrDHKMLbs1fr8L/Lgj21AM1caHJCl1LGFl7P7bZWzEaSsWLFjA7NmzLxY2qVQqCgvr/wNqCu7u7gCUl5fjcuGPVXl5+S0/gq8+XBzlfD2uO88t3s+MNZmUVdYw/Y5wy4gLdJsAJ7cYFIhC4iGkYX3f6zE5cjIrjq1gwcEFTIuZVu9zyoEDKVu+HPXOXbgnGjcD1uOSUXte/paZaFOnt2zKnW1lWhq6wsIGU8iLDi9CXaPmkc7Gj6asl7y9sO41aH839Hqs8ftd4MtNx5i19gj9OzTn/x7sJhVDSVgdKbK9hOzsbKZMmcKcOXMoKiqitLSUyMhIRFEkOTkZd3f3el/JyckN7u/t7U2LFi1IS0u7+N/S0tLo1KmTNb+sGxonB0Nb0H09gpjzzzHeWHnQMtKFgmDQTvZuDb9NBrXpUoqXEuwRzJ2t72TxkcWUVZXV+5wiPg6Zm5tJVclKK4zaq9NbNiWyrVi33hCd961/so66Rs3CQwvp16pf40UstGXw20Rw94fh/2eRNh9RFJn552FmrT3C8C6BfD2+u+RoJWyC5GwvQa1WIwgCfn5+ACQlJXHgwAEAEhMTUalU9b4SExMv7qPVaqmqMkyaqaqqQqv994/khAkTePfddykpKeHw4cN89913PPzww7b7Im9A5DKB90d2ZmqfNizYbkj91ej0jd/YxQPuTQJNISx7xCAB2AimdJ6CplZz3QEFMmdn3Pv1pWLDBkSdcecpvJyROQiUnbdcRXLdXsZGtqIoUrF+PYq4OOQXMjTX4tcjv1JeXc6UqCmNM1CvhxVPQGkO3PsDuDVr3H6ATi/yyvIDfL35OON6B/PJmC6SYIWEzZB+0y4hIiKC6dOnExsbi7+/PxkZGcQbIbR+Ja6urhdTxh06dMDV9d/o4a233iIsLIyQkBD69u3LCy+8wKBBlm1juBkRBIGX7+rAC3e2Z/m+PCbN202F9voyiUYR2MUwMeb4RtjwdqO2aufdjtuDbuenzJ9QVavqfU45cCC6oiI0u1ON2lcmE/AJdKcwx3J3+4U5FXj5u+HoZFxUpz1wgJq8PJQD6y/s0tZqmX9wPr1b9CbKL6pxBiZ/DIdXGe5pg3s3bi8Mg98f/XEPP+86zRP9wnhneKQkwShhU+x+Z9vUmDFjBjNmzGjUHtcbGefs7MzcuXOZO3duo864FREEgSdva4uf0pmXl2Uw9psdJE3sgb+HeSPiLtL9YcjfD9s+hRbREDnS7K2mRk1l4+qNLD6ymMmdJ1/zGffbbkOmVFK6bCmK3r2M2tc3yJ2T+wsRRdEid9aFOSr823gY/Xzp0qUIzs4o77yz3meWH1tOkbaID6M+bJxxR9bCPzMME5t6P9G4vYAiVRWT56eSllvK28M7MSG2daP3lJAwFSmylbjhGBMTxNyHe5BdpGbklylknbVAxHfXLAjqbWgxOZNh9jadfDsRFxjHgkML0NRcWxZS5uKCx+C7qfhrndFayX5BSrTqGlQlVWbbVodWXUNFsRa/IOMK8/SVlZSvWo3yzjuQ11PMV62rJulAEl38uhDjH2O+cYVZhpasFlEw7PNG39OeKlQz6qsUMgvK+Xpcd8nRStgNydlK3JD0Dfdj8aOxVOv0jPoqhW3HGlkx7uAEYxYYZB1/edAgomAmj0c/TrG2mPmH5tf7jNeoexGrqihfvdqoPX0vOMbzpxv/weL8hXS0b1D9d6+XUrF+PXqVCq9R99b7zATZ0y8AABw3SURBVM+Hf6ZAXcDjXR43P/LWlsMvD4DcEcb+ZOiJbgS7TxUz8qsUyiprWDSlN3d2CmjUfhISjUFythI3LJEtPVn2eBwtPF2ZMHcXP24/1bgNlf4wdiFUFMCvE8yef9uleRcGhgwk6UBSvX23LpGdcA4Pp3TpMqP29G3lDgIWubctPG24TzY2si1dugzHoCDcelw7Yi2rKuOb9G+ID4wnLtDMFipdrUEhqug4jJ4PXkHm7XOBJak5PPDdDjxdHVn6eBzdQ7wbtZ+ERGORnK3EDU1QMzd+ezyWvuF+vPb7QV5bcaBxlcqtYmDYHDiVDCufMqgXmcGz3Z6lRlfDl/u/vOb7giDgde8otBkZaI8cbXA/R2c53v5unM+pv/DKWM7nVODu7Yyr0qnBZ6tPn0azcydeo0bWO07vu/TvUFWreK77c+YZJIrw5wuQ9ZdhPm1oYsNr6kGnF3lvTSYv/JZOr1AfVjwRTxs/4yJ4CQlrIjlbiRsepYsj302IYWqfNvy4I5uHk3ZRojYvKgUgeizc/iqkLzYU6phBiEcIY9qPYVnWMk6UXlv9ymPoUHB0pGzZtYdWXIlvkNIykW1OxcW0dEOULl8OMhmeI0Zc8/3cilwWHV7E8LbDze+r3fYppM6FhOcgZpJ5ewDl2hqmLkjl2y0nmBAbQtLEHni6STrHEk0DydlK3BTIZQKv3N2RD++NYvfJEoZ8sZWM3PrFJRok8XmDytSWD2FP/Xev1+PR6EdxdXDlk72fXPN9B29vlP37U/b7SvRGyDf6BSlRlVRRqTL/g0RNlY6Ssxr8jLivFXU6ypavQJEQj2PAte87P9/3OXJBzpNdnjTPoIzf4O83IfJeuP118/YADp8pZ/icbWw+ep53RkTy9vBIqYdWokkh/TZK3FSMjgliyWOxiKLIqK9TWLzbzKlBggCDZ0PbAbDqOcgybQ4tQDOXZkzuPJlNOZtIPXPtnlqvUSPRlZai2rixwf18gw0Osu7O1RyK8lQgYlRkq962jdozZ/Aaee0ReQcLD/LnyT8ZHzGeAIUZxUentsKKxyEkwTBruJ40dUP8vj+Pe/4vBXVVLT9P7c343hYaWiEhYUEkZytx0xEd5MWqZxLpFdqM/y7N4L+/paOtMUMdSu5omBDk3wkWj4dTpo3GAxjXcRz+bv58nPoxevHqu2RFXBwOAQFGFUrVFTSdb0Qqua6a2S+4YWdbunQZcm9vlLffdtV7oijy8Z6PaebSjEmRZqR+c/fAovvAOxTuWwgOziZvUV2r582VB3n2l/10buXJqmcS6NG68UpTEhLWQHK2EjclzRROzJvYk6dvb8vi1ByGz9nGUXP6cZ2VMG6ZoTp20RjINU71qQ4XBxee6fYMB4oOsCzraocqyOV43jMC9dat1BRcfx6ui8IR92bOjXO2ORU4Kxxw976+c6stKaFi40Y8hw1FcLq6kGrNyTXsPrObx6Mfx93JxAKkgnRYeA8ofGDCCnA1vVL45IX+2Xkpp3gkIZSfHulFc2UjxU0kJKyI5GwtzKZNm5DJZJcNKZg//987v+LiYu655x4UCgUhISEsWrTIjtbe3MhlAtPvaM+8iT0oUlcxbM5WFu08fV2Fr2vi7gcTVoLCDxaOhIK0htdcwtA2Q+kZ0JPZqbM5pzl31fteo0aBIFC8cGGDe/kFKSlsREVyYY4KvyBlg72wJYsWQU0NXvde3Vtboi3hg10f0Nm3M6PDR5tmwLnD8OMIcFIavqcegaatB5buyWXw58mcLtbwzfjuvDokQrqflWjySL+hViAwMPCyIQUPPfTQxfeefPJJnJycOHv2LD/99BOPP/44Bw8etKO1Nz/92jdnzbOJ9GjdjFeWZ/DET3sp1ZhYZOTRAh5aaXASC0bAuUyjlwqCwBuxb1Ctr+b9ne9f9b5Tq1Z43HUXpT//gq609Lp7+QUrKT2noVpba5r9gE6npyhf1WB/rU6lpmTBj7jfdhvO7dpd9f6Huz+korqCN+PeRC4zYWJO0XFYMAxkDobvpbdpd6sV2hqeW7yf6UvSiGzpyZ/PJkpCFRI3DJKzvYKZM2cSFhaGUqkkIiKC5cuXW2xvtVrN0qVLeeedd3B3dychIYFhw4bx448/WuwMiWvTXOnC/Ik9efmuDqw/dJY7PtnCxsNnTdvEK9jgJOROMG+ISRFusEcwT3R5gr9P/83f2X9f9b7Po1PRazQU/3j96NY3SAkiFOWaHt2WFKjR14oXC63qo3TxL+jKyvB97NGr3tuWt40/TvzB5M6TCfcON/7wc4cN3zN9rSGi9QkzyfZtxwoZ9Gkyv+/PY9rAcH6e0ptAr8YpTElI2BK7DyJI/vVoo9JixuAb5E7iGOP+MISFhZGcnExAQABLlixh3LhxHDt2jOPHjzNkyJB6161atYqEBMMw8HPnzuHv74+bmxsjRozg3XffRaFQcPToUeRyOeHh/9oSHR3N5s2bG/cFShiFTCbwaN8w4tv6Mv3XNCbNS2V091a8NjQCDxcj+zF9wuDhVYbodt5QePBXo6fSTIiYwNqTa5mxcwY9W/TEw+nfQQAu4eG49+9P8cKFNJv4cL1j7C4tkmrR1ss4my9wsTjqOpGtXqulKGkebrG9cY2Ovuw9TY2Gt7e/TahnKFOjphp/cN5eWDjKUHD20B/QvIPRS9VVtbz/ZyYLd5ymjZ+C3x6Po1uwpAYlceMhRbZXMHr0aAIDA5HJZIwdO5Z27dqxa9cuEhISKC0trfdV52g7dOjA/v37KSgoYOPGjezZs4dp06YBoFKp8PT0vOw8T09PKowUo5ewDJEtPVn5dDxP9Atj6d5cBn2yhU1Hrr5LrRffdjBpreEud8EIyLo6Ur0WDjIH3ox7kxJtCbNTZ1+97WOPoi8ro+Tnn+vdQ+HlhKvS0SwlqfM5Khyc5Xg1d6v3mdKlS9EVFuL72ONXvffFvi/IV+fzZuybOMkbVp8CDO0984eBsztM/NNQ2W0kKccLueuzZH7aeZrJCaGseSZRcrQSNyx2j2yNjThtxYIFC5g9ezanTp0CDA6ysNB4kfuAgAACLggAhIaGMmvWLAYPHsw333yDu7s75eXllz1fXl6Osp5JKhLWw9lBzouDOjAwwp/nl6TxcNJuhkS14PUhETQ3ZmSfVxBMXGuoqv35Phj5rVGj+SJ8IpjQaQJJB5LoH9yfxFb/ShO6du6MIj6e4nnzaTZ+PDKXq+0QBMFsJanCnAp8W7oj1DPHVaypoeiHH3Dt2hW3nj0ue2/3md38lPkTY9uPpZt/N+MOPLIWljwEXiGGqmMji6GK1dXMWJ3J0r25hPi4sXhqLD1DpZYeiRsbKbK9hOzsbKZMmcKcOXMoKiqitLSUyMhIRFEkOTn5sgrjK1/JycnX3FMQhIvVr+Hh4dTW1pKVlXXx/bS0NDp1Mv7TvoRl6RrszZpnE3luQDjrDp2l/+zNLNyRjV5vRMWyux88tApadoffJhkGnhtR6fxE9BO0927Py1tfJl+Vf9l7vo89iq6oiNIlv9W73i9ISXG+Gl2N8RrQol40VCJfp7+2bOUf1OYX4PvYo5dVK5/XnOeFzS8Q4hFinP6xKMKOr+CX+8GvgyGiNcLRiqLIr6k53P7xJlam5fHUbW356z99JEcrcVMgOdtLUKvVCIKAn58fAElJSRw4cACAxMTEyyqMr3wlJhoilE2bNnH6tKG9JCcnh5deeonhw4cDoFAoGDlyJK+//jpqtZpt27bx+++/M378ePt8wRKAIcp9dkA71j6bSOeWnry64gD3fLmNPdlGjNlz9TJEbZEjYcPbsPxRqNFed4mLgwuz+81Gp9cxbdM0qnX/Vka79eiBa/fuFP3wA2I9Eo6+Qe7odSLFBWqjv8ay85XUVOnqHasn6nQUffstzhEdUfTpc/G/1+preWHLC2hqNXzS7xMUjorrH1RbDX88C2tfgvZ3w8OrDf20DZCeW8ror7fz4m/ptGvuzupnEnn+zva4OJpQ7Swh0YSRnO0lREREMH36dGJjY/H39ycjI4P4+HiT9ti7dy+xsbEoFAri4uKIjIzk888/v/j+l19+SWVlJc2bN+f+++/nq6++kiLbJkIbP3d+eqQXn47twtnyKkZ9tZ2nf95HXmnl9Rc6usKoH+C2C8ML5g+BiutXOgd7BPNuwrscLDrIrN2zLnvP97FHqT1zhpIlS6651hwlqbpn6yuOKlv5B9XZ2fhOvTyq/Xzv5+w5u4fXY1+nrXfb6x+iKYYf74G98yFhGoz50XBXex3OlmuZ/msaw+Zs41SRmlmjolg8NZZwf+lqReLmQjC5wd9IYmJixNTUq9V2MjMz6dixo1XOvBmRvl/2QVNdy9ebT/DN5uMATE4I5dE+YQ1PkTn0Oyx/zKCKNOp7CLn+fNfZqbNJOpjEewnvMTRsKGBIp56eNAltxgHarF6Fo7//ZWtEvch307YQ3sOffg8aV9m77bcs0v/JZepnfZE7XP4Zu7a4mBN3D8YpJISQnxddHKW3IXsD/9n0H8a2H8urvV+9/gG5e+C3iVBxBobPgagx1328QlvDD1tP8u2WE9TqRCYlhPLkbWEoja0Kl5BoggiCsEcUxWsOfpYiWwmJa+Dm5MC0geFsfL4fgyID+HLTcRJnbWTOxizUVdcRlIgYDpP+Mmj9zhsMm2aCvn5d5me6PUN3/+68vf1tDhUdAgz3/C3eeguxtpYzb79zleKVIBMIjmjG8b3n0dU2fG+r14sc23OOVu29r3K0AGffex+dWk2Ld9+56GiPlx7n1W2vEukTyYs9Xrze5rD1U5h7B4h6mLjmuo62slrHN5uP02fWP3z6dxZ9w/34e1pfXrqrg+RoJW5qJGcrIXEdWnq58tl9XVnzTCI9Q5vx0bqj9Jn1D99tOYGqPqfbIgoe3QKdR8Om92H+UCjLveajDjIHPuzzIV4uXjy2/jGOlRwDwCk4GL+nn0a1YQMVf627al3HuEC06hpOpjVcKZ+TWYyqpIqO8VcXKak2b6Z81Sp8p069qBZ1uvw0U9ZNwVnuzMf9Pq6/zafirEG+8u83DPezjyVDq2t+qKeyWkfStpP0/fAf3v/zMJ1bebHyqXi+GtedYJ/6W5EkJG4WJGcrIWEEEYEefP9QD5Y9EUeHFkpmrMkk7v0NfLzuCEWqqqsXOCsN7UD3fGNQmvoqHvYuMESCV+Dn5scPd/yAg8yBKeunkF2eDUCzhybgEhHBmXffRVd2+WzeoIhmKLycyUy5/vACgMxtBbgoHAmN8r3sv+tUagrefAunsDB8HjWIVOSr8nlk3SPU6Gv4/o7vCXS/RhWxKEL6r/BVHJzeAUM/gzELrjlQoFRTzecbsoj/YCNv/XGI1j4KFk/tzYJJPYlqZZooh4TEjYxdnK217olvNqTvU9OjW7A3Pz3Sm+VPxBEb5sMXG48R/8FGXl2RQda1pgpF32eIcptHwMqnDanlc4eveizYI5jv7vgOnV7HI+seIU+Vh+DgQIt330FXUsLZWZcXUclkAh1iA8g5VISqpP7q50pVNSfTzhPeyx+54+X/3M9/+im1Z87Q4p13kDk5cVZ9lsl/TUZVo+Lbgd9euyCq6LhhkMCyKQZt46n/QPeHDfN/L+HEeRVv/XGQuJkbmb3+KF2CvFjyWCy/PhZLrzYNVydLSNxs2NzZyuVyampqbH3sDUllZSWOjtI9VlOka7A334yP4e9pfRgaFcivu3MZ+MkW7vt2O6vTC6jRXRLB+oQZWmCGzYHzmfB1Amx4B6ouV4EK8wrjuzu+Q12jZvJfk8lX5eMSEYHPpImULV2GKnnrZc93jAtEFOHw9jP12nl051n0OpGIK1LImtRUSn76Ce8HHsCtW1fOac4xZf0UirXFfD3gazr6XFGUV1MJmz+EL2MN8ot3fwST10Pzf5+r1en56+AZxv+wk9s/3syP27O5I8Kftf9JZO7DPaRZsxK3NDavRj537hxVVVW0bNkSmUzKYl8LURSprKwkLy8Pf39/PDw8Gl4kYVeKVFX8mprLwh3Z5JVW4qd0Znh0ICO7tSIi8JKfn7oQ1r0KaT+Dmy8kToeYSeD4r1rUgcIDTF03FQeZAx/0+YBezbpyavRoavLyCU6ae5lm8YpP9lJRpGXc27FXKUOJosjid3chd5Ax+uV/FaG0mZlkP/Qwci8vQpctY7/6MM9vfh51jZov+39JTMAl96611YZWni0fgeoMdLoHBs0E5b/Tdo6erWDZ3jxW7MvjTLmWFp4uPNAzmLE9g6QZsxK3FNerRra5s9Xr9eTm5qJWG9+Qfyvi6OhI8+bNJUd7g6HTi2w6co5fduew6cg5anQiHQKUjOjakkGdAmjte0EUIjcVNr4DJzaBR0vo8wJ0ecBQxQycKjvFc5ue40TZCZ7q8hQP+Q/l9PiH0JWWEjIvCZeICACO7DzD30mHGP5cV1q1v/zO9Oypcn6bmUrfB9oT2aclAFXHjpE9fgKCszPBC3/k1/J/+Dj1Y1opW/FJv09o531hpF5tNWQsgc0zofQ0BMdB/9cutjLlFGv46+AZlu/L42B+OXKZQN9wP8bEtGJAR38cpPmyErcgTcrZSkjcKpSoq1mVns+yfXnsO22YUxvu784dEQEMjPAnsqUn8uxkQ0o5dxe4+UC3CdB9IniHoKnR8Ob2N/nz5J/0C+rHm6FPUjzpCUStlpAF83Fu147aah1J/91G6ygfBk68XBxl06IjHN5ewMRZCTi7OlCdnU32uPGIiPjN/Yb38pNYe2ot/YP78078OyidlFCWB3vmGaJZ1Vlo0QX6v4Y+9HYOnalg/aGzrDt0lswCg8Z355ae3NO1JcO6BOLr7mzrb7GERJOi0c5WEIRmwA/AHUAh8LIoiouut0ZythIS/5JTrLngqM6w62QxehG83BzpHepDfFgzbnfOJDBrIcKRPw3VvuF3QtQYxLABLDq1io92f4SroyuP+Yyg9zt/ABAydy7O7dr961Q/iMf5guhGTbWOeS9upXW0LwMndjI42okT0VdWsv/1kcwpW0l5dTnPdvv/9u4+RqryiuP497ewHRZWXoSFBixS3kqBQim2GqiFpLaGRKJRm0aNFWNKY6M2tW1i2tJQ2n9K6x+NaUxssIppCZqobTQ2TTS0mrWxbHRjoUDZFapYFlkQ2YHdhd3TP+4sHYaZ2XtZ7swzk/NJbrIzc+/uORyee2buyzPf4e65X0Odr0RXGO99CWwQm/dVuhbcyctnPkNrxzFe7+zmWLYfCa66ctK5NwznPqk75y5Js91GdDHVPcBngReBFWa2q9Q23mydK+5Ytp+/7jtC6/5uWju6z00HOaGpkdUf7+PrDS+zvPsFMr0fYA2N6JNfYt+sq3kku5cdXf9g4cnx/GhrL43ZPibefDN20zqe++0Bln1lJjMWRIeSD3eeYOeLB7jh7llk/vIHjm/fztnMaH75jWbenPghK1s+x/3jF7LoYBvWuQMN9NGfmcRbU9ay3a7jlcNNHD8VXcg4bXyGlXOmsGLuFFZ/qsU/wTpXwoiaraRxwHFgsZntyz33FHDIzB4qtZ03W+eGZ2Yc7D7F3zu7aX/vQ9rfPcHerpPY4ADL9G/WjG5jTWMbMwaj+2nbxk7gkckt7O/t49ZW47q3BjE10LZqE9mB88/ZNo3q4fOv/hCdHWDHkgaeWSmuGJfh/qPdXHPqOACHG6by57PLeenMVey0+ZhGMX/aZSy5YgJLPzGRa2ZPZvaUcefNl+ycK26kzXYZ0GpmTXnPfR9YZWZrS23nzda5i3O6f4Dd//2IjiM9dHzQQ8eRk5w9spfpJ99mke1nSUMHvWO6eHVchj1nMix9YzQr/jWWvqaW835P5vRR3pifpe3qAeaN6eXabB+XnW6hfXAOuzWXQ82L0dSFzJnazJyWZuZObWbh9PGM/VjVv+bauZpUrtnGGVXNwImC504AF3wth6T1wPrcwx5Je5MEOowpROeL64HnEp56yQPyc/kn8Gz+S125J2tGvdSlXvIAz6WcK0u9EKfZ9gCF95+MBy6YLsfMHgMeSxRaTJJ2lnrHUGs8l/DUSx7guYSoXvIAz+VixbkZbh8wWtK8vOeWAiUvjnLOOefc/w3bbM0sS3QgapOkcZJWAjcCT6UdnHPOOVcP4k7z8m2gCTgCbAPuLXfbT0pSOTxdJZ5LeOolD/BcQlQveYDnclFSm0HKOeeccxGfwNQ555xLmTdb55xzLmVBNltJGUlbJB2UdFLSm5LWDLPNdyUdlnRC0uOSgplTTtJ9knZK6pP0xDDrrpM0IKknb1ldmUjLS5JHbv2Qa3K5pOckZXP/z24vs+5GSWcKajK7kvEWxBMrdkV+Iak7t2xWYFNBJcglqBoUSjjGgx0XED+XkPdVkLyPpF2XIJst0f2/7wKrgAnABuBpSbOKrSzpeuAh4MvALGA28NMKxBnX+8DPgcdjrv+6mTXnLTvSCy2R2HnUQE1+A/QD04A7gEclLSqz/vaCmnRWJMri4sa+HriJ6Fa9JcANwLcqFWRMSeoQUg0KxRobNTAuINn+KtR9FSToI5WoS5DN1syyZrbRzA6Y2aCZvQC8AywvscldwBYz22Vmx4GfAesqFO6wzOxZM3se6K52LCORMI9ga6Jovu9bgA1m1mNmrwF/Au6sbmTDSxj7XcDDZvaemR0CHiaQGkBt16FQgrER7LgYUkf7qyR9JPW6BNlsC0maBsyn9EQai4D2vMftwDRJk9OOLSXLJB2VtE/SBkm1OFltyDWZDwwMfbFGTjtRzKWslXRM0i5J96YbXllJYi9Wg3I5VlrSOoRSg5EIeVxcjJrZVw3TR1KvS/DNVlIj8HvgSTPbU2K1wvmbh36+YP7mGvA3YDEwlehd/23AD6oa0cUJuSax5/vOeRr4NNACfBP4iaTb0guvrCSxF6tBc0DnbZPkElINRiLkcZFUzeyrYvSR1OtSlWYraYckK7G8lrdeA9FMVf3AfWV+ZeH8zUM/XzB/86UWN5e4zKzTzN7JHfZ4G9gE3HrpIz/fpc6DsGsSe75vADPbbWbvm9mAmbUCv6YCNSkhSezFatBj4dxcn2Te9ZBqMBJVGxeXWrX2VUnF7COp16UqzdbMVpuZSixfhOhKSmAL0YUTt5jZmTK/chfRRSBDlgJdZpb6OYc4uYz0TwCpfxJJIY+QazLS+b4rUpMSksRerAYhzWk+kjpUswYjUbVxUQHB1SRBH0m9LiEfRn6U6LDRWjM7Pcy6W4F7JC2UNAn4MfBEyvHFJmm0pDHAKGCUpDGlzm1IWpM7t4CkBURX0P2xctGWliQPAq5J0vm+Jd0oaZIiXwAeoEo1SRj7VuBBSTMkTQe+RyA1gGS5hFSDYhKMjWDHxZC4uYS8r8oTt4+kXxczC24h+k5AA3qJPt4PLXfkXp+Zezwzb5sHib6s8yPgd0Cm2nnkxbYxl0/+srFYLsCvcnlkgU6iQzON1c4haR41UJPLgedz/87/AW7Pe+1aosOtQ4+3EV2Z2QPsAR4IMfYicQvYDBzLLZvJTdEaypIgl6BqUCSPomOj1sZFklxC3lfl4ivZR6pRF58b2TnnnEtZyIeRnXPOubrgzdY555xLmTdb55xzLmXebJ1zzrmUebN1zjnnUubN1jnnnEuZN1vnnHMuZd5snXPOuZR5s3XOOedS9j+Wu6+rESFLhwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#hide_input\n","#id parabolas\n","x = np.linspace(-2,2,100)\n","a_s = [1,2,5,10,50]\n","ys = [a * x**2 for a in a_s]\n","_,ax = plt.subplots(figsize=(8,6))\n","for a,y in zip(a_s,ys): ax.plot(x,y, label=f'a={a}')\n","ax.set_ylim([0,5])\n","ax.legend();"]},{"cell_type":"markdown","metadata":{"id":"ForYCsd_1yiO"},"source":["So, letting our model learn high parameters might cause it to fit all the data points in the training set with an overcomplex function that has very sharp changes, which will lead to overfitting.\n","\n","Limiting our weights from growing too much is going to hinder the training of the model, but it will yield a state where it generalizes better. Going back to the theory briefly, weight decay (or just `wd`) is a parameter that controls that sum of squares we add to our loss (assuming `parameters` is a tensor of all parameters):\n","\n","``` python\n","loss_with_wd = loss + wd * (parameters**2).sum()\n","```\n","\n","In practice, though, it would be very inefficient (and maybe numerically unstable) to compute that big sum and add it to the loss. If you remember a little bit of high school math, you might recall that the derivative of `p**2` with respect to `p` is `2*p`, so adding that big sum to our loss is exactly the same as doing:\n","\n","``` python\n","parameters.grad += wd * 2 * parameters\n","```\n","\n","In practice, since `wd` is a parameter that we choose, we can just make it twice as big, so we don't even need the `*2` in this equation. To use weight decay in fastai, just pass `wd` in your call to `fit` or `fit_one_cycle`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Z_KwpXo21yiP","outputId":"0601e2e3-5c5e-4c35-cbdb-ff5d0a331f26"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9720900.96236600:13
10.8755910.88510600:13
20.7237980.83988000:13
30.5860020.82322500:13
40.4909800.82306000:13
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["model = DotProductBias(n_users, n_movies, 50)\n","learn = Learner(dls, model, loss_func=MSELossFlat())\n","learn.fit_one_cycle(5, 5e-3, wd=0.1)"]},{"cell_type":"markdown","metadata":{"id":"92mKqJyQ1yiP"},"source":["Much better!"]},{"cell_type":"markdown","metadata":{"id":"UlMPFU4N1yiP"},"source":["### Creating Our Own Embedding Module"]},{"cell_type":"markdown","metadata":{"id":"LX4VoPus1yiQ"},"source":["So far, we've used `Embedding` without thinking about how it really works. Let's re-create `DotProductBias` *without* using this class. We'll need a randomly initialized weight matrix for each of the embeddings. We have to be careful, however. Recall from <> that optimizers require that they can get all the parameters of a module from the module's `parameters` method. However, this does not happen fully automatically. If we just add a tensor as an attribute to a `Module`, it will not be included in `parameters`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"khs42cfM1yiQ","outputId":"82ee52e5-c5a5-4bb7-ce7d-a20f6535ab53"},"outputs":[{"data":{"text/plain":["(#0) []"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["class T(Module):\n"," def __init__(self): self.a = torch.ones(3)\n","\n","L(T().parameters())"]},{"cell_type":"markdown","metadata":{"id":"4i-8CRqq1yiQ"},"source":["To tell `Module` that we want to treat a tensor as a parameter, we have to wrap it in the `nn.Parameter` class. This class doesn't actually add any functionality (other than automatically calling `requires_grad_` for us). It's only used as a \"marker\" to show what to include in `parameters`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"f-6LkTlF1yiR","outputId":"f8d56431-96c8-413d-a84c-7f238775181a"},"outputs":[{"data":{"text/plain":["(#1) [Parameter containing:\n","tensor([1., 1., 1.], requires_grad=True)]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["class T(Module):\n"," def __init__(self): self.a = nn.Parameter(torch.ones(3))\n","\n","L(T().parameters())"]},{"cell_type":"markdown","metadata":{"id":"YIaaDt_o1yiR"},"source":["All PyTorch modules use `nn.Parameter` for any trainable parameters, which is why we haven't needed to explicitly use this wrapper up until now:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SbCOCy011yiR","outputId":"141d8c06-0c34-481b-d09c-fb7bf6f72a7e"},"outputs":[{"data":{"text/plain":["(#1) [Parameter containing:\n","tensor([[-0.9595],\n"," [-0.8490],\n"," [ 0.8159]], requires_grad=True)]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["class T(Module):\n"," def __init__(self): self.a = nn.Linear(1, 3, bias=False)\n","\n","t = T()\n","L(t.parameters())"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ErCdK_J51yiS","outputId":"3c747d92-f662-43d8-c552-80e81e38cebf"},"outputs":[{"data":{"text/plain":["torch.nn.parameter.Parameter"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["type(t.a.weight)"]},{"cell_type":"markdown","metadata":{"id":"hjEf_rmK1yiS"},"source":["We can create a tensor as a parameter, with random initialization, like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"do-yiaTk1yiS"},"outputs":[],"source":["def create_params(size):\n"," return nn.Parameter(torch.zeros(*size).normal_(0, 0.01))"]},{"cell_type":"markdown","metadata":{"id":"Vvb_AEnc1yiT"},"source":["Let's use this to create `DotProductBias` again, but without `Embedding`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lI-YHaB21yiT"},"outputs":[],"source":["class DotProductBias(Module):\n"," def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):\n"," self.user_factors = create_params([n_users, n_factors])\n"," self.user_bias = create_params([n_users])\n"," self.movie_factors = create_params([n_movies, n_factors])\n"," self.movie_bias = create_params([n_movies])\n"," self.y_range = y_range\n","\n"," def forward(self, x):\n"," users = self.user_factors[x[:,0]]\n"," movies = self.movie_factors[x[:,1]]\n"," res = (users*movies).sum(dim=1)\n"," res += self.user_bias[x[:,0]] + self.movie_bias[x[:,1]]\n"," return sigmoid_range(res, *self.y_range)"]},{"cell_type":"markdown","metadata":{"id":"W2BoOhes1yiT"},"source":["Then let's train it again to check we get around the same results we saw in the previous section:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5_1LXSVn1yiU","outputId":"6ee9b1e6-88b1-4ac4-a08a-d2c701c48381"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9621460.93695200:14
10.8580840.88495100:14
20.7408830.83854900:14
30.5924970.82359900:14
40.4735700.82426300:14
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["model = DotProductBias(n_users, n_movies, 50)\n","learn = Learner(dls, model, loss_func=MSELossFlat())\n","learn.fit_one_cycle(5, 5e-3, wd=0.1)"]},{"cell_type":"markdown","metadata":{"id":"9Z3TOS-w1yiU"},"source":["Now, let's take a look at what our model has learned."]},{"cell_type":"markdown","metadata":{"id":"LREp0H4h1yiU"},"source":["## Interpreting Embeddings and Biases"]},{"cell_type":"markdown","metadata":{"id":"wvRCXkTS1yiV"},"source":["Our model is already useful, in that it can provide us with movie recommendations for our users—but it is also interesting to see what parameters it has discovered. The easiest to interpret are the biases. Here are the movies with the lowest values in the bias vector:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NY881khe1yiV","outputId":"8e0aaa32-4c05-4ca3-da7f-4f9f3fa347d3"},"outputs":[{"data":{"text/plain":["['Children of the Corn: The Gathering (1996)',\n"," 'Lawnmower Man 2: Beyond Cyberspace (1996)',\n"," 'Beautician and the Beast, The (1997)',\n"," 'Crow: City of Angels, The (1996)',\n"," 'Home Alone 3 (1997)']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["movie_bias = learn.model.movie_bias.squeeze()\n","idxs = movie_bias.argsort()[:5]\n","[dls.classes['title'][i] for i in idxs]"]},{"cell_type":"markdown","metadata":{"id":"Ckep32K_1yiV"},"source":["Think about what this means. What it's saying is that for each of these movies, even when a user is very well matched to its latent factors (which, as we will see in a moment, tend to represent things like level of action, age of movie, and so forth), they still generally don't like it. We could have simply sorted the movies directly by their average rating, but looking at the learned bias tells us something much more interesting. It tells us not just whether a movie is of a kind that people tend not to enjoy watching, but that people tend not to like watching it even if it is of a kind that they would otherwise enjoy! By the same token, here are the movies with the highest bias:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vwdRbAem1yiV","outputId":"30e2abb1-e6d5-48f3-fc2f-55bc114840cc"},"outputs":[{"data":{"text/plain":["['L.A. Confidential (1997)',\n"," 'Titanic (1997)',\n"," 'Silence of the Lambs, The (1991)',\n"," 'Shawshank Redemption, The (1994)',\n"," 'Star Wars (1977)']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["idxs = movie_bias.argsort(descending=True)[:5]\n","[dls.classes['title'][i] for i in idxs]"]},{"cell_type":"markdown","metadata":{"id":"ibW0S8XJ1yiW"},"source":["So, for instance, even if you don't normally enjoy detective movies, you might enjoy *LA Confidential*!\n","\n","It is not quite so easy to directly interpret the embedding matrices. There are just too many factors for a human to look at. But there is a technique that can pull out the most important underlying *directions* in such a matrix, called *principal component analysis* (PCA). We will not be going into this in detail in this book, because it is not particularly important for you to understand to be a deep learning practitioner, but if you are interested then we suggest you check out the fast.ai course [Computational Linear Algebra for Coders](https://github.com/fastai/numerical-linear-algebra). <> shows what our movies look like based on two of the strongest PCA components."]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"-eiJssWT1yiW","outputId":"733b1e16-7de8-4dc9-ce7e-2f8e6ab32fb7"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAyQAAAKuCAYAAABQVtgOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzddXhV9R/A8fe5d9vdXfdYMdgGo3N0SwqCCCIiiCgmFiBpYiAoISqgoIgIoiJId0h3p6NjyYJ13Dq/PwZXxoIBk/mTz+t5eB7u+eY5l7HzOd84iqqqCCGEEEIIIURZ0JR1B4QQQgghhBAPLglIhBBCCCGEEGVGAhIhhBBCCCFEmZGARAghhBBCCFFmJCARQgghhBBClBmbsu7AnfDy8lIrVKhQ1t0QQgghhBD/cQcOHEhUVdW7rPvxIPi/CkgqVKjA/v37y7obQgghhBDiP05RlEtl3YcHhUzZEkIIIYQQQpQZCUiEEEIIIYQQZUYCEiGEEEIIIUSZkYBECCGEEEIIUWYkIBFCCCGEEEKUGQlIhBBCCCGEEGVGAhIhhBBCCCFEmZGARAghhBBCCFFmJCARQgghhBBClBkJSIQQQgghhBBlRgISIYQQQgghRJmRgEQIIYQQQghRZiQgEUIIIYQQQpQZCUiEEEIIIYQQZUYCEiGEEEIIIUSZkYBECCGEEEIIUWYkIBFCCCGEEEKUGQlIhBBCCCGEEGVGAhIhhBBCCCFEmZGARAghhBBCCFFmJCARQgghhBBClBkJSIQQQgghhBBlplQDEkVRPBRFWawoSqaiKJcURXmqiHw6RVG+VRQlXlGUZEVRliuKElCafRFCCCGEEEL8+5X2CMk0wAD4An2BbxRFqV5IvjeBJkAtwB9IAb4u5b4IIYQQQggh/uVsSqsiRVEcgZ5ADVVVM4DtiqIsA54GRt2SvSKwVlXV+OtlfwUml1ZfhLidmE1nOP3TPlDBYjDjGu5N/TGdAPhr1m4q92+AxlZ7T20k7LvMsS+28ND8pwEwZuSypvNMarzZkoo9awNwdv5B0s4mUO/9jvd2QkUw5RjZMWgRzab1xEZvy9n5B7m07DiZUSk0/Kwr5ZpVtOZNPh7Lia+2YcoxorXVUmvEQ7iF+2Axmtn6/G/WfOZcE1kxqXRc8QI2etsi0+xc7Nnx2iLqvN0OR3/Xf+T8hBBCCPH/r9QCEqAyYFZV9fRNx44ArQrJOwv4UlGUG6MjfYHVhVWqKMqLwIsA5cuXL8XuigdVTmImRyf9Sasf+qD3dUZVVdLOJFrTT/+wl7A+9e44ILGYLGhs/h509KjlT1ZMKjnJWdh7OJB8NAa3cB8SD0VbA5KkQ1H4tQq9p3aKc2HhEfxbh2KjtwXAs24A5VqGcGT8xnz5VFVl/zurqP9hJzzrBJB0JIaDH66lzc/90NhqaT3n79mX5347ROL+K9i52AMUmxbyRB0iZ+2h3nsd7ugchRBCCPHgKM2AxAlIveVYKuBcSN7TwGUgGjADx4DXCqtUVdWZwEyAiIgItbQ6Kx5cucmZKFottq55N82KouBa2RuAo5P+BGDby7+jKArNpvYkftdFzv9+GIvRDED111rgHREEwPqesyn/SHUSD1zBMcCVOqPbWdvR6mxwq1qOpINRBLSrnBeIPF6byNl7AVDNFpKOxlBjcF7MfmLqNpIORWMxWbBztafO2+1wKOdCVmwaWwf+SoWetUjcf4XADlXQeTnw18zdKBoF1Wyh5tDWeNULLHCul5Yep+nXPayf3av6FnpNDCnZGDNy8ayTt5TLs7Y/OQkZpEYm4FbFJ1/eK6tOUfnZhoXWc2uab9MKHPlsE6ZMAzaOdoWWEUIIIcSDrTQDkgzA5ZZjLkB6IXm/AewBTyATGEHeCEmjUuyPEIVyCfPGvZovG3rMxrNuAB61/AnqVAU7Vz213mrDxT+O0eLbXtg45N1A+zQqT0D7yiiKQsala+x88w86LBlorS83KZNmU3sW2pZX3QASD0UT0K4ySYejCe1dl6j1p0k7n4Ql14Stow7HgLzpTGH9Iqj+WgsALi07zsnpO4j46GEADKk5OAd7UGVgYwA2PzOfWm+1xrNOAKrZginHWKDt7Ph0zDkmHMrd+mNZkM7dATtXPbHbzuHXIpS47ecxZRnJikvLF5CknIonJzGTcs0rFqijsDSNjRaXEE+Sj8Xg07jCbfshhBBCiAdPaQYkpwEbRVEqqap65vqx2sCJQvLWBt5RVTUZQFGUr4GPFEXxUlU1sZD8oox0n/YmdlpbbG1ssVgsPNusOx2qNym2zHdbF5FlzOHNtn3vqK1X5n1CXFoijnZ6AII9/Rj72Bv8cXADuSYjfRo+XGTZmJQE9lw4xmN1H7IeG/zb5wzr8AyB7nmjAksORTNhbSQxKdn4uzkw/NXmeOUYid16nnPzD9J6bl/rVKObZUan8tcHa8hJyCTWMZ3VwSdomZSJvacjCyocJ0rZS/Kn3/PnsFk42P1dfvmRLczLWUZWegaVftlH21wv7L0c8awbwKLNq1mZtA9TfSNrFiTxfteXSdt9hYuLjmLKNqKaVRYGHOPVT+exqt8XaOy0ZNeyZ/BvnzOl9wi86gVyYup2/NuE4dOkAi4hngX6nZ2Qgc7DocTXv8G4LpycvoPTP+zFvXo5nCt4FJgadnnlSQI7hqOxKTidrag0nacD2VczStwPIYQQQjxYSi0gUVU1U1GUP8gLLJ4H6gCPAk0Lyb4P6K8oymYgCxgExEgw8u80rsebhPoEERl3kRd+GkPDijVwcyhsJt69e6t9f5pXqpfvWI967YrI/bfY1ASWHNqULyCZ0nuE9e9LDkUz+o9jZF+fdhWdks3o3ZcZ16Mm3XvWZlPfuSQejMK/dViBug98sIbqr7fAr2Uob/76Gc1+DcRiyKunfpI/7w7syRNL3slX5kJiNDO2/M6PT3/E7h6/cKaCLZurRtEFyAzR8svGzYxI60DlVjXY4BrJ16vmETFLQ4vve+Po78qq9RtQVx+11mejtyXMpzy2Whv2XzxBxJstSTuXSOKBKPa/u4rQJ+sS3K1Gvj5o7Www55pue+1ucAv3oemXjwFgMZpZ2/V7nCp4WNPNuSaiN5ym2fTHC5QtPs2MVleazz6EEEII8V9S2ncJg4AfgKtAEvCKqqonFEVpAaxWVdXper5hwFfAGcAOOA48Vsp9EaUsvFwFHOz0xKRc5ff96/KNghQ1KrLi6BbWHt+Jg05P1LV4XPVOjOn2Cj7OHoU1Uahb6/5x51LWndiJomjQ2+qY2f99Jqz9kZiUBPp9P5pAd1/G9xxM92lvMqnXMEJ9gvh8zT50tlvR2+WitYB9SjWuUIEJayMZt3oEbZ0qMPvUCTJO5tAs2JP2mQbrlC1jhgEHPxfiUhM5f+UybRPCrX0LTffA3b5gcHY+IYpKvsF4uXvgXs0Xz21xLAm/AECCcza+6Y4YjiTjNSSQpoqel3d+TAObZth7OpKSmcbsvcvof6UmB71i8tXboVoTlh3ZTBXFH5dQL1xCvTBlG0k5FV8gIHEKdic3KROzwYTW7vY/6jnXR30Azszdj2edAJwC3azpsVvO4RjoVuhoTHFpGZeScanU+LbtCyGEEOLBVKoByfUpWN0LOb6NvEXvNz4nkbezlvg/sv/iCXJNBoI8yt1RuSNRkcwd+CnBnv58v20Rk9f9xPiegwvNO2n9T3y75XcAejfoRNfa+TdpW3l0K9vOHGRm/w9w0jmQmpWORtEwvOMAvto4nznPfVJovTmmTeQYw8gxhuJuTAK3jQzdbcbGbMec1lC+USU+fW4AR65EMjJtEnVf/wOtzoZmU3tS480W7Bu9kuPBSVTw88LOteC0rltV8inPqdjzxKRcxaNuAL/t3kWOxUBqdgbhfhWIcUon3cOCvpwzazctJ9uUi0ubQP7sN4/fq5yiZ7km2FtyCtRbM6ASk9fP5eTuHWReSUHRarB11lFnVNsCebU6G7zqBZJ0KBqfRsEAnP35AOd/P4whJZvDY9ejsdPS5ud+2DrquLT0OFHrIlEtKm5VfKjzdv6RqcsrT1K+S7VCz7eotKy4NIBCAxUhhBBCCCj9ERLxH3DzWgsflxxe+2USno56HHV6xvccjLO94x3VVzswnGBPfwC61WlD3+9ufS3N3wqbsnWz7WcP0bNeO5x0eWsjXEswdSwzNxtb7TVyjCEAXLP1RFU8mVpfh7dTJbBs48kn8xal1wioxDVLJs3nPYnOJm+EJKhTVYI6VSVq51IqZKTSaVh/a93tFz1baJvlPf0Y2r4/7yz+GsVGoeVzLdmzeQFajYbynn6M7PECvwSuYu2cD2hZuT4ANQe1YE+nY/idyebJbn3gVXj30w3oy7nQadWLAHg6uZGcmUq9Tzpho739j29YvwjO/nzAGpCE9a1PWN/6heYNf64R4c8Vva/Ejelcd5J2cfExQvsU/X0KIYQQQkhAIvK5da2F2aJyOakRL7VsSfe6AdZ8Wo0GVf17F2aDueAuT4VRVRUU5a77d3ObJS6DilZR0NtqyTZarMd1Wi3DO4YzbjXY2eS9p0OryVvEbbZYCtSjs7HDYCrZeQJ0qN7EugHAiZhzLHRebw2kiko7cOkk+y+doPu0N6319Jk5gi96jyDEO5BckwEbjbZEwQiAR00/fJtWwJRttL6L5H6y93IqclRFCCGEEAKgZG9XEw+MCWsjrcHIDTkmCxPWRuY7FuDuy1+xF7CoFjJzs9l+5lCRdR6JOs3l5Dggb8pV/fJV77p/LSrVY9HBDWTmZgOQmpW3q7SjTk9GblahZZx0DlTxq0CfhrkEuOmx0aSis0ll9MMt8gVZtxPmHcTl5NgS50/KSAEg12Tgu60L6duoy23TRnR6lhWvT2XJq1+y5NUvAfjlxc8J8c57x8jFxBjCfO7sBaHB3WqUSTACENKrNorm7gNQIYQQQvz3yQiJyCcmJbtExx+q0pCNp/bQZ+ZIAt19qeJX8L0UN9QrX4Xvti7kfGK0dVH73epcswUJ6dcYOOcDtBotDnb2zHj6PcJ8yhPs6UefmSMJ9vQrsEblw26DGL/6Byp4phHqreWV1m/QJDS8iFYKVzsonJiUq2TkZOFknzfSMXLhF5yIPQfAE98OI8Q7kK/65E1J+3jFDGJTEzFZzLSv2pjeDTpa6yourTi7zx+lTZUGd9RvIYQQQoh/M+VupsCUlYiICHX//v1l3Y3/tGbjNxFdSFAS4KZnx6iHCilRvBVHt7D9zKEiF7H/v/lx51J0NnbFvhPln2I0m3h29ntMfertf2zbZSGEEELkURTlgKqqEWXdjweBTNkS+QzvGI7eNv+L7fS2eWstBDzVsDM6m7KZ/hSbmsgrrXtLMCKEEEKI/xQZIREF5H+juZ7hHcPvaK2FEEIIIcT/OxkhuX9kDYkooHvdAAlAhBBCCCHEfSFTtoQQQgghhBBlRgISIYQQQgghRJmRgEQIIYQQQghRZiQgEUIIIYQQQpQZCUiEEEIIIYQQZUYCEiGEEEIIIUSZkYBECCGEEEIIUWYkIBFCCCGEEEKUGXkxohBC3IVHxk/EYDJhNJk5f/Uq4f5+ANQICmTyM/3+kTbNFgsPf/o5K0YNw87m7v77vpaZyW87dvNyh7al2reNx07w2dLlACSkpaGq4OPqAsCwrl1YfuAgDcNCebpl83tqJzMnl16Tv2TRsMHo7eyYtnY9v+7YxcWERH567WXaVK9mzbv/3Hk+XLiYbIMBnY0NE57uQ7XAQGvaBwsWYTSbMZnNDHyoNX1bNMvX1i87djF87nzmvv4KbapXI8dopMeEL1gw9A2c7O3v6TyEEEL8TQISIYS4CytGDQPgSmISncdNYN27o+64DlVVsagqWk3JBqu1Gs1dtXOzlMwsZmzYeFcBiclsxkarLTStbc3qtK1ZHYDPl67AZDHz9mOPWtOXHzh4dx2+xaxNm+kaUQ+9nR0AzcIr06VeHYb8OC9fPovFwoszZjHzpYFEhIawM/IMr//wExvffxuAkT//yrs9u9OmejXiUlJp/t6HdK5bB3cnRwCik5P5bccuageXt9Zpb2tLt4j6fL9xM4O7dCqV8xFCCCEBiRBC/CN+3bGLuVu3Y7ZYcHVwYNxTvQnx9WH+9p2sOXwEF70DZ+PimDLgaUbP/416IRU5eP4CUcnJvNi2DR7OzszZvJWrqWm83+sxOtetg8lspsKrgzn79WTsbW2JGPUeTzZrzJaTf5GQmsagju3o36oFAGMWLGLfufMYTCa8nJ2Z1L8v/h7uvPvrAq5lZNLhk/E42ev4Y9gQzsdfZdT8X0nOyMRWq2V09260rFbF2t67Pbqz/thxmoVXYugjne/6mpyKiqbX5K+IuXaNRmGhTOrfF0VRSMvOZsyCRUTGxJJrMtGiSjjv9eyOppBAbf72nSwePsT6uU6F4ELbSkhPJ9tgICI0BICm4ZW4lJDIyago6yhJenY2AJk5Obg66LG3swXyAsUR837hw96PM2bBonz1PtqgPt0nTJaARAghSpEEJEIIUcp2Rp5h7ZGjLB4+BDsbG9YfPcbweb+w6K03Adh79jzr3x1FkJentUx8SiqL3nqTuNRUWr7/MS+1b8uykW+x/9x5Xps1h8516xTalsFkYvnIt7iUkEj7T8bRq0kj9HZ2vNG5Ix5OTgDM3bqdcUuW8fVzz/DJk0/QY+IX+UZaXp31I8+1aUWvJo04FR1D7y++ZsuYd3HW501LUhSsfb8XkbFxzH9jEAAdPhnPztNnaBZemQ9+W0ir6lWZ/Ew/LBYLg77/kd9376V308b5yl9OTMRkseDn7nbbtnxcXHC0t2fjseO0rVmD1YeOkGM0EpV0jWqBgUwZ8DQDv/mOTxYtJSUrk2kDB1hHXWZv3kqNoKB8oyM3+Lm7oapw4WoCFX287/maCCGEkIBECCHuyJJD0UxYG0lMSjb+bnqea+pbIM/6o8c4djmKR8ZPBPKeuGfm5lrTG1UKzReMADxSvw4ajQZ/d3dc9Ho6160NQM3yQUQlJ2M0m1EK6c+jEfUBCPb2wklnT1xKKhV9vNl47ARztmwj22DAaDZjW8RUq5TMLE7HxvF444YAVA3wp7JfOQ5dvEjLqlUA6NWk0Z1dpCI8XKcWOtu8UYgaQYFcSkikWXhl1h87zrErUUxfuwGAbIOBYG+vAuVjr6Xg7eJcorYURWHWKy/w6R9LmbBsJRGhIYT6+mCjzRt1mb52PWOe6EHnunU4ExvHk1OmUj0okFyjiYW79uQbhbmVt4szsddSJCARQohSIgGJEEKU0JJD0Yz+4xjZRjMA0SnZfL4mEsyWfPlUVaVvi6YM6fJwofU46nQFjt24UQfQaDTobPP+e76xvsRssWBTyBSmG/lulDNbzFxKSOTjRUtYOWoYQV6e7D5zlrd++rnI8yos0FGUv486FNLfu3HrOZoteddNVVXmvPoSAR4exZa3t7Mj12gscXu1g8vz25DXAcgxGqk7/G3CyvlyNTWNP0+c4psXngOgkl85KvuV48jFy2Tm5hKbkkKrDz4B8hboD/lxHu/2fJTHG+cFZrkmk3V6lxBCiHsnAYkQQpTQhLWR1mDkhhyjGdWQ/1j72jUZMfcX+jRrSjk3V8wWCyeuRFGrkClA/4T07Gx0tjb4uLpgsViYt3WHNc3Z3p6sXANmiwWtRoObowOV/MqxaM8+Hm/ckMiYWE7HxlEnuPC1GdHJyfSf+q11cXhpaF+rJtPWrOfjJ3uh1WhISk8nMzeX8l75R0kqlfMl5lpKsSM+N7uammbd6evr1WtpUbUK5b28rKNN+86ep0FYCHEpqZyKjqGyXzlCy/laR4sAHpvwBW907mjdvctkNhOdlEy4n1+pnf9/3akD59ix5iCqqmI2milX3ovuA9uXdbduKz0lk0Uz1/LMsMdQNAobFu7kr0PnSU1K54X3nsAn4O9RzjPHLrFl2V4sZgt6Rx1dn3kINy+X26aZjCbW/76DC6eisbHVEhDiS5d+rTEZzcyZsJi+Q7piry+dBwJC/JtJQCKEECUUk5Jd6HGLqub73Cy8MkMe6cQz077FYrFgMlvoGlH3vgUkNcoH0aFWTdp8OBZ/d3caVQrj0MWLAHi5ONOlXh3afvQpHk6O/DFsCNMGDmDU/F+ZsX4jWo2Gqc89g7uTIyazuUDdcSmpJd4VrKQ+7v04n/yxlA6fjAfydrP68ImeBQISB52OhmEh7DlzluZVwgGYumYdP27eRnJGBm/OnoudjQ3bPnoPvZ0dc7ZsZfmBQ5jNFupUDObzfn0AsNVqmfb8AN797XcsFgsWVWVk966Elis4/e5We86cpUFYCI72cpNYEumpmaz5ZSsD3+6Fi4cTqqoSH5V0R3VYzBY02vv/2rTtq/bToE1NFE3eaGF4nYo0fKgWP01cki9fdmYuy3/cxDMjHsPT141je06zev5W+rzxSLFpABv/2I2NjQ2vfNQHRVHISMsCwMZWS81Gldiz4QitujZEiP86Rb3lF+m/WUREhLp///6y7oYQ4gHVbPwmogsJSgLc9OwY9VAZ9Oj+m752AwEe7jzaoH6ZtL/nzFm+37SZ7156vkzaf3nmD/Rv1YKm4ZXKpP3/N3GXE/ht2ioGffwUtoVMc4s6H8fGRbsw5ORNxWvbswkh1YKY+vY8ajerwqXIaNy8XHikfxuO7vqLA1tOYLFY0OnteLhPSzzLuXM1Ook1v2zFkGvCbDRTt0VVGrbNW4O1/MdNaG21JF9N4VpCGlXqhFCpVjBbV+wjLTmThm1r0bBtrQL9MhlNfDVqLm+Mfxob2/zPbqe+PY8nXn3YOkISc/Eqy+ds4qUPngQgOzOHyW/NZsjEAaQkpheZZmNjw1ejf+KNcf2xsy94bTLSsvjh04W8Mb7/PXwD4l4oinJAVdWIsu7Hg0BGSIQQooSGdwzPt4YEQG+rZXjH8DLs1f01qGO7Mm2/UaUwzsbFk20wWHfFul9yjEaaV6kswcgd8A30wr+CD1+PnkdwZX+CwspRo1E4Dk72ZGfmsPDbNTz+UicCQ8thsVjIzf57jVBGahb9hua9y+bymRhOHjjH0291x8ZWy9njl1jx02aeGfEYrp7OPPVmN2xstRhyjMwev4iQauXx8nMHICEmmb6Du6GqFqa+M4+cHANPD+1Oemom3475hTrNqhYICGIuXsXdx6VAMFIYD19XMtOyiLl4Ff8KPhzfewaA1OSMYtM0GgW9oz3bVu7jYmQMdjpbWj/akKCwvOmATi4OaG00JMZdw6uc+71/GUL8i0lAIoQQJdS9bgBAvl22hncMtx4X98etb1S/X+xtbel3j2+af1Dcuhvd650bE6w1c/rwBXatO8KL7z9B1Pl4vPzcCQwtB+RtdKB3/HsqXK3Gla1/P3P0Elejkpj92fX3wqiQk5W3c53RYGLNwq3ERyWhKArpqZnERyVaA5Lw2hWxsdUCWjx93QirXh5Fo+Di7oS9g460lIwCN/zpKZk4OjuU6Fzt9Toee74D63/fgcloJrRGeewd7NBqNcWmmU0WUhLT8A3yom3PpkRfiGfB9FUM+qgvOn1esO3o4kD6tUwJSMR/ngQkQghxB7rXDZAARIhiFLYb3YebLzGuR02eGlyDGWN+5dLpGLS3WRdiq7t51EKldtMqtOpWcD3F5iV7cHRx4Pl3HkKj1TD/y+WYbhrF1Nr+vQGComiuByd5NIoGyy275AHY2NpgNhVcQ1WUilUDqVg174WbGWlZ7F532Lpwvag0k9GERqOheoO8EbeAir44OOpJupqCf7APACajOV9/hfivuv+rxIQQQgjxn3XzbnQOFhM+plyyjWYmrI0k7VoGWRnZuHk6ExhajsTYa0SdjwPAYrGQnZlbaJ2ValXg2O7TpF3LsOaNvZQAQE52Li7uTmi0Gq5GJ3HlbOw9n4NPgAdJcSklzp+RmrcYXbWobF6yh3otq2F3PaAqKs3BSU9wuD8XTkUBkBSfQmZ6Nh7ertZzTElMwzug+O2whfgvkBESIYQQQpSam3ej0wD1c1Jxspgwpyn8NjWBVt0aUq583kslH3+pExt+34nRYARFoV3PptbRhJuVr+RP60cbsmD6alSLitlspmq9UPyCvWn+cH2W/biR43tP4+7tSvlK/vd8Du7erugc7EiKu4bn9elSa3/bTuSh82SkZTH/y+XoHe2ti9U3L9tD1Lk4zCYLIdUCeeixxta6ikt7+KlWrPjpTzYs3IlGq6Hbsw9h75A3bS3qXBwBFX1l21/xQJBdtoQQQghRav4ru9Gd2HeG6PPxdOhdNuuGlsxaT+2mVQsN0MT9Ibts3T8yZUsIIYQQpWZ4x3D0t6x7+H/cja56g0q4+7iiWu7/g1uT0UxQJX8JRsQDQ6ZsCSGEEKLU/Jd2o2vQpmaZtGtjq6V+y+pl0rYQZUECEiGEEEKUKtmNTghxJ2TKlhBCCCGEEKLMSEAihBBCCCGEKDMSkAghhBBCCCHKjAQkQgghhBBCiDIjAYkQQgghhBCizEhAIoQQQgghhCgzsu2vEEKIQr345scYjUaMJjNRUXFUrJC3jWul0GDefmvgP9Km2Wzh+dfHMPPL97G1vbtfUWnpGaxcu40+jz98z/0xmc18MHY6Fy7FYGdni4e7C8Ne74+/n89tyw4a+inPPNWVRhF39i6Luy1X2m53HaNi4un3wjtUDPbHYrFgMpmpXTOcZ/s+ireXe6n2ZfSYL3m2X3cqhwWze99Rvv9pMecuXKF3j468/Fwva77EpGtM+GoO8VeTMZnNDOjTlXZtGt82rbg6v57xCzWqhtGmZYNSPSchxN8kIBFCCFGomV++B0BsXCIvvPEhs6d/dMd1qKqKxaKi1ZZsQF6r1dxVOzdLS8/k10Vr7iogMZnN2Gjzv2W8c8cWNG1YG0VRWLB4HRO//onJnw67pz7+PyjJdXR1cbR+XwaDkR/nL2PQ0LHM+fZjHBz0pdKPoyfOYDJbqBwWDECAvw8jBz/Lxi17CuT96tu84OGzDx8h+VoqL7z+IXVqhePl6V5sWnF1PtWrM2+O/IzWLSJQFKVUzkkIkZ8EJEIIIe7KyrVbWbpyMyazGWdnR4a93p+ggHIsX72FrTsP4uzkwMXLMbw7/AUmfvG3cd4AACAASURBVPUT1auGcuLUOeKvJvJEj464uTqzePkmkpJTeO3FJ2nVPAKT2UybLs+zYdlMdHa29Og3lC4dW7D3wHGSk1N56onOPPbIQwB8NeMXjh0/jdFkxt3NmVFDn8PX25PJU+eSmpbJs4Pex0Fvz7RJb3M5Ko5JX88hJTUDGxstLz/Xiwb1qlvbG/T8E+zYc4T6tavwbL/u1nO00Wpp1qiO9XP1qqEsXfnnHV+rW0c9bv58/mIU4yf/gNlioWJwAEaj0Vru/MUoxk2ahcFopFJoMJevxDKw/2M0iqjJoKGfluiaAhw/eZYZsxeSnZMLwPP9H6Nxg1pExcTz6luf8nD75uw9cJzcXAOjhj5HzWqVCr2OxbGzs+XFAT3Zd+A46//czaNd2vDz76vYvHUfJrMZnZ0dw954hrCQIH76dQUpKWm88fJTQN7oxcDXxrBgzkR0drb56l2+ejPtr49kAAQFlANg87Z9mC2WfHnPnr9Cv95dAPBwdyWkYiB/bttHr+4dik0rrk5PD1e8vdw5dPQv6tWueruvWghxFyQgEUIIcccOHfmLbTsPMW3S29ja2rBj92E+m/IjUyeMAuDoidP8OP1j/Mp5WcskJacwdeIoEpNSeOr50TzZsxPfTnmXYyfP8NH4Gdab51sZjSZmTHmPmNirDHjlfTq3b45OZ0f/Jx/BzdUZgCUr/2TGDwt5f+RLDH3taV5969N8Iy0fjv+Wxx9tx8Ptm3PuwhXeHPU5P383DkfHvKf4iqJY+16cxcs30axxXevnTyfNok2LCJo0rH3nF/G6jz6byVO9HqbDQ004evw0rw0fny+tX+8utGvdiBN/nWPQ0LH5ypbkmqalZzB52lwmfjIUD3dXEhKv8dLgj5k7I6+u5Gtp1K1VhZef68Xq9duZMXsRUyeMKvQ6lkTV8BAuXIoBoEuHFvTt1RmAPfuPMXnqXKZPfptuD7fimZff48UBPbG317F01WY6PNS0QDACcOhoJM881a1EbYdXCmbD5j1UCi1PTGwCJ06dp3yg323Tbqd61TAOHDopAYkQ/xAJSIQQQuSz5FA0E9ZGEpOSjb+bnhcbFlwvsX33IU6fu8SLb+bdrKoqZGXnWNNr1wjPF4wAtG7RAI1Gg4+3B44Oelo1qw9AeFgF4q4mYTKZoJApMW1bNQLA388Hvd6ehKRrBPr7smvvERav+JOcnFxMJjM2NtoCZQHS0zO5eDmGTu2aARBaMYiK5QM4FXmeiHrVAaxpxfnp1xVEx8Qz/I1nrMfudS1NWnoGUTHx1hGAWjUqU6G8f760dq3zzr96lVBr2g0luaZHj58hNi6Bt96ZZC2nADFxCej1Opwc9daRm+pVQvluzh/3dE4qqvXvJ/86z88LVpKekYWi5E3/A3BzdaZxg5qs+3M3nds3Y+XabUUGhImJ1/BwcylR22+8/BRffTufZwd9gJ+vJ/XqVLX+uygu7XY83V05GXm+RHmFEHdOAhIhhBBWSw5FM/qPY2QbzQBEp2Tz+ZpI/E35p7GoQNeHW/Fs30cLrUev1xU4dvPTb61Wg931z5rr60vMFhWttmBAYndLObPZQkzsVaZ9/xvfffkBfuW8OHwskvGTfyjyvAqb+3/zMb3evsiyAAsWr2PL9v1MGT8Cnc6u2LyF0Wo1WG6aCmS4Pi1LVYvun6rmBQ7FKck1VVGpHBbMl5+NLFA+KiY+3/XVaDWYzeYSnVNRIk9f5JFOLcnNNTBm3DdMm/Q2lULLE381id4DRljzPf5oe8ZNnoWjgz2hFYOK3CjAzs6WXIOxRGtS3N1c+GDUy9bPQ9+eSHCQ/23TbifXYLyr710IUTKy7a8QQgirCWsjrcHIDTlGM9mG/MeaN67Dmg07SEy6BuTtjhV55uL96iYZmdnobG3x9HDFYrGwbNVma5qjg57sHANmc14A4OzsSHCQH2s37gLgwsVoLlyOpkrliiVqa/HyTaxev53Jnw7D2cnhrvob4OfDX6cvAHDuwhXOX4wCwNXFiaAAXzZszltMffzkWS5ejrGm+fv5sGnrXgBORZ63pt2JmtUqcfFyDIePRVqPleRp/63X8XYMBiPf/7SYaylptGvdiFyDAbPFgo+3BwCLV2zKl79SaHn09jqmf/cbPbo+VGS9IRUCuRIVV6I+pKZlYLoeUO09cJxLV2Jpe32Eqbi027l0JYawkKAS5RVC3DkZIRFCCGEVk5Jd6HGLqub7XK92VZ7t+ygj3p+CxaJiMptp27IB4ZUq3IdeQuWwYJo3qUu/F9/B19uD2jXDOflX3k22u5sLrZtH8MzL7+Lq4sS0SW/zwaiXmfT1HH5dtAaNRuGDkS/j6uJkvUEtSnp6Jl9Mn0c5Xy8Gj/ocAHudHd988S5Q/BoSs8WMnW3e6EO/J7vw/tjp7NxzhNCQIMIq/n1z+96IFxk3aRa/LFxN1coV8wVK7414kfFf/MDPC1ZRtXJFQioE4niHu1e5uTrz6Qdv8M2s38nIyMJkNuNfzpvPPxpcbLnCruOtbix6N5stmM152/5On/yOdTRjwFPdeP61Mfj6etGwfo0C5R/p1JLZPy8rdovjls3qs/fAcWrVqAzkrV/6eMJMMrPy/q2u27SLt996noi61Th+6ixTZ/yCRqPB3c2Fzz4cbB1FKi6tuDpVVeXQkb8Y+HT3QnonhCgNinrLL5l/s4iICHX//v1l3Q0hhPjPajZ+E9GFBCUBbnp2jCr6KbbILzsnl17PDGPW1DH4envedT1Z2Tno7XUoisK5C1cYMnoi82eNw8nx7kZq/m3GTvyesJAgevfoWGSe9IwsXhs2jplfvV/oovd/2s49R9i8ff8/9u4d8e+lKMoBVVUL321DlCoZIRFCCGE1vGN4vjUkAHpbLcM7hpdhr/6/bNyyhx/mLqHXo+3vKRgBOHIskhmzF6GqKoqiMHLIs/+JYCQ+IYnBoybg7enOsNf7F5vX2cmBQc8/QVx8IsFBJdsVqzRl5+Tw0rOP3/d2hXiQyAiJEEKIfG7dZWt4x3C61w0o624JIcR9JSMk94+MkAghhMine90ACUCEEELcN7LLlhBCCCGEEKLMSEAihBBCCCGEKDMSkAghhBBCCCHKjKwhEeJf5vvGj6HV2WGj+/tN191mfYZrKe0uE3fkFAe/+5XOUz+857oOz1nEkZ/+QNFoMBsMhLRrRqv33iAnNZ1jPy+lwaB+RZbNiEtg1etjeOL3aQBMDmzCa5EbsSvlHYROLFjJ5jFTcAnMu36KRqHle69TvtndrVNMvRLLz52fZdCxNSUus/GdCcTsOwZA0pkLuJb3t36/fVfPZkpw81I597Nrt3Jp617ajh2GKdfA0udGEH/0L4AC/d07dQ6nFq/DYjLhV7c67T4bhc31N1HvnTqHU3+sRdFqsXNyoN34kXiFhwBwbv02tn4yFYvJjG+tKnSc/C62ensS/zrH1rHT6DF38j2dgxBCiAeQqqr/N3/q16+vCvFf912j7mrCqbNl0rbZaCxx3thDJ9RZzR5Xs1PS8sqaTOrVE2dUVVXVlMsx6rQaHe+onUkBjdXcjMw77PHtHf9thbrshdHWz+c27FBnt+p91/Xd7txup7Dvt7TO/ceHnlLTouNVVc27xhe37lHjj0cW6O+FzbvVOW37qobMLNVisahrh32q7vl6jqqqqhp/PFKd2bC7asjMUlVVVQ98/5u6qN8QVVVVNTcjU/2mTmc1+dxlVVVVde1bY9Wdk7+31rvkuRHqpe377/k8hBDi3wDYr/4L7n8fhD8yQiLE/5HJgU1oNuIlzq7dSs61VNp/PopL2/ZxcfNuLCYzj3w7Fs9KFbiy8yB/fvAFvjXDSTh5BkWrpdMX7+FZuSJXdh5k6ydf03fVbOvT/joDHufy9n1U7dGRGr27sv2zb4nafQiL0YRXlVDajhte4Ol9euxVdC5O2DnmvZFZo9XiXS0MgE3vTCQ3LYO5Hfpjo9fRZ+l3LHh8EP4RNYk9dAIbnY6Hxg4rdKRBtVjY8tFXZCYk03Hyu5gNRrZ8+CUJp85izjUQ1LQ+rT54A41Wy67Js/hr6bq80QYFei2Yhr2rc7HX0JCege6mPKte+4Br5y9jyjXgViGQjpPewd7NBYDjvy7n4KwFAGjtbOn+48R8dZlyDax580Oc/Hxo9f4bKIpyF99qnkM/LODsmrzvtcU7r1G5SxsAYg+eYNu46RgyMgFoOuwFQto2K1A+as9h9B5uOPv7AKCxsSG4RUNSr8QWyJtw8gwBjWpje/1t2hXbNGHnpO9o+Fp/FEXBYjJhzM7B1kGPIT0DZ7+8Oi/+uQvfWlVwD8l7y3itpx9j7ZCPaTIk74VxVR5tz/FfllG+Wf27vg5CCCEePBKQCPEvtPylt61TejQ2Wvqumm1N07k40XflD5xesZGlz42kyzcf02L0IPZNn8eer36k89djAEg8dZY2Hw0hqEk9Tvy+kjWDP8pXzw0511LxrFSBpm89D8DuL2db2wDYOnYae6f+RPORL+crV6FVI/ZNn8d3jR4jsHFdgprUo2rPTtjq7a3BxtPrfspXJjHyPD1/noLGxqbQG2VzroG1Qz7BJagcnad+iKIobHpnIoGN69Jh4tuoFgurXh/D8V9XULlLG/bPmM/Lh1diq7fHkJGJjb2uQJ0Al7fvY26H/hgys8hOTuGxOZOsaW0+GoLeww2AHZ/PYN/0ebR4exBXdh5kz9dzeHLxDBx9PDFkZqHRajHl5AKQfS2V5S+MJqxTK+o937voL7OE7Jwc6bvyB6L3HWHFy+9SuUsbclLT2TD6Mx77aTJOvl5kxCcyv8tz9N/4c4HAK2rXQfzqVi9RW761qnBs/jKyk1PQuThxesVG0qPjAPCuVon6LzzJ9417oHNxwt7VmScWfQNAWnQ8LoHlrPW4BPiSHhNv/exXvwZ/fvDFvV4KIYQQDxgJSIT4F7j5RXTPpeYQPm4ET3RvUmje8G7tAPCpEQ6KYn1a7lsrnDOrN1vzuVUIJKhJPQCq9XyYDSM/Izc9s0B9Wp0dlbu2tX4+t24bhoxMzqz8EwCzwYB3tUoFytk66Omz7Dvij5wieu8Rjv2yjMNzFlkDmcJU6d4BjU3R/+380W8I4d3aEfFy37/7s347cYdPcmDmLwAYs3NwKueNnbMjHqHlWf3Gh1Ro3ZiQds2wc3IstN7yzRvQdeanAFzZeZCVg97j2W0LsNXbc3Lhak4tXovZYMSUnYNbxbyn/+c37qDa4w/j6JP3pu2bR4jMuQZ+6/EyTd96nsqPtC3Y4F2o8mh7APzq1SAzPhFTTi4x+4+RdiWWxU8P/TujopByMYpytavmK58eexWPsOAStVW+WQR1nunJoqfeRKuzo3zzCOv3khYVy7l12xi4YyGOPp7s+2YeawZ/lC+IK4qjtydZCcmYjSa0tvLrRQghRMnIbwwhytiSQ9GM/uMY2UYzAGaLypQNZ7ALLl/oy+m01xceK1otWjtb63FFo0U1m++4fVsHfYGpRm0/HV6iRd+KolCuTjXK1alGnQGP822dziRGnrdOebrVjeldRQlsUo+Lm3dTu38P63QiVJVusz7DLbjgteiz7Dui9x3lyo4D/Nz5WXrM/cI6bawoQU3rYTGZSIo8jynXwJGf/uDJpTNx8HTn1OK1HPt56fWcapF1aGxt8KtXnXPrthP2cGs0Wm2xbZbEje/1Rl0WsxlQ8aoaRu/rIxTFsbHXYc41lLi9es/3to7sRC7fgEelCgCcXrEJryqh1kCs2uOd2TV5FpA3InJl5wFrHWnR8Tj7+1o/m3INaGxtJBgRQghxR2TbXyHK2IS1kdZg5IYck5kJayPvqd6Ui1FE7TkMwKnF6/CqEorOufARhJuFtm/OgZm/YMzOAcCQkUnSmYsF8iWfvUjiX+f+/nzuEmaDEWc/b+ycHDBl52Axme6oz02GDqR8i4b80W+IdTQnpH1z9k2be/0GHbKTU0i9HIMhI5OspBSCmtSj6bAX8AoPITHyXHHVA5Bw6iyGjCxcgvzITUtH5+KE3t0VU66BE7+tsOYLadeckwtXk5mQnHcdMrMwXb/hVzQaOkx8BztnB1a+8h5mY955Hpr9O9vGTb+jcy6Of/2apFy4wuUdfwcBcYdPkrfWMj+vKqEkn7tc4rozryYBkJOSxr5pc4l46SkAXIL8id57BGNWNgAXNu207rBVoXVj4o+c4tr5KwAcnbs43whR8pmLeFctPiAUQgghbiWPsYQoYzEp2QWOdd66CPMOG+Zu+hGA9hNGF5iiczve1SsRuXQ9m8dMQdFo6DTl/RKVa/Bqf3ZN/p75jwzMGzlRFJoMGYjn9SfoNxizc9k8ZgpZicnY6HQoWg0PfzUGBy8PAKo81pGf2vVD5+pMn6XflbjfDV99Ght7HQuffJ0e876gzYeD2Tp2GnM79AfARmdH6zGD0djYsPzF0ZhyclFVFZ8alan0cOtC67yxhkRVVVBVOn7xLg6e7lRs04RTf6xldqsncfbzwbdWFeIOnwQgqEk9Gr7Wn4VPvo6i0RRY1K4oCm3HDmfLx1+xbOBIus78lOSzF3EN8i/xud6OvZsLj/7wOVs/mcrmMVOwGI24lg+g+48T4JZRrZB2zdn79RxUiwVFk/es6ecuz5ERe5Xc1HRmRnSjQuvGdJj4NgAL+7wBqorZaKLOgMcJ69QKgEqdWxN36ATzHh6A1s4OnYsTHSe/C+Stc2n32SiWDBiGxWzGp0Zl2rw8xNqHi1t2U6lz61I7fyGEEA8GpbAnbf9WERER6v79+8u6G0KUqmbjNxFdSFAS4KZnx6iH7qrOm3fSEvfPbz1f4bE5E4tcy/JPWz9yPBVaNy4yMPsnmQ1G5j8ykMd//cq6SYAQQvw/UxTlgKqqd/fSKnFHZMqWEGVseMdw9Lb51yDobbUM7xheRj0Sd6v3om/KLBgBaDbiJesuYPdbWlQczUa+LMGIEEKIOyYjJEL8C9y8y5a/m57hHcMLXdAuhBBCiPtDRkjuH1lDIsS/QPe6ARKACCGEEOKBJFO2hBBCCCGEEGVGAhIhhBBCCCFEmZGARAghhBBCCFFmJCARQgghhBBClBkJSIQQQgghhBBlRgISIYQQQgghRJmRgEQIIYQQQghRZiQgEUIIIYQQQpQZCUiEEEIIIYQQZUbe1C5ECfVu/gd2Oi22dlosFgtPv1aTtl0rFpr385G76NgzhNoNfe9zL4s3e8oRlsyLxMvHAVUFnV7LW580IqyaR6H5l/58mtwcE08MrFYgbfXCc+zaGMVH37S6q76s+v0si2b/BUB8TCb2ehtc3XUAvDW2ETM+O0TvF6rRtG3gXdV/Q2J8Fu8P2srU3zui0ShMH3uALWsuEReVyew1jxAS7m7Nu2tTFLMmH8FksuDiasfoiU3xC3IGYOfGKGZNPgwqWCwqzw6uTctO5YmNyuDdFzdb68hIM5CZYWTF4d4Ycs281msNk+e1x8nF7p7OQwghhPivkoBEiDvw4fSWhIS7c/pEMq/2XEP9Zn64edjny2M2WxjxWZMy6uHtdXwslEHv1Adg8dxIZnx+iAk/ti2Qz2Sy8Gjfyv9YPzr3CqNzrzAAxg3bQXhNT3o8U6XU25nz9TF6PBOORqMA0LxDEI8/W4XXn1ibL196ai7jhu1k2sJOBIW4sG7xeSa/u5cJc9qiqipjh+7g6wUdCAl359ypa7zaaw3NOwThF+jErFWPWOv5+qN9mE0qAHY6Le27h7Bg1imeG1K71M9NCCGE+C+QgESIu1C5ugcOTjbEXslg16ZoNi2/iKuHjktnUxnxWROmfrTf+nR/3LAd2Om0XLmQxtXYLKrX9ebtSU1RFIWMNANTP9nPX0eT0CgKtRr4MPijhhgNZr6feJjDe+IxGS1UDHdj6CeNcHC0Zdn80/z+wyns7LRYLCpjprUkqKILUz7Yy6GdcdjaadE72jBtYafbnkdmugFn17wn97FRGbzUbRWP9Q/nwI5Y2ncPITkhm+xME4PeqY/RYObLMfs4vDser3J6yoe65qtr/rcn2LL6EmazipevnuHjm+Dprb+n63xkTzzzvz1OYnw2bboE89LIegAkXc3iyw/2ER+TSW6umbZdK/D0qzULlM/NNbNl1SVeey/CeqxWA59C24q6mI67lz1BIS4ANG4TwNihO0hJzsHVXYdGA5npRiBvFMTTW28Ncm4wGsysX3qBiXP+DvDadq3Ai91WSUAihBBCFEECEiHuwsFdcRhyLQRWdOHimVSO7b/KrFWPEBDsXGj+C6dTmDSvPRoFnn9kJfu3x9KghT9ff7wfvYMNP6x6BI1GISU5B4BfZpzA0dmWGUs7A/Dt+IP8PP04Lwyvy7fjD/Ljmq74+DtiyDVjsaicPXWNA9tjmbvxUTQahfTU3CL7vnbxOQ7siCUtNReTUeWrXztY01Kv5RIc5sqzg/NunmdPOWJNWzb/DLFXMvhxbVdMJgtv9F5LuQAnANYtPk/0pTS+WfwwGo3CknmRTB+7n/emtLin6xwfk8lXv3UkK8PIU62X0OWJMAIrujB26A6eeb0WtRv5YjSYGdJ3A1VqedKghX++8n8dSSQg2BmdTnvbtoIqupCckM2pI4lUre3F+iUXALgak4mbhz1jprbknRc3Y6+3ISvTyPgfHipQx44NUXj7OlC5hqf1mIe3HhtbDZfOpRJ8SxAnhBBCCAlIhCjWkkPRTFgbSUxKNkGpOQwduAlPFx0OTrZ8NL0lztfXBdSM8CkyGAFo3j7IelNcqboHMZczgLw1C98t62J90n5j+teODVFkZRjZsvoyAAaDmbCqeWsd6jYpx/gRO2nWLogmDwXgX94Z/yAnLBaVz0buol6TcjRtG1BkX26esrVm0TnGvL6VWSvzphzZ6bS06RJcaLlDu+Po1DMEG1sNNrYa2ncP4di+q9b+Rh5L4oVHVgJ509Ycne99zUTrzsFoNApOLnaUD3Ul+nI6nr56Du+JJzV5nzVfVqaRS2dTCwQkCXFZuHvZ31ptoZxc7Pjg65ZM+2Q/hlwzjVoF4ORih9ZGg8lk4edvjjN2ZmtqRvhwbP9VPnx9K3PWdcPB0dZax6rfz/Jwr9ACdXt460mIzZKARAghhCiEBCRCFGHJoWhG/3GMbKMZALNF5WxdHQOeq0v3uvlv+PUOxf8o2d30hF6rVTCbLMXmV4EhHzekXlO/AmmffNuKv44kcXBXHIP7rGfo2EY0bh3Aj+u6cXh3HAd3xDHjs4N8t6LLbadMtekSzLhhO0lJyrGeh6IoheZV1WL6q6o8/VpNujwRVmx7d6rgdVNRLaAoCjOWdsbGtviNAnX2Wgy55hK3F9Hcj4jmedc8OSGbX2eewL+8E2dPXiMxPpuaEXnTvWpG+GCvt+HS2VSq1vYC8hbPH9kTzzuTmxeo15BrRmd/+1EaIYQQ4kEk2/4KUYQJayOtwcgNuUYzE9ZGllobTR4K5JeZJ1Cv3+3fmLLVrG0gC2adIjfHBEBWhpGLZ1MxmSzEXM6gah0v+r5Sg4gWfpw5kUxKUg6GHBONWgXw4si6ODrbEns5/bbtH9oVj6u7Dpfru1sVp37TcqxbfAGTyUJujokNSy9Y05q1C2LpvEjrVDFDrpmzJ5MBOHU4kSF919/ZhSmGg5MttRr48PM3x63HrsZkkpSQXSBvSLg7V86nlbjuG3VYLCrfTTxEt76V0TvY4u3nQEJcFpfPpQJw8WwqyQk5+UbFVi88R+M2gdadwm4wmy3EXk6nYmW3OzpPIYQQ4kEhIyRCFCEmpeANbnHH78Zr70Uw9aN9DOi4HK1WQ+1GPrw5piF9X6nB7ClHeOnRVSiKgqIoDHizFv5BTowbtpOMdAMaRcHH34GXRtYjPjqDCaN3YzapmM0WGrUOoFpd70LbvLGGRFXBxlZhzLSWBRZnF6Zrn0qc++saAzosx9vPgTqNfIm9kjf1rGOPEFKv5fBG73VA3ojJo/3CCavmQVx0ZqmPDrw7pTlTP97PgE7LAXBwtGXk5wUX0QcEO+PkYsflc6nWRfhfjtnLtrVXSE7I5q1+G3Bx1zFnXTcAZk08zLEDVzEZLUS08OfF64voPb31DP24Ie+/uhXN9RGkUROa4OL2d/CxZuE53hjToEBfj+9PoGodL9n2VwghhCiCohY3D+NfJiIiQt2/f39Zd0M8IJqN30R0IcFHgJv+f+zdd3RUxdvA8e/dzW6y6b13CCH0hAAh9Bp6FyygiIj1Z0OsqFhRUSyIWLErvdfQe4fQCSWkkEp622Tbff9YWBITQkCK+M7nHM9x752dmbsJ2fvcmXmGHa/UXNAs1O6LKXvp1j/4qtmtbrX1y85z4lAuz7xVM1i4Hd55dhv97mlomQomCIIg3B0kSTogy3L0tUsK/5SYsiUIVzEpLhyNqvqTfY1KyaS48DvUo7vTs1Pa3rFgBKDnoBD8gx0wmW7/wxddpZGWbb1EMCIIgiAIdRAjJIJQh6pZtnydNUyKC6+xoF0QBEEQhP8eMUJy+4g1JIJQhyGRfiIAEQRBEARBuIXElC1BEARBEARBEO4YEZAIgiAIgiAIgnDHiIBEEARBEARBEIQ7RgQkgiAIgiAIgiDcMSIgEQRBEARBEAThjhEBiSAIgiAIgiAId4wISARBEARBEARBuGNEQCIIgiAIgiAIwh1zUwMSSZJcJUlaLElSmSRJKZIk3V9H2ShJkrZKklQqSVK2JEnP3sy+CIIgCIIgCILw73ezd2qfCegAL6AVsFKSpMOyLB+vWkiSJHdgDfA8sABQA/43uS+CIAiCIAiCIPzL3bQREkmS7IDhwBuyLJfKsrwdWAaMqaX4C8BaWZb/kGW5UpblElmWT96svgiCIAiCIAiCcHe4mVO2GgFGWZZPVzl2GGhaS9kYIF+SpJ2SJOVIkrRckqTA2iqVJGmCJEn7JUnaf/HixZvYXUEQBEEQBEEQ7rSbGZDYA0V/O1YEONRS1h94CHgWhoxh3QAAIABJREFUCATOA3/VVqksy9/Jshwty3K0h4fHTeyuIPy7zXvwZxY+8huLH/+TheN/J3H18Wu/CTj4y26SNp+u/dxve9j73fab2c16S9l5joXjf2fJk39RlFZQ7Vzm4QukH0i1vC7JKuaPe77/x21u/WQdJ5Ye/sf1VJZWcmTegWuWS9ubzOy4GaTsPFdnueu5PkOFnqVPz0VfoQfg6PyDLHjkN2b3mUHq7vPVyuaczGL5c/NZ/PifLPvfXHLP5FQ7t+yZeSx58i8WPfoHp1YctZyrq85VkxZRkvX3P+2CIAiCcPPczDUkpYDj3445AiW1lNUCi2VZ3gcgSdLbQK4kSU6yLItvPkG4pPsb/XAJdqMgOY+lT80hoG0Qtm72db4n6qGYm9oHk9GEQvnPn12cWnmMqAfbEdI5rMa5zCPpGLR6/FrXOlB6x+lKKzk6/yAtRraus9yZtSfwaeXP6bUnCYptUGsZk9F0XW2fWHqE4I4NUNmoAPBu4UdQbCjbP99YrZwsy2x8dxVdX43Du7kfWccy2PJRPMO+fwBJktj55SaiHoohMCaE8rwyFoz7jaAODdC42F61ToCmQ1ty6Le9dJ7U67r6LQiCIAj1dTMDktOAlSRJYbIsn7l0rCVQ22PdI4Bc5fXl/5duYn8E4T/DJdgNtb01Zbll2LrZk38+l10zNmOoNGDUGQjv24ymw1oB5lEB9zBPmgxuia6sku3TN1CYmo+dhwM2zho0zrYAGPVGDvy8i6wj6ZgMJlxC3Ij9X1dUGjVbP1mHSqOmOL2QiiIt/T8dztZP1lOYkoekVODk70L3yX1r9LM4vZAdX26iokiLQqmg9dj2+LcJYs8328g+lknRhUJOLj9Kv2nDLO/JP59L4spjyCaZjENphHQNI7RLIwD2/7SLC/uSMVQa6Ph8D7yb+QLmkYjDf+3HqDOgUClp91gnPCO86/15agvK2fHlJkoyi0CGZiMiCesVgWyS2TVzC5kJaShUSlQaNQM+G8GumZvRlVay5Im/sLK2YsDn99Sos6JYS0bCBYb/MJpFj/5BeX4Ztq52gHmUwTPCm4uJ2SjVSto/1dXyPqPOyJaP47HzsKfthI5IUvU/g4mrj9H3o6GW1x7hXrVeU0VRBbrSSryb+wHg3cyX8rxS8s5exD3MEyTQl+sA0FfoUdmqsbKxqrNOgIC2wez4fBP6ch0qW3U9Pl1BEARBuD43LSCRZblMkqRFwDuSJI3HnGVrMBBbS/GfgIWSJH2JOWB5A9guy3LhzeqPIPyXZB/PwMZRg2uoOwAOXo70+XAoSrUSvVbH8mfm4RcdiHOga7X3Hfp9LypbNcO+H01FkZalT82xjFAcnX8QtZ01g2aMAmDfDzs4POcA0Q+3B8xTfPp9MgyVjYrkHeeoLKlg2PejAagsqai1n5s/iqdxv6Y06tOUgpR8Vr24kGHfj6bd453IO3eRZsMjCYwJqfYe1xB3wvs3w6DV03ZCR8A8pamyuALPCG+iH27PuY2J7P9xJwM+G0FxRhEJf+4j7v3BqO3UFCTnET95GaN+f7jen+fur7fgEuxGz7f6U55XxtKn5+Ae5onJYCLjUBrDfxiNpJAs19n+qa4s+99chsy6r9b6Rq36H8X5xVT2r+SjFYvw6efO7yu3ExnanA86vAhAQUo+cR8MRqFUUJJVbP4ciyvY8O4qgmJDaTq0VY16S3NK2OeeyO7EGXzq9Xqd16Rx1mDtpCFlZxJBsaGk7j6PvlxPaXYx7mGedJrYk/VTVjJvySJ+i97EyPviUGmuBBijVz/PwebHWWb6qlq9CislLsFuZB/PxL9NUJ19SClOZ/SaF9g2cm6d5W42k2xi9JoX+KLLG3jYurHkXDw/HV9AUlEqr7d9mnvDB1jKJhWl8s7uGRTpzIP3L0U/RnufyGuee2nbh+zPPoKTtXkiQL/grjza/F5kWWbM2ol81PFl/OyvHtgJgiAIV3ez0/4+CcwGcoA84AlZlo9LktQJWC3Lsj2ALMsbJUl6DVgJ2ALbgavuWSII/18sOZTOtLWJZBRqea6ogqWTl2FvbUVJRhE93uqPUqUEwFBpYO+MzeQn5YIE5Xll5Cfl1ghIso6kE/NkZwBsnDQEdbgyjSh1VxL6ch3J284C5hGTywEPQHCnK9OEXEPdKbpQwM6vNuPTwo+AtsE1+q4v15GfdJGw3k0AcAlyxTXUnYunsmoEIfVhpVFZ3ufR2Nuy9iX9QAolGUWsenGhpazJKKMtKEfjYluvujMOXaDthE4A2LrZEdA2mMzDF2jYszGyycT26RvwaeVPQLua11mbuf1msPjxPwkaF8HT59/nt6iP2T59A8PHXEky2KBbo2pT34w6IysnLiByTO3T2ADKc0uxslVjrFcvoMeb/dj3ww4S/tiLR2NvnANdUViZf2eOzj9Im/EdCAgrYdvO06xP38kL2eNx9HIiuTgdnUl/1Xo1LraU5ZbWsxe338rzm4hwbYCHrRsATVzDmN55Mt8c+aNG2Ve3T+PBJsPoH9KNpKJUxq97hdVDf8Zaqa7zHMCE5vdXC24AJEliTMQQZh35nfdiJ976ixUEQfgPuqkBiSzL+cCQWo5vw7zoveqxWcCsm9m+INzNlhxK59VFR9HqzbefRpPMj16uTBwdTdeScrZ8FM+I2WPQuNiy/6ddaFxsGfz1vSiUCta8ugSjruZtqyzLNY5V1f5/XfFtFVDrucvBCICjjxPDvx9NRkIaF/alcOCnXQz59n6s1Ff+hFyjqet2OfgCkBSSZe2FLINfdCBdXur9zxqoZYKo2s6aod89QNbhdDIS0tj3404Gzxx1zapyT2dTmFpAzg87qGxbyZaP4inPKyP7eCZTc3/Ax9GWZjaRfHv0L346voC1XX5EYaXgy/bLeXqfmqAODVicFM+80ysxyEYc1fa8FfMsDtZq5CprTh5cO5FHmo6ki387AHaUHOLtdd/wY6+PyC7P5YP0b8jqfJEKYyUDgrqj2VyGc4ALFUVaUnYm0fWVOLIyDuJo64Cr0ZZ1CVsYHjeIJefiGdygF8fyriRDOHzxJFP3zaLCUInerYJnpDGE05Qhi2eSVLoWT5swCnTp2Kut+LzLq0R6Vk+oWGnU8fK2D/F38GFi1Hg2ph7nl5O/U2kso8JYyaDQnjzSbCQrkjayJmULX3V72/K+ngvHsHDA16SVZPL+3pnIyBhlI0+0GE3f4C41Pv/5Z1bxXOQ4y+tGLuZA9u/T3wCO55/lz2PJ7MtYy5QOcdiqbNmevp8egbGczD9HMzfzdYQ6BaI3Sby+/Tc+6fJInT//bv7teWf3DLSGCjRWNjXOd/lrJqtHPIqt6vqmvFV93yOr5/B1rxFYW9X82s4tL+PNHWv4qucwFJLE14d2sCXtHFllJfzU915Cnd0sZXelJ/Pj0T0YTCYc1Ta8GtMDH3vzqM/O9GR+PLIHkDHJ8HDzNnQOMD/EeH3rKjLLipGQ0KhUPNu6E2EuHuiMRp5ev5Dp3QZjr7a+rusTBEG47Kbu1C4Iwo2btjbREoxcVmEwMW1tIiGdw/BrHciRueZMT7rSSuw87FEoFRQk55F9LKPWOn1bBXAm3rzFT0Wx+ab0ssCYEI4vTMBQaQDMIxyFqfm11lN2sRRJIREU24B2j3WiokiL7m/TttR2alxDPTizztxeYWo+Bedz8Wh87bUdals1urLKa5YD8GsdSPr+VAqS8yzHLiZm1+u9l/lG+pO46hgA5fllpO1NwaelP9pCLcZKA/5tgogeF4vaTk1JZjFqWzWGSsNVF6SfXnuSFiOjGDB9BNYO1oz8dSyRY9pxJv4EMd6RnLG/AMDuzEOEOgWQWJxEia0WlZMaX2tPvvv0ezak7uC3PtNZOOBrHowYypu7puPk74KurBLZZI72hjTozZJz6yztrivexdAGcQC8vO0j7vXvz9z+M5jffyYrDq+juI0RRz9n1PbWKFVKso6mA2AymGic6MtW0yFMsom1yVvpF9zVUm+lUcdzW97lhahHWDLoWzqdacLHRT+hN5l/VwxyBW/F3sv8/jPR6f35eH/1jGGFFcWMX/cKbb1b8WLrR5EkiY8PzCDIvpWlfxvSdrInK4G44M6cyDtDRqk5I9jK85to7dUMT1s3vj82h0eajWRB/69ZOvA7OvjWTCqgM+o4mptIM7faR5mqyteWo5Kc6BfmypQOcRzJPUVqSQYZZebfH7XCmaXnNgBwJPcUBZX5lOiu5Fn56fh8Bi+bwDOb3+Z8UZrluFqpItQpgEM5J67Zhxv1Y997aw1GAH45vo9hYc1RXArAOvqHMKPHULztqie5LNFVMHX3Bt6KjePnfvcxoEETpu/bApgfXry/az2vt+/Jj33vZXL7nnywewOmS08aXo3pwey+9/Jj31Hc27gVH+0xJ0BQK5X0CgpnXmLCrbp0QRD+H7jZU7YEQbhBGYXaOo9HP9yepU/PpfnIKFrd34YtH8dzbmMiDj5OloXMf9fqgTZs+3QDix79HXsvR/yiroyGtBjVmoO/7WXZ/+YiKcw3MpGj29aY9gWQn5zL/h93AiCbZFqMiq4121fXl3uz48tNHF+cgEKpoPOk3micNde89qAOoZzdcIolT/xVbVF7bZz8nOnycm+2f7bBHCQYTHg19bnqwuyDv+6plrK3w7PdiXmyCzu+2Mjix/8EGaLHtccl2I3cMzns+HwjJqMJ2Sjj3yYIzwhvJIVEg26NWPzYn1jbW1db1G7QGUjafJoBn42gDJ3leINujVj8+F/EjI5jlt2v6Ex68isKGRMxlL25R0n1yCbGJ5LY4V2ZP3sDh5KPMWrl/ywjN2X6cqysrXDydyGz0LymIS6oMx/tnMVPD32DtrScI41O0u2tMPJnRHEw5xhvZ3+BLr4SZDBoTDj0MX8mCqWCbq/1Yc832zhtf4HCgHyG9ZnAi5Wfsz51B77lbqwePx96w44vNpLvUoamtw1tvVtSml1MWIEf662OkVpsDnztrGzp5NcGABe1N2mluyzXXaIrp8fCRwi0j+ZItpK4oDIySvNJK00mu3wRq1OWXHqSbuC9XUtYPrQVI8L6MSNhDnll3hQYtjAkdBiPrJ6DSXLgrV3fsCP9BJV6R3ztA0grLiSnvJSm7t68FtODvIpCbJTWqJVXRh/WnD/FnJOHOFeSwoViiAvqjrXSiuc2LsFBGcXXCcv44dgi2nhFEOnRBJXCit+O78dOGclfp9bx64mltPNpgp9dAOV6Ay9tXk5KsSstXUfwTsc+rDy/gQkbXmdo8AQOX8zEYDJyUasnrSTrmr/rqcUFzDi4naLKCgwmIyPCW9IvNAKArWnn+P7wbhysbYjxqb5e52qjLJVGA1tSz/F0VEfLsRYevrW2faGkCBcbDQGOzgDE+Abx/u71FFZqcVLboJCgTG/+HS7V63DT2FqCnKqjH6V6neU4QI+gMCasnce45u2uef2CIAi1EQGJIPxL+DprSK8SlHzZ1JwC1+/SDb2jnzNjFj8GgK2rHcO+e6DWejq/eCU9q9rOmh5v9qu1nMJKSfTD7S2L2K9WB0BAm2AC2gRf8xoc/ZyrZYSqqmpmrb9z8HZiyNfVF4w/MP/RKucdq732ax1YrxTBf7+OqnpOGVDjmHuYJ4Nn3ltr+Y7P96hxzLLmJ8yPWX8mML7blakx9l6Olp+X0lXFUc9kIhVNae8TyZvJn+E21IV23uaF7F7NfRmjDufJlqNrtOHfJojTx83rZ+xUGrqHxqJp54fCqKN/UU/GPDqBYl0pkqRgxQM/YaVQ1qgDrnxmOzMOciAhlSb9WtDrYEem7P6Cj7q+TPv7onjv93nc++c4zhWmsGG7+Wn/qZXHaD4iEsrWcvkeVKU0T+c7ejETB7UNlwfLtl84j0JS0iuoDQpJItojgK8P7eDZ6FiUkoLxTf7H01HmtTuHstOZlbADgJGN+jN0+RP4amKpMOlo4tqYHw4nMqPnQzioR7Mr8xBfJczDscCPxYPfRYHE+DVz2Z91gYYujuhMVwLBpMI8vju8i+/jRvLR/hQq9HZ8cWAbUzrE8VGXATy2dj7Lhv9oKd9vyThCnQJp692SFedOMLXzOMsUpw5z70eNgq979sZepebFzctZl3ya4WF9eG/PTGQq+TbOHJz2X7ydfZnpjAqv9eMHwGAy8e7OdUyO7UWQowvleh0T1s6nqbs3jmprpu3dxMxewwl0dOHPEwevXlEVp/Jy8HNwwlp57a/zAAdn8ivKOZmXTYSbF+tSzFP0cspKcbbWMKVDHK9vXYWNlRXlBj0fdqn+b+TjPRvZl5WGDEzreuWcq8YWK4WSlOICghxd6tVvQRCEqsSULUH4l5gUF45GVf1mUqNSMimujjsc4Y65vOYnvVCLDKQXavl4zSl0hprTumJ8WjHz8G+094nEz96bi9p8dmUeop2POSDpFtCepefWkVNunoZmNBk5fmk9h6OvM7Zu9paNEYc07M3ic/EsObeOYQ3N07Uc1fa09GjM7OPzLG2ml2aTq62+AeXf3Rs+gEeajiTWJ6ra8QbOQZTptezPPoKtmx1LNRfIKqqgx9QELpZUUqKrZPSKP3h2w2LujYi0vO9gdhoGk4mc4gB2pacy/eBXZJQW4qi2x8cugIMXd1jKXtTmojOWA+CucaGxSziJRZu4P3wgAP72Ttip9AQ5+nFv+AAaO0dhpSzFWmmFSqkkzNWDjNIiXGycsFfZkVV2EYBDOenE+AThpjGnXG7u4cuBrCvTqwxyhWVt1YIzq7FTaWjj1cJ8zlT9nFqhpntAGxzU1uRo82ji5kVGaTFbLuzFhIJd6Rk8snoOj6yeQ0ZZJrJsV+fnfaGkkJTiAt7ZsZZHVs/hf+sXoTcZSSkq4ERuNmEuHgReuqEf2LBpnXVZPsfyUlxsrj0KCeZRjrc6xDHz4A4mrJ1HYYUWe5U1SoUCg8nEHycO8n7nfswb/BBTO/fn7R1rKddfCfZeated+YMf4tEWMcw6tLNa3a4aWy6W/3sTHwiC8O8mRkgE4V9iSKR52tXlLFu+zhomxYVbjv9b6QpLWNl6DKGj+9Hy7QmW4yc+/QNDuZYWb4wnI343uXuO0+KNuhcH3wyyycSW4S/TdubL2Pq6k7pwI4mzFlJyJpUWUybQ8OGBlrIl5y5w6NWZVOab0/C2eHM8Xp3NN9glSekcfGkG+uJSTDo9/gM702TilVGpdR//xTOHD2FUKDBJCqb3H0mFwcSo33TkhZ/ALbqJpWyMdyRLz62nnZc5AIn0aMLBnBN4aMzT49p5t+LJlqN5fMNkZGT0JgN9g7vQ1M08dc3Bx9GSZKCtV0sKKopQK1W09IiwtPFpp9eYuu8bBi+bgIyMg8qO9ztMwl1z9SfWPnaePNJsJAAG05X1S9ZKNZ93eYOp+2aRU1lK5ikjFZl9kVFilE0YjRIj/Lri5Kblg93LLTfxMmBjpWJ2v/uA+5i6bxYXSo6hMw5hYPAo1qWtsPRPgQo7xZVUxx19O7A7az+DGvTkdH4BGpWKX08uZn/2UVQKK3K15dzT8EqCAaWkwCibg7+egR3YkbGf4WF9kWWZc8XH6bbgB4p1JWy+sAetwcT5ojhslE6UGS7Qb8k4ZGSCHf35ostblsXvRfpUHtv4AlYKBcGO/gwJvR+Vwvw1+fK2j0gqykIGgrM8aOLcmxeiuxHl7U9qSQZPb9rAp93qThYpI+NkbcOPfWuOwm2/kFTLO67N2soKnbG+edgg2juAaG/z1M18bTlzTh7C196RswW55GrLaO7hA0BzDx9srFSkFBcQ4VZ9OmRcSDif7NtEUWUFTtbmRfw6o6FeozSCIAi1EX89BOFfZEik378+APm71MWbcYtqTNrSLTR//WEUalWNMr69Y/DtfXN3kL+aCyu249goEFtfcwpjp6ahtPv6ZRJnzq9Rdv8LnxE6pj9BI7pTkpTOtpGv0nvbd1hpbDj6/mz8+neg4cMDMZRpWdf9Cby7R+MaGU76qh0EJ57i874jqFSpcdCan/TLekfig+6h29Rf6LLwI0s7gxr0ZFCDnpbXb7d/vkZfBjfoxeAGNaeYjQjry4iwK5tQSpJE/LBfa5TzsHVjepe69yoBiPWNItY3qsZxK4WSEw/GW1639IhgTr8v6fDhRrRVphIqsUefMpZp2YnseKU7m1Ij8LQ1ryeJC46iVKekRFeBg9qGiVETSC0uQK1U42nrRkefQbzUthtgfrI/dtVflOgqsFdZs+r8TjxtGmGnsgXMIztvxTxjaXfq7g342XvUek0PNRnOK9s/ZnhYX1p7+/PXSQcW9P8eN40ds4/uIa24kBCnADJLi3FSNWTZ0Km11hNg14wX2jxluSn/6ehetAbzyNTPcdMsr5+M7MAvx/YxLzGBpu7ezE1cwejwYSQX5RPsVHMNlqV+BxdslFasPZ9IXIh55DOluAB3jR1N3b35eM8mLpQU4u/gzMpz9VsgH+rkRlpJ/bfwytOW4aaxwyTLfH9kN4MaNkVjpcLD1o6L5aWkFhcQ6OhCclE++dpy/OydKNfrKNVV4nlpkfyO9PM4qm1wvLSuxGgykVlaTEgd1y4IglAXEZAIgvCPpMxdR/PJ4zj11Twy4vfgP6BjjTLJ89aRtX4fMd+9Zn7P/PWc+2UlstGIysGOyKlP4dDAn+R560hbsgW1kz1FiSmoHe2I+e41bDxdydt/goTJ3yCbTJgMRiKeGUXAkK412jr/xxoinruyHsWpcTCAZeF+VUUnzuPdzZy5ySHUD5WzA9kbD+DXvwMSEoaSMgAM2kqQJKzdzYuBz3y3mAOxHam8tMC4RHNl/xMpJIDKxJ2UJKXjEHp3BZe1uVayhQktY5iwdj73RUQSFxJOUaWWZ9YvAcwjAoPDmtHQxZ3O/qFM3raaR1bPoXtQGA80ac3Ixq0Yv3ouSWWr0FhZE+pQc51OfQQ6+DKm8RAuavMJcXLj0ZYxTNy0DAkJX3tHJrbpWq96hoe34MM9G7BRWvFGbN1ppR9oEsVPR/fxWPx8srUX8NY44G1bUCMgMZhMSIBKocRKoWBql/7MOLidOSfNGc5cbGyZ0jEOFxtbXmzblVe3rMTB2oZuAQ3r1Wc/ByfsVWpLIAHwxYGtbEtLIr+inImbluKotuGX/ubRmx+P7OFobhYGk5Fo7wAmtDKvIXPT2PFCmy68uX2NZcH6KzHdcbS2IV9bzls71qI16FFKEg5qG6Z27m8ZWTqWm0WEm5dI+ysIwg2TrrVPwb9JdHS0vH///jvdDUEQLik8kcSuce/SZ9ds0hZvJnXxZjr+Zt5PouqUraoBSe6eYyTOnE/M95NRWqvI2rifU1/OoeuST0iet44jb39Pz3UzsfX14MCkL7F2d6LZyw+xc9w7+PXrSNCI7siyjL64DLVT9UxfJr2BpY3vYdCxOSg11W+O9j8/HecWYdWmbG0Z/hK+fTsQNn4wBUfOsHnIizR9ZSyNJgyl7EIOO8e+ja6gBH1RKc0nj6PBWPNC3mVNR2IY1IuUNbuRjEZ2hTVlT1gTNColU4c1x//3+bi2akTomNoTCtxNOny4sVqyhcv8nDXseKX7HejR3eVkXjZTdqxl7qAHb1kb65NPcyIvm2dad7plbdTlnZ3x9AuNsEwFE4T/CkmSDsiyHH2n+/H/gRghEQThulTdTf6BI7uI6tAGSZLw6xtLwhvfoM3MRePjftX3Z67bS9GJ82waeGnakgy6oiuLYd2im2Dra56a4xoVTs428/4GHrEtSJw5j/L0HLw6tcI1qnGNuivzi1GorWoEI1fTevrzHHn7e1LmrcMxLBC3Nk0tO5uf/301gcO7E/7EcLTZ+Wy95xVcWjTENaoxstFEMDqkH6Ywc+lhRsz/E9nXi/vH9WBIpB/H1rqgzcytVx/+7SbFhVfbsBNEsoX6+iZhJzvTk295oNAzuBHFugpMslwtHe/toDMaaenhK4IRQRD+ERGQCIJQb1V3k1cajTRKPEnh2dMs3LQbW7US2WAkZcEGGv/v6ruby7JM0KheNJ00ptbzSusr+yxISgWywXwjHDZ+CD4925GzPYGEN77Fq0skTV+q/tRZaaPGVKmjvuyDfIid/abldXy3x3EIM99YnZ29jD47zelhNV6ueHRoycU9x3GNaoytnycBg7sQ1TqAoa0DOGRIoXugHY0urf8xVuqwdnGo2eBd6G5NtvBv8HirWB5vFXtb2hrWqMVtaefv1Eolg8Oa3ZG2BUH47xABiSAI9VZ1N/lmF86T4+jMV3HDLNN38g6cZN+z0+sMSHx6tWP/c58S8kBfbH3dkY1GCo8n4dKi7p22L6/JsA/2wcrWhpQFG2qUUTvZY+3uQllaNnYBtW+UWFVFbiHWbk5IkkTyvHUo1Co8O5ozP9kFeJG9+QBBI3qgLy0nb+9xfHuZN34LGNKF7M0H8IhphqG8gtw9x/Htc+XGs+RMGp5ja+5zcre6G5MtCIIgCHcPEZAIglBvVRc4tzl3igMhjaodd2sdAbKJi7uPXbUOj5hmNH3pQXaNewfZaMKk1+PXv+M1A5KzPy7j4q4jKFRWKNUqWr77eK3lfPu0J3vLQUJHmzNTpS3ZzNH3ZqMrKiUjfjenZ86n45/v4dgokMz4PSR+vQBJArsgH9r/MNmyUDf6s+dJeOMbzny7GJPBQMCgznh3N08lDhs/hIMvzyC++xMABA3vbkkXbCivoPh0Kh4d7swTa0EQBEG424hF7YIg1NvdsMC5LDWLvU99TNdln1qCi9sp6ffVaDNzrzolTRAEQbg7iEXtt4/YqV0QhHq7G3aTtwv0JuyxoVRk59+R9iWFgvCn7rkjbQuCIAjC3UhM2RIEod7ulgXO/gPuTPpTgJD74+5Y24IgCIJwNxIBiSAI10UscBYEQRAE4WYSAYkgCIIgCP9pb09cgEqlxEqlxGAw0a1PE9p3aXTD9a1enICuUs/ge9vUq3xZaQUzP4oHQFdpoKhv+l5VAAAgAElEQVSwHA8vRwCatvTH3cuRE4cv8PDTXW+4T5fNnrGJnv2bExjqzqlj6axccIiMCwV07tm4Wn+LC7XM+2UXeRdLMRpN9B7YnOjYBtc8B3BobzLxyw4jyyBJ8OSk3jg4aVg2dz9+Qa60jgn9x9ch/P8iAhLhtloRMxmTzsCAfR+gUJqXMJ2fu4t9E38j8t2RhD3c9YbrPj9vF+7RoTiEXjvda1U5O0+z7cGZOIR6YTIa0Xg6Ef3xA9gFuF31PWVpeWRtOUmD0R0tx1bETKbTz0/i1Nj3hq/hdrhaPwuOp1GalEPAwNaWY/P8n2Ro4nRUdjY33N6xT1dgKK+k1RvDLcfO/LSZgiOptP2s7t2ra3tvfZQk5XD0w6UUHE1F5WSLbDTh070pzV4aZPm9q6+zv23FWKEn/NEenJ+3i8z1x4j97tFay57+YSMmg5HGj/eiPLOQPc/8ROGxNOxDPOm16hVLOZPRxOF3FpK9/RSy3ohPz+a0fGMYkiRx+sdNJM/dZSlbmppL6H2xtHprhOWYsULPur5TUWrUlnrP/rIFfYmWiKf7XNf1CcL/Fw8/3RUffxcyLxTwyVsraNLCHycX29vStp29DS+9OwiAMyezWDZ3PxOnXEkNvmfb2ZvSTvK5i1RWGggMNW9O6+bhwKiH23N4fwqGKpubAiyZs4+AYDfGP9ud0uIKPpmyggbh3ri42dV5LvV8LmuWJPDUS3E4OmvQluuwurShbPe+zfjig9VEtg1Bobj9SUWEu5cISITbzsbTiezNJ/DpYd5MK3n+blxaBP7jepPn7cba1f66AxIAx0Y+lhu7hLcXkPD2Ajr88NhVy5el5ZH05/ZqAcndrvD4BTLXH6sWkNyNtNlFbBo+neavDrYEDvoSLcemLcekM6DQqKuVNxmMlt3Za9NwTOd6tWvQ6jjz02bi1k8GwMrOmmYTB6AvreD49JXVyp7/ayfFZ7PoveY1kGD72FmkLTtA4OBoGj3SjUaPdDP3TW9kefSrBA6p/hT26MfLcIsKofBkuuVY6P0dWd31bRo+1AWVg6ZefRaE/498/F3Q2KkpKijHycUWk8nE8nkHOHk0A4CI5r4MHNkahUKBtlzH4r/2kXY+F0mSCG3kyYgxMdXqy0gr4LdvtzJ8dDsaNva+4X5VaHX8/PUWsi4UoLFV8/DT3XB0Nv9b3rDqGIf3JWMyyTg52zLq4VjLuap2bT5N65gQy+vLozBHD6YB1QOSjNR8uvZuAoC9ow1+gS4k7E2mW9+mdZ7bsvYE3fo0tbSvsb3yN9Xe0QY3DwfOnMgkvNm/++Gc8O8iAhLhtgu+J4bz83fj06MZpam5GLU6nMKv/OHSl1Vw6I155B9OASBoWDsinuoNwKYRn+HaMoi8g+fRZhcSMKA1LV4bwvm5uyg4ksqhN+dx7OPltHxjGIemzKftp2NwbRUMQOJ3Gyg5m0X0xw/U2T+vjo05/P5i8hOS2TvxN/pseMNybm2v92k99V4OTp5LWWou8b0/wD7Yw3Ljm7b8APtf+gNtThHhj/W0jPjkJyRz6M35GMorsbK1JvKde3BtFUxZWh7r+n1Ig9Edydx4HKNWR/Qno/Fo27BGv1IW7+PMj5sw6Q0AtHxjGF4dGwPmUY/g4e3I3naqRtsX95zl4GtzUNqocI0KgVoyfVcWlHL8kxXoSyuI7/0B7u0aEvXuSADOzN5M+poEdAVltHx9GP79zftt5B08z5GpSzCUVgDQ9MUB+PZoXudnezUnZ8aTsmgPAK4tg4h8d2SNUZk1Pd6t18/z7C9b8IhtRMjI9pZjKgcNke+MtLxeETOZkHtjydmRiH2gO81eHsTup2ZjKK3AWGnAp3tTWk4eBtR/lObCykN4tGuI1aWAR+2owSMmjJydp2uULTx5Aa+OjVFcyljm1TmClMV7CRxcPbtkxroj2Hg44toyyHLs4p6zlJ7PodGjPSh8b5HluEKlxLtzBKnLDtDggf9OoCwIN1vSmRzs7a3xDXQBYOfm06SnFvDi2+YRi28/Xc/Ozafp2L0xi//ci7W1iknvDEKhkCgtqahW1+kTmSz+cy8PPdEFbz/nf9Sv1PN5vPTuIFzc7Jgzeyfb1p+k/4go9u88R252Mc+90R+FQmL7xlMsnbOPMY/XfFhy9lQW3fs2q1d7/sFuHNxznoAQN/JzS0k+exFXd/trnsvKKMLVw54vP1iNrtJAi9aB9BrYwpJmPbihB6dFQCJcJxGQCLedZ2wjzv26FV1hOcnzdhM0oh0FR1It5098vhrZJBO3fjKG0go2DP4E5wg/fLo3BaA8I59uC59HX1rJqg5vEnJvLCGj2pM8fzfhj/fEt6f5prjh2C6c/XUrbVsFI8sy537detWpNpfJJhMXVh3Cuak/rq2CsbK1JmfXaTzbN+LinrNICgn36AZEvTeKw+8tqjYNB8BQoaPHskmUpeWxtsd7BI+MQaGyYueE72nz6Ri8OjUme/spdk74nr7b3wZAV1CGW+tQmr88mJRFeznywRJ6LHmxRt+8u0YQOCQaSZIoPpfNllFfMHD/B3W3baVk95M/0m7Gw3jGNiJt+QHO/rS5Rt3WLvY0fXFArdORVPY29Fr5Crn7zrHr8R/w7x+JrqicA6/+Radfn0Lj5YQ2u4j1/T/CfUMD1E41p0CkLNhDzrZEy+vK/FK8OpmDqcyNx0lZtIceS17Eyt6Gvc/9wonPV9Py9aHV6qjvz7PgaBreXSJqHP+7ipwius1/HjBPger48xOo7Gww6Y1sfWAGmZuO49Ot6TXruezirtO4RgbXq6xL80CS5+2i4UPmG4r0tYfRF5XXKHd+7i5C7r2yA7yhvJKEKfPpMPsJSs/n1Cjv1jqEzI3HRUAiCMCSQ+mWjIB9iir48tP12FtbkZdTwrj/dbNMMzp9PJO2HRtYXrfr1JAjB1Lp2L0xxw9f4MUpAyzTj+wdrjwoOXUsk5NHM3jixV43ZepXSJgnLm52AAQ38CDxuHnE5tihNNKS8/jkreUAmEwyGo2q1joKC8pxcKrfFNsh97Zh8V/7mPbmclxc7QiL8EZ5aUprXedMJhMZaQU8Oak3BoOJbz9dh7ObPW07mNeYODppOJeYfeMfhPD/kghIhFuu6pfC60UVbEzModGAKFKX7Sdt+QG6L5lYLSDJ2X6KVm/fgyRJqBw0BA6OJnv7KUtA4t8/CkmhQO2owTHMm9KUiziEetZoN3hEDCc+X01lQRn5CcnYeDji3MS/1j4Wn84kvvcHyLKMc4SfZb5+2LhunPt1K57tG3H2ly00fKhLndcaOMj8hNsuwA2VkwZtZiEmvRGFyspyA25+Mm5FyblsVPY2WNlZW4Iot6gQDr+7qNa6S5NzOTZtNtqsIhRWSiouFqPNKULj6XT1tnUGlBo1nrHmxZsBA1uz/+U/67yGGtd06am9a1QI2uwijBV68vYnUZaWx7YxM68UlKA0+WK1p/mXBY1oV+saEoDs7acIHBRtmWYU+kBHEt6aX6OO6/l5VnXyq7WkLTtAZUEp7Wc9gnu0+UszePiVaReyycSR9xaTuz8JZJmKi8UUHr9wXQFJeVYhPu71GyEKGRlDWWouG4d8ipWDDa4tg7i4q/pIija7iJwdidXW2Rx+bxENHuqCrY9zrQGJjYcj2szCevdZEP6rlhxK59VFR9FeWjdhNMmsV2t4fVQkwXo9v3+3jdc/HIqD0+VpT9XXO9RnU1VPb0cy0wtJS87FyeWfTztWVdnjSVJImEzm4WxZhl4DWxDTOaxedej/tlbkauwdbRjz2JUU6d9OX4+Xr9M1z7m42dOyTTBWl5IENIsKJDXpoiUg0euN1a5FEOpDbIwo3FKXvxTSC7XIgMEk88X6M5xpFsLxT1bgFO6LtYt9tfeYs3b87cugykulzZUnQ5JCgWw01dq2lUZN4JBokuftuhRMXH0tgGMjH3rHv0bcutdp9+VYbNwdAAgYEEXewWQKjqWRs/M0gUPrzqiitK7SN6UC2WC6dEE1y16+RoXaqtp7TIbav0x2Pz2bhg92ps/GN+i15hUkKwWmSkPdbd8ECmtz/y4vBjcZjcjIOEX40Tv+Nct/A/d9UGswck21fT613AzU9+fp0syf/IQUy+uIp+PoHf8aNh6OmHRXPlsrO2vL/yd+twFdUTk9l79E3PrJ+MW1xFipv67LUNqoMNXzPZJCQfOXBtE7/jW6L3wBG3cHHBpWn3uePH83Pt2bYe165d9H7t5znPh8FStiJrP7qdkUncpgbc/3LOeNlYZq/z4E4f+raWsTLcHIZRUGI9PWJtKqbTDhTX1Zv/IoAI2a+rB3x1mMBhNGg4m9O87RqIkPYM6AtXHVcWTZHBxUnbLl6m7Hk5N6sWL+QQ7uOW85PvOjtaQkXbxp19IsMoAdGxMpL6sEwKA3kp5a+8avvgEu5GQW16vestIKjJe+P0+fyCTzQoElO1Zd51rHhJB4LANZljEaTJw+kYlfgKul3uyMQvwuTYcThPoSIyTCLVX7l4KJTw7n8OtLg3CLCq7xHq9OjUn6awdu0aEYyipJXbbfMp+/LioHG/TF2mrHGj7UhU3DpyObZGK/m3Dd/VeolISMas/2h2cRNLSNZX1AbW1djUNDb0w6Azk7EvHsEE7OjkRMBiP2oZ5UZBfVuy/6Ii12gebMKUl/7awWjFy17QZeGCv0XNx9Bo+YMNJWHLxqv1X2NuhL6ndN7q0bUHr+D8s1gXmdjEvLoHo9WazKq1MER95fTNi4bljZWXP+r52WtTF/V5+fZ8OHuhDfZyrJC/YQPKIdYM5qVdfnpS/WYuPphNJGRXlmIenxR2gw5vo2V3Rq7EfxufpNUzBW6DHqDKgdNZSl53P21610+L769STP302rN6uvW7m8YB7M2eH+Pm2w+EwWTk3EHjGCkFFY+9+yy8cH3BPFp1NW0KNfc2K7NiI3u4Rpl6ZENW7mS/uu5tGIIfe1ZfGfe/no9aUolAoahHsxfHQ7S33OrnY8+VIc33y6Dr3OQJsODchIK8DZxe6mXUubDg0oK61gxtS1AMiyTMfu4fgFutYo26J1IKeOpRMWYX7AkXQ6m19mbaVCqwdkDu5J5t5xsUQ09yMlKZdFf+xFIUnYOdgw/tkeqC89gKrrXGS7EFKT85j62lIUEoQ396PdpdEbWZY5cyKLXgNa3LTrF/5/EAGJcEvV9aXQ4JXutZ5r8lxfDk2eZ3nyGzSsXb2mzoQ+0JHD7y4i8dv1tJw8DK9OjbEPdMexoTeukcEo1Tf26x5yXweOf7aKBlWyLTlF+OHQwIs1Pd7FsYF3nWtTlGorYr97tNqi9thvx193f1pNGcGOR75F4+2MR0xD1PX4wlNaq4iZOc6yqN2zQzi2fjW/xAA8OzYm8dv1rO31Ph4xYZZF7bVRO9vScfbjHH5vMYemLMCkN2Af6E7Hn5+odXSjLj7dm1J4Mp0Ng6cB4NoiiIhna09dW5+fp8bbmW4LX+Do1CUc+2Q51q72KFRK/Pq0xKV5QK3vCRvXlV2P/UB83AfY+rrgdSnIuh7+fVtx8LU5NJtoXhhrMppY2c6c5lpfomV59GuE3BdrzrxVomXTPZ8hKcyjTi1eG4JL8ytTPnL3ncNQWoFX1ybX1YfsLSdo9vKg6+67IPzX+DprSK/y/RPvaf6753cpM5SHlyMfzrrfcn7IfbWPftvaqXng0ZprsvoObWX5f0dnjSWlb1pyHs2jAutcUxIW4V0t5S+Y162069Twqq+7xjWla9y1vwdjOofxxftriBvcErXaitBGXrz92T21lm3Swp8mLWqf9lrXOYVCYuh9bRhay2d26lgGQaHulrUwglBf0uVhyLtBdHS0vH///jvdDeE6dPhwY7Uvhcv8nDXsuEpAcjPpS7Ss7voOPZe/hK3vjQ0hpyzcQ+rS/XT69amb3Dvhet2Mn+ettOWBGbR4dQguzWoPfG6l4rNZHHj5T7otfOG2ty0I/zZ/X0MCoFEpmTqsOUMi/9ujiInHMnBysf3HWb9uRMLeZELCPG/b/i63miRJB2RZjr52SeGfEiMkwi01KS681i+FSXHX/wT6ep39bSsnv1hD+IQeN3zzuuWBGZQl59Lhp8dvcu+E63Uzfp63WtS7o8yLze9AQFKeUUDU1Ptue7uC8G90Oei4nFDF11nDpLjw/3wwAtzRdLut2gbfsbaFu5sYIRFuuapZtv4/fSkIgiAIgnD3EiMkt48YIRFuuSGRfiIAEQRBANaeXMgPOz9ClmUqDRVEeEfy8ZBfAfh667s82uFlVEr1NWqp23trniHhwi4AzuWexN85BGsr894Uc8ftRqmof0rWLze/hVE28Hy396+rDz1mhGKntketNGezax/Sg4k9PuTLzW/S2KsVvSOunajksiJtPosP/8zYmKtPR8wpyWD6xtdISN+FRmWHSqHivugnGNpy7HX1u6pf9nzOoOajcbF1v+E61p9ago9TAE19WtfRzmcoJCVj2j5DZlEqry8fz4msgzRwj+CPsdss5QwmA9PWT2Jv8mYMJj3dGg3k+W4fIElSnecATmQd4sP4FyjSmrNzvdz7U2JDerLp9HJ2JK1jcp8vb/gaBeFmEAGJIAiCINwGF0szeX/NM8x7ZDfejgHIskxizhHL+Vnb32NszPPXHZAYTAasFFe+zqveXMbNbMT0YXMI86x9QfTf33szfT58HqHu1TPmPdP1nVrLGk1GFJKi1ix9Rdp8ft7z+VUDknJdKWN/78E9keOZOugnJEmiSFtA/KmF/6j/v+79kk4N+vyzgCRxCVEBsVcNSMp1Zcw58C1LJiQAYKt24KnOb1JUkc+PO6dVK7vg0A+kFSQxf/w+ZFnmqXmDWXdqMb0jhtV5rlxXygsLRzFt6B80922D3qinXFcCQLdGA5m59R3SC5Pxcw6+4esUhH9KBCSCIAiCcBvklmZjpVThpHEDzHsRNfZqCZhHNQBG/9IFhaRg9uh1bDu3hj/2fYXeqANgYvcPiQkxJwOJm9mIoS3Hsjd5M/4uIbzT/9t69cFgMhD5oR0Tu09l85lVtAvuyuMdX+eHnR+z8fQyDCY93o4BTOk3Cze76hvOnso+zKvLHuaNPjOICuhwQ5/BK0vHEhUQy8ioCXy5+S2ySy5QXFHIhYIkfn1wM9M3vsr+1G2orayxt3bilzEbeH/tsxRp8xjxQxvs1A788uDGanWuOPYnHnY+PBwz0XLMSePCPZHjAcgtzeLt1U+RXpgMwLj2LzKgmXm9VY8ZoQxrOZadSevILctmXMxERrV+jFnb3ie/LIfnFo5ErbRm2tDfySxKZea2d9EZKjCYDDze8XXiIsypubOK05ga/wJpBUkADGh2Hw09mrLt3Br2p25j3sHvGRvzgqXdy9aeXEC74G6WESwnjQutAzuy6/yGGp9dYvYRYkK6WwLImODurDz+F70jhtV5bvnRP2gT1JXmvuasWCqlCifNlWyLvSOGs+TIrzzV+c0b+IkKws0hAhJBEARBuA3CvVrQzDea3l81pE1gZyIDYhnY7AGcbd2Y3OdL5h78lt8f2oKt2rwZZoeQXvRrMgpJkjifl8j4P/uy4X9JlvpySzOZPTr+hvoiSRI/j1kPwJIjv5JdcoE/xm5DISn4Y99Mpm98lfcH/mgpvzNpHZ9seIVPh/5pGfV47K/+PN/9A0tQ9XeXb+YBJvb4kPYhPWqUOZC6jTkP78LZ1o1jGfs5kLadpY8dRiEpKNIWAPB63Bc8+Ft3FozfV2s7J7IO0dzv6pvWvr/2WZp4RzLjnoVkl6QzanZ7mni3ItQ9AgCdsZI/xm4jrSCJ4T9EM7jFgzzR6XUWJPxYbZTH1daTX8dsQqlQcrE0k3t/6kCH0F7YWzvy8pKH6NF4MF+MmA9AQXkuLrbudGrQxxKA1WZ/6tZ6B3dNfKJYdXwu90Q+iiyb2HRmBZV67TXPncs9iVKh5PE5A8ktzaKZbzQTu3+Ig4155/WWfu2YufUdEZAId5QISARBEAThFqqe2ONJHox9EkfbRDaeXsbPuz9j0aMHqj2xviytMImXlo4hpyQDK4WKvNIsckuzcLc3b3o3sPnoG+7ToOZjLP+/+fQKTuUcZuSP5g3/jCaDZRQHYPu5tWw7u4bv7ltpaRvg2/tW1tlGbVO2/q5Tw74425rbCnBpgM5YyZRVT9AmqAtdGva77uuqze7kjbwe9wUAXg5+dAjtzb6UrZaApG+TkZfaD8VO7UBOSTqBrg1r1JNXls3kFeO5UJCEUmFFkTaPlPwzBLo05HjWAX66FOAB9Z7mlV18ocZI1NUMa/kw6YXJjPmlC/bWTjT3bWNZK1TXOaPJwO7kjfz+4FZc7Tz4MP4FPt34ClP6zQLA3c6b7JL0evVBEG4VxZ3ugCAIgiD8V13eDyO9UIsMpBdq+XydDo1yEN/fvxp7a0f2pWyt9b0vLRnDqKjHWDIhgXmP7EGpsKLSUGE5b6uyv+F+XR6FAZCRebLTGywYv48F4/exeMIhy+gJQLBrI/RGHSeyDt5we/Xph5PGhaUTDtOr8VBOZSUw9LtI8spyrllHE+9IjmZcKwNn9bUpVdeqXB7FAVAolBhMhlpreGf108SG9GTRowdZMH4f7vbeVBoqkLnxbKXWKg2Vhsp6lVUqlDzX7T0WjN/Hz2PW46JxJ8St8TXP+TgFERPcHXd7LxSSgn5NR3GsyudVaaywTBkThDtFBCSCIAiCcItMW5to2YdJkvJQKM2vp61NJKv4AgXluZbFxHZqB0oqiyzvLakswt85BIBFCT+hM9bvxvV6dQ0bwJwD31BcUQhApaGCxJyjlvP+LiF8d99KPt3wKvEnF92SPgDkleVQaaigU4M+vNB9KjYqDRlFKdhZO6LVl2E0GWt934Bm95NdcoFf9nzO5a0MirQF/LHvK8C8nmJBgnn6WU5JBjuT1hEd2Pma/bFXO1BaWWx5XVJZiJ9zEJIkse3cGsuaFEcbZ5p6t7a0B+YpWwD21g6UVKnj78I8mpGcd/qafQGo0GspqTD/fqQXJjP/0A882PaZa57r02QER9L3Uq4rBWD7uXjCvVpY6k3KPUW4ZwsE4U4SU7YEQRAE4RbJKNRWeWXE2noOCukiBXo1T8615+kuU4jwbgXAQ+2eY/wfcVhbaZg9eh0v9/yEZxeMwNPBj+jATjhXmUZ1Mw1t+RBF2jzG/mZe4yHLJu6LfpJwz+aWMj5OgXx//2oemzOASoOWgc0fuOYakuuVWZTKO6ufwmAyYJKNdG80iGY+0UiSRK/Gwxj6fSQuGvcai9pt1fb8MmYj0ze+Rt9Zjc1pf5Vq7o9+EjCvQXl79ZMM+96c6Wpijw+vOZUM4IE2T/Ha8oexsbJl2tDfeb7b+3wQ/xzf7viQxp4taOhxJXPZR0N+4f21z7Io4ScUCiUDm93P2JgXGNh8NG+umMCaE/N4qN3zNRa192o8lI/XTeKxjq8CoDNU0ndWBHpDJaW6YnrMCGVk5KM81vFViisKeOSPOJQKJRISL/b4yBJY1HXO3zmEMW2f4f6fO6KQlAS4hPJW368tfdiZtI6ejYde749LEG4qsTGiIAiCINwiHT7cSHq1oMTMz1nDjle634EeCf824//sw6Se06oFgLdLftlFJvzVjznjdt2y9M93M7Ex4u0jpmwJgiAIwi0yKS4cjar6RoQalZJJceF3qEfCv83rcV9wsSTjjrR9ofA8b/T9SgQjwh0nfgMFQRAE4RYZEukHUCXLloZJceGW44IQ4hZOiNudCVBb+LW9I+0Kwt+JgEQQBEEQbqEhkX4iABEEQaiDmLIlCIIgCIIgCMIdIwISQRAEQRAEQRDuGBGQCIIgCIIgCIJwx4iARBAEQRAEQRCEO0YEJIIgCIIgCIIg3DEiIBEE4f/Yu8+AKuv2gePfM9gge4qAIOJGzb1xoZk5M82irbZs+kTDxlP/onxatkxtUbhypOYe5N7gVhygKMgG2eOM/4sDR8ZhWBSl1+dNnvs37xuT+zq/JYQQQgjRZCQgEUIIIYQQQjQZCUiEEEIIIYQQTUYCEiGEEEIIIUSTkYBECCGEEEII0WQkIBFCCCGEEEI0GQlIhBBCCCGEEE1GAhIhhBBCCCFEk5GARAghhBBCCNFkJCARQgghhBBCNBkJSIQQQgghhBBNRgISIYQQQgghRJORgEQIIYQQQgjRZCQgEUIIIYQQQjQZCUiEEEIIIYQQTUYCEiGEEEIIIUSTkYBECCGEEEII0WQkIBFCCCGEEEI0GQlIhBBCCCGEEE1GAhIhhBBCCCFEk5GARAghhBBCCNFkJCARQgghhBBCNBkJSIQQQgghhBBNRgISIYQQQgghRJORgEQIIYQQQgjRZCQgEUIIIYQQQjQZCUiEEEIIIYQQTUYCEiGEEEIIIUSTkYBECCGEEEII0WQkIBFCCCGEEEI0GQlIhBBCCCGEEE1GAhIhhBBCCCFEk5GARAghhBBCCNFkJCARQgghhBBCNBl1U3dACPHvlFdQyMTwtxjdvzdPTxpnvP7DbxspKinliQl3s+fYSU5ciGfGhLsbte0vf/mVDgEtGdg1mAtXkvhsyQouXEmiZ4e2vDXtIWO+ouISPl2yggtXrqLR6rizb0/uHRYCwPxVv3Ho9Flj3sSUNKaPu4vxgwfUWW71jj0UFBVx34ihjXpPQgghxO1KRkiEEH/I1kNHaO/vS/ThWMo0GpN5+gZ3aPRgJD07h5iz5xjQpRMADna2PDlxDE/eM6ZG3qiNWzFTqVj4+izmvfI8Ww4c5nT8JQCmjbuLBa+9xILXXmLOzBkoFQoG3dG53nKj+vVi3Z4DFBQVN+p9CSGEELcrGSERQvwhG/YeZMb40SzauI29x08xsGtwjTwb9x1k/4nTxlGLTfsOsXrnHrRaHTZWljw3ZSI+Hm5s3HeQbYdisLO2JiH5GrZWVrw97SGc7JuZrHNAl2AUCgUALg72uDjYczklta07lU0AACAASURBVEbei0nJhPbqjkKhwMrCguDAALYeiqGdv1+VfFsOHKZrm9bG9uoqp1ap6NY2iOgjsdzVr/effIpCCCGEkBESIcRNu3g1ibyCQroEBTKiTw827D1Qb5nj5+P5PeYon77wNN+8+gL3Dgthzk9LjOlxl64wY/xovn/jZXw93Vn1+26T9Rw9d5G2LX0a1M/WPt7sjD2ORqvlen4+h07HkZqZXSPfxn0HGdmnR4PLtff3Jfbs+Qb1QQghhBB1kxESIUSD/BqbxJxNcSTnFNFCd5E+gUEoFAr6d+7I50tXkp6Tg6uDQ63l9504xcWryTz14acA6PV68guLjOkdAlri5uQIQLuWvhw5c85kPenZOTg2s2tQn6eEDuGbFWuZ8f7HONja0rl1ANfzC6rkOXPpMjl5+fTq2K7B5RybNSM953qD+iCEEEKIuklAIoSo16+xSbyy8gRFZVrQ61DkJ7Hv6DXGzDqNtbkKjVbH5n2HmTqy9oXeer2ekX168PDokSbTzc1u/HOkVCrR6nQm81mYm1FaZnrNSnWW5uY8O2WC8fOni5fj4+FeJc/GvQcZ2rMbapWqweVKy8qwMDNrUB+EEEIIUTeZsiWEqNecTXGGYASwKUunTGnNZbt+ZDgPYPH/zebDmdPZuO9gnXX07tSezfsPk56dA4BWp+Pc5Ss33ZeWXp5cSU1rUN6ComJKSksBuHg1md1HTzBmYF9jeklpKdsPx1aZrtWQcokpqfh7e91034UQQghRk4yQCCHqlZxzY2qVXdk18sw8qlxv7++HTq/n2PmLtdYRHBjAo2Pu5LWvv0Wn06HRahnYNZjWvi1uqi/9u3Tk9yPHGNHbEESkZGYx83+fU1JaSmmZhkmvvM1Dd4VyZ99eXMvI5L8LI1EplZiZqXn14ftxcbA31rXr6Al83N3w8/So0kZ95Q6djuPRMXfeVL+FEOLfYEO3ufT5aTL2bd2qXN9932I6vxeKrZ/Tn6p/x7hIWj/RC8/hratcP/L8WnzvDcalV8PWCNbl/PwD6DU6Wj/Zm6JruRx68leyT6Rg6+/EkM2PGfPptTqOv7mFtJ0J6DRaPIe1puNbQ1EoFOi1Op60G9tihfs7JwEz4DfgpQmps/Ur3N+ZCTxSqUl/YOGE1NkvrHB/505gzITU2dP/9I3cRhR6vb6p+9Bg3bp10x8+fLipuyHEbadvxHaSKgUlFZo7WLEnfPDf2hetTscTEZ/w/lOP42xiF66/WmJKKh8v+oVPX3j6b29bCCH+arUFJH+ETqNDqa46Gae2gKSx6tcUlrF10DcM2zEdlZUZZbnF5JxKRZNXwun/7awSkMRHxpC07gx9f54MCgV7H1iC76ROtBjXgfjIGBY9+1VuW3NfF0APrAV+nJA6e0nl9la4v2MGJAF3Tkidfbj82hFg0oTU2bV/SyeqkClbQoh6zQoNwspMVeWalZmKWaFBf3tfVEolL9x3D9cyMv/2tgHSsnN4bsrEJmlbCCGayoZuc7l+xjBd9tzX+9geupCtQ+YTfed35JxMMeZb4f4OcV/uZce4SM78b0eD698xLpJrmw2bmSSuOMH2Ed+ydch8tg6ZT9rOhCr9OPPxTnaOiyT2pXU16kladwaX3j6orAzr/MyaWeLa2xe1jXmNvNdPp+I2oCVKMxVKtRK3gf4krjhpTDtVlpA7IXV22YTU2RpgCzDVRNdHAykVwUi5ZVQdQRH1kClbQoh6je3SHMC4y5aXgxWzQoOM1/9ubfz+/JD+H9Wt7d8fhAkhxD+J7z2daP2E4Rym1B3xxM5aT8iGSu/fOj0DV4X94frdQwJoMb4DCoWCvAsZ7Jr4M3cefc6YXpyaz4Ba6s/Ycxmnrg373eTYyZNLS44S8FA3AK5tiKP0erExrYt5a4cV7u/YlGcfC5jaSvIR4Ltq1/YBHwKvNagjQgISIUTDjO3SvMkCECGEEH+dytu6z75ezPazaYyrY8pW9vFrxH22h9LsIlAqyI+vOmLte2/Ng3JvRsGlbA7OWEVRSi5KtYritHyK0/KxdLMFwOeeTrWWLbyWi8fwwAa14zs5mILL2fw++gfM7Cxw7OxF+t5LxrS46Yl5AWZee4Bc4BAwqHL5Fe7veAKDgYeqVZ0CeDeoEwKQgEQIIYQQ4rZVZVt3QKvT8+nWcyj8HE1+CaUr1bL/0eUMXP0gjp08KUrJY33wp1XymJoedTMOzlhFx7eG0vzONuh1en71ex9t8Y3t3uuqX2WpRlfcsK3hFUoF7V8Jof0rIQDEfbEXu0AXY9p3+euTv81b1w1ghfs7/wHOVKviQWD9hNTZGdWuWwI1F16KWskaEiGEEEKI21Tlbd0rlGh0zNkUZzK/tkSDXqvD2suwqUj8942/2VBZbjE2vobZUZeiYtGVaOspcYN9WzfyLjZsjaG2WENZrmGKVuHV68T/cJjAGb2MabYKKxXACvd3fIAngY+rVfEQNadrAbQFjjW400JGSIQQQgghblfJJnZQnL7pPDqFgvVLjgMw9PcbO9ia2VnQ7j+D2D7iW6yb2+M+OOCm2zz87BpUFjdeQftGTamS3umd4ex78BesPO1w6e2DuZNVg+tuPqoNsS9voN2sgYBha98Nd8xFW6qlLLeY9Z0/xW9qF9rNGkhZbjE7x0eCUgFAh9eH4NjJEzAERR84TW+zwv2dU+VVvzwhdXZMRTsr3N/pC9gBm0x0IxRY0eBOC9n2VwghhBDidvVP2ta9sey6N4qOrw/GoaPnn6pHoVAc0ev13W6mzAr3d5yB7UD3CamzS/9UB24jMmVLCCGEEOI29U/a1r2xdH5/BEWp+U3VvD/whAQjN6dRp2wpFAon4FtgOJABvKLX6xfVkd8cOA7Y6vV62Y1ACCFEo/nss3eZMuVR3Nxu7lvSH3/8it69B9G6dTvWrl1Kp07d8fX1/4t6ecPvv2+itLSE4cPv/svb+qtVfoaV5eRkcfFiHHfc0dt47Y/+nCo7evQg58+f4Z57HvzDdVTYv38nHTt2wcbGzmS6Vqtl584tnDoVi0qlQq/X06pVW4YMGYVKpTJZ5q/yZ+572bIf6Nt3MGO7+JCXdomjB7dhq8slUeXHmFHjjAva8/Nz+e235eTkZKHTaenXbyidOt0BQEFBHqtXLyU3NwetVkPLloGMGDEWpVJVZ7ktW9bi6dmcDh26Nt7DqMTO3xk7f+e/pO76TEidfahJGv6Xa+w1JF8CpYA70BlYp1Aojun1+lO15J8FpAG2jdwPIYQQ4k8bPfrepu7CLSUnJ4uYmP1VApJ/mgMHduLvH1hrQLJmzRLKysp4/PHnsbCwRKvVcvToQbRaTY2ARKfToVT+8yajXL16mdLSEpo3N5zpNKp7EEM7+XLmzAk0mjKGV9pda/PmNXh5tWDy5EcoKMhnwYJP8PX1x97ekd27t+Hi4sZ99z2GVqvl+++/4MyZE7Rv37nOcn36hPDDD1/Qvn1nFIp/3vMRf79GC0gUCoUNMAHooNfr84HdCoViDfAAEG4if0vgfuAFYEFj9UMIIYSo7scfv8LLqwVXr14iLy+Xdu2CGTr0LgDS01NYvXopOp0WV1d3NJqyKuUqvuk/cSKGAwd2odMZthQdOnQ0/v6tAcO3/J06dSM+/hz5+bn07j2IHj36AYYXusTEeLRaDVZWNtx99704ODjV2V+dTsfWrb9x8aJhp6OAgCCGDr0LpVLJ6tWLUavNyMxMJzc3B29vX8aMmYJCoaCkpJjNm1eTmnoNjUaDn18rhg+/G6VSyY4dmzh5Mha12gyFAsLCnsTSsupi4fj4c0RHb0SrLUOn09Gv31A6dOjyp55hZRs2rCQ7O4tvvvkIJycX4zf7p04dY+3aX2o8u4yMNDZtWk1RUQFarYaePQfQuXOPBv7UITX1GuvXr6CsrBSNRkPXrr3o1WsAAEeO7OPAgZ2oVGr0ej0TJz7AmTMnyMvL5ZdffkStNmP8+Km4unoY68vMTOfs2ZM899xsLCwsAVCpVMYA6+jRg5w6dRRra1syMlIZPXoSS5d+X2UEqGJEyNXVnQ0bVpGQcB61Wo2ZmQWPPPIMOp2WRYsWUlRUiEZThpeXD3fdNRGVSo1Wq2HDhlVcvnwROzt7XFyqnhWyZ892zpw5jk6nw87OntGj78HWtlmN5xITs5+OHW+MTjg5Gba6jYur+f1xamoyPXsanpmNjS0eHl6cPn2M3r0HAQpKS0vQ63VotRp0Og12dvb1lrOxscXBwZn4+PMEBPx7p4aJxtOYIyStAa1erz9X6doxYGAt+T8HXqWefZoVCsU0YBqAj0/Tnc4shBDi3+369WweeugpSkpK+Pzz9+jSpSfOzq78+utievToR3Bwd65evcz3339usnxAQBAdOnRBoVCQkZHGTz/N4/nn3zCml5WV8uijM8nJyeLrr+fQuXN3zM0t6NdvMNbWhmlYMTH72bZtHRMmPFBnX2Ni9pOamsy0ac8DEBW1gJiY/XTr1geAtLRrPPDADBQKBfPnf0x8/DkCAoLYvHk1vr4BjB59L3q9jpUrozh69CBt23Zi374dvPji25iZmVFSUoyZmVmNdj09vXn44adRKpXk5+exYMEnBAQEYWVl3SjPcOTI8WzZspbHH3++ynVTz06tVrNqVRTjxt2Hi4s7JSXFLFz4Kd7evri4uNf5/Co4ODjywAMzUKvVlJaWsHDhZwQEBOHq6s7Wrb8xY8ZL2Ns7otFo0Ot19O8/lJiY/dxzz4Mmp5ClpCTh5ORifB6mJCYmMH36i8aX/NqkpCQTH3+Op556GYVCSVFRIQAKhZLx4+/H2toGvV7P6tWLiY09SLdufThyZB85OVnMmDELnU7LDz98aQxujx8/QnZ2Jo8+OhOFQsnhw3vZvHkN48ffX6Pty5cv0qfPoAY9Q09Pb06dOoqXVwtycrK4cuWSsc0BA4axbNkPfPzx25SWltK9e198fFrWWw7A29uXhAQJSIRBYwYktsD1ateuY9gSrQqFQjEOUOv1+lUKhWJQXZXq9fr5wHww7LLVOF0VQghxK6p84vRk62K2n0ljcvmLZbt2wSgUSiwtrXBxcSc7OxNbWzvS0q4Z57Z7e/vWupYhOzuTlSt/Ji/vevkc+Tzy83ON30BXjCQ4ODhhZWVFbm4OLi7uXLhwlkOH9lBaWopO17DzFOLjzxEc3B2VyvBrunPnHpw9e8IYkAQFdUCtNgQUHh7eZGcbzl2IiztNUtIV9u3bARhe9Js1c8DCwhJnZ1dWrYqiVas2BAa2M37DX1lhYQFr1iwlKysDpdLwkpyZmY63t2+jPMPamHp2er2e9PRUVqz42ZhPo9GQkZHW4ICkrKyM9etXkJqajEKhIC/vOqmpybi6uuPn14o1a5YSFNSewMB2ODo2ZM1B/a8hPj4t6w1GABwdndHr9axZs4yWLVsRGGhYb6PX69m373cuXDiLXq+jqKgIMzPDQYCXLl0kOLgbKpUKlUpFx453cOVKAgDnzp0iOfkK8+d/AhhG2Uz9jAFyc3NqnZJW3bBhd7N582rmz/+IZs0cadkyEKXSMDXt9OljuLt7ERY2g5KSEhYtWsDp08do1y64znIAtrZ2JCbGN6gP4tbXmAFJPlB9XLAZkFf5QvnUrg+BOxuxbSGEELe56idOa3R6Pt16HstmhpfDihd4AKVSiU6nK/+kaFD9K1f+zLBho2nTpiN6vY733nsFjabS6dHqG79SFQpD/Tk5WWzatJrHHnsOR0dnrlxJYOXKqAa1p1BU/3zjQtV7UVS6Fz333vuwyZfrRx+dSWLiJS5dOs+CBZ8wderjuLt7Vcmzbt1ygoLaM2nSQygUCr744v0q06/+7DOsjalnBwqsrW2YPv3FP1zv9u3rsbGxY9q0F1AqVfz88zfG+5k06SGSk6+QkHCeyMivufPOCQQGtq2zPg8Pb7KyMigqKqx1lMTc3KLKZ6VSSeUjFir+zlhaWvHEE7O4dOkiCQnn2bp1HdOmPU98/DkSExN46KGnsLCwZNeurWRlpQNQ11ENer2e/v2H0qVLz3qfi1ptVuXvbl1sbGwZN26q8fOiRQuMU8UOHtzN3XffawxSg4I6cOnSBdq1C66zXMVzqPz3SdzeGnMl0TlArVAoAitdCwaqT0gMBPyAXQqFIgVYCXgqFIoUhULh14j9EUIIcRsxdeJ0sUZb64nTABYWlri5eXDiRCwASUmJpKVdM5m3uLgIBwfDi35srGERc31KSkpQqdTY2jZDr9dx5Mi+Bt2Lv39rjh49hFarRavVcuzYIVq2DKy3XOvW7dmzZ7sxUCgszCc7O5OSkmIKCgrw8wtg0KARuLl5kJaWYqK/xTg4OKFQKLh4MY6srPpPvL6ZZ2hhYUlJSXG9dQK4uLhiZmbG8eM3zh/LyEhtcHkw/Mzs7R1QKlWkpV0zfiOv02nJzs6keXMf+vUbgr9/a1JSkox9LC423YazsyutW7dj3brlxn7odDoOHNhJaWmJyTKOjs4kJ18BDCNfBQWG72kLCvIpKyujVas2DBkyCktLS7KzMykuLsLa2qa8H0WcPBlrrKtly0COHz+CTqelrKyMkyeN5/QRFNSew4f3Gqd+aTQaUlKSTfbJzc2TzMy0Bj3DwsIC48heQsJ50tKuGdefODg4ceHCWQC0Wg3x8eeMo2N1lQPDz7J6QCxuX402QqLX6wsUCsVK4L8KheIxDLtsjQH6VMt6EmhR6XMf4AugK5DeWP0RQghxezF14rTxeh0ziMaOncLq1UvZv38Hnp7eNG/uazJfaOgYli37Hju7Zvj6BtS5jqCCu7sn7doF8/XXH2Jv74ivrz+XL5uepqLT6YzfGHft2ousrAzmz/8YMKxf6dq1V73thYaOYevW3/jmm49QKEClUhMaOgaVSsWyZT+i0ZSh1+vx9GxO27Yda5QfPPhONmxYye7d23F398TdvWFTrxr6DN3dPXF2duXrr+fg4uJW53a1SqWKyZMfZdOm1ezd+zt6vQ4bGzsmTjS9/ub8+TN88sl/jZ87d+5O//5D+fXXxZw4EYOjozM+Pobtm3U6PatXL6GkpAiFQkGzZg4MGTIKgB49+rFmzRLMzMxrLGqvuNcdOzazYMEnxgXxrVq1MU6vqy4kZCSrVy8hJmY/LVq0xN7eETBMm/rtt1/Q6bTodDoCAtrg7e2Lq6sHcXGn+PrrD7Gzs8fHp6VxVOeOO3qRlnaNr7+eg52dPb6+AeTkZAHQqVM3CgsL+PHHrwDDiEm3bn3w8Kj50t+2bUcuXozDz68VAImJ8axY8bMxyDp16iijR0+iVas2JCUlsmnTrygUhhGryZMfNU4hCw0dw7p1y5k3bw46nR4/vwC6djWM0NRVTq/Xk5Bwnn79htT24xe3mUY9qb38HJLvgGFAJhCu1+sXKRSK/sAGvV5fY3vf8jUkPzfkHBI5qV0IIURt/u0nTi9evJB27YIJDu7e1F0Rt7iSkmK+//4LHn30WZObG/zVLlw4y4kTMYwbd9/f3vbN+CMntYs/plE3f9br9Vl6vX6sXq+30ev1PhWHIur1+l2mgpHytN/lUEQhhBB/1r/1xGnDzlIfolSqaN++c1N3R9wGLCwsGTZsNDk59U/J+yuUlpYwdOioJmlb/DM16gjJX01GSIQQQtSl8i5bXg5WzAoNMp44LcStIuKFyTz0wvt4eLe8qXLfvPccA0beS9suTX8wZXhYCG/PX49FtbNw/k5bVv7A/m2raeboQllJMZbWNnTpO4zeQw2nzTfWCEl4WIgXsBzoFxEZrQsPC7kE3BURGX0yPCzkB2AohmULtkAq8E1EZPRP1epQAFuB4IjIaJfya3cCYyIio6fX0fYYYFhEZPTT4WEhFsBqoBtART2V8r4CTMWwpOMAMC0iMrqkAWl+wFdAAKAFPoqIjP42PCykA/BhRGR0vRtZyfGYQgghbhljuzRnT/hgEiJGsSd8sAQjQog6de03nGffXcBLc35iylNvcGx/NL9FfdnYzcwGPo+IjNbVkh4RERndJSIyOhB4Gng9PCzkhWp5ngYuVSkUGb0e6BYeFhJQR9vvAhHlf9YC/8MQAFURHhYyHJgC9ATaAqXA8w1IUwCrgPkRkdFBQHtgbXn/TgKl4WEhIXX0D2jcbX+FEP9gmjItP3xygG1r4lCrleh10GuIHzNe7cfmlWfZuzWedxeMbpS2Zt2/iufeDaG5n0Oj1Fdh37YE/vPAr/zft6MZMLJVo9ZtymuPruX+Z7rTtrMHB3+/zPyI3cSfzWTCw5156s0BxnyZaQX87z9bSb6Si7ZMxwPP9iB0Qtt6096duZGLpzOM9Vw8k857391Nv9AAvnpnJ607uDF0XJu//D6FEP9e37z3HC1atuHyhVPk5WTSsccgRt47DYDUpEssX/ABWq0Wt+a+aMpKjeVyczJZ89NccjLTKCstoXOvwYTcbThEMeKFyXTuNYRL50+Sl51B39CJ9Bk2DoD0a4msjfqSwrzraDRl9AudSLcBIwHDqEfoxEc5dWQ3hfm5jJw8nY7dDedjnzy0k03LF2Jl04yg4KpbEydePM3GZQsoKSoAYNj4h2nTuTdZ6Sl88eZ0eoaM5uyxA5SVljDx0Vn4BRk2ZDgTu4+tq35Aq9WgUCiZNC0cT5+AWuurj7ObFxMf+w+fvvYIwyc8glKhIDwsZBPgDFgBB4HpEZHRpeFhISeBhyMiow+V3/sLQJuIyOhplesMDwuxBO6h/AW+PhGR0UfDw0KeBX4MDwv5JCIyWh8eFhIITAYewrBhVGXLgEeA16rXFR4W0h/IiIiMvlpetwbYWj6iUV0wsCsiMrqgvOwG4G0MwUxdaUOBvIjI6F/L29ADlbdwWww8BkTXdd8SkAhxm3jv+c2UFmv4duNUrG3N0ZRpWb/0FKWlDTuo7WbM+Xlco9cJsG7JSbr2a8H6Jaf+8oDkVMw1igrLaNvZsMOOl689/5kzjB3rz1NaXPWZffHWDoKC3Xn/hzFkZxbyWOgiOvfyxr25XZ1pr88dYazjwql0np20nB6DDLsTTXmyG0+NWcbgMUEolX/ujAchxK0tJzOV6a99RmlxIR++NJXuA+/ExcObZd+8R59h47mj/wgSL5zm63eeMZZZ9s37DB7zAP5tgtFoylgY8SLe/m0I7GCYoZR3PYsZr31G3vUs5s6eRsugTrg192PJ1+9y74zXcfPyoaSokM/fnIFPq/a4efkAYGFlw9Nvz+PSuRMs+vK/dOw+kPzcbFZ+9xFPvPE5rp4+7Fi32NiPooJ8Vn3/CQ+/FEEzB2dyczL54s0ZPP/e9wAU5ufi06o9ofc8RuzeLWxY9g1PzP6C9GtXWPHdHGa8NhcXD280ZaVoNZo667OyMbmcuQo3Lx/MzC1Jv3YFnWFZw30RkdGZ5SMBP2J4+Z+HYYfYJ4GHy9OeACaaqLI7cCEiMrrh+1UbpkS5Aa7hYSEZwALgKaDMRN59GM73qxGQAIPK62qII8Dj4WEhLkAOMAnwbUBaOyAzPCzkF6AVcAF4ISIy+kql/n1WX+MSkAhxG7gSn82uDRdYeeRxrG0N2y6qzVTcfX8nY57CvFLenL6O+LgMbJtZ8O7C0Ti72XDxTAYfv7KNokINpSUa7r6/I5MeN+wlv+bn4yybH4uZuQqdXs9/543CN9CJe3p8yweRY/Bv48IzE36hTbA7p45cIyM1n8GjWzPjtf4AJJzL5P3nN1NcWEar9q4kXcoh7Nme9B3mX+MermcVcWT3FaJ2PsgDgyLJTCvA2c0GgGcm/EJQJzfOxKaQciWXiY91wdXDlhXfHSUjtYAnZ/cnZHRror48RFpSHs+/Z9hxKSu9gIeG/Myy/Y9gaV11p5m1P59g2Lgbi6G9WxpGe3Zvuohh1PuGC6fTmTTN8Ewcna0JbO9K9NpzTJ5xR51plf22+CTDxrXB3EJtzOvla8+RXYl0H2h6C1UhxO2j8vqoMdeL2X4mlfvK15B07DEIpVKJpbUtbl6+ZKYlY2vvSMrVS3TpOxwAn1bt8GhhyF9aUkT82aMU5OUY6y8pLiIt+bIxIOk+0DDt387eiTbBvYg/exSlSkVaciKLv7qxvbJGU0pa8mVjQBLca7CxvdzsDMpKS0m8cBovv0BcPQ15egwazYal8wG4fOEk2RnX+P5/LxvrVCgUZKYmYW1nj7mllXHNi09AO9Yt/hqAC6cOE9SpJy4ehn2R1GbmqM3MOXtsf631efvf3AYX5WeRvhQeFjISUAGOQGF5ciTwRnhYiBPQA0iNiIw+ZqIabwzrQm6q6Up/fgnYWT5y4mcib0p5G6Z4A2cb0mBEZPT28LCQL4HNQDGwjfIAqK40DLHEYKBnRGT02fKRoh/Lr1X0zz08LMQsIjLaVEBlrEQIcYs7fzIN75aO2DlY1prnzLFUftj6AO7N7fjgpS2s+O4o08L74tmiGZ8snYC5hZrCglKm3bmYHoN88Qt05qt3dvHj9jDcm9tRWqJBpzW9SUZaUh5frJpEYX4pk3t/x6gpHWjh78i7z2xk0rSuhE5oy9ljKUwftaTW/m1acYa+w/xxcrVhwMhWbPzlNFOfurE9anpyPp+vnERWWgGT+3zPpGld+XrtZE7HpvD6Y2sJGd2au6d25P6BPzL9tX5Y25iz5ucTDB0XVCMYAYjdd5UpTzRsLWNQJ3e2rY6jTbA7167kcvJwMh4tmtWbVqGsVMvWVWf5ZOmEKtfb3+HJkd0SkAhxu/s1NolXVp4wHvyp1en5dOt5rF0Mx7qpy8/3AFAolei0hnyKWgZX9To9ChQ8/dY8VOr6XwX16AEF6PVY29rz7LsLa81b0Rel0rDjnU6nrfOEefR6PFoEMOO1ml+iZ6WnVDnNXaFUGe+t1irrqK8h0q8lUlZajKuXD50DvZyAfkD/iMjovPCwkFeB1gARkdGF4WEhi4CHMYxE1LbwpAio/Zevad0xTHtKBwYAncLDQsIwvLc7li+KENmtgQAAIABJREFU7xQRGZ1bXrfpQ5husu2IyOjPKB/NCA8LmQScaUDaZeBIRGR0ReDzM3AjYjW0X1ZXMAKyqF2I20JDNtPr2N0L9+Z2ALTv6knSJcM3Z8VFZUS8uIUHB0fy5JilZKYWcOGUYd1D174teP/5TSz/NpaMlHyTL/YAg0YHolQqsG1mgW+gE8mXr1OQV0JCXCbDytdItAn2IKCti8nyAOuXnmLkpHYAjJzUjvVLTplsw8XDFntHSwaMNKzxC+rkRvq1fEqKNdg5WNJ3uD+blp9Bo9GxNuokY8OCTbaXfi0fJ9f6D74DeOrNAWSlF/LwsJ/57PVouvZrgdpMWW9ahV0bL+DWvBmBHdyqXHd2sybtWn6D+iCEuHXN2RRnDEYqlGi0zNkUV2sZSysb3Ju35Ni+bQBcuXiGlCsJAFhYWeMX1JHff1tkzJ+TmUZe+SGLAEd2bQIgPzeHc8cPEtC2My6ePphbWBCzZ7MxX1pyIsXlazVq4xvYnuTL58lIuQrAoR3rjGk+gR3ITLnKxdM3TqS/En+27iAGaN2xO3HHDxjr1JSVUlJU+IfrA0MAtHzhHHoNvhtLKxsszdVqDGsw8sLDQuyB6genfAk8B9wBrKil2hNAg4dmwsNCOgGfAh9EREbrIyKj74qIjPaJiIz2wxAcZUdERvuVByNgWGRuamTmj7TtUf5fRyAcwwL4+tI2AC3Cw0IqTlEdUa0/bYHj9bUtIyRC3MIqhvjTEq/jfi6TJTsTmDzA9DaR5hY3zm9QqhRotYbNQOa/vwdnVxte3RyKWq3khckrKC3RAPB/347mzNFUYnYnMnPicl76YAi9Btesv2IakqFuJRqNDr3e8O1dbd/gVXb2WAqXzmUR8cIW47WM1HxOHEqmY3cvk21UfFapDC//Ffcz8dEuvP3UBhxdrPENdMInwNFkmxaWakpKNNjV3z0cna1544uRxs+z7l+FbyunetMqrFtyilGT29eot7RYi4Wl/DMtxO0u2cSBn8brzUwmATBp+issX/ABuzb+QnO/1vi0amtMmzzjdX5b9CWfvPoIABaW1kx87D/YORj+fXJwdmPeuzPJy8lk0F334dHCMJX2weffY23UF+xcvxSdTottMyemPv1mnf23bebI+Idf5MdPXsXKphmdegwyplnb2BH2/P+xfsk81kZ9gVajwcnNkweff6/OOl08vBn/yEss+vK/6HRalEoVk6aF49HCv9b6FCZ+4cTs3syFUzGUlZZgaWVN595D6TPcsA4y9lxy5oAu/nbhYSGngCRgF4bF7QBEREYnhIeFnAUORERGl9ao3JDnYnhYSE54WEhQRGR0bRFkeHhYyGOANYaRkfcjIqMj63wAN4RSezD0G/BaeFiIsmKHr/CwkEMYpnI5hoeFXAU2RkRGP1aef0t4WIgSMAO+qFioXldaRGR0QXhYyDPAhvK1NJkYFt83pH9G8ptOiFtUlSH+ZuYUetvw8SvbUH44lEl9/dBqdaz8/iijpnSos5783BIC2rmgViuJP5vBsYNJDB3XBo1GR+rVXNp18aBdFw+SLl/n3Ml0kwGJKYbREme2ropj2Pg2xB1PJf5shsm865acYupT3Xj85b7Gaz99fpB1S04ZA5KG8m/jgr2jJZ+/8btxLYnpfM5cuZiNi3v9iyCvZxVh08wCtVrJkd2JxJ/J4J35d9WbBpCWnMfxA0m8+WXNbdovXciiVTvXm7o/IcStx8vBiqRKQclad8NGTs0drJge/mmVvNNfvfHZvbkfT731tck67RycmPLk7FrbbN+tP0PGhtW47uLhzcMvRpgoARGR0bV+7tB9AB2639idsN+IG+u/W/i3qdLvCk6uHrzx1epaP7fr0od2XfrUKFdbfdUNG/8Qw8Y/VGt6calGGxEZXWOL3ArhYSHNMGxz+3A9TX2AYQH8swDlox2U/7n2DlQTERl9CTBOJQgPC3HGMDozo5b8qeFhIVsw7My1qvxad1N5y9M6/sG0jcDG6tfDw0LMgfGY2Ga4OpmyJcQtqvoQf1ZfD0pszZj7+DrCQiJ5cPBPpCXlY26uqqMWCHu2J2ujTvL4yEX8+OkBgnsa1s7ptDree24TDw6O5KGhP5GZVsCY+2v998qk1+eG8svCGB4NjWL1T8cJaOeKbTPzKnlKijVsW20IWiobNq4Nv/92jqLCOqelmnTXfR1QKBX0Hlp78DTgzkAO/H7Z+Pn4gSTG37GApfNjWP3zccbfsYADv18C4MzRFB4Y+CNT+//At3P2EfHjGOP0tbrSADb+cpo+w/xp5lh1mq9er+fI7kT6hda1vbwQ4nYwKzQIK7Oq/1ZbmamYFXpzi7RF4wkPC5kBnMZwCODVuvJGREYvBs6XjzA0Jn/gidpGZ8q9TqVRnb+ZL/BqRGS06W8bK5GT2oW4RbUMX4ep/7sVQELEqL+7OyYVFZZhaaVGoVCQcC6TmRN+YdGuh+pcfN8YIl7cgk+AI/c9Wfui9YK8Ep4cu4z5v03BwurvH0w+8PslNq84w+zPR9afWQhxy6u8y5aXgxWzQoPk4M+/WGOd1C7qJ1O2hLhFVR/ir3z9n+LEwWS+enencdH9f+YM+0uDkYyUfGZOXI6TmzXPvTOozrw2dhY8/cYAkq9cp2Vr57+sT7UpzCvlifLtkYUQYmyX5hKAiFuWjJAIcYuqvk0kGIb43x/fUX6pCSGEEPWQEZK/j4yQCHGLqgg6ZIhfCCGEEP9kEpAIcQuTIX4hhBBC/NPJLltCCCGEEJX83C2MyE5TjKeCA5xdvJl5HiM4+e0aAE79uI5j36z8Q/Wvu2821y8lN0pfTVk9bhaXNx/4y+r/Mw59EMmFX3cY/jznJ/a9tcB0vjrS6rPpkf+SFms48uPK70dYMfwZ5vuMrlFfYVoWGx98i2UhM1jS/3HOLd9WJe1Zh24B8zxGHJ/nMeLMPI8R91cuO89jxKR5HiNOzPMYcbL8v+7l1z+c5zFiyh/q+G1MRkiEEEIIIaqxdnfiSvQRfIf2ACBu2RZcOwUa09s/+Md3Kxy16J0/3b9/q+4v1zzbpC4HYpezenMEevSUlRXj16ILTz/4c635U2POklKawC/H3+WpLj/RzNeTgR89S/y63WiLq24TH/3mZ1zxO8+MHxdRlJHDitBn8OrdCdvmrux9cz5XNLmFn2Yf6jTPY4TruW6n4+9/yuwVvUpfhp72lnda6Uqsi8/rlXpN1429QmJG7M/aNVNt15+hc4Dd8zxGLJ2RslF3s89n6kz1GGBY1FzN01Nnqi2A1UA3gKi5GpdqeV8BpmJ4nz8ATIuaqympK23qTPVEDFsBV/AGdkbN1YyfOlPdAfgwaq6m5sFYfzEJSIQQQgghqgm6dxhxS7fgO7QHuZdT0BSV4NjG15h+aM5PaAqK6f3W46QcOs3uV79Er9OjK9PQ9fkpBI4L4fRP6zk+fxUqczP0Oh3D5r+GY2ALfu4Wxp0//Rentn5cT0hm56y5FGXmoFSr6PHKw/gMNqyjnucxgh6vPETC+j0UZ+fR+43H8L+r303dx/aZ/0NlYcb1+GRyL12j5ai++A3vyaE5P5GflE6n6ePp9PhYwDAyFDhuECmHTlOQkkmnx8fR4dG7AUiLjWPP619TVliMmbUlfd99ArcuQRSl57D1yQiK0nMAaD6gC33/O73WZ7J95v9wC25trDcvKY11980m/2oqDoEtGPTJC1g0swGgQHed5ctm83//OURi1H4u/raTHHUaG7a+ycCPnsXazanG/Z75aT29Rt9H0L3DALBvaTg8N2HjPqBqQJJ2/hwxtlsAsHJxwLm9PxfX7CT4iQlknornREn6dYAZKRvT53mMiG59uN2OGSkbP3pomlW+78mAD944eNQYWU6daXilLs8bDwwBttzUD8vgXaBiv3ct8D8gA9haOdPUmerhwBSgJ1AIzAeeByLqSouaq1kOLK9UTyywCCBqrubk1Jnq0qkz1SFRczVVT7n8i0lAIoQQQghRjVffYE798BslOXnELd1C0D1DSTt2zmTeo18so9O0cbS+Zyh6vZ7S3AIA9v93IZN+/wbb5q5oS0rRaWt+Yb7tyQ9o+8BI2t43gqy4y6wZN4t7d87HysUBAHNbayZs+pxrB0+xZdp7xoDk9xc+wS+0F36hveu9l+y4y4z+JQKdVkdU9wcpzS1gzKo5FKRmsaTvY7S9LxQzG8OW8IXpOYz59X8UpmezfOhTePbugEOrFmx+7F0GffI83gO6cnVXLJsfe5cp+77j3Mrt2Hm7MfoXw+ntJTl5dT6T6lIOnGTitq+wdnUk+rmPifl4Eb3fetzQF10uKpUZKZuPk3spmQnrP0OhVHLqh9/Y+9YC4nqe5FraOco0JXi4BjDtvoUk7z2B1d0teH1OT96ddYD0zEu8/r+etFX2JqHwKCve/YTHp8wnKKAfZ9sep7Akl1c+6IpaZ0bAYV/sWrgD4NopkB5HvZzmeYxQAH5AH+ASgEKvNFOXqr3neYzYCdgCK5kEwMypM9Xj1GPUAd5xvk9QHpBMnanuCUQAzcpv+42ouZp11Z/F1Jnq/kBG1FzNVYCouRoNsHXqTLWfiUcXDOyKmqspKC+7AXi7vJ260iq31xVoAaypdHkx8BggAYkQQgghxN+p8sGDT10vZvvZNAJGD+DCrzu4uGYHY9d8XGtA4tU3mNi5y8i7mob3wK64d21juN6vM9HPfYRfaG98h/Wgma9nlXKl+YVknIqnzeThADgF+eLc3p/UmLP4De8FQMDYgQC439GGwpRMNMWlqC3NGfTx8w2+N78RfVBZmKMCHFp54zOkOwqlEltPFywcbMlPzsAxsAUAbe4LBcDa1RGfoT1I3nscFAqUZmq8B3QFwLt/F5RmanIuXsX9jjYc/2Yl+95egFfvTniH3FHnM6nOZ1hPrF0djW3vee0rY5qLqjkB3t35aPcUHLNc2HvvcnyuB6IuMcO8mQ1hH36Cna1hFtOy32azduuH5F/LwNLBtkob+QWZeLoE0NNsFLpQGxaveYW3nt/F088u5s3P+tF1U09sm7uh6muOUm14Ne791uP88vNiM+AokAhsp2KIRY9CVaZuDQwDzIGN5U3lRs3VdJ/dr90Hie3jnwGYOlPtAMwD7oyaq7k2dabaEzg0daa6Q9RcTU61xzEIw/SqhjgCPD51ptoFyAEmYTgZvb60yh4Bfo6aq6l80vs+4LMG9qHRyKJ2IYQQQtzWKs5tSsopQg9odXo+23qeyx07cejDn3AK8sPSqVmt5TtNG8eIn97Cytme3a9+xcGIHwAI/W42PV55GE1RMWvGv0zitkNVC9ZyFpwChfHPaktzAJQqlaFIpYX2DaW2ML9Rt1JZ47NeU0udej2gMPxXoaiRrECBR7d23LP1K1yDAzm3fBtrJ/wHqP2Z1Km8nV9jk/hudwILd19iRebTdEmfTOc7RsEga/b13Mqo9e8zbu3H7Dr4E6992IOX3+/M3iNLuHz1GGpLc7RlVadmWVrY4m/VGYBWfj1Jy4g3XHdshpmtFfds/5qRP71NWUExjq0NgZmViwPzrscmzEjZGDwjZeNoDCMhZwD0Sr2m2LZo84yUjSUzUjbmYVjnAbAEwDPeO1ljobGaOlNtiWFkpSWwYepM9VFgA6AHWpl4At5Aav0PCqLmarYDXwKbgZ3AecoDprrSKpSvT5kCfFet6hTAfepMtVlD+tFYZIRECCGEELe1OZviqhwiC1Cs0fHJ8SwWvPIgbrV8u18h5+JVHAK8sffzQm1jxbllW9FptORdTcW9axDuXYO4fukaGScv4jOku7GcuZ0NLu39iVu6lTZThpN9/gqZpxJw6xr0l9xnQ8Qt3YJnj/YUZeSQuP0wHR8fi0OAN7rSMpJ2H6N5v2CSdh9DV6bFPqA5uZdTsPFyodXYQXj07MDi3o+g1+m4npBc45mYkrj1IEUZOVi5OBC3dAuFrfx5f+UJ7ijWYAYk5RSxnbaMWnWWF9Yu5/Uv+3DyzFYUOXq27vuGt57bRTM7V/YcXkz03gU4tW1LflJ6lTbUagvjn5VKFVqdBoCSnHzj9aTdR8k6m8Dwha8BUJyVi7I8MJznMWIw0BGYCKBVaQssCy37lE/nUmNYLwJQDKDUKSv+wqgBBXA8aq5mQAMefxFg2YB8AETN1XxG+WjG1JnqSZQHTPWllRsHJETN1Ryvdt0SKIuaqynjbyQBiRBCCCFua8k5RbVebxde/25aJxauJnnPMZTmZqjMzej3f0+g12qJfvYjSq8XoFAqsPFypddrj9QoO+Srl9k5ay7H569EqVYx+ItZxvUjdbmZNSQ3w665K7+OeZHC1Cy6PnMvzm1bAjB84etVFrUPX/gaKnMzkvce59i8FSjVKvQ6HQM+eAaFUmnymZjSvH9nfn/+E3IvX8OhlTff+XanqMgQHOrVedhpzxLr1wZnXSlm9zxJRmACx19fiuuI9lhb2mNr40xZWQk79n8PQMs7+3Lh6AHDeAaQdjSOkpw8jv+yCvR6jm9ch66fISDJP5dCYW4Oi/o9grWTAyMj3yb68Ldk5STRx2Yc77j07zDPY8RZDIvKR89I2VgIoFNrC3RKXRZwGtABm4DhAOVBypAbd8heILDyQvGpM9XdgcNRczXVh8hOAP0b+rOaOlPtETVXkzJ1ptoRCAf+25C0co9Qc3QEoC1QPUj5yyn0tQwX/hN169ZNf/jw4abuhhBCCCFuIX0jtpNkIihp7mDFnvDBTdCjplF596+m0jJ8HRVvpha6NAJKv8RSn4YOC9p42jKs/xMM6TsNrVbDl5EPcPnqUZwcmtPS5w7iLx/iPw+vZeGUKST1v8b/vXzIuKj9m/cNM6Gqf16weDrn4vdgY+XAWy/s5vtlz+Dm7MeoIS+iUCiO6PX6btX7OHWm+hJwV9RczclK1/SAXf9lQ/sC9++atPV+wC5qria/PACZAzhiWHMSD4yOmqvRVavXHcMajlYVaVNnqg9hmMrlBlwDNkbN1TxWnnYCw/ILM+CLqLmauZXqqiutBXAWaF59HcvUmeo3MIyQvN+wn1jjkIBECCGEELe1ijUkladtWZmpeH98R8Z2ad6EPft7/RMCksYIDq/siMHGwxmnIFPruOv2zmchvDR9DVaWdrUGJHWZ5zHiHmDPjJSNf+jky6kz1d9gCDpW/ZHyf8bUmWpz4CAwNGquJuPvbFumbAkhhBDitlYRdFTssuXlYMWs0KDbKhgBuP9wZFN3gVmhQSaDw1mhDV9X02Jg1z/c/uxn/9xutzNSNv7ypyowHFo47E/W8Uf5Aq/+3cEIyAiJEEKI29hHqz9Bo9Uwa+yLKJWGjSdjLsay6sCvjLrjTnoF9WyUdnILc1m+dwWPDH34psrFxMey4chGHGwMawoUCgUjugzH38MfgNmL3uT1e17Fwsyirmpq1dDyOr2Ob7d+z6S+E7G3tudowjF2n9lD+vV0RnYdUeU5pedmsPbQbxSWFAIwoksorTwD6k37ftuPxus6vY6062k8NfIJPBw9WLp7Gb2DeuHj6vOH7lP8u1Tegrkpg8M/MkIi/hgZIRFCCHFbs7Oy48K1C7Ru3hqA2ISjeDl5NWobzayb3XQwUsHfw58p/e8F4FzSOdYeXsezdz3TmN2r16nE07jZu2JvbQ+Ap6MHk/pOZOep3TXyrtr/Kz0Cu9O5ZTCZuZl8t+0Hnh39DOZq8zrTHh7yoLGO01fOsO34djwcPQAY0H4A64+s59GhNReFi1vP2C7Nb7vRqdudBCRCCCFua138OxOTcJTWzVuTnZ9NmaYMd3s3Y7pGq2Hr8W1cSr2MVqfF3cGN0d3vwsLMgpX7VqFWqcnIy+R6wXVauLRgQu9xKKqd2ZCdn828TfN5ZcLLgGFkYmjwEM5cOUNhSRGhXYbT3qddvX0tLivBytzKZNrGmE1cSruERqfFxsKacb3GGkdW4pLi2H7id7Q6LQqFggm9xhlf9sEwIrExZhP5xfmM7zUOtarq68HhC4cZ1GGQ8bO7g+E0a6WJsylSslMI9DQcseDczBkrCyvOJ1+gvU+7OtMqi4mPpat/F+NnT0cP8osLyMzNxLmZc73PSQjx7yIBiRBCiNtaS/eWHDx/iKLSImLiY+ncMpjkrBvrUXef2YOlmSUzRkwDYFPsZnae3sWw4KEApF5P46HBYShQ8NXGeVxMiTdOQ6qLhdqCGSOmczk9kaW7l9UakMSnxPPl+q8p1ZRSUFLAAwOnmszXv10/RnQ1nLJ9+MIRNsVu4d5+95CRm8GvB9bw2NBHcG7mjEarQau7MT9fo9Wwcv+vONo4cE+fiTWCKa1OS2LGFbydG/aNtZeTF8cvHad3m94kZSWTkZtBTkFOvWkV8ovyiU+JZ1zPMVWu+7i04GJqvAQkQtyCJCARQghxW6k8P31CuyKiz6TRwac9Jy6f4GTiKR4f9miVgOTs1ThKNCWcSjwNgEanwcPhxuhCW+82mKkMhxp7OXqSlZ8F1B+QdPTtAEALZ2/yivIo05YZ66ms8pSthNQElu1ZbpzmVNn5axc4cO4gpZpSdPobu4leTLlIa69A44u8WqWuMgIS+fvPdPTtQL+2fU32s7CkEJVShVkDD24e33ssG45sJCb+KK72rvi6+qAqX59TV1qF2ISjtPJshY2lTZXrtpa25BbmNqgPQoh/FwlIhBBC3Daqb++q1en5dNt5XhjWloPn1+Dn5oe1hXW1UnpGdxtlXEhenVp541epUqFEp9OZzFejXHlQULGYXqfTgaruMi3dW6LVa0m7nl5lxCKnIIcNMRuZEToNR1tHEtMT+WXvCkPv69m7pqW7H+eTL9AjsHuNIKeinxqtpkH3BOBk68TUgfcZP8/97Qtc7V3rTasQEx/LiC7Da9Sr0WqwsjA9XU0I8e+mrD+LEEIIcWuYsymuynaiACVlWuZGX2No8BAGdRhYo0xQ8yD2nN1HmaasPH8JadfT/5b+VpeSk0ppWSmONlVP8i4uK0GlVGFraYtOr+Pg+Rs7UgZ6tuJc8nkyczMBw4t9SVmJMT2kwyACPP2JjP6J4rLiGm1amVtha2lLdn52g/qYX5xPxQ6eMfGxqFQq/N39600DSExPpKSshEDPwBr1puem41lp3YsQ4tYhIyRCCCFuG8kmDlyruN69lelD1wa078/2E9HM2zTfuL4ipOMg3Kp9s/9XqVhDoi8/v3pcr7E1pjN5OLjTvkU7Pl/3JfY29vi5+XI5/TJgWDw+psfdLN3zCzq9DqVCyfje4/AoX5gOMKBdf8xUZvywLZKwkPtrjBK19W7DhWsX6B7YHYDjl06wKXYzRaVFnLl6ll2nd/Pg4Adws3fj7NU4dp3ejUKhwMnWkfv6TzY+t7rSAOMaHmW1aVylmlLSrqfT0r1lIz1VIcQ/iZxDIoQQ4h+lTKtlfvReNh4/g1qlRKfX0791AM+GDsRMVc+cplpsP30OVztbZkT9P3v3HRXVtTZw+HdmGDqIgCBFFFFREazYUDH23pOYaEwxibk3iaka443GVI1+aTcxMdUSW+wl1tiw915AUFSqSJU+zMz5/hgdQUAw1xLj+6zlWs7Z++xyBpfnZbfIv3wKdGTiZS6mpdM9uMEt83y3eSf/fWowAOMWrebA+Utcyc5h78Q3sLe5MSVqxaHj/LbrICbVhE9VFz4Z0psq9na3TDt6MZ5PVv1pKSM9Nw83RwcWvfIM6bl5vPrbEma/MBwr7Z2dAJGRk8GiXUt4sdvzpRa93wsHog+QlXeVLo073/O6xcNLziG5d2TKlhBCiL+ViUvXEpOSysKXn2b5a8+z5NXnqOXuSpHBWPHN5dhyOpqT8UmM6R6Ina5kUFPZU6CjklPYcCLylnm+3hjByPDWls8Dm4ew6JVnSuU7n5LKt3/u4KeRQ1n+2vOE1PDmvxu3V5jWpKYvi1991vKnka8XvRqbAyRXB3tCanjzx9GTFfbldlV1rEpYg7Zk52ff8bIrQ1E0dAhqf1/qFkLcfTJlSwghxN/GxdR0Np+OZtM7/8bBxnx6uE6rZUjLJgAYTSa+3LCNXWdjAQir588b3Tui1Wh4b8kabKysuJCWzuWsbEJqePPJkN7sjollW2QMe89doKq9PY83r8OG03lk5URjrVVxc9Rx/rINYF4kXmQw8vWfEew6G4tWo+Bb1YVJg3oyfdMOcgv1PPrNTJr712Bcny4l2p6UeZULqek09rux2LxVQM0y+xlzOZVALw9cHcxTo9rVq81zPy9gwoDut0wrLi0nlz0xsUwsdr1nSEP+b+0WBjQP+atfQbka+QXd8TIrq0Wd5vetbiHE3ScBiRBCiPvu+la8KVnJOFhZsSUyrcyTmpccOEZUUgqLXn4GgH/NXsySA8d4vJX5EL2YlCv8+OxQNIrCY9NnsvfcBcLq1qZj/ToE+VTniTbmF9t3exswmh7B3saaIqORl2YtYufZ87SrV5ufI/aQkJ7FopefQWelJSM3Dxd7O17u0p6IyBi+eHJgmX04GHuJYF+vSvW3npcHpxKSiU/PxKdqFdYeP02eXk9WXv4t065P6QJYfeQkber44+Z4Yz1JQ+/qRCalkKfXY29descsIYT4O5KARAghxH1VfCteKwWKjCrvLjsBUCoo2XvuAv2bBaOzMk+7GtA8mM2nz1oCkkca1MVGZ/6vrYF3deLSMmlTp3SdRtXE5+u3cuxSAqoKqTm5RCWl0K5ebbZHneOtnp0sdVR1uHkb4LJdvpqNq6NDxRmBWu6uvNOnM2MXrgIFOjU07yql1WhumVbcysMnGN2t5K5gVloNTrY2pGbn4ucmAYkQ4sEgAYkQQoj7qvhWvCbVFo1SSG6RnmkbokqPkqhw85Lq4p9trIqfCaJgLOdMkN92HiA7v4B5L43ARmfFB8vXU2gwn7XxV/d6sbGyQm+o/HkdPUMa0jPEfDr7ibhEPJwdcbS1qTAN4NilBDLzCmhfr/QBjIUGQ4nnIITh3izdAAAgAElEQVQQf3eyqF0IIcR9VXwrXhM2GFRn7JQEEjNzAPO6kbm7D5JXqKd1nVqsPHyCIqORIqORVYdP0DqgVoV1ONrakF1w4+yN7IJC3J0csdFZcTkrm61noi1p4fUDmLf7oGURfUZuHgAONtbkFCvjZnWrV+NCanql+52abe5fYZGB7zbv5Ol2LSuVBrDi0An6Ng0qtZtWWk4uWo0GD2fHSrdDCCHuN/kVihBCiPvK28WuxFa8+aoPNsoVnK3OM/DrX1BVlXaBtdFZaRkS2pi4tAwe+3YWAGF1/Rkc2rjCOvo0CWLC0jX8eTKKp9qF8mSb5ry9YCWPfTsTzyrOJRafjwxvzdcbI3j025notFpquLnwxZMDaRVQi9k79zPkm19p4e9XalF7s5q+JGRkkV1QiNO10Yw35i3nRHwiAP2+/Ik6nu7MePZxACYsXUtS5lWKjEZ6hDRgWJsbu4veKq2gqIiNJyP5bdTwUv3cFR1L54Z178vWvEII8VfJOSRCCCHuq+JrSK6z02mZPCi4zIXtf2c/R+zBxsqKp8JC70v9z/40n4kDuuNfze2+1C/EP4mcQ3LvyJQtIYQQ99WApj5MHhSMj4sdCuZDCh/EYARgRFjofVu/kZ6bx5CWTSQYEUI8cGSERAghhBBCiJvICMm9IyMkQgghhBBCiPtGFrWLe2JF4j4+j16JikqhsYjGLrX4udkrALisHkZ8z19wtLK9J22ZHLWUXEMBHwcNu2Nl9t79Ma8G9KKHZ7MK88Xnp+JkZUeBsYjHfcMYU6/sQ9ZuZV5cBBsuH2FOi9f/apNvu75WVetRx9F86Nva5EPsSY/io4ZP3vG65l6KYEbsegDi89Ow11rjau0EwFchI3n/zMJKPeuKJBVk8PTBr1kfNhGNouG9U/NYlXSAS/lX2B0+hYbONSx5N1w+wieRSzCoBlx0jnzXdBS17D0qTLtuStRSppxdZik3tfAqQ/f/H+vD3sdKo/2f+iGEEEI86CQgEXddckEGb52YSUSHT/C1c0NVVU5cvXi/m3XffNZoBD08m5FckEHLrWN5pFowLaqWcXLb38j8uB24WTtZApJe1ZvTq3rzu1LXcL9whvuZD3v715EZNHWpzYv+3e54PdPOLudF/25oFPNAce/qLXipdg967vqwRL5MfS7/OjKDje0mUcfRi9/jd/LW8Zksbf3OLdOuO5oZy8GMGHztbszrd7dxpkXVuiyM32npqxBCCPGwkoBE3HWXC7PQKVpcdeZ98RVFIaRKrRJ5fojdwB9JB0kvyubDBk/S39u85/4Lh6cTnZOE3lSEv0N1pjd+ERdrB0Ye+pa+XqEM8G7F1zGr+Tx6JbE9fkSraGi1dQzzQt9EReXfR38gz6jHpJp4skYHXg3oDZh/O/7ovqlcyE3B38GTWc1HY29lQ8SVk3wctZgCYxFG1chbdQcw2KcNYB7daOZSmwPp0SQVZjDQuzWTGgwt1d+lCXv49txa5oa+jo9d+YtLq9tWpa6jF/H5aZaAZH7cdn65sAmDasTZyp4vQp6lrqM3epOBsSdmszPtDF62Vann6F2irK9jVrMyaT8Gkwkvu6r8N+R5PG1dmBy1lOicRLIN+cTkJNPEpRav1+nHe6fmEZefSl+vUMsoR+/dHxPsXJMTVy+SmJ/OQO9WTGzwOHMvRXA08zzvnJzDx5GL+bjhMBIK0kqM0HwVs5rf43cC0NSlNlMbPY2jlS2To5YSk5PEVUNeqWf9v9iVFslX0atLfQ/JBRmMPTmb+Pw0Cox6Bvu05a26/UvdX2DUsyJxH58G3dg2tY1bYJl1nc9LxsOmiiUY6+bRhFFHvietMJuL+SnlprnZOFFoLGLMyVn81Oxl+u7+pES5Q3za8J9TcyUgEUII8dCTNSTirgt29qOZSwCNNo1mxMGv+O78OtL12SXyOFnZsbXDR/zQ9F+MOzXHcn1K0Ai2dfiY3R0/o4GTD1+dWw1AuHsQEaknAYhIPUV9J18OZ54juSCDHEMBdRy9+PnCJrp6NGFX+GT2dPyMp2p0tJR7JOs8PzV7mf2PTKPIZGBxwi4AGlfxZ33Y++wI/5QVbcYz4fQ8MvW5lvvi81NZGzaB7R0+Zc7FrZzLSS7Rj69jVjPn0lZWtHn3lsEIQExOEun6HNq5NQBgd1okKxL3sbbtBCI6fMLogN68cvRHAGZe3MzFvBT2dJzC7y3f5lDmOUs5v8fv5HzuZTa1+4Dt4Z/QzaMJ752eZ0k/mhXLz81e4WCn/+NsThIfnFnIklZj2RU+mQVxO0r0ISo7npWt32VH+Kesv3yY9ZcPM9wvnCYutfms0Qh2hk+mY7VGJfrx5+Wj/B6/kw1h77M7fApG1cS0s8srfNb/i/K+h5eOzGCUf3e2tP+IbR0+YVPKMbZeOVHq/sOZ56nt4Imt1rrCugIcvLhcmMXha8980bX2x+Wn3jIN4NOoJTzmE1ZqChdAkyr+nLh6iVxDwV94AkIIIcQ/h4yQiLtmxZEEpm2IIjEzH2+XJrzZKRwbtzTWJB/im3Nr2B0+harW5lGTwd7mUYjQqnVJKsigwKjHVmvNgvgdLE7YRZHJQK6xkDoO5t9Ed6gWxJcxq9GbDCTmp/Nqnd5su3KSGnbudHAPAqCta30mnJ6P3mSgvXtDOrg1tLStc7UQXHQOADSvWofYvBQAUvVXefnYj5zPTUaraMjQ5xKdm0iodV0ABni1QqNoqKKzJ9DJh9i8ywQ4VgdgStQyfO3cWNxqLNaa8v9pvXNyDpNOL+RsTiKfNRqBu40zAOsvH+bk1Yt03jkRABXIuhYM7Ug9zRM1OqDTWKHTWPGYbxh706MAWJd8mCNZ5+mw/T8AGFUTzlZ2JfpaRWcPQJBTDYKr1MRGq8MGHXUdvSx9OJ20l7caDsdKo8VRo2WQdxu2p54uc63GlqhFbE89SUbDYWxLPckg79Y4X6vjGb9OJYLK6886T5+NISuGry5tZPP21wDoEvgEI1qOL/dZlef693A1JwElP4VX/3iUl0KeZ3vqSeJzk7C99t3mGAqIyk7gkWrBfLLhWep7Nmdwk1dILEinmk2VStVVRWfPzOavMv7kXC7nJtHVswlVdPboNFpOXNrEAGsbxp+cS4GpiC4ejS1p+9OjOZx5nkkNhvLrnklkF2SUKNdKo8XZyo7LhZn8seszgr3DeKTuEKJTjvLF1leIvnKE1rV68XGfxZZ78vQ5fLH1ZaJTjmAwFdGn0UieaP52hWkzdo5j34UNlnIuZUTyr3afMaTpaJYf+46cwiyeavnubX8PQgghxJ0gAYm4K24+6CwhM5/pq/VMHhTMijbdaLV1DDvSztDPy3x4mI1WB4D22nx+g2pid1okv17cxMawSbjbOLM4fhezLm0FoJa9ByZMLE7YRahrXcLdG/HSke9LBCT9vVvS0rUuW64c56voVcy7FMGPzf5trk+js7RVq2goMOoBePPETHp6NmNui9dRFIXmW96iwFhkyXu9nQAaRYNBvXGQW2jVOmy9cpK4vFRLkFKW62tI9qZHMXDPFNq61SfI2Q8VGFajI/+pP6TUPbfanFtF5e26A3jKr2OZ6Tf3tfjnm/twc7llnfVsMBk4mbyXKo612BD5G6qNB8pNOYt/ttHoUFWVsSv7oHGqQ8+gZ/m00QgKDfmsPvnzLXpWvuvfw/aYZThaOzG67QTC3BqgPb+ZPZ2+QHeLgBDAVmNNoanolnmK61itER2rNeLVxY/Qwb8zs41F1LL3ICigH+0C+lnypRRm8c25NdSy9+DH2I1E5yQSsvl1cgozuaoaGbzvM6Y3fpFOHiEAFJiKyMlP49Clzbza4QsAqtp78EqHz4m5cpQDlzaVaMdvBz7FSqNj1vBjFBjy+NfvYYR4tyPIq/Ut015qN4WX2k0BICPvCo/+WotH6j0GQN9GLzBsTgMGNX4Zh2vBsRBCCHEvyZQtcVdM2xBlCUZM1nkYnK6QX2Rk2oYoEvLTSNVnU9O+2i3LyCrKw9nKHldrRwqNRcyNiyiR3sE9iClRy+jo3ghfOzfS9TlsvXKCDu7mkZDzucl42lRhWI1w3gkcVGKaU/l15uJn746iKGy9coLzuZcr3efOHiF8HvIsj+6fypns+Arzt3YN5Hn/rnwatRSAHp5NWRi/g4T8NMA80nE0MxYwT1H7PX4nBpORfKOeJQm7LeX09GzGLxc2WaaWFRqLOJH11zYNWHPlJAaTkVxDASuS9tP+2rN0srLjalE+AHtj11LVrhq13Bqy9tRMHnFvxLLEPWQb8lFVlTmXtpaa1nUobjNJVy/QsmZ3NIp5V6mT2YnMyTdP3cvT5/DpxucY8VswI34LZt6Bzyz3Lj7yNdN3jOHfi9rz2K8BJGadB2Bj5DwWHfmKzPxUvtr6GldzEnEz5PHG/v8D4EpOAs8v7cbQeS14d9VAsgpSLWX621bl4JWTvLigFU/PbczX217DaDL/vKbnJbPw8OeW+mbsHMflgkzWnJpJZMpB3jn6I775yZxJ3MnaU7N4Y/Wj1+pLpNe6Z6hRcJmX5rfAJnknkd2mc6LL10xw9cdZ0bK01TuWYCSlMAsrRcuhmKV0rDsYRTEHce6O3gR5tUKnLb3OJubKcVrV7I6iKNjpHGji24GNkfMqTCtuQ+RvtPDrgpuDOWi20uoI9evK5rO/V/KnRAghhLizZIRE3BWJmfk3PigqBTVOYLLNJduo5dF9G3kv8FEa37Sw/WZdPRqzKGEnoVvH4G3rSlMXfw5lnrekh7sHMfdShCUAaeMaSETqKcvajeWJ+1gcvwudxgoFhSlBT1XY7kkNhvLWiZl8FbOaICc/gopt/VoZ4e5BfNdkFE/s/5xZzUfTxMX/lvnfqtufZpvf5HjWBcLcGjCh/mM8sf8LjJgoMhno79WKJi7+PFOzE6euXqL1tnfwtnMlzK0BF69NMxtaoz1p+hx67f4IMI9sjKzVheAqNStsb2p2IWMXH+df8UkUNjNhV+hE/72TSSpIZ4BXK8t0rWdqPsKEU/PNv/3PiiLEpx3JVo4UGfX4qHoe821Ht52TAPPaiLfrDihRT1TKYepVa4ZGo4VrIxNx+anYXRutmb3vI1TVxOzhx8nTZ/PS720JcA+x3J9yNY5vH40gT59Nw9VDSc1JZHj9YcRnRHMp4yKvN/8YH5cA2hVlcKkwi7bb3iE5+xLO9jVY1G0WjqYCnpnbhFY1uwOw+uBkqlo7MqbvcgIcqvPhuuEM3f4up4ryyEPLz9kp1KjWhs39/8PQmXXYb+3OydzLJPr2ooNbfX5t8x9stdasPTWLfWhpuXUMhcYiwmv1YGrws1ih8NbyHuy7sJ5WtXqU+ew3pxynT/UWHI1ZwJPXplZVJNCzGduil9I+YAA5+iz2X9yIX9XACtOKW3dqFiPblNxJrJFXG/ZcWEe/4Bcq1Q4hhBDiTpKT2sVdETZlCwnFg5JrfFzs2DWu031okbjZzdPq9E2nY5cYxucdn2FAU58y78nIS+HJWYEsff4S9tZOzNn/CSnZcbzdecYt65p34DNOJu1lcr8bi93HnpzNQK/WtHELZOT8FrwW/hUhPu0AmL3vY7ILM3ilw+e8uvgRBjV5mUfqmqeyvbyoAyNajqdVrR78umcS+UU5vNzBPCry6uJHGNr8LcJq96HX927Mfuo41RzNfXl31UBa+HVmcJNX6PuDJ3kugWRq7QkpuEyBIY92Af14uf20W9ZXvHyAtadmsTt2DR/3WUx+US7Tt7/NyaQ9qKik5ybzeLM3GB46rlQ7AXrt+oivQkYyaVknJvVcQD2PpiWeWfGyrysoyuO7HWM4nrgLF7tq+FSpTVZBGh/3WXLLtOtOJ+9n3Kp+LBsZh1Wx6Yf7L25k1r6P+O6xHbf8HoUQ4mEiJ7XfOzJCIu6KMd0DS7zsAtjptIzpXvbWquLeKz6t7roio8q0DVHlBiTrz8zBqBp4+jfz6IVRNZBflMur4V9iU2wh/c0CPZuz7Ph3GEwGrK6t75ja6GlLuqqqoJS/DsVae+PQTI2ixWAyVLKXZVNR+a3HLP5Ij+H5Wl0sZ5H8L/X9fvgLsgsz+WHoXmysbJm66UX05eyglVp4lWdrdqKekzc2Wrty893MVmfPm52mWz5/vuXf1HStX2HadWtP/Ur3+sNLBCMAekPBLb8/IYQQ4m6SNSTirhjQ1IfJg4LxcbFDwTwyMnlQcLkvuuLeS7xpBKtm/GFsMl1LXS9u7alZfNp3OYtHxrJ4ZCzLno+jgWdLtkUvvWVdzWt0xsOxBtO3v0XRtQ0ECg0FlrUioX5d+OPkL6iqSp4+m81nf6eFX5f/qX/NanRi7amZACRmxXIobrMlrV3tvsw9MIWRNTujUTRk5qeSmBVbYZkONs7k6rPKTMspzMTNoTo2VrZcyUlg5/lV5ZbjbuPMo75hANR2D+ZSRlSl+pRbeJVCg/n7iblynO0xKxgY8u8K0wAKDflsjvqdXkHPlSr3YvoZ6hSbIieEEELcSzJCIu6aAU19JAD5G/N2sSs1ra5a1ffQaKwY9LN5QfXs4ceZvmMM7Wr3o6q9J9mFGTSrUXLKXbf6T7L21Ey6NxjOmBW9GdnmA+p7lhzhVhSF/xuwlh92vcvwOQ2xtTJvEdy1vvlQxqdbTeDLra/y9FzzS3H3+sPLXXtRWa91/IqPNzzN1ugl+FUNJNSvqyVtdPhXfLdjLM/Oa4KCgk5rw+jwL/Gucus1P30bvcB3O8aw8NDn/Lv91BJpQ5qMZuKax3huXjM8nGrQvEbnSrUzvM5AtpxdTK+gZwBIyrrAy4vbU1CUh95YwKCfa/Bc60n0aTSSxKzzTFz7OFqNFdZaWyb2nIv7tUMyb5UGEBGzDD/X+vgX2/76uv0XN/JC248r1V4hhBDiTpM1JEI8pG5eQwLmaXUyknVvGU1GXljQkqkD/sD92jk7t2v894uwstKis9JSZDBS19eTJ7u1RauteBD8Ynok0za/xLePbrNcm7VmOzWru/NI89LBS3G7T0QT4OOBp2vlznS5Lq+gkB3Houje6saozOfz19K1ZSNC6vjdVlnFRV1K4pvFG0u057FOrQisWf5zLastd9OizfsI8PGgeX1/4i6nseDPPVy6nEZw7RqMGngj2C/QF7Fg424uXU7HaDLRLqQe3VoFA6AvMvDb+p3Ep6SjquBdrSojerTD1kbH7hPRLNq8D7cq5jOe3Ks48q9B5tHGpVsPUMPTlZYNA+5JX4V40MkakntHRkiEeEhdDzpuHF5px5jugRKM3GNajZYxnWeQlBX7lwMSgFEDOuFTrSomk4lp89Zy+OwFQhvUrvC+lOw43ur03V+qc8+JaBztbG4/ICnUs2HfibsSBHi5u/Cfp/vfk7YYTSa0msrPfM64msuZC4k82qklAE72djzaqSVxKemciU0skXfdnmNotVomPjcAfZGBqXP/oI6vJ7V9PNh+NAqD0cTE5wYC8OOKrUQcPWPpQ4Oa3iWCm+u6tWrEtHlraNGgNhqlrFOG/lkyMwsIDf2FYcOCmTSpg+X6b7+doLDQwPPPN73F3WZxcVfp0GE2gYFulmujRjVj4MD6t7jr7igsNDB16h42bDiHTqfF1lbL66+3onv3Ox9gvvjiGl5+uQWNG3uyfftFPvtsD1FRqTzzTGPee6+9JV9KSi7vvruFuLirGAwmXnkllEGD6leY9vrrG4mMvLEV+5kzqfz0Ux+6davNJ5/spFGjavTvL2tOHyYSkAjxEJNpdX8PDaqH3rGyigxGioxGHGzN0+7OXEhk5Y5DGAxGjCaVXm0aE9rQHKhkZOdy6LCGlIwoIIrQBrXp2aZxifKiLiaxcNNenu/XEZ9qVS3Xdx0/y8XkVH7ftJeVOw4z5JFQAv28WLbtIKdizefwBPn7MqhjCzQ3vbQv2LiH/AI9H81cgbWVFe88Zd617GxcMuv3HicrJ4/m9f0Z1NH8XLJy8lj4517Ss3PQFxkJbVibXje181ZSs7L5dPYqvhg9rNTnstoy/vtFvDykq6W/xT+P/34RYSH1iLyUSLUqTozo1Z49J6LZduQMJpOKnY01T3ZrS3W30kHa7hPRNAusZTlzxsXJHhcne5LSSq9Lik9Jp21wXRRFwcZaR10/L/adPkdtHw8UxTxKYjSZACgsKqKqk0OFz8HJ3g73Kk5EXkikof8//9/9ihVRNGtWnVWrohg/Pgxra/MZSE89FVzuPUajqdTIorOzDevXP/mX22EwmLCy+t+X7L733jZyc4vYtGk4trZWREWl8dRTK3BxsaVVqzv3fR45kkxeXhGNG3sC4OdXhc8+68S6decoLCy5wcdHH+0gJMSTX37pS1paHr17L6R1ax+8vZ1umfbVV90sZZw+fYWhQ5cTHm4eHX3ppWYMHryEvn3rodH88wNnYSYBiRBC/AP8sGILOistVzKv0rCWj+WF06+6G2OH9Uaj0XA1N59PZq2kYW0fHGxt+PWPCBrVrsFLA83rXXLySu72te/UOTYfPMXox7qVeuENC6nH3pMxJaZZRRw5Q1xKGv95xjxC8d/FG9lxLIrwpg1K3PtEtzZ8OnsVE54teV5N+tVc3h7Wm0J9Ef/5YTFhIfXwdK3CzD+20yusCfVqVMdgNPLlwvXUqu5e5kt1UmomH81cAYCVVsO7I/rd8rmV15ZbycrN460negEQHZfMwchY3n6yNzorLSfPxTFn3Q7GDu9T6r6ouCS6tSz/Zbi4mtXdORR1gSZ1a5JfqOd0bLxlJKpDk0DOJ6Qw5psFADT09ykxDetsXDIfzVyBrbWOHq1DCA64cZ5SbR8PIi8+HAHJokWnGT++HdOnH+TPP8/Tu3ddAL74Yi95eUW89157Fi8+zapVZ3F1tSM6Op1p07oQFHTrQ3uvO3bsMu+/H0FeXhH29jo++CCcxo09iYu7Sp8+C3n66RB27oxj4MD6PP54Q6ZO3c22bRfRajX4+Tnz00/mn5Hvvz/E2rUxGI0mPD0d+Oyzznh4lPz3Fh9/ldWro9m791lsbc2vboGBbrz6aihffrmPhQsHsXjxaVasiKJKFVuiotJwdrbhhx96WcqqTD0A8+efLDE6UauWCwAbN54vlff06VTLSJObmz0NG1bjjz+iefHFZrdMK27hwtMMGBCIjY2VJa+fXxV27oyjQ4e/PoVTPFgkIBFCiAfQiiMJlul2HV3y6dS2FU91qE+RwcCM5VvYdOAUXUKDyMkrYM7aHaRkXEWj0ZBbUMjltCy8q1XlfEIKrz9+Y/MAR/sb2x3vPhGNzkrLG0N7YGdjXak2nbmQSJvgulhpzb+Jbhtcl6NnL5YKSMrTPLAWGkXBzsYaLzcXrmRm4+JoT1RcEtmbbgRLBfoiktMyy3ypvt0pW39F66A6lr8fj4kjPiWdKb+tNl9QVXIL9GXel5mdi7ND5bZX7tE6hCVb9/Pp7JU42ttSr4YXOfnmZ3Dmgnl619RXhgLw8+oINu47QbdWwYQE1KBFfX+sdVZcupzGfxdt4K0neuHlbn6pdHawIzru8l/q94Pk9OkrZGYWEBbmy5UruSxadNoSkNzswIEk1q9/wvLifbOrVwvp0WO+5fOCBQNxcLBm1Kg1TJvWhfbt/di5M45Ro9awfbt5O/OMjALq1HHlzTdbA/Dll/u4dOkqa9c+gbW1lvR084Yiy5ZFcuFCJitXPoZGo/Dbb8f5+OOd/Pe/3Uu0ITIyjVq1quDiYlvietOm1fm//9tr+XzsWAobNz6Jt7cTY8duZtasY4wd27bS9QDs2RPPqFHNSl0vS3CwB6tWnSUkxIO4uKscOpSEr69zhWnX6fVGVq6MYv78gSWuN2tWnV27JCB5mEhAIoQQD5ibNyQwmlS+2hyNk5MTA5r6EFKnBsdj4ugSGsS8jbtpXMePlwZ2RlEUJvy4hCKjsYIawNfDlei4ZJJSM6nt41GpdqmUPD+GMj7fis5Ka/m7RlEwmUyoqrmM8SP6VWqRflm0iobiG7gYDLfuv0ajlMh/8/Oysb5xjouKSlhIPfq1r/gFTmdlRVEFdV9nrbPiyW5tLZ/nb9xNdTfzC/P2o1G0DgpAZ2X+L7xFfX/2noyhW6vgEkGln6cbdXw9uZB0xRKQGAxGrIs953+S4kG63YkMwtr6oCgKPXvWYeLECJKTc6he3bHUfaGhXuUGI1D2lK3IyFR0Oi3t25tfmNu1q4FOp+X8+QwcHKyxsdHSt++NAGjz5lgmTGhvmTbm6moOTP/88zzHj6fQq5d5tMtgMOHkZFOqDZXdgKhFCy+8vZ0A80v9jh2XbqsegOTkHNzd7StV34QJ7fjwwx306LEAb29H2rb1RafTVJh23YYN5/DxcSo1KlWtmgP79ydUqg3in0ECEiGEeMCUdahlYZGJaRui6NfEm7OXki3Te/IL9LhVcURRFE7HJnAl4yoAttY6avt4sOnAKbpf270pJ6/A8kLr5+lGl9Agvl+2mRE921HPr/SCe1sbHfmFRZbPDWt5s+dENC3qm7dP3nsihqaBtUrdZ2dtbVkDUdGicFsbHXVqeLJ+73F6hzUBIP1qDlqNhiqOlXtpcna0w2gykZJxFY+qzuw/fWPqSVltqebizIWkVHw9XDlzIZGrueWfzRNSx49Zf2ynfeNAqjo7YDKZiEtJp2Z191J5fapV5XJ6FgGVCPDyC/VoNRqsdVbEp6Rz5OxFy8iPWxVHTscm0Ly+Pypw6nwC3tfWu2Rk51qm16Vl5RCbeIVebZtYyk1Ky8LXw7Xih/aAKR6kq0aVnLOZbDx3lSbbLmFvrcVgMLFkyRleeaX0ei17e10ZJd5aGWe5AljWB9nb6yx/v56/vHJGjw7l8ceDbllf/fruXLiQRWZmQYlRkiNHkmnQ4MbPmo3NjWBTq1UwGEy3VQ+Ara0VhYWVC5zd3Oz5+usboyxPP72SOnWqVph23aJFp3nssdK7+RUWGixTuMTDQb5tIYR4wJR1eGVjx9gxZrEAACAASURBVExMxiw+/GU53u4ulpf3geEtWPDnHtbvPY5vNVd8ir2MPtcnnAV/7uGDX6LRKAqhDQPo0frGblM+1Vx5ZUhXpi/dxNAurQmq7VuizvaNA1my9QB/7j/B4EdCad84kJSMq3w8y7yGo6G/D+0b1yvVVgc7G1o1DODDX5Zjb2tjWdRenpF9wlm8ZR8f/LIcMAdTT/dqV+mARKvR8Hjn1nz1+3rcnB1LBFdltaV/h2bMWrODnceiCPD1wNW5/AXj9WpUp3+H5kxftgnVZMJgNNG8vn+ZAUnTejU5FBlL22Dzb85Ts7KZNncNeoOBIoORd6YvpG+7ZrRrXI/UzGx+XLkVrUaDlZWWkX3DcXEy97dvWFN+27DL8jx8PVwti/y3HT7DsehLaK8tBh7QoTl+nuYdolRVJfJiIj3b/PMOwSwRpMfngrM1SlcfHFzs2DWuE4cOJfHGGxvLDEj+ioCAquj1RnbvjqNt2xrs3h2HwWDC39+Fy5dzS+Xv0sWfX345StOm1S1Ttlxd7eja1Z9ffz1G9+4BuLjYUlho4Ny5DBo2LDliUKOGM71712H8+K188UVXy6L2b745UOa0q5tVth6AwEB3zp/PwNOz4o0SMjLycXKywcpKw65dcURGpjFjRq8K0wCSkrLZvz+Rb74pfeZUTEwGDRuW/jck/rnkHBIhhHjAhE3ZUupQSwCfay9f4u/JZDLx6ZzVvDqka6WDqTvp1Pl49p0+x3N9wu953Xeb/7g1XH+bMW1NRPF1QKlbBQWIndIbgHbtZvH5513ZtSuuxKL2TZti+eGH3mWWe32B+rFjL5ZKq2hRe/F7CgsNfPaZeVG7tbWWmjWrWOr8+ecjLFp02tx2k8qIESGMGFE6aCwoMJexceN5rK212NhoGT26Jb16mdc03dyXmz9Xtp6ffz5Camoe48aFAbB/fyKvvLKOnBw9qgpOTtZMm9aF8PCabN16gfffj0Cr1VC1qi0ffdTRMv3qVmkA33xzgMjIVKZP71miflVV6djxNxYsGGiZfna/yDkk944EJEII8YCRQy0fXBeSrmA0mgjw9bzndR+KjCXAx9My0vJPIkH6nZOdXcjgwUtYtepxy45e91JExEWWLYssMd3rfpGA5N753zfGFkIIcU8NaOrD5EHB+LjYoWB+6ZJg5MFQy6vafQlGAJrX9/9HBiMAY7oHYqcruVjfTqdlTHc5XO92OTnZ8N577bl0qfT5OPdCdraed98Nuy91i/tHRkiEEEII8cArvsuWt4sdY7oHSpAu/icyQnLvyKJ2IYQQQjzwBjT1kQBEiAeUTNkSQgghhBBC3DcSkAghhBBCCCHuGwlIhBBCCCGEEPeNBCRCCCGEEEKI+0YCEiGEEEIIIcR9IwGJEEIIIYQQ4r6RgEQIIYQQQghx38g5JEIIIYQQ15gMBk7Mns3FLVvQWFmhmkx4t25N01Gj0Fjdu9emrWPH0uK113DyuXdnq2ScO8eeTz8FoPDqVYry8nCsXh2AgD59KMzMxJCfT7N///uetelWDAUF/Dl6NF2//horOztOL1xIzB9/kB0fT/inn+Lbtq0lb+qpUxz69lsMBQVodDpavf02rvXq3TLNSlGUeeHhR4tVaQ/UBjyGRUSkzwsP3wY8OywiIvYedvsfSQISIYQQQohr9kyZgrGwkJ4//YTO3h6TwcC5tWsx6vX3NCB5ZOrUMq+bDIa71o6qAQH0+uUXAM6tW0fCnj10+PBDS/rxmTPvSr3X3W7fopYto0aHDljZ2QHg2bgxNdq1Y++0aSXyqarK9okTCZs4Ec/GjUk5fpxdH31EnzlzAMpNM6iqOiwiosn1cuaFh78OdBkWEZF+7dJXwCTg6f+h2wIJSIQQQgghALgaH0/cjh0MXLIEnb09ABorK+r26weAyWjk6A8/kLh/PwDeLVvSZNQoNFoteyZPRmNtTXZcHHkpKbgHBdFm/HgURSF61SoiFy9Ga22NajLRbtIkqtSsyYrHH6dm585cOXGC/LQ06g8ZQuCgQQCsePxxOk6ejEvt2vz52mtUCwoi9cwZtNbWhH/yCdvGjaPw6lWMhYW41a9Py7ffRqvTAXBy7lwubNqEotFgZWtLt2+/Zdu4cQT06oVfx44AXNq+neiVK+n8+ee39Yzyrlxh69ix5CQl4ejtTfsPPsDK1hZjURHHfv6ZlKNHMRkMVPH3p+Wbb6Kztyc/PZ39n39OTmIiqqrScOhQavfoYelnQK9eXD58GEdvb/LT0irdzpjVq+n85ZeWz24NGpTZ5sKsLPQ5OXg2bgyAR0gIeamppJ89i4OnZ7lpZXgW+KDY5zXAj/PCw52GRURk39aDFCVIQCKEEEIIAWScPYuzry82Tk5lpsesXk1GTAw9f/oJME+rilm9mnoDBgCQFRtrfnHWaFj3/PMkHzyIV2goR2bMoPesWTh4eGDU61FNJkuZBenpdPvmG/LT01n3/PN4NG5M1YCAUnVnxsbSado08zQyVSVswgRsqlRBVVX2fPop59aupV7//pxfv56EXbvoPn06OgcHCrOyUDQaAgcP5vT8+ZYX/bPLlxM4ePBtP6P0qCh6/PADOkdHtrz9Nhf+/JM6fftyesECdA4O9PjhBwCOzJjBqXnzaPLCCxz8739xqV2b8E8+IT8tjbXPP49rvXq41K4NQH5aGl2+/hqAxH37KtXO3JQUDAUFlillt2Lr4oJNlSrE7dxJjXbtiN+1C0NeHrmXL+MWGFhuWnHzwsNbAF7A6uvXhkVEFM0LDz8JhAHrb/thCgsJSIQQQgghALWC9ORDh6jdo4dlJCKgZ0/iduywBCS+7dqhtbEBoGrdumQnJuIFeDZtyt4pU/ANC8O7TRucvL0tZQb07g2Anasr3q1bc/nIkTIDklpdulimM6kmE6d//52kffswGY3oc3LQ2toCkLB7N3X790fn4ACATZUqAHi1bMmhb78l68IFUBRyEhPxadPmtp+RV8uWWF8L2NwbNiQ7MdFc765dFOXlERcRAYBRr6dqnTqW59b82roTOzc3fNq04fKRI5aApHb37iXKr0w781JSsK1atdLtDv/4Y47MmMGJWbNwb9iQKrVqodFqK0wr5jlg7rCIiKKbricDvpVuiCiTBCRCCCGEeKitOJLAtA1RFCYl8ErsRZbvimJgWGDpjKoKilLyWrHPWmtry981Wi2q0QhAh48/Ji0yksuHD7Pp9ddp+eab+LRuXWZblJvLv+b6OgmAC5s2ceX4cbp+8w06e3tO/vYb2fHx5iaW00dFUag3cCBnV6wAoE7fvmW9dFeoeB8VjcbSR1VVCX3jDao3a1ZeA8r9XLxvlW2n1sYGo15f6Xa71qtH5y++AMBYVMSyAQOoUrNmhWkA88LDbYGhQIcyirYF8ivdEFEm2fZXCCGEEA+tFUcSeHfZCRIy80m1c+W0SwAHv/iC5XtiAPO6kcglSyjKy6N6ixacX7cOk8GAyWDg/Pr1VG/e/JblmwwGchITcW/QgKBhw/Bq0YKM6GhL+vl16wAoyMwkcd8+PJo0Ka8oi6KcHGyqVEFnb48+J4cLmzdb0nzbtiV65UqK8vIA8/qJ62r36EH8zp1c3LqVOn36VP4hVYJvWBhnFi3CUFhobmNennmUA6jevDkxq80znfLT0kjcuxfPpk3LLasy7XT28yM/La3SQUl+Wprl76fmzcOjSROcfH0rTLtmEBAzLCLiZBlFNwCOVaoRolwyQiKEEEKIh9a0DVHkFxktn5fW6U2n+F0kfjiGPzyroJpM+LRujdbamjp9+5KdkMDa558HwCs0tMIXe9VkYs/kyehzclA0Guw9PGg6apQl3cHTk42vvEJ+ejpBw4aVOV3rZv7duxO/axd/PP00du7ueAQHW17M/bt3J+/KFTb8618oWi06e3u6/ve/KBoNOnt7vFq2xKjXY+vi8lceV7mChg3j+MyZrB81yjzKoygEP/MMVWrVosXo0ez//HPWPPssqqrS5MUXcfH3L7esyrTTysaG6k2bcvnoUbxbtgTg9IIFRC5dSmFmJnunTEFjbU3f2bPROTgQvXo1FzZtQjWZcAsMpPU771jKulXaNc8Cv958cV54eE2AcgIVcRsUVa1oxuTfR4sWLdSDBw/e72YIIYQQ4h/Cf9yaMqc5KUDslN53te7iO2ndCyaDgTXPPUfbd98td0eqv4PKtvPKyZOcXrCA8E8+uSvtUBTlkKqqLcpLnxcePhnzyMkvd6UBDxGZsiWEEEKIh5a3i91tXX9Qxe/axconn8QrNPRvHYzcTjurNWqET5s2GPLv2xKORODuHs7ykJAREiGEEEI8tK6vISk+bctOp2XyoGAGNL13p6SLv5+KRkjEnSNrSIQQQgjx0LoedEzbEEViZj7eLnaM6R4owYgQ95AEJEIIIYR4qA1o6iMBiBD3kawhEUIIIYQQQtw3EpAIIYQQQggh7hsJSIQQQgghhBD3jQQkQgghhBBCiPtGAhIhhBBCCCHEfXNHAxJFUVwVRVmuKEquoigXFUV5spx8YxRFOakoSraiKLGKooy5k+0QQgghhBBCPBju9La/0wE94Ak0AdYoinJMVdVTN+VTgBHAcSAA2KgoSpyqqgvvcHuEEEIIIYQQf2N3bIREURQHYDAwQVXVHFVVdwKrgKduzquq6lRVVQ+rqmpQVTUKWAmE3am2CCGEEEIIIR4Md3LKVj3AqKrq2WLXjgFBt7pJURQFaA/cPIpyPf1FRVEOKopy8MqVK3essUIIIYQQQoj7704GJI5A1k3XsgCnCu6bdK0dM8tKVFX1R1VVW6iq2qJatWr/cyOFEEIIIYQQfx93cg1JDuB80zVnILu8GxRFeQXzWpL2qqoW3sG2CCGEEEIIIR4Ad3KE5CxgpShK3WLXGlP+VKzngHFAZ1VV4+9gO4QQQgghhBAPiDs2QqKqaq6iKMuADxVFeR7zLlv9gbY351UUZRjwKfCIqqrn71QbhBB/b48seYQfOv9Avar17kl9s0/PxmAyMLLRSJJzkxmzcwyn0k5Ry7kWy/oss+QzmoxMOTiF3Um7MZgMdPTtyLgW41AUhTln5rAkeoklb1xOHI/WfZTxoePZl7yPFza9QC3nWgBYa61Z0tucd17kPLKLsnkp+KV70lchhBDiQXWnt/39N/ArkAKkAf9SVfWUoijtgXWqqjpey/cx4AYcMK9pB2CuqqryP7cQ4o7IN+Qz58wc1vRfA4CDzoHRjUeTU5TDN8e+KZF3ccxizmWdY0XfFSgojNoyijUX1tDHvw8jGoxgRIMRABSZimi/uD19/fta7q3jUqdEcHPdY/Ueo8fyHgwPHI6jtWOpdCGEEEKY3dGDEVVVTVdVdYCqqg6qqvqpqjr/2vUdxYIRVFX1V1VVp6qqY7E/EowI8ZD45dQvDPpjEP1X9+extY9xOv00AAujFjJp7yQAjl05Rr3Z9TieehyASXsnsfDsQvIN+YzeNpqeK3rSd1VfXtv2Wpl1bLi4gVDPUGytbAFwsnYitHoo9jr7Unkj0yNp69UWnUaHlcaKMK8wVp9fXSrflrgtVLOrRrB7cIV91Gl0tPNux5oLayr1TIQQQoiH1R0NSIQQojIGBgxkWZ9lrOy7kteavMb7e94HoI1XG/Yk7QFgT/IemlZreuNz0h7aVm/LjoQdZOmzWDdgHav7rebDNh+WWcf+5P00rta4Uu1p5NaIzXGbySvKI68oj02XNpGYm1gq39KYpQyuM7jEtdirsQxYPYAha4awLKbkSEkTjyaW9gshhBCibHd6ypYQQlisOJLAtA1RJGbm4+1ih8HPAMDJtJPMOD6DLH0WGkVDbFYsADWda1JoLCQ5N5k9SXt4q9lbfHf8O/rV7ofeqMfP2Q8UOJ91nkl7J9Gqeis6+nYss+7kvGQ62paddrNBdQYRlx3H0HVDcdQ5EuwezP7k/SXypOSlsDdpL1PCpliuBbkGsX3IdpysnYjLjuOZjc/gae9JmLf5nNdqttVIzku+zacmhBBCPFxkhEQIcVesOJLAu8tOkJCZjwokZOaTkVfE5jPJjN42mv+0/A9r+q/h5y4/ozfpLfe1rt6abfHbSMtPo2X1llzJv8K2+G209moNgJ+TH+sGrCPMO4zdSbvpt6ofhcbSu4bbaG3QG/WlrpdFo2h4o9kbrOq3ivk95+Nu506AS0CJPMvPLSfcNxxXW1fLNUdrR5yszUct1XCqQRe/LhxOOWxJLzQWYqu1rfQzE0IIIR5GEpAIIe6KaRuiyC8ylrimqiqzdl/AYDLg5eAFwPzI+SXytPFqww8nfqCZRzMAmnk048cTP9LGqw0AybnJaBUtXf26Mj50POkF6WQWZpaqP7BqIOevVm4Tv0JjIdl685FJiTmJzI+cz7MNny2RZ1nMslLTtVLyUlBVFYDMwkx2Je6igWsDS/q5rHPUr1q/Um0QQgghHlYyZUsIcVckZuaXvqiYSMkyMb7Hawz+YzBeDl508O1QIktrr9Yk7EywBCBtvNrw+9nfaV3dPEISlRHF/x3+PwBMqolRwaPwtPcsVVU3v25M2jeJ0U1GA+atfTsu7YjeqCenKIf2i9vzaN1HGd1kNNn6bIZvGI7m2u9o3m7+NkFuQZayDqUcIrcol/be7UvUseHiBhZELcBKY4VRNTIgYABd/LpY0ncm7uSNpm/c7qMTQgghHirK9d/uPQhatGihHjx48H43QwhRCWFTtpBQPCixykJXewrVUqaye1yPe9KG5/58jrebvU1Dt4b3pL7izmWdY+KeiczrMe+e1y2EEOJ/pyjKIVVVW9zvdjwMZMqWEOKuGNM9EDudFgBN1e3o/L5DkzaAsd0r3jL3TpnYaiIp+Sn3rL7iknOT+aD1B/elbiGEEOJBIlO2hBB3xYCmPoB5LUliRgc81O6M6R5ouX4v1HKuZTlF/V67vtOWEEIIIW5NRkiE+AfbtOwbVs35yPI56mgEE54L4XJCjOXab1+9wqHty7iakcKvU0dark94LoTCgjwAPh/Tg8vx0ZWu99ypvXz9n/4MaOrDrnGdODOxA11i3sIrfYclz871s1jy0/i/3LeM1AQmj+5QccZ74JfPniPqaESp6xmpCRzYtqTEtdt9luWJjz3JrP97kS/G9uSbCQP5depILkQdvKN1VCQ28gDffzC0wnxJlyI5sX/DX6pjy4rvmPJaONPff9TypzA/9y+VlXjxNCcPbvxL996uUwf/ZO38zwAo0hcw+/OXmDy6A5+9/kipvNtW/8g3Ewby9fh+LPtlAgZDEQAn9q8v0e/Jozuw8Lu3Kywz6VIUc79+5S73UAgh7hwJSIT4B/MPDCU26sa6q9izB/GtHcyFSPM1k8nIpegj+NdviXNVD54b+8sdqdevbhMyrsSTk5UGwMXoI3jXakhs1IEbbYk8iH/90DtS399VZmoiByOWVJzxNiXHn2XuVy8T1uNp3py6jlc/Wk7/p98nNzvjjtd1XfPVH3ImM+kv3Zt0KYqTB24vIJl6cj0ev7/BuewrNGnbl5c/WMzT781lWkht+uyY8ZfakXjxDKcObrplnlkxu5gRta3UdZPJWDpzOVRVZfOK7wjsNIRem74GRaFdz2fI7z2UtMIcPH5/w/Iszx7fwalDm6g7cgKrOrRnXcJJRs34Nxdz0ghu2YOXP1hMvVGTWNa2FVe0sMYBLuakodFoadfzGR5/7RuyiwpoteYTwtdP5a0Dv+PlF4jRZGLQ3LFc1ZexuYQQQvzNyJQtIf7B/Oo2IfNKAjlZaThWceNC1CEe6TuKI7tX0arzUJIuRmJj54Crhy8ZqQnM+PAJ3v3v9nLLi489yfJfJ/DqR8st176dOIR+I97Dr04TyzWdtS2+/o2IjTpAcMseXIg6SOvOT7J1lflF8nog1PvJcZZy186fgr4wH2sbO3o9OQ5f/0aWNrUIH8LZEzspKsxn4LMfULNesxLtMhTpWfLTeKq4etLj8bfZvWEOJ/avx2gyotNZ0/ep9/DyK7397rnTe9m8/FuKivSYjAbC+7xASKuegHnUw8c/iLiY42RnptAotDvdHn0dgJSEcyz/dQJGo4Fq3gEYikqfgwKweu6nZKYmMP39R3H1qMETL38BwMkDG1k5+wOyM1MJ6/E0rTs/AcCVpFjWLZhKXk4mBkMRbbsOp1n7AaXK3bF2Js3aD6JuoxvTwtw8/XDz9LN8Lq+O8p41mEfQtqz8HqPRgKLRMHjkx1SvUY/oEzsJ27KJtXsPsdelGv1GTCxRF4DRaGDuV6+Ql5NJUVEhPrWC6P/M++gLctmyYjqF+bl8+/4Q/Ou1oPewccSdO86fS7+mMD8HgE4DXiawcckRr2AXH06dPUsNj3rm5xl3lLpOHgBczbjM4h/fpTA/B0ORngbNHqHr4NcsPw9/Lv2amFN7UBQN7tVr0mf4eLat+oHCglymv/8o/vVD6fXEWKKObWfT8m9RTUYcnd3oN2Iirh6+nDu1l41LvsS3dgiJF0/TqtNQNi75ijenrsfKSgfAnC//TdOw/gS37F6i3bGRB3B2qcaM+MM8X7c9Op0NAQ1bE64Y2WftQA37qpa8SXFReAWE8PqRZazpMpo81xBWrfiGsYeW8Hv4KDL1eby6bwGz6nZjm/oHrdsNsaQFNGzN+C0/oVUU9vYaj6IopBSYt69u0ro3iXuW8/3ZbbzTqGeZP59CCPF3IQGJEP9gOmtbfPyDiI06QL3g9ugL86kb0o61C6cBEBt14LZGKXz9G2FtY09s1EH8A1tw4ewhFI2mRDByXa3AUGIjbwQkbbs9xfF9a7mcEINBX4iNvSOuHr4YDEUsnP4mA5/9kICg1pw7vZeF09/k9SlrAMjLycQvoDFdB4/m2J41bFzyFS+Mn2OpJy8niwXT36Bhs0606TocgCZt+xLW42nAPH1s1ZyPGPVe6d2uvGs25Pl3Z6PRaMnJSuP7Dx+nbqMw7BycAchKS2bkuJnoC3L5clxvmncYiJtnTZb+PP7/2bvv6CqKNoDDv9vSO+k9pJECCYTQQq/SOyKCooJiRxEEFRALIlgRxU9sSEB67yA99NBCSwKEAOm9l1v2++PChZAGKmKZ5xzO4e7Mzs5uMO57Z94ZWnUdQdOo/ly/fJoFM5+s8Xn1HfkWW5d9yvPTl1Y5rq4s49m3o8nLTmHe1EE0jeqPUmXEyu8mM+TZWTi4+FBRVsL894bj4ReGg4tPlfPTki8Q0rxbnT+rmq6hUKpqfdb52Sms/fldxkz5mQZOXmjUlWg1aooLc1i54G1Ot2zB870nkB67i9mfjeFU154Yp12nWXkhAHK5gvleDRgaNIgDGQkEHj1I5ebv+M64lNbhLSlIPI3f6Dd588wGoopyWb/oA54Y/zUvxK2jt60P6396j5feX42pmZXhHqIc/bl85gQnDm7g8vkjJBVn080nhB0BPpiaW/PYK3MZfTSa/NJCEnevZzMlfDxgEvs2fEdeThpXew8hJucqTig5lbiH4uBQ2lUqSW7bmSOaCtoVZLP6h3dgyBjKraxpmV/Jl3OfhyFjeELlROq1ixwOCcG8a09WFCYw1DOAgzFr+VlZTHbGNRpdOkFO137cvUxDUvwxnL1DmHX9NO83vR1Qhtt5cFwmq1LXzSuYI/tX49KqJd6mtiw/tg2pMI/d6RfJqSjmWnEuDiYWZJ7YS3jrPrR0b8xLx5eRU1GMsVzF5pQ4hiuNkN1s19Hk5kadvmHIVnzGkitHREAiCMLfnghIBOFfaO3JFH0yeX4ZURoHSg7swdjEHC//psjlCho4eZKRcomki8cJiehaf4N3aNV1BEd3LcMnsDlHdi2jZedHa6zXMCiSDdEzqSgroaKiDEsbB7wDI7h68ThqdTk+gfqVFLPTk1AoVfiG6PcZ8Q1uhUKpIjs9CWMTc4yMzQgM7wCAh28Tti77xHANjbqC7z96ks4DXiA0srvheGryefZu+p6ykgJkMjk56ck19rGkKJc1P04jJzMZuVxJWUkh2elJePiGARAS2Q25XI6JmSUOLj7kZl7H3KoBGSmXCGvd92afwnBy97+vZ9i4hf4F0dbeDRMzKwrzMpB0OrLSklj+7SRDPa1GTVbqlWoBiUT9y7XXdA2tVl3rs06OP0FAk3Y0cPICQKkyQqky0r9cewRQbKUPFL6WFxCSm836ts+SnBTH/868xZ70eNo7+tHwUgK5R47S2cSS8tJCitKSuGCr4yX7ECoLSnjUJ5Lf0i6w4tBq8rNS+OHTZ7EtyibbygmQkZtxHTef2/u/yGQQaO2MkZUzfR5/m2cP/cK0sL7sOLUOnU7HjuWfEnXpFAqZnKJyDdnZ6SxJOkLJmX1I7Xtxo6KIAz3fRCPpGLjra3zvekbXL53G1TuYDDtH0FTQrN1A1kfPRKauBBUY27uwV1bC7tBH8LGw56rXcb768S3GTphPwY01KLqOZG5mAk3TfejoHGhotzA3k3K7BviY22OiUNX5c/ILbUNE+8Fc2/4Tc0+fo3Hjdly8cASAlJI8fC0dyCnJ59ThvYx7O5pVybGGMrlMjrXKlBJNJd22f4q50pjJjXvRyqEhFtYNKC3IRiWTk1iYgb9V9b16BEEQ/i5EQCII/zJrT6YwZXWcYZf0SzpPGlxcz3Yjc9o1jwDAOyCCpAtHuZZ4kj4jp9xX+6HNu7Nj1VxSky+QdPEoA5+qeWlbDz/9dLFzsTvxujmC4h0QQcy2X1BXVtz+hl8CkFU7X3bzmFJldPuYXF5lLr9CqcLDtwkXT+0hOKILcrlCP+LyzQSemfwTrl7BFOZlMmdCzUHXhkUf0Ci8I4+99DkymYwvpvRFo640lKuUxndcW4FOq63St9/rznuSyxXotBqQyTCzsOHFGSvqPd/VK5iUpDiCm3W+v2vU8azvDnJuBbXyjFiaqPMobeiKVtJxMPMSgZKO3r99iUVeDp46LYmFGdhcScA2J5s+r35Na/dg9m5cwPmrLJMR9gAAIABJREFUZ2lo4YyPhT3xN9sdE9COTzd+RTcPf9J6DsZFruClxr1qvY9QG1e2XD3B0qtHGeZ9ezuAA1t/oqK8lMKBT7IrKxG/IwfJK8xElp+CjyRxJu8GQyN6opQrUKJgoFdTzly/VqVtCanOn6XcyISW9g3xsbAHwMG3MWXlxXy0438EHdjDqR69yS1TkFiYUSUgURkZk15aiEMDl1rbvlOXXs+gbNaWOee2ceTyRQLt7LFWmaKUK7AyMmWauS9HzY/x+Lm1dHEJMpSpdVpSSvNRyuTs6D6B2JxkRu3/niO930ahrkShNMLR1JrU0nwRkAiC8LcmktoF4V9mzrZ4QzACkKnyxEyTS1LcbnwC9dOzvAMjOPzbr5iYWWJrf3/L8CqUKpq1HcDiua8Q1qo3RsamNdZTqYxxb9iYfZu+x7uR/kXS1TuElKvnbibS64/Zu/ig1VRy5cJRAK5cOIpWq6GBs3e9fZHJ5Ax4agbGJuYsmz8RrUaNRl2BTqvF2tYZgKO7l9V6fnlpETb2bshkMi6dO0Ru5rVa695iYmqBo5sfZ45sBuDGlbhaV7QyNjWn/GaORH3snb1RGZlw6uAGw7GstKQaz2/7yGiO713N5XOHq9Q9c2RL3deo41n7h7Yh4cx+cjKSWXsyhbdXnSQjN1//76csBV1WLnviswhITcPDO4Sdfd7i88jhBFm7MDagPeWlRVQaGWNjYUt5aZHh+ZgrjTA2NTfkirSw96HA3p70tCR+O7aZJ3xb659j0llq2qjXxsgMhUxO9OXDDPS8nTtUXlpEmlzH0bxrLA4fRsPsXJrZeVKh1RAY1gHLcydBpwEwJPtLKiMqSotQyuToJAlPv3BSrp6nPFufYH7ywFoUzh7I7gjmzJW3/y5JEue9PGl34iRNG7dn24DpHOvzDmMDqua+OLn7o8nNpFynrvPncavN4oIcOjgHsrzlk7RLyaRX3+cp16rxsmgAQGncYR7r/Tw7uk/gaf92hjJ3c1sUMrlhFCaigRd2xuZcLsokK+0Kzh4BVGjV9Y7SCIIgPGxihEQQ/mVS86uuqqOTqchWeWCmK8TKVp8Q7OYdQmFeRpVpTvejeftB7Fn/LS06Dauznk+jSHav/9YwPUuhUHIj4QSSpGP+tMFoKivwDW3D0HGz2bbsE0Oi9fAXPjUkDtdHJpPRd9TbbF32CUvmjWf4i5/ReeALfPv+CKwbOOPfuG2V+l9MfIQuQ16lccuedBsyng2LPmT/5h9wcg/AyT3gnq45eMyHrPlxKge3/YKrdzAevk2qlCec3odWU0lAeEfsnb35aupA7J19DEntAKcPbeTiiV2APgl7/rTB3EiI5aePDuDftBM6nQ4LKzseff4Tti2dw7Hdy9BptXg3as5jr8xj5Ktz2bn6K36eM4bigixkMhl+oVEENdWPmuRnp/DBsxG4eAeTlXqF/80Yxuuf7mT4i5+xdN548jKv49Uo0vCsGzh50X/0dJbNn0hCeiEddHDQaij5SmdirIbS+fxqEk9PpJmtksJeowz3odZpySgrJLxNX5Q7fmTTx2Oxt3fDy78ZKYXZAPgGtSRm60LmTRuCT2BzRrfpyvycDFrEJ7Bm1li0WjV2Du48/spXhlyIO7VyaEiXsL7YGZsbjrXpNpITnz9HcPwJdp+7hEdgBFvzU7ElnA59xxKblsCxryaRbuWAnZMXawM8cXHzovxaDGXRX5Jla435xH70Gj2Vn6Lfx1JpRJyDNyaPPEpt61JZqEywb9KGwosLDVMVU0rzUMoUOJnezn0JDOvA7s0/cNmzgeHYN+8Oo6ggm5KiPDpt2cTRtFKCnp2FJEn89MkYNFotMkmiZdfH+FXK50nfNpgrjcnLTuHGlbOMePlLdJKOmWc2GcoWfjCKQVnXKC4vY86ErjgHRZLdQIGPhQPH924gqFkXkksSCbK+t5EaQRCEh0VW0zdSf1fNmzeXjh8/Xn9FQfgPi5q1i5T86q9UbjamxEyufYrP/Th1aCNxR7YwavzX933u1CeCeP69lbh6h6DTavnsjW50GvACER2GVKmn0+mQyWQ1vqD+EXcGJA+CVqth65KPqSgvZtDYj2qt9+G4SF54fy22Dm5otRoST+/D3LoBX03py+zlt0dqLsTuZPWCt3jji90YGZux5MuXcHDxofujb9Ra1mXQa6yevpm9Px7AycMPhUqOQ0Nb+rzTHpdG+ulHs16K4pm3FuHg2rBa33wmb6qWpVIWsh+TxAiOTunBtFNruViQDoC50pgvWwzH38qJiA3vEd1uLEE2+hfgmMxLvHtqHTu6TyBhfzJr3t7Fm/ue4tyeK8x8eTHP7hhGhzumOt1p9tmtlGgqmBHev8rxO9ssrCzjqYM/kVlWiLOpNd4W9pRr1XzVcgTvBH9NHmWUyioxUiswaWiK9KgVc58aTaVWw9hDv3CpMAMfS3tsjMxoYGzBjPD+Va67NOko21PP8WPUU4brx57ew4pF73Ooq35lLZctcga4hTN8UlfyU4v4ecx6rp/OQGVdRuIbGXw85B38rBzRaXVMGPMdeYdz0Kl15DeTyButYn+vKei0Ol59ej4lRwtBK2HZ1pZZ3z2DqdKI62cy+PjJaErVlUgaCctwa2b++DQWZqac3XaJmLVxbBmaQl5lKUqZnLea9KaDvS/fvj+CJk9PZV7yIZZ3GFfrv0NBEGonk8liJUlqXn9N4Y8SIySC8C8zsUdglRwSAFOVgok9an7xu18LPx1HbtZ1Hn957h9uS60uR1NZjpmFDQCbFn1IVuplKspLyE67wmtztrN16WwSzxxAq6nE3LoBI1/7lgZOnkR/9jxuDUPpNOBFAFKvnuPbd4cx46ezlJcWsfq7yaQknUVdWU5AWHsGP/sxcoUCgMQz+9m+7FMKctNo1n4QA57Wbx5ZkJPG8vlvkJd5HXVlGREdh/HI8IkArF4wpcZ+5KQn8/Er7ejQ9zkuntxNRIfB7N/8PZJOx8WTu2neYQjdH32jyn1fOhuDuZU9tg766XIKhZJGzTrXmHx/40ocfqFRGJvoRwdCmndnU/QHdH/0jVrLUncEUJxbgGnrVUxdcwlJkji59iLp8dmGgKRZ+0Ec2v4LfZ6YjkxGlcDP1ca0SlArKSuQFBpczW1wMrXif62fqPHnGdt3WpXPUY5+7Og+oVq9xKJMjORK2jvVPiI1KfSRGo/f2aaVkSmrOr5QYz2ZTMZrS4bjF+ZOhVbDM7O/we6tLJJCU/CJdGNh26frve5wnxYM92lh+Lz6h3e4cvEY456dzayACCpL1Xw46XsGHdEvumBsrqL3W+0oL6pgwwd76OVky0+XDvBhs0EcXHga3zwbnj8zFmQyvh22gpal+vW5Di48TWBBA54/M85Qdm7tJZoPCcbJ344vjoxHaaRAp5P4YdQaji08S6fnIwnt4cfGD/azYOLjODS8vZRwVloSPYaO59O0M7wYWH0jRkEQhL8bEZAIwr/MgKb6l9xbq2y52pgysUeg4fgf9eSE37cp3Z2+/2AkSiNjstOSCGrWhaA7Vvq6dDaGyfNisLDWvzh3HzbBMNIQs+Vn1v04laenLKRV95GsnD/REJAc2r6IVt1GIpPJWP3dZPwat+Xx175Bp9Px88dPcWj7L0T11H/TnZd1g9c+2U5FWRHTn2pMmx5P4ujmxy+fjOWREZPxb9wWjbqSuZN74xXQjKBmXWrtB0BJYQ7OnoH0HvX2zc+5dY6QJJ7eb8irqY+nf1MObv2Z4oJsTC1sOLF/NbmZ12sty04qIvtUAhP29Wf2hGw+frktkiQR0WEIXYfo91HZNHM/V2KtSb54nbj5P/Da1sfJupLHiok7qChV0wGJnY3tyGxggnXxZYJ3FXLYLpA3uwdXGelI2J/Myjd34t3claSjKchkMp7+qT/ON4OeDe/t5fiq89i4WOIV4QrA+KNLOXk+gbbG9vz66tYaz9v+2SGOLj0LgFczF4Z+0h0TCyPKCsqJfmEzaReysHa1xMbVEkt7MwbN7FLjs3v92DKK0nVUaDW07x5Ai1Jbfpt7lDGLBnJxz1U2vrcXdYUWnUZHj4ltaD4kmOTYVBY9v4l3jo41tDOz9Q8M/7wHg575oEr7J9ddxK+NB0am+umFptYm+Lf1JGF/MgqFkmd6j+WHxP3oJB0pZzMJ7OiNQqUPiht18uHYsnM0HxJcZ9mttgG0ai2V5Wpk8tvBY7OBjTi06Az9pncwHHNw8cHK0YNWSbJaR6AEQRD+TkRAIgj/QgOauv1pAcif4c5liLsWlNNh3DeM7NkJdWU5C94fwa418+g88CUAQiJ7GIIRgHPHtrNv43dUlBUbVrkC8AuNorysmJQrcTh7BRG7ZwUTPt8NwJnDm7gaf5zfVutHcdQVZdjckbzftN1A5HI5pubWOHsEkpV2BesGLiSc2U9RQbahXkVZMenX4glq1qXWfoB+v5dm7Qff8/PIy07B2ePe8lUCwzvSvu+zzHurH0ojEwLDO6K4maRcU5msJBl7X1ucfDz5MDoBSxtHivIz+fbdYZhZ2BLVczQAqXHFqMJ28vaKL9BUalkwcg0jv+lFo04+XNxzlYpn1nHk6RDKUpwwUcPnnXoxoKkbCfurjuKkXchm1PzejJjbk61zYtgyJ4anfuhP3OZEzmxOZErMMxiZKvnf8FUAfNFiOAkVyXw1ayntFjStdt657Zc5uvQsE3Y+gYmlEb88t5GtH8cw4P1ObJ4Vg5mNCdNOPEdJbhkft/+J8H61v3B/2+YJXIMdDJ9PpcRzbsslADzDnHh9xyjkCjmFmSV83O4ngrv44BXhirG5EYkHruHf1pNLMdeRyWU0bOVerf3E/dfwjnSt8+f3jH87ADzCnTkcfYb2Y/WJ+ac3JlBWUF5vGUB+WhHfDF5OdlI+Id19aftUU0OZTws31k7dDXcEJADGCiWj/aIQBEH4JxABiSAID9TdyxBrdBJf7EzEwjmAAU3dCG3Zk7NHthgCEmPT24nLORnXWPXdZCbN3Ye9szdXzh/mp1m35/O37DKCwzsXE9CkPU6egVV2D39u+jLs79q/4xaVkYnh7/Kby/lKN3NW3py7H8VdCfX19cPIxPy+cl2MjE1QV5bXX/GmTgNeNIwExe5bhZNHYLWytSdT+HbR99hLVuRnFLPpXDYDmrqRdjGbn57eQEFWT3adjSfqZuqMb5QDN2T6hRYzEnNQGMlp1En/vBp19MbCwohlA5pQklvGmuRdtQa4Tv52eITpVzTzjnQjbrP+hT9hXzIRg4MwsdCvUtXmiTC2zomp97yLu68SMSQYUyv9kstRo8NZ+eZOABL3JzN0jn4hBnM7U5r0ubegzuCOxJii7FKiX9hM5uVc5Eo5JXllZCTm4tPCjY7PN2ffghP4t/Vk34JYQ6Bwt/zUIkIf8bunS7ca2YScq/l82m0RJpbGeDVzIfHAtXrLAGxcLHnr4DNUlFSycMwGTq2Pp/mQYACsnMzJTy26v+cgCILwNyOW/RUE4YG6exligHKNljnb4tHpdFyKO4Cje80vdeWlhSiVKqxsndDpdOzf9H2V8pbdHid2zwpitv5M6263V35q3LIX25d/ahjJKC7IJjv9ap39NDGzxDe0DduXfWo4lpd1g4Lc9Hr7UVNbZSWFtZa7eofWulRwTQpy9QnkpUV57Fj2KV2HvFqlbO3JFKYuP4Rt0gqSvJqhyi1jxi97WX38Ki6N7Hlj12OYByRirLq96pNaW4hbw5t7jEvUGFDJZDLkCjmS7vabvLpcU6WOyuT291pyhQydVneryTrVdh6SxN1dufVZkqhWdj+ST6ThcnPEZOlr2/Bv58nbR8bw1sFnsHW1RF2hv7dmAxuRdCyF66fTSdiXTOSwkBrbU5ko0VRoaiy7m1wuo++0Drx18Ble3zYSK0dznAMb1Ft2J2NzI5oNDuLYsnOGY5oKLSpT8d2iIAj/bCIgEQThgbp7GWKAiKuf0fDwS3w4LhKdTkevETVvzujmE0rTdgP54LnmzH2zV7W9SewcPXD2bETimf2ER91ejWnIuNnI5ApmvtCSD8dF8vU7A8jPTq23r6Mn/UjatQt8OC6SD8dF8sPMJygrKai3H3cLi+rHtcQTzHyhFdvv2Fn+ltCWj3DpbAw6nc5w7OOX2/HJa50oLc7j7ZH+LP78drL2vLf68v6zzZkzviMtu40krE3fKmXr3+9Cs/OTuWHXgWuekWT4WBO0/QobZ/Rj5vMt+fiVdlhauVcZWcnJSKbpzWfmFNAATYWWhH366VgJ+5LRqnU4+tlh721D9tV8SvPKkCSJ2BXn632OAIEdvDix+iIVJZXotDoORZ+5p/MadfYhduUFyosqkCRJn/Dd0RuAgHaeHF4SB0BpXhlnNt17UHd6YwL7fzhBl5f0SeplBRXYeVojk8m4sCuJrCt5hroKlYLWo5rw7aMriRwWgpFZzUtQu4Y4kJGYe0/XV5drDNOwcq8XsO/7E3S+2Ze6yrKT8tBU3hxdrNRyZlMCriG3p6Glx2fjFup4z89BEATh70gs+ysIwgP1VyxD/E+05MuXCW7ejfCofn+4rbuX6ZVpdfgfz8Q1MR9fFyvMbEywdrGg++ut8Qx3Zs30bRzesowPY7417OieHJtqSGo3NlMxdE43QyL6lo8PcCg6jgZe1ng1cyF+z1VDUvutBHeg2uf1M/ZyYs0FrJ0tCGjvxdmtl+7pvDuT2j2bujDsU31Se2l+OdHPbyLjUi4NPK0xszPByc+Onm9W3WsGYGrIN6iMFSiNlVSUVuISaE/311sbckEu7Epi2evbsLAzxTXUkavHUxnycVcC2nkB+ulY7zSax7QTz+HoZ1fjc79+Op1lr23jjV1PAqDT6pga/A2aCg1lhRVYOpjT5skwer/VjsLMEr7oudiQkN5rchQRg/XTruoqO7r0LDs+P4xMrh9F8m/rycAPOxuS3Rc9v4mgzt40H1rzKI4gCL+fWPb3ryMCEkEQHqi7c0hAvwzxR4Ma/60S7/9qRflZXDy5i8hOj/7htu436EuOj0WrVdMwuNUfvvZfSavWotNKqEyUlBVW8Fn3RQz+qIsh9+XPdHTpWY6vOM8Lq+re/HPegKX0n9HRkA/zVyrOKWVun1+ZtHc0SiPFX359Qfi3EwHJX0cEJIIgPHB3rrL1Zy9DLFQN+tR2nwEaZHIdKDJp5KBP/A51COaLHh//4Wvllecz5bd3ic9JQIYMuVzOex3eoY1HSw5cO4RO0tHe68Gs7lSUVcLXg5aj0+rIzs/BtqspU+e+zI3CVMZvm8SZzLME2Pmx8bGVhnM0Og3v7p1JzPXDqHUaejTswjvtJiGTyWot+3rgMq4npLFl0CocG+n39zBVmrJh+HIAvj+5kEptJS80H0vmpVwyL+cS2uPektv/TMmxqWjVuhpXABME4Y8TAclfR2TCCYLwwP3dliH+t6my90zu67jamPJ0Wys+O/0CO0du+FOv9dGBT/CwcuPb3l8AkFOWS7mmAoCY64fQ6LT3HZBIkoRO0qGQ1/0tv6WDOZP3P0WpupQui/qw+4ktAFgYmTOx9avkVRQw72jVfXKi45aRXHCNHSPXI0kSo9aOZVPiVvoE9Ky17KW1w9mXHMO5gzFVgptbRjUeTsdfevJkkxE4+tnVOqXrQbs1pU4QBOGfTiS1C4Ig/AsMaOpGzOTOJM3qTczkznQPqXkK0dyj8+n0Sy86/dKL17dPoVRdRqm6jLD/tSar5PYeLFN+m87Xx76rdn5acTrOFk6Gzw1M7XCzdOFs5nmWnF3BsvOr6Brdl2+OLwBg6bmVdP6lN10W9WHMhhfJKc0BYHHcckatHcOLW16nx5IBHEuNpWt03yrX6riwJyfTT1frw/qEzUR5tMZEqV8a2MbEmpbukZgpTavVPZ91gXaeUSjlSlQKFe0827D64oZ6y+pirDQmyqM1GxK31FtXEARBqJ8ISARBEP4jtl/+jXXxm9gwfDm7Rm2iQlvB3KPzMVOZMiioP0vO6qckFVcWszFxK4+FDq3WxjNNn2TOoS/o/etgpu/5kIPXjwAQ6hjMiNChPBo8mJ0jN/BC87Gcy7rAnINfsHTwz/w2aiMNbX2YtvdDQ1tHUo4zuc3rbH98Ha3cW6CSqziaEgtAzPXDmKpMaeocVq0Ph64frfF4TZo4hrLt8k5K1WWUVJaw7fJv3ChKqbcMICH3Et2i+9Hn1yGsurCuSrsRLuEcuHbonvogCIIg1E1M2RKEf7C1S1+nY/fXsbF7sHPID+/7gYYBbXF0rn1X7Pu1+PsnGPbkd6hUJvVXvke7ts7BwysC/6DbidySJLFu2QRad3gWJ5dGf9q17tf15FjSU84R2eYJtFo1e3d8QW5WEgBDRn1Tpe7ZUxu4evkgkk5HA8eGtGz7tGF39trKVh8+S0ncHDIqrVEpZNiZKzC9+Z1TyvXT3Eg+wX71DQYE9sXCyAKAx0Mf5cMDs5kc9TpPh41kyMpRvBT5HMvPr6GLTwfsTG2r3UdHr3YcH7OPA9cPczTlOGM2vMjLLcbxfPMx1erGXD9MV59OOJrrl6kd1Xg4vZcOMZS3covEw/r2v92nw0ex8MxiWrhF8POpaEaHPV7js0wrTsfBrPo+HTV5LHQo1wpv0G/ZMKyMLGnmEsax1Nh6y8KdmxA7Zj+WxpZczU/m0VWjcbZwIspDvxCAo7kDacXp99QHQRAEoW5ihEQQhHq1av/MnxqMPCi+Ae25nLC/yrGMtAvI5YqHGowAnD6+ipCwPgDIZHKCGvekc683q9VLuxFH8uXDPNLvXfoMmYVcruTi2a11lq09mcLsrRcp06mYd70Hn1/tzgeXIijQqAFw8wgjNysJpbqy+qaD6A94WLsT7NCI7Vd2sfD0YkaHjaz1XiyMLHjEtyvT2k/mg05TWRNf8zQnSZKqbbh463oAZirzKmX9A3tzJOU4cZnnOJoaS//APjW2a6I0pkJbWWv/7qSQK3ir7RvsHLmB1cOWYGdqi7+db71lVsaWWBpbAuBt40X3hp05nnrC0G6FpgIT5Z8XTAuCIPyXiRESQfgXKsxP4/jhxVSUF6HTaWgU2gPfgPYAxOyeT2FBGlqtBksrJ1q1H4OxsTk7N88iMKQbHl4RANxIPsnFs1vp2nsKOzbOJKhJT9w9m3Jo73fIFSqKCtIpLcnF3tGP1h2eRSaTUVqSy8G931FeWoCFlSNIEi7ujQkM6XbPfa+tf4X5aRza9x0aTSWSpKOhfzuCm/Sqcq67VwTHYhZSkJeCta0+0ftKwn4aBrQDQKvVcPr4CjLT49FpNVjbudMiajQqlUmdfU+6dJD4c9vR6W7u5N3iMZzdQpAkHccO/kJG6gXkCiVKpQk9+k2tdk+Z6fGYmFhiZq5PfpbLFbi4hVJclFWtbl7uNRycA1Cq9PkRru5NOHNiDSFhfWstm5NoTrlGV6WdcrUW7R1LLXs2bEF55gW+jt/IU2EjMVOZ8evZFbTzbGOo83T4KMZvexMnc0fCnZvU+PPZk7yf5i5NsTCyQJIkzmZdwNNKP8phYWTB9cIbhrptPVvz3YkfeaP1q9ibNWDx2eVVrnc3I4URw4IHMnrdOIYEDTDkiNytkX0gl/Ou1NrOnco05ai1aqyMLblecINFZ5byc/9v6y3LKM7E0dwBmUxGTlku+67FMLXd7QAyMfcywfYPN8gVBEH4txABiSD8y+h0WmJ2z6dNp3FY27iirixjy7rp2Dv6YW3jSkTrkZiY6L/5PXV8JedPb6Rpi0dp6N+OpIQDhoDkSuLtF/m7FeTdoEvPN0EmZ8uaqaSnnMPFPZTjh6JxcgmicdP+FBdls2n1W7i4N76v/tfWv4QLv+HqEUbjpgMAqKgoqXauQqHE27c1lxP206zlcNSVZVxPjqVv5CwAzp/ZhMrIjEf6vwvAyaPLOHdqA+GRQ+vsu6t7Y7x9WyOTySjMT2Pn5lkMGvEleTnXSE85R9+hHyOTyWvsE+hHaRo4NLyn+7ez9+HSxT2UlxdhZGTGtaSjlBRn11mWml+GtRKM5RpecN8OwJmSBuy6Y1V3e0c/rl+NpV9AL/os1eeGNHUO4+UWzxvqtPNsg0qu5MmwEbX271zmBWbs/QgZMnSSDl87Hz7oNA2A3v49GLPxJbpG92VQo3680HwsE9uMZ9jKJ5DJZHjbeDK7y/t13v+I0GHMPfotTzR5rNY6vf16MH3vTMa3fBHQj1a0+akLFdpKiiuLiVjQllFNHmN8yxcpKC9g6MonUMjkyGQyprefTIhDEECdZRsSNhMdtwylXIlW0vJY6FC6Nuxk6MOe5P1Mbz+lznsRBEEQ7o0ISAThX6aoIJ2C/FRidt3OS9BpNRTmp2Jt40pS4gGuXjqEVqdBq6nA0lq/GpOnT3NOHF5MeXkRMiAz7SJtOjxX4zXcvSJQKPU7fNvae1FUlIkL+hfv5q31U30sLO1xdr3/3aNr65+jcyAnjvyKTqvByTUYJ5egGs/3DezArq1zCI8cSvKVIzg6BRhGJlKundQHKUnHANBq1dg28IR6+l5UmMnp2PmUleQhlysoLyugrDQfCytHJEni8L4fcHINxs0zvMY+lZbkYWXtck/37+waTEBwV3ZtmY1CocLZNRj5zeVwaytztTElPV/L7Kt9KdGaYK4oZ6TLfkzU4wztmppZU1qSyystpvPKHUHIna7mJ6PWqWudKgXwYuSzvBj5bI1l3jZe1ZYZHh4yhOEhQ6rVfbzxMB5vXH3TwVt5J142nrX2Icy5MUYKI85nXSTYoRHGSmNixx6osa6zhRP7R2+777IxzUYzptnoGssuZieglCtrHUUShH+Kqa9vQaPWodHoSEspxMPLBgAvX1vGja99NPOWS/HZbN8YzwsTal/qO+lSDpnpxbRs6/Wn9fvT9/cweEQTvH3tOHU8hRXRp7l2NZ9eA4J4bHRTQ728nFK+n3eEnKwStFqJgcNDadPBp94ygIODo/QtAAAgAElEQVR7k+jTcU7IiD7RcYAEdF6ycWT2iD7RnwGHlmwcueJPuyFBBCSC8E9z5yaDk3zK2HUxg0FtbicGS0gYm1jQa9AH1c7NTI8n8cIuuvediompFUmXDnLp4h4AlEpj3L2akXxZv3KQu1czw9Sgu91KsAaQy+RIOu0dpbLqJ9yjuvrn6ROJvaMfaSlnOXd6I5fj9xHVaVy1NmwbeGJqZkPqjTNcTthPUOMehjJJkoiMehJn1+BaelBz32N2z6dZy8fw8I5AknQs/XksWq0aUzMb+gyeSUbaRdJTz3Hq2DJ6DngPUzObKucrFCq0WvU9P4dGoT1oFKrvd/KVI1jbuNZZNjE0kCmr4yhR6wOXEq0J50t96ONfYThPq1GjvBlE1mRWzGesOL+a6e3fqnWq1IM2bOWTpBSlsLB/9eWG7zaz83SuF94g2OGvnzaVXpzBzM7v/uXXFYQ/2/uf9QQgK6OYt1/bwkdf9b6v8/0C7fELtK+zztXLucSdSv9dAYlWq0OhqJruHH8+E61Wh7ev/osmJxdLxr7SikP7kqud/8uC4wQEOdB/eicK8sp4+7UtBIU6YdvArM6yS/HZrF12lt8OzYwvLc8NH9En2gYou9nsbGD3iD7RK5dsHPnP2V38b04ktQvCP8itHblT8suQAK1O4oudiaw9eXupUitrF5RKY64kxhiOFeSnoq4so7KiFJWRKcYmFmi1aq4k7KvSfsOAdlxJOMCVhAO1Tteqi5NzI64k6pPKS4pzyEg9f1/n19W/ooIMTM2s8Q1oR+OmA8jJulxrO74B7Yk7sYaiwnTcPJsZjrt7NeVC3BY0Gn1CtLqyjIK8lHr7XllZgoWlfqWoy/F70d0MLsrLCtFo1bh6NCE88lFUKtMa80Js7DwoKki75+dQVpoP6KelnTu9kaDGveosG9DUjZl9ffCwMUYGeNmo6OVVQJj/7Zf1gvxUbOxqH3WYHPU6sWMP0C+wV611HrTlQxYS89RO/Ozqn97mZ9eQTt7t/4JeVdfRu50h+V0Q/q2++Ggfxw5eA2Dt8rOMHb4cnU7//v36s+vISC8i7lQa0yboF93Izyvjg7d28OaLG3nzxY0s/iGWgvxyVi+N48yJNKa8vIlFC44DkHAhi/cnb+ft8Zt5e/xmTh3X/x5OTy1i3MiVrIg+zbuTtrFvZ/Xf87u2XqoykuHiZoV3QzsUiupfKF1LyiPs5gai1rameHjZcPjAtXrLNq+9QJ/BIZRV5GkAlmwcmb9k48iKm39PB24AHf/A4xXuIkZIBOEfZM62eMrU2irHRjjuIuPoHlZf0H+r3XvwTDp0f43Yw4u5cGYzkqTDxNSKtl1ewtWjCUmXYtiw4k3MzO2ws/chJ+t2crCjcyBqdZnh7/crovVIDu39juQrR7CydsHByR+VkVmt9TesuJ0krFQZ02fwR7X2LznpCFcvHUKuUAAyIlrXvgqUt18bTh5dil+jTigUt3/NhYT14UzsGraum44MOcigcdMBWNu61dn3iFYj2bvjC8zMbXF0boSxsX7Z3NKSXI7s/xGdpEXS6XD1aIK9Y/UXVTePcM6dWo8k6ZDJ9N8DbVk7ndKSXCorS1i95FVc3ZvQqv0zAPy2ZTZIEjqdhoDgbnh4Rxjaqq0swqGQN/1/QyaTo9NpcfMIJyD49mICaSlxePo0r/WZCYIg3Ck0zJmzp9OJbOPJuVPpuLpbcfVyLtY2Jmi1OpycLclMLzbU37/rCs6ulrwzU/97p7i4AgsLYwYNb0zcqXReeVP/JVdxUQU/zT/K5BmdsbY1JTe7lGkTtjJ7vn6qaGF+OV4+tgwdWfNeQxfiMhg4/N5yE338GnBw71W8GtqSmV7MpfhsXN2t6i1LuVaAs6sl3aNmBI7oE30CWLFk48iP7mj6ENAF2H3vT1Soi0yS/jmjTc2bN5eOHz/+sLshCA+Nz+RN1PRfrAxImnV/Q+0PgkZTiVyuQC5XUFaaz5a10+naazJWNveWP/EwPei+HznwE67ujfHw/uuDgoryInZunsUj/WdUCdAEQfhvunPqr6uNKS+08GTv9yf5bsntzVDTUgr55P09fDS3N1Nf28Ij/QIpKqzAysaUhAuZPPtKa+JOpbFi0Wne+/QRLp7LZN6cA7Rp701QY0eaNHNFoZCze1tilYAk9sh15n92EAdHC8O1iooqeGNaR0xMVEx5ZRM/rRxea99H9lvMgqXDMDVTVTm+fNEptFqpSg5JQX45ixYc50ZyPg5OFigUcpxcLHjsqWZ1lr0xbj2u7tZMmt7txLCeP3YCtgNzl2wcuQRgRJ/oF4AWSzaOHP3HfxoCiBESQfhHcbUxJSW/rMbjfwdFBekc2vsdEhI6nZYmzQb8I4IRePB9D4sYTFrK2T+tvftRXJRFi6jRIhgRBMEw9ffWaHtKfhmzt8bT9K6lw13crKis0HBo31UCghwIDXdhwVeHsbYxIby5W7V2G4U4MvPLXpw9lcbeHVfYuOo8U2d1r1ZPksDb184wknKn9NQiTEzq/j2lMlKgVmsxRVVnPQBrGxNemtjW8Pmjqb/h6mFdb5m9ozkt23qi1amlJRtHFo7oE70eaAEsuVndhNs5JcKfQPzfSRD+QSb2CKzyPxIAU5WCiT3+HpsW2jbwrDGZ/p/gQffdxNQKH7/6V615EO51yWFBEP79apr6W67RUlaprVY3pIkzq5ac4fGnm+HgZEF+bhnXr+bz+DMR1epmphdjZ29Gmw4++Ac5MOn5DUiShKmZEWWltxf1CAhy4Id5R7hwNoOgUCdAv1pXfcnxt3h42ZB6oxAr6/o3Ji0qrMDMXIVCIefMiVRSbxTQur13vWVtOvgQd1Kf9zeiT7QK6AwsvqPpICD2njos3BMRkAjCP8iApvpvpe4cap/YI9BwXBAEQRDqklrDKDuAroYp/CFhzuzfdYXgJvrl1/2DHEi4kIWNbfVR+XOn09iy7iIKhRydJPHMSy2RyWSENnVm89oLTH5pIyFhzowa25wJUzuy5KcTlBZXotVKODpbMHF6p2pt1iSyjQdnTqTSKMQRgPNn0vnm04OGoCdmdxLjXmtNaLgLiRezWLQgFrlChrW1CROndcLISL8aYV1lbTv5kHQphz4dPwkBTgGbgYUAI/pEy4BOwPR76rBwT0QOiSAIgiAIwn9E1KxdNU79dbMxJWZy54fQo/tTUlzJe5O38/5nPQ0BxIMik8liJUmqkvg3ok90b2DIko0jn3qgF/+PEcv+CoIgCIIg/EdM7BGIqarqi/zfaepvfcwtjBjxVDOyMorrr/xgWABTHtbF/63ECIkgCIIgCMJ/yN2rbImpvzWraYREeDBEDokgCIIgCMJ/yICmbiIAEf5WREAiCILwN/FDq64ojI1RGhsB4N6mJR3fnfy729vxxlSChvbHvWVzLm3diYWTI85NmwCQfvosJxcspOe8OX9K3++06+33ObJjJRISxhkaSqy1KE30G3fKPmiPydO7KPomimn9FlBUUcCGc78wotnL932dy9t+I3nfITp/+A6aikpm9mqBQ6YpIOP5uINV6h6d9x0X12xEp9Hi3LQJXT+egdLYiHJ1Ke++2IlGlxxAK1HmaURMl1SuFycxo+XXpL67Ap1ajU6rQ+luQ0znNEqMKrDMlNHyoCsjl+lXAT2Xfpx5+6dSpinFSGHEhI6fEOgYhlpbyXMrbi99Wq4uI60wmXXPXMDKxJZXVvdncte5uFp5/f4HLgiC8E8nSdI/5k9ERIQkCILwb/V9yy5S1oWEB9L21vFTpJM/Rj+QtuvybWQH6dEPAqoc+8wtSKooLpYkSZJSC5KlPgsCajq1Xgs795MKU9IkSZIkrVotXd0XI2WcPS99E9q6Sr2rew5Iv3TpL1WWlEg6nU7a/sZU6chX30mSJEk/LHhD+rJNlKFs+YvPSzvmzJJeXtVP2p+wWaosLZUkSZJ0Op00YUiwtPyNVyRJkqTTKYekad0aS8kHDkk6nU4a+GOodPJGjKHs8ejWkk6nq9bnZSfnS5PWP2b4vO/yJumD7S/8rvsXBOHBAo5Lf4P33//CH5HULgiC8De3YsiTXNm5p8bPOQmX+LXPo/zSpR9bXp7Er32HG8pu1bu65wCXt+/i2NffE919IOdXruP6waMs7qXflXn7hHc48f0iQ/vZFxP5oU13JEmioqiYHW9MZUnvR1nUdQC7p81Ep62+X8H9mj6+M0t6DyO6XT8sT5fy9NKOPL+yF2knTvN1z27MbBXGzJZNeOPdDiRmxRnOaz/PgUXHP+fVWe25UnmZ2NJjAMiVSkad7o9kqk/WvZqbwOvrhjL61w58tfhVNP5WqMzMkMlkeHdqx8U1GwGIO7ydhm2iDGXhvQaSuuXgzTYVqEz1y5vmlWSiK6vEyUo/zaWJayuSG5Vy6OcfKCjPobiikHC3Noay7OI0ErLOVLvvLReW0it4hOFza69uHLm2i9LKh5agKwiC8NCJgEQQBOFvZONz44nuPpDo7gO5uudAvfW3vjqZ8Kce54nf1tN0zBNknK6+G7x3x7b4du9M5ItjGLl9DcFD+lcpDx42gAsr1xo+n1u+mpChA5DJZOyb8TFurSIZsWkZI7evpiwnl3NLV9fan7UnU4iatQufyZuImrWLcnXNwYvWRM6ITcvp8eVHNNlpwY/D9/B5t6X8NmUGA7/9ircOn+aV9b/hs07N51smVDnXzMiSx0weo0m7R5i7/60a239r0yj6hozk58f28sqT89DFpVOWm4dOoyFh41aKUlLJKEohz1lN1uEz1cruFN19IEtb9seqwAjdAH8AYpK2keZUROaR09iY2mNtasf+K1sMZaXqYtKLrldp52LGKXJKM4jy7mE4plSo8LFrRFzakVqfqSAIwr+dyCERBEF4iO5c7eaZgnICPnqXYQPa3tO5FUXF5MQn0mhgHwCcw0KxDwq47z64t2xOZXEJWefjaRDgS/y6zQxfp8+NuLxjN+mn4jjx3U8AqMvKsXB2qvVepqyOM+wCnZJfRkGZhkqtrlrdwnD9LssNwhphXCRDU15B2vGTFF5PYcOTL5NXloVOp0VRKZGReKPKuV38B3J88Vw8fUPILllIhaYcY+XtXZt1khatpKWTnz7w8oxqRdPRo1g9YgwKY2M827bimlJJVnEqshBHwrxHVCu708jta9Cq1aydOIFd337JovZfEeLUHGcPPzS5eWjVaj7o+TPfHnyPn4/NIcSpOd52gSjlqirtbL6whO4BQ1Aqqh5vYOZIVnHVIEgQBOG/RAQkgiAID8ndL/BancQXOxMx8vKpsgKOTKlA0t1+qddUVOj/Ikkgk+n//EFBQ/pzfuVa3Fu3wM6vIVbuboZr9P3hK2y8POptY862eMO93CJJEhWa6gGJTqXvs1yhn2Kl02qQgAaN/Pmxx37mDlxPoGMY2cXpbPq5cZVzjRTGKE1M0FXqd2bW6jT19q3ZmFE0GzMKgPgNW7Dz98VYaUKltrzGMiiqcr5CpaLNqGcomTSN975eh1pbyaD5wciUZihUKgIdw/h8wCoA1NpK+v8YjJetv+H8Ck05vyWu4atB66v1rUJbgZGy+s7XgiAI/xViypYgCMJDUtMLfIVGx5xt8VWO2Xh5GKZi5SRcIuv8RQCMrSxp4O9L/NpNAGTEnSf7YmKN1zKyMKeiqKjGMoDgof2JX7eZs7+uJGTYQMPxht06cezr7w15I2W5eRRc049YnPppMQc++sxQN7WG3Z8BdLra97syN7IEQKPT4hoRTl5SMjZXwMlSHxCtXDsbajjdvlEAeZev1timXKZAIVOw+9I6w7G0a/rnUp5fwPGvvyfiudF42vqRU5JBXlpKtTKAiow8KktKAJB0Os6sW4t9I/0IVHTslzSlCQ7B+s3kckoyDNeKjv2ScNc2uNs0NBzbd3kTbtY+NGwQVK2/yXkJ+NmH1PqMBEEQ/u3ECIkgCMJDUtsL/N3Hm78whk3jXiNp934cggJwDLn9Utvji1lsn/AOsd/9jGPjEByCAzGytKjWZtDgfmx7/S0SN26j2bOjsXR1qVJu5eaKnb8vNw4do9fXnxiOd5wxhf0ffkJ094GADIWxER3fnYy1pzu5l65g5XF7JMfVxpSUGu5JLq99BMfKxBaAcSt6YG5ly/SfvkEz+TXmteuASlJi4e4MXauf59O1A0e++h/cfuen4882rP3hGSoKCmn3uS3718/i54GfIpfJifxaH/zo1BrCR4/A7xF9o03d27L80ScwUZqhU2vQdvXgzbTXyS/LIf/YRQ68NANPaz9kQKGTjmMdMlm0KJJAx3C6lEVh2ksfUK0/9ws7E1ahk7QEOoYzucuXVfq75eKv9L4jmf2W9EJ9nklNgYogCMJ/hdipXRAE4SGJmrWrxhd4NxtTYiZ3vqc21KWlKE1Nkclk5CRcYsXQ0YzeuwkTG+s/u7vVLB/8BAMWzsfIwhyoPgUNwFSl4KNBjR/IJmw735yOd8d2+PWsIWK5R3FpR/n1xDxm9v7lvs7TVlbya59HGbz0R0ztbH/39f938H3cbHzoEzzyd7chCMKDIXZq/+uIERJBEISHZGKPwBpf4Cf2CLznNlKPnWTfB5/o80mAbrNn/CXBCMCwVVVf4m8FHbeS9F1tTJnYI/CB7QjdZtKrXNt3sP6KdWjs0oJk726UqUswVZnf83mFN1KJenP8HwpGAOzNnekVVH3kRBAE4b9EjJAIgiA8RHeusvWgX+AFQRCEeydGSP46YoREEAThIRrQ1E0EIIIgCMJ/mlhlSxAEQRAEQRCEh0YEJIIgCIIgCIIgPDQiIBEEQRAEQRAE4aERAYkgCIIgCIIgCA+NCEgEQRAEQRAEQXhoREAiCIIgCIIgCMJDIwISQRAEQRAEQRAeGhGQCIIgCIIgCILw0IiARBAEQRAEQRCEh0YEJIIgCIIgCIIgPDQiIBEEQRAEQRAE4aERAYkgCIIgCIIgCA+NCEgEQRAEQRAEQXhoREAiCIIgCIIgCMJDIwISQRAEQRAEQRAeGhGQCIIgCIIgCILw0CgfdgcE4Z/kWPIpNsXtQEJCrdXgZefOc+2eAGD6xtm8/ch4jJRGTFw9g1c7PYu7rctD7nHNiitK+HL3Aio1lbTyaU7PkM6GstLKUvYmHqJnSBfDsY+3f0WP4M6Eu4f87mteTE9kWex6pvee8If6Xps/o4+3vL/5MzQ6DRqdlozCLNxsnAHwtHMnqmHkn3Yfvx5bg7+jD829wrmWe4Poo6u4lnuDxm7BvNjhKUO9cnUFi46u4FpuClqdlvZ+rXjk5s+srrK62twVf4CyyjJ6N+72h+9DEARBEP4IEZAIwj3KLy1g0ZEVvNv7DezMbZEkiet5KYbyGX0mPcTe3Z/zafGYG5nx9iPjq5WVVpax5dyuKgHJf83UXq8DkF2cw3ubP6vys72YnvinXCO3JJ/z6QkMbz4AAEsTSx6N6M/1vBTOpSVUqbvp7A6UciXv9ZlEpaaSD7d9ib9jQ3wdvOssq6vN9v6teXvdTDoHtsPUyORPuSdBEARB+D1EQCII96igvAiFXIG5sTkAMpkMTzt3Q/nTi8bzzfCPMVEZVzkvv7SAxcdWk1uSR6VWTUvvZvS5+a30xNUzaNMwkvNp8eSXFfJIcGe6NGoHQGpBOr8eW0NBWSES8EhwJ6J8W9TZ3p10Oh0rTm7gbMoFAELdghjatC/xmZdZHrueMnU50zfO5vHIwQQ4+RrOiz66itLKMqZvnI2R0sgQtCRkXGLz2Z3klxUS6RXO0GZ9672/e3quZYX8b/8vlKnLUWs1NHELZlhEPwDWnt5CekEmZepyMoqy8LJzp1doV5YdX0dOSS4Rnk0YFtHf0Nb5tHi2nd9FXmkBkV7hDG7aB4B1p7dy5OoJVAolMmRM6v4iZkZm99zHas9W0rLw8DIuZ10FmYxx7Z7A1Vo/ihJz+Si74g+gk3SYqkwZ1XIILtZO1do4cPkIzT3DkMlkANiaWWNrZk1aYUa1utfzUonybYFMJsNYZUygoy+Hk2LxdfCus6yuNpVyBSGugRxNPkkH/9a/+1kIgiAIwh8lApL7pNFoWLF4Fft2x6BQyFEqlTi7OjNi9KN4enncV1tvvz6NAcP6EdmqOak30pj9/qcADBjWj45d2td63q8LlzFkxCBUKhUAX86eh1+AL70H9Pz9N1aHwoIipk2aAUBZWTm5Obm4ubsCENGyGa5uLhw7HMvk6W/84Wt99O5shgwfhH8jP04eP8WiH5eQnHSNPgN68tRzTxrq5eXm8c3n/yMjPROtVsvQEYPp2FX/zD6fNZfkpGuGulevJDNlxiRatolkWfQK9u+OQaFQoFAoGPn0CJpFhgMw+/3P6DuoF0Ehjar0ae3JFOZsiyc1v5TmDc14dfl0GrsF4O/oQ5uGkVjcDFBq833MYvo26UGgky8arYY5O7/Bp4EnIa6BAFRq1bzd8zWyi3OYuuFjonxboPo/e/cdVlX9B3D8fe5lbxEBQUBAwQWK4t4rVyXO0jLTMrepaVo5ylm5LX9pZmV7qJkjNUdONDU3KiDgABQHMmRe7j2/P65eRRBwJFaf1/P0PJzznedCdT73u7RmfPTHMrqGdKKuj7F/N3IySlTfLTuiwzmfnMDkTsbfy7xtS9gRHU7LwCaE1erA0fiT+abw3PJivW4FRgUArmVcZ3y74WTrchi/ehrNKjXAzaFciftzLzYW1oxoOQArc0vyDHrmblnM8YRTBHlWNf7+ki8wqeMbWJlZ8u5vs1lxaC2jWg/EYNDz5i9TaV65EW4O5QC4mJrEmDZD0OnzmL5xPv7lfKlczpeNJ/9gQY+pWJhZkKXLxkJrXqK+3UtiyiX6N+pN3wbPsfb476w7tpnXmvYhKimGA+eOML7dCMy1ZhxLOMkXe3/g7favF6gjMukM7au1KqT2gnycK3Dw3BFCvILIys3ixMXTlHdwLTatOP4uFTmecEoCEiGEEKVKApL7tHDWInJycpj18Uzs7GxRVZXwnXuJP5dw3wHJnfbu3keV6oEMGjGg2Lw/fP0zYT2fNQUkj4Jer0er1Raa5uBoz/wlswE4fuQEX3z6FXP/96EpfeumPx5JHyJPRZGdlUPlKpUAcC/vxrBRgwjf9Sc6XW6+vJ9/spxKgf68M3U8qSmpjB48jurB1Sjn6sKo8SNM+eJizjJxzLvUDjW+1FcOrExY92extLIkLuYs74yexBc/LcXS0pIevbuydNHnzJg7xVR+9eEE3lp1nCydHlA4EBuEs20mga5WHIs/ycaIP5jyzJv3DEpydDlEJp0h/cAN071sXQ6JqZdML+z1KoYA4GJXFhsLG65npmBQDehVgykYAbCztC1RfbecvBRFE/96mGmN/5o38a/PoQvHaBnYpGS/kLvU9amFRtFgY2FNeUc3LqdfxcnaocT9uReDwcBPh37lzJWzoKqkZqVz/nqCKSCp4VEFGwtrALycPPAq44G51gy0Zrg7unI5/aopIGnkVxetRotWo6VexRBOX4oi2KMq7g6uLN3zDTU8qlLTsxrW5g83RcndwRWfm6Nj/i4VORofAcCR+AguXE9g2oa5AKhAZk5moXUkZ6bgYG1fovY61mjDT3+tYcpvc7C3tKOKWyVTgFpUWnEcrR1IzkwpUV4hhBDi7yIByX1IjL/Ivj37+fz7JdjZ3Z6207h5I1OerKwsPv34c85EngGgRZtmdHu+CwDnz11g4axF6PP0ePlUIDdXB8D2rTtZs3I9qmrgdEQk4yaP4c89+9n1xx70ej0WFhYMen0AfpV8WbxwKQDjRryDRqNh2hzjyMW5s+eZMOZdrl65SmDVAEaOG46iKGRmZLJs8XLOxZ4jNzeXoFo16D+oL1qtlndGT6JK9UCiTkdjbm7BpBlvP/Bnk5WZyYdT53L+7Hls7WwZP3kMZZzLALDqx9WE79yHXq+nrIszQ0cPMqXd6ff1W2jeuqnpuryncUH4n+EH0Ony542LPcuz3YzTcRydHPGtVJE9O8IJ6/FsvnybN2ylWeummFsYg7dboyEAFf18UFVIT7uBZTlLfP0rkpqSSmL8RTwqGNuetSnyZjByW3KGDSsOWrNn/BDeWTOTyKQz1PGuWejnYkAFRWFixzcw0xQe8JlrbgeWGkVBbzAUmq+k9d2iqoXdVYosUxQz7V39VA331Z972XRqO5k5WUzsMApzrTlf7v0Rnf72L9z8rnbvvtar9/i8VAAFjUbDhA4jOXMljlOXonnvtzmMbj0IrzIeD9RfKOSzMP3OVJr416dLrY7F1mGhNc/3nEWxNLOgT/3upuuv//yZ8g5uxaYVR6fPe+jRIiGEEOJhyba/9yH2TBwenuWxs7e7Z56fvlmBajCwcOlcPlgwnT827+Cv/YcAmP/+R3R8tj3zFs+iU+cOnImKAaBF62a0f7otLds2Z/6S2ZT3cKdl2+bM+d8HzF8ym94vP88n8z8FMI2gfLBwOvOXzDYFRufjLjBpxtt89Nk8YqJjOXroGADLFi+nRnA1Zi96n/lLZpOaksrWjdtM/T139gLvvj/xoYIRgOjIGPoNfImPl83Hy7sC61ZvAGD7lp1cTLjEhx/NYN7iWdSpV5vPFy8vtI4TRyMIqFK5RO35V/Zj1/Y9qKpK0sUkTkdEcjnpSr48Op2Ondt206Z94dNi/ti8A3cPN1zKlTXdC6wawNHDx0zXiSlZpp8tzLJxsE4x3U/OSCE9+wYudrfL383a3IoAVz9+O7HFdC854zqpWWlFPl95R1e0ioYD546Y7t3Iybiv+qqXD2BPzH7yDHryDHr2xOynWvmAItsFsDK3IjcvF71BX2zeB32+O2XmZuFo7YC51pzrmSkciT9e4rJ32xt3EL1BT44uhwPnj1DFvTJZumzSs28Q6FaJsJodqOBUnoSUiwAs3fMNf50/VkytJVezQg3CYw+QnGH8OzEYDJy9dqHQvBWcPLiUdrlE9T7zgvMAACAASURBVGblZpObZxwlvHA9kUMXjptGuopKK87F1Et4OXuWKK8QQgjxd5ERkhK4tYYgI/YknpfTWX04gbAQT86fu8DcGQvIyc6hdr0QBgztz9FDx3l1SD8URcHG1oZmLZtw9NBxqlavwrmz503rHAKrBeDj633PNmOiYvn5+1XcSL+Boigkxl8sso/1G9fFwsICML6sX0y8RK06NTmw9wDRp6P5dcVaAHKycyjrcvsFulmrJvecqnU/qlYPpJyrC2B8tiN/HQVgf/gBzkTFMHqwcT2CXq/HxrbwxcRXr17DqYxjidrrP6gvyz75kpEDx1DO1YXgWjUwM8v/5/znngOUc3XBr5JvgfInjkbw7Rc/8N6HE/PdL+PsxLUryaZrDydrEm4GJRpFxc81BkvzbLSKGfO3naBrrY6mqTv38lqTPnx/8Bcmrv0AACtzS/o37IWjtcM9y2g1Woa3fIVv969kzbFNKIpC+2otaeRXt8T1Na/ciKT0q7y3bhYA1T2q0LxS8WsF7CxtaeBbh0lrP8DGsvCduB70+eJTEnlj5WTTdTX3ADrX7MAnO7/k3XWzcLZ1oqp78UHTvfg4V2D2lv+ZFrXXqlCd5IwUFu34HJ1eh6qqeJetQB3vYADOXYunTeC912vdr0A3f7rW6sTC7Z8Zp93p8wj1qUXFsgWnc9b2DubAucM08a8PGHf0mrlpIbl5OnR6HW+snEzn4A40q9yAKzeu8snO5Wg0Gsy15rzW+EXK2Bj/XSkqrag6AU4kRtI1pPjRHCGEEOLvJAFJMe5cQ2Bh44ySmco7Px0EICzEi/lLZrN+9QbTaIeqqqZdc265damUcLqMTqfjgylzmDFvCv6V/bh2NZn+z79WZJlbwQiARqPBoDfc7A+8/d443D0Kn8Jhbf1otvs0v6t9/a32Uen5QjfadCh+C1lLCwvTNLbiODo5Mvqt2wuFp7w9nQre+b/p3bJxW6GjI6dPRjL3/YW8M2UcFbzyl8nN1WHvcHte/9h2gabff7bOmiPn6mBtrmVm1yDCQvKX/bzPfNPPs7reful2tHZgUNO+FObOfHdfezi6M7bt0ILPXkR9d9JoNKYtZe/WxL++6UW4MC83fD7f9binht/zuqT9qeJemaUvzCk07dY2u3cLq5l/o4ZXGr9wz37c3cdbnG2dCq3/Rk4GTtYO+Lrc+4sBF7uyLOw5Pd+9Ku6V851Bcvd1Q79QGvqF3rPOW0Iq1GDt8d9JyUzFycYRF7uyzOn2XqF5vZ0rMDPsnftOK6rOi6lJGFQDlcoVDNiFEEKIx0mmbBXjzjUEuVaOpDl543JmF7PX357mkZ2dbfq5Vp1gft+wFVVVyczMYtf2PdQMCcbG1gZvXy92btsNQNTp6Hw7Qd1Jl6tDr9ebphJtWLMpX7q1jTWZGYUvlL1bvYahrPzhF/R64zOkpaaRdLHgFqC3TBz7LlGnH805C8b26/Lb2k3cSDcuetbl6oiLOVtoXh9fbxIuJBSadre01HTTMx07fJyzcedp3ur2+pOrV65x8sQpmrXKP3Ul+vQZZk2dx7hJb+Bf2a9AvfHn4/H19zFdh4V4MrNrEJ5O1iiAp5N1ocGI+Oexs7RlTNshpda+RqOhb/2eXL2RXHzmv0FyRgp96vcolbaFEEKIO8kISTHuXEMAcKFiE9wuHsVp788Me2UTdnZ2OJctQ7dexoXrPV/szqcfLWPEAOM3si3aNKN2PeMuSiPHDWfhrEX8umIt/pX9CKha+HoJG1sber/8HGOGjsfF1YU6dUPypYd1f4YJY97D0tLCtKj9Xl4Z0o/ln37NyIFjUFAwszDj1cH9cCtfcMREr9cTF3Mu35Suh9WybXPSUtN4e/QkwDiC1OGZdvj6VyyQt0GT+hw+eJSgWjUAOHn8FLOnzyMzMwtVVdn1xx6GvTGE2nVrER0ZzdJFn6PRaHBwcGDC1PFYWt0+/2Pb79up26BOvtEOgMULl5Kbm2takwPG30tFPx+ys7I5fzae4FpB+cqEhXhKACL+FkWNzvzdSroLmhBCCPF3U9TCt+J5IoWGhqoHDx58rG02fn+baQ3BnTydrNkzvmRnCPxTxETH8tuaTQx/Y3CptJ+Zkcn4kROY9fFMLC0tiy/wiG1c9zvXrlzjhX69HnvbQgghhHiyKIryl6qqxc/BFQ9NpmwVY2y7QKzN8y/6tjbXMrbdv+/bRf/KfqUWjIBxZKj/oL4kXSrZzkOPmkajMW3RLIQQQgghHg+ZslWMW1N1jCd1Z+HhZM3YdoEyhedvUqtO4ed5PA5PdWxTam2Lx++dvoMwtzA3bcgQEFyDHgMLnlz/OKz75kfaP9cVs3scdpqdmcWar77jxP5DmFtaoCgKFfx86dy3N2XKPboplvfjQkwc6775kcGTxwPw+QfziTp2gtTk68xb9Q1W1tamvOG/b2PbL2sxGAy4uLvRd8xwbO3ti0275au5i9i7eZup3oSz5/ll2VcMmzrh8T2wEEKIv40EJCUgawiE+Hca8M5YPCs+2DoOvV5fYMtsg16P5gG20V7/7U+06fZsoQGJqqosmjwdDx9vJi6eh7mFBQa9nt0bt3A1KanUApLVX35Lp963F8U3atea7gP7Ma5X/3z5Lp6PZ81X3/POx7Oxd3Lkt+9X8OuX39F7+MAi0245tu8Ad21ciGdFb8zMzYg8epzAmvnXfAkhhPjnkYBECCHukHY9he8+WsLVi5dQgbbdOtOgTQvAOKrSuF1rIo8ex8Xdjfqtm/Pzki+oVL0qZ6PO0LFXdyrVqMaKpV+SEHeOvNxcAmrWoPuAl9Fotaz79icObt91c1RGYdQH7/Hr8u8AmD36bRSNhlEfTMHm5oGnAKePHONa0hVGznwX7c2zdjRaLc06tTPlmfvmJNp2e5ag+qEFrue+OQnvyn6cjTxDctJlWnbuhJOLM9vXbCDlWjJdX32JOk0bATC4Qzc6vdCTU4eOciMtnc4v96Z2k4Jn1yRfvkJSfAJ+VW9PXa1Sq/DAIPHcebz8KmLvZDwbpUbd2sx9cyK9hw8sMg3gRlo667/7mZEzJxP++7Z89YY2b8qejVslIBFCiH8BCUiEEP9ZS6fPMk3Z6tL/RarVCeGnxcvwqOjNoEnjSE2+zoxhY/Cq5GcaSUlNvs6oD6YAEHXsBAlnz9Nr2Gs8N+RVAL6e/z8CgqrRZ+QQDAYDX3w4n/DftxHSpCFbVv7Kh99/joWlJdmZWZhbWtBr6AB2rtvImLkz8k1zuuXCmTi8K/magpEHkXL1GqM/nELa9RQmvTKU1mFPM3buDM5GRrNk6oemgARAURTGzp3BpfgEZo9+m0o1quHglP/A0ujjEVQMKHyXwLtV8K3IuegYrl5KoqybKwf+2EVOVjYZ6elFptna2/PDoqU8/UJPrG1tC9TrVzWAn5d8/sCfiRBCiCeHBCRCiP+M1YcTTOvBWqVm02LgK/TpUDdfntOHj9Ht1ZcBcHQuQ416dYg6esIUkNRv3SJfflcP93wjBcf2HeBcZDRbVq0FIDcnByeXsljbWONWwZMvZi2gep0QguqHYmVTMAApzqnDR1n12VdkZ2bRrFM72nbvXGyZ2k0aodFocCrrjJ29PbUaGQ/F9K7kR8q1ZHS5uabArHE74yGm7hU88arkR9zpKGo2yP8ZXb+ajEOZ/EHKvbhV8KDHwP58NnMuiqJQs2E9ADQabZFpf+0Kx8zczDTqczeHMk6kXU9Bn5f3UMGaEEKI0if/FRdC/CesPpzAW6uOmw46zTOoLNgajb27R4E1YnevWbjz2tLaKl+a5d2jGioMnDSOcuXdC/ThzXkziYk4TeTR48wcPpZh0yZQwbdikf328vdlx7oNpjUrVUNq8s6iOaxcupycm4eyarQaDHds4a7Lzc1Xh7nF7bUpikaD2c3g49Z6F71eT2HL6VVVRSnkvrmFBbpcXZH9vlPdFk2o28J4SOnZyGh2lHXG2tamyLSooyeIPHKcd/oOMtUzddBIhk2ZQHkfL3S5OrRmZhKMCCHEv4Bs+yuE+E+YtSnSFIzckq0zMGtTZL57VUKC2bVhM2CcnhVx4BABNWuUuJ3gBqH8/tMvGPTGtm6kpnH1UhLZmVncSE0jILg6z/R5Hg8fbxLPXgDAytqa7IzMQuurEhKMk0tZViz5Il+gkZuTY/q5XHl3zkWdAeDiuQvEx54tcX/vFr75DwAuJyQSH3uWilUCCuTxrOhNUnxiietMTb4OGAOltd/8SJtunYtN6zXsNWZ+s5TpyxczffliACYunk95Hy8ALl2Ix9PX5wGeUAghxJNGvloSQvwnJBZywGlh93sOeoXvPlrMtMGjUIGwfi/i4VPynbh6DOzPqmVfMW3oGyiKgpm5OT1e64dWa8an02ehy8nBoKp4V/IjpLFx6lTrbs8yb/y7WFhaFFjUrigKw6ZMYM3y75gycCSWVpZY2ljj5ulJvVbNAHiqRxhLZ8wh4uBhPCv64OXve5+fzm1m5mbMeuNtbqSm03v4wALrRwD8q1flWlISWRkZpvUdS6Z+yNnIaADeHTACDx8vRkyfBMBX8xaRnHQFfV4edZo3pmXnjqa6ikorysm/jhDSuMEDP6cQQognh5zULoT4T2j8/jYSCglKPJ2s2TO+VSn06MkzuEO3AmeI3MvGH1dhbmFO6y7PPIae5Zen0/HByPG8PmMydo4Oj719IcR/g5zU/vjIlC0hxH/C2HaBWJvnPyPE2lzL2HaB9yghitK6yzOmhfCPW/LlK3Tu21uCESGE+Jd4pCMkiqI4A8uAp4CrwFuqqn5XSD4FeB949eatZcA4tZjOyAiJEOJh3LnLloeTNWPbBcqhp0IIIQolIySPz6NeQ7IIyAXcgFrAekVRjqqqGnFXvteAMKAmoAKbgVhg8SPujxBCmISFeEoAIoQQQjxhHtmULUVRbIFuwERVVW+oqrobWAP0KSR7X2COqqrxqqomAHOAlx9VX4QQQgghhBD/DI9yDUkAoFdVNeqOe0eB6oXkrX4zrbh8QgghhBBCiH+xRxmQ2AGpd91LBexLkDcVsLu5tiQfRVFeUxTloKIoB69cufLIOiuEEEIIIYQofY8yILkB3L3liQOQXoK8DsCNwha1q6r6qaqqoaqqhpYrV+6RdVYIIYQQQghR+h5lQBIFmCmKUvmOezWBuxe0c/NezRLkE0IIIYQQQvyLPbKARFXVDGAVMEVRFFtFURoDnYGvC8n+FTBaURRPRVE8gDeALx9VX4QQQgghhBD/DI/6YMQhgDVwGfgeGKyqaoSiKE0VRblxR74lwFrgOHACWH/znhBCCCGEEOI/5JGeQ6KqajLG80Xuvr8L40L2W9cq8ObNf4QQQgghhBD/UY96hEQIIYQQQgghSkwCEiGEEEIIIUSpkYBECCGEEEIIUWokIBFCCCGEEEKUGglIhBBCCCGEEKVGAhIhhBBCCCFEqZGARAghhBBCCFFqJCARQgghhBBClBoJSIQQQgghhBClRgISIYQQQgghRKmRgEQIIYQQQghRaiQgEUIIIYQQQpQaCUiEEEIIIYQQpcastDsgHq2JQ/phbm6Bmbk5AAE1gun+8mul1p/FH0yhU88X8PL1J+LwQdb98DUJ587S6ukwwl7sZ8qXknyN7z/9mOtXr6DPy6ND9+cJbdKi2DSAg7u3s3HVTygAisLrk2dg5+DIyi+X4htYhdoNmz7WZxZCCCGEECUnAcm/0KtvvIWHd8UHKqvX69FqtY+kHzGnT2LQ6/Hy9QegnHt5eg8awV97dhbIu+LLT/ELrEq78ZNJS7nOB+NHUqlaEE7OZYtMi4s+zcZVP/H65BnYOzqRmXEDcwtLANp07saC994ipEETFEV5JM8khBBCCCEeLQlI/iP+3LGNHRvXos/LQ1EUuvZ9lYDqwQC8M/AlmjzVkcjjR3At70nvgcNZ/c0XHPkzHFt7e/yrVCfmdARjZ8wFYOOqHzm4ewcAFSsF0POVQVhYWhVoc8+WjYQ2bWG6di3vCcCRfXvQ6/X58iacjaNdl54AODiVwcO7Iof37qZlp85Fpm1bu5q2nbth7+gEgI2tnalOxzLOlHF2ITriGAE1aj6Kj1EIIYQQQjxiEpD8C302Z6ZpylbYi/2oVqsO1WuHUr95KwAuXjjPoumTmLb4S1OZ9NQURr77PgBH/gzn9LHDvD37I8zMzPl09nRTvuMH/+SvPTsZM302llbWfLlwNhtX/sizvfsW6EdUxDHad3u+RH329qvEwd07qFDRj6tJlzgbdRp3jwrFpl2KP4+rhydzJ71JbnY2IQ2bmIIXAN+AKkQePyoBiRBCCCHEE0oCkn+B1YcTmLUpksSULNqkZtP8pcG82K5evjxXLibyxfwPSb2ejEajISX5GjfSUrFzcASgfvPWprxREceo3aipadSjfvPWbFmzEoDTx45Qt0lzrKxtAGjcph2rv/mCZykYkKQmX8PByalEz9C932us+OJTZo4djnM5VwJq1ERrpi02TW/Qc/H8OYZPnE6eTsfH0ybg7OJK3ZsjMw5lynA2OqqkH6UQQgghhHjMJCD5h1t9OIG3Vh0nS2ecApVnUJm/NRo7V0/CQjxN+ZbNe5/nXh1CUJ16GPR6Rr7QFZ1OZ0q3tLpjypWq3nPNhYoKd6XdK6+ZuQW6XB1W1sU/h72jE/1Gvmm6/mjqBNw8vYpNc3ZxJaRhE8zNzTE3NycotD7nzkSZAhJdrs60pkQIIYQQQjx5ZNvff7hZmyJNwcgt2To9szZF5r+XmUlZVzcAdm/ZiF6fd886A2oEcyh8F7k5ORj0eg7s/MOUVjU4hIO7d5CdlYWqqoRv/Z0qQbUKrcfTuyJJifEleo4b6WmmdSWnjh4iKSGe0MbNi02r27QFp44eQlVV9Hl5RJ04imdFX1O9lxIuUOGOayGEEEII8WSREZJ/uMSUrBLd7/byABbPfA+nsi4EVA/C2sb2nnXWrNeIuKhIZowZhpNzWSpWDiA3NweAoND6JJw/y+x33gCMi9rbde1ZeD31G3Hq6CEqVa0OGKeCLV84m+ysTAAO7PqDPsNGUyWoFnFRp1n55VI0Gg12jo4Mfmsy5hYWAEWm1W3akvMxZ5g2ajAoCtVDQk3Tz1RVJerEMTr1fKFEn6UQQgghhHj8FFVVS7sPJRYaGqoePHiwtLvxRGn8/jYSCglKPJ2s2TO+1QPXm52ViZW1DQa9nm8+WUBZV7f7frHPzLjBvEnjeHPmPFMA8Tid+Gs/h/ftoc/QUY+9bSGEEEL8symK8peqqqGl3Y//Ahkh+Ycb2y4w3xoSAGtzLWPbBT5UvV8smEXKtavocnPx9q9M62e63HcdNrZ2dOnTn2tXknC/uebjccrJzi509y8hhBBCCPHkkBGSf4E7d9nycLJmbLvAfAvahRBCCCHE/ZERksdHRkj+BcJCPCUAEUIIIYQQ/0iyy5YQQgghhBCi1EhAIoQQQgghhCg1EpAIIYQQQgghSo0EJEIIIYQQQohSIwGJEEIIIYQQotRIQCKEEEIIIYQoNRKQCCGEEEIIIUqNBCRCCCGEEEKIUiMBiRBCCCGEEKLUSEAihBBCCCGEKDUSkAghhBBCCCFKjQQkQgghhBBCiFIjAYkQQgghhBCi1EhAIoQQQgghhCg1EpAIIYQQQgghSo0EJEIIIYQQQohSIwGJEEIIIYQQotRIQCKEEEIIIYQoNRKQCCGEEEIIIUqNBCRCCCGEEEKIUiMBiRBCCCGEEKLUSEAihBBCCCGEKDUSkAghhBBCCCFKjQQkQgghhBBCiFIjAYkQQgghhBCi1EhAIoQQQgghhCg1EpAIIYQQQgghSo0EJEIIIYQQQohSIwGJEEIIIYQQotRIQCKEEEIIIYQoNRKQCCGEEEIIIUqNBCRCCCGEEEKIUiMBiRBCCCGEEKLUSEAihBBCCCGEKDUSkAghhBBCCCFKjQQkQgghhBBCiFIjAYkQQgghhBCi1EhAIoQQ4onw8cDWzO/fFINeb7p3dOsqpnetyoHfvn2gOhe+2oKr8bH57i0d3YULp/66r7LL336BmEO7HqgPJan/44Gt77v8oU0/smTE0ywe3olPhnUgfNVSVFV9pH0syk8zh3Ip9iQAZw7tZNnY7szsGcy2r+fky5eefJkfZwxm6agwlox4mohd60uUtv27+czv14Slo7uwdHQXNn023ZS28sPXSYg6+jc/oRDicTEr7Q4IIYQQt9iVKUfskd1UqtMcgGPbV+PuX73QvKrBAIqCoiiPs4tPhKNbV/HXxu/oNekzHFzcyUpP4ef3hwHQqOuAv739C6cOYdDn4e5XDQBnd286DZnKyd2/Fci7+fOZVAgMofHbn3Aj5Sqfj+2Bd/W62Du7FpkGENyqC636vFGgzoZdB/DH13N44b0v/t4HFUI8FhKQCCGK9eOat9BqzNBqzQEo7xZIg9rPFVlm/dbZBFV5Cm/PYHbu+wIXZx+qBbQqtG69XsfznT9EozEO2kbF7mHXn8tpWOf5QsuUVFRsOG4u/jg6uD1wHVt2/Y/0G1cBSE6Jp4yjJ4qiYG3lQOO6L/Lrpum82G3eA9d/y4nIragGPUFVnyIj8zo79i7j6vXzONq70bndO6Z8BoOB/Yd/JiHpFKpBj5dHMPVCuqMoSpFpEZFbiYrdY6on/cZVAvyb0KB2Ty4kHudc/BGa1Ovz0M/xsGq26sKxP1ZTqU5zUpLi0eVk4+pd2ZS+84ePuX7pPLnZmVy/dJ4+077G2s7xgdu7cf0Kvy1+l9TL8QA0DHuVGs2fKbLM8e2/cnDDd+jzdAC07Tcenxr1AOOoR8023Yg9vJuMlKs07PIqddr3AuBcxH42LZ2GuaU1ngE1Ubk9mmHj4AxAbnYmaxaM41pCHBqtlnLelQkbNbtAH3b++DFPD52Gg4s7ANb2TrR/bRJfvtWL+s++TOqVRL5650WqN+3EhVOH0OtyaP/aZLyq1ibuaDjbv1tAvw9+BMh3fTU+hrUfvU1ebg6qQU+tNt2p90zfAu0f3vwTNZo+bbp29qgIwOm9m/KNcAEknT1tCpLsnFxw9anMqfCN1Hv6pSLTiuJRqQZpVy9y/dIFyrh7FZlXCPHkk4BECFEirZoMwtnJ82+p28bakYRLEXh5BAEQHbcXF2efh643Oi4cK0u7hwpI2jQdYvp52fev8UzbcZibWwGYApWHlZeXw8morXTt8C4A5maWhAQ9i06XzeETa/PljYrdTUraRbq0nwAobN75MbHnD+DvU6/ItOqBrakeaJwWZDDk8f3qcfj7GF+ivTyC+OvYr6SlX8bB3vWRPNOD8qlRn782fk/WjVSO/vELQS06cynmRL48508e5JXZK7FxKHPPegbWa4yFpSUplxPY36o9zq72VA/1QqNROHXwNJZl1vLSxDpsXDoVd79q9HxrEWnXkvh8bHfc/avhUsHfVNfEbs9hZ5Nmuvav04ygFp0BuHLhDD9MfY3hn24zpet1ufT74EeuX7rA0tFhBLfsgqIo/DLnDbqNnY9X1Tqc2LmOA+u/NpXpP+tnAGIO7USXk8XAhesAyLqRWuDZxrZ/msQzcUSdnsDFuHN4BwYA4FujOqnXdYx5qhMTv11KRspVyvvXoG2/8cQd28vqeWMY8r9NRX7+B3/7loB6rWnc7TU+nzyFzBxbAOJORPDp25OIOxFB7dYtsVYiadJjsLGPGRl8+tZE4k5EkH7tMlXrVqPVzdg2KyODmNMZTOj2IlZ2TjR+ph2JUcco6+lnzGBWjsnP9cXS1glDng7XcumU9fRjw5dfc2LXfiyVRGIO7cSuTDmaPT8cz4Capr56BtTk7PF9EpAI8S8ga0iEEA9s/dbZnE84ds/rkqrs24jo2HDA+JKfl5dLGUcPU7pOl83OfV+y8rd3Wfnbuxw9uTFfm/sPr2Dd5g/4ac3bHDiyCjCOslxNPse+v37glw1TSLh0kpW/vcuVa2dNZY+f3szu/bdfCh/UwaO/8MuGqaxYN5FLV6JN9y8kHmft5g9YvXEaa35/n8tXYwstH3fhEO7lAjAzswDAwsKG8q4BmJtZFsibnBKPh3tVNBozNBotHu7ViDm7v9i0O51POIa1lQPlylY03fP1Ds03gvK4rD6cQOP3t+E7fj0XU7PZdvoyVRu15+Tu3zi1ZwPVm3YsUMa/drMig5Fbxiz9hLpNPZm7eT22ZXyo3vIVBsz9haqhVWjZ3TgKcvbYXmo/1RMAh7Ju+NZsxLkTBT+zO11PPMd3773Cp68/w+p5Y0lPTiIz7bopvVoTY5/LuHthYWVDenISVy6cwcrWAa+qdQCo0expLKxsCtTtVrEKV86fYdPSaZwK34SZuUWBPFNWfEu1YCvGLVuMrYMDc7dsYO6WDQyfn38kxczCiupNOwHgG9wQRaMh+eK5Ip/Nu1ooR7b8zLpPpnNw82aade0KgKOLC/3enUC/9yYCxrUftk4uAKxcuAgzc3Pmbd3I8yN7E3n4NJF/HTKleVUNoVOfllSvZcvmr7/BrmxltFozrl28xOE9Z2jUvjZBIbY0aleFgNr10WrNaPvC88ScOEf/2b8wYN6v1Hu6Lz/PHJovQLMt40L6taQin0cI8c8gAYkQokS27V7MLxum8MuGKcRfjHikdZd3CyQ5JZ6c3Ayi48Kp7NsgX/rhiPWoqkrXDpN5pu04zsTt5ULicVP6jcxkOrUZS1j7CUTG7CI1PYkAv8a4OPvQoM7zdOkwCU/3alSr3JJT0dsBUFWV09E7qFq5xUP1PSc3A1cXf7p0mEitGk+bAqK09MscPrGedi1GENZ+Ak3rv8S2PUsKrePS5SjKlfUtUXsuZbw5n3AUXV4OurwczsUf4UbGtWLT7hQVu4cAv8b57rm6+JGYdPp+Hv2hrT6cwFurjpOQkoUK6A0q87dEk+TWkJ0/fEQ5r8rY2BcMPAp7kS+KLjeX3Jwc7ByNU7uij19k9eLlAFy+mM2sgSNYVbwgTAAAIABJREFUMHwUY9o9zfUrqVxJvMy4Tp05uDuRZZNmkJuTY6rr2sVLTOnVm90bIzl1QkcZn9YoGi27flljKjOz33CO7TIGdxqNlsiDh5nedwjhm8+wbOK7vFa3MedOR6ICl86dZ+oLfRnb4VlGtWnP4Z37GfjRenyC6hN7ZDefvdEVvS433/NY2zni4FKepLhT+e5fPhfFzUb5avpsjv2Vxui2HYiPPmO8r6rsXf87C0ZOYuf640zq0YuEMzHk6W4/X7UmHekz9WtiT16gTFkt6xcZpws6u7sRUDsEcwtjgGRmYUlerrHc2ZOnCGnRDEVRMLc0x9PXk52rfjWl1X3qKbqMnsPgj9bSqHM3zpyIo2wFfzYu/5qWPbrTd+oSBsxbTe+JizEYcihbwR8zc3NCWrZg73rjlw/+tZti6+TC1Qsxpr7m5eZiZlEwaBdC/PNIQCKEKFT+b66zwKUrXTpMokuHSVQoX/gi4wen4OsdSuy5A8SeO4DfzalEtyReOkVgpSYoioKFuTV+PvVIvHT75dnXqw6KosHCwgYnx/Kkp18ptJXKvg1IuBRBTk4GCRcjsLayp2yZh5vuYW5mibdnMACuZX1Jv2FsO/7SSdJvXGH9lln8smEK28M/Q1UNZGWlFagjI/M61lYOJWqvsl8j3F0DWLf5AzZtX0g554poNNpi027JzEohMek0lXzr57tvY+VIRuZ1HqdZmyLJ0uVfb5CTp2fB/nSa9x5pmhL0oGYPGMyBXQmM6dAdN28varVoViCPSwV/Tu8/yHNvjGTy95+TkhjBxm/W0b5vH0KbeNCyRxgxR26P+i0YPhIbW4X3fvyCeVs34uZhhSFPR1DjBry/bjWhTTwYMH0CC0caF2Ib9CpLJ05j4PszqNPYDXdvN64mJBBzaCe5WRl8NnE6/d6dyKwNa5ixegUrF3zMxbizVGnQlrb93+JG8mWyM9IL9LtpzyHsXrEYVTUAkJWewsZPpxDU7Gnio87QotuzVAuyoFJwZX6e/xFnj//J9auZHN39JxO++YwatR3o2K8PH49+k5O7N5jqTU48i72zK9eS0mjarTeJ0ccLtA3g6l2Z5MQ4APyDgghf9xt5Oh1ZGVmcjzrPlfgEU9qu1b+Sm51F2rVkDmzaRMrVZKo36ciFqGjSr19jUvfneaNtR+YPGcyV87FUvznC5B1YyRTYXYyJIP3aJdNaFYBr8TG4VaxS4r8HIcSTS9aQCCEKuPXN9a2XRb1BZcGWKMwsXQkLub2ORKNoTC9EAHq97oHbrOzXiLW/z8TdNQArS7u7UlUU7tpJ6Y7LW4vtARRFg+GOPt3JzMwSP596RMXu4eLlKKpWbvnA/b1Fo7n9n1FF0WAw3HzBVlUqlK9O84b9i61DqzUv8WenKBpCg8MIDQ4D4NjJjTg5lC827ZbouL14eQRhZWmf775er8NMW3B60N8pMSXrnvdvTaMqibUfvU3VRu04oanErE2RJKZkEZyaTdj775O+fiI93lrMsnc/YO3SZTwz4JV8ZYOaP8vZyHjWLhgBQJMewwkfPIHm3bty/PeP8QuqhneVQABysrI5ffAQby2dwY8zBuNQ1h2fGvWwtLHn8oV4lk6YRvShBM5ETyXl8hWuX75MZoYOC0tLgpo0xqHMbOOidgstyRfPobVw5mLceeYOHm7qT05WBl9PHop7BSdUg56mzw3D1qlsgWeu1aY7Vy8mEf77XBYP74TBkEdwyy44ugez9/eDeFcJwNbJBQdHc/5YuQk7i7OU8arPkV37mNF3MDdS9BwdPRK9XqFt94amqVwRu3/j5J7fiD0ajYNtMl1en1joZx7YoC0xh3fjVbUOXYcN5uNRr9OvRjXMzMDSWsvZY+HEHdtL12GDWThiKK/WqoWFpRkOzvY4lQ/BzMISQ56eE+HhVArU4u5mzsnD+6ndpqNp1CPu8DYi9vzF0lFhaM0t6DxyFraONxf/Z2VwLfGsaTMBIcQ/mwQkQogCCvvmOjvPwKxNkfkCEnu7clxNPodPhVpcT00k+fqFB27Twa4cdYLDCp265OFejciY3bi6+KPLyyH2/AHq1+pebJ0W5lbk6vK/9Far3JL1W2ehqgZaNxlkun/gyCpsbZwealevO3mWr8bhE+u4nppoWg9z5drZfOs2bnF2qkBq+qUS1Zun12HQ67CwsOFGxjVOndlheo6i0m6Jjg2nfu2CL/spaRdxLlPhPp/y4Xg4WZNwR1Dyg59xepCnk3W+fM8Mn2n6udnzwwrU88zwGQWC6LybQfS7Q7+lvL8noW1acXDLNp4Z8Aq12z1HdkYmAJa29lQMqsuAeZ8AkJmejqJMAGDEZ9tNbbR+aQy+tYxTCYNbhhHS9vbfX/NeIxjcsBkvT3qHyT98jcFgoJd/FXQ5OfSa/BmzBw4FwKd6PV6bv4Zdm4Kp26kP9Z5+ibgXXmbultsjFPcjuMWzWNl+xqCPbp/dcSJ8LxaWt6cxhbTtwbG90QyY9yvLp8yg9XM96fXm6HvW2bTnEJr2HEJkmw48PXQafrXqFJovpG0Pvp7QhybdB2FpY80bSz41pS15awL2Tk74BjcEYOxnnxdIAyhXwZNKtYLpOfp1APasWcf2FatMeUM7vcTlJJUB874p0P6x7aup2bqbTNkS4l9CpmwJIQoo6pvrOwVXa8+FxOP8umk6x0/9jnMZ74dqt0qlZoVOoQqp3glQWbXhPdZufp9KFRtQwaNGsfUF+jfjyIl1/LJhKgmXjAe42du54GjvTmW/xmi1t7+TSU6Nx9rqwbePvZujvRvNG/Zn15/L+WXDFFasn8TpMzsLzetTIYT4iydN1waDge9Xv8m2PUtITonn+9Vvcuj4GgB0uVms2fw+K9dPZtP2hdSt2dW0I1lRaQBJV86gy8vB073glLv4ixFUrFD7kT1/SYxtF4i1ef4pZdbmWsa2C7zvuooKog0GAxF7/8TDr/h1Ojb29ngHBrLrF+MaiOjDRzh/OtLYN1tbqoTWZu2ny0z5064lA5CRloart/Fvd+v3P6LLMa77qFDJn5zMTE7tPwjA/o2/k5FqnLbn6e+HpbVVvpfw+OgzZKYbp2gtGDGafRtub+DwsEKfas32FSu5mngRAL1eT8yxwqdk+VStQkJM4ZswAFjZOtDqpbGkXE4gMz2dnKxswLhm5M8Nm2jf17jNVlFpTbt05viecHS5uaiqypHtO6lYraqpjfjoM/mu76Q1M6dh2CuFpgkh/nlkhEQIUcDd31x/dOopoOA31w525QhrP6HQOjq1HmP6uVmDfvds67lnZxZ6/84y5uZWbE69xrWcPP7XZRoA605tpfOXr3Js1Ca83Y3bnj7zxSuEVX+K6tbOuL5Xm8uTD5nWd9ySq8siJS2RZg1eNt1TVQM5OTeo6BVyz34CvNLr9rfA/X4aQ2iFIIbecQbJlO1LsHO4HQBUKF+9ROttXJy9sTC34mryeVycvdFoNPQK+7DQvNbWDnTvNMV0vT1mH5XH+fJGswF82OltU1qrJc+zY+dXpE45gZ2lcetWt3KVCq134oYPCTJk0Ljui4W2+cner1m871s0ikJOXi6dqrRi1tPvFJr3li8PrmD9qa383OcTtsfs4831M9g/Yk2+PLdG225Ns/JwsmZsu8B8o3AldfT6fBzoiIXiRZYaQXjLNNIdZqA7YMfIlm54Vwmk56jXSUxLYnbqGq7o0pg9ZzthNnW5tXrnUvoVXvn5Tc62zOTLnW/htX4q/Z3bULl2CFdyUnj2y1eIq3+NT2M+Ykm3L6mS6kjTsM7s8bmG/+ud+aD/azi7u1O9YX3syxgX45tbWjJq0QKWjH8HS2srgho3wqmcC7b29mjNzHhr+TI+nzyFXz/5FINej2M5F8YsXgRA7LHjdOxf8AyQknAu78PIz3dxInyv6V71BvXpPX4sM19+FYNBT16ujkZPd8I/OKhA+fod2xG+Zj2tnusBwOULF3g7rAe5WVnkZufwap0GPP/GKNqENCHuRASzBw1Dq9Uan/fjBTi7G7faTjp3/p5pVerWoXarlrzRtiMarRa/oOp0GzHU1IcjO3bywrgxBfoGENK25FP6hBBPPglIhBAFjG0XmG/6Czz4N9ePSnO/Brz+67um652xf1LfqxY7YvdR3T0AvUHPnrMHWPDs5HvWcSp6B0ci1lMjsC22Nrd3b1IUDc8+9fbf2f17ytPnYaY1o2FoL9LSL+e7V1KB5fz4NWIzMzuMQ6vREpd8gczcwke5CjNj+ydEj1ibb8TolgMXjjJ/1+f8OfxXnKwd0Bv0RCRFlbju4oSFeD5QAHKnPWcPYmkGFnrjCIUZ5dCWGYvKX+RWN2PhlP+Z8r7yzdt0b9WD8S2HkJR+hXofdWbvnF8AmL71I4LLV2F9/y/Q6XU0XtQNj1atGFbjQ577ZiiNfOqw5uVlpnLLhi3Hw8GNRulXaL2kFyf27TKdGv/C+LGmNv2CajB/m/H8j+N7wtm56lecyxsPNPTw82XC1wVPG0+/nkIZNzcq16pZIO0WVy8vlkccznevRqOGzNq49p7XzbuG0bxrWLGfad2n2vLzvI9ITrqMs5srrl5efPbXvkLz+taozqLdf9x3GkCXoYPoMnRQgfvx0Wcw6PUEhhY+ZUwI8e8iU7aEEAWEhXgys2sQnk7WKBhHRmZ2DXroF8eH0bhiKHHXL5B0cwetnbF/8nbrYWyPNb4kHU6MwMHSHr+yt6eNTdg4izoLOlF1Vit2xx2gauXm9Ar7kAuKOU3/1526C5+h8aKu7DtnfKnbHrOP2vM7Mmjl29Sa156Q+R04lXTmgfp7/OJpmn/Sg9AFT1NjTlsW7Lo9j77fT2MY8etkOizrS8NFXQBwntaAH6PDabXkeaZsWUDw3HYcuHDUVGbezs8YuPKtQtuys7ClgU8Im6KMU8KWH1xBnzpd8+WJvBJDx2UvU/+jzoTM78AXB4wH8Q1bbVy03PWnMdSe35GUu3YBi0+9hKOVPXYWxq12tRotweWN02jy9Hm0/+wl6i18lqA5T9H/p7Hk5uXfovZuQ3+ZyJwdt0eaDidEUHVWK1RVLaJU0Zb++T19Q7uYpn+ZK65YKBUw12ip5+ecL++xi6doF9AcADf7ctRwD2TFsd8AUBSF9JwbqKpKdl4OufpcPOzdii3nbl8OT0d309/i3fau38CoNu0Z2aodX017n1H/W4hGU/T/fu3LOPHujwXXTjwuWq2WQR/O4PL5B18X9jCuJl5k4PvTS6VtIcTjJyMkQohCPYpvrh8la3Mr6lYIZnvsn3Ss0oKM3Cw6BLbgjbXGKVw7YvbRwv/2+SXXMq/TwKc209qP5dvDq3lrwwfsGrKCmGvnmL71Iza8shwHK3siLkXR6fN+nH3buL1oRFI0y3rMYnG3GczY9jHTt33MN73mF9qnD/5YzLL9P5quE9MuM7ihcdpTRecK/D7gGyzNLLmRk0GDj8N4KqAZVd0qAbDv3GH+GPQDtha3z9QwqCrbBv4AgIejO5/s/Ya6XjVRVZXF+77lpxcX3fPz6VunO5/++R0dAlvw07F17Bq8ghE3R5Ty9Hm8+P1Ivn5+PlVc/UnPuUG9hc/S0Kc2H4dN5ZO937B7yErT1K47PRXQlFnbF+P7fhOa+dWnuV99Xgzpgo2FNVqNlm97LaCsbRlUVeXln97g84M/M6jBC/fs57BGfem8/FVGNxuAoigsCv+KwQ37mEYWHsSO2H1sHjCcZhXN803/8izvir9r/jNLalcI4oeja6jlUY3Y5PP8ef4wVcoZT2Wf1OZ1enw9GI9pdbmRk8nrTfrRwCek2HIADX1qs+3MHlr6NyzQv1bP9TBNffonKWp05u9Wq3nTUmtbCPH4SUAihHiirT6cYHrJ1FuW58v9W3GwtKNxxVC0Gi2VXCoScSmK7bF/0rVGe1M5Owtbnq7aGoAG3iGMXWf8tvX3qJ3EXDtPi8XPmfLmGfJMIy+B5fwI8TSu+6jvHcK6k1vv2bdxLQcxtNHtOf632gDIzM1iyPoJHLt4Go2ikJiWxNGLp0wBSbegDvmCEYCX6nS7/XPtrkzbspDkzBT2XziKm70LNT2q3bMvLf0bMmz1RFZH/E51twDK2t6ekhZ1NY5Tl8/Q+7s7tpfV53Lq8hmquPoXVp2JrYUNe4au4mD8MXbHHeDz/T/yyd6v+XPYr2g1WubsXMrGyO3oVQPXM1OxMbcusr6qbpXwdfZiY+QOGniHsPbUFuYUsx6lOAlpSbjZu1ApxC5fED1x0yHyDPkXus97ZiKj1k6l9oKO+JSpQEv/hpjfnKr209F11PYMYutr35OWc4MOy16izolgutRoV2Q5MI6S7L9jREsIIUTJSUAihHhi3b2Va252Rbaf+Rkbc1u61TQe7NfMtx5/xISz5+wBPur8nqmspdntMzW0itb0YqqqKu0Cm7H8ubkF2jt1OQYrM8tCy92vdzbOxt2uHF+MmI2Z1ox2n/UhO+/2idh2lgVPG7e7I0CxsbCmV61n+fLgz2yP3cfghn2KbE9RFHoEd2Lgyrf4vOesfGmqquJi48yhkb890LMoikJdr5rU9arJ0EYv4T41lBNJUUQkRbHn7AF2DP4Je0s7Zm5bRNTVuGLrG974ZT7Z9zWnLkfTpXo7HK1LdijkvViZWZKty8G+wPk1BbnaufBtrwWm63af9aGKqzFI/Dh8Od/0WoBGo8HJ2oFnqrVhR+w+utRoV2Q5gGxdDtbmVg/1HEII8V8la0iEEE+su7dytcQPHdfYGLnZND2rqW89Pg5fjpO1AxWdiz9Ho21AUzZF7iTi0u2F2Qf+hm+2U7LT8HLywExrxolLkeyOO3DfdQxp9BILdn/BofgTdLtj9OdeXqvfm7HNX6P9zbUOtwSW88PGwoqvD93eXvb05RjSso3by9pb2pGaXfA08Fv5TlyKNF1HXoklV6+jgqM7qVlplLV1NpbPSuP7I2sKreNuHQNbEnUllnm7lpmmuD2MIPdAIq/ce4vaO13LuE6ePg8wjpZFXo7l+ZrPAFCxjBebIncAkJOXw7Yz4VR3Cyi2HMCpy2dMa2uEEELcHxkhEUI8se4+90RRzLFQfcgzpOLhYFxsXNcrmITUJLoHdyxRnZVdfPnq+bkMWDGOrLxscvN0NKpYh7pej3a+/DuthtH3x9F8e3g1fs7eNPW9/xOlfZ29CCznR33vWliYFX+KuqejO2NbFNyxyExrxq8vf8aotVOZs+NT9AYDbvYu/PDCxwCMbvoqbT7tjbW5FdsG/oDTHSMWmbosRq+dwuUb17Ays0Sr0fLV8/NwtXOhT+2urDm5haA5T+Hh6EYT37pk6bKL7adGo+GlOt3YGLkj3zS0/4V/xbXMFCa2GcGFlES6fTXItFVw/5/G0j24Ix2rtCxQX5ca7fg9aidNfOsCxs0JXvphFGk5NwD49tBqvnhuNq0rNWbv+UO8sXYaWo0GV7uyrOn3GVbmxlGxBZ0nM2TVBH44upY8fR5tKjehf13j9rJFlVNVle2x+3j3qVHFPrsQQoiClIfZ2eRxCw0NVQ8ePFja3RBCPCaN39+W7zyUWzydrNkz/tGcqP4kS8tOp9rsNuwbtpoKTuVLuzuP1FNLX2RA/V70CO700HWlZKXRYnFP9g371RQkPE7rT21j5fENBabKCSH+2RRF+UtV1dDS7sd/gUzZEkI8sR7lSd7/NIv3fUuNOU8xutmr/6pg5GD8MSp/0BxHK3u61ejwSOp0snbgg45vcfZ6/COp737dyM1kRoc3S6VtIYT4N5AREiHEE+3OXbYe5iRvIYQQ4n7ICMnjI2tIhBBPtCftPBQhhBBCPFoyZUsIIYQQQghRaiQgEUIIIYQQQpQaCUiEEEIIIYQQpUYCEiGEEEIIIUSpkYBECCGEEEIIUWokIBFCCCGEEEKUGglIhBBCCCGEEKVGAhIhhBBCCCFEqZGARAghhBBCCFFqJCARQgghhBBClBoJSIQQQgghhBClRgISIYQQQgghRKl5JAGJoijOiqL8oihKhqIo5xRF6V1E3rGKopxQFCVdUZQ4RVHGPoo+CCGEEEIIIf55zB5RPYuAXMANqAWsVxTlqKqqEYXkVYCXgGOAP/C7oigXVFX94RH1RQgh/t/enYdHVd1/HH+fmUwWspINCBDCGiDsBBACsrgQxAVx36rV2talWm2p2FatS9XCz5XWtUVb9w0BlX1VCIpAQEH2nQQSSIDsy8zc3x8ThgBJSDBkAnxezzPPk7nnzj3f++VyM9+cc+8VERGRM8TPHiExxgQDVwGPWJZVYFnWEmA6cEtV61uWNcGyrFWWZTkty9oITANSfm4cIiIiIiJy5qmPKVudAJdlWZsqLVsDJJ3sg8YYAwwBqhpJERERERGRs1x9FCQhwOHjlh0GQmvx2b9VxPBWdSsYY35tjFlhjFmxf//+Uw5SREREREQan5MWJMaYRcYYq5rXEqAACDvuY2FA/km2ey+ea0lGW5ZVWt16lmW9YVlWsmVZyTExMSffIxEREREROWOc9KJ2y7KG1dRecQ2JnzGmo2VZmysW96SGaVjGmNuB8cD5lmXtqX24IiIiIiJyNvnZU7YsyyoEpgBPGGOCjTEpwBXAO1Wtb4y5CXgauMiyrG0/t38RERERETlz1deDEe8GgoBs4APgriO3/DXGDDHGFFRa9ykgCvjeGFNQ8XqtnuIQEREREZEzSL08h8SyrFxgTDVt3+C58P3I+7b10aeIiIiIiJz56muEREREREREpM5UkIiIiIiIiM+oIBEREREREZ9RQSIiIiIiIj6jgkRERERERHxGBYmIiIiIiPiMChIREREREfEZFSQiIiIiIuIzKkhERERERMRnVJCIiIiIiIjPqCA5Q2Rsnc6iTy5g4ccjmP9BCivm/vakn5nzbjJ5OeurbFv21Y0UHt5R5ziWTLuSfTvmnPBzXRTl7WLJtCvr9Jnq9qU2+7Hh+4m4XWXVtluWm28+v4zigkwAdm/6lIUfDWP6a3Fs+/E/x6ybf3ALS6eNZeFHw1j40TCydy+uVdvGlS+w8KNh3n/DjC1TvW3fz7mT3H3f17gPIiIiImcrP18HICdXUpjFD1+PZ9g1cwkKaYllWeTlrPtZ2xw4+v16iq5u3G5nvW6vNvuxccX/0aHX3djs/lW2Z26dTmhkIkEhcQCERyXR96LX2Zw+6YR10xfeT9uk22ideA0Fh7axdPpYLrghDT9Hkxrb2nW7g8S+DwBQXLiPBR+kENN6GP4BEXTq83t+XPIXBo+ZekJ/IiIiImc7FSRngJKibIzND0dAUwCMMYRHd/O25+77nnXLnsBZXgBA0sDHiG09DPCMrKxe/AdKirLp0PMu2nW/A/CMOJw36h3CorqwZNqVNI3pRW7WCkoK9xHX4XKSznsEgLzcjaQvvB/L7SS0aSfczpIqYywvy2ft0kfJy/0Jt7OU6JYpdBv0BMZmZ8m0K4lslszB7FXY7YH0HDoB/4AIwDOqkL7wPlzOYiy3i/jO19Oh1921zk3l/djw/f+RseVzbPYAjDGkXD6Fn757BoBvpowGY2PwFZ/jCAg/Zhs7fnqHxOQ/eN+HRXWpyPOJA4h5OeuIjR8OQEhEO/wDIsjetYC49pfW2OYICPNuw1VeCMaA5QYgPDqJ0uIDFBzaRkhEu1rvu4iIiMjZQAXJGSA8Oommsb2Z+25fouIGEdW8P60Tr8E/MJKykoMsn/VL+qe+RWTzflhuF+Xl+d7PupzFnD92BkV5u1jw0VDiO1+PnyP4hD6KCvYweMw0nGUFzHt/AG0630RIRDtWzb+Xdt1/RXzn68jdt4Jvpl5WZYxrlz5KdNwgeg9/Actys3LeXezc8D4JXW8BID93AwMv/QibzXPI9U99C4Ad696iWfyFJCY/CEBZ6aFTylFZ6SG2rHmFUbetw+4XRHlZAXa/QHqe/yw71r3FkLFfVbnfblc5uftW0DS2d636iYjpyZ7NU2jf49cc2r+GgkNbKSrYc9I2gO3r/su2H96guCCD3sNfxD8w0tsW2bwv+zO+UUEiIiIi5xwVJI3Y1PQMJs7eSOahYuIibmXckNuJDt/Kvu0z2bLmFYZfu4jcrBWENu1EZPN+ABib3Tv6ANCywxgAmoTF4wiIoLggk9CmHU/oq2X7yzHGhiMgjJCIjhTm7SCgSQz5uRtonXgNAJHNkwmL7FJlrPt2zOZQdjpb1rwKeAqhoOC4o9vvONZbjFQW1WIg65b9Dbe7jOi4FKJbDj6lXDkcoYREdGDlvHuIjR9O8zYX4/APOennykpysdkd2P2CatVP7xEvsXbpo+za8KEn7y36e/erpjaAtkm30jbpVvJyfmLlvLuJaXW+tygJCIqlpOIaFhEREZFziQqSRmpqegYPT/mR4nIXABmHinl4lp1nxo5kzGW3M//DIRzITMNmc9S4Hbs9wPuzsdmxqrmGw1bdesbUOub+o94mOCyhyraqRicA4tpfStPmyezfvYjN6ZPYteED+l74Sq37PMLY7Jw/dga5+5ZzYM8SFn16EQMv/YDwqKQaP2f3C8TtLK11P8FhCQwY9T/v+/kfDiGkosCrqa2ysKiuBAY350BGGnHtLwXA7SrFEdi01nGIiIiInC10l61GauLsjd5iJNx+kAT/LRSXuzzLCzIpK86hSWg8kc37kX9wk/cuTZbbdcrTno7n8A8lNLIzezZPAeBg1irycqu+a1fzhIvZvGoSltsTc2lxDoV5O0/aR8Hh7QQ2iSW+8/UkJv+Rg9nppxRreVkBZcU5RMcNonP/PxEW2Zn8nA0A+DlCKC/Nq/JzjoBwAprEUJS3q1b9lBbtx7IsAHZt+BC73Z+YlueftC3/4CbvNgrzdnL4wI+ERnbyLss/uPmkxZOIiIjI2UgjJI1U5qFi7882XIyKmEZTvwM4LX++/SqELv3HExHTHfBcj7E27TFc5UVgbCQNeozYVkPrJY4+IyaRvvB+tq7gnqkOAAAgAElEQVR5jYiYHkQ261vlet1SnuKnZU+w8OPhYAw2ewDdU54kOKxNzfu5ZRp7Nk/BZncAhu4pT1W7btoX12AqTYEaft0i78/OsjyWz74dt7MEy3ITHtODFu1GA9C+510snX4Vdr/AKi9qb9F2FNm7F5GQ9AsA9myewrplT1Beeoh922exOX0SAy/9iLDIRPbtmM3m1f8EDMFhCfQf+RamYhSpprYN308kP3cjxuaHMXa6D/47oU09BYmzvJD8gxtPebqaiIiIyJnMHPmL7pkgOTnZWrFiha/DaBApzy4go1JRckTLiCCWjh/hg4jOXoV5O1k597cMGTvDW0A0pB3r/kdxYSZd+o9v8L5FRESkasaYlZZlJfs6jnOBpmw1UuNGJhLksB+zLMhhZ9zIRB9FdPYKDmtD+153UVKU5ZP+jbHRsffvfNK3iIiIiK9pylYjNaZ3S4BKd9kKYtzIRO9yqV8t21/us77bdL3ZZ32LiIiI+JoKkkZsTO+WKkBERERE5KymKVsiIiIiIuIzKkhERERERMRnVJCIiIiIiIjPqCARERERERGfUUEiIiIiIiI+o4JERERERER8RgWJiIiIiIj4jAoSERERERHxGRUkIiIiIiLiMypIRERERETEZ1SQiIiIiIiIz6ggERERERERn1FBIiIiIiIiPqOCREREREREfMbP1wGIiDRGd0yajsPPjr+f3bvsL9cMpllEiPf9R0vWsXT9bgD25hYQHhxAkwAHAI9cO4SY8OAqt+22LD78ei3XDUnCbvP8Xei5qcvo2jqGUX07nHLMmbn53P3aDOJjwr3LIoIDeeLGYTV+bu7qbSTFxxAXGXrKfR9x35uzACh3utl3sIDWMWEAJLaM4p5L+v3s7dfVqq17cdhtdE9oVu06U7/bSICf/aS5f+bTJfTrGMeFPdtV2f7Y+4u4/aLetIkJ57tNGbz/9Vp2ZR/mmpQu3Di0u3e9/YcL+deMFeTkF+Nyu7lpaHdSurQG4EBeES9/uZyDBSU4XW76dmjB7Rf2wmYM/1uwhmUbM/CzGxx+dn45oqd3v5746GtuHtqdds2b1jFDIiK+p4JERKQaD1+VQpvYiGrbrxucxHWDkzzr/m8+Vw7sTP+OLU+6Xcuy+OCbdVyd0hV7PY9ThwYF8PKdqXX6zNzV24gMDaqyILEsC7dleQunkznS9+4DeTzy3sI6x3KkTwuwGeNd5nK7ax1DZenb9xHk8Ku2IHG53YwZkFjn7R5vzfZ9BPj70aaiGGwZFcrvLxvAvDXbTlj3tVkr6dWuOWMGJJKTX8yDk+fQLT6G8OBA3v96LZ1bRnHj0O6UO108OHkOq7buJblDHF3jY7j+/G74+9nZsOcAT3z0Ne88MAa7zcZVA7vwzqIfeOz6oT97X0REGpoKEhGRBvbqzJUA/GHyXIyBZ39xAQDbsw/x53cWcCCviK6tY7j/sv4YYygsKePNOensOnCYcqeLnm2be/9qXlvzVm9j9uqt3r7++u5ChnVP8PSbdYjXZq4gKMDBry7qzd6DBXy7cQ/BAf7szsnjwcsHsGLLXpas343L7cbfz849l/SjbbPqi7XqzFy5hblrtuFyW4QF+XPPJf1o3jSEL7/fxOrtWfj72cnIyeOhq1KY+HkafdvHsX73fkKC/Hn46sGkbdjNlGUbcLo8cfwmtS/tmzdle9YhJn21nHKnG7dlcUnfDnRoEcnCH3ZgjOHbTRlc2LMdPRNiefzDrxnarQ3rdu0ntU97tmcfIsjhx41Du7MpM4d/z0mn1Omi3Onisn6dajVqNSt9K0OT2njft4ryjAzZbCf+G23POsRtF/QEICo0iFaRoaRt2MOovh0wQFGZE8uyKHW6cLosmoYEAZDcIc67jQ4tIikuc1Jc5iQk0J+k+Bien3aYnLwiosKa1PnfRUTEl1SQiIhUmJqewcTZG8k8VEyXkBL+8t5iIkMCALDbDC/cMbJe+rlrVF9mp2/ludsvOmZK2K79h3myYnrV796cxY87s+mR0Iw35qyiT7sW/P7yAbgtiwlT0liwZjsX9jpx6lB+cal32hRAl1bR3DUqmQt7tePHXdm8s/AH/Ox2IkODGNm7PQDz12znuiFJ9G3fAoC9BwtYt2s/k36d6p2iFhESxFWDugCwcuteXp25ggm3XVin/V65dS9rdmQx4dYL8bPbWPLTLl6ZucI7pexIn9GVvlBn5ubz5M3DsRnDzuxDTP9uE0/dPJxAhx+bMnOYOCWN1+4ezRfLN3J+UhvvaEdBcRkhQf4M75HgLTYAdmYfYn9FwXfrCE9R8J956d7+WkaG8vQtI/Cz2ygsKeP3/55Nn/bNj5mqV5W1O7O548LetcpDhxaRLF67i5uHdWdPTh6b9+aS2DIKgJuH9eDpT7/hFy9Oo6i0nGtSutC+imlYs9O3khgXRUigv3dZx7goftiZzfCKQlNE5EyhgkREBE8x8vCUHykudwHgclv8eNCPx4d1Z0zvk0/Dqg8DE1vhqChQ2jdryt6DBfRIaMb3mzPZtu8gny1bD0BpuYsWTav+glzTlK27UpP5/X9mgwXP33FxjbEkxcce8yV8U0YOn6b9REFJOQbIOlRY5/37blMGGzNyeHDyHMAzNcvpsrztPRJijylGAIZ1b+MdCVqxZS8Zufn86e153vaisnKKy8rp1iaWD79ZR2FJGT0TmtGtTWy1cYQG+dOvY1yVbUWl5fxzxvfs2p+H3WY4XFTKzv2HayxInC43hwpLiQgOPHkSgN+k9uXfc1fxuzdm0aJpCD0SmmGvmLu3eO0OusXHMuHWHhSUlPHX9xbRoUXkMaMjK7fuZcqy9Tx9y4hjtts0JJADeUW1ikFEpDFRQSIiAkycvdFbjBxR4nQxcfbGBitIKo+W2GwGt9vzZd1tWTxy3fnEVnORfG3lFhRTWu7CAMVlTu8F+FUJ8j/666G03MmEKWn849YLaNe8KdmHC7nzn18Cnr/Uf7ViMwDXDOrKkKT46gOw4NLkjt6RluMF+p/4KynIcXSZBQzs3Iq7RyWfsN6IHm3p1iaW1dv28d7iH2kVHVbtRfRBVfRzxOT5q2kVFcYfxwzEbrMx7u25lDvd1e8TntEzP5uNMqcLv1pcFBQVGsRDY1O878f/dz6toz1TvL74fhOPXT8UYwyhQQH069CCtTuzvQXJDzuy+NdX3/PYDUNPKJLKnS4CHHZERM40uu2viAiQeai4Tst/DrvNRoDDTmFJea3WH9CxJZ+mrcfl9nwxPlxYwr6DBXXqs9zpYsKUNH51UW+uG5zExM/TvNtrEuCgqIZYypwu3JblHb2YsXKLt21k7/a8fGcqL9+ZWnMxAvTvFMfc1ds4WFACeC4o37rvYK33IblDC77duIfM3HzAM8KyKTMH8EztiglrwsW923NNSlc2ZeZ69s3fQWFp7fIMUFhSTkxYE+w2G5syc9hcsZ2aGGOIjwkjIye/Vn0cLir15n755gwO5BcxsHMrAJpFhLBq617Ak/cfdmR775q2blc2L0z/jkeuG+K9eL6y3QfyaFvDTRhERBorjZCIiABxEUFkHFd8xAeW4Gezea/J+N3o/nSMi+RvHyzmpqHd6RgXWeM2X5z+HYO7tj5mus0RYwZ05uH/zcffYfdeaF6d36T2ZfK81dz35mwM4PCz8+uL+9C8imlbx19DcuTal//MW02nllHe28v+sDOL9xev5ZbhPUjt056356/hk7Sf+NVFJ14HERoUwPVDknjgP7OJCQ+mT7vmNcZbneQOceTmF/PYB4uwLE9BMrx7QpXXSFQlITaCey7px8TPl+F0uXG63PRq14xOcVHMX7OdZRv34LDbsNkMd1zYC4DBXeOZMGUp9705y3tRe01uPL8bL32xnNnpW4mLDKVzq+haxTawcytWbdvrPSZWbd3Ly18up6iiGJqzehvjrhxEUnwMa3dm898Fa7AZQ2RoEI9dfz4Ou2dk465RfXllxgrm/7Adp8siuUML780H/vnVCpwuFy9M/87b78NXpdAiMpSC4jL2Hy6iS+uYWsUrItKYGMuyTr5WI5GcnGytWLHC12GIyFno+GtIAIIcdp4Z23DXkMiZ63BRKY+8t5Dnb7+4VtO26tvn327A5ba4uprpcCJSd8aYlZZlnThHVOqdRkhERMBbdBy5y1ZcRBDjRiaqGJFaCW8SwC3DepB9uLBeHjBZV4EOPy7s2bbB+xURqQ8aIREREREROY5GSBqOLmqXRm/ar/vw5b0DmfHAMKbf1Y/FT9/C/g3LT0s/h3auP2F51tqlvH9lDOlv/+2Y5fP+egXvXxlDeXHdLi6uTv7ebXx8QwJulxPwXLD72a1djul3V9p05v750pNuq3Jc1e3X5llvs2H6a/USe2UrJ/+VXWnTATi4/UfmPHwJH10XzzcTfnnMeuXFBaS9dA9f3X8+X947kPVT/1Wrtm0LPuCTm9oz44FhzHhgGF8/e6u3Lf2/j7Pjmyn1vk8iIiJy+mjKlpwRBo+bTEQbz9zo3cu+ZNGTNzD8sY+J7tS3QfoPa9mB3ctn0POWR7DZ7RRk7cRZWr93Xwpt0Q7/4HByt64hulNfDu/eSHBsa7J/WuZdJ2vtUpp1G1wv/XVMva1etlNZ0YFM9q35mj6/fBKAgPAY+vzySQ5uX8u+NYuOWXfdZy9i93NwyYuLcZUWMefh0cR0GUB0YnKNbQDNe57PkD+9dUL/Xcbcw9w/X0qblDEYm/7eIiIiciZQQSJnnNYDLyVn8yrWT/0XQ/40GVd5GT+89zRZ69JwO8uIaNOVfr+ZgCMohB1ff8bGL9/A7SwDoPdtj9O8x/kAZP+0jO9ffwi7fyDRiX2xqH76ol9gMGGtE9m7egEt+17EtgUf0nb4teRuOfqE51VvP0b2ujTcznICQiM5796XCI5tTUH2Lmb/8SI6XPwLMlfNw1lazIB7XiS263kn9BPbLYXstUuJ7tSX7HVptD5vNLuWTqW8KB9Hk1Cy16bR91dPA7B+2ivsXPI5lsuJzRFI/99OoGnb7jXmbv20V8hcOY8hD73Nhi9ew1lSSJ/bHmfbgg/Y8fUU/EPCObxrA47gMIb86S2CmjbDVV7GijfHk712KYHh0US07UbJoWxvQTB9cBL2gADsAYEU2z23YC3M2EVIqzY0iWxOk8jm5O3ZdEIsh3aso93w6zHG4BcYTGzSQHZ8/SnRicn8NPl5zvvrqxhjWHrXL2jaPcnbVpUP24Zy1dq9BIZHE9KsDft++JoWvYadsN62T98l/YnxBLeKx11eRliHRPo9M4mAiOrvllWWd4it779Fl98+4F22/KF7SLjqRmL7p1T7uZPZ9um7RPcZQFi7jjWut3fxPNb841EASvZnYVlugmI9T1Tvdv949sz9isjufeh0629OORYAZ3ER869L5YIPZ+LXJJgNb7zE1g/fJn/HVoa8+REtLxjlXfdA+nLSnxyPs6gIe0AAyX9/ichuvU7aZrnd/PjC39n95WfYAgJpEteSoZM/A2D+9aMYMPFVQlon/Kz9EBGRM4/+hChnpKiKEQSA9VMn4QgOJXXiHC55YRFBkc356bOXAGjRazgX/2MWo55fSMof3mTZy/cC4CovZelzvyb5zmdInTiHmC4DKNq/p8Y+2w2/nu0LP8KyLHYtnUrC4LHHtHcdex+pE+dyyQuLaDPkStLfecLbVpqfS3RiP0Y9v5Bu1/6R1ZXaKmvWbRBZa5cCkL12KbFJg4hO7Ef2T8soycuhIGuH90t522HXkjpxLqOeX0jPG8ez/LVx1cZuWW5W/PthcreuYdgjH+IfHHbCOjlb0ul92+OMfnkJ4a0S2fTVvwHYMue/FB3Yw+hJSxnx+Gfkbl1zwmdTXnmX1BlphPVOYsDjrxDSqk2NuQSIbNeTXcu+wO0spyQvh73pCyk88m9QbLFn+UzcznIGvPQGB7auPNoGZK9bxowHhjH3L5eRsWLOMduNTuxH1g9fV9tvs5RhpM5IY9Ts5YDhp39OqDHOsrzDrH/jxWOW9f/Hv35WMQKw/dP3yN++5aTrtRh6Iakz0kidkUb7m+4g4cobvO9bjbz8Z8VQ2eb/vkbr1Mvxa+J5+GLMgMGcP/lTYo7bT8uyWHrXzfR86AlGzfqW3n99hm9/fweWZdXYBrBx8r/I37aZUXO+Z9Ssbxnwj1e92028/W7Wvvh0ve2PiIicOTRCIo3S1PQM792OHjpcwoIN2YxtU+l2lpVuxrBn+WycxfnsSvsCAHd5GRFtkwDI37eDH57/DcW5ezF2P0oOZlN8MIuSwwewBwTRrJvny1ablDEsf+UPNcbUrPtgVrzxJ/Z8N4Pw+M4EhB37V/W9q+azaeZknMWFWG7nMW1+gcG07HcxANGd+pL+9qNV99FtMCsnP4Lb5SR36w9EdehFUU4G2WvTcJWVENWhN34BQQDkbl3Dus9epCz/EMZmIy9za7Wxf/fP+4lOTGbQA69hjKlynZjO/QmO9txRKjqxL3vXLAYg68elJAy9FpvdD+x+tBl8JfvXf1vlNopyMgmMOPochA/bhtL9j4+ydc67lJTnsLv7NFqPugKAsNB2bFr4Op98k0BQdAsKNm0lrKVntMBkOQkIbcqscReRv2kTcYNTweZm7UvPsP2LD2niH4E5UE6PZ8ez9Lk7sQIMm95+lYw5X5JftIewXie/9amx2Wg2aCiZCz3P7Ej/+5/Zv3wp7rIy/COjGPCPVwhuFc/KRx+kPO8wsy4ZhD0oiIs+m8/860fR+c77aHnBKMrz80h/6mEObViHq7SEZgPPp9dfn8FmtzP/+lFE9ejDgfTlFGftI370lfR86Am2ffIOB39MZ9Xjf+LH556k15//TvPBw08ac3UOb/qJBTeOpmhvBtG9+zPgudcxxtQY2/G2fPA2I9770vs+qmfV0yFLcw9QlneY2AGeqYMx/QZRlLWXg2tX0ySuVbVtkd17s/Hfk7jg49nYHJ4nxAfGHH0mSNzwVL7/832UF+TjCGn4u1SJiIjvaIREGp0jz4PIOFSMhefhaS/O28TU9AzvOjlb0omI71zxziL51xO45IVFXPLCIi79ZxqD//AmAGnP/4aOo37J6JeXMOq5BRi7H67y0mMKmtoyxhA/6AqWv/Ig7YbfcExbYfZuVk1+hJQHX2f0y98w4N6XcJWVetvtjoCj27HbsVwuqhLSPAH/kAh2LP6UkOYJ2PwcxHYdSNa6NLLWLiW2u+eLnqu8jCUTb6fv7U8x+uVvGPboR7jLS6vcJkBM14Hs37Cc0sMHql3H7l8pRpsdy3WkqLKqLWKOWHr3zcy6ZBBFe3aT9vvbj2lzhITR7f7xRPbsy6rHPaM4JQf2s+rRPzLyn3O5bloGiYNuAyAsrr2nfwv63PakZ8TrcFOMzUZwTDwb3nyZUV9+y6gZ33LBR7OI6TKAmC79oYnBERLGxdMWkzD2Og7+kM7JuEpLyZg3g6ZdewLQ9a4HuXjaYlJnLqPNZVd7p0n1feJ5HGHhpM5I46LP5p+wnfSnHiZmwGAunraI1BlplOTsZ/vH//O2F2bu4YKPZjPyyyVs/ei/5G/fQrtrbqFp9970eWwCqTPSflYxAp6CZOhbnzFq9nJy16aTtWRhrWKrHKOrqJDgVjU/aR0gMCqGgKZR7JnjKV4y5s3AWZBPYcauGtvK8/MoPZjDrq+mMGfMcOaOHeFdD8DmcBDeqSsHVlZd7IqIyNlLIyTS6EycvfGYh9MBlDrdTJy9kTG9W7Lnu5lsnvU2wx/9CICW/VLZMP1VohOT8QsIory4gKIDmYS37kRZ4WFCYj1fsrbOe8/7pT2sVUdcZSVkr0sjNmkQu9KmU16Ud9LYOoy8Fb+gYFr0GXHM8vLifGx+DgIjYrHcbjbP/u8p73+zpEGs+/QF2o24HoCgps1wlhSSuWo+593rmYrmLi/F7XLRpGJEY/PMyTVus/0FNxLZvifzH7uK4Y99TJPI2j9pu1m3FLYv/oT4lCuwXE52LZ1GUGSzY9ZJeeVdIhK7kvbi3TTvMeSYtjaXXUXG6rn4RzTlQNZeXKUl5KQvJ7xrN4LiPPE3HdAPPrfT/sJbALBs4CorwREcgsvuJGvdN6Q+t4D9Uxex5L6baT38UuIuGEVZ0SEObFoJJRZtLrsKABeluHILcZWWYA8IPGF/spYuYtYlgwCI7nseXe/2jIxlLprLlnfewFlUiNvpPOFz1cmYP4OcNSvZ+O9Jnv6Li2jS/OiT2eMvuRJjs+EfFk5Y+0QKdm0ntG2HWm+/NlpddKl3X5sm9aJg1/ZaxXZE8b4MAqNrfoJ5ZYNff581zz7CupefJap3P8I6dsbm56ixze0sx11WhuV2c/HUheTv2Mr8ay4mPLEroW3aARAY04yivRk1dS0iImchFSTS6GQeOvHuVTdm/hPnXgfT77IT3jqRYY984L2WImnsffz44QRmj7vYc2clY+h+7R8Jb92Jvnc8xdfP3kqTyObEJg0iINQzzcruCCDlwde9F7U37z6YJjGtThpbk6gWdL3ydycsj2jTldaDLuer+4cQHN2S2KRB7F+3rIotnFyz7oPZvuhjYpMGeZfFdO7P9sWfeO8q5mgSSo8bHmL2uItpEtOSuD4XnHS7bYdejd0/gAWPjmXYox/WOp4OI2/j4I51fHXfYJpEtySyfQ+2ZuaQ8uwCMg8V8/DhEhasz2JsYteKi/Cn0W6EZwTJ8jfM+ONwXOUluMpKcXcNYOu892jiaIbLKmPmA8Mwdj9sdj/MznKCmlYUOgGGOX8ehc3Pn9LQPJKvm0hwTEsumrKAb5+7l9VfPsvy98YT0jqBnjf9heUL7sQWEIhlWWT9uAQOu3A7ndgDTtyfZinDGPzqu8csK9yzi/SnxnPxtMWEtE7gwMpvSbv/jtolyLIY8sYHhMRX/VA6W8Cxo2N1KXZqy1ap8DJ229E+ThLbEfbAIFylJbXuL7JbL4a/65ki6SorY2q/9oR1SKyxLaBpFH7BISSM8RTaoQntadqtF4fW/eAtSNylJdgDg2odh4iInB1UkEijExcRREalomRi++cAaBkRxNLxI05Y3+bnoOfNf6HnzX85oa3tsGtpO+xa7/vK68R2Hcjol45e/NzrF9Vd15FC6v/Nq7Ltxs/3e39O/tXTJP/q6EW5PW54CICQ2Hiu+t9G7/Lj3x+v3YgbvF/ojxhwzwsMuOeFY5Z1vfJ3xxRHSVf9vsq4rnhjlffn+IGXET/wMk981/+p2j4rv7c7/Ol7x99xBIXgKi/lk/HXMK2kKxmhnn8jl9vNi/M3Y2vTicv7pbL2k+cozt1HUGRzTJnFpZOW4QgOATzXlLQddh2uoiIKHtrERZ8vJDShPRvfeoX0aUfjNMUWo/5vIY7gEKYPTiK6Qx/KC/JxFhUy6CHPs1MW3nIFbVNvImHEtSznTgD2rl5IVKe+FM78qdr8VqW8IB+bw5/AmGZYbjdb3js64uQICcVVXIzb6cTmd+IpM+7CS/jp1edJfupFbHY7pbkHKC8sOOndohwhoZTnHx2VK9qXycKbLmX0/FU1fKpuahtbaLuOFO/PwlVaij2giiruOMX7swiK8RSP6199jtgBKYQmtD9pW/xlV7N38Vw63Hg7JQf2c2j9j4QnHr3eJ2/LRiK61HynOBEROfvoGhJpdMaNTCTIcexFt0EOO+NGJvooIlnw2FXMeGAYMx8YxurCML4LGXRM+9WLn2P3naOYc9kQXBsOkZk2t8btBcbEkvzUS3x9+9XMu/pCXCXF2BwO/IKaVPuZ8vw8vvn1DcxMPY+ZI/sTFNOM1qnH3mXKWZRfbWFZk4jOScRfciUzL+7PghtHE9z66F3CAiIiaXPFtcxKHcDcq04cierzyD+w2e3MvmQgM1MHsOi2sRTvyzxpn+1v+CXrJv2DWaNT2LdkIcVZe6sseH6O2sbmFxhEs/OGkP3tN95l619/kWkDE8lJX853437LtIGJ3gJq6/uT+WpEb74c1pO8LRvpP+EV7+dqaus57jEy589k5sj+LLz5UnqMe4yw9p7/14V7dgEQkdi1XnMgIiKNn7FO4eJeX0lOTrZWrFjh6zCkAVS+y1ZcRBDjRiYypndLX4clQNvxX1X5xBYDbH92dK23U/luSts+eYdtH/+PCz+puZA5m2349yQCo2JIuPJ6n/R/YOW3rH/9RYa8UfvpfPVpzYTHCGnTjvbX3eqT/kVEjmeMWWlZVtUPwJJ6pSlb0iiN6d1SBUgjdfyUusrL62LT26+xe4bnwY7+4U3p98yk+grxjNT5Vydem9SQovueR9yIVJxFhd5nkTSkoNgWtLvmlgbvV0REfE8jJCJSJ0duy1z5TmhBDjvPjO2uIlJERM4aGiFpOBohEZE6OVJ0aEqdiIiI1AcVJCJSZ5pSJyIiIvVFd9kSERERERGfUUEiIiIiIiI+o4JERERERER8RgWJiIiIiIj4jAoSERERERHxGRUkIiIiIiLiMypIRERERETEZ1SQiIiIiIiIz6ggERERERERn1FBIiIiIiIiPqOCREREREREfEYFiYiIiIiI+IwKEhERERER8RkVJCIiIiIi4jMqSERERERExGdUkIiIiIiIiM+oIBEREREREZ9RQSIiIiIiIj6jgkRERERERHxGBYmIiIiIiPiMChIREREREfEZFSQiIiIiIuIzKkhERERERMRnVJCIiIiIiIjPqCARERERERGfUUEiIiIiIiI+o4JERERERER8xliW5esYas0Ysx/YeZo2Hw0cOE3bPtsoV3WjfNWeclU3ylfdKF+1p1zVjfJVe2dSrtpYlhXj6yDOBWdUQXI6GWNWWJaV7Os4zgTKVd0oX7WnXNWN8lU3ylftKVd1o3zVnnIlVdGULRERERER8RkVJCIiIiIi4jMqSI56w9cBnEGUq7pRvmpPuaob5atulK/aU67qRvmqPeVKTqBrSERERERExGc0QiIiIiIiIj6jgkRERDiW7pMAAAXPSURBVERERHxGBYmIiIiIiPjMOVuQGGPuNcasMMaUGmPersX6Dxhj9hljDhtjJhtjAhogzEbBGBNpjPncGFNojNlpjLmxhnUDjDGvGWOyjDG5xpgvjDEtGzJeX6tLvirW72OM+doYU1CRt/sbKlZfq2uuKj7jb4zZYIzZ0xAxNiZ1/L84zhiz1hiTb4zZbowZ15Cx+kJt82M8/mGMyal4TTDGmIaO19fqkK9z7lg63imc18/Z8xTU+Vx1zv4OlKPO2YIEyASeAiafbEVjzEhgPHABkAC0Ax4/ncE1Mv8CyoBmwE3Aq8aYpGrWvR8YCPQA4oBDwKSGCLIRqXW+jDHRwCzgdSAK6ADMaaA4G4O6HFtHjAOyT3dgjVRd8mWAXwBNgVTgXmPM9Q0Spe/UNj+/BsYAPfGcqy4FftNQQTYitc3XuXgsHa+u56pz+TwFtcyXfgfKEef8XbaMMU8BrSzLuq2Gdd4HdliW9eeK9xcA71mW1bxhovQdY0wwcBDoZlnWpopl7wAZlmWNr2L9V4F8y7L+VPF+NPC8ZVmJDRi2z5xCvp4GWluWdUvDRup7dc1VRXtbYAbwIPCmZVmtGipeXzuVfB33+ZfxnPN/d3oj9Y265McYkwa8bVnWGxXv7wDutCzrvAYO22d+zvF0th9LxzuF8/o5e56COv9fPGd/B8qxzuURkrpIAtZUer8GaGaMifJRPA2pE+A6clKpsAZPTqryHyDFGBNnjGmC5y8jM09zjI1JXfN1HpBrjEkzxmRXTHGLP+1RNg51zRV4Rtv+DBSfzsAaqVPJF+CZogQMAdadptgag7rkp6pz+knzeJY5pePpHDmWjlfXXJ3L5ymoW77O5d+BUokKktoJAQ5Xen/k51AfxNLQjt93Kt5Xt++bgF1ABpAHdAGeOG3RNT51zVcr4FY8U93ige3AB6ctusalTrkyxlwJ+FmW9fnpDqyRquuxVdnf8Jzv36rnmBqTuuSnqnN6yDl2HcmpHk9/4+w/lo5X61zpPAXU7dg6l38HSiVnZUFijFlkjLGqeS05hU0WAGGV3h/5Of/nR+tbtcjV8ftOxfvq9v1VIBDPXNBgYApn0QjJachXMfC5ZVnfW5ZVgufapEHGmPDTtxcNoz5zVTEFYAJw1k4ROQ3H1pHt3otn/v9oy7JKT0/0jUJd8lPVOb3AOrfmMNf5eDqHjqXj1SpX58J5qpbqcmydtb8DpW78fB3A6WBZ1rB63uQ6PBc/flzxvieQZVlWTj330+BOlquKE6yfMaajZVmbKxb3pPrh+p7AXyzLyq34/CTgCWNMtGVZB+opbJ85Dfn6Aaj8JejIz2f8X2rrOVcd8dxQ4puKP2L7A+HGmH3AeZZl7ainsH3mNBxbGGNux3NDjvMtyzrb7/azidrn58g5fflJ1jub1SVf59qxdLza5uqsP0/VUl2OrbP2d6DUkWVZ5+QLTzEWCDwDvFPxs18166YC+4CueO4ysgB41tf70IC5+hDPEGowkIJn6DWpmnXfAj4DwgEHnnm0Gb7eh0acrxF4Lv7rVZGvF4BvfL0PjS1XFf9fm1d6jcVzp7zmgN3X+9HY8lWx7k0V560uvo67seUH+C2wHmiJ526A64Df+jr+Rpyvc+5YOpVc6Tx1SsfWOf07UK9Kx4KvA/DZjnvmwVrHvf5W0RaPZ8gxvtL6DwJZeK6LeAsI8PU+NGCuIoGpQCGe60NurNQ2BM9UhyPvo4D38Nzu8BCwBOjv631orPmqWHYXnmtuDgJf4LnjiM/3ozHmqlLbMGCPr+NvzPnCMxe7vOJcduT1mq/3wRf5qSI3Bs/UmtyK1wQq7jp5Lr3qkK9z7lg61Vwd95lz8jxV13ydy78D9Tr6Oudv+ysiIiIiIr5zVl7ULiIiIiIiZwYVJCIiIiIi4jMqSERERERExGdUkIiIiIiIiM+oIBEREREREZ9RQSIiIiIiIj6jgkRERERERHxGBYmIiIiIiPjM/wMplWO5S93RuQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#hide_input\n","#id img_pca_movie\n","#caption Representation of movies based on two strongest PCA components\n","#alt Representation of movies based on two strongest PCA components\n","g = ratings.groupby('title')['rating'].count()\n","top_movies = g.sort_values(ascending=False).index.values[:1000]\n","top_idxs = tensor([learn.dls.classes['title'].o2i[m] for m in top_movies])\n","movie_w = learn.model.movie_factors[top_idxs].cpu().detach()\n","movie_pca = movie_w.pca(3)\n","fac0,fac1,fac2 = movie_pca.t()\n","idxs = list(range(50))\n","X = fac0[idxs]\n","Y = fac2[idxs]\n","plt.figure(figsize=(12,12))\n","plt.scatter(X, Y)\n","for i, x, y in zip(top_movies[idxs], X, Y):\n"," plt.text(x,y,i, color=np.random.rand(3)*0.7, fontsize=11)\n","plt.show()"]},{"cell_type":"markdown","metadata":{"id":"ED8MR8-O1yiW"},"source":["We can see here that the model seems to have discovered a concept of *classic* versus *pop culture* movies, or perhaps it is *critically acclaimed* that is represented here."]},{"cell_type":"markdown","metadata":{"id":"2kmgIrIQ1yiX"},"source":["> j: No matter how many models I train, I never stop getting moved and surprised by how these randomly initialized bunches of numbers, trained with such simple mechanics, manage to discover things about my data all by themselves. It almost seems like cheating, that I can create code that does useful things without ever actually telling it how to do those things!"]},{"cell_type":"markdown","metadata":{"id":"pjmjs6lv1yiX"},"source":["We defined our model from scratch to teach you what is inside, but you can directly use the fastai library to build it. We'll look at how to do that next."]},{"cell_type":"markdown","metadata":{"id":"jk7vcVLQ1yiY"},"source":["### Using fastai.collab"]},{"cell_type":"markdown","metadata":{"id":"0VYsSa0V1yiY"},"source":["We can create and train a collaborative filtering model using the exact structure shown earlier by using fastai's `collab_learner`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MdXaXT611yiZ"},"outputs":[],"source":["learn = collab_learner(dls, n_factors=50, y_range=(0, 5.5))"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mdlYB5gA1yiZ","outputId":"fd82b677-9b1c-436f-efe2-a85f736596e9"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9317510.95380600:13
10.8518260.87811900:13
20.7152540.83471100:13
30.5831730.82147000:13
40.4966250.82168800:13
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(5, 5e-3, wd=0.1)"]},{"cell_type":"markdown","metadata":{"id":"_Wvw_lnB1yia"},"source":["The names of the layers can be seen by printing the model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yN_5QGtb1yia","outputId":"b0c81552-f509-4592-dd34-07970e8d282f"},"outputs":[{"data":{"text/plain":["EmbeddingDotBias(\n"," (u_weight): Embedding(944, 50)\n"," (i_weight): Embedding(1635, 50)\n"," (u_bias): Embedding(944, 1)\n"," (i_bias): Embedding(1635, 1)\n",")"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn.model"]},{"cell_type":"markdown","metadata":{"id":"DJmvdpo51yib"},"source":["We can use these to replicate any of the analyses we did in the previous section—for instance:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GPV-LIZh1yib","outputId":"b0b0478d-3c95-46b6-8778-5b4e7a233582"},"outputs":[{"data":{"text/plain":["['Titanic (1997)',\n"," \"Schindler's List (1993)\",\n"," 'Shawshank Redemption, The (1994)',\n"," 'L.A. Confidential (1997)',\n"," 'Silence of the Lambs, The (1991)']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["movie_bias = learn.model.i_bias.weight.squeeze()\n","idxs = movie_bias.argsort(descending=True)[:5]\n","[dls.classes['title'][i] for i in idxs]"]},{"cell_type":"markdown","metadata":{"id":"_oEo5XhU1yic"},"source":["Another interesting thing we can do with these learned embeddings is to look at _distance_."]},{"cell_type":"markdown","metadata":{"id":"dFww2xY01yic"},"source":["### Embedding Distance"]},{"cell_type":"markdown","metadata":{"id":"b7mNaBFo1yid"},"source":["On a two-dimensional map we can calculate the distance between two coordinates using the formula of Pythagoras: $\\sqrt{x^{2}+y^{2}}$ (assuming that *x* and *y* are the distances between the coordinates on each axis). For a 50-dimensional embedding we can do exactly the same thing, except that we add up the squares of all 50 of the coordinate distances.\n","\n","If there were two movies that were nearly identical, then their embedding vectors would also have to be nearly identical, because the users that would like them would be nearly exactly the same. There is a more general idea here: movie similarity can be defined by the similarity of users that like those movies. And that directly means that the distance between two movies' embedding vectors can define that similarity. We can use this to find the most similar movie to *Silence of the Lambs*:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IHzKW--I1yid","outputId":"3b0a6ba5-bd1d-4516-d6fa-a187f1d0e045"},"outputs":[{"data":{"text/plain":["'Dial M for Murder (1954)'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["movie_factors = learn.model.i_weight.weight\n","idx = dls.classes['title'].o2i['Silence of the Lambs, The (1991)']\n","distances = nn.CosineSimilarity(dim=1)(movie_factors, movie_factors[idx][None])\n","idx = distances.argsort(descending=True)[1]\n","dls.classes['title'][idx]"]},{"cell_type":"markdown","metadata":{"id":"f8rQYPzM1yie"},"source":["Now that we have succesfully trained a model, let's see how to deal with the situation where we have no data for a user. How can we make recommendations to new users?"]},{"cell_type":"markdown","metadata":{"id":"-y7HnYNR1yie"},"source":["## Bootstrapping a Collaborative Filtering Model"]},{"cell_type":"markdown","metadata":{"id":"6widhwNF1yif"},"source":["The biggest challenge with using collaborative filtering models in practice is the *bootstrapping problem*. The most extreme version of this problem is when you have no users, and therefore no history to learn from. What products do you recommend to your very first user?\n","\n","But even if you are a well-established company with a long history of user transactions, you still have the question: what do you do when a new user signs up? And indeed, what do you do when you add a new product to your portfolio? There is no magic solution to this problem, and really the solutions that we suggest are just variations of *use your common sense*. You could assign new users the mean of all of the embedding vectors of your other users, but this has the problem that that particular combination of latent factors may be not at all common (for instance, the average for the science-fiction factor may be high, and the average for the action factor may be low, but it is not that common to find people who like science-fiction without action). Better would probably be to pick some particular user to represent *average taste*.\n","\n","Better still is to use a tabular model based on user meta data to construct your initial embedding vector. When a user signs up, think about what questions you could ask them that could help you to understand their tastes. Then you can create a model where the dependent variable is a user's embedding vector, and the independent variables are the results of the questions that you ask them, along with their signup metadata. We will see in the next section how to create these kinds of tabular models. (You may have noticed that when you sign up for services such as Pandora and Netflix, they tend to ask you a few questions about what genres of movie or music you like; this is how they come up with your initial collaborative filtering recommendations.)"]},{"cell_type":"markdown","metadata":{"id":"ZAzcV9X71yif"},"source":["One thing to be careful of is that a small number of extremely enthusiastic users may end up effectively setting the recommendations for your whole user base. This is a very common problem, for instance, in movie recommendation systems. People that watch anime tend to watch a whole lot of it, and don't watch very much else, and spend a lot of time putting their ratings on websites. As a result, anime tends to be heavily overrepresented in a lot of *best ever movies* lists. In this particular case, it can be fairly obvious that you have a problem of representation bias, but if the bias is occurring in the latent factors then it may not be obvious at all.\n","\n","Such a problem can change the entire makeup of your user base, and the behavior of your system. This is particularly true because of positive feedback loops. If a small number of your users tend to set the direction of your recommendation system, then they are naturally going to end up attracting more people like them to your system. And that will, of course, amplify the original representation bias. This type of bias has a natural tendency to be amplified exponentially. You may have seen examples of company executives expressing surprise at how their online platforms rapidly deteriorated in such a way that they expressed values at odds with the values of the founders. In the presence of these kinds of feedback loops, it is easy to see how such a divergence can happen both quickly and in a way that is hidden until it is too late.\n","\n","In a self-reinforcing system like this, we should probably expect these kinds of feedback loops to be the norm, not the exception. Therefore, you should assume that you will see them, plan for that, and identify up front how you will deal with these issues. Try to think about all of the ways in which feedback loops may be represented in your system, and how you might be able to identify them in your data. In the end, this is coming back to our original advice about how to avoid disaster when rolling out any kind of machine learning system. It's all about ensuring that there are humans in the loop; that there is careful monitoring, and a gradual and thoughtful rollout."]},{"cell_type":"markdown","metadata":{"id":"U5F2Rvl91yig"},"source":["Our dot product model works quite well, and it is the basis of many successful real-world recommendation systems. This approach to collaborative filtering is known as *probabilistic matrix factorization* (PMF). Another approach, which generally works similarly well given the same data, is deep learning."]},{"cell_type":"markdown","metadata":{"id":"fzP4NodU1yig"},"source":["## Deep Learning for Collaborative Filtering"]},{"cell_type":"markdown","metadata":{"id":"rDGh-DHT1yig"},"source":["To turn our architecture into a deep learning model, the first step is to take the results of the embedding lookup and concatenate those activations together. This gives us a matrix which we can then pass through linear layers and nonlinearities in the usual way.\n","\n","Since we'll be concatenating the embeddings, rather than taking their dot product, the two embedding matrices can have different sizes (i.e., different numbers of latent factors). fastai has a function `get_emb_sz` that returns recommended sizes for embedding matrices for your data, based on a heuristic that fast.ai has found tends to work well in practice:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HW8vUmqx1yih","outputId":"66368dfb-6add-4b01-b860-c08dc2fff879"},"outputs":[{"data":{"text/plain":["[(944, 74), (1635, 101)]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["embs = get_emb_sz(dls)\n","embs"]},{"cell_type":"markdown","metadata":{"id":"ZGhVDXyp1yih"},"source":["Let's implement this class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6AlEOW0E1yih"},"outputs":[],"source":["class CollabNN(Module):\n"," def __init__(self, user_sz, item_sz, y_range=(0,5.5), n_act=100):\n"," self.user_factors = Embedding(*user_sz)\n"," self.item_factors = Embedding(*item_sz)\n"," self.layers = nn.Sequential(\n"," nn.Linear(user_sz[1]+item_sz[1], n_act),\n"," nn.ReLU(),\n"," nn.Linear(n_act, 1))\n"," self.y_range = y_range\n","\n"," def forward(self, x):\n"," embs = self.user_factors(x[:,0]),self.item_factors(x[:,1])\n"," x = self.layers(torch.cat(embs, dim=1))\n"," return sigmoid_range(x, *self.y_range)"]},{"cell_type":"markdown","metadata":{"id":"LDcGSgYR1yii"},"source":["And use it to create a model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vDD4LoJx1yii"},"outputs":[],"source":["model = CollabNN(*embs)"]},{"cell_type":"markdown","metadata":{"id":"dsMSFn0y1yii"},"source":["`CollabNN` creates our `Embedding` layers in the same way as previous classes in this chapter, except that we now use the `embs` sizes. `self.layers` is identical to the mini-neural net we created in <> for MNIST. Then, in `forward`, we apply the embeddings, concatenate the results, and pass this through the mini-neural net. Finally, we apply `sigmoid_range` as we have in previous models.\n","\n","Let's see if it trains:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eod7qJu91yij","outputId":"8bf5d3da-d15b-41c7-d6ef-1635ae0bbba4"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.9401040.95978600:15
10.8939430.90522200:14
20.8655910.87523800:14
30.8001770.86746800:14
40.7602550.86745500:14
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, model, loss_func=MSELossFlat())\n","learn.fit_one_cycle(5, 5e-3, wd=0.01)"]},{"cell_type":"markdown","metadata":{"id":"J1uzx4UU1yij"},"source":["fastai provides this model in `fastai.collab` if you pass `use_nn=True` in your call to `collab_learner` (including calling `get_emb_sz` for you), and it lets you easily create more layers. For instance, here we're creating two hidden layers, of size 100 and 50, respectively:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uxtiNGB51yij","outputId":"2d5bb257-647f-4902-8c28-2736415a3c4f"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
01.0027470.97239200:16
10.9269030.92234800:16
20.8771600.89340100:16
30.8383340.86504000:16
40.7816660.86493600:16
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = collab_learner(dls, use_nn=True, y_range=(0, 5.5), layers=[100,50])\n","learn.fit_one_cycle(5, 5e-3, wd=0.1)"]},{"cell_type":"markdown","metadata":{"id":"mCVAVhQQ1yik"},"source":["`learn.model` is an object of type `EmbeddingNN`. Let's take a look at fastai's code for this class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e5XHysT21yik"},"outputs":[],"source":["@delegates(TabularModel)\n","class EmbeddingNN(TabularModel):\n"," def __init__(self, emb_szs, layers, **kwargs):\n"," super().__init__(emb_szs, layers=layers, n_cont=0, out_sz=1, **kwargs)"]},{"cell_type":"markdown","metadata":{"id":"YcLlmXo91yil"},"source":["Wow, that's not a lot of code! This class *inherits* from `TabularModel`, which is where it gets all its functionality from. In `__init__` it calls the same method in `TabularModel`, passing `n_cont=0` and `out_sz=1`; other than that, it only passes along whatever arguments it received."]},{"cell_type":"markdown","metadata":{"id":"jpy9fGpo1yil"},"source":["### Sidebar: kwargs and Delegates"]},{"cell_type":"markdown","metadata":{"id":"BHO7qYaC1yil"},"source":["`EmbeddingNN` includes `**kwargs` as a parameter to `__init__`. In Python `**kwargs` in a parameter list means \"put any additional keyword arguments into a dict called `kwargs`. And `**kwargs` in an argument list means \"insert all key/value pairs in the `kwargs` dict as named arguments here\". This approach is used in many popular libraries, such as `matplotlib`, in which the main `plot` function simply has the signature `plot(*args, **kwargs)`. The [`plot` documentation](https://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot) says \"The `kwargs` are `Line2D` properties\" and then lists those properties.\n","\n","We're using `**kwargs` in `EmbeddingNN` to avoid having to write all the arguments to `TabularModel` a second time, and keep them in sync. However, this makes our API quite difficult to work with, because now Jupyter Notebook doesn't know what parameters are available. Consequently things like tab completion of parameter names and pop-up lists of signatures won't work.\n","\n","fastai resolves this by providing a special `@delegates` decorator, which automatically changes the signature of the class or function (`EmbeddingNN` in this case) to insert all of its keyword arguments into the signature."]},{"cell_type":"markdown","metadata":{"id":"o5IKlojy1yim"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"zmEv_JuG1yim"},"source":["Although the results of `EmbeddingNN` are a bit worse than the dot product approach (which shows the power of carefully constructing an architecture for a domain), it does allow us to do something very important: we can now directly incorporate other user and movie information, date and time information, or any other information that may be relevant to the recommendation. That's exactly what `TabularModel` does. In fact, we've now seen that `EmbeddingNN` is just a `TabularModel`, with `n_cont=0` and `out_sz=1`. So, we'd better spend some time learning about `TabularModel`, and how to use it to get great results! We'll do that in the next chapter."]},{"cell_type":"markdown","metadata":{"id":"MUxdn3Y51yim"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"JvDZuO9X1yim"},"source":["For our first non-computer vision application, we looked at recommendation systems and saw how gradient descent can learn intrinsic factors or biases about items from a history of ratings. Those can then give us information about the data.\n","\n","We also built our first model in PyTorch. We will do a lot more of this in the next section of the book, but first, let's finish our dive into the other general applications of deep learning, continuing with tabular data."]},{"cell_type":"markdown","metadata":{"id":"EMa88-KS1yin"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"JJ-bSL4L1yin"},"source":["1. What problem does collaborative filtering solve?\n","1. How does it solve it?\n","1. Why might a collaborative filtering predictive model fail to be a very useful recommendation system?\n","1. What does a crosstab representation of collaborative filtering data look like?\n","1. Write the code to create a crosstab representation of the MovieLens data (you might need to do some web searching!).\n","1. What is a latent factor? Why is it \"latent\"?\n","1. What is a dot product? Calculate a dot product manually using pure Python with lists.\n","1. What does `pandas.DataFrame.merge` do?\n","1. What is an embedding matrix?\n","1. What is the relationship between an embedding and a matrix of one-hot-encoded vectors?\n","1. Why do we need `Embedding` if we could use one-hot-encoded vectors for the same thing?\n","1. What does an embedding contain before we start training (assuming we're not using a pretained model)?\n","1. Create a class (without peeking, if possible!) and use it.\n","1. What does `x[:,0]` return?\n","1. Rewrite the `DotProduct` class (without peeking, if possible!) and train a model with it.\n","1. What is a good loss function to use for MovieLens? Why?\n","1. What would happen if we used cross-entropy loss with MovieLens? How would we need to change the model?\n","1. What is the use of bias in a dot product model?\n","1. What is another name for weight decay?\n","1. Write the equation for weight decay (without peeking!).\n","1. Write the equation for the gradient of weight decay. Why does it help reduce weights?\n","1. Why does reducing weights lead to better generalization?\n","1. What does `argsort` do in PyTorch?\n","1. Does sorting the movie biases give the same result as averaging overall movie ratings by movie? Why/why not?\n","1. How do you print the names and details of the layers in a model?\n","1. What is the \"bootstrapping problem\" in collaborative filtering?\n","1. How could you deal with the bootstrapping problem for new users? For new movies?\n","1. How can feedback loops impact collaborative filtering systems?\n","1. When using a neural network in collaborative filtering, why can we have different numbers of factors for movies and users?\n","1. Why is there an `nn.Sequential` in the `CollabNN` model?\n","1. What kind of model should we use if we want to add metadata about users and items, or information such as date and time, to a collaborative filtering model?"]},{"cell_type":"markdown","metadata":{"id":"KcU8IdW21yin"},"source":["### Further Research\n","\n","1. Take a look at all the differences between the `Embedding` version of `DotProductBias` and the `create_params` version, and try to understand why each of those changes is required. If you're not sure, try reverting each change to see what happens. (NB: even the type of brackets used in `forward` has changed!)\n","1. Find three other areas where collaborative filtering is being used, and find out what the pros and cons of this approach are in those areas.\n","1. Complete this notebook using the full MovieLens dataset, and compare your results to online benchmarks. See if you can improve your accuracy. Look on the book's website and the fast.ai forum for ideas. Note that there are more columns in the full dataset—see if you can use those too (the next chapter might give you ideas).\n","1. Create a model for MovieLens that works with cross-entropy loss, and compare it to the model in this chapter."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"C4lZMSC41yio"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/08_collab.ipynb","timestamp":1712447778293}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/09_tabular.ipynb b/notebooks/oleg/Education/fastai/09_tabular.ipynb new file mode 100644 index 0000000..74d81e9 --- /dev/null +++ b/notebooks/oleg/Education/fastai/09_tabular.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"hDPJsyAS193m"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook kaggle waterfallcharts treeinterpreter dtreeviz\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"EQfhbM61193s"},"outputs":[],"source":["#hide\n","from fastbook import *\n","from pandas.api.types import is_string_dtype, is_numeric_dtype, is_categorical_dtype\n","from fastai.tabular.all import *\n","from sklearn.ensemble import RandomForestRegressor\n","from sklearn.tree import DecisionTreeRegressor\n","from dtreeviz.trees import *\n","from IPython.display import Image, display_svg, SVG\n","\n","pd.options.display.max_rows = 20\n","pd.options.display.max_columns = 8"]},{"cell_type":"raw","metadata":{"id":"KFRBRRbI193t"},"source":["[[chapter_tabular]]"]},{"cell_type":"markdown","metadata":{"id":"0H-LKYdl193u"},"source":["# Tabular Modeling Deep Dive"]},{"cell_type":"markdown","metadata":{"id":"-65blQzs193w"},"source":["Tabular modeling takes data in the form of a table (like a spreadsheet or CSV). The objective is to predict the value in one column based on the values in the other columns. In this chapter we will not only look at deep learning but also more general machine learning techniques like random forests, as they can give better results depending on your problem.\n","\n","We will look at how we should preprocess and clean the data as well as how to interpret the result of our models after training, but first, we will see how we can feed columns that contain categories into a model that expects numbers by using embeddings."]},{"cell_type":"markdown","metadata":{"id":"TDJaqINM193x"},"source":["## Categorical Embeddings"]},{"cell_type":"markdown","metadata":{"id":"7XxXuM1z193y"},"source":["In tabular data some columns may contain numerical data, like \"age,\" while others contain string values, like \"sex.\" The numerical data can be directly fed to the model (with some optional preprocessing), but the other columns need to be converted to numbers. Since the values in those correspond to different categories, we often call this type of variables *categorical variables*. The first type are called *continuous variables*."]},{"cell_type":"markdown","metadata":{"id":"lpvZDhBi193z"},"source":["> jargon: Continuous and Categorical Variables: Continuous variables are numerical data, such as \"age,\" that can be directly fed to the model, since you can add and multiply them directly. Categorical variables contain a number of discrete levels, such as \"movie ID,\" for which addition and multiplication don't have meaning (even if they're stored as numbers)."]},{"cell_type":"markdown","metadata":{"id":"G7iIxjNU1930"},"source":["At the end of 2015, the [Rossmann sales competition](https://www.kaggle.com/c/rossmann-store-sales) ran on Kaggle. Competitors were given a wide range of information about various stores in Germany, and were tasked with trying to predict sales on a number of days. The goal was to help the company to manage stock properly and be able to satisfy demand without holding unnecessary inventory. The official training set provided a lot of information about the stores. It was also permitted for competitors to use additional data, as long as that data was made public and available to all participants.\n","\n","One of the gold medalists used deep learning, in one of the earliest known examples of a state-of-the-art deep learning tabular model. Their method involved far less feature engineering, based on domain knowledge, than those of the other gold medalists. The paper, [\"Entity Embeddings of Categorical Variables\"](https://arxiv.org/abs/1604.06737) describes their approach. In an online-only chapter on the [book's website](https://book.fast.ai/) we show how to replicate it from scratch and attain the same accuracy shown in the paper. In the abstract of the paper the authors (Cheng Guo and Felix Berkhahn) say:"]},{"cell_type":"markdown","metadata":{"id":"YlIJ16lZ1931"},"source":["> : Entity embedding not only reduces memory usage and speeds up neural networks compared with one-hot encoding, but more importantly by mapping similar values close to each other in the embedding space it reveals the intrinsic properties of the categorical variables... [It] is especially useful for datasets with lots of high cardinality features, where other methods tend to overfit... As entity embedding defines a distance measure for categorical variables it can be used for visualizing categorical data and for data clustering."]},{"cell_type":"markdown","metadata":{"id":"HNvBh4A81931"},"source":["We have already noticed all of these points when we built our collaborative filtering model. We can clearly see that these insights go far beyond just collaborative filtering, however.\n","\n","The paper also points out that (as we discussed in the last chapter) an embedding layer is exactly equivalent to placing an ordinary linear layer after every one-hot-encoded input layer. The authors used the diagram in <> to show this equivalence. Note that \"dense layer\" is a term with the same meaning as \"linear layer,\" and the one-hot encoding layers represent inputs."]},{"cell_type":"markdown","metadata":{"id":"YT4kZTJo1932"},"source":["\"Entity"]},{"cell_type":"markdown","metadata":{"id":"EwYO0FGu1932"},"source":["The insight is important because we already know how to train linear layers, so this shows that from the point of view of the architecture and our training algorithm the embedding layer is just another layer. We also saw this in practice in the last chapter, when we built a collaborative filtering neural network that looks exactly like this diagram.\n","\n","Where we analyzed the embedding weights for movie reviews, the authors of the entity embeddings paper analyzed the embedding weights for their sales prediction model. What they found was quite amazing, and illustrates their second key insight. This is that the embedding transforms the categorical variables into inputs that are both continuous and meaningful.\n","\n","The images in <> illustrate these ideas. They are based on the approaches used in the paper, along with some analysis we have added."]},{"cell_type":"markdown","metadata":{"id":"N8YA0VJU1932"},"source":["\"State"]},{"cell_type":"markdown","metadata":{"id":"Hdw5ESC11933"},"source":["On the left is a plot of the embedding matrix for the possible values of the `State` category. For a categorical variable we call the possible values of the variable its \"levels\" (or \"categories\" or \"classes\"), so here one level is \"Berlin,\" another is \"Hamburg,\" etc. On the right is a map of Germany. The actual physical locations of the German states were not part of the provided data, yet the model itself learned where they must be, based only on the behavior of store sales!\n","\n","Do you remember how we talked about *distance* between embeddings? The authors of the paper plotted the distance between store embeddings against the actual geographic distance between the stores (see <>). They found that they matched very closely!"]},{"cell_type":"markdown","metadata":{"id":"4ZMg_-KX1933"},"source":["\"Store"]},{"cell_type":"markdown","metadata":{"id":"jtRHAzmA1933"},"source":["We've even tried plotting the embeddings for days of the week and months of the year, and found that days and months that are near each other on the calendar ended up close as embeddings too, as shown in <>."]},{"cell_type":"markdown","metadata":{"id":"VnC4CDF21934"},"source":["\"Date"]},{"cell_type":"markdown","metadata":{"id":"0H8xkfR21934"},"source":["What stands out in these two examples is that we provide the model fundamentally categorical data about discrete entities (e.g., German states or days of the week), and then the model learns an embedding for these entities that defines a continuous notion of distance between them. Because the embedding distance was learned based on real patterns in the data, that distance tends to match up with our intuitions.\n","\n","In addition, it is valuable in its own right that embeddings are continuous, because models are better at understanding continuous variables. This is unsurprising considering models are built of many continuous parameter weights and continuous activation values, which are updated via gradient descent (a learning algorithm for finding the minimums of continuous functions).\n","\n","Another benefit is that we can combine our continuous embedding values with truly continuous input data in a straightforward manner: we just concatenate the variables, and feed the concatenation into our first dense layer. In other words, the raw categorical data is transformed by an embedding layer before it interacts with the raw continuous input data. This is how fastai and Guo and Berkhahn handle tabular models containing continuous and categorical variables.\n","\n","An example using this concatenation approach is how Google does its recommendations on Google Play, as explained in the paper [\"Wide & Deep Learning for Recommender Systems\"](https://arxiv.org/abs/1606.07792). <> illustrates."]},{"cell_type":"markdown","metadata":{"id":"22aqTRZY1934"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"ykq58en61934"},"source":["Interestingly, the Google team actually combined both approaches we saw in the previous chapter: the dot product (which they call *cross product*) and neural network approaches.\n","\n","Let's pause for a moment. So far, the solution to all of our modeling problems has been: *train a deep learning model*. And indeed, that is a pretty good rule of thumb for complex unstructured data like images, sounds, natural language text, and so forth. Deep learning also works very well for collaborative filtering. But it is not always the best starting point for analyzing tabular data."]},{"cell_type":"markdown","metadata":{"id":"W90lEVP11935"},"source":["## Beyond Deep Learning"]},{"cell_type":"markdown","metadata":{"id":"0WmR3X671935"},"source":["Most machine learning courses will throw dozens of different algorithms at you, with a brief technical description of the math behind them and maybe a toy example. You're left confused by the enormous range of techniques shown and have little practical understanding of how to apply them.\n","\n","The good news is that modern machine learning can be distilled down to a couple of key techniques that are widely applicable. Recent studies have shown that the vast majority of datasets can be best modeled with just two methods:\n","\n","1. Ensembles of decision trees (i.e., random forests and gradient boosting machines), mainly for structured data (such as you might find in a database table at most companies)\n","1. Multilayered neural networks learned with SGD (i.e., shallow and/or deep learning), mainly for unstructured data (such as audio, images, and natural language)"]},{"cell_type":"markdown","metadata":{"id":"FXbbNkRn1935"},"source":["Although deep learning is nearly always clearly superior for unstructured data, these two approaches tend to give quite similar results for many kinds of structured data. But ensembles of decision trees tend to train faster, are often easier to interpret, do not require special GPU hardware for inference at scale, and often require less hyperparameter tuning. They have also been popular for quite a lot longer than deep learning, so there is a more mature ecosystem of tooling and documentation around them.\n","\n","Most importantly, the critical step of interpreting a model of tabular data is significantly easier for decision tree ensembles. There are tools and methods for answering the pertinent questions, like: Which columns in the dataset were the most important for your predictions? How are they related to the dependent variable? How do they interact with each other? And which particular features were most important for some particular observation?\n","\n","Therefore, ensembles of decision trees are our first approach for analyzing a new tabular dataset.\n","\n","The exception to this guideline is when the dataset meets one of these conditions:\n","\n","- There are some high-cardinality categorical variables that are very important (\"cardinality\" refers to the number of discrete levels representing categories, so a high-cardinality categorical variable is something like a zip code, which can take on thousands of possible levels).\n","- There are some columns that contain data that would be best understood with a neural network, such as plain text data.\n","\n","In practice, when we deal with datasets that meet these exceptional conditions, we always try both decision tree ensembles and deep learning to see which works best. It is likely that deep learning will be a useful approach in our example of collaborative filtering, as we have at least two high-cardinality categorical variables: the users and the movies. But in practice things tend to be less cut-and-dried, and there will often be a mixture of high- and low-cardinality categorical variables and continuous variables.\n","\n","Either way, it's clear that we are going to need to add decision tree ensembles to our modeling toolbox!"]},{"cell_type":"markdown","metadata":{"id":"2rMBrE3e1936"},"source":["Up to now we've used PyTorch and fastai for pretty much all of our heavy lifting. But these libraries are mainly designed for algorithms that do lots of matrix multiplication and derivatives (that is, stuff like deep learning!). Decision trees don't depend on these operations at all, so PyTorch isn't much use.\n","\n","Instead, we will be largely relying on a library called scikit-learn (also known as `sklearn`). Scikit-learn is a popular library for creating machine learning models, using approaches that are not covered by deep learning. In addition, we'll need to do some tabular data processing and querying, so we'll want to use the Pandas library. Finally, we'll also need NumPy, since that's the main numeric programming library that both sklearn and Pandas rely on.\n","\n","We don't have time to do a deep dive into all these libraries in this book, so we'll just be touching on some of the main parts of each. For a far more in depth discussion, we strongly suggest Wes McKinney's [Python for Data Analysis](http://shop.oreilly.com/product/0636920023784.do) (O'Reilly). Wes is the creator of Pandas, so you can be sure that the information is accurate!\n","\n","First, let's gather the data we will use."]},{"cell_type":"markdown","metadata":{"id":"xzJFBEOa1936"},"source":["## The Dataset"]},{"cell_type":"markdown","metadata":{"id":"LJ5CvZte1937"},"source":["The dataset we use in this chapter is from the Blue Book for Bulldozers Kaggle competition, which has the following description: \"The goal of the contest is to predict the sale price of a particular piece of heavy equipment at auction based on its usage, equipment type, and configuration. The data is sourced from auction result postings and includes information on usage and equipment configurations.\"\n","\n","This is a very common type of dataset and prediction problem, similar to what you may see in your project or workplace. The dataset is available for download on Kaggle, a website that hosts data science competitions."]},{"cell_type":"markdown","metadata":{"id":"2qFut4iV1937"},"source":["### Kaggle Competitions"]},{"cell_type":"markdown","metadata":{"id":"rVyugEds1937"},"source":["Kaggle is an awesome resource for aspiring data scientists or anyone looking to improve their machine learning skills. There is nothing like getting hands-on practice and receiving real-time feedback to help you improve your skills.\n","\n","Kaggle provides:\n","\n","- Interesting datasets\n","- Feedback on how you're doing\n","- A leaderboard to see what's good, what's possible, and what's state-of-the-art\n","- Blog posts by winning contestants sharing useful tips and techniques\n","\n","Until now all our datasets have been available to download through fastai's integrated dataset system. However, the dataset we will be using in this chapter is only available from Kaggle. Therefore, you will need to register on the site, then go to the [page for the competition](https://www.kaggle.com/c/bluebook-for-bulldozers). On that page click \"Rules,\" then \"I Understand and Accept.\" (Although the competition has finished, and you will not be entering it, you still have to agree to the rules to be allowed to download the data.)\n","\n","The easiest way to download Kaggle datasets is to use the Kaggle API. You can install this using `pip` by running this in a notebook cell:\n","\n"," !pip install kaggle\n","\n","You need an API key to use the Kaggle API; to get one, click on your profile picture on the Kaggle website, and choose My Account, then click Create New API Token. This will save a file called *kaggle.json* to your PC. You need to copy this key on your GPU server. To do so, open the file you downloaded, copy the contents, and paste them in the following cell in the notebook associated with this chapter (e.g., `creds = '{\"username\":\"xxx\",\"key\":\"xxx\"}'`):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bXhBkONS1938"},"outputs":[],"source":["creds = ''"]},{"cell_type":"markdown","metadata":{"id":"D-jr-qk61938"},"source":["Then execute this cell (this only needs to be run once):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_nIcH6Py1939"},"outputs":[],"source":["cred_path = Path('~/.kaggle/kaggle.json').expanduser()\n","if not cred_path.exists():\n"," cred_path.parent.mkdir(exist_ok=True)\n"," cred_path.write_text(creds)\n"," cred_path.chmod(0o600)"]},{"cell_type":"markdown","metadata":{"id":"wYH6pRaE1939"},"source":["Now you can download datasets from Kaggle! Pick a path to download the dataset to:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wDsb91YZ1939","outputId":"87b3b767-d026-4a75-8465-61bb0ac2df30"},"outputs":[{"data":{"text/plain":["Path('/home/jhoward/.fastai/archive/bluebook-for-bulldozers')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["comp = 'bluebook-for-bulldozers'\n","path = URLs.path(comp)\n","path"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AWuIyyGa193_"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"markdown","metadata":{"id":"YZCdRncs193_"},"source":["And use the Kaggle API to download the dataset to that path, and extract it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6vXl1E2b194A","outputId":"03df274f-4d2e-43d8-dc22-1400c9c920fd"},"outputs":[{"data":{"text/plain":["(#7) [Path('ValidSolution.csv'),Path('Machine_Appendix.csv'),Path('TrainAndValid.csv'),Path('median_benchmark.csv'),Path('random_forest_benchmark_test.csv'),Path('Test.csv'),Path('Valid.csv')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["from kaggle import api\n","\n","if not path.exists():\n"," path.mkdir(parents=true)\n"," api.competition_download_cli(comp, path=path)\n"," shutil.unpack_archive(str(path/f'{comp}.zip'), str(path))\n","\n","path.ls(file_type='text')"]},{"cell_type":"markdown","metadata":{"id":"kUKA271X194A"},"source":["Now that we have downloaded our dataset, let's take a look at it!"]},{"cell_type":"markdown","metadata":{"id":"2zDvMxSy194A"},"source":["### Look at the Data"]},{"cell_type":"markdown","metadata":{"id":"-VjB_gAD194G"},"source":["Kaggle provides information about some of the fields of our dataset. The [Data](https://www.kaggle.com/c/bluebook-for-bulldozers/data) explains that the key fields in *train.csv* are:\n","\n","- `SalesID`:: The unique identifier of the sale.\n","- `MachineID`:: The unique identifier of a machine. A machine can be sold multiple times.\n","- `saleprice`:: What the machine sold for at auction (only provided in *train.csv*).\n","- `saledate`:: The date of the sale.\n","\n","In any sort of data science work, it's important to *look at your data directly* to make sure you understand the format, how it's stored, what types of values it holds, etc. Even if you've read a description of the data, the actual data may not be what you expect. We'll start by reading the training set into a Pandas DataFrame. Generally it's a good idea to specify `low_memory=False` unless Pandas actually runs out of memory and returns an error. The `low_memory` parameter, which is `True` by default, tells Pandas to only look at a few rows of data at a time to figure out what type of data is in each column. This means that Pandas can actually end up using different data type for different rows, which generally leads to data processing errors or model training problems later.\n","\n","Let's load our data and have a look at the columns:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"H721BiO-194G"},"outputs":[],"source":["df = pd.read_csv(path/'TrainAndValid.csv', low_memory=False)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CuvKh8_z194H","outputId":"b9dc15ef-3cad-44b2-9b5a-77608372b32b"},"outputs":[{"data":{"text/plain":["Index(['SalesID', 'SalePrice', 'MachineID', 'ModelID', 'datasource',\n"," 'auctioneerID', 'YearMade', 'MachineHoursCurrentMeter', 'UsageBand',\n"," 'saledate', 'fiModelDesc', 'fiBaseModel', 'fiSecondaryDesc',\n"," 'fiModelSeries', 'fiModelDescriptor', 'ProductSize',\n"," 'fiProductClassDesc', 'state', 'ProductGroup', 'ProductGroupDesc',\n"," 'Drive_System', 'Enclosure', 'Forks', 'Pad_Type', 'Ride_Control',\n"," 'Stick', 'Transmission', 'Turbocharged', 'Blade_Extension',\n"," 'Blade_Width', 'Enclosure_Type', 'Engine_Horsepower', 'Hydraulics',\n"," 'Pushblock', 'Ripper', 'Scarifier', 'Tip_Control', 'Tire_Size',\n"," 'Coupler', 'Coupler_System', 'Grouser_Tracks', 'Hydraulics_Flow',\n"," 'Track_Type', 'Undercarriage_Pad_Width', 'Stick_Length', 'Thumb',\n"," 'Pattern_Changer', 'Grouser_Type', 'Backhoe_Mounting', 'Blade_Type',\n"," 'Travel_Controls', 'Differential_Type', 'Steering_Controls'],\n"," dtype='object')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df.columns"]},{"cell_type":"markdown","metadata":{"id":"m7iDORH_194H"},"source":["That's a lot of columns for us to look at! Try looking through the dataset to get a sense of what kind of information is in each one. We'll shortly see how to \"zero in\" on the most interesting bits.\n","\n","At this point, a good next step is to handle *ordinal columns*. This refers to columns containing strings or similar, but where those strings have a natural ordering. For instance, here are the levels of `ProductSize`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FjX8hsSE194I","outputId":"e1e4edf7-c6c3-46ad-ffc5-7bea87bb53b3"},"outputs":[{"data":{"text/plain":["array([nan, 'Medium', 'Small', 'Large / Medium', 'Mini', 'Large', 'Compact'], dtype=object)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df['ProductSize'].unique()"]},{"cell_type":"markdown","metadata":{"id":"cphFrLsp194I"},"source":["We can tell Pandas about a suitable ordering of these levels like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5fOK_O6W194J"},"outputs":[],"source":["sizes = 'Large','Large / Medium','Medium','Small','Mini','Compact'"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"p2fqN6r2194J"},"outputs":[],"source":["df['ProductSize'] = df['ProductSize'].astype('category')\n","df['ProductSize'].cat.set_categories(sizes, ordered=True, inplace=True)"]},{"cell_type":"markdown","metadata":{"id":"Br9i662l194J"},"source":["The most important data column is the dependent variable—that is, the one we want to predict. Recall that a model's metric is a function that reflects how good the predictions are. It's important to note what metric is being used for a project. Generally, selecting the metric is an important part of the project setup. In many cases, choosing a good metric will require more than just selecting a variable that already exists. It is more like a design process. You should think carefully about which metric, or set of metrics, actually measures the notion of model quality that matters to you. If no variable represents that metric, you should see if you can build the metric from the variables that are available.\n","\n","However, in this case Kaggle tells us what metric to use: root mean squared log error (RMSLE) between the actual and predicted auction prices. We need do only a small amount of processing to use this: we take the log of the prices, so that `rmse` of that value will give us what we ultimately need:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"k4_sOYDi194K"},"outputs":[],"source":["dep_var = 'SalePrice'"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QjAJ6J2b194L"},"outputs":[],"source":["df[dep_var] = np.log(df[dep_var])"]},{"cell_type":"markdown","metadata":{"id":"4aWSon3b194L"},"source":["We are now ready to explore our first machine learning algorithm for tabular data: decision trees."]},{"cell_type":"markdown","metadata":{"id":"_MpMMC0M194L"},"source":["## Decision Trees"]},{"cell_type":"markdown","metadata":{"id":"VqYYQKdL194L"},"source":["Decision tree ensembles, as the name suggests, rely on decision trees. So let's start there! A decision tree asks a series of binary (that is, yes or no) questions about the data. After each question the data at that part of the tree is split between a \"yes\" and a \"no\" branch, as shown in <>. After one or more questions, either a prediction can be made on the basis of all previous answers or another question is required."]},{"cell_type":"markdown","metadata":{"id":"_uBTAj38194M"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"f_4mg-p0194M"},"source":["This sequence of questions is now a procedure for taking any data item, whether an item from the training set or a new one, and assigning that item to a group. Namely, after asking and answering the questions, we can say the item belongs to the same group as all the other training data items that yielded the same set of answers to the questions. But what good is this? The goal of our model is to predict values for items, not to assign them into groups from the training dataset. The value is that we can now assign a prediction value for each of these groups—for regression, we take the target mean of the items in the group.\n","\n","Let's consider how we find the right questions to ask. Of course, we wouldn't want to have to create all these questions ourselves—that's what computers are for! The basic steps to train a decision tree can be written down very easily:\n","\n","1. Loop through each column of the dataset in turn.\n","1. For each column, loop through each possible level of that column in turn.\n","1. Try splitting the data into two groups, based on whether they are greater than or less than that value (or if it is a categorical variable, based on whether they are equal to or not equal to that level of that categorical variable).\n","1. Find the average sale price for each of those two groups, and see how close that is to the actual sale price of each of the items of equipment in that group. That is, treat this as a very simple \"model\" where our predictions are simply the average sale price of the item's group.\n","1. After looping through all of the columns and all the possible levels for each, pick the split point that gave the best predictions using that simple model.\n","1. We now have two different groups for our data, based on this selected split. Treat each of these as separate datasets, and find the best split for each by going back to step 1 for each group.\n","1. Continue this process recursively, until you have reached some stopping criterion for each group—for instance, stop splitting a group further when it has only 20 items in it.\n","\n","Although this is an easy enough algorithm to implement yourself (and it is a good exercise to do so), we can save some time by using the implementation built into sklearn.\n","\n","First, however, we need to do a little data preparation."]},{"cell_type":"markdown","metadata":{"id":"bctV6feY194N"},"source":["> A: Here's a productive question to ponder. If you consider that the procedure for defining a decision tree essentially chooses one _sequence of splitting questions about variables_, you might ask yourself, how do we know this procedure chooses the _correct sequence_? The rule is to choose the splitting question that produces the best split (i.e., that most accurately separates the items into two distinct categories), and then to apply the same rule to the groups that split produces, and so on. This is known in computer science as a \"greedy\" approach. Can you imagine a scenario in which asking a “less powerful” splitting question would enable a better split down the road (or should I say down the trunk!) and lead to a better result overall?"]},{"cell_type":"markdown","metadata":{"id":"35J1EPD5194N"},"source":["### Handling Dates"]},{"cell_type":"markdown","metadata":{"id":"cnHirFOJ194N"},"source":["The first piece of data preparation we need to do is to enrich our representation of dates. The fundamental basis of the decision tree that we just described is *bisection*— dividing a group into two. We look at the ordinal variables and divide up the dataset based on whether the variable's value is greater (or lower) than a threshold, and we look at the categorical variables and divide up the dataset based on whether the variable's level is a particular level. So this algorithm has a way of dividing up the dataset based on both ordinal and categorical data.\n","\n","But how does this apply to a common data type, the date? You might want to treat a date as an ordinal value, because it is meaningful to say that one date is greater than another. However, dates are a bit different from most ordinal values in that some dates are qualitatively different from others in a way that that is often relevant to the systems we are modeling.\n","\n","In order to help our algorithm handle dates intelligently, we'd like our model to know more than whether a date is more recent or less recent than another. We might want our model to make decisions based on that date's day of the week, on whether a day is a holiday, on what month it is in, and so forth. To do this, we replace every date column with a set of date metadata columns, such as holiday, day of week, and month. These columns provide categorical data that we suspect will be useful.\n","\n","fastai comes with a function that will do this for us—we just have to pass a column name that contains dates:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FMoqhyRz194O"},"outputs":[],"source":["df = add_datepart(df, 'saledate')"]},{"cell_type":"markdown","metadata":{"id":"E6Wat84f194O"},"source":["Let's do the same for the test set while we're there:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Y468nMYb194O"},"outputs":[],"source":["df_test = pd.read_csv(path/'Test.csv', low_memory=False)\n","df_test = add_datepart(df_test, 'saledate')"]},{"cell_type":"markdown","metadata":{"id":"ABdvfx2I194P"},"source":["We can see that there are now lots of new columns in our DataFrame:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"UQsr-yd-194P","outputId":"46ee02b5-aa4d-47cc-c241-b70face1742b"},"outputs":[{"data":{"text/plain":["'saleWeek saleYear saleMonth saleDay saleDayofweek saleDayofyear saleIs_month_end saleIs_month_start saleIs_quarter_end saleIs_quarter_start saleIs_year_end saleIs_year_start saleElapsed'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["' '.join(o for o in df.columns if o.startswith('sale'))"]},{"cell_type":"markdown","metadata":{"id":"2t89W_DA194Q"},"source":["This is a good first step, but we will need to do a bit more cleaning. For this, we will use fastai objects called `TabularPandas` and `TabularProc`."]},{"cell_type":"markdown","metadata":{"id":"RZGdgp6n194Q"},"source":["### Using TabularPandas and TabularProc"]},{"cell_type":"markdown","metadata":{"id":"pzfBxUhj194Q"},"source":["A second piece of preparatory processing is to be sure we can handle strings and missing data. Out of the box, sklearn cannot do either. Instead we will use fastai's class `TabularPandas`, which wraps a Pandas DataFrame and provides a few conveniences. To populate a `TabularPandas`, we will use two `TabularProc`s, `Categorify` and `FillMissing`. A `TabularProc` is like a regular `Transform`, except that:\n","\n","- It returns the exact same object that's passed to it, after modifying the object in place.\n","- It runs the transform once, when data is first passed in, rather than lazily as the data is accessed.\n","\n","`Categorify` is a `TabularProc` that replaces a column with a numeric categorical column. `FillMissing` is a `TabularProc` that replaces missing values with the median of the column, and creates a new Boolean column that is set to `True` for any row where the value was missing. These two transforms are needed for nearly every tabular dataset you will use, so this is a good starting point for your data processing:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yivUvGPn194Q"},"outputs":[],"source":["procs = [Categorify, FillMissing]"]},{"cell_type":"markdown","metadata":{"id":"oY7h4QXA194R"},"source":["`TabularPandas` will also handle splitting the dataset into training and validation sets for us. However we need to be very careful about our validation set. We want to design it so that it is like the *test set* Kaggle will use to judge the contest.\n","\n","Recall the distinction between a validation set and a test set, as discussed in <>. A validation set is data we hold back from training in order to ensure that the training process does not overfit on the training data. A test set is data that is held back even more deeply, from us ourselves, in order to ensure that *we* don't overfit on the validation data, as we explore various model architectures and hyperparameters.\n","\n","We don't get to see the test set. But we do want to define our validation data so that it has the same sort of relationship to the training data as the test set will have.\n","\n","In some cases, just randomly choosing a subset of your data points will do that. This is not one of those cases, because it is a time series.\n","\n","If you look at the date range represented in the test set, you will discover that it covers a six-month period from May 2012, which is later in time than any date in the training set. This is a good design, because the competition sponsor will want to ensure that a model is able to predict the future. But it means that if we are going to have a useful validation set, we also want the validation set to be later in time than the training set. The Kaggle training data ends in April 2012, so we will define a narrower training dataset which consists only of the Kaggle training data from before November 2011, and we'll define a validation set consisting of data from after November 2011.\n","\n","To do this we use `np.where`, a useful function that returns (as the first element of a tuple) the indices of all `True` values:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"h5rxLpJa194R"},"outputs":[],"source":["cond = (df.saleYear<2011) | (df.saleMonth<10)\n","train_idx = np.where( cond)[0]\n","valid_idx = np.where(~cond)[0]\n","\n","splits = (list(train_idx),list(valid_idx))"]},{"cell_type":"markdown","metadata":{"id":"vyuFciuk194R"},"source":["`TabularPandas` needs to be told which columns are continuous and which are categorical. We can handle that automatically using the helper function `cont_cat_split`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oPVvFjr4194S"},"outputs":[],"source":["cont,cat = cont_cat_split(df, 1, dep_var=dep_var)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"N-jufIHb194S"},"outputs":[],"source":["to = TabularPandas(df, procs, cat, cont, y_names=dep_var, splits=splits)"]},{"cell_type":"markdown","metadata":{"id":"icD4O7p3194S"},"source":["A `TabularPandas` behaves a lot like a fastai `Datasets` object, including providing `train` and `valid` attributes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Q02wzh-T194T","outputId":"ce8f2425-8523-4f3a-f4a6-882830750b7b"},"outputs":[{"data":{"text/plain":["(404710, 7988)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["len(to.train),len(to.valid)"]},{"cell_type":"markdown","metadata":{"id":"8BxJdAV_194T"},"source":["We can see that the data is still displayed as strings for categories (we only show a few columns here because the full table is too big to fit on a page):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cMW6_hrz194T","outputId":"b8b79c91-b2a5-4afa-89bb-9f23a67a9bae"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
saleWeekUsageBandfiModelDescfiBaseModelfiSecondaryDescfiModelSeriesfiModelDescriptorProductSizefiProductClassDescstateProductGroupProductGroupDescDrive_SystemEnclosureForksPad_TypeRide_ControlStickTransmissionTurbochargedBlade_ExtensionBlade_WidthEnclosure_TypeEngine_HorsepowerHydraulicsPushblockRipperScarifierTip_ControlTire_SizeCouplerCoupler_SystemGrouser_TracksHydraulics_FlowTrack_TypeUndercarriage_Pad_WidthStick_LengthThumbPattern_ChangerGrouser_TypeBackhoe_MountingBlade_TypeTravel_ControlsDifferential_TypeSteering_ControlssaleIs_month_endsaleIs_month_startsaleIs_quarter_endsaleIs_quarter_startsaleIs_year_endsaleIs_year_startsaleElapsedauctioneerID_naMachineHoursCurrentMeter_naSalesIDMachineIDModelIDdatasourceauctioneerIDYearMadeMachineHoursCurrentMetersaleYearsaleMonthsaleDaysaleDayofweeksaleDayofyearSalePrice
046Low521D521D#na##na##na#Wheel Loader - 110.0 to 120.0 HorsepowerAlabamaWLWheel Loader#na#EROPS w ACNone or Unspecified#na#None or Unspecified#na##na##na##na##na##na##na#2 Valve#na##na##na##na#None or UnspecifiedNone or Unspecified#na##na##na##na##na##na##na##na##na##na##na##na#StandardConventionalFalseFalseFalseFalseFalseFalse1163635200FalseFalse113924699908931571213.0200468.020061116332011.097410
113Low950FII950FII#na#MediumWheel Loader - 150.0 to 175.0 HorsepowerNorth CarolinaWLWheel Loader#na#EROPS w ACNone or Unspecified#na#None or Unspecified#na##na##na##na##na##na##na#2 Valve#na##na##na##na#23.5None or Unspecified#na##na##na##na##na##na##na##na##na##na##na##na#StandardConventionalFalseFalseFalseFalseFalseFalse1080259200FalseFalse1139248117657771213.019964640.0200432648610.950807
29High226226#na##na##na##na#Skid Steer Loader - 1351.0 to 1601.0 Lb Operating CapacityNew YorkSSLSkid Steer Loaders#na#OROPSNone or Unspecified#na##na##na##na##na##na##na##na##na#Auxiliary#na##na##na##na##na#None or UnspecifiedNone or UnspecifiedNone or UnspecifiedStandard#na##na##na##na##na##na##na##na##na##na##na#FalseFalseFalseFalseFalseFalse1077753600FalseFalse113924943480870091213.020012838.020042263579.210340
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_output\n","to.show(3)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zhuVjMv5194W","outputId":"c72a9705-622e-4a08-9c8f-689937eb482d"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
stateProductGroupDrive_SystemEnclosureSalePrice
0AlabamaWL#na#EROPS w AC11.097410
1North CarolinaWL#na#EROPS w AC10.950807
2New YorkSSL#na#OROPS9.210340
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","to1 = TabularPandas(df, procs, ['state', 'ProductGroup', 'Drive_System', 'Enclosure'], [], y_names=dep_var, splits=splits)\n","to1.show(3)"]},{"cell_type":"markdown","metadata":{"id":"4RhvG043194W"},"source":["However, the underlying items are all numeric:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"JoY13Z-_194X","outputId":"0c057c64-52fd-441e-fa8a-0b08d6d6f4ce"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
SalesIDSalePriceMachineIDsaleWeek...saleIs_year_startsaleElapsedauctioneerID_naMachineHoursCurrentMeter_na
0113924611.09741099908946...1264711
1113924810.95080711765713...1214811
211392499.2103404348089...1213111
\n","

3 rows × 67 columns

\n","
"],"text/plain":[" SalesID SalePrice MachineID saleWeek ... saleIs_year_start \\\n","0 1139246 11.097410 999089 46 ... 1 \n","1 1139248 10.950807 117657 13 ... 1 \n","2 1139249 9.210340 434808 9 ... 1 \n","\n"," saleElapsed auctioneerID_na MachineHoursCurrentMeter_na \n","0 2647 1 1 \n","1 2148 1 1 \n","2 2131 1 1 \n","\n","[3 rows x 67 columns]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_output\n","to.items.head(3)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"h7yxHtTN194X","outputId":"1f76b18e-7905-42f4-97af-15ec5c0b4777"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
stateProductGroupDrive_SystemEnclosure
01603
133603
232306
\n","
"],"text/plain":[" state ProductGroup Drive_System Enclosure\n","0 1 6 0 3\n","1 33 6 0 3\n","2 32 3 0 6"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_input\n","to1.items[['state', 'ProductGroup', 'Drive_System', 'Enclosure']].head(3)"]},{"cell_type":"markdown","metadata":{"id":"-e4rmels194Y"},"source":["The conversion of categorical columns to numbers is done by simply replacing each unique level with a number. The numbers associated with the levels are chosen consecutively as they are seen in a column, so there's no particular meaning to the numbers in categorical columns after conversion. The exception is if you first convert a column to a Pandas ordered category (as we did for `ProductSize` earlier), in which case the ordering you chose is used. We can see the mapping by looking at the `classes` attribute:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TFok-SPX194Y","outputId":"06339582-b079-4e74-84fa-bd7375076099"},"outputs":[{"data":{"text/plain":["['#na#', 'Large', 'Large / Medium', 'Medium', 'Small', 'Mini', 'Compact']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["to.classes['ProductSize']"]},{"cell_type":"markdown","metadata":{"id":"efg2u_1o194Y"},"source":["Since it takes a minute or so to process the data to get to this point, we should save it—that way in the future we can continue our work from here without rerunning the previous steps. fastai provides a `save` method that uses Python's *pickle* system to save nearly any Python object:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SgaKH6H8194Z"},"outputs":[],"source":["save_pickle(path/'to.pkl',to)"]},{"cell_type":"markdown","metadata":{"id":"iLQEmOqP194Z"},"source":["To read this back later, you would type:\n","\n","```python\n","to = (path/'to.pkl').load()\n","```"]},{"cell_type":"markdown","metadata":{"id":"x_cCM_h8194Z"},"source":["Now that all this preprocessing is done, we are ready to create a decision tree."]},{"cell_type":"markdown","metadata":{"id":"DPUd7RZy194a"},"source":["### Creating the Decision Tree"]},{"cell_type":"markdown","metadata":{"id":"WwwaT5wI194a"},"source":["To begin, we define our independent and dependent variables:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CPaJDCTH194a"},"outputs":[],"source":["#hide\n","to = load_pickle(path/'to.pkl')"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gOZwJWn7194a"},"outputs":[],"source":["xs,y = to.train.xs,to.train.y\n","valid_xs,valid_y = to.valid.xs,to.valid.y"]},{"cell_type":"markdown","metadata":{"id":"RbnhAQHp194b"},"source":["Now that our data is all numeric, and there are no missing values, we can create a decision tree:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ho-wyLNU194b"},"outputs":[],"source":["m = DecisionTreeRegressor(max_leaf_nodes=4)\n","m.fit(xs, y);"]},{"cell_type":"markdown","metadata":{"id":"KeTBASn-194c"},"source":["To keep it simple, we've told sklearn to just create four *leaf nodes*. To see what it's learned, we can display the tree:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XRQi8iP9194c","outputId":"85a9ed10-ee21-42a7-b5d9-6b25c49087cb"},"outputs":[{"data":{"image/svg+xml":["\n","\n","\n","\n","\n","\n","Tree\n","\n","\n","\n","0\n","\n","Coupler_System ≤ 0.5\n","mse = 0.48\n","samples = 404710\n","value = 10.1\n","\n","\n","\n","1\n","\n","YearMade ≤ 1991.5\n","mse = 0.42\n","samples = 360847\n","value = 10.21\n","\n","\n","\n","0->1\n","\n","\n","True\n","\n","\n","\n","2\n","\n","mse = 0.12\n","samples = 43863\n","value = 9.21\n","\n","\n","\n","0->2\n","\n","\n","False\n","\n","\n","\n","3\n","\n","mse = 0.37\n","samples = 155724\n","value = 9.97\n","\n","\n","\n","1->3\n","\n","\n","\n","\n","\n","4\n","\n","ProductSize ≤ 4.5\n","mse = 0.37\n","samples = 205123\n","value = 10.4\n","\n","\n","\n","1->4\n","\n","\n","\n","\n","\n","5\n","\n","mse = 0.31\n","samples = 182403\n","value = 10.5\n","\n","\n","\n","4->5\n","\n","\n","\n","\n","\n","6\n","\n","mse = 0.17\n","samples = 22720\n","value = 9.62\n","\n","\n","\n","4->6\n","\n","\n","\n","\n","\n"],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["draw_tree(m, xs, size=10, leaves_parallel=True, precision=2)"]},{"cell_type":"markdown","metadata":{"id":"2LeDtVdo194c"},"source":["Understanding this picture is one of the best ways to understand decision trees, so we will start at the top and explain each part step by step.\n","\n","The top node represents the *initial model* before any splits have been done, when all the data is in one group. This is the simplest possible model. It is the result of asking zero questions and will always predict the value to be the average value of the whole dataset. In this case, we can see it predicts a value of 10.10 for the logarithm of the sales price. It gives a mean squared error of 0.48. The square root of this is 0.69. (Remember that unless you see `m_rmse`, or a *root mean squared error*, then the value you are looking at is before taking the square root, so it is just the average of the square of the differences.) We can also see that there are 404,710 auction records in this group—that is the total size of our training set. The final piece of information shown here is the decision criterion for the best split that was found, which is to split based on the `coupler_system` column.\n","\n","Moving down and to the left, this node shows us that there were 360,847 auction records for equipment where `coupler_system` was less than 0.5. The average value of our dependent variable in this group is 10.21. Moving down and to the right from the initial model takes us to the records where `coupler_system` was greater than 0.5.\n","\n","The bottom row contains our *leaf nodes*: the nodes with no answers coming out of them, because there are no more questions to be answered. At the far right of this row is the node containing records where `coupler_system` was greater than 0.5. The average value here is 9.21, so we can see the decision tree algorithm did find a single binary decision that separated high-value from low-value auction results. Asking only about `coupler_system` predicts an average value of 9.21 versus 10.1.\n","\n","Returning back to the top node after the first decision point, we can see that a second binary decision split has been made, based on asking whether `YearMade` is less than or equal to 1991.5. For the group where this is true (remember, this is now following two binary decisions, based on `coupler_system` and `YearMade`) the average value is 9.97, and there are 155,724 auction records in this group. For the group of auctions where this decision is false, the average value is 10.4, and there are 205,123 records. So again, we can see that the decision tree algorithm has successfully split our more expensive auction records into two more groups which differ in value significantly."]},{"cell_type":"markdown","metadata":{"id":"MlJYG66z194d"},"source":["We can show the same information using Terence Parr's powerful [dtreeviz](https://explained.ai/decision-tree-viz/) library:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AEgv0msW194d","outputId":"7d2cfe12-f314-4ab0-9cdf-34036ce7b4a0"},"outputs":[{"data":{"image/svg+xml":["\n","\n","G\n","\n","\n","\n","node4\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:53.699571\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","leaf5\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:54.310206\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node4->leaf5\n","\n","\n","\n","\n","\n","leaf6\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:54.432563\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node4->leaf6\n","\n","\n","\n","\n","\n","node1\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:53.856628\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node1->node4\n","\n","\n","\n","\n","\n","leaf3\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:54.186657\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node1->leaf3\n","\n","\n","\n","\n","\n","leaf2\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:54.543761\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","\n","node0\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:54.025401\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node0->node1\n","\n","\n","<\n","\n","\n","\n","node0->leaf2\n","\n","\n","\n","\n","\n","\n","\n",""],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["samp_idx = np.random.permutation(len(y))[:500]\n","dtreeviz(m, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var,\n"," fontname='DejaVu Sans', scale=1.6, label_fontsize=10,\n"," orientation='LR')"]},{"cell_type":"markdown","metadata":{"id":"gYiAANy4194d"},"source":["This shows a chart of the distribution of the data for each split point. We can clearly see that there's a problem with our `YearMade` data: there are bulldozers made in the year 1000, apparently! Presumably this is actually just a missing value code (a value that doesn't otherwise appear in the data and that is used as a placeholder in cases where a value is missing). For modeling purposes, 1000 is fine, but as you can see this outlier makes visualization of the values we are interested in more difficult. So, let's replace it with 1950:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"s9G0i-Z-194d"},"outputs":[],"source":["xs.loc[xs['YearMade']<1900, 'YearMade'] = 1950\n","valid_xs.loc[valid_xs['YearMade']<1900, 'YearMade'] = 1950"]},{"cell_type":"markdown","metadata":{"id":"iC1rZKrt194e"},"source":["That change makes the split much clearer in the tree visualization, even although it doesn't actually change the result of the model in any significant way. This is a great example of how resilient decision trees are to data issues!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4d1DQvG5194e","outputId":"a7ed0c7d-862e-4a4b-9e17-5244b159478b"},"outputs":[{"data":{"image/svg+xml":["\n","\n","G\n","\n","\n","\n","node4\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:57.319038\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","leaf5\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:57.938839\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node4->leaf5\n","\n","\n","\n","\n","\n","leaf6\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:58.061366\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node4->leaf6\n","\n","\n","\n","\n","\n","node1\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:57.481070\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node1->node4\n","\n","\n","\n","\n","\n","leaf3\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:57.817648\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node1->leaf3\n","\n","\n","\n","\n","\n","leaf2\n","\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:58.171854\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","\n","node0\n","\n"," \n"," \n"," \n"," \n"," 2020-11-29T10:27:57.657715\n"," image/svg+xml\n"," \n"," \n"," Matplotlib v3.3.1, https://matplotlib.org/\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","\n","\n","\n","node0->node1\n","\n","\n","<\n","\n","\n","\n","node0->leaf2\n","\n","\n","\n","\n","\n","\n","\n",""],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = DecisionTreeRegressor(max_leaf_nodes=4).fit(xs, y)\n","\n","dtreeviz(m, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var,\n"," fontname='DejaVu Sans', scale=1.6, label_fontsize=10,\n"," orientation='LR')"]},{"cell_type":"markdown","metadata":{"id":"bHwLhS_4194e"},"source":["Let's now have the decision tree algorithm build a bigger tree. Here, we are not passing in any stopping criteria such as `max_leaf_nodes`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Zlr99tSa194f"},"outputs":[],"source":["m = DecisionTreeRegressor()\n","m.fit(xs, y);"]},{"cell_type":"markdown","metadata":{"id":"2CcHgbuY194f"},"source":["We'll create a little function to check the root mean squared error of our model (`m_rmse`), since that's how the competition was judged:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZWEAkLrs194f"},"outputs":[],"source":["def r_mse(pred,y): return round(math.sqrt(((pred-y)**2).mean()), 6)\n","def m_rmse(m, xs, y): return r_mse(m.predict(xs), y)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"d9PflY7R194g","outputId":"2e070441-9906-49ad-86df-e65c56d1d4af"},"outputs":[{"data":{"text/plain":["0.0"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m_rmse(m, xs, y)"]},{"cell_type":"markdown","metadata":{"id":"5cqRescM194g"},"source":["So, our model is perfect, right? Not so fast... remember we really need to check the validation set, to ensure we're not overfitting:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"j_9SX3Xr194g","outputId":"56472e46-e8dd-4c03-a18d-41b392903f11"},"outputs":[{"data":{"text/plain":["0.331466"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m_rmse(m, valid_xs, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"WOnMWFMy194h"},"source":["Oops—it looks like we might be overfitting pretty badly. Here's why:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KRrqAaDs194h","outputId":"c16c67c7-76d4-4de3-bc29-8e4702fae25f"},"outputs":[{"data":{"text/plain":["(324544, 404710)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m.get_n_leaves(), len(xs)"]},{"cell_type":"markdown","metadata":{"id":"R-rUq5D5194h"},"source":["We've got nearly as many leaf nodes as data points! That seems a little over-enthusiastic. Indeed, sklearn's default settings allow it to continue splitting nodes until there is only one item in each leaf node. Let's change the stopping rule to tell sklearn to ensure every leaf node contains at least 25 auction records:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1UIavvb4194i","outputId":"406396fe-76ef-4f20-8d55-5e6844f750dd"},"outputs":[{"data":{"text/plain":["(0.248562, 0.323396)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = DecisionTreeRegressor(min_samples_leaf=25)\n","m.fit(to.train.xs, to.train.y)\n","m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"wog7rVFN194i"},"source":["That looks much better. Let's check the number of leaves again:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ITcINNvT194j","outputId":"9853729d-3bf7-40ca-f290-789e0dc26e44"},"outputs":[{"data":{"text/plain":["12397"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m.get_n_leaves()"]},{"cell_type":"markdown","metadata":{"id":"wr9l2ieG194j"},"source":["Much more reasonable!"]},{"cell_type":"markdown","metadata":{"id":"ovhrKoku194j"},"source":["> A: Here's my intuition for an overfitting decision tree with more leaf nodes than data items. Consider the game Twenty Questions. In that game, the chooser secretly imagines an object (like, \"our television set\"), and the guesser gets to pose 20 yes or no questions to try to guess what the object is (like \"Is it bigger than a breadbox?\"). The guesser is not trying to predict a numerical value, but just to identify a particular object out of the set of all imaginable objects. When your decision tree has more leaves than there are possible objects in your domain, then it is essentially a well-trained guesser. It has learned the sequence of questions needed to identify a particular data item in the training set, and it is \"predicting\" only by describing that item's value. This is a way of memorizing the training set—i.e., of overfitting."]},{"cell_type":"markdown","metadata":{"id":"rV77oCeS194k"},"source":["Building a decision tree is a good way to create a model of our data. It is very flexible, since it can clearly handle nonlinear relationships and interactions between variables. But we can see there is a fundamental compromise between how well it generalizes (which we can achieve by creating small trees) and how accurate it is on the training set (which we can achieve by using large trees).\n","\n","So how do we get the best of both worlds? We'll show you right after we handle an important missing detail: how to handle categorical variables."]},{"cell_type":"markdown","metadata":{"id":"bbX8Z0XC194k"},"source":["### Categorical Variables"]},{"cell_type":"markdown","metadata":{"id":"6QOWTQp0194k"},"source":["In the previous chapter, when working with deep learning networks, we dealt with categorical variables by one-hot encoding them and feeding them to an embedding layer. The embedding layer helped the model to discover the meaning of the different levels of these variables (the levels of a categorical variable do not have an intrinsic meaning, unless we manually specify an ordering using Pandas). In a decision tree, we don't have embeddings layers—so how can these untreated categorical variables do anything useful in a decision tree? For instance, how could something like a product code be used?\n","\n","The short answer is: it just works! Think about a situation where there is one product code that is far more expensive at auction than any other one. In that case, any binary split will result in that one product code being in some group, and that group will be more expensive than the other group. Therefore, our simple decision tree building algorithm will choose that split. Later during training the algorithm will be able to further split the subgroup that contains the expensive product code, and over time, the tree will home in on that one expensive product.\n","\n","It is also possible to use one-hot encoding to replace a single categorical variable with multiple one-hot-encoded columns, where each column represents a possible level of the variable. Pandas has a `get_dummies` method which does just that.\n","\n","However, there is not really any evidence that such an approach improves the end result. So, we generally avoid it where possible, because it does end up making your dataset harder to work with. In 2019 this issue was explored in the paper [\"Splitting on Categorical Predictors in Random Forests\"](https://peerj.com/articles/6339/) by Marvin Wright and Inke König, which said:"]},{"cell_type":"markdown","metadata":{"id":"78rV14Av194l"},"source":["> : The standard approach for nominal predictors is to consider all $2^{k-1} − 1$ 2-partitions of the *k* predictor categories. However, this exponential relationship produces a large number of potential splits to be evaluated, increasing computational complexity and restricting the possible number of categories in most implementations. For binary classification and regression, it was shown that ordering the predictor categories in each split leads to exactly the same splits as the standard approach. This reduces computational complexity because only *k* − 1 splits have to be considered for a nominal predictor with *k* categories."]},{"cell_type":"markdown","metadata":{"id":"QjoOFerF194l"},"source":["Now that you understand how decisions tree work, it's time for the best-of-both-worlds solution: random forests."]},{"cell_type":"markdown","metadata":{"id":"U5f4gFts194l"},"source":["## Random Forests"]},{"cell_type":"markdown","metadata":{"id":"rZ8s05rN194m"},"source":["In 1994 Berkeley professor Leo Breiman, one year after his retirement, published a small technical report called [\"Bagging Predictors\"](https://www.stat.berkeley.edu/~breiman/bagging.pdf), which turned out to be one of the most influential ideas in modern machine learning. The report began:\n","\n","> : Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions... The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests… show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.\n","\n","Here is the procedure that Breiman is proposing:\n","\n","1. Randomly choose a subset of the rows of your data (i.e., \"bootstrap replicates of your learning set\").\n","1. Train a model using this subset.\n","1. Save that model, and then return to step 1 a few times.\n","1. This will give you a number of trained models. To make a prediction, predict using all of the models, and then take the average of each of those model's predictions.\n","\n","This procedure is known as \"bagging.\" It is based on a deep and important insight: although each of the models trained on a subset of data will make more errors than a model trained on the full dataset, those errors will not be correlated with each other. Different models will make different errors. The average of those errors, therefore, is: zero! So if we take the average of all of the models' predictions, then we should end up with a prediction that gets closer and closer to the correct answer, the more models we have. This is an extraordinary result—it means that we can improve the accuracy of nearly any kind of machine learning algorithm by training it multiple times, each time on a different random subset of the data, and averaging its predictions.\n","\n","In 2001 Leo Breiman went on to demonstrate that this approach to building models, when applied to decision tree building algorithms, was particularly powerful. He went even further than just randomly choosing rows for each model's training, but also randomly selected from a subset of columns when choosing each split in each decision tree. He called this method the *random forest*. Today it is, perhaps, the most widely used and practically important machine learning method.\n","\n","In essence a random forest is a model that averages the predictions of a large number of decision trees, which are generated by randomly varying various parameters that specify what data is used to train the tree and other tree parameters. Bagging is a particular approach to \"ensembling,\" or combining the results of multiple models together. To see how it works in practice, let's get started on creating our own random forest!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GALw9Vxl194m"},"outputs":[],"source":["#hide\n","# pip install —pre -f https://sklearn-nightly.scdn8.secure.raxcdn.com scikit-learn —U"]},{"cell_type":"markdown","metadata":{"id":"1A-5NIcB194m"},"source":["### Creating a Random Forest"]},{"cell_type":"markdown","metadata":{"id":"H1Y0oiOO194m"},"source":["We can create a random forest just like we created a decision tree, except now, we are also specifying parameters that indicate how many trees should be in the forest, how we should subset the data items (the rows), and how we should subset the fields (the columns).\n","\n","In the following function definition `n_estimators` defines the number of trees we want, `max_samples` defines how many rows to sample for training each tree, and `max_features` defines how many columns to sample at each split point (where `0.5` means \"take half the total number of columns\"). We can also specify when to stop splitting the tree nodes, effectively limiting the depth of the tree, by including the same `min_samples_leaf` parameter we used in the last section. Finally, we pass `n_jobs=-1` to tell sklearn to use all our CPUs to build the trees in parallel. By creating a little function for this, we can more quickly try different variations in the rest of this chapter:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"UzgdrfhL194n"},"outputs":[],"source":["def rf(xs, y, n_estimators=40, max_samples=200_000,\n"," max_features=0.5, min_samples_leaf=5, **kwargs):\n"," return RandomForestRegressor(n_jobs=-1, n_estimators=n_estimators,\n"," max_samples=max_samples, max_features=max_features,\n"," min_samples_leaf=min_samples_leaf, oob_score=True).fit(xs, y)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"InyXs-hS194n"},"outputs":[],"source":["m = rf(xs, y);"]},{"cell_type":"markdown","metadata":{"id":"EJgYXXSm194o"},"source":["Our validation RMSE is now much improved over our last result produced by the `DecisionTreeRegressor`, which made just one tree using all the available data:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"LR4ZgxtP194o","outputId":"8d1b3fb7-a0b0-42cd-97c4-092df00a80d3"},"outputs":[{"data":{"text/plain":["(0.170917, 0.233975)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"msrt7YiW194o"},"source":["One of the most important properties of random forests is that they aren't very sensitive to the hyperparameter choices, such as `max_features`. You can set `n_estimators` to as high a number as you have time to train—the more trees you have, the more accurate the model will be. `max_samples` can often be left at its default, unless you have over 200,000 data points, in which case setting it to 200,000 will make it train faster with little impact on accuracy. `max_features=0.5` and `min_samples_leaf=4` both tend to work well, although sklearn's defaults work well too.\n","\n","The sklearn docs [show an example](http://scikit-learn.org/stable/auto_examples/ensemble/plot_ensemble_oob.html) of the effects of different `max_features` choices, with increasing numbers of trees. In the plot, the blue plot line uses the fewest features and the green line uses the most (it uses all the features). As you can see in <>, the models with the lowest error result from using a subset of features but with a larger number of trees."]},{"cell_type":"markdown","metadata":{"hide_input":true,"id":"4Q0sarCd194p"},"source":["\"sklearn"]},{"cell_type":"markdown","metadata":{"id":"NGOoGhGR194p"},"source":["To see the impact of `n_estimators`, let's get the predictions from each individual tree in our forest (these are in the `estimators_` attribute):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oedGo6x5194p"},"outputs":[],"source":["preds = np.stack([t.predict(valid_xs) for t in m.estimators_])"]},{"cell_type":"markdown","metadata":{"id":"ZxH0vvz8194q"},"source":["As you can see, `preds.mean(0)` gives the same results as our random forest:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oUbRhMrx194q","outputId":"36575076-79ef-4e68-ec08-4bb3cf965d83"},"outputs":[{"data":{"text/plain":["0.233975"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["r_mse(preds.mean(0), valid_y)"]},{"cell_type":"markdown","metadata":{"id":"PvXSMJsE194q"},"source":["Let's see what happens to the RMSE as we add more and more trees. As you can see, the improvement levels off quite a bit after around 30 trees:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nJe62GYR194r","outputId":"300befd3-c77e-400b-fddf-ca865e6f5730"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAldElEQVR4nO3df3xcdZ3v8ddnZpKZ/G7TTNJCSQOlBSmKSASlCiiKoMvStXoXQZZlr6KwuuveRdddl8eDRfcuKo/dvVfZevGyyoLgigt7WcVfD3/s0oJCKhasQOVHf0KbpD+STNL8mnzuH+ckTIdJM03TTDLn/Xw85pHke86c+eQ0fc+Z7znn+zV3R0REoiVW6gJERGT2KfxFRCJI4S8iEkEKfxGRCFL4i4hEUKLUBRSjqanJ29raSl2GiMi8snHjxm53TxdaNi/Cv62tjY6OjlKXISIyr5jZtsmWqdtHRCSCFP4iIhGk8BcRiSCFv4hIBBUV/mbWaGYPmFm/mW0zsysmWe9yM3vWzHrMrNPM7jSz+pzlHzOzDjMbMrOvz9DvICIiR6jYI//bgGGgBbgSWGdmqwqstwFY7e4NwEkEVxN9Lmf5S+HP/zztikVE5KhNeamnmdUAa4HT3T0DrDezB4GrgE/nruvuO/KengVOzll+f7jNdmDp0ZUuIiLTVcyR/0og6+5bcto2AYWO/DGzt5hZD9BH8Kbxj9MpzMyuDbuIOrq6uqazCR54Yid3/3zSy1xFRCKrmPCvBXry2nqAukIru/v6sNtnKfBFYOt0CnP329293d3b0+mCN6hN6aGndiv8RUQKKCb8M0B9Xls9wZH9pNx9F/B94JvTK+3opeuSdPUNlerlRUTmrGLCfwuQMLMVOW1nAJuLeG4CWD6dwmZCujbJvoFhRrJjpSpBRGROmjL83b0fuB+42cxqzGw1cBlwV/66ZnalmbVaYBnwt8CPc5YnzCwFxIG4maXM7JiNL9Rcn8Qd9vUPH6uXEBGZl4q91PN6oAroBO4FrnP3zWHQZ8ysNVzvNOARgq6iDcCzwIdztvPXwEGCq4Q+GH7/10f9W0wiXZsEUNePiEieoo663X0fsKZA+3aCE8LjP38G+MxhtnMTcNMR1jht6bog/Dv7BoGG2XpZEZE5r6yHdxgPfx35i4gcqqzDv0ndPiIiBZV1+Kcq4tSnEgp/EZE8ZR3+AM31KboyCn8RkVxlH/7pWt3oJSKSr/zDvy5Jp8JfROQQkQh/HfmLiBwqEuE/MJylf2i01KWIiMwZZR/+zbrWX0TkVco+/Cdu9NIVPyIiEyIT/p29Cn8RkXHlH/4Td/kOlrgSEZG5o+zDf2F1JfGYqdtHRCRH2Yd/LGY01VbqhK+ISI6yD3+A5rqUwl9EJEckwj9dl1S3j4hIjqLC38wazewBM+s3s21mdsUk611uZs+aWY+ZdZrZnWZWf6TbmWnp2qSu9hERyVHskf9twDDQAlwJrDOzVQXW2wCsdvcG4CSCmcI+N43tzKh0XZK9/cNkx/xYv5SIyLwwZfibWQ2wFrjR3TPuvh54ELgqf1133+Hu3TlNWeDkI93OTEvXJcmOOfsHNJG7iAgUd+S/Esi6+5actk1AwSN2M3uLmfUAfQRh/4/T3M61ZtZhZh1dXV1FlDk5DfEgInKoYsK/FujJa+sB6gqt7O7rw26fpcAXga3T3M7t7t7u7u3pdLqIMienuXxFRA5VTPhngPq8tnqCI/tJufsu4PvAN49mOzNhYogHhb+ICFBc+G8BEma2IqftDGBzEc9NAMtnYDtHRRO5i4gcasrwd/d+4H7gZjOrMbPVwGXAXfnrmtmVZtZqgWXA3wI/PtLtzLSaZIKayrjCX0QkVOylntcDVUAncC9wnbtvDoM+Y2at4XqnAY8QdPFsAJ4FPjzVdo7+15iabvQSEXlFopiV3H0fsKZA+3aCE7njP38G+MyRbmc2BEM8aGRPERGIyPAOoIncRURyRSr81ecvIhKIVPj3DY4yOJItdSkiIiUXnfDX5Z4iIhOiE/71mshdRGRcdMJfR/4iIhMiE/7NGuJBRGRCZMK/saYSMx35i4hAhMI/EY+xqEYTuYuIQITCHyCtidxFRIDIhb/G9xERgaiFf22Srl6N7yMiEq3wD4/83TWRu4hEW+TCfyTr9BwcKXUpIiIlFbnwB13uKSISqfBvVviLiABFhr+ZNZrZA2bWb2bbzOyKSda72sw2mlmvme00sy+YWSJn+WvM7Cdm1mNmz5nZ783UL1IMTeQuIhIo9sj/NmAYaAGuBNaZ2aoC61UDnwCagHOAC4EbAMI3gf8HfAdoBK4F7jazlUdR/xFRt4+ISGDK8DezGmAtcKO7Z9x9PfAgcFX+uu6+zt0fdvdhd98FfANYHS4+FTgO+Ad3z7r7Twjm+X3Vdo6VumSCZCKma/1FJPKKOfJfCWTdfUtO2yag0JF/vvOA8QnarcByA04vYjszwsw0o5eICMWFfy3Qk9fWA9Qd7klmdg3QDtwaNj0DdAKfNLMKM7sIOJ+gq6jQ8681sw4z6+jq6iqizOI0K/xFRIoK/wxQn9dWD/RN9gQzWwPcAlzi7t0A7j4CrAHeA+wG/hz4FrCz0Dbc/XZ3b3f39nQ6XUSZxdGRv4hIceG/BUiY2YqctjN4pTvnEGZ2MfBV4FJ3fyp3mbs/6e7nu/sid38XcBLw2PRKn550XZLOPg3xICLRNmX4u3s/cD9ws5nVmNlq4DLgrvx1zeztBCd517r7q0LdzF5nZikzqzazG4AlwNeP8nc4IunaFPsHRhgeHZvNlxURmVOKvdTzeqCKoM/+XuA6d99sZq1mljGz1nC9G4EG4KGwPWNm38vZzlXAy+F2LgTe6e6z2gczfrnn3n51/YhIdCWmXgXcfR9Bf31++3aCE8LjP79tiu18EvjkkZU4s3Kv9V/SUFXKUkRESiZSwzuAhngQEYEIhr+GeBARiWD4L6qtBHTkLyLRFrnwTybiLKiuUPiLSKRFLvwhnM5R4S8iERbJ8G+u10TuIhJtkQx/HfmLSNRFM/zDIR40kbuIRFVkw39wZIzM0GipSxERKYnIhj/ock8Ria5ohn9tClD4i0h0RTL8m+vDI39d8SMiERXJ8E/XhkM89Cr8RSSaIhn+DVUVVMRNR/4iElmRDP9YzGjStf4iEmGRDH/QXL4iEm2RDf9mhb+IRFhR4W9mjWb2gJn1m9k2M7tikvWuNrONZtZrZjvN7AtmlshZ3mZmD5nZfjPbbWZfzl0+m4K7fBX+IhJNxR753wYMAy3AlcA6M1tVYL1q4BNAE3AOwTy9N+Qs/yeC+XuXAK8HzieYH3jWpWuT7OsfIjumIR5EJHqmDH8zqwHWAje6e8bd1wMPEkzGfgh3X+fuD7v7sLvvAr4BrM5Z5UTgW+4+6O67ge8Dhd5Ejrl0XZIx10TuIhJNxRz5rwSy7r4lp20TxYX2ecDmnJ//F3C5mVWb2fHAJQRvAK9iZteaWYeZdXR1dRXxUkdGQzyISJQVE/61QE9eWw9Qd7gnmdk1QDtwa07zfxK8afQCO4EO4N8LPd/db3f3dndvT6fTRZR5ZBT+IhJlxYR/BqjPa6sH+iZ7gpmtAW4BLnH37rAtBvwAuB+oITgvsBD4/BFXPQOa6zS+j4hEVzHhvwVImNmKnLYzOLQ7Z4KZXQx8FbjU3Z/KWdQInAB82d2H3H0v8DXg3dOq/Cg1jQ/xoPAXkQiaMvzdvZ/gaP1mM6sxs9XAZcBd+eua2dsJTvKudffH8rbTDbwIXGdmCTNbAFxNcP5g1lVVxqlLJujsHSzFy4uIlFSxl3peD1QRXKZ5L3Cdu282s1Yzy5hZa7jejUAD8FDYnjGz7+Vs573AxUAX8BwwCvzZTPwi07GipZZfv9RbqpcXESmZom6wcvd9wJoC7dsJTgiP//y2KbbzK+CCIynwWHpjWyP/vOFFBkeypCripS5HRGTWRHZ4B4D2tkZGss6TO/MvZhIRKW/RDv9lCwF4fOu+ElciIjK7Ih3+C2sqWdFcq/AXkciJdPhD0PWzcdt+jfEjIpES+fB/Y9tC+gZH2bJn0nvWRETKjsK/rRFQv7+IREvkw3/pwioW16d4fOv+UpciIjJrIh/+ZkZ720Ief3Ef7ur3F5FoiHz4A5x9YiO7ewfZuf9gqUsREZkVCn+gfVnQ79+xTf3+IhINCn/glMV11CUT6vcXkchQ+APxmHFW2O8vIhIFCv/QG9sa+W1nhv39w6UuRUTkmFP4h8bH+dm4TV0/IlL+FP6hM05YQGU8ppu9RCQSFP6hVEWc1y5tUPiLSCQUFf5m1mhmD5hZv5ltM7MrJlnvajPbaGa9ZrbTzL5gZomc5Zm8R9bMvjRTv8zRam9byFO7ehgcyZa6FBGRY6rYI//bgGGgBbgSWGdmqwqsVw18AmgCzgEuBG4YX+juteOPcFsHgfumXf0MOzuc3OVXOw6UuhQRkWNqyvA3sxpgLXCju2fcfT3wIHBV/rruvs7dH3b3YXffRTCZ++pJNv0+gjmBH5529TPsrPCkb4e6fkSkzBVz5L8SyLr7lpy2TUChI/985wGbJ1l2NfAvPsmAOmZ2rZl1mFlHV1dXES919BZUV7KypVY3e4lI2Ssm/GuB/Elue4C6wz3JzK4B2oFbCyxrBc4H7pzs+e5+u7u3u3t7Op0uosyZ0d7WyC81uYuIlLliwj8D1Oe11QOTzn5iZmuAW4BL3L27wCp/AKx39xeLrHPWnN3WSN/QKM/s7i11KSIix0wx4b8FSJjZipy2M5ikO8fMLga+Clzq7k9Nss0/4DBH/aXU3jbe76+uHxEpX1OGv7v3A/cDN5tZjZmtBi4D7spf18zeTnCSd627P1Zoe2Z2LnA8c+gqn1zHL6hiSUNK1/uLSFkr9lLP64Eqgqtz7gWuc/fNZtYaXq/fGq53I9AAPJRzLf/38rZ1NXC/u8/JSXPNjDe2NfL4Vk3uIiLlKzH1KuDu+4A1Bdq3E5wQHv/5bUVs6yNHUF9JvLFtIQ9ueomd+w9yQmN1qcsREZlxGt6hgHZN6i4iZU7hX8ApLXXUpRIKfxEpWwr/AmIxo33ZQt3sJSJlS+E/ifa2Rp7rzLBPk7uISBlS+E/i7BPV7y8i5UvhP4nXLW2gpjLOz56dnXGFRERmk8J/EslEnAtOaeZHv9nDmMb5EZEyo/A/jItWtdCdGeIJje8vImVG4X8YF5zSTCJm/Og3e0pdiojIjFL4H0ZDVQVvOmkRP/zN7lKXIiIyoxT+U7hoVQsvdPXzXGem1KWIiMwYhf8U3vGaFgAd/YtIWVH4T+G4BVW8bmkDP9ysfn8RKR8K/yJcdFoLv9pxgM7ewVKXIiIyIxT+RXjnaYsB+NHTOvoXkfKg8C/CypZali2qVtePiJSNosLfzBrN7AEz6zezbWZ2xSTrXW1mG82s18x2mtkXzCyRt87lZvZ0uK3nzeytM/GLHEtmxkWntfDI8930DY6UuhwRkaNW7JH/bcAw0AJcCawzs1UF1qsGPgE0AecAFwI3jC80s3cCnweuAeqA84AXpln7rLpo1WJGsq6xfkSkLEwZ/mZWA6wFbnT3jLuvBx4Erspf193XufvD7j7s7rsIJnNfnbPK3wA3u/vP3X3M3XeF6815b2hdyKKaSn6ou31FpAwUc+S/Esi6+5actk1AoSP/fOcBmwHMLA60A2kzey7sFvqymVUVeqKZXWtmHWbW0dVV+qPteMy48DXN/OyZToZHx0pdjojIUSkm/GuBnry2HoJum0mZ2TUEYX9r2NQCVADvA94KvB44E/jrQs9399vdvd3d29PpdBFlHnsXnbaYvqFRfv7C3lKXIiJyVIoJ/wxQn9dWD/RN9gQzWwPcAlzi7t1h88Hw65fc/eWw/e+Bdx9RxSX0lhVNVFXEdbeviMx7xYT/FiBhZity2s4g7M7JZ2YXA18FLnX3p8bb3X0/sBOYt4PjpyrinL8yrTH+RWTemzL83b0fuB+42cxqzGw1cBlwV/66ZvZ2gpO8a939sQKb+xrwcTNrNrOFBFcGfeco6p91F61qYU/vEE/uyu8JExGZP4q91PN6oAroBO4FrnP3zWbWamYZM2sN17sRaAAeCtszZva9nO18Fnic4NPE08ATwN/OxC8yW95+ajPxmPEjdf2IyDyWmHoVcPd9wJoC7dsJTgiP//y2KbYzQvBGcv0RVTmHLKiu5Oy2Rn64eQ+ffNeppS5HRGRaNLzDNFy0qoXfdmZ4oUtj/IvI/KTwn4Z3nhaM8a/pHUVkvlL4T8PShdWsOq5ed/uKyLyl8J+md57Wwi+372fXgYNTrywiMsco/KfpvWcuJZWI86f3PsFIVsM9iMj8ovCfptZF1Xz+fa+jY9t+/udDT5e6HBGRI6LwPwq/e8Zx/OG5bXxtw1Ye3PRSqcsRESmawv8o/dW7X8NZyxby6X97kt/umXS4IxGROUXhf5QqEzFuu+INVFfG+cjdGzXTl4jMCwr/GbC4IcWXPvAGtu0d4FPffhJ3DfomInObwn+GvHn5Iv7i4lP43q93838ffrHU5YiIHJbCfwZ9+K0nccnpi7nl+89owhcRmdMU/jPIzPjC+17HskXVfOyeJ9jTO1jqkkREClL4z7C6VAVf+eBZ9A+N8tG7N9IzoBPAIjL3KPyPgZUtdfz9fzuDX+/q4XdvW88WXQIqInOMwv8YueS1S/jmtW9iYDjLmts28P1fv1zqkkREJhQV/mbWaGYPmFm/mW0zsysmWe9qM9toZr1mttPMvmBmiZzlPzOzwZxZvp6dqV9kLjprWSPf+fhbWNlSx0fv/iW3/uBZzf0rInNCsUf+twHDQAtwJbDOzFYVWK+aYF7eJuAc4ELghrx1PubuteHjlGlVPY+01Kf414+8id9vP4Ev//Q5PvQvHfTqRjARKbEpw9/MaoC1wI3unnH39cCDwFX567r7Ond/2N2H3X0XwWTuq2e66PkmmYhzy9rX8tk1p/NfW7pY8+UNPNep8wAiUjrFHPmvBLLuviWnbRNQ6Mg/33nA5ry2vzOzbjPbYGYXTPZEM7vWzDrMrKOrq6uIl5rbzIyr3rSMez78JnoHR1hz2yP8YLMmgReR0igm/GuBnry2HqDucE8ys2uAduDWnOa/AE4CjgduB/7DzJYXer673+7u7e7enk6niyhzfjj7xEb+4+NvYXm6ho/ctZHPfuc3DI9qPgARmV3FhH8GqM9rqwcm7bcwszXALcAl7t493u7uv3D3Pncfcvc7gQ3Au4+46nluSUMV3/rom/nDc9u4Y/2LvP//PMqOfQOlLktEIqSY8N8CJMxsRU7bGby6OwcAM7sY+Cpwqbs/NcW2HbBiCi03yUScm353FV/54Bt4oSvDu//3w3z/1+oGEpHZMWX4u3s/cD9ws5nVmNlq4DLgrvx1zeztBCd517r7Y3nLFpjZu8wsZWYJM7uS4JzAD2biF5mvLj59Cd/9+Fs5qamGj969kZse3MzQaLbUZYlImSv2Us/rgSqgE7gXuM7dN5tZa3i9fmu43o1AA/BQzrX83wuXVQCfA7qAbuDjwBp3L+tr/YvRuqia+z56Ln+0+kS+/shW3rfuUbbt7S91WSJSxmw+jD3f3t7uHR0dpS5jVvxg824+ed8m3OHGS0/jfW9YSiwWyZ4xETlKZrbR3dsLLdPwDnPMu1Yt5rt/8lZWLq7jU99+kjX/tIHHt+4rdVkiUmYU/nPQCY3V3PeRN/MPv38Gnb1DvP8rj/LH9/xSVwSJyIxR+M9RsZjxe2cu5Sc3nM+fXriCHz+9hwv//j/54g+eITM0WuryRGSeU/jPcdWVCf7snSv5yZ9fwLtPX8xtP32et936M771+A4NEici06bwnyeOW1DFP15+Jg9cfy5LF1bxqX97kmu+/jgHBoZLXZqIzEMK/3nmzNaF3H/duXxuzek8+vxefudL6/n1rvzRN0REDk/hPw+ZGR980zLu++ibGRtz3rvuEb71+I5SlyUi84jCfx4744QFfOdP3srZbY186t+e5C/vf5LBEd0dLCJTU/jPc401ldz5R2fzx29bzr2P7eD9X3mUnft1SaiIHJ7CvwzEY8Yn33Uqt191Flu7+/mdL63nv7bM/zkQROTY0fAOZebF7n6uu3sjz+zu46R0DecuX8S5y5t400mLaKypLHV5IjKLDje8g8K/DA0Mj3LPL7az4bluHntxH/3DwXmAUxfXce7yJt68fBFnn9hIQ1VFiSsVkWNJ4R9hI9kxntzZw6PPd/PoC3vp2LqfodExzOCUljrOWraQs5YtpH1ZIyc0VmGmQeREyoXCXyYMjmR5YvsBfvHiXjZu288T2w9MDBfRVJukPXwzOLN1AacdV091ZaLEFYvIdB0u/PU/O2JSFXHevHwRb16+CIDsmLNlTx8bt+2feHw/nFg+ZrA8Xctrj2/g9OMbeO3SBk5bUk9NUn82IvOdjvzlVTp7B9m0s4endvXw613B166+IQAsfEM4f2WaD5zdysnNtSWuVkQmc9TdPmbWCNwBXEQwC9dfuvs9Bda7GvgTYAXQC9wD/JW7j+attwJ4Cvi2u39wqtdX+Jfent7BiTeCTTsOsP65bkayzjknNnLFOa1cfPpikol4qcsUkRwz0e1zGzAMtACvB75rZpvcPX8S92rgE8AvgDTwIHADcEuB7T1e5GvLHNBSn6KlPsWFr2kBoDszxH0dO7nnsW386Td/RWNNJe8/aykfOLuVtqaaElcrIlOZ8sjfzGqA/cDp7r4lbLsL2OXun57iuf8DeJu7X5rTdjnwXuA3wMk68p/fxsac9c91c88vtvOjp/eQHXNWn7yI15+wgHRtknRdiub6JOnaJM31SZ1AFplFR3vkvxLIjgd/aBNwfhHPPQ+Y+HRgZvXAzcCFwH8/3BPN7FrgWoDW1tbDrSolFIsZ561Mc97KNHt6B/nW4zu4/4ld/OKFFxgtMN9ATWWcxQ0pzluZ5j2vXcIbWhdqjmKREigm/GuB/DGDe4C6wz3JzK4B2oEP5TR/FrjD3XdMdT25u98O3A7BkX8RdUqJtdSn+PiFK/j4hSsYG3P2DwzTlRmis3eIrr4hOvuCry92Z/jGz7fztQ1bWVyf4uLTF/Oe1y3hLL0RiMyaYsI/A9TntdUDfZM9wczWEPTzv8Pdu8O21wPvAM6cTqEyv8RixqLaJItqk5y6+NXL+wZH+PHTnXz3qZe557HtfP2RrTTXJbnk9MVctGoxq46rZ0G1hqMQOVaKCf8tQMLMVrj7b8O2M8jpzsllZhcDXwXe4+5P5Sy6AGgDtodH/bVA3MxOc/c3TK98ma/qUhWsOfN41px5PH2DI/zkmU4eeuplvvn4Du58dBsALfVJVrbUceriuvBrPSc311JVqauKRI5WsZd6fhNwgi6c1wMPAefmX+1jZm8H7gN+z93/K29ZNYd+griB4M3gOnc/7BCUOuEbHZmhUTq27uPZ3X08u6ePLXv6+O2eDEOjY0Bwn8EJC6s5samGE5tqaFtUTVtTDSc11XL8wiri6jYSmTATl3peD/wz0AnsJQjszWbWSnDVzmnuvh24EWgAHsrp03/Y3S9x9wFgYqB5M8sAg1MFv0RLbTLBBac0c8EpzRNt2TFn295+nt3dxzO7+3i+K8PWvf1s3LZ/YmgKgIq4cUJjNcsaqzmhsZoTFlZzQmMVSxcGP2sgO5FX6A5fmbfcna7MEFu7B9ja3c+Le/t5sauf7fsG2LF/gL7BQ+4tpD6VYOnCairixkjWGcmOhY/g+9ExZ8ydptokSxpSHNdQxeKGFMctSLGkoYrjFqRork9RW5nQiWmZFzS2j5QlM6O5LkVzXYqzT2x81fKegRF27B9gR/hmsGPfQXYdOEh2zKmIGxXxGBXxGIm4URl+D9DVN8TLPQd5Zncf3Zkh8o+PzKC2MkFtKkFt8pWv9akKGqorWFKfoqUhxZKGFIvrUyxuSFGX0qcOmVsU/lK2GqoraKgOBqWbruHRMfb0DvJyzyAv9xyks3eIvqFRMoOj9A2OkBkaJTM0St/gKC8dOMj+gRH29Q+/aju1yQQt9UmWNFSxJHxjWLIg+GQR/FxFfSqhIbVl1ij8RQ6jMhELzh80Vhf9nMGRLJ29Q+zuDd4wxt88dvcMsrt3kId/201n3yD598BVV8ZZXB/cET0+nEZzXZLm+hQtdUnSdUlqkglSiTjJihjJRExvFjJtCn+RGZaqiNO6qJrWRZO/YYxmx+gMu5de7hnk5QODvNRzkM6+ITp7B3li+wH29A5OXOVUiBkkEzFSFXFSiTi1qQQnLKxi2aLgKqhlTTUsa6xm6cJqKhOarlsOpfAXKYFEPMZxC6o4bkHVpOu4O70HR+nsG2RP7xBdmUEGhrMMjowxOJJlaCTL4Gjw/eBIlt6Do2zfN3DI1J0QzMtw/MIqFtenqKpMUFURo6oiHrxpVMSpqoxTVRGnIh4jZhCPGTGz4GvMiJsRs+ATTf9wNujqGhylP+zy6h8e5eBwlgXVlTSHn1DSda+M55SuDT7NpCp0f8ZcovAXmaPMLDxvUcGKlsOOpnIId6c7M8y2vf1s3TvA9vDrnt5Beg6OsKcny8HwDWP860i2+Kv+KuJGTTJBTWVworsmGbyJ7O4Z5KldPezNDL2qSwvg+AVVrGip5eR0LSc3v/LQndylofAXKTNmNnH03d726qugChkNL3XNjjlZd8ZyvncP7rVIVcSpScannLchO+bs7T90PKeXDhzk+a5+nuvM8Ojzew/pzmqqTbJsUTULqytoqKpkQXUFDVUVOV8rqU0mqA4/oVRXxknlfFqR6VH4iwiJeIyZmosnHnvlEtxVBZZnx5yd+wd4rjMz8di5/yAvHRjk6Zf7ODAwfEi31eFUxC14U6pMUJ0MvtYkx39OUJuMU12ZOOTNZPwNZUHYVpeqKPrO8JHsGP3h1V2ZoaDrq384O9H1NjiS5eBw0B0XfM2SiNlEN9t4F1tVxStvYOM1B5+igje52TiRr/AXkVkVjxnLFtWwbFHNxORA+YZHx+gdHOHAwAgHBobJDI0yOJJlYDjoqjo4HDwGwu8HhoMQHgjDeHdvcH6kPyegp6qpIm5UxGJUJGIkYsF9IJWJGGPuE4F/uBPwhVTGY4yOjRXsBpuMGVRXxKlJBt1qd/zhGznxGEyQpPAXkTmnMhGjqTZJU21yRrY3kh2j9+AIBw4Gbyg9B4fDryP0HhyduNt7ODvGaHjH93B49zcE92nUjd/Ul3Nj33h3VO7J81QiRlVl0D0WjxnuzkjWXznPMv4GFn7fH540zwwF3w8MvfJ9ZniUmuSxOVGu8BeRslcRj00MMT7bzIzKhFGZiM2p8aV0tkREJIIU/iIiEaTwFxGJIIW/iEgEKfxFRCJI4S8iEkEKfxGRCFL4i4hE0LyYw9fMuoBt03x6E9A9g+XMJNU2PaptelTb9Mzn2pa5e7rQgnkR/kfDzDomm8C41FTb9Ki26VFt01OutanbR0QkghT+IiIRFIXwv73UBRyGapse1TY9qm16yrK2su/zFxGRV4vCkb+IiORR+IuIRJDCX0Qkgso2/M2s0cweMLN+M9tmZleUuqZxZvYzMxs0s0z4eLaEtXzMzDrMbMjMvp637EIze8bMBszsp2a2bC7UZmZtZuY5+y9jZjfOYl1JM7sj/LvqM7MnzOySnOUl22+Hq63U+y2s4W4ze9nMes1si5l9KGdZqf/eCtY2F/ZbTo0rwuy4O6dtevvN3cvyAdwL/CtQC7wF6AFWlbqusLafAR8qdR1hLe8F1gDrgK/ntDeF++z9QAr4IvDzOVJbG+BAokT7rAa4KawjBvwO0Bf+XNL9NkVtJd1vYX2rgGT4/anAbuCsUu+3KWor+X7LqfGHwMPA3eHP095vZTmHr5nVAGuB0909A6w3sweBq4BPl7S4Ocbd7wcws3Zgac6i9wKb3f2+cPlNQLeZneruz5S4tpJy936CgB33HTN7kSAoFlHC/TZFbRuP9etPxd035/4YPpYT1Ffqv7fJats7G68/FTO7HDgAPAKcHDZP+/9puXb7rASy7r4lp20TwTv7XPF3ZtZtZhvM7IJSF1PAKoJ9BkyEyvPMrX24zcx2mtnXzKypVEWYWQvB39xm5th+y6ttXEn3m5n9k5kNAM8ALwMPMUf22yS1jSvZfjOzeuBm4M/zFk17v5Vr+NcSfBTK1QPUlaCWQv4COAk4nuAmjf8ws+WlLelV5vI+7AbeCCwjOGKsA75RikLMrCJ87TvDI605s98K1DYn9pu7Xx++9luB+4Eh5sh+m6S2ubDfPgvc4e478tqnvd/KNfwzQH1eWz1B32fJufsv3L3P3Yfc/U5gA/DuUteVZ87uQ3fPuHuHu4+6+x7gY8BF4dHRrDGzGHAXMBzWAHNkvxWqba7st7CWrLuvJ+jOu445st8K1Vbq/WZmrwfeAfxDgcXT3m/lGv5bgISZrchpO4NDP/rOJQ5YqYvIs5lgnwET51GWMzf34fht6rO2D83MgDuAFmCtu4+Ei0q+3w5TW75Z328FJHhl/8y1v7fx2vLN9n67gOCk83Yz2w3cAKw1s19yNPut1Gevj+FZ8W8SXPFTA6xmjlztAywA3kVwZj4BXAn0A6eUqJ5EWMvfERwpjteVDvfZ2rDt88z+1ReT1XYOcArBwcsigqu6fjrLtX0F+DlQm9c+F/bbZLWVdL8BzcDlBF0V8fD/QT9wWan32xS1lXq/VQOLcx63At8O99m099us/UHO9gNoBP49/AfcDlxR6prCutLA4wQfyw6E/0nfWcJ6buKVKxvGHzeFy95BcOLrIMHlqW1zoTbgA8CL4b/ty8C/AItnsa5lYS2DBB+7xx9Xlnq/Ha62ObDf0sB/hn/3vcBTwIdzlpdyv01aW6n3W4FabyK81PNo9psGdhMRiaBy7fMXEZHDUPiLiESQwl9EJIIU/iIiEaTwFxGJIIW/iEgEKfxFRCJI4S8iEkH/Hx1hTjSC3REiAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plt.plot([r_mse(preds[:i+1].mean(0), valid_y) for i in range(40)]);"]},{"cell_type":"markdown","metadata":{"id":"Wdb1zUQt194r"},"source":["The performance on our validation set is worse than on our training set. But is that because we're overfitting, or because the validation set covers a different time period, or a bit of both? With the existing information we've seen, we can't tell. However, random forests have a very clever trick called *out-of-bag* (OOB) error that can help us with this (and more!)."]},{"cell_type":"markdown","metadata":{"id":"umoyk7Tf194r"},"source":["### Out-of-Bag Error"]},{"cell_type":"markdown","metadata":{"id":"Yas7HO-R194s"},"source":["Recall that in a random forest, each tree is trained on a different subset of the training data. The OOB error is a way of measuring prediction error on the training set by only including in the calculation of a row's error trees where that row was *not* included in training. This allows us to see whether the model is overfitting, without needing a separate validation set.\n","\n","> A: My intuition for this is that, since every tree was trained with a different randomly selected subset of rows, out-of-bag error is a little like imagining that every tree therefore also has its own validation set. That validation set is simply the rows that were not selected for that tree's training.\n","\n","This is particularly beneficial in cases where we have only a small amount of training data, as it allows us to see whether our model generalizes without removing items to create a validation set. The OOB predictions are available in the `oob_prediction_` attribute. Note that we compare them to the training labels, since this is being calculated on trees using the training set."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"720xXCvt194s","outputId":"3a6328fc-24d3-4661-e29b-c1c57a674879"},"outputs":[{"data":{"text/plain":["0.210681"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["r_mse(m.oob_prediction_, y)"]},{"cell_type":"markdown","metadata":{"id":"sK3dOnZc194s"},"source":["We can see that our OOB error is much lower than our validation set error. This means that something else is causing that error, in *addition* to normal generalization error. We'll discuss the reasons for this later in this chapter."]},{"cell_type":"markdown","metadata":{"id":"tqD75ZPH194t"},"source":["This is one way to interpret our model's predictions—let's focus on more of those now."]},{"cell_type":"markdown","metadata":{"id":"UfUQZ8Mu194t"},"source":["## Model Interpretation"]},{"cell_type":"markdown","metadata":{"id":"S7HSTlTg194t"},"source":["For tabular data, model interpretation is particularly important. For a given model, the things we are most likely to be interested in are:\n","\n","- How confident are we in our predictions using a particular row of data?\n","- For predicting with a particular row of data, what were the most important factors, and how did they influence that prediction?\n","- Which columns are the strongest predictors, which can we ignore?\n","- Which columns are effectively redundant with each other, for purposes of prediction?\n","- How do predictions vary, as we vary these columns?\n","\n","As we will see, random forests are particularly well suited to answering these questions. Let's start with the first one!"]},{"cell_type":"markdown","metadata":{"id":"kkZ8zyYR194u"},"source":["### Tree Variance for Prediction Confidence"]},{"cell_type":"markdown","metadata":{"id":"RcNK1rsX194u"},"source":["We saw how the model averages the individual tree's predictions to get an overall prediction—that is, an estimate of the value. But how can we know the confidence of the estimate? One simple way is to use the standard deviation of predictions across the trees, instead of just the mean. This tells us the *relative* confidence of predictions. In general, we would want to be more cautious of using the results for rows where trees give very different results (higher standard deviations), compared to cases where they are more consistent (lower standard deviations).\n","\n","In the earlier section on creating a random forest, we saw how to get predictions over the validation set, using a Python list comprehension to do this for each tree in the forest:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"twiCg4M6194u"},"outputs":[],"source":["preds = np.stack([t.predict(valid_xs) for t in m.estimators_])"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0n7xkDz_194v","outputId":"9dfb8400-36d4-4d94-b589-abdfe8c012e3"},"outputs":[{"data":{"text/plain":["(40, 7988)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds.shape"]},{"cell_type":"markdown","metadata":{"id":"hLCH5EKh194v"},"source":["Now we have a prediction for every tree and every auction (40 trees and 7,988 auctions) in the validation set.\n","\n","Using this we can get the standard deviation of the predictions over all the trees, for each auction:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MrBA2zDN194v"},"outputs":[],"source":["preds_std = preds.std(0)"]},{"cell_type":"markdown","metadata":{"id":"vSVuP0Cn194w"},"source":["Here are the standard deviations for the predictions for the first five auctions—that is, the first five rows of the validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1U1xNwnp194w","outputId":"d92b24e8-fc34-4403-aa3c-71efdcaeb11f"},"outputs":[{"data":{"text/plain":["array([0.25065395, 0.11043862, 0.08242067, 0.26988508, 0.15730173])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds_std[:5]"]},{"cell_type":"markdown","metadata":{"id":"eptikrz_194w"},"source":["As you can see, the confidence in the predictions varies widely. For some auctions, there is a low standard deviation because the trees agree. For others it's higher, as the trees don't agree. This is information that would be useful in a production setting; for instance, if you were using this model to decide what items to bid on at auction, a low-confidence prediction might cause you to look more carefully at an item before you made a bid."]},{"cell_type":"markdown","metadata":{"id":"ra43Jh34194x"},"source":["### Feature Importance"]},{"cell_type":"markdown","metadata":{"id":"roxWycpt194x"},"source":["It's not normally enough just to know that a model can make accurate predictions—we also want to know *how* it's making predictions. *feature importance* gives us insight into this. We can get these directly from sklearn's random forest by looking in the `feature_importances_` attribute. Here's a simple function we can use to pop them into a DataFrame and sort them:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Cd6cpOEN194x"},"outputs":[],"source":["def rf_feat_importance(m, df):\n"," return pd.DataFrame({'cols':df.columns, 'imp':m.feature_importances_}\n"," ).sort_values('imp', ascending=False)"]},{"cell_type":"markdown","metadata":{"id":"dFKx0q01194x"},"source":["The feature importances for our model show that the first few most important columns have much higher importance scores than the rest, with (not surprisingly) `YearMade` and `ProductSize` being at the top of the list:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"o7PdA-sI194y","outputId":"5b86f436-5389-48d5-85b3-614e9fa1d4b5"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
colsimp
59YearMade0.180070
7ProductSize0.113915
31Coupler_System0.104699
8fiProductClassDesc0.064118
33Hydraulics_Flow0.059110
56ModelID0.059087
51saleElapsed0.051231
4fiSecondaryDesc0.041778
32Grouser_Tracks0.037560
2fiModelDesc0.030933
\n","
"],"text/plain":[" cols imp\n","59 YearMade 0.180070\n","7 ProductSize 0.113915\n","31 Coupler_System 0.104699\n","8 fiProductClassDesc 0.064118\n","33 Hydraulics_Flow 0.059110\n","56 ModelID 0.059087\n","51 saleElapsed 0.051231\n","4 fiSecondaryDesc 0.041778\n","32 Grouser_Tracks 0.037560\n","2 fiModelDesc 0.030933"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["fi = rf_feat_importance(m, xs)\n","fi[:10]"]},{"cell_type":"markdown","metadata":{"id":"MTFfS6rm194y"},"source":["A plot of the feature importances shows the relative importances more clearly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mMLOmdSd194z","outputId":"194f4c14-139c-4a23-8a3f-fdb0091fbf5d"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzYAAAGeCAYAAABGn5TrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAB7sklEQVR4nOzde7zmY73/8dfb5DRmzMQ4zcRMIYSdaqHailKJiNrlfGqH1FY/pSIdUBTtikptUTlPiFIMOWQjx6wR2UQ5zBgz4zDmPOM48/79cV2L27KOM+s43s/H4364v9/r9Pne0x/r03V9r0u2iYiIiIiIGMyW6+8AIiIiIiIillYSm4iIiIiIGPSS2ERERERExKCXxCYiIiIiIga9JDYRERERETHova6/A4hlw6hRozxu3Lj+DiMiIiIilmETJ06cYXuNtsqS2ESPGDduHM3Nzf0dRkREREQswyRNbq8sS9EiIiIiImLQy4xNL5N0NPAm2wf1dyy96Z6pcxh31IQO60w68SN9FE1EREREvNZkxqYHSdpO0mON92x/dyAmNZKOlXRew7UlLZA0X9LTkv4saY/+jDEiIiIioquS2LwGSWpvpu6ttocBGwFnAadKOqbPAouIiIiIWEKv6cRG0lGSHpI0T9J9kj5W77eezRhXZzReV69Xk3SmpGmSZkm6VNIqwJXA6DrrMV/S6Db6+qikeyXNlnS9pE0ayiZJ+rKkv0uaI+lCSSs1lO8s6a7a9hZJ/9ZQNlrSJZKekvSIpC80lB0r6WJJ50maCxzY0e9ie4btc4HPAl+TtPqS/8oREREREb3vNZ3YAA8B7wFGAMcB50lapwvtzgWGApsCawIn214A7AhMsz2sfqY1NpL0ZuA3wOHAGsAVwGWSVmiotjvwYeCNwL9RkxBJbwd+DXwGWB34BfBHSStKWg64DLgbGANsDxwuaYeGfncFLgZGAud34RkB/kB5D2urtgolHSKpWVLzooVzuthlRERERETPe00nNrZ/a3ua7cW2LwT+RTt/xLeoic+OwKG2Z9l+wfYNXRxyD2CC7WtsvwD8AFgZeHdDnZ/UmGZSkpUt6v2DgV/Yvt32IttnA88B7wS2BNaw/W3bz9t+GDgD2LOh31ttX1qf9ZmuBFtjnAGs1k756babbDcNGTqiiz9BRERERETPe03viiZpf+BLwLh6axgwqpNm6wIzbc9agiFHAy/tvW17saQplFmWFo83fF9Y2wCMBQ6Q9PmG8hVq+SLKErjZDWVDgL80XE/pbrCSlqfMLM3sbtuIiIiIiL70mk1sJI2lzGpsT5nNWCTpLkDAAspSsxZrN3yfAqwmaaTt2a26dSfDTgM2b4hBlERpahdCngKcYPuENp7lXcAjtjfsoH1nsbVlV+BF4K+dVdx8zAias51zRERERPST1/JStFUof+w/BSDpU8Bmtewu4L2S1pM0AvhaSyPb0ymbBPxc0uslLS/pvbX4CWD12qYtFwEfkbR9nQ05grKc7JYuxHsGcKikrVWsIukjkoZTEo+5ko6UtLKkIZI2k7Rl13+Ol9XNEfYBfgacZPvpJeknIiIiIqKvvGYTG9v3AT8EbqUkJJsDN9eya4ALgb8DE4HLWzXfD3gBuB94krIZALbvp2wO8HDduWx0YyPbDwD7Aj+lvLuyC7CL7ee7EG8z5T2bU4FZwIPUjQVsL6p9bQE8Uvv+JWVThO64W9L82vdBwBdtf6ubfURERERE9DnZS7JCKeKVmpqa3Nzc3N9hRERERMQyTNJE201tlb1mZ2wiIiIiImLZkcRmKUg6S9LxS9j2FQd3RkRERETEknvN7orWVZImAWtRtlR+gfKi/6G2u719cg/HdS9lC2goZ+G8QNnBDOC7tr/bl/HcM3UO446a0GGdSdk1LSIiIiJ6SWZsumYX28OAdSgbDfy0n+PB9qa2h9W4/gIc1nLd10lNRERERER/S2LTDbafBS4G3tK6rG79fLmkpyTNqt/f0FD+Rkk3SJon6RpaHQQq6Z2Sbqm7qd0tabsliVHS/0napeF6eUkzJG0haZwkSzpE0jRJ0yUd0VB3OUlHSXpI0tOSLpK02pLEERERERHRl5LYdIOkocAewG1tFC8HnElZHrYe8Axla+YW4ylbR48CvgMc0NDvGGACcDywGvBl4BJJayxBmOdQtpRusRMw3fZdDffeB2wIfAg4StIH6v0vALsB2wKjKdtK/6y9gWqC1CypedHCOUsQakREREREz0hi0zWXSpoNzAU+CPx36wq2n7Z9ie2FtucBJ1ASBCStB2wJfNP2c7ZvBC5raL4vcIXtK2wvrufoNFOSku46D9hJ0qr1ej/g3FZ1jrO9wPY9lGRsr3r/M8DXbT9m+zngWOATktp8F8v26babbDcNGdrdI3MiIiIiInpOEpuu2c32SGBF4DDgBklrN1aQNFTSLyRNljQXuBEYKWkIdfbD9oKGJpMbvo8FPlmXoc2uSdQ2lHd6usX2NMpBo/8haSSwI3B+q2qNGx9MrvG1xPH7hhj+Qdk0Ya3uxhERERER0ZeyK1o32F4E/E7SLyiJR6MjgI2ArW0/LmkL4G+AgOnA6yWt0pDcrAe0nI46BTjX9sE9FOrZwEGUf99bbU9tVb4ucH9DHNMa4vhP2zd3d8DNx4ygObueRUREREQ/yYxNN6jYFXg9ZTaj0XDKezWz6wv3x7QU2J5MWVp2nKQVJG0D7NLQ9jxgF0k7SBoiaSVJ2zVuPtBNlwJvB/4f5Z2b1r5ZZ5g2BT4FXFjvnwacIGlsfd416vNGRERERAxoSWy65jJJ8ynv2JwAHGD73lZ1TqGcJzODsrnAn1qV7w1sDcykJD0vJRz1TJxdgaOBpygzJ19hCf99bD8DXAK8EfhdG1VuAB4E/gz8wPbV9f6PgT8CV0uaV59j6yWJISIiIiKiL8l257Vi0JH0LeDNtvdtuDcOeARY3vaL7bVdEk1NTW5ubu7JLiMiIiIiXkHSRNtNbZXlHZtlUF0K92nKjmgREREREcu8LEUb4CTNb+fznnbqH0xZynZl3VY6IiIiImKZlxmbAc72sMZrSacBU23/pZ36ZwBntFM2ibJLW0RERETEMiXv2AxAkiZRzo5ZBMynbERwmO35/RlXR1ZcZ0Ovc8ApXao7KdtCR0RERMQS6OgdmyxFG7h2qbM1WwBvA77Wn8HUg0YjIiIiIgakJDYDnO3HgasoCQ6SzpJ0fP2+naTHJB0taYakSZL2aWlb654m6RpJ8yTd0HJGTS3fuJbNlPSApN1btf0fSVdIWgC8r6+eOSIiIiKiu5LYDHD1kM4dKefOtGVtYBQwBjgAOF3SRg3l+wDfqXXuAs6v/a4CXAOMB9YE9gJ+Xg/tbLE35dye4cBNbcR2iKRmSc2LFs5Z0keMiIiIiFhqSWwGrkvrIZlTgCcph3q255u2n7N9AzAB2L2hbILtG20/B3wdeJekdYGdgUm2z7T9ou07KYd6fqKh7R9s32x7se1nWw9q+3TbTbabhgwdsXRPGxERERGxFJLYDFy72R4ObAdsTJlxacss2wsaricDoxuup7R8qZsPzKzlY4GtJc1u+VBmd9Zuq21ERERExECW7Z4HONs3SDoL+AGwWxtVXi9plYbkZj3g/xrK1235ImkYsBowjZK03GD7gx0N39U4Nx8zgubsdhYRERER/SQzNoPDKcAHJW3RTvlxklaoh3buDPy2oWwnSdtIWoHyrs3ttqcAlwNvlrSfpOXrZ0tJm/Tic0RERERE9IokNoOA7aeAc4BvtlH8ODCLMgtzPnCo7fsbysdT3s+ZCbyDstwM2/OADwF71raPAycBK/bOU0RERERE9J4sRRuAbI9r495nO6h/AmX3srbMsH1oO+0eANpcP2b7wE4DjYiIiIgYIDJjExERERERg14Sm4iIiIiIGPSS2PQzSZa0wZK0tX297Td0UH6g7W90M54DJb3qMM6IiIiIiIEs79gMEpIeoBzEeVG9/nfgJmCPVveuAkbafrEv47tn6hzGHTWhy/UnZWvoiIiIiOhBmbEZPG4Etm24fi9wfxv3bunrpCYiIiIior8lselBko6UNFXSPEkPSNpe0laSbpU0W9J0SafWM2Xaar+ipB9IelTSE5JOk7RyLb6Rkri0eA9le+bW926sfb1T0i113LslbdcwzghJv6rxTJV0vKQh7cT035JukjRiiX+YiIiIiIhelsSmh0jaCDgM2NL2cGAHYBKwCPgiMAp4F7A98Ll2ujkJeDOwBbABMAb4Vi27AdhU0mqSlgOagAuBkQ333g3cKGkMMAE4HlgN+DJwiaQ1al9nAy/WMd5GOc/moFbPs5ykM4B/Az5ke04bz3yIpGZJzYsWvqo4IiIiIqLPJLHpOYsoh1u+RdLytifZfsj2RNu32X7R9iTgF7xy+RgAkgQcDHzR9sx6gOZ3KQdoYvtR4FHKrMxbgX/Zfga4ueHeSsDtwL7AFbavsL3Y9jVAM7CTpLWAHYHDbS+w/SRwcss41fLAbyhJ0S62F7b1wLZPt91ku2nI0EzoRERERET/yeYBPcT2g5IOB46lzKxcBXwJGAb8iDLDMpTym09so4s1avnEkuMAIKBxiVjLcrRHgb/Uezc13Lvd9nOSxgKflLRLQ9vlgf8Fxtbv0xvGWQ6Y0lB3A0qitJXt57v8I0RERERE9JMkNj3I9nhgvKRVKTMzJwGjgb8Be9meV5OfT7TRfAbwDLCp7antDHEj8BlgMnBmvfcX4IB678Z6bwpwru2DW3cgaR3gOWBUB5sM/AP4GXClpPfbfqD9py42HzOC5ux0FhERERH9JEvReoikjSS9X9KKwLOUJGURMByYC8yXtDHw2bba214MnAGcLGnN2ucYSTs0VLuR8k7MtpQlaAD3AG8E3sfLic15wC6SdpA0RNJKkraT9Abb04GrgR9KWrW+S7O+pFcsj7P9G+Bo4FpJ6y/VjxMRERER0cuS2PScFYETKTMvjwNrUhKDLwN7A/MoicuFHfRxJPAgcJukucC1wEYthbb/CTwJTLc9u95bDPwVWBW4pd6bAuxax3+KMoPzFV7+994fWAG4D5gFXAys0zoY22cD3waukzSu6z9FRERERETfku3+jiGWAU1NTW5ubu7vMCIiIiJiGSZpou2mtsoyYxMREREREYNeEpuIiIiIiBj0sivaUpK0HXCe7Tf0cyhLRdIk4CDb1y5J+3umzmHcURO61WZSdlGLiIiIiB4yqGdsJM1v+CyW9EzD9T79HV9rkvaW1Fzjmy7pSknb9EC/Z0k6vidijIiIiIgYjAb1jI3tYS3fO5pxkPS6Ds5s6ROSvgQcBRwKXAU8D3yYsnvZTb08dr8/f0REREREbxrUMzbtqWe2PCbpSEmPA2dKer2kyyU9JWlW/f6GWn9PSc2t+viipD/W7ytK+oGkRyU9Iek0SSt3I54RlG2T/8v272wvsP2C7ctsf6VhjFMkTaufU+qZOI3Pc4SkJ+tsz6dq2SHAPsBX60zQZfX+pPr8fwcWSHqdpI9KulfSbEnXS9qknXi3qjNLc+vz/qideofUes2LFs7p6s8REREREdHjlsnEplobWA0YCxxCedYz6/V6lAM0T611/whsJGnDhvZ7A+Pr95OANwNbABsAY4BvdSOWdwErAb/voM7XgXfWMd4KbAV8o9XzjKhjfxr4maTX2z4dOB/4vu1htndpaLMX8BFgJPAm4DfA4cAawBXAZZJWaCOWHwM/tr0qsD5wUVsB2z7ddpPtpiFDR3TwaBERERERvWtZTmwWA8fYfs72M7aftn2J7YW25wEnANsC2F4I/IGSCFATnI2BP0oScDDwRdsza9vvAnt2I5bVgRmdLAfbB/i27SdtPwUcB+zXUP5CLX/B9hXAfBoO72zHT2xPsf0MsAcwwfY1tl8AfgCsDLy7jXYvABtIGmV7vu3buvSUERERERH9ZFlObJ6y/WzLhaShkn4habKkucCNwEhJQ2qV8dTEhjJbc2lNeNYAhgIT6xKu2cCf6v2uehoYJamjd5pGA5MbrifXey/10SoxWggMo2NT2uvf9uJaPqaNdp+mzFDdL+kOSTt3Mk5ERERERL8a1JsHdMKtro+gzHBsbftxSVsAfwNUy6+mJB9bUBKcL9b7MyjL1ja1PXUJY7kVeBbYDbi4nTrTKMvk7q3X69V7XdH6Wdu6Pw3YvOWizkStC7zqmWz/C9hL0nLAx4GLJa1ue0F7AWw+ZgTN2b45IiIiIvrJsjxj09pwSoIyW9JqwDGNhXU25GLgvynv5lxT7y8GzgBOlrQmgKQxknbo6sC251DeyfmZpN3q7NHyknaU9P1a7TfANyStIWlUrX9eF4d4gvIOTUcuAj4iaXtJy1MSveeAW1pXlLSvpDXqs8+utxd1MZaIiIiIiD73WkpsTqG8UzIDuI2ynKy18cAHgN+2WvZ1JPAgcFtdxnYtnb/f8gq2fwR8ibIhwFOUZWCHAZfWKscDzcDfgXuAO+u9rvgV8Ja6VO7StirYfgDYF/gp5TfYBdjF9vNtVP8wcK+k+ZSNBPZsXNYXERERETHQyG5vFVNE1zU1Nbm5ubnzihERERERS0jSRNtNbZW9lmZsIiIiIiJiGfWaSmwkbSTpb5LmSVos6Zs92Pd69YDMxs/zkl6QtF4X2l8v6aCeiqdV30dL+mVv9B0RERERMRAsy7uiteWrwPW239Z4U9J2wP8Cv7f98Yb7bwXuAm6wvV1HHdt+lFbbL0s6FtiglnVZPTTze5SzZ0ZS3sm51PYXO2rXQWzfXZJ23XHP1DmMO2pCt9pMyi5qEREREdFDXlMzNrxyO+XWngLeLWn1hnsHAP/s9ahe7WtAE7AVZTe391G2pu62Ts7OiYiIiIhYJrxmEhtJ11EShFPrMrHxkhp3HXueskPZnrX+EGB34PxW/by7Hlo5p/733Q1lb5R0Q13qdg0wqlXbd0q6pe5ednedKWrLlpTZo2kuJtk+p6Gf0ZIukfSUpEckfaGh7FhJF0s6r+7gdmC9d15DnXbjkHSgpIfrMzwiaZ/Of92IiIiIiP71mklsbL8f+AtwmO1hlESmtXOA/ev3HSizOy8dklnPv5kA/ARYHfgRMKFhlmc8MJGS0HyHMuPT0nZMbXs85ZycLwOXSFqjjThuA74k6XOSNq+Habb0sxxwGXA3MAbYHji81bk6u1LO5BnJqxOzduOQtEp9th1tDwfeTVmK1yZJh0hqltS8aOGc9qpFRERERPS610xi0xW2bwFWk7QRJcE5p1WVjwD/sn2u7Rdt/wa4H9ilbhCwJfBN28/ZvpGSgLTYF7jC9hW2F9u+hnJuzU5thPI94CRgn1pnqqSWJGlLYA3b37b9vO2HKQeI7tnQ/lbbl9ZxnmnVd2dxLAY2k7Sy7em221u6h+3TbTfZbhoydER71SIiIiIiel0Sm1c7l3Jw5vuA37cqGw1MbnVvMmXmZDQwy/aCVmUtxgKfrMu/ZkuaDWwDrNM6ANuLbP/M9r9TZl1OAH4taZPaz+hW/RwNrNXQxZQOnq/dOGrsewCHAtMlTZC0cQd9RUREREQMCHmx/NXOBR4EzrG9sGEVGJRlaWNb1V8P+BMwHXi9pFUakpv1gJYTUKcA59o+uDvB1BmXn0k6DnhL7ecR2xt21KyDsg7jsH0VcJWklSnL1c4A3tNZnJuPGUFzdjmLiIiIiH6SGZtWbD8CbAt8vY3iK4A3S9pb0usk7UFJNi63PZmypOs4SStI2gbYpaHteZQlaztIGiJpJUnbSXpD60EkHV7LVq7jHEDZHe1vwF+BuZKOrOVDJG0macsuPmK7cUhaS9JH67s2zwHzgUVd7DciIiIiot8ksWmD7ZtsT2vj/tPAzsARwNOUc3F2tj2jVtkb2BqYCRxDwzs6tqdQXuo/mrK19BTgK7T9b/AM8EPgcWAG8F/Af9h+2PYiSsK0BfBILf8l0KWXXDqJY7n6bNPqM2wLfK4r/UZERERE9CfZHa1aiuiapqYmNzc393cYEREREbEMkzTRdlNbZZmxiYiIiIiIQS+JTUREREREDHpJbAYBSZa0QX/HERERERExUGW752WIpO2A64CF9dZs4Bbgv23f0Ztj3zN1DuOOmrBEbSdlm+iIiIiIWEqZsVn2TLM9jLI99DuB+4G/SNq+f8OKiIiIiOg9SWz6WD1/ZqqkeZIekLS9pK0k3SpptqTpkk6VtEI77VeU9ANJj0p6QtJp9TDNV3DxmO1vUbaDPqmhjx9LmiJprqSJkt5T768taaGk1RvqvkPSU5KW7/lfIyIiIiKiZySx6UOSNgIOA7a0PRzYAZhEOQTzi8Ao4F3A9rR/fsxJwJsp59hsAIwBvtXJ0L8D3l4P3gS4o7ZfDRgP/FbSSrYfB64Hdm9ouy9wge0X2nieQyQ1S2petHBOJyFERERERPSeJDZ9axGwIvAWScvbnmT7IdsTbd9m+0Xbk4BfUA7HfAVJAg4Gvmh7pu15wHeBPTsZdxogYCSA7fNsP13H+2GNaaNa92xKMoOkIcBewLltdWr7dNtNtpuGDO3S+aAREREREb0imwf0IdsPSjocOBbYVNJVwJeAYcCPgCZgKOXfZWIbXaxRyyeWHAcoCcuQToYeA5iymQCSjgAOAkbX+6tSZosA/gCcJulNlJmhObb/2r0njYiIiIjoW0ls+pjt8cB4SatSZmZOoiQYfwP2sj2vJj+faKP5DOAZYFPbU7sx7MeAO20vqO/THElZ7nav7cWSZlESJGw/K+kiYB9gY9qZrWlt8zEjaM7uZhERERHRT7IUrQ9J2kjS+yWtCDxLSVIWUXYwmwvMl7Qx8Nm22tteDJwBnCxpzdrnGEk7tDGWatkxlNmZo2vRcOBF4CngdZK+RZmxaXQOcCDwUeC8pXjkiIiIiIg+kcSmb60InEiZeXkcWJOScHwZ2BuYR0lcLuygjyOBB4HbJM0FruXl92MARkuaD8ynbBKwObCd7atr+VXAlcA/gcmUBGtK4wC2bwYWU2Z5Ji3hs0ZERERE9BnZ7u8YYgCSdB0w3vYvu1K/qanJzc3NvRxVRERERLyWSZpou6mtsrxjE68iaUvg7cCu/R1LRERERERXZClavIKksynL2w6v20lHRERERAx4mbFZhkg6FtjA9r5drL8dcJ7tN7Tcs33Akox9z9Q5jDtqwpI0BWBSdlSLiIiIiKWQGZuIiIiIiBj0ktgMUpKOlDRV0jxJD0j6CGWHtT0kzZd0d633KUn/qPUelvSZen8Vyu5oo2v9+ZJGS1pO0lGSHpL0tKSLJK3Wf08aEREREdG5JDaDkKSNgMOALW0PB3YA7ge+C1xoe5jtt9bqTwI7U86q+RTlDJy3214A7AhMq/WH2Z4GfAHYDdiWcnDoLOBn7cRxiKRmSc2LFs7prceNiIiIiOhUEpvBaRHlTJy3SFre9iTbD7VV0fYE2w+5uAG4GnhPB31/Bvi67cdsPwccC3xC0qvex7J9uu0m201Dho5Y6oeKiIiIiFhSSWwGIdsPAodTko4nJV0gaXRbdSXtKOk2STMlzQZ2AkZ10P1Y4PeSZtf6/6AkUmv13BNERERERPSsJDaDlO3xtrehJCIGTqr/fYmkFYFLgB8Aa9keCVwBqKWbNrqeAuxoe2TDZyXbU3vpUSIiIiIillq2ex6E6js2Y4CbgWeBZyhJ6hPAByUtZ3sxsAJlydpTwIuSdgQ+BPxf7eoJYHVJI2y3vCRzGnCCpANsT5a0BvBu23/oKKbNx4ygOVs2R0REREQ/yYzN4LQicCIwA3gcWJOyI9pva/nTku6sB2x+AbiIsgnA3sAfWzqxfT/wG+DhuvRsNPDjWudqSfOA24Ct++SpIiIiIiKWkOy2ViNFdE9TU5Obm5v7O4yIiIiIWIZJmmi7qa2yzNhERERERMSgl8QmIiIiIiIGvSQ2DSRZ0gb9HUdnJH1M0hRJ8yW9rb/jiYiIiIjob9kVbQlI2g64DlhYb80GbgH+2/YdfRDCD4DDOtuprC/dM3UO446asFR9TMquahERERGxhDJjs+Sm2R4GDAfeCdwP/EXS9n0w9ljg3j4Y5yWSkgRHRERExIC1zCY2ko6UNFXSPEkPSNpe0laSbq1bG0+XdKqkFdppv6KkH0h6VNITkk6TtHLrei4es/0t4JeUgzJb+vhxXTI2V9JESe+p99eWtFDS6g113yHpKUnLS1pO0jckTZb0pKRzJI2oMc0HhgB3S3pI0gRJn28V+98l7Va/byzpGkkz6++we0O9j0j6W41viqRjG8rG1aV5n5b0KGWGKiIiIiJiQFomE5t6gOVhwJa2hwM7AJOARcAXgVHAu4Dtgc+1081JwJuBLYANKAdifquToX8HvF3SKvX6jtp+NWA88FtJK9l+HLge2L2h7b7ABbZfAA6sn/cBbwKGAafafq7OEgG81fb6wNm1bcuzv7XGekWN45o69prAXsDPJW1aqy8A9gdGAh8BPtuSEDXYFtiE8hu+gqRDJDVLal60cE7r4oiIiIiIPrNMJjaUBGZF4C2Slrc9yfZDtifavs32i7YnAb+g/OH+CpIEHAx80fbMetDld4E9Oxl3GiBKooDt82w/Xcf7YY1po1r3pYRE0hBK0nFuLdsH+JHth23PB74G7NnOcrA/ABtK2rBe7wdcaPt5YGdgku0zawx3ApcAn6jxXW/7HtuLbf+dclhn69/jWNsLbD/TemDbp9tust00ZOiITn6aiIiIiIjes0wmNrYfBA4HjgWelHSBpNGS3izpckmPS5pLSVZGtdHFGsBQYGJdtjYb+FO935ExgCmbCSDpCEn/kDSn9jGiYbw/UBKvNwEfBObY/mstGw1Mbuh3MmWjh7XaeNbngIuAfSUtxysTpLHA1i3PUGPYB1i7xre1pP+tS+DmAIe28XtM6eSZIyIiIiL63TL7Qrjt8cB4SatSZmZOoiQMfwP2sj1P0uHU2YtWZgDPAJvantqNYT8G3Gl7QX2f5kjKcrd7bS+WNIsyo4PtZyVdREk0NublZATKzM/Yhuv1gBeBJ9oZ9+za/iZgoe1b6/0pwA22P9hOu/HAqcCONZ5TeHVi406eGYDNx4ygObuaRUREREQ/WSZnbCRtJOn9klYEnqUkKYsoO5jNBeZL2hj4bFvtbS8GzgBOlrRm7XOMpLbeM1EtOwY4CDi6Fg2nJCNPAa+T9C1g1VbNz6G8S/NR4LyG+78BvijpjZKGUWaWLrT9Yjvx3gosBn7IKxOky4E3S9qvbkqwvKQtJW3SEOPMmtRsBezdVv8REREREQPdMpnYUN5lOZEy8/I45cX5o4EvU/54n0dJXC7soI8jgQeB2+qytWt5+f0YgNF1h7L5lE0CNge2s311Lb8KuBL4J2Up2bO0WtZl+2ZKQnJnfeenxa8pCcqNwCO17St2PmvDOTWGlxKk+m7QhyjvBk2rv8VJlN8HysYJ35Y0j7IxwkWdjBERERERMSDJ7tJKo+glkq4Dxtv+5VL2sz9wiO1teiay7mlqanJzc3N/DB0RERERrxGSJtpuaqtsmX3HZjCQtCXwdmDXpexnKGX25ec9EVdERERExGCzrC5FG/AknU1Z3nZ4XTK2pP3sQHmP5wnKZgAREREREa85mbHpJ7YP6KF+rgJW6bRiRERERMQyLIlNP5F0L/Bftq9fFsa8Z+ocxh01ocf6m5StoyMiIiKiG5LY9JK6Y1qLocBzlC2nAT5je9NeGHMF4HvAHsBIyhK1S21/EaA3xoyIiIiIGAiS2PQS28NavkuaBBxk+9qutJX0uvbOrOnE14AmYCtgOuWQz/cuQT8REREREYNKNg/oJ5ImSfpA/X6spIslnVfPzDlQ0ghJv5I0XdJUScdLGtJJt1sCv7c9zcUk2+e0M+ZsSfPrZ4EkSxpXy3aWdFetc4ukf2vnGQ6R1CypedHCOT3xs0RERERELJEkNgPHrsDFlCVk5wNnAy8CGwBvoxy0eVAnfdwGfEnS5yRtLkntVbQ90vawOrP0Y+AvwFRJb6ccEPoZYHXgF8AfJa3YRh+n226y3TRk6IjuPW1ERERERA9KYjNw3Gr7UtuLgVWBHSlbQS+w/SRwMrBnJ318DzgJ2AdopiQqHe6+JmkPYG/gP2y/ABwM/ML27bYX2T6b8n7QO5fm4SIiIiIielPesRk4pjR8HwssD0xvmHRZrlWdV7G9CPgZ8DNJKwP/Cfxa0l9t/6N1fUlvA04FPmT7qYaxD5D0+YaqKwCjOxp78zEjaM5OZhERERHRTzJjM3C44fsUyizJqLpkbKTtVbuzq5ntZ2z/DJgFvKV1uaQ1gN8Dh9n+W6uxT2gYd6TtobZ/s0RPFRERERHRB5LYDEC2pwNXAz+UtKqk5SStL2nbjtpJOlzSdpJWlvS6ugxtOPC3VvVeB1wCnG/7wlbdnAEcKmlrFatI+oik4T33hBERERERPSuJzcC1P2UJ2H2UWZeLgXU6afMM8EPgcWAG8F+Ud2ceblXvDcB7gMMbdkabL2k9282U92xOreM+CBzYM48UEREREdE7ZLvzWhGdaGpqcnNzc3+HERERERHLMEkTbTe1VZYZm3ZIOk3SN/s7joiIiIiI6NxrYsZG0iRgLcq5MIsoy7vOAU6v2yv3R0ybUrZw3hIQ8BDwTdtXdNLuNGDfNorOAzYGzrP9yx4Ot1MrrrOh1znglL4e9iWTsiNbRERExDIvMzbFLraHU7YzPhE4EvhVWxUlDemDeC4DrqEkXGsCXwDmdtbI9qEtB2u2+hzay/FGRERERAxYr6XEBgDbc2z/EdiDcl7LZpLOkvQ/kq6QtAB4X713PICkf0jauaWPuuPYDElvr9fvlHSLpNmS7pa0XUcxSBoFvBE4w/bz9XOz7Ztq+f9J2qWh/vJ1vC0krSTpPElP1/HukLSWpBMoGwKcWjcCOLW23VjSNZJmSnpA0u4N/Z4l6eeSrqxtbpa0tqRTJM2SdH896yYiIiIiYkB7zSU2LWz/FXiMkgwA7A2cQNke+aZW1X8D7NVwvQMww/adksYAE4DjgdWALwOX1HNi2vM0Zbex8yTtJmmtVuXn8MrlZjsB023fBRwAjADWBVYHDgWesf114C+Uc2mG2T5M0iqUWaHxlFmhvYCf12VwLXYHvgGMopydcytwZ72+GPhRew8h6RBJzZKaFy2c08HjRkRERET0rtdsYlNNoyQjAH+osyaLbT/bqt544KOShtbrves9KAnIFbavqG2vAZopyUibXF5seh8wibI983RJN0rasFY5D9hJ0qr1ej/g3Pr9BUpCs4HtRbYn2m5vCdvOwCTbZ9p+0fadlPNrPtFQ5/e1j2cpB3Y+a/sc24uAC4F2Z2xsn267yXbTkKEj2qsWEREREdHrXuuJzRhgZv0+pb1Kth8E/gHsUpObj/JyYjMW+GRdFjZb0mxgGzo5c8b2Y7YPs71+7WMBZaYG29OAm4H/kDQS2BE4vzY9F7gKuEDSNEnfl7R8O8OMBbZuFds+wNoNdZ5o+P5MG9fDOnqOiIiIiIiB4HX9HUB/kbQlJbG5Cdga6Gx7uJblaMsB99VkB0pCdK7tg5c0FttTJP2sjtHibOAgyr/Rrban1rovAMcBx0kaB1wBPEDZCKH1M0wBbrD9wSWNLSIiIiJiMHjNJTZ1edd7gR9Ttka+R1JXml5AeQdnNV6erYGybOwOSTsA1wLLA+8EHrT9WDsxvB44nDL78nDt8z+B2xqqXQr8nLJr2vcb2r4PmEHZsnouZWnaolr8BPCmhj4uB06UtF+NH2ALYL7tf3Tlobtq8zEjaM6WyxERERHRT15LS9EukzSPMovxdcpL8Z/qamPb0ykv1r+b8u5Jy/0pwK7A0cBTtf+v0PFv+zwwjpIIzQX+j/Li/oEN/T5DeR/mjcDvGtquTXmpfy5ledwNlOQKSrL2ibqj2U9szwM+BOxJeZ/oceAkYMWuPndERERExGDwmjigc7CS9C3gzbbbOpBzQGlqanJzc3N/hxERERERy7CODuh8zS1FGywkrQZ8mrIjWkREREREdOC1tBStz9VDL9v6vKeTdgdTlrRdafvGvok2IiIiImLwyoxNL7Ld7a2SJZ0FPGZ7lXbK5wP/ZvvhpQwvIiIiImKZkcRmCUiaBIwGRtue0XD/LuCtwBttT+qNsZckWWpLQwL1jbpt9COUs3So/70D+HE9cLRT90ydw7ijJvREaAPGpOzyFhERETFoZCnaknuEcq4NAJI2B1buv3B6xMiaOL0VuAb4vaQD+zekiIiIiIjOJbFZcucC+zdcHwCc03Ih6SOS/iZprqQpko5tbCxpG0m3SJpdyw9sKH69pAmS5km6XdL6De0saYP6/SxJP+ug7saSrpE0U9IDknbvyoPZftz2j4FjgZMk5X8nERERETGg5Q/WJXcbsKqkTSQNAfbg5fNkoCzn2h8YCXwE+Kyk3QAkrQdcCfwUWINyaOZdDW33Ao4DXg88SDkYtD1t1pW0CmXWZTywZq33c0mbduMZf1fbbtRWoaRDJDVLal60cE43uo2IiIiI6FlJbJZOy6zNB4H7gaktBbavt32P7cW2/w78Bti2Fu8DXGv7N7ZfsP207bsa+v2d7b/afhE4n5L4tKe9ujsDk2yfaftF23dSDvz8RDeeb1r972ptFdo+3XaT7aYhQ0d0o9uIiIiIiJ6VzQOWzrnAjcAbaViGBiBpa+BEYDNgBWBF4Le1eF3goQ76fbzh+0Kgow0D2qs7Ftha0uyG8tfVmLtqTP3vzG60iYiIiIjoc0lsloLtyZIeAXaiHKbZaDxwKrCj7WclnQKMqmVTgK16ObwpwA22P7gUfXwMeBJ4oLOKm48ZQXN2EYuIiIiIfpKlaEvv08D7bS9odX84MLMmNVsBezeUnQ98QNLukl4naXVJW/RwXJcDb5a0n6Tl62dLSZt01lDSWpIOA44BvmZ7cQ/HFhERERHRo5LYLCXbD9lubqPoc8C3Jc0DvgVc1NDmUcoszxGUZV53UbZY7sm45gEfAvakvCvzOHASZUlce2ZLWgDcU+P7pO1f92RcERERERG9Qbb7O4ZYBjQ1Nbm5ua38LiIiIiKiZ0iaaLuprbLM2ERERERExKCXxCYiIiIiIga9ZSaxkXS9pIP6O46IiIiIiOh7fb7ds6RJwFrAImABcAXwedvz+zqW1iRtB5xn+w2t7m8IfAfYnvLy/RPAn4CTbD/Wx2EiyZQzaww8R9l84HTbF/Z1LC3umTqHcUdN6K/h+8WkbG8dERERMWD014zNLraHAW8HtgS+0VgoacCcryNpA+B2ys5ib7O9KvDvlAM2t2mnTV/E/9b6G24EnAWcKumYPhg3IiIiImLA6delaLanAlcCm0mypP+S9C/gXwCSDpb0oKSZkv4oaXRLW0kflHS/pDmSTgXUUHaspPMarsfV/l9Xr1eTdKakaZJmSbpU0io1ltGS5tfPaOBY4GbbX2qZnbH9pO1TbF9Q+9tO0mOSjpT0OHCmpBUlnVLHmFa/r1jrHyjppsbfosa3Qf1+lqTTJF0jaZ6kGySNbec3nGH7XOCzwNckrV77GCHpV5KmS5oq6XhJQ2rZBrXPOZJmSLqwIY5N67gzJT0h6eju/8tGRERERPStfk1sJK1LOS/lb/XWbsDWwFskvR/4HrA7sA4wGWhJJEYBl1BmekZRZk/+vRtDnwsMBTYF1gROrgds7ghMsz2sfqYBH6hjdWZtYDVgLHAI8HXgncAWlDNqtqLVzFQn9qEsfxtFWWp2fif1/0BZWrhVvT4beBHYAHgb5UyblneQvgNcDbweeAPwUwBJw4FrKcvsRte2f25vQEmHSGqW1Lxo4ZxuPFpERERERM/qr8TmUkmzgZuAG4Dv1vvfsz3T9jOUP+x/bftO288BXwPeJWkcJRm6z/bFtl8ATqEcQNkpSetQEphDbc+y/YLtGzpoMqqxb0mHSZpdZ3TOaKi3GDjG9nMN8X+7zu48BRwH7NeVGKsJtm+sz/51yrOv217l+jvMAFaTtFZ9xsNtL7D9JHAy5bBOgBcoCdho28/abpk92hl43PYP6/15tm/vYMzTbTfZbhoydEQ3Hi0iIiIiomf1V2Kzm+2Rtsfa/lxNBACmNNQZTZmlAaBuLvA0MKaWTWkoc6u2HVkXmGl7VhfrP02ZMWoZ61TbIynJ1PIN9Z6y/Wx78dfvo+m6xuebD8zsqL2k5YE1ar2xNbbpNQmbDfyCMjsF8FXK0r2/SrpX0n/W++tSZr8iIiIiIgaVAfOSfuWG79Mof6ADUN+BWR2YCkyn/BHeUqbGa8pua0Mbrtdu+D6FMqsx0vbsDsZv8Wfg48CZ3Yi9Mf576/V69d6r4pO0Nq/W+HzDKMvcprVRr8WulKVnfwVWoOyWNsr2i68K1H4cOLj2vQ1wraQbKb/NXh2M0a7Nx4ygObuERUREREQ/Gcjn2IwHPiVpi/rS/XeB221PAiYAm0r6eN0Q4Au8Mnm5C3ivpPUkjaAsYwPA9nTKJgE/l/R6SctLem8tfgJYvbZpcSzwHkk/kjQGXnrHZ5NO4v8N8A1Ja9T63wJaNjS4u8a/haSV6hit7SRpG0krUN6Jud32q2al6kYI+wA/o2w//XR9xquBH0paVdJyktaXtG1t80lJLVtaz6IkZYuAy4G1JR1eNz8YLmnrTp4zIiIiIqLfDdjExvafgW9SXtyfDqxPfUfE9gzgk8CJlKViGwI3N7S9BrgQ+DswkfIHe6P9KO+Z3A88CRxe291PSUgerku4Rtv+J2UTgDcAd0uaV8eaVuNrz/FAc43hHuDOeo/a57cpL+r/i/KuUWvjgWMoS8veQXlnp9HdkuYDD1I2Bfii7W81lO9Pmbm5j5K8XMzLS+q2BG6v7f8I/D/bj9ieB3wQ2IXyXtG/gPd18IwREREREQOCyuspMZBIOgt4zHZ3dlHrV01NTW5ubu7vMCIiIiJiGSZpou2mtsoG7IxNREREREREVw2YxEbSRpL+Vg+kXCypo2VePTHeKw7x7KTu9ZIO6rxm36o7mm3X33FERERERPS3gbQr2leB622/rfFm/cP9f4Hf2/54w/23UjYJuMH2dn0VpKQDgV8BLVtUPwVcTzmD5589MYbtA7tYb9Ou9ilpEnCQ7WuXMKwO3TN1DuOOmtAbXQ9Yk7ILXERERMSAMWBmbHjl1sitPQW8W9LqDfcOAHokkVgCt9oeBowAPkBJciZK2qwvBq87wfWZvh4vIiIiIqK7BkRiI+k6yu5bp0qaL2m8pOMbqjwPXErdFU3SEGB34PxW/bxb0h2S5tT/vruh7I2SbqhL3a4BRrVq+05Jt9Td0O7uyhIv24tsP2T7c8ANNGzb3FF/kg6U9HCN5ZG6XXNL2cGS/lHL7pP09np/kqQjJf0dWCDpdfXeB2r5sZIulnRhbXtnndVC0rmUc3Quq7/vV+v9j9blbLPrcrtNGuJ41Xid/R4REREREf1lQCQ2tt8P/AU4rM6EPN9GtXMoWxgD7ECZ3XnpwEpJq1HOt/kJ5SDPHwETGmZ5xlO2fh5FORfmgIa2Y2rb4ykHYX4ZuETSGt14jN8B7+msP5WDRn8C7Gh7OPBuypI6JH2SkhztD6wKfJSynXWLvYCPACPbOniTckjnb+uY44FLJS1vez/gUWAX28Nsf1/SmylbWx8OrAFcQUl8VujGeBERERERA8KASGy6wvYtwGqSNqL84X9OqyofAf5l+1zbL9r+DeWcml0krUc5u+Wbtp+zfSNwWUPbfYErbF9he3E9B6cZ2KkbIU6jJBRd6W8xsJmklW1Pt92yBO8g4Pu273DxoO3JDWP8xPYU28/Qtom2L7b9AiWxW4lyBk9b9gAm2L6m1v8BsDIl0erSeJIOkdQsqXnRwjnt/S4REREREb1u0CQ21bnAYZRla79vVTYamNzq3mRgTC2bZXtBq7IWY4FP1iVZsyXNBrbh5QMtu2IM5TDNDvurMewBHApMlzRB0sa13brAQx2MMaWTGF4qt70YeIzy7G15xe9V60+pz9Gl8WyfbrvJdtOQoSM6CS0iIiIiovcMtvcmzgUeBM6xvVBSY9k0SkLRaD3gT8B04PWSVmlIbtYDWk4nnQKca/vgpYjtY5TldJ32Z/sq4CpJK1OWq51BWcY2BVi/gzE6O0113ZYvkpYD3sDLy/Vat50GbN5QX7X91G6MFxERERExIAyqxMb2I5K2BR5uo/gK4KeS9gYuAv4DeAtwue0ZkpqB4yQdDWwF7AL8sbY9D7hD0g7AtcDylCVcD9p+rL146iYG6wFfArYD3tVZf8ALwNbAnym7qc0HFtV2vwR+JOkm4E5KkvNCq+VoHXmHpI/X5/oC8BxwWy17AnhTQ92LgKMkbQ/cCPy/Wv+WLo71CpuPGUFztj+OiIiIiH4y2JaiYfsm29PauP80sDNwBOWF+68CO9ueUavsTUkoZgLH0PCOju0plBfvj6ZsLT0F+Art/z7vkjQfmEs5w2ZVYEvb93Shv+VqjNNqLNsCn6vtfgucQHnxfx5lJ7iW93a64g+UZW6zgP2Aj9f3ZwC+B3yjLo37su0HKO8C/RSYQUn0drHd1sYNEREREREDmuysNloWSDoW2MD2vv0xflNTk5ubm/tj6IiIiIh4jZA00XZTW2WDbsYmIiIiIiKitSQ2EREREREx6A2qzQMGIknXA+fZ/mV/xmH72P4cPyIiIiKiP71mEhtJk4C1KDuQLaDsovZ52/P7My4ASdtRkqM3tLq/IfAdYHtgRcrOZn8CTupot7b+cM/UOYw7akJ/h9GvJmVXuIiIiIh+0+WlaJL2krRJ/b6RpBslXddwuORgsIvtYcDbgS2BbzQWShowiZ6kDYDbKbunvc32qsC/Uw7w3KadNgMm/oiIiIiIvtSdd2yOp2xPDPAD4K+U809+3tNB9TbbU4Ergc0kWdJ/SfoX8C8ASQdLelDSTEl/lDS6pa2kD0q6X9IcSacCaig7VtJ5Ddfjav+vq9erSTpT0jRJsyRdKmmVGstoSfPrZzRwLHCz7S+1zM7YftL2KbYvqP1tJ+kxSUdKehw4U9KKkk6pY0yr31es9Q+sZ+TQEKNrEoWksySdJukaSfMk3SCp9aGnEREREREDTncSmzVsPyFpJcqMwdeBbwNb9EZgvUnSusBOwN/qrd0oZ9y8RdL7KWe+7A6sA0wGWhKJUcAllJmeUZTZk3/vxtDnAkOBTYE1gZNtLwB2BKbZHlY/04AP1LE6szblrJuxwCGUf5d3Uv5d3ko5jPQb7TVuwz6U5W+jgLuA89urKOkQSc2SmhctnNONISIiIiIielZ3Epun6v+zvyNwh+3ngJVomLEYBC6VNBu4CbgB+G69/z3bM20/Q/nD/te276zP+DXKgZzjKMnQfbYvrgdfngI83pWBJa1D+e0OtT3L9gu2b+igyajGviUdVg/XnC/pjIZ6i4FjbD/XEP+36+zOU8BxlMM6u2qC7Rvrs3+d8uzrtlXR9um2m2w3DRk6ohtDRERERET0rO68k/EdYCLl5fs96r3tgbt7OqhetJvtaxtvSAKY0nBrNHBny4Xt+ZKeBsbUsikNZZbU2LYj6wIzbc/qYv2nKTNGLWOdCpwq6XigcZOBp2w/2yr+yQ3Xk+u9rmp8vvmSZtLquSMiIiIiBpouJza2z5J0Uf2+sN6+HdizNwLrY274Po2yrAuA+g7M6sBUYDolQWkpU+M1Zbe1oQ3Xazd8nwKsJmmk7dkdjN/iz8DHgTO7EXtj/PfW6/XqvVfFJ2ltXq3x+YZRlrlNa6PeK2w+ZgTN2RUsIiIiIvpJh0vRJC3X+AGeBZ5tuJ4BPNkXgfah8cCnJG1RX7r/LnC77UnABGBTSR+vGwJ8gVcmL3cB75W0nqQRlGVsANieTtkk4OeSXi9peUnvrcVPAKvXNi2OBd4j6UeSxsBL7/hs0kn8vwG+IWmNWv9bQMuGBnfX+Leo70od20b7nSRtI2kFyizd7bYzWxMRERERA1pn79i8CLzQwaelfJlh+8/ANykv7k8H1qfOStmeAXwSOJGyVGxD4OaGttcAFwJ/pyzbu7xV9/tRfq/7KQnh4bXd/ZSE5OH6Hs1o2/+kbALwBuBuSfPqWNNqfO05HmiuMdxDWVZ3fB3nn5QNH66l7AB3UxvtxwPHUHbAewflnZ2IiIiIiAFNdluroGphF7f6tT2581ox0Ek6C3jMdnd2UQOgqanJzc3NPR9UREREREQlaaLtprbKOnzHpq2EpS5BWwt4wvbingkxIiIiIiJiyXV5u2dJq0o6h/KezVTgGUlnt3ovJCIiIiIios915xybnwCrAJsBKwObU3bY+kkvxBWAJNezg/qE7QOXZBlaRERERER/6845Nh8G3tSw1fM/JX0KeKjnw4qukrQWZWvnT9i+vuH+mcBKtvfqizjumTqHcUdN6IuhBpVJ2QI7IiIiok90Z8bmWWCNVvdGAc/1XDjRXbafAL4InCFpZQBJ2wMfoWxH3SMkDempviIiIiIielp3EptfAtdIOlTSjpIOBa4Czuid0JYtko6UNFXSPEkPSNpe0laSbq1bPE+XdGo9P6at9itK+oGkRyU9Iem0lkTG9rnAA8C3671fUJKapyUdJekhSU9LukjSag19/lbS45LmSLpR0qYNZWdJ+h9JV0haALyvN3+fiIiIiIil0Z3E5gTge8AngB/W/37f9nd6I7BliaSNgMOALW0PB3YAJgGLKLMto4B3AdsDn2unm5OANwNbABsAYyiHb7Y4FPhP4ALg/2xfQEludgO2BUYDs4CfNbS5knIWz5qU827ObzXm3pR/9+G0ceaNpEMkNUtqXrRwTsc/QkREREREL+rwHJtXVJR+Alxg+5aGe+8Gdrd9eO+Et2yoGwDcQkkUbrDd5qGmkg4HtrX9sXptSuLxEDAf+DfbD9WydwHjbb+xof1/Ad8HNrA9XdI/gMPqoaNIWgd4FFjZ9outxh5JSXxG2p5Tz7RZzvb+XXnGFdfZ0OsccEpXqr6m5B2biIiIiJ7T0Tk23Zmx2Ytyon2jiZQ/1qMDth8EDgeOBZ6UdIGk0ZLeLOnyuhxsLvBdyuxNa2tQdqCbWJetzQb+xKvfeboXmGV7er0eC/y+oc0/KLNEa0kaIunEukxtLmUGiVbjT1mqB4+IiIiI6CPd2RXNQOsXyIfQveToNcv2eGC8pFUp78CcRFke9jdgL9vz6ozNJ9poPgN4BtjU9tRuDDsF+E/bN7cukLQfsCvwAUpSM4IyY6PGsLs60OZjRtCc2YmIiIiI6CfdSUr+AnxH0nIA9b/H1vvRAUkbSXq/pBUpu8s9Q5k5GQ7MBeZL2hj4bFvtbS+mbNJwsqQ1a59jJO3QydCnASdIGlvbrCFp11o2nLKj3dOU2aDvLs0zRkRERET0p+4kNv+P8v/uT5f0V2Aa8EHg870R2DJmReBEyszL45SX9Y8GvkxZyjePkrhc2EEfRwIPArfVpWPXAht1Mu6PgT8CV0uaB9wGbF3LzgEmA1OB+2pZRERERMSg1OXNA+ClWZqtgHUpy5z+WmcT4jWuqanJzc2tX8GKiIiIiOg5HW0e0J13bFqWRN1G/t/9iIiIiIgYQPLifz+SdKyk83qxf9etpqkHen6zt8aKiIiIiOhP3ZqxCZA0CTjI9rUN9w6s97bpr7g6Y/vQ3uz/nqlzGHfUhN4cYpmUc24iIiIiekZmbAYoSUk6IyIiIiK6KIlND5L0FUmXtLr3U0mn1O9vlHSDpHmSrqHhMExJ4+rSsU9LehS4rt7/bT3Ac46kGyVt2tDmekkHNVwfKOmmdmI7S9LxDde7SrpL0tx6SOeHG/p4uMb4iKR9euTHiYiIiIjoRUlsetZ5wIcljYSXZl32AM6t5eOBiZSE5jvAAW30sS2wCdByRs2VwIaULaLvBM5f2iAlbUXZ7vkrwEjgvcAkSasAPwF2tD0ceDdw19KOFxERERHR27LcaclcKunFhusVgDttT5d0I/BJyrk0HwZm2J4oaT1gS+ADtp8DbpR0WRt9H2t7QcuF7V+3fJd0LDBL0gjbc5Yi/k8Dv7Z9Tb2eWvtfBVgMbCbpUdvTgentdSLpEOAQgCGrrrEU4URERERELJ3M2CyZ3WyPbPkAn2soOxvYt37fl5dna0YDsxqTFsoBma1NafkiaYikE+tSsbnApFo0qo123bEu8FDrmzW2PYBDKQexTpC0cXud2D7ddpPtpiFDRyxlSBERERERSy6JTc+7FPg3SZsBO/Py0rHpwOvrrEiL9dpo33hi6t7ArsAHgBHAuHpf9b8LgKEN9dfuYoxTgPXbKrB9le0PAusA91NmniIiIiIiBrQsRethtp+VdDHlfZq/2n603p8sqRk4TtLRwFbALsAfO+huOPAc8DQlgfluq/K7gI9L+iVlRujTwBNdCPNXwNWSLgf+l5LEDAdmAVsDfwaeAeYDi7rQH5uPGUFzti6OiIiIiH6SGZvecTawOS8vQ2uxNyVxmAkcQ3mBvyPnUJarTQXuA25rVX4y8DwlmTmbLm4sYPuvwKdq+znADcBYyv8ejgCm1Ri35ZXL7CIiIiIiBiTZ7rxWdEvdKOB+YG3bc/s7nr7Q1NTk5ubm/g4jIiIiIpZhkibabmqrLDM2PUzScsCXgAteK0lNRERERER/yzs2PahuDPAEZfnYh/s5nIiIiIiI14zM2DSQtJGkv0maJ2mxpG92p73tBbaH2d7U9pTOW/QPSZa0QRfqbSfpsb6IKSIiIiJiaWTG5pW+Clxv+22NNyVtB1wHLKy35gC/tH1MbwYj6XrKC/xb2L674f6llG2g32f7+t6MoavumTqHcUdN6O8wBrVJ2VUuIiIiYollxuaVxgL3tlM2rc7GDAO2AT4tabc+iOmfwP4tF5JWB94JPNUHY0dEREREDApJbCpJ1wHvA06VNF/SeEnHt1XX9iPALcBbGtr/WNIUSXMlTZT0noayrSQ117InJP2ooeydkm6RNFvS3XV2qNH5wB6ShtTrvYDfU7Z5buljRUmnSJpWP6dIWrGh/CuSptey/2z13CtK+oGkR2tsp0lauVs/XkREREREP0tiU9l+P/AX4LA6K/N8e3UlbQj8O688V+YOYAtgNcrhnL+VtFIt+zHwY9urAusDF9V+xgATgONruy8Dl0hao6HfaZQzbD5Ur/fn1efffJ0yi7MF8FbK4Z/fqGN8uPb7QWBD4AOt2p4EvLm23QAYA3yrvWdv9TscUhO25kUL53SlSUREREREr0hi03Wj66zKXMrysNuBm1oKbZ9n+2nbL9r+IbAisFEtfgHYQNIo2/NttyRE+wJX2L7C9mLb1wDNwE6txj4H2F/SRsBI27e2Kt8H+LbtJ20/BRwH7FfLdgfOtP1/thcAx7Y0kiTgYOCLtmfangd8F9izKz+I7dNtN9luGjJ0RFeaRERERET0iiQ2XTfN9sg66zISeAY4u6VQ0hGS/iFpjqTZwAhgVC3+NGVW5H5Jd0jaud4fC3yyJkyza7ttgHVajf074P3A54Fz24htNGWL6RaT672WsimtylqsAQwFJjaM/6d6PyIiIiJi0MiuaEvA9hxJ44ELAer7NEcC2wP32l4saRagWv9fwF718M6PAxfXTQCmAOfaPriT8RZKuhL4LGUpW2vTeOXGB+vVewDTgXUb6q7X8H0GJUHb1PbULj18OzYfM4Lm7OoVEREREf0kMzZLQNIwynKtlkRiOPAiZaey10n6FrBqQ/19Ja1hezEwu95eBJwH7CJpB0lDJK1Uz455QxvDHg1sa3tSG2W/Ab4haQ1JoyjvyJxXyy4CDpT0FklDgZe2qK7xnAGcLGnNGusYSTt09zeJiIiIiOhPSWy6bnTdLW0+ZTnXapR3WwCuAq6kvHszGXiWVy7/+jBwb237Y2BP28/WQzx3pSQtT9U2X6GNfxfb02zf1Pp+dTzl3Zy/A/cAd9Z72L4SOIVyDs+D9b+Njqz3b6vvD13Ly+8GRUREREQMCrLd3zHEMqCpqcnNzc39HUZERERELMMkTbTd1FZZZmwiIiIiImLQS2ITERERERGDXhKbAahuIPBYf8cRERERETFYZLvnHiBpErAWZaezFmfZPqx/Iup790ydw7ijJvR3GMuMSdk6OyIiIqJbktj0nF1sX9vfQSwpSUNsL+q8ZkRERETEwJOlaL1I0oGSbpL0A0mzJD0iaceG8tUknSlpWi2/tJ1+NpF0vaTZku6V9NGGsp0k3SdpnqSpkr7cOHarfixpg/r9LEn/I+kKSQuA90kaLekSSU/VWL/QG79LRERERERPS2LT+7YGHgBGAd8HfiVJtexcYCiwKbAmcHLrxpKWBy4Drq51Pg+cL6nlrJlfAZ+xPRzYjFefU9ORvYETKAeM3lLHuRsYA2wPHN7RYZ2SDpHULKl50cI53Rg2IiIiIqJnJbHpOZfWGZWWz8H1/mTbZ9RlXmcD6wBrSVoH2BE41PYs2y/YvqGNft8JDANOtP287euAy4G9avkLwFskrVr7ubMbMf/B9s22FwObA2vY/nYd52HgDGDP9hrbPt12k+2mIUNHdGPYiIiIiIielcSm5+xme2TD54x6//GWCrYX1q/DgHWBmbZnddLvaGBKTT5aTKbMqgD8B7ATMFnSDZLe1Y2YpzR8HwuMbkzOgKMpmyJERERERAxo2Tyg/0wBVpM00vbsDupNA9aVtFxDcrMe8E8A23cAu9Yla4cBF1GSpgWUZW4ASFq7jb7dKp5HbG+4JA+z+ZgRNGcnr4iIiIjoJ5mx6Se2pwNXAj+X9HpJy0t6bxtVb6ckKV+tdbYDdgEukLSCpH0kjbD9AjCXl7ecvhvYVNIWklYCju0kpL8CcyUdKWllSUMkbSZpy6V+2IiIiIiIXpbEpudcJml+w+f3XWizH+UdmfuBJ4HDW1ew/TzwUcr7ODOAnwP7276/oY9JkuYChwL71nb/BL4NXAv8C7iJDtR3gHYBtgAeqWP9EsjLMxEREREx4Ml257UiOtHU1OTm5ub+DiMiIiIilmGSJtpuaqssMzYRERERETHoJbGJiIiIiIhBL7uiDVKSJgEH2b62v2MBuGfqHMYdNaG/w1jmTcrOcxERERFtyoxNP5O0jaRbJM2RNFPSzX21E5mk6yUdVL9vJ2lxw+YHj0m6KLuiRURERMRgkMSmH0laFbgc+CmwGuXQzeOA5/oppGm2hwHDgXdSdmv7i6Tt+ymeiIiIiIguSWLTv94MYPs3thfZfsb21bb/Lml9SddJelrSDEnnSxrZVieSlpN0lKSHav2LJK1Wy1aSdF69P1vSHZLW6igoF4/Z/hZly+eTevi5IyIiIiJ6VBKb/vVPYJGksyXtKOn1DWUCvgeMBjYB1qX9Qza/AOwGbFvrzwJ+VssOoJxFsy6wOuWsm2e6EePvgLdLWqV1gaRDJDVLal60cE43uoyIiIiI6FlJbPqR7bnANoCBM4CnJP1R0lq2H7R9je3nbD8F/IiSuLTlM8DX6yzLc5QE6BOSXkc5AHR1YIM6KzSxjttV0yhJ1sg24j/ddpPtpiFDc45nRERERPSfJDb9zPY/bB9o+w3AZpQZl1MkrSnpAklTJc0FzgNGtdPNWOD3danZbOAfwCJgLeBc4CrgAknTJH1f0vLdCHEMJfGavSTPFxERERHRF7Ld8wBi+35JZ1FmYL5HSSj+zfbTknYDTm2n6RTgP23f3E75ccBxksYBVwAPAL/qYlgfA+60vaCjSpuPGUFztiKOiIiIiH6SGZt+JGljSUdIekO9XhfYC7iNsjPZfGC2pDHAVzro6jTgBEljaz9rSNq1fn+fpM0lDQHmUpamLeokLkkaI+kY4CDg6KV60IiIiIiIXpbEpn/NA7YGbpe0gJLQ/B9wBGWW5e3AHGAC5SX+9vwY+CNwtaR5tZ+ta9nawMWUpOYfwA2UZW1tGS1pPiWhugPYHNjO9tVL+oAREREREX1Btvs7hlgGNDU1ubm5ub/DiIiIiIhlmKSJtpvaKsuMTUREREREDHpJbBpI2kjS3yTNk7RY0jd7ebxjJbW3LKx13eslHdSb8UREREREDFbZFe2Vvgpcb/ttjTclbQf8L/B72x9vuP9W4C7gBtvb9VWQkg6k7GrWctDmU8D1wPds/7Ov4mh0z9Q5jDtqQn8MHUtoUnaxi4iIiGVIZmxeaSxwbztlTwHvlrR6w70DgH5JJIBbbQ8DRgAfoCQ5EyVt1k/xRERERET0myQ2laTrgPcBp0qaL2m8pOMbqjwPXArsWesPAXYHzm/Vz7sl3SFpTv3vuxvK3ijphrrU7RpaHbgp6Z2SbqkHbd5dZ4o6ZHuR7Ydsf46y49mxXelP0oGSHq6xPCJpn4aygyX9o5bdJ+ntncUREREREdGfkthUtt8P/AU4rM6EPN9GtXOA/ev3HSizO9NaCiWtRtma+SfA6sCPgAkNszzjgYmUhOY7lBmflrZjatvjgdWALwOXSFqjG4/xO+A9nfUnaZUa4462hwPvpiypQ9InKcnR/sCqwEeBp9saTNIhkpolNS9aOKcbYUZERERE9KwkNt1g+xZgNUkbUf7wP6dVlY8A/7J9ru0Xbf8GuB/YRdJ6wJbAN20/Z/tG4LKGtvsCV9i+wvZi29cAzcBO3QhxGiWJ6Up/i4HNJK1se7rtliV4BwHft32HiwdtT27n9zjddpPtpiFDR3QjzIiIiIiInpXEpvvOBQ6jLFv7fauy0UDrJGAyMKaWzbK9oFVZi7HAJ+uysdmSZgPbAOt0I7YxwMzO+qsx7AEcCkyXNEHSxrXdusBD3RgzIiIiIqLfZVe07jsXeBA4x/ZCSY1l0ygJRaP1gD8B04HXS1qlIblZD2g5IXUKcK7tg5cito9RltN12p/tq4CrJK1MWa52BmUZ2xRg/e4OvPmYETRnl62IiIiI6CeZsekm248A2wJfb6P4CuDNkvaW9DpJewBvAS6vy7mageMkrSBpG2CXhrbnUZas7SBpiKSVJG0n6Q0dxVPrvlHST4HtgOM660/SWpI+Wt+1eQ6YDyyq7X4JfFnSO1RsIKl1shYRERERMaAksVkCtm+yPa2N+08DOwNHUF64/yqws+0ZtcrewNaU5WLH0PCOju0pwK7A0ZStpacAX6H9f6N3SZoPzKWcYbMqsKXte7rQ33I1xmk1lm2Bz9V2vwVOoGx0MI+yE1zLezsREREREQOSbHdeK6ITTU1Nbm5u7u8wIiIiImIZJmmi7aa2yjJjExERERERg14Sm4iIiIiIGPSS2ERERERExKCX7Z5foySdBTxm+xs90d89U+cw7qgJPdFVLCMmZfvviIiI6EPLzIyNpD0l3S5pgaQn6/fPqdVBMwOdpH0kza+fZyQtbrie39/xRUREREQMRMtEYiPpCODHwH8DawNrAYcC/w6s0Eb9IX0aYBsktTlbZvt828NsDwN2BKa1XNd7jX30+3NERERERAwEgz6xkTQC+DbwOdsX257n4m+297H9nKSzJP2PpCskLQDeJ2kTSddLmi3pXkkfbejzekkHNVwfKOmm+l2STq6zQnMk/V3SZrVsRUk/kPSopCcknSZp5Vq2naTHJB0p6XHgzCV41rae4yOS/iZprqQpko5t1WYbSbfU55wi6cA2+h0u6X8l/aQ+306S7pM0T9JUSV9uJ55DJDVLal60cE53HyciIiIioscM+sQGeBewIvCHTurtTTl4cjhwO3AZcDWwJvB54HxJG3VhvA8B7wXeDIwE9qAcxglwUr2/BbABMAb4VkPbtSmHXY4FDunCWJ09x03AAmD/GstHgM9K2g1A0nrAlcBPgTVqXHc1diZpdeDPwM22v+BysNGvgM/YHg5sBlzXViC2T7fdZLtpyNARS/g4ERERERFLb1lIbEYBM2y/2HKjYYbiGUnvrbf/YPtm24spf+APA060/bzt64DLgb26MN4LlKRiY8oBp/+wPb2+y3Mw8EXbM23PA74L7NnQdjFwjO3nbD+zhM/70nPYftb29bbvqdd/B34DbFvr7gNca/s3tl+w/bTtuxr6Gg3cAPy21SYCLwBvkbSq7Vm271zCWCMiIiIi+sSysCva08AoSa9rSW5svxtA0mO8nLxNaWgzGphSk5wWkykzLB2yfZ2kU4GfAetJ+j3wZWAlYCgwsWG/AgGN78E8ZfvZbj5fa43PgaStgRMpMysrUGavfluL1wUe6qCvjwDzgdNa3f8P4BvAiZL+Dhxl+9aOgtp8zAiaswtWRERERPSTZWHG5lbgOWDXTuq54fs0YF1Jjc+/HjC1fl9ASVJarP2Kjuyf2H4HsCll6dlXgBnAM8CmtkfWz4hWL/w3xrCkWvcxHvgjsK7tEZQkpSWzmgKs30FfZwB/Aq6QtMpLA9h32N6VskzvUuCiHog7IiIiIqLXDPrExvZs4Djg55I+IWmYpOUkbQGs0k6z2ynJy1clLS9pO2AX4IJafhfwcUlDJW0AfLqloaQtJW0tafnax7PAojr7cwZwsqQ1a90xknbo0Qd+teHATNvPStqK8g5Oi/OBD0jaXdLrJK1ef5dGhwEPAJdLWlnSCnXL6RG2XwDmAot6+RkiIiIiIpbKoE9sAGx/H/gS8FXgSeAJ4BfAkcAtbdR/HvgoZTvlGcDPgf1t31+rnAw8X/s5m5IgtFiVksDMoixfexr4QS07EngQuE3SXOBaoCsbEiyNzwHfljSPslHBS7Mrth8FdgKOAGZSEra3NjaumwUcQpnd+QNlSd1+wKT6DIcC+/byM0RERERELBWVv2sjlk5TU5Obm5v7O4yIiIiIWIZJmmi7qa2yZWLGJiIiIiIiXtsG9K5o9VyZCyhnwqxC2Sr5O/0bVddIuh44z/Yv2yk/Gji6jaK/2N6xN2PrDfdMncO4oyb0dxixjJiUHfYiIiKimwb6jM1XgettD7e9XGNSI+loSY9Imi/pMUkX9mOc3Wb7u7aHtfHpNKmRdL2kZyXNkzRX0kRJR0lasS9ij4iIiIgYaAZ6YjMWuLf1TUkHUF5w/0DdTrkJ+HMfx9YrJHV1Fu0w28OBdSibA+xJ2bZZHTeLiIiIiFj2DNjERtJ1wPuAU+uszHhJx9fiLYGrbD8EYPtx26c3tB0h6VeSpkuaKul4SUMayg+W9I8643GfpLfX+5vU2ZDZku6V9NGGNmdJ+pmkCbXd7ZLWbyj/oKT7Jc2pB3iqoWx9SddJelrSDEnnSxrZUD5J0pH1MMwFkr4i6ZJWv8dPJZ3S+neyvcD29ZRd3t5FOXSTuuX1UZIequNeJGm1WraSpPPq/dmS7pC0Vi1bTdKZkqZJmiXp0m78s0VERERE9IsBm9jYfj/wF8rMxDDK9sstbgP2rwlAU2PSUp0NvEh5N+dtwIeAgwAkfRI4FtifsnXzR4Gn67k0lwFXUw6m/Dxwfn3Pp8VelDNzXk/Z1vmE2uco4BLgG8Ao4CHg3xvaCfgeMBrYBFi3xtBoL0pSMhI4D/hwS/JTZ3H2AM7t4Pd6FGgG3lNvfQHYDdi2jjsL+FktOwAYUeNYnbKl8zO17FzK4aSb1t/h5PbGlHSIpGZJzYsWzmmvWkRERERErxuwiU1HbJ9HSTx2AG4AnpR0FECdedgROLzOZjxJ+eN8z9r8IOD7tu9w8aDtycA7gWHAibaft30dcDkl4WjxO9t/tf0i5WybLer9nYD7bF9cD7U8BXi8Id4HbV9j+znbTwE/oiQcjX5ie4rtZ2xPB24EPlnLPgzMsD2xk59mGrBa/f4Z4Ou2H7P9HCWR+kRNkl6gJDQb2F5ke6LtuZLWqb/dobZn2X7B9g3tDWb7dNtNtpuGDB3RSWgREREREb1nQO+K1hHb51NmVJanzEycL+lvlJmJ5YHpDa+bLEc5gBLKLMVDbXQ5Gphie3HDvcnAmIbrxxu+L6QkQi+1bYjNkl66lrQm8BPKbMrwGs+sVuNPaXV9NvBZymGg+9LBbE2DMbx8IOlY4PeSGp9nEbBW7Wtd4II6K3Qe8PV6b6bt1rFFRERERAxogzaxaVFnSH4r6UhgM2A88Bwwqs6stDYFWL+N+9OAdSUt15DcrAf8swthTKckBQDUF/jXbSj/HmDg32w/LWk34NTWj9Lq+lLgfyRtBuxM2SGuXZLWBd4BnFRvTQH+0/bN7TQ5DjhO0jjgCuCB+t/VJI20Pbuj8VrbfMwImrNFb0RERET0k0G5FE3SgZI+Iml4fUl+R8o7IbfXZVxXAz+UtGotX19Sy9KvXwJflvQOFRtIGgvcDiwAvippeUnbAbtQztHpzARgU0kfr0u9vgCs3VA+HJgPzJY0BvhKZx3afha4mJKo/bW+Q9PWbzG0PtsfgL9SkhOA04AT6rMhaQ1Ju9bv75O0eX03aS5ladqi+ttdCfxc0uvr7/DeLjx/RERERES/GpSJDeWP8aOBR4HZwPeBz9q+qZbvD6wA3EdZ8nUxZVtkbP+W8tL/eGAeZWZkNdvPUzYS2BGYAfwc2N/2/Z0FY3sG5X2YE4GngQ2BxpmS44C3A3MoSdDvuvicZwOb0/YytFMlzQOeoLzTcwnw4YbZph8DfwSurvVuA7auZWtTfpO5wD8o7ymdV8v2oyQ69wNPAod3MdaIiIiIiH4ju/UKqBgoJK1HSTDWtj23v+PpSFNTk5ubm/s7jIiIiIhYhkmaaLuprbLBOmOzzJO0HPAl4IKBntRERERERPS3JDY9QJIlbdAD/Vwv6SBJq1CWiX0QOGapA1zyeLaT9Fh/jR8RERER0VWDfle0waRuSHAdZavoRh+0fWvLhe0FvLyV9KBwz9Q5jDtqQn+HEdFjJmWXv4iIiEEliU3fm2b7Df0dRERERETEsiRL0VqRdKSkqZLmSXpA0vaStpJ0q6TZkqZLOlXSCu20X1HSDyQ9KukJSadJWnkJ4lhf0nWSnpY0Q9L59TDNlvJJkr4m6T5JsySdKWmlWjZK0uU13pmS/lLf2UHSaEmXSHpK0iOSvtDQ58qSzqr93Qds2d24IyIiIiL6QxKbBpI2Ag4DtrQ9HNgBmAQsAr4IjALeBWwPfK6dbk4C3gxsAWwAjAG+tSThUA72HA1sQjnw89hWdfapMa5fx/xGvX8E8BiwBrAWZWts1+TmMuDuGtf2wOGSdqjtjql9rV/7PaDDAKVDJDVLal60cM4SPGJERERERM9IYvNKi4AVgbdIWt72JNsP2Z5o+zbbL9qeBPwC2LZ1Y0kCDga+aHum7XnAd4E9G6qNrjMpjZ9VWvdl+0Hb19h+zvZTwI/aGPNU21Nsz6SczbNXvf8C5dyesbZfsP0Xl329twTWsP1t28/bfhg4oyG+3YETauxTgJ909GPZPt12k+2mIUNHdFQ1IiIiIqJX5R2bBrYflHQ4ZWZkU0lXUbZcHkZJLJqAoZTfbWIbXaxRyyeWHAcoMy9DGup06R0bSWtSEov3AMMpSeisVtWmNHyfTJndAfjv+gxX1zhOt30iMJaaWDW0GwL8pX4f3UafEREREREDXmZsWrE93vY2lCTAlKVl/0M5KHND26tSlnapjeYzgGeATW2PrJ8Rtpdkh7Pv1fH/rY65bxtjrtvwfT1gWn2GebaPsP0mYBfgS5K2pyQtjzTENtL2cNs71T6mt9FnRERERMSAlxmbBvUdmzHAzcCzlCRlOcqMyVxgvqSNgc8CT7Vub3uxpDOAkyUdZvtJSWOAzWxf1c1whgNzgNm1j6+0Uee/JF1O2T76aODC+hw7UxKxh2rci+rnr8BcSUdSZoOep7y/s7LtO4CLgK9Juh1YBfh8V4PdfMwImrM9bkRERET0k8zYvNKKwImUmZfHgTUpCcOXgb2BeZR3Ui7soI8jgQeB2yTNBa4FNmooHy1pfqvPf7TRz3HA2ynJzQTgd23UGQ9cDTxcP8fX+xvWcecDtwI/t3297UWUGZwtgEfqc/4SaHlB5jjK8rNHar/ndvCcEREREREDhso75THYSJoEHGT72v6OBaCpqcnNzc39HUZERERELMMkTbTd1FZZZmwiIiIiImLQS2ITERERERGDXhKbQcr2OOBBSZbU6SYQkg6UdFPvRxYRERER0feyK1ofqu/FjAZG257RcP8u4K3AG+sBoH0RiynbVz8o6Vjg65Sd4KBs+3w15bDO6V3p756pcxh31IReiTXitWBSdhWMiIhYKpmx6XuPAHu1XEjaHFi5/8J5yYW2hwOrAR8D1qYcNLpO/4YVEREREdG5JDZ971xg/4brA4BzWi4kjZB0jqSnJE2W9A1Jy9WyIZJ+IGmGpIeBV/xfvLXtryRNlzRV0vGShnQnONsv2L4X2INyVs8RS/icERERERF9JolN37sNWFXSJjXp2AM4r6H8p5RzZd4EbEtJgj5Vyw4GdgbeBjQBn2jV99nAi8AGtc6HgIOWJMh65s0fgPe0V0fSIZKaJTUvWjhnSYaJiIiIiOgRSWz6R8uszQeB+4Gp9X5LovM12/Pq+zY/BPar5bsDp9ieYnsm8L2WDiWtBewIHG57ge0ngZOBPZcizmmUpWltsn267SbbTUOGjmivWkREREREr8vmAf3jXOBG4I00LEMDRgErAJMb7k0GxtTvo4EprcpajAWWB6ZLarm3XKv63TUGmLkU7SMiIiIi+kQSm35ge7KkR4CdgE83FM0AXqAkKffVe+vx8ozOdGDdhvrrNXyfAjwHjLL94tLGWN/r2QW4tiv1Nx8zgubs6hQRERER/SRL0frPp4H3217QcG8RcBFwgqThksYCX+Lld3AuAr4g6Q2SXg8c1dKwbst8NfBDSatKWk7S+pK27U5QkpaXtAnwG8rOaD9a0geMiIiIiOgrSWz6ie2HbDe3UfR5YAHwMHATMB74dS07A7gKuBu4E/hdq7b7U5ay3QfMAi4Gurpd8x6S5gOzgT8CTwPvsD2ti+0jIiIiIvqNbPd3DLEMaGpqcnNzW3laRERERETPkDTRdlNbZZmxiYiIiIiIQS+JTUREREREDHqv2cRG0rGSzuu85hL3b0kb1O+nSfpmb43VzvhnSTq+L8eMiIiIiOgvg2q7Z0mTgINsX9tw78B6b5v+iqsztg/tjX7rs/8KeKbh9lm2D+uN8Tpyz9Q5jDtqQl8PG7HMmJTt0iMiIpbKoEps+oqk1/XEWTB95NaBnNRFRERERPSFZWYpmqSvSLqk1b2fSjqlfn+jpBskzZN0DTCqod64unTs05IeBa6r938r6XFJcyTdKGnThjbXSzqo4fpASTe1E9srloVJ2lXSXZLmSnpI0ocb+ni4xviIpH165McpfR8s6UFJMyX9UdLoev84ST+t35eXtEDS9+v1ypKerWfmREREREQMWMtMYkM5xPLDkkZCmXUB9gDOreXjgYmUhOY7wAFt9LEtsAmwQ72+EtgQWJNybsz5SxukpK2Ac4CvACOB9wKTJK0C/ATY0fZw4N3AXUs7Xh3z/cD3gN0p59pMBi6oxTcA29XvWwKPU34HgHcBD9ie1U6/h0hqltS8aOGcngg1IiIiImKJDMalaJdKalwmtgJwp+3pkm4EPkk5yPLDwAzbEyWtR/mj/QO2nwNulHRZG30fa3tBy4XtloMxkXQsMEvSCNtL81f8p4Ff276mXk+t/a8CLAY2k/So7enA9C70905JsxuuP2z7tlZ19qlj3lnH+lp9lnHArcCGklanJFm/Aj4naRglwbmhvYFtnw6cDrDiOhvmQKSIiIiI6DeDccZmN9sjWz7A5xrKzgb2rd/35eXZmtHArMakhTJr0dqUli+Shkg6sS4VmwtMqkWj2mjXHesCD7W+WWPbAzgUmC5pgqSNu9DfbY2/RxtJDZTnf+l5bc8HngbG2H4GaKYkMe+lJDK3AP9OJ4lNRERERMRAMRhnbDpyKfA/kjYDdga+Wu9PB14vaZWG5GY9oPUsQ+P13sCuwAcoSc0IYBagWr4AGNpQf+0uxjgFWL+tAttXAVdJWhk4njLz9J4u9tuRacDYlos6O7Q6dbaIkry8H3gbcEe93gHYCrixKwNsPmYEzdnVKSIiIiL6yWCcsWmX7WeBiynv0/zV9qP1/mTKrMRxklaQtA2wSyfdDQeeo8xsDAW+26r8LuDjkobW82o+3cUwfwV8StL2kpaTNEbSxpLWkvTRmnQ8B8wHFnWxz86Mr2NuIWnF+iy3255Uy28A9gfus/08cD1wEPCI7ad6KIaIiIiIiF6zTCU21dnA5ry8DK3F3sDWwEzgGMoL/B05h7J8aypwH9B6idfJwPPAE3XMLm0sYPuvwKdq+zmUpGIs5d/iCMrsykzKMrDPtdNNt9j+M/BN4BLK7NX6wJ4NVW4BVubl2Zn7gGfp4mxNRERERER/k71svfNdNwq4H1jb9tz+jue1oqmpyc3Nzf0dRkREREQswyRNtN3UVtkyNWMjaTngS8AFSWoiIiIiIl47+iSxkbSRpL/VgycXS/pmL4yxCjAX+CBwTMOhm32+QYKkYyWd10N9nSZpfhuf03qi/4iIiIiIZUFf/dH/VeB6229rvClpO+A6YCFlR7JpwIm2z+zuAHW3s2ENfY9b8nBfEeNZwGO2v9Hq/t6U2aGNgXmUzQROsH1TT4zbwvahlC2gG8eeBBwgaR/KBgP3Ud4JOt324p4cv6vumTqHcUdN6I+hI6LBpOxOGBERr1F9tRRtLHBvO2XTbA8DVgWOBM6Q9JbWlfpj5qU9kr4EnELZXWwtytbRP6dsD91XdrE9nPLbnkj57X7Vh+NHRERERAwYvZ7YSLoOeB9wal1CNV7S8a3rubiUclbMWyQdKOlmSSdLmgkcK2mEpHMkPSVpsqRv1PdqWg7U/IGkGZIeBl7xf1tKmiTpAw3Xr1guJmkbSbdImi1pSh3/EGAf4Ks19sskjQC+DfyX7d/ZXmD7BduX2f5KO7/BbyU9LmmOpBslbdpQtpOk++oyvamSvlzvj5J0eY1npqS/tDxrq99tju0/Ug73PKCe4YOkFevv8aikJ+qStpU761vSupJ+V3/jpyWd2uk/ckREREREP+v1xMb2+4G/AIfVmZnn26pXz3T5GDASuKfe3hp4GFgTOAH4KeWgzDdRtkPen7J1MsDBlEM53wY0AZ/oaox1J7Ura/9rAFsAd9k+nbKN8/dtD7O9C/AuYCXg913tv/a9YX2OO3nl1tC/Aj5TZ182oyzNg7L182M1nrWAo3n1gaIvqdtIP8bLB3qeBLy5PssGwBjgWx31LWkIcDllm+txtc0F7Y0p6RBJzZKaFy2c08lPEBERERHRewbCrmijJc0GZlDOl9nP9gO1bJrtn9p+kZIQ7QF8zfa8erjkD4H9at3dgVNsT7E9E/heN2LYB7jW9m/q7MvTtu9qp+7qwIwaU5fY/nWN+TngWOCtdeYH4AXKDNWqtmfZvrPh/jrA2BrTX9z53tzTgNUkiZLofdH2TNvzKMvmWs6uaa/vrYDRwFfqTNSzHb0zZPt02022m4YMHdFetYiIiIiIXjcQEptptkfaXs32FrYbZwimNHwfBaxAmU1oMZkyqwDlD/Iprcq6al3goS7WfRoY1dV3fuoSuRMlPSRpLjCpFo2q//0PYCdgsqQbJL2r3v9v4EHgakkPSzqqC8ONoRzuuQYwFJhYl5vNBv5U73fU97rA5O4kbRERERERA8FASGw60jhDMYMy0zC24d56wNT6fTrlD/PGskYLKH/st1i74fsUYP0uxABwK/AssFt7QbeyN2VTgQ9QltGNq/cFYPsO27tSlqldClxU78+zfYTtNwG7AF+StH17g0jakpLY3ET5rZ4BNq1J40jbI+pSwI76ngKsN5A2aoiIiIiI6IpB8wes7UWSLgJOkLQ/sBplu+Uf1CoXAV+QdDkliWk9w3EXsKekK4G3Ut7B+VMtOx84WtLuwO8oCci6dTnaE5R3elrimCPpW8DPJL0IXE1JuD4AvM/2V1uNOxx4jjLTM5SyJAwASSsAnwQur/3OpWzfjKSdgfspM0kt9xe1/l0krQq8F/gxcJ7te+r9M4CTJR1m+0lJY4DNbF/VQd9/pSSIJ0o6pt57h+2bW4/b2uZjRtCcbWYjIiIiop8M9Bmb1j5PSVoepsxMjAd+XcvOAK4C7qa8oP+7Vm2/SZmVmQUcV9sCYPtRynKwIyhLue6iJD9QXu5/S13SdWmt/yNKUvUN4CnKTMdhlBmX1s6hLIubSjlv5rZW5fsBk2pScyiwb72/IXAtMJ8yS/Rz29c3tLtM0rw69teBH/HyRgpQtn9+ELit9n0tsFFHfdteRJnB2QB4lLLBwB5tPFNERERExICizt9Hj+hcU1OTm5ub+zuMiIiIiFiGSZpou6mtssE2YxMREREREfEqSWwiIiIiImLQS2LTBZIsaYP+jiMiIiIiIto2aHZFayFpb8qL+xsD8ygv+p/Q0UGSA5WkoykHaa4BzAZutr3EL+tL2o6yM9obeiK+7rhn6hzGHTWhr4eNiIgeMik7W0bEIDeoZmwkfQk4hbJl8lqUs2p+TjknZsDp6DwYSQdQdkT7QD1fpgn4c1/FFhERERGxLBk0iY2kEcC3gf+y/TvbC2y/YPsy21+RtKKkUyRNq59TJK1Y2x4o6aZW/b20vEzSWZJOk3SNpHmSbpA09tVRQB3nB5IelfREbbdyLdtO0mOSjpT0OHBmB4+0JXCV7YcAbD9u+/TazyclTWw17hEt201L2knSfTXWqZK+LGkV4EpgtKT59TNa0nKSjpL0kKSnJV0kabXaz7j6O3xK0hRJsyQdKmlLSX+vW1yf2r1/qYiIiIiIvjdoEhvgXcBKwO/bKf868E5gC8oZNFtRzpnpqn2A7wCjKMvbzm+n3knAm+s4GwBjgG81lK9NOTx0LHBIB+PdBuwv6SuSmiQNaSj7I/BGSZs03NsXOLd+/xXwGdvDgc2A62wvAHYEptkeVj/TgC8AuwHbAqMp5/j8rFUsW1POttmDMiP2dcqBo5sCu0v6/+3deZCcxX3G8e/DJSwJhHUYkKIjwVg2gkBgKQcbsGyMFcl2oCC4CBQ4kBhwDMSOkxIQKAgxYJwKhMRJERyM0cFNJB/gQJwA4QhEKxzAgLh0WCAQEpJWErqlX/7oHvTuMLMaaWeYndHzqXqrZt5+337f91ddvdPb/XZ/ptIDSDpHUqekzs1runp4VDMzMzOzxmqlhs0QYGlEbKqSfjpwZUS8HRFLSItwnrEd+d8XEf8dEetJP+yPkjSyeIAkkd6J+VZELIuIVaRhcacWDtsCXB4R6yNibbWLRcQ00oKjE4BHgLclXZTT1gN3khfrlDQOGAP8LJ++kbRo6N4RsTwinu7huc4F/ioiXs/5XgH8Qdkwub+JiHUR8SBpAdTbcxzfAB4FfqfKM9wUER0R0bFr/0E93IKZmZmZWWO1UsPmHWBoD++tDAcWFL4vyPtqtbD0ISJWA8sqnD8M6A/MzsO0VgD/nveXLImIdbVcMCKmR8TngX2A84ArJU3IybcCp+XG1BnAXblhAnAyMAlYkIfNHdXDZUYDMwr3+yKwmfSOUsniwue1Fb4PrOV5zMzMzMyapZVmRfsfYB1pWNU9FdIXkX7EP5+/j8r7IPVC9C8dKGm/CuePLKQPJA0nW1R2zFLSD/1xuTejkujpISqeELERuFvSZNLQsgci4klJG4BjgNPyVjp+FnCCpN2B84G78v1XuvZC4OyIeLw8QdKY7b3Xag4ZMYhOz6hjZmZmZk3SMj02EdFFepflnySdKKm/pN0lTZT0PeB24FJJwyQNzcdOy6c/A4yTdJikPUnDscpNknS0pD1I79o8FRELiwdExBbgB8D1kj4CIGlEoZelZnlCgy9K2iu/4D+R9E7LU4XDpgDfBzaVprOWtIek0yUNyg2ilaQeGEg9LUPyRAslNwJXlSZDyPHpk7PImZmZmZntqJZp2ABExHWkNWwuBZaQeiPOB2YC3wE6gWeB54Cn8z4i4mXSjGq/AF4BKq15cxtwOWkI2hGkd3YqmQy8CjwpaWXOc+wOPM5K4BLg16Q1bL4HfL1sPZ6ppB6cqWXnngHMz9c/j/wuTkTMITXw5uahZ8OBG0iTETwoaRVp0oJP7sD9mpmZmZn1WYrY7pFTbUfSj4DXI2J7ZlFruDyN9NvA4RHxSrPvpycdHR3R2dnZ7NswMzMzszYmaXZEdFRKa6kem53Q14FZfb1RY2ZmZmbWbK00eUDLkXQJabhZuUcjYuI2zp0PiDRZgpmZmZmZ9cANGyAi/qhB+V5NWufmPZIeBu6t4dwx9bwXSauB346IufXM18zMzMysL3DDporcY7Ivacaxd4H7gQvyGjdNJWk8MC0ifqOwbx/gOtL6NgOAN4GbI+JagIho6Fo0z73RxZiL7mvkJczMrM3N97IBZtYLfsemZ1/ODYLDgSNJs7G9p4fFQpvhetJCmp8ABgG/D7zW1DsyMzMzM/uAuGFTg7wY58+BgyWFpG9IeoU0dTSSvibpVUnLJP0kT7NMTjte0hxJXZK+T3pvppR2haRphe9jcv675e+DJd0iaZGk5ZJmShqQ72W4pNV5G05qeN0WEcsjYktEzImIewp5h6SPSiqet1rSGklROO5sSS/m6z1QWv/GzMzMzKwvc8OmBpJGkoZ4/TLvOpG0FsxBkj4HXAN8BdgfWADckc8bSnqf5lJgKKkH5dPbcempQH/Swp0fAa6PiHeBicCiiBiYt0Wk9WmuknSWpAOrZRgRxfMGAjMK93siabKDk4BhwKOkdXGqxeUcSZ2SOjev6dqOxzIzMzMzqy83bHo2U9IK0oKej7B1IoBrImJZRKwlLeT5w4h4OiLWAxcDR0kaQ2oMvRAR90TERuDvgbdqubCk/UkNmPNyL8zGiHikh1MuAKaTFix9IfcgbWvmtcnAx4Gz865z87O9GBGb8vMeVq3XJiJuioiOiOjYtf+gWh7LzMzMzKwh3LDp2YkRsU9EjI6IP80NGYCFhWOGk3ppAMiTC7wDjMhpCwtpUXZuT0YCyyJieS0HR8TaiLg6Io4AhgB3AXdLGlzp+Nzo+bP8jKXnGg3cIGlFbtAtIw2dG1HjPZuZmZmZNUVfevm9lUTh8yJSgwCA/A7MEOAN0sxkIwtpKn4nzbbWv/B9v8LnhcBgSftExIoerv/+m4tYKelqUu/Rb5IaKO+RNBa4FTgpIooNrYXAVRExvaf8KzlkxCA6PZuNmZmZmTWJe2x67zbgLEmHSepHGr71VETMB+4Dxkk6KU8IcCHdGy//BxwraZSkQaSGCAAR8SZpkoB/lvRhSbtLOjYnLwaG5HMAkHSZpCMl7SFpT1JvzArgpeLNStob+DFwaUQ8VvYsNwIXSxqXjx0k6ZQdD42ZmZmZ2QfDDZteioj/BC4jTRLwJnAAcGpOWwqcAnyXNDztQODxwrn/AdwJPAvMBn5Wlv0ZwEZgDvA28M183hzSS/1z87Cx4aRenFuApaRepOOBL1ZYd+dwYCxwXXF2tJzvDOBa4A5JK4Ffkd7zMTMzMzPr05Re+zDrnY6Ojujs7Gz2bZiZmZlZG5M0OyI6KqW5x8bMzMzMzFqeGzY7MUnjJb3e7PswMzMzM+stz4rWS5KmA+sj4uzCvs8A/wYcnCcB6O01xgMPATMi4qTC/kNJExA8EhHje3ud3njujS7GXHRfM2/BzMzMzBpsfh+eBdc9Nr13ITBJ0vEAeUayHwDfrlOjptT4XAJ8StKQQvJXgZd7ew0zMzMzs1bnhk0vRcQ7wAXATXkNm8uB14A5kp7Is5Y9k3tdAJB0lqQXJa2SNFfSuYW08ZJelzRZ0lukmc4ANgAzyTOuSdoV+ArQbc0ZSTdIWihppaTZko4ppH1I0o8kLZf0AnBk2bnDJd0raYmkeZIurFOYzMzMzMwayg2bOoiIu0nTNd8OnAOcR1rD5jvAYOAvgHslDcunvA18CdgbOAu4XtLhhSz3y+eNzvmVTAHOzJ8nAM+TpnYumgUcls+/Dbg79yJBanQdkLcJpB4fACTtAvwUeAYYARwHfFPShGrPLekcSZ2SOjev6ap2mJmZmZlZw7lhUz/fAD4HXEnqVbk/Iu6PiC15vZpOYBJARNwXEa9F8gjwIHBMIa8twOURsT4i1pZ2RsQTwGBJY0kNnCnlNxER0yLinYjYFBF/B/QjrVsDqYfnqohYFhELgX8onHokMCwiroyIDRExlzSk7tRqDxwRN0VER0R07Np/ULXDzMzMzMwazg2bOomIxaTFMZ8n9bSckoehrZC0Ajga2B9A0kRJT0paltMmAUML2S2JiHVVLjUVOB/4LDCjPFHSt/Mwt66c96BC3sOBhYXDFxQ+jwaGl93zJcC+tcbAzMzMzKxZPCtaYywEpkbE18oTJPUD7iX1uPw4IjZKmgmocFhPq6ZOBV4FpkTEGmnrafl9msmkYWTPR8QWScsLeb8JjCQ1vgBGld3zvIg4sOanNDMzMzPrI9ywaYxpwKz8fsovgN2B3yU1SLpIw8OWAJskTQS+APyqlowjYl6eTnpuheS9gE05790kXUR6j6fkLuBiSU8BA0iTHpT8L7BS0mTSELUNwCeAD0XErG3d1yEjBtHZh6f/MzMzM7P25qFoDZDfXzmBNJRrCak35C+BXSJiFWmK6LuA5cBpwE+2M//HIqJ80gCAB4Cfk6aAXgCso/vQs7/O++eR3uuZWshzM/Bl0sQD80jD6v6VNJTNzMzMzKxPU0RPo57MatPR0RGdnZ3Nvg0zMzMza2OSZkdER8U0N2ysHiStAl5q9n20saGkXjRrHMe4sRzfxnOMG8vxbTzHuLHaJb6jI2JYpQS/Y2P18lK11rP1nqROx7exHOPGcnwbzzFuLMe38RzjxtoZ4ut3bMzMzMzMrOW5YWNmZmZmZi3PDRurl5uafQNtzvFtPMe4sRzfxnOMG8vxbTzHuLHaPr6ePMDMzMzMzFqee2zMzMzMzKzluWFjZmZmZmYtzw0bMzMzMzNreW7YGACSBkuaIeldSQskndbDsd+S9JakLkk/lNSv1nwkHSdpjqQ1kh6SNLqRz9WX1CPGkvpJujmfv0rSLyVNLJw3RlJIWl3YLvsgnq/Z6liGH5a0rhC/l8rOdRnufYxXl22bJf1jTnMZ3kZ8JR0s6QFJSyW970VZ18PV1SPGrod7Vsdy7Lq4gjrGtz3r4Yjw5g3gduBOYCBwNNAFjKtw3ARgMTAO+DDwMPDdWvIhrXjbBZwC7An8LfBks5+9lWIMDACuAMaQ/jHxJWAVMCanjwEC2K3Zz9uK8c3pDwN/UuUaLsN1iHHZsQOA1cCx+bvL8LbjOxb4Y+CE9Ge89nxchnsfY9fDH1g5dl3cwPiWHds29XDTb8Bb87dcoDcAHyvsm1rphwhwG3B14ftxwFu15AOcAzxRdt21wMebHYNWiXGVvJ8FTs6fW7Yy6ivx3cYfU5fhOpdh4KvAXLbO0ukyvI34FtI/Wv6DxfVw42Nc5bidvh6ud4xdFzc2vmXHtE097KFoBvAxYHNEvFzY9wzpv63lxuW04nH7ShpSQz7dzo2Id4HXqlyn3dQrxt1I2jfn/XxZ0gJJr0u6RdLQ3t16S6h3fK/J3fePSxpf7VyX4d6XYdIf1CmR/5oWuAxXj29v8nEZ7n2Mu3E93E29Y+y6uLuGlGHaqB52w8YgdWd2le3rAvaq4djS571qyGd7rtNu6hXj90jaHZgO3BoRc/LupcCRwGjgiHzO9F7deWuoZ3wnA78FjCAtZvZTSQfswHXaTSPK8CjgM8Cthd0uw1vtSNlyPVxd3Z/d9fD71DPGrovfrxFluK3qYTdsDNK4yr3L9u1NGjO8rWNLn1fVkM/2XKfd1CvGAEjahdT9vAE4v7Q/IlZHRGdEbIqIxTntC5LKr91u6hbfiHgqIlZFxPqIuBV4HJi0A9dpN3Utw9mZwGMRMa+0w2W4mx0pW66Hq6vrs7serqhuMXZdXFEjnrut6mE3bAzgZWA3SQcW9h3K+7vVyfsOLTtucUS8U0M+3c6VNAA4oMp12k29YowkATcD+5LGdG/s4bqlbmXt6I23iLrFt4Jga/xchusb4zPp/l/CSlyG65uPy3DvY+x6uLq6xbgC18WNiW971cPNfsnHW9/YgDtIM20MAD5N9Vk2fg94CziINNvRf9F9Rqmq+QDD8veTSbOYXMtOMotJnWN8I/AkMLDCuZ8kzYSyCzCENHPKQ81+9laJL7APaUavPYHdgNOBd4GxOd1luA5lOB/zqRzbvcr2uwxvO77K5e8g0g+OPYF+teTjMly3GLsebmCMXRc3vgznY9quHm76DXjrGxswGJiZC/ivgdPy/lGkrs9RhWP/nDSV60rglrLKvmI+hfTPA3NIs5c8TJ4ec2fY6hFj0njXANblc0rb6Tn9D4F5+RpvAlOA/Zr97C0U32HALFK3/grSD5fjXYbrF+NC+r8AUytcw2V4G/Fl64xFxW3+tvIppLsM9yLGroc/kBi7Lm5gfAt5tV09XJrWzczMzMzMrGX5HRszMzMzM2t5btiYmZmZmVnLc8PGzMzMzMxanhs2ZmZmZmbW8tywMTMzMzOzlueGjZmZmZmZtTw3bMzMzMzMrOW5YWNmZmZmZi3v/wFY1GQ2bZUaFAAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["def plot_fi(fi):\n"," return fi.plot('cols', 'imp', 'barh', figsize=(12,7), legend=False)\n","\n","plot_fi(fi[:30]);"]},{"cell_type":"markdown","metadata":{"id":"svcgUW6n194z"},"source":["The way these importances are calculated is quite simple yet elegant. The feature importance algorithm loops through each tree, and then recursively explores each branch. At each branch, it looks to see what feature was used for that split, and how much the model improves as a result of that split. The improvement (weighted by the number of rows in that group) is added to the importance score for that feature. This is summed across all branches of all trees, and finally the scores are normalized such that they add to 1."]},{"cell_type":"markdown","metadata":{"id":"9Bbi_ttv194z"},"source":["### Removing Low-Importance Variables"]},{"cell_type":"markdown","metadata":{"id":"Wk6YS-Za1940"},"source":["It seems likely that we could use just a subset of the columns by removing the variables of low importance and still get good results. Let's try just keeping those with a feature importance greater than 0.005:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"sOtRJx5Q1940","outputId":"e572f4ae-aa83-4676-d79a-9b4e631ce7ec"},"outputs":[{"data":{"text/plain":["21"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["to_keep = fi[fi.imp>0.005].cols\n","len(to_keep)"]},{"cell_type":"markdown","metadata":{"id":"R2thliw01940"},"source":["We can retrain our model using just this subset of the columns:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"omrtwZeg1941"},"outputs":[],"source":["xs_imp = xs[to_keep]\n","valid_xs_imp = valid_xs[to_keep]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"d4P6A3JV1941"},"outputs":[],"source":["m = rf(xs_imp, y)"]},{"cell_type":"markdown","metadata":{"id":"QNtXYupQ1941"},"source":["And here's the result:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"weWI3OOf1942","outputId":"66d0e1da-f7f6-4ba0-bae9-f978a3cd0a2f"},"outputs":[{"data":{"text/plain":["(0.181204, 0.230329)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m_rmse(m, xs_imp, y), m_rmse(m, valid_xs_imp, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"6i9E_jHh1942"},"source":["Our accuracy is about the same, but we have far fewer columns to study:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XP7JnHIw1943","outputId":"14561528-d1de-4f53-b6e9-b56ad857fb02"},"outputs":[{"data":{"text/plain":["(66, 21)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["len(xs.columns), len(xs_imp.columns)"]},{"cell_type":"markdown","metadata":{"id":"CR-2M-ZF1943"},"source":["We've found that generally the first step to improving a model is simplifying it—78 columns was too many for us to study them all in depth! Furthermore, in practice often a simpler, more interpretable model is easier to roll out and maintain.\n","\n","This also makes our feature importance plot easier to interpret. Let's look at it again:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jPL9EnzY1944","outputId":"7f5b7d95-b7a9-4533-f89c-9cdbce7fba41"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAzYAAAGeCAYAAABGn5TrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABfHUlEQVR4nO3dd7xdVZ3+8c9DpIWEhBBaYooCIm1E56KiKKgogiCMDoIgxREQFR3FAiIqVdGfCio6DKiU0AQRLIGhyAAiUm4QZERQSkJIQglJbgotJM/vj72ubK63Jvfm3JM879frvDhnr73W+u7N8XC/rrJlm4iIiIiIiGa2WqMDiIiIiIiIWF5JbCIiIiIiouklsYmIiIiIiKaXxCYiIiIiIppeEpuIiIiIiGh6r2h0ALFyGD16tCdOnNjoMCIiIiJiJTZlypTZtjforCyJTfSLiRMn0tra2ugwIiIiImIlJmlaV2WZihYREREREU0viU1ERERERDS9JDYREREREdH0ssamC5LOBGbYPqnRsTSDe2e0MfGYyY0Og6mnvq/RIUREREREA6wSIzaSpkp6VtICSfMk3SrpCEldXr/tIwYyqZG0taRrJc0tMU2RtPtytnmjpEP7K8aIiIiIiGaxSiQ2xZ62hwMTgFOBo4GfdnaipCErIJ7fANcBGwEbAp8B5q+AfiMiIiIiVjqrUmIDgO02278G9gUOlrSNpHMl/ZekqyQtAt5Rjp0MIOmvkvZob0PSKyTNlvSG8vnNZRRonqR7JO3cXQySRgOvAs62/UJ5/cH2LaX8/yTtWTt/9dLfdpLWknSBpKdLf3dK2kjSKcDbgDMkLZR0Rqn7WknXSZoj6QFJH6q1e66kH0u6utT5g6SNJZ1eRpLul/T6frnxEREREREDaJVLbNrZvgN4jCoZANgfOAUYDtzS4fSLgQ/XPu8KzLZ9l6SxwGTgZGAU8AXgckmdPjioeBp4ELhA0t6SNupQfj7wkdrn3YFZtu8GDgZGAOOA9YEjgGdtfwX4PXCk7WG2j5S0DtWo0EVUo0IfBn4saeta2x8CjgNGA88DfwTuKp9/AXyvq4uQdLikVkmtS55p6+ZyIyIiIiIG1iqb2BQzqZIRgF+VUZOltp/rcN5FwPslDS2f9y/HoEpArrJ9Val7HdBKlYx0yraBdwBTge8CsyTdLGnzcsoFwO6S1i2fDwQmlfeLqRKazWwvsT3FdldT2PYApto+x/aLtu8CLgf+vXbOFaWN54ArgOdsn297CfBzoMsRG9tn2W6x3TJk6IiuTouIiIiIGHCremIzFphT3k/v6iTbDwJ/BfYsyc37eSmxmQDsU6aFzZM0D9gR2KS7jm0/ZvtI25uWNhZRjdRgeybwB+CDkkYCuwEXlqqTgGuASyTNlPRtSat30c0E4E0dYjsA2Lh2zhO198928nlYd9cRERERETEYrLLbPUvaniqxuQV4E+AeqrRPR1sNuK8kO1AlRJNsH7assdieLulHpY925wGHUv07+qPtGeXcxcAJwAmSJgJXAQ9QbYTQ8RqmAzfZfveyxhYRERER0QxWuREbSeuWjQAuAS6wfW8vq14CvAf4BC+N1kA1bWxPSbtKGlIW9+8s6ZXdxLCepBMkbSZptbKZwH8At9VOuxJ4A/CflJGcUvcdkrYtO7fNp5qatqQUPwG8utbGb4HXSDqwbECwuqTtJW3Zy2uOiIiIiGgKq9KIzW8kvQgsBe6jWhR/Zm8r254l6Y/ATlQL7tuPT5e0F/BtqhGXJcAdVAlQV14AJgLXUy3SXwj8L/DpWrvPSrqcapTol7W6G5e4X1nq/ZwquQL4PnCepE9QjSJ9RtJ7yrV+jyqRvQc4qrfX3Vvbjh1Bax6OGRERERENomodewxGkr4GvMb2R3o8ucFaWlrc2tra6DAiIiIiYiUmaYrtls7KVqURm6YiaRTwMaod0SIiIiIiohur3BqbFak89LKz19t6qHcY1cL/q23fvGKijYiIiIhoXhmxGUC2l2mrZNtnA2f3czgRERERESutjNhERERERETTS2ITERERERFNL4lNREREREQ0vSQ2ERERERHR9LJ5QPSLe2e0MfGYyY0Oo0+m5oGiERERESuNjNg0iKS/SNp5Ze8zIiIiImJFyIjNAJG0sPZxKPA8sKR8/rjtrQegzzWAbwL7AiOBp4ArbX8OYCD6jIiIiIgYDJLYDJD6M2wkTQUOtX19b+pKeoXtF5eh2y8DLcAbgVnABODty9BORERERERTyVS0BpE0VdIu5f3xkn4h6QJJ84FDJI2Q9FNJsyTNkHSypCE9NLs9cIXtma5MtX1+F33Ok7SwvBZJsqSJpWwPSXeXc26V9C9dXMPhkloltS55pq0/bktERERExDJJYjN47AX8gmoK2YXAecCLwGbA64H3AIf20MZtwFGSPilpW0nq6kTbI20PKyNL3wd+D8yQ9AbgZ8DHgfWB/wZ+LWnNTto4y3aL7ZYhQ0f07WojIiIiIvpREpvB44+2r7S9FFgX2A34rO1Ftp8ETgP266GNbwLfAg4AWqkSlYO7qyBpX2B/4IO2FwOHAf9t+3bbS2yfR7U+6M3Lc3EREREREQMpa2wGj+m19xOA1YFZtUGX1Tqc809sLwF+BPxI0trAfwA/k3SH7b92PF/S64EzgPfYfqrW98GSPl07dQ1gTN8vKSIiIiJixciIzeDh2vvpVKMko8uUsZG21+3Lrma2n7X9I2AusFXHckkbAFcAR9r+U4e+T6n1O9L2UNsXL9NVRURERESsABmxGYRsz5J0LfBdSV8FFgKvAl5p+6au6kn6LHA3cDuwmGpK2nDgTx3OewVwOXCh7Z93aOZs4ApJ1wN3UG1VvTNws+0FXfW97dgRtOaBlxERERHRIBmxGbwOopoCdh/VqMsvgE16qPMs8F3gcWA28CmqtTMPdzjvlcDbgM/WdkZbKGm87VaqdTZnlH4fBA7pn0uKiIiIiBgYst3zWRE9aGlpcWtra6PDiIiIiIiVmKQptls6K8uITURERERENL0kNk1G0pkdpo+1v85sdGwREREREY2SzQOajO0jgCMaHUdERERExGCSEZuIiIiIiGh6SWwiIiIiIqLpJbGJiIiIiIimlzU2y0nSjcAFtn/S6Fga6d4ZbUw8ZnKjw1ghpuZBpBERERGDziozYiNpqqRnyw5iT0g6R9KwRscFIGlnSY91cnxzSZdIekrSfEl/l/RDSa9sRJwREREREYPVKpPYFHvaHga8AdgeOK5eKGnQjGBJ2gy4HZgJvN72usBbgYeAHbuoM2jij4iIiIhYkVa1xAYA2zOAq4FtJFnSpyT9Hfg7gKTDJD0oaY6kX0sa015X0rsl3S+pTdIZgGplx0u6oPZ5Ymn/FeXzqDJSNFPSXElXSlqnxDKm9kyaMcDxwB9sH2X7sRL3k7ZPt31JaW9nSY9JOlrS48A5ktaUdHrpY2Z5v2Y5/xBJt9TvRYlvs/L+3PKcnOskLZB0k6QJ/X3/IyIiIiL62yqZ2EgaB+wO/Kkc2ht4E7CVpHcC3wQ+BGwCTAPaE4nRwOVUIz2jqUZP3tqHricBQ4GtgQ2B02wvAnYDZtoeVl4zgV1KXz3ZGBgFTAAOB74CvBnYDngd8EY6jEz14ADgJKrruxu4sA91IyIiIiIaYlVLbK6UNA+4BbgJ+EY5/k3bc2w/S/WH/c9s32X7eeDLwA6SJlIlQ/fZ/oXtxcDpwOO96VjSJlQJzBG259pebPumbqqMrrct6UhJ88qIztm185YCX7f9fC3+E8vozlPACcCBvYmxmGz75nLtX6G69nFdXNPhkloltS55pq0PXURERERE9K9VLbHZ2/ZI2xNsf7IkAgDTa+eMoRqlAcD2QuBpYGwpm14rc4e63RkHzLE9t5fnP001YtTe1xm2R1IlU6vXznvK9nNdxV/ej6H36te3EJjTVX3bZ9lusd0yZOiIPnQREREREdG/VrXEpiuuvZ9JNa0LgLIGZn1gBjCLKkFpL1P9M7CIaqpZu41r76cDoySN7KH/dr8DPtDH2KFD/MD4cuyf4pNUj69d/fqGUU1zm9nJeRERERERg0YSm392EfBRSduVRfffAG63PRWYDGwt6QNlQ4DP8PLk5W7g7ZLGSxpBNY0NANuzqDYJ+LGk9SStLuntpfgJYP1Sp93xwNskfU/SWPjHGp8te4j/YuA4SRuU878GtG9ocE+JfztJa5U+Otpd0o6S1qBaa3O77d6OSkVERERENES2B+7A9u8kfZVq4f56wK3AfqVstqR9gB8A51BtBvCHWt3rJP0c+DMwG/gW8P5a8wcCpwH3A2sA/wvcbPt+SRcDD0saAmxl+2+S3gycCNxTkqyZwLXAt7u5hJOBdUsMAJeVY5Q2TwSuB56lSrw+3qH+RcDXgR2Au6jW7PRo27EjaM2DKyMiIiKiQVQtE4motnsGHrPdl13UAGhpaXFra2v/BxURERERUUiaYruls7JMRYuIiIiIiKaXxCYiIiIiIppe1tjEP9g+pNExREREREQsi4zYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSyeUD0i3tntDHxmMmNDmNQmZoHlkZERESsMBmxGWQknSvp5G7KF0p69YqMKSIiIiJisEtiswwkTZX0gqTRHY7fLcmSJg5U37aH2X54edupJ1CSJpa4F5bXE5J+K+ndyx9xRERERMTAS2Kz7B4BPtz+QdK2wNqNC6dfjLQ9DHgdcB1whaRDGhtSRERERETPktgsu0nAQbXPBwPnt3+Q9D5Jf5I0X9J0ScfXK0vaUdKtkuaV8kNqxetJmixpgaTbJW1aq2dJm5X350r6UTfnvlbSdZLmSHpA0od6c2G2H7f9feB44FuS8j2JiIiIiEEtf7Auu9uAdSVtKWkIsC9wQa18EVXiMxJ4H/AJSXsDSBoPXA38ENgA2A64u1b3w8AJwHrAg8Ap3cTR6bmS1qEadbkI2LCc92NJW/fhGn9Z6m7RWaGkwyW1Smpd8kxbH5qNiIiIiOhfSWyWT/uozbuB+4EZ7QW2b7R9r+2ltv8MXAzsVIoPAK63fbHtxbaftn13rd1f2r7D9ovAhVSJT1e6OncPYKrtc2y/aPsu4HLg3/twfTPLP0d1Vmj7LNsttluGDB3Rh2YjIiIiIvpXtntePpOAm4FXUZuGBiDpTcCpwDbAGsCawGWleBzwUDftPl57/wwwbBnOnQC8SdK8WvkrSsy9Nbb8c04f6kRERERErHAZsVkOtqdRbSKwO9W0rbqLgF8D42yPAM4EVMqmA5sysKYDN9keWXsNs/2JPrTxb8CTwAMDE2JERERERP/IiM3y+xiwnu1Fkur3czgwx/Zzkt4I7A9cW8ouBI4ti/l/CYygSoDu7se4fgucKulA4JJybDtgoe2/dldR0kbAPsDXgf+0vbSnzrYdO4LWPJAyIiIiIhokIzbLyfZDtls7KfokcKKkBcDXgEtrdR6lGuX5PNU0r7uptljuz7gWAO8B9qNaK/M48C2qKXFdmSdpEXBviW8f2z/rz7giIiIiIgaCbDc6hlgJtLS0uLW1s/wuIiIiIqJ/SJpiu6WzsozYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSS2ERERERERNNLYhMREREREU0vD+iMfnHvjDYmHjO50WEMalPzANOIiIiIATNoRmwkbSHpT5IWSFoq6asD3N/xki7o5bk3Sjp0IONZFpL+ImnnRscREREREdFogyaxAb4E3Gh7uO3VbJ8EIGlnSZb0y/rJkl5Xjt+4IoOUdIikJZIWltcjks6R9JoVGQeA7a1t39ibcyVNlbTLAIcUEREREdEQgymxmQD8pYuyp4C3SFq/duxg4G8DHlXn/mh7GDAC2AV4FpgiaZsV0bmkFTqFcEX3FxERERHRV4MisZF0A/AO4IwyCnKRpJNrp7wAXAnsV84fAnwIuLBDO2+RdKektvLPt9TKXiXppjLV7TpgdIe6b5Z0q6R5ku7pzRQv20tsP2T7k8BNwPG9aa+M+jxcYnlE0gG1ssMk/bWU3SfpDeX4VElHS/ozsEjSK+qjMGVq3S8k/bzUvUvS60rZJGA88Jtyf79Ujr+/TGebV6bbbVmL45/66+l+REREREQ0yqBIbGy/E/g9cGQZCXmhk9POBw4q73elGt2Z2V4oaRQwGfgBsD7wPWBybZTnImAKVUJzEtWIT3vdsaXuycAo4AvA5ZI26MNl/BJ4W0/tSVqnxLib7eHAW4C7S719qJKjg4B1gfcDT9f6+DDwPmCk7Rc7iWEv4LLS50XAlZJWt30g8Ciwp+1htr9dps5dDHwW2AC4iirxWaO3/Uk6XFKrpNYlz7T14VZFRERERPSvQZHY9IbtW4FRkrag+sP//A6nvA/4u+1Jtl+0fTFwP7CnpPHA9sBXbT9v+2bgN7W6HwGusn2V7aW2rwNagd37EOJMqoSiN+0tBbaRtLbtWbbbp+AdCnzb9p2uPGh7Wq2PH9iebvvZLmKYYvsXthdTJXZrAW/u4tx9gcm2ryvnfwdYmyrR6lV/ts+y3WK7ZcjQEV3dl4iIiIiIAdc0iU0xCTiSatraFR3KxgDTOhybBowtZXNtL+pQ1m4CsE+ZkjVP0jxgR2CTPsQ2FpjTU3slhn2BI4BZkiZLem2pNw54qJs+pvcQwz/KbS8FHqO69s687H6V86eX6+htfxERERERg0KzrZuYBDwInG/7GUn1splUCUXdeOB/gFnAepLWqSU34wGX99OBSbYPW47Y/o1qOl2P7dm+BrhG0tpU09XOpprGNh3YtJs+3E0ZVIkRAJJWA17JS9P1OtadCWxbO1+l/ow+9BcRERERMSg0VWJj+xFJOwEPd1J8FfBDSfsDlwIfBLYCfmt7tqRW4ARJxwJvBPYEfl3qXgDcKWlX4HpgdaopXA/afqyreMomBuOBo4CdgR16ag9YDLwJ+B3VbmoLgSWl3k+A70m6BbiLKslZ3GE6Wnf+VdIHynV9BngeuK2UPQG8unbupcAxkt4F3Az8Zzn/1l729TLbjh1Bax5AGREREREN0mxT0bB9i+2ZnRx/GtgD+DzVgvsvAXvYnl1O2Z8qoZgDfJ3aGh3b06kW3h9LtbX0dOCLdH1/dpC0EJgP3Ei10H972/f2or3VSowzSyw7AZ8s9S4DTqFa+L+Aaie49nU7vfErqmluc4EDgQ+U9TMA3wSOK1PjvmD7Aaq1QD8EZlMlenva7mzjhoiIiIiIQU12ZhutDCQdD2xm+yON6L+lpcWtra2N6DoiIiIiVhGSpthu6ays6UZsIiIiIiIiOkpiExERERERTa+pNg+Irtk+vtExREREREQ0SkZsIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml7W2ES/uHdGGxOPmdzoMAa1qXmAaURERMSAyYhNjaQtJP1J0gJJSyV9tdExDQRJlrRZL87bWdJjKyKmiIiIiIjlkcTm5b4E3Gh7uO3VbJ8E//gDf6mkheU1Q9IJAx2MpBtLEvK6DsevLMd3HugYIiIiIiKaQRKbl5sA/KWLspm2h9keBuwIfEzS3isgpr8BB7V/kLQ+8GbgqRXQd0REREREU0hiU0i6AXgHcEYZlblI0smdnWv7EeBWYKta/e9Lmi5pvqQpkt5WK3ujpNZS9oSk79XK3izpVknzJN3TySjMhcC+koaUzx8GrgBeqLWxpqTTJc0sr9MlrVkr/6KkWaXsPzpc95qSviPp0RLbmZLW7tPNi4iIiIhosCQ2he13Ar8HjiyjMi90da6kzYG3ArfVDt8JbAeMAi4CLpO0Vin7PvB92+sCmwKXlnbGApOBk0u9LwCXS9qg1u5M4D7gPeXzQcD5HUL6CtUoznbA64A3AseVPt5b2n03sDmwS4e63wJeU+puBowFvtbVtXe4D4eXhK11yTNtvakSERERETEgktj03pgyqjKfanrY7cAt7YW2L7D9tO0XbX8XWBPYohQvBjaTNNr2QtvtCdFHgKtsX2V7qe3rgFZg9w59nw8cJGkLYKTtP3YoPwA40faTtp8CTgAOLGUfAs6x/X+2FwHHt1eSJOAw4HO259heAHwD2K83N8T2WbZbbLcMGTqiN1UiIiIiIgZEEpvem2l7ZBl1GQk8C5zXXijp85L+KqlN0jxgBDC6FH+MalTkfkl3StqjHJ8A7FMSpnml3o7AJh36/iXwTuDTwKROYhsDTKt9nlaOtZdN71DWbgNgKDCl1v//lOMREREREU0jz7FZBrbbJF0E/BygrKc5GngX8BfbSyXNBVTO/zvwYUmrAR8AflE2AZgOTLJ9WA/9PSPpauATVFPZOprJyzc+GF+OAcwCxtXOHV97P5sqQdva9oxeXXxERERExCCUxGYZSBpGNV2rPZEYDrxItVPZKyQdA6xbO/8jwDW2nyqjIgBLgAuAOyXtClwPrE61VuZB2x2fH3Ms8BPbUzsJ6WLgOEl3AqZaI3NBKbsUOEfS+cBU4OvtlUoCdjZwmqQjbT9Z1v1sY/uavtyTbceOoDUPoIyIiIiIBslUtN4b0/4cG6rpXKOo1rYAXANcTbX2ZhrwHC+f/vVe4C+l7veB/Ww/Z3s6sBdV0vJUqfNFOvn3Ynum7Vs6Hi9Oplqb82fgXuCucgzbVwOnAzcAD5Z/1h1djt9W1g9dz0trgyIiIiIimoJsNzqGWAm0tLS4tbW10WFERERExEpM0hTbLZ2VZcQmIiIiIiKaXhKbiIiIiIhoeklsIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml4Sm4iIiIiIaHpJbCIiIiIioum9otEBRNckGdjc9oONjqUn985oY+IxkxsdRlOYeur7Gh1CRERExEonIzZNTtJGkmZL2rnD8XMkXdyYqCIiIiIiVqyM2DQ5209I+hxwtqR/sf2spHcB7wO27q9+JA2xvaS/2ouIiIiI6E8ZsVlBJB0taYakBZIekPQuSW+U9EdJ8yTNknSGpDW6qL+mpO9IelTSE5LOlLQ2gO1JwAPAieXYfwOfAZ6WdIykhyQ9LelSSaNqbV4m6XFJbZJulrR1rexcSf8l6SpJi4B3DOT9iYiIiIhYHklsVgBJWwBHAtvbHg7sCkwFlgCfA0YDOwDvAj7ZRTPfAl4DbAdsBowFvlYrPwL4D+AS4P9sX0KV3OwN7ASMAeYCP6rVuRrYHNgQuAu4sEOf+wOnAMOBWzq5rsMltUpqXfJMW/c3ISIiIiJiAMl2o2NY6UnaDLiVKlG4yfbiLs77LLCT7X8rn02VeDwELAT+xfZDpWwH4CLbr6rV/xTwbWAz27Mk/RU40vbvSvkmwKPA2rZf7ND3SKrEZ6TtNknnAqvZPqg317jmJpt7k4NP782pq7xsHhARERGxbCRNsd3SWVnW2KwAth8sScvxwNaSrgGOAoYB3wNagKFU/z6mdNLEBqV8iqT2YwKGdDjvL8Bc27PK5wnAFZKW1s5ZAmwk6XGq0Zh9Svvt54wG2odfpvf1WiMiIiIiGiFT0VYQ2xfZ3pEq2TDV1LL/Au6n2tJ5XeBYqoSlo9nAs8DWtkeW1wjbw3rodjqwW63OSNtr2Z5BNXq0F7ALMAKYWOrU+89wXkREREQ0hSQ2K4CkLSS9U9KawHNUScoSqrUr84GFkl4LfKKz+raXAmcDp0nasLQ5VtKuPXR9JnCKpAmlzgaS9iplw4HngaepRoO+sTzXGBERERHRSJmKtmKsCZwKbAksplpvczjVJgBnAV8C/gT8HHhnF20cTbVZwG2SRgMzqEZ8rumm3+9TjcBcK2kM8GTp41fA+VSbGMwA5gBfpYvEqje2HTuC1qwdiYiIiIgGyeYB0S9aWlrc2tra6DAiIiIiYiXW3eYBmYoWERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fTygM4GknQ8sJntjwxQ+wY2t/2gpDOBGbZPGoi+7p3RxsRjJg9E0yu1qXmoaURERES/yIhNH0maKmmXDscOkXRLo2LqDdtHDFRSExERERHRaElsBilJGU2LiIiIiOilJDb9SNIXJV3e4dgPJZ1e3r9K0k2SFki6DhhdO2+iJEv6mKRHgRvK8cskPS6pTdLNkrau1blR0qG1z12OHEk6V9LJtc97Sbpb0nxJD0l6b62Nh0uMj0g6oF9uTkRERETEAEpi078uAN4raST8Y9RlX2BSKb8ImEKV0JwEHNxJGzsBWwK7ls9XA5sDGwJ3ARcub5CS3gicD3wRGAm8HZgqaR3gB8ButocDbwHu7qadwyW1Smpd8kzb8oYVEREREbHMMt1p2Vwp6cXa5zWAu2zPknQzsA9wNvBeYLbtKZLGA9sDu9h+HrhZ0m86aft424vaP9j+Wfv7stnAXEkjbC9PJvEx4Ge2ryufZ5T21wGWAttIetT2LGBWV43YPgs4C2DNTTb3csQTEREREbFcMmKzbPa2PbL9BXyyVnYe0L7L2Ud4abRmDDC3nrQA0zppe3r7G0lDJJ1aporNB6aWotGd1OuLccBDHQ+W2PYFjgBmSZos6bXL2VdERERExIBLYtP/rgT+RdI2wB68NHVsFrBeGRVpN76T+vWRj/2BvYBdgBHAxHJc5Z+LgKG18zfuZYzTgU07K7B9je13A5sA91ONPEVEREREDGpJbPqZ7eeAX1Ctp7nD9qPl+DSgFThB0hqSdgT27KG54cDzwNNUCcw3OpTfDXxA0lBJm1FNMeuNnwIflfQuSatJGivptZI2kvT+knw9DywElvSyzYiIiIiIhskam4FxHnAo8B8dju9fyuYAf6RawD+ym3bOp9pEYEap81XgE7Xy06jW7TwB/JlqdGgXemD7DkkfLfVfVep/CmgDPk81fc5UidMnu2jmZbYdO4LWPGwyIiIiIhpEdtZ897eyUcD9wMa25zc6nhWhpaXFra2tjQ4jIiIiIlZikqbYbumsLFPR+pmk1YCjgEtWlaQmIiIiIqLRMhWtH5W1KU9Q7Xb23gaHExERERGxykhi04/KdsnDGh1HRERERMSqJlPRIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml4Sm4iIiIiIaHrZPKBJSZoKHGr7+kbHAnDvjDYmHjO50WFEJ6bmwakRERGxCsiITYNJ2lHSrZLaJM2R9AdJ26+gvm+UdGh5v7OkpZIWltdjki5dUbFERERERCyPJDYNJGld4LfAD4FRwFjgBOD5BoU00/YwYDjwZuB+4PeS3tWgeCIiIiIieiWJTWO9BsD2xbaX2H7W9rW2/yxpU0k3SHpa0mxJF0oa2VkjklaTdIykh8r5l0oaVcrWknRBOT5P0p2SNuouKFces/014CfAt/r5uiMiIiIi+lUSm8b6G7BE0nmSdpO0Xq1MwDeBMcCWwDjg+C7a+QywN7BTOX8u8KNSdjAwotRfHzgCeLYPMf4SeIOkdToWSDpcUquk1iXPtPWhyYiIiIiI/pXEpoFszwd2BAycDTwl6deSNrL9oO3rbD9v+ynge1SJS2c+DnyljLI8T5UA/bukVwCLqRKazcqo0JTSb2/NpEqyRnYS/1m2W2y3DBk6og9NRkRERET0ryQ2DWb7r7YPsf1KYBuqEZfTJW0o6RJJMyTNBy4ARnfRzATgijLVbB7wV2AJsBEwCbgGuETSTEnflrR6H0IcS5V4zVuW64uIiIiIWBGS2Awitu8HzqVKcL5JlVD8i+11gY9QjZx0Zjqwm+2RtddatmfYXmz7BNtbAW8B9gAO6kNY/wbcZXvRMl5WRERERMSAS2LTQJJeK+nzkl5ZPo8DPgzcRrUz2UJgnqSxwBe7aepM4BRJE0o7G0jaq7x/h6RtJQ0B5lNNTVvSQ1ySNFbS14FDgWOX60IjIiIiIgZYHtDZWAuANwFHlR3P5lFt//xFqsX+5wNtwINUU8o+10U736cazblW0hjgSeDnwK+AjakSn1dSJUo/p5rW1pkxkhaWttqAW4Gdbd/W04VsO3YErXkQZEREREQ0iGw3OoZYCbS0tLi1tbXRYURERETESkzSFNstnZVlKlpERERERDS9JDYREREREdH0kthERERERETTS2ITERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE01tlH9Ap6XhgM9sfGaD2DWxu+0FJZwIzbJ80EH110f+5wGO2j1sR/d07o42Jx0xeEV3FAJqah6xGREREk2qqERtJUyXt0uHYIZJuaVRMvWH7iIFIasq1L5G0sPY6o7/7iYiIiIgY7FbZEZvuSHqF7RcbHUcv/dH2jo0OIiIiIiKikZpqxKY7kr4o6fIOx34o6fTy/lWSbpK0QNJ1wOjaeRMlWdLHJD0K3FCOXybpcUltkm6WtHWtzo2SDq197nLkSNK5kk6ufd5L0t2S5kt6SNJ7a208XGJ8RNIB/XJzqrYPk/SgpDmSfi1pTDl+gqQflverS1ok6dvl89qSnpO0Xn/FERERERExEFaaxAa4AHivpJFQjboA+wKTSvlFwBSqhOYk4OBO2tgJ2BLYtXy+Gtgc2BC4C7hweYOU9EbgfOCLwEjg7cBUSesAPwB2sz0ceAtw9/L2V/p8J/BN4EPAJsA04JJSfBOwc3m/PfA41X0A2AF4wPbcLto9XFKrpNYlz7T1R6gREREREcukGaeiXSmpPk1sDeAu27Mk3QzsA5wNvBeYbXuKpPFUf7TvYvt54GZJv+mk7eNtL2r/YPtn7e/LZgNzJY2wvTx/xX8M+Jnt68rnGaX9dYClwDaSHrU9C5jVi/beLGle7fN7bd/W4ZwDSp93lb6+XK5lIvBHYHNJ61MlWT8FPilpGFWCc1NXHds+CzgLYM1NNncvYo2IiIiIGBDNOGKzt+2R7S/gk7Wy84D2Xc4+wkujNWOAufWkhWrUoqPp7W8kDZF0apkqNh+YWopGd1KvL8YBD3U8WGLbFzgCmCVpsqTX9qK92+r3o5OkBqrr/8f12l4IPA2Mtf0s0EqVxLydKpG5FXgrPSQ2ERERERGDRTMmNt25EvgXSdsAe/DS1LFZwHplVKTd+E7q10cd9gf2AnYBRgATy3GVfy4ChtbO37iXMU4HNu2swPY1tt9NNV3sfqqRp/4wE5jQ/qHch/Upo0VUycs7gdcDd5bPuwJvBG7upxgiIiIiIgbMSpXY2H4O+AXVepo7bD9ajk+jGpU4QdIaknYE9uyhueHA81QjG0OBb3Qovxv4gKShkjajmmLWGz8FPirpXZJWkzRW0mslbSTp/SXpeB5YCCzpZZs9uaj0uZ2kNcu13G57aim/CTgIuM/2C8CNwKHAI7af6qcYIiIiIiIGTDOusenJeVR/lP9Hh+P7l7I5VOtKzqdavN+V86lGLWaUOl8FPlErP41q3c4TwJ+pRod2oQe275D00VL/VaX+p4A24PNU0+dMlTh9sotm+sT27yR9FbgcWI9qqtl+tVNuBdbmpdGZ+4Dn6MNozbZjR9CahztGRERERIPIXrnWfJeNAu4HNrY9v9HxrCpaWlrc2tra6DAiIiIiYiUmaYrtls7KVqqpaJJWA44CLklSExERERGx6lhpEpuyNmU+8G7g6w0Op99IOlPSwk5eZzY6toiIiIiIwWKlWWNTtkse1ug4+pvtI6i2gI6IiIiIiC70esRG0oclbVnebyHpZkk39PJZKxEREREREQOmL1PRTqbaHQzgO8AdVLtm/bi/g4qIiIiIiOiLvkxF28D2E5LWAnYE/h1YDMwekMgiIiIiIiJ6qS+JzVPlQZTbAnfafl7SUEADE1pERERERETv9CWxOQmYAiwB9i3H3gXc099BLQtJNwIX2P5Jo2NZFd07o42Jx0xudBixAk3NA1kjIiJiEOn1Ghvb5wKbAK+0fV05fDsvf4J9jyRNlfRs2bL4CUnnSBoUu5lJ2lnSY50c31zSJZKekjRf0t8l/VDSKxsUpyUtKvfwaUm/k7RvzzUjIiIiIlZO3SY2klarv4DngOdqn2cDTy5Dv3vaHga8AdgeOK5Dv4NmG+oy/e52YCbwetvrAm8FHqJaa9RZnRUR/+vKPdwCOBc4Q9JK8/yeiIiIiIi+6GnE5kWqDQK6erWXLxPbM4CrgW3KKMSnJP0d+DuApMMkPShpjqRfSxrTXlfSuyXdL6lN0hnU1vpIOl7SBbXPE0v7ryifR5WRopmS5kq6sjzg82pgTO0hmGOA44E/2D7K9mMl7idtn277ktLezpIek3S0pMeBcyStKen00sfM8n7Ncv4hkm6p34sS32bl/bnlwZzXSVog6SZJE7q4h7NtTwI+AXxZ0vqljRGSfipplqQZkk6WNKSUbVbabJM0W9LPa3FsXfqdU0bUju37v9mIiIiIiBWrp8TmVcCru3m1ly8TSeOA3YE/lUN7A28CtpL0TuCbwIeopsBNA9oTidHA5VQjPaOpRk/e2oeuJwFDga2BDYHTygM+dwNm2h5WXjOBXUpfPdkYGAVMAA4HvgK8GdgOeB3wRjqMTPXgAKp1TaOBu4ELezj/V1Rrpt5YPp9HlXhuBrweeA9waCk7CbgWWA94JfBDAEnDgeuB/wHGlLq/60PMEREREREN0W1iY3taxxcwHXgBmF471ldXSpoH3ALcBHyjHP+m7Tm2n6X6w/5ntu+y/TzwZWAHSROpkqH7bP/C9mLgdODx3nQsaROqBOYI23NtL7Z9UzdVRtfblnSkpHllROfs2nlLga/bfr4W/4lldOcp4ATgwN7EWEy2fXO59q9QXfu4rk4u92E2MErSRuUaP2t7ke0ngdN4aT3UYqoEbIzt52y3jx7tATxu+7vl+ALbt3fVp6TDJbVKal3yTFsfLi0iIiIion/1evMASetKOp9qnc0M4FlJ50kasQz97m17pO0Jtj9ZEgGokqZ2Y6hGaQCwvRB4GhhbyqbXytyhbnfGAXNsz+3l+U9TjRi193WG7ZFUydTqtfOesv1cV/GX92Povfr1LaR6OGqX9SWtDmxQzptQYptVkrB5wH9TjU4BfIlq6t4dkv4i6T/K8XFUo1+9Yvss2y22W4YMXZavQURERERE/+h1YgP8AFgH2AZYm+p5NkPL8f7i2vuZVH+gA1DWwKxPlVTNovojvL1M9c/AohJbu41r76dTjWqM7KH/dr8DPtDH2KFD/MD4cuyf4pNUj69d/fqGUU1zm9nJee32opp6dgfVNT4PjC4J5Ejb69reGsD247YPsz0G+Djw47K+ZzqwaY9XGhERERExyPQlsXkvcKDtv5XpVn8DPlqOD4SLgI9K2q4suv8GcLvtqcBkYGtJHygbAnyGlycvdwNvlzS+jCh9ub3A9iyqTQJ+LGk9SatLenspfgJYv8Mo1PHA2yR9T9JY+Mcany17iP9i4DhJG5Tzvwa0b2hwT4l/O0lrlT462l3SjpLWoFoTc7vtfxqVKhshHAD8CPiW7afLNV4LfLeMtK0maVNJO5U6++ilrarnUiVlS4DfAhtL+mzZ/GC4pDf1cJ0REREREQ3Xl22Jn6Oa6lSfXjWaamSg39n+naSvUi3cXw+4lbJGxPZsSftQjRadQ7UZwB9qda8rO339mWrdybeA99eaP5Bqzcn9wBrA/wI3275f0sXAw2UHsa1s/03Sm4ETgXtKkjWTKnH4djeXcDKwbokB4LJyjNLmiVQL9Z+lSrw+3qH+RcDXgR2Au6jW7NTdI8lU653uAT5n+6Ja+UHAqcB9wHDg4XIfoNpi+/SSwD0B/KftR6DabQ74fun7eaopd12us2m37dgRtOaBjRERERHRIKqWp/TiROk4qj+Wv0eV3EwAPgdcYPukAYtwFSTpXOAx233ZRa2hWlpa3Nra2ugwIiIiImIlJmmK7ZbOyvoyYnMK1fqWA6gWsc8Evm37p8sfYkRERERExLLryxqb7wMP2N7F9la2dwH+Kun0gQktIiIiIiKid/qS2HwY6DjXaAqwf/+FEwC2D2mmaWgREREREY3Wl8TGwJAOx4b0sY2IiIiIiIh+15ek5PfASZJWAyj/PL4cj4iIiIiIaJi+bB7wn1TPOZklaRrVAydnAXsORGARERERERG91evExvZjkt4AvBEYR/WU+jtsLx2o4CIiIiIiInqj18+xiejOmpts7k0OPr3RYcQgNTUPb42IiIh+0N1zbLLwPyIiIiIiml4Sm1WUpHMlndzoOCIiIiIi+sNKk9hI2k/S7ZIWSXqyvP+kJDU6tr6QdICkheX1rKSltc8LGx1fRERERMRgtFIkNpI+D3wf+H/AxsBGwBHAW4E1Ojm/4/N4VjhJnW7cYPtC28NsDwN2A2a2fy7H6m00/DoiIiIiIgaDpk9sJI0ATgQ+afsXthe48ifbB9h+vky7+i9JV0laBLxD0paSbpQ0T9JfJL2/1uaNkg6tfT5E0i3lvSSdVkaF2iT9WdI2pWxNSd+R9KikJySdKWntUrazpMckHS3pceCcZbjWzq7jfZL+JGm+pOmSju9QZ0dJt5brnC7pkE7aHS7pfyX9oFzf7pLuk7RA0gxJX+ginsMltUpqXfJMW18vJyIiIiKi3zR9YgPsAKwJ/KqH8/YHTgGGA7cDvwGuBTYEPg1cKGmLXvT3HuDtwGuAkcC+wNOl7Fvl+HbAZsBY4Gu1uhsDo4AJwOG96Kun67gFWAQcVGJ5H/AJSXsDSBoPXA38ENigxHV3vTFJ6wO/A/5g+zOutsn7KfBx28OBbYAbOgvE9lm2W2y3DBk6YhkvJyIiIiJi+a0Mic1oYLbtF9sP1EYonpX09nL4V7b/UJ67sx0wDDjV9gu2b6B6+OiHe9HfYqqk4rVU22X/1fasspbnMOBztufYXgB8A9ivVncp8HXbz9t+dhmv9x/XYfs52zfavrd8/jNwMbBTOfcA4HrbF9tebPtp23fX2hoD3ARcZvu4Dte4laR1bc+1fdcyxhoRERERsUKsDInN08Do+poV22+xPbKUtV/j9FqdMcD0Dg8XnUY1wtKtkgSdAfwIeELSWZLWpRoRGQpMKUnVPOB/yvF2T9l+ro/X11H9OpD0pjKN7ClJbVRri0aX4nHAQ9209T5gbeDMDsc/COwOTJN0k6QdljPmiIiIiIgB1ekC9ibzR+B5YC/g8m7Oqz+JdCYwTtJqteRmPPC38n4RVZLSbuOXNWT/APiBpA2BS4EvAl8HngW2tj2jFzEsq45tXESVaO1m+zlJp/NSYjMdeGM3bZ0NrAdcJem9thcB2L4T2EvS6sCRVNc4rrugth07gtY8hDEiIiIiGqTpR2xszwNOAH4s6d8lDZO0mqTtgHW6qHY7VfLyJUmrS9oZ2BO4pJTfDXxA0lBJmwEfa68oafsySrJ6aeM5YElJkM4GTisJD5LGStq1Xy/4nw0H5pSk5o1Ua3DaXQjsIulDkl4haf1yX+qOBB4AfitpbUlrqNpyeoTtxcB8YMkAX0NERERExHJp+sQGwPa3gaOALwFPAk8A/w0cDdzayfkvAO+n2k55NvBj4CDb95dTTgNeKO2cR5UgtFuXKoGZSzV97WngO6XsaOBB4DZJ84Hrgd5sSLA8PgmcKGkB1UYFl7YX2H6UakrZ54E5VAnb6+qVy2YBh1ON7vwKWAs4EJharuEI4CMDfA0REREREctF1d+1EcunpaXFra2tjQ4jIiIiIlZikqbYbumsbKUYsYmIiIiIiFVbEpsGkXSspIWdvK5udGwREREREc1mZdgVrSnZ/gbVc24iIiIiImI5ZcQmIiIiIiKaXhKbiIiIiIhoepmKFv3i3hltTDxmcqPDiEFuah7iGhEREQMkIzY1kraQ9CdJCyQtlfTVAe7veEkX9PLcGyUdOpDxREREREQ0qyQ2L/cl4Ebbw22vZvskAEk7S7KkX9ZPlvS6cvzGFRmkpEMkLantpPaIpHMkvWZFxhERERERMVgksXm5CcBfuih7CniLpPVrxw4G/jbgUXXuj7aHASOAXYBngSmStmlQPBERERERDZPEppB0A/AO4IwyCnKRpJNrp7wAXAnsV84fAnwIuLBDO2+RdKektvLPt9TKXiXppjLV7TpgdIe6b5Z0q6R5ku6RtHNPcdteYvsh258EbgKO7017ZdTn4RLLI5IOqJUdJumvpew+SW/oKY6IiIiIiEZKYlPYfifwe+DIMhLyQiennQ8cVN7vSjW6M7O9UNIoYDLwA2B94HvA5Nooz0XAFKqE5iSqEZ/2umNL3ZOBUcAXgMslbdCHy/gl8Lae2pO0TolxN9vDgbcAd5d6+1AlRwcB6wLvB57urDNJh0tqldS65Jm2PoQZEREREdG/ktj0ge1bgVGStqD6w//8Dqe8D/i77Um2X7R9MXA/sKek8cD2wFdtP2/7ZuA3tbofAa6yfZXtpbavA1qB3fsQ4kyqJKY37S0FtpG0tu1Zttun4B0KfNv2na48aHtaF/fjLNsttluGDB3RhzAjIiIiIvpXEpu+mwQcSTVt7YoOZWOAjknANGBsKZtre1GHsnYTgH3KtLF5kuYBOwKb9CG2scCcntorMewLHAHMkjRZ0mtLvXHAQ33oMyIiIiKi4fIcm76bBDwInG/7GUn1splUCUXdeOB/gFnAepLWqSU34wGX99OBSbYPW47Y/o1qOl2P7dm+BrhG0tpU09XOpprGNh3YdDliiIiIiIhY4ZLY9JHtRyTtBDzcSfFVwA8l7Q9cCnwQ2Ar4re3ZklqBEyQdC7wR2BP4dal7AXCnpF2B64HVgTcDD9p+rKt4yiYG44GjgJ2BHXpqD1gMvAn4HdVuaguBJaXeT4DvSboFuIsqyVnc1XS0dtuOHUFrHr4YEREREQ2SqWjLwPYttmd2cvxpYA/g81QL7r8E7GF7djllf6qEYg7wdWprdGxPB/YCjqXaWno68EW6/ne0g6SFwHzgRqqF/tvbvrcX7a1WYpxZYtkJ+GSpdxlwCtVGBwuodoJrX7cTERERETEoyXbPZ0X0oKWlxa2trY0OIyIiIiJWYpKm2G7prCwjNhERERER0fSS2ERERERERNNLYhMREREREU0viU1ERERERDS9JDYREREREdH0kthERERERETTywM6o1/cO6ONicdMbnQYsQqYmgfBRkRERCcyYjMISdpZ0mONjiMiIiIiolkksekHkqZKelbSwtrrjEbHFRERERGxqshUtP6zp+3rGx3EspI0xPaSRscREREREbEsMmIzgCQdIukWSd+RNFfSI5J2q5WPknSOpJml/Mou2tlS0o2S5kn6i6T318p2l3SfpAWSZkj6Qr3vDu1Y0mbl/bmS/kvSVZIWAe+QNEbS5ZKeKrF+ZiDuS0REREREf0tiM/DeBDwAjAa+DfxUkkrZJGAosDWwIXBax8qSVgd+A1xbzvk0cKGkLcopPwU+bns4sA1wQx9i2x84BRgO3Fr6uQcYC7wL+KykXbuqLOlwSa2SWpc809aHbiMiIiIi+lcSm/5zZRlRaX8dVo5Ps312meZ1HrAJsJGkTYDdgCNsz7W92PZNnbT7ZmAYcKrtF2zfAPwW+HApXwxsJWnd0s5dfYj5V7b/YHspsC2wge0TSz8PA2cD+3VV2fZZtltstwwZOqIP3UZERERE9K8kNv1nb9sja6+zy/HH20+w/Ux5OwwYB8yxPbeHdscA00vy0W4a1agKwAeB3YFpkm6StEMfYp5eez8BGFNPzoBjgY360F5ERERERENk84DGmQ6MkjTS9rxuzpsJjJO0Wi25GQ/8DcD2ncBeZcrakcClVEnTIqppbgBI2riTtt0hnkdsb76M1xMRERER0TBJbBrE9ixJVwM/lvQpYCGwg+2bO5x6O1WS8iVJ3wXeCuwJbC9pDWAf4Le22yTNB9p3NrsH2FrSdsD9wPE9hHQHMF/S0cAPgBeALYG1S/LUrW3HjqA1D06MiIiIiAbJVLT+85sOz7G5ohd1DqRaI3M/8CTw2Y4n2H4BeD/VepzZwI+Bg2zfX2tjaklqjgA+Uur9DTgRuB74O3AL3ShrgPYEtgMeKX39BMjimYiIiIgY9GS757MietDS0uLW1tZGhxERERERKzFJU2y3dFaWEZuIiIiIiGh6SWwiIiIiIqLpJbGJiIiIiIiml8QmIiIiIiKaXhKbiIiIiIhoeklsIiIiIiKi6eUBndEv7p3RxsRjJjc6jIhem5oHykZERKxUBvWIjaQtJP1J0gJJSyV9tdEx9ZakGyUd2ug4IiIiIiJWBYM6sQG+BNxoe7jt1Wyf1F4g6VhJj0haKOkxST9vYJwrVEmanisJ33xJUyQdI2nNRscWEREREdEIgz2xmQD8peNBSQcDBwK72B4GtAC/W8GxDQhJvZ0eeKTt4cAmwOeB/YCrJGnAgouIiIiIGKQGbWIj6QbgHcAZZVTmIkknl+LtgWtsPwRg+3HbZ9XqjpD0U0mzJM2QdLKkIbXywyT9tYx43CfpDeX4lmU0ZJ6kv0h6f63OuZJ+JGlyqXe7pE1r5e+WdL+kNklnAKqVbSrpBklPS5ot6UJJI2vlUyUdLenPwCJJX5R0eYf78UNJp3e8T7YX2b4ReD+wA/C+cv5qZRTnodLvpZJGlbK1JF1Qjs+TdKekjUrZKEnnSJopaa6kK/vwry0iIiIioiEGbWJj+53A76lGJoYBL9SKbwMOKglASz1pKc4DXgQ2A14PvAc4FEDSPsDxwEHAulQJwdOSVgd+A1wLbAh8GrhQ0ha1dj8MnACsBzwInFLaHA1cDhwHjAYeAt5aqyfgm8AYYEtgXImh7sNUSclI4ALgve3JTxnF2ReY1M39ehRoBd5WDn0G2BvYqfQ7F/hRKTsYGFHiWB84Ani2lE0ChgJbl/twWld9SjpcUquk1iXPtHV1WkRERETEgBu0iU13bF9AlXjsCtwEPCnpGIAy8rAb8NkymvEk1R/n+5XqhwLftn2nKw/anga8GRgGnGr7Bds3AL+lSjja/dL2HbZfBC4EtivHdwfus/0L24uB04HHa/E+aPs628/bfgr4HlXCUfcD29NtP2t7FnAzsE8pey8w2/aUHm7NTGBUef9x4Cu2H7P9PFUi9e8lSVpMldBsZnuJ7Sm250vapNy7I2zPtb3Y9k1ddWb7LNsttluGDB3RQ2gREREREQOnabd7tn0h1YjK6lQjExdK+hPVyMTqwKzacpPVgOnl/TiqEZWOxgDTbS+tHZsGjK19frz2/hmqROgfdWuxWdI/PkvaEPgB1WjK8BLP3A79T+/w+TzgE8DZwEfoZrSmZixwa3k/AbhCUv16lgAblbbGAZeUUaELgK+UY3Nsd4wtIiIiImJQa8oRm7oyqnAZ8GdgG6oE4XlgtO2R5bWu7a1LlenApp00NRMYJ6l+T8YDM3oRxiyqpACAsoB/XK38m4CBf7G9LlWi0nGRvzt8vhL4F0nbAHtQjRB1SdI44F+ppu9BdZ271e7BSNtr2Z5R7tkJtrcC3lLaP6jUGVVf/xMRERER0QyaMrGRdIik90kaXhbJ70a1JuT2Mo3rWuC7ktYt5ZtKap/69RPgC5L+VZXNJE0AbgcWAV+StLqknYE9gUt6EdJkYGtJHyhTvT4DbFwrHw4sBOZJGgt8sacGbT8H/AK4CLijrKHp7F4MLdf2K+AO4KpSdCZwSrk2JG0gaa/y/h2Sti1rk+ZTTU1bUu7d1cCPJa1X7sPbe3H9EREREREN1axT0eYDx1JNoRpCNWXsE7ZvKeUHAacC91ElFQ8D3wKwfZmk9akShrHAVOBA29PKLmg/Br5MNVJzkO37ewrG9uyyKcEPgHOopnr9oXbKCcD5QBvVpgOTgM/14jrPo1oT9B+dlJ0hqX1h/4NUSdB3a1Ppvk81KnStpDHAk8DPqRKgjakSn1dSJVw/p7qXUG2jfRpwP7AG8L9U6326te3YEbTmSe4RERER0SCyO86AisFC0niqBGNj2/MbHU93Wlpa3Nra2ugwIiIiImIlJmmK7ZbOyppyKtqqoKz1OQq4ZLAnNRERERERjdasU9FWapLWAZ6gmmL33gaHExEREREx6CWxGYRsL+KlraQjIiIiIqIHmYoWERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE08vmAU1M0kTgEWB12y/2cO4hwKG2dxyIWO6d0cbEYyYPRNMRA25qHi4bERHR9DJiswJJmirpBUmjOxy/W5JLorKiYrGkzcr74yUtlrSgvP4m6QxJm6yoeCIiIiIilkcSmxXvEeDD7R8kbQus3bhw/uHntocDo4B/AzYGpiS5iYiIiIhmkMRmxZsEHFT7fDBwfvsHSSMknS/pKUnTJB0nabVSNkTSdyTNlvQw8LL5M6XuTyXNkjRD0smShvQlONuLbf8F2Bd4Cvj8Ml5nRERERMQKk8RmxbsNWFfSliXp2Be4oFb+Q2AE8GpgJ6ok6KOl7DBgD+D1QAvw7x3aPg94EdisnPMe4NBlCdL2EuBXwNu6OkfS4ZJaJbUueaZtWbqJiIiIiOgXSWwao33U5t3A/cCMcrw90fmy7QW2pwLfBQ4s5R8CTrc93fYc4JvtDUraCNgN+KztRbafBE4D9luOOGdSTU3rlO2zbLfYbhkydMRydBMRERERsXyyK1pjTAJuBl5FbRoaMBpYA5hWOzYNGFvejwGmdyhrNwFYHZglqf3Yah3O76uxwJzlqB8RERERsUIksWkA29MkPQLsDnysVjQbWEyVpNxXjo3npRGdWcC42vnja++nA88Do3va+rk3yrqePYHrl7etiIiIiIiBlqlojfMx4J22F9WOLQEuBU6RNFzSBOAoXlqDcynwGUmvlLQecEx7RduzgGuB70paV9JqkjaVtFNfgpK0uqQtgYupdkb73rJeYERERETEipIRmwax/VAXRZ+m2kDgYeA54GzgZ6XsbOA1wD3AfOA7wDtrdQ8CTqUa7Rle2vhWL0PaV9LegKjW1lwH/Kvtmb2pvO3YEbTmIYcRERER0SCy3egYYiXQ0tLi1tbWRocRERERESsxSVNst3RWlqloERERERHR9JLYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSS2ERERERERNNLYhMREREREU0vD+jsB5IMbG77weVs50bgAts/6ZfAlpOknanieWVP5947o42Jx0we8JgiBrupeVBtREREQ2TEZgWStLOkpZIWdnjt0OjYIiIiIiKaWUZsVryZvRkBiYiIiIiI3suITQeSjpY0Q9ICSQ9IepekN0r6o6R5kmZJOkPSGl3UX1PSdyQ9KukJSWdKWnsZ4thU0g2SnpY0W9KFkkbWyqdK+rKk+yTNlXSOpLVK2WhJvy3xzpH0e0mrlbIxki6X9JSkRyR9ptbm2pLOLe3dB2zf17gjIiIiIhohiU2NpC2AI4HtbQ8HdgWmAkuAzwGjgR2AdwGf7KKZbwGvAbYDNgPGAl9blnCAbwJjgC2BccDxHc45oMS4aenzuHL888BjwAbARsCxgEty8xvgnhLXu4DPStq11Pt6aWvT0u7B3QYoHS6pVVLrkmfaluESIyIiIiL6RxKbl1sCrAlsJWl121NtP2R7iu3bbL9oeyrw38BOHStLEnAY8Dnbc2wvAL4B7Fc7bUwZSam/1unYlu0HbV9n+3nbTwHf66TPM2xPtz0HOAX4cDm+GNgEmGB7se3f2zbVCMwGtk+0/YLth4Gza/F9CDilxD4d+EF3N8v2WbZbbLcMGTqiu1MjIiIiIgZU1tjU2H5Q0mepRka2lnQNcBQwjCqxaAGGUt23KZ00sUEpn1LlOEA18jKkdk6v1thI2pAqsXgbMJwqCZ3b4bTptffTqEZ3AP5fuYZrSxxn2T4VmEBJrGr1hgC/L+/HdNJmRERERMSglxGbDmxfZHtHqiTAVFPL/gu4n2pL53Wppnapk+qzgWeBrW2PLK8RtoctQyjfLP3/S+nzI530Oa72fjwws1zDAtuft/1qYE/gKEnvokpaHqnFNtL2cNu7lzZmddJmRERERMSgl8SmRtIWkt4paU3gOaokZQnViMl8YKGk1wKf6Ky+7aVUU7tOKyMuSBpbW8PSF8OBhcA8SWOBL3ZyzqckvVLSKKpk6+elzz0kbVamxs0v17AEuAOYXzZIWFvSEEnbSGrfJOBS4MuS1pP0SuDTyxB3RERERMQKl6loL7cmcCrVYv3FwK3A4VSbAJwFfAn4E1UC8c4u2jiaarOA2ySNBmZQjfhcU8rHSFrYoc7Bti/vcOwE4HygDXgQmES1gUHdRcC1VFPIfgWcXI5vDpxBNTVuLvBj2zcCSNoT+C7wSLneB3hp04ETgDNL2UzgHOA/u7jOl9l27Aha82DCiIiIiGgQVWvKo9lImgocavv6RscC0NLS4tbW1kaHERERERErMUlTbLd0VpapaBERERER0fSS2ERERERERNPLGpsmZXtio2OIiIiIiBgsMmITERERERFNL4lNREREREQ0vSQ2ERERERHR9JLYRERERERE01shmwdI2gK4hOpBl+sAX7d90gD3OZHqQZOr235xIPvqpO/jgc1sf2RF9ttI985oY+IxkxsdRsQqY2oeiBsREfEyK2rE5kvAjbaH216tPamRtLOkpZIWSlog6QFJH11BMfWKpHMlndzJ8f0ltZbYZ0m6WtKOKyimqZKeLfdsnqRbJR0hKSNwEREREbFKWlF/CE8A/tJF2Uzbw4B1gaOBsyVt1fEkSYNma2pJRwGnA98ANgLGAz8G9lqBYexpezjVvT2V6t79dAX2HxERERExaAx4YiPpBuAdwBlldOOizkZAXLkSmAtsJekQSX+QdJqkOcDxkkZIOl/SU5KmSTqufZRC0hBJ35E0W9LDwMvmaZRRjl1qn4+XdEHt845l5GOepOml/8OBA4Avldh/I2kEcCLwKdu/tL3I9mLbv7H9xS7uwWWSHpfUJulmSVvXynaXdF8ZfZkh6Qvl+GhJvy3xzJH0+85GZGy32f41sC9wsKRtSv01y/14VNITks6UtHZPbUsaJ+mX5R4/LemMHv8lR0REREQ02IAnNrbfCfweOLKMzLzQ2XmSVpP0b8BI4N5y+E3Aw8CGwCnAD4ERwKuBnYCDgPapa4cBewCvB1qAf+9tjJLGA1eX9jcAtgPutn0WcCHwbdvDbO8J7ACsBVzR2/ZL25uX67irtNnup8DHy+jLNsAN5fjngcdKPBsBxwLuqgPbd5Tz31YOfQt4TbmWzYCxwNe6a1vSEOC3wDRgYqlzSVd9Sjq8TMdrXfJMWw+3ICIiIiJi4AyGNRljJM0DZgNfBw60/UApm2n7h2Xx/wtUoxJftr3A9lTgu8CB5dwPAafbnm57DvDNPsRwAHC97YvL6MvTtu/u4tz1gdl92ZDA9s9KzM8DxwOvKyM/AIupRqjWtT3X9l2145sAE0pMv7fdZWJTzARGSRJVovc523NsL6CaNrdfD22/ERgDfLGMRD1n+5Zuruss2y22W4YMHdHVaRERERERA24wJDYzbY+0Pcr2drbrIwTTa+9HA2tQjSa0m0Y1qgDVH+TTO5T11jjgoV6e+zQwurdrfsoUuVMlPSRpPjC1FI0u//wgsDswTdJNknYox/8f8CBwraSHJR3Ti+7GAnOoRmKGAlPKdLN5wP+U4921PQ6YtqJ3kYuIiIiIWF6DIbHpTn2EYjbVSMOE2rHxwIzyfhbVH+b1srpFVH/st9u49n46sGkvYgD4I/AcsHdXQXewP9WmArtQTaObWI4LwPadtveimqZ2JXBpOb7A9udtvxrYEzhK0ru66kTS9lSJzS1U9+pZYOuSNI60PaJMBeyu7enA+MG0UUNERERERG8M9sTmH2wvofqj/xRJwyVNAI4C2jcAuBT4jKRXSloP6DjCcTewn6TVJXVcg3MhsIukD0l6haT1JW1Xyp6gWtPTHkcb1VqVH0naW9LQ0uZukr7dSejDgeepRnqGUk0JA0DSGpIOkDTC9mJgPrCklO0habMyraz9+JKOjUtaV9IeVGthLrB9r+2lwNnAaZI2LOeNlbRrD23fQZUgnippHUlrSXprJ9cUERERETGoNNv/M/9pqgX+D1ONmpwN/KyUnU21WP4eqj/WvwO8s1b3q8DFVLuu3QRcBIwCsP2opN1LnZ8AbcBxVMnQT4HLynSuG23vbft7kp4o51wILACmUG1w0NH5wK5UI0tzShyfqJUfSLVj3BDgAaD9oZ6bA2dQTR+bC/zY9o21er+R9CKwFLgP+B5wZq38aKoE7DZJo0v//wVc013bkvYEfgA8SjVadRHwh06u62W2HTuC1jwwMCIiIiIaRD2vR4/oWUtLi1tbWxsdRkRERESsxCRNsd3SWVnTTEWLiIiIiIjoShKbiIiIiIhoeklsIiIiIiKi6SWxiYiIiIiIppfEJiIiIiIiml4Sm4iIiIiIaHpJbCIiIiIiouk12wM6G0KSgc1tP9joWAare2e0MfGYyY0OIyIilsPUPGg5IppY043YSNpfUqukhZJmSbpa0o6NjmtZSDpW0iPlWh6T9PPlbG9nSY/1V3wREREREc2iqRIbSUcBpwPfADYCxgM/BvZqYFhdktTliJikg4EDgV1sDwNagN+tqNgiIiIiIlYmTZPYSBoBnAh8yvYvbS+yvdj2b2x/UdKakk6XNLO8Tpe0Zql7iKRbOrRnSZuV9+dKOlPSdZIWSLpJ0oQu4lhT0nckPSrpiVJv7VK2cxl5OVrS48A53VzS9sA1th8CsP247bNKO/tImtKh389LurK8313SfSXWGZK+IGkd4GpgTBkBWihpjKTVJB0j6SFJT0u6VNKo0s7Ech8+Kmm6pLmSjpC0vaQ/S5on6Yy+/ZuKiIiIiFjxmiaxAXYA1gKu6KL8K8Cbge2A1wFvBI7rQ/sHACcBo4G7gQu7OO9bwGtKP5sBY4Gv1co3BkYBE4DDu+nvNuAgSV+U1CJpSK3s18CrJG1ZO/YRYFJ5/1Pg47aHA9sAN9heBOwGzLQ9rLxmAp8B9gZ2AsYAc4EfdYjlTcDmwL5UI2JfAXYBtgY+JGmnbq4jIiIiIqLhmimxWR+YbfvFLsoPAE60/aTtp4ATqKZ69dZk2zfbfp7qD/sdJI2rnyBJwGHA52zPsb2AalrcfrXTlgJft/287We76sz2BcCngV2Bm4AnJR1Typ4Hfk6VzCBpa2Ai8NtSfTGwlaR1bc+1fVc31/Vx4Cu2HyvtHg/8e4dpcifZfs72tcAi4OJyH2cAvwde31nDkg4v651alzzT1k0IEREREREDq5kSm6eB0d2sWxkDTKt9nlaO9db09je2FwJzOqm/ATAUmFKmac0D/qccb/eU7ed606HtC23vAowEjgBOlLRrKT4P2L8kUwcCl5bEBOCDwO7AtDJtboduupkAXFGL96/AEqo1Su2eqL1/tpPPw7qI/yzbLbZbhgwd0fMFR0REREQMkGZKbP4IPEc1raozM6n+iG83vhyDahRiaHuBpI07qT+uVj6MajrZzA7nzKb6Q39r2yPLa0RZ/N/OPV/Ky5W1QpcBf6aaWobt24AXgLcB+/PSNDRs32l7L2BD4Erg0m76ng7sVot3pO21ymhMRERERMRKoWkSG9ttVGtZfiRpb0lDJa0uaTdJ3wYuBo6TtIGk0eXcC0r1e4CtJW0naS2q6Vgd7S5pR0lrUK21ud329PoJtpcCZwOnSdoQQNLY2ihLr5UNDd4naXhZ4L8b1ZqW22unnQ+cAbxo+5ZSbw1JB0gaYXsxMJ9qBAaqkZb1y0YL7c4ETmnfDKHcn0G5i1xERERExLJqqgd02v6epCeoNgW4EFgATAFOAe4C1qUa9QC4DDi51PubpBOB66lGXL5Mtfak7iLg61SbFNxFtWanM0dTJU23lQRqBvBfwDV9vJz5wLFUydcQqqlzn2hPYIpJVEnWSR3qHgicUTYceICyFsf2/ZIuBh4uZVsB3wcEXCtpDPAk1fqdX/Ux3m5tO3YErXmwW0REREQ0iOw+z5xa6Ug6F3jMdl92URtwZRvpJ4E32P57o+PpTktLi1tbWxsdRkRERESsxCRNsd3SWVnTTEVbRX0CuHOwJzUREREREY3WVFPRmo2kY6mmm3X0e9u79VB3KtUUsr37P7KIiIiIiJVLEhvA9iED1O43qJ5zsyx1J/ZvNBERERERK69MRYuIiIiIiKaXxCYiIiIiIppeEpuIiIiIiGh6SWwiIiIiIqLpZfOA6Bf3zmhj4jGTGx1GREREl6bmQdIRK7WM2Kxgkm6UdGgD+l0o6dUrut+IiIiIiBUhiU0XJE2V9GxJCJ6QdI6kYY2OC0DSzpIe63BspKSfSXpc0gJJf5N0dHu57WG2H17x0UZEREREDLwkNt3b0/Yw4A3A9sBx9UJJg2kq32nAMGBLYATwfuChhkYUEREREbGCJLHpBdszgKuBbSRZ0qck/R34O4CkwyQ9KGmOpF9LGtNeV9K7Jd0vqU3SGYBqZcdLuqD2eWJp/xXl86gyUjRT0lxJV0pap8QypowmLSz9bQ9cZHuu7aW277f9i1rblrSZpHq9hZKekeTaef8h6a+lv2skTRio+xoRERER0V+S2PSCpHHA7sCfyqG9gTcBW0l6J/BN4EPAJsA04JJSbzRwOdVIz2iqEZS39qHrScBQYGtgQ+A024uA3YCZZXrZMNszgduAUyR9VNLmXTVou15vGHBFLd69gWOBDwAbAL8HLu7mvhwuqVVS65Jn2vpwWRERERER/SuJTfeulDQPuAW4CfhGOf5N23NsPwscAPzM9l22nwe+DOwgaSJVMnSf7V/YXgycDjzem44lbUKVwBxRRmEW276pmyqfBi4EjgTuKyNIu/XQx9HAa4H/KIc+Xq7tr7ZfLNe7XVejNrbPst1iu2XI0BG9uayIiIiIiAGRxKZ7e9seaXuC7U+WRAZgeu2cMVSjNADYXgg8DYwtZdNrZe5QtzvjgDm25/bmZNvP2v6G7X8F1gcuBS6TNKqz80vS85/lGtuvawLwfUnzSkI3h2rq3NhexhwRERER0RBJbJaNa+9nUiUEAJQ1MOsDM4BZVAlKe5nqn4FFVFPN2m1cez8dGCVpZA/9/3OhPZ9qtGUd4FUdyyVtAZwHfMh2PdGaDny8JHPtr7Vt39pdfxERERERjTaYdvVqVhcBl0i6CPgrVUJxu+2pkhYCZ0j6APBr4FO8PHm5Gzha0nigjWoaGwC2Z0m6GvixpE8BC4EdbN8MPAGsL2mE7TYASV8F/ge4hyph/U9gHvBAPVhJ6wK/Ao6zfUuHazkTOEnS3bb/ImkE8B7bl/V0E7YdO4LWPPgsIiIiIhokIzbLyfbvgK9SbRIwC9gU2K+UzQb2AU6lmp62OfCHWt3rgJ8DfwamAL/t0PyBwGLgfuBJ4LOl3v1Ui/ofLtPGxlCN4pwDzKYaRXo38L4yNa7uDcAWwPfqu6OVdq8AvkWVqM0H/o9qnU9ERERExKCmatlHxPJpaWlxa2tro8OIiIiIiJWYpCm2Wzory4hNREREREQ0vSQ2ERERERHR9JLYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fTygM7oF/fOaGPiMZMbHUZEREREDKCpg/iB7BmxWYVJ2lnSY42OIyIiIiJieSWxWU6SLpT0sw7HdpL0tKRN+qmPnSVZ0i87HH9dOX5jf/QTEREREdGsktgsv88Au0t6N4CktYCzgc/bnrW8jUtqny74FPAWSevXig8G/ra8fURERERENLskNsvJ9tPAp4GzJK0DfB14CLhf0q2S5km6R9LO7XUkfVTSXyUtkPSwpI/XynaW9JikoyU9DpxTil4ArgT2K+cNAT4EXFiPR9L3JU2XNF/SFElvq5WtLelcSXMl3Qds36HuGEmXS3pK0iOSPtNPtykiIiIiYkAlsekHti8DpgAXA4cDRwCTgZOBUcAXgMslbVCqPAnsAawLfBQ4TdIbak1uXOpNKO21Ox84qLzfFfgLMLNDOHcC25X6FwGXlVEkqJKuTctrV6oRHwAkrQb8BrgHGAu8C/ispF27um5Jh0tqldS65Jm2rk6LiIiIiBhwSWz6z6eAdwInUo2qXGX7KttLbV8HtAK7A9iebPshV24CrgXeVmtrKfB128/bfrb9oO1bgVGStqBKcM7vGITtC2w/bftF298F1gS2KMUfAk6xPcf2dOAHtarbAxvYPtH2C7YfpppSt19XF2z7LNsttluGDB3Rl3sVEREREdGvktj0E9tPALOpRlEmAPuUaWjzJM0DdgQ2AZC0m6TbJM0pZbsDo2vNPWX7uS66mgQcCbwDuKJjoaTPl2lubaXtEbW2xwDTa6dPq72fAIzpEPOxwEa9vQcREREREY2S59gMjOnAJNuHdSyQtCZwOdWIy69sL5Z0JaDaae6m7UnAg8D5tp+RXqpW1tMcTTWN7C+2l0qaW2t7FjCOKvkCGN8h5kdsb97rq4yIiIiIGCSS2AyMC4A7y/qU64HVgTdTJSRtVNPDngJelLQb8B7g/3rTsO1HJO0EPNxJ8XDgxdL2KyQdQ7WOp92lwJcl3Q6sQ7XpQbs7gPmSjqaaovYCsCWwtu07e4pr27EjaB3ED2yKiIiIiJVbpqINgLJ+ZS+qqVxPUY2GfBFYzfYCqi2iLwXmAvsDv+5j+7fY7rhpAMA1wNVUW0BPA57j5VPPTijHH6Fa1zOp1uYSYE+qjQceoZpW9xOqqWwREREREYOa7O5mPUX0TktLi1tbWxsdRkRERESsxCRNsd3SWVlGbCIiIiIiouklsYmIiIiIiKaXqWjRLyQtAB5odBwrqdFUa56i/+XeDpzc24GTeztwcm8HTu7twFnV7u0E2xt0VpBd0aK/PNDVfMdYPpJac28HRu7twMm9HTi5twMn93bg5N4OnNzbl2QqWkRERERENL0kNhERERER0fSS2ER/OavRAazEcm8HTu7twMm9HTi5twMn93bg5N4OnNzbIpsHRERERERE08uITURERERENL0kNhERERER0fSS2ERERERERNNLYhMASBol6QpJiyRNk7R/N+d+TtLjktok/UzSmr1tR9K7JN0v6RlJ/ytpwkBe12DQH/dW0pqSflrqL5D0J0m71epNlGRJC2uvr66I62ukfvze3ijpudq9e6BD3VXuewv9en8XdngtkfTDUpbvbjf3VtI2kq6RNFvSPy2KzW/uP+uPe5vf3M714/c2v7kd9OO9XbV/b23nlRfAxcDPgWHAjkAbsHUn5+0KPAFsDawH3Aic2pt2qJ6M2wbsA6wF/D/gtkZfezPcW2Ad4HhgItX/IbEHsACYWMonAgZe0ejrbbZ7W8pvBA7too9V8nvbn/e3w7nrAAuBt5fP+e52f2+3AD4G7FX9J7v37ayq393+uLf5zR3w721+cwfo3nY4d5X7vW14AHk1/lW++C8Ar6kdm9TZHybARcA3ap/fBTzem3aAw4FbO/T7LPDaRt+DwX5vu2j7z8AHy/uV/sdqIO9tD/+RXeW+t/19fzucezDwMC/typnvbjf3tla+Wcc/YvKbO3D3tovz8pvbT/c2v7kDd287nLPK/d5mKloAvAZYYvtvtWP3UP2/rx1tXcrq520kaf1etPOyurYXAQ910c/Kor/u7ctI2qi0/ZcORdMkPSbpHEmjly/0Qa+/7+03y9D+HyTt3FXdVeR7CwP03aX6D+35Lv+Vrcl3t+/fqfzm/rP+urcvk99coP/vbX5zXzIg31tWwd/bJDYB1bBnW4djbcDwXpzb/n54L9rpSz8ri/66t/8gaXXgQuA82/eXw7OB7YEJwL+WOhcuV+SDX3/e26OBVwNjqR509htJmy5DPyuTgfjujgd2As6rHc53t7Is36n85v6zfr/m/Ob+Q3/e2/zmvtxAfG9Xyd/bJDYB1fzLdTscW5dqPnFP57a/X9CLdvrSz8qiv+4tAJJWoxqefgE4sv247YW2W22/aPuJUvYeSR37Xpn02721fbvtBbaft30e8Adg92XoZ2XSr9/d4iDgFtuPtB/Id/cfluU7ld/cf9av15zf3Jfpt3ub39x/MhDXvEr+3iaxCYC/Aa+QtHnt2Ov45yF3yrHXdTjvCdtP96Kdl9WVtA6waRf9rCz6694iScBPgY2o5nkv7qbf9mFnLWvgTaDf7m0nzEv3blX83sLA3N+DePn/e9iZfHf7r51V8bvbX/c2v7n/rN/ubSdW9d/cgbi3q+bvbaMX+eQ1OF7AJVQ7cqwDvJWud+N4L/A4sBXV7kc38PLdpbpsB9igfP4g1U4n32LV2Omkv+7tmcBtwLBO6r6JaqeU1YD1qXZW+d9GX3sz3FtgJNWuXmsBrwAOABYBW3gV/t721/2tnfOWcl+Hdzie727391ble7cV1R8hawFr9qadVfW724/3Nr+5A3Bv85s7sN/bcs4q+3vb8ADyGhwvYBRwZfkfwqPA/uX4eKoh0vG1c4+i2tp1PnBOh/8QdNpOrXwX4H6qHU5upGyduTK/+uPeUs2HNfBcqdP+OqCUfxh4pPQxCzgf2LjR194k93YD4E6qIf95VH/IvHtV/9721/2tlf83MKmTPvLd7ebe8tIuRvXX1J7aqZWvct/d/ri3+c0d0Hub39wBure1tlbZ39v27d8iIiIiIiKaVtbYRERERERE00tiExERERERTS+JTURERERENL0kNhERERER0fSS2ERERERERNNLYhMREREREU0viU1ERERERDS9JDYREREREdH0/j9TwflaepGNTwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plot_fi(rf_feat_importance(m, xs_imp));"]},{"cell_type":"markdown","metadata":{"id":"BjbULdqu1944"},"source":["One thing that makes this harder to interpret is that there seem to be some variables with very similar meanings: for example, `ProductGroup` and `ProductGroupDesc`. Let's try to remove any redundent features."]},{"cell_type":"markdown","metadata":{"id":"P0Jysxw31944"},"source":["### Removing Redundant Features"]},{"cell_type":"markdown","metadata":{"id":"3dEO9xc31945"},"source":["Let's start with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"14pP35c61945","outputId":"a976d81f-8e8a-41ef-876d-3d3710cbf4f9"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAArgAAAFoCAYAAAC8FoidAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABdrElEQVR4nO3dd5hdVdn+8e8dOqQRQktIQaoEBDWAKEgEFGnCz1eI0kEQRPRFEVFECUrTV4qCCiJSEkKXDlLE0FuCFIkBKQmTBqmkGFry/P5Y68DmMOVMMjNn5pz7c13nYp+92rM3uTJP1qy9lyICMzMzM7Na0a3aAZiZmZmZtSUnuGZmZmZWU5zgmpmZmVlNcYJrZmZmZjXFCa6ZmZmZ1RQnuGZmZmZWU5avtGLfvn1j8ODB7RiKmZmZWdsYN27czIhYs9pxWHVUnOAOHjyYsWPHtmcsZmZmZm1C0qRqx2DV4yUKZmZmZlZTnOCamZmZtSFJl0k6rZnyBZI+1pEx1RsnuGZmZlZ3JE2U9I6kvmXnn5YUkga319gR0T0iXlnWfoqJtKTBOe4F+fO6pNskfXHZI+56nOCamZlZvXoV+Ebpi6QtgFWqF06b6B0R3YEtgXuAGyUdWt2QOl7FD5mZ1YNn7/0b/354TLXDMDOzjjESOBg4P38/BLgCKM2K7pGPNwDeBC6JiBGlxpK2B34NbAbMB34WEZfl4tUl3Q58HhgP7B8RL+d2AWwUES9JugxYCAxuou6mOb5PAzPyGNe2dGERMR34raQVgF9JuiIilrTy/nRZnsE1K/j3w2OYMfHVaodhZmYd4zGgp6SPS1oOGA6MKpQvJCXAvYE9gG9L2gdA0kDgTlLyuSawFfB0oe03gFOB1YGXgNObiaPRupJWI83CjgbWyvX+IGlIK67xr7ntJq1o0+V5BteszJqD12f4KWdVOwwzM1sGXx/xq0qrlmZx7wcmAFNKBRExplDvWUlXATsCNwEHAPdGxFW5fFb+lPw1Ip4AkHQlcE4zMTRVd09gYkRcmr8/JekG4GvA8xVe39T83z4V1q8JTnDNzMysno0EHgDWJy1PeJ+kbYGzgM2BFYGVgOty8QDg5Wb6nV44/i/QfSnqDgK2lTS3UL58jrlS/fN/Z7eiTZfnJQpmZmZWtyJiEulhs91Jv84vGg3cAgyIiF7AhYByWQNpbW57agDuj4jehU/3iPh2K/r4f8AbwAvtE2Ln5ATXzMzM6t03gZ0iYmHZ+R7A7Ih4S9I2wP6FsiuBXSTtJ2l5SWtI2qqN47oN2FjSQZJWyJ+tJX28pYaS1pZ0LHAK8JN6esAMnOCamZlZnYuIlyNibCNFxwC/kDQf+DlwbaHNa6RZ3+NJv/5/mvRqrraMaz7wJeDrpLW004FfkZZKNGWupIXAczm+fSPiL20ZV1fgNbhmZmZWdyJicBPn3+ODZQgTgeub6eNBYNtGzh9a9n0MsF7hu1pR9wXSGxwaG//QwvHEQtx1zwmudRqjH3+Nm5+e0nLFdjTj7S04aqXnqhqDmZmZLRsvUbBO4+anpzB+2rxqh2FmZmZdnGdwrVPZbN2eXHPUdlUb/5pTb67a2GZmZtY2PINrZmZmZjXFCa6ZmZnZMpI0WFJIavG345IOlfRQR8RVr5zgmpmZWd2RNFHSO5L6lp1/OieqgzswlpC0YT4eIeldSfPz50VJF0hat6PiqQVOcM3MzKxevQp8o/RF0hbAKtUL533XREQPoA9pJ7J1gHFOcivnBNfMzMzq1Ujg4ML3Q4ArSl8k9ZJ0haQZkiZJOllSt1y2nKTfSJop6RXK3lWb214iaZqkKZJOk7Rca4KLiHcj4nlgODCDtKmEVcBvUTArM2Piq1xz6o+rHYaZmbW/x4CD8ta3L5ISye2B03L5+UAv4GPAGsDdwDTgEuBIYE/gk8BC4Iayvi8HXgc2BFYjbbvbAFzU2iAjYrGkm4FdW9u2XjnBNSv4+OeGVTsEMzPrWKVZ3PuBCUBpx6HlSAnvJ/OWufMlnQ0cREpw9wPOi4gGAElnAsPy8drAbkDviFgELJR0LvAtliLBzaaSlixYBZzgmhV8Ypcv84ldvlztMMzMbBl9fcSvKq06EngAWJ/C8gSgL7AiMKlwbhLQPx/3I83IFstKBgErANOk93fP7VZWv7X6A7OXoX1dcYJrZmZmdSsiJkl6Fdgd+GahaCbwLilZHZ/PDeSDGd5pwIBC/YGF4wbgbaBvRLy3rDHmdb97Afcua1/1wg+ZmZmZWb37JrBTRCwsnFsMXAucLqmHpEHAD4BRufxa4HuS1pO0OvD+wxsRMY20XvdsST0ldZO0gaQdWxOUpBXy+uCrSG9SOGdpL7DeOME1MzOzuhYRL0fE2EaKvkt6gOwV4CFgNPCXXHYxcBfwDPAU8NeytgeTljiMB+YA1wOVvuZruKQFwFzgFmAW8OmImFph+7qniKio4tChQ2Ps2Mb+35u1jeEXPQrANUdtV+VIzMysq5M0LiKGVjsOqw7P4JqZmZlZTXGCa2ZmZmY1xQmumZmZmdUUJ7hmZmZmVlOc4JqZmZlZTXGCa2ZmZlYhSSFpw2rHYc1zgmtmZmbWhiStLWmmpGFl5y+VdFV1oqov3qrXzMzMrA1FxOuSvg9cLOkTEbFI0s7AHsCQthpH0nIRsbit+qslnsE1MzOzmvH8g1O48eynKqor6URJUyTNl/SCpJ0lbSPpUUlzJU2TdIGkFZtov5Kk30h6TdLrki6UtApARIwEXgB+kc9dBHwPmCXpx5JeljRL0rWS+hT6vE7SdElvSnpA0pBC2WWS/ijpDkkLgS8s9Y2qcU5wzczMrGa8+MTrTP3P3BbrSdoEOBbYOiJ6ALsCE4HFwPeBvsB2wM7AMU108ytgY2ArYEOgP/DzQvnRwOHA1cC/IuJqUpK7D7Aj0I+0je/vC23uBDYC1iJtAXxl2Zj7A6cDPUjbB1sjvETBzMzMakq/jXpXUm0xsBKwmaQZETGxkToTJV1ESkbPKxZIEnAk8ImImJ3PnQGMBn4CEBGTJf0c+DUpAQY4Cjg2IibnNiOA1yQdFBHvRcRfCmOMAOZI6hURb+bTN0fEw/n4rUoutB45wTUzM7O6ExEvSToOGAEMkXQX8AOgO3AOMBRYlZQrjWukizVz+biU6wIgYLmyes8DcyJiWv4+CLhR0pJCncXA2pKmk2Zn9839l+r0BUoJbkNrr7UeeYmCmZmZ1aWIGB0R25OSziAtOfgjMAHYKCJ6AieREtdyM4FFwJCI6J0/vSKiewvDNgC7Fdr0joiVI2IKafnB3sAuQC9gcG5THD+W6mLrjGdwrd2Nfvw1bn56Sov1xk+bx2br9uyAiMzMrN7lNbj9gYdJv+pfRJr46wHMAxZI2hT4NjCjvH1ELJF0MXCupGMj4g1J/YHNI+KuZoa+EDhd0iERMUnSmsBnI+LmPPbbwCzS7PAZbXW99cYzuNbubn56CuOnzat2GGZmZkUrAWeRZmKnkx7qOgn4IWkmdT5wMXBNM32cCLwEPCZpHnAvsEkL4/4WuAW4W9J84DFg21x2BTAJmAKMz2W2FDyDax1is3V7cs1R2zVbZ/hFj3ZQNGZmVu8i4llgm0aKpgKblp17/80IEaHC8VukpPikZsYZA6xX+L6EtMb3nEbqLiAtUSi6olB+aFPj2Ic5wTUzawfPPziFF594vdphmNWdmZPn03e9HtUOw6rMSxTMzNrBi0+8zszJC6odhplZXfIMrplZO+m7Xnf+3/GfqnYYZnWl0l3MrLZ5BtfMzMzMaooTXDMzMzOrKU5wzczMzCokKSRt2HLNFvsZI+mItoipLUgaJmlyteNoK05wzczMzNpYThiXSFpQ9mn+nZnWJvyQmZmZmVn7mBoR67VczdqaZ3DNzMyspkz9z9yK6kk6UdIUSfMlvSBpZ0nbSHpU0lxJ0yRdIGnFJtqvJOk3kl6T9LqkCyWt0tp4JW0g6T5JsyTNlHSlpN6F8omSfiJpvKQ5ki6VtHIu6yvpthzvbEkPSuqWy/pJukHSDEmvSvpeoc9VJF2W+xsPbN3auDszJ7hmZmZWMzbeZm36bdS7xXqSNgGOBbaOiB7ArsBEYDHwfaAvsB2wM3BME938CtgY2ArYEOhPYdezVhBwJtAP+DgwABhRVueAHOMGecyT8/njgcnAmsDapF3VIie5twLP5Lh2Bo6TtGtud0rua4Pc7yFLEXen5QTXzMzMasaQHfpX+v7pxcBKwGaSVoiIiRHxckSMi4jHIuK9iJgIXATsWN5YkoAjge9HxOyImA+cAXy9UK1fnlktflYr7ysiXoqIeyLi7YiYQdrGt3zMCyKiISJmA6cD38jn3wXWBQZFxLsR8WBEBGlGds2I+EVEvBMRrwAXF+LbDzg9x94A/K6Sm9ZVeA2umZmZ1Z2IeEnScaSZ0iGS7gJ+AHQnJZhDgVVJudK4RrpYM5ePS7kukGZilyvUqWgNrqS1SAnmDkAP0gTknLJqDYXjSaTZXoD/y9dwd47jTxFxFjCInGAX2i0HPJiP+zXSZ81wgmtmXcLzD07hxSder3YYFZs5eT591+tR7TDMrBkRMRoYLaknaab2V6TE75/ANyJifk6Cv9ZI85nAImBIRExZxlDOBAL4RETMkrQPcEFZnQGF44HA1HwN80nLFI6XNAT4h6QnScnrqxGxURNjTst9Pl/os2Z4iYKZdQkvPvE6MycvqHYYZlYjJG0iaSdJKwFvkZLVxaQZ1HnAAkmbAt9urH1ELCH9yv/cPAOLpP6FNa6t0QNYAMyV1B84oZE635G0nqQ+pHW21+Qx95S0YV4yMS9fw2LgCWBefpBuFUnLSdpcUulhsmuBn0haXdJ6wHeXIu5OyzO4ZtZl9F2ve6Vr66ruxrOfqnYIZta8lYCzSA91vQs8AnyL9LDYn4AfkWZyrwF2aqKPE0kPlT0mqS8wBfgjcFcu7yep/F/mh0TEDWXnTgWuAN4EXgJGkh50KxoN3E2aYb4ZOC2f34g027smaVnDHyJiDICkvYCzgVfz9b7ABw+nnQpcmMumApcC/9vEdXY5TnDNzMys7kTEs8A2jRRNBTYtO/f+mxEiQoXjt0izqSc10v8YmvlNeUQMKxw/D3y6rMrZZd+fjIgzG+nnXODcJsaYygcPo5WX/Rc4uOz0/zUVb1fjJQpmZmZmVlOc4JqZmZlZTfESBTMzM7NOLCIGVzuGrsYzuGZmZmZWU5zgmpmZmbWCpImSdql2HNY0J7hmZmZWlyRtL+kRSW9Kmi3p4cJ7Ytt77DGSjsjHwyQtkbQgfyZLurajYqlFTnDNzMys7uTdy24Dzgf6AP1J74Z9u0ohTY2I7qRNHz4DTAAelLRzleLp0pzgmpmZWT3aGCAiroqIxRGxKCLujohnJW0g6T5JsyTNlHSlpN6NdSKpm6QfS3o517827zaGpJUljcrn50p6UtLazQUVyeSI+DnwZ9L2wdZKfouCmVk7mTl5gXc0M+u8XgQWS7ocuBp4LCLm5DIBZwIPAD2BG4ARwHGN9PM9YB9gR2AG8Dvg96QNFg4BegEDSDPDW5G2BK7UX4FjJK0WEQtb0a7uOcG1TmX8tHkMv+jRaodhndDMuQs4tvca1Q6jYhtv0+wkjZlVWUTMk7Q9abvdi4F1JN0BHBkRL5G2zAWYIekc4JQmujoKODYiJgNIGgG8Jukg0hbAawAb5p3TxrUyzKmkZLs34AS3FZzgWqex91b9qx2CWZsZskN/huzgP9NmVfPDlqtExL+BQwEkbQqMAs6T9L+kmdgdSGtiuwFzmuhmEHCjpCWFc4uBtYGRpNnbq/MSh1HATyPi3Qqvoj8QwNwK61vmBNc6jf23Hcj+2w6sdhjWSflX/WbWniJigqTLSDOyZ5ISy09ExCxJ+wAXNNG0ATg8Ih5uovxU4FRJg4E7gBeASyoM6/8BT3l5Quv5ITMzMzOrO5I2lXS8pPXy9wGkdbOPkWZtFwBzJfUHTmimqwuB0yUNyv2sKWnvfPwFSVtIWg6YR1qysLiFuCSpv6RTgCOAk5bpQuuUE1wzMzOrR/OBbYHHJS0kJbb/Ao4nzbp+CngTuJ30sFdTfgvcAtwtaX7uZ9tctg5wPSm5/TdwP2mZQmP6SVpASqyfBLYAhkXE3Ut7gfXMSxTMzMys7kTEFGC/JoqfBz5ddu7sQtvBheMlwDn5Uz7GVcBVTYw/rHA8Bk86tinfTDMzMzOrKU5wzczMzKymOME1MzMzs5riBNfMzMzMaooTXDMzMzOrKU5wzczMzLoIScMkTa52HJ2dE1wzMzOrK5KulPSXsnM7Spolad02GmOYpJD017LzW+bzY9piHGucE1wzMzOrN98Ddpf0RQBJKwMXA8dHxLRl7VxSaZ+BGcBnJa1RKD4EeHFZx7DmeaMHM+syZk5ewI1nP1XtMMysi4uIWZK+C/xJ0ubAycDLwARJjwCbAZOA/82bMCDpMOBHwHqkxPVXEXFRLhtG2qHsfOD7wD3AJcA7wG3A14Hf5y179wP+BOxUikfSb4GvAr2A/wDHRcSDuWwV4I/A3sA04NLitUjql8f9PGkXtHMj4ndtc6e6Ls/gmlmXsPE2a9N3ve7VDsPMakREXAeMI+009i3gaNK2vKcBfYAfAjdIWjM3eQPYE+gJHAacK+lThS7Xye0G5f5KrgAOzse7knZJm1oWzpPAVrn9aOC6PKsMcAqwQf7sSpoBBkBSN+BW4BmgP7AzcJykXVt1M2qQZ3DNrEsYskN/huzQv9phmFlX8cOKan2HNHP7U9Is6x0RcUcuu0fSWGB34PKIuL3Q7n5JdwM7AKVfKy0BTomItwEkARARj0jqI2kTUqJ7BbBKMYiIGFX4erakk4FNSInrfsAxETEbmC3pd8DPc92tgTUj4hf5+yuSLs7XcldFd6BGOcHtIKMff42bn55S7TCqYvy0eWy2bs9qh2FmZvYhEfG6pJmkWdWvAvtK2qtQZQXgHwCSdiPNpm5M+g34qsBzhbozIuKtJoYaCRwLfAE4HNi/WCjpeOAIoB8QpFnivrm4H9BQqD6pcDwI6CdpbuHccsCDTV50nXCC20FufnqKEz0zM7POqwEYGRFHlhdIWgm4gTQDe3NEvCvpJkCFatFM3yOBl4ArIuK/pdnd3PcOwImk5QXPR8QSSXMKfU8DBpCScICBZTG/GhEbVXyVdcIJbgfabN2eXHPUdtUOo8MNv+jRaodgZmbWklHAk3n96r2k2dvPkBLTN4GVSA+XvZdnc78E/KuSjiPiVUk7Aq80UtwDeC/3vbykH5NmcEuuBX4i6XFgNeC7hbIngHmSTgR+R3qo7ePAKhHxZEVXXaP8kJmZmZnVvYhoIL2p4CRSstkAnAB0i4j5pFeLXQvMIS0xuKWV/T8UEeUPl0FaK3sn6dVhk4C3+PCShFPz+VeBu0mzwaU+FwN7kR5QexWYCfyZ9DaGuqaI5mbUPzB06NAYO3ZsO4dTu0qzmPU8g1uP125mZtUhaVxEDK12HFYdnsE1MzMzs5riBNfMzMzMaooTXDMzMzOrKU5wzczMzKymOME1MzMzs5riBNfMzMzMKiLpMkmnVTuOljjBNTMzs7ol6euSHpe0UNIb+fgYFbcb6wIkHSBpQf4skrSk8H1BtePraE5wzczMrC5JOh74LfB/wDrA2sDRwOeAFRupv1yHBtgISY3uQhsRV0ZE94joDuwGTC19z+eKfVT9OtqbE1wzMzOrO5J6Ab8AjomI6yNifiT/jIgDIuLt/Ov4P0q6Q9JC4AuSPi5pjKS5kp6X9JVCn2MkHVH4fqikh/KxJJ2bZ4nflPSspM1z2UqSfiPpNUmvS7pQ0iq5bJikyZJOlDQduHQprrWx69hD0j8lzZPUIGlEWZvtJT2Sr7NB0qGN9NtD0j8k/S5f3+6SxkuaL2mKpB+2Nta24gTXzMzMasqkgw6upNp2wErAzS3U2x84HegBPA7cStoydy3gu8CVkjapYLwvAZ8HNgZ6A8OBWbnsV/n8VsCGQH/g54W26wB9gEHAtyoYq6XreAhYCBycY9kD+LakfQAkDSRtH3w+sGaO6+liZ5LWAP4OPBwR34u0Ne4lwFER0QPYHLhvKWNdZk5wzczMrB71BWZGxHulE4UZy0WSPp9P3xwRD0fEElKi1x04KyLeiYj7gNuAb1Qw3ruk5HJTQBHx74iYltf6Hgl8PyJmR8R84Azg64W2S4BTIuLtiFi0lNf7/nVExFsRMSYinsvfnwWuAnbMdQ8A7o2IqyLi3YiYFRFPF/rqB9wPXBcRJ5dd42aSekbEnIh4ailjXWZOcM3MzKwezQL6Fte0RsRnI6J3LivlSA2FNv2Ahpzslkwizbg2KyfDFwC/B16X9CdJPUkzpKsC43JyPRf4Wz5fMiMi3mrl9ZUrXgeSts3LC2ZIepO09rhvLh4AvNxMX3sAqwAXlp3/H2B3YJKk+yVtt4wxLzUnuGZmZlaPHgXeBvZuoV4UjqcCAyQV86eBwJR8vJCUrJas86GOIn4XEZ8GhpCWJJwAzAQWAUMionf+9Cp7MKwYw9Iq72M0cAswICJ6kZLV0psjGoANmunrYlISfoek1d4fIOLJiNibtHzjJuDaNoh7qTjBNTMzs7oTEXOBU4E/SPqapO6SuknaClitiWaPk5LYH0laQdIwYC/g6lz+NPBVSatK2hD4ZqmhpK3zrOkKuY+3gMV5Nvhi4FxJa+W6/SXt2qYX/FE9gNkR8ZakbUhrdEuuBHaRtJ+k5SWtke9L0bHAC8BtklaRtGJ+VVmviHgXmAcsbudraJITXDMzM6tLEfFr4AfAj4A3gNeBi4ATgUcaqf8O8BXSa7hmAn8ADo6ICbnKucA7uZ/LSYliSU9SIjuHtKxhFvCbXHYi8BLwmKR5wL1AJQ+uLYtjgF9Imk96oO392daIeI201OB4YDYpcd+y2Dg/VPYt0mzvzcDKwEHAxHwNRwMHtvM1NEkpvpYNHTo0xo4d287h1K7hFz0KwDVHVW05StXU87WbmVnHmnPNtbzxm9+w6dgnx0XE0GrHY9XhGVwzMzOrGfNuu40l8+dXOwyrMie4ZmZmVlO69ehR7RDajaSTilvwFj53Vju2zqTR7d7MzMzMrPOJiDNI78m1ZngG18zMzMxqihNcMzMzs2UgaYSkUe3Yf+TXjiHpQkk/a6+xmhj/MkmndeSYy8oJrpmZmdUdSRMl7VJ27lBJD1UrpkpExNER8cu27jdf++Kydb0XtPU4HcVrcM3MzMzaiaTlI+K9asdRoUcjYvtqB9EWPINrZmZmViDpBEk3lJ07X9J5+Xh9SfdLmi/pHqBvod7gvKTgm5JeA+7L56+TNF3Sm5IekDSk0GaMpCMK35ucSS5fLiBpb0lPS5on6WVJXy708UqO8VVJB7TJzUl9HynpJUmzJd0iqV8+f6qk8/PxCpIWSvp1/r6KpLckrd5WcTTHCa6ZmZnVlJU33XRZuxgFfFlSb0izsMBwYGQuHw2MIyW2vwQOaaSPHYGPA6Utd+8ENgLWAp7iw7ucLZW8xe4VwAlAb+DzpJ3EVgN+B+wWET2Az5J2I1tmknYCzgT2A9Yl7cpW2qr4fmBYPt4amE66DwDbAS9ExJy2iKMlXqJgZmZm9eomScXlAysCT0XENEkPAPuSttf9MjAzIsZJGkhK3naJiLeBByTd2kjfIyJiYelLRPyldCxpBDBHUq+IeHMZ4v8m8JeIuCd/n5L7Xw1YAmwu6bWImAZMq6C/z0iaW/j+5Yh4rKzOAXnMp/JYP8nXMhh4FNhI0hqkZPsS4BhJ3UmJ7v1LcY1LxTO4ZmZmVq/2iYjepQ9wTKHscuDAfHwgH8ze9gPmFJNX0ixmuYbSgaTlJJ2VlxDMAybmor6NtGuNAcDL5SdzbMOBo4Fpkm6XVMm09mPF+9FIcgvp+t+/3ohYAMwC+kfEImAsKZn9PCmhfQT4HB2c4HoG16yOzLnmWubddlu1wzAzazdvTZjQFksUAG4C/ihpc2BP4Ef5/DRgdUmrFZLcgUCUtS9+3x/YG9iFlNz2AuYAyuULgVUL9depMMYGYIPGCiLiLuAuSasAp5FmoneosN/mTAUGlb7k2eI1yLPHpCR2J+CTwJP5+67ANsADbTB+RTyDa1ZH5t12G29NmFDtMMzMOr2IeAu4nrTe9omIeC2fn0SapTxV0oqStgf2aqG7HsDbpJnOVfnoTmRPA1+VtGp+3+03KwzzEuAwSTtL6iapv6RNJa0t6Ss5+XwbWAAsrrDPlozOY24laaV8LY9HxMRcfj9wMDA+It4BxgBHAK9GxIw2iqFFnsE1qzMrb7opg0ZeUe0wzMzaxaSDDm7L7i4nJWeHl53fP5fNJq07vYL0kFdTriDNYk7JbX4GfLtQfi5pXe/rwLOkB9B2oQUR8YSkw3L79XP77wBvAseTllUEKYE+poluWiUi/p43mrgBWJ20BOHrhSqPAKvwwWzteOAtOnD2FpzgmpmZWR2KiMGNnLsMuKxw6jVgESmZK9Z7hSZ+3Z9nMlV2bgFpiULRFYXymcCXyspHFMpVOD60rO8bgRsbCWXHRs41qZFrL5aVj3khcGETdRcAKxS+B+nNER3KSxTMzMzMykjqBvwAuDoi5lU7HmsdJ7hmZmZmBXnt6jzgi8ApVQ6nzUi6sGwr3tKn0dnYrsxLFMzMzMwK8tsRulc7jrYWEUeTXh1W8zyDa2ZmZmY1xQmumZmZWQeSFPl1YNZOnOCamZlZ3ZK0v6SxeS3qNEl35nfbdjmSTpL0ar6WyZKuWcb+hkma3FbxdSQnuGZmZlaXJP0AOI+0WcHapB3J/sBHX+nVKUhq8tkpSYcABwG7RER3YCjw946KrbNxgmtmZmZ1R1Iv4BfAdyLirxGxMCLejYhbI+IESStJOk/S1Pw5L+/chaRDJT1U1t/7yw4kXZbfWHCPpPmS7pc06KNRQB7nN5Jek/R6brdKLhuWZ2JPlDQduLSZS9oauCsiXgaIiOkR8afcz76SxpWNe7ykm/Lx7pLG51inSPphfpPEnUC/wtsW+uUd034s6WVJsyRdK6lP7mdwvg+HSWqQNEfS0ZK2lvSspLmSLmjd/6ml4wTXzMzMasp/n3yykmrbASvT+CYJAD8FPgNsBWwJbAOc3IowDgB+CfQl7SR2ZRP1fgVsnMfZEOgP/LxQvg7QBxgEfKuZ8R4DDpZ0gqShkpYrlN0CrC/p44VzB5J2OoO05e9REdED2By4L79JYjdgakR0z5+pwPeAfUgbSfQD5gC/L4tlW2AjYDhphvynpJ3ZhgD7SWrVJhRLwwmumZmZ1Yyee+7JqltvXUnVNYCZEfFeE+UHAL+IiDciYgZwKmkJQKVuj4gHIuJtUoK3naQBxQqSBBwJfD8iZkfEfNJyieLWt0uAUyLi7YhY1NRgETEK+C5pS+D7gTck/TiXvQ1cQ0pqkTQEGAzclpu/C2wmqWdEzImIp5q5rqOAn0bE5NzvCOBrZcsnfhkRb0XE3cBC4Kp8H6cADwKfbKb/NuH34FqHGD9tHsMverTaYdS9t/t+gd/O/Ee1wzAzazerD9+P1YfvB6NGtlR1FtBX0vJNJLn9gEmF75PyuUo1lA4iYoGk2bl9Q6HOmsCqwLiU6wJpm9/i7OuMiHirkgEj4krgSkkrkGZZr5T0z4i4C7gcuErSyaRE/dqcoAL8D2l2+ixJzwI/joimfmgPAm6UtKRwbjFpDXPJ64XjRY18b/d3DHsG19rd3lv1Z7N1e1Y7DDMzs6JHgbdIiWBjppKSuZKB+RykWclVSwWS1mmk/YBCeXfSMoOpZXVmkhK+IRHRO3965YfESqLlS/mwvJb4OuBZ0pIDIuIx4B1gB2B/PlieQEQ8GRF7A2sBNwHXNjN2A7BbId7eEbFynp3tNDyDa+1u/20Hsv+2A6sdhgGTDvpjtUMwM+sUIuJNST8Hfi/pPeBu0q/qdwG+AFwFnCzpSVKi93NgVG7+DDBE0lbABNKv6cvtnl839gRpLe7jEVGcvSUilki6GDhX0rER8Yak/sDmeda1YpIOBWYAD5AS8F1Ja14fL1S7ArgAeC8iHsrtVgT2BW7L92QeaUYW0szrGpJ6RcSb+dyFwOmSDomISZLWBD4bETe3Jt725hlcMzMzq0sRcQ7wA9Kv52eQZiePJc1ingaMJc2CPgc8lc8RES+S3sBwL/Af4CE+ajRwCjAb+DRpTW9jTgReAh7LyeW9wCZLcTnzgJOA14C5wK+Bb5cS2WwkaUa3fP3GQcDEPP7R5LW6ETGBlOi/kt+A0A/4LemhtbslzSc93LbtUsTbrhRR2cz30KFDY+zYse0cTu0qrT+95qjtqhyJ1bNJBx0MwKCRV1Q5EjOz9iVpXEQMrdLYlwGTI6I1b11od/n1Y28An4qI/1Q7nvbkGVwzMzOz+vBt4MlaT27Ba3DNzMzMugRJJ5GWIZR7MCJ2a6HtRNIbGvZp+8g6Hye4ZmZmZm0oIg5tp37PIL0nd2naDm7baDo3L1EwMzMzs5riBNfMzMzMaooTXDMzM7NlJGmYpMnVjsMSJ7hmZmZWdyRNlLRI0oLC54Jqx2Vtww+ZmZmZWb3aKyLurXYQS0vSchGxuOWa9ccJrlmdeWvChPc3fDAzsw/LW94eQdqh65ukXcGOiYg7c3kf4GzSVrirAPdHxD6N9PNx4I/AVsAU4CcRcUsu2x34DTCAtAPZuRHxm9LYEbF9oZ8ANoqIl/IGEouAQcCOwN6SxgPnA58HFuS+ftdmN6SLcoJrVkd67rlntUMwM+sKtgUuB/oC3wIukdQ/0vavI0mJ5JD838+WN5a0AnAr8BfgS8D2wM2ShkbEC8AlwH4R8aCk1YH1WxHb/sDuwJ7AysCDwM3AN4D1gHslvRARd7X+smuHE1yzOrL68P1Yffh+1Q7DzKz9jRpZSa2bJL1X+H4C8C4wKSIuBpB0OfAHYG1JAnYD1oiIObnN/Y30+xmgO3BWRCwB7pN0GykJHZHH2EzSM7mfOY300ZSbI+LhHNsWwJoR8Ytc9oqki4GvA3Wd4PohMzMzM6tX+0RE78Ln4nx+eqlCRPw3H3YnLSmYXUhum9IPaMjJbckkoH8+/h/SLOwkSfdL2q4VMTcUjgcB/STNLX1IO52t3Yr+apJncM3MzMwq0wD0kdQ7IuY2U28qMEBSt0KSOxB4ESAiniStn10BOBa4lpQ8LwRWLXUiaZ1G+o6yeF6NiI2W8npqlmdwzczMzCoQEdOAO4E/SFpd0gqSPt9I1cdJyeqPcp1hwF7A1ZJWlHSApF4R8S7pIbPSmxCeAYZI2krSyqTlDM15Apgn6URJq0haTtLmkrZe5ovt4pzgmpmZWb26tew9uDdW0OYg0hraCcAbwHHlFSLiHeArpPW6M0lreA+OiAmFPiZKmgccDRyY270I/AK4F/gP8FBzgeRXhO1FelPDq3msPwO9KriOmqb0QGDLhg4dGmPHjm3ncGrX8IseBeCao1qzzMbMzMyWhqRxETG02nFYdXS6NbijH3+Nm5+eUu0w2tz4afPYbN2e1Q7DzMzMrOZ1uiUKNz89hfHT5lU7DDMzMzProjrdDC7AZuv2rLlf5ZeWKJiZmZlZ++p0M7hmZmZmZsvCCa6ZmZnZMpA0QtKoduw/JG2Yjy+U9LP2GqtWOME1MzOzuiNpoqRdys4dKqnZV3NVW0QcHRG/rHYcnZ0TXDMzM7N2IqlTPu9U65zgmpmZmRVIOkHSDWXnzpd0Xj5eX9L9kuZLugfoW6g3OC8p+Kak14D78vnrJE2X9KakByQNKbQZI+mIwvcmZ5IlXSbptML3vSU9LWmepJclfbnQxys5xlclHdAmN6eL8L8qzKxNXffiddzxyh3VDsPMbFmMAkZI6h0Rc/Ms7HDSzmQAo4FHgS8B2wK3AzeX9bEj8HFgSf5+J3A48A7wK+BK0g5kS03SNsAVwNeAvwPrAj0krQb8Dtg6Il6QtC7QZ1nG6mqc4JpZm7rjlTt4YfYLbNJnk2qHYmbWkpskvVf4viLwVERMk/QAsC9wMfBlYGZEjJM0ENga2CUi3gYekHRrI32PiIiFpS8R8ZfSsaQRwBxJvSLizWWI/5vAXyLinvx9Su5/NVJivbmk1yJiGjBtGcbpcpzgmlmb26TPJlz65UurHYaZ1bHLuKySavtExL2lL5IOBUpLBS4Hvk1KcA8ERubz/YA5xeQVmAQMKOu7odDvcsDppIR5TT6Y1e0LLEuCOwD4yK/MImKhpOHAD4FLJD0MHB8RE5ZhrC7Fa3DNzMzMPuom4BOSNgf2JC0pgDQTunqeJS0Z2Ej7KBzvD+wN7AL0Agbn88r/XQisWqi/ToUxNgAbNFYQEXdFxBdJyxYmkBL1uuEE18zMzKxMRLwFXE9ab/tERLyWz08CxgKnSlpR0vbAXi101wN4G5hFSmTPKCt/GviqpFXz+26/WWGYlwCHSdpZUjdJ/SVtKmltSV/JSfjbwAJgcYV91gQnuGZmZmaNuxzYgg+WJ5TsT3q4bDZwCulBr+ZcQVrGMAUYDzxWVn4u6eGz1/OYV1KBiHgCOCy3fxO4HxhEyu+OB6bmGHcEjqmkz1rhNbhmZmZWdyJicCPnLoMPLd59DVgE3FBW7xVghyb6ncgHSw9K5xaQligUXVEon0l6I0PRiEK5CseHlvV9I3BjI6Hs2Fh89cIJrlkT/LqrpTNh9gQ27bNptcMwM1smkroBPwCujoh51Y7HWsdLFMyaUHrdlZmZ1Ze8dnUe8EXSEgTrYjyDa9YMv+6q9Q7722HVDsHMbJnkV4B1r3YctvQ8g2tmZmZmNcUJrpmZmZnVFCe4ZmZmZm1E0hhJR7Rcs83HXSDpYx09bmflBNfMzMzqjqSJkhblxPB1SZdK6hTrbiUNkzS57FxvSX+RNF3SfEkvSjqxVB4R3fPrywwnuGZmZla/9oqI7sCngK2Bk4uFkjrTw/jnkh58+zhpu9+vAC9XNaJOrDP9jzOzGvHC7Bf8NgUz6zIiYoqkO4HNJQVwLHAcKU9aX9KRwIlAH+Ah4OiImAog6YvA+cC6pB3P3t+UQdIIYMOIODB/Hwy8CqwQEe9J6gOcDewKrELaiewA4E5gJUkLclcbkxPwiJiTz03In9JYAWwE/Bd4sXB53YBVSptFSDocOAFYB3gC+FbefrimeAbXzNrU7h/bnU36bFLtMMzMKiZpALA78M98ah/SVrybSdoJOBPYj5TETgKuzu36knY5OxnoS5pR/Vwrhh4JrAoMAdYCzs2vKNsNmJqXHXTPyfRjwOmSDpO0UVMdRkSxXXfSLmelePcBTgK+CqwJPAhc1Yp4uwzP4JpZm9p3433Zd+N9qx2GmdW5yz60426TbpL0HvAmcDtwBilZPTMiZgNIOgD4S0Q8lb//BJiTZ2M/D4yPiOtz2XnA8ZUMLGldUiK7RmFW9v5mmnwX+D5pdvlPkiYB342IO5sZ40RgU2D7fOqofG3/zuVnACdJGlRrs7iewTUzM7N6tU9E9I6IQRFxTEQsyucbCnX6kWZtAYiIBcAsoH8uayiURVnb5gwAZheS22ZFxKKIOCMiPg2sAVwLXJeXOXyEpN2A/83XWLquQcBvJc2VNBeYTVpS0b/CmLsMz+BapzT68de4+ekpVY3hhdk78slPNvePaTMzq1FROJ5KSgyB97fxXQOYAkwjJaqlMhW/AwtJSxBK1ikcNwB9JPWOiLnNjP/R4CLm5dnXnwDrkxLV90naBLgc+GpEFBPuBuD0iLiyuf5rgWdwrVO6+ekpjJ82r9phmJmZjQYOk7SVpJVIyxgej4iJpGUNQyR9Nb9x4Xt8OIl9Gvi8pIGSepESUgAiYhrpYbI/SFpd0gqSPp+LXwfWyG0AkPQzSVtLWlHSyqTZ2bnAC8VgJfUEbiY9kPZQ2bVcCPxE0pBct5ekmlxT5hlc67Q2W7cn1xy1XdXGP+xvf6ra2GZm1jlExN8l/Yz0MNnqwCPA13PZzJwg/g64lPTQ2MOFtvdIugZ4FpgJ/Ir0eq+Sg0iv/5oArAj8A3ggIiZIugp4RdJywGakWd1LgYHAe7nPPfKSiaJPAZsA50g6pxBL94i4Mb/r92pJg0hrj+8BrlvG29TpOME1MzOzuhMRg5s4r0bOXUia/Wys/t9Ir/FqapzvAN8pnLq4UDYbOKSJdoeXnTotf5oapxT3SxReVdZIvZGkRLymeYmCmZmZmdUUJ7hmZmZmVlOc4JqZmZlZTXGCa2ZmZmY1xQmumZmZ1R1Jm0j6p6T5kpbkNyW053gjJI2qsO4YSUe0ZzxLQ9LzkoZVO45KOME1MzOzevQjYExE9IiIbhHxSwBJwySFpL8WK0vaMp8f05FBSjpU0mJJC/LnVUmXSmryzQ3tJSKGRMSYSupKmihpl3YOqUlOcM3MzKweDQKeb6JsBvBZSWsUzh0CvNjuUTXu0YjoDvQCdgEWAeMkbd4Rg+dNLDpMW4znBNfMzMzqiqT7gC8AF+RZ0dGSiu+YfQe4ibyhQ95sYT/gyrJ+PivpSUlv5v9+tlC2vqT78xKIe4C+ZW0/I+kRSXMlPVPJr/4jYnFEvBwRxwD3AyMq6S/PAr+SY3lV0gGFsiMl/TuXjZf0qXx+oqQTJT0LLJS0fHFWNi+5uF7SNbntU5K2zGUjSRtS3Jrv74/y+a/kZQ5z8zKMjxfi+Mh4Ld2P5nijB7NmvDD7BQ7722HVDsPMzNpQROyUlxqMiog/S7qskWpXkHYZ+z2wK2m2d2qpUFIf0la93wOuAvYFbpe0YUTMIm3x+yjwJWDbXPfm3LZ//n4Q8DdgZ+AGSZtGxIwKL+OvwJkt9Qf8l7TT2tYR8YKkdYE+ud2+pCR5H2AssAHwbmGMbwB7ADMj4j3pI/tH7J3rHEjaOvgmSRtHxEGSdgCOiIh781gb5/u0DzAG+D4pAd4sIt5pbLwK70OjPINr1oTdP7Y7m/TZpNphmJlZFUTEI0AfSZsAB5MS3qI9gP9ExMiIeC8iriJtubuXpIHA1sDPIuLtiHgAuLXQ9kDgjoi4IyKWRMQ9pARz91aEOJWcqFbQ3xJgc0mrRMS0iCgtzTgC+HVEPBnJSxExqTDG7yKiISIWNRHDuIi4PiLeBc4BVgY+00Td4cDtEXFPrv8bYBXgs4U6LY1XMc/gmjVh3433Zd+N9612GGZmthQu47K26GYkcCxpOcPhwP6Fsn7ApLL6k4D+uWxORCwsKxuQjwcB+0raq1C+AvCPVsTWH5jdUn8RsVDScOCHwCWSHgaOj4gJOZ6XmxmjoYUY3i+PiCWSJpOuvTEful+5fkO+jkrHq5gTXDMzM7PGjQReAq6IiP+W/Yp+KimxLBpIWiIwDVhd0mqFJHcgEPm4ARgZEUcuQ2z/D3iwkv4i4i7gLkmrAKcBFwM75HYbNDNGNFMGHyTsSOoGrMcHyzjK204FtijUV24/pRXjVcxLFMzMzMwaERGvAjsCP22k+A5gY0n75wewhgObAbflX/OPBU6VtKKk7YHi7Ooo0lKGXSUtJ2nl/Hqy9ZqLJ9ddX9L5wDDg1Jb6k7R2frhrNeBtYAGwOLf7M/BDSZ9WsqGk8qS9OZ+W9NX8QNhxuf/HctnrwMcKda8F9pC0s6QVgONz/UdaMV7FnOCamZmZNSEiHoqIqY2cnwXsSUrUZpHeq7tnRMzMVfYnPVw2GziFwhreiGggPaB1EumVZA3ACTSdl20naQEwj/SAVk/SQ2PPVdBftxzj1BzLjsAxud11wOmkB+Lmk94cUVrXW4mbSWtr55AecPtqXl8L6QG4k/MbE34YES+Q1gqfD8wkJfx7FR4wa1NeomBmZmZ1JyKGFY4PLRyPIf2qvbE2fybNepa+PwR8uom6r5CWATQ1/uOkZLOl2C6DlhcUN9dfM+eJiAuBCxs5P7iCc29FxIFN9Hsz+a0RhXM3Ajc2Uf8j4y0Lz+CamZmZWU1xgmtmZmZmNcVLFMzMzMysVSJiRLVjaI5ncM3MzMyspjjBNTMzM7Oa4gTXzMzMrI1IGiPpiGrHUe+c4JqZmVndkTRR0iJJCyS9LulSSd2rHRdA3qRhciPnN5J0taQZkuZJ+o+k81vaIKId4wxJC/M9nCXp73nDi6pzgmtmZmb1aq+I6A58CtgaOLlYmHfo6hQkbQg8Ttqw4ZMR0RP4HPAysH0TbToi/i3zPdyE9L7eCySd0gHjNssJrpmZmdW1iJgC3AlsnmclvyPpP8B/ACQdKeklSbMl3SKpX6mtpC9KmiDpTUkXACqUjZA0qvB9cO5/+fy9T545nippjqSb8pa6dwL98szogjzeCODhiPhBREzOcb8REedFxNW5v2GSJks6UdJ04FJJK0k6L48xNR+vlOsfKumh4r3I8W2Yjy+TdKGkeyTNl3R/U1v5RsTMiBgJfBv4iaQ1ch+9JF0iaZqkKZJOk7RcLtsw9/mmpJmSrinEMSSPOzvPsJ/Umv+nTnDNzMystly6R6uqSxoA7A78M5/ah7TN7maSdiJtO7sfsC4wCSgllH2BG0gzv31Js6mfa8XQI4FVgSHAWsC5EbEQ2A2YGhHd82cqsEseqyXrkLbbHQR8C/gp8BlgK2BLYBvKZqpbcADwS9L1PQ1c2UL9m0mvod0mf78ceA/YEPgk8CWgtEb5l8DdwOqk3ePOB5DUA7gX+BvQL7f9eytidoJrZmZmdesmSXOBh4D7gTPy+TMjYnZELCIleH+JiKci4m3gJ8B2kgaTkuLxEXF9RLwLnAdMr2RgSeuSEtmjI2JORLwbEfc306RvsW9Jx0qam2d4Ly7UWwKcEhFvF+L/RZ7tnQGcChxUSYzZ7RHxQL72n5KufUBTlfN9mAn0kbR2vsbjImJhRLwBnAt8PVd/l5SI94uIt/LWxwB7AtMj4ux8fn7eirhiTnDNzMysXu0TEb0jYlBEHJMTQoCGQp1+pFlbACJiATAL6J/LGgplUda2OQOA2RExp8L6s0gzyKWxLoiI3qSkeoVCvRkR8VZT8efjflSueH0LgNnNtZe0ArBmrjcoxzYtJ+NzgYtIs9UAPyIt6XhC0vOSDs/nB5Bmw5eaE1wzMzOzD4vC8VRSogZAXiO7BjAFmEZKxkplKn4HFpKWIJSsUzhuIM1y9m5h/JK/A19tZexQFj8wMJ/7SHySivGVFK+vO2n5w9RG6pXsTVqS8ATpGt8G+uZ/SPSOiJ4RMQQgIqZHxJER0Q84CvhDXv/bAGzQ4pU2wwmumZmZWdNGA4dJ2io/nHUG8HhETARuB4ZI+mp+cOx7fDiJfRr4vKSBknqRljcAEBHTSA+T/UHS6pJWkPT5XPw6sEZuUzIC2EHSOZL6w/trgD/eQvxXASdLWjPX/zlQevDtmRz/VpJWzmOU213S9pJWJK2ZfTwiPjJLnR+YOwD4PfCriJiVr/Fu4GxJPSV1k7SBpB1zm331wSvO5pCS88XAbcA6ko7LD8n1kLRtC9f5IU5wzczMzJoQEX8HfkZ6wGsaaWbx67lsJrAvcBZpCcFGwMOFtvcA1wDPAuNIiVvRQaR1qBOAN4DjcrsJpMT0lfyr/X4R8SLpYbH1gGckzc9jTc3xNeU0YGyO4TngqXyO3OcvSA90/Ye0FrncaOAU0pKDT5PW9BY9I2kB8BLp4bHvR8TPC+UHAysC40lJ7PV8sNRia+Dx3P4W4H8j4tWImA98EdiLtO74P8AXmrnGj+g073czMzMz6ygRMbiJ82rk3IXAhU3U/xuwcTPjfAf4TuHUxYWy2cAhTbQ7vJFzE0hvc2hqrDGkBLh47i3SzPL3mmhzOnB64dSosiozI+LoJtp+5F41UudN0qvDvt1I2Y9I63Aba/cvYOeW+m+KE1wzM7NaN/ZSeO76akfRcaY/W+0IrMq8RMHMzKzWPXc9TH+u2lGYdRjP4JqZmdWDdbaAw26vdhQd49I9gMnVjqLLi4hDqx3D0vIMrpmZmZnVFM/gdqDx0+Yx/KJHqx1GlzB+2jw2W7dntcMwMzNrFUljgFER8edqx1LPPIPbQfbeqr8TNjMzs05C0kRJi/JWt69LujRvZFB1koZJ+sgaC0kbSbpa0gxJ8yT9R9L5hXfJWuYZ3A6y/7YD2X/bgdUOo8vwTLeZmXWAvSLi3rxxwl3AycCPS4WSlo+I96oWXUHe4etx4DLgkxExWdJawP7A9sDVjbTpNPF3NM/gmpmZWV2LiCmkXcU2lxSSviPpP6QNBpB0pKSXJM2WdIukfqW2kr4oaYKkNyVdAKhQNkLSqML3wbn/5fP3PnnmeKqkOZJuylsB3wn0y7PLC/J4I4CHI+IHETE5x/1GRJwXEVfn/oZJmizpREnTgUvzTmDn5TGm5uOVcv1DJX1oc4cc34b5+DJJF0q6R9J8SfdLKm7722k5wTUzM7O6JmkAsDvwz3xqH2BbYDNJOwFnkjZYWBeYRJ4tzVvf3kCa+e0LvAx8rhVDjwRWBYYAawHnRsRCYDdgakR0z5+pwC55rJasA/QBBgHfAn5K2gFtK2BLYJscb6UOIG3R25e09fCVrWhbNU5wzczMrLZU/jq0myTNJW1Rez9wRj5/ZkTMjohFpATvLxHxVES8DfwE2E7SYFJSPD4iro+Id4HzSFvLtkjSuqRE9uiImBMR70bE/c006VvsW9KxeRvfBZIuLtRbApwSEW8X4v9Fnu2dAZxK2iK4UrdHxAP52n9KuvYBrWhfFU5wzczMrF7tExG9I2JQRByTE0KAhkKdfqRZWwAiYgEwC+ifyxoKZVHWtjkDgNkRMafC+rNIM8ilsS6IiN6kpHqFQr0ZeXveRuPPx/2oXPH6FgCzW9m+KpzgmpmZmX1YFI6nkn7dD0BeI7sGMAWYRkpUS2UqfgcWkpYglKxTOG4A+kjq3cL4JX8HvtrK2KEsfmBgPveR+CQV4yspXl930vKHqY3U61T8FgUzs2Ux9tK0DapZZzb9WVjnE9WOoqsaDVwtaTTwb9IyhscjYqKkBcAFkr4K3AJ8hw8nsU8DJ0oaCLxJWt4AQERMk3Qn8AdJ3wEWANtFxAPA68AaknpFxJu5yQjgCUnnAGdHxJS8BvjjwPxm4r8KOFnSk6Tk9+dA6cG3Z4AhkrYCJuQxyu0uaXvgCdJa3McjotJZ6qrxDK6Z2bJ47nqY/ly1ozCzdhIRfwd+RnrAaxqwAfD1XDYT2Bc4i7SEYCPg4ULbe4BrgGeBccBtZd0fBLxLSi7fAI7L7SaQEtNX8jrbfhHxIulhsfWAZyTNz2NNzfE15TRgbI7hOeCpfI7c5y+Ae0lvjHiokfajgVNISxM+TVrT2+l5BtfMbFmts0VrHmox63iX7lHtCDqdiBjcxHk1cu5C4MIm6v8N2LiZcb5DmtktubhQNhs4pIl2hzdybgLpbQ5NjTWGlAAXz70FfC9/GmtzOnB64dSosiozI+LopsbsrDyDa2ZmZmY1xQmumZmZmdUUL1EwMzMzs4+IiEOrHcPS8gyumZmZmdUUJ7hmZmZmVlOc4JqZmVndkbSJpH9Kmi9piaTmXrXVVmMOlhSSOnyJqKQRksrfkFCznOCamZlZPfoRMCYiekREt4j4JYCkYTnhXZCT3xckHVblWD9E0mWSTmvk/P6SxubYp0m6M2/S0BExTZS0KN+zuZIekXS0pKrkmk5wzczMrB4NAp5vomxqRHQHegInAhdL2qy8UjVmYpsi6QfAeaSd1tYmbcn7B2DvDgxjr4joQbq3Z5Hu3SUdOP77Os3/GDMzM2tH05/zhg+ZpPuAHYHtJZ1H2mb3lYg4uVgvIgK4SdIcYDNJ2wBHkratPYS0ze7/AecDuwH/JW3kcEZELJG0HPAr4FBgHnB2WRwTgSMi4t78fQSwYUQcmL9vD/wa2Iy0He/PgBVJu4mFpOOAfwAHknYkOywi/loY4tb8aeweXAfsAKxC2rL32xHxfC7bHfgNMCDHfW5E/CZvDXwZsD2whPQPhB0jYknZfXsTuEXSdOAxSWdHxL8krUTaVGI/YCXgRuD7EbGoub4lDQB+m+PtBlwVEcc2dl0lnsE1MzOrdVt8Le24ZwBExE7Ag8Cxeab2ncbqSeom6f8BvUnb3AJsC7wCrEVK1s4HegEfIyXNBwOlJQ1HAnsCnwSGAl+rNEZJA4E7c/9rAlsBT0fEn4ArgV9HRPeI2AvYDliZlDBW6k7S1sJrkbbvvbJQdglwVJ6N3Ry4L58/Hpic41kbOAmIpgaIiCdy/R3yqV+Rdn3bCtgQ6A/8vLm+8z8SbgMmAYNzm6tbujjP4Jp1VWMvheeur3YUNv1ZWOcT1Y7CrHlDD0ufenL4R3bcbY1+kuaSZhJfAw6KiBckbUdavnA+gKQAhgOfjIj5wHxJZwMHkZLE/YDzIqIh1z8TGFZhDAcA90bEVfn7rPxpzBqkLXXfq/QCI+IvpeM8czxHUq88+/ouacb6mYiYA8zJVd8F1gUGRcRLpH8ktGQq0EeSSAn/J/IWxUg6AxgN/KSpvvOseT/ghML1PdTSoJ7BNeuqnrs+/crRzMza2tSI6B0RfSJiq4gozhg2FI77kpYMTCqcm0SaZYSUmDWUlVVqAPByhXVnAX0rXRMsaTlJZ0l6WdI8YGIu6pv/+z/A7sAkSffnxB7g/4CXgLslvSLpxxUM1x+YTZqZXRUYlx9Cmwv8LZ9vru8BwKTWJO/gGVyzrm2dLeCw26sdRX3zmkazelP8lfxM0szjIGB8PjcQmJKPp5ESNAplRQtJSV/JOoXjBmCbCmIAeBR4C9gHqORXe/uTHj7bhZTc9iLN0gogIp4E9pa0AnAscC0wIM9SHw8cL2kI8A9JT0bE3xsbRNLWpAT3IdK9WgQMiYgp5XWb6pt0HwZKWr41Sa5ncM3MzMyWQkQsJiV/p0vqIWkQ8AOg9L7Za4HvSVpP0upA+Yzn08DXJa0gqXyN7pXALpL2k7S8pDUkbZXLXiet+S3F8SZpLevvJe0jadXc526Sft1I6D2At0kzv6uS3rwAgKQVJR2Qlyu8S3rIbHEu21PShnm5Qen84vLOJfWUtCdpreyoiHguP4h2MXCupLVyvf6Sdm2h7ydI/1A4S9JqklaW9LlGrulDnOCamZmZLb3vkmZiXyHNVI4GSutbLwbuIr2l4Cngr2VtfwZsQJo9PTW3BSAiXiMtEzie9Cv+p4Etc/ElpDWycyXdlOufQ0quTwZmkGY+jwVuaiTmK0jLJaaQZp4fKys/CJiYly8cTXpLA6SH0u4FFpBmjf8QEWMK7W6VND+P/VPgHD544A7Sa8NeIr1ZYV7ua5Pm+s7/iNiL9FDaa6QH0YY3ck0fovQGjJYNHTo0xo4dW1HdZTH8okcBuOao7VqoabXMfw4qUPrVuJcoVJf/P5h1SpLGRcTQasdh1eEZXDMzMzOrKU5wzczMzKymOME1MzMzs5riBNfMzMzMaooTXDMzMzOrKU5wzczMzAokPS9pWK2PWcu8k5mZmZnVFUkLCl9XJW16UNqw4KiIGNIOY64InEl6h2tv0rtqb4qI7wO0x5j1zAmumZmZ1ZWI6F46ljQROCIi7q2kbWu3jC34CTCUtP3uNNL2vp9fin6sAk5wzcyW1fTnPtjwwcy6vGLSK2kEsDnwFvAV4AeSriPt0rU7sAS4FDgl77rVlK2BGyNiav4+MX8aG3MuH+RoIs0yrx8RE/MWuKcBg0m7kB0dEc8u2xXXHie4ZmbLYouvtVzHzLq6vYF9gYOBlYCrgNdJ28euBtxG2p72omb6eIyUHL8DPAj8K5rYTjYiepeOJZ0BbA9MkfQp0jbAewFjSVvo3iJpk4h4e1kusNY4wTUzWxZDD0sfM+tcDldb9vZoRNwEIKknsBvQOyIWAQslnQt8i+YT3DOBOcABwLnALEk/iYjLm2ogaTiwP7B1RLwr6Ujgooh4PFe5XNJJwGeA+5fpCmuME1wzMzOz5jUUjgcBKwDTpPeT6G5ldT4iL1/4PfB7SasAhwN/kfRERPy7vL6kTwIXAF+KiBmFsQ+R9N1C1RWBfq2/pNrm14SZmZmZNa+4lKCB9NaFvhHRO396tuYtCBGxKCJ+T5rR3ay8XNKawI3AsRHxz7KxTy+M2zsiVo2Iq5bqqmqYZ3Ct0xo/bR7DL3q02mF0XtP35pqBN1c7CjOzuhIR0yTdDZwt6WfAAmB9YL2IaHKZgKTjgKeBx4F3SUsVegD/LKu3PHADcGVEXFPWzcXAjZLuBZ4gPXw2DHggIuYv88XVEM/gWqe091b92WzdntUOw8zMrDEHk5YGjCfNwl4PrNtCm0XA2cB0YCbwHeB/IuKVsnrrATsAx0laUPgMjIixwJGkpQtzgJeAQ9vmkmqLmniA7yOGDh0aY8eObedweH/G7pqjtmv3scy6tNJrqQ67vbpxmJl1QpLGRcTQasdh1eEZXDMzMzOrKU5wzczMzNqApAvLlhWUPhdWO7Z644fMzMzMzNpARBwNHF3tOMwzuGZmZmZWY5zgmpmZWd2RtImkf0qaL2lJfuVXzZEUkjasoN4wSZM7IqaO4ATXzMzM6tGPgDER0SMiukXEL+H9RG9JYf3sFEmntncwksbkZHTLsvM35fPD2juGWuIE18zMzOrRIOD5JsqmRkT3iOgObA98U9I+HRDTi6R37AIgaQ3gM8CMJltYo5zgmpmZWV2RdB/wBeCCPEs7WtJpjdWNiFeBRyhsqSvpt5IaJM2TNE7SDoWybSSNzWWvSzqnUPYZSY9ImivpmUZmZa8EhktaLn//BmnL3ncKfawk6TxJU/PnPEkrFcpPkDQtlx1edt0rSfqNpNdybBdKWqVVN6+LcIJrZmZmtaW0EU4TImIn4EHg2DxL+05TdSVtBHwOeKxw+klgK6APMBq4TtLKuey3wG8joiewAXBt7qc/cDtwWm73Q+AGSWsW+p1K2h3tS/n7wcAVZSH9lDSruxWwJbANcHIe48u53y8CGwG7lLX9FbBxbrsh0B/4eVPX3pU5wTUzMzP7sH55lnUeadnA48BDpcKIGBURsyLivYg4G1gJ2CQXvwtsKKlvRCyIiFJifCBwR0TcERFLIuIeYCywe9nYVwAHS9oE6B0Rj5aVHwD8IiLeiIgZwKnAQblsP+DSiPhXRCwERpQaSRJpm9/vR8TsiJgPnAF8fWlvUmfmBNfMzMzsw6ZGRO88C9sbWARcXiqUdLykf0t6U9JcoBfQNxd/kzRLOkHSk5L2zOcHAfvmxHlubrc9sG7Z2H8FdgK+C4xsJLZ+wKTC90n5XKmsoaysZE1gVWBcYfy/5fM1xxs9mJmZmTUhIt6UNBq4BiCvtz0R2Bl4PiKWSJoDKNf/D/ANSd2ArwLX54fFGoCREXFkC+P9V9KdwLdJSxzKTeXDD8gNzOcApgEDCnUHFo5nkhL1IRExpaKL78I8g2tmZmbWBEndSb/GLyWUPYD3SG82WF7Sz4GehfoHSlozIpYAc/PpxcAoYC9Ju0paTtLK+ZVk6zUy7EnAjhExsZGyq4CTJa0pqS9pDe2oXHYtcKikzSStCpxSapTjuRg4V9JaOdb+knZt7T3pCpzgmpmZmX1Yv9J7cEm/5u9DWvsKcBdwJ2lt7iTgLT68LODLwPO57W+Br0fEWxHRAOxNSl5n5DYn0EguFhFTI+Kh8vPZaaS1u88CzwFP5XNExJ3AecB9wEv5v0Un5vOP5fXF9/LB2uGaooioqOLQoUNj7Nix7RwODL8oraW+5qjt2n0ssy6t9JTwYbdXNw4zs87m0j3Q4XeMi4ih1Q7FqsNrcM26sunPtfg6HDOzujP92WpHYFXmBNesq9ria9WOwMzMrFNygmvWVQ09LH3MzOzDLt0DmFztKKyK/JCZmZmZmdUUJ7hmZmZmVlOc4JqZmVndkbSJpH9Kmi9piaSftfN4IySNarkmSBoj6Yj2jKfWOcE1MzOzevQjYExE9IiIbhHxS4C8+UJI+muxsqQt8/kxHRmkpEMlLS69l1fSq5IulbRxR8bR1TjBNTMzs3pU3O623Azgs3mL3ZJDSJs7VMOjEdEd6AXsQtpyd5ykzasUT6fnBNfMzMzqiqT7gC8AF+RZ0dGSTitUeQe4ibRFL5KWA/YDrizr57OSnpT0Zv7vZwtl60u6Py+BuAfoW9b2M5IekTRX0jOShrUUd0QsjoiXI+IY4H5gRCX95VngV3Isr0o6oFB2pKR/57Lxkj7VUhxdgRNcMzMzqy0t7PAYETsBDwLH5pnRdxqpdgVwcD7elTTbO7VUKKkPcDvwO2AN4Bzg9sKs72hgHCmx/SVpBrjUtn9uexppG+AfAjdIWrMVV/lXYIeW+pO0Wo5xt4joAXwWeDq325eUJB8M9AS+AsxqRQydlhNcMzMzszIR8QjQR9ImpATwirIqewD/iYiREfFeRFwFTAD2kjQQ2Br4WUS8HREPALcW2h4I3BERd0TEkoi4BxgL7N6KEKeSktlK+lsCbC5plYiYFhGlpRlHAL+OiCcjeSkiJrUihk7LCa6ZmZlZ40YCx5KWM9xYVtYPKE8GJwH9c9mciFhYVlYyCNg3LyeYK2kusD2wbiti6w/Mbqm/HMNw4GhgmqTbJW2a2w0AXm7FmF2GdzIzMzMza9xI4CXgioj4r6Ri2VRSYlk0EPgbMA1YXdJqhSR3IBD5uAEYGRFHLkNs/4+0zKLF/iLiLuAuSauQljFcTFre0ABssAwxdFqewTUzMzNrRES8CuwI/LSR4juAjSXtL2l5ScOBzYDb8q/5xwKnSlpR0vbAXoW2o0hLGXaVtJyklfPrydZrLp5cd31J5wPDgFNb6k/S2pK+ktfivg0sABbndn8Gfijp00o2lFSetHdJTnDNzMzMmhARD0XE1EbOzwL2BI4nPZj1I2DPiJiZq+wPbEtaRnAKhTW8EdEA7A2cRHolWQNwAk3nZdtJWgDMA8aQHgjbOiKeq6C/bjnGqTmWHYFjcrvrgNNJD8TNJ705orSut0tTRLRcCxg6dGiMHTu2ncOB4Rc9CsA1R23X7mOZmZlZbZI0LiKGVjsOqw7P4JqZmZlZTXGCa2ZmZmY1xQmumZmZmdUUJ7hmZmZmVlOc4JqZmZlVQNKFkn5W7TisZU5wzczMrO5ImihpkaT5efevRyQdLanJ3Cgijo6IX7ZjTEMk3S1pTo5pnKTWbN/bWJ9jJB3RVjF2FU5wzczMrF7tFRE9SDuSnQWcCFzSWEVJy3VAPLcC9wBrA2sB3yO9+9ZayQmumZmZ1bWIeDMibgGGA4dI2lzSZZL+KOkOSQuBL+RzpwFI+rekPUt95N3MZkr6VP7+mTwrPFfSM5KGNReDpL7A+sDFEfFO/jwcEQ/l8n9J2qtQf4U83lZ557JRkmbl8Z7MO5idTtqS9wJJCyRdkNtuKukeSbMlvSBpv0K/l0n6g6Q7c5uHJa0j6bw8szxB0ifb5Ma3o+WrHYBZRxv9+Gvc/PSUaodhZmadTEQ8IWkyKSmEtBvZ7qQdy1YEDixUvwr4BnBb/r4rMDMinpLUH7gdOAj4G7AzcIOkTSNiRhPDzwJeAkZJ+jPwaES8Xii/Io9/a/6+OzAtIp6WdBTQCxhA2o53K2BRRPxU0ueAURHxZ4C8Ze89wM+B3YBPAHdLej4ins9975ev53nSlsSPknZjO560PfA5wBeavZlV5hlcqzs3Pz2F8dP8Gx8zM2vUVD7YrvbmPIu6JCLeKqs3GviKpFXz9/3zOUiJ6B0RcUduew8wlpSUNirS1rJfACYCZwPTJD0gaaNcZRSwu6Se+ftBwMh8/C6wBrBhRCyOiHER0dQPuj2BiRFxaUS8FxFPATcAXyvUuTH38RZwI/BWRFwREYuBawDP4Jp1Rput29PbQZuZ1bBrj17qpv2B2fm4oalKEfGSpH8De0m6FfgKHyR+g4B9i0sKgBWAfzQ3cERMBo4FkDQA+BNp5na7iJgq6WHgfyTdSJp9/d/cdCRp9vZqSb1JyfBPI+LdRoYZBGwraW7h3PJ8kCwDFGeOFzXyvXtz19EZOME1MzMzAyRtTUpwHwK2BaKFJqVlCt2A8RHxUj7fAIyMiCOXNpaIaJD0+zxGyeXAEaT87dGImJLrvktaOnCqpMGkZQUvkB6YK7+GBuD+iPji0sbWFXiJgpmZmdU1ST3zA2NXk9arPldh06uBLwHf5oPlCZBmUPeStKuk5fJDYMMkrddMDKtLOlXShpK65YfODgceK1S7CfgUaeb2ikLbL0jaIr/pYR5pycLiXPw68LFCH7cBG0s6KD+otoKkrSV9vMJr7hKc4JqZmVm9ulXSfNKs5k9JD08dVmnjiJhGegDrs6S1qaXzDcDewEnAjNz/CTSfd70DDAbuJSWp/yI9MHZood9FpPWy6wN/LbRdB7g+t/s3cD8pyQb4LfC1/AaE30XEfFJS/nXSeuPpwK+AlSq97q7ASxTMzMys7kTE4BbKD63w3M5NtH8c2LEV8SwEDqmg6mukh8AWFNpexYeXMhT7fRTYuOzcC8AeTdQ/tOz7n4E/F76/RBfIHztlgOOnzWP4RY9WOwyrUeOnzWOzdXu2XNHMzKwTkdQH+CbpDQrWjE63RGHvrfo7+TAzM7OalDdPaOyzQwvtjiQtdbgzIh7omGi7rk43g7v/tgPZf9uB1Q7Daph/O2BmZtUSEUv1iq2IuBi4uI3DqVmdbgbXzMzMzGxZOME1MzMzs5riBNfMzMzqjqRNJP1T0nxJSyT9rNoxVUrSGElHVDuOzswJrpmZmdWjHwFjIqJHRHSLiF+WCiSdJOnV/PDXZEnXNNNPTcnJ81s58Z8naZykH0vqUu/JdYJrZmZm9WgQ8Hz5SUmHkF7DtUt+IGwo8PcOjq1dSKr05QLHRkQPYF3geNKmEHdIUrsF18Y63VsUzDqC37VsZla/JN1H2oRhe0nnAbcAr0TEycDWwF0R8TJAREwH/lRo24u049nuwBLgUuCUiFicy48EfgCsR3qt14ER8VTeCvePwFbAFOAnEXFLbnMZsJC0k9nngfHA/qUYJH0ROJ+UcI4E3k80JW1AervClkAAdwHfiYi5uXxiHvcAYBNJJwOfiYj/KfRxPrA4Io4r3qe8+cQYSV8BJpA2h7hNUjfSDPiRQG/SPwCOjojZklYmbQyxG7Ac8B9gz4h4Pb/H92xgV2AV4P6I2Kfp/1NLzzO4Vnf8rmUzs/oWETsBD5JmKruTtskteQw4WNIJkoZKWq6s+eXAe8CGwCdJ294eASBpX2AEcDDQE/gKMEvSCsCtwN3AWsB3gSslbVLo9xvAqcDqwEvA6bnPvqTteU8G+gIvA58rtBNwJtAP+DgwIMdQ9A1SctqbtIXvlyX1zv0vDwwnJc5N3a/XgLFA6V293wP2If0joR8wB/h9LjsE6JXjWAM4GliUy0YCqwJD8n04t6kxl5VncK3u+F3LZma179qjl65dRIySFMBhpETxLUn/FxFnSVqbNDPZOyIWAQslnQt8C7iIlOj+OiKezN29BJA3cegOnBURS4D7JN1GSjxH5Lp/jYgncv0rSbPEkGaKx0fE9bnsPNKygVK8L5XGAWZIOgc4peyyfhcRDfl4kaQHgH1JM79fBmZGxLgWbs1UoE8+Por0j4PJOaYRwGuSDgLeJSW2G0bEs8C4XGfdfO/WiIg5uZ/7WxhzqTnBNTMzMyuIiCtJM6wrkGYqr5T0T9JM5QrAtMJy1G6kpQiQZi1fbqTLfkBDTm5LJgH9C9+nF47/S0qI329biC0kvf9d0lrA70izqz1yPHP4sIay75cD3yYluAfSzOxtQX/gkXw8CLhRUvF6FgNr574GAFfnWeJRwE/zudmF5LZdeYmCmZmZWSMi4t2IuA54FticlCi+DfSNiN750zMihuQmDcAGjXQ1FRiQ166WDCStxW3JNFJyCEB+0GtAofxM0trbT0RET1LCWv4wWJR9vwn4hKTNgT2BK5sLQNIA4NOkZR2QrnO3wj3oHRErR8SUfM9OjYjNgM/m/g/ObfqUlka0Nye4ZmZmZpmkQyXtIamHpG6SdiOtGX08IqaR1tGeLalnLt9A0o65+Z+BH0r6tJINJQ0CHic9RPYjSStIGgbsBVxdQUi3A0MkfTWvl/0esE6hvAewAJgrqT9wQksdRsRbwPXAaOCJvMa2sXuxar62m4EngDty0YXA6fnakLSmpL3z8RckbZHXLs8jLVlYnO/dncAfJK2e78PnK7j+peIE18zMzOwD84CTgNeAucCvgW9HxEO5/GBgRdKbDuaQEsV1AfJs7+mkxHE+aaa0T0S8Q3rgbDdgJvAH4OCImNBSMBExk7Re9ixgFrAR8HChyqnAp4A3ScnwXyu8zsuBLWh8ecIFkuYDrwPnkR5y+3JhicVvSW+euDvXewzYNpetQ7on84B/k9bZjsplpTW6E4A3gOMqjLXVFFE+a924oUOHxtixY9srDjMzM7M2I2lcRAytdhydlaSBpERznYiYV+142ppncM3MzMzqSF4L/APg6lpMbqEVM7iSZpCe+GtMX9KUu3UM3++O43vdsXy/O5bvd8fy/e5Ym+TduKxA0mqkpQeTSMsOyt+wUBMqfk1YRKzZVJmksf41QMfx/e44vtcdy/e7Y/l+dyzf744lyesqG5F3J+veYsUuzksUzMzMzKymOME1MzMzs5rSVgnun9qoH6uM73fH8b3uWL7fHcv3u2P5fncs3+86VvFDZmZmZmZmXYGXKJiZmZlZTXGCa2ZmZmY1paIEV9KxksZKelvSZc3UO0TSOEnzJE2W9Ou8b7JVqNJ7net+X9J0SW9K+ouklToozJoiqY+kGyUtlDRJ0v5N1JOk0yRNyfd8jKQhHR1vV1fp/c51PybpNknzJc2U9OuOjLUWtOZ+F9rcJyn893frtOLvEv+sbAOt/LvEPy/rTKUzuFOB04C/tFBvVdK+wn1JexLvDPxwaYOrUxXda0m7Aj8m3ePBwMdI+1Fb6/0eeAdYGzgA+GMTieu+wOHADkAf4FEa38PbmlfR/Za0InAPcB9pb/P1+GA/c6tcpX++AZB0AK14R7p9SKX32j8r20alf5f452UdatVDZpJOA9aLiEMrrP8D4AsRsdfShVe/WrrXkkYDEyPipPx9Z+DKiFin46Ls+vKOLnOAzSPixXxuJDAlIn5cVvdE4NMRsV/+PgQYFxErd3DYXVYr7/e3gIMiYoeOj7Q2tOZ+57JewJPAwaR/wK0QEe91YMhdVmvvdVlb/6xspVb+XeKfl3Wovdfgfh54vp3HqFdDgGcK358B1pa0RpXi6ao2BhaX/oLMniHd33JXAxtK2ljSCsAhwN86IMZa0pr7/RlgoqQ78/KEMZK26JAoa0dr7jfAGcAfgentHVgNau29LvLPytZrzf32z8s61G6/hpJ0GDAUOKK9xqhz3YE3C99Lxz2AWR0fTpdVfh/J3xvbv3wa8CDwArAYaAB2atfoak9r7vd6wBeArwB/B/4XuFnSphHxTrtGWTsqvt+ShgKfI93n9do/tJrTmj/b7/PPyqXWmvvtn5d1qF1mcCXtA5wF7BYRM9tjDGMB0LPwvXQ8vwqxdGXl95H8vbH7eAqwNTAAWJm0hus+Sau2a4S1pTX3exHwUETcmRPa3wBrAB9v3xBrSkX3W1I34A/A/3pJwlJrzZ9twD8rl1Fr7rd/XtahNk9wJX0ZuBjYKyKea+v+7X3PA1sWvm8JvB4R/tdo67wILC9po8K5LWn814VbAtdExOSIeC8iLgNWBzZr/zBrRmvu97OAd6JZNpXe756kWcRrJE0nrcMFmCzJa6Ar05o/2/5Zuexac7/987IOVfqasOUlrQwsBywnaeXGXmkiaSfgSuB/IuKJtg21PlR6r4ErgG9K2kzS6sDJwGUdGGpNiIiFwF+BX0haTdLngL1p/O0ITwL7SlpbUjdJBwErAC91XMRdWyvv9yjgM5J2kbQc6anzmcC/Oyrerq4V9/tNoB+wVf7sns9/Gni8Q4Lt4lrzZ9s/K5ddK/8u8c/LehQRLX6AEaSZlOJnBDCQNPU/MNf7B/BePlf63FnJGP607l7nuj8AXgfmAZcCK1U7/q74Ib3y6yZgIfAasH8+X/7ne2XSa2mm5Xv+FPDlasff1T6V3u987qukf0DMA8YAQ6odf1f7tOZ+F9oMzn/3LF/t+LvSpxV/l/hnZQfe73zOPy/r7NOq14SZmZmZmXV23qrXzMzMzGqKE1wzMzMzqylOcM3MzMyspjjBNTMzM7Oa4gTXzMzMzGqKE1wzMzMzqylOcM3MzMyspjjBNTMzM7Oa4gTXzMzMzGrK/wczqoXzhNfM7gAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["cluster_columns(xs_imp)"]},{"cell_type":"markdown","metadata":{"id":"6ggopymb1945"},"source":["In this chart, the pairs of columns that are most similar are the ones that were merged together early, far from the \"root\" of the tree at the left. Unsurprisingly, the fields `ProductGroup` and `ProductGroupDesc` were merged quite early, as were `saleYear` and `saleElapsed` and `fiModelDesc` and `fiBaseModel`. These might be so closely correlated they are practically synonyms for each other.\n","\n","> note: Determining Similarity: The most similar pairs are found by calculating the _rank correlation_, which means that all the values are replaced with their _rank_ (i.e., first, second, third, etc. within the column), and then the _correlation_ is calculated. (Feel free to skip over this minor detail though, since it's not going to come up again in the book!)\n","\n","Let's try removing some of these closely related features to see if the model can be simplified without impacting the accuracy. First, we create a function that quickly trains a random forest and returns the OOB score, by using a lower `max_samples` and higher `min_samples_leaf`. The OOB score is a number returned by sklearn that ranges between 1.0 for a perfect model and 0.0 for a random model. (In statistics it's called *R^2*, although the details aren't important for this explanation.) We don't need it to be very accurate—we're just going to use it to compare different models, based on removing some of the possibly redundant columns:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pTPK5RVN1946"},"outputs":[],"source":["def get_oob(df):\n"," m = RandomForestRegressor(n_estimators=40, min_samples_leaf=15,\n"," max_samples=50000, max_features=0.5, n_jobs=-1, oob_score=True)\n"," m.fit(df, y)\n"," return m.oob_score_"]},{"cell_type":"markdown","metadata":{"id":"yZRrwHlN1946"},"source":["Here's our baseline:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"r5Sr2lez1946","outputId":"15c04c35-32f7-47df-ae93-3ae7536a1a5b"},"outputs":[{"data":{"text/plain":["0.8768243241012634"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["get_oob(xs_imp)"]},{"cell_type":"markdown","metadata":{"id":"5j4SXhVN1947"},"source":["Now we try removing each of our potentially redundant variables, one at a time:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6cuTBs251947","outputId":"c815b888-9097-442d-e327-7c4624b845c5"},"outputs":[{"data":{"text/plain":["{'saleYear': 0.8766429216799364,\n"," 'saleElapsed': 0.8725120463477113,\n"," 'ProductGroupDesc': 0.8773289113713139,\n"," 'ProductGroup': 0.8768277447901079,\n"," 'fiModelDesc': 0.8760365396140016,\n"," 'fiBaseModel': 0.8769194097714894,\n"," 'Hydraulics_Flow': 0.8775975083138958,\n"," 'Grouser_Tracks': 0.8780246481379101,\n"," 'Coupler_System': 0.8780158691125818}"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["{c:get_oob(xs_imp.drop(c, axis=1)) for c in (\n"," 'saleYear', 'saleElapsed', 'ProductGroupDesc','ProductGroup',\n"," 'fiModelDesc', 'fiBaseModel',\n"," 'Hydraulics_Flow','Grouser_Tracks', 'Coupler_System')}"]},{"cell_type":"markdown","metadata":{"id":"2uIj-dOc1947"},"source":["Now let's try dropping multiple variables. We'll drop one from each of the tightly aligned pairs we noticed earlier. Let's see what that does:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qSyZKST41948","outputId":"eef9bed0-07bc-40b6-967a-a33c6130b0f0"},"outputs":[{"data":{"text/plain":["0.8747772191306009"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["to_drop = ['saleYear', 'ProductGroupDesc', 'fiBaseModel', 'Grouser_Tracks']\n","get_oob(xs_imp.drop(to_drop, axis=1))"]},{"cell_type":"markdown","metadata":{"id":"vev-AukI1948"},"source":["Looking good! This is really not much worse than the model with all the fields. Let's create DataFrames without these columns, and save them:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OW4LmViN1949"},"outputs":[],"source":["xs_final = xs_imp.drop(to_drop, axis=1)\n","valid_xs_final = valid_xs_imp.drop(to_drop, axis=1)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aK88MKQm1949"},"outputs":[],"source":["save_pickle(path/'xs_final.pkl', xs_final)\n","save_pickle(path/'valid_xs_final.pkl', valid_xs_final)"]},{"cell_type":"markdown","metadata":{"id":"liUEet4K1949"},"source":["We can load them back later with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"A8fhKs_D1949"},"outputs":[],"source":["xs_final = load_pickle(path/'xs_final.pkl')\n","valid_xs_final = load_pickle(path/'valid_xs_final.pkl')"]},{"cell_type":"markdown","metadata":{"id":"gt0BpbmF194-"},"source":["Now we can check our RMSE again, to confirm that the accuracy hasn't substantially changed."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TcqloPvI194-","outputId":"666b086b-bbdb-43b6-ead0-eac6bb86274d"},"outputs":[{"data":{"text/plain":["(0.183426, 0.231894)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = rf(xs_final, y)\n","m_rmse(m, xs_final, y), m_rmse(m, valid_xs_final, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"vYbHgnt2194-"},"source":["By focusing on the most important variables, and removing some redundant ones, we've greatly simplified our model. Now, let's see how those variables affect our predictions using partial dependence plots."]},{"cell_type":"markdown","metadata":{"id":"SZFj1MqA194_"},"source":["### Partial Dependence"]},{"cell_type":"markdown","metadata":{"id":"rMmtVghm194_"},"source":["As we've seen, the two most important predictors are `ProductSize` and `YearMade`. We'd like to understand the relationship between these predictors and sale price. It's a good idea to first check the count of values per category (provided by the Pandas `value_counts` method), to see how common each category is:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e5H3Jy17194_","outputId":"a0b9d42b-59e3-44fb-d578-7303dc4f10b2"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAcYAAAD7CAYAAADw8TTuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAZ5UlEQVR4nO3da5gmZX3n8e+PAUfGgeEYgQFm5KgiAcMo6prIJqDxkJXoolGjEDVooi92xRg0UWeJaGCzOuYyRkmyIBDPgquixmQjHlCSNGgE5BAVkLOcphmYAWX874uqXm7a7p6e6cPz9PD9XNdz8VTdVXf9n5ue/vVdVd2VqkKSJHW2GXQBkiQNE4NRkqSGwShJUsNglCSpYTBKktTYdtAFaPPstttutXLlykGXIUkLyiWXXHJHVe0+nW0NxgVm5cqVjIyMDLoMSVpQklw/3W09lSpJUsNglCSpYTBKktQwGCVJahiMkiQ1DEZJkhr+usYCc9lNo6w8+YJBl6Fpuu7Pnz/oEiRtJmeMkiQ1DEZJkhoGoyRJDYNRkqTGVhOMSV6eZCTJvUluSfKlJM8cdF3TkeS6JEcPug5J0lYSjEneBKwB3g08FtgX+CDwwgGWJUlagBZ8MCZZBpwCvKGqzquq+6rqZ1X1+ar6oySLk6xJcnP/WpNkcb/vUUluTPKWJD/pZ5rHJnlekmuS3JXkbc2xVif5dJJPJFmX5NIkhzXtJyf5Yd/2/SS/Pa7W309yZdP+K0nOoQvyz/ez3bfMz8hJkiay4IMReDrwaOD8Sdr/BHgacDhwGPBU4E+b9j36/ZcD7wD+Bvhd4AjgV4F3JNmv2f6FwKeAXYCPAp9Nsl3f9sN+n2XA/wDOTbInQJLjgNXAq4Adgf8C3FlVrwR+DPxWVS2tqtPHf4AkJ/aniUc2rh+d3qhIkrbI1hCMuwJ3VNWDk7S/Ajilqn5SVbfTBdYrm/afAadW1c+AjwO7Ae+vqnVVdQVwBfDLzfaXVNWn++3fSxeqTwOoqk9V1c1V9fOq+gTwH3RBDPBa4PSq+rfq/KCqpvV8sKo6o6pWVdWqRUuWTWcXSdIW2hqC8U5gtyST/RWfvYA2gK7v1/3//atqY/9+Q//f25r2DcDSZvmGsTdV9XPgxrH+krwqyXeTrE2yFngSXdAC7EM3o5QkDbGtIRi/DdwPHDtJ+83AimZ5337dltpn7E2SbYC9gZuTrKA7DftGYNeq2gm4HEi/+Q3A/pP0WTOoR5I0ixZ8MFbVKN21wb/qb5xZkmS7JM9NcjrwMeBPk+yeZLd+23NncMgjkryon6H+N+AB4GLgMXQBdztAkt+jmzGO+VvgzUmOSOeAPkyhm6G21zElSQOy4IMRoKreC7yJ7qaa2+lmZ28EPgu8CxgBvgdcBlzar9tS/wd4KXA33bXKF/V3wX4f+F90M9jbgEOBi5oaPwWcSnfDzrq+tl365vfQhffaJG+eQW2SpBlKlWfxpivJauCAqvrdQdWweM8Da8/j1wzq8NpMPl1DGg5JLqmqVdPZdquYMUqSNFt8HuMCc+jyZYw4C5GkOWMwboaqWj3oGiRJc8tTqZIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDp2ssMJfdNMrKky+YchsfjitJW84ZoyRJDYNRkqSGwShJUsNgnCNJPpTk7bO9rSRpbnnzzRZIch2wF7BXVd3RrP8ucBjwuKp6/XT725xtJUlzyxnjlrsWeNnYQpJDge0HV44kaTYYjFvuHOBVzfLxwNljC0nOSvKu/v1RSW5MclKSnyS5JcnvTbStJGmwDMYtdzGwY5InJFkEvBQ4d4rt9wCWAcuB1wB/lWTn6RwoyYlJRpKMbFw/OtO6JUlTMBhnZmzWeAxwFXDTFNv+DDilqn5WVV8E7gUOns5BquqMqlpVVasWLVk205olSVPw5puZOQf4OvA4mtOok7izqh5sltcDS+eqMEnSlnHGOANVdT3dTTjPA84bcDmSpFngjHHmXgPsXFX3JXE8JWmB8xv5DFXVDwddgyRp9hiMW6CqVk6y/kEg/eIJzfoLgb0n66OqTkCSNBS8xihJUsMZ4wJz6PJljPi8RUmaM84YJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw8dOLTCX3TTKypMvGHQZAq7z8V/SVskZoyRJDYNRkqSGwShJUsNgHJAkK5NUkm375QuTvHbQdUnSI53BOIEkz0zyrSSjSe5KclGSpwy6LknS3POu1HGS7Ah8AfgD4JPAo4BfBR4YZF2SpPnhjPEXHQRQVR+rqo1VtaGqvlJV30tyQj97fF+StUl+lOQZ/fobkvwkyfFjHSV5fpLvJLmnb189sE8lSZoWg/EXXQNsTPKRJM9NsvO49iOB7wG7Ah8FPg48BTgA+F3gA0mW9tveB7wK2Al4PvAHSY7d3IKSnJhkJMnIxvWjW/CRJEnTZTCOU1X3AM8ECvgb4PYkn0vy2H6Ta6vqzKraCHwC2Ac4paoeqKqvAD+lC0mq6sKquqyqfl5V3wM+BjxrC2o6o6pWVdWqRUuWzfxDSpImZTBOoKqurKoTqmpv4EnAXsCavvm2ZtMN/fbj1y0FSHJkkq8muT3JKPB6YLe5rl+StOUMxk2oqquAs+gCcnN9FPgcsE9VLQM+BGT2qpMkzTaDcZwkj09yUpK9++V9gJcBF29BdzsAd1XV/UmeCrx8FkuVJM0Bg/EXraO7weZfktxHF4iXAydtQV9/CJySZB3wDrpf/5AkDbFU1aBr0GZYvOeBtefxawZdhvDpGtJCkuSSqlo1nW2dMUqS1PAv3ywwhy5fxogzFUmaM84YJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw8dOLTCX3TTKypMvGHQZs8IH/UoaRs4YJUlqGIySJDUMRkmSGgbjZkhSSQ7o338oydsHXZMkaXZttTffJLkO2AvYq6ruaNZ/FzgMeFxVXbel/VfV62dYoiRpCG3tM8ZrgZeNLSQ5FNh+cOVIkobd1h6M5wCvapaPB84eW0iyOMlfJPlxktv606PbN+1/lOSWJDcneXXbcZKzkryrf39Ckm+Oa29Pu56V5INJvpTk3iQXJdkjyZokdye5KsmT5+DzS5I209YejBcDOyZ5QpJFwEuBc5v204CDgMOBA4DlwDsAkvwm8GbgGOBA4OgZ1vIS4E+B3YAHgG8Dl/bLnwbeO9mOSU5MMpJkZOP60RmWIUmaytYejPDQrPEY4Crgpn59gN8H/ntV3VVV64B3A7/Tt78EOLOqLq+q+4DVM6zj/Kq6pKruB84H7q+qs6tqI/AJYNIZY1WdUVWrqmrVoiXLZliGJGkqW+3NN41zgK8Dj6M5jQrsDiwBLkkyti7Aov79XsAlzfbXz7CO25r3GyZYXjrD/iVJs2CrD8aquj7JtcDzgNc0TXfQBdIhVXXTBLveAuzTLO87xWHuowtZAJLsseUVS5IG6ZFwKhW6QPz1/pTomJ8DfwO8L8kvASRZnuQ5ffsngROSPDHJEuCdU/T/78AhSQ5P8mhmftpVkjQgj4hgrKofVtXIBE1/DPwAuDjJPcA/AQf3+3wJWAP8c7/NP0/R/zXAKf3+/wF8c7JtJUnDLVU16Bq0GRbveWDtefyaQZcxK3y6hqT5kuSSqlo1nW0fETNGSZKma6u/+WZrc+jyZYw405KkOeOMUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkhsEoSVLDYJQkqWEwSpLUMBglSWoYjJIkNXzs1AJz2U2jrDz5gjnp2wcHS5IzRkmSHsZglCSpYTBKktQwGDdDkhOSfLNZvjfJfoOsSZI0uzYZjEmuS3L0fBSzuZK8PMlHJ1h/VJJKct649Yf16y+cjeNX1dKq+tFs9CVJGg7zMmNMZy6O9Tzgi5O03Q48I8muzbrjgWvmoA5J0lZii8Mqyc5JvpDk9iR39+/3btovTHJqkouA9cB+SZ6d5Ooko0k+mORrSV7b7PPqJFf2/f1DkhVTHH8b4Bjgy5Ns8lPgs8Dv9NsvAl4C/P24fh6f5B+T3NXX9pKmbdckn0tyT5J/BfYft28lOaD5vO1nGX/atZL8YZL/SLIuyZ8l2T/Jt/v+P5nkUZN9XknS/JjJLG4b4ExgBbAvsAH4wLhtXgmcCOwAjAKfBt4K7ApcDTxjbMMkxwJvA14E7A58A/jYFMd/KvCjqrpjim3OBl7Vv38OcAVwc3PMxwD/CHwU+CXgZcAHkxzSb/JXwP3AnsCr+9dM/CZwBPA04C3AGcArgH2AJ/XH/wVJTkwykmRk4/rRGZYgSZrKFgdjVd1ZVZ+pqvVVtQ44FXjWuM3OqqorqupB4LnAFVV1Xr/8l8CtzbavA95TVVf27e8GDp9i1vh8Jj+NOlbjt4BdkhxMF5Bnj9vkBcB1VXVmVT1YVZcCnwH+az/DfDHwjqq6r6ouBz4y5aBs2mlVdU9VXQFcDnylqn5UVaPAl4AnT/I5zqiqVVW1atGSZTMsQZI0lZmcSl2S5MNJrk9yD/B1YKc+UMbc0Lzfq12uqgJubNpXAO9PsjbJWuAuIMDySUqY6vpi6xzgjcB/Bs4f17YCOHLsmP1xXwHsQTdr3XbcZ7h+Gsebym3N+w0TLC+dYf+SpBmayZ+EOwk4GDiyqm5NcjjwHbowG1PN+1uA9hpk2mW6ADq1qh52DXAiSfagO7156TTqPAf4AXB2Va3vDvuwY36tqo6Z4BiLgAfpTnNe1a/ed4rj3AcsaZb3mEZtkqQhM90Z43ZJHt28tqW7brgBWJtkF+Cdm+jjAuDQJMf2+7+Bh4fHh4C3jl3fS7IsyXGT9PU84Mv9rHNKVXUt3SneP5mg+QvAQUlemWS7/vWUJE+oqo3AecDqfnb8RLq7WifzXeBF/bYHAK/ZVG2SpOEz3WD8Il0Ijr1WA2uA7YE7gIuZ/O5QAPqbZI4DTgfuBJ4IjAAP9O3nA6cBH+9PzV5Od11yItM9jTp27G9W1c0TrF8HPJvuztWb6a55ngYs7jd5I93pzVuBs+huNprM++juhL2N7lrkJme+kqThk2lMuubmwN2vW9wIvKKqvroZ+21LF1T79zetPKIs3vPA2vP4NXPSt0/XkLS1SnJJVa2azrbz+ifhkjwnyU5JFtP9akboZpubYxfg7Y/EUJQkzb35fh7j0+l+Z/BRwPeBY6tqw+Z0UFU/Af56DmpbEA5dvowRZ3aSNGfmNRirajXd9UlJkoaST9eQJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGvP92CnN0GU3jbLy5AsGXcaEfNCxpK2BM0ZJkhoGoyRJDYNRkqSGwShJUsNgHCfJdUmOHnQdkqTBMBhnWTqOqyQtUH4Dn4YkOyf5QpLbk9zdv9+7ab8wyalJLgLWA/sleXaSq5OMJvlgkq8leW2zz6uTXNn39w9JVgzis0mSHs5gnJ5tgDOBFcC+wAbgA+O2eSVwIrADMAp8GngrsCtwNfCMsQ2THAu8DXgRsDvwDeBjkx08yYlJRpKMbFw/OjufSJI0IYNxGqrqzqr6TFWtr6p1wKnAs8ZtdlZVXVFVDwLPBa6oqvP65b8Ebm22fR3wnqq6sm9/N3D4ZLPGqjqjqlZV1apFS5bN+ueTJD3EYJyGJEuSfDjJ9UnuAb4O7JRkUbPZDc37vdrlqirgxqZ9BfD+JGuTrAXuAgIsn6vPIEmaHoNxek4CDgaOrKodgV/r16fZppr3twDtNci0y3Sh+bqq2ql5bV9V35qb8iVJ02UwTmy7JI8eewE7011XXJtkF+Cdm9j/AuDQJMcm2RZ4A7BH0/4h4K1JDgFIsizJcbP/MSRJm8tgnNgX6YJw7LUTsD1wB3Ax8OWpdq6qO4DjgNOBO4EnAiPAA337+cBpwMf7U7OX012XlCQNmE/XGKeqVk5z0w83+xw1QT9fBg4C6H+v8Uaa64xVdQ5wzgxKlSTNAWeMcyTJc5LslGQx3a9mhG62KUkaYs4Y587TgY8CjwK+DxxbVRtm2umhy5cx4nMPJWnOGIxzpKpWA6sHXIYkaTN5KlWSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDUMRkmSGgajJEkNg1GSpIbBKElSw2CUJKlhMEqS1DAYJUlqGIySJDV87NQCc9lNo6w8+YJBlyFJ8+q6eXwOrTNGSZIaBqMkSQ2DUZKkhsE4hST/muTAJPsluXQO+v9kkmOSLE5y62z3L0nafAbjJJJsB6wAfgAcAcx6MDb9/jJw+Rz0L0naTAbj5J4EfL+qClhFE4xJrkvy5iTfSzKa5BNJHt237ZzkC0luT3J3/37v8Z0n2RlIVd05vn9J0uAYjOMk+b0ka4GLgKf3708CTkuyNsnj+k1fAvwm8Di6Gd8J/fptgDPpZpv7AhuADzT9/0bf5w3A3v379wNv6Pt/1gQ1nZhkJMnIxvWjs/uBJUkPYzCOU1VnVtVOwCXA03joNOeOVbVTVV3bb/qXVXVzVd0FfB44vN//zqr6TFWtr6p1wKnAs5r+/2/f/2eB44DlwHXA7n3/X5ugpjOqalVVrVq0ZNlcfGxJUs9f8G8k2QX4ERBgKXAhsLhvvjvJ6qpa0y+3N8usB/bq+1gCvI9uNrlz375DkkVVtTHJjX3fOwAvALaj+/9wc5L/XVVvmqOPJ0maBmeMjaq6q5/NvQ742/79l4Hf6mdza6bRzUnAwcCRVbUj8Gv9+vTH2JsuNP+p7/8M4A19/4aiJA2YwTix9i7UJ9OdVp2uHeiuK67tZ6Dv3ET/vwKMbGGdkqRZZjBO7Ajg0iS7Ahur6u7N2HcNsD1wB3Ax3Yxzsv4DPB64YmblSpJmi9cYJ1BVv94s7j9B+8pxy6ub9zcDR43b5cPjtn91s/jYLSxTkjQHnDFKktRwxrjAHLp8GSPz+PgVSXqkccYoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSY10z+HVQpFkHXD1oOuYwm50fw5vmFnjzA17fTD8NQ57fTD8NW5OfSuqavfpbOgv+C88V1fVqkEXMZkkI8NcH1jjbBj2+mD4axz2+mD4a5yr+jyVKklSw2CUJKlhMC48Zwy6gE0Y9vrAGmfDsNcHw1/jsNcHw1/jnNTnzTeSJDWcMUqS1DAYJUlqGIySJDUMxgUiyS5Jzk9yX5Lrk7x8ADVcmOT+JPf2r6ubtt9IclWS9Um+mmRF05YkpyW5s3+dniSzUM8bk4wkeSDJWePatrieJCv7fdb3fRw92zX2x6hmLO9N8vb5rjHJ4iR/139NrUvynSTPbdoHOo5T1TcsY9j3dW6SW5Lck+SaJK9t2gb+tThZfcM0hk2fB6b7PnNus25+x7CqfC2AF/Ax4BPAUuCZwChwyDzXcCHw2gnW79bXcxzwaOB/Ahc37a+j+2s9ewPLge8Dr5+Fel4EHAv8NXDWbNUDfBt4L7A98GJgLbD7LNe4Eihg20n2m5cagccAq/t6tgFeAKzrlwc+jpuobyjGsO/rEGBx//7xwK3AEcMwhpuob2jGsOnzK8A3gHMH9e95Rt+YfM3Pq//m8FPgoGbdOcCfz3MdFzJxMJ4IfGtcvRuAx/fL3wJObNpf035hz0Jd7+LhobPF9QAHAQ8AOzTt32CGQT5BjZv6hjTvNTZ9fa//BjJ04ziuvqEcQ+Bg4BbgJcM4huPqG6oxBH4H+CTdD0NjwTjvY+ip1IXhIGBjVV3TrPt3up8C59t7ktyR5KIkR/XrDunrAaCq7gN+yEP1Paydua99JvUcAvyoqtZN0j7brk9yY5Izk+zWrB9IjUkeS/f1dsX4GoZhHMfVN2YoxjDJB5OsB66iC54vjq9hkGM4SX1jBj6GSXYETgFOGtc072NoMC4MS+lOJbRGgR3muY4/BvajO11xBvD5JPuz6frGt48CS9vrALNsJvXM11jfATwFWEF3SmsH4O+b9nmvMcl2fQ0fqaqrpnGcea1xgvqGagyr6g/7/X8VOI9upjI0YzhJfcM0hn8G/F1V3TBu/byPocG4MNwL7Dhu3Y5011rmTVX9S1Wtq6oHquojwEXA86ZR3/j2HYF7qz+vMQdmUs+8jHVV3VtVI1X1YFXdBrwReHb/U/O815hkG7rT8z/ta5mohvHHmbcaJ6pv2Mawr2ljVX2T7nrXH0zjOPNa4/j6hmUMkxwOHA28b4LmeR9Dg3FhuAbYNsmBzbrDePjppEEoIH0dh42tTPIYYH8equ9h7cx97TOp5wpgvyQ7TNI+V8Z+SBibRc9bjf1P1n8HPBZ4cVX9bKIaBjWOU9Q33sDGcALb8tBYDXwMp6hvvEGN4VF01zt/nORW4M3Ai5NcOr6GeRnDmVzE9TV/L+DjdHemPgb4T8zzXanATsBz6O4K2xZ4BXAf3YX83ft6Xty3n8bD7xp7PXAl3SnYvfovytm4yWHb/njvoZtNjNU2o3qAi4G/6Pf9bWZ2t+JkNR7Zj902wK50dxx/dUA1fqjvb+m49UMxjlPUNxRjCPwS3U0jS4FFdP9O7gNeOAxjuIn6hmUMlwB7NK+/AD7dj9+8j+GcfBP1NfsvYBfgs/0X9I+Bl8/z8XcH/o3uFMTa/ovtmKb9aLqL+hvo7l5d2bQFOB24q3+dTv93emdY02q6n3Db1+qZ1kP3k+uF/b5XA0fPdo3Ay4Br+/+ftwBnA3vMd41015YKuJ/utNPY6xXDMI5T1TdEY7g78DW6fxf3AJcBvz8b/zZmaQwnrW9YxnCSfzfnDmoM/SPikiQ1vMYoSVLDYJQkqWEwSpLUMBglSWoYjJIkNQxGSZIaBqMkSQ2DUZKkxv8DzRDGVrGXmiIAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["p = valid_xs_final['ProductSize'].value_counts(sort=False).plot.barh()\n","c = to.classes['ProductSize']\n","plt.yticks(range(len(c)), c);"]},{"cell_type":"markdown","metadata":{"id":"k6_hi8Y1195A"},"source":["The largrest group is `#na#`, which is the label fastai applies to missing values.\n","\n","Let's do the same thing for `YearMade`. Since this is a numeric feature, we'll need to draw a histogram, which groups the year values into a few discrete bins:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dLSuLxCA195A","outputId":"14d4c025-1426-4801-94ec-235adc373d02"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYIAAAD7CAYAAABnoJM0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAXhElEQVR4nO3df5BdZX3H8fcHQk3MZrEQ3DZpZRsKhoEkFlbtj2m5FKpVsAWW6cTGlkzrbGonTjtsoUwRknYoSqY7napUyIBGlAaUgK1ibbXNnWpVpmEgxG0XpkKCRKEQMeQmIZj67R/nueVw2c3e3b13b26ez2vmzN57vuc89zzP/vjc8+OeVURgZmb5Oq7TG2BmZp3lIDAzy5yDwMwscw4CM7PMOQjMzDI3p9MbMB0LFy6M/v7+Gbezf/9+5s+fP/MN6mIeA49B7v2HfMbgwQcffC4iTmmc35VB0N/fz7Zt22bcTrVapVKpzHyDupjHwGOQe/8hnzGQtGu8+T40ZGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWua78ZLGZWSf1X3N/R15354cuaku73iMwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHNNBYGkT0v6nqQXJD0m6b2l2gWSxiQdkLRV0qmlmiTdJGlPmjZIUqnen9Y5kNq4sLXdMzOzyTS7R/BBoD8ieoHfAG6QdK6khcC9wHXAScA24O7SekPAJcAKYDlwMbCmVN8MPAScDFwL3CPplGn3xszMpqypIIiI0Yg4VH+aptOAy4DRiPhsRLwIrAdWSFqalr0CGImIpyJiNzACrAaQdAZwDrAuIg5GxBZgBzDYkp6ZmVlTmv4PZZL+luKP+DyKd/FfBP4S2F5fJiL2S/o2cBYwlr5uLzWzPc0jfX08IvZNUG98/SGKPQz6+vqoVqvNbvqEarVaS9rpZh4Dj0Hu/Yepj8HwssPt25gjaNf3qekgiIg/lPR+4BeACnAI6AGebVh0L7AgPe5Jz8u1nnSeoLFWry+e4PU3AhsBBgYGolKpNLvpE6pWq7SinW7mMfAY5N5/mPoYrO7Uv6pcVWlLu1O6aigi/jcivgb8FPA+oAb0NizWC9Tf5TfWe4FaREQT65qZ2SyY7uWjcyjOEYxSnAgGQNL80nwa6+lxubZE0oIJ6mZmNgsmDQJJr5e0UlKPpOMlvR14N/CvwH3A2ZIGJc0FrgceiYixtPodwJWSFktaBAwDmwAi4jHgYWCdpLmSLqW4smhLa7toZmZH0sw5gqA4DHQLRXDsAv44Iv4eQNIg8FHg08ADwMrSurcCSyiuBgK4Lc2rW0kRDM8DTwKXR0TjOQczM2ujSYMg/WE+7wj1rwBLJ6gFcHWaxqvvpDjxbGZmHeJbTJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmmv7HNGZmR5P+Fv5zmOFlhzv2z2aOBt4jMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMucgMDPL3KRBIOk1km6XtEvSPkkPSXpHqvVLCkm10nRdaV1JuknSnjRtkKRSvV/SVkkHJI1JurA93TQzs4k0c4uJOcB3gPOAJ4F3Ap+RtKy0zOsi4vA46w4BlwArgAC+DDwO3JLqm4FvpDbfCdwj6fSIeHbqXTEzs+mYdI8gIvZHxPqI2BkRP4qILwBPAOc20f4VwEhEPBURu4ERYDWApDOAc4B1EXEwIrYAO4DBafbFzMymQRExtRWkPmAX8CbgRYpQ+C4vv+O/KiKeS8vuBd4WEQ+k5wPA1ohYIOlS4MaIOLPU9keBiIj3j/O6QxR7GPT19Z171113TbGrr1ar1ejp6ZlxO93MY+Ax6Nb+79i9t2Vt9c2DZw62rLm2Wbb4xBmtf/755z8YEQON86d091FJJwB3Ap+MiDFJPcCbgYeBk4GbU/3taZUeoPzd2gv0pPMEjbV6ffF4rx0RG4GNAAMDA1GpVKay6eOqVqu0op1u5jHwGHRr/1t5t9DhZYcZ2XH034x556pKW9ptuueSjgM+BbwErAWIiBqwLS3yjKS1wPck9UbEC0AN6C010wvUIiIkNdbq9X3T6omZmU1LU5ePpnfwtwN9wGBE/HCCRevHmepXBo1SnCiuW5Hm1WtLJC2YoG5mZrOg2c8RfAw4E3hXRPz/kTRJb5X0RknHSToZ+DBQjYj6IZ87gCslLZa0CBgGNgFExGMUh5TWSZqbzhksB7a0oF9mZtakSQ8NSToVWAMcAp4ufQxgDfAj4Ebg9cALFCeL311a/VZgCcXVQAC3pXl1KymC4XmKS1Mv96WjZmaza9IgiIhdvHyoZzybj7BuAFenabz6TqAy2TaYmVn7+BYTZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWXOQWBmljkHgZlZ5hwEZmaZcxCYmWVu0iCQ9BpJt0vaJWmfpIckvaNUv0DSmKQDkrZKOrVUk6SbJO1J0wZJKtX70zoHUhsXtr6LZmZ2JM3sEcwBvgOcB5wIXAd8Jv0RXwjcm+adBGwD7i6tOwRcAqwAlgMXA2tK9c3AQ8DJwLXAPZJOmUF/zMxsiiYNgojYHxHrI2JnRPwoIr4APAGcC1wGjEbEZyPiRWA9sELS0rT6FcBIRDwVEbuBEWA1gKQzgHOAdRFxMCK2ADuAwdZ20czMjmTOVFeQ1AecAYwC7wO212sRsV/St4GzgLH0dXtp9e1pHunr4xGxb4J64+sOUexh0NfXR7Vaneqmv0qtVmtJO93MY+Ax6Nb+Dy873LK2+ua1tr12adf3aUpBIOkE4E7gkxExJqkHeLZhsb3AgvS4Jz0v13rSeYLGWr2+eLzXjoiNwEaAgYGBqFQqU9n0cVWrVVrRTjfzGHgMurX/q6+5v2VtDS87zMiOKb8vnnU7V1Xa0m7TVw1JOg74FPASsDbNrgG9DYv2AvsmqPcCtYiIJtY1M7NZ0FQQpHfwtwN9wGBE/DCVRilOBNeXmw+clua/qp4el2tLJC2YoG5mZrOg2T2CjwFnAu+KiIOl+fcBZ0salDQXuB54JCLGUv0O4EpJiyUtAoaBTQAR8RjwMLBO0lxJl1JcWbRlhn0yM7MpmPSgWPpcwBrgEPB06WMAayLiTkmDwEeBTwMPACtLq98KLKG4GgjgtjSvbiVFMDwPPAlcHhGN5xzMzKyNJg2CiNgF6Aj1rwBLJ6gFcHWaxqvvBCpNbKeZmbWJbzFhZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpa5poJA0lpJ2yQdkrSpNL9fUkiqlabrSnVJuknSnjRtkKSG9bdKOiBpTNKFLe2dmZlNak6Ty30XuAF4OzBvnPrrIuLwOPOHgEuAFUAAXwYeB25J9c3AN4B3pukeSadHxLPNdsDMzGamqT2CiLg3Ij4H7Jli+1cAIxHxVETsBkaA1QCSzgDOAdZFxMGI2ALsAAan+BpmZjYDze4RTGaXpPo7/qsi4rk0/yxge2m57WlevfZ4ROyboP4KkoYo9jDo6+ujWq3OeKNrtVpL2ulmHgOPQbf2f3jZeAchpqdvXmvba5d2fZ9mGgTPAW8GHgZOBm4G7qQ4hATQA+wtLb8X6EnnCRpr9fri8V4oIjYCGwEGBgaiUqnMcNOLQW1FO93MY+Ax6Nb+r77m/pa1NbzsMCM7WvW+uH12rqq0pd0Z9TwiasC29PQZSWuB70nqjYgXgBrQW1qlF6hFREhqrNXr+zAzs1nT6stHI32tXxk0SnGiuG5FmlevLZG0YIK6mZnNgmYvH50jaS5wPHC8pLlp3lslvVHScZJOBj4MVCOifsjnDuBKSYslLQKGgU0AEfEYxSGldam9S4HlwJZWdtDMzI6s2UNDHwDWlZ6/B/hz4FHgRuD1wAsUJ4vfXVruVmAJxdVAALeleXUrKYLheeBJ4HJfOmpmNruaCoKIWA+sn6C8+QjrBXB1msar7wQqzWyDmZm1h28xYWaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmHARmZplzEJiZZc5BYGaWOQeBmVnmmgoCSWslbZN0SNKmhtoFksYkHZC0VdKppZok3SRpT5o2SFKp3p/WOZDauLBlPTMzs6Y0u0fwXeAG4OPlmZIWAvcC1wEnAduAu0uLDAGXACuA5cDFwJpSfTPwEHAycC1wj6RTptoJMzObvqaCICLujYjPAXsaSpcBoxHx2Yh4EVgPrJC0NNWvAEYi4qmI2A2MAKsBJJ0BnAOsi4iDEbEF2AEMzqxLZmY2FXNmuP5ZwPb6k4jYL+nbaf5YYz09Pqu07uMRsW+C+itIGqLYw6Cvr49qtTrDTYdardaSdrqZx8Bj0K39H152uGVt9c1rbXvt0q7v00yDoAd4tmHeXmBBqb63odaTzhM01ur1xeO9UERsBDYCDAwMRKVSmdGGQzGorWinm3kMPAbd2v/V19zfsraGlx1mZMdM/xy2385Vlba0O9OrhmpAb8O8XmDfBPVeoBYR0cS6ZmY2C2YaBKMUJ4IBkDQfOC3Nf1U9PS7XlkhaMEHdzMxmQbOXj86RNBc4Hjhe0lxJc4D7gLMlDab69cAjETGWVr0DuFLSYkmLgGFgE0BEPAY8DKxL7V1KcWXRltZ1z8zMJtPsHsEHgIPANcB70uMPRMSzFFf5/CXwPPBWYGVpvVuBz1NcDfQt4P40r24lMJDW/RBweWrTzMxmSVNnRyJiPcWloePVvgIsnaAWwNVpGq++E6g0sw1mZtYevsWEmVnmHARmZplzEJiZZe7o/wSFmR3V+lv4wS7rDO8RmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5Xz5qbdPJywp3fuiijr22WbfxHoGZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmWtJEEiqSnpRUi1Nj5ZqF0gak3RA0lZJp5ZqknSTpD1p2iBJrdgmMzNrTiv3CNZGRE+a3gggaSFwL3AdcBKwDbi7tM4QcAmwAlgOXAysaeE2mZnZJNp9aOgyYDQiPhsRLwLrgRWSlqb6FcBIRDwVEbuBEWB1m7fJzMxKFBEzb0SqAmcBAh4Fro2IqqS/AX4sIt5XWvZbwLqI2CJpL/C2iHgg1QaArRGxYJzXGKLYg6Cvr+/cu+66a8bbXavV6OnpmXE73aydY7Bj9962tNuMZYtPbHrZ3H8OZtr/Tn6fW6VvHjxzsNNbMbmp/FyP5/zzz38wIgYa57fqNtR/Cvwn8BKwEvi8pDcBPcCzDcvuBep/6HvS83KtR5KiIaEiYiOwEWBgYCAqlcqMN7pardKKdrpZO8dgdSdvQ72q0vSyuf8czLT/nfw+t8rwssOM7Dj678o/lZ/rqWjJoaGIeCAi9kXEoYj4JPDvwDuBGtDbsHgvsC89bqz3ArXGEDAzs/Zp1zmCoDhMNEpxIhgASfOB09J8Guvp8ShmZjZrZhwEkl4n6e2S5kqaI2kV8CvAPwH3AWdLGpQ0F7geeCQixtLqdwBXSlosaREwDGya6TaZmVnzWnFQ7ATgBmAp8L/AGHBJRDwKIGkQ+CjwaeABinMIdbcCS4Ad6fltaZ6Zmc2SGQdBRDwLvPkI9a9QhMR4tQCuTpOZmXWAbzFhZpY5B4GZWeYcBGZmmXMQmJllzkFgZpY5B4GZWeYcBGZmmXMQmJllzkFgZpa5o/++q2bWlP5p3g56eNnhY+JW0jZ93iMwM8ucg8DMLHMOAjOzzDkIzMwy5yAwM8ucg8DMLHO+fNSshaZ7CadZJ3mPwMwscw4CM7PMOQjMzDLnIDAzy5yDwMwscx0PAkknSbpP0n5JuyT9dqe3ycwsJ0fD5aM3Ay8BfcCbgPslbY+I0Y5ulZlZJjoaBJLmA4PA2RFRA74m6R+A3wGuacdrlq/zns3b7+780EWz8jpWmMr1/L4Ns+VOEdG5F5d+Dvh6RMwrzfsT4LyIeFfDskPAUHr6RuDRFmzCQuC5FrTTzTwGHoPc+w/5jMGpEXFK48xOHxrqAfY2zNsLLGhcMCI2Ahtb+eKStkXEQCvb7DYeA49B7v0Hj0GnTxbXgN6Geb3Avg5si5lZljodBI8BcySdXpq3AvCJYjOzWdLRIIiI/cC9wF9Imi/pl4DfBD41S5vQ0kNNXcpj4DHIvf+Q+Rh09GQxFJ8jAD4O/BqwB7gmIv6uoxtlZpaRjgeBmZl1VqfPEZiZWYc5CMzMMndMBIGktZK2STokaVND7b2S/ltSTdKXJC0q1a6S9C1J+yQ9IemqhnX7JW2VdEDSmKQLZ6lLUzbdMSgt82Opj081zM9iDCSdI+nfUv0ZSX9Uqh3zYyDpNZJuSX3/vqTPS1pcqnfFGKR+3J7uW7ZP0kOS3lGqX5C2/0Dqz6mlmiTdJGlPmjZIUqneFWMwHcdEEADfBW6gOOn8/ySdB9xIcSXSScATwObyIsDvAj8O/DqwVtLKUn0z8BBwMnAtcI+kV30q7ygx3TGouwr4n3HmH/NjIGkh8CXgVop+/izwz6UmjvkxAP4I+AVgObAI+AHwkVK9W8ZgDvAd4DzgROA64DPpj/hCiqsUr6MYg23A3aV1h4BLKC5hXw5cDKwp1btlDKYuIo6ZieIXYFPp+V8BN5eeLwICOG2C9T8MfCQ9PgM4BCwo1b8K/EGn+9nqMQB+Bvgv4B3AU6X5WYwBxR/IT03QVi5j8DFgQ6l+EfBoN49BaVsfobin2RDFLW3q8+cDB4Gl6fnXgaFS/feBbx4LYzDZdKzsEUxEaSo/Bzj7VQsWu4C/zMsfZjsLeDwiyp9y3p7md5NmxuAjwJ9R/FKU5TIGPw98X9LXJf1POizyhlTLZQxuB35J0iJJrwVWAf+Yal07BpL6KP6Ij1Js7/Z6LYrPMX2bl/vxijqv7GPXjkEzjvUg+CLwW5KWS5oHXE/xLui14yy7nmI8PpGeN30fpKPcEcdA0qXAnIi4b5x1sxgD4KeAKygOj7yBVx42yWUMHgOeBHYDLwBnAn+Ral05BpJOAO4EPhkRY0zej8b6XqAnvUnsyjFo1jEdBBHxL8A6YAuwC9hJcR+jxhOiaynOFVwUEYfS7GPiPkhHGgMVtwHfALx/gtWP+TFIixwE7ouI/4iIF4E/B35R0onkMwYfA+ZSHP+eT3Esvb5H0HVjIOk4ijsUvASsTbMn60djvReoRXEcqOvGYCqO6SAAiIibI+L0iHg9xS/BHOBb9bqk36P43wcXREQ5IEaBJZLKid+V90E6whicDvQDX5X0NMUv/09KelpSP3mMARTHkMufrKw/FvmMwQqKcwrfT2+GPgK8JZ1g7aoxSO/gb6f4Z1eDEfHDVBql2O76cvOB03i5H6+o88o+dtUYTFmnT1K0YqL4gZ4LfJDiXcDc0ryzKX6h3wBUgRtL660CngbOnKDdb1KcZJsLXEpxJcUpne5vq8Yg1X+iNF1GcdXJTwDH5zAGab1fBZ6n+A95JwB/DXw1l5+DtN4nKMLhxDQGfwbs7tIxuCVtb0/D/FMoDucMpn7cRDoZnOp/QHHRxGKKk+mjlE4Gd9MYTHnMOr0BLfrGr6d4F1ee1gOvo3i3t5/iD/4H63/g0npPAD+k2O2rT7eU6v3pF+YgxT/CubDTfW31GDS0UaF01VBOYwC8j+L4+PPA54GfzmkMKA4J3UlxCfEPgK8Bb+m2MQBOTX1+seH3elWqXwiMpX5Ugf7SuqI4VPr9NG0g3Yanm8ZgOpPvNWRmlrlj/hyBmZkdmYPAzCxzDgIzs8w5CMzMMucgMDPLnIPAzCxzDgIzs8w5CMzMMvd/9bO/p9s5UxoAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["ax = valid_xs_final['YearMade'].hist()"]},{"cell_type":"markdown","metadata":{"id":"EO88eRCZ195B"},"source":["Other than the special value 1950 which we used for coding missing year values, most of the data is from after 1990.\n","\n","Now we're ready to look at *partial dependence plots*. Partial dependence plots try to answer the question: if a row varied on nothing other than the feature in question, how would it impact the dependent variable?\n","\n","For instance, how does `YearMade` impact sale price, all other things being equal?\n","\n","To answer this question, we can't just take the average sale price for each `YearMade`. The problem with that approach is that many other things vary from year to year as well, such as which products are sold, how many products have air-conditioning, inflation, and so forth. So, merely averaging over all the auctions that have the same `YearMade` would also capture the effect of how every other field also changed along with `YearMade` and how that overall change affected price.\n","\n","Instead, what we do is replace every single value in the `YearMade` column with 1950, and then calculate the predicted sale price for every auction, and take the average over all auctions. Then we do the same for 1951, 1952, and so forth until our final year of 2011. This isolates the effect of only `YearMade` (even if it does so by averaging over some imagined records where we assign a `YearMade` value that might never actually exist alongside some other values).\n","\n","> A: If you are philosophically minded it is somewhat dizzying to contemplate the different kinds of hypotheticality that we are juggling to make this calculation. First, there's the fact that _every_ prediction is hypothetical, because we are not noting empirical data. Second, there's the point that we're _not_ merely interested in asking how sale price would change if we changed `YearMade` and everything else along with it. Rather, we're very specifically asking, how sale price would change in a hypothetical world where only `YearMade` changed. Phew! It is impressive that we can ask such questions. I recommend Judea Pearl and Dana Mackenzie's recent book on causality, _The Book of Why_ (Basic Books), if you're interested in more deeply exploring formalisms for analyzing these subtleties.\n","\n","With these averages, we can then plot each of these years on the x-axis, and each of the predictions on the y-axis. This, finally, is a partial dependence plot. Let's take a look:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OY90EOi9195B","outputId":"342d077a-8c3b-471a-8b7d-bc8f517203e1"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAt4AAAEPCAYAAAB1HsNIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABKG0lEQVR4nO3dd5hU5fnG8e+zjYVdlrr0snSkSxUVEXuJ0WBDDRZURGNLTDQxaowak5hfYmKJJYqo2HvvBQWlN+m9t6XDwvbn98cMZtiwMMDunNnd+3Ndc+3MaXPPzs6ZZ9/znveYuyMiIiIiIuUrIegAIiIiIiJVgQpvEREREZEYUOEtIiIiIhIDKrxFRERERGJAhbeIiIiISAyo8BYRERERiQEV3iIiIiIiMRCzwtvMrjezyWaWZ2ajSsw70czmmdkuM/vKzFoeYFtDzGyumeWY2WIzG1Cu4UVEREREDpPF6gI6ZjYYKAZOBaq7++Xh6fWBxcBVwHvAvcAAdz+qlO2cDDwFXAhMBBoDuPvq/T1//fr1PSsrqyxeiojIQVu/PZcNO/Lo2KgmyYkH1+YxZcqUje6eWU7R4pL22SJSUe1vn50UqxDu/iaAmfUGmkXMGgzMdvfXwvPvBjaaWUd3n7ePTf0RuMfdx4cf77fg3iMrK4vJkycfanwRkUNWWFTMsX/9ihMb12TUFX0Pen0zW14OseKa9tkiUlHtb58dD328OwMz9jxw9xxCLeCdSy5oZolAbyDTzBaZ2Soze8TMqscsrYjIQfpmYTbrtucypE/zoKOIiEiA4qHwTge2lZi2Dai5j2UbAsnAecAAoAdwJHDHvjZsZsPD/conZ2dnl1lgEZGD8fLEldRPT+GEjg2DjhLXtM8WkcouHgrvnUBGiWkZwI59LLs7/PNhd1/r7huBfwBn7GvD7v6ku/d2996ZmVWqe6SIxIkN23P5Yt4Gzu3ZjJSkeNjlxi/ts0WksouHb4HZQPc9D8wsDWgTnr4Xd98CrAJic0aoiMhhen3qKoqKnQvVzUREpMqL5XCCSWaWCiQCiWaWamZJwFtAFzM7Nzz/LmBmKSdWAjwD3GBmDcysDnAz8H4MXoKIyEFxd16ZtJK+rerSOjM96DgiIhKwWLZ430Goq8hvgZ+H79/h7tnAucCfgC1AP2DInpXM7HYz+yhiO/cCk4AFwFxgWnhdEZG4Mn7JZpZv2qWTKkVEBIjtcIJ3A3eXMu9zoGMp8+4v8bgAuC58ExGJW69MWkHN1CRO79I46CgiIhIH4qGPt4hIpbN1Vz4fzlrHz45sSvWUxKDjiIhIHFDhLSJSDt6etpr8wmKdVCkiIj9S4S0iUsbcnZcnraRr01p0blIr6DgiIhInVHiLiJSxmau2MW/dDrV2i4jIXlR4i4iUsZcnraR6ciJn92gSdBQREYkjKrxFRMpQTl4h705fzZndGlMzNTnoOCIiEkdUeIuIlKEPZq4lJ79IY3eLiMj/UOEtIlKGXp60gjaZafRqWSfoKCIiEmdUeIuIlJEF63cwdcVWhvRpgZkFHUdEROKMCm8RkTLyyqSVJCcag3s2DTqKiIjEIRXeIiJlIK+wiDenruKUTo2ol14t6DgiIhKHVHiLiJSBT2evZ8uuAo3dLSIipVLhLSJSBl6ZtJKmtatzbNv6QUcREZE4pcJbROQwrdy8i7GLNnJhn+YkJOikShER2TcV3iIih+mVSStJMDivV7Ogo4iISBxT4S0ichgKi4p5bcpKBrbPpEnt6kHHERGROKbCW0TkMIxZkM367Xlc2KdF0FFERCTOqfAWETkML09aSf30apx4RIOgo4iISJxT4S0icog2bM/ly3kbOK9XM5ITtTsVEZH90zeFiMghem3KKoqKXWN3i4hIVFR4i4gcguJi59XJK+nXqi6t6qcFHUdERCoAFd4iIodg/NJNLN+0iyF91dotIiLRUeEtInIIXpm0kozUJE7v0jjoKCIiUkGo8BYROUhbd+Xz0ax1/OzIpqQmJwYdR0REKggV3iIiB+mtaavJLyzW2N0iInJQVHiLiBwEd+fliSvp1qwWnZpkBB1HREQqEBXeIiIHYcaqbcxfv4Mhau0WEZGDpMJbROQgvDJpBdWTEzmru06qFBGRg6PCW0QkSht35vHO9DX8pFtjaqYmBx1HREQqGBXeIiJReviLheQVFjPi+DZBRxERkQpIhbeISBSWbczhhQkrGNKnOW0y04OOIyIiFZAKbxGRKPzfp/NJTkzgphPbBR1FREQqKBXeIiIHMGPlVt6fuZarB7SiQUZq0HFERKSCilnhbWbXm9lkM8szs1El5p1oZvPMbJeZfWVmLaPYXjszyzWz0eUWWkSqPHfnLx/No25aClcf1zroOCIiUoHFssV7DXAfMDJyopnVB94E7gTqApOBV6LY3qPApDLOKCKylzELsvl+ySZuPKGtRjIREZHDErPC293fdPe3gU0lZg0GZrv7a+6eC9wNdDezjqVty8yGAFuBL8onrYgIFBeHWrtb1K3Bxf0OeCBORERkv+Khj3dnYMaeB+6eAywOT/8fZpYB3APcEpN0IlJlvT19NfPW7eDXp3YgJSkedpciIlKRxcM3STqwrcS0bUDNUpa/F3ja3VceaMNmNjzcr3xydnb2YcYUkaokt6CIv3+6gK5Na/GTrrpKZSxony0ilV08FN47gYwS0zKAHSUXNLMewEnAg9Fs2N2fdPfe7t47MzPzcHOKSBUyevxyVm/dzW9P70hCggUdp0rQPltEKrukoAMAs4HL9jwwszSgTXh6SccDWcAKM4NQa3mimXVy957lnlREqoRtuwt45KtFHNc+k2Pa1g86joiIVBKxHE4wycxSgURCxXKqmSUBbwFdzOzc8Py7gJnuPm8fm3mSUFHeI3x7HPgAODUGL0FEqojHxyxm2+4CbjutQ9BRRESkEollV5M7gN3Ab4Gfh+/f4e7ZwLnAn4AtQD9gyJ6VzOx2M/sIwN13ufu6PTdC3VRyw9sQETls67blMnLsUs7p0ZTOTWoFHUdERCqRmHU1cfe7CQ0VuK95nwP7HD7Q3e8/wDZFRMrMg58twB1+dXL7oKOIiEglE3WLt5nVM7OhZnZr+HETM2tWftFERGJr4fodvDZlJUP7t6R53RpBxxERkUomqsLbzAYC84FLCF1hEqAd8Fg55RIRibm/fjyftJQkfjGobdBRRESkEoq2xfufwIXufhpQGJ42AehbHqFERGJt0rLNfD53PSOOb0PdtJSg44iISCUUbeGd5e57Ls/u4Z/5xMdwhCIih8Xd+fOHc2mYUY1hx7QKOo6IiFRS0Rbec8ys5JB9JwE/lHEeEZGY+2T2eqau2MovT2pP9ZTEoOOIiEglFW2L9S3A+2b2AVDdzJ4AzgLOLrdkIiIxUFhUzAOfzKNNZhrn9dL54iIiUn6iavF29/FAN0JXkxwJLAX6uvukcswmIlLuXp28iiXZOdx2WkeSEmN5aQMREalqomrxNrNqQLa7PxAxLdnMqrl7XrmlExEpR7vyC/nn5wvo1bIOJ3dqGHQcERGp5KJt3vkM6FViWi/gk7KNIyISOyPHLmXDjjx+d3pHzCzoOCIiUslFW3h3JTR8YKSJQPeyjSMiEhubc/J5fMwSTu7UkN5ZdYOOIyIiVUC0hfc2oORx2IZATtnGERGJjYe/XMiu/EJuO61D0FFERKSKiLbwfgN40cy6mFkNM+sKPAe8Wn7RRETKx8rNuxg9fjkX9G5O2wY1g44jIiJVRLSF9++BuYS6l+wAxhO6hPzt5ZRLRKRcFBU7v31zJokJxs0ntQ86joiIVCFRjWri7rnAL8zseqA+sNHd/QCriYjEnb9/Op9xizbxwHndaFQrNeg4IiJShUR9yXczqwV0ANLDjwFw9y/LJZmISBn7bM56/v31Yi7q25wLejcPOo6IiFQx0Y7jfTnwKLAT2BUxy4HWZR9LRKRsLduYw69enU7XprX4w1mdg44jIiJVULQt3n8CznP3j8ozjIhIedidX8SI0VNIMOPfl/QkNTkx6EgiIlIFRVt4JwGflmcQEZHy4O7c8fYs5q/fwcjL+9C8bo2gI4mISBUV7agmfwXuMLNolxcRiQsvTVzJG1NXceMJ7RjUoUHQcUREpAqLtsX7l0Aj4FYz2xQ5w91blHkqEZEyMGPlVu5+dzbHtc/kxhPbBR1HRESquGgL75+XawoRkTK2JSef616YSmbNavzrwh4kJljQkUREpIqLdhzvMeUdRESkrBQVOze9Mp3sHXm8NqI/ddJSgo4kIiIS9XCC1YC7gIuAeu5ey8xOAdq7+yPlGVBE5GA99MVCvlmQzf0/60r35rWDjiNSKRQWFbO7oIjd+UWhnwVFFBdDerUk0qolkp6aRLUkjRgksj/RdjV5EGgKXALsGVJwdni6Cm8RiRtfzd/AQ18u5Nyezbiory6SI1VDcbGTWxhRFId/7gr/zM3/7/3Iwnl3/t7L5hYUsSu/kN0Fxf+9H55fUHTgC1YnJxpp1ZJIj7il/c/9UJH+v9P/e79mahLVkhJ+vFifSGURbeH9M6Ctu+eYWTGAu682s6blF01E5OCs3LyLm1+eTsdGGdx3Thd9aUuFsHLzLqau2MLuAxTHu8IF9O5wQZxbUBwukovILSg+6OdNSUwgNTmB6imJ1EhJIjU5kRrh+3XTQverJydSPSV8C89PTf7vfTPYmVfEztwCcvKL2JlXyM7cQnLyCkP38wrZuiufVVt2sTOvkJy8InLyC/ED1/AkJhhpKYnUTE0mrVrifgv19NRwQV8ttGzJwj+UVfsDCV60hXd+yWXNLBPYtO/FRURiK7egiOtemEqxO4//vCfVU3TIW+Lf5GWbuWLUJHbkFu413QxqJCdSPSWJ6ikJ4QI4ierJCdRPT6FGSo0fC+Xq4WJ4r0I5ojhOTYmYl/zf5ZMTgxkhuLjY2VVQ9N/ivEShHrpfxM68AnLyitgRnp+TX8iO3ELWbcslJ6+QHeFli6Mo4hMM0lL+W6Q3q1Odq45tzTFt66kgl5iKtvB+DXjWzH4JYGaNgX8CL5dTLhGRg/LH92bzw+pt/OfS3rSslxZ0HJEDGrtwI1c/N5lGtVJ58aqjqF8zherJoaK4MnezSEiwH1ujGx7mttyd3IJidoSL9Jy8wv8p1HPCBfqeQj0nr4gpy7fw86cncGSL2txwQlsGdWhQaX/fEl+iLbxvBx4AfgBqAAuB/wB/LKdcIiJRe3XySl6auJLrjm/DyZ0O96tcpPx9Onsd1784jdaZaTx/ZT8ya1YLOlKFZGY/doWhZvTr5RUW8fqUVfz7q8UMGzWZLk0zuH5QO07p1JAEDT0q5Siq40zunu/uN7t7OtAQqOnuv3T3/PKNJyKyf7PXbOPOt2dxTNt63HJKh6DjiBzQO9NXc+0LUzmiSQYvDz9KRXcAqiUlckm/lnz9m+N54Lxu7MwtZMToKZzx0Le8N2MNRdH0XxE5BKW2eJtZ6/2sV3PPIRl3X1LWoUREorFtVwHXjp5KnRop/GvIkbpIjsS9Fyes4Pdv/0C/VnV56rI+pFeL9sCzlIfkxAQu6N2cwUc25f2Za3nkq0Xc8NI0/vn5An4xqC0/7d6EpID6wkvltL9P/CLAAQv/JHyfiMcAOoNJRGLO3bnltems3babV67pT/10tRpKfPvPN0v404dzGdQhk8d+3ovUZH19xoukxATOObIpZ3Vvwsez1vHwlwv51asz+NcXC7nu+Db87MhmpCSpAJfDV+pfkbsnuHuiuycAVxE6kbIDkAp0BF4EroxJShGREt6cuprP527gd6cfQc8WdYKOI1Iqd+fBzxbwpw/ncmbXxjwxtLeK7jiVmGCc2a0xH944gCeH9iIjNZnb3viBQf/3Nc+PX05eYVHQEaWCi/YY171AO3ffHX680MyuARYAo8ojmIhIabbuyuf+D+fSs0VtLj86K+g4IqVyd/70wVyeGruU83s14y/ndlOXqAogIcE4pXMjTu7UkK8XZPPwFwu58+1ZPPLlQq45rg0X9W2hIUvlkER73CQByCoxrSUH0c3EzK43s8lmlmdmo0rMO9HM5pnZLjP7ysxalrKNamb2tJktN7MdZjbNzE6PNoOIVA5/+2Q+W3blc985XTUCgcStomLn9rd+4KmxS7n86Cz+qqK7wjEzBnVowBvXHs0LV/Ujq14a97w/hwEPfMkTYxaTk1d44I2IRDiYS8Z/aWbPACuB5sDl4enRWgPcB5wKVN8z0czqA28S6s7yHqHW9VeAo0rJuxIYCKwAzgBeNbOu7r7sILKISAU1feVWXpy4giuObkWnJhlBxxHZp4KiYm55dQbvzljD9YPacssp7TVOdAVmZhzTtj7HtK3PxKWbefjLhfz5o3k8PmYxVx7bikuPziIjNTnomFIBRFV4u/vfzOwH4HzgSGAtMMzdP472idz9TQAz6w00i5g1GJjt7q+F598NbDSzju4+r8Q2coC7Iya9b2ZLgV7AsmiziEjFVFTs/P6tH2hQsxq/OqV90HFE9im3oIjrX5zG53PXc9tpHbn2+DZBR5Iy1LdVXZ6/sh/TVmzh4S8X8X+fLuDJb5Zw+TGtGHZMFrVrpAQdUeJY1OMYhYvsqAvtg9AZmBHxPDlmtjg8fV6pawFm1hBoD8wuh1wiEmee/34Zs9ds59GLe2oYNolLOXmFDH9+MuMWbeLeszsztH9W0JGknBzZog4jL+/DrNXbePjLhTz0xUKe/nYJlx6dxVXHtqKeRlqSfYjqm8vMUgh1LekBpEfOc/dLDzNDOpBdYto2DnANKjNLBl4Ani3ZMh6xzHBgOECLFi0OM6aIBGnD9lz+/ukCBrSrzxldGwUdR8pBRd9nb9tdwBXPTGT6yq38/fzunNur2YFXkgqvS9NaPDG0N/PWbeeRLxfx+JjFjBq3jEv6tWD4ca1pkJEadESJI9GeXPkscDOwA1hc4na4dgIlO2pmhJ9rn8wsAXgeyAeuL205d3/S3Xu7e+/MzMwyiCoiQbnvg7nkFRVz79ld1Fe2kqrI++xNO/O46Mnx/LB6G49e3FNFdxXUsVEGj1zck89+OZDTuzTime+WcewDX3HXO7NYs3X3gTcgVUK0x2pPA1q5+9ZyyDAbuGzPAzNLA9pQSvcRC33jPk3o0vVnuHtBOWQSkTgyduFG3p2xhptObEdW/bSg44jsZd22XC55ajyrt+7mqcv6MLB9xfqnQcpW2wbp/OPCHtx0Ujse+3oxL05YwUsTV3Ber2Zcd3xbmtetEXRECVC0Ld4rgMPqrGRmSWaWSmgIwkQzSzWzJOAtoIuZnRuefxcws7TuI8BjwBHAWRHjiotIJZVXWMRd78yiZb0aOklN4s6KTbs4/4nvWL89j2ev6KuiW37Usl4afzm3G2NuHcSQPi14Y8pqjv+/r7nl1Rksyd4ZdDwJSLSF93PAO2Z2kZmdEHk7iOe6A9gN/Bb4efj+He6eDZwL/AnYAvQDhuxZycxuN7OPwvdbAtcQ6mu+zsx2hm+XHEQOEalAnhyzhCUbc7jn7C662p/ElYXrd3De49+xI7eQF6/uR7/W9YKOJHGoae3q3HtOF765dRCX9m/J+zPXcNI/xnDjS9NYsL7UXrVSSZm7H3ih0JB9++Lu3rpsI5WP3r17++TJk4OOISIHYcWmXZz84BhOOqIhj17SM+g4gTGzKe7eO+gcsRTv++xZq7dx6ciJJCYYo6/sR4dG+x0PQORH2TvyeGrsEp7/fjm7C4o4rXMjrj+hLZ2b1Ao6mpSR/e2zox3Hu1XZRhIR2T935w/vziIpwbjzJ52CjiPyo8nLNnPFM5PIqJ4cupqhzjuQg5BZsxq/O/0IRhzXhpHjljJq3DI+mrWOk45owA0ntKN789pBR5RyFG1XE8ws2cwGmNmF4cdp4RMhRUTK3Cez1/HV/Gx+eXJ7GtXScFwSH75dmM3QpyeSWbMar43or6JbDlmdtBRuOaUDY397Ar86uT2Tlm3h7EfHcenIiUxetjnoeFJOoiq8zawrsAD4D6ERRSB02faR5ZRLRKqwnLxC/vjeHDo2qsnlR2cFHUcEgE9nr+PKUZNpWa8Gr1zTnya1qwcdSSqBWtWTufHEdoz77QncdlpHZq/exnmPf89FT47nu8UbiaZLsFQc0bZ4Pwbc5e4dgT3D940Bji2XVCJSpf3ri4Ws3ZbLn37WhaTEqA/MiZSbd6av5toXptKpSQYvDz+KzJq6KqGUrfRqSVx7fBu+vW0Qd5x5BIuyd3LxfyZw/uPfM2ZBtgrwSiLab7TOwOjwfYfQpd0B/bsvImVq/rodPD12KUP6NKdXy7pBxxHhxQkruPmV6fTJqsPoq/pRu0ZK0JGkEquRksRVA1rz7a2DuOfszqzZupvLRk7knEfH8fX8DUHHk8MUbeG9DOgVOcHM+gKLyjqQiFRdxcXOHW//QEZqEred1jHoOCI8+c1ibn/rB45vn8moK/qSXi3a686JHJ7U5EQu7Z/F178ZxJ8Hd2Xzrnwuf2YSM1dtDTqaHIZoC+87gQ/M7I9Aipn9DniN0NjcIiJl4vWpq5i0bAu/O/0I6qSpVVGC4+7847MF3P/hPM7s2pgnhvbWOPISiJSkBC7q24IPbxxAzWpJPPHNkqAjyWGIqvB29/eB04FMQn27WwKD3f3TcswmIlXIlpx8/vzhXHq3rMN5vZoFHUeqMHfnvg/m8tAXC7mgdzMeuuhIUpJ0roEEq2ZqMpcc1ZKPfljL8k05QceRQxT1nsTdp7r7de5+pruPcPcp5RlMRKqWBz6Zx/bcQu49pwsJCRZ0HKmiioqd3735A0+PXcrlR2fxl8HdSNTfo8SJYcdkkZSQwH++Vat3RRXtcIIpZnaPmS00s5zwz3vNTIPrishhm7piCy9NXMmwY7I4onFG0HGkiiooKubmV6bz8qSV3HBCW/5wVif9EyhxpUFGKoN7NuW1yavYuDMv6DhyCA5mOMETgBuBPuGfA4F/l1MuEakiCouK+f1bs2iUkcpNJ7UPOo5UUbkFRVw7egrvzVjDb0/vyC2ndMBMRbfEn6uPa01+UTHPfbcs6ChyCKItvM8BfuLuH7n7HHf/KDztnHLKJSJVxH++Xcrctdv5w1mdNGKEBCInr5Bhoybx+dwN3HtOF0YMbBN0JJFStclM5+QjGvLs98vJySsMOo4cpGgL73VAjRLTqgNryzaOiFQlL09cwV8/nsfpXRpxWpdGQceRKmjbrgJ+/vQExi/ZxD8u6M7Qo1oGHUnkgEYc34Ztuwt4ZdLKoKPIQYq2eel54GMzexhYBTQHfgE8Z2Yn7FnI3b8s+4giUhm9Nnklv3vrBwa2z+SfQ3rosL7E3MadeVz69EQWbtjBvy/pyWldGgcdSSQqPVvUoW9WXZ4eu5Sh/VuSrCv8VhjRFt7XhH/eXmL6iPANQle0bF0WoUSkcntr2ipufWMmx7atzxNDe1EtSeMjS2yt3babnz81gdVbd/PUZX0Y2D4z6EgiB+Waga258tnJvD9zDT87UkOwVhRRFd7u3qq8g4hI1fDO9NXc8uoM+reux5O6KIkEYPmmHC55agJbdxXw3LB+9G1VN+hIIgdtUIcGtGuQzhNjlnBOj6Y6alhBRH1swsySzWyAmV0YfpxmZmnlF01EKpsPZq7lV6/OoHdWXZ66rDfVU1R0S2wtXL+D8x//np15hbx4tYpuqbgSEoxrBrZh3rodjFmQHXQciVK043h3BRYA/wGeDk8eCIwsp1wiUsl8PGsdN748jSOb1+aZy/tQI0UjmEhszVq9jQue+B4HXhnen27NagcdSeSw/LR7ExplpPLEGF1Qp6I4mHG873L3jkBBeNoY4NhySSUilcpnc9Zz/YtT6dasFqOG9SVNwwZKjE1etpmLnhxPjZQkXrumPx0a1Qw6kshhS0lK4MpjW/H9kk3MWLk16DgShWgL787A6PB9B3D3HEJDCoqIlOrLeeu57oUpdG6SwbPD+mqsbom5bxdmM/TpiWTWrMZrI/qTVV+9JKXyuKhfC2qmJvHEN4uDjiJRiLbwXgb0ipxgZn2BRWUdSEQqjzELshnx/FQ6NsrguSv7kZGaHHQkqWI+mb2OK0dNJqt+Gq9c058mtdVeJJVLerUkhh7Vko9mrWPZxpyg48gBRFt43wl8YGZ/BFLM7HfAa8Ad5ZZMRCq0sQs3Mvy5ybRtkM7zV/alVnUV3RJbb09bzXUvTKVTkwxevvooMmtWCzqSSLm4/JgskhMTePJb9fWOd1EV3u7+PnA6kEmob3dLYLC7f1qO2USkgvp+8Sauem4SreqnMfqqftSukRJ0JKliXpiwnF++Op2+WXUZfVU/atXQP35SeTWomcq5PZvx+pRVZO/ICzqO7EfUwwm6+1R3v87dz3T3Ee4+pTyDiUjFNHHpZoaNmkTzOjUYfVU/6qap6JbYemLMYn7/1iwGdWjAM1f00XkFUiVcPaAVBUXFPPvdsqCjyH6Uujcys3ui2YC731V2cUSkIpu8bDOXPzORJrVTefHqo6ifrkP7EjvuzoOfLeChLxdxZrfGPHhBD1KSdCltqRpaZ6ZzaqdGPPf9MkYc30b/cMap/e2Rmkfc2gG/BU4E2gInhB+3K++AIlIxTF2xhcufmUSjjFReUn9aiTF359735/LQl4u4oHczHhpypIpuqXKuGdia7bmFvDxxRdBRpBSl/jvk7lfsuW9mLwMXufsbEdMGA+eXbzwRiUfuztptucxes53Za7Yxe812vlu0kfo1q/Hi1UfRICM16IhSxRQUOfPXb+eKY7K488xOJCTo8tlS9RzZog79WtXl6bFLuezo0AmXEl+iPQ5xOnBJiWnvAM+UbRwRiTdFxc7SjTnMXrONOWu2/1hsb9kVupaWGbSun8apnRvx61M70KiWim6JvZSkBEZe3oeUxATMVHRL1TViYBuuGDWJ92asYXDPZkHHkRKiLbwXAb8AHoqYdh2g0dpFKpGComLmrd3xYyv27DXbmLduB7vyiwBISUygfaN0Tu3ciM5NMujUpBZHNK6py79LXKiWlBh0BJHAHd8hkw4Na/LEmCX87Mim+kc0zkT7bXkV8JaZ3QqsBpoChcDg8gomIrG1PbeAi54cz+w124HQRRk6Nc7ggt7N6dwkg85NatGuYboOXYqIxDEz45qBrfnVqzP4en42gzo2CDqSRIiq8Hb3aWbWDjgKaAKsBb5394LyDCcisZFfWMyI56cwf90O/vSzLhzTpj4t6tZQP1kRkQrorO5N+L9P5vP4mMUqvONM1MeHw0X2t+WYRUQC4O7c+voMvlu8ib+f351ze6lPoIhIRZacmMCwY1tx3wdzmbZiC0e2qBN0JAnTMWORKu5vn8zn7elr+PUp7VV0i4hUEhf1bUGt6sk8MUaXkY8nMSu8zex6M5tsZnlmNqrEvBPNbJ6Z7TKzr8ys5X62U9fM3jKzHDNbbmYXl3t4kUrq+fHL+ffXi7m4Xwt+Maht0HFERKSMpFVLYuhRLflkzjqWZO8MOo6ExbLFew1wHzAycqKZ1QfeBO4E6gKTgVf2s51HgXygIaEhDh8zs87lEVikMvtsznr+8M4sTuzYgHt+2llnvouIVDJ7xvL+z7dq9Y4XpRbeZpYQzS3aJ3L3N939bWBTiVmDgdnu/pq75wJ3A93NrOM+MqUB5wJ3uvtOdx8LvAsMjTaHiMC0FVu44aWpdG1ai4cvPpIkjVQiIlLpZNasxnm9mvHGlNVs2JEbdBxh/y3ehUDBfm575h+uzsCMPQ/cPYfQ+OD7asVuDxS5+4KIaTNKWVZE9mHZxhyufHYyDWqm8vTlfTQGt4hIJTZ8QGsKiosZNW5Z0FGE/Y9q0ipGGdKB7BLTtgE1S1l2W5TLYmbDgeEALVq0OLyUIpXApp15XPbMRNydZ4f1pX56taAjifxI+2yRspdVP43TuzTi+fHLuW5QW9KrqbElSKW2eLv78mhuZZBhJ5BRYloGsOMwl8Xdn3T33u7eOzMz87CDilRku/ILGfbsZNZty+Xpy/vQqn5a0JFE9qJ9tkj5uOa4NuzILeSlCSuCjlLlRf1vj5n9FBgI1Ad+PAvL3S89zAyzgcsinicNaBOeXtICIMnM2rn7wvC07qUsKyJhhUXF3PDiNH5YtZXHf96LnhrTVUSkyujevDb9W9fj6bFLuezoLFKSdF5PUKL6zZvZH4AnwsufT+gEyVOBrdE+kZklmVkqkAgkmlmqmSUBbwFdzOzc8Py7gJnuPq/kNsL9v98E7jGzNDM7BjgbeD7aHCJVjbtz17uz+WLeBu7+aWdO6dwo6EgiIhJj1wxszbrtubw7Y03QUaq0aP/lGQac7O6/BPLDP88Csg7iue4AdgO/BX4evn+Hu2cTGqnkT8AWoB8wZM9KZna7mX0UsZ3rgOrABuAl4Fp3V4u3SCn+/fViXpywghED23Bp/6yg44iISAAGts+kY6OaPDFmMcXFHnScKivaria13X1W+H6+mSW7+0QzGxjtE7n73YSGCtzXvM+B/xk+MDzv/hKPNwPnRPu8IlXZm1NX8bdP5nN2jybcemqHoOOIiEhAzIwRA9tw8yvT+Wr+Bk48omHQkaqkaFu8F0dcpGYWcK2ZDSXUQi0icWjswo3c+vpM+reuxwPndSMhQRfIERGpys7s1pimtavrMvIBirbwvgOoF77/O+BG4G/Ar8ojlIgcnjlrtjNi9BTaZKbz+NBeVEtKDDqSiIgELDkxgSuPbcXEZZuZslxtp0GIqvB29w/d/Zvw/Qnu3tbdG7n7m+UbT0QO1qotu7hi1ETSqyUxalgfalVPDjqSiIjEiQv7NKdW9WSeGLM46ChVUql9vM0sy92Xhe+3Lm05d9fxCpE4sW5bLpc8NYFd+UW8NqI/jWtVDzqSiIjEkbRqSVzWvyUPf7WIRRt20rZBetCRqpT9tXj/EHF/EbAw/DPytnAf64lIALJ35HHJU+PZuCOPZ4f1pWOjkteaEhERgUuPziIlMYGnvlXbaazt78qVNSPuJ7h7Yvhn5E0dR0XiwOacfH7+1ATWbM3lmSv66gI5IiJSqvrp1Ti/dzPenLqaDdtzg45TpUR7AZ2HSpn+zzJNIyIHbdvuAoY+PYGlm3J46rLe9G1VN+hIIiIS564e0JrC4mJGjlsWdJQqJdpRTS4vZfrQMsohIodgZ14hl42cyIL1O3hiaC+OaVs/6EgiIlIBtKyXxuldG/PC+OXsyC0IOk6Vsd8L6JjZsD3LRdzfozWwsVxSicgB7covZNgzk/hh9Tb+fUlPBnVoEHQkERGpQEYc14YPZq7lxQkruGZgm6DjVAkHunLlnhbtFPZu3XZgPXBZeYQSkf3LLSji6ucmM3n5Zv415EhO7dwo6EgiIlLBdG1Wi2Pa1mPkuKVcfkyWrvkQA/stvN19kJklAM8CV7h7YWxiiUhp8gqLuHb0FL5bvIm/n9+ds7o3CTqSiIhUUNcc14ZLR07knelruKB386DjVHoH7OPt7sXAYKC4/OOIyP4UFBVzw4vT+Gp+Nvf/rCuDezYLOpKIiFRgA9rV54jGGTwxZjHFxR50nEov2pMrpwHtyzOIiOxfYVExN78ynU/nrOfuszpxUd8WQUcSEZEKzswYMbA1i7Nz+GLehqDjVHrRFt5fAx+b2d1mdqWZDdtzK8dsIhJWXOzc+vpMPpi5ltvP6Mjlx7QKOpKIiFQSZ3ZtTNPa1XUZ+Rg40MmVexwDLAUGlpjuwMgyTSQie3F3fv/2D7w5bTW/Ork9w4/TmeciIlJ2khITuHpAK+5+bw6Tl22md5auB1Feoiq83X1QeQcRkf/l7vzxvTm8NHElvxjUhhtOaBt0JBERqYQu6NOcf32xkMfHLOEpFd7lJtquJj+ykIQ9t/IIJSKhovsvH81j1HfLuOrYVvz6lA6YWdCxRESkEqqRksSl/bP4fO56Fm3YEXScSivaS8Y3NbO3zGwTUAgURNxEpBz88/OFPPHNEoYe1ZLfn3mEim4RESlXl/ZvSWpyAk9+syToKJVWtC3WjwP5wInATqAn8C4wopxyiVRpr05ayb++WMj5vZrxx592VtEtIiLlrl56NS7o3Zy3pq1m3bbcoONUStEW3kcDw9x9OuDuPgO4ErilvIKJVFXfLd7I7W/9wIB29bl/cFcSElR0i4hIbFw9oDVFxc4z45YGHaVSirbwLiLUxQRgq5llAjlA03JJJVJFLc7eybWjp9KqfhqPXNyT5ESdRiEiIrHTvG4NzuzWhBcmrGB7rnoUl7Vov9UnAGeE738CvAK8CUwuj1AiVdGWnHyGjZpEUoIx8vI+1KqeHHQkERGpgq45rjU78wp5YfyKoKNUOtEW3kMJXUQH4GbgS2AWcHHZRxKpevIKi7jm+Sms3ZbLk5f2onndGkFHEhGRKqpL01oMaFefkeOWkldYFHScSmW/hbeZ1TCz+4HngJvMrJq773b3+9z9NndfG5uYIpWXu/O7N39g4rLN/O28bvRqqfFTRUQkWNcc14bsHXm8PW110FEqlQO1eD8CnAXMA84D/q/cE4lUMf/+ejFvTl3NzSe14+weOm1CRESCd0zbenRuksET3yyhuNiDjlNpHKjwPh04xd1vDd//SflHEqk63p+5hr99Mp+zezThphPbBR1HREQEADPjmoFtWJKdw2dz1wcdp9I4UOGdtqc7ibuvBGqVfySRqmHaii3c8uoMerWsw1/P7aaxukVEJK6c0aURzetW5/Exi3FXq3dZSDrQfDMbBFgpj3H3L8srnEhltWrLLq5+bjINMqrx5NBepCYnBh1JRERkL0mJCVw9oDV3vTObycu30CdL5yAdrgMV3huAkRGPN5V47EDrsg4lUpntyC3gylGTySss5uXhR1EvvVrQkURERPbp/F7N+efnC3n868X0uVyF9+Hab+Ht7lkxyiFSJRQWFXP9i9NYlL2TZ6/oS9sGNYOOJCIiUqrqKYlc1j+LBz9fwIL1O2jfUN9bh0OXxROJoXvfn8OYBdnce3YXjm1XP+g4IiIiB3Rp/5ZUT07kyW+WBB2lwlPhLRIjo8Yt5dnvl3P1gFZc3K9F0HFERESiUicthQv7NOed6atZu2130HEqNBXeIjHw1bwN3PP+HE46oiG/Pf2IoOOIiIgclCuPbUWxw8ixS4OOUqHFTeFtZkeY2Zdmts3MFpnZz0pZzszsPjNbHV72azPrHOu8ItGau3Y71784lSMaZ/CvIT1ITNCwgSIiUrE0r1uDn3RrzIsTVrBtd0HQcSqsuCi8zSwJeAd4H6gLDAdGm1n7fSx+PjAMGBBe9nvg+RhFFTko67fncuWoSaSnJvH0ZX1Iq3aggYRERETi0/DjWpOTX8To8cuDjlJhxUXhDXQEmgAPuntReGzwccDQfSzbChjr7kvcvQgYDXSKXVSR6MxYuZWzHxnHll0FPH1ZHxrVSg06koiIyCHr3KQWA9rV55lxy8gtKAo6ToUUL4X3vo69G9BlH9NfBtqaWXszSwYuAz4uz3AiB+uNKas4/4nvSUwwXr+2P12a6qKvIiJS8V07sA0bd+bx1rTVQUepkOKl8J5H6GI9vzGzZDM7BRgI1NjHsmuBb4H5wG5CXU9+ua+NmtlwM5tsZpOzs7PLJ7lIhIKiYv743mxueW0GvVrU4b0bjqVzExXdItHQPlsk/vVvU4+uTWvxn2+WUFSsy8gfrLgovN29ADgHOBNYB9wCvAqs2sfifwD6AM2BVOCPwJdm9j9Furs/6e693b13ZmZmOaUXCdm0M49Ln57IM+OWMeyYVjx/ZV/qpqUEHUukwtA+WyT+mRnXDGzNko05fDZnXdBxKpy4KLwB3H2muw9093rufiqhS9FP3Mei3YFX3H2Vuxe6+yigDurnLQGatXobP31kHFNWbOHv53fnrrM6kZQYNx8vERGRMnN6l8a0qFuDx8YswV2t3gcjbioDM+tmZqlmVsPMfg00BkbtY9FJwPlm1tDMEsxsKJAMLIphXJEfvTN9Nec9/h3F7rw+oj/n9moWdCQREZFyk5hgXH1ca2as3MrEpZuDjlOhxE3hTWgEk7WE+nqfCJzs7nlm1sLMdprZnkv9/RWYAUwHthLq332uu2+NeWKp0oqKnT9/OJebXp5O16a1ePf6Y+nWrHbQsURERMrd+b2aUS8thcfHLA46SoUSN4MKu/tvgN/sY/oKID3icS7wi/BNJBBbd+Vzw0vT+HbhRoYe1ZI7f9KJlKR4+j9WRESk/KQmJ3L50Vn8/bMFzFu3nY6NMoKOVCGoUhA5SPPWbeenj4xjwpLN/GVwV+49p4uKbhERqXKG9m9J9eREnvxmSdBRKgxVCyIH4cMf1jL439+RW1DES8OPYkjfFgdeSUREpBKqXSOFIX2b8+70NazeujvoOBWCCm+RKBQVO3/7ZB7XvTCVDo1q8t4Nx9KrZZ2gY4mIiATqymNb4cDIsUuDjlIhqPAWOYDcgiKGPzeZR79azJA+zXl5+FE0zNDl30VERJrVqcFPuzfhpYkr2LarIOg4cU+Ft8h+5BcWc+3oKXw5fwP3nN2ZPw/uSrWkxKBjiYiIxI3hx7VmV34RoycsDzpK3FPhLVKKwqJibnxpGl/Nz+ZP53Tl0v5ZmFnQsUREROLKEY0zGNg+k2fGLSW3oCjoOHFNhbfIPhQVO79+bQYfz17HnT/pxMX9dBKliIhIaUYMbMPGnfm8MXVV0FHimgrvUrg7789cw9y12/XfWxXj7vz+rR94e/oafnNqB648tlXQkUREROLaUa3r0r1ZLf7zzRKKinUZ+dLEzQV04s3abblc/+I0ABIMmtetQZvMdNo2SKdtZjptGoTu16qeHHBSKUvuzh/fm8PLk1Zy/aC2/GJQ26AjiYiIxD0z45qBbbjuhal8MnsdZ3RtHHSkuKTCuxSZNavx4Y0DWJy9k0UbdrIoeyeLN+xk7KKN5BcW77Vcm8y0Hwvytg1q0rZBOg0zqqk/cAXj7jzwyXxGfbeMYce04pZT2gcdSUREpMI4tXMjsurV4Ikxizm9SyPVQfugwrsUyYkJdGqSQacme18CtajYWbl5F4s27NyrKH9n+hp25Bb+uFzbBum8dk1/6qSlxDq6HKJHvlzEY18v5uJ+LbjzJ0dohyEiInIQEhOMq49rze/fmsX4JZvp36Ze0JHijgrvg5SYYGTVTyOrfhon0fDH6e5O9o48Fm3YyZy123ng4/n8+rUZPHVZbxVwFcBT3y7h758tYPCRTbnv7C56z0RERA7BuT2b8eBnC3h8zGIV3vugkyvLiJnRICOVo9vW56oBrbn9jI58MW8DT32rKznFu9Hjl3PfB3M5s2tjHjivGwkJKrpFREQORWpyIpcfncWYBdnMXbs96DhxR4V3Obns6CxO69yIv348j6krtgQdR0rx+pRV3PH2LE7s2IAHL+xBUqI+EiIiIodj6FFZ1EhJ5MlvlgQdJe6oyignZsZfz+tGo1qp3PDiNF1GNQ69P3MNt74+g2Pb1ufRS3qSkqSPg4iIyOGqVSOZi/q24N0Za1i1ZVfQceKKKo1yVKt6Mo9c3JP123P59eszcNe4lvHi8znrufnl6fRqWYcnL+1FarIuAy8iIlJWrjy2FQY8PVZdbiOp8C5nPZrX5rend+SzOet5ZtyyoOMI8O3CbK57YSqdm2Qw8vI+1EjROcYiIiJlqUnt6vy0RxNenriSLTn5QceJGyq8Y+DKY1tx0hEN+PNHc5mxcmvQcaq0iUs3c/Vzk2mdmcazw/pSM1UXQBIRESkPw49rze6CIkaPXx50lLihpr4YMDP+7/zunPGvb7n+pam8f8MAXfEyAN8t3sjw56bQtHZ1Rl/Vj9o1NMa6iIhIeenYKINBHTJ55rtlFLmzp8ftjx1vwxN874c4/7ts5LzIGf+df+B1Svb4dfcDLnthn+Z0a1Y7qtcbDRXeMVK7RgoPX3wkFzwxnt++MZN/X9JTY0XHyMrNu/jLx/P4YOZasurV4IWrjqJ+erWgY4mIiFR615/Qjov+M55/fr5wn/PNwH68H7pnEfNCj3+88z/z98yz/5m397b+d1074DpmcFz7TLo1O/DrjJYK7xjq1bIuvzm1A3/5aB7Pj1/Opf2zgo5UqeXkFfLY14t58tslJBjcfFI7hh/XWn26RUREYqRXyzrMv/e0Hx9X9UZHVSAxNnxAa8Yv2cR978+lZ4s6dGlaK+hIlU5xsfPmtNU88PE8NuzI45weTbj1tI40qV096GgiIiJVTlUvtiPp5MoYS0gw/nFBD+qmpfCLF6eyI1fje5elScs2c/aj4/j1azNoUrs6b153NP8ccqSKbhEREQmcCu8A1E1L4aGLjmTVlt387s0fNL53GVi1ZRfXvziV8x//nuwdefzzwh68ee3R9GxRJ+hoIiIiIoC6mgSmb6u6/Ork9vztk/n0b1OPS/q1DDpShZSTV8jjYxbz5DdLMIObTmzHNQPVj1tERETij6qTAF07sA3jl2zij+/N4cjmdejUJCPoSBVGyX7cZ/dowm3qxy0iIiJxTIV3gBISjAcv7BEa3/vFqbx7w7GkV9Nbsj/uTv+fDmVzy+PJT29M92a1eOznvejVUl1KYun4448H4Ouvv46754xmucPJv691a9euDcDWrVsPe/ty6PacwFXRuu9V1L+Xipq75Oe1oqiov2/Zm6q8gNVPr8a/hhzJJU+N5463fuDBC3vo7N8IxcXOwg07Gb9kExOWbmLCks1s6nwRifk7+McF3TmnR1MSEvT7EhERkfinwjsO9G9Tj5tObM+Dny+gf5t6XNinRdCRAlNc7MxfvyNUaC/ZzISlm9iyKzTyS5NaqQxsn8mY158ibdN8Bv9jSMBpRURERKKnwjtOXH9CWyYs3cQf3p1NzdRkBrSrT83Uyn9Z+eJiZ+667UxYspnxSzYxcdlmtoYL7WZ1qnNCx4Yc1bouR7WuR7M61TEzjn9sVsCpRURERA6eCu84kZhg/HNID855ZBzXvTCVxASja9NaHNO2Hke3qU+vlnVITU4MOmaZ2LargPd/WMNX87KZtGwz23aHCu0WdWtw8hENOap1Pfq1rkuzOjUCTioiIiJSdlR4x5EGNVP58tfHM3XFFr5fvInvFm/i8TFLePSrxaQkJdCrRR2OblOPo9vWo1uz2iQnVpxh2AuKihkzP5s3p63i8zkbyC8qpkXdGpzWuRFHtalLv1b1NCKJiIiIVGoqvONManIiR7epz9Ft6nMLsDOvkElLNzNu0Ua+W7yJv3+2gL9/BmkpifRtVTe0bNt6HNEoI+5OMnR3Zq/ZzhtTV/Hu9DVsysmnXloKlxzVgnN7NqNzkwydSCoiIiJVRtwU3mZ2BPAo0AvIBn7j7m+Vsmxr4CFgIJAHjHT3W2OVNZbSqyUxqGMDBnVsAMDmnHzGL9nEd4tDhfhX8+cCUKdGMn1b1aVr01p0apJBp8a1aJhRLZDCdv32XN6etpo3p65m/vodpCQmcFKnBgw+shkDO2RWqJZ6ERERkbISF4W3mSUB7wCPAycTKqjfM7Mj3X1BiWVTgM8IFekXAkVA+9gmDk7dtBTO6NqYM7o2BmDttt0/dkuZtGwzn8xev9eynRpnhAvx0M/W9dNIKofCd3d+EZ/OWccbU1czdmE2xQ49W9TmvnO6cFa3JtSqUflPFBURERHZn7govIGOQBPgQQ9d+eBLMxsHDAXuLLHs5cAad/9HxLSZMUkZhxrXqs7gns0Y3LMZADtyC5i3bgdz1mwP3dZuZ9R3y8gvLAagWlICHRvV3KsY79gog7SIC/cUFzuFxU5hcTGFxU5RUehxUbFTUFRMUfF/H2fvyOOd6av5aNY6duYV0rR2da4f1Jaf9WxGq/ppgfxOREREROJRvBTe++oPYUCXfUw/ClhmZh8BfYBZwA3u/kM55qswaqYm0yerLn2y6v44raComCXZOcxZu+3HYvzjWet4aeJKAMxCBfmegvpgL/qWXi2JM7o2YnDPZvTNqht3fc1FRERE4kG8FN7zgA3Ab8zsQWAQoe4mX+1j2Wbh+T8FvgBuAt4xs47unh+5oJkNB4aHH+40s/mHkK0+sPEQ1osXMck/G/hb+W1+n6+hAp2YWdH/hiCO3oNon7PEcmWef1/rlpxWhr+flmW1oXhWVvtsM6uInzflji3ljq2K/D14KNlL3WebH2zzZjkxs27Aw4RauScTOsEyz92vLLHcO0CGuw8KPzZgK3Ccu88oh1yT3b13WW83Vip6fqj4r6Gi54eK/xoqen6JXkV9r5U7tpQ7tipqbij77HEzvIS7z3T3ge5ez91PBVoDE/ex6EwgPv5bEBERERGJUtwU3mbWzcxSzayGmf0aaAyM2seio4GjzOwkM0sEbiZ0CGBuzMKKiIiIiBykuCm8CY1gspZQX+8TgZPdPc/MWpjZTjNrAeDu84GfExp6cAtwNvDTkv27y9CT5bTdWKno+aHiv4aKnh8q/muo6PklehX1vVbu2FLu2KqouaGMs8dNH28RERERkcosnlq8RUREREQqLRXeIiIiIiIxUGUKbzO73swmm1memY0qMe8qM1sU7kv+sZk1iZh3t5kVhOftubWOmJ9lZl+Z2S4zm2dmJ8VT/vD8nmb2TXj+ejO7Kdb5D+c1mNlHJX7/+Wb2Q8T8uH4PzKyamT0e/t1vNrP3zKxprPMf5muobWbPmtmG8O3uEuvG6j2oZmZPm9lyM9thZtPM7PSI+SeGn39XOE/LiHlmZn81s03h2wNm/x1oO5bvg5Q9M6trZm+ZWU747+PioDNFY3+fyXh1oM9hPDOz0Wa21sy2m9kCM7sq6EwHw8zamVmumY0OOku0zOzrcOY93+GHMj5/IMxsiJnNDe9XFpvZgMPdZpUpvIE1wH3AyMiJZjYQuJ/QSZp1gaXASyXWfcXd0yNuSyLmvQRMA+oBvwdeN7PMeMlvZvWBj4EnwhnbAp8GkP+QX4O7nx75+we+A14L4DUc6t/QTUB/oBvQhNC48w8HkB8O/TU8CNQAsoC+wFAzuyJifqxeQxKwktAFtmoBdwKvhovm+sCb4Wl1CV0P4JWIdYcD5wDdCb0XPwGuCeA1SPl4FMgHGgKXAI+ZWedgI0Vln5/JOFfq5zDIUFH6M5Dl7hmELsR3n5n1CjjTwXgUmBR0iENwfcT3eIegw0TDzE4G/gpcAdQEjgOW7HelaLh7lboR2sGNinj8f8CjEY+bEBonvE348d3A6FK21R7IA2pGTPsWGBFH+e8Hno+X/IfyGkqsmwUUAa0q0HvwGPBAxPwzgfkV6T0gNGRnn4j5twPfBvkaIp5rJnAuocL6u4jpacBuoGP48XfA8Ij5VwLj4+E16HbYfwNphIru9hHTngf+EnS2g3gNe30mK9ptz+cw6BwHmbkDodHULgg6S5R5hwCvsp+6JB5vwNfAVUHnOITc3wFXlvV2q1KLd2ksfIt8DKEraO5xVriLwGwzuzZiemdgibvviJg2Izw9Vg6U/yhgs5l9F+4i8J6Fh2YkPvJDdO/BHpcSKviWhh/Hw2s4UP6ngWPMrImZ1SDUGvdReF485Ifo3oOS8/fMC+w1mFlDQkXz7PDz/Xj1WnfPARZH5NhrfomM8fI+yKFpDxS5+4KIaXr/YqTE5zDumdm/zWwXMI9Q4f1hwJEOyMwygHuAW4LOcoj+bGYbzWycmR0fdJgDsdB1YnoDmeEumKvM7BEzq36421bhHfrAXWChC/hUB+4i1NJXIzz/VeAIIBO4GrjLzC4Kz0sHtpXY3jZChyRi5UD5mwGXEeru0IK9uxDEQ3448GuIdCl7X1gpHl7DgfIvAFYAq4HthP6e7gnPi4f8cODX8DHwWzOraWZtgWER8wJ5DWaWDLwAPOvu86LIUXL+NiA93M87Xt4HOTR6/wKyj89h3HP36wj9bQwg1D0tL9hEUbkXeNrdVwYd5BDcRuhq5E0JjYn9npm1CTbSATUEkoHzCP2d9ACOBO443A1X+cLb3b8A/gC8ASwHlgE7gFXh+XPcfY27F7n7d8C/CL0RADuBjBKbzAivHxMHyk/oUPtb7j7J3XOBPwJHm1kt4iA/RPUaADCzY4FGwOsRkwN/DVHkfwxIJdR3OI3Qjn5Pi3fg+SGq13Ajob+lhcA7hP552zMv5q/BzBIIdSXIB66PMkfJ+RnATg8dU4yL90EOmd6/AJTyOawQwt/pYwk1Tl17oOWDZGY9gJMInWtT4bj7BHff4e557v4sMA44I+hcB7A7/PNhd1/r7huBf1AGuat84Q3g7o+6ezt3b0Co8EgCZpW2OP895D4baG1mka0q3Ynx4bYD5J9JKPOPi4d/GnGSH6J+Dy4D3nT3nRHT4uI1HCB/d0J9Nze7ex6hEyv7hk8GjIv8sP/XEM5+ibs3cvfOhPYdE8OrxvQ1hFuonybUInGuuxdE5OgesVwa0CYix17zS2SMm/dBDskCIMnM2kVM0/tXjvbzOaxokgjtJ+LZ8YTOb1phZuuAXwPnmtnUIEMdhsg6Ki65+xZCjUtlfpXJKlN4m1mSmaUCiUCimaXumWZmXSykBaHDIP8K/9Ixs7PNrE54fl9CLX/vAIT7E04H/hDezs8IjZbwRrzkB54BfmZmPcKHBO8Exrr71ljmP8zXQLj7w/ns3c2korwHk4BLzaxW+D24Dljj7hsryntgZm3MrJ6ZJVpo2LDhhE4Gi+l7EPYYoe46Z7n77ojpbwFdzOzc8Gu8C5gZcfj7OeBXZtbUQkMl3kL47ymA1yBlKNyf/03gHjNLM7NjCI3Q83ywyQ6stM9k0LmiUNrnMG6ZWQMLDQ+XHt6XnQpcBHwZdLYDeJLQPwc9wrfHgQ+AU4OLFB0LDUV7asR3zSWERgf5JOhsUXgGuCH8d1MHuBl4/7C3GuQZo7G8EToL2Evc7gZqE2oVzgHWERpqKDFivZeATYQOZc4Dbiyx3SxCZ+zuBuYDJ8VT/vC61xLqX7wFeA9oHuv8ZfAaLiLUBcL2sd24fg8IdTF5AdhAaCjBsUDfivQeABcQGvZsF6EC9dSA3oOW4cy5hD6Te26XhOefROhzujucJytiXQMeADaHbw9E/j3F8n3QrVz+NuoCb4f/hlcAFwedKcrc+/xMBp3rAJn3+zmM1xuhc7XGhPfD24EfgKuDznWIfzMVYlST8O98EqFuX1uB8cDJQeeKMnsy8O9w7nXAQ0Dq4W7XwhsXEREREZFyVGW6moiIiIiIBEmFt4iIiIhIDKjwFhERERGJARXeIiIiIiIxoMJbRERERCQGVHiLiIiIiMSACm+ROGJmx5vZqgMvKSIie5jZ12Z2VQDPu9PMWsf6eaXiUuEtlY6ZvWBmI0tMG2hmm8yscRk9x/Fm5mb2Zonp3cPTvy6L5xERqUzMbJmZ7Q4XrOvN7BkzSw86F+y74SN85cWRZrbOzHaY2QIzu23PfHdPd/clsU8rFZUKb6mMbgTOMLOTAcKXY/4PcIu7rz3cjUdczjkbONrM6kXMvgxYcLjPISJSiZ3l7ulAT6APcEfkzIh9bDx4EEgHjgBqAT8FFgeaSCo0Fd5S6bj7JuAG4EkzSwP+QGhHOc/MvjOzrWY2w8yO37OOmV1hZnPDLRpLzOyaiHnHm9kqM7vNzNYBz4Rn5RO6RPWQ8HKJhC6t/kJkHjP7l5mtNLPtZjbFzAZEzKtuZqPMbIuZzSH0JRS5bhMze8PMss1sqZndWEa/JhGRQLn7auAjoEv4SOEvzGwhsBDAzK42s0VmttnM3jWzJnvWNbOTzWyemW0zs0cAi5h3t5mNjnicFd5+Uvhx3XBL+5rwvvft8HfFR0CTcGv8zvDz9QFedPct7l7s7vPc/fWIbbuZtQ3vq3dG3HaZmUcsNyz8HbPFzD4xs5bl9XuV+KbCWyold38NmAK8BAwHRgAfAPcBdYFfA2+YWWZ4lQ3AT4AM4ArgQTPrGbHJRuH1Woa3t8dzwKXh+6cCs4E1JeJMAnqE138ReC3cCg+hfwrahG+nEmoxB8DMEoD3gBlAU+BE4GYzO/WgfhkiInHIzJoDZwDTwpPOAfoBnczsBODPhBozGgPLgZfD69UH3iDUUl6fUMPKMQfx1M8DNYDOQAPgQXfPAU4H1oS7j6S7+xpgPPCncONMu9I26O6R66UDb0XkPQe4HRgMZALfEvpukipIhbdUZr8ATgDuIdQq/aG7fxhutfgMmExop4+7f+Duiz1kDPApMCBiW8XAH9w9z91375no7t8Bdc2sA6EC/LmSIdx9tLtvcvdCd/87UA3oEJ59AfAnd9/s7iuBhyJW7QNkuvs97p4f7kf4n/BrERGpqN42s63AWGAMcH94+p/D+8LdwCXASHef6u55wO+A/maWRWi/PcfdX3f3AuCfwLponjh8ns/pwIhwK3ZBeJ9fmhsIHcW8HpgTboE//QDPcRvQERgWnnRN+LXNdffC8OvtoVbvqkmFt1Ra7r4e2EioFbolcH64m8nW8E7/WEItKZjZ6WY2PnxIcyuhHXv9iM1lu3tuKU/1PKGd8iBCrRx7MbNbwocYt4W3XSti202AlRGLL4+435LQYc/IzLcDDaP9HYiIxKFz3L22u7d09+siGjMi94VNiNgfuvtOYBOho3977Tfd3Uusuz/Ngc3uviWahd19t7vf7+69gHrAq4SOWtbd1/Lhovym8Gvc87paAv+K2I9vJtQ1pmmUmaUSiacTGETK00rgeXe/uuQMM6tG6LDlpcA77l5gZm8T0WcQ8JLrRXgeWAQ85+67zP67Wrg/922EuonMdvdiM9sSse21hL4IZocftyiReam7l3p4U0SkEoncz64hVLACEO6DXQ9YzX/3m3vmWeRjIIdQV5I9GkXcX0noKGVtd9+6n+f/33Du283sfkKt760IFdA/Ch/5fBYYHD6CGfmcf3L3vc7/kapJLd5SVYwGzjKzU80s0cxSwydNNgNSCHX/yAYKwy0Wp0S7YXdfCgwEfr+P2TWBwvC2k8zsLkL9yPd4FfidmdUJZ7khYt5EYHv4pM7q4dxdzGyvEzBFRCqhF4ErzKxHuHHkfmCCuy8jdL5OZzMbHD5h8kb2Lq6nA8eZWQszq0WoUAYgPLLVR8C/w/vdZDM7Ljx7PVAvvA4AZnanmfUxs5TwuTk3AVuB+ZFhzSwDeAe4w93HlngtjxPaz3cOL1vLzM4/9F+NVGQqvKVKCLc+nE2oq0Y2oRaI3wAJ7r6D0I77VWALcDHw7kFuf2z4RJySPiG0k19A6LBpLnsfEv1jePpSQv3Kn4/YZhFwFqETM5cS6jbzFKGuKiIilZa7fwHcSeho5FpCJ6APCc/bCJwP/IVQ95N2wLiIdT8DXgFmEjrJ/v0Smx8KFADzCJ1Yf3N4vXmETnpcEu4W0oRQK/gzhPa/a4CTgTPDXV8i9SR07s4/Ikc3CW/3LeCvwMtmth2YRaifuVRBFuoaJSIiIiIi5Ukt3iIiIiIiMaDCW0REREQkBlR4i4iIiIjEgApvEREREZEYUOEtIiIiIhIDKrxFRERERGJAhbeIiIiISAyo8BYRERERiQEV3iIiIiIiMfD/pp00IS4EiAEAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["from sklearn.inspection import plot_partial_dependence\n","\n","fig,ax = plt.subplots(figsize=(12, 4))\n","plot_partial_dependence(m, valid_xs_final, ['YearMade','ProductSize'],\n"," grid_resolution=20, ax=ax);"]},{"cell_type":"markdown","metadata":{"id":"Z1lpFNVF195C"},"source":["Looking first of all at the `YearMade` plot, and specifically at the section covering the years after 1990 (since as we noted this is where we have the most data), we can see a nearly linear relationship between year and price. Remember that our dependent variable is after taking the logarithm, so this means that in practice there is an exponential increase in price. This is what we would expect: depreciation is generally recognized as being a multiplicative factor over time, so, for a given sale date, varying year made ought to show an exponential relationship with sale price.\n","\n","The `ProductSize` partial plot is a bit concerning. It shows that the final group, which we saw is for missing values, has the lowest price. To use this insight in practice, we would want to find out *why* it's missing so often, and what that *means*. Missing values can sometimes be useful predictors—it entirely depends on what causes them to be missing. Sometimes, however, they can indicate *data leakage*."]},{"cell_type":"markdown","metadata":{"id":"BJ25KzJL195C"},"source":["### Data Leakage"]},{"cell_type":"markdown","metadata":{"id":"nNiZ6BKN195C"},"source":["In the paper [\"Leakage in Data Mining: Formulation, Detection, and Avoidance\"](https://dl.acm.org/doi/10.1145/2020408.2020496), Shachar Kaufman, Saharon Rosset, and Claudia Perlich describe leakage as:\n","\n","> : The introduction of information about the target of a data mining problem, which should not be legitimately available to mine from. A trivial example of leakage would be a model that uses the target itself as an input, thus concluding for example that 'it rains on rainy days'. In practice, the introduction of this illegitimate information is unintentional, and facilitated by the data collection, aggregation and preparation process.\n","\n","They give as an example:\n","\n","> : A real-life business intelligence project at IBM where potential customers for certain products were identified, among other things, based on keywords found on their websites. This turned out to be leakage since the website content used for training had been sampled at the point in time where the potential customer has already become a customer, and where the website contained traces of the IBM products purchased, such as the word 'Websphere' (e.g., in a press release about the purchase or a specific product feature the client uses).\n","\n","Data leakage is subtle and can take many forms. In particular, missing values often represent data leakage.\n","\n","For instance, Jeremy competed in a Kaggle competition designed to predict which researchers would end up receiving research grants. The information was provided by a university and included thousands of examples of research projects, along with information about the researchers involved and data on whether or not each grant was eventually accepted. The university hoped to be able to use the models developed in this competition to rank which grant applications were most likely to succeed, so it could prioritize its processing.\n","\n","Jeremy used a random forest to model the data, and then used feature importance to find out which features were most predictive. He noticed three surprising things:\n","\n","- The model was able to correctly predict who would receive grants over 95% of the time.\n","- Apparently meaningless identifier columns were the most important predictors.\n","- The day of week and day of year columns were also highly predictive; for instance, the vast majority of grant applications dated on a Sunday were accepted, and many accepted grant applications were dated on January 1.\n","\n","For the identifier columns, one partial dependence plot per column showed that when the information was missing the application was almost always rejected. It turned out that in practice, the university only filled out much of this information *after* a grant application was accepted. Often, for applications that were not accepted, it was just left blank. Therefore, this information was not something that was actually available at the time that the application was received, and it would not be available for a predictive model—it was data leakage.\n","\n","In the same way, the final processing of successful applications was often done automatically as a batch at the end of the week, or the end of the year. It was this final processing date which ended up in the data, so again, this information, while predictive, was not actually available at the time that the application was received.\n","\n","This example showcases the most practical and simple approaches to identifying data leakage, which are to build a model and then:\n","\n","- Check whether the accuracy of the model is *too good to be true*.\n","- Look for important predictors that don't make sense in practice.\n","- Look for partial dependence plot results that don't make sense in practice.\n","\n","Thinking back to our bear detector, this mirrors the advice that we provided in <>—it is often a good idea to build a model first and then do your data cleaning, rather than vice versa. The model can help you identify potentially problematic data issues.\n","\n","It can also help you identify which factors influence specific predictions, with tree interpreters."]},{"cell_type":"markdown","metadata":{"id":"ie29A5Vu195D"},"source":["### Tree Interpreter"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lXzwarHS195D"},"outputs":[],"source":["#hide\n","import warnings\n","warnings.simplefilter('ignore', FutureWarning)\n","\n","from treeinterpreter import treeinterpreter\n","from waterfall_chart import plot as waterfall"]},{"cell_type":"markdown","metadata":{"id":"-6mN36En195D"},"source":["At the start of this section, we said that we wanted to be able to answer five questions:\n","\n","- How confident are we in our predictions using a particular row of data?\n","- For predicting with a particular row of data, what were the most important factors, and how did they influence that prediction?\n","- Which columns are the strongest predictors?\n","- Which columns are effectively redundant with each other, for purposes of prediction?\n","- How do predictions vary, as we vary these columns?\n","\n","We've handled four of these already; only the second question remains. To answer this question, we need to use the `treeinterpreter` library. We'll also use the `waterfallcharts` library to draw the chart of the results.\n","\n"," !pip install treeinterpreter\n"," !pip install waterfallcharts"]},{"cell_type":"markdown","metadata":{"id":"YBakmdIg195E"},"source":["We have already seen how to compute feature importances across the entire random forest. The basic idea was to look at the contribution of each variable to improving the model, at each branch of every tree, and then add up all of these contributions per variable.\n","\n","We can do exactly the same thing, but for just a single row of data. For instance, let's say we are looking at some particular item at auction. Our model might predict that this item will be very expensive, and we want to know why. So, we take that one row of data and put it through the first decision tree, looking to see what split is used at each point throughout the tree. For each split, we see what the increase or decrease in the addition is, compared to the parent node of the tree. We do this for every tree, and add up the total change in importance by split variable.\n","\n","For instance, let's pick the first few rows of our validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"53Vbpb2g195E"},"outputs":[],"source":["row = valid_xs_final.iloc[:5]"]},{"cell_type":"markdown","metadata":{"id":"AwEEtF99195E"},"source":["We can then pass these to `treeinterpreter`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7u99rbfQ195F"},"outputs":[],"source":["prediction,bias,contributions = treeinterpreter.predict(m, row.values)"]},{"cell_type":"markdown","metadata":{"id":"4efUJdLD195F"},"source":["`prediction` is simply the prediction that the random forest makes. `bias` is the prediction based on taking the mean of the dependent variable (i.e., the *model* that is the root of every tree). `contributions` is the most interesting bit—it tells us the total change in predicition due to each of the independent variables. Therefore, the sum of `contributions` plus `bias` must equal the `prediction`, for each row. Let's look just at the first row:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"r6x0ujz4195F","outputId":"6c2477e7-ad2c-45c0-8b13-cd5996febf58"},"outputs":[{"data":{"text/plain":["(array([10.01216396]), 10.104746057831765, -0.0925820990266335)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["prediction[0], bias[0], contributions[0].sum()"]},{"cell_type":"markdown","metadata":{"id":"szwwq6-K195G"},"source":["The clearest way to display the contributions is with a *waterfall plot*. This shows how the positive and negative contributions from all the independent variables sum up to create the final prediction, which is the righthand column labeled \"net\" here:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OPVXCYTD195G","outputId":"1cfeca6e-edfb-4fd2-be5d-f434fb911d80"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAaQAAAEUCAYAAABkhkJAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABIMUlEQVR4nO2debhe0/XHP9/MkZCBiKkhRAxBaGMoItGoWVFTCU0IKTG3za9mRZVSWrMiRELNcwltkZIiFVM0rcbUpEKIJEIic9bvj7Xf3HOvO765977nJuvzPOd5z9l7n332Pue8Z+1h7bVkZgRBEARBqWlW6gIEQRAEAYRACoIgCHJCCKQgCIIgF4RACoIgCHJBCKQgCIIgF4RACoIgCHJBCKQgCIIgFxQlkCR1lvSIpHmSpkg6qop0W0l6RtLnkr6x4KmmfCQNkPSOpK8lPS9pw2LKGwRBEOSfYntINwCLgK7AQOAmSb0qSbcYuB8YUtd8JK0FPAycD3QGJgD3FVneIAiCIOeorpYaJLUDZgNbmdnkFDYamGZmZ1VxTg/gXTNTbfORNBQYbGY7Z9J/DmxnZu9UV8a11lrLNtpoozrVKwiCIGh4Xnvttc/NrEtlcS2KyK8nsLQgRBJvAf3qOZ9e6RgAM5sn6f0U/g2BlATYUIBu3boxYcKEOhYnCIIgaGgkTakqrpghu/bAnAphc4DV6zmfOl3HzG4xsz5m1qdLl0qFbxAEQZBjihFIc4E1KoStAXxVz/nU13WCIAiCJkAxAmky0ELSppmw3sCkes5nUjoGls8hbVLEdYIgCIImQJ0FkpnNw7XfLpbUTtIuwIHA6Ipp5bQBWqXjNpJa1zKfR4CtJB2S8rgAmFiTQkMQBEHQNClW7XsY0Bb4DLgHOMnMJknqJmmupG4p3YbAfMp6NfOB/9SUD4CZzQAOAS7FtfF2BH5UZHmDIAiCnFOMlh1mNgs4qJLwqbgyQuH4v4Aqpqspn0z8X4HNiyljEARB0LQI00FBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLihKIEnqLOkRSfMkTZF0VDVpz5Q0XdIcSbdLal3bfCQNkPSOpK8lPS9pw2LKGwRBEOSfYntINwCLgK7AQOAmSb0qJpK0F3AWMADYCNgYuKg2+UhaC3gYOB/oDEwA7iuyvEEQBEHOqbNAktQOOAQ438zmmtk44HHgmEqSDwJGmNkkM5sNXAIMrmU+PwQmmdkDZrYA+CXQW9LmdS1zEARBkH9aFHFOT2CpmU3OhL0F9KskbS/gsQrpukpaE+hWQz690jEAZjZP0vsp/J2KF5I0FBgK0KVLF4YOHUqvXr3o27cvN998Mx06dGD48OGcd955AFx11VWcffbZLFq0iDPPPJNHH32UDz/8kMMPP5yPTr6EcXOm8901urJh6/bcO+N9urVuz2FdunPVR2/TXM24svsO/PSDVwC4cMNvc93Hk5i1eCFD1tmMf3w1g7fnzWLvThsA8PTsj9i6XWd2WL0LI6b/h84tW3Pqer24pPfqAPz+97/nZz/7GUuXLmX48OHcd999TJ06lSOPPJIpU6bw0ksv0bdvX9Zdd13uv/9+unfvzkEHHcTvfvc7WrVqxWWXXcbPfvYzAH71q19x5ZVXMmfOHE488URefPFFJk2axAEHHMDChQv585//zHbbbcd2223H7bffTpcuXTjppJO4+OKLAbjuuus49dRTATjrrLMYPXo006ZN4+ijj+bdd99l/Pjx9O/fnzXXXJOHHnqIHj16sO+++3LttdfStm1bLrroIv7v//4PgMsuu4xLL72UuXPncvLJJ/Pss8/yzjvvcNBBB/HVV1/x7LPP0qdPH3r16sWdd97JOuusw5AhQ7j00ku/UZZzzz2XESNGMH36dAYNGsSkSZOYMGECAwYMYPXVV+fRRx9l8803Z8CAAdxwww20b9+ec889l7PPPhuAK664ggsvvJD58+dz2mmn8dRTT/Hee+9xyCGHMHPmTMaOHcuOO+7Ipptuyl133cX666/PMcccw+WXX/6NslxwwQXcdNNNzJgxg+OOO4433niDN954gz333JPWrVvzxBNPFP3uffLJJ7z44ovsvPPObLjhhtxzzz1069aNI444giuvvJLmzZtz1VVXccYZZwBw0UUXcc011zBr1ixOOOEExo8fz8SJE9lnn30AGDNmDNtssw077rgjt956K507d+b000/nwgsvjHdvJXv3TpvamnkvPkGrjXvRZtu+fPnwzTRr34GORw9n1s3+7q11+lXMvPFsbPEiOh55JnP/9ihLPv6Q9nsczpLPP2HBmy/SZpudabHOhsz98z206NqN9t8/gi/uuhKaNWetM65iwOgVe/eqQ2ZWbYJvnCD1BR4ws3UyYScAA82sf4W07wMnm9nT6bglPkTXHfhWdflIGgHMMLOzMvF/B241s5HVlbFPnz42YcKEOtUry5K+Q4o+ty60eHFEo1wnCIKVn01fbZzrvLv9ip0v6TUz61NZXDFzSHOBNSqErQF8VYu0hf2vapFPXa4TBEEQNHGKEUiTgRaSNs2E9QYmVZJ2UorLpvvUzGbWIp9y56Y5p02quE4QBEHQxKmzQDKzebj228WS2knaBTgQGF1J8lHAEElbSuoEnAeMrGU+jwBbSTpEUhvgAmCimX1j/igIGoqRb45k5xE7s8vtu/D6J6+Xi3vpfy+x9U1b0+ZXbfjoy4+Wh//4kR/Tf2R/+o/sT6ffdOKJ/zwBQPdrui8Pv/SFSxu1HkHQFChGqQFgGHA78BkwEzjJzCZJ6gb8C9jSzKaa2dOSrgCeB9oCDwEX1pQPgJnNkHQIcD1wFzAe+FGR5Q2COjN7/myuHX8trxz/CtO+nMYxjxzDuOPGLY/v1aUXLw95mf3/uH+580YdPAqARUsXsdn1m/H9Tb4PQHM1Z+zgsY1W/iBoahQlkMxsFnBQJeFTgfYVwq4Grq5LPpn4vwKh5h2UhPHTxtO3W19aNW9F907dmbtoLguXLKR1C1/b3aFNh2rP/9PkPzGg+wDatGgDgGHsfufutG7emsv3uJxt19m2oasQBE2KYntIQbDSM2v+LDq17bT8uEObDsyaP4t1V1+3VuffNfEuTt3h1OXH448fz1qrrcVb09/iqIePYtKwmA4Ngixhyy4IqqBz2858seCL5cdzFsyhc9vOtTr3iwVfMPHTifTbqGx53lqrrQVA73V6065lO2bPn12v5Q2Cpk4IpCCogh3X35FxU8exeOlips6ZSvtW7ZcP19XE/ZPu55AtDqGZ/C+2cMlCFixZAMC0L6fxxYIv6NimY0MVPQiaJDFkFwRV0KltJ4ZtP4x+I/shiWv2voY3p7/JX97/C8N3Gc7kmZMZ9uQw3vr0LY586EiO2uooTtr+JMCH627Y94bleX027zMOvPdA2rVqx9JlS/nD/n9AUqmqFgS5pM6WGpoCYakhCIJVjVXVUkMQBEEQ1DshkIIgCGqgugXSC5YsYODDA+l7R18GPjxw+Vzh14u/5vjHj2fAqAH0H9l/uRLLcY8dx7pXrcvxjx/f6PXIOyGQgiAIqqGwQHrs4LHcdfBdnDbmtHLxI98cyeZrbs6Lx77IZmtuxsg3RwJw0diLOLzX4Tz742cZO3js8iUEl+x+Cfccck9jV6NJEAIpCIKgGqpaIF1g7H/Hsn9Pt9ZxQM8DeGHKCwA8++GzPP3e0/Qf2Z8Lny8zULP+Gus3bgWaEKFlFwRVsOWM7zb4Nf7V5eV6yScUcRqOmhZIZ+M7tunIzPkzAXj7s7f5Zf9fctWeV3H4g4fz9HtPs3ePvRu/Ak2I6CEFQRBUQ00LpLPxcxaWxXVu25m9e+yNJPbaZC8mfjqxMYvdJAmBFARBUA01LZDut2E/nnr3KQCeevcp+m3o1jn6b9SfCR/78pMJH0+gR+cejV/4JkYM2QVBEFRDTQukB287mOMeP46+d/RlgzU24I4D7wDg8gGXc8ITJ7BgyQI27bwpB21+EADnPXceY94bw/S509lj1B489qPHaNeqXQlrmB9iYWwlxHh8ADGHVBnxzuaXWBgbBEEQBPVECKQgCIIgF4RACoIgCHJBUQJJ0pmSpkuaI+l2SVXa5Jd0i6T/SFomaXBd8pLUWdIjkuZJmiLpqGLKGwRBEOSfOmvZSdoLOAv4HvAx8AhwUQqrjLeA+4DfFJHXDcAioCuwLfCkpLfMLFxtBkHQ4DSGYgvUj3LLiiob5IFiekiDgBFmNsnMZgOXAIOrSmxmN5jZs8CCuuQlqR1wCHC+mc01s3HA48AxRZQ5CIIgyDnFrEPqBTyWOX4L6CppTTObWV95Ad2ApWY2uUJ8PypB0lBgKEC3bt3qWIwgaNo0JXXsUFEPqqKYHlJ7YE7muLC/ej3nVTGuEF/pdczsFjPrY2Z9unTpUkRRgiAIglJSo0CSNFDS3LSNAeYCa2SSFPa/KuL61eVVMa4QX8x1giAIgpxTo0Ays7vNrH3a9gEmAb0zSXoDnxYxXEcNeU0GWkjatEJ8KDQEQRBUxeuvwy67wM47w8iRlaf59a89zfe+B//9r4d9+insvTfsvjsMGgQLk4uN4cOhXz/YYQffb0CKGbIbBQyRtKWkTsB5wMiqEktqJakNIKClpDaSCtetMi8zmwc8DFwsqZ2kXYADgdFFlDkIgmDV4NRT4a67YOxYuPZamD27fPw778Bzz8Hf/w6//CWclZSaL7sMBg+G55+HLbeEUaM8/NJL4W9/g3/8w7dJDdcnqLNAMrOngSuA54EpaVvufUrSGEnnZE75MzAf2Bm4Je3vVpu8gGFAW+Az4B7gpFD5DoIqKLZlXODCC6FHxiL1jTdCz57lw4J8s3AhzJsH3btDq1bQty+8WsHI3dixsN9+vr/bbvDWW74/eTL0SSbmdtjBBRN4PgCLF0O7drDeeg1W/KIWxprZ1WbW1czWMLNjzWxhJm4fM/t15ri/manCNraWec0ys4PMrJ2ZdTOzPxZZzyBY+Sm2ZQw+XDN5cvn0hxzSoK3hoAGYORM6diw77tjRw7LMmgWdyhwOsnSp/269NTz9tO8/9ZSnK3DqqbDxxrDuutChQ0OUHAjTQUGwcrAiLWOASy6Bs88un75rV2jZskGLHdQT118P/fvDBRfAnIxy8pw50Llz+bSdO8MXX5QdN2/uv+ecA+PHe+95yZLyPaHrroMPP4TPPy8TWg1ACKQgWBlYkZbxu+/C3LmwzTYNXcqgoTjlFG9w3HYbrLYaTJ3qQ2zjxvnwW5Z+/WDMGN9/6SXonfTKOnSA0aO9F922LRx6qIcvSDYNWrTwIbvVVmuwaoSDviBoylx/PTz4oM/zFNsy/uUv4eKLG7qkQWNxzTVw5JFgBsOGlTVCBg6Eu++GLbaAXXf1ucRWrWBEWkD83HPeU27WDAYMgH33LTtv5kwXcLvu6j2xBiIEUhA0ZU45xTfwD8zUqT7OP26cKylk6dcPzjjDt2zL+IMP4OSTff+TT+C003wOKmia9Onj84QVufvusv3zz/cty/e+51tFHnqofstXDSGQgmBlodiW8csZw549epQJowcegD/8AT7+GPbYw3tRO+/cuHUKVilCIAXBykKxLeMs771Xtn/YYb4FQSMRSg1BEARBLogeUhAEjUpTssJdH36KgtoTPaQgCIIgF4RACoIgCHJBCKQgCIIgF4RACoIgCHJBCKQgCIIgF4RACoKgNBTrLmPkSDci27+/b9OmefjgwbDddh4W66eaJKH2HQRBaSi4y1h/fdhpJzjwwPLGX7PuMl54wd1l3Huvxw0ZAued9808r7vOrVEETZLoIQVB0PisqLuMUaNc8Jx/PixbVhb+0596Xvfd1+BVCOqfogSSpDMlTZc0R9LtklpXka6npMckzZA0S9IzkjarbV6SOkt6RNI8SVMkHVVMeYN8MfLNkew8Ymd2uX0XXv/k9XJxC5YsYODDA+l7R18GPjyQBUvc9P3Xi7/m+MePZ8CoAfQf2Z/Z89353B6j9qD/yP70uaUP97x9T6PXJSiSFXGXceCB8O9/u1vtKVPKTCP99rfuYvuxx+Dyy91obNCkqLNAkrQXcBYwANgI2Bi4qIrkHYHHgc2ArsA/gMfqkNcNwKJ07kDgJkm96lrmID/Mnj+ba8dfy9jBY7nr4Ls4bcxp5eJHvjmSzdfcnBePfZHN1tyMkW+OBOCisRdxeK/DefbHzzJ28Fg6tfUP1VMDn2Ls4LE8N+g5znnunMauTlBX6sORXKdOvt+8OfzoRzBhgoevtVbZed//fvkeVdAkKKaHNAgYYWaTzGw2cAkwuLKEZvYPMxuRXJEvBn4HbCZpzZryktQOOAQ438zmmtk4XLgdU0SZg5wwftp4+nbrS6vmrejeqTtzF81l4ZLlXusZ+9+x7N9zfwAO6HkAL0x5AYBnP3yWp997mv4j+3Ph82VuFVo1bwXAvEXz6NUl2iq5pz4cyWWF1HPPwWablQ9ftMjnnXr2bMCKBA1BMQKpF5BterwFdM0ImerYDZhuZoW+eXV59QSWmtnkCvGVfnUkDZU0QdKEGTNm1LIqQWMza/6s5b0bgA5tOjBr/qxK4zu26cjM+f6qvP3Z23yv+/d4ftDz/Ovzf/H0e+5GeemypfQb2Y+tb9qaAzc7sBFrEqwwBXcZ/fp9010GlHeXce65rnEHcOWVsOOOHj5rFpxwgocfcYSH7bqr7/eKBkpToxgtu/ZApq+9fH91YOY3kzuSNsCH4H5ay7wqxhXiV68sfzO7BbgFoE+fPlZtDYKS0bltZ75Y8MXy4zkL5tC5bedK4+csLIvr3LYze/fYG0nstcleTPx0Inv32JvmzZrzt8F/Y+bXM9n+1u05vNfhdGjToTGrFBRLse4yLr3Ut4o880z9li9odGrsIUkaKGlu2sYAc4E1MkkK+19Vk0cX4M/AjWaWnXmuLq+KcYX4Kq8T5J8d19+RcVPHsXjpYqbOmUr7Vu1p3aJMJ6bfhv146t2nAHjq3afot2E/APpv1J8JH/tcwYSPJ9Cjcw8WL13MMnMNq3at2tGmRRvatGjTyDUKgqC+qLGHZGZ3A8ubLJL+CPQG7k9BvYFPM8Nw5ZDUCRdGj5tZxWbNpKrykrQAaCFpUzN7NxM/qVY1C3JJp7adGLb9MPqN7Ickrtn7Gt6c/iZ/ef8vDN9lOIO3Hcxxjx9H3zv6ssEaG3DHgXcAcPmAyznhiRNYsGQBm3belIM2P4hPvvqEIx86kubNmrNwyULO3+38csItCIKmhczqNrolaW9gJPA94BPgIeAfZnZWJWnXAP6a4k+pa16S7gUMOB7YFngK2NnMqhVKffr0sQkFzZsiWNJ3SNHn1oWm5BdmVWTLGd9t8GuEv51gVUPSa2bWp7K4Ois1mNnTwBXA88CUtC1Xe5I0RlJB//ZgYHvg2Myw31xJ3WqTFzAMaAt8BtwDnFSTMAqCIAiaJkWZDjKzq4Grq4jbJ7N/J3DnCuQ1CziomDIGQRAETYswHRQEQRDkghBIQRAEQS4Ia99Bo9EYSgJQf4oCoXAQBI1L9JCCIAiCXBACKQiCIMgFIZCCIAiCXBACKQiCIMgFIZBWEqpzevfS/15i65u2ps2v2vDRlx8tDx/+5+H0G9mPHW7dgeF/Hr48/LIXL2P7W7dnh1t34OqXK10iFgRBUO+Elt1KQMHp3SvHv8K0L6dxzCPHMO64ccvje3XpxctDXmb/P+5f7rxLB1y63J9Qv5H9mPTZJLp16Mbtb97OOye/g2FsecOW/OQ7P6Fdq3aNWqcgCFY9QiCtBFTl9K5gaLQqdwwFYbR46WLatWzHequvR9uWbVlv9fWYv2Q+Zkbblm1p2bxlo9UlCIJVlxiyWwmoyelddZz61KlsfO3GrNt+XTq06UCLZi3Yt8e+bHb9ZvS8vidDvz10ueAKgiBoSEIgrQTU5PSuOq7b9zo+PP1DPp//OU+/9zSTZ07moX8/xAenfcAHp33AnW/dybQvpzVQyYMgCMoIgbQSUJPTu6pYsGQBAC2ataBdy3as1nI1zIzVW69O6xataduyLa1btGbuorkNXYUgCIKYQ1oZqMnp3eSZkxn25DDe+vQtjnzoSI7a6ihO2v4kBj48kJlfz2TxssXs+q1d6b9RfwB2WG8HdrptJwxj9412Z7O1NittBYMgWCWos4O+pkA46MsnTc2WXRAE9U+9OugLgiAIgoYgBFIQBEGQC4oSSJLOlDRd0hxJt0uqdAZd0lqS/i5ppqQvJL0saZfa5iWps6RHJM2TNEXSUcWUNwiCIMg/dRZIkvYCzgIGABsBGwMXVZF8LnAc0AXoBPwGeEJSi1rmdQOwCOgKDARuktSrrmUOgiAI8k8xWnaDgBFmNglA0iXA3bhgKYeZLQD+k9I1A5bigqkz8Fl1eUlqBxwCbGVmc4Fxkh4HjqnsWqsqTUlRIJQNgiCojmKG7HoBb2WO3wK6SlqzqhMkTQQWAI8Dt5nZZ7XIqyew1MwmV4ivtIckaaikCZImzJgxo651CoIgCEpMMQKpPTAnc1zYX72qE8xsG2AN4ChgXCaqurwqxhXiK72Omd1iZn3MrE+XLl1qqkMQBEGQM2oUSJIGSpqbtjH4vNAamSSF/a+qy8fMFpjZPfhwXO8UXF1eFeMK8dVeJwiCIGia1CiQzOxuM2uftn2ASUDvTJLewKdmNrOW12yJKy9QQ16TgRaSNq0QP6mW1wmCIAiaEMUM2Y0ChkjaUlIn4DxgZGUJJe0kaVdJrSS1lfQLXGNufE15mdk84GHgYkntkrr4gcDoIsocBEEQ5Jw6CyQzexq4AngemJK2CwvxksZIOicdtsZVt2cC04B9gf3M7OPa5AUMA9riGnn3ACcVNPKCIAiClYuijKua2dVApb6t07BeYf9vlB+Sq2tes4CDiiljEARB0LQI00FBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLgiBFARBEOSCEEhBEARBLihKIEk6U9J0SXMk3S6pdS3OGSTJJB1f27wkdZb0iKR5kqZIOqqY8gZBEAT5p84CSdJewFnAAGAjYGPgohrO6QScDUyqY143AIuArsBA4CZJvepa5iAIgiD/FNNDGgSMMLNJZjYbuAQYXMM5lwHXAp/XNi9J7YBDgPPNbK6ZjQMeB44posxBEARBzilGIPUC3socvwV0lbRmZYkl7QD0AW6uY149gaVmNrlCfKU9JElDJU2QNGHGjBm1rkwQBEGQD4oRSO2BOZnjwv7qFRNKag7cCJxqZsvqmFfFuEL8N64DYGa3mFkfM+vTpUuXGisRBEEQ5IsaBZKkgZLmpm0MMBdYI5OksP9VJacPAyaa2ctVZF9dXhXjCvGVXScIgiBo4tQokMzsbjNrn7Z9cMWE3pkkvYFPzWxmJacPAA5OWnTTgZ2BqyRdn+Kry2sy0ELSphXiyylGBEEQBCsHLYo4ZxQwUtLdwCfAecDIKtIOBtpkjh8GHgRG1JSXmc2T9DBwcVIV3xY4EBdqQRAEwUpGneeQzOxp4ArgeWBK2i4sxEsaI+mclPYLM5te2HAV7i/NbE5t8sKH/NoCnwH3ACeZWfSQgiAIVkKK6SFhZlcDV1cRt0815/WvY16zgIOKKWMQBEHQtAjTQUEQBEEuCIEUBEEQ5IKihuxWdlq8OKLmRDnhX12q0qgPgiBoWkQPKQiCIMgFIZCCIAiCXBACKQiCIMgFIZCCIAiCXBACqTpefx122QV23hlGjqw63fPPgwQffeTH994Lu+4Ku+0G++8PX37p4cOHQ79+sMMOvh8EQRAsR2ZW6jLUO3369LEJEyaseEa77AJ33QXrrw877QTPPgudOpVPYwY/+AFMnw6PPAIbbACLFkGrVh5/wQXQtSucfHL58H794MYboVf4GwyCYNVB0mtm1qeyuOghVcXChTBvHnTv7kKkb1949dVvpnvgAdhrL2jXriysIHQAvv66TOgUwhcv9vTrrddw5Q+CIGhihECqipkzoWPHsuOOHT0sy+LFcNttMHToN88fMQK23hpeeKF8L+jUU2HjjWHddaFDh4YoeRAEQZMkBFJFrr8e+vf3obY5Gf+Ac+ZA587l095yCxx9dPkeUYEhQ+Dtt+HQQ+HKK8vCr7sOPvwQPv8cnn66QaoQBEHQFAmBVJFTToGxY73ns9pqMHWq94TGjXNlhCz//KfPMe29N0ycCMccAwsW+FagY0fPB8rCW7TwIbtCeBAEQRCmg6rlmmvgyCNdcWHYsDKFhoED4e674aabytL27w+jR0ObNnDJJa4AAd6ruv32svNmznQBt+uufk4QBEEAhJZdEARB0IiEll0QBEGQe4oSSJLOlDRd0hxJt0tqXU1akzRP0ty03VbbvCR1lvRIOn+KpKOKKW8QBEGQf+oskCTtBZwFDAA2AjYGLqrhtN5m1j5tx9chrxtwt+ddgYHATZJiJWkQBMFKSDE9pEHACDObZGazgUuAwUVev8q8JLUDDgHON7O5ZjYOeBw4pshrBUEQBDmmGIHUC3grc/wW0FXSmtWc80IalntY0ka1zKsnsNTMJleIjx5SEATBSkgxAqk9kFkxunx/9SrS98OH4zYHPgb+JKmgbl5dXhXjCvGVXkfSUEkTJE2YMWNGLaoRBEEQ5IkaBZKkgRmFhDHAXGCNTJLC/leVnW9mL5jZIjP7Ajgd6A5skaKry6tiXCG+quvcYmZ9zKxPly5daqpWEARBkDNqFEhmdndGIWEfYBLQO5OkN/Cpmc2sPIdvZgko7VeX12SghaRNK8RPquV1giAIgiZEMUN2o4AhkraU1Ak4DxhZWUJJvSRtK6m5pPbAVcA04N815WVm84CHgYsltZO0C3AgMLqIMgdBEAQ5p84CycyeBq4AngempO3CQrykMZLOSYddgfuAL4EP8Lmk/c1scW3yAoYBbYHPgHuAk8wsekhBEAQrIWE6KAiCIGg0wnRQEARBkHtCIAVBEAS5IARSEARBkAtWyjkkSTNwBYnGZC3g80a+ZrFEWRuGplRWaFrljbI2DKUo64ZmVuli0ZVSIJUCSROqmqjLG1HWhqEplRWaVnmjrA1D3soaQ3ZBEARBLgiBFARBEOSCEEj1xy2lLkAdiLI2DE2prNC0yhtlbRhyVdaYQwqCIAhyQfSQgiAIglwQAikIgiDIBSGQgiAIglwQAikIgiDIBSGQgiAIGgFJLUpdhqqQpMr2G5sQSDmilC9C4EhqtP/Eqvi8S3l/S3m/JTUzsyWSWks6qFTlqAxJrczM5LS0Eqpeh0AqIZKaZ48LL0JT+VBlPy5NpczVIam5mS2TtJGkoyRtJqldPeZf8R61qyF+pSJzfzeRtH8jXMsyx21K9aEt1Dsd/g04vhTlqAxJ5wNbSmoF3A3sVMryhEAqEeklXSqpmaQzJF0oaW9J6xVaK6UuY3VIalH4k0lqC3QucZFWmPQ8tgTeAE4FHgdOkrThiuYtSZkGx88l3QpMknSzpKPS9XP/3Isl1X+ppG2AF4GdJa3ZQNdqZmZL0/6tku4BXpV0kKRKjXo2JKneknQM8LqZ7Z/KlodnvR3wB+CfQCsze7GUhYmFsY1MQRCl/WbABOB94GtgCdANGGhmn5WulNWT/vDLUvmfxMu9MXADMMLMFpa0gHWkUJ+0fwLQ2syulzQE2A+YCNxhZkVZkK8gjB7CLSw/ASwD+uP37n4zu3iFK5NjkjB4BrjZzBrcQoCk0UAP4CfAt4FrgeHArZkeS6MgaQ+87tOBAWb2TmNev5LyZN/JD4E1gL5m9q+K8Y1J9JAaCUnrw/LWUmFy82TgYzM7zMwGARuk8Bl5ngDN/Jn/AswETsTrcj3ww1KVqxgywrW7pMOAvsA0ADMbATwC9AYGSdqkmGtk/viPAmsCe5jZb83sauAU4FbgKEk/WeEK5ZvVga+Ah9LIgKBhegqSOgOd8I//RKAlsAh4tDGEUSXD8X/F/xvLgL0lrd7QZaiK9M5begZrA5fgDaQRkvqm0Y/CO9uoMiIEUiOQxmdvkPR3ADNbkqJa48NDSBoFrAvsC7QCdpPUsgTFrZI07FD4iGwMLDOzo81sGt6T+BdwXxrCyz0ZYbQZ8B4wGDga6CepE4CZjQYeBL4P9FuBa/0Cv0eHm9liSa1T/lOBB4AXgP0ltVmBKuWKih9loCOwEVCYU2mdwntI2nsFr1WxAdca2BbYRNL/ARcBu5rZp5JOk9R9Ra5XQ1myw/H7SfqxpDXN7DHgDOBM4NhSCKXCUHv6H/cAupjZ7WY2GPgP8Ftg+5T2B8ChjVpAM4utETZ8rPYvwFOZsJ/gH/F7gJeB1VL4BfjwV9tSlztT1hYVjtcHXgc2A+4A3sKHugCuBHqWusy1rNd6wBHAsHS8N/A/4FygUybdXkCzOuSrCsc/Ss/5auBbKaxZJn53fNh2k1Lfk3q6r83T7xbAWZl343FgfPb+AKOAP67otdL+bcChaf8a4GngU2DdFLYnMBnYtoHr3wx4Nf3nn8UbnkNS3JF4A+gXQPtGfCbKlO0l4M/pXR8FbJV5Fq8Ad6X3cbNGfW8a82Kr6pZ5EbZOL+fDmbi7gIWFDzgwDPis8ILkYSsIo/Qiv4H3JJrhLfsJwJuZtKfgcy4blLrctahXK3wydx5wWCZ8b2AqcA6wZoVzai2UUvpjM/uHAPcCN2U+kC3Tb7/0kVit1PelHu5r4X3vnYTBb4HOKWxtYAzwEXBzElATC/eh2Hcz7d+DD4mNSccHJ6HwO2Af4HBgVvZZN+A9uDwrZIEPgT9m7s2xqd6dGroslZTtPuDutN8GWAz8OhN/It6I6NXoZWvsC65qG+VbwSOA0elP80gKWz99oD7Ah4ZeA7YrdbkzZS4Io+bpg7kYn5QufET/DVwKnACcjbtDzk35K6lPxZ5Lb7zFfF+F8D1TXQcVcY1W6Xfd9Kxvy8QdmhFK62fCz03Pv8kLpFSftdIHd2gmbPP0vrfAG17DgZ9m3rEWtcy7FdCxQtgjpGFP4OlM+L54w+Lv+FzdgZW9Bw1Q/zuBY9L+HcDbqd7r4MNkAGuU4LmsBvyJsl76DalszYG1Muka9P5UWb5SXHRV2wABzwEjgZ7AEGAc8HgmzY7pz7p2Dsr7LcoPqTTHe0Y34S3NZzNx38WHHu4CfkOOenaV1KswjNQJ1ypaLx1vkwTp7RXS70BmOKiW11gbeAzYMR33xFvllQqldHxsun6jt0gb8F6vhfd++uOKHC+kd34C8IOqnk0t8m2W/ksHZcKuAd7NXPfltJ99h1tnnr/q84NbWdmBC4HL8F7Ra5QNWV6BD8k3a4yPPpUIeeBR4Djg9vS/bpPCryYJ7JK9N6W8+Kqy4S3lV4FN03FzXA31TVLXOS8b3op7F9g3E3YTqdUJfAd4Ie1X7G3U6ePdyPVqln63SR/FZ9KHYmgK3wofXrq1knNrXS98zmQk8Fdg+xTWE5hTiVAahc+9zQG+Xep7VB/3N3PcFlezfhl4Hp/baZ0E8aUreK2eFY7bZfY3BT4BNkzH3wMOaID6tiMzzJgEzPZ4D6gFMACfY/0A6JbSnIprcG7emM8kle2m9DwGJkH5t1S2wpDxyem4pHOYuVUtXslYCswFeuEtuaWSJgGTgCOT5ssRJS1hwty8ybfN7KvMWoSfmdnXKckcYE1J7c1srqQzgc/M7G5L66vyiLlm0brAw8Dv8aHTPXGtwIlm9oqkAcBESR+Y2WWZc2tdLzP7t6Tf4uPwV0oabmavStoeX5yJmR1vZg8mzbA18KGdifVX28Ylo1W2Ma6csQhf/PpTfN60hZm9mtIuxYfc6pJ/ds1MazObnPavwgXfBcC8pJX6OfClmU2RtAveMKjX/1Za0PsnfG7q/hT8Ct7z/gzvIV+Fz539EH/H/oP3Fve3RliDlHkmwofaP8Gfyz74MPIsvDE0UtJUfF54XzN7v6HLVi2llIYr40b5SdbskMGNeI9oI8paJecCQ0njuSUsc7acHTP7T6at0NJqAXQHpqfjE4D5QJ9S3/dq6pN9HrtT1tNrjrcS70rHa6ffTSiyp0f5+cLe+LqssXyzp/SHTLpG07Jq4Hu+Ff7RexjvIc4nDc2l92a9FDeJOigwVHiWJ+FDYe3S8QB8UfklZJRP8En7i9K9PqJiPvVU36vxuZcfABfj81OtcCH8AD6v2hwfQtwf2Lmx/+f40ORBwI2ZsB+nso7ClT5Ox4fvcqEVW/ICrEwbZWPUzfDJwpHAlZn4J/Dhopvw1tVsoEeJy5z9w/8aOD/zce6GrywfVeFj+yje/c+tAgNJsSDtFzTadk7PYG18OOWPKbwt3pr9VuacWk2wV/Lss/dz0/Sss0JpU7yFem2p71E93us2SQiclgmbD/wy7a+ZPtQPUdYYq+vc3JX4OpkjyMxx4guZ308CoGv6772W7vHBhWdSXwKJ8irml6QyPQB8v/De4b2NR9L/qdEVFzLl2zbdh9cz/4FmwKD0n76JzHBnHraSF2Bl2Sg/XvsGPkcxLL2w9wNdU/wp+MTmLeRIASAJmZdxJYVOmfqsnwTP6EzYm+lF713qcldRl+apPlfjPdJF+NzXxvi6rxlk5opwhYxHqKNKd/Z6mWf/M1zJ49D0oV43I5T6pHQ9aOT1HfV0Xyv9qKf7/Qywa/r4v0GZsN8+vU/tM0KkrsL+5CR0umbLkslv14xQapU+xLtXTFdP96BrhePT8fU6v6BMOaA5cAy+zueS+i5DHcu7I76E4WDK1jk2w0c37qxYn1JvJS9AU90qe8HSi3gVcE8mbFT6eI8htVIKL0Wp65Apy+XAi5XUpfAH2wAfGx+djvsAG5W63NXUpwUuWD/ATRv9JBO3G/AFvs7itPR8lq+DqctzoXyvsdAQeZgy9f6xuMmarXFNsDfJaY+ytnVN93bN9A6slrlvo/Hh51fIKOrgwv64zHGdP8z4eqVTM8ft8CG5m4AfprDvpnf0csrUyOtbGJ2e8t8YX9x7Ygq/EHgHH75rm7lPR5KD9Xj48ozJ+HxWoXzNKGHvraotlBqKxApvvHQd8I6Z3WA+ifgKrq2FpLvx1vB6+HjzCEmnmdl7gJWo6JWxNq4FBYCkLYCfAx0lPWtmN0r6NjBV0pdmdnKpCloTaQJ8iaR38Ps+H9d8AsDMXpC0H255YW1co/C4dE4LKzPrVN011jOzj80VJQrnnAJ8ZGY/TGkewYcNFwNvS/oDvq5pVj1XucHJTJCvjguH9XEFnXnAjZJG4MNWj+IamAPTeXfjQ5SDCnkV/jd1ZD6wkaS+eG/rOryXOxP/T61uZndKOhwXQEtW4FrVMRufh/w78A8zuzld56KkoHIFMFzSX81sPr5Qt+SY2d/kRoNvBFpLejSV78sSF+2blFoiNuUN15pZhreOfpoJb4VrcGXNAY3GX+R1S1HWKsrfElfF/SM+tLA/PnE8B9ciui3V76SUfj1yMvlZRX0KQ2dr463oDfHhm3eAq2pzbi2u0QLv6fylQvhpwK8yz7pg0HM13MAnFGmNICf3dA28lX0rPhe3Lj5H8lIKa4P3CN7AzfX8Kb3vRc0ZVSjD4bi23BTc0slvMnE3pOu0yYTVtwJDdt7oCXwI+9yK/2VcuWEGsE+pn1sV9dgDX36yeqnLUtUWPaQV41/4H+8DYIDc2+JvzGyRpK54C/lrSSfiH7L9zWx2KQucxbz1jqTb8UnjH+J/+uGW3ANI+grYU9LtZvZxyQpbA5lW/Da4Msm1+NzdNNyY5dVJe/jncv84z5nZrYXzrZaq3eY9qcOAMZIeMrNDUlQr4IeS1sF7Bd81N6L6c2A9SS+Zt0qbFOmetsc/ZH82s1My0edIGow3Yk4xs99K+hfeyGmG9yKyvchiy3B/6vE2B+ZbebXp9/H/1pJM+nrrGRXKngzFboD7DroTH547VdJtZvZBuu4Fkj7Fe925w8z+mt7Dr2tOXSJKLRGbysY3F/4VJlR/j/eEhuCtuOEpfEO8lfwGPradG9VoXPhckPbfwVWUN8H/cOtXSHsdrhxQkknZOtZrC7z1OrySuD1xjcGJeEOiWNtphRZ/d9we26hMXMHH0Rrp+CRyZpewyDr/Dm+obFzxPqT9y1P8N4wBV/zfFHHtKt87fNHrLDKLuOu53lljpC8CT+ENnLPwXuEd+MhCB9xK/PWlflZNfQsHfXVE7t3zJTP7bzpui0+uPoV7TT0aeNDMfp96Sd8BJlmRzt3qmzTWvQ8+yW7AeDM7qoq0w4BfAv0tOe7KGxUWTRY0nS5KLdrz8KGmCWZ2j9xB3HeBJy35pbI6tNwz7ipa4Kvdu+DrOh4wsyPkPnhG4o2RKfiw1lAze6P+atz4SOqJN0qm4w4YX07hLc17gRviyxn2bIy6StoVf44/A043s/uy70EDXO9P+DD2IHz4cGe8R/wlrsW5Ad4rHmBmbzZEGVYVYsiuDki6GP/ITZZ0BfCFmT0saRauPnmdL4zmR5JWM7Nf44IqF6QP6hJJz+BquB3xMfhCfGF44jBclfYgYO+8CiNY7va7K94TWQYcJuldvBU7FR9O/YOkt83sn7h9tcIQX52GkazMj8xf8N7R5bi68xWZ4bsfSNoJXyQ633Ls+bcmCgLYzCZLOh7XHjxe0lIz+4elIV9cAL+NC+HGoBn+/h5pZs+nZ9IgyH2ZLQMuT+/LHyV9gA8D/xlvjPYA3rNSWzlYCQiBVEvknhP/itug2wEfJz9F0ndx3yaXpA/9H/EJ3u/LnXLNLFWZs2SEjfAhhv1wgXSz3AzQxZkP9L/xIbwB5hqBuUXSanjr/U9mdqXcRM/WuOrxb1IPdkPcxcdyrHgzR9/CPZ+ebWYfAZMkvQb8XdIIMxtiZq8UXaEckQTwWnhv8Kf4R/gaYGgS6C+npCfiwr+o+dHC/F8l4ctdy1co1wuSJljZXEizFXieNdEGt3/YD9eWlLmZqY9xu3APhSCqP8JjbC1IH/Nl+MTuZbgNqO/ipu2bAVvi6qjdzexLfG3LwBwJo0LPqBmukfQrfMHuX/GexI8lnZvSnoKr9F6Rd2GUWIYvTPwegJkdbmZnm9lvUvwfcK27oj4albS+v8DVnQeozCPq+/g6s2Ml3VHMdXLMOvjHeBdzG3Jn4GrfgyVtKmkkbjbohNRbrVNvJSuMJO0pqZ+k3rBcIH7jG5XO+VrJo3IDCiPS//li4ERJB2SGBWfgzu2C+qTUk1h53yhbENgc/4D/CNgJF0rXZNLtB3QodXmrqUdhqOl2vGdcqFcrXLtudqrffOA7pS5vNfWozJz+pvjar0MyYTun+rxOEYteK14L7xUV8vkNrsCwbSbsF/h8UklNQdXD/f3GPUp1exVYJ3O/nwQ+xlXg60O1+1F8Ue3LuNWMK6tIV1j02hm4m4wPnwa8J+1xn0of4xp2N+LKM9uU+nmtbFsoNdSC1Oo7Eh/CGpLCdsLHj/9pZseksEqHGPKApC3x3sI+5la6y00Cp/i9gCcsRz2jjCJBtiX9LXzV/C+BxWa2MM3vYWYXpDTNcT9DI60Oi14ruW4zfIHjWvgk9vNmdq2k+/G1TjPxD9UpuDbdf+un5o1Pps5dcYsST6fwb+FDdb8zsxdTWA/geOC8Yu5vheueiTcmdk3Ho3CTQ9+xjIpyZti5M94gPN7Mnim+xnUqY0vcyseB+Hzlw5bjudUmS6klYlPY8NXpn5DcUZN6GHhPaTzJ+2ueNir0JPA/+D8ps5Rc8Gq6Pjlt1VO2KLM9vtj00HS8B96SfgVXu90SN7L5X5IfnMryqeFalfUMCo4VR+A9rtPTda9K8YNwtf+bga1Lfb9W8F4Xesw9Uz0/wddy9Uvhvweeqc27Vtvnmjn+KXBu2j8fV63ujo9K9K7wLnTGFVX2KvU9i63+t5hDqoGk4vsI3jo+GHxxpHlPaDyuetpR0nqlK+U3sTRnJOnQFPQmbtX66hS/KIUfA1wqqXVDaivVldSDWyppDVyleCHwFfgCPzP7Lu7eoRUuNHrhDYXhSTNqOVaLOYb0PJF0fmr9gw9NtQV+bmYv4UM1w4E+kvY0szvN7AzgZDN7e4UrXSIyPaPNcIWWqfi8USfgDEmP4f+BjSTtXfF8q3vPs9DTvU3S/rhV+Z5y8zY/wS1nf4iPSvxAUrv0LnTG15GdZI3UMwoamVJLxLxtVNGaxs0EfQjcUCFcZMyW5GnDew3LSGaNcIOY/wUexAXR+fjCwlyOheOmd8ZWcs/bVTjeA3cfMRFvPXcsPJs6Xu+UdL9eoWx9yRvAFpk07XEFhuGZsNwvGq5F3bvgCgs/y4S1wZUabsXn474mM2+6gtc7ERibufaUdO8Lxj93x+dp9krHzVM59iz1vYqt4baSFyBPG+XdCFyE23L7IbBeCu+POxjLpS8bKp/wPwh3v3B6Ot4IN3d0D66intuhplTWF8jY3sI1G28pfJyA1im8Fa7G/ho12K2r5nrdcad9n+FaiBsm4VPRbt11wC9KfX/q8T63xLUvv8DnhL4hZPHe4tAklHatQ97tk6BrnwkbnJ7Tj9JxM3x+5n+UOfj7gORcL3Nex1Lfq9gadot1SBnMhwUKDr6m4ZPVJwO7SrrJzMbKrRfcK2mhmQ0vZXkB0jDGamb2kZWpdv/AzB4FMLNHJf0IuF/uPvsa3Ijq8pX2JSt8zczD3b8PkvRvvCc0HJ/T2R7/SH6EmwIyM/tC0lm4SnKla1sKVFRASUoQH+PaY78FDkv7A3E3zy/hw1btgKPwOaWVAnNrC8fh83S9Ja1vZtOgnFr2e2b2rqTNcVNT46rLM6M00wN3+Di3kB9uPaMjbtXk3vQcXpDbITwEtwhxnZm9loaRZb5A94v6r32QK0otEfO2kYxyZo6fwz9615JseeFWDDbJQVnb4x/NX5Mm8/EP6EskC92ZtCfgQyJnZMJyPdSE93rOw+2IvYP37PqmuLbpuZxQ4ZxL8aG71Wp5je9S3przsen8NvgH+l+4/5urcJX5u8hxr7KWdS6MBLQj4xcHtwX4L1x7dP0qzn0UuLmG/LNecw8gOSPEhXw7fK5vEN77/BUZ776xrdpbyQuQpy195I4jaZ3haw7G4/arpqXjLUpZxkrKfAw+zHQePt7fGV838jg+2V5Itz2+luRzfLI678KosCShNd4T2pQKa05ws0yHVEh/KbVcR4UPDS3DhwAvoUzT7HLKhjifxOeRNknHTc6FRIU6F4TRVvi6tGeS4O2dwnvhw9I3UN6le3O8AfQ28O2anlva/x3e2+mUhPq89HxWw4cJT8B7nRdRpvWZ6/cytobdVmktu6RBtxxz9wAPAh9KOgI3QbObmd2PzykswNedlBw5zc1sNK5t1hf/gy/G1xu9jLuN+Gk6ZVv847qJmc02s1wvQDPzVf9mttDM3k3b5wVNwGQRYW28xZ4971wze62Wl7kFnxNZgit8PJXWxDTD55Mws/1wxY9H0/tStBuFUlGwaJDRXNwC7/mPxedJvwDultTbzCbhPZkj0gb4cLb5sNt3zOz1Kq6TNXR7CT7/2iu9bx/g83+H476EWuANgifw5RO/rLg2Llj1WKXnkKzMz8lpuKbP88BEM/tS0trAv8wXXZ6Kmwq50PJjLLPwcWmGD7UUhrda48NLN+If26GSBuEaY3uY2ZxSFbi2FD5MFT9OktoA+0g6Glc4+G66B9XOF1WFmb0kaS98HdFPcfXj1fFecmdJT5rZX8xsgKQNbAV8+pQKSf1xleoHzGx2uoc/B+4ws0uTgD8H/xY8KOmHZva23Cbg1EqyrHTOsYIw+jVukupyM5tZeD7mnkuPx902gA/X3ZWu/VoIo6DkXbRSbLiG1rC0PwFvZV+NC6QRQFd80noZPiz0NbBtqctdRV1exU2obI1/VN/GLRh0xFv6G+LrpzYsdVmrqUNhGKljDelaA4fia78KJmTqtCizinx3T/ft4HS8bbpOO1bQn0+pN+ACfNh5MNAphe2IN1CaA/9I788G+GLYOcDmFZ9NHa53NT7f92N8VOGcis8VX+P0H7zh1JYYpostbatqD+kroK2kQ4CPzOwgAElj8T/mTDP7VNK3cavXp1jyCpknUi/uS+An5sMpb0v6H27mpRlwu7kpm1z4YqqMzDDS1sANkoZaeY+gyzHvrT5qqadSX1qC5i4MTgVuTa35B/GFxE0eM7tY0jxco615Mnn0DzMzSUOBOWY2EEDSk7hSw7uZ82vd85S0Cb6wdRMzmy7pS9zCw1JJf7CkJWfeUzoJH7L7g7nR1iBY+QVSFePSH+Hj23/Fh+KQNBpYE3cvsZqkLc3dCLzZiMWtlkrqItwB4KG4arLM7AFJB+NrP2ZJutHKrDLkjvRhXAs3WvtAVcIIyqyWp/3VrB5dMZur9B8P3JTmXB7K832rDZJam9lCfK7sO7hJIMPnSb/E50QXStoOOBUfGShY7a7zMKiZvS+po7kaeSvzJQdL8XVbFIRSek+fk7Stmc2qvxoHTZ2VXqmh8AFPvYkCT+PDEw/hcwVPAZvj2kOL8SGhn6Tx9lwgNyxpmeP2ZvYpPg5/mKQBmfi3cRcYD+b9oyqpA+7obJ/0W1irUjGdrMy8z0+A6ytLtyKY2d/w+cSf4sODTZrUo/w2vq7uI3z+5zzgULkfqXfxObNr8SHfg5IwUl2FUeaai9P5i9LxE7iwOwk4QVKnzHs6e0XqF6x8rPQ9JABJFwCHyBc3forPu+yLzx0twDWshqQ/0+n4n+d7ZragREUuh8r7M7oX7xl1l3QR3stbB7hM0sv4fNcQoI+5A7lckuntGW4x4mLS3EIawstOkmf3T8bXXfUr9qNZHWb2V0kv1Wfvq1QkgX02vvi0YAX9AnyxN2Z2u9zWYXtgiiX37LaCyhsVRyTM7AlJy/BlEy0lXWFuDzKUGIJyrBICCR+rfh5XL90NX2m+DB+iuIu08FXSe7gSwJ7m7q5zgZW5zn4RN6kyEl9XdCeuMfUb3P7a0fh6qT3NrDINqZKTGQpqjTcG5pnZb5OwvVTSl2Z2b6GlDuV6ucNwwbW7mb3ZUGVcGYRRohk+DL28YZLmlDYEfi2pHTDK3JBpuSHR+sbMnpRbg/iqoa4RNH1WWX9IaZ7lSnzS9X78A7kMWGhmn5ewaMtReR9A3YE7zWy3TPwRuFDqb+5WuRn+/c7lQ1WZVemt8IWoC/G5jN+a2WRJZ+DDpT83s/sqnHsaZcLojUYuepOgsnkfSb/EtQiPLSjmSPo+vnbtIdztQ4O+L5U0LGK9UVApK/0cUpbCHyN9GB/BP36n4/MGX5jZtBwJo4L2WaukATYf2ES+bqZQh/vwhYUF993L8vxHT8KoOz5X9Ao+zzUf1w7siKvjX4Ev0hxQOE/uDmI/3EFiCKNKSO/DUkk9JB0n6TBJbfF7+j+897l9Sn44vhbovGxPtKGwRPa4Ia8XNF1W2R5SAbnq9wX4nFHJrDBUNmeSejxP4h/to3Ftpel4T2lySjsKeN3Mfl+akleNpH2ASWY2NVOnk4CdzGxQmuMYB7xrZj+W+zFagmsNPpTpHRbsrX1Roqrkmsy93Qy30DEJH46fjWuT9sTnjQbjdg7Xwe3xLVGOvRwHqx6rtEDK/JHbW7JGXMpypP3N8MWJ8/APyCbmTuCQtB+uzv0hvor+a9xu3W5m9p9GL3gNSHoet0G3U0HBImnIbW5mZ0p6E/i3mR0paV3cEOed5qrKhUn5XPf68oLc6vuvgFfN7A655eyLcTtye5vZ/NRDmkeZ4khRFi6CoKFYpQVSgVKOaVcQRqOBbXDNs+m4v58vcRM5/05pdsUtVO+Bq67/zszeKkXZa4OkP+Et9AFm9j9JP8Ttp30GPGtmJ6d0d+N1HRYCqG7IvepeDXwf99N0bxLmG+OuNDoD+5nZl5lzomcU5I4QSDlB0iPAWrjb5kOBXYDXgTNxi8gnZj/Uady/heXUn1FWfVjS07jFi93N7KM00X4B7sZjCa5m/21cVX1xKRsITYWK90jSMcAwfLjuEjObkt6RTfD5oklmdmJpShsEtSMEUg6QdBuwF+5vaXEKexG4DPfN8y/gbjM7KcXl+oNdWetb0l/wj+NuSSidg/f0vsZNOZ2UhFEMI9VA4R4lte12lgz+SjoAt/g+ERhhZh8mobQ+8HH0iIK8s6qsQ8o7o3H3EXsAYyR1xV0rtEof7z7AS2mu65icC6PCx3J9fA3MGmY2zsy+L2kM8DdJu5nZr9NQ07yM8kIIoxrIaNNtg7sZaS7pa9wl/YiU7HjgOEmjzOxd0jqkGKYL8s4qpfadV8xN1gwFrk5aaBPwyf1H00d6Mi6wdpO0TinLWh0ZVfWt8OHG64AHJD0kqa2Z7YObq3lO0kZm9mVGGBVtrmZVIqnOb4Cr+9+D+yx6Hp9vPMfcVM+9uNWL3Sue28jFDYI6EUN2OULSbri7iz+Z2Y9SWDPcBcBi1ZN164Ygo7G4Jr725RlceWEdvE5TzeyAlHYC8F6hjkHdSNpyF5rZ/pmwIbhjvUHmlur3Av4SQihoSkQPKUeY2Qv4XNI2kg6WW7RelhFCuTW5koRRF9wCwyb4x3CpmU3DfUttL+nslLYPcFTpStu0SBpzyz2/AmsAO0vqlEl2J9ADV53HzJ5Jvan4jwdNhnhZc4aZ/R3XOvsVcGBaLFqIy113VuUtbi/CLUqvDRxdsABgZvNwTa+2hYTxsawdmTm5rYDfS9rEzJ7Fh+lGKlmkTxqN/8SNBy8nekhBUyI+CDkkzSmdThNwg5A+lj0lnWjuHv1c3Pjrd3AXHgWB+h1gtQrnxseyBtL97QWMxYVNwbTVb4ClwOuSfibpYXzd0ZiSFDQI6oGYQ8oxqmcndA1FsiDxBHCGmV0r93F0DjAAd5XxBrAFbp5pYelK2vRIw3Q34XNul2c15ZI25ilAB7xn+otkDii0FYMmSah955i8CqOK6sPmrgV+CDyc4n4v6Ve4e4m9cYsSw8xskcq8mAa1YwnwLXzBK4BlFh0vMbPzs4lDGAVNmRiyC+pMmv/pluzSFcIeBQ7BVddPNbOvgKtwH06b415tW4Uwqp6K82pp3vCfwFqSOpizJM3PnSypW4X0IYyCJksIpKBOyGmOu7w4Q+4aAwBzlx7Dgd9K+lmynXYx8B7wY9wkUlAFqXezTNIGkvaRtIPcaOqDuLA/Wu6SHFyr7gAyzveCoKkTc0hBrag4TCf3X3QEcCxwj5ldk8L743bqWuK265aktGcCt1qO3aqXksw6rq3xdVvv4PNCbXGX9Nul381xr8FtcceMi8MCQ7CyEAIpqJGM6vGGQH/chcE7ZvZPuVvxo4ExZnaJpNtxleS70ge2RWGIKY9q66Uiez8ywqgD8BjwoJldL2lz4FXgInM3713whcbNgLdTb2q5EdsgaOqEQAq+QWXCI62D+TMwHuiIL379P3NXBwNx9wefAM2Bb1tY7a4Slblyb4lPExWsoq+GD8/9CDc6Ox630v3jdP8/sYwTyegZBSsbMYcUlCN95ExSC0mdCotb8YW6V5jZwcDBwPnACEn7mNndwJa4Uc/eSRi1CGH0TTLzRKsDjwIXZhYXdwA2AnYEniN50k1xJwLbZvMKYRSsbIRACpZT4WM5GrgIOCZFt8TdRGBmX5jZnbgW3WGS2pjZTDObULDAEMNI3yRjfHYN4DVgCj5E1wzAzD7BlRWewa2gF+wZjsbnkMaWotxB0FjEOqQAKPexXB23Nv4McD0wLSWZhVsCyA7pTQG2MLMF2byi5V45qefZHDc6+1czG1aIS3bpvsItpC8DzpV0C7Aeboppl/R8YpguWGkJgRQAyz+WLYC7gJfM7LQKSW4FnpQ0B/dg+y5uNPVLghrJCJJW+NDcH1J4S1yle0gKvxu4AVdmWBtfGPtYEkahwBCs1IRACrJ0wj+KF0KZG/LUI3pB0t64GZv9k/Bqgbtaz70X21Ii6TCgvaRRgOFrhw6QtCXQHZ8f+jXu2XUoMM3MHqyQR/MQRsHKTgikIEs7oBs+XwQ+dLTcyriZ/V3S4/i8x2rAuGi5V4+kE/De0A7JisJSSQ8Ag3Fbf//A12uNT+kfA3bDte2WExYYglWBEEhBlq/wd+L7wKtW5iKiWeopbYFbH59YMAEULfeqkbsZvxSf/5kg6Vu4v6s7gWeB9sBiM5ubOW0ZPjcXBKscIZCC5ZjZTEkX4353/mtmf0zzHoVJ9J/jGmGLMudEy71q5uFriT6VtC2uKr8aPo80ysxmgw+N4v/Fm/EhvMNKUtogKDEhkIKK/BFfC3OrpI1xqwsLgP/DXUh8OylAxJxRzcwF5uC+i/bFXXIsw3tJLSSNMHdeeDhwILABsL2FC4lgFSUEUlAOM/ta0q+B9/EW/bHAh7ja93fiY1l7zOzTpMjwBPAWvrZrNj5XNwBYJulm3F8UwH0xJxesyoTpoKBK0tqYdrgZm9lZ23QlLlqTQe7tdT9gJ1xF/ircncRwXG3+JeB3ZrY4pQ9hH6yyhEAKak0M0xWPpB74otdPgSuAfwOX4BqNZ8V9DYIQSEHQaEjaBLgWF0rXmNlbGUvfIeyDVZ6wZRcEjYSZvQ+cBvQC9k9hIYyCIBE9pCBoZCStj7uSCJt0QZAhBFIQlIgwlBoE5QmBFARBEOSCmEMKgiAIckEIpCAIgiAXhEAKgiAIckEIpCAIgiAXhEAKgiAIckEIpCAIgiAX/D+Arb5Gqovk5QAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["waterfall(valid_xs_final.columns, contributions[0], threshold=0.08,\n"," rotation_value=45,formatting='{:,.3f}');"]},{"cell_type":"markdown","metadata":{"id":"aIKbn6f1195G"},"source":["This kind of information is most useful in production, rather than during model development. You can use it to provide useful information to users of your data product about the underlying reasoning behind the predictions."]},{"cell_type":"markdown","metadata":{"id":"aa7Rp9-v195H"},"source":["Now that we covered some classic machine learning techniques to solve this problem, let's see how deep learning can help!"]},{"cell_type":"markdown","metadata":{"id":"mBHTvGjN195H"},"source":["## Extrapolation and Neural Networks"]},{"cell_type":"markdown","metadata":{"id":"AhhhVrpF195H"},"source":["A problem with random forests, like all machine learning or deep learning algorithms, is that they don't always generalize well to new data. We will see in which situations neural networks generalize better, but first, let's look at the extrapolation problem that random forests have."]},{"cell_type":"markdown","metadata":{"id":"pJ6H3xrQ195H"},"source":["### The Extrapolation Problem"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vjTPdDeU195I"},"outputs":[],"source":["#hide\n","np.random.seed(42)"]},{"cell_type":"markdown","metadata":{"id":"W73hLzdw195I"},"source":["Let's consider the simple task of making predictions from 40 data points showing a slightly noisy linear relationship:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9Doqretx195I","outputId":"2532a5a1-97e8-4d23-d422-447ccadad04f"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAU3UlEQVR4nO3df4wcd3nH8fdDHMWnJOYINmlzKDGkxGlDCmkOUdUSVKStC1LVKO4fQCjkjypVkaWqlSxCS8BAwEb0r1aI1lKAEKUppHKs0ghFIMcqpAX1UitJLTlBELlwadJLwcZ2TH716R+756yPvf01szs7c++XdJI9O7v79ez4s3PPPDPfyEwkSfX2iqoHIEkqzjCXpAYwzCWpAQxzSWoAw1ySGmBdFW+6cePG3Lx5cxVvLUm19dBDDz2TmZu6PVZJmG/evJmFhYUq3lqSaisijq72mGUWSWoAw1ySGsAwl6QGMMwlqQEMc0lqgEq6WSSpCvsPLfLZ+x/jyWOnuWR2hp3btnD9NXNVD6sUhrmkNWH/oUU+vO9RTr/wEgCLx07z4X2PAjQi0PuWWSLivIi4PSKORsSJiDgUEe/sePy6iDgSEc9GxAMRcdl4hyxJw/vs/Y+dCfJlp194ic/e/1hFIyrXIDXzdcAPgbcDrwRuBb4aEZsjYiOwr73sImAB+MqYxipJI3vy2OmhltdN3zJLZp4CdnUs+ueIeAK4Fng1cDgz7wGIiF3AMxFxZWYeKX+4kjSaS2ZnWOwS3JfMzlQwmvIN3c0SERcDVwCHgauAh5cfawf/99vLVz7v5ohYiIiFpaWl0UcsSSPYuW0LM+eec9aymXPPYee2LRWNqFxDnQCNiHOBu4A7MvNIRFwArEzm48CFK5+bmXuBvQDz8/POVSdpopZPcvbqZqlzt8vAYR4RrwDuBJ4HdrQXnwQ2rFh1A3CilNFJUomuv2Zu1XCue7fLQGWWiAjgduBiYHtmvtB+6DDwpo71zgcuby+XpNqoe7fLoDXzzwO/DPxeZnaeQbgXeGNEbI+I9cBHgUc8+Smpbure7TJIn/llwB8DbwaeioiT7Z8bM3MJ2A58CvgJ8Fbg3WMcrySNxWpdLXXpdhmkNfEoED0e/yZwZZmDkqRJ27lty1k1c6hXt4uX80sSg3W7TDPDXJLaenW7TDtvgStJDeCRuSRNwLgvSDLMJWkARcJ4EhckWWaRpD6Ww3jx2GmSl8N4/6HFgZ4/iQuSDHNJ6qNoGE/igiTDXJL6KBrGk7ggyTCXpD4GCeP9hxbZuucAr7vlPrbuOXBWCWYSt981zCWpj35h3K+mfv01c+y+4WrmZmcIYG52ht03XG03iyRNUr+rQ3vV1JfXGfcFSYa5pNqocvKIXmE8DXdctMwiqRaKtgeO0zTccdEwl1QL0zx5xDTML2qZRVItDFLKqKoMMw13XDTMJdXCJbMzLHYJ9OVSRtVzeFZ9x0XLLJJqoV8pY5rLMJPgkbmkWuhXypiGjpIqGeaSaqNXKaNfGabpLLNIaoRp6CipkkfmkhphGjpKqmSYS2qMqjtKqmSZRZIawDCXpAYwzCWpAQxzSWoAw1ySGsAwl6QGMMwlqQEMc0lqAMNckhrAK0AlnaXKeTY1OsNc0hlVT/Cg0Rnmks7oNcHDcpgXPXL3yH88DHNJZ/Sb4KHokbtH/uPjCVBJZ6w2kcPy8qJTs631qd3GyTCXdEa/CR6KTs221qd2GyfDXNIZ118zx+4brmZudoYA5mZn2H3D1WdKIP2O3Psp+nytbqCaeUTsAG4Crgbuzsyb2ss3A08ApzpW/0xmfrLUUUqamF4TPOzctuWsmjcMNzVbv+d7cnR0g54AfRK4DdgGdPsKnc3MF0sblaRCxhWKRadm6/V8T44WE5k5+MoRtwGv7XJkfu4wYT4/P58LCwvDjVTSQFaGIrSOfjvLJdNo654DLHapnc/NzvDgLe+oYETTJyIeysz5bo+VVTM/GhE/iogvRsTGVQZxc0QsRMTC0tJSSW8raaW6dox4crSYomH+DPAW4DLgWuBC4K5uK2bm3sycz8z5TZs2FXxbSaupayh6crSYQmGemSczcyEzX8zMp4EdwO9ExIZyhidpWHUNxX5tkeqt7NbE5QJ8lPy6kgZU11Ds1xap3gZtTVzXXvcc4JyIWA+8SKu0cgz4HvAq4K+Bg5l5fCyjldRX0Y6Toop00vRqi1Rvg7YmfgT4WMff3wd8HHgM+DTwGuCnwDeA95Q5QEnDqyoUbS+szkBhnpm7gF2rPHx3WYORVG+D3HVR4+Hl/JJKU9dOmiYwzCWVpq6dNE1gmEsqTV07aZrAySkklabqTpq1zDCXKtDkuwPaXlgNw1yaMNv3NA7WzKUJq+uNsDTdDHNpwmzf0zhYZpEm7JLZma737R6mfa/JNXeNxiNzacKKtu8t19wXj50mebnmvv/Q4sDP37rnAK+75T627jkw8PM03QxzacKK3h2wSM296BeBppdlFqkCRdr3itTcvXdKc3lkLtVMkUvmPfnaXIa5VDNFau7eO6W5DHOpZorU3L13SnNZM5emUL/Ww1Fr7t47pbkMc2nKjPtyf++d0kyWWaQp4+X+GoVH5tIYFLlC044TjcIjc6lkRS/MseNEozDMpRGtdll80TKJHScahWUWaQS9TlIWLZPYcaJRGObSCHodfZdxV0Q7TjQsyyzSCHodfVsmURUMc2kEvU5SFr0rojQKyyzSCHZu23JWzRzOPvq2TKJJM8ylEXiSUtPGMJdG5NG3pok1c0lqAMNckhrAMJekBjDMJakBDHNJagDDXJIawDCXpAYwzCWpAbxoSGtWkdmApGkz0JF5ROyIiIWIeC4ivrTisesi4khEPBsRD0TEZWMZqVSiorMBSdNm0DLLk8BtwBc6F0bERmAfcCtwEbAAfKXMAUrj4KTJapqByiyZuQ8gIuaB13Y8dANwODPvaT++C3gmIq7MzCMlj1Vr0LhKIU6arKYpegL0KuDh5b9k5ing++3lZ4mIm9ulmoWlpaWCb6u1YJylECdNVtMUDfMLgOMrlh0HLly5Ymbuzcz5zJzftGlTwbfVWjDOUoizAalpinaznAQ2rFi2AThR8HWlsZZCBrkfud0uqpOiYX4Y+MDyXyLifODy9nKpkDImRu6l1/3Il0s8y78ZLJd4lp8nTZtBWxPXRcR64BzgnIhYHxHrgHuBN0bE9vbjHwUe8eSnylBlKcRuF9XNoDXzjwCngVuA97X//JHMXAK2A58CfgK8FXj3GMapNajKiZHtdlHdDNqauAvYtcpj3wSuLG9I0suqmppt3CUeqWzem0Xqwm4X1Y33ZpG6GKTbRZomhrkaq2hrYVUlHmkUhrkaydZCrTWGuWqr15F3r9ZCw1xNZJirUqOWQvodedtaqLXGbhZVpsiNtPpd1OONtLTWGOaqTJGrLPsdedtaqLXGMFdlipRC+h15V3n1qFQFa+aqTJGrLHdu23JWzRx+/sjb1kKtJR6ZqzJFSiEeeUtn88hclSl6laVH3tLLDHNVykCWymGZRZIawDCXpAYwzCWpAQxzSWoAw1ySGsAwl6QGMMwlqQEMc0lqAMNckhrAMJekBjDMJakBDHNJagBvtKWxGnWOT0nDMcwbYFoDs9+ky5LKY5jXXNWB2euLpNccn4a5VC5r5jVXZFLkopa/SBaPnSZ5+Ytk/6FFoNgcn5KGY5jXXJWB2e+LpN+ky5LKY5jXXJWB2e+LpMgcn5KGY5jXXJWB2e+LxEmXpcnxBGjNFZ0UuYid27acdfIVfv6LxDk+pckwzBugqsCs8otE0tkMc/XUr4fdI29pOhjmWlXVPeySBucJUK2qyh52ScMxzLUqL/qR6qOUMI+IgxHxs4g42f7x0K0BvOhHqo8yj8x3ZOYF7R+vCmkAL/qR6sMToGvAqHdVtPVQqo/IzOIvEnEQuAoI4DHgLzPz4Ip1bgZuBrj00kuvPXr0aOH3VX8rO1KgdXTtlZhS/UTEQ5k53+2xssosHwJeD8wBe4GvRcTlnStk5t7MnM/M+U2bNpX0turHjhRpbSglzDPzu5l5IjOfy8w7gAeBd5Xx2irGjhRpbRhXa2LSKrmoYnakSGtD4TCPiNmI2BYR6yNiXUTcCLwNuL/48FTUIB0p+w8tsnXPAV53y31s3XPgzOQSkuqjjG6Wc4HbgCuBl4AjwPWZaVF2CvTrSPGSfakZSulmGdb8/HwuLCxM/H3187buOcBil/r53OwMD97yjgpGJGk1k+hmUU15glRqBsN8jfMEqdQMhvka5yX7UjN4Of8a5yX7UjMY5nK2IKkBLLNIUgN4ZF4Do971UNLaYZhPOS/qkTQIyyxTzrseShqER+YTUKRM4kU9kgbhkfmYLZdJFo+dJnm5TDLozay8qEfSIAzzMStaJvGiHkmDsMwyoFFLJUXLJF7UI2kQhvkAinSUXDI70/WuhMOUSbyoR1I/llkGUKRUYplE0iR4ZD6AIqUSyySSJsEwH0DRUollEknjZpllAJZKJE27xhyZj/P+JZZKJE27WoX5aoE9SLdJ0bAfZ6nEG2lJKqo2Yd4rsHt1mwwa9lWZ5rFJqo/a1Mx7BXa/bpNpvlnVNI9NUn3UJsx7BXa/+5dM882qpnlskuqjNmHeK7D7dZtM882qpnlskuqjNmHeK7Cvv2aO3TdczdzsDAHMzc6w+4arz9Scp7m1cJrHJqk+anMCtF97YK9uk0m0Fo7akWLbo6QyRGZO/E3n5+dzYWFh4u87Lis7UqB1dN3524EkFRURD2XmfLfHalNmmWZ2pEiqmmFeAjtSJFXNMC+BHSmSqmaYl8COFElVq003yzSzI0VS1QzzknjPcklVsswiSQ1gmEtSAxjmktQAhrkkNUApYR4RF0XEvRFxKiKORsR7y3hdSdJgyupm+RzwPHAx8Gbgvoh4ODMPl/T6kqQeCh+ZR8T5wHbg1sw8mZnfBv4J+MOiry1JGkwZZZYrgJcy8/GOZQ8DV5Xw2pKkAZQR5hcAx1csOw5c2LkgIm6OiIWIWFhaWirhbSVJy8oI85PAhhXLNgAnOhdk5t7MnM/M+U2bNpXwtpKkZWWcAH0cWBcRb8jM77WXvQmo1cnPUWcKkqRpUPjIPDNPAfuAT0TE+RGxFfh94M6irz0pyzMFLR47TQKLx07z4X2Psv/QYtVDk6SBlHXR0AeBGeB/gLuBP6lTW6IzBUmqu1L6zDPzx8D1ZbxWFZwpSFLdeTk/zhQkqf4Mc5wpSFL9OTkFzhQkqf4M8zZnCpJUZ5ZZJKkBDHNJagDDXJIawDCXpAYwzCWpASIzJ/+mEUvA0QIvsRF4pqThlMlxDcdxDcdxDaeJ47osM7vedraSMC8qIhYyc77qcazkuIbjuIbjuIaz1sZlmUWSGsAwl6QGqGuY7616AKtwXMNxXMNxXMNZU+OqZc1cknS2uh6ZS5I6GOaS1ACGuSQ1wFSGeURcFBH3RsSpiDgaEe/tse6fRcRTEXE8Ir4QEeeNaUznRcTt7fGciIhDEfHOVda9KSJeioiTHT+/OY5xtd/vYET8rOO9Vp28dILb6+SKn5ci4m9WWXes2ysidkTEQkQ8FxFfWvHYdRFxJCKejYgHIuKyHq8z8H5ZZFwR8esR8Y2I+HFELEXEPRHxiz1eZ+DPv+C4NkdErvicbu3xOpPaXjeuGNOz7XFeu8rrlL29embDpPaxqQxz4HPA88DFwI3A5yPiqpUrRcQ24BbgOmAz8Hrg42Ma0zrgh8DbgVcCtwJfjYjNq6z/b5l5QcfPwTGNa9mOjvfqOkXSJLdX57+d1ud4Grinx1PGub2eBG4DvtC5MCI2AvtofZYXAQvAV3q8zkD7ZdFxAa+i1fGwGbgMOAF8sc9r9f38SxjXstmO9/pkj9eZyPbKzLtW7G8fBH4A/EeP1ypze62aDRPdxzJzqn6A89v/mCs6lt0J7Omy7t8Dn+74+3XAUxMc6yPA9i7LbwK+PcFxHAT+aID1KtlewAdo/eeKVR6fyPaiFQRf6vj7zcC/dvz9fFpfOld2ee7A+2XRcXV5/NeAE0U//xK212YggXUDPLfK7fUA8LFJb68V7/EIsH2S+9g0HplfAbyUmY93LHsY6PbtdFX7sc71Lo6IV49xfABExMW0xnp4lVWuiYhnIuLxiLg1IsY9q9Pu9vs92KNEUdX2+gDw5WzvnauY9PaCFdsjM08B36f7vjbMflm2t7H6frZskM+/LEcj4kcR8cX2kWc3lWyvdgnjbcCX+6w6tu21Ihsmto9NY5hfABxfsew4cOEA6y7/udu6pYmIc4G7gDsy80iXVf4FeCPwGlrfzu8Bdo5xSB+iVTKZo/Xr+dci4vIu6018e0XEpbR+/byjx2qT3l7LiuxrvdYtTUT8KvBRem+PQT//op4B3kKr9HMtrX/7XausW8n2At4PfCszn+ixzti2V5dsmNg+No1hfhLYsGLZBlp1w37rLv+527qliIhX0PrV53lgR7d1MvMHmflEZv5fZj4KfAL4g3GNKTO/m5knMvO5zLwDeBB4V5dVJ769aP3n+nav/1yT3l4diuxrvdYtRUT8EvB14E8z81urrTfE519IZp7MzIXMfDEzn6a1//9ORKzcLlDB9mp7P70PHMa2vVbJhontY9MY5o8D6yLiDR3L3kT3XzMPtx/rXO/pzPzfcQwsIgK4ndbJie2Z+cKAT00gxjGmId9voturre9/ri4mtb3O2h4RcT5wOd33tWH2y8La5YJvAp/MzDuHfPqktt9y2azbe010ewFExFbgEuAfh3xq4e3VIxsmt4+N8yRAgZMH/wDcTeuEwFZav2pc1WW93wWeAn6FVgfAAUo4wdJjXH8LfAe4oM967wQubv/5SuA/6XFCpuCYZoFtwHpaZ9VvBE4BW6Zge/1GeywXVrm92ttlPbCb1pHT8rba1N63treXfQb4TtH9soRxzdGqq+4s8/MvYVxvBbbQOgh8Na2ujAeq3l4dj++ldW5motur/bpds2GS+1gp/1nK/qHVwrO/vZH/C3hve/mltH4VubRj3T8HngZ+Sqt967wxjekyWt/gP2uPYfnnxpXjAv6qPaZTtLo4PgGcO6ZxbQL+ndavYsfaO9RvV7292u/1d8CdXZZPdHsBu9qfXefPrvZjvwUcodVhcBDY3PG8vwC+3m+/LHtcwMfaf+7cz052G1evz38M43oP8ET73//ftE4y/kLV26v92Pr2v/+6Ls8b9/ZaNRsmuY95oy1JaoBprJlLkoZkmEtSAxjmktQAhrkkNYBhLkkNYJhLUgMY5pLUAIa5JDXA/wO3hEEKahr09gAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["x_lin = torch.linspace(0,20, steps=40)\n","y_lin = x_lin + torch.randn_like(x_lin)\n","plt.scatter(x_lin, y_lin);"]},{"cell_type":"markdown","metadata":{"id":"8z-7c7lH195Q"},"source":["Although we only have a single independent variable, sklearn expects a matrix of independent variables, not a single vector. So we have to turn our vector into a matrix with one column. In other words, we have to change the *shape* from `[40]` to `[40,1]`. One way to do that is with the `unsqueeze` method, which adds a new unit axis to a tensor at the requested dimension:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QO2FENNx195R","outputId":"fa7f06f0-53b4-4b35-fa3f-e619304c8a8c"},"outputs":[{"data":{"text/plain":["(torch.Size([40]), torch.Size([40, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["xs_lin = x_lin.unsqueeze(1)\n","x_lin.shape,xs_lin.shape"]},{"cell_type":"markdown","metadata":{"id":"oS37dFX3195R"},"source":["A more flexible approach is to slice an array or tensor with the special value `None`, which introduces an additional unit axis at that location:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"y6nL3cx7195R","outputId":"e25a883a-bdfa-40c0-8f19-f628e46ea065"},"outputs":[{"data":{"text/plain":["torch.Size([40, 1])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x_lin[:,None].shape"]},{"cell_type":"markdown","metadata":{"id":"pVD0nzIh195S"},"source":["We can now create a random forest for this data. We'll use only the first 30 rows to train the model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-qGmQAaO195S"},"outputs":[],"source":["m_lin = RandomForestRegressor().fit(xs_lin[:30],y_lin[:30])"]},{"cell_type":"markdown","metadata":{"id":"rd5CeWzK195U"},"source":["Then we'll test the model on the full dataset. The blue dots are the training data, and the red dots are the predictions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RWSqTg3H195V","outputId":"a5f9f4db-5412-4950-af9b-2e121b6fa9de"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXMAAAD7CAYAAACYLnSTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAieUlEQVR4nO3deXDc5Z3n8fe3LVmtW21JHJEsnwNs8ArvoBSHCYEQCDCMMyWTZDJkkyymSCVhZmtTjs3uQuJNmAlQrvyxW57sUjEhsEmWw8qQYRe2YI0rIQTXCgKNoQwb27EkY4OltO7DEv3sH7+W1VKk7pb616c/r6ouSb/z0U+trx59n8ucc4iISGEL5LoAIiKSPgVzEZEioGAuIlIEFMxFRIqAgrmISBEoycVNGxoa3OrVq3NxaxGRgvXqq6/2Ouca59uXk2C+evVqOjs7c3FrEZGCZWbHFtqnNIuISBFQMBcRKQIK5iIiRUDBXESkCCiYi4gUAQVzETmr9A1P8EZ3P33DE7kuiq9y0jVRRCQXnn79ODv2hikNBJiMRnlwSyubNzbluli+SFozN7MyM9tjZsfMbMjMfmdmN8Xtv87MDpnZqJm9aGarMltkEZHF6xueYMfeMOOTUYYmphifjLJ9b7hoauippFlKgG7gE0AtcC/whJmtNrMGoCO2bQXQCTyeobKKiCxZT2SM0sDskFcaCNATGctRifyVNM3inBsBdsZtesbMjgKXAvXAW865JwHMbCfQa2YXOecO+V9cEZGlaQ6VMxmNzto2GY3SHCrPUYn8tegGUDM7F7gAeAu4GHhjel8s8B+ObZ973p1m1mlmnadOnVp6iUVElqC+qowHt7QSLA1QXVZCsDTAg1taqa8qy3XRfLGoBlAzKwV+CvzEOXfIzKqAuZF5AKiee65z7iHgIYC2tjatVSciWbd5YxOb1jfQExmjOVQ+byDvG55IuD9fpRzMzSwAPAacBu6KbR4GauYcWgMM+VI6ERGf1VeVLRikC7m3S0ppFjMzYA9wLrDFOTcZ2/UWcEnccZXAuth2EZGCUei9XVLNmf8Q+BfAXzrn4pt+fwFsMLMtZhYEvg2E1fgpIoWm0Hu7pNLPfBXwVWAjcNLMhmOv25xzp4AtwN8DEeAy4K8zWF4RkYwo9N4uqXRNPAZYgv0vABf5WSgRkWyb7u2yfU7OvFAaQTWcX0QkJpXeLvlKwVxEJE6i3i75TLMmiogUAQVzEZEsyeT0u0qziIikKJ3RoZkekKRgLiKSgnSCcfyApHG87o/b94bZtL7Bt/y80iwiIkmkOzo0GwOSFMxFRJJINxhnY0CSgrmISBKpBuOFGjizMf2ucuYiIkmkMjo0WU490wOSFMxFRFKQKBin2sCZyQFJCuYiUlByuXjEQsF4Oqc+HchhJqeerTIqmItIwcjXxSPyYcZFNYCKSEHI58Uj8mF9UdXMRaQgpJrKyFUaJtczLiqYi0hBSCWVkes0TC5nXFSaRUQKQrJURj6nYbJBNXMRKRiJUhn50KMklxTMRaSgLJTKyIceJbmkNIuIFIV86FGSS6qZi0jRyHWPklxSMBeRolKoa3imS2kWEZEioGAuIlIEFMxFRIqAgrmISBFQMBcRKQIK5iIiRUDBXESkCCiYi4gUAQVzEZEioGAuIn+ib3iCN7r7z5rpY4uBhvOLyCy5XuBBlkY1cxE5I9UFHtKtuavm7z/VzEXkjFQWeNj3xPO8tfsRmgdO8avaRjZ84ytc+7nrZy4SDkNHB3R1QUsLtLdDa+uZ3QnPT3JuTvdn+t5pUs1cRM5ItsBD/yudDN53P5UjQ3RVrqByZIiB++6n/5VO7+BwGHbtgkgEmpu9j7t2eduTnZ/k3Jzuz/S9faBgLiJnJFvgYfzxpxgKVjMYrMJZgMFgFUPBasYff8q7QEcHhELeKxCY+byjI/n5Sc7N6f5M39sHSrOIyCyJFnio6z3BYFk5uJnjB8vKqes94X3R1eXVPOPV1nrbk50/sCzhucmunfH9mby2D1KqmZvZXWbWaWYTZvZI3PbVZubMbDjuda9vpROR7AuHqd/1fS75zjep3/X9WamA4Lo13LSygpKAsXxZgJKAcdPKCoLr1ngHtLTAwMDs6w0MeNuTnR87d/T0FCcHxhk9PTXr3GTXzuj+TN/bB6mmWd4D7gMeXmB/nXOuKvb6nj9FE5F0LKnHSLLcbns7a0sm2bohRPvGj7B1Q4i1JZNeY15sP5GI94pGZz6P27/g+e3tdB0+zpMvvMkvXu3iyRfepPvw8UVdO2P7M31vH5hzLvlR0web3Qc0O+e+Evt6NXAUKHXOTaV6nba2NtfZ2bm4kopIypbcV3znTi/IhEIz26a/3rnT+zpDvTr6hif4N9/cw7Vvv0TT4CmO1zTy4kev4sc/2DqT6jnLe7OY2avOubZ59/kUzN/Dy4I9D3zLOdc7z7l3AncCtLS0XHrs2LFFfRMikpq+4Qk2PbCP8cmZXinB0gC/2fHJ5Gtj3n67VyMPxP3THo1CTw88vNA/5v54o7ufL/7oAEMTM/XC6rIS/vsdl3HJyrqM3rtQJArm6fZm6QU+BqwCLgWqgZ/Od6Bz7iHnXJtzrq2xsTHN24rIQqb7iseb7iueVBZyuwtJ1i1SEksrmDvnhp1znc65Kefc+8BdwA1mVuNP8URksdIKilnI7S4kWbdISczvronTORvz+boikqLpoLh9Ts48paDY2grbts3O7W7d6utIxUQSdYuUxFIK5mZWEjt2GbDMzILAFF5qpR/4f0AI+M/AfufcwAKXEpEs2Bzo41MfvszYu0coX7eWikATkOJkWa2taQfvvuGJJQfk+qoyBfElSDXNcg8wBtwNfDH2+T3AWuA5YAg4CEwAX/C/mCKSslj3woqRQeovXEfFyKDvQ8cTefr142x6YB9f/NEBNj2wj1++fjwr9z3bpVQzd87tBHYusPvnfhVGRHwQP3QcZj52dGQ8XRI/6+L0ZF3b94bZtL5Bte0M09wsIsWmq8sbKh7P56HjC0mrJ42kRcFcpNioe+FZScFcpNioe+FZaVEjQP2i4fwiGZbOsHQfpNObRRbm23B+vyiYi+Qo4E1PpBUKeXn0gQGv1r5tW9b6ksvSJQrmms9cJAdytmhyDnu6SGYpZy6SZakumpwROezpIpmlYC6SZTntvpfDni6SWUqziGRZc6icNScO/8m83c2haxZ1nSXl3NvbvZw5zM6Zb926qHtL/lHNXCTL6o+8w+739rHi9Ah9dY2sOD3C7vf2UX/knZSvse+J5/nZX9zOkb/8HD/7i9t58YnnUzsxNpHWaGUNfe8cZrSyRo2fRUI1c5Fs6+hg5bomPttazeDYFDXlJVSMDKXcCNn/SieD991P5fJKuipXUD0yxMB999PfEqLu8nk7OszydLSeHcuupPSiq7zG12g9m/34viSnVDMXybZYI2TF8hLOqw1SsbxkUY2Q448/xVCwmsFgFc4CDAarGApWM/74U0nPzWnjq2SUgrlItqXZCFnXe4LBstnD4wfLyqnrPZH0XM2dUrwUzEWyLZXh9uGwt4Dy7bd7H+Omrw2uW8NNKysoCRjLlwUoCRg3rawguG5N0ltr7pTipWAukm3Tq/mEQt5CyaHQ7EbI6VGakYi3uHIkMns+8vZ21pZMsnVDiPaNH2HrhhBrSyZTmntFc6cULw3nF8k3O3dCJMJo5ZwG0lDI2wdpz6+iuVMKk4bzixSSri4OldTwwu+OEjAj6hzXX9TIhUNxDaRpLu2mpdmKj4K5SCakUXMePa+JAy+EmVpeyfQa6a+8fpSVn2qlIoNFlsKmnLmI32I577EPejlZ3cDYB72LWoOz+5obqZsYoWZ8GHNRasaHqZsYofuaGzNccClkCuYifuvo4PBUKXsORuh4/T32HIxwZKrUq6mnoOHKNvZc1s5AsIrzh/oYCFax57J2Gq5MPiBIzl5Ks4ikYb6GxPHDR3mu+zRTzphOkzzbPcrWZUcJpnDN+qoy7vj6Z9i+d82sKXKV45ZEFMxFlmihOcn7G86n5p1D9C2fyXDXTIzR37CK81K89uaNTWxa36AeJ5IypVlEliDRsPjg52+lenxoVs67enyI4OdvXdQ96qvKuGRlnQK5pEQ1c5El6ImM8dEP/sDH3/r1mWlsf33xx+mJjHHJ5W3U3nM33bsfoWXgFD21jazZ/rcpTYIlslQK5iJLsOr47/nSb5/ij8srOVFdT+34MF/67VOsOv4xWNnGtZ+7ntabr6YnMsbVSpNIFijNIrIEdc89Q+uG1YxWVFNaUsJoRTWtG1ZT99wzZ45RmkSySTVzkaXo6mLt+mZuXx2dGXJfEtBampIzCuYiS9HSApEIFaGQNx85eBNiaS1NyRGlWUSWIpVpbEWySMFcZCmSTWMrkmVKs4gsVZozF4r4STVzEZEioGAuIlIEFMxFRIqAgrmISBFQMBcRKQIK5nJW6xue4I3ufvqGJ3JdFJG0pBTMzewuM+s0swkze2TOvuvM7JCZjZrZi2a2KiMlFfHZ068fZ9MD+/jijw6w6YF9/PL147kuksiSpVozfw+4D3g4fqOZNQAdwL3ACqATeNzPAopkQqL5yEUKUUqDhpxzHQBm1gY0x+1qB95yzj0Z278T6DWzi5xzh3wuq5yl5luaLV09kTFKAwHGiZ7ZVhoI0BMZm7lHOOyt29nV5c250t6uQUKSt9IdAXox8Mb0F865ETM7HNs+K5ib2Z3AnQAtmoxIUrTQ0mzpag6Vs+bEYa59+6Uzi0u8+NGraA5d4x0QDsOuXd4w/eZmb96VXbs0ZF/yVroNoFXAwJxtA0D13AOdcw8559qcc22NjY1p3lbOBplMhdQfeYfd7+1jxekR+uoaWXF6hN3v7aP+yDveAR0dXiAPhSAQmPm8oyPte4tkQro182GgZs62GmAozeuKpJYKWaqODlaua+KzrdUz85GPDHnBurXVS600NzN6empmf22t5iuXvJVuMH8L+PL0F2ZWCayLbRdJS3OonMlodNa2yWiU5lB5+hePBeuKQGBmPvKSuGDd0sLhd7t5tmecgBlR57i5OcjaC5QilPyUatfEEjMLAsuAZWYWNLMS4BfABjPbEtv/bSCsxk/xQ31VGQ9uaSVYGqC6rIRgaYAHt7T60wja0gIDczKEAwNnFpfov/EW3jz4BypGh5icmqJidIjwwT/Qf+Mt6d9bJANSzZnfA4wBdwNfjH1+j3PuFLAF+HsgAlwG/HUGyilnqc2BPl778GX2H3qU1z58mc2BPn8unGRxiWNN63n0ilsZCFZx/lAfA8EqHr3iVo41rffn/iI+M+dc1m/a1tbmOjs7s35fKTDxPUpqa72acySSeo+SZF0LE+zvG55g0wP7GJ+cSfMESwP8ZscntUCz5IyZveqca5tvnxankPwV36MEZj5ON1ImkkrXwgSLS0yneLbP6RapQC75SsFc8leskXKWVHuUpPOHIGbzxiY2rW/wfcCSSCYomEv+amnxatTTgRhmNVImTKP41LWwvqpMQVwKgmZNlPyVqJFyOo0SicxOo4TD3rktLRz+/XEefukoHa/18PBLRzny++MzfwhEioyCueRWOAw7d8Ltt3sfp4MxeLXsbdu8mnlPj/dxOucdS6OMVlZzcug0o5XVs0ZoqmuhnG2UZpHcidWux6pqGKhuoPaDXspTbaTs6uJQSQ0v/O7omUE911/UyIVDXhplumvhx9/69Zm5V5659CbWNK2nLnvfoUjWKJhL7nR0cHiqlGcPRghY/8woyxQaKUfPa+LAC2GmllcCXvfaV14/yspPtVKBN3r07XNW81poJq0SLA34M3pUJA8pzSI5M374KM91jzIVdZz+MMpU1PFs9yjjh48mPbf7mhupmxihZnwYc1Fqxoepmxih+5obgQyPHhXJQ6qZS870N5xPzTuH6FtecWZbzcQY/Q2rOC/JuQ1XtrHnsvZZU9j+05/fyI+vnBlPoa6FcjZRMJecCX7+Vqr/zw4mo1GGyiqonhil+vQIwc/fmvTc+qoy7vj6Z9i+d03CQT3qWihnCwVzyZm6y9uoveduunc/QsvAKXpqG1mz/W+pu3ze0cp/QjVvkRmam0VyLhPLwokUI83NInlNqRCR9Kk3i4hIEVAwFxEpAgrmIiJFQMFcRKQIKJiLiBQBBXMRkSKgYC4iUgQUzEVEioCCuYhIEVAwFxEpAgrmIiJFQHOzSGaFw966nF1d3mLK7e1JVxESkcVTzVwyZ3qNzw96OVndwNgHvbBr1+xFm0XEF6qZF4m8nEY2jTU+RWRxFMyLwNOvH2fH3vCsFXc2b2zK2v0X+kPirfF5milnTC+6/Gz3KFuXHSWYtdKJnB0UzAtc3/AEO/aGGZ+MMk4UgO17w2xa35CVGnqiPyTprPEpIoujYF7geiJjlAYCZwI5QGkgQE9kLOPBvG94gj3/+DRfjVtU+UfvX8WmH2ylvqosrTU+RWRx1ABa4JpD5UxGo7O2TUajNIfKM37v3pc72Xqgg9rxYU5U11M7PszWAx30vuwtCTi9xudIZTUtI39kpLKa2nvuTnmNTxFJnWrmBa6+qowHt7SyfU6qIxsplpX7n+OVskoGl1cCMBisYlnAWLn/ObhhEwDXfu56Wm++mp7IGFfnU+OsSJFRMC8CuVqlvuLkcS7fuIbnD50iYEbUOS7fuIaKk8dnHac1PkUyT8G8GITD1Hd0UJ+JgTmJBv20tHBhJMLKq9YwODZFTXkJFSNDEGrx594ikjLlzAtdbGAOkQg0N3sf/RqYk2zQT3s7RCJUjAxxXvVyL5BHIt52EckqBfNC19EBoZD3CgRmPu/o8OXah6dK2XMwQsfr77HnYIQjU6Uz125thW3bvPv19Hgft23TgCCRHFCapdB1dXk18ni1td72NKU06Ke1VcFbJA8omBe6lhYvtREKzWwbGPC2T1viZFca9CNSOHxJs5jZfjMbN7Ph2OsdP64rKYjlrYlEIBqd+Xw6b51GTj34+VupHh+iZnwYc1FqxoepHh/SoB+RPORnzvwu51xV7HWhj9eVRJLlrdPIqWvQj0jhUJqlGCTKW8dy6qOnp2a6Dy4ip65BPyKFwc9g/n0zux94B/iPzrn98TvN7E7gToCWFvVDzpqWFg6/282zPeNnBvbc3Bxk7QWp/ww06Eck//mVZtkBrAWagIeAfzazdfEHOOcecs61OefaGhsbfbqtJNN/4y28efAPVIwOMTk1RcXoEOGDf6D/xltmDgqHYedOuP1276MWjxApOL4Ec+fcAefckHNuwjn3E+A3wM1+XFvSc6xpPY9ecSsDwSrOH+pjIFjFo1fcyrGm9d4BmRx0JCJZk6mcuQMsQ9eWRWgOlfP2Oat5LW6IfbA0MDOrYnwDKcx81GpAIgUl7Zq5mdWZ2afNLGhmJWZ2G3A18L/TL56ka3pWxWBpgOqyEoKlgdmzKnZ1QW0to6enODkwzujpKd8GHYlI9vhRMy8F7gMuAj4EDgF/5ZxTX/M8kXBWRR8aSEUk99IO5s65U8DHfCiLZNBCPVL6b7yFNzt2ULG88sxqQOGDJ1nxd1+jLvvFFJEl0kRbZ7mkDaQiUhA0aOgsl7SBVEQKgmrmZ7mkDaQiUhBUM5ecLTsnIv5RMBdAQ/ZFCp3SLCIiRUDBvED0DU/wRnc/fcMTuS6KiOQhpVkKwNOvH2fH3jClgQCT0SgPbmll88amXBdLRPKIgnme6xueYM8/Ps1X336JpsFTHK9p5EfvX8WmH2xVjltEzlCaJUuWmibpfbmTrQc6qB0f5kR1PbXjw2w90EHvy50ZKqmIFCLVzLMgnTTJyv3P8UpZJYPLKwEYDFaxLGCs3P8c3LApk8UWkQKimnmG9Q1PsGNvmPHJKEMTU4xPRtm+N5xyDb3i5HEu37iGkoCxfFmAkoBx+cY1VJw8nuGSi0ghUc18EfqGJxY9sKYnMkZpIMA40TPbSgMBeiJjqV2jpYULIxFWXrVmZg3PkSEIaVZDEZmhYJ6ipaZKmkPlrDlxmGvjGjBf/OhVNIeuSe3G7e2waxcV4C3EPDDgrQa0dWs6346IFBmlWVKQTqqk/sg77H5vHytOj9BX18iK0yPsfm8f9UdSnO69tRW2bfNWAOrp8T5u26ZVgERkFtXMU5BWqqSjg5Xrmvhsa/XsNMlilmVrbVXwFpGEFMxT0BwqZzIanbVtMhpNbZrYri5obqYiEKBieexxl8xZli0c9oJ7Vxe0tHipFQVvEVkEBfMU1FeV8cN/WcLB3Y/QPHCKntpGNnzjKyk3YBKJzCyUDF7euyXWgBkOw65d3v7mZu/YXbuUShGRRSmqnHnG5i8Jh7n2mce44+IQV3xiI3dcHOLaZx7zAnEy7e1egI5EIBqd+by93dvf0eEF8lAIAoGZzzs6/P0eRKSoFVzNfKHugan0NllK10LgTMAtD4XwEisVULostbz3dANmfBpl69aZ82JpmNHTUzM59do5aRgRkSQKKpjve+J53oqlOn4VS3Vc+7nrU5q/JK3JqmIBd5bFBNxEDZgtLRx+t5tne8YJmBF1jpubg6y9QP3IRSR1BRPM+1/pZPC++6lcXklX5QqqR4YYuO9++ltC9A5OsPVAB32lFXPmL7mE+hs2pT9ZVbK8Nyy5EbP/xlt4s2MHFcsrGSqroHpilPDBk6z4u69Rt/jHJCJnqYLJmY8//hRDwWoGg1U4CzAYrGIoWM3440+xcv9z9JdVztrXX1bpzV+CD5NVJct7TzdiRiKzGzFTyKkfa1rPo1fcykCwivOH+hgIVvHoFbdyrGn9Uh+ViJyFCqZmXtd7gsGycnAz2wbLyqnrPUGwdBmXb1zD84dOnUlVxM9fkvZkVcny3vGNmDDzMYWcenOonLfPWc1rccPzg6WB1Lo9iojEFEwwD65bw00fdvO/4nLLNzWXE1y3EiDh/CXTk1UtFOxTkijvnUZOvb6qjAe3tLJ9Tj5fc5WLyGIUTDCnvZ21u3axdUOIgdIKaidHKR8enEl1JJq/JNOTVcVy6qOVc0Z5tqR2/c0bm9i0vmFpPW1ERCignPl0qqP8nAbOG+ql/JyGmYE1yeYvieW8K0aGOK96uRdo43Pe6Wpvp+vwcZ584U1+8WoXT77wJt2Hjy/q+vVVZVyysk6BXESWpHBq5pA41ZFsX6Kcd5r61l7IXR/5JNf2v0RTv9db5hsfuYofr72Qel/uICKSWGEF83RkcLKqnsgYR89fR3jFqjPbqstKUp+zXEQkTYWTZsljaU3EJSLig7OnZp5MGjMXqkeKiOSaOeeSH+WztrY219mZR6vLx89cGN8bZpEzFy557hcRkRSY2avOubb59qlmDmkN+olXX1WmIC4iOaGcOXipldra2ds0c6GIFBAFc/By5AMDs7fNnUhLRCSPKZhD8om0RETynII5JB9BKiKS53xpADWzFcAe4AagF/j3zrmf+XHtrMngoCIRkUzzqzfLbuA0cC6wEfifZvaGc+4tn64vIiIJpJ1mMbNKYAtwr3Nu2Dn3EvBL4F+ne20REUmNHznzC4APnXPvxm17A7jYh2uLiEgK/AjmVcCcfn0MANXxG8zsTjPrNLPOU6dO+XBbERGZ5kcwHwZq5myrAYbiNzjnHnLOtTnn2hobG324rYiITPMjmL8LlJjZn8VtuwQouMbPvuEJ3ujup294ItdFERFZlLR7szjnRsysA/iumd2B15vlM8CV6V47m55+/Tg75sx6uHljU66LJSKSEr8GDX0dKAc+AH4OfK2QuiX2DU+wY2+Y8ckoQxNTjE9G2b43rBq6iBQMX/qZO+f+CPyVH9fKhZ7IGKWBAOPMLDBRGghopSARKRgazo9WChKRwqdgzsxKQcHSANVlJQRLA1opSEQKihaniNm8sYlN6xu0UpCIFCQF8zhaKUhECpXSLCIiRUDBXESkCCiYi4gUAQVzEZEioGAuIlIEzDmX/ZuanQKOpXGJBrzl6fKNyrU4KtfiqFyLU4zlWuWcm3fa2ZwE83SZWadzri3X5ZhL5VoclWtxVK7FOdvKpTSLiEgRUDAXESkChRrMH8p1ARagci2OyrU4KtfinFXlKsicuYiIzFaoNXMREYmjYC4iUgQUzEVEikBeBnMzW2FmvzCzETM7ZmZ/k+DYf2dmJ81swMweNrOMzGFrZmVmtidWniEz+52Z3bTAsV8xsw/NbDjudU0myhW7334zG4+71zsJjs3W8xqe8/rQzP7LAsdm9HmZ2V1m1mlmE2b2yJx915nZITMbNbMXzWxVguuk/L5Mp1xmdrmZPW9mfzSzU2b2pJmdn+A6Kf/80yzXajNzc35O9ya4Trae121zyjQaK+elC1zH7+eVMDZk6z2Wl8Ec2A2cBs4FbgN+aGYXzz3IzD4N3A1cB6wG1gL/KUNlKgG6gU8AtcC9wBNmtnqB43/rnKuKe+3PULmm3RV3rwvnOyCbzyv+e8f7OY4BTyY4JZPP6z3gPuDh+I1m1gB04P0sVwCdwOMJrpPS+zLdcgEhvB4Pq4FVwBDw4yTXSvrz96Fc0+ri7vW9BNfJyvNyzv10zvvt68AR4LUE1/LzeS0YG7L6HnPO5dULqIx9MxfEbXsMuH+eY38G/EPc19cBJ7NY1jCwZZ7tXwFeymI59gN3pHBcTp4X8GW8Xy5bYH9WnhdeIHgk7us7gZfjvq7E+6Nz0Tznpvy+TLdc8+z/c2Ao3Z+/D89rNeCAkhTOzeXzehH4Traf15x7hIEt2XyP5WPN/ALgQ+fcu3Hb3gDm++t0cWxf/HHnmll9BssHgJmdi1fWtxY45F+ZWa+ZvWtm95pZpld1+n7sfr9JkKLI1fP6MvCoi707F5Dt5wVznodzbgQ4zPzvtcW8L/12NQu/z6al8vP3yzEz6zGzH8dqnvPJyfOKpTCuBh5NcmjGntec2JC191g+BvMqYGDOtgGgOoVjpz+f71jfmFkp8FPgJ865Q/Mc8itgA3AO3l/nLwDfymCRduClTJrw/j3/ZzNbN89xWX9eZtaC9+/nTxIclu3nNS2d91qiY31jZq3At0n8PFL9+aerF/gYXurnUrzv/acLHJuT5wV8Cfi1c+5ogmMy9rzmiQ1Ze4/lYzAfBmrmbKvByxsmO3b68/mO9YWZBfD+9TkN3DXfMc65I865o865qHPuTeC7wK2ZKpNz7oBzbsg5N+Gc+wnwG+DmeQ7N+vPC++V6KdEvV7afV5x03muJjvWFma0HngX+rXPu1wsdt4iff1qcc8POuU7n3JRz7n289/8NZjb3uUAOnlfMl0hcccjY81ogNmTtPZaPwfxdoMTM/ixu2yXM/2/mW7F98ce975zry0TBzMyAPXiNE1ucc5MpnuoAy0SZFnm/rD6vmKS/XPPI1vOa9TzMrBJYx/zvtcW8L9MWSxe8AHzPOffYIk/P1vObTpvNd6+sPi8AM9sEfAR4apGnpv28EsSG7L3HMtkIkEbjwf8Afo7XILAJ71+Ni+c57kbgJPBRvB4A+/ChgSVBuf4r8ApQleS4m4BzY59fBBwkQYNMmmWqAz4NBPFa1W8DRoAL8+B5XRkrS3Uun1fsuQSB7+PVnKafVWPsvbUltu0B4JV035c+lKsJL6/6LT9//j6U6zLgQrxKYD1er4wXc/284vY/hNc2k9XnFbvuvLEhm+8xX35Z/H7hdeH5p9hD7gL+Jra9Be9fkZa4Y78JvA8M4nXfKstQmVbh/QUfj5Vh+nXb3HIBu2JlGsHrxfFdoDRD5WoE/i/ev2L9sTfU9bl+XrF7/TfgsXm2Z/V5ATtjP7v4187Yvk8Bh/B6GOwHVsed9x+AZ5O9L/0uF/Cd2Ofx77Ph+cqV6OefgXJ9ATga+/5P4DUynpfr5xXbF4x9/9fNc16mn9eCsSGb7zFNtCUiUgTyMWcuIiKLpGAuIlIEFMxFRIqAgrmISBFQMBcRKQIK5iIiRUDBXESkCCiYi4gUgf8PDmvvgfgWq1cAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plt.scatter(x_lin, y_lin, 20)\n","plt.scatter(x_lin, m_lin.predict(xs_lin), color='red', alpha=0.5);"]},{"cell_type":"markdown","metadata":{"id":"Gb7Tmah-195V"},"source":["We have a big problem! Our predictions outside of the domain that our training data covered are all too low. Why do you suppose this is?\n","\n","Remember, a random forest just averages the predictions of a number of trees. And a tree simply predicts the average value of the rows in a leaf. Therefore, a tree and a random forest can never predict values outside of the range of the training data. This is particularly problematic for data where there is a trend over time, such as inflation, and you wish to make predictions for a future time. Your predictions will be systematically too low.\n","\n","But the problem extends beyond time variables. Random forests are not able to extrapolate outside of the types of data they have seen, in a more general sense. That's why we need to make sure our validation set does not contain out-of-domain data."]},{"cell_type":"markdown","metadata":{"id":"xGaOYmGC195W"},"source":["### Finding Out-of-Domain Data"]},{"cell_type":"markdown","metadata":{"id":"71FW3-wZ195X"},"source":["Sometimes it is hard to know whether your test set is distributed in the same way as your training data, or, if it is different, what columns reflect that difference. There's actually an easy way to figure this out, which is to use a random forest!\n","\n","But in this case we don't use the random forest to predict our actual dependent variable. Instead, we try to predict whether a row is in the validation set or the training set. To see this in action, let's combine our training and validation sets together, create a dependent variable that represents which dataset each row comes from, build a random forest using that data, and get its feature importance:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"M-H_AiFF195X","outputId":"70770be9-796d-49a6-be6e-1b6821b017ab"},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
colsimp
6saleElapsed0.891571
9SalesID0.091174
14MachineID0.012950
0YearMade0.001520
10Enclosure0.000430
5ModelID0.000395
\n","
"],"text/plain":[" cols imp\n","6 saleElapsed 0.891571\n","9 SalesID 0.091174\n","14 MachineID 0.012950\n","0 YearMade 0.001520\n","10 Enclosure 0.000430\n","5 ModelID 0.000395"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df_dom = pd.concat([xs_final, valid_xs_final])\n","is_valid = np.array([0]*len(xs_final) + [1]*len(valid_xs_final))\n","\n","m = rf(df_dom, is_valid)\n","rf_feat_importance(m, df_dom)[:6]"]},{"cell_type":"markdown","metadata":{"id":"PT4My38w195Y"},"source":["This shows that there are three columns that differ significantly between the training and validation sets: `saleElapsed`, `SalesID`, and `MachineID`. It's fairly obvious why this is the case for `saleElapsed`: it's the number of days between the start of the dataset and each row, so it directly encodes the date. The difference in `SalesID` suggests that identifiers for auction sales might increment over time. `MachineID` suggests something similar might be happening for individual items sold in those auctions.\n","\n","Let's get a baseline of the original random forest model's RMSE, then see what the effect is of removing each of these columns in turn:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8Nz-RHpe195Y","outputId":"ed1e0424-cda5-440a-f21b-1dcb17a9184b"},"outputs":[{"name":"stdout","output_type":"stream","text":["orig 0.232883\n","SalesID 0.230347\n","saleElapsed 0.235529\n","MachineID 0.230735\n"]}],"source":["m = rf(xs_final, y)\n","print('orig', m_rmse(m, valid_xs_final, valid_y))\n","\n","for c in ('SalesID','saleElapsed','MachineID'):\n"," m = rf(xs_final.drop(c,axis=1), y)\n"," print(c, m_rmse(m, valid_xs_final.drop(c,axis=1), valid_y))"]},{"cell_type":"markdown","metadata":{"id":"j3BQDq8r195Z"},"source":["It looks like we should be able to remove `SalesID` and `MachineID` without losing any accuracy. Let's check:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oOHAo8h_195Z","outputId":"a5836c4a-5490-4ce2-989e-7a0aec3d528d"},"outputs":[{"data":{"text/plain":["0.229498"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["time_vars = ['SalesID','MachineID']\n","xs_final_time = xs_final.drop(time_vars, axis=1)\n","valid_xs_time = valid_xs_final.drop(time_vars, axis=1)\n","\n","m = rf(xs_final_time, y)\n","m_rmse(m, valid_xs_time, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"lXVyvN62195a"},"source":["Removing these variables has slightly improved the model's accuracy; but more importantly, it should make it more resilient over time, and easier to maintain and understand. We recommend that for all datasets you try building a model where your dependent variable is `is_valid`, like we did here. It can often uncover subtle *domain shift* issues that you may otherwise miss.\n","\n","One thing that might help in our case is to simply avoid using old data. Often, old data shows relationships that just aren't valid any more. Let's try just using the most recent few years of the data:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cvw28E0X195a","outputId":"0c0444b6-6dad-472b-ef0c-370972d32edf"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYoAAAD7CAYAAAB0d9PAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAfBUlEQVR4nO3df5Bd5X3f8fcHcBDRsnWE5G1RG21FrdBZBIRs6mkzxNtBGdc2tKClGRWFItepIIzTSdmEMsUglZgaqVVmOsHEaOwYCIjBIIGj4LEzcrnBDrVbURB4k7Vq4ZUDiQdZIYquVkKW8+0fz3PJ4Xj37N0f98eKz2vmzN57vvd5znmePXu/e85z7n0UEZiZmU3ljE7vgJmZdTcnCjMzq+REYWZmlZwozMyskhOFmZlVOqvTOzDfli5dGv39/W3d5rFjx1i8eHFbt9mN3A+J+yFxPyQLpR+ef/7570fEsslip12i6O/vZ+/evW3dZq1WY2hoqK3b7Ebuh8T9kLgfkoXSD5IOThXzpSczM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6t02n0y28wMoP+2pzuy3fF7PtyR7baSzyjMzKySE4WZmVVyojAzs0pOFGZmVsmJwszMKjWVKCT1S/qipDckfU/SvZLOyrErJI1JmpD0jKQVhXKStEXS4bxslaRSvc/ksmOS1pS2e52kg5KOSXpK0pL5ariZmTWn2TOK+4DXgb8HXAq8H7hZ0lJgF3AHsATYCzxWKLcRuBq4BLgYuBK4sRB/FHgBOA+4HXhC0jIASQPA/cD1QB8wkffDzMzaqNlE8Q+Bz0fEiYj4HvAlYABYC4xGxOMRcQLYDFwi6cJc7gZgW0S8GhGvAduADQCSVgGXAZsi4nhE7AReBoZz2fXA7oh4NiLqpGS0VtK5c2uymZnNRLMfuPsfwDpJNeAngA+S3riHgH2NF0XEMUkHSElkLP/cV6hnX15H/vlKRBytiD9XqPuApJPAKuD54s5J2kg6e6Gvr49ardZks+ZHvV5v+za7kfshcT8kne6HkdWnOrLdcps73Q/zodlE8UfAvwf+GjgTeBB4inQp6VDptUeAxn/9Pfl5MdaTxynKsUZ8+RRly3W/JSK2A9sBBgcHo93z0y6UOXFbzf2QuB+STvfDhk59Mnv90Nued7of5sO0l54knQF8mTQWsRhYSjqr2ALUgd5SkV6gcZZQjvcC9YiIWZQtx83MrA2aGaNYAvwD4N6IeDMiDgOfAz4EjJIGqgGQtBi4IK+nHM+Pi7GVpTGHcrxY90rgbGB/Uy0zM7N5MW2iiIjvA98BfkXSWZLeTRqk3gc8CVwkaVjSIuBO4KWIGMvFHwJukbRc0vnACPBArnc/8CKwSdIiSdeQ7ozamcs+Alwl6fKcgO4CdpXGNMzMrMWavetpLfAvSOMR3wZOAf8xIg6R7lK6G3gDeB+wrlDufmA36W6mbwJP53UN64DBXPYe4NpcJxExCtxEShivk8Ymbp5xC83MbE6aGsyOiBdJdzhNFtsDXDhFLIBb8zJZfHyqenN8B7CjmX00M7PW8Fd4mJlZJScKMzOr5ERhZmaVnCjMzKySE4WZmVVyojAzs0pOFGZmVsmJwszMKjlRmJlZJScKMzOr5ERhZmaVnCjMzKxSszPcmZlZE/pLM+uNrD7Vttn2xu/5cEvq9RmFmZlVamYq1Hpp+aGk3y7Er5A0JmlC0jOSVhRikrRF0uG8bM3zZTfi/bnMRK5jTWnb10k6KOmYpKckLZmvhpuZWXOameGup7EAfcBx4HEASUtJc2nfQZoydS/wWKH4RuBq0pSmFwNXAjcW4o8CLwDnAbcDT0haluseIE1ydH3e7gRw3yzbaWZmszTTS0/Xkmab+2p+vhYYjYjHI+IEsBm4RFJjIqMbgG0R8WpEvAZsAzYASFoFXAZsiojjEbGTNBPecC67HtgdEc9GRJ2UjNaW5tg2M7MWm+lg9g3AQ3nmOoAB0tzZAETEMUkH8vqxcjw/HiiUfaU0B3Y5/lyh7gOSTgKrgOeLOyVpI+nshb6+Pmq12gybNTf1er3t2+xG7ofE/ZB0uh9GVp/q2LaL+s5p3760qr+bThSSfhJ4P/DRwuoe0jzaRUdI81s34kdKsZ48TlGONeLLpyhbrvstEbEd2A4wODgYQ0ND0zdoHtVqNdq9zW7kfkjcD0mn+6FddxpNZ2T1Kba93J4bTMfXD7Wk3plcevq3wNci4juFdXWgt/S6XuDoFPFeoJ7PSGZathw3M7M2mGmieLC0bpQ0UA2ApMXABXn9j8Tz42JsZWnMoRwv1r0SOBvYP4N9NjOzOWoqUUj6Z6RLQo+XQk8CF0kalrQIuBN4KSLGcvwh4BZJyyWdD4wADwBExH7gRWCTpEWSriHdGbUzl30EuErS5TkB3QXsKo1pmJlZizV7RnEDk7xJR8Qh0l1KdwNvAO8D1hVecj+wm3Q30zeBp/O6hnXAYC57D3BtrpOIGAVuIiWM10ljEzfPoG1mZjYPmhphiYgbK2J7gAuniAVwa14mi48DQxV17wB2NLOPZmbWGv4KDzMzq+REYWZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo5UZiZWSUnCjMzq+REYWZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo1nSgkrZP0p5KOSTog6fK8/gpJY5ImJD0jaUWhjCRtkXQ4L1slqRDvz2Umch1rStu8TtLBvM2nJC2Zj0abmVnzmp0K9ReALcBHSDPN/TzwiqSlwC7gDmAJsBd4rFB0I3A1ae7ri4ErgeIkSI8CLwDnAbcDT0halrc5QJoN73qgD5gA7ptFG83MbA6aPaP4L8BdEfH1iPibiHgtIl4D1gKjEfF4RJwANgOXSGrMeHcDsC0iXs2v3wZsAJC0CrgM2BQRxyNiJ2nK1OFcdj2wOyKejYg6KRmtlXTuXBttZmbNm3YqVElnkua1/n1J3wYWAU8BvwEMAPsar42IY5IO5PVj5Xh+PJAfDwCvlObhLsefK9R9QNJJYBXwfGkfN5LOXujr66NWq03XrHlVr9fbvs1u5H5I3A9Jp/thZPWpjm27qO+c9u1Lq/q7mTmz+4B3AdcClwM/AL4AfBzoAQ6VXn+EdHmKHD9SivXkcYpyrBFfPkXZct1viYjtwHaAwcHBGBoaaqJZ86dWq9HubXYj90Pifkg63Q8bbnu6Y9suGll9im0vN/NWO3fj64daUm8zl56O55+/HRF/ERHfB34L+BBQB3pLr+8FGmcJ5XgvUI+ImEXZctzMzNpg2kQREW8ArwIxSXiUNFANgKTFwAV5/Y/E8+NibGVpzKEcL9a9Ejgb2D/dPpuZ2fxpdjD7c8CvSnqPpJ8Afg34A+BJ4CJJw5IWAXcCL0XEWC73EHCLpOWSzgdGgAcAImI/8CKwSdIiSdeQ7ozamcs+Alwl6fKcgO4CdpXGNMzMrMWavXD2m8BS0n/zJ4DPA3dHxAlJw8C9wMPAN4B1hXL3AytJdzMBfCava1hHShxvAN8Fro2IQwARMSrpJlLCOA/YQ7o918zM2qipRBERPwBuzks5tge48EcKpVgAt+Zlsvg4MFSx3R3Ajmb20czMWsNf4WFmZpWcKMzMrJIThZmZVXKiMDOzSu35uKCZdVR/Bz6lPLL6FBtue5rxez7c9m3b/PIZhZmZVXKiMDOzSk4UZmZWyWMUZtZSnRgfsfnlMwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWqalEIakm6YSkel6+VYhdIWlM0oSkZyStKMQkaYukw3nZKkmFeH8uM5HrWFPa7nWSDko6JukpSUvmo9FmZta8mZxRfCwievLyUwCSlgK7gDuAJcBe4LFCmY3A1aS5ry8GrgRuLMQfBV4gzWB3O/CEpGW57gHSbHjXA33ABHDfDNtnZmZzNNdLT2uB0Yh4PCJOAJuBSyQ1Zry7AdgWEa9GxGvANmADgKRVwGXApog4HhE7SVOmDuey64HdEfFsRNRJyWitpHPnuM9mZjYDM/lk9icl3QN8C7g9ImrAALCv8YKIOCbpQF4/Vo7nxwP58QDwSkQcrYg/V6j7gKSTwCrg+eKOSdpIOnuhr6+PWq02g2bNXb1eb/s2u5H7IenGfhhZfart2+w7pzPb7Tbt7IdWHXfNJor/BPwJcBJYB+yWdCnQAxwqvfYI0Pivvyc/L8Z68jhFOdaIL5+ibLnut0TEdmA7wODgYAwNDTXZrPlRq9Vo9za7kfsh6cZ+2NChrxnf9rK/Jaid/TC+fqgl9TZ16SkivhERRyPizYh4EPhj4ENAHegtvbwXaJwllOO9QD0iYhZly3EzM2uD2Y5RBCBglDRQDYCkxcAFeT3leH5cjK0sjTmU48W6VwJnA/tnuc9mZjYL0yYKSe+W9AFJiySdJWk98PPAl4EngYskDUtaBNwJvBQRY7n4Q8AtkpZLOh8YAR4AiIj9wIvAplz3NaQ7o3bmso8AV0m6PCegu4BdpTENMzNrsWYunL0L+ARwIfBD0iD11RHxLQBJw8C9wMPAN0hjGA33AytJdzMBfCava1hHShxvAN8Fro2IQwARMSrpJlLCOA/YA3xkxi00M7M5mTZR5Dfun62I7yElkcliAdyal8ni48BQRd07gB3T7aOZmbWOv8LDzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSjNKFJLeK+mEpIcL666QNCZpQtIzklYUYpK0RdLhvGyVpEK8P5eZyHWsKW3vOkkHJR2T9JSkJXNprJmZzdxMzyg+BfyfxhNJS4FdwB3AEmAv8Fjh9RuBq0lzX18MXAncWIg/CrxAmsHuduAJScty3QOk2fCuB/qACeC+Ge6vmZnNUdOJQtI64K+ArxRWrwVGI+LxiDgBbAYukdSY8e4GYFtEvBoRrwHbgA25vlXAZcCmiDgeETtJU6YO57Lrgd0R8WxE1EnJaK2kc2fVUjMzm5Vm5sxGUi9wF3AF8NFCaADY13gSEcckHcjrx8rx/HigUPaViDhaEX+uUPcBSSeBVcDzpf3bSDp7oa+vj1qt1kyz5k29Xm/7NruR+yHpxn4YWX2q7dvsO6cz2+027eyHVh13TSUK4DeBz0bEnxWGGAB6gEOl1x4Bzi3Ej5RiPXmcohxrxJdPUbZc91siYjuwHWBwcDCGhoamb9E8qtVqtHub3cj9kHRjP2y47em2b3Nk9Sm2vdzsW8zpq539ML5+qCX1Trv3ki4F1gA/PUm4DvSW1vUCR6eI9wL1iAhJMy1bjpuZWRs0M0YxBPQD35X0PeDXgWFJ/xcYJQ1UAyBpMXBBXk85nh8XYytLYw7leLHulcDZwP4m9tnMzOZJM4liO+nN/9K8fBp4GvgA8CRwkaRhSYuAO4GXImIsl30IuEXScknnAyPAAwARsR94EdgkaZGka0h3Ru3MZR8BrpJ0eU5AdwG7SmMaZmbWYtNeeoqICdKtqQDkS0YnIuJQfj4M3As8DHwDWFcofj+wknQ3E8Bn8rqGdaTE8QbwXeDaRr0RMSrpJlLCOA/YA3xkxi00M7M5mfEIS0RsLj3fA1w4xWsDuDUvk8XHSZe2ptrWDmDHTPfRzMzmj7/Cw8zMKjlRmJlZJScKMzOr5ERhZmaVnCjMzKySE4WZmVXyF7GYtVF/B75zyWyufEZhZmaVnCjMzKySE4WZmVVyojAzs0pOFGZmVsmJwszMKvn2WOuYTt0qOn7PhzuyXbOFqqkzCkkPS/oLSX8tab+kXy7ErpA0JmlC0jOSVhRikrRF0uG8bFVh0m1J/bnMRK5jTWm710k6KOmYpKckLZmPRpuZWfOavfT0SaA/InqBfwl8QtLPSFoK7ALuAJYAe4HHCuU2AleTpjS9GLgSuLEQfxR4gTQx0e3AE5KWAUgaIE1ydD3QR5o86b6ZN9HMzOaiqUQREaMR8WbjaV4uANYCoxHxeEScADYDl0hqTGR0A7AtIl6NiNeAbcAGAEmrgMuATRFxPCJ2kmbCG85l1wO7I+LZiKiTktHa0hzbZmbWYk2PUUi6j/Qmfw7pLOCLwN3AvsZrIuKYpAPAADCWf+4rVLMvryP/fKU0B3Y5/lyh7gOSTgKrgOeb3W+zslaPjYysPsUGf1WHnUaaThQRcbOkXwX+KWn60jeBHuBQ6aVHgMZ//T35eTHWk8cpyrFGfPkUZct1v0XSRtJlLvr6+qjVas02a17U6/W2b7MbzbQfRlafat3OdFDfOadv22bC/ZC0sx9a9T40o7ueIuKHwNck/RLwK0Ad6C29rBdonCWU471APSJC0kzLluPF/doObAcYHByMoaGhGbRq7mq1Gu3eZjeaaT+crv91j6w+xbaXfUOh+yFpZz+Mrx9qSb2z/RzFWaQxilHSQDUAkhYX1lOO58fF2MrSmEM5Xqx7JXA2sH+W+2xmZrMwbaKQ9B5J6yT1SDpT0geAfwP8T+BJ4CJJw5IWAXcCL0XEWC7+EHCLpOWSzgdGgAcAImI/8CKwSdIiSdeQ7ozamcs+Alwl6fKcgO4CdpXGNMzMrMWaOR8K0mWmT5MSy0Hg1yLiCwCShoF7gYeBbwDrCmXvB1aS7mYC+Exe17COlDjeAL4LXBsRhyDdaSXpJlLCOA/YA3xkxi00M7M5mTZR5Dfu91fE9wAXThEL4Na8TBYfJw2MT1X3DmDHdPtoZmat4+96MjOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpWcKMzMrFIzM9ydLemzkg5KOirpBUkfLMSvkDQmaULSM5JWFGKStEXS4bxslaRCvD+Xmch1rClt+7q83WOSnpK0ZL4abmZmzWnmjOIs4M9Ikxf9HeAO4PP5TX4psCuvWwLsBR4rlN0IXE2a+/pi4ErgxkL8UeAF0gx2twNPSFoGIGmANBve9UAfMAHcN5tGmpnZ7E2bKCLiWERsjojxiPibiPgD4DvAzwBrgdGIeDwiTgCbgUskNWa8uwHYFhGvRsRrwDZgA4CkVcBlwKaIOB4RO0lTpg7nsuuB3RHxbETUScloraRz56fpZmbWjGbmzH4bSX3AKmCUNJf2vkYsIo5JOgAMAGP5575C8X15HfnnKxFxtCL+XKHuA5JO5m0/X9qnjaSzF/r6+qjVajNt1pzU6/W2b7MbzbQfRlafat3OdFDfOadv22bC/ZC0sx9a9T40o0Qh6V3AI8CDETEmqQc4VHrZEaDxX39Pfl6M9eRxinKsEV8+Rdly3W+JiO3AdoDBwcEYGhqaQavmrlar0e5tdqOZ9sOG255u3c500MjqU2x7ecb/g5123A9JO/thfP1QS+pt+q4nSWcAvwecBD6WV9eB3tJLe4GjU8R7gXpExCzKluNmZtYGTSWKfAbwWdKg8nBE/CCHRkkD1Y3XLQYuyOt/JJ4fF2MrS2MO5Xix7pXA2cD+ZvbZzMzmR7NnFL8D/GPgqog4Xlj/JHCRpGFJi4A7gZciYizHHwJukbRc0vnACPAAQETsB14ENklaJOka0p1RO3PZR4CrJF2eE9BdwK7SmIaZmbVYM5+jWEG6pfVS4HuS6nlZHxGHSHcp3Q28AbwPWFcofj+wm3Q30zeBp/O6hnXAYC57D3BtrpOIGAVuIiWM10ljEzfPuqVmZjYr046wRMRBQBXxPcCFU8QCuDUvk8XHgaGKuncAO6bbRzMzax1/hYeZmVVyojAzs0q+yfkdrn8eP8swsvrUafvZCLN3Mp9RmJlZJScKMzOr5ERhZmaVnCjMzKySB7NLZjO4Ox+DuOP3fHhO5c3MWsVnFGZmVsmJwszMKjlRmJlZJScKMzOr5ERhZmaVnCjMzKySb4/tEvP5nUtmZvOp2alQPyZpr6Q3JT1Qil0haUzShKRn8kRHjZgkbZF0OC9b87SqjXh/LjOR61hTqvs6SQclHZP0lKQlc2yvmZnNULOXnv4c+ATwu8WVkpYCu4A7gCXAXuCxwks2AleT5r6+GLiSNFtew6PAC8B5wO3AE5KW5boHSLPhXU+aq3sCuK/plpmZ2bxoKlFExK6IeAo4XAqtBUYj4vGIOAFsBi6R1Jjx7gZgW0S8GhGvAduADQCSVgGXAZsi4nhE7CRNmTqcy64HdkfEsxFRJyWjtZLOnV1TzcxsNuY6RjEA7Gs8iYhjkg7k9WPleH48UCj7SkQcrYg/V6j7gKSTwCrg+eJOSNpIOnuhr6+PWq026waNrD414zJ958yu3OnG/ZC4HxL3Q9LOfpjLe1+VuSaKHuBQad0R4NxC/Egp1pPHKcqxRnz5FGXLdb8lIrYD2wEGBwdjaGhoRo0oms13No2sPsW2l31fgPshcT8k7oeknf0wvn6oJfXO9fbYOtBbWtcLHJ0i3gvUIyJmUbYcNzOzNphrohglDVQDIGkxcEFe/yPx/LgYW1kacyjHi3WvBM4G9s9xn83MbAaavT32LEmLgDOBMyUtknQW8CRwkaThHL8TeCkixnLRh4BbJC2XdD4wAjwAEBH7gReBTbm+a0h3Ru3MZR8BrpJ0eU5AdwG7SmMaZmbWYs2eUXwcOA7cBvxSfvzxiDhEukvpbuAN4H3AukK5+4HdpLuZvgk8ndc1rAMGc9l7gGtznUTEKHATKWG8ThqbuHnGLTQzszlpaoQlIjaTbn2dLLYHuHCKWAC35mWy+DgwVLHdHcCOZvbRzMxaw9/1ZGZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo5UZiZWSUnCjMzq+REYWZmlZwozMyskhOFmZlVcqIwM7NKThRmZlbJicLMzCo5UZiZWaWuThSSlkh6UtIxSQclXdfpfTIze6dpauKiDvoUcBLoAy4Fnpa0L89+Z2ZmbdC1ZxR5nuxh4I6IqEfE14DfB67v7J6Zmb2zKM1W2n0k/TTwXEScU1j368D7I+Kq0ms3Ahvz058CvtW2HU2WAt9v8za7kfshcT8k7odkofTDiohYNlmgmy899QBHSuuOAOeWXxgR24Ht7dipyUjaGxGDndp+t3A/JO6HxP2QnA790LWXnoA60Fta1wsc7cC+mJm9Y3VzotgPnCXpvYV1lwAeyDYza6OuTRQRcQzYBdwlabGknwP+FfB7nd2zSXXssleXcT8k7ofE/ZAs+H7o2sFsSJ+jAH4X+AXgMHBbROzo7F6Zmb2zdHWiMDOzzuvaS09mZtYdnCjMzKySE0WBpI9J2ivpTUkPlGK/LOnbkuqSviTp/ELs3ZIelPR6XjaXyvZLekbShKQxSWva06LZaWE/jEs6nsvWJf1he1o0O5LOlvTZ/D1jRyW9IOmDhfgV+fc5kX+/KwoxSdoi6XBetkpSIb5gjokW98OCOSbm2A//PK87Iml8krq7+3iICC95AdYCVwO/AzxQWP9+4HVgAPixHP+jQvxzwOPAjwP9wAHgI4X4/wJ+CziH9LUkfwUs63R7O9AP48CaTrdvBv2wGNic23IGcCXpczz9pE/bHgH+NbAI+G/A1wtlbyR9Q8DfB5YDfwLctBCPiRb3w4I5JubYD/+E9PVDG4HxSeru6uOh4zvQjQvwidIb5H8HPlV4fj4QwAX5+feBny3E/zPw1fx4FfAmcG4h/tXiH0u3LvPZD/n5gnlTqOiTl/If8kbSV8w01i8GjgMX5ufPARsL8Y823jgW8jExn/1wOhwTzfZDYf2acqJYCMeDLz01R3kpPge4aJJ1jceN2ADwSkQUP1G+L69faObSDw2PSDok6Q8lXdKCfWwZSX2kP+pR0u9vXyMW6XM/B/jb3+vb4rz9d76gj4l57IeGBXlMzLAfqnT98eBE0ZwvAr8o6WJJ5wB3kv6T/vEc/xJwm6RzJf0j4N8VYk1/Z9UCMJd+AFhPOk1fATwDfFnSu9u073Mi6V3AI8CDETHG9L/XcvwI0JOvzy/YY2Ke+wEW6DExi36o0vXHgxNFEyLiK8AmYCdwkHS6fBR4Nb/kP5BOM/8f8AXg0ULstPnOqjn2AxHxxxFxPCImIuKTpOuwl7dr/2dL0hmkbwQ4CXwsr57u91qO9wL1SNcVFuQx0YJ+WJDHxCz7oUrXHw9OFE2KiE9FxHsj4j2kN8qzgG/m2F9GxPqI+LsRMUDq1/+di44CKyUV/ztYsN9ZNYd+mLQ63n6pquvk/3w/S5o8azgifpBDo6TfY+N1i4EL+Nvf69vivP13vuCOiRb1w2S6+piYQz9U6f7jodODJN20kN70FgGfJP3HsKiw7iLSAfyTQA34r4VyFwDnAWcCHyQN6g4U4l8nDQQvAq6hy+5oaEc/5Nf/HOluqUXAbwCHgPM63d5p+uLT+ffXU1q/jHR5YDi3ZwtvH6S9CfhT0p0+55P+6It3+yy0Y2Le+2EhHhNz6Icz8voPks7GFwE/tlCOh47vQDctpFvforRsBt5NurvhGPC9/AZ6ZqHcLwJ/DkwALwIfKNXbn99Uj5NuFezquzxa0Q+kgblG2cPAV4DBTrd1mn5Ykdt+gnR5oLGsz/E1wFj+vdaA/kJZAVuBv8zLVvJX5iy0Y6JV/bDQjok59sPQJH9TtYVyPPi7nszMrJLHKMzMrJIThZmZVXKiMDOzSk4UZmZWyYnCzMwqOVGYmVklJwozM6vkRGFmZpX+Px2MpDsi92uqAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["xs['saleYear'].hist();"]},{"cell_type":"markdown","metadata":{"id":"12HSOKGK195b"},"source":["Here's the result of training on this subset:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"k2j7vTI5195b"},"outputs":[],"source":["filt = xs['saleYear']>2004\n","xs_filt = xs_final_time[filt]\n","y_filt = y[filt]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9IzstwUO195c","outputId":"cbd9362c-2e15-4dd6-8dbe-0374668cab6e"},"outputs":[{"data":{"text/plain":["(0.177284, 0.228008)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = rf(xs_filt, y_filt)\n","m_rmse(m, xs_filt, y_filt), m_rmse(m, valid_xs_time, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"lHZBuSiZ195c"},"source":["It's a tiny bit better, which shows that you shouldn't always just use your entire dataset; sometimes a subset can be better.\n","\n","Let's see if using a neural network helps."]},{"cell_type":"markdown","metadata":{"id":"qQkW3UD1195d"},"source":["### Using a Neural Network"]},{"cell_type":"markdown","metadata":{"id":"peho3k6A195d"},"source":["We can use the same approach to build a neural network model. Let's first replicate the steps we took to set up the `TabularPandas` object:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yWCwpCzK195d"},"outputs":[],"source":["df_nn = pd.read_csv(path/'TrainAndValid.csv', low_memory=False)\n","df_nn['ProductSize'] = df_nn['ProductSize'].astype('category')\n","df_nn['ProductSize'].cat.set_categories(sizes, ordered=True, inplace=True)\n","df_nn[dep_var] = np.log(df_nn[dep_var])\n","df_nn = add_datepart(df_nn, 'saledate')"]},{"cell_type":"markdown","metadata":{"id":"2V0shE2y195e"},"source":["We can leverage the work we did to trim unwanted columns in the random forest by using the same set of columns for our neural network:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"y6aTBsWF195e"},"outputs":[],"source":["df_nn_final = df_nn[list(xs_final_time.columns) + [dep_var]]"]},{"cell_type":"markdown","metadata":{"id":"nY23M4gn195f"},"source":["Categorical columns are handled very differently in neural networks, compared to decision tree approaches. As we saw in <>, in a neural net a great way to handle categorical variables is by using embeddings. To create embeddings, fastai needs to determine which columns should be treated as categorical variables. It does this by comparing the number of distinct levels in the variable to the value of the `max_card` parameter. If it's lower, fastai will treat the variable as categorical. Embedding sizes larger than 10,000 should generally only be used after you've tested whether there are better ways to group the variable, so we'll use 9,000 as our `max_card`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zYYPR6L0195f"},"outputs":[],"source":["cont_nn,cat_nn = cont_cat_split(df_nn_final, max_card=9000, dep_var=dep_var)"]},{"cell_type":"markdown","metadata":{"id":"aC-Qo2KS195f"},"source":["In this case, there's one variable that we absolutely do not want to treat as categorical: the `saleElapsed` variable. A categorical variable cannot, by definition, extrapolate outside the range of values that it has seen, but we want to be able to predict auction sale prices in the future. Let's verify that `cont_cat_split` did the correct thing."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RGjlBfSl195h","outputId":"7b57030c-b3cc-4f70-ede5-61596427768c"},"outputs":[{"data":{"text/plain":["['saleElapsed']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["cont_nn"]},{"cell_type":"markdown","metadata":{"id":"BcniNu7S195i"},"source":["Let's take a look at the cardinality of each of the categorical variables that we have chosen so far:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"J2DBV2xk195i","outputId":"6502739f-2fc5-42d9-eac6-4e4f2921e10f"},"outputs":[{"data":{"text/plain":["YearMade 73\n","ProductSize 6\n","Coupler_System 2\n","fiProductClassDesc 74\n","Hydraulics_Flow 3\n","ModelID 5281\n","fiSecondaryDesc 177\n","fiModelDesc 5059\n","Enclosure 6\n","Hydraulics 12\n","ProductGroup 6\n","Drive_System 4\n","Tire_Size 17\n","dtype: int64"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["df_nn_final[cat_nn].nunique()"]},{"cell_type":"markdown","metadata":{"id":"E6K0dle7195i"},"source":["The fact that there are two variables pertaining to the \"model\" of the equipment, both with similar very high cardinalities, suggests that they may contain similar, redundant information. Note that we would not necessarily see this when analyzing redundant features, since that relies on similar variables being sorted in the same order (that is, they need to have similarly named levels). Having a column with 5,000 levels means needing 5,000 columns in our embedding matrix, which would be nice to avoid if possible. Let's see what the impact of removing one of these model columns has on the random forest:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WXYvb4Vd195j","outputId":"5c74307e-110c-4241-c9c3-36ffcb471546"},"outputs":[{"data":{"text/plain":["(0.176713, 0.230195)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["xs_filt2 = xs_filt.drop('fiModelDescriptor', axis=1)\n","valid_xs_time2 = valid_xs_time.drop('fiModelDescriptor', axis=1)\n","m2 = rf(xs_filt2, y_filt)\n","m_rmse(m2, xs_filt2, y_filt), m_rmse(m2, valid_xs_time2, valid_y)"]},{"cell_type":"markdown","metadata":{"id":"OkksNHMK195j"},"source":["There's minimal impact, so we will remove it as a predictor for our neural network:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"p5RA-idN195k"},"outputs":[],"source":["cat_nn.remove('fiModelDescriptor')"]},{"cell_type":"markdown","metadata":{"id":"GjwXLu-4195k"},"source":["We can create our `TabularPandas` object in the same way as when we created our random forest, with one very important addition: normalization. A random forest does not need any normalization—the tree building procedure cares only about the order of values in a variable, not at all about how they are scaled. But as we have seen, a neural network definitely does care about this. Therefore, we add the `Normalize` processor when we build our `TabularPandas` object:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PgQt_aDf195k"},"outputs":[],"source":["procs_nn = [Categorify, FillMissing, Normalize]\n","to_nn = TabularPandas(df_nn_final, procs_nn, cat_nn, cont_nn,\n"," splits=splits, y_names=dep_var)"]},{"cell_type":"markdown","metadata":{"id":"XwQnnRu7195l"},"source":["Tabular models and data don't generally require much GPU RAM, so we can use larger batch sizes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZBXfNMZ3195l"},"outputs":[],"source":["dls = to_nn.dataloaders(1024)"]},{"cell_type":"markdown","metadata":{"id":"7w7VXydm195l"},"source":["As we've discussed, it's a good idea to set `y_range` for regression models, so let's find the min and max of our dependent variable:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"x16oXoAn195m","outputId":"c18d44e0-a1c7-456b-f3a1-a772d64dca41"},"outputs":[{"data":{"text/plain":["(8.465899467468262, 11.863582611083984)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["y = to_nn.train.y\n","y.min(),y.max()"]},{"cell_type":"markdown","metadata":{"id":"4dx8m1eG195m"},"source":["We can now create the `Learner` to create this tabular model. As usual, we use the application-specific learner function, to take advantage of its application-customized defaults. We set the loss function to MSE, since that's what this competition uses.\n","\n","By default, for tabular data fastai creates a neural network with two hidden layers, with 200 and 100 activations, respectively. This works quite well for small datasets, but here we've got quite a large dataset, so we increase the layer sizes to 500 and 250:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"n8l73prA195n"},"outputs":[],"source":["learn = tabular_learner(dls, y_range=(8,12), layers=[500,250],\n"," n_out=1, loss_func=F.mse_loss)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"c_i7gxAx195n","outputId":"15121409-aa69-4285-dddb-0b9bbe7f7411"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["SuggestedLRs(lr_min=0.002754228748381138, lr_steep=0.00015848931798245758)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAY8AAAEQCAYAAABIqvhxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyDElEQVR4nO3deXyU1bnA8d+TTDYSkhASwr4vyiKoYVFEcKVar+CuINZdUbSt19r23mtv63XpbqtFC3XBguK+r21FQUCWgKKyyg6yZCMhkz2T5/4xAx1jAhmSmXeW5/v5zIfJec975pkB8sw5533PEVXFGGOMCUSc0wEYY4yJPJY8jDHGBMyShzHGmIBZ8jDGGBMwSx7GGGMCZsnDGGNMwFxOBxAq2dnZ2rt3b6fDMMaYiLJq1aoiVc1pXB4zyaN3797k5+c7HYYxxkQUEdnRVLkNWxljjAmYJQ9jjDEBs+RhjDEmYJY8jDHGBMyShzHGmIBZ8jDGGBMwSx7GGBOlKmrq2X+wmnpPQ5u3bcnDGGOi1IINBYx+8EO2FlW0eduWPIwxJkqVVtUBkNkuoc3btuRhjDFRqqyyFoDMlMQ2b9uShzHGRKkDlXWkJsaT6Gr7X/WWPIwxJkqVVtaR2a7tex1gycMYY6JWaWUtGSltP98BljyMMSZqlVbV0SHVkocxxpgAlFbWBmWyHCx5GGNM1CqtrCMjCJfpQgiTh4hkichrIlIhIjtEZMoR6vYVkbdFpFxEikTkt37HPhaRahFx+x4bQ/MOjDEmcqiqd9gq0pMHMBOoBXKBqcDjIjKkcSURSQT+CSwAOgPdgXmNqs1Q1TTfY1BwwzbGmMjjrqnH06CRPWwlIqnAJcC9qupW1cXAm8C0JqpfC+xR1T+qaoWqVqvqF6GI0xhjokVpZfDuLofQ9TwGAh5V3eRXtgb4Ts8DGANsF5H3fENWH4vIsEZ1HvIdWyIiE5p7URG5WUTyRSS/sLCwte/BGGMixr+TRwT3PIA0oKxRWRnQvom63YErgUeArsA7wBu+4SyAnwJ9gW7AbOAtEenX1Iuq6mxVzVPVvJycnNa/C2OMiRAHDi1NEuE9DzeQ3qgsHShvom4VsFhV31PVWuD3QEfgeABVXa6q5apao6rPAEuA84MXujHGRJ5DiyJG+oT5JsAlIgP8yoYDa5uo+wWgAbStgLQiNmOMiTqHFkXMiOQJc1WtAF4F7hORVBEZC0wC5jZRfR4wRkTOFpF44EdAEbBeRDJFZKKIJIuIS0SmAqcDH4TifRhjTKQ44JvziIblSW4DUoACYD4wXVXXikhP3/0aPQFUdSNwNfBX4ADeJHOhbwgrAbgfKMSbUO4AJvvOMcYY41NaWUdakisoK+oCuILSahNUtQSY3ET5TrwT6v5lr+LtqTSuWwiMDFKIxhgTNUqrgrcoItjyJMYYE5VKK4O3KCJY8jDGmKgUzEURwZKHMcZEpdKq4C2KCJY8jDEmKpVWBm9RRLDkYYwxUaehQW3YyhhjTGDKa+pp0OAtTQKWPIwxJuqUBXlRRLDkYYwxUae0yrcoot3nYYwxpqUOBHkvD7DkYYwxUaf08HLsNmxljDGmhcqqrOdhjDEmQAcqfMnD5jyMMca0VGlVLe2TXLjig/cr3pKHMcZEmbLK4C5NApY8jDEm6hyorKVDECfLIYTJQ0SyROQ1EakQkR0iMuUIdfuKyNsiUi4iRSLy22NpxxhjYlFpVV1QJ8shtD2PmUAtkAtMBR4XkSGNK4lIIvBPYAHQGeiOd2vagNoxxphYVVpZF9SNoCBEyUNEUoFLgHtV1a2qi4E3gWlNVL8W2KOqf1TVClWtVtUvjqEdY4yJSaVRNGw1EPCo6ia/sjVAUz2GMcB2EXnPN2T1sYgMO4Z2jDEm5jQ0KGVRNGyVBpQ1KisD2jdRtztwJfAI0BV4B3jDN5wVSDuIyM0iki8i+YWFha0I3xhjIkN59aEVdaOj5+EG0huVpQPlTdStAhar6nuqWgv8HugIHB9gO6jqbFXNU9W8nJyc1sRvjDERIRSLIkLokscmwCUiA/zKhgNrm6j7BaBt0I4xxsSc0hAsigghSh6qWgG8CtwnIqkiMhaYBMxtovo8YIyInC0i8cCPgCJgfYDtGGNMzDkQgkURIbSX6t4GpAAFwHxguqquFZGeIuIWkZ4AqroRuBr4K3AAb3K40DeE1Ww7IXwfxhgTtkKxKCKAK6it+1HVEmByE+U78U6E+5e9ireH0eJ2jDHGwIGK6JrzMMYYEwKlvp5HVNwkaIwxJjRKK+tonxzcFXXBkocxxkSVUNxdDpY8jDEmqoRiUUSw5GGMMVElFIsigiUPY4yJKjZsZYwxJmA2bGWMMSYgh1fUtWErY4wxLVXkrkEVOqYlBf21LHkYY0yU2Ljfu8D4gNy0o9RsPUsexhgTJTbu8yaP4zo33rmi7VnyMMaYKLF+bzk57ZPISrWrrYwxxrTQxv0HOa5zkxurtjlLHsYYEwU8DcrX+90MyrXkYYwxpoW2F1dQU9/AcV2CP98BljyMMSYq/HuyPMp6HiKSJSKviUiFiOwQkSnN1LtWRDy+3QUPPSb4Hf9YRKr9jm0M1XswxphwtWHvQeIE+ncK/mW6EMKdBIGZQC2QC4wA3hGRNc1sIfupqp52hLZmqOoTQYjRGGMi0oZ95fTOTiU5IT4krxeSnoeIpAKXAPeqqltVFwNvAtNC8frGGBPtNu4vD9mQFYRu2Gog4FHVTX5la4AhzdQ/UUSKRGSTiNwrIo17SA/5ji/xH9JqTERuFpF8EckvLCxs1RswxphwVVlbz86SypDcHHhIqJJHGlDWqKwMaCpNLgKGAp3w9lauAn7id/ynQF+gGzAbeEtE+jX1oqo6W1XzVDUvJyende/AGGPC1Kb9blRhUBT2PNxA45SYDpQ3rqiqW1V1m6o2qOqXwH3ApX7Hl6tquarWqOozwBLg/CDGbowxYW3jvoNA6K60gtAlj02AS0QG+JUNB5qaLG9MAWnFcWOMiWrr95bTLjGeHh3ahew1Q5I8VLUCeBW4T0RSRWQsMAmY27iuiJwnIrm+58cB9wJv+H7OFJGJIpIsIi4RmQqcDnwQivdhjDHhaOO+cgbmticuLnTfo0N5k+BtQApQAMwHpqvqWhHp6btfo6ev3lnAFyJSAbyLN+k86DuWANwPFAJFwB3AZFW1ez2MMTFJVUN+pRWE8D4PVS0BJjdRvhPvhPqhn+8G7m6mjUJgZJBCNMaYiFPorqGkojakk+Vgy5MYY0xEO7QsiSUPY4wxLRbKDaD8WfIwxpgItn5vOZ1CtAGUP0sexhgTwbYWuUOyZ3ljljyMMSaCFblryElLCvnrWvIwxpgIVuyupaMlD2OMMS1VVeuhstYT8vkOsOTRZhoalG9KqzhQUet0KMaYGFFcUQNAdlrok0coN4OKOgXl1fzqrXVs3FfOzpJKausbSEmI54kf5DG2f7bT4RljolyJ78tqVqoNW0WUB99Zzz/X7adfTirXndqbBy4aSs+sdlw3ZyUfbShwOjxjTJQrdnuTR0freUSO1TsP8Prne5hxRn/unjjocPl5Q7twzVPLuXluPo9edRLfG9rZwSiNMdGs2Nfz6GhzHpFBVbnvrXXktE9i+oRv70OVlZrIszeOYWi3DG5/bjVvrtnjUJTGmGhX7PbOedjVVhHizTV7+HxXKfdMHERq0nc7bxkpCcy9YTQn9+rAj57/jLe/aF0CUVX2lFZRWVvfqnaMMdGlpKKWJFccqYnxIX9tG7YKUFWth1+/t4Gh3dK55KTuzdZLS3Lx9LUjue7plfzw+c+JF+G8YV0Ceq39B6t5ZfVuXl61m62FFQCkJ7vokpFC54xkundIoXuHdnTNTKasqo71ew+ybm8524sq6J2dyok9MjmxZyZ5vbPolpnS5Gt4GpTqOg91ngZq6xvwqJKW5CItyYXId/cGUFXqfed4GpSMlIQm6xljgq/IXUvH1ERH/g9a8gjQ7EVb2VtWzZ+vPPGoG6+kJrl46rqR/OCpFdwx/zP+ItLkHMi6PQd5bsUONhe4D5fV1DewZlcpDQoje3fg6tG9qKlvYF9ZFXvLqtlTVsUXu0s5UFl3+JzMdgkc3zmd84d1YWuhmxdW7mLO0u2Ad3vKcwbncs7gXJJc8XzydSGLvi5i+dZiauobvhNTnED75ASSXHHUNyh1ngbqPUpNvYcG/Xe9zunJ5PXuwMjeWQzrnkFOWhIdUhNJTYy3pGJMkBVX1DgyZAUhTB4ikgU8CZyLdyOnn6vqc03Uu9ZXr8qv+AJV/TiQdoLhxfxdzPxoM+cN7cyoPlktOictycWc60ZyzVMrmPHcak7p15FBue0Z1Lk9IsL8FTtZteMASa44TuiecfgXbmJ8HNMn9OPSk3vQJzu12fYraur5prSK9skuOqcnf+sXdr2ngQ37ylm2tZh/rNvPzI828+iCzYeP9++UxlWjetI1M5mE+DgS4uOIE6Gipp6D1XUcrKqjuq6BBJccPp7k8j6SE+JRhS+/KWPl9hLe/mLvt+JKiBeSE+IRQEQQgax2ieSmJx/uNY3p25GTe3UgOSH0XW5jokFJRa0jNwgCiKoevVZbvJDIfLxzLDcAI4B3gFNVdW2jetcCN6rqaa1pp7G8vDzNz88/pthr6xv4v7fXMXfZDk7t15GZU06iQ4B/YQer6/jt+xv4fFcpX+93H/623yc7lamje3Lpyd3JbBfcfwQlFbV8tKEAjyqn9c+mazNDWcfim9IqNuw9SElFLQcqaympqKO6znP4uKdBKamoZd/BavaVVbPvYDWeBiU5IY4xfTsyvHsmme0SSE9OoL1vaK5vTmqTc0rGGK+xv17A6L5Z/PHyEUF7DRFZpap5jctD8j9TRFKBS4ChquoGFovIm8A04GehbicQBQerue3Z1eTvOMDNp/flnomDcMUHfp1BenIC908eBnh/ke4orqC8up5h3TJCtu9wVmoil5zc/DxNa3TLTGl2XqUpFTX1LNtazCdfF7FoUyEfbyxssl5uehL9ctI4vks6Q7ulM7RrBn1z0ogP4V7NxoQjVfUOWznU8wjV17qBgEdVN/mVrQHGN1P/RBEpAkqAucBDqlofaDsicjNwM0DPnj2bqnJEqsr0Z1ezbs9BHrnqRC4c3jXgNpoSHyf0zQn9EsrhJDXJxVnH53LW8bkA1HkacFfXU15dT1lVHbsPVLK1qIIthW62FLiZt2zH4d5aRkoCk0Z05YqRPRjSNcPJt2GMYyprPVTXNUT9nEcaUNaorAxoat/ERcBQYAcwBHgBqAceCrAdVHU2MBu8w1aBBi0i3DdpCHEiHN8ltLt0xZqE+Dg6pCYeHg4c1v3bSaHe08CWwgrW7inj442FPL9yF3//dAdDu6UzaXg3Th+Yw8DcNJukNzHj30uThHnPQ0TOALar6jYR6QL8GvAA/6Wq+45yuhto/Ns3HShvXFFVt/r9+KWI3Af8BG/yaHE7bcW+2YYHV3wcgzp7LzS4+KTulFbW8vpn3/Bi/m4eeHc9D7y7ntz0JMYNyOH8YZ0ZNyCHhGMYXjQmUhS5nVsUEQLreTwGTPQ9/4Pvz3q83+wvPMq5mwCXiAxQ1a99ZcOBI05y+yhw6Otka9oxUSSzXSLXju3DtWP7sKe0isVfF7Hw60L+uW4/L6/aTcfURC4c0ZVLTurO0G72BcBEn5LDS5OE/7BVN1XdKSIuvEmkF1ALHPX2aVWtEJFXgftE5Ea8V0lNAk5tXFdEzgNWq+p+ETkOuBd4KdB2TOzompnC5SN7cPnIHtTWN7BwUyGvfbabZ5ft5Okl2xk3IJsfnzOQk3p2cDpUY9rMoUURw37YCjgoIrl45yPWqapbRBKBhBaefxvwFFAAFAPTVXWtiPQE1gGDVXUncBYwR0TSgP3APODBo7UTwPswUSzRFXf4ZsiyyjqeX7mTWYu2cvFjSxk/MIf/PHcgJ3TPdDpMY1rt8KKIETBs9SiwEkgEfuQrGwtsaMnJqloCTG6ifCfeifBDP98N3B1oO8Y0ltEugVvG9+PqMb2Yu2wHsxdtZfLMJdw0ri8/Pmeg3ZxoIlqxu4aUhHjaJTpzL1SLZxRV9TfA2cBYVX3eV/wNcGMwAjOmraQmubh1fD8W/mQCV4zsyaxFW/n+I5/w+a5Sp0Mz5pgVV9Q61uuAAFfVVdVNqroFDl991VlVvwxKZMa0sfbJCTx08TD+fv0oKms9XPzYEv77tS/ZWVzpdGjGBKy4otaxGwQhgOQhIgtFZKzv+U+B54H5IvJfwQrOmGA4fWAOH/z4dKaO7sVL+buZ8PuPuGP+Z6zd0/gWImPCV7HbuUURIbCex1Bgme/5TcAEYAxwaxvHZEzQpScn8H+Th/LJT8/gpnF9WbB+P99/ZDF3zv+MvWVVR2/AGIc5uSgiBJY84gAVkX54F1Rcr6q7ALv+0USs3PRkfn7+8Sz92VnMOKM/76/dx5m/X8ijH379rYUdjQknqkqxO3LmPBYDfwF+D7wG4EskRUGIy5iQymiXwN0TB/HhXeOZMCiHP/xzExP/tIgvd9tQlgk/7pp6aj0NZDt0gyAEljyuBUqBL4Bf+sqOA/7cphEZ46AeWe14/OqTee7G0dTVN3DJ40uZt2wHodq6wJiWcPoGQQjgPg9VLQb+q1HZO20ekTFh4NT+2bx95zjuevFz/uf1r1i5vYQHLxpm+4uYsOD0DYIQ2NVWCSLyKxHZKiLVvj9/5bvL3Jiok5WayFM/GMnd5w7krTV7OP+RT1ixrcTpsIyh2LcoolPrWkFgw1a/xXuT4K14FyO8FTgT+E0Q4jImLMTFCTPOHMD8m8bQoMoVsz/lV2+tparWJtONc0oiqecBXAZcqKr/UNWNqvoP4CLg8uCEZkz4GN23I+//8HSuGdOLp5ds57w/22S6cU6xw3t5QGDJo7lddmz3HRMTUpNc/GrSUObfNIY6j3LZrKW8/9XRtrIxpu0VuWtIS3I5uj5bIMnjJeAtEZkoIseLyPeA14EXgxKZMWHqlH4def32sRzXOZ3pz65i1sItdjWWCSmnbxCEwJLHPcC/gJnAKryr7H6Ed08PY2JKTvsknr95DN8f1oWH3tvAz175kjpPg9NhmRjh9A2CENilurXAL3wPAEQkGajAm1iMiSnJCfE8cuWJ9M1O5ZEFmyly1zBz6km21LsJuuKKWrplpjgaQ2s3efbfIvaIRCRLRF4TkQoR2SEiU1pwzgIRUd/uhYfKPvZdKuz2PTa2In5jWiUuTrjr3EHcP3koCzYWcM2TKyirqnM6LBPlit01jq6oC61PHuBNIC0xE+8QVy4wFXhcRIY0V1lEptJ8z2iGqqb5HoMCitaYILh6TC8evepEPtt1gCtnL6OgvNrpkEyUUlVKHN7LA1owbCUiZx7hcIuiF5FU4BJgqKq6gcUi8iYwDfhZE/UzgP8FrgE+bclrGOO0C07oSnpyArfMXcVlf/2U524a4/jQgok+B6vqqW9QxyfMWzLn8eRRju9sQRsDAY+qbvIrWwOMb6b+g8DjQHPXQT4kIr8GNgL/raoftyAGY4Lu9IE5PHvTaH7w1AqumPUp828aQ4+sdk6HZaJIcYX37vJsB/fygBYMW6lqn6M9WvA6aUDjO6rKgPaNK4pIHt690R9tpq2fAn2BbsBsvJcP92uqoojcLCL5IpJfWFjYgjCNab2TenbguRvHUF5dz+WzPmVbUYXTIZkoEg43CELbzHm0hBtIb1SWDpT7F4hIHPAY8ENVrW+qIVVdrqrlqlqjqs8AS4Dzm6k7W1XzVDUvJyen1W/CmJYa1j2D+TeNoba+gctnfcrmgvKjn2RMCxxaUdfpOY9QJY9NgEtEBviVDQfWNqqXDuQBL4jIPmClr3y3iIxrpu0WX/FlTCgN7prO8zePAeDqJ1awq8T2SjeBUVW+3l/O3GU7mLtsBy+v2s3CTd5RFCcXRYQA7vNoDVWtEJFXgftE5EZgBDAJOLVR1TKgq9/PPYAVwMlAoYhkAqOBhUA9cAVwOvCjIIZvzDEbkNueeTeM5vJZnzLtyeW8eOspdGqf7HRYJozV1jewbGsxH67fz4KNBewq+e62yKmJ8Y4PW4Vyc4LbgKeAAqAYmK6qa0WkJ7AOGKyqO/GbJPfdhAiwX1XrfVdh3Y93EyoPsAGYrKp2r4cJW4M6t+fp60Yy9W/LuebJFbxwyylkpCQ4HZYJIxU19Xy4oYB/rN3Hwo2FlNfUk5wQx2n9s5k+vj/jBmSTnBBPdZ2HqjoP6ckJJLpCNXDUNImVNXny8vI0Pz/f6TBMDPvk60JumJPPsO4ZzLthNCmJdid6rCutrGXO0u08vWQ7ZVV1ZKclcvbxuZwzOJex/bPDYrUCEVmlqnmNy21bNGNCZNyAHP585Qhuf241M55bzaxpJ+OKd/bbo3FGdZ2Hh/+1iXmf7qCi1sPZx+dy07g+5PXOIj4uMqZw7V+uMSF03rAu3DdpKB9uKOB/Xv/KVuONUY99tJlZC7dy5vG5vP+jcTzxgzxG9+0YMYkDrOdhTMhdPaYX+8qq+ctHm+mckcyPzh7odEgmhIrdNTy5eBvnD+vMo1ed6HQ4x8yShzEO+M9zB7LvYDV/+tfX5KYnc9Wonk6HZEJk1qKtVNV5uOucyP7SYMnDGAeICA9dPIwidw3//dqXZKclcc7gXKfDMkFWcLCaZ5ZuZ/KIbvTv9J0FNiKKzXkY45CE+DhmTjmJYd0zmfHcavK3lzgdkgmyv3y0GU+D8sOzBxy9cpiz5GGMg1KTXDx97Ui6ZaZw/ZyVbNpvy5hEq90HKpm/YieX5fWgV8dUp8NpNUsexjgsKzWRZ64fRXJCPNc8uYJvSr97R7GJfI9+uBkR4c6z+jsdSpuw5GFMGOiR1Y5nrh9FRW09055cTrG7xumQTBty19Tz8urdXDWyB10yomOPF0sexoSJ47uk89S1I9lTWsU1T63gYLVtZxsttha68TQop/bPdjqUNmPJw5gwMrJ3Fn+9+mQ27S/nxjn5VNV6nA7JtIEthW4A+uWkORxJ27HkYUyYmTCoEw9fMYKVO0qY/uwqausbnA7JtNKWggpccUKvjtGzq6QlD2PC0AUndOWhi4bx8cZCfvLyGhoabBmTSLal0E3Pju1IiKK1zOwmQWPC1JWjelJSWctv399ITloS/3PBYKdDMsdoS6E7qoaswJKHMWFt+vh+FBys4YnF2+iUnsTNp/dzOiQToHpPA9uLKjnzuOhaQcCShzFhTET4xQWDKXLX8OC7G8hOS+Lik7o7HZYJwO4DVdR6GuiXE/k3BvoL2QCciGSJyGsiUiEiO0RkSgvOWSAiKiIuv7KA2zEmksXFCX+4fDhj+3fknpe/4P2v9jodkgnA5gLflVadomvYKpSzNzOBWiAXmAo8LiJDmqssIlNpumcUUDvGRIMkVzyzpuUxvEcmM577zBJIBDl8mW62JY+AiUgqcAlwr6q6VXUx8CYwrZn6GcD/Ave0ph1joklakos51420BBJhthS6yU5LIqNddO1bH6qex0DAo6qb/MrWAM31GB4EHgf2taYdEblZRPJFJL+wsPDYIjcmjLRPTvhWAnn3S0sg4W5LYUXUzXdA6JJHGlDWqKwM+M6C9iKSB4wFHm1NOwCqOltV81Q1LycnJ+CgjQlH7ZMTeOb6UYzokcntz63mb4u22na2YUpV2Vzgjrr5Dghd8nAD6Y3K0oFvrT8tInHAY8APVbX+WNsxJtqlJbmYe8NozhvamQfeXc/PXvnS7kQPQyUVtZRV1dE/yu7xgNAlj02AS0T8d0AZDqxtVC8dyANeEJF9wEpf+W4RGRdAO8ZEvZTEeP5y1UnccWZ/XsjfxbQnl3OgotbpsIyfLYUVQPRdaQUhSh6qWgG8CtwnIqkiMhaYBMxtVLUM6AqM8D3O95WfDCwPoB1jYkJcnPCf5w7iT1eM4LOdpVw5exmF5bace7j494KINufRGrcBKUABMB+YrqprRaSniLhFpKd67Tv0AA7Ncu9X1dojtRPC92FM2Jl8YjfmXDeSnSWVXDH7U/aVVTsdksF7j0dyQhxdo2QPD38hSx6qWqKqk1U1VVV7qupzvvKdqpqmqjubOGe7qor//Edz7RgT607tn83fbxhFwcEaLp/1KbsPVDodUszbUuimb3YacXHidChtLnqWeDTGMLJ3FvNuHE1pZS1XzFrG5gK7lsRJWwqj80orsORhTNQZ0SOT524aQ019AxfNXMpHGwucDikmVdd52H2gKirnO8CShzFRaWi3DN6YMZYeWe24Yc5KnvjE7gUJtW1FFahG1+6B/ix5GBOlumWm8PL0U5g4pDP3v7Oee17+wu4FCaFo3HrWnyUPY6JYu0QXM6ecxJ1n9uelVbu55qnllFbavSChsKWgAhHok23DVsaYCBQXJ9zluxdk9Y5SLn5sKduLKpwOK+ptKXTTLTOFlMR4p0MJCksexsSIySd2Y96NozlQWctFjy1h+dZip0OKWjX1HpZuKWJYtwynQwkaSx7GxJBRfbJ47baxdEhNZMoTy21RxSB5/6t9FLlruXJUT6dDCRpLHsbEmN7Zqbx++1jOHZzLA++u59Z5qyirqnM6rKjy7LKd9OrYjnH9s50OJWgseRgTg9KTE3hs6knce8FgPlxfwIV/WcxX3zTe7cAciw37DrJiewlTR/eMyjvLD7HkYUyMEhFuOK0PL9wyhpq6Bi5+fCnPLd9pw1it9OyynSS64rjs5B5OhxJUljyMiXEn98rinTtPY3SfLP7rtS+568U1VNQ0tZ2OORp3TT2vrt7NBSd0oUNqotPhBJUlD2MMHdOSmHPdKO46ZyBvfP4Nk2YuYXOB2+mwIs7rn31DRa2Hq8f0cjqUoLPkYYwBID5OuPOsAcy7YTQHKmqZ9JfFvGd7pLeYqjJv2Q6GdE3nxB6ZTocTdJY8jDHfcmr/bN6+8zQG5LZn+rOreejd9dR7bFmTo1m14wAb9pUzbUwvRKJ3ovyQkCUPEckSkddEpEJEdojIlGbqXSkiG0WkTEQKROQZEUn3O/6xiFT7NpByi8jGUL0HY2JFl4wUXrhlDNPG9GLWoq1c/eRy26HwKF5ZvZt2ifFcOKKr06GERCh7HjOBWiAXmAo8LiJDmqi3BBirqhlAX8AF3N+ozgzfBlJpqjoomEEbE6uSXPH83+Sh/OGy4Xy+q5QLHv2EVTsOOB1WWKr3NPDB2v2cdXwu7RJdTocTEiFJHiKSClwC3KuqblVdDLwJTGtcV1V3qWqRX5EH6B+KOI0x33XJyd15dfpYkhPiuXL2pzyzdLtdztvI8m0llFTU8v1hnZ0OJWRC1fMYCHhUdZNf2RqgqZ4HInKaiJQB5XiTzp8aVXlIRIpEZImITGj7cI0x/gZ3TefNGacxfmAO//vmWqbPW02x24axDnnny720S4xnwqBOTocSMqFKHmlA49tXy4D2TVVW1cW+YavuwO+A7X6Hf4p3OKsbMBt4S0T6NdWOiNwsIvkikl9YWNi6d2BMjMtISWD2tDx+ft5xLNhQwMQ/LeKf6/Y7HZbj6j0NfPDVPs48rhPJCdG5gm5TQpU83EB6o7J0vD2LZqnqN8D7wPN+ZctVtVxVa1T1GbxzJOc3c/5sVc1T1bycnJxWvQFjjHd591vG9+PNO8aS0z6Zm/6ez90vrYnptbFWbCuhuKKW7w/r4nQoIRWq5LEJcInIAL+y4cDaFpzrAprsWfgoEP3XxRkTRo7rnM4bt49lxhn9ee2zbzjnjwt5/6t9TofliHe+3EtKQmwNWUGIkoeqVgCvAveJSKqIjAUmAXMb1xWRqSLSU7x6AQ8AH/qOZYrIRBFJFhGXiEwFTgc+CMX7MMb8W6IrjrsnDuKN28eSnZbErfNWcevcVRQcrHY6tJDxNCgfrPUOWUXrpk/NCeWlurcBKUABMB+YrqprfYnCLSKHFr4fDCzFO9S1BNgI3OQ7loD3st1CoAi4A5isqnavhzEOGdotgzdmjOWe7w1iwcYCzvrjQuYu20FDQ/RfkbViWwlF7lrOj7EhKwCJlUvu8vLyND8/3+kwjIlqWwvd/M/rX7F0SzEjemTy4EXDGNy18XRn9Lj39a94adUuVt97TtTe3yEiq1Q1r3G5LU9ijGkzfXPSePbG0Tx8xXB2lVTyH39ZzEPvrae6zuN0aG3O06C857vKKloTx5FY8jDGtCkR4aITu/Phf47nspO7M2vhVs5/JPruTv9s5wGK3DWcNzT2hqzAkocxJkgy2yXy60tOYO4No6ipa+DSvy7l/rfXRU0vZMGGAlxxwvhBsXkbgCUPY0xQjRuQwwc/Pp0po3ryxOJtTJ65hC2Fkb9XyIINBeT17kB6coLToTjCkocxJujSklw8cNEwnr5uJPsPVnPho4t54/NvnA7rmO0prWLDvnLOPC627u3wZ8nDGBMyZwzqxLs/HMfxXdL54fOf87NXvsAdgVvefrSxAPC+n1hlycMYE1JdMlJ4/uYx3DahHy/k72Liw4tYtCmy1p77aEMB3Tuk0L9TmtOhOMaShzEm5FzxcdzzveN4+dZTSEqI45qnVnjXyKoM/zWyqus8LNlczJnHdYqJHQObY8nDGOOYk3tl8e6d47htQj/vGlkPL2TBhvBeqXfZ1mKq6jycEcPzHWDJwxjjsOSEeO753nG8cftYOrRL5Po5+fzkpTUcrA7PXsjHGwtJTojjlL4dnQ7FUZY8jDFhYWi3DN68Yyy3TejHK6t3872HF/H+V3vDatdCVWXBhgLG9suOqb07mmLJwxgTNpJc3l7IK9NPJTXJxa3zVjN55hIWf1109JNDYEthBTtLKpkQ40NWYMnDGBOGTuzZgfd+OI7fXnoCRe5arn5yOVP+toz1ew86GtdHG7yX6Mby/R2HWPIwxoQlV3wcl+f1YMHd4/nFBYNZv/cg33/kE3755lrHrspasKGAQbnt6ZaZ4sjrhxNLHsaYsJbkiuf60/rw0d0TuHpML/7+6XbO+MPHvLByZ0j3DNlXVs3ybcWcOyQ3ZK8ZzkKWPEQkS0ReE5EKEdkhIlOaqXeliGwUkTIRKRCRZ0QkPdB2jDHRJbNdIvdNGspbd5xG3+xUfvrKl1z616Ws2xOaoaxXVu+mQeGSk7qH5PXCXSh7HjOBWiAXmAo8LiJDmqi3BBirqhlAX7x7mN9/DO0YY6LQkK4ZvHTrKfz+suHsKK7kgkc/4b631lEexEt7VZUX83cxuk8WvbNTg/Y6kSQkyUNEUoFLgHtV1a2qi4E3gWmN66rqLlX1v7TCA/QPtB1jTPQSES492btnyFWjevL00m1M+N3HzF22g3pPQ5u/3optJeworuSKkT3avO1IFaqex0DAo6qb/MrWAE32GETkNBEpA8rxJos/HUs7xpjoltkukQcuGsYbt4+lX6c07n39Kyb+aRH/Wre/Te8PeSF/F2lJrpjd+KkpoUoeaUBZo7IyoH1TlVV1sW/YqjvwO2D7sbQjIjeLSL6I5BcWRtbCa8aYljuheyYv3DyGv12Thyrc+Pd8rpuzkl0lla1uu7y6jne/3Mt/DO9KSmJs3xjoL1TJww2kNypLx9uzaJaqfgO8Dzx/LO2o6mxVzVPVvJyc2Nzty5hYISKcMziXD358OvdeMJiV20o45+GF/HXhFupaMZT19hd7qa5rsCGrRkKVPDYBLhEZ4Fc2HFjbgnNdQL82aMcYEwMS4uO44bQ+/POu8Zw+IIdfv7eBCx5ZzEcbC45pKOuFlbsYmJvG8O4ZQYg2coUkeahqBfAqcJ+IpIrIWGASMLdxXRGZKiI9xasX8ADwYaDtGGNiW9fMFGZfk8fsaSdTVefhuqdXMuVvy1mzq7TFbWzaX87nu0q5PK9HTC+/3pRQXqp7G5ACFADzgemqutaXKNwi0tNXbzCwFO8Q1RJgI3DT0doJ0XswxkSYc4d05l93jedXFw5h0/5yJs1cwi1z84+aROo9DfzhHxtxxQkXndgtNMFGEAmnFSuDKS8vT/Pz850OwxjjIHdNPX9btJWnl2zjYHU9Y/t35LYJ/Tm1X8dv9Sxq6j3cOf8zPli7n5+fdxy3jO93hFajm4isUtW875Rb8jDGxJry6jqeW76TJxZvo7C8hiFd07nhtD5ccEJXGlS5Ze4qFm4q5BcXDOb60/o4Ha6jLHlY8jDGNFJd5+HV1d/w1JJtbC5w06l9Ep3Sk1i75yAPXTSMK0f1PHojUa655OFyIhhjjAkHyQnxTBndkytH9mDR14U8uXgby7eW8KcrRjBphM1zHIklD2NMzIuLEyYM6sSEQZ2o9zTgircFx4/GPiFjjPFjiaNl7FMyxhgTMEsexhhjAmbJwxhjTMAseRhjjAmYJQ9jjDEBs+RhjDEmYJY8jDHGBCxmlicRkUKglG/vRJjh93NTzw/9mQ3476veUv5tBnK8cfmRfnYi7ubqtKTsSPH6l9ln3rLjR/vMA3nudOyR+pmHW9zN1TnW/5+9VPW7u+mpasw8gNnN/dzUc78/89vi9Vp6/EhxhkPczdVpSdmR4rXPvPVxtyRW+8yjO+6W/LsINPamHrE2bPXWEX5u6nnj+q19vZYeP1KcjX92Iu7m6rSk7Gjx2mce2PGjfeaBPj8Wsf6Zh1vczdU51v+fTYqZYavWEJF8bWJVyXAXqXFD5MYeqXFD5MZucTsj1noex2q20wEco0iNGyI39kiNGyI3dovbAdbzMMYYEzDreRhjjAmYJQ9jjDEBs+TRRkTkNBH52PfYJCIPOx1TS4nIBBH5UEQ+EpGLnI6nJUSkt4gU+n3m370OPcyJyFW++48igojkishSEVkoIgtEpIvTMbWUiJwiIp/6Yp8vIglOx9QSIpIhIitExC0iQ52Ox5/NeQSBiMwBnlbVhU7HcjQikgy8BFyiqrVOx9NSItIb+L2qXup0LMdCROLwfu59VPUkp+NpCRGJB1RVG0TkWqC7qt7vcFgtIiJdgQOqWiUiDwCfqerLTsd1NL4klwn8Du+/96+cjejfrOfRxnx/2aOAT5yOpYVOBaqAt0TkNRHp7HRAARgrIp+IyIMiIk4HE6ApwMtAg9OBtJSqelT1ULztgbVOxhMIVd2jqlW+H+uJkM9dVetUNSx7pzGZPERkhojki0iNr5fgfyzL90u0QkR2iMiUAJs/B/jQ7z9ZmwlS3LlAf+A/gL8Bv2zToAla3Hvxxn060Am4uG2jPhxfm8fu+wZ/OfBCEEI+9BpB+TcuIiNEZDkwA1jdxmEfeo2g/f8UkT7AecDbbRjyobaD+Xsl7LicDsAhe4D7gYlASqNjM4FavL9URwDviMgaVV3r+1beVFf3UlXd53t+GfB0UKIOQtx41/taoqq1IvIh8LNIiNv3edcAiMirwBjglUiI3dfWi77hnyCEHJy4VXWfqn4OjBaRy4GfA7dGSuwikg48A0wL0hBtMH+vhJ9jWVslWh54/6Ln+P2civcveKBf2Vzg1y1sLwH4CoiLlLiBjsC/AAFG452riYS40/2ePwRcE0Gf+W+AfwDv41147pEIiTvJ7/lE4I8R9Jm7gHeAM4MZc1vH7Vd/DjA02LEH8ojVnkdzBgIeVd3kV7YGGN/C888GFmgQhqyO4pjjVtViEXkNWIh3HPj64ITYpNZ83uNF5JdAJbANuLftwzui1nzmPz30XLxLVNwZhPia05rP/CQR+Q3gAaoJ7b8VaF3sV+H9cvQLEfkF8LiqBm3YsJFW/V4RkXfx9lYGicgsVZ3T5hEeA0se35bGd5csLsM7OXhUqvoe8F5bB9UCrY17Jt5udagdc9yq+hatX2CuNVr1mR+ioV/bqDWf+ad455ic0prY5+L9tu+E1v7/PL/NI2oDMTlhfgRuIL1RWTpQ7kAsgbC4Qy9SY4/UuCFyY4/UuI/Ikse3bQJcIjLAr2w44X9JosUdepEae6TGDZEbe6TGfUQxmTxExOW7OS4eiBeRZBFxqWoF8Cpwn4ikishYYBLOdXe/xeIOvUiNPVLjhsiNPVLjPmZOz9g78cB7L4M2evzSdywLeB2oAHYCU5yO1+K22GMl7kiOPVLjPtaHLU9ijDEmYDE5bGWMMaZ1LHkYY4wJmCUPY4wxAbPkYYwxJmCWPIwxxgTMkocxxpiAWfIwxhgTMEsexgSZiIwTkY1Ox2FMW7LkYaKaiGwXkbOdjEFVP1HVQcFoW0Q+FpFqEXGLSJGIvCoiXVp47gQR2R2MuEz0s+RhTCv5tpV10gxVTcO7LW8a8HuH4zExwJKHiUkiEiciPxORLSJSLCIvikiW3/GXRGSfiJSJyCIRGeJ3bI6IPC4i74pIBXCGr4dzt4h84TvnBd8ied/5hn+kur7j94jIXhHZIyI3ioiKSP+jvSdVLcW7ftIIv7auE5H1IlIuIltF5BZfeSrevWe6+notbhHperTPxZhDLHmYWHUnMBnvbm5dgQN8e0Os94ABQCdgNfBso/OnAA/g3dBnsa/scuB7QB/gBODaI7x+k3VF5HvAXXh3pexPy3exREQ6AhcDm/2KC4AL8O4fcR3wsIicpN6VXs8D9qhqmu+xh6N/LsYAljxM7LoF+G9V3a2qNXhXRL1URFwAqvqUqpb7HRsuIhl+57+hqktUtUFVq31lj6jqHlUtwbvL4YgjvH5zdS/Hu4/8WlWtBH7VgvfyiIiUAUVANnDHoQOq+o6qblGvhXj3Th93hLaO+LkYc4glDxOregGviUipiJQC6/HuzZ0rIvEi8mvf0M1BYLvvnGy/83c10eY+v+eVeOcfmtNc3a6N2m7qdRq7U1Uz8PZgOgDdDx0QkfNEZJmIlPje5/l8+3001uzn0oI4TAyx5GFi1S7gPFXN9Hskq+o3eIekJuEdOsoAevvOEb/zg7WXwV78fvkDPVp6oqp+CdwPzBSvJOAVvBPouaqaCbzLv99HU+/hSJ+LMYdZ8jCxIMG3q9uhhwv4K/CAiPQCEJEcEZnkq98eqAGKgXbAgyGM9UXgOhE5XkTaAb8I8Pxn8M7TXAgkAklAIVAvIucB5/rV3Q90bDQcd6TPxZjDLHmYWPAuUOX3+CXwZ+BN4B8iUg4sA0b76v8d2AF8A6zzHQsJVX0PeAT4CO/E96e+QzUtPL/Wd/69qlqOdwL8RbwT31PwvudDdTcA84GtvmGqrhz5czHmMNtJ0JgwJiLHA18BSapa73Q8xhxiPQ9jwoyIXCQiiSLSAfgN8JYlDhNuLHkYE35uwTtPsQXvlU7TnQ3HmO+yYStjjDEBs56HMcaYgFnyMMYYEzBLHsYYYwJmycMYY0zALHkYY4wJmCUPY4wxAft/GlCbjCJYIjoAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.lr_find()"]},{"cell_type":"markdown","metadata":{"id":"-cht-ZOp195o"},"source":["There's no need to use `fine_tune`, so we'll train with `fit_one_cycle` for a few epochs and see how it looks:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0nAt1o9C195o","outputId":"82cc5b96-6442-4ea7-8924-77df80e8c55e"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losstime
00.0684590.06118500:09
10.0564690.05847100:09
20.0486890.05240400:09
30.0445290.05213800:09
40.0408600.05123600:09
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(5, 1e-2)"]},{"cell_type":"markdown","metadata":{"id":"sGCm9hws195p"},"source":["We can use our `r_mse` function to compare the result to the random forest result we got earlier:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"D2GXHtQe195p","outputId":"94d8f803-89ee-4596-f6fe-56f87744b794"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["0.226353"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["preds,targs = learn.get_preds()\n","r_mse(preds,targs)"]},{"cell_type":"markdown","metadata":{"id":"rzD9M8mS195q"},"source":["It's quite a bit better than the random forest (although it took longer to train, and it's fussier about hyperparameter tuning).\n","\n","Before we move on, let's save our model in case we want to come back to it again later:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nWSlqUbB1954","outputId":"370761ff-27d0-4754-cc85-b758d9afcbcf"},"outputs":[{"data":{"text/plain":["Path('models/nn.pth')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn.save('nn')"]},{"cell_type":"markdown","metadata":{"id":"phY6ySD41955"},"source":["### Sidebar: fastai's Tabular Classes"]},{"cell_type":"markdown","metadata":{"id":"K2oq4nRP1955"},"source":["In fastai, a tabular model is simply a model that takes columns of continuous or categorical data, and predicts a category (a classification model) or a continuous value (a regression model). Categorical independent variables are passed through an embedding, and concatenated, as we saw in the neural net we used for collaborative filtering, and then continuous variables are concatenated as well.\n","\n","The model created in `tabular_learner` is an object of class `TabularModel`. Take a look at the source for `tabular_learner` now (remember, that's `tabular_learner??` in Jupyter). You'll see that like `collab_learner`, it first calls `get_emb_sz` to calculate appropriate embedding sizes (you can override these by using the `emb_szs` parameter, which is a dictionary containing any column names you want to set sizes for manually), and it sets a few other defaults. Other than that, it just creates the `TabularModel`, and passes that to `TabularLearner` (note that `TabularLearner` is identical to `Learner`, except for a customized `predict` method).\n","\n","That means that really all the work is happening in `TabularModel`, so take a look at the source for that now. With the exception of the `BatchNorm1d` and `Dropout` layers (which we'll be learning about shortly), you now have the knowledge required to understand this whole class. Take a look at the discussion of `EmbeddingNN` at the end of the last chapter. Recall that it passed `n_cont=0` to `TabularModel`. We now can see why that was: because there are zero continuous variables (in fastai the `n_` prefix means \"number of,\" and `cont` is an abbreviation for \"continuous\")."]},{"cell_type":"markdown","metadata":{"id":"D3GDZD7O1956"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"IjoaJ_gD1956"},"source":["Another thing that can help with generalization is to use several models and average their predictions—a technique, as mentioned earlier, known as *ensembling*."]},{"cell_type":"markdown","metadata":{"id":"658NFtwY1956"},"source":["## Ensembling"]},{"cell_type":"markdown","metadata":{"id":"0KV2MsaT1957"},"source":["Think back to the original reasoning behind why random forests work so well: each tree has errors, but those errors are not correlated with each other, so the average of those errors should tend towards zero once there are enough trees. Similar reasoning could be used to consider averaging the predictions of models trained using different algorithms.\n","\n","In our case, we have two very different models, trained using very different algorithms: a random forest, and a neural network. It would be reasonable to expect that the kinds of errors that each one makes would be quite different. Therefore, we might expect that the average of their predictions would be better than either one's individual predictions.\n","\n","As we saw earlier, a random forest is itself an ensemble. But we can then include a random forest in *another* ensemble—an ensemble of the random forest and the neural network! While ensembling won't make the difference between a successful and an unsuccessful modeling process, it can certainly add a nice little boost to any models that you have built.\n","\n","One minor issue we have to be aware of is that our PyTorch model and our sklearn model create data of different types: PyTorch gives us a rank-2 tensor (i.e, a column matrix), whereas NumPy gives us a rank-1 array (a vector). `squeeze` removes any unit axes from a tensor, and `to_np` converts it into a NumPy array:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"81PtGTBx1957"},"outputs":[],"source":["rf_preds = m.predict(valid_xs_time)\n","ens_preds = (to_np(preds.squeeze()) + rf_preds) /2"]},{"cell_type":"markdown","metadata":{"id":"QVbCnepR1957"},"source":["This gives us a better result than either model achieved on its own:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1LTEqU6I1957","outputId":"c9e2e872-e675-4b91-9b26-6e54cef2388d"},"outputs":[{"data":{"text/plain":["0.222134"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["r_mse(ens_preds,valid_y)"]},{"cell_type":"markdown","metadata":{"id":"sFw28LN81958"},"source":["In fact, this result is better than any score shown on the Kaggle leaderboard. It's not directly comparable, however, because the Kaggle leaderboard uses a separate dataset that we do not have access to. Kaggle does not allow us to submit to this old competition to find out how we would have done, but our results certainly look very encouraging!"]},{"cell_type":"markdown","metadata":{"id":"b71Wgdio1958"},"source":["### Boosting"]},{"cell_type":"markdown","metadata":{"id":"iJyLHchd1958"},"source":["So far our approach to ensembling has been to use *bagging*, which involves combining many models (each trained on a different data subset) together by averaging them. As we saw, when this is applied to decision trees, this is called a *random forest*.\n","\n","There is another important approach to ensembling, called *boosting*, where we add models instead of averaging them. Here is how boosting works:\n","\n","- Train a small model that underfits your dataset.\n","- Calculate the predictions in the training set for this model.\n","- Subtract the predictions from the targets; these are called the \"residuals\" and represent the error for each point in the training set.\n","- Go back to step 1, but instead of using the original targets, use the residuals as the targets for the training.\n","- Continue doing this until you reach some stopping criterion, such as a maximum number of trees, or you observe your validation set error getting worse.\n","\n","Using this approach, each new tree will be attempting to fit the error of all of the previous trees combined. Because we are continually creating new residuals, by subtracting the predictions of each new tree from the residuals from the previous tree, the residuals will get smaller and smaller.\n","\n","To make predictions with an ensemble of boosted trees, we calculate the predictions from each tree, and then add them all together. There are many models following this basic approach, and many names for the same models. *Gradient boosting machines* (GBMs) and *gradient boosted decision trees* (GBDTs) are the terms you're most likely to come across, or you may see the names of specific libraries implementing these; at the time of writing, *XGBoost* is the most popular.\n","\n","Note that, unlike with random forests, with this approach there is nothing to stop us from overfitting. Using more trees in a random forest does not lead to overfitting, because each tree is independent of the others. But in a boosted ensemble, the more trees you have, the better the training error becomes, and eventually you will see overfitting on the validation set.\n","\n","We are not going to go into detail on how to train a gradient boosted tree ensemble here, because the field is moving rapidly, and any guidance we give will almost certainly be outdated by the time you read this. As we write this, sklearn has just added a `HistGradientBoostingRegressor` class that provides excellent performance. There are many hyperparameters to tweak for this class, and for all gradient boosted tree methods we have seen. Unlike random forests, gradient boosted trees are extremely sensitive to the choices of these hyperparameters; in practice, most people use a loop that tries a range of different hyperparameters to find the ones that work best."]},{"cell_type":"markdown","metadata":{"id":"4d662Y0z1959"},"source":["One more technique that has gotten great results is to use embeddings learned by a neural net in a machine learning model."]},{"cell_type":"markdown","metadata":{"id":"g6IP2Agb1959"},"source":["### Combining Embeddings with Other Methods"]},{"cell_type":"markdown","metadata":{"id":"j4wJnxEC1959"},"source":["The abstract of the entity embedding paper we mentioned at the start of this chapter states: \"the embeddings obtained from the trained neural network boost the performance of all tested machine learning methods considerably when used as the input features instead\". It includes the very interesting table in <>."]},{"cell_type":"markdown","metadata":{"hide_input":false,"id":"VBBmYvst1959"},"source":["\"Embeddings"]},{"cell_type":"markdown","metadata":{"id":"Csokr5n1195-"},"source":["This is showing the mean average percent error (MAPE) compared among four different modeling techniques, three of which we have already seen, along with *k*-nearest neighbors (KNN), which is a very simple baseline method. The first numeric column contains the results of using the methods on the data provided in the competition; the second column shows what happens if you first train a neural network with categorical embeddings, and then use those categorical embeddings instead of the raw categorical columns in the model. As you see, in every case, the models are dramatically improved by using the embeddings instead of the raw categories.\n","\n","This is a really important result, because it shows that you can get much of the performance improvement of a neural network without actually having to use a neural network at inference time. You could just use an embedding, which is literally just an array lookup, along with a small decision tree ensemble.\n","\n","These embeddings need not even be necessarily learned separately for each model or task in an organization. Instead, once a set of embeddings are learned for some column for some task, they could be stored in a central place, and reused across multiple models. In fact, we know from private communication with other practitioners at large companies that this is already happening in many places."]},{"cell_type":"markdown","metadata":{"id":"Ol3ND-dl195-"},"source":["## Conclusion: Our Advice for Tabular Modeling"]},{"cell_type":"markdown","metadata":{"id":"3oVJjrMO195-"},"source":["We have dicussed two approaches to tabular modeling: decision tree ensembles and neural networks. We've also mentioned two different decision tree ensembles: random forests, and gradient boosting machines. Each is very effective, but each also has compromises:\n","\n","- *Random forests* are the easiest to train, because they are extremely resilient to hyperparameter choices and require very little preprocessing. They are very fast to train, and should not overfit if you have enough trees. But they can be a little less accurate, especially if extrapolation is required, such as predicting future time periods.\n","\n","- *Gradient boosting machines* in theory are just as fast to train as random forests, but in practice you will have to try lots of different hyperparameters. They can overfit, but they are often a little more accurate than random forests.\n","\n","- *Neural networks* take the longest time to train, and require extra preprocessing, such as normalization; this normalization needs to be used at inference time as well. They can provide great results and extrapolate well, but only if you are careful with your hyperparameters and take care to avoid overfitting.\n","\n","We suggest starting your analysis with a random forest. This will give you a strong baseline, and you can be confident that it's a reasonable starting point. You can then use that model for feature selection and partial dependence analysis, to get a better understanding of your data.\n","\n","From that foundation, you can try neural nets and GBMs, and if they give you significantly better results on your validation set in a reasonable amount of time, you can use them. If decision tree ensembles are working well for you, try adding the embeddings for the categorical variables to the data, and see if that helps your decision trees learn better."]},{"cell_type":"markdown","metadata":{"id":"QuEie0lg195_"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"BiHLWulQ195_"},"source":["1. What is a continuous variable?\n","1. What is a categorical variable?\n","1. Provide two of the words that are used for the possible values of a categorical variable.\n","1. What is a \"dense layer\"?\n","1. How do entity embeddings reduce memory usage and speed up neural networks?\n","1. What kinds of datasets are entity embeddings especially useful for?\n","1. What are the two main families of machine learning algorithms?\n","1. Why do some categorical columns need a special ordering in their classes? How do you do this in Pandas?\n","1. Summarize what a decision tree algorithm does.\n","1. Why is a date different from a regular categorical or continuous variable, and how can you preprocess it to allow it to be used in a model?\n","1. Should you pick a random validation set in the bulldozer competition? If no, what kind of validation set should you pick?\n","1. What is pickle and what is it useful for?\n","1. How are `mse`, `samples`, and `values` calculated in the decision tree drawn in this chapter?\n","1. How do we deal with outliers, before building a decision tree?\n","1. How do we handle categorical variables in a decision tree?\n","1. What is bagging?\n","1. What is the difference between `max_samples` and `max_features` when creating a random forest?\n","1. If you increase `n_estimators` to a very high value, can that lead to overfitting? Why or why not?\n","1. In the section \"Creating a Random Forest\", just after <>, why did `preds.mean(0)` give the same result as our random forest?\n","1. What is \"out-of-bag-error\"?\n","1. Make a list of reasons why a model's validation set error might be worse than the OOB error. How could you test your hypotheses?\n","1. Explain why random forests are well suited to answering each of the following question:\n"," - How confident are we in our predictions using a particular row of data?\n"," - For predicting with a particular row of data, what were the most important factors, and how did they influence that prediction?\n"," - Which columns are the strongest predictors?\n"," - How do predictions vary as we vary these columns?\n","1. What's the purpose of removing unimportant variables?\n","1. What's a good type of plot for showing tree interpreter results?\n","1. What is the \"extrapolation problem\"?\n","1. How can you tell if your test or validation set is distributed in a different way than your training set?\n","1. Why do we ensure `saleElapsed` is a continuous variable, even although it has less than 9,000 distinct values?\n","1. What is \"boosting\"?\n","1. How could we use embeddings with a random forest? Would we expect this to help?\n","1. Why might we not always use a neural net for tabular modeling?"]},{"cell_type":"markdown","metadata":{"id":"WRDOhDdY196A"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"NEgQdE0w196A"},"source":["1. Pick a competition on Kaggle with tabular data (current or past) and try to adapt the techniques seen in this chapter to get the best possible results. Compare your results to the private leaderboard.\n","1. Implement the decision tree algorithm in this chapter from scratch yourself, and try it on the dataset you used in the first exercise.\n","1. Use the embeddings from the neural net in this chapter in a random forest, and see if you can improve on the random forest results we saw.\n","1. Explain what each line of the source of `TabularModel` does (with the exception of the `BatchNorm1d` and `Dropout` layers)."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ebe2wxdR196A"},"outputs":[],"source":[]}],"metadata":{"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/09_tabular.ipynb","timestamp":1712447813837}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/10_nlp.ipynb b/notebooks/oleg/Education/fastai/10_nlp.ipynb new file mode 100644 index 0000000..631d77a --- /dev/null +++ b/notebooks/oleg/Education/fastai/10_nlp.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"jEc-JnGF2COw"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PKzUOrOK2CO2"},"outputs":[],"source":["#hide\n","from fastbook import *\n","from IPython.display import display,HTML"]},{"cell_type":"raw","metadata":{"id":"GX56ThSv2CO4"},"source":["[[chapter_nlp]]"]},{"cell_type":"markdown","metadata":{"id":"SaY9ZYzV2CO5"},"source":["# NLP Deep Dive: RNNs"]},{"cell_type":"markdown","metadata":{"id":"lLOqg-oA2CO7"},"source":["In <> we saw that deep learning can be used to get great results with natural language datasets. Our example relied on using a pretrained language model and fine-tuning it to classify reviews. That example highlighted a difference between transfer learning in NLP and computer vision: in general in NLP the pretrained model is trained on a different task.\n","\n","What we call a language model is a model that has been trained to guess what the next word in a text is (having read the ones before). This kind of task is called *self-supervised learning*: we do not need to give labels to our model, just feed it lots and lots of texts. It has a process to automatically get labels from the data, and this task isn't trivial: to properly guess the next word in a sentence, the model will have to develop an understanding of the English (or other) language. Self-supervised learning can also be used in other domains; for instance, see [\"Self-Supervised Learning and Computer Vision\"](https://www.fast.ai/2020/01/13/self_supervised/) for an introduction to vision applications. Self-supervised learning is not usually used for the model that is trained directly, but instead is used for pretraining a model used for transfer learning."]},{"cell_type":"markdown","metadata":{"id":"ZUSWuqnd2CO8"},"source":["> jargon: Self-supervised learning: Training a model using labels that are embedded in the independent variable, rather than requiring external labels. For instance, training a model to predict the next word in a text."]},{"cell_type":"markdown","metadata":{"id":"Y9-2_z8s2CO9"},"source":["The language model we used in <> to classify IMDb reviews was pretrained on Wikipedia. We got great results by directly fine-tuning this language model to a movie review classifier, but with one extra step, we can do even better. The Wikipedia English is slightly different from the IMDb English, so instead of jumping directly to the classifier, we could fine-tune our pretrained language model to the IMDb corpus and then use *that* as the base for our classifier.\n","\n","Even if our language model knows the basics of the language we are using in the task (e.g., our pretrained model is in English), it helps to get used to the style of the corpus we are targeting. It may be more informal language, or more technical, with new words to learn or different ways of composing sentences. In the case of the IMDb dataset, there will be lots of names of movie directors and actors, and often a less formal style of language than that seen in Wikipedia.\n","\n","We already saw that with fastai, we can download a pretrained English language model and use it to get state-of-the-art results for NLP classification. (We expect pretrained models in many more languages to be available soon—they might well be available by the time you are reading this book, in fact.) So, why are we learning how to train a language model in detail?\n","\n","One reason, of course, is that it is helpful to understand the foundations of the models that you are using. But there is another very practical reason, which is that you get even better results if you fine-tune the (sequence-based) language model prior to fine-tuning the classification model. For instance, for the IMDb sentiment analysis task, the dataset includes 50,000 additional movie reviews that do not have any positive or negative labels attached. Since there are 25,000 labeled reviews in the training set and 25,000 in the validation set, that makes 100,000 movie reviews altogether. We can use all of these reviews to fine-tune the pretrained language model, which was trained only on Wikipedia articles; this will result in a language model that is particularly good at predicting the next word of a movie review.\n","\n","This is known as the Universal Language Model Fine-tuning (ULMFit) approach. The [paper](https://arxiv.org/abs/1801.06146) showed that this extra stage of fine-tuning of the language model, prior to transfer learning to a classification task, resulted in significantly better predictions. Using this approach, we have three stages for transfer learning in NLP, as summarized in <>."]},{"cell_type":"markdown","metadata":{"id":"bXQRw0YC2CO-"},"source":["\"Diagram"]},{"cell_type":"markdown","metadata":{"id":"DqoVA23s2CO_"},"source":["We'll now explore how to apply a neural network to this language modeling problem, using the concepts introduced in the last two chapters. But before reading further, pause and think about how *you* would approach this."]},{"cell_type":"markdown","metadata":{"id":"BDYOkZlM2CPA"},"source":["## Text Preprocessing"]},{"cell_type":"markdown","metadata":{"id":"0nQbZ0wW2CPA"},"source":["It's not at all obvious how we're going to use what we've learned so far to build a language model. Sentences can be different lengths, and documents can be very long. So, how can we predict the next word of a sentence using a neural network? Let's find out!\n","\n","We've already seen how categorical variables can be used as independent variables for a neural network. The approach we took for a single categorical variable was to:\n","\n","1. Make a list of all possible levels of that categorical variable (we'll call this list the *vocab*).\n","1. Replace each level with its index in the vocab.\n","1. Create an embedding matrix for this containing a row for each level (i.e., for each item of the vocab).\n","1. Use this embedding matrix as the first layer of a neural network. (A dedicated embedding matrix can take as inputs the raw vocab indexes created in step 2; this is equivalent to but faster and more efficient than a matrix that takes as input one-hot-encoded vectors representing the indexes.)\n","\n","We can do nearly the same thing with text! What is new is the idea of a sequence. First we concatenate all of the documents in our dataset into one big long string and split it into words, giving us a very long list of words (or \"tokens\"). Our independent variable will be the sequence of words starting with the first word in our very long list and ending with the second to last, and our dependent variable will be the sequence of words starting with the second word and ending with the last word.\n","\n","Our vocab will consist of a mix of common words that are already in the vocabulary of our pretrained model and new words specific to our corpus (cinematographic terms or actors names, for instance). Our embedding matrix will be built accordingly: for words that are in the vocabulary of our pretrained model, we will take the corresponding row in the embedding matrix of the pretrained model; but for new words we won't have anything, so we will just initialize the corresponding row with a random vector."]},{"cell_type":"markdown","metadata":{"id":"zKp1DGGI2CPA"},"source":["Each of the steps necessary to create a language model has jargon associated with it from the world of natural language processing, and fastai and PyTorch classes available to help. The steps are:\n","\n","- Tokenization:: Convert the text into a list of words (or characters, or substrings, depending on the granularity of your model)\n","- Numericalization:: Make a list of all of the unique words that appear (the vocab), and convert each word into a number, by looking up its index in the vocab\n","- Language model data loader creation:: fastai provides an `LMDataLoader` class which automatically handles creating a dependent variable that is offset from the independent variable by one token. It also handles some important details, such as how to shuffle the training data in such a way that the dependent and independent variables maintain their structure as required\n","- Language model creation:: We need a special kind of model that does something we haven't seen before: handles input lists which could be arbitrarily big or small. There are a number of ways to do this; in this chapter we will be using a *recurrent neural network* (RNN). We will get to the details of these RNNs in the <>, but for now, you can think of it as just another deep neural network.\n","\n","Let's take a look at how each step works in detail."]},{"cell_type":"markdown","metadata":{"id":"_j7WDkuf2CPB"},"source":["### Tokenization"]},{"cell_type":"markdown","metadata":{"id":"k8hl6_y-2CPB"},"source":["When we said \"convert the text into a list of words,\" we left out a lot of details. For instance, what do we do with punctuation? How do we deal with a word like \"don't\"? Is it one word, or two? What about long medical or chemical words? Should they be split into their separate pieces of meaning? How about hyphenated words? What about languages like German and Polish where we can create really long words from many, many pieces? What about languages like Japanese and Chinese that don't use bases at all, and don't really have a well-defined idea of *word*?\n","\n","Because there is no one correct answer to these questions, there is no one approach to tokenization. There are three main approaches:\n","\n","- Word-based:: Split a sentence on spaces, as well as applying language-specific rules to try to separate parts of meaning even when there are no spaces (such as turning \"don't\" into \"do n't\"). Generally, punctuation marks are also split into separate tokens.\n","- Subword based:: Split words into smaller parts, based on the most commonly occurring substrings. For instance, \"occasion\" might be tokenized as \"o c ca sion.\"\n","- Character-based:: Split a sentence into its individual characters.\n","\n","We'll be looking at word and subword tokenization here, and we'll leave character-based tokenization for you to implement in the questionnaire at the end of this chapter."]},{"cell_type":"markdown","metadata":{"id":"n5CXZs2j2CPB"},"source":["> jargon: token: One element of a list created by the tokenization process. It could be a word, part of a word (a _subword_), or a single character."]},{"cell_type":"markdown","metadata":{"id":"9TXmciCC2CPC"},"source":["### Word Tokenization with fastai"]},{"cell_type":"markdown","metadata":{"id":"HHKiPREa2CPC"},"source":["Rather than providing its own tokenizers, fastai instead provides a consistent interface to a range of tokenizers in external libraries. Tokenization is an active field of research, and new and improved tokenizers are coming out all the time, so the defaults that fastai uses change too. However, the API and options shouldn't change too much, since fastai tries to maintain a consistent API even as the underlying technology changes.\n","\n","Let's try it out with the IMDb dataset that we used in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZaURnZpW2CPC"},"outputs":[],"source":["from fastai.text.all import *\n","path = untar_data(URLs.IMDB)"]},{"cell_type":"markdown","metadata":{"id":"HRLDqEZO2CPD"},"source":["We'll need to grab the text files in order to try out a tokenizer. Just like `get_image_files`, which we've used many times already, gets all the image files in a path, `get_text_files` gets all the text files in a path. We can also optionally pass `folders` to restrict the search to a particular list of subfolders:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_ZCT6sI62CPD"},"outputs":[],"source":["files = get_text_files(path, folders = ['train', 'test', 'unsup'])"]},{"cell_type":"markdown","metadata":{"id":"kme2kMUH2CPE"},"source":["Here's a review that we'll tokenize (we'll just print the start of it here to save space):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hi6-wkpK2CPE","outputId":"27d19dd6-8c01-4535-b6d6-63e7e99edeab"},"outputs":[{"data":{"text/plain":["'This movie, which I just discovered at the video store, has apparently sit '"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["txt = files[0].open().read(); txt[:75]"]},{"cell_type":"markdown","metadata":{"id":"dETrcvMv2CPG"},"source":["As we write this book, the default English word tokenizer for fastai uses a library called *spaCy*. It has a sophisticated rules engine with special rules for URLs, individual special English words, and much more. Rather than directly using `SpacyTokenizer`, however, we'll use `WordTokenizer`, since that will always point to fastai's current default word tokenizer (which may not necessarily be spaCy, depending when you're reading this).\n","\n","Let's try it out. We'll use fastai's `coll_repr(collection, n)` function to display the results. This displays the first *`n`* items of *`collection`*, along with the full size—it's what `L` uses by default. Note that fastai's tokenizers take a collection of documents to tokenize, so we have to wrap `txt` in a list:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qB1M8hNi2CPG","outputId":"2f7fc77e-e4cf-4c5c-fd22-609410169546"},"outputs":[{"name":"stdout","output_type":"stream","text":["(#201) ['This','movie',',','which','I','just','discovered','at','the','video','store',',','has','apparently','sit','around','for','a','couple','of','years','without','a','distributor','.','It',\"'s\",'easy','to','see'...]\n"]}],"source":["spacy = WordTokenizer()\n","toks = first(spacy([txt]))\n","print(coll_repr(toks, 30))"]},{"cell_type":"markdown","metadata":{"id":"D8hm2Y-r2CPG"},"source":["As you see, spaCy has mainly just separated out the words and punctuation. But it does something else here too: it has split \"it's\" into \"it\" and \"'s\". That makes intuitive sense; these are separate words, really. Tokenization is a surprisingly subtle task, when you think about all the little details that have to be handled. Fortunately, spaCy handles these pretty well for us—for instance, here we see that \".\" is separated when it terminates a sentence, but not in an acronym or number:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nREJsG-V2CPH","outputId":"793c9151-ab88-4905-a377-ecf019a21446"},"outputs":[{"data":{"text/plain":["(#9) ['The','U.S.','dollar','$','1','is','$','1.00','.']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["first(spacy(['The U.S. dollar $1 is $1.00.']))"]},{"cell_type":"markdown","metadata":{"id":"YChK88jL2CPH"},"source":["fastai then adds some additional functionality to the tokenization process with the `Tokenizer` class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aQs7z2Gz2CPH","outputId":"f1c0c642-498c-43da-a208-897ac123c6de"},"outputs":[{"name":"stdout","output_type":"stream","text":["(#228) ['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at','the','video','store',',','has','apparently','sit','around','for','a','couple','of','years','without','a','distributor','.','xxmaj','it',\"'s\",'easy'...]\n"]}],"source":["tkn = Tokenizer(spacy)\n","print(coll_repr(tkn(txt), 31))"]},{"cell_type":"markdown","metadata":{"id":"227c_i1K2CPI"},"source":["Notice that there are now some tokens that start with the characters \"xx\", which is not a common word prefix in English. These are *special tokens*.\n","\n","For example, the first item in the list, `xxbos`, is a special token that indicates the start of a new text (\"BOS\" is a standard NLP acronym that means \"beginning of stream\"). By recognizing this start token, the model will be able to learn it needs to \"forget\" what was said previously and focus on upcoming words.\n","\n","These special tokens don't come from spaCy directly. They are there because fastai adds them by default, by applying a number of rules when processing text. These rules are designed to make it easier for a model to recognize the important parts of a sentence. In a sense, we are translating the original English language sequence into a simplified tokenized language—a language that is designed to be easy for a model to learn.\n","\n","For instance, the rules will replace a sequence of four exclamation points with a special *repeated character* token, followed by the number four, and then a single exclamation point. In this way, the model's embedding matrix can encode information about general concepts such as repeated punctuation rather than requiring a separate token for every number of repetitions of every punctuation mark. Similarly, a capitalized word will be replaced with a special capitalization token, followed by the lowercase version of the word. This way, the embedding matrix only needs the lowercase versions of the words, saving compute and memory resources, but can still learn the concept of capitalization.\n","\n","Here are some of the main special tokens you'll see:\n","\n","- `xxbos`:: Indicates the beginning of a text (here, a review)\n","- `xxmaj`:: Indicates the next word begins with a capital (since we lowercased everything)\n","- `xxunk`:: Indicates the word is unknown\n","\n","To see the rules that were used, you can check the default rules:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"V7cINX7V2CPI","outputId":"ed4f4f72-dd43-4a37-a8b0-b1163f165e43"},"outputs":[{"data":{"text/plain":["[,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ,\n"," ]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["defaults.text_proc_rules"]},{"cell_type":"markdown","metadata":{"id":"FEhgmO2q2CPJ"},"source":["As always, you can look at the source code of each of them in a notebook by typing:\n","\n","```\n","??replace_rep\n","```\n","\n","Here is a brief summary of what each does:\n","\n","- `fix_html`:: Replaces special HTML characters with a readable version (IMDb reviews have quite a few of these)\n","- `replace_rep`:: Replaces any character repeated three times or more with a special token for repetition (`xxrep`), the number of times it's repeated, then the character\n","- `replace_wrep`:: Replaces any word repeated three times or more with a special token for word repetition (`xxwrep`), the number of times it's repeated, then the word\n","- `spec_add_spaces`:: Adds spaces around / and #\n","- `rm_useless_spaces`:: Removes all repetitions of the space character\n","- `replace_all_caps`:: Lowercases a word written in all caps and adds a special token for all caps (`xxup`) in front of it\n","- `replace_maj`:: Lowercases a capitalized word and adds a special token for capitalized (`xxmaj`) in front of it\n","- `lowercase`:: Lowercases all text and adds a special token at the beginning (`xxbos`) and/or the end (`xxeos`)"]},{"cell_type":"markdown","metadata":{"id":"YpuXfTCi2CPJ"},"source":["Let's take a look at a few of them in action:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PCNJYUMa2CPJ","outputId":"1450d764-f042-4e0b-df88-35c57329a518"},"outputs":[{"data":{"text/plain":["\"(#11) ['xxbos','©','xxmaj','fast.ai','xxrep','3','w','.fast.ai','/','xxup','index'...]\""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["coll_repr(tkn('© Fast.ai www.fast.ai/INDEX'), 31)"]},{"cell_type":"markdown","metadata":{"id":"95dnl_VV2CPK"},"source":["Now let's take a look at how subword tokenization would work."]},{"cell_type":"markdown","metadata":{"id":"jUt5WouK2CPK"},"source":["### Subword Tokenization"]},{"cell_type":"markdown","metadata":{"id":"-oMIrGdY2CPK"},"source":["In addition to the *word tokenization* approach seen in the last section, another popular tokenization method is *subword tokenization*. Word tokenization relies on an assumption that spaces provide a useful separation of components of meaning in a sentence. However, this assumption is not always appropriate. For instance, consider this sentence: 我的名字是郝杰瑞 (\"My name is Jeremy Howard\" in Chinese). That's not going to work very well with a word tokenizer, because there are no spaces in it! Languages like Chinese and Japanese don't use spaces, and in fact they don't even have a well-defined concept of a \"word.\" There are also languages, like Turkish and Hungarian, that can add many subwords together without spaces, creating very long words that include a lot of separate pieces of information.\n","\n","To handle these cases, it's generally best to use subword tokenization. This proceeds in two steps:\n","\n","1. Analyze a corpus of documents to find the most commonly occurring groups of letters. These become the vocab.\n","2. Tokenize the corpus using this vocab of *subword units*.\n","\n","Let's look at an example. For our corpus, we'll use the first 2,000 movie reviews:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"t9pyXqei2CPL"},"outputs":[],"source":["txts = L(o.open().read() for o in files[:2000])"]},{"cell_type":"markdown","metadata":{"id":"ldg_7oQO2CPL"},"source":["We instantiate our tokenizer, passing in the size of the vocab we want to create, and then we need to \"train\" it. That is, we need to have it read our documents and find the common sequences of characters to create the vocab. This is done with `setup`. As we'll see shortly, `setup` is a special fastai method that is called automatically in our usual data processing pipelines. Since we're doing everything manually at the moment, however, we have to call it ourselves. Here's a function that does these steps for a given vocab size, and shows an example output:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Mrmzzs0j2CPL"},"outputs":[],"source":["def subword(sz):\n"," sp = SubwordTokenizer(vocab_sz=sz)\n"," sp.setup(txts)\n"," return ' '.join(first(sp([txt]))[:40])"]},{"cell_type":"markdown","metadata":{"id":"JM_nRe562CPR"},"source":["Let's try it out:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"60oYV0j32CPR","outputId":"ff7acdd8-70c6-4467-f3ed-a2cc6adaa819"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["'▁This ▁movie , ▁which ▁I ▁just ▁dis c over ed ▁at ▁the ▁video ▁st or e , ▁has ▁a p par ent ly ▁s it ▁around ▁for ▁a ▁couple ▁of ▁years ▁without ▁a ▁dis t ri but or . ▁It'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["subword(1000)"]},{"cell_type":"markdown","metadata":{"id":"-HVNgVnA2CPS"},"source":["When using fastai's subword tokenizer, the special character `▁` represents a space character in the original text.\n","\n","If we use a smaller vocab, then each token will represent fewer characters, and it will take more tokens to represent a sentence:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-Fq_uupn2CPS","outputId":"d8655b7f-2772-48a4-f5cf-9ccb87fb7565"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["'▁ T h i s ▁movie , ▁w h i ch ▁I ▁ j us t ▁ d i s c o ver ed ▁a t ▁the ▁ v id e o ▁ st or e , ▁h a s'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["subword(200)"]},{"cell_type":"markdown","metadata":{"id":"ibSHb83b2CPS"},"source":["On the other hand, if we use a larger vocab, then most common English words will end up in the vocab themselves, and we will not need as many to represent a sentence:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Q8lG0lFU2CPT","outputId":"5ab9ca54-8111-463d-a41d-ed64c239289e"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["\"▁This ▁movie , ▁which ▁I ▁just ▁discover ed ▁at ▁the ▁video ▁store , ▁has ▁apparently ▁sit ▁around ▁for ▁a ▁couple ▁of ▁years ▁without ▁a ▁distributor . ▁It ' s ▁easy ▁to ▁see ▁why . ▁The ▁story ▁of ▁two ▁friends ▁living\""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["subword(10000)"]},{"cell_type":"markdown","metadata":{"id":"z6XWkdL12CPT"},"source":["Picking a subword vocab size represents a compromise: a larger vocab means fewer tokens per sentence, which means faster training, less memory, and less state for the model to remember; but on the downside, it means larger embedding matrices, which require more data to learn.\n","\n","Overall, subword tokenization provides a way to easily scale between character tokenization (i.e., using a small subword vocab) and word tokenization (i.e., using a large subword vocab), and handles every human language without needing language-specific algorithms to be developed. It can even handle other \"languages\" such as genomic sequences or MIDI music notation! For this reason, in the last year its popularity has soared, and it seems likely to become the most common tokenization approach (it may well already be, by the time you read this!)."]},{"cell_type":"markdown","metadata":{"id":"_bLN-Kmq2CPT"},"source":["Once our texts have been split into tokens, we need to convert them to numbers. We'll look at that next."]},{"cell_type":"markdown","metadata":{"id":"JfihFMU72CPU"},"source":["### Numericalization with fastai"]},{"cell_type":"markdown","metadata":{"id":"IGBDaN2h2CPU"},"source":["*Numericalization* is the process of mapping tokens to integers. The steps are basically identical to those necessary to create a `Category` variable, such as the dependent variable of digits in MNIST:\n","\n","1. Make a list of all possible levels of that categorical variable (the vocab).\n","1. Replace each level with its index in the vocab.\n","\n","Let's take a look at this in action on the word-tokenized text we saw earlier:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"v0PAzP_V2CPU","outputId":"e34928f9-332a-4cef-fac0-b549ae8645ea"},"outputs":[{"name":"stdout","output_type":"stream","text":["(#228) ['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at','the','video','store',',','has','apparently','sit','around','for','a','couple','of','years','without','a','distributor','.','xxmaj','it',\"'s\",'easy'...]\n"]}],"source":["toks = tkn(txt)\n","print(coll_repr(tkn(txt), 31))"]},{"cell_type":"markdown","metadata":{"id":"iEraKuin2CPV"},"source":["Just like with `SubwordTokenizer`, we need to call `setup` on `Numericalize`; this is how we create the vocab. That means we'll need our tokenized corpus first. Since tokenization takes a while, it's done in parallel by fastai; but for this manual walkthrough, we'll use a small subset:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"DeumLTBC2CPV","outputId":"55757a82-6ad2-487d-b299-548ea0225f41"},"outputs":[{"data":{"text/plain":["(#228) ['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at'...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["toks200 = txts[:200].map(tkn)\n","toks200[0]"]},{"cell_type":"markdown","metadata":{"id":"_R1LXr9r2CPV"},"source":["We can pass this to `setup` to create our vocab:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8BozzEaS2CPV","outputId":"f54ae1fc-1097-4cef-a05c-b5195f3d111f"},"outputs":[{"data":{"text/plain":["\"(#2000) ['xxunk','xxpad','xxbos','xxeos','xxfld','xxrep','xxwrep','xxup','xxmaj','the','.',',','a','and','of','to','is','in','i','it'...]\""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["num = Numericalize()\n","num.setup(toks200)\n","coll_repr(num.vocab,20)"]},{"cell_type":"markdown","metadata":{"id":"JtwqQ_R52CPW"},"source":["Our special rules tokens appear first, and then every word appears once, in frequency order. The defaults to `Numericalize` are `min_freq=3,max_vocab=60000`. `max_vocab=60000` results in fastai replacing all words other than the most common 60,000 with a special *unknown word* token, `xxunk`. This is useful to avoid having an overly large embedding matrix, since that can slow down training and use up too much memory, and can also mean that there isn't enough data to train useful representations for rare words. However, this last issue is better handled by setting `min_freq`; the default `min_freq=3` means that any word appearing less than three times is replaced with `xxunk`.\n","\n","fastai can also numericalize your dataset using a vocab that you provide, by passing a list of words as the `vocab` parameter.\n","\n","Once we've created our `Numericalize` object, we can use it as if it were a function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"I1TUk4vV2CPW","outputId":"2da7cb65-46a9-4fbe-930a-cbd6841dcc5d"},"outputs":[{"data":{"text/plain":["tensor([ 2, 8, 21, 28, 11, 90, 18, 59, 0, 45, 9, 351, 499, 11, 72, 533, 584, 146, 29, 12])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["nums = num(toks)[:20]; nums"]},{"cell_type":"markdown","metadata":{"id":"yzKJWHga2CPW"},"source":["This time, our tokens have been converted to a tensor of integers that our model can receive. We can check that they map back to the original text:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"40WW6gWJ2CPX","outputId":"6436c500-b5b4-46fb-de8e-eee96a3681d5"},"outputs":[{"data":{"text/plain":["'xxbos xxmaj this movie , which i just xxunk at the video store , has apparently sit around for a'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["' '.join(num.vocab[o] for o in nums)"]},{"cell_type":"markdown","metadata":{"id":"hyRc6o2_2CPX"},"source":["Now that we have numbers, we need to put them in batches for our model."]},{"cell_type":"markdown","metadata":{"id":"zjRvSnJe2CPX"},"source":["### Putting Our Texts into Batches for a Language Model"]},{"cell_type":"markdown","metadata":{"id":"5zyKkHYC2CPY"},"source":["When dealing with images, we needed to resize them all to the same height and width before grouping them together in a mini-batch so they could stack together efficiently in a single tensor. Here it's going to be a little different, because one cannot simply resize text to a desired length. Also, we want our language model to read text in order, so that it can efficiently predict what the next word is. This means that each new batch should begin precisely where the previous one left off.\n","\n","Suppose we have the following text:\n","\n","> : In this chapter, we will go back over the example of classifying movie reviews we studied in chapter 1 and dig deeper under the surface. First we will look at the processing steps necessary to convert text into numbers and how to customize it. By doing this, we'll have another example of the PreProcessor used in the data block API.\\nThen we will study how we build a language model and train it for a while.\n","\n","The tokenization process will add special tokens and deal with punctuation to return this text:\n","\n","> : xxbos xxmaj in this chapter , we will go back over the example of classifying movie reviews we studied in chapter 1 and dig deeper under the surface . xxmaj first we will look at the processing steps necessary to convert text into numbers and how to customize it . xxmaj by doing this , we 'll have another example of the preprocessor used in the data block xxup api . \\n xxmaj then we will study how we build a language model and train it for a while .\n","\n","We now have 90 tokens, separated by spaces. Let's say we want a batch size of 6. We need to break this text into 6 contiguous parts of length 15:"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"kfjOMaD32CPY","outputId":"d51bb2e2-2fd9-41d2-f8cd-f6f17b9510a8"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
xxbosxxmajinthischapter,wewillgobackovertheexampleofclassifying
moviereviewswestudiedinchapter1anddigdeeperunderthesurface.xxmaj
firstwewilllookattheprocessingstepsnecessarytoconverttextintonumbersand
howtocustomizeit.xxmajbydoingthis,we'llhaveanotherexample
ofthepreprocessorusedinthedatablockxxupapi.\\nxxmajthenwe
willstudyhowwebuildalanguagemodelandtrainitforawhile.
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","stream = \"In this chapter, we will go back over the example of classifying movie reviews we studied in chapter 1 and dig deeper under the surface. First we will look at the processing steps necessary to convert text into numbers and how to customize it. By doing this, we'll have another example of the PreProcessor used in the data block API.\\nThen we will study how we build a language model and train it for a while.\"\n","tokens = tkn(stream)\n","bs,seq_len = 6,15\n","d_tokens = np.array([tokens[i*seq_len:(i+1)*seq_len] for i in range(bs)])\n","df = pd.DataFrame(d_tokens)\n","display(HTML(df.to_html(index=False,header=None)))"]},{"cell_type":"markdown","metadata":{"id":"ISg9VH8d2CPY"},"source":["In a perfect world, we could then give this one batch to our model. But that approach doesn't scale, because outside of this toy example it's unlikely that a single batch containing all the texts would fit in our GPU memory (here we have 90 tokens, but all the IMDb reviews together give several million).\n","\n","So, we need to divide this array more finely into subarrays of a fixed sequence length. It is important to maintain order within and across these subarrays, because we will use a model that maintains a state so that it remembers what it read previously when predicting what comes next.\n","\n","Going back to our previous example with 6 batches of length 15, if we chose a sequence length of 5, that would mean we first feed the following array:"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"xwXbQIeI2CPZ","outputId":"b33268e8-fc35-4be1-dba2-262d0fe7322d"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
xxbosxxmajinthischapter
moviereviewswestudiedin
firstwewilllookat
howtocustomizeit.
ofthepreprocessorusedin
willstudyhowwebuild
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","bs,seq_len = 6,5\n","d_tokens = np.array([tokens[i*15:i*15+seq_len] for i in range(bs)])\n","df = pd.DataFrame(d_tokens)\n","display(HTML(df.to_html(index=False,header=None)))"]},{"cell_type":"markdown","metadata":{"id":"0QFFCRGG2CPZ"},"source":["Then this one:"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"woWIH8Xw2CPZ","outputId":"16568ec9-1f65-4157-e71e-72e9a1916a3e"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
,wewillgoback
chapter1anddigdeeper
theprocessingstepsnecessaryto
xxmajbydoingthis,
thedatablockxxupapi
alanguagemodelandtrain
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","bs,seq_len = 6,5\n","d_tokens = np.array([tokens[i*15+seq_len:i*15+2*seq_len] for i in range(bs)])\n","df = pd.DataFrame(d_tokens)\n","display(HTML(df.to_html(index=False,header=None)))"]},{"cell_type":"markdown","metadata":{"id":"bAjqlzFX2CPa"},"source":["And finally:"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"0e0TEU2_2CPa","outputId":"2672d9b9-8859-4cf1-8042-114fe08d27c3"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
overtheexampleofclassifying
underthesurface.xxmaj
converttextintonumbersand
we'llhaveanotherexample
.\\nxxmajthenwe
itforawhile.
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["#hide_input\n","bs,seq_len = 6,5\n","d_tokens = np.array([tokens[i*15+10:i*15+15] for i in range(bs)])\n","df = pd.DataFrame(d_tokens)\n","display(HTML(df.to_html(index=False,header=None)))"]},{"cell_type":"markdown","metadata":{"id":"DyM4AYDx2CPa"},"source":["Going back to our movie reviews dataset, the first step is to transform the individual texts into a stream by concatenating them together. As with images, it's best to randomize the order of the inputs, so at the beginning of each epoch we will shuffle the entries to make a new stream (we shuffle the order of the documents, not the order of the words inside them, or the texts would not make sense anymore!).\n","\n","We then cut this stream into a certain number of batches (which is our *batch size*). For instance, if the stream has 50,000 tokens and we set a batch size of 10, this will give us 10 mini-streams of 5,000 tokens. What is important is that we preserve the order of the tokens (so from 1 to 5,000 for the first mini-stream, then from 5,001 to 10,000...), because we want the model to read continuous rows of text (as in the preceding example). An `xxbos` token is added at the start of each during preprocessing, so that the model knows when it reads the stream when a new entry is beginning.\n","\n","So to recap, at every epoch we shuffle our collection of documents and concatenate them into a stream of tokens. We then cut that stream into a batch of fixed-size consecutive mini-streams. Our model will then read the mini-streams in order, and thanks to an inner state, it will produce the same activation whatever sequence length we picked.\n","\n","This is all done behind the scenes by the fastai library when we create an `LMDataLoader`. We do this by first applying our `Numericalize` object to the tokenized texts:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RvAkoSSX2CPa"},"outputs":[],"source":["nums200 = toks200.map(num)"]},{"cell_type":"markdown","metadata":{"id":"Pe9VmhvY2CPb"},"source":["and then passing that to `LMDataLoader`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"icWzzT9W2CPb"},"outputs":[],"source":["dl = LMDataLoader(nums200)"]},{"cell_type":"markdown","metadata":{"id":"m-rhsapA2CPb"},"source":["Let's confirm that this gives the expected results, by grabbing the first batch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lHEwGwzS2CPc","outputId":"18a064b9-a8a9-494a-f303-b8b1b589fa18"},"outputs":[{"data":{"text/plain":["(torch.Size([64, 72]), torch.Size([64, 72]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = first(dl)\n","x.shape,y.shape"]},{"cell_type":"markdown","metadata":{"id":"-m8fog0X2CPc"},"source":["and then looking at the first row of the independent variable, which should be the start of the first text:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VQlNmEd72CPc","outputId":"a873d3ab-c2ee-498c-856b-b24e6c66a5c9"},"outputs":[{"data":{"text/plain":["'xxbos xxmaj this movie , which i just xxunk at the video store , has apparently sit around for a'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["' '.join(num.vocab[o] for o in x[0][:20])"]},{"cell_type":"markdown","metadata":{"id":"tRIWr7-U2CPc"},"source":["The dependent variable is the same thing offset by one token:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rwi1Kkgu2CPd","outputId":"ad37e62b-b98d-4fff-da72-08de16947fed"},"outputs":[{"data":{"text/plain":["'xxmaj this movie , which i just xxunk at the video store , has apparently sit around for a couple'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["' '.join(num.vocab[o] for o in y[0][:20])"]},{"cell_type":"markdown","metadata":{"id":"LkGW2m1V2CPd"},"source":["This concludes all the preprocessing steps we need to apply to our data. We are now ready to train our text classifier."]},{"cell_type":"markdown","metadata":{"id":"IBWn_HgI2CPd"},"source":["## Training a Text Classifier"]},{"cell_type":"markdown","metadata":{"id":"QqsOz0j92CPe"},"source":["As we saw at the beginning of this chapter, there are two steps to training a state-of-the-art text classifier using transfer learning: first we need to fine-tune our language model pretrained on Wikipedia to the corpus of IMDb reviews, and then we can use that model to train a classifier.\n","\n","As usual, let's start with assembling our data."]},{"cell_type":"markdown","metadata":{"id":"Y2f6F1K02CPe"},"source":["### Language Model Using DataBlock"]},{"cell_type":"markdown","metadata":{"id":"6dLS4O4c2CPe"},"source":["fastai handles tokenization and numericalization automatically when `TextBlock` is passed to `DataBlock`. All of the arguments that can be passed to `Tokenize` and `Numericalize` can also be passed to `TextBlock`. In the next chapter we'll discuss the easiest ways to run each of these steps separately, to ease debugging—but you can always just debug by running them manually on a subset of your data as shown in the previous sections. And don't forget about `DataBlock`'s handy `summary` method, which is very useful for debugging data issues.\n","\n","Here's how we use `TextBlock` to create a language model, using fastai's defaults:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wlgKfuiB2CPf"},"outputs":[],"source":["get_imdb = partial(get_text_files, folders=['train', 'test', 'unsup'])\n","\n","dls_lm = DataBlock(\n"," blocks=TextBlock.from_folder(path, is_lm=True),\n"," get_items=get_imdb, splitter=RandomSplitter(0.1)\n",").dataloaders(path, path=path, bs=128, seq_len=80)"]},{"cell_type":"markdown","metadata":{"id":"FsJ6R5iZ2CPf"},"source":["One thing that's different to previous types we've used in `DataBlock` is that we're not just using the class directly (i.e., `TextBlock(...)`, but instead are calling a *class method*. A class method is a Python method that, as the name suggests, belongs to a *class* rather than an *object*. (Be sure to search online for more information about class methods if you're not familiar with them, since they're commonly used in many Python libraries and applications; we've used them a few times previously in the book, but haven't called attention to them.) The reason that `TextBlock` is special is that setting up the numericalizer's vocab can take a long time (we have to read and tokenize every document to get the vocab). To be as efficient as possible it performs a few optimizations:\n","\n","- It saves the tokenized documents in a temporary folder, so it doesn't have to tokenize them more than once\n","- It runs multiple tokenization processes in parallel, to take advantage of your computer's CPUs\n","\n","We need to tell `TextBlock` how to access the texts, so that it can do this initial preprocessing—that's what `from_folder` does.\n","\n","`show_batch` then works in the usual way:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QYaYWcaz2CPg","outputId":"d0b76845-8192-4541-d8db-5d4d268db2ea"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
texttext_
0xxbos xxmaj it 's awesome ! xxmaj in xxmaj story xxmaj mode , your going from punk to pro . xxmaj you have to complete goals that involve skating , driving , and walking . xxmaj you create your own skater and give it a name , and you can make it look stupid or realistic . xxmaj you are with your friend xxmaj eric throughout the game until he betrays you and gets you kicked off of the skateboardxxmaj it 's awesome ! xxmaj in xxmaj story xxmaj mode , your going from punk to pro . xxmaj you have to complete goals that involve skating , driving , and walking . xxmaj you create your own skater and give it a name , and you can make it look stupid or realistic . xxmaj you are with your friend xxmaj eric throughout the game until he betrays you and gets you kicked off of the skateboard xxunk
1what xxmaj i 've read , xxmaj death xxmaj bed is based on an actual dream , xxmaj george xxmaj barry , the director , successfully transferred dream to film , only a genius could accomplish such a task . \\n\\n xxmaj old mansions make for good quality horror , as do portraits , not sure what to make of the killer bed with its killer yellow liquid , quite a bizarre dream , indeed . xxmaj also , thisxxmaj i 've read , xxmaj death xxmaj bed is based on an actual dream , xxmaj george xxmaj barry , the director , successfully transferred dream to film , only a genius could accomplish such a task . \\n\\n xxmaj old mansions make for good quality horror , as do portraits , not sure what to make of the killer bed with its killer yellow liquid , quite a bizarre dream , indeed . xxmaj also , this is
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["dls_lm.show_batch(max_n=2)"]},{"cell_type":"markdown","metadata":{"id":"sj6U3dps2CPg"},"source":["Now that our data is ready, we can fine-tune the pretrained language model."]},{"cell_type":"markdown","metadata":{"id":"e13PdUPd2CPg"},"source":["### Fine-Tuning the Language Model"]},{"cell_type":"markdown","metadata":{"id":"zU4jR-nc2CPh"},"source":["To convert the integer word indices into activations that we can use for our neural network, we will use embeddings, just like we did for collaborative filtering and tabular modeling. Then we'll feed those embeddings into a *recurrent neural network* (RNN), using an architecture called *AWD-LSTM* (we will show you how to write such a model from scratch in <>). As we discussed earlier, the embeddings in the pretrained model are merged with random embeddings added for words that weren't in the pretraining vocabulary. This is handled automatically inside `language_model_learner`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3QVGApjB2CPh"},"outputs":[],"source":["learn = language_model_learner(\n"," dls_lm, AWD_LSTM, drop_mult=0.3,\n"," metrics=[accuracy, Perplexity()]).to_fp16()"]},{"cell_type":"markdown","metadata":{"id":"iL7dVQpR2CPh"},"source":["The loss function used by default is cross-entropy loss, since we essentially have a classification problem (the different categories being the words in our vocab). The *perplexity* metric used here is often used in NLP for language models: it is the exponential of the loss (i.e., `torch.exp(cross_entropy)`). We also include the accuracy metric, to see how many times our model is right when trying to predict the next word, since cross-entropy (as we've seen) is both hard to interpret, and tells us more about the model's confidence than its accuracy.\n","\n","Let's go back to the process diagram from the beginning of this chapter. The first arrow has been completed for us and made available as a pretrained model in fastai, and we've just built the `DataLoaders` and `Learner` for the second stage. Now we're ready to fine-tune our language model!"]},{"cell_type":"markdown","metadata":{"id":"uCPEuyWm2CPh"},"source":["\"Diagram"]},{"cell_type":"markdown","metadata":{"id":"OyWmMZz-2CPi"},"source":["It takes quite a while to train each epoch, so we'll be saving the intermediate model results during the training process. Since `fine_tune` doesn't do that for us, we'll use `fit_one_cycle`. Just like `vision_learner`, `language_model_learner` automatically calls `freeze` when using a pretrained model (which is the default), so this will only train the embeddings (the only part of the model that contains randomly initialized weights—i.e., embeddings for words that are in our IMDb vocab, but aren't in the pretrained model vocab):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OscXVPGz2CPi","outputId":"d234c4d7-0772-4970-d8bd-d7c9ccc92762"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracyperplexitytime
04.1200483.9127880.29956550.03824611:39
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(1, 2e-2)"]},{"cell_type":"markdown","metadata":{"id":"WPiBKXYx2CPi"},"source":["This model takes a while to train, so it's a good opportunity to talk about saving intermediary results."]},{"cell_type":"markdown","metadata":{"id":"sZGQfwG02CPj"},"source":["### Saving and Loading Models"]},{"cell_type":"markdown","metadata":{"id":"Hh70C7Jo2CPj"},"source":["You can easily save the state of your model like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GOq3uMOg2CPj"},"outputs":[],"source":["learn.save('1epoch')"]},{"cell_type":"markdown","metadata":{"id":"oxX00UpN2CPj"},"source":["This will create a file in `learn.path/models/` named *1epoch.pth*. If you want to load your model in another machine after creating your `Learner` the same way, or resume training later, you can load the content of this file with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"DLekuZun2CPk"},"outputs":[],"source":["learn = learn.load('1epoch')"]},{"cell_type":"markdown","metadata":{"id":"BUpRzQjq2CPk"},"source":["Once the initial training has completed, we can continue fine-tuning the model after unfreezing:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5po3gb_R2CPk","outputId":"9a706872-c37b-4548-89e9-5218d05906dc"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracyperplexitytime
03.8934863.7728200.31710443.50254812:37
13.8204793.7171970.32379041.14888012:30
23.7356223.6597600.33032138.85199712:09
33.6770863.6247940.33396037.51698712:12
43.6366463.6013000.33701736.64585912:05
53.5536363.5842410.33935536.02600112:04
63.5076343.5718920.34135335.58386212:08
73.4441013.5659880.34219435.37437112:08
83.3985973.5662830.34264735.38481512:11
93.3755633.5681660.34252835.45150012:05
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.unfreeze()\n","learn.fit_one_cycle(10, 2e-3)"]},{"cell_type":"markdown","metadata":{"id":"zVNxdjj82CPl"},"source":["Once this is done, we save all of our model except the final layer that converts activations to probabilities of picking each token in our vocabulary. The model not including the final layer is called the *encoder*. We can save it with `save_encoder`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"d4Aj79VC2CPl"},"outputs":[],"source":["learn.save_encoder('finetuned')"]},{"cell_type":"markdown","metadata":{"id":"qhFtcSmV2CPl"},"source":["> jargon: Encoder: The model not including the task-specific final layer(s). This term means much the same thing as _body_ when applied to vision CNNs, but \"encoder\" tends to be more used for NLP and generative models."]},{"cell_type":"markdown","metadata":{"id":"yC6jwZek2CPl"},"source":["This completes the second stage of the text classification process: fine-tuning the language model. We can now use it to fine-tune a classifier using the IMDb sentiment labels."]},{"cell_type":"markdown","metadata":{"id":"gDWxFtLw2CPm"},"source":["### Text Generation"]},{"cell_type":"markdown","metadata":{"id":"-02V9Hvz2CPm"},"source":["Before we move on to fine-tuning the classifier, let's quickly try something different: using our model to generate random reviews. Since it's trained to guess what the next word of the sentence is, we can use the model to write new reviews:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HrhwWoQ22CPm","outputId":"71b4fa28-a600-4d25-cb38-052f55cb538b"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["TEXT = \"I liked this movie because\"\n","N_WORDS = 40\n","N_SENTENCES = 2\n","preds = [learn.predict(TEXT, N_WORDS, temperature=0.75)\n"," for _ in range(N_SENTENCES)]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ja5Zbqpe2CPm","outputId":"edc5b718-22ea-4e71-d6fd-dc37547dade5"},"outputs":[{"name":"stdout","output_type":"stream","text":["i liked this movie because of its story and characters . The story line was very strong , very good for a sci - fi film . The main character , Alucard , was very well developed and brought the whole story\n","i liked this movie because i like the idea of the premise of the movie , the ( very ) convenient virus ( which , when you have to kill a few people , the \" evil \" machine has to be used to protect\n"]}],"source":["print(\"\\n\".join(preds))"]},{"cell_type":"markdown","metadata":{"id":"PmKUkR4_2CPn"},"source":["As you can see, we add some randomness (we pick a random word based on the probabilities returned by the model) so we don't get exactly the same review twice. Our model doesn't have any programmed knowledge of the structure of a sentence or grammar rules, yet it has clearly learned a lot about English sentences: we can see it capitalizes properly (*I* is just transformed to *i* because our rules require two characters or more to consider a word as capitalized, so it's normal to see it lowercased) and is using consistent tense. The general review makes sense at first glance, and it's only if you read carefully that you can notice something is a bit off. Not bad for a model trained in a couple of hours!\n","\n","But our end goal wasn't to train a model to generate reviews, but to classify them... so let's use this model to do just that."]},{"cell_type":"markdown","metadata":{"id":"J2Y1O55i2CPn"},"source":["### Creating the Classifier DataLoaders"]},{"cell_type":"markdown","metadata":{"id":"Lk6pdTro2CPn"},"source":["We're now moving from language model fine-tuning to classifier fine-tuning. To recap, a language model predicts the next word of a document, so it doesn't need any external labels. A classifier, however, predicts some external label—in the case of IMDb, it's the sentiment of a document.\n","\n","This means that the structure of our `DataBlock` for NLP classification will look very familiar. It's actually nearly the same as we've seen for the many image classification datasets we've worked with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"g9KSR-q02CPn"},"outputs":[],"source":["dls_clas = DataBlock(\n"," blocks=(TextBlock.from_folder(path, vocab=dls_lm.vocab),CategoryBlock),\n"," get_y = parent_label,\n"," get_items=partial(get_text_files, folders=['train', 'test']),\n"," splitter=GrandparentSplitter(valid_name='test')\n",").dataloaders(path, path=path, bs=128, seq_len=72)"]},{"cell_type":"markdown","metadata":{"id":"SAaLBQUm2CPo"},"source":["Just like with image classification, `show_batch` shows the dependent variable (sentiment, in this case) with each independent variable (movie review text):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nZl_OE-T2CPo","outputId":"5a6b6c0b-c64b-498a-88d9-f7dc7d6508a8"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
textcategory
0xxbos i rate this movie with 3 skulls , only coz the girls knew how to scream , this could 've been a better movie , if actors were better , the twins were xxup ok , i believed they were evil , but the eldest and youngest brother , they sucked really bad , it seemed like they were reading the scripts instead of acting them … . spoiler : if they 're vampire 's why do they freeze the blood ? vampires ca n't drink frozen blood , the sister in the movie says let 's drink her while she is alive … .but then when they 're moving to another house , they take on a cooler they 're frozen blood . end of spoiler \\n\\n it was a huge waste of time , and that made me mad coz i read all the reviews of howneg
1xxbos i have read all of the xxmaj love xxmaj come xxmaj softly books . xxmaj knowing full well that movies can not use all aspects of the book , but generally they at least have the main point of the book . i was highly disappointed in this movie . xxmaj the only thing that they have in this movie that is in the book is that xxmaj missy 's father comes to xxunk in the book both parents come ) . xxmaj that is all . xxmaj the story line was so twisted and far fetch and yes , sad , from the book , that i just could n't enjoy it . xxmaj even if i did n't read the book it was too sad . i do know that xxmaj pioneer life was rough , but the whole movie was a downer . xxmaj the ratingneg
2xxbos xxmaj this , for lack of a better term , movie is lousy . xxmaj where do i start … … \\n\\n xxmaj cinemaphotography - xxmaj this was , perhaps , the worst xxmaj i 've seen this year . xxmaj it looked like the camera was being tossed from camera man to camera man . xxmaj maybe they only had one camera . xxmaj it gives you the sensation of being a volleyball . \\n\\n xxmaj there are a bunch of scenes , haphazardly , thrown in with no continuity at all . xxmaj when they did the ' split screen ' , it was absurd . xxmaj everything was squished flat , it looked ridiculous . \\n\\n xxmaj the color tones were way off . xxmaj these people need to learn how to balance a camera . xxmaj this ' movie ' is poorly made , andneg
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["dls_clas.show_batch(max_n=3)"]},{"cell_type":"markdown","metadata":{"id":"cu0aySvL2CPo"},"source":["Looking at the `DataBlock` definition, every piece is familiar from previous data blocks we've built, with two important exceptions:\n","\n","- `TextBlock.from_folder` no longer has the `is_lm=True` parameter.\n","- We pass the `vocab` we created for the language model fine-tuning.\n","\n","The reason that we pass the `vocab` of the language model is to make sure we use the same correspondence of token to index. Otherwise the embeddings we learned in our fine-tuned language model won't make any sense to this model, and the fine-tuning step won't be of any use.\n","\n","By passing `is_lm=False` (or not passing `is_lm` at all, since it defaults to `False`) we tell `TextBlock` that we have regular labeled data, rather than using the next tokens as labels. There is one challenge we have to deal with, however, which is to do with collating multiple documents into a mini-batch. Let's see with an example, by trying to create a mini-batch containing the first 10 documents. First we'll numericalize them:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Se7nbnIT2CPp"},"outputs":[],"source":["nums_samp = toks200[:10].map(num)"]},{"cell_type":"markdown","metadata":{"id":"GCx0o4a62CPp"},"source":["Let's now look at how many tokens each of these 10 movie reviews have:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wxJNoXNB2CPp","outputId":"2447d023-a1ca-4fee-bd86-6bd8c2664cee"},"outputs":[{"data":{"text/plain":["(#10) [228,238,121,290,196,194,533,124,581,155]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["nums_samp.map(len)"]},{"cell_type":"markdown","metadata":{"id":"gJ3Irys42CPp"},"source":["Remember, PyTorch `DataLoader`s need to collate all the items in a batch into a single tensor, and a single tensor has a fixed shape (i.e., it has some particular length on every axis, and all items must be consistent). This should sound familiar: we had the same issue with images. In that case, we used cropping, padding, and/or squishing to make all the inputs the same size. Cropping might not be a good idea for documents, because it seems likely we'd remove some key information (having said that, the same issue is true for images, and we use cropping there; data augmentation hasn't been well explored for NLP yet, so perhaps there are actually opportunities to use cropping in NLP too!). You can't really \"squish\" a document. So that leaves padding!\n","\n","We will expand the shortest texts to make them all the same size. To do this, we use a special padding token that will be ignored by our model. Additionally, to avoid memory issues and improve performance, we will batch together texts that are roughly the same lengths (with some shuffling for the training set). We do this by (approximately, for the training set) sorting the documents by length prior to each epoch. The result of this is that the documents collated into a single batch will tend to be of similar lengths. We won't pad every batch to the same size, but will instead use the size of the largest document in each batch as the target size. (It is possible to do something similar with images, which is especially useful for irregularly sized rectangular images, but at the time of writing no library provides good support for this yet, and there aren't any papers covering it. It's something we're planning to add to fastai soon, however, so keep an eye on the book's website; we'll add information about this as soon as we have it working well.)\n","\n","The sorting and padding are automatically done by the data block API for us when using a `TextBlock`, with `is_lm=False`. (We don't have this same issue for language model data, since we concatenate all the documents together first, and then split them into equally sized sections.)\n","\n","We can now create a model to classify our texts:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HHcszx872CPq"},"outputs":[],"source":["learn = text_classifier_learner(dls_clas, AWD_LSTM, drop_mult=0.5,\n"," metrics=accuracy).to_fp16()"]},{"cell_type":"markdown","metadata":{"id":"4kGYcZMY2CPq"},"source":["The final step prior to training the classifier is to load the encoder from our fine-tuned language model. We use `load_encoder` instead of `load` because we only have pretrained weights available for the encoder; `load` by default raises an exception if an incomplete model is loaded:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9h2Mi6dK2CPq"},"outputs":[],"source":["learn = learn.load_encoder('finetuned')"]},{"cell_type":"markdown","metadata":{"id":"9dzKJ-Ix2CPq"},"source":["### Fine-Tuning the Classifier"]},{"cell_type":"markdown","metadata":{"id":"Dt2sQpYu2CPr"},"source":["The last step is to train with discriminative learning rates and *gradual unfreezing*. In computer vision we often unfreeze the model all at once, but for NLP classifiers, we find that unfreezing a few layers at a time makes a real difference:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fv2fFEoE2CPr","outputId":"78009920-724d-4c76-cf07-5651eb296415"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.3474270.1844800.92932000:33
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(1, 2e-2)"]},{"cell_type":"markdown","metadata":{"id":"CNuzZKxe2CPr"},"source":["In just one epoch we get the same result as our training in <>: not too bad! We can pass `-2` to `freeze_to` to freeze all except the last two parameter groups:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QLmiO-ji2CPs","outputId":"61b3dfb1-d383-4c7d-c3d3-8a60c5548590"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.2477630.1716830.93464000:37
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.freeze_to(-2)\n","learn.fit_one_cycle(1, slice(1e-2/(2.6**4),1e-2))"]},{"cell_type":"markdown","metadata":{"id":"E3Zjpuqr2CPs"},"source":["Then we can unfreeze a bit more, and continue training:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pBppPZ3m2CPs","outputId":"290c30ce-d945-4175-e0a9-b780112aae0c"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.1933770.1566960.94120000:45
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.freeze_to(-3)\n","learn.fit_one_cycle(1, slice(5e-3/(2.6**4),5e-3))"]},{"cell_type":"markdown","metadata":{"id":"OrhGV1vF2CPt"},"source":["And finally, the whole model!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gdJUEJSv2CPt","outputId":"f74da378-37da-434b-b092-d3b16993e551"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.1728880.1537700.94312001:01
10.1614920.1555670.94264000:57
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.unfreeze()\n","learn.fit_one_cycle(2, slice(1e-3/(2.6**4),1e-3))"]},{"cell_type":"markdown","metadata":{"id":"yCupomM22CPt"},"source":["We reached 94.3% accuracy, which was state-of-the-art performance just three years ago. By training another model on all the texts read backwards and averaging the predictions of those two models, we can even get to 95.1% accuracy, which was the state of the art introduced by the ULMFiT paper. It was only beaten a few months ago, by fine-tuning a much bigger model and using expensive data augmentation techniques (translating sentences in another language and back, using another model for translation).\n","\n","Using a pretrained model let us build a fine-tuned language model that was pretty powerful, to either generate fake reviews or help classify them. This is exciting stuff, but it's good to remember that this technology can also be used for malign purposes."]},{"cell_type":"markdown","metadata":{"id":"Wi8nqEBf2CPt"},"source":["## Disinformation and Language Models"]},{"cell_type":"markdown","metadata":{"id":"zSH96zzp2CPt"},"source":["Even simple algorithms based on rules, before the days of widely available deep learning language models, could be used to create fraudulent accounts and try to influence policymakers. Jeff Kao, now a computational journalist at ProPublica, analyzed the comments that were sent to the US Federal Communications Commission (FCC) regarding a 2017 proposal to repeal net neutrality. In his article [\"More than a Million Pro-Repeal Net Neutrality Comments Were Likely Faked\"](https://hackernoon.com/more-than-a-million-pro-repeal-net-neutrality-comments-were-likely-faked-e9f0e3ed36a6), he reports how he discovered a large cluster of comments opposing net neutrality that seemed to have been generated by some sort of Mad Libs-style mail merge. In <>, the fake comments have been helpfully color-coded by Kao to highlight their formulaic nature."]},{"cell_type":"markdown","metadata":{"id":"8RUykRB12CPu"},"source":[""]},{"cell_type":"markdown","metadata":{"id":"d8OSYFMe2CPu"},"source":["Kao estimated that \"less than 800,000 of the 22M+ comments… could be considered truly unique\" and that \"more than 99% of the truly unique comments were in favor of keeping net neutrality.\"\n","\n","Given advances in language modeling that have occurred since 2017, such fraudulent campaigns could be nearly impossible to catch now. You now have all the necessary tools at your disposal to create a compelling language model—that is, something that can generate context-appropriate, believable text. It won't necessarily be perfectly accurate or correct, but it will be plausible. Think about what this technology would mean when put together with the kinds of disinformation campaigns we have learned about in recent years. Take a look at the Reddit dialogue shown in <>, where a language model based on OpenAI's GPT-2 algorithm is having a conversation with itself about whether the US government should cut defense spending."]},{"cell_type":"markdown","metadata":{"id":"k97ATDm22CPu"},"source":["\"An"]},{"cell_type":"markdown","metadata":{"id":"qi7_R2Pl2CPu"},"source":["In this case, it was explicitly said that an algorithm was used, but imagine what would happen if a bad actor decided to release such an algorithm across social networks. They could do it slowly and carefully, allowing the algorithm to gradually develop followers and trust over time. It would not take many resources to have literally millions of accounts doing this. In such a situation we could easily imagine getting to a point where the vast majority of discourse online was from bots, and nobody would have any idea that it was happening.\n","\n","We are already starting to see examples of machine learning being used to generate identities. For example, <> shows a LinkedIn profile for Katie Jones."]},{"cell_type":"markdown","metadata":{"id":"XxtosZtu2CPv"},"source":[""]},{"cell_type":"markdown","metadata":{"id":"iM3CrvSW2CPv"},"source":["Katie Jones was connected on LinkedIn to several members of mainstream Washington think tanks. But she didn't exist. That image you see was auto-generated by a generative adversarial network, and somebody named Katie Jones has not, in fact, graduated from the Center for Strategic and International Studies.\n","\n","Many people assume or hope that algorithms will come to our defense here—that we will develop classification algorithms that can automatically recognise autogenerated content. The problem, however, is that this will always be an arms race, in which better classification (or discriminator) algorithms can be used to create better generation algorithms."]},{"cell_type":"markdown","metadata":{"id":"hNbJpZ--2CPv"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"EgQ4ubad2CPv"},"source":["In this chapter we explored the last application covered out of the box by the fastai library: text. We saw two types of models: language models that can generate texts, and a classifier that determines if a review is positive or negative. To build a state-of-the art classifier, we used a pretrained language model, fine-tuned it to the corpus of our task, then used its body (the encoder) with a new head to do the classification.\n","\n","Before we end this section, we'll take a look at how the fastai library can help you assemble your data for your specific problems."]},{"cell_type":"markdown","metadata":{"id":"3HwpMjX52CPw"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"CTaw3ba92CPw"},"source":["1. What is \"self-supervised learning\"?\n","1. What is a \"language model\"?\n","1. Why is a language model considered self-supervised?\n","1. What are self-supervised models usually used for?\n","1. Why do we fine-tune language models?\n","1. What are the three steps to create a state-of-the-art text classifier?\n","1. How do the 50,000 unlabeled movie reviews help us create a better text classifier for the IMDb dataset?\n","1. What are the three steps to prepare your data for a language model?\n","1. What is \"tokenization\"? Why do we need it?\n","1. Name three different approaches to tokenization.\n","1. What is `xxbos`?\n","1. List four rules that fastai applies to text during tokenization.\n","1. Why are repeated characters replaced with a token showing the number of repetitions and the character that's repeated?\n","1. What is \"numericalization\"?\n","1. Why might there be words that are replaced with the \"unknown word\" token?\n","1. With a batch size of 64, the first row of the tensor representing the first batch contains the first 64 tokens for the dataset. What does the second row of that tensor contain? What does the first row of the second batch contain? (Careful—students often get this one wrong! Be sure to check your answer on the book's website.)\n","1. Why do we need padding for text classification? Why don't we need it for language modeling?\n","1. What does an embedding matrix for NLP contain? What is its shape?\n","1. What is \"perplexity\"?\n","1. Why do we have to pass the vocabulary of the language model to the classifier data block?\n","1. What is \"gradual unfreezing\"?\n","1. Why is text generation always likely to be ahead of automatic identification of machine-generated texts?"]},{"cell_type":"markdown","metadata":{"id":"nfIRmE7u2CPw"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"OgzcqPTX2CPx"},"source":["1. See what you can learn about language models and disinformation. What are the best language models today? Take a look at some of their outputs. Do you find them convincing? How could a bad actor best use such a model to create conflict and uncertainty?\n","1. Given the limitation that models are unlikely to be able to consistently recognize machine-generated texts, what other approaches may be needed to handle large-scale disinformation campaigns that leverage deep learning?"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Q4Mkmc0w2CPx"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3 (ipykernel)","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/10_nlp.ipynb","timestamp":1712447835120}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/11_midlevel_data.ipynb b/notebooks/oleg/Education/fastai/11_midlevel_data.ipynb new file mode 100644 index 0000000..f0647cf --- /dev/null +++ b/notebooks/oleg/Education/fastai/11_midlevel_data.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"PJzJWo612K-M"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HahLqo8e2K-R"},"outputs":[],"source":["#hide\n","from fastbook import *\n","from IPython.display import display,HTML"]},{"cell_type":"raw","metadata":{"id":"BeY00lh02K-V"},"source":["[[chapter_midlevel_data]]"]},{"cell_type":"markdown","metadata":{"id":"m0KUrFK12K-W"},"source":["# Data Munging with fastai's Mid-Level API"]},{"cell_type":"markdown","metadata":{"id":"DGGNHpsr2K-Y"},"source":["We have seen what `Tokenizer` and `Numericalize` do to a collection of texts, and how they're used inside the data block API, which handles those transforms for us directly using the `TextBlock`. But what if we want to only apply one of those transforms, either to see intermediate results or because we have already tokenized texts? More generally, what can we do when the data block API is not flexible enough to accommodate our particular use case? For this, we need to use fastai's *mid-level API* for processing data. The data block API is built on top of that layer, so it will allow you to do everything the data block API does, and much much more."]},{"cell_type":"markdown","metadata":{"id":"BHnO9bnA2K-Z"},"source":["## Going Deeper into fastai's Layered API"]},{"cell_type":"markdown","metadata":{"id":"A2NYprVQ2K-b"},"source":["The fastai library is built on a *layered API*. In the very top layer there are *applications* that allow us to train a model in five lines of codes, as we saw in <>. In the case of creating `DataLoaders` for a text classifier, for instance, we used the line:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NuQEb42D2K-c"},"outputs":[],"source":["from fastai.text.all import *\n","\n","dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')"]},{"cell_type":"markdown","metadata":{"id":"aeFBququ2K-e"},"source":["The factory method `TextDataLoaders.from_folder` is very convenient when your data is arranged the exact same way as the IMDb dataset, but in practice, that often won't be the case. The data block API offers more flexibility. As we saw in the last chapter, we can get the same result with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ox0jne9y2K-f"},"outputs":[],"source":["path = untar_data(URLs.IMDB)\n","dls = DataBlock(\n"," blocks=(TextBlock.from_folder(path),CategoryBlock),\n"," get_y = parent_label,\n"," get_items=partial(get_text_files, folders=['train', 'test']),\n"," splitter=GrandparentSplitter(valid_name='test')\n",").dataloaders(path)"]},{"cell_type":"markdown","metadata":{"id":"dQmm-49I2K-g"},"source":["But it's sometimes not flexible enough. For debugging purposes, for instance, we might need to apply just parts of the transforms that come with this data block. Or we might want to create a `DataLoaders` for some application that isn't directly supported by fastai. In this section, we'll dig into the pieces that are used inside fastai to implement the data block API. Understanding these will enable you to leverage the power and flexibility of this mid-tier API."]},{"cell_type":"markdown","metadata":{"id":"QOnKgDvV2K-g"},"source":["> note: Mid-Level API: The mid-level API does not only contain functionality for creating `DataLoaders`. It also has the _callback_ system, which allows us to customize the training loop any way we like, and the _general optimizer_. Both will be covered in <>."]},{"cell_type":"markdown","metadata":{"id":"dBYc8L6s2K-g"},"source":["### Transforms"]},{"cell_type":"markdown","metadata":{"id":"yB1IIzbc2K-h"},"source":["When we studied tokenization and numericalization in the last chapter, we started by grabbing a bunch of texts:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"f5McXP4_2K-h"},"outputs":[],"source":["files = get_text_files(path, folders = ['train', 'test'])\n","txts = L(o.open().read() for o in files[:2000])"]},{"cell_type":"markdown","metadata":{"id":"iBimBn2n2K-i"},"source":["We then showed how to tokenize them with a `Tokenizer`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GQbgbkWL2K-i","outputId":"f0b6b1a3-c0ce-40bf-d0e6-e378a19791fa"},"outputs":[{"data":{"text/plain":["(#374) ['xxbos','xxmaj','well',',','\"','cube','\"','(','1997',')'...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tok = Tokenizer.from_folder(path)\n","tok.setup(txts)\n","toks = txts.map(tok)\n","toks[0]"]},{"cell_type":"markdown","metadata":{"id":"8b9Z3pD_2K-k"},"source":["and how to numericalize, including automatically creating the vocab for our corpus:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HAYAOwR-2K-k","outputId":"554d8fe7-3e9b-4adf-8ea1-ba616bda97f9"},"outputs":[{"data":{"text/plain":["tensor([ 2, 8, 76, 10, 23, 3112, 23, 34, 3113, 33])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["num = Numericalize()\n","num.setup(toks)\n","nums = toks.map(num)\n","nums[0][:10]"]},{"cell_type":"markdown","metadata":{"id":"y-FTKCzu2K-l"},"source":["The classes also have a `decode` method. For instance, `Numericalize.decode` gives us back the string tokens:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Z__fb10g2K-l","outputId":"0c571b55-5831-4bf3-bd49-1703401137db"},"outputs":[{"data":{"text/plain":["(#10) ['xxbos','xxmaj','well',',','\"','cube','\"','(','1997',')']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["nums_dec = num.decode(nums[0][:10]); nums_dec"]},{"cell_type":"markdown","metadata":{"id":"rLoKJTvW2K-l"},"source":["and `Tokenizer.decode` turns this back into a single string (it may not, however, be exactly the same as the original string; this depends on whether the tokenizer is *reversible*, which the default word tokenizer is not at the time we're writing this book):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XNKAq4aT2K-l","outputId":"91c411c0-2e26-48b6-d7cf-57abe280233a"},"outputs":[{"data":{"text/plain":["'xxbos xxmaj well , \" cube \" ( 1997 )'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tok.decode(nums_dec)"]},{"cell_type":"markdown","metadata":{"id":"lG2y5FS42K-m"},"source":["`decode` is used by fastai's `show_batch` and `show_results`, as well as some other inference methods, to convert predictions and mini-batches into a human-understandable representation.\n","\n","For each of `tok` or `num` in the preceding example, we created an object, called the `setup` method (which trains the tokenizer if needed for `tok` and creates the vocab for `num`), applied it to our raw texts (by calling the object as a function), and then finally decoded the result back to an understandable representation. These steps are needed for most data preprocessing tasks, so fastai provides a class that encapsulates them. This is the `Transform` class. Both `Tokenize` and `Numericalize` are `Transform`s.\n","\n","In general, a `Transform` is an object that behaves like a function and has an optional `setup` method that will initialize some inner state (like the vocab inside `num`) and an optional `decode` that will reverse the function (this reversal may not be perfect, as we saw with `tok`).\n","\n","A good example of `decode` is found in the `Normalize` transform that we saw in <>: to be able to plot the images its `decode` method undoes the normalization (i.e., it multiplies by the standard deviation and adds back the mean). On the other hand, data augmentation transforms do not have a `decode` method, since we want to show the effects on images to make sure the data augmentation is working as we want.\n","\n","A special behavior of `Transform`s is that they always get applied over tuples. In general, our data is always a tuple `(input,target)` (sometimes with more than one input or more than one target). When applying a transform on an item like this, such as `Resize`, we don't want to resize the tuple as a whole; instead, we want to resize the input (if applicable) and the target (if applicable) separately. It's the same for batch transforms that do data augmentation: when the input is an image and the target is a segmentation mask, the transform needs to be applied (the same way) to the input and the target.\n","\n","We can see this behavior if we pass a tuple of texts to `tok`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yEqF1iYD2K-m","outputId":"4801b08f-6ed7-4e82-f16e-962e5cdaac62"},"outputs":[{"data":{"text/plain":["((#374) ['xxbos','xxmaj','well',',','\"','cube','\"','(','1997',')'...],\n"," (#207) ['xxbos','xxmaj','conrad','xxmaj','hall','went','out','with','a','bang'...])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tok((txts[0], txts[1]))"]},{"cell_type":"markdown","metadata":{"id":"IIeqqxGt2K-n"},"source":["### Writing Your Own Transform"]},{"cell_type":"markdown","metadata":{"id":"Z_aRGsG82K-n"},"source":["If you want to write a custom transform to apply to your data, the easiest way is to write a function. As you can see in this example, a `Transform` will only be applied to a matching type, if a type is provided (otherwise it will always be applied). In the following code, the `:int` in the function signature means that `f` only gets applied to `int`s. That's why `tfm(2.0)` returns `2.0`, but `tfm(2)` returns `3` here:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rBtO4OwT2K-n","outputId":"6e02a081-17f7-4957-d061-a5e01bd4366c"},"outputs":[{"data":{"text/plain":["(3, 2.0)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def f(x:int): return x+1\n","tfm = Transform(f)\n","tfm(2),tfm(2.0)"]},{"cell_type":"markdown","metadata":{"id":"NJgnsUq12K-o"},"source":["Here, `f` is converted to a `Transform` with no `setup` and no `decode` method.\n","\n","Python has a special syntax for passing a function (like `f`) to another function (or something that behaves like a function, known as a *callable* in Python), called a *decorator*. A decorator is used by prepending a callable with `@` and placing it before a function definition (there are lots of good online tutorials about Python decorators, so take a look at one if this is a new concept for you). The following is identical to the previous code:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6NlDVlH22K-o","outputId":"3c6f0565-65e4-4926-ad74-176cfac045cc"},"outputs":[{"data":{"text/plain":["(3, 2.0)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["@Transform\n","def f(x:int): return x+1\n","f(2),f(2.0)"]},{"cell_type":"markdown","metadata":{"id":"Vg6T0RKy2K-p"},"source":["If you need either `setup` or `decode`, you will need to subclass `Transform` to implement the actual encoding behavior in `encodes`, then (optionally), the setup behavior in `setups` and the decoding behavior in `decodes`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tbrIwo772K-p"},"outputs":[],"source":["class NormalizeMean(Transform):\n"," def setups(self, items): self.mean = sum(items)/len(items)\n"," def encodes(self, x): return x-self.mean\n"," def decodes(self, x): return x+self.mean"]},{"cell_type":"markdown","metadata":{"id":"E14lNH8f2K-q"},"source":["Here, `NormalizeMean` will initialize some state during the setup (the mean of all elements passed), then the transformation is to subtract that mean. For decoding purposes, we implement the reverse of that transformation by adding the mean. Here is an example of `NormalizeMean` in action:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"l9yoOm9j2K-r","outputId":"50320ee1-fe81-46bb-e40a-9a200ac4f009"},"outputs":[{"data":{"text/plain":["(3.0, -1.0, 2.0)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tfm = NormalizeMean()\n","tfm.setup([1,2,3,4,5])\n","start = 2\n","y = tfm(start)\n","z = tfm.decode(y)\n","tfm.mean,y,z"]},{"cell_type":"markdown","metadata":{"id":"BXP8fVrh2K-r"},"source":["Note that the method called and the method implemented are different, for each of these methods:\n","\n","```asciidoc\n","[options=\"header\"]\n","|======\n","| Class | To call | To implement\n","| `nn.Module` (PyTorch) | `()` (i.e., call as function) | `forward`\n","| `Transform` | `()` | `encodes`\n","| `Transform` | `decode()` | `decodes`\n","| `Transform` | `setup()` | `setups`\n","|======\n","```\n","\n","So, for instance, you would never call `setups` directly, but instead would call `setup`. The reason for this is that `setup` does some work before and after calling `setups` for you. To learn more about `Transform`s and how you can use them to implement different behavior depending on the type of the input, be sure to check the tutorials in the fastai docs."]},{"cell_type":"markdown","metadata":{"id":"isOL09RO2K-s"},"source":["### Pipeline"]},{"cell_type":"markdown","metadata":{"id":"4O7vjEHf2K-s"},"source":["To compose several transforms together, fastai provides the `Pipeline` class. We define a `Pipeline` by passing it a list of `Transform`s; it will then compose the transforms inside it. When you call `Pipeline` on an object, it will automatically call the transforms inside, in order:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"16UStf772K-s","outputId":"9b187792-9e89-4289-908b-d687a0b9c108"},"outputs":[{"data":{"text/plain":["tensor([ 2, 8, 76, 10, 23, 3112, 23, 34, 3113, 33, 10, 8, 4477, 22, 88, 32, 10, 27, 42, 14])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tfms = Pipeline([tok, num])\n","t = tfms(txts[0]); t[:20]"]},{"cell_type":"markdown","metadata":{"id":"9IYp7WwC2K-s"},"source":["And you can call `decode` on the result of your encoding, to get back something you can display and analyze:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kp9DAjVy2K-z","outputId":"18b5065d-929f-470a-8f0f-28edd0b28cfe"},"outputs":[{"data":{"text/plain":["'xxbos xxmaj well , \" cube \" ( 1997 ) , xxmaj vincenzo \\'s first movie , was one of the most interesti'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tfms.decode(t)[:100]"]},{"cell_type":"markdown","metadata":{"id":"FDhpAqOu2K-z"},"source":["The only part that doesn't work the same way as in `Transform` is the setup. To properly set up a `Pipeline` of `Transform`s on some data, you need to use a `TfmdLists`."]},{"cell_type":"markdown","metadata":{"id":"oznN7eyT2K-z"},"source":["## TfmdLists and Datasets: Transformed Collections"]},{"cell_type":"markdown","metadata":{"id":"EXjQ_Cwr2K-0"},"source":["Your data is usually a set of raw items (like filenames, or rows in a DataFrame) to which you want to apply a succession of transformations. We just saw that a succession of transformations is represented by a `Pipeline` in fastai. The class that groups together this `Pipeline` with your raw items is called `TfmdLists`."]},{"cell_type":"markdown","metadata":{"id":"YDUg9bUn2K-0"},"source":["### TfmdLists"]},{"cell_type":"markdown","metadata":{"id":"GJJ62KoV2K-0"},"source":["Here is the short way of doing the transformation we saw in the previous section:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"JBaJ7Y0-2K-0"},"outputs":[],"source":["tls = TfmdLists(files, [Tokenizer.from_folder(path), Numericalize])"]},{"cell_type":"markdown","metadata":{"id":"Y0w4LN6m2K-1"},"source":["At initialization, the `TfmdLists` will automatically call the `setup` method of each `Transform` in order, providing them not with the raw items but the items transformed by all the previous `Transform`s in order. We can get the result of our `Pipeline` on any raw element just by indexing into the `TfmdLists`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"20eXWPmA2K-1","outputId":"2c8c6d88-7adb-4095-d2b4-bdbc3287a6b0"},"outputs":[{"data":{"text/plain":["tensor([ 2, 8, 91, 11, 22, 5793, 22, 37, 4910, 34, 11, 8, 13042, 23, 107, 30, 11, 25, 44, 14])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = tls[0]; t[:20]"]},{"cell_type":"markdown","metadata":{"id":"JXU1OxEf2K-1"},"source":["And the `TfmdLists` knows how to decode for show purposes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ohzVbehO2K-2","outputId":"c71786a5-fc37-45e0-c9d8-fa7ad234834b"},"outputs":[{"data":{"text/plain":["'xxbos xxmaj well , \" cube \" ( 1997 ) , xxmaj vincenzo \\'s first movie , was one of the most interesti'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tls.decode(t)[:100]"]},{"cell_type":"markdown","metadata":{"id":"LOggBH4G2K-2"},"source":["In fact, it even has a `show` method:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AUIibZxO2K-2","outputId":"f1f364b7-e241-4b5d-f0ab-feb48b5fdbc3"},"outputs":[{"name":"stdout","output_type":"stream","text":["xxbos xxmaj well , \" cube \" ( 1997 ) , xxmaj vincenzo 's first movie , was one of the most interesting and tricky ideas that xxmaj i 've ever seen when talking about movies . xxmaj they had just one scenery , a bunch of actors and a plot . xxmaj so , what made it so special were all the effective direction , great dialogs and a bizarre condition that characters had to deal like rats in a labyrinth . xxmaj his second movie , \" cypher \" ( 2002 ) , was all about its story , but it was n't so good as \" cube \" but here are the characters being tested like rats again . \n","\n"," \" nothing \" is something very interesting and gets xxmaj vincenzo coming back to his ' cube days ' , locking the characters once again in a very different space with no time once more playing with the characters like playing with rats in an experience room . xxmaj but instead of a thriller sci - fi ( even some of the promotional teasers and trailers erroneous seemed like that ) , \" nothing \" is a loose and light comedy that for sure can be called a modern satire about our society and also about the intolerant world we 're living . xxmaj once again xxmaj xxunk amaze us with a great idea into a so small kind of thing . 2 actors and a blinding white scenario , that 's all you got most part of time and you do n't need more than that . xxmaj while \" cube \" is a claustrophobic experience and \" cypher \" confusing , \" nothing \" is completely the opposite but at the same time also desperate . \n","\n"," xxmaj this movie proves once again that a smart idea means much more than just a millionaire budget . xxmaj of course that the movie fails sometimes , but its prime idea means a lot and offsets any flaws . xxmaj there 's nothing more to be said about this movie because everything is a brilliant surprise and a totally different experience that i had in movies since \" cube \" .\n"]}],"source":["tls.show(t)"]},{"cell_type":"markdown","metadata":{"id":"eGE8PIGB2K-2"},"source":["The `TfmdLists` is named with an \"s\" because it can handle a training and a validation set with a `splits` argument. You just need to pass the indices of which elements are in the training set, and which are in the validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BSUihE-22K-3"},"outputs":[],"source":["cut = int(len(files)*0.8)\n","splits = [list(range(cut)), list(range(cut,len(files)))]\n","tls = TfmdLists(files, [Tokenizer.from_folder(path), Numericalize],\n"," splits=splits)"]},{"cell_type":"markdown","metadata":{"id":"jqbWvo4G2K-3"},"source":["You can then access them through the `train` and `valid` attributes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZLg2GsFV2K-4","outputId":"1038eac3-c544-47bd-fda0-8ae6400dae76"},"outputs":[{"data":{"text/plain":["tensor([ 2, 8, 20, 30, 87, 510, 1570, 12, 408, 379, 4196, 10, 8, 20, 30, 16, 13, 12216, 202, 509])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tls.valid[0][:20]"]},{"cell_type":"markdown","metadata":{"id":"S6O5uEPH2K-4"},"source":["If you have manually written a `Transform` that performs all of your preprocessing at once, turning raw items into a tuple with inputs and targets, then `TfmdLists` is the class you need. You can directly convert it to a `DataLoaders` object with the `dataloaders` method. This is what we will do in our Siamese example later in this chapter.\n","\n","In general, though, you will have two (or more) parallel pipelines of transforms: one for processing your raw items into inputs and one to process your raw items into targets. For instance, here, the pipeline we defined only processes the raw text into inputs. If we want to do text classification, we also have to process the labels into targets.\n","\n","For this we need to do two things. First we take the label name from the parent folder. There is a function, `parent_label`, for this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"x8ulEhqX2K-4","outputId":"1342e468-d448-417d-faaf-fc689228304e"},"outputs":[{"data":{"text/plain":["(#50000) ['pos','pos','pos','pos','pos','pos','pos','pos','pos','pos'...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["lbls = files.map(parent_label)\n","lbls"]},{"cell_type":"markdown","metadata":{"id":"7xX57B8Z2K-5"},"source":["Then we need a `Transform` that will grab the unique items and build a vocab with them during setup, then transform the string labels into integers when called. fastai provides this for us; it's called `Categorize`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MBsZNKma2K-5","outputId":"6c144d76-4471-4b1c-972b-849bd5e4f054"},"outputs":[{"data":{"text/plain":["((#2) ['neg','pos'], TensorCategory(1))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["cat = Categorize()\n","cat.setup(lbls)\n","cat.vocab, cat(lbls[0])"]},{"cell_type":"markdown","metadata":{"id":"zU8WZKOX2K-6"},"source":["To do the whole setup automatically on our list of files, we can create a `TfmdLists` as before:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RVBPHng72K-6","outputId":"c18fce5f-410c-4923-d65f-9d3c1bf21445"},"outputs":[{"data":{"text/plain":["TensorCategory(1)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tls_y = TfmdLists(files, [parent_label, Categorize()])\n","tls_y[0]"]},{"cell_type":"markdown","metadata":{"id":"4yu_uBVJ2K-6"},"source":["But then we end up with two separate objects for our inputs and targets, which is not what we want. This is where `Datasets` comes to the rescue."]},{"cell_type":"markdown","metadata":{"id":"mXu0knar2K-7"},"source":["### Datasets"]},{"cell_type":"markdown","metadata":{"id":"bkh-EKHs2K-7"},"source":["`Datasets` will apply two (or more) pipelines in parallel to the same raw object and build a tuple with the result. Like `TfmdLists`, it will automatically do the setup for us, and when we index into a `Datasets`, it will return us a tuple with the results of each pipeline:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2y6I7H8l2K-7"},"outputs":[],"source":["x_tfms = [Tokenizer.from_folder(path), Numericalize]\n","y_tfms = [parent_label, Categorize()]\n","dsets = Datasets(files, [x_tfms, y_tfms])\n","x,y = dsets[0]\n","x[:20],y"]},{"cell_type":"markdown","metadata":{"id":"b_94rOX42K-8"},"source":["Like a `TfmdLists`, we can pass along `splits` to a `Datasets` to split our data between training and validation sets:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3SULaDiZ2K-8","outputId":"d468c8ea-939c-4f29-9985-b3a33f533431"},"outputs":[{"data":{"text/plain":["(tensor([ 2, 8, 20, 30, 87, 510, 1570, 12, 408, 379, 4196, 10, 8, 20, 30, 16, 13, 12216, 202, 509]),\n"," TensorCategory(0))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x_tfms = [Tokenizer.from_folder(path), Numericalize]\n","y_tfms = [parent_label, Categorize()]\n","dsets = Datasets(files, [x_tfms, y_tfms], splits=splits)\n","x,y = dsets.valid[0]\n","x[:20],y"]},{"cell_type":"markdown","metadata":{"id":"dMLIJYnX2K-8"},"source":["It can also decode any processed tuple or show it directly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FwUoJ_Cb2K-9","outputId":"f9a19ed3-23c8-4811-a0b6-2e2f475eb07c"},"outputs":[{"data":{"text/plain":["('xxbos xxmaj this movie had horrible lighting and terrible camera movements . xxmaj this movie is a jumpy horror flick with no meaning at all . xxmaj the slashes are totally fake looking . xxmaj it looks like some 17 year - old idiot wrote this movie and a 10 year old kid shot it . xxmaj with the worst acting you can ever find . xxmaj people are tired of knives . xxmaj at least move on to guns or fire . xxmaj it has almost exact lines from \" when a xxmaj stranger xxmaj calls \" . xxmaj with gruesome killings , only crazy people would enjoy this movie . xxmaj it is obvious the writer does n\\'t have kids or even care for them . i mean at show some mercy . xxmaj just to sum it up , this movie is a \" b \" movie and it sucked . xxmaj just for your own sake , do n\\'t even think about wasting your time watching this crappy movie .',\n"," 'neg')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = dsets.valid[0]\n","dsets.decode(t)"]},{"cell_type":"markdown","metadata":{"id":"l4XRr1c32K-9"},"source":["The last step is to convert our `Datasets` object to a `DataLoaders`, which can be done with the `dataloaders` method. Here we need to pass along a special argument to take care of the padding problem (as we saw in the last chapter). This needs to happen just before we batch the elements, so we pass it to `before_batch`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WorGjLL92K--"},"outputs":[],"source":["dls = dsets.dataloaders(bs=64, before_batch=pad_input)"]},{"cell_type":"markdown","metadata":{"id":"9P34r6Ob2K--"},"source":["`dataloaders` directly calls `DataLoader` on each subset of our `Datasets`. fastai's `DataLoader` expands the PyTorch class of the same name and is responsible for collating the items from our datasets into batches. It has a lot of points of customization, but the most important ones that you should know are:\n","\n","- `after_item`:: Applied on each item after grabbing it inside the dataset. This is the equivalent of `item_tfms` in `DataBlock`.\n","- `before_batch`:: Applied on the list of items before they are collated. This is the ideal place to pad items to the same size.\n","- `after_batch`:: Applied on the batch as a whole after its construction. This is the equivalent of `batch_tfms` in `DataBlock`."]},{"cell_type":"markdown","metadata":{"id":"qyJngNFs2K--"},"source":["As a conclusion, here is the full code necessary to prepare the data for text classification:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SBC5hjmN2K--"},"outputs":[],"source":["tfms = [[Tokenizer.from_folder(path), Numericalize], [parent_label, Categorize]]\n","files = get_text_files(path, folders = ['train', 'test'])\n","splits = GrandparentSplitter(valid_name='test')(files)\n","dsets = Datasets(files, tfms, splits=splits)\n","dls = dsets.dataloaders(dl_type=SortedDL, before_batch=pad_input)"]},{"cell_type":"markdown","metadata":{"id":"v08qkQ5m2K-_"},"source":["The two differences from the previous code are the use of `GrandparentSplitter` to split our training and validation data, and the `dl_type` argument. This is to tell `dataloaders` to use the `SortedDL` class of `DataLoader`, and not the usual one. `SortedDL` constructs batches by putting samples of roughly the same lengths into batches.\n","\n","This does the exact same thing as our previous `DataBlock`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kc7CanqG2K-_"},"outputs":[],"source":["path = untar_data(URLs.IMDB)\n","dls = DataBlock(\n"," blocks=(TextBlock.from_folder(path),CategoryBlock),\n"," get_y = parent_label,\n"," get_items=partial(get_text_files, folders=['train', 'test']),\n"," splitter=GrandparentSplitter(valid_name='test')\n",").dataloaders(path)"]},{"cell_type":"markdown","metadata":{"id":"r2VkxmrC2K_A"},"source":["But now, you know how to customize every single piece of it!\n","\n","Let's practice what we just learned about this mid-level API for data preprocessing, using a computer vision example now."]},{"cell_type":"markdown","metadata":{"id":"PXh5JtZI2K_A"},"source":["## Applying the Mid-Level Data API: SiamesePair"]},{"cell_type":"markdown","metadata":{"id":"XIHOQcoe2K_B"},"source":["A *Siamese model* takes two images and has to determine if they are of the same class or not. For this example, we will use the Pet dataset again and prepare the data for a model that will have to predict if two images of pets are of the same breed or not. We will explain here how to prepare the data for such a model, then we will train that model in <>.\n","\n","First things first, let's get the images in our dataset:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gzZEGOST2K_B"},"outputs":[],"source":["from fastai.vision.all import *\n","path = untar_data(URLs.PETS)\n","files = get_image_files(path/\"images\")"]},{"cell_type":"markdown","metadata":{"id":"6x2axsMe2K_B"},"source":["If we didn't care about showing our objects at all, we could directly create one transform to completely preprocess that list of files. We will want to look at those images though, so we need to create a custom type. When you call the `show` method on a `TfmdLists` or a `Datasets` object, it will decode items until it reaches a type that contains a `show` method and use it to show the object. That `show` method gets passed a `ctx`, which could be a `matplotlib` axis for images, or a row of a DataFrame for texts.\n","\n","Here we create a `SiameseImage` object that subclasses `fastuple` and is intended to contain three things: two images, and a Boolean that's `True` if the images are of the same breed. We also implement the special `show` method, such that it concatenates the two images with a black line in the middle. Don't worry too much about the part that is in the `if` test (which is to show the `SiameseImage` when the images are Python images, not tensors); the important part is in the last three lines:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XOYEEsin2K_C"},"outputs":[],"source":["class SiameseImage(fastuple):\n"," def show(self, ctx=None, **kwargs):\n"," img1,img2,same_breed = self\n"," if not isinstance(img1, Tensor):\n"," if img2.size != img1.size: img2 = img2.resize(img1.size)\n"," t1,t2 = tensor(img1),tensor(img2)\n"," t1,t2 = t1.permute(2,0,1),t2.permute(2,0,1)\n"," else: t1,t2 = img1,img2\n"," line = t1.new_zeros(t1.shape[0], t1.shape[1], 10)\n"," return show_image(torch.cat([t1,line,t2], dim=2),\n"," title=same_breed, ctx=ctx)"]},{"cell_type":"markdown","metadata":{"id":"ZHbPjiZp2K_C"},"source":["Let's create a first `SiameseImage` and check our `show` method works:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fd2SxdkG2K_D","outputId":"08f61281-15e8-4e89-e2e0-d9d3a874d07c"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAASUAAAB6CAYAAAD5yEXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9abBl2VXn91tr73Pu8Kacs8asQSWVpKqShIRoCZWwEGISjRp344Y23e5AbjrCPRmD3SbcER3tiG5/dgcQgcM4gmgMNHQwBRjaCBkxWQEITUgqqaSqylJlZdaQw8s33OGcvffyh7XveS+zBqAMTUG8HSFlZb773jv3nN9ew3+tta+YGUfraB2to/VqWfoXfQFH62gdraN1eB0ZpaN1tI7Wq2odGaWjdbSO1qtqHRmlo3W0jtarah0ZpaN1tI7Wq2odGaWjdbSO1qtqHRmlo3W0jtarah0ZpaP1giUie4f+V0Rkfujv3/UXfX1H66/2kqPmyaP1cktEzgP/wMx+/WVeE80s/ae7qqP1V3kdRUpH60+9RORfi8hPi8hPicgu8HdF5P8UkX916DXvqwZt9fc7ROTnReR5EXlCRP7xX8ClH62/BOvIKB2tV7r+c+AngS3gp1/uhSISgF8G/gC4Hfh64H8Qka/7877Io/WXbx0ZpaP1StfvmNkvmVkxs/kf89p3AJtm9r+YWWdmXwL+D+A7//wv82j9ZVvxL/oCjtZf2vXUn+K1dwHnRGT70L8F4CN/pld0tP5KrCOjdLRe6bq5QrIPTA/9/ZZD//0U8EUze8Of+1Udrb/06yh9O1p/VuuTwLeIyHERuRX4Z4e+9lGgE5HvF5GxiAQReUhE3vYXc6lH69W8jozS0fqzWj8GPAI8CfxH4N+vvlDbBd4PfBVwHrgM/G/A5n/qizxar/511Kd0tI7W0XpVraNI6WgdraP1qlpHRuloHa2j9apaR0bpaB2to/WqWkdG6WgdraP1qlpHRuloHa2j9apaL9s8uSYTy3HBODSIFkIQQJEWWEIusLQAkggEoiQUIYiSVBEx2pJIGjlc5RMroALWkCyjBgEBE7ImtCgaAqYFKLTWkrWQLREskMWgGJiSrSAiAAQF/5IgmikIFENVSX0hqH9NA0BBaDAyIsKorfZZwnCdIQTMhCSZaEKfE+NRJPf+Pe24RVByzpj47/YfocTRmGYyZTJdR0Q4feasX4fB1rFjmApShCw9ljI5GX23YDydIKmQrLDYnxEk0o5HaFPvoQhmRp+WUARVkCLM9vaZbm5h6sP6uS8s+wV50WEmTKdTigqNKMvUI8UgKKoKuTDreiLCrJsTi6JRSF2mxEg322d35yopC2E0RtsRsye/hKU5jQa+eHlvuGdTUXIolZlECAGRAI3BElKGDmem1YDYjcwEycRSsNCSsoGUF2UmYojpC5ghGGaZpjSUYGRLUATU7xtZKBhmzkVQ/N9NEc2YyfC1gRn87wUjEDEyIQhNvJEZEUFV/WdIQQwsF0KjlJxpmgaNiqCUUvzn4r9PgtJMpsTRmMl0ndFoxNax48SgdOVGZoomulmHiFC6Jc107MykxGKxIISGEALNeERKiRCdndl8jya0RAGzysyxTYwMgHWFeVogqdD3mel0Shy1WMosc0JyeQEzIsJyOaexgARIXSZboe97dneugkWsadDxmNkTX8TSHFXlsef35KXszstGSjZONLGhK8YyGbMlLPrCfNeY9ZllSaS8IGVjWTqWSehN2E9GnzJqSg4NFEMM1AIqkWIBy0AphOwPXERIISNFsWCklLAiiASSZEIBK26QxMAEtLhxEHOwCoZpQACKYMXfd7ZCCYKhmBZyMgricAmgghTD8J+btBokUbIWvz6DJrS+gZpAjG7PzQwlIAYRwdSwkun7JaVPqBhtOwJzQ6Mls+g75vu7lBjRLCwzSAxMp1OCRDIGKAEowei6BfvzPSxEJuMxmgOp62lMiBYIonRpyXI+p9ExsYzQ7F+L2rB/7RJXLl8iGfRWyKVAdmMuqqRUmO9cpaBYX0AS1kYsQlsM9X+imy3ou8xaM6L0M6QY+Sa0bKSHmBFmS5h3+RAz/cDMvE8sk9AVBmasBHJofKNSUAtgOjAjZoRsJGRgRi28LDMhhAOHQTlkPCozKIJvVPP9SbY0MCMi5OSGbGAGPWDGhKT4z6zMgDMjAYJEQnPg7MwMM+dWYGAmdfkFzBgyMLO32KPECJ24UY6BtbW1gRlTIQBtG1kmZyaMxgMz0QKNCcRmYEYyAzMUf03JeWCm7zK9FUrOg+EVsYEZy2C939MVM2JlYGZv9xp9l1m3ODDT/TFtSC/bpzRqo+lqwwv+wANoEcqh12mAnLN7nhAwM3LORFFijCRLSDHWRiMCRhaj9OYPWyGaQP0dYu6Z/M1Xg6OFIB4VOT5QMu5FzT2YA6BYLmgMqJh7DzH8UUFPIZpgWjckgbZxTxUUkAYRIys0REyglIL1GZ0osYDogR1XEXfC9R7l4h6w6xaoKsfPnGJr8zjt5gbrm8ex1DPb36G/8Dhta+zHLTbP3sF0c4sYAhoC43bCsl/QzfbZ3t4mXb/GeOcSUFhKg2yeYnrydnIQxpMJMbaU3LP92OdJV5+l2zrN5m3nWF87Ri5LlrM59tQX6Hf32E+ZbtRw8v63kFOim+0znWyys7MNly+xvbvN8XsfJCFo6VnkJfPnn6fPRhxPafeu0VNYaoPMF4yCkIDz12bDPWmbwM3MaPBo7mZmVuxpvac5Z9oQUVVy7hEJTNsIlkHlBmaUghal+h03YoeYEa2vvYmZ1etelBkrQxQlImB6IzMEj5Abqc/fbmAmijuqUoo74hZCOXh/Ujd1ETxCKoWUnb+uW9CuTdjY2GBr8zijzS3WNrduYGakxt54ixN3vZa2bYkh0LQtTWhZ9gtm16+xtz+je/4Sa/MrmMBMx8SN40xP3k4hM1rfYKwtnTkz/c4V+rXjbN52js2NY/Rpye61qzTPfZl+d48rqUNHY8688e0s9nZJ/ZJ2NGG2tw+XL3Ft/zon7n6APncEURZ5yfWnvow0Y+J4Sphfp+REDhPybI9REBbFeGp79pKR0ssbpaa1QnZrXp++qGEl+E6kpizVOIg6iCNxb7V6uNkEsUzRwLEmkOiw5K+nOEiZg59Xgkcu7sn9T7VQf0+gWI8JkP3BGoL5haBSPKWRwDIbjTkIVqGXCJINQiQoqIJqpIme2oXQUEpi0fVYLqS+oDGysd4gEhAxVAQ1ZXe5RESYxsjurKPvOlCHPYqydeY4m6dPs7V5nM1jx+hTYeexT3NKM51lmh52Uw/3PsTGsdM8e+lpUr9gb/say6uXWV+fstYnehGWOdW0DfYFjt1yG5effJolmVvvuItQOq5evEgBln1i/dhxJiePs//ssywWCyx5xCgGqNBlT0kLRgnQ1JQirzaOCUGNKOrBvQLFPXik0ObCaCR0+Uaj1DQNZitmAlD+WGYQoRFuYCYVEMtYiGxGpUiPJXVjlgFRSjVzZp6KHmZGcaezSv9W6RL1KLoigo/vCdHDeISGLvVEUaiSQM4ZixBuYiZqQ4hGMSFqQ7bEbLFEDFJfGE3GjEeeLospJRhSjL0uISJEaVgul3TLJRL8njRxzObJNTZPn+b4idOsr6+zs7tPf/GLnNLsBrIzrqXC9C3vZqTKhSe+hARhb/sa3fPPsLa1yTQlOqDPmZwzuSj7AutnzrL91DPkNnD6zK2E0nHt0iWyGcs+cfzsWeL6GteffIpEwZI78lAgK5RihAJJDNSZSVYwu5EZl1MEFBQjxhuZ2Vtmnt5ZvDKj1IRoVEgBVgZqeNimK1oH4yHFIIYa8ibIhRhd7JnQEKaRtEw1BXMwpOoklj3NiiZudCrAEt2zYAqSKNlD6mVJ1eMJvRXaEMEKo6BgyrLvKny+H2IMQ+pnZCQ0jIK/vxCERTIsmW/OGq5WuYHxeMy4hUYVCUrXF7Z3ZjUUr9cqQikHGtd0fcod585x+eoVlsuOsuxpLdGo0ZshRWjEWIYAsSHt7VfDJ0SF3iCI0hTog+8mK4KFgHQZicEjs9TTxBFajCR58OjJeiJKLgfp7SqyK8EjilIKEpRUClp8kw7/L4pRUHSYvm2bhkYDljPHJoFry57ndxaHmTmINFbMmD8vpKCmlBUzKwNiYEFfkhnTDBJekpkchaY4MyKuI97ITBki60Wp8ZoJqTITzIhBKBkWOQ3XvmJmiK4sobFlFKhambFIhiRIJdOXglYeJCpt2zIdtygZDcLePDGbLW5ixje7p5TCeDrhjnPnuPjMJcyg358xCUKjRlf8/jVi9KN1Col+PkOL37sgntYqQlMgxTzoZRYCpUvEGMk50+f0AmYAMqlGcX5/U817a/xQ77tv+1QKweoeeQlmrGRGozEBQcw4Ngk8M1tyfW/5yoxSGxsTtbrRrDq6iFnGVBwmCRjZxeUKWrTgoqB4mE4utEEwDYzFWKIIBQtu1Mz8Z5fimyYUKBRCCAeGSQ1VKFndGJWycoJYUHqDeGhw3UoZvDtVfwDIAsFcpNeQmTYT2iYwaSJX9hfs90vIocKdKKiH5dJh0nBiLbCXCsuF60MAOQhYFUnFaC0MRpVgNKJE8dQ2kNHq4YsGKAGxHlVlaUawqmMMHqdgJiuFiULGsutuqzdk6l7NBIIEsERRkAqrid+HgnlEqoLlg2TKBLK5V8MCSHYBGSNUIdbUr2tC5ti4oc/KUlxcvTY7OAm3jY0bgT8BM4aCeZovNQ1XjBAFNXNBVgMjETpcD8rika3kBBIo5VCEfYgZpRrBQ8zknIn196Tgnj1iiIIVZ8Y3343MJIyIkEtBgzFtJoxHgVFwZva6BVJivY5MQQkiiGSiNkw3WubLnn6RKo9AKGTz6DBbprXgBlxcrB9X56SqRCkoxe+bQC5K0GoQJHg0hzts1UgpCTH1/6b3Z5yVgJECZDMUsASooChYIot5RoL/O8WN0mEb4bqa6yzZVsGvsjKHNzNDhnEwToxblllYSmHZZ67PuldmlGKMNlS2apXrsFYQ6qbxf/cbemCYVuGbAp7yiFQPh/rNMChmZDMPA4tXLWIIBGoEU/UAQq1YFKMvGSvuuQzFJFAs0ahv3p5CQCglUUQHUXdllIQDyw8wjoHxeMT1/bmLt1TvrQceUySQa5UimpCGDccQfRz8d70HQUEUFdcuBn3BchVac9U71PUrEwJWo78CGoYYRQFM3XMV1+UGlTl4ypiteKFAXnhdq8ec/abX96eYFarcOkR5q32jh+4ZgFZhd62NrAX3rRk4f/0gUloVAMCFf3B9JesLmYEqCB9iRgREFKkVL1Y1KvEKmr8xo7PsHvpmZtQI5gacEF3fyYWlFXISF/FdkcLINCpIva8iroWKhBuYWXFymJlp29C2Ddf350MU9mLM9OYGohF/JzevlXShVmo1UG5gxu+JO73VPat3zL+3QKw/O1ipjs6AQlS9gZleDM3+faaeyvdWCJWZzEoqeXFm/HorkWasTq/xqrDvz5uZKXjKtz5qmKofotWXwpM7rzBSWh8FixKq8JgGvcH9CIDnyavKBuoipBgH4mDxsuvKuGiAK8vsBkojVhwSyRlVwaqHHgWlDQGpJdo5mVKoepFAXnnjQEHJllACGhhKllajl8NQrW68FK+UHQB0oGutrtWsRhYiBDvY5If/XK3BO0iokVAhqEdIVvPv1coKIkbIMpT4gUFMpZaTi4mLqfjrTdSNDvnAe9nBplZTTHP162n4jVa1mhtE3CKI9h7aW60sid6Qeg3LvGpJrs+3ePTQxMA4FJ7Z6YeXrrXKipmSEml1r1RewMwq3Vo9k5dippPCfu9Gw9+ZYUkQKS/JTC6wlEQp0KgzkLMhJVcHY5RaOQ3RBj3LI3C7YYO+GDNmK73NwCJB8uDMcjWoUg7u95+EGTHfH1GUIkZboyUz+5MxUw6KPh411ejTvPVl+NohZoZonEiUA65enBlDNN/ADOoSAnAjNzcxoxl6cWYm0bi4/dJG6Y8/5K24JxVRIlTPihsLLydUUbB6tlL7M6px8gzNAfCQFgI1z00ZQRCMEoVcPIxRUVI2iqUDUUeK56vmoX2xQ+9J/MFYsSE/9yphHKqCpSSyBYKwSp6qsVdyzQMjQiaTbBWhlap3ej8Qxb2ZmiG1/FrMCOrRoAt+q9IpVbz1+6IUonpc4PoKFDXkhmpQ9YSqNEBXw+yiQjAhG1hILuwbg2hNgajConi6EoqrNtnqddfCt0e5tQeHgJnWa/I0OhcwyVXz8e8rpeoFRemlEGsVLSP0vbG3vNGpObw1+tLKDIVg9gJm/D5WZqpEqfVemxQKHllFEQL+gmzmxISC6YqZgkp4SWYy3tagxiBge/VVsWLkbIRgw7OykgkhDMwoVg2oc+wC/aG0TjqSiTsgMiJglgmqNdow32gCQeRlmPFUX8RoKjNN1f5WWo41zsyqQq14tLvquUq+OSmmNKLODM4MtW/vMDN9NZTOjJG5mRmhrIoF2nqlWsQjulW/lcoNzOSajkhRMoVQ3GkcMHO4DvvC9bJGaRUV+c07sIZu3a1eoLoAKB4qCwUEGvOqTZKCFiFqcJjqDXTre1CiDeJikhV18S+ufnfwNMeCV0lWVToRSn3AEbeAWQAzcqq6RAyYJUL9NlEnIwCo1VRCEBVW3Y9qwR+S+e8ulOF7Q+1XOgy2UsPdWpUr5rD5DtP6e/z3irhQbrUvStQfep9LBcE1KcVYYoSgqPnDLrIykArZ0OpNG4Gu3sdGHUYPpz1iDLK6z/6/RCCVQqNLhOi9YlXoXkUEnkJW412Nr5m7j75qCSV7f8+q3L5aWiOgw8yslq1EU2RgJpeCimEYjSkJq6mxpzGyMplqNzATxTn5kzBjxaNdj8r8+1Vcil2l8zkZsVHUMknd2KyeuzPvxq9ZVZakIJW7FTNqTpebU/+alIMIYhDQDzHjmXNwZjT4z1ZnYMVXDHLAjHsi+lzq76a2SJj3StWITlVqddIQcWZEhFJfm2V1H2yIfF6cGSPhxYtGeteNrBDVOfKi0U3MRKoALiQReoxUAwar/Vsvt17WKIUQiPSUUmhNsSyMTTkWO0bthJPjxMZkzPqkMB5F0rJHCVjTsN0lFvPCczt77KSW3WQsFUJsMO0qdNXr4BEHhNV+H1IqwRsdsxRGIZBzwaSK6CZY9SAiXo4s5savlIKaf88KwhqB+u2rubqKYas/qweUqoEBSA1Do3nIL+pVjlWLhMMJSHRjlg1TdZFWjFb8+qNCE0PtpjXcUgWSFRdfxT2Yl+m911yl2rUolCIuahagdqGvQJ2EZujvsmzkxoX8iBFjFS6LpyYGxEY9mDEguLFEAyoJNU+PKELQgElf44FCNNeASoYcoCtGvsnwKEqIXogYE8gJNgishSWjdsKta8KoDaxPCm0olCz0fU873WC7S+zu9lybzbk8V+Yh0lsmtoJluYGZTKmR5U3MKDWSOGAm1Q0cViludRJZIKhVoyaklGiDMlI3LBFnxlCKZTc0UJlxo2bm1aZQU3yrGpUJRFOyrpzuizPjjDkzboiglYNGSA1GrE78MDMrB4sKTWXGU15DoyFBqiOJ9ObMKEIJ9T7WVO4wMyVDEKOJVfc9xIyt0h/qvlwxYzXaNy+WBA1ISaCeIkavuBBNyMHoig2R1ysySv/0Hevcdq7l9ju3mKyNma6NIe0w2bod6TpGbUMqSyR0UIzlfMFoMkalYUli+/pztM05Zl3D9tUdvvTILr/7iT1+88JKxDzI0YNpDY1dTFV3VFi12k3VOzR6s9uqqiRlFZAYJQhkw/eJ1wMGLUuFXAwNgkjEsjE0+ksh5OAep6YUZl5FQITiwR9NCIO3ZjBo1fKbaxxSNVZT7+QVSTQaarQEEiDWfD0XoxH3Ji0e4ppZhcyvWVWxnNwYWKmgVTBq1JasDEZcawHBCx+HhUi/qVrvmdT3tvLesVZNssI4K30AseKbTjzNCNUJuPBaaNXf/146gOz737fJyTMNt9+5xfrWhNFoRJQ5zfQM0nVEiVjokNCRuzmpBxNlOlljScJYMp/1zDvhwpM7XLow5+c+usPnL9/ITFu9d1lpGytmbBVtchCR4ymfrALi4qmSVGZSfZ8I5Czoqp1ArTLjjZGHmVEKoayY8aiuSPEIq2YTq6pxqMbtMDNaPMIo0iMhQHFjp9IgkgiiBFGivZCZsIr01A1HUmfGKjNS9SkzJdXnL/UGeWNrGfSv1d5YRVwZN9JWo7g8RF/eTGXmr8dqtVuMJFQn5sx4hlXbHoY9dyMzr9goff37byP1S06c3aR0GZVCCWNinqNtQ04Los6wMqLrZwQSfZoTY4NkYdxOyNoQy4wY4Ozpwlc9EPnIBcMs+aiIKByaFfIHJ4cEZRcJJZc6wqSUVWiN5+guwHvIGIPS1xK5GnSlp2ka1sctt617JLWbe7b3lD4taqgdKRR/sMEtPlCFPaMEI+BVDdcJelTD4GElZH9tNZAEhzJWw4R5mNtIrIK1eyXXuiCaVziCGRq0hsrewCdqfn1mPqlngkSPXEwKkgWVQCYRxT0mIu7FHXvfiWrEWkFMChMa+gpQKQVT96WNAW0gFC8S5Gr8shkg5ARJEtElYormG5h519ccx0w4cXYTSw4pCFqZKWmPSI+VEcmMQMZ06uXxLCz6Dgstocw5fnxCWe7zrteNeeTyErMEWgFPGat6y6pj+iWZ0UAxo+SqvQg3MBOCVvFc6UlYb4zbCdORctu6YUR2UseTzy6Yjrxp0x2VG4McpW7WmiapUdRT21g72s0KKs2BaBxd8FeTGgB5g3AQZ6YNSl8SFg/aOnJevVdvWiwCIUBbHXZUr4wdVA896kr5ZmZCrZymqjTpDcx4G4Xf0LZKOB4oeAQoat4dr17BbXIhtLU1wcSNmlplxvvxenqihBdl5k9llPpuGw2Bbrb0ob7SIxrBekQi2YR+PkdIxImSbETuoe+vMF7fIDLB+rl77hiQorQaiCxcNKwbverkiNYu3VWPg/hmWAl9WvtrIhxUOsRz5pW3dI1JsCj0xRCJLLuev/OBN7L39EUohcn4OKdONzz43r/JD//oL/DIpx9HQwFp/VqDDToFwRhRBWr1GSuxtoawVkulgRA9ugkiPvujwdOxoF4kUGDl8bIS20xfZQQjMyG6bmHeKOgpZx1xaKrIaS6Ap+xlYa+QeMdtF4JrFUCqUc2IWoqvWlyu7RwqVZPAu3NXDYIurhRWM1cm7hWLePVk5ZVHhKGp7qAhy1dQI1tPN1tSzBjFAIeYEY0s5jsIiTBWsjmC8/mKmRHWL8k5obFBiqIpEclVaFbXDavjWjEjq9QJhvnIFTOleAST1aOllYFdLUPdLYXq3SWyvhZ4/3tfw97TFzm+0bJYBt7wt85x9qF38sM/+gt84TNPgvQgLaE2a67GsAi1qGP4Aw6GWBiir1XvXIhKIRxiJrrzCN4KMW0jirk2mpXQJBIQotCu+okAK96zBSAUGpTc+vszgxhuZoaBGalsJ/OK+ajK4j607p34RQuiMhSRMB/YttrKo9WxsWImGCkommEksKQwkVDTSIY0+BUZpdJ3jOIGeTkj5IZFMcbTCUaHyhgJHXGyjhYjd/tYhqYdUWwNlREiCyiR2DaE5Z6HlgJSEhZleDgrTahY7Weq+6PW/Va6ogfhtbdmNV0dal4somTxCpr3PmVEfNL7dXfdymc/+zRvOTdlMm45u17Y3Z1x+Q8+xA/8i+/jIx/6MD/1736VoJlSPalPigPFxcGAITlQQqaRSCbT1JkHoXVDZrlO3zcUXISOYpSVqEpESkJjAWtZK7XpUGqZW0DMxU6R2t9VU5BVr04wo1jvIXcxcqNo8SjKqq4gxdO8XLwjXKr21EkZqjAlgGZP2ZIVLHmY54POVC0FQqmtAtX+NKJIgCY7vK3caJQs9zShIS9njMdTFosF48kmJgtUxpgsB2bSfN9/X9vQiDNTSoISaRpjv+tQFUbjBikzLK6Gr11rXDFDjY6GK5GKvVVmxNPOlSh/UJrX2kxrgxGWEkh9YTJiYGajUe4+rew++RhhsccP/Ivv4x//1/+M1E0JmukQnyIoVtN3wYKgVghAQmgkksi0K2Zq2wS5MhC8U75YcnFeY02FIpSMxoKVyFp1vknd0XjksmIGICCqrm8d2uTFeneOViozuZ6RYV6EKgWzQC4eUa+mM/pQZXut+lhNIwZm8OZhyeZBA5AJdb/6mEojiklxh4oRV+0sr8goyZRUhNRn2imMxhMWO3tMp+ssbe7ds+Yqfzs5hoWMypiun9EHGLcNOQj9XsL6RGgDzbgQGk9HDo+AeBLlCr7pwQ0dGtIa8Q2Sam/KoHl6+3oRasuCgXnjmB+HkdHxmDtvmbDTKXedFMr0Nmb7z/L0Zy4wnfwID935ED8/mtGOtmgan32T7A1gI6BXRXIiKuRVpaJ4GV+1BfG5tFZ8BkpkFf+6J1fxyp2WgmiFUQpp1QhtNqQgVt9DMSMGr+oYnpZa8bRj1LbknLxVQAQJ9U9qJ715zwzZS+LFBInGCK+Q9rkjxOAd9cHL9iG61ytFKMHQvDo1oRBUMAtILlU/qBqSFLK1QDcwM1tkJpOW1GdimDMaj8ndLhrGLG1O07ZIKhQKo62tWvqPlNTRB2hjoGsjy6sL6JyZENMBM6wMphvXiGuINzMj4hFmKG5w1LUCpJj3TB1iRmofXttEKJA0s3Hydu483bPTKW+4V9lPZ7h88XEuVGb+u+/9dn7w3/572tEWmwbEmjoXj6w7keEUC28/MaS2NKi2NepLNCHWTm6Fkgji14N49dXM211UFYKRkuuuK4dVql7mzEAMwZ+butSQUyGLHDBjritqiC59JI/EgmUvuhS5gZlWjJi9S1xVkKC0QekGZnwSIwc/vWHlvLxiGQjJo9pVNQ8pmIxe1ii9bBzlkcISDYW9vX3S/h6Tych7gFTRGPx8FRKFDEXoyoIsiqqxnF8BFsTGiI13HB8+RiJUIVqplQbV+m/+ZzQ/Z8fMhpEOrTm21NB91fezanTzObbokRTCWrvGhQsXOLteuO91J3ni4pLL55/jrq/8Cu59/TnOX4v024/z33zw2zh5YkwqPd8DYQwAACAASURBVMGK5yuhx+gJlgi1sUyL1ZKr0gTfFI14idqkuJBcK1Ia3HKKeQldvMGb1blIGgMhKqK1olKjIxTalZGq5W9z+1L7Z/y1EpSG1TlCWkN/qZ4yDAOkTaz3NggxRmJoiVGRGJDgfTFSz8kJwZ9LCUJUodFIDEoMPjoR1ftbQgiE4hWWG5gJYWBmPjAzGZgJGgdmUsKbOM0GZiztQ03vY1NekpkIB8yIDsyoeXQIDMyYHjBi8AJmSoYQos9elsJau0bq5wMzj3ziIpfPP8dD3/CegZm1vS8PzLRBCVYY2QEzLdmZkVL7sG5mxpskURuYCaoDM4pQVsf6VGYMl0F8D+hQuV0x42mfrygBKxCivoCZVsPATGzDC5iJQQ6Y0ZYYI6GJhChIDGRkYCYEIQSIhQNmRAdmokavPKMDM1YOxpJebL1spNR1iXbkIySxHZOWnZ/h0rbk4Nse62jW1qAYi34P0Smj9Zb59euItmhvLLoZy505cdQw21+4XhDa2hHq0dLQsuEYsWowNFwfQdSjJqolPqQJiHlag9bB0lWPhxlL22dzY4NLlyGHHc5MlyzLBt1jVyhhwrkzIz7z8S9xz+sTD77mBH/4yac9hDVgNQxafO4oijc8KkafXaBuonhTZjWopQipDsRLDDTmEXrWjjxuWE8jshSHr6ya5wqdHYi2PqiqtPX9Sjw4daEU1wz67B3buYnEOpoAtVJCwDQxIgxjD0MEhiEh+u/IfdW+ojcQklxS0kSD1PHrunKhjkr5BAeG1nTq8EoJxgHMMu1oQlouWHZ7jJt1cli1IlRmLLDotgnNMUZTmF+/joYW7TNRYbG7JI4aFvvpBcz4vJbHS56KHfT1HPARau/Qqup20K1+mJlcDibdQ4Gl7XP+0QWXTtxBDjucumOD5V7Dc5/+DDLa4NyZEU88kzm79bQz88g2zPcwFSbmzHgkFmjN50AMc6GaFTOFoOEGZgJCDl5s6JNAWELbMs7xBcwEehbi4aHWgecYox/EJh5VSe0dNDOf6C/ZB4ZH0cV10YNKLgFpPMofBm8PMaPmIn2RBNo619mQesSMxI6G8AJmSskuH+D3W6PQvnxHwMsbpfFI6ZaFQE+cCNKus9zbA0mMpyOknRLDiLQsmM2hRAJLrC8s93cZjyd08yWp65BxYO/Le3zhqY42NJ6f1lRIdFW+98Yu74w4fDCXRz2IT5yvZr38gDXx0L0IXfHmtq72Mc0tE3LD+775vex++v9BlsdQHXH6zac4/9HPceoN93EtrLN21xk+/vk9jpUd3vMt38pv/cdfdVG3pKE7Xav4LlW7aFqph3wJTdMM0VEbvbu1FFhf2yBNRtx9Rnnnu/8aG7few3NP7fCLP/UzkHoQ6OsGa2v43tVZJlRRqWOOshoEEIooFguxbYnm71lqD1aSQFMyuapxWb107PfQl9qq6ucRiGqgpJ5GFWIklQw5In4+SJ0i9yNDxDIleyd1SdlD6Zv6lEYx0y2FQA+TiLTr5FnPfnuV8XSETk4h1jgzLCBHkB7rM8v9XUajEd2iZzZboOOWvad2+d0v5hcwY1I7kfH2He+X8hJ9GA4CcGa0Vq+ChTqOVFMt/P7FykxUIUsm54YH33wGW15FlscYTU6w+eZTPPbJL3D27i2uhXVO3Po8H/+4M7PeKrPU+IkF5KH/R8GPVKnJZtt68eWlmEkUjk+dmfe8fsQ9D7yV+9/8MJ/8w0f4xZ/6GTR1FIFOhSINLVBKIq2YofiJobWiV4ZikDMTaPy9VhlhlQYH8yGUUqu9Oojm1ddlvGPesrcvkMG869yaxo9HSS1+gqUguZA1HJyZVaugVufEVi2uL7VeNn3b3fXDtRY99J0gtiRMJuQ+gowRa7CyJI4U2siim9P1c2zZ0YwiXbek358zn/VcvWw8+pTw6UuRLlBPFaC2fvohoxQ3LqvZnJWa740l+aB5q9SoQDmIIDBacY8xtoYg0MQpr7/3FD/zY7/Eya2TzPdblhubdJcSd371V/OV7/17vP7eB3nT/fdw29lNSog88dnfYz6fsXnyFtoQaVU5NV73HpiojA3GBiPLTIMfARwxWg20GijaI/0M3Vzj7tsD3/DX7mDUL9h+5jqP/87PcuqM8K0f/C7aMEbqEberGbkYlRgaT41VkeDghZrkZvzY3VAb2zBvdIu1Aqb1JEjDq5CruUGf6PYGQhd96yCsKUkSJr4hVuJ+q+I9VrnUEZdayQp+JLKK6xA3adwALPvRwEzKzow1o4GZ0i8OmEFZdHP65fWBmdliTr8/Z7a/5PkrHY8+JTx2LQ/MUJkRsxdlJtQOiMPMiGmdC8s1Eg1e1q7MAIzN73vTHuP1955iMYsDM8/uzeguJd72te8fmBmPTwzMnDy1wXw+4/TxUwMz66eOoQJjgVERxuZD7StmKC56N9oMzCRtB2aYd2w/c53f+Q//68DMXAvSxCrOePo3DWFgRiQgoaFRG5ixqr8G1He7GW2jAzNerTyIpMWq+FOZGc63IlUd19O8m5mJ4YCZetABIkKjfiyQNwG/ODN/KqOk6tBqU1iWjlSUoJlmvaXve7quYznvmO09T5r3bGyOWfZw+flrXHl6h+evLLiwnXjqOePZa8Kz25lndntC8SjAhxnVQ8I6TLoac9AaH2lVMaUERLOfo1yn9bMVUukPGtUoqGRS6NncPMa3//3votmc8j/+ozezMGPz1iVXr14lBOHb/u738YmP/Sq33387e7LBPfec5uSZljObiW98z+v4hm96G/fc/1o21sfM+jlbW1tsahym+1dalw8DGym7LjItLW956zm+/qGT3H/vHVy9sM2JYw1vefibmO8Xtp98hFuOrbP+xgdZLnta9TJyVh8unkpEQuNDvSVhQbHoYrSqh/baBMZVqBaJaBBUAypuyBtx3WBI3XIdxKxNoLFAiH7+dNsDeNRUMD/NkdWLpQ6nZqwkjy+qNhQF4kq0P7T6NB+YWeQlqSiiaWCm7w+YyeyzsTlm0dvAzJUrPRe2E5cuT/jyhY5ntzOd6cCMNyPXYc/KDDAwA/gpDYSBmdoQ4edkVWZKZmAmaCGFntvvvpuvff97aDanvOa2EwMz8/mcEIT/7APfMTCzMbllYGa9LXzje17H2975wMBM98xltra2AI9mfDjcBmZEhJQ9+l4x8/63bg7MhI3IWx7+Jnau7w7MvPXrv53lsmcUlFHwY3cXwsBMVKB2U9OEygwDMyMRLCjFdGDG01lnJtQRqGL2AmYCQuN1kerUDh0TcxMzVmRgppTkh9jBSzLzpzJKV67usrsfmS0iRQNdyezMM13Xc31nydXnnuH6zjX2l8reMnNle8n2XLi6Y+z1LXuzEXlfEcmMI4zE6Ho/YiELjOrohmtGqXaN1uE/EyDVfLcgVUj3c5o9Uog+COC9HEOVQ4gIy+WSZy49xcNf825uO/cW3vyuN3DPHe/gtbffydl3vZP/6Xv+S775/V/HWnsb6ITx5Bhx/RbuuOMOxtOzLOOU7/ref850a41C5o43voa1zZb22BZr0xMs+47p1oSzx44xQpEmY5J4+9vv4mS7zpeen/HIH32G9/+D7+XO47dz8fwnefiv/xP+7996nMcf/32+429+gPVpSwhGbzA29UplqHNXupL/GVLc1eOKtYktVp3Nu5rT0IFuWpsxa5QDXsr3Hi7/Wu7zcMa2G9hUB09LTZGk6lMegWFKLkpvPizdp8Ju6ljmGxvhdneXAzMpN3Qlc31vPjCzXFwfmNnZhSvbS3bmDMzs7kfyvqK6YNIKI3HHtGLGZyrNo+XKzEpsP3ym12FmRHuPlkwJVucVa1oHfq5RRJjvLvnc5x/l4a95N9/8d94+MDNpNzn7rnfyy//h3x0wszEemLn39ecYT89y5oE3DcyMRiPueONrOHvHLUxOnmBtegKjH5hpLCFNptd+YOZKkoGZ0Txy8fwnOXf/WwZmZlceY33aopIJ+MhXEB2Y8c7tUA1heQEzUgsy4RAzZmVgxhSCyjBi1YiSa1HBrNBlZybU4oIzZ1XMlxdlpmD05s2ZK2bm+f+H0H3lcqCkjnbSMdvfYjQWimSuXs9sThv6suaf0KBjUkrk5Zw2jmmnSj83tCxojhuj0pJmM46vNaikWraGXhON1XDbIirFJ/3FxV8zbxIQFCkZgkcpqy4mnyI3snmz2arbNYQRQQsXvvAlvvE97+bXf/Lf8NBXfjXNicRnP/4oH/y2D/KOb30PW/e+gw///A/B8XMcH91HuPMB7r/3TXz+sx/l9OlTHB/v8/aHv5LLX/gsz+88yZ13TJhMJqxPz3Db697NufvezpULj/Jrv/QbPHv5GmfXI6958B4e+9Qf8fBX3Mmxcx/gd3/2R2jf+BWcu3OL3/vlH+SrHn4j86ef49GNL6IKfY6oJroitEXppJDMGBnkkAlFSaEgCeDQmVYoYrXJrY5IlAJa/AMKJBeW9JRUyAVS8m7e6/iQ7zBAKkJf/BNl/IMNAkv8ODghgAbMT4CjoH4Uhdd8Iccasx4cXXLl2cDGljOzv6+Mxy2hjQMzO7PMqNlEdUzf95RuRgjNwMzIZugkEBbC3lU4vtZgmijmh5olqcxgB8zYaoq/zmlRI+f6iS2WnQ/x4TSCGL0JyupDIYQYxiwX25zQEXfcfj+/9pM/wlsevJ/mROLO+x/gntP3cd8t97F179v48M//EB/78Kd5/3f8PcKdD3DX7fdx/kuf4t7X3EcMzsz1C+e5eO1J7jsW6G47yebGSe544/u44+43ceXCo/zCT3+I3dkutx4fD8yc2zrJ3V/3N/jdn/0R3vtP/hXbT/8Bj37yowMz7/vAd/Pjn/mXeCup1TOgvCUnmdFKoagRitJr9qNWLHsnthlFfShSQzVegp+dXpmJBot+Seq9MzsldwQ7uJheVNAa/ZSVQ0wZJN7AjEmVFxRyrrOotV+cHOn/GE3p5T9i6cSI0UZDYEIMATRRusLmmpFDTzOa0vc9cbGH2oLxdMs7vtOccassioJNiCXRRGPUFNYaY7evU+DUpiozOk2QYo2pBbGEedciagfHYwWR2hhZ9RJTYt1Y3vVcKP0uZmvcevIYb3rjrXRf+9Vce/55Htx8iLd+/7/hiUtPc/HpJ3j+mWeRtTfxhttPU8jcduZWrj91Ac0zLjz6RS6Gnoff+15+5dHPc24t8vR8nbNnz7C/d5nnvxy596FNLl+9xp0nlaZped3pLc4/fp43v/v9XHruKT73kV/nmbJg4yMf4pbb4LNfmLG5+yhn77qPi198hHa8RZpfJlokRKtjHx7S96UaW3VwfAjEKzjFoMs9ZtCnVEVej6xSPcA9IZC9KVNXoi7eYd6bwaJQpLA2GZFjQy5GSZn97BPgsWlYzHsKvR+h2vtpApTkR1EErWc+3RgprZ3eYDTJBCZIztB4p/Jam5yZZkqfM3GxxygkdLpGiJFF1zkzcQrWgM0YT4xRs0BTGgZJrTLjqduKmdVxuQmI3pphB31LSMBKV2f5vD8/CLUy5YJ43+8y4gT/1ff8fR54za2kp17LlWvOzK3veJAnLj7N7bfeOzDznm+5hxOnjnPbmVvZatf48hc+ysd/9yOsTRsefu97+dBP/BDn1iLbcprbj0/Y3tvm2SdG3P0GZ+Z1d27y7M6SrVE7MCP7u3ymMvPj//Kf8tWvmfL7569z917m7F338fu/9//Sjrfo+6vkCNOipOx6m6lQqF3Tipfe6ymnJXsPU0fGUqHr+5puKRTxjy4Tj4JXZ2WtyiNzK4xiYJkzZemV57XJiCw+S9pl7xZvohKCM0OoJ0D09YwoSQSrH7tmBy0zr8go2f4CXYtMN1p6EpPRFA1COx5RujnCgsnUj0DVssaiW6BtZG28yWy+w3hhmPbIomNtvWHjROBtt/f89pMOBFq8yiXiXNXPeRNTICJaXFmqpedGQDUidfjPqqcQMYI2taQOi9wQjo35nh/47/nsI7/P/vNPsWhex8Mf+CDPPfM8v/ITP8o3/MN/zjOPP85b3ngvv/1bv8JoNOGJX/oJ7rnldv76d/5DLl18lGvPPcPHPvwrnHrDvUxsxp1n38SVL36Cu+5/ANqGS499mnMPvo/cGaeunWc0Kdx68rXEjVN8/g9/h4fuu5W8m1m/cJ7nrhQeftcbuFYCV66f5/jpr+S3H/8w49GUWd6lZCESMCn02YXBXKCJteHRfKJeg1cCl30h1FZ/qV6LUlhKhFRY34jsd4b1ifVxoS+BEYG9nMmLwvoItrbWoUukRpntLAlrkc2Nhj4LadkTJ8qig61xIEsgpcxOB/65OkITox+/e3DwJG3p0SJMN1qSKON2RBxFYoyUbo6VfdZGDW1sCCEz318gJI6vbzGb77CeAn3pkSJMp8bGiZY7bgs8/dz+DcwQBUlSmbEKesTjOaE0hpbgZ1rVs7U97a1VQ7zR0EdBjC5PWJs2XLl2mc8+coWLF69im+d4+AMf5EO/+X/xud/4dV73j/7ngZnF9gU+/blP8MQv/QRvf+1b+Zpv+VtceOoL7Fx5lo99+Fc4fu5uRrlj8ZQSNpbcdfsDbJ48OzDzzJOXePB4w9pGZLx1F3HjFPe+4UGe332GvJvJ+TGeu1L4rr/xbXz5wpNcuX6ex556hqcef5xJHLPMhY7kneE4MwF3QrFqPV3JNzDTJS9W1HF+r8zlQlJnZjQudDlC37E2FvoSGBdhVjIsC2tjZWNjjdRlRo0w21mythYYNYG+M1LKxIlSijJpnJndPT8PXHKPBaWJEQ6NyPypjVI7Cixmu5w4ucZGU9hZLNgYTRjlBc04EyZrlGXjWoY9y8YESgTTzPr6Jmltyc7la6g2TNvIbWfhtVf2+Y0nehpRVIQ4CoTQEPEzhfxztaKr9d69SYgeDoZqhFpTUunRNiD1I2qCQmoiISWuzDLdPHF5+zrb58/zTPgq7lt/lk9/6lN89Dd/inkH587cwyef+CL3vubr2LnyOX7vt36Pv/2d303PlA/92s9xfOMU4+mYh977X7B5/DSXHv8cz3z2N2jGDYt+m3xlznJzxIljG9z22ofYe/YWHnj7V/HUo3/IbWeO8d9+/7/muauXSL/4q+ysT1nsXqC5cp0ShdtP3stsHLhWAuNlj5RAlxSxnlLPs26a4OcspUzTKItc2NwacenKkuPrLePolR3MmHeZUYhsHGu4dn2fjVuOAYmpZvZnhZQz62sNpU9sTDZIax1ZYTnvsGzEXticBhiNsNkSK97z0nV+dri0Stf1iAlNDJQitEH9o7PSjYDt720ztsiJk2sc34Cr2wvWJ1NCZUbHW1jXEhD6vX02ppB1AmHG+vomOWe6q88TwpiNcSCcVb7m3jk//kxfm/IC2vixu6H1yo+QEGluYEZrr00Qq5+NF/2Yjhi8W/0QM+TE9n7m8rPbhLUNts9/Bj11H2fbHT79qU+xvPRF5h387z/5g7zv7e/m3td8HT/2wz/Bct7xt7/zu7l46Qof+rWf45bjtyKtM9NMRmxfvIDoH3D23K2cf/qL7H7uIu2JMSeObfD2976fq09fpGlhNAncduYYzz39FA9+w7eTfvFXmW3B7vY2z3/sY4zXIrefvJf5+Ayf/uQfsShG3/dYaRhT2LNafMFPeZj2PTEGshVGkxFXd52ZRmAafVh3ngqjEFnbDFzfnbNxyzGsdJSlsTOHlHrW1zzd2xqNSf2cHIIzY0bsI5vTgIUGFl6oWjFTAgMzzdhgGUhkJo1/3Jqmly/BvaxRSt2cY8ePE+gR7TmxNmbUwGgc6zEN6+jGPsoaOZ8kpYT2c4JN2FvMCNE/mbXrEvu7CTU4e+sm73zdBh977BqjIBybNjSND2yiATs0uKjqljXnDL2nKKifzx0lEILVQ/PrIGDJkEB0TIyJz/7RJ3jojtt48v8j7c2DNTvr+87Ps5z9vNtde1/VrQ0hgZAAGTCbF8DLGDzEjkkxjqfsbBM7duyxM5kZnJlUUvHYnpqaSjKOt0rZMV6wwSCDwAKEBEhCG62lu7X03n277/6uZ3uW+eNcrgKxSY3n/fdWV1fd/vTznvN7vr/P98XnOXbXvRw7sZeHH055wzvv49yZr5FlKZ+9/w+YrV3izne8i3PnVzhw01Huecv3cvGll9DS0+kosrk9HJKOfG4fNy4/S3npMuvCEQaLyGjAXBbi0KyWFW9+1/s4f+5ltm5c5bnHHsZWq2zcWEXoAfH2FvHN38HUFTzz7HnCxhMoh7EQivaQTWPFbGzxzhIqAcowMxAi2d5siCOFt45BFjMelfT6KX48ox41rFlJ3gnRsWCy2WCsxChBkuco5wjThJlzrXJmUpFFIcaWNDisjhluTcgiRRyFrI5nGOfbv89bOkkMQAoMt2dU1uNNu6X+n38CpUnzHEVDXVTMZQlZ1CbXnXAIFxN0aiQZYd7D1EA1JPT9HWYcaZoyHhU7Sg3D/r093nwy4IlXtkgCQR5pgtDtKAG+mRmt2xR7YwzS7PiflG/FeL7dTRPfwoyrHULGBH0QVcPigX0sS8f8wnGOndjL+vUTvOGdx7jz7rdz5eKLfPb+P6Ce1Nz57paZEzfdxtGbb2Xz2hXqYkano1g+epKNNGfkxuxdPsL21XVmuUHsMHNs3wFK47nrNUfp9BY4f+5lNm3N5iMPYatVttcstR8gwop0/g6mrmCpH7fMeLtjU2sIIk0atsw43wZXwzCgLhtCISgm9lVm0pDJtKbbCfGzmnrUsC0ESd4yM1y3eN9u+Ce9lhkZRxSNJVIB5aSklyXUtG0/VsfMZiWh9iRSc2PWMpMmepcZaT0mF2xuOCrfMiO/0Sz813y+7U97YUY/rKCxRCIgEAZvoJpVBHaBphnim7k2WSsgVBlR1iXsJQwGGaacUc6mxIEm7WjiXLEwJ7h9b5ujkHJHVaoMQrX7YoEGhEHadsbhnHk1GNbO9ZEKnJZUhaMoYeIEw9qzWTRcLxxrlcE3CdPZNnEn4V333Msjj1/kxdOrfPCDP0mWzxMlPS6tbJDm80xKwWOf/BQ3XnqGpz73x5z6/CcIfcWll57h7NNfo6drOp0Oy3sGCCXpnTjGG9/1Q0yqVd70ju8lFJ5bTh5iQc545dwZlNY4FHJwjM9+6cu85yd+ibH0vOVDf5+/uP8zBL0litEI5wXGtod8rQOclKyPG9aNZeokk0awUQgmxmO0JAgFC1GIKRyzcUXazTF1g5YBnYN9pmXB1thw7fI2a1sltiqRjWW8OaYwFhdq4kSAdQy6EbV1NEKQZRm2qLDGMystW7MKIdsUcG1ha8uysjZhbTzjxmY7mJbCE8ch33q7uzCId5kZpAMCYXCN32XGmmKXmUBmhCojyed3mZluTylnU/I8pzsPca7oZsUuMyB32mDVLjORepUZ27SDWK3ELjN6J/xZK7BN3TJjeJWZmWetMqxfH/PUlx8n7iQ8+cyTu8w88rWnyPJ5Xj7z5C4zKgl2mXnu8Qc49flPMN26usuMqgWdTod3v/PDxGFC78Qxjr3ue3eZuXT6NLecPMRL517ZZWZhfnmXmXQ+Zyw9C8dP7jLz1c99YZcZGQhqHVBLtctMKRWTRnBjVDP1AqMlUvtdZsrCtMwYdpnZHr/KzGhYYasSGr/LjNSKOBEI45jrxdTWYbTfZaZoTMtM9SozZeN3mbm2OebG5gwpXmVGffsz6b+yZmIqpuOAWBbopl1sFbEgDQfoNCYK5vAyJFQBRjjs5CqmqambCi075P05UgymqkmMppw11LWh31XU3pL41lyn3U5PnG9nSxhJuRMOLGqFp6ExAikdjhp8sKNu1SglMLVHqxBjDEJKMp1SBYYkW+K5Z77O9c11bJlz00/dzp/8zq/z9vd8kF4/5kP3/RT/6p/9XYLNa+SLCwwyzaXNVWJfU/bnSPp7kCLizNlnUXbMbDRkMe0h+yGmLhBNwFe/8ClWblyjfPoLnLj7+zDVCKkE48kV3v8DH+D6Vz7Gw5/4deb3zfGJj/0O7/iu72FzZZsLX3uOMJKY2jKpDVkWMStqpJQcOTBgdX1GpCBGkmjN+nZNqAyjqiFJY4rSUG1MmHpPlirq9TFJJMhDRVMZkkRTO48wrr1tmtZc2iroRZpuL+G6sVjRlj0Otyf4GpJY0/hWoheqGK8NkW7nXN+o+yFwO3uOnkA7GhkAxS4zVWVxxhPLgq1ySpBFiI5A6y46jdFqAak1oQoozAbKzTBNRW1qtOywuC/DuAhbN9TD1uskMfS7mtpbclpmEjwehfWiDZXvMGO8RVT6m5gxrmkHrwiEiFCqdVMHQmKMIYoCvI/YNhPe9e638dwzX+bg0k288NJlbvqp27ntwpMsHzjMmWee50M/0TITTjbJejmDTHP9+kv045gascsMvuLKK0+iii+xMR4y2HeAs8+d2WXm4K138pXP/kcWjt5GIBOkEmytnOX9P/hTXP/Kx1hZXWf+0H5uf8PdjIoOmyvbrJ0/TxhJbGNQKiTTatdBf+TAgJUbY9JEEdg2IjObegLZMGpaZsZFTVA5SgdxJqnXx+SJItthpolEazRwrd21mdac32Em7cdsO48TFlV5RpOWmVQLGqFxfx0zO650LzxN2TJT8e1nSuojH/nIX/vDUx/9lY/4xhC27XskgyXyToaQnt7SnfjsFvSetxDPvRYdHqHRI5QG10AjCmSQABCFKXXZtBXSwlFbwaOnG0prQGhqB7NGYLBMrWRqoPEC6xQz4zEubGPwXjEt2uGcdJKirrGVR4WKqja4qj2UytBhXEDaiXnrvcexdcx7P/B9fOlPf4Ogv8hNR0/y3BNP8Id/+tuc3HcL4UAxG1c89tnHsRvryECwdeMippmQxSFLew6w58AJys1rXLz4GM0UptOS7asvooOEfbe+jte9/j7OPPcgS4P9rK6cJ1ARz7z0de686608fuoF7nnH+7jp5vuQ3vPwg49ybWsVqhaoZzthCwAAIABJREFUqgZlGzQQhYpqVOOrGhzkabuXFkEr/vIKa2wr8QoV3jYgoTHtzryQniCJEVKQCE2aBwRaE4UhaaRI4wBjHMo6AgM0Fd0wIA6gnJXEod5J97Z7UB5LFAcUhWlveFSbNwmjNkhqnGFUvZo7+cGjGmcsYaQIsoC4u0CcKKSE3tKdxIuvRcy/uWVGz2HCdrcQJ2hEgXUZUgm0jtneHOONQaiI2hgePd20w1sUlVXMGnaY0UxNe81fGags1E1rWHBeMalMK20wrY+rLi0yVNRVy0yYp0ypiKMMYyfc96ZbGc9mfNcPvI8v/elvkO27nUN7lnj0oT/hwYc/y8l9t6D1hKJ0PPbZxxnduEgYBmAqytk6WRyyuP8wvcEerl28yGTjMsWkohrPKLeuooOE173zu9m79wgXXnqWpbk9rK6cZ7tUvHTlDHfe9VYmxJy48w28fPpl5uf28PCDj7K+uUZTGQIlqWsBTU3tLGnQMiPqBhzMdUMwEElBqEQbITAW6YBA7iiOd5gR7Q1vkMQEUhJLTZQGBIEiCkOyWJNGmqa0BB4CA2ZW0UtD4oDWIKK/YY39K5jRCqegqg1hHOyYDQz/5Bf/+S//zQ6lP/6XHwkChwoMMpBoVRMkESrIsdFB/NxtHHv9j9I5cJKt7RWqjedhfB1jDUEokEpghcbaGkSDsDVa54xHNY+drZg1Cqkk0gk2a8NmaSgrQacTta8bvnVVC29xgUDWbfpW4BGBII5DGuOpa4NEEodtsZ/XKU1dcPqZM3zXu97E4MB+Hvvqg9x27CZkf5lzLz5HmEpqG3H2gU/QCxX/2+8+yqWuYf3KJkfzhMZMmN+zTJbF9OaWmVU1N65eIGhqTp85RRBK0t4yvcVDXL9ygfmFeQ4eu5v1oqSo4OzZx1g9f4nAC6bFDU7edS8vnbvAEw9/kWeffxHhFfP9Dr1+RC4lEw95J2Z7p64o7yY4CdorpAyItCBNIxLbkCYJeSdHm5I8CNECetKTqwAhJIH22Nq1FgBcC59v5y2jsm6FXaGkbGpUEGJVjTMBYQROeZIkQCYh0lsC5VudS+gJY43UijCUYD2VAq0ChtNql5n33xGgtUcFBh1pJCUyjAnClpn+8R9g+ebvonPgJJsrZ2hGl2A6wtqSIBQEicaisbYiThyYhrKqqUrBY2crpqZdVo60ZK1o2CzbxpEsDSmMRezsPwoJTrfMhKrVAupYIWTrmRrPLKEUxKGiNBXIhLKesXVjyJvedCeInKdPPcJtx26irKZcuPAKS/tei8Fz9oFP4EzK//EHX+VS1+CvGfbmGpMIBr2cLIvZf/AW1jbXyJI5Llx4iguvnIU0pD+3j97iIV449XX6/Q7j2iDyOYoKitllLj5/lsAL9gw0+b6DTOuURz//aZ59/kV0rOjlOYNujPSKAkcaKcbTNpbRyxOMgkAEKKUJlCSJQ1JnSJOEIE6IXEWiAgIh6ElPvLNSFOi28w6liCJFWe0sFYeaabGjupGCwtaEcYTZYSZIWud23kkQkUb69mZOa40LPYGSqFCTpCHOWCrV+rB+9n/8Z3/tofTt3+4UbX2yj4iDsJVTOY2SMdJW6HINa2uK4UYbJ6/qVngeSGoRoYMIU05wdY03DQ0hAgNKopSkm8JCFhJGijjUHFnu43yDDhxJFOJqizOWQAtC2zaUIjUyjWlkwPqoZOYl2VyGTyVD44kHOf2lBZI4o9PJOHd9yFPPnuX93/nDPPHyK+TC0mxe5pWnvsbVT32CA8eWcEnE3FzKrfeGzL33rejuYVzTJe8epJPvw3hDqCXHb38dF546Rb2yxvr5C9w4f4ZXXniMJO3w1KnThHmH6yuXEVqwf+/NHD1+F4UYc8vNb+Tphx8imV3n4UdfoZ4ZAtmqLuSkIYoD9nUSwspxII9YSALioiGXYIwh8w3WOaZlRZAnFE1NYQpUJ2XYNKACfB4zosEKg/etekIHrXguziVBLvG+oB95sp4mlJb+Yk6caMKwC6Fh2rSRgomDorF4JSkslNMS27TzGTurqCvbNo5Y/19oKGTod5kJhABvSaJ0l5nx5gu7zCTdJURVI8NylxlnFaac4Jua8XBCQ0hZ1LvMDDLNQhZS4neZwb3KjGjaWWQcyF1mptYj05hpI9goGmZesrwn3WWmN+jRX1qg35tjZWPMuetDSjfZZebG5oRm8zJ+trLLzOFb9+4ysxWF6O5hsqizy8ysnLZPELJg5etfp15ZY3L+yi4zYHjq1Gle97p37DIzHppdZlxnjqcffojR+pVdZuzQE3lLU9T0Usm+TkLuw11mUmPIJUy2x+QSrHMMZ+UuM5UtUZ2Uae12mZkJv8uMEhIdeKqq2GVGNS0zSa6IY0F/MSfq/GfM1L5lpja7zEwbt8tMqCV2VlGVZpeZb9Xd/H96Unrp07/6kSCLiDKJDkKwISiLjiIwa8SqZrJ2msna89jtU4RqhAssofY0owla50jlsGZKVTY04zHjJmR9s+aBZ2aUDgZ5yNxSj2Ri8cYzyCOU8NwYVcROUyWa0aQg7ESUlaXQ7dwpjxSFtXQC6GQa6WCumxMmHaIsws4alvYtMhmvMXnxLNcvv4DqzDMcF1TGsdwLmD+0hC2muNV1Bp0eo1fg733XW+ns77PvpjuQWBYPnWB7dZ255T2cP3OOU489zNVLN6jEdR54cJXji46bXnuCXAZcvn6ZC1fP4l1CHgUcO34T1XiNwZ79dCLB46cukBQTyllD48BXDb35hO2RwUhP3svYLgtII4gVs2lNnieUssFLR6AVyJqwn+JmM4xtWOikNKEn7CREUYLsRHQTSWMsVkWUXmBViLJQuFY019QG4QWNsRS1pakbNAItox33Tyv3CrwAYzCodqu+tjSRIokjAuURpt1CHM1eTXT/7Tfl6CQmyiRhFONNgJAOGQZg1tBMma4+z2TteYprf0kUWry2BN9gJk5REmwzYjax+HLGRKQMtw0PPDNrX2mzgHyQ0i3AG89CJwDfMqOUookCpqZEJyFlZamoUWjy0FNa6ITQzUKE9cx1c9K5RXQoGY9HLB3eSzXeYK92PPXYF1GdeT783/0TnnjqUS595RFO3vcabDFl8tLLzPXnGL0C/8PffQf9g3vZs/9mvG1YPHQC40riJOfph/6cjaszzr9ynnDPBT71yU2OLzre8Z734WZjDp24h4e/+nG8SwjKKbff9Xqq8RqLe4+TyIqrpx/HTw3lrMEphysN8XyH6bigFpB1ErarlplGa4pZRdKNqKXFSdv2xqmGsJ/SNAW+aej1U6xumZE6IOgmdBPJpKwhiJl6j1cRykJl2oxTWTetMM46TOGomrplxrdL5dIrAmEJvEC6dvziEFRNjQs1SajRCoRpw4Q/8/N//ZPSt69YCiRSWYJQYUxNmnXaIklXIGTOZHidkBkSgzcllWtofI2zY+IkoXFTqBu8U9jSMpooKj9jY81TAH0tiOOYZrvAe0ekQgihCgJSKoIQdF2TJxGjYUMn0lTW0YmhKRoGqcYVnmpYM208s+kWR+44gM8icgR3v/5e8rjg8qnHifYu8sZ7Xs8WC4zXzrF1+RSB2ULGIXWvwz3f8TbuLS9yo9rkpuNvpjfokHcWMJVnOjvLsJywfPAgr3nv+/mN37mfO2/N2frCGa5vBTz/qU/wgZ/9F2wVNVfPX2C2uYHJ4dkHT3Hz4YMsLMxRN2Ne86Z3c+nsBTamBUkSoQYhMw953A5j8Zr5fkaQhFjX0OmmTMZTQjQlFpFl7aurh7DfxxUVG02Na3YOEqmoxgU2jogcWFsSAaIBnCXeEXMFoi0mcI1HC43SrTBPaEEUxDQ7z892Wu8sIAvKssIFCl15JlU72A60QJlv/taTUnwTM3GSte6eHWZcvYlxIyQGVENVlhhfIneYQZbYuqFpFIGVrE0UzDwba44C6EWaOI4pRwa9w4zWkkopUipyJWnqGu8E0x1mpAvpRw6cJNcGZSXbqxMaFLPpFnfcfjujpuSQDrj53jfQZQrSEO31vPGe1/PQX36Muf03MWeGFEXLzCjucM873s295UXWx4KTd9zK3gP7kTLEVJ6V88/SPxZw/I438/zLG7ysDtDrX2drYri+FfCp3/41fuSnf5ntZoPMp8w2Nzh84gCffvCT3Hz4IF54gk6HiT6IC7fZmBYMuhGqF+KriigA5yuEDHaZqaqG3mCe8WgCtGF3nXV2mcmTLrZpGE2qnYr3VlpYzZqWGSmwTUkmBDQNOEsiBV5IsjBC1rZlTbdlpkJKwqydLbqgHbrbaY2OFEHdUJYVVkioPGPTgHUEWiDt/49Edymgo9rlPaUUXlb4JkJUBZU3hKILVbMjk2rQNG27lPdYP6OZWqxwTMZj1rcLaiUZbwnOrhR0lEAHKSubE2bGM0g0480RYSdiVo/IrAfZtp3GiWZa10yMo+8M4zomD9pgb2ErAhQT4+l3A6688grdfQd4/Vu+g6MH9vDx3/4dbjqaML90nEBGvOV1t/PQ/V9GVFOev+TocYOf/r8/z1ce+lMy0eM1d72BRx99lHo2YeTPcnFtjVylXH3mIeaXb2N5qU+uC5789Aznp8yF66yebXj6K19g8fXfx+rmNgePLGKLhre9/j5OP/sYm1mXaOk408vPM5dovBKEeZc81wRRiI0j7HTC9mSGtIrBjpNoMisIc009LUELmq0hlQgIHTTCopQgsBKtNNK1XqZBmGLqVgcsgoAwbJPxjXc0Mwu4NgCHw4QBHgWNIUpDpJSMt0ekWcZke4qOA2oHtTCEsULWDgvEOkQJh4jAugA2X719s1ITKLej8/V4WVHVFYGGyhvcRBAlrd0A79C+lf4JdpgZOhpvmU4mTGtJreD6tOTsSk1HCYxXrGxOUI1CpzDeHBGViqm1ZNajhaPxnkEcUc4aJsahRcm4Tsm9IlKGuml/d5OmZebZrz3D3IF9/MB/+6NMihEP/9EDRIMB73vPfQQyYtJsk/sbjHXIubMtMz/1b/6Ip772JTLRY9+JO3jx2adxzQRVj7i4tsaehQNcfeYhjr3hvbzpO9/C08+e4YufXMD5V5gL1/ErNU9/5QuMO0d2mfFEu8wcPXCQqH+c9eKxXWZEHpPnKToOqIZTrJNsjQqkEwy0pSkko+EYnUrcrIZAUG+MqJQmdLTL36LVNkvpkU4QSkUaBi0zUUQjJHHc2rsb7yi2S4JQU0wrgiCgCXW7feE8URpiAkG1MSaKAopJg44DJkUJgSeMFUElqTFoK4gCjYjap6+/8aE0HBYoERImemdXRuNEw2zq0L7BqAZX5BjnSXRISYrwE4pGYJoaGsFwq31VaVzCtauOSSn49OlNup2crnKEWczBJKRSjmujGfGkRCpPNpexPizQPiAKFZ0kJooEiQ5ZjC22aYXVVgmcluQzy6RwkGr2Hz6CqQsefupZhj5lfvEm9p+8jaTfZzA4QKZCmA+4uXeI3rEP8PE//re89d67GY1mfPpPfpdBdy8+Mrxw5imWlw+zsBhy7dpVIp9j0nl+9V//HA9+8SsMXz6FdiX77lrmbT/2s5x94hG++53vpTQTrl2/Sm8+JslDGrb52B/9MVG6yCgbkOkVYjNjuFqTpgnGCVQQkkmJCAXNGIJA0A3DtqIn6yAjxeRGgUwDoixA5zHF+hDjDNFcRrM5IYoCpt5TzQxoRegrklAzvjFFyQYfKqSVSAkpgqCTcGNjiMoiRCih9kgVMJwWeN3u+SZ5QmQszteIOCbV0FSW8aTBOYGS3/ytV5gaV0jCpL2CD9CYumLmS7RvIJKURdCG7KI+pU2QYotp1TJTjGrqUlAZyfp2w8Z6wMow5dOnr7TMaE+Yx/TSiEJaro1m7fL3DjPXt2cEhKhuRMcrokgQJwmRai0BTSFxoaGWgkHpmBQOOZey//ARbqxc4OKFKwx9yve/9cQuM28+cQfnHvljTl+5xs13vIbesQ9w5uvPcPOR/YxGM84+dD9CZ5jJBmdfeYXl5cOMN67TjNa48MwjlLOKX/3XP8df/MWDlNdCtCuxYcbbfuxn+fP/+Fu7zMyKhl5PkuQhr1w+xRefWOXM40+z7/hJMr1CUBuGq+tk3bQNNOqE2Bp02jKThhAQIqwjnBsghGe02hpfoywgHORMVzZohCPupTSbE1QaUhhHNTPtnxUFthNRXBmhZNNellRtrXlga7r9PmurI3Q3RIQSP6mRKmC7bFA7zPTn8zYv5mukt3Q7KcW4pKgtzgmy/0pQ6dvOlB75T//mI1E3xglPUxsIBd5WeA1N4WmcAwwygAYJzRoOwXQ8o6orhuMC40JmZcNw01LUIQ88vsHmTOAbi1KSrJMwnUyIdcChQYfAeOZ6MZlTpErTU46FJGNzY4tEa7a2JxAmlNslYRYyMTWTiaGzlFEbR2exx+ZoQphEXHr5PGk34MjxeY4cPMapU4+S5h02Lp+l3GiYdLosqor3/51/ipSeT/zKP2DrlcsM9uRcfvk0n3voaepqhY2NNYJqwrNf/goqXiM78j7iZpPuvjspNq4gteWF0+c4cnAv3eX9bKytURcjvJ1x6tRZ7Og6L694HvjEZ1i/uE04UARxzNJSDxFGqFAiTNkWH2pJIiRRJ8PXNdF8SjQfs3Z1Qj6f0tvbp64N5fqIzlyPxta4WU202EemIVsX1rDCoqQiT1OyjqbC48oGS8RUQFWZtgt+WhIHmmA+b31EoWI2mZHmCYH0WOcwxpHEAk2E8BYRa3SmCZTGFm2N88bs1du3774tQ8UhTvj2pl/79vV+hxkrKry1yACKpkbYdYrKU85KqrpiMjFYH1BUhmKsmdWKjz+xRVF4fGPbW888YTabEKmWmUwG9PKAzCkSPL0AYpUw3WqZKSYGq0IiDwSKcVNhK0G6kFAbRzzI2B5N2BoPKcsaHTn+m/d+kFA5Tp16FDMbYafbKLNJ1dvHoqpYPHKcPfsO8Ylf+QeMLzxLttDn6a88xpeffJG6WiFoatx0m7OPPcKJe+/G5K8lkdfo7b2HYuMKc4MBp547zeL+wxw8fpSNtTUGWcLW9lVOnTqLKWsurtRMxg0vPXOJcKDo5h0G8x3iKCESEmfLVninWmbi5TncdEa82CHuhaxendDfk9NZ6rVbFZfW6C7OYUy1y0zdGMbXtrHCEuYBiY5YXMiZ1jWubCidppSScdnQS2LMaEa6d4BOAxQeoxRVUZCmMaFqh+vWQhzRMhOBCDVRLyaQLTNWwD/++V/6m82UZiZhPHIYZ4mjFD+rmYmImAhnK4KZx8UJZlRgzBRXSpJuiKGhaCRFJTGFYjwUnLtgOXdjyptvSji1PsUaQ2VDZptjOr2UclJSCUFnoJmOHd2TS6w8+wp7FgZUkWfh5kNsXFgl72fo1BFrhbEVWU/R3dODcUXWgeFozLE33Mrli5f5R//oH3MsmzC0GTcfO8j1Ky9y7cJ5vJmS3nofb33LW8gay//zaz+DXB3h8wXisOCTn3+OR5/YojPo8OyXhix3C37879xLfmmFl59aYWHuU7zhXe/l8w/8BcsHDjJcX6XZvELTvB5dNUxGm6RhSlF56vUbXFn3lG6BLO22V7IOUmPZWBkSKE9nz4AZnkCUCGsYSdATQTNrmKsEdaDRxtOJQy68cIUDR5bRQY0z7TV/mKVUdY0Vnr3HlvGTCuYTRGmZbFco68kWBhSmpqsiqqknTUMarwiymHpSIitD0M/RvQyUorQeVzdo3ZpB0QodaMqirdsyxhF1kx1B9miXmc1t374aOkugQoxocEkPKo+zFVkR0OSqZaaZ4SpBnM5hhadoJI311DPB9ZWa58+O2K5SlnTJZSWxxuBczGxzTBjFu8x0OwmjoaF7conh0+eJ9/RQoWNh0DKzsC/DekdRlCivyXqKNOpRTWdkHbBBzP6jh1k7f5Uf/Yc/wR1dx+E3vZnqxgrXr7xIlvYYrU4JBgf5nh/+cbLGsrCc8u//+f+EzxdYOrS/Zealio5smTmxvMEHfvjtyMsbPPqpB3ntPducfOsP8cQX/ozlAwe5dPkVOvoKx7/7fZgdZiaTGOlD6vUbbDQxpcs4f36FQaJIHPjxhI1Re6U+6Kf4JEaPZrvMhKubVLOGeaeYjCzaeLSDSzvMBHNdnPEkvQxhFFVdY2blLjPhvj7N9ozVyxso3zKj65ow0JTeEKUKm0SEcUy1PUZWhs5Cj8JZpBfMvMDVDaFqtTJohVTt7aketuWnUTfBVd++jPLbPin95r/85Y8EEgIVUzUN3oBHYhqY1TVBkmFEitA5TiaooE9hpowmI+pCUE88a9eHnLs4ZtAV3H5I8tiZkktDi1Ka0kCWBURZgtARsqkoXY2OA+zWmEGu6Awy6lnF/L4+UeBxStOb79FUY0KlUa79j0m/Q+0C9p24jTOnz9BNuzz2xU/xufNX+NEf+Fs88uifEbkpZ579PKGLqGSFiBKW9h1gECrWX3iIuaO3sHDkBL9z/9cJezEnbr0d3c3YmIyYrc3Iow3iIGDj6jmWThxn7/E7+Or9f85g0IUsYHNWkcU541lB08yYbj3Py89dZX6hx5995slWsGYb5pdiisIiZYx1FUwroiSntzhPnAc004K6qomyGFM3iMay9+ZlpuOKTidgazLDO0WSaQSKupxSrY8I85i8mzMtSgKhEMazOhphhSKKJTdWRizdurdN3AYR69c3SJM2TRwvDdjeHqLTDDeZMnHQW0pJF+fwsxlBoJiZurXiKIlzhjxNaBrL6nC6y8zNnbamKFAxaIkpLZV12B1mVJTQiAShc1ARMhhQFBXjYou6EAw3arbWxqzcMBw7FHNyL3zmrKSoDEppqtqRZCFJVyGDFNlUVKJpG1q3xmQLmm43pS4r5ve2zFQ6ot/LoR7TtuIK6IaQZdQu4L7v/X6+/NBDDHpdKJ7kdx9+kXe96W4eeeSTRG6KVgGbVy7zvg//L7x84TmW9h3gP/36LxLNbjB39Bb6h47zHz72GJ24y7FbTqK7GS+9tEkzrRmYdSJVs3b1HL2lkCOvuY+v3v/nHLzlZpw0vPa+7+b6pQuMZwWz0SrV+EVefu4qZ27UPPn48zt19Zb5pZjZxKKCBNPUhM4QJBnpvkXSrGWmKGviLMbXhiAOWT42z2RY0uuFbE1mlNOGvBsxnbSRi2p9xNzeReIsZlqU7SFSWm6MJ7gdZi7fGLP3lr3o2kKSsHFjk1RHSA3x0oDV1U3CPMdMX2UmXpyH6ZQgUNi6btt9HXhhydME7+Dv/cw//Zs9KREHfOHZKSeWIQ9LDh/KSToNearxUYeNDYu5eoN4rtcW1xVDyuk2W1sVnV4PFZQcPqy47dYlrl5Z54ULnvUK2ImrRyEEIfSXO9iiIN5/gJXtgnIyIuznBMqiUOy97QjbVy/TX+oTj6dMbtxoFbS0V5WqbBivrhJ1Aq69fJ4wgOFwi7ffe5yPf+brGGN46cnHuWnPAvsX9hMl+3jdm+5iexW2VlY5feqrnL10g/jKkNe9810oEoZrU15z5yq//+hFfJLwwqVV3vOT78HUm+y96U1M6wVm557g2taIIHUc3n87SjQEaZd8znLp6WeReDZNzPD8NnNxgvWGSEcEIiZIaa+NuxmBV2zcGFJvjqgxyLzD/NE57OYaw3GFjBUrZ64yv7RA1OtTbw8RZYNLFK62KKdYPnKAxllm60PCOCKMA2rX0M1ioixFBZregmW2OUV5Q1A75ub7+A4kpaSZlnQGOeV0huznzGlJNZxSbG4RxCH1aIKcOIgVngpnHFM3xXyLG+eZS2OCayEnluHgkqLbFaRJQ9ZtmVlbtdi6ZcaZElcFbG9sUhQNnV4P54YcPpxw7Khgba3gzEUwVbnLTBJrghCW9i9STWbE+w+wPiopRkPCfo4WDQrF4slDTFeu0V/qo9a3KG5sUzQBobBMbYO6NmHcDIk6AQ98/JOEAVy6cpH1YcrW+gUePfU0L+8wM9vYJh0c4uHPfZSDe06ytbLK179+hQ5bxFeGvPn7DqNIeM+7306w+jV+/9GL5GnEC5dW+Z4PvxWhhywd/U6urg+pTMvMwbqh08u4cfkFgrRPPme5cvbL5HHEpolZOX+duTjB0RDSMtNJJV4Z5pdj/ESzvT6kHm5SW5B5h73Hu1QbW0yqCrNtmK1t0987T5pn1NtD4o7HJQo5bF+9lo8coBF+lxndOJySHJjr02iBCjQHlj2zzSlhognqmrn5PvGchqmnmZb0BxlVNSNcHDCHoxpOKbfW0VHLjC0cIlBYU+GRfyUz3/oR36i7/qs+d3Yy/8F3ZMwNHDqMKKem3XnqBYRBjI41WS+lnk7BG+b6OUGoyMKUur7OeFRQVYrtccNo2KpPnzxX86VzOzMIr+hmmk6e4hVkTY3K49bx4wVaSybOspxmiBSooJ5WhE7jw5DGFG1zhXXoPEE6x3kjmZs/SF1t8ZM/+X7u/8yzzO+LGVRbEM/zIz/8Pr745QfoGEFpC5aP3s6NCy9x+otfpNPJ2HPyKJtlw7//6NPceSSjmKVsNWP+4YfehTKXSeePE8XQDxZ5+rlTfP+HPswf/K+/wF3vfA37Tr6L5Zvv5JFHvkS9vc25U08Rze/ht37zL2io6CQpoVaEzpPMx3R0iqumvHh1ypwW7NmfM14ZU6WCLIiZSEPiQ5wt0VGMlwJrLa5pD2TbOIyUZMpTNAbtWl1HrBWVpRXGidabF4a67RUTmkCAiTWpk1ilmK5uopIM35RUO+7lyjYY2jpp69tbUGfbfTFv3U6lt8QZy5n1V2/ffvimLnfdGjE3cBgnwLZRA50owiBGxiGdXkw9nSJcxWDQI4w0aZBQ19e5fn0TrXKur1bMKhgOG/7oKcPVnRu+UGniSDG/b5FqOiVranys0Q5M6wimdI6+0sSDCCrQ4wZDewsUKYWxrm1zziOkc1wLumTpgHK6weroGnff9Q5O5Ov4KIN4nu9882HOXrjKHcf5s9kPAAAgAElEQVSPcuaF0ywfvZ3nHvoU6+dX6HQy7vyB93L6mVP88Sef4cBiSjFLacyMD//Y25nvBbikj/JDaATnz13j+z/0Yf783/4KJ25f5rX3/S3U/H4eeeRLnPvy56itIprfw2//5p9RA/N5BkISOk+6lJGLiOl0yqVrBfORp7MscGtuh5mIibTouh38B2GMQlD5lhmvJHXZ4DXEQlA0ps2iAbFW1O6bz4Iw1DtFlQppanyekHqFVYLp6jYqyaAqKGWrFGq8beWCuLbp2PvW6NG6Y9uKpx1mTq/N/lp/ybd9Unqlrnj6rOWe2xMWFw17jwZEXtPt1YS9DlJKmqnF5wbRWBpdo1zB5uY20wqqohWwAeSRoI5hTyKphSaiaauWhScQllykyFxST2u8C0ikJ1WCLOy3iW9lKMoSqSCY12AV0QhsEuMERJlle1zSCZYYTq+yZ+8J/tWv/S52WvEzv/ATrF8suO34Hi6++CS37D9CE8SkRNz/0X/Hz/7K/8UDf/Ax+uOChVtez8baC7zr3i5f/co6U73Bj3/va3nx1OMcPjDH8sF5rq2/SLpnAXTD+mZDtjxHXUHYyVEyQquMibvO2lZFP2nj+0kYofBEcUguGja3axaODCic4fZb2wXUQAcUWjLQrScybSQ1E3KpsE3V+sttg/IxobAYrdtvUrPjllSv/jsHwqFk+7tvAJoG49sF3JF3iJlnTISWhiqQ2GKbULcmwloYpPOEOzrZwLYivlAJGr/jJJJtx1z9LZmTF0cGf7bintsT9u0PSboBeZSTRCPCXgclY+ppgc8N0kpqWYOZsTneYlqB9R2a2qE19KXHVXByAOe3WmbEN5iZbZOJHJlLQFGNDYn0xEGACxPiXkgoK4qyRCcZKm/IbEo12ULGOUEagizYHpcE4QLD6VX2HzzKL/343+fnfvp/554Pvo2ZaLjt+B6KEdyy/wgb21vccvMbuf+j/47v+9Df5v/8n3+F/rjg2LRmY22d+167xIMPX2aqN/j1X/gRnnjsyxza22f/zSdYH0+YX963y8zykX3UlWUyHjO32DKTLh3j6gsvtsy4gCSQONuqRXLRMBob5vd1seMxr7u1Q2kdeey5sDVjoEH6hrSRKLlTHtBUeGdQWJSPUc6gtMRQEZrg1QqlnY/yti2mFKI9oJoGayqMUJQegrUxY61pvEMGomVGAE61quEdZrxsa7yNECjV1nk5D0GgkEJQmW8/U/q2h1IlLFkWMR23G/t1Lcl7mmkd4za3CFVb6+KMJ0hj4lBimi5VWVJbQ56G+MijJoKKCenYcdM+AU87RCCJlaeXpiz0e0TdELtRtnUziwmdUOOFQhawVZfoylNulCSDhMsXh8wpQSnbjeaFuYRgsY8ajagmNbPZmPd8+Ht45exB1tcvUs2u8fZ3fy+PPviH3PPWH+XqjZe475a7OHf+aZ57ccIv/vc/T//kcdYvrPL0l/+SG2sTlg8d4CfedzfjXpcje+exxQzrNS987QtoGfDyxoRb77ib4bXHmb/rTpY7A4R0jKfbCBTO1qSZ5/d+7xPESpMFCtMYwkAQ9hY46gx+e0oaaNa2xhTXCwppWJjv4k2J1QoiS241VkhCoaitQemQoJZUqq16slLS0FY3t3VcHud3OuW8bAsYd/aNvlFbHeHaXSZb4Zxom10F+MZhpSdyCicFxjmEs2jV9tmbXSm8w9o2mSvkN3+7rm0Z7tqvmY4920PFdCKZ5RVh1MVtbpHoEIfHGU+axahAUFQaVwlqa+imMUbXKGmYjWtS6Tg5L3ngdMtMFDh6aYf+YocgjLEbJZWqCZdbZupZjZSKYV1B01BulKR7QtYuDunhEFmKNzMOLYQ0nZaZshwxWx+z982HOP3iZd74xtdydTzhh97/gzz64B/yuu94PzfWLnH33fdy9eWzPPfihOp3PrrLzP2/9TGm5ZDBXGeXmUtXLnL85jsZjjY4+9xZYgKSdIlbb389w2uPI5NDLC8EyDTbZWZSTHeZyYKAJFC4qiIcxIS9BfY0JX57ivCCje2S6WrF5RjmOinelJigtTiIHeuGRrf12lIR1JJSemIBtQgxuP+CGSkVjfe7NUnetwcUzpPicJEicBWRauu+2emNs96g/3NmvEftMGOdQwqBtLbdCpCtI/1vfCiFPsBs19APkK5GpyFKW3SgifIucZpAvY1z4G2JjjrU9ZQ0DJnPw9bXU8ywcoqUCbUekcUhbzu5wFfObeOVoGwck2mFLQq2t0v6ytOsjZgmEFWSqnFEoSKNc+ZOzmEmgqTf3gRWVUmIwqzXFMUG80d6bF1wBHKBx558gme++iUOzOcc/cBbiIgQ8T4uvvAinb0dGgyf+v2PcuJAl/6xJY7feTcP/offI05jXnPbYQ724crwHJeerbgQCaaV5tBSivDbBGFGlGp6hw6wde0cR97wo8hyBdd4hIzQWlPMHBuFaBtB4xAbBgw6Kcv75lk7v4ZVks6hRdbPrDAxBdlczNGlLmevzVgIAwIApzFeAhUz7wiERhqB6idEsxnltJW1x6HGCIuXCvMNaT7QeItWigiJVx7nVFv9JQUBhpkKUN7Q2FY3HAWa0jd451o1jJQEoi2kDKWkca5dzm0aAi8x7ltadIEw8LvM2MKTLDl8DFpDlHdJ8gBfTnAOhP9/SbuzGEvT+77v32d7l7MvtVfv2/Tsw324SaQo0RYlypYdBFJiGEHiOA4MxDESCIEuFOXCsBIGduAYQWIicSzYMGxHQbRGG0mJ5IxGM8MZTs/S03tXV1fXeqrO+u7P8+TiNM+YBjwGlLqvm8IHbz3b//crkGFMRA7e0G8ETJIUYz1OWmKlsLpgrfeBGSvmZgZHBS2VMxxmNPTjmasYVCWosikYQTNu0bvSo8wLotPLpElBWeUEVpM/mjINpvTPtdm5UWIaS8ys53d/97uEyTGf/8xfXpiRtiQOGoTECzO988/wsacv8I2v/1N0HHL+wtNoXXGczM30l9rsHL3Ps5fXsfmMgU3JRABPnuPk0V1e+NRPImcppYjRj82cO3OKb27tILXAaoGNApY2W/SX2hzeO6RZixDrbU5eH+FqjqgXcuVUyDv3H5vxDuU0hQflKgpRApKw0qhOTG2ckGQOE/K488/i5LxR6Aflrhb3Q2a8n5dHej0vWiiFeny+N/8dyzz9032IGa3nyRM4qJyg+v9TsSQIibtqvu/0JaGw6MAS6pJAWChTavWIWuCpxY6GbNIIJSYSSBnMCwSUoV0zxHGKNPMers9dFvy1L7QwdU1PK5Y3anTPrNCqQdDT7BYeGUbslZasoQmUZXwyJGi1YJQQSU2tJtnY7LN0aRnfMHTWO/jDitk4o9tvkKYpqa04SDS/+n/8S06mx/zoZ7/CV3/u38cnI37nX36der3Nz/0XfxOdKq5/8/cRTNEWhlt3efXNe5Qzz/pGn7VTqwR+xq3b90lmhpOjMUla8f1v/gm77+7w3V/7OisXrvBoYIlQJFWFikPyw2NsCdk0QxtLv1Uj9m6+Gioq3O4ecWf+32qpp3i4m7AuPIGyeMrHH4oCY0FUj+tq8pLJMMEHAXHbYGoBXkuQAh0obBDjpcdJTyQ1sZTYxxlIUjKH6CTjH6Qu2nmMbAWU3qHcvGdeawliPnDrpKASHm0MpS3xjzviHPZxAN8HPy9+5MzCjJQZobA0Q/OBGT/7wEwNGrJJTQcLM4aMSBniQNBqKqRRWCcXZoLI0NOK9bPLCzPRUrgw8/7BdG5GVAsz2TAlkpquMaxeXGXp0jJlJ16YkV7S7TfoqYAqSzlINKtrvYWZdqeLT0Y8vPv+wkwjGy/MhHbEcOsuB4PjhRnnxgR+xrV3b7C7N+DkaMz4OF+YmRxVrFy4wrkLTyzMpLNkYYbSoo1ldaW3MJMn6dzMikYZw1JP8c6NyQdm5PyfS0OUKDk3U/NmYaZsRcRtMy9wfWzGK7MwIx6bCRULM1rMzXgrsV4gnUV4uzCj4LEZPjCD/cCMVpS2xAqxMKP8v/U4Cfh3PAn43X/8d3/508sOrTxxAPWOoBYa4naTUAXUYkdV5QSmjZQ1lABvJ8S1GoiSUCpENSEbTygKS1rGeCFZ6sVoadna92w+f4lGr0YYGNLjAbOJpV/3yLRChZK2t8xswNqVdQb7B9S6ioPBmKIqODyc0FxZRpYweXCMNIbCzFcEw8mQyWjC5tlNptu72M46H3vhHN1uG63q/PFv/yvqjZCtd99lmp4wGoyweYYKDNNpSdSNyMYFzhaYfEazFTItHN56ur2YztIGLq4zHR7xkR//c1x/9zqN1Q1G4xNa7YhrL/0hr35vhyCs2Oi2URU0A89xMmXvqIDCUQhPPq2QKdisQsWeIDbzGFKl8WGNvCyxUZ12GCLTkgmaMi1hlmOVICFARvPhyVotJEtytKwTdwMmaYYOQwIRkCQlPq+Qwbxax1pJf6nD+Hgyz2gqLFUxf5zoxLw/b951rzGqTj7LCNQ8N8daOw/km3djcTj7YG7gtEv5+Bpo5el2DCa2BEZRe2xGuQkeCEwbrWvzfjY/I4wiECVaaZSdMjuekBUFuY0RSrDSj9DSspfUWX3yDO1uF2M86fGAIvN0I4dMKzrS0TQCUW/TP7fMYP+AsuaZDhNSJ7l/Z5f+xirFsCTZOUEaw3FRoKXmaP8RB4NdVjY2efjeKwxch4+9cA7rBSvLp3nl179OiWfr3XfRRcqjgwE2z1ju9DkaZ3TrbcajKc4WaOvodCNsAbPSs9SPqIsK31liOjxi6fJF3nvnXb7+q/+YzdOnabUjfu+f/nPevTciCCvOr3XwKdRFwWA2mZsZFxRaUE08Nq1waUmjKdCPzXihIIwprEM0m7SUoUxzpo/NmMpSOk+iI2RoUBbarYh0lqFlnbAdMskyonqM9oYkKcnLEm0UUglKC72lNvu7KV5KbGFR1iPNPBF2fgSp5llOpkk+y1DB4wZj6x5fnMw/SH/zzzqQ+4k12MoV9UHC+VMNwkpQjUtcnBDWNNgG9biOVFClCmEaBFETVSqq8R0slnGWY+pdquOCTlthqZFXKY1Y83Qr4ygvmW2fIMuStaefxgpLeXKCTTPW2k0ym+L3p9S6bcq4wbtv3GIpVqAFm+sraJeTtkAexgSrddxuxngyJIwjzp45hQ8c8eoKa8bx+vevsbZ5gVo7ZjIZsNnv0NnoE++X3Lk+4cK5FaaziqBf5+yTH2f7ey/RX6oxG4wpphl1KeifrvHxz/wIe3duYbMZRZoRGXj2x77Km3/625y++mke3XqL3/ztawgv6cQRSlqSvCIdeohBJDnWQCMX6EiTNSXaSYz3pM4TK4HzFSo9RpoAVyYkFSgD7cCRx/LxjUZB5CS+yHDekScTmkGMzVKKicRIReA9oyyhUTPUm02GmSUfzmjokBRFngv6NUEpJOQWbQSFkzRaNaazFIQjqSaox7lJFtChIlZq3lT8b5xZnt00bOWW+iCh04BWIya0BS6fm/FBm8DUkAqE7VPJCmXqKGeoxnfw0jHJclSziR1bOm1Fw0cUNqERa/LjA6qNJfbu3aDhPWtPP03pU+xohk0zWuvLTCYnGNPGRCFl3OD292/TCiWFqXj2+UsIl+NEhhRzM2GWMpwMqbc7fPrTX2Lr8D5OhQszzz31NLVWTHPlMsWjW3Q2+ty7scPR4dzM8WRG0K/T6SpmU+gv1TjZH2BPCsqy4uzFM7zw4kd473uvYuzczOraJk8/91me/9xfIE2PeHTrLX7nlQf0OzGdOMJUgjKvsPnj5IYkx4bQyB26ZXAynBtxjvyxGeMqbHqMMTHFZERiBSLwtMXcDNITuJLAeUThcd4xS3KagcJmKdMTi1EKUXjGeUqjZmi22xwnJflwChJSFNJZ2oGmFBJVgTACJxW1OGI6SxGhICnnZiYji5MVYSQJpMZj5wWYH/Lzodu3R7uKU70YGUYUQY3MC8Kex2UZXkmsS5iNJ5R5QVU68un7FJNDsuwhIqiRlDmN7uo8cjRw1NqKZttQqysadc96D+p5Qe2p0xRJwXg6QmYJRZIQLm/w8MGQcgSrz15kuHVATMrTz65QhJLKa27cuocvBXFW4WTJYGvA9OSQRhBBDl/5iz+Dz0uqrOS77zziwpPP8dK3/pCtG+/RaXd56vNfJqgF1PprnFqpEbUbKAoiBD2VcPGJTWajhLjdnP/Rg/mwYTI8IGxEpPmMz33lp8hPZrzy2svcunvIw+tv8drvfIdZaslnCTUFTlZ0ux6jC4z3rLZieo0A05R47YiqebedNZJGzZB5Q2IVvXNnaK6usHrpFLIZU4aGIqixtLpEZ6lL6RTDSUHO/CkAtjVvEDYOURSY1FKlJXUvoSrJRxlBkRC3DL4Z4GYZq2d7VHGEbNSwvTpjZWitrWCTilYY4hOPNiE+gmY3xjRqoAOSLCdJHLV+94fMzB5kCzNlGJF5AUG0MJNNjxZmptMj8un75OO7CzNWQKO7isAQBoJaWxHWpwszT20I6nlBf311YSbU4cLMre/foxxB0IkWZi5c7lCEkmDqeffNG/hSUEcuzIwmIxpBxOzohM9/7kV8XnLn+snCzEp3ma0b7/H+Gy8tzFx+5vLCTD0OiRDs3XvwgZlGHScVVSlYigzJ8IBTly8szNy5+x6vvPYyr333XyzMSG0WZmY+pdv1VNloYWap9dgMFaLKkd7hQr0wM1aG3rkz1Fa7CzO+3liYabYblE6Rln5hxjuzMBPhMamFolqYSU4SgiKh0a8T1Bq4WcbS+fWFmVFdM1aGuNZcmBGFXJip9WqYRo1S6IUZHdc/9KP0odu33/mffvmX48rT1p5auyLsKEohicM2lZcUhcLpnCKxTLMJQWrxPsJLh27WqdWXYHxEWKsTxBKBReqKqnKkU8twqNifGgyetF3nZHBMu9MkG6dUs5Jeo0G8GuKOp4xGY2ZeUg819mDesrJytsf05gGTcUJjNWJ4coyykOBQTc1KZ4lsMqKxtEI+HfG1r/19Ljx1hiYW7SdcvPIxyAtsLOkYQxEu0VmuMQsjjh/eIc9K+v0+JydD0tEIJwNWN2r8lb/+i+BrnL36AkeDhwxmKR974cscHL7Pm6+9zTdeukmWVrQbhlZdod38+z+PB1GP/1M4KhSRl2RG0dhYIq7XSWxA4gSHkwqTWtpdw6N7AzZPLbF/Z0I5nmHLgONpiUQThppIBJi4SZYXNJt1ElsRGU8YVnjzg9YXiRUVSkqsBZvkTPCIEkIjCZotarEhORrixzNU0zBNErTROJsjvaDWCNjZn9C289VSb6PL1t09puUHtykv9j1BJWlrT6uv0Q2IW02EiKi8pEThVUWRWPJZhs5LysIiTYhu1jFSIWZjwlaDMLQIPMbMG5jTqeVw3zEuI6Jel6RuOBkcE5uQcpZRzUpOn11GdwyTO4ckRcLMS2qRxh1mbF4+RbcdMbl7xFhYmj3D8OSYwATMbMGzzz/PaDainM0Ye0ss4Wtf+/tEwXzrDQdceuJFyAu2Ht7h1PIyRbjELN1FLK2hyhF5Cf1+n7IqmRwNCGodXvzZF/nSl/9DKtXm3KWnORo85FOf/TLdxhkq6fmj3/8G33jpJqWtaNd+2IwUCsxjM25uJvYSUQ+JVnvYfH6OmDjBg70pcQVRzXO0O2Vjo8/Nd4+QsxRbBhyclBhl0EoQiRATNynScmFGGEsttFRyfjHhpQQ1vz2jqhgnGZkAN8uJI0PQbNGo10iPTrCzKboVMk0SFOBdgfSCzpJm+9GEdhBglKC30eVg+4S//Yv/9jjcD92+GWPpr7dxswE4S3pXo4KM1J+wfP5JCA3NxqeRzQBla0yyjHpnhbB4i8l0G5ntEcQ1tLGEPiS3kmRWIpVHmnn290CWdLIZrZU+rabg+rVHfOTjFyhsSaQV0+mY8Z0jVl98iun+gGJsabQb5CdD8vsZcj2ExFNMCuq9JeIkp/Axz1+4xBf+/E8g/hDqccTqyibOVdy8MeDn/vZP4f0hk9mEoZC89u3v8NFnnuHJiy9weDBADQ+In/o4mx3P++9d59xan3e++TrLqw1+8j/6z2l3esxURTU6onQpH/n4j/Kdb/0jmt0OXe2oQoVxnjCaPwAldxRYcJIoCil9RtDqAZa9R2NqnS7SSybHE4QI2N0aUZSWiVLcemUfL0ru7M0QQpBjaY2OeGpjhdHJEF0LOJ5VlOOSmcupShhXjnogWFrpoivN9OAEGQrC0FAVJV5p9lLYLBV5LUPJiOpkn8o6ltf65FlJnqZ0lrsUw5yirNBeMJtknGlHWO3QXjE6GbGyucLurd2FmXpT01+v4WYDlIP0bsDe9gPAsXz+SYLWCqZ2GdkM0PppJqPrtFavoiffYjLdJioUxDWULjE+oAw9ZcHCTLMb8+6wJM+GtHp1Wk3B/p0R55/cpLAltkrnKZkiYPWZs0z3B6hpSqPdYLq7zzivUF1JNckpJlDvLTE+zjFhzKXnn2B97TRhGHLhsuXC+Ss4V9HsLfH8pz7Lw533F2Ze/LG/zJ3v/SFPXnyBxs2YEsdzX/4pkuke7793HTEdgow4e7HJJz/yZdqdHsJcJxnsU7qUcVLy8rf+CZFZXphpxyFhUKG1pCgq5jXtmvCxme7mKWaTCbvbU5bjGOklw9mEDi12t0ZoYJJV3HxjhBeOWw/HOAFHlaM1OuLCcot8miIjyXHiKMclSZkuzHRbEaoVEE492XiKDAVBLKmyCiEV00qwPlOoboGShupkHw8sr/VJpil5WtBZ7jI7nOBwaC+YHE05045wpkQ5zehkRNCufehK6UO3bw0tKCZjtNbEuoUOK5qtiLgZ4fUMJStc8g7leEA+fpuIW4TFIcV0Suw0YdCc3yIJiYoEOjDEzRAlNXkGTirqDoLWPCBq794eT11d4mjnmHyn5PD+kOT2BGsN+9dus3v/gEGakciMiSiRqzXyWY6QJWkxIUtSvvQf/A1a/SXQhofb24yHAw4ODnj72iucvnCG/+y//i/54+/vkNs+nTrYJOGn/73/hNbF5zh/6TIrqxuktRZf/NyPUQQhZv08aXLM2kqHcxfPIXWb777+HXprK+wNT/j8j/91DvZ36DQ2+K3feplvf+8uH7tyBQv017oE7T6JCMmI0M0GuXcIpRgfDimnFWdO1wlKz9GtAaP7M5LdCc9vtnj2Qgc7Tgikw/F4XktYNJKNfoNBkhPVFc4YOr2QpSU43ZHI0LC2FNGsGabJhMZyRP/ZDZprPTB1fCVQBZxuKUSjJDQB3lu8mB+UlpMpLk0xAmbDMWWRoq3C5xWBF5hAE1hJ+fg1sJhMfshMKOXCjMagw4pGq74wY4vRwkwx+C0ibsHszYUZFZZ4SqwrUbUQHRiE8QszMoS6gyj+wMyptdrCzPBeQnJ7wmh3uDCzV1kSmXGUpjjlyGc5ccDCzH/6S79Iq79EXSuOTw4YDwe0ev2FmcoE/PH3d+ivbC7M1DqdhZn9gz3SWotnPvOZhRkjYG2lQ+vsJRrdc3z39e/w3rWXFmaufevX6DQ2uHP99gdmvF+YKXVERoRqthZmjh7uz81s1EmSiqNbA9K9cmHm8mYTO07QEpAC5QVG+IWZUeGJ6opCRQszKy21MKMdTJMJ3VPNhZki0fhK4Kxko6kRjRL8B2as9ZSTKRq/MGPxCzPIEBNoKMXCTM0VH/pR+tAxk7/1lPLnTsd02gFxU1ELBVFHopt1gjhEVDHCOLR5hqUnv8q5H/1pkCHvfP2nmKUPCGQH5Az/+LqySAsmw5TMObbuZxyPDb/x7RmNlRbGaPIyI/eWWjBfYqZJTqwVw2lJKw4fP+TzWC0wBRSipPISZ0uCwCDaPZQNWb14lk//2E9y+/o1rr36Lb705Z8ilfDEuRfoXjrDH/76v+Dg5i0+/6krtFeWuXDuLFsPD5nt3aVz5fNsvf8atbri5ptvsCxLZLsDwQq33vkWL37p59m78ypBGDMpJFcuP8nrb3+Pra0tHt5O2HzyKR4+2OH+zQecWW5TKyweyfF0xrnLazxMRkRVSTPSKA9jPGvLHaSr8Wj3iO3dCan3BBKyaj7OoSRoaQmQXN5sc3SQ0upG7AwzxlmJdwKPReMwOqTfDanpgHbDYKuEYibQkaHC4pWn0+iwc2ebAImqaWTwuEYdcH4+EuAfP6KzShFZj2l3sdZSTktmsxkimJcKls7x9qPpwswvfCRkbVnTaQeEjZJGFBN3BarRIIhDpK2BtmjzDE//pb9DvLLEWy//Lur6P2KWPkCLCKkslcixTuNtyeHeCQQBW/czHh3V+f1XTohqMXE3Ji8zrFIE0qOVYDpKacSGpBBESiCcxUd+Pj2QOayw8zRE79FaINo9ZLjM2nqX2voqT19+nt/4Z/+QH/3qz1GWE5449wJv3HsPn4y48frL/MxPfJb2yjIHh2PW19eY7d1lqlexxYhxPma8dY9lWZIpQ613nlvv/gmXrzxHmQ+IO2sMRxOuXH6S8fGIP3j5Gzy6m7H+xFUePtjh+OYWneUOtcIiteBwmHD6yQ12xydEVUnNSAIpoRETNkJMGXPn3iOOTnJS7zHCk1v/uDHEEihHTWvOrzY5OkgxTTiewiQpcMxbR5TzBEFAvxuiyoqV5TZUKekMdGTIihkqDml1egzvHWCLHNlQKC1wbl6jZN18lAmYP7yUGu3c3MysoKwcRZJSGTc3Y+Hao9GfbcwkFRHWKWQIXnl0PUAqg1JgvMB0amgNVHc4fPvvMbz9v1Alj+Z13EbhGFIUOT4PkCqnzBWVs0wnFcpB6CUnvkJNRoSNECk9HcAWMyqviYWkcgXtuiQUJU55rAeRCTIqSudRWhJqQyUUxWjG6oVNdvZGrGyc4tof/z+sX7jMg+1dzlzZxIclJ3fvc2r9HCEBb9zaorx2m/Hs9/jv/ttf4R/8xq+zcZxg8kPWP/njLPffodO7iBNwcOM6T188y923vlDPbWIAACAASURBVEVc73Dr/j5nn/4o7157k5e/eRPdMgS9JX7iZ/4S/8Mv/ALnmh3SgxH3lUb4grb15LOM5tiSdkMI5kOwurSc7CY4JoxmJbaAhgFd5jx3dZWd94+pNQwqng/VVs4S92rcP0xIq4KaFUxkhfGGigqfpxyMJZ4cu+Px0iOdJZKaXMy75RtiyhNX15nuD7DVfBZJWYGNFHI6v3ZWkcNKjfaOwklEURIt1xEVaCJUv0dyuE9yUv6QmXFesOxCZAg6rKHrmqyqaD02I5sxYTA3c+vX/wpOSmz2EOvV/OpZVGT5DKU0VTHG2RCnHMmkRDkwkeDEV5yNcmRhkdITFQVOWiqvaWioXEEz1CjvccozzS2x0zgsuavQKpiv6ISkGM3IGmD3JJ9+6gXuX3uZ9QuXCe0MHUp8WPLE+fNMj4fUX6zxxq07lNduU0rHf/MTf4F/8Bu/zlJ/m3rNEeqA5X5Ap3eR0ckRyd4Nzl65RPboNrK3wr2bd1m7+hzvXnuT71zbwRWOsL+6MLPWaTA9GHNfaQLpqZUlUSBpjuZmlJ5S5gF2MGEwcNTUmGHiFmZ6uWfl6R7DexN0x8wLUbVcmLn7aIgT0PGCwWMz3niKH5jJC7aPB0hf4QVEUlOEHvuoYMWPOf/UJsP9I3wiqfTcTKVBZfOZtrJmsVITCUHhBKIoUe2QYFaRlwndtQ2Sw33SUfZnXyn91Sdif+WUptfyhJGku1Snf7aJrwRBqFAyIIwMeZLPH8rVGxRpAVphqwwhHUXuqSpJEAQMRwNKZ5hMcyZDGE5C/t5v7XG6F9PvBovrZaHng6A/GI2QziHU/PtprcUKRVFkGCQlEEhHpWNEc5nRZMLHv/BFknzCeqeBcJ5Gp8up9SWSPODR7i06rQ2KIiVsRNTDFlv33+P2ze9xZu0SKp9x5onLSFewut7jD37zm4h0j40zT5KMp6TZhJlTTG3K4cMJqxtnGUxSvvrzP8+rr77CmUtX+Nov/QqtMECgqdVDiklOP5BUWUFVCzm12aIQBdJ6Yu/IrMXnIBo9hE+YTQvCVky2n7F6qcO9m8csNSSpUewfT5nmlrrQRFJR8yVXPn6Zt9++Q55YEjwawWZgqK/XuH88Ix+XOK1oVI7Lz2wgm4Za5Rge51SOeb36coeTe3uYcB4Er2sRx9u7GDV/6dvq9EmTGUGnQ2pzRidTuvU62WjGW0cfbOH+xjMRmytzM42WodGKaGwYAhEThIo4aiDkvDFXqBlRrY0tLFaArTKKcoYgwjqJ8ylpUpEUhiybm9kZNfjffmebKyshtWY0Tx911Xyb5x22Amkkwnqknpce5kWJ0AZb5GipyJ0jVIJSBYjmMqZe59zVJ0lP7nP67EWqvGRl8wy9VkiSB2zv36PfWKHZbTGdjaiHLR5u3+DG9Vc5s3aJdt3RWz7Fxz7+Ao+2b/MHv/lN4mJAb/MSR6NDrC3JC03qHXsPjuZmpOerX/lZtre3MPUmX/ulX6EZG6Qz1Ooh+WT+SrvMM2wcz81UJVI6dFUwlIZGWjGJOrRVxmxaYGJNcWxZu9Bmb3dKTVjGoeT4aMY0t7S8xmjFRsewcnGTt9++g53BWFRoBOdbEaYbcndvRpnNzbRsycWnT2M6EXYwpigkaZoT1SNqyx2OHw4I5HzuTdXnZmKpKKlodfpMsoRaq804HZPMSrr1OlVe8fr24Z9tpZQ7ReEsZaVpmBACRzYukKHAVyGRyRmOCqR0COvJhjM8OYYA5xxVUVGVEAQR3qj569HS4oXCS0/qKvIMitSjlgRUDozCmPmKylUloQxASkpXPq5qBqqSKIpweTkfOlUBtVrEkx99jqPZlMuXTnPnre+hUKyeeRrKGYeP9hgOjokaGpdpkFA3ht3ta6wsLRO3v4LNU8rRfcJGn5e++zLj77xCFNTprF0luvAEIhfsvfp9jvMJ6+eucumpdToba7zzp29Rb7a48vSTvPna25ztN6kpSewdalJiY2i1YhrL6zwcHZAAMQ0Yp+yICceJpco8X7nc5PZBTq2haIgI2XHsbY84u9xi6/4jBirAVxWBlKTKIsqSS1c20MrzzHOrTB9kmOUaL7+1w0lREQ1nPLve4lp1QksLdqaeo60TRsOEVkex/PQ6LRcymeaM3tkiajUgs4x9SRRqTL8FwHBS4HxB1Knjsnm+d6fTYTqeEIU/TKiwH5ixzkHgqFKPCAt8FSKzIVmpkdKhkOTDGVmW0GjHj7eQEXlR4b2FqIlXU7RUCzNVDnkGSeVoqrkZoQzh41WkoCSQmkoKvCvwUhEEAWVVIKIAKocSELSaGC948qPPsb27x+VLp9m5OSRW0DhzEZeNOXx0wnBwTHtlE5dpjFILM7XQ8Own5mby8RZho8+v/u//hP3hiCios/bJLxCFdX5k82f5h//zf0+r1eXqJz7G+ashnY01rv3JS9SbLVZ6PV5+7S3O9ps0jCS0czNhv4nWgubpDbb390mASArEWLNTZpS542GZ8eU/t8z924+oNRRmFqI7FdPDhI1+k9vXH7AnFNq5x2YcrixZObO2MDM5rAgaAS+/tcPRNGVFVHzsqWXeeH+PlhbsJ4KjrRMevpfy5Kke4UZI180PzEfvbD1OoNSkoUPZCtNvkSYFU2twvqDRmpuxmf3AjPvw2bcPfRLwf/6Pf+eX2yF0mgbnK0IjQUHYqpPOxjhncMpSOIu1CSIIsMJQWYtwMdZVVLbCVg4hDVklKcsMiyJNYDCEN7YLahG0Yo0IJFJ4vBV47+ZzN0Lxg0F0I8CJ+RSycfMYUFEJfKQwaolRNiEiYv3qE9jZAS/++F9k5+47xGGNdjMgrxLavSVyPyZUkqhe53h/m2c/9iPUa12M9ChydLxE1Ajpr57jIy9+jqktmOzvUEYNfuTP/zSrqxuMpic895HPcTwes7V1mywr2b13k5VOh7vv3OTiehMRe1QkqHUb0G7jlEDksNwN2Ts55vRzK/jdksGsoFCC3QfHrDRarF9eIQpANObLb58V1PtNnnpimUZScenqCmu9DtvHE3YOxyyHBh85amt1jm8O8WXJRAiOkophUqKAViCRdl6Xs4elUXg6p9Z4++W7PBiMGJaebDhi9fIGUS1ExRFukuCcZePUEnaS4Wc5IghgmpHbjFo7ItQhDwYfrJSuthyhVnSaBqH9PBs7EISNuRkpG1Ry3uwq/HymCh0tzEglyYsMnMJLR+VCiirFekmawP39nPf2K2pG0owem5HgLXjv0MrMz8WEwLv54atwDqsgEIKZLQmtxoUeJfqMsgmbTz1Db3UNXYx44dNfZvveOzhfsNxrkVcJ/f4ySXVIQIgMJMf723RXNtncvIKRnqP9B3SWzuHDOsvrczMmjNi5fR0X9fj5v/rXaDTbRLUmZ85f5Xg85s6dO5Sl5cbb32dzZZm779zkwnoPEVWoSCCWAmS9wzhNCa1muRsyrCzrV7sMb00Y2oxSCXZv7LLa7LB+eQUTg24Zqgpc6qn1Yp5/dpP6tODS1RX6psbOdMbhwzHtUOEjR1yPObk7NzOQkuNZxXSSgZ+bqRxo5xk6S9cE1Hpdvve9W+zujxmWHl1aeudW8EYQxDXcJCFs1VhZaWMnGWWWI02AzqsPzBDyH/+t/+rP9iRg6CqGmaF+nLKyZpjMclRDUaYJTsZkUhFLiKIa3jexZYoSilIIBCWlnbdnCh8wTR1ZmuNKjXOCqjDsH06QNiV3dZyHQBq8K3DCzccbAjefMpYwu58Qrke40KDcfF5p8+JFDo73SSdjTj97mcF0yoWrV7l3830un75K00Q0asuYIGf38IgymzEZwLTIWF+/SDadsbJ2jnR2QlY4ut0uw3EdoQVZmmCCOkoIfJpz/olP8ehwj1df+hbNRo0v/fjPMDoesXfnbb70xS/yz//Vr/HU1Su8/dobjPKSNx+MKYuC2EhOKUl7JcC0Awor2DvMuXR2leRgytLGEkcnUx5V8wiRdx/sc+/BETNd8vypOk1n6Fxsk3hJFCo2P7nOg9tDdgcThPP0QoOuQRhFuFSzP04Z2Xm+zVmlqcWKaLlFkac0Q8nW/pimgCOl2PvTWzS0og2snoo4euTY3j3h0f6QuhAsLTWo9xokO8fc2x9ReY0SCauBZvNjlzh6cECajX/IzIENiDNJ/TjldD1kMsuJl6KFmbEtqWtNFNWo3Awqj1IZpYsQlKRphRMOqWKcU2RpSplJHHMzN7cHSJuCrC3MUOVYAQqNp8ILibSC9MHcTCDVvBpMSS5cvszo+JhWu0N97QKD6ZQXn36WP7n2PTZXTvPdl77Bem8dTcru4QFlNuPh1ttYDJSCer3Fyto5ityTFSO63S7tTh+hBWWaENTmZrbvPOT8E5/CGcGfvPJHFLMxmIjlbsnenbf56PPP8o1vv0wnCHh7e27mtTv7eOeIjeSyDwnCnFrdMJ25uZnLbU4OpmxsdkkfHjOocqz+18xQ8vy5OnUX07nUJLOgA7cw8/B4jHCepX5tYaYcqoWZWAjWlKbeDAjbNYo8pUhTpnlJXUm2jqfcOhoTC48RitVTETsPp/jdEx7uDmmquZlmjYWZggBDwoV+g/VLZzh6cIA3H15n8qEfpUcjz2ajJHeaJIF2L6IsDUnhUZFGOEdWSLQrEMLjbIAzGiHB5hVSearMU9n5Sb+w8273ZGw5Gs24e5Rh0eSlxePmjSlGQVLipKcsPVqClIbW2RaToE4rFhQnMwgK7m7vsXLuAp0NRVE66rHkxq23WFpu0e28QF5KBsd7PPfJz3K4/yqtTsx4OCEyEUZ7lvsdhInYPRwj85QDEdCodynylOO9bYKoQZrOWNq4jJCaQJScu/I0g93bvPT//l8sr53iU1/4AuPBiI+/8BxVljLYfUgjh5QMLzWnvGH5QhPTrjF+eETUrtPva2ZHE0JpubU95MR7AqWRuWMDz46Zl/vd3U7JmBI8nNFZClgRhvalPk3puD/N8EIzAV6/PqCsLEudCB8JTntDgaBRl+i6RsWGk6MRvhZx4fISxcmMncE8HmU5FtTqEXbmUM0Anaecb8XsjDPuH42Rw5xQWwoxnxpXlWUahPzpazdwzvNvLsSPZ4peVMzNZJJe0zCdCMLG3IzGkBUW7QqcE8zzCgxKGWxezd+/FNUiEkNYyIqKItMcjWa8vp2g0POV1A/MCKCyOOlxeJSf10//wEyxs0/UbxKEgv3dA3qnLhO3ooWZyWSMKE+4/t4en/3CV9i++X2ufOSzHF+bm4mCkKPjAYERbK61ESZiZ/sh5ckRByKgs3yBIk8Zn+yhpiFpOmPl1BmE1EwHA4JQIoRlOD5mf+s6n/rCF5CFYjSesnNvi+3r79HIwSnHVEtOeUO93yJoawbv7xOttuj3NcOdAaER3NlPGFMRKE1YQd87dowH67i7nTIjp/FgRHMlYCMOqZ/q0pSOfJbgRcj2MGF3klNWlosr3YWZSgsaoSTu1iCcmylCuHBmifH+lP1JQaAV63VBEM/NxK0YnaecrgccpiX3j8boSY4RczOlrDCV5e40ofyBGfVvPU76d3+UjNCMM8u0EjScZzQtCApBN4rmHe1hjJIlNk3R4fy8w9oEkEjj8FUdzzyhMM0qbCXwUoNSDCczbg7m+zItwQiFURJpK1IjUP7xrE43IHaG17834KNfPMvet95FXwzIxp5oDQZbN6hFAakzXPnkM9TiVaIo4O69G7zx2u/R27jM/evX6HYN0jTIbDSffXKSwcmM4+kOoQmwyZDCK1qdJbZuXCfQHuUr1tY20EbghKOoSrr9Hid7mvOXrjItc17/9is0Gi2a7YCD8YC1tRaTkxMeWcNaI2bj+XVULrj1/W3OP9OnsdEnOz6h99QZXv+/v88UqAuIpMRLSaMRc6ZI2Kk8fQS612B4NGN34NlWUzrfnTJSljWtWTu/xNt3DyilprcScKnX5TDP2N1LGBcp41xRHmbEJuPCuRr2MOPO3pRaLDm30uDN/QlpommPc9Y2IxozizQBtUDSTDK09Zw93aS1EvLWK7sUXrAShGA0gyRHa8eTmxu8dH1rYWaaOsYZTKv5PNRoWlAXGh0ZZOEwdQEebJripQdhwQoqcqRxuBI8IUVeUFQlWIOQBpRhOJlhK4/S8w+WERFGSbw0FKJEeYlWoFoGceR4596Uj37xLMePhhQy59Gh4+y5TQZbN0hCQ+YDrnzyGa7feINud5krF1Z459u/xfKFq9x/49t0l5tI02A6STFhkziIF2bSo32a7SaFVywtn+fWO28hXInyirW1DbK8wgWOyias9s5xNBtz6eIlTob7vP7tV4jbbZrtgPt37y7M3JOO01GNjefXmW0d8PBewdUvXMEEkB2fUDvT591v3AOlqFtBIxA4HI1WnTNFwp4M6FuHDgUmsewOcvZNSu3+mJGyPFGrEW90uXb/iBJJbyWg2w2hLtjdS5hNMoYzSXVcEEnJhXM10sOMO/eO6UaC052I904SRlPJ8nBuJhpXmMhQixxZWaKt58KFNvWW4a1XdgmlYinQDJUjKz1aO670lz70o/Shjyf7nZibIxjMYDSGItMUCtJRySSxDE7GJLkjqxyTxFI6g9MBQdzD2jpoT1nMo1qLrJj/ztER00lOkXsGSYqnIrKCKJbzN0hKEIWaVj2k0Qx5/80TXn1vyOm+Zu+92yTrTfpPXGKpUaOTWY6mjr3DEe26w4gILyWHt95j/+Y1YhlxZv0s4/GQ7tqTrK6s87FPfoIwDEnzKUmSsLp0munxgN2te1RFyb0b76B9ST2IqHeWOX3hEnjFbDIh0E32dgfsHuySeosxhqtPX+X48CHp3iFxNaPZCXnmpy9zbrXLSZLw3Vfv8923b/PUZ85SDlOOXr9Bs9Ni51s3GSpFpRTLXkMO3U7EwXjGuJA0pOFISLZPUizzM7ZzOmKgLEJr+q06xqecO92jI0uSrOQ7twakwzGXmoof+8R5ykpzJlbUvOXtuyOuTywXn1ih1jPcTlJOnW7ziac6jDTc2pswzhyR0TycZJhakxmCe1tH7Nyf4pXCynm6pUgLzoUBaIFVPzyR2+oFCzNHBxlFpkmdW5jJC7kwkztN6Qxexh+YEYay8DhvsJViklhmiV2Y0crhqQi1WpgR0i/MhJXm/TdP2C7DhZmdmqT/xCXORQH5wQ5HU0c2zhdmxtt7HN56j/df+TZnLl3gzPpZolZnYaa/sjw3UxULM6IoF2ZuvP5HaF+ipV+Y6babzCYT8koRBNHczGS4MLPz3luke4dEoViYiSoWZu4Opzz1mbM8+NObCzO3/+A+Q6UokCzNY7Y42wkXZrwXHAnJMJ9Hi3jv6JZ2YaYZhxif0u80FmbeuP2Bmc988gJlpTltPjBzL3FcfGIF2w25nxWcOt3mytkPzORpSmQ0Dyb5B2be31uYUQiEErSEXJip5Ic/nvzQg+5/9r/+3V+2pcZnGWGoaDYMgdH4KCQ2kiAOUSqg0W6DFoSBwQF4jbMlAk2ZWbJxQp47sqLCmDbDQcrxxHJymJOWklpdsdquozWYQKGsIIwc93ZS6jqkvWTwYUCrtUQ2m3G0MyHoKoJIUY2mbD8aUW/F+GLA+Wde5PDedcJOj6geMjoecfrcVe7ffAdvWrz7+nfpdTscHe7R6a0xK1LKvGLl1BnGx4+wZUm73QBj+MjnfpKb338THURE3R6RDjg+OUBKzehwh17/Ag/efZ3th49Yagm2rz8g6HcRaUr3bIuNjTrnlrqsaMW1Nx5xd5IyzBXvv7vHUVqhpGPNSlzXMLCWMnOMvSPEs1w3bGy0WT+1wvHOMSPlIQP3uMHlJC05HFaopCREUswcSMGS16RVzsEgpSkq+j1DGAqCEk5vhDy4PWEyUbSamhUFSZ5xNLY8d7aGHFqgor3Uoi8LolDSkyH9zRa7oxldHZFnBbHRlEXJSqvO1sGY2b9WebrRVygX4LOMdismiv4/zu70ybL7vu/7++zb3e/tvr1v09PTjdkwGAIgAQIEuImiSVFlx6JJJWVZqqhkPQjLiWwpclJGylIpVbFLUZw4sZioHKUqtiLZimhtJMUdxDIEZgYzg5menum9++77Peee/Zw8aIRUHpCp4v/wql/9lu/v8xExFYVYVzEUET8OUFT9PTMqmiohywpxAkkckqQiUZDijxzCSMD1A0gURgOf3jim2Q/wfJGZkk5O15BlzrJ8UglNT7h76lDUdZQ8oCjkchVah10mfY/q5RmUJCEaTrjXGJPPaKRBF8ceoCoyU/OLuCOH4XBEp9PEGfRJlRzt+hE5y8T1JliZIk7gYk96zK1uMurV8OOAYiGPh8CzL32andu3iAQJq1RGCHyCWCAMfHa3d5hbuMDRu2+RximG6nNw0qZSnUJwXRYvVFiYz7JSKRIGEY/vNGnFEb33zKQSJELCbCqRFmS6UcxoAmPhzMzaXJ7pkolhaThDl6GYICYyqXhmpu1HtPohFgJawpkZREqcmem1HDJizOJTC4iegxpCJQu1ownDQGC5JJMHPD9g4ERcWTYJ+wmSEJMv5ZiSQ3RNpKBmKc9mqA8dvMRHCgXyhoHvekznLPY6Y3711//rH3rR/SMXpd/7nf/ulXHkUx9E6LKJKQcIiXgWlemd5e94/TGuO0E3cySpBWqWMAwRU4U4Cgn8BJAQJBFZlOj1J0QxxGKKrmnstxJmMzIzBR3ZMlBLFe4+ajM87KOEMYIbYRoq6y9coXW4S9FMyZvSWTB610HIqizkTEozeSQ5z97br1IolkijAZXKCu3aPt2DA0QtS72xz+z8Kr1eHUmfw5mMyWYzpHFIvz8mCW1Cf4Kk6KTZKSJimgfbSGnM8e42588/iT3uk0ag6jq33/wGE9tBwWM07PPV1x9T2xuA6JMhZfuwzVs7PTrdCRNCNMtgzVTYymgYloAwijlRRXp+RE5Q0YSYopLBzClsvfwEmeUiYhBy6ZnLTCsCW8+tkBUNnGaLq5uLFEXojSc4ioSaSdBkkbobMm1m0SYx+RmDU9fHjRWsrMq46TOMBAIxoIDK0vU1csU80yp4gkhpcQ45ZxKMhhwO47PiQtdFdMZki1nssUc3DRmEAkVTxhQknDBg9Nd6vNYqeezQoz6ImDV10sQ/ewkT/l8zIcHAwXUnaFaeNDFRchauGyCmCoHrnh3zFYkwPauVdifiWa6UmBL6MrVBykpBp2DJyJZBJ8pyWO8zPOyjSyDaIaVygdVnt2gd7lKekikbEoE/wUAmkVKKWYXZahFJzlOuVJAQcOwuVjbHsNPAUhWS1KDe2Of8xWvUjh/TH3pECWdmvJSh7ZKENunERdQMzm89R8fu0jzYRkbmZPc+fuLhd0coqsF0dZq3XvsKE9thMuhjOwNu3m9z8rAFoo/cjtjtdHlrp4dty7jJhLnVWappzFZGI4pCFB+OhRRnEmNKGnoSUdTOzFx8aQtjIY/pe6xfWWfe0rn63BNYgozTbHF5tURJUTj2PEJBQM0kCCk0g4hpM0vOS7FmdJojn5GXYmVVhuMEOwA3jSi4KQvPnEdRQhazBp4gksvl0acL0LXZdyJyUyUSb4hgO2SLWdxRyFCIGXoeeVPDFCR6bsA/+sc/5qL0xd/+jVdkQeLES5jXBVQpxdQFxARCIUQWZSRTBUUjCAKMUv5sZslPSKWz4PogjBCjlEgIifyY2HUxTQXDEClqMioJiqowd2mNN26eUNVjChpoBRGznMMq6CRKzINvHnL5Y9d4/LiJrqaoikSogCiIRGmEPpUjHnXQBZHxwCYKJJxeDXc4QJJVzl+9gtMZ8PSHP87tG6/zxNWLOH5Mp9GmUi5jZbPY3S7uaMTsxpOYcoba/beZubDF8b2HTC/N8vjW1/DHI/JZkXr9kObpCRkp5J37TQ4OeiyWZNbnsxSEhDv3HBqBy6dfXmZOlDkYBbgTByeKWF+bYXpR4+jUw4/PspLFKEFKfDbmC2x85EkGJ6cETYegO2DvO4+YxC6NnS7L1+ZJTkfMnp9iPByheTH4Catrc5iCTHM0QQxCCgWL1A3wBiEXN6sMjwe0YqhoIovZhG4cUliYIRnbjB63SFwZw9DQsxpRxyFMYkZ972w7Pva5fPEcejAhoxv4aYiTpDRGLp4g4oc/2CmtFBREBE68hIIMqpiiSRESEqEQIqYiSkYHRSMhQstniYMUIYxJpYQkCUhSEFORQAhIvPgs9VQRMAyRvC5hiSmiblLdWuKNmycsZaBiCWgFEd2wyFYMBCng3tcPuPyxa4zqLVISNCAIfARRQpQU9LJJPOowbLfxxi7ZXI5+7RB/PEbJm6xtPIHTGRAh06wdcfV915mEKZ1Gm8JUnlyugN3tIikJpaWLaGLK/jvfY+bCFrXth0wtVJnsnTLuHzE1lWHi9tl//IiMFHJca7G90+Wp+SwzZYWCkHDrcEIn8Pj0y8uUOzYnUUqr12ESxKyvzVCYkai3IyYkpAqIYcqioTNbNdj4yJO07z0m7PsMHtU5fdDEiyYMOx1mN2dJTkeYVpYw9ZB6AXKUsro2x7g7wklSxCDENGUIEsKOy4XNaYbHAzxkcgosZCS8io5VKuHXu3i1EYkrk5/Po+oq3Z0GgiEx6ntMUpm9scfli+ewXIeMZSLqMgM/ojFyCRD59f/qh6cE/Ogyyn/x374iIeD4IVNSjKrIZDICpqGgiyKiJKHICYqkkJuqoGWm0LQp/NgjcgJEzi65FUMlCjwUQ0HTxLMGBQEyGdBTiXGs8GB3zMX1LFE0QZAUBE1jMAjRJYFaM8SwUnwzh9AeoeopYpygpBAjUJiuMDUzTRhEFKfmIRGwjIR+b4wmiwiiz6OH25QW59h/fEDqpdx99zZraxsMhg0sQ2XSbxAmEUqaYupTWIUMnTjBSkyyRQnftrEsGSmyeXf7mKDTI6PrhJKKIkX07YiNSOS05vKw5+CLsDZfwBQkJh2XmhNQVkWcWKTdHNHaH1FEXKGhwgAAIABJREFUZXbdxB76PPvCMheuX2D3UYPunX0qa0tIkwnjvSGT1Cd2U0wiIk+iemmR7W8+pFjJoFUK6CWTXF6kuX3CBz7+BKXCFElBodecME5iBu0hGUGi6QVMLxssvO8aC/MlRoc1dF3AG8Qkkc/pcYeZC1UCP2R6scrc3AxVQ2NpeZrQcwh1jaN6hziWWZ81UIYxZU2i4f3gjmC+pCGlZ2YW9RRRlJidNZAl6cyMIqPKKYqkkJ+aRjHLmNkCXhgQOQGaIiGKEqquIZIgKSKmqRAnEQggCyJ5VSLRLG7f73FxPQuhiKCAoGmkvouIxN09m0JBxDdzSI4NJBiIuImPKMh87hd/gWG/QxhEPP3yCwyaQwK7jhP5aCj4Q4e93TMz7959i4I1TaPVZmZmjsGwgSLoBPaZmbNvK3l2dt5EmF7CSkxy+QjPnqBls8iyz8OHxzinp5jamZlad0wYQXnk06x7POw5BHLMubkSpiDhCgn1vs+yKtOPBNrNEe1TjzIKcsXEGKY89dICxfNTHB506d7ZZ+H6FulwRKfpQCAS+SFZTcEbJFQvLbL/YJ9SIUNmcwHdkMnlRTQv5ckPrlEqTBHlNQZtl0YYMu6cmTnyA6qLOsvXL5Er6kyOGqiKQOQKJJHPYWfE7EoZSbeozJeYm5tBj0LOn58n9Bx8S+W43sUPBM69Z2amYPCLv/KrP96i9L/98994RZElhDimYIClQtE6u2DUygaSJCFJoJkGQeAReB0kJSWbsTDVlDSZIKsKYeiRK+QQ0wjNAE0VUX0fIRXBk+ig04kESlmJOErJKhKKZlCpmGTOz7B+fo6DZpOy6JHXBAIhRkXD0wKkJMfsyiK+mqeYVchYAo2TPaJYRFUFREVAjCUkU6VrJwS2zTvffYPJZMTcuWk2N65w89XXcP0Er9dGzGh8+mf/Hjf+6k/wHZ9yxUBNQTdUioUKdrfD6LQFiohv94kMiZ/+mc9y+rXXMGYNqst52p0AKY5Yz5lMTm3u9oZUJYFzC1lMX6Ceephmli4xB4MAJ0hID4bY+03mLIvcTJbG9gFmsYQ/Dlh7dovBYZ9RGNAIY+oHNZKKQjiOiTsDFp6ag1DCEHR8MeL4rQN6I5uBG541UugStgnlksnQibh3e5/9wy5TJZXy7AK+4GGWTaQwYLTTYSQpBCc9+odNSptVBjf3CRGRlIRMIlAwDB7Vx6R6SiFncTqc/GBRskQURUaIY2Y1GUVJKFgiinpmhihGUSU00yAMJ/huB0GAbPbMDLGHpMq4ozEzCxVi3z9LLVRSVN8nDgOURGOcWeB0bFPKSkSBS1aTUTSD/HIFa2mKS9c2ODg9pSx6pHFAKkEqi6jIpILFa298k+LSFsWsgtdr0W4cIakmqmAhKAmWaYEq0rUTTg5qnG4/Qs1kyVZENjeucLL9Dr2hj9drIxgJn/r8z7N95wbxJKZcMWjV60xNlRH9HrHrMa63QYrwnBGRIZEtmmSOexizGrMrBdqdgJlQZC6vMzm12W4HTIkRaysZdPfMTHmqRDMMGLgugzgmORhSjCRyqUBuJkv7ziPUUok4ENi4Nkf/eIwjhJzYAfWDGiNDRZxECGGfuY0ZCCWitk2oixy/dcCgP2LgR+ikJLqCbUKlajAYRdy/e0LzZEixIFNcWyPizIw8DBg9bpGKEuPjLv3DJuULC4zfOSBERBcSTASQRY6bLqmeYokiv/grv/ZDF6Uf+fftIxdKqSDKqMMJxVxKQUsplCXy0yqmqWLlFGRVQo6Ts655WTsbjS9m8ZwRmUKW2E9IRNBVhXZzDzGIkWSDyAmIBYkvfiU4i9Y1LB4fDNma0TDUFDcQUGNIhZQwiYnlFBEBIUpQFB2A/mFA6bkVioUq7vCQ1eUV7JHDyf3HmEWLwJ1QyKroVoFB36c9spGzJTwlw7npIrX+iLzkcfvuQzZW55HyOeJJzOL5Tbr1h5w2ba49dRlZiDl/foP+cMDh7TfoNvo4jsPcbJ4kX+X3//gtMgTMzudpNiYQpkiCzKoSUb00jWsHOAObUnWK0zsn1CMBJU0JVJHzhTzLz6yTmTGpv/EAScmQ9G1yV5Zw6k0apz2OA1gv6oiGerZFtgWiyEYcewhyjJeYWF0HvayRX19EVBVO3rhPabpEaug0HjdoKSJTeQFRU8hOZxkMQ4pKlt3DI8rZDKtX5oidgO5RnepUhaEv4nWH+KLDdK6KK7g8uN+gWCwwnAzI5zIESUynHdCyf7AofWyjSPKemVwhpqwIVGck9OKZGUGMyJUyyHFCLICmmRiGip7R8ZwRVq5IEgagyqR+yGh0ghD6yFKWyAkIhIjf+4pAzjTwDZXHB0OevlAkdh3c4CwLWhEEkiQlkGNEBHTh7PAWTCKi2MTarPC3fvpn+LM/+X1Wl1fo7j+m3XTIlTVSN0KzZETDZDJMaY9sFi9dYL/msjpTptEdkJc83r65z9bGFFI+x7tvb/Oxn/o0w/p9Dpsu1566jC4ErJ7fomtPaN56jXqtTZJGFPM6Sb7K1OxV/tW//J+ZqWZodXwIU7QYFg2oXpo+e6nsDZFTmXHLoR4JTIgxFJkPPXcJw5TR57I039xGkC2Svk3x+hqjo1PefLeJqgmsVDJIcgI5i5EtYMgeTttm4EcYhoXVdahenQXdQlQV+ocNtBgEzaK2d0pLEVlb0HGChOWVaY4bIzJyloPdIwrFMzOymaH29rvkqvMEbojXHSKaMllVxxVcdmt9LMEgjBwUXSNIYk4aE4YT/4cOK/3IndK/+mf/9BVFSIkCh2ldZqogUM7L6DpYpoCeN1HVFElVUVURUZygqDqmaSGIAYHvky/oRCJkc9NIfh/CkOnFdeKwR6MR8CevR7j9MZcuVTEJyOs6iaJRv9OiK6ac1j36rkhRVLHyIkGaoqWAJ3Dug+9jKl/mta98l77dYTBJUZw2Rgq5bIymm5x2eqiywuLVi3zv7cfsP2ogKx4HRzXkYMBJu00xX2FucZmbN7d59Y0d9h9tY4gi15+9jpWZpVyt0Dm5S6mywcTp0el0Ka5USL2IBzf2QZH43M/9DbJKyqPdIQU/YW1aozSTR49kHE08e5V0PNw4phSfzWBVixaFGRNldQGGfYanE9LuCPPyImpG4ivffcxCTmF2vsRw5PC44bA4L3PjThN7FGIHEXOLZYJBQGoI1AZDimaGxo0HrH7iGndefZcHPYdBnHDlfWsUMzqKFCAMA9SmR261QEFIKQiQZM7iYJvDMeOWR6IHaIbGzt4Qo5hDrlp0D7oIikTfCRHHAYKi40887L9WLjibVZBJiAKH9YJG3oJSXkRTBSxTIFPJoKkgqSqaJiOKE6JgQi5fRhADVE3BMAW0jIlRKCB5QyxVpDizRhz2eON7E779LuhixNpaEZMAI2eSJDL1Oy06qUK96dAcTyjLGay8yMQBTYLwdMLqT1ynalX42h//McfNOoNJypSRIPkRhdxZkkC9P0ZVDZbeM/Pd72xjmiHNbgfsDiftNgtzZaZnl7h5c5tHh0N2H96n3Ql4+cPvx8rMMr8wRf3wHoWZTXbfuYEXxczMzxB4Hg9u7PPlb73Jz/3SZ1C8gP0Th4KfcHUmhzmTQY9kYhFCUaAowChOKMUikSyyWDCZWi+Rn68y6XboPe7D0MG8vEgw6fPNW6dcXNJRFQ0/CjnsTJifU7lxp4nbDxgEIZtLFu4oITUEut0RpqLRuPGAmUvr3HvrAe+2RgxJufK+NdIwwtIT4n6AOo7IzGeoWArZOCbJ6HQaLTrdIf2Wjaidmbn9sE6mVECuWuzf76CpIu1BiGj7CIpOGKX8w//yhxcH/Mid0ovncqmuqXj2mGcrUCkoWBmZTE5At0S0rISeNUCQkBUPTSkQywmqKBCFKZKqoEoSaeAiWjlWnriKJxcYNQ+48Ze3+atX28zk4d6xSLWqkDm3wv5X7zG9WcDuRmh5kTTWCcIJ8X7I8uc/iC5M6O3tMbE9EDR26g4XL80jyBYfePFFbv3FlxClhMryPEG3Q+C0mL76k1x4/hP8ky98AQuVw9aAieuTtXQczyURzrJh4gQKqoYXBUgEbD61xec+91nKWQFn2GMSKwzr+2y/9SZ6foqvfWsbR065MmNhlqcxhi66lrI9dKmfOOSShEvXq9j7Q94d+KypMtZKlp2dPl6acnnhbIjsfqPD85srBP0x5WvnaNWOCXsBh70RkhIwX8wzEi08zyMrJ/iSzNFBm6nlKnlNRrEHnEYy8zLcOfG4tpQjbHuEpozuR5iFHOOhi5gJGYwDrGmV+CChenGZwWhI7nyF0U6duO8jby6gigm72/t0ewFeClEakxNTPEHhqa0cUjbPjdcOUBKYEuAd9wdRFB9czWDoGp495vmqQCErkytIGKaIbonIWREra4IgoWkpsmSQpjGyJhKFKVY+RxIEBN4ILVNk5eI1hPwmzb03uPGXt/mjL5+yOadyczTNoj4kc26F5tf3yJxXsbsRekEgiQy8MCDdd1n+/AcRJw3sZofYi/EdhZ3+iBdeepL+YMIHXnyRr/3+v6YyU2D9+pMc37qNkA5pM8ff/OVf5Z984QtkE4X9zpA4jFA1BcdzQYIoSokTKMsGTuLxxHoVIZfhc5/7LFkjJXQGjGyPkwe3aJ7WuPDM8/ze734JR055eb2Eq+XJugmy4LE9dDmsj6mEcOl6ldo7fY6TkM2MgDJXYGenTzmSKS3ncQ97nEgxz1xapXN6yurz12jVjvH2bU5ij9lpjTSR8GSTUd+jnD0z02iOyU/nWS0XGDdOOI1ksr7HQR+uLeVwJgFCKpJJU1TTYjx0CcwYz/GoLGRpvt1m7f0XSawAMhajnTr9pkPpygqiPeSw1qHbC3DSlDRNyIkprmhwfdP8/5hZKpm8ftr98XZKv/fbv/WKLEBGNQhHDitVFdUCI3PW3yYrGrIkokgJimwhIKGrJqlUgsRDkxIMS0dQYDIckZt5kpE34fbXXueNGy2kIGJx1qRSEGkPVAJ7gFIQibUCogaBHzKJQ4RawOKnnmb/zYfMrS0ziRz8loueLZMTAxJDYWi36TZqECasnS8j6yqSamBMP8Vg0Obo4V2SyGMun6W6PE2nPSSRfCISlFRCkuGnLhZYv5Jn5fwsL33yo2yuL5GmCYVCCXdg43k2XhjSOz7ATxNiP2LNyDM7VyJVZao5E79qMj23gl7J0Gq22Dg3QzqVw3Vd6p4DrZAhKRNdpjMIUHseP/HzH0cr6XidPt7BEAyNysos39tucGnWwI/8s688hkHkeNzZHZCmEoqR4oYxI1tkYXUGxRlxOnS4sDyNuVpAIUXK5fDaI3w1JlFDkj6cdj0eCwmToxOuvrhB60GP49oQc9FA6YfcuLPHymwV3bfJFA2GboyXgB+GSILJ0B2gJxqjKGIql+PUdr5vZrmgI71nJifFTOVEzCyo5pkZQzeRBOHMjGJCKqLqEqk0DYmHRIJhnR31xBS04ibd2ja3v3ObN260uLSaI6uLSEmAM1EI7AFWWcWTLUQNQjfCiUOi/Qkrn3mG/Tcfsvb0JcbOiFHbxirNkhUmNNs93GREt1FjytBZOFfCNCzM6UXk7AYpEae7D0giD+t4wNLT52mfjIlVj4gEOZG/b2btmRIra1Xe99GPsb40TZom6ClEQUIshURBSL9RJ1Z07E6PNSNPEofoxRwry7PYWZieW0EIY/rOiI1zM8RFnTAOOewHCN2AISlOGlObxJR9l5/4wqeRcxrpxMfbG4ChEWshDxoeK/n3vgSFLoopErkhd3YHBImIqiU0hy725MyM4Ni07AkXlqcprk8hRRFyIcekMcRXY4yCTtjyqXc8dsUI96RO+dw89v6I49qQ8oKGPIx5e7/OyvQ0um+j6yJ2KOAlICsRSaSjExH7AqMoYiaT4e/9gx/+IfdHLkr/+//0W6+ICAiiwmPfJ5sI5PQETUhRlLOyRDOnoukGQqqgZFfRC09x/uX/htFQgaBD6DSRLRnHkXjru68zHATs3Dwir8PF83niCNLQ517DJwlDhEQib4p4o5ThTpOinCEzW+TgjTtc/sgWx/d3uf16k7lYo/TkZeQs3L1zSCWTYzYJCNQQRTTIZLWzvnungRcm7NeOyWgKXhzy8LBNagdc3cyy4Yc8kS3RCSLqLY/TVkS7b0AQEPguz778Sd756r9HEgKUXIUo8OgeHNBsjHnhJ1+msLxA6clz+G8fIUcS4mlE//EeRSniyefPoxgwtbrG9s19JoFMtqLxyc9dZ7maZ/9RB40E+84R33xQ43AwYjoKWfvgk7iNFlYQcbM2YW2pQG62indSQ15Y45zqMw5chEBm2PexHYdeo0t75LNuGhQvrtOtN3DHA0yriKClFFanad1pUVoqUD2fZyszS64o0zjt0W3ZLE4ZJHHE/m6HRd2k+r4VRjt1XElg4qdIKWxmLCzdJ4OF4/kUooRQTGlN/O+bWZsyENIUQVR4+8Anr6ZULBEpjVGUEF01UE0BTTdIEg01u0Jm6TOce+5XGA0VEnufyO0RpD6Pjwbcf/sWh7drHB0NyetQzoKAhCBKbNfts7ZeWcJUU7xRyqQxIhfrTD23xu6Xb3D5I1vUvvsON9/qMbe8RGlpHjkj8NqNPZamyswmAamZhRR8r0M4HqNGPSQ9x6OjXTKawkRX2Kt1idwxT14osOGHbGU0OoFIveVR1jLc24fhsEca+jz78id595t/gizFiNYMcRLRPTzksNbnhY88T2F5gZmtZYL7TdzxEPUU+o/3uLAxy4Wr8ygG6IbF4W4HJ4FcWeeTn7tOoaJyvD9iShS4/foj3tppMqr1yXFmRg59TC9mu+OwuTyFPl3G8wPk8iznVJ9JkICfMh572PaEXqNLIBusiCLFi+v4zQ6DQQecAKVgUlidxm2MMIo688+uMueKVGYy9A5a9Icei1MGw57DaW1IIUhYem6D0U6dZpiSpCJSChtlE0P06I98kjilECWcugH/xa//8OPbj94p/Q+/9UqiJSSpR2ac8E4nZKpgEiJiFgzMnIKsJsgpyHJAnI6JnD0Gh/+GcHAbO2wSGfM4gcDB4zZ+V6S130MzFC6taURpSpyGCIgcHE4gcBERmIQxCAHz738OcbOI/e19rE+9n5O9Y2aKFnMrRYS1BRpvv029b/Opv/EyE69FcW6GYDLg4jMvo+emWL72DKXSEqpl8ud/doPnn77ISX+EKikM7CH1RsyTzy6g6lC1RIbdiKXNBTrdFnPLi7z40ZcoTK/QuPMt4jCk367ROqlx1O6gGgK33j3gpZeeY3BUI7N5jtrxKVIyIZkM8Goe5QuzZJeXEVOR7722DaLAhz++yr1dh8O9OppmMP3EDMb5GY6OjrngwvrPv4zf6BHXJ7jdPuuzKoe7E3ZqfbqByrDX57gfM6sp5PIaK1c2iXebXF2pMp+rkKox/aMOmqQwvb5Ce6eOuTRF9+Yx2RkRyQ4Y+SG+lOHuTgMtPGsaFkoy45FH4kIy8vDHYw4EkQVRYvniFPVTm6EfkkgJrXF4Fk5nCpiqRn30g4vuC9MWnhySpB4VQeZm02V5TsMOzszopoCkxsgpaGZCFA0IOjcZHP1bwsFtxsmEWK/StxMGtRF+X+Zwb0S+bHJpTWMSJIhywmiY0mzYELikiYATRCAEXPm7n8ItKsg7Q8QPXORk75jqYoHZhSJ1Nya694iT4Zi/9dmXcN0uxbkZpuZKzJ+7SGyazK5uMb9yieryKn/0B1/l+acv8rDZI2foDNoO9c6ZmcZOj421HMNuhJ/VGI8GnL+wyvMvf4jC9AonD75K6sOjB/c5Pm3THnSRXJvbj0946aXnaN9/TP76RR7f2cVUI5LJgPa7Laa25skuLzNotXm43aJgKjz38gr3dh1ao/isrXqpRGWjSK3W4qlymfmfeT9+o0dnr0s6sJlarfBop8vucQ/bTuh2zswUlZhSQUc185j9CVdXqsyqGokK/aMOZjVPcWaWzv0OmfUZujePscopDDwkSebh4SmHrZCiCNNz0wglmVpvhBYrGJHIZDjkQBDZLOdY3ChSP7XxbR9fSpAlDcEP8UwBMYYv/NqPuSj9X7/7z1/xTn3EUEcXUzarIQ/2fHRFYxLA2AE30RkGCpNUo9MJ6Q4dGrWY4QQ8W6R/3KF2v0UyiTAKKRuXp5mbihh3bHw3JY1ias2YgxGUCyaiIiLFKZquEHaOWL5yjcqzixSTlJULZaiucfKVN1md15l/7iqz5Rxe4jK0A3RTY356ns7hLiPbwYpt/DRFW7pKag/ZfOp50tpbVPyUy/MyFz5yHdwJvfsdchWFYlblwU6dVpBwYX0dzdII3QFW0WLSO6Xb7VJdXmP71j4njyN+43f+KV/68z+kMjXNozd2ME7HmAUDO5wgDBK0DR01b5D6KXfv7fOJn36aycEDpg2Fck+lPJtB2D1ECG3WcgqJAKPv7lFeKVLbO2Xrsx8hr01RP9nnJ3/ho8T3aizM6My5IrOXK7RudYkbHdIwQJQCJEsiaA4oX9zAvVejdHEWBRG3HxGUUqbXlvFQ0CIDbVknPGqgGjLF5SrH3zmktJhHsn3KW3OMTmpUSzqxDPXTAb4msF5S6AUichKydWmBVFRoDm2Gkx/MKS2XNMJ6gBjqWLLD+amEe7sJqigzCUDRsnQdgWGg4IkmraZPqzui1UwZTmDSDxjWevT3hnhOjFVM2bpeZLF61oyRxhJJGPPgwKMTiJQLJrIsI8YJmq7QfnDK2uUnkJammCJi5UKZUDaofes+z7+wSuEDV5gtmIRpwGB0ZkaJfPonxyjmFHZ7D9XKMJ74yKLC5lPPo40fUJmEXN8ss/6hi+BOCDtD8hWdYlal7Uoc98bMzeTIFEqE7gAlnRBORsRRgBuGtI9GdOshr/z2b/KlP/9DsrkSB+8cMmn3qJby2OEEZaKgriuoeYO4PubRaY/PfOIq/cMdpg2FQiOmMpNFa7ax3JTlgkCqSXT/apvyShEsjZUPv4+Tbz+kMKPy4c++wOirD1g+V2DOFckYKaMjD9WeICQRohQwCmPEoUP54gbD+/uUz8+SpgnhOCUopZQXFvEEhVgVmV0pEpx2SHSF8vIMx985ZO3aEnRtZq6t0ts/olrSSRSV2lEbXxOYKVmM/BQLibXNKqmoMBxO+Ae/9o9/zOHJ//43X1HzOuHEpWoEGInM+pRMpCeMOwmRE+KMJ8R+wmTsE0wigkmC23EYtya4gwnDRkipJLJwdZa5RRVx6OB6Lm4sICQJjp1SHwu0XIGMLCGLAmkKkiWRyHlKF9cY3N4jt7FKOB6y+6/fZP2nLmJtbcLAJ/QGiGqFmflFnnz+M7SP71B7eEhZCWicHNPqd2jvPkAxPL7z7VdZmjIIWz7jA4GRJfLNb5xw9ekyJ6/2WblWwu25PPH8dR7uHXJpY4VSwWBx7Rz1g7sU5sv0Oh3mlhcIewP6/TbnCkuMPI+CMiGwPUa9IVdefAamfcrX3kfzboPm9gFzCyXmprJEoUE0BFmVGew0GQohpSdnaX6nx5WPb1HaWqCzd8L89RV6tw9xVI9ClKG8vEjiOohmSvnZ8xi6xuC4Q2UzS3jq4vgiuY0C6x9+H72jYx7URjy+f0xGlnBrfW41bLDHHDS7eEJExpKZ2VqidrdNoEZMl3LImoE6l2XsOHR8j0vPXmZku/Rsn3NTJkNXYEqH4RhC12X3dISMwsj/wfHtXFFDKpyZWTJM5Dhha1bGU2LGnQS7M8EeO8R+wqjnELoxvhPh9dwzM/0xo1bMzKrO0qVZZuZlksGQwI/OzKQCjh3TmKgMAsjIEkmcIIgCkiURkVK5vIG0vYe6vkI4HnL4Fzc59/EryHPzZ/Gy4wEpWWYXV3ny+c+w+/bX6NV66HRxWmPawzaHRztks/Cdb7/KLBLJOECIoRkkfPMbJzz9gTmOvt1l5VoJUli7vEWr0WXj3DKlgkEaRnheF0GVuHT1CfSMiXc4oGd3OVdYIjNbRfVbCIcdHD/gyovPoF8tk18/T/Nug3du3ueJJ5YQExtZqxINQVRkhjtNoqpBbjZL/c0e55YXmHr/Mp29E5aeu0Lj23fRZlTSHYe5y5scv7tNcbVI+dnzhL0hoR+Tn9ZI+yGOL3Lx088we339zMz+mZnp2Rz2XodbDRthPOKg1cPKFckVDUprMzx6tw5KwnQpR9i2MdanqB+eMiDm0rOXOTk4xI5Ezk2ZyKFAVk3Z7gRI3pkZS5b4z37ETun/9/UtDENMPcsyNnkhYHmhjCKOUS2R4rzFJPQZD1JERcUoy2TRiaQhhiahTkTk/CzxYIhaUkmDMW4YIckCzjhm0Is47SQMXJEHXSi/16oRRiBqAkog824n4nO/9AKDRx1Ex0GuzrH/6jZ2UUG93WbtP7pGZ/cAP6ty7tI53FHAwvoi48MHPHx0gCJbDIIAI1BZ2cozEqvc/No7TBUEUllhpx4gjFzSOOEjn1il144IsipDW+HyuQI/8flf5vZ3v8T8zAqzyxeIxyPcJOGv/uwPeXx3myfEBQ7rp+jvX8b96n3kSxUuX7/ARPAYPDjg1PbJpDLLH/wgDCfsffk11j7/IeoPbzOzfIFbr+/y+GGNtfGQqz/7USInhDTi8Ou30JdnMIOYcRqy+OJl7n7lbbY+9Rx/+sWvsqhLbP3Ms2hA5IzoHHSQl6ZwbrY5OW6xS4AgKsRxTMkUEKQEMdYozGSInTGHXZdqVmdjaZ5OvU2oy5TmLILDIYoh8/begGxGpDc++0ISiyoxIWosU06hRYQvp6xlM9yt975v5mNbFca2jalnWU/GmFJIVo2pzhiolkh2XiUIE8aDFElL0IsZFNdGzihnZsICsmkRn7QQ5wWkOCUSA5JYwhnHnNZdBmOJ+ljgYCi8ZwbCKEHUBNx+wrEr8rP/+afovbOL6DjYA5N+u8FBSeCZyES9ME3zsENkBJy7dA7TnMZ+Q2rZAAAgAElEQVTICBzfucNpo4+hCmf/M11Y2crz6kOZqHZCwZCQLYmdekBoj1FCkY98YpXtA5fCjEXJMshkMvzE53+Zk/tvomkG+akKrf1HVBY2+aN/+Tt0RiOeEBc4ZYC8XMH9i7vIT1a5fP0CJydHiPaEU9tnabZIdu0qdqdP6+tvs/b5D1HOmXRaXb72e68hxiE5b8yl//ijpPaZmfatxyQ5CyXySSsW0xdWufNH3+GJz3+UP/3iV9lcn2bpuXWStotihnQOOmTOLdJ985iT4xYHgk8iqCQJFI0EQUqwZstoEYS9EaeTiClLZm7JwquHhLrM1GIBd6+DZol87/GIbEakY6eIaUwsqoipiJDEVJKYppDiyykbxQw3j37469uPHp5cL6QTLyCRVRZihyeKJoV8jF5QUWKfOE7JZDVkq4JhaQhGhdLGVfLVD+HLCY2HN5BO/wDfS1ALDlnTIhHPerfqhwK2l+JMoOX4PBpq6ImLlCr4UYie1yDV2PjgFR7v7KPf7FH921cx9Cxu5CGOWqT5WaxI4LX/4ybFl5ewhx4np3X+07/7Of7DN77DtetLOI8eU+/YZE5FZl4o8vp3W3QaDrqS8NIHz6GszPLVL9+jXesyF0UcqTKqZPBL/+g/4fDBNj/9C3+fxoPvsn/vbc5d+xTvfPVf4NgmV154kd13H7D37iMu/9TztO7vIOcsGnsB1fmUNDa59a0dZNnlmY9cZnTiYOWmoFWn7XY5uTvkmb/5BF1PIZ70WNg4x7f/l6+TNXRy50uUKhUab9xF3cySv/QEf/5/vsU5SyOYuBwJEUM5QQ8MssGYQJE4HyUUP3CRm689wpbgYz+5gT8c8s0bHZIkZtWSyRUTGo0EOSPSdmJCT0BQoWhqtDoOqSSQSCCFEYkIRphwfrFEoNnUjxKKlsIkiAn8lE6asLyYpdd2OO3/YCTgxeUsQRSRyCpPmjHTskilGiDrBkrsk6YSpiWdmSnoCHKZ6ubHMac28eWEg9f/DZb7FmEYYxYCNE0jlSI8O6R+KNAb+YSRyn43oOar6ImLmMgEcYSe15jdvEy2rBO3+tS/vkf1b19FzWcIHB/NaSMX5hC8lEd/8hbR9RXsocfi+gKXVtZ5cLpHwXcY9Vvs7I2YHcvMvFDk3/67XSxE5uWEyy+cmfl3/+ur+FLMXBRxaopIqcVv/o+v8OqX/4yf/oW/z/FbX+Fkf5utZz/Bja/8PpN+ytxTTzI8OGXv3Udc+amnad4/YPrCBve/u091PiVoedy710GWXZ77Oy/Su3VC2oOMGdF2uwxuDXjiZy5y73sttl5exNDz/N9f/DrL6pkZ+7SN6kaImzmkhVVe+/N7PLk8RfeoyZEQvZcEq6OFDsgC56OE6pUneOOdx9gSfPInt7CHPb7xWoNUFFi1ZLRsSr8TMz1j8U59ghSkSJJGPgutjkOinH22Fj2ZVPEwwoRK0cQqR9SPErKSQiDGeIFAL4lYXsxSO7bpTLwfrzggQiIVEiQ5JhEUAjnCF0Gb+DgkaIKEIIgIic3YBimaoDSP0UoNRjt3seIaHiLFBQmruIzfH5HaMaPeCDdQSIOQQBCQkhBTLRDaAaGYoosq4gCkWRXLCxHeOGT5lz6KKEI8sEHLkGg5xMDF6zmIFwxu3tqnMpPh+laBe+/e5+q1JbK5dR6LR9y8bRMlIetv2RQWcmyqGvlL0wgZmVo4odcf8bEnKvgFC6MzYmPGwn60z3RpEX/sUj88pL9/wP3OF7EHMa4zprpyka/96X/gpNmn87t/yUs/9wmatT1u3dghkUX8xCNMRf7O+4vImSL589O89gffYHYS0IlCOolA+3QPt5ll7aX38eZv/3s6GZmSItO6c8LGP3ya0so0vUGXb3z5PplKSCIrSHmZmUBj0hnzwrN58tllxoLM22/cJ+w2+MBnr7P71gPMJOTd3T6kEaIAh3bAfDbLzBpEUUTfcUgEjetbRYLAotUNiKQIRZDY1EWEaZnhMCGNJ9RbEuvnctRORkiGgT9JmC0lzM6WKBsZTvuHf81M+n0zgzSgIMv4iYj0npm8pX7fjOfKJExIqeGFBUY7dzHVR+CKTK1oWHKZsWPj9keMRgluoCAKAoEQYEgKpmoQ2gGBkGK8Z2YuB4kX0p2MWf75Z8+ilBs9hHyZQMkwqbXQEtjLZum8Z6b0eJt7ToAkR1x+4UP80Ze/xJ29Dg8ShfW3bM6tGKwnFtaGhlyyqIUToozMx1aL+AULbdRhs1Rk99ar3zfTOr1Df7/G683fpXfSR5AtZmZXeOcb3+Kk2Sf7zV2Wn9vi+Ht3uXXjlOT/Ie3On+y6z/vOv89+7rn77bv0vqMb6MbSAEgCJECKkEVSIiVSGy1FshQvYye2J7Ez5ZpkbE+imYzlcTKpTFU8juOSF2Us2VpoyaI2iitIgiAIYmsADfS+b/f23Zdzzz4/NAss/2D9oPkTTtXrPHXO93me70cWabguCD6fPZ1EcnTiB4aYvzlH+d1l9lyHtqpT2FxCtz10534u/de/QzF0lPfMnP6tjyLWbQJF4EffeoNI2mGltEuia9/MUrHNow/EiUb7aQoKV96eIeSX7pmxfIeFxTKBKCAKAasNm4O9WTpjJpILIdnHcwLuO5XGKgfkizai44AmcyQHrmFQrfokkhpr+YDRkRg3Fmpk4iEqDYuutE5XV4p68f9HxNJUVgsi4RCBZXGoQyEW8YkqLpGISCqqoSs+qq7gOS5GNoOk6YjqAJreRbU4S0S6i29LKOEQeirEUnGUUO1NBE1Dj0S5c32PwHIo1H1uF0Mojo0s7t+lbGRVRh89y+pfvcnks2eYX1lCXaiyV7JY6ZDZ3naQ6jVsHWRP5IlHexDaJtOzFsneNN1iidTQGC++dJdqy8ZxHJRAIEyIAafG/Y+eptRrEg9neWPmLps39nj60X4atSYZLY6ZgNnrZc49MYBJCGtvg0LepnOoHy9qIAshZm5vEg5VCBoOV2ar1HZbeLKI6ohYcoDvWXz8eJrBU6eomXVUX0IOxSncXmbt7VtYpk00GuY6PmM1D8ex6T3QQWmgh6HuFM22hxr2eefNG0i+SCuQET2LRFhCcDRu7VTxXcilFRotl1SHTDTbQWqwh53pPLYmsDK/hNv2UTyFnsNdLN7e5OHTWazrNYyDMfxYjL3rK7hRibktG0/w8AMBVVY42AEuAgE2cSOOrRusb2wS1zXCCqyvNylLMpXm+8hO98eRRAgsi+MpUKMSMcUnHIFUVCOkCSiqiOe4RPsygI6s9qHoPVSLs8SUNdy2haAaJMYOMbckIddeQ9XC6JEoq3cqNGsm6yWRxZqC4thIuoTg+RhZlbH7T7D8rasMfOos22uLqAtVXAKuCz4bi2XEQMRXXUb7uhgflBHaJot7YdSQyMG0hNgV5eXvLVA2XTzbQgkEtLbHiORz+rc+TqG4TDyc5U//5iUS6Dz9aD81s0JOTNNSfObmq5x7YoDdPQGNPZptjXBnJ+gSzbbA5lKRcKjC1lqTrYJJyHLYaniojkiAS1tw+fjxNJlHHsKrVPBWK0THhincXmbp/M395OD+HHtyk/SiTUO0GenfN3NgLEd1r40V1NmYXqHl+oQ7eylurJIIS5RLIlvNFpInkuqQaLT2F9C7JzpJDfawdmsdFJ2t1Q1atTaKp6AlVaqVNk8+NcLaq4ukx7L4iRR7VxdwoxKzmxa+6IMLsqZysAM2Sja5lEDciFN3LfKVFhnDQJE81tebNPQQ+XLtZxuetOf+4kunjqfJqgGe6SJJ+/MmqqphWg6KLqHoEpIu4vkWhuwS2LsE1gqilwcBXNlno9aN4zeJaU3UqAiiTCKZIJOV2Fu2ME2JrbZLl+Jzp6bjyCrnnj7NwtcvMPzUCeYvLRENx+k5c4Kdd2fJNnyGUyLzbcAVkASRhaUyjz/7DJHCAtmchGM6REJhLs7uIvs+oUDiuCdw5p89yuDjJ5AMieLVDbztArn+MGOHB0kYnSiD/bT2lkn3d7FXyePYAmEjQnGriarJHH34E4SUEIuzd6jttojLJtkjBxhJC9RaDrtlC0lyCFyXsKhwZ73A0vwKze0CXZNjvPXD6zSvLzPx2XNItsPg5z+IulDCkzyGHhxDOTqKWijQjkt0Huph49IFbqyaBIHEgUwE32lzfb1J0/RJKBIN18Z2PNptSPTGmDw8zrWvv0mqVKVUbXP01BDjJ0bY3clzdKqLlcUtwokQvQOdtMsVwhnYvVVm6NEJ7GaNR48O0dURoatToVCy8ZsuCUditWhSrlv0RhTWCm2qLR8bGUULaJjvX13yPz4Z4+ypLrJqgOi5BEhIUoAiq5iWg6C5qLqKpIuAiy462M11BGcD0cvT9l0CxWe36EMAhlyCkIMs6ySSCXqnPsLW9dsUbYHie2bIDrFVaXPu6dNc+s8vM/lPTrN9cw1DjdJz5gRXf/ImA22NnlNJ1jf3O3iVaoulpQqPP/sMYukOnUmBerNObmCQ199ZBt8l4ssc9wQe+91P0fuBw6xfvIW73sTbLnDuE1P09qdJGJ1oyQzN2iZ+NIzp1nBsgUARaZVcEgmdsx/+RQLbp5TforheIS6bTJwaZaBD4p27u5i2gCQ5SIGALsjcWS8we2UOu1hk7KMf5PXn3qJ5fZnDTz2MJPqMPHEfje+vIGZUJj9yEnG0H7VQwM4YZEdy3PzRW9zZNgkECdlqE5Jcrq83iRkyeiBQxcW2HNptOPPEUbp6urj29TdJ7NWp1iymzh5g9OgAuzt5zp2dYmFpmXQ0hFN10eSASGeEnekdhh6dICa1eGB8gEyPSndGp1CyER2PtCezWjTZaQsMRRVWt1pU2vtmtHDAv/qdn7H7JjfvfikWUQiLJZzObpxiEdsCq+UieQGyIiNJPo4XIAgiFvtRSpZrguMih3Js7EpofptoWMdpbROOxdFkn0a9TKyzi96jZ7nx9nUaTZ/nlwU++/GTHDhzgI2/ukwgCHjJJNZGicvvrnDp3VlSkoboCTjdMXbzTQJRQFBl8ODKm9NslRSUiEF/Z4y53SKlekAyJ5Gve7RkkfV359k+f4ds4JP+1FkyE+M0NuZRQzFe+uEVcuEyTgO+/+ISH7hvgMLuNpYjo8WSpHPdTJ68j69863vERB3x5jxvzO0xfWWd0c4kw0c6UVsOgQOPTsToiWi0igG7tsxQj4au6vQMGxgHE9SqO3Q8NErYMLh6ZZqTnzxL8vAAq994jcipEb7/3UtcuzTD/Gqdnq4Y5ZLAyk6esaEO7v+5QxyeGODK9VX6D/aytb2NJPocf+gY05eXiDdNAkfEbtVYXatR39zBqwvkehPcf2aCwaEurI0ya3N7+J6Fpas0TIkHxsaYvz5PNKvz1pUdLNenLoEpOxiRGNV2k1DTo+ALuH6AE/iIgUTTfj8l9w9//3PEwhphsURh1wbJwzY92i0PyQtIJsN43nvnG76wbwYZ27fBcSEQ2CnHUCIqHbkuWnvzJLJpNGHfTMTP033fB1l+d55qvc3zywKPTEQ4+KHjbPzVZeJdEaxInN1X7nJjIc+ld2fpjWcQ7IBbeyaO7YMooskyvr9vpiWGCQKVTDTJrdvrVNo+gezQdAVaskj+nSVWX5nmzOc/SGhqhMzEONXlOSQlxEs/vEJ3pI5lCrx6eZsPnOinsLtNJJxCNKIMP/BBrHaTb/3kPJ2ujn3zLm/M7TF3ZYv+zgQnTh1AMdsEDnzgaJJuQ6FVDNgTJYa7Q8j1Jj3jcYyDCdrVFRKPHCLakaWhW4ycnSQ81M/aN18mcmqEb379Ejcv32S3HtDdFaNc8snXyowPprj/5w7Rn1W5fmePbE+a/F4BSfSZuv8o71y4Q7xp4jsCbqvOzGYFc3Ubry4w9fgEY+Nd9OV6qFSKFFfqRGSHmiTQMCWkDZNKqUYguVy9XcFyfZSERMW3MSIxDNchqNvkZRXX9XACH8ET+J3/5WcsSuW1H38J30H1XVp7FmK6j+buFpoqoYUkAt9HFCDwBNp2G5GAwHcRBYVACSFKDVbmG1SrFuG4Qv/hkzSqOwg+hHQRp+kiyUWOfuwzvHH+Ol7dYe32DvbtTQzFZvCXP8z0f/sx5xsmw4JIdyzCstpir9TmTqWF53sIfgD+fjSxK8s8dDrH0q0iTatFT6DRa3sYTYsPnOhkdbNFVoFjv/oh0kdH8a022E325pfREzGOPXYWu2iT6O6go+WiKCkyx8cxN/L0Hu4lMFVmVq+TDZokO6MkenpZnF6mqUksz+6QK9poioW3YFETBLYsi+FUhMFeBUHx8GsVLv54h4ZcY+5uhXDNpLq9SyoR4dVX77JyY54Dxwe5fOEOjQaYvowrBHz80w9y8pEuDh4eoLe3k6AZkL9wi/uHexg5PcrN26ucMh3sDgPrzgbhoTSpTpmkIWNXPYbH4liujWaaqDGFnXyT6ht30XMGVUmhbjWIGCLzhRaDfWHytTxjh3qRbJ9622E4k2KtUGVqMkNpxeTAiWHae3sgeKRdlbz7/pzSL398Ck0NUH2XcvcAup6itVtAUwW0kIRtu4jsmxHx8TwXVZMJPIlACaEINivLJsXtKqkOna7xI3jNDVxbJKSLiNE4gbNF92Mf4fKbt/DqDld3TJTr6xiKTd8vPsKN//oSN8Nh+nyP7liElXKRQtthzxGRAn8/KDUI8PwAV5bp7lIpLDbw8OlLReittcnaOo/c18HqZoux8Ryjn3yAwLKQRAHsJqVSFUWROPbYWbRkN6GQhLbWIBzLkjk+TmuhSvfRLG67wt23ztMTl+ia6CeU6mBxepkdAdYWdukUJFS3gbdg4aY9Vko2w6kIigrxhIBYtbnw4hYNuUa5FBDs1qgVi/jWHq+9ssTGzduMTg1z+cId6qaL7Sl0dog88ZGjTD3Sw+hAD/3D3QTNgGChyeHuBCMnB7k9t8Ep08HNdtC4uUh4KE1Hl0jSUKnWXQ6O7JuxtjZRIioeEvY7K0gphbbqs9dsEjFE3FQn3Z0qO+0SkxN9SLZPs+7Sn0myVqiS7I3T3mozdWyQ2l4BBI+UJ/Mbv/czFqXNy3/zJTmawUgN4xQWWF3O41g2UuAjajJq2EeJ6sQNBSNmoMdDBAIoIQlFFNEMjXrFp9n0KWzV6R1KMnjmWVqblwgZUUIxFdGWCWpb3Kl5ZA6OoVkWcqNC/LEp4rEUlbUiJ06PMPzQIL2Pn6BHjxEplOkIVJqORVMK0HUdz/PQkNhca5Grt9msuVzfbZI7NcLVtTpXZvcYQGFQVeh6/BRtQUBo1lFDMSrzTcSFOitvXqX75CCVtRXckk/s7DiBXUH1HUh2sfjN88y8No85s83GzBYXbi1TFwUU38BXNTTDpKc7zE4QsGPJTB5JMJ83yVddYlse3obF0WcHuXhxh5opsFwyWdoqsbRlMdEFzXWTi9t1WrZHQvVpOT6yInPt3SWOjnTjiAbrf3+RjtFeElEFr7+f5l4NeXqVw7/zCQY7c8RjKomciO2boIvEcjqJTBgDD8mQ6R/uRU+niR/uh5ZIZXmXbCJMx8hBoq1d1vMe0oJNYW6DjKRy+LGjiKbN8paFstNk8qnDdGQMgnqJzq4UohOw3jDvmfmtZ08gRpIYqWHcaouNmbs0q1VUSUTUZGJpEXSVuKEQhALCiSiu598z47kBbUvCthV2Nir09McRtADJaxIyooQjUXzTIyqHuZUvkjk4Ro8aQGGP+GNT1Of38B2Rh5+eoPto974Z1SBcqZO2TBouNGQfVVEJfB8NicJOi56my3zL5/ZendzUANe3Wrx7d4cBFO7/8AlCPV2IsofftlBDMa7/+C6JHZeVN6+SPdBBaXWJeNFBPzdBYFcQmiXEbB+3/+DvKSw1qMxssfnmHOdnV6mLAoEPkh4lJLv7L3UQEJMgM5xiPm/SF5NxFx3MusXUMwNcvLjDXs1lYc9kYTXP5kaV8S6NzQ2Tq1sNWrbHuCSx57q02wGFvSYD6TjtksPWK9foGO0FowG9Q5j1JvKNNQ7/zifoiKh0pAwSOREvaBPoEpmeFImkioFHvC9FZy5LS1SRR7MolkK+WCSjGXSMHIT8HFtFAXGtRunODhlJ5cgHTxG0myxvWaRqLSY+chglGUdq7tHZlcKvmPzqz/ql1BBOfEnxfbanv8H21iYzN0oEso8QBKgqiCqokogng910kZMKXssnEFyUsEiAgqq5VEpt3EBm8eY2g90RBMlFVUTUSBZRVFD1OMcffJrv//nzpFsmkZFeErpOdeEmkY4YquCjDg7hraxiOCF+eGOWbd/H1QUUH+q2RyBJIMFDbkDy4TD9aZFMScQLtRgeCLG+bbPl26wqIm+9cZ0rF24xd3mR/KszHHlqCuPBYXo6Ykidaeob25gLdXr7ByGpUrq0TSgDuYleSmsl3nEFSp6DF1F45mMDTH34NMW78zz68AE279RZafiosQqdepKyZdHbJXOr1qQqayhbLWp1Gzvko7gOviiR8FwiyRCoFkfTBrmOEEO5BKWdBk1JRPcDOro18psbdI0aWIkk7qbN8t072PUiWhKElRZrL1xHPThIsbpN7/gEgdMmqLiIko/nWmSGshSnl4j1dyPrYSrXVmnJLdKpKDfvLmIrIfxSmdHTQxw42EkrHrC2uMv2rQqjSQE3I7F7ZZdYRuTGTInadpNcv8hi/v3hyX/5+19BCzS2p79BeXGWmzcKqLJIIOyb0XQRIQBPBl3T8EMioiPh+TZKWERSBLSQwO52HRORlZs7PPzU57HMPKoiIug6kqgT7ujgyNSH+P6fP48wmyd9ZIiErqOpLXRDw6u20Yb3zey8u83Fwh4rmrR/7xcBPjK2IIAEj0iQeCjCYFZmwDOxvDYHBqKsbLfY8m2uTi9y8e1bzF5a5uY78+RfneGhL54h/MAQPR0x/FSGxtYWmzN1hkeHIKlS+OEs4eEQxgdOsP3KDFcjIQqyiheGZz42wLmnz7E9M8t4WqWah5WGT98Dg4hlm7JlYSREbtWaOIqPsG5Tq9sEmoDg2siWw0AihWhIdGUlDoQVch0hkkZAtexgyyKFUoOuHo1aZY/sgX0zi8/PUqnsYppl9FiAsNJi5YVpQhNDFKvbDI4fwXVaKE2LIPDwXItYXzfFa7Ok+rqI5jopXl7EDxokkjFu3l0EIYRXq3LgyARjh7O04gHTM2sU71YZTQr4vUm2L62RG+jh6vQqte0mvZOdfP7XfvsfLUo/NWJp+8q/obb4XerVMiAS7YpiuyKeK+4PqyEhyQJGWEM0NLAc1HCAIht4lkdgtonIAp4rguQhigqzi4soQ08gGykCaxdXLBMEFYK17xLv13BkjXCtQs30mM5LqJOHaZlRhK0ys3/9Nheff4u6KmPJPk893MXgoEJc0vBseOgDk6Q/fhBV6CMQBSb/xaP0j2TY2pYZdiQ6IgadQwZJXUEJfI65Ekm/jdqTQg5Ull56h1A0gqanqJfbLL92lUiyH6tcYvm5JSpv73Lsl87yy7/2cwy4Ig8e66R3/EHKC7coVx3Of20GL6Ex3qOglxRCnkA6LJIOSfhuiAN6m+Vmm5Lk4lkqB12VSUlhtMfAd0S2arDj+wiuj+dbSCmJUNjjwx8bom/qPsKmQf6FGs0XFqn4EoEhY7Z8xEQHnmGijUToGu5hMDZFdXGLWNRAiMmoyQiJcARRSQAGl6/exsSiubLDz/3zn2dxpUznwS6UHY8z5ybRwiJzqzvotsaJQ93UVZu+h8aYPHWEYsjl5o0lInKI7iM9LO7+w/bu6ku/fs+MrO2bMT3pnhnBf9+M5bTBchBV7plxGvtmkFUUb9/M7taV9820PVyxjNvYvGcmN5m4Z+byoo06eRjBT94zc6OQp67K2IHHZ57pZnBQoeEK98wkPzKOKvQRjkdJPzhB/0iGxU31nhk35JHUFWqBd89MPBm5Z8aWW2h6imWvec/M+kqV5eeWENZqnP7fPsUv/9rPofnte2Z25u5Srjqs36rfM5N/fu59M2EV3w2RtZV7ZmquxEFX5fhAkv7uAN8RsVrBPTNuVEFKSZwYT/KFzx2nb+o+OpT0PTNOOk5gyEi+c89MSJHvmQlSMWJRg9VK854ZJZQCDF6/PE9rrU5zZYfTn3j8npkBNcaZc5OI8fI9M0fvH7pnJhMXKIZc1lYX7pm5Mb3108rOTx8J+LNPJYP0RB9hTWfx4jy7UZWlWw06ZBE9YhFP6oTCAboiE06oSIqGHLgIokrIALfVQgkkbkybmI5LW1SRJZdnv/AMRG382gpxw8AhgesVKRkP8f/8m7+jFG8w0tJw1uvUXBMrrnCnIWMLHqIfIIguRiDRkQjzyIcOMreyRaUIXfEWEd9B1BTmN21WV5s8fe4YNhVyJ0dpiyLu+i4bP5xD75BRcxkWLq2S6YvRXq5x5kvPcvU/fpM9W+O23uZRU2fytx4nlIly88t/y2XbxUlotAseoaiOrIuork3J9lHbAc2Qj+ypINgogsyYGdDbJzHni6yZPmalhSJKeKoCpk1PTiYbjbK71ODgySy5Q0n0QGD5pUU8Yz9Ox/Aj/GRpm2wkwtHDHfQM5ECVEOPd7BXLbKwvkxBUbq/t0TMQR1zPExYVjJ4RdNViE4VcUcE4nubbf/n3DPZ18sAjx6gXKog9GbR6jdlvvMvAU+P4zRJBdpCbz73J8Y+eYebGLTK5KNGOHDulbQoXdzj42YcQRZ3X/vpF5KiB2ra4XXu/MP2/v9KD0ZUirOmsXF9kS5ZZvFknrUjoEWs/MjrkoSsykbiOqCqIno0k64QMkNoCvtfm2nULW5YwHY/AsvncP/sERG2k+gZGSKXtGgRCnZLxEN/8y/PM7qwy0tKQCib5Rp1gNMeN5Rq24CEpLjgBigDHRwc4cDTHxbdvIylJuuItAq9FXDcoeT7law2OnDmMmjAJj/TRFkX8rS3Wnl+kFbh0TvaxcGmVWFon2Glz5kvP8hZoN4YAABr8SURBVObv/Q0tw2BObHPGe8+MrnPzvzzHeckj1VIouD6B5hCLxVFdm6LloVkgqh4mGgg2khfmoNOmt0/iqilQ8gNarRaqu2/Gdz36UgJpTSXqCKi9CZJpnVjaYPmlRYKsiNt0ERoqM1YDyVF46qkD+CigSpDppLRdJSht0mzB7bU9Rno7sbdW981EU+hpg5m9CmNCN8bxNN95/mX6QhGOpnphRMGLd+CUl9l8bpmBp8YJGREagsji89cYf3yKmRu36B/rRpYNdkrb5F8ucOiXT+GWGrz142vIUYNI0+Fqo/mzTXT/6WcygZGKs7WeZ3e1zZtmhLRZYzCukM4o6GERXQ0IhTQkNSCZCxM49n48sw+B6RLW4O1rJo4rEsgibdtGDeL8/O9+Br04ixwRsMw28e5DNLdnud0Ic/2NMrH+JMWrK1TrHnu354g+OMz5Czu4fp37Q2GSAzrmgkW5N8zm6h7xtktMj3HLtTg+lCK4tUtmKM3VfJM93Ub1dAYiGgM1j57PD6F1DuE2dlj8yrvoDwyhtDSW37rBZkynKSqIIsiyjGU36LElyrpBy3XIdEQ4csDg+nwZy3Jo+y4feuw4A5MjzN5dIpuMokgByY4crXbAt/77D7Atl3ajSSSb5uzREB2JHlpawIs/nOG4FEbOKOhRj7pZI7B11raL9GRjJPtzvPDqKh840wmizMydXU5MpcgO9eEE3ZR+9A63lnbIHFLIRAVemGlzMBbCbIs8/PEpoimdnZs7aCNdrP/4Bs5ulaOffZIX/vzbHP2lR5i9uEx3l4waClHc3GBlx6Gzq4POThExPUh5aYVLb69g+wGCpuCbHh88OkRDdLg9vU5b8hjs7uDtuzv3zPz5r3QjKyG21vMsLztctUJ0B226tYB0RiHeISP4HqGQhmr4xDoiiL4HioDsg1Wrk4yEePd6k7Yn4IsKXhAg2AY//7ufQam/i6bG8KwW4c5Jmtuz/MmLO8TdFLH+JKVXlqhIAZsXZkh/ZIzzF3YIezBm+KQmE9TWmtQNjdJiEdV1iOkxpoM6J/s7UWsOjbUaO2GFumwTCPtmTqZCaGcyCEYcUbRZ/Mq7pB8dwNoLsfzWDVaTEaxAwPWaGKE4lt2g11MoKTpV0ePBAZVYR4wfX9wiGZVp+y6/8LlzaNkO1tYKRDVQpIBIrh+n0eZb//0HuL5Aq1xB0zTOPZylI9FDqbTHG9d2GWu12QhFOTmmgyNQa1msbRdJ5sL09HVzc75MQhPIdEcpVPboy8XJDvXhOzEKL85wfX2BrtEkmajApTWZTtHDbIs89MwYiY4U29O76KOdrP/4Bt72Hoc/9wzf/4tv8aHffJK3X7rFgUM6jqVQ3Nzg3Tt1Dk/0kMqG0bM5yksrvPbOBpLrIGgKYdfh/kMjBD1x3nnhGm3JY3xkiNeuzv5sRek/fDobVIseWztN1moa7+zZnEjLZGMWw0kdWbTIpEOIEmhRiXBKRwpAkURsyyIckhEcj8vX6gSiih0E+IGAorh8+leeJtk9gFhbwxN9nMb+Q1TVMf7mBxdY/OFN1L0mc4KPL/ocPNbHlekdZFvkgOejJiUyfVEKs1Uy/RF83ePi7RpaPMxu2yESCERdnYpm7k+mu01kXWOoJ8OoEmbkySO4bQu3nqcyv0Y8FOWvX9lAlHwIwbmH+kkNjPDtr76I7CmMTnawW26ysdNAdQQmTyb5yKeeRTBb7Ny4hJztREtlyL9+Hi2ZItyZRO0ZY/vqNJFsB0rKoNmS+MZXvoOiquhRgVZd5JQYsCyI9KVUbuYbHG4JJI9H0aMGP3p9g5FDGRp1jyNTvUihFrn+CSo/WUBJpnC9PMkzkzSur7GzUyN5IMbqd69y8ItH2J73MV9dYPCfTtG2JDRNo+Q7vPLdt7GBjz5xktcu3MFrWJyeSvLSxW3kuIptenh2iwPDXUgRkbs39khEZQRFQ9Es1vMeCd+n19bp//AEq69M81ajcc/Ml5/J0qi6bO00uVlRmS05PNQLMdVjOKkTi0I4JCJKEEmpqFEFJRCQJAHbstCRkGWf6RsWbSnAdsH1AjTN59O/8jSq1iSqRHCo4bU0BE1hq2LwvcurLP7wJtZunW0ZkrZH5lQ/V6Z36HQdko5C9qFOmvObODWZ+EgEWdo3E4RVqi5EbB9TVFFVFxEfy7WRdY2D8Qx9yTC9Z9JIWgq3nsdcr6ELHn/9ygaGqtBWLZ5+8gBKvJdvf/VFfBcmDneyW6pR27VpOz6/8j89SzKdRDBb5NfnEGUNI9fF9ssvoyVTRE6cQhFg++o02clRHM/i8msz3JxeQFFVOsIChabIlGqzYYcYyMhc3rK4z3ZJHo8Sies8/9oWD54dYnG9zNEj/YQTMvFcL5WfLFBcLZI+Esc4NICzVmJnp0bqWIaVr1/k4BePsPidFYSCzcgTAzSTaTRNIxw1+OpXXyCSjNCdzLKS3yGu+Yz1RXjp4jZtMUCVZQLPZ2QgiRQRWZ6xCektBEXDarUoO5BDJNOW6f/wBPM/ucJl82dcM/mjH1Qpt110Xca3mviSh2lLqIFG23YJGxJmIBKSwfXANn0CzyNiSASI2KaPZ7oosoYZSKiih+UJuG2f2ctrHHw4geHWsKsVLE9AFiWaqzPcernEsUfSREceQ//PP2DRcrl5c5PDGZXenjDVpovtybyx3GQqcLi+WGdbkVAVhcM5gzQ2a4s1egOJ3prPbEbmkafOkAi3yG9UeOlSAf25y/R+9gRWK0xk6iCl19cY7DZYqFqorRrxUIiIX+TXf/ef096+w8z0MnMzRc44KqLmMEoCz66zeP48kuliv7RKs2zhygHZKZ/dy5uoE3N0iCGkrTpK1wP89f/5l3Qf6Ke8WaFagLDuI433sne7zMZmnbCmcE33ce60SXsVOnAI364g6y6vvlxFcAQOdxWx0yrtlSKdKRGlsERlo8H4h+/DkT02pBXCmUnG1CL6sT5ajW12SzY/+toN7JBKJBDwZZHvfvcdREXED0Qu3KpyejhF2FD5wa1NPnlskL1ihVR6nDl/m/umeggkkZvTFRS3SVZQGHv6OK+ev0rJb/wDM1/+wR5NF3RdJmg38WSfwIugBiJt20X1FMT3zHi+hG36CCoQQICIoig0a00IPARHRZV9BFHCbbeYvbzGqV/4H2gvPofbcjHbVWRRQtmGWy8vcOyRNL1jH+Xd/+vvmJWC983kYlQtl0RY4npT4mDg8M5Sk3ogoCoKj01lWSrUyc9XGPBVjJrP9ZjEh5/ZN/P6D5eYXW7xmXSS5BkZqxVGSdUo3fUY7DZYq7agZRJVVOT3zGzPvsn2So38dIszHWEadRNnZwUvJrN4/jzW0g5ySabW9Al8m+yUz96F55CmNDrEEJW390icfZi7NxbJ9OYob1bYtgQMzSc0PMbm7ApbmxaGLHBNF3HutMk5NTpwqFzYIITPq/nbiLbEZPcydlpFzVoEzTqjuk1ho8L4h+/DWi8hSSnCmUnGnxZJRruoWXW2Nkr86Gs38HUDHY/N9Sr5vIkouORbAoWqx+nhFHpY4sc3d3j8UJR23SSVHueme52H3zPz+hsNFFeiQwjumcmOJX5a2fnp3bd/++/+3ZdUWQA8RM9HQCQd1onrIAkOkZCMprC/YKlIILoYoRCe52PoOpIU4LsujRZ4AbhCgOAK2JrIxkqBQ0fDuFYdoa3QbtfQRYc/+uMFLpcbKIFNRzjC1rVVapqKbdscS6RBUKktlJHcNgMISA+EiVZ89EYbXRXpa9lMnh0gkwo4+qmnGH/6ON7r17l4a53DhzLMLm1TKDVYq/vcN9xHw60itCo4hk58K09LDdG0PG4vVFi8UyCu7BCJ5ZhbXkdrmjz2rz5J32Mn0aMimz++QnunhVC0OfyvP0NzeZMDX3gEfyhHey1P/5lJFr9+g9ihBO3tPEcO93H07BQbm2XiYTj3YI6dvTar5TqS4CKJIkHbp08RGXEkTn76JKPPPkrPwRH6NAu1JtAx1Eu4z0CcKbG8WaEjE0MdG8Qv72Du5VG2XMSxFO1Snr/86lWuLuzimXVOHh9iZ72GLwWEdZXjk72Mjmt0RHWqTZexkyP0Hhvn6EQ/jd06wx87x/b0ZbozEvFMjOJmwMJ6GUEG2Xfpub+PoFHn/vvHuHln+56ZQBRQJQAPwRMREMgZYKgikuAQD8soko8RlgAXJB/fFRAEAUPXsS0bAo9CWcTXwGP/WllXl9hYKXBgQMC28ljNBm67jS46fPm/XORyyUYJbCJtga27m+wYOrQtjiXShGMKezMVbL1NpOZinIoib/gkrH0zw4kQoxMZ+nIhpr7wNGMfPor34jUuzW1y+FCGrZpLqVKislVicniAhlvFLJvQYRDfynO3tb9VMH13j/mZPeLKDrqWY3Vrh1Ax4LH//ZfIPXQI0bbYfs9MLpdh5NefRpJ9Bj4yhT+UI+25xI8Ns/j1Gxz40CSlhSXOPPUgByYH2dgsE9MDzp3p5NZMHrtt4ws+oqqA6dGniJwYTjFxbpJDn3gCRalxqDuOOVei+8gBwn0GpdcLbJbqDB7uw8tl8Ms7tMMuyrKJOJaisrHB1/72DisbZZq1IiePD7G5VSYQoSur0JHUOH48QbFioagSYydH6HtwimOj3VC3GXhy38xwb5RoQqe4GbBeqCNIIlFFJnuii6BRJ9cR4TP/9F/8bCMBf/jv/+BLvijg+T59yTA5RcDVFKJBQCqm7IdRigGiDLIooGkqSPsRN4HoIosCrapFIi2ykw8IAgVfssEVkWWRva0Gj/ziV1i6dp5vf+M2c+tVDoxGcMUQiVWJkNTmrXKTShAgRRXmKnWEIsSHFFRB40LZRNgWEMs2dyM+guew6qqElqsEJQ/ZC2i3VvnJtRqp7hD1VsDOus3ZBzOsLldZuL1FaKNCavAoht7CJcTEmSlOncixcDOPL8ksLta5eXWNpKRxbLKb8MAAjVu3qS/Ns325wPH/+fOkBxJc/T+eQ+1TSB4eZ+YrrxKaGOLKhbscfrIfR1Zo1PewzSrZvh4mHj5Kb1+OdxY2uXO7xAeyae4bShPu6+PUucMwvcXQ4W6kLoObL77LSz+aY2goQd9IF6XyKobj0n36PtqNLdK5LLXtTW5cWeOtd3eZfKITRYzRaJrMLq4xcaqPW+/mGQ1DbEDjUIdOo22Si+lce7vIdsHnYKmOWcmz+/Yafk+aS7fnKJWrhPdMSA7TFlNcnL6LIoIiOySzMa5cXiO/UYZtk432+3NKfhAgSRKe73MkFyUuBlhARBBJxRRsz0eXBUQZVEVGVRV830FXZALRRRLBrNtUawFtzwNfQ5B8cAVkWeTIA330nv73/M1//CqXLm8zt14ll4wjhQ0SqxJCAt4p1mnaFnJMY65Sp2PNRBo1MAsSl20XeTMgalrMGPtm2BVoLZcJiQar56+ihOu8cjtPsjtGvRWgCnBsIs7dQov5axuENiokO0eJJlxcQjz4oRM8cLyTq1fWkVWdxcU6d+d2SKHR1anSMdpPdfo29Tvz7FzdN+PENGb+4DmCXI3kgQlmvvIqL5WK7C2WOPxkP61am1qrSDRioIVUJh4+SiAKzOYr7CzX+PSHHuKAITJ88iCH7x+H6S0Gjo1DLODCC1e4urzOUC5LIqTSlsoYjktMNxASLt2ZBPnVNW5cWePGtXXGPrhv5pVX72C6LY58YJxrb60xGgY1FeJIl05dEcn4Brevl7ACgUPFJmYlT/nGPE46y5VrGxQqe4T3TBbvOuh9I1ycvosmaciyhSVb3JkukN8oY240+M3/9R9PyP2pZ0qPPtgXWFtV1NE0jYt7dB4Os1Uo0+VCf2b/3zsWCohEVSKGgKQGRCMaiirh+z6S7YEf4IoiN2c8UEQQRVx/f51AoElI1rD9ENEYxNMGdqHB7/2gTC4aJfB8HM9G1xRUUaJmu/iByFFBYk5nP19N9NElDdd3iIYCMpkwN9ZtVMfEkyQigoYjmJzsS6AbCsQSJJIBpVqLN17fxSegy/bJJUTO/MYzNOc38MM25esrdD0yQbu5x/qlCsd/8ZO0NucozOcRljYpblikzh4mrO+SmnqI6//he/ScNNiq53htdoGHTsTZLjQ5c7IXJRRBbrjMvbFG/2P9hKJpSKTYLBW48Rdv8vP/9os0tgpc+rOXCHsegSEh1qsEHXGGDnTipSyq222u3tzFVkJ87re/QN3aRbAl2rtlvvPd1zElAU0MEY64VEoWobDOk794huqFaaS+FM1vzHLyX3+aIGTw5n/6Dmp/E8eVuL3r052Q6JvopqPvEJIkMH/5Kg9+5Ayv/ekPiHSHCNomlhpwfVHh9NEo07NV2i2brg6PRktkJl+/Z+apB4cobu6hjqapvVOm+5DO+nqRXlmkP6MS1UHTnH0zEQFJDoiEVVRNxvd9VA88x2VhRaJh2wSSjON5CJIAgbAfWOl7ROMxbM8hnjbYW2/xRy8XyUWjSIKIabXQNQ1VFKjZLpImcMiSWZcbmEEISQRRFhA9gWgoIKqHma3Y6H5A2/WIKwoONif7o+iGQjuk05nVuHJ9j42NOj4BRyQFSXM48xvPULs2jZCLENN7sdUS7eYe1SsmI7/wFIXrL2AWQ7C6zfatPJ0fPUNY3yVz5CGu/KfvMfKL4yy9ZfPa7AKPTCRZr9c5c7KXet0ja4RZeH2J3seH983EkmxW9mj+t5cZ+Pmn0DoUrnzzBbQiBIZESvQoyxLJI1liXotKw+PSXInAl/ncb38Bx6xhuTZrf3eBC4U9TGn/CzUZlamULAIUPv2bj9C8dJegK0LzG7MM//7TJOQE3/iDr3DsqQmKd1a5suIx3CXTN9FNdvAw4LM7+zqTZ57gtT/9AamhCFa1gaUGvDPb4JET/Vy+VSZwXLo6PFb2Anbr/3j37aeeKYVEE30ohmCahCai1PImquPTFiRatoUsaYgCSGKA2Q4Iiyq27RIIIoomIQQS+DaGICMFAU4gIgQBASo+Ll2RKGLKwKmZRLNxNC8gntAIiy5xy8UA9ti/WdATXL745CBKd5bmXoO7fz+PKrnU2wEdss+OI/Oxj45z7coWcquJKItIgoIj1cAR2A0cPvnkWZoVG8srI+y0+Ze//1Fq5W1e/+MbFByB83/4t9iWj5aKoVdNnOI0rxTaTKESWBb18wuMffIJrl76OqOTo2xv3iF8uJtYJIaiQ7Clc3frBuOZLFdeWyWejfP155cZTrU5GkthmFUSg2dw/RA33nyHu1eKtFyXF778HLPVKiOdBvZ2m2IOHk6kGfzV09z9yV12Vi3MmQYjXXGUtM5LX/kaYT3ggSdO4TZ8AJRA4NS5Ho5NHKKwcIfbazZBqYWBQLSzh+EvnyK/0uTWq9/jwOOn0LtF5FAU45U3eGm6wO3NJU4fLKAHMjYWuxtFmnWXOytVHp48wtLaLra7ypu32jx+uocrV3aINEU6e/R/UJSIGMTfM5MY1ijlLQRfoR34tGwLVZII6QqSGCCKMoErEAgithOgaBKe4yAoAkpURNgV8EQRP/AR3zOjywJqOooieIS0KJoXkIy9byYiS+QDCVdw8QKfLz45iNo3TmN3nbm/v0ag2DRMgR7fZ08I8bGPjnPp4hJyq4mgKIQFE0cSCXz1nhlBFSlubzPU3OKT75m59n9fIi+GOP+Hf0tK7qCsrVGpXWZyIMkrhTYfcCUCy6IjPoGfFZh9d5X0oUGs98wULy6g6JD/kxnuhpqMZ7Jcu1oklBD4+vPLPP5gF8WVVXoPRkgM9uH6IV568QLFmRp9psid7/yEYtPn0bEkm1tFijnojMd58J88yNVv3yF2tIvVr93lSC4FWXjpK18jm9OYPH0Mab0E+r6ZZ58ZoaN/38xzP9kgKLXwA5NM5zjDXz7F63/8ImKvyZlfOkcoHqJz7BjOD17k8nyd25tLPP0RndrSNuljQ/fMlLcDDvSNs7S2i6GYvHmrwNn7Orlzo0CkKXK8P/LTys5P/3370z/5sy9lEhHiakB1o0LDtJBlA88NSCkBmhwgiwJySERCRFEEZElFkUUER8b1XPSIBK7PTiXAdjy8ALzAQ/Rl0nGVWFpDF0EIAhIRGS0Z4f9r3+592rjjOI6/78lPGNuYZwymfoJAFcBAAgOFNEor1CFKhmao1Llbx/4X/Se6tUPVASlD1VRVIlVpURIpAQG9EkOBxvYFzpx9Nj7fXQeGbh06RAy/19/w0Vv6Dt/vHxusrueJnJqErTbZTBLjrc+mbnL0qsr8Uo65+UFKeo1rTZe5YorR5TH0Up2ZlVlGx2Nsb70mnIijdlw+vp3Bv5Ao629IDURxmi2C0R5ks4X5ssrM+nVyuBTuFlFLBnZPkGPZoeTIyDJkGx4Nr8lAoZ92w+Po8XNKlSqZhSHc0Ai/fv0d48NRFj67R3G9SGq5wNzqEhNSh5UHt7ixtsirb54SuRmjZUPMrjI9dxvl+QFL92doNg6YkBTK9RY3PxpjZj6Hf3yKPzWF1g7SP5JgLJsivVag8tOfpApJynsmNCyOft5Hc31MSaZ0WKGiV0ingsSjKnHF4dtHJSaTXRxsHCI5f1A1bEZzvWjhDq9/+Z1D4xzb6eCh0t2n8tuOReOtBHaNaq2F6av0JNps6wbdaBTHuzCtJkHZxzUsglGVPePf882x2uTSA5ebqdicN5rIgQB0IKn5hAMSinS5GTxQFIlAUEWRLjcjqxKBsIznS5yeu3RcD1QN13OQPZWRpEa0NwS2gyJDIqqi4rHxzGJ1PU/o7yrhRoepQITyhcKmbjIYajM0Osj0xCDbu6fMOrC4OkxqYRy9VKc/P8b09WGOKwY1yyca0Fi4liWs+ZT1NwyGNdqtNqF4jEDTw3xZRQ1HuJHpoXC3iKO0qbttjpwgJ56LLEO049FxWmi2yclWhXP9L9yIytBkAjc0Qv3ZLokuifQXn7L2ySKp5QLFD4rkcVh5cIsBKcDewx26JlXOaz4xu0qmMEX39imJDweI9YUptC7Yj0dYXOxlZj6H64M0/B5nPzwlVMiTyY8wdGca48cdUoUkuy/O0OwaL84a9LVkTElmSzco62XSqSDZbJyE7PBkt0lKlTjYOGRowqVarvN+cRaA/UdPMJtBrKaFh8rUaIiHm2WMvRM6VoNqrcWx1aIn6bCtG6SRmEhHsWs2QRVcw0LpUvj8y6/+3/kmCILwrv3nm4kgCMK7JqIkCMKVIqIkCMKVIqIkCMKVIqIkCMKVIqIkCMKV8g9L+UFhTCRuIQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["img = PILImage.create(files[0])\n","s = SiameseImage(img, img, True)\n","s.show();"]},{"cell_type":"markdown","metadata":{"id":"_GUJ935K2K_D"},"source":["We can also try with a second image that's not from the same class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rJ8tO9L92K_D","outputId":"b04eeea0-7041-4694-cded-b30c895d7347"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAASUAAAB6CAYAAAD5yEXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy8eZhdRb3u/6mqtfbc85B0ks6ckBlImIR4GERQRIigDEcQHFEQwQHnAVQ4oqLicQAFRbkqIiAzKFOYBTIREkKGDpnT89x7WGtV1e+PWnt3g8o9z7nPPYfzu/19ns7urL327lprVb31ft/vWyWstYzHeIzHeLxZQv53N2A8xmM8xmNsjIPSeIzHeLypYhyUxmM8xuNNFeOgNB7jMR5vqhgHpfEYj/F4U8U4KI3HeIzHmyrGQWk8/o9DCPG/hBCX/3e3Yzz+/xHjoDQerwkhxA4hREEIMTzmZ9J/d7vG4/+d8P67GzAeb8p4t7X24f/uRozH/5sxzpTG438bQggphLhNCNEuhOgXQqwUQsz/J+c2CyHuj8/rFUI8Mea9KUKIPwshuoQQrwohLvqvu4rx+J8S46A0Hv/RuBeYA0wENgA3/5PzLgO2A03xuV8DEEKo+DteACYDbwcuE0K87f9us8fjf1qMg9J4/KO4M2Y6/UKIO621xlp7k7V2yFpbBC4Hlgkhsv/gsyEwCZhqrQ2stY/Hx48Aqq21V8XHtwE3Amf9V1zQePzPiXFQGo9/FCustbXxzwohhBJCfFcIsV0IMQhsi89r/Aef/Q6wE3hECNEmhLgsPj4NmDoG7PqBz+PY1HiMRyXGhe7x+I/EB4CTgONwgNMAdAHi9SdaaweBTwOfFkIsBh4TQjwP7Aa2Wmv/oRY1HuNRjnGmNB7/kagCSkAPkAGu/GcnCiHeLYSYJYQQwACg459ngUAI8VkhRCpmX4uFEMv+C9o/Hv+DYhyUxuM/Er8G9sU/G4Fn3uDcA4BHgWHgaeBaa+1T1toIx7YOA3YA3cD1QPX/vWaPx//EEOObvI3HeIzHmynGmdJ4jMd4vKliHJTGYzzG400V46A0HuMxHm+qGAel8RiP8XhTxTgojcd4jMebKt7QPJkVaau9IinlI6RBKQFIRAIogTZQsgpEhELhiQiJQAlJJCVCWBImIpIeY6t8whqQAqxPZDXSgkKAFWgZIY1EKoWVBjAkbAItDdpGKKvQwoKxYCXaGpwlBpQE95ZASI1BgLFIKYlCg5LuPakADAIfi0YIQTIR47NQlXYqpbBWEAmNZwWhjkglPXToPpNIJRBItNZY4f62+wqJl0zhpzOkMzmEEDQ1T3DtsFBTW4uVAmEEWoTYSKMjSxgUSWXSiMgQWUNxJI8SHolUEunH91AIrLWEUQmMQEoQRpAfHiFTXYOVEQA6NJTCIroYYK0gk8lgpMAXklIUIowFJZFSgjbkgxAPQT4o4BmJ9ARRoDGeR5AfYWiwl0gLVDKFTCTJ79yGjQr4UrG1e7hyzx5dsx0hBMYYFKLybACsFEgL1lqkFLjLEZW+IcTo+e5Y+bjEGINEYAVYa9BCoaMAE4a0bW2jsamGXVu2cOixxzNcyLO/bTtNU6ZQ7B9GJDxEdYZG4bHh1a3k80UOWXoIOizS2zfCYO8Akye3sH7to9zzh/s47rT3k0Wyed9LHLH8aNpWr2HS1PkkGgSlQpF7f3crBy9dyDmXXMYtv/w1Tz38BNZashOauOWW6znhqBO49FtXMrGhnuHCCM2TGnn5b09TN2EOw4P9HHzoEfTs3cWZK06mtWUCp577Afq37mHCojk888ijTJ0xj6p6qMtNxfctm9c/z29u/gtLFkxj+fLlfPArn+Kh2+7hO1+5kvMu/iiP3vkHfvj7W/nBp7/IU2ueJJlMcNoHP0Emk2Lj04/R3T7Ae973Pp5at4pkQtGxu48vXnMV37zgk1z65a9w5Ve+zpwjlvKRCy5g0ysb6N3fTevkGcw/bAFDg0X+ct+93HbdD5k0sYUzz/sA1914Pf/63tO596Y/otGcfdUPaC5K+oMCxd69vPDEs1zxq1/w9DPPMKm2nk0vvsiiYw5nYjLH1d/6CW897jA+9dH3/p3xthxvyJRsKsL3fAJjKUWWfAmKoaEwZMmHmpKJiHSRSFtKJqAUCUIrGIksYaSRVqKVD8YiLEirkMLDWIXVgDEo7UBDCEGkNMJIrLJEUYQ1AiEUkdAoA9Y4QBIWrABpHDiIuKMbLFYqZzM2AmvcdWtrMEpgkVhp0JHFILBoHM4KhLFY3PdGMgYkIdHSuPZZ8FXCga6v8DyvMngkCmHBQ2ClxRpNGJYwYYQUlkQiCdYBjTSaYhhQGBnCeB5SC0oahKfIZDIo4aGxgEQBRlmCoMhIYRirPNKpFFIroiDEtwLPKpSQBFGJUqGAL1N4JonU7j1P+oz07aenez+RhdAatDGgHZgLKYkiQ2GwF4PEhgZEhE14WA8SxiLdIYJ8kTDQZP0kJswjjEW/rmtZa7HWvgZgyoDjgKkMRK/93GvBqHIUGANayoHT1q3b8LDkh4bI1VSz8PBDMSrL5IXzeO7JlUyd2MqMWXOpr6mlYUoLAwP91DTX88jDD7Ltb+v5869+y1MPPUpNIsfElmZmzW2lWBphzgFLeM8553L0Sccw3NfJIUuPRkkYISQ/EtC9ex/dGzuZNHkmwmvi2su/wswFi/nqd77F6R/+AMcc/lbuu+9xzjn/XK77ty/x8oa13Pmbn3D5h77EXXetxkQRh5/4L5yy/AhK0vLrO+9iuNjNHb+5meyEJHMWz+Wir19FkoCVdz/JECWmzWvlqFPey+pdT3D1H37JkrceyfNrNhMVCyw8sJXOnds56JB/Yag0QG7WVNK+jy9gz45tdO3ex1BREugif3niYfxCyNrn13LgEcv4+gXnM3HKNHb1v4qfsvTub2OgZxMnnvBO/BqfYd3LH2/8DZ9676mUevaQpZovXH0l69as5bRzz+f5Z1bz8u5dXPyDH5Ms5Zlz5Hy8TIqBfsE3/3ATTzzyOBMnTmLjpu0c8bajuez8C1jx1lMYGdpFPkq9Eey8sU8pmfBseWYzAgcSCqQRmDHnSQVaa6SUMbuwaK3xhMTzPCIbIYwlm0yisGhhMaHruFqC56Y/TMw2DKOdWliw0qCEY0UyXtlgNCAMWOnOt67TWm2QnkIK6xiHsAgc+wkxeFZgZTwgUSR81+mVBISPEBYtwcfDCjDGYEONTEs8A0KO4rgUAiOozP7auEETBEWklNQ1N1JTXUeiuopcdR02CsmPDBLu2U4iYRnxaqieMIVMdQ2eUkilSCXSlMIiQX6E/v5+ooE+UoP7AUNJ+IjqRjINk9FKkEqn8bwERof0t71C1NtBUNNE9aSp5LK1aFOilC9gd28mHBpmJNIESZ+GAw5CRxFBfoRMuprBwX7o3k//UD91MxcRIZAmpKhLFLq6CLXFS2VIDPcRYihJH1EoklSCCNjRl6/ck0dWt1XYj4yZ0SjoiBhwLULIynuvB6bXdlA3UYDrY8OFPOl0moyfZNO2LcyaNQs/lSAsBuQLJba8+DINtTUseMsS/nLLHSw9+q00V9fTtncXDQ31tHd0UlvdRF+pg6OWH8aTf3oSL2dZfOjhPHbvg+wbGKKppo6ps2dzz913Mm9CK4oCR558HE/+dTUDhS7uuO1W5kybRl19mqb6Kdx92x186WtX8cLqp5g5fT5D9GJlmj/deAO/v/8Jtr/yMgcuX8Dq1WuY3jKVrdt2Ul2Vo6tzH1+96GJWnH4WTzz6Jz7wwfNZu2Yv+4fa6W8f4sAjDuSSz13A6W87g6tvuoGL3308n/jKNci0YHLLNDKpEgcsOZyLz/8wn/nSZby6qY0brv8G3Xt7mFg7kctv+l98+1Mfpq66iQ9+8YusfOgBHvv9bfzk9vvYtHUTt/zgWs797Af46+/u5XPX/Ii+/d388EvfQuYMe3ZtxvfTDAz0MX/eQXT072GkkGdg525+t3ojGx9/gmNXHMtFJ3wEmcngJwOWHjWXFx9+iREdcduqe1n14IvcdfufKUadfOjSz1EcCNj2ylbuuf0unlj5x3/KlN4YlPyENWgEVFiHkBZrFOUeJewoOAjpgCUpHMMpz5jaCoTVGKmo9RURATZy52Mc+GhGv88ox1zcTO5epVXx31EYG7qOqgXWGCwC6xqCFMalNEJR0ha/nCLEnVp4ILQF5aEkSAlSevieS+2U8jEmohiEWG2IQoP0PKpyPkIohLBIIZBWMlQqIYQg43kM5QPCIADpANITkprmOqqbmqiprqO6tpYwMgy2radRagKr8UMYikKYuZiq2iY69u8lCosM9/dR6u0ml8uQDSNCISjpKE7bYERA7cRJdO/cSwlNy5RpKBPQu28fBiiFEbnaOtINdYx0dFAsFrGRY4zCAlIQaJeSGixGgY8DVB2Dg7ECJS2ekGhwnNo41udhSGhDMikI9GtB6dE12yvMRhEzn3ii8oSsTHDlkGNBPgb3ch+oMCRjK5OdtZZSqYjSluoJjRQGR9jXvo8DFi/ihut/zluOOpKGbJbAhDRMbOXZB59kw5YttLRkGOkvseSII0inIFtVQzE/zBWf/jQnve89HLH8HezctQVRSvDCww/woS99Gi/p8euf3khjZgRa5nPI0mNYee+dzFowhfq62TQ3+2zZvJN8YYCtLz7L4088y3vOPoeNT63i+lt/zUfP+RBfuPxKLvrAqZx88hm8/+JLWLt6DTJK8INvfoEj334Ck5rqOfDIQ9m5r5NvfvIj3PncBq763IUcecRRLDz4YP5y12NcecOVPPDQC/z1luv5670rece7T+SiL1/B+qcep2g1d/7iDxxx/Nu4+083Mal1ElvWreej3/ouWx5fyfo1T9NbHCJT1YgNDcuPOYnlb3sXs2fV0jU4wu+v/QkdHR0cuHguJ577EV5+7gUaW+v5zhcu4z0f+Ti3XvtTAjnCF374Sza8sJ0Vp72d+tokq17aQpQvUuztZOGRx/KNj53Gpd/+Kb3tu/jsJ89n5ZZdXHPxpXz4m1+mtWkRv/jGVbz1g/8CfVXUtk7gXUun/udAyVeehdEZrAxQAlUBori3VsBDGAueckATRaANnufEnjQ+KuMRlaJ4BhQQsyJrLVa7NMuzojI7CgvCwzEkK0FEGO3SvZKJYpYkCK0hoTywhqSSYCWlMMDEbZcWPE9VZl6LRiifpHLXp5SgGFlsZN3g1BoA66QrUqkUqQT4UiKUJAgN/YP5eKDEbY21lPL9yuQyTJk6le7eHkqlAFMKSdgIX1pCaxFG4AtLSSnwfKLhkRj4BJ6E0IISEt9AqJxWZI3AKoUINMJTjplFIb6XRBpLJDQC9x2RDfGQaDOa3paZnVGOhRpjEEoSGYM0Dtgr/wqJxSCRlHtJwvfxpcJqTW1a0VcK6RosVvrMw6u2vgZorAWhBGVqPTZNK7PhMmMq90UjqBwfqzdBzFytRXgK32i6hoZpqsqhhUJ5sGnVejo7dyCqJtA0uZUXnr6PZUsOZXvbLqK+EVZ87GyKoaR7/8v87emNnHXGOaxbvYannrkLLzuZ/J49LF+xnAwNzD5wPg/cchd7Nq5iMNL4k2YwtbqOYhHmz2vg6ZfWYIcsCxcfxFBfO/s7+znimPksXbqca79xBevWvsxZH76EY1ccj9IRnz//g3zyyiuZ1tBEIlNLR083D97/R/p29HPCGSfy469/ib5iiAoE53/iQtp27mLm/Lk05aaxo2MDI/15lsyazle/cRmzJh5Iwc/TsW0nP7vvLvZs3U6mKsMvfnQFfT39ZLNV7Nm+jVyultaJk2nft5ui8Bgc2MtdT69m/cu7WLPycU444Xi+etlnec+p/8rq5x+hdsp0+nZsJfIhKI5wyVd/Qv9AN3+96xYuv+67lPpHuO/Wu5gyewkP3fkgLz+7kp/d9QumzpjB9759M/ffdjPf/PefY4NO9m3poz/soTaZYfWTz3Dux85j954dPHzvc9x197//U1BSl19++T8FpW9/61uXS+WERSEMCpB4YDUI4bqqECAMxgqsNVgBSguMNngIPE8ijCUpBVYKElqjEQhhQAmQMlZQRMx44sFinZaDcIIwwiJjlhZYTagj0DbGRuG+0xqshdBYgijCSByTioFIG0MJEw9k0DZACR+lFCnPZ7gYMhSWCEKIrCDSmsAIMB5BWGSkCL609BVCBoZCbGQwBiIh0FYTGUuERRqJAYJSSHdPF2G+AEHoBDyrMUaDsWghiIyCKERqTSREfB9kZWBaDBEgrAdWYDDYCIxyaa5LqQUmMu5vo8BGaGEQRgLCaWa4Xy1glcBqUxnwFouJHyXlCSdOtSQCE7Mbg8QzIVU+CCsY1pooiiiGo8n8Bz92iQO1CvgYsAKFY2XWWqR1apGMAdBYCzFIxc2sFA1eH0I44VtZgfE89xkvidURu1/ZTsvM2TQ0tzBxWobJjQ3U1rUyY8Zk+rqKHHHCYiZNbKbt+TWsW7eZQw5eRrFk0EnIRAHnfOJcHn3oKZYsPZKe/m6CkYhFhy5hyTHHUd9YzY4XVjMYlDjo8HlMn72EA5bMp2Pbyyw65Bhu/On3uOhzX6MvLzjm7Yfwh5tuoWPPLoJExAuPv8BbDjmMO26+gccfuYvIr6K9fSd+BrLVVdx87ZUkPcWCZW/nX885i1XPPs7JZ3+COQct4jufu5QTzzyZnNU8+dCTPPHkes7/zId4+vGH6N+/lxUf/SC3/+znnP3RT1JXXcUdv7+Zod4BaifOwhQLJDIpbNLjoku+wKpnH+WDn/wiN//7L8hU1XHCaafRPLOV31z7PeYsPYyXnriHHfvasMpjSsNE3nXup5g0pZmO3iLKdPPDL/2ARMZj8aKDmDdvBgcfdwRdezt48bm/sXDhgcybO5sPXHgea1ftobW1inQmRX1tFZnqDIlkkjkHHUjjxCksPWoZc1qbrvhnuPOGTMnzPFupbMVVrrH6khICKB/XbpaP/+9ZARIkEnApjxAxK0JCrDcYa9HWElnjWIAweEqh4o6tyrtjxCKnMZbQaKwRGOuGoRUKYyN8KZAoQlzlx5gII2RF1AXQIh4QLnMEIOUpUqkkAyMFJ97iBo6VoyxLCIV2iQyeFUTCVmb4MvsY/T2+B0qCkEjh9C5l4nTFOv3NWh1rZNLpV1agsDH7MyBVhaM4QJNEceVRC0tFZVYu5dHWAVGZZY5tV/kxa3fT4+uTDjRcgl5heSY+V465ZwAyLgZkEx5Z5ZQ6DewYGGVKj6ze5p6bBR2nzVg7+hwpA5aN+5LrBzIGzzKDsmNAqpy2uRQuBkwBKmZSgY7ISp+iBzte2s6MedMo5Xt5+ZVXmblgDh3beshmPCbPbKS/b4RcrWTn/mEmNjZQ3VTLU/fey513/JmpE+ewaNmhnHTm2/lf1/6S95x3Pp3tuyHhke8aYFJLKwMDIzS0ZGnb8Cp/ffhOausn09+7lxXv/QC3/PZmJkyq54AlR9K25kn62ztYesy7+PwlZ3HwjIM4+aPn09bWxgO3/I4/PfQgf77zdk46+xxu+MGNrH/qAd79/kupq8/x02s+z29uuxdNDXu2bGbqgql8/OyT2b1jL2ec/hE++2/f5o7f3siffvtLjllxBp172pnQ2sILf32GYqkDmTDU1UylZc4cXnzyYZKNdWR0mrpFM1l7z/N8+4ffY9+2rUR+jpt+9x2yhQSZulr27NvCrClTufBbPyBbncNXgiQ+SsLu3V3s2vQyDa2TEGGCO++4m/edfiI//vblXHv3X9i7cwdTpjQi8MhkqklkPM469p2ceMo7OP7M96A0COmRSvpEUcSJhx/wn0vfckllPaGQUqJ1VNEbLOWNdKzTfspfIZ1wLSyjgrKRKEmlU0oFPSXtAEp6WOOARWgdl4ndDJ1UkoRSCOs6aAGNMcR6kQBt4kGkMEi0jZAopKJS5rZWY62ogI+0oMsiunGVsvLxsbpWua3WOoAiHmSV1Ee8FtTKn7HWYoXC8SSDktLpKNJpNuXQEoSwKC0qJX5wgn45NS5bG6Qopy8WK6QDHfRolcrKykQgrcRKjcVDEFX+oo31vTJTEUI4LU+GYGVl0NtY8/k7wdm6qiU6fr4GIiy+p0gpQ/tgWDn1kdXbsOK11/v6FGzs72NT37IFYOxx1x4gthdU7tWY9M9K6O3txWApFEtsXLuOE975Dro7Omme3ERtroqVjzxDIutRKJSQGEQA+f5Bsi1JZKaK/du6WXbwbHbt7qc3yFPvKTZv3s+2tS+h0oOs/dsTnHLGmbSt2cqc5cfTnBrCr29k/uyDWb36edo79jB7wVIWz1/A/Q/djg6G6Hm5nQFruerH/8Ytt/6eZUuW8cSjq2hoTvKz71/NrOktfPX7v6RuQgPnn3IyK957FomqCcyYOYUrLzmfZ3f38tEV7+Nj3/wizel6nnnmCb576Vf4zLXfR/qGX11zNe869RSCTI4Hf/4jTv34Jzlg0dH87OsXkC8ZdBTSPHky6IDOjh5+v3IdXzz3NC67+jsYO0Rz81yeeXIV3//aRWRTKZTn866z388733EK7R3dTJg8iZpcmmKgscUSvWGB3j37CUuS679/FVdc/V36h4bZsXc3tY1ZpjVPg3SCpuZGXnrxJfpe3c/iYw6kfU9A64wG8kMhuZzPyMgIpx594P8BKFmBlApDuTOY+INlcdl1GHClfWNGxVSBq5qVxV8lnK+mr6gB+Zryr1Gjo7ysTUlJRdSxwmCEjNmTxRgq7MzELANjEdLNqEI4zUZrHbOsCGsUSsRVPhMLrjYeZULgIdA4IHPAZOImSby4EueYzujANdaiXENj3015kFn8uL1SOlXGk44RCOHSUWNjzUyISgURHKj6QGAtEouRMfOwlHlURRBGKjAaT0qK5es3EolBW3e/y4O4DExSSiLjYW1YaRNl7QmNqQCKS09t/P9y9dLgNlcy1mloURRVnuPKMdW3sSDiQGUUoCp9RcgKyI9W7UYZXBmUxnqa3Kt5DVAJAaFxnrfIGpLJFDu2bWHS5FZ279tH7479VDVlmH3AQtZv3UwmTHL37X9h+swWTjn3RLo27+eeh1cye2ELxf3dTJy6gLYtL2EKlt7BvZz4vjO49Vc3EUbQuW0zJ5xyOt1deyjZflY9+QKZ6mp+9LtbePi+58iX2rn0ks9w320PoKN+duzfxbx589i3Yyf9/QMcfugRTDnsUOozinNOOIZsVTXnf+arPHLPH3n8gb9y0/0Pc94py4kKlut+9yDpZsmH3v0BvnXtF/H8GTxz5wOsWv8UF3/1S1z/zW+ybdNGjj7+JGYvX44odHHbzb8nlUwikllyVRl0Ic/3f30Lpx13DL/94x385f57WPqWo3jo/oc48eQTufrLl9E/0M3ChQt5/8WXMKG6lWQmSduuNqa3TkVLQ2BDPvW+s5g9dzJf+OH19Lf3Mri7nbqZLdTokL88so5jjz6Y+gmTsAmB0YL2rk6qs9Xs27mbZx9/mhNOOZqhkRKtra0ce+h/kilVpZwloFyOLwPG2NlKCYmxkfMfYSmbBXwkGouJO70nlRvowjAYmr+f8aQbBNa4gTzKQuI0xzozZjkco3IA4ipEFm1wrAGF8gRKKcKwhEJhTIQYY4wsp50gEdLpHmUV3MSpQTwswZbb91qtowxMMq5AOv3FARQIlHIVRj8+z5OQkDI2TlrHfqwg1MZ9fwz0juc4sJMxCNj4vlrAalsBMl9IAqPxEBhh3d83FiUca1PCVsDAWkuEE7V9qRF4ziumFJExBHHF05UuYs3KxjqXFQRO0UJb0No6hmshiEaZ0srVbRWh+/Weo3I7/jFouXOkfK0QbsyoXiVew+Rs5ZoceJlKn4miCKUUw8OD2AiGh/MUB/vQSlEaGSabbqaxMUV1YxWb1m1icLiPrr6Ak04+lmuvvJaDlk3n/Z/4JD//7i8pjvQybWoLA8O9fPgzl/HM009SlZtMZCPa1v2NVQ/eTk9XJyrhM2nSdN564ruomzGdrEqQL5XYvHYtfb2d7NvZxuaXXkQCiYRPJpWmFBTQkasKT5w2DW/yJC795Bf52Q++wfJjT+I7//Y19rTt45of/ZxHn3+MY084mVy2moQv+fm3ruGs95/G6nUv8swDDzKkDfMOWcpVV1/LpMlNnLR8GdrAtNmL6G3fTjpdx/s++FGqq2tJpdO8uG4VyVwjt173Y4Q3Qs/wMEcf9zaOOvpkGnK1DI4MctAhy/BUlh9+46ukGqr44Mc/ye5dO/G0ZuYBs/jND67nXeccz4++exuz5kzk0GUHMXvhQjzPp7+/n6qqHISwZ/8eurbvJFmTYtaig0GEvP3Qef85UKrNJq1HiDGgjMRqQcpKar2AZCJNQyqiKp0ilzakkh5RKUSisL5PfxBRLBg6B4cZjBIMRZaSFCjPYygK4oHsQEAQi52vb5wYfc+ldAqtDVbYeKDYmDU4ILHWupQnBj9PgIp1ikonj9kGNq78iNiIicVaiRBuMJb9UC6tMXhWVVI/JWzFIlFOtYgZm9IWKwVe/L0J6epXngTfU/hlthADYmQNaIsRY9JEXBFBSqfrSM8NTisU2gCRjtOWMdYJG4OItmhp0cbGhYYYiI3TjCJASMf6ykDsCUloBZGNkFYSYWO3uMQSYvEAE09MEqNdGhwYVzyIolHgeHzN9pjpvD4NdKCktf6HfqS/N1yKMe+VWdPY17HVTsesNBaFpKgD2nfvo3vPPhpaJrK/Yz81qob23i0cdcw7aNu3iaF9AZ+6+P08+tRz/PzbP+Oy717GC3/byrTpE6lpqGL/nt307x/AZlO8+MxTLFt+KG858hiu+fLn2bdpFZERhKEGadA2rkALVzWeOesADjjwYKRUYA2PPPQAfe17iaIIYwx11TUMDvaTSWVJpnyU9Al1xFAhT1pq0qksR684m6t/+G2OPOxYPvv1q7nisgu46sY/0rZ+AwcfspBsrp6Orm6UUGzZuIlMTvHliy7hml/+AuWl+OR5Z1JVnUULyHo+3/zJDTTU1eGrBIVikZ17dtMyaTKfPecMigLSBkraWXmqcjVMnT6DA48+klt/dg3HnfEhjj1mIdd+9yaWH72Y+rpF5BpzdO1vp3jSMioAACAASURBVKmmhoVLFtI+sJdDDjqSrdu3kEvn4ucp2bD+JRYvWcSGtWs5YMl8XmnbzdKl8zhs1pR/CkpvuMzk4iNyTJqaYHJrDelsikw2BdEg6ZrJiCAgmfCJTAmhAjCWUqFIMp1CCp8SEf0DnST8qeQDn/7eQbZtGuLptcM8vsfGs+morqOsrFRh4uwvdli7md6PZ0npOYNkuQOIWGeS1mKUAG1xfdYSMSqUSynQxiKVQAgPq20870tXWdQKHX+PiAeVY3YCY9wQ8VXZe4WrPpZ1HtdQhDBulUrsllDCQ4gIXyrnHHfYhRdrPNo4FhUJQSKudllr8WN2JGUMDDpyYGANNgbxMhAhhHOKx+lN2bAoBRWNzIGgu6kyvmcivrYyCHi469USUloSKuJqpsQKl5oqG1dHhQBrSEh3/cPRWDYzJgV/nWA9Fmhef34ZyMosq3yNxlqsVfE1uGf79+7v+G9YV/20QUQ6l2HeogUkEh6bX1lHf34nmdoJXP+LH9NY1URDXYZNOzqBNF/83hXcfefdnHLq6ezZ/Sp33PRHDjvmX1i96imq6psxKmTG9Nn84JJz6enqp3dwCC+VIgpDtDWEYYhSiqGhIXK5HBs3rGNgeAiEoqqqhigIKYYhQbFEVS7LSLGAn0qD59HR248QgupMlmwyRRAE5IOQx277PQunzqAxlUTrEudfdAkM9fK1iz7BtFnTuf62e2hr281f772Nj33sUu79w6/52s+u5UsXX8zdKx+gsaGW4WKRqmwGYwzz58+nfX8Pa9e+QMvkSWRlgnWrVoOvEIUin//JDUxrbeAbF3+OT33jCr71mUtpDeZx+HHLWbHiFB65/zHO+fAnKA3tpXluFY/duYoJDRlsYz17u/Yye+Ycbv/dLcxdeBBSFvG0JSwFTJrSSj6fp2XmTHwvzYLp09m2eReHzZryT3HnDUHp7SdNIgpL1E+oxgQaKQxGpfB0AZnw0VERT+axJkkQ5lFEhFEBz/MRWpBKpNHSxzN5PAUTmgyHLfRYucdibeQYipBx2mIqg0zGFRmnNTgWJLSj51JIt6YtHmdKiFiAdymXpyShdGVzaSEwIb7vk0slmJSzGKsY0iH9w5IwKmIwCDwMBt8KrHLaDVDRqIyyKJRLi6TE2hApVSXVFMqV+MsASWz882JgIrZK+MKLBWvnSHe6CnjWVcWUtUjlBqcvYjuEtK591rqVelYgPM8V2IVBaIEUCk2EJ1zySmzXsOV02jrRxosriJGEND5hXCU0xmAlaCS+BRIKZVxqrGPw03GapCOIRISHdGmx1K/pMw4n3H1zzDO+F0qhY01urK5UBi0l5Wvc8sYYR+msSyQdq/VjgLSVtE5KhYl0XL20VNVl2dPTSdA/yIQDDsDThuaGyWzoXMvcidO48MLPMjQ0QirrE0WGVDbNYF87+3dsIpGDptYWpkxuRZs8J7ztJKonTuSGKy7hD1dvY8vWHQzmC3ieh9CWQqlIKYhIJBKMFItoBCP5IqVIY719ZLNVGGMYGOhjKD+CDS2GYZJ+Aq0tdfUZ+kYKpL0EQTBAVVWWsBQwdfJEisVhUpFl48a1XHLeaXzus19h6sy5rNm2mXXrtjChpZo7b7yWljmzuP2Om1g4fzb0F7l95YOc+87TqU5XO/Y12E1d0ySOWjKP7/3kRsKRArnGZk456XBOOPmdWCCd9JnY3MRvrvs97V2dDA9arv7V9dSm69i9bw893V3MmlHP44/cw3vOPJ15sxawf3EfqVya6dPmkk1H9O7vYvrsGdS1SO67fSVnn3c6L67fRF9XNzXZJDPmL+DVXa9SW9dIXV3dG8HOG6dvj/xbq5VKkc3WoDwPaQ0IDyUlyk8TBRoddCPw8dKSKBREGgwFUrkqSoEhDAuE+Yj+oqV3dz8dHSHfeWAEIQ3O+TRWY5AOJMqiZlmDsFRK9GWfS7ls7/w8Y4RRyrK78ysJITBRxPnvPZDhvfvAGNKpLI1NPouOO42f3nAnm9ZvRyqDFAkHjCr2/8S/QyxQW7cur9w+UV4YHIOjiV9F2WMlnS1ACAdQKOf0tloihCYsV5jQblmLtbEHzDEDKayrYnqjFTKASNvRxanaoIwkkKNl9ygW0D3ckhn3OYOxCiNcCiZj5NWS1zqttamAiwGQYvS4sQRmVPMCpzX25Ec1pafWbXc6VJnxjEnV/lFfK6ftcsx5IhbBKywrZs9j0/Cxr2WAKq+pS2bSrP7b87z1+H9h5UNPsODAuWA1KZXm1Z3bSSeqyNVk6OjYz+MPPMg5H/k411z1JQ5c/jaaaxuZP38+ba9s4J6bbyApBN193YhkmmKxSFDIUywUsMDgyDBRFFWetbUaT/pkq6qZPXceQRAxMjhA2/atWGvJ5TIU8wWCIMBaS0J5pJJJ0pkMg4ODIAxK+mQyGawOmNjYgAkDEpksGza3IUTI1OpmEtNmc+a/fphTTn83z61/kYfuvJvPfvWzXHL+JwiLls9d8WU+duZ78HM+VkMmnWMo388Djz3PsrmzeGjVOjZseJlfXfczunr3IgoB7zzxHfzrhy/ES6X52zMv4YWDLDnyKCwBWmu27WijuamJx/+yklNPP43QaJSwPPrwY8yft4AJLZNIJAWJpObPf3qKk04/hq72AXo2baZ18UJyjbUMDo6QkpJIWk5+y8J/mr69oXmy7bGrL0/6aTARyhpKYYSXUAgR4nkpDCWk7+MphQkLGO3elzKJ56fQRqNDi5Q+paBEcShgZETz9OYC1sPN4IzSfWNjDcWKSv1HxBUWaWINRUocGXCDUsWDUwiJkU70toB2CRBRaJgzbSJD/f3MaM5QX5tjeqNAFwrYvg7e/ZGLqatNsumlnfjKInyFryRKCfyEwBMK6Ul8Vf7dkvJ8pLKkPIWvIOElSSQUvge+BC/hITxB0hMkFUglUQKs8FHWID0QIkEKS0IIEtL5KITCidsxmEkpkL5CCDdQlVL4Ml4DqKSjuUogpWMmSIHn4dJISQySEiUVHhITszQhZEXXl7EVwkRxmUKUK4JUBH8be80soHA7CEjrvssTguFglC2lVYo5y5agbFkutwgl0JGJq6XuuDajqWUZkEz5dzsqYo91yI8FpdGpB8dc4nRRSkEYBLRMakEYmNI6mVc2bGTbqhfp7u5i+szZSF9iCXju2Q1EJcOrmzfS357nYxd8iO7efqqaqvnOJReSyvjsfHUfe7u7GRgcoVAs4ifT9A8Nki8WqamtpRQECCnRYUhNdS2+VIBg8UFLaZ4wge7ODnq7u4msjfUIS1UmS0IIWpqbKBb6KRZC+ksRDdUZqjIe7R2dVNfU0NHdQyqZoDgyTH1TE/u6ehnSIVF/Dx+97BsYW2ByXRN/vuUPzFtyIEcefzzHnXwCl370AtIpiAJLGIVkskmUSHLfPQ/wiz/dSUJ5TJ82ndt/8wt8qTjjnAtYftw7IOnT1dHBjFlTqW+dRH6wl3w+Yu/OXVRnslTV1jNz3lxa6qp4+MFHydXVghVsfXkDOV8yYeY08iOGAxZO4YE/PsCUCXVMWbgA5XvoMHL2aOkm+zmtzVf8M9x5w/TNiAyREUShJpGBZCpNcXCYTCZHyRZQSlVcxol0LVZppEgRhHlCBamEj1aCcDjChhEqofBTBuV7sUt4tHrlkihXY7Jy1LFSMTH6AmUsNjLOz1QulkmBiGd5L+64WIMnZbyFikamUrROTDMYSKY1CExmEvmRDvZu2EMmfR2LWxfz52SeRLIG33dr34R2psEkEEqJ0BGeBB37ejAiLq8nQLh1aQnho23kBp5xA1VIZ55UUiKNQUgVO9UNlUr6GC2lzAhMnPKYWFvzlMQaZ1ZMJhJoHTmrgHCObiXcAmODRVnt9CTtUiBjBcKzJPEwxhDqAOUprJIQg5vynIHVGIFRFqnLuyaYuFigENoQCaBcERMGbRNAUOkzWx74MxfcfStaZCARoXSSqVOn8MMbf8vAwAAWg1IJjM3jSYsg4b4qrvqN+q9GmaGx8Y4R0sYlAGcFcRKkxTp/CEJYxyKFYNPLLzNz5nTa2tqYN28eBy1egvUkOozwE4KwYJnV2sBQazMv/u0JZEpz1y03s+H5J1i/YSvTpk2mr3eIggkpRiFJ6RMVRkimfGdv8X3y+TxCCNLJFDKdojZXRT6fJ4wMpVKJZDLJAQsXYQRs37aFrK+IIosOSmTTKbo7u0hV11EaHGRGSxMYy659+5gyZRqRjaipqSNEIIQk39eLUD4jpQAdGj70zkOYfuACZi08iLM/cRGXfeRCrvvdLRSDIj1d+8nm0pWiQiEf4icTdOzaQlN1Nb++7mdYJSmWSvh+goVLD+Tyr3ye8y78NMoU8BI+06bOpA+LJyX9nYKJk6cgE4ogX6J3qMjRxx/L8PAwgQ455cwzKBQKdOztIJ1OY63g+FPfwUBvPzaKnMCJW6CtiA3AbxBvuHWJlIApIZVheHiEaGSYdDrpdgqQEukptycPEQYNRhCYIlpIpLSUCj1AEc+3eL5zHCulKmV1FQvRMl7HL6WMj7lXz7q9may1yHiQS09WRF4hZcX3U14r5daxeZVlK9lElj179jAhZ5g9t4FX95Xo3tHJtEMOZua8qezo8wj7t/OJD62goT5FZEKUNSA1qBBLiLIRSui4Hc7/JGXMnrD4cQXLCuOE5Lg6JJVDTmHBaIuQsUwSV9+kp1CeREhFZE3MIizE1gHiQeoJB0gi3lKlXHESSuLj9p5yq4stnnJsUllVWXTse/G9VQLP8/BUwi3/8RQiTi9FvLeSUu65GCXwpMCXHp6SeEqihFuT50lnt1BGViwg5dg0UqCgFcP5AWaFkhmmyNYdWzj56KO58ANn8fH3nMQLf3sMYQ2BULGQrdE2qrxqY1x/EmbUKCpMhSmN/QFXAYR4iZNSJBIJFi9eSCqVYtmyZdTW1mIEREFIUMyjEhl6+zqZPGU6/Z1dLJg+jcLIAL4M2bx1F6EJ8aXzuA0ND1OdzRGEJSY216OEpL6mGt8YrDZgNMPDgzTW1VNdXc2E5hZapkymvr6e+ro66uvrWbrsUA457AishlQyQSrhExiDSibIF0qk0lkQioKBusYmCkGJQikgQlAII6T0SCRSKOWqr4GxlIykQXns2TbE9JlzqKrNMBIV2bBmFY31NXR1dZLNZkkmk6TTDqCyuTRD+QLL33YiHfv3ud0l+vtJpnNccdXVvPDMI2zasJ5cJs2aVav56/1/Ydu2bYTCo7unh1K+hPFGU+tkMsnSAw8iKBTxhCSTybi9xeIlBXV1tW5SMaaSYpt4AnmjeEOmFAQRiWScKydSRKUA4SmyiQRaxSuXbICfzYKxFMNhhMyQzCUoDAwgZAIZWopBntJgAS/pkx8ponWEVAnXqWJfirBjCXlM0WOWoKyAeKuLuNCFGLtswQqUtSDjhaWUdxawlOwI1VVV7O8GrQZpzpQomSqCth6MSjO1OcmGNduYMS9i0ax6Vq/b68rpFsDHSg1xOd4TYKQzNIbaCdS+J9BWOZ0NgTGCKN5EQXgK3+K8KDJAp3xyURItjAMsUzZcGgLrgLa8t5SQkkR8vcIb3XXBGIOPJNTOsa19D0+6+wMuHRMorIxIoipLZSoMDItQcbqjnWCP9NDaooicgVJG+Ih4+XUc2tkJpAAMKCzSE3+/Rs3zkGjSqQRbTRA/H4vySgwNFvCiiD9//zvcpofYUUrj+ZpwpMAXr7iKRYccjhYg0a8RxF/raTJxJzGv9UNJRRiGeFIRhg7IPC+B1pq9u3ZTV1dHFEUEYZGaYkgulUGnLSI0pBqamL/sUFIZH01IfWMD1bkcPT191FRXU1tbTa5QYPfedpLJpPNBWUN1dTWJZDXLDjuUpYcso2vvXoL8MJFRTJsxmSgIsckakiZB04QJzJ2/gLYtm9m4+gWCMKS8sLgQlAjjSdcZfx37irTFaIPxYzuKdFvsCCHIhyXWrn2RsHo/3/36l8k0VFNVU82kaQcwNDREda7KpYAdHQwNDeEnFKl0ms9ddCGnnXMGL697HqFgxbkf5tVXNlFbW8+C+Ut45unH6e0ZYkrrZF5c/QJ79+7GasnuHQXa29uZPHky7fs7Of7dJ+Mrn57OTqZPn15ZwD7We1ZOvaWSlEolSqUS2VQaK9+QC/1vhO6rpllTMihCkukE0sugS8Mkq3xSmSReOgM2iQkl1hbQRuIpCymfga5uUqk0+UKJIAgYHC7RvivPsy8FPLhRoyWVJQ5Cjpbv4yWn7n9jmmaFQKDjWrutbOxWEXyNILAGTwgCYVFCEBiNEoozzjqJofWPMnFCLY0ScotmsOPZLTTOn41fU8dA9z727MxTawZJHHAMTzz4ABhLZCI3BoTbiUAoUUF5E3uEJNKxnZgdKeF8ScZALldFlE4yvVnylrceTlXLDDp3D3LXH26FKARjCYVA6lhkNhGBsfgCkB5KxPdFxOmtFYTWYrSjxJ4VBMatFRQCIqFIGk1QTq8kyDGG0VF2Ec92wiClh4lChHVibWQ0obZuqxlkvPOAdNXPSGO0xkqBiTRIibCWHUOj6VvrlBmOxb2ubF/eaXLME3Xpl4CglOfI2im8MNTJhJosV97wJ5LJJIEO8KWPNuEYhijivbsM2ASpZBIbryXs6uqhubmZffv20NLSgjGOZShh6ezYR3NTC8l0ik0bN9DXO8Tigxaxr72TwqDBiAF2rH+OG264gaAUsXBmK9mGZja+/EpFbFdKUCqVKvt9rTjlVLRxaxnzhQIApdDpedlslp7ODno79zOlvoFlhx1KIZkijAy7X93F/ff9uTKA3TIu7dirEDTUT6Cvrw+pnF7mmQjf9yiFITvaOwFISJcdHDpnGl7jJNaufZVCcZBsleS88y7gxpuuJ+VlSGcyjOSHqKurw1rLKWd+hD/+6sek02mM8jl1xZkUdMDcmXPYuO0VTjjunVx/3U9ISMVRxx5N375eOguDdO7ZxTHHnsjjTzzCeR/+CF0d3UyZPt0tLo+zFaUUxWKRdDodZz2jfc7G9pYwDCkWS7z3+EP+c0L3+vuvuTzhS4JAo4SH7xlEIonVkkQ6g1IJrAnwEkmMtBTyeSB0zmY0URhRGi5QKGm6uwybtmuee1XQE2goO4WVRViFFIaKgEJ5zVcsyAoTp0FlD4sThp3m7WGsweCqSAiBbz2ENAiV5oAZdTz+0BqOmNdCUPJJNWbxCglqF8znoCNPoy6doCFnGBkuUSrk2b1/Px0dPTRMaEWX8iigLpWlpEOsr0hrZyWUwpBUHhDhSRl7kSRalhBBgKitZc4kj0OWTGW4q4t0uo6etqeZNHc2UxYexI51r2AURNrgC+kEfmWxeCiB056Uh2cNUihnEkVjhHC7cFonP0tP4Nl4EW4stJm4I8iYPQnpSvoiZpjWiXEIQCsH9NoaV1SIq3gCidUaq5yrHECIKPY3WUbXr0D/GKG7tqa+kk4L4Ur2FfZX+VEOLJRESh+ZTNFTKrEolWPnQMTGDc/x3rPfT3EkQAtdmQisEQwNDzI0NERjfQNGW7q7u6mqytDV0U5DYyPSWurqqlFCoa0kikKMNRTyATte3UZPd5drP4ZsropcpprHHn2I09+3gvrWWdzxm1vQJqKhoQ7f88hV1xGGARYIgpBsNkd9YxNvOfwtvLxpC7t2vsquXbtob29nz5499HR1sG/PTvbu3klPTzfSKiKpeGXrVgY6tlPKDzBl+kJmzp7FSy+uJ5NOoaMI35MkkmlSqTTDI0PxvXMFEmMcKzaRYaQUIIXAGgfEs1sns23LK0xbPJ+ujt00tczmbe96N14wQtuOHYRhQBRF5HIZrLaccupprHzkAYSA2XMOIJutZqC3h1deeYW+rk4SyQQNNTWohGKgr5cNWzbRv6+d2XMXsPbF55k2bTqZVIo1a9fS39fPzBkz6e3uoaauxlVsjam48vn/OHvzIMvOs8zz921nufvNPbP2kkpSValkSbYky6ts48ZgY2NsbHDbdEMTdg9MsAwdE9MMdAt3Az1AQPdAG2aGGLPMQDNesA0GbFm2ZcmWSosllVSqfcuqrNwzb97trN/55o9zM0tiAsWEb0RF3sq6WVWZ59z3e9/nfZZtnHD0XFFOB57WHNr7TwPdr1qUzn7jPz8odI4UJXCqtYcxBboaUNhSDZclGVnWx+WSSs0wHOZ0t3r01ob04oKVXs5aB9Y24dJCwguLGc6W6/RiVGCcsAincNIiR+492xuZEY0Q4SRClkJex7bM4sasKkbiVSELclnQbLR5949/mI2Nq/zke/exuhrRmsnobg4Zb47xw//63/Hw3/8Zd95/J/PX12mGYLMOkHP4ljnuuOcu4hRsNGCYxNQaDbyiGDGj8xLHKXs3EGLH5ygsBLffOcexPU3mZiZZu96lVs15/Q/8BBdOHMeIjMnZm7iwlbJ17SqekggpyEWpE/SdplCldg1XlFiRUqiixJpUAUJLPDniEAmFkmIbAIRRx6lG20gBO7SFbSpD+XeURU3lJZtcyhLfUU6Wm0t3Q5tnKbETgS01jaL0ftjuwjaTG9q3VmvsH9EByuL0cra2UnLnc1IqfOMhjWZDFIigwjGt+O0//nNumqsSx5JCCGq1KrZIqQQBzUadLMsQwuH7Bq0162trbHV7dDsb7Nq9m8Gwz4WLZzDGcPr0aZr1GlJrPD+gVm0RVnwqtSarS0vEaczG2iq//Ru/SXfjOkJrfN8j8CRC+URRjBeGOGup1WpkSc71hWusr6+hlEJryVZni+GwT5omKKW4vrRIr9sjGg5IoojhYADWw8Zb1GqKiZkD3HHn3QyjAXO7d7O6ukKrVaPb7eL7AaEf0O31UFLsOHQMkhjnclJb+ogpKZlf2uSeO26jc/kSce7z4X/xU/z5//H7dDY2mJpoMxjEFM7RaDTpbG6y/5ZbOHniOeq1Kv/+N3+Hv/vS55DaQypLMsw5ceIZDh97DVnmOH3qNL3uFnv27UYUlr27dlGr1tjqRswdPEA+GOCEZGJ6Cq01Rpa4oyvcaPFSFiTP86hXa3ieRxiGGGPYO9P63orSdz77yQedDLE5aF8hpCDOywCBwSAn7m+SZAlWhKRWMIxzejF0uylJrohTj2yQY4XFZYL1tYSXliwaRy4hKDSpKEr8RlgoRh0OjIQe+Q74W+JXogR8UWU7LdSIROkodW2lA5AUJchdn2jxuruPcGBmlvZ0wHjlIC0DU298E3/4a5/kJ//1Rwm9XVxduIovBL3I0mw2QLagNcU/+9Gf4IUnHqHf73PgzqPkwy2cV8EXAf24R2OsTiuoYpMMZyxOON7wun3UpM+FjQGbC5f5wM89SDZ/gVjlHHnte/lvn/sHqo2Yt771hzh5/DGg9GwKnCDTZQkuvb4pO0NRfvdSlFoznEPL0uBEjrRnZZm2KGRpnCfKQlNu/Mobw4hS0uKJ0nalyEt7F7tNSHW23HoIhysk2yRwtovaiHGfIymsw9qCQZHjCkcvvQF2t5pjo8KjdgrSDVHtDbGtlGqEG27jCxKpSzB3Mc25f67NFx57iW889Le85/0/TGJTlCm7tiTJdqQmcRwzPz8PznHwwH4KJRGZ5fL1a7RrdeYvX+bF557jxDNP06432Or1SK3jbz77GR77xiN4uqDZCMhieP299/HwV7+ERNMbDhhvtUjSBCk1EzMzSOuYnppmc3O93LJlGd1ul2q1QhxHJenVGBYWSwdQJwQut4RBiO/7VEKNzB2L85eo1kIa45PMzs6xsrLK1PQ0q0sreMYnTSLyPMNoRZGnJV45Ip8O47xUJgiFQ2HJiHqbSBNyz12H+dIX/5b3/8RP893j32FpeZlAawrhiOOoJIr2OnQ3N+gP+pw8eZZKs4W1KUZXSIYRxvNYWl4m7w156dRJdk1O41UCFq/NU6tXkNowvWsv5Ja53XvYs2cPaRxT5Ja1pWWGccKePbsJw7A0RgxCtDaA2NmWCiHYM9383orSw3/6Ow9K5yhIiPoV0kwyjB3dvkALQ5RpHBVyERIlBVF/iHYa4dnRIZ9iwgLjGdJhTDyQnLielxgNUIii5MEIYHuEc9tcGgA1eq1EFMVI/rGtnSpwonQM2ObRSCmQQmJ0gNaOLM544G3fx7c+80eMje3GNRQvnniGt7/jQ4i24s63foBHHv5zaM4yMXGQyu6D3PfWD4LnOHTTPsbrijgZMKZT+sNVJsc8ds/WOHjTXt76g/fw/e//EAduGmdtdZU0y9nT9rnrDUdZW7rKsSO7Ofqmd/P8w3+NvfUO9u9t89Tf/Rl7bj9MfH2drqlw7eSL5IUEUTo1eUisKChcgQ+gLKYkYyEKRljbiNNDiXNIVfKOGPGSZOHKUSwvSG1OmmWkmWUQpSRZSj/NSZOCOC9IUkuWOwZJRpYUDJOMNHb00owoS0lyR1IIksyRAokTZLkgLiAV4Gw5Ig2zG51Ss1GydV++IfvHZMeXA9hyNOKJEW1im5+12I+IbY/7Zub40te+zvvf/z5WlzdYWlpmMBhw8vnn6WxssLKyQq0acunCBbQyPPXkk0S9LpfOnmVpeYlet4tNY37oPT+MCX0uz18g6Q9Is4yJsSmEUBy+/W7qYxU+9eDPc+jgbq52euRZCs7ha4UfeERxwoc+8uOsriwxOdZm6doCSRyR2BTf06XPV5aR5zmTE5MYSteJfTMzhAIalYD+oM/C6hpSeqwsLrHV2WTfTYfIbE4YVli4dh0vMHhSccttt3L16lX0qNvUUrM1iBkOU77vB9/D0tVrTM/O4VzBnplJcpshsggXNjj3wtMMhkMKoZnbMwM4arU6SkoG3T7D4QCk4PDhO1hbWeU1d9/F6bPnGG/V2VhbI5A+B47ezC2HDyMUXDhzmsnxNhPtiVGnmLC2tojUIe16lU/9/u8yMz3DW9/+AJVq7WUH0SvF+y/Hr/e+SlF6VRi8OubjNwO018SvKjDluFQNHFZlmDAkcw4bNxg4BwAAIABJREFU95FZh2qlghd4GAV1T+J5ksDUyoQF7fBNQdVsm5iVnYATYJzDyRxXyPK/JFQJHG/jte7GSaxEuQ3c/kZxcoeRvL2dyrIeeeKYHW9xx5FZ7n7bG+jHq+xqNPjYL/06l1YWuL5widWlZUT1Do7sOsTYRJvbjt1Fd2MRaYdcO3uOk09/mze9/e14QrG3qhlmdRqNOaK4w+r8OjpssLaxyZ5xye5Zj6MH21y+eJnXvPkHiXWLl775Nea7Gyx/8yHWv/ZZTp7pcvnUWVxzguvnTuEFTVSe4+eaitwWdZYbyQzInBz5F5VFWFJQWEuW5cRxzDBJ2OwOWOtusbE1YKsXs9bt0etHbEQp/b6lGxdEqSMrBENbuiwNnCOKLL0kwwqB1YZMaSyKni2Z30oHpBnESYZFkGYjE74iR9kRJuVKj/SXP16pfSv1jdsdV3m9yg5uG7Te5hmVFsQZeZ6W5nw4KsrnxPoie0XG//CvPka7ETI+MUWWZSU4r2B6YoaTJ0/ywonnWVpeQDrL/PwVPM+jyHI2VtfY2tri7MVzPPXM04RelX0H9mOUZDDcQCnLFz73V7xw/AkAVtY6iDjBKE1nq0dhM7bWVxCFJcsT/MDQ720RBpqxVpt2s4V0IwM/V3Lblhaul+Nl4eisd+h1B3Q2OgghadXqhL7GhCGeUZw7e5apiUk6nQ4Tky2cLTBac+LZ5wiMV3b+UhKlGX4Y8O53/wBve++HCP0KWTREOonxauTW0Osn3H7s7pFljcRoyfz8dZQy5WZSa5IkIgyrBDqgPTnG+vISx48/xf6DB8oAC+3x3o98iKsXr+KhEIVjZm6W3laf1c0Onc1Nrlw6z6VLl1hZuMKf/8mnOXTzYe6+9z7Wt7oUwo42yiMQH40SBmuLEobwFM88/eSrlZ1X37596qPjrjVVo1r3ychLkpgSeIFPkUYI8hGj2SALR5zmyEDja59h1CWPc5xUpHFKp5czv1Dw9AsDHr1iSyxIlsDXK4WbxahW3lBeM2KBmhF0IgqBkqOt2EjuoUYxSFJCbAWqVeE/feoPWbrwJGvPf5muuYVf+MVfZGVplb/8o9/gnR//H4mWVtm1dw+Pfuvv8P2QSxde4sDMLt7zYx9n8fpZNleWeOHxxym0JHRD1PQdrJ97ltbMHHiGerVGbeYYl777EHLzMn5YUBs/RHXXrTz0zS9wbNc013uW2rXLGFng7TvAZqFY31qiMfk6vvQn/xeBX2FoIwor0CicKMhs6YNkCzB6RHh0BYUtM+ukcyRZgdI3fm7SAYUgEUBeUKsbBgOHy3JqgSMrSuuYvrPYuKDmQ7NZgzQnN5JhN0FUNaGRZFaQJ+XKOk4LmqHBCshzS3eQM1LFYnSp5VvqRTv3zP59N79sq6Re1h0VO9u3cpNmdzCl7VAAKTVKmtEa+YYERVjFVD1kfm2Vmblp3vW+D9Pt9llevMxYu83K2jKBVzoael6FIo1Y39xAKB9jFEWWE9SreEGF+9/0FpTQXDh/CewQY3zOnz9Ld3OJlfMvsrLeZd/eXZy5tFgmp/iK8cYYQbPO/fffz8LCAnI44MyF83jC0I9ibrv5CLtMhWJli9hmvLh4hVwLmiYoxzibEWjFwcndaM+g6hVOrV9h+sgt1MMaeQGBX+WxR75GkaUkaUQUleOgkganHIGu0Byf4r/75U8yNtYiTjP6/T6/+vM/zaHZabq9LZo1w+1veB/zV85xYf4SOkpY6nRoTozhSTECoUtp0tjkLB//uf+J5bVlQLNrZpa9B/ZTr9dJkqQUGUuNLUr+mHSQ5wU2L/CrAbV6Hc+XXLk+z9biMt9+6JssrS+x79AtxMOEWr2J1YbJXTNkwx7PPvYdLp4/z/K1izQaLV48+cw/uX17VZ6S5yviYY+x8Sp1U9CNY+p+iG9jTGBRYZUiMaMgyWXqIRQanLTUag3yakJ3bRMpDRVPMzcNh9YHfONStrNx0r5CKYNm9AOj3PSVKSNlYVL6hkeQEALPSfIiQ3oKYW9EJOVGo/Kc9aEljXLWOlt0Ll9mSd3LzbVlTjz/PI8/8pdEKeydOsBzl85x8KZ30F1/iePfOs6Hfuwnyajw0Fc/T7s+QVAJOPb2H6XRnmTx4kssnfwGJjDEWQe7HpE0fMZadeYOHaO/PMPRe+7l6tlnmJtq8fO/9B9Z2Vgk/+Lf061ViHvXMOtbFFqwa/wgw0CxWSiCJEMUijSXCJdRoHHOYowiswUytxgjiW1Bo+mzuJ7QrnkEGgIBOEeUWnylqbcMm1sD6jMtIKciLYNhQW4ttaqhyHLqYZ28mmIlJFGKsw6dCRoVBb6PGya4oiRZpmlWbs48SZpmCCdKnKMQeEqW0Vm5esU9E8fxzsatKLKXAdqjrkkIsizFGA/nCorC/qMDKSlvTOEhRls743tsWMc73vl2mq0JwoqmUZmgszLP2uIyijLWSijJ3L7drK2ts685yYGD+5ifn+fQoUNUG202Njborq0zM7eLsYk6t952L1JKnjj+GHF/QLPRJskc/f6Qw/tnuXx9kV/4tw/yH3/t3/OR972fZqPC8tXLrHY2IM3ppSlH99/M2HpMNubDvmnOP/McMqxQ2Iyw2mAr6pNKDysl312+RiEK7mns4jWt3Tz5zEvM3LyfXXv3ENSq3PvGt/LcU8cxIyeMLMtwSuIQ/PBHPsr9b/shcmFZuHqVNMroRz2UkJy6eI49rXHyNODYXXdw/1vfxqf/t9+HImNQZHQ3N9i7dy+Dfpd6vcGgN6Tf76M8xfTsHNtZhsvLi1y9emmHsL++ujyKDCu1ekkSlYVN2bITdJAOMraGfU4//yxv/5EP8rk//hTWlnIvCkuubvCvrLWMtdpo7b1a2Xn1opSnEa12G0WGkBlj1QDfgB9oClGgqSHrAyRVrB0vxYlZhHIh/XiI0mUya5rmDHo50sH0bIP7b6nz9IVNfCVoVQzGaHAZSIVzauTX7EYtqC6JWdmog5KlP7cWCqUcTha4XOyEU5KDkAFa55x84VmO7Z7jytmTHLzzXg4emuXRRyu87u1v4OLpp6hWK3z1y3/JcHWe17ztHVy8tMjumw9wz5vexZVz59DSUa8rqmMz7JUFtbE5lq++QDx/lTVR4JlJpN9mrOpRoFmJE+5/x7u5dPE8m8sLvHj8UWyywvryCkK3CTqbBLe+kUER8dwLl/Ayh1EFuQVPlEW2EiiGPYsrLJ4SoHKGeYk3dTYyAl/hbEG7GtDrxjRbFVxvSNrNWLWSWt1DB4L+RkZuJbkShLUaqijwKiHDoigtZ/oJVd8jtzEZBVYHbG32qfqKwPdY6Q3JC1f+e85SD8sAwQqw1RmSWIfLQb2yJhGG4cu0aewUpe3xenszt7M1leX4VpJDLULo0WvtCGwsOTxKWp48/gS/9Ud/WqoJpOSO17/hBr7o3A6T+OWP17z+xvO9N4sdUuXsvgOjJGXHr/76f2IwTHnwX32AQObkVrG60uGuw0f5/Gc/x8/8m19ha/kyp06dYWJqhrWlNXSjTby6xm5VJw5Szl+5TKoVslrBOIfIEozRuEgQeAE2dwStGsOtHk92Fnkdkvtnb2HRlCZ5eb/D1NQU973pzXQWr/LCCy8QZSnKD3DVEM8E2HTAc88+TyFy8jznwgvPkSUDlA6QlSoVP6Q6M0sR5XzsZ/97/vpP/4TJ8R7VSp04TjHKI43LDjjpDTDSoKUgTUcjcyEJwypJkhDHMdYJbAHWlSC1UAalShM9bQKEENQbhpUTT3PT4VsZm5iiP0gYb9XYc2A/e4/cwma3x6WXzrBy8TJFlmNaNeI8/v9cp//fRanpVWl5CWS61PyIHJdrkmFCJZgkdVt4Ygp0jBDgqSp4BukZ2qFkY3WNOE6phFUqdYszjgnpODpb8OwFVY4oOHyV41zJizGm9AOXVlIUlkKWhMicAknpxy0VpYNiVOIduRTktiB3OVkq2Spy2oQMhh2C+h7ecc+9PPbkFaTcxYc+9HHOX7yAHzY5ffYUe2anWLl6leN/87eMT06zculp2o0JJnffxPy5l9DzNd727puJ6nWMp1i5LmkeOshN7bfwxBOf5/VvexfPP/Ywt92yl6i7wYWLpzG6bNtl+yBf/W//N7/4q/+Zz/z5f+H7PvozfPLB3+I9P/ajRN0rFK50VfADTc86PAlrvYxhbsuodAtJWmbZ1YLSIrfhe3S6CcMiodKokacJWhr8PXUWrm2Qodjc6pCkBQ1fIp2jF/Wo1AIqoU8gclxU0G749Ic5VgiqlSr9zgCbO4bOEmVJ6ZhZSFILyaYlp48OJHkGVWOQRYoJvB0m785BlucYY5CjcaEotsmTI0fRUWipHblDFnlp17I9zuU5O2RC6RxC5IABJzFehaX1RbpLHZIs3ZGgbG1tkaYpQgi63S5KKQaDAUI4okFMnqdEUUSlUiGKopJHV5ShpSVpUTPo9Tl87A7Ov3gCV0hyhly5fo31xHJl/iJBUGHPvt1898mnUEbj4qykXQBxmuFVa9QbIYXVKANJb0AQBrSkwqtUy0JsE1qVCi4tWC4ygjilXRljdXmZ6V27WVm+Tr1eRwVVch3QbI5z9OhRNgYdTl44RdBs4khpt9uoapX/9T/8CvV6HSEcV67Pk49NQpKBKuPN3v/PP8Z//a1fp0iTUmhdLm9HAmbHwMYoVwYDVIKAvCiIogF5XmCMwTlHv99nc3MdZy3NZo08t8xMTdPtdkmShH7XUm+Os3zlItcvnsVTBdY5Ll+8xIVzF3cOjXq7RZqmZJkrKSzfa1FK84RBzxDICJ2VwlYRCCpeG10J8M0YTnp4ypCLAttfIM9S0ixByzq11hgVcvIkJcw18TAjTXNajTImKXQK6Ry6GOXEOYGwQF76TZejicKRkeUCKQsKUnBm5AKpUUqQpw6tPPI8R0hJVVdITE5YneLF555naWMNG9e4+RNH+eynf48HfuBDNFsBH33DJ/jNX/4pzMZ1apMTtKua+Y0VApcSt8YIWzNI4XP6zAso22PY3WKy0kS2PPI0QmSGx7/xtywuXyd+9hsceu17yJMuUgl6/Wv8yHs/wNJ3PsejX/w9xufG+OLnPs3b3vn9bCx2uPzUi3i+JE8t/TSnWvUZRilSSvbvbrOyNsRXECAJtWatk+KpnG6SEVYCojgnWe8zcI5qRZGu9Qh9Qc1TZElOGOrS3jYvUMKRDVLmNyOavqbRDFnKbUnVUJqtTh+XQhhoMleODp4KcDrH1yXOtTOCmZEurXAYXZBJA9zAlDzPQwiJIy+5Ty/TPAnpADcqZGXBKgvV6IuFKKPSR4XrRoeVUr7TcxbOnMIKTWFLL3apFdUwIPQ9kIJms/Qw0lpTFBZjvLJbG/mJe55X5gsWN+xltoWrlWrIiRMniJMYV4BWPp3OdV44/jgf/Bc/TX9licO338n555+jXvURLsOfahPGGeO+wYUBg2GMCXwq1XHiYUTV1FGhz+bmJk+/8BQawT1H7kRpjdWS6+fPkxQpvpKEjSbXLpyjEJrDR45y4sUTJEmCLYZ01ge8+S3vIKz6pGnGb/7KLzM+Pr7jZqkLzXqnj9MZwhkaYZXM5vzoR36Cr/3NF9jsbqJxSGXodruMTU5w9fx5Br0+YbXCxPgYrXYbKQ3Opqytd7BJjDGK8ckJakGIzVJ6vR5FUdAfRghr0VphPUNYbzI1PY7UYQmnKMP24kZKA0iUMiglybKIV3u8KtD9Zx8ed9qz1Fs+XkVSn56hUi3b6/Fd95GZWWTrZgLtUQz79HvfgOg6aa9LToRUAYVN0ELTWeuwsbrFILWsbCp+67M9cpdTC3w8XbbpWllyFLktKQPSCRJbIIXGUVrtRnGOkgVGKmKboZ3Cq5pS75TmKM8wDDSF87nnLffwgbcd4ML5Nd7wjgc48fXPIduzPPCWH+DUie/y/PkXODx9iCi9zNZyhzPHz9FuKmZv3o32NOHYJJNT+9l7292MT+/m2kuPc/HS01Rq+3Eq5MoLjzF38x1MH7mbvRPjHP/2l9i/+04Wrl/GDyts2JgDrRn+n7/6NG/5wfdi9Bgr1xf50ue/xkvnTuFl5RsrzqDqjczOPE2RuvLk14p6wyPPoUjKCxzbEaHUFkjfkKYpytekWTnHB54rN0/Woq1A+yVAKVDkhS2xIOt2rHNTl1Lx/PJU7EX4YUBmHduhDE4U+L5Hv5egPIVQkKcW35RjdpLlXNu6cZMduvkIWZaVIzmvpAYgCop8BF6P5CI7Bm5Ss2NYIxxKm51NntYakBjlEScZv/TJf0c8iEtKyI4ZwnYii0DvuFeWh53SIyb5KO3m5eOkc2WRLIpSRjO0EeNhwO/+2r+lEoTMr3TQvs8DDzzArn176W+uc+3ceYadLmmasrC8woff/m4Ga5u8dOYlNrWlu7FJ6UNTLmdUAVXfQ/sBRcVjdmKGVj9j+thtfOPJx6j6HmOTE+Bprpy7gDcsWPYdaZ5x++238/Tzx9m3/yC9QcYdh+/g4OwU850NHv7iF+gNBpiRyN0YhRcY/uff+D2GcUZgKrTadX7/f/kNciwuSdBaE6UZnh/wwLvew+2vuYs0z1/BuNcSNtc32NzcBCAvLEmSMDU5R5rFO1vuWq3G1SuXS2eAwnL67Ck2V9a4+757mJyc5JZbDzMsBEFQKd+bUuJ5GqU93vXG79FP6cRnfv1BYwqUyZFGolWKCX2UqWH9PbixIxy8+8ep776Fzc4iyfpJ6C2R29IeQiqBFRprUxAZwqZoXaPXTTl+JmGYKaSSyEKwkeZsxDlxIqjXfaLcUjiBYaTDMgKZFihZlGRJIwgCjyx3pGmORBJ4CussTlfI0ohTz53mne94Pe3duzj++MMcOXgzsjXNxbMv4lUkqfU585Uv0vQU/+FPnmC+kbN2bYMDtZAs7zM+M021GtAcm2aYpCwvXMZkKadOn8B4kkpzmubkXpauXWZ8Ypw9B1/LWhQTJXDmzHFWLs1jnGAQLXPLnfdy7uJlnn70m7xw8izCKcZbdZotn5qU9B3U6gGdUVxRrRFSSNBOIaXB14JKxSe0GZUwpFavofOYmvHQAprSUVMGISRGO2xalC4AFGR5KYrVWtONU4QUFJ4kzlKU8bAqpcgNnl+myoShQYYe0lmMKgmBhefwAo3UCs+TYB2JAq0MW4Nk556ZmJxGaY1Weqf4OEremuRGukuJA227R47ImgKcu+GftP3121u6AkFYa1D1Bbv3HER7AZ7xUJ5BaYM2ZZdWSkwKnBWkyZBT3z1OtTXGtpgyigZ4nmFycoIwDEjTjHKhopFOEmcFt73u9dx+9708/cRjOJtz6cJ57nv9G9BeSH9rg7GpacJKlV53i83uButxl77LymQZo6mEPjLNSzqvUrRabbyKT6gU0XDAtWiTl06dYG7XLi5duUJ3ZZ1+t0snigh2T9Pr9ajXaoxPTLCxsc7q6hZHbruFrz/8D3ieT2Nsige+/728+/0/wsK1a+RpTOEgVIaXHvsW+19zN/WxFteuXmXY32JzfZ3cWpRW+FrTj7qcP3+RN73j+2m3mlSrdVqtNnGa0hsMmJicYnx8nF17DzAxPcPuPQeZnp1jbvcuZuf2MDk1Q3Oszb4Dh9i97wDTc3u467Wv5943vIV9N9/K+PgMTmh8PxiJxAEhyBEkWcqRg7v+SZ7Sq45vKMrIbecRGA+cRRQaJQOkTdDxKtamJFud0oMoSXFSoIwkFYaKUQy3NhC2wOUZGR6CHJREKUmj4miFHqktCHLBXLPO1aUO2niEziPuxhSiwPMV0pYCW6E10ldkFjrdCKE8xsZC4ixla1jQHq9RqU+wtbYBTnJxaYve5SU+8tYP8tePfIbXHbuLrY2rXLjYZe3ZM+w+sosi9Bkbq3DwXoVQr0MPfWyyQa2xh3ptktzlBFpy09G7+Op//QrpYMCaLTlWnc1V5m6+k++eOMVbv+9dLC1eJfBCds3eSj4BUbHMbbfex7OPPkIr9Hn0iQu4JCcIFb6zyL5DB4Y5X5NGGbtrfmk9G2VoX5DkOU3jGBYwiBMatZDuIEFKi1ev0NkcUAkCXEXQHSQYIVDOYDQI4yhyS1AzANgoouULRE2TJhnhZA2bWBwBGUMGUYHwPbICnC27qigtMIMYq8DTgnSYUIxM6aQFR/6KW2YnstvdEOOWH294dheu5KBLrXYCDYS4ofjf5i45Z/E8b5RO4vA0uKzH3/3NP3DojvtK1wZbkO5kAN5IPxFCgsjxvZAzC+vc/84Z0jim3W6ysrTM/JXLbG12qNTqI6yj5PEopTDG0PAabC5eAyDLMqrVKs16nbOnT7O6tkX3+mmmd80xNzvLRHuMtLDE8wvUag2SJEEoqDcbpHlOGsdEWGpeCEoRVkNmm3Wk1MhAs2kzDu7fz/jYJBtbHR5++CHSNEd7hjjJCIMWu/aMc31hmX37b6PRHqMSBKytryKl5Md+8uP4xifLMob9ARub6yzPL/DSiWf5+899jqPH7kAIge/7eJ7H+QsXmJiYxNmUrU6ffm9IvV7H83I8EzA7XSeKY7wgJMtLX3hpJIPB4BXuDWW3m43GZEOSJOXYbe2OtbFNs51Dprw2N5xCv6eiFFY8dEXjh4DSFKkijvpIvwL9kwRexOLx36ZQPna4QFCxJH4Fz8bkG12cHCcIQpLhZpn8EPfo5zWGUc56P8VpSbsGk1Mtagt9soHlwFgdioKlfkzdaeJQsNUb0ByrkiQ5mXQEaUEt0ERGUtMFFVNmnU1M1BBBFRVqMu0xtX+cE88+h95Y47ML59Bzezh1fh6sz8xkk8m33cVwdYX86gLvPDzH5Wf6fOJfHiUWBb53D7KIqE/tYnN5mcat05w/eZaFtQ4r11dppNd5/CnJ+//ZPtp3H6UZezz39CNcXz5Hq7aflh9y0837uHahR2NyhiAo+MZ3XuLYrjpXFgoi6+h1I6Zm6qxv5kgfGmM11je3MJUAWVEMOxH1eoWBS0oJg9BkRFQmq6SbPdI4YbZdoScKTDWgGYRY7agLS69bkEuPuBAoDL61RMInsBm2FyOlJBkkJLmDIsWTgsCE5GXmD54aBYoWBTkaV0DWT8l8RcXzEEVGHlmyf3TPFEVpsBfFEVJK4jjG88oVcLHNqRKi7GTc9uatTDMWqmSm50VWhi5ISZ7fANIzobAOqpUATzr6w5hAK3yjyQuBr/3SeM6WK+scST8a8OEPfoDLF07TbE2SJAlIRas9Rhj4O4UyS1KUcwRhgKPg+rWrPPz5vyLQimEEH/uXP8Wg16PT6eCUoH3TPo7edReNSp21zjpZnGCqVYadLv1h+eZdu75ENawwtneaer3O2MQ4yveohlWefOpxtISDB/czOTlJvdnmxZMnuL6whO+HaG150wNv5mOf+EWunDlPnKfMzO1HCcvq+hYV3+ObX/8Kx+65D+cEvilBe994JEnpzKE9w7ve92GkMAR+KUyKkxLYL4u/xDMFCLNTbJRSZDbFGLNzyJQeSaOOeRTJtV2UpCwQwuxco+0/20mtURJRlAeN53mvKGr/1ONVx7czf/87DyqvIAgl1hYEYYjWoD2Fkj5pFoPYgngel6yQ5QMym+LyLkaFZKSQpuS5JenFbG4WJFnGlXnHo5dTap5kstWgGKbYtKy2ypfkXkA+iPCNwuQZVc/QH1rqvkIWjmYgsLElCCUiBZcVDKKCKB4ytX8fulEFLXntPa9n12ybYWeFiYO7uf/ee/GnbkMpwdb6IkW6iZSaXGkOvfEd3H5rlW6RsWffXUztnmHuwBGECFhZPI9pt6nXWtBs8tDzy0zdO8eL315ldmaK/NpLvPWHf4yw1mDx0jWSQUzCkGdPPEO72Wbvvr0M04hw8jBnX3yeSwvraK0I2x4oTUCOcCnaU1QCn1o9wPMEtWaNNE/RSpIr0I0ayvfLEcUPkE7QzTOyOEcWBdoVRP0+qRN4ucPaHIVDFQ5hc9QIsFZS4EuJzstgg1ApjNJ4vqRZDfEqHl7gIWx5kxmlcFmOMwqZOaI0I82K0vHSFnSiG93SxPjUSNtWsra3b+6dkcw5kCWOo5TCvSJMoAyR2I6/2u6udr5W3tggnXrxOY4cO0YUJ0RJQpZZcmtxOJT2wOVoDH6lQqNR5fOf/xwzM3NcOH+GS+dO0e10ybOU5tgEzXoFISHqbtHb6rCxusr0eItnn/kud77uddz3+vvpbG2B8Th98kWyLKPf6/Pot76F8QzffuzbjLXbTE1PMblnD9VKlebkBAduu43JPbvYd/Ags3NzTM7NcvnKZZavXeXCuVOsra5QMx5Li9doNdu8dOokG5sbaKkpbMbePQd55rkTHDp8lLBSJwwDcucIQh9tDDcduhVnLUoUJHEKDobDIbYApbeLjIcf+CANWt8QxG5vSIVQaK1HBn9qRLcowyikKgXzxhiELJOAjPZK3MlIjPFKIa4xOx3mDdF1+XujDUEQoLRAK7ND53g1l4BX7ZRiAfURs1YphZMJLvMRSUTicjzRgCRDCE1RZGgyLKXHjnVDsoHFioJ+r8daJyJVkt6m4MxiRF0JtKmwuNFnmDvaoaa30cWr+wzTLlXrQObgHEGoGaQp/bygVeT00oCaKXWikU0wKPq5o9UwXLtwgcbcbu5+0xs5sHuGL/yfn+bmAyHjUzdhpM+b7jrKI1/+NiIZcHK+oMkyP/8HX+c7j3yeqmhy+52v44knniAd9um6M1xZXaWmKiw89wjj00eYnmpR0xHP/P2Qwg0Y89ZYOZPx7He+weTd72Flo8Oe/ZPYKOMtd7+BUy8cZ6PawJ+6icHVk4yFGqcEXq1BraYxvocNfOygT6c/RFpFW1vSRNAfRng1TTqIQQuyzS0SYfAKyIQtfcStRCuNLAQSSdurkKdltyKMwfNKkXPmCrJhCSwnUYqjIPcMDgVZjl8pT7Fep0ulWlIEdGBIC0hFjhcoZFpggUB7ZYHzwRYGNm4A3S/Hg0qGtfflWUzRAAAgAElEQVSKk1EIgc0yhBilkLiXGf+P+EZSlIJrxzYLvFyECAfFaGu4uNBlbnaWP/zU/86P//MPMzExwdmzZ5lo7cEKTT8eEqcJgQhY3ejyznf9EHtnpgilZXVVoRzsm53i+rmTKGU4eNNNnF1coBqEVGulH9AD3/8url+7xuLiInmeEwQ+qysr5HnO+Ow01WaThx5+mIMHDzI1s4svfPEzGGOoVxusra0wNTZOc3yCubkpmu0WZ584w9rKCusL15mcGmOlE7O8uUm73ebSlcvUGmPsPXiIzY0t9u3bx7kz5/joJ34Wz6sghKPX65XvQ8FOUS/VnxKpy/dpWK1Q2BL4l1IifDEaf/UN9wbKbmZnAyluxMVrrXEW8jwtO1dKyxg1KkbbW9H8ZeC4Uoo0jVFK49w/khC5cpRTlAVvu0t7tcerdkrf/otPPqi1JKiUtUsbHyEteVYgpAWdYAuIkgjlILEVyGOiJCdOUmwGnbWMOM2IEsPCgmSjp/nT73QIqhXaGqq1gLmxKrqmWegMcKlF4miNVdmMMqwz+HWNcZpmxVCr1RhvSnwjqWhFVUv8iqGFoEgcyvjsO3Y7QWg4dekaS4sdjt1yiMOvv5/W2BT79x/h6slv40SX+uR+dt3/bl787je5++itIEO+87XPEmJQtuDsie8yFrSYaFXZWF5AFZKcKh/+4APUQjg8VeDJgtn9M7z7l36XjSunOLDnZur1JnGes2u2xfraItW64DNffpTuEDaiIVvXN6kqSzzoQZ6TRBlSeQRO4vkKF5cbJE8qAiGp+gH1aojrOgLfo9oIaUy0kEmOLBzheBWGCb5viKQgGuYkKITLCDyP/kofoohCFMisdBCoCEmtWaXX76OqBuMbRO6wuWOQpBTS4bQirAV4qgxM0H5As2YwApI4o7CgXMHG4IbJ2+TkzM5zrdUOzvMKD3LhRonAIzvbUat/Q7RZ/hK8Mq1k52an9C9/6Ktfpdcb8NTxp3nsse8wPT3Jb//BHzB/4Rx3vfZ1rK+vEw8GtIKCi6dP8NLz3yWJIhq1GmmasLG+zsXLl6jWKiRJTKvZYKvbYWNjnc31DWrVKv1ej1tuuYXz585x9swZkiSh1W6zsrRMpRLSHB9nY22dC+fO0mq26Xa36A/6eMaw1euRRH18rUj6Xa4vLpXcLGvxPENmBUXhuPnQrdx133088fjj1OtNDh89wurKCpevXmHfrhkOHX1N2Z1sY17a4I26kCRL8DxD6Af4no/SCs+UKSlGG4zWaFU6o0pRWieXHRJ4vsF4ZZHQ5kbHhACpFEEQlJvPkZJiu6hsP5dS7ozmnufvfG77Wr+8+9ruoraZ3Qd3TXxvLgGP/cVvPeg3AgrhyNIcPIGzCU5DFjmyogBypCmt3chWKRAMekOSNGGrF5EXHsM4Y2vDEqUeX3lynY2hwGUWpSTVesig3yfQhr3tOiZ3jDUDqoWiojRNVTARVtlY3yTUms1OH7yQuBPjVT36eUq/n1OfqpLmBfXJJhvdPl7oM3/+EpWGYf9N4+zfc5ATJ56gUquzfvUM8XpGv95gUiX8yMf+DVI6vvjbP8Pmhau0Z2pcPX+Khx55ljRZZH19FZP0eeHb30EFq1T3v5sg26Ax9xqi9WtIbXnp1EX275mlMb2L9dVV0qiLs0NOnDiD7S5xftHxlS/+A2tXOnhthQkCpqaaCM9HeRKRx6UlhZaEQuLXq7g0xR+v4I8HrC70qY1XaM62SNOceK1LfaxJZlOKYYo/2UJWPDYvr2KFRUlFrVKhWtckOIo4w+IzEJAkeUlgG8QERmPGa+V56ymG/SGVWoiRbif9NgwEGh/hLCLQ6KrGKI2NMgSS9eGN7dv4xBRClriREBBF0c4N+QoQ2omdLkiI0gEBAUqa0YlL6Qoxev22z7NzI6cEWQqCpfFHgQKG3rBDiqMb93FbXe44doRBd53VpSX2HThAnmdsrK+zvr7OrbfeysLCAiYIiKOIZrPJYDBg99wcS4uLLK+ukNusTCJJEqI4AutY39ggtymVShVrM9Ikxa8EZIWl3+9z5MhRNtc3mZqdZmN9nSAM6Ha6LK+sMTE5wfLycuknhWQwHBCGAUhJFMVsrK5RCMfhI7dz8uwZbJKxsrzMvoP7mZ6co6D0xb4xZkkC38czZuS55zBaY4xGSoG1xU5ns/16rTRSlB/FKLJs29Vzu5jsYICjz21b9JbXrtShKqlwspSKUTgKW7qS4sB4Zmd83y50L8einHMcmPsei9LX/+K/PChFQSEsQlUoXEaS+zgRkOR5ydYNA4ZRwmAwpL8FhayRu4IolURDQTIwdDdTLlzOOHkp5dgezdPXM2yRl2SqNKVaDUmjhCTNqDU0SeQYPzTDtcUVGmNNXADB1ASd9T61RoipCQKvxEz8mqQ+1UQkGcor2Ipy9h09ysLVa/zsz/wcP/rmI0zPHeXwTQe4fv0yNnXkW5cwe+/hgXe9j4N7buPP/viTnHzoIXJVYDzBoy8s87mvXCORNZ453+fa4oA777+FYnWFhYUh45Wc1775+zh/6lnqoSaJUmyWMnfgEMrUuH71AoH2SHPFleeepN8ZspiHdFa6hDqnoiQVBL2tiCKOqbSqZEJgXI60BUNpyTJHNEgJgxCrPLL1AeNjVa6cX2J8vIlMLWiDc5agVifLMwqb0xqrU5OaykwdLQRxLwFbUG3UQDsaoY9HQb3uQxAQtGq4QYoaZPhBQKAlntEUOZA5fAnCmDKEwBjiOKGIJFlqMRWD1oaVrcHOPTM5ObOdxg4OgiDcKTwvx4deufaXSFkWIqnKMANcaWmihERphdYeSskRfmGQQo2EuwbjhaAKKkEVLy/4hU98nLizydUrl8ooKBzzV69y5eIlkiThzW99CyvLy+zZt5d6rUZrbIzVlRW63W4JNaytkaUZd915FwsL15i/coV6e4y1tTVaY03G22OEtRqFhUG/T7PZxCYZJvTZ2NwkTVMWV1ZI04zBcMDM7Bzdfpf+YECcJNRqFXrDAbnNUdpjcXGRldU1Ll+bJxeSjU6X3toas5NT1JstQi05euwuilFatBylg5Q+RaXT4/b20JhSmAxyB5ze7rBezsvyPK+k7iiNYJSQk9tROKzDFSVXMBpGNxYU2wVu5MpRylOKUWdVdlh5lpfXTmz7xZemb7awIyeIcmS/affk91aU/vjXf+1BI8GogCTLcHlpvpZnMExTTFglFxWErlHIEGVaRPmAbr9LGgnSvmN1aYuLV3q0G4KjeyXHT8fMb1mU0sQ5VKsGvxoitI/MEuIiRQcGu9mjXVPU21XSYcL4XAvfOAqlaY43yZIentKoouTf0KqTFoa5Q0c4feo0jUqD49/8Wx66dI0ff++HeeyJv8YvBpx+4et4hU8iE4QfMjW3m7anWHvpEcYO3MbE/kN8+svP4zUDDh0+im5UWe93Ga4OqfnrBMawvnCRqUM3MXvTMR7/8pdotxtQNWwME6pBjd4wIsuGDDZPcv7FBcYnmvz1PzyDBqzNGJ8KiCKLlAG2SGCQ4Ic1mpPjBDVDNojKE7gakKcZIrPM3jrNoJdQrxs2+0NcoQirGoEijQcka128WkCtUWMQxRihELljpdvFCoUfSJb/X9LeO8iy677z+5xzbnz59XsdpyfnAAwySQAMIkUxSlxKtMKuXLK0a2q12rLXW7aq7HKV6Kp1qJW93pJdtstcS3JQSassUeSKIgkCBECKIIDBDCZg8vT0dE4v33yO/7jvve7B1kJV3Fc1hUF3z+vuG773F75hpcPU6dmcpW27bK5uUfB9pBJ4U3VarTZWoYju9elpqE4VKExOYAYDbFsxSOM8eVdJtE4pFXySJHsIlBqNGaQlx3FJeaRTmj9ZzV7zt2G7lqPSuBUY2fgKNQQiy8ay87zfXKCrxm0AykIgsDwPbQyO6/D8s09y99Yt5g8fwS8WuHn7FtVKhcbEBNudFs+8/wMYKXE9nyxN2djY4JWXXiKJY/bN76NYKtHaaXH85AkuX7mM0bC6vMTC/UWmpqeZmZ3mzTcu0G23ctB1bXa2t8h0StDvUfALPPfcc6yur5GRGxEOBn12WjuEcUqcpnR6fZJMk2qoTTQolMr8+Oc+z4svvsTnP/+TrNy7T7lcIowiJhoNOr0e3/7G13nsmffnAmV7NDAWYxKq4zj55ixJhgsG56FNWA4oOahZlp23zPBQlbTr1pBXVUaA47rYyiJO4mGFlFdTqc7G76+EzA2UlRz/ETL/MzKos4fcNT3cuv7QoPRnv/U/fumt233iQNDdHuRoikEJG20VGAw0nfU2cSYIOxHtjR47y5us3OuTJTapCdg3ozh9sgq6z41lw/W1jI1uviVxHEGlZDM538CxMqozTXrCJU4i3EoJz7dwpM3E0Tn6G6uUG1VsmTLY2CbNDKmW9KKYOFRsbXcwVkZvOwQ730Y8//QhXn/5Ml/4wn/Ad/7y/6YiNJVKHa88zzPPPk3WAhC8/f2vceXi27QerDF78Ajffu0+3Z0Bnzxp893X7pAJm1a3w2f/zicpTZY4/uxnwZpjZ+UtXn/tLWw7YerAPhzLoTl/mkxK1m5ewCQpl+902Nzp02nFCKHxLZtKqYgrHaSKKTdc/IJLe6NH3OrRbnXRbpHG/hlUMqAfRFieRWe5RaVSpjhRI8FgCYMsO2RRhkgME7OTSKmIWj2U6+D6NlmWp+yWKsV8ayfF8CmYYsUJtuchqhLfCNJE45RcknCALBYoVDzibki4EyJth7jfg1buFGCSlCzRZGlKmqVsdnfbt+npfWiRe3wjc8AxZhhHrs0e+cgupylPOM49sKVysGwPy/XyNkDl3k7KcnCtXI8lbQdtctmCV/D55V/9Faampjl//jGOHT7OretXKZcLFEsltNYcP3EiN+LrDyiVy2RRwltvvkG/16MxkVdAx44dY2Z6hmAwYHnlAWsra8zOzVHwXCypeO7DH+Lqtct84hOfolItYSkHz/cJwgiEpFgokSQpvudz+9YtDhw4QBBFRHFEkml8zyNMUgrFEmmS8DM/8zN8/7XXUMqhH0TcX1zk8z/xObI0YnNznULBH4NHa3ubSq1OsVRiZmZ2OBfaE3n+rs2XbbskSUReTSmM0ShlMSpOtc6LgtGK37ZtwjAcz4tSneUuo2lKHObiXNdxkJZiyDgbuTAOZ3zkDqnmYQ6SJYcDdYYhlICy8o8dnmv8O0HpPWUm58tF89M/UmSirrEcl7Cf5pqnqo1je1ieRbFaIO73waRM1ErYjqLoFIjjVbqdgChStLoJnTZstSLeuBPznTvDi9goKkWLcqmAUVBMYlTJyz1+jMCyJD2dMV0oIgpABHE/wtEWxnFI0gClgUxjlXyk1txNJRON/cTRDl/84k/y1b96m8acRz3aAa/Bz37hM7z46tcpp4IwC5g+fJa1eze59uKLlMtFZk4cZjtM+D9+/wLnDxUJBgV2ki6/+vMfQ6WLFBpHcT2o2ZNcuHyJH//5X+D3fv3XeOyj55g78TGmT57nlVe+Q9xqcefSm7iNGf6vf/U1EiLKfgHHUjja4Dc8ylYBHfW5sdRnwhLM7CvRXekSFQRF26MnU3zjoLMQy/UwQ52WTgwphizRpFJSVIYgSbF0fpF4liLKQIwScQ05vV9KpLCwBaSeRUFLMqXor2+j/CImCYnIe/8oS0jJI8gzk29BdZbb6posz1iTUqLTjHc2d7dvp889PX7iCp0DYDa0v7Bte8zsffcAe/xURyCFRbFYHM+hgn4f3/WwbcV2p4vr+3zsE5/k/OOPMTU3i04zer2QKI5pryyzsniD3qBHt9vD81x8v0Cz2WQw6GPbNkEQMtlo8u0XvoXn+zzyyCPEcUychCwvL5MlKVlm0GRsrCyjbBchLYJBD88v4nkey8srpFnERL3JxsYGWms+8IEP8NKrr47bqJEnktYak6U8fv4xrl67jG3bfOYzn+HffOOb2FLR63Q5vH8ez3c4+8h5vvHNF6iUyzQmmvQGfVzXZaI+hevZ7D9ylA9+4lMPxXGNQWC42cqyjCBIcF0bMQzgGFWmjmM9tD0DyDLzEHVjZFUyfmgoOW7JR3O9PBzEDF0Xhkt8bYiSePyzCCGI03T4bBKkWqOGVfFHnzr5w/kp3Y4jLlzPePqsz+RkyuxhG9dYVKoxTrWMlJKkn2FKKSLJSKwYpQO2t1v0I4gCMTwoUHIFsQczviQWFi4J0uSft0VGSRSQJUncjzHaxpeGghIUnRqOq/BUShCGSAV2w4JM4XYg8z20ALeY0eqGlO0p2v0lZmaP89//i98h60f8k1/7+2wuBJw5OsPCjTc4te8Qie1RwOWrv/+/809/4zf5+u/9MbVuQPPUE2xtXOVjz1T43nc36Vtb/OInH+XGpdc4OD/B9P4Gy5s3KMw0wUrY3E4oTk8QR+CUSyjpYqkiPb3Kxk5Ezc8vEt9xURhcz6EkErZbMc1DdQKdcva0SxYn2JZNYEnqFghiCokkpkdJKrIkyj1xswRlPByRkVoWmgQnzZNJhNo9z7bQKJkf+wQgSUhNLsDtGI0YGLq4WDIlsiVZ0MKxZB4oKvKtnqMNKImdGVIhcFQe8WSs3OFBCkGcPczOlXYuKzBC5Cv9SBJmEdpAv5eTCs89fp4PfugjTE/PECUC23FJkoyJiSqDoIcQAt8r5ho+rQkGvdwSRVrjJ77n5yTBQT/G9WzK5SJ1q0qlXuHGtbdIjabbbuPazaHERuXAEyc8+eSTfOsb32Df/DyDwYAHy0sIA0tLS5w6dYprV69y7tGzfPeVV4kGEb4vwYJCscz29jYCqNfK9HqCNEnYt28flmXx3e+9wvzcHAsPFjm4f57FhfsUSz6lYoWllWUuvPkatXKNYqHIV/70Tzh+9Agg2bGg4Nt0BgM6vS7z+2ZJDVQbdWzPJzWwuHSfer1OFIR8+OM/xtZOm3q9juM441gjyGkYxhiKRXcMMjn4i+HfGRrujZxBc/uZUYsXRdEYwEbESYXI50ZCoJTczXjT+TIkSXIK7d5t3EhPqIbvFccxruvuMv7f4/WelZLtCfN3zxQ42LAplhyqNY9SNSdMaRXkSRxDvoldcPAcRZoooiAkylKKNhjXEPUyon6P7oamExi+9NUQzzb4StJolJmaqOJWHLKtkF6/jWiUKTsWRijSALo6xDKGcLWPX/fZ7PaZUIJQCmzXojnhY89U2L7dYStw6A52+NX//L/k9vWrbG4u8MTT+3jy/Pv5m2/9a57+4M+xtHaTZx99ljt3L/A/fenLTE02kDXB5r11JsqGtY0e0wfmOTU9R7da4dBsgywYkBmLweZNLGnjlAoceeRJhAhY7XQ4Wq5TO3oSpzrP229dZ2v1MjcvXuYPvvIWnrQoefkAsjZVoVSt4OsUghRpW2z0uwSrAYFMaTYquGmItiwyK8PJIBMSRyjiLAVpsGOLyNJYRpBJTZINz2E29EYegpEmZ9OiQJqcj4LJY6+Vyn2ZtBn6KBuTx4JLgy3zuPA0zfIZhFDEw0gfhhVQxu5Fe3Vtt1L6zd/+0zyNtVKm6PlobXBsixRDNAioVCpok9Lv9ykUCtiW+xB/ZbSpyUMFdmcdWZaNqQO2bee5c4wG6hJLCSzH5pWvf4Xr165w9PhxPM+j226TJQlvXbrIs89/kNb2NlEU4bsutVqd5fU1rl+5wvPPfxDIfbYvvvUmJ0+dIRgMmJmZ4uY717F8lwtvXuTxxx7j9ddfH3NzsiyjUqvi+z4HDxweSkzyyiRMYh7cu4uUktOnznL9xjUajX2srdzBHrZc5XKRxtQkcRAzf/gIW1s7LNy9x0Rtgna3g1fw0Rm4ns3c/AFSnVGvTfITP/0zQ0O90fExjO73HDTyj482Z1rnIm4jd9fyuT1uNExkscaAlv9u8di+ZJcBbsZzK8ivtTjN/z7aso3AaARSo3M6GsSPqrSPv+/MD+k8aWzSVgy13D/HKjgoKxccuqUKXsGHuJWjbxZiuWXiuE/BcWiUck1bEgzIZB8pfWKrQ9Fz+NCJJt+9k9P1w0TT60dkQUCrFVJThmSjQ98HN5JEicZ1FAWvxMSJCdKewK8VMIOYKApxUKSbMUGwReNQlZ17Gls2+f4br/PW977DfKPE4Z96HhcX4c2xcPUG5dkyCSl/+bu/z/H5CrUjUxw9/yTf+vL/h1fwOHfmIPtr8KB9h/tvR9xzBf3I4sBUAWFa2E4Rt2BRPTDPzvIdDj31c8hwBZ0YhHRzJfZAsxUIpCVwPIfMsamXC0zPNdi4u0GmJOUDk2y+s0IvDShOeByeqnB9eUDTsbEBtEVqJBAxMBpbWMhUoGo+7mBA2M9jrT3HIhUZRirSkf85kJgMSylcJEYZtFb5AFoKbFIGykaZlCTL17yubRGaBKP1MJFVYguRV01SkgznDzpJsI0k1e9K0QWakxNg5Lg9KBQ8DBmWsrGEHBP5Jpszw/Zj12R+RN7TGWiTopSz68M0bPGsoT3w2CYZSIdf29neYmZmhuZEjfv379Nut+l3u6yurjI9OUW73aZUqXB0do6lhXtcuPAmzWaTubk5qtU86jqMIyzLoTExwavXr1KuljCW5LW/+QEIweuvv0Z9okmv18MYQ61Wwwio1+tcunSJQtGjUq6RprkR24kTJ9hc3+Bb3/wmP/WJp3EnEqqF09y4fR3LMvh+kdZWi+3NHU6cf5ylxWWOnDhB1O/T7rRob2/jeR7RwPD4449Rb87yp3/yJ3zy85/D9/3cH2o8m8vPxd6VfpJEQwqBhVR5YvLo+KVpOgackQWK4zjEcTyuUkeglm/0yF0phmDX7/exXQcpQWdibE89oiyMfoYRT8kYMwan93q9Zy0lcPHrKk/UMAmuyLCcDNdKcEQGSUCh6FFwDAVfU5JlSq7E9gRSOpAGeMqmWrDx/QBpK4TMeP644B98pIJdtJiwFJNzBeoHpqgUwJmwWIkN0vVYTTLCkoWjMjo7LZxKBdoDPGlRKEjm9jVoHpvElGxqszXMRkq/E1JvlAiCgCBLWR9Y/D+/9Qfs9Lb58HOf5sd/9qcxgzZf+4MvUyxW+dn/5FexAsW1F/4aQQ8rg9bCHV67cJekb5idazAzP41j+ty8dY9B32Zns8MgSHnrhe+xcmWJV/74y0wdOcHyVoaHYpCmKN8l2tgmSyDshVh2RqNSwDeaZqOCiVP0yip+TUAGzQnFg5UBs8LgqAxDMgSKGDsDkUo0hiRK6LYGGMfBr9rYBQdj5b5AlqPIHB8jDVoaPGnhS0k29ECSElKRobWkM3Tq1FnOcckZABqlFXKYZZbHLaVomccyWbZNkiUYpdDkMxfrXc+7cqlGsVikVqtRn6ji+Q6FQgHftfOP1ytUayVsRyJVXtXZjsJ2xPhil4rxKnv01B1d1FLK3L5V5cnBEoOnbLSG1773KkEQ8IMf/IAbN24gpcXM3BxRFLK9vU2W5H5Vm6srVCoVAObm5lheecD3vvddVtfXSKKYbrcNaEqFItubO9y8cZuTp07xmc99jh/71KdpNpvoLOP06bO5k4XjoaTN448/zqGDR+j3+6yvr+O6Lv1OwMxkiV/+e+ep1i2suMSJAz0+++H9HDxycpjkq5mZ38fL334hB4Ag4NY711lefMD2xjrdfodGs8YLf/XXvPzCX3P06GH8QoU4jikXi0PZiBoTLPeCyGhWBJDoBGOyMQjtXfMLYciyhCAIxpywEaiE4a5T5OgcARQKBVzbwbHc3Dt+WCkFg2jYKse57ELnsWDhIBj6bb23ydt7gtIT++BECVwZ4wFKxLgYvHIBz3Yp+5AlIbZTw7YnkTLFlgmloo1SESXPwxZ9kk6PJIoxysVybA7O2cxPCGZ8i7nHj1KZbVCs+jgu9NoJB8sG2Qko+5J6ljDIbGbOzLO5tII9I1nf2mS72+P+3VVS4WB7RXZubBHHmkpFkIYRi/fvkCaa+lSNrYUdXnzjLoWawrI1J848w/1bt3DcjBf+8HfpB6u0tlr5elUnDBKDW3Vpb0cMui3M9jr7pot4JZ9+EFGq+lTr01jVBt0o4Nyzz/GNb3yDRBiu37nOzHSZldtXubHQpl5VHJypUUwVKgpZ29pkYa1DGBlaoaa/k+DGkvZKgOtmyJKFIi+ZhecTZIKoUKJaKuIlEEibsJ8QrHUJwpSetkldHykcfN9FxjFKlCnUSwzISB0bR/pEIcT9eFhhGEgVtUYt367EIo9Y6icgDBkZWufbEyUdHFVCDwwqy+PL0zQlGQYVvLv9F1JjO7skuVFb8HA4xO4FnKbpkO+S//s0TcetWhzH4xtDSonv+3nrYfRDgJWboqTsrK6yurrM8ePHEUIwNTVDrzfg5MlTZEZz9eo11lZWMMZw+eJFHn3kETq9Xu7XZQzhIGBnZ4epmWlu3r4FUtCcnKRcLmNEzgWSlk210eCjH/84R44f59jRoyT9vC1ttVpEYZi3pn5OCl5ZfYBUDkJZpInEKxi0rhBrn1PHI7xilUKlytbWBsVCgcUHC1x95wqpSTl2+jjHT53k8KGj3Ft8wCNPPsFzH/skteY0g14XKSX9IGAwGIzN/oMgII5znpJlOXmFJPNjZcscvEfnYyRczs+Hhe8XcV13DGR7W+YRv2jENdNao8lnRUmq0RlkaS66rZTLuLaDN/TpGlVGlUolpw+8t8rkvUHp6RlYiBSbawOsWOKmgrSToKMBrhxA5lD0J3A9GwsfaU/g1I5iqWlMLyQNAzphhCzWSXWRWlXRaJZQTkDJl5ythKRRQv/6Gv13HjBz9iwH33eGxoE5qnN1Dh2fp3RkkmJFUahXqcwf5Mq9AaS5Fmrf7CyWjsgqIIWPM11EK4dWt0USBRw8MI9xNP70FDO25vW3LpFoSaHq0+1uUVQwM99gqmKzudFlam4KKSycRpGDZ55BCWg0C2RZRrjTpygFk/sLPPXRj1D0DHbWJw5CPBue/eiPs3X3TZ02UT0AACAASURBVIRQLN+8yFe+eok4Tai5HkpmJFFK0Iog1ojBgExEeFFM1RMUZyVOxaIkVe4WqQSGFBVs4yqwkwGDQQ9ta6p+SqEuceoKx4qpiRQ37iFNRDTYouxo7DQg7sbYUuEYQyccUCzYNOZq4PlEoaakbQIUUSSoOoKSIykKsO1cpFmuljAydygbpF2Usmn3Y3qDjMRIbGWhrJGKavelh4BjO+ohDg0MzePTXQJfHlboPTRPGhH+RkPTUSvgOA5JFKPTBGePjS3k26EUQZylXLl6g512m3OPPsqtW++glGBqZoZHzj/G8x/6EFPNJjev36Db2uH733kRX1k8/r6nOXbsGNOzs/lNaMhdHeOEy1cu0Ww2WVpbBa3pdTpYUrKxscHS0hL3FxfZf/gQb7z+OotLD4iThNnZWVzXpr2zwfz8HKmEr371LsVSgGCAZXdI4mW+9vUl/uLP/oI3376CwmZx4QHVco000Tzx5NPYjkehkFMIdKppNBq0trZZX1mFNNl1nRySI0eV0mhGN9qUpWmahxBIMcxU3D3WozZtL8Vgbwu216HTiN0AgFHFms8ZMyw1NNMzkizVCGlhBLium4Ob0Qg1jFSTNu/1ek+e0u/8s3/+peMHXOLQUKiXcMpQagpINF7JQ+sk121JQRYr0uguaZKRpS2EdOmHXQrVJtFggDQZXmWkWE5ztmgvop9WcI7OMLi7RlK28ExK0OniT+1j6e46trFonN5P6/Y6hZJgoumx04+QWNxfXGFqqoEdRQT9iH43YKvTpuhX0Al8/ue+wK3r72AGEeuRwyc/+zFuvPUGQWuTB7eu8MyPfY4o2AHlk7S3KTZrRN0O0uTVTamk2N5o4ZeLBIMYWykilTE1UQYl2NrZ5pkPfZQszLiztsHd24vYacgb33iZy/e2MFHEVNkhU5qSb3BEbtdbshx8T2J5uQ7MzgAMxlb4nk2QSKIMpg/twyoUqM3UCaIk9yJXHs1mFc936fUiet0M4Yl8OKiLw6jvPFpJRnnMuINAmBQTG6SOUL6N8FxMnFJplIilQNo2qW8zEJKJqSZpe0DBtYk7CdJzyZTGLzpklgNSkYQhSQzV6TpLG93xNfPzv/Qr4wt7rz9R3iqIsY5q79N4r1ZqdHN87Wtf49ChQ+Ovi+MYQ84cTlI97AoMmc7bDpGC5dgcPniAO3fv8GDhHtMzcxSLBYwxrK+v0+/3WX7wgP6gS1FZFEsVPv9L/5Cjx89w4tEnKVUrTE1O8uD+fTqtDkpJpqfn2NzeYm5uH1OTk7z44rc5cOgQBw4eZHlpiSxNWVlZyQMywohut02v22Hfvn20d9p0Oi221rdoTE9y4eIa1663Wd+22NzIKBSKbO3sgDYMwgBLKRzH4ezZs/S6XdIkj1FaWl3i0fOP5dVKmhIFAY994P0IIcegMqpAd+OsNFmmdwFEyjxTL8uGvkcCpaxdt4ZhxTsCob3vGUXROC55EIXD8yjQxgyV/zkXymiTb+d0itHZWLuYPzn2aBuV4OBM/YcjT37tX37pS35qqFqGQjXFrSkSIfHdKqmRxLFCWxHxIKMXdnGCDGM8jNRY5SKFYhM6m7iFIo4vEWRIKyVNNUEvo9VSrPVsbAxBtcjO1jbVWpmwE5D2EyZKJfxpF73do93u0DeSomuRrecpK1MHJ+jdWKfbGVCa9mjtbKMyGKBRZYupWpOw26bUnCLqtfmN3/ifOXLmAGUyLNPl6IknIYrJfEnNtondJrXJAn3XY/vBbaIwodFosLPTImi30dJheq7Az3/xvwJT4OCpx9jcesBWP+DJx36M9Y13uPCDt/nWqzcIg5RqyaZSVFgaYMhyHZLZQJOi8IwktBWluSZ+scggcxhowUY3xQ4yqnWb5btb7Jtvsna7S9LpkyUO270EiYXrWnjCwfbLhFFMuVxkkKV4tsF1c7uRPPVFkonckjTLIBtEdDGIBFxb4pQrFHybwWYL0+mjyja9wQDLttBZhDSCQslhaa1LNctj3Cfm6izcWaWX7Nbj/+E/+EdjUBrNLEZP7If4SMPWbfSEHwHXaH18/Pjx4aA2GX9tLomQWEphKYmSw+w5qXAsiVsosrRwF52lDIKQI0eOkCQpQRTkMghjyJKEyXqdoDegXm9y/PEn8htMZxRLNf67X/+v+fAHn2dqeoZyqcyBo4fp9fs0q3Uq9Toz09PEUYTjuviFAlEQoE1KFOUq+TNnz+EXfWzH4eiJ40xOTxP2A/rdLpDzhIxOabd2KBQ9PM+h6DkcPHSILMurnpWVFbY3NgmikFq9TrUxQa/b5ZFzj9EJ+kxMNDh15iyZ3j3uIyb3aKgcBAFRFJKbquUC4LyCcoa+5fKhdnpUdY6AYzRXGs2QlBwytclzHnWmSdKUTKdkaYrrursGfXsALslStNk9j6PveWj2302efM8xuG1nNGar6P4W6IzgjoVyQgKzw+Th0+DalEsfQJYdVFagG4YUa1O48UW6vUVkuIrjF7DsDNe4RJlk0E+QyiDtFMdVbMmEWtinMtWgUhZcu7TM408dIR4G+PV6HTq3N5l+/xl6a1vEnYxStUS00yK6FyJnXRgY4m5McaKJP4iIjc/5I8f4yCc/jvgmFH2P6al9aJ1y4/oWP/uffQZjNuj2u7SE5AffeZknzp3j9NHH2FjfQrXW8c88xb6a4Z2r1zg00+DyC68zOV3iU//Rr1CtTdBXKWl7k0QHPP7Uh3n52/8n5XqNuqVJXYWtDa6XE0CJNDEZaInnuSQmxKlMABmryx0KtTrSSLrbXYRwWFloEycZXaW4+TdrGJFwe7WPEIKIjEp7kzNzU7R3WlgFh+1+StJJ6OuINIFOqik6guZUHSu16K3vIF2B69qkcYJRFqsB7EsUUSFESY90Z40000zONIjChCgIqE3WiVsRcZJiGUG/G3Kg6pFZGsso2jttpvZNsXJzZc81YzMYDPA8b9ymjS74XUHu7kB29P+jGwLyAepoM2RZEq13SXtmqLPKknS4JcpdNI1UzMzu5/XeX7Nw/wFPPPEEL730Eh//+Me5cmWRZrNJnGqqBZednRaFeokv/NN/QtbPk04gb03+2//lfyXWgksv/TVCKjY3tnj6sSdY21hn4e4dDhw4SBiGxGFIpVRkdnaW7e1tlLA4dPgQ71y/Spak1CtVlhcWeezJJ8Zt7MHDh1hYWKDf6VKtVhHaUK/XaTabrCyv0Wg0qNfrLC0tUd1fJxwElMtlSpUKdxbustPaYmttlfqJU3lesk7HVdAIFIQQMNyiub5HEqXjrde7xbUj8BFCMBgMHjoXe6kYlpW3YrayUEIOk2LE2NrEcnKveMuySLJ0zO62bAtH5M6hrp3/d0TAfK/Xe4JSyRLE3Q6eY+FbRZAppbJHqhXG6mPJEnpwmSw+SJLdxnPAjQVxr4evLXDKaLoIYaFcsBIbX0rS1tD6QiqKGpxK/stv3F3lzKlJNpe2cTOPruliWn2yzGbt0i06QYJVKeKqmEAkeNMFov4AWxmCeECSFvjU3/1HfO2vvgqWzYPFRTqtLfpdm/XVRfYfOcDP/8ov89Ibb+NlDWpFWFka8Nkv/H16ScDhY8cRwmU9Dvn08x/l8o1XsGcPM1i4yMxUjf1HDyGtKq+8/jITM1Ncun+XD/7oF7n69gvUSnP8+V9+k+2VAU+eOMH3L16lMVPHsX1aGx1SNIWyQ2Tycrmz0cL3fQ7sL9LpGzZvbhF3E2wv4vy+CqE0bC63cSQEJneB1DLDMpK5RpGtQUSpqEgsm9oEGB0zEUuSzGamZkGa0Rt0md03izs9R9qJiXoJZtBGZbC/ojAywVVOvpERGoQi6fbQqcZW0G91INZYOjd5cxwL6VioJCXKUmwlEd3uQ9eMMWac/bbXe2c0MxrNK8aK/z03yOhzaZzkbduepBHIn9Cjf+s4uwNZhuZ1/V4LpMO5UycJg37uwJgmOYsYKJeKrLV3KBeKfOgTnyXt5fathUJhPMsKAknRslh8sEG7tYpEcunNC9i2RRzHXL18hfc/+wG+98orvP+5Z9EYTp4+hRq2UkJKisUiC/fvcvLoEZIsxS/5HD91nOX7i8w2m9AwKNcjCAIqtRoamJqdIYgjpCXI4ghpNLV6hSzLaDabKCWpVqv4xTKVSg1v2LaNjuPoWCRJMj6OAjEEdb2Hy5Sfh9FGba9o990pMqNqN0nyrLhM5g8Kz/P2tIQpJtulDuwFNZNptGTsASWUHEe2/9CglIqcFFmuOnhlRcEVeDWJVa7h+A4iVQg7xLJtmqd/iUMf/ixIl8tf/gz9YAdH1nIzQZWhpUDHMYNuRCIEg1RibMHK3W1K/Qq2HZAlcPPuKgXHxlIdgkGEbytaKqFiXCqOwUq6ZEYwoQRx1gdborMUz3Hxq1X+5mt/xOmjB/nARz/FrWuXWL9zmY/92GcIJJw89BhZCgv3rrJ+4ya87wQT+w4wf2iehQcb3H7zVWonPsjczgYX3/kuNy68xaRMKDZnmZw7z83L32bqzj1Wb7+G4/pEsWTx2qtcv3aZhYUF0q7k9NPP8OD+EjaSYDNFxC0cJL1egHO8yoNBGy9NKPsW0sSstQwzkx71yhzLK5ssrnS5PYhwJIRpLudQUmBkiovk+HyFzfWASt1jYSejE7YwOjfnt9DYlqZRdylYDtWCT3tti7gvsDw7T7SoeUyUaizdXsRBogr5cDoPBtOk2iBlruy2Mk2mFD4Ge6qZb2t6CcEgQjj5liR516pkb+sGux5Iey/0kVpcCJEHjwoxlsNIKbFdZxznbtt2HiGtFEmWEqfJQ0BmSTGO15JSMnf4GIu3b0CS8FM/9VNorWk2m0RRxMKDB/hO7oFenN6PMYJomPCxVwcmhOA//sf/Kf/vl/8lnVYHrTPK5TI3b95kbnaW+/cW+MCzz7K9tY2Ukm6/B9rQ7XSoVKskScLZ0+dYXV1G9fMsuu31DSZnZ2g0JnnzzTcZtFaZnp3l5s2bnDt3jlKpQrCyxNsX3qToF9je3mZqZhqtU1aWlvL2db/FSy99k6ee/iCtYb7dqAoNgiCvQOXQMwnyRBvLQog8st2YfDA+oguMhtmjRcOotR6BW5zmx90RFskeAe6o8ovTZLctNxqJGB9HgSDJ8spo7BQwbMP/vUApEB6ZVkgXjDJYRQc5TMm0jcCuFbAsIL3Nxtv/gtat/410sJzHcdsKTYs4jjCRg1QRSZTH/PS6KUqDayQ7JkV127glFykNNSCL+6TGwheSVMdUixJXJGhlyAyIUBCSkmiDsiSuZZMKRdzuM31kH0urbabm5rn00p8xe+Q49xdXOHBiH8ZN2Llzj/nZQ7g4vHlzgeTSLTr9r/Pf/Pr/wG/+xZ8ztz3AjjaYfeZHmWxcpjZxFC1g/fo1zh49yJ2L38Yv1rh5b42DZ5/gyqULfPeFG1gVG2eiycd/4if557/2axwq1wjW29xTFsLEVDND1A8pdzKCuguOJOmHWEnGzsoATZd2PyGLoWSDlUQ8emqapXe2KZRslF9A2RapzvAnCtzbGBCkMYVM0JUptrFJSTFRwHpHYojIlgxGGqTO8KRFJDJ0JiiJHidPzdJb2yJLc/2aygSZp5C9mNgSKE+TSQvLaGItEXGCN1nMB8p4qMYEg401BjsPu3TvZf6OqqXRx/aC03jbM2wBpBDjVbFOM6Slxk/osUUGoGw7d9UctoA6zdA6/xmiJOXoyWMIEXD1wiUyqcnilNXlFW7dfIfjp05jCc3PfvG/QKncF9yyvDFLOQiCseau22vT2m6R6pSDhw+zvb3NJz/9aZRSvPXmm6xublL2fVqtFqVCkSRJmD9zhsxoSkWfK29fZmpqiuXFB9SrVcr1GkIIbt+8TrVcpFougpTMzs5y58ZNbN9DZJozp89RKnssLa6ys77JkRMnWVlZ4ezZszxYWuFDH/8s73vu+YdX81oPJRyjLSbjB4JONbatyDBjsBkMBhSLxTFdY2T4Pzpve/24syxjMJwHCZW3dJ4z9HQykiAKx+fUch3SIfAIIdBGE4e7ldtoY/feO/+/ZdD9h7/5z75ULQsskWG0xnZsStMFTKaQlsCkGUoYwn6AFF0cJxdtYjvoNAEysgTSFJT06PbapMYijjOSRBKlNt+52qHiOxSKFpbO/VeUbWEPtVWWUtiAUBZSqjwlw7JIdYorFRqwhMYoB7syyfr6OueeeYq3r7xOY3KScqFIY3qKuckm3U7CnbuXcFQhXxXP7+fQ4XNIJfnjP/kdmlOHSNodJg+eZLC9yfzhY7zy7R+weusy5Yn9bG/F9HoBa62QThzw9mtXSUwJ7bj85C/8Ev04RLgOf/VXLzLIYvpCUSw4mFBTcSxam106QjJZKRDqPPPXV5JEx5gwo1CZoFEX2EpQna3RWQmZOzPJ2kZEyREEUvBgs8/KzgBbC0rSpiw0Tz99ks72DlZiSIVEpZr9UjG/v0iQpZhIkypBOTM8cm6OqaN1SpYgw0K6Lm7Jp3Jolqgd4FQK2J6LV6kx2GwjtUZnKb5XoL/ZQpYKBLZhY3Mbv1AArVkb7DpP/sIX//FD25wRII2dJ/eA07uZyJnOkErmQY175Aq2bef8GdelaOUsb4ZtoZKjxUHO00sygRVHXLvyNlmSEQcRvW4H2/VwlOTDn/wsyvHRenfIniQJjuM8xH2SQnDt0kWefuYpkiRhYWGBO3fuEIfhcEAvWVpe4vyj59EmJUlikiRFZxnbW5tkUczayiqu69KcbLLTamGyhCiKWbh7L3efFJLN1TUmGg16nQ6+Y1OuVJCOAmlx5Ohx1tfWOHf2LAkwf+Ao7//Qh8fV3bsfBlmmh79PjJQW7HHuHB1v27YpFApIKYnjeOwOMKIO7B1W79WsOY4DxqCGliYGSNIUS6rcOE4psiRFWRZKWNiWygMihvKkMAxzqoeQKKk49B4uAe9ZKUU61zwlqUXJdsHRhJ0Y6QpM6uLZEa12jJQakRnCVh9DhE3e76ZxSpqA43gYW2GUTZZkGKEw0hDoNCf1BQbVFJBqsBW2nVdUOk1wpQNS5mxUmYchkiZ4noeOklx0qhwKBY/TTzzKZr/H8WP7uX3xDRSK6QNnIemzsbxKa2sbr2ShQwtkHj+9sniJqeYkfvXTZFFA0r6HW2rw6ivfpfPy3+A5RWozp/COnEREgtXX3mI76jJ76BTHzsxSm5vh8vcvUixXOHH2NBd+8DYHG2UKSuIbjeomZD5UKj6lyVketNcZAD4l6AQsiS7bg4w0NHz6eJlb6xGFkqIkPGRNs7rY5uBkhYV7y2wpB5OmOFISqAyRJBw7MYelDOcenaZ3P8SeLPDdi0vsxCleq88jsxUupTtULMFSz7C5sEO7NaBSU0yenaWiXbq9iPblBbxKCcKMjknwXAu7kbOeW90YbWK8WhEd5v7etVqNXqeL5/7bN8dISjACoNFTeK/t7d6h60jgOboJRkPuvW2gEHnkdzcJxwNYIQRhHOXsbstGpim+JXnz6mVmZ2f5zndeZnJykvm5fUxNTWJZFqfOP0Gv039o8we7w9fR+6ZxyMEz59hpd2hMTnL48GEmJyfpdDpcv36dU2fOcObcebrtHdqtLp7vIhHcuHE9/9rZGRrTUywtLpBEMUU351zdW75NyfcQOqPbbWPbeZWWRxw5RElM1tN0trepVqucOnWKza0tDhw5wrFz52m1OvlAOckZ+lrrYVR5DjY5b2kP+33PDGcExFmmc6O84TxtdA48z9t9QAzPieu6Yy6U4zhjHpccVqr20Ps7Soae3npkZyyRlsLOLCwnf6goIfPQ2L+FPPmeoNSLDP0+NMuKQRDjDRxCFVMqVxj0O2ROCewcoaUOsL0S2nikcYqFT6b7pDpBhyGOsNDCJzMdhFJoowlDkJ5FqvLkVOlKJJosGSrMjSIzuY8xSGxjSIRBWAJLZ2hbIWKD9iSCKrdv36ZaaqAKZWr1Au//6Oe4/IPvUCnVaTRKxGmXSq1BL1rDFW7eIoQBR06cp9tL6eys0lc9UuNw9PRJ4uQUBw8f4ebdK6zdv4dqzPOpX/xF1hYXuXnnCiceeZLF1Qd04y6X3rpIa2OR/c06V7Xk4GyZQRagixm252P8MqGCoixSrTrcXd3m+ONzmAsZ21GXVAle/N5Nju2fYurEJPQjZCawOjFJN2Lm8BTnZspsXt+gerBGlEjeeGeR168v8z49g5qA8vEy65e2mVSCtoHrOwnFqI2FwFeCppULI7dsg9/LUBS48L1b9JTGkopye5UTjx/DzjIy20L3QxIyjhyapLu6g24NEIUCqhsTWiGlmoedWsDOvwVMezVSe0FoBFR7186jm2DEuRmRLfdu7fLoJoXlqnfdaJrM6OFMCaSE9c1twkGPZ5//EI7jYCtBZgzttQ06a12EpzBGEEQxEpEP8IfvOfoZcB1+9BM/zp//69/m4gvfxiv4dLtdgiBgqtlkZWWF6ekpCp7H3Nw+WjubSEtx8vQplhcWsZTi4KFDnDxxmhs3buEVC1jacOaRRylVyqytbmHbin4Y4Ls2S0tLTBU8omDAervLydOn0FnC0sI9HnniSc4++X4y5SNFnlycO07mlWa1WmWUSrJ3HT8C810picUody0Zgvvo2I9EuHu3onGa5Kz+0WJCDO1LjEYiUcOI9TiOyczunHD0PaWUGLXbvqc6fWgb+0OBUkuntEKb4nbA1IxNtx+hSookGKClTygVviSP5TVlsiRACUUiBIKEJDNooRHGoRdowiBCJxZaC9LYZm2ji8wCIl1EG3CkjdExWmgUFrajybRGSujfG+DOemjXRukUaST7jh5lfXuNoNth/yPH2er1OHLqFHdvvMPx/aco2x6lwiS2E7GysUkS9uluQS8OmZ09StjrMzVziKC/Qxhr6vU6rU4RYQnCYIDtFHPrhSDi8Mn3sbyxymuvfptyqcDHfvQnaG+3Wb39Nh/7kR/h9/7wjzlz6gRv/+BN2lHChfsdkjjGtyXzSlKdcrCrDnEmWN2IOHZwmsF6j+Zck82dHstpbiFy5f4ad+9v0rcSzs8XKWub2tEqAyPxXMW+Z2a5f6vFylYXoQ0Tro1VANfz0IHFWiegneU3/kFlUfAV3mSFOAoou5KFtQ5lAZtKsfr9m5QsRRWYnvfYXNYsruywvNaiKATNZoniRInB0jZ31/LWW4kB047FviePsXl/nSDsPHTNDPohynOw1O7gQGeQxAlC5mBlKQdl7d4sI4mCcHcroxGw7dW8jWw19prXK6UQOhc+gyaMA+qTU/j2HA8ePCAIAo4cOsDW+hY/88V/SLcbkAzC8YzDCMEgjLBkPqQdD+CNJE0C1u8vEgQB3W6XZ59/jpdffhnbtnn++efZ2dnGkgpt0nGlsb6+zqmzZ6hPNFnb2ODjP/NzPNcZIAwUSvm8yrU9siwhGkT0W1v8xR/8NgcPHyUJIyYmJjhxqkyn1cayLC5fu8kjTz1FuVJlp9tD2jZZlo5lOntbYK135TxmKAcatW6j47hXd7aXrPruh8CI7S2EyLdoIwfRkSia3C6XUWuuQTlqPJ8CMBkYMqKhlMV1d3P2fmhQWm4b9pUSIm0xGEB1wiNJbAaxQXkWQmvCWGLpGCEMOnPQtoWQkEUpUhnS0JBmuV2GyEAbxaCTsdnuc2czJMMiSjIMuZYGW8EgQUtDkhgsCVLaVA5W6DpFKr4g3umDE3NncZWpQ0eozSniRFP0JddvXqQ5WaFee4wokWxtr/LoM8+xsfYalZpPp9XFsz1syzDZqCFsj5WNDjIKWBcOpWKdOArYXl3E8UoEQZ/m3HGEtHBEwqETZ9laucWr/+aPmJyZ530f+QidrTZPPfYoaRiwtfKAUgQBIUZazBubySNl7GqBzoNNvGqRRsOiv9nFlRk3F1vsGIOjLGSkmcOwZBukUdxZDAjp4TzoU2s6TAmb6rEGZam51wsxwqILvH5tiyTNaNY8jCfYb2xiBKWixCpaKN9mZ7ONKXgcOd4k3umztBWSWYpJX1AoemR9jSo7WFHA4YrPUifk3mYH2YpwrYxY5E4DKs3oOS7f/8F1tB7a2e55eb6Tz/ksK4/ayjKydDivkAJLjkzlE3RmofVuWzfoh9jOwxKSERBJKceWIKnOxu2F53n5AFYIQOG7giee/gBf+aPf49iJ47xz9Rr3Fx5QKpUIBwlS5jeHJB+yG5Nb1u7dGmqtKZZK/Nnv/ha1qSnuPbjPc889x8WLF6nVqjz//PO88cYb7N+/nyxJsZRDoVhm7uBRjp16gvt3rnLt+nVsz+HFP/pD/s7f+wV2uoNcliEkcRzmw3ujefPiBXZaA+IwGPOOFpeX8DwP13U5e/Ys169fp1CbYt+hY0RRMhxIa6S0hu3QbvWZWwrnicOjAXOWZfQGfcQw5gihESYfeo8y4NI0HZu5SSlJdTb+POQV0kj+M6rCHgI5MSZ9D79v3uEoHCwFytqlFvxtoPSec3BbWHRC6KWCSBvavZhOKyZLJSbW2MbFFqCDYBjNHZGFHdJBDy0H6NTFkG8F4liTpQIjbVAOrW7Kja38l7Mk2EJhK4mbaYw9fAraEqfpUap5XLvdZ2qmSevNVWIZ0epoRAG2Fq7TfnCLpRtXKFd89u/fT702yZ271/nGV/4VTqHEvWuXqNdt/HINpzyJ7ZbRWrK10+fGndvEYZt+f51+dwUpUhZvXMH5/zl7zyDLzvO+83fyOTeH7ts5TE9szGCAQeAARCBASiRFShQlW6YoeRWr1nLtlr756xaq7C1v8mq9qi17La2WXluSRXm1EkXLFEmRFAESgYPB5OmJ3T2du29OJ7/vfjj33u6hLKiKjUKha9Bz69zb533O8/yff9AlmoyYnJzGMRSEIgiikGK5hKroHDtxBiyDS999h+31LbJ5kzDoMzmZY9xU0WODOSfF9EfmsZ08D6/skp3MUzk9gaaqlJ6Y586tFq1OQFqRVFSFkqqSyaWZ15IVHBrfugAAIABJREFUa1nCQjGDI0J2aj7vNxpcfmudHzysU9B0nj4+BrEgRKVUcTgxWaJcyXIgVTZ8j7W6z+21LvduVZkopxjvBjxYrVPzQxYrGdpRxKO+ZGfHR7VVMoOtSyZrkNUhjeTMXJannprAkQq6VKiYFmlDJxYSTRc8uTD52D0jlcFI4CcbMxFDKGKENmjrRwzixI9bCoFQEjuVnuciIok5sIEdFqujgYfDgzAEpT3PI4gi4gFruNt30ZwMlp3ixtXbnDx5mnK5zPnzT0MYJzABymAEGvhLH8G9fN+n3/fYP2jgux63blxDVzWuXr2K2+tjWTbf+ta3sCyLeyt3GBsbwzAdPv+FX+GJ515i8cxJ1h9t0HNdJirTlErT/Mc//HfsP3wwwtWGxTSVSuE4FotLi6AlYHC/3yfjpFhdXafZbPP+pUvEYcTG2ioiPGRGx7EcKfF9P7Gs9Txv0NX16Ha7ozhyRVGwTQuFxBJGN00yTgrdNIgVcH0vGc2OjH5DIe0Q4wuDRP3v9jzCIMZzAzw3IAwG41uYXEccx8nvPEy6OEmAkBGBf0gF+LuM3j50+/YH/+p/feNRO6Bka1gKpGwTUipaJAkUDdfzUDSNKI7xIwUUA8VUsawCYaig6BK/HxEIQeAG9DxBu93E7avsVwO+v97FUAQF1WBq0kbXFCIkhqGRsSx0W+PW1QYb9ZD5vEan1qCfSzF97hhW1yMlYKsb4/Z6TIzbFCcWUE2D5sMVetV9suk8x0+eZ2dnndnjT1PIplk4fpL6wR5h7BFHgnJ5murOI6pb65hOlt3NdQwZY+o6Vr7CqScv0G316Pe6yFhFCI1H6yukiiV0TWNqepq1+7dRXA8t6OBHXRaeniJuCvZabR7utNk8qPGRl4/j7rXore9QPjbF+l/fZzMUCFVlWmgEERSLNtVmH19omJpOF2h4IbpMgkEXTIstkWw4FnJpbCvCymaQvS4ucG/XIy09Zh2D5XMzPHrUYz6lQCxYbXhUA4XTZ8YRWshG26cykeWJuTQPax6NrgtSpZCx2eq6mEaaeuDTbfeJQ5WeGxOqkryuokQxRV2nrcWU8ik29w9HuL/3i7+OYZgIESW+SAMcQh2m3WoaCon7YYwAmXCVpBAYmk4qk0SHHx0zhk/74TgyPDzDEUxBJB2XiInDiLRjc3J5GUOVVA/26Hk+rXqNiaVjOHZC7AzjCCkhjGKkkARBCCTOirqeJKpMTEyycv3qoBCA64U06g3OLJ/BcWzCwCOTyfLyT/4c7U4zGZFQWTp7jpdefo233nqTnZ0tZmdmuX3nNvdWrrG7tcHM9AlimbhBHj91lj/8t7+LY9tkM1lqtTqtVpuZ2VlSqRTFYpGJyUlq+7vMHD81Ap2Hbgr9fp9+v0/o+bi+R6fTGYH4/X4/8XUSMUIKdE3FMk1kLAYWxTEiSq5j+P6lGASExjH9vp/Y1wCGoWKYBoqaeKkPt5YJlqehacYg2Xgg4lW0RIIyIFYON6TDB8uPnPv2+//6n78RhzrS87AsjWzGwDR0pG3hGCqmY6FpJpl8HnQFyzQSIp5MYocVdEIvxmv38X2BF0QYRp5mzaXeiWkc+LihSiqtMZFPo+tgmBparGDZgtUtl7RukR8zkJZJLjeG1+tR3eokKnlbI2p12dhukc45yKDGsXMvcLB6G6tQwk5btOot5hbPsHb3BtLIcfPSW5SKBaoHuxRKk/QCl9CPqMzO065vE4ch+XwGDIMLL/8Ed698gG7a2MUStm5Sb+yjqjqtgy1K5SUe3bzExuY2YzmFjduPMMtFFNeluJBjejrN4liRiq5x7fI2DzsuTV9j5eYuVTdCUwWTsYooGtTimNATtKXAQjKeNpiezjM1W6G+VaelSfBADBJcGm7IQTNC64dYqAQ9kVhtSB038tmvuWSViHLJwLIUzBDmpi0e3e/Q6WjksjoVLRFYVtsx5xdSqM0YiMiP5SirAbalUlItyjM5dlo9irqN7wU4hk4YhFRyadb32/T8w9juX/1H/+0IT9I1A01VH9ukJf8OblBVRcRytP7P5tJ/wyrjh/+roCHiJIdQxImuK4riEVibcizC2Ge/1ubNr/0pICmVx/Ejwf7GJvMnT46ihWKRdC0cGUOScVJg6DpWOsW9ax/geiFBGOJ5iaFat9eh1WiiqBqb2xscW1rE9SEc+FMrqHR7fZZOnuH808/S7rR4/733mJqaYXPtERo+D+7fZmbhGB3X48SxBS6/8w7dbodUKkXPS/hSBwcHnDx5ks3NTWLfY/nCR9AMfTQmDTPgLMsijBP9mW2nMAx9ENFtJxuwAVbm2IecrDiOcVJpVGUgrB24CyiqngidZZyEWjrO4GEgB1u3Q7qHk7KSEEsjCbiUA5ct07QTvEtTkiinQQEN/IikNkmOz/7tsd0faof76omyPOi5dJo+ZydyLE+HlPI2mTGTtKZg2BpKFGBkDAoTEyhqCiyd2O+hCxCxh9sNiMOkWkehYL/m4nmSWi9ifU/wrRsuJ8YMTs/nUbMOer7A5csPcVodTF2DUCU9kWXxtad58M4HpDWJohjEpoLd9OilDIwAMrMlVDNPp7bD1NwsiuYxu3iBnc1VtEjHqczSDdosLJyk3dxGMSeQ0mWsUqbfbtJu94i9fbxel0yuhMxVGJ+aZuP6ZYqFcfZrVT7y4k+w/ugOfs8FJeTu9csDI/0+UgR87Vt3SWkOS0s2c2M5VrbqrO5EpCNJpERYuTTHbZ1xRWFfBtR3PbYsjVgIyoqJJUMsNYWeEpz92BmkreButShXpth9sE7hWJHtex3u37jL8vIiXqPD+n4L3zIwrAiERqMXcTKXhV5Aaspkp9dHFSY5W8WtehwEEOkR006KUy8tQRTR26rSjSOymTJBFNKrHrDdiqlMlYgOGqT1CC+TZX+3Ry3yUYTBfFolaxhs9HpstA/TTL753u0Ra3joryNEEvetqhJ7EKM0fNof8oL0kcHYEJgd6rHS6TSaruD7boKjBDEoglQq9dgGSZEJLhnHMY1anW/8yX/g5PI5rl+/zlPnn6EyN8XY1ByacggOJ8VIDK75MG56iO/88e//Pq36Hm6nO3KT/NRPfJJms4Hb67O7uUVxrMyTL76GrqsoGDi5DKaijVjQzkAS85+/8ies3b9DupBjolyk1Whx/fp1UqkUU5MTiDCg3/cIB8LcfCFHFMeEocDUDX75N/8JMOQc6YPP9vCBMKQ4jCxo44goCB8zctM0Y7DNTMYo3dQe29QNX2dEVtU0fN8FqT9Gqhxib4p6yDvT9cHKf+CzZdnJzyJ/aFsax/zEy+f+Vqe3D+2Ufue3/tkbuqKx6QlmbAVTk6RsBVVAqIToqo6WMsGwCIIAp5RPOEu+QGqJcX0QRqiRJFJCIj8mdl1SKQPHUSlaOiYJKXP63BLvXN5kwo4pWGAVVFLlHOmCjTBibn9nnSd//AL37+9hmxLT0AgNUBWVSEbY4znidhVbUek0u0SBRq++jdtqoukmJ586T6/a5PmPf5Ir773NE0+dpefHVHcPGCuXSWezdGs13HabqVNPk9IzbN96n8nTy2zcuENlfor7H/wVfqdNPquys7PO3tYmGS3k6q091tbqzJV0TsxkKSiCazd67AYuP/X6AtOqzlo7wO336EURJ5YmqcxZPNry8OOEkq9GAk34nJopcOoTT9Pc3CLY6xHUmjx88x792GX3bo2FCzOIrTZTJ8fptNpYXgy+4NjSNClFZ6/dRw1CCoU00g3wmiFnz0zQ2miyH8OYpTKXFdTikMLsJKLTpX1/H+HqOI6FnbWIqj1CEdNuePRQWO34PHn2OHbQJ2M7+DKkJyS7bRdPUfHDw4Pxi7/2j0c3uGlYow2RpkpUTUuCDUlsNcIgJhQCPwjpeW4ifxCPs8GHwGoUxaRSKSCJmx4WNdd1R0Zxmq6POp3Ll9+jVU9GoemZGTzfZ2ZhIRlZRJKu0u12GebQ6bpGFCUpt4lRWkgQhDz97DNcufQux48t8ujROlEU0m61WLl5G8PSqNbqjI2NcebceTTTxjZTSCkS2xGvDxJiIWh3OszOLZIvFOk2mgS+x8rKXWamphCxwLJtjEHBaLZaLBxbZGd3dxAKYIMUXHz19dHGcRidZJrmyKjtaHFJukoe+yyFSMDn4d8VCAI/IggSUmfgh0RhTBhGRFFMGEREYYyma6ioiEG3yhEmuWkZA2xQGRQkRtfg+wFhGBME/qhbGo7fpxYmfrTx7Xd/+394Q0Oh54eMa0k7l8kopBwDe6CxMXSBoRnkxsewMuNY1jh+7BH1AlQGWibHJAo8DMfAstQkR16BTAZsqdGJDW4/6HD2RJYo6qNoBopl0WyG2JrC9l6Ik5b4qRzKQRvTlqixwJBJJE+hMsb4ZIUwiCiOz4BQSDuCRr2Dpasoqs+9OyuU5qZZvb+G9CTXb15haekUzdYuacek39glFBGGlKTscdKFDNVYkBYpskUNv9slndbRoi43VzYIqnUytk2omRhaRKMbcSpS2dp2uVPv4auwNFMgpWj0qy7bvYCyqdKLVQ722uyvtiliMnUiRbflc/GVBU4/e5oH93apXVtlbGkerd+n87BFX/rEriRFRORpTJybY+U7dyiOZbDGCtilFLm8yt7KJi9+8glKhXFEwaC+16cjYpoHLTKKxp4XUFlwmH3uArMzJdrr29i2gteMEZHP1kaVydMTBH5IZW6C6elJJhyL+YUKodcjtC0e7VSJY50TUw5GK6Zsaex6h4zuX/y13xjJFTQtyXMbem8nEdwaYSQSEq2U9P0kONPUDGzTxLKsEYg9BLeFSNwsj3KajkaBqwMsxDINZBRimyadep1CvoDneRQKJba2tjh97vzIQ6jX6yGlHGnGfD95D/1+f3R4giDAdT3atX0e3r8HQhJGAdlMGtdz8f2Q8fFxDNNkdmmZyA+JB2EHumGgaxoySsiGkYiTh4iTQugKd27eoVAss725TS5fpFGr4vk+ksQlwfM9stksvZ5LFIVomsr5514mig5TQYa0gKFcR9N19COE1KNynig+nIgSDEhHUw+Tc4dfR4MpgUEsVvIaYsAtOwrYJ6Oz+BtM8OFrSVXB1I3Ra3qejxCSM0tTPxqjmzBOxLaWim5JNCVGk1qSMlFIJcGECDTToNdq4nlNsuUp8rk0mDFev4GhGLj9PuVKGa/XRTomUSDwaj28WKNk69hZCxkmiuIYg5yhEhs2xaU06kSBBUy+9/2rOK1N8mWVrozRpIVruuhhllJlCk/LMT6t4hiwt7FNGGZxHA0MiQzASRmsP9rFVnVuv3cFo2DROn+Sp84/w1tf+xpmKoXo1bBLGV7//Gf5/37vtxGhhnkshYKJXdRI2RW2793E6LaRlo7XqSGKOX7ul/8hf/Tf/UvUmTSnj+fpXK8SRyFTQqF7t8GNTodpTWd+Jkt9L+Re0MNO5dgMQ1rrPcJQcu876+TsDeaKedTFDFs/uEFlaR7Fsjh78TR3v7tC03PZ2qujbm5jTJjs1/pYXoP5108StmNm5mZp17psX9rBS2t03BhQCGyDXRumy1mqrYg7X3kbzdB58niOVHGC3mxEWs2gPKqx/d27uOUc9vYmoRey8PIpmu8+QI5l0XIqi7k0QjG5+6hFypFMZh1odEe3jCJVIiREkijyB9QAbTTOhSJGV9TRyj+tpRK5kqYiZEDoKzipJBVXUSS+G+AHLp7PSAoiY0HX74wOjecFSBnTbrdREbS7fb711f/E9GyFiZk5Vu7d5VOf/DRBkMgoOp3OqMDZtk2r1Rqs022GC+lRjJCi8NyLr9Cu13jUWscwTJqtLmMTFZaXl2nWm1T3D/DdNnbGRokNBDIx+/f9AYdPYgH5fBEhBBPTMzzz3EcfIy1KGfPW177K7s4j4jCm2+6hKBqLSwvsb1dB0eg1u+gpHegNGNb2YPUPilQI/Yh4cPiFEAk5OBKoikIUJYEQiqIkPkgD7G6ISdm2jed5I27S0fX90e9HUhRidG0YLpDEXg2F05ZlEcQxURxjShXXDwcPETBs60NLDvwdndIf/ut/8YauG5RCQTmjUrQglVZw8iqmBqmsiuFoqHEAikCTOsLroasRvU4dJ5tKTMNtA8cx6XZ3UAIPQ098qE1b4z9eDhGqIJe3WXnYYjyloaoxfTdEdH38gybN3QOyKS3JhRcxjmGjaQr9dUnuyWmsTBGvucbkRAXXDeketHFyDnEYkEvpZPI5gm5Eq7pPKMGcnOGJE0s8XN1l7/41rly9TlqPiWyLTs1la3OL6v466492yOczBEGf+fmFBBTeSPRPfq/LzFSBbHmS//n/+FPaIiLO2NxaaxMKQLOwfY/SE2XG8g66JsiMlWht1/EiDekHRKrkXCHHS68/yamPnQC3h57PQTdg+oUzxG6Htt/nxm6D6Zk0hbkS4zMZzGwe0wKdCCWnsLcfEK4eoDqC3GSF8VNTRNsHHJ8rMzVTQtR6dNHIOZDOWhxbruBkbNJWkWs376NInYlTk6TKOQLFZ2G2DMU8qqHQ7BxQnpmCtODu3T00J0Wt32C8nEazVLarHr3gUJT7D3/9v0GQjGq6qoMiEYpE17TEoXAgF4HkJkZIYhHS7XbIZjNYpkMsQuJY0Ou6xCJ8jNSoDIBZbcg0RoIUgyd8Enrg9rr49QO+/+67PPv8C6CqZHMFDN1AKuA4DlJKMpnMyHI3cchMDpnjOAMvp4FrJhort28ko2GUdFmnTp1hd3cHTVVptdt0GlVOPnlxED2ljLZkUh6SFI8GQB7tThIukGT56ee4eek9yuUS2XyeXq+D74XkC3ls2+TZF15B0Rlhbkg1SZ4dfCYjga6UoKgo8jC5ZOi9fTR2yRrIRo76Xg0L0NByZvia/b6LMhhxhIjxXJ9+v/9Y3txIhqKoqApYA15Tp9NFVRM+nIhiDF3n+NyPGNv9f/4v//QNQ5FEQY+KrTNeUCjndWwb0ikFO5/CNCWaaWKaKqraH/gKp1HUgMD3yRdsIhWyuQqa34AwpDJ3gjiss7sb8GdvR7iNDufOTZAiIG/bCMNi59o+NVWytePRcFWKqkk6rxJIiSUBT+H4y88xni/z/a9/j0a3SrMvMXoHOBJy2RjLTrFVrWPqBnNPneUH799n9d4uuuGx9mgbPWiyeXBAMT/G9NwCly+v8NY7d1m9t4Kjqjx78VnSmSnKE2NUN69TGjtFv1enWq1RXBxDehG331sFQ+OLv/JZsobk3oMWBV+wVLEoTeaxI52epSZbyZ6HG8eUYhVUyUQxTWEyhXFsFloNWlt9ZK1N6sk5zIzG1793n9mcwdRMiVa7x/3dHnMzOu9d26PbDukGEdNzZYJmgHQUtpstiqkMu+/d5tinL3DtrZvcrvdoxoLzzy1RzNgYWoDSCjD3PHLHChQUSUEBkbHpVRvstTp09j2EHWA5FncftnCKOfSJNLW1Goqh0eiFqJ0AxbDx+x7dQQYbwE994ZfIpp3EFXHALA79gDAKiCNBrCQBhrEQaGqCDw05O8laPxqNA6qiDUYMlSgU6IY2OkS6YQwUVgqqZqDqKkIKTFOlvbfLN77zHfo9j16/T/WglpiyFUtoA+6N1+ujjqQV5uDAiUFBSSx2R8EGfY/JmRl2Nx+haxrFYp47K7cJgwjDSIzP6vUaZ595gWReHQLKcjSKjlTyA4zs6JiU/Pkgzvr4Kd55869pd1oUCgXCKGZ7e5uZmVk+8tJLuGEwcIBUUQd+U67nPSa8lUIQ+AmOw6CQx0MLmSNuACgK+pFk3GGhHH3GA9xO1wciXkMHRUHVdXKZLJlMhv39AzzPw7atURcVBP5oLNQ0Ddu2Bu9bjoiaJz8EU/rQ8U3XVVRDxzN0CqmIjGVgKJBRwZYxlt/GzjqgROiGh2UUiPUYTdQwpMR2DJTAJx24CA3OfvQTeHqB9t4aN67s8J1LB/zMU3BjI01344DK8UVWv3GDypkCY9MZrLyKLOUJwj7xap/yx15mRulTf/iQftdj98F17u70OHthBkVP8+Krr/LBf/4KalqQnpwhqFVZKGhUzl3k9Euf5stf/msqpQKrdxv0XZ/dtJ0Q9pQG3790j1hA0bHotgMuXb5HF50vfvELlLMKKblA320ka9ioT9xK8/W/fkhPl5yfTHPz3as4LZdPns6y0nJZ2eyR2+9x7tkJ1NUWD5o+S6bO+GKeu3cbeMBsyiFqx7z15W/z0plFnDCi/OIZ9rc3aN0PqFgq+26XmY6Gns4ypXl09gKePF7i0doB43MTxEKjlI3ZinSOT5W4tLLLhWMTHHz7HjOzkxz3I1KFHJ2VA8JMSLsTkK6YSA+sjoYbmdinxmjf3YFGwPyZ05iq4MHKKg/rbXwJV1fWyN2VeIrBmVmLpWyF976/hlHrMaGo7B65Z0zTouf6KKoGMikuoYhQJASBN9oEOY4DInGVUJRDTGKI55imidAG8oYwxElZj1lrdNo9bCd5Mru9Pqbh8Gd//H8j/Jhas0G9XieIBM1GmxMnlzh+fImd3S2mZhZIpVLkS05Cb0ilgWHnMtRpxaPriKIITdcwU1la9QambdGstwdOigGdXpdysYRu6kRSIEWIqVsjucWw8xg6EQCPbbCGY2JSmEBPZxDIkVMjQCqV4eHqBrevXqE0u4hpakiN0RgGh9Hn4TAeXT0khQ6vYSgRGY6NR7s2KSVh5KNr5qiTVJTDoimEQEcZOThEUYiqakxNTSWvoymIMAkoyGQyj72/IYY1LKLDz+Fv+/rQTun3fuufv6ErkDEdwnaPxQkTMw1OJslv0w0LXVMxNIGhp1HQku2DVgLhYWkCJ22jGNBvtclNPk3b63Plr97mnff20YKIuakUYwWVg6ZJ0G1iFFRiq4BqQeCH9OMQZTtg7iefZ/XdO0wvLdCPevj7Lna2TE4NEI5Bq3tAbXcbQsHSyTK6baKZDk7lGZrNAx7duY6IPKbzWSYWKlQPWgjNJ0JgSA1Nh8+dLXDifJ7Fk1O89pkf48yJeaQUFAol3GYXz+vihSH1jTV8KYj9iCUnz9R0CWnqTORS+BMpKtOL2GMZ9vf2OXV8Ejmew3Vddrwe7Ie0kPRtnWozwKx7fOrXPolVsvGqDby1FjgWY4tT/GBll3NTDn7kJ1IexyHqeVx70ERKDcORuGFMu6sye2wSo9dmq9Xj9EKF1LECBhItl8M7aOObMcIMEQ3YqnncVwT9R5s89eop9m/X2dhukZpzMBoh7117yOLUBLbfJVN0aLkxngA/DNGUFC23iS0s2lHEeC7HVrc3ume++Ku/gUbStQwPgaqoGKqGoeuo+uFNnnRLapLMG0fIwXZI05NRp9PpjEapxIxMHSnMTTORR8SRRLdtQuHxwbs3CT2XRq1BKpthaX6G4liZTrtH4Aeks1nGKhMjp0VNUx/LRTssToeJKoqiEYvkgM4fP07s+3heH0VVCYJkS7V4bJ5CIcf8iTNJR3dE1Dq89uFrj9wa5aGly6EyP6E5TM/O4OgqN2/dZHpmloP9PTLpDN1Ok5Nnn0qK0OCDUBRl4Lt+SHocWpscLTqHtIAjmsMjZmtRFCPjQ8Z1Qoo8FE4P//yxFBklGeVctz8Cs486WP5wZ3ioYQw4vTj5o3VKqpG8oQiVa7FGcTfmhAaOJtEzEcJTMfI6luUghY6RPoaVP8nii7/B/ff+BNn8K/rNdayiTShtvvblf0d26jj3b1WZLijMnC7S7sREgct+1yflg2kYlFIera6kfa/K2EQFe36cO3/+XZ7+/EdYu3Kdm9frnM+lKZw/jlW2+MGlexybHaPc7dK2BJ1WluIEicVK9y5KaLG6t0cubeC6PndX97CE5IkzBeyNFim9xPebbX6w0oGNAC1t4fXXKI05fPYLv8wHX/23lMoFjLE5dLeHIhQONup8/LOv4wYK9lyO7f/3HYSlYm9GVNvXmKikWf6pCwjpM1ZZ4NaVTcLYQY4b/NznztPY6/GNv1jBVwXXv/RtbqiA4vO8aXLyYy/TWH3EM2MZ3lvt8OK5InapxMHKQ5g7yav6Jrf3W4hWTMvziaKAVquFhuRMysGYmuTg0SpRp0WhOIesOOSmCqx+9w5jiyXKFZNnOzn6QY17V9ZoVgMWKw6+G3L/QZWTTpqxU5P017cJjQgNBQ2FM7kshtpDjzLsyT4zioIb+Y/dM2EYEchDe9Qh+CkUlUgeclVGYlpdGzkKiGjgbigVhAixLIt+v3+Ig6ATBOFoBa4oCkGY+AHZls0Xf/W/wnVdpJqMNqVCjkhG9NuJ9etRK9ZhofhhU7PhgUxy05LQheRHVaDI7InTBIHH9sYmY2NjeH7I3kGTMHS50Glj21nCQYGQUo7GJlXVUAax4D/MBxodfKng+w3MVJab16+RdRwera9SKBZpNWvIzXDE37IsCxTl0FHhSOqLMaAJDP/fsGMZFuDH9WsACqZpAEeSYwadUrK9g2GkefK9YMAMGPzudDxvqFFUME2LII4wFZVklD0MKUgwpw+rOn+H9k1ICMwYjw7jPnxz1We9bbLR1vC0DHrGQhAiQx9d7RL59+nv/yX3/vKnCXa+RKt/l541QbVns7rexK/rrL37kHTK5unTGUxLYjkRqZSO6XmITgfhelRrHWLZZekzr+O8forunQNKn3mZm/e2yRdSXHx1AeOjp1h/53vcv73J3//8j5MvqTgLUxhqzNL55yhMnWH5Y5/h9MVPs7T8BCs391man8NXVSrlHNIRXL3tMnZhgfS8yYtLGTLonFiaJvIOMByHi6++hukU0CKPXqPBzsoHbK6ssNv3MHMKf/GX32FhYYpw44DKJ56jqkSEeg9D9undraFLjcLCCQxNp9NLRMvPvzLPBzdqXL2+QWk8x9hHFrFfPUVEn5N9wewvvEK3XkfWI4yuyytzNhs3W7z99kPutUwerqxyeTtgzHCoFEwufPRJJiKVi7MTPD+7iJO32frBCrqrMH2AOIAwAAAgAElEQVTqDM3NKvpYkYMfbFCetVDbXVo7bWqx4PK9Jt2DiNnpMdRxBzcU2KaJ2+yz895dHtk2ZXSee2YKRSqsdVwO+iEPqm20KMLNKpj2D3Uaikw4LmGE5wdJzE8wDJyUCR8mCIiiGN8PiPwkINPzPGKS7ZwfhQzJ1kNsR0HD85LkEEVNfMAdx8HQrWTb40eJ77SMyaXTpFI2rtsjdAeHUSYs8DAM8TxvVIAOAfRDoPgoIJ089XWQCnYmy8TCMXa2t3FSOaq1Bt1Oi/pBnWxujG/91dfxgnC0pRoWT11PNk+qephl98MyGsMwME0T03Io5MvMzM0TCYnvhzRqTXzfY3p6msvvfW9QTOTgPQUjzVu32x29h6E30rAYJAVQoqoJH+uoKdzweof0AV3XsSwbYNTVJa8rMQzrsc9G1xOvJDQVTVMT/pmIEDL5XR416xu+16O2u/+lrw8d3778b/7FG96Wjxra2KrkzETI7Yc+tmHRD6DTA1fYtAKDvrSoVkNqrR672zGtPnhdlcZGle1b+4h+hFOQnHqywvR4RKfaxXclMorZ3otZa0O5kEI1VLQ4YYOG1UcsnL/A2MU5ikKyeLoME0tsfv1djs3YzHz0KabKOTzh0uoG2CmLmcoM1fUHtLs90nEXX0qs+aeQ3RZnnnkJuX2JMV/y5IzO6U88C26f+q0quTGDYtbk9t0d9gPB6RMnsNIWodskXUzTr29Rq9WYWFhi5YNVNu9H/LN/+U/5yl/8MWPjFe69cxdnq0Oq4NAN+yhNgXXKxsw7SF9y/cYqn/788/TXblNxDMp1k/JUBuXBOkrYZSlnIBRof+8h5cUi2w+3WP7CJ8hb4+xsrvITv/5jxDe2mZ20mXZVpp4cY/+DGvFuFRkGqFqAltYI9pqUz57CvbFN6exU4hXeiAhKksrSAh4GVuRgLdiEj3YxHZ3iwgQbb65TmsujdX3Ky9O0N7eZKNnEOuxsNfEthRMlg3qgoouQ5XOzSNVgr9WldcR58qf/wS8nOAwK0eCGDAfYyLAY6LqBrg9uzMGBMTUdRTIIS0yscRXUQRee/KhlWZiGNeIaBUEwEKcmGJRhGJi2iaoqGJpJ4EcYpjIg+SUYjWEYo01VNOhahluy5HKUUbEaquTjOCYWicuqiiSVybG5+TCJeTJTjE9OYFtJBzN9/CS2YaEM/xm81hBjGUpa/ks2waqq4Pb7CBGz+MRZDlZX0W2djc1N0qkMumES+V0qc4soQL/vDrR/hwkxR4uI7/ujAjjEnJICIQfAPsBR1f7huBfHEd1uFyFiFF0fmLcl3VHS3QlM0xi9l+H4pqqJW6wkGV0TZ9BDEueQxX/qQ8a3DydP/m///Rtm3ibsu0w4AY7QOTGuE9mCTlUQ9UJ6nT6xL+h3fIJ+RNAXuNUenf0+brNPazekVFKZfWqK6TkTtdXD9VzcWEERgl5XstNR2HcVMrqGrirJm0hrCD1P6ewSzSsPyZ06Rthp8eBL73Lic2dJL5+Bpk/oNVHNMSZn5nj6pZ/mYOMa23fWKRsBu5sb7DeqHDy4jeF4vPndt5gfdwj3fTprCu20yne+vclTz5fZfKvB4oUSbt3liZee5c7Ddc6dWqRUcJhbOs7O2nUKM2Xq1SrTC7OE9SaNxgHHC/O0PY+C0SfoerTrLc6/+hGo+JQvPMfe9V32VtaYni0xPZ4lCh2iFuimTvPuHi0lpPT0FHtv1jn/yWVKy7NUH24y8+wi9Svr9EyPQpShvDCHcHuoKUn54kkc26K5UWXsTJZwy6Xnq+ROFTjx8eeoP9rg9nab+7c2yOga7naDD3a70O2wtlfDUyIyaZ3J5Xm2rx8QmBGVUg7dcjCns3R6Paq+x7mLT9LuutS7PsfHU7RchXEbWh0IXZcHW210DNr+4Qj3s7/wa4NUj8MwStM0R3hDAnYOt1HaKI9MG+IPcTwyFjt6YOEw22xYkIbRQjAcWxIMS0EbyB/URE3vh4ThoeeRHBAzj5IzleFIM8R6Btc9PHQoCkGQjCjTs/NsP7xHFA1Y0WHE3t4B6XSGE0sLoBvomp4kHUuJggSRREMNv0bdw0DE6rr9x65Hipj63i7jU5NU9/YZGyvhpGzcvs/TF56l1+vipFLEsRh1d77vJ7l4ukY0iFSSHAZ+JjFLh5HqisKI55Q8MAahEWpiWWvYFvpgBAyiEAUIRQQyIWAKIREDsbUfhcmDREnGPV3VEj9uKRJwPIyIFZFsA1E+lNH9oZiSiCW+1yNVyOLQJa0ETI2VMdQO5qRCcSZNP/TpNJOUXKesksUhqgQ4lobZV9HzU8TNFmY/wm92ccMITVcxkTRdSa2bgJ2WqaLpQzdCCPsBRiD46m9/hS/+xis0V+6g9nosf/48q99doXt9C/PKAUt//wIHty/hZ01ifx+3Kzj36dfprN9m894aRtunGQQ4gclzy3na6gSXq1cZH1eQO7vYOZXvvLWDNAWLjsn4yWkC0aBSztHcvcvFj/8YV773FU489eNMLZwm7rRxhQDlj7l/fYWM6rK7s4X9wgLuRh393BhaVqWYW6T+5jtUuz4ZRefEcy9Aq0/3+i2WfuFj7Ny5wtmPfpQP3n7Ae9/aZkl1UdMlRC+kcvw461/7AHthktR6h44Mcb02O9sHLP/kR/nq73yDOVtj+R9cxAKmj7eprlXRp8bZ+OYdtjb2aaoRim7y7laNUkphzBK0OhGVySJxr8N7l1aZyNqcujBDdeeAmh1RyikE6y0yjk67B2+/eYV6J+lyrvYlMSFmrFOWsFrz8HXJdEpjo3V4z2Qy6RFjupRPzPIjOUhOjWOkNNAHBz2QMfFAmxUpSmL1axjJVgmJzqESXQwoBKploqjybzC/FUUljuLEnkPEo3CBZCVtj7LoPM8byTlUXSEIYqwj26BhsRtiS0Og2lAUNDU9krbEVhozFZMy0vTaPqZpoOsGb3/vHV59/eMITUdXD5Nm7dSh5OZomkgURcgBNypZ8ycdxu7mKnbKQQjB4onjrN5/gECyvLzMl3///+IzP/vLKEoihB2Ov2EY0ul0RoXaMAxUTR/wjxIeUSRj2vUWqqFjaQmIPwT1AXqeh23bxFKiqcZoU6crSWRSKGOG5HDdSh42oYxHNicjm5kBnylWFPzB1lWXA0qC+uF+Sh/aKf373/4f3whDgS/BCjxmMmksw0fPWKhRRLfmYwmddGqcYjaPY80ztvwxZs/+Js7iZ2lH48jaJbwwRphNnLSFkVKJo5DankI/SKxA+lFIMzJRpJ84C4gIM2MgTYuXfupZbt98gP/OFumXj2Pl0qROFKnkI4qvnCVjW9z61ib26UkePWpy5eZDnn/6eb75wRqnnz+H0u3S78ekdlUy8ykuv7lGY9/D7YQ8e3aWsy+eZmOvQ6vr0r1T5Vq1y/6Wxxd+5XPU9hssP38RxWuweuNdzMwMb/+n32Ll0lWefP45DBXWDh7x5C++Qlzfp/DcHN2ehWL18fs6V9/fI3Rdll84RfPBDiomOQt2799l4+0qM4spjHSG+SmdJz7zAm//P9+lt1knMgQTZ47RvvUQOadR/Mgyf/aH71FQdTYv3aNhCNb0iHtXD1i/fIdb9/ext5oYxRJXbjziQJV86jNnmBvXebTr40aSKctkfExQ33HBUPBihXYXNhptYk1jfbvDo+0um27IVrVHqEhkL+LMTJHCWETYiplOGxiKIBCCLpJjs1nq7T4d71D79kv/9W8OMAmLIAqJBp5HcTzcOEEQBgnBUlHRB0/uKI4HEUoRksTcTdeSNbs1GM1UTUfRdeIwHnVhh2tndRTHFEZ+wqa2nFGhGY4ziqIg4sSugwGpcDhGaYNCNuyoYCBSHXRrQ5xIVRTOLJ/l3p0VUrbN+FiFXr9Pp9VmrFTg5tUrBKHP2PgkhqE/JgcJgmTUTTZlEiT4QdJpigGQpqCSzeTZ297i0foajVqNdCqFbTlMVMaYnJjl9NnziZ93HOMNeEpHXSiH4mFVUfB9D0WBvuuiSMn777xF2jLxghDLtkfeVbquEwUh8SAQIBIRDMigUoFosMCQChi6nmxPk+RJYiEwVC3pkDQVgURTVISUGKqONuRLxTFBHHPmR92+RWhIRaDpMUIxCPQIXwWr79NDYCla0v6JLp0uaFEfY28Dq7RL++510vE2HirFWY10cQG/0UZ2Y9r1Nm5gIIOQQFHQREjKLBB2A0JVYqsmahO0KZO0F6K8s87Cb/wYqgpxswtWBmHlUAMXr95DPe1w+YNVxiYzPLtc4MbNWzx1YZ5s7gT31UdcvtIlEiEnLnUpzOY4Y1rkz1VQMjrbYZ96o82PPzGGX0jjVNucmkzTvbdKpTSH33HZWV+nsbrGrerv0G3GuL0OE4tn+auv/jmbew2q/+ZrvPYrn2Zv+yEfvHcXoav4wiOUKj//QhE9UyR/ssL3/+jbTPUDqlFIVSgcbD3E3cuy9NpzvPtbf0I1o1MydPavbXLqnzxPabFCvVnj2395i8xYiNANtLzOZGDRr3Z45WKefHaBjqLz/ju3CGu7vPiFZ3lw6TYpEXLzQQNkhKrAejdgJptlcikBLxu9HkKxeHa5SBCk2a8FRFqEoWicsVWUik6rJZBxn519jRPHc2xvttEcB78vmCoJpqZKlJ0MW4310T2T8IqixwBORTlM21BV0DQdXU+6lQiBIiS6ohBxiI04ppXYnkQRUXyYd69KRmGXR6UPR0HaYUc0BLUZ6LYg4VElRSIadVKj+z0MUVQVy7YTR01FQQ6K2rCQjMzlfJ8nzj2JJgJiIVjfWKcyWaHRaFCtVun0ely8eBEvOuRf/TCBMhbR6DWPukRKGeEHASfOnqe684h6TXB8+QzFYhHDMDho1JGyl3Q0g2JiGAbNZhPLtonCcGRrMuzKDMPAcRyEhGeevYiqG9y8fg1r2QSp/Q3t2jDlRDEe9y8ffi+lxFGNpBsCDOVwo+d5A0qCngiHVTmkDyRuEebf4dH9odYlT1csmUk7SN9nuWyQywiyRkQmo1LKWtiGwLQN4jAiVRlHs2xUcwHLnqJVu0NGW0EEGkbawS45PKydwGm/hWJZ2Jkst69UkX7IQUdws+ZghAG6KkFTSVVMTrz2MutfeouzP/cS99YeYt5vUa37rJV1dnZCtE6bwAY9VvnUazMonsu1Oz7F2TGm1TqlY6f4xjdXaPUTBz5DKqRxWAjbPP/aC9RnXfLpCm/eWmHrapXPvTZPt91j3MrjFuDOlQavf2oBFwe/usnBfsDksXnibApdcbh1c4u000R2Q96/06K91yfWVcxQxdclIvb5/IUxFi9epO12MIWG7uQ5uLnKo3du4LsB2WyaKwhOtWPCMGD2ZJn6wgzHpkv0vBgzLXjvratoQqUvddTYp5DWUEKLG7stRAQTYwbdfkSprJOtlCktzrB7bZ/AUli795DIExixwcy5KR7c3OKVFyr4V9qkzuQQuRzVK2tEWY272wGxEiNkIqI8U4YIBUlAPpUnsFNsbG6Rty3SBmxs9GhoOs2eN7pnvvLda4nndhwTRv5j5MCEzXsYZzQsYsODfnRrNTzAYRiik3Q0AQKTgSXuAFfSdR3f9xmutYcY1PC+DsOQdrs9kI0kBetopNCwg2FQEG3bHvkNQZLa0Xc9kGLkcx3FMWEQkLYt6ntbXLp0iVwuh+/7GIZGLlek1+vR910+8eM/Sd/3RkVzWFyHhW4ozxjSEoare4lCHEd86X//n5ibn2dtbY3PfO5nuHH9Ks1mnUK2wE//0j9Gij56ZCAMBryiQ7rD/bv3mJufBUVJSJW6SSTiQ3B64HWk6Bqh55POZUd0AMMwkpFNShT9cFuoKwqhSB4ksTLI6xsW1CBEqIm76GPcqIHzQyDihJcWxfzUa0/9aNYlwd3fe+PihTEqpiR2k6wrTcaYppWI7GwNw9bQbJVY+KT0CBnsIf011HgfFIh0wWZ7mlD0yFk9zKwKqk6hWGC8olFd9XFdjW0vYsoQ3G7bhLrJ6597gft/8D2WPvsM9959SDadZ+alZ9i9dIdKV7BUUrnnAZGCpqjcf9jgkz/302QO7lOZ0AjdkIyT5u07e+hC4EiNC7HCS//oNRY/+QxaSqN2eZN454CJ+TSnzi1SSE1iLM7Tr64yNj9FtblPGCikUxlq2z1MS+f8Kz+DYzg8uHOb9l6fvO5SefIkx8cU2v2QvYaPpoXIKCKtGtzeOODhvTV6OwdMnT3F9//iCr0rqzzx86+jBSGLv/hxzPt1Yi3m2IunMM6fwDw4wMtrTC7PsPnu97i67iKlxsnxDCL0uLLRo+cKCoZGNwoIwhjPg8JsjrPnTvPBH7xFqd6i3vI4f/EYp585zt7uPuefnmLtwTbpgsPswiReo0l6HPZuNDj22hMEvTavnT/GVDnD1KTBQT1A9CIKocZ6zaXR8ZnNGDw68Gj1BQE6hiXpuofj28988VcTrlKQRDENx6zkCRsPyJDGaOQQQuAPrHOTYiAGB2u4ugbNSIzq40gQicSWOBZJ92OYZsJrGYwsQ+xKCJnksIkkqHGIQQ1HFd/zUFR1FEeUTqdH1hxHR6GkSAZoR5TzkHRNrufx1lvfBSE42NvH9VysVIpSsYhUFHo9j6nJGYRy6J456gYGB3fYJYk4cb9MgOsY1/WQYcTqw3vMTM2g6Dp2yqRWayCFZGZulne+/XWm5o8TMbAOBpAQhRFSSMrlMsrgs3ecFNER+cgQR9IGJFTLsUdjsKklwPRo9S8PU46jgTOlJhXEoKzEUQKaqwMJylG/JSFEAraPiLIKmvrhQPeHFiW9t/JGLmOQVuuEk9OEtRqBD34/QosluqGjaYIwTjYdPgJFNfAjF8II3Zlgc0/DEh7ZtE3Y3yGdy2Ppgm6nQW5yitnzL3P1nSt0e4I/X1X4+c8/y8mXTrL5pR8gFYW4WMTfrPODS2u8e+kOJc1CjRXC6Rx7+z2kqqCYOsTw/lvX2K4bGJkU85M57u7VqHckxQmN/U5MX1fZuHSPnb++TUUKxv7ey4w/cZru5j1MJ8c3/+J9JtINwi589RsP+dhzCxzs7eCHOlauyNjENGeffY7f/eOvkFNt1Ov3ePNulWvvb3BissjSk5OY/RAZwmtP5JjJWPRrkr1A59iMhW3azCylSJ0p0G7tUv7oCdKpFJffv8azP/syxXMLrP/Rd8hcPM5X//RdPnj3FvfWO8xM5WjUFdZ29zl1rMzzn1jm3BML/P/tnVeQHul1np/+Ov55csZgBjln7mKxiXGZltSKy7BFUZREmQpVtmi7fKGyZRddZdMu21VWqWRbpqWSZDFruSLFsFym5RKbsCCARcYAGEzCREz6Y+fv80X//Q+2LO4FL1S8wLkBUJj4dffpc97zvu858/oUw7uGmJufRxeSwycOcuH0LUp1FxUKgkaFqekK1dkF4qpG71Abb3lwDyOj/fi315i+voyMfXzHoubq3LdjBzdev0Ghx+HlMwv4kaSqg2uEZPNFyl6dTD3mjtSIpCJUEqH0NwhyP/TxTxFFIY5jt5ZIpi2LbTstyxGlwG9ylJRKqCHpQ3P3aqaUNWwYRiIyjWNsyyZWTVtYPyAIA1QT74hj2QSo9RZIHYbJ9K1Wq2PbNnGcaMJM0yQKQ2Qsabhuc6Ik0TUdz/eaRMeEf6PrOlEYN72sm6RDDWzTxjCTHWcqVkxN3aZ/sB/LtOjr6ebO6jK5QgnX81sM6cQxQRKFEbS8sZOkJIRoLeSUUUQ+m6Far5JvK+FWPfoHBrFti3rNhTjm1As/ZM/BgwR+cn66oaNQCF1QbzSaSW9DcpK2fOn5pt7cSil0AKmo1Wr4vo/ve+i6aCX9tOqJVUyMTD5e0xD6xoRSV6Df1Z4ZutWcgkaknk6xhN2jv2BSWpv+3meRIZaMaCz7iK5N1BfnsC0dO6OjpERooGINL/AQKJSMEJqJMjMIvcbkjRrlsk+uZDK87yi18gKahIwjCOsRurHCgQ98jJMvvE5cDZm+vEBweZasGTDyqfdw4X9/jxdqLls0wUAxz4TVYHnV4+p6g1jGaFKBTLYvRIbBieO93Lq0Qt1vMKhshoKYbN3n0SN9TM026DHh4KffSdeBbUjfg6DO8o0JnLYiB9/1EMFKQNtAJ52NCNPsoPvwTtzbSwztG0K5FlemXqdH1WnvK9A2OMT4hQnqts7E2AK9KwG26RPf9KloGnO+z5aOPCNDJpoZIyvrvPK9BWpGhevX1slVXMrzi3S05Xn++WtMnr/B9sMjnH7pKrUauNIg0hRPfPgBjj7Sz659mxka6kPVFUsvXeItWwbZenwbFy9Pcb8bEnRm8a/eJjfaRUefQXvWICjHbNlRwo8CbNfFKposLNUpn7yG05ulrJtU/Rr5rODGnQYjm3IsVZbYsXsIPZBUvZAt3R1M3ylzaG83q5Mu249swVteBi2mK7JYijZ4Sk/95u+RyTiYhg1NF0jPS9o7TUu8oF3XJfAjNLEhw9B07Q0M5ITcqLV0U0oluJNpWcgmVyblM6V4VfKm1xKyoiFQzWopUban6n/9Lk5PE+dpyk3S5KM1NVqJeZxPGG6soU7G72HC39E0iqU2VlfK5AsZBgYGiOKQ1bV1irkc5fI6lmWRz+ZB0qoyEuO0ZBTf8rlWSWskmz7joe/jBj4ZJ4ttaLz04ktYlsnpV1+lUWswOTHB8OgWpqZm8GvrhH6dwc3b0XWthdelrp93G/UnbZvJ8vJycg66jmWYaEDcBKdTK5OUuhHHMYaub/C69IS3pBlGi7eUUg3QtGbllPimSRnTcOstNrlGwsfaOfLz7XDfNCnNnv7yZ41CN9mOLYR3bjI1sUToB+hKImwDKycxCw6lrEm2mMUpZRJkPqNjCoGdtamuS+p1yZ25KkOj7Yw8+BEas6fIZAtkihYiMFCVOa5WYrp37cD2fYzaOqV3HaJU7GB9eoUjx7ey5cQIQ48dYdApkr+zRqeyqIc+dV21sr+Nzux0g96qx2wl4vXFOr33b+XsdJUzY8tsxmTEMul/7H48TUOrV7EyRdZv1BE3q0y+eJaBoyOsT08SrUqKD+1EBetYMoT2fsa/9gJXfnID98o8t6/M8dKlCapCw5RZpGVjZ10GB3IsKMWCb7B3fxs3llyWyhHFuZj4ts+Bj4zwyisLVFyNiVWXW3Or3Jrz2dMP9RmXV+arNIKYNkvSCCWGaXDuZ7c4sHWAUGSZ+eYrdG4boq1gEg8PU1+uYFyYYt+/+lVG+nopFS3aegWBdMERFHsd2rpzZInRswbDW4Zwuroo7RuGhmB9YpGethydW3dRaCwysxSj3wy4c/023brFvncdQLgBE3M+5kKdve/fR2d3FlVdpa+/AxEqZmpu6575jd/9DLputB7a1GZDKdVyORS6hm1bKGhNvGBDo6WaFIJUimKaBsZdH6MpiJutn2ySHGFDvqJp4FgOicRBbyUrrbkmKK0aoijGdd3WCD2tHhqNBkptbPUwTaNVHSXJUJDN5lr8pq7uLm7dHGNxYZ5CvkSpWGS9XCZWMaHv097RjdJItrQoiabRGgSkuItuGknVr4vEtK5ZxZTXyoxdvYiKYuYXF3jv+95HW2cn23fuJJPNMjg4yMHDB/jxj77P2NnTbD14DNs0WnSGFHdrNDxM0wBdIKOYfD7fwuNS/lc6CU0Tfgpqp9ckPduWZEQmU8y0EttIfInPWsIXowWQJ5NMhVRvPn1706RU04581pSS+QtfZX5ulivnV1GGRFMKywJhgaULYgOCeoTRbhI3JEqLMHMChYllR6yvekTKYPziPCMDeTQ9wjIFVr4HIUwsp8ThBz7It//iW3Q1XPJbh2hzHMo3L5LvLGJpEmtklHhyimyY4bvnx5iXksjRMCVUgxil66DDiUjR/nCO4S5B96ogzjTYsjnDzHzAnAyYMgUvn3ydMy9d4vrpcZaev8L+9x8i+8AWBjuL6H1dVG/P496sMjQ8Au0Wq6fmyXRD754hVqdXeS3SWI1D4rzJr3xgM4fec5yVazd468Pbmb1aZbImsYrr9DntrPk+Q/0Glyp1yoaNOdegUg0IMhIzCpFCpy2OyLdnwPI50JWltzPDaG8bqws16rrAkYrOAZul2dv0b8vit7UTzQZMXLtKUF3BbgdtssH0c69j7RphpTzP0M49qNBDrUcIXRJHPt2jPaxcuEVxeADDybF+boqG0aCro8DFa+MEZga5usa246Ns39VHo6SYHl9k/tI629o1om6dxTOLFLsF56+sUpmv0zssGF/aIE8++Wu/3WIVp9OYdNVPavCfvFVVC2tKWdm5XG5jbOz6KKmIghAJhE3TsLg5fo6bo2tIHvBCoZBwbywTLwywHBtdS4ia9XoDTeMNSyzTRAkJ/SBxmgzvYiyrJh5lNRnJCVtZygQ/SUfuaXt6c+wq9UqNO0tLdHa0s7C0iGEYjI5u5ebYFQLXI9vWlujbmhSAdCp395qkhD2e+IWHUYhm6PiBR3d7kXyxSKGQo1AoMD9/m57eLlZWVnAbdSIPbkze5NxLLzJ2/lU6+jcjYo1qrZqA3JbRNNxLrpMSTUqEabUSyt1C3bunp3cLarVUw6gnIuuUnHn39VZSI6FcSOKoKWchsS6RKgYl2D3685PSm2rf5s/8IZXxb1AtrwGCQn+BIBLEkUgc7dDRDY1szkZkbfBDrJzCNLLEfoxyPfKGRhwJ0GOEMBkbH8ccfTdGtgPlLxKJNZRaR01/g9KwTWjY5CrrVNyYC0s61t59NNwC2twaY194lVe+9TJVy8A3JO9/uJ+REZOSbhMHcOLRvXQ9sQtL24QSGnv/2VsZ3trN3LzBllCnM5+lbzRLu2NiKsnBSKddeliDHRjK4tYPXyNTyGM7HVTXPCZ+cpZ8+zD+2ioTX7/F+quLHPyth/jU77yDzZHggYN9DO18gLWbl1grh7zwxSvEbTY7B02cVZNMrNGVE3RldGSUYbvjMVH3WNUjYtqkVzQAABo4SURBVN9iV2SxVzfZNphFhoK5CixIiRZJYumjd+hkcjHv+cAomw4dI+dmWXquQv25cdaljsoauA2JaOskzrrYW/P0bxlkpHiI8vgcxUIWrWhgtedpy+URZhuQ5fTZy7j41CcXeMfvfZTxyTX6dvVjLsQ8+La92DnB9akFnMDmyO4BqlbAphM72Hv/flYyERfP3yJvZBjYP8j4oveGeyZ9WAM/cZqUMchYoKGDSKZolmW1JnC6YVDI5hKgOdWdSYVuJqJOqW3wjJJ2MKkANN3EsC0s0yCXy+KFQasl62xrJ/LD1s+Tz+dbdhxpEqpWa822Mml3oih9CDXM5oOafnziJmC1iJiWZbe4WIaewBiGMCmVisRxxOrqKl69QU9nFxfPnSObzeGFHlM3rhLLYKPSaALLhmFgW07LEUFKSRSHTaJmnWymyOVLl1iam+G1l1/klVde4vbUNM985StcPn+Bv3v669y6dYvurgEGBvpYml+no7eLTL5AZ3cXbR3t2PaG31F6jYhl62zTxNNoNJIhRdPTKsHjQnzfb00NNamQQXiXe6XYqISUaH39OEqSnSYUUkXNyvaNBnf/ULwpJeDzT7arrj2byNkO46/cYLFgcetSjU5D4OR9Su0OmZzCMQ1ybRa6aWOoCE1YZLIQNRqYSuf8BRc3jPCEhaFHfOTXfwUKAbIySSmbJaSNKF5hNXuC//GHz7BaqrG1YRPOVKlELn7J5GrNINBihFRoIiKrdDrbcjzyzl1cn5xjfQX6Sw3yMkTYJjdmA6am6nzwbQcJWKf36DY8IYhmFrn93es4nQZWbzc3T03RvamIN1Hhwc9+hLP/9WssBzaXHY+3ug57P/MYme4CFz/3FU4HEWGbjXcnJlNwMByBFQWsBhLLU9QzEiO2QAswNYMdrmJok851KZh2Je56A1PoxJYJbsBgr0FPocDirRq7jvbQu7sdR2lM/HCcOAtSk2Rlnu/fmqcnn+fAvk4GN/eCpSNKAyyvrHF7ZoI2zeLy9DKDm0uImSVywiQ7uBXH8pnFpHfFJHu4i6f/8puMbOrjvkcOUr2zjhjsxq5WGPvqz9j8/p3I+iqqZ4SLX3+Rw48/yJXzl+juLVDo7GVhdZ47ryyw66kTCOHwky/8AKOQxfJ8Llc2EtOXn30FlEDoTY8fYbbGzJmck6ysVhHIph7LFAnH5S7ANX0rQ1MioSDwfKQOpmm13uK2baE1bUVimp8XJe2cYRjoTYqA3myH0kokTTQpZpLSEILAbyXNNGFIKclmc9Rq1dakLgj81tjc95Jx/9f/5q8YGh7i9vxt3JpLHMc8+uijLC4uMjM9SV9fH21tbbT3DOAU2jCbtARDb7pBGhs8H78p25GxolItszg/xavffY4gdmnr6mxapgQMbt7CwvIKKjSYmbjOE0/9Oo++4+0YWYe1pSUKHV2JB5KeLN+M40QsnGJ3sdIQyP+PhhHHMXGy8aD1b6CVQO+2J1Gp82UMLViJDQpBgvspgjhIpp3CBE3y5DuO/lxKwJsmpT/7WLfKdpSYm1liccrjRTdPl1thpGTS1W3i5ASOpchkbHRL0d6bQ4UBumNgSFBuRM6GV8+5hJFAGQIvCLBUiY/+64/hrIxh5DV816M0sJv6/BiXazleP7lGcbidlbOTlKsxy5evU3hgCy+8tEAkq7wlk6N9s4N702dtKMfs1DIlL6LoFLkU+Rwe7UBdWqR7tIuzS3WWnQArdtict9lciRn8tVHsvlGi2gLjf/4znPtGMRs2Ey+fZ7boUBdmi+7vBzUGA501J0sjCunuzLN/e5bXb6zh+yGejHjnuw6zee9Wxq7doqe9gKkr2jt7aXiKv/2/30kU7LU6+Z4uHjqQobNtkIat+MF3r3BYz2F0mziFmKpbQQUO0/MrDPYUaR/u5bnnp3j0wT4QBleuLnLkUAc9o5sI1QCrz77GpVsLdO826S5oPHfFY1cxg+sJHn7iEIUOh4WLC9hb+5n53nnCxTIHnnofz/3F0xz4rUcYe2WCgX4DK5NhZfY2kwshff2d9PUJRNcIa7cmOfXqJIFUaLaJdGPefmCUmgi5fGEGT48ZGejk1WsbNm9f+PaLmIadJByjadNKskIJkvXN6Vg6mcjob2AipxhIKsdIH4i0ukgTxd18JNGc2DV8H9mkIyQ7CZueQk0QPFX/t3CcZkKq1+vkcrlk227gtzg8ppk8vDKKiVXycxiGQa1WI25qzZRKbHUvvPYSY2PXicOQ/sEB6s0ttQf37yKXy3Ht2nW2bN/GysoKg5tHcIpd6AqsjIOhb7g/pmzsBCROKpml+QVO/ehZgjBmbW2dbDbLP/03/45KvUZbodA8H1r8q9THSikNIZqkT6G3thRrWmLIlp5lEEQtN4Y3kEnvasPTP1Ome5KgrI1rZ2gYmkGtUkY2/ajsbKZVhWkyubZ2NrFc+fCbJKU3xZR+/NX/9tnZmQaTMx7X1x3OL/h0ZW00O6RoGcSBRz5rolSMYWvotkBDQ1canudjZxI90sxcAyUEgYxRmoaw6+zeM0B+aDt66KJnHLy1dTQnh92+mzNTM7z+zGnK1+Y5t7jMEpJCR47ZpXXMyKTgRnhBRGk0hze+zvbhIu2DNhcWquRKGa6t1Vl3DFZqgjUnIMYklDXWRQwjbVhL0Lm9F6RFaWeBeHWJjqLg+VmXSCg0R/K2h4c49PABrp4fx9V0tuwuIc2YmeV1JicrjOzK8bFPf5zjx3YRz48jlaJnoJ/Ka6fQ/BCUh9XRQ5cWcOjYDo6+bR+bt47wja+f4ur4ElMzizTqiv7I40bZw4gk56YbdMz5DO0qUezI89yPJ9i2s4P5BY+BTV0MbrXp27af8vNzaNUYPe+z7+MPUvBMymWTw/cP0zg7xZGndjB3s87MF87SdWIIrxLSMdqH2tnL3z39Q1ZMwfahHi5ev83MxDr9bXDyzDK+oTE7X2Hs+gKy3sDVIhYXXNoKJhnHodiuODu1RmWxzFDocOidh6icn2Em2Ji+ffJ3/gAhkpJeFyamqSM0A93QsGyzVaGkqvU04bRCJT7QGiKxDEBDquStHEuZLENVGw6VSilklEgXwjCESIKho6RANtniaTuRtlxpm5jiOblcrvU1EzZ6UoUBLWA+SaRmi/vkuR4mGk42x/rCDAu3p+no6iaTsVhcmGfr6AirywssLy5QLOYYGOil7vpcu3qDuclpdhzciVTpYsnEUkToGkIXBEGI42TQdQMUZPJFtu3agx6HBGaG3/j9ZI1VLpNF00TL9iRNmoblEPgehhAoXUNKDc3QkhZaaURxSBDEKDQ0UuHyRmuXJsioKTeJo0SEa9k2wjQwhNkE6yVKJctAjeZmFNtxcLKFxN9Jk8g4maAaTU1jYtQn2bt18BdbRtmZsdWaF+E4BtKPkXrMoTad7Z02XXlFLguFdoeMA6alkclbqDgmn9WJYoUFxG7I9UmJq3R0LcaPNYg8Dt93hF0PHyAbzRCU1/FjDUPorE+t8rmnVzl4f5HC1sPc+O/fYdyPWHVidnRZDA3mKNcjgtjg0rTLId9lPDKYN3UsJMdG21gjYHq8wi6ZgSBgrNvikXcepC3XYOn2OidPlXm8r8DQU0eoLZZRjqL802murJW5Wfax3ApPfOAQpS6bzKb78OavcuXCBKdPz3MgFAg7ZNv+UXo+cJzxH7+A7kYEl9epr/lEhqLnUCfr8z7WHotOkcG0HOyj9/Gn//4vGdg+zNrsOoGEnAPHdg/x6uU1vKhKzjYSgBOdrtjDDH0GZRbfibipC7RQY19/gaDLwluBvg7BwOEe1k/V2PyeY4RGzMU/fp5D//wxRHkFx9Bp1Oa5uRjw7DfOE2Qs8kojNgQylAhTIJUgmzE42O2Qy1p859IsHzo4xPLKOh07dvKdH5zm7Y+OoHTBxQvrLKzUGdUE+957jOdfOMtqvUylsXHPfOXZ11o3ta7rSJWskBaakXghaVrrjR5FyWrvlt2qmVQwqRFautRQKZUspjB1TN1sESBb/JpUgqIZBJGPaOI1hpZKImSTjPlGAD6tlBzHadmgQKKYV3HiAKBbJpae+mwbrc+J45iG79JouDz/9BcJYkmj7lPIZ8jlcrh+wOKdZXq7O8jnMhQKBW7euEXd9cjk8hiGTnd3NwePP0JHRwembb3BlSBo2tqmE7SoyQUTht46v5T/dXf1l569UsmSzTTxa5pG2FTSCr1pJYJO1BTLJkJkgyBIBLl3g9xKKdbW1lpJPZ8v4jWFy9x1ljR/HsPYuNa62LD+1YRKXjqa5ENvP/JzK6U3FaHUghDH1ECG6EqhSUEsbEIFjSAkn7PQ4kTZrRs6sQzIZbKEUUTWcdBUiAxCbFsjChUhoIfgORanTl1m9HCeOK5jBCaBv47tCP7kr29xvhZhXnM54CxQCwJi20bzQ4ZEG9R0/JuL6AXFfYYBx4qMvu6TX/PwMibFuTK737uVrX0mo8ceI9thkfvPX+SFb5ziyY/uZW5xlUjW+f5czKcXI8Kogb5eQ4zm2b66QKOQ5U4Y8PSzNyma8MijK/QN7WSt7tKfVZz4/SfQ8g7x7G1mnn6BsNwAP2b/v/04Y3/2bQYeP0pZRNS/c4ZN+/dy7Y9/wuYPbsU/d4ZPPHmMwvbtfPuZU4iowfFDHYxPeDRwMfRkuyuBZLMj2BRYjH7kCKXduwiX6+y6coHJS2U6hgZQ/ZLK+Aw35uoUeovYx7ZQmZ0gDH268llqtRpqbYX/87djqFzIpm6Dx961m5++NEmsS/KOyZ59fWTaPSqrkpszddr3jtA/PMBvH93DnfO32POxx7nx3Pd4YF+ebM5gfkpyZ9VFGBq1KES1webBPA9u2cYXnznTumcUCXcslhJkYn/RagniDWlJAoCDZRuttiq17bCtDFIl7UXgR+hGAqAmHkjJmzmMEnFtytZOTOSSezH1TUq2pUhCGZOxLDKOReQHSHRkFLS+Z7r7LVIJJmWaJsIWTcBX4QYeuWwGqSSuG2AIHa/hEgYe7toSYSTRhI7vuezatonZxSXqjQBDaARBRF3zaLg+mUwuSTIhVIKAHmHT3dvTwmlSCoRSqrmaKcF2DMNqrn/aqDA3krFGHIetxKBUItMSUgF6SxsXRLIl7YGmIFiFmI5NLCUONsoQ2LbZ1KglSU+PNeJY0dXVheu65PP5BJcyDLTWeihF4PuYpo2up222npBDjXiDd4YglsEbeFP/ULxppZQ1LCX1ZIXx5lKOTBQhsxZbzJhN3YKsIyhmJbmSTsYxyORNdAtMpSFMhSUElaU6elbn0jWF0gyk5hHHCY7Q3Vvkk//ha5x/+o/4+6dfo9AlaC9m+OmEojSt6Ntb4DsX53FjDSejETZCtqs83aMK3dV4ab7KsGGTr/hcKMQUI0lEjmO2wLAFfft3YPZ5fOWrk3QMmXR1F5mdrHD0LSVOvrBIyXDYWzIYedsJhJhjbbJGcc8OsnqVr/zNOWJDIw4jiGG0t8Dube30nbif+rXLeIsz3D65yn3/8VNoC7c59yfPkT9QZPjxd3Dmfz1L6dg2ro9NcPxEN6HUqa8so2LJlvsfRHV2U51f4+Tps4yfXebhnk66e2xmMyWGt3Yz++WX2bK7F31vO2M/m+DiNY/H3jZIqVBievYm+ZxDaeQAV185yciurayvr3Pz+gpTSwFPPLGVbGmE6voy3/7uGfac2MzZH03w7r0drOahPYRr8xW2DfZw7vVlPGGxt1FFDOhQs2l/9yFOvXyG3uE+ehZXifs2Qz7PyZdPJ9dVD+ltLzJzx0PWGmwtlnh1bbV1z3ztuZ+9wfqjhR/JdDoWYeh2stI5BqmilrF9WgGkVVL6to0jhdDB9zYsXtO3fVotpZiR0HUscwNcT1nI6ZjbsiwavoehbXhIJ/vgkgSgWlO41CgtSFqcZsLQNI1quUoYBTRcl5Pf+zZoFqvzs+y77yjj16/imA7rlSpRFAIalp1BCUV3qYRpmnT19dE3OMrA8DDZfLK4IP3dkYr1epV8Jt/CNTWNJvfr7qS04ZZ5t++UEALJBkaHlvo2bVjSKmKEam7YERqmsZEkkrYtbHGP4jiGMEZpqZWLQBjpKiUNdRcdIGi2fnfLWFJrmaSyTTAuKSVPvfe+XwxT+sGzn/9st4oZOTyINuEyuLtIw6+TixXFrJFsMRHJIZl6sr/LNkQCcMYS5YYYuobSBEtLCk0HIUyUlnD03foqrz/7JcbHV+jqMejpL0DV5S9OrrBm6FydrSX2CoaOKXUaESwqSWEdzkUSpQyqQlHLZdE1nVzBYnBTnlcrihnP4/z8CjdvNIjtgD3deYqWoG9zD8WSRWefw9WJCrcaAQuv36QyvcyeD7+VYHYRX/PoDqoc/+B+tu+wyDfgwd95EiMTsXB5HH9shsXrHp1vP0SwdAFryw5mT9+iY4vDzcs+P11cpbs7phKEbBrswM4VKRpF5s9VsXt1NC9GLxaxixncs1M89i8/jFHMM/XN03jnJlG2RnlqlpXZKlsGuth+wKR+p8rJF8eYXVE89JEPE1guPSPbkB4898OLLAURpukwu7DKa6fGmJ5d5QP/5FGMm7fZdXwT3o9u88DHH6dnzz7Wnh9Hy6zRXhSseCF2n0XP/k0MPPgWcvksVMu89d0PMPbyGJbjoVZm6e3SWVhzuH9/N9NzHiqQbOrTqUrFnfoGpvTRT/4uvu8TBEELtAbQdZMwkDgZG10YTRJec4uJTMbycSRRzWpA0xJNVRjKpqWHhpOx7hrNZ5LVS1Fir5FQDJLxPCTgdhTHqCBJVOn3S97EJNVEqu2Kk+ShKVrqethwoDSEkWjsRIJ3mZYFaJRKbXR2DnBp7Bqf/sxnINSYn5ig6vqYVgZhaGzdupN6vUEYRGia4M7yKseOn2B0x3ayzb1zaatkmjaGaWI7GYSmYTZJkJB4oRsi/T0SgiIkjOm7t5NIKUFLnkFIWlpFcq6aJpJEL5PnT2hN3pVIuEUKCUo02eZac9MMoOn4QSKJ8T0fvZlApZTNfX7Jx5uGgWk5yXVQqatmIv3xGx66SvApTWns3zn0i1mXZISLM1pEc10yewpUllysUOJpOo3Ax9BthAa6ULieIies5K2jCUxbR1M6yICsZqArRagEmlIoLCQR/fkCoiNLWHEp9JSwY0WpzSYnIkp+RBZYRkfGkliL+OT7RjAHeqgv17j2zRtYekTVU3QakoXQ4AOP7+TcmTmMRh1hCHTNJNQrEGosqpAPve8h6usBfryGtuDxB3/0OJW1eX76p+e5E2q88J++QuBL7I4iTtklXLnAj+94HMJC+T7VF26y40Pv5uypL7Ft7zbmZ6+S2zdAMV/EdEDNOVybO8/O7h7O/GSKUk+JL31rgi0dHgeKHWTdMm0jDxLJDOdffI1rZ1ZoRBHPfe7rjJXLbO3LEsx7rPTCw21djHz6ONe+f42FKR/3So2t/SXMLocf/vkXyTmK+959P1GteUMrjfvfNsjBPbu5c/Mql6cD1GqDLBqFvkG2fO5+librXHr+79n+2P04AwIjUyD745P88MIdLs/e4viuOzjKIMBn8fYK9WrE1ckyD+/dz63pRYJoihcveTx2fJAzZxbI1wV9gw5Xlqqte6ZcLrfesJ1d7ckNS4LDZDI2MpZomsQPIzQl0HSQxMg4RiMBxxNQO8GVMhmrtZ1DCEEQJkLe9P8heUhTTKjVGugalm4hDUkcg0A1AfbkYco2fZQAdMfCUBtTvdR0P5WmJHSBDYwnFfkqpejo7eQTn/x1oiii1N3J0be+g/OvvEzgOMSNGnuOHOXWrUkiIXjy45+gXG3QN9CP1dIAbmBimqaIkfiBh2Mm2291MzkjRyZOjklratzlLS6aSUBrSWgiJYmbm0liGWIZiQOl0jSiMMK2MkRxgIqb075QYpjJKB8gClXzXBMvJU0kux59t45p6i2b3WQzid+smCSWYxNHAZpu4vvJGcYqxhYGyjTB0BAYLYeEnxdv2r49dHSbGuxxcGSd2esrrDdCTMtBC0O2lSKKOUEhq1PoFJhoZLM6jmPiZARCGUgVkCto4ErOXotpBMlu8RiFrkxGekxy/Q5xzUcKnfa8hZGx+a3/coUPPr4b72dTlO8EtO/o5uJUg6qI6LIMnvzEMWIR8fdPX2FgtcH2o4NUhtu5PV1l39GdlJcX+c4zr1Ds6kV4Nd7x6DCLcy62pnPoyBbqfh3p22RMg+XxBbr3bya8MIlzZIjJL7/KbNFibr2KqyX6n/sqkH/rNoaGS2hOF+c//ww1y+DAuzcTlYa59qXn2bWliyMf/xhuMWJFxIR1nfDUWbL376VUsPjRv/hr2h4p4vQM05dVtI8+yJn/+S163jPKzZ+dJnsHxmoBDz46RH6wi/pPx8k99S7c6ytgBOh1jdy2Apc+/1NKu9u4cWaOzdvbWTlXZcWImLQFkRUy0tHBA/e148U6bTmTv3r6Ch9+5z7uvB5S3FzmxkKFwycOYbYJJl68wvRyjZlVHy/S2bnD4fKVOiVMdmwrcXtqnQWhc2xnkVPnVylqsG9rHk9TBI0IdbtMaaTIt69ttG9/+czJhE3dHD9z10LGROOWyBwgacHS+0/GNLEjA0VIHKk3sK43GMXNkTZxYpEhk3YkeZg2NpXoup48eEqlhk7Jm19t+BpFUYRuNb9HLFuTwaTy2Pg78AYAPvk3b6AzpD9fyjHKZDIoTSfwPMr1CuurZSLPZXhkM5lMptlKJjhRGunv63leS/qS/i4pPSD53joJiG22Pj+tTEzTBiSRbMpFxMaZKbmxRSWV5uiahpRRwjE0DNA2zjnwI4QwUATIUDU3l2hIEmGvQBKrZHBRq1Rw7CxBmHDWwiBGmBbqLioFCILAQ9d1fvNXH/rFeEr34l7ci3vxjx1vDoPfi3txL+7FP3LcS0r34l7ci1+quJeU7sW9uBe/VHEvKd2Le3EvfqniXlK6F/fiXvxSxb2kdC/uxb34pYr/B2alnyYW91p9AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["img1 = PILImage.create(files[1])\n","s1 = SiameseImage(img, img1, False)\n","s1.show();"]},{"cell_type":"markdown","metadata":{"id":"qdUjJWH92K_E"},"source":["The important thing with transforms that we saw before is that they dispatch over tuples or their subclasses. That's precisely why we chose to subclass `fastuple` in this instance—this way we can apply any transform that works on images to our `SiameseImage` and it will be applied on each image in the tuple:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kJenipLL2K_E","outputId":"61be52f9-e64b-4275-a381-1660a243744d"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAASUAAACmCAYAAACcNJm1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ebTl11Xf+dnnnN/93fnNryaVZskabCPL2BgbL4zBiRlM6AQD6SRAkl7pNCy6YRHS0CyIQ5qEeUgTt+ngDgGyWGmgoRkcHGNs3DZ40mDJkixLqlKp6lW9euOd7/0N55z+45zffbdsqeS1WAHReVvrqaru8BvO75zv/u7v3vs88d5zbMd2bMf2UjH1l30Bx3Zsx3Zsi3YMSsd2bMf2krJjUDq2Yzu2l5Qdg9KxHduxvaTsGJSO7diO7SVlx6B0bMd2bC8pOwalY/tzm4j8moi84y/7Oo7t/x92DErHdo2JyLMiMhWR0cLP6b/s6zq2/3rM/GVfwLG9JO1t3vs/+su+iGP7r9OOmdKxvaiJiBKR3xSRbRHpicgHReTuF/jspoi8J37uQEQ+tPDeDSLy2yKyKyLnReQ7/+Lu4tj+qtgxKB3bF2q/D9wBnAQ+DfzqC3zu+4BzwEb87A8BiIiOx/gEcAZ4C/B9IvKV/2Uv+9j+qtkxKB3b89nvRKbTE5Hf8d477/0ve++H3vsZ8A7g1SLSep7vFsBp4Ebvfe69/5P4+uuArvf+X8bXnwbeDXzLX8QNHdtfHTsGpWN7PvsG7/1y/PkGEdEi8hMick5EBsDT8XPrz/PdHwMuAO8XkWdE5Pvi6zcBNy6AXQ/4pwQ2dWzHNrdjofvYvhD7VuBrgDcTAGcN2AXkcz/ovR8A3wN8j4i8AviAiHwcuAg85b1/Xi3q2I6tsmOmdGxfiHWADNgHmsCPvtAHReRtInKbiAjQB2z8+TMgF5HvFZF6ZF+vEJFX/wVc/7H9FbJjUDq2L8T+HXA5/jwG/Ol1Pvsy4I+BEfAR4Oe99x/23pcEtvVa4FlgD/hFoPtf7rKP7a+iyfEmb8d2bMf2UrJjpnRsx3ZsLyk7BqVjO7Zje0nZMSgd27Ed20vKjkHp2I7t2F5Sdt06pe/6G3f7ydQynFrywjLJLdOZxeaOaZ5jvceVHutDzre0DmcdXkDwlAg4j/fhMx7A+1DcIoKIIITPCh7nQYlQevDOoQREBO8Faz0e0Erw4hAvWB+O4fFoFY4r8TsAWhQqUTgHSikQyMqSxGiMNnjxeBuuTyFYW6KUoLRCicID1lqM0Rij0aKwAt55tAh5lmOSBN2ooZSh0Wiha3XAo5OUpGZITI2yKGh2OtSbTRCNy2d4D/VWCxUuGMTjvEd5z2wyw9RqFNmM2WREWm9Sb3UQ5SmLkuHhHt57Go022oRHKFqjtAn3IoK1BfksQ+kEvMWWBcV4gmiNaTRw1oJSpPUGHo9zFq0TpoMB4DC1lLIsmY0n1FttlABKUMpQFjnOO977nve94Nz50EPn53/33odnLYJzbv58qtdfyMKzX0zEHH0vHnn+9+olEXACg16ftJGyde4C3fUVZlmGnWX09vt0VrtohIPdPa5cvcJSq8N0MuW5S5/lDW/6ajrdFU6cWmcwGKG0ZjTuMxlN+fQDH+eL7v8StFb87rt+kp3+HpQOa0u8c4jWuLJEtOZ1X/HXuPOeLyLLZlw4/xRPPPoA+9tXKLIMnCdJNOIcxhiM1liELC8wOqGm6ySNhNf9zb/Jn77vA7zxrV/Low98nG/+u/+ItdVldg8O+I/v/jf8w+/+Xqa9GaduvZlHHvwk7/7pn6DWavOjP/9O3veffoc//O3fxIrH5gXtpS7/60//Ip12m9FojBhhOJ7w9KOP8H/+ws+Q5zlf9y1/j/tf/RpW1tfp9/vUgP/0nvcwHfZ4+X2vodlZZnVjhWwy4uZbbmXv8JCbb76J4aDPZ598hntf/nKcs9TrDUTicxLhwvnzOGvZOLHJ1pVtTp3c5OvfdP8LPvjrgtJ//OCziPcgCu8USAAPACeCeNCAiMdHUMArHB5BcDjEVxNTcN4DggjgBe88SoFCEDzeCyUgPhwfBO/B4XHK4T1INTHxREQL53cCEs6t8OEcqpqoPi4IixGNFg0uDJjygsWCEsRpnPNoHQ4s3uNsuElnPWJAObAeSudAGay1+GmOSIHLS3Q9w2iDMiXeNXCqxFpLt9vFlyUiFrxHGR0eHKC0DiPmHd5bVJLgfFhwab1FLa3hbI63gjhIag28c7h4i8qHm3XOhUVvDIimlqYUtsR5IUnrIAqlFN6HsdbaIFoQrxExoB31RhPrSoqixFmHGI3o8IQsHq0Ek9TC/b+IVaCiVLhXEJQSvHcLYHIEWIvfi39DhanC52aJva+8HDiIc8pjwx947zHGsLa5wXg24enHn+DW227n5I2nmMwyPvWJB8gnY1rtLqV4brjlJlZPneD0TWfY393h/PkxFy88A6VlMhjR7+0xGgz48NZ5+jvPsbO3yyzPKZ3FO0dpHUliwsnLkk98+IM8d+FZ2t0lyixnd2ePQa8PROeZgdEJkpcopaindeppnfFkgtUFudX88a/8e3ZtxqQ/4Evf+JX8xq/+H4z7Gd/07X+fG2+5m6sXt3ns4Ud4gxKuXt3mf/mpn+cPf+v/4hMf+xjnnnwSEY0vMxr1lLM33oLWivF0wtXtK6ysreOdZXv7MoW1OOV569d/HR/704/SbLVYWu7wYz/4A3z927+JdneJ585vkeVT2sstuitdDkZDakYxHE4Yjad0ukt89EMf5tbbbyFJ61hncc5RupKlpWVKWzKZTGjWm+xfPbzuvLkuKFUgggdPAV4jBEBQASFwAgYBq8LC9y5OIgEVFn5AE4+Kk8VHAKrOUS1O5wNABSYU2FflAgUVJ6LgJYCeiEf5wJS8KFQEzfCVcO3ehT9L6xAlKBG8c6B1mNPiAj5Zh1KCdQ6Pq2ASrQWjFKLCAivDYKC8q4YGb10ATufAO0pjqKUeZRReG5JaLTykHJQKYJJiAutwFiUK7TyFs7jShWsWj0nrc+bnvYvjazHaUFIioiMQO8CR1upYa9HGoJzDFuCKEvEWkoS6buC9kGUZYBFRKG2wNoJE6UAEJ4ER4QWhoCgy0iSlnjYQ8Thrsc5ed2JVFgAmziN8vBc+D4SeD5RE4vPyHucDywrmw088tFQApeIL3lNP0/CcRDEbjLjrnrvYvrKFGaQc7uzQrRvuff2X09k4weH+IdoYmv0+H/3QR5kM9rjlZXeysbbO/v4Bp288gafg9KlNPv0nf8Bhb8Bhv4cXwVsHCvK8YJbFuQUMRgOcUrT6XZKkTjabBSYcnWOapjjrsc5hy5LcWjRCs1EnyzK0FhKtWMGw9fiDNNttvvbt34rRwrt/7if5H77/++l211nbXOfTDz9KojT1JOGbv/Xb+Cff8Y/53h/+YX7pX/8Mu7sjrNNMRmNsYcltxpkzJ+n3B3jveeqJJ6jXa7Q7Gzz71HN85I/ex2gw40Pv/S1e98av5MK5Z/mKt34Nm2fO8vSjn2V9bY3+4RDvR1y5tMXK+j4vu+ce1leXGPZ6LK+v02i1sGWJtSVaa7Isx6Q1nC0xOPL67Lpz5rqaknhB+yq8iqGWOBQS3JNX4IUSjxOHE0uJ4CIgBebkcXhwDvEOJ+G480noqimmwzkXz+biZPMqfFAFEEQCMIW5KLh4HoSF0FBFVicBZCKAehUXOQEgnRBDNYWSEPIFnhRYhVYLQ+Q9ygWs9SIYBIPChy8CHutsAClncc4iIpgqxKqGPN5zXuSUeU5WzHASQkjnBK1Aa402Gm0UohXeVxM+nEeJIEqwZUlR5OTZlDKGEEZrQCHBOyAoNCqMbsA78nzGbDrGW0GLCWGkD6xJeT1nuGU2Zby3y7B/QJbnFEUZPOuL1Ld9fug1H8TP+9wiIGkVxl2pz52anirSDWxb5iMq8Q0Xj62UxnuPjn+unTyB0Zp8OuPc40/QXd/g/je9kZUTZ8hzS1LT4AsuPfc0u5cv0mq12Nw4DRhWVlaRpM2JM2d47KPvJytKBqNxZGdhHs2yjMKWlNYGkHGOLMuZTWdobajVasyyjKwo8N5TlOX8rhyKztIyab1J2mhgEhOcdNAcGIxHPPrwg5BP0UpoNBusnj7BL/3Uv+bRBx9AJSlps8HqiVUajQajacaJUydoNlI2T54KUoNSjMZDBv0DPvS+P+IDf/THFFnOIw8/yP7+LmJqtDqrpHXF5uYml859hre+7W286a+/lVe86j4Odg7xpccYh0lSOisNTp09S3e5zXA0IkkSSudZX1nCijAej8izjNJavFakzTpJUkO0YWonXLm4f925c12m5Akt39odsR18pPGRcSgl+MgiVBjHEF9XDCtw6QgC86l49BkEF9/03uMU6Oj5VGQInnBqEwFIfPC2XsBJWKjVoUWrGFIGnSa8Hhhe4gPghYusvqEQZwPIKUFrFZlhuD5ROoSKvor4osf3HuerhR7YlvOOorDomsMkCSrqaaLU/BptDFcO9/Zw435gTk7RPHGGtNlCCAxOucD6lEkDgyungEF5S2Yd1lrK0ZjR3hbazvBlyaCxhGl2aa1tIEmKEDy4SRSpAKKQROEnY6ZXt8hnY8ZLa3RPnqUWWVnlpqwPGp+ZDPEHO0yso6/OQVpH15tsnLnluhPr+bSgSkP0nwNY1d+rRa4WNKfgsCq2Ff4QFZyXdW6RhAWHJjCbTRkPh6T1lFa3w2g4ZlZYvAiv/tIvYTLJwBnGozGdTpthXrB72OO588/ytm98O61WhwvPPsds3Gd9fYOrly7wwAfegzjH5Z1dsqJEKYO1JdZZSstcz/MuXK31QulgOBwxm80oioy8yBGC4yutIy9Kmt0lru7sQmlRAu1Wg9WlJYwW8nxGt91ir9fn//mVX+K7f/TlbGzciC8c/+xnf4KrW1v81A//EKdvvoE3vOlNbG9t0el2edNXfw0/8j//AK1miveB1fYP9rl08Vle9/ov5eTZG/mJf/ZD3Hv/fUyGQ7zLuPGWm3j4kw/w1BNP8LV/6xs4e+tdLC2toLRid2uXUf+QsihRlDRqLbYvX2T95ClAc7i3g0nqrJzcZOvScySmTrvdZjqbBonHKOrtNtl0wurqOq1W57pz50WYEmhHDI8kahE+xPkBNeKEYT55xEdq7RZFSJlPsM+dsB4IUY8PzGzOk4IG5aOY6UUCS/JgF73tC3pjv3CecI1Wgh4UXo56VWmxNjIqr/AOFvWOxZ9wqGrBBGG/KC15XpDnJdNpRp4X2NLFj4bx8J4QLkYdzlpHdrgLvR1Ufw/d32V45SL9KwEovHPXnFMhaK1RSijynGw2ZToeMj3YoZWNaRUZTV+iJj3y/S36W+cZ7+9STKbgHTghn+bYMnhxL0JNQUuBHxxyuL1Fb/cqs8kMUQqlTDzXDJtnGFHUgaTIceMexeiQaT693tRBhDnjUUquCcUgvFe9VrGlSu9yC3rVImBV/wXi7VESjsGCs8CH14tZQb835Or2NtuXLtJIa9zxspdRFA6MYn9nh2I2YzaeoCg5c8MZSmA4nrFzdY+8zGkvt+lPxnz4D36D2WTI3mEPa301BaLDCfO0KMug51X3pRQrKyvUGymDwSBodHGeF6UlK0oQxdWdHfKioPQBNCezjMNejyzPEa9Ia4alTof+sM+Hf/+3OPf4o9SNIZE6aydP89+8/e3sXrnKB/7ofThKMIrRYEKr3aa0FqLsYW3BqTNnabYbDAcH3POKu5mMZ9xw402Ig9FowmOPPMAXv/GNnL3jLgTF4PCAg6t7OIG01aS1tERneYWiLDhx4iTdToc8m9JdWWYymdA76OFKRbOZMuwfMBn2cViSesp0MgEfEjX9vT8HU8KHkKcKw0SCFuQJoUZ43yEWlJIovEoQrkUtCJrBBft4HFeBRIAclAsCqPjq/QBw1juUBLHTuTgZjgjbgsIZvCc+ZrCq5nURlETWIxrxHosnyzK8c1gv+NKhEk2qFAoV7iFqY5Vnd94Ham4tSVpDCxSlYzbOsNZh3dFEDSK5pmxYSu+CEC2CEUEbzXQyYTLosW4nJKkB5/AGst42+eFVDod9Tt7xcpQSptmU7OAgakmQzUb0L15CcNSNpllOsFqTOyi9x9sC73Km/RFjdYVad5Xmyhqz8YTe3h5Js067s0Sns8R4mpGPxxSlZ3J1n9JDvdNh7fRZknqd6bDP6OCAYtTDl2HcwiLUlMMBu8NPXXfqhIfkrxGy54BUCeDVa5VuZG1glQvA5CJAV1zJLxxzEbzmc0OEmjGYRg0vHuUdmzecwoiQ1GooEjBglMZ5uHL1MkvNFtqkGG3Y292hntTQRpHoOp994E+w5Qw8jKZTdC3B+ISyKJhlM7I8D4s/ho+iQvLEpCkmTXDW470jK0o8QhE1pFlRkCQJqTa4sqSWpgDMspCZneUlGyvLqKKgU6/RHyne83u/yUfe/3u88c1vZTQbUs4K7n3Na7ntlffyH971C/zyO/8NSI1v/Lb/ln/wnd/BO3/qx8A5ijxHaeGZzzzB7v4OKMebvvJtDPsDHnvoIWZZzsOf+BA/+K9+llOnbuTq1SuMRodsbG7QaLeoK0W72aSmDZ966CFe8YovQmnFaDSg3mwwGU9R4qnVNErn9HoDzt54IxhhNBjS3+/RWepQbzTRRrN++vq71byI0O0CuLgggJYekgUGQ8x4iD6K58PEUXhCtsw7QZTHWrBRTBEksJYYBmmlIQKdjqzK2oLCV3AWjkUUfY0KsOOVp/RBVRJvgoeK/F6UICqI5XnhMCowlLwoKJ1Hu6N7VOLDUNQsSslcm1IE0J1lIRtVZCUyKSI9Xww/3Fy8tRbyyQRJFK2lZay1bG1dQlTQzIaHh7g8Z8V4RCzWSQDccDZmh8/Sm5WYxNDb2WY6ngRx34dwriYSJDaqhEMAbFeFq55w5d7jhpeRS9tY7zDA8OCAfbaoNZohi5jnwFFImR/06R305ytcxXusMqLiwSsbFl82uu7E8s7HrCdU8ZWvWOOiLTBwTwjdRamgWS0y1cUQDubAFLJ7Cu9DWOS9B6XY2NigKAqMh1leBInBZUxmM+r1hN6gT55ndDodlKlxuL+L8o6acjTrKUsrK7z7X72DrcvnWV7qctAfMhjPSIxGK2E2m5GXZWDw3uGtxxgd9FIErTStdhc8XL50MephKuid1fwtLY12ijXCzDuUCjqiw+G856DfZ3O5gysLTq4v8cS5PrN+wUc+9EHu/bK3cPtdd5OPLfVuizM33853fM/bMXXN9/x3/4DXffmbGU8HZNmMxNeop3Ue+MSf8c3f+vcRD81myqOPfJbnnn2SeqPOt/6j76CYWPI8x2hDd2mZLJuxvr6OiKZ0Ja1mi+5yl6effJJ2p8va+hqNugOlWTuxyXQ6ZjKa8uRjn0ZrOHHyFOI0Z2+5CesrJ+PDGruOXReUJNJp8TGEU8FzHYUwIdTyNs478XinYjYt0hkJGTDvQ4aK6jsEvWguGMUJ6nA457EuAAaE8gAVRVofhXMV2YOLCxNxKElQKoaPVJNdsKWltCU+ZsgE5p5fiVBaGxa2dxgjNNLaXHa3ZckkK4M46TzeBX4Xk9UhA+lsCCsis1JKyLKS8XiCt469g71Qv+U8yloUngOjUfiYrfToyDBLYHr5Ck6ByrLA9Hy8I6VC6OpiVlFAEQV971AVmwEQDc4izs1robSEcS+mU5ToePkOJCpoMdzEx/sh6Gga5hreXCO8/rwizpjIbC1OLcwZUSGL9zkgVbFSnid8q45ZJXM/v8bp6N/Ve0mSoFotst4hk8kULWCMod3t0F1qM51OEZUymwxYWlllZf0Es8GENEl56rFH2dm5TJLW6A2mZEXJeDIlTWvUEkPpHQ6hlobyiNIVWOswNROjCE+9XicxCfVGIyoaDq1MDDGFWqKDfFAWWEnIspK1dp2Dfp+k0cR6F2oAY9KkVkuYzXL64zFbzzzB6RtvoaZThgcHZJMJZVHiteIr3vpW/vRPPoS3Jd57ajVD6UpK55gMp5w8fYJWp8uVrUvYouCm227j9pfdw2SSM+r3OHn6NPuHIcQaj8e0mk2MCKPhENHCyRtOMR5OEKVJa3X6wwGXzz+DNoYzN93CaDhgNisYjSc0Gq2wLvxCRPMipt/xjne84Js/8aP/4h1V7s0RBO8gIHPkoQgxPARPoCSmyr3COk/pLYWzwRu7kLp30Ss61JH4SQCYwjpK53Dio9eJYqdU+lMApYJQ8GetD6IsNmpXOugYQKI0uXVkhWVqS/LSzwVIF8XpwgneqTmLyovAehzCLC/pjQuKvAzpWx/u18VJV8RQk7kAr8JYeU9RlAwGfYb9PpQBHDQh06e1JnA4H/mRwnuFQwUA9hZdlhQyRwIqodwjUDHYODYuLnQXw09HAJM5C1Hhe2V0LMpHVVDFqi4bB1hcBNwqsyUhzS5HqfzqZS9CVrxwWcDHPvABrly6hPOW02fPRi2vAkwVndJR9k1X7AHw8+K2I27kcRDH98hizZtUI3OUtRsOh6RpikoMrU6DzlKXPC9J0ho1o9jb3ad3cEg+G6FMjauXL7O9t8PTn3mE226/k19758+glcaWjv5kTGkdFkeR5RS2JMszfAzrK4HbaEW72cIYQ2ISVjdO0GqHAtftK1cAT01rjIS5udrpUFpPYacoJbSaKavdFqXT5NmMZqNBaUuSWspsNkObhNFshveO3qWLTMY97rzvfp596km2Llzi1jvvAFHc+/L7+PV/92+xbmGdes/BzjZ/+x/+Y1A19vf3+IPf+HVcWfC6L3szV6/ssLG5icezt7dPIpq93V2Wl5fIs5xaPaXRbiPAbDqltxcKeGfFjG53ifbyMusnN1HakDbqNBpNuqtdcH6eUZQFnLjj7MY/f6G5c12mVHjw3obwAY8VSNCRmoewRSFHk815XKTQ1gVmZF1gT9aXQSsqA2hFvx7ifpGwOPAx5R/EceY1TyEbRTVhbdSyqonpoHSKrMxRqqBhDForEqMZ5yV5UQZPFcNH5Zl77kC/qsUVgHQwycBnMVPkIxcJAOniEvHEnF61apQKoWBcKFqFa0NFMI2V6NorrAd8VLCUCiGu2JjCBxtZF1SymVDBs/iYbRQf3yQuyADiHiEQV484KALWRCYVv4ebsx4fdS8nFcDNg62QBYkAXeFElWzwC2zm+ayTT/nwB9/PR/7kg4j8OPe+8lW8/P77+aqv/XqMrhIk4VpCDVp8HOEhh1FeSDiIHAETxOERFxyRqya8r0aMleUlsizHe8doNMRo4cypk3gVwjxjDEW5zrNPP8XhYMxjD36cK1uXObm+xKf+9P1sX7nCyVObZEUogyhtibWQ1kxgrGURwrAYXtZMQi0x1NMUay2iDN1ul3q9zo033cyz55/hcH+PmoK8DIWWWZGTJjXELDGbZWgPg+GMvCxodZbiepBQw2R00GtNwrQouXpwwIMf/mOSpQ1uu/MOztx8lpXNDWqmxt7hPkocpfdoE8an3e0y7PfZv7rN/t4+o/EAEc1kOuFVr3s909GIoiiZjkcsrS5Dorn9rjuw1jEdjRkc9Gi0WzSaTdLaBsvLq+R5zmg0QpSiliRMxlPq9TqtdhtEkU0z6ml65Fi8Q6GuTVQ9j10XlKyrhOqq2NGjTPDPpspeSZUdmUtMEZCOhM1qKRO9rVTzrlpgC3qBVLqAhIzb51t1Q1E8dX4eOvmor+SlBWsprCO3Ue2KoaTIteqExNKGSkyumAhe5uJ5TDZXS2a+QBdNfIUjlS+/9trnDn3+glAVRcwVE/H4atHNF6Y7OgDEcZVKvEMciATmqOIzchGYvIQK9PAYAgAREwrX6oIVCwtLWi+Iz1UUjhyFzxCA/Xo29rChLDPvGZaGJz/zKOeeeRJTr/FlX/5VpEkNpxTah2dyNF5HYd+CghTdwOfPh88N74DI4KFerzMeDVldWmZ392oI1Z0NHsNrfDnj1OnTHOwd0mg3sUXGsHdAfzrARsAubRnFdjBJglGOLM+o1xJmeYatnntMymitwSu0MbRaTbQ2aK1ZXV1n2O+jfBnKToDClljnqTfbjMdThrH+aam7jBKhKC1KVzVuwTtXjDUvLZNxxkOf/Dh/7au/FsM5XOmw2rN39WqQC6pnpTRpmjIQxaDXZ+PkSew2zPI8tMjYMBMvX7pIo9mk4xRbF7dQpUWlNdK0RpKkGGMorY1zXSiKgu7SEnmRY4wJYWqYKtjYQhMZxtFzqgDgOnZ9ULIO7xUiRzc4zUuUeLRJ4sMIQi1A4T1lrCtSsZZkPqV81JDQc0ByPgjdBQqlgzdUcTIqCQsr1kzGFR0YlYLgoeYTE7y4EJaooxAv6ESCEo9XCh01LL9wHudDpTcelITvSbiAwCq8OgKsSlORGELN+1hCSKolBGPeB8+vKp3DhxquuLbjOEgch5C5CRQkLiwfQlkfoydQIfyNI+AJlcRVeO4ipISaLYf2OmZKfRTtj8YuTKjqHsIJJGpKiqBtuci6UCHcFhcYrMNjInCLkbBB7gvYYWY5VOFeu8azah1F4fgPv/gufv0X30Wn2+XrvumbeOX9r2Vt8xQKh4SS/wiIoVHJz/XJ+aysPFp8bYFVqWpOWGxRoETRaodfuNLutEEJBsPFC+dZXd8km2VMs4zxaEzDGOr1lKWm8OCnz2G9C4tVAgvQWtEbDum262hVR4uA86HNBM9yd4mlbpdGvYm1ltbyEuvrG2ilGI5G3Peq+7n5lpv52AffTwUz3iTYsmQ0GVNvNMPtaU0RtSCdmCARzEIGzvsSJSFEz71lmM1wO1d4/39+P2/56r/ObDbFpDX2dq+g0hqSZXgnGKM5PDygnijWT56k8PDB9/4Bg/0dkqTG7t4Oog2XLz3H0vIyjUaL1ZUlHv3045w6e5rBYMDq6hrd5SU6nXYo/vWepFZDtKKh6rHukCj8h1sxRoOvtMMKUN3nOJLPt+sXT3pAuRhexPgUwAuZDT07xFDNe8HH7JcgiKs8YAzFFoocZZ7T13GJWZyNzEQFYRWvcFULhRB1CI84ieysCr+ASOtdDGnCOVQsD3BRv7BRZwnajw2KVhTMYzgmKorm8RpDfaWQDvQAACAASURBVEAc0FhqECMrkUrfiO/5+L4KQZ4WjRCyiaiwwEJpQAChCmjFRz2qehLeHa2/eH14h1cSs5Mh/S8Vc9GCcyqm1wlMS4Xn4SKdCZX5nlIksqCA8TaCk1eeJI5B1RmkI+NCQj+ZBgzheYQCgesrlhIyBSgljJxlknmQkpY2dMUx7V/lV9/1Lhzv5OTGSb7tO7+LO+99JcoYFJaqEfsaHuSfP2Q8ErjDv8uiIE1qQEjMlGVOXpTY0pLNZhhTozfoh4WvhI1TGxR2Soai98wjjGcZrUYDI2DLAvCsr6+hDUyHY0bTGY1aitYK7yxpvcHG5kmWOx3ue82raXXa1JI03AOKTrdD77BHs9nihjtu5+KTT1JaS8PUKW0Zi4E9pXP42BSutaKepowmU5TROBXEYpknDITSeWra8Mfv/V2+5A1fRjbb587lZdI0ocxyXBn6z0ajMQBJTdHfP2DqSh57+JN4HEkthJvdzjKbJ06wu7vH3t4W6ydO0+626O3tsn7yNFk24+L5Pa5e2WF1PfwSm7tf+QoS76iZ5OgZRU5btXNVtVxE7dB5d00px/PZdWeWjdqOrxx5UGrDwSFkB1zgLloURiJ4qeBZvczlASqlWiEQyYFSfu6lkSr9G8ReH4FBKWITp58rO8K14YNELy8S1H0tsSpKwq4CRsJrMQmFEkiEea+cURK+E8+ndahvUhq08mgFJhYBKiEW/IGW0Byj4tAQz52IxKHyKOXQ1TnivWjAVCCjQg1TpaqpeIdKVHQARzca6sIjC433WgW/WgKAaRXHR8B4QUeNy8fPBC2mGoejcSOyxOrg8WMBWKUaUxf/FPTzxbALtpgZW2wZmRQFu0WOeM0JKelIyc7+Vf63H/8X/NyP/hD9wz1CsoAF3ctf410XX6vKAqqiyzzPSZJkXt/kPSRJDaU02XRKv9ej2ayzvrTMajek7J979hKCotlq0uiu4ryn0WxgjKFmDFmWs7u3jy090zwPIZoKiy4xCSZJuOueu7j/i1+Fy6Ycbm+xe+ki+WxCMRvjKWk1GtTSlDvvejliaiCa/nBIUVpK3JxxKaVCo7So0B0gOlYX+9h/6eZjkBcFp06sMR6PePihj6O1ZzyZMOqP5+1Rxpj5s9Ba8/u/+zs89/TTgKdWS1haXWE6njCbTJhOMkbjPoKm2Why9co2h/0ezll2rm4xHg3J8gm7u9ssra/hrWdvZ5eFB3ONDljNg1DiE8oNrLNw/alzfVBKFBgFWns0IfWuI5sxKiSjRQlWeayKjayi0AimYiJI6OpQkV57jyjmi3uxpQBCej3UpbiYJgc8mHhcpVwEqgAsSTy+UpBEADIm/KRKhXNpwWgVfwSlw8Ovzq8EjNZhkceFHqqQAzDqyGyUeIzSmFiiYCSMh5LQs6U94Kq+OxWEUBWAUSIgBCAKfXbGKLQSlBYSpTBKYUyo3FbxunX0MMEXhWSDjg3ClQAeet2Yg4uKmaz5vUVgMBKOoWJjshZB+cA+xemYtAghk1KhHiwRoaYjiEakqjSb61nVQFzZXKwXKL3iwDoulY5+YWnakvV8yoVPPch3f/vf47GHPolS6vM8arULwiIoVf8uizKk2U0CDqz1ZFnBdDplOBwwHA0oiik3nD0970XM84yd7R1uOL1JmeVsrm6STSY4D3mWoRKNShNWN9YRU2M6zVhZXmGlu4QoRb0VetX+xjf+LU5sbDAeDbFeM5paaq0lnDI8+fijHF54FucyOq2Um2++lVe+5nU0l1bwoii8Jy9LCmdD/5yzoaZHFEVRYkxg56W1aCWk2lC1jpTWUlc5d992httuv4Onzp3j8Ycf4b2/+3/T7XZJkiSI8LUa9XodZy2tdpPz554ImeuiYGPjBE9/9nH6h3v0B/tsnjiFSWo8+NGPopWjf3CAc56NzVNcubKFKMPqygrKevq9Q+r1BjaG9k5CQWtZlJRlSVEUlGVgqBB6QLVJUEZfd+68yO99E6qkdTW/pOL+C6bnoVSFcZU4fASKOoY+1TH8/L3qXwRxGeJ2AUftB9WxqpSiW5CI5eir8TMV64osYjHSU5XOFl446kZnnuFBJIZw4fiqohU+lj5UNyTVZ+L9epl/XyCAw9FQzEFJInMRFQpMw7BUmSPmmczqGtX8moMQHhIMfuH0obVB+SrFHsJWp2T+nSBsh2MYrSLTC5pVGc8eQup4a1FT06KC6I+KrDdkDJ13mOdNQhzZ4rNbdI0CeKVjxi88lJ5z5IWlqwzOlvzmr/4ymyc32Thx41Ft2wskPYIXdiTaVAPNbDqDGLKbmqFdXyIxCZNRn8PDA5aWlrl08RKbG+ssrazQ6HS5+faUy1eu0mq2ACEvSpROULpgNsmDkK1UKAFwoXQiL0puOHUGXwqXd7fJi5z20hKTWUF+dYfJ+TG93R69K7vcdV9C2m7jdZ3V9Q3W1tbo9Q9JtKYsS5y1IWljIpvWBufKMB+1wRYFOjEYrY7YIdDbP2BlZZ3/9/3vZ793QG/3kJ3t86x0lsiLGXhFaUP1uBcwiaH0SVgLCJsnT3HmxpvZuvgcpbNsnDjJzpUr1Bs1lNE0Gk0uX7qAd452u4NzwqzIWV5ZZlbktDrt4CxKG9eZRB0JkthmJCJzydSHbNR15851QalqA5AIKJV3MhIbJytvVmXgqhCKqG8svOaqC9bV5IytpwJWC84HUczjY01TaIbVWuNsuSDYqoU2EqhEoHD4hZCBKlwL6sickSkJza6LA4WP78v8yxXTqMT8CqRQYZErF7Jn1aKXqO7rWLwpotBiEVQMqYKmpvURyyQePwiBYcysDbVE1dXYSNtdDOkCOEYmJZ75gMJcg/FOUHERxeThURFm9UyjRqep2mo8iYrZTFHoGIKiwsOzMbyEwPJebDelRcCXubMieobwvo4MT4khc44d67i52eTKpcv81D9/Bz/2rnfjbRhD9zx6UiiEDbsuZGWOcxalFEmSUKsl8fwqnl8oS8f25StcvbKNKM2lrUusrq3QH46YzTKUaCZZjvNCNp2hvKfTbDIYjHHWzrfhAAkbub3+9TTbHZ5+9lmubm9TlsVcHwpOw1NLU8q0xkc/9gm0gte94ctZX1vltnvu5cLFZynyoH857SjKYj4ejUYL54eBDXqPUeGZNNL0COzFk81yRoNDth77JOsnz3LXfffyA2//l/zYD/5PNCZ1huMxcZcpmo0m9Xqby5cuoJWiyHJG/QEXzp+jzEtmRSihuOm2m/noBz9AUqtz8swN+CJjd2+PldU10lYDRHFpa4tb77iDfJZR2pJmu41ItUFiXGvOxbkdE0wq1Omp53UwR/aioFSBERwxmwpuQgMizPseouajCGK0cCSJVGnECjiqUoPKo5bWRs+ucd7iXdCsBEEpPVfw5zcUKVAl/AVwZF7mXxE6FTM0FbMIFdQqhpaRIVTFUfH6vfJz6lVl+cRXRDBSMi2hULS6FCKpiPcfFoSZs5IgfEegwWNU5GERxEOs7VFaU4s6UUjh6ZD1EvDOU6p5zi/yuCCMOxcrdPwcWsN4RT2u6l6veOlcTldBd9KV4K8I2kW8zkACqwruI9ZjXqSk+9otSfwCMMn83+EzcVcGAyRwqXScqmu2d/v8+1/4ef7Of/9dEIXviiFMJtOww2Fax7sibiLn0OJpNBrMsgwjSbgHD1mWIQoajSbGGMaTEYcHByglLC+vcHJzg63ntnjFK+8iTQo+8WcfYTAeUTiLF8PS8hKTyYTZLMMhdDodTp05Tb834twzzzEZj0JqnbBTqRKwtpxnXlOTsrS0hDGazzzyMe687w3cdPYmXvHKL+bhBz4edgEFakajkxrOWfqDQ2q1JHRD2BIxUVH0R+zfe5jMMpr1OidbwiCf8cCHPsDDD3ycdj3lllvO8vjjTwUxXcIE7bZbXLn0XJgFEnrt6vUG49GQZrPJ1vlzFEVOPU1RiebyxedIjMZax2Q0ZX9vD5zn1E3CZz/zBKvrGyy1O9dqf/ro2YqSec+p9uBsaAq/nl1XUzpKukc9JE4kXzGiSkE9molUlbpHumSYTKoKa66dugEGJAjBYYGGdlwkLIaqrSVsWRR0nNRISOFqHfZ7ihO2Apqju/Nzsb3CzcXQKGxtEnqtfPysq0IsTyxmVAv7P3nEq/CaxNfjro8QBV1PvP6qzDKOS7yOKgFQxsU57xlUglchV1ghy7yyOTJTBERV/WQq1nFFkS+yAeLxZc6kFp6VVAxS5kmEKtwNN1DpVETgqq4/AFrI/sXaIv2FC91wrfAZbylGxdGZRM1JtJCahE5d89RnnoyLJ4Rok8mM6WQKCEYbnHM0GnWazQaz6RQPscgxDyUVzpEXGUVRMJtOqTdStDEsL6/hgEuXLvHwAx/n8UceQRmPqdVYWTtBo9lG0DjvSEwAQpOYWDPkmUwnbGycYG9vl/F4SJaHc+RZhi1LytJGLaXElZYsz+gdHmCLkvG4ZDLs4Z3llltupttZAtFz/azaJbWSFKwtQ2O6Dpnq4JjnwT77gxEex9WdPe648+V83dv/NuO9Q1zpQ41VnI8ioXaIODfKMoyT0QnNdodup0Oj3WIyHDLoHVJvNChLR7PZIM9y2ktdaklwrGmzzomTp1hdX6PVamHSJKxPrUmMQSs9X5Pz1jDn5u1c19sCGV6s941qYUjcFbLKdqhQlKeOWgXizAsLD3/N5KvorIsDKkjc7jaGdjYwBMRTVmkXAvOwgLeWmlKstjV3nKyHMKOwWBKkpuksLfPYpSEXLh+SKIAy7gJpMFLpPbH+Bh3YVow6vSJu66twqtKWPKiYB9Meb4PGpbyEnjRCyl3PNa4wRkoBPmTTgpDuYzYwCN4SM2qimFfCV2JPEvdxEh9S/gBKAgNQPvAvVADK2L8cno1SIWs39wQe5wJIhWcTtC2rws16CGMSgdnGY4dxOGoZgvC8Q0tNFcHKHGztizClxd0BwjyQa16vXlNRPZe5wzNcLjxdpen1xvza//5zfMO3fDvOGJJEU2/U0FrPNy+rttddWV1l0OsxjXqSljFlWTKejGk0m0zGEw5290KbSVLjprM3ccOZ06SNDnvbO2R5zqceeJDzTz9Fs91EaSHLS5RWaJWQ25Jms4W3Je12h/NPP8Og36OIG7cFKcNSxhDMGMPO3i54aDeatJst9g8O0H6Fg+2LpM06mydOcce997K3s83+3g7ZbBoqvbMSpfU80jAq6E4gZHlGWkuYZjlOCYPxhCfOX2Z9pcX5hz7E49LhtW94PY8+9EkmfUsjNYxnJWXpsN7z6Ucf5Or2FqvdJXRSY3ltjUG/T5FPOOz16Pd73HnXPXSW17j06KOIEuqNlN7BITiHSmqcvfU2+v0+6STBFZb2DTeEJmpr0XGdV1GMxGxiI0liZvH6Ije8WJ2SHIVdVRuCxOzZkVYh13hBL0cFgwJxW9tAObXEXSKPooD591zcM7umCPVJzmGjh3YO7r3rFCc3NSqbsdxImM0y6gKNZkK343nTW97ITV/0FWxt7fH9/+QdaJ0Q9sOeKyGIjqLtgrepOrYRIusKuzyGnTNDP1VFQiDsNgkqpMRj9XnFIgSP6NDoiiKk+qO4pSudKrLAgMnV9i5xIKL2ZFhoWKbaQbNyDoKICyEhAvF08ypvBK9jBb73VMWfgjvqpvEqAJqE1H5VSOrnrRqxxlyOjqmuTS8c6XovYNeGb9UcOcpCVqC4QKhDnZs2iCSMvOPmluHhRz/Lc5d+nH/6Iz9ytFmeC2F8lhUkicbGbWUGg14oWDQ1RsMhZVmwdfEik8mMtJaCLTlx6iRlWVD0C8bDMU8/+VlEeUb9AXd90b3cffddfPqjHwCBLC9JtEErRZrWaHa7YB2ry6tc2b7MaDQKDCnPWF9fm4dsxhj6g/68/q0oj0K5WZZx8TNPMDrY49ZXvY777r+PrQuXuHJli9FgwNbWhbBWIkvyzoYmdfR8L6yKvWpRoDWzIiOtr9NUnp29S5x681swacqjn/gzbji9xGeefppWt4t4x9UrF0hNjdI70rTJeDRkb3cbpRJuuPFmpuMx2TTj4rlzoISNjXWy2RRrcwb9HrffeQ/T6Zhup4ZJDEvdJSajMYnWZFnG2voanU6HWq12NGu9D/WDkRn/uYonJVbOhqJJhcOiUaHSeq57LFByv8AAKs8occFGb1sVGZaxfMC5kILWc/1qYVJH718zNRJxlDkspQZRsNap01IWwWLHY9zVZ7l68bO87N7X8NoveSWfeugJnA0d2UEXjKFO1JBCGUcMuyLDq0KtI0lJoqwTxkETNxVDocRStcTo6p5jjY+i0pECw6ISjWPYJRIq2UP7vcY5SxUiiwTBHwHnqpBWUVWBByyMW/ZWII98jnjocC6AmhD6s5Brkw9Vt79THu2r3TUdNhaFKo4c0qJaLl5wi1nI69jzdfKH1ysGvZBMQBb+A6U1VzOLTmoM+yOuXDzPqRtvrepZcT50sDebdfI8pygKlDLs7u5Rb7bQEnbdXF1dI60NGQ4G9A/26fX28V6TNOoc7u3RXW6D93S7LZr1NhfPPUU2HeNtqElqNlLAU0sSXnb33Tw2fYhWu4UIaGNC5swf7fsEITRa3PStLAq8dxitSEIEyHgyYbi/R73dZePEJnv7e7S7HTq9DoNB/5pnCeH4Kq6JdrtDfmijG7Rx80DBFTntZpNHHvgYr33Dl/P4Qw9Q5KFHL8sz0qRGXhToJEEBne4Svf1d0jRsV5vUaqCE4WjIbXfeyZNPPM54OAqV2YTwrHQlxWyGdKDT7aKNZjAYMB6OSJME8Kytr8e98Y9aruZSxBdgL1IScCSlemJFr0Saz1G17Vx5ios/ZJeDgOqjbiIE5u9j6kYjYWMyFQr+vHUVEgRmJYR2CSOsLqeMSofKawx6Pb70FRtsrnUpp2O81UzLkuFkTPHIf+bjn/ko/+P3fDuffexJfvYnfwVVEReReROpaB0EcBVOqeP1Kl91sceBxCOx3srF0MZHTi2iY6gTmYX3c7bkIG72BUG3qjIO85EKXl/iXtuiIlgIVeo5REeBmzjvqcotKuE8sNI4xlVSwVXaTAC+al/v4BgUmBjK+Qi4EivOCc/Ui2Aq5CJk54jHUSrBOV9FiC+KSYuFjSyE89c22ar5r1xSOu6pFdmliFCi2FBB5P23P/dOfvinfxLnYDyZYUzYkK3baWOMYTgecbCzw/r6OmVpOdjfQ+Mp8oL+cIgtC/KioG403eUOe9tX2dhcZzrLuOvuu9jdP+CGG2/gY+/9bWbDPqV4xuMJ7XoDk4AXy8Of+CSvff2X0mzUGQ/7PHfpEkUsUlRaI2X4zTVaa5rNJv1+H/HQbjaoeYfB0ev1aDTqGD/jqccfY+nkafb2Duh0OkynhlqjRcuWFNmUvIhN2jEE9yJYB1/x5q/iD3/3PVhX4p3ElhfLYDik1uqyde5Jrtx0M0YnbO9s0WzUGY0nNOsNNEKjUWc2nVCr14PO5CBRhsP9fYaDIbfccSf9/X06nTZps4mbzej1+ix1ukxGY2qmxtZzT7Nx+jSj0Yj+3j5bWxfZPLHJq7/ktZ9XOPm5lfh/LqYUlwlaAhhVTS0VdVeLILLwug9prjC5InsKm2RECSXGTqYSVX3YXSDcCKQ6lgfEBT0r4OLVITeUlntONWis3IJOZrB8mt2nnmR6MGM2ndI8fYKNFc8z7/tVZOkUb3rzPTz6qfNMZgXGB6ZX6VnGhSBFKYlZpiBiByJ1hPKVNw8bnl27ZYiOUGIhVN56Iex/wHzj94BwLu6oSBW1BEYQxCVwob8s3L+aA6Ca//2IbYS9pCJji0ArMN/ULpCauGVcLCfwHP2+NS9BP6suZZ4R9T7snOt97HWrzquiNwmbmHmnY3r+xYoCFsVtNa8DC4Sy+jVPC5PTOxCNd2UMdUOf5G7mqBUOZTy//As/zzf9nb9L5nVkPj2MEtJ6ndlsyuHBIWmthjKGcb+PVoppPsPaMuwplCvStBG2j0lrbF+5TLvZ5NGHH+IV99/PaDLlwlNPMJrmJDpkhHuDPmvLXZzz1NtN1ldXufTseTbW1jj31FNgy6DxWYuWsLOkVppmktJYXccoTcskiCvR3mMadWZFAXlG2mzwzBNPcOrszSQ1g40tG6NYWmC0psyL4HTSGlle4ERx+oZbSRp1lC3wLkgJDs0kKzi92WJvmPHh9/0B48kQ72F1bYXpLMMYw2wyCXuDeZgMh5RJweaZNpsnNsjyjHY9ZTIYMuj3uOflr6RWS3j4wU+C94xGQ9ZabYaDPu3uMheeOU9aS7h44Rne8tav4YYbb4wxWqhZqrZLY4EQxCDgunbd7NviBnHVBFYIPnaazyn+wmfmPnQuYAbgUnM9QeZhgVTfWQgvJK6sasJqIE0Na3XDqSVFUSoylTBQS1x4/GnKqeXk7bewttHFlRmHI4eoApP1uOuWM7RTTT3VzAUu8WgcVlmcWDw2KjiOKvNXhTc+bt4/z+7FsEtRbbcSwKv6dwVk1W8aWcxaeeePYtNqHcaxksX/xyzUPBtzNKJABPIFBlIxraovqmIZQWeqwmh/VMFdpeLjb2rROtQdVRXuVb2ViD9qu1E6CtEgOnxWPu+3jTy/LdYoVbfv3Hzrgmt/OWUsSjxKLwfwy6xlRQnPPvM07/293w8d+M02Fk9RZuR5TjaZkmVh24+yCD97e7sk2jAcDtne3mbjxAm6S6EaezQa0Wg0QwjYqHPx3LNcPncuCNUC4sIvVg3b3li8K/G+6jbwjMcj0jShZhIa9QbehVaKsihxZclsOguVzVlOlufY2AJji5Ka1qS1GqaWovCMhn1azRZGacaTQfxtOI4yL+asPY/b7ir1/5H2ZjGWXdmZ3reHM90x5szImclMDkmyikWyJtWosaqkVluSLRsC7Ae3LQM2DEOAH2zARj+54QbsBwN2A3YD7UYbMBpotOVuGVK3ClJprLmKRRZZHJM5Z8wR98Ydz7T39sPe50YkpUrarZNIRGYM9544Z5+11/rX//9LcubiZdbWzqCkQkp/Do2nlgjX3BMw/bZZVfXCK72sCqqyCBmvIG23KfKaPC+o5iUOQW91hTjNuHvnLrdv3yYvcnQc4ZylrmsKUzGajADDrfffRciI85cu44TCYIJNjziRi4WxZc09ncynj10zH9l9Wyxqd/LoNIxfIzwPSIXYtvAjC5iECZ0adSr2+YfZf75JSZVQwYNGelRb+vLOCOEtdKuaWSR5sD/jhStt9t95g82VJbor63TWz6IFtFRENpswGo7YOdAkrRrEAa98+jneefN9Hm4dL0pO6ZwHixH+7Zr2vSDsOqBQ+JlwCpwNcg9fC1rnCzUCa9onEr5ti/EUhgXhFPx7eQIQSnhAWQsP6C+iuvJAlr9uZoEV4UKDIMyHQwYSpfXlllJN2awXabK1FhEsdhsOjGqY3FKF7KnRETZlFThpvZDWSf99nMLZbEOM9WQ+u3A1eMz6EQ0mJkLJ58LDI6AJoiEgWWt829t5i2Al/bu7wJTfnY5JIs33vv0XbJw9w6Wr11nqdznY26Pd7jIYHlIXOQ/u3ALrkEoyHo+ZjkccHh3SX+rz7ttvs7q+zsraGhcvXmI2nRJrTW0dmdZ8/3t/6TWdxtCKIwbTOa5y1HUdaC41+wd7WCHodtu0k4xIV6iypior6rJkJWtzqb/Gxe5KuKahSogjSluzNxkyLsZo5WU9cRT7oOas9/yez5FSkmUZs/k8lNnhaRF4KxSh+dq/85v8wT//pwwPDvyQB1OTpgnWGjbOnGN35wFJnFFWE4zx/K04TijLyot90xa//Tv/JdevPc2777xJFCfMp3OK2YS4lXL96jXuPbhHOZ2hNjeZzGakvVVsbUhbLYSUvPP6j0hbLf7Ob/8n+AaET42U8utrNDxiNBpy99Ztdne3Fxtl1sr4ymdu/NR183jyZGAIe7uEk139FDISwOlQ1gn5iOxDNsHo9Fbv3OJB8CWTH6u0yO1PA+TG4pSgrAypEvTSCGlARCWT/fvMDnaJSoPIEmJhSbpd4jRif2uHWmYstUpWe31Wltps7U7AhpalFCinffnW4F0Eaw/hkNaCDLt2aBdaCNqxwI4W+Pa88GTL8N2LgZdGekW+EGCt9g+8diAUiYyCkNmFwCYWwLNAEDlDTWN8FvSC4Y8MGkAnG1Z9yNB8DXcCiEqBCFNajK88ITrZSRc/Yz1w7qwfha7whLcmTW4W0kKdHrC2x+fYHzpCiSicPVUy+kDeZH1etNtkpS54dAfuF4IawTmt2CkqXv3ud4nimO7qKjsPHnJmc5OjQz+maDafIowjyVKUhMnxMcZUTCdjtI6YTzNaly75ThmCQkpUpGl32gxHQ5DeuXR5qc9wOsMYQ1FUJIkfv57EMfl8GsBoh1YKawpMWRGrmM9duoEoa6bjKaPphJaKibMMrUsSpbm+dp739u9TuspPqIl0YKYLet0ecRIzHfrS0zmHUp7z0zD7kyRFxTHPPPcCG2ur/M9//+8hqYlU5DdOZ2i3W1gLWkcIPPAeRTrQKBROWM+7khJkxAsvfjrInjz9paFnvFjM/CAMa8jzgv29be7fusPx8TFbD7cwdc25c+fRSbrgIY2Gh9y/c4ejw0MO9neZjEeU8znrFy4GqYtgNBo/drl8JCXAiYZfFABK0RAGT7ozDe7hTnVrPI4cQliTQYnwIDRdPXxWYaxDh9TTA+l+IVfSUBtFJ0n52PMXme9vkVeOVCnaG2ssr5xH2zl5Mcc5yHMorKN/ZhklYibzgtH2e/TTiJWVZY6HA4yzKAtCNX7Xwb7RAc76lFMplPBSF6mhwdYcHrvxCybMhfMQOU7YkOn4nTFGIbMElSRcvHKGi+cvsLS8zuB4yNuvvcHBzg6N5k0K32lrMCSnNRKHcgJrGipTyKikfwd/3Rs8yN8vGc60FqGhIAXCBEEu/v4ssrvmpgjhs6lwH4UkdEoazpIITpXzmgAAIABJREFUkHdzz+2pbubj4pD8q98iJI3chlMvsVD8e5JbCFZyYTDfgOYPi5r1Vpe7d28zGh3xxa/8MsNjb7WRxCmmKrHW0u70mI5G5HlOlCZ0Op4nNBnPKGYzJsfHqCRBKsXe3i61NXRaLdIkZuIqpBAkESQ6orKOo/GMjoFLZ89RFnOq8ZhqPg8te0eWZPzaF76CPZ4wPBqyPz5md3hAgaGjU2SdM51O0Dienp3j6bMXMJHgjd3bpN0e8/mco+GAXneJNO2Q6zHWGRAnpa0Xtiv+1r/7W2ycu0AcK1bW1sg6HeaTEVqJEHSnbD65werREZPphHanzTPPvcDNm++idYSUZeBU1exu7xBHWdi0/KgwFUXEUUyv1/ODEZwNMIQgSjtce+7FhXPHzsN73L15i3/0D/4ner1VjIDecpeyqCmLnP39XUbHA3YfPOC1737LjzJTeJ/y//6//alr5/+T9o3QnWpc78Si/RI8ukO6dgISN1a16hSq5SOwxC2m5FoUxnldjwi1urISI5tAEdHSlmefPcfdB9uspgmtTkQkS/b3BnRySWelT2f1IpUpeOLpGzx88D7VcEDWSRnlY4wTrPZj2j3BYG/PYz8y4FyG0LoMwHMoMZRwHquTTZlhEM5niyqkqQ3eZl0jrcFfJynRcYxINVmkiSMQVUE5vM9weperT1zlU//xr3H24sf47/6r/4bZdAS1ozEok5YwASZwoaTC2ZA1ChbgsxCe3R6a/hghAr3iRK8oARlcDrWQ1NKfv3HeAcIFTZsI4F6zwQgXOjp4yxLvYtmIkxuQ+qOCEotN6qTjdto5wJ36uvUyGWtRSgfZSFhH8gQDs0JxWBq+/JWvcni4x96DB0RCUJQVlfMYEFJ6R0gryTpLGOfHR+d1jYwVURpx/+5d1s+c8RKLLCWOY/Z2dqjLim67Qz6vyPOKp65u8u7tB3RXVhgeDlhZ3aDVanFQl+SVZ2+XteGlZz/OfO8ImcTUq11kmSOnMaKuaaUtplWBankjtHcHezyNopu2uL5ygYPJhFa3R7ef0ut3efLpZ3lrMsQa4zMLGzJwpfidv/v3OHv+KkmiGewPUEpD7XGuNEpxYY288jNf5MVXPsP//X/+HygBP37tNdI0o6wKlPZQiZIaqaR30wz3JMmyBTq9u/OQw6MDcL6D6UeSWUzA1aypKec5s9mUpdVlfvLqj/j0L/wc//R//QdkcRw88N2itFJConRTrv+Num+LJbbIfhoiXyPoWKjrm4UqQDgVll1T4tmALVhwCiHtItPwvCUWKn8H3tpAatpxhqJkb3fI2dUV4mIIMqaY5Syt9ImlpLu8QdRpcWb9GuiK1TMXKNqSyWiEEglaVEzyipSKThZRWEW71WJ8PCRSGmMtcep3RJeXfje3xmNoxuKUL0lDlRQ4TQ0WI9DST2BxwiKMQWQtskxz7WxCt9ci67TJJzlaKOr5nK2bb3B8vMvS+kVe/PIXefMvvs1wsBcwi4DDNHgKYZh5KHcWAV4EJmbIKBYl0SmgvcmgbGCSW2NPuTl4rK4ZUd7cq5DMBs1sc7ebgNJkUGFz+oiFVRRF8AVqyrMmO3qUbOtHbJ9kTwtGfZNrN80R4T27nHHceO7jSGHJ2hlHR4eUeY4QYCo/TrzT6xPFKdYaWu2Wl0l0u0RRisMyn05od7sgIGu1QAi27t9jMjpifLznR3ybGq0iuq0Wzz73It/+iz8jSdMQ5H3Qt6Fj2UZRTecIKZhMjhkMBwilvfeU0ihnQhZqKR0M8wmxVHR0jyOT0261A+APrVaGUt6RstlshPDYUxS1qYoS6wzzmRcR12WxmFFoAyDRbnXQyxGXr17l3bfepIEAtNYLjajWvnwz1gSisVchNBq+tNWmledYa9G6wgbr3sqUPpvVhjRKieOUwXDgoRvpvfEtAin1Iqv2v7vHZp31mN3jjo8cRinwmImvumxQxzdjfXwa5/UsYdx0s937ZeeDT9By+PypxtZBKEpT4jVcYRDKsbR+hqUzZ1ld7rF7+x1e/MQN5PF9yjwjTWIyl2HKnMoUVEXO8y/9EvuTAa0o5uqTa7z52pi+yNBuD+YjjJnTlo4Xb2yS9Ve4eW8fnUbMxiPSVJFPcxCCKEsg2GjIYJMrpVhMzfVYh/ROA/7p9z8XaNWds6tcXXPY2rHegnxyzHhwzPKTF3jq6U9x/53vMjw45HB7yJ/93j/jE1/+VbqrG7z6x3/K3r0PQqv9VActCOW0kFgVSudgI2OsReho0XSQxixwIOHAKT98U4VSrzrlueQrUhnm8C2KOXTIYh0eXK+d86m9jxYQgpGEwGz/6Uccx4tg0iymD2uejDGLjcyFBatU42IQAvMpvpOQFqkkz7/8iTAhV3H1Q5nY6WDWnPbpnXkRFIUA510ZHY6LT1znP/hPn+Ef/t3/gm4nY3A8YT6esdzt89kvfJnrz71APRlwcDgkSjLKokLIiEgZ2qVkUFUc7+5xmM9xWnvvo1oQxRHCmeDoKYiUZi/PqYTg8lFGfzminM2IdJfpbEKv12d1fYPx8Ii8rLDGotOE5156hSqfUaYxkY05Pj4EIZjMJkgJO8eHrHS6pHFMnCRYIfjFv/1vce/WB6Rxxiuf+RnuvPc2k8kErOcFVmW5CEhCBDGxVDjniKKYOMk8Rqm8aZ4xNdpGGAPOefJw0uly/84HCOEQ1iKEDrHBEacJaZbRW1oh6SRe9nM8ZjI45nHHR5InRbinDhHIj9CM5nayeYhE2LVZlHEL1pLD73yNwT+hLLKOSBKmknibTIJ5GcIP7x4c7iEjzROXlpgOZmxt7bO0ErGkVikmOaq9yqd+47d49Xvf4/rVK9TFkPffO6KzdIXpZJ+kqJiKQ9K0y+XLhkmdEPeW+MXf/Fl6S2d4/Qc/4PW/+Abz2RydJjz7saeZjY852Bszn05pLBeaeWqmbqbmCoQLklohWe512VhLUbbyHbE45sglPPnyS9R72xzvP2R77QHnXv557I++xWQ+oY4U06Ntrlw4x+tZjI4ibF0hwhA94zwAbZ3xk1yEB7AtjYFbmAsRCJ1SSeqGRtBge+IEmFahK9pgRBYvfXEmiITDH6S33G1m7bEYXHDCNQLvSvq4o7HX+Kus7pATiYZY55sdDV3gtKNkE0x8DDkZSHq4u8XK6jmcOClXTwPl9tTI+A+TNk+Wtn/PTqdDURTEiUfekDFp7Bnu07JipdfF1AW//Ku/xj//J/87GlDtDt2lZT7xxZ/lu3/4R5RFzswZxnVFnGShFW+pc++LpLVe2PNWRYFsJxTGDzhdzTYYKEscRwx2d1h+epULV55gfNQjrw1GSK7deIb7O9sUxYzxgyGD4QgpBStrK9SmQlmYTirOry5z/cVPYpsyP8lIWy2UUrzx6g/otjIacaw1hslkTNOZeiT4h49FUYTraYOUx1JVdXgGXCBvOlbPrKOU5PBwn0tXLjMaHlGVFbY2TEdj5rMc713vl5MN+sCfdjzeJcA5X5q4sDKwARgOq6MRz9qmc+QDkufk2EcWJiJkAE2aTuBiusZgSeNCS7wuSsZHQwBWeh20ThmPZly7sMmtPVhZ77F5/RLLVy7x59/4OvPDXeLIopIlnnjuJUbTObK1TglsbF5g5ewFrn/6a5y//hzd1XXarQ7nzp3l2jPXWV5fI261SbtLrK71iBT0+p7J2u0tce25p/j8r/wtPvfVX2Hz8nlUlvgbqSQChZaS82sJqx2FSjQ6boGO0eMRKkl55hd+le76JtQVVDlnrn+cvJJsfXCXyeQQY2vy0QCsoVHpCResVZoyUXh2u3KBKxTKYR9N3GKTUE0gESc3VrqmhPbByfNsPC2jwcka3FCGTqBdgKuAlEFvFYKWDWvhp/hln147p4/Tgel04Hl09PbprMed8gILHBePgrO7t4MVYVxCCC4ueD8vnCmt9X4+4QH0/zZBxe9xJv//CiUFpjKYqiRKYoqiQklFVVcoCe++/RY72w+5/vzHqJxhNs+Zjyesr63TX14Oa9lP74giDQKiJEIqhdKaKE5I05QkSekkGWk7I0kSn/1aiysqtFR02m1msxlCSHQSYxxkaYvxaEQcxYyOhxzu76OFYPPsppfWhPaGERa04oVP/wy66aTVjieuXSeOIgSOuq6CC6TfxPIwQ04IFjwmOHHz9PjeoyrHqqooipzZdMxoNGQ8GqGQ7G1vU+Zzdh9ukc/mmNr60lVp74nl8DhUVVLXf4Py7QSsDkIT1zTOmlXvRwzLYDTWzBBzC8ZuY0Pig5jFoYRt5Gd+3w4BSxJ2RDSmmjMezLl+7Qaf/OTLZGqIqiuEnfFLX/05Bnd/zHBrmwuvPMMXr9/gaLDHcFKxev4J7t/9Cdde+TyvfuPrbFx8jvUoJemvE0uNTlsoWdHuJEwHW/QzxSdeuML5vqAuco53d4ioWUph9coycRJz8YkznDm/wvLKJq988gbf+vofcLB3xPb2ESttRRzB6tkVojih3t2mnSnyynDlc5+nmg5448//JU985ueJigOGD2+xP60589R1hHqHvTt3mds2SW+J8d6uz3qwYeCBJ1yexpSMsH6aiI80aAtGCN/5C3XXojEhCJhEQ8uwJ5YXoVu6kAvZR/VVhmABEqbB2NoPE3VYXNDmicfvZxhjiGO1CDynM6GF5GcRgMSphe9JiEJ4DpY1IQuSeDa5cPzeP/tdnv7EBwgnKcvCa7JqP+lDaW8M6G0/vEdVFIztrTV/JThqrf2GKQRYS7ffZ+/eLX8t8DPX/vjrf0hZVjzx9A1WV9bYfvCArNPij3/3/6KYzpCby6hak8UxMtY+qxSOSCqiKKJdRyTtDrWpqaT31rJKY6VCO0UaweDwgFarzXh0RK/bp8gLzpy7yPrGOkejIw53HvLM88/R6S6ho4TX33ydex+8fwKfIHnv3kPe/P53+ewv/xpaKZQQfPoLX+T173+PWT5HCUGn20FFGmFt4DhJ31jAYeqaoizJ84L5bMrR0YCyNkRaEynF7s5Dlvp9kjShtA6Mx8rmeU4rSynG4zDVB8DioaNQVbkmuxcY6seunY+2wxUWYeWiG4JQXkdKILZJEM2WJprWsefgNLPFRFgADuHrvwCyNg+B/y4LWuJsCTYiixSf/9IXWOm1mGxts7HWpaoM++/9gP76OueuPU+6vMboeI979+7x4hd/hfd++G1k1OFKlfPk00/jnGX9wnWcqRgPD4kjwWB/nwcfvE+r3aZ2jidfeJmjB3dRnRgxmTDRLWqpWeu2iNKY2Thnb+8Ioh5xnNFLHKIrEabFRpyjOxlFkaPaEc998efZvf0Oy3HKvZs3eeGLP0/54C7v/NnXycotxsOS/e4a8v4hx1VEqyhJ1i2t5XWkvIWrSk9KDTuoRlI3pa3zaI4vm6TnaIYBDSJkTLgQ8I0fJCqBKtRn1hpvTh8qMiG8N1JtDbUzyCD6tcJ3+3CWmsbG2EPuNQ0Q7uUUj105j3hvnQaxPR7hD7soJzyAfoIFeZzJLTpzJ5o9x/Bwn3as6S+vnzQHRMi0/sp5hKxPisDBESeC5pDwn+YurCz1eHDvHkfTLZqJNaau+OaffoNXPvclRrZmbdMyH4/JpzNkrKCb0q0MpZYMqhnT2ZzV9VWSLKEuSpwTlJQ83Nvi1p2bPLFxntXeMmmUINKYwWCLwuWY9hyZppiipK5q8mJOXde0shZaOYbDYw72j6hrQ358zPf/8i8XARwHwsDX/9Xv8zO/8ushQ4Zef5ms1QrmfQ6NYjQc0Vvqcf+Dd3l45y5REhNpTZLGKBWTJRHTcUWWJiQEKxJrSNLU3w9jiJIUnMM4S9Zu02p3qE1JkraxZu5BgtB9E8KXsHVd4/AeVY87Hh+UfOMsHKEEazolAegiYBWhgkdiTzIqG/xyQmkHhNLAv44U/kIFTTq4YM+qfJdraWWVWPox3k6WtJMUWhqZLkOSEcU9fvSdP2XlzLVA8MrZ6HW4t7uFKOfUKPYe3iOSggfbD2F2SD4Zkc9naJ2SKMvu1h3SzhLW5kgEWbJOaR0qqumsnkfGCluXDPYe0l9ep7AOq2OWlh0J0G2nuDRjWkN//SymmFPMBqy6PpWM2Oj2GRz8kE6nZuXsMnF7xbeeZzNm7TXa/VWm83eDCZ0P3NIZhBXUMnT08ON0LF6zVIeSxUjp/90osp3EUGOqplQjlDyhM2PD6+NwEkoczniIu7ErdlZQYRelIVhqITDO28AoYRdDHB53LKxuQ6OgkZPYk5Tpke93DTwQuFvOnuBDTcDxa9BSFgX5dMrG2Qs0JuZN96h56Ya+4o33wqifOJxzwzMTYmFC1vxgZ2mNp174BHu7++RFEcB4P5ggjiJvwN/ucPbyJQ63tgDB3NYhM4H7u1scH4/Ium1aaUpe5Eznc1QZsb+3SyQFlAXz0YhWp4NV3v0R5efMOWPIZzOsk9SmpihyJrMJ87zgj77++8Racf7MBQ6Hh4wmx6eaAAKEpKprivmESCVYUzMajwGHVpraFqQ6Jooj74Iwn7F6Zh2JCs0T724ghcDUBiF8Kx9rQfiMSkpFWVUkynt+e5tgTbvTYRr0dbX1QIQfxAlRnCKFd8NweInN446PDEphifj/NMQ3sWDm+N3NQyEegHV6MTqpMZtWMoDdLpD4ZAPLnNK/SXxb3gh0pGh1uhwf7iJaMflwl7fv5EStmKeuXSIXsJGtMh7cg0ry1Mde5N03X+fi+hLrF59kVhYU45p7771Nq7fG9t13uPHsi1x4/kv+tzFzpscjbt16m+n2Lu21PuQa2bqI7qyzc/M9Oi1oRQUqadHfOIOxhu7Zizz7+V9lvH+f4wfvomNNyoz26nkutBPPl0lSlpauYB7eZLq3y6yYILXBWsNwZ0jnhie+ye4ZyqMH3Lv1AbZwHB0e+4tgDJW11DgiJEac4Ea1w2NDYTikkqGUkpKyrhfSDyEsKqT1xoJsHDZdo9Zz6JANVZ76izWGLNYYW2Eqgan8Q5pFkArl5+QJwdw45qWBx2OVgYlMUy+eyljAVM3/mw7bSbe2CQ4LLBKfBVlrFyb0tXV88O5Nrj7zQrA29oD+gjtmT2yAPddEIRrvdE4CU/OWTSYPIKzj6Ve+wHiS8+o3/wytFRrvNPoXX//XXH/2KYpixvT4mHarQ7vd5Uc33+XnbrxMOcuJK0OvlXLzvbdxQlLbGomjpTQ9LXny2lP0en30vKKtIrYnQ47znHaiqUyNLASDvS1U7pjGlrzbZTg4IFKSH/7oB1y5dJknLl1lZfMMm+fO8/bgyHe6rEIEi53f/Yf/C7/6H/1nWGOJ0phOf4kinzMeVFTUgKQyFoz1vk0ibFguuFfgrVom06m/j85b2CqpiJKEsixRyoubnfPlaJy1OBgM6K4s08nOkrYyNs9dYDKd8srnPs/Syplwaw1SncyJ++uOxwYlJWQYSuhV4yoEI0Hj3yNCVzxINQJ+oWRT7vmPft5Z6N4E4FWFdrpozItwUBus8Mro3soaCkEUKWbzmrS3xsVzq1y4cgGKktX1Vf7o//kjzj31IkJosjhCZRnZ0hnq4x0e3HzIwd4e15bO8srnv8aZ8+epZmPqukbVNa1Ol0tXnmEvW2cymeBmA0TSoraWlpoTl5JickRLGjQZ0+kxrWKTpdVVnHTU5QytHXY2QWcdrIxRlFy/+hyvv/4dVtYvcv/2LXTjQR21iFYiBjv3mE9LdGeZiU0RZkRRzJhXfrFgTokZ4URp7QIXWviJGmEwOnESeRN440c21bUlLw1p7MdJKRd2jFDTe+KbnzEvpSSJI+IsxtSGJJXMSgEY6spg8ExzrTzBVTpoCUltwX6EgeCCN/Wh7pcLpVqTzfivPfqzTZnXBKLwio+89mAw8GutMdVr2vyC8L7h9V3TaPHXrnmv0w3BpnvnnM8gpRO88qWf5Z033wAXVPo4br79Fk8/96wHcosKhx+tXdQVU1vS6WSs9HtMTUkrSclnc4RSiEjR73SwdU2axkTdjGS5R6Jibj2467lW3RZZ6YH2ajxDqNhji0qS5348+PVrT5EkCVvb9zEO1s6eI37nndBLbYKtYG9ri/lkQl07VlaWabU6VPn8kV/chobVPJ8TpW3//EqJMRYTyvy6qhZyF2tNGBDQpSMlpqpwLvS4bM35S0+wfnaT9TPn6HT6RHHsSzwEKoqC84PDWIU7dS//uuOxQWmprZHO81+k8zuuCMQ9KSNEI75v/Hxq34qUCGwYwiiFxNQOpfFArml4BRak/3otQdagVMzIgjCKzSeuUElNns/ZK1s899QmlCOGew/4xKd+hh9++4+pB8esdHuMjg/ZPH+F2lrSJObV175FPt7js1/4CueuPUk+HXP7g1t02l2wNcdHuyz1u6AyNp98hv7SOg/u3KOuZmzdfJULNz6FcHPK2YTReEB5631UJ2W8fYv++kXsfMLy2SfJUkt3eRNRzaltxXwyoBSC557/BKVSPHjzNYxVqKTGlI65M0wqQeLzXlb7bd56dwdUi1kpiZV3+KwLf+2MgzhWGBx16Y3xlZJe/ycFkZIIY7FlTeQcWSqwJkIoRxzG8VjjkMaQaI0NxLV55QHeLI3AVUxmc6IsQipNJmvaHU0ua4zzbN60pX2ZYxw6a3lFfFVy/zFib6kV1tiFTewJXUQhZdOyD9wv27ShfcBa+LkvMh+LWpjRe2vm4XCEkP53avy7wpsE/NKXbd7qBba3HnLu/PlTuFOT/Z+2UDn5KGXEb/3nv8PD99/k1j/+J1hr2d3bQSDoLq9h5jO6/WXGx8ccDQf8+M57aCnI6zkKSW0r1s6sgnUkrQxTVZR5znw0pgo40OrGOnFV8sTVS9y+eYsqjpmVBf1OnzJRVPmcfF7Q768wKaZMRyNmOIrRmKXlJTY2L/Nbf+e3+daf/wk7t2+B8rq9cVkyfHifdGWD2XSCcwZT1b4BhSPWCuMstam5f+8eTz59I8w9VMSJZ9Pn85ys1SZKYq5cvUpdW8ajMZ1ez0MHdUWaZYAMiUmY0ix848LWNc1kXGMb3omlMmYxp/DfKCgttwXGNKS7hu8SJpVIv2q0VkhrME3LOPyVwgs8BQKlms/hJ0haF6xZvfo8FoK5BVMblIzIVvpcunKF8XRCt6d5+RMfp5OUTMYxRrX442/8K9pJl5d/4ZcwUZv1pSUKW7Gxfo7bN99gNNxFEjHKj9n/wfdQCPqryyyvrvldAE/asxL6rZj+2gZKCx7cv8/Hv/jrjI720IliuLPNwcEP0HFKVbWxUcrF68/TOR5STgdcvvIs4/mUd3/8ba49dYOzFy4hnWVvf4fp3i5XP/lF3n/1O4y358RZBkoQoRnHCX3naC+d5fzFhO9/6wd4dxWHqwxR89hIiZLev7usm93fy3B0wHnq0oPRSgsmE0tV1zht0cLgnGEpyygLzwxOE4Gt/ey3IrccFnOiWBDFvisyz3OmE8/olcEvPc4SonaGK2twjryqMcaRqI+o/E+lIie4zqP+7R82/1qYgjXcGXvCBG86Z9Z6B0fQNGPhvd+XpAkqJz7Q0ournUNKRVMSKglaaeb5nP39Para0Ov16PeXabBTGwTKWK8Ta8rGe3duc/HiJd566z2ydovjowFJFNFKUlywFlFSUZYFeVlgK8OsyMF5F8243aLT7ZBXBXt7O+hY42pLq91G1YZWd5m1J69w695dqqqkv9Tj3r17SPzklVarxdryCmmrRV7UrF24zq//+/8h44N9Xv32N9nbfkjsHHG75cdkRTFJq40J9yGKIub1zDtFOHjnrbd58VM/E9jenjZgreXilScWrA8pFXEMK6vpgi6glafwmEAMdWEcPcYusk7CJigjvZBjGQfub0IJ8K01E9rJMrxwAK0DE7gRiyrhQVUXRKJ+YXsg0Qjn9Q6h9WuDL5Ex3ma3lo55aamtotSOVEasb57l5ts/Rk4srcggV7rcefCQa899Cj2Z8bGPf4yj0ZB2pEizhHJcsbe/gxQQZV2sUew+vIuocu9Zc5CgjCXt9LBFTW1yWr1lppMR66YijVtcuXwVKSPanR5bD25Sm5pL12+QZZ5YdzzcR2mJUrC8dpbCVLiqYH19k8P9bYS+RBKntLIu+lzKD//k99m48iTTrbscTkvaLUcuM452xyw/tYyIMrJ2yex4clKmBBFmGcq2onK40jRYI0kscLWkNpai8hYiSkDoRGNxREpgjCdMOuvQ2lP/vb5MEOPQvRQ5LxnPKyoH2lQIB1XtJUCRv6FUZU1larSGWCgq5yezFuXjF5ZfPh8q3T7cGztV4p1gTKfwnQUg3QDYYcFbi9ZQljk6SnHO+GD3IQFv8xbCCVrtTtNLYX//gOl4jNaKldVV0lbr0fM8lTnl+dyv5wCaZ1nK9tZDhFQc7e4jlSRLU3Qc44zBljV1VaOjGKsMUeRV+n7wg0DqCKsEwip0FNNfWcI66DqDqP3Ax6PhgLzwEo80TTl79ixSaZyUDIfHrK+soFWEcyUBKmP93Hm+8m//JvlsSjGdUFaG7kqL/+1//B9odTLamSdRNvpCEz4eHx8xn+WL8VNxLAOwbxYBSIg6SFDMIwZ9Mpgx2hAPGrb/aR6aUo3WLkw4OSXI/mnHR1ACTPDy8XdTS4mxvsvjmY9iwZkxzrtH2tqXcrV0DTuSComtQTiLdYHo5fB8DsAWDkdE7SxF4dg7HDMcHPNw6y6s9njl+au8+dqPKEWLJNF88tOf4fUf/ojNlT5JL+L48IDtwSEXzl9lZ2/GYPeAfHRMOxaky2vIWKJcxcP3v02c9mj3NplMBuw9fI+zl25QFiU6Uhzu3aa2lvlwm3bap3vpPMYJqumc0dEWZ85dZl7OyFot3vzun7B59WWoRnS7SxhbM52OGBxsUc5GtFafpMwrbn7rz3n65/427/7oe9S14fNf+ipvvH+bP//L7/G1Sy+Rl4bJeOIffCRJqlCpQBqHqQwyVhgjKAqDBOaGe32XAAAgAElEQVRjT+hLYo3UEi0hUoKi8tlRoqCF1/jWhWVYz6mloJ1ISgTSKUqtEcaRFyVoRazB1ZZ5VSNr4TtEtcW7VlhG21OcAplGtGJBGmvijxDkqiCybha2bUiOwu+gjc2LtQ3e0wiJWSxw13TsrO/MNcNPhXM4a9h9eJ+LV64BPqO0oREgxElgMsb7oqbtFlVRIqVmeWWZ/tIytq6obYUN5XBDxGy0hxLD8HAXJSXWOpIsI0sSTFVx7soltt9+H51G9HpdXDDyr2tHPp9jihLnHFVVeuwvbWNrg9SapN1hpdsl6bTRaUysNWt5TrfbY3/vgPuv/oDJ6Jh2p8/mhSus1jXf++53+MKXv8wTT15jf3sHgJUzm54YKaHV7tJfWgpTUDwwfzw44r/++3+fN3/4Kt/+sz8B56iN5aXPfo7xeMx7P3mTbneJyWRKUZREkQegVSgDF+XyIjjJkw2j4ZotjtBEEASzvpN7qqVqmvREQn/k3LfHBiVbhvazkT7bwbNs/cTNQDXPfWZkcRjnNXFCCj8Zw/qTMc4FtjBI6aidXBiiWQtFDQKL0pqz1y7x8PYD3nztJzx19Rq7d95n52BI3Gtj5hESwe/943/EE09dprN6gyTTHE5KVtcucfv2+zx4+zW0nbG+eYFuqji8/RZCa/I4JUszqrSiMjFR0kaZCVWRMxnuEMcZ5XCXcj4lL+ZUszkrG+c52NuD2hK3+gyOhmTtHrPpmAsXrzLaf5v28iXef/dVNjY2OToaELVaVPMhTzy7zss/+zW+83sHvPqHf8CNL3yB2eCQg6MtPv3Zz/K9b/6I1777Koe7h7Qyia0iDzKWNdb6VqqSMZG1lNZydilBK8H+sECYmsgZYu07T3VpqWuHkj7znJWWdjsmkTHTcQ7OMZkIKiRxbNBCMx4VKAnLmSZyUOPnzOdljcMxmQVHTRw68cFgPJ4zl4okUmTJ48mT1jT2p16uIKVEqmB703S8mlLuFJPbY/Jh0drGu5sFn6mxxrHG8M4bb7B56UkEBmHDhinChJaAL0klsc6b9h0fH9FfWvFr19ttUs4r0pQF30fSYFQwnc7Y3drynkJK85u/+e+R53MOjw4ZjUZcefE57+vU6pAXc0xZUeRzRkcD8tGE6WRKZQxJkhK32kRCsrp5htXNTaq6Ymdni3aWECcxk1nOZDTh4b37FGWJ1F7F311a5fqzN/jES59m5ex5lNJcufqcZ0aXhZ9IGydEUiGVHx/WZDVp1sIYw7UXXmLjwmVuvf1jXvr8lxEyRgn42q8JjLHoKELKMBZMNl31RxsLJ/8+8VU/zcAPXwUcqhH+hkMpFRwDgvvpR7iWPjYoTWuPKyiBt9Pwb7lwwvOlmQ3e0DKQrGSwJZFezOmNn6nxZYYzBichyjQOv5PVxhFrQXtlibKokJHgrZ+8RSd7muvXLzE8nhGpjNUzK+xtPeDq05cp6gIhDOO5o6wqHrzxA4SWtNfXEAOLtjOmgxFVWTEfHSGjZcSSB/wqp2j1l3B1gammxJGvfZIkg3LOcT4lbkXsbj+g19tguH+f4dEhWoIRF7n27EvsHe5x9+brWGGYj4fs2Zw07ngMwkVMJseINCVZ3WD4cER/eRNrcuazEUe7e0RxynQ6p5jPqUoTmFo+DTalRQpHpH05pqWkLipKC6K2fuc2kKZh9HYtSWSNtCCld0M3tcMpQ+MfaYUg0Y5IK6oqWIU4S15ZolaEjFSYyuElAVLLRadGKwlK0lUSLXVwTHA/bdksjiaQLBZ7wwlqyqtAF2i+9zSP6fSib8o28KC3swYjHHs7O8HL3GFonCh8Bt88FItCTMBsMmNleY3K1OH0HdbWmLpCAPO8YDabUJUlk/GIaj5mcjxASs3muYu0Om2SNGFrexuB4Nbt21y7dh0dRyQCVKuNObK+67Ssaa8sMzocIBycu3KFylR0l1dIWxnzgymvv/oqTz/9JEkU0e6vIIUiL2aBxa7JspRmXs27773Lx7p90iTDWIPUylvkKIGOooX1j8eFasqyxDnI85w0iknPbHLm/HkwISiE7DTmhODqsyNANDyxR4OHVCKIpk+A6pMy+eRjcy9PiLCC6NTm8vgc+yOCUm4kpQElwsge40A7IiV9eVAbTBWEuE4QKUgi7RdNLVF4BidaEccaR42Z++BWzgqEdWghaCmBSCSzyYj5aEKZV0wmdxlcXqPa7DMbD3j2459idWWJ1//yX5Olbbqr5xgf7rO184BytMdTL/8CD2+/TbF7l9nRAdMK9neP+O57B5TG8eXLMy49sUZ7qeNZ05EhTWLKyT51MaGz1kesn+HYlbj9Pbbf/TaVizh344v01s7TXdmkNjV33nqdyWCb/vJ5nv7kVznevcvyuQ06nQ6Kmvt330O3Orz1zo/p95fotft86nOf5F/+i3/Bb/zG17DJGd5798esLqX86M07TIdT3xqolTfSE4aitkQKNNZLEnDUlb+ZSSwpK6/rMqXBGgkYMu3BXqEcmoiiLhFWoSLpAVbhGxJSKNrasLTU8iQ06Us3bcBQ02klOAtpUfn7KhXWGOrakWgvRLZ4i4vHHY0W7cM7aiMz8XmSDbiyxGEWWRBOBq7RSbt+saBDw8U6w/HxGOFqKuMzcJyi4WGJJhBaSxmmwT7cekjSSplP5xhbIYWiqnOiOEUBpipIlCRrtxCmore2zP0z5/nCL34FpSKOjo7IWm0ODw4YjUaUVcWffOMbPPvsswyPjjh34QJnNzfZOHeeuigoypLzV69iraXX7wOCsiz47re+iZKOKp95ImFd8/DuHbq9PoOjQzqdJSazKWmasbP1gKjV5WMvf5IoipFaEqkYQolkaktRzXnE/gWCX7sfquBB/qZZRaBP+FrHWC8NWwQVKXDOoHVEo8A/IWg6j205EDJ00fEaub+KxzU0IO/84PdG0Zzdv3lQsgjmRYkRDmkF7XbKUj8hL2vmozlaSFoRPi3TCmLFbFqinCOSlto23tAuzL6CovbEvrkTtHR4e+l3v1r4ccw5Bi01D+4+ZHNdcvby05h6xvb9XdYvPcn4+BDV0hwcH0E14+yTN3iwdYf9179JVdSsr60zGg/5/p0K04q4/tJZ7r2/TWt7iBQpMsnRaoU4Tbw+yzlUbXDGMZtXZO2UfF5TjMfceeNPaffPoJWGOKbd6TEvoBoccv7yOS49tcKDu+/SXl3n+PAQKzWDox2USLh66Srj7jLl8D6vfOkzdFp9fnJ/h+OxZaUfcXwwwDlotzVRotGxRDuwtaCwNUgoSz+yOo1ihLNkiaYTuEqR9uWsdRZMSRKnVJXBFTmZihBKYEmoyjm9RDATFiEt02lJr5vi0JR5ibWByJol5PM5SkcQS7SWVIUDrZDaI+1F5d0I4+jxBLgPq85Pf97/NR5TtD4Taj6P9TSBRxXrDbcpPCDBmK+qSw52t9BZm3I6I85aWGPZvnuX7uoSaZZx9eo1WkqRzwueuXGD9bUzpFmLYj5hOhpxuL/FbLBHEiccjyZcvXaV0eiYdhaTtdr87Fe+yk/efIN+r08+nxNFEePxmNl0Qn9lmfF4zOXLlzk6OmJndwcQ9JbX+N4Pv8PHPvY8QilanQ5HRwfkRcEPv/1tsjRiODiklUZsbW3T7/VYWlpib/+AeV6zsp4SJTFKx8Rxyo3nXsThMyBrLNaUwS7YgVAehFfBbwqCMd4JT2sh+XEGIf104YYfqJxaBAohghWRkyihQXoLwSaMRHHkBb1hU7HGd+E9NKNPAeGNYwiLElrK5jweDVz/v4NS5RzdToIFZrPStzyVIwoTLTANX82LJxsbioByUTpHFimcE8xmhTdlt5JICrrdGGct89IgrKXTyrBSUNWSJEmRQjIYTajmFWc3Nqgme0xmBYrac6SqiqqyxEnGcH+H0dYO/XaKa1tE5FjfWEVzhFzrEnVL1OXLMJmTV9B2kiTtkrW6CAG1qXAEc6tOj727r1MNBx6vGQ6YOYlWMTKJyLI+kdD0uj2iOKbd7dJZWmael1SmpNtdZzod0emv+B0nkyRFH2tKSuMo58eMjnbJKDC1J4/WcxCxRRSOKFJksURZiUCS+X4lSSJxxmemWgtiBaWxSGNRWpDXNVM7pywN7Uh7Brg11FhP/ktjqukM6QQ6iRFxjKkdFRYVKYQOJEROjSt3xs/XjDyKbOqKRHrMUD9eKfChoPJoYGo6bQ3OwKld9sRHKZRwj7yqOwlewjdODg+PmJf7fPDeO1y79iTHoxHSWF781KdIshZWSH/NopROb4naOMrZlAd3bvqpIVXhAXIV0et0ePjwoSeZ1iWRjiiKHIFgPpvhrKUOlrsApTGoSPNg6yHO+SGRr7/+Ku/ffI/5dM7RwS5pkvDSy68wmQy9jUisKPPcS0qUoCgKyqrCjUfeajnSdHs9HJJer8fg8JCiyEEolBKhe+aLcuMsUeioSckCQI6kn3h5YpAXOFxhuKlUjbNnsEjGIoQCvNOBt+xpfPk9Y9s3JezCydQYi9IqBDKJqU0IPKHLKhq4J+DJ4kSf+FHH48mTscYhkcrR1hlCwnxaUtXeW6isDVZrer2I+dxS1wXzSmDCZA8tBNO8pjIOY70hvJZ4Ory1GAtZJKmsRKUJvSilEIpylpNXBc4IjGpz9+4HtFVJtvIElAco4WUbqTBUdUVCxfRgi87mWRAWXU8YHQ9IpWD35jHvH2lWuhH1ZoJNIkSSkHaX6W5eIbYmWCzE6Dij21tm/+ZdjvbHlHnJdF7QSu8itaS91KM+2ibtLyN5mZXN68zrCVJmzEZ7TMZTitmIYpZzMLvPxuYG9XTEhadf5PDBe3z9j/6UG1fXWYkNr735kEwZSidpK4GuHToSUDsKV+EsRKZCRZKqthSVpKoMnSSmMJ5xrTQQa2rtKOaSJJZE2luN5EVw9pQOpOa4mKK13/W0FIhYEkmDjhKMlH5aiSmJWhqUwMUpGEeSKISIsXWJzb1Q1OGbE4873KIss4tAdDpINUHmtJ/P6XLPR0i1wCAWU1D8CAf/OtJy584drj71LM/ceJ6DwwP6vWWGRcnO3i69pVWKPKcs/Wy2CIOZTxkM9omCcdl0OmVlbZWdvR2uXH0SVUbEcUI7i3j37Xcoy5LJdMTKygrjozHb29v+fKyjmOXEacKbP3mLL3/pS9y9c4eNjQ1G4xG1KRgO/Djrd37yBlJ4Xdvqygpbd+96nCWKscZQliVCx1y9fp1aSHpLy4wnMwRwPDziYPchG+cuPYLlKOHnwiFZOCOcvs7AydisENplpGHRZTzJVvzEGAH44CPCdZdOhdK54YCdBDqt9SMUAR1F4aY7FDENmmf/mk7b3yhTShONKQSuqpFSEGvJtKjJA1CqZYSRlklZU1aGdifxLWsjF9ojLRStTDIpa4y1pFqRJJpORzOfV+D8yBWhIpJ2lyLPscaQRAkyUlQu4mDnkMsvPc8H92/T0pKlXod5aTD5hOW2DwhLa0toppR5QVXXJAouns2QytFrSz7x4nmeuLSK1glJ1vGRXimStEU+nZB3RkRxi8lowKw0YCLy+ZiDYU5nyTAexETjmM9d7XLm0hWq6S6zyQAzMRwODsiLCfk0x5YzhBV0VpYpizJo1ATrG2c4PPwek7WIVBuOByVSaJyxFNYhpSNJNKXxdT5CorotD8S6CiklOlWYSDA9rnDW0Uk1BRW28tmhwfi1oAVLyy3KwCIW1tv26izGCm9FIhONiBRFWeMivxjVHMbTEms8NmUrQyQVrszRAiqLH93krOfHfMThBa+PZkiPPAy4BRL912ESYMIO/mhQO724b3/wAeNZzmD/iCiJOb95ljKKuXvnDhcuWpz0pMDIgRY1cazo95fY390liiKfQFhLkiQMB0coFRFHmskkX/gLLS0tE0cJdVUxHAy8j5HyGU+UpkiluHXrFqvLyzyYjEjTlOlkgo68LUpe5GSxJooU89wHMnKLlIKiqNBxycbGWVbW1unvHTA4GpC1MqSSJEnM6HjA5sUnHumOLY6QhZwMKMWXTPJEytN05MDDOicNBPcIZtdc0+YaL0TVTab119xfOMGOmrIRfCa1OMUP0Qv+Rt23elKi44RSCnSiSbOEwgk6rsSZEq0FWRRR5jWtSFGMKiIJaaZ96y9yaAdVZVlrS8paUhcOO6uY5AUVkkRLJsWYs9fO0ur1aItlZt0uaadFq/P/kvYmP7Jl953f5wx3jDkjhzcP9Woiq0iJKkkkRbbZslqyBKiNhhsW4IXtpRfe+R+wtPLC8Ko33nhlwCsbcLct2y2oDUEQSTVnFmsiX715yDnmO99zjhcnIjIfW6yCm7fwFvUyIzLezXt/9/f7/r5DlxrF5OiQ5Xd+RLta8Ppr15GjMV9+75t89N2/QgcVtXWEtgZnCZKEfJlTI/mDP/k9VrPnaGHRgyHX7v4GncGAvSs3aMqc+dkhudXMT59TFDnd0XWyZcaVt3+b55O/58lpyW//51/l4af/hk//rmJ1/5y90X1WT5/xrf/yv+bw4Qdce+NdZmdT2nxKXTekScSN126wXLWcHD2jns+Jk5CsCnj7va9yfn6CyY/pjyNeHk5BCoIQgjSilpLW1gTCIbCe+Cg1nVgjA9BBiLEwHitQUGQVnqeskKEkSjseWARaAUEgkVrhjKMxhjZrcK0D5dB6bSJflqhGIbXvyAKgMQazKnxoQNUQKIld4z5ynV+n1We34ULJrdJ/czNtU3rx21p/F9hLF/amIG1sdDemdBtoVKwveLONHsqWS1bZpwRhQifQ5FXJdD7l6OVTLIbf/K2vMT85pJhMKKxhuVxy8+ZNlFKcrGO+k07K/sEB08mEui75+cdPiMLIr7adxbaWRTmnrkvyPMday507d3j48FOWsxlJr8uDhw/4pKq5c/s2i8WSqq4Z9PqsVivOzk4Zj4bsH+wzOzkljGPCIEQp6McdTk5PuX7rJkEQ8vLFC+7cvYfSmsdPn/C13/0qH/3wB3z5va9vb+zL//5NXqJErEevy/bBv7QZY1101r+PTZF4JRD0l4oUrBcHiO3vcutVtfltrTvbTYHfkCZ/+dh0Vp83wn1mUQp6ISrW1LnDSMFstiQvG+raEkiHbloKK+lEATLR2LJBljWBcZS2pS0FWlqSQBHYgKSrWciCtra4Nd0AKdi/cZ08K5mvCpTWvP3eb3P3tRv84uNf8PTBQ25eH1MuV9zYHfH6219isH+VLJvx+pff4/nH3yXSEbrfY77ISJIeg1tvsXvvC9TZKaY5ZjAY88Wv/iFSShaTU44//RARgrGK549/zHC8h9IRTTVBh3DjjTcQOuY3m4z/6X/915y8AFfDteGIalpzmi/54V//K/7xn/1XHJ1NKYsKV9e0VQVxiDWaWJU0laE3vsrp4WPOZnN2dw744OUpLx4tSdIYFQniKCLuhoz2umgdsjqbYJr1GlwpamdpnSWSPo56AxIHWtDvpRSLzDsLtIpFkcFmZLMWI6X3UnKWGAdKIEOFMy3lssHJFh1oRGO9VYUTqMhn64HwhWfjvqcksoa6qIg7MUZ8PqPbX7BsW/1fHi08uVeuSXj+j6cxrcM+ufBH8riu3d4Ybdt6iZNUiPUNYBrDcrUiryuMa/nR+z/lN959F+EakiSmqWukFDx69JDxaId79+5xdHREnhf0R0OKovASixu3ODo65PT4kNFoyNHxobcUKUrSJCHLMo6PD9E6IIwMwjmCKMQ4y8PHj9jd3WU82iVKI/IiR2rFapVRFE9JOimmbclWK+IwBB2gpOCHP/ghN2/fxhrDm2+/xYMHDwnCiJ/8+Md0Oh0wFTKMAe9/vjkudyFCbKRIbMFta1+lV+h1Idsk+gghvNvEmm+/IU56984LYivwSgELlKZ1np6C80XLJ0pffH/b+hk/CAK2hnp8fnDAZ/ZRq8KyWNScTzKm85ysbqkAI/3FaiWkDmprcFWDqVtCoWmEQwuH0BIZhqAUTWsp84q2sAijQApqHFVjWcwmFIsZNIbucMjVq1coS0Pa69Eax3wywzlLb29M4yxVVTMcjtjfvwamIWhbZoUXGrY0fP0/+k/54pd+iyjpMB6NuXH3DZIw5PDpQxaziY8jqmqavEJoQZnNOTt8wPGjj5i+fEIaClQILw+P+J03r5OqAYqAq6OI0Y5CWMH89JQkTVBhjzCQVG1DHGtMW6JDzaA/xjjDcn5KL+yS9PaZLVZMZ+dUqwzVGfhNiJQ0QpJXjrxskWFMg6S2jqJqqIsaUxqavMRWBaaoKJcVi1lJVlZUWO9/JAxKtCjhHRMVglhIYuXoaIFQEuUUGoVWijDyEVCpVgTSe4dqC6GWBKHfBoZJgI4DdCCRClppcSFUriUr6s8pRpuRQfw7f/cPcVm2wLa4KEbGXtrKwbbjklKuOwW13c4J4SkGxnir2yiKQQnOnj8lVIJ+r8dysWQ0GGJaQxiGzGYzdnbHjMfjtb9Qwc5oh9VqtX5f/GexFq0DGtNirC+G2SojSToIJIN+3y9J4hgdBJyenpKkKaPRiCRJaRpDvY4Dr6pqremTtE1Lked+42VapudnVGXJpw8e8JP338fh3SvbtuXF06frDufVc+e7E7PdatlL5+yy3cvlc3/Z4nZDw3DWu5AK5zWo1tptd2yM8VKZS8D5NvT00oNmM0bi/HuptdPk5dHcE1R/jU5p1As5O8/JGkdoWoJQo5QgTkCpiCJraIUjVAHV2o6+NBatJTqMGPUUOgyolwUqCrFNQzeMaZoGHXXZsYYWz7VptQDluHr9Ok8fPuL6tWtUqwItJXVe8I1vfJ033nqHfHbK/v4eRVkTyRqzmiI6EXq2ZPTFbxL3hjx59gnZdMJBWnHr9/8ZxWzBJz/5O6RVCBlQ65bTo4fEnSHCSPLpAxCCVg2ROmN2fsSdt9/m3t1v8O1v/5g//Q8qjl6ccqtv6CYBrt9lURmafE4+PWE86tNNI8JQMzk/IU46JNrghEC6ilV5TlbscDI75eTxIYiAnfFNjPkQW9YUbQOFjwmSoaYpah9PtBaOCgAraAqvQQyF9GTW2qKsRIaxJ6dWnsgqAoHUnjUvkgDpJOVs5aN4tCaII1xR+4hyrbCNpTUSKyVhq2maCh1oKuVoFhWyNV4ipP2CWBqL/hywcmueJtimwWztay5d2JuL2Y91F57kFzeR3L7WFyzpN4Jis2KWeLsKgRNeT6lwvPvWG1w/2KetG549e0a322V3f49HDx4w6PeZLxYAlEXJ8eEh3V6PnfGYJ0+eUJUFRVEw6A+YT+cMBwPOTk65cfMWn96/z2DYp65q7r1+j48+/JDTk1N6/R5FURAlMToMePDoIfKZYtDtkZcFw36f2hg062xEAVlVEuEIo5jz83MWqxVV2/Lx/U/pDwdk0xn9q1cJw4jH93/BnTfeQq63bRe0CQgCjTFsnRQ2HY1SvkPZ2AMLITweti7sW8LqJfAauHCWtX6De3kcu4wj2TVNYcMdc9Zt8+rAXVjtSqjqi4dY8Dl0ks8sSjUQRIIrUUJbt8RBSBgq3z42DaMkgaYhiDyuUeuApik998QYQqdpsoZmURH1NG0rKF2FDkOWyxW7/RRjNJn12weL4OXLZ3R6O/zopz8llJB0Y977wuu897vfpDIto2HK0yeP+fo3/oDZ0YfI0LI8mnDrvT/m+eETOHnOV37vW+yPbpOmId/9P/5nJk9/jl2VjN98nSQMWWTwb7/9A7qdLgd7XYLOgDRRuHaGsRX9gxu48CptoHj3C6/zeNjn7fcUL374N7TSEmrLjTtf4uzkiG4SokdXyZZL8rKmtT7VNq8yep0BJ7NjJkcv+c4HH3C6kMyXGbduH/BX//L/IumEBKFit5cibOM9sa2P1BFCoJyF1qLDAFEZpFKEwy6uNbR1jY41qqvRgWZ+lFPahiCSBJGmbixta9BLgws0QoEWChlqbFmhOgmhVkznK/Ks8gJNBGq3R6/fR7UNUTeiRLGcLHxaitDMG7MmcH52C+7WVJHthb8mQ74i6NzcGJfYvpubzt8AF9gHa1cK/OWOc36L6NZArmda+oK2Nxzx5dfvcXx0zN7eHm3TUBQF7bpbee2NN1iuVtRVRZ6tyPOcMAy5//NfILVkf38fKSW9bpc8z3w+npTUlQekkyRECMUPf/QD2rpFK8FqufBrcOFZ71/72tf43ve/z/l0imlrziaTbTHQynN56rpB5BVRWLIzHhMEEX/6z/4T/vJf/xVNXpCmKUprHLBczNaE1EtF4RUpBxfncIsJvapX24xQm+5nc27VpfO/7Vytx6SU2FBF1hYy8sJz9KL4rcW2SiCV9Ikn0nMOwXudhmGIQHjv918n9y1sDTqMEM5RNhaJRSGpihJR1aAUtm5wBAShYDZd0usnSCXIXI1oLE1riPsJhBKhLbEIaYwjiSIq7VhmFQhJGodUgDSSYrXwvt+BJIoCfvMrbzEY7TI9OwFnuH3nHtPpMXVRAwFRL6Q0Db3+mH4n4trtt1nNXmJaw9H73/O+QlainUZGHR7+4Ce8OCpJgpa2Kdnfa5CFQpqW5TJD1BmT8S7D6+8Sja+STk/Yvfo25w9/QrmYESYJDkOeLeh0d5FSMhwNmD964l0GQ82yrMiWc1ZZjq0Ljg9nuCgl7SY8f3xMqD1uYmuHQSJUSOMM/Z4nSbZ1RbY0qNC7KOg1XmDqxptVtwYZR2itcK1fK6dhgE40Ub+LLips1VCcL1GRJR10KLKMtqiQShAEGqucdx80DiUFTimka2lLby4mcNhQI6MA6gblLKEA4cznSgV8gq7dtvdSKayzSDYdj//6Be/oYuOzAXJBIKRe6+bcOjoJNuksmz+X/845wXhnxOx8QidJqOuGvCy5ef06zrl1oKRnfsdJQidNefr0KfPZHIRjZ2dn+xlmizlKa0zTkuc5y6IgiRPatuL05AyJIAxD2rZeR597mw+tQ8IwZP/KAcfHxzhrGQz65HlGVX/vsvQAACAASURBVDe07cXI2u2k9Hs9ev0Bd1+7x3e+811SHVI2higKSdMORVGwXM5ZTqcMd/e2UpzL3Q5cdDG+CIltGOjFxstirdt2VJfV/Jv324pvpVznEPrtm3E+ZmlD0DTuosvdjGNi/Xod6PX/X4zn2+/xL/rMa0f9+Z//+a/84n/3F3/x553Ye0/qUNIKKPISFTi6O32KukIFAckwxgpBOu4xKWqWeUUnDemNUlQASjuKsvKs9cgiI0UQhWBbpBZoBZURdMf79A/2KZZLXNvyH//zP+W3v7hPVWRcuf0GgXKsljOWs3Nm0ynnLz6iyFakB6/RG47pDEbcuf0az188Ig3gf/sf/wUyDDGEdEd9Zq3jr7/9EX/z/oRlLXmxqHl+ZmiqmtG4R7KzQ73KmU5zXrx4zuGzT7hz9zajvbuU80MWhaPJzpFCkU1O6ezt0uuPCDv7lHXB9PQYhcGJkKa1fPLjH1BOF9RlwZMJdOMuH//sE/KsoBOAchBLiSlrnK1xZUVW+QtoVdT0EoUta7AGF2oaJWhqgylrrIEgTWicolg2tIuc4ShFScX54ZQ0SnDWEOqAqJPQNjVBrEm6HYQIQXsXUFm1DK4MiNOQQMFgf0gYxdRlTZnV2Mp4bCmKkFIQa0GkNYkzvFz+alxpb+8qbGrP+k+7NfjaYBH+Mr080rWt540JodFBiAy86bySmiAI/dN3O3ZIpFAoqQjThG63y8HuHl/77a/Q1BXOOQbDEePxLsZasjxnNp9jmpo0TjDGUJUF/X6fMAgIg5DJdILWmuOjYwId0Ol2WC5mTCcThBLUTcXd1+5xfHREGMW88cabzGZz35XqgH6vT9s0PHr4iLIo/Y2Knxxev/cGh6fHW/B+dzzmj//4j+h1e3z40cc8ffaMt996CykETV2h1kTFJE0QQrBcLLn7+uvIzZi16VAuYUZbVwbrZWCXqQG+YF1EKl0Gny8XNu/qsMk8FH5Ec2KdLWheoQhsaQiXipwx5qLbXf9ss/bTkuvO9vbVnb/4VdfOZ3ZKvVGCiVIWZ3OEgO4wwmqBsoK8zIkjQRgoaCyiNXT6ivBqF1vV1LUhSEMiFZOdntCJJdJ5prDEEeyGGJFiypq8FNy49w698S4/+t4P6XcT6tZw+NH/S/eL7/H4+Rlvty11mbOcnFAtjpnNZ+z2ukT9PRCC0c6IG7feZTwecvg3/zufPHyf66MA6ywq7nDzC+/w3/73/5Jl2RCECaO9McN+zNHJlO8/P+dHzx7y3/wX/4ju1TH1o2eEdUb5YsmPv/td/uCf/hmD4Tv88PvfpRv0Uarlxs0rLE+fE3V2udI9oFot0TrCmYrZ/BxRHCFNSV7WTGtFHKb8+N9+D9M0NNZR6pArBzFSQL2y2MZ5saOtqJoaGyYkOwN0WoGzKAzZqiRvW8IohAaKyYogCUm6Cd171ygmK5q6JE0i6qb00oS6AdHS6aTkq4zVqqSrNflZSZimSB2iwwBnLEJpDBJjvBulTzlRJFoSh5r5oqJ3a4duL6E9W8HL5a+8dpwQILyER4hLolxxYct78YRW2xFDKbzvtlQg/dpcrq1DED6sVDlorUUK7bPVlOIrX/4Sd9/8IgIYjkc8efALer0hdVnw7NkzBoMBWmvyxYJOFPF8vuD8/IwwCEnSmAefPuDmzVtcPbjCbDYDYWnblsV8hjOGXrfH3Tff4MMPP0AIuHX7JpPzKUdHh34kWyvjy7KkPxjQNA0qDFjmGThojOXZixf0egPapiGNQr75zW/yr/7P/wchJEm366VECOIk8rq1KKZtW5q6oSwrxuMl3//ut/mtr3+TOI5fGcs2I9gGP9LaO35eEB7B21Nf+KFr7V+z2Y5u3msjFTF2bYvcbqxwOz7uey3iNf8AY/8y/qekdy3Y4FIbG8jPowR85vZN2hZR5wy7gn5PEkeKfqiIAkckIYw0UTch6MeofkyrIlzUgTRBdzpUraPIKnQYEMQpNtRYpWm0YrGoWa0spfEnJOrEzOdTyiIjqyqW0xW10fzl3/yMOO1QFiXPn35CNjuhrXKkrZBCoaMe1++8xbOHn3rSWlUgZUMzP6Js/I0mZUDT+mACi8QFIW984W2u3LpNEHfW9qBwPDknjpXXgcVd4t6Q48f3OT/6FOqMa1dvMZucYKUjiAYoLHWZE0URRgiSTgdrWmgrGlMym67IqoYsdzx5/BglIApCOlFEJ/BuCmVuWC5K6trgAGsVooWwLlnMljROYKXGCEmYxKTBmosSOVwApmmpFhlKQHcQkXZjZKBY5TVGgBWSdtlilSfqYQxGS2QcolNFeqWPkxYVeMJbczrHzHOiNEKFAUYqTCMoGkeL9AVlndj72YcHpZFqLdyUeCLkxSW3wT4uc1cuyyK8PMG/RkrlnUytY6MkFvjVtFKa09NTlBLIQFPVDUppWtMym80YDAYXN4uUxHFMf9BnZzxeb9rwTGSlmEwmdDopAojjECkFZVESBAFlWbJarZhMztGBJi8KoigiCILtvyVNU1rTUtY1q+UKnEPrAKU0dV2TxPF2+zadTrEOpPIBlkJCnq2I4wgpFZuk37Io/eauLJhPzrcr9k0R2MYsXbrhfQrLZpRz2wDIi06qxbsk2G1iy+WCsvnPWsvpycmaWX/pd3M5Dgs2hO9X6ANCim0Rukz8/IdY3pePz+yUdq6NaIxChYq8bGiNZZUXYBXjYYIWnnncGXQQUUg+OUdaS5xGmKpkcbrAOUOFhTUO0Vrns8iBmhKlJIFyfPqTDymcpdsbkC9mJHHC+7+YMDld8h9+/Yt872//b+rzF3S7mmu338SYlgLYHV+hLmaspmc8ffgBTmoWp6c8ejxBNxWLkwkymjG4/hq9NGJlKvb6PdLjj7i60+NvXx4iUChXk9eKwcE9pFMEqSZOdxm/9fs8e/ExhyfnfOV3f4fHH/yA+dmE0dWbhOmQQBh2d68xX8yQQrP8dEq2muPqnONFTZJ2OXo592bwwiG1TyEJtEKpkE4SE6CwoiVKNHEkqVaWum4pjla4aEXrHJ04xgUB/f094nxBU9UUVUW89n+ePPWs9iAOiMMOohPQVoakryHuoJDEIsSaBikDhns9WmswRU0zyUAKojTCtN59INGaEEm0k1IVJTIMsAZsWZPXDZ8T3bX1QQK8MNi0W8tVe+ni9X5HvgvaEPA80ftiu6bWIlJwfvwLNbFWJGmH3/vWt+gPB+zv7ROEiTe/X7tFWms5PDyk1+vSti1JktDtdjg8PuLKlat0O12stTx7+oIrB9dIkoQsXzKZnlOVFU+fPmVnZ4fFYoYQGrO2Sjl8eUwcxz7+KFuQJl3q9XYpThJeHB6i11yizQ1vWn//vH73Lj//+ccoJdZFTROHIdLCMElQwrPYe70+WZaxt3dAUZYUWcViuSLPS7SwHodcdyhBEPiNtta+Q1OKpmmx1pEk0dokz6fbhmHwS5QCT6Pw8UkX2zuBH7WSJOHW3TsX/tusC92l3+FGi4eDum22Y2HbehXHhrvkBboXI+O/V1GqrKa2kJ+vsMY7DgZRiGmhzDJS6f2SZVdjbE29XGCNplzlSBTGOty6hXPWx9wEa8DWCUusIi/yFZKT5RzCEJl2kIHiyvV9WiHIVi/odjq8ePQ+gfX563HXc0nqfIYQgpNHD7hx93XyokaxIlstkaYhn8+xCAg1L0/PGKWKXA0omxzpIpo8Y7i7x+OnT0kDwb3X79A2jtH+TYw3f6KcvkAGHYJU+qdgYwlCSdrtQxCQdIcIBUEQkec5TjqK5QKcJVQKGQhOzjMUEpSjNAbVOppYIdOAWEcoauLAb0GmhUE6QxhrsrxFt9Inm1tLW1TYvKTOSu/e2BpsXfmFg3Nki8xHAvVAtQ5Tt9RNC5VFh+vEdQtNXmKKykdVS4k0a9mJtd6cTztvNO8crmoRlcWKlqrwlrky1lj5OVUJ31Ft8Qe1eTq6Nf7gPaNAIJykabz9a5JGxHFCkRekSUx/Z0S2ynjzzbdQYcDu7h7jgwOC0Hcfu7v7ftOjw7UoVEJoKKuSermgKkvKsuDg4IAoimjblsFwRBgE/PzhQ+qqIgg9MG2MoSxqojjAGEO/12e8O+bs9GTNim8IgxDTNiTJiKqs0Fqti10XIQSz2WzLst7o9gRuTXyFfr+PktKnhNiWcb9LEsecn00wpqHb6zNfLnE4Dq5eZWe0w/n5FGMdQRBusaXucIeNN9VlDdpmfNtwl4TwVIFN12TXrgyb7/OF0263dJc5YRfdFxcyRed8cVpvVzeGcqwLj7WWIAgu2eBe4FybMfHXogScnC4I2xblHFIr2iZDO+/k1wArralLQ88VSGvRcUpZ1QRCY1tLN4xwrcAqRdWWhEGIUwLthE+6iBR1UeOUIurFKAKKxYorB3sMx3t89NMfMBjtkCQJ/VBjiaiKjKrMuX3ndZ49uk9VLOgMBtR1wYPv/DW7N+9x495v8Pijh6wyR9gN0VaQph2+8fV3+P4Hn/Lxp+f8THXoBoooHnD3+oAv3NohUoLF8gQ1HBN094mjPtX8OZOzFYcvzjgY9rj21ltMPv4AKxRNaRn2+kgdMtodk2VLOr2rTOxzFsuC8bWrCBGQZfcxCpTR9BN/YUljmb84J4sVUZISENKWLYt5TV60aCG4fdBlXuW0K0MQSKx0rOYrH86pBEpq2srgaBFhSE1LU7e4SYm1Yr2alVBV1HNvV6ElBLWhNJ5kifPKb1E0ZIXYXnRYf2FmRUVrLUGjSEK/QXOFQX22fAmpNFa67RVtah+uqJUkjGK6vS63XrvLzniX23deZzjaRUhJEIbrJ7m/6JXW/qHmvII90N4c0FrnZTRKbv2ko9DfDLYToaUmr7xhW5p2WMzmOOddMNO0g5CS4XCIs5a6rsmLHKU1VVVy5+4dHj14zHhvzP1f3KcuKoQQRGFIp9vl9PSUp0+ekCS+yJVl6akHbcP5+TlXDvZZrFbsDAYs5nMcjm63z2w25Sc/+j7jwQ5lmXP47DlxGKCFIlCCNInXzG9v9FbVFSrQNG1LbzDYbtF+8N3v8I/+6E+wxhBG0bYYbDy4nXPEcbQFwrfyno1I2oExvkgI4eVIF4uGC6X11tNb+tiiyx2WMQbrfFDspiCBZ5tvvn5ZX7f57EqpbVf571WUBpHC1pYgETS1JUpSXGFJ9boiKsmw00fEfqOiRUsoBW3lgxOVErgYtNAEYYQzDUIqjIEwDpCpQ0cRq7IhDTtk2ZIgCunv71JmC/7wn/4x3/32jxn0E4LBHtdv3+PTH/8dUdRjcvwCtCQMU0TSQTjHwUHIB3//V+Tv/SG/9Y//Cf/L//AviPKGQJdce9uQ5UvevLlHL9L86MMjjqRikGT8ybd+g+GVEbPzE9JUs1hO6OuQ1fSMJEm5dus6N+++ycc/+xmdbh9z4zrVYkK4dwevyHD00gHIgPn8jP6VG5ye/5xZpXn+5DnWSQIhCPAcJqkE8SAmMC2ryhAKR7SbYoqWm6Ki2kmomhoSwThNmImaKm+IYh/kEKwJicY1hMr76Yh2nU9mHK1wSKMJpEVbg3FeFOykQThvGhcKfFLuuoUXQmDa9VNSCJAOQYsFIulDMh0tKIWxLYvtDukfPpyT9Ppduv0e915/gy++8w5hnOCc2MpldOAz6wKlUHpdUJzdWl0EQbjNHXO0awmE4kIXhx8HlNeoeV6U5eXjJ0glObh6jfPzM+I4YrFYcL3fXzsyOqbTCU1d44C012U8GvHy+QvquuHli5feUcFYilWOVoosy8jKip2xZ4CfHB/jHDRNjVIBdRCslwsWLQW/8957PHv2lKvXrzGbTnxRsA6N8JYnYYA0hiRJEcLRH/YZ7+0SRF2q2pD0Ep86u8rodDsgNaPhgLppLiQ2QbDdgm2A9k0x8cXAj8AXXZFFSLnOb3yVaX+5kICXiKj1EuGyyR5cYEKXaQVaKY9BcaGL22BdvvhdeH3/WoLcQEhU5E3HlAwJeyk29gmuSRKhIkWofAKGrSW2ccg0QSjf+jeyxdUWG1o6nS7OtjRt45XjxhLIAJNCiqK0DpTGNpad/X0mp0dMnh1x49oe3U5MrzdiMNzBiJgqm9M4SZx0QLTe7Mxpjp4fcXiY8+wv/5I3v/KbRP0hts1xTvDkk4d0dkaEoeL2QYBWkiJzXL0aEkYxohUMdq8gbMv88CHGxQhhcIRky+dcufUmZV6QDmOCzpiiqUmCBKU1bV3RtrXPSnctMkxASp7cf8JkMvcArHNI4Z8YVnvfHJxBCUsopH/qhQFlo5guSpqmpsgN/WGMcT7BRDi5Vnl76ZJiDRw7t40/d+uvodZPNes5SH568kGAFi65UTiU8+9hL01kGx9DKdZjHw6pBNJarHNEn7NB+ef/2Z/R7Q1IkoQwTj1ADttxx1rrPZw2Ix5r2pETRGF0AYKrzbo73l7YGzafWqcFmHXaDsYbpUxPjrYAbxCERFGMs3Om0ylBGJF2FHmeU1UVURRx9cYNimxFnCTE61GsrmuqqqHT6xGFmqIo6A36zOdzxjs7SCmpqmqN0xjKMicINYPBiH6vj7X+mo+iiNOTE6Ioodvr4VqvwysKnz4bRQFBFBG6hDTtUrUtw+GQ+WKJI8OsO0Rja8okQochURyhheQyXOw7IHOpG2lwriWKIuDVgiLgleSXXx7ZrLVbkuXlzd5lOQlsxre1lm4zK1r3yvddLlyb49eyLoniiBaJ2jjeFQV14/2krW2pp5bCOhrpzds63YDYSKpZhXMwc5JiVTIwOVMzw0mLVpogCNg76KC7Caq0TPMZi9qb1wdph92dPVazGZNFjg4t52cLbr/xW1TVki+99w1On33EaP8Oo/GAk6ef8JWv/gHnJy94/4cPaZuWwWjM849/xsGbt3j84QPqBpZPX6KfPkECTRDQkQEiUJi2QxxrlssF88OXOKDIl8xXhfeT0cdcffMNDg+f8PL+A77wrX/C1Ttvkp8/ZWfvBmEc0ZqWuqrBOdK0Q1lULIqSydmEVV4TSAikV9ZHWhGFim4nRo969E1LU5aYRY2Slqyy9HZj2ipgOc+pWuOf9LMCZxROqW3ahnACJyyedOsLkJXO+3I33qi/EaBMC05itX+dxLKVwDq3Tt71HZOzPjzQdyMCAyjp6QrW+vBQKzbqtF99vPmFL63Bbg9se06aRm7YvWtjMCfdGvfwF34QaJT2/CNYfxYAcaHj2mAoSimkEqh1oXTSF+CmLOn0+gRakXQ6TM7OttsvrQMWyyUHB1c4PTnh5YsX7F+9QllWhHHMYjaj2+3ikPT6PYzz2ExWlFhjqauKly9fsLu7y/HxMVp776Aojhj0hwghmU4nDEdDwihiOp8zHA68pqzJCdMuYRwxW0zZG+8i1lIQ2zqeP33GV77+exwfHjEMNE1Zc3Z4SJwklGVJEml2O/scvTxksZgRdbq0TbsFu70Vi3iFud00LUqtz5X1Ehe3KU4bTpK9wJj+oQ3ZZd1bVVWeFiClN6dzftHfNM224GzGxs2xYX5vNoWXBcX/v4uSDDVaCJZPF0jlkLVAaoFDkjeWEEljLaEEjKA9K+DGLuO7u2SLjKRusWEfgyBoaq+b2hS10tBmHotKehFuCgpJIAKOz45ZLjO0lHTSAX/1t9/hj/7wj2lNjnM1d1//CmfTMw6fHmOzjOVszicf/IRr1/coq4bhtRvs33yDYn7EyS8eo22DThL6/SGj/T2KrKa3E1JWhucPDvn7XzzGOkcjDL00IUmUdxk0jY89PjrGCkNvPObh9/4NZ7ff4d0vvs1w0Cevc55/8iEHo4M1Ma8ljjVFKSnyym81QkncD4nWbWx31EfbhuMnEwIlGPR7iEBxdrzgfFJhlyVRILh+JQEtOT0r6YQSFfp23awvqNaCFv5Ca4Fws8ptHMEgRkUKN1+B1tSLCi31mqnr1+q+E1JbENoan3aqpMYJ63llQvgtq/ROpL4Jc3xOo+S1d2tWsccmDFJJtNIeWEUQhutxTK6RUwRCrlfW+DFu0+kLoV65cTZ4h/WMPE/0c462rX2UuepyfHRE0zQeyI5Czs/PSZKU6WzKwZWr3Lx7h/OzM9qyIlsuEULS7fWYLWbEUczk/JzDo0PGu2P29nd5/yfvMxyNKIuCxXLpHSFx7O7dwAE7Ozt8+OFHWGs4fPmS5XJF27Zcv3ad45OX/OY7d7hzVYEKqNtr/NufvvAOAECoA5rWsFwsKfLSJ5xUJavFgjRNqMqSyekZw8GAuDNgPptydTAk0B40Nmbjd37BrPZFp91+3YmLQM7LI9Sm0F/mHG0Kz2XB7WKxoNPpvEIfkJf0dpfJk55RvnaAuNQxKaU+NyH3M4e77v6IUEoibQhCh04VtZQUUlCakPNakNWgAokQDtu2FJOVT2MQiqpskYEgGgZ00oRo0CEcxOjEk96i/R6iE7E4WdI0Hkwc7oyg8aQvKR2z01OePj5E2Nqb5ys/+vSHfaBgvpyxmB3z8tEj8lVB1bSMDvapy5xiNkFg0ApMXZHNl5w+e8pivsBZRTdOuP3adRwNxnhAf7ksMbWjzlukkayyjGVVMJ8sEFqzWpZk58cgJFJYpAo5PT5eZ7VLWttiGkOR5aB82ggGtLGIuiWIAuJYoxLNaCehP4xwpiY7X1JWFa3zNAuhJFZoFvMGigYdBfhYYe9h7ZxDyzWXxwkUvp231uN5tjEI67PLrDXISIJeb/Kk9Bt4yZrL5YuD3LCvpdi25sJtcuqFT8xwPsH2czpwQh1utzCs1/s+0NSsyYa+yxHSj2FaK5SW29cIwStJKL9M0tu6VK4/snBeAlWvDfufP3uGlF7HlhcFcRwThB6jiuOE+XpL1hrDyckpbdsymZzTH/Qpy4qNjWtZllRVTVmUdLsdXrv3OknaWX8WiQ40w+HIf09V0+/311CFI88y7wBgLf1+wtU9X0C0hDQsOTjYI4hTT3K1hsFwSLZacXZ6SrZccXJ8TF1VzKdTnLOURc5qsWC0M2Ixm23PwybW3NvYuu3f+UJzEZlkL41Rm+JxuQhtgO5NJ7p5/82xGQWB7WbNWb8BvMzkbhtDs+6iNhylzc/cpNp81vGZndLseIE4nyG1QkmocZyu/BNvEELjfFRNY/3JcEYQdmJMYymOpoQdTZ2XsMh9MWokLkrQ/QARaJYPpxSLkp1Rh9NZRWMMy8kpx7FmcnpMsSyp65w7uzE/f/CQWzdu0LqAvC25d+9dDp8/Yv/6G3z6/g8oihW7165x7d7r3P/JB2gBq+WUSBmaqqHT6zCfZDRNRGtK6uWUzqhHtVwx2h9TL6cY3UFhmC+8a6DTii4B2ek5u7t7OFvQrHLK1Qzh4OnzhwzGt9jb2eV4cogIFK2F2dETzs/OtucmiSUH+7so26K1hLpmeZRTVA3OWYJAoJVjbxQy3pW0OBoE52cZiREMOxobWozzTx6LRThFKBzNytAIaCNHv9tBNZC1NfOsQmQlabeDkIK0H+Dqcq21a2mcI5CSJnK0rUNu1ODBOg229UUL5cNIrfShgvVaGiI++3nmrV6tlzkoLfHac6+J2xQduJwBtllvX4xyl10KN0XpMlEQa7cmcVopEJKsLNjdG/PowX1msxlpp8utW7d48vgRRZbx/OVz7tx5DYnj+OUh3U6H27dv8/z5M+q69ip6IairAq332NvdJQwiTs/OuH7jFr3BgHe//CWePHpMURRcOTjgxYsXNG3DfDbjypUrW35UkqaMd3YQAt59fUgcWloXYFs/Kr91W/HoZUQnjlitliyWS5Z5TlWWVFFItlgihCNbLXn9C28xOT3n+PiYpP+c8f5Vbw2ifWE2m2KzJjZe6N82dAC48OL2bgEXBWNDuGz8KXWbuHTxShd0WUwdrrekkoutXBB4i2EfKLDGpqTHDZWQIPx7/Frbt/1rA+pUsXx5TJ3VaGu50xVgBcbWpKFEtwaTSVS3S/9On0bCbDIj6WtO84ZQQKAVi/MFy8py+7VrXgs0yahWJc4Z3NomN69q4rRHNjnHtQahGm7euI6xGT/8u2/jvvpVXn/jOknUJYgCXnvtTZ49+oTTo2OieEhbLnjy0+8TRRGybsmLgrqo6PR7/haSXvGcdBPqvKDOa6wziGxJJ01oCsM8LxEW6tbRTRWq28GVKx69OOXa7gDjNNduvclsuqC7d4efvf9jvvLe7/L88acYAecvj/jR33/MbF4TCEG/F7LTjTk/nhJKSa+vCSOJdSV1qL2tyKoi6SXkWQNl43EhBf3QEWiPXCtveoHTEiNCVBhS1xWMYpJQoo3BZBVt63DG4WqfMNvYHBnBqpA0MkQASZxC6Z0nu6Egz1uMg243wgBN2eCkQAcKiaTKGhyOum08hqP9du6zDqVBuXUcz7qGSOnTWzds8A13ZnNsuqJN4bnsXrh5+sNmu+T9fOwldF4AZy+POT86Znc85uTkBKkUh4eHSOFHx+tXr1NXFVJAWRR0ul1WeY5UmiiKqMqSpm7Y2/P8p06vizOeRCilQmpFnCTcvXeP0c6YPMtYLBa0dUOR5zS9Hm3bIoVgvLNDawzDYY8odjTGroXFCukkprWoOMDUNUmnw3y+YNDv8/LlSybTM7RWXLt6k063y82bdwjDhH5/wJtfeIdrN29iTet5ZZdGrIuivVnz+3O1oVhY69ncm++v600y7rqb3To5wIX9yKvODhcLhzVQLnwe3Br8I45i37Xh9ZUbX/ANE10Gn40pfebjrjhbEqURO3evM7p1hbDXIQwioiQmCGI6UUR8ZUwQhPRGXaKdHnGni4g7nExLAqF85jlQ1oIwTVCiQbgG3ZUEaYppHCJUa/BUkPZSyqaibluuXL1OZzhEWslivuDRgweMhlcwxtIaS5T2mBy/ZJU1xBrCQKKEQbnat7tVSxwFxL2u13GFAusMYaKRGCSbim+oqpoiz8H6NX0cSuI0IgzACI1tvHlYkMQEaUxe1pxPT8mnp5yenZHELrUByQAAIABJREFUMW254vDpIY9ezGnqBqk8ZuNz7ErOJjllZbFIwo6mG1iSUHi+VlkgjCFJBd2OIk19Vp6UPghArf1zkI5IGQLRoLWkGwu0azBVhRMWpyyRcgSBQycSFeJ/DzgiVxO6BtFWNLahakqqpkbTEFpLgKNYFbR1g8KCNeRViYsUQRIS9VOUULhWYMxnF6Vty84Ft8U5+8ra+VVJxEVwwGVA+7K489UEV7m+wewFtuQcpqkJwnDbCcRRjJJr0anyjpWtMYRBuBHC0Ol0uHJwhTzPOT87p2ka4iTCrRnNcRJT17XnWelgPW5ZemsPpm63S7fbpdfrbW/cLMtYLpc0dc1sPsc6v/H1V7nHXKRoODs9oSobjLGsVkvmizlRFBKEAd1ej06nw2K5ZDqbYtqWpJPy6f37dHtdwI9km1FtM3ZtGNyXxbq+q/E4orvExt7KegCtAy9+/qVU4ssF6OJ8W69lc27tw77usMVFaskGBP9l0fDnHZ/ZKQnnWN4/JNkf0hl0kXGArVratiY/XVA0sB9HkDTE3ZTieAptwW43pvPOHdq8wDQFUiX09sDJFjdda69CAdqyc31E6QSmzFAq4Okv7nPzzdcwjeG9r77H0cvn/PTxE+5cG7MqLU+eHhNENfFxTKQU450dju7f58abv8HkyQNEN6VuG5rK0JQN/W5MGges5oJOGqOcZDjoIJsCYx1xECHTliIrcaZBIegnMVEU0B8fsDNyPHtc0ZMtmIr929cYDw6olOTpw0+48+a7NNmCqq44evSAb//9z73SXwm6UhI7SMKARCuaqkWWDVXdUDYtQaTAGcaxwEiNdH7IsXadxe586KdzFiOsf+K0AiMdztRewY3xzHnlWdPCSWzt6CQhRvhsLitbpFVIY7FKgm1IpEQ6h8OscSZoVyWx8JqxUlhMZQlCRdDUuLV5XLKTYJygqlpg8SuvHW9/AYFUW3avlOIV2sFmQ7QBrS+DqpuRYLPJqet6u6pmfY7kpW7K4kCADgICHZCkKcvViqPjI0Y7I+o6JU5TDg8PqYoCbt0Ga5mcHBOFIWHa4eDgAKEUy8ViGyWUZzm9fo80Ten0+2vgOUVKyfn5KXt7ez4KaTpDBwFZljEajdgZj5mcn3lrnP09js9b5I6hl0qssCjV0DQNz58esZiveOdLX0LJgOV8wXhnj06nQxiG5FlGqEOePnnKa6/dJQwCbty8te4WDW7dV2zO4QZH2py3jexka3MivcvoK2C1vHCkvAx4XyZAWmsR6gJnkpesTcCiFOsHgwe/HW5Nlr3YxHlS7mY0/NXHZ5attvJmTVZJ8vnSq52zElc6kr0dWidZnM2J9/roUUoQxRSzEltZEi2QrqHODcvzBYfPJpw9nVDXFp0E0BpcDWVhqJcrrLCeWCj9e1pTEkcJ8+WCUCtOTxdYoTk6ecmVq9fJs5yirugMd4k6Ec6FoBVBGhJEKWmvg5SOOEk8I1lLbwESKFaTKZ1OQhB4/omTEqEUas0YLm1LJwrZv3WdLMvZ3d+hN+wRxCH9nTFtUzI9O+H6zVscHb4glHD04gWTwxMWeUNjgdYQh4JAOS/SVYY4doTaorUjiQWBdCjpkNISCIuUFoNZg8seULbSIbWAIMAJTYMj6CZE/Q5RP6W/O6C/1yfuxDihcDqgUQqdRiTDLnE3Iok72MZi3do+VjqQFivXTz8ncMrbG2MM0jm0k8RSEuPjlzQSaQVVkWPqgjD87CeeuWTFuik4/ilrNjDQK0Dr5fU0bJ7gm58htqJXIQRt02zP0eYmwQFSkna6rPKCOEmxzqG1oq6rLeZx7fp19vb3KYqC1WrJaj7DGMvB9Rtbgzkp5Vro661oq7IiCHyx7nY6mLYlX60IgsD7LK1WJGnCZDIhz/Ntl6aVpG0aTNtQtZYnT5awlllJBIiI1SoH/Oe21q/wAebzOWnqE2kODg4YDofMZjNWWYZZUxOwF+drc86ALfl0w4K31jseWF4dgy+D2Zc71c17/bJg+pcxvo2J37872vnSsimMfpu6/j3LtRnfZxyf2SmpruK0UoxszXC/B7WlPqlJRgNmRcUw0fRv7SKosIsZ8+cTooMBcycJZwu0julo70HtWNAJEqJIkx8vqdsCkSqaxgcspq3FhoZl03K1G3Lnjbvcv/9zltMFB9cPODs+5dH9R/ze73+LZ4+P6A+7hE1DGCXsH4y4d+dtflH6FXv7/5H2nk2SZeed3++Ya9OXd23HYIgB4UiCWO2SVEi7ETKxIW3oS0ovtRuSGAoxxF06kFwSIIDBmJ5pW96kv3ntOUcvTmZWdoOY0ZI3oqKrs7IqM+899zmP+RtCrl4958PHu8wqQzjYJpWGSoQIESLGN1gsQeIQQUJTFDihsLKmrgWPn+zw7d/7PnEas7X7exRFzWR4S3trl267x9XtGa2tE968+AXIFs/qmmef/APPPzlf2yCnLUUrkQTaeddX55t/RsJKTsIsSaZOSoRdSs2iMKFAhJB0Utwc5lVN3IrQSuPymutxSTsK6O8mDEcz6trR7SZIpZllJWEhELHCGEVROYx1RK02NYJFUdONYnQkcWVNUzeoUOAMOGVBOcJYYldyq9bhlgqCDoO0EuEMtsq/dmGpjQUfBMF6TCwEBIF6J/jcl2xN06x3dXBLXtbbDhm+cX7fkxJSYaylKSt6W312dneYjEZIIWi1WiwWC87Pz9na2qLVannZj6bG1YJABvy3/9O/Q0QpUafLz//6L+kPBlxfnlPkOUVREIUxjx49IUgTPv3lLxkMBuzs7DCbzijynKZpiMKQPM/pdjpMJxPKuiBJvI7VbDYlNQnOKn7y0yF7OyE6CPirv3m+BB4qXnz1wqu2mvtgfnNzQxh4bfAn770HOIo8B+EYDYfsHRxg3T0Df7OEa5qKFbVkVQKvwJW+jLZrLt27m8cq8LxbakspqGqPgq+bhjAI0DpkpTrg37vvYTnDkh60nPgtG9/Orqa5/8SgNHpzS29vC1UumLycEfRTOtst0JajrTZEPRbXExoDSifonRbVdOFFJVoJxlSEcUAxnLEbp5SLnOn5hLwtabVCqrxCYkmVRIWSmTV0ux0Ojvbo9QdsRSFRFHFxes63f/BdikXJn/3Jn7N/tM3xVsof/eG/QLuK3u4+hgXbOwe0Bsd89cufMV807B3tMggSoq1jZnctFpMFCxOwfdAmSjsUiwxrDKOrCVFcUrs5Mmk42B3QHxwTt9s4YXiwe0w+v6PKDRdvnvPtH/4hw+mE6wtN0k75+7/5a7qh5vnNHKWVt9SWAXLZD1ZSYoS3QPYItiWz2nnVhDgOqWvvmCsjRasdE6iERjW8Hg/Z3ery+vWUIi/BOT7a6dLd6bLIclwOsQoZ3S04O58ipKKlBKfTHKEsu92AqhFclBnWSUIJmYSZMSjhGEjF4WEPJxWh1iwmfvJYLrxmuFW+gymXppFY5b2ExddnSiss0SY4b3X8mjb3xm67KVw2n88BR6vVfqu0s0vrprpZobuXY3EEabuNFIrLq0saYxmPJvT6Xb710UcM7+6w1noAIH7ziJKYIGqhpOLJ028RSs1Xn33KZDSkLEparTb7R4dcXl6CkJwcH/PZ558hlWJra4uiLFBKcXp2SqvdZjQaIYTvVR4cHLDIFmTzGdl8Rr8/4OZqyCLrEoSC3V6PSVmRZTlxHOJsg8VQV5U3M3DO96XKilevXrC3t48Qkvl8SjbPvJbUUplzlcWsgIn+fHI/AVX3GVNd1+tJ2WrCtnltNq+FB2DWYB1oj3FTUhIs1QaMad6R0/Wv6Y8NOeT1QEOsy8B/UlDqP9gm6Q+oM8Hd1ZiO03R3BwjbYMMA6Xwp1lzNKcua/gcnVNMZtjE4JzFVgakbtHFMb6c4BHI3JLKOMq+JpKBBYKIEZ2okCh0ntAY9nBR0Ol3KouT64hJnHN1ej1xOePDoMVfnp0znJfPJkCBJGPR3CcOUaVFwcfqa7/zu75PdvEC0TxgcbFPlGdPMknYTHj95xGR0Q5Vn2CAhSjLuhkNUGpIECTe3t/xwbwcVdyjmQ7TUzMdj6tqxffwYuXTJQCrqYga24fRsgtR42oCRqEB451LhsI310Ul4LI0IJFopalujtCLqtakmhrJucLVEzqERJbonibVGGoGoa3B+yrGoHfnFiKtR5vFICBpnMRKMMBS1l5/tx5J+K6ZYVHTThNo0WCMoakdq/e8UBsYj72Wmk4Qg9FI1kfRliisqPy2VoLWklg5lwXwDeHKTi7WpJ73uL7h7dvsqgMHb3mDtdvstNPDm9E3gta4Rbq1GoBw4p8iyOfv7B7TbbYq8IMsWWGdJlz2lna0tAue4yS6XMr14grhyHD96ypvXr4ijmJmY0W536Pf7zOdzFoucIAiIgog8XxAnx5w8fMDV+blvTi9VMnWgaKUpSZKwu7eLs5bbm2tmsynGNljbEKiUWjY8ffiQ6XyBsZZQKypryfPcZ0lhyM7uLlpr+q0UrTVJq0On04FlT22zTF5xzoIg8JPXJbl2BQPwWZIiCMSGycD9pvEuJWQtjYuvuDyy+96PzzqvqPmuO+9qU3nLWYX7XuE3JErfoNHda2FMzeXljDCMCZ3i7mKIbCxpp09tKpiCMzHFYkH5xSlFU9M4B1EAtkIFkkVjSFrePTMrS0IksXSg4em3vs/15QV/8G//e84uXnNzM6Lb6nD04DHj0R0Cy+/83u/h6oasnBMHbW4vL3ny0Uf8H//h/+Rf/cvvg97i4uIrOrvf4vrFC55++7c4efIhw06H3Qfv040iTl9esHXyAf1+hw8+/pgvfvU35NM7OjtPyS9foTREpqLb3eL4g/fYOXjMzd05p6+eMb1+g3EBlTMkvWNev/6K88uvaDLHq9MzXr0YkjeOx08e86tPPicOFIOjHq0gQFnHaJzjhCWQAr2UxUi3U+rrCaasmY9mhKEm3g4ZTxuyrEI7hx1a1CKnnDfsd1NCrVjYmmyyoJxaGuuohF80coUlQmClpJ8ItvsxhRVeXlYbTBDh6oa9nsY0hro25EVD2E4QGIoip5hJJs5w+KBHHKQ42UJaQZVVFIsKWeQeE7PRy/jHjs2ddrMkWIMeN3oXmwt6s5Fd1w2msTiMzwiUB/mptcCY15xGCRyKpqpxDgIdcXN9RRRFHBwc4JwjyzLmmR+551nGZJFhrePo4ePltAiscYRRwPBujFbSm6HWNaenpxhriJOE7b09vttq0dTeJSWKIsIoot8fUJQlB4eHJElC3VSUdcXO/h7z2Rw5HNJqec6fVJqqbjB1RbWYQ1NRFRVbOztkebkOLNPJhDzPOTw6oqhKBoMtWliauqI/2MJab9ntnHcVWQ0CrPUW4aZpKKuKOE6WpRqEYfRONvQ2avvdQYPWGrGRfRlrscZgG0Njl+Vd6d5SwlxTStzbFln/fydwXxuUpp+cg1a0kbimYjQp0LHEaQ/aq5yhKkq0EtSRpbQVykmMsySm8Wp3TpIEFmH9ALYTqDXgzRnJ2ec/p3P4IRc3V9wNx7STkP5gi8loTK/bZ2d7wCe/+ITdvQ5kd/T7+xy/920ev/8Bn//sb/nf/tf/nUAK/vUf/Yhe/YK4nXK495QsL9g+eMTV3ZRRdkk02EM4KLMJL189Y3x7TX//kNHLX2Kd5PjxMa3dfWbDa25vb3n+2U+5fPkV1jTcFBmqcew//T43Z7/gy09+RWvnmFdvnnM3qki2t0h1igokEggVzEc17f0QaQWDVpe7s1uCQQcRapSzZNdzrHUoCWVeIghoCsis4PGjLWYLy4vnF2SFwRUG5oWnd2iFMmCdpZZLqREEjfTutU7AINXstbw1U20dRlpuppbJfOoXBR4ZHylNFEiCqiSJtC8jRxVJEmNmJWXoe2zjYYHSGpFAp98iEYpyXgKT37h23g06q2OzjNtE+m5OfVZN0ygKEbFY7+hutW6E73DhoGnusyiJQAchz188p9fropTk2Vdf8vTJU6zzvS3XGHrtFndFjo5DvvP7P95oEEuqsuZ/+Hf/MzevXvNn//H/9qqRWtHrdXnx8gX/8NOfsn9wQFVV7O7seNrN8TGXFxcI4YGBWZZR5gvSJGF8N+Lo+Aico6kb2p0Ow5tbBv0BOEGWZURpQieOcdbSbnu8UqfT4eDwkEXmibvbu7vrz397fUl/d5/tw8O3yrZNVLUSXgYmCCPKsgJqwvDeQXf1eVc9PGBtv7QZQJqmeYtTx7KcW+OXrJ8Kb14/qRV2SXu5l88FawxC3esv/ZOC0qyqiKPIUwOUR/M2tkZUqzdnoDZYo7CNJVUgtEVYCISgDAXSgbaSBk+RcM5r9YJAahAyYjG/ofmipAoT2pGibEqaqiHPNc8/e0Y1nzOVDUkYeE8zJcnrAmkUj9/7kNHVJZ9/8YLf+1EXFWikCphnI8I45uXLZ/RdRv/4t7m7eEEcaOZ5QVnVDAZt8sWC3s42k0WDux1hmpIn3/0Bw5srqqrEmClpuI2TcDu64fL5a6JWi9vzKy4vZ5R1zaPvPKVuoCoqaEDXoJHklwsm8woVaGZZTSEydjp9CmspK+clS7RCS0ctPU3ksBtiaUhjxePDLW4upuS1YVrV1FISIKiEpdnAhVgckRIEQhAFgv1eTJY1BI3AhQ1lY8nyxlMQlkHM6y9bilKQ14YobOjEETKQRLGibDzw1VYQCEcSS9BQLgrKQNHptb92Yb3LNH+3f7T5/82MarPhet/ohlV/wq0kcZY3oLFm3Z9blRa+b1TQ7XaxxqKVoixKjPFjeFsUnisnJTt7++vAuCaVWkv/5IR2u4MONFIqbm9uUNIHpygImM9mCOfpIQ7HaDTCNIbt3W0WeUbTeKNJtwQghmFAWZb00sRvFlW14aqSosOIpm7QYejdfOuK6XRKHMWkaUqWzZFSsbW1TV6Uvuxaismt3j9syJZsoLDfLs3sW9dhFdDf/X7TUMBL295rLq3gB5Ll1Hrj+lnncE2zHIZuvDexhG18Q0D6xqAkAk+aFdqTPkMrEBqwkqbKlzgR0A4C7dDagwUb65XvAucdFWrJkjdlQQQIoRCuoTEBGoPNczId0ev0EUqzs33Ixelzzj/9a4IgoN1qcby/jU66JEnA+ZvnSOfYPjlBG4OOU+Z3l5zf5mTTW/78z/+O93/rIx49+oB6NuYinxGVvyQKQ2Sdo+OENHTMRhM6u3vMSkjJmV1dU1YVw9efsZgs0GmIDGOy+YJ0a4ebZ79gNi95eTbl5maOlIJahPR39hlOZmgreTJo0+pGzG8XvFoUFMtEQVvBYJYj5YCtpEVtFEbXntVe5tR1QygU1STnxnozyHpUkeUV1joiHJUzpI2mE0i6Wx2GNzOsANVSdCPJQkCExAlL0hLU1nIxceRlBdaigcYDoDzs3zqMcORFRVVLJtPKbxiTAoEgiDSRdCRhQLYoqQ3MS4utc7ruN5sGrG6OTUXCd3sVm+Pm1b/rnXbVI2nMrwWzYKln7R2lvbeYUsrL3tgaKeHBo8c0ZUZR5Ozt7jIajRiNRuztbjMfT9A44iQGJ1BBvH6vqxLkXn9IMp1PSZOUy8srjo+P+eKLz3n2+Rd89/vf48tnzzg8OcY6R6/fxzQNOzu77O3tM56MmIxGbC1lTpJWQhgFLGZzOi3Pd9vdO0CF3tctaXVQSnE3HtHptplNZzjbUJQ5vX6P7a0tsI4kbhFECWnisVKIe4G31bkF1ngkf255K7B7PJN9KxPaVJrc/B6Wfb4ldm4VsDaR3r4kXeGl5H2Jh5d+9syk+2D2TcfXFnexliSBQCqHVoJAec4OYsn8Bc8klz57cdKPjpX04+/GLFNFC43zMhpO2OW4WSGVx7OIVpsgiDC2JG33mIxuqKc3DAY7RJ0u23t79LePSFsRg60DnCs4P3sJztLd3qHX7XPy5CmNNcxyAyrg8y+fMVksKMqKyeUN2e0NppjTqITLy9eEcYud/RNKK7HlnPn5a+ZlQW+rS5WXVKZikVdMRguKSjOf15Rlwa+ej7kel8RJyONvfcTDD58w2Nnn4dP3uHz9ium84Op8xs08p5ACg8cFtaWglQTovGHyeoQLJHeTmvG0QDQO0VQ0TYmzlsBJ6roiSjStXkCYevh/iiJS0NluEYQQB5JupOkoh9CCThQSRl7EK68Fk4UjLwrkEn29EwYMIul3Iicwy+lgJBWRUmx1E+LA76qNgTKvmc0rLqcLrkY5w1mOLRu0E4hv0FneBOStjs0+xUpAbPNYkiOWpE0vHLYC/q2+GtMsKSOKOIrWRNJNnufh0RF55sXZrq6usDifXVnvvyaWGVh/axvJPf5mE8jZNA2z2ZzFPPM9wCTl8uKSNEnXEIfRaEi+WBAEAYOtAYdHXudbCEG75U09kzQlbbfY3t5ld89L8jrnpU4a480igjD0apPO0mq1mE9nmLoijmNardY6KM/mM6zzuCnvL6ffKreANYBy8+a/z5Y8olzK+6HCZr9ns9+3CZw01qwt1N+d1Flr16oVm3QUpbz11erx1ft895r/Y8fXrixnQWlBiPZtIGlRQoPychaNcSAUSvvJh3XgxX0cWnqeFkL4NBOBdIJmudiEA4siaKcUWY0tZ2zv7LF7eMzF85/TSyNsECNNQxxI6iojSUJOX39Ft7uPMQuoLdPRiE63Q3dri6uXX3D08Cm3t1cEWvPH/9d/YDAYUKgOylpUnvPy/I5//d/8K87enPLskxdMLi6Q5ZzSKI4efUBVLLg6H6FDzSyfIYKE+fySsmzQQYJudTnca/HtH/0+vTTl4uyUzz79OT/4/f+KNzcTqsYANVoqtjstbF2RzQpK5bjODRdfXuKk4JGCuBVQVRV5qVBhSqAcTVmjIkfPSMq8Iey0UWlBT2psYwgCTV06nNV0Hwx4/XqMQDIwMJM1tXDMZzVVbRBKEDq/8+wEMf1eQPegjwwDXj+/JJuUCCcYSUtRG1yx4GEnJGwFZEhKa7keLoilpMQQNLC/l9Lvt1Cp5tlf/eZsaXPBv9vYfLfPJKX068GskOyAYz2xYVXwC4FQylv2wJJO4Za4l6XWk7W0un2ccGxtD+j0ekxnU+T2NqO7O0xdoxy0kpQf/MEfIfRS18ltcLOW08LH73/AL376t0zH3p3WOUdReC1xgQ+ur1++Ymd3l3arRVmW64Awn8/ROuDu9pbtnV3qpibPctrdLkorTFMznU94evAtnLCMzi+9eF4UUy4WSCVI2x7VHScxTVMTJzFZlpHnBdu7u+vJ2ypIroLEpuyIXepx+/6PL9tX12C1Maw+9yrArwJL1dRY5wiWQYyNPqFnHfh2gA+uywzTWJRcWk9KsbyGS0vvZWBr6nvJ3X/s+NqgVDcNcaiR1oGyOKtRyn9QJyVKuOUO5Xwzy4KSFicExnlHC4FDSg2Nwwrv9IpwBHFEKBUihIcf/RYN/iSloSLTAVlpON5OCZM2QRQhXMlimtPkU/L5CCkc7d4euatompoqy7CmYTa6pJ0mWFvx+KPf5eb0GfvvfxsWl+i4y+9/65i/+snPuLi8otUZMGsSevv7HOzsUNcl48oRHe1yc3ZGXUkGgwG7OzG2VDgNVkTUeUk7ShmOhhwdH3F5ek4+meFmQ3ZbMRZBu7HERU3SCqmkpqYmiGJ0qjC2xkhF01iiJCIsDfNxSR4LrseGTsexqEqOdMSjRy3Gt4LZoqDXUaQiYpjPqcqG0aRhK9F0Oyl3N2PGlV1Kn4ASflMxwi2vR8Ngf5uoE1ILy5MPd8hHDSKU3F6MuRkuWEjHrGhoAVGo2dmJqZuGNJQoC69vCy4mGfNpQV58fW/gXS2eTf7UZkm2nsS5+4C1cs4Q4j6AraZLq+eYdSawvAnEfc8jbSU0jXe1vbi45OTkAbapaSUpc+N7QR9997u0etv3Y+93+iwAJ4+fcnd9xnhpqdQf9Pns0yEPTk4Yj0YcHByitWawvcVoOPT9KuOzioODA4xpiKOQKpuRzWY45zg6OebubuRbv85Q1hXX19fs7e4hpWB0d4uUAikUxSL3cAbjz1+73UElkiCIaLW9Q8vK8GAlxBZoTaAUVgjcsvksl+Yd9u29AOfcWlN7FWjgvvQWQnipYnEPpgyCYC2B0qzIvxv9KK3U/bVxbm2ztCny9s+CBPiFohDCy41atVbWWSpNeAnO1XuQ6LWOqmMpNAVo4a2nnVFI3WCdoGoErX4PnbaoioJG+AlDY0uk1ITU9PePabf6XLz+giSxKOlIQoWrjGe4pxGTyzGBCrDOO5Q2dUHS7rGYjQiCkFa7i9CahWlot1u8ubplUTboqI2OW5x8sIO1NZ3ePrPZjIPjPS6vz+nv7jKbTultH3jZ1SDG1DXTyZwoDbi8OieNE64uLpBKUEyHxFqz105IWhpT5FRDQzmvCPZS6rGAAIJOSl1XFNOaowdedrVRkr4OOLuckFcN+V2GsI68rzHzhk4SUStPfJwXXvQ/DjS9NCISjjKrmVjDbieiEQ5rBIuF17NZSeGOnWF8l9G2EG3FONMQtxV2KS2ihAbbMHNgS8NAK6z1gbOyUDQ1IDjsRwS1ZF5kX7+ylse7faLNALCGCTiHfsdHbLknrxf7Pa/rHucESwyU8xrk6yAovGnC3e0N/a2B789VXjOryHNaaUp3ew9Ymlvy6yWFlJJWu40OQ2/vLRV5WfDkyVOCQLNYLJBSkuc5dV2zt+dH/6enb0hbKXGSMJ9NKKsKjGEwGOCcWw5Y+h4tnmeMhkMiHVKWBUW+IM8WhGGIlNrz3+KYTrtLEASMx2N/TcPI24kvzwmwzo42z6/YKO2ss1jL+vmrUm2VYb1bZnsJ3nut7dXfbZpm3fR+d6NZfb/KooQQCPv29V/9va87vj5TcqyF3H2S7KUI1GrBLGu2QAusUUix9MAUDuXEMg8HbzckqESDMAFCS7w5p0IGISpJeHDylB/88Af85Cd/weGDY3YOHmGNZTx87ZG1SYskjZnVRQfqAAAgAElEQVTOztE6JE0SSlNTZ3N0u0OoFXG7RVlnCAdpq8PuzhHFYg5WUqiAqoQgbrH/8H10ECPDiF6nzeTyFabxzWCpQr7zvR/z3gcf8dP//Ne4xk86hjd3tAc9DvYP+fLLz7m7uOCDP/hDfvF3f4uyhv/4J/8vg35C2tE4a9GdFtUio2kM00lFoCWVU4zfDNEOjo63qG9n5I1Fb7fY3m2TSMnki2tq6Wik4/VkwcXPcmIlef+wR3unRVbM2Hk6gDSkLqEYTkmDiKQMidsRxliuv7rh8KRP0oqY3mVcjOYsGsNXFxP6lzPe/+EDUA1CCZqpo5u2MX1JeTehcYKpdeTzCuZDL03ravbamqQxXA4rnHEsvoFUuQoaq5tiMyCtHltnSvh15vuUfucVQvjNbZn2r8THVmXHKgNY63TXBuO8AWOUJPz297/L8OqK9mBANptTFgVnZ2cM+gOybMbW/gPf60AuZc79+12hnQGfWThHGEUEQcT17S3vv/8+ZVUxnc2Q+GBwc3VNFEc463jw4MFS+bHm7vaWNE0ZTcaksoXSmroqWMwqrDWcX1yQJAlpq8V8OkEISRRF9Lf6hGHI7dU1B8dH5HnOcDhkd28PpOK//jf/3bJPtrQx2jAKcHgDUoFdZzOaZSYpfaZSVRVhGK4nbCt6ytvIbLEuh1eCbQhf/QT4ABguUeGrnpLWGmvMcqC1VHmwXmttVUKK+2XxTwtK0im0Fkg01jSeJKoEwvnSQEqBlQJjJVI4ZucV8SDCKc8olsLXEFJIRBCxt7vLeHJLEEQEccLWyXvE3T7T+ZT9nS1Gw1sCBSrqUhs4ffMldZ6zu7+D1IrZIkergPHdLXkY0t8+ptOJfRq8mBEGIYPBPko6igqKYkoQxKRxSlUMCJOQJO0xvvkSHaUEcYtKK2ZFyfb2MXHbMV9k0NR8+cUv6HXbCNfl4vIFxw+OcCbHuoKPv/Mdnn36S44ePOGLX33Cl7/8lCovGd4VjOaGxlicsQTWEArFYTsgikOcdoitFgLJ/G6OSTRJL2CrHzE9nyCd5rgTcTEvWQhwwlHhAWtfnk/gfEKB4cHVnP5hgqoF3Z0UnWqsTlDCN3OT/jGXV1Py6Zy7ssJEik4DO/2IdhwglEWoGGNgNltwcX5Lbhy1EEQ42k7QTyRSS8JegslLRCzZDiPKuwUEgsDC+GvWziZAcjNIbZZ075Z49zu8WGsErRqlmzeRxK/BRjhPzuXeidVYi3Vwe3PHxdkZnfkciSfYRmGEUoLdvf0l5uf+NYwxaK3XEzj//4BFlmNMxXQ6I8sy/v7v/579vT3msxmdXhdjDE+fPuXlqxdorSjLiiRJuLu9RSO4u75Z+sQl1E1DoDU3F5e+zyUk7Sjh7voGISWtVotASeqqRIchg+0tiqKi1erQPzqi2x8QhCkyCDwOSN43jlefQQhBZWqcMyilwd3zCYUQHuy5LNmAteDaZsm2mfVschFXlY/FBwDnfB9PaS9pbOpmqdTgZWFwjrKqcMKtg32g9FpK5p8UlJyzSCdBGO+8bAXW+JLACetpD86TNo1zNMaCiIhjTTkeI1pLASoswjaU5YKtgy3qvKJwkulkhJOWclZgXMPV1RUnj9/DljmHhw+4G17y8NEHzEaXODRVVZPNMvq9LkVdo4OYQaQxeLRvq93CNpbFYkE2vUGKCB1pGlMTpz063R6XV5eYZkHdGMqioNNtsX34ECEUZTamLjL01oDLizeEOiSOO3RaHcI4pR0qbiYLOv0Bg8GAm+trbF0ynyyo8grjLPO89CWr1DRWeODieE66sAgsSRKQdBNMotjdi4g6MQhJeT2lKCCXUGG8K4lbubY75sIjZDUC20A1aciKBp0X9Lfa7Dzep6gNVbHAzEs6ykEASS+mLGtKFLu9GKsUTemY3E6ZLUqmRY5LA0Jrqaqa2ilmxhKUlsQK4tJQC0WNIsRydJCQxAmzacar6eJrF9fXHe+WYZs4mXcb46uR9z0WxgPzVhOh1Q6+ghDYxhAGEemSmrGYZdzc3DJfZISBptPpEsf+xtwEAr71Gta/RhCEONews7NDVVXM53OyRcbWzjZVVRElMXfDO7rdDrOlbrcxfkK2oop0Ol1mkwmLfEG302E8HFE3Nf1ejzyb+dJVec0udIwQkn6vRxilnJ1d+OymrGi1O2RFg6eNWN4tmeB+griyojKm+rUR/2ZGtMoK370Om+XZZmkIrMGSPiixdC/2U3gt73XAHY5A6+Vgwv9OHEa4f45KQOMsxoDQEoXx8gMOXA1IvFSVBKREa8nWY8HdqymTrZQPf/tDLn/5GUEaQ+yo0cyHBcHC0dnbp99pUVlHbRz7uwNub66Iw5TZ3RmT6YwGS7+7zenL5wQC9r/7u4R317h6jghSlM0oSr9rIy2Dbh8VxSSDhNnril6vj6lnLCpHEPUIgpjpdEIgLIt5BrLAqZjpeES7t0uSaCon0dqhVUAcR1yevkQ7QXt3D+UM8faH7Moxs7s7Hn/7e/zir/+SpqoRtmZvL6H1smaIIbWeXHysFYPjAVFLIwkQAsaXd+gIHrx3QDMfY/KKJitp7aa4RYO7zr1WgPE33I6DBEftYIagEo5RYxgOG3LhEJnk/HqMfD1mRwQEoaS718ZklmFWc52VIBVFZXnzukAup1oWgQoV24EmK2qkg4HQtBJBFEhCrdGhQndT7LiibiryUBNZR2gM4TdQBTbHy+9mTauf/5oUxq/dZPeTu81dfKU3pTZutqqulm68/iaaz6f0t7aZTWecnZ/RSlv0ul22trc5PHm4fn+ridNmo3tVsgSBQsUR89ENSgfEcUp/MCCMoiUGaZskSbi+vCRJPSL71ctXhFGEqRu6vS7tXheFI88WHO4fcHb6hkB7DpozfjCxtdWntL7pbBuDDkJevnzJ8clDBoOBL/HaLeZZyXsffbxuasNKEcA7R2sdrEvbleLk2mDBehDqSjN9dWwCWN8KPODLN3kPLVibXS51uT2o0k/v6qZeP2+lb26tL83DICCOYv+Y8STerzu+3vdNaqIw8PInSzwSDqzzovkoQRppjJBU05rnL0vaj7Y5Odzm/G+fEewF5KZhNnEcP9pHLBaEriIyBXcvz9CdPoncJtjuoqhBVNxdX3Jy8j7Ty5fMjEPomP7+Ea9++p/oDfo8+uBjzk5fEna2KCYTdLdNpANmWUFHtzg/v0BTcnNzTtJOcS6gtLdotc3Vqy8JFAhbIWWINAVp2gbXoIMeIgiJXZeqKbEOgijhcP+ItDsg1Jq72zOGwzEYxzzLsUVGnk1RQcXR3jbXtxWTWcFCWAZhSKcbk+50GJ0OuZvd0RrEvPej91BJQH16gUoi9JbvaX32ckojBIGAlhMkkUaXlgaH1QGDVNPKK64NtBpHqBx1K2A+qwgdDHPBm6AmrRXXn+bMhKWWjidRQKsdMLeaN+M5DQpBxYPDNntbMbZxmMYxmRdMcsfprEA6BzQIB/qq4CiSdLYjylHOWVZjhCD6BgHBTW2efww094+hvNclwsbjm8emxIazFqm9bdK6n7HuX0C302U+nzMZT+h02oRhyPHxIcI5vvOjH8NqECMgDO/Jw6tyMYoiTNPQ6Q4InA/jtzc3xFHAYu6Bs3GaIlXAwdERn3/2KxaLjN29XY8iDwOqosSUFbVrWBQ588Uc6xzb29uUZUm8xDBZ45DLXk9VVYRVhBaK26srjh88QkrBZDzmOz/+A+LkHklvzP051Vrd98I2PsvbQwW3hjaselAsp96rknWzUb55rcqyfAtbFgbhPa5r47llXeGMRQfeOcfgUEBjGlztN3ylvgHj9nU/1EuLG6F85NOA9gIc6ECSdr3j6ew04+o8Yy5gOw4hz9E94QmfpWDnwQlBY1DjKVG3T29nz0vVpgE68rKjyoJsKqgt+XxCndcEcUqSph5YJiQq7hFICKMu7bYHpwVaLwW+oK7LpfDWlKbMyOcz4qhNXeWeFOkcdZGjlCTQGi0tvcGWH2MaSxBorIHpbEFVlURhQGMNl2+ecTeagAzIpyOGtxfMZ7fetthUWAGNMOy/1yf2AA3GVcXr0YJPP7ng5fWU7nGHvUcDlGkwl0NuvxxjrEIYQTWtfLmGx3FZ6TDK0dagnWDe1NzmBXnjG4gz6Z1OqsbbIIXOY8B24oQdGWClwGpFgCIMFLKxqLpBWYPEY2wm44LR3QJRWdqBoovgwU7MzqCNUMo7+gqJcYZZWbEYF9xmBpWGyFgzb745U9oMNKuvTTDk6kbY/PkqKGxmWJsurQB62R9ajcBXID1/Q/le5yLPGU3GzOdzOh0/vdJBQBRFBFGyvNn85K9p7rOytwKikOzs7jMaj3nx/AV7e3ucnZ8DMLy9o8hznG1o6po4ijjYPyBJU5TWnJ+eYZa0lVarzc7OHttbu0gV0On26PYGOLyFudIhVb3q7UhM0zCbz5evc0OeLej2ekRJCyEUQaCXcAkfeILl59p0tF0H743Jl1IrzXTPJfQZ168HsfU5EHhg9BK35QDjLMa9ncWuhhCrf62zG5CNjcxXgHUG6/4Z0zchzXpcixY4aRFCop0l6CaU1zmfv54RRiHtNOHDSFDNZywajepvs3vY5UEE85cX1DWIRPHy1TmffPIVqQ7otu5Id/eZnL7G7h1Sj2e4IuO2yGl120hRo1xKWc5JWm3ubu6I4jbb27tUxiJxLKZD6sbSVQOybIEKIpRqoVVMVVpqU3h1wfKSVhghk4BFaensHpENr5mMpiAESdwQSIVNE5qq4fHTj5gMr5gNh8TtAWC4Pn1BFAdk41smFwvKbAJFwU63TWgF7Z2YH/7OCTeXEyrhdxCTFRBH9KygPB/z6eU5kYbdx1uILOfi+Q2vRjW17wySIImspT2Dm1gRpw5dOqpGoKykBWTCMjOCeW7QQqGWcrZmVjFxMFGec+ikIGvA1JbdBwndnZAi9yoEhRGMhzU3riaIQFpJq8FLBVtHvyrRscTKgNfXFTezmkRCT0K7ExMdCi5/Pv+Na0euygct1ziZzaxodROsFi38unuJ/3ZzSucb3JuoYLVkvdfNStfH94Kq2vDB0ydMdncY3Q4JdEBR5ERhjDPOczGdB/X5aZlAsWzkrnpV1vL0gw949ou/o6oqvvjscx48esjt7S2/9fHH3hI8Cjk/O8MYs5aeddZyuH9AoDWD7R3+6N/+LxRFxnw8YXR7w3R0x+jmhulkTJbNCXRAoCOiyIseVlXF7vYOdVkihPSYIxEQ6mAZRMya3b954y8bKmufvZWTyeahlF4qY8o1h3AThb26BnZFtF2Wa2EYrntJCEFjzVLx2xeDm4hu8P6B7+K/rLXUtl4PLH7T8bU/XSGvpQCBxQqBRKKQuLxkvmho97rE1MjA0bQ0shD02n0qYbg5nRBpQZpEJB2BWFTEoxmVEgxnBU+CkL3jB/zsr/6Uzt4B+XhEoAVRp4uUkjJfINOAIEjIxh65nBUFs2xBORuTtLxJX20qnBggENR1CSgIFP3tPbJsQhwELOoSHQYI5dBS0t85Yj66I5vc0tnap2wagjhBSMXrq2ccP3zC3n5IucgpqpJIBlRlTrMoqaoG0TSU+YIyL1FCY2QIThBvR+y1Bt69tjYsJiGmcFyejpk11svb4shezVmUFU1l0TgSIEYQac1cNYxLi6srRk2IsxACxjakgaK33YGqoR0qRpdTnBDUUlBbSbMcY6+W63VREzuo32S0eyE0jqZ05I3BIjyRN28wRpI1hjxvELZBhoqoE6KVIr3JiaSk29NUo4pR3hC0vt6Rol42QZX1Zg1ig5v1bim3WS68DRuQS3WAZRCTfky9ev5miSilV/IUCKSAtJVS1jWz6ZS8yBne3nBycsLOTg9jVt51b/vIrayJ7qeDCqckRZF7akyqyLKMJElwztHr9VDSKwNICbPplN3dXRbOedBpq8Usy5BhRCQl7bTLo/e+RV0VnD1/iYw1P/vLP2N4N6SazXDCIKVib98rWlyMx5w8fuKnhdpLj6xm6u/CK94O+PfPaRrz1vl6t+n9bpa0esw554cJxnjlVKXWJOZVFuYfWwY0KZFKUde1n9jLewODtbrDMmv7Z+GUQuUVBz3TWiKjiPEoI9QaWwWUwnB82CPZDnFNRZnnFFGOyK8JG0kgDNIoZm9Kor0euw86zLOSoGyQUtFKQkbjIdUso9vtcffyS+aTAmEFdRyyd3jMYjYnm1+xe/KQMEm4uTjl9s0ztg5OSFpHZPMpOh3w6uUZjz94H1tmHkiZbpGXvr41QqER1E6zt7NPJ+jR6++w2Nkjm8zJxhfkOmTn4AE6CPne936Hu9mQQErm0xlSO86+OCfphEzvbqlsjS1zXp+O+fLNLaED7SRhoNgfhBTGMp1an5ILSYWgwqAsPH1/hwd7LW4/uaLKHYUSVM6z3yvhiJuaTiNAKya1JqQhklAAvTDiyY8ekux3cE6htGI+zjCV4fVffMbR7x8hA8np8ykvrsc4B6HEl9gCRNMQBZqtTkRv4XWnp4HEWgWlYaAlYS9AJCnzmWFUGrQMOHrQI+mnzE6n3NFQG0c1Lb92Ydm6RkURDb7kt9ZnJU3T4JZ4oiDcoENYtwThmvWuu3JMWd901lJbrwwgljiZdd9KqmVQsXgmvOTm9oamqXECHj19j3KxoL+7hwcB1uu/u2ocGyxqSamQUmJNQzGfYxuDNZ460uq0WSwW/MM//AMff/wx09mMtJUQhQFpkrBYeFDpwcEBcatDUZRYVy+pINarL0QxT779baw1HB4/5uWzz/nzP/73yECBtbTaHYIwoNXrM1ssuP3sU56898HyxEqca97KNt4OOGBMs8yQ3vZ3C4JgPeJfbQ7Bxjl8O9vZ4Mz5ASd107ylGuncchNYZlSbvDsvWaKWU1Kz7vsBuHeh5f8lQSmNFUEroUravLqYI4ZTWrXFhg1SGHqBJZveMr5sMIWjf7LN/scfMx3Nmb15TSI0xlnaJzF1veDqNCfFIRNNnCgsNa///ifIQPCrP/1jWr0enTQAB624xeWrrzzOIpsjHzzm5s1L4qjP/sP3OXj0PvlsxPb+Qz7/6hm2Fpw0DW7Z3Rc4dNJCuopyMqPOM9L+LlJ1mdxdcXd+yt7JMXevz5DC4uycL68uiTt9osDT0EfDW7Z39xkNhzhpKLI54+HIr41qwafPbhDSEYYSqywH+wnNzJFnJZHWZAZabYWyDpN5HtDLL2948/yKozTh4VaLzuMe4xfXXF0X3ArHTMBcCJxtSNAcRzHJQYt+L6aaZeSjkrjtd80v/vQZyW6HqJvw9MfvUUpDFEWcnChml2MiK/jOH72HAbJ5xc9/dkZODa4h0BGy8iYHRliUg1hbgq2IKGkTuBxRWqbznFwpBuOCdDvicQpZVjOeW26+Zu0kcUxjvaOlUNJXVc4td89V32ilkeQ90NYIYfW2yuRbJQU+D3DWUi0xSkr7xe/WfSs4fviYyeiGtNXxJgJ1Q5qk7OwfIBTEOvbC+ywZ9m6lK34/DjfG8OwXP+VuOKQoCh48fEBjDEdHR4yXDrVRGDFuatIkZVEvCKOEowf7zKYTmrqm1W7xN3/y//Av/83/iMKrZVhjkFpirXfonc4mzPIFMnMEoebVy9ckrRQhJUcnD+j2enz57Cv+RV3fZ4Py3sVWSrVsUq8ccb1776p/ZKzvA9WNWQddscy4PHr8PkitybxyaTi6rv+8M/UmEnwVvLRUHrhi3ds9Q+sVUCMt1+hwZ+1bjfH/4qCkEKh+l+ef36Cs4ShQqChACotRBucEoZPoQYhrHKPTW8KtmK2tAeMghKbyNHTnMEBDvZSekIQqIGjFVJMpcaxxjaWpSurCQkdTLKbM70YI6Uh0wGI4pCkLpvkVJ7/1HXo7u1y8eEaQ9tg/2Of1qyv2jg85e/ESKSRhEhNEbcbzIbZqPMAr1IhQoaShmA2pzAHxVp/FbESctHB1RT0dkh4c0eQFJ4+ecvbiSybjIa6xSKnJFzllZRlP5wTC0o0kR93Qu9dmFddzw6J2WFvy+PE2O11FPan4tJ5TVtAYR+M0V1nD0c6AMFJ0dxKub2uk85bc0jqcklgBe4MO/cMurQcDjIH56ynVrFya1zqmr8fIdIZ92KPJG2w3YHBySFdrtIOmapieTYkHCaE1lEhUoNmLYwJpOJvmNEuMi2pprKmoF3NUYbAzy043QoQhxc2USahpB9BRCq0tz75m7Ri7BOxJn+Ib63zgWaJ91QYOZuW+4b/ujRBXweFd+MBb4nDWc6k2bwZrG8IwYjiasr3VJ8sy4iAgTdtESbosc+x6l/ffs37tVfkyurujrgqSNKU2DXXjTRxPT0/51rc+9H83jun1BghrCYKYH/6rPyQMY37x13/he5xhwOT6Ftv4rDnQ4fKmbqiqGmMcdVkuVSJrEBFSSg+0DAIW2cKTthcL3/9a9tbuBwkCIdwG3USsm/0ruohY2pP7ad2KvOyvU7PsxTnnlnxDn9GYpUef1tqTpa1dO5JsStIA68b32z/zul3W+vO62Sz/puNrg1Lv0T7/6W/O+OGHKbZRqMrQOD/unJZQlQ1J6FC1Y1E7rnPLYVNjQ8VoWpFEDpRnEkcSIqtxwqO8P/7x73J3dU7SG+CKOWqwg5A1ZVbQLGZMihlgUY3DJAmvvvwEoQK0cEh+l6vXZ1yenvLk/TZSpXzve9/FGsW8KOjFPlVupndMx2MCIbA6ot3apsgXTLIFSX+L+dUFBw/e5/Kzn1DlU3ZOHhEiuDt7RT675ZoQ40A1FXmRs5hNkWHMZHzH2XXG+w/6nAwSTFZRzHPuZhbXOIQ0PDwZ8PQkQRNx+9UlgVDkruGoFyIaaEeC2WTKdDzidFQSK8FuS3E+s3Rw7ErBhz/+kDdfnXL7y5z2r66JtxJ2Ptzj+os3UPs63rmKem4YfT7CaYdr2jTDMw4/3CPqdzn/my+wsSM6aPPocEDUSwmVQA1S5pdTjHO4dkBTWMa14XZoscWcxhka4MAoeq0CW1teTTPiOKQ3iPjwB+/xV//+P//GteOEXLLFl01sYzH/H2lv+iRZdp73/c45d8t9q726epue6Znu2QEQAAmamyRTlkIKfnA4HPq/HGGHI/xB4Qg6LDksijRJhSmCIAQQAGcwmK1neu/q6lqzcs+86znHH87NrOqBOQiB+aErpqe6Kpd73vu+z/ssVqOFJVhqtJagbLEkQZYAqnGpyla+bDp22VJ3eQiWEhQhnQuiFJI0y6l3u/w3v/fP+MFf/Tk7O9uYouDKtWsI5VHkDo6wJfYmuNj4XchNNFmWl46SoIR4iX7w4MEDdrZ3GA+GdLpd/LDGt995l2qjC1IwW8QEUYDvh3TWt/mbv/xzvvPbv0MQdF8Cl8MwIIpCms0Wi/mMLEvxPI8gDDk5OSPPNYvFglrkNobCCLTVKBXgIpmyFVfJPe+cIAiI4+Qlyxe3pdYU2r2GICiLny5WRUUpt5BYPpajrSrTYrJyFFRSlvKRsjMrbR0uj+LLz8yN7RlCS4R8GQv7tYqSqDWpimd42pJnBun7VKwhalY5O4pZDHMWmaaQUKlH3HlnC7W+ztP7B2xFFi0kwlikLLDaA+msWLWn8KKIar1Bo9VlOnzBK6++wvH+I/rDAbFzhaPaqGICD6kLRJHjKcUiMTy6/wleGGAtfPKzn9LZ2UVry2gyZnA+IFirc3L43Hlil61ord6ms7XJ4/ufo4Tk+qtvMDg/5dkXH9Ld2KIbBCTTCbLaxFcFxhPMB33iJGc2nxF5Hs1Gg+vXbjD96WdszhJ2NhsonXEwTpikOaPcjWi+9ZmdxJx7EZ21kLOaYn40p608arFlUBQMM8uNIEAXhld7VRY1yfk4A5tzpV1n4/o6QbPK+lqTVMZYAdVGhbS/IDAhVmjoWKyV2CwjyTSkoOcJfsND5DD8/BnNV7p09nqkC5dIMb1/TPPuOsmjE0QB117bJuhWEdOcg8cnRLWIJE4pUk2cZLyYxwznruXWQpLqgsXE8tkvnn7thZUkKZUoRAoHluamdI2UEqRECoksi05hHZZjrUUoyXg0plKNqFSii8PyFbKmtRe2rA6UdXQAbZzrYZZldDbWuXLtBp9+9AFRECEQbF19pUy5LdnLxpH9lMBt5QqNlJAVKe1ej71rNzk+cqzq836fbq/HeDzBk5IXBwcEvkez1eI3f/cPVp2W1po//KP/kf/y139O4IfsH70gjHx+8J//E7//z/4FlVoTK8D3wxLXiRicD5kuZkhjCMOQJHXhm0mSEM8XdHo9ZrM5nu+7kMrFAlEWyiX2syzWSZK8xNRW3tJ7SVANq+RF7kS1SqLsBUheFBr/clbbS7SOpTWMU28sAwdcbJOb8qwtVsVIKUe8fGnT+pXN6a9VlCpRQG5d0bHCVWmhDEmSsrNVJ6l6CE8gZEC91+RoNGVy/5BIaCdFMQVaOu1c5rkNnm9d7PXT+1+ye+0aWR7TaNRZTCeYpCDJc8Ko5qQtRqE8SZGkRJUI6wlsZkgXMTrPePLoGbWKJD9UNFpVjg4O2drZ4PmTZyhRkGpBI8hJtI/K5tx69Q5Pnzwkm5yz//QxO7vXmdYOSeYLrC4IoxDfcy1wjCXwFYeHTo+XZDkbV3fw/Yhvfed9fvJ//iViEePVJDe2q8QLj88PF2QZdLCsVRXZeMwiTRgME1pSUMPQbnp4c0nRDujPMwKp8ALF/llMklt8IXg+zVjcP2X7cEL7Woci1BiRORX/izGVZgVVqbHY71PbaOD5gsHjcxa5JjGG8TyBWUye5FTjCH08R4wW5PmC2vUWsjBQjwiCGrOjc2q2ID2LOTsdIFVAqg2e8pDGhR2YiiItDBUpscoyywryfv51l84lzg+A+7rUmwErb2chLnRuFiddcriGfunnXDYQu2w3cnmb5EYvdwgi32ElV65dY3h64oTjvg9oisLp+srTsqIBmLJwWmupVasIYG19nQ6h6GoAACAASURBVDRJyiLqUlSUVKxt9Jx5fp4hPeXCFLRb4LhCa+ltbDObDCl0Tj2oE/gBR8+fcvW1NxHiQhbS6q6598ZY6vU6ee7y+NrdzsoVEiBNHak3CIKVh9JSn2ZK2+Clc8BFp3LBK1p6QMllB4QqY7+XUhHXES7HsOX7HIah4ytKRZ4Xq0Kz5CVVqhVM4V77shBejg4H3GdLiVP9iiHua4tS/2RIVK9zdp6z2QwJKpAtLEmewtjFRlulEGHK9GBCRRuqvsYKD5kDkY80blzzco8sV7Tfuk48mXP9tds8uv8Z7VqLdrvBdDzC5AW+38QPFFbnmGyO7ymiqIL1BPFigZKKzz67z5XtHv3xAq+6TlU6YDUIQx589CGimHN+nnD9+hrPzxa0N9tMnmf82b/7v9i5usWTx/c4OhwyPjtl7+oek9PnCFHgVTdIixzpB9gyhdUYi1/xXSxxnvGjH/8Cjc/e977F5z/9e+yJoJFpFoXzLLZKkhlNFEnWr3ewgeK2LdAzQXWvTnoeIxYQ9xMGmUVJw3BeULGGLU+xeXOT+pUuYbvK6IsD5icTgkZEoX1sbtl8a4dJf8JiMib3DEeTCaaQNNcjPKGoR4JOPeBknNFab+LZhGI2ZBDnLLTBm8S8fmeL+adnnM/P2PzeDSZfDhBC8NZ7N5nNEsJKlenYkUVHJyNszUcGkmbDo14LKHJJ4Qv+4vv/MKrkcAoodGltU3oEqeVIgcNylhYXRi/Xxoat7Q1UuV5eYhRu1bxMOnF8nKUH+IWFRpluYkyJZxQ8+fIecTqn211nPpvz0U9/xDd+6/dcR2MNjq7k/MAu1uoCjKM1qLBCo9nk7KxPlhc8e3ZAFAWEYcQ4GYG1HL14QZHlLpQyjEpGuM8bb73PdDIkjGpMRkNOTp3ve6E1V1+5jVAeYGivrxMGAULibHCFc3JdZrMFQYDv+W6TVlIQLo+ARVGQZxmF1qWHmbNuqVSqbgwWkGu9GgGlkI4IWTgrlSXnyY1rF+t7rS0IsxLt+p5PEPqlVERTqVRKANtSrdXQxdLx0hX35ebPvY6SEybML3Gn/quKkjw45Y1GBbVRg6DCo4Mz5Bw8X9CRmnRhWMxyGg2FTiHo+oRR6EBNpcGAkYJ8pAkrNa68vUduU7Zu7fDo/n3kdMGssMS6RldkFIXAkwW1wGCFxOoAH4v1AuZpTqAs8zSBZMpnn/R57Y3XGB0d8eX+nN3kBpinxLFzpOw0XSTylRvXGPSnfP9Hn7H79Jg3b10h7K7TrguU9BkOTgkDUH7A/OwIWW1SCQNO45Qsz6mGIa1em2oApphzvH/EcJHw27/zLYLpU7yKYjAqeLo/Rp4vuB0pqu0KXquCh2B2MmbqKdSmQpkAP8rYvtbklfUO/cfHWK15fJaTGsWJFkT9KcoIsuM5fiaxGzXS0ZxquwrA4b0DTscpp0nBZtfj6lqDRCgmCxenU6+GxIVgPi9Y5Jq9JvieRyPV7F1pEU9SPvrpPlVfsXGjh8CjvrfO/NmQ8YsTahtbvPj8gBdFgZUQCeHExqFimkTo4wXdbo2NRvi1F1bgufW0QaCkwogLjMJduCU5siwIujwIfqBW33dZwX/x9WIhlGWF2/BIiRaucxNCEEVRiZ14PH/yEC+MmEwmVKIa6SJduSW6w1ke7vJ5uzu7KOOzBZVmC2uhWq2RDkclD85wcHCAkgJPesRJzHA4REonGl/q6fI8R/ohr915m4/+/u/I84L5LOajn/2MB59/xjvf/jYbO1eRSiKDgGw+dwUtCpnN5840zpgyvy4ub9ARCGeEt5TDLMe8PM8Jw5CiMGhdEAQ+nq8uHBfkhXbQ5et51KqVVT6cw5/KhFtjiEIfVvKU0l5GUy4sLJ4vEcLDNUjGfRXuXBWFRnkXmX9FoTHaYq3C/mM6pXCtiSgWZPMJ/nzB1bWQsc2Z9hPG1pD5llh6yHnBTEuu5BY/MChfMFcCmYFnNVYK2s02XhSRjAvIYPD8EKEKNuqRuwvEA+I0p1X1CEOPwK8wms5JckHopXiBotbZYnRwgpQBwuS82D+i2fQJqZAtzpktHMmt4jfJtKEaNvj0kwecDaYMxzFZfkhFaeThkLfeu02WL2hv36IS5igdkwUe9c4Ws8EZ2haAwXoWryStpXGBFIZOM+L45BS/2UIXBYfHAyaznIaR5IHAGokVAqF90hiarQqzaUKsY+rKQ+BzfP+MxaQgN5rUGPaaESIU3Pjm6/i+RxbPyMYFydkE0oyg0kVGPhvtiNOPnmLzgnbkISsezDXkKeNxDkXBrRstnhxkpIscOxf4gKlXaGhNmubU6gFCaw5OhhiTE8SSxemE7itNlBSEgYfQGZkBYSVeK+Tq1R6tQDAbjmjUQS++PrYbLvFnhFx57iz/3gpHDVBK4SlFIXV54etVJ+Ap/xLnZsn6theHRJer75X75IUn+GpzZy3r6xscn5yhVECt6rLXTKFRvly5KFpeZpS752nwg4BCF2RZ9pJ0Yvm8pZDkSYbROVIqsixbyWmKoqAoCqKoQrvbYzadUuSa6XjGaDQi+f73+d4//afU2l3avR7j4YBKpeLGWik5Pz+nUqnQW1tjPBqDcGkhS2W+80BybrBh6VcOwgmJ1TJj7XKSyYUmUcplOAIlpaJU+peOC9K6pBwhJXnmuiHX0WoQbqngpvElYXP5/juRfhB4znXSXDgNmBIQ/0dZl/QXMxq5QUaCNI3R5xMaviSqgFcJMb4BIdFS0DaK+FQTtLu0b25S0wOS/ohinkFHMhkeMPrhC9KNKo8ePmWWJrz71g0WWczdW6/w8MfPKdIUE9VIVJtcKebTPgpNs7dJdeMud9/7Db783/5nzgYz/EIzPjzn7DkIJXimNXXfVeHB7AikJJePEcLxQpT0SVP49GGfm1cKPvr4ETdfuU6tUaEeRETRNpPjZxR5Qjof40lLWqSkWlLvNDh+csBiMeXOzXUyq7GDE06/eI7yDFc8y9aGz8dHmtFUw3SBf7rgvd2Eta0WuYH5yYBa5OPtNlCRj5rMeJYWZMCrXsCdb7+Oqfr0f/GCRW7xh1OaV9pUPI1sNhgenGBnBcPxBL/i0wgF0jOoRUqeWeaLgtzkTFOf0Thja61KJfKZzjOSDJqRR6wtRaDY9mGKpBcoXhzPCXzL5rUKQbtFmkF7vcG3Gj0KW5BnllRrWtJnenqGWqToRPMrrqvVHXLZ9SwlC0pJPM/HV3KFMemlN7cUoKHIyyw3na+2a8qT1GpVJ1XIS8zSapS6wJVUab9sjVP5F4UDb+Mkcxusap3hcOy8rcs1uHMWkKWQV1IUl0SpRmOV80/3IkOQZug8p9Vq8MorrxAnMYHn8+XnnzMZnlOtt5wltO8ThBW0Lty1pySv3L5Dp7fGweOHjEfnICCqRPzv/+v/gjCajc1tOq0meaGZLVzHVK/XSdOMMIwIwwQlFdWKK6q2XPsXpW+77wcEAQihSjzIER2NtaXAGjfWSlnm5pV/ZTVSuY2Z56lLXaxcYW1COtwpzwqnu+Oy77rDj4KywzXGYLS7Gchy27bcwslSpvKPYnQns5xOS1Jf7zI7mWCFRVZB+QJhBUpIFx6gpYumTiGUzs0v7G4i8pwUg5xr7EaVfGE4P5tSb9V4/e4dxpMJs+GMPEuIU+0ifWoBmzd3sXlGmJ5jsWzd+RbzqcV6FbI8pRr6RH5I38xYmAKTg+9JJktyWehEup6xKOVRWOgoRUpBlkuSJGej4dNqeM78K5QUeQKe7y7EQiM8RaETFD5Gw8HpAqEM88GURkVg2zm1ekhtrYXyBVmccEsteHgwRhtL04DwLPk85viJK0C1RLOb5lQaPp4v8ARkWKrK4/TeIcbzOH50QrVXo9oK8Ht1kn6BH1a5+s0NJoMx/lmdp09PsIVgkViqvnHC3fU61TgjTS2ZhkbdJ44N42lKveHuvvUgIMw0/XGKqftUpU89jDkdW3ydYWdDEAXKGkweQq6pNCqoQrA4HuFFME4subJEdf9rL6xll+SifFzUyJJfo6TDhVznZN1YQKl6N0sd14UMRJUdybJAuYPgIPOlKduKmQ0OC7RuU62Eh+e5DqbT6TKeThC4kRZg6W4ppCy7souf5SnXGXheUFIHHMg8Hk/dmBgELGZzKlGFeDEnrNRLe44CbQvCIECXz7kShmxsbvP5Rz8nDH2KIiGKAoIgYDIec3J2wlq3y3g0JvQDJxD3AlqtNovFwuFGSUyhm1Ba2wrhEQQuQegy6O95Pta6KKosyy9W8OUIXZp+wEpWYlcj3bKrWjpRCuGG66VEREq1ogAsKRWw/H7pbjDlZ6h8h/np4kLb6J7L18csfW1Rik9niI0NJod9tLGopg+BT8UriAuNzktXupEmG+Vsvr1HoSTnj47ZuNGjurlOnhqywyEmSkFW2YgC6r2IJw+e0Gj5bGw0ePyLDwjDgNxodq/tIchIi4S1176BkjUO7z8iWtvi/gd/w9XtNfZ2dynORviPDYQF2TwDNL5QJEIjpAfaIjzLu22f7k6X6nYTEzYweDS6W9SqAb3eOkIa8rRgcHqEH4ZoDH6tRqO7zmIyZ72Voa0mqHgUw5xXt9v41iIyQ2+jhR/4pMLQ2Ghw++Y1atvnTEczzvePkGstausttrfX0Y+PSeIFT4aa/CSmZyWZgrDusZ8kzA8z2lry7ndusP3WVXSuGT0+pTCG+f4pkxfHqEqFareODRRJrmlWJIWwaAxeXrDWrEGRs1ikPOtrxnODsAZP5hQmw+iIeJ5iI4+r3Sb+fMEEgZWCeqNGqxMR1SLsPGWmfKLIIzueAQsXHKE8ep06i0nG8bOv9+i+YPxepIMIXDdkLpHvpHSgq9GGPHPrfCucUZvvyRW47cBcjecpV0gu4U1LcmVRFARead9RSlRyrRkOR1QqFWbzGVeuXWU0nlAr9WtCiBUuI4RdAexxHON5iiAMuXL9Op98NEBKgR8EzBcznj19Sr1Wc2OdNSSLBaJrkcJDCkWeZeg0R1vjwiTjGGMMr915k/sff0i9WuHe5/fwpCIMQmaTGb3uGrooSJKULHVbvfFkwnQ6pdfrltIYW1p/CIzRaG1/ac2+0sBZp199+f+5IuJGQY3VFuG45sRpeiEtEYKiFBj7gef81IS55OUEQi4tUZYyomXn64p7Ervi81XN3T+Kp9TtKQanU6LAgWUtX6CFdlyOaUGRZqhmRHKa09xscfRlH68q2XltB3zF0//4Gc8Hc7ZadW588zZep4pWCdP+OQFjfOuo6J5JmRSSrU6FNMnReootFPH4KXkyo0hBC0hMyvnphHq9xrRIGQhNsxqhfMGNaxH5YUE2mKKrVTxRcH9R8HCqqX4+YussZ/3dDZ4dHLE+g72ddUx2yN6rb/HlD/4DUgka3R6q2gYFxgtJ05Sj/ow3tzxu3tri9OE57b1Nmr0m8YshKhWErRrp8yNGX/TR0SmvvH+T6JUN4rd2sIXF6ITu7g5Hjw4YzyEHck9Qudbke6+tEXk++SLjZz9+Rhhb9DTmh//2bxkVAuFZdoSi3Y7Yef8GCJ/J4RE31tt06jEPjlLefjWg0W5xNNakwwGF9FCVBnd7oNOY/ZOEalhweFawCFPqvkcthUf3D5HWJ9aWOx2f1npAMopZDOYUWUZtdw2bGUTLo1HfJR7MmJ338aTPxqtr7HUqfPInH/2D186yEPm+jy4cV0aAk1eUvCJrLLooyArtugtzYW+yvG6X9hqr7glKNrIraGl6ocHzPd8VvbLzCTyP7toa/fPzEkR3LpCeVBR5gcWuDpnrMNRLMUlJUpCmOe21dWq1GtJknByfIITg/KzP8eEhm9ubjrDo+9QazRUtwfeUu7ZFaSlb4jF+EFLvrvHi2WPyvOCof+I8y6TgfHDuupVSp6aUA7bH4zHGGLIsKbu2Ut7hBasDv1wMGGtfMr97Weh8gSMtbxZpnmNMsSoe7n0tXIckltYyctXtau3eN6VcSIgRJStfOWyvyC/sZy5oFubSz3ef3a9dlBCSxTgmExqJJa9EBJGPnmeE3R0kMXoR4wU+9b0e+XzCPLOMpmPyj58iqyHtZpXeTpcn/SHZSZ/d622M9JllmvVai0BaMi3Z6FZp1GoElZAsSwhrTebTgdMtTXKCVsRsmLCIEyoVn+k0phVJDs5meFaQPJzz/utdvJ2I6b0xQln2woB5GoOVmFaFTz59hqcEWcugdYKn6kRRSB5PqNbrzMdDqp7PqH/CsD9gOk3oNaosJhMqjSY33qhR2drAr9eYfHnAbJ6jnx3hRR75NKNW73H2dw+p95rINUXUaRC16yymC45OFywKR2Db6PrcvnOFitDEqebx/T7T1JJYDY/PGWQ5iacAy5XQJ+q1mB1PCaIQTICdjPHHOdXQcnBaEHpDur06puoT9JrkuWByPiFJNTmCeSGxgdMozWYZc29Op1cjjzV71YjJ8QgZ1mk0qzQjn8npEC9xFiBBNyRs1xFSMnh0gupFFLlAmK/foFx2AvA8D4sptzruujIWbInfYI2L67HuOcqVfqs0IMNQFHm57bnYvi0L2LIrM7pASQ8hLKHvUeiCKIpot9skSUKWZlTqNddtAbpwHkCuK/Ioigt/oCVD2piCMAxpNptMB2eEfuBgDOmeWxKnhFFEkaduhW4txmURIEtMR+vMURCMIUtz2r0eo+E5i0ePEdLHGPB8b2XaFgQBSimCIGA6nSKlIk1zihJEF7zcHa06ESVRxpZ8oYvx9wLk1l/pVty6frnlWxYsrS2+fyFMdskK7nctC99SOH1ZLL3s0F6ynxEWK8tlxjL84StE2K8+foUFnKXqZVQ8Hyuka0mVhVCwSI5RtTav/973ePSDz+l/ecjN//63yPOYxWRGuNVANTvcCgMePTgkPDzFT3PyrqvW//xf/QF5kWJ0xvzoiLXtNa7cep+gXmeWLmhUOwzO9imyjCu1BqdnJ3x6/5DdG9foboQ0t7uMB2O6uwXnwxmnBwP+/vNzXrveZP1GlbOHU25crbE/zphWJJEfYLMZzSvr7F7d4vabtx0fyko8ZUjSKYEXMXr6ED2bcfhiwNHY0lAZsRmxfb1Kf5DxRiVh9PlTmjevIDoVjh6ekj0/xosEs/NTVGoYjOe0OtvUq02U8vHtAonCYOk0Q96+u0UyGkN9nelkRKtT472dDs12nfn5iJudNqdnC5J7R+zd3aP9+i7nH79wVsT9OdV2G5ENeP/ONZ5+8JRM5zxNNFlq8E6c3W6uBZ5nCQuDSeH9q1s8ODjHz6CZWNZbAq9Xw/ciKoFPVmQMno1Zv7ZG+8oGph4yP56TPB8iYsvg+QmNzYBau8X8aEx8+vW4wMVhMKVjqbtgc31pk7PUtClFEDr2v+c5LGQZMAkghUcQLnlIF53BZS6T0YYwCMiynCxNCIKAwhhGw4GzaIki9q5fo1ZrUBiz6rDyPCfLslVXssRTLq/O640m12+9yvPH9wmikCxNVsJiYwxRFJElMVka43mhcyxwAA5KCKJqHW0tQoKuVWnaNpt713nn299D+h6L0ZCnDx+SpTH7j+6Tpyl5UTAej4jjDM9zInVjLEmcICXUarVV0TAGlCqV+tqg1IWTptaGwhRI4UTHouxglJQUJW4UhuHqM7tMv/hq4XNaQ/MSXeMizPKrRNalsZsslxJLvybLIvn6ze3XuwT4AXOhQTmhqG+VU1YLCAOFzMbM44y9776C/M4tTv/6E67+d+/TaigKvcno4084OYvZWqtQ/c3bboUeJ2gF/f4LTg4HWGPYu7qGNpaHH/8N1VoLVd+mn3zKdDjGEwG3f/tfIk7O+OY33uHB8zFXr93k4Bd/Qzgc0xqmvLFXxfvN9/iT//Cx40mdxzRaHrIiWWt6dHsVDoYLrr/xCsenRwxPzxiOdrj7zjuMzl7Q3btBPDhh1B+yWCRU6hFb3ZC6rHLv8ZTJdMS1O++xJfrEStG4usvzx/ukHxsqRUFWrVO7EdF/+hxnMGCpt2t4yoLUYAyp0DSqIb/3O3co+qcMhhOENnRMhXCiEckCc9inFikYz9k0KfaqjzYpL/76c1RbEKgGcZGx+4072Dxn/niAXqTU1iq8//tvcvzzY4b3X9DeapEcpARdH389oP90xOlnBzSU80SvVxWLxYKK1UzMjEoUEK1XYKhJZimyWUGfLqhWfcLKNvsfPqBxs0Nzo0mRGUwrpBqF8PjkH7x2dOFGKHchFy6CWyrQliTPUFLildHTCEGuC5yI0+XQYy2e7wNOdJum6aozWspOkjhGCknoB2Q2X0UBKSlJs4z5fEGzUaVAMh7PqJfjVZZlJEnykgTCGEMcx2VQAKstnCpdSXsbW0RRhbOzs7KoKtrdDnt7V5hNZ5wcn3D1VYPyS4wFS+D7pXUHq+7AKztgAK/exFpDtL5Fq7uOANLFjP2nz/A8n/FoyrUb15hO5+i8YDodkyYJnu+RpmmpYYuQkvK1u/e+yHU56LogUiVchps11hEhxQVRdNmRLR+Xs+OW5MeLkY/Ve+yI+LIcK3MXUluOf0EQOKa4tYChSAo83+FgylPUvdqvX5QwBS5wVSCVIC/tWD0pS9tOjchzgqCGWWSsvb4LGHSaQZww+OSMylqFaKdJ0IwQxZRMQ6gUmVTUm3VazQbNtQaDZyfYeIjNNHYyxhhLOh2SZ4qzw4fk6Yw8TTl9vs/H8TFiMaWKQ//NKCM9nZFn8PDpkHe2W/geZMc59UZA3giIZjnbG2tokzGfLPCkIqo0GJ+dENSbJLM+Sgmqvo80hq0bN3j++DFBNuL1u7t4fkFzc5Pz/oRau8PJcEzWn5OkOS1P4FU8Ohsd4pMEryUR+EghqTSazAYzQqEIK4r4uE9U9QglVKtNps/HrN/YZHY6ZjZK8ddC4kVBPDK0ux5FkpLOxniNCH2eU+mGeNUAG0M8HdO+1aHWbcIip9ZpEHcjVCUg3JJsvnmFs+cnGM/iBRYVCORCkOUG4Xl47Tq9Zsi0P6EShZwnE6ZDTdDr4AWgQsX5/T7TtGB8NMZr15n1ZwhlkHz93W51pzQGqZY7mkuCTHvh0a2XHZAFrd3hCoLQFSTtNngX2WblpqjQYEssw1rnAW0MSgmKkr80H0+ZTMZ01jZptdsry9blYVx2RU6rtTQoU+XKeulR5IB1UQK6br2tyTJ30DzfR0rFYuGwOBqNUpJSbhyFwPe9l7Cr5WF2K/Jlx+E6wVargxD7LDlctpS9RNUKutR/Lp83gFIXI5m5xG5fjVA4W1slFVYst4wXgQOXLUguutuXi/XysSzUQLnivyhU4K26WGeJ64QlUpXi3cJt54yVvwJR+pW5bxahjMNkloZbhUWEzrNG+ZLRwTHNu9fwGj5ia5dk/wnzFwPOHwy4/W9+m6gaMbx3wuPvf4nXrDA8Pcd6PpVmxJ3vfot6o8mN197ipw//JzKtieM5eZqhjSVJMqJ6k4cffB8lA+rrG6Tzc+4dWW5freJFHqP+hGLuU3QTDAWTqeVJdcFar0JkDLW1KvEwZ3Pd4/zZc7qdDrPinNHhE86P98j1gt0rt7FpDFbgV1qYPMZYy+tv3WU2sSyGczrHR5wNFOZoxmN7wFpckM40shC0767RWF/n7LNHbP7WHlG7jsg1Dz7d5/BFn9k85727bW6+/ToGQT6bwVBR2+jh1RrE+yd4ay36J0NskiFHGvopjdu3nIiy1sF6MZPzCXW/ippkLGZTNt+/Tvr9L0hnc+QbN2lFmmw6QVWVwyiiCoHvEVV8GjfXqG11GTw8ZrQ/JJnFBIeCzu03qa9tIAI4FSc8Hud88eEjmkJSq/mookC3FELkDB4dIqTldJ5jxa+Y/JUbV4XyUcJJOgQO8PalwGqzGgnyPMcKS2E0QeAThhHWQF5kZKlLtvV8tTqIS8a0LLdECIHyPIosoyic/OH8vM94cMTTZ/tcvfEaHT9ECOd/fVFcDJWS97McRUAipSAMFVpfCH5NkeNXqqjpFJNZiiKlVmvQ758TBSFJkjAZnNLZ2gZMyV52I96yCLjDbFZFcTmCuqLiLGyvv36XB198iedBy2sxn81Jyk3gIp4TBD65Ll4y8TfWIqRiKedbkkalcPbBQgik5/hFy+jtLMsIw3DFRQJWz2llSXJpjC0KTZalKOWhdbFi5odh6EIWyuK+5CkpTxGWZM6ZSVFKIpUr1F8VV/9XFSWsdVE7flmQnKwIJSzpPENkloPHT4hI2btzjexkQP+DJ1R7Xa589y0Gn59RJDGzImd6HLM20bz+rdeZnwwYDWc8+uBnBLU68/4+Ye86mxsbJNMzxi+eMR2NKYxHPp2jpGSymJI9PuX2dhXvtYCCOn/5159xbaPlhL8PT3l7p8HJNOf8ZEb/eIzvB7xSiwg7PuOpQYiUamDY3q5TjSSL8TnXXn+T51/8hN7GTXobV6g12szmMf2DB0TVGr/3r/f4L//3n/D06IiOX6Uy91FFgl1vUvF8isGUlIL4dJ+9376J7DSZ989J++dMJwu2N0O6zR7tV25h/QrxizHFSYINfDIv4OToCa+9+TppaNgNBD/6q4/Z1Yq6lESRT3C1i80ti7MBvaDJ4Y/uMRoOIfAJrKVaDxCBghyG+yeki5Td997kZ//H3zL+8CnXt+psvnOd+maXZH9Es9Omc61HmqR4zSrCKO791cckFuK8gKggUj6jhWY4NdR9w3o1INcwTi233rlF/mQfmyS/oii566W8X+KMlEFgyy2bRroJw/1hXYFYeSWxNByzKOW775fu5uhW42U34nno3GX4KaEIowpIyfnJER/+5Gf4fgjWkhcZSbwoD6fEi0KX65I6LdrSkkSIZQcgXhplhJBsbG0zH49LRwM4PDgsD6WPFIrpdOx8jLTb5K1y5FgC3q6oOgzGrlwfLwBixfr2Ds1mHXDOpXmekmYZbc/n5OiUNIkJazWk9Bx36xIb/TKeI6VcLbnspQKzXGtWLlEisixDDan1QAAAIABJREFUa7Mav5Y8ostxTUqplSOBEB5RVHHx80my8gJ32r9wJWdZ/vZarcqSKrAsYL92UTJGuy1JSW9f8kPSDERp2rVRb3E2jGkPphQvhqzd3KByfZfTzw/o7KwhKlU2/Qqz3TX8WhUZwfTePsUoJmjXiOMFyu9wetansRHQ3b7G0bN9wqhJ5EEaZ2RJaYBVGDrNDlG1YJblFEbx4MUQaxVbxrBzp8daVxG/HpE+O+fp+ZBnn/WJJcRK0OpozmeWf/J7r7O5sYfwfSrVGh6G4eAZzbUbHL54RC0MGQ9OsaZDWGuTe5q0SAhCH/aqNGUFU3jICLKOoXV3j3yRM5/NqNaatDd3eHw2YTxM6CiFqq2hpMXGCbPPn2Flwc5/+x4H954yejJiWjuh+e5NerseIGl6hs6NDsYKSAyyXaVZXWNxOieoRFQ2GhRpTJwktPd2yM8NZ18cUNto4TdDdLJwwQC+5mwckz8bszWG8eMjhFKsfWOXerOCX60zetznZBEzVoJaTfDW3W3wK3z4s6ckuWGaWbZCqImIF2NNf/+Q+WwBXx/dRZE7TtFSW5bnRbk1KkW01hElZQkFhGXCyGUA/PLBsFiyLMca8PyL1XaeO0sWISRhNVzxa549foQf+IxHE57t75PmBe+808CPXGihFu4aVoF/iRHulb/Tlc88vxC+Yi1r65s8+uIexhharRaj0RApBVEUUBQ5phwhl2Eby8nnZQb0xWtcFo/LWysBeGXIweUOLo4ToiinTDn7pRy85UFfmanZizCAZeG7/Bwub9su+24vwfvLRnrL/w6CACElUnml9bDnOtTCEIYOl8qybFV0V+N5+VyXf38Zo/r/e/yK8Q0WmUb57oUp6y4OXwmidgXrSV7//X/C7NmnTJ4PWDwZcf2f30VLTefOLkZGFDrFjwdUNhyfKHkxolqLqEn4YiI4PTjjuP9fuHJjhywesjB1ou3bvPnuHQ6+/Jj54IxHD48QM0u1EJjjEfuRx5cPzgkTzc1qRONGj/VOk+qra/hK8Wd/8TGjoyFR5FGNBDrVgCGezOi2Ba/e/Q4/+9sfcOvOHfwgRHke6XjIgy/+lKC2zkRmDI+fMjg9Y+/V13nnW++Sj+Y8evYCvZhw9e5r2PGQoLmNjRQHHx/y8OkxV7eb+KN9ktGEhy9maFswTUOubW2z/+k+vUYNaSTxeMH0w31mBy/IzmPOvnhO/Y0uKtW8u13nzh99F5Nq9v/zl/z9Dz+ngmVnvY3frrD1u28xeXxA6FcopIZKwKKd8eGPHlHVhkYUMc9Sgq4gnCv2i5wXj044640ZTROywlD/syF7EXhrDWRhKGqSloLeTpuNnR0kmnYtZDDJQQoWc4Ffga2G5PGLKYEHrcrXM7oXSUKzVkcARe6MxISF3GTlARFo3HZOiQs84rI1iZQS4dvVmKOURnhita7XWpcpG+BLQZYXCAlPvrhHMp/xG9/9DXZ3r7D//ABPeZydniD8gFa3tyIgOoW8A209z0frfHVoVyxn46QU69u7hEGIFIJ5acjWbrccLmMsR4eHvJGmZTdSdnK4sfSyBcsSx7mMkS0PL4BVHtZqJpNJKR8JSJKUOF4wm81oV6sghevwYLURu/z+XSaUhmH4UmFaFotl0Vn+u+X7vHRfWL7PS+9vz1NO0ykgSzPyPHMGcFrjBT4YZ3OyZKAvO8XLRWr5837tomRK312hQQi3dQOBsVAUGQQ+ohiRHs9I709Z/41d/FqDwhTo6QxjM2RURUctvCCgSHNGD15AYMm7LZ5/8pzAD8itou5lTE5P6TPEq1Q5OTqn1t1gcNpn/8UcmRVII+hVBfNFQqUO0YngtW+/Qn23A0own885L3wGJ1O8wOft22uM4hxzOiUsDL1WyF6gGB3vU4kiROBji4z5eMh8/IJ4NGA2OidJc6w1yFASNXpMJzPOzo5JJzMWi5jHH37BW997nyJJSOOUJ48POR1kjMYx9cBjURgWueBKJ2Rzo+YyuXod+s9OyCczKkJy8uE+QzODwpLOY8RCkp1Nad/qIfEZPjjh8MkJodZINOMX5zTyFrXf7VJpN8lHE8T5McdHUwanI2p1kNajn2R02y7McppZFpkmDD1u3d7idDil31/ge5LD0wXR2YJrr7S4vdekkqWMtCbPNTKeoUvzM2fWrxinmjS3RFWNr3zSX6H0Xq5/nQXq8gC6UELH5ZErb+zl4fgq9rKUJFz25xbi0oaICzdI3/dd4ESa8OGP/46br15jPByR65zxeMzO9jatVovBoE+10URKl52mtSkP4ZJouOxcSs8mKTC5A26F8ojjBQLXjXme24I5n2ux0tQ5n2xWSbC2FMIu2elLQ7bLG7DlNs33PbZ3d3h0b0AQBFQqVYajsYteTxPSJHHvmbE4bXJpL6yWmreld5ID55cd0OXOZ/m4XCjcJi9Y3RCWuN2ygC4xqOVnY0vTOKMtYRSWG72LLrAoCur1+i99rqsFyK9blKQo3eZyi1Sy3MI54WK116F6bY/po318Adf/6C0KIXn2uE+caB7ee0To+YxnBa1WlbWNNgaYqQqzaUbWP+df/O6r5MMB7V6LB0+HPDp7xt03NzAjwfMXX1CpdhF6gbaK08kctOH5DzN22gHNtkel6sHUbUiSeEqj1yMdzvGES5ptBlCfGjZQVMOQ6WGM8GMmg0POHz0iEHCvGDM6OyMeTDgdJHTaFcJGj9n4DDGb8vd/9Z9o7uxxNrVMp3OeDwrsSc6jx3/N9VtdKlIxywqUNMxyQZw7y4+1quLd9/YIW11GX5xgP32OzTLe+FffwNqQx3/yQ25uXGF8NOTBeM7xv/8JldDnxt0r/D9//LfMz8fsegHXr21RW+sxSydEdQ8vN9hOhIzA9A+5/+iMkJirnQojr8q19RpPvjwiyKCwlkogibOMH//kKbtbVd69s0alUafIAU8wP5qgxzGPxzO212v83fe/ZJ7kFNb5CilhOZ9mCAvrvYjXbmzjVSp01xt8/m9/9A9eOxZLVmTOo7sc/61x6nyDRWp3gJ3iHTTLbZR+aWSwVqw2YstD4ftlESsM2jhgdjZdIKzh0w9+yLB/zg9PTphMJvRabaJahSdPn+EHATIMkdfVauO2PICXD085rbkDqA251SsPqHqzw3QydBiXEMymM6qNOntXrqDz3GnujMbzPaxdbtsuDNEuj1eXi28UOZdNqSQ3X7vD82dPKfKctY11BsMRvbU2caIZnffpbe1iVdlxXOqwfN/HlPlzvu+7UUvKlUPnBZjPqhheLlBZmiJL3tESY7v8/cvP5MLp8mL8szgeVlEUjv0upXMJsAJRAv6ruiK/3n3y6+1wjQXheBVFAWdacr2nUJ5m6603CSWcfPiI9m/fIQ9rfPRnH7DuF2QTTXeg6dQM65sV9odzfvTkBE/5iNJdsBVJ5vMUzxhiDTKfoaoeD/ZHXK1JvHYL1QyZZw0GZ08pLEgrUTandgpilNO+u8ujjx6yfnDG3r/8NnkypSUlf/RvvsfnXzzno/1z2lVJsFFh7WaPzaiJDSynjz4jHWeMB8/xkqeoSotpbFnvVpCej1aWW9/9A1554z0efPJTFonkatTjeT7nf/j9PRazGdNpys8/GzAeZmSZw0eMFc6psRAM5ob9B0d062d0rlzhtX/9HsPHzzn9yUOiSkCt06T73lWq1zvov/oUoQXtvTWySco3rq3j39ph/4Mv6T8+Ih0NmXeaxOOcR8OP2ZwuqG+06L59ldq9Q6T2mSQWFSQ8f5yCkcyF4fqaokglhYIHxynPjhY8O5oTCUkOVH3F+o0Od7/1GlfnOftfHLG9FdJpVcgqEiUUP//ZA6JQES9yVCXisJ8xHJzxm9+59vUXlnIOh8a6Qxf4TpZglVdSAwymPJQFGoULcUQ4v54ljWA+n6OUolqtrn726s7vgS8jnOeQIk4WXL35DpV6j//47/49URRQq1dQnscoLzh4cYTyfd5+/9u/FC301a+uawlQyiCEwmgX3f3ut7/Dp3//U6zJWSxiLII8cwVHedK5DtilbYj8pcN/uTBdHqNWRdhY2mvr3Lr9Bvd+/jPG4zGtVovTsxPazTYnR8+59ea7LJnVy5BPyqJ6eWOmLv3+C/mOeOl1Lk3Zlvyiouy2sixbFevLY9flDs85CIiyCHqrAr/qcq1zsixKisWSNPuPAro96dpb5QteDDWdnQ6Z0tRUhqcso8+eU1uroiea2eEZ7YpPuLXB2sYa+9//hPhkQk0KrjUUB8KiTU6AIhOaUaz5+c+PuLpZ5e23dylOT6lLix9F2Dghj8+xaYPh0Zhl8JSygnWtWAssW996hfXfeovR9TWKwYLhp08IAg+rM4JbXd58fZPDmke1VqcSBGg08WSETqZ4oY+tWjyrmaeaWqhJLO7uTc7a9i4729fxjeORjM+H9E+nDM5SKCxRu4NfK3hjYfgk75OcCXIp8TGgL5Jc7x3M6YaC+ukDtnqnVGqC1rs3SUYpXzy+R/HBMyo7Dbo3dlAtycb7r5LP5xx9/yHezXWu3N4hrVeJulX8h6dsbnbI2zU69YD6eocXv/iSaazRhWvld6sKnWq0pzkYa4Zzy1otoB0p6oHHJNcII0gKd/izwPD2O69yfjjg5N4h9nSMsIITJbjzh98g0zHvfNNp7h5+8YzeRo3ZwKCEJU6yr72wJNIB0CWbV9rSdla4rwgnH5FSYYSz1xDSmdJbuVoSrbLK4EJo6g6F62Z0ocvx0BB4Hr3tNRrdLiL4UxaLBbPZnE5njbW1Lc6H52xsblKt1bhYRC2Z4/aXDq7raC6Ew0JKmu0OCEkYReS5JgidRWyWZTTqVSeRUReEw8uHcCn/uCzPWBaRZddmrNtM9tbXydKUOE3pra1zft5HKcliPrsodOLCGaEoCtcJXsKulsXjcujC5cfyvTTWlN5Jbo1/WS/31e+HCwqB44aBr7xLDgOXRrTlzyn/NMbROXz/H+Gn5GPQ1uP/fZzyzds73Hq1xXSiqXUC7v/pB+RnKdV6wHZXU61GLDJB/4ePeJ5+wZXfvEPn/Vc4/Pgp/jQl8iSFLiNXcG/WeJ7z5YsZ9XsvkLaC70vuPZvzzW/skWYhP/jxfUajGRaBsm6EDI1GSB/6CXb/lOAsoX1zG9UNmZ2fU612sWFIkcHrb3b44pN9Pv/0c97cq/L0NGGt7ZEmimvfukVsDPmL54wKg/J9dOTR6rTYeeM9knzGw48/p1vvcjQ4YP/Hv2CWav74jz9mc7PO976zSaIVO9c2+Pa3qhw9H/GTz475rb0aemGIT1MeFZbT3HIyy7iyG7Bx9zaDccr+/Se894d3qFjJ9OgEtSEJ1prEsxEffP8Z3Qa0N3zOR4art68xeXZG99UNqrs9fvIXf8cX2jHrp9Oc+cKCUhxPUiappRlqKhWf27drvHqz+/+19x7PkiT5nd/HPVRGypf5tKpXqku2FpjpERALAtidBRYwI2lrS/LAA2nGCw80/hE0Gk80HnjgZXkgzbgUS6gBsAMMgMHMYLp7uqe7uruqu0s/LVOLUO7Og0dkvsLuFIyA2RoO5beqTMuM9Bfx85/4Cka6QtLtMZed0duzYvMeAl0SLMy3KNdq3D14ynCSsqygrzKEdvjJ739gkdOeQ9gIKWkwA7h9qUW2EtLvP1+jO8lsX86R1mYpywOQ0moaBrS22VJRJiilUFmaAw8ti11KOe3dFCe30bkyJdqWcEohHXAdL9eYnvBf/Tf/LWmaEPgOtXqdLFW5jvX5gGG91wpaRtFTKXhhUjpIWUj7WhBnqVzh4rUbPLr7CdHENu3r9QZaCzq9vv08z88zq9mDL4T1PpPnglRRIhUPenFdcRpRb86jspRxFNPtdslynl63fTYN0q47Q2O7uZb3+Z5N0eQuek1Tntq5yZgxlsZjv7vgvhWGkt70PUVQOl+y+TlvTmUzRVDHkTlf0e6vMTk5+VxD3YIt/45BSeByGikavovTmaA+dVl7c4HOzhk1YxC351l741Xu/a9/yt4k41Ro+o7Bk4I7733KkvFZ9F0GTYdUuRZGIAQIq6Ec6QQ1kfzwxw+5uF7i0maTb781z8GdA0qxw8vVEJwAWZPoKqShx70HHe50YuSjHTbuPcVgWPrwK5auX6L1+kX6jw6Zf/cmVVfS2d9nqWlY/eWrDNsei94hp+0+4fwK6cMjfD+h/PJ1etv7zPkuuFXGY6iWF3n09CFHpyOydEzZifln//Vv8uCv7vKTn9xn52DI//G7A65sNliqV0j2z+ieJby92aA9ivFLksrNKq+eZpz0xojFgJ/dP+bhzhlZnNGquLRPuixXxgStgHSkaN68gk4Mt38zpFmtMt49YumNVfpfPiU66jD32jX2P33EcKLYPhvjCE2rWeXXvnGRSuDyl+9tM54o+risrdXYunqRbHvMwlrAse/g+w43bq7jlzyO2z1ef+0y9bDE488OefJoh7KRnDoGJ3Qh0SynhjaG5Qs+npNRz+Dy9RaNtRVGnRHOvb3n3lhZlkIu4OY4BYdN58HIepBZvzcJSqOkFS5LVIY0cgr8s2mVRXa7jpeDeLUNWMLBdfNmrrFgvjTNUDqjUg4xpoTjCtIcSmD7L5bGos1szH3+IRViJtn7rCRIXpK5HlduvcxnH/4EIVzSJCZOepTKVYRwGQ17lCqW83ieR2f92MQzGUtRshXfZYzJ0eAVMFCpVAmrNfYPDgmCgG63QxgGONJimooGenHdURQ9E+iKgFVofdvfWZCazTNBZpY1FtOx8/ipWZPaKllyLtDZDDJTGV6OQI+SBPKgJfT5Xt2ML/d3DkraSQmkQyIEZ8OIbDhh/fMJcW/C6u0NalfXycYZx+OYM99BKUFJQ0O6nKEYotEmo9PNyEyGaySZyPC0jaSOsNqZQqRcubzM7k4fScWmpSjqrRbx4YCzR21Wbs8hlWC5FVAfCfw4Zv2bl3Bcj3LZp/fVLuVsFdmqMNl9wlhK0iilvrRKpdWk990PaG01mV9rorslJl+eEVyu4jsVwqiEO9CErzTpHJ3y8Qd/zng0Ys4zzIXLTK5uIJFkT48IhWAiDQKX4f6Q8LCPrHkEE5gIWF71EWhio5FOxqIvcRoBjZqi7Dl0epJeJ2Lv/SeUv7nOcJRSkdB99ASdpdRW12g/2WH/4Q5+uYo/GVG9Mkevc8TecZveKAEBKQ5RlNFabOJi+Po7q0SZh4gVXgglL6Az6jM57lPzSty6sUY3kphYUF/3kF+12ev32JeCxUyC7zAJBKstl3Rs4DhFASioVgXDvqD9eBsRBjiihKr7z7t1pjdxUQZZrJFFH1uqB2CEpYVohUhtf8RYdun0veQBxDlnFy0dgVBieoNbaRArR5Ll/Q3f90AKkiTGGJFXaZazVQi7nR/H2+xoVh7aB3UmeGYBniJXadQI6eB5MB6PcoWBhLBcZtjr4QdVnLz1YT9HTks3uy9MJ1VSWvhA8X322mywcvyAs5MjlDKMRj3CMMB1PUs4dnycAkM423D73ObBwmaVswb1+b/Lubefe21WcjrOsw35WeC27zvfm5JS4jKjAVlViGK/7YYbc/7zn3/fPDco/ep/+Ts8/u/+kM23LpA9OSOpuEz2J8iqj3dxHVltcv9f/htEvcKFksPNX7nM/OYWkVHIkeLpZ484eXBA+WTIsRD00UgKCU433xWNUpLv/+AQLQxPHgzQHpR8yUUnI1MGf7PGR9s9fE9wcJJwZQLzFY8bv/42k2REdNalsraFlBlBLcCJDZOBpqJd4scdnnz/LmuvXqY3OqJcrtHb3qPy1jqKiNHhDuFmHYPDwfc+I+33mX/jOmKvS1RyOLjfpbfX4fRsyIMsYeAJHAGZSVhaK9EKq3STlFbDoT+KGLRjag2fxz3FmzeXOd7rc3dnzCtrHqUkw98fY0oe119vcnQw5NFel/5I48pD5isOgXyAEYIkgk7cQUhJ+LjHKBNkuTZNxQhGRjOMU/6vf/UxzbrDP/6NGzgscPzBA0pLddwFwfxrTaSC/sEZg3tDGi9VOD0cEO0NufRbb7Nev8Z1NJ29ffxAcvLFtkXdtlzSpZTqRFJecCDKqDQ8EIK4fYwbuFQurDz3xiqseGQejIrTschChBA4CFRmcXCFZGrg+WRaWUMeYdHEMj/9rSebVYj0XDvdKiABlpGeC7blEq9gyahBaKdASmtrNJCd1w86Lzompg+c53lTJYGi/BKO1a1WGBbXNmkf7eH5LpmCYX9AWC7TOT2h3lrKy6lZ6VM4gjhS4uYYKQzkxizTVQRBrTUXLr/ESfuYC1sbfPXlV/b3OC6dsxMaOT4+CErW0VZZS267FwbHyYOpEDAtuZwZ1CEPFkXZXKCyzwfpLC+lZ3y1GbDV9oVmUzVhpR0slEAKssKNV1r3lGKqOvXpe856blC6uVjm+rvraGeO5u012p/cZzT0WHhjE8cM8OMJV/7pK1zujDBSEmC7/H6S0T49of/xE3Qvpus7LCioOoZj7SJQufGdZwW7pGJOaTYCwcLNKu0htHsRpaFg4Y1lBmdtNm9eoxcJHv3ZHXY9SXsSYf6Hf80o9AmkQ7jcoNGqcbR/Qm8wINWGW29fpxIqln7xMiWvRa+7zTiGLIJSuYFJJfVLa0y6MTqJWf32Jv2jET/87icc6wkSFyVzbpEAPMHbLy+ysFpm2NXs7fW4/3TIZt2DaMwYQ2U+pLza4jvfaNE/G+M0XZr9lMlQoUsOrdsN5l3Np/e7nAwzjDIgJRrD2ci6c1xeCbi45uGYCke7Iw56MRdWS5Q8WGxUGG+nnHRivlQapMNpP+OLz/dZv5hR/9pFRl/tsvf7uygBwdIc1aub9OXHtL/sE0aCl16/QrleBSO4/7//iAu/+SbGETjeNq3lJirJGJ4pGlWJihVe6KFiRX0+ROOg4pRG8Pwby+KIwGQK6XvTh/v8RMfz3GcIsU4+fXIcC9KT2mCkQUoXo2dYFyncGfGzyCocmdNDLL/KBsT89MYSSNM0zom8YkrPON/fEeeO8IIhX2RjxWRLYRU0r7x0ndODHXy/hGMEYaWM1opet2u94Cp2fw0GZfT0d0sppoObHAk27bGezzzSNGVhdY25xhyVapkgCFhYWEQ6LuOzLtVaE6TE+MGMQ5d7cU9dbo1BZSrXalLnMiZrbyVz4KMQTGEDxR4rpaflYFAuW7e2c2XuVOYYWxIWuCbrQWfyv4n9uxUAyqlUjXx+qvT8Nnh0wFtfv84f/6uPKI8rDJ8McdZqyGoJs9Om7yeoMUz6Di6KUaWKu/slbsVl/vIWX2g48SQ9aehLYa2StcZIB6mxxEItMVJwWSvKtRJuIFlwFa2qgzNMyXo9ysQMjzocdA2ZFLTRdF2HUZTQjWNKCNxOm9D4OFnGL/+TV6HiMnfjMv2Hn+KeDUnXW2jXZa6xTK9zSPT0CNXIqPqXGH38AK9WYTA3xAnLLL62hPlgj7ZriAy4wsPIjCtX5rj9+hWcWoPB/jE+is2lgMGDIW7Z5+QsIsgEsTD09nocHo6Z5IDDh6cR/iRkfjJhY6XCuknpGo1ypE2/FWRSUM5SXOEwGGoqZcP8UkCl4iJ9iVt28XHY7w/pK43wBY6wVKBerBh8tUc9aLN1pUmltkGn0yU7HnPvRx8yv+agSpKgYjj+4DFBKSAaJph4xGSiaHeOmFts4NZqZP0RxkywCooSk9o+jPRc2kcjyp4mSf8W7tuUwzYrBwoHjeI0LhDJjuMgcmqHcATSzLKYKYZIMy3h0iRFyllPRAiDNir/slzwjNn42gakjCy1vSw/bwqnOQq6WAU3zOhZNlFkeDZjMLmUr6DRmj83CbRBZzCaUAojovGQamPOunYYg2Nk7gJizRiNNoV85rTkMXpmgVQEh6LJ7Lg+pbDE/HwLz/cYjfu2kZ43p03OO5tdq0OazcjJ53lxPBMAn0WVn/+7ua5LtVq14/yi9M45i64oHItN8Yn51G2Gyrc0lOLftlxGFM3vvwd40pOS1zYW+JOJovf5gK1Xm0wm0P9sm8H8HPFYsvXaVZJOB1dJ6uuLJHcPGJx0uftv/oR9F/quPQ9aDZdbt1s83unT7WZ0BgYHiSZj7dIClZKPjEdkCVTqPkFjnUwlZN02Q7/Oh3dOcYdjKr7EVDw8TzIZpaAlkVLUFGylilrosvStlxEqI1UZw0cR484Ja9cuEDohnfunPOn3kJ9lbP7ibUysGI1jTDumEbUgG/P1X3+H6Ntv0Ds5Yef3PuOjeMjKSo13v3EVt9LgdHeHD360jXMwoJxoNt6pc9xLuX2lRuc0ovvDHcStBR4fD3jlYh0/CunvxoRxTF36PP60ywQH4VqTBalhk4wSgoVrNdRYoYXg8+0Bt6/MEbiar3ZHtGJQ0Zh+1WGUQsNxeesXlpivVQiWljj78Q6B65F8PKD50jLlyOFksUZ/EhOkGk9nuHM1jpYy/N2vwNEs3L5M7BjCpVXGH++x8o/W8cwRqjlgPIZwTuJ6IVlvgAhb+MuSwe4RD+78fC2l4mHzfW86vjbmPC/Ljto9z7MJg9J4rmdxTVpPR9RMcTSgtEGrJA8ctoy10yV/mjXFsWWje56bgyptBpUk6VRA3/O8aWkW+P60KVzgfs6z+KVTWA/l/R9j0NpBSOsDN7+wRKfTQU0mjHKfNiMEJydHtJY3ctZ+XsIwwwRZmMTswbQ2UXa6FobhVLOofXzC8so6w/EY13EZjUckvQSD5OKN10jSGSyjKA+BqauunYTNbKTO94hsKZZbKuVBMI4TwPr0KbSllBRSKVojdG7vZHJ3X0uGxYjcLl3nPUSs6aQn7f4VLjFa2An638abfG5QUjomkCNeeXuJe999wsEuLF7bwjgTPrh/gOMotg8GDKMJfiK4stzi4OE+4zRFSI+hMGgh0TpjfqHMajOk1arR70f81XsHRJFgdbXO29dWMZM+6BrJKCZ264hgjvRkD8+r4O58IfV7AAAgAElEQVRErElYu7hG2sioS0VWr3F6MGQsU3b2J6wNDH5FEK4tIFVmpzXGJ97rsf616wjp4jXmUA93MUhKrTlolPDDFmmS8eiLPcTjHeq+z6uXFjCBR7O5wJPhGD+UNBsSvADHKKqhY+UbMFQqHtHEUA1CamXBaQojIygPEsZjRfsspTln6AUO49jQHqaMhQ3H9lSGBZ2wvFGln2pOJtb4QKaG269coBEm9AaKpTWJHozx1kLWY81ippCuZq3qI+dqVMrziDdBTxS7f/IJw502scpoO4KJyKhvVnGDEGkEKk3IgEwLhttHbM3XEFLy5IvHLH5rg1RPcMpllDacRXBxa4s4foJ2UpaWlkiES9gd8IPn31t5WVLobltFyWLEX5QBEnuya6Vy48PzPZ5zmYTR0w5x3g+eyncIAVlmS4ZC01tI8sncbOpzvsSYfr+UuTGlNXhMksTSYLS2iOhzEIJC0tUGWEGqNH4QkKQpkyimVqvngTRvjOfk2WnWJQsMlNW/Ln4fhjwIzq5VSkmv26HXH5BmKXEcE0UTglKJSrmCdB06J22arQVgBiko9kDnJp3SSXK78tmhULy/oMMUQNLi9cJBl3MZa1GOq8xmisaAzEf9GGs+oYV5ZoqndN5Dzr/bpsD/ttHB31zPN6MsVcBJ+cXvvEsQuHz6xYjP7j2hZgSvB2DGAuNmBI5DO8x4f/+QiVEYVyLRuEKgVEoZONgfoScOb35thdXlGi9dGDOOXd762g3OvvoUjwzhOdRaczza7XLw8Q5rqUuzHkLV4d3fuo3XqBG3DxDSJxsmVJOU3oMJ68tVukFCT2cMDk5o/89/jJHgdCa8/J//Cib0+eS//32Os4xeBieeZmH7lN7OKRvfGXPxH71KUCnz6Kf3uZ+MOf3zDzFjQ6QMZ8IglODBkzGnJ3eIJxGJloziGO0KjlUKjwUoa8kjtMSRLu7xmNdbASWpeXyYEaWKLPAQUlHxXcZRSmGsOCkF7EUx9UqZhhIMo5hyq8RcEFEOQxotD3W3TZZB7yii2QwIXIkZCf6fP3xEtbbDXOUBjabLpUvzbP3WDRy3DCTocosoTdh+sEMtkHjlOpeCAx7vtGnUSvgXPA52H+B7kvBCk8n9M8LKPP1ywmjU5VJlgWz7jHDrEn/1/Z9x8VpIOhmxEv4tDrm+1ewxGBrVGiaPJLaccpBS5Ex6TZYHLm1s/8XLJTkK6yWTlypZWhBGLYXBcWclib3RxTSTksLDChHoaeZQYJ20MXmzGTKVkqYzFrvrulMDRaM1+lwJp7XGzdHRSmv8snUzKVfLGGNH8oPugGSScPvlN8mUk5cv9gCSTtFo1s+US9PX87LTyQd184sLdM5OWJpfIAw8vvjiHvPzLVqL8yAMa6sbU9la3/enRNhp+YTdQ+v2i21OC0EcRWRa44jzTi72d6YqszQg4ebVmQ3WjhSgLK6MfCpqCsddcttzY1U/HddBmHxoACTKWrdLfe73/l2DknFdwrl5Vvpj3vn2m+y1P2EOSWOpRf32BuP+gL33dpk83aGG5FsX5/j+vVOrCyw1ZTRL0mFtuUS0FyGdPnG7yvuPt9neHiK04cnjA6q+z8r6CsGczzWalB4fcz2s4K0ETCYT7t0/Y+9wSJwlrJVdli+v42cxczfqrH39GqkMOXn/HsMHJwgMnzsp3iDm1uo8egRP/vX7fKQyUt8lljGOEXzqxqzGguPf+5gWgkGW8diHkRSs1ANe+XoL6Qo+vtvl7r02MksZRRaMt35xmV95/TLHZ0POTruc7nepNgJuvXqRxuIcFS9krDXf/ZffIz6asLbgI43A0ZpLa1UuXKiyurVCrx0jfJdJZ8Du8ZCsn1Aup5wph/tPBtzUio3FlP6O4v5un835kDSVfPR0yGLVZaeXEtYDwtBjfj3g0eMhT44e8drVRbTvsLHRRA/P8JVhxa1w/9OvWKo6hKHkynyJ/kShx7Z8yIzhwI1ZWarQPziEsWaxM6Ije4SLDdLP9nhz/QLt0ZBaOeThDz5/7o0VhuFUs8cmAwatZm4WQkOGmpoj2jLDNlzjzDZDDWCUmoq5lcvWjBLHQr5NZqdsswyg6AO5gNWHlkhSnc76WFlmhfI9D891cR0f2xy3EPEiK3JkYXZgM5mcAzuFKhht2Lp4mS8+vYNKNWE5pN8fMB6PqNUqfPjej3jjF76J45emTXzA9rGEOJcB2kxDK1tuep7NJBzXYTSO2N3bo1QpE0cxtUqNkh8yHI45OThgecNSfazxZvYMKVfn157E8bnXMoSx2Wsax2gn72+JGaK8yCg9IWZ9o/zwKJQri2meELmSujE5MFXi5hxB23S3v9OTs8+Gvyd40g/qmFRAOmEuqOB5DuOuon2yjyxXGD7YQ56MQIToJMGcTdAohPAResISDqtzAdWFAD1K0RP4/MMzjrOEi0pApsmkwJkI7j8+oORpTvxtrosSlcUaX36+w5mEoSuZjCYkSnBMwtqHj1nUHlfnqyRBH13KWHnrMieuy/CLQ27N1ZCNiGzice97P+HhYZc0kNbqR9qHUuKxm6RImXGsHDJfMMklIx4+GrC8EBKEEpUoGoslmq060WDC6sYCYc2l2ihTnquxsNzgyuV1WvMVXE9SDivIUoAXGS7cvMjRwSmyHlKJTyjXKxy2J8Rxl9ZCi6rnoksuD3cHjAZjFlOJG8I4VVzfCJlvOGQjcCPF6rxHphJ8x6PZrLC4XqG33eX65RqHexHDXkrZlzSbdWpNn+r8IqX6HO0vOsj2iP7jQ0qBS2cEqYpp1H1GY8V+Z8ha2cUvCXxZQg76tJYrUG8RtXuUlheIhjH97WOipwe4YRk1FvSS5zcGzgPuih6Jxe3kwD9skm8TqHM4If1s2WPLvhwfk5dVVqfp2WnQM9+pzZSo67nBtOd0ntYhsBMmWcjKuq5l/ucP5/mHPG+d5Ke8nJZ/YaWCH/honSFcDylHyFw4btQf0O93ac4v4VDsxbM+aBSfWdDPpkMA2+QOwwqe45JlKaPRiCiKck1zSb/TYX3rsoU5nBuxi7+R2dnP1yjy0bxWnJ0cE1ZKGOOhjSEILBn4/JTRy5vxtgk/U6WUUmKEmWa5UtjJcWEOYe2tmP0tOU9XyaWM/z6QgKi3jVteQOkUd7LLKzda3Cn5xMOEz/7ofdwUHiaKvqNpSthYaoJxcaViIXNpeiW6JxMSoSkthIRKI7dHzC8G1LYaDLsTDg5j9sioBB5JJjiMBH09xr8/JnIkqdR4WONGR2qUcRA3lxgGPj/5wRO+/V/8B7g+DM92adzaILw0R7RzSnIKXjXjvY+GDD2rBaVliudIfvVXr1CaW2Jyus+f/fAJg7GhVPF5ZWuOdj/CMYYf/fQY3xesXlnkX/zH3yEsV0jTCScffYArFLTPCBtz1JsN+mf3aT+8S1AOSdZXKS+t4FdrXJkzXK5Vqa6vEfzaG2gV85O//IoH93bY+X+/zAO4RBqN1AKVaUZxQGw0E1dxt53R66c0leHapSpODRzXozTO+PzzY26+vMygpxhEmuZywI2bc5RrLcqLK3Q/O6K/c0R0PCFTI1Z+4xYXfE02HrD/B0+gucyr77a4fDJm8vSE5u1FgpLk4Z8+QHVTNl5ZxZ0LiKtDTo9OKC3Uqaxe5vDRPvcfPmVUduA5fpRCCDvxmupA62eCiJmWK7Y/kTF7fZqtuB6+61gMTN4vcYXAKAXCWNExMZPKKEowO+b3pg9EERSnN31OnyAfhRd6P9JxcrS3wcn5YkJK68Ci9RT97OTvq9frrG9uQJZyfHrKaDTEd71cwjbi6aP7NOca4ITTUr1o4Ns9mGkWFaTZAodljGHrykvsP71PKQw4TBIubNnMqFop0+/2AP2MkmMx1jfaWlYV+1noKWlt8AOf4WBI+/QYAywsLuPMLyClFdrzPBvAVZpaiBNYTj7OM0MBYwy+LOAdOU6J84414LuO7UFJgZsfRArw/OcDb59fvskyUXdIEvXJhiMubdzkpx9uU19uUvmd1/BlyMpn29z54DFnjuSTJz2uC43wFCtXmxgnIzQlhFehvlLhi4/bbG6EqEnKnU8HnHmKzHExJmWj5pAoQb9vEMowHxkmnmCkDZ5r6GaG0lzIb/8n38Dr73HWHfPdOwnl/+VPuXh9hdY3XsGkXWRlDnfLw6mf0d2fcOHlefa2u3QmGYGBjaWQkgO+m9K49jL/4sar7H72KePhhN3dMbt7EeU44uW5CvV6wFqwgJOOiYcJSbdNdHyE1jA53KE2Xyc+SYniCUEAasHQ7T6h88Ej5KLAaEkQCNxeH+plotije9hFOAaUxEOQZIrUGGo1h2EQ0JkYhpHhdJhCji8dSzh8OiIDllVmYQqAeDSkE8WIVHHn4yGPvvQJg0NuXT0iK7nU6x6ZNlTnFxB6BKlgvJ0hah7rt1Yw5QSnHdA9m4AJqW5tcO07wuKCjCKLYO/LbWRzjh/92V0SbQhLDvEkI82ef9pNJhYyMJv8FEqIOWhPFlOdzKKdje1LlIIgZ5VboqfGYm0E55qugCtnzrnnG+MFpaH4v8KC6fzDXzR+Z3gpb/oewSzjmk7i8odJqZn8CELg+iX8oIxwIs5OTxBCML+4wNHhEcYYhr0+jx8+4MqNV8CoaRl0Xr4kzV1oi3We4hJUyyRKYyYTHCmpN5u0Fhfp9jqcnZzQOT1iZePStGStVqo59iqj1+9PM68CbxSWSggh2bpyJZetlRiliHNFALD9J8dxiLPMBmZnpslUNMPPl3rSGJL80AFwDEjs70mVHRYIk7ehcpzS+b/Xv2s9H6cUa5LJKckwJp5MMIOUDz454Nb1iAtXN/GaNfbaI6pIXAXbnqbeKlFfdCkFgvEEQqfE0WnEKFEkOmZ0DIky+EKRGAdXaRAul+c9SmWH3gSOdvo0jce8YzEQDwcZoRA0KgF132egHc7aCVoaTrTGu39EfWMZPZ/iDHvotkDUqyT7Zyy2QkTZYZgYlIJ2X3G8O2JFOgxSTbXWYvP6Vc4ePeGnPzvCMYqLeLz9W1/Dm2/RufMFajTCn59jkkzQvZToBLKx5rTdgwTCtTLx6QhZ8hgddgikh+P7ZIOYuOwwLvdp+FfwtGHl6hybQQsSnw/fv49Asr7qce1qk5Jw+WK3x2Q7whhliada541PgwuUtMPNtzapz9dR3SFr5ZDjBwfsH/TpRRknkeLRRydkQjGUgqoUUPJorfrceuclvMsB8vAI0ZpDxkNUdYBDSrR3jLm6TBwnDHo9iFMmE4GuNhAiY2mzxOPHQ6K+AqMph0Dv5986RcYjpRXrPz+KPl/azUCTOkcFC1s2KE2m1XQC5DrO9OFQuQUTQjxDrQCmjPjz2dF5HI59j5fz7gqkePZMeWlyIuv5yVNx+VMMEbY/VKlW6Rz1KZVsNtTpdKZTxlKpxHg0tMHBaBybckz3psgii+8oXjv/0JbCMoc7j1Fa0+t2aS0t47s+49GIs+NDltYv2q1A2LaysKWo7wdWUteYKdFYGYMnrESJwGo3ubnu0nmOGzDVrpLnru08bcjkUACjc2mX3GW3wDNBAeI8xyfkb5Zz/+713KB0dnyAiQ1/9eMDnhxEtM0ZqeszGMZ0n54Rv39A/2mPkQ8dA7FS7J8knHQTahnUKh5mNGLhkk+gHOaki3MhxHgpczspuh0zcQTrxqAexMi1kAtX61y5tUCtuYCsLmL8gK33v+TP//xzjnY7/PX3P6fRBIFCIjiSmhMDk5/c5/Vff41Ygr8+YbJ3RmmtQXO9zPJWid0f7zIeKbqDmL/86T7eR/ssNiu8dHWOfl8hheGNm4uoSUZ9f0LqpsSDA9zFgKwbcfjDHxEnQ/S+ZvWVC3iLdQ5/cJ+Ft5YovXUVlWn0CCYfP6T62iZC9Dh7cMz4qIOTpLTffw8Hza1Lm5SXV9BpwL3PnuKKhAubTXTi8LQds/eohxGSkhRUlCEQBiVcTgTMK8XlepkLb77EaH+H4PoSxqtRU2NubQUEep4nP/2SizcvUH5jA+bmOPyLO4weHPDoqw43Xx5RqzVo/Ue/wenDT9EqotxaoHprg9Yrl+idtnl0/4wnuxOOOl0cx8eXCmMclho+voFUGIyE+WaD+4eDn3vv2GzATEuRZzMYe1MWEhYG8uBryyKTBx6VZjieizIalWh8z7Vj5nOZUJGJQe54m2b4OXapuI6izJvJ6s5O+4KmUqCtrTLATP4DQJnZ73Bzz7kkTTFaU683iIc9ms0mSil2d/eo12vUalYmd9AfgLausDYrlM8Eu/P9rr9JzlVpxsraJvtPH3Lh4haHewekUUyv36PVnGf/6Q7XX30HsON4GyVsz65SqRCWSmRpRlixAMokTqa/V+UPv+NL67xsrLJDqVKe7psrnTzozKRQhNEIY0vBrMiOnMLjzpDp2WSxGCNqZcCR0z6iTp/fj3xuUPqD333KOFHUWz4bF0Ke3JtweTmk7nscv79LuBgy2CyxdwypVrhGsKc1jtLU8LgxVngrJUglnzzp0HMcls4yStoQas1hoHDx2CYjzCSbT/pkXcncRY/xuqL79CNCL+Ozuz0iR+GVAlxGHO5lHJ9EvPbKAoeHGadnAx6Ou/B//oC6F7D1O69Tqqzh19tk+xMyz+U3f+1NsnRIO5rwZ997ghGC/e6A0w8ie8Y4gq8vz1MJA3RoKDfqDM9O6Z3sYXbHDLcj1r51ncZvXEag2f7jT4iI6J4dMt+ZIx0FPP3j92l+8yJ//f0PKbuCd95epbwSkIwipNCoRFDRCqldosEZ//iff5PAkexvH/P5J0843e+youDdX3qVNE44HvV56dtvM9g7xMHh8KcPadZ93EGMxuPuX39J9zAmCg2//O3r+G6dzfEqw9IIp3OGPtxlcW2R8eNT3ry5jGM8VAKjw6f89Y+fMIhSLq61ufHWJikKo0bce9RlOEopVzxWLyyw++CEOam41HLZurKGl044PZvQnjwf0W0lLXKd69z6ungI7Q1uwXpSFqWBxHq+6VmpZ1vhOZfLITPa+ohlypKF80TJdV2cokTM+0vFg3XelqlQBChKNa2UzRSEtVVyXYsxOk/Ite89V544s2xHSgclDZ1+n3a7M6WmFKJmQRAwiRKSOEH6HgJBprNzlJNZhuI4Ti7DktqSKafcSMclSTJGozHlWpVoMuT09AzXCIJySBxFdiBvwA9tBqSzWSDxPH+6v5wrv4o9ka4z7XF5UqBziIFWM1XPAuHuOM7UstthdjCozIBrM93zQbcorWVeJlqFypmKwd8pKCUqY37ew/NcHM9Yp9exZtybEFU89voxR8MYrSUeEoxGOC6ONsRSM04Uc7HgYDfm2LXWLAdYAmZdOxhtiDEkrku56lDZapGdRCRnY1QqGB/1qF5bot/sc6E8h5aGlcUqzsjKta7PV7hzbw+dKYyAB45iwTGUf3ZIpeLRvLVEcsGnFA2YbB8TVjxCpdlYKLNzNMRBYkSKn0E51qzcWKd+dQOVZERfHIEP9WCVo917kBjqty8xPHpEZf0Co/02/kYJv+HjLi0z+nSfhdev895nO5TCgHJN8vhJl421Cl7FRwuDclxS5ZHtbpMmCfXVi4SNOmxI7n++TwXN5ZJP//ER7rrP7v4Z5tOv7M0+jEj0hJVwifZPHhA0G0yOYtzehEB79D/bJi3XmWRDuvsp3c6AufmA1Zdvopb3GT3tMh4+oSNgHEt6owitJPefdnFrNdYvBNQrEs8xSFewvFjj+nyJRvkiR3e2cRLD9a+/Rvu0g3dyRPjo9Lk3llJq2hsqMpWiiev7z4L5LFXkWUa6LQ/EtLQqVoERsgFCnivnZpMnIWZlUEHiLaR2z0+kZsvkXC5yhLKYZizFWNxOmmbUkOnET0gOD49AW+yTCAWNuTkWl5dwPR/T7lgVR1mUjc9mSnaa6KKVyRv2Ci8vDzGG5kKLsFJh0B9Qq9eZRDGT8Zi5WoNavcHB3lMWVtatM0wmp9dcqAMgxZSKU3AMi+8UwpKUp0GqCDpaW7x23gNDnNf6tp+nlcK2juz/u9KzFmw5yLWQ4i3+ZkU2KpAI+fco35aWAkqVMl5gHUxS1ecHd04oeR5V3wehSVWG67hWUVACJiPLeUzbGk46iuPAQSobJZXtWHLmCCuPqzW3XqrSG8OHj/v0owjXTHAOTokxeB89wXM9TnpDlqsB9+72aMdD5ueqdCcpv/VrFznpRrz/3gGe53EcZ/S/ekxFCpYe7vD6r71DsLoE7cc4iyVq/YRf+cVXicWQs/0zqjWX3sOIhYVFFr/+MiaLGT68R+SluEJw+KNHBLWQ+q1l9n/6ExbefAUZ1lh99zbb731IdXEReoqf/fUXPBrGvHy7hUhhGMfUSyHKQLcDc75L/4szksEelatllr/2DtKFTBr8UoUrNza5e9Rl7Z2bqMwQLlZ4dVzm4KP7eIlBzHmoRLD/xV2CRshop8vqSp35rzXJRpZkun33gNgVDIcZ3/7PfglnFBPUA179za8xPO1z9ON7TB7s8tQ3ZBpcR9BcrLC33+Hu3V1cPBIUt9+4yFY9IG6fcnFriVXvItGDQ5go5lcWadVa7P7ZHz33xioY9r7vT5HXxmjCsIYxs5s0ywxZNmt+Kp3rHWkNnme1laaBwcywMcyQ0MYYdGqR3DOSqf28UimwIE5T4HmUPWTzzKHwM8MYlM4F8/PPLsT8CxS6lZe1JFshLBZHG3B8D9ex4ElHuwx6fZqtFsPhiLlGw2Y/2ps2tQtiqkDk4MbcHhsshUZboq61o7KlWLlaQ2nFoD8iLNdIdUaWJfzkh3/Bq6++wdrFa4goxvE8giAXe1NZbn1eZEg5VipN86ArLZwrB6HqTOXXlNt751mNUBqlrZGoVgaVZSgp8UzeoHdthlXsuePOhhBWgVIgC01xY0jV+QPh/2dQKpVdSqHA8wSO0Xg+SKNwlMDRkpJ2GDqOxfQjMCgqFZeN5SqVlk+/PUYbwfGTAUhhfbakRZq6WqI9SbXkcPFCg+9/cMooSsFYZ1VXGKSRJJk9PXxHcjJIWCy5XH1pEQdNfWEOmY1ZTASv3VjArfn0umPu3ztDKMH2OMP73se05usEcQrdiLpjSM0+aRwxnkQMujEOHsPOLvPfeg2pfVINUg6JTiP8movXaNLeP2Dx5QbVuSba8Wh/toO3VsZzqgzu7qGyFOEodh/2EIHDxa0Ge4cjuoOYbn/EN167gJcZvLUKc9cuU2uukGQRZmLoHbeJhwqjob93iuqOoHSZs9GAODPIKOX0VBPVBK9fqNParGEqDT78oy9QtSbacVislFi53EAYzeHjPo//6lPq9YzNSpk4HeG7LoETUFOaJLUlQ7kmeee1dUbjiPGkysHRBOF6bF5cJfnqIUkWsRJWaLxxhcnaEslYMOwOiYYRa9dW4bT7c++dokwoGs/2YbSZj+ueF6OfNXiNmdEQbOnhnXvfTKpW59mEPteHKdjuBb3iWTpFkSWdI/E6s9O6kFcxOWBIa4tn02mRkbnTUstodR5riTGG5lyLfveMMCxj8mZ3lmX4no/ruYxGQ2pe8G8JCSml8+BTyH9gG2zCwgdUlqK1BY8uryzT6/UpBWUylXF6cky30yNLFB+//x7rF6/brLBQ5ySHOOiZQkGhyPA3pVqmkrz5/imliKI4N9TMtaDy7JMCOmG0bVyLZ8XrLF1HokxBjLZlrjbK7peGQj/q563nBqVqWCIo+WRxTFAusxAGvHy9wUsXa4w/PmXcSUkdGMeKntBEwMQYDvbH/MJShZvfvE6kYGVxl/c+7ZBNINUpdQM3NJQuzHP3tMfJyYh3Xmnihz7HxxF3Pj9FKwFG4SuXTGb8yrsrLC4GlBpreNUqae+Q5PM+petLTEZnbLZT5Bws9B0urLdorZboZQqnnRGFKeOSIsXwxdMzqltl9g8ihmOFMSmOHnNjEpD9T7+HYzJKtTJLv/02k9oZk9OnbEc9LtxqUZpvkcaGg8e7pKddakFI56szzLrh3X/+i3xLjBklLqODA9p/8YQsdHB3Rrz7H76OGgkG7SNWryxRTUskox7j01Mqi8vU6w26n7zP11arhN+6ygd//FMW9r6g2lHEWtBfb/LqpodwXPTjPrVfv4VbafAL3jy9zx5zdnhKciHCL9c4uHvG8cRwzRnT/TLjR5/8OWHF5Z/8s7cZHh5x7Lp4nsb1HOYCn7LjsXhlgSjVXLww5mS/jZwM0KGDE7kMjnrQn5BFEZ/96CHesmQySHjtm2/Aj+/9/BvLdfE8b5olxXGEUjrHBBVoY9urKVDBQggc15nig4pehu1nyGmPyPc8pOcQJylZmqHzE/l8qQUmBxqSAwL1NEOTUkwD5hSfpDWgcjS4mUIDrJplamV8jW0m27Kn0AY3XLtxi+/+/u/iex4b66s0W02GgxHj8ZjS2Rn1uSblSg3huCTnPODOc+uyNEMCjutMM6o0jhmNRoDB9wKGkxFZktE9PWU8GoOQhKUSk3hC+2Sb9Us3pzy2olRN0wQhSnm2553rZelnXE4kYM4hrx3Hvt8GcoWT89xcIS3HjZkuUhHibDBkiiZ3HAdltCVDS1tCFkj5v3NQCisuJo6olBxcJ2FlXvL9H3cQwuO1r2/RvrNLtJ+wtV6h2x9zb6gZa0N/pPjRB/t8p1HCL7lsbq1wdpLy1aMeN5Wm5Xlc+U/fIE5TNuUGjx4dsHrjNjv7fUajJ1y6sUS51eL+z56SZjG/cG2RL+9P+PTOGVJ2aNYcFpeqxIniwihCV6q03loiloKw1kN7kt6jE1Y3FjlZdSh1x5QmI54edxhqOLg7QrkpqcmY1x7XYwE+bP3OmySTLpQaREc9RGI4+fIYZ6uCzsZo7xJ/+r/9mPLJCa+9+yqltSXUUZvKrUv0Hz+l+vY15k6HZFTZ/O0W3tV1lJGUdcaH/+Mf4EuH8kaVLJScfPA+i1evkB5OcCsenhEsXN7A91y2AoF8MJtYo5EAAAHKSURBVOFktcm1f/oy5e4Z5YUG2XBML8p1goRLfDSgdn2V+devMzzapb41z+rrt6j/3ge0JxGXXl9B//SANEnpfO9Txg2fegDlbsTuKONoMub//sO7VDyo10LefH2DaiNE6oyPPu0yThJ+6dubyAcD2tuHrFwuoVPBXEUwOTp47o0VhiXsoLrIWmb60FrbcXimMqSQ00AEBTfOlnDGgONYgbaCBOo4Ll7RAxGSTGocz3q4FUoAtmntTUu5WfniTgMmMG2IF6+HYWn60BYlVpZlecNWTgOqfQKZlo9CBFy+/BJJMiROUk5P7d5sbW7a63GkNRQwWMkSk/dnnJk6pW2wS8gUpCpHPFhYwY3br/P5Zx+zv7dHtVoljiLm5pp0Oh0q1Rqpyvjizh1Wti4jlMSX7tRwodiHIlC5rovrWtXSJEnwfZ9A2Iw00xpHClzpUqlUiaIIY3IzSW1L5EzOgpEb+BRk6WmLTsrcZcU6BNvgO6Ov2Anh8zMl8bdhBl6sF+vFerH+fa7nh6wX68V6sV6sf8/rRVB6sV6sF+sf1HoRlF6sF+vF+ge1XgSlF+vFerH+Qa0XQenFerFerH9Q60VQerFerBfrH9T6/wCG3iigI+gOxAAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["s2 = Resize(224)(s1)\n","s2.show();"]},{"cell_type":"markdown","metadata":{"id":"usS5-umF2K_F"},"source":["Here the `Resize` transform is applied to each of the two images, but not the Boolean flag. Even if we have a custom type, we can thus benefit from all the data augmentation transforms inside the library.\n","\n","We are now ready to build the `Transform` that we will use to get our data ready for a Siamese model. First, we will need a function to determine the classes of all our images:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wtXDf5lX2K_F"},"outputs":[],"source":["def label_func(fname):\n"," return re.match(r'^(.*)_\\d+.jpg$', fname.name).groups()[0]"]},{"cell_type":"markdown","metadata":{"id":"8ovOjcBw2K_F"},"source":["For each image our tranform will, with a probability of 0.5, draw an image from the same class and return a `SiameseImage` with a true label, or draw an image from another class and return a `SiameseImage` with a false label. This is all done in the private `_draw` function. There is one difference between the training and validation sets, which is why the transform needs to be initialized with the splits: on the training set we will make that random pick each time we read an image, whereas on the validation set we make this random pick once and for all at initialization. This way, we get more varied samples during training, but always the same validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Zk_2xf7S2K_G"},"outputs":[],"source":["class SiameseTransform(Transform):\n"," def __init__(self, files, label_func, splits):\n"," self.labels = files.map(label_func).unique()\n"," self.lbl2files = {l: L(f for f in files if label_func(f) == l)\n"," for l in self.labels}\n"," self.label_func = label_func\n"," self.valid = {f: self._draw(f) for f in files[splits[1]]}\n","\n"," def encodes(self, f):\n"," f2,t = self.valid.get(f, self._draw(f))\n"," img1,img2 = PILImage.create(f),PILImage.create(f2)\n"," return SiameseImage(img1, img2, t)\n","\n"," def _draw(self, f):\n"," same = random.random() < 0.5\n"," cls = self.label_func(f)\n"," if not same:\n"," cls = random.choice(L(l for l in self.labels if l != cls))\n"," return random.choice(self.lbl2files[cls]),same"]},{"cell_type":"markdown","metadata":{"id":"qMn7iQ-R2K_G"},"source":["We can then create our main transform:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QBFKElXH2K_G","outputId":"d172d48b-6d24-4dc4-db96-e77084a88c6b"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAASUAAAB6CAYAAAD5yEXhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy8d3QUV7r1/TvnVHVQlshC5GgyGBsMmGBwwAkb5zg2xgmHcRjHcQCPs8c5x3FO2OCAE8YkAyaLJJKEUEAoZ6lj1TnfH9Vgz/3W+F3vrHvf63uX9lq9pO7qrj5dXWfX3s+zTwtjDG1oQxva8EeB/O8eQBva0IY2/BZtpNSGNrThD4U2UmpDG9rwh0IbKbWhDW34Q6GNlNrQhjb8odBGSm1oQxv+UGgjpTa0oQ1/KLSRUhv+fxBCtPzmpoUQ4d/cv+i/e3xt+N8N0RaebMPvQQhRBMw2xiz5nedYxhjn/92o2vC/GW1KqQ3/1xBCPCiE+EQI8ZEQohm4WAjxvhBi7m+eMy1BaIfu5wghFgohqoUQ+4UQ1/03DL0N/wPQRkpt+HdxJvAhkA588ntPFEIoYBGwAegKHA/cJoSY+l89yDb8z0MbKbXh38UqY8zXxhhtjAn/H547FkgzxjxsjIkZYwqAN4Hz/+uH2Yb/abD+uwfQhv+xKP2/eG4PoLsQouE3jylg+X/qiNrwvwJtpNSGfxf/sUPSCiT95n7n3/xfCuQbY474Lx9VG/7Ho82+teE/C1uAU4QQmUKILsCNv9n2CxATQtwqhAgIIZQQYqgQ4sj/nqG24Y+MNlJqw38W3gZ2AcXA98DHhzYk4gInA0cDRUAN8CqQ9v96kG3446Mtp9SGNrThD4U2pdSGNrThD4U2UmpDG9rwh0IbKbWhDW34Q6GNlNrQhjb8odBGSm1oQxv+UPjd8GSyCBrXihBQNkJqlBKARPiAKLgaokaBcFAoLOEgESghcaRECINPOzjS4rddPmE0SAHGxjEu0oBCgBG40kFqiVQKIzWg8RkfrtS4xkEZhSsMaANG4hqNEAIAJcHbJBDSRSNAG6SUOHGNkt42qQA0AhuDixACvy/Bz0IdHqdSCmMEjnCxjCDuOgT8Fm7ce40v4EMgcV0XI7z39nYhsfwB7GASwaQUhBB06NjJG4eB9IwMjBQILXBFHOO4uI4hHosQSAoiHI1jNJHWEEpY+AJ+pJ04hkJgjCHuREELpAShBaGWVpLS0jHSW6zvxjXReAQ3EsMYQVJSEloKbCGJOnGENqAkUkpwNaFYHAtBKBbG0hJpCZyYi7YsYqFWmpvqcFyB8geQPj+h4gKME8aWivyalsPHrGvHdjSnhBjcL5X6aID4wUpSOim6Dp7GtJMs4sGjyF/5Lm88sYtBY2Fkx7HsoJHP/z6LR+95ntaI5sLrLya5fTvOuOBOAllw7slDWLdhPz8+/zZXzbuR8qYaZl92E189+RE/lBez+YeX+XLVJ4zvPJkmU80bi7/gyI6jGN9jGFc98waR+iaceJzWRoc7/nYidn2Yq/98I4W1RWzLXcXGNTuoj1dz6vjL+WT5Ak4cPZmXPvieTskpxBtbKNdNJKdaNNSG+O7rL5n/48uM7ZPNCw+s56xZU/nsm6+Y//zPDJzUHbcmnb5dHQb0asdZl5/HL4s3cuWcq8jdsJg6y2Zz3iZ27Gxk/YZ8jj9rIge3bcUfaeXe2x7l09w3+GVpHvc8+BgPzXmcqtZWJk0WXHvVDVx++UtYqpXtqxQzrmlHs9XMnhUh3v54Dnef9iV74mVsXvYtN9x3J7vL8ulswmR0aE+VaeCZx+bx98feormmiZkXn8bZk8/jxy++Y79/LW+8sZbChcvoO+V4enVzEIEAvY/qzZb5Bzj1nAlMvnQyexbXsalgPq/O/ZmbLx9HQ2YTRx1zPO+/8QnnnnMha7bsRYhGkivS6HPEYHqc3p5Xb1+AlWVTE91HhupOwcYidB/FETk5zJx1Kjce/4L4V7yj5s6d+y9J6aHH5s21pMLRBlcb4q7ANQYnCnGtcdE42kEbgYuD0RKEIOqCMQZbKozHBHh0phBSoTVgDMIIhDZIpZAIHOkitQRl0I5GCG/SGAyWEThGYKRBGDAClKsxUnr3MSBBSAthDBwiJwwagxYCicRIjXEB6W1TAoyU2IARAqTElXhjFxJXaKSUSA1SWlgShBIoqRBSgAFhJGCwELjSgPHeU0mbQNCPzxcg4PfhCpBaYyyLeDSMCiYjHZeIq1GWwm/bSGHhaAeQmHgMbQm06xB1Y1j+JJL8ftyoIRoL4RcWSiikELSEmhFIAoFkpKswjusddyNorisjEotiJ6UCBsd1ka5BWAqpFE7MoaWxFtufQjwSRSkNAT9au/i0wInFiYXCRMJRUDbpySm0VBYjDRglqQ/FDp8znbJitMQVqX39nHbqOJZ/vYfW+jgPP3YvfTIcSg4epDhvLwfKWgnWCujYyPSpk9GpDYzoO5EXvv2O8ceNJBxvZsa0QQyeOZUkGhjVrRuTRvTjlRVL0AegQ6dUfli1haPH9CCnVw/eeOFTjj5lKB8v+BpfAMaPGkd5vImcdh1YtmIbxvVR73c46eSBqJBk+b61yFiAx2//gCD1VBiXvC1ljBubzdNPLSUcaaW0qJZpJ0xl+LDB7N+/F59M4ofvvqeuvohRg/rz4gvL+XrRKtykCL17t7Dw63W4JkBpRQPp7VIJOBnUVa6lZ88hVFXs5/s1qxhw5Hh6djIU761k6nGj2Zm7kX59uzN4yEiS0qL0OaIPS5Yupuagn/ZdXEIyRP6mZkrLG1AByd33XkRSph8n1Ex5scWE8dN487NF2BGbHZuXc/NfL+Suv/yVlMxWOnT3s/rnYk6aOZ57bvmC9B6K5gPNdO5tyMrOJBoq5JwLZiObyklKTabVNHLG+ePYs62AxnKX777aQ6yhkszkKMdOH0Fu7jqyKsLsDx/gqDEzuPbC61i47DNyl+2kpbWO2vIyquJlDBo9CuW6zJpzGqeNGctDj33HzFlTuf+iq6ipqGNw764M6XfivH+LlB544IG5RhuMMbh4ykgLMBpcI9BagJFICdrVGAFGSDSGuOPiuBptJBHtEnc0tmWhEuRhXO89XCW8k9sYQCDwRJCQCSJ1QePtW6MPqxHjgk6wk8YjKoREOy4oiZAeaXnbPNKLo1HGIz1PXSksWyK8l4KwEXiEJ72RYrTBRF3wC+8RIQDhrbEw4GLAaE+9uAI3bgiHIzgxh0BSgIAdwAoG8AWTwXVpbW2iefcWnLpSqiqqcJHYto1MjN9nB9DG4ETCNDY3E6qqwBzYjVtVQmNZMY0NDWhp4RiDsC1QHomFy4oJFe2itqkR7bPx+ZMwQhOPx/HVlkN1JY2l+6mvPog/syPReIyWhnpwBPV1tejKg1Ts340vtR3hmCbW0kJzqJma0iIaGurQQuIP1eOG6mloqIWYiy0lrjY0ROKHz5mPF99NUiBI7qZtLF+cx4kn9GffbsM7iz5gyLCuZPmaGTtuGjt2bqJDlwh7cmPU11SzYP5Kjp7SlytuvIS6ulK+/mYl6R0kyQfKaAlFWfH5ZuYt/JT6/Bay+6ZyzrCxfLlxE9h+Bo/qjb86Qs/+A1m8ehG9Wy2sQDtWLlnFxXfN4YJzjmZ7eT5zLj+bV17+mCxl8/HirfQdIDl2/BAGZw9hT1MDQ3sFqC5LZW/ZQXw+w9gB/dl6oIQDu3ZwYE8Lnfp1QdGLaFUzJ50xnB8X5/Pd968jwha9B49mzaKfGJnTnp+Xf8PVtz9L3+5JbNyzGxoruPepDfTr3JmrL7uQfSUHaWpq4b13lvPlJwvJ6Ozw9+dfIWTVsGlFMb1H9KAkP4/vv1jM3vx8LrvgWr788lOCSnHNbRcTlDkM6zqUc2dN4ot3l1FaUUJTjaEoXk9uwXIGZqfz2DOfMvWE0az/vpSJU0ey9OtNWKkhunWCwSMm8P2yhWzatZE/nX4t+5qb2VK0k8n9RnLxCTdw1TUvMn36cRx/ZgfWbm2lPtTM2eNOIXfDdwS6dmZXbYzVyxYy8sQhDEkaQ5G7g4FHTeGoCX0YP3Eay1b8xIi+R7Hio7dZ/NkvdB4aYv3iUp74230syPuYVUvWcsnZt/1LUvr9tW9G4uAiBBidIAljcI3Em0UJu6Q1AgUY4trFLwSWZWOMR2gYC3BpjmsybIUxMTxZo1GuAHFocnsT3SjPdgEgEwRiJEoARqFN3FvO6UqM1oDwCMrVSKE9kkARAWzt+SoDCFejLRCOwSgLKTWu6ykgKUEbjZQ2aIdQLIxxNU5cIy2LVJ+NEQqMQQqBNJLmSBQhBEmWRXMoRjwW88ZrwBKSWDhCNMUhoMHCEEfiVJTQwSeIGU1aqIHm/Gpaeg8lNaMDB0uLceIRWhrqidbVkJKSRHLcoUEIoq6LMQ7xulJai0vJ6JxNTXEZUVy65PRA6Rh19WF0fQnR/EJSMjIJtsuktbKSSCSCcfCsrglTWvkzMdezpBqDVmAj0VpTvnUzQgi0EShpsITEBWhuAm3w+fxYxPAZPBvs/vMps6W5kR83rme41ZN9OSWs3FCMTJEIN0BaVpgFn6/j6EkxKqItBLpnMP2co1n68WJGXzqYWL0gXhVhz/oC8otLeeLK27n+/jk0hdJoCafjy27hz9P60m3cLDYvXsSyb+7kxW920yM5jbpJx3DV44/y6u3n0xTqz/ljcug+pgczh1/Mw69fx1XnTieITbw1mbe+2M2QMR0YOnIim5YsZ9N3G6nJFDR068RHH23nulOPZk1lPZffdSazrn+YWK0mK7M9GfEUqlt3M2hoOkEV5NQJw5GBIDl9/KTqVCaOGszQlB6cdMIkOk/VXH3RBE64YC2vlO4gf8n3nHDDuZRXNFK3p4ULZx/N0iW7yN22gp/XbaasqYXZx05kzhUzOG/ybBaseorLrzmbyqZqGsvDXDt7Dvfc/w9ef/dtbr7kFkpqt/Hkky+w6LVNHH/+CNxBqZxx6cXMX/AE1895jeQsl0tOvI2G/e0oL2zm/NOPQ5sf8QdjRJWkuT5Ivw6Tufqya3npxSc4/+STGdt/EEVrl1C/dTMT/jyBB6+9mKqySoaO6sbynzZzRI9pbC/M49bZ13HpnOu4Zc69dOrZi6F9+vHB+wvo0rE9k09tIq+0lFjZGgZmd+e71fkkpyhGntiXGZecy+sfvMhtc+/6Xdr5faU0b95cjEAgEUJghPaISAiE0AjjmTIAkSAPpcEohRECx3VxHQclDQhNEhLhl7hxz84ZJEaQUB9gXI0rQXk840En+AuvhoSIY7REIIkZF0cYNBA1ns3SxmBJ6RGqEyeOwTEarT2LJIzASInBxUiFJQVCeEOIOJpYNE405hCPO7jaoA24aIxQSKk9YpSCqOPS1BImGovTHI4Scx20gLircYFYQl2mpqZTWnaA/fuLKC3cT2NTC5XNYcqaIhxsjtIYjlFeUc6B0iJqiotorK4l3NyK1prGUJTGmEs47NDsxAjFHSJxF9dAqLoOIT072FBbTbgljHEhblzPAsbiNNfXYuIuOmGnDQZXeBcWLAlSYDBIJYkb7T2eUIEJ/YljXM8Ka4MxeIQsFHFtCNiKprhLKPrrj042ppZw0/XnMv+5H3h22W2s/zqfiN3Ew6+dx123f0o41srOvH3U10pSc2L06hJjU34T+esbCFt15HSRrF+1i6qow7KN31G1z8dtc/9K2d71NDc7FO6s4Pqr7+DDFe+T6T+C7PZJvPbq6xTtyCOkw9TvKOTq2XNIcwWr95Wy6oet/LRkI7m5O9i2cwsTTp1A3rZ9ZHeX/PjmCn7JL6G+XJOUncLkY/rQNbU9Owp3k9IxhaNG9eCnFesJVTl06ZTM2N6j2HOwkJNmjCYnfSRHjOzNc+8uINUvMS1lbK/dwcrctfj69qCLjtLqs7j4mqupqSpkS0kpabakQ7ZF54xM6p0KFi/cQ8+MVLr0z2LDln0UbdtFZW0r+4vLCcf2M+PMq8jPL2TDxh2EquspLQ3Re2A7Bnbrx5ZFeTz8wH0MnzABFehAVX0Vd93+Z9av+pGUrA6cfGYfLr/4foKp9YSamzjlxFE8/9EaGqsinHbcuTj2eu699kke/MfLFBfspLy0gJwuvVi2dy2nT7iJp/56G6ZXjEVPfcHAjM5kd87g+b+/QN+JA1iydD3nnTWT8gP1hN1yFq/ag26C+qIoY8cMIbXrAfyVHZlx/Vg27Cpg0IhMCncUkdxVcuqx03n1vc+4+sJ/rZR+t/smhFcUNrggHCwMCoVIeC+JRgiPcFwNruviYhBxg455V2KfrZDaEECgpUFFE/UHoUF5xVYtvPdCSm9SHFJfQngFcdcr7grpYrQiZlzCTgzjaE/1JAjOdV1cbQjFXVpjUY+wtIvWGhdD1HFo1Q5RxyEcM0RiYeKO90l80iYe1zTGIjRHXcKuIBx3CTmGeFzR3NJKVX2McCROVWOYyrow8ZjGiRtiBmLaJeK4RI1Gu57VbW4KsWvXLhqqaog3tYDj4LousbiDcVwcDGFXYaJxRDiClt7XoY0gbrxjonGJCI3RNkYrT9nENI7yCMjVIC2F4zhEjQtGYbSDY+IILdHGO4behcRjeq0ExvWIGrxjbRJ1OoNMKEuBY7TXfEgcPweBiUdJEnF8AuqjcRznn38Fd/s3FTw87wX8x3Th3pGPMflyybwnz+Ll69/lkstOoz2Sh+deTicrhcmjh7Hxp1acsKElGqM2FOWBp75jy8ES6qrrMLafba2NPHTDzRDL5Jxxp7Ct0dAxYyhHHnkUcX85u6tKyBrVnfKyJnr5exPN9LNkxxeM/tM1tIQ1VQcilJbGiTdISqslXz73AytXPMr06ScS6uDjmmvH0NAsqD3YyEsvb2Bd8VbSM3pR7dZz6Z/+zhcvPkXXvpn0HpnNhm1LCVWEWblyBxv2fYcdMPy84BvGjR3F3toWCvY10DG7F/t27ievOMyzTy5lW+5Szj93FtdccSbbdm/muRc/pNPwHmxcUUtF8Sb8PWzmf7ecKy6exDNPf0I82MBjj5/J+6/tIlsNZuJxU4ghWfBVAa3+Ft548FJOuOkWos35nDP5EiYe1ZPmcJiD2w3zv/oHTkxw+qjpvPX2er768DUqwnWccdJ5vPDkGxwzJIsLrp3GZz8+yOCjR3HWBecwZlAnPv4wn1hBHc1OK7t3VTPw+E5cc/vDrPxiN1ECDBkxhtS+OQT79+TBOfO54rw/8fgrz7Ju1x7qKtIY3aMdpAgumTmEnKTeZLQfyjFjB3H26S+QEfNxwbArue7EGVw//SKC7drzyru/r5R+l5Q0xjuphUIaifcDghojRcLOSYRxUQgsXCwhsfDIwy8MlvQK1JaUgEQa7U02AwiFcgXC0RhHE3UcYo4m7jg4wlNdxhikSYgmoXBcgaO1d9XWEiexv7gr0K7rEZfxOlwIhXYNDhLHNf90iyXqZHFX0hiJ0hyO0hRzCMXiSFd4JKwdr0MmDYY4YKGNQ01LFCfseErLaxh6ls5IFF4x3dNKGkuBJZRHLkokyFERNxJXWAlScDBC4SAQeM9FaNCHPg9IDBIn4Zi9rqYxBuNwuKsplUf0Wru4eN+PIwxuQiW6xvxKPK72jqtIqFwjPB+vDQIXTzR5hXsBmER9T2mXqIYWx2BJTZqAdPufKwCXX30qPXUq4XA9/mEdiGyJcOWk13j5i3/wy8odNPsVjuvnQIUhvqee6uYQE8f2p/OgAPt2HCAaDdG1Uw+mTZyAiFrcdeckaBcka4Bm/86tRCMQcsuwbUk01khDrI75n20jFHPIyytkxLGD2fjNDu666gyMMfQbBau/fY/bzjqWc48aj9vZz/DRdxKs78HZY47k3RfXMXvOTEKtkiefuJ2mujhbftnJjJMmMvPsYzj6mOsZNd5HVd0BJpwwhPSB7dBxTXOjnycfu4/Fix+mOaQpLi6mrLSRHTU1xLQPGUuma/dU8guKyEp2efGVZymosRmQ04vWJpcdpdsobilk4U/fc9aJvdm0bi156z6nW7sknn15ITFpmDr1dHI3r0f5LM455wSWLHuE4cf9hdN7Z3HtjVezubKJGhHDUY106euwu2AD+0saefPb90jqBDsLVnHLxRdx5XW3MqBTZ8KhKCOGDWLayZMpORBl2cYa9hTU062vZEvJQaq15qrzLmP9ykpGDe/Dts2F3HvbvTz7ygLWbFpDjpPMuKO7MP/dR4i0aDqmJNGxq82sO2/E0YaVGyt44oVXOWHcRFaWzads5zrWFhWy6JsFPP/FGuiYTOW+Rn5YsurfJ6WAMiQrQaqt8CuBkmBbEp+SBGyBbRl8EnwY/ELikyAtiZQCmZjQYFASLOG1/S0JTfE4zbEoTa5LsxOjNaEeXOPguoZQLE4sQTKuNjiupjkWpTkWJ6wdXAEaF52YkMYYdKLQHMezcYcmq9AGIwWHSmIcfs2vHclY3KW5JeztR3j1ICnl4QK8K8AcUocGHOGRpRYc3u8hFeIRizr8VipRGrNcj4yNq3EQxI3GuBJXe6TpOgZtHByTuBggPBLV3i1uNDGhMdozVl43IGGnXY+8fMbCUgZLKmxpCAqDXxp8SuJTAkuBD/AriS0VfukQkOAXGh/ae1xAQAkCSnjfrYQgkoAEn5BYShKLa6ojDrWOIWL+uahUVV3CWX+6BKc2QnK7ICVS0sRqHr/5QboaKNntsiQ3D7+/kTWbShjaP4e1ebXEOkq6pCSRpByyWhwuvmQGTqiBHqlh0vv5CbXG6Xi0n0BqOxqaC+mULPnq9SVs/HILPdLTWPL0o2Rl2Yw/Yiy33n4FP25ahjTQBAzxRdke6MmH731Pn6Ys3n9+Hh+++j5PvvMzUeCdT75CKcXWX4rIah/A7hZkf94qlr33C9lDUzmiZzIDsobz5dotjByezb4dzfztbwvpMHAEq3PXkpLqcNzkqdx581wevnUO04aMwtSFGT5mDMs/289Lr73Kvvo9pIk4azbXEdq1ibir2b2vgplnnkrX7CxisoVCO8LG5Ts57sgRfPDS9Szb/iNFVRGCyubkOT355YX3iLS4PPDC4zz/3nuMOb4//pSeXHj+IN5480X274tx/rmXc+11Z7H2nQ9x2rlcecXztCOL9zcXEQ1FmXXJcyTb6eTkdMekxSgvCxAXkp37Isy9+yGuuPAKLrl5HDF/Dhl2R/7y+G2sKypkyskz6DyjPZuq6vjgg/0kqUzOPO9sqsoUj/zleZ5/6h6+Wf0Sf5l3FqE6i9x9TZxw9p+YOXYwezeXMnSo4o4bn2Df1ko+eWvpv09KAGjtXUGF9CarMShjUJrE1TZhu6RASonSXk3oUG5HSW8ma6ETdSeDwlMWOC5CC6Q2GEvg4pGHlN5EjTgOYSdGxEn4oQSZCG3+iVQQGiGURyra64ShvAI2ePsDjWuEl4fyPpinNrRIWBOT2OZlhDxS8+ypIPERjUZKr2itJNgCFAaf9IrCSoItXa9ArLwJreSh7Rq/pQlahlQFKQr8tiGgNEk2BGxDkhQEpSZZSdItSbIFyQqCtiBZSYIC/MrBr8CvICAhYAv8CpIsAUojFfiExi9AIrCkwBYaO0E8ttD4pJfdwkgs6ZFUwLLxCeWNVcjE7TfZKy1xhPe9A7gIQnFDTeiff2WiuXY3Dz34El2y0yksrWbX5mo2FG0lJbOVXW49Vau+5JZTb6BLShZVEUlhaSHtUiTXzLkEma2YMmUEVk0NFXHJmWcPJ719Gtk5PrbvKqIsrBg0sgdPPf0YqYFszrn8Dg6UN+DUNDH79QXEm+M4bhlzbnmaKaeej7CSIQRvffkC27bP5/y7TqOso8WGTT9RWNbK1IlH4Na359iTOjGozxAWLvkQK6WVjM4uMVz6nHQkZ56YzWN/KeeL+RtIyWhmbcF6pp5yMv27wLI1u3jumZV8tvAt+g3uxotvv0FLuBlpqghm9WTLjyvJ6d6Ozr164oYctm3ZyUWn9OTimz/h51cX8uiDt9EtsxvLluUztH8Sy95bTMce3RnRZQY7S5rYvuQtvnn2VQJKc0z3AXxTc5D6KITLk3jm/dVUl5WRbXyUVxpW5X3DJTOGkCpKsVt8LFi/k9V5Owhoi/ySGjoGbOLJ7Vix7jPqamrZvHYLE7slM+OCSYRbHLp2zSJoK1rjyaxcuIlIlxLq4s3Ux2Pc+dSVJEk/cx/6nnHj+vLKm/Nw4o1cMmIM20r2k9qpK3de9wiPPf0y3dr34tPP3uLu2Xfz/YL3WF6aR/s0iwNNaUSb07nhqofolNnu3yclr7gNYDBGY34TVDQJCyERYLzQpNeF0yA0dsJ6OGi0BiEUAi+MKBPBSik5/NcWAltpLOGpKmEJzyYqC60MQqiE2jK/jk16hKIQSGE8a2I81WGMQFgKIz1VIxO1XSE8YpISbCmwlcBnCXxSIJWXrbIsiaUElvIK4ZbwIgPKkkiBpwITfy0lUYASnmpUJGycUV4QUwpvcidqOraSKMsjeL/y7htjkIfrap5di6KRSiCl8ixhYgwikctSwrsQ2AkL6eXCPLI/bOmkRAmPmA7dpLRwNNgyil9JlCFhrzUuLkYIlPAuHiZR1FfSK3ALIYhLQ0z8Sv4S8U/nzEMPP8z51/fBaQmSk92XC4cNZkPBDvqk9+eVt19kfc02Xn//VV58bwHDRvWkk0gh6mth6dtfsbXZYcVn23lv+QJKf95Jt75DOVDQTNfkFA6UtbJp8R4mTp3CilXb2VLRREpSE7EWsDLhk6fupCUnyM7V5WzLLWHfngbaZ8Tp7s/iYFWcxjrJ4o9WMrJ7Eh+9toaUHjGE7VB/sJGCzQ2ceXkX3r7/cfplZbN/bwNXnDGTc84dws8/FpKc7cfxG9xoELdBEmysZWeh4spZZxJXFn2HTOGOu59m/dereeu1jxl52mgO5BdSF/VTL8J89ckaCnZEGD1mDEMnHg/Kx42zb+Psk04mIzOFrt0GsXNVmD0tEeJCcPW980iJ1RPs3Zk777+Lp267h7sfeYn2vg6Mn9CNxYvf5e/P/ImTT57GwnXrqSxt5In7vuW999dxYF81l130EJFUl/Vrd5LUO5uGesjp3I6dhRUM7Ho2nyxYyvsff8/G/a3ceP0VDBJmWDAAACAASURBVB7Zn+vnnsaBqhD9BuRQmxylosSlQ5cunNBnEMN79eDUi66iX/9Ufvx+D6eefjcNtfD27kUcP3UKDbU1ZKZLFr2yhPGjL2bf3gaq6qsZf+xUZkw8nb2tPnJ/ziOrnSapeynz5t7+75OSUgrb0iAcfIDtClLikm649PX5GJuuOK5TkDN6JXPugGTO7unnnJ4pnN0vk0k9khnXMYn+Pk1HqbAdQ1wbtLAxCVUllUAphZIyMbPUYdI7lPK2EqSjhcZSiSkgDEoaj8gS9Q4hvMnDoRqO1hgnjl+phHKRWMpTPELqwyShDnUNpUEiUQkSOWRBlZAeWSGReOO2lcASHvkoYZDCIIWFlgqVIAOf8ojSn5AalgTbUh7ZYVDKIwgjvZqbEAKhvMS1ERJbSI+gFQT8Ar8t8PksLMvCVhJbSXy2hZSCoG3jsyx8yvLiGLZAS29slqVQSmFJdVj9BGx52GKiPIJFKqQCJUTCrgqUsFDSS98LpbGkxicFfgT+xOfT/yETcOKou/j2/X2EdQOV+4tp6N6Bzhk2Q085Bt+u7QzrMYzB00/m1ttPY+n6fE6eNZOwqykvLueji2dwzFnDGDvjNI4bNwAnlsmXC1aT5sug78B2FKxvIbvncUhX8dLMN/EHOzGgj4/aXZL0fjMJSsV3X++gtjDGQw+/wYefLOa+l66nqK6ZjGQ/B/Y1csaFkwjY0FIdY9CgUdgZcVRWOrI8xKqNX1JS3MLMmYP4bMVGemWfREgEef62PyPLI9RWROndtRPzv1zBhGOH8+KDH1JTUsPyb1eS3j4Ft6kOf2Znnnn4U+wURVlJM/fddTXfL/qE1ioY0C2Da6+5l+MnduTIs07jz1c8glDpOL5UCuoNt804k+MnTOLTd14l5m9lx5Y8DuYX89qn35ETszhy0kimnzqMF//+A+WFjTz90JcMGzGIgt3FXDHnSEYfPYjs3u35+/x72LphO2NGZPL35y7lH0unM2Vof04/dRgTh/bkwouGkxJoDz6bxT+tJCfTZV9JAX+59wyGHzOOe+4+kyuuPZfcjUtZvnsnPiuTt994ntlX3kCPcX3ofnyQzKYgERnm4UduRDRL3KBmy77NVB1YQvtuWeRt2U9Wp2RG9hzA5BMHcfQxvbBtm5ReaYzvP+t3Sel3c0o3jE0hu7uPrt3SCSYHSEoOgNNEML0rIhbD77NxdBShYqAN0XAEfzCAFDZRHBoaq/DZ3QnFbBrqmijY1czq3BZWHEjYB7yENoAyXjsf43XTEmFpjDAIgTdZjUFaEuPqwypO6EPWyqCVANdgNJDoFh2ya1IKXG2QSiCEhXGNF8pEIoRGuQo3sR+RqEkpvKyA1l6x3VaeRRSJGIOnzjzlgknEJLxeAEaCEhZCONhSeVECjzOxElbT1R6xOkLg80rMnuIxwktCJMjbuF7CWxvtKcAECXsNA69LdshKS+mFUeWh7BeJYnhC9cjEMROJz3boInCI/F0JAVcSV95yIGNkQhWDMgJz6DXGs4FGSFocfficuegvPejfvhN/f3k1jdURwqlptI+lk3FkZ/av3sWg1CC5S3LZ/EuEIyek8srz3zJkxBGI+haeee9rnr7vMl7q1oXkYIzNq1dw0VnHsWxNKbnfNBHoaxOqz6dXpxTGnd2Dd977nMsvuJjrd7xFr6DFrMknctGUCVzxyIv8kLuf6/90Ji9+toS8shJadBrn3TsdV8Spc1ziIR+r1m7EjmYx67IxvPDEQmaedgzTju9PMNiON974nmXfb2P21Rcy/YxpDH76NWRaA727JXH+o1P58/XziRqXSeNHsfbnbbz02qV89sU7bNtWxl3XzaSwJIMrLxrHB59/Qn3RTtav+xArKBjU/wIqK+r47IePKdiyms4jBuL3CXr5Upky7lSCXRUF6xqJtdo4vkwOxhyuGDeJD959napYLqddORJ/J8PC95YzeFQHZp53JAtMKZ9+uosn5s5mX95u+nV2Wbp8LR1TXR544EFOnzyet75fRygKqdE0Xn32Jwry4Jb7/0RtXSEDh4/kozc/48q55/Do4x8yZXIK089LYsoJJ5PdvjtlNWUEk3zMf+8tfL5kRKUmku0SqHZJtn3EqeLGG65h4IAxXHb2KZx93jksmr8EUy/46YvV9BmcRVhGKS5tpEOazadfPMF5Z/zrDtzvKqXjT85mwIBUuvdKo12GItmnCfoDWG4Y2ydxnQgWrUgtceJRFA5xJ4xrQDiCgC+IUTaWDmEp6NRBc/RgC4OFMdpLaAsvB2UStRtPtUgUEikElpFIJNI1CUIQmERswAspHlJKXlHZryTK8iyb0hCLx0EIUgJ+jujop19WkE5pioDtwxYghUZioTHYhwKBh6ANAu3Zx8RyGSUkwnjr6DDSoz3l5bSkBiXAUiIxtgQxGa90bQl5mEy1PlTrkljGs2cKrygtlNdQkFJ6+5WWZ/0EWAgsy/IsldLea4RCCOPZTCEQMlGolxKRSMELkbCmXg6VoLKxpMSSKqEABSiJLQTKp7zCthRYlvT+SrCVSGTIHCwBPqGw1T+fM70zutHdHsmRg7oRsGHpohU8Ou8lvl1VSXaXXvywexdvvPYu9z43hEfueATLdhnQZRS56wq547GbebWogDnTJnP9X1/l/c/W8NpHP/HNwr340l3WL/sH7z/1OMvW13DWZadTWFvM55v38dqDF+HrmsKISdNYtL2AW8+cRqaGa276G2uX5nLXY5fz8KzjuHTmsbz81Nt0G9yXPiOzKdxagkiv4/H7FvLQAy+SYw3huac28NjT3xN14I3X/kZd9V7GnXoGsp+fhniYgT378NIHn/Di3CtY8e08TrvkJMq2O1xz6zu89d27PHLH1fQ4ejzjj0xj85ZcNm4rYtDowdwy62Y+X7OcESfYdB02iFnnHEf/rh1Z+cJbuA0OBh+7Cwvx+zOoCG3lmx+2Mn3iGYwf3JN2yck88PSt7Cg7yOj2xzKswzD25DUQzHZoLrZJTevMy3NvIi9/H5GmIHOfeo/6iiC5KwxjTh7Bow+uxk42XDFrJj0GhklJ68+gAdnQGGJvbgnfL1mK297il/dX8sWyO1izJUZGhkVKe5e8PVtJtv0ImYSJQGZAEejcEZKSyS+qoOFgI9vWRknumMW0M4azPb+JgiXb2LBxO0ed1BtfaoyVi37kopOm8eqiR2hn0li/ePHv0c7vhycLVjwyVyrjTSzptf+FtDy7oixc1xCPNqHjLpZfoo2F60jiThN20PbIx41i4pqoFkQao0RChjUFUaQ0gJeQFl6S0lMFCXLyijfeUpJE+MBTMNoksuO/dsC81vavwT+VmGQOIKTCiTuce9ogUmWU9mmSvl0yGT8incuuvYKiA1XUVNQhlfY+m5EohUeEQiIsz14pmVjvZoGSCUtkeVZPCa8jKZXEVgpbgt9WKEtg295SFr8tkT5PbQmjsKzE2BVguQmbKZBCo5TySFYafEagbOmRkPQ6aGBQIlGbw1NWRiWsphSJdX4CvziUUfJISSeS70J4xxHwwqpKHSYzYX6NT5rEY0Yl1FliWY1PeKFXmbgghOO/KqXCpiLWbVlPk0ihsTlGvCZGY4f2zJ59JtGDVXTomcOBxjX07dSVJ+d9QmvYUFq6j4zuFou++YVbLzyeFz9bSF5eI0/dex5b9hcR1RE6Z0m+3fANSVpQujPElTddRL9undFJndlbUMIZU/vREouR07kjoXYBPvpgOb37ZpJEC59/msulfz6Vd/5RxKoVeYRbW/AHBMrN4IjRKRTvbea840dSFREMGDmS8so6Oh2RRkb2WPZuWE7XPrB7awnRxiR25dcyatwo3nj+M/7xwSpK9pfTo30TR486gsaaBvYW72f3pgZWbfySqSPGM3RKL+Yv/BqjNBmdXHbsbEa6kkBDkNaMfmzZsZ10v01W3yze/vJjpk4cy5OvPIcbycDfWkRubhljTzyC9Qd3c+bEHHbvqac5CqntU4kSIdJYwYBB2Xz35Vq6BoewYft8uvXry+lH9WFzZR4nTZpKyeomrpwzjWVr97MzVsKAvlls3lxMn+FdWffLGqwkQcN+zbpfotxww3UsWfUeu9aWM2rEUNp3y+DrbxayaeMmdn0XY/PKXKZNH8lrH35NrOkAp592AqdfmsMbb31OuglSVJzHmefOxnVreX/BKupjTbQUW7Q6BzlYf4D81Qfp3SnCCTNu+vfCkzoewxYWbjQE0TCRSASEiyGCFAahYljBFGy/Dx2LYpwItm2wrWSk8HsyX1tYviBK6MMFYqGdhG1LnPyHgoKJwqk0ngXxMjqJ4J8X/UZIdbgmZeQhe+ZNNC09lYUQuAkV5sQ1fbt3IS+vjMy0INmdMxmYY+GPhajZ8CN3/vUWLp99Jj6VhN8SWH6F37bw+ySBoCRgWfh83n2/pfBZgiSfjc8WJPkskvySZH+ApKCP5IAiaAsCQRvLLwn6BEHL4LOklxzHRmiDsjRS+kgWkmQhSZGW172zwErUnXy2wrIU0u/VjaRSWLaN3/KWxEjLU07KlkjbYCvjWUMbbEujLOMRjpDYysIn7ERjQRzOTZEgcMdoHMdFu4fiD57yNAKkNgh9qLnh2ehD7y2E11n8La6afSatqRZDO3alf5cOpGVlMnxML8a260pNSxhJlL6dgjx31woGn5BE90ERPp1/DzETYujoIdx574vcetG9PPfWlVRXNpBS1o66KsVVs6/m5otm89cbb2ftsme5+O5HOeuUOxl9hGLx/B3kDD2Wx/72AUcMG01TeZTppwxj/bIGph15Gks3f82lNzzJuDO60LVrnObGGK0huPbKgbx5xwN0aQfJvXpSULGfL9/6iIrcMrZuKmX8kI5sXVPC2l8qGTF8FNV1IeY9cjMtB6vpPDqFQFqM8pqDtGZaHHNiX8pCLUw7tQeXnjiF4T26sa2yiOqiCPtrmthcXE6v3mPQqolJ00cjU4J8/uyjnHL++Uw6/gr27SjnsTvuYfPeHfTo2wuTHiZUU83affspqajEzc9nT9F+9mzaQ1PwAPHUFirLIkTsg3z8Zh6f/eNbflj7Ecldu3CgopKl6zZx/83Pk7c5j+rmYj7/4mciwQJuOfEUqosdOrkd+W7xCtL9/dn9S5ycwR2ZND4brUM8++rfOECMZ9/8gLOnz2DKycezbv1O0npG+fSzuSS7VTx/z4mUlBg6pGbw8/KDuLFyPnlnMx21TW1dBWXVtfTqYNM101DZQbNhdTkinkqnblmUJwV+j3b+D6QkknC0IBpxQcfxB2wiTS0QV0SjYW/5iVFoJL5gBoH0VAJJaVg+QVxBwGejkv0YITFxB+VT2AGNsq1EGNMjKc8BiMMFLiN/zf8cjh3YXpdLOhor0dq3E508hbcfi0T9xGgsKQlYkoDfIAMBunVOoynmo2OyQCdlE5Ip7NhxgMqfXmFotwABf4jklABZ6cmkpvhJTwqQFAyQmewnLTlISsBHeqoiLWgT8EOyLbCUwefzYfsdpHII2ha2T+CzvFyPEiSslNe5s4VGKoWSFsrSOBLvhkl0yuThQKM2BikVWnjKR1ne8XKFwO/zIQWHSVjaFj6fj4DPj7J8+Gwby6fw2Z7KQkmET+L3+QhYNkq4+G2B5VNYfgu/3yY54MNvS3zSQtrqcCzASFCJhoSdsJ+H1yUKjfsfypILvljBuSeeytbcLRxorkbU17N25WpqQvk8//rHlO/OY/b0f3DdNSfgd1NpNYby2nz69cri5UefpKrBYUfZQvy1NTRRyLIt++icksLbH3zC7uYaquIlLNm7kQfuOpdnvp3Lik/f5cqbj+eGGfcyfOoEeg87me7dA0w8dgpbdr7K2vVfMW7IGXTJSObhGx+jJWoz9y/nsX7R46wpCjPvpXl0O2YiK375gZ837OL2B29lxlUDWPHCPJYv+QljRejhJvPLmkICKVBbH+Tt1/MZMrAbcy65ii49+/DUw3ez/2ABw9qnU3awiT/fczeLNu6iRca5987XyPI3kdHRZdeGg6QFkxnQvQ+7izcz8KghHHeyn8LClRx/0nm8+c6X+EhhZ0EF9bURVFILDzx0HQNyOjNi/GC27tjHyr1bkLoLe3YWEPSH0FYSaRxk3GV9CDtR3JDLtOlHUFhSS1qwhJ/mV3LHA9eTV15Ja22c+tRUeqou5IysoX6zoHTbXjr1zaRDIAuRWk5lgWDm5PuoyW3g6Qfu49rrrmHKMUN59pXbqKps5Ke1K3jw2Rc58bgb+fTjWyhuLGDslGFkd0nDl2JRJgOMHDeUebfeRDyWiq5UpEYjiA4+li5Zx76CKvbsz/9dUvpd+7Z/1bNzFXGkglgkgjKaQDCItBRCWSjbSlxNY14XB0HcW8KLtCXx1hq0AmkEsWiElpY4sajh552xxEr8REeLQy12mbBqEolXWJVCem1/4y2Ik0p6RVqTaI8j4FDhOVH4lTJR3haSJDtAfWM94wem0rVnBw4UNeA0R+kxbiRJwqUqpEj1NTN0xGhKyipojcSwjMEIjVEuyujEmFzAy0hhEp056SkNJTXCW6CHOPSLBYBU3tiE8dSgVOLXnzuRh2o/ngJ0jUZJhTEaEkFFI7ygpCWkp14kSKlwXffwEhyfkV6LLqFClUyYLy0x0uu2KSUSPwPjHRsQWJbACIVQXt1JHkp3J8arpdeJU0IhlVffk9qz2jJBtrieemqN/brUJODEsFoaaYxDVu8u3H/f1Sz8KR9VuI7c1kZuPvkKWpzl6IOSz5evJaNzKjWt5ezY2Ezutx9zyx2X0JAX4upZ7zF37j1kBfO44/KreGPBD7QfOYA5E04i5DZx733v0FJTy7CRgymt3oU0Lfzw9U56BjMZPWoy9z//EM7BYm6adT+TT+jA519tIe5q2ndIYvuWAsrydlHXWsasC87inKuuoXRPJRv2rSRLN/LErYsob91LyNXkr9zHpopWjGklIzWb+x6YQ49eDbz5wnbC8dVcd/WVbNmVz5gxA/hx1VomHjOcwpI4R40fTPes3qTntCMlyyInq5UVq4u456ZbELoFKynMT9/m0RCtp9vQflitB/lxxS56ZiaxI28X37z5A2s2r6NFNFFcs5ceXXPYsW8PB/c207J3Pzu3w3U3Tabe3c2+qjjJ231MmHEkfY7sxoyJp9O+UyqtKXVYJft5cN4KUrtJTDCKKWimQlZidYxwzyN/IbNDGrGwxKmqp6yhltZ4jPLiFq788xT25+bxy/ZCLr3gElqqCymq/ZkNmxoY2u1oWuUGcvoN4dVnPqQ6Ws2cM05hQvZ5LFyygA2793D3ZU9x7ZUX8tgr79PBTmPX3mYy2rfjjItOZ8/mXK6dPfffs2+xmOOlkI2L5QvgRGPEnYhnRZRMLJKNYScnY1k+4joKxsKfkoQbCiGkDxk3xGMhok1hLL9FqFXjuo6X4zl0xcWzauLwXXN40hmR+AE4oQ5nYsyhTM/h13oF2EMLcg/lqZQxRE0raalBymugurKJjklRlLKJ7atFqyDds9PZsfkAdqSMIX2ySJbGyxwBQWxPwRgvnGlL4Vks21sELAzYlkAIr8bkddkUxpIecds2PstGCQuUxg1IAiqAbdv4ElbMVjYBy8K2rMPEbMn/j7P3Co+zvNpw769PH3XJklxky713MDbugE01vQZCCZCQBAgkEH4SBxIICRDaH3onhB6qDcY22Ka4V1m2ZVu9d03/6rsPRpD8e187B+hUc+lA882atZ71PPdSkFQFXZbxyQqaJmPoGpqiIkvZRD+uh+x4uIqEIkvZlb/y3fpfQ9Wy9AJdz3ZOWTuBjKKBbqioqo6mCAxFxlANJFlFkbNWASGLrNVCGWz3AFwvq9ENGioVIbKj7P/rCdq1YwN7jreRVFR2bzzGT37+AOvW/pLf3fExyV0JFl11JUXMYcKqGTzzyCMEoxGmTKjginNOo1MHMxlj4sghhKN53POXu3j+jTY2fbuRdx+5lvtWzOfMn15He7wrSyyoKOC1V9fQ3+yjsLKESp/G9BOXct+9D7Jg8Vi++aKeF597FC+l0tpgkRMoIOhF6UxZHK3LECwsYNyY6SimRV1TK5ddfBGmX2fPsb8xfNRI3nzvM3bs66CrLs3K88cQs1Mcq9vB8fYBEv0DXHnGn5AHZJ76/Tvs3vENuqTy7strGWmUsHPjDtLxAebNGEtvp8LWKp226gFygxLPf/I2x2vSdKXjfPRBNY8+8iTBgjLu+8P9+P1+Du0zOfmCxSgiwgilkN1bGqgYMRzH8xg6XWfyimk8+8/F7D90hIY6jSWjTyQzIZfZSyfwzyc3ErNjfPDxJt59ZAcrFq9kxIkKnlDwunRKFo+jr8ek+mMDD4Vhw7opzNWojjdRXjaG1m6L/v5+xswYx2OP7aAop4StH2/glj88jO7PYcH8EfSoh9i97zD7ag8wYcxoNn2xk65Mhmt+8XMmlY/iJ7f+hHeevpG5C2dy0ZwFqAWjCAkFpz3GyrNPJxQp4b/9/PeYiSFjmQI3bYPnIOkhzESaZLoX3F4kNY2qazimh22lwFVRPBNhZzCTcSQhYaUtHNNC8ikkuhMcabLQFW1wqzQorMpZ/SMrnv5HfOI/dKVsy+F9/3ppkDyQFd2zRcz2PLTvfDYSpHFxXI1lK5YgzF4kM4ksGRROLaD+eDWeIdOnhAgOL2L34QRGIsai089E0zRUNYtbkQTfGxrFoCYjSxKaLmftCUjZIqNIKAr4dImAqqArCrnBML7CAiZOLeL6n57H7Xf9kvOuvhTDl938aRJISnYE1VUNTckWYlXOFidZlRCDY5v3neNckhGqhOrX8fmMwRFYHhznFBQhstk9BoFz0r9X/9KgAK7KSrawDBYxCQdNFuh6dvxUVTXrWVIGtSNZHhzfBjtFWfp3iFd4/+eZCfsKqDUFfR0uz1x6LWctmUBh+xR2H/gIXz7cfNeVXH7L1Tz5+IuochenLp3PC09uJn9sBLelm0++/YjLrn6M3LBKvM9j48EnOPeWPzFgZ6hpi9F9yOSF5zaxd103d141ikwqB33ocD6rPsrtr/6a7ds+IXJCiod/9ius/BwarF569nRRORJ8QmZfTTOJPpuOdCs5+QF66jt56onH+PS9f1GeilKT6CKQHybV1szUyfkYgQhhSUHVKvjHo3egeEHOmLMCKyVz+S/uYvzYEdz/l8tYMft3NO3McOSowtjRxQQ7JH557e288vZTTBgxkhK9knFlHq+8+xCnnzyRbzceoyx/BHlhg789+Fv8BREysS954K/vcMWquRiGx5bDa7jvtde5/MpTWHbGXUTcKNVf23i6ye69bew+0kzNuiT1yU5W33k5n310hJ/cfgN33vEUE6fOYun8KyiYsgDDzcEvB+jr9Th2eDuRiMItf5pGSUkpX+w5wNpPttPfr7P6xlv58blzGDIyyO/vfZAbfjeLzsMtvLvlYyqGVeC6cWbNncLMySV0eoKD69qonDySQiXK3kMtzFoxmnfXb0RvaODo/h72bYtz1c23YB1uoqhU5syLz+fKKy5lx972H16U4nEXZImMDbYlIQkTxe/HtVWQfEhCQ3gmqiGDrpKx0lh2GmFaaIaKZZnYyTTplE1vt6CmSWJ/m4qlfEeFJLvHFwoqIuvvGQTHZZ06g45yyQPJzYpNZEcTGDRCfhcvGdwKSZKET2goEmhqgHEjC3jrpY/Ij+aTTuqY4QhWm8PQefOYteQKxo2cxJSxFZQWR/AUlbqD20inU0TyS9AVFV2WKfCFsr4pVcYnwCfAEC4BJYsAVhHosoIuK3iyjWSnkCNBRpQpnDK3HMPO0N8+QO1X71JQJHHm1ZehKz6kQcStImcd3lknufbvdb6ioUOWzIA86LjOusazOGCBpkqog5Eb2RsUqslqUtmxMVvZXeHBd0FnKcuDkYSMIzkIScYZjN3Ig1YARVKz/ClZQvnOA6VkkciyJLKdoPT/fWYOdynMzQmhikLU0QU0u+2ccs6PeOahB1h20Xwm+g3aRZTiIRHGj7iELR+8w5233kCOJSien8t9K29CLgjR1d3N/OmjufKMX5E3UE8y5OPys++hs9Uh1etn/+4HGRIaRtn0qVR09WM6WVKCK+C+S//GK0+9RuvhPo4dSvHV4WruvvB6FDWEIauUFuYR608SVCT2HviSdZ9tYHjJLHozafL9udxx2z949LWHue6qcxnoi5OT76On9TBKcQ4KEm++/wZbv36QcZND9HUexs3L4ePnf0d1jceNF89l996dzFw8h1373yLZVMRt59/GlIIIU+fmsW17grVvH+PWiy7i6NF6urtsnnryGQrCeVx69Su01kFtpotEwqWtSeLX1/yezet28affX8aTf3mJhcvGYPgjfLrpMJlmH05ScMPPLuXPv32Bxp0uD973FGgeH7++kVt/fht+Q0NXbMLREI6pMmHCOFyzEr+dwwcfPE9fwiSV8rjhF4v4xQO389CLj3LV1acy+4ShfLNpG898ciOXXncJ2z5twvNpSNVw/Wl/4KqFlxMpz6PuaCNKRzeLJ13ExFlDuP6XJ/L26y+yf+8xFl8xi5knLsdfFiWZTHHdzefw4VsbiHSH/2tR+q+aUs0Xj6yWVAdZyiJJVFVH0zzUoC9LmgRs08a2EwhHJhDSSKUcYgNx4t0p4hmPzrhDdz9090Fdi8mBNhvhSoMragY9Si6SUBCyO6gnie/XzYM2QiQhI8luNv4wON55/Bu/IYnsh0WSPRzZIxrJ5fRLLqK3t4kfnzWcrq40OSU2sb4U+dE8zrnhd2xY+wrTTpxGY2sPUT+4dj/gMH5MKVNmTydjgZtOkjIzhCIR9MEcoOc5yEpWm3EBpGwqXygKfk9i0rRSJg+NUlpSSHdrjFDQ4YQVP+L4/m1okk3hkFEcH7AYaG7K+pJkCUfyUCQZQ6h4SpY1gPAGRygFxRMwyJqSBr1DrjQ4OmazLzD4H806zbPbmPhj6AAAIABJREFUSAm+H5OlweKS/Rsiq9s5Ak8aFNWFQBEyLlm2kie+swFkqQUS7qB2ldX85EFXeN9/8JQaO9Zy06I5fNzZzNTR03l/3TrGTTH4anuCeQtX8PhDLzI8XERUK8MuLGX5rEV8XLOD7r1bueqa25ly3t34BzweePA3HKyv4twLF/P3u57lyU+38LPf30B7RzWLTw7SFS9HMl3OP+l01ta8zbKVFzMmP5fFVyygfts6/vf+DSSDBrGMTE1rK/sOHeDmCy5iw4G9BPJVxpeO59KblnD/n1/Clfx8ffA4hTNVfL197D+eIehLEvbGcv89t/Bx9VssmjOccM5UDh3ahZ3axhnTVzJ6dgH5eROpPdLDCxvX8vKTt3KwbjOxdgc3HOTiU68hXNDHP159iZWXXEEQg8827sEhwIGDX1ISyKV8aC57jrazYuUiCkyXFhqYP2o4275tRwrCbXfcwMb3vmb9V5vZffQrphdHKBt6Ip0D/Wx662UWnlLB7b/5M5euOoc127ewbP5cujobGYinEbEB1te8xYyJ42k70I5emqC1OYGT6qek1CKvWJBKRSgfabN3Zy133fYbunsa+HbHTr79sJfTT1/KnpoGrlx0NY888wbnnzqfxoFGdh7fz5efV/P5l1+y58AOdJ/gX9UbidX1c7S9mamTpzJUyuXrw9X09STwQn0MH+GntKKMe+/8K5u3rSXoL/5hmlJPb5x4UiWVyUYoLM8llnaxLJuBmElvZzsDsT6SpkzCdOnpN+lPS/TGBAlbJ5EycJMykuTiU8GQBJadFa1dCQyhDIrYEkgOkqd8P7p5QgKcQXOll/1AeBLCJcvE9gQq6qBQ/l0RyzqeVSRM06S9rYn5Jy+gdNg0pp40noryExhdNpTik07kt9ddyoqVSwnqpSD78flzUEMllJeX4wsUY6oBLrv51wSiQTxcyieMIhjR0XOiBAN5mLZFIOqnOCcHAxlJcxGSw+zZw8nXQxzrSnHoQBUrr72ZoblltNbvZf4ZN/HZ5lpqa7dz0blnEQroKIrAFtnRwlUkbCWLDEHOGjOBQZaU+P7tUgd9QtmANIM6mvO9A13I4Moi660a1Ok0aRCAR/Z3ru0iDXZWiiQjhJMdUSUPScjZjKKULWryd0caPBlbZMPStuMRdyxM9//GTG648Qwef/Mz7KoO7n/6KexmMPwwkHTZ9PFbuMEwDz99HpurP+cfd9/EzKnzqdAMdm45yt8ffpWt99zLE+/8lr8++1cmzwuhh8PMWTWGa89ZwrmV86mvTdJZp/DWxx/x4N/eY+3XL9PSmOSMRUvojzWipToIluuMG5/LX164ByWV4J1XH+KSVcu494n/5cfLTuaMEXOxwwM8cNPf6W2RSNoK11y2GGsA6jtijJlQQcTJ58zl5/I/j91FedDk86+O0G82Y6Zteht6+HjbW/zP/c/Sn2nkvU/f5eQTF/CXJx4lPHQYjz33Jkp9N9uqPubuO9/EDuXx/OMP8Ns/vM3sueNwhUAKV6DmhJCUXPq6FNr6O/ho007ef/xl6tvj9HfCCZOWcduPb+CjN/YiaSalFbl8fTRNKm2T7Opl/d7HeWnNFubOXcjCk5dx9srZHNxfRzymUZ5fyY0/OpephSuZt2AOdR2dOJaO6hSi+T1mz1lKceFIQkoETbbp6bboa2tlz4HDzJw/jHBGcMWNp1MSKMSN1iLLsHHDTtTcAfxDa9l8YAueLDN8aJCSkhLM2j4amzqZdILOlm8OER1WzkBTjEmVGstnL0AK+/nnS/+gMyfF9o8//29l5793ShtefnC1LAQeJulEAMuWSWUEsYSEKmmkbRVBAEfykzY90okUqlCRdHfwS95C83touoaVypBJyuxvdb43SHqSl53eJEAogyhbMShkAyiDr5WRPG8w/jG4ecLLhkezNkpAZLdLkoym+lBVgZ2xWbR4GZvffoq8vHJERKFq/y6WLL0QKVdh2sLz2LThVYgOoaBgJIHykcxdeD7ogtGjhpMfVsiYSfJUi0Sqi8I8nfIhIUaOGsbClbM5ddWFVIzKp7urC8t2GJprMH3eRLrbm5g8oZyJ809n34Z/4Y6dwohhuexY8wpDJ40n09pDTAvQfLAKx5NBcnEBneyhAk94GACKi5ad17KIJcQg4Sh7iwUhkJVB86g8COn0sqOa5HhYroNl21i2SzJtZbncloNlemQcD9NysR1B0rSxTY+UaWNlRBYRY1uYjsD0JExbYAGmkLAdiYwHlgTCVXCFTMr+d6d06sWz2LG1icbuNF7axe6xkXIVfv/Iz1j/6SGMoM2ad7+gNeHQnTSpXKix6+Ov2H20i1DJUO5+9VW2f7OJK28chUjOZli+xj2PfcPeHY2s27iZcdMq+HzDIcKqzoWnTWHP8V6Ob29gyY8vYAge9/zlCSrKCtn0TQ3b/vUFq5+8j+KuJDc99CqhUUOpPtJCc0sdv/rJybz88m5mnbyEWUsCtFftonlvklkzl/HsnTdRGunhlocfJnPgCMdkH3fc+ms++WwtnZ2tLCqex/rtn6IWRpk3I4dlKy7G8EU47eylvPDMFxxJrWcgbnDTj2+meLhEyuokkc5QUKBwoGqAD154m3Fj81h95y08/PjjnHvOWCqGV3LhCRfQUneUGVPGcNXPT6Omu4plY2YQ7o8xfMV0mg9UM3HaBGZOnsypp80hnuripGmn0d64l0/Xb+HLb6r43b238u7ba1lx6jxeeepL3tn2ET4zTNEkl4F4Gx3daWYvyGPFyjm89dpGrj33Nhqb6xmTN4S86CiE6ObI1ymGTvFRtWsfSxfO55e3vsDQwnyKikKMnBHi7f+t5pbV57N/SwPXXHwNP158IQdqWmnsbiWojaXEklkwbwFeYReTF83AGFvCrq07mDa1GMsW/O/db3DH6v//7dt/LUr7Njy6OhAxUBUfuqGA6uI6HuGgjFA9VCOA7bpIronsJvD7w6iaBpj4kBGyQJUDKLJEJpUhEfM40u5gelmT5HfxEk0IXNkDV2FwBYUsXPBkkLOoFCCb3ULgDW7XBFlWtiJ9d2qJQWplBoRG5chhnHf+EoToJxbrorJsGPPO+hGNHW0cO7qXEaOm0dmnMqF8KL6AQcnI0cQ6WkkOtNLb2kl3ez1T586jdtcucn0uvWaYksISUqleXFNi2IQZNBw7iJrqRNZdxpfn0DkQY8rcZfSnLRp37aYlE8c+dpxIVzVfH0yQNpMEi8vpau8g1ZvGTSVQPRVDGRxHszMWQpAFv8mDnaHwAIHnCFzXw7QtbMclmTZJmhnSpoNpeSQyaWzbJel4WKYg7QhcN9t5ZgQgK2SEwMl4mK6Lqqk4ioInyXgepJzsplHVNEzTy76/soIzeF0Gz0H2sgciJE9CCI+08+9uKTBigEfuv4NXX/gEOcfjva+e58uX1tOeOkjNDosrrl7KV9uPkRvMoylpcfXyObzy4adMnbM4GxRW+1l+2kQ+f70f1ehgyMhRvPPCJgY6PLQhHl6qD8fzY3sePVWHSZe4zJlZwYhRQ/ngwzUElS4euqea88+dSWN7J/6da/n9umpGTyrGSQtmnryUa5ePYOpJU4kYhfz9rY84c2UhNYdNjtR1c9WqCnbtWsdXW7eS6i9CKtOZNGIUTz3xAamUw5zpJ/CvHTu4+MJzGVE5nuqDEr/56RNMWziUtoYWGltbqfnqGEuWFOD68thTvZ2RMwto6mjld7fdwHNPrOHOPywhVBTh4O4O4mmdpGhmjF/l7ntf5KZbb+Pd9//F+g830tabQO1S+cf+KlzDor+rm6b2dl5/bj3Ll41CDynsOtCOHdeYNsdg8bL5vPv8Fq66+GTOXrac1X99gtGjRlI4NMaKFWfS3+ontzhGf6vKtPHTOLCpFamrhTl5IwmHhjB57ASi5HDSpBlcdN71XHj6Lxg3fB4XrjidBbOm4OjtfPD2JiZWnMyaTz7nxb+9TlEkD2W4jzPOWsWjT71Be2MbV9x4BnKeSyqm89mXn1CWp3HgUAt+V6OhxiMwzObn19z1w4rSjjfvW+0P6ARDOp7qEgj48Yd9GOEQMgJFsggYgqBfI6BpeI6FonuEfEFcTGQv6yzGsfCQyDgypB2aBgZNjjLgiexpI28QzSF5fO81lrzsWKbISHJWR9FUGV1S8akKupI1KuoqBA0Vv6oQNGRkWcPI8/Ob+++jrmYPA7U7SWojufCqn+LaEhvefp5TrriZ/qYWxlSO4NttG+jp6+brDR/gJftYfvYVBHMMNF1j7+Yv8BfnkZcXYtiUEzH7WikZMQp/Xi5Woo/CkSdiZhIUGy6BiMqQsnH4Coaxff82Ro4owdMj5CT7yWQ8KiaPRo/m0D/QTE7BWLZ+sQlHKPSacfqSJum0SypjEUvapEybeMombQniKYu+tE1/0iXpuKQth1jaxfQEpitwhIzrguNAWsiYlsDwa6RMCcfy8KkeriejCZmU62KnXPyaID8nhO4JVE3GSdkoAZWckIaqKUiui65mi2OOX8UwFBRJkDa9wWDwdwQCicR/+JQOd8UYOdli85f1XJAX4tQ5FTz12ga2NiTINFtoXoqOjh4aDqVwi1we+/Ufee7Zt9i//xDNbd1MnlVAqrOfXXV9XLxiGZ9t2E7rvjSuT7B81TS6W000LYDppdELZKQCjSvOu5Z3N76FT4syTxnC8b4Objh3Fbv/9Q1dk0sRrsrxnQ34CySa433kFUj09vby1svvcMG1k1g0aTaPP7mVcFTm2pVLSRQKHvnNDmq6OhlXGeCjjYcZV1lEl+lx/+/vpbtvCxec8zOwuymdugJFTbJg/kT+dO8TIBksOXMMJyz9KY89fyv5BeV8teVrgn4fQQU+2XIEze2gpqaZ+x94gs1fVmPKafpaUzz38qs8+sif2LzpC6oa0kycPIL63m6GjM8l1hnDZwW49OqZDMkvxiiUKC0qZPnk89jy5dfMXDKOfRsS+CJJ9lXVY2XqqRg9g/vvupFp405l785qRuSFGZc3mfH55XQeaqAyP4fqhhZ2NrYzKmcIXc29rDjzQsZOOpHSskqsTCrri/MyeK7HS6++xfDCXIblFRKPm7y75hU+f3szlfPncPrJF/DJW48ybMJwHn94DedcNoNfXPcqj97/ILWxaiZXDiPtBag71E1pRZKrL/zdD+yUPnlotetlyM2LEPJ5pC2bgE/DEA4BwyUQDqISRJMNZNGPobuomgSKg6GHUP0yZjIOqEhCQjcUvEyGHY0W6iDnx9AVDF0noMkEDAWfLhE0NEI+mbBfI+iTiQRVQoZM2C8T9Cnk+FR8mkcopBDSFAKaTMiQ0IMaAVVguh62KzNj0UJ6D+2i1algeHgAVw3z+ZpniA+4LD/jcprrDzJr7gKw2zledZAzz7+cohGT2fbNZ9hpD0X3UTJ6NmOmLUTSoyQaduIAnmJj9vSQcWIURX0YOWWg5jFl0XkkU3HKy0pYdNr5BEuHET/aRNqJk8l04ngBXCdDft5wXH+Ib7dX4XgCz5HI2AqW45BxFGzHQ0gypiNQXdBkGdN1iUR1euI2fr+GqioEVQVDkfFcgU/RyMsx8CyL/MIcDF3GL0sgPFxXEAoaKHjkhEIEfDKKT8PJODiOh+zI+H1g+HxIaQecbNxFuB4uEr6ASsZ1spqeyFoLfKqCh4PsyiT+g9O95V8P8/7rb1M6uQTfqWfw7N83cqC5nU8evJPDyV1U16a44OLrmHfKOLZtO8D+qg2MmzqGkZNVqr/tp3K8w6dfJEn3pNhWfZRLZs5hR1MjDz/4J9785zv86Kxz+Oi9L/EXFaM6NnEzjuMP8MFr6/GFo2xbf5R//PG3XHHPX+iUJObMPYNPnnmR/tbd2DW1nLRoFLKvh9NXnMG3LXWcduosXvv7K/gKpuHP6Seg5LPneD1nzp/H9fecwa3Xfc6eI2txUrVs2VLH2Rcu4Zc/fwJf7n5WnHw6t1x2DZdedDaBkEvK38P8maUsXPRjHnryduZOXYEarcGy4OxTTuenv3mD1+77A4+9+jb76mvRNZVEd4o3Hr6bJ9e8xxuPr+PbHUcQipwdpTWH5avmsXLOaXz41mbmnzGENe8fJeX6OVy7i/qaVnZs3sWMMwvQ5RTVG2vJL5TYvmM385cupL3za7ZvrmHp0lnUbz7AsGiEsB5E8sBJuJQVljNh+DCmT5xFOHc4M2fNQPZs+vr7MTSJUMBH4+HdRAJ+CssmMHP0NIaWTyRQlMcZl53OBx98yBNPP4Kqaxza8RXnrTqfvz3wBNff+SPaO5qRm2K8/Px7jDtlKq8/v5Hta9qorEizaPJlLDv13B9WlLa/c8/qcF6UoF9C0WyCupEtHgEVWfPQpBz0gIlu+JF1DSHrSK6DJgVIZ9LZ7Y6cTbCnEjau4yFrPmwnQGu/iU+RyAvqhP0qfs3DZ6gYmoJPk9H17NXaoF9FlQW6yKbs1cFTJ7IkoWqDniUxiDFBINmQEQaS5hAdUszIIVGae48zZ84sRo8bzZ69+5gy+0SsTApVlTl8cCddDbVUzj2JjtYBIgU5VFROJB5PossKkZwAoYIKQgEDf9FYZF1BHbBIWRb+UCF5JcMJBoLYqoFt+JgzazY9/TGsdJz9327G7m+hvakJS0QQdgZt6AxM4bH3cBu9xxvRAc8BRXLRdIVoUAXbRUZgKBKoLqbjoiGTSHmohowK5AYN0mmbcCSAcBzsuEPClQmEZYygTipmYg3igf2hABqgGzppIdA0BSflEDR0ZNnBVSRQffQPJFBUCUPX6EmmSTseui6hqeA3DHRDxRfQsG0HywPPyaJFk/+hKd3+0FVs37KB005YzIIzb2Dd1pf5+5t30Husnuee3I2nKsjddezZuRPHlomEoxxtb6G/pYf508ez63gbojOrIUYFTJ9UwWfbGjhYtYtYVy9FRpyO3jQZx0XOJMkrjrBjyw5UGYaU+Lnk1BWc86M/kzO8jMpynamzZnF8w8ccyrSiBkqpT3YjhyXmjprH8eYv+O013xAsChIsKqC6qo0rr76Aga4uZl44g/SRNrZVN5Jy2hk/cjQXLTyBn996N6vvO5e2aj8ji0tYeM7v+ParN1i06Gxajm+ipd/P/Q/+HcnN4cX7nqO++2vamwxajrTx+pvPoyop6to6cIwEfd0h5pYp/O21NYTCOlPLysgpAT1Hxyjw0RszOd5Yi1Ldyp6afqYvdGnuiNHdISgqiiN5UTZvO8q+XQeZO2UeFZUjiIQrcfptUm29lOaMID+Yx47N+/AbfmJJl4b6Jk6ccxIFJbkYfj+q5scIqOQVlOEID00GFRPDp9HTWk9x2Qj8haNJxlJoAT/hQBhJwBBZp3H3AQqGlvLAg39h1NBhbPxsB7+4+gL6/D188sF6dlQ3InJUVNulNCxwMyG6kh49yYNcf9X//LCidPSTx1bnRh1kScVvqCiSB56K69j4lEJsdwBFKkCWHcBBlfyohooaNPDpMsnYAJl0Br/hw5WyrGxdBWF6VDXaWY+NJqHrgxkKz0PTJIRwkb3BgK4sUKXsYQAZJWuwlCVcWcbJuFiORAaZtCNI2g4xE3od8El+SseVUTk0n9Hl5Xy7u4GQL4958xaQSGYIR4s43tBIQX4hne0dHN29Cy+ToL2+ilhrE5FIhKbjB+jr6mbcuAnIioLPr9LZ0USwMJ8xE+ZS27CTsy+5ke6mWsqGDUG3YnT396CqOgKZrpTMmndf44qb/8SeA1s59Uc/5blnX2b8rDkcP1JHT0snkgDDp5KWstC7WMphwHERkortSsRtsIVA1VUURSLX0EklHSTXwx8JIWwLSSj4CkP09MaxPYgPZIglbXRcJNcjnTSRVAU1YKBqAiyPSEAjbbk4kkcwmDXFpq3sNZiM6yEkD8WTcSSJdFIQS5lkPId40sZQNTzPxdA1QPyf8a0ntY5Ox88bL+7luhPH8/S691G72vjw6a/Qc3QyShLH1DnntBV09cfo640x0BonmVKYPUfjq69MZDLETJcrL1jMxk0biCg65190Eq5fprarFSMiOH54gIqRIzG1PtJxGcUL4pHGUcO0Zfro7OkhbRdy2ngftzzzL1KNnXQb3UwMTOdwfTfPPP9PVCVKfkWK+mqTvNwUXlywe8seMp0KH7zxERs3tZC2ZdoGDjIiv5K6tj7e/+dupiwYj7/BIq33sHvHZvYc+oiaxkZCkTF0tpvkFuez+u7rWHb5xTTW9VK9rZMhI/MwIhIfrf2CYSUjGGblcWBbFQ889Fc2HNpBW4PH0//7LO9+9iH7jnfSVJUmnGsxe9QwDuxr4YK7yzm4uYeO3hCGyDBv/AnUVDeRV2gwPFRO8lCS5kPdJJtb6W6JowWG0trST0jSGD+8kLygQV7UR15eLt3dCU5YdBLx3m5UI4xux0hbHqqTwkn1IBsaiqZgmg6qruLF2vCHovhycjFUGTXeT1FhLkNGDKd931Y8PcMHX1SRq+Tz2GtvUjmukA0fV5HocykeEqTpWCf6yAB//O3PuevWP3JoVxurzr34hxWl3e/9abUkyUimi+xm8ISMp4Bh5OALhfAFi1CMED4jD9nIAyeBZ6dwbAuZIKqh4gv5QBIIT2CmPJIpB9dT+KomhU+WMVQJn6JkWUNeNj/nOWC6AtcVZCyZtOWQMCUyLqRsi5Qlk7Q8TKHiSgqmA5KsYTtZgJuiBnF0j0mz59HfcJA9B6uI95qcfekFvP/Gs0yaeRJ5BX5OXnIW/3zhr2SaDhMM6xTlF9AZ68TwTIxABKGF0PQwSStFoqee7ubjRPQwgfwQnuvQVt+AZaVpbGuk/sC3hIsnYqZS2Db09DSw4rRVtFV9Tf3hzRj5uezdu5MJUxeQGEiz/dPNqIacFa09QTCgY1oOkiRTOiRCynTw6RI+TSbHbzAQd5E8B8ey8QV0MpaLlbLpzbigQTxuoiuCiKGiuB4+XcEWgJPljAtb0NmbhIyb/RYUHmnPxVQUYgmTjAV+Q8aTVfBAU3RkSaCrKpqcpVX6ZAW/nO1IZcdDVyVAI2aa3z8zXQMKObrHoZo+pIDMeQtmUdssaKhrprEugxcEU/HT1VlLRX4x1U2tKLLAcyz6ElF0odIbS1AU0GiKHSVYkk9jWz8hIXGsqR2fXyWWdIklBAPd7biKiZt0MOM2tqQg5UBrVTc5BUUoUoptVbVct+ps9tYfwTBCpJMZdJ+Po8e7CAXgYF2GicNH0NrRQazHob3VpifdT6/psvS0ZWTcDEpasP3IHpZVVLJ85XLUQIhAmc23O7/maHs/uu5x0YWrUJVyXnnzdWbOLOf6s5+ndJRHeWGAqn0Of1h9FslkkN1bv+Bg+zcEU4LO3jivvPshLS1Jlp8wha171nFkTxuS47Jmx294+m9f8cRff8Xf31jDvAXD+PLLegZqU5QPy2PG+KmMKBnGqIKR5OtRCkuHU1QylFGjKjihIsjGnYcJhwxWLD2RktIy2ju60TSDgC9AwZBCPE8lGraxUjKyEkN4BtFgAC3oI2CEyJhpQrnFKLF2AqWjkfxREKAKD8fuob22DtHRSSY/wv4dBzhYayIG+nj4s9sYP2QMPZ0NNBzrxlU9VFWw4tyFHNy9iyde+ifbd+7h1zf/QKF7/xt/XS1sJ7t5UxT8uUWEwkEkWRAtmooIjkMtmY8vbwqqPgJbjaGo4NlgS2lkzQ+AoQewMjZmKo2QPCxXYushO6tTSCqWBylbwsEl6cokHbCFhOsppByB4+m4eHhCIZkG1/WQPZm0ZeGaAkVXMC0Hz3SQZJmM7uF4GoGwjwVzRuFaPlaedwab33sGLaeQyooxVO3cyZvvvcCY0nHouQqpuMm2ddtxe7qRNYm+jgYcO0HQp1NUUk5J+Wgyva00NGzDTkIymaG/pQZV81M6fjrTZ8zjcNUGinLL6GyrQ1MM9h7dx9RpC9i+v5rZi0+ncuw8ZCHYsmErrX2dYLrIsoxpgeLaqIChK5gxC2Fa4EEokOVWGYCuyNhCwR08pCDpCsK1QQbbyXIWJFmg+X1IsoRfUgmENDRVzep2hkLAp+E4HorroTmAbRLRNXwaZFIZfLqaJX6KbIEUZItYOp09OeUpErbjoRtq9sCD5xD7D/PkkJwQ1TUDlMwNsvUfVVilKvs2fktzezYM+9C99zFuaDktx3r51S8vIF/y2L3vOJYDeWXFnDL/BMZGc9i2o45wkQrJDAG5mP0Haqms9OhKK3R19INwiXVBSVmAC087hd2HG3FshWSfR0lphJa2PmwX8vJz2XJwCzmRfJwOg537mrG9DNFwgJLyAi4+ZTmNjY1Yns7E8VNIxjqx/BlOGD6LhbPmMHpsiPW7v0a4hYRzfezcvY/3P1mH5MFAohfNV8Lm92s55azlPPPqM5Tm57LxjWpM3WXJ4ulcfeWdrFu/Fs0fZ937B7ngrHnMHXY+tUdcLr7kAqp6DnDGtPns3rmfr480MmXKEHZvNXn/H5u48ZK5TFw2BH9ekufuPYDmwpKVJ5Pp6uCSU08nqBoEhYGGD8N2WDp/Ju31taTr9qAXjGbV2efi1330xgSBYB5kHIqLIri2TKy7ESXehi1kNCz8gUIU1SKdGCAQzQNZJS+ai+fLQ8kpxnUyyK6HlInTemQPPtmBdIJcITFlSgVrPv8GO1pIPL6JIv9sXnzxQ2zbQ/h0JFdj5xe1uOE45518Ps3Hm7j+J7f8wKL09p9Wa5qHojnImoyqWGh+A0UL4RpDEXkTGDnjEsLlY+jrb8PsOQjxdhzXQdMlZEXClVRc1wLJRnItVDVEPGax7YhJyh5MoHsSvZZDb8YhY0qEwwZpx8UTEhoCSbh4moRseYOJfIGkSfh8OrYjsCwHGRmfruAKF6EGsK00h/YeZvnSE8gtL2PbtxuYMLISOaeY2poq9ICM5Roc+ewDorrCvS9tpTHi0N3cS0XIj+0kyC8pJhj0Ec0rJmVadLTUo9kWhw7vR9NlAtFiooWhU8YWAAAgAElEQVTDaG+uJ78gn6EjZ9KdzpA24ciRbXTWNaIJiWS6gzHT5nC0tp6dW77kwMEaJKGQnxMmmmMQkmUSAkJhH/0xG4BQxI8ngyqU7DZRlQgEDPyuTcDvJxQOoToZQpqOKkFUFoQUDUmS0VSBa3lIqoKEly1YQqCqKrGMhSRLeLpMxrZQNB1XsfAcDd0ATxH4/RqyX0cWLpoi0DQNTxfoPhVZVdB1GVyBqYCqaAwk/90prbpmEd37OijJMcifU8qx2hbmnTWP227/EU1dAzz3/D/Zu3UfJ59Xwc6jx9h1qIbFU05mf+0x7ESazlgrjq7TZPYgeh3aWmD56Yuprz9GT08QW40TCemYPVCY69HVbjOQbKKn30HSMriZKKUjNCqCZUSLVPpaekh3ZXDMKAFVp6u3n4KSElIJj95+ky3rdzB0bDmdrSkCRRFmja5k/7EmgrLHF7u/oK6nh4GEDxG3SMZbiPRZNKWT1NT1cuWqFdQ3N/HTn1/Kuu1biHWmObC7ltYWlVGzDH5zyc94+JknmVCpEy4YQl3bXm695OccPt5Obk6SRx74O6PK8lm7vgEjOozOzk4O7WqgtfZ9brzwVG65537Ou/4qNnzUiWE7PPHgVdx33/ssPHEqlpmiu7aNAwerUdDo6mjji8/XkS8nqdlfRU5uBMc2SaRt+rt6SPZ2IpNBl/toa+4iqpoENYni4RX4i4aRW1BAb+0RAqEgvmguoegQOrtb8KseqbZjGJ6FcNNIORE0LQ89LwDxAaLl5XQ2NHHxypNAj1NUUYlc0sMbz1ZTnu9H0TUMzcBOOIi0zB13XMuYmRqTRp35wxzdKKCqMggDn6aDcJE8FUX2IbsmaqYL17VID/TgeQ6SaWXBa5qMJRmomoGTSeBZFsKxsdGRcECRURSZSAAKgjq6oeDTVUYU5+AJG1Xz8Bs6nuXiOS6aKqG72UutyCpywIcta3THMqSETDAviAjIDDgCX26InKIC/L4g4XCQ2vYBdh84wrkLz2fnseOEJBe7t4nju3fQ8vEHlI8swvMb5OUFGD9HJ2/lAtTIcDw7QigylHCoFEc46KrMqInTqd+9H6uti+66ejrqDnO8ehv+QJjd+w+hh8K0tzUhqRJlQ8ZSMWoaaSnOuLFz2bNlE/5UO1u2HsdKOWiyhyFc5ESWU1Ua9qObHuUhgwK/hi9tE5LBcRyCwsb1PJIZEy3kJ21bpJ00SjjAgG2DoiFCPmLYuJKDEFlxWtUEQrj4QjJaSEaINDmGIBhV0WWXnMIQPr+KrkdAd0jaHqakkvAgbbsIRSbtQiaZwbU9ZCTclIllZs+ly65AeP/3Qm7Pkb2UTJU458rTCVgZglqUIwf38q+X3yXkT+G6KVKmxGuvbCGU78dAI+X0kukSKJrDrEnj+fyjfUwZlouhRhC2x5svfkB+aSnF+flE3CglheWMLykmUBhAkmWa2zPYrmD+zBloegtOEvxSAsNMkZAt/ueGn9HR2suxpm6K80JksDF0hUwsQW5ZMS1trZx6yhIiQR/76hsQwsERBmnZT9p0KPJF+cNv7yATk+hMxykvrkCyBJZUQM2B4zz99HNsXr+NJZPLUf1RwiUOVsbm9gfu4A+/uJW+VBaHs2TOLH77x5eo6drFurVbCY4ppFVS6KePZ968gbmV43j4qV9xeH8V85bexJT50+nrd3jjzQfZePR19jbv5YU3rmXJ7MlU7aolJydEWUkZ3d3N9Pa0YaYT5Iegv9ehOKpQVFCMG4/T39WGKlsk+gdQrDhjSoIEcqIEwiEk2SEQzcf1IJwTJhNPI9QAquYS8foxO44Q1Gx6WuvpbWuCRIpgUQm6FaEzlaGvZwCrpZNYKk2+m2Lt23vItLTT1P8mnW0WcjqXozt6kBWNdNLjaF0DoyfO/O9l578K3WsfWq0FDYygjKrp4OqguKiGAU4XPsUi0XWIRNdB3P796EoMT3PRVYEdS6CqIWTFw3WSmBkbOx4nbut091p8tjdFxoPckE5eURR/wkU4gtyQgSIJOmImPk/F9KvEEmn0sEHGdEmrEpILIUMh7bqENQgHVWQP8iIhdH8YI2jgpmyKSgtJxLtI1ByhvakaJZzPQDyN6XgURzXyhxXhppN4nd3khqPEjsMNyxcQLsuhtHIyMi6Fw0bT39lNXnEJdYdr2b9tCy2NHZhSO59t6GRUoUfllNGEZI2m9ibqW44gPD8hQ2PkqErMeBe5JWWEDYnt++vxpxNkUja2B8K0ieb76Y85OLIgFA3Sn0lDwACfQippEQr5ycg2QvbQVAVkCz0ngJdK4bg2BeEAti7Qw34Mw48cNoj4ZWzHxVUMMkLCVXQUF9KejOx52JaDJCRsxyVtudiWnWV/ywZ4HpIn0KUsZhfHwUHJOsgtF9tQ8PuMLOnSyfIIYin7+2fm8h/Poar2MN/sbOXcs6fw3tN7iCdTGIpMWg2j+9M0VbXy59/9FdXXw/Aih+LCWUwcP4HeTB8F0VwuPP0E3v/sAMsmjeNIUww1rGCmTDKSTSKm0G110GNrZPoGUJwAApdM2sMWMYqHFdLWOEDY14seKkbVNE4+eT4dA80sXj4dm24GOrrobEmCIshYSXzhIPF0Clmk+Wb9Mfw+6GnvY8i4EfR1DHD52afw0Sev0hK3aehLQjpJqDCX9sZjaHlFNNT00N/tMn72BEqCMo0tqWw4nCg7NnyBXB7mq89q6GtwueRnJzI6NIXXXt2MH4ecIUWMrlT42+Pv0HCsh4xVx7FUhlTfXmJKgl/dfC2Hdu7nq42fY3eH2LqmiT3b9uHzK+iZNG2tR7PsdWRqD7Tzsx+fwabPv2b6CVOoO95EJjWALoGnykwcM4LcoaMZOefE7GWRnEJMz0aRFDwyxBqOESnKQ3UlUo278PlUhD8HwsVECgpQYi3IiTbc1hp8RWFKRs/E7j7GiAXzqfv4DeauOJ8Lly5i/acN7DtygG0Hj2MoMgwcYNVl1/LhB5/yo1Vngk9mWMGsHza+HVn74GpF9/D5s4Ksz+9HVUHVFRTZwLIzIA1AphFhdmI7SWzXQjgxNMWPjQWWheO4mPEMfX0epm3T0CjYUm8R0mUKcyJ4KQvXctE0DcWQcXQfTjKNoSlojk1Q10ikXMKGguwJoj4JN+Pi88tIFgjbI5n2SGdSFI0YjhoJgiozc/YJlA3JJdXfScHIck6cMwejaByKIjHQ04Zn9WXvoCkqo09ayqSxQWKezdDh0ykqL6G0YgKS5KOz7Rhabi7hUA5Eo3y+r4OiOaVUfd3FkJIinOZqFp5zMf5QhLa6ZsxkBpMUe/bvIjeay7Dhw0hZafyF46mp2kddSw+qquDP1UFR8eEgCQtVVwj4DEJhH7ouEYqGsBwLVZFxFFAjIRTDQJJkFMOHLCRijo2dcZA9D1V4pBMJLCGhOwLXdVAQKJ5Ach0UaZAzJUsYsozqZA8b+BUli8w1ZKJBP3pAR/fpSO7gmS1FQdgOQlOQbUHasrFs7//h7D2jJTvLA91n571r78p1cuw+p9PpVlZL3SigAEKIaAxmsAHjOGMc5o7x2HNnfJc1HqcxBo89d2yPjQ0YG2MEJgqUEJJarSx1S527T/fJoU7lsHOaHyWbxaxlflB/d/2q9dW73+8Nz4MgCUhxQtv9Xra0Ul2i2cnyvjuu4rNfP8ZP/cKdtM9vU7U61E6HhEqIWNrgyW9f4r3vexulKCGRBcZmhnjkG9/l8P4FvvXNb9BrCpza2OKOQ7toxw5h2Ke/HSBmDYYKJYIIojAgdpOB7SGKcYIE2VBZXWsRCgJH53ZzdqWLrtikksDK0jpLm9sYKhSsYbpeD00toOdlxETDczrkMibbtR5jB8cYslR26iEvPXUMq2jSdyFrqhRyZaobW6CFOL0+UZCjV3VY32iws7NCuZJhbamLXrTIagaNlR5xJyQzpLJy4jKnXl1iYv8s3/rWt/jEX/4eGUvmZ37uKCdOLnFlzSUJBQpSheFdeW679WZOPb/EueOX6G9H5FWL9eoGUhhjiV102aRUrPDTP/EOzp66wJ6ZLNvbHuUxizDWKZQtjt56hJ3NK8zu38NQsUz18vnXRRYhXreHpsuIQkRvcwNd08Hv4vS2ECUDq1hAsruIvW22ly9SmJ6gtr2B1G0QRCKilcPrRYwpNr21Fh42//v5V8j0R/ixf3MrF5ee56lHFmk4p1m4dT9nl/+ad9334+S1Qz/c9c0bsNUG2+OSSCr6pGGK4Lv4YRtiB/wGQmCTRh5y4r3O1k6JU4ew38eLAvq9HvW2SyBBrydwYcsjKwnISoatZp/FlkNXTlltdtnu+WxsNxCjBNII0hTdkJFI6UcJZhzRC0RkRUJOBxRGopR+lCLpCuuXL9Ord7nu6BvYNTfJ8YefRtUlysNzKKLGrTccJBNvkfNtriwl1Nc2+an7v0h5aJyp6at519t+nF67Sm1ji81zx3nx+a/h93tsnHwSp7HNyHABS3Z5+ds7JKlNSa2zc6HBiWe+iy0U2Wm2scoiUhJz+/VvoLm5SXNlHa0wh92tUTJkUklAtXJYloWeNRELWWJNpd136HZcktAlcGJa9R6CIhIEISQpYauD3XYJWi5Or0+YRiixiCmpyImImIgU1QxGIAwAcbpOIWdRyGsYBf11dO+gcB5ECZ4qEysycQKSriKrGr1OHzFIcXb6g+8lYBMh6RJynCCSossqpiKj6RJiRvu+M/Mbn/15DlYUnqst8cDn/4SLT77Muz/wXtaPJ0xNWOyu7OKVjz/JNx78Oquf+Tv00l6OnX+Ybz35CA+d/jJef4uOUqAdRLzx7tt56rULTFlZlGgcMy9y3RtHyZcNqpfqCJKEbimQGMSRhIBKrdZk93SJ1M3x3ZcXufnwVdhiFtf1OJAvkzNGCETIjUSDF1xeIw4C6tsten2dnU6dj3zwPvKaytpGnftuO8qe6QUSH5K4R2OjjwDccMP1eI7E9prP6LBALpejUWvzX371j5mensYwFQKvTt1ZY373HnLlEcanJjn+3DbrrSrtqM19P3knXVfngDHNl/72Kd5+3/WoqkK/nfKBI9dxz5F38cwDx1h9dplMOkS3us3eiQxTlTJCoDI9NgOhhibbPPz1h9iVy7P3xjtZb1aRhBzt+ioj5TymKVDRBOqL59hYukCASOy6OPUqYtLDqy6TyU8wMjNG9eIltKCH6Ll46xdpnznN5vNfobO8ijU0DL6MnJ2kLyqErSX8MECQJayZfWhGQiZb4dqSzqX6K/zVFz9PtRVh7Yu41Njg8upJqjvTfOpPH/5BYecHZ0rHP//b98uyiJ4ZcJhlRUMQY6IwQRBjkH3iBFzfRUrBjzMQDfawPD8gDqFdD/GCENdX2NgQafZkPvtMG93MUJTBtHTGSyayJbPRtkmDweBgoWTSckPiVEHLyiipTD6jYFkW5fzADpKRJUxZRMsoFBBI/BRJ0Zi56hC6oXBuaZ3trTZX7d3DgSNHKZSGmZ1dYO3McVKhS3Zolomjb+P0K09w/cF9IBo889iXMFCQ4oSLr71CSS9QKZg0qxuDuR1M3v/eO7AMODCcoIoJY7OjvO1jn6S5co5dU/Nks3m8KGJirECjvoWZFXjgwWN0HWi6Dp3NFqYU49k9iCJ8N0SUVPRURNUkUm9gUFFFCV0YiAmypkHaTdE1FTNnkKsUEP3BH8som+D4aJqCKwq4ToSPhJCG6KpKf6cPrksiJIjhAFWSEUSsvEmv30cyFRRNGVzHohTbD0jElFSWMCwdVZIQ5RRZ08lbCooAvheSxCClCU07+Jczs3r2Mr/69x/hM7/+KCd3XkTRMjxRf4rFL/81v/nJv+XKlTpXajH3vON6fumPfoqXNs5w5tRrZKwh/v/7P81/+tOf48LxE2xtxbhyhHu5xY7gcdWBCdqNmFhKQe2T+gKp08eTJZKmS6LKxF6AKKSUZsq0Oz1uPnQV3/zGd2iFfcoZECOLF184Q9wX2b13N/v2TnPmzDKyZTA5XaHvREyPjSGofeotm7XTXQLrIq8+u0O+kkfOCQxPjtLqhyyvrSNicmjfAmsbmzh+D1kyePI7j7DT3sRxRGRNQ5JDqoFDNmeweGGV4dEcqZll6+IiV8+9hcX6S7x4cgedHIEkc/2BfXzn83/HX3z2Mc6vnuXCo69x+533UM7r/Oov/CQH5iosXtxge2eHpO8wt3eM4w8/z+5JkbggsHglQNYl3v7h93DzXXdg+xGPP3aMEWuI4V1jXHn2OTRLQggiDAX8Vp04sFFmD6AWhwliG6nXI0pCxCBEDhPkOEMrFunVbVqNdQqV4qBJJUDcr5MkUK1WUQgoVEbx2ODRVy5hSD64Gv/0ma/w1HOP8Ed/+N+QTYvHn/t7PvzuH3Ik4OnP/+H9Wk4nEVLCIAJVGCiTZAjdlDBJgAhRgRARwhoJAnbPwQ98Oj2XKFFxvJBOM8YNVB5+oUHTEUjDGEkSMbMGdr+PLitMF7MoUUopr2MmEhlJJi8lVAyTZqOFIcu02n1QDby2h2qq9KOAfj8iO2wSRAnZoTzNbh/V0FhdXCKTU5idKzM7tZvXXnuOjJWlsXYBrxHSz+YYknze86FfQxRTvvbxj9K6vEZx1GJt8RyPPnmCwN+i0aih+H1OHX8GSa9hzr4NPWySG78Gt7GOKMecPXeF2akxciMTNGo1ArdLGju89toF4u42i1spD3/tIeorbdSihKLrDA/nEVQNSRURIm8gy5RFDEFEy5qkQYBWzqCVdWobfaxyhvxYgSCI8OpdsqU8YRyQOAHaUAExo9JarhELMZIoYWUymFkZn5TEC4nRsAXw/WjAYLI9dEVGKVtIpIiqhNN3yFgGipgSJwlRlGDoAjLaQLGly8imjCLJxG6IgEjD+V73TcqmPPlP59EWEuJFn6sP3cvHf+eT9JZf45v/8CQZM0/XbqMWetQyIiMTBa7JzvPw8WPcfMsbKY+N86Z3Xs2Df/5dtv0Wt8xmaPY07rzrJjbaOyxf2KZVdZjeM0q+YqAYHu1WQBpp3HjTAtvVbfIVjdRVOXt+kXJeYfrQPgLH5bFHXuXwzTMsr7aY35tnpwqduoOiK7i2T6p2adcdQllgZnKI5eU6GStFoUyzEVAayxO5HqkvY3c9HLtPe2cTL46JSehtDRacvTBlfmGafquNLMq4QUqr2iHFZ2R0nuWlFYZGRmkGa9h+SORbvOPIDVxZ7NKtJ3z928fohz2OTI1SzOWx7Tbtrsv73/9W/u5Tn2djq8b03DSXL19k94TGtdffwDvffAef+9oTrF9eQzFUbr3rzZw98SKp0+foTddTmpshI4uM5FWe+sI/4WyvoZs6etRDVDQKN76XJBURFIPl9SqVShmMLCdPbdMy9nKueSOf+IP/im6vk/HruK3qoAyQ1REDleLkNM0LpzEq06z0N3jhzCo5U+a2W+9Cll0+/dcP8fIzl/nuCw/Ra0X88kd+64cLSo9//k/uF4WERIgRpAxJGuJHGqmg40cRSZKCoeO4Prbt0O9AIlpEaYIbiLiOgG8rdFsBl5dDziwFXDUl89JmSJxESJKCFASYpkHg+vhBiJWT8d2U8p5R1rd2yJXypDrowxXajT5WzkCxBHR1UDPRLJHscB7BD5HUhI4bMXPwIBtr6/ziR3+F9922wMj4QQ7M7WJzc5k4SIk6SyjTh7nj3nexe2o/f/up3+bMo48SSQmKKnDsVJUvP7yOL1q8vNhnfcvm2qN7SWo7bGw4lDMRN9z2JhbPnSBryPhuQBwGjO/ag6RYbK5dRpdVgkhi5eQL9NsOW5FBe6eLIUdkJJEMAr2OS+J5ZAomoSCgpBFinOCIMWGY4toBhm4QSyphw6ZcMllZ3KZcziMGMcjK6921LGEUksQRhVIWS5TJjGaRBQGv50OcYOYskFNyhoZKQjarga6jFyxSO0CyQzRdR5cHOvAkAsIUTQRBUUCSkRQFz/NJXJEwiFEyCrKssNOx/+XM+H4Cisj2OYfSeMRW1OOe227gkW98DWFe5dRql8r+IuZKg5eeeJTLKz2OvfAMnbZArdHm3Gsv8fKJFu/5pTexem6b6dExVHSWVhdJ1ZTqms3cdeP47iaOF2FlRvB9j9xIjq1LGwyN5Mll84zmhglCmb2TQzRX+ugSzC9cgyFpHL76IFkly67hXRQViTuuP8T8+BxzY1OceuUyBdWgb28hpBHtBrz9bQssXtqhko+JZZM3Xn+YV0+f43//xV/x9a99kziIufG669m/b4x+v06zFnHw2kmK+SG2q9sIbRlZl8lpI/hegECXQweP8tJLL2OIGaxYw+nn6HQDFEUkDhMOzY8zP5IjeR1BfOz4s9x9617+6UuPcvXVV3Np6RKFrES7CW9/280ce+Jx/uyxDe6ZLdHstjh61x1UihYrFy/QazVobazQarY5/u3H6aYafV9AsuvIQsyut3wECjnEXoTXbDF79WFSBMzKMEurTfSx3Tz21b/hZ3/xI7ztPT+ClPYYH52gMD5Omh2l07MZmtzF+vnTZIsl1u0txiZv4X3v/Ah/+oVPslV7DT9R6Ak7FAWLKI34xZ/8IRdyP/W7//V+RQRF0vHDcFDiQSQKwQkCFMMkEjIIskUiGkhKATey6fa7BK5A0E+pbXe4stKjmBM4OC3y/HmP1U6MJMl4EZimgmYaCLKGGPp4SYCsK8StHkVLIls0CRyf8ngBTUlJJJl8OU/o91AlGSkZzN9QyBIkCuN7Fjh/7jy5TI7nn/gmjy6t84F3vp+nn/sKWmJz/tTjqImGL/oImsHw+CRFVaJ+9klKu/ZTmd3Dpx98FTWvs+fAQeScSaPfxak5WFoDXVFobFxheM8cY3NX8eyDX6dYzIGp0HR8TN2i57iEoYPdOsPi6Q3KlTxfeejlAWAtDikP67hujCjqxIkPto9mWOSHyuiWQmi7BH6AZupEQYgQxoztG8Hu+WSzCq2+Q5pIGKaMgETg2fj1LqqlY+UsbNdDESSEKGWn2yUWJDRdpLrVZfjAGJoskSoa9e0GGcNAlAT04SLtdgc5Y5L0bfoJ5IczZIZKpI6Dokg4UTAAwUkiSRJhZQzCMP6+oCRpEuWSz0f+7Tw/+cGf4dp7p9l6cYPPfOYhVrar5ApFxG5AYGTYtPtUTIvAk5kZHufSpSuUs0OcPL1Ct7HNtXtnWe+0kDSNrW4dSRUZntWw7Sb1VYHqSkokdCiXh+g1Ohy5cS8jhTHUQEOXDK6am2d5sc6umXGyWgFDEMlaJRzHQxMkuk4bWdWplCqsr61QzBS4+fC1FEwLkyz7Z3dzy6GriLopB/fsY35qNwuju9jc2OLwjTeyefES0yOj7JscZahgIYo61x66kf3zs9S3+qiCjimNoBt5xsszWLpBlEhMDe3Bc3oUzXFy6hCGPIQX+whiSiIkjI2OILnbbK9cIZMrsbnd4P/7j7/E0MwUr518jYyRsrq6ReI67N23H1UNWL2yxko1Zd+Mzi1vfjOVkQqKLDA0PsmeN97KsQe/wXa9x6ee2mDszl/ggW9+g5yicfS9H8Kc2Evca4CzSbt+GUPSURURKT+GIqXUli/zhsMLLOyfJBRdEruJbsp4fkQa9KhubDKycCumIaILHchfzV8/9jlmZk1uvetuXnzhcX70bbeycrrK9nbAwsIUH3j3v/9Xg5L8rz0AQFf47imbPSNgqR4z0xZGNsTKyKRalkYjJtqoopfyCElK6Hbw7Datlk82n0dSPGZmJBYODLOxXufsckrdZ4CUFWI0FRQVCiNZYtdFn5hkq+3i9buoBQtFipGQGFuYpb2xRmG4gN6z6VerxGlKRIoXhEheSG9nBy2rsLm4hKpAp9Pijpvm+OpDrxJFEZdefoH50QoTlQk0Y5zrjlxLewdaWzuce+1ZLqxW0dc7XHfX3UgYdGo2h67Z4e+fWyE1DM6u7vDWn38rUdBkbP4IdlDBufISm60uSiZhZuIgkhCiZHJYpZjVE6cQSWlGOp2lNiXdIE4jNFlDEXSUDESJh54zUVKJRrVD0OwSECFaWcq7SsTNGp2ej6hLbJ3foDxcQcsXCNodBC8kMSSSIEZKJEZmJwmTGKfeQdU1VF0hSEJypo5mZpAUmXwlxmnaSGmEEiSUygXSLBieSGh7ZIsWnu0gFixKsojfsXGbLRRdJej2EfsJ6BIpPkmUYCc20f8lDti/O2HXrqM8891n+fI3P4ESVDh61ShRPiJ2KkyKAlVDobbdIzUM+p5EgwRju42QiNS3VsEuUN9sctW+o4Try6y3Ohy6Zp7Fy+cYUxe48MRJslMZzFzE4b03k3gBQ6lFay3E8TbQMxb5gkS7b1MoFzDNLIamcvHiIrNzJaYmZtneqrF71wE8v0fHjrnlttvx+jblcpmcLGPns9x4401sb29i9/rICvR7HhNT4wwVK+iqxolXX2HX+Cg71RZX7zvI8MQYr7x6Ft8vkYR9nCB+vV6oYXcD1jcbDA2XWeu5ZPMqYTCAFHY7dbq9NsVigVwuT7PRZnRYYKNaY3RiHl0M0DMB3bVtWmvbFPL7qFRGKVkyZDNcuLDKHe/6ME9e/CPstMTbf/qncGqbXLl4ibKZsvbMU3QdkZfOb3LPHXeR7yxz921vZP+1B0hjn8uPPUCrVUVNAtJEIBhaxhgdIzt3PcXpGY7smiF1Ohimht/u4SQ+Td9geG6O1tmX2DW/n1TUSLIVeluv8ccXHqd5rEvjXpevf+rP0aMKb777LnZP38jv/PEn+A+/9ss/MOz8wEzp/o/99v3vvCXL3CyMjlskcUoSpMTKADwmqhLZoTyJ70EaMFQxGBrJsXdunErJRlci4lii1vTo9hXCMKZlJyy3BwD8OB40/3wnpOeGBLUWspigRDGBFxKGCVXbQej5JIqI3wlw2z5qoiErFiQJGUFFS1OKuSw5ZGpxSrEwhUjI2971FmzP4Nzyq2RSaCdF3nLfuzm/cpb65TU2t4kICXUAACAASURBVC7gxTGtRpvq5XVUwyTVFebnyrxwdoeQBF0rEYkhv/iT95IGm2RKu0jTHprvcerUWT7ysf/Iq9/6FtO7i0zP38TIrt1cuHAGUpnlC1eYnN/FN7/9Cm7soqsasiIROQFiViKrZ8ELubDSR0tSysMZ4rZPRIDQ9+nEIZqgEXkuoqbiBD7tVhu/5+EEAd2GTdcPSdOIWruD07Vxg5A0CGl3BkbjKE4IHJ8kCFFEASEAKYRAVciICkKs0NvpkCQyccch8GPwY5yejR8lJEmIFziESUwoDKbpkyh6HVuckoYRded7IwHNEQFTXWP9JCSGjmR1aLZaxHGe2kqNNInouQJIOnbXIRQCZorDbEVtRFGh3xYoVCBT1Fg9X6Ph19m1e57G6jJrlxysik6iSixMzTA/MkKnl+C6AdlCBdt2yWUtVEFgfGyEfqtLxrIQJJW11W1uOnyUerNKtqRRLudpNWos7J3jwP55Ov0W89PzlIbHyA+PcPTmw7i9LnGaoKsiQyMl3F4PWdMZHZnEcXpoqsHcrl3s3bOPxbV1Du47RG1nm1LJpNpooig6lcoEoihiZvJYWZ2RkSk8P2BiZJhGbRvPtXE9m2KhTBTGuK5DGPRZmB3F6TS4slpF9HqMT87x4D/8JYIg8eLpU7zpvrvR4ogogoIpc+ryRTbWe5RLI+yaq6CEPieOP8lXH/gyV65s4tSrqElKs7GJ399htJihW99A1hTcrk2t2aXecNjqOKxs1Wl3XOztKzSXzhK1msS9Jt3qBtmxA2Qn5zGsLKFeRJraRxQbaJk8zdolyuUCpxqP8o9f3KThrXHjrMSTz7SZWbiWr3z2q4SiyAMPfpdf/vB/+uEypcuBz4kLMYcPGgwNRYztUtBSmVw+QM1nEUWR0I5JrQghjAnlAClxaTbb2D747kAQAGBpAoEOo4ZIIMhohIjp4LkixFhCBtESCeyANFEwxJSMJGCqhcHEtxTheh6iBEpZhlhC60Js6CQCaGZMu+eRVYbp2BuMju3h9z/5GWLb5//59Z+hvuKyMDfKysWX2T8xS6joZNB48At/zq9+/E95+B++TKHnUtl/PY3aWe6+Kcezz9Sx5QY/de/VXHztBWYmS4xMldmsXyQzWgE5pN4MMUdKBD6oWQtJ1JAlk36yTa3lUzBS4jjGUDUkUjRdxRJCmu2AymwRN4k4eEAjDkIUWcGVRYoyCARkQpGAPpYoEYf+IBDEIVKqowoxkSyTEKJGr0uo/tnRBihCgiQOfvsQIAyJ0phUkummCYKT0kNDFiN8RSR226jyQE0cCIOunpoM0CRKnBIJAqokEKaDrpwogigIBPH3Z0q3Hczyu4fv4fInbmZOUvngz/1nYqPA1GSJ7TWbI9dez0PHnkctawiChN8TaJoik4VZLjaW0XIi3W4fvZBhZXOHD917L+eq52hUfXRJIZek7Dmwn4uXV/GtMqoGc7v3cPrkK1y1bx9dp0+r1qBo5ciaFjtbm8zumsFQUzp2lYN79lEsalSrW4wU8mQNnW7XYWpoima7TU6IMDSD5eVVECIymoogC2TMPIeuvgFZlqnVm+zac4Bp38axO5TLeW6+5hDnLpxlfv9BPve5B/A9j3e/6x10ehtcWZV5+cRJNEPj+HPHOHjgANXqFnGc0mg0KBVzZAwVSR5orWrb6zz93DPsGR/BjhXecMs4mUyGejMkOzmGvbjNs8efYzpfwCzkOHPuPOQmUK0Ski6x+spz/M+vfJ1220OSVZa2LpOmCr/+m/dT76xQzBgcuOEGnnnqWxTkgK5tE0QBy1s1+n2b8YkhFl9dJOnVyJkFDu6dZ2fzPLPzu5GUPPrcIQojNyKJDnEoYU6L0O1QDhKcsoUSp7zpp022FwMefBjuOnKAxeee4OTWZUbGx0hq378F8H9/fmCm9Fu/+1v33zChkZFEwlAiCRVSScHxDFqdHnbXx3Yjet0EX9AQkHB9A89LCOIES5dQrIEFN00dUjfBNOCJc4O3tiEJFPMWQ8UC5lAG2ROIIh95yCRbNBBMgzQV6UQenh/Trbmga2zs9BBsl06cEKYxuayMMpLHbyb0HLA7HX78Qx+hnM1RKukMDwu84Q13cOqVx5hduIOtbpXrDlxHo7PM1778HM9+52mMiRL1hkuneoWVy1tkrSL3XLePhRsOMDs7TSFfJlXKbC6+TNT16HTq7D10A35/haRYZKo8iVEuE4sqO9tNnN4WveYO//ClJ9EkCUuTSaIYM6djFIsMWSr0fVRZptm16azZVFs98nkTKY6IRZlUTTAEkViUUEV50J2TJLRYIpYEVITB3CDpv5h3B0qleKBVQiBN0gHREwHE18WdJKiyhDQoEiIlMQogxANxgMrAsBIng2xIEmXiNCX9Z4NxOkASA6Qk1OzvHbJ/d1eZPzhV5anPHefIO2/krqMjfOlvn2LImKe1tU2holIZGaVVs/FdH0kQqW7XGKmU2KpWcR2b6d2TxGJCJVfg2VdfRVQEgjjljluvx+2HNOoOtXqDKPRwuiEyDrOTE2xsrCOLIpXxEdZ36kRhSirJyHIGUpFd07vx/JC+7TG5ax96scTNb7yLyaFh3MDhpsNHmJvbxfjkKIHrkM/mOXfuHDOzu9nZ6eAHEbGkcOtdd5CRBJ548ji17XWGx6cYm57hxRdPEEYJb7vvLcxMmEyPDbO5ucmN111HIZuhvtUmSWPyWRNB1EiSFN93SRnw51utNp7nksuadG0PTQyp77TZOzHCxOQIx559lm4MopgwlMvid32uvmEOp9lhue6Ry5m8913v5muPfZuXT++QZlQkLUeqGrzzxz7MhXMvc8uRI5x69QwPfPpvmcpqLNxwPQ88fJz6apPRoooY+2zWW7Rtn95WkySOKOYz3HTkOvbedifl3fNIukbqdxER6dbX8RwHIV8mEFUomXz8rz7Lb/zGR9G3BRLF47uPb5JVEh74xif5zF88Q6dW49d+5V8vdP/ATElNFaJ2AAUFMQmQMyqSPGh7alYOPWNA0CZJII09ZC1LENhkVJWypRLECaHrEIs2omgQyF1MXeX2vRWeudImlQS8MKFv+8SuS7vtUZBSwloX2wDNF/HDBE2VyOgWpb0lor6AUciQOgG+76EiEdUDXLdBeTZPazlBESs8//JLnHz2KSbLFrt+9FY0NAR9nJWzF8mOZQmJ+Obff4E9kzkKu4eZu+YGvvNXf4ee0Tm0MMNUAdY7V1g95bOsCdi+zPRwBiFto6gmWkYmPz1Ja/MKszd+ANHbIglTBFFDlmVcJ6HhCoiygKqrxKpCMZthZLxMbalGLIlkp4eon9+iH7mYJZ1dwzkubDpUVAUFIJGJUhHwcdIERZARIwGpYKA5Dp6dkBKjqzKREJOK0iBApQOTeZjGyJKEhkgqpSSJNFAsiAIKEY6kIKURYSwMuE6KjJeGpElCTIogiiiv67pVURzIPhWFJAxRUpEoEYj5fvnb7z26RdjRmNqT8gsf/k0kOWL24DCetM3NbxjlxROXqUyU2bd7hhOnLiLroAUyoS/ieR4KUDJmWbr8CnWnx/yeKeg2OTg9Smu1iu9Ct9ekmDVJYgGrqDIxNEZzZ5OxkRKaXsBzuhRViXIxi56xqAyV6HRa+GFAQsShgwcJw5CCLFO9vIjTaaDnLKo76+RNnTByCbwWvXafoeFxau0OmiaRz+dwnYidtTV2dnaYGB/ltVMNbLvD0sUm1117iE//zed4w9Gj1CSVVr3GVQf20nMcjl41y3VXT/BH/+PvSFMB2+khySJBECBKKq7tEng+giSiKTqCkqXr9wGPpfUdDvktUiPDer0Hbp/s/nnarRVuuHaBV4+9yMqVNY4cOcIjj32b9fUmRl4mSFL2H9rD8tIKl8+9yBuOHqbaaDMyO8O/vfVmNi+e4PP/638xWyrz9NIWK02FyUIW3U9Y79tMTu1lSE84fN0CkzNF9FLK+umXGJ7bO5hVLI6gCCEtD+R+i+3a8+xs9fiz//LbXKhfppGc5tTxHj/9oVv4wpeeZvXCJiu1ZQqR/oPCzg/OlH7/d/7w/utmUkqagqyGFAoqakZAl0FVRARiMqaCTICiRBjSEAIuoiwhyxpR0EMVFDQlQkh9HFcgjFOGchoHplQutBKGZYWh6RxmqUDS66DlZVZ7MYW8Qa0fgKVgEtPvehRmRwnX26hZA1WOyZZzWCNZAj8gN5YjbUasN3xKI0VUPcP6xiqxYLGyeIaDV+/nwPx1HLnjdpbOvczLxx4i8lLe87M/y/Krl9i6+Br9VhVdy2Bvb7Oy1UZXZbK5AtlyDrtZZ2u7hqFlcW0bUVXYWd3CrXZYuXyG2+59Oys7LuNDI1ze2MTz2iyfPMvyZgfC1/ndpRymIqFICl7XQfFtBEPA7oWMj2hsVT0qQoqsDhZpQUJVQsQQ4kQCEWIvwgtjZENF1V5Xa4sCqZAiKzK+pCGmIakAqiChiSKRnJCmCaIgEjGQejpSgpxAmigDV17yurMhERElcTDJT4qYxCBKREKKLCtEcYggSq8HrgRJgFr/e7tv+ydBkaC1IqIVNAJS1l7qUpi2sHse47k8U6NTlKU8d159Fe52yNFr9lExTQ7tnmd2aJw0o5EzsxzZO4MmC5T0Apoks77WZGCfSslkMpgZGStjErg2LTtAM3PISsrs7llGh0cZHh5heXUZUVIwDYtczmRleZVSuUCnVefuN97OubOn8X0P13Y4d+kCQ0OTzO65GtnMEUsiW2ub7J6fp1gus7K8jlXI47kd5DSiVq2SkLCz3SWRDOSMzoFDezmwbw6RmF6/iShaqHKAG8lURicYKo9y5x23cubMGcIwwMpZ9Hseke8wVM4hKwPCp+fH2H2fkqWxuLjBVfv38uKJFbbafXJ5k4lihVarw9vfdDVLdY+iqdH2ZCDh1VOLlMsWpqHSaNocOXI7ttvl/LmLRL0mutsk7raxDI3FC8uInS7l6atY2mrxly9V2ZFK7Pgi52oxK3WPexZMJubnaF7ZYOSGW7A3t7Aqw8SxgCeVGMoNWEu/+z//O81swokvfJNvP3mZhb27+eWPvoWvPbnKUnWbr3zxO/zOJ3+e8yfr/Luf/ZUfbiTgoU///v1HhxJkKcVQwSwIZDQFI59Fk1QyRkIU+ahKHlHMIAmQxj2MTAaEEE2UEKIeXrdHEMS4oUEqiFRKBrIYs1JNmbhmHquUQVMV3GYDuxdTNlNEN0LSRPJpjB2rjO4do1HdIVOU2Gl0CaKAWq1HdngIMYTeahNRUQiUQUbQ7rXpdXpMzEzQX9siLoxxw7WzFIt5ZMnkyQcfwLQ0Vs6coe+26DQ6xL6HpCr0+yF6UcfrBiRxgOLbZHMa/SAhjVOKJYNCZZzEMOm361z3prdw7sw5rJFxOt0WubzOa8cf44WXN1C1iPFiHimCrJrSdPps1wMIEgIhxe9HiO4g2EhGimooSEmCKMmkWgY/DIl1k7ymIbohPWRCNwTbJ5YEHFREXUOKIZPR8BwfWTQxiio910PWNFRBxXFCUj9CVCV4vclQrhToNnsDRlMQEwUxiiqSCAN/niRKSMgokolve6jSwB0XxzFxKiAM3Fjfd32r1uE3PvYRXjp7CbvZ5T333csTjz3I537vE3RDBd2OqVf77J2aYO+ERmgntFMZ1xMw1Dx+JKPEIl4I1ZVNep0WQdDDcVwyGRNNNYjCwShJ6nUgiMkWsoyND5HVNHRFQpAU8vkKjXabYrGE1+8RhQFJ5FMaqjAzPkm70eCFEy+RzeXptLfwPBffCUlim3pjG1lVCaMYJAVZTEmShFyhQL22SiU/RmFymmuO3smu2Vl2tleRSfGdBr1WnZULi2RzJdpth7e+9S1Mzx/i6Wef4eajR9BEgTQOOHzjNRQti3ZzB1lUKJaKeJ6DrikkcYSsKiDG+IlAGEscPribmQNzrC7X2Gi4GGGDla02xx4/x/ioyvOnVzi5WGVlfZVCXkFIZHbP7iKbUQl8mzfffgvzU1nE0MeNQq65bj+PfPtpds3s5h8eOcEzl1d5dqOLqeTIWCa33/YmnP4Ojh9wernNffs0jN0TnHvwG/TaLpokoeRNEqeB7zqsn3+C8tUmzx97jpHdk9z41r0cv/gg33msx7veO8Z3/+kcRq7Mm9+0j69/+7t87KP/+vDkD9x9OzwKK75EveogByJaJBB1QxLfQRMdiFVMo4SmK8gYiEoJtTCHLI2Q9j0iz6Xr+YhmkSgxKeQlyhULSXWxDJGDOY/ID7EvVLHPrzN68CAzNy9Qnh4nP15kds8k1u4hzJxEppgnNznDmWUHIgEQmRgbQ0584hyIgoE6YpJIKu1em9B3mZmeHNRlRoYZVRJeOvkaYSKSyRv0eg1MCUYnywznFOq1HsPjw4iCjFo2mVm4CUmAciVDHMd4LRtTFBiaynDjXXdg6ilKbBO4HroCb7jrHTSWXkEQJDYvvco3HnyNIAopaDqSGBP6EW7bhyBBcBxiwUf3A/K6gDkmouZkLFEiSFIESSAlQnKbaBIooYPj9EmUhLwRkSmKqEUJVQ4oCBFa0EdMfXynQVZNUCKXoBegiBJqmtL1HMyMQnm8ALqB7yVYiYKLhO8L5FUBSxUxBVCUgXU3m7dIRQGkBCfqIUkKHTug78QDMJgkI8n/rMv83ucD976JP/6zzyBIDu22wMKdZU6sfJWf/eCPkBNNulJMzoqhdZqnnzrBYhwQuj2KOYVudwfX9YlCgbjTJFcSEYUYSJEkCc/vIAghw8M5MgWFq656A9mxEXaaXfqtHqqqsdVoU9/exunViX2PneoWpXKeSrnAcDlLGPps1Xc4ff4cSiKytbqOLJlkzRzFYhZNriBi0m20mBqeRrc0kigiCV0yqkS+OER+eIik59LcXOWZY48jygqRCI1mF8+NmJisML3nALe95T6++uiDrG0uMzM3zXB+jFqzT7PdZ/fu3YyPVnj7fXfyEz/2LvJ5kzCJ2d7eBklE11WSVKTv2PSlhD//xwcpiD6BV8P3fVZ2+uxZ2I8ypFFteZi6hpz6FPIZTFNjz/wYrcY2OV1ESX1kTWfXgf2cO38JxxV55NGXSGQZraiSMRSumplBQkdKe5w9f4mvPPCPtKttVlZWKJlTdNwOnXqXPW++h4W7buaFR75EsHWa+oVXSdIubRH+4L9/if/wi/8vDO3lmec2uXJ6jDvuXuAvfvVxvvjYJ8gbHX77R/+GQsn8QWHnB2dKn/mdP7x/z7RG4KVkihZqFqyKAGGCbukkSTiYwxAF4kAi8peIwpg4aiOIGrbXI5Ov4DsOYhqj51Q0XQMxQgDcvo8d5VDnRnGWqoRZGT2NcLs9jOEJNpZ2UFKZ8oEp2pd3yFgCpYpOy/YRkVld22J4uIzi+7i2j91zaXQ7mEaOJIQf+cB7WbxwntTx2fFV7n373Vw8+TJuu8764hluuudd+G4LJIOw08SsFPB7XcRUYma0gGVJNGttjKyJ6wQokoQvxQyXsiAJNFpNbrr9LmIv5kq1xtLlNZTI4+VHj3F6uUHq+wxnVWIpwTJSVGFAxrRkFUMXkXUG3rsYICVVJAxdwQ1F/BhGZieQMxkKo0VcPyQSBSJJp1LJoxsa/b5Pvxcj6MKgOJiYr6u+B6160R9oxlUEhDQiDVLExEcyFARdIw0icmWLQBQQFYXIUHAEkdJwhajjkNEUgm6IqGvEUoJhqsSyCqJE6HmEAeRHimzUev9yZnyri9v36aHzh3/5Ezz71+e5/c1z9Gs+jz99loqVpddwUYYrnLi0TFYOiB2PoNsnUUQEMSEM+/Ta69j9HoKQ0O50KBTzCIJI4PZQiMkaWbw4IOj3uGZ+GkURGB4dw7Ndek7A7PQUjZ0tDuydp9qsk8kYLF5eo9/xKQwVmRqpECQCQ2NDiKLG+YvLHL7xMLZbZWJ8iMcfe5x8VmHptRfJFnO4TsjI2Ci24xBHKaXxYVzbZXtjCzVjUq5UCAO4vLSMpBoUCznkJIBYoJwfobOzzclTJxifmGR4fJjnn36GVq/PgYNXMzw5id1o4QUDjdnU5DjVrSq5YpEkSlDFlEBQWFu6wqGDC+R0iUas4gRdJDfESfI0+30mRkoIScxQKYsm9CnmTVRRYGpihpmpYfbs209sb7O6tkLP8bjx8FH+/tNf5J7DN7BrJOU9991K3ZPoBjGiFCIK8N4f/QC7smsc2rcXPVsA32Pn3GlmF/bRatYJAx+zWGB+4Wa+88i3+G9/8kUWl1/h2oWUhz5TZbu1wsc++kvkxgUeOn6OD/77f8Nb3jHKdfPv/+Gub9/6H/ffb0QpeTklk4/QChKhIGJoeaJUJAgkEtkncGL6Xg/VjUlTnVRMkLMmGbMC3TpaxkQ1BjUoUR5ofdx+TLstUe0rKKS4eZNWo0m+kMXrukR2SMmyMEY0kmafTqeLnYqYmky841IoFhmeKdG/uEOv62CN6LRbTaQYHBKkrMxwoYLX62BVhvH7HT7+8T9m98I0WWLktMfc3hvAD4gNkYKiEGgVCkMZbE2nuX4Z3wspl8u0Wm3cTodEVBkZz/DBn//PkGaY2X8t9cY6DdvlhmvvYad2nhMvnuI7xy/iuRF5SyFnSsgJwMBdJ8gSaZoACRESeiriKRLWeAXDNHFiFScRqPUiFDcmX1TYXGowMVmherlH2LWJQ5VmP0RERtNkdEFFMbJ4fkA2a+LEEbqSomkD3IgkDTpnsRAhiQNHXOz49F63v2iKiJrNkTEUnHqbtGsjZRX6joOsyCSxj5gKZCyVjWqPfAyyJlEaL7JyZZt+mP7LmTGnFPIj8IEPFbjr6Ft5+uvPo01plLJjfPmrzyKLLne+/31cZ5Z5eeUKieOBJPAbH38fjz14khjwXQfXbVOpFMlZOkkiIApQzGdRBYl+L0C3ivTbNQx9mNQsIipZaq0mZq7C/v278Zp1Gr02dr9HYHd49cRLzM5MU85Z+L02kSDjBiJSIrNdXWVhYR9xHJDGEktXlpmamuLVsxeZ2nsVsmFhd/rYrk/gR9RqVUI3RtM1Tl+5RN60MDMm7W6b/uvT+CdPnqTXd9je2mGntsbY5DBz8/uxsnkuXb6ELIjsmZnCaddw+m2QY6qbGwwPDbO1vkOhmMd3HVRRxdItkGU6QcL5SxtMjI8Sxf+Hs/f8suwur3WflddeO4fKXbm7q3NQt9QKIAkJhAgSGS4yxiAbOIDAwPHFHHMB2WAb22CCTZSNRBTZIqOEQktqqXPurpyrdu3aOa281vlQXDN8xzXjDP6A/e0d735/a875zAC77BBk4gSeRa3tYQZt4jGJdMzHdSViusyuXVey64qtrJw7hdUoc/nsWRwT5IjOM08+y47RTZyZHufQldsJnJAbrtnBxakV8CMc3NXHoD3JoZE0ekyhY2gUT1FwWk0Cx0OMKXT3juKpab7w6X/BbLo0IxYveOUwP//xAjdcn6BX1njwyHGuffkt/MUdf85ffeIjTE/P8+bX/OUfpr4pik+2J0nQKkHgY87ISKqFGVboGN4OmkI8dg1iXEXyDRqWRTTVieacodFcRLTyqJENip0Wati+SLvlIkohorLB/i6JLimrRaIzSyIucOnsCvsPjuD4Lros0WzWqU8X6bp6B821Ek7dJ5aMYVeq2HMWYo8G7RCn4RDN5Ii0bZwwwt6Rzdx464sQHoFoRKers48g8JgYL/F/vf9lhOE6jVaDqiBy7MnDXLFrF9tH97FeKCFVC0R2HKQvFXL54iWGurOc/81xOrpivOQt7ySZytCSPLxaETcw2X/wBg4/9lXi6RRpOcDTJJQgRNOFDXKnHeCw0fir6xpuaKEmMoBPfqWOkUojhiKNcgNBUFmdr+G4Pg1JYvLZNULBZTrfQhAEbHwStSI7ejupVarIhkq55eHWXVqBjedC3QuIqgK5zjSyJ9MsVBA1AU1T8ByXUJLJm9DnStiGhSTqeJU1PD+gozuLbbnYpkmqI41TtXFcDzkUaDUsBpL6Bgw+lKhVanT2dbI6ufqfM9Mdz6LGVhgYyfLm138CzY3QsbZMrxpj2azSClP8+5fuRcFj+MCLyT/+IB967Q0sxdYoV4soSZeE42LbJh0JlUK5soE5dlwKq0XC0EeJJqkXVwhQycTrJMUkQdAmoshsHt3Ejp17OH3mBHKlxvJqkWgsQaZzFFHLMFuusDQ/x66xUa695iAPPX6Yge5BioUVIpqOFsvQ0z/IyZMn6Oru4/KZM+zau4fJ6QV6enNoqoHruaTSCdbW1lECgXKzyfGzp0nGE4xu3cL6+jrb+vvp6ekhme5g975dFFdXOXb0KLt27yYXz2ErTQYHB3n2VIW+TX30Dgxy8ewsMzPTxKMipu0Q01W0qIgkQ8aXscI4q0KRZ87Ps2a2ecWW7cwev8i8JLEmwa7BOF0xg3qtTCYdoyed46Vvej1f+OC7ufNP38TPf/kQcSlA37qNJ598EkNTqYcBB3ZuQk70sCVtEBDj1VeMct1Nz+Peb32HWCqNG83Rrvv84v6fIvh19l99BZcXSmzdvR2vXkDVDJx4lvu//SjZbVA96SGZHg03oO0qNJwqe5MG737nq4loCSorld+3dn7/pfT4lz5xd0R2URWRmBFFlHziCR1JFVESKrIsI4kVfFfFsRbQpDIRMYLTXEUNPGRJIBRNZFlC1gRCQURURFw7pFrxqLcV1hsykaxKICgUZpYZHemgut6Cmkij2sRdaeI6Ao1qhVKxgS2JhJJNy3FQkhHstoUk+bi+ieMJ3HLHO1lYWSadThDPZJifHsc0LQr5eZLZLHf++V2cODWFYFv05XQK+SJXHLoJIZllePMYrhOwYrZ56fW3sFpdoSlEMItzaE7I4NZhurcfZGrmIolclunpKZ5/858wN3MWwZH52a+e4PJEge2jW1lcW2doOItuJGi0fRxBIhqP4BIghtCqtRFDiY5OFc+SqC1WaRcsAstjuDNGNqPT/S7KPAAAIABJREFUKjbxCHEJkREJRR8BkcHOGC0nwNBDfEXDMGSMiE9CCQlFnVRyowbc8tpku9No3QkURcX3JXzThkAkGRFA85FkFVHacG4TSoSui++4SCLY9oYTXAwkQsdDkSRkVUb0QhzPRxJEBMsm3/wduuTT37qDhLiNh587y+I5G0uwuf2FL+Qtt/8JX/vGd3nTXQc4fXgRzxO4dPZe/vUz32DnAY1iNMvph8cRZZuu3TpW1UQQoFCo0Wg52E6AGlGI6hE82yQWj7EpEUWOGViOSKVmoiRyuH6EWq1EcWUZVZZQVZDkCLOLy5QbdRqrC4wNDTM3M0nJCunu7UFxN+JBoaiiiA7nzpygWCgTS8QRw5CFlSUUVUVWZEaGR9mxcweXLl+mUilj6FEikRhTE9M4jkOr1SKXzmDoBtVqi46OBO2GhaiIZLMZXMfl6KnT7N61jUcee5TtO3bR09ePrspQn+PGQ7tZHL9AVzJKKqbjhz6xSIx4Mk0gQELXqdRbeC2Zk8VlylZIIQgQQ5GK1abuhWzfPIAW2hy68RYuHnuIaw7u5Ec/epCOVIYjyxadUY2yafHEuQLpWJJS1aIdWNRMm/HTF5go1pm8OEVPJklnLOTq57+I+OB2plZWOXZygpQEVxzYR2V9iUT/Vvx6iXPlOgvVJTzPYm3N5sDVO7l8am5DVcTj3KWTfOij/8Q//Mu9yAq858/++96333speYKPYqjEkyp6XMLQBPSUiBxPoUZUBE9CUCxkRSG3/U6Gbng5iBrn73kZLbOCKqZAhFDyCUSBwHFoN2xcQaDtiYSKwOpsmVgrgaKY+C5MzuYxVAVZqmO2bSKKRFVySYQaCTVEdhv4oUBGEnD8Figige+hqxqRZJJnf/lDto8Ocs1NL2Hq0lkKM+e5+ZaXYYowNrQP34P5uYsUJibh0FYyfQNsGtrE/NI60yefJrX1+fRW1jlz+RkmTp2mQ3SJ5nro6N3L5PnH6JyZIz99FFWLYDsii5eeZvzSeebn5/EaItuvvIqlhWUURMyih+BUURFpNk3ULUmW2jV0zyUekRFDh7VqSHeHTjrRy8pqkcXVBtNtG1UEywsIBZBEgVD00BDZsilBsWCSSOvMV3zqVpUwEAjxkQlQ5IBsWsOQVZJGhNpaCaclIOsKHj5hSicTS7E8vYiKiGRAABAIIAR4QYgobpguZT/AlyQihCidOXzfx226mG0bQd1QSdz/j1TSnHP52Ac+R3w4QwSPj33xRg5tlbjv8M8oVAPu/eqz+JpGf1SgXC/RFlOEo4OMjOzgVW+b5tf3n+HcYZMrIzmmWk1icY1A0LEsm6iRpllrMjo8hqKJiK5Lfr1KKiYysrmbtfU2F+eeQgpdkgljo2gxopNK50iX6hTXluka6me2sETEMLBbJZYvF0h0ZDHMGmtr65TqdW655UZWV87R39uB5YTU2y0E32d4ZIiHfvMEw705jp48Ri7XRWlpFVuSf0tsEMlmI1TqFbbu2EKhUCAaT3H44cfQojqCLhI6PgODvZw6dYrB/kGmxy8jui6qGhDP9BDv7OKtd72PhBFw+tln+PVTZ+no6CDwmowObKXaDJlfW2W17LE108GMVwPLRtRlWqaM3VbRZYFrr76VfD5PNtnLT586TqNpsXh2iXarwXOOSGf/PpLhIusrC/T3ZumOqIxuPUjk1jFu8lwWzj2Ormzws574zQPs3LmNpfNHUFIJTk2uslD5JT1DQ8SzRdTBrbz6Ndv45gPfID8ncnBLnMvPXMJzQVRkjucVekei/PyRL/Oa176ax3/46B9+Kf3HF//x7kxMJpYSkVQBI75BJ5R1EU1U0JIJdENFFkrUlp9h/dz3WHrqkwReFVERCUUL2zXxHJHQN3FtActxqDc8nFaIbys8Pd9GDR0iUkAg+sQIwbfx3QBNEPFwiagiuhhs/KMTIjjghC6OHyKKIqok4YsSluWT3tRPsWJy44tvZfy5B9EynZgth1xXkkQug1WqI0kKshZhZmmJyYlZfnP4GV7/+rfwo+/eT7tdxq8t0LtlL25tjlTfKEo0RnX+MgM9GZbnp5CVKLNL62QHtrI8dYknfzOO6YnI0RSvvOOPefiHP6IvksIq15l1Q0p2G9nziRsaUt3BialENBnfdsH2sNsCrVaDStOh3QiISKB5Nru3dSCsm3TFFLLxCOmEQSj4CLrGYtGk5TgYvoAt+igoeISEroMZSFRMm+V8m9WaS6lhUa+7rNVN1ksO1UKDgdEePMvGD0RCN0C0BQJJRmx4OH6IIPt4goRESOCLG2WcOQPsAE0Eo7OToNWiXXEoev5/zszffuWb3Lh/gNe8+o3c/u4sQcvjPXf8mNaIzMufn+LI0wsc3LuZYyeW+dVvfkOtWKHqFpifneCBb56hHWo8cuZr/OCxH6AHGtFEDCWQqJZKKEJIXFNptypoUYNmvUYqm6a3t4tKrYkh2cSiOs1WHV+UqbfalKt1ED1qzRJtyyIXi+OFAdlcDk3XGdu6laXFFdphSPdALwoiC7OLbN82yrGTp5ifn0fXs1SbdfzAZaC3i1q1ihSJ0N3TDxGJLSOjxFSFkc19hEHAtm372LplJ5oeoVKqcctLX8ZKvkA2240shqQySfbt3svy8hI9/ZvYNNRPLJVhZGCU9bU1Tj79BLe/6rWcv3CBuKFgmhVCUWN2fmnDJybIrK4WWalWwAvQo1EkWSH0HUzPYWqlje0FLM0t4NQrTE1M4Jgyt7zyFWRyndTzZZbPnmTbSB9/98mP0JtREWWRULCYuHiCuROHmTg3ydFTF+nKCiQVhcNHjlFda9HdGcUUNbRMirVig0JC4pGJZ5l48ixdY33MnlvjQr1CZ7KTf/3+R/jpt07QKPhE+2pccXMXRraTU49c4r3v/as/7FKyvAArCGg1fTxPRNMUol0qoSfgE0Krgagr2G0bUbSQhRiBqIIsEXgWghgQ+gKe56MKBu12CT9UAA9JkRAUiZbpkYkoCLKA7m+4gxVFQw0DwhBkUUEMAgRJ3pCffR9fkwgcD12ScMMQQQgQBBU9kWNhbp6DN76ABx74Nj09/SSCkFgqTVc6S7VQZWV1klSil2jUINO1n6iWYH7uIh/96w8w0L2ZRr7MwNg2CjMzDG+/iod/9hsEM0/vwHaW801My2GlVKLpm0w88Gu6egdJ9HRx2xvfyNGjz7K0tsxyzaSh+QiCTDQi4zR8dFVkaXYdz9DYlDFoOw6iKBNRRSzfJLQhm8qQS7ZpNR20RIr1JYv+fb3MTpTJhWCGIWuFNk3bJyrIpEQVQ3K56uA2zp2bxm4LtEUZ0XLoUxWiQ1Hmyi3suo8jhsQ92LKrBzGuYHgBvpPEC0CSBYyOFJXZPEqHgRKGyIZOeXEVUdqIrhjEqM+vo6ZSmLJCLb9KOhpFiwZg/g7yNrK2Rnqoj+ffci3r7a+zY+82wszTSGsOih6yf2SAfDiLGMDsdAEjGbKdfsa9PK4rISoRvPoqdpCmWKygBEUyRoKhTX00GxbphEZEhmatQjyZxWzXmJ01kfwGrhGlo7sfy3ZRjTgXLk2g6TLlQo1Wq83Qpl7q7Sa5ZJp8Pk86meB0uUIqlSKRSDB9eQ5DV9m7ZyfLK2v4gURHdweK5hGPqLQrJVbmF9HUBKlkjnq9iSQbDG0eZG1JpVQoYFkWy6szRDUZI66zND+B57fZun2EhYUFfN9ndnKO0AU9kkAKIb+4QjKbwdNiiGLAgUNXc3k+z21v/GO+8MlPUV2vsPuKQfx2C9PxGBnezMXJGVSjdwPy5/kIgoCoKQhhgOu6nD5xkeHOOCmpQSyaoquzl5nJs0yfnaeztwdxqJfXvuJFPPfEL8lkNz6kFwoF+juiFJwIsSBKWvOZm5ii1fJRNYne0U56hzazFthEnDblsMjY0Av56TeOceToBd71nuvR0z4vuamb098tY2QClmfL/PlXXsT5Y7/mF1+fxJLniCZ/P5zk915K3/38J+9OxwM0WSIa1VATIIYioRgQChKS6NNquwR4+EGAbXm4vgm/pRY6jofrbkQTBFXBsh1c18fxBWxHoGqGPH2uTUyWSaUURC9EVCRURWbDl+ehSzKSKBKE7oZvRoDA91FUjQ24NIiygm4Y7Dl4JfGODNt3bKW1uoBhiHT3j6GJAY1yhfWlWXQ1RKKDQHBIRiOsLl0im82S6t6GohtAk1zPCM8eO8fxk6fxRY1IRx8dW7YhpvtYXaxRtBxy/aOM7TrI8L59mA2bLbt2oBoq505dwF5bIRtR6dQEUi2fhB6SSxn0jXTjSm1cSUUTIoi1gLzbZrnuUqh7XLW9l6JpockhCTFKKAdUSm360nFWl4vkWwGe7SEj4oghoucyurkHI6aS61RJBAoDIzlm1xoIfkAUj8HuBEXTJqOJFNwAre2zMrGO2WwSH0qSMAxcP6Q1tYoWiSA6AU3P3Si6VGXQNaqeSKiEKLEIguXjBQERI0qr1UaVJVYb1n/OzM4/yjJoJJnxjxGTk0z8qMGFSyXOXZzEWivQUA1sMaCet0lmVeIx6OvvpdgsUFqBqt3iVa/ayeMPL9GurKBJEoEcJRA3ihGiikHV8tC0BMmkQalUwYjIZPoGMeJdzE8vIUoC8ahB6Ev4BLSaDVRZoF5t4oYCrqBQrRbJGAayLKLEYiwurTLUk0IVBcZnpxAjUTzbZLg7ydkzF1AUCcOIce78OTKZFNVKkTBwWF6YpV0vMD2zSKVlcfrCeaqlIh3dPfQPDZCIxnn8ycM4lo+sSuzYtoOurg5UVSEajZDJpJmfnGTL5hG8ZpVI1GBo805+8I1/pzvTwfzUFAO9KTKxCLnODKPDfcws5BEkhXptHVGKbPDEAFkCTQmJRWQajosfhORyWTriMoLkEmgxmg2bfWMj3HjdftrlWTQR2tUWQ9s209vXgV0sgmCzeccetu/bS6Xe5voXvYA9V12Nn8iwUPNYlNYJkzm+85NjvO5/vo4btuzns19+iOrEKt969B9Yq51leaJGvlBmdnaVN9xxkD3RHcSHDA4fLjG/WOR/feDuP8wScN+n/vbupAapuEIQemiKCBJoiShmq04QKASSjxP4+H4bQVXxBQXP9xGCCH7g4fkevhcgiAqWJ+K6Fj4SZhtKVTi56GDokIjICKqIKISEvkAYBoShiCBI/L9BdEWAQAg3sltBiCCJCJ5AqEsoUo6a1UBHp2fbGH6rwNUvfCXLM+eJaAbJuIrttUlmcthhHU0S0aNRymuL7D5wPVEjjSKGSNjIkRx6TCPbNcT+q59H03dorC3j6jGuv/XldHX1UmtW2LP/eZTrdebnp7Asl9XZCTpTKWbOTzDaE0eIhEi6gJGOQTJJIAkINnSkNfKVMv17OglXXUotB0cSWF0o0xlL0LOlE10FISZtnNWWQzQbZ8dYB7G2x+ZtnXRnUiyWGyyv1+nQFEI9wOiOUp6oErouDUGg2Paotl0kIKGKiP5GmDaPT8wJSW3q5twzMyyUalTdEKtao2tLL7qhIUV0gkabIPDp3ZTDb1iELRtBVaFpYfsWRlJHkzUWSr/zKcWMNpcqS6idK7zp1e+iLJe5ufNK2lqZlYeLNPtDopqJXvPJFwKapYDsYJSJcyu4ZLHzLa5/YQc//tZz4ErIckir2UKXYKirEyMSIRM1CPwmiUSE3t4MnYkcM1PTJOMxVgvLbNkygGeXqdeboEBIyA03v4BqfpFEuoM9Y300KnVqjkNCV6mW1pFllbX1Ct29mxjbvY3pM+e57poDPPjUM2TjGVqhTX65gBaL0NPZyebNoxQKaySTCQrFNo7vENVUhvuH8G2LYqmEZfmYbQvLcziwdxcTEzNUK0V6evro7uxG1WXW8ivs3reXcmmdvk0D+ILM8uwF4pkcDdOkMH8BQ5eYnVskFktz4cIMr7/j1Rw+fBQ/bLO4VGDL1m1YloXr2hwYijLanyGtQcNykG2Xqw7tor+nh629I+R6IvT1dFEpVRgazFGvFtFjMRKdAwgRDS2iEt88RqZviLVynQ/d/x+YXsDjzy5wePYIE5MFvFiFw6fP8Odvuwsn7fC6130IOVSwBQfJmiFIaARrsLJQZagvQ9fAGDPlWX7ywGnaVYeerhHe8Za7/rCl9MVP/83dMUVGDhwiMZEAHzUqI4kBvqDhywqKLKLqcUTF2Kj0EWQ8QUQQfFzPI8BDQMXyJEzTInAFvECkVVeYWjCZXK0jqyrpqIL628LLkI3qH0X5bf5KgPZ8CyEiEUgbMQwplOgb3Ywjevi2xdD+A9iiyNiOHazklxjaNMymnn6qpTqq5lIoruOaTXzbo9msk0p14DkuRjSOHlFpOxaJWJxSo44RjVMuriHLKul0hvWVRYZG99FqtVmYHifwLa593i1Y7TYT557lqkPX8tAjj9Dd08vlE6dZypcoNFzyJYumHRBpC0RVCVWXcFse5bbH0EAGs9omEU/RKtRoBD4osF5pUZipMpEv0SH5RJ2QzpEkSlInYkjEN8XJ51ssrFVwLI+0qtDVY6DHdEJLYWauSM0PEBAYECVycYnO3hSSHJJSNNZrJrIATUlmabGEJkpEBOjvj2C2fdp+yPjMGo18FVVTMJIx3PU6M/kaxVZAtd5CC0J6d43QKrdpmw3WGr9T36bDNl7BJDu4hy/c8yMODQ4Q27Kbb3/h2xzsHuNtd97Es+PLTF9uI46ofOubb2Nbr80vHligrTfZfKCfm6/fx8++d2IjxiIEyIqMKKqsV9voqoahS6hylNAPyKV7mF9f5cCurezeuYXejm6MiMKlS9OoaoSIItOwmrRX8lyYX+UzH/u/OXV2jmLLJKUZaKk4hqbi2i26MgmSHQmOn3+QbQPbKFabEAgMXatz5NFHsFsOqUgUVQm5ND7NsWMnKFSriJpEo9bEtVq02g2Gt4yyfecBRMHBtFrICFwev4RhaMQ0nWTaQIvGUCMR9IjxW3e8SrvZwnNDtEgcIXS5fO406XiKcxcukzAkTLPF1Yd2cur0OebzZWQ5ih2YbNu6E9cOMYwUNx86yGtvfR5p3eO6vUNIvk0m1UH/6DD7b7gBx3IZu+IgkuAhChqCFKBJEB97HrGeQZp2lZ/8/BHGL4wTdnWydmKcdbHCiaOX0bplWkaZoZ5hfnL/Mo+fPMKRM08iO+AWYcvwJo6fmeXAoa088MOLlNpNdu3u59CNO7k0PkdxrU1+qoxoN3nPXf+9+vZ7l9InPvbxu3PRgLguo0gCqUwEJJVAAkHRgJAgEAiCjWyQ78uEkoIgyoSOgCCB54R4nkzgQ+D6+IFIsx6QL5mcnjPJ1zfUnlxCRpIlkAWwPUJCXDdADEMkQUZPaZiRBLGYRmAGCKrHet0l1TdCqrOPUFRQVJ/C+gpRPWR0aBeqkWJi/BTD2w+wvrxGLB6j3bZRFIVEIk53Z4pUNkuh1CBs1qm3LTRNx/ddFqcu4toW1XqdXM8omqJit0sMD43hNEtMnDlO6DtsP3gA27TQFRXBc7l88iRCLcAVHXxBYlhQ6NicRO8waBXKqHGdjl4Ns9JExWVqsUzZ9hElCckJ6QuhLAsICLTqLouNNssLbUzTQijYKPEIQttkpdDAQ8YVYXXdZGauSqtlEoghnYqErkgkUzJKXEWORVhfb9DWZfq74iQEsNouiizRERXIZTSwQixVRPM8MqpK1fYomRalmkvDdbB9CKQNzAmGxvRCgVLDpGr52O7vPnRv3a5wY0rkXz75r1R+/TQ/yo8zkLKZL87xoqEuvvzIadpGm+tfs5UDB4YorI7zvFe/DN+tcOnkGn/5zy8noQ7x+K+fRepI4jk6f/zSXXzynk+wZo2zeDZPvlQmm0shCAHDI0OogkzLE2jZPmokwq1/fA2zl0ust+qcnanz0X94FQ9/7yFefNttvO2v/p5PfendrJy7yK4do5w+M05HV5psJoesaghiQKNVx6w3UCMZyoUmfdf0slqe55YDryGVjDE7v8DC8grZXIa9+/cTjShoqs6OXbsJJQlRVjh/9iSTE3P4Zp2FpRV279+LIVZxHBFZkLCaTZLJKKqiUysv49ot0l09iJpGvVqkuDxFLiHTalZYXljAE8AyHdaWV/GBcsNCUSR0VWHq4mXGdu4gasSpVJu8/a63cuim13Lglldx6OA+Ygno6cwR6+hFTyTxWyabDr2MaN824qlOxJ5d6N0jtNsVfvHIL7n95pv4tzPPsLtvhC997zAde0S0boelowG79/Zy/6em+MxD7+TI08cILZ2IKaClYPxii1CTufz0LH/31bdw+Omz3Hr7QZ54eJn8+jrlxQaVWsBLX9rDbS953x+WfVMEmboFTU/ADkJqTYd61cH3REInQAm1jSeVaSL4AaFn41t1vHaTQGwTeBohGqIo4zgBvicQigpIKtWGx0Rp410mi6AIEookovkBoSIgiiKSIqLmdGIpnUvTLTq7c1RP5nFEm2o9QDCgND9ObWmK5YkLxBMR+vv7Sac6mJkd5+Gf/RuqEWPu0lnSaYVIPIUa70DR4gSBSKnSYmJmGseq0WoVaDVWEQWPxYkLqHKIFHp0d/cSUQQCIcDxXNLZDKIgM7x5G2gKx598lpX55d/iTdt0dyfoUEVkX6E/YtB71QB6JMnM6Tzx7iSdY11IokhmxwDjF2vUGg5RIaRTFMiIIrFElAEpQAoDsiEMpmNEApfVks2JSoWTT81zbKZMSpLZN5oDP8BFJNMZYXN3hmxnnPVQZNG2mCvbXJprMnmxSFfWoKPpMD1bpmS7DHXGqHseC+2Q1VUbUReJheFGc2pcIS5DlJBt/XH27u0iEgrIoUCnqhFVNthOkhywe7D7v8yMu2ITxsf47lc/x6teeSu9Rpx/v++nJKI9PLY8g6fr7BzbRreh0tft8/rb3sP77voSf/aSF3Dne0eIKIN4rRIH9m7FmiwhV30+/u1n+Pz37mXH8HaU0KUmwJnJeTw9xo8ffIx6GCIRUims4VkmD53/CZogUatYzCxNsmXzEPf85D+4fGmCTQMDXHvbO7jqZbuZXVziugN7mJjLo0RiSIpGPJJAi3Swdcd+aoUF1polcrE41151O7FMDNtsMrp5K6Iis337duZmpymt5cFqgedz/PhxCvl1ZEkhl8sgygrdmSyLK1NYuk1fXx/JdIzOTd04vw0Ij+zYgxTLksrlyGazCCHMTpynu7uLXQeuxREELo8vsFqqEEoxWrZDab1Ceb2I70Jf1sD3BIQAIvFuYrFOFF0h1A0iw7sZ3P98RDwqi5N0JeJ09HShCgKeWUNJD9I1dhW6rqOFAlfv2kY9p7Ltii187evf5sDNGXr0Pu5++zcoN1xOPr7GT5/+LGdPnCGaTLApjCA4CpocZ8tYisBzUP0ki/PnuO/rn2Zs8IWMny8QBh5WqOI5DpsGuv//1s3/2VLKpiJM1KDUglodHEvGkcCsuTTaPqVKnbYdYHkBjbaPGygEsooayeD7UZBDXCfEdD0cy9n4TbFIs2Hj2CGltkmIh+4L6BERWQrxJQFdk0lENWJxjcunKhy9WKU/K5O/OEW7J052bDO5mEHK8ik2A/LrNZLRAEXQCUWR9cmLrE2cJSLqDPQMUq9XSXdvp6uzhwNXXYmmaZh2k3a7TVeun2a5xOr8LJ7jMjt+Hjl0iao60VQH/SObIZRoNRqocpz8aonVwipmuNHou23nNsrrS5j5dSJei3hKY9fLtzDUlabSbvPU0TmeOjfFjmsHcasmxePjxFMJlh+boCpJeJJERyiDDemUTqHeou6IxESFoiCyWDE3YG1hwJCsU5J8BFkmm4iihCZD/RlSokvbcjk8WcKs1tkcl7jpymFcT2YgImGEPudmalxq+IyOdWJkFKbaJpv6k1y5I0VNhsl8g7oVoCsySw0LxYjTQmB2vsjyXJNQkvDFDbqlYDoMaSrIAr7k/5eZ6e/PknleF/tvewv/43NfYbcj0FxP0uqUmWo0mbywzHNnx/nZY6f44j3HKDkt7vvIezF27qe04DF3aRnFDXj4J6fx5YAgqdOpStzzj4+w7+YtvPGdL2IpX6epV8gOZ/jT993CqjDB//Pxj5PzQHBdYnGNR8+dpV6q8b5/uo13/K+/4YGf/4CG6PPkqQd48pFP8vHP38O7/vldXPOil6BGDA4//SzZjhgL8/NcdcVO/FabfVdew+aRKGee+jGnj81TWVvmyaPnOHb+HFfv3kw6kmDzQIxcIkHddPnFww9iOwEyIaOj/YSOxepynqm5KeLxOI6vc2bh5zx2+Clq4hQXlp/E9zVW8+t0ZlKszi9Qr5ao1KrccPMLkSSVaqVANNVNtq+PmgUL9SZnx9fwJQEjkUVSLBLxCPPjJ4infKrNAi984ZvxXRPBayKEAdHOEbp330gyqdBcOIEgR7h85lFqpSVQfLz8OWSlhdtqIkWjHDt9nIkjT/OWj72GG55/IxeKi/zRn/4pCTXNetWk7K/y1OPjUBGo1WwEeTOV1Tqz4yV0UUSQTU4eXuShh39Ipi9KOmtTq1i0axXSKui++99snP+DpaRHfGKqTqFsU26HmC4EjogpqsgIaBEdBJVYOoca09ENDQQZzw8Jw5AwkAkDEbtmYpketu2gKhnaDQfPDxmQQfBEAiVECCQkASK6goqEonosrrbIJgz6ujX8RIREtgvZ95k+togVEcEQiXsmK0tVKjWL/NRJsh19OLaJHI8jaiIz4+cZGNjO5NkT5IttDj/0CyKqQq1URNOj1Fo1BDnCwPb92O0KQuARS0RRolGuuO5mJs+cIfB9YrlOMtlOSuU8RjzH6twUsphk9uxJ1lbzSGGdlckFtHgat2kzfLCDa64f4Mb9Axzsy3Ls0SmOzlW4WIZf/uwi4xULGZ9eH9y0TE0NWa871AQg9OnQRcYG0uzdOQhegI1PuemhCgqSFzJZbnFutk1rtUEUBakWoBOgWzK1lsnExTyduk8yLZPLyPTKEttd7nPbAAAgAElEQVQ3qcxfLLK+BAldpSP0qVWbhGHIrsEYaR+8VpveXIJNMZ+RrM6AEaW7I4avQlaN0LQ3nNye4zJixJhdKP2Xmelrh/z8ycf58A/+ib//2J1Ers7xq3s+ylPfmWStAJt3DpNqhqT0KFu3GXz1K59HTMfQcnHm80v8zTv+mSufN0AogOPLZLSNAtBoO07F20Q149Lb46NnQh498ghHjk7x9hf/T15y6EpKXolSZYF6K4DQYmBsgGQiR7vlc98X72W50GRl8Sy2EBBtp3nNrX/G04vfpu1VkVUF23GZW1rm+JkzLC1d5slnjrD1yi7OFVZIuCHnLkxhEvKP3/oAqhbHbDscvTBJMplmvV7GbDpcsWsP0YjKwvwKAyODJGMyPbkE7dAkoWaYW14mZagsFhfJL9VotApIrsPchbPEoxEMPcNV111JIyjjEbJWa2LbNrWmTTIWxbMcRDy6errxPAdDj2OaPp//uw/x4bs+SjqqE49lsK0QhCyh2osvxkFOIUZzqJqM11ikKB2hr6+PoLVCo7mMmb9AUF/i+0cf5XlbruLNf3QH37n3CW564TXMnW6xq6+PkRGdwd2b+Oy/3IPXdvjaZ+/n5htHeMEbGkiBRDYn0zIVLCdCdaHBkw8eY3llmvzSMpbvYjUNjp74Pqfmp3/vUvq935S+9rl/urvh2axWPXTZwJAdhGADABZaG/wdq9LANNvoRoIgjIIax3VdxFDB91wcOwAkBElEFiXKlTaeD74Yomsas4WAnphMd0pHjkZQMznOTa5Tm6+guD6C6WFEVDY/fw+F+WnSRkjSkBClEKXUQoirbEoYZLqTSHKSmRNPkUpnCL0qudwQ6yuzlObmELU4q/lZevqGKZdXkfReWu0G8XiM0HepVBoEbhPXbiMpOmG8Aw+ftbnLSKHP4vRltmzZR7NRIfRA1XVOP/cY7WYLBYt6rcLDR6ZYmamCaBMj5PL8OscnyhRLbdq4aNEII4bC9phGJCog1H2WVJGy7ZEQVDTBJ63EMBIK21+wg9hgGtFx2XXVbjoVge3XDhEXI7TWCuzd1k9ahHKjTUuRUGMBmiyyarp0GnG0tk+yO8KyaWP6CtG4SmPNpuYJOKJDCpWBAyMk0kk6VbAEkUx/L3LCwKnXmK/5JDoyeKaJ2GoQT8dpNixKoUvVFUgbMoYg0XId6vbvrqVfP3of//6r7/CPH3g/4/lneNHePt76wX8mFcuhpaPce++b+en3T3PHS27j7JEV/ubt7yfZofC3n/oer3rTjXzmH+/mZ6fX6XyBz7Bv8fK3vZTzl48xtDXJxVMq7/+T2+mKJPnXzz7N1s4k+2/czMXKJK+7/QWsludJJ5JEhmK84oXX8K2nD3Pm6GE+96nP8fCpp9hz3fXs2BJFcA2e/OVl2m2Rp3/0LB+5/8M0Zgscee4sz3vR7ezJZZANjyuuv5VvPvBv/MlLPsjU7DJX7drFNbdfx6ULz/Cm/3GID33ke9z5wZfz/f94nO2dw4wMd5MyYmwd7aNaNhmfPs+piSKDg31s3hXlB7/+Al/+1I/5xKfvQ+21qc+ZlJbn6dlc4r7P/wJNXCTe34Wk2BCkOfzkYfLLZSRBZX1pgbGxEfpSKWpmk7bTwmo7BIFLJp7ix0fvY+s1Js8eH+eu976HWqFONukjx3SEAISwCXaRtlmjMvkcSymJPnUnYnsNRRMpmRXe9flP8PG3301+YZEzT51nR3SA+KEdtE6bFFrLfPsH3+WHj/yIZl1gZdbiO1//DpW6w+FHLN76l1ewa3+c8eNFTL/Frr1jLLfqvOW2nTw6PsFXPvBx3njXdv7qrq8QzUi84tb/vmLp9y6lez7zibtlQWLJCujTBVQpxNAFxABcwUUWZSRDBUXDcRwimSSiGCDYAaG0Aa53XA/RC/EEF8/28U0Tw1CIRETSmoxKgKIq9O4a4dmTS3TpPikNtJSIkU0QTekEis+lx+fZ/aL9TE2toashqiLhKmzQFEMPvSOBXy+iCxuZOc+RaJVXMGtVJFlly949tIpVrrzpFk4fPcKOvTtp2T7F/Dq5bJZoPE6zVMKs1+nZug9DjrFy8QTdY9tZPD9O50APU6cexW7UScZFVlfnWVteIia5nLm4xtxcmf6MzOa+OCkh4Oz5FnnH5LYXDNIryszVHcx2i5bnsXmkm85+jYVlC/u3SpnoBUiBzda+FFtv3kd1aRlnrYVTqjJzeJK2b5KfKDG4v49guU7Plg4atTqa5YMdMDzSiyHIrNXbiI5LKhUlNB2sqsvObV3UFqsUfMhpIv3xgJLvktrUTdBoUp8qEJgykYiGHtfwii3cwKdesTaecA2b3TtH0Z02MT2CHbq0gpB83cQSRGz3d5C3qfACf/3hd3D3+/+aD//xe3jxO7/Llp3D1Ktl5hbLCAse/VcJLD46zyMzKywffoYz/iLf/8phXvqKA+zavYPjz85w8sgMZleETkElX0xy4tEZvv31W7nzDZ/g2pcOkxDmuehcQtbTFEolHpqd5+Ev/Jrr3v0KytUCn73nx6RzUa4eu47P330fhZU2X77vQ6zUi7zrtR+lLjTYMzjG3t3bed/bPsGmLTP84vJR1k7X+IsPvo3lhcOceGqZhfwZXvHiNzJ9YZrx0hK33rmH5qUsmdE6T/6wwJFTh/HFBns6e5ANBd+36R3IsRpZZuGiycGrNzHb/jk/efAs0ZzPd/71GT7+lQ8gKS4/+toTlKsWsb2rPHF4nKXlJe795peR/DKqkOTBn/2EkW3beMO73sCFi5N0d6S568Nv56f/8RjrtQZ3vuWP0OISxco0yW6d3h0xvvelSVbXapx45Cne8K43ElbWqK5MoIcCjcXzSKrKwvgJYts3EZU2oWZHKdVsxlfXOfbsQ3Rt6+PqsVeRkkLUeIzCSp4/ueM2/uFj32SRZ8gaXSwtLiEUfWzf5x2vfw3daZeVS2Xe/Rd3s1p9kg9/4H189p6H+MzH38odH/wi23Ip4v1lXn7o6wwPCpRrJd78xv++tvv3Pt9CUUARBWJSSOjamI6wASETRdRgQ1ETfA85gEQmi6Kl0Y0BAt3ANSHwRDRNQ09FkUUBI6mR6YqiGwK6JtDZBbv6deIxjWPPLbJvLI0bmIiqjBqNU2/4EISs5X2MDCzkmxj+BlYssF1UP4QwJNPdSWc2hxaNk+kbIhZPkTCgVq4jBgGeU+Lwr36MFJN44sFfomDw8K9+QTxi4AdtXKdFs7iAoIrEolHCpocR1fBzPQQNgU1b+nCbdTIdaQy5zemTF6jNLZMzYjhihN5uA0FR2GQr5CcaPDdZpSE4bOlOY5ZdWk0HwpBOXcH2RY6cXeTo4ytkA4ldm+NExZCrbxjg+ldfw0rL4vyPn0Y30mhhgL3UxpddnLJDxLUoXVin/9BWLj4xRUTVSA1307Wlk2gcGst5XnLLNnZdsQ19KEPdFWmJIhfOL6GEGxGfSI9C93VXceV1u7EWlpFwEVSd0LeYOj+LHJGQkhFGtg2wd/9W9g31cMOBMZxWHTIJ8vU6vicy2m3QKyoMq//VnVs6v8RPvv8tPv3JD/H5R39Kpl5jdnyaN7/3Dch+wLn1S3Q2orzvr/6caHeCr37rI7TaHldel+TKfTdRaguM/+g8bhXeePt1pHb1Mb+e5zUv28EPvneegQO95PYfZLa+QlyLkEzGCZw27so0vdeOcPYH53Elicd+coLLz63wzE+P0XZMFDmKZvlEPA8/LWKaAlrHAGHTYv+efp5ZeZJMI6TojfOFH9yPo3Vw48v30pAijI4MUNMnGNvdw8LJZfLLVaJ0UgwnePedL+PFr30ls+4qpxansCWN46dmePzoTzk+foSHTzzIne98P+W8SXHeZnL6LKXWRc6dnqRWE7hy55Xc/5nDrLmrHL48z5+9/Y8YX8rzvs9+mB0HXo4ctTk3/yya1SDT0ctf//snqVar1NYsDq/9mtOPPkjvUI473/ZqvvD3D3LFWD9nTl7ijve8hKUpF2e5SFwCsXOEZKYbLd1NqUMi3Y7SWl1l9vTDLI0/yj9/42+5+63vRM74nFr/FemeBLomMSD42FmRf/hfr/vfnL3nm11l+b5/rrX22n12md5bMpOZ9N4TEkIIvfdelKaoCIgFFRUp+lEDUqRIEUQg9BKSkEZISE8mmd777D2zey9r7bV+LziOn1/f+ML/4Tqu476v537Oi1XN6/jB9+9FEmUmvCl+ePEGdu/5ggMnO+no8XPf/Q/xwEN3Mpjt5LbLLmbP8S+ZYS0mOpUmGjNR22RiUpnCIRf+N9v576aEksMgCRSaRAwmAUnIIemAoCG6zAhGAzoiklEmEQkT9naSTo3jdFgpKLQiG1XMVgOanqGguACbxYAz30h+vpECWcUiQL7ZgDnPjG6V0ETIIWOTRexmC9Pq8ylaWMuac+eg2AQskTFKCkSQdCTBSMqUQxBs5BeXkZZcFJWX4HSLJBMTxOIpLBYJZB09CxarzPCIF//4KEf37GWir59IfJR5cxfSdbINjydCZGISVRZZf8n5jHWfQAuGMJpSWA1G3G4HJaU1CLqIHI8iSJCOBciS5sqbb6BOySKWGJmxsBCrbMKsqZRpAvGeEKcng5SLGk0VeTSajcQkBc1uY0zWODmcIKjo9O4dpufzk1TJJsprCxk/2kYOGcFkYtaaBRh1mXA6R89kkKP7W0mVGJgKJIkNeiird2KQLFRUVRINxBk61s1Y1xiBVJqcJpA1ynjtUF6Vhz+isuOTg3y5qx2VHFZ3CaZKG85p+RQWGpnY10MgpuBvG2P0cAeGAjOx08MkfSkkNUutw0a9207PSIK4RcfksPyHZPzhKLGpOBXVjdy5/kLyL7Ewo2gau/7xBflNZlZWT+ed/f180DNG6mSEq+78BZctd3OqPcI999/LysYVfLHvD5TOSNH59QCvP7mFi743k/6mfpaumcPhDya5686HKLTUMToQJZYOU1tXzeq5q4kkdAqmZ9mxrZUbfrSW8X3bCEanmDutmtUX1tE12k7LnlMofhtyJsfWjz7htKcVxSyw5dkWrv1ZA5tuaODKe8/hr2+9gaiHKcg3cucDtzO9voFjfdvQYinmLHaRiA+xYm4zmTwH2w/uo2u0h96hMbZuO8D+tj0Y9dmcccECxoc0fviDl5mzcBYbVl/BnIVzefJPm8kmPyAWGeWvW/5Ad8zM2EQSpy2fq6/+Ge0DY/z4vBvYNfYOhsIsLcc6WXLPXN5teZ8z151BpCiGqUwnkUlz/8sXYSrT+clvnuH+P9zA8mVuGhtLcS5S+Gj/LxnRvOSSOdoPv8lkUmHw9HF27DlJ2FnAn3Z9wauvPsUTr7zEtLSTBec+SG26iX+88DoTBi/GxUk6B09jykCrKYBjfJj+bYeQ8iV++sRc3vv6GCc6Q2w4Zxo2S5b7f3UdE+NxImmVz7d/wO0X34OupLj/yfM58M4YaXOOtCqSMOb976ZktZgwGo1UyzKFFhm3UUASNSSThqhmMds0ZLuEriYgl0HIQtrnJRubIhqexGg1IYlgdVix2Iyoehg9E8MoaVhtEk6nxK5hhUQmTWWhTGtfBFQdRVNIxOIkp6LE2oYZO91FpcuIoKmoukKebEY2CqjDBqy1hagmG5nQAA6HnYwiIOlmzFYjup7DbhJwFdiR0hrJ8UGi4QAFs5pZsGAR7Sf6+fqz9zh58jihiQHi6EyOhXn/jX/g83vp6+km4PMRjoUoKSlFBVKJGEaTgJqIUlnmorKkjAd+/gydao4hVWBfV5AkAqpsJeiPkdfkYn5zCfnFJowuJ7lMGotiIBNLoGkqC515XHXBEs747lpKGwqQy1wIaZ2G9QsxGHModo0DHQM4GxxUza+ieU4hZY1VuNw2jHag1EBP+yRTLcOoWgK73UHT2bMplHQWTStk4ewKCjSRnGLAJOkU5ptZvKqauhlFyJZCDh5uJxRRsVcVUTK/HmOtjcZ6N86mCuxVbiZGh3A1lWMuMtDXP0UCA95EkIpSCzanicFA4j8089Lnj+IZ9vHl0UMMjw0wtdnLtLJifn3XT5mVv5IHbzuTQX+KD955m97WN7np4gv4wxsD3HXJAk63+plRPpfqaWtprp5BXZ0bLSEycGCUxaU26ksrKF5s5eG7b6dlOMK7r3zKp/9sId9dTMSmc7p/DHdZPdlEhlnV9Zxxx6U8+dT9WApFhr3D9AWz/PSBD8lO+bDkLNTOLebIoQD9rUmO7Yzzj2eCXHnWBfxh81/RsiIbLryAuooGGpryufqW7/Kd677D7596h4WLKun0Bjju2c2+nSepLdSIyAYMZhtffvUP5ixcQcYL3olRIiEFi9GElkmhKxJDUzFyioGLLzuXq24+k0zcyeCxSSw5M0R8zKyZw/i4hyUXbqC+SebvH79Pe08r9//wb4SiKeqbK0nkFLR8gYn2SezGPDS7zuI5pTz1nTd5v2UnpQaF2sK5jCf6uP/qhxgf7SAQ7mdYmCDaN8Z4JkFWEtEFjbjdQTwj03DmdDrG92JvamBm8zyM2IllDTRftpzuvlYmPT1oUYF8W5Y6Uz4TE0m+f+16rj1zPh9+2o5YkMfmP79N7XQ7ew/v5ge/vZBdva1898cX8+rvd9Dh7cQiCLgd+Wg5/381pf+aKb3wf797RBZ01GyCYrOBIpdAgdOA2Qw2q4DZacVo1JGMRoxGEVFMIhvNWK02BDFLNpPB6TKjipDnKEbKhEBRKK6aTk4J4vVm+figSioUY/bsEqxkcZrNaLIJz+kpAqLOuCdNKCXiFo3YnCJZXcekA2mBaasXU+Qs4JsdBwjF/YSTOnLCh0UHR14Ok9nKuD+I0SBTNW8WR4/3MdjrxSCnGRqZwJANM+bz4XYWUl5Vw4kTXew/1MNgbxcWUWTRskXY7GUUlBTiH2slv7CRZCKI3x/AXVuInlbpPDIIssS1t5xPnqzT2x/BldGoLzaRX+rErBpImMRv8SCJNKlcjvycCKJOiduGq9SKXFcJkRCR8SR6IIp1ThVGu8SOA31UOmTKKvKJRBP0eRNUVRg4cnqSeFQhnlUpryogG86iWwQmwhHcVjveI53UnbOA0/vb6QwmCOc05i6ux203I0tZhEgW42QaR50Ll6DjEkCzm0n4Q0xGYsSm0mjmLCaLiZ6BCBa3A0OJjcBQAEGWCCUUxFgWQTaTSaaJ/z+UgMlEO3fcfjkOwwTHwjHWbmrmgyM7OHDga644ZyZnX/N31p/diCAmueTaazDNLWZlcSkf7v+Sc6+oIDlxiPlz7mfRDJVXvthOJp0jqHvZ90qKM69opm2ii59ccxHfu+0VNv70Uv7069f57neuYny4m3lrK3nxsY+pX13L4f2nmPKZeeDSO9j80fOIuVKOHfiCmnqZXX9/j5vvvoi5m0x89K9DKAkNyZjHngNv051JMz64l9sv/CWCMclAsIWbrvk+U9FWXn/yPeKBFNdddzYPPfZrpHQhw8kOHnrgPg7vbiGRzfDBJ1s5urub8YkJJgIJikucZHMRMjGVIe8AgivG1EiW4+1j3P+ruzln0VzuuvkcFHGYq763gKtvvY1VM2ZT4iji+dffoONkgp89fjsfvXWEW25cS55JYmA4wLkXruDA1k4uv3UFyaCHTK6EQc8QxRYZMOA9tpvPDrZzze3XUlSzkH1f76asuRhnzsqbB/az81AHwX4vo2T5w+anWLNoA/c98BNc5RAbUjnw/md0vHuAklUNDAUmUEx2uva10tsyzMVP3cKn209RkcwyrgVZVlbEtLkN3HnfFXy6ay9Wfx6XXnIjf33vBayjHu66Zh03P3gFf928i8XNZWy8ci5Lmq7734Lu15954hHZKJPNqUx3arjsEmaTiN0sYJHBLClYzQaMEpiNSfIsTgxmDZlvjynNZgMGXUPOJEBQaFy4gvym5WiCStepILsPxVlSA8mMCWMujbu+htFDA9jdEgaDgcJ8mWKXA6dFRR/JUHbmMkrK3ajpGKqgEA8FOHK6l5nzKigsrmTDxo1M9vYjmiRcldWImTR5UoryuetoXnUhO7duw22xMTQSZtIbIRJR8XhjjHpDnGrrwxdM4DabSKYUvB4fCVVhydIFFDoMGA0mktksaipGcGwICQtfftXLuJqhsVAmHIyjT0SYUWIkZhEY8iaJ+RMUVltRhiN0e5LkpTVc1Q5GAiniQHWBEy2jc/xwB2WSBTGRpnhJI+EpD9GBAKqSJaWlyBMFFJMdi1GAlEpBgY1EJEZxdTFGyYBdSBEQDdQ4LZwcCFNXW0CsfQpbgYM62UBjaSHZ8Qh6Nk7El0bOE9H8Ok6nm3RKxdZYSnLAh+7L4m6sx13ixDPqZ3g0SkYHjz9EbMRPSpBpnmajqr6UgdEIalKhWBCYVP8ddBtTCTqiGoeC/Yx+2saMpdX0d3hR5RQz58/lyN4+hoZixANBzjy3mWLNQDKX5blnvkQxhFlZVsXaW77D3JUzqNdcTGWDhE6F2bDJwpc9p8jLs/L1nlEOfXaCZ+/5DaI7yAXnXkb5NDNjQ0Fa9x/BZRb45S138MXh3dx0w+18ePBtrr9lI9esaOLa2zdS0lDCHY/9iJrqSibbEmi2NCZrHp988yqv/98uWluGSQgnKK1yUjdtGr99/BHOX38927b+EzUvD5+vhaHAFFWVTYyEvCxfu45Lzl7Fzm19BKNRoqE4BQ43Pn+C/GIRQbciWywoSgZ/NIY1nEdcjHBy/2nmb7RQVJXP6x9+wcJlDdz83afZ+9UBrvr+WcyqKyCYknjrtZ0UVNjYv/c0KzY18e5rO6hpbqSwKMOM2YWouSQvvLSTxTULyUsWIdarfHagG48fWtq78Hf1c+a8aWTdKg8+8RzeEZ18YwlWNDb/7U9oWph/bN1KaUimtKGKC6+/kVd+9Qq+QIxFm+bjKLPzr+e/4pof38K6G87gj088zfhYlEF/P6Ini5CUyFpVVpzfTO00K3JxnA/fPoA3nuHys5Zy7/e3ULgkSHIigbO4gMHhMS7f9D++vr3yl8cfMQhgN1pQoglqS4wYbWCxSwhiDoNswiCJyJKGbLAhIGE2WtGlfNDSmCQNi82MIEMyEsVROp9oOknLroMcOjKFlFWpKrNS6BLxhY1k42Fkl0jO5EI0QTajkMwpCBNZqi5YwuDhbsrra0iqCTJTKcx5BTjELJpFJhL3EfBOgKJR31CAwWxEMlqwFC8kHPYx0t2KpqYpd+ZRUlOM3xdBkzKoaMi6hGSAi2a5mD7XSW1DGevOO4um6dXouobLlU8qHCedjpNWFIKjQ2R0jVxGpd7ipKw8H91ooMRhJVNipbi8FnOhnanJKRqnlaIXOUilUnjSCZhSiKCTNBvwh7MYg2k23XY2pnwzaX+I9FAELCYKa8s42uVldpmFjJrBoGURLBbURJrT/WF0XUK26KSUHNG4SGVdKXIiyngkwYyaYqx1LmR0JIeDtC9KxphDMypoIRgPpOkTNJIjY8xb28hUZ5DRiQjWKgtySOHI6QFqy0owZ+LY3RYiqRxpDTKKgiRYiaTCmDUTUVWlyOFgPP7vFW5pYwmnUglumF6NVSnmyVf30rYzSCT1MScOStz3wDI+++wwwXGortP5+2s7ePabXSyuM1BSZqR9PEp7W4xTB05RXFvMoQMtbFq3mjv/+Gu2PPUeQ/sifPDuvZx7xdX86ePbWLHwAiITnYz1jRM43UWbZwh/CN7ffYBYWGHrG+/w/gcv8ufNz/PBq2NYKjRaOtuocijoVVa+Oj6JxRLg4SfuYt+xdiyhJMHxLJUz8nn7pYOMhEZ5/qHHOPvX36V5xjxqS9xsOmsjn73VwsldSW64aDlvvbmPdRfPQ0kG2f5eJ2WVRt756Hl6O06iGSGl5kjFVZauaSYWC/LUG39m/mqRNzafomGOg77+MBvO38jzL/2Tu29dzpHOUTyTMWY3TGcqN8LnL/SiO+KkJ5zs23+Qv7/2f4x60yw5owIhpZEz5OjYkWHDgvXsPP05xdOMDI0qlAKJsMJUcpSoJw2VMtetWkYwZKDE7eL4iXEa59bRfcqDntRZvmYR/ZODOPML+N4DD/Px9vc4cKqXoDLJqsI1RKMhEsUpIr4s/b29rFg0nYceu5hP/36YS2+8g93bv6C80sZ7H/fRNLOSSGSSX9z9Jk88vZnlc/I40hNg/YZKDn6a4LZb/0dTev3Zxx8RERBEmb5MhjxNwGHWMAk6sqwg6GB1GDGZLQi6jJxXh9m1kIb1vyEakSHrR0lMYrAZSCQkjh04SCScpefECE4zzGpwklNBVzK0eTNoioKgSTitIumoTqRnErfBjr3MzdCh08zZ0MxoRz8tBycpz5nInz8HQx60nh6m0O6gTMuSNSrIogV7nunbvvuEl7SiMTgxit0kk84pdA/70ONZ5jXl0ZhRmJmXjz+r4plKMz6l4gtZIJslm0mxbP15nPryAyQhi+woRM2mCQwNMemNsebc9bhqKsmfP43M8REMqoQ4rhLqG8Atqcxf1YBsgaK6erpODJLMGsgrNHHetYuoKXEy2OvHhEb89Ah7OycYDkcpVhXqV88n5Z3CllU5MZGkvtqFo6yE9NgEhsp6phkzxLIphKyBSChDPJEg6A3gi2aYbrXgnjWdgMdLKhbGanMjmHRcdcVMnZ4iv9pFSYOTZnsZDrcB73iQwFScqiILWk5lsN9PldlKyeJaoj0eUpJAMqMj6dBkt2EzZ7BjI5HO4FI1FFFnKvlvntJ9D11EoSDRFW9n3dXrqbNMw2k+idko8uJrn/Pl0SEWVLuxz5uPd8zPSLCbtSssFBrz2bs/RV25laHeNLLZzMFDHaxubuBAp58Z85sw2kcYzqXomernxK6dOA21vPPuVxwYPMD6hZXs3nuSl//8Az55/zCxjJHYpIJFU/nLXz/mR+edQ6ahB2+snNd//CXXP3ouTz/1DqNH45StFNH3eWgbCmFCwOfN8sMf322w1vkAACAASURBVMKOPQf40V1nMDAQ56bLz+L1V3Zy49XX4dE6OBY5zY/uuIY1Z57NKy/u4khrGwdPHsMmi8gFMh9s2cflN6/lgk3n0d/pIZgZx+RIEvDkePX197njuzeTV56loUblriv38fnnh5ix0My5l6/i9PtD9HX2sGDlBsJDLcgVKaZ6ZdKpGBs3bSKdG8Zsy2P/nh7ynFmeeeYjwt4YRw8epsOrE/Qk6Tiwg2tvv5ZTez9lZCwL0TiWGpi1bjnPP/Y2k+OjJN2w9Z29dJ+YpL17AM/Ro/zylus47DtCQtGZe+Es3n17OyKwZ9dxLvr1xXzx2lasfSGmpCShZAZvPEC3z8eKFdN47cnP+OqLFrxBlUuuuIwdB/dxuvNzXPkm/v7MAMtW1LF8xRXseeMj7vjB/9j7pumQNeZIE6MoAzsHMwxHjYxGJdKSHYPdhIaCrmQwiHHUTB/Jqe30br+YrOc1IskeEqYS/Akzg8NhMkEDQ4cHsFnNzJ9hx2jSMVlUrFYDxnQaLRZDS6XxB2Lk9Dj1563Hsr6ReLeP/PNW0947gdNlZdnaGuSVjQwfOkBf5xhXXLIRZ76IpaYMWcxRP3cxrrImms84jxnLzqG+eSZd7VPUV1eREUWKCxzoFo1TnSkKF9Rgqzayot6OHQPT68tR0z5ki4Vla9dhtLiQ1DSJUAhP10nGurrwJtMYHQJbt++lpqYMZdRH8YbF+AUVxZBA1pMkegIYdAlXzXRkyUAskUUQdJasqeZkW4BTraPkFzkoXFqLeW0jKkkakhqV160hHgyiB1XkeIo1VWZG2yMcPDhAb8TIQNcgJyayFMoWil1GFqycQ4kqsqyyhCWVtVicZsaPdmFICZQ3NhEe82ModOM7OkpBpQkxGifiiRLIaZzoDRP3qVSWFyIWWUgpGmajkVQ4iedIDyNmMwUYWLywDEEXGIql8CUV+v1RJFUllSdgNMv/oZk3/vUxee5h/G1pxpIenn3mPeob6pg7bQnJACwqr+CGTRcxc46LmNCHMx/EVDmjXkhncmQyGXLomHIiOd2O2ejCk5nk5Y+/5uDhYe7YuJavP+piMOjh1PgEN109m4lelR/96m3KFloZyk4yf+501GyGbC6HUTYxvaCKa+++k+Aenei+Tn64+UrefOE9LDmdxevrWO9aR262lUAuhpgrwF1ioPvYIbSMyPU3bsWjBtBtxdQ1m3n48d/RdSSCxS8TyPVSV5dj9ZnVCGkBo26nKL+IivpKfB4vL//tDTJ6iNbuVgyyie7WCD/9yQZq6uAntz3JshWVFBdMR7RmSftVjhyP8eTPP0UCxkZFbrrmUYLhOqpqZaKTKgI6H761h3c/3PltT50rj82bP2W010BizIBVcPPMXx6lqrqccEak19OLlDHS7ChkV9cRAuEUYp6JokUFnH1xDQ67FawQjA8S8Xrp9Oucf9/TfLj7MH95+VmMYh6P/+UezGYThbUiB988hhUbH38+iCvmpq87yr5tg/jlHAEpRcWZdu64+S72b30RMxohb5Sla9cRyoExP0dxvpvbLvodzkrXf7Od/z4pvfvinx5Jj2cQFTNmUaepRKFzIINZNpHMQiwBKc1MJCuT1E34/QqBSALvRI5IEtJxkdCon4mOKbSkisWl0zinmPIilZg/Tialo6s5JiZzDEWhwGVFlEWknI7JLKP4R6iZu4DCZVW4NZ3aGQVQUs/YjsPUVZipWDmPsgIHaS1FJJ7FbDVRUVyBf7ifaDyBLRcno+uYquehxyM0LVyFPnGMwozOnAoDMzYsglSSYIcfR6GMO89IZ4+HqazGjOnTMdlMKKkwNreNZHCcQCBASU09XScHGetTefSp3/HJ1i0UFhXTe6gHy3gMq8tCXEkihDVMjWaMTgt6Rqe1bZBzLllCcqiTYotMQdBIQZkdoX8YQYlT75DRBIgeGKCg1s3EwDjNV2/AaSrCMzbIubefRa5tgspSM+UpkbI5hUydDJDz+tGVLKKURbJJZCfDFMxqJNU2Qf6ssm9Z4SGVbL5OcX0NaWRMqgVTjRllxIvRYsBdU8Lo18PkVzmR4hkKmsuJjk1Qkm8mZwDPeJiMSWB6vkwwK2LQFJpnV6KLMpOROJHkv9Els5c28tCDd7Fj+wGO9Y/xwvPfId/RzGhnJ32DvRzcM8Q3Yx6+e0sdi5ryeOfPHjpaphidilJaacKsWvEMxUlJIKoGXEaRyVSK4dPdnL+onnffPQYGgamIwq23LGPPzi4isTjP/PG7lKjDbN3Vz+p1VaQCg3gmcvz63uvZ2dfGypk1FDaIFBTNY/+rJ/BWGXEa3LSe6qf1aD9H2/xcdtM8tu/v4qVHfkVby17GozmMJpk8W5ZR70Ee+9kjnPa08/2bbuTBS75Dy8ggJmuIV9/Yj8sh4Y9kKGkQOLl/jNnzTKxYO4/S8mL27DiBJGps+dfPuemal7j0mnPYt7eX8y5o4s7b3mPxueUMt0eRkxCc0JHNFnyhBIWl8NQzv2KkW8BWlKX7pA9B+Bblc+nV55LVE3S29JGalBkdm6Rwpshjjz1OxJfhjnuuYjQ0yi9+/yk//tNamuvWUd80jRdf2klWHWPp4nP5cu83/PnJR7nhrrMpqDdQV1BKy8kgLfsGcOep5EwmZsxooGZ2NYePj/DOc3/l8T89xazqYtJ6FnddIb4BBYOQw9/TQbGtkoINVdx4y0+RXBGSESPzSy/gy53/4sZ7VtF+eIIbz9vIlCXK1Rfc+79NSumsgrnchqqncZkzyBmZZdVGRGMW33iGqeEkI91+fMMRJgZChKeSRH05IuNRJrsCTPb68fbGsVugbmEZjXPcmNJRMskUqlHCIOfIZnTiqoAgG769ARJEBEFAMIJmyQe7kXD7GMayErIplaGXdtJ47jwsC+YhJHU0NYkoOmlsmsfyjTejojA57MEUGqf76BE6Ww7Rvu1NHI4YH215FavNjJhRCXdL+EcDbNvloXBuIRPHEpRW5lGZZ+SsM5fQ2d+LIadiNWjUN81FMApUNlUSCU+w5Ix51JRb2L7lfeYWNJEMp6kuEZHyBALeAPNWraBkfQkFM+fh6wozcKiDpfOqccsCZkc9StSEwWUi3ukllNOwNBTi68gwc2UTDRctIDjqpW7NdKYOnGYqOUFdcTXGjIXS+iIsThOl58/EUVyI1WGgaGYeVk0kEgChwEzztevJJgP0qgpffnCE0FSY+LCXkx1Bek4N0D4wykgiiBJP0LBhLvGgyoR3krLGImTJgmNmGbFskrDFQM38JiS7jQwiTYU2YqpMpU0ipxgYGZiiu8+Hlv3Pjty+0WE6hwdYuqKeieEUPf4Btu/4ghWrNrGxbjaplMj5156FZBbY/IcD6IZvaTXJtE5+nhvPVAhEDU0XUBSFwVAIe0ykTC7mjLVzSWRzeMIqF89bygdbDtF6LER+kZ1fP/Uvwnol+/aO8XV/nHO/fz6H9v2AYXWYu644j2379pO2ZhCcTn75wiNIgTCJUIISmxVdNJJLGhk60k5TmZGfvPYc6WAKbSTO1GgCd76d4wcDxAQD4lQ/08qWkrQX8MHfvuKtf27BH4gyZ/YSSJuZmgzhMDhRZY0PXjtNPBFBEHLcfff13H7ln6mqM/LGX77g7HPLEcQo3m44/MEojUtcrF7bzLqNFUS1IMV1+RS781i97EYmfMMMjU4hImM3Wlm8ZA6KqrNn/y4iYZVQJMZ49BCuUjMn9mxjdCBOLJNjcNLHk08v4493fc6lS9bzi98/xaVrGlgweyX/3PE+P3roWhpm1ZNWM8yeOYezrlvMFbc2UWCt4ehBDdNYlnNX/RQxJzKjppqPTm8hGIwgKgoLKyowxOGss2aSiuSI5CxMWjTeeO4d8sjj1J4+UkKac8+u4vrrl/H2e22sOSMPZ4WFr77u+d8npVc2P/5IJp3GYs+jUNLIk1QqS/MpMWepLhVpaLbjdAFKDqNBxF4oUmi1YC/IUlohU2ozUtlQhQ0wGQTUUJxkOvst3jarE49pTIY1sjmBUFbAJoOua+RyOrquYUiqHNjbyeoLZpHoGUWYClGyeDqjX/cxPDJO8PM28mdU4G/vYCrgQc16ScRUpi+dRzYdYXDcQyah4PH7yHqTzGxyEDOWcaJ9DLEgh5JMEVE0hntDBMUc1c2FiGYbOaOCwWDFaUywcP2FtB7dTe30RTTP38j02llUN8wilvUz2NOD0w/jp/tQqgtInhzBMN1NaW0RhgI7oeNtTIaCWIBpy5cjZSQmv+mg+oKlxLIT1K9dgD+u03rMQ6ESp2zRLLSMgM3tYuTLVgSHHXMwTUpPY61w0d/SR+2axWx7/Wuygz6ar1xGQUkRRTPcmKwi5soi/AdGGO+ZwiMoKAYjo5EEWVMOm1kjmxYpKHUiKCk6+n2k/BEamypIB6PEDTnMhSLZsSAWAwxNpZnyTjLiiZHJ5vBENULpNOEYODQYT2XJGHTK7Gam4qn/XzOrNpby/vbDXLx+HtsOdTIwHuK3P7yL4SMt/HNPO5f/YAY797Zw5Tm/Yu8HH2NwObjqB+vo+qwXQ5GAoAmM9Wcxm80IRo0brr2JX/3ofP7+7i4GPEli0TCSqLFgTSnDrcNIkoPV1yzmqTsexFzcxa7WHupqavjgxUOcefEGfvXH17jo/Ar0QidllfncdfmzSEVhVs5cjG/oOO0TPl763XN0+rvJHJ4kf7aINODiF1ueYPL4aTJZBxdfv4q2rj5O9+9l35cRquryceSb2HD2QrZ+PkpwIohotJAn+7jv3ttYNruMp3//AvlNkxhMMjfdupKf3L2FZC5FcSMMHtM48/Z85jfO5rNXWznv4hm0t4/y2x/+gi8+OMD111+EPW2irLqJztZBpsIRkkKMqupi4r40Q2NeqhpK8Uz0887fN/PeF59QZp3OcKCVl/75Eo/+5l5efP01SitctG9Js2Xbg7yzeR9yXYC/vXWQ4OQ4M1bmeOW3p9h5chcFlirGJwbY/L2XeP2NB7no2tUsXxFi0ZqlfPXJXq677H7q5rt59pk3MZoSqMNZpm9YzZFvjnHo1Aj7P/uCf33zIaakk9hkjKd+9gCzlyzGmIkwHGzBkWimutHN5Wfcy9Yj73PexeWsmnPn/xZ0v/nXJx9RFI2MDqZsmgq7DZOcwWA3Iaoq8UAGk2bAZi3CnefEYqqmsPkMKmf9AEvt+UTVIvTAMdJKDs0YxmIzIVtFcqpCYFIgmRXRNImkqhBWjQh6BgEDiqZitMvoRhOrLlxEZ3s/mUPj2FZPw+SwYZ3uptip4l4zC7vZRMfuMcwzShkZCdPSPsCS+UvYeXKIGUtmI8TjJJM5rF4Re7WVE18PEZpKk4opLJpVyawVMxidjBGJp4h3+zntjzM1nubqWy4iMBWieckyhHSIwbbDGO0VHPz8L3QdO8WcJYuRRRjyjTDn+jXkglO4FlcRT5gQTEkySQOnjk+ipFI0L28k3O9BxIjDBN6+HkYP+qmotSLb7FSXGZh53nIO/mMfibEgqqxR0lRHtGMAvUrCvbSZj/91BJdoYOxYLyFZY8ig0nvKx/CJbjr6pjCPh5Hd+bS0jeATdTad10RVkYERb4aUqlNmMlJUqBH0pEAWSOcEonEYDUXJSRLDEzFGJuKMpRTG/QkUQUdPqDRVuHEVqiiRHOU2GVnQyGoacXTqKvMIRpPE0v8+CdCqc9yw/lJeenkrNzWvoXlJDYnJKYYzWTL1PhYVzcc3YCPpGMKSMuMwSvRFx8hOgmg389JvH+HDHdvQLXaiQQWf/xscJVa+/nqI8fEpioudGO0i1103jz1fdCMKIv0HBwj5IyyoauLgvmHCk3GUjAXZ3sqDl97Bk394B0e3D61AY9Q3zubPniAZ6cNgryTqSXB071c0L3Zy3WMX4T/ipU8fZes7W3nqrf/jtT/vYNepNlz5OrGkxJlrFqOqxRgUGwZDmn9+9CY5ycxw7zCBbJL+wdNs39qC06Xx0C3/YjiTY9fnQ3iCHioaodBexlQkgsmUY37dUp56/Dl27/qUIwemuPhn81i19CI+fPd5nnvrrzx652MUVZQx4ZliUekMHvrebRzsO0rdzAL8nhEuv+pC+ke+Yd+OQfzjAXzpUQYnUqyqMbOjrZ384ipe/2gLbSePcN8rZ/HyC98G8TlnDkE3o8UMzK2r5oc338iWbW8jRUVeeOpDVi2spjUSIBjJ8NW2SYz2NE//4iVaTvjJs+VRkDPhHetFjEo8/NRGHnz6GVyCged//yMOjvWx+vwVzG9aQEYVOfruHl74ZB9PPfYEGZPKjsM7KHA5WDPv9v9tfVOR0AUNyZBDM8hkDSoZUUdPZkhkNPSciCCICFqcWDxDIpYkNjlKWvES6diFLdsNiLgrZYqrahBFI0JcJhrIkMrm0LMZskIWSVOwGi3kVIm0rmMSjYhhkK1GbGkF4dAwNbctw+o0o6XiIJrRTA6EbIq034c4w8KJk4MEkzEWNbtoa+9g3oJq8hzT8YhGTrTE2T0Z4MixUVyVJlZX57Nh40wMRTYmlCTBUJSNMwuZvnYaM6a72bSigHjvIMX5VWRiKTzDw4QGh+j48iXi4RzJSIyS2lkMDfYxNhliz4vbKJreSFbNcPJIN1s/7eOjz47QF40yv9GOwe7G2VDHkb1HGT02wNgpP35VxTc+QKJjgvLa2Rz+yxf4pRyybGDq9BiFi+qYec0G8munsW97B/ZCBS1PQyozUJpvQ87CmmVOzjhvNsvPnsNQvsxUwMuKqxdRX2vFqin09YdAVxEFneF4lqBqobTehitfxkAaSdBY0uykuqwABBlVAkmQaDIbmVVppSDfip5L4pmSmD7NRUbNIVksZHJmylxmysryaagu+Q/N/PT633FGw0reeOOPfDjUyxKhluWXXcbubW1Md0n884WXiCo7SI6e4uzZc2k5PMpwT5RMvsrvHr6KqnUbuODycymwGfnj71dS1zyT0pJZiLEodrsdhSCrNs3ijVc/Y8bshUyMZIjlVN7f9hVd2rm0RRJUugJsvvVqCuKzGNU17rx1Hf2yxAUbryYtWBEzhUhGJ0/85VP++dwWDvaMkdGTSPExjvWPkG92ERpWuOrC31K6xEeq309cNaP6/Lz34X62fbabzr6vMTpkblx2OagyumKmvNjCN7vTnDi8l0wmxc9/fya/u2gd2rAXUzpHPKty+PMRJBUSiQT33fM8lQsXULOokO2nn+Do3iFKZwf5y2+f45Hf/JHmOVXs/fITNq05g+kr63h9xz/xtgVI+DLEEpOYzHk8/sTnPPrY3Zw+3MJbT7xITX4+F19zNalUkon+INV51UwGjPz0e++ydIaT+fPnUldnYu+7CqG4ii85ScDRzamOQVrHogyFzDzx1AdIuRBf7D6BwWDm3b/tI25WaF5swh+L05MI40lAcUM5u7/uoMFRj2dKYePFP+OmM6t5/bW3+N2bD/PHp5/ls0PDXH7JGYT0cXYd/oqly5p49/WW/2Y7/31SeurRXz1iNlsgrVDtkpGtIIk5RKuAy23G7hQw2SV0PUteiQ2LE0QpDy0eJxroRFZaEDQNUZQRjSKDsSaUeB+izUphlZtJXwZDTiOpCIxHv/0pb0BHEwVMpTLT1y+n/71jzLthA8P9w2QOjTLa4uHU5CSHjk7RcbifE8NTBHxJNiwvpsSQoa09QUbPIY33IuTSHP1qgLSqoOZUoiGV+HgOweejpqSGaF6aEpOLiJCgtTPIwkYXeWKOIoOdlBym9Zs2HFIPmZyKRJJAIEtpXR150yrxecfxRwUq6sy43RZ27+2i/YgHRRKQsgI5UULIKTQWWimrrkZVYjQ2V1GxfC4OqxnDpJ/oQBKTkmNPex+lqkReWqWs3IY+dxo2TScSzSBbRALj49gEIwndgKrkcNlEyq0OjneH6OkNkQ5HyaZBNupklRwlM6cx1BUHh4NIOEQuq2FQDTirCuloD9DYkI/bI1A/qwDB4SbSM467yEA4qpPTc0zmIJSUqHQKKIKEzaRiMVgwF+UTjAQpdEu4LQKDHVMMhVOk/x9KwCfd21m/aTon/VHOnNNIXn0zZ998EyvnOXnrjdPkZSp58R8vs2/Hhyw5Zz2D7X78epT6CjeH2gfofP9z9r19lN+8+gOubtrEB199Ssvh40QzadBzxJF58McX8+pLJ+lv82IqlZhRM4vRmAefbsA+dIIUTpJlVt5+dzfHjw2yf7iTXMJKS8cJaucVcLS3g0ifl0Qgx0fvP8erzz6OPzXA/m+OMTokkcVEJqXx8ztvYvueIyxqmk1OMeMuEcl5YvzkrluwOnPY3Q7Wr7mVLe++jaBFGO0SufySNXQc/wx7cyVH3tzO1T/+FS/961+UTIPtr/2Rh396By2tQ5x5YROdLXGayzVOtHUxrayRF954gy/+0cXRwS84cmKMx/72XRbUXkV4aoq/PfdHjnfsYvZyK4tnN/P+lm6uvvMMdn1+gtNdB0jEjSy40M7Lf/6cHW9/ij8ns/Xlf/DkX57BJPvo9+mk5DR+JcgZTWvp7RwmFU1TM8fAe292U4CL1pM7ePnPr7DppgoceTKv/L2V9efLtJ9IoKUM/PLpW/n6s1OYXQqzaqr4ZsxLf1+Y9lPDlBQZCJxKc+nNl+DXfWTCo3zy+0/piI6TGtU5NdaG0WhiMthG2mvghivv+9/Wt2zPK48sW1BIsVEnl1KRJBFJz2E0mkhlFGSzhGyWkMwiOS2D1aCiZyfRM0OIuSkQQDVojEXLUbQEDlMCY54IogGX20VRsYR/MEMqJTGRVimTNTqjZhSDkfUXLafvrQPUn7+Q3sMD5NmcVKxaiPdYN8Vxjfp8kd40oApIgkjfQIizr7wYu6+P4hIJJaVgt9g42D2JQdOw6BILcgKr7lxH7dkLkawSgRNj5Dw+SqptNM6uxWUtRa6tJukfpLC6DH94CiUrYLPaCUwkMJoMzF1zKRbZQn93J9HJJE5DiuI5DUwrFIgmFSZDGSRJQVdVbKJM56iPgd4hEh4fZbMa+WZrC4mWQWZesx4pq1B7/ZkY+4LkpBx1KxqR507H6PORdkqUNlcwdvgAp4ZT6LpEQ5EdTUnTMpogkdJwyRJxNUtWyZFOg6vSwazZMzj51n7ygxGCkTRzl9UxY+E0Jr1TzJ1fxlD/BDaXhcqaUtKhMLYimGwLUbduJtlElHVz6ygrsFNWKuMLZtESKi5FYjiQIhTLUGmXGfGliSQ1shiQTTrx1L9NyW20MXPdPDo/28eCxbV8/+G3MEeiuKtMtJ0OsmJTHTNmzyM73Mf+sXZ6B4bI2kRqis1ku3rxDmSYd9kKXnj0Nbbt+Aqh3Mj46STrL6zDakgxZ0Utl61fxs4Dh4kHUiTDZlKGcWRBZ7xnmN/+6A4cjjxOHviawe4wMTGMZDKy9rx8gmETpXkFWKMi688+m1vPuZVdQwd59+OP8Qc8LJnfQDz6LV9ryycPICcdyOVF/OTHd/DJ1s+580c30zkwRMoq0Nd9CoPdxfr5G3hm80s8/fif2P7lxyw5q4wnH36FV559mFde/Bxjxspoopf1Z5eRU/xcf8NvqFxqJjUa5bxVZxIlRNxio9BkprPLz7IKB0vOW0VPzwge70kefeRqtu/v4oZbr2frju1s+aCX285Zz1CwFQWRkweHyaZVrr9hOqWlZWz5uJuaMgcCfuRSPzOLF1I1fyaT/jZ8gzr57hznb1pHa0creS4bF1wxi8muCTZcdiGD0Q7k0jyGAh2sXTOLHR+OMzUsEUyEyLcX89l7LZROszFveRGuSgutHWNIGROCLpJMprj38bksmrERSnN0tXZQUZPPH+55m2ff/yHfHDtCPJbF54+w//MBfvK/ViwZEl2POOwyNjGIUlqOEgiQzUAmqSLldAyyAUnSUHI6giCS4dsqpYyaAkXFYClhbFLCpKXJs5lRkh5sDicmg0Y8FsJRWkbl3NWcOtRCPKHx6aDANZcsomFVA2OvHUUXBHJuN5mxIEePDXH4WDf5kgkxJ6CUO5icSqCLAoLRADk4vv80E0EZ2W6lutRBz2SAYEzHXSIxFcuRNIiMHuvF81UnxbpG4eWrKZo5g/hYL0aLg51bj1NiC6HE4bMvBzhjcQ2+SQ8ZxYDJ4aawpJxZixbz8pZPcIhmxNZevu7xc/r4KNNL3dTPKcWYVNAVWDfTQYXdRDKgM5k1UFdhwmw0U1FvxdrkIhrxUrByOjarlRPHT7PostW4Z9cw/M5e7Mum8dlHhzl5uIPe4RgVZQ5CQYEh7xSNdQUs2dDM7Jk1HG8ZprqpkgmP59vwd+U8Th8dwJlIoSsi2WSU4ZEosXEvuZhASaWLJatmUltXRmYsxEiPHy2XIWM2Ek9JLG1spLell7xiM98c95JRNWISpAwKVruDSDqBJZHDpwmomo6ia4i6RCL7b7ypM9/IN3uO88w7v+eXv/kDNl+Yyzds4IZrz6LYGsORJ5FMdzC7toouT4T6OiMZX4RL1i2gedZK3vryGI9tXsuf7/0/bBUWdn59ku/+4Hv87p7bue+ht/nrKz/jyg0PEPYLYDJgNaRwFDjQjGYc6Sgli6ZT0VzFV0eP09UrYswoNC2qoS3qxeIv5cCBg6iSlZbju3FbDTjNtVhCPWRSCpecdynn33g3gcEDtPSI1Llkfv7AC/zk7uv54b33c/U99zC9IkhRySaU4DBf7elBjXj43sPfI0/Jcf/D3+fwrn0kCuNsWLeSex64lwvPuxPJeJh1C9Zx40XPEks78QZi/PYXt5PIpDnx/7V3X+Fxlef+979rzVrTZzQjjXqX5SJZtuXeMWCDacbUQKghQAIkkBB2IOzADiQkgSSU0AKhE3rv2LjjLttykSVZzepdml5XfQ9yXTvvPkgOcvC/cuDP6XN6r991r6cePk5HNMLWz5uRx3XuffgexpVhmloOUDfbgdM7lS9e7uDSK86lo7+V9q4Bnn/kCZ5481XEo04j3gAAIABJREFURIqQkkBSDW6+4xJu//67CNY4zz35e3y2OInYJO99sY9zL1lNw/ZOqqwqd//hFhoaDrBzZx/FU320H4xikcb46e0PEkyF+fOjb4GQZvHqarb/bZBQJEH5HJGOnigFWQHCAwYJYRiLKXO8MY5kyqgpnbhm0hMdxjlaxyf73sNUEgwEJ2jaFucnt1/N9JoqtuzYT8PuTi6ecS7nX/Hdfy+UQn0bHsBQsRoayYkMYqCUxOgQNqsFm8OCaRiIApi6QFpJI2JiGhqiIGPKDkRLnJ6OOJFIBleWTFndfOKRkb9fcG4XURMaFmmS2euuYOeOI+gxlb7mEZTmQZyyQsX3z+HY8xvYEU9RJYgUed10W5NMBNO0hpPoho5gmGCIaIaOJkksW5LPyeOTJDJJik0bJYqOM5Fh1bwCegeT5Mkw5+Y1BGZXY2TSoCSY6OjG7vMy56wVKJMKvqIccpIaspxN7tzppAbGKKkrwUxZaek9Qp6ZwF/gwVdcQtexbhI2C91tI+RPKtjkDHpnhqggMJTJUJXtpqJERpB1jGiYvRtGiEtR2k+EcUVTRIZHyfa52bbtBD1HO5g6t4IDu1uJxyFlSGiCyUWXLWX+aYXMqCunpKQAM2Eytvs4C6uKmbKkmqbmXhanVJQcJ5nWAVyVAbILJPxOCSWiUzUti4ymYEulsHplRsYSRHaewJ7vJGKRiWXiuJ0iHeNJKkpdjEXHmFZTgkUxiKVVqnKz6RuPUD8zl2BPiqnzqkhPTICgE9CsjGn/2KckIqJkDNo6m/DbChgJ9/DEQ7dwYrKbuOGkofMg0yumU1s/k4PNY7z7xm5WnpmH117BL+9+g3sePZvvLv4xP73tNj5u3UUkrTEohJkcaaBtbx/XnXcGb2zcQ1llHolMBjnHwaolp9F5sB0lbiGY0FiybC4Hj24nnU5x3+0/YFtjO5m+GFVVfjq7IkwkY6xdVsHRpjhbGjdz3pmLGAqOMJx2osb6URz5tB3bR0NjC93tEZauyqKmfDHr5p6B4jDZtXsvN166hs6mRkZI0birmZt++FNCmoDXF+Gn9z3N2gX1nLduDfnWGINqkIjkprYql1QkygO3/Iw77n6APz3+PkvXVDMvr4L3nt/Day/9nPv/8hjZvjhxI83UqcVMq5vH8898Q0f/CcYTk5T5c1lUO5c3Nr7HREcGkiquInj35eOooQzzV5Sx4attWGUHv320CYs7wk0/vIx33/qYbz7bzJeffsmWA4eonVJK//gY4cEI31k2i/L5C4mlJ3n9ua248kz2fNrP6vkX0zZwkFBYwCmL6EIK2WEnPGSSk+cimfn7xudQMEmWQ2bdObPYsGULogn+ygzBDh2fkIU0z8qevfvI8Vs5/m0/F1+1jIUL1v17E91KOILsycc/dSX5WRAfGgBJxjRNNFFEcJqYbiser43sgA93jhfRJmNxilglsNqdeNxWNBVOHB4jFYlQffqNyLKKw+nGG7Ajaxbo20POtBzqz59PcbkPQYsjrZqJqAl4ygq4ZHUd869ZQP2Pz2b1ikXMCrhZIDnxGiaqaCDbJARBwG6K7N09hjeYoqczyadNY8RqS2hUZN7Y3k+OKlAq2vDnF5KwSBjpNBbZhaDko+4P0fL8Z3hz3UQG+0ExsNYVYqhRsnJspE0HHZ/tpOHZb+l6/yiNr+/mgw93EJEsWFUHuj2LQTOOL2BDq7QyqFiorsmhS9U4MaygtmokGhOc/p0yTrYnGI+YbG6ZYOOBXjYdGqUq14SxJB/sOslwXMfnMLGYOjbZyusv70AdV9ANOx0f78MqSZTNLEGoqSQ6FGVWXGf6f13KgvkzmX/mTKqme7BkgZhvpXyuF1+ek8p8O3aPREG2j+KqEiquPxNfQQkMJyh1eCgonUalLUl3fxLjOPRtbCU7rLD6rHp8XieqamP8SJA5F86irNJHWaGDumn5ZPms/6dmdF3Fl5XLpr9t4MfXn4tdc6K4LBw4PsrdP/2QGy79GVl5PmKkGUgNs27tHL7onuSL4zsIzM9hSdaZ3HrD1RTnFZGOpNBFg8bPjlBYmM/pC1ey9YWPWbMyl5G2XrI9WWRb/Wz/uoHSvEJkh0pr9yAjoXGSKkwMQfkUHz7VyrwCF3PqKtFMjdDoOFmVUwgF25lSIfGTm+/Dipt921sZj6aYWVlGZNJK6+AQb33yGPsbunn62ddRAykeu/d1hvr6iVkH+cuTX3L8RBttXXt4+6Pn8TugPdlGTbbCi69/RnWghk/b3uL4oTBv/fZlPtm2i8f/dD9nr78WW66H2atqSGWSjKeHefvje3nw9Vew6DqVZTmkwyYjnSIbtrzBwhVeLl6/hlgmRMyaYHwyRa0nQNowKJxlZWHxIiZGNQ43/J6aaXO4585z+Wh3K7lOgVTCJNtVgpK28Psnn6ZtpBdXQmQoFcJvzTA+4eDD7cd49OknSSoTiCmQTRuhkMn6O7385ZUfQdCKmhaIx1OEIpPoWprDWyMohkpsXMMpWsifKpKxw2h/iLWXr8GbKWKi003t/HPo39eHntQoKp+JKyXiK//X17j9y04pLsx7QDYMho+9y/DQIC1Hg5iSgWCaWK0gWsFqEdElUBIakl9GTxqYgobsEjGRsdo0wsE0minR1TRMRZEbwaJhlUWs7jxEUcZqz2Lu0gv54qXPCSRTuKeU4LPbiXQ24c7xYhUMrBWV6D29OFUHXx1tY9gw0OwCsgExRce0WMACyzQT/0oXZQGR3KCI7khSVe6gf1hhyFDolUX27DzCod3HaT/Qxdi2FmadX49zaRXFOV4sBQFiA8OkOmOUlFWA30pw/zCOXMivLSHYF6RBEwjqKrpbZv26curPWcLkiQ5OXzmVwdYYPXEDqzdMgd1PKJOhpFDieDRBRLIhDyWJxhQUh4GsqRiiBZ+u4fY7wJphdsBJfo6DynwfwZE4CYuI3TDJKbIxNjhAYbWTjM+PNqjQfaIVJTaJzQ9CT5K+jUewzqhgMjJMyfRaTDWNGdYQLQa6liG3Mo/JYyfxlhUh2V2ED/eSlJIEsj00nehCkR0YwRDVSyqZOqOAZJZJX9cow8fDVPsFtFwLo4dG8eaKHG0JEh1OkF8m0jX2j7NvosUEJJ798Dm2Ht/GjEVV+K0CX2xrolRNU73AwYnuTgqLc9jySQvWlEiB4iXelOLZN37JYOdJrr3rXmLtx9k/NIxT81E6Q+JHt9yDPTCdxx/6MylvNuW1ZXz3krU4E3b2HWzEyIBqcTIWD3La8lpa29oZPpbhsx0NjPeZ/OzxK2kfPkHTsWG0uJWDxw9z3RX1iIafsuIsXn93KyvXz6HS72DJlJk8+viHzF02g8vOXcHDP36CrEIX37nkOm659Uf8/vl3iRxu4tj4MF2NTSyZESArr5ZAcYrnH9nILQ9cxd53v0SconNg3yC7NgQZyfQBMb7Y/D4KvRxq6EZPSuQoHj7e/RmCp4/HbjwH1apyZH8rMc1FV+cEM7O93PXwPRxvOklHRxd6eJL8bJk39u/nyM636R/u5qnfv8H2Dz7EWWOiqGH++taXTLbLOEpsqFqKm2++kL27j3Dtrat55u0vuXzOmTSNtfO9S9ZzZNNRImlYcMY83v/sW4QEeHx2br/9dPZ2b+WrDQfoP5lGEqyYCBiGwoJVfgzsKCMSaRTiCZX7f/tTGvYfwGpJcaDzGMtXBtjxt37Ov2EaGw8fw+NSsXpsqAkLr3z8KXfd/M/nlP5lZA0f+gXRrk+IRUKAiKfQg6KJ6JqIqhmIWLBIAk6XDdFpg4yK1WUiS070jI6ZSuOWBHRNBIuOKMq0dXUhV65FcmZjZkbRxBCmGcbs+4SsMhuqZMMVDRNN6Rwbs2CdWUcy5UEYCtH2xj72fr6HmFUiIxmcv7KQigqZLIsNXYFlq2YSuGgGVqEUUxSYefvplE3JZWhYokq1kON2UlDpxG+XkU2DOZoFv5HGWpyNZFo5ubkBh8eNzZ5NLJSme3sjbn8ZmVCQ7g9PEt43ypwbVvD9H6ymXBNZOqeAkulLCXUeJxRR2fFmC7rPxvRiGXtQxqELBFwiAYcFQ3Mw1Z6mO5EmaNHQM1ZmaFZmWmSqi50YqshQFEYMA0Ez0I0MlmwLDpfOOesqKa1fgCvlZGxjlMTGLsKGBdMpkUoaiL4cdGcK2xQ3hVXFVHjriXQN4fU4EbwSVr8bn8uNKPsAJwcam0mRIdEzwupbvkNXT4iCGYXIIzrLz5iJzSXS3juCXbExr6aImFWhdNk0Zi6exaRDo+noSdySg6JZxXSNpv9Pzfzighs4uPs+6vPdhHpVXn7gURr2t1BT5GfVj5bxx19t4/Nv2hFCOkpU52d3XM6ImuLHf/4OLz35MoGF2Tz+qz8SyytC0UCJjrCu/jK6Dh6jv/lZEvO8/OAn5xJYMM69tz/FR59+i5oWMZ0+InEBr8XKW+99RmhcI6tQQNCsGJkYr7x6hNvnryVzOI0dF/6USNhayk9ueZja6ll4yjTmlk/BkoLnH/uGu9bPYee+dt749GV8Xnjmy2+45o5LiATHmOszefkv73G0/X0O7ZlkZmk9l193K2cuv4W+nlZ6/vQGF9+zhuaGGPuPHeGR+8/Fbk2gxtw07hH49Z8/477fXcy2ne+z9tK1/Oz2H3LlqttYc9MLaGKYvz0X5PobLiOe1rjm8vv4za8fpvlIEFJ5ZEwLS06bT0lWFqsvvoYf33wPOYHZlJ4u8uA9nxPvh95dKvZojCV6hkAggInEt1va+XpfG3nxLMoXVOPCipLnR8i3UVeygAsvPBshnkHwqcQnU0wmMuzcmuSspWux25zoKRMJBzmFVnpPpgjGh3GVJvCmrFTU5PH6+88Rimm0HfYwvSCb/oEMeFx8uPlrtMQ4J06M8fE7X9I10ocybP+XndK/DKUTn2+kt6cNu8NPajCNJ1ckpQgYugVV09F0SCkq0VASyaqjG1YMxYKmgUWyoqoZDE3HYhqYaZWUqNF8oA1xrBvN6UfBiteehWTPwea3c+tPr0O1+zjmsKD0jFPSHaP9uc/paWni9Q8PsNvpokkwkQwDjybSeDDGonlzmTUvh1nV+UgTfaR7ehC1EbpHRf72h00Q9DKjxM6Zd53GRT9cyWkzy6nXRVYXefAtKiVosdP44gb2/s/bVN24nr0P/o3DX7ex26kS6g0SHxlhxg8vREwG+bKplTdf3MSrf97AkMPG4WNB3nzifb7+qg8tLXDCI7CrJcS+zgjDmkT3gWHyI2naulPoNoNdQY2RjIphdWDqChN5YCl00t+vEMhzccHldSxZUYmcUEgn0szIljk9O5cvPu/iq2e+wOLQqbq8hsKzyildXEVR/SzM8mxsHg9HQjqRYh9HvvqaoY4DCBYfalIi6S9CmMjFMWcBn3y2l+6MxsJZteh9k5TddhahjpPkJmF6wMfMJU5SLjctW1uYOqeWkViI8UiENefPZSwyRtOHDay6eCkLLzybVCbOcH8Qe/r/ltAdj57Pwprfc6Q3RHFlGWu/92N2HR3g891H6d55gml5NmLH4gTdTnYf7eO2Pz/EoZZuOns7KHCVc+vvnqT29HJUIcjy2cVE+gRWXziN11/eRs3pK8ialBk71M/7Dw5SVz+VWCJOJgZ33n8F1Rqk0jJ20YfVkLHYRYykjmKq7Nt0iBY5xWXfL2fYFWbdorlUut0c7/qIZWdfgJ7R+WLbFs65+CJ27N3IIbOa8+bM5M7vPcmjb+yg1pnPz1dcS1d0lF/9+pc0dA9y57nXUF3r47R1F2GqY5TXFOOrFFh//bk8dONGTo4lsMl25Fw36VE7bU0pTEkkFfRTEp/Lksr1KEkTh8PFr15+k9de+y/GdBeuKTYCefnY7PDDH/0EZ+4w+xsbyZhjaDEfyXSG/LICPFIWVdmX4qvRadgT5uDeRurPmIOv2slNN17Jku/fipk0sSBgc8GOLzcS9Y7z3odvEzYVjv2hk+AJB7955RpCoUnmzZnHeEsKTRZ5/dUNJJtCnHbGpdhcJpoJaUVHwMAipinIL2AyaDIwugMhlMVgs43+Y8O481OMj8f47N1eFHmSEw2TIKhoGRVDlZgIpXF50v8kcf7uX/6+Hfjo0QdM00JHSy99fSm29EkQS+KRBTxuGxZJxGIKSBYrumbi8towDR3RJoBmYmbALgv0jWgYpoxFsqAoBm2NI9SduRxnJo3FYUdTUviLZmMLNZO/oBRrwk3R4iosEkjZ2ahD40xfXsZAfxLTTLLQ7mD6FCfuEYWeeJze1hHkkSDmhIU9gyncshO5ZZLakmz2Ng9xeGSSpn1DxI6PIB+epOw7Uwgsnosjx0A5OoSjtghvXj6HXvuGTqvMiCQiCxIjDomG/U0MbG6mU3KSMEX8bg9L5mUzGU+jqSpxU+Osc+pZddlyvNkOFi2tpn5+OSvWLCRvcQ0bGrsIp3SUWAJvfoAzl/pZMmcqU+cX0doepEK1k1/hweHQmRgcITiQpDccwe2x468oZPPRUc5cWUp+SRYtnRP4/AaefD+akUVyWzO9R0aQHEmq/Sa7j4bwiTYmoyK1S8sJVORgGYvjmpXP4KajFKYFlq5by/ZXvqJgxTTadndiEVL4agoYGxiguTuJntGomJ2N7guAprB3fz8t7cMMjWcIqialgkxofJyxsRhJQyG/KJuBifj/1syYJ4kUj9DWOc7Nt52FOOpkZpWNLHopq53HaHCcBactJjoWpMKRoWJaPY89fRd/+Z93uel3t7L5sQ+ov6KE15/bxuolV3LrfVfy/F+f452th7j++kUMjQ5RUZ3Pho87mLtwGgMTY+gWla079zMuabjikF1sEIoaPP3Mb9m14QCxeJwCU2PYofDDa9ez68M27vn9Daxd8WOu+9FV3Hnd2ewdGSQetrJoyQJe+N1XTPYHeferXxEZEbj+mpt5/Bf/xfKrL+E3N93GGRfN4ld3/Jzps+tZeE4Nc8qm8t27b6G0opjvTndhuKcwcPgEC5fWcrh5iBce/waHNY+y8hIevuMRLl8zh+bIDva39/Pqx+8wa341kmjh4V++SraUx/W31fDqy9sJh2Pku6bg8DiYaE1x8bV1hHsjvPf1F1xx3YWcHBhhybwAuWmNF155j5LcWVx09cXUTqtlsCvIe19/iOmAWXNnsnP/dpSMFXtCJmHPsP78JUTjCj9/ZD2RmMDWo/t499mv0LEhGRlkmw/JbbByaQ2X33QOrz79Bab69+/+1hu/Q8/wSfS4xL33PEYwGsYtOFBiBoaskVBUnHo2RVP8lNQUc3jnEPExjWx/NrFwjIIpfn7w3Z//e6tvW9/90wOD/Ul6+tO0h+0cHckQcNoQbCpeq4SupHE7ZUxT//vDAjYRAQGLKZBOZ7A5RHRNp38oiSmKKIaOKQiItgQ1tUW4S6ZiUVNYHHbSoTCC3YXNX8Oh3n6OfHSAyIlhDo9OMIaBJ9vF4FgYWZPxpDTSikZWpYt0V5ipZV78xTaOjcRwZTk4EUoQtktMxkVCdgUdGdWIExZ1qPBhHYOcqflgWMma7kEPjpHtFdk2mEITTQS7wRkrS6hfOZvWo12kBAtVNVkYsk7/RJienigVM1xccfNVLFkwA324C8M0ySsqJNqwHyGjgpnGmp1HQFCoXzCN+WfUUT6lgk8+3E9r1xi9/aMkEyaFWpqOSBpJMzjclyR7KEPJjCy82W42bu2meno2wyNpikoDFE+xUVA9i8i2IYSYjsWdoe6q5XjSMpGIzNzFZSQbe5l35TSGOhP0v9FIYFkJ6ahKdmUB5vR8Pv5gM5OyyNSSPJraB+jvDlPog52HJshIAoPDUdraRzASSVKCxuhICp9HxmG34/WbNPaGiI5GKFHt1K+pJ3q0n37lH6tvg8M9TCsqQFOt3Dh/GtX1pQylRogqDt57/xDhVIb+sS5OdvSwon4eGw+fYPOOw/zk/Av571dfYN3yqRRWelhct5Lli85kx8EPePvVPXz20c384rdPcea556IH0+xp6GRoMEEsHuex3/+Gga82M5gyuPq/56MPWBgdHOTTz/cSHYdAicz1v7mQ5q27efuLfYTi4PLFiURS7O3awuimk6SKnAgRgdMvWMsXb37FlPrZBJwqr732LeMjHdz/5It875IryMp38c62ray76Czamg9w3lk3UpWdxf1/eB5VH6bAFuHbA+N80T3O6RefSVPTcZRxOwODQULRAb7c+zGzz5V58aVtKIrBn+/+OQlngviwzkB3N488eQm//vN7RAY0PH4VK06Swgi9HSrrv3sWmz7/FtnuprG5GastSLjTx50P38uS6eeQFENs2Pg+PYcS3PiDlZT5czl8so/uniOsWHkWTUfbiMbjuLIlymPZvPxRA5d/bz5b93WzaeMRgt0xfIZKwcwAg80RLFaFV545wtpVy7npJyt4+5XtTKnxkvZE2L+tH3koi5qFZUQnE+hyHAtZpFUN2XCTlyuTVSxydEsYq9XEFCA7y01ZIEAGlZuv+tm/F0oXXn/fA5s6k7TFRfrCGTRBJSDr5DmsWC0GslVEtMtIVgFBFBBFETWjIVvAMP/eLSkJjXDU8veNdiLopoihqMiCE3eeD0EZJz0xRjKVRE8liR0/zIdfDjBzuZ/SC85A3n+ShCLQG4xQkytTX+NGyLZguu0c7E1SomVondQ4EjYwLSKzSjx4fCLRySRVpkheUiPilVh93kLmzfEhobL9eJDC/gn884vJJA2sJQHCLWFU2WBcN7GkEtTPLMXrUFh6wXpmTnMQC8U42RZmoSpRajOozS/EWZ1Hx/btaKEU0a1dDG9sIjaYwO6E4UPDRJNdZGkKUjKOtbSSF//wBgUVxaTCGZIJcEgmJTNKaB/R6InEkWWZIRHaJwwm+0K4DYWcMR05k6SxZ4Lu5ghm3wjjboWB4SCipGLzKoRbo0w5ez7WQBbjDaOUrV5KwCtRsawKUQ8zHErwwdu7Od42iKSZGAi0tgygqBoZHUZCKgtKPEwNuDkxHObiOWUI8TglpVV0dvWzfEkJhYVOxoZ0UgmVEiRqLpjPzl3H6FViZP5/rzDn5GTTsPtrPt/2Z370q7v5w5O/JT9H4M1Xh5hWUYRFUrjz9gsokat4f1sDjmwT4hHeeW83ykSaq+6sx+cK4PFX8+zLT1FcKHDp2tPZ+OYBdu0cxuIyqC6axsavm3A4bGRiKvv276NVVci1m7R1DHP9zbP56oNRkmmJkqkqetLC/gONpNBIjGpYnSZZBYXMmZNH0979PPg/r6C2jLJi2Xzm1U1nwQo/i8+/hPHWNA/99o+8/spLPP+3B7F0BDn73Fk89dJOLj+nio5Qmv7GLnr7mhlsb+XsGWXYJJMjkSg9jTrnXbiM5tYu0pERliysoaVrjPwpcNN31rG74RgTwRQ7G7YjyRlUdYiBXpGnntzMjKku1p65hNvveYjjLV00bh4hGVS47vZL8OcEaD5yDMWiMzGYwZI2qF9TxSvvvMoLz9zPWTX1/PCu1XR3GHy0fwepeBhDMjn0zUm+f8s1TEaSlIoyS6bPhHSED7YepnVfK5eccRr1tTUcHexlqDuBhMRl505BS+dw2+2XsnHPRiyFIpm4g0N7OjFDJlvbH+bg8SMcOdhPIN/FE89dyaaNJ1CjAkk9Sn9Hmqw8D0pcIJOJMzkaJm+aH0my873Lf/zvTXTHFRW7DBgqFlPHYojoog3VhKSi/v2KEV3DKgtIkgXdUHA4bKgaOGx2JKsFwQI2m4BsMdFFsBig2q3s399MJn6SWCKMrsgoyTgWLcaTr53k6OgELSdGSQ2OEFcUdJuMkDEoEX0Qt5PpSCCOh1kk6ViXe6nMsjA1kyZfNPEORVg2p4gzluew7M6LWPPINczTVHZ8sh9JNRgaDaIZUb4ZCmMZ1VC1JGZ4HLHSzVQzRZHHjinZ+eDrTt5/p5mehq/BtBFKpCh0miz7xUUsvf9ashdW0P/BDtTuJHpviln3X4V/Wi5z7jgX5+nzkL1WSmfNpG9TH5pFJ3r4ENdcuoD1ly4nUBKgpMjJuWeWEE2nSZJCtBgYmKAYlIsmM3Qray5fypIHrmDZTRdxweIKZvp8ZJeUkl+Ziz+cpuP4OLGhNLYFVUQHu4l2dhBwO4nH40RCkzz17E5e/LCVrrZezj6rBq9gwZTAbZdZMrecVStzmV/nR7aK+GdWUL5qATdefxaaYKP2iguIjXWxtM6N0yURHYXxYApREoibKqYPyovdrDtn/v+pGaup8FFrO73dSfYODnHh+nP5dEsnrlyJ4WiM826YxVd/+ZhvjzTi8bkQVJ3IeIqVy+tYUV1F65BCWfYatn21hfb+k8xfuoJXX/mUkDFGSoczVq0jPDyBRIZUPEUsoyBZbFTJPvYe/CvPP3sdT/xqCw8+tZzCwgThUJLQWJJkWGYyKGLqMpg2du3cT8vJY1x1y+30pvbwgwceoi+YwBRNNh08SmVhNTfdcie7dz9Cz3A311csxJ/nI6I5ufHspbQfGENX0/zPHz/CPs1NTVYuk1KUVZefR9sBg3hUJ5rM4LTYocBOy3APfocVTYcT3YdJhu2oKZW0LiEY4+zee5KR3kHcWTYGB03mznfx33c/xM5vG0jEVbyihSPHjrJp+1ZSaRMUHUmQuOLqq0FQ+Pitj5hVX4zh9XHaovt58ZW3GB+ZQDesaJpOlizx3HNvMBYZ5rqHfkSHM4VrVi7T8BBPJjhnVQFf79mPZkoQM8hEMxxv66alpY8IPbz1wiZiIxnWnjcHJQTzl03h9U8/4GBDK7IoUbsqm5/d/yaaniavxIkeyyEdgsnhGIaYoGJGNprmIDYO0VjkX8XOv+6Ufv+b3z5giAK6YVDqd5EvC2g2GY9pku2VES0WZNFElEASBWw2K1gMZEHAFDUkUSAZyeALiIyMmZimjGFRQBORJJGJoTinfe9FTh7ewQfvNtPeH2FqtRtNdODrteCwpNkTShA2TSwemfbpTj2gAAANqklEQVRwDGESsiplrIKN3aEUwrCAGFI44TYQdJVezYqjO4IZ1JF0k3Syl28OR8kuchBLmoz0K6xYmktvd4TO5iEcA2GyK2bjtCfRcFC7vJ7F8/LpbBrDsEh0dcVoauzDb7ExZ2YRrvJy4sebiZ3sYPjAOHPvvppAuY/Ghz7EWirjr5tOy4vbcNRWcmj3CerOK0OVZOKxCZRUhLzSYmpXzqakNJ+GzkFam4OsyguwoDKAq7SUxWfUwbEhKuuKsBQ6adp0kM1ft1NZ6aN0SiHBUC9OVaNoyQLS8SEC+XlEhwc5eqiPPQdHmbm2AFn0Ek+kaOvqo3ZxKccPjlHtAm+5jZocO/F0inyvncP7JhkeN5gRjJEKjzG6rw+jOMD+5naCoQiuiRT4q0iL2ew9dgJZBFlS8ed5OXSgj7GBEAynGEj/4+oSm9/L1xs+Y4laQLd9gulzalm4uoKVVLK76xjXXnAeb3xwEotdo2M4yfl1FbTEw8TGIlx482I+/Gwz7cd6YViju+ckL7yxlcKCaqYtnkvlFCsvPfMp1okE4wiITgtnrJ2Grmns2/wVHTu7KasKsWFrL9v2tBIK64RGTBbNNOgbMnF6rcRjCggeBEeC5o4hzl55FlZvGodYSGm+TlS1kowM8dLjX+JzH+OJv/0Nye6mvaWFL5vHeemxx7D6NB55bi9PPfM/RAc2c6Crhadf2IIh72TLW70smjWfOYsd7Dx0hJG9fVjdGgum15Bb7MaeJbN2zSI2fniIhKhSWuEipVkZHTEI6CJGnkznAYXzr5jN1g37SMcNEhGF91+5ly4pzPGdg8zIczMYTWGkrRiWMFOrqvng9QPIQTsnYx3UzPOSm5/H+BGFkegITqvJ8HgaAZ2UmUIc7qO9+wArl1RyYGCMxasdLCxcy6WXrmbbln3cftM8AhMp6ufkcdVtN9A4vou+QwMsOX02z/7mC6qmTOOeh9fw0O/eQYsKlFd5mLc0wKHtEdxZKrGIQiqZwmV3Yegm5TOyiGZiJIMmgUKNeMjK7Tf/m79vm77+6wO5pk7F3GKE7hTFNV6SmQQu3cTrlEDQkEQDi8Xy907IULFJIhZJwNANzJSKZBEwBZGxMRPBAqIoYwomIJBKBDny9Vt0dU0SyJPIK/RALMVLOycJSRZaB+OkFRWbZEE2LCQ1GDUNPGE4rBmYpkRMNIm7nFgECy6PleJSN/uiJv3pNEeHJ+nsSKLbFGpz3XitIgXleXizrOQU2GntjnIyqTBypJNo3wS1l52OMjhKRkiTq8RYcuEspk6z4k7C8h9ciuTQGGnuItPWz2h7mpwz61HGjmGtmsbggZNkV9npbM7w7WiQ3FydqKJSWpyNzeXFK3kZPhzDlm9BSOtYvF5sXgepxl7O/tllSF43vZ8eIH24B9MmEOkdZHIwRlVRgKmzZRLjMXbuamNw0mTF5ZehWFPkVVRjpGHj5ibGFA1ZtjM4EqRhfxt9g0HW3bQKqXOAGUtKSW8ZYOlVF5BXW0doWxeCI4TfKzKZVrEVWMmbVUrR8oW43E6IRTh97VLa9rRhtacxJwfJD1gYCdlZPCuXvqE0pmJQWmAhZpiMJ/4xp1RWZiMetbLqTJ3J2DCzFs/hngv+gmdtMZd/fzV6KMVd372e19/6jHzZiSJKKKZGzExRN1Pim89Hae7q52d3Xcnbbx9H0BxUV7poaRtkztV1+BNZXPf9qwlpQZadOZPWk53oqspI5DCO0jYuueR9xtJJpKQfh9PD3GXnsuAyD4c+G0G2maQUA19pmsrsPGpmzeC1V9/ljNMq2dbRxP6dW8iplJgYjXD+krU8+87TmCk/q2dXMH3JIq6+7ns4TRCSCg/f/xAP/uZB7N4wX+zajTNlsm3zNqLWQupXL+Zo9xi/fOR2vtyxl3RY4hd33MRb739KbiCLRx7ezl9fuIdvNu4l26bT1Gmy6a9/4YnnPyeSSJJrk0jbhrFKJp29Ku64nZff+4a77qpjz9fNdI0OIeoyBdVefvmzmwkp/Wz6pBHNH8ajpjnr/NUMhfpZ951qulp7GR2NkU66sbu9XLp0Jnsmj1GbX4KzLIvjLR2M9md47bVv2Pnel7x8yaXM95cydUEdHx/sZP0t9cTbrMTo4Yv32zA0jUf/dCVmbpLtnzSSU5RFzhSVPOssjnW0MNajo0RN/D4HmXQGj9PJaG+ETNLAyGTQUInF0tx9x33/NJSkfzYA4BBT2Cu9CKkUjloP0bEUVtUgLVhIKhkkiw1RAItokkqbuEQriqJhCiKyzYJgWsBQcAoSFtNENUUE08TEioFGoduDmO1Ejabw5GVh002yfDZcokZWRsMJTGDB0A10QeO68yqQi/JITMQ58WkHVotGLG2SIxmMqBLrLpjO4UNDSMkEoiRiEWRUSxRUgVFT5ZLzVpAIK2T0EMJImjvuu4BoaJhvnz7KuCqw4/fvoGQMbNle7JEU6uQxto6nqceKmckQ29HJtEvW0rj/LapnVjM82Iqrrgiv24tsB3PIzomho0zPzePQ9l6y8rJ46/NuqrLTzPZm40xF8FUsRzMcHN3VwIlDkyQ1jY2/+5C2SIQpBU6U4TST+bDSF6Di5iWc+OYEI70ZUi1xphRmIQfsbH7xTVx2k0VrF6PFDQBkU2DxGcXMqa1hvLOV5j4FM5jEiYCnoJiq3y1mrCfB8W2fMfXsxdiLRCSHB+fWnWw+Nk7z4EmWzBjHbkooZBgdmCQR02jtibBy5ixO9o2iaL3sOp7m7CXFHDo0gjshUlBsp2Us9r81MzSZwkDhpz+6j9889yj5XpmK0xwsm1NDTc5UvunawE2/+C8evv0mfvXLZzgymcRTmyKVBrc/QGmhl/HROGaVD+tkAj1Xhfh0wpF+isjj/OvO4oGnnqeypoS0mqQsp5CGgZMIkoK3wEdVXT4jg0EypoJdVdm29SsiHglLRkPDRl6VlWxbAVVTrNj8kyxZWozbJrN/+2dcfclK4rEwWXlejjXs4J7r7iS7uIp9X36O7lJ475Ffkz+liq+/eYvrb/gON/7gu5zs7uHJj96hdGoO1eZyjvceIaL2YYijXHvZTxB6RM5Zv4Lrb/81BWVOclx5nDFHpmLpGfz2gQFefOINbrtqPtf88gdI1jTjQxZUh8KmDWO88cEtNK5/nwvXl7Pooko2b4zQr2VIhUCUkpijGV7+29esumAR1912Oi0NPViyktjdxfgCTaRFCU3SMVQLu755h4oyG/PPv5Bbrr0If57CfY9swuUSiE2qxPtNrlxfxsu7N3NRXR07IiojfSq9kRTWKTLVqQBfvh9FMlzI7gy33voW2W4Hnlwb2Tl+XnrzaxymE8FU8fg0CmudnNiXZNq0Epr6WkkFrei6QGjYwO2y/JPE+TvBNM1/OrhifrVZnGfHbiQYbJ8knFSRrXYEVaU6S8PrEvE4LXhyRGQEnE4LdruM3SEimhKGqeDyCJAyaDyhk1QMTFFAx8RiylTkybgK7ejxDIZowe+2Ijls3PCHFi68oIb0wV4i4wr+abk09SaJiRoBq8Sl1yxAFzU++6CFomCSqfOLiZb5GeiLUTd/OpGJUb78aC/eQD5iOs7qVWWMDqWwCRbq51WRyCQwMjYcssRE1wi5s8pRj/Vgn1dCz9v7GPRaGQrHSAl2dN1gURTcp1dTUpaFYA9w9K8fEbdKzF5bjpZVxom3tjGjKsC8q64g5dWYFHXUhAV1fyPOxTPJ8ljZcudr+E7zYs8ro8Bp4q9czqFnPyfvnEo6Dx7AOQ5tcYXlq0pwFwdIfNuF68qzSLVPgqRgSQi4qj0c/+u3ZNX46Dg0RPlUP5OHY0xKGj02Ec2qUpGdzdJFftK6BZ9L5tUPWrhsTR3jR1S85RE6RqLMXVaP7BPp3tVC30Sc/mCGtGZh+jQ7zS0JspCZVp3FQG+YEdHCgule9h8N4hWgboqbtGCiJDXMgQhZFV6+OBH835rx5zsQJBNd11lW4MZzQRXL5s/mk3e2YlrsGF3w+L3n8cM/bOS2K9Zx1c1rWbnuQkyfxr13XsD9v/qI0RMGgak+Hrrv+7zwx0843DXIwqpsihZ6GdySYub6OvYfP0BswEplwMWnm9r50+PLmVJWxHXf/RRRtGJzaWQV2Zkc1qmbkUayFbJ9Wx9n1ebQqamcv9bDutPWsOXQLhobYmQHinn+mUdo2NTAg88/T26hh+G+CdZdtYhyn4Xayipu+8mniKkUswrncWjnl7gqpxB2xLn3vnWMx8OUBnykVDt33/xXimZ4sSDzu0d+yq4du1hZcyabjn3FPd9/hu/ddC32XAeX37gG2RxkcrKLJ57aSrGwmN5wB9MXaJy9ajFOQUNw+rnxpvcwR63k1cjIORL2sJVgahxNhwtWXMrKS6sZbGvjlce/Im+miGnKLFy9iLPn1XDbrU9zziV1bNk2jFs0eeiJOxgfOszG7ftoaxmnrclgYaWDGfm59PemSNnsvPr0NyxaX8MrL/6WZz98kx/+6FKOHX2d1x8eZ83aWtbeMp/HbtqIkG8wo76Ktq2jNLW2k05YScXTSEiYyGz46s9U1LhZufZ6igK5jAwMImlZjIcyxKMp4d8KpVNOOeWU/9f+9cm4U0455ZT/x06F0imnnPIf5VQonXLKKf9RToXSKaec8h/lVCidcsop/1FOhdIpp5zyH+X/AzNjgHz0o8BbAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["splits = RandomSplitter()(files)\n","tfm = SiameseTransform(files, label_func, splits)\n","tfm(files[0]).show();"]},{"cell_type":"markdown","metadata":{"id":"ApmXRBcv2K_G"},"source":["In the mid-level API for data collection we have two objects that can help us apply transforms on a set of items, `TfmdLists` and `Datasets`. If you remember what we have just seen, one applies a `Pipeline` of transforms and the other applies several `Pipeline`s of transforms in parallel, to build tuples. Here, our main transform already builds the tuples, so we use `TfmdLists`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KHAPWxz02K_H","outputId":"ec0e7566-f231-417e-f388-111e28b17e3e"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAASUAAADICAYAAACuyvefAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9ebBt+VXf91m/YQ/nnDu++XX365bUrZZakyVrYIhASGAzxsSB4BSJjR1SZZdTFOUEO7ErVaSSSuIYKhMGHFcIRSAgx0KOTWwGM0hCQlJkkITUQlJLPXe/fuO994x7/4aVP3773Htft3gCCtyvXfdb9eree86+5/3OPfv33Wt913etLarKCU5wghPcKTAv9gJOcIITnOA4TkjpBCc4wR2FE1I6wQlOcEfhhJROcIIT3FE4IaUTnOAEdxROSOkEJzjBHYUTUjrBCU5wR+GElE7wAojI7Ni/LCLLYz9/94u9vhP8mw05MU+e4HYQkceA71XVf3mbY5yqxn99qzrBv8k4iZRO8IeGiPw3IvJuEflZEZkC/4GI/LSI/OCxY75+ILT1z3eLyHtF5KqIPCoif/1FWPoJXgI4IaUT/FHx7wD/F7AFvPt2B4qIBX4B+P+Au4BvAH5ARN71J73IE7z0cEJKJ/ij4jdV9Z+palbV5Zc59iuATVX9b1W1V9VHgP8d+At/8ss8wUsN7sVewAlesnjyD3HsvcAlEdk79pgFfuOPdUUn+DcCJ6R0gj8qnl8hmQOjYz+fP/b9k8DnVfXVf+KrOsFLHifp2wn+uPBx4FtEZEdELgDfd+y53wJ6EflPRaQRESsirxORP/3iLPUEdzJOSOkEf1z4SeAzwOPALwI/t35isAt8M/BW4DHgGvAPgM1/3Ys8wZ2PE5/SCU5wgjsKJ5HSCU5wgjsKJ6R0ghOc4I7CCSmd4AQnuKNwQkonOMEJ7iickNIJTnCCOwq3NU/+1//F96tPK+rYo6s95osDtE8c9JGuTyyXC/oUmS2XrKRmZaHyhklMSLdARXCuJjab9FT42mNNhYiSEboUcShRM6IZUbAClTOMqprKWVpf0dQV1jmwhpH1qDV476m8x3tL4yy2bfHe45zBWo9Yj3MO6x3WCsZ6rLVY61AD1pa3bozBiAMjiAgqFkNGxaKqqMkYteVYIJGQrOScy/Navu/mU27uXWdvOceEhDGGRpSD5QE3nn2Oa1efImVh1IzpjLIAej+irj33nDrLXWfuYms8JhuDiZmD2ZTnLl/nuSvP8tQzl7n+3BUODg6oqgpVRWJGbaKiZhl7FMNstWJvGZnGjtCXqqpqAgzrKquqIlLeK1lRKZ+1iBw+t/66Pn6N44+vkXMmxqMBAa957f2kpOAcfd/jRfG2YhmWkAU3aljuT9ne3gajpJARMVBZlosDtkebJI18xZvehK8aJjtnsMZgXUWfFZczSCAnSzuqyQmqqkJEWK1WqFpijCTteeyxJ/jFn/s5upT5j77vr9HYlmXoCUQQC31P3/eICL3z6HKOk5Y+LOj7Fe/9+feSy4f+koQzlqiGb/rWb+Ff/MI/KQ/eIcV2VZXf77nbktK4aXFZYJVJMmYclKWDzTqx6AO+cfR9ZJUjpu9JOAiJUe3Y2tjGG6GPif0cSJpYRWi8w3qLNY4RHieGYAx9v0BCIOVIzsPJniFoxqGA0ohBjWCtxVmLWoNYgzW+EAuAcahYxBx7z2LLRlz/HYyQouKcIxtDVsFgsChIRkXQPGzA7MiqWKeQv/RGNcghQTm1zCUwEQsq+AzEjMHgTHmNnBLJlfPDGAdqQBWLQRSiGf4PySRVSJmcM0LZcMYYshgEIeSe2hrmIdBpIguIAmRKH6w9XO+aUA6JxygCqMoLSOv4z8YYVFMhj+fh+SQVY/n9sOowviKGGdaA9zWV8yCGdnebHKHXHpsatFZiLjs/5IQTy6c/8zBf9daHED9C6cAqohbjhBgCzhs0C8YIfVhRVRVVVeG9J4TEbNFz8f4HaM+fhiv7bFUtfRYQT03F0sxxImAsfbdi0QeMQG1yudA1m9z/mlfx8jzhF3/vX0G+Q3bzHxJv/oq38dTVp7C2IsUI5Bd7SV8Wt03f3GhE3W5gxxt415B2dhlt71JvnGFna4NTk202JyNO1RWNM9iUaL1jY9JwbmfEy8/scPfuBmOX2LCOxfKAxXJKCAFjlGYyZmNrh3O7Zzl9+jzt1hbG1eAFaSrGp7fZ3N6kampAMLreyAZrLTjwWTDGEIgYBJMVtYpKRkQoWxdEhWSURMZmizOGmAMSC+kZIGMGgjDDRhQgY+0R6RgFK6b8X6I4KyAZMUo2Qs6ZVlwhQaNUzlN7S2UAFWLKJFNIxoiiKYIpr9+LkjG4DKLlo9GoRFEUgwqkDCEEnCREDREliUEi+GhxyhAJ2cM1Q3ks53wLiais3+MRjhMXw9/6S+H5x62Rc6bvOxJKih11M0FxxFXPYrEk0rFaBQ6mN/GmxviIicI4w2a7VaKslJkuIgcHEQ0rXFWRlhGbC5EZBM2elBJIxjlHHC4o1lq6bklbT9g2lm//89/OxrjhH/zY/4QfWZq2EG2TKwKWtq6o65qJM2y4Gt96vHPEEDB7M/7u//m/Yfh9L+p3NDQnHvm9z/L5T34aZzzG2hd7SX8g3D5S2tiCGJCVZ2Ucdc5466hDh/Qeuin1Qoldw4rMXhfwTY2rG5p2TNVadmrHvF8xzYmDaHhuPuV0VSEyYqsZsbNzClN5QtfT75zmynNPMB7VnD+7y5ndXSrrWM4XTG/ss1ouMQJZBNVEjoLxFZ0RHCUaysZisZhhEx+mZWQYnkkkQMrGN0IeTmgzkAmU6MEYQVXIOSHiynEAAkoaIowEauhjHiKpTNJIRQ0i9DGQUiLGSI4R0zhcspAD2ghiHTlnkEKoxkDISso95LLpbIYUe9CEEwOmIolCThiEmEOJrhykvI6QelQz69RtnbLdYpbNa8JaR1P5lq/ldTJIBv2DndDOe3wFiiGJIajSVjVtY0jRsexWTEYtdsNhe0VcRdJMUKFpGq5f3Sc5R1PXzBYd7fwaVXUeYy2ddoxsg0gCIl02aDY0xmK0RJL70wMwlhh7EjXbO+eYbG/RPLcgaU82DucTq5QY1cJitkDE4sRgrJC7KdaOsHbEy97+Jt7wlje9FIKLL4kE7O/fRHNkPNolxPmLvaQ/EG4bKbWjmnbc4EYNrt1gvLlLM9lisrXFeGNCO5rQVA1N1dK2LbWzqDPUzmMMbNWeU23DPae32KkMp2vLqU2PsZmmqWk2WiaTEZu1Z9RUbDY1d7/s5bz83ks8+MADvPr+V/KKl72ce++9l+2LZ/BNhWTF5IhJisHRGSWTig60JomskPXwCrfelHbIwEoEZbHWogNplfROh8jBHP4eHKU7VkpEpSkc+x1TIpCsxNyBsYSB3IpeZUu0psOackJJrCST14+ZclUThZxjeQ/i6LOSVIiaUclYKQQTU180LSnkabMZ1qN44zGkw2jpOBkdrnmtKQ0QOuBIFzp+jKqCOp4fEf1+nQCaMxotGhMOocKQYqSPNRih8jX7ix6NG+wv9+noiBrp+x4NHTt1gxeDRfjdT/0e1iTIQlLwTgihIyZhvpjiK0vOmZTK+02aMQY2JltY64mScd7wrd/9XXQWxpTXHo0mJRLOFlc5rGnZMharmd7UHBx09LKimi5xQ1T+/Pf/0oCBHAHP/a95I8b5F3tBfyDclpSaekTlaurxmMnmDhsbm4zaMe1oQt022LqhaWrGbcOo8oydI8aeVe5BMt4YfFuuZC5nGpsYqWCthxzZbFqc1HjvS0pkDHedOcfFC2c5f/oMk80xk80NNre32N0cM9qYII0QotIP6ZlVg9WSZgRJJQ3LcUhXiggNkEkl9dMjklmneGpKXqQiGAMiiiFjRREpRCUihxdMYwYiokQiDKK3qCeh2EFINUlIIZY0I8WygaKSMvhYtJGUS1rlBr3GGIOVoi15WzZClSgEKiWq8bYqaWYuontCqMUOm1nxrqLo+PmQPIxZi955+HqUemV1lIhqregajsRx88II67ZIiDVsNxt467FG6bqO2E/JZKwzbE88aX4FE6FB8DJiVLWE5YosGWMcwQRMVdN1HdPrjwMRSxG0TW3xkwlJI84X0ghZSSngrCWslgQiYxPQPtNN51jx/MgP/1265Yq6raiswRlP62qkjkztEvQp9r74z7n22C+ie1f57BNfYHNrQkrp901j72xkxBje/Lav5vxdZ4l9eLEX9AfCbdO3qmpI1iIrgXbYrAISBPIEUkBjSzNqqbuexvWkEJAIYRWZVzMmzpD6rmgNMZPFYp2j9g3z5YLJxi7WVWzsTFBrGE8829sT2o0tmqYFNYScOHNqE9PNuKkdqxiYzzMqPd5mnLaElKgG3cQYQy4qTKkw6SCSDhtNc8YYweYakxSMwKH2VHQdM2zSPEQYJYUTsirK8JhCMhEsxBiJkklZERxIJptMpoi4ISdSypi1zmMLUazPdR2IjbSmvoymQozZKqLgjGBQVDNGhYQjknEGMor3jipGQgSHkKREGAAlQ7RDxHSU0q3xfAJ6vtj9pbAWwY8j9gnrhWWVWc0T4gXTWpx4UsyoKSldXY04vXOaaVxiIog1qE6oXSJpJKlQtTWPPPxF7n/gAliD5B7JmRhyoU2rxNhRV2MEwVcNmkr6fGpzl8V8Ci5z7vxFJpfuxl+5ytmdc4TUs7Wxy3w+ZZ4rmvkn6PZ/D5PhQtsyu+ut5L5DkuPS3fdw4/qn/xCkfGch58zHP/Zhcl4xrhvm3erwonqn4vZCd2VLRaMd4euG2jc4W2N9DXVDXTdUzYSqbqm8Z+QMDUroVywWC/Zmc/b35kxXC5Yp0cdAHiIlEUG7joO9myyT0seAhghhifcWzBClmEzTtozbMVvjmp3tCRttg3glZ6WPQswJExJxHRXlEi0VHJXu4/CYUYNkQ5ZMBpJmxBapu8jdedCdjqIJZwxmeE7yUYpIMpAyRgSbQVCM5lJxS4kcAin0pBDpYyipVyo6kygoRfROUqIhsyaFYfWi6w9KyAg5QVIBa0g542yJ4twQJTljMDKQyvAat5b6daik3Rr9rLWkW04OY16Qtjw/BXz+Zl1OPFQeFWjbEeN2RFDoQsRYwYunMhbrHeTE1avPgsRhrSsUT7ZFy5stFjx3c0qsxzgjKBbnPI01GIG9m89h1JJSIlvFiiHa8nmnpHQxYDWzDJFv/Y7vRFcrfvxHf4g+rHDOUTU1LR1V/Aynx4ZL58dw5s2cPnOe7dPn8C6UKNoId/Aevi3KeZBovGU1BMJ3MiHBlyMl4zHOUtc1VdPg2xrftvh2jG9q8A1V1VD5MRZLY6A1YPpAXM6Z7U+5fLDPtf0l02UgZE8fi7aDCjHDarFkOV8wmx3QzW5i81Dd0kQfOky/xDuHc5ZmMqEyQtuOaZsxWZWUEiGEkgJhCYO+QFCSFr0h5wy3XP0LGRVdJh+lc4OmpMd+NnDoRTr6ekyr0vI6af28cEgKOWdyVpREjooGJShkFWBILXMqaWDKxFzWmuNR1ewo/Rw0smG9OWeMk4FgFTWFmMQWoV8zXzLaOa6ZHa+gFd3E3kJczyccWTNk1kPR//nH1JKprSVFi0piGSJVb6hsRQqRpe0IIbBaLZn3mYvnLhHTEmcNxlgwcxweJ7BlDTlHLn/xWbobl7FS0sxOE32I7G7fRVMV7cxFIeUAQfCTmhhjSXW9xxtPyoaVg1NtA6lcFFvfUk3fz5ntbTbO3suV9Bba0xc5tXWOqqp42xteR1pOed1DD9JULw095vko53FiFSy7F+/6kheaOw23JSXjLFbModhnraWuS2nRuApbj7BNQ/YeFYsDbOjRrqNfdvRdZt4l9paJvVmg6xWNZSOBwbliaOxjIHQRcX7wsijEDp86NK/Q2OGcw7mKerRJ1XiWfaDHkFWJGaJmUio5c84lpTp+RShVsuJ3SlrK9cWHNOgqa1IpPwwfXCbmfMvGXtsMcs7DHy8DJSXMKDYpkaJJCZBSQmMhz6QZoxCHuxGtN3bOkUIVghiDdUcnjTHmiPgGwrVDHLU+So0cmiDX6au19tACcKuwnQfS0Vve15EQXh6ztlTe1joUh4WEQfw/9ELdeoKPFVLfscpDhTLEgRiE8XiMtY66rhmP25J+9QHtI11KWHFYmbBaLpA+MpsdMGlqHn/0MWZEsil/saCZ2nliTly7fnPQfCBrKSoUq0DPxtYpjM1459gaj1j0AQ1Kc3qbqA5fTdncULIbc3l+L2Z0ltQry9l1RpMx2UjJEqwh9t3hbrnTN/XzkXPmwn2voTmzSdl3d/bA2duS0qHA5yyuqnHNmGq0webp80xOncdPttB6A2Mr1DpCiOSkdKtAl2C2ikxXPX0AMS24mnE7obLQ1g2uHiHWEboVdtzQti1t7Wm8QzSRbQXOY9XgXI2tG6rRiL1VoAsQjpfchygjpSHaSQmX86ERE4ar+hBBkPIgiuchIrJlo+WyAXPO5EFjsYMFYf0astaZKBqUJi2l+JiJKPUg1cWUkCEayhoRLXJ7zoN2dUh4BkQKseVMSnH4v4SYivtdrCl+qSy3kGMiFT0plvUZKyiFnF+oGa11pWOVt4F8y/drkiop0ZHgvY6uhr/j2gWuLzx9+hgJqaetPZotbbOJrwxqOkLo8H0iJ6UPGec8bVvTp0wm08WOlAOaMquQWWEICn60SQwdTrviMZKS/nnvqeqGqjZoKqRujMGE4qbw5igyTnnBX/5r/wliIh/+jV9gqZF09VFGzRlW6SFUKnwzYmtnm/FGw+72DufP3YNTQVzivgcvIc+LPl9KOHt2l5tPP4tgCeHOFrxvS0oxZ1xVMxpNaEYjxhubjEYjvPcY1+CqFutHmKoFqUjiSDFiVLBiwAmTdsTmZML2qW22J2PqtqL2Tbmap0Dfrwgh0a869vs5yzin627iqhFu1GBdQyKx6jr29mdcvjnn2l5HypBXq6LV9IF+GelSRDRBjiQdUgwjiA4ko1r8SvGIYKysW0UiSUtkUKKgjGjCDGS3hijltXM+JCdkSNGsIENquDZtqiopx4FMCrm5wTW1jj5g6GSQEvEYM6RR60jEJFyGhGDNYXB3WEm0moky+IpUkFtc3Ee2hnWE9KWu9GLWvqt1tHTUmlIsDWA48iqV6uWXSN9sjbE1VZ9QgagzNEdW84RVA86QQ4CU2Nu7TogdTTvGq2G6f42Ueqp2TDMesbt7hhgji7Dg859/kmvXryAiVNYRQiAQqapRuXg6i3VK3/dkBGct827KaLyBMQZvNkiu4sZ0yezadarasjxY8PTqZSzdfeycuUTUSFU1YGpm0yVPPnGFt3/Fm2llTFN7BtXhJWml/MTH3s/yuWucPn/3i72UL4vbklIIkdBHMJZ2PGY0GmF9VVK6yoN1rGJi1iWiOlzVINIQrcXXjonzeFcz3hyx2Y7xOGoRsinGxtz3aIjk2NOtZoR+SVO1TCZnqUdbeFtjfEUSwzwHDhZLnttbcO3mjOlyyWKxYLFYMJ/PWXVLuvmKrutKX1hKpKFHjAQmCQxkkklDG8tQEYyppGzH9pemdTq3FoDNoY1gbREAYIhcNBc/EZhDHSrlTE7lyi9rkshKTIpExQxmSx3S0LVGdUgGg69KVSAnbCrrMQpOZTA5AFrStcO0UMyRQn7sIz4inEJWR6J3iWp+3563wYR6XEf6/VKYlA3OtogF42rS0BqyPdlAxWHUYV1LRmnHE3IwTGrH9eee5tTueZqqpW7AjT1d39Plno3xJsvFgspAXVUA2Npj1BNS4uDgoBQmNOK9xWgsxO1qViokk+nJbG+d5ru/7z/jrrt2uHe0gb/nbUy2Xstoq6Wtd5k0LdVozOZ4wqOPfIY3vOGtLKNlI2ReuX03r7l0hp2qYcuPwVbYl5BLQIAkwivuvb9IJHcwbptcHhzsI5rxo5qRllSmto489ugCXDUi5Mx8vmS+XEAq4bPiSjUrlyqI1+K4jXFFTC1xPscaT7KObCxBlKax1I2l2ZpQjzewdfEuAVhXoZ1lf7nkuevXmc72SF2PDz20jrhUiKuyWUkchBVNPYJVhzoHYrFOsHVD3YwwoxJuiCjiBhc2CkmRIWWTIj8RxOI1oRqH0N3iTCTmUqMTKVGY5ojNpRXGINiU6NcRWohUwEpKVc2IkgiknAlSLJ52ICVrDImy8SOKlxKZJXGoZhIZkzPZGlwWoijZg01QAwFQyZDXYnv5WvQoBVFyKl4ggOL6PqrGHRpNB02qEPK6bSUdRnYGGQj61nNGTCL0c8abW/RdR9UYNNbM+gOMjJFkMK5nNJ6w6ubY3LMIFTtnzmKsJ6YVKRZ3fZ+U2jesuhnWO1zVMtu7Qb0xIfcJJLE1HjFbJBpTFQJ3kZAjLiUqD4uojFyNkEm5IxnoOuWjn3yYVz30IJos4hzjdkR3dZ/NdswHf/X9vPlr34HScfbSRQ4+/zkuvuYCN5crzrfXCN2c33r8MsHxknF7iyROn77I57/wCUK8s9O325JSVGXR9zRdT6o7gigYj6ZI3wVmB3uEVce1a1foFwsIQxk+ZXJwLJzBiyH3gXmKLPpEH6ekrmO6mLO5uUU92aIZ1WxNPOdPn2Zza4eqbvGuBeOwrkQW1bhha2uLne0Dwnyf/b0D+rAiLC3OZEzeYqGW3Akj35LMsjTuGo8ai2s9zTgOlSqlqkeIREw0ZYNaDn1Cagq5ClAVEQrgUDjus2JNQlImmyJURwQVBSIdERczqQ8YIk0tdF7IyeAwdCmimhENOLWEIf3CQNZjhs9BY7KD61ONYlKJ0uLQVmFU0ZBKfxklehIFpJgI1kRjbSGo4s6+NeJZk/BxC8F6ukCJEAt5HY8QM1pSxecFTM45qgqmyym186SVgj2AbMg24L3BGsNiOeXmtaucu3CJKiYWYYnzK7zdJKwOqFtP7Duq0ZiceoxxvP99H+Gr3vFGJn679NRIIA2i93w5Y9y2eBxBMxZLbR2dZsZtC7MZuZqA6zh77vXc8/K7aesR0VgMSugDxm8wnd3kT3/tV7Ndj3jgwoP8359/L1/5bV/P/jNP8Vf/w29i88IZUrfi3T/x8/zMr33oqPXoDkeMmdnBPjkFjF1rhncmbktKja8wxhD7xMFyTt2vaOoxXb/g6tNP8vSjj7Jcdsznc9J8ifRztItYFWbTgIjibI8YxywKs1XmWopoNtTWkFLibNOyORpx34XzXDxzjma0ga/HJRW0hhwjdT1mMgmcPXORvOrJ8yWrgxvMZwfYlPBWSBlmyzlRHNHVZZMJONtAFprtLXbOFL3FWiH5CiNFIxFJ5GgQGZIdPTJhpiFdOg5jDDkNPWbripgoQYuI7fpUrAZ9B33EIYUcEWLO5JwIApIDKS8wugFQSGMgwazr7vw1IQ6JnpFhZkLxWalkvFh08D2ZdeOy3qofpVRK5Gscb6FZV/XK/7f+HRnI6IXjTG6HZC0aMt7XjBX2NTB2FcuxYHIC7VgsM5ONlursXQiJPme2JmOmiznBXmFn8xzL0FGPxsR+TlVPUFXa2rBcRZYHN6nbUwTjSKmnqTxd6AjG4iRR4cha0vKRr+m6ANKjaqlMw6te82pUA9Ebtv0YV0duXlPe+sY386FP/jb333Mvn/nNj3J2d4uveftbePbyY7zsoUtMNjewGlGUb/pL38TPfPBD0H35TXanYLWcghGs3YG0h9giU9xpuC0pmVzSgKeuPEPrK3bbMWY8Y3n9GnuXn2XvxnUOuhVXn34a23UQA3XKxNCVoCmUkR/ZOmZ9Zq5wM65KubkZMbXK6dO77LYXOL29wcbGJpN2UoR0YzBiUGux3tM2G0wmS3a3JxxsTTioa4KN1F2k6qC/MWc9qmOWAgbFmwrUYWJmdX6XHFbsxnNYb3Btj5rmUMMRU6psxQ1+rEte16lK0WE0FUd3SVMTanuymuJ2T0pOkS6uqLD0YUHq90kholboVdEcWYRITBmpPUQlZ4EMXi29zbjE4K8qkZOUOmCZOWUcqqlU2ZKlSQrGEE0q1oicSwuOYfBgWXKOg/Naj5FTSeFe0KybFeMg5VsJqOhPR3+XI5J6/kkdiaKMIhyYhFpPDIZeE621HNy4xmhjt1TLvBZ3ts1gG7RqqX3m5sGC8cjTh56UI9IXvehg5KCPqEayiVjV4m0SwYvDaiYbRw6hpJ8oLoN1Hltt0i+nRW7oe+rasWMr2o0G5wyju8csQua+zVPce/EiF7/j29i0Ne//pZ/izPlzWJ2TV4b9xYKqNniJ5L7iJcVKgLMtb/+33sZv/Pq/QO88PgK+LCkl+gD7TzzDXmW52VQ0VY3JiRsHM27s7/HE5x4m3bxBn8oArlVSYlcaLHOfAMU4R/ClOdWGFbZuWMzntI3Dpp7K29LEK6XMvNYp8kCKljJHqZIKL5bGKk1TURkLOdGveqTrYBpZpMhy0WMMVH0ZGmdrT5xPsSiNE9y4zPexE8h1RWVahvFtpFQIxw7iMxQfUFnPUeWlVPMSRi2aEykpSXIRu3MmKcQ+EAOE3KFiIUUCiZxgmSI+QkhaFmmgtxmTlAgDMXPo3FYMmHVVzSGpVAp7W4QNqwa79iipJaf+ljRMde1ZsgMBHVXXjkOkRJ3HfUvlsOMklY+1qtyq9jZ5k2Q6Agtc9tjeERulNkpOiZ2zF5mMxiyXC7AjcprjvWd/0eGNYNUzHlVl4J+FnD1tZVmmyEY0fOTjn+btX/laJpMtFslgrSH1PbauCHGF2AbvHJqgV0PlLK6p2d44w+Xnely0VHVDbR2nd05x9fpNHnz1q7jwwMv45ff8Y+pUcdelSxwcHDDaPU3aOMfTN55k0zmMcWxtj+lTzyl/iledE37v8h9qv73omIwbbl6/DCKUpqU7L427vaa07Jgul6y6A2SWiNpzNUT61YLp/gHTq5dJB3uEri/l5H6FTYr2PSkqXZ+w1lBZGKlnpj0TY+j7Oc432LBClnNWszmr/Ru0bcuy3cCFjly3GLFkLWM/QrditTygm8/pVj2x64dG1x6jEV1FwqpjtVyyDBGbUtF5VKlTjTjDbO8GflyjI0dGaMIm9ahFRh2u3UC8w1gwYg7LzHCr9lQdn7sAACAASURBVJJTOnR6r71KOQb6nAavkZD6nl4NXehZxp6ojiSJkDM95fEomZziILAPl6yUSzNchq7ryIP/CiijVbAYieQI0SUEg0uBZEDEICZBKGQlBhgI/oiEwBhFhBKdwVB9O0rrMloi1GOEJSah2Q5a1PM8Tvq8k9omTA50nSlGW79gOg2cPbfLfB4wxrA/vcl4NKLLgcbWxNzR+jLKLydluZoxmWyg2QOZLirOCaGyjLTiyuU5bX0dNzlHhaH3FU4MrhmVCDZaXF1IpPItrXNoCGy2W4Ss5JCYjMZcuPce7nnZfezuTOimU77nr/xlvFd+5B/+LP/xX/wLPPxbv4GamzCNTCewaafceOI52t0tnp09xw/853+L7/3+/wp1FuILW3fuROzt3eDhg5uDLHDnERJ8GVK6uneFq88+iyfhqwZrHN66MrtntSR4h4xGxOkM7QJYSx+Xg+sYEMGh2JRIJiMo3nsIitcI3Yz53nWuX36Cp2rDarWi7+ZMNnbwzQbGFr1DQ89qOWV69QpXLj/HwZXnmO3dIHYriD1mGQirnmW3YBUDOUWMGnoDlozEBTqNhJswH3ukEvpuRbNxQLu1xWRzg0YN7WiEqetjHpx0aApaR0ulQ8SQ1yJyHGwDeTA/krBUxNix6BPLkOm6FV1QQoyoOKwqWROVRrwRYl9c1jU1K5njgPm849krz7EzOc3j8XH6ZMh5yenTp5ktOpbLiBWIVnAGKiOQzFEryOBaLw3Jx0exDM3FwyypdSq3np8koodTFg4JSA1HOtNQlkQHW8GtaZ4xHX2oEbtHFwN7i8C5cxeYL5ZYY8hpRW3LNAmDI8QlrmkhJGKOuMqx6hMxrHB+hFeLryxIzWK2j7EVn/viF7hwcZeJcWVSgFqyKsFADpHGWowxtJMtKq80zQixFaHrCSkUA+bmBGLmdW9+TUmvheF9Gc6MJ1hxXLl5hbA3QytleuUKq/05VTti78Y+2xcM29ubvOUrX8XHPvI5sinTSl8KKKf0kRn2TsNtSena5z4HziBVRWUUbx1GIZjSga5NxTIHZFKzIKIhUllbThQDlSaSNVS2GAwbJxinqPWIKD4rbv8GsyfgSr9kceVpDp44xWh3g6ptaKsWVSV0PfP9PQ7299i7cY2D69dJN/aoQ08fMl3fkWNgSUCNgi/ayrYv4zxMjvSmQ6bX0GcDaXUTZqdoNnYYz3ZI8SyCxVuH2AorCWctOQ9mOeVo2gCU8Ro5Fe+Hs0Of1aBBGQemI5oyrjXESB9Lr5sRwVeGYBuaZWKnrulj4vTYcWmkXLjkWeyNeO973s0HfudRLt19F7/+xMe578wWyxvPUhk4u92y2NsjZ0M2yqRyWMnURnHiWaTi8E4U75SoHE62POp1K+OCj0yhpYq2TsfERNASpdziyWIddQ0/ZCHLrSf2tavXOXt6h8WiYjQyVKc3WK6mGIXx+DTdao6aikU4oLGA88TYE2OHqxuWKeBGI/quw+qKxjjUZPquHyp7FWIbNjd3uLl3ha3tUxgLQklfcYKvHG3T0voKMWV0zO7WiEv33sUXPvcIewcHXH7qaS7snjps/7GmuNan0yWve+gVxNzxhd/5LJ959DHS/CrWGy5duo+Lr3qAUxfO8czDv8384CbtTPi2P/VaPvLw57gcw6Ex946FNeycuYfGj3j66c/ekc25tyWl6fUn8cYjo000NLimxRtLZYRYW5KzOAviM5UvozyssSxiwvcQJ244qaG3xXlsjIVc2iFaL5Ai5sZVDhZTlk3FfDTCjye4yiBUqE1oCMTVnMViRVoEuq7D9IGqV3pVeu0JNtJ4cJSmVyNCtkXjcZWQDVTGkOcLVjmRZ3Om9WXC+bsObyxQTya4UYOIO3SESwYx6y634kq2lMf6FJFQdC893NTlKt1j0GGsrkjGJ0MQ8K5lUhtW8wNePR7zjrc9xKvf+Tqmj3yKiy8/w2+/7/286w338/a3PMRHP/FZvvNt7+SZves8e+9pPvWpL3J+a8TO6+/j4596jmm/oHFlvnflhUgqN1EQg5XSe6dmmB5J0cGO/Ee3NuSu7Q6qipF6mKx56wiT4+5w1YxKsQwcTwN8XaFmws6uQloSNZZRyiESwhTjBSMJH0oq3JuAMzVNu0lOKywWCUq7sVFmTamWJm1vEDHk1Yp2c8T73/ebvPPrvxpXVdhsULGMJi3tqCZ0PcZZQlyhdc1WVRE0M7+x4NLdd5O++AjWeqwEImWksTGOmBO+jzz0htfz93/sf+bKYo84WzAej9DU089vcuPyATc/91l2zp0h1ZY/9x3fQKDi9W96E//LT/4U+8NF7I6NmVLm2uVnePNXvp2nnnyEOzFaui0p2cXBMB1sRTZbxY/jHd4a/GqKiQdIf0CjPV4S2SVIMELJJg+CaR5SHkGMEHJpro2SMVmpYjnpJEfyTJlxHTNMZTTGHhqTI7m0WqjiMCxiJGVhUtdkjSxyRkVJPuMzVAa80cORI9kI1gRUArGPaL8kToWbIeLGG2xMdsmrFYRMaoBiAUVRGAT1da9XBkiKRUhaQv8cy4frVBDji/lRSqNp1I6aCcm2PLRj+Xe/+XU8272Be9/8IE/+7P9DuzzPJ3/2PTzV/Cpnv/pVvPF7/gZ7n38/X/Wur2EaMlc/8kEuvPZBDh57HKqecw8+yE//r+/l3R99nLqtcClgbKLFsjSlPQYMWRN6TPNxbq0rmUMj5JqQjmOdvpXBcMf740rIv77QyJfYemd272Ixe5ZsW7xTvN9kOZ2zVdcscyrtNgaQiqppsLln1UekFqgqbCeIzyxmS6rGA4auj0W8zoKmJatlxVYzQqJh2u2xu7GLuqoMwsvCdDlj2zU07QRfN7i64p4LF3nooQdAYXbtMs/uH3Dfy+/n+o0p509tkZNgTMKf2uKn/o8fxVSeaT/n1O4mURdsjjYZN3D6woRVdY69g+uMxxvUkxH3X7yL/d2GH/wv/wZ/6wd/iGRLweROhHOOlDKPPfGZYrK9A5d5W1LS2Y0SNXQr+rjCti3GGBY50832SLMpplvR9OWWNiqKmlhOVgspFSNgKHM0yt0nnECOtEbIknCxlG+NGqIoHoNo8R5JBs1xaL8oo05SSlgRNsc7fOr6HvfpCm89LgUsglilsmBF8KKUGbhgjSJD/xkmErJixaKrBWE5Y9l39CHQpkSVtAx2FIpxcmiQZfgQVaVEYlnJQ/OuQimxOiA5cphBVpyFgxx59AuP8aM/8C08/cyTzA722a4tH/uhn2D39Q/wyX/4HvL2Bdrzd/HM+77A/mf+NtkI1WSDdrth0xi+8E/fw2hjm+bV9/PI7z7Dy77iawgf/imWfcd246ls8Tmp6YvAP/DM8ekAa3f3UQR06zHHI6OSqupAYhyr1h07lnVz79EoXUxmMjrDYmh47lYzTk/G7IceMYkcwTtDskLXL6h9hUmDi75bEqoRm2JYZD0cGLe+jZP1I7Js4ZxjJQsOVj2VU3w74oGHXsmTjz0OGM6dOkvKkNwKicIkN4y9Q8jElPmar3sHH/jNX+N9v/mrNO0m73jXn8WLYT69wa+870PMV8IzTzyJ6eesFjeR3DGb7cOpMdce+Rw791xC55FxXdEv91nORuzubDI6dY7v/+t/hf/hR36SO3K3U0yU1gp7l6/zqgf+FL/3uX/1Yi/pBbgtKcn0ACWjzjFbOHpni/M5Jugj9D2aSgeWG8xqwYITxaQS7mcBq0IYmmF9NMMIj6PKVg6JaIofaKV5mBtksHEJYghG6bWiSR0JQ+8Urt/k/rrn07FlY3KaVX2dU3HJqAdvHMlHsgWj6/nYQpQS+ZgMNlPu6ZUHF3foyBmSJnoFZ/SWjV02rCdpLM26g6dJVMgqpek2JipnwEDjWpa+wfizvPOBhnf+7e/h137sH/GOb3wls0ev8NH3f5ati2cxH/8isdrg+vWnWd24ydOXb/IK/wDUSisGq4FrT95g6+5TSAz8ox//Bfa2tvntR65hfYUb+3IPO/XAlD4kEIvSFaFbZUgv17YAiig/VOHW4i4Mhb98lKqV7zKibhj7Mkx1EkVk7XG6tWUhSk3MM7JGnGRItlRDs6XXzLhpiTkMjvlMNpbxuC4zum1mbOFgtmRzskWfezQNt2fKkUhAfE23mlPXE37tAx/iz7z9K7Eu87sf/zSTSUPjHW405vrTT3Jp61V0y8D5B1/GI7/7MPfe/zKcMzx69TqTUcPnn/gC45VlFlZ84oMfwLsx1y8/i2uFCxfO8fnpI0x2ttgaOWot/q6Dm0sa8zj91T2euHyD0b0X6Zb7CJk5K1wtIA60/2PZoH8SSClx4cI9PHfjyou9lC+J26dvy3npiichxhBkPfhMhu77MsYVIFihyYM72NviqFWGSlUJOPIw4qMMa0yHA9061k2zkKzBDl6fCIjkkjmkjuwsB+2Yyyvlw89MubAzwbYtf/VrL/Ljv5R4spmws+g42+9TM0wh0UKMakCGkrsAWEFjKkPiUhzc2EeD3HIyt7RQlNlLQ/8bdhjqBjEFUi43EkhG6TN463B1h20c33pqk1e+66t59w//GN/1nV/L//szv8TTjy/5yrfcQzaZZ2/u88ZveCtXf/EpXvHt38YrFnMe+/DHef03vpObn32SuDfj8Weu8sTHH+bUZJs/981vpb54lg9/7Gn+3j/+IF985oCve8vrGZsOGxq8z+R0gGi5qYHmdROxDmK2QcytzRGq6XD4l5FcPjNdTxaApJEyKteyDq8O5zHJrVWcxllWyaHzBTrawGsqz1YOG1ZkEmBJfWQ0Lq597QLeKNhNFotI0zTE4a4sXb/E1w7ra3zMLHTFqK2ZzwOTdoSvRty48ji7Z+7n7ov3cOXGTcIicvepc1x58lHufeh19LPI2/7sn6GPPbWz3HvvPVx+4lOk+R5XFiv+6c/9DKOmpW0XbO2MyCEQ6xUXJ6cYSU8OMxarGZvn7ua+8y2LVeDCa1/DwfRJctcxlzk3r1zDLg545ouXERNf4JS4c1A+q8VqycH0AGv9cLOKOyeyuz0pmXw0ZXAYrA9y6OMR4wans2ByphelwZZZzIBFyJogl6u0QcimaEhaDhimQoIFohFMzEUQzhDtMJ4jlYpREGV7tcKbiq/9ugc4WE75lU9f5+/83MP8nX/75fzKbz1FOH2a6bVApQucGPJw590cj1KTlNaj2UxJCTMkLbc2Opy9lBJYix1aPqCI5zGVmxOUv0TGDL1mOSlWy2xsITFNmQ/8y/fx7/1338XB5cf5hne9lU//s/dhqXnFg5Eb12fc/dC9vPEvfQdP/M7DfOMP/k1udh2nRw1Xr0755Z/4ea498Sxma4M3vOIVPPDaB3ndv/9tfOGjn+DRR67yyctPs0odb3vtQ4xQGiZ0LhLyC4fclxSrXETyYTn/OONa4GiqpgwO96M5S+tUb7ibLUctLMfv+QngMmz4hsVmR5OFmS3jh8k9thoReoevV7RjWyZsrgIp94zamk5XiPMlxZBAloART0qRXhOmltI72AWsq7BG+dCHPszXvP2tqDM8+fQz1JWQ/Tbbl85y9t5XcveFczz+xNPMuzOMt7ZYt88IDqsWFwJ92seTISyhNvSrFePGorsjanXETji1M2bZLzjYnzE+fRer1Q3AsX16k37/Gmn6DLEPfP4Lz92RrRvPx42bN4CAkYpywUkvaK5+sXD7GwdQqlaaINsyI1o0EzViEWyMpbQsGUsZ8J+GgT8ul3G0KlKEZmVoFjVH04SGuyeXzQISFR28MD1AKgPOO++5vHmR3ihvuneDrzp/ml/4yMd48Pw2//33vIZnrsJqbnjnGy+RguOfx453P9XyXaM9rNSk3CHelqpcSKgIMSsJQwyJoJBCX0rTIYEPVM4XwqFMykwS6GMRzjVFkpS7jmQ1xJzKzRfV4E1kdrDgA7/+y/z9v/nniXsdn/qlD7G9vIyOdvncx7/IXduZv/g/fi9f/MgVnv3EI/z6ez7I5O5LfPFXH+afPPIY1ocSvbQVdFOu7l1he+L46R/8Ya4/c5UHXv8qnnvkGfYXkU898hQP3XeBS2cdsvBY5PDOseX26OuZTaVFxWhGsxkuMGvxukS8ZTaUoAgM0VH5oP5/9t472rLrrvP87H3SzeHdl1/VqxxUSSpVKUtOsmwcMMYYY2ibZJaxyeCZZg093WMDphm6Gxim8dDYGIzBgO3GNk6yJdmyci6pck4vh5vvPfnsPX+c+6pKBkTD6m6L1fz+0NK6r1TrLd19fue3f98kBuEK+oqm0BiIOrV88QPY93uYGZMksFmI2tQK1dQDPXEIiLDMQVPJSpT0sC2DWFsEYXqVS9OPTZI4IJvPEHkGsYqwbYkRGCQlB4cYZcVkTIGTtRGGz8WTT2PqgOvveiPVao2sU+KBP/kvvPZtP4STy9NabTNaLqYvQKE5efYCvcjF0oIoSHA9n0qtkn6/IqHbWKVaKRKuzFDM5lHaJel5TEyO4ylFoTqEH/ToLK4ysW4EETXpNVbZVC7zpOUQRy9z+YmMQJkgZcrrfhkJdF/ao5sEQysMQyIShalTs35bX4WSNWowzSgyQg4YxYNU14GtjxBcUd1LkYpKAaQ5eCDEmmcPaKEx1qyKZCq/cKKIyeYlNjfm6LxwinvvPcTTlwUNPyYMBLsPTPDKGwr8f587zGJnjlIuoGx7fEZMEhAgDIcoThvS2oAghZGmjAhBECeEyiBkMEkoTRJFxK6P5wV4boegH6HimDiOCeOBUVscDTy1k4FGLkKQ4b57v8E7bruOvop44VvPkc0KDrztzXzqgQv81G/+JG/+0e/jzNefRsY+llNj85aNfO1jD7KwvMTmjVvYu2MHW9ZPcP2ePezcfSM6CnE6K9y4a4o3v/p6yvk8pVwZW6XdfNP0RHrlMhKC1PdkcA29SmdIUbY4nfrkQPjLmqZNp28HvRbPvZYblxIkpZV+JkVy1XY3Tq1QVPLiIxQlKQWgUMhTrY1giasvHUcMQkQTsJIcJlnApIQc2C7bSA05YSKkhdf3iZKQOExIhCQ2BSKIMDImOlRYhmR4aBgdavqLF3EXF/mL3/k1VLfNwnKT73/v+2i2+kxNjuNFLqfOzoBQzFx+nr7fJ2ObOMrAIMJwFKajkKZB1jIxEk2UaBIjwMxaFHIO1Q0b8VouZuySyxRSPehEjX4QEco8luWwd98GxD8HEqWCanUEmcmTDHIMXy710ma9UmAMECZz4Ipoy4GCXYgUptdpiocefK7lYN8AKVKVaCwj5bU4Ys38DMTgM0ivTleQoME/TXQKw9tpCoMnM9RKeTZMOCQk3GwZPPT0DK9/tM6rpy7x1o0uH/rXr+e3PvYVvv+e27Dzqxxbga+GG/juzhy2TCeBSGpMpQl1Gu6YaFLTfp0+PKEfESUeQaJQUTJwx01QpknONDFFTDZjE4eSTC6bppFIg4iQREsuzs5g2JI77thNZ66BViETm2ssrzS4ZdwmK2IOzfb5wt+c5nvuUeyZrLDgekhb0wokRdVHV9dzx0++F0lC/9hhdM5G43PyG89QKbgUdcJnnjxFIOCe/TuJogiRRGgtcKO0kSjNYJEnEFeM6dYg/XS5nbK3FYaUaPRgj7TG8L7GEG6wY1LXvMPWaB7fznOxHYkpTCJCVD9kxfeo5oawHEUUxmSyBkLmQcSQgJ3J4Sc+KoopZHP0+i7tJMSQCTo2yOZMIiODAGLVxzQzaByGjAy7rtvM5i3TBD0Xv5RDZA22hiPc97lPMHd+HvGBD/P80ceoTI2y6DahM8fRpxRauRg6otXp0270mR6vknEsCoUCRAlIC1GtQCzwkyFimaHeDhizIamOgBAkbp0oSFB9DyyLglPkYmuBB549QpS8fJfc11a/38RwaiTSAfXymexeGn3TpKgV6aLYUSmbO90hpSOQoSERpAiX1pgDqDyRa2P+VRNEYUiSSCFMOWh2wJoHEKRAkGkgI0EsY0xlEoUxwfAYbqZGw1AcWeqxY3Qdd2+S/PL+bfzm3i1MGjEj7/gTfrPyHP/uF7+fi0cvs3/jGKfnZ7B7PR6wR3hFtIipNLYGlXHQXjC4mql0MlMJbreHH2qEU6Tr9fF8RRgHYJjYhqSQSdGdSjGgmM9CTxAlcRqGiSBjGzz52Av8n2+9A728wOHDh3H6HY4dWuWH3/923nT0S0z85TfYPD3Fa3Y6HDq+zNeenidu+OzavYkt1QKb7rieuWcO88xHfw9DWayuLFLIhQizyPMvHOGvz/psHJngFft2cbzeoOWFjJbyuHEGt98iSdIYqyvpLGvfpUitellzBEgkiGRApmQQrDkAL8TAPRMBIiZRFmlU9hoKKa9hgL/4DRui8II+SppYlo0TRZhZQafTxtAWQiqkkaDjlLYRBD6WNMg5NqFO0KZEDxJoclmBiCJyVhY/CjDNTJq6koRMTk2wZ9s05ZLDctgn60Q06st4aKxek7Gtw7zqjgPs2rqO46eO412eoZt00FJQzlQwkgQVR0yO53FyDpZIiZ9h6JIxLVQmz8r8eaSdpetqStV1rLhLFPt9nEIGcChkLM4srrJh83WszF3GyFdwlMJEEr8MSYnXlhAGURwjdDt9aX2nf6Fr6qV5Sjo1LssqjS/SacZSaRPRgFQaLdMGA6AGi2QF2IMHQyqIhCYvJPFgkoqUwlKCyEih+bRpSZShUALaGUngjHHSyHF5tUF8oU0+D5vHS9yYi3nD/holR1Bvtzn2+ceY3rWO/+st65kcynP/Vx/llgO7mLuwQM5OeVBxrsjy0HrGZmaIM4K8HxA6JkqaCOEQR33idouGncUXHq7Rx+159NyIIDYQWuJYAjujGC6VsGzN9EiFSrnEQw/ez2133obQitNHz1ErG0zvGOKv/uDj7L9+Ew8/2+bzbYfrH3iSv/o/Xss3njzNF752hDAxyfdXued1O5i52CKMDRaaHv4Dj1OYqLHuxoOc+Opnuel7vo/W8w8TRwZvffcP8t5KkYeOXuTfffJxoiRhuFImMiXtRhOclBuWbnI1CIVADvhJV77Ugdd0yvhO9/pXHyAtru6Z0g/WlqDpxJX+PdfKVl58nNeM+iv5Ml7SpWxV8Lsdck6OOEmI44QoSihXiiRxkDpNKkGoIIgUFgInn8XtB1iGgbDMdH8nJWGoyDk2Q7kiN9ywFcMw6PfSFFwRK/LlCp2VWRLhYsU+H/65H2XHXbcR9voknkcmk8M2HFTYwLYU1XIB0zRxbI2OIhwMfOXTi2Msw2ZiaoKFJR9USBj6+Ks9zGqJsN+hOmLj2GVEmJ71Sm2CfH6Sg6+M+fqROb59gny5ldYJAoGKepi2hVI2+mVCYxAvBQV+eIfQQgmUAKHSJbWHwmSwI1KaRKSIi9YabUqSJL3SKXRq3yEFVqwJxQDx0uAoSV8qDAUgCIFubBCYMXmzyJEgJjLLrCYReS0wS1nszhK/8dNvIZq/xF1vfyMnXnie3a85wEf/zR/z8AsLbJousGPreuj0OX58hQN372MlzPK7f/UNrtuyGVWYYGX+IlJ4zCw1aSvNSD5PIgSv37WOUr5C6OTpiQx+7HC52afdt5DaQJkWo7UCSeBRK8QUC4pTZ0+RsWway8ucuXARFPzI97+FDWaXgzVNu7/Cs6db/MdH5zj8obs5dMbj0198jCiCj/7eD/PNzz3FeRfibsLI2DRatcANSJRPPvFpeC3Imti5PEXd5V0f/n/QosWvfuB3+f3H5tFEjFZrmLZJv1Xnu+86QGN5iSMLHXpBjBeG+Im6EqIoB7yjq9/3VZGuEAZijXnP1T1Tmqqb8rOEjNDqWpO4lDUuhCAMrx7mW+84iGWkREvHymOYIVEcIpMM2oYkigfTtYFWBqYFhhHi+yCFBSLC9zxMIck6GbpJgikkjpmKbw2t2DAyyg/+wBvpri7T6zdpLbXxeqlwtjl/grxVpuMGmCMbsLVmdNduWvU6+XyV6lCZolRkJbTCAD8EiwBhmIyMrKPdaZIvljHReG4LX1tksxb1pVXyxQS3GWISM1SpUamYkM9y9NlzoBICAxYuN/mtj/8V6uWzN/4761rCbLEwSa8//z8VfdPXRup8W/3D1zfS5a8Q6d4hgyRAs6ZW1UoTAFKBSAZwv0zZzUqBJG1IUqeoTkoBMEikwhQZTg4P8ewlly2jGZqepBfHVEeqONJmSCX0+33c3iIH1q/ntlft5cRjPksvPMv//fvfovm/fZHf++Br+eK3Zvmj2VXGHuvx6lvLLHdDWo8cxy4U2bxlBxd6dQ5s3EJkjPPoE0+jbYi8mJZhcsctN/NCfZV1SQ/ltRG1Cc7UfVptRWVoiIxVJFd2Buxml4ULz9MfHaNWKNLo95idn6OQy+D2fA4dOc7tr97NAw/cy/T0MF867/KH37OF+56d4aknL/H2d30vn/39z/EHH7mPm/fuZKsniMYzrDTruD2fStbC73bwwh6lWpUbNk3Q73m0+gZ/9uFfIVeZ4nPnVjGzBlqbdIOAt7/iVvxui0TFdK8Y06WyGh1fjeheu9Kl4ttvP31XG1L66kgpAlIOrnQiuYa3tTZJXY34vrYsYQAC08iQLedJfEGiFa7Xx8Ai6afeR5aTElG9IMAQFqEfkCs66CTCsjPYMo3KMk0DQ6cC606nzdTEBjq+j+mYxCpFgS3LpBvGFGtjWEMV5hablEsF0Ip+Z4Wzz8dMbb0O28riuQHVaoGO3yY/NEJ/Zo4g6pPPltI0aCkwbQOpNKYwUVGDpcsrmFae5tkZImFj5bMkS3Xaq5rhyfVgOpi2IKMDGLKwzTJ+0v5veDS/c7UmLxqqjhJdOScvj+nO+OAHP/j3/vCh3/nVD6pBjloqqUgnIaFSekCoSdnM2iDRgiBOIfS+Sp0LxWAsV0nKBYpJl9wBioXRdbz333yA9//IK7m1FNOgwtHZOeJuyPzCIhcWl2g1XByp+aV79vLDr7uOKPK5sgKVvwAAIABJREFU76v38cLJBiPa5w2vvYlefYW3ve1WNmYUTX8JP84jCxYn6wnn21CtFbkwM0cuColth9sP3khjpY7UCaOGYO/Bg2zesRPLTAMu/SCkX19ltDaBbRqsG89TsBV5fQ6vfQknm2U4V+Dc3GWKhSLnzl8mSjS5jM11Y8McGDZZaEV88tkGP7C7yOETszz6TJMfvGcPK/MrDE8NsXvXJh598hytQLPa6LDc6lIpjVAAComg7nn88L//MH7gk89n6OarnFgI+LPHZ+gYGXKxYPfGLfT6PZ47cpibdm4miHyanT7tjoeLIorXeCdX47rTXdCAs3SNGPfaSlnfaxYoVxlZVxuQ/lv//bVw8rr144RhgONYBJ6PNk2ELclKg8S0sExJpBUWCUkUpTQFw8axTWIVEUepn7hhOVeQWtO0QUSUyxVEnJCrFDBlhnWjFYKuh9erk3UMRretp37uGMMT4wjXpd1x0UlCqZglmyunHCa3iY48HNOmUBmmXK2SJH2ypgAnTxIGZIt5VByyvHyaXrNJEnSJu8soX2PIGNNI/bOmpneSEzax7+MpiJaXcJTL2MgIz5y68HJVmgBXJ2bfD9F4QAGl/CuWyP+j64Mf/OCH/r6fveT17Vc2SL2Wxurr9K25ZoOh1Rr4kko41lTyWoClRaq+1gYJmnBw5QOwhMATktHr99OOIgqjZcbGp/jo3xyivnIepXOYuVzK4g083nfPTrZn6mStYZaXe2zYVWXdtgl81+G3f/2TnJQ5Di/3EHYOz42YHqux3FihXCkSeQH9KEpDLu0MO/fuYsPkOoYnxnjkoUewLJOjJ0/w1re+lXyxyPmzF5iamuDIkWNsWL8daUo8r8H2LVupr64ipaDRaDB/eYGZ2YvMLC+l5vhoXn3wJuKVJQ6OKj7z6Flu27eNYemz1O4itMIs58lHGTqtgOGhMp5KMDMGuUIVv9Xk0vIc24dqELfJ2ha5nGR0rMzI2DAZr0lluMSCHOE3P3eSEwtzdKM+w1aOieFR7rpxE/VWj5mFFS6vtGjHCj8cLOmRL3IAWDNm05hII0Yla4jb2oHgGscDjdbGlZ0SrF0Dr736vfj6dvCWG8hnHFSScplqo6P4QR8VxcQqIghjDCGxLIso9EniQWKrIQmTCBUGZOwcQRRiSE2iBFokWIaD5VgQxhiOTSWjeP9P/BALZw4xf2kBYcUMjeZYOdtG91xqYyP0lCZXKGGWHVQkwMhhZUwIXcJYUJveSKk2QWNhFtmvUx7bRqfXxrQUq0tzJN4q/ZUFNDESkyBuEcUGBeHglHJkR0bZvH4/vtvm2OnL9Jsr7LvhZr7x1f/K737xyMuKJf33VSotMimVhul0/ufZaP6Tr29ap7B/PHhbXmk4Wqd8ogSiAWxmMDDZV6RrcDHwHdL6CleFgRFWnoSZ546wMrkVbSRkZs9x/XSJz55T2NmQg1uvI/B8rrO7uIvHCG++nY3btnHh059m097b+YNf/zgfOhxSyWtE4pHTCu33MQxJ0+0QoJlfamCaJjLRZIdyKK2ZnZkjb2dwo4A3vvmNfOov/5LdO3dhGCbbt29ndnaWkydPsH79FKPjRVqtFls3bkJrzfTGaU4eP0Hk9VhaPE8u62BZFqPVISwdELWX8aM+urgBN7fAicU2iWNjD41wY22U84fPMzFiMrI+jxPFoCU9z6fZWqGU0+Rw8HttMnZAoZpj944tzF46zZHDdV5Y6HOpoTgRpITFTugD0Apc3v/WA7hBF0MrApXu5+xYEch40Eiu9VFKpyU1WF6rNSHstdcwmSIaUqas2YFPwtUdBPrK2VhD4K6trJMhiqBQzBLHIbML8wwPD4PQxHEP07QQSuCHEUIbWLYDhGlCDDG26eD6PXK5IokOEGgckQUdkESaai5Lx/XAtnB7XQyd4Mc9yk6W3twiw9tu4PgDD9EUmk0bp4mzEKx2cSpF8oYES5MkJhOjE/Rbq7jCoVQcoh92sXNZdGsZ3wsIeit06kvIuEvWsnE9H9PSVAojKBVTLE5CYLFSX2Z8eJhq1WHlgkuoGkzVKi9v+5JrSikTIWKi2L1yFr7THksvLTPRKvWJHiAvKakxIWWyCGJT4Ki0QUmZyiwMKYkTNYDJB7ozkYr1URpTphFFQ5mEye1jNHuSr505zM1To5ArkM9lWZhrsVi/wGv3jfGv3v0ecluniDtN9ty5n5/4hY/yraWQe4Ztbt8xzoPzEbOtNkvdPpHQlHWKhkjLwLItfN9neXUZO5PFkdBurPA9b3sb58+c4bvf9CZOnDrF+MgoSwuLDFWqDA0NoVTC0888z/d+9xtZmpsjTGJC16WxuEi93uTWO15B3+9z3a59fPOhbyK05vL8aUaKeerhOaYmN1Cfv0jYCJlwC3z56AxzXsBYN8PODZPUClnGRvO8+xUHWZo5x4mzi1w8cZnhCYUXmbT7MWcuzpK1LF5/1z7uokfg9vnLRxv80eHLWMLmxqkarz+4D1MF6MAnjtUg2lrgD3SGsDYhXeUTXY1v4pqmcg36NkBC0zAF/XeYy6cES0NK/i41RZIo7KxNt90lNhJK+RLFTIFQeWBpwp5LnCjyVg5tJbRdn6FMhigIUFITRyElO4OSAqEdiGMiFZA3DPw4pKE1F8+dwpseJ/YtRqe2cOH4YY4dOUapWGXHliwQMza5CcMMSGJJKA28dof8ZI2skOisgdtv4mSKJL6HVcgSJAoyadhAfeU07dk5Eq9LLm/QX22BpZCZGrLYYXL6VrRQ9LVCOoowa7Jp4ySrvZiZs8fZ/KqbUX/8CFJ+5x/wf7hitAbP7cCACPKdrpdsSlkrtX01hEIo0v/JUkCoSITGQiNMSZLogVwk1cDFRvpnSdI9Ukamuyg92EVIA8ysw971o/zhVx7lHbfu4eFjS9TyipGRAp1LF/iZN7+axw89zZ6nnmWH7XLhW4f48mMnqMQWGSvmZGAyd2KVPaUMN+6sstCoct9Ch0KlRNLzafY65J0MY9Uh8vk8m6YnyTgFtAr5+he+yJ133k7H9dl/4EYsy2J1dZXJyQlc1+PpZ59m777riGKfZrPFjTt3cuL8WXq9HusmR4ndLr1mh5mzx9lUqzExXuORF47TExK/6SIwwTTISpMzrYT1lSJO7LNnxOAnv2srw0PjvO/3v8DnH3qOW3dt4w037OMdP7aOlTOnOHbsMqsLS7BnjE434Pzis4zkbDaMVbltk81Xz+bp+QHrK0MpcsVAFoJKlfY6vVwZa2dLpTYres3ATcLVSO61ByYlVa4ln6Qe3upFMd3fXmqNr/RtZ1gJKw0wLdiYcUIcaRbqKwxVahB79Dot8pUaQeKitUXGkfhxhC2tVG+XlcRK4Xs+0kjj3w3LpB9DxnJwgx67t+/h4K5pGu1lwsYqG6aq9Jp9XG1jac3e215JHK8SxyZWxqYVR0xPTRF7HQLtIIRLdWgrndY8udIIYXcFnUSEHvTaiywszuOvNJBel6gNXq/P8MgYpeEEr9Fnsfc4VrVErxNw7qLHPffchRmH5CKf8vhBVubnSa1i/imP5Heu/jYA8p2pl2xKpqFADiyCRAqpSQWhA1kF8YCnIoyrkc4oMNcirqXGFIN76+Cap7Umm0B1vMJyfRlvboGTlo2TiTkwnMXpdvhs6HP/k0/z468/yM2v2cwTn72XF2Y73Huux6VexP68yRt2l5is5ai3A070He5bXEQJA6/bx3FsdmzcglHKsW58AsexGRqq4FgWp46f5tZbbuDgzXt56plDrNu2h7OnTmMj2bNvHzOXLpPFYOv4BI8/9C22bNnCL//6r3LX7XdQzOVxLJsnHn6UylCJndft5cd+9O385C/+GvWuh20EhJFCGgYZIkKrRMb0ObvaxjIdLi9qjn/sUV67b4q3HNhI0dRsyeepJwt0+jGzqy3yZUG1nOX0bJttE3m0JXniXIsXFkIm1me5dfMIT52r88XTl/jGxbO8++5XgZAoHRPKwWSqUzeGtVu7JuWkrNn5aqVSVYlek6Cky+u1xvRi7+21aWvNxyXlPq1RCr6ddudYBoI00snJ2HhAzkh9tDKJzfTGrbheiJAhrqvQ0cBWBY2UFkkUE0QRhXwBNWi0jm2SmD6BH5HJVxgfmWD/616JWJ5BdULcyKXVbZGzy5x48GG2334DtpcF06G1vMzY5n2szFykNFKiYBtYRg2vuYLWkmZzgaxVIghbrNbP06kvpIhvHGAECbiSfCHPxOZNXDpxkqwX4YzF5IpFpvbfQjZzDjIZ2gsXKI9USPJ5fuN9n6BcKtDp9v9Z7JWurZfD7/sPhFGmbG1DgyUFSgkSQ1NQqb2tfY3GRyHRceqRLFRKzJMYeCRpUzPkIC4ahDRpnJ/DnekSjU4wMjnMTWKZi+d6/Hlb8K/e8ibu/ebDnDt+lGjrENbwBEceXOK33nIDKpfjP37uWR46m3Dh+Qt0tI1lCMx8Fh0nZA2TXDbP4vwc33vgjTx+6AWUjvHcgCRJuG7PTj7zN5/h+UfvZ6xW5PQTD3PjK+6ia0r+95//RUwU73zXu7l48TwLyy0sc55f+KWfZVNthI/+4R9TqBUYmpzkX//cT7B97/W84wffy603X0/p+VOMTI4TRRFhpBgtm1yebYOSFIpZyqJAt7+KVJInTy5xyVfsGy+wu+Sybl2BY2cWkEFArVyl57nUcop1RZtSqcSYpZlZ8agkNl85tkov8tAaFBbPHDvNLTvXEwiLDAZdUrBBCpFqsAbXa/TASVOaSEMTx2tEyAF79ZpwAWmspewmg89M0t2UMfBb0oOryYsDLoHUWlgYEIErNVmnQOS7hEaPQiFPkii6fh3LMlJULQQnm8dMYhpenzAOsW2bfr+HEJKsYRG5ffpeQCFfTQ3nTEnYj8lkSkSrkqAdMVIt0+8rqmNjWJZF0G4jnDzZ4XX4zWUMu5iePS1JYlC2QZ40yKDXmEd5KzSXWnTrM2QiQdP1CZsewoZWP6baaqFih1Yc4l9oErQb9OsNxPg2FJApj5G4Tc4+9Tg3v/JGPvvQoZfFA/6PqZfL7/vSk5IgZX2KND9MCQExqYRkwH0BkIkgGShvtU45SmJgG6KFIFRXM+cFIOI0nNEsSn5kz27WrbN45M+e5IXiOiZrkubsIm++bopiNuLY4ef4/ImQ/OgwP/kXz5AvSpSyKVldkgQyeYtECHrtDplMjkD12TQ9QqU0yXy9yfTkOuqdGTaOjLPz4O1ot82T9z0IG5r03HF6/YBIC1ZW5xm2Evbdcief/tQniVXClk0bueuuu1hZqfPxT3yU173hjZw8fpT3v/OtPP7QY3zio3/KLTfuJAkjJiZrhBouXDhHww+JVYQjQEmDbeOTnJ2fww1jrtu6kYsXz7K7WmFcJ3SaDR5dXKSIZnLDMKrTZCoj2TRWwTc1rahPpx+zFGTZMVTkPde79NQGquUhcllBPQr51jOH2LJpC5l8gRIeiYR+PEDEpLgSmZQAQickCYNrnB58XwNLGlILXJUkSCFSWsdAmIvQaJW8iHQnhDGQp1wtw0iwzCxGLkFrh1hJzGyGKI4JwpRZvmP9dkY3bOXI899CZzL4rkd1ZJRcO0L5EtvQWEaORCe06w2GK2VCU+JkLUSiaC0vEjd97EKfUArMXJ6pdVmadZfN27dgVCtkbYdmU2PkNLqnyNWyxN4qvaRH5LfRvkLgEgtN5IPn+QjPQ2lFp9PF7fsIpcjKDDIUtOZ7/NuvnAU0P72nSnmoQNhcpFQaw23MkEgTb2GGsO1RKg79d3o8/9esl3QJwJCpxaxI90MihhhBlAiSOOUhKQU+KftXa4GK06tAEqd7pzXZiRaplkppQWQKIsskWmpx4Zv3cu9f3cfwW97CXC+hNjzC2EiGO27ay9ypWe49tsjXXrjIt85dppbPM2VmCXsepjQIpINSmsjzsS2LgmWyZ+d1XJhf4fzFRR765oNUkmXedHAf5y9c5sRT93NgDH7h1VP8h/e9gcX5GbrtLvc//DgjE5McOjVLoVBgfGiIoUqVTrvFRz7xx2xcV6aSrXHTnQd557veyte+/De86lWv4vr9N/Ds88d49ugZ5pabNBsrDI9VuHXfLvas20rRzDJRqHKxvjoIIdCcOH8Ba2ySwtQEZ1fbPL/iMp7JopRifmaWUs6mLgp85PAqv3z/LO//8gzrJ2s0/IAHTzb4wqEe+aJm0feItaRcyvOK2/dTqOTJlYqUqkVqxSKlQgHDHNiXKFIrX9ZQszXG9ovTStKwgMF0pMQ1vkxy0LjWvJmu7qT0tx0hx7KJVYKfhCA0thHiWDZCmwR+GuXejEM+//FPouJU8GwZBmHfS1NhkgTTyqKjiPbKCsWRYdxBikmv2yZUCZ3Ip6sD3H4dmXgY2WwaTmrbkC2C0sShItAenaVVzl84ixd6GNLCNC0yUpKvGiSdDqrRQPQaGJHL6twMS5eWmLtcx/djylJiGgqnkOPwSi+dHnVCVLdZnu0glIXozeC1+hQqNXxpU9u8nnte9+qXler+n1v9A5QAjdSpCXoMaa6VTImUWgiigVlbKoca+EJfIVqmpRREOuUIry3SLCT9vE0uVDSkwWoYEc9rMlaG0WKGxcVlgorHwV01/NpWvn70MWpmxLoszHkBmbJDXUkCIyHp9ynn8wghyWctjp0+hwpjtu/ayYFNI7x573omRgO2bfkuasri0RfmcIcmedevfArPNIlVn6FcliPHDlMbKnHu9AlyliAQJqPVIllf8fE//wI/8Z7v58sf/xS33X6QH/iRH+fcC8/y4JNPUDAl84sLDA8Pk3GylApZikOjLCwcwSoVCOOYIib12GN0uMzSSof2Sp3VYg1VKzPpRiz0WhS1ItBweKaJLmUJPEUZxQ3TFX7qCxf4o+/axnOLS+zaUuWhsys0Wx7fd+tWtFlOSakIypaNbVko3SMbhvhhhOd5CC2RwkxdAAbxSanbZGppyyBlJl2Sp41GaTFYYq+Je9d2TpBe5dbG/ReP/KblYIqEtraRCThOBp1ohJXBMUUK9fdd9n33rej5gE6wiGNlkSQYwkYIFxkrXK/F8MQIvhdi2yZWLkvga5Q0GMpWmJlbJDthYsQuqFQYrRwf20gwTBvl2IhOk9W5S0ztuR3LVMT+LO2VNo7jkPTaxCQkiSBstekGAdqF1mKPnlYU8g7TtRJLfZfR9TUOmFv43OPnSRyT51pN3jpaJA40bSFYv24EqQyMofWI+iIXzxxDKSuVOagX2wW/3EtK+R1HDF+yKSmlCUX6LlQqRdlI0itdMnCk1CJVe6f7opTjomXK4h6YSiJlauGzZi8fKIOg1SeW0FNw4NWv4C+ePMSk6PPq9dPY0TTzR58DW/Lpe79FUhT0kyxnwxjbLuIPknANpdmxdRtnL11gdHiI67Zv4JuPPEvR1BzYPs6bbtrKg+d6LF6IyHqSI8ce4fqNRT714Anefvd+/uz+55GGBGFxfq6FpUJk0OPBZ0+wYWKKW246yNzcHJV8lfseeASnYPKZL36R2267jbnlFiqI8YOIUqHI9PgEQyPD+L7PqbMnqFQqDFk2K40GYTZhKGMhLJOR0Qqe53F5foHYiOhaDjtMh4mqzaRpILM+6zevJ0kiet2I67cV2Pc7R/iNQ/PM9gN2DBeZLOXYVR7iwXMr7N1iUSjkcDIZZDZHJlGYlkWsEoIkIYwj1EDHBqBVGomUHr5BqmsiBvsjEy1CtEolJnogTREyueKBpQax5kIYJMnffuC0UOTLIzixIJe1EGZAL0rQPZcgSNCtmEItT80r8sYffyf/7x/+BwzDoNPrESqfsNcnzBnkSmXiRGPbdhrwkAgwJNlAEYg+n/uLT/Hz73gtSVhHK5ucaTA+vh1tWQgSpG1i5avkhYFjSFB9kuYsKgigp/HcEJH0iTshyotQnZCs7SAKiqjRJ5cfYvQ1N2Gdv0j7+Qt889BhpCUxkxhLJ5T37KI6nMOWCTT7dESTbH6ESqHCfNfj3/3UO/m1j3ziZQCw/+PqO92Q4B+clFLXyUCvWcZqYgWmhFincDRKo+Q1b850t4qQDKxBUukJUmMPWOAmEUrDoifRMuHL9z3Jh37mbRSshLGRcRaOPE9SLPB8kGCUBCKSVAua+VjgBjGOEoRC4OQc4iSkVCpjJi5Hz1zge97wOgp5k5VGhz/5xlmkI+itLtBaaFCt5jk369LoBvzpw6e5Zds6ljsui/U2UggmhjIE0kEngr6MeOzBR1hpe9xy3TirTZe7776bWm2EO+6+m9NHj7Pj+hsZquTJZmyOnDhNNlfkwrmL3FAeIXS7PPjYU3QCF8/3sSyLUrFIvljE77tEQQ+yNpfrDaKhCm4Xjqplbtk0Dg2fjz55Hl8W+fHY4jPfu4HffarN5oLJqcU2E8WYsS0OeyoVWq5PuTaMaWVxTIesVhjCxIsiOm5A33OJYy9V+8s0oPJv+SmZBgiFVvFg4a2v8JjWCHWw9u9rP1eseXhfW74yKQqb8cka+VwRwwpZWKzTVyaRERL4PobpcLG+yK/+zM/zrp9+J1956BkytmRlYZVSsYzIOJikceJhGBLGEYaQFAp5WtplJBaUR6vMzS5QK7jkaxmE4RAn4LXbyKECmUyGnFRkSmMUc3may6dIlMBONGZxkokRaM7M0W5cxMhYaEMibMgXHLKxZnykSqY0zuTGEnYY8krbYLqdML0lB0PDGKUaxR3biXtLXFpZZLhYhkhT3rgBb76NSR05cOf8l/rH1UubvGmReuuoBEHqdW0KiURgiARjoPwX10zxQqbLUgOB1KmN7priPGsYuKbGSCTFJMYaMliMCtyzczdbN9d49v5HWHr2BCNZTWV6gsNfP0YSGqkpXKZA0PTYOyQ4vOqBaVHM5Dh9eY6ibRFnE+7ct5uy6DJzfpUP/Nx7yPjzXJhd5mtfu8ALKyus9lv8xNteQWthmROdDoeXFtk7vZ3lZp/RWpH+sstFcZ5iziIjNN1uFxs4fuIsd918PWHjIu/4wTsYG03YNjxFLyqSOFmWzh1F1S+zOuuyf8cNLPUCDp1o8rq7X8XZSzMcPXWcMIxYXWng+z627SDjBEtKXAOybsBl1yQXmzznLpIxTF63fQIij8Vmk99+0uXf31zgd86WsYMWmUKJxy65bN+0jrERGydTIDYd7IyDwCSJFIV8nnw2h2n0EMJPUbPBSyP1UEoGjWcwAUUG0koGshMrDUkYiGJJDISZXEFn0glq0KC+jV2ZdSxsGVCrjDExMYFVKOCYJzk/P4OjOyil6NVdhooON/7oD3D+WItYh3j1BuXhaYSK8Nw+mUyWIOiRyWRSWYqCnu8yks/S7vuMj0zz+DNn+aG37sdOFEESY+Z8AlpUkwqx4ZAZtpmUuyiUJP3ZDk5xmMwEhO0LeLMB9aaP78O6IsR2FjNvUZRw++672HxwDxeeeZDaxAambrmT6vY615drnD30JP1mnZa3gKkDcqPjTI1swMwX6DfaFK2QU61zxH6Y+tP/S/2j6yUFuU/+wYc+KBKFGsQfGWbacKRMRZNSamwEwkwRHmQ6FZkDZAepU/qdBFtIAqGwNXRNgasEPZmlmkTESxcZ2ziMWlxlqCjITkywbdcW/tOXDuEYNhnbwogTlFZIkUAQ0dMmq2GfJIoJ/YiDI2P80R/+No63ylK9yf3feIa//sLXaVxeYcENKBQzHNxc40vffIZyKYcXGvzSj7yJybECZ46eolyr8nPvuJWLp46we8sG4lgyPjnKqt9n3/Q4e/dso3XuFJdOrnD5zGlWj53GsCKqeZuli+e55zW3cvebXkdj7hzHzpzAdGpcXFyiqzS71k9yw47N+K7PxeU6WiQEQYirEzKmQ1daVMIOm3aMI/2Iy52QcuLTixVmP2HrqMMjMy7v2WTSH7mOqY1DnD43xy037yKXr6GFxnRy6f5GQhSGuEFAs91Jr0VRiFJrC+r0u1kzawMBIkxV4motJCBBGGvC2/SPoAVarwl1r03O1STXUEP27LoeO5thevte7rzrdUyN1mhELfygS7/vIqUmijxy2SKXmrPMr1xmvDZCq98l6ziYZoreSQDDSK+SShAIQTZjEfsRTi5PIn1WOotY3TbbbthHGAfEicBw8pRqw+g4wSiPoYKAbuM8OdOhkHWolWyszDrIl2nPrnBxuUM5nyMQAhUZVDddT7e5iFMyOfrEc6gk4cRzz5MdnsRvrVAYWc/G7RvYvuk6rPEyq0vLtOsLZEbGSFRAuVSjXKvRbhns3r+Vx5488j/iuf1nXy8lyH1pmYkCbYIZQ2KkEdaxTJnbkE5JykgTSJQBOk5jsxMlsETKaRJJ2pjigW5OKU1OJzQVTEcuUSxwDZOPffEUP/eWu8jkPGLt8Nf3P0FJRuyqOgShRjqCuC+5ddMwn3nhIpahsT3Jnbs287PvfTe3H8jy7ne9j1fduZedW7fhm32+9cxR5uqzeBK2jEzz3NHLVEybQrbAxjGDX/vYl5jOKpZ6CVOGwb592/nz+56i3W4huj1a0mB7rYQtBReee4ZEuWwpThNkciysLNF67GmWzp5H+5p5Q8DMWbZv2c7kUJlYDvGlx57jE1/4Il6xRtF2sApZhixNux9SHqnQWW2RdQRDTkxSqLK63GLfxiL74yKmTKgUc5xbjfny8QbVjMHHjvTYsCfkvgde4O1veQ0nz8/yylsOIk2DMB4Y/0fp2zmJ41TjL8SVK5mQCZJrY7sHJElhopRGGlxpTOir8pT0cwMxQPCE1FdkLN9+fxOJiyGKGL5GqoTt103gd/eQcQWPr7SIY4VlhdQbK/grHUZ3rqO73MAxLQJPYmcdlEp3WIY0UCL1QM+VMoR+RM4xiZIYtEOxVKU4vp7s+GZCz6PealGyy3ihoJhz8EMPbSpU5OF6IeV8kfpin1xOceqpR/nCk00mN2yh6ffZNDZBcf+NhJUyxklFf7VJHLfo90bJ2JJUHyVdAAAgAElEQVTxjRupz8xSdSCLgR906ZxfYN2mDSzPz2J5PlGjTc9qIIsmSgcc2Lv3n/TA/q9eL9mUAtKGoowBwmakwZJSr/FUSLlIKbcOKQShcTUmSSiBlpI4TtBiwGsSqSi3bEBdC1yd8LlGjhsyXf7T73+Sdfs3MmpK7nv2NBkN55d7vOPgDkQpZIQs7/vqaUqmga8DCtkKv/Fv307VUfzUz36EPdvX8/nPf4ObbtiOLSJ+6I23IayYlaUuX33uInvXDREISZz4BD2fsXKRmXqb6fEi9Vafj3zsS3ixZLndQiWS4XJAJVdmafYC1XUlIg9eOHWGailHaGfJGR7nWyG7tm2hGWrOn5nhhg1t7KEKwUKX0088RTlbIdYJq90OvV6P/Xv3cG5+mZVOG21I+iSESZaDdsxSN8v9z7W5daqAJS28M21evydHdu8wO8fz/Nj9F1CzF7lx7wGOn5vnFTfdwpETp9i7bx+GqXEDnyQK8LyQvh8QBAFREl9R/Kdf1DV6OJGsGZGknyk5cAlQKU9JM9hDXevtPdg1yTSCW35bU1IDu2QvqNNoxWjtsGv/bhq+x9DFE3TiCBmB8DxKUzX63ZhGv4UpHIQTIbSNmTFSmodpoRCorCT0YywtCLWFVgGOKZmqbqTt2lRr61g+/zymtHDnZ0lUSMbZgHAyRJ0L2JHHyNQ4yh6iIC7TPv0EX3hghSc7Icb8Sc5UFO961xbysYPwuwSuz/FTx7Cz42y57RZyIiZZ6jI0lIOogdcLCBstQrfLpQcfQq3fzsP3/yXbNt3G5js30eovsbWao7ncxRgIc//lIvffXi+9UyJ9c5pGGkkEpGO9Tg8yicaQgjjRg2w0cSWcUoo0sDENsBygcgOnSq3SL0lbmgZFNmR8pturZKyEk4dXOe738QW859YtfOVii4dn6zzRiChLn6KlULEi0vDN//w+zh6a448efpRzRy+ze9s2brlxM81mG1WtcPipEygEPd+nqyOWlurYhmTeixlbN8G+osnTPZdZF0aFy4NnYmwZ0VMOtlDUV9vU51YZdSB2K5y6OEsx48DmDTxy9CwHto4wVAx5qL7C9pEpbrpzP13fx4mm8NxnuW3/Fs48dJyVRouxyQlypTKnF5aoOhZbrtvLA888jZlxSCKPy65kKmMRDRX505kWtw6XGLJjvpbbwPyZk9zbjkEK6t2Ieucsr3zdK9CWyfpNm+j7PoZhpKikH9D3ewSeTxQmaQaZSI31EPE1aNCatARUYg6ucAphSFSsrwSIamUgjUE4p1Tpn1UJaAcpwitM8LWSUhKGPh2/x3z9MIYcRgGbpzfwXGkIde4055ZWmSiWCYTEEDHFYpHAczGNLJp0us7mc6jIR8Vgm3aaAacMFBGGaYKwaYmEfBTgRn08LKycpJjLY+XzuPUO2bEc0rIRjiTxFZIW/cWTrCxGXO4GCEPzgZ/9aVaevh9TW/itOZ775gOUStuZnN7M6uwqCptARViGIlmZJ1/NkykNsXRpAd9rs9h2WTzzAG/+8fczlJUo+sgkADPEjAOGawUWmz2MgXX0lRDPf6m/t15yp/TYf/7VD6a5bhpDDpwHBwtOIdKznnKU1tJoBYYwECLNQruCLiaata14DClCB9ixwaOBw512umuYU7DiG6yr5TnXDDi60mZuoY9ZyuJFCcoLGSvkKI8M8V8+8G7+66e/zgMPPEtfOtx803bq7SbHzje53AkwtaTf6+NEIXnTYqJUpJ4oYqUYLuV5250HeeLERaRMSBLNatAjLyRLnR7rqxZeokj6MWiD0aLBhXaHiWKZtoJux8NIQvrCxJCK6fU1NtaGePTwYTZMTjN9YCemU2bH1ikqlSHuf/w5CpbD7OwMiZcmpRw+d47J2hBtvw8CFn1B7Bj8wu1TnL24TEEYPOcGGN4yt+2/g68+foSx8ghNv0vo+szOz2CYgvXr1yGSBM/1CHwPz/Xod9u0Oh0avT5930+JriKNx0rBM3mFdS+EBBGlPKYkbVKmtFLBrRzc3xFIQw0aVJKeASMGZaCFJEniK2dm85ZN5HIZ3CTE1FkqtR1UR3KYQvHJP/sLcnkHK5chjPrEQYIOA4QwWFi4TEnkkaZAxak1ix/E2LZBnAQIxyYIAnKZPBiSJA6R0qQfB2wdX08Q9QlWl9i8dS9e6FEXCTWnTKvbIfa6hG6XsqPxmys0LzcRpsnxlYDOyTPceecOov+fvfeMtvQ66zx/e+83nHhzDnUrV6lKVVIpp5IsyZazDAPYBjM2yWCatZhueug2GNPudntIPQzQJrQ9DGCMjcHYBkdh2cKSlVNJFVThVrw5nnzOG/eeD/ucW1WyXDYMuPkwe627pHXrPeG+4dlP+IegTs+Wq+nffj2pEEzPr3Lk1Fm+8JkHefDhQ+zcs50tY0O4rkOOlFazQb2yzEJpnf5MP4ee/gZLC6cp9PYQpaCCBr/zp1/guj27OHx6FqnabIf/PyABV+4pXTEoPfoHH/iAxRlJjNYW4SsMShgruyMtNSFNBYkQCG1xDnFbnP5S91RjhN1U2/0KjaQpU2qpYVilBKng6bSLgahOQbZIhMfBqTFOa83sWp1deZc9432cWiux3NKsLC3x1Mw6H/5v76G+sMxXnz3E3EKLwFGkYUxaC0lIaGnFdKPJhfUG9VZENtUM5iSPvDjNvslu1lsGaTTjvb0M9BQYGBrExSXneAip2TU0SOr67OrJcmS5xnwj4Fw5ZrmVsBrC9FKF8+eWWSxX6O/poafLYebkDNv2X8+XP/lJtu7cyo17r+WTn/0iRgoGe/tIHQFpynKtxnCxG9dV6KjFnq5+ZCHHgS0T3P+afZQXqwQyz8zSGqlIWGs0eMNdd/Pc6VP81NvfxtDAEA889CA9hSJpGhFFIWGjykqlTrXcoFpvEEbpRtCwtttc/P+2W4nAaSsICJS46HpsdEf+BNIOV86IDWgBMgVhg3pnbdoxiXI9O+AINEvBCl/+6CdQfcMszB0mSHyiWgujIA1DjDboJCFf7LPaXWmKciFJheWwhU2y2SxJkJL3PJqkqLStkKkcpOeQUqe0tMSeq7ZR6PKYL2lklKAcwWh/L5VWA19myGVKlBaWac2vMzzmsGOon7vfcgduvYI75OPrBgsLRzl57DhfefAFTpdbRBr6CgW++sRh7rxpL55vaJTWKG6eZHr6NHHFEIZNuh2f1VaDTbt3Ujlzganbr+fo0ad56vA8a/UmVsH14nnqKDwqpa4YqJT6VqWGjsW6aeteveLrpdhQcLi0wP7XgjS/UlC6Is1EaYGrQbYxKVpbJ1wb8UUbVNkGULZF4FLRFlFty+AaLdgYzmjbZwrbTqtuJNhtrF/ZgjHcJQMGs4InmlkObBrky+dXWIs037fJo5EKvnBiDl/mETrkzMwib75mkL/76wd5z898P35hgLp0KUjBYrVC0fGpRC2kVDSiBF/BpokJFpWmJn3uv2EzTxxfYGq4m+t3biIKmvR29/GqA3sZ6C4w3pUhp8CXMWcuzLAc+6y1IoIkpRkHlLVhtlRmJUioRoJyJeJzD73Ab/7RZ3n2+ef44z/6A97wnp9nfWmOXZuHuf9V1/Oq7Zs4OztPUGvQbAagYbFUxtcCZVwuBHU+e/g8X3/+PL/2icfZtn2CrZv3MbpzOz/3sz9JOYr50sPfJJvN8MiTT7FWWue2664HIAxDWmFAvRYQtVoEQUScpCTJRVXIDjLb0kc0QqYIvA0KitaaOLWGmxsgOqE3FCY7fLcO5QTjtDOpi6vg5mjEMY1AUNI1Dv3Dw/Tt2ckXP/XndA1sIRENnAzo0EIiHNdF+C7NVg1DguM4tBJhpXGTBMf10RicjCQyKb50MQJ8L4swoITD2ZPrZAuj4BeprZXoHt6Cn89zYeE8680mOTcHxSK1+ZKl3vR6pGkv17z+Ppq1NaQusHn4BqTI0i98FC5NA0XlMrZpjNlalTiMOXPyPGeeOIrj97Dw0gWSZogjYNPQKBPX72WQXjy/j2tefw+zjz5Drx5jeaWOlN63gCg37OG/Q+aUpullx1g4h954/cst2jeOMwLaZGkpLvHr6wj4/SteV/x2Kda/LWm7lWjsydTYJmicWkKnTI31hW/jkRKsVIkQ1o4JIDGWiZ5gcIUgkZbwm3dsD2GbknTLiMEM3Noj+djz68h6kz2uzwutARaaIV2epBQ3kW6Oe2/djzFZJrIhP/7ejzC/3CDrQH2tSm8hy3xlBUGG7UWfXgeaxjBbXmff7muZWahxbN3hpmt2sXfXtbz19a/n+p27KGRczpy6QK7gccctNzM1OkCzq4d9+/dz9MI6GeURRxAk0N3XjZ9xECnMNBpML6/R5zmMFHt5/IXzhK0az3zh77jrDfez85p93Hf7jRw+P8sNk6N0KxfPgaG+flwEy/U6fcUsRSHZPDTIvHGZWVnnufOrfOEbDzA1PsJKtc57f/Jt7Nk6ypbhIR574SVq1RY6ahFFTYIgIG01CHVEFKXWQj1N20JsF7lq1qiybcnddsTtpE9KOBZjphQgrccaCiFsBqWUlTWR0mkHss7PxWWMQeiEnKlx8uknkJ7L+uI8XQMDNFp1RKtJGIZ4SpIqh0gLlBH0F3txpYv0HHwHMp5PxlEYUtu3UhLhuBuNdY0hSWwGqJ2UY8fn8P08lXqFnmIPrbUSvlBAyMrcLDmj0PkujFbkIoEjUzKVJZqzs9z5fa+m0J0wMj6GL5v0ezk70JEwMzOPFIoffdfbmVtcJ9s/wOGvfY0Xn7pAbSGmGhmWSyXqsysMjeTx8wWclqTYXWCg3zAy3sdFLsPFpZRifGjsOz+gUl6W3XRAq1JaSeFvh8BOhWF4eJiffs+7kc7FbOtfA43kO63vGDKTFGINYWSzniiFODHEiSFKoWUETQSpbLeO2smiwqb5HUSw0oK07ccttEFqTepaz/uMBIn1fGukeXTPIFsGDa/bnMHt6+FsaZXlVsDWoWFSoejO+ci4xXXbBrjhtt34fko9DpGVCq7r0+flKCUJfWkMJiLBJ29gWArmz5xiarSLSqvBC8tlqtVF/v7xR1morDO3skaakSSRZvrCBbq78kz19pDzXK4dz5M4Ai0VeQSrpbKVwSBGxXD1xDBGCtZrJQZ8wdy5Zcqrczz/D5/nq5/9U/pGdhOUm0gTkEGzZ9MUjWaZqC0HIqVDIZehUqrSatTZf8N1zK+sctVNN5IEIUmoicKEm667hjtvvY73vO3NHHnhWVqtkCSKSNPYchR1jE5iQp0QtcF7l6fsFyVwO8v2kqQNAMJmUFKkl928hvSyHfqi1Mnl5UAgDK31JYJUMLJpgmZlhYW5aRYqS1RqywShhlQThdarzSclDAOaUUiqBKXSClpkLLnbkUjhoVKBiC01xtJdNFobMjnfGqEKQaJSSs06zUaRrAdaRzh+gXKlgduVIZAgkwRdrxJNTOKND3Hh/BGuv6qP2af+Hi+MUa0Kfu8I+bxiKK/I5/N4BqRO+eInP0ffyDituEqj0WRlYYZDR9dpLGjyxT4aa2XWVlc589jXaaQxZrRIGjcZnpjAxs6LGWWH4hOEdattJQTZbBbP89i2Zetl1+bljfFOxnrjjTcSx/FlQerSJQwsLi4yOjJIksQIXCYntvDTP/PjKOXiuTZQCemgOs+lkni5PBKFK+T/tFLvykHJ2FItsfdRm/8msMh5W7NKbXAwyHYv23HbEmCXOOOmCLQSxHFKYiBRNoi5wv4opZCuQ0aANk2c+RnyESxkhzm3sEyqI+6YGqQZt5AiYXFxBV8Yzpya5mOffZSXTs2TJ2TBSDKZDK0oZqo7R58HyiQUlP1batpSKRLfZaVSQUTwx19/muuu2U850ihS5heXWG+0EH6eSivgycMvcnr6BI/OrjNTqtHT00NLWd1xF0O3l6Xgu3QbjdtqWQ2qKKZRbfD8s8eYnZ5lR98Af/aJj7Dv2u30jIyisoLNkwOkQUpXRmIcwWq5jEYylM2yeSDD44eO4nT1wOoaL55b4uknH6OexARJSqsZItOEW2+7AS08jHARykFIjzSGMMWSYC+Rtt24pEa0qSaXDqnbUyEtLI4plYgN1UlpA5UQVsUSS514uY5SZ9XKi/j5PtaaLZLEYpziOGG9vEZztWb7KFKSEuFlHRKdIj2vrXQp6S4UEXGEEgrd9rgXynLtXOViDPi+fYCtqoCmHqcIYzhzbo3czlFimUF7WXoH+yE2KJMl47ikRuFki4xNTqCjlLEsmEyWuG+MJCdRwiNcr9FbzLJn0yQiTuj1MoAk1SFD26bIu93oLsPgwADGcXhhvcbJ4zMoYxia6CI7VKCYCOLnjlHoL3Jq+lz7XF6endxxx+2U6w3uffU9GGNotVpEUcTM3CwjIyMbx3med9kmYt1mBKurq5fpq7+8DDTGcM+9d/DVrz5g2y0y5lX37GXbjq0cvOsWuoeGQMA9d9y8sbF4jssv/Jt/Q6GYITYXy/bv9bpiUEravSOFQClJakdsbYEvg5DKjvgNGGmlVjuDNgCjJMpY4pwQBkcqfN0JYNbxJJagSREmIVGKAVeinRTpRHzx1AILQcAtWydRSnJ2tUy1lTI62MXZuRJ9xTwPHavSMLCGJCMFgSNJkgTlZUlyRTxHcHDLEHfu6OfqrM/+wSLTc1VaUcj2gTw7Bnv54Mc+R96X7Ny9HSM9Cr7DaM7w1aem+dl3vJNb7rwL5TjkHZ9i2GTX4Dhuoi2vKYnY2+WRcSAo5Bgq5Ml6Pr1ZyOZ7qa8t8+kHH+TqHh9H1hjqdhiQikeffJYfu/9uHKFAC4SnWKxWaXkKiSQKQ46dmeHJl87QU8wyPD5JTmVAODiZLMbPgsogHZvGS+EQRQGk9nslOrmMRiKEat9k6SU9IvsjOyBK2YF2aLSIN3pNGIlBWtv19kPR8X97+U07PjiFijQFCWGriRaScrOOCiLCsEUUxMRhhPSt2JqUkAZNXM+qZUrl02zVka62lBcDqRAYpBXQiyKUcgijiDiOaQYtnNTKNB+avsAzjx7m5OFpbrjzjXgiR1dvF7nRzST1GgM9o/RM7kBLyBUyXPPD/47C6H7GxqeI52YxGZeBkXHq9Tq7xrLcuHcTTpSwyUje+e53UcxlOT59hqNPllg4s07R9djsKBLtcu7cGrVyg2JxknogWXd8cl6R+YWS1fwRF4OS1ppHHnmUndt38fxzz20EFyEEcRxTLpc3ju1IHG8EHWM3kNOnT1+WIb1Sb+r82SUef+yQdYvRkl3ju0hagm98/RFW5lboKuS5/4fejNagJGRyWWpE3Hn7Hdxw7YH2ffO9D0pXnL598/f+8wes8Ff7pKh2FtQOZVKaDdSwwALpnLZjiexEcQyJAGUkiTTESuAiNsCW0ljAnSMAoXBFitYOYypl0WSpxQFZR3F0fg3f8YmShCSKuX13H253D39/eJasl6cRGHq7u1BGk/U9PM+h1zW4ShDEhqnuXmLfYbopeNtr7yZJYq7esZvrr93PM4eP0ggMzx8+ghtragj+6pEj5LKCLz/9Ek5GsVaqE8UNKkKyuaAoSMWQ7zFW8Cm6cKFSI+dlWQ4SRvoHUPkic+V1WtWUF84vcHDPGI8+fopnTq1w1+17ePHkPCRNfutDH+DIM0+yHBp8EyMiw/axQSYKOc6sVhjtG+CZYyc4eMuN4En8bBZXqY2bUWpDGEW0mk1aQUi5HlJpBTSCyFosteVH7PEXCbTGKCBtA2A7siSdiY5zSXnWMRjoXHdLwha0MSGa9mZl19T4IF4uQzOKcf0McatGxnNIUkhjjXECoijFFVZ7S3kOSknLCtCCMGniOIpGM0J5PjqNcTyPrMjgZBw0GpPGGJGgpIcU0vZzfRfPy1JtJBw++gLX33QHYXMNmQY06gGV9QuMDfWRupJWElFerdNcqeJ5WWqrF/ByA6SVJQoDUziFmKg7x+59t3LNzfuYGJpgWGtO/fHfsk2NsuP793HV9jz9mYR6OUFEMVsme8ht9ti0Zy9Rsk7/8E6OXTjN15879y0BQwiB4zgsryzRagUve+osxML3/XZGenlQuO6aKZZW6ph2JnOlRnmptEaHPD0yMsyhYyf4zGc/0/4Ohje+8R7+5I8+RqzthhCFIU899gS33HwAJ5fj7Jnzl8E9/jnXP3n6ZoTlryEl0rHlirAKEjiqLblKmwsnsTstGuGAcAxSWDkTCSRCo4Sxu1qbumB7ThZiIAChU2LtUvRTPOkw7sVsHRwniEKk67AeBghlH4YHnl0kqFbRJqEatBgfkOTclLzyyMuUEd/H8zy0n2e5FDAbBcw24eqBAf6fv/1bzi6v8WcPfY3PP/4EN1w1wlqlwtX79/NCvcLxhVUGe/IkyiOM6zz27FGkCQgSjVQOgVBcs3mIm6b6Gck6DHZn2L19CwN5h9GRSRbrdbp7BhgYGmRk61a2DIzye187w723b2Wkf5iTx4/wmgObOTa3zs/90q8zWw74ydccIJU+1Tjhq0dOkvQWyGZcSuUqo0O9PPDwo/RkMnhG4EgHZQQOgiCJabYCojCmUm9RatRoNJtEUdTONF4O2JPt0itBSseOlIXe2MltRtXOpi7tCSq3LQqX2iAgRVvV+/KHopk20DLGlQp0ipAecWB1iwwpjnRxlUMQhmg3xUljaCUI6dF0BL7KEhmJSWKyjiCb8cg7GVAJJtXI2BqaSmMzYikVnueRVS5Bs0GcprhFl2effRZDSBKD5yoKk1uJlKYrk8OXGbp6BpjYuxMnG6F8SWX2BSrNMuXWGv1ekaF8P+Xpp2i9dIi1J7/KztuvZdeeA2y78yA9IzvAzUM+Zuu2LrIyZfp0CT9QrC8ukPcKONluBrdt/7bPVqdJ//L15je/HrDT1Eu9+qS0g4d//4v/pe1c/I9bi4uLzM/Pt6+xwPdd7rr7IH0DvZdlW1JK3vIDP8T9b3ozcRz+oz/nn2NdMShJ2eFH2dJMOgLfAaTAacukKkduBCpXCnwBviNwLynjhLDuJq4ARxk8aTlyHecNiaBznj0R46UGV0iCRLBWLbNUCSHWuAi6tWFndx/9vQWUzKOFR8bziGua9bUaUsXkMoJmHLJUafLcmUWuvWYbdZNF6YB/OHUEFaXctnmYV+/p56Xzy3T3DNA30M+zh04w7Pcz6AlGujzunRph30Av140PMl9qcsO2HehWE+F5nFicwfiC/dfsIoyhUS0hMj4mCVgolXnp7AWSWPLkSydoCsNYby9fOrTES0vzrIceKttLFAoajTWCOOajn3+Un/uRu5kYyNKTyfDIoeO85pab6ZsawReC6fMzINTGBDSMY6I0QacpsU6otBrUajVaYUQriUi1lZ2xmCNzSQ+pMzGzlBOERhm1URZgUr6lLBPa6nEb2b6BJaItBvfyBmu+2IeODFEYkERhO7jFuCoBDGGkMbpFxsuh44iyTtDK7uYFowmFpuj79A/2oXWCJ1xaqSGVmkSnuE5nWJKSyWRwXHuvRGmCL637iYkSvvLpz1Kr1SjmCrZsXGuQNFJikVqISHeO9elposWQ5tIxKutLuJkuklaFRz7/BRrNdaYffZ5zjx9jbGCIo3/0ecb7R3CqAZ/7s88RxiU8wGs78wz1F0i8lMq5k4RhyNkLj3P2xZVXfK6ulN18/vNfZHRkaGMz6JzfzoDhI3/y39Gv5G31HVYH0tMJdGEYsbq+zm13Hbws+Git+aG3vp13v/tn/tGf8c+1rtzobiO2PdqllrZuGQ42uxcCHK1xBaTaoLRBOLYU67APRLukc7SN+K6wgnzCtOcRGzw6gaNMe1eXSJVSjkKSxMFzheXOCcPO/gJrUZ1G0OCRY6cgso2JTL6L3v4cOenQaMQ4OY3s6eXgrft5dnaNiZERChmfoCm4YccmZKx47a6r+K1/+7/y+Qce5fTsLA0dkGuuQRDSbEV8c3aFehhzfm0VV2pOLs2jHZc00RSdHsLUJ2wGXHdgF11dBcpr63RnM9xy1XbQITGSoJEQGUWoI0b7p7jvhl2sa8PgYJH3/PD9VBoJaZTQl8nwu3/x98wsrpJxJPlsjtMzC3SZiNfdfz+jxQyNoEUYRzSDFkEU02y1qFSrlMsV1terrNTqlKs1oiAmjdt6R+2+4IbWNmxkQFrbiWoHLGnBsZ2GqoVwSGEwut3Ulm3S7sZUr03KvWQ1WnXOnT+NdARCOEgVE8SGIDV4UlgbLuFZ3p3SFJRnMzep8LMOGemSGkgTYYOsbqFEkyQ1hEbT0iGu6+JmC3gZH4wLWkIUEQmDcBTaL5D2+8wtNEhEk9SAcRKi7gy5zCD9vZvI5iX+4BCNuETz1BpIlwuHnuGFB75ModjL8599iMZiwp2TtzDedRWbJ3bjOA7R+irdmW5Gd72a8ZuuITfgsnlvnt7hIpXFmMGxKQYnBhke3cZ6q37Fx8txnG8pzxzHY3V1eSN47Ltqz8ZzlKYpY/0T/MaH/ssV3/eVVucZu9gwhz/47/83n/zEX3/rscn/nAZ3Z32H8s0GlxgrUaHbOkmpsKBJYayJQCoh6yqQ9vdOpz9qQKBRQhALkMZy37S0ErlsSGVA0uHIAbFj9axvywpqYYUotXinvFdkMUro8x3m6iH1VobubIYRx6U3oxhSDhVitu7bxb4bb2EsKyjGmnrY4uTJZ7i5x3DPji2szMwxMeCz98adfO6BL7Fv+w6uGhnirffdx/VXj6C9LH6c8HP3TPK6qZS+OGRXj089SXDChOVGwJG1Mg+fneNjT53gC89Ms1Rp0jc8wMr6IuWlRfLZHIV8hoHhXur1mBPzc7wwe4HDMwu4mQJffOwIc3MzXLtliKFcjly2m2w2y2wT1oOA7UND7D9wNXfce5DG0hx333YH9XqdWsUSe+v1KqX1VerlCtW1CqVGg6AZEEX2amkSG3i4pKmN7VGkiT1CSRugNpIdLTYmbZ1pm7VlSjYMAi6Scjs37eW3kONn2Jbs9U8AACAASURBVLp7JxqFdCShdhBo0ihFJyCkJJGSJBbo1DZ2E2xJFgUpqUyRRpPGCX093UjhEQZ2jO4ZB4HCcwVpGtOsN0BrEjRuJotKBbkgpZhRzD9/hOW1MrFwcT2PrrFNtMoBS3MXQIT4PYM4KiapLhI6EMcxw1M7ics+R8+vsbwSM7h5DNFVZMDzyBnrAV01Mff+xA/QPdxFwe1GeJJsMcXviYnLMFDIUG9p1pcbYPzLJlidrKeD0r60hOsckyQRUWzYMj6OMYbx8VHMhtSM4PFnnmFgqP9l1+C7X7/43p/ZuN5rq5VXFKEzvHI29653vet7EqyuDJ5sN0l12p6wtQGTIrGgydQISK2bSZi0XTJSaLUndO0uOKkxKAGBsRy5sC2V2zIQArGxn5G29bxlZD9sxDfcmrOUjIOeIdUtDmZT8iLL5sEuhgZ7aGnD9Po6/8vrDnL//a/juh39dBOjS7MoJ0H5Ib/ztpt43U1X88UTK2zqWqOrz2WsN2Vlbo47to9xz4Fhrtuzhbfs9piZL/EjrzrAB99xHU8/co6aP8TW7WN4A1Nct3Uz1x/Yxb7RHl597RRXj/ezZ7CLfl8wOZRn9+Y+Dkx2c89dO7nv+mHW5uaoJjFOJsNNW3Yz2NdLqR5RXqsz0NtF0DKUKw3ON5skwTqTGasAWUsEz549wzcefYxauUQraYILleoKpfIq9XKZVrlE1GzQCFoESUwap0Q6QSjb6xFCchFCZEs2gQtaIduJjzYGnUqLCeqYCxjHEneNRepbDlxnR5e2ukOiv12TNbbAtrhZtQL+aQTKIetL6mGVtgwBRoZ4wkdrTaoF2ZxDZACjyKssvp9BOFniNEJLQ9iKwRgyuaydFgkHx3FRriRK7FQuMjEt33Ds+Ev07t7Ciy88R6Mp0UlIYzlh8eQMopBDxCl5r4d6pYTre4RBjJfv4tz5k0R+SlBzyOW6+PtjZxkfH2cg28umV11Fz/Yd/OFjX2DT1BZ03KS2WqHQlae7q5ehiZwtaQtDJLFgvdLk03/31cvAj8YY9uzcQW9PgWzW3/hdhypy6RTu9MwMAHNLq5eRnicmNnHq/NlvTy+5wtJas3vnNfzIj/zId/2aS4PQxz/+8e8Jd++KKgFx0vlSBqKLX7CTKW3smsYgVPvEaY3SEGFxL5p21G1jm5L2f1MpSXVKmliSqJLSGllKG/hSbFPqxj5JaTllZ7fhZDVDr1tnOU7Z0dXPiVKVHcM9/Pb7f5m/+fTf8tKFVe7e1cX58wvsuukAen2d7ZODCNfhR996B/dcNci5lRLBQ4cZdF3mTp/hNrfA2bRB75DPzIsv8KodE+zOrfOpr5zhayspe7Nl9o4OM9TjMtE9QGKaGFPg6UPTLFUMw+NFpInJO3DhXInXHDxAj4o4cuYcoyomTD3WS2V6xjfhqRJDXVkGCr2cOL+AP5ny5tfczd898ACNlqQWhggDgYY9U9uoV2uIetNKv5iQSFuenjaGxBEY4+BK1W42mzbM4qK7rXW9EuiNMT5oYiQK0zaetMaVIUr6GJFYvpsWCGmR1NbrrVOiiW9xL+Fl6oquyBA0Db6StNKEnJZEpFSDJl3FPK1WC6MlxaygFrTwvAwkKfV6C991cJVDaEIc10cJSVb5pBi8YhEdhWBcdBrj+YY4UYRhC9f1MXHE3OnTuK5LLuMThmB8zYc/8j/oy/ncsP86Dtx2J9W50/isYZoOWRTVNGHfTddw6PBxMn09rD1ZojeNaKB4//vexo9/6PdRUrL5m0WM0+A3/+yjlGrzJHPTpL5P797bmJraTbz6HGnzKYp9I6zGLg2nyHo7E8rn8zSbTTLGsHT2LOU0YcvWnZybPmVpWZegrDvPlOM4JEnC4toCOzdv4uQ5O8V74ukj3H3XbRQKBWq12j86SGQyOW67/RY+/vFPfFfHd95ffQ+lfb+jRnea2IlMonW7ryNQut1J0G1iIUDSqVulfaEj7UjTAMqWeLLdwI6NIUXjtDXCtLR6JqoDLcgIiC2GqdQybPcMA55gn5fwcD2LzAmm55e48fq97Owq8ge//VHefv+NNMMmjz73Eldt6qeysMQdB/cR6CyqmGXx7AXGtw3RN9FNIUrZf/VmnnvyeZ4/fZZ8d57+oU0E3X0M5Us8cnyRO267hrtvl1xYrDNa8Ljjnv2US1Uef/I8sSxw69Uj9PZuJjvQxfryHPu3DJB1JcX+QaaPniDJZDl1foG630Ok4fjKHKsrFbKuy5Kpk8lkObW0SvTkw9y6ezN//uQpVkoJ0nVIo5h8zufFc6e5Ru4GNNmMi5NYN480TUmSEJFaAoMnfJQOEEagU9nORFIbQNquJQBaJ20HE4vMti0kK6YmRAoIjLCjeSE6kiXpBgHXDizau7tqb0zaQgsuLttkV26OpQvnGRsbw5MGkS3SbNZx3DxSahLh01PM0myFKCUQUqFTgfAkJpAgINIJjutQq9YpdvUSmATXETazbk8JPcdHRw0OHTqEl/EZ7eu3HM00oZZAJCQL5TVcB5bW15Hr6xSGcmQzXSzreZRXpK5y5HxNoxZTKdVwezP09Biq80t87OO/y1y5jOsodLrA7JEHIQgYHBhjeO8EKxfOEMcxAzvuY3OlSlO3WK23WFkL6KgFNxoNAFpAECcMd/dx5txp8n6GRtxicnKSCxcubDz04+PjzM3NAdCbL3Ly5KmNHhNhnQvnF/iVX30f73/frwJ2Uud5GaIoIJ+3gf+VqCTGGP6P3/wNfvk//vuL73eFpRwPk8S85uDtfPWxJ192nf/l1hXLNwcQxnal2wPjDRWei3+PAaMxRqOkzaq0AJ2kOMqCLtHgtvEusbQPg2cMjitwlcDH4CtQ0qCkxk/AkQbX9fF9l/EeRUlneTFRLMaGiaEBRsb6OXHsJJN5zU27ejg7fYFBP+TV995Kgyw4Ma6ryMuY0swFlFKsnF8jPHuaTcMuj3/9G8ysRRwqKV5aSfjmkubkWomHT1YZ6OlhQJc4uDvP21+9jS63xhOPHObQC8cZ75tkx+Zt3Peae8jrOkM+DHcVOXHkPM8/N83XvvQwawtLDOsmP3TvPm7vaVDMJPitKjsHuymHNUQQEocJA5ksGcAxEaNZ1+oYRRrXlTx95iXyUtHtFujq7kU4WbxcHsd18X2fvJ8jm8mQcVxixxA7glRIS7KVyQYz/CLQUaOci6YBnRKug+TGWC6clHJD9njjFmmbDnTKOrDjeNPJqC5ZGb+An1UYkTA5PoyQDjJbxMHge5ZMjbBTsnKz3r6DUlw3xVGW8uL6HokJcTwPz81Q7MlQr9cRwhJUc3mPZj0gSSIcFXPoqWcY3zLFwNAIzThk+tRxHNcnJxx6sl2gcjz44IOsLtQoradki0NUVhfx4hY9vYP0je2ia2KYepgyMDlMtj9HahS6tcL5ky8ykFP09fp4SUqrWUfl+qi6hqGRESa37iKII5priwzuvJUTh5/l2ReWOXb0ND/whtdv9JE6ZZnnu+T7u+gudhHqCKHh7Nmzl2GSlpaWAJud1KoNurp7NgJIolM+9ud/wa/+yn/i/e9/vw1Ivtx4/S+/7z9YsOQrrO3bt/ODb3kD1fJ3l2EVCi7/4d/9NHe/6aA1lfgerSs75Kr2VMaxhFoBOAhSKXC0xah0aAMdXpSwW6nVX9LtjEhZSyYlJMrC35C6jYMSts0g2jonwkCMxlGSehKy7vfy3EqFmQBcT9NXEOwe7+fQiUXuu3YzX3/uOK8+sAlXxmzesg9HJeyb3I+DoNJUFDMK2dcLzZA0atCVH+bE8y+y6g3wl8/O0zs4QLmV4qy1eEn20WhpOF6jtFwjCH1mZp6ip6eHbdsmqa5pmlGAW+zmSw8+Rb8rufDiaUrLsxgUA8M9CBzmSgEiiGnV6kzPpNx5+yh/e3gV6mVGs1nW4pBeH5pasrgS4OZ9qkBRCKpGo42kYFzinOJjD32Vm7ft5KodW1BC4RiNThNS6eAkmkQJvBSc1KB1gm7HCGFsZmPPaxuHotsKlCK9rE+x0Z8QGpOqNoTgIo7MgmCho1zZmcwJKV7uG0A9aJHqFo5wCLVideEMI1M7yDqSOIXQ+BQclzCOcISDk/GtxrKxVIxUB0gcMsoSciMT4coM9aSM6/QTRQFBK8VTkpeOHSaTy7F571aCFui4ilA5prZsAREzM79K/0gfhUyWchDxxEOfY2JqN2PLywwPdiGzU9TWVynXVnH79iBXPsPO3V3MnjNkMx61epkxVSOplmmW6vQMb+Lam9/Is88/jHSLLC4s0+NHeA5UEXitGsXha/mLj36UW191F36hiO/7BEGAEIKuQjdRvQRpQrVaRZOi2niuznWAy22OVteWCaPLA4IQgjAM+eAHP8h7f+l95HLwgf/0IYyBaqXOW9/6Vj75yU9+S7l17tw5RocHWFxZv6zP9UpLSsnvf/gPKWQdgjS0/cl/+XaS/ewr/aMSEtUe4btSWNyRtH0NobA2SsrKYKg2Wlhdcpd2yJLQyax0W27CNsGdtnDcpZxOI8BVEp1qVGzoTtbZ1NVHT85DkpJ1cizNrzGWgWOHp/mx77uBqalRBq/aTbHboZBTCK+LCI9CDmRWoLyUzEAXuZFRalGDTLbIHz5wmIpQeCObGbn1TsZuPkiMYr7eZLra4usXmrSaAdvG+rnn7psZ37WN9XqN0d5++ryA+267jltv2sfU+AgX5jWztYjVyOB0DbFUbfFYPc+KV+Som+VPn5xlLmpR14I940NcPdhLOZD0KUN/schsdQ0Rx7z1uu3WMy82VFshWwZG+N/e9lb2X72XTD6Pl/FxfA/l+xRdl9SROEKSCENkrOSwcgRKXmxyX+aA2/Zxkxu8ts4xNvuxmRJ2Amdol2zWjNRosUGX6DS9L7724mqmAflMEeXn6Mpk2LZtGySRlVJ2JL6SWC05TYI1O3WkZzFQnsJ3MziOQy6XoxFGQAYp3Q0YgSNdhOOSNhtk83kKXV24oUuaxrhODk9ax92gZdg2OsLKzDnCSoTj+nT1FEnI89QjT1Av1VAZRS6jyHpF8n7Czu+/n4wagighiEIKqovEzUG4RJq2kAbmFy7Qne2np2+IkYExKuU6ca1JfeEcM3NznF+r0N9XIEohWmkxOTmFsm06pJsysGmSxcVlHKmQqUS0G92dnk2aXiRCa60vC0gbfcG2akcYhvz6r32IMIwZHBzGFZLPfOZz7L5q2yv2f5Ik4fipOf7hoYfo7e7BXCHKGGMoVxeIooSkGfDeX/yFV9R2+pdYV8yUhLJ9H4T9+kZ1RsR219USiwbWwg5tNCTG0k2ENnaXbk9pHMcKxQlp9ZWUUm1vevtZnelDByGcGBvUVJpl2DQYKrY4FuUZL2Z4aXmV9UaN//rmAxw/fJbXvvEufuV3PsHerZvISMHEUC+uI8i4At8TOFpTrtTIZjzQCjfj4veNcKFUw58+jiwvUix0s7a0SC1skVGCxM2xWmkyPDbI/OlFujfD3h0T9F41QlMVWTq3xECxyMTEJt7xfQl7b95LcWyKRiL4/lhw4tw6v/De/8pyknBNbw9nV1ZZdSX1pTUmRgu8ff9evnFqmdTAqdUavpfl7NI6pAY/XyCJ6tSDFk889wI3HjiAalttm9SWWoFMINUkSUKYWrRzmnSyIVBaYezFayO0OzglOznbQAu3syGdds5/W3db2YzXtI0r7RRWoByzIez/SoTNjCOoxk18N0dNWhGzNCijfR8hHTxXE8cJSkor3hbFpMbgiQzCEfgupMYhSlKkIwijFq7vkleKbMalHIc8+dBD7Nm9l75iL4ky1MMmecenRUw2UaSuRyHTJNQOE2NTpFqwVlnj6FnDgVscRq6+g4VmRL4pyA5vptFo0Z3fRiEJmUufpNjrIAwkbkD1+CO4E6N0DU6hMoKsoxnauZupLVu4cOowab7I2tkvoPtvoy5h+sI5skKxdn6ZN/3kD1J5oE51dZXF9VV83ycbaG48cC3ffOpZPFfi+wmVhu3hCaEtobzV2ij3LhOGQ7B12w5OnT552TnfvWsvpVKFxGje/va32qmkhFfCWP7O//VhtNa8+6ffyZ/+8V8Sp9G3HtReSjiUwzqPffmbnJw5R39/P8vLy1cKGf8s64qZkgBSF4TTxle0e0qodrbdXlaC22zIlWhj0FJYLW1tSIztahiE/TGGJLJw4855M0aQaqtIEGkb+LJScazeIkBwJMqSSp/ptQargabfyfPXT57ihhtu4Hd+92/4sTfcxWQRXn1wH/0FDa1lVG2J5vI8JmxRLVdYmV2iXm3idPcyu7pOkMYcPnOerx06ymcf+SZHZuaoNiKaJmEsl2HHpi4279/G5NXDyEaJkRuuo3tsB3p2gf7+Xg499iRyqJub3/F2qpk+5uZXefZzD/BXf/QH3DCZ8pH/+DaOf/jd1II6OSXJZovIgmRyZIhGmPLD121lvVXhZG2dnUWPVqvBfVeP8/ZXv5okMQx2dTM1uYms6yB9h1TYHdWRhozREIcEUUIcx9a2up2tGmHQjkVgdzhtdiCR2kZ1G6/Umfp07nshDYoUUqvnLYWx7yFSpAKp9EbZp43FQQn5Ml6XBAeFi8JNDFkU+WKONElQMrXCbY59CHVkByGe5xOhcV3X9p0wCGXpI75S6CQlVR5Hjr7A2qnT7NqxG6EMQRxg4gQ/m6HaqFgeoKNJREwUSaphAz+TRWpJV18Pxgs4e3waIVN6h0ZoOYJC7yTGKSLdLnKD4xT7ehifKDIy3o+XxBQnNyPdDPlCFl8odNJCipgoSujN5cilKbnBg6zOPsuLT53grjf9IAfvuJmfeseb+R+//ttkywFFJbhh77X84OveyBt++Afp6x4lNSkjA/3cdMuN3LT3KjI537Yu4ouuwy/PQjUGz81z7bX77bluB653vvNdRFGAEJCkVnLlwx/+vW//XAvBpz79eX7jt3712+KOjDH8xSf+js98/K/52Kc+xeOPP/Y9CUjwXegp6QR0aIX6I21sO6LTRpUW+KjbaO0Y61hiBOhEk8iLeN801aTGcuM0oFxJ3EYYp6L9YwdHaGyf3yVlXx4cP8epcsT0eoVTpSrVZpMfvmUX7/u3P8Xg7ine/KabkCYkm1Ece/55ps/OMV+JOXyuzNNzVT73jcOcnG+QaJ9cV4HBbdv42Tt2cO34ZvJZD+g8SKB0SpfyeeOBEYaGJ/CGR5g5sUhEnrXDR/j6n36cU6fOM7llmFt//K10ldf5yu9/lOD8WVRplete+yp+6ld+mVbXJj7+11/ipa8/wsHxHJNDQ2SkpGlcyuUK2XwvkWnwM3fsx0s8TtSaDDiKHZsn+eSXP8vPvuNt9A924SpJrRWQBhFoYwNQnFALImpBRDMICcOYONUbvQkrAdq5tLJdtqUIXJsxoWxJhv0dRuK4sq0Saidwwliibqo1OrVqkwKF1iBRSJGxH6VflikZj6xjxfb7/DwN08IYwfLyPEkcWmqStEjxlDaUxCT4nkD5BRpxiBASqRQiTch4LiLVODqkGQYY30G4Ho00QbgZgiQliSL8TJHEpGQ8r53lSHzlUIsCIteWrAWvh1ZUY3l5lcriOeIoz9LSEv1DI9RaAUa5JGkLHEP/1gl6BvJIE9DXP0bG76K7uxshFNX1VWbOH6UWNghli4gmmeJW+vfdy5c/8mdcfct9rKGZXV7muZk5pldWODUzzfzMLEmrRkvU6e0pst4s88KTx7jz3ltp1RobQNdXWp0AlB/Is7ZqG+E93UW2bdtG1nXtdUbwyb/8c+ZLNYRjSdueZ+/vDl7KbkKGernC008fbgOWX1k76bFHH+ErDz6EJuXS+Pj/FUDpuu4V//2KKgHf+L3//AHaqO02Ig+jaYugW/kS6PzBnQBj038jLGnSCGHLBWNlOTvWTAaDSSGVAoFE057wGRspjbCeci7gpRHF7ixKeoSpw+1T3Vy3ZTNDXhlCzeyFC/hZHykcKk1NkinSSCTFbI5No33oKCbreTTWl5FK89JjJ+kqRvzx42fQJrW21RhcqVHKoV+E/Oi9u/ClQMcx68trpI0mTneeTCI5dfw0stVg7uRJ/KzgmrtuZebUGY68eJyuXJZGaYWZv/kU19x2LXve8ibqSzN87alpNo30sn+iSKu2Rqle4vxajYm84nCpwexak8lejxfPzHH7HQd5afoMe3ZfhXIdlLI0njQKSZOUIAgIGw1KpSqlWoN6o0GQxPbaGLmBjO/QR+xN1Cnf2iWbNHT84ODixtJZdghhkEpsZFd2OxIIkWJIEG1y76X9iy3bN6GEouD41JMqfuTRktCVKyAcH9dx2yRan7znE8cJbiZPIZ/DUzlc5WHSCNMKiUREnCacOnmMqNGib3ScSqmBFgkFJ0MYNvCUpJnEuEKScTMkaYKjDb5RGBMgldPGZYHjGoxO8LNdjA7mSCmTV32ofAHdLLN87jzeSBFfSSBDNu/QO3wVjtONzDqMbdnBarlC1KgxPDJC0mqitWDimls4dFZQy43RXDjBhdIit931Bm6+aid/9dnPIJCQJvgmxJcxS7PLxFFCfb3KNQd20lMc5qlDLyARDA/0UW80N+g+ndUZRjTWKmzfsoNSZY0dW7dw8qXjvOE1dzN95jzaaKqlCo889BBf+uJXeNd73s2zTz6F57gkL1McMMZw9OgxPvRrH+Thb3zj20IILgV0dtY/NSh13ufnf/7nee1rX/tPUwkQxtJDjBYbO6JQFqGN7JBpaWvwWAqBNsZKW6SGpC2bADbAaCVINGgkkW1F2VJOa3T73YywjVBHShwUFQO+0GyLGrSCBkM5yZv2jbFv3ygzKys8ffQ43fkCh07M89K5OZaqLbJpyrZ+l0bUZG5+lTPza0z2Oxw+XeWZp+bYetUQOyfGeefuAqOORKSdpq3HNk9y83gPU5u24SnF2SefoxmWyQ5vodEwCDfLpqu3UQpDlldqPPHQN/nKn3ySnlwXP/G//zzf/PRfQWWNtHeA3r4CR/7yU3hacdvBG0iNZv/kJjZv2kQuk+dsaZXjM2u8fksO4eaZ7O0nkF0cOnqKLVObiJOQNLXkyajVIg1jWq0mrWaDtXqNShjYABXFENvSOm1P0Sz3rMPlSS6itDvcIeNs9JTspqIulmJCI2hnR22oAMZtnyMDwr04vdOXlxitWBOlTQLTpOB3ETqanPJwvTyNUsWSP6Ug0Sn1JKKYzeGSgIZadR0pXUS7eY8WHDn6AkODIzjFAkGzQjbnUsz6tJIUP2vH6o70cTOGnJ/B6JhIamo6IBGGNE1xREIhK/HcPCpbYHZ+hoXlMsYoCgPdmDgkNzTMlqsm6C9sQnYPojwBXg8qa3D8BKFyrNYbDPSPkBIxODJB/8RWqrn9NJLNVPJb8V3B0IHtzD70NMcefZhz51/CbndQNBocl9tuvYOfeM+P0a1jpraOMzo2xYNPPI6UDhpBV1eBob7ub5El0W3jjhtvP0C1WiUIU0s4zuZoCbjltlvJZGz2KtrX6dFvfJ3/87/9Fr/03l+4eO0uCRDGGMbHhnnLW978ys//JT2tV5Jf6Xzed7s6f9N6tXHF466YKX3twx/4gIdteKYCENKKuGk7AdDC7p2JMBiU7Rcltiket8s5t92wTtulgFKCxFiTS2MEMeB2wJnGBjJHunjZPM0kJAM8URNcaGpWhKKWajZNDDGW1cRJQFYoHjsyTaGri/n1FlkkZ5aqTJ9dImoFTIwM4sYhKjfAYNHn7oNXs7q+wokzC/TkHaYGfZww5o49m7lr9wgTfpNb9m2lPLsCQcC50nmMGeTcqSO0EhD9A/y/nL15sF3ZVeb523uf6Q7v3vtGvacn6WlWZjpHg4d0Gpx4dhmKxo3NTOECUwVFmaILqiGK6jZQHQQ0VQ2FDQUYcHV1dUeDK7ANdntIg+1M2+kcpByUSs3Tm/TGO98z7r37j33ek5S20xE+EYonnXvjSrpn77XX+ta3vm84NKRJzJ7pPWxsdMiLnBuXLtBZvELLCib2j/P5k2ucef5pqmHBM+c3WFrfZmFhntykVKxCD7d522tfz/LmGsGg4OTWiLVRil+tkRcF+/bOUo1ChNVYY8izjEwXJOmIItcMB0M6/QG94ZBRlqOtG5x22uiURpGy1D1ymtvOUmlndm1HpmRHY6lUo7TO8cTJm5SuNIrSQosyw9pZsAJK7tDOdcddR/F8RWg9BllK6Amkitw4kq+o1utUoioWiyckO3aYSMnMnv1cWr5KqDSB0Hztya8xuWcOKwUCjcotQTVgMIoJg4gkGVENqqByCm0wJicvClAeY5UqUjvHE3DcpzTL8K3ByIDOcMTSpetkcZtqyxE3N9d6XN9aY8/scQbDLcaaE4S1MXxP4ftV6vNHiAcpcVHQnNzPle2QkxuKi1tdJus+3tLz3HXoBGOtKqdOvcAD993LyadPcWCuzo++5234SYaNIrZWVqm2qhRZTBbApQvXSdMcay31SohvBHceOcLSSzAcay29bo8TR09w4fIFtjpd9h/eT7MyyYHZPTz97LPu2ywzkq2NbTY3t3jVa1/JI498ocygy+evJNJK3vA938XRI/t50xvfxGc/+8huFvSNyJVOjlg6myIDv/+nf8CnPv7Jlw0wO5/leR7GGH7iJ3+KWrXGO9/5jm8vU/KNJLdglHdLPSoopHRqgOamIYAtNIU2pPZWowE3ymkNzpYJwLifO/Q+zwoKrXf/LI3A9xXDwQCvMCAFr6nBQqXCILbMqZzGaMhTz1/k1Ncu8cXHTpOJkLNXltnXiri+PWBpbRvh1Th+aJ7uYEQxMcPS9gYzczN89ktP8LEvvsBSZ8Ra19DvSCaiALPdJt5cAy9iaXmDa50NrvYLhqMqUia09h/H+BGnnzlJ3N1CVJtcWFqkPrMHG1SIvSrPXVpky6Y8+onP8dPvezvHm03Ga3N874MnCHLJcGObi2eusr69xSNntzhzJsvLSwAAIABJREFU+gXOLQ95smfpJgWX2kPOLi/TG8X8/WNfAelR5BnGGAbDEaNRis4NWZqTD0dkcU5iNMbRvcgps34rS2zOugVUGgYIudOFu9WS25SlGaVJQMlXsnp3YWqtd8mURu/IYOA+9yUqAbnOoNAkOidUEXnqMdQZ1hYEYcTG+gqDeITCkqWaIh9CCEIYNjcu0YjgxrmLXL+xxYFDx2i1WijhoW2BDTxMZvF9nyIbEXmKfhpTJAqFIDMaKzwnkZtmSFEhQFLYmP4wAwxWBXQ3NnjkS8/wN39/gb/4iy+xcnWTzuIFEIrHv3SGtRvbzN7/LoY6YNjpY70WMqxwY3GN/qBD3O/wzNVNEiNBb5JcuszFT36ESq3C+voK0GN96TSNhTmqRUokNI98/JO8/b0/jqyGXFy6TmVPk4fe+kbWzp4j7fU4duQwtVrIje0+0XhE1KzxL3/x5/mhd7/ntu93c2ubk8+dwvM8PN9na7PLZ7/wOZ698AIT42MlzruTZUmefvppuv0B7/tnP+v2W0ms/E9//PtIT/BL/+pXGI4Snnv+RXx/5/C6vTzbVZCQAozF6hJsGbTLaYGXh6addLHhJ//p+6hVIwL/5cu/l/20ooS0nc2LA8QUjrdSaAeT7gDdBW4MSgiXJRVW4ZXa3DtYqBCghUSXG6OQThLFKJyshXD4RZomKL8s4wwUyjIfWX7mnlkemJ/lxto12v0erfEaBw7PU6k2OTw9zrmNNnFvwOtO7CFJ1nhhrc9nnrhAS3nsn2zwpx99glOXNYFfY6VjSTModEZRFMRpztbWgOtL2yx3Bpy72uHMlRUurQ353JOrLL34DFkm2dwckDZD1tfXiZOCMxeuYYWim2u2tkcsbRVsFoo//Z0Psf/oUZ45v8RKe8T+FuRDS+F5PL+0zVJsOHl9i7O9lC9e38CUu36qWsWPfKampvna00+zudEm7vdZXl7l+soq2TCmO+ozMorMakyhb/p6lYoLO0C1W5w3sxjHO7pJA0DoXS7Sre8TKGSpcbSLPZnbT9CdIPXSBTxWa5BKS+BXscqAD5HvtLWVFOydmqLiSQIlqdZrBGENMxpBHpNJwYtnnkOO1/HrIb4nyeKEOM2QwsdqjWec2mboBwitqeCjPI0nNLUqBFGI9AJMXpCJnFpNEQUhniep+B5JkbNn/zxveO2riXXKuX6H3/i9v+YD//5v2Gov8Zp3fB+Xb6yxtrFEHs0S1Saw1Wk2k4jBYESSdllb2+CpL3yBUVGwsthjfnJAY34OVWtRiJS9Bw4xNjHG6vWL4PvcfccJxmb2s/jME7zwlX/g0PwJokyyUG+xujlk4fAhLl6+hB9GRLrA8yI66+v8xZ9+hLPnTpcuMuX3j2C706Zar2FzTdEdIoTHs8+d5vvf8Tb2LexlYmLiNj+5QW/An/3Jh9khviql6G11eOD+e5HS45kXznH/6x7EGPj5n/uFrysd4Wb59tAbHtz9/Qtnnwf4pgzynfVRq1X4xX/9y4xVa1TrNfBeHuj+lnpKjoVXpnLaUDhrVRc5tXVt/XKI05ZESI3r7FhrS8+4kqldbhSXNRl86zZHZAXKGnxhCawlAvxCEwmBFoYKgtwkiGEXM9zmaixItoasdUbEvRHnzl7gaq9HvLjNzESF82ubHD3xCgZdp3V04fxZPv/UBaJQcT0fMMidDMX2aMT8/hkOzs8xf3CWqT2zTEyOoa1CWM3q9ggZTLJvYYqlpMInv/osUbPF5acWWdzs84VT14mqIatb25Bb+oOYVCnCSoOD+2c4s7LCZMsysnUG1uPGjXVG3RHPbwwZq4QsJ4YXtkb0ckqzT+iMUgajIfOzs9x57BiNySZXb6xx9cYGWZLSG40o0pxCO8Db7JRYYkdhkpeMmNx8xKK850o753TsVpx3m8qkI0ze4mQiXCNClPQCxM2MS78EIB0lfYJclYxwjS8yGlEVPLdmChGwtLrkStG8NBdIBaGOOPvlp5g7dJxzT56mHk6SZ2BUQD0IELnFr0WORyUl24MunXREvRpSDTK8CgRFTpFnSKWpRorQ0yxunEeqkEoYgLVMRVV84ZEGIwdBGEkeD5kUMb/1x3/Px//PP2Nrdci1i1fYutHFBD5GKy5dvsqLV66wudFmfWPIsWNzXHjsc1z7/J9w7ewio3jA5spVTGHJ8gENNKeffo6JGjQ9w/rKJWya8LZ3PMzMwhjba8uce+FJ7jkxztXlFQpdQL9HbXycSEu6wzZpnpBlGffff+8u6LzTRet1ulgBA5sjjAYjePzZ08xO7uGee+/Y3cBSSi5dvEYQOJXRHXJm5lkOLxxE65zPfPJTbK2uobVmFPd2A6BE4ElVriHLw+94K4cP7919vbOeojz9TVQ05W7Z9l0PPwTWJ7B693D49oMSLksS2i1JLdy4iCkMeW7QwukgOTUKiy43hSzJkZ4Ez4InBZSqlJKyE4djdfsC8CyBJ/AkKA9303MneogkE5a6hHgwZKVXcGUr5dENy9cud7m+0cOmOaGvWM00QwSJibjwwjXe+MACS0vbPN2O+NqqpjERcN/MGMePT+E1ahw4eoLZvQe4vNlmrFYnbNYRYcgwKQhbU+ybm6BSsQgVktYtiSmoGMmTK21EPOLAdIOVnuGxC9ucv7bGqMg4/dxlTp1d5sXLS1RCxXo/4dyLl3l2ucs1k7FiIlZHmnPtITdGFhGUVjfCeeaFvsD3Qi5dvcrTz5/h0a+d4sLVJYajEWlWcHFljcsrG2x0tvE8v3QsEQhbBv8ye/1GHRK740wiLbY0mXT3c7Cy9INjd4xkZ2FJUVouWQVWY803Xza1QuB5kBcDdJ6jZECuC+pR1ZlI+gFHDuxHG4mnE7IkI28ovvTMl9l759346YDXvvUhRpttvFaAyVJsNUB7ATL1SFROWKnheSGTzTqaHJ0HVLBMBjGNQDLuGSomoxblDNcLtm+s48uCSqWCPzbGZj/l8587i8Dn7ijg/ZUxnu9lXF1c4rFnr/G1p57l9IVLhHsmOHltyBMnn+XZU8+Q5wVf+IdTjE/M0Ky22Dc3wdULV6iGkssXLuK1pvB9TdzNWOulLD37JD/6wz/C2Ljit3/3T2iP+sxPzLJ17iS1VgSBh0409+yrMx9WOXjwIG95y0M8+F2vp7vVp+aHLF1Z5NlTz+0+FzeMXfrdGWcSsdNlvfDiBU4/c4rl5ZXb3vOpT32KNE1vUyJI1ra559X3A7C1sc3/9hu/iRCCj3zkI/zgu3/ESQzXqmjrcODvfvA1vP5Vd3Hi+L27a+ujH/87dO47/tpLA4swYAXHjh3h6MIJkmyAqVRJkRy76/jLxpyXDVm6ZPk6ATZ3SiohENqxtXfkbKGMpQpCA6kE6QhNoEAKB45K5VjdSggk1gGY5QhLYa0LXuVRL5Vy1kxJwZjy2BoVWGVZigtOVH0e6eQukG33qCU5/e2MmWqDq5fXOb4wRzgW8KGPPUXfg0aR80v/+BV8/plr7D9yF//3P3yV6clp5g9oziy12TMzQXswwqsEbPUyqpWAUZoQ+yFT05MsnT9Hdc80tQbcSHO+49g0Z5c6PLHe58R4hVcfnaHf7tA1IGsWE03y5GKfJ688Q70KeyoRK6OEA9UqJ9c2CYCpVpPFdhclFMr3nLCZcdwdJZ2LxXA0Ii1ylAyp1AM6gxFJliCEohIFFGmKJ500CVCOM9zslohdLZ8dkbCSV7RD29jpmhqvdCmRZcFejp1gHHfpFrrADrjtSoGvD36p8KmFATkemJxqEDj/OekjrcOv0iJjZfkG+w7vo1K1PHfqWWaO7WXQ3SSoCOL2iMsvvMD42Cx3vu5ONrbWiRComofoa+J4SD2skMYdxuotVCDxZUy9UaHTLpCMWJidZKVzmf1hwN8/v8zJ56+ihSxxXlNuHPjZapVOseOFZ5iYn+XktevMnZhFC48nvvg41ZriO9/8Y1x44stMHjlKpj2UH3Ls2EHe/kPvIskz7n/FCYrlqyzH28hum1DmRFM19t57H9c+epoiXMM3Ay5eeIE77r6Lq5cWaQaK1VqEHh9nff00Ju/hBwHFoM+9r3s1zz93ka3NdawUu864bjrCuy072Sm3xppNdJGwvLy8W77dmh3dek20JrBCceedJ3jxxXNgdbleLBPjTQ4dPMAb3/BGnjr5DHfefQ/H7zpIf22Njt+9uW6EQkjNN/S2tIog9Hjjmx7GCMnYWJVACryKplKpvFzY+VZjJmUqJSgxj1Jt0nOi9QUuK7Ll0Kbn/i2uLMPRB9w/XrBTz3qeY1TK8h6+03fwKE0IhGRseoLO+qab4ZIKS4EfAAR832TGYq5oeJIglEx4AXoMjkzWOLl1jcMHZjm/eIOhrEMQcMfeWfbPV/n7SylPXx/y1NWTPHTHIa5dXUWnPqeuXOKOPXXe/PAb+du/+wyvfPWr2Ni6ii/qbG0s8fo3Pswn04z3/sh7+M+f+CJBb5tPfO089x6b4V5fsNyN+avnNpmse1RsjtU5++WQuw42OX+uT5pX+HI/o+aHnN5KiGoRyTCh3R9iLTRbTbbb2wSRMwNQiJLdbvB952gR+IrC4LhI0qXURVFglfNCI3A22xaLNGKXXuHKM2eF5GDvHGHdBtQ2R8pSK0makt/ELrZkS4x8xyzRLURR4lY31SxfKocr/YwkFYxFkiwSpG7QjSK36DBAaMhSmDu0l+HqOtvtDrPzc8hCkEcCkxuCSPKm172TPfcd4fkXniC0Hn7To93eJpA+olpFJH2O7D1CNQjp6x5qaxnby7BDTRBAd7GLTHJqlYx33BVyfjFk/0zAly4NSoednD9ujVMTlqsm5buCKqdExoHmFAfn5llbafOHv/uH/PhP/BOeevoJVm+cI1cZ040J9i4cZt+Ro2wtrrBncoobTz/HcJRy5xteib8ZsVZsUwmrZHkHmQ+ZaDYYbW7y7p/6Jb7wib9C6oC83ye8c4HJRpU0DHnV8QNUx6fwsIwdnGK826M/2CpjqMCWjkLj4+O02+2v0zcSQpCMYrIi59jRBS5cvOaaTcbsvn6rauipM2c5e+ZFVlfXdkv2nfd+5rN/y4+9+4eYnV3gwx/+ME+feuobUgOyLCn5U7c8/5JPZdC8/1/8G6yXIIHIC5Ay5eih46hv4ZDyspSAR//wNz8glUSW0UliUBYCCVJafPd9oaRAlOC8lRAJidjBOqSz4rM71kvOCxdPunawJ9z98ttyWktJirGWxLqRla7B4Us+aA3tkebF2IHpK/0Re0KYXRjnyPw0KxtdnrrRo9maZCMbcL0/5NnLm/T7OVvDlLAiSEeawxMhzyzFrPY79Dd7ZKZg38FDNFrTtJe3+PyTz9OoNxl2O8xMNXn85ItMhpYnT1/kO+87ytmr1x1vKfDpZjnDXNMd5WwVhoudguNNj++48zD9rQFPdVI2RhnSs+RaoHwPTxhQingUMzUzjclStBVIJfGlR1oUCOEhPYEpoDA5woAKFEp5IBXCWpIixxMexhqsdOU1ZZvf7mBApaCbFK49brHulDO+69wJv5xpvGXOSlm0djpHO1kyu1nU7lYAxG2n8LG7XkEQRuz4xHnCQ2pLNVLkaYrVklpV8tRXvoIxHkFtHKsTan4VhglpllCtT7Adb/PR//KXvPLBh4jzAWaU09eWZiVCpBmHjx0F36DTHJGP8Ipt4jQiGqTkWtOseUSiichSJvf63LW/wWi9YO+CohMbxusRb9Fu3GWf9NkGFtOY82vrBNpy5soSG90+9951lGMHj5GNYg4dPcK10y8yOTPDgSMHuL54kXw0YOBLTFUyU5H4XsRTX3mSYw+c4PjBQ2hTMHdwgXC8SdHrcezeB8BYJidr9C4+xfWtFZqNae593asYbi2xdPUKveUVXvXmh3n0M19CBNGuKSfcVBDYCUhBEOzKlkxMtDDAvulZ4iwhTYvbOJgHDx6k3+/zq7/6b9B5yqc/8zmMcfOTtwatbn/Ao1/+Cg8+/D088oXPYvU3H9x12/bWoW9LGPr88/f9An7FJwhCokpEJZIcOXbMrQsBd99977dJnhQWZQ0STWg1oQW/tNfxpEAoN9HvbJJcF04aSy4sRjkMSuryRDXOMNBgEEBm3BxVqi25dcGmMIJUQ1wY0lJa11iIpHTGmJm7MT8mmapo0jRGBTU+s5YQ5ZbHT63QMYpqdZwnbqywsp1iE02ajegO2njK0FQeVZHRnN/P2mgLRMbkbIthp8fHP/5ZHnv0a/hz0xycqbPVH7K1PWR7O6XdHbI5LJAqIIn7oDWm4tNNJeNBgCw01vcwGsJAsLYxQBNSaURYaalVPJSQeGjSJGOYugzIDwSbG+vEWQ5Wo1BoNEEYYhCkeYbwBJHvgfTACIqioMgN3aEDaxNT4PshgRUoVZZuCuDWiX5TDubq3cduyHfvA6U2s3u/0e653vr+m1mR5JstHSsFWZGjAkMgBUanGGAwGKALiVUjHvvSF1k4dpT6VJOoHiLw6Pc6pGQ0Gg20yYiigLf+8PdRiSTFsI8f+TSiKnmec/TIYYokxaiQuBiRxCsoJRgN2hgPxv0KNhHccUCz93Cdqco4k/sCHnhdE7OumOxlHOsXSCCgzPBlykG/Sih9Lm2v0QgqCARZVlBpVchtzrNffRx8TWO6SZbkiKJAak2rOcaeVpVYa66vXWPhwBQq3qTVnKLIh+R5TiNqYLI2G6urHL37DqKGZGrPDE1Rx0MTd29Q3zPP1MwYtT2TbF1f4U0P30+WF7Ra9d0SLU3TXcMBKSVZlu0GhvXtbeJhQk5Ot9OlUfN2s1pw0iVaW7I0JqxFrvFQFLcpXwJlyx90HOO9xJb96563tbu/dq5f//UPUB1z8sDSi/CVx6GjRzHWogKF8V4eyn7ZV+0OkF1GQitwrrjWOscJK8jLMGOMRXrOSdVoJ9ZVALm15NZiLEjrrJR04RZ/YSyZseRWMDKQFA5gzQpXPmRICgS5tmTl32mFxGjBg5FEBpKpKvhAIRV33TFHpxOj04RmJKl7gq7RzNUnkJ7g8EQTaQQTs7M8fupZsJLJSgUV1Gm3U8ZnZ1htL7Fy+RLVUJLLgq+ev8rGoEteq7G6vsbsvjkuL7dRXoiXjYiImQnheDOiJQVjYUQFQWp8/vqJZ1jZWKclBRhNI/CI8xJsxH0HTrbCUS0iz8cIw2iUUIkifA9MUaos+IooCpDC4Qlx0sfzRVk/W2ezXIkIPA9V2hApT3wdlrDj67bDObtVBM4tMl0usJ2yT968twuO73zmzYC2c3mepOVXyTNNmhlyo5GeosAj7a9y6cIVDhw6jo5TTAaD7U2UKMgtVOo1slFMMRpQ5D3Sds5H//L/4efe/8sgBLN7x1nYtx+DdsYJ6x3S3nX2RJJ6pY70fIRvGFCgfMmlizFf/ew6tYbPuad6DEZD7j2mePD+Bj9YreALibQQ+IIHgogxMkKbM1udoJ0PmazXSQkYdBNuXFpE1SpMTewnjYesbW0y2tigEDGm12VqbIZYhuyt17n/1Q9z4hUP4s2M4+kAXwZonZNlIfXxJlfOPI0nfcLGOFUVsn+6SiOT7Bmf5DX3PcRb3/k2ZudmaIiM733zfbzlrW8HKVxzCKc0CbfoLklBq16hXqlw5+ETVJI+x+amOLZ3AhFUbpMo8TzJ7/2HP6C7tg5SfEO8Sbq5Ij7wm/8rxTfLkgQoGbrg6EwgmRyf4F/8q39NfxBjI0O1GiEMHDl+iJHJXAzJvhEAdfv1skFpZ76zEJZYW3IhGGqNNILUlsYC1iO3kFrICktuDLmGgTHYQpBaQaxdwMmtJEGSAbG1ZCisUeTakSxz4ZQCUgGxdgPAxgNlyo6ShUzD0BSMhCQ2hl6smZ1ucGVjwHiomVWGSqXCibACVnOwWUGLIa2xiCwXNFsRGytrbBWCVq2CzSX9zVVik3K93WNmco72Zh+pIsaDOqbIeerKKmfOvsiV1TanLi8zUfUZWhihmKtXKUzG4jDmxJRPyxrmawFLheVIvYqIpllPNEVqCSpjlE1HhFCMRgmjOHeqCsoySjVpoanXGk67RigiP8CXglw7kLharRL5EVEUYrVFF7aMSwJhNNLzqQQ+O9phopQ8cRo8AmPdybpzsu2Ap8YWu4DljmnATjCSO9lWabkkMCVTxAn43XpF1ifzwfiR460R4KM598LX6MQxs80JhLRoqxjmKdWxOrl20GasFV49wFrBZL3F2JTlu9/xJj763/6CVrVOBYGQhjjP0Fhaqs3eBuikYNhNqAQCOYLJes01DGrwzvccZXNzgMksvS1Nc7rG3gMhDekRAAKHZzat4G4/4pj0+aEffSf/8qd/jNd+52Feef9xOsuLVCYjJmt1jj94D2kyYHD9DDSr5Ilm5sB+0iynriwTszNcuLYI0lBFkeebGJtTG5+DUGJ620xP74ckId9eZO/+Kvc//B6CcUmtViOaajJa6jExPcHr3/RONs+v8rmPfQqrzdcZf+6qWlowQnLfA/czPl3hLe/5cb7/f3w7F65tsDDdwLeO51SphHzgA7/Kh//433PXPUf57d/+rW/Ypf1Gc3C3XWWX90P/+T+hwgChLaHy+ZV/9+sEoYe2gkYwhrEF97/yOEpIQuvjSR8pJf63yL5enjxZdmsSa0v2tkRrSIUjUOYaTO7E/20hyAvItCvBrBYk2pIYQ2Hc+EhWFKTaoIV0myQv3ElqnJ6PLgw5xkkElGRKm7uSTykHqEklWDOSa8OMkJC2ydlo9zm/uM7Keo/5A2NAAlIw26jz2plJJvDoDzJGMuHqao/FOHFyGUnMVpbQHRZc39hkoR5xfW2Tp9a3SPwxJhs+R+ZadAaaug1oxzGhHnC5mzERelSkYSrymK1P0JKCQ40qQ+VztT2kEBl1qfjS+jYt32dMwuLWFko6Q8kwkHiexPcVYRC4Daxc4pPnOd1u24nqA2mhGQwGxHFMlhUl6Hkz07K+wpOKNCuI0wQrxS7g6Epn635ZvTvz5hZ0KWuinHaO76AqPCUIlCQIFWEkCQJFteJRq4ZUq1Va9Trj9YipRpPJZvP2NWMyEp1DXuB7EcJmfP7L/x+11hRepUKCk0oOpUeoJKNkSFFk1GoVTDrAZDHjrQZBw8dkIJRmq91GCEsqJFlhSJKcPU2I4mWKbkpU8cB66LzA8zz6w02aNU2yNeLMyQ3W1yXGJCxeH4Fski1nSGEIlXQ2U4WhriV7Edx79zGeefIZAhMQWJ+zz51j+thh6kgWXv1K2hs3iJRlc5Sycv0a29sdGmNN6pM1zjz+OUajhImxEGUh64+oVabcgHGhSId9pF9na9THkhGMNWjMz3HpqU8ThU2qY1NE2iOs1dm3Z47llVUeeOU4gzxB7YC25bUDYtcqVQ4fmGc0TBitraBlxle//AVWbnTZN1Hh6vI2uTT8we//73zoQ/8HTz5xkvf9/L8Dv8Kv/E//89eRJMEFu5cjRGIdMnn9yjK/9x//A9oa0tx1VD0svq/wlOXA/oPEo8RJHJdTIZ7nfUsi0ssbBxhIS7p6bg1WG5QRZGVHRpeRWzlaHbk2yFLYXngSaw1YbraOS/b3Dghulds4GeV4RBmgPWsRhl1hez9w3nOegJG17MVysAnXNg2jwqALy5NtjRckTImcZqXGVqfLHbN1TJLRH7l6sIgLoopiGGtSnaLCiPlGg2vbHRI8tlY7LEw0mAnrpJni81eWOT4/SyC6XOxmTNQDrg9GPDg/xcZWj9CAyHNaVY+pw3up6IyVwZD5us9rp6b4fy+uUvclQ2HJjCzBRMf78ASglNOQKgooux81P8QIiMIGw8E2g+EI31dI6eGHijgeUtgUUbhSWXlO80h5gonqOMN0RJGnzjY79JxCAzeBSCUkQngIJfCFdOqiSrkmhu8jzY4SojOyVEo57NC6BSUkeMK97pVM4+X17ZtrpkgJdISVHrWK5fOf/zIn7rkf1Tf04xisR61WIR728fwxfM+jMAk291BexKHDC/Q6fbaHmtlKgyRPmNw3h/ICsqQg8GPGxIDO5iJqJNnuaObJmG7UaVY9bqzHjKmI6VoFsVcx6AuubW2SbhXkI8nFC1eYs6AKXNbqlyUqlmkvIri4hF2YJkn7rJw/j2xOUSRdjhw8TEWnyChCyxBkj/GxKSrTIbVAstFPmJw9QHNqD9XKtiO1Jn1URVCr1Xjm0U8wOdMgR7pOs1DEVQ+/t4ZszjG1/z7yusSLJ9GVmCy3zB86RK1iyDlPLfIZpiOUkGhriDyfVBusMFxZ3QCds7BvjnY64stfeJI3vuNNLK72OTg7zXc89Hre/4u/fNve/re/+lsIKZFCfJ1K5Xvf+17+9m//9jb9pNu6fRKmxzyeeeokc+vTgOSXfukXqdVCAj9CSTh4cB9GekgPhBYY6w4Ma83N6v/bCkplEHXaXk6i1srSzcRadmhF4MwjZYllSE/sdmxkKZlhoez03ET5dW52BA53X1e4CBV4LmhFWKwnCbQll4LACiqe5NGeh1SpgymVwfcVj691mW1U2RsJBjrjFScOcubMRfaO+WwMcjKpKKzEBgFF6vzu10YJaa5JLYRhyCCJWU9yzp05w73jNZ6/vERUH2Na5NR1TqvR4GvXN5iuSiZDjyEFIk3ZvLFGMDdH5CnunWnw9EYboXzwBHmSl10Qu8uWTnFgtMDxTrQtnL1SlhJ4kt5wiyTOGKtXXbCq1dCFJZMDdKbxpEcgHYXAD3wKIx1A7vsEviKUAYFfTsl7Hkjp3IlReNKglEKVGZXyPCqeQqkdxrBFCc8RWYVbuJ6QCM8RPT0h8ZXnZIsR8NzF3TWjtaZoBlx77ilqtQr7Dp1A5VCEgqRbMN2K6A66VKMaFQE6UExUZvCbERUZkKYjLBm1wkdHCj8M6HZGNCc8JDnZsE0oU/obHXpdgdcvSJsVepUeZqRpjkka0zWSgWX24DgXznUItWGiMc5GkLJ4oc8eVYEwQFktPEkaAAAgAElEQVSQ2k0VODKpYG8lYntqL8Pz53jNd7+KR0+9gJ7bx9h0iwcOPoQMQm6cf5EgTxmanH37j9Jvt6k2xjh+7yu5dPZ5Dh6aJwh9sBV0kdIfdNkzsw/hKwrTx8sTwom9cOY80yceZn35RaYWjjDs9igakrQIUCKBYZfV5Q4/+H0P8N8//RQ/8I/ezic/+XnwJXmhqY3XOTw1w9lrl4i8gI1Byne/9rsY9ydYW1smFpBLxcc+9ndfRyHYAafNbZQPd/35n/85Sil830drzcLCAleuXNl9XRiYnD7M237graRJzq/9zq9TSSKkMghZcOzYUayReNIijMIIdzBqhyGUXeBvMyhJAUpJRGGwJcnRkfKcAoBwaxbjxJOILGhhyKwtaQI31QCstU6OAtehcT8tnhWkpYSrLEXe8J3QWFVpfCWxwiADQWgFca4ZJCEnh7lzRPHUzS9VSVr1JiujASsjQaMasrfeQMZtWvNVRoXk6bUec5FiKANsPkDJiGboY3VA1YcxIVnVMdpCFlSZqhcEnmVUQFMoGhXwbUS7SLFGorTm9OaAt7ziII9f2ea+8YBTax1ujDSRUsRZqUvuCQrtFsHOAgk8J74vpcRqgfKUcxLBUomq1PwQXR4sSvoMkx4Cj0oQuPk2dtjzAulLBApFQW4FXqAgL1iYbuyS1QLPdziQ5+GXxEqlFKGSWE8SCoGQnuNCCYlR7lDxhNPullLiSd8ZP6DK0u/2Y896VRZPP8P41LT7f+URJh2QFJpWo06v10MQIXRBgsvW9ixMEuc5QgZUxiLyOEPUqkRBhCkE9aqm5ddYZ4gshmx2N8ljw1gg2DI5vX7MZGDY6lp84bCXmYmQyy+sIUTE3N4pOhsJQVLQTwK8isPKcgTSUa8w2pALQZBp7OYqg6TDq975Vv7hS48zaFVp+h6ra1eIqtPkusQyF/YysWcv5xcXqVZCpK945XfcR280Ik/6jqWfK8JAY2WM79coRgmFETRaYwxSw1iqMUVKvzeiPh7R70vm5ue4eOEMzZkG+lSbuUoVUcDrX/sa/uZTn8bLnV6+ZzXXFlepSR8hFH5ecPL8SfqjDosrGwg/YPXG+u7w9K3Xrfyll5oI3DqILYTgodd/921ByQq4tHyVoAJ7WvuQNwr6cYrOc46fOFrKrDj6iJAWD+WSGOnW6Le6XjYoRZ4Abch8Z5HkiTI1khbf3JzD0VqjcZ05oQ2+XzrkWotUisIajBWIEnCV1lIKAGCFQFrrOjSFJlSKUGuU7zAPbZ2ziSosQ+tMFj/RlvyziTp/tpZgdIIXRg5H0YI4HhLUQuy2z/LKOrPzexgozVLHMFsZclfNpyZzVoTh/madC7FibmKcJ1bWWB3AnbN1Xlffw1dX1zl7Y4uaEswECZaAWPjMT3vYULK1YZkZCzm91kNWBJ+9doPr7QQD+NIjUD6NRp317TZKiVI+pHDpt9YlPCCJkxwhnA52KCArUkLPZ7PXoRKGaCOoRyH9QZskTQmjiEynKKWIlI8xUBQGIwqUDTE2Z5Sl5LlmT7PO9HiL8YkGSoBSPp5wIPutmIHvh0iRYwnwlEUqNzDpCYMlQCo3l4f1SmsmBw4r4X0dKHryyUc4eHTB4UTVFskwdWB4rhmJhFo0iUEj0gLrpUzM7GW712OmOY4pLEWS4kUh1Xodnbmuoy4Kljs9QiEw+QTjs008/wrxDc3RIzWMtMh6HTFK8DJBb6OHjTV5YemNRphYEOSCXidGK0lHhGAFA2PwhUAqiy8CrMgZ86B2/QbsmaE1O8/bfuAdPPbJx7AVie4XGDMkJ+Pw4cNUGhOMtxp4nk8QZETj+6ig6Q6H6LwgqDQYJQMoIDcZigremGRmbpbt9TMsfOd7WT39f9Gc/05max7LvYLNa0/S6x1gT63F+cVF9h4ImJveT/DfFY8/9igf++iH+Pl3vZ93/fD/wLWVDa52N+iubJCiGZ+Y4rmTJ+kayfZ25xsC1kKAEB7/6G2v5rsffojf+M0PMhy5slpKZ5VmcXv3Pe/+UfbP7aU76t3+GRZ+9md+gp977/v5yH/9U84uL3NofB8HFhZ2TRCkijBlx81hNXJ37tJ8C/+4l8+jABlKAmEINRjhFqcxO1lNSeDynImksQXW9/FwnR8lFLnV7jUMaEfPy0vJE1uWMgWCItUgBXHu5FL9zEXbQDpQ3bcCXcAWPvdGmv/SG4AUBDYsy0UwZfl4pNLiEut84cIKE+Mpb7vnGPPdDpvLbe6utdk2Eav9mGA65MT4GO1+nzCqUYxiPrfU5d6xEX4geKBR4zULC/zXM5c46PtM1DzMwNA2AxIj+OLVmFo9YLUzKtnSpbCacC62STwsWdGWXOcodXPQVSCR1hAGHlnuXCyS2EVqYws8pchyQ2NsjNFgSKoLhPTQRUZeGGr1OlHgM4xHFAbCMCLwJHHsAkZaDNlOPKIoYrzeIPB8vEDt4kAYdxAIYZ2ag6w6mVuvHE8oS01bYk7YvDzlJAiFKkdGdvSZdq6Dx49j4ozQt2xvrVOtVunFfUKvRrRj4y0E/piHygLGImcSEOcF060615dvMIwF45MzZKMBDAUirGFHMVmWEzYibL5JtjViak+VUVszjCEJYgKl6W2neFFA6IVgagwH60wIyx33znL5Ux32jPn0GzW2uyNCKyiUR2QVQ5sjgKqV3O0JziZD+ptL+HnKPa96BZFWaHJWFpeYmGkSjo0RjVVYurxEu71EEDSppgWxLfCVR3P+EGl7g6Ia4IsqWSHwAkk1rDDKR/STKo2pmHrrTuYOLRBLQ//aaZJOm60bBWOvupdR7wa5Nw5+lcTkLL1wngsvLnH0lXOMHZlhn+9TXIvZ1wp4xSvu4fnz57m80d3tyn2jy81HFrz17W8CUeGeO+/i1POnydOMRqPJ+37mn/BH//GPGFLw1x/9b3iex5vf/NbbeLMW+OAH/wIpJT/1kz/L3Xed4MCP/SRbG9u0JppQ9wmMLru2lAeZLEm9AvMSXfevizkv92LgWQJlHGEyEPjeTXkRLR3OhFKkGhINiRX0C81QCwYGNrSlXwiGmaSXKbqZYCu1tBNLJ5e0U9jMYSOzbBWC9RRupJbVDFYSxWIMV0ZwfQCX+4oLI8FaP+OMVdRMSUps1REGTKpRheDiRodY59y1sI/ntnIeO7dEqguiSsCxg5P4niSoVHnNsXmaEo5MK/btm+L81gBlcuaqDURQYW9Y5cW1Hh984nkCKdnMY073enRtlWsdQZLGVKoBq/0Yi3IzbMpNxxvtgMFCO34WYkcf+ebDsOUEtzEG35P4ntzF4KT0UJ6HrwKGwyGZ0VQDhxUV2lko9eMBgyxzygtoknxIt9t2IrWBjy8CsiRlaaNPEEQ0G3VajSq1SkQ1CqlW3c9KGFGphIRhSBQFBJ4iCFwwC0LPucF44AcBQegRhJJAaZRnS+Ls7e3dQCjiTJNpQas1Tme7QxCFTpdLKvwAGo0GlVqN+SNHiOOYJI6JRwPOXb7OIM5pTTXJ85S8SNnuboHQ7N87TzhRJTIe0vOZ3F9lZnqMetVy8HCFRsUnkoJKqFA1j6w35Nr6FmqgkM0qp55rMz/fRNYFquo0gFLpURhNbg1yR4ZHShrSp+h0SDp91rdWCYocXYwY9ntUg4B61MAUOaYoSAabTE+PkaaCON7CU86RxFhLtdkEESGrYxgFoYpQ1SqDvqA1NoHQGdVak7jdo1YNSOItTJ4xPlZnYmKKsVaT9Usdqt4E98zsZ3V9ie7qCsdnZqA74rlTT7C4dYmZ6b3s2TNNur5MNVDfkHu0u+4s/O7v/DpGhNTGGnz/u76Hu+8+zK/92i9QrUbc/8oH+LGf/lk86UjPRWH49Gc+xfd+3ztvCWwKKQKn+GHhyosXwVekhWY4HDIa9dE785jSZd07qqbWavxvkQu97KsDqzCpBemGPcHJkhjrRL70zhyUcaJtxhiMVBS5oZCybO9LMlFQaEGuRZkluU1ZGElsJIWEwjibSiHc/JPEmVdqITHaIeC5UFgVcGNYICS0KnX6vTZG+RSmIJROZ+fk8ioPHj5I0hpDF5KFhROcOvVVLq22WU49vv/1r0NvbjDTzHj62UucXo+phD5JkrEy6rM8suwkAGNC0BkOMBq0VBzsrPA7//YX+fRjn+avvnLRaVlb7RQ5laBaCSm0pupX6Cd9BHIXVCx9Ot3mVYosK8oOpizvOYlR31e45pwizy3WUxTCkI5iLBJtJdYWjEYjR14sP1soiS0ZupS0jcXtHkiFH0oC6VMojS8khXXIkLUWLQSB52YblXIdO6zDAgosgVRIBMaTyHJo2OFFmZu9u+Xajg1SSCp+yNp6h2qlhhI+whRMz01hpEerXmMYp6yvrzM/02JlK0EIw/TsHkZZH+X5dDodomqNaLJKtRZxaekK9eoYlUaV8889ztG9EYPegEorxE9TCHyQlrF6SKJ9hgNQWcpAjdDbNeqpJpySbG8bemmH2K+RJgV7PY/EOK6XLx0ZOEAwZyxrj3yRbjXhjtd8D3lhqVhD0llDT43T722T55rO9hpkkJicIIT22iqVsTGsFxLIkEBCJWhBnmIY0Ru2uf7MWRp79jE5NUO9USdojDHKDUrlNJtzHLnzIbZWLjNKR5w98wSDYcY/fd/3cm5xk2a14Nn2NsPnn2TPwWP0X7zIcHWV/K67qe89Rvz82jfdzztGApkO+bPf/zBXr17fXZv33fcgq6tr/Nw/fz+9Xu8WSolbsG9+45v4zCc/Q64LrNXokjSrgaHRhLUQrwjITKnxlBiqrTrSd4E/8D20dtSenQHybysorQ0cSCuULLW1dwTdHGhrSyVDa4VzOpHKESm1G//MrCv1cqHIrXR8Jev0lwsDWEVRMjS1sBjr5uGU8TDoMgBaV8qkbrNFgXCtTCmJSweKHXdepQI0hnSU88iZs9wxMclGPuK9f/CX/Na7X890qFgcWGZmG3zi2VP8Lw/9Y/7or5+kX/fQcU4UBRRFQV5YplstplpNup0t5moVLq1v8WYpOFpYBp2U2Ucv0TWFG0wu5VuMFYziFE8qOlmf6Ylx1rfbYB3InOvCDclaTW7B9z1kkSOVJM8LcqvQaYanS9lRm7kuiBQUcUYYVoiTBLD4KsDzwfOqgPO1U8oHMucWYV1XqTcc8OT5S7zh7hME4xERLiBJKxHSY8cBVwqQUu1mb0Lc9O4z0s0setJ5kzkyghOseynPxctykt6AvNagVnXLq8g1RhQIWcUjIckyhsM+0+Pj9EYj9jabhONNht02ygsoRolbN4kh8jU3VrYIg4BmKEnCAdN7F8hNxw2vViW+p+n2U2phwPZWTOFnbCc5C/tbPP+CQhvB1Z5hJnKKnBUs54ZDjimfBOPcfIWbw5TaMvItB8IxXnhxkeCucXqbm1jPstrbYt93PMAwADkaIHxFhiHyA2y/QzKCOM2wwRDdXmZifAGtNe2NCzQn5thev8zm4mWmDh7C5ppMFlglIdaO9pJmNMZbyLpgsLJO1WTceedD9PU6H/rDj/Dmd70DvBo5KY1ohoXj+2lVBCtXrvDI5x7lH77yBOw4GttbJjFueUZpmvJrv/rvbnvOAB/5yEew1rpGxEuyXyklH/zgH5VKErf7/e189ky1zsp6j0og8aOIzGhCbbGeLcdiHI2k0BrvW5havmxQWs9cyzlLnUBzboWbU8MJtrlC0wWSwrqxEmshN8pxj2yp1W1ddNLWmU0aLZ2QYZkuayyyMEBpzyRu6vo4nSaH+IuSaazKTMD3QihScgNCBqSFJs8ciBz6FS61u1QCQWQk7V6OTXL2+yHNcJzzqxt87oWzNFp1znX6TkYlyfB9hf//k/bm0ZJdd33vZ0/nnJrrzlNP6m6ppVa3RssYDwEPkGAMmBDihwkQk2AceMwvODEYbGMIjyEBHg+bOQQQ8IgxNp6NwZbAtmQNVkvqllo9D/f2nW/dms60984fu+7VZMvrhbNWr15ddav61ql9fue3v7/voCVrnS1WtrfAwcxWj83XfB2P3PcP5FlJsm+a7xEWpMYKB9ZTS2L6aaD/ly6YWa1ubNKu14LoEY9LR18qAmcdTkhircmtIxoZXwnCCD7gOCPqhLW78c/aSGzpsS5DlFXyfECWFxgThUWIo7R5SAXxjsFgwPL6Fj1vmYZgTyJ3Fqrf9V2WWo4wsWf+CXe02CtKtTMxDa4OjhH37DmJh854Bt0hSWOI1g5tDFIamu0muStpRIb+MGSbrW520NIzXq/S7/eJvKWznWISRaUWM9YaY23xCp6StmnjkNz39w+RrQ64/QaDrBk2LzluOjRGmww38AhZEMmEYjDk6mKXXjpgkEqSqEZL1WjsjTj10CpWF+RCh8mv9EQjwzsvw5QXBQuVmLF4iquPn6J29CBIS9HrEJcGVa2xvbWF8GFwUfa7pM5ihwXdMqWmHIP+NlG9QWfjAs2pvUxNz9Jdu8Lq5WtMzYzBMIeqI88HrNd6yAgq7YT1xQsUJWjleenrvp4Ljz/Fp/72BCBZK3tk6w1e+oZ/zuknHmJuosAVE9xz7ymkeo4536jTMcZQluWzJr/Bg/1pJ0rn3K4lynO1bFJKzp07hzFmV2v33BCC1cVrqGoLIYLA1wEmTUmSCIGktD5YGCn5vFiu5x4v6BLwrnf//DtWClhDsZJL1qxhrVRsOMFaodgsBVtWslbCRq7pFJKN0tPxMCw8vdLTc46yFAwJWrfMhRG/3+HteJC7vsAipJgI0CKwlDUhmjqSnnpSw+lgk9tPh6S5xeExQoBwows5mMyXomQsiujagqkoYn99nI+deoI7jx2iMBHnLl3g/Z89ydu/5zV84OGnwEsiA0XhkDv7XwcKTQ+QFy/STHPujyN+4JP3kFsbfoBRCmxR4BMBJexsx7z3pHlBXlqSOAp+SW5Er4gUsdaULniYWx/4RAqHk0EIbVREaQukECRxjESRlmkgvJUC5yzOhbRZreQofdgGfGQ0si9dQSWJefXxm6k1EjweozSxVERS4ZWkIlTItNfhnAdX0UCElUqFG4gWREKHRUWQnhitMFLyV5++f3fN7J2eIht0aI+1QRmmG+M4V1CtTbC2eR5KjUAhtKRWrVBpT4BUeCcxcURrYgpPSWQd650tnBI0GlU20w3y7jWun60w2+gTRxGxMhTDlNgp6sqRS0FtpkGe9vBas7lUYirg8oLSaeYOxZx9eJ3lwQCMYr+sUHhHgScS4XwKKYgLRyQU40JT3eziV3qsbvSIooxenrJy6QJT+65jbekSZBZXpiTj05Quo8yKsL7rkwgVcf7MKchSsryDLKCT9pmenUdbiTVVcALrhhhfQNFh740vo+zlFHaD1c0OrD/Fi7/mdRy8cQ+/+p4/YnVxm0MLMZ978PMsLw+Zn54lac5x21e/gs/c+7ldVwAhBK9+9au5fPkyb3rTm3j44Yd3O5zgsRRu/DsF6ZnWJTuv373RjKRIC3v2cfjQAQ4dOszly5d3n3/7z/4Mb//Zd/D6b37tyOpI4JGBQqQgNmYkEA9NjlBw5IabvqxLwAt2Sktp6ExK74I3N+Wu+kYKsUugDBTAYH+ADEzgnQ8vvUMqiWbnLm1RIgCNgW3MaAsRLuaAvRh2eBVKyMDzwZBEkOceV5Z4p/DkCKExcYQbDPFeBltXZZhUhpXhgFkNb7zrNsxYwtlHPHf/4ymO71lhbm6BBy6t8/dfPEMridge5AhpQJRBBCvCZ7CjmKLfl475N7yOd9/9Iewzz5qXgekuoKUS0qonEYJunlOOPg/e0+sN8KMvW44A4syWNCp1esNtJILSl4EfZCEXUNg0GMQrybAoEViEkJSFCxiWVEgZhW2VDIr+SMdYWyB14IDlOWx2+2wPM5qtBBOMqXAjTVxEkC8IpahIReEskdKjDnb0XfsQ3eSVJHGQG0NU+BEe9pztm3ZsFznXSUPfOzZsSpEOqVZ7jMdjDIsht996G2U6xEuFcH2kM8FmOZGIXo/t1VWywjExuxfpM6baNS6cOYvLN8j9kMRH5Cql2ZDML0zQijzzkw3Wt7fY2BogC0PaydizHz5/rsRbqOge2XCcq8OUCMFWmfNFu8mdUT3YwAgQUqK8wGmBFZZIeIz3tLRgZnGD4aFxKnmF5aWTnH3gPqrj0/T9U0w0D7D0xBdozRxkfeMaL33Nd3P18U8ysAnV8QVWTj5ItrjO0Ruvx/QFZ6+eZO7gXrKNLdJmi7npNp2r57nuhqNcefAekhb01obcdtNL6ec9NlYvUffrZAPoDjP+8tMXePt//vdMHjjC2//ju1jYv4+TJ0/vTkK11nz0Q3/Jpcvnueslx/mln/915hbmWVpaeh4AvkOo/HKe3LBTuCA2njd/93fxlh/9id3n9x05zHVH9hJpRWwietkAoSAaJeB4IZBK44RHE7aMXwlT+oouATueR0KAQRApSKQiFpJYSKLR3xVliIQiQRFJQaIV0kASK7SRJJHERJBoRaIFsQrkt3okqEeKqlbUlKBmJDUlqGpFXevweGyIDeioihXhhDUrEa1KjWoUk5cFltCFJFoxE0u2swH7Y8k3Hj/M1GyFX/v4/ZhcMugMaI41+YcTT5HomHtOnmcwLAOly1vqSUyzXiGKQtegVKCbbxbwY3d/BIvZvQ6FEETSk0SSRrXCLZOTYEvWh0NsOeoCJUQm2iUfhkUj8QSNWS/t06zWEE4QqQhG27dEh/a6yC3DNLhQbqeDYF3i/EguEgpLUWYM05yyCDwn5wV+p433kqJ0dNIUrUPXs8Mv01qP4oMMWitQEq0VRiukMWitiZRGmEC2lAIKHRa9isNrlHk2PpCWlmNHbmK5l1Kt18i7W8wuzOO1J46q1NrjZP0emXXEiWRtswfVBiY2rFxbY7HTxZuYJIlpTjSo1SNOPPoFSiuYbM+xcP0041OS6/a1MInApRlal3QGPerVGq3xGlZoahXJ8rBO1pdsFJAVCU+cWkIIwcAIXOFZipo8mqUoa1FCkDpH11sK4fEu4KQOSVMbbmrU2PrHU6hBiY4dS/f/LZcf/AjV7joHDt3A4f23UAyH7J2Z4cR9n2B9K8OVfQZrm/SsZm3gWV65iogLICcddJGxITGCohwws/8wqCoH73wZg8GAertGMj6OK4foSowdGiyKy1eu8S3f+LX88R9/mN/8rd9hq9fl5MnTWFvgfdj2f9O/+DqWV5ZwvsrB2Ql+5Cd+hKWlq19S57ZzfClh7s4RgkMC3nRuZe1Zz40lDQptsYVHKUslTohNhDNxaEoKQg6zCniNURol/wnTNyEExguUUHixoxZ3aKlxwu3aYACjTsoTrFIUBknky2DyJg0WixIjb+6RBUOsFCXBJM75AKZKwr4T60YpDmH6Y71nuyxRHsajCmtpP1zkTlBaR6xjjPAkCtaHGTfNjLOvDgcO7KWfeobZkBg4NjnNU5d6dPphknW5CPo8FSmiyFDxgp4tyPIQS0QRHDFHZhHEkaQoZfj8PpzwMaHJioJmzfDi8Sn+/tryrtJeS001MvRyG/hDhcXane2hJ0pCemmr1WBtq4sUYTuYlcHHSEcGawsiZSitROMpZShYzo0KkwVtJJUkpj9IUdIjhA6AtgnF8cziNW7aM01ciXAyEB/1iKogtBoFCQRNVqBaWYwM5EgtoJSh2y28R3mPDOST5y10YSzrboBUlka9QquxL/gg6Sq2zLj+yFFEVtJJO9ihZ3xihry3xvrGFs5DLUkw9Sr1apP7P/dZrt8zx1rXMtlsoGo1NrqeRGzDWp9mvUZebDM1OUt3uU9ZTSgRVBqO9c06W2ub3HS8zdb5Pnk6pO8C3cIgSJXl0I01/uLBAV8dS64WBS2lqTgovMXLoFGLLAhb4pzntrjCyicfoHzNEb7+LW9k6aklTNTDFyXzh/bT6LXZWrvGdvdxpK1Qqx2k6K2ztbzE5aVtVi4qmgr2HtpHJbcUgy6JitF+iJ9P2Fha4+rVLxDLGdJeh6Vz99FeuJVqs8WVc4+zUIv4xjf8KyYWGvzVxz4NixFJFPFH//23+ODfvI87bnk5e/fN8If/4y/5N9/9f6Lx3P2H7+XXf/UdIOWu9OuZQPXOv1+oYAFI6fi19/4S3/kvv+9ZViiPPPow20sZhw4f4fvf/AP811//DZRURCLBGM9AWNrB2h1GNYJ/yvQtGvn8QAA4tQTvNEqOPLkFuFFEjxIjj2cRxJ1eCIyIUSIAqUqa8HNeIpXf3XKoUdbYDt9LG7ULtEoxunsjyHIHuaVfZqgIbA51bejnGVIEF4JaFHNjO+HTlza4bc8ErVqVvLfFemZpRQk961h3li888RRCSxpJRKefBsGdddSkoVGpsLq8MjrtYlQ/d0V+FEW5GworCFHj9YpC5o6IFB0VxDL4V+cOnC9wKCITxLfShu2gFAKEwZaetMixvQGVxIRJZ1niXHjNsB/aYaUURuvR1kyBA1/6sBWMFLHSDIbDEWMXKkLTcylaGoyKOH3+Cp1jRxhPNLHQiCiYznnviWWYohkZ8DprQ0GSCKSWOGdHIlIxsjoeMfNHoYTPPCq6SXfYo15t0k+HSHTQQAnF+PQe0mGfKNIUXpIIh3eWtU4XIQ1V7THVBOEsDz7wBcYbFc5euMJ0cxwTK2xuqVYSWr6GEJ6sl1NtVeiTUwhBOhigvKK7JVjrrLLYEdjC0qhkFKlkpl1h3FTZ9B7ahj17erx8cYb1jS1akaLmPXJkPawJ8KCQIS0YDY3SkWH5xh/4CT5x9+/SmB5nau8RtILVrRVAM94eZ2ryZZx7+LP0tpcxWnHkxa/iI7/0XqSEiSjh0nLBd3//fjaXBqhaxDCzYCXWSAZXlkkWFqgm02xvFXRWL7FyRTG0GYcPTpPElvHqNBKFdTnf9q2vp7N2jTuOHcPonO/6t28mywMcYpKEN3zv94eufPQd/+K738lbf+pn8Hi+8VWv5MOf+syzcLEHH+QAACAASURBVKhGo8H29rMZ3BAS/vo9/Tz7lKCBgpmp/Tx15lQwIvQlVmTkOSS6gvBiVBQDXKO+QsTSV5CZ7LTmgV2tpUQiUCPbVak8koBRKKVGie1hdCy1QI/U8FIJlNRIJRDowMORECuDF2C0xAmJUaPJk45AlEQmQSqwpWc7Lbj25AWchbqJqJiUTpajvCe3lhltmKsZjky3OHz9Ae6+92F+5GsP86KDx7nn0lUW6jH9POfM2oBcQaxiOn2LAkqvaSeGQ+NVNoaD3dO+cxKl3Ln2BNU4op9mgaUufIiu0VB3iuv3THNtc5v6ShfrPXmah05RaLSG7jDHKEXhHY1qlcLlCCdAg1YG7wzD4WB3dFqWEhVptIBqZChKF8z0RkJBP9J5UXj6riA2BluEVJOUAi0V1klwJUsbHS6vbtAeq6IRaDHSDGqJ1IHnNRQQOxncK0eRuE4JpJMjTaJEluFOZ3SwyfXPYefaLCNPt4lqY4y1xthaXcYlVZJmm7iiiWSFskyZjAwXrl5kUFhiE9GuKs5evsb4xIAyK5meGEeWwIQAaShFGET0U+j3B0zLAqkjZlrj2K0elckmg+6ALLd084z5pEr9Js3KhS3Ga23qekhzvEahBZW+5eBCnce+uEo9gvsna3z7dsa2yqiUBkvAEo2Q4b5kA5bXdxk1r7n/jT/A0nUHmGlXmZ27nqsXnkA2KmjtUdUq250VfH+NzrUVVtYbfOSzX6RSibg2dCwszPI1L7mOv37fpzl69AB7xT4mD95Cd/08WxeeIqlU6GxfQukZDt94jC98+gN0N1dZXS+J8jWiwvHW//zzI+AY3v+BD/M1r7iDsVabf/eDPxXW6egrGQ6HuwEC77v7D7h67SoPPfQEUsG//85v5cbb7uLDf/f34edHsEi//6UjtYWH73vT9z7v8UqlQivWvPZ1r6UxMUSbCmXZpSINRviRbnJEP5CEMMuv0JW9YFGqxQYjJE4KjAiFJxptHUSkR7ltYnesrFTwB5KECY6MNEoQHP6MREodEhMUREqjIxOKmQiKd6FACh0eG7HHg2hXMUxLksTwgXsf4uJGGWQq3pKnJXsmWuSZ5fhcm7k9M9jc8i+PHuTE1SEqusK5s1d51bE5Pv7oRVaynPlWg5XtPo4S5yWHZycQRZ9s0GNte4gRwaol0YrcWpwXtKoxnUGBKIrRdAGMECjrqYuYVZXT6w65sJmSaMMg66GlCr7kowXUijUoxUa/T1FYxhoN+llKVhYjb+00XNgOjDFhq+sd2kQUHnSUhMyu0qKUwERqxBcDSodTjCZZQQ5kR5woLxXCeu478SSHZ1rE42OjLZgMoLZzYbuNwAs/AqAJPlaOMIHDIR14gmjX+SAHei5wWvgu1UobOcKyxtrTTLZncIlFK1haukCRpfQGQ4QQJKZO4XOWO11iXWFQlqTrazQnphGjdaOKEitiSiSJqeDG9nDm6iPsUQ3OrKxzeL5NNnSUQrC6nBE1YlKRMdOOSFybar1g6eIQWYnp9XLG90zwsfuucKonQHRouR6PTcZ8fyopcdRG/29poSQAs75w5DJC5DnX0pRk8TRXT65Rxk1mDh4gUQrhPCotqTQWSCYm0YPTVOs9hPa846d/nN/53T/mxKVlvnhtDd/tcej2O0hqbaoqZmm7i1N9cjMBg2VKBiw/tsRErYnNtzi05zibfhrbWAg7FBu6oR//iR+mXhnnP77rFxDSIH1IXXza6D9gOYsb12g2m/z+f/8jXnLXHczNHERK+M3f/FXe+TO/zur6JeBLG7xprUMunXt+MRlmKW9+8w/ywz/0o3zyI5/h9a9/Yyg8QuGlI2omIwoCKKKgUnoB/OorFqW5sUYg1ekd0FdRMQFPUkaHKdqoKKlRsYmlDrFKUmJM6IR2ipkDIq0RKmw3lFIoE5TnKtHBhkMEuv+O0ZQXgu1en8cuPcWFi1epNupo6xlkKdVYYyJB3zv+xbE5bliYoV5rceb8Gb7hFbfyh397P396zwm20pT4nMXFAls6OqlHuhLpBVo49tQNzrU5Opvgzy6TdTJMWTIsRpG/3o/4G5aBk8GipQzhCdVYMl6PEL2SWr3C8rllpqoRq75Ct8x345I8oCKN85ZWXKUUnq1el8yV1Go1tra2g8pfBv2ZUoJIhq1t4RxRHJPnA3KbI3bidna/KY9QO1KWAq1D8IBWKvg0CY0QlguLi/zZ39/H6152J4f2zmGMCextnk6hQDhc4ZHCIUdzEOttoG2M/NjxYof0EGgYzzhK32ZivIlwOTGgGzGyKalEiixPyYoMO+jSbE8QSclTpx5janY/uQuRWZcuLnJw316s9rg0J4livDGUeUFVC7DgXYWxxjTNqiXr5QxKG9jtmWSjFyaWvY6iTLcRTqBVncaYQk9HdNcLeqfXWesOd6BLutKzvTHgnINbxieR3lG6EoUCJ5AocmXpOss6npvxbN5xPWU7w9EF6xhWHXVhWO1uURMFhYmp1ls0Fxb4saP/jFNPPsUNtx3kpS9/BY25GZJaxJVHTlFSIxeWJBpj+tZvprd1ke5GihuWrG2cw1lFbiLs+jKVdoVf/vXfeEY8luA97/lD1tY2gsDalig0BeUObMvCdJtf+5VfZm17g1q9yY2Hr+O+hx/hxKnH+Y1f+zXq421e+rIX84EPXhoVsecXni8dNjk6Rv5bkwcPMFaFwgpq9TaFFUjtaSaBp7cjyA2Wyv8ETGlhbhypTbBJ0BqkIFahKxLKkAgV7Ei0IcIFgacyGAcyfpqQpXwYDRpp0NohpB5NfHTgImmD1DtWqwq3u9hDzpxSihv27KHbtawNz7PSy6lVBMYZsrJgLjLcsjBNPD7NlTNP8nUvvQOhFF99/QEevbxCMzFUohqJK+gnBba0VKox3V7OvqkGUkJV5zTaM6TlNVLpqEjJEEczUkTSMCwympWI7SxnMolp4BkO4daxiEYiOHrkRhCOUiim6oZrvS4VKSlH3kVulN1F7vDaU1UGKWOKToetTp/xRiuAv2UoykaE/HUVCSItyNLBbnx6MUqp8D5M8oIlhNudkljnEM7iVYGUEdK7MKETmpXlLf7hwZMIU2H/whi6GlFxmmKU46a8GNndOnACgQw2NLt0jZFeD4+XGvGcRRxrQWt2ilpUJdEVxqoVetvL9F2GJaZfZszMLnDiwc8xMblAdXKKbtpjZrLF8lqHmbk5nFTYvEQJRT60NBODrlQpXYZUlqjSRlZvpiVPspqXXHliDWEStosBy8spWgqq1RraVUl9nwtXtkkqGdHpJlN1z3prjLXFwS7euhO+eTeOm4ucbSGJkVifM1QRKY5+7plEcrQa8ZG1Lb7w1w/w7153ADueUmZpoGpgqCQtfJEyvXArevo4Q5Fz5col5hcm6WzljO9ZYHx2hrf8wH8CoThybIF640ZUo4aXirSXMnvdKxlsLLJ5bpPtYpu9B76B4aCk/eQlFmo1FrsDIHQc6+udsPUqS77/B9/MmSee4BOfugfl4ef+7//EvulDnFtc5OixY3zja7+FiYkJXGkZ9B2/9Z7f43ve9G/5mw//ze56+t85vPd89O73ceOtd6CNY2tjk4mJCWq1WtgZqjAN9l4Sbmf/BJeA+dlZhFJIF+7ESjDqkORu97QTUOmF2NWrhZ8N91KpdxJg5a6lbaT1qBtQaBVkI1qacCEElRUQxHxbvR7nryzT2dpiph1zba3KjdfP8OjlRRqxZc1K/t0/fwmTM7M8/sDneMVXfxVxVaFyhdSeStVwV7uCwfDp80uU1jIsPVWCfObrjx1nvbtJrC3KaCYaMae3esFt0ShqxrCaDjFopmsNpMhoSYlyOedtyj+fmODK1oBXHNiL7Q5ocZaaMOwdn2R70GWxKLGFJUKRoFnPuvhCUIjAjC2cRUrFMEuJZQRJFNjaWlCJIgpXkBWBJCq1okifzmWD0G4rGbbGeVZi4rAd80KihMDZAm8MUiUUecm2HLLe6XDy3DkmG0cZEwpbkahCYPUIPJfB3TDMWh0RilKBESoQSpUO2014HqlkkA5xzjGzd4Kti2tsu22iqMHGeodqq4YoChYXN9h38BBFHqx/Y6VgaEmiCrXIhI65EtMrLJGGbWGpFRoXSUCR5ym1mqLIapQ2w2qJyC1NU2VYK8i2FNW6xlUEvcWM/fvmWdro0JqJWb/qOHF5KWBkXo5cLxyx9hTe8KnBNq9J2pwrC1oVSV146hYetAOeqNaY2zvHnd/w9Xzur/8aXxc4ZUB7irLP9nKHiRtvI+v1WVpb48jNt3DtyadIS8u9n/gAi70B7//IR1lNdzoFT391meGhg0yYCt1eh0qssFsrdHrnMfE4sWogGFAZb3Hq3FN87ctezJ9+/O9GuJHDmIiicLzjXT/NzJ4JXnRsP5/51D/yk297C29/x39DFAW+lNgRj3BjfX134vbwww/z0MOP4F2JEhrLC+exfbnDe8/Mvmlue9FR0IZ6PcIYQ73aGHVFCq1H1AIXMOYXOl6wKE1PTqC0hAKc9Ggp8RJibULG+Gj6Ikex3EBIelUKHSbtKAlOBh8kT/CCFtKjtA5MZKkQ0iCkA6HxpcWPpm+IkmbFMD7W4GP3P8TGZo/Dc1OcvbzIVCXmcrfLj77+6zh0aJ5Tj53ia7/ulTRqddaWV/jiicc5t13w4slxnB+y2B/SlxLtHK1KwiAdBhDdOKwvOXjdPi5dXuKW62Z4ZLHDVC1hpZuymWXMJHWW0x6rvW2KsiRHcsPeaapZznYnZW5mHpf2sEJy24ExVnoFN860uLIkyTe3WSqGtJM664MBsQAnFKktAm4kLXkexv+1SJK5IqSaANv9HnLXakTgRlsJIYK2cCcQoLQWitDd7OgAAYQL6bllmWOtRxvY6vV5asmx3s/I85LrZqeYajWYmR2nWasjdbBHwcrd/X/QQwd5jNchksh5EN6FCekzjlatyniljhkMgy1L6Th/+QLX7ZvjibMXsKllYrJCP3MUWOr1GApLL89J4ohCSIbDgoaBqqnSz0pMLEB5tNDk3hLFdYZpl66X2EjR297G9yBqNDFeEFUVLs0ZFp7xiTrnr62Tp4YTmxsMqgkrToPPkVKyd88Uly9d443f/K8Ym2qy/7o9VH71tznmFasup2IN/9/2KvrWuzj/2AOcefw09zz8BM0kIe8UFO0um6sbdDtX2HPwEBJH3GgwRp+1KyeJKgkbT1zi5EPXWIlitgdPE5DxjicvneGWF92Fr7eoF5Ktbg9httHb23T76yTVScaqbTY2hrzq9pv4979y9y6k4FyABoSCd7zj5/jZn/txbjt2M3/yl7/HD7/l/0IUlrJ0PJ1U43eqCMCIyT2SMvn/vYIEYY0cvvkw85P7kC7CVExIMpFBTO91gBrkaFBm/fAF3+8Fi9JYqwkEoab3gZfjVPDfUUrhGemm5OiDeoknyBxQEl/63SmBHOnaEGJX2xVsOgJG45zA+6AZCyZoIRI4tzki7fPaozfwhdOnuHRtiUo1Iree73r1S3jp7cd48sIlXvHVLyYXlpWVNT70yXvY6PepTu2nEJ5WIfjAUocZYyiMZmgtlXpCNky5vLjEq26/lVpFcio/y8LUfo7Or6OyjMWeJ/KSXp4yUW8wyEtumaxhnaNZb7O8sUilVWFuboIrF85y9PidNJMKf3viPD/+htt49MznuX1+kmS1x/JwwHy7jXOOy90O2oHGh0Jsgi9RpAy5y+gOMoQM3kV6hB8hBLktd0HsSEuKwgetHDKotkcGckqNwiVHQmFrPUWRUZYK8OR5jvGe5bUOV1dXuePIYaZnxncBSKnMSPf2dCAm/untG86jdAh/eO49TxjNzMwMS6vXyDpbpNkAm/Z48kKXuNJEyZxBfwupa6xeW6SyMAvU0TrD6Cr9bIuoGlEUEhXlRInFlTGFK/DCk8R1jCrZXOtQaU4i4ibtOqiGp7+Z4kVJVAuMdLft2VofYkyMaiR89mKXzZXOqMuQ3HbjAq99/Wv45V/+M/7wA+8LAJOQKKmwruCr9i3wwJWVwEh+9AthvefBouz7vvc72Tr9SWaVZ2tjGWsl0rbZuLZCfXYWkyomF25le+sy1730q3idmeDjn7+XQako8tH2i4hYT7B64RTzN9xON88QQpKl21jnabSuR6qCS2fOUR2rMMzWmJewXGgKiqdPuhPMTI9x077DNOtz/OAP/QhLG1vg7W5XJKXEu+AMsUO6hS+NIf3/PYwx6CzY7sQKlPJEsQbhkBWNK22AcLxHGkMtGn/B93thSkASoZTB+RxB4BY4FQiVJWFkuruQR+ZvYiczXkgwoUMSSo4kKU8TtoQPW0Frg+ui8CDkjoYtpH4aYxhmlkqlxoX0EkbHJHFK4RQvu/U6XnrHrfS9Y+9UQioFynk+89n7cFYy0RynMTPB+WtLdCTsr0Vc7Q05MjHOZm+bq/2MV9+wn8FgwMJUi872OomK8ZGiXa3QrEecHXqGRY9YajaHXfIMalMNiqJgKx3SMAkTY01mxieZ3jvNeKtBctMR6u1x/vvHP8Odh/fxxOVr3D7T5H8+ucZktc5qZxOXl5RKEXtPTjmy+tAMi5w0s2gd7S6WPE+DE8Oo64Fw7bh8B+gO/DAYbXx96JS0VFgccRyT5fmI6BoEm94XrAwHfMv11zHVbJF6h+3kDN0g8KCekYQiZXC53MkdU0oiR66V0kEpn12WrEu5dHWZrLPIlcUl5vbNUWnUSYeeXielVo3QJqbf7zM9PY0vHHHD4rOYghKlY5wNWJkSDhnVKCixSjEZ16hUDcNBwdzCXnJKymybamYZLhU47alUI2qRoy88SVllmKXkWcFDV1K2U7tbRYXwLMzu5d3/5feDTY0OUIK1DmGD2d7Dl9Zw3mJ34ATCy19y7Bg3HD/CicufZ23VUqtsYETBcNhnfGqGwdYG1doEly49xuVzD3H51FX+/JNnWFMS9Qw8RciSjeUOnRVNq9GkWp0kjltsDTZpjN3I6toVos1FOi1DVd9Ct2r43f/xHl77b/7Ds2AZ7wVf88pXsrKxyQ//p3exvLSCkh5r2S1Ihw8f5vu+7zvxpec///TPPS8s4J9yGGOYuv56ktigNIEaISSF8CGkFYlXHolgdnqOc09+FvhnX/b9XrAoVeIqzudIEoQKH95bRywkVgfuSrDYkKGYCImnAB+HRWxH+ERkkK4A53EShN/psJ6OcvFq9LNlIABqE+72zWaTk0+cxVnLq+68hSsbG5ioystuv5FWa4zVy5foZxkHWvCBD/8dZ66uglDsa8xS0YLFXpc9tRYbw5yXzM+TiyGnNwV7G02uW5hCesdaZ5WrG11uOHiIuFEhs0NUvc5EojmXaowTJBhQBRWjSLTk3OoGrzp8ECsK9s9MYIcdclEyNd3mviee5A2vfjEXF9f4prtu5mpq+baoykdPnMYkEe0oJvWWilKoInhiIwRlloVOSPiRTYRCoLDlzsQi4G1SyHChjDSGlHbE/LbBV4mRJ7r1QIEQCoklK/PQPltP1rd8/smzHJ3dQzuucKEbpoty5KG8I4mRyu0OH7SRxEbvsr619DxX8D1ZG2d15QKJiZgZn8U4Tbc/wDlHXUe06g2efOo0UzMz+MJTaVQpnMN5S5kXJEkNCVRU0OFpr9AVgxclcTUOXYwuyG1G3UTYZIzUCayyFAPHWKuONCXl2hAleow1KzTGIj5275WAfz0D3P6bv/uHUGVEwE3LEU5WAjhPPuLx7xyW4Jn1r7/9dfzwf/hJ3vod/4yrGx1edMM+zj/6JM10QG2YIopNxuYPkNpVfBEx7K0yXhGsDItnYXBCCE5dWeXldzQYZn1cb41umnPo+hto64its4/R6Qq2LnVZufhZTl5Ked8H/yu4UfqMUoEeUHr+7M/fz9jYGMtLK88b6zvnuPHgYeb27CXtZbsGbM9Nxn3uv5/5ewbOntl1G93tsAS885ffRUtA6TzSSbQ2IBR6FCVvRKBLlMpw+oF7kc3qC5WdrxAcoAVKJOAtUmrAIWPzrBeGO3AQ0QrhKUkC6UzuaL8CQI6PwXu8LZGxDkkmWocbl/QI70banWoALHZ4S1Jy3cJeHjn5COv9AU0Tc+et+4grCZuddartKnvnb+CP//iP0NqglCRyFl2Fuck2tbEpiqLH8YkWq90t7rjpIIfr2zy52eH81javPDpPkXvipMXC/B4ePX2SQd8j2zHfcNdR3v+5R0g3e8y2NJe2Fd1ul5m5aWa9hGyImGixsbbJTLNGpAyD/iZ7Z2e57dhx9k4sU6sb5rsD/rGzxjfcfJDPX7zGtgRTelxpacaGahKxPXT0yRFSkmY73UqxKwkYhVIhELuLCnbsXeTunc+oCOuCiZ6S4XHnwwLWXuNtEEhHSvPUlWXMUNKuVajFEeY5qLX3IhBdhcBZi5BBvKuVwOYB19rxw9o5TjzyKPuPXk82tDgsNRKc15TZkMaUodffZGF+gsxbUJp+aUmkQhiI/GhiaxQOiS0tKgrs9raJGXpPOswxHpK4FW50WjM04xiWkLGgk/Ug1awWYLdyNrXg0bPrfO2d8/zDQ6uUz9j2hItNoLTAljvx5F9+XP3e97yT7cvXMNUxMuDkZs7nP/4w2eYGhw+1KDaXWEvXaLebFMN1DFUW5qe5snSYJ4cPBlPoZ769tbia4Zqd5XClhmxHtNCIouCR+z5IY99tTBwwxCfvp3HLN9CYusxLDtzJibe+k2/6mpfzvk98Ci8D5QbreM97//DLjtu9UXS21viR//CTQcDA8zlJbuSB/1wP7WB/EmNtRrs9TWdrbbcoKQFTrTlslqKjiHotplJJQASdm0RglaBVqXP2kQfIVZeZ5oEve47hKwhylQxhfUYFQ3mtg2ePUiZYtqrA3N6J5gn4UCBOaoKJmCd0UgJAK4g0XihMFCG0QCqFFwqkQpkwlRNxjNYaKSLwmvHJNvv23QDpkKn5aY4dP0KlWcGKgmqrRZ4OqCcxTzy1Cg5Mpcra2hZ7JsY5uGeag3vmuOn6OY7vnUAWGecGKcdvuZlmrDG1CkNbsr5xDXxJo95m78IkV9c3cdJzaGqSpG6YGRvjtvkWC3OzHJibZnqswaWtLer1Ci7NWVxZRkUxUZSwZ2EvkY4Zm2jjdYW9kxPccv0N7Jmp86JDC+SdHoNhiROKSEVsZRYTPe1lwzMWjFH6WSm0Xypc1I62bEpICpuP3mOHFzKaoblAftspaP28B2VBaQvSNCfNCrYGKb1+RlEUpGlJXgwoioJhlpNbR1k6iqxkOCgoyxJbOHzxbEyiOT1ONJIOKS+wXlPaIWU+xHtLahWChFjG1OoRURQhFJSyIDYR9aSCcQGibLXrWGlZu7ZMpgykgBFYFeOswugYJ0vaU3OoegXXSLiU57ipGT76+BYfvpIzbC/QGwjufWAxrEWeJu+Fgu9o1Op85xu/eXRBPN+ATClFq1bnI+//NKfOr/FDb3sbAO/72IO84TtezPvuv8b68jJ5d4WGLpg/fIii2OTqFz/F2vIm87MCr4oRnvOM71JKbtl3lJ//rb9keu/1NJJptjprrCwusr3S49wDD3Du8x9n/tVv4LELlxhWpvj0xz/JL/6Xn+Bb//Xref/7foc/+7Pf5M/v/m0a9WSkQ/3Sl/SnPvRR2s0xfv03fwMrn/bMeubxO3/w23zT617/pcmNzvMHf/Q7/OIv/fKzHn7vH/wShU2hEhErSaPRCPbQSgUTQanR3rB19Ulko8r83tu/InnyhbMq5ahjkXq0RSuQyuNFiVIBSHWEsb9XEuUgApxmxy18JPQMzzvn0KPiHLhOTy+SUIBCBItGIJSkkGBUTG28xouPXE97coHr9syxPezjixKR52xcvEax0eXMhTUQJSvdkqsdiyprZN2M+VYd5zO27RAhY5LIk7qSoS2oRgrvcryWZKNY5MXlFTI7pCgtZ86c5eDeOkUpMNoRe8iFY1gU6IpibZATRxKjBFevLbO8ukhWFhQ+Zf3aCtc2N1ntbCISw/y+OcZMBe/SEVisUIWl8ILusEBVYoQKWEoc6cA/Eh6Je9Yd7UsBkztfclEGc38/YruHJ5/2AvejilaWJZSerTSlMwyFJ8syQuRxeL60NkSq54S5qbPYMqd0BYUtKVxKUfYp3OBZv0tdadI0xXuHMiGmtBon1FpNet0UaUP0tlAG6cPWIxvmJC7CekdpUwoJMtYIJwLfpVkhy1JMFDawsiyxWDr5EOk0okzIbEmKBD3GY6e32TOzwPHjN/HIiZMIWWKlwboCCH5QcRS6dO8lv/ruH+NP7v4gBs8ouOpZF461lv4w44Of+Hs+9LGPMvIgRCrHhz71BN9+Y4zOC1q1Kl4JYu/RlQbDIoety5w/eRUB6JGGcue9Iyf5q0/dy1d/zR385e9+kIENF3Ln0mcoekP8dkZzdo7HHrqfV7z8NfR7kq1huOGYxFAhpqnrVCox/8d3fPvofd2XDA4Y+BKjBL/w7p9FSYPXozBToxFopmYmSUzCqdOPPH+NCbC2IM9Lxtst3EgR++53vo1StFBxUHnEcbwr4EYFlwVpS9pxQpb2qVbqOGF21+GXO75C7psO1q2iJBICIQzCS5wM3IOdGCUhQqqtUyIg/j4ByiCYYfSYU2ERBvux0DkVO97VGghm57YMAHrhLFpI+r6HdyXtdpuX3XU77aokVo4yz8gHOZVWCxs5zi1uIyJJv8y4fWGeqfEave0uLk/xJbSqbYxM2dhYY3p8HOE8C+MNxqoT1IyjU+0SRRFLy4u86JbjPK6usLKxwitm53HucXwO03NTTE+Nc/bCWW49cpSLpy+AKzm/eIHt4ZDe9pCoLbFZTk96Hn3yNLccP0pWeJrNKo3JOuO9OpHWpNmA1FSIGFKvafSgx1i1Rqc/RJoodDHOkVs36na+/JTE+yBwRuwUKIG1JUZrlDSjoiaR2mNHu5fMlvjcstRZpyYDs7sdV9FGQmqFOgAAIABJREFUYG3okgubERtJ6Sx+JLy2ZbiostIihUE85/dKo5ipVpUiDYMKlw2xSR20xBceWZE4LfC+wKKDpa+KUEiEiSiKgopOsA766SZWj1FtTNKoVVHekZcOWTGBjGfCOqvVxxjuvYuW7SEnLH/355/GxIr02tKIgQ7f9bq7+JOPfpa3/9iP48czfv6nfxuE4Pbbj/J7v/9X/NRPfi/tyUmyMuWn3/Yb7CQ9j64EShdO3NpWd/eitdYyX4fmfs0bfvLtsNrl6lOPsHFtkV63YGp6kkcfP8Mf3HsJJWLuesmtKASfe/BBbFFSUCJtn5fUNnjxLXdy393/L3e+6naim+/k2pmHqbQ0gogp1eSV3/YDCKUpbMlnPv1p/vju97Jth8xN7+etb3snn/3cfS88UZMCRcQv/uIv0JiYYH1rCN7SXetw4tTDvOSO21DSc/apC897qZKKWqypqZjVi+f4ttd+Mx/924+w78hR8txRETGWglq9glca6cD2SzA5zZm9XDz9OapTBwP44L4ywP7C1iWA0Arlg/2s8zuhkaO4FOWQXoBVuwZmQghc6XBliA3KfGj7RelxFgpbgg93qbywgBttW0a2ooXD+ZLC7qR3ho7LuZJY9BF1T9XM0xukkHXZXi5IxuocuXmBf3j4EkY6ZufGOTw7x6W1a8zOTBF5y/Ywpyhymq0xShuxZ3qaqxdPct3eBZJY06wmdDa32L9/P0ZXObp3httvWOCBxx+jjyF3nmPHj7N98QRb3ZKKzDmwMMXemVkeXVxkOMjo9/vs2zePyVNWVzuMjdXwZcrZK4scObiXY7ce5cLlS4xXNOPVCYwpWNoeMFapcsPsDP1LV9gygqw/DO6OMiwIpHhBqn9Q8wuKvAQng6WJD92RVGa3ayrLEV2DkVeW9awPemi1SiupUjWSyNdGW3OBGOXKuVLsuhOW1oJwGGFAWpx7zhJKFIPCE1US1ldW2buwQG/YJ6kaqjom8yn4KESNC4HzOaVMqKDJXXDoNN5z4fRJDh0/RsVEIB3elQxdcLtUSuCThDIvkcR4BPV6lWZ1Cr8+xAI2t6NOCN72H7+XwUChxP0YY/mZt/02nhKlBFtLK/zsj76c7uA8509/kXf93sOAfM50KhT1N33Xt/B1r30N3/kdP4gYTSjf9F3fju5vcOIv/pQrpx7hm777LZx4/B7m524gq7T4xIkBpZdoCt78xtdx6tRjvPa1t/FTP/PbeGUoXMnemeu47uV3cu70hzBWs/3IaVqNJlvDLifueYq7T5/AQvDIEuFa+zdvfAtv/cHv4fEz/5N//Oznv+KF/pv/z39j4ApqE9N84b5H+Pl3v5sfeusPcduNx3nNq16Dt44o0mEinj97rVlrecsPv4W4bqibNq953dcyWL1C6SWRibC2pNWsI6UInqfaILRltrWHi+ceJKnO4JVBCYcrwP9TyJM4j7UCihK8I7MWIzye0Z1qROAKkS5gnSAvS9I0D9E1RUaZ+5BuUtpwYXmNpwhbA+twZbF7keyMocEFB0gLQhjKMidzKdPxgMZ8TM/A+dVNEicYyiEV7blldp57Oc/X33GMPRMTnL50nqpU1LxlJR9yYHKKTSUolObKxUvkxRTt8TZb/Q6GCBMpHrt4mrjS5NV3vYiPf+4eLi6f594nVjFCc8PB63j44UdYmB7n5lkYbm0htEKUQ4Z5xtzcHI1Gg0qtwmBrG601BxZmcFLS2+4jdIIQglpUMCmHJBXNseNH+Yt7v0g7qlCNHV91wwFuWJjiVz54T/BAdxKvLfZL1qMAygazttE2WAbukHOBvVuWJXrku7RT1Ha8cIINcaBxrKX9QL+wFlPkAQ8UwWGgLILSHKFBhC2LKwUljkgrUOmzfqsoj4g1+M6AVqPKoCiJTBx+H2WpugSvTRC7+hJjErRQDHGMETGoSRYfO8OhG49RMZosz4mkQuuI/0Xae4dZWpR5/5+qetLJp3PP9OTABGAkKRJVBAUzoriG1TVgWBfX3UXddf29rmtYxbCKEdMqa15AjJgQlSRBMsPA5NDTuft090lPqKr3jzrdM4Mw+Hu3rotruGae6e55TtVdd/iGJE6wVpNqDyE10iYEHRhH5EUk0uPan/16URcKZTlhy2Z+9ou7eHDrQ6A1f7jtbqzMwMJ5Z5zMq87voWvdMsrt5XSvmObEn27lTxOaBVNGicUYiYfhrJNP4tvf+I5zhTaGCorvf+prnH/RU8mlU5x4wnk0dEh3pUrYu56x++4mWjmE2DXMueedRVTpoX/ZMm656RGEpzDa8Poznkpff8T05Hb6i3mmdjzKXFvxwI5h+tdW6Tn7ZbQe+MYi/GMhMT3jrNP5+jevY6o562ayHYqWtfpxM6VHH9nDqU8/gYmD43z4Q/+OEILPfuwznHbaaZx22qk845lnYWLNMZs38dB99x7aZVIitGH5mg0oGZKLIvbuGuGY007BzzQy8ikp31FKrCE1ipAmYdjHPbf/Gq9SoFqpEujEueFIiTXJ/3tQOrCrRpqm6NSQ6ozEuEBlDK6hqnHKhjpz4EhrnfKhoQPac7rTmdEdjIyr6ZXgUPDBjRKFMmBsh4QrCVRIFidkJiaMIB8FDE/O0DObMTz1CLVGi2KpizS1xM0ZJqaaHL+yFy/vM5fGBFJTrlaZn2tQyEfkSj6790/TWygTaxgc6GV6XCMbMdNezFBQgN5BHhkZ5yd/uIGSL/jD/eMExSJifpZf3H4nJ65ehtaa8TjhvkfG2bJ+FWkaUwjLDC7pY77eRHlOlzgqlvBDENbDY54on6PVmmL0wAGqlSLbx1IuWrWMd/QVueZXD/P73WOcumE19Szl6QMVdjZaTDRSYi3wPNFB5h5abizLotpgmugOYOBQCm+sc8/NHgeTIlAIX5ALcvSU8oRRyFTcIhCKnB9gMs0C+klri/LTjgd8gBUZxqSkiVjsHS4s1/ex2IJPzg+R0pIkGuEp8n5IpiQm0wRBgDHOXdn3HHp8enqWUqGbnpWrAYs1nQFIJMkyTVAQiCzA6UFafD8gUDkyLEIJNDA+McOCKcK7L3snl3/sU533ofjSZz/Jpf/4zwgrUFZwyStPYdWSKlGUsH/yLobvneX/fPiNXHXl9Zz9mtdSKXfxi1/8mn17xlixYgU67OJnv7oFJR2+PVaak47pZ8eN97H2KQPkBidZsaKfWD2dn119PZ/85T14QY53vPlv6O4Z4JWv+3tcz6dz2JEMLZ9gugYHv/9dlLZM7I0pDlVQnma86zg+/9mvI8Uh8rXqIPxvvelWPv6xD7F15362HL+eB265lf++5kdk+vHH+ldccQVXrPs0//iPl+H7PmnqkoHbb7+dc885j8ZcwtjYGO94+9/zd2+7hMzoRXbA0LIl+Fawf98kWx+5i66cZdWSJfR2DzBXn6La399RtlAok5LZHPN7boWCz8DAemKbkqkU1dk70h7dzUQcDdH53gtfYa21DsErnLWStXoxSAkL2jrgpNau3DDZAifKibS5DSQWfcm1sYs3TRA4E8Z85INNybQl1q4ETBP3UuJYI2TKxmVlmrLJweFJRubnibyQLQMF/udP23n62uVsHZliy9rlFPNlDhzcz8blqxkaqDgJ0kRTCAMm5muE+QLb9xxgy6ZjUbkCUjd4YNtWuvuWkM9ViGRAK53gulsfYqYOxg959QWncdMtd1HNe/hC8uDwJIG1rOov8axNK3hw7yhbNm8myWLOOm0LD2/dwer1G0nNPLWJGW67fzsXvuh5JEZzw09+TL7cw92PjLBjbIZ/ef1FSJ3yni9/h+lmShAUaWpLnDScwoJZcI55bFBxl2bOl2gESaoXWe9HPLfIKD9y+SogjNwkdcElV0jJukofg6UynnCUIGeomREFOZCuB6hTs1jOSQTff/DOxa973nNPIxA4wFxgXWtRKHL5AlnaRMk8QlmstvhhQOR5pGnGru0PcvxTTsT4EcIYlPRQvsKarKMZ7uEBVlu8wENKSSY0AhdEU5OSZpbPfPq/sCbj3POewY2/vZk0dfCKjRvWEHqGex7YRRQW+elnX0wgcng5QZQvM91u0U4Et//4N/iDPWwfH+K/r716Ua5jARy8sKSnsEbwfOlx8uaIzS89kyXLT+HB++7gbz97A8LG+FLx9a9+kNqc4J3/+L7OqN1bzGSxlh9f/hp+9ZVfU7M1utcNsvePwzztdW/kXz9zJcqTWH2IUnT4Z//v73s3a9avZP+BEY7fcizKSLbv3sM/XPavT1jqLzTADw9aCw4mCxi40898FvfddzfPec5zuO6H12Ct5YzTTmd09wE2HLuSi974ZkKVpzkxQqbH8SU85bTnE7ebZCajr9jDPXf8nLA8QO/y1QQqxy3X/4CnnfNShEycHpiUnH3WOU9Ywx01U2o2m3jSiYYr39XQWZa5HpFwFtVCuFtsIehIJJnJEEa4CZ0VpKSumS0Eni8QWmB9qBRyLOnJ4UWSoYESMkmZnpuj1oR6BlNTbSpVSW2mwe7xBolXZ3imwRmnnsDOex5idGqefdMxflhjWW+ViekGD+zYz7knbSEMXCAsFsqUCpK51jy+McT1OptXDpEmLfy8T6vVYqqeUSq3GJt34vy7RseZaWtWDAwwMjnH2NZH6S8UKFfyNOdbzCcJz920Bs/XTEzPs3SwDz8IKXflaMcpd27fwcCSAZKkhtUeP79rBy84v0FmoFws0lsu4Zu9FIIcn7j6lxwzWOJjb3oZjTjh/d/9Kem8hDAkMylZ7G79xy7hmDzE2iyScx8bkOBQ03ORboBAKjA2IU58PE+T72hdpVnC3sYMic7oi/LkgxDfC/GFB77jnhndxqoFUrDrOx2+jIjRvo9INV5WIrYNCn6OVtzGJ0VFliAIiNspQmYk1kK9xvEnP43Qi2ilMVIpkjih4ju9bU917N+Fj/IzlNZYCVIL8gUPG1tKUZ62n2JsxsUXns/vb/4jOnOZuTCGV1x0DlPTbe59cBeZqbNvZJJjjl1JpauLRsOiVQEpE57+4udiUskW3eDb13UUNhFY44FncE71rmcKMLd+iJadpmks+w+McNlnf+6ApXhc952PsXVPm8v++b2HvaFD9mFCenzwyzdz9hlP5U2v+Cuuv/5/+OUNI1z3mSvdk9mff6C+H/KJT32cnmqJ7u48QwODJFmLhk259Q83HrX3+HgZ1KHn3UDlzjtu4fSnncqxTzmBa6/5IWC4+dZb+M9PfJiobzkhEmUyit1VjChSoM7M/juJ6SbsH2Lv9jvJd4f0DB2D1JZ7f3c3whN4oo3FQ0pnx3a09SQa3YpUZx3in2uEeVIhA7lYrkkpyZQiy5JF+ohHSJwm7iUYixf4nd9XGGMpVZzcx1M3dBGblvuw7RwikvhZwvol3ZQqZSZmEsZH5hiNAnbsHaGRZQz2FPn9zXcy2YqpqJAV/b2cvnEZN9z1CG2jufCME2nr1PmId1XIRwF+ltFdLkGWUpurky8VQRhWdZe4aXScc888nat+/jtO3bKe39/2EFHoUylWSLMY40l+t3uYVaUchahFdznHCzYdQ19vhdrcDJPtFgVrKOYkXQO9jI1NMjC4iqmpKVq1CUYbGSUZMLJjL6vXrKC3ZynLh5YycssDnHzsKg6OT7Brf4PPTf6GtX3dnH/8SnbsnuKRWpuJRowV4gkHb5k+XDCrE3z488cXApLvO30gKwCdYYTBU26AkSYtVzobwUTcQCjJUBAgyAiFRxZrtEjdIRUhQhiM6ehNHba0tqAhMAIZZVSiLhLaRMpDGoHOJGmWIn3IqRI7H/wTa08+BZ2BtTERBj/IkwUBxqYoGdIympwfIW0GQYhnPdrKEgpBlmgCL3CGEsYitGDjsf18/5rG4oj8B9//Bld+7TvccMONWCBLYemqAaRXBRMz225g4yKVUoXMZHh2Dul3c/t/vZo3vO+XbB2eQ2QZ373qSl79qkswHQ0prTW3PLKf/ZFl7JN/oJovct33v8L0dA3ymp9f/wc+f9WPn/h8Gc0dO/ewv93gac84l+9d9zCt9PGDysJnGIY+H/3If/D2v30zK5eeBEYTiQDPkzS0fMLM+C9ZnueRJAmN9hy9pT4g64CfA6KuXiqhwgpn4OV5IV29VaRYTmN+mmRuhPajO4l1wIbTn0FjfB6rBdUVISeueokzs8BBVeyTTOCOilMS1pCPcpSLJfLFHGEuv0gtkR20tfQUvq8IvBApnYZvqjPXP7KCSjVHd18R4VtskBFWJOuGfE5/2mrqUYCVAflcF939Q4SETDUT9g1PUpupExZh7eYBTtpc4tjN/UiVMjoyDULRaiccaNQ5YajKT+99hDSX5yWnn8RsKyaOY9KsTatRx2Qp+UKOYiFPqatKqa+X4bFpshbcdv+9nLTueK67/gaWL1lGsVJkTguW95ZY353HN4qoXWNvLaUUSJqJYvveeawwFMslpmcmyGYbID1mJqcY2z3CPdt2MDu8l7GRMSZmM5JUEOULDHQH3HD7TRy7biVJkPGCk7fwo3u388DO3awf9Al0xH2PHOAXD+xnqmWp+B6e8B4XLOkArIe85Y4Qgv8zimwHMuA5EKYfLJCgXeYbJ51LR2ekxrHKe3MllhaL5LwAss5tusAn0Y6niLQEXvBnAGiTCqRUKD8giELa2Tz5sEjatggV4gUOs9Zb6UGElnWbj6OkAoqBRMkA7XmL5aQiQAUSZSXCWsJQoTOLNJZACpRxNtRGGASGQhhx6Vsu5KH7p5AyXjycF73y9fz6V79B6JRvX/UFpII00dRrM8RNn7gZLeK4KuUinp+jEGgSlefyfzqda7/4Gv7r8vcRt2f4xMffv6hbJaWj++xte9hGnYOTI7z7I59F5HIUK0v53Dd/ckSm+thlpEUKydSBCZpZwr7hHTz2hT7WibbRaDA2NkZ3bw/1VGI7nmrNJCEQ6f+KYJumKZe981Le8sY3sGvbnUSRey+XvOk1VIslREciWPlQKkd4Io/yYP2y9eR9g8p1Uy1Xmd75MLvv+Dl9/WXWrDq+I4PTacAb8bg4qsPXUTMlbd2GDEKXwuo0QVin35xo7bzrY4PtsJEXpnDuRTpuXD1ps3ldP90bqixbtwQbBthWm9pMgyDzGW1rZg7O0pzfCSplVU8R61sOjI7T21PFFAxxltJbauPLjHpqmGg0aDTh1PVL+e32UfoKFY5fu5T79u5jXV+/y+iUh/YiMl2nt6+P5myNndPTLO1fQjHKc+0tN3LxM5/NVdd8n/GW5ZUnreH3DzzMaeuWkJMJ9+1v0koSVi3ppruRMlKPsU3L5qVVxibH6RvqYu9Ei2Ulj94wILaWEEE7lUy2NAf2znHyxvWM7NnKU9eWeOChffzk9u28+DkvRM5I0g0rOOa+nfxuxwxzDw+zKp+np1jCzs7T0k2mGp1g8Difn7MIP3LzSfexY7BH3JYLcsVKCZRyet9gwAvwrMUaQ2pSRxdJIa+cm+pMvUU7tESejxUCawwiTsj0ocwt5/05KtjrIP2taJKmEj9wAvdhXhH5FTLRplLtYnpmmjDnoXISG7doCSjmcyjl0UzmSZsJ1a5+TEfDywsCjNV4nkBoCVisUlirUNJQCAuUllRIRcqjI48gzaGmP8Yilcf3v3slU5M1jPZIhSWdS8mHbVqtFtV8nlKQAxLCXII1Ibm+ZUSDqwi7erjhmtvp7jmB73zvO+5LHlYKGVJaANZlGw/uGOGDH/w7Fj48KT3yRZ9mPX5MCSX4+AfeSq5UZW52hHJomUuddLGx7qe3oqODL7JFU0ilFFd/53uceOIWzrngHLKWptFusmLtRgQ3dOwsjr4W4TtH/DySUqFMuW8px5+cccHw83nd37yQ+bbr2YXSWYWFgSJX7MEzIKMiw9tvJ5GC6pLNeChqU2MsW72WRx++g94lm1E6QKvEUZzCx2/EH7mXj7IW+kfNVkw7iRelbaXnd+gkXkfvRzmVxE5/wZkzOqH3YrnEHBIThcxPTdA4sIu777mXmelx9u/bDbpJPoRisYhJPe7aMc70fItuPyMgJWnFICRC5piqtdk+M8d009BTCLlt7x48Zdk0VGV4apxyqUJvfx+5KADhoywUfR8/iphPM+o6Y//4KCOTB1i3ZDk33n4HKlciUj41Y7jzwd3s3D/FgyNTHJydYKzVYHyuycqBAcpFOHF5lfpsgxY+t/7pAboqZVYvX8GK3j7yhQo79o/SWyqwZvkq5mspW1b1cNejk/QUi3z7lp2cddxmGnOzjB8cZs/uneQ8w6lLlzEbJ9w7Os1vd49SS2OeurSP0/rLjl6ij7w3Fgw/F2yaFtbh3vHCHvn8AkrcV+42lNbg4TS2pXLkSWwHToBkLm7RzjJ8gUOVm4Q0a9FyDpidFFwSJwnt+EjSqlUO0+OJKigPKSJspomkhyTDthukcUY+jMhiSUBA6gm8XEgzywiQRH5Evlp1OKY0I1QeVmdoBMqz6ECRs86wws8HJFgefegeJmZqyNRn09BStK86igBuDH3llZ/n0V2j/NO7PojyJF5hJdbLMz43wfzsKKnxqes6aTtGz2a0kjxZYlHGY2bfCOtWWl735su4/U/3H/VA3X33vXzwgx/ufG+DUK7iaNRbf3YYhRHkin3cfNN9zM5lvPGStyF0h4wtXTP/ZedfwJeu+I9FAOwC1OPGm2/jW9+9lle8/A28+KLXkFifs08/jfDoScgR++WxWZUSIHOCmcYYe3ZMsen4ddQTHyUlgQpQfoDyJV1dvQ5V78PcgXuYi9tU+44lVBJsSndvD/7gFsLKKsaGH2Z89H7aSZ1iuYJNPaQ5+vTtqJmStZY4bSM7vvTGZqRpRtbBFikJxjrEtsMgKZIkwQsd+7+rWmHzhiGUnsImGb/btoeBYhdFVWBudJrfPfQwq9cuZWnUT5bEeCKhlAsZmW4y11Qc6xWo9Ai0lfgtj6GeHHumfKalYMmSLqaHLesGe9hRm2XjUB9LB1aQxfPU5lqsGerBoNEGDu7fT9KOaRlnye0bjzyKMRXSSmIST/OjX9xOw/jsrc2QU4oTB3u5f7LGg6MtlhRroMtc+9AIm6sRfYFk7aaNlMsF5lsNLJJWvUnm+eSDgJ37hin0an539zaOWTZE0wbESnHssiF0vcVv73+EXK7Axv6IGyYnKBYLxKKJzgyjKfxw5xhpZrDCw7H8D+sTWEfKdfp6HUMt4co2YQ1CCTzfJ021y6iwnUsjQ0uPXJinkbTxrcMJGdFRbTAWlF28fEppTJblEWRkQhD5nRLHCHSHhI0nFkXCFje26gBpVYKSZRAQBYHrV9GiUO7B6jYGRS70kBY8X5BaN7HL2m0C36IUxCYj9AK0ddbstqNZbo1AeCFKZWTNFscs76aregqNRosgF7Bq/Vps6sSeJJbLP/YR3vSmt3ZgFAIpPF73lk/w9U+/g5lxi9fbz0y9Rm9PBSlnMSokCn2EMsRxg/rcON+6bhemA4fvoJce98wsTCUXMhq05sUvehZ33buT/fv3HhEILIbPf+U7bHtkB/Ya6aZznUCKzbj4ogt5+1vfyN7hXURR5KhAHOovjU9OLA4vvvmVr/Hmt72ZL175Bd7w5rf9/y7jhBBsOnYja1dvQYkW+4Xg2ONP7HBQrZsYWkNXtQuTaUTk8+gdN5EvJSw95kyEzZzwHAaJh5Jtirk8+dxGDhx4mHJrlq07t7Ll9POYnz76z/akmVKaWXSSoLOMdquFJwS+VATKQ2uLyRzq2vMCpBKEkUcgPQLPpzunqHZXWHfiaeycnCcQih3De7n7wEEONOaJkzpjB2rsObCdVmMS5SWs6imxtLebQObYfWCcrQ/tYGp4mHt37+PhkTlm2xkbiorfb9vDYOjTaLToinxyQYl6Y4pd+4aplisUCgXwBXPtJkHokc/nWD20HJFlrBjqZ8vaVWwcHGR/rc6O0Sbjc02acZssM5SFotZMSFuGrqIklytw2/59HFOK2DTQz23jU9y1bQ/zMzWW9Q665n8uxA+kE8TzJBedfjY3b9uPtYIdo3PMzM1SySVMTY/xjdt388iuEaamZhhuZnQpn9QaQuUEsWzm0Ow6zfBVcMQGE3RcXlB40sEAlBREvsDzAxDKEah9OuJ5ZnEIkemEetzACkNDW2fvZMRihmSMc0TWaUZLdLIi3DlJ05jMGgdaNM71WGoB2ZFbqJUKkrSF8cBkDQQpkoyZ2hSh72OSlBSDF2gi39K2PrEuYrBUvQwv9DBRDqVCCl6ACnw8adEdYUArfQLPyTM3sia1gyPsH5knbTWJPA+bpcRpi9e+9mUA/O2lr+KjH/0oKMNH3n8pUhoQCbX5lJdd8mne/v4f0dN7Pq95x9fZfXAXE48+iFfuww8iDJaJ2gTTw6N89/rbFv+NhwckJZxyQug7qoxcENgDvvflT3LVlR/g7970ekb27zvyc+yUvQ9v24nWAoN2KqwWwPC1r32Cd/7tGzG6za5tu0iSbDG7eSydRCjJ735/E1EYQqhQTxKQFtyRPenI8wgnyfJP77qMV7/6Ym76w61sOXELfqBc4uFJvCCkWiwQCI0hY+sNNzG4cgkrjzkdpSOE8bHGGddiJcKEjowbSFasOBavvJRy11JGt93JvkfuOOrP96TJnsCB8BZTT+mmN6ZD0rTCddQXmn/WCho6IRdGTDRaTAyPcHDHdk444QROP+tcmhgi2WZiaoYVpT5spgl9QStJqTdido+NEnqW5YPdiCDHTDPjwFSd+3ZOMDLXpj8X0lQhq5f0I6OA3p4SBS+ilbYZHZkmXyxTKhewJiONE0qFItqTNOpzFAs5EmEYHx9neGYSieH4oRJrqkV2NmfJRwGBtGT47JhpYVCsqnYxncaITNGWLR6dm6GVWE5aN0B3uYfYZtSSOiLLSIxlqpnQU+7iJ7ffzdqBJbTSjLm5OU5dXqYYBVx92zYsGd0DVU467mlUSJlrNlhS6ZRrQpHl2f4PAAAgAElEQVQY56Lr0Nd/3vjURmOtRilJyfPIeZJNPRWWFhR5X7jsFkGaaqdxpd1UzGiX2apMYIwjtRqbOcildR5dkfLpCiNWhWVy0tFVcl6E74d4eGA9PN95wSnP+zM9pSh0zWdlimQWAqmYrc8TFktkVpEJgxQ+UkQkNkAFGhUZAiD1A7R0pp0Zglhq4iRFoshLgZKWvOo07UXC2IGDVFeuwfMUwg/A8xB+Di1g07HHUEFQKOWZrbV48fMv4N/+/YoO4t3tbCEE3/jO53jBha/E8wLWFLrZ+cAYUVCEqETWbDE/1+S1770e+Thi90IIrvvhd/nZj77NZy//MAqPFzz/ufzmN9dx1VevILWSBMlvfv070iOgE/IINQgpOxQeo1FSceXnP8HQ4EoHw0GRKEkYiSc8rgu9JiElawYH+P4Pv0UujP7MaWZhWWvJ+5KvfvurbDnheC5+3ot5z/vey+tf/0bOf8n5KKVcqdzxbAusJRd55Mo9NFLLA9d/i5UbcnT1D6KthzatI4YtC99DSAumQ272FJWBlRT7N+Llq08ccJ7wX7nwhbVzyMh0uojubLUdrSBJEidlkSSd/3cTt1QnKC2Yrk0xPT7D+EyDkbFppvbs46G7buHZx22kp6eHnqjIZLPJowcOcOe2g4zPzpNZ6Omt0Gy3mKlN4euYWr3JIyNz7BmfJk40Q90livmQNeUSu8cPsndqivp8m/sf3UmSGgrFkFBJquUKuhXjS0uaOAExpTO8sExqUjwhmWm0GJ6q05ULOLW7hwyLFj4NkzowHZr7JxtE1mNDXw8j9QzdinnruU9n7eAy8pUCg7kyfsf9NzSC6fo80zOzTM62GKtNMN+uU9OankKZL/74Fn78wD58DTkZEps2fi5C+gEryjmstUSewmpXGkshF+WEEa5hqoVBeIIw8OgNI565sYvnrhlkaVfE2au72NBbJvKccaXv+yjP3YpSSvKBT94LaJsMYT3SxAEhsxSENGTWEApB2Q/R0iGPC2GAH3qONNvR7Fb4BL5PGATkg/CIPaNESj6M0EmKMJY9e7cTVHqJwpDESMIoRyAlvnIlWd73EBj8IEIIS6gknoFc4Gg5uSjEoDGeBCSJVbTThLtuu4mVK1YQeZoE66SAre7c/AYlAl7w8pcyMdbEoHnlK15IYlWH/C075OKMrOn2c2oy9scZyp+mPt8kiTX1mTqmXcb3wHiP3+nYtX0fjfkG/UsL/OwX3+eWm2/mOedeyDXX/wKRM3ikVAeHCDrUigWYwuHrWc96tlNiVYK/e8vfMDlTZ3xmEj+Xx+iEc84+C79jSfa457RTKu7bd5CWMeQKEa/8q5dijF60OltYQgg8qfi3D3yAUpjjn99zGc94/vP53reuRvk5Xvuyi3jWuc/CC92ecbbugny5iIqnEVNzLD/1FDJZwGQhCoP0zSLSfOE/R0FznolCelgryHkCbQwDy9YcLew8CfdNCtI46VACMoRw1tEuyhun3WxU59Z2Al2+ctbSzpI6Zv/BKRplj3pjnqw+Q5pqvEwzMz9DpSvigsF1jE3N0M4M0hr6eoqkLciMpEWb3qWCmR0HGZmeY6BcQocB06NjjOmQhvEoBwUeHpthdX+Van+ZrlxIpZRnujZDV3eZSrXE+PgYgdLYuE2f77N7rMnaoSIBGRv7yqSpYuvYNCGCgjLEaUoYRug0Yd4m7Jnz2V2vszLfxalbNlCpRvj5MjqZR/kVckoxbyDL2jRTxUQ9ZUmlyu7xKSqVEjsOzvDLkQOoYhelXI5ASe7atosdI3swSRsjYLC7n0qtyWwzQSqnpRyFgmY7W9TFLoQQZz5CapZVc7zizONIW/NUKhXGpyYp2hb53j6CPRPsm27RSBOCoOSsw7WTI262nGGCyFInUYwE6RxFBvIllpa66clFBGEB2ZncmSRDeT65YrGzaSypsAgrSdMjG92+CDHWsnJlP3tG97N8wwaENniBj7GCnDDEyo39dYdcm1hBZhTSGGTeiQka4Q5UmmQI3+9olaesW7KCH/zwfzj1jNNJrSQTPp6xOAPUjtW4jdDCcsLJG/jtT37Jyq4uRsYO8qlPf5BMJIzuneAzn/kK//Qvb+Fb37zGUZ5sxh9vfpQXPOcCZDrLxPQEpVwXl/zDv9OGwxQYDk2XPZPRv6qbrN3iox+9kvse2tahUsF11/yc6396w2IfyP09hRCar3/1o3ztc9fwx/vvZMXy1Vx66ev5q1deCEnG9777Ix64+jqWVvv5+3/5B5K0Rc6XfPMbX+LCi173hEdVa807/u5Srv3B/1CqFnjtX1/MBc9/EXt37eay9/7LEc9mRrNy7ToEHllW5/+8513MNVv4vocMusiswKBIPMij6e4p0zYxftMyaw/S030sUnkIBUZLZ8XVIdm6cb/Flz6ZcC4+2hik0egFvbXHga38xUFpQbgNWIzSSdLuREXlXFKVxmjfkfGyjMBzut5SaOJMMzs1QRaHPLBrlMh6dJfHWTY0SKm3m0cf3cnuusUqy/KBftppm3u27URqSylXZMXgIJWwQPEpZWwY8dv7d9Mfaw7Ox0Shx6nLV7BzapJq2acrlyfAMD87x3TOo7vag9IzSOXjBQG62SIXlOktzNBetpK55jirlw0yOVEjw3GxjokUN45qBnMeexp1QiEoCMWafJ6S8jh19XKq+YzZhqaaM7TbdbqXr2DPtKTRihEqT31+FCl9JudnmU1TkpE2k7VZclGITZqEYQ6RJeyra1YN9TKQGKYmMx4YOchYvYlOUjw/JIljUgODxYCqpyjlA+om5cQVSzj5mBWUKgH7hicJohwKRW9XEWEqqFRywlAPB2oH8aOQgh8w19TEWZskca4mmQWMS7eVJyj5BQYKOcpenmIUosK8U4gQAikhs5I0jrE2RciAGO0uKy9EiiMR3VE+hzSaqYNTVP0yfiJJfEO7kVAohzRTix9ImkmTUimi2WqTzznvPY0hzSy+sCRJRikqQOQY+6mUrF+1irGZOqec+UyE55H3A3fJ5QKU1R0RN0smJQUEadDFs19yITde9j4+/NEvEuXLvP1tr+Y/P/kFvv71zxD4kis/exVCOOufj3/zl7zgnBch+p/G7F0/plZYw39f8yXa7ZRXvebSwwKS4x6+9dK3cuChvbz7Ax9GKeHApIetND1ySOHIspJI5vnbt72cfyq9jh17Rvjof3yG++5/kDRNCYKIZrPJ+MQsl7zhrXzpS58nV65y+x13H/UgA4RhyJ/+9CdOPfOptDLN3ffdT5DPIeyCcumhJvmrXv5aXvXq5/O8F1/EzPwcK1ev4orP/SdJK0EKn0AJkJru7m6s1fzh6u/z1HNPpXvpOgIvwBiL0RpPBYvihFLKReCuwTlbH5LM9nCCtI9VYHicuHO0P0zTlDAMFx91qa+L+FLKjtSTREhnOikAqRw/ziIxHV0kg6S72M/6FUs4ONVg2+59rMxXOGnLZtavWUIxr4jbTebnW0xP1JibmncIbF/QqE2TJW1OP24tXWGIFJrBfJ5QCXZNTzFYLpHH0lXOofyAzRs2YoSkWMgR5Mv45RJRFHXwVXVaNiOfkzy8b5RqoUz30j7GGjGrB6qESpK2W8wlCQpFbA3aQCpT9k1O0dWd5+b79rJp6QDatMlHBWrNJjZpE1tDPWlTLHZjraCdCabn5pFKk8vlaccpYZQnazcRQUil6JM1GxyYdPIto7NNd4OIzgTTk1jpDAUKIfSG8JJNyzh5dR/GNJk7OEoziRlcMkS1p5fdYzXiTDOftfFsRl/kFAIa83XiuAUd8LWxwgUkwPckVT+kP5enpHJEoY8UFkyGlC4TjuMUiybTmnaSOh2oZsvBEqxBmyMRyElznr179gPGicdp12csFApY7UqJNIspFMu02018X6HTBGsNOd81X7Vx7AGTZlgHW0fHGT/9wdXMzs05FkGcEMex2+DWDRhURxU1RJL6CmMyfF/xrHPOZHpyhpXLltNoNcCTtNsN2q2Eubm5RWCpFQLkAHt3PEihZw3777mbQAcUvQqeXChJDtlY7d6znw99/BMIKY9QDV1YC72ehbVQuo3sO0hU7WW+3uLDH/40d9xxJ61WiyzLMCZz7kAYtLC8553v4o+/vZmvf+0bRz3I4Foq41PjeFKxdMkQ//Hhj1AqFBGP0/fOTExPTw9SCqpRwKqlS6nN1ztn2n1/3/MwxpJpyelnn4xqZEjlsuUgCBbLwoXE5XBs3OHB2PXNZAd24kwZjraOLofreWRZsqjBakyG9BRaOznUBQrKgoyJ5/ud3pKLhJFwWdNMrcHE+CzbD06ysrdI3NZc/bs7+fGNf2R4fAbf9+jurpBKn7HJWYxOOTA+zOie3dTqdQKhyKMoKws+tD1Dq9UmpwStRhMrYK7ZZGlvNw9u38aKFSuo16bxo6JDXxeLKOWjtMbLl1ne10M+6mJ8ZpwVfb2s7OtnzUABozMyAfnAJ9OWogqQyjLXMpy5ZgUP7hvhRc94OqP1OcZrNTZu3sRcbQY/jKi1E4KwwNjkBC2Z0Wg3SOKMnbN1yrmQKIoYnpumWCzTaDXJlarctH+O4WadOEtpp84+KZ/zCcOQTDuO2HgzYboNu2cShsdrHBgeZ/zgFDlfMNTTw0ScEEUBK5au5WAzpeB1Myk8jtu4lgtPP4kg8GklMe0sxaQWT9nO5aHoD/N05wtEfkAYeARSEamQ0FMoEaCEA11inFLjAoDWSGfZHvoBQXBkst1KM9Yesx6bj5BBQM4LiAKfRDcxJiMxTTzPw6QG38tBhyJhlKUtFYKEXKGMVBFaeGTGMQTuu+kPHHfKM1C+hzWSICoQBr4LXjp2pgjSIj3AB6lCiJyxwbnPvwCL5Jab/8C+XfuJwjwf+OAV3PPATgzOsPPjV3wErKK793iWL19OWFrNcee9mrax/OJXv8QK/zGNXMFPfvIz5lttrE75S5a1gote+kJ6Vy4hSdu87pL3UKs3MB1LayEEcTvBGPA6Aoq1tMVnvnwl45MTT/71kaxes5QMw//88McIIXj3ZZfx3Je+aPGZBcjC2c88jfOeczG5fIlzn3cO7/3IhyhFRay0DmjrCarlMkJKhnfcwuzcNLm1mxc9/7LUsGDFrZSTv1204AI3qRXKgXKlcNCTjru2+t+UbyZN8MMIbTPituuzSKyTxzS2ow6gkR0PN6M1WIGUPhZJIjSVqIcpNcOSYgFExu6pGoPVEpuXdTMzX6c+M8v2g0327Z0BpSkGPl1DS9GJ4bbt+7j4+eexbcd29pOnriV7RxvEBrorRZIkRRUE65YMsWZokK2Pbuf8U56KyVo00pRC3GY6mcfLHBPc1CdRvSVi3WTT6l72Hqxx7MZBzjm5wC9vupOxec2ZfUVuHqtjDNSlRqUw2xI874xjWDY4QNaOGdN1zj7lRJK4QRRF0JojiEKyBKYadXplNzVtKeTzlDsbbT6LyecL1FtNerq6kVaSD6uMtw+StDICJSnlIhAe1raxocQTUPY7Ey3hc+twg+JYwkzc4imDEU87fh0nLellx/QMa5d20VusMlI7wGwrppJk7B6f46RVvQTtPNc9MuKmTlIR+Yb+Yok1uQpWuemaVMb1ZKTXYdYrdJJ0OEu6U564bFmYhCS2aK0dFeWwVc33krTrBFEZlQtpGfC1wLmkSjwZkREjlEDJPKHywA/w0Bid4ns5l31JSxiF9HRXeeiBeznlGc9GS0MgFF7kIU2GMAF+4COMRYY+WepsnxAZnjR4wodAYjzDmWecyJ7dwzxl0waualxNu9Xgi1+8EikNb3jdG+jz8zx99Up+c88Mv7/lNu57aCfvf/+7ufveu3l0zwF0lnEkq9AsHvLHW0r5GPPY7MlwzbU/4f4HtrF9+/aOUoD7/YXHpOyg55W/yBF7LKn6CZfV/PfXr+aNl3Zx+eWfcM9qw/XX/ujIx6wlVyziBR4/v/ZHvP5Nb2d+YhrjBQS+g/NUu3KsHlzHNz/yDyw/7SSWbjwdkfgI6XqT1gBiwRpGLhLysRKsJVILctj+YrZrsk7v2R49iB9VuuSSM8+1Uh5yfYCMLHO1cWa0I3ceZniXaUvg+wSeT+gLEqMJI59cGFKLZ5mdmyRtNTlQq6OTlBM3DrG8r5v5RputO3eybyqmq+zz1pc/h1/94U/MzbY47/QTuHXrVigM8rute1hWLrFj/zCbVw5RVtDTVaXgGRIMm9es5ZjVQ9x57x0864zzaDfHaczXUUKgazOUChETc01CJekul7j/4R3cOzLCK559DjMzNX7x+z8Sej7f3jqJ8h1Lu1j0+LcLLyBRKaVcAYkiFDFDS5YyMjZKuZTnkf0z7JtrITyfAyOTNOsN6o02OybGeUp/N9vHZ6hWuhmemgbvELAuNYbUGtpJ7PSLlO/kR7RGISh4Puu786wZzDHfSKHV5J5aSigUAzmPrkqBYiFH3JzGioiBrhxRllG3irt3zzHcbDLRaKGUYFkxx75aA6EUx3T10Z8rkA98rHSoad/38X2FJERJg7EKa9NOuq2IsxRtDMJKtM3wrCKTTrr2uocPoZxf/doL8HG+fS0seT8k8hSxkIRywUveocILpQJGp4ShT6AChPAwWYb1JJ4niSp5Jnftp9TbiydcpobnYYQL2Nb45AKJ8iUZC7e0dBLAWiM9Z3YBBmNT3v62f+EFz3k2P/3ljSwI5GE98oHPl7/6MULt8Yo3vm2RPOoJxZKhpQwPD7uQ8iT0CFjgJfqL2LDHni8pPWxnSni03sohP0W5SOH6SwCRToCkM6AwT6wY0NfXx8YlvfzL5Z8iacdkIkVSIOdnFEpFpJRcffn/4ZQXncfGE88mjsWi04kAED7YBCFcWXZ4lmSwCOMgClY4LFdiNcp0SjkFTz/1zP836RLfX5ioBWQmxRgPYxJSnTpJExb6S+7XMFSdsi4hTjNnXdNOmazNoOMWM0lCmmqqgYdWgn1js4yPTWJi2Dmf0NaG9zzvfH54y+0MhBXSqMVVv/ojLS/ChtPoZouDccqGwT6sbdNOM8bHm2zYuJaK8ugb7CO2muecdhYtmeDlivR6MDs7T1tYcoUCev9+1NAqTBCx6bhN3Ll9Dzfd/kfOOuUprFvZzwM7pkl0Sjnv8ZJTNvOCp59E0dPc8cCDVDcdhx8Yql4vu3bsZs2mY5itx/i5mC7lseORPfSUquzad4BizmNdfx87ag0Kvk+9VQOVYawl5+ew0nM0Dik52GrheQFpGhOWihSlx2x9npbOWDXUTW9o+dVDw2RGoEKfmXaTWhxxdk+Rft9yU82wbWqUaljGZDEoicHSaMUoz5VlM62YfJhjfVcvS6sV/I5ekvICbGSJ45jAC5BCEKcpUrrmrzYpqU4JlAdCIXSG1c4+KZQ+iX6MimBWBE9jpUFljk3uI7AqxvND4pagUA5RqTOVCIMQOiNjtESEAZiU/t5upibHqPYsxQgNUpFaiHxFIHyU75HGiSsblCIQcnEKnBpNELlyyxoXJJSJuPTtb+FLn7uyc3A7WBpSvvL1z7J66WpOO+e5HXswV4pkNmN4eJhqtczg4CBbt247akAQQjA0NMS73vU2tu/Yzxc+/+UjAonXIUEbY5+02buA+/lLAuHhy3TkRJ/s733mU58nzPu0kwQZBEQmwApDrhAS5ny++5kvcP7LX0TX2uPI2gHWtsEXCOPaN75vwBzyGvQ8ZyyLFI5x4DvJIxQkmUV5nQGBFSj5JEP/o/6hsCAFjUaDOI5dv6hDNUgzg7bO9UJYaJsMnSYoJfC9yB2yWDI3O09zvk47gyx1brdt63GgkXBwdIb7D8xyy4FJavMJZeXzb9/5ET1BhYnGPD/fOsmuqTqnnbKJ5vQ4qdFImTLQXaRVbzA/m7Bp7XryXkC+WAAMo6OjiLyPJAM89u0eBmnp6R4gabeRYUhPLmJ89CBhABe/+CyisMzlV9/Cur4C0+0pelTIx159Af09AW/+7De59sY7OeFpZzJYlCzrX4o2LY5bv5IsyxivTVOPG8Rx6hxI0LTbCWmzzcHpKUZnZ5hozVOWHkanHNdVpaw1vlK0rSFAUqmUaYqEyA9QCEd9yTJ0ptg9MkZ7dpb+roBKMUdBSEIhmIzbXL9thN8+cpDnrOhidanMfLPGVKNNox3TbiUU8wWW54qsLVXY0rucs1auZmmp4owB00OkXik9/MCBYtMsQ6BoJpo0A4QitRKtU6wxZDbDSoHnl0CbxeHHwgo9g+xYfecLEWQJmRIY7SFTRbEYoJM2WqauvNHgCadG6ZdAZjAzuo/6TAMrc+ALsAt9i45uvHJigtITTjDOZg7U2wHv+iroSClbFuoibTOOP2EzL3zec49UXpAed9z9CGc/9wUApNYsjvULXsh3//uLfOmKj/KWt/2NM04VcNVVX+CTH38fP/jelYvjbdERtotbCZVCgec9+3Te+6+XHvFutLaLGcWi2Wfn14svvvjPzt9jEdx/0bE1T5xNOfcgyRVf+gLFSkAQOrlpQYb1MvL5AELJdz50OWdc8BQq609CixJGZq4PiOp4OXpoLAiD5ztcmDZOocBIsdjQB3cJS08gso6sive/nL6104wsPSTopo3jvy1gkqwReEqRWfCtdWL0QpJpx4aOkyZRGLrGbZbQ19uLJxVpnKESaEtJO3PKAjGwb6ZNPdP88Pat/PD+PTSN4IwT1/D7W+5Fa03ekzx140qm5ibpL1d55tOPp9JXQhVzHL9hPYHRbNywnlY7o9rdTxQKuvu6CKxE5n3CQoF2okkyGJtv8NC2nQz0DtLTW6Ia+Vx543aetWEtH3rDM7j1oUdJpjTf/v/eyctf+EyG924jKPXQ21UkF+Q5MD5O21r2jU2QtjX1epODtRkSk1Is5hAyz3yjSSHKgcrTTGKOHVzCjtk6p520hkJcQ2jDZGseaeCkVceQZgk6TpivN8GAEW1WDxRohhFrK4P4mWasmTDZ1ghjacSah2ba/ODhMYROaBjp3r9109ChQoWVlSq9+QKB73cOrssmhIJ62mamXmO+XcciSeOEehzTyhIyNJYUjaAc+kjjFAYKQZFKvkqoMpQXuAzqsJXZJka46YzWGhUoJJYw8pGhezb0fKexhUcYhlhtkVFIu6nY9+idLFm+gWaSIHDmmUEuT6YFhTBHaH1s6npGYZRHEyJFiEQQeB650OG4PF8iUQSBh0WTLziE84tecf4RgVRg+PR//ufiQTlcKuSdf/06Qt+n3NvP6pWrXPZhYezgbtasWYdVTqrHGYdKNqxewne/9ikKuZBm3GR68kj7qcOnd67Mc9PrSy75aybGR496UK21RFHkfBEfRwblyZbTRZL/l7P3DrPsKs98fyvsdGLl6qrq6pyDpFZoSQgFTAaBx4ABcz3Gw7U9gMEYwzDGF3sExvYYczE2xhiPsbnG5JxNEkhCKEvdrZZaUufcXfnUyXvvtdb9Y52qlgA1fryfp//oqu5z6pza6ztrfd/7/l60VKxcvQqhJFqFxNqhnSBA098XMH3HYV71phcT969BysLyUVP1tGVSSp/TCBhnvOegt6tTvQIlhINALhMqpPC6Ri0kytmfi+N58nXRfVQYhqSdLjpUZJklDmNMTzZeSKIepqQXudPt8WusV3YLGRIXErJuhzTNqfb3cX5m2ht7jaO/VKDV7VJIFK0IUmcw2pBnXv9QVjGXTw5w8uRZssxQiQsYA/3SsGXHNk7NzWHDiC2r17BYm+fsmTOsGhkkVgGqKGk2a8g8pb9YxClJLiXlcpH+SpV6t8Om9Wv58nd/wqUbN7F1fIipxUX+7Udz1FREqbnIrz//mfSPjnL/g49Ra8yxe8tmBleMs/fHt1ItFkj6B2l0c/qShHPz8wyVB+iOjSKtIVKSw7PzVCtFWl1LlhtOOTh94hzVWDE902bLmgnyswvUOppuNyUyOdVCmYVGHSkEYRhy5VgZHVbZPjmIDCSr50a579g0B0+dZ77eBCFQOE7X2xgLfTqgUohQKqA/ChlKEp9KshSzTUDbtAiCAC0DYivItTdbttuGKOilIDtNJBxSKJQUpMaiAuH9cTiSOCBvZchAYbpPbVrKMEEphzUSrcE4fzOHGb6BX4hwRlLIFVmQg8gJw4hytcTJQ0+wavtV5NKhggClLVpo8k7em7oJUuEQztGRgjhLlxepdRHGSVTe9ZM35zlDUikwnpgqRYhw0fJOCPxgWSKXx9bWWrSKWbV6BZe96AZaJmf6zHne8Lo3YXsLpq86wvTsInffd/9y36hUSnjHH72J+cYCSaHEZz/2eT7x7W/93HV1QfHsEOT82qtfys03v8bbOy6yiwiCgG6nc5GwrZ//XEJ4X9vM8ZPcdNMziJAI5VCEIB1JQVCIE/LjXRiY5nRtJRMTE1ibo3uhktZYokCRW89UEs6SK42wkkB6M3GWZd4DKyTGgNABYe5IFSAdpqeWUr/gFVxcPLmUdCkU2BRcTpYZiknBF54eCldLQRT4KZ1zDkK/k4p0iBKaMNI46yjrCJwkjAXdzLOXRRCie2hRgaJjMnILQjqm5zvUu44dW8c5e2aGhk3ZccmlHD19kmfv3kXHGWzWotVpMDgywmKrTb+SdNttTDejMXueqg4pjlYRqWRuappEKWYbDS5bs43vPnqS+dq3efNzL+HKdWs4eXqO512/m2a7zp49e5iYXMnU3Gk2TawmHBznwbtuY+uGjSycO4MMNUFXgVDesrI4T7fVxaVNrrpkB7W9j9KaneOSFcMsOsdDR0/TTD2u9cDZU1yxdpKr1q7hs/fuJYwUR06fZDHN6OZ+qilczoG5DudapxBacMXGdeycdDz30i3cdfA0+x4/xcHTM5AbnPABnmEUE5AT6oSC8vaSOEzodrt0TEYsMz+aFQJjc6SyxEJjrSJzPoEmVhFBoGh1ugRBL1rJZtjeeFcHmm6nQWpTIln8Gc1JoEKE9UJIpWNC7b1ssZA0nUcNkOEAACAASURBVCbMMlRUACVRJORKMbFihKmpcyTDwyBEj4Uk0AICYVFxQO40TgtshpcCGAPaA+eEFEhpexPC2DfTZY4QATiDEh4ZJ4TE5Dkf/8Q/8H//xhu9h9PYpywRKTXve/+7GRsf5KMf+Rg/uPVHvuhhCaVibOVKoqiP//bbr3/K0WrN6ErassIbfvMt/NE738pNL302V//SNbz5bX+MVIpIF0HldDqdC1414K2/97u43E9AW91Gr5AsnzoJellvQRDxxjf8Ns957gt5y5t/n0cfe2S56DxtA1xIhBJ88J8+Rn+1yMR1z6MddHxj2hpEaJExEMUM1Uvc0biTNZt3EwZFwPccAT+EkdL/TL2dkM9OkUjZ63sJRaj18s+ksGAglxbpJFJ5i4kS2vcI/7NFqdttA94hrpTC4igmBXJysjwjjgs+cDDPEErSbeUESiOU9A1I07OduJDcpBQLVdKshZMROoxQnQClFPU0Jerd3IO6RLPbIbcOLQXPvGo9EkeRkEKhwMkTh9kwVOXUycNMrljF+cVzTA6sYLa2yOrJQeZmTpLoBJtnxHGMk46pg8cY2baRxtkUpKDeSkkTyXAx5qHpJvuPnUNE53nZ7m0cPvEQq6NhKkmZxx47woGT8wz0T7IubbBz82baC7MMTa6kLiTz56ZInUGHAWMDQyw0H6fWMpzdu4eyijmrFQ9On+fqvj6uXVlhT63BlqDIlnUDnJlbZGw0AOWo6hhHRtd0vUbEOXCCKFCUk5AfPXSUX77hSoZLMYeOn+FZG4apn58ibfTRzboooQjRpFr4T0Hh/LG6B+0OAwEyRIqcOIgxxuf3LaXpBoFGqWj55u6kGUkQ0cy7GJNhcYRaEgQRuJw8z4lUj2f0U3dQ0zlK+GamT7TJwEWYICTSDiVDH0qqJTbPqZSHuPP2b7Nuw+Uk4HdDNiMu+OKSg9dJabDWEEQJQlqQvoCIHgHVOocwCq3ACYtS9MbtEqk9+B9pUZHAysBD1J6ylmWvyFjCQPHo/uN8/wc/fAolMXOWP//LP+dDH/pID9lzoZm8/8gTvPl1b0QKyb998ou84EU38pzrr+fj//xhTp44x5qxAj+45xH+5Z//7Snv14tvfh7ttEsrTz21odebomcAzq2HKcrccvDBvbzoJTdzZurMRRf18uUsYwODnLlnD6teeCPtoINcKihKY12ODio88Kkv076yn6HiGsJCBZk67zd0PdFjz4R/4Yjri2Zmjd9YCIEUXkyrxNL75UXVsldicuOHEiZ3vhl/keui3w51RBAEhGHsRZLOb8Hyjq/ctcVFFhs1ulm6fH7MbYaPUzK00g65zXxiBgHFYkIhKTE5tooVAyMMDY3QX+pjdf8IYwOjjPQPUi0WGCyUiYIQJyQlZajPn2K+PcPwRD+ttMX8fI36YpuGtawaG2ZuboZSDFPnprBplwOPP8apszNEUtJq11h32aXMHz9FlmW4ULP/xFFsM2V8QKAcfHrPacpWoWyNLfEQf/WDn/DEufMEqo9dGyfZOb6Cdr3GsaNPEAQxaRBirfWTIB1RLpa8bibTVAt9DA72U66ErKgUaNc63Hf+PIOlfn5l+wZMINl/6gw3bN5Mt5XzW8+8lOGiJLeWYuAxJVb7n2u+2ULpkGuu2MieQyfZf+gI/bHizPkZtg2WMGlG20namaXdc78bp1Ba0jZ+O11rN2l1PbLE9hrWwku7e8cVPzldGjmL3uLrmi6hdH5ylQtCJKbT6SXOWBabDW//yJ76qReJDKcDQu1RKkaGqECQ925wIQQZOQpHnDVpLy6wZtV2XKDIVUJXGJIk6XGZdE90F5GanFAGRCZHWTBWgvD6OCEUSvoPQuMsmBCTB0ghyIXqJbYoMBZtAmSW8eWvfOqnbn8PUfu3T/4f3vq2d/Cn7/1T/9XeFEsIQV+1zMzULPfdfZdf3D+1Q/FiecuxY8f41Kc/z/nZRQaqBS7ZvglZ7GfP3v1PKXJOCtrtGons8q5b3s7uLVt5xq4djA5Ul/tGA5Uqr3rFy/nClz7L6972BmJped5znn3hMS4iE0iShNe/7U0M7d5KoRAjnOxNI/2Rt1BIeOQb3+SSZ07SECOMTG5AmRwVeFd/ECqEdL2+Egg8nsRZ396PtN+JStXTLinPUfPR3RIh8L8P5/dV1vzHZBUXLUqtTpNms4lxXqXd6aRkaQenHDY3RGFIqVD0UwnrCMOYUqnSK2Qhg/1DFOIEWBoZOi8vMI4wiAl7iyGIfTS0yXL/okPF6HA/W9eNM5zEaK0ZrJaYKIY0a03mFhqkMiEqBbg0x5outVqHwZFRpIhopYbRwRJRJSaREZac1sIiCkGUxDSbbZIkQQYFLh9Q3LBpmGIxQkvHWz75Q46d7BBIxfrVIwwNV1g0LeZnz7Nycg0d24W4iCZERYK+wYEeX/kUMnYkA2UWWi0WF5qUsawcrGCcZv2WlSRhxLOvWsWvXH8DX7vvblaPVDk2dY7nXX05z9y4Fu0E5UiwolJi/egAlwyW2TAa0ScySsUK852I+4/NEsUSBvtpZnWk9ZonIQ2hd9rS7lpcmqPCiHaWkxpLOS5ghb+J8zzFImjnKS3T8hYH62hlGUJ7Ymc399O3ZprhAsVcp00mRA9HEhMGJbrdjM5P7cQDHWFVlzAICLTwyFQkQShJggjnDKEImT14AFfpR6KxUYhSGqkchThBSkmaWSLp01adyhHCkZKTK4dUjjhRvWOo7AHx/M0eBSFBIAmU9hxxuYQJEQRhiIoDdBBR73a5ct0qtBIs9Y1HV/RTKUbYXIG7oBGyFnSQ8Efvege33XYbQuqf7f04/8fhdzdztQ6j44PMNZu8/S3v5DW//nr2PrTvqUXEOXAKKQYYCqq8/U/fzh+862289X/8HloJoiRkoBjzW7/zOoZGh0h6+JdXvuRlF13USz7VdrvN+//qb0hMTm4lOogIopCAjEpQ4OG7H2B8+wCVNZezZvPOXl8tAATaqafgd60zCOkdHaKHWvHDeQ1O+d1pT6+0pO62RvQwzQIV5DhhCSON/gWK7l/IUyqUiljjf0FxHBLqiCiIfYMsiWi32zSbTTppG6yj00mp1Wa9InqxTrPdwRkfSeOMJbeORqOxHHa39Mkhei52I6FUDHnuVRM8c0cfV1yxneu3beD6zVsp9xXZunEDUanClZeuo7nQ5us/vJO53KJUzqq1k4SlApdtXMvoigFmTp8kVZJ9d97F8NAIubAkUcyxMw269TbKwYlGSrdpOD19HtmVdIXiX/7gV5lcMcRjx46xYniM2dnTjAyNIUKNkBFZq05tcRYlY7SWFHSI1iFbN2yi1WrhlKQaSSZHh7h0VZmbt05SiWMI2qhCP4N0+O8veQ5Zq4lLLUdOnWDHlklefsN2EqXY0l9msCRZvXolykFUHiI2LSbGCsxmhs/84BA/uP8Az959GYmGShTR6TowOQ6JdBYZKRSGRAviwGugcmtoZxYrFQZDIAWhiDBK0Eq9j6zZ8akmSRhhlWMgCklUQCn2RlstwJoucaQoJAGB+im/V2aJiJbH3mEcQS/nr5PmOCdYsaJM/4adpC3jgzuDEOMsMgjI0tSHmPY+aZ0NCGRCrCO09rtn43qNVEArRRxIIpX0yIcGh1m2Pzx5oS7t4Jf+vOfDf+aPYfjC9O5b/phbf/Cj5YKzdH8KLNdeuZkt2zZz7733/sdElLlhcWaGvNkmK4Uei/tT/R/hIE1zuq5BwzSZGBimGMZsXLWGHcOjpJ2Mm1/2X5BS0XWO+myThVaTqfrcxZ+8Z7YONLzv3e9l/ZpNREp76kMvhWhsrJ9dO4sk0TCYGBldeL+c6xWdXk850BolQ3Ce/KmejFERtoeK0f4ov6Q+7x37cpvhpANCL760thdq+vTXLyBPWvI0Iwl989OfL/0uqdnwwHVrIYlisswXmVAokqiElBCGmmISe6ZL5LUrCEEcRphuShgIgoKm3k6hpNi0apBSIrly00o2rO5nzepBjMzZdNku1q1eQb8UZMJwybY1VAdHGBsssmvVGq7ctImd27aTNxaZHOoncx20VKiwyIo1k5yemiEqJczO1eg6Q9IXcd/D+/n1G57BsZai1pzl7sOLnDjb5DPv+K+881+/xMpVk9xw3VVUQkNULHDXw/uQxZjCyApMmiJ1iJGOWAgmJ1cztnqS6alTFIVlamae41NTHs5V7eeay7fRatcZG1vLidMzLMZlFmo1XnDd5Vy7cxPWSB7Y9yhZlvGK63bwnGu28Ju/tJvIdjlRy1k8fwrCQU6dm2P3ynG07DA3k3HbA4+BEKRpjhF+wTsMItTkqWMxy0npcbAyyFNDIQCR+76FNRqtHMpZqpUK5UKRQDraLU+ZVEKC8okqyvjfL0qS5l0W297KY8VTb6ECEaGxIA3WKJRKcRjiQNPpdDj86P1Mne0g8wwVSWwmaaeCQCiskYRCg1QEYUzaFQgFeZYBBikdSixNyhwqVOggIs+8ejmQwvN7VIzUkqzro8211r3/L3vUxYAwKDI+vovffukNvWIBwjo+9OF/YkntLZTEGcsXPvdJ/uAP30Xecbz1936X/0BNAuE4NdXg9W/8Hxw9dARtwuXE6KXLAZXBERZqKUJUOHLoJIv1FsPVMu/+uw/w/J2X0FxocvLQcR57aB//9Nf/wEixnyuv3H3Rp3bOoZzj32+9lXXbN/kCIoWfRArL1Vdfx2N7v8nBE9NUxteB6pB37XIhX94oSI8ettaAM+hAoHrGWoEvSksCTycs1oCTDqcd4OUHWgbkCFLr8wYNPrThYtdFi1KxWATrSG2KVhGdTkq73WauuYAOfCrr0tk3twYVSBaaNdqdOu12k3a3Q7PdotluYa3EGkMUOE/UU35hmHbGro2j/NbNl/JLzxjjf77xev7b772GSn+RuH8YqRSNxiJBJSFtLLBucICxtaspqZyH9u1FVxNqtRrzM6e57847mT5+lHy+hulkJKWEYigYHBvjwLHDzEcJdOu857W/Qr3bZdO6FXzwtTcy3YETNRhYu5K//+y3uGn7Zr66/xjVvpjp89Nks012rl2HDEI61pKnOZkzzM7OMrcwQ1JQxNYx2D9At9ulqhSrxiYo6pB6Ljhfm2M0ColCxfOuu4oMTf/YJPsfe4LN4wNcu3OUs+emOLj/NFMLC3z4K3fwBx//Dt975ATj/f3c9cQct93+A8Kupb7YpH90CIGkr9hHJS7itKWUFOgIL3zEOi+DSDMSFdDJM5aiohEK0ZskeWuQ7y+l7RbOWLKOoK9aJABcbkjTDgZDoVikr9RHrCKE05SiBGWhEDwV8taki4xDnFUImSOMpqBilDXUa2e49NLrMNoghIbcIbRAyRwnJEplRGF52ZEflkOcM0SRIkPjjAAliYMCzkbYLCXrpugw9BMhqdBKgUvxGWnCe7V6/SalBFI7kiiirzrAp//ud3nur70Oi+VXb7oRmacYcWFhYx1bd2wil9BpN0Abjh09fsHztVR/nkY39K53/Qk5AixkpMuSA1QPoAbc8Z3bEVrxZ+/5Cz75qU+zf/+jdKWjWC7wO+/+f9h82dV86rNf40d33se3b/8Rr/zlV3JueuHnPt8SvcPheO+734np5LgUr8IXAqtTSpUC937zn2m3Yzbuei6BDhEuQBFgrSc7WOuFkc653rFYeE9ej15qnPU2M2FZQutaaxHSM7YCApzNMS4ndRplAeu85lGaC6PFp7nULbfc8rTf/NbHP3lLrbOIQiOk3/o2u11EBkg/IxDCklnvGNZS46TDGMhMThgEy3L5VrtDlmUYZ0nbKQiHCQM2bx7kWbs3UB0pIgoxpcFV1OdniEplXLdDqCWVgQFy06VVb5GYDnEUMHvuLOWowsMHDnH+3Bkm+yqUnOX+/Y+QZx1k3iEuFtB9g8S5pTXfZee6VZw6e5rv73+EG3Zfwb/fcw9Xrhxn7WQfkxXBlvUTXHfNs7niOZezdd0YRx55lH2nZ7l2+xaivjKFaom5hUVmz5zhtvsfoxAVCIUiikA5QavbppCUmJo+z8qRftJUYrMuW7dtY9vmNdSnZ5htpZw7fYKNG9czPjzMPY88yspKP6tWlDk9M8exqQUip2k4Q2wNl02Osn7VKCcXMqbOTjHXnCPtOJyI0DLACUfqoNXNqCQhIvfaHkVOOS4QxzFKe26zsT6xWCpLJ8sJdO+TzDjCUHvGs0tJs5wwDMlyi9YBaZYTRyGtTguBI/doCAqFItbCI0+aBu2+fAuiECOM6LmkQvr7q5z/7r0kW9ajZYgVAh1plBJEKkBHHvGrZYnUtlAyRDkQUkHgIf3SBmit/OKR3sIkpPSKYiRCBkglAYVzftqmlUIq6RdLD+0ai4C+oWG+85n3c+WzXkOuQ1732l/j5OFzrN6xiTv+/Tba2QXrzKa169m+4zLu/sndrBkf5+1/+MdPWSNSyqdtNv/015c0Q4VI8YGPfogdl2zjoTvv4y8/8EFanQaf+cJXiYuaKInp5m3u/P4d/K8/fQ9BEHDbbd/HYVloNcil5tF9D/28ZwTn+PZt32d0xSpv7RCCQPvJ65YN2/mX976NsfXrGN5+DTp1OCnRSi4f2Yz1U07V21U6K0A5pAxx1nPflRQIPC7GOu+TlNJLiJZ/EtFrcCuLxBNUg564WhnHxMTKdz9d3bloUfrs33/4lqhQJFaabtqhXm9QiBMykyOQWGN7I8sA6SztTnt51BpGvjPvnCTLcnRPXl4t9ZGZjBueuYlnX7eeNRN95K0F2tZRSIqoQkKxb5CZqSmmp2eZOX2CSqFIUCyCtRyfmsKkOX0a2vUaI8NDTKxbw08eP8h4X8RYaZhz7S4nZ6bR3Q4VHdM/0U9/KeE9//xFrto8yXNedjPfufU2nnvFFXz06z/k/PnzaFng6ptfTGf6OG+/5aO8+MarMO02E31DFAeqNOfOkRPRyTIfTWRAmxZCSSKtqZb62PPIw1QrRTo5TI4PcPDIWUaH+kiKEWQdtl+ynbt+fCfjY6Pcf+AhdBBz+bZNxANDREA10hyttejXhnO1DuNDJRrNLgdPnqPb7oDTTNUdadORWq+SVUqRdVICpXFSedlQICEXhHFImqZ+uOAckYI4LgBQjGIEvi8YRxFCGOqLDdLc0tdfxZjUT2twlAsR9UaTIIiwxqK0INAJ7XYDrQSPTp9fvmeuvH4XBR3R0oKgUqT5lx+lb+8j9NUWWH3XHmavuxrtMoQOCQPP7A6Fxjrtb3aliMMCqWmideCLjhUorXrH/xxlA6wLfFKr0iA1urfnF1ojhfRFWEqk87snpT3iZN36XXzh0+9j1/WvRBCgIkGnk3H45FHGx1fxxS9+8Smw2rn5Bl/66hfZ+9BePv25L6PUzxah/6jC2jnHunXr+MeP/RNJ1mb1yAjv/eu/WS4IE2MrGRrpxwlNt5XxjW9/j6PHDzMzMwU9gJ1A8/j+PT+T+7e0Y/nkv36MQlD2zX4Zo5REyJShsZU0T+ynPFRgbMs1hCLEST8QENIXL9WjRuplFEkOBH6dZ8ZLKoTH+ZhepLhUXpnuen1/qzymxDrrNzM4UAFK+Omm8+NeJsYn/nNF6Rsf/9dbTG5IOxntTptCIfGCKunPh8ViiVKxgOjJ51XgOTtC4QVaAsLAg+RBorXqYRlyVo0NsH33diw5c6dPEilB1ulSGCpTjjRSK0pDFaK4wvT0AvPHTjI/v0i3m3Lk5Gn2HD1FEAu6Bob6ykxPL7J1fIRj509xZr7BxPAE23du5vQTj9Cab7BYb/CCq3byt9+4l12rilx22fXcd+/9rF2zkr17j1GTlh3bR3nrBz7Fu37n14nKgocfPcLk+FqKlYAD+x5ncssWtFYYayhV+3n80AG0sPSXikRa8vDhE5CnFJMS56fnuPORx4lIMWmX3ZdfStpeoKALPHbqBFesXc1VV1/B5776JUTeYcVoH2sm1jI5WsWk0LQGmQdM9g1Q6ziqUYWSjhBG4hKNyiGMYrQOCFRIJ21T0gFCOAIVIKQg1D6zyxqf8Wasj9rOsow4inECFhoNr1USnhggA02z3kQrjQXiOCY1foKnhCAKA5xTpFmHQPuk4oMLs8v3zPXX7MQYTUhM8BcfphAH6N6WfxGHPDINl2whQoOGQGqybk4SRVjnhXNGGHSgkEr0Jlp+DK20QMnQO/gDH1zg7VwS7cBJhbM5Uip06H1qgcxxUhIaw6aNO/noB97Itc95LUoKpBJo6YvY2IYJPvLHf87ZhfmniCnzPMVZi3UWrZcawY4oLGGsD2flP1iUtNaEYUh/dQRhU5L+Mg89sIf5+RoAURywbfvlPLr/AA/cv49vfvtbPrrsSU8hhA+qfMrjSk8ouubSS3n2L7+EKAgBgRYGJS1RLPny//47oskCKzdfBUQIKRCyVzyUX5cAQa/n5e0wIPBsJakFgfYAPpxD66DX2/N6tyUjrkIgvWUWK3xz3WLRzvcntXAY5/7zRekLH/nYLUIoFusNb6wTvtB0shScNx0sLjYxxlIoRFiTE6B7HG+/fa7VGuR55iu2g07aJSnFXHPZJMcP7WVAKvKsSWN2ivnp8xx79CDz56c5uH8fp584RoUWrdlp2mlKo9Ngx4ZVrFs5zOZ1a9i2ZpJVq4d5cN9hrtyyihMnj7Pn8Ek2rN9CVIypFkLCVpf5XDE6sZIf7z3EyqhNMW2xYedGKolmuBjw/Ku386IXPo/99z7KK65Yx94Dj5EkJcZH+oiLEjNXpzDcR3l0lG6tTnNhHpt22P/4UaK4TLvVQKuIRSfp76tSry1wxbZt1GuzHDpZY9emVTTrC4z397N11yY6tQaf+daPUY1pXvhLV3HlC17A7OHznJk6hZYh3c4C+4/OU9SKeqdJQcZkSpHmDl0oEuTgQs+0ytpdcpujhcTg7Skms3SF/55xnnGVG08RtRascGSZIQoCQq1ppW26JifWmkApAh3QSTtUKmXazSah8DdgIYyRQeDRvvgbNssyDj2pKF1z/TUs5k2Sv/lXwnJM6dJNHD5zjnoP07Kj06bWLqLWjy8TGy2aMHCEOkDrEGslTjh/zwiFED6owLocIUDroIf+8PoXbxb1u4UwjPwIW6QERFinwQmy0PLZv/6f3PzaP+ylwSwdvQAEBR1SXTvGrd+/k5/JIu9dSwpuKSVvev2vccufvJMXvPDFfOVrX8ddxAi7dAkhqNfr7H14D6949a9QLVa55LKdfPOb30EIwdGjRzmw93G+973vs2fPA7Q7reXx+tL/DwTYnxqp92C7/MV73k3fwDC6V6wdEUpYdm2+DjE0T6l/A3FY9XRYKwDne0W90b63gPVaPsKTDLQKcPhwTB9EoJBCeeGlVr3HAUevPixTJpeMua7HuBLkJkdILwOaGH/649tFZ3NCSrppmyAOKYQB7U6KE5ZYC7JUEpZilAowxlGvt4mThKnFOSqFCg5DmnpFd1IIaXdTlNBeOrCYk2hBMjbKbfc8wFBSZr45h45KHDh8ji3NNgOjg5w+foQvfWuGLav7UCpjfGSY3DrIMuJKgVRozGKXWHf5zLd+yOXbNpOUqxgBl25ZydSJs5RWVLnv1n2s2zTJquESXdlPKR7knq99l7F1o5w6cgxrc3aFirEBTVCMueK5V5PPGfL5KfY//gSpLfCMXRvoLMzRWJhl9uw0AwN9DAz0sXL1Bo488TDWnmBl/whrNm7ArFrHvXvvY/uGSQaLBX50/x5WxAHN2jlubO5iw6o+3vyaZxNmMf0bNtM9e5pINtg4GrEwM8ejGHavGWDv8Q6VRJNZP8qd77QYkA5rJSZ3BKEiCDQoEJlD9AyvQaAgM5T6+mi06kCOcQIpHFp6pbeVgnbXY3dlGNBtZUhlCJ3fHbXzlIV2G4thsdEgSaDeCegLNHmeU4wSZuZmCcLkKfeMVW36P/p5VKVCw7SY33cMEDRMRk7AwwHYB79D5dk7CLUit5ZyXEZrvNtcetuHFqARGCsIA7/whPA78txZwkCglSAIFHmW9xKbwVqH1tIL/XSKsgmVYoV//9xfcPUrfp9Wq4FwJZQ2y/1OIaDTzdi6aRvoHJ4eQwTA17/8BYqlAjXb4Y47vndRZ/6Tr6Wi9qEPvI9YBbi8zeTk2LJUwBjD40cf8eLDXnqLMZ6TPTfnZQBf+s7XeenzX/qUI6RzCi1yRjduRZN5w6sQKNnhql038eM7P4Eor6BcLCMkmB5sTeChbV6P1KMdyF4BJCQMe/HovUa1F0XCUk101r93fszfkzsoiXHen+joOQeEuFCs8Faki10XV3QHAThJKSkgtb8JdOTje4PQn61bjSadbrc3uu1SDAtIZZmbm/OiNiloNZt0Oh3mFmsYHEkSc26+xV337WfPviM88PhRSkkfrtsliWDeag4fnWK0upL//Y7f5JUvey4rVm4iJeHE8XMszNdZXGyw0Ozw8LFTzDccr3zGDoQ1vPyGq1g/GLA4M0c5tPzVP36Vay9dzcMPPMTjBx9HVsuMbh1jYtskX7nrIUpRQnuxw+GD+6jPN2jPL1IUknvuuYcf7T3M2ORato0rshw681PIUkJBKoZKVbTLMek027ZtoTI4wezsLFG7hpQd1k6upL9U5b/ceCMbVwywc8Mkyjh+9OADHNzzGN3jx4nNNK2DB9j3w7uRKsIQURldxQ2rxzkx1aaQRISlCtVSEeEMI0lCKUqICgmVYgFrMnJnIXM4EVDQmoFqH61WCyEctdaiN0sbi3Qw3848JQCBtI40tzSyDG0Ew9UyWinaWeqDM0tlTKMJVlBEo2SMy5to7Xc3CwsLFItF+ipPLUrd9/0b80rRMCldJLlNSbWipEI6yqBcjpCWgwdOYDKLikKMcggDdC1ZDlqGaCkxtoegtTnC5ChdINARQmZ+p2Q9akVK6cmZWiF7i8qmltAZkmI/X/+XP+GGX/l94jAAEaO0P7L4HYXfdSWJh9F96IPvJ0Aj2vtc0gAAIABJREFUwictDd8/95cIWJyfIs876Fzy0X/8OD8Tfvc015K+6fCxk+TCkbuUvJMRl6PejlChHEitekp5/++XCpJQcOz0lCeAPqmp/P5b3sU999+NcBk5giyQhMKxfe02vvKZD3L+5Gn6kxECFSGcpwN4xbzBWZ8YLCWoXlSYFB6Mh5NYg5cASOff+16zfklrZK3vMQohENKrxJAa2VONL9tUdOB7lM5h9MW9bxc9vn3m7/7hlv6BAWZnZuimbSrFPs/GThR56j1xpWqFKIqZW6gRRSFCelZPJ2sTq4Dp5gJBqUjaaeJQlMKYMNakrkOA5pLNq5hrTnH/nkMcON2k3erSWGwRJwVGB0t86rs/4dY7HqYQSTZtnGDLjk2EUYHm/CwL7Zx9+x/h1NGTrFk5Sn/fAEkQkrou1jk6KWgM82nK1GIKYcC+o9McOHCGM4ePMtzfR63V4bFTDcb6qxR0jB7bQHO+wdZ1G7jyxs3UDj2Cq65Guw7nFur86HvfZaRS4PT0Obat28DJ81P0xQHVah833PgM2vOLuDylm7ZJsybnpmZ4yXNuIIkTiuUy9XbGxLpJdtx4HSKOEM5SrlQoD5YYGB7lX75+O9fv2sGps2eZbkuEST18zUFfaQCpLN0sJ1ABqTEUdIQQEGpvM1lstlBakZscFUfk3ZzMGCSOREWcbsxTib0hVqvQg+aET+Y1uUPjhYbtdpNCoYJRUEz6aLcWCAsxeeq3/JnIUUimZuY5Wp9fvmcG4sibfIVhDM1ZaUly/4laVCEtk3M4ywjXjrJyzVpILYVQYoVCBhFaWD/VRYG0SC09Xln4kbNSodfLaIFSUU/q4BAixEMyNaIQIl2LsckN3PGND3PFC38TazNCHSCkRWmNELLHR3LLwsogiKhUqnzys58mMtIvMEA50E7wyy9/EW9565sYnRgly8C05vn8l76Bdb9ga9W7lhriR4+dYXJsktwonJJcu3M337nzexRzuOnlL+Xo44d/JhlFKW/TuHLnFdx++w+8015K/uCtb+ZZL7iZuU6GxhEFMRGCtZvXc+TAfXTaNdbvusl/6JkLu5UemQp/wHryz+eW1ew+XTnvTS+Fn7b1sCuwBKJTGIdvaDvfUxJCgjUsPZw1xu+chMCQg1VMjI097fHtojjcV16y22klSK3D5imFxHOxu50mpXKVUGmCJKBd7zC/uOCbot0uQRjSaC4SxBF5x9DO25SLFYT1TJhutoi0gtXrS5w8eo6Hz9XIhKNfBpzN25hOzub+kBNtyXABXvvSFzBQqXLo8IOcOnuOdlNy2eUbadeb3Ln3cfJ6zvDkAK++YSe1hVkW5qfZsGqSh544yYmpJuu3beDL33yEZz5rIwtnW5hugqbNXL1Nx2r6S5JX37SJ7+w5RH//IAMVxZoV46wYynHlMSp9/czPz+GaHfY++gQT5RJTzTZPnDpDpVjg9PGjvOpFz6FcHkRXC5w+cJTRsTInTp7iwNkWhQh2btlABUs0MUaoJfOPPsSHbj3K40+c4I3P28buG2+ge+Yw0cQ4H//ybRx+YpauGiC1hsFC2TdXY02zlaGUTxRWPeypMzlhHGG6hkKlxOzCLKEKcVJQSYp0u12iKKDZ7nj8RbdLpVIi1BFaa86dO4NOEmyWUqn00W62sDjqrSYDAwO0Wi36yhVqtdqykrfZTekrFEjTlK8dfGT5nnmBClkThMTa0nJQN4YACICyDkhQPHrNtZS1YMszdi4bbJ0LCGWAUynGBP74IvwuKAw0xgQEoQMXIpVF6dBD5pS3Rfj+kyPRCfVum5EkpbYQYgoSHRiEjdBh0PNxeQ410pHnFxbZkniwrCOe9fwXY3pTMYfjIx/5W8qVKrMzM5AGjK6sEEYR//X/ej2tdgPnLv7pv1RYlkiN1kp++SUv5atf/wqvedbz+Y0/fDMH7n6At773Fm55xy3c8mf/66kLVQhu/8ldvOrlL/MgQyz/+P99grJ0DK9cheiB+qWE1WtWcvbo3czMdBlftxOXS2TglrG1Ty4qHt0ilr/uvIp0WQ4ghPB/50IwgH8NcrkoLeVAwgWJhHPOs6aWzno97Vmae63SVZftftrt5UV3St/+xKdvUUrSzTL6ylXanY5PRS0kOOtopz4WKIgDoiCi3elQKCV02h2SOEJYQX9/BR1EVEtlUuOnLCZVFEohp842UWGFviRCdXKScoG+ICZSmrrRvPSKS/nJoUOMD/Txz9/6AXmq2L5zK1E54YGHjtLKFJPbtvHi63dz7OjDPPTIefacWqAhixyZSrnv8AL7Ti1w5NgUE+PDzJ+tcXK6TSdTzDY7xIG/oVuNjIPnj1OpjJC2NNvXjTDWZxnevJVH7niQya2bOb9vDyKJGan0MdOqMzfbZPdlW+gs1tm5aTO6WyMvDmLTs0SFhGbbEoUJGyerrFkzTqebsf/0PAPJIHl9msLEekwrJ48jPnH7EWbPHKNZbzAz26LdMJxe0FSSEokOSAoFsiyjVKySZ12cFUwOjYKUFOKQbpajdUCedSkUEopxEWGhWCrSbNTRYchiq0kSh2TdLkmhSKfVIUkiFmsLWK3RQuKsJM8ziqWClz4oRbPVohDFtNttZBh475TSFKMClb4KzVaLx2enlu+ZcQUjOmJcCQ6hCG3KWFDFaEvFWA40GxTWbKE8WmJiaNjHvouYSCmEc2ROIwKHFKCURgcx1rqepyrwUUraT+N04Cc+TkmUEwQStJWMDJa4947vURhbRRT5kuis9QEXUvWOewpjcoSQZL3XuiQCbJuML3zmc0BIFGv+7O/fTxgIfvs338C3v/U9stxwzfXXcvb0Kb72ta/j3M9vjP+0VOBC/huA4+ixIxhjePjEYV71ildjQsGdX/8ed99/Px2T9gI4/WMrIVm9aTPf/vIXMVLxP974BnZcsoP+FcO4XCOUIwwsKoj41z/5I9asm2RkwxXLhUKIC4kpS/40ACv9tGzp34GHHwgJSvZEkVxILVnmcC/hV8QSNeBJRa13mUCBzX1ai3MYNIoMJTVjK55+p3TRRve5mXMMVPsYqFTJTIsoimm3WxRLiS9QcUC72yEwjjzLiKOAQhQinMQ6ELklzy3DfYN00w6D1QpaRfRXK3RNl8HSICk5Ji8xUhlFaEsxjBFCMbfY5Pxsl5s2XsmZEy0uH92EcTnf+vc9TLVbTHWaaDXLda0UXWtjo7UMViWdc9Pcu+8MuXCU4yIDxX4G4gILMzAyNMhAMe/9kkoorWm36lx51WoefuIoMjvHq27azQ/vvodzQnJtfxHikHOP7KVUGcR0clKp2LhhNfXmCQo6pNwXEWuQTpOkdQ4efIIwKLL+istIVkxy8MBjyHNz1DqGrRsn6JsY4Pi+o3RrcMPV67l050pecvU23vk3n+PkUJlixdKoZ0RxTDNrE8mQzKRYDPVag3prkeHhUY6fP8PY6ArSbpuBaskbmrsBtVqNcmUAJz1iJLeGvjgiUgFIr/Y2mdeX1Zs+3sngm+DW5SRRGZP5BWx6fPZOnhFpSRKGzCw2GO2vMjffIO206bSempBb0hFGdbFE9OVdykGBmm2BgnIhpn/7dZQqlvGNq8mkJVYxdeNjuXUUEOWG1IDsWUNIU08AiBKEzLynammtO098VEphujmBtJw9eYgO46y9/NnLzWLw4/glY64QYrkQeeV3tEyFlFIi05yv3/5NXnT9zfzjP/wtx544xEOPnewRVzNuu/0HWJfzwx/+cFm39PP8cL8I9J+mPZW3s/zO6/87H/jg/0vddChFRUQLcnPhWGicRXbauCBAp44X/+qrEVIinaGrMpxRLEQas+d2fulXX8jA1utwWb6845Hywm5o6WimlMLluWdYyQuvY6k4u+UwBkDYZXvNk0MClv6+VPCWdlnWQJg7cjTe7IPvDfaQNhe7LrpTuu0zX7zFSkVjYYEwjImSkCSOSDs5URJ4VGkQEekAR04UF5mtLeKMoVRMPMNXeZ1Jq9WiUilz5uxZwigkzXKkgnPnZz0OJEuxTtHpppyfnaVS6aPb7RBHilKpSJzENDsZQ9UhBotl1g8Ms3VsHJdGGLo8dugczUZKrSEYqlZZOTBK1nGMDgxQTEoUSgHGWKIoJssy2tbHVhsnmJ0/T+YMU3MNHjxwlKsuWctUO2RlX5lIZhw6dAphWkR5l1r7PN/42m2QN5maP4POW9y3/yBHzjaIdIG56TMM90es3r6O2VPniIXizMw0lSRk5ZYtPPrQPlZuWU9pYAi9Ypy7bv0JDx44xl+95ZU8dKiFDhPSPCWKCwgkg32DaB0ShTEpKcWkTKvVZmRomE6n1euLhEipwDmUlnQ6HYyzOKEx3iWAlJJWq07qDElUoNmoUyyVEGia7SZJsQDWUqstIEONNgJjUpI4pBAmzNRq6CCm1WwSRRHT83MUiwlp1uZI7YLt4YoArAkYjwK0U9TzDomWXBpV2X/ZlVBwbL/+ap8f6CRdBLESGOHQVuGUT1bRWhGKEJTCSd1bCCFSZ2hZxJouOgi89EQLAixPPHgfay+/jIyQUCqvxRE9lCsCMARB6M35zvpdl5LLam/oTYpCDW3DhFNUVm5gcHSU8R3b+fLnvwD4XUKr0aDTTTEmv6iq+xddlUqFvJvRqDe48ZnP48DjB5k+O+UHGFw4ammtkWGZv/nUR/mNV72Koo7IrJ9WhnlE6hb54T+9j5H1a1h7yfW4DJwTaBVceBxhl3nny6EEYul9CJZfy5OPs8tyBPSTtFJiuYA7DEuFPhcO6SQOAUJhrUFI6UWxcinxROCsY2xs/D+nU7r181+8pdloI6WlvthGCpidWyDLM5TSBNp/MstAIoSmVCyilMcfRFGMySyL9QYC6Ha7LC7WKRYTGt027foiqbEMVPtwGLSOEPjG2orRUc6ePUO5XEYKz3HOOjmlJCbNUwIZEsUxGI1QFowm1gGlpMpwfwWXOSqVMsUkAZuTWYCe5ytMCALv3XLGkjYzTs7WWNFfxkTDLNRbFALJ1PnzLC7MIqVmcLif8/MLrF2zjvsPHIdKxNqRUbZvXMedB85RrZS46vrd3HfPXoJChfuOzDNSEWx91mVMz7RQuWLntdsRJqZ/oERfoYAxgg/85f/hV59zBQdPLfDje55grmYoREWcU2TdBlJKOt0uWmsajUXybs783ByFpKfKLkQs1lsUCxFKKJJSSNrNGBud8J+sPWKAyQ3VahWhFFgoF8uAo5NnpHnKiv4R5hZnkSqgkBRo1pukPfhrp90Gpekrl3HCN8LjoEASBTTqLSrlMgemL/Cl1wYxAZIVMuR4u8bKpEjiBLc5jZ6osuvG3RjrkSSIkDDwIlCURAlHTs/RT4oTEuG84lhrXzyU9BN43esl+eBOw8n9d1AaHUVFI0TKYUVvIieWfFkebOYvRxAEvcK0hNvwi05Kheixp8uXreVdb3wHVz5jFx9/319wtrYIFmKtEK0GL77uKh49PY0zvoD8vOvC46tlXtWTL2stufHPN78wwyOP7kdqb4J98nHLWoXrNNiyaoTh0UkvMBUAlq7rMPv/t/fuwbanZX3n5738buu3rnvty7n06T7dnKYRGrpbIwiMphHQxBicqsBMmFyMqWhiblZiKE0mcQpioTgmlVLjqDVj4piKhsQhykVIDFOCIAkhTRACNE1D9zl9zr6v++/+vu/88f7W2vvQ8ZBkqlL8cZ5/9q61d6219tq/9/k9z/f5Pt/vhz/GS1/9MnYfexzdisWFQXQm8+sapNCbKsgYTwtAgOSs0jufnDeVY4urrd9P0zQEofKkXO05SU6Abts8HJ6z5Dzh1rQ3TImgcY5ASfb2Lvy+SemOlID5ckFVZkgRkXY7CKHodbvs7e5SFgXGeldcLRVlWXJ8fEyWec/64+ND5ss5RV2Rdrt0ez2SJGJ7Zw9bGmSS0jQNp7M5J5MpWkvyPMc5w9HRSVtSG+bLBVleMlnMyaoa8ATO09MpdblilA5QLqDf75MVC3QYkKQdTA0Wv8U+7Pf8/t2qoqozumlKURSknZjBuM89u9sY0cPUFRd3L/CppxZsX7nEf7q+4kOf/CInjebjnzvho//+M2glSXWfb3z0Kk888SRveu0jfPDj+7zzH7+Lb/mWF/Hr/+ZZmKz4l//q9/jr3/OTvOjrHmJeF3z2PzzDNJuTZZbZ4RyTHTMcjPiRn/0gi2nGzSNLr5eSFSsaWyJUglCaRZFR5CvSXpe6rtnd3cZay3w+R6qIsiw5PDphNp8QR316aZ/9w1uI2pDEIVESk6Qdjo+PkXiFhuVyjnX+4nJVw3Q+IRARi/mKMIkpqobQOaqmxgjJosyZTCaYxtEgUJHkdDKjP+xR17drdD+cCHK75Hfv32P+8Mv59Isf4hMve4hLr3gpr3r9a0BqjHA0znidrsKS1w3OKoyQrT6PxFmvFy60tw9vmnbUb/zjxhhirSiamqc+9m4e/KY/xHD3GnHkqQJCgrOexHsmyeE2iWB98JyA8wRF/7jHnu4TO7ziG15IdrDgj33vn8I2Agf8wi//Cr/0zn/Kd7/lh8BUZ2DuufhK62ovhyI3ovmbRfbmrEX7+Mc/jjHmNgvwDS6lJW956w/yksceJ0kSAqdQtcQZ+MCP/z2SaymXXvgqEiNbjSa9AaTX725t+LFeSTHGeGqBUMhzUi+mVYTYAOLcXjVJ6Xly6zYNaF1OpOeZaW93JZTESYFoFVC9B5yj/CpV5Z2T0mRJv9/HUBMlIVVTUpqG5WrFzs6IPPMi98cnE4qipDEGKVp5TKnp9/tcuXQZ01QcHR2zXOU8+eSTFFVOnRVYJHGk6HcHftUhCOjEKePxgIsXL9I0ln6/z+npFIFlNpthbUMYara3t7nn6n3IQDIY9nAYxqNtsuWKMAyJOxFYRRIHBIHXgNrdGRNF/vB1ez2StOMlfw3MpzNEUfPMjSPmVvO+Dz9FML6HaGuHz3/piFW+4n2fv8G7ntjnw7/zND//Tz+MGu4SDMf88s/8Db7/L7+Z7/t77+ehR/rsXd0lbyCIQn7j3b/Fy171cj7y0d8lbrpcubrHL//qv+B3P/hvqadzOmFCbjoEccJ0dkremhjGkfdU6/V65FmJ1iFptw9IdKuBfnB0SNxJ6Ha7IAKyYsX+0TFxkmKEpGpqmqokyzJqLI0tWayWRFFE0okIdEQYemmZyhl2xiNu3LzO1niIUQolIYq8ZHEYaoQzKC2YLRdc2NthvloSd3u3XTMfu3qN5eUX8E2vex2Pve5RHn79K3nla17O1W96lMzWlO1ag6Qh1gKrDAKLdYWXtJUOGThP7HMdrJFe5731rvf65X51KRwOePZ3f5NHHn8jWVYQhq2TiV6PpMWGvBcEwQZPWbcvqnV29oefzYFcJ5SVy/iev/bX+eV3vJ2uGrVmnYI//eb/iaKxaGn4E294va/W/3OH6xzu8iM/8iPcOx4QJ2e8rvNt0vnXfu0ffNwf4hbjEUKgmpoHX/D1BKLxKhBBiUgFH/rFf8wrvuul3PcHXo+RIVifcM4nRYO7LSGtp2PrZGyU2Pz++jPaYETwPB12/xmeLdtba6mxGOOQRiGsl8f1JiZnydW/tuDO1MmvkpSCEPK8vXtmOaZuSJOINE6wTkGgGAyHDAYD7nvgKiJwpN0EY2uEcFR1weHhIYvFimsP3k/YCbly5QoXLl1BIRj2uzinsLZi//AAoSRhHHB6OmU6nQKS+XzKaDRgazwmSDroMKIovM3Tc7duoJzh5s0bbPd2uXr5Ak0DcaI4Or7JxQtjMJq6LimruU+arfJzU9ccHU7Qwsv+VlWFdDHjnYsYqzAy5onPPMcnPz3l//nIZ/nisstIDvjs9QmfKwr+7088x7974lPYusv1//hZPvmFZ/nDj+3x1NPP8dHP3eD7v+9NfOM3voR6UrH/9Bd58aOP8n/83C/yzv/z11jNGt77sZvcqhKc8C2Yc45V2ZDoDrPlwov9lzWT0xm97cEGP+p0OigRQqA4Pp1Cq1GddgOyZc7ezohIOuqy8GslTnHx4l57oCVxGNG0+29JR6FDQWFqet0Oy3LFsDfm9ODI7y9JSRJ1CKTlZJnhakOelZTGcpovEVJzfHxy2zXTcxWv+ePfxsJ6V5HAapwJUcGZY4iX4g2RgaLbuq8kKkAHzrO2m1ZqVq4le33lUNclRvjDkBUrPvALb+fiY6/CVCVa+mXdpgaHQSoA35at7/BBEPiJXrvftT6c5w+kblek1o/rMOQv/a3vZ7qYeUKjcrzlh99KYzxX76lPf47IPH9etE4o69d+29vexg/+lb/AvWFCF/gj3/Y4guf7ugVa8urXf6s3xcQTKfec4wWX9whVjaFEYKmM5JPvfg8P/Q87XHzk23GrtnUS4nm8KYGlcmdV2nlagBDCm098xeOA35vk7O9Yt5+ePOnOWtNAE8nw7PnPJUTnHFJZbwYizlyM7xR35Cn91dd+h8sK3zrJpmEwHgF45cimoamMx320AOszZlmWBIHfMp7OFly8eJFbN2/SG3QRTlLWGWVh6CQJRVlSNyU7ozG3Do+49uADLOYrdCDb3y1wBqqmZLnIaBpv+dLtdjDGEIUaoQPquqYuK7a2hsznGXVdEoZhyzJtfb/ihG6ckJclWb4kCALmiwVxFLWTCIEOErQSqEBQlhXLRUaSpEjhqK1huZiRdvtk0ymD7RGf+dJnmNfwt7/7Nfyj33qSP/h1fT7xxBdoenv80Uf2+NdfmGPzhquXNEk+I+z1effvPEM32eKe8TbLbIVSigbnLbTdWQldFSUniwWDKEaH3idt0E0oS6+xXVYVVinmp3MeeughlrMpQZxw47lnSboptm6IwgRjS6IgJIwTTk+PMbVlNO6zWKzIVhWXLu8SRRFfePqL6KDDqlhycbRHIXP6QZfT+QyrBNUq90qPcYSykm6cULSGEe/93Jlt99/6ge8nCR1NpIhFgo4DpAURCBqLxxpthTASG0RI7VAywhkII42lxrkIKRuEDRDaa47LFkzF1VRC8Zl3/Ryv/FM/jC1yrIRItQRLoQgChTEtQ1k2LZfGg9vnq4j1wTlPKFxXUV5TukKpkNI6PvPRf8bP/eI/49nrGSII+LEfewdf9+IHWM2P+ON/+i9iq5qvFu/9wDupspJOp8Pi5Igv35zzQz/0N58vravgG178Up7+vd+jh+AX3/8+ZKdDqhS1ceBW/OrP/EPe+L1/lEH6AC4dEemAumnOtI3OJZ0NEVJZtDk3ecMAjqb2XUrTNM8HuaXAmdtF74z0CK1zXvAxjHzit85Bq1JbW4fUvrp2znk5XrmuBh2Pvuyx35endEdKwMHJERpJJBSVdDgDs8UUHcaUeUav16NpGu65cImTkxOEkgzilPk8w1pIuwl1VTAcdhEiYDFfMt7Zpow9/uQag+7E6G7Ctd79HNza9+1i3dDrpZRlTlnU1E3J9vY2YaRZLBaEOqJpCmQQspgtGY0GLGrLKvfVxGQyYWcnoWksgWzIsoxQSU7KdnUjiEmShE7a43Q6Iel0yPMVkbMsFpk/JM4RRQm2KkkS79oiK8NkMmUw6pEmPa7uXaMra/6v3/gs0jQ88ZkJp4uIe2PHO//fp+gCxy7gi89M6XU6jNOIa7v389zykMJ4u6N6mZFsDymygjBOqasGGWiCMObFD+zy5RvPMkiHnExO2dnaY1mdUmY5vShBd2K6UcLN564zHPSII0Ucx2AshTM0qxU74wFBHLG/f0gchhhpODqdsdXtMuyPmS5mBIuCa/df48vXv0waxRzMjjy2kViqpsLg2NvdpchzTk+mhHHEtHSkUYj7isMYpRG1hACJlQ5XNOh+SNOAlg7blGgV0ISSINQ40x4cJf242EoCLXBCIcMAYQ3OOoTyvKVrDzzEr/39/5WXv+lvUJWWUCtCLXFCIp0Hw31yF0hpaBoIAk8tDsPoNuKfP3zrydvZGTGmQSlarznohIYXfeub+aFI86M/+15u3rzJh97/QR586CpBPMRV9fM4OutYH3bnHMtZxaDfwyGQyYjJ9EyHap0kA2v5wEd/B/KKxXzOIB2ThQ0d5yhsgwpL3vfjP8+3vuFRhpceRroAiaaxNVq3NtrqjDvk3JkTr24rVePWHCO/WHverfd8hWMkhAjMuq1D+FmbdVglcG0L7JzDWa9qKVolgXU9JKSmMhWSpnXRUYiv4kZ5xzpKqwgZx/SGA5IkYVEsicKEThxy7doD9Ho9jDEcH004Oj5lVRYUWc3Ozpg8K4i7fQ4OT8jzmlu3biG15HR+Sqgko50RFy9epJeETI6OOTo+5fLlyyilKMqa2WxBFEX0BwlR6A0bj48mNLWlzDMvbl8bhls98jKjwdFLh8RxTK+XEoYhURSxXGSUVrLIcoqqJss9kHg6nVEUBaoRzJcLpOpwPJ0gVYSri43muJWCk8XCu3vGIZ20R2Mk08mSwbBLZkPu37nItSvX6MQDLu/ey7wQJMGI0iXcO9hlJ9km1X1mq4qJqRjGA5wVpGlK7QyiaoiiiEhrr1UUBJRVTm0dVy5fIggUvV6PrFwSioC69HyppjIcTaZsDUeYRlCVJVhDkeUMw4h+v89iVVIVJXlZ+521LKOjQk4mxxRVjqsaoiggX6xI4h6Vg2tX7mPYG5LVJXlVI6xkvszZ2RrT7acESLpRhzSMyb4Cb7CyRgmNFG3CSHwVJF2IEwqhAowDFQqveimdV53Ua21nA3jHEtFqakvlD1FelPzGP/k7PPrH3gzSoFo1R/B38A05EYGlPQCilT1pnU7WlahPAhKl5OYgCOU8YIv3S1sDvnUFSW34wuw6f/l/eRNShLzi21+NKgqSsM+e8jKwGl+Zi/YZpdSbhOR39QSD/ginJXVjePuP/ujmFDrh26z3f+gD2KqgrHKGox2cbuhKgdIQx/DAPS/noe98KRcf/cMIkyAJEdJjbA6zITiudfW19p2CdXXrau1ljp31FY8mtdXYAAAWaklEQVSQXgXTttO1xlRebkT5lRGz1in3WY7zluOBH7P5drvlJxljUEISBAFYQ1VVaNc65fKfx6j+q5JSp5Ogccznc3q9HgGa7fHYS5AUBQcHB/T7feq6Zry1hagdVlrm8yUXL12gWM4JAs3uhR36WyOiUHJhtEdv0EdZT6mKox5KSLppwvXr18nznF7aQ+uQLMuYTufESUqgHYN+yu54iyRJSHsDsA1lYUiiLlcu7uJM03rUBSyWGXlRkPRSv0lvHXXlpSCiNEEqRV0VyEDSC0IGvXDjwuK0pNNNqZqarPBWQzcPj5jOMzqdLs45kjRu8Spfepflit3tPbqdhH7aJY00460dlHJc2t0hiWIuDscM45ThYIumMdw8PKAbxtRlhW0MB8fHxFHHYyISJtMjnvriM1hrOT4+5uhkCtJAIGiqnFv7+wy7KTf2b3I0OWL/6JgkSdm9sEfRJqEk1hRlRi+KsAh2ekNKDXFvyCLPUErw7I3rZKbi4PSQQEj2jw4ZdmIeuu8BdkdjdrYHFGXOZ59+mn4cE6YRKtDUjWUY3g5bRqrrrYx0SNY0zCVU2i+41mgaKbBaIwjRUngraeEvVGMzcBpEjNPe+yyIpH8sibn+4X/Cw6/+cxgTgFtzatxmvK21bjErAcYvDnuRM7sBkc9PkJyzG7zEWIE1wrPGvXkcSobe/juIEVJzZfsl6HSfX/31X+Fvv+V/Y570OT6Z8HO/+Rv8/Z98q3eAtZ6M6BUNzqZozjk+/5kvcHx6istqTr58HaW93MyrH3uUX3/Xr/Kb/+ZDGAKaQhEEA4SsqaqKpoZOJ2X/U0/z2+/5CR58yavpholX1tRe8nf9GUgFzqrn42b45eM1Tifa5LI2J/UefQ4lAyraSsqtJ5ReRcC0raFEIKzAtV55Qgft8/g1FycsNQ2IABS4Fh+zSmBaNYT/5qR0cHDg5WuLitPTCVoK8twrEB4fn3p3k1DTSQOEMCglGAx6hFHE6WSCqT1z7+R4wlZ/QBDFnM6m3Lp1C2Nq4k6CVIJeb0Av7dLv97l8+QrWmY0/WRiGKOW95+qyYrFYoAJNUdXegKCpUEqQLXOm8xlpmmKMIe0mOOcte2gM2+MRo+EOdeOZ0QBB6OViZ4sly3y5cbkQUkNj2d4ak0QhZWMYDHrESbiZWhweHlKbhqijiKIIkNRlQyeN2d25QLc7ZHs0JIhiOp0OV/cu0UtiAqk4PTqmrEt2ByPGFy56Bw5hGY+3mE2nmKpkOs8QQUycdiiqmjRN6fW6nJxMGA9H2Maxs7OLMV4bvJekaBlQ1x5/q6oCKfy0bJUVDEZDlFKkvQ40NYM0JpIhMu5w5fK9SCm5/9I9XNzeJQkjVnnG/sFNnKlxVcP2aIvBYMCiKJhMJhRZRmUrFq1A2TpqVaMjRSMCdBjRQeCcpaq9aeca06F2G2GxumklVUXUJgyvkySEAhdimopPv/cfce0N34eS3n5cqvC29uR853R+erQBsKWmqc/LlYhNEltvuIeBprFViym5DVgd4pnt3/j4Gxl0LiAqwZ9747fxtjf9eT5x8CV+5u/+NI99w3fwE2/7O6h2nSOIQi98th6rO8fP/tRP8+Rnv0RWFJAGXBkMGJiGt/3vP0WYXMIph7a61YQCcERxQBDC5cvXuHCPJHCCUfeyf07OwOnz/CIpPdh/G9O6jXU1I4TA1s1mR81aT71wGLQT3D5QlBgBde3PZN163smmNZdoLBi7qQo34L0zXmFACECinfA2YF8l7piUrKkp84pOmhAGEqkV12/cJM9zhJQ8cO0FHB4e+h5eaDqdLidHU4R17GxvcWFvzN7uiF63Q7/fQTnF5XsuYIyj2+2z/9wxy2yBxHF4esxiteTLzzzLfD6lqWryPKcsS64/9yzLVc4qW2Bx1HVNURRordE6ZJEXVI0Hs09Pj7lwcYu6MlhXcXR0RKebMJnO2d7epciX6I6XbpgtphxPpgzG2yxnS0ajMXXVkGdLpA68/U3d0B8M6HR75HnOdD6hqBpqJ1gt5rjG3+2bosSZmqPjU5566mnCUCNFzbDTQStHmAYsq4w4iuh2uyRxyP7RIdPZKYPekFBHlHVBHEbMlwVCOvpxh8oZKuvQaMosp99NwRriRCKsb70a41BJQhKFCKcpqxVh2GGVVX6qGIQcnEyQbdtqjOF0VdI0DbKp0IGlzmtqa5DCYCtv/W0NqDBAR5LZbEYErLKC3mCLvKlYFiWj0fi2a8YgEarlqwiHaQTOSXQc4aTbrBh4fp9vNUIdoJxASVDSbrg71jqqpmQ76LD16KvQq4LKNFgBSpZttdPcllwAvwh6rs2AM0B7Dfo65869jmc1N43xmJQ90xZSSlEph6GkWmYcnRzy+Q+9h2/9k9/Do19/iV/7m2/ltz72QV77+CtYNX1+8K/9FSJnqYqS4CumXPPFgn/wk+9AWIkLI773B/4qH/n8p3DOEEc1Cd7zrpYOrRv6/QGjUZ9uOuCf/8Lb2d+/xb2v/E6MKXHubCJWluW5VReH14Hx4PUa9F7rJOH8/0cK4RUrhcDJ9c1fbRLZeXsq6UBLSdBWVd5rUGC1n+gZBKEMCYK2WvXmTChpkfKsYkPYDS/sTnHH6dt3PfSIc9YyGPWZz5ZcvHCBk5OjDafIWhgOh8xmE3q9HkJ5+5VstbiNx9AYb9EipR/P0zI/d3bGHB1PGPZ6LLMFk+mCXj8mCuLNJECpAICiqckXU+677z5OTmZEkWI6nW8urrUUr7UWpKOb9nGu8C6rjaHT6eBsw2q1QliBUQJTN3Q6HU4mpwz7PRaLFaPRiMViQRCFHB8egVBEoWa8vUu+XKDTmOduHtDtdAhCRUeFVMKynM3Z3d4hLwtc6/3eH4wQrma5XCJVgMVx6+YBg62R792dNxzo9lNq01BZAVXle30jSLopxweHDLZGBMpr2DjbtHISGoEnXO4fnBCEilBq5kXBznhE0zTs7+8zHg0xxtEIf/FevudeDm8+RxiGFHnFcLxFnufkxQJrJEkU0FReKGywNWIxXzEYjZhOJyjhN8T7nZTT5RzZWIJBl/f83n/YXDNv/btv8fKpyjtaSKeRQYjQAbJpvJOHcERRgDWSQGuvaqogCmJsW/0IWWEawUfe/Q949LV/hl5/hziMfEXkZEsfaK2DaNnaTrZrE3LDTzojTsLa9963NmfJwuMl8gwAF3azK3ee3xNoQaYdX/rQ+3n4m7+L+fSEPNL8x9/6bd7x9p/kYm/A677zDXz9q17B8uhZLj7ycp78yEfZftkVfuEdP83D20P6993P17/im7l27aWYnkJUjijwU7VIaZRyOBoGgwGmgTjVvO+XfoqrL3qQB17yGhB68/7W73/91Vi7sUBaUyoMjkAIaM0lpVy3tQpja/93o7AShDtzMLGEXqXB+RvIunISwuN15+kUUjhqB5EM/c+swGBQwtA4UK3CgH9dz1V69GWP/L7A0p2T0gsfdv3uACMMZW2QWNKkS1XX5NmS4daIoigo8ort8Ygsy1itckajEUGkvUspbNqiqqpaI0vhQWap0YF/b8tsxXA45HD/CCmh0+kglCQQitPpBJAEYYhU0FR1uzFuyfO1zGtDHHYo65LlckqaDoiSEIkgSSKevX6LQEs6nQ7zLKfb61BlNVGoWCwzwkh77GwwIpSKsi4Ig5hVtmB35wLT6dRXHcr73CEFy/mK7e0h8/mS7d0dvviFp7jv3geYTI+x1tLtdjHGMRqNyPMFWdHe0aRX4vMOwTW1adAqZjadMtzdplpmdLeGHO4fMBwOKVdLsqZhd2tEtszRoSIKQpbZCmugkyRMZqfte3csaksYeHwgn2eoSCGsY1XkdHsDqjLHlIYoDVguM+Ik4Z69yxyfHKKikKYoCZKYg4MjLl24iHB+wrbMi82hnh5PQXudoQ/eemZzzfzYj/+wt86yCi1bjENJlPOKmEqEOLwsSRi2NuVGobVC4mVwhXAUJucLH3gXf+B//IvUZoqSMdYaAh0jtPPXlnUIJduWRbVJyWyIkptDZC1r/SRrW9VFsXbwWLvgtvbywsvDrpPSeSkOGQaE1vGJD/xDwvTFvPCVf4iTbJ+gVGgd0ljDL/38T/A//9m/wH/65Ke4+rIH2Y5HlMuS7mgPqQw0JSqMcJEkJqC2Bi19cg0DRRKnACgMIuhy8un3sVisuPBNrych3RBMb1tdEb5Fts47ijgMgsBjWgIvjevOSZfIs+8RBislAXqTrKypsYQIaWhah5QA6XfbjEO2u4hKe4su5zy4bRHe980GBML653FiI1vil3ItwsEjj/z+SemO7ZvTksP5hMODY+qiRKJIophOFJIXFUpIlAzopx3CSKJ1yBvf9FrKMkcJTVX4DXItFctlxuHhIVmVkS3bHbjVgizLKIqCMAyZTaZsjbdBNOgAlvMZyyxHhwFBEGCaxqvfKcliucQ4S6cTE4YhUmp06OntaTogLzOqomS1WhFGKUEQsr297XGmKKZYLcE1dDpdZOhB9729PYb9DlIpnLEEWjIcbLFazinyFXES+kowLzmdL0jTiNk8I+11+dIz1+mOBjgq4rjDaDCkcl49cDabkBU5pnFMlwtm0yknp1OOZhOy2l+k3TRhvLNFN4ypmpI6K0ijEFs3JEmCMobpZI5zhtIJTuZTP82SXmFSRTHzxZS8aYilJ4QWee6TuxHEaYetwZCqKrBOIENJuSx4wdX7McZx82Cfk+mE/ZsHVKZhPl8yGAyYL6ZURc10OidbFXS7XZZFyYW9Hb9pH9/OKnG19/cT2ickoTywGeoAKQVCefZ2EATeAcMFCAHG1Ei8MmaeVxw++QTXXvcGbHOCFbHHdsKwVTk808p2nOFG/h643hXzigDWnu25wVmSWYPemy0O3S41t1yl9SrKmtMTBAHaSkptefjxP4ss90liwVZviBPQ2BKk4c3f9wNEyZhXvOqbGaVXCMIe/cvbyGi9VOspE9omlMiWT6foxIowDj0QLQRGSv7de/8FZROw9ei3ENQJRjSsPefWk8F1O7rBwYRFKA9cq7ZdvW2P7VyS9W1dgHVqQ81wzuGkr3QMzltdrbG51nm3wiKUpDlnUOralvjsc2uwGGw7aXNCbHCurxZ3TEqmtGz1Btxz+SI7OztUrmaezcnrku3RFgcHR6yyBWXdsH9wgNbwzl/5EFVVcfPwgOs3b1HWFTcOD4migLTTR2tNb+B5N1euXKbb7VKXFVEQ0h8OyFZzpAipygapA8IoQjpLJ003/7AqKxj1e4Q6Ic9zlsspQaC4fv055osVvV6Ks37Uv8ozrj9znSQOOJ3MEELR7yXYRiBCf6DG/SH97oDp6Yzp6YLVfEav1+Pw6IQoDiiKit0Le3Q7KU45ok7CsD9gNlsQd2OeuXGdQAmyVcF0uiQI/XSuWq2YzieUzjFbFZRNzeWdPQIdcWl3x08ga4Fdl7ZCM1lO6cQJ1jUcT2coaSnLmv5ghIoUq6xEmRpj/ZKzk4IgDNE4kjDA1f4Omi8XqMZRlTk6kGinyFdLlIMkiej1emzvjrl58wambqjxgmlBmjBfLNA4qnKF1pq8qYg6Cd1eh5u3DoiiiJuzE0b9wWb6uA6rJSoMiZW37hY2ohNGniVfe1VSJSOsrTcrrFpqolASRpqXvugxnv3ov+Tawy+nn44ROkVjkdIrJVpse1d2fsTfKgH4g+odR9brJcizhdh1y7auqnyy0e1Xvy/mD0wL+qqz5zGmwVqDFRbVSGQYUZQln3zPOwlNxfZ4QH+QopUgjRNi5Q9tJ/CutKoRhMpP45RSdHSIoEHZEi0Vw1EXHcRoEYJVyNDx1L//KHtXIi4/8jjdpOsJyuZsuTcM4pbuIDZVj5TKK0Aa6YGglltkrSXQEYjW0hx1G/itcRhhMNKnBOdaE0+lfOuGw1q8jVd7D6qpvDuylH6tZL26g0CqplUKDVHrhOYcQSs9bNWdE9Mdk1IURayWS7Lc6zbvjHbAKXb2LqKjkPF4jJQwGA5ZC4+PxjFaS+IgZDQcUuclO4MRWVagA8FqkZFlS0xt+dKXrzNdrgiTDllW0GQe6B2Px4SRJkkihFMsspzFckJZ1OwfHKBUsNF0UiIg7QxZzPxW/Whn5GUTlF+pGA226A9SsrxkvDVEKsX167dwSmJLQ5LGFEWFMc7zgfp94rRHbRoGvYSjkwlpGlGsKsIwZNjrs93vI6RjfGGX5WRGN+0TKM32aIumzpmerFgUGYPBiKv3voDldMKgE5D0u1zfv0kQhMxXSy5fvYfCNpjacjo9od/v4oAsr2gsXN7bRRLQ6Sb0ej26cZfd3R3KYkk/Sdkdb9NPUvKqRKgAdMDWzjZ5WdMdDLFxTNrzxE8AEfqyWyvFYpmzWJVESc8rgiaJn0hZuOeee6mdZZ6VTCdz8sYyz3KWq7zV4DHspCN0nDzPF15r3Woxr+/kYBqHdTlCao81UiNF4st9Z3F2RdNYljdu8P53/zQvev13syoDhKx9NRbozdTO40chWmqCwPvbw9nEbf39OgGBaydzorWgPtsn88nKY31rLErKM1kPX03ItoIC2zik0CilefTbv4vBboBJdnAyII5SRqORV2zQ/n0KaUBUyACU8oz1wbBHr58yGPQYDoceejCcjfNFw7NPfI5+kvHAI9+BcTWu0gjZoLQnRXqtI38zWHOTvMrBumL0SUVI22I+oa/andrgbuf34pwU1Nrh8LpNrpUaEcaincA5BbJd3jUQCQVWIJ1sDWnXlZdXAlAW/xwqwIm2JRaqxYkd+v8PeTKOQpTWgOPC9g6HBwcESnN0a58sy1gsl4RBh7IoCHTCbLZgMBghpOeuNE3F1vbYA2fWEscdOp0Q5wS9XsrO9phOGGBNTV2XnM4nWATT6ZT5rAAkUewv8mblV1PGW1tIrZjNlygpqU1N0gmJ4oQHHniAbLbi6PCQftJBBZrlasVzN/dxGObzOSfHh1y65yKR8jtVz3zpWZRSnikehvT7EdIZoiCm2xsw7PaIogTjDFlV01SG6wcHLJdLrLVEScyF8S5JklJbS3+0RZAETA5PybKM+WIBUYC1AS6vGPb6XNzZYas3YHY8pd9L2dkdUdR+/69cLBiOeqzmCwDC2E80yqIAVzOfzdBRzxsxTI59ZRjGlGUJVnDzxrNo4fk7whiWy4zZZIrFUK5qtPSJt8qWrPKMqqkJkoDldIYVsChz5vM5lfWrLzuXdqnzHLDMV0sCpYnjGBkplDEM+93brpmmrjGVr2m0iM50tbUHaI2zG0zCOedbb9Xlwfsuc5Q9x94LX01jVsSRxuDlesuyBCwW6/e4qhJrvej9ehdrvR5yPjlqqW5bK1m3L2vwey3t6pPTGaDtK6dW1sSKzeObyZ0VmM4Ohzc+xZO//R6U8+AtTpLEXXq9HoPRkG43Zbw1IE1iut0+3W73NlAdbh/RAwx0Hx0/SzncwVKBU4jAIYRmzT7P83zTjm2SS3NWfXjPNntbq6oQbSt2ph4JHhMMhUIZQSDkRtZk7S5ppCeG1u3unDdWq0EoGnVuwVnJjcyJT4geoxLWtNIuHsb5LzFZuCPQfTfuxt24G/+9487runfjbtyNu/HfOe4mpbtxN+7G11TcTUp3427cja+puJuU7sbduBtfU3E3Kd2Nu3E3vqbiblK6G3fjbnxNxf8HlIHBl8oVvSUAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["tls = TfmdLists(files, tfm, splits=splits)\n","show_at(tls.valid, 0);"]},{"cell_type":"markdown","metadata":{"id":"hHdCS9Kn2K_H"},"source":["And we can finally get our data in `DataLoaders` by calling the `dataloaders` method. One thing to be careful of here is that this method does not take `item_tfms` and `batch_tfms` like a `DataBlock`. The fastai `DataLoader` has several hooks that are named after events; here what we apply on the items after they are grabbed is called `after_item`, and what we apply on the batch once it's built is called `after_batch`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EnFbHwrD2K_K"},"outputs":[],"source":["dls = tls.dataloaders(after_item=[Resize(224), ToTensor],\n"," after_batch=[IntToFloatTensor, Normalize.from_stats(*imagenet_stats)])"]},{"cell_type":"markdown","metadata":{"id":"HNa_R-772K_K"},"source":["Note that we need to pass more transforms than usual—that's because the data block API usually adds them automatically:\n","\n","- `ToTensor` is the one that converts images to tensors (again, it's applied on every part of the tuple).\n","- `IntToFloatTensor` converts the tensor of images containing integers from 0 to 255 to a tensor of floats, and divides by 255 to make the values between 0 and 1."]},{"cell_type":"markdown","metadata":{"id":"2knhzCg82K_K"},"source":["We can now train a model using this `DataLoaders`. It will need a bit more customization than the usual model provided by `vision_learner` since it has to take two images instead of one, but we will see how to create such a model and train it in <>."]},{"cell_type":"markdown","metadata":{"id":"Z1P5iL-W2K_L"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"YvsIj2tC2K_L"},"source":["fastai provides a layered API. It takes one line of code to grab the data when it's in one of the usual settings, making it easy for beginners to focus on training a model without spending too much time assembling the data. Then, the high-level data block API gives you more flexibility by allowing you to mix and match some building blocks. Underneath it, the mid-level API gives you greater flexibility to apply any transformations on your items. In your real-world problems, this is probably what you will need to use, and we hope it makes the step of data-munging as easy as possible."]},{"cell_type":"markdown","metadata":{"id":"yyWdD5tG2K_L"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"vMfmVbJO2K_M"},"source":["1. Why do we say that fastai has a \"layered\" API? What does it mean?\n","1. Why does a `Transform` have a `decode` method? What does it do?\n","1. Why does a `Transform` have a `setup` method? What does it do?\n","1. How does a `Transform` work when called on a tuple?\n","1. Which methods do you need to implement when writing your own `Transform`?\n","1. Write a `Normalize` transform that fully normalizes items (subtract the mean and divide by the standard deviation of the dataset), and that can decode that behavior. Try not to peek!\n","1. Write a `Transform` that does the numericalization of tokenized texts (it should set its vocab automatically from the dataset seen and have a `decode` method). Look at the source code of fastai if you need help.\n","1. What is a `Pipeline`?\n","1. What is a `TfmdLists`?\n","1. What is a `Datasets`? How is it different from a `TfmdLists`?\n","1. Why are `TfmdLists` and `Datasets` named with an \"s\"?\n","1. How can you build a `DataLoaders` from a `TfmdLists` or a `Datasets`?\n","1. How do you pass `item_tfms` and `batch_tfms` when building a `DataLoaders` from a `TfmdLists` or a `Datasets`?\n","1. What do you need to do when you want to have your custom items work with methods like `show_batch` or `show_results`?\n","1. Why can we easily apply fastai data augmentation transforms to the `SiamesePair` we built?"]},{"cell_type":"markdown","metadata":{"id":"FartP8u62K_M"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"xxgyam462K_M"},"source":["1. Use the mid-level API to prepare the data in `DataLoaders` on your own datasets. Try this with the Pet dataset and the Adult dataset from Chapter 1.\n","1. Look at the Siamese tutorial in the fastai documentation to learn how to customize the behavior of `show_batch` and `show_results` for new type of items. Implement it in your own project."]},{"cell_type":"markdown","metadata":{"id":"5g8_exfZ2K_N"},"source":["## Understanding fastai's Applications: Wrap Up"]},{"cell_type":"markdown","metadata":{"id":"dIsXus5V2K_N"},"source":["Congratulations—you've completed all of the chapters in this book that cover the key practical parts of training models and using deep learning! You know how to use all of fastai's built-in applications, and how to customize them using the data block API and loss functions. You even know how to create a neural network from scratch, and train it! (And hopefully you now know some of the questions to ask to make sure your creations help improve society too.)\n","\n","The knowledge you already have is enough to create full working prototypes of many types of neural network applications. More importantly, it will help you understand the capabilities and limitations of deep learning models, and how to design a system that's well adapted to them.\n","\n","In the rest of this book we will be pulling apart those applications, piece by piece, to understand the foundations they are built on. This is important knowledge for a deep learning practitioner, because it is what allows you to inspect and debug models that you build and create new applications that are customized for your particular projects."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yaTVie_w2K_O"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/11_midlevel_data.ipynb","timestamp":1712447899508}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/12_nlp_dive.ipynb b/notebooks/oleg/Education/fastai/12_nlp_dive.ipynb new file mode 100644 index 0000000..2d602d7 --- /dev/null +++ b/notebooks/oleg/Education/fastai/12_nlp_dive.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"_M6iztzH2L2p"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"k6S1qq_P2L2v"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"cYfLrKVM2L2w"},"source":["[[chapter_nlp_dive]]"]},{"cell_type":"markdown","metadata":{"id":"mbCMswpd2L2x"},"source":["# A Language Model from Scratch"]},{"cell_type":"markdown","metadata":{"id":"4uhQo_9M2L2z"},"source":["We're now ready to go deep... deep into deep learning! You already learned how to train a basic neural network, but how do you go from there to creating state-of-the-art models? In this part of the book we're going to uncover all of the mysteries, starting with language models.\n","\n","You saw in <> how to fine-tune a pretrained language model to build a text classifier. In this chapter, we will explain to you what exactly is inside that model, and what an RNN is. First, let's gather some data that will allow us to quickly prototype our various models."]},{"cell_type":"markdown","metadata":{"id":"nmpQID1r2L20"},"source":["## The Data"]},{"cell_type":"markdown","metadata":{"id":"ay1F7Zpj2L21"},"source":["Whenever we start working on a new problem, we always first try to think of the simplest dataset we can that will allow us to try out methods quickly and easily, and interpret the results. When we started working on language modeling a few years ago we didn't find any datasets that would allow for quick prototyping, so we made one. We call it *Human Numbers*, and it simply contains the first 10,000 numbers written out in English."]},{"cell_type":"markdown","metadata":{"id":"9axTfLEF2L22"},"source":["> j: One of the most common practical mistakes I see even amongst highly experienced practitioners is failing to use appropriate datasets at appropriate times during the analysis process. In particular, most people tend to start with datasets that are too big and too complicated."]},{"cell_type":"markdown","metadata":{"id":"k_QKsjDm2L23"},"source":["We can download, extract, and take a look at our dataset in the usual way:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6zivGWua2L24"},"outputs":[],"source":["from fastai.text.all import *\n","path = untar_data(URLs.HUMAN_NUMBERS)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"atOqznIT2L25"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EvHBByKV2L26","outputId":"ced712b7-669f-4300-a644-4bd60fc16f24"},"outputs":[{"data":{"text/plain":["(#2) [Path('train.txt'),Path('valid.txt')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["path.ls()"]},{"cell_type":"markdown","metadata":{"id":"cM7ckfg62L28"},"source":["Let's open those two files and see what's inside. At first we'll join all of the texts together and ignore the train/valid split given by the dataset (we'll come back to that later):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GaI0xIvS2L29","outputId":"679a965c-3015-4318-dd2c-10e0fd0ab862"},"outputs":[{"data":{"text/plain":["(#9998) ['one \\n','two \\n','three \\n','four \\n','five \\n','six \\n','seven \\n','eight \\n','nine \\n','ten \\n'...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["lines = L()\n","with open(path/'train.txt') as f: lines += L(*f.readlines())\n","with open(path/'valid.txt') as f: lines += L(*f.readlines())\n","lines"]},{"cell_type":"markdown","metadata":{"id":"1WuZtLxq2L29"},"source":["We take all those lines and concatenate them in one big stream. To mark when we go from one number to the next, we use a `.` as a separator:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"exHi9Kdm2L2-","outputId":"8b084590-91ac-469b-e30f-3da21e772d27"},"outputs":[{"data":{"text/plain":["'one . two . three . four . five . six . seven . eight . nine . ten . eleven . twelve . thirteen . fo'"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["text = ' . '.join([l.strip() for l in lines])\n","text[:100]"]},{"cell_type":"markdown","metadata":{"id":"VNGrtEhq2L2-"},"source":["We can tokenize this dataset by splitting on spaces:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Pr5FQF0y2L2_","outputId":"25d4f54f-2139-47b6-b9be-a19c3c4e0706"},"outputs":[{"data":{"text/plain":["['one', '.', 'two', '.', 'three', '.', 'four', '.', 'five', '.']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["tokens = text.split(' ')\n","tokens[:10]"]},{"cell_type":"markdown","metadata":{"id":"UtUN3u3f2L3A"},"source":["To numericalize, we have to create a list of all the unique tokens (our *vocab*):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8LeLbpYr2L3A","outputId":"0092c70e-b704-4808-bbb2-d93061c8d045"},"outputs":[{"data":{"text/plain":["(#30) ['one','.','two','three','four','five','six','seven','eight','nine'...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["vocab = L(*tokens).unique()\n","vocab"]},{"cell_type":"markdown","metadata":{"id":"V-c2895I2L3B"},"source":["Then we can convert our tokens into numbers by looking up the index of each in the vocab:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hOPJbZdQ2L3B","outputId":"a1607ea1-af7f-4109-f211-055594bf7598"},"outputs":[{"data":{"text/plain":["(#63095) [0,1,2,1,3,1,4,1,5,1...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["word2idx = {w:i for i,w in enumerate(vocab)}\n","nums = L(word2idx[i] for i in tokens)\n","nums"]},{"cell_type":"markdown","metadata":{"id":"cB__qdQ52L3C"},"source":["Now that we have a small dataset on which language modeling should be an easy task, we can build our first model."]},{"cell_type":"markdown","metadata":{"id":"QX7-mC7z2L3C"},"source":["## Our First Language Model from Scratch"]},{"cell_type":"markdown","metadata":{"id":"Aq_-hTcB2L3C"},"source":["One simple way to turn this into a neural network would be to specify that we are going to predict each word based on the previous three words. We could create a list of every sequence of three words as our independent variables, and the next word after each sequence as the dependent variable.\n","\n","We can do that with plain Python. Let's do it first with tokens just to confirm what it looks like:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qRGVxfUG2L3D","outputId":"f332a768-871d-4225-c2d8-22eccd8f4a22"},"outputs":[{"data":{"text/plain":["(#21031) [(['one', '.', 'two'], '.'),(['.', 'three', '.'], 'four'),(['four', '.', 'five'], '.'),(['.', 'six', '.'], 'seven'),(['seven', '.', 'eight'], '.'),(['.', 'nine', '.'], 'ten'),(['ten', '.', 'eleven'], '.'),(['.', 'twelve', '.'], 'thirteen'),(['thirteen', '.', 'fourteen'], '.'),(['.', 'fifteen', '.'], 'sixteen')...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["L((tokens[i:i+3], tokens[i+3]) for i in range(0,len(tokens)-4,3))"]},{"cell_type":"markdown","metadata":{"id":"SvGEsTqi2L3D"},"source":["Now we will do it with tensors of the numericalized values, which is what the model will actually use:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"s6srl7DS2L3D","outputId":"8483ecaf-9ca5-4cd2-869b-cc82d1133ca5"},"outputs":[{"data":{"text/plain":["(#21031) [(tensor([0, 1, 2]), 1),(tensor([1, 3, 1]), 4),(tensor([4, 1, 5]), 1),(tensor([1, 6, 1]), 7),(tensor([7, 1, 8]), 1),(tensor([1, 9, 1]), 10),(tensor([10, 1, 11]), 1),(tensor([ 1, 12, 1]), 13),(tensor([13, 1, 14]), 1),(tensor([ 1, 15, 1]), 16)...]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["seqs = L((tensor(nums[i:i+3]), nums[i+3]) for i in range(0,len(nums)-4,3))\n","seqs"]},{"cell_type":"markdown","metadata":{"id":"2ofTBK8c2L3E"},"source":["We can batch those easily using the `DataLoader` class. For now we will split the sequences randomly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qqlzONrx2L3E"},"outputs":[],"source":["bs = 64\n","cut = int(len(seqs) * 0.8)\n","dls = DataLoaders.from_dsets(seqs[:cut], seqs[cut:], bs=64, shuffle=False)"]},{"cell_type":"markdown","metadata":{"id":"ch1UseIS2L3E"},"source":["We can now create a neural network architecture that takes three words as input, and returns a prediction of the probability of each possible next word in the vocab. We will use three standard linear layers, but with two tweaks.\n","\n","The first tweak is that the first linear layer will use only the first word's embedding as activations, the second layer will use the second word's embedding plus the first layer's output activations, and the third layer will use the third word's embedding plus the second layer's output activations. The key effect of this is that every word is interpreted in the information context of any words preceding it.\n","\n","The second tweak is that each of these three layers will use the same weight matrix. The way that one word impacts the activations from previous words should not change depending on the position of a word. In other words, activation values will change as data moves through the layers, but the layer weights themselves will not change from layer to layer. So, a layer does not learn one sequence position; it must learn to handle all positions.\n","\n","Since layer weights do not change, you might think of the sequential layers as \"the same layer\" repeated. In fact, PyTorch makes this concrete; we can just create one layer, and use it multiple times."]},{"cell_type":"markdown","metadata":{"id":"7guZyVRD2L3F"},"source":["### Our Language Model in PyTorch"]},{"cell_type":"markdown","metadata":{"id":"chiDrCYa2L3F"},"source":["We can now create the language model module that we described earlier:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8UGX7mBj2L3G"},"outputs":[],"source":["class LMModel1(Module):\n"," def __init__(self, vocab_sz, n_hidden):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.h_h = nn.Linear(n_hidden, n_hidden)\n"," self.h_o = nn.Linear(n_hidden,vocab_sz)\n","\n"," def forward(self, x):\n"," h = F.relu(self.h_h(self.i_h(x[:,0])))\n"," h = h + self.i_h(x[:,1])\n"," h = F.relu(self.h_h(h))\n"," h = h + self.i_h(x[:,2])\n"," h = F.relu(self.h_h(h))\n"," return self.h_o(h)"]},{"cell_type":"markdown","metadata":{"id":"0rqz6gwa2L3G"},"source":["As you see, we have created three layers:\n","\n","- The embedding layer (`i_h`, for *input* to *hidden*)\n","- The linear layer to create the activations for the next word (`h_h`, for *hidden* to *hidden*)\n","- A final linear layer to predict the fourth word (`h_o`, for *hidden* to *output*)\n","\n","This might be easier to represent in pictorial form, so let's define a simple pictorial representation of basic neural networks. <> shows how we're going to represent a neural net with one hidden layer."]},{"cell_type":"markdown","metadata":{"id":"_fwfS6Pe2L3H"},"source":["\"Pictorial"]},{"cell_type":"markdown","metadata":{"id":"R_i-Gk_p2L3H"},"source":["Each shape represents activations: rectangle for input, circle for hidden (inner) layer activations, and triangle for output activations. We will use those shapes (summarized in <>) in all the diagrams in this chapter."]},{"cell_type":"markdown","metadata":{"id":"4HUMpIMx2L3H"},"source":["\"Shapes"]},{"cell_type":"markdown","metadata":{"id":"3RGPJVyy2L3H"},"source":["An arrow represents the actual layer computation—i.e., the linear layer followed by the activation function. Using this notation, <> shows what our simple language model looks like."]},{"cell_type":"markdown","metadata":{"id":"UZUUFLjD2L3O"},"source":["\"Representation"]},{"cell_type":"markdown","metadata":{"id":"GOscmdpn2L3O"},"source":["To simplify things, we've removed the details of the layer computation from each arrow. We've also color-coded the arrows, such that all arrows with the same color have the same weight matrix. For instance, all the input layers use the same embedding matrix, so they all have the same color (green).\n","\n","Let's try training this model and see how it goes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qgb86N4J2L3P","outputId":"67a404a7-a297-47fb-b30f-eaf988fa2f23"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.8242971.9709410.46755400:02
11.3869731.8232420.46755400:02
21.4175561.6544970.49441400:02
31.3764401.6508490.49441400:02
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, LMModel1(len(vocab), 64), loss_func=F.cross_entropy,\n"," metrics=accuracy)\n","learn.fit_one_cycle(4, 1e-3)"]},{"cell_type":"markdown","metadata":{"id":"clsu6cuD2L3P"},"source":["To see if this is any good, let's check what a very simple model would give us. In this case we could always predict the most common token, so let's find out which token is most often the target in our validation set:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mHaI-J082L3Q","outputId":"458a2371-0908-461e-b362-107dc6d44c2d"},"outputs":[{"data":{"text/plain":["(tensor(29), 'thousand', 0.15165200855716662)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["n,counts = 0,torch.zeros(len(vocab))\n","for x,y in dls.valid:\n"," n += y.shape[0]\n"," for i in range_of(vocab): counts[i] += (y==i).long().sum()\n","idx = torch.argmax(counts)\n","idx, vocab[idx.item()], counts[idx].item()/n"]},{"cell_type":"markdown","metadata":{"id":"GeuIweGc2L3Q"},"source":["The most common token has the index 29, which corresponds to the token `thousand`. Always predicting this token would give us an accuracy of roughly 15\\%, so we are faring way better!"]},{"cell_type":"markdown","metadata":{"id":"UcATilcn2L3Q"},"source":["> A: My first guess was that the separator would be the most common token, since there is one for every number. But looking at `tokens` reminded me that large numbers are written with many words, so on the way to 10,000 you write \"thousand\" a lot: five thousand, five thousand and one, five thousand and two, etc. Oops! Looking at your data is great for noticing subtle features and also embarrassingly obvious ones."]},{"cell_type":"markdown","metadata":{"id":"P8EOl3e42L3R"},"source":["This is a nice first baseline. Let's see how we can refactor it with a loop."]},{"cell_type":"markdown","metadata":{"id":"34QzL_lJ2L3R"},"source":["### Our First Recurrent Neural Network"]},{"cell_type":"markdown","metadata":{"id":"s2lKn6Pz2L3R"},"source":["Looking at the code for our module, we could simplify it by replacing the duplicated code that calls the layers with a `for` loop. As well as making our code simpler, this will also have the benefit that we will be able to apply our module equally well to token sequences of different lengths—we won't be restricted to token lists of length three:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rgRsxpmL2L3S"},"outputs":[],"source":["class LMModel2(Module):\n"," def __init__(self, vocab_sz, n_hidden):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.h_h = nn.Linear(n_hidden, n_hidden)\n"," self.h_o = nn.Linear(n_hidden,vocab_sz)\n","\n"," def forward(self, x):\n"," h = 0\n"," for i in range(3):\n"," h = h + self.i_h(x[:,i])\n"," h = F.relu(self.h_h(h))\n"," return self.h_o(h)"]},{"cell_type":"markdown","metadata":{"id":"PFGM3cM22L3S"},"source":["Let's check that we get the same results using this refactoring:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IlQMwTy-2L3S","outputId":"51d0b293-2bac-4eff-d25c-7d6216563b2b"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.8162741.9641430.46018500:02
11.4238051.7399640.47325900:02
21.4303271.6851720.48538200:02
31.3883901.6570330.47040600:02
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, LMModel2(len(vocab), 64), loss_func=F.cross_entropy,\n"," metrics=accuracy)\n","learn.fit_one_cycle(4, 1e-3)"]},{"cell_type":"markdown","metadata":{"id":"j3kJ3qVT2L3T"},"source":["We can also refactor our pictorial representation in exactly the same way, as shown in <> (we're also removing the details of activation sizes here, and using the same arrow colors as in <>)."]},{"cell_type":"markdown","metadata":{"id":"WKWbaQAg2L3T"},"source":["\"Basic"]},{"cell_type":"markdown","metadata":{"id":"y2vqTotA2L3T"},"source":["You will see that there is a set of activations that are being updated each time through the loop, stored in the variable `h`—this is called the *hidden state*."]},{"cell_type":"markdown","metadata":{"id":"yt9yOnss2L3U"},"source":["> Jargon: hidden state: The activations that are updated at each step of a recurrent neural network."]},{"cell_type":"markdown","metadata":{"id":"p787kD_b2L3U"},"source":["A neural network that is defined using a loop like this is called a *recurrent neural network* (RNN). It is important to realize that an RNN is not a complicated new architecture, but simply a refactoring of a multilayer neural network using a `for` loop.\n","\n","> A: My true opinion: if they were called \"looping neural networks,\" or LNNs, they would seem 50% less daunting!"]},{"cell_type":"markdown","metadata":{"id":"wV-bX8N52L3U"},"source":["Now that we know what an RNN is, let's try to make it a little bit better."]},{"cell_type":"markdown","metadata":{"id":"4OCgDf242L3V"},"source":["## Improving the RNN"]},{"cell_type":"markdown","metadata":{"id":"ecnANdAu2L3V"},"source":["Looking at the code for our RNN, one thing that seems problematic is that we are initializing our hidden state to zero for every new input sequence. Why is that a problem? We made our sample sequences short so they would fit easily into batches. But if we order the samples correctly, those sample sequences will be read in order by the model, exposing the model to long stretches of the original sequence.\n","\n","Another thing we can look at is having more signal: why only predict the fourth word when we could use the intermediate predictions to also predict the second and third words?\n","\n","Let's see how we can implement those changes, starting with adding some state."]},{"cell_type":"markdown","metadata":{"id":"BsYuKG9y2L3V"},"source":["### Maintaining the State of an RNN"]},{"cell_type":"markdown","metadata":{"id":"5r7uRXMe2L3V"},"source":["Because we initialize the model's hidden state to zero for each new sample, we are throwing away all the information we have about the sentences we have seen so far, which means that our model doesn't actually know where we are up to in the overall counting sequence. This is easily fixed; we can simply move the initialization of the hidden state to `__init__`.\n","\n","But this fix will create its own subtle, but important, problem. It effectively makes our neural network as deep as the entire number of tokens in our document. For instance, if there were 10,000 tokens in our dataset, we would be creating a 10,000-layer neural network.\n","\n","To see why this is the case, consider the original pictorial representation of our recurrent neural network in <>, before refactoring it with a `for` loop. You can see each layer corresponds with one token input. When we talk about the representation of a recurrent neural network before refactoring with the `for` loop, we call this the *unrolled representation*. It is often helpful to consider the unrolled representation when trying to understand an RNN.\n","\n","The problem with a 10,000-layer neural network is that if and when you get to the 10,000th word of the dataset, you will still need to calculate the derivatives all the way back to the first layer. This is going to be very slow indeed, and very memory-intensive. It is unlikely that you'll be able to store even one mini-batch on your GPU.\n","\n","The solution to this problem is to tell PyTorch that we do not want to back propagate the derivatives through the entire implicit neural network. Instead, we will just keep the last three layers of gradients. To remove all of the gradient history in PyTorch, we use the `detach` method.\n","\n","Here is the new version of our RNN. It is now stateful, because it remembers its activations between different calls to `forward`, which represent its use for different samples in the batch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"z_s37_mV2L3W"},"outputs":[],"source":["class LMModel3(Module):\n"," def __init__(self, vocab_sz, n_hidden):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.h_h = nn.Linear(n_hidden, n_hidden)\n"," self.h_o = nn.Linear(n_hidden,vocab_sz)\n"," self.h = 0\n","\n"," def forward(self, x):\n"," for i in range(3):\n"," self.h = self.h + self.i_h(x[:,i])\n"," self.h = F.relu(self.h_h(self.h))\n"," out = self.h_o(self.h)\n"," self.h = self.h.detach()\n"," return out\n","\n"," def reset(self): self.h = 0"]},{"cell_type":"markdown","metadata":{"id":"Y4PcYYvR2L3W"},"source":["This model will have the same activations whatever sequence length we pick, because the hidden state will remember the last activation from the previous batch. The only thing that will be different is the gradients computed at each step: they will only be calculated on sequence length tokens in the past, instead of the whole stream. This approach is called *backpropagation through time* (BPTT)."]},{"cell_type":"markdown","metadata":{"id":"pxoV7cnG2L3W"},"source":["> jargon: Back propagation through time (BPTT): Treating a neural net with effectively one layer per time step (usually refactored using a loop) as one big model, and calculating gradients on it in the usual way. To avoid running out of memory and time, we usually use _truncated_ BPTT, which \"detaches\" the history of computation steps in the hidden state every few time steps."]},{"cell_type":"markdown","metadata":{"id":"TEimGByu2L3W"},"source":["To use `LMModel3`, we need to make sure the samples are going to be seen in a certain order. As we saw in <>, if the first line of the first batch is our `dset[0]` then the second batch should have `dset[1]` as the first line, so that the model sees the text flowing.\n","\n","`LMDataLoader` was doing this for us in <>. This time we're going to do it ourselves.\n","\n","To do this, we are going to rearrange our dataset. First we divide the samples into `m = len(dset) // bs` groups (this is the equivalent of splitting the whole concatenated dataset into, for example, 64 equally sized pieces, since we're using `bs=64` here). `m` is the length of each of these pieces. For instance, if we're using our whole dataset (although we'll actually split it into train versus valid in a moment), that will be:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IxjG12LV2L3X","outputId":"243365b6-115a-4460-f5b4-a3441ef56a01"},"outputs":[{"data":{"text/plain":["(328, 64, 21031)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = len(seqs)//bs\n","m,bs,len(seqs)"]},{"cell_type":"markdown","metadata":{"id":"P8o9aw3u2L3X"},"source":["The first batch will be composed of the samples:\n","\n"," (0, m, 2*m, ..., (bs-1)*m)\n","\n","the second batch of the samples:\n","\n"," (1, m+1, 2*m+1, ..., (bs-1)*m+1)\n","\n","and so forth. This way, at each epoch, the model will see a chunk of contiguous text of size `3*m` (since each text is of size 3) on each line of the batch.\n","\n","The following function does that reindexing:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GkbsucxI2L3X"},"outputs":[],"source":["def group_chunks(ds, bs):\n"," m = len(ds) // bs\n"," new_ds = L()\n"," for i in range(m): new_ds += L(ds[i + m*j] for j in range(bs))\n"," return new_ds"]},{"cell_type":"markdown","metadata":{"id":"F9azUchi2L3Y"},"source":["Then we just pass `drop_last=True` when building our `DataLoaders` to drop the last batch that does not have a shape of `bs`. We also pass `shuffle=False` to make sure the texts are read in order:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tBRdk3t82L3Y"},"outputs":[],"source":["cut = int(len(seqs) * 0.8)\n","dls = DataLoaders.from_dsets(\n"," group_chunks(seqs[:cut], bs),\n"," group_chunks(seqs[cut:], bs),\n"," bs=bs, drop_last=True, shuffle=False)"]},{"cell_type":"markdown","metadata":{"id":"Nw7CEkjk2L3Y"},"source":["The last thing we add is a little tweak of the training loop via a `Callback`. We will talk more about callbacks in <>; this one will call the `reset` method of our model at the beginning of each epoch and before each validation phase. Since we implemented that method to zero the hidden state of the model, this will make sure we start with a clean state before reading those continuous chunks of text. We can also start training a bit longer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CJ2uIgY-2L3Z","outputId":"f3efeea0-4781-4227-e7ae-fd70c1e1c979"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.6770741.8273670.46754800:02
11.2827221.8709130.38894200:02
21.0907051.6517930.46250000:02
31.0050921.6137940.51658700:02
40.9659751.5607750.55120200:02
50.9161821.5958570.56057700:02
60.8976571.5397330.57427900:02
70.8362741.5851410.58317300:02
80.8058771.6298080.58677900:02
90.7950961.6512670.58894200:02
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, LMModel3(len(vocab), 64), loss_func=F.cross_entropy,\n"," metrics=accuracy, cbs=ModelResetter)\n","learn.fit_one_cycle(10, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"V88FFnv72L3Z"},"source":["This is already better! The next step is to use more targets and compare them to the intermediate predictions."]},{"cell_type":"markdown","metadata":{"id":"qRrjb-Rr2L3Z"},"source":["### Creating More Signal"]},{"cell_type":"markdown","metadata":{"id":"0kq4hUER2L3a"},"source":["Another problem with our current approach is that we only predict one output word for each three input words. That means that the amount of signal that we are feeding back to update weights with is not as large as it could be. It would be better if we predicted the next word after every single word, rather than every three words, as shown in <>."]},{"cell_type":"markdown","metadata":{"id":"Iq56X1Ky2L3a"},"source":["\"RNN"]},{"cell_type":"markdown","metadata":{"id":"vW3yfXAH2L3a"},"source":["This is easy enough to add. We need to first change our data so that the dependent variable has each of the three next words after each of our three input words. Instead of `3`, we use an attribute, `sl` (for sequence length), and make it a bit bigger:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7DW3NgKj2L3a"},"outputs":[],"source":["sl = 16\n","seqs = L((tensor(nums[i:i+sl]), tensor(nums[i+1:i+sl+1]))\n"," for i in range(0,len(nums)-sl-1,sl))\n","cut = int(len(seqs) * 0.8)\n","dls = DataLoaders.from_dsets(group_chunks(seqs[:cut], bs),\n"," group_chunks(seqs[cut:], bs),\n"," bs=bs, drop_last=True, shuffle=False)"]},{"cell_type":"markdown","metadata":{"id":"lhVnHVgT2L3b"},"source":["Looking at the first element of `seqs`, we can see that it contains two lists of the same size. The second list is the same as the first, but offset by one element:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GolR-x122L3b","outputId":"edcbdbb9-be49-4040-cfbd-800c7d68f512"},"outputs":[{"data":{"text/plain":["[(#16) ['one','.','two','.','three','.','four','.','five','.'...],\n"," (#16) ['.','two','.','three','.','four','.','five','.','six'...]]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["[L(vocab[o] for o in s) for s in seqs[0]]"]},{"cell_type":"markdown","metadata":{"id":"13SKXqHR2L3b"},"source":["Now we need to modify our model so that it outputs a prediction after every word, rather than just at the end of a three-word sequence:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"M17ZP72j2L3c"},"outputs":[],"source":["class LMModel4(Module):\n"," def __init__(self, vocab_sz, n_hidden):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.h_h = nn.Linear(n_hidden, n_hidden)\n"," self.h_o = nn.Linear(n_hidden,vocab_sz)\n"," self.h = 0\n","\n"," def forward(self, x):\n"," outs = []\n"," for i in range(sl):\n"," self.h = self.h + self.i_h(x[:,i])\n"," self.h = F.relu(self.h_h(self.h))\n"," outs.append(self.h_o(self.h))\n"," self.h = self.h.detach()\n"," return torch.stack(outs, dim=1)\n","\n"," def reset(self): self.h = 0"]},{"cell_type":"markdown","metadata":{"id":"PKneLUDc2L3c"},"source":["This model will return outputs of shape `bs x sl x vocab_sz` (since we stacked on `dim=1`). Our targets are of shape `bs x sl`, so we need to flatten those before using them in `F.cross_entropy`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hP9xDQ-y2L3c"},"outputs":[],"source":["def loss_func(inp, targ):\n"," return F.cross_entropy(inp.view(-1, len(vocab)), targ.view(-1))"]},{"cell_type":"markdown","metadata":{"id":"RzHaZ7dj2L3d"},"source":["We can now use this loss function to train the model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ya35LfxT2L3d","outputId":"b5d229ad-0655-454d-d35e-f680d2b66802"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
03.1032982.8743410.21256500:01
12.2319641.9712800.46215800:01
21.7113581.8135470.46118200:01
31.4485161.8281760.48323600:01
41.2886301.6595640.52067100:01
51.1614701.7140230.55493200:01
61.0555681.6609160.57503300:01
70.9607651.7196240.59106400:01
80.8701531.8395600.61466500:01
90.8085451.7702780.62434900:01
100.7580841.8429310.61075800:01
110.7193201.7995270.64656600:01
120.6834391.9179280.64982100:01
130.6602831.8747120.62858100:01
140.6461541.8775190.64005500:01
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, LMModel4(len(vocab), 64), loss_func=loss_func,\n"," metrics=accuracy, cbs=ModelResetter)\n","learn.fit_one_cycle(15, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"d9A3xKpN2L3d"},"source":["We need to train for longer, since the task has changed a bit and is more complicated now. But we end up with a good result... At least, sometimes. If you run it a few times, you'll see that you can get quite different results on different runs. That's because effectively we have a very deep network here, which can result in very large or very small gradients. We'll see in the next part of this chapter how to deal with this.\n","\n","Now, the obvious way to get a better model is to go deeper: we only have one linear layer between the hidden state and the output activations in our basic RNN, so maybe we'll get better results with more."]},{"cell_type":"markdown","metadata":{"id":"UOsRzgKs2L3e"},"source":["## Multilayer RNNs"]},{"cell_type":"markdown","metadata":{"id":"5TDC7trs2L3e"},"source":["In a multilayer RNN, we pass the activations from our recurrent neural network into a second recurrent neural network, like in <>."]},{"cell_type":"markdown","metadata":{"id":"BkhA89Qb2L3e"},"source":["\"2-layer"]},{"cell_type":"markdown","metadata":{"id":"vrmy3YGU2L3f"},"source":["The unrolled representation is shown in <> (similar to <>)."]},{"cell_type":"markdown","metadata":{"id":"oKNyWwUm2L3f"},"source":["\"2-layer"]},{"cell_type":"markdown","metadata":{"id":"epUI2YsU2L3f"},"source":["Let's see how to implement this in practice."]},{"cell_type":"markdown","metadata":{"id":"TG_JkAiw2L3f"},"source":["### The Model"]},{"cell_type":"markdown","metadata":{"id":"jCl4V__82L3g"},"source":["We can save some time by using PyTorch's `RNN` class, which implements exactly what we created earlier, but also gives us the option to stack multiple RNNs, as we have discussed:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"UAZv7t2O2L3g"},"outputs":[],"source":["class LMModel5(Module):\n"," def __init__(self, vocab_sz, n_hidden, n_layers):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.rnn = nn.RNN(n_hidden, n_hidden, n_layers, batch_first=True)\n"," self.h_o = nn.Linear(n_hidden, vocab_sz)\n"," self.h = torch.zeros(n_layers, bs, n_hidden)\n","\n"," def forward(self, x):\n"," res,h = self.rnn(self.i_h(x), self.h)\n"," self.h = h.detach()\n"," return self.h_o(res)\n","\n"," def reset(self): self.h.zero_()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"l294PT0p2L3h","outputId":"df8925e5-79f7-4abe-8bbb-2a807528200c"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
03.0558532.5916400.43790700:01
12.1623591.7873100.47159800:01
21.7106631.9418070.32177700:01
31.5207831.9997260.31201200:01
41.3308462.0129020.41324900:01
51.1632971.8961920.45068400:01
61.0338132.0052090.43481400:01
70.9190902.0470830.45670600:01
80.8229392.0680310.46883100:01
90.7501802.1360640.47509800:01
100.6951202.1391400.48543300:01
110.6557522.1550810.49365200:01
120.6296502.1625830.49853500:01
130.6135832.1716490.49104800:01
140.6043092.1803550.48787400:01
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, LMModel5(len(vocab), 64, 2),\n"," loss_func=CrossEntropyLossFlat(),\n"," metrics=accuracy, cbs=ModelResetter)\n","learn.fit_one_cycle(15, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"FMgnqWkV2L3h"},"source":["Now that's disappointing... our previous single-layer RNN performed better. Why? The reason is that we have a deeper model, leading to exploding or vanishing activations."]},{"cell_type":"markdown","metadata":{"id":"dvvSaK592L3h"},"source":["### Exploding or Disappearing Activations"]},{"cell_type":"markdown","metadata":{"id":"FRQHwtZd2L3i"},"source":["In practice, creating accurate models from this kind of RNN is difficult. We will get better results if we call `detach` less often, and have more layers—this gives our RNN a longer time horizon to learn from, and richer features to create. But it also means we have a deeper model to train. The key challenge in the development of deep learning has been figuring out how to train these kinds of models.\n","\n","The reason this is challenging is because of what happens when you multiply by a matrix many times. Think about what happens when you multiply by a number many times. For example, if you multiply by 2, starting at 1, you get the sequence 1, 2, 4, 8,... after 32 steps you are already at 4,294,967,296. A similar issue happens if you multiply by 0.5: you get 0.5, 0.25, 0.125… and after 32 steps it's 0.00000000023. As you can see, multiplying by a number even slightly higher or lower than 1 results in an explosion or disappearance of our starting number, after just a few repeated multiplications.\n","\n","Because matrix multiplication is just multiplying numbers and adding them up, exactly the same thing happens with repeated matrix multiplications. And that's all a deep neural network is —each extra layer is another matrix multiplication. This means that it is very easy for a deep neural network to end up with extremely large or extremely small numbers.\n","\n","This is a problem, because the way computers store numbers (known as \"floating point\") means that they become less and less accurate the further away the numbers get from zero. The diagram in <>, from the excellent article [\"What You Never Wanted to Know About Floating Point but Will Be Forced to Find Out\"](http://www.volkerschatz.com/science/float.html), shows how the precision of floating-point numbers varies over the number line."]},{"cell_type":"markdown","metadata":{"id":"AcQcyDr32L3i"},"source":["\"Precision"]},{"cell_type":"markdown","metadata":{"id":"KX38hHuB2L3j"},"source":["This inaccuracy means that often the gradients calculated for updating the weights end up as zero or infinity for deep networks. This is commonly referred to as the *vanishing gradients* or *exploding gradients* problem. It means that in SGD, the weights are either not updated at all or jump to infinity. Either way, they won't improve with training.\n","\n","Researchers have developed a number of ways to tackle this problem, which we will be discussing later in the book. One option is to change the definition of a layer in a way that makes it less likely to have exploding activations. We'll look at the details of how this is done in <>, when we discuss batch normalization, and <>, when we discuss ResNets, although these details don't generally matter in practice (unless you are a researcher that is creating new approaches to solving this problem). Another strategy for dealing with this is by being careful about initialization, which is a topic we'll investigate in <>.\n","\n","For RNNs, there are two types of layers that are frequently used to avoid exploding activations: *gated recurrent units* (GRUs) and *long short-term memory* (LSTM) layers. Both of these are available in PyTorch, and are drop-in replacements for the RNN layer. We will only cover LSTMs in this book; there are plenty of good tutorials online explaining GRUs, which are a minor variant on the LSTM design."]},{"cell_type":"markdown","metadata":{"id":"YUqNBiO72L3j"},"source":["## LSTM"]},{"cell_type":"markdown","metadata":{"id":"bjDXS6W32L3j"},"source":["LSTM is an architecture that was introduced back in 1997 by Jürgen Schmidhuber and Sepp Hochreiter. In this architecture, there are not one but two hidden states. In our base RNN, the hidden state is the output of the RNN at the previous time step. That hidden state is then responsible for two things:\n","\n","- Having the right information for the output layer to predict the correct next token\n","- Retaining memory of everything that happened in the sentence\n","\n","Consider, for example, the sentences \"Henry has a dog and he likes his dog very much\" and \"Sophie has a dog and she likes her dog very much.\" It's very clear that the RNN needs to remember the name at the beginning of the sentence to be able to predict *he/she* or *his/her*.\n","\n","In practice, RNNs are really bad at retaining memory of what happened much earlier in the sentence, which is the motivation to have another hidden state (called *cell state*) in the LSTM. The cell state will be responsible for keeping *long short-term memory*, while the hidden state will focus on the next token to predict. Let's take a closer look at how this is achieved and build an LSTM from scratch."]},{"cell_type":"markdown","metadata":{"id":"9IYLe3Ej2L3k"},"source":["### Building an LSTM from Scratch"]},{"cell_type":"markdown","metadata":{"id":"StQheAUg2L3k"},"source":["In order to build an LSTM, we first have to understand its architecture. <> shows its inner structure.\n"," \n","\"A"]},{"cell_type":"markdown","metadata":{"id":"ZG0NeQ452L3l"},"source":["In this picture, our input $x_{t}$ enters on the left with the previous hidden state ($h_{t-1}$) and cell state ($c_{t-1}$). The four orange boxes represent four layers (our neural nets) with the activation being either sigmoid ($\\sigma$) or tanh. tanh is just a sigmoid function rescaled to the range -1 to 1. Its mathematical expression can be written like this:\n","\n","$$\\tanh(x) = \\frac{e^{x} - e^{-x}}{e^{x}+e^{-x}} = 2 \\sigma(2x) - 1$$\n","\n","where $\\sigma$ is the sigmoid function. The green circles are elementwise operations. What goes out on the right is the new hidden state ($h_{t}$) and new cell state ($c_{t}$), ready for our next input. The new hidden state is also used as output, which is why the arrow splits to go up.\n","\n","Let's go over the four neural nets (called *gates*) one by one and explain the diagram—but before this, notice how very little the cell state (at the top) is changed. It doesn't even go directly through a neural net! This is exactly why it will carry on a longer-term state.\n","\n","First, the arrows for input and old hidden state are joined together. In the RNN we wrote earlier in this chapter, we were adding them together. In the LSTM, we stack them in one big tensor. This means the dimension of our embeddings (which is the dimension of $x_{t}$) can be different than the dimension of our hidden state. If we call those `n_in` and `n_hid`, the arrow at the bottom is of size `n_in + n_hid`; thus all the neural nets (orange boxes) are linear layers with `n_in + n_hid` inputs and `n_hid` outputs.\n","\n","The first gate (looking from left to right) is called the *forget gate*. Since it’s a linear layer followed by a sigmoid, its output will consist of scalars between 0 and 1. We multiply this result by the cell state to determine which information to keep and which to throw away: values closer to 0 are discarded and values closer to 1 are kept. This gives the LSTM the ability to forget things about its long-term state. For instance, when crossing a period or an `xxbos` token, we would expect to it to (have learned to) reset its cell state.\n","\n","The second gate is called the *input gate*. It works with the third gate (which doesn't really have a name but is sometimes called the *cell gate*) to update the cell state. For instance, we may see a new gender pronoun, in which case we'll need to replace the information about gender that the forget gate removed. Similar to the forget gate, the input gate decides which elements of the cell state to update (values close to 1) or not (values close to 0). The third gate determines what those updated values are, in the range of –1 to 1 (thanks to the tanh function). The result is then added to the cell state.\n","\n","The last gate is the *output gate*. It determines which information from the cell state to use to generate the output. The cell state goes through a tanh before being combined with the sigmoid output from the output gate, and the result is the new hidden state.\n","\n","In terms of code, we can write the same steps like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8LZ1bIMQ2L3l"},"outputs":[],"source":["class LSTMCell(Module):\n"," def __init__(self, ni, nh):\n"," self.forget_gate = nn.Linear(ni + nh, nh)\n"," self.input_gate = nn.Linear(ni + nh, nh)\n"," self.cell_gate = nn.Linear(ni + nh, nh)\n"," self.output_gate = nn.Linear(ni + nh, nh)\n","\n"," def forward(self, input, state):\n"," h,c = state\n"," h = torch.cat([h, input], dim=1)\n"," forget = torch.sigmoid(self.forget_gate(h))\n"," c = c * forget\n"," inp = torch.sigmoid(self.input_gate(h))\n"," cell = torch.tanh(self.cell_gate(h))\n"," c = c + inp * cell\n"," out = torch.sigmoid(self.output_gate(h))\n"," h = out * torch.tanh(c)\n"," return h, (h,c)"]},{"cell_type":"markdown","metadata":{"id":"deV5aVUu2L3l"},"source":["In practice, we can then refactor the code. Also, in terms of performance, it's better to do one big matrix multiplication than four smaller ones (that's because we only launch the special fast kernel on the GPU once, and it gives the GPU more work to do in parallel). The stacking takes a bit of time (since we have to move one of the tensors around on the GPU to have it all in a contiguous array), so we use two separate layers for the input and the hidden state. The optimized and refactored code then looks like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"L8XIXsrt2L3m"},"outputs":[],"source":["class LSTMCell(Module):\n"," def __init__(self, ni, nh):\n"," self.ih = nn.Linear(ni,4*nh)\n"," self.hh = nn.Linear(nh,4*nh)\n","\n"," def forward(self, input, state):\n"," h,c = state\n"," # One big multiplication for all the gates is better than 4 smaller ones\n"," gates = (self.ih(input) + self.hh(h)).chunk(4, 1)\n"," ingate,forgetgate,outgate = map(torch.sigmoid, gates[:3])\n"," cellgate = gates[3].tanh()\n","\n"," c = (forgetgate*c) + (ingate*cellgate)\n"," h = outgate * c.tanh()\n"," return h, (h,c)"]},{"cell_type":"markdown","metadata":{"id":"RLSwI-4t2L3m"},"source":["Here we use the PyTorch `chunk` method to split our tensor into four pieces. It works like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6qW1e2va2L3m","outputId":"4e1fee1b-7ee9-4673-db17-504eebd6b562"},"outputs":[{"data":{"text/plain":["tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = torch.arange(0,10); t"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oy9wUrk52L3n","outputId":"04238c88-0795-4cbb-859f-1f9050047488"},"outputs":[{"data":{"text/plain":["(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t.chunk(2)"]},{"cell_type":"markdown","metadata":{"id":"Ww1PTzmn2L3n"},"source":["Let's now use this architecture to train a language model!"]},{"cell_type":"markdown","metadata":{"id":"IUKn2RGl2L3o"},"source":["### Training a Language Model Using LSTMs"]},{"cell_type":"markdown","metadata":{"id":"p1uuYr2H2L3o"},"source":["Here is the same network as `LMModel5`, using a two-layer LSTM. We can train it at a higher learning rate, for a shorter time, and get better accuracy:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"u2uIpCg72L3o"},"outputs":[],"source":["class LMModel6(Module):\n"," def __init__(self, vocab_sz, n_hidden, n_layers):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.rnn = nn.LSTM(n_hidden, n_hidden, n_layers, batch_first=True)\n"," self.h_o = nn.Linear(n_hidden, vocab_sz)\n"," self.h = [torch.zeros(n_layers, bs, n_hidden) for _ in range(2)]\n","\n"," def forward(self, x):\n"," res,h = self.rnn(self.i_h(x), self.h)\n"," self.h = [h_.detach() for h_ in h]\n"," return self.h_o(res)\n","\n"," def reset(self):\n"," for h in self.h: h.zero_()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WZgkDXmC2L3o","outputId":"33f37a73-ab15-40bd-869a-c9a75f42c738"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
03.0008212.6639420.43831400:02
12.1396422.1847800.24047900:02
21.6072751.8126820.43977900:02
31.3477111.8309820.49747700:02
41.1231131.9377660.59440100:02
50.8520422.0121270.63159200:02
60.5654941.3127420.72574900:02
70.3474451.2979340.71126300:02
80.2081911.4412690.73120100:02
90.1263351.5699520.73730500:02
100.0797611.4271870.75415000:02
110.0529901.4949900.74511700:02
120.0390081.3937310.75789400:02
130.0315021.3732100.75846400:02
140.0280681.3680830.75846400:02
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = Learner(dls, LMModel6(len(vocab), 64, 2),\n"," loss_func=CrossEntropyLossFlat(),\n"," metrics=accuracy, cbs=ModelResetter)\n","learn.fit_one_cycle(15, 1e-2)"]},{"cell_type":"markdown","metadata":{"id":"_GDrTeEP2L3p"},"source":["Now that's better than a multilayer RNN! We can still see there is a bit of overfitting, however, which is a sign that a bit of regularization might help."]},{"cell_type":"markdown","metadata":{"id":"sXSGvIAB2L3p"},"source":["## Regularizing an LSTM"]},{"cell_type":"markdown","metadata":{"id":"hA3XxqnG2L3q"},"source":["Recurrent neural networks, in general, are hard to train, because of the problem of vanishing activations and gradients we saw before. Using LSTM (or GRU) cells makes training easier than with vanilla RNNs, but they are still very prone to overfitting. Data augmentation, while a possibility, is less often used for text data than for images because in most cases it requires another model to generate random augmentations (e.g., by translating the text into another language and then back into the original language). Overall, data augmentation for text data is currently not a well-explored space.\n","\n","However, there are other regularization techniques we can use instead to reduce overfitting, which were thoroughly studied for use with LSTMs in the paper [\"Regularizing and Optimizing LSTM Language Models\"](https://arxiv.org/abs/1708.02182) by Stephen Merity, Nitish Shirish Keskar, and Richard Socher. This paper showed how effective use of *dropout*, *activation regularization*, and *temporal activation regularization* could allow an LSTM to beat state-of-the-art results that previously required much more complicated models. The authors called an LSTM using these techniques an *AWD-LSTM*. We'll look at each of these techniques in turn."]},{"cell_type":"markdown","metadata":{"id":"CMkg49pY2L3q"},"source":["### Dropout"]},{"cell_type":"markdown","metadata":{"id":"wjdVfIxO2L3q"},"source":["Dropout is a regularization technique that was introduced by Geoffrey Hinton et al. in [Improving neural networks by preventing co-adaptation of feature detectors](https://arxiv.org/abs/1207.0580). The basic idea is to randomly change some activations to zero at training time. This makes sure all neurons actively work toward the output, as seen in <> (from \"Dropout: A Simple Way to Prevent Neural Networks from Overfitting\" by Nitish Srivastava et al.).\n","\n","\"A\n","\n","Hinton used a nice metaphor when he explained, in an interview, the inspiration for dropout:\n","\n","> : I went to my bank. The tellers kept changing and I asked one of them why. He said he didn’t know but they got moved around a lot. I figured it must be because it would require cooperation between employees to successfully defraud the bank. This made me realize that randomly removing a different subset of neurons on each example would prevent conspiracies and thus reduce overfitting.\n","\n","In the same interview, he also explained that neuroscience provided additional inspiration:\n","\n","> : We don't really know why neurons spike. One theory is that they want to be noisy so as to regularize, because we have many more parameters than we have data points. The idea of dropout is that if you have noisy activations, you can afford to use a much bigger model."]},{"cell_type":"markdown","metadata":{"id":"sv5H6Ogb2L3r"},"source":["This explains the idea behind why dropout helps to generalize: first it helps the neurons to cooperate better together, then it makes the activations more noisy, thus making the model more robust."]},{"cell_type":"markdown","metadata":{"id":"SvtpW8T62L3r"},"source":["We can see, however, that if we were to just zero those activations without doing anything else, our model would have problems training: if we go from the sum of five activations (that are all positive numbers since we apply a ReLU) to just two, this won't have the same scale. Therefore, if we apply dropout with a probability `p`, we rescale all activations by dividing them by `1-p` (on average `p` will be zeroed, so it leaves `1-p`), as shown in <>.\n","\n","\"A\n","\n","This is a full implementation of the dropout layer in PyTorch (although PyTorch's native layer is actually written in C, not Python):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cmqZGx9a2L3s"},"outputs":[],"source":["class Dropout(Module):\n"," def __init__(self, p): self.p = p\n"," def forward(self, x):\n"," if not self.training: return x\n"," mask = x.new(*x.shape).bernoulli_(1-p)\n"," return x * mask.div_(1-p)"]},{"cell_type":"markdown","metadata":{"id":"Bum2i4MU2L3s"},"source":["The `bernoulli_` method is creating a tensor of random zeros (with probability `p`) and ones (with probability `1-p`), which is then multiplied with our input before dividing by `1-p`. Note the use of the `training` attribute, which is available in any PyTorch `nn.Module`, and tells us if we are doing training or inference.\n","\n","> note: Do Your Own Experiments: In previous chapters of the book we'd be adding a code example for `bernoulli_` here, so you can see exactly how it works. But now that you know enough to do this yourself, we're going to be doing fewer and fewer examples for you, and instead expecting you to do your own experiments to see how things work. In this case, you'll see in the end-of-chapter questionnaire that we're asking you to experiment with `bernoulli_`—but don't wait for us to ask you to experiment to develop your understanding of the code we're studying; go ahead and do it anyway!\n","\n","Using dropout before passing the output of our LSTM to the final layer will help reduce overfitting. Dropout is also used in many other models, including the default CNN head used in `fastai.vision`, and is available in `fastai.tabular` by passing the `ps` parameter (where each \"p\" is passed to each added `Dropout` layer), as we'll see in <>."]},{"cell_type":"markdown","metadata":{"id":"Upz74eDO2L3s"},"source":["Dropout has different behavior in training and validation mode, which we specified using the `training` attribute in `Dropout`. Calling the `train` method on a `Module` sets `training` to `True` (both for the module you call the method on and for every module it recursively contains), and `eval` sets it to `False`. This is done automatically when calling the methods of `Learner`, but if you are not using that class, remember to switch from one to the other as needed."]},{"cell_type":"markdown","metadata":{"id":"ghT8zW3y2L3t"},"source":["### Activation Regularization and Temporal Activation Regularization"]},{"cell_type":"markdown","metadata":{"id":"WRNUdXok2L3t"},"source":["*Activation regularization* (AR) and *temporal activation regularization* (TAR) are two regularization methods very similar to weight decay, discussed in <>. When applying weight decay, we add a small penalty to the loss that aims at making the weights as small as possible. For activation regularization, it's the final activations produced by the LSTM that we will try to make as small as possible, instead of the weights.\n","\n","To regularize the final activations, we have to store those somewhere, then add the means of the squares of them to the loss (along with a multiplier `alpha`, which is just like `wd` for weight decay):\n","\n","``` python\n","loss += alpha * activations.pow(2).mean()\n","```"]},{"cell_type":"markdown","metadata":{"id":"BU0ydw7p2L3t"},"source":["Temporal activation regularization is linked to the fact we are predicting tokens in a sentence. That means it's likely that the outputs of our LSTMs should somewhat make sense when we read them in order. TAR is there to encourage that behavior by adding a penalty to the loss to make the difference between two consecutive activations as small as possible: our activations tensor has a shape `bs x sl x n_hid`, and we read consecutive activations on the sequence length axis (the dimension in the middle). With this, TAR can be expressed as:\n","\n","``` python\n","loss += beta * (activations[:,1:] - activations[:,:-1]).pow(2).mean()\n","```\n","\n","`alpha` and `beta` are then two hyperparameters to tune. To make this work, we need our model with dropout to return three things: the proper output, the activations of the LSTM pre-dropout, and the activations of the LSTM post-dropout. AR is often applied on the dropped-out activations (to not penalize the activations we turned into zeros afterward) while TAR is applied on the non-dropped-out activations (because those zeros create big differences between two consecutive time steps). There is then a callback called `RNNRegularizer` that will apply this regularization for us."]},{"cell_type":"markdown","metadata":{"id":"Zc6tsm4F2L3u"},"source":["### Training a Weight-Tied Regularized LSTM"]},{"cell_type":"markdown","metadata":{"id":"-wG1MPaj2L3u"},"source":["We can combine dropout (applied before we go into our output layer) with AR and TAR to train our previous LSTM. We just need to return three things instead of one: the normal output of our LSTM, the dropped-out activations, and the activations from our LSTMs. The last two will be picked up by the callback `RNNRegularization` for the contributions it has to make to the loss.\n","\n","Another useful trick we can add from [the AWD LSTM paper](https://arxiv.org/abs/1708.02182) is *weight tying*. In a language model, the input embeddings represent a mapping from English words to activations, and the output hidden layer represents a mapping from activations to English words. We might expect, intuitively, that these mappings could be the same. We can represent this in PyTorch by assigning the same weight matrix to each of these layers:\n","\n"," self.h_o.weight = self.i_h.weight\n","\n","In `LMModel7`, we include these final tweaks:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ook2xVUS2L3u"},"outputs":[],"source":["class LMModel7(Module):\n"," def __init__(self, vocab_sz, n_hidden, n_layers, p):\n"," self.i_h = nn.Embedding(vocab_sz, n_hidden)\n"," self.rnn = nn.LSTM(n_hidden, n_hidden, n_layers, batch_first=True)\n"," self.drop = nn.Dropout(p)\n"," self.h_o = nn.Linear(n_hidden, vocab_sz)\n"," self.h_o.weight = self.i_h.weight\n"," self.h = [torch.zeros(n_layers, bs, n_hidden) for _ in range(2)]\n","\n"," def forward(self, x):\n"," raw,h = self.rnn(self.i_h(x), self.h)\n"," out = self.drop(raw)\n"," self.h = [h_.detach() for h_ in h]\n"," return self.h_o(out),raw,out\n","\n"," def reset(self):\n"," for h in self.h: h.zero_()"]},{"cell_type":"markdown","metadata":{"id":"y4VEDN4Y2L3v"},"source":["We can create a regularized `Learner` using the `RNNRegularizer` callback:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"l7eiACaW2L3v"},"outputs":[],"source":["learn = Learner(dls, LMModel7(len(vocab), 64, 2, 0.5),\n"," loss_func=CrossEntropyLossFlat(), metrics=accuracy,\n"," cbs=[ModelResetter, RNNRegularizer(alpha=2, beta=1)])"]},{"cell_type":"markdown","metadata":{"id":"mm67N45k2L3v"},"source":["A `TextLearner` automatically adds those two callbacks for us (with those values for `alpha` and `beta` as defaults), so we can simplify the preceding line to:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Xhid-ruo2L3v"},"outputs":[],"source":["learn = TextLearner(dls, LMModel7(len(vocab), 64, 2, 0.4),\n"," loss_func=CrossEntropyLossFlat(), metrics=accuracy)"]},{"cell_type":"markdown","metadata":{"id":"aupINYk72L3w"},"source":["We can then train the model, and add additional regularization by increasing the weight decay to `0.1`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"G7CmJIVj2L3w","outputId":"06eb8322-080b-43ea-b809-94d178ae9d8e"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.6938852.0134840.46663400:02
11.6855491.1873100.62931300:02
20.9733070.7913980.74560500:02
30.5558230.6404120.79410800:02
40.3518020.5572470.83610000:02
50.2449860.5949770.80729200:02
60.1922310.5116900.84676100:02
70.1624560.5203700.85807300:02
80.1426640.5259180.84228500:02
90.1284930.4950290.85807300:02
100.1175890.4642360.86718800:02
110.1098080.4665500.86930300:02
120.1042160.4551510.87182600:02
130.1002710.4526590.87361700:02
140.0981210.4583720.86938500:02
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(15, 1e-2, wd=0.1)"]},{"cell_type":"markdown","metadata":{"id":"mFLYUYdG2L3w"},"source":["Now this is far better than our previous model!"]},{"cell_type":"markdown","metadata":{"id":"FATqv_Ee2L3x"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"cV0Oh3eq2L3x"},"source":["You have now seen everything that is inside the AWD-LSTM architecture we used in text classification in <>. It uses dropout in a lot more places:\n","\n","- Embedding dropout (inside the embedding layer, drops some random lines of embeddings)\n","- Input dropout (applied after the embedding layer)\n","- Weight dropout (applied to the weights of the LSTM at each training step)\n","- Hidden dropout (applied to the hidden state between two layers)\n","\n","This makes it even more regularized. Since fine-tuning those five dropout values (including the dropout before the output layer) is complicated, we have determined good defaults and allow the magnitude of dropout to be tuned overall with the `drop_mult` parameter you saw in that chapter (which is multiplied by each dropout).\n","\n","Another architecture that is very powerful, especially in \"sequence-to-sequence\" problems (that is, problems where the dependent variable is itself a variable-length sequence, such as language translation), is the Transformers architecture. You can find it in a bonus chapter on the [book's website](https://book.fast.ai/)."]},{"cell_type":"markdown","metadata":{"id":"isH-_q7S2L3x"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"IDV6JePG2L3y"},"source":["1. If the dataset for your project is so big and complicated that working with it takes a significant amount of time, what should you do?\n","1. Why do we concatenate the documents in our dataset before creating a language model?\n","1. To use a standard fully connected network to predict the fourth word given the previous three words, what two tweaks do we need to make to our model?\n","1. How can we share a weight matrix across multiple layers in PyTorch?\n","1. Write a module that predicts the third word given the previous two words of a sentence, without peeking.\n","1. What is a recurrent neural network?\n","1. What is \"hidden state\"?\n","1. What is the equivalent of hidden state in ` LMModel1`?\n","1. To maintain the state in an RNN, why is it important to pass the text to the model in order?\n","1. What is an \"unrolled\" representation of an RNN?\n","1. Why can maintaining the hidden state in an RNN lead to memory and performance problems? How do we fix this problem?\n","1. What is \"BPTT\"?\n","1. Write code to print out the first few batches of the validation set, including converting the token IDs back into English strings, as we showed for batches of IMDb data in <>.\n","1. What does the `ModelResetter` callback do? Why do we need it?\n","1. What are the downsides of predicting just one output word for each three input words?\n","1. Why do we need a custom loss function for `LMModel4`?\n","1. Why is the training of `LMModel4` unstable?\n","1. In the unrolled representation, we can see that a recurrent neural network actually has many layers. So why do we need to stack RNNs to get better results?\n","1. Draw a representation of a stacked (multilayer) RNN.\n","1. Why should we get better results in an RNN if we call `detach` less often? Why might this not happen in practice with a simple RNN?\n","1. Why can a deep network result in very large or very small activations? Why does this matter?\n","1. In a computer's floating-point representation of numbers, which numbers are the most precise?\n","1. Why do vanishing gradients prevent training?\n","1. Why does it help to have two hidden states in the LSTM architecture? What is the purpose of each one?\n","1. What are these two states called in an LSTM?\n","1. What is tanh, and how is it related to sigmoid?\n","1. What is the purpose of this code in `LSTMCell`: `h = torch.cat([h, input], dim=1)`\n","1. What does `chunk` do in PyTorch?\n","1. Study the refactored version of `LSTMCell` carefully to ensure you understand how and why it does the same thing as the non-refactored version.\n","1. Why can we use a higher learning rate for `LMModel6`?\n","1. What are the three regularization techniques used in an AWD-LSTM model?\n","1. What is \"dropout\"?\n","1. Why do we scale the acitvations with dropout? Is this applied during training, inference, or both?\n","1. What is the purpose of this line from `Dropout`: `if not self.training: return x`\n","1. Experiment with `bernoulli_` to understand how it works.\n","1. How do you set your model in training mode in PyTorch? In evaluation mode?\n","1. Write the equation for activation regularization (in math or code, as you prefer). How is it different from weight decay?\n","1. Write the equation for temporal activation regularization (in math or code, as you prefer). Why wouldn't we use this for computer vision problems?\n","1. What is \"weight tying\" in a language model?"]},{"cell_type":"markdown","metadata":{"id":"zKWvUSNy2L3y"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"W_qIQy4w2L3y"},"source":["1. In ` LMModel2`, why can `forward` start with `h=0`? Why don't we need to say `h=torch.zeros(...)`?\n","1. Write the code for an LSTM from scratch (you may refer to <>).\n","1. Search the internet for the GRU architecture and implement it from scratch, and try training a model. See if you can get results similar to those we saw in this chapter. Compare your results to the results of PyTorch's built in `GRU` module.\n","1. Take a look at the source code for AWD-LSTM in fastai, and try to map each of the lines of code to the concepts shown in this chapter."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PMnKL_G22L3z"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/12_nlp_dive.ipynb","timestamp":1712447912090}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/13_convolutions.ipynb b/notebooks/oleg/Education/fastai/13_convolutions.ipynb new file mode 100644 index 0000000..96db8d0 --- /dev/null +++ b/notebooks/oleg/Education/fastai/13_convolutions.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"fzQBksUF2N1M"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"D35X51cZ2N1R"},"outputs":[],"source":["#hide\n","from fastai.vision.all import *\n","from fastbook import *\n","\n","matplotlib.rc('image', cmap='Greys')"]},{"cell_type":"raw","metadata":{"id":"P_YI_ndz2N1T"},"source":["[[chapter_convolutions]]"]},{"cell_type":"markdown","metadata":{"id":"Uwuu26iz2N1U"},"source":["# Convolutional Neural Networks"]},{"cell_type":"markdown","metadata":{"id":"wZ_IuDeD2N1W"},"source":["In <> we learned how to create a neural network recognizing images. We were able to achieve a bit over 98% accuracy at distinguishing 3s from 7s—but we also saw that fastai's built-in classes were able to get close to 100%. Let's start trying to close the gap.\n","\n","In this chapter, we will begin by digging into what convolutions are and building a CNN from scratch. We will then study a range of techniques to improve training stability and learn all the tweaks the library usually applies for us to get great results."]},{"cell_type":"markdown","metadata":{"id":"cBwqdIZN2N1X"},"source":["## The Magic of Convolutions"]},{"cell_type":"markdown","metadata":{"id":"mhy3j7Fs2N1Y"},"source":["One of the most powerful tools that machine learning practitioners have at their disposal is *feature engineering*. A *feature* is a transformation of the data which is designed to make it easier to model. For instance, the `add_datepart` function that we used for our tabular dataset preprocessing in <> added date features to the Bulldozers dataset. What kinds of features might we be able to create from images?"]},{"cell_type":"markdown","metadata":{"id":"lMr21NGZ2N1Z"},"source":["> jargon: Feature engineering: Creating new transformations of the input data in order to make it easier to model."]},{"cell_type":"markdown","metadata":{"id":"K5eYuntp2N1a"},"source":["In the context of an image, a feature is a visually distinctive attribute. For example, the number 7 is characterized by a horizontal edge near the top of the digit, and a top-right to bottom-left diagonal edge underneath that. On the other hand, the number 3 is characterized by a diagonal edge in one direction at the top left and bottom right of the digit, the opposite diagonal at the bottom left and top right, horizontal edges at the middle, top, and bottom, and so forth. So what if we could extract information about where the edges occur in each image, and then use that information as our features, instead of raw pixels?\n","\n","It turns out that finding the edges in an image is a very common task in computer vision, and is surprisingly straightforward. To do it, we use something called a *convolution*. A convolution requires nothing more than multiplication, and addition—two operations that are responsible for the vast majority of work that we will see in every single deep learning model in this book!\n","\n","A convolution applies a *kernel* across an image. A kernel is a little matrix, such as the 3×3 matrix in the top right of <>."]},{"cell_type":"markdown","metadata":{"id":"JqIQ9Z6O2N1b"},"source":["\"Applying"]},{"cell_type":"markdown","metadata":{"id":"fYTcKv1a2N1b"},"source":["The 7×7 grid to the left is the *image* we're going to apply the kernel to. The convolution operation multiplies each element of the kernel by each element of a 3×3 block of the image. The results of these multiplications are then added together. The diagram in <> shows an example of applying a kernel to a single location in the image, the 3×3 block around cell 18.\n","\n","Let's do this with code. First, we create a little 3×3 matrix like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AbWrj2012N1c"},"outputs":[],"source":["top_edge = tensor([[-1,-1,-1],\n"," [ 0, 0, 0],\n"," [ 1, 1, 1]]).float()"]},{"cell_type":"markdown","metadata":{"id":"aukCHCPu2N1c"},"source":["We're going to call this our kernel (because that's what fancy computer vision researchers call these). And we'll need an image, of course:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"REmQzbHt2N1d"},"outputs":[],"source":["path = untar_data(URLs.MNIST_SAMPLE)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_0Vw1rvr2N1d"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vnPQ7rlI2N1e","outputId":"40270a84-2860-4a85-abdf-49b2a787bdd4"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAADyElEQVR4nO2aTSg1URjHf1eIS9gQETYWPhOiFLGwkiTJzs7OXpFsWMlKsqEoRT4WFmKhlI+wsWWluCtECIVh3oX3mNd5hzvGneum51d3MzPOee7//p3zPM8Zn2maCBZRPx1ApCGCaIggGiKIhgiiER3k/m/egnx2F8UhGiKIhgiiIYJoiCAaIoiGCKIhgmiIIBrBMlVbHh8fAVhfXwcgPj4egO3tbQCur68BGBkZAaClpQWArKysD8fMzMwEoLm5GYDs7Gw3oX0bcYiGL0jHzPbm0NAQAN3d3SEPKCrq9TeqqKgAoLOzE4DW1lYAUlJSQjWV1DJOcOWQgoICAA4PD23/KC0tDYCamppPJ8/Pzwfg4OCAs7MzADY3N22f3d/fB6C0tPTTMb+AOMQJrnaZra0tAE5OToD/d4TY2FgAEhMTHY/58PAAQGFhIQBHR0fv7s/PzwMhdYgt4hANV2uIF2xsbABQV1f37npcXBzwus4A5OTkhGpKWUMcYZrmZx9PMQzDNAzD7O3tNf1+v+n3+02fz/fuEwgEzEAg4MX0tt9ZHKLhapf5Lip/mZiYAGB4ePjtXkxMDACLi4sApKenhzU2cYhGWB1yfHwMQHFxMQDPz8//PaNqGVUZ+3y2m4FniEM0wuqQ2dlZwN4ZCpWxlpWVAVBfXw9Ae3s7AE1NTQBkZGR4EmNYEzOVjvf39wOwtrYGwOnpqeMx1L/U4OAgAF1dXQAkJCR8NRxJzJzwo6m7ajXe3NxweXkJwMzMDGA1oYLE99aeXFhYAL60CItDnBAxxZ2OKvYGBgYAa735iMnJSQA6OjqcTiEOccKPpO5OqK2tBWB1dRWwmsxLS0u2z6v2wHcRh2hErEMUKu+oqqoCPnZIUVFRaOYLySi/CE8dcnt7C8D09DQAJSUlAFRXVzse4+XlBbCOIXSio1+/QmVlpes4/0UcouGJQ5QzGhoaANjb2wPg/v7e8Rh3d3cAjI2NAVYmqlNeXg5AXl6eu2A1xCEanjhEHYIrZyguLi4A66hTtQsBnp6eABgfHwegp6cHsOodhcqsk5OTAZiamgpp7OIQDU9qmZWVFQAaGxtt76tD8NTU1Ldr5+fnwMeH3YqkpCQAdnZ2AOvA3AVSyzjBE4dcXV0B0NfXB8Do6KibYQArz1Adsra2NgByc3Ndj/kXcYgTPO2HGIYBwO7uLgDLy8uAVXfMzc29PatewlGo9Uc54bMX9lwiDnFCxHbMwoA4xAkiiIYIoiGCaIggGsGq3fC+ixABiEM0RBANEURDBNEQQTREEI0/H3jyQ4wdtXsAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["im3 = Image.open(path/'train'/'3'/'12.png')\n","show_image(im3);"]},{"cell_type":"markdown","metadata":{"id":"4h9W2a-D2N1g"},"source":["Now we're going to take the top 3×3-pixel square of our image, and multiply each of those values by each item in our kernel. Then we'll add them up, like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"if8ZLd7p2N1g","outputId":"a5a3fbab-7bc0-4b4a-c1aa-63bf74175a40"},"outputs":[{"data":{"text/plain":["tensor([[-0., -0., -0.],\n"," [0., 0., 0.],\n"," [0., 0., 0.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im3_t = tensor(im3)\n","im3_t[0:3,0:3] * top_edge"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uXMyWUe52N1g","outputId":"b400031b-6789-49f2-f188-92fd01cc73dc"},"outputs":[{"data":{"text/plain":["tensor(0.)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(im3_t[0:3,0:3] * top_edge).sum()"]},{"cell_type":"markdown","metadata":{"id":"aeMqlx7q2N1h"},"source":["Not very interesting so far—all the pixels in the top-left corner are white. But let's pick a couple of more interesting spots:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jA4-t8kR2N1h","outputId":"77151210-9ec2-4521-ecba-a587759cdf5e"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
000000000000000000000
100000000000000000000
200000000000000000000
300000000000000000000
400000000000000000000
5000129991142155246182155155155155131520000
6000138254254254254254254254254254254254252210122330
7000220254254254235189189189189150189205254254254750
80003574353525000000132242542541530
90000000000000090254254247530
"],"text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_output\n","df = pd.DataFrame(im3_t[:10,:20])\n","df.style.set_properties(**{'font-size':'6pt'}).background_gradient('Greys')"]},{"cell_type":"markdown","metadata":{"id":"4P7n-1Lz2N1i"},"source":["\"Top"]},{"cell_type":"markdown","metadata":{"id":"IVZWK7xV2N1i"},"source":["There's a top edge at cell 5,8. Let's repeat our calculation there:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pH1UXMta2N1j","outputId":"a995e28b-0881-4b6d-b583-c748841198da"},"outputs":[{"data":{"text/plain":["tensor(762.)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(im3_t[4:7,6:9] * top_edge).sum()"]},{"cell_type":"markdown","metadata":{"id":"dDPNF8SU2N1j"},"source":["There's a right edge at cell 8,18. What does that give us?:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3AW18fhE2N1k","outputId":"af192050-93bd-4df0-d261-955a74168652"},"outputs":[{"data":{"text/plain":["tensor(-29.)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(im3_t[7:10,17:20] * top_edge).sum()"]},{"cell_type":"markdown","metadata":{"id":"cQ4vndyt2N1k"},"source":["As you can see, this little calculation is returning a high number where the 3×3-pixel square represents a top edge (i.e., where there are low values at the top of the square, and high values immediately underneath). That's because the `-1` values in our kernel have little impact in that case, but the `1` values have a lot.\n","\n","Let's look a tiny bit at the math. The filter will take any window of size 3×3 in our images, and if we name the pixel values like this:\n","\n","$$\\begin{matrix} a1 & a2 & a3 \\\\ a4 & a5 & a6 \\\\ a7 & a8 & a9 \\end{matrix}$$\n","\n","it will return $-a1-a2-a3+a7+a8+a9$. If we are in a part of the image where $a1$, $a2$, and $a3$ add up to the same as $a7$, $a8$, and $a9$, then the terms will cancel each other out and we will get 0. However, if $a7$ is greater than $a1$, $a8$ is greater than $a2$, and $a9$ is greater than $a3$, we will get a bigger number as a result. So this filter detects horizontal edges—more precisely, edges where we go from bright parts of the image at the top to darker parts at the bottom.\n","\n","Changing our filter to have the row of `1`s at the top and the `-1`s at the bottom would detect horizontal edges that go from dark to light. Putting the `1`s and `-1`s in columns versus rows would give us filters that detect vertical edges. Each set of weights will produce a different kind of outcome.\n","\n","Let's create a function to do this for one location, and check it matches our result from before:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rf__LZiR2N1k"},"outputs":[],"source":["def apply_kernel(row, col, kernel):\n"," return (im3_t[row-1:row+2,col-1:col+2] * kernel).sum()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YUuTjYpD2N1l","outputId":"e09dabbb-dc7b-4caa-bbda-d5828b603099"},"outputs":[{"data":{"text/plain":["tensor(762.)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["apply_kernel(5,7,top_edge)"]},{"cell_type":"markdown","metadata":{"id":"7xeNFOsR2N1l"},"source":["But note that we can't apply it to the corner (e.g., location 0,0), since there isn't a complete 3×3 square there."]},{"cell_type":"markdown","metadata":{"id":"1VZUdVdz2N1l"},"source":["### Mapping a Convolution Kernel"]},{"cell_type":"markdown","metadata":{"id":"FTlMCPRT2N1m"},"source":["We can map `apply_kernel()` across the coordinate grid. That is, we'll be taking our 3×3 kernel, and applying it to each 3×3 section of our image. For instance, <> shows the positions a 3×3 kernel can be applied to in the first row of a 5×5 image."]},{"cell_type":"markdown","metadata":{"id":"JoLGuE8E2N1m"},"source":["\"Applying"]},{"cell_type":"markdown","metadata":{"id":"tiIoh9wf2N1m"},"source":["To get a grid of coordinates we can use a *nested list comprehension*, like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"W6UTMIGW2N1m","outputId":"36f4fb2a-7fff-4639-f0c6-a839c400e439"},"outputs":[{"data":{"text/plain":["[[(1, 1), (1, 2), (1, 3), (1, 4)],\n"," [(2, 1), (2, 2), (2, 3), (2, 4)],\n"," [(3, 1), (3, 2), (3, 3), (3, 4)],\n"," [(4, 1), (4, 2), (4, 3), (4, 4)]]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["[[(i,j) for j in range(1,5)] for i in range(1,5)]"]},{"cell_type":"markdown","metadata":{"id":"tGwr0sBD2N1n"},"source":["> note: Nested List Comprehensions: Nested list comprehensions are used a lot in Python, so if you haven't seen them before, take a few minutes to make sure you understand what's happening here, and experiment with writing your own nested list comprehensions."]},{"cell_type":"markdown","metadata":{"id":"3olkTk0G2N1n"},"source":["Here's the result of applying our kernel over a coordinate grid:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"C2CyVQjg2N1n","outputId":"7a817e0c-7346-425c-c6bc-554ce3fe33a5"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAE1UlEQVR4nO2c104cSxRFF9iYYHIGk0EkiSQsXuA3+Ak+iI/hAT8ihEBgRI4i2ORsgkn3wdpT0weu1YN75KurWi893dNd01TvPnXOrhIpz8/PeBypf/sG/mv4DjH4DjH4DjH4DjG8/92Xw8PD/9shaGhoKOW1414hBt8hBt8hBt8hBt8hht+OMuLp6QmAk5MTAM7OzgDY39+PnfPjxw8AVlZWALi9vQ20UVJSAsCHDx8Cx9PS0gAoKyuLHfv06RMA5eXlAGRmZoa5zUjwCjGEUoiUMDs7C8DY2BgABwcHoX9ofX099LkZGRkAVFRUANDb2wtAU1MT4NRk1RYFXiEG3yGGUK/M1dUV4CQqKXd1dcXOKSgoAKClpQWAwsJCALKysgA4PT0FIDU1+AwUfBWMAaanpwFYXV0FYGpqKvD7+fn5gf0o8QoxhFJIf38/ALW1tQBUV1cDkJ2d7Rp6/6upd+/eBbZWERZZmEdHR7FjCwsLAIyMjACwu7sLuGB7c3MDQE5OTpjbTwivEEMohZSWlgJQWVkJuCRLKgCXvN3f3wNwd3cHwMPDQ6AtfS8UQ+IVos9VVVUA1NXVBa6RqmxbUeAVYgilEI0Ah4eHAKSnp784R6n7z58/AacQ7Qs93Z2dHcDFi/jzpIzBwcHAvtjY2ABgc3MzzO0nhFeIIZRC9LTji7lEUS4jZUxOTgbabG5ujp2r/EaxQ/mGYouUmgy8QgyhFPInXF9fAzA3NwfAxMRE4HhfXx8AHR0dsWuklr29PcDFHRWIujYZeIUYkq6Q8/NzwOUjNTU1gDOB6uvrAVf7AIyOjgJuNPn27Rvgyv6GhobAvjLYKPAKMSRdIaqMW1tbAZfdpqT8mie6uLgAgnmIMtDj42MAvn79GjhXmbKMo87OTsCpLv53EsUrxJB0hagylkKkGJnLUoOePrjqViNPd3c34DLmmZkZwI1Yqod6enpibTQ2Nr7pfr1CDL5DDEl/ZWQdyqGXpVhUVBTYjzebNATLbtDQrGFYr4YKw+/fvwPuVQPIzc0FXAAOi1eIIekKUVGnQLi4uAg4ZeTl5QFQXFwcu0blvlT08eNHwD112ZJqQwVjPNZ2CItXiCHpCrHIStBWMSbe7FGs0NCpaQchZUg5GtJfI9F1uF4hhsgVoiJOxo+KO01TqCBT7HgNpexabfBvKP2Pjz9CprfaCotXiCEyhUgZy8vLgLMINSK0t7cD4SaXHh8fAVf2yzpUuq91I7ISXmvzrSaSV4ghMoUoS9ze3gbcdKMKNE2DyszRKCPiDWzZjePj44BTwOfPnwFnEKlNrTBS3IC3G9FeIYbIFKL6Q3WGtlLMly9fAJifnwderhu7vLyMfZZ6tMRC0xIyn2UMKYZIGYo5tr1E8AoxRKaQtrY24GVWKWUo+5QRZCe9NHIADAwMAC7+yCLUGjPFDilJ1e7W1tYf/x1eIQbfIYbIXhnJVyW7jBkVXprJl7xlGOm618p/tWHXlGmlgdpSoH5rII3HK8QQmUIULPXkZeZo9ZG2SuETQWm4htW1tTXAGUMyoaLAK8QQeQxZWloCnFI0L6MkS2ayCjXFhXjLT7FA1oFihewAxZBk4BViiNwgssZMogbN38YrxJDi/xlCEK8Qg+8Qg+8Qg+8Qg+8Qg+8Qwz/aP/Y2oVu6fAAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["rng = range(1,27)\n","top_edge3 = tensor([[apply_kernel(i,j,top_edge) for j in rng] for i in rng])\n","\n","show_image(top_edge3);"]},{"cell_type":"markdown","metadata":{"id":"UXIs6uks2N1o"},"source":["Looking good! Our top edges are black, and bottom edges are white (since they are the *opposite* of top edges). Now that our image contains negative numbers too, `matplotlib` has automatically changed our colors so that white is the smallest number in the image, black the highest, and zeros appear as gray.\n","\n","We can try the same thing for left edges:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pcwW9PXr2N1u","outputId":"c23a7499-5405-46ed-c6fb-e158316fc737"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAEa0lEQVR4nO2cyUosSxCGv9brPM8TDqgLZ1EXIgouRHwZH8dXEcGFS9GFKCoqqOCEA87zrGdx+Dur8nhaqy37Xi75baqpLLOTyD8jIiOrjby/v+MwJP3bA/iv4Qxi4Qxi4Qxi4Qxi8U+sxrGxsf9tCBodHY18dN8pxMIZxMIZxMIZxMIZxCJmlLF5eXkB4PT0FICKiopo2/n5OQBZWVkAnJycANDS0gLA7e0tAI+Pjx/2nZaWFv2cn58PwP39PQBXV1dBhvktnEIsAilkY2MDMDPmVUiYRCK/U4Tc3FzAqE73pUYpKEycQiycQSwCLZmpqSkA2tra/vpMSkoKANnZ2TH7yszMBOD4+BiApCQzN5eXlwAUFRX5/kYOen19HYDt7e0vj/2rOIVYBFLIw8MDYGY/PT092paXlweY8KnZVfj9jLu7u+jnyclJAEZGRgAoLS319amyp1NIAgikkM7OTgBqampCH8jh4WH08+zsLAADAwMAHB0dAZCTkwPAxcVF6N8vnEIsAimkr68PMGv4I56engC4vr6O2dfNzQ0Ae3t7fzyvREz09vYCcHZ2BjiFJJRAClHuILyRQby9vQF/38RplpV2y3coTQcYGhoCoLu7GzDRRSn72tpakGEHwinEIpBCvoOyz7m5OQCam5t97eXl5dHPlZWVADQ2NgKQkZEBwPT0tK+vn8ApxCJhClHpQOtf+yGpwFtK0DZf7OzsACYzLisrA4wP+yyiBcEpxCJhClHuoKv8gh25wOQ5UoYUoAgmBdXV1QFGKbu7u9E+lA8FxSnEImEK0W54cHAQMDOo+ok3+1UUGR8fB0xEkqpsH6O+S0pKovdmZmbiGqdTiIUziEXClozCq9Lvr6Bt/+vrK2CWhq4Kw4WFhYBJ6AAaGhoA2NzcDDROpxCLhClEp3G6qhyp4nKskoLaFhYWAOjo6PC165yovb09es8pJCQSphAbb4HaRkVlu5QwPz8PGJUVFBQApqQg1QEUFxfHNS6nEIsfU4hmVQdRTU1NgCkUHxwcfNqHSgJSivxBV1eX7zklal7VxVsicAqxCF0hUoYigtZ7f38/ACsrK4H7kppUSlQeIqQ6XQEWFxcDjx2cQv4gdIUsLy8DsL+/DxiF1NbWAmZLr/xD/kFX7zPPz8++Z5VnVFdXA5CcnAyYvMT7vki8x5xOIRahK0SzK18xPDwMmNnWu2ba9stPqB1MQUhRQ1Gkp6cHMNt8RRv5Dn03mNwkKE4hFqErRL5AvkNHllKMVwmfkZqaChifUV9fD5i3IXXkKd8Rb2Tx4hRi4QxiEfqS0TskCpVK3ScmJgBobW0FTLKl4o73bFfVdF3lePWMHKYKR6urq77738EpxCJ0hVRVVQGmqOPdkoPZdGl2hcIw+FPwj5BTXVpa8vUZBk4hFqErRGcnKuF99S3EWCiUb21tAT/7YwCnEIsfKxApyqgcKHQO6z1lA5PAedHPUBKJU4hFxP0zBD9OIRbOIBbOIBbOIBbOIBbOIBa/AEQyr63rTKk/AAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["left_edge = tensor([[-1,1,0],\n"," [-1,1,0],\n"," [-1,1,0]]).float()\n","\n","left_edge3 = tensor([[apply_kernel(i,j,left_edge) for j in rng] for i in rng])\n","\n","show_image(left_edge3);"]},{"cell_type":"markdown","metadata":{"id":"EMffax6V2N1u"},"source":["As we mentioned before, a convolution is the operation of applying such a kernel over a grid in this way. In the paper [\"A Guide to Convolution Arithmetic for Deep Learning\"](https://arxiv.org/abs/1603.07285) there are many great diagrams showing how image kernels can be applied. Here's an example from the paper showing (at the bottom) a light blue 4×4 image, with a dark blue 3×3 kernel being applied, creating a 2×2 green output activation map at the top."]},{"cell_type":"markdown","metadata":{"id":"ChvRInxh2N1v"},"source":["\"Result"]},{"cell_type":"markdown","metadata":{"id":"l86Iwydi2N1v"},"source":["Look at the shape of the result. If the original image has a height of `h` and a width of `w`, how many 3×3 windows can we find? As you can see from the example, there are `h-2` by `w-2` windows, so the image we get has a result as a height of `h-2` and a width of `w-2`."]},{"cell_type":"markdown","metadata":{"id":"VUroDOfE2N1v"},"source":["We won't implement this convolution function from scratch, but use PyTorch's implementation instead (it is way faster than anything we could do in Python)."]},{"cell_type":"markdown","metadata":{"id":"p6Jv6-DT2N1w"},"source":["### Convolutions in PyTorch"]},{"cell_type":"markdown","metadata":{"id":"fzVtgPIm2N1w"},"source":["Convolution is such an important and widely used operation that PyTorch has it built in. It's called `F.conv2d` (recall that `F` is a fastai import from `torch.nn.functional`, as recommended by PyTorch). The PyTorch docs tell us that it includes these parameters:\n","\n","- input:: input tensor of shape `(minibatch, in_channels, iH, iW)`\n","- weight:: filters of shape `(out_channels, in_channels, kH, kW)`\n","\n","Here `iH,iW` is the height and width of the image (i.e., `28,28`), and `kH,kW` is the height and width of our kernel (`3,3`). But apparently PyTorch is expecting rank-4 tensors for both these arguments, whereas currently we only have rank-2 tensors (i.e., matrices, or arrays with two axes).\n","\n","The reason for these extra axes is that PyTorch has a few tricks up its sleeve. The first trick is that PyTorch can apply a convolution to multiple images at the same time. That means we can call it on every item in a batch at once!\n","\n","The second trick is that PyTorch can apply multiple kernels at the same time. So let's create the diagonal-edge kernels too, and then stack all four of our edge kernels into a single tensor:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RDhLntd52N1w","outputId":"20914960-ea33-460b-c50c-8cf7f71f2b02"},"outputs":[{"data":{"text/plain":["torch.Size([4, 3, 3])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["diag1_edge = tensor([[ 0,-1, 1],\n"," [-1, 1, 0],\n"," [ 1, 0, 0]]).float()\n","diag2_edge = tensor([[ 1,-1, 0],\n"," [ 0, 1,-1],\n"," [ 0, 0, 1]]).float()\n","\n","edge_kernels = torch.stack([left_edge, top_edge, diag1_edge, diag2_edge])\n","edge_kernels.shape"]},{"cell_type":"markdown","metadata":{"id":"GdMe15Sq2N1x"},"source":["To test this, we'll need a `DataLoader` and a sample mini-batch. Let's use the data block API:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XvmICiZG2N1x","outputId":"e34d73b5-e8ce-4bc4-94d6-a11364a0e69c"},"outputs":[{"data":{"text/plain":["torch.Size([64, 1, 28, 28])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["mnist = DataBlock((ImageBlock(cls=PILImageBW), CategoryBlock),\n"," get_items=get_image_files,\n"," splitter=GrandparentSplitter(),\n"," get_y=parent_label)\n","\n","dls = mnist.dataloaders(path)\n","xb,yb = first(dls.valid)\n","xb.shape"]},{"cell_type":"markdown","metadata":{"id":"mnCG9tB82N1y"},"source":["By default, fastai puts data on the GPU when using data blocks. Let's move it to the CPU for our examples:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TkMBDmzL2N1y"},"outputs":[],"source":["xb,yb = to_cpu(xb),to_cpu(yb)"]},{"cell_type":"markdown","metadata":{"id":"N9Qcty3p2N1y"},"source":["One batch contains 64 images, each of 1 channel, with 28×28 pixels. `F.conv2d` can handle multichannel (i.e., color) images too. A *channel* is a single basic color in an image—for regular full-color images there are three channels, red, green, and blue. PyTorch represents an image as a rank-3 tensor, with dimensions `[channels, rows, columns]`.\n","\n","We'll see how to handle more than one channel later in this chapter. Kernels passed to `F.conv2d` need to be rank-4 tensors: `[channels_in, features_out, rows, columns]`. `edge_kernels` is currently missing one of these. We need to tell PyTorch that the number of input channels in the kernel is one, which we can do by inserting an axis of size one (this is known as a *unit axis*) in the first location, where the PyTorch docs show `in_channels` is expected. To insert a unit axis into a tensor, we use the `unsqueeze` method:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"poAIe8sP2N1y","outputId":"040a44c8-864d-48e9-8df0-03f6a7fbd6a2"},"outputs":[{"data":{"text/plain":["(torch.Size([4, 3, 3]), torch.Size([4, 1, 3, 3]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["edge_kernels.shape,edge_kernels.unsqueeze(1).shape"]},{"cell_type":"markdown","metadata":{"id":"vUX-R0sn2N1z"},"source":["This is now the correct shape for `edge_kernels`. Let's pass this all to `conv2d`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CzYlU5xs2N1z"},"outputs":[],"source":["edge_kernels = edge_kernels.unsqueeze(1)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OZcI5F4g2N10","outputId":"c3aa9b30-8350-4fb0-f7bc-1f3bea0fcd4a"},"outputs":[{"data":{"text/plain":["torch.Size([64, 4, 26, 26])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["batch_features = F.conv2d(xb, edge_kernels)\n","batch_features.shape"]},{"cell_type":"markdown","metadata":{"id":"WqDfc_0Y2N10"},"source":["The output shape shows we gave 64 images in the mini-batch, 4 kernels, and 26×26 edge maps (we started with 28×28 images, but lost one pixel from each side as discussed earlier). We can see we get the same results as when we did this manually:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AAnMPuL82N10","outputId":"6e00ae93-eda3-41f0-8c46-0273a77b8a63"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAEQAAABECAYAAAA4E5OyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAADdUlEQVR4nO2cyUorQRRAT5wVFJxHVARxgDgguHbjzh9wq1s/x1/RrStXggqCExFRcZFExQEnHBeP25W+rw0x6XQ/Hvesmkp1p7x9UnXrdmPi6+sLw1ER9wD+NSwgCguIwgKisIAoqvJ9uLq6+t8uQSsrK4mgdjNEYQFRWEAUFhCFBURhAVFYQBQWEIUFRGEBUeRN3eNCilaXl5cAvL+/A9Df3w9AQ0MDACMjIwAcHx8D8Pz8XPJ3myGK2A15e3sD4Obmxmt7eXkB4PPzE4BEInAfxuDgoO/ci4uLksdjhihCM+Tu7g5wv+/q6urAfufn5wD09PQAzgKxohDk2l1dXQA0NTUVMeJgzBBFSYaIFQD7+/sATE9PAz8bUggyZ/T19QVeq66uztcvjNVFMEMUJRlye3vrHW9tbQEwOTmZ9xy5u4Lc/YmJCa9NVp7t7W0ARkdHfee0t7cDLl+5urr69dh/wgxRhLbKPDw8AC67HB4eBqC1tRVwq4nkDpIzfHx8AFBfX+9dS1acjY0NwBkic8bQ0BDgDL2/vw/rzzBDNCUZkrv+z87OAlBZWVnUtWTeANjb2wP8qxjA2NgYADU1NQCcnp4W9V35MEMUJRnS3NzsHY+PjwP+Ox2EzA/6NQzJYAHW19cBmJmZ8fWRuUSucXBwUMyw82KGKEJbZXp7ewPbr6+vCzo/lUp5x5lMBoDl5WUAOjs7AWhpaQFgc3MTcCtbmJghCguIIvYC0dPTEwA7Ozte29TUFOBS9GQyCbhCkCR/5cAMUcRuiEymMpECLC4uAi5FF1N2d3eB3xWTfosZoojNENnsyRZfSooA3d3dvraqqj/DPDo68p1bDswQRWyGnJycAC5xW1hY8D6TzdvAwAAAh4eHQHnNEMwQReSGPD4+Am7FkEJSbuovZUhZTcJ4AFUoZogickMk35Ai0NLSEgAdHR1eH9nmS9/c0kC5MUMUkRuSzWYB94qD5BptbW1eHylMr62tRTw6M+QvIjdEHipJgVpyDnk8AW4HHObjhUIxQxQWEEXkPxl5S0Cq9ILUTaHwOmw5MEMUkRtydnYGwPz8vK+9sbHRO5aNXxyYIYrIDZH3Q15fXwGora0FoKLC3RtZduPADFFEbsjc3BzgEjIhnU57x7nvrEaNGaJI2D9D8GOGKCwgCguIwgKisIAoLCCKb79WEcYbcUyrAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["show_image(batch_features[0,0]);"]},{"cell_type":"markdown","metadata":{"id":"cPfx2EUk2N11"},"source":["The most important trick that PyTorch has up its sleeve is that it can use the GPU to do all this work in parallel—that is, applying multiple kernels, to multiple images, across multiple channels. Doing lots of work in parallel is critical to getting GPUs to work efficiently; if we did each of these operations one at a time, we'd often run hundreds of times slower (and if we used our manual convolution loop from the previous section, we'd be millions of times slower!). Therefore, to become a strong deep learning practitioner, one skill to practice is giving your GPU plenty of work to do at a time."]},{"cell_type":"markdown","metadata":{"id":"3hu-E3OV2N11"},"source":["It would be nice to not lose those two pixels on each axis. The way we do that is to add *padding*, which is simply additional pixels added around the outside of our image. Most commonly, pixels of zeros are added."]},{"cell_type":"markdown","metadata":{"id":"vecbI0a_2N11"},"source":["### Strides and Padding"]},{"cell_type":"markdown","metadata":{"id":"vyLTG43w2N12"},"source":["With appropriate padding, we can ensure that the output activation map is the same size as the original image, which can make things a lot simpler when we construct our architectures. <> shows how adding padding allows us to apply the kernels in the image corners."]},{"cell_type":"markdown","metadata":{"id":"R2NcKjwy2N12"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"hbSJWSVu2N14"},"source":["With a 5×5 input, 4×4 kernel, and 2 pixels of padding, we end up with a 6×6 activation map, as we can see in <>."]},{"cell_type":"markdown","metadata":{"id":"SAjEBPP02N14"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"JXk1V_No2N14"},"source":["If we add a kernel of size `ks` by `ks` (with `ks` an odd number), the necessary padding on each side to keep the same shape is `ks//2`. An even number for `ks` would require a different amount of padding on the top/bottom and left/right, but in practice we almost never use an even filter size.\n","\n","So far, when we have applied the kernel to the grid, we have moved it one pixel over at a time. But we can jump further; for instance, we could move over two pixels after each kernel application, as in <>. This is known as a *stride-2* convolution. The most common kernel size in practice is 3×3, and the most common padding is 1. As you'll see, stride-2 convolutions are useful for decreasing the size of our outputs, and stride-1 convolutions are useful for adding layers without changing the output size."]},{"cell_type":"markdown","metadata":{"id":"aWziaXfD2N15"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"cQKCC_MT2N15"},"source":["In an image of size `h` by `w`, using a padding of 1 and a stride of 2 will give us a result of size `(h+1)//2` by `(w+1)//2`. The general formula for each dimension is `(n + 2*pad - ks)//stride + 1`, where `pad` is the padding, `ks`, the size of our kernel, and `stride` is the stride."]},{"cell_type":"markdown","metadata":{"id":"oybzkdv82N15"},"source":["Let's now take a look at how the pixel values of the result of our convolutions are computed."]},{"cell_type":"markdown","metadata":{"id":"Gm0nw1eE2N15"},"source":["### Understanding the Convolution Equations"]},{"cell_type":"markdown","metadata":{"id":"AjxhvvuS2N16"},"source":["To explain the math behind convolutions, fast.ai student Matt Kleinsmith came up with the very clever idea of showing [CNNs from different viewpoints](https://medium.com/impactai/cnns-from-different-viewpoints-fab7f52d159c). In fact, it's so clever, and so helpful, we're going to show it here too!\n","\n","Here's our 3×3 pixel image, with each pixel labeled with a letter:"]},{"cell_type":"markdown","metadata":{"id":"yfVZDz2P2N16"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"jxbHIpbC2N16"},"source":["And here's our kernel, with each weight labeled with a Greek letter:"]},{"cell_type":"markdown","metadata":{"id":"_-7ROgl72N17"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"STXsuvHD2N17"},"source":["Since the filter fits in the image four times, we have four results:"]},{"cell_type":"markdown","metadata":{"id":"Oi2DUjWs2N17"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"LGEgaOhg2N17"},"source":["<> shows how we applied the kernel to each section of the image to yield each result."]},{"cell_type":"markdown","metadata":{"id":"H265il-Q2N18"},"source":["\"Applying"]},{"cell_type":"markdown","metadata":{"id":"jMYm0umP2N18"},"source":["The equation view is in <>."]},{"cell_type":"markdown","metadata":{"id":"ln62lXq02N18"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"XGK9L3jr2N18"},"source":["Notice that the bias term, *b*, is the same for each section of the image. You can consider the bias as part of the filter, just like the weights (α, β, γ, δ) are part of the filter."]},{"cell_type":"markdown","metadata":{"id":"CMfNmqUJ2N19"},"source":["Here's an interesting insight—a convolution can be represented as a special kind of matrix multiplication, as illustrated in <>. The weight matrix is just like the ones from traditional neural networks. However, this weight matrix has two special properties:\n","\n","1. The zeros shown in gray are untrainable. This means that they’ll stay zero throughout the optimization process.\n","1. Some of the weights are equal, and while they are trainable (i.e., changeable), they must remain equal. These are called *shared weights*.\n","\n","The zeros correspond to the pixels that the filter can't touch. Each row of the weight matrix corresponds to one application of the filter."]},{"cell_type":"markdown","metadata":{"id":"QR6RV7TX2N19"},"source":["\"Convolution"]},{"cell_type":"markdown","metadata":{"id":"J6E53DTW2N19"},"source":["Now that we understand what a convolution is, let's use them to build a neural net."]},{"cell_type":"markdown","metadata":{"id":"DyV7hqX42N19"},"source":["## Our First Convolutional Neural Network"]},{"cell_type":"markdown","metadata":{"id":"FI6m0Jmc2N1-"},"source":["There is no reason to believe that some particular edge filters are the most useful kernels for image recognition. Furthermore, we've seen that in later layers convolutional kernels become complex transformations of features from lower levels, but we don't have a good idea of how to manually construct these.\n","\n","Instead, it would be best to learn the values of the kernels. We already know how to do this—SGD! In effect, the model will learn the features that are useful for classification.\n","\n","When we use convolutions instead of (or in addition to) regular linear layers we create a *convolutional neural network* (CNN)."]},{"cell_type":"markdown","metadata":{"id":"NiczWF1D2N1-"},"source":["### Creating the CNN"]},{"cell_type":"markdown","metadata":{"id":"0TAsfiED2N1-"},"source":["Let's go back to the basic neural network we had in <>. It was defined like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yI2yEJ1j2N1-"},"outputs":[],"source":["simple_net = nn.Sequential(\n"," nn.Linear(28*28,30),\n"," nn.ReLU(),\n"," nn.Linear(30,1)\n",")"]},{"cell_type":"markdown","metadata":{"id":"NOxbOtqD2N1_"},"source":["We can view a model's definition:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"s2UEdJN42N1_","outputId":"c1c1b272-2705-422e-d78e-6f7e62e81170"},"outputs":[{"data":{"text/plain":["Sequential(\n"," (0): Linear(in_features=784, out_features=30, bias=True)\n"," (1): ReLU()\n"," (2): Linear(in_features=30, out_features=1, bias=True)\n",")"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["simple_net"]},{"cell_type":"markdown","metadata":{"id":"T9p1zqs22N2A"},"source":["We now want to create a similar architecture to this linear model, but using convolutional layers instead of linear. `nn.Conv2d` is the module equivalent of `F.conv2d`. It's more convenient than `F.conv2d` when creating an architecture, because it creates the weight matrix for us automatically when we instantiate it.\n","\n","Here's a possible architecture:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IYiwt2en2N2A"},"outputs":[],"source":["broken_cnn = sequential(\n"," nn.Conv2d(1,30, kernel_size=3, padding=1),\n"," nn.ReLU(),\n"," nn.Conv2d(30,1, kernel_size=3, padding=1)\n",")"]},{"cell_type":"markdown","metadata":{"id":"OhyA0Cvb2N2A"},"source":["One thing to note here is that we didn't need to specify 28×28 as the input size. That's because a linear layer needs a weight in the weight matrix for every pixel, so it needs to know how many pixels there are, but a convolution is applied over each pixel automatically. The weights only depend on the number of input and output channels and the kernel size, as we saw in the previous section.\n","\n","Think about what the output shape is going to be, then let's try it and see:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0mcZh3uP2N2A","outputId":"c749e530-034c-486b-f054-1c63a450d681"},"outputs":[{"data":{"text/plain":["torch.Size([64, 1, 28, 28])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["broken_cnn(xb).shape"]},{"cell_type":"markdown","metadata":{"id":"S2BXFZYP2N2B"},"source":["This is not something we can use to do classification, since we need a single output activation per image, not a 28×28 map of activations. One way to deal with this is to use enough stride-2 convolutions such that the final layer is size 1. That is, after one stride-2 convolution the size will be 14×14, after two it will be 7×7, then 4×4, 2×2, and finally size 1.\n","\n","Let's try that now. First, we'll define a function with the basic parameters we'll use in each convolution:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uNYDsvXa2N2B"},"outputs":[],"source":["def conv(ni, nf, ks=3, act=True):\n"," res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)\n"," if act: res = nn.Sequential(res, nn.ReLU())\n"," return res"]},{"cell_type":"markdown","metadata":{"id":"nKx9rYHe2N2B"},"source":["> important: Refactoring: Refactoring parts of your neural networks like this makes it much less likely you'll get errors due to inconsistencies in your architectures, and makes it more obvious to the reader which parts of your layers are actually changing."]},{"cell_type":"markdown","metadata":{"id":"njChGwLm2N2C"},"source":["When we use a stride-2 convolution, we often increase the number of features at the same time. This is because we're decreasing the number of activations in the activation map by a factor of 4; we don't want to decrease the capacity of a layer by too much at a time."]},{"cell_type":"markdown","metadata":{"id":"4eElqqwk2N2C"},"source":["> jargon: channels and features: These two terms are largely used interchangeably, and refer to the size of the second axis of a weight matrix, which is, the number of activations per grid cell after a convolution. _Features_ is never used to refer to the input data, but _channels_ can refer to either the input data (generally channels are colors) or activations inside the network."]},{"cell_type":"markdown","metadata":{"id":"mVKqJ2wf2N2C"},"source":["Here is how we can build a simple CNN:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OJxUvHtm2N2C"},"outputs":[],"source":["simple_cnn = sequential(\n"," conv(1 ,4), #14x14\n"," conv(4 ,8), #7x7\n"," conv(8 ,16), #4x4\n"," conv(16,32), #2x2\n"," conv(32,2, act=False), #1x1\n"," Flatten(),\n",")"]},{"cell_type":"markdown","metadata":{"id":"cffIzzy-2N2D"},"source":["> j: I like to add comments like the ones here after each convolution to show how large the activation map will be after each layer. These comments assume that the input size is 28*28"]},{"cell_type":"markdown","metadata":{"id":"F30cypMA2N2D"},"source":["Now the network outputs two activations, which map to the two possible levels in our labels:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OXGpkt2r2N2D","outputId":"4f04436e-9f03-4d80-b765-b1feab43ebdd"},"outputs":[{"data":{"text/plain":["torch.Size([64, 2])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["simple_cnn(xb).shape"]},{"cell_type":"markdown","metadata":{"id":"bowZQDBZ2N2E"},"source":["We can now create our `Learner`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wQKTV-JT2N2E"},"outputs":[],"source":["learn = Learner(dls, simple_cnn, loss_func=F.cross_entropy, metrics=accuracy)"]},{"cell_type":"markdown","metadata":{"id":"YPyVsjGi2N2E"},"source":["To see exactly what's going on in the model, we can use `summary`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kHpu2Vqb2N2F","outputId":"a57ed25c-67b4-4b0c-f445-8d7e5e3ff1cf"},"outputs":[{"data":{"text/plain":["Sequential (Input shape: ['64 x 1 x 28 x 28'])\n","================================================================\n","Layer (type) Output Shape Param # Trainable \n","================================================================\n","Conv2d 64 x 4 x 14 x 14 40 True \n","________________________________________________________________\n","ReLU 64 x 4 x 14 x 14 0 False \n","________________________________________________________________\n","Conv2d 64 x 8 x 7 x 7 296 True \n","________________________________________________________________\n","ReLU 64 x 8 x 7 x 7 0 False \n","________________________________________________________________\n","Conv2d 64 x 16 x 4 x 4 1,168 True \n","________________________________________________________________\n","ReLU 64 x 16 x 4 x 4 0 False \n","________________________________________________________________\n","Conv2d 64 x 32 x 2 x 2 4,640 True \n","________________________________________________________________\n","ReLU 64 x 32 x 2 x 2 0 False \n","________________________________________________________________\n","Conv2d 64 x 2 x 1 x 1 578 True \n","________________________________________________________________\n","Flatten 64 x 2 0 False \n","________________________________________________________________\n","\n","Total params: 6,722\n","Total trainable params: 6,722\n","Total non-trainable params: 0\n","\n","Optimizer used: \n","Loss function: \n","\n","Callbacks:\n"," - TrainEvalCallback\n"," - Recorder\n"," - ProgressCallback"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["learn.summary()"]},{"cell_type":"markdown","metadata":{"id":"yAGycbPz2N2F"},"source":["Note that the output of the final `Conv2d` layer is `64x2x1x1`. We need to remove those extra `1x1` axes; that's what `Flatten` does. It's basically the same as PyTorch's `squeeze` method, but as a module.\n","\n","Let's see if this trains! Since this is a deeper network than we've built from scratch before, we'll use a lower learning rate and more epochs:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"p_9ojolE2N2F","outputId":"5046b6d4-ab7c-40c0-ec41-41a7e337f81d"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.0726840.0451100.99018600:05
10.0225800.0307750.99018600:05
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(2, 0.01)"]},{"cell_type":"markdown","metadata":{"id":"etBy2zhq2N2F"},"source":["Success! It's getting closer to the `resnet18` result we had, although it's not quite there yet, and it's taking more epochs, and we're needing to use a lower learning rate. We still have a few more tricks to learn, but we're getting closer and closer to being able to create a modern CNN from scratch."]},{"cell_type":"markdown","metadata":{"id":"vkEgt1Ch2N2G"},"source":["### Understanding Convolution Arithmetic"]},{"cell_type":"markdown","metadata":{"id":"gbWbjLwZ2N2G"},"source":["We can see from the summary that we have an input of size `64x1x28x28`. The axes are `batch,channel,height,width`. This is often represented as `NCHW` (where `N` refers to batch size). Tensorflow, on the other hand, uses `NHWC` axis order. The first layer is:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mbpDG9LC2N2G","outputId":"6cc61d19-8cc5-438b-dd05-593239509bd3"},"outputs":[{"data":{"text/plain":["Sequential(\n"," (0): Conv2d(1, 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n"," (1): ReLU()\n",")"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = learn.model[0]\n","m"]},{"cell_type":"markdown","metadata":{"id":"cK4GpTZ02N2G"},"source":["So we have 1 input channel, 4 output channels, and a 3×3 kernel. Let's check the weights of the first convolution:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Roh6gxJG2N2H","outputId":"0bb57274-be5c-4837-f9df-8bb87cbf07b1"},"outputs":[{"data":{"text/plain":["torch.Size([4, 1, 3, 3])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m[0].weight.shape"]},{"cell_type":"markdown","metadata":{"id":"4i_1-FZK2N2H"},"source":["The summary shows we have 40 parameters, and `4*1*3*3` is 36. What are the other four parameters? Let's see what the bias contains:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"OqJhPS1Z2N2I","outputId":"7cb159ec-e139-4a77-8457-2cc281544134"},"outputs":[{"data":{"text/plain":["torch.Size([4])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m[0].bias.shape"]},{"cell_type":"markdown","metadata":{"id":"lwat7MJY2N2I"},"source":["We can now use this information to clarify our statement in the previous section: \"When we use a stride-2 convolution, we often increase the number of features because we're decreasing the number of activations in the activation map by a factor of 4; we don't want to decrease the capacity of a layer by too much at a time.\"\n","\n","There is one bias for each channel. (Sometimes channels are called *features* or *filters* when they are not input channels.) The output shape is `64x4x14x14`, and this will therefore become the input shape to the next layer. The next layer, according to `summary`, has 296 parameters. Let's ignore the batch axis to keep things simple. So for each of `14*14=196` locations we are multiplying `296-8=288` weights (ignoring the bias for simplicity), so that's `196*288=56_448` multiplications at this layer. The next layer will have `7*7*(1168-16)=56_448` multiplications.\n","\n","What happened here is that our stride-2 convolution halved the *grid size* from `14x14` to `7x7`, and we doubled the *number of filters* from 8 to 16, resulting in no overall change in the amount of computation. If we left the number of channels the same in each stride-2 layer, the amount of computation being done in the net would get less and less as it gets deeper. But we know that the deeper layers have to compute semantically rich features (such as eyes or fur), so we wouldn't expect that doing *less* computation would make sense."]},{"cell_type":"markdown","metadata":{"id":"cu7MQxyH2N2J"},"source":["Another way to think of this is based on receptive fields."]},{"cell_type":"markdown","metadata":{"id":"P4sLYPOM2N2J"},"source":["### Receptive Fields"]},{"cell_type":"markdown","metadata":{"id":"aJFNFfol2N2J"},"source":["The *receptive field* is the area of an image that is involved in the calculation of a layer. On the [book's website](https://book.fast.ai/), you'll find an Excel spreadsheet called *conv-example.xlsx* that shows the calculation of two stride-2 convolutional layers using an MNIST digit. Each layer has a single kernel. <> shows what we see if we click on one of the cells in the *conv2* section, which shows the output of the second convolutional layer, and click *trace precedents*."]},{"cell_type":"markdown","metadata":{"id":"nyLxuaZv2N2K"},"source":["\"Immediate"]},{"cell_type":"markdown","metadata":{"id":"JDbGTS9R2N2K"},"source":["Here, the cell with the green border is the cell we clicked on, and the blue highlighted cells are its *precedents*—that is, the cells used to calculate its value. These cells are the corresponding 3×3 area of cells from the input layer (on the left), and the cells from the filter (on the right). Let's now click *trace precedents* again, to see what cells are used to calculate these inputs. <> shows what happens."]},{"cell_type":"markdown","metadata":{"id":"_eefFkIY2N2K"},"source":["\"Secondary"]},{"cell_type":"markdown","metadata":{"id":"Rk0Dbztf2N2K"},"source":["In this example, we have just two convolutional layers, each of stride 2, so this is now tracing right back to the input image. We can see that a 7×7 area of cells in the input layer is used to calculate the single green cell in the Conv2 layer. This 7×7 area is the *receptive field* in the input of the green activation in Conv2. We can also see that a second filter kernel is needed now, since we have two layers.\n","\n","As you see from this example, the deeper we are in the network (specifically, the more stride-2 convs we have before a layer), the larger the receptive field for an activation in that layer. A large receptive field means that a large amount of the input image is used to calculate each activation in that layer is. We now know that in the deeper layers of the network we have semantically rich features, corresponding to larger receptive fields. Therefore, we'd expect that we'd need more weights for each of our features to handle this increasing complexity. This is another way of saying the same thing we mentioned in the previous section: when we introduce a stride-2 conv in our network, we should also increase the number of channels."]},{"cell_type":"markdown","metadata":{"id":"od40ZRia2N2L"},"source":["When writing this particular chapter, we had a lot of questions we needed answers for, to be able to explain CNNs to you as best we could. Believe it or not, we found most of the answers on Twitter. We're going to take a quick break to talk to you about that now, before we move on to color images."]},{"cell_type":"markdown","metadata":{"id":"8GFmlwGo2N2L"},"source":["### A Note About Twitter"]},{"cell_type":"markdown","metadata":{"id":"ALLWqN7q2N2L"},"source":["We are not, to say the least, big users of social networks in general. But our goal in writing this book is to help you become the best deep learning practitioner you can, and we would be remiss not to mention how important Twitter has been in our own deep learning journeys.\n","\n","You see, there's another part of Twitter, far away from Donald Trump and the Kardashians, which is the part of Twitter where deep learning researchers and practitioners talk shop every day. As we were writing this section, Jeremy wanted to double-check that what we were saying about stride-2 convolutions was accurate, so he asked on Twitter:"]},{"cell_type":"markdown","metadata":{"id":"u7GPDnaL2N2L"},"source":["\"twitter"]},{"cell_type":"markdown","metadata":{"id":"EzWl8YOF2N2M"},"source":["A few minutes later, this answer popped up:"]},{"cell_type":"markdown","metadata":{"id":"FbMA-4hd2N2M"},"source":["\"twitter"]},{"cell_type":"markdown","metadata":{"id":"57HnidVv2N2M"},"source":["Christian Szegedy is the first author of [Inception](https://arxiv.org/pdf/1409.4842.pdf), the 2014 ImageNet winner and source of many key insights used in modern neural networks. Two hours later, this appeared:"]},{"cell_type":"markdown","metadata":{"id":"VjF6zHlu2N2M"},"source":["\"twitter"]},{"cell_type":"markdown","metadata":{"id":"2diWzM9t2N2N"},"source":["Do you recognize that name? You saw it in <>, when we were talking about the Turing Award winners who established the foundations of deep learning today!\n","\n","Jeremy also asked on Twitter for help checking our description of label smoothing in <> was accurate, and got a response again from directly from Christian Szegedy (label smoothing was originally introduced in the Inception paper):"]},{"cell_type":"markdown","metadata":{"id":"5hfJOTLs2N2N"},"source":["\"twitter"]},{"cell_type":"markdown","metadata":{"id":"Ror8YUyg2N2N"},"source":["Many of the top people in deep learning today are Twitter regulars, and are very open about interacting with the wider community. One good way to get started is to look at a list of Jeremy's [recent Twitter likes](https://twitter.com/jeremyphoward/likes), or [Sylvain's](https://twitter.com/GuggerSylvain/likes). That way, you can see a list of Twitter users that we think have interesting and useful things to say.\n","\n","Twitter is the main way we both stay up to date with interesting papers, software releases, and other deep learning news. For making connections with the deep learning community, we recommend getting involved both in the [fast.ai forums](https://forums.fast.ai) and on Twitter."]},{"cell_type":"markdown","metadata":{"id":"kd-XAAu42N2N"},"source":["That said, let's get back to the meat of this chapter. Up until now, we have only shown you examples of pictures in black and white, with one value per pixel. In practice, most colored images have three values per pixel to define their color. We'll look at working with color images next."]},{"cell_type":"markdown","metadata":{"id":"gwXVIKFG2N2O"},"source":["## Color Images"]},{"cell_type":"markdown","metadata":{"id":"PLwwOMoG2N2O"},"source":["A colour picture is a rank-3 tensor:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Cshj1S2a2N2O","outputId":"b2881b45-5070-42dd-cdae-aa321912e26d"},"outputs":[{"data":{"text/plain":["torch.Size([3, 1000, 846])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im = image2tensor(Image.open(image_bear()))\n","im.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"iT-fUhDt2N2O","outputId":"0c58b49e-2d00-41de-da52-5e7f5b96fcea"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAPQAAAEeCAYAAAC9hziuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy7Sa9tW3bn9ZvlKnZ1invOLd+78V6896J2hNO2CKfTZEoIEiGlhJBoIHcovgE9vgA9Wkj0AClp0ExoICGBUjLglLEdcpQv/Kpbl+eealermNWgsW5GjwgpjIQUuqO7G3vvteZ/jvEvhhIR3tW7ele/G6X///4B7+pdvav/7+odoN/Vu/odqneAflfv6neo3gH6Xb2r36F6B+h39a5+h+odoN/Vu/odKvvrPvwv/8f/XCIDpUDjK9p6wUItON+fUZmKno75fMm96mPGuOYsnrHZrck6QrGIRDKR2rW0yiJW89Hp9/naycegEn/14P9iZluCRF5tnhNSRKNwlSelRG0altWKUgrKKESEkoUxBUbZTT8/CoPsUaIQCjH2+GqGVS3OG1b2AKfgatyQC4jJeGVwrqKxDVlnSimICKEfiCUy5B6Jkdn8kHm1wGqFyECWzEW3JpaMUzUFIZWBWjUoXVBYsokI0JoFferoho7aT99llEcVYZuuAA1ZaAykIhTlcRREMpXRtPUxXYhcp2scGW0qco4UHHM9Z1GvWNUn7LmmD1tKgbEMlFIgKo6XpxxXN1nv3/AyPGbMCS+eyjaMJTCzDUfVEu9aLsZn9GOmbZd888b3aJRmH17x8PI1Z/sLgoy01ZzT1X1C6Xl99ZRGGoJEvLEsm2P6uOdquEKAIiMhRXLM1L5i5pcs/Jx96ujKBZVyNPoQEcUwDFyXK5QovK1QSjDOogRSKiileH91g2V1QMlClxLPNi8REUQEJYVKN9P/diAiWGU5bqBtTomiuByuGGNHF/aoqNjna0RnvJmTVcEbD0VRKQPKolHsxh5rIpWrubG4g1GWddjQjR0xdRjjWFQrxnHEarg1axlyw+PdE0K/Y9msqAxYejIrhtjRy0DjFojSJCK6OAoZ0FRUqJIxVpFVYGaPEQWRgZALkjKbfo3Xmv/iP/yv1W8FaOccqkDxAspSu5qSMs45rPVUSmh0i1E9Ua7Z7S8QbZCs0CJIgaaZ4U2N1ZakMjEnkMD1/oycI8kkYhwIKWCKwRiHZI1SCldXRIkMYcAYReNn1JVnSD0GR8gDWRW0WMa8B9EkDXNbM7czKldRSmbIEW0VTdVQUkaKwlrDdthSWTeBi4RYTYgBbzxJazQKpRSpCDFqgmTCmNFWg84YNMbUOFOhNaSUkKKoXANFyDnhjMUrj9Ya7zzX/QUpJZyqwQox96AaRAt9LqSSwTpq2SBKcNZi8KRSiAJGgXiFtRarYBh7igKlFDkLKUUwsLAtmmsuxzNEDFYUxYEU4XR+By8KJWcMYSRnS+UVbbWksoUuCo+u9rx377scxcjV5gqvFR/e/JhXl89IdaYPa1bmiFk9Y2YqrGmY1we8ePMV+xwpklmtDokxYpVmjD2pdJSSMNaDNmRJUIHqFEZNR7FoQWeoaMiqQwv0ObJQgT6NdDmTiRjlEMkooylGYbImkyhFMN6AccSSSXkgpj27uEOJomiF1Q1aKTQGSkEAbTJWFzSWJAWtoSiHaIcuW5xvad2MIQ4IkThes8kdxnhQDZSeWiKtduwlU7SlKAsaXLHslWGMgTFdUldLSkk4ZfC+wmmHShplpmeQMuz0jto0FAWkkRBHSg7kUn77Di2qYEXRjQXrFW2p2eRr5m4GgLEtJhm2cc92SPRDRHRAi8VVBoxFa40Vh1KaVlucsQxj4eXVOX0Y0SjW3TVZErkEDJnKNtS6wmRLySNj6dBobPFoFI1tOB9eU1IhlpHKLpAM2ihqV6O1xXuPyZaYewoF7cFkAyJkX7janOHNDNPWkDWjypQh4VWF0opSQEShCxQU3dhRiGSVkJIRmS6pyjm8qvDOE13A54xRliFv0Vgq6zBGYbXDiGUIPaSeURdKzjjbUClLKgGFwdsaUHTB0JeBhbck3WJVggCSFbZYdISOLUPpMEVT+5ZMJJaRo/qYpat5tX9KnzqCCAZDrRzHs1PmbkVIV+zynJlpaWmoZjNO21soPWN5o+a9uuWk1mBq7swPqeuamg12ucRI4tnZyMc371NZQZG5Wd1iiDsuN+eQLPuwQyVo1AxrPX3YM5YRESGJx+hEZStSn1FKoZTgtEOU0NgWLZoyJowWxpDoXcfVuCZToYrCAMY5UgqMYY9zFZlC5SyKRMoBrTV92RPzCEmRJFObCmM03jpKhEH2iAheQ9QKJVBEYYyZJoASyTK9K8kOVRRaN4w6oVTEKkfOgcvUMyOikqKtG7RoVFGgagoah6YUQauM5IIgZAno3FDpCqxiLD2FTCRgoqMAznqiicTQQxkZfgNJ/rWAzrGQdaLICMaCShRR1KaiLwWXNBjNMHbEBLFkNBrlQLRCa9DaoyVT8kiSBqUUXnl245YkPSINXewZcsCgcH7689Z6hMxYAqkkLJYh92gBFKQSiSlQ6xaRjHUOoww5F6wYQghklSgUMBqHYxxHohpZby/wrsFajSShpExRCasNfRnRxb49VDCEEa3NNP7kiDOemPYoldDKk2KhbaZOnpMQcsAQJ5A5j+SC1pqQRoyqkAxJFA4NoihFKKag0BRJgEHlzKjK9Cz1knlVEXJCtEIZhfeOLAEliZwjqGlErXRNNpmlOwDZsY07jHHkcU8xkVmpkZjYqQtSHlnNTijRsaw8pzfucVC3CCNWBk6rhOnW+NURJu9oZE+6vsI7w8JsOGlqKtngc6R2c0wFvZ7z4a1P6GLP0zePaIwnlYhzjm5ULNtjdv0Go/x0OSeL0x5nPCH2VFVDo+fUVc0wdmQiqgh93LMZISeLs57a54kipRGtLZgyjepiiDmhlUGVQBctuxTYx3E6NMBYehb2ADKIShhrSSmRS4VTmpgFpRRaNFlnoiSKaEppKSVAyVhtidKQy0BWnpn1hCigB4rKOOWo3YyiIiGDFQW2QjQoDNoaVBFyHElmZCyGlAUhEEkoJUQJtMym55QHlCiSCBr32wM6yIhVGqcrWl2hdEAk048bsq3JIqiYIDm2rMlZEJVodYtVnpQLoQy4eoZSHqUUfdiyGS7ZpS2SNFkltNbUukGjptvQKIY4UNmGLl4RYsT41cS5ckSpiScVk0GDkPDWI2KYVzW1big5cZUuEFNoWWBKzVA6hthR9NQFsiTGFEllpI8dtW2myUQL82rOID1DN+KxjHECc9YJsKQSMfTMqzkhBGKJjERSjGQNxhisaEQLIopMJuiR+PaleVOQVBDR5JzxanrhYxkISlO5ChHFqr2BVY5tvKZnx5gKrvRoW6GsR+PIEsmqUFUVzlYc+QNebL8iFYu1cFTNcBhqNWOkJ/SRmVtxsvyA2fwIL5HD+ZxhuCYOa3TsUaEnXW0wQSBnrp89p8SEW1TUruZkMSO9+Jyzp+fc/9on6DsB26y420Zwc+bqW2grxJwIIbA8OmSz33H//reoKsdXDz+lqERJiSwJcYaZW2I1mKzxYvGmpQtbMJmrsaOxc0BhlaZPe4yxZAqFRCyZStdQHEopYq4ZciLEiFOeWCLKGiQKQ9jjbQUKSil463G6QiEok4ipB5mojqSBwgJra1RJGCJSpjbZ6AOsqihaU5uGPliwI754jDEoVaAIWjvI0zM3ygAK0ZpEwCiLwlB0R84FrRQocNqRVMaZSVex3lLLEmPMbw9orS2qGPq44a4/xdslzmqGMDDXNaUU+pzJhOmH++kgl1ImoYlMXVUYYyaOlEFXE/+7Wd9ma9ecHL3HUfiQF+efkuMIZqTr18zrQ1TRaOWxVpEkIKPgXIUpGqc8osFaTyHhlcfbBi8VWRJBBZyriDkxxIFoItpqGj/HRjeNU0qzDWvU2zi7iCHlnsZMD9mKQ5mR7dCRcoexDaZYBDC6QinYxzWohtbPIQnWG5RoGtWS9AgUdt2Ouq7JecTpipQDIopZvSDnjDEOracXlctIpWcs6yO8rqlsTRg7xnTFftijtSU5T9GabNTb73NYDFZbDqpDKh+5uEzUvmU5O6SmZYgDo2yhaObNER/f/za3FzdprKJgkXCFi2uEge7JA+pFQ3/+giyFrArxfKDv1gyPrzj+zseY4njw4wf4kHjdfc6i7KlWB5TtG/BHnN7+GmXcgqsY62OyFD48vcusVoy5pju9z27YEnPkYHmMpIhFM8QOq6aR1GlD2zSQNZVuOfArRCv2Y0JpO4mkJlNSwdsaaywosCYDiSQGZRykNGmQOWBtTSgZrxUKUEYzSkCJotWOkAoKQ1IJKWCMhuIIWZFzJlJAKbyeJqqIIMrhzIxRa3LIVFbQQM6AFnZpg4jgTENjWgJ7So5k4wgy4kuD1R6tOlLWOFfhlSIXYcg9femw2nNndYr+DcbUrwW0N544pKnbaI/Wlsp4lIdKO7JkRqXQrqKiRiuL6PQrkabyFapMo6DRllECOis04JNnubrNvdWH7LqXPH4ZUVro4ohzjqISog1aaypqUhEomqxlEqBUojKWWBJFMrb2VKamBIgqkkhUuiapiNJglWZVHRFD5tqc0407rHXknBARMoFGObRyBBUZU08mA1BU+JV6WnRCJ0NjZyil2McrvAErjqaaE3I/cW8FTmpi3FK0kEuiAEY5KtNMN7hRWGWx1tDqGbu0fvs9jkbPwIBIYcgduxAAPYE/GzBCpQwhO4bcoZxhaWbMneXV5jEaw6xeclTdxNkFef+UzXbk9OQ9bKxZGAvjc3JQk/AZIGyusbpw/egpq9tLXj34kjsHNSk6hjTSXW7ZnL/h6P17BBn56tMvWRjLvY895XJLs+148dOf8+E/+D7NzLO9XtPMbzA/rqYpJGXKNuCbI26tbnNlZtRmRdGJOOwYUocuFdZ7VC6UnCa6pT1eOaypGaUjksgIVluUSjS2wWoHYqmsQpQiiaKUgFWOKHFqMpqJqxtLbRqMc8RuZEgBW3nQnsoq9mnSbCQnxhxR1RYpgDNItIQc0MYiRSg5ooshC2itKUpIOZBUoOiJ/hk1jcqZQi49WgsBhbUaBAbVYdGMOVMkkPMOZRa09gCF4zy/ZOYdXnkM/W8P6Fm94np8Q+UcTjy7/RWFgPcthoYo64kTVEKlZ1QSCRJQBvrQo4pCIUw01lBURGdFl67Z2z33F99mYVp++epvppEjrKdRU7mJd4aA0nYCEoEoAckDhQqtNRQDOTHkjkWekcMIVhhLx7xZYotHbCGkgVm9xIlnKBvIgjMVFsuYB2IOKBJ7pssLEcYyUJuGMUwWjLaaStcMecT7QmXrSSF3wrxasXSnRNORdgFBJoXcCEPfQyk4nTBUBGRSV0W/VWqFSteULOQs5BxRNk0Tji5c7y8IYUBZhyJhlSVJQtDkUjHGnjEPpLFw5/QWjW653G24c/t7LNQJJ23Nzffe42J/k68e/ZiT9nh6FuOe3YunLHzg/Nkblrdusrm6xIyJ3WbP1bbw4rPX1LOWxY3bjJtL1ldrXj0+4+7LLZfXHdtrh8wqnj3d8MmdGV/9/CnPv9pgzRcsnrwhA8PRG+SLn3Ny85ReLVCuwt423FqdcKA9eQ675OjrGdYvsX7G5fVThnHPurukthXDNuKVnS7Ytw1qbpakPFKywlUVVlVowBlNyoEhbUEaBEEZsFg8Gq09bdXitJ86cclYVWFoJtUdqG1DHyfg5JwJRSMyEPpztJ6hk0aY1HFnHBrFEDtC7sllGpstjsoYVE6I9igqkor0YUQVwduKmEaEghaNdTVx3E7KfQLSgJQtymi0OMaQiFwxmP9Xx+o3A1qlAlpxY3VM44RNX9CzqRNH9kSJmJpp/JWRrg9oN/GJWTt7Oy70GKfwzqMGA9mzHnuwhYWZU7jgehjIMZDFgG5pNUhOoASrPcZ6yr5HFEgpYDMUP3mVFGZ2TooD2SpyzPimpqqmUU36/Cufcheu6WJHZWuSyhQpaGtIecSIR4sGNEoKoIklEvSIQtB6OlCx9HRhj2k1M3/CoT3mYHbC0i54td8R8h6yAVdRhmtyjljricpN3LmuUFGhtWbRLnDFE8JIpGNMW7TWpKKmW14Ko2QKila1ZJNQUogykiRhaMCAyzWL9phbs/epFjPuKsfHp/dZzVfkYYfdX3KjDPRH96mJLFykzo7PHz/gxcUlm7ML7n59RzcMbLYD56/X3P7Ecu/f+KdcXT1i6C/RVvHiyROu95knz7aUxW0Ovv4PmC1bUtzy5KuecXeAPVzy+tUFu23k8vUbnBe8eJ61meV7H3Hja+8zVzvS84coc0B1csKB6zgwkaZdkJ0ldiuMVKSYuexf0GqHU5qQe5yu0VqjjcFazxA6JIPTnoE9lUoMMbLPmlo7koqAgBYqaryqMNpMYm4cyZIhFyiJqmpQZWomKQX6MWCMIohGx8L41i2AQCahiyPrjCsODKRSUFpAhFQCrhTEVLhSIwpy1jinKNFjVZmmy3RNkoK3jtZW9KFDUkZ8TZaCRbNqV5QkJAyZX7/u/GsBvQ97rLXUtsVay2J+hHioTcXF9jVBIs62aCwl70k20tQNREFk4oTOeBq/wFFR6xolliIjzWyFxnDWPUJw+GrBkLaYohGq6aactxzYI67DmkImU7DGIEmRpJD01FFNsSg7CVVKTy9ElMKZFrieBKkwYHSFWIgUvHaoaHDekXJHCIlIoFItoElqZEhTpywi+KKRtyIKttCFPbUytNUhNkeKnBNSIJWC1ZoKxxUGlKEyNUZplLc0Zs5YeoLuqUqDVxXZZfoeshTGFKnNNJ47bUjZMMiIoieOA9karNFI0cSiMFLz3u2POZgvaNwJ7czxzeqQtlE4rmnbirwJhMtLbh0ekE2LiYH95XOef/mQm6sjNusd6eETxFcMXU9zeovzxy84+b2Wsh653vTMD46xvmF2o2EfBC9n3P/2irqdMV/e4uzvXiPmggNnePHFC7a7kfXVmjT0nN64wXrULG4bzp+/YfvqnHaxYHFLYVzP9sUlbTunet+RjypuHZ+wjwnjFbv+kkV7jCayLjvGsiPniNcVpUDJQpAeYydOHPKALhWx7KitgjTpOVaDpkckg15hUXQlUFIBBI1Q6RaskArUrqWP4yRYlUIoAkojImjlMKJR2oAWtPYYDJITJUPUGa1HohiMKAIdSlkkFbJEStYopQlFkXJEqR7yikrVFBMY0p4YPTq/tTuNp/IalMHa/NsDuqiI0zVH9YpF3dLFM6RUaBG6oce1lplt2I9b9rJnNTtm4Ze87J+w8AtMNszcAmcaKtWysIp5teRyPOO4OsBWA8+efYkwkKRQBIqNDHFK/Nw8usFMZbZdIuU82REYlFKMY0fRmVk1ZzGbQZ6M+6AjhgqTW0Le0Yce7z2H9Q3G1DOfHTNrb0Pc0w1vuN7vyLEgWnDO4pUh60IYBxBFzolCnmw0PYVqyDNEhCFlnNsRc41WDSKRmBPOVVPiSFuaqqG1MyQXYkwkSdQNpL5QyiWDqtj1PSGNlDypm5SMEMhZM8SBIXakklGi0ThEEilkTt67zT13j1sHd9H7nsPVAbYqk+AStuTtGcP2mtD1DJsNdrOmXrWIdWweP4Ri+PTRY7rrPenlC2Y3jljdep/50vDm3LL+5afc/vh7PHz+E7qxZ8eMuLlg/n5kuOiZ1Rv8NmLliNmRZ3N2ySasScrz+PELVDF473nyZs9s1nC9eYne1iyPT1DbNburNfvtRKuO792kPlqzmJ+Q2h7rCqNt+O7Hf4wTxavtGd02sO7W5Jy5Hi8wFoTCmAeUmkZRqx3OGXQ2xDKyT2tGFZmHlmIMYjRV0RRTyDmSJWK1Z5CEHrYYX5GTkGNBF7BaE3MgeyHFAZsE65ccVMeklNinDTlHxFvQ07RX64aiDVYvWK5O2bz5HO8N+7wj5ohF4dQM+9aj1nZOLBljDJWaoeoKLw3GWkKODHlDY+fUb8NLvzWgcxk5PbjDjcUNvnjyf/JgN3L74D08O0Ie8OWAse9Zj1fUi4banpBzByWjpaNyhkhkkB1GVzTVHG8qchfxUnOxfcn1MBJUQRsFeQIJaUBXjnEc2MYdQ4pvu71DqSlcUTUVjZ1xMDtEZRikZ5Qt1s0R3RBz5PL6MWMRoKAqy+HJRxzP3+ekOeHs+lN+/PgRKQVQIw0eJQalDQ5LMQkrNSFcY7UHFZHUoUyFBCHnTK93WKfIxXI9dkQKRllC3ONNw4E/YJM2KKUodgJjY2f0eUsC1v2aKJosliKTUisk+tBTJKFxk9jmZ2+VeE0lLe18RjtbkHeK73779sQBFwuk9Aybl1RVRbx+xfXjrxiv1rROKNkSy8j25Qbj5lyfXWHrhtdffkmOAxIL/cUV0QixnHNxOVJd9DTuJzx58BXNzdvc/faf0l1sSeESJR0XZ5lZa3jz8Ec0N29QVYpPf/Eae+sUOTyEIXJ2sWY2a5jPD3hzFVgs54TrLX2sODicods5i6MZqtG8eXJN8VdUY4VycFJZdJ3pekVJGbJj2R5y3g9UviGEAV/VMIISTVu1SC4UFJWevHtEY5LCOiGrYaJsISH2bbIvw5g6KjO9oxgSKRXG1OO0w+i3fDcGMg1ZFHOpsMqijWYbCqMaMFkhSsBolDI05pBP7v8+j15+hlIKUzRZMjFGvDeTRasyCosWi9aw2V9hlMZ7TygDPivaejnhCXC+Rue/R4fOCk4Ob2LZs08eYSTnkYDCVTWSM13ZE0umKRZVFFlG0JEugRRN5T1CpB8v8fUJosrkOxY4374kYajMglmreTGMiBS0MVRmzhAyXRJCLCAZpcCZiqIKM98ydyta0zCWAZFMVoZKN3h9QAhnaF1jbQJlODy9x+3VJyxthcodqhiqqqLv91jVUsho0UhRJBOY+QUSCtpqSo6U0qGtpRRBlKBE2IYt7WxJUoLSGq8qYEtImW7ccrC8hzIailBhMeKoZEZjHLPa8aZ/zZASXk8WIUUTs+ZwdozTBmTk5PgGV+fXFO2oa0tt5nx4/wcYyWgphN2eZiYURmRYUzZbRnvO8PqK7uIV56/XnD98zOLklJvv3+LVg4fc+uY36UJG9Eg7X/Lo0zfM5gdcXpwzmynUgefy7A2x31H2l6z7nuHVE97/o0uO7n5E96Li4U//Bu8WXF+95OrJQ442O3S9ZHXziPP9G1bHX4cUuQiJ6mBJfaApeUQ7zX6/5+jUMe47fu+PP2F3ecnuYs/Rt25jbGF/tgED8xsLsJaqqjlZnuLbJbH0qEooUTM2e2IOjDKgRON1hSghlEiSMqUEc8brmqw0qIjJQscOVxxGCjEExERErRBlIStEMjFHauvQ1k2BJm0xVOSSMEyAFKvw1tOFPaNYNJZWgVbCnZuf4MPA2eYxRgli8tvx3ODcZFeKCMYKVhvGNNCPIwaDMYasMrkUfKrwpqKRekrZqb8HoA+Xp9xevsew/hTjZ7g80EvCF0ftG1TR7MM1hQilMJRLct5D6QnagMBMaUKfQDKLnMAVaj8j03O+25CAu23Lospce8d1GLGmwhmHUYpKVYwloERTmGKCtas5dIe0dskQr9jn52gajuob+KphGM7pwjWSNbpt+eadP+Gbh99g6L/kl09+wf07/4jbq3u87L5ge70my4gzFbVxjGWcbDBxhLKnlCnXq5SiUS1aLInMKAO1qiexJo0kNb3omWnpijBzCxb2hHmMFJ+BYfLs0xlX444iPVZ7amPJuqAUtG6J5EJde0ISvFoQg+H20Qd8/wf/kJ9/+iMOZws+OT1lGAb6/gqvA/3FNaISbx485OjwBi+++BSs4bMfPyMPa6rjW7zZ9uw//RLsgqeffsGdb9zm2cMNy4Vl/uGHxG3h4vUZR2fnxN0bxuDZxgX7p885mFVsLiP+1QNuHArP857DWwfcvnOTqv0W//1/9Rl9OMPVF4S6ot9o/vjPvstP/+Kv+b3v3Wauhe7skl2wtOYlcezh9Abf+MEdwuYFGkvTBiSds3m2A5/QqmJ4tae5fRe7qLm1mjMfGwY5IIY9sRQaadnHS4qWKcWVwTvPSAAtSP7XCUILSuFsRWUXaBvw4kle01SKqCqc0cSciCWBkUmHsVC0oiAYpVBFUfkaTGEMa7SfobVFGzCipiQfDR745p1v8eTyCYG3ycGscGJpq0O+c/v7/PT5X6EwZAqRyeqt5y0LP6M2M8YyoFGE0NONgd7ULGlwTfPbA/qD029wtzriF7s1h2bOG3VFloDxNUZgP14S8sDKH2LzZEuFNDKicEpRGc8u7alLzSiZm9lSVKGWln18yjaucegpczs8JBXHwixp6xmioCsDY7+jCwOVrbA4rLIsqyWtqclEdnlNKjOWzRKjPV3uGeKelArHx/e4f/Jt7tXHvHj5v/DXT3+GuENunu5p1RytHK6uSGGOJqOKYIwjlUAoO4KKWDt1Vqc6+rQjSMUQdxg9KeJWVWhj8BhySuioOLG3mHlNTo8YkjCi6YfwqyCEYBmVBaYNMlM0c7ekNTOyS7TNLeKw45P7P8C7Gdfnj1kouNXc4OR4QYk7PAOSd0hxhM0rXj94wqxtefXkl5xfDZwcz1mc1Jy/qdCqoK3izdma5kgzs4mHP/mSg4+/w4//97/k9PiIu//kA/6nf37Oy+sd5ekT0CuoemKB19drKtvwsx99Rb7uSK7m9//gh/yL/+a/4+t/9DGlmfPo9TWVGYgC9z7+LrP0mkVrWF/s2BVPHhS52xJCw8mNFensc4bDTMiWJ794RFs1yC6w3vR4bTi4dQt9f0ETAnq4Ju6FgzsfshdDu13x/PpzxjgylC1KKebVCmMsu7hFVJ5EyGIRk9HaI1lw0mC9JkYBlTBG8L6mEk2SQC4dCk8OFmstrV3RuortsKGownI+pzFLduOaoDQ2hUk1N4eMJVCJR4zi0M7Z757w5eO/RgtEsVgDBs+/+4P/gIur52AKRiz5bRpTtKPVnplpCWVEm4JOhr0KDLHHKTD2EG9+LWR/Q+xk6On7NwRlqf0B83aBM/5tmF4TtUa/TexkJYShhxTJMgwpYD4AACAASURBVKLLZKZXuiaScK1n1swZwx6N4dHrZ3gzQ1mNDFu6sAMUVVVNCxKpUNJAQiiSKCKgFXXdstArxCSGvMe55dt0Wph84mFgTD1V5Xj/6Jvcrmpen/85n794xEiLMoou9oyphyg0qqaxNUU7BuK0vqgbarvE2YosBcj0MdDHLaFMQRHjLE3dUmmPLhZdLCZ7UJkuvubJ5SNeDXs6LLEIutEEiRTy27z3JO5hwKIIsaOoAGXk43sn3D76OjNXcf/mHb7xwbfJ/ciHH3xAU83IY0DGiImZ4foVV8+f0l9c8vTJQ/7ub37OYq559eoRmYoU9lgJ+ApSyGw3lzz94hUYy9c+qrn3+9/l5kd3aYeOf/uf/WNWp7e53FpG4M2+I7uWEUufHC9ebXn+9BnXZ+e8efB3vA5zri5huVxxPRjW5YDm4Ig7p5Gf//lf8ODzB1zuer77wx9ydh1o735EqGecvP8xm63i2eMzXHXMoBsuu45X52d0qdCNQr1osKqjWz9nPD/HWah9olJwsLzNYnGTg8UN5tUx1tTMmgWH9S1c5ckxTSKimra4dA5oMk4brBis8oxlZD9sGeJAloSSjNZzRDxWW6y2k6ddph2FMQzkYUTSpG+UmEhpUrVFpsxBJDH3Sw7n9/nRZ3/OJm0pJWFVRCvP4fyYuL/iwYtfTF2/GJzxWGvxVGziG15tv+Lp9Rd03R6rMwWhZIVKMMaOELvfvkOH0LHdveKyzyway1ytuMpn9CKoBLHf0qVA9IGahlISWQp9Clg34KWmRIWvPLVtmRvPeVhjjGOI4H3BSiIqRxdOMa6idQ2SwerCJnRo1TKvVlTVDKcNS3VAXc+5HF9NAQ4ZSXHNqFoY94xxYLFYcX/1Ebed5W8f/Uuu9ltad0zjBpQSQuxYl3NyiWRRaG0wohGtpk2XbLEYpEycK6tALpphKIy656A9Zu4WVMow0xUIdHlPTCMX6QprHMlMmzpKBxzTlo5zjr7fI5IxpcJ4qOuWYehQRjHGwkcff5vXz1/w7Q++yWK+xOUBW1lAIylQqUwYOkruefHZZ7SVodvvqY9XPPvsIfXxXd68PmNz9pLVrRPMsrC/7jl/fkZzdMjZi6c0N26xDop0NfKd9xZcXb/hg4+/zv4vP0cf36HzD9lc7QjaECSyTg1LMuebzMVW6J4/4Wz9hjv3brI8PeAkjvzkyYrv/aN/yOO/+j/4yV8/I+RMsXP+vT/7Y7y95N//T/4pX/7t37Jazul5g1ucsF1v2anAFw+fYgPsx4HF4Q1+7/e/yXbXsVjNuX52yXwZST1UxzdpqorTdk5z9/cZM7w+e8Tl8ABrDcu25nJjsVr/Sg3WyjGkQGULIQwkV4j5bfY+DsTUUUokFKjNCtGGIAlfCpmAqoRUIqI1nSTW28fUdkWUaR9gylZnht2A1palEY5PZvzs9Qa0RhmPUw4VR75199/ki1eP2OoeozSuaVDGoUWzj1eMcSAnoVItzrYMFIrsJ59aLSZb7u+jcisZ6MIZm7zH5D1G67c57YCkPYMkrHU4Y6dQhlGkYU9tGhBHKoJRkUa1LKsDGq9pRseoRrR1lJIIZSCoLWOZY42m8Y48JjqJoA1etWhdcNbR2jlFFfbdNSm9RqRBqMgIfRBoRpazQ06Pb7KSik+f/TlP1pcs29UUJpFEnzrGNOJLzXbYoiwYVTGrKhb2kLPtK0QLJQRKCogWyA60o50tWemKugSs7Cnas02ObDv62ONVRdssWDYrXDGsw+ZtQMYjekoEFaZACyWyMDX3Tz9GuxXDcEnr59hOOLj5AfurK5pxwNQHmNaSY4KSWJ9dIKXj8vk5h6enfPHXP2d16Pnl//2v6NBUdc/12Q5DZjecc/76HNE9sX6P5w9eMDv9gOurN3z6l3/D19836Lple3HF7mLBJ394H7V4QYh/wmc/+SmrGVy+vsLLnqiWXMbEZ8/XLBcrXvz8DX/07/wJjx8/o63n/Mf/2Q/BVaT+Pl/+9BGh3/OdH97nvZXnwc8+pcQNL7/c8tHX71I6TXNziesMm1ePaA9PmC0PcaXjww9uc/b5V9y4s+TVk5HmcMVu3HGyMsTrZ7hqwbxdsFydUPA4eY+rJ+eQ9qy7c7a7c1KYAFOMorEtaRgZBSoHykz7BtIb9iUjxRCkp7JLrPV0aSDGDNpxXXbMmVH7ZhLCNOzHN+TQsWhXTOtThaEfCGVkYRsad8TPHv4Mb2akMlI5i87Cdz74AxqluM5niGTCOCLKcLxcsh2uSSXjqKlMwFYNrWoRA5I1J7MVY1bsUmLB30MUU5K5DluSJLq0weYpkysUlBgq5dDaEnPAFI1xBYXgpMYAY+qp3bSG2Lqa1tcYO+Nq/XjijlpNuzJyQDEGZzJSBgZRdKkwk2mR4bJfc7q4Q1GZPm8REhbPWAqip6RPPdNYbbg5v4caDI92T3mx2VNUIeRAz54hdmSlKLGQm8Ksmk+WUik41ZJzoJSEUoZedqyHbhqLVUJLw9wsGMqGN+mSRnm8tCz8CpGAtXZKrI0jh9mzKztsjiSl8RRS3JOyYLUjmYxJhhASXjIf3foam91tUJnc7WidULc36K/WbM6+YnnzDjnsGXcbrCjGzQYVe55/ecbFesfzy8J6XNHonk0c+fAf/wBfHfHZpw+5eftbfP6v/oI//MNTHtxYcufugke/7NhEwz//b/83/vSPvsHB0Q0un2255zQ3qh0//L7nT/+tP+Nf/A//M+dyjZ8tyDawvzKc3HmPR6/OiWvNcnHJv/xfP+U/+k//GS9++Qv0Yobdv0LT4dqaG2TWl3t+/KMH9F2HMQ1fPnjKwdGWo/0NvMp8+tWaj/7guziduXV6l/NXZ/TrQLMoNDbQv3qJq+bkveaoP6fEM1anN5h/WKH0jNODA77lf8DnX/4IyR27fph2pTGkEtgPWxIFVxxKAk11QBoDo9PYuEc0ZJWxRhAzbWMZ/a8DRJGRgaU/Ytdv6IY1Ck9JEas8q/qIrkxnrBQ4bg3v3b7FV589phghlkhNw7JecuKP+er1FxPvjz193OCrht24Jb89F9FEYjI4pRAPSmWMdSTJaCPkUtj/Wjj/Bg7tdCbmgKYQ8zCpuSVjtKWyM6ytJwWxCLn8P6S9yZJlWXae9+3utLf13sOjz8hOVZmJqmIBBQgQCJIizWTqJ9QbaKhXgN5AE+kZZDJNJDMaZTQRxgYFkoUqVJeVbWRERuf9db/daXenwQnVjBgUxm5uft3c1157r/X/398TZYqSeiA64DEmJwhHR88gdBl+3Gq7wAZLDAKEQqocrTVCGjZtN7wxlUYIQ2tblAQZFE5Zun4DMqOPHo+mtRtkzCAqEjKM8LzafsGN29JhB7mmt2xDO7yrFEQZiGJ4EhRiQgg1jb1k2S7QIntrv+tROiE3IyAlSo+VPU3sSJIZMhmTJiW93+CDZaxK9rM9erfifPucq3aFlwaTDYdeD79dOSQhJTCsyNrqmuhuOZzl7OYpk1FKoSW0S4KC0fSAiMPkBb6TvPr66+GQO71icX3NztEeUWiS4ykNBVUPaXfG+s2nvP/eiL19xcd/9ie8+mbBo13J8Tgn95EQBWbnkOs6ZdNYRCp49dUbFi+umOcjts9/yvd/9PucPLpDqgW2ErSJ4fTinOMnd3n3R++zennG4w/e5ed/8w1fff6aetlwdVGxvPXsTwuQgu2mpyvHbN2EtZVs68B8nlLVS2QxYrI7pRA9qbVEV1Huz9AFnJ3ecLNoOH1zS7XtEHlC6xXBTCAd0ddrRGhIpGWiMo52HqJVSW5GuKCGoViEYAf5ZG4SjEnomhUKgVKC6BssHVlWUGbz4T2rFJ13KKNJkowyGTNTO0QRCAMgC50WRA95OkKEQT2mtWRq7vFmcTMoFlHsTe5QZmOOpneJtuGivqaPDY2vIAwqShUGm+bQQAVaG1Kdo4zGiThIRoOl9xaCg9D97h2667fctB29l7SuIhMMAgcp8D6QkhJ0INcpCSVK9Ky1xFtJxCElJConCjd8j9BEOm6252iVI5TCqB2ydE5jF1TtGiETCpHiHHShxoqI0TnoSNs2WN9h/BrBiM7UlHKO1glJkqCF5NvLT9k6RZqP6GOP6wZjRSIVLnpGpiCnZFFf0IkNrXVUdU/lWwDKZMS2c4SYUgiB72qkUgPnSgl2iwN0SMmShBEj1mLN2eI5IVnh+lOWXUee7rw1bgistZS5Jo8FLjp8tExVikrGyKDI0x2q1Q1FFGgLpVS43mNiRt/dsHYbxE1Hmjr6rkIExcWbl+TjCa8/fUmWrthenTMaaVoBH//Jd3j16S3GLShEpL56TV4esTMZOvvL0xdkWc67P/pTlquG/R98zOVn39B+9RV9dYa1c55f/pLZKGF3onlwMuWsnLL+7EseHyt2d8ZYe8Orr7/h/icf09y+4r/5n/5H/pc//5LxZkHVBJwM/ObpK1anF5wcDDvt2gWsg8l0xGe/eAlGcfpyw3s//AQRevaPJ2xWN9xuIIYdvvOff8zy2Zfk5EwO5kznGpIFSueEoLHbntBbZO4o04x7u3cwUtCGnrPbl4O4pnb02mKEYJakdKFj5SpUuAUxAAWIitTMmea7bOsGKSVCehKdMyknFOR0uiYomJeHHM3e52b1DGxL325RURCk5zC/w4Pje/yHb35K01d8dPePMNmU69unHJZ7PLv8CikNKuYkyiLfGnOkEARhqbo1WmhgULkphmds1daUaUaIIE2C0H+HtVXrDVWscUG8JULIQWgRAs72KO3JxARlQNEQ3Zo0BNZBEkXA2g7vPQeTfcpsl+j8APQTw7BlpCO5mSGCp3MV1jtSmSAwRNljnUEpj3irC1fKIIRBqgLhJaUohyIbHSNxPLv+lK3vSZMJIvboqHAMKCUXBh92rjO0UtyuzokOUq1QKkXGlkm2ixFqGJ64nnV7Q5IMJ/vIjMmyAhEUKE8qC0pTEJsbriSsuhW1KAnRMEoybISur5llc1x0jNQEIQRRWO7Ojzic7dM5y6ickSQZtqmJ3Ya0SNFR0dQruss3jO+ecLNYUi8Fq6sFo8MxN88d2UGkE5pn3yzRESj2SdMOd11x74MDkvJ9Lr9+yYtXlv27jrQsWV2tkD6la7fMzJZ/8E//iLi+5Dv/1Tu8enWfX/6Lv6RMA/mdGeXoPrJ6yf07hwhecvfPfsS/+9f/lttXK2Z7mocffo+ff/oZ050pn//rf87J3T3OXm1o1pYgJE6k3KiSH//lM6Kcc7m8QAvP+XlAZglCJnz83TtcfnvGyfGI158vyA4Ouff4EB09cv0tm7Xmwbv3SBN4/fUpRgX2jue0tx3TvTsIWUNSk+8fMM73kQf3hl2wUNxsz0llQSeW9L5n6yusD7gYiSJBdhXWehIzp1B7GJkiTUNbNxAlo7xgmk6Q3rCyV6QkFKT83uPv8xc/eYr1Defbc7z3OA+//90/5qcvfsym3ZLrgo9PPmLZVUS7JMqeF6tTUpNjlCTXBSJagl/TqxHEgBAKESBJJJ3oSWxL62pA4K1jnp8QY8T27d9a0H/rlTuJ9aB39Z7OWULskGgEkdbWdGyIcY3zgRC7gQumC8Rbt0pwg9fY6IyxUbhuy2Z7Q5TD/lVKTcBzY6+xfT108eioQ0MbumHl5XsANu2aGAUKjQuB3g0uG4ujVILeXbCxg8cZBkF+lhREqVDSkCiNkYZApHMbnJcIFK0PKCUY6ZKZmQxqHOdY2yUWh4th8IIbjQ4aLQWJSsh1TmIGtZVSEiULojCMsgzlPZpIqTNSYRibCZO04M5oh3cP73N/5x7zYo8ynVKOcnIFOjEoPaHbVLTNisR4ZNSwvgUCfX/D6HDOm6++ophJfvKv/5Jid8z0yQNWouT4nUNUYtisttw+/4quW7ANG3w55Xp5y87BnHxnlzfnG9pNRLoMtVpzc9bxxb/8FLN9yff+9D3Oa8HO6ICuueLHP/4b3OY1svM8eTQlxpQ6H+M5YHP5GptnXF/d8Nd/9SXLiytMqZgfH6BNTj4e0WxqGiGRusPplP2jHao0RRUZVb/l2dOv2Xt4xLqPLCtFlijqukb4QFMH3vuDd2jaFU8//4bOtuAarl+ckYiOzc05zdbTbBxSpWgcZZpyMLvDbPQIo1NsDIQwEGbawCDgwSCDGjqkTMnTnCwteDsZQkT5W6KoUZo+NnSho7cNWTJG25redjSupXMdNoYBvEDLxeYCi+MoP8K2K84Wz9hJ9vjq1S9o4hqpB4JNYEBV9W6DdR2eSIICKQkeRBB0oQUJqR54fEhPkiRUbvu7d+iLaoN86xSyvqNNIlppYhSkmcE7T20iqd/iQkCKOSZYUhkR0uFDhZIJZT5BiYLbzXMW2zdIoehC/fad4HF9oLceKSNBq7cHBxg5gBO8GEzuhckJQNttSZMSaQwTOWaxec5VfYsQBustUWbkOqdII02of0szCbHFyIxFfYGIoPWwDpqlM6yrcS5Q1YMmO0QG9Iu0yAgmpigjqfotE5mg9Za677lua4iRmRmxcYJcKTIz2OGiszyYZmTJLgaDFpKdyREySRAyYzQyJAG6piLRAV9Au4HQ3/LVpy958v4BX//mFRhL3zvmo47rl1fsTMZ89L3vs6kjq9trjvYTtmvPR3/8I/7i//hnvP/+CaYPKJlxPLPoyRG//sk3PH5vzPjkhM7nHBxovvnVKUePDjjtNZffLvE3lo/eH1NdPuf6Yottcs6evubwwRGvPv+So+M5Ly+uyCYe148IsePbraWLBhcCc9/R9ysyYbhxGpEVnF829N7xyffv4S9vODg+wqmcdz+a0V1co51nmxTIcUq17Vk8fcrDR/dROmNz/UuUFuztz7h+s8DPCnRrefHr55x89AnJLCUf74ILCN2TYTgYjTDJQ7r+BiNPubiJCNEgkLT+LaVEKEw2Z2wyMlNAbPEWQjPIjktTYkxK07UDpcQ6nBV8dPcjNusKrQxC5egAWTrhkzt/yF999i+wtidLMr736Adsuo5Marq+51W9xguJiIoizUAo1n5Na7fMzdFbpl5NiIJSjzDmLdPMDoaTGB11d06Z3BmGdb9rQW+VoJAaRaTAoIREy2QACOhIJw1C9jhpcLalTBU6DJ3FkGGDIReaeX5AnmZ829Vsu0AvOrTWSBQmGrbtZrBYCknrLInKhtG+c5jMsFNMEUKRiIwuNvjoKIqSabpH4hzPFlu2waG0IU1KRuU+Mz1htb3gan2OLgf756g8wciUul8xy3eH30tpOrekbQUxdTS+ItWGWgBa0QWJpmeiI4nKaNyapVoR7ZZcaKwXJDJlnCSkekLia2ap5KTYB1EivWWuSpLxPiYfIUSKkAEt1Vtj/UBG6ZY39L7DxcDq5YLd/YyvfvWcTAvOn5+ye7LL3/z7p3it+c3Pv2S5jfzwH3+XyTblwQffZ7u6wHeRh9//e1yfVmRHHyDTzxmdPOb69Yb5o4JVE9nds5y8+4T6zddczjzPn15QzgqqfsvpquHFZY/aXnN0d8b+/QIhSr79+pa9w4yDWUs2PmKz6Xly75Cf/vJTDo6PsFWHKCacLm85uf8Ou2lJ3tXMxhNef/Vrjh6ekLQJk4fv4IJlNxdcvjrnzuN7XC0D84OC66tvWcc5+fQBr54tKUYbpoe71BvBsr5hfjBhfRMwccTu3JCkgkR5tOqJoSW0DuEFojAU2vD+vd/jcvOQ2XzB69c/oes3ZElB3VaYDLx3jM1kIOMIASG85XULxsUuucpxoh8YdyEwVSMOpnt8e/0tiUoILmUTNtzNZ5i058oNirUH8/uUKufGfcvRpODLi+dIrZjpfaQWrPpbZNS0saVXBRZHnozpg8VbR5aUlMmYql//1pef6hQbG1bdzd9NWKJIyQz0bgDdZVoRY0+pDVXr6YNgpieDQOMtE6sNCUhBjyeKQQddmGIQkwRHdIJEDPQGGcH7jhB7xvkO+u20XKKwwuN8RVbklGaMVore9ZhoMCphanZIQsbp5lNc8KTJiCLNKPIJ0+wQEwXrONBDpUhRRjMf7zOSc86unjHODK1d0rsNy9Zj0nKgl9CD14hEUsRy8FtL8NZhRYeXlhgl1kmMhASY5nNyStI0pcj2GeucIhq0GQMgQoIxA2UlSQfJpxACfD1QKto1fb+gWizI53PGh/uszi9Bac5Pl/RWUm8F737yXX7yV/+B4MfMj4+ZlCMuQkPqWnQxoreGJx98j6fFFY9//4cszu9iN6c8+E/+mK9+8zVP3nuHzarGyMjVWaCYL0lHD9i7M8GLHarmnC8+f0EW59jXG0xS48OYrJzh25Yin3N5esXOdEI2P0DrPa6vN/wX/+1/z+uLG25evOHv/9N/ysnePpsu8unf/DU6GfHDP/wh1WbN3sEh9x8+5v/9v/533vnBe0xnJcePH/Crf/UXHN77ESf3C05fLtDpESJuuL3tUEmKJMXalN1HDymNge4K11nq5S2QolKwQZJOU3T0aBwHo4LJaMrlKqVeHbHcSJpQk+sM6ywSSZYarI/IKHFheB7O8iNGyZhEFsQQsDSIKHl48Jjt8pY3V69ARxACjeTO/C6/+OZnAIyTEU/2P+C6OiU6T1VVvLx+RT4eUcgSjyV0AesrElkwGs2YqDkkAaMOqNzmre/fDwRSKcBJAgki9PhhIv27F7TRKVbmCFWBh97VGA3W9iAn7CYTBGCkICGlJZIojfcKbyDVKZkZMS528RhUOUFqhYwRFQ3bbsOmWTMr9ynNhG1dIaTBu26gORApVIGRBt95hFBsuxVZlhG7lmW85Gq7oFCRlBwdFSNdMJKKm/UFjR+Yy0VaMJ/tUciEaWLozZJlteC83tDFnCydUqhhdZCmKViBspJCj8mKfADXRY33ftipp1NKrRG+YydNeDjbY2JGBGdwwjHNdpA+YruId5HiuABtBsC8swQRiL5HuIbNxXMMnqunL+hvW745/4wHf/IH5Af7vHn9mtmjY1598Qo5KUmylL3dY7652PDdd9/n1z/7mnvf+4j57B18aDl65y5lOeLR73mSNOPBg3022/dIkoRH7z7GBYGShhAdT37wff763/4lErj/+B3uf1Tz7ptL3v/2EhT83//b/0pSSSZ7OU8+/nssn33BztGHuLyjsz2bzvD+H/8Z/+X7H/AP/vEfoXTCdt0wnReEINnbm/Gn/+RHbLctaa4H55KEtCx457tPuHp1zv13ThBZwbu/958yGhc8//JrzMGCkyfvcHt6RpIrpEiY7Y1x2zXd9iU6OJLsXVRWIEQkygKEwglPgkXYBq0kIrSMtCKO9rh3/BGN/Xe0254kN6jQUqgZicrRyqGVYOk7hIJMKELfUceeRGcYNBNT8MH9+7SrDZtmS+MautAzUjOImpt2SZ5mfLj3XXbTOV8tvubOeJ+L1Q0rV7PvRiRpSkVH5dZoDPNkzjjbGf63paONNUJJXAhDIxQZZaZpQ40LFhcGiujfifppvcP7Gqkl2piBqOE7VIRpMkWbEdZbNv0KLRWlLugsOO8wClSQ5ConUQkiBkwcVGRNbHFdx836iigglfvIaJEohAsIqZFe0oaG4G7pu0gvMqRQbxMjEpZ2Q9Ve4ok4uaX3KTOVkuuMVfOGN4tTnIRxOeZoesTJ+A6r9SVny1dcVzVnTYuLGUIGjLd0tiHVJWksESqSzDSzZJc8GpweYbKMtm2Ym4J5Mcg+MzlBdoG8jgjvKccJShYsTs+Y7hyTj0bEJEHJybAOwRHx4C3VzTXBbglW8uzTX7B+8w33P/mEWp/QbJZMDyZ89Ad/wq/+6t/w/o8+wnUVSMnh3QMe//DPOHj4BPv+J8wORgNkcDSG/gatG2TXIm5fUdU16aQkyQ6HzYHWKGMRMkMoyQ//8A8AyMcjqtWSLkbe+f4nXJxfcfrsv0PrjsdPHnD3/pjXr37A4b3H7B4fYgTsHB3Rb7ckmSK4jtm8hKiGSCCpMEbjrGVnNsJo9VsBjxA96cmEw8MxWg9y2P3ZLgDTyXeHYAYD/Yf3kFJjNLjeYq3l+s2U5voUHSui79HjXWzraWtPkmtc7ZF+gwsWnYxIxoppknN//y51/z1211fU/RqJRwqPCA0X9Q3SaKy1IDVaGSq7oa03lGZMlkgSkWA3ksWmo0x3iEKiQ8UHx4/48uI3g29aRJ4cvcu2X+EdtN2Gy+YMoSK9c7RmaIqlHg02WwU2NNjQIqXEMwyfJ9kIgfxtrFGIkeA7hBgGZpK/Q0EPMLqeLOZvIeERE1KUKghCYr2lthW9cwgTSKIHXdB2GxpnUcaQJAmSSF3dsmxvhoJ0EvuWvjAb7SOjpnEeHyLoHI+l8zVedGx6C2Tk6ZTW1VjXDbeF2A1TdN9Qx5zpJEPEwWt7Vi3oCaRkBOUZpYND6XJ1RecdlpwUh9HDtDE1BUmRsyPnRDxVtyVXI8bkjNKaRGcEldMQmOic3XyHtmrJOhCuQooE2zb0CkK/InWCJM2JYkSWGnQhMUkK0WPbCvoWFRz19YLxTknUCa3f4af/4uc4Edk/OcQ3hxzcg+neMamxtKueo/sTNrfHjHaOKOZTsjxHU5GYiJAVXbWmqW9IEs3ZF8/xzQqNZ/7wDiqfI9MJPkbK3R0CCdPpdEAWCo8c5dw5PqQYKabju6T/wz+h6nrKLCfTnkff2WE6niCMAdeTpApXzgBQskRHS4iB4CI6EWiGHDKpPDiHkBIRBhuq4S3VhTAAB3gL58t4C6BvyZUBPUx8ZaoQKrJ/7x797gGL05fk5YTxfIZrO3SuwHq0EXSbK+JbmH3sW9CR3CSczI7o0hmb1Rsaf8PZ7Uuu1l+gsiNylVK5FdNiQqJL2lDTh8CeGRF84Hj/MTHZo5hNePfkA26X5yxWL9kp9vll9zlSSu7vPKBvbnhx9ZKD0V1u6ws679id7NPWHZvtFmHA+4jVDuMzhB6uz33fU/sG7z0hllg5AAptsITYopTCgFym9wAAIABJREFURUhjSu3/dq3Y396hQwdRviUySJSQpMnQcVvfEX2LFENsiHOBOiqU9m9D3CwWR5GNsf2al7efc71dQdB0bUUfPGUxYz7aQVuJUwqlLSoovB8geIaMSELwitv+EkOC95ZlGHKKbDdA8zNZ0rYtxuRsuoqu60hNgkGzXx6RxBGL+gytSrZ+ME9M0jmN36ByM1BZ8jGT3qEtLJOMMoGZrkm0YSwKvEhR45y4dZiNIy92kSKlW13T3FwhjOH18zfs7pR4UTLCMjuaDskVoSbaLbZzBNvS3FwjRIuNgRdfnnL48BHVOtIbgSqOWGwqdkLGm2ev2Xt4zPmLC7JywumrhO/8oz8kyXLyIkP4nm65obpc4TfndNUG6z1X355STAcaSLu1fPvP/i1adTz64z+k2zhetS3Hjx4y2j9Cjg8HrrTUpKlD+o4iH3P3/i5aa4xOcc6RZgalwIi3+naGkDbEoMnHWYgdSuRI6wnKElwPEYLv0Xo0dHCjEBKC7RBRonJB8BJ8+9su5LsOlEe9JWsSJDJAWSakWUE5+wBjFEIoCIOaylo7rJvMIE8WUmC7JUYIcmE4mu2y1Bvq/ornz06p/JZVl3FSlgOuOjaM08cIJLuTx9yf/z329+5Q3Vzz0ZOPGY132NQVk7JgfXRCXX2HV2fPGWX7JELx3u53WTUrVr3lvsnYbgJRB6KPJJmhtT0qKpIkQylBJlMSldO47YAqjoaNX2M7R5YWiOhBDIEMwUuUyjFphm3+DkoxHyDYHhcbEjEMiFJp8a6isi3GjN7yuFP62NPjUDGilCKLOSDRLqXzNd+cf0vUA2K1C44+dhznJ0yTKXW4gLe5VSE4rOuHt0UcsLUej+t7JBovI9FHIoIYBcZKbL9hNDtAWclle0YhSxKlEKGlJ3BTLWlCzVTvU9uK3WLETgK3lSAbHTAzY3x3hQmBko6sKCkTiekMJQbf9iQ6R8eB3KlDw/b0gvHOCdlkghqPqKrIjtqh6yrS8ZiqMYx8hLfwB7tdYNsO31u6+pb65obl1SX7j+aY0vLO945Y3o6JQRCnH9HeXLA9X5Ksbhgf3EObkkcffkJRTlGiol8vaFcLgu356q8/pdvecPn0S5JcsO1TpO84vjcorBrtWb2umL/4Aq936NvIt7/4OcvrBR/86X/G7N4T+l5QjEqa1WC3LNNsKFrlyZOS4DuUj4RgiajBaywcMTZIqQYgv/co6YbQhQAxOJwf9vpS9ehkiC3y3XYARwhDaHtcv8I3a0wyIegM61q8j0gnkTLH+RadGGLIMElGwCG9RohICCC0Ik0MREGaKGL0RBepfSBEQSI0mYadyZSed3gnKLbVgsXoBSoOt4b97IQHu+8DUz589A6pSYFIs3OXvdmUGAPZOEPgSGRCnKbk2fvMxjNSIcikQox3eScdUzdbVn5FEAOTvrE9MoLSAh010UW8doTo6EJL7VuU1ygPHc2gFDSKDEHnOnaTiMh2iT4h5KPfvaC11Hg9iB4SURCdpe3ssF4Jjv3ZDsFZ+tYO6B+R4nEok2HEEAebZMMfJEqFJOJiP8TcpCnKKDq3YdM1SGNAvp3xhYA2hoIUByRKk0tNIjOW3fbtZ4OgHBDp7ZBOWdsNk3xKFjXO3dCGhLEq6OJ28HG3FYlLsPUGFRwPMoNzNdqHgeO1aSmUwiQlRShofUsMPaFq8IkGE4hBcntR01Zr6o1n9/5DRFky3U/gYB+jS9arCqUDwrU4JLFrqFdb6tsFiogqEiY7u0Q15vLZNdenn9FXF0Cg7wS//1+P8Yke3lBdZO/+hHT2BK0lUtkBAN81uBi4PP0GmVRQltTzJ7z66lfs37MENeVXvznlZJ5h1Jqmt/zyLy549/c/xoaUN6+vqa6uuPP4HKkUXk8Rvsc52NxsyMsRtl1BMSUUARmh9w2hq8AoknSO9xGifUtbTYjBg/KDo+wt+yoET5rnv43sFcHT9Rukj5COcNUN28sXYCOzu1OsbVBKE+oNVgRkCgJHt15DOUXGAYJoTDn4B4LDJDlRDu48ohsg/RiyosDH+FbOCamIHEwm+O4I5nucXU3JtKINW5Ap9w4eMsrnzIoCjSeESF6kEDskLcEHnOtQyRRFwV6mKeYT0kRhrWUSDO14yvn1OaZaYPwNPnQk2pAKDUR88NjYEkOKFw7vPXhH7SpSnVImGa2thwNJWeblMYUWBHKiNDhpf/eCllIyLnfYyXa5rZd4IWn8Bh97snTKOE6wxrJcr4gqYBm42FEPmmgtNCM953L1gjwtadzgVzbS0NuWVXdDTOaItKTvGpCC5m3AWqETOu+G1AqZMTFznHNY16JkwsiMWPaWPvQkRT5A6onkPsXGFcvmlmJ0QhI1NvYYOYTM7WQpfXDY+oa6E5SqJQpFSUGzlSSJGeJXgmRc7lOvFizPzvHxht3DoyEdwUBLSaJzWqsZo2lulsz2c6IK7B3sowqNbdZo62i3twRXkY1ztivH5VeX3H3nHTBLHnz3HruPRrx5tcPZ81OYz3jzsuLO+zlF9h6f/4fPiPEZ00eKg4ePsJsV9fqMfjMEDsQ+ZXXrubp4w4N3Mu69/z3+5f/575nPe8rDEXWWc/FsTb+s8f2GOJ6Q6xEhS2Ey57NPf83B62/Zee891Ml9iJF202Lrmnq9okxOyY/uoU2Bb2v69QKd5TAf/j/64ImdJRlwXMhYI7TCNhU6nw3BCMEiMIReEAX09RZl3ZBE4QyLr6/I52OK4xbvAlZEmusb8kmGMAn0a9rFmnw8xdlb6sU15d4JwQmUkdiuRxlB364H55wu0YkmyoCSAujBSbQQ6ERg9naIeE6mh6zr1ZDOkqaDJ8FopK3xtkEYTaIktqmor84w4wnN5RWzk2NkOQcvyPC41ZLgWoQ0zEvD6DhnPP1j3tyuqNZnVHZJX9+wqa9pfUUgIkMk1f9/JJNBC0GmNWUywQaPdRWJUozMPiJGIg4Xut/STX+nghZKcCc5Jrp+SIQUOU3YIqMmNwnWbWnswEPCQh0ajErAB7zoSZOc1KQ8e/MGrZIhfMtolJL0ViCUHGJvXMDKSGsrFAotFYiUEIbM6IPykEV3i+u3dG6FlBNaUQ3gN61IZMpIFVjbs3ALmn6FVJqJVoOBXToWN9fsJTlJBG23ZCHHqcBm3VKmJZ3tyHcKtsueQrTk2Zi2uSWbjEj397h6fUoRwa8q2r4jK0smx3fJsowQFUJpOgvpaEoyShGhQ5mearGkurqkXZ+xfn3B+M4OR4+niPSGxENUGkLObF6ye/QxxB6hPcvXS8rxiMlRzudfveG98pDxZEXoLlh8+5LtZoUymsmDA/KuQNYZv/zpNctv/x0HxxmrTtGdV4Ont1DEYHjzDYivv+QHP/gB69UtvU84XVwSDk8gPkXGnnw0p/aBzdkCk815+avPOVyu2DnYR8iE6vyMdPcQF1NMIgf3mhB0a4fQgnr7BiWg6zpmxx195ehVJBmN6aLC5BkmS+lWHT5ek8zHhMkh+f4xMQwACmUjWgl8uyUpSq6fvWE0krhuRXu7Rgaw1Rl6dEjXWWJckpHRtYEkSYaMbd8ioxjQ0LYb0khcRNoUHXqEykELyJIhCys0KNfTtQ6tE6qr80FhJhQxOGItIFasNx73/DWTexHrIElzutZh65psp+D662cIV3P07ofsnOyzOTzixdUl2/aW7vJnbDdr+r7HGENlI0EKbHA4V9NpgwljirTgul+R+HKImwo1Imo2djME8v2uBT1Jp9T9gJxNVYYVFVpLnBN4IlkiCcpgbEobNsQYECLFek/oGyajOYlKuGmWKF1gkgShAhu/RUpJZzuc8uRJQdNUKAFSZ4gg0FENnTxuaOz1cLUPDaAxMqcLjjLLqWw/aG5DQ0+go8OkBQrFfiZo/CCbHJmKw9yQBoUVGgkI1xOjwW07ZidHOJlycGcPIQTXp6cYIWn0mrIcc95q+qZndvIBpVQE55nOxzjXUm1vmYx3yCY52Uhg6zXCLakWV+C3+OaKV188o1t3vHj2jHyScfzkIarYwY7GqFiTqRrtatbXW65PL9k5OaKJPVmoePzufdJRwXa7pT674tnP/obgNeu2xf7VT3n88X3uPjnm4qZGzR/w7defsXe8S+M37B6O8DZnW0XSecbV8oann/+KYnbApstoN5aD+5Krmwr//CXFfs/O8Q4Xi2tOPtyl11OEkyyvF6hywu2i4e5Rgngb6asig2tJKpQQRBtZXDxlMtunW93iVEl9ecVMBerGM1UHCCQxT/DB4rYrzEhS7CiEramWC9LpMUFpbl4+5WQ8Jp8dsDx7ipxuWVzdUo4mmOAwRUCryPZqgSxnCJPhfI8xOQJL12wRSuFtQHuPbx3StLh6i55M0bFAR4tbLdFG0vlI8AqfFbg+0ly9QQaLGU2wOkc3cuCadw3e92xvKyY7PdV6ifSO+uKaFz//6ZCcmZekR5FJscfDvQNW3YzeWdbdNdb6AQLiwbkBe+VsTVRzstLQC4Z8OBXoox2y0hwokZCpv0Oc7HEyZ2Hrt6FgAlqFdwNy1lmPTRS5DBgl8U7Rx+E6UJiSGD1FMsaoGq8jXago+pz9IqFzgjYKuq7BJg5bt3i3pusb0EOGtMWhAlRNy+t+WHdFD653ZElEqsE5tajOSWVO23UIoSjUBKOaIYGj85T+gr7fErymNpHgWpLG0ix7JtMd5Djgaku1tIwOpoTOYoqMcv+YzfUt/bal9xXv/ej7LG8bZGaYHuTIYOianrScIdIpSV6itCB2LUJ0VJe3rM6eUtXD1F+VY/zWU9mS9VLSf7tk907B6zdb7t+/y2c//gIVerTosa5hvarQWc5kd8rObkqWRogdIYvE8ZzbyxXbMEYVOT/56wtofsOjD9/ntpiy//gf8uqrb/j8V59y59gg2or9k0PKMufiBp6+WnOybUh2D9H5iDdnpxTjkiAtbrEm2vsE23Hx5dc8/vBdzp9+zXhSEO01O4/vYNsKlQhiVVG3Fflsh9hWVM0FSbnL1ZtbrNWYrufOu+/RViVueUNS7tFXt1gbScuSatmQqJJxaYi2pbu6hGZLbzJC9Cxen7H7+EOa0JDsHeB7y2R3SpaO2Jy9IJ8XVKtIu6zJip1BiRcsfbXEo2luT8mmM0hG9K0gBoFfrTAC+utLXJbQ1BvqxZoklaSFICZHJCajsg1tZalXFfnBiKP7U26vrlg3HdM0IE1ERsXFZ68Qumaz2PKLf/UzRuWM+f6UvlmhlylGCw6KY2blGBcfU3enrHlJWy0QpiC85ZmVuiRJJ4QosKGnMAUxRPq+pY8t2iuKbESm/vYOrf78z//8P/rFn3zxF3+eJxNguLpW7S2969FSIpQkkS0yJvggETpgfUcqxgOqSEfuzB8xNoFXN2dIoZiWc26aisZ29KHFA3mREzrLulkTVYKPDiccwjOkBuKpbUeZFkzMfMhXdg5kYJSO6WKFj5HEDEyzcaaZaUWea3Z0wR6avIe9rKBUY6ROiKuOVA3Szc35DUJn9AFMmdO3lq6qSJKIsBVBOMrxDmYyYbQzITGK1cWGcVni+g5JTz4ZYxIN0dKtVsT+Gm8XVGc1cXvLxekVN1eXTO/OMbsjPvmH/4CY73G72PLo/Yfku3vc+fhD1taw8+gJvSy4OLultxGpDF5oEqMwJmF5eknXB0bHM3rbDlG+NCyutnz96XPm8xlJLqk2G8Z37uKLXb5+vuDiqmakNa8vr9nZv8+vP31Gv7zk+MEOQaX4rgLt+fDdRzg8TatZ3S6YzRWbTQcy0m9WjMc57XKNjC0+Cm7OLtFJBxjWr68gjVydb7n/yXdYPH1OORHYfsvV82vykcA2gbbtqJe3jOYJUTicTVjfnHN5esPNoiIxghAlXdMy3h+zur5mfXmGj5ZUStZVg4gglcT5lsnuHiSR2NXcvH5JNprSdDWi6xFiCGyXiSbiaTaWrq2GNadWvPrqBXpkWJ7f4NY35NMR3lnW51d0XjC+9w4mlSwWS3SMRClZPP2KKAP5bMSvfvwbUgKvnr3i9XXFyQcP6NY3pATqVYPCYIoChGS92aJjglSWs+1rRBw+ExJG5ZQ0KXCuR2iBJqdqV0QCYz0hMwWpyTAm46MHv/8//8dq9m8Vhq77jnV3S2vXbPqGdV/hYo/1DGoWldJGT+sbUoaAcpECJpKokkl6xMZ6MjPCqLdrKSJeOIRSpDIhBIfzLV3o3yb5aUpT0vmeECJ9iKS5Zjqao4IY3kZS4mwYwAZhKGQRIlFB6xsyIjMZSYOluarIXEZSK9RmTdo0w9ArKpptRTrep/OQTUeUownaCPCB1aLl6ZennL5a4klpVsP7XhrNaDai8R0ORZBTpCwIQHAt1fJbLj/7gq/+8ucs6wX/6v/5N6RGMN27y9ULi+4itLdM84rH7+4Qu47Qrxhlju/84C7z/ZSH7+3x5Pe+ywd/9I+wYjqgk5WiqmqCDmQ7CYuXz7C3V1y+WnL95oJ2s6Y8OuLWOWxoSUaS8YHj+O4udx8/It095LNnl+w8OOLl+Tk3SJ6tFD//yc+oVwuUUlwurjh9eUa32jI5KkhKw82rC5JCIUUktA2221Ktr9heX6KVI53k9KstvWvJ9k+olo6Dk0OCXVPeecD6Ysvt+RWT/UM2ywaTj4eg9taxOV+yuVyAblHJGL0zI47HJEWJThKSNKWv1yQ6MBnPuD2/ZbtqMNmIPkiKyZTNzQadpbimo1qvSZLJEJiYaxZnZ7TbFSqJ9M2SplqTTRLqusNkU9aVY7JfEpoNQlpu3lxi63O2r7/g1z/7BfnujLwEW1eMp3M2yw1ZCdZrhJTcXC4Z37vL89NbLq+3vPvBA6TacnV2Q9U33N5c0tcNCIuUEpMmQ7okEqKiDxUueJwf/PXBOYQerJuSt/G0BKIUKDWwxeuw+d079I8//+d/jpJUzYbOd7joAYXRmoPRMSEGus7T0ZHKgtZ3KKMwwrA3O+TB7AlN3VD5LUYqNvWWqANVs0UzhF3nJsfaSBCWXCucEJgY6WOPDpEQIw8Pn3CkHvHy9ucs+zVBRrRKKM2YztZ4V2N0RpBDzOhMJxShJ+kUugsYk+PbFmEDzabDNVukMgQM6WyX3Tt38V1Ft7ql2tyS5DnOWm4XS+4+fhdHpJhmIDsSkyCR9E2PSYfDJM0liobm6iXr8xe8+vWXiLLk4tUZ2WzEizcXPPnOYya7MyZ3d2m2HikzknyHV199hsKSKEt7eYsJFbaKaCmZnxQcvbMDMkclI4K33Lz8mq//5jesby4IpUBqgSkzqq6nripc1XB79pRRWlAvGvqbN0zGBlxguV6jjGFb9yRKsLWOrjOMTKRZnyJlyc2qw9kKvz1jc+vp+wYpe7q6JlhHu6mpVpZi/5DF6RlaO17+5hk61ZgsoZwXdFXP5mrN+LCgbiXNpmFZ3ZKNp5jZ+P8j7U2abLvOM71nrd3vs09/sm9u3ha496IjCBAEVSw1lkqlCllhheioskZuJjVyeODwmL/AEw8cDg/dhZsoNRWyqRIFUSIlgCQaEsAFbp+ZN/vTn7P7bi0PDuxZYUDlL8jIjLVX873v84AwUBIavQGWNSCdnmE6Fr4n6ff7ZLkmSWKSaYhhaIokx2/1UG4f0w/o7qxz+fQxQbuF1e4gDQvLgCQuaW51SJYzFsMJVTTFkjG1MCjmGYbQGIaP3+jjdtvUUpPOU/IspcxClsMrivEV4Tyjf3CHbktw+sXneKYAxyKMMmzbJ1xmBO0AXWaEVUyYVvi+plqMmFyG1MD8bA61orseYAcBWDa1kCzSjFl4SZiOkYZE2AJTaBxZ0Wquk+Yp0hCE+ZyyKNFomnaAIQ0KVZBkS965/dv/3h36axf0T778q+/nVYowJUVVYFsWQq8cPp2gg2+7FFVFqXMcxyMtIxzLJatSun6PzeY2KBCOR17mTJeX1CiW6YKySlFaIqTExESjQUPLbhIXK72JYVgYtsGGuUHbqzicX5BWEZ7l4Uhj9bgiFKPljDW/Q9/t0XHX8AwHX9UUZYFRCPJlSJUVxMuEIGhSGi2yJAEUXrdLHsbUZUVR5IwuZ0irSSVtmoMtpN/A7TRwTJe6ULT6W2jLwO8MQGpsUXLx8DMe/c17nD94wnhckmif4+czjk9C9u7ex7IMTj79kmQ+wkg0ju9huR62kdLZbDEfz1mOYky7ptleI04r3MF1hDKZno3ZWN+lyGuqMifKCr745ce8eDElywXLxRzPN6mlz2KR8/zsmGSqGZ9e4rdMCukQLyJUkWP7XahqskJTK0lUF0hpUdU1YSpZzhLWN5osljkPf/YpL33nbaLExzZMsjBDqpK4kjS3tgl6HaShWEYpjf51pidP6W9tMx9Ocdtr+O0Os6sQaTXpdDfxul0EAtM0KAuNVqu+vDfoMD5f4gcu8WhEPHxKXoMfBISzkO1bdygSMHTJ4OYW0rIwrIr5eE6xGOMGHnkUEg0vaA4a5MmUZJ7iNJs8+flD0AW12UBHM7Ql8Nf6WI5BLQqqpMS0DZAtwnBOESmePT3D6TRoN20mV1MmlxP8pkdRajobGxieRzQe4gcOV0cjNva2+PLDD1leXJEmmkJVaFWhaoEpFQJBc22A2bAx7SalKkjjECVW8kVP+zi2R0WOJfyVyqfMsKSN0ppK5asJk5TkVUauK75z53d+tSN3odLV8JtyRR2s6xVk3jAxDYdKrTzHUkuyIkXrlTXSMAy6wTZS1Ghh0m9s0W+vrxC6RUJZrpzJDjaGYSItiWk46Br6/i6mXIm90jKjqgvm2QlPJ8+oxSp1hF61cCzpYH0VHOj4AzZ9SVOPaeoY5jksEuq8oM5rlvMQv9llNFniNwyCbhOvFVBEU4o0wm91mZUOMthBBA6uXzHYaOF7Bs2GxrJqXNtgOh4hTAspFKYsSJaXWDY0NreommuM5hmLOMEbNPnmr7+EzkPaTUFnbx3b95BrfU4uImohSJKc2fE5ga3wXYs6L3n24DP8hkMjKGhv+Ozcv0FahDgNC2kKXM9kbf82g71tsrJmeD7j8599QZUvydSINJ4yj1Ou4pKnJwuSRUSYlUQVq5OEKWm0HYq8ZLDRodSwjDKiMmWRLYjnY7xBh2lc8PiTn7N2YFJqEJbF6HJKw5HU5BgqROdLWr5Jb9ejKizSdEgWp7ieZDG9wuq26R9sU5oCv2mDdpBa4TVtPM8gvlyQjE7o7nQwLZvFIiQaVYSTGUU0I0pi0nBGf3+TKMmIrsZICUW4IFlMSGcLdBozPD7l6mqCKrKvEnhnWHZG5+Aag2u3aW3sMzqdYJUp6WREOL5AVBm1KlacNyPF725DM8BtOnhScnlywjLJiOOE0dkVqs4JAsXo+IigvUlce5hei+nlnPWdLWbLEqPhkuY1w/l0BcmQBmWZUmUlZZ6hq4g8WxKVCwwhVsJHc+W+rmpBURRfYbJXQEJbWBjSotIVpaq/kj58vR/6axe0EopS1WR5Sa1Wori6LvHdBpblEecRSqycxpVWSCmotcI1PALhMFyeUMoC19CE4dnKDaQzEIpaCyzbxDJM6np1b6iUomnYKFWS5zmlyrG1S1RDKTxcywDTAdPAdzp4bkCh4Pr2N1jfeA3PGeAqjR5O0UVBOctJpzNmoyFCCZIopBlIVFkgKqi0hdIepWhyMlxy4/5Nbr2xi0lNlVXMhjPQJqo0WQynxIsltgmO5VDnGYbWoCCPMhQFO3c6vPzagL1rLjK+wLJqHCuizlP2bm6x/cartLduc/3+Pn7gUxYCYQw4OVwyvlgwnRlgr1FLF9dd8aQnT56gwwtEfIguF2STBaYj6a8NCFyF6ZkoN+CTTx6h8hJdBswrGFaK4SznybMp80XM7OqCZD6lrGKK+Zztmx0oTITjMoxjlolkGWr+/h+eUCchh5dTLi6WjB8+Q2VjdL1E+S6TOKe/tsbofMqXP/0lZ0+vGB8eYjdtJlcxSjjkVYnlNhh0WuTRlFbX4ej5FWk05vAXHxBfnDF8csRiOOTq2ZDl8UPS8Ir5IkbbTboNl2c//ZCbBxsc/uIBRTZmNJ7Rajap85jp6QWW6fLxR48R1NS6wqiWfPbDn1CkLs32JqefPmW6OKaWLnl8iXJcpsOY8dEhpoTLR4cIlRJfnuJZEoRAGR5FZpDM5+iiIgtHFPP56kOcjRgdHmMIgbJKDKfB2p0Wl6cnhGnGzp0bzEczLs6mmEYHqRXCkLQ3ryE9h0pK4lwTxzGWlgghkBJm+YQ4zxAa0jykLFc9BoRCGGAi8Y0AJSCrc5T6RwjfK60wlESaKyyqqivyKievMzx7DcucMw9nVKrEUz5Cr4L6SiiSeMSkSOj3HZbDQ46Hx0RpRO155GQ0zDYYcpX1rTMC2cTy2tQqRQgTm9XzvBYKMDF0RV6tgAmu4eM4DvNkCpak6Qg2G02mag0lhlR5hbmsScOCSkNttgkXKVvrTWrTYHwxoVJ6dVKwXbau72Prinx4Th6NSWYLlHDwuw5ROMK01vCaAW53QJJkNHWJ6UrS0YRiOiQaXhHNlpw9WhDFOTVgN3oMTy4Yn17Q621z9OgXNNZ63H3HYuPGrZWGZ9smXkzx+vfRhonp9XGbAlGmRLMReTjDsjKicEl8kpDLBtKzkXWMFCmj8xFRFrPMcuLSYHkyw5AVWtg0mwFbW+ssphFxqanxWI5jVF3jSJN0uGCr47G+0+HBL0I6nmSa+tjdFg9+9gXffPMepQmxavD855/y2jtvMBj06K5tMjt9hLIkdesAt9XBtmEma4LuLbptE8twyWVGWcUsLjNyJ+Tg3g1Gz57y9LNzHHMA7QaXs4T9LYdPf/gJ7/z+75AmBSkmvd1t0spFFxnSSjh9/Jh6mXB2+IThxQssLbB6t7n7a9/l6dMLqjLBVfDLn37B9XfeZnh+hues8ereLtI1efzhL9i68xq9jS2qXBEuL2jvbBBNlziWjVApQhRsv3z7v147AAAgAElEQVQPZMDwyw+gvmK4qLh9/yUuxgXLccL27RaWmdLe7JPMI64u5jgeZFHGydkZ8yzENg1sQ9HyLfprDUyRgVix3suqpjIcSmpMaeI4HnWdrOyUwqJU9So+i4ZafTWLNlBCYpoCmWlK/Y9AEFmWRZUXuNLHkgbzbAFItK6BAtt2iIslWiuyYsU4NiyPqqoY5XNcb40oGXE6PlwxhvWqGSO0iSNtLGESGE2mZYoS4FlNsqIgqwosw6YSqx6spQtyDGoq0ClpEpPIBpbjYJY1RbwkXz6DLEcVBa1mk2g+I4tjnMYa/kYH5ikCA8NroEOYja5IljOsRps0e8LG/jZZVHN5fIqhXby1dVy3hyFrnOYa4TSmWlQ0Wz75YoxKQ4ZPn7EYzpnPzomiEMMxcFzB2fmc3ZbF00fHuE6D1s4WuWGgTRifj2m1fIK2T14ukZSYZYnt9vC6BqpUzC+GFNGS+WRJlU1ZzCZYno/f/cr+EZXMZgvMRpfJZcpsUaIsE9fzKFVBVUpcJ8bSM7Y7HkkuSH1JWlWQ6NVRMMsYXoZY4wXtwGc0nuMEDkrbXKWaxfPnvPXut3ADRWN9n7QQxFfPqYyKtcAhGY64cfsGVe2QFzl+4LG+Y+F4a8zOj7G8LvHpJW5/jXSZ0VWgwxmW26bZ7RLGY/rbHs+/fEZz6yUc18fv7hA0BKPLMf1r24xGCzqtDZ48eEiR21y7s8f8akGVK24MNJ3NBs+/eMHybEKZJtz7J3/IclozP53Re+s2o9ND3EbJ+vZN8iij3MyxOw6zS02r72JYJfGyQqbg+Tb4OcG6i0pvc/TFL1nf6hFseFTjhHbQpi4jRGGSDkfUhsnsxSlpPGd4cYEfCE4eLWg0mqRRyFznSASu5dG5XmLpEluAyGek+RIhASRZlaKkg22sBHmFLtHU1CqnUur/75GbyqQWmrr4R6hwZC0wpQVGha4MsnoVGs+rnLJKsHAxTZMyL1B2jVarPqzruhRlievmLMIJi2yBqFa6TquosYW5gv/VBTUVqlJUIqfhtqnSkK3mLkkdcxVeUugc12hQofGkS5Rq8kDR8VosowW+57NhFojhGcnzC7p9fxUdNCXBYA2zuU6r38FpV7Rb3RWs3PBp72+RZSU4FpZlEV6MaLc89u++jdXsoW3o9HtIJdBSsrbfQZoGolqyPHrB4mrMcj5lMbxkOl1i+i7PH5yyce0WmwdN/J2b9MsuQatHe73H5v4d0krSXGsxfPGMs4fPcW2N0AX97RsILKLLcwQFjl8iadK1TIYXEPQ7KJ2T5wkCB9tpk+VTvMDC8zxmWU2WpVRCYQkXy1Es5or5ZELDcvBdjVZQCAPqVcvHbQVMliZ1GOH5mtJwUanCs0J6d/aQYpPm5gHRtMa1LZbJlHAWcvt1xdHDEcfHI27dluzfajGbKzau3ePjv/gZL3/rOl9++JhXf+0eP//5Q155u8S0LVAxDz6/JCo1pycTaiFoBAF1cYF/bZvzp0/Z2t9ncXFJf32Ty/NDLoYLmkGD+SJlc2+dtDJotDcpahMhUtK0we71V/nF5AGz2QVv3PCpzAoZ7BM0fWaiQe2sxAkiXJKcPENu3yHo9zl/MWJwbQuv2yJbTKiXKxKOJWrsNpRZRttrUocLxs+vGCYLtq/v0up10b7L8ckJntfgo59eQR4ymSZILEqtqKoKw2nT7HQJBn1KXZIUOZGyuArnxFmKb3nYloNEUhclmV1jGSaWNKmBNE9RWmObLpWoyIr4K4b31y/or33l/ruHP/h+rUrSIqcoc1zboyhzPNvHt31MZYOAvMoRmFRVhed6WJVNpjNcy2YaTcjrFec6r1KSMgJVY5sGFRqtayzTxjJtNt0By+ycKC8oypK0TqhkRdPtsILzakyzRcfv07FdeuaCg0abjnKhEAR2g/B8ycmTcy6vFrSCPt2dLdyGR6fXgDpB6wrbAp3nLEenlIs5Vllh2DZ2a4v1G/s4nQadtS0cBxzfxJIZdTQkvjgkPb9kdHVJlsUsL87QVoDZNJG2R23XZLNzostLjHRO4FTcvHdAb32T2vVQKmdno4PdCGhsbFJWFstFyvRyzOTwiCQsiRdLZhONaXs4TZcsyTCaNkq7vP83P6XKChpthwpBnqZE8YK8zNF2h3bXwjQE0SIhCDy0YVPKHM9zKVRNrW1KVVNpC6NeUTJMJ0DkilhVxFVNrU2qJOX+ay+RL2JuvHLA8bNT4vmci6NLTNlGWE1e+51XUKXmlz95DFrR2erRvvMaaWxjFCF+e50qjRCNLstRjuPXZHXNvW+/QhRqdu9ss/3yNjYmvTUL7QT0uj5XFxPOD59h2S4dz6U0DO688iZPnx9z/9UbPP/8Ge2DHYaHl9z79luUuiSKQnYPblHj4UjYv71LVZccfnmEUorNW/eolYXAxPI8dJXRWe9heTZamYTTjGZvi7oomE8ueXG0oLN+g/n5MbP5nMHNfeJMsrw4p7e3zXA0ZXIRYfY7hKWiqjOm85B2u4vjOzQ9SbfTxG93qc0Kr9vB9DzidMzl9BlZUWFZFnmdUOnyq03LwKp8LLnSziZlimFIXBGQ6oiizlcCRQO++/Lv/Xtfub8eEigMpGGjdY4wDTynwTyeUeuKqIjo2z7SWOF2szpCSrEaNSmTeTam02hjCpOiKpBSoOuVc8iQFmldYpqCrEzoupvYvoOWiqRSRGpJpWpUWeE2PJpugNBQJXPqOidOFjitDpYCvwSvdkFokiqhPegg/DZeu0lZG7hBgO0LsvnqWFaUEsvvkJeS66+8xfhqSFnWxMsFvb2SeDGl0evgmDlVGqN1SbYMyYZDonnC2eEFs2hONxDMpzMmy3OWsyucoMtg7wbFoEuyiDmfLFmz9kkKl16ni2cIdEtThkM8x8BstPG8Xfy+Tx1GpJMxSVZQ1xbNNQvTyLh8foVpwuWzCYapePc7L1MWgtkywrYEdmDTaDQQZwnKSAgnalXXNDVZkdOwLOLC4GqaoaoCP7BxWw4kmiqvaTQN5kmKNgR+wyeNUtJa0+g22d7ps3dtH0elHNy5xWSS4TV22dzfYHD/JU4/+CVJXPHdf/nHjI6f0/ED2j0o1lv89CHcCQwG61tgwvqda5w//IxNr0F5cUm0DBHTJUuWNH2f48+es31jjTqxGOz02NrYIKkqVFyRXD5kqF5w684Gn/ztj8mwefn+TT4LQ5LRBUG3T7pUvP7OAU8fPqdp2Fw++AU7r77K9ddfx0RgeS7S1quFslxSxim2TkmTmjjzWL+xgTRcJucFht/nxutrDF8csfeNtxg/fohvJoTZks3BJnYgOfvshK2b11FFTqPhEY4NBoN1TEvhNCSOMGmst1AUdDav4/fWyLG4mIcs8xWIIdcpxVdQB1NaiK9EhmWlMa0KQY2uBZUoMaSkKjXCqQj0PyL6+f4Xf/V9XWeYQqMxcU2bIl2ikbiGTYVinkxRugahkdKg6/SxMJjnM7TWLMo5SlUrdGmegSmQQmIYkoYTUJcKLRUH669CVRDnc7QhMCwLBKw3N2maTSoUy/CSpMgJnIC+WbLmeTixJLoa43ouuqywbQtD1Dj2ym2UpTlSFRRxzuWLENOSWLaku9UhWy7wWg2qMqfT7ZNnOUGvj2HZSMMEvZpV5pMLRi9OiecLijwizmrCxGambTICGvv3MVs9dJkwaDtcf2mXNDbYPtik0bZwHWgN2kitqZKCz95/iAssL48ZbDYwjRzLEpheA7fp4PgO8XhCreHixTllWbK+PaCqKy6OT0nLAtu3iKKQOF8gpAEVZFVNqTVJllFUmqiSgMJvGGSVoK4rLKHpOj6GD06zg4mHNiy0tun0B4R5ysb6LlcPj7m5Lal1E8sLcHyP7t4+tWpysOVjNQO27txkOp/z1//2PayqYPriiovPP6K7NeCnP/qI3v4+Ujt4vuTJ51+S4XD0yWe8+u5tPvzxBa++8zZXl2fsvXIf2/E4vzjH1SXjKGJzzWL3Zh/ygvn0iotPPyMq4a3vfpNoOqfZsJktIqpowTfeuMP4/IzFo4f43V2cYIM0SciymL27dzCFTZaEGGiWR8+JFxV+ex1d+gStDukixG+6eC0fLSTtTpuNnS2UUmRhQZIqwkmF3zJ5/viC3b0NLFNj+QYXz08pKg/fqPEbBuV0Sd93IK8wNAx2t7BafSphM0yXTMPJ6v8lFWmZ4GkHwxTkdQ6GgdApttVinI6xpEnbdSi1IFUZvsiwDJu37/yzX22HDqM5SmeYRoNa5MRSYRgWuapJq4JcTYnTkJbXQkpBIFsYUjDNr1ZC7SLCxiEXJVqXCAEONp5lE1cpprRQZo0wNLLMKdIZmYK1zs4qlJ7lnF49wTIbNPwWmRY0ghZObdIWJp26BXVJOk9R5RV+s4cyA4azGa1SYDYczEYfs+3jrFm0DgyEaZCFOTUmw9GcMhnS7G0yKWH75nUsz8Z2JJQLqiSjSpaEkxlJFDGfzymzFEvXUNTo6ZTNzT6oOb7fJDJXGeRwlPHGd26TZhbN9T3cIGB6dIhOZiSTOWuDhCIbYvgNRi8uUEXG1YsxXmeAygqWkxccH04JmhamKfGCBueHV8wnId6gjYtJmS3JFiXxYk5dW0jDxTIUSVWghUOpMgQagaJlt1hr2YzTkDSXXNUVuszp5Zfcub7F4FqPF59+Tq/XoW/16LcbbL56k9S6iS4Sru0lFFWTzvY6s0lGWkmi0VM2nXu8/fZLOGQ8e3RFkYCoHJZffEmr3SE6f8zBN1+hLids3X6FVrvNIjI4/uyU9q5PrkDXBSo9I5wbRBdHDEPFa995Fdvy+Ps/eY+nDx/Q27/OxdklN+92GX/5lNzK2W3v0JSC58cZTa/J1u3b/NX/+Ke89h/9C158+Yjbd24SzRNUnZDnObbMOX92TCkCbr51g7rIsd0awwPTD0jGE+z2OoO1LkmU4Hod8lyyd9/B8mqC1iOKKifTktHZBXbDYfZgwnSyJGh0iRYJMrbwpEWtDRr9Do5nI2yJMEvqOsKgJC9iLMtCaAsBhFWI0KCVQIqKXOU0vnpANhTYwiaWKSaCvMqQxvrX7tBf/yhmSUTlkJU5ylTURYXQBkLXlGWORjGNRvhWgO2ZeK7HwFnjZPn8K85Y+RW2d8WGKusCS8jVXVauBuepirCERVXnZFW0svOlMYt0wXQxXOXEXYVdeliGg2O4BLLEqW3IV/TQRm+N2XDO1egcp7OkO1jHdgOkZWHZLmgTXS5x/M6qp+xkxHHM+m4H291DmSaYFv1BF4A8WlAtQ+oiRCULpFETLiIuj4dE0ZJCrwwMYVJxev6cwcGA+eQIy3bZ3d9jf3eNj94/5N3f/aek8ynNRoVjCZQwmGcFlXZQONimSTheYFurmaTl27hr69DY4EZ3ysXFGck8ZxLP6bVtpJmuIq5lhHYsNvfWmcyOUFqg0cziasX9MgRZYSGEIi9hvlyy1uxgY2PaJp6Vc+f1m+RRyeVwxuj5OX7Q4otHCS+9cZ/B1ho3bw2499oaeWLx7CcfsHfPwdI5t28NyKcRD/7mc8JbU1588Tl7d17hxu0Ba3sv81f/259iFAodjXCdG9hpyRfvf073pV0sd8D9d+/xo//jL3nj2zs03CbLecSzD3/Gd/7w9/j4356yvtOmWmZ88N6fc+/bv0+ibdrrLR6+/wlFCssCTh+fY97vs7axx3zyMy5OPJZ1ys6bb5IuUm4d3IQk4urkDKuhSeaaJE/ZunZtNSWYnrE4Pqe9vonXK6jyDCktakeQpjmdrV2yJKS/3iJoOCwuHuJ4No7ZYDSM8PwWRyePOXoes3trh8oNeOnVd3n48Uc0mg2UTCh1jtccoEwYhVOWWcQiiql1hatWBJeyqFAoLMNCCUWlaoq6RLM6fq9Gtv9f0KTGED6WdH71BS10CToC01vB7vKSqlw9pccqIq6WFFXGiixqrnjT1RJVxfjOJpUqVr+YUkglce0A0ES1RpqSZbpgvDjjpd438E2fsAhZxksMYZKUIbUAx/DQZY22S/r+Bs6q3Y40BEp7pHFGo9dEOg3WvRbj8YTBwS0st7H6IAmNICM8r4iTk9WdvqjQCnJdkS9S/GaA8B102cL2fOy2zywekc4vuXp2xNX5jEII+jf2sOeXHD67IMkzPH+DzZfvU0RD1vavs7O7z/6dbxJ0+si1I9pb23TyJdOTZ7giJRzOiJOcSpnk46dglqt7/DCkdW0HU0gqNLPFJabhYts+/VsddN3h4nTCyYszdrVDd7OFo026toNr97k6v2RZrvjSupAoUSClQVVr0BVp6nGRLuh3OgggyxSff/yUtV6f+TIizXNeubWDrGLWdizeebOJa3mYsUNZL/jWH/wLwiKj3RkwOjyk2Wly9w/+My4fPefkxTlrtzx0GjN6+iUvvdHl9LxFnlZ4/Q4PPr/kk8/H3DddyrKDJzX/4X/+R8g8Ik3PaK/1mc/uMTq8ontjl5PHJyT8ktmFzfGHP6S/dYPp6Ay9dp8PPviQ//i/+Fd88eFn1Nogtw2CRodwWXD7lQGn1ucEruLDH/4Y16l5+OUz1ra/x/nTJ4TLBd31DqKSJImmZTdprAecPr8AZbC5v000XuD7LvPjIwQWbjegqnO0brN5vUNSprTmEY8++YKottm/28MsC+68tIvZGHFwvU0SzjG0QDsa/JSluiKKEpZ5QaoKkmKBKjI80QEJohBgSLTOkKaPb3bJygJbOCsHnPTROl7dsaWzCp18zc/X3qHf++xPvh/XY0y6CENQU5DkMb4TYNkOaRFjmBZNv41tOSyWY8pyzjJPkJaD0hW25ZBmyeoLVFekVYolvxLeFRmJStlsXSPQitlySCkd1gZbzOIRZbES1QlMGkGLruXj1xn7rRZd3aCKI0xlgtnAsC2shs9g7zaOZ2HqConAUDVJnCJ1QTSeEs7HzMYL4jTH63Rpb+/htAJst4M2BKasSOcT5mePOf7sOVmmmc2XREnFeDwmTj08z6PZG2CT0233EVVNr9ujmoywZEU0myPlguGTLwgvLsnCGWUB49mcvXv3mC1KsqKiwiEKx2ys9UiiHG2AqGo6jsB3SgZbDTa2e9QFGAhc16I2PUxTYYuC2fkpaZqQFII4r0hEhdZQpjm1UGgtwLKxLYt24GGUAo1EGoIoU2RZgVIZaxubZLOYd77zLW5c36Jt9RmeXtBqu+SLCdnoivnkGfXwiDJbrOwPy0PWdnxEMSEIfLLFnMkyohFcZ/L4MSpPSYqC3PJ59T/4Dp9/+JDXf+s7hLEkOn5Au+Xwd3/yA4wsocxjpOsyOR2S2U066+tMo4gH7z9hffcal8dP2f3GTeooJaxjMDYRZsz8KuXk6Dnrt69x9OiceHzBP7z3Pm//9rc4vzL59u//c6Rb8eRnv+ClO6/RbjX46ftP+dbvvs3k+DF5mpPXFb2dlaZmcjbB7vcIej2sdoBp9SkLg+5GC6fhYrstLH+T4WhGvLggvrqg2zAZn16RRyUagY1LITK6HRcCwSwumAuLeb6kVhG5KsirJablYhjWKjdQp0hhYBk+TbtDki3JdIGDi+M6RHmMoQQCE2mYfPvOb/1q5YwffvRvvl+pENvsYxiCLE2pVM1abwND2NRljVQGgd+EWrOIF6R1wVr/JrZjo7RCK0GZp5QohBLUdYlreZR1zSyaYZkmvufTMFzO55eksmA7uIYlbMaLEXldYpgGHdq4asGma7BGQHm1oIgysjSl1AbCa2PYTYRUSEOBzKmLmHg5QxQZRThneXlGMluwnCzQjkG73UHqEoMcsgiqnCzO0EJSxTnhbMp8PgLpskhrXLdB4Atct0NtBPS2BlTJHJ0lmIZNsLYPpoPTcXDcFhubuziNNl5vhzgzcVotpPYwmwa2Y6JRjE9mJNMF2CnbO+ugK6LlEEP6XF2OGT88Y3z6CLOI2L17jeHVFWUV0Fw/oEpTrs5PsX0PN/CpigqNQ5xWlAgcYYBQ+I5mo9fEkBVC2khDsrnTpeE3GGzsMl/GdNZ32djYZN1zcRsGg719FjOB7dpcXZXMjq6Ynow4PYmQCHqb6/z9n/0t0eiU06MrBjvrlHmGKU5543d/k972dc6+POTbv3Gfcjoi6HW5+PhveeWde+SiyYc/+DF7d7f46NMn+Js3mZ4OOTm5ouNHpIWP0+hwfHrKa+++yfMvXuD4FY3mdSbDM5J0RqvVobO+SZTm1CiePHzK62+/wrNPnzMIDLxui6vDQ2wUhW7y2ecvOHjrFfbubvDB//4ejV6PMNPs727z5MuHuE6b3sDEcgRZmOMKFyFj/Ka9kirmOa6QyIZE64CkdGittVhEBqbvUWQ58WKBlDUb1/tYPYda1NC0Mdw+OTV5WRGmI2pdYds+wrBQKkXpCksYtOw+tmWDIbFNh7LKUYZCAGWVYtg2ucr57sv//Fd7FDOlAUWO0RBYho1SCkOY2MIhLwskkkpX5LokipYr0ohQ7LZvYnuSz45+hi5WZENtgWW6VMkSveLWrPhRfAVKqwsMaWEWIVmxQOpVGUEV5UpkJyvabhvfMLG1QRJV1IZBjc3ocspWe0CnaYI2kY5JWeSUWYZlmcSTKbqumSeKKquZL3J2rg/QjouqBZOLBbbbwm6YuJ5FNJ2QlZJceyh8mh2D/sDn4nyCgYk2Ega2QXdjjxkJo8WEyWSEv3XA0eEZg6jFjfu3sX0Po6xIlxN6Gz7BYJ1kNscqSgLbRRoxpr1DMgk5fTJjeP4pvY4Poiapr7j79l2OjkMOf7SkXEy4TB/hNQfcf+cuputDOsX0AiYvLhnOC0qxgjRigKEEpQBda3JtsIg1genQHVi4bgdpC0Rt4rds+uu3uHF9j+29ddqmSX+7jzZaGI6g14L+DZuy/BbHXx5hh2NC4aFG0L79JqdHj6iWMTs3bhMtr3jx6SHP9UdEs4j9/R5ffvAAT6SY7QZXV5BeXVBmGn9/n0//9hNe+43fIIuHzFpNWoNt3n/vPX7te/ucnM+YzUKkVJyfjujvdrn/5g3a53Dx8IgsXNC4A70tk8NHz/iDP/7X/N1f/3ccPR/x+lsmlhVx743r/C///Z/yn/xXf8yN1w6YXz6hGEacXE24+xtvsLE54OGnjzGsNfyOzed//UP6O2ts3X6VOI8o5op2R+D1AtygT5GV2FnG/sEajvsKH/94hN8wmF2NQBu0Wi0MaTE9GdE3BtjrJrbrEOuKPI1RosCwVo0wSY0pLUppY9YWNQZCS9CaltvCMCyOq8creKYwWIlwbZT+ej/019cnP/ur7y/LK2yrR+D2mUZXgKbV7DKeDzGkpFaKprdij0lhYhkGNzbv4CiLo9EhpS4p6orADRAC4iRCyNUIRcsax3TpBm1cotUrbJUjMJCOjV2bCNtg19+gJwXXWx1a2kdWmnC2IA0jtOdh+gHL4RVpEmFWKdl8ClVEPpswPJ8yGo3Rllj9MaRE+iAqgzLPMV2H9toudreH329i2QrTUZgiJFuMyfMZ82VBc6NPlGS4nsfZ0RjX8Th59AWT83OiOKfda3H/n3yD13/92+zff5k00STpAtsWtDd3WEzCFWg/GrI8OeXs8TGqqFnOliRJQtDuIZDUtUGeZBTa4vMPfo5VjrFUQnOzRRhq9l6+xc7tuwjHwwsaqEwxmi4ZxTlpVhMpSKsVjN0UJghwHY1Nycs3e/jaxzEtPCOj67p4doP2oM/22ibrgUHQNgjHKQcv77K1v04yW0AR0WkY9HsZ/Y0urhOz/9Iu/V6frd0DbrzxMkWlkG6LWHR57//+gGih6e4eMI8yptMKJX1sz+TBL55ShRG9TZ/BnfucvzjBDzoUs0s6m/vEaUYQSG6/8ho//+BjpNvm9HjO/kGbs+MxhqkYhg4Dq8ZvKIZDn+1+g+fTU66e5kiZMhyfce/Ne/xP/+3/yRvffQe/6fDgb35My+vw8NFT7r58g4efPKDda6Aqg71rDf7+L37EfKrxuges376GbQmEUGTzOSqOaW22cDwHJ/ARUuO6bXIlSKIZUkuuvbSNkpJYVTgDE6dlYAWSRe2yLFc7ba1yKp2Q5QWO0UBIkyRLwBCY9ko9CwYbbptC1czSMbYhKDWgBLZ0qYj47t3f/9V26FJWCFyUAl3nmMIk1Tl1vWIDW45NVMbYysKsna8C6DmzcAgplGW+0nVSUmu1IhYaEtf3mMcTfLvFZrCJY7rM0ynLJCepM4KWQmchw2hI02+z2TDYNfqYs5ysSEimIVFUoZwBjUaXxSRl5/orqCpBmybxZMTi2ZRaabQTIAyDeJ4QjydUeYXd2qS7vsv2rVvktcJrepiWQmUz0tklVRJx8eKIs8cnWK5DYTocXgrMxhq+k3Gw62K7BmUWEKcS6ZhcnA/50f/1l9y8u8/O/g1MtaRYhIyVg3HHptN1EEZBpS0mFZRaEg4z7MEW6IJMCW6/8w3KvKJYXnL05UMazRbRosZs71FZPt/93l38pk/T00xOj9Dhgm98c5+6nFFqyZOjU5xCU9kGFVCUNQhFloKtFY8eD3n9tQGDHZgdQZrGHOx02N/v0O0Jmt2AxXCMg+Lhj9+n1xswfnFMq+uztGx0oTh8dMbWzVs8ubpgenXE+kYLyoISTWn7XL+zy53/+o/Js4Q6T+l2bLSEl9+6y09/8B5a7rL76j3e/+u/59ZLOen8ks692+SF5M137/Hw06f8/h/8Ee9/8CO++dYrvPHut5BKc3Z8yuu/+et89Jd/SVGGRLj8ux/9hN/63m/z5cdn/OYf/Ro/ePiUf/3f/JdU9Qv+n3/zl/za736bdPGCP/ufH/CH/+nv8e/+1z+j099G93tc7wbkleLR50+4vGxy7Zv3UGHO+pbF8w//gf07ezz7xSGbO5tY27sszmaYtkmpSrq9NdwAtoYHJNMUz7ig4XkU0SXdgwBl19gtgTJbSGmQFyVZleNaDkqkGKLAxl2x5iRIoTG0iSaibQ4AACAASURBVOHY2NJACM0iXFCW9aqFWFUYwkKhybKv36G/vpyhVz3NmpJIxSvFyFc+HsOwqIoSVMGgsc4yXlJUOdIUzCaXZFmGadpkZbHiMmuoqGh5Tdabm4galGR17PN98jpc+bK0IoqWKL8FEtqmj8pzDKukyvKVBrTRpLQKTNulu73Dxkvuytihm4TTSwzLQWEhXblCAQsQVUVUSMrKYOD2aA4G1LUmaDrUZY4pPaqipkpzjj59wHIGqWhSYdDrtTCtmOnxGZ8fZ+R6hCUt/FaH7rqHNFukxRrakBwfTigLgxt3b1KbNZ21HZIwxu8oxo8PGR5d4Xo2puXTbHc5n8Rs31yn213DMmwaDcl0UbKxvsbV6YjR+QX3vr1N62CHMppzefYledAhTUqwbKbLinga48uEdsMhrUt0ZiHJ6TRMTGPFLLdtC2FZPPh0Bj+7YHO7w+1X77FYaGQJDcfk+POHbO8PCJMGRtCisbOHGzR4+LNPCfOcIGjTvf8aXrfJzRsD0uQAWRrMxyPiyRyTCWeffYlvWTR6W5yPJ2zvrdPdWGf09BhEk7X91Vz2N7/36/z5//DnvPHuPWZHz2j1Bjz6+HPamzsUKqW9eZ320ZBw+oJifs7G3hY71zd4MLjG45/8mJ2DXV559V2EbtPaN3n8+JLv/fE/w63H/OgvfoztbPPKr/9TfvqDH7J20OLnP/kIz2nQ7jTR4QmxcFhOamxHs7PV5OrZJS+9eZeP/vo9Nvo9/uH5C/q9bdJwiTO/RPoWy4uC9qBNvoioUdx++QZBq0kaDhlfntPor1Exx7LBWTeIa4cojlimEwLXByS69Fa00zpH1ys7jWFIDGOFrUa6GALSOl5pjKVCCYVj2mhZU/1j6pNJmZGXJaZOcAoXLTWucjC1hZRfycgsE0uYbPU2OZ2/oNIll4sxiU5omAFZVVIVBcqvqcsaYUhcy8U2XDBgWc/YNNqcJyECSWAHCCGoU0UzCLjWatLTYGWaUrjYUpKkc1RSMluOERoMWxB0GyzHMdKGLBE0+i3ixZwijAjjiDBKGewdcPPeW3TbDbwGtLo+ZVJSqgVJMmL2/JBonpDhEex72EmMSmJOH76P8gNE7aC8nK3tO1yeLbkYz2i4Jt1OxsbuLtdfP8A0NLoA30jRlmR89P+S9h5Nl6Tnmd6V3p083nzela/qqmqLhiGABggQJGhmJmiCmglpMVuFFgppqQX3WmmjCG2kmIUWHAVD4nCGIEgOARJoNtDd1V2my3/eHn/ynPReiw/aYiJa+RMy4o4333ye+7oOsTuXba2cBq27m3guZK6LqcGdrTqmJEEyY3F4jFGrkkeX7+mt73+XIMzZf/iU8ecvKQi5c2+V3UdPabZXUSko8jmrmz2CXOZs+BRdVlD0nDBViAIBRc6QJIGyyHGnEb2lDt1tlTtvvodp2LQbJlZlicH4At3WcCcxvbU6SThn9OqCeO5T6hrXbr+NVpUwxZKT3VOeffSQcHzKnftbpFpKHCrkhY5u1ihMmdGoTxnHpKzz/OPX5OEcpSmR50s8+enPWVs3+a/+hz/lZ//pn3CDnGr/jDe/dpOtN6/gnu7iXBzy8Kef8v5vf8DHP/ol999ZZu+TB3jzITe//X2G+6dozSqzoyGO53L/ra+jWRX++q/+nvGs4IPvNPjz/+V/41u/930a7RX+9kd/Q6+1zCJw0ZQGB88eohk62/ff5KMPP+P7P/w+//lv/o5wGFAqNVavvYFebRE4M7RFhNlKMWwdUVMQVAWtFBHVhO1razjTDkWY4S8GmIpObCY4AWRCgaiI5GWGn0ZUNZu8EFElGzdNIU9QZJmUhIJfhVyZ4ucqfnaJuhYEKASBqlZlGo4Ril8b2V8faIAoDrASkUSPkZAQZAFJvXQZUZSUmUAsxuxUe8zjEdM4oxBztFwnF1MaepVReQn2KwQB159ynBwQpQmapqBoCq7jEAW/cmIpJmqmoasqLbXKhlXFLCrE4QipCHDDjLRQ0RoVirnLfDIly2NmM4Nmo4diGSjqHG80IpiMGFzMEfQqaq1J4BYsRhPWV1oIYkowjxAyEEoDCgFZqSKKEVnosvf5Z6TIJEVJaVoYuYhfFHSv9ugsLyObMvgWLx7v8/LpPt1Nh5cv+mysdpEkCUOVKAjZvH4VsSqjqiaiZNBZX0PQSoQkIfb6TA+O8RYiSVqQUFCWMQUJrVaLxekRsT9mtQ6iInN0EvDolwO23nwfy/AYv+qTRjoCoCsRt+5sUB0H1IOcwXSBF8Vookx3qUfN1rAVkWpNoN3qYJUJNc3HUiSW10JMZYU07aA1VogW50SnDnuf73F6NGT1zhpX1B2isc/rvX0q3Q7f+pPfYHjhEM0DLl69ZP/lLr/9h3+A0qiSeQGDgYecybz46AGGrnExHNBJm+zc3+K8UuPVoY/r/DW6arLzRoWN++/yF//z/8m//h9bnIgNSsHhX/9P/z2+O+brf/gDfvK//wV/9N/+kH/66VN+64MOla9vUyY6z375CKNV8PTxBevX1iEsuHetzubmW9y6+U0QQ/7+r37E1ZsbGJIJasY81jlfGDS1Os+eD9jZuc6P/vonxILNe9+/w/DlcyqFi92pI3RXSUYO+8/36a2uETkj7JUWZn2DLEzRKiHtnoFZeZP+3heE8ZSKdfmf52R8wCJ2SeLLenCYhMiCRCpKZFwyBKpSDVSJUswRRRk/yxAjjyDwaFdbpHKBXF563pIoJoqDLx/ookhIywKBAlmQydICUzOQcpUkTxBSQBAvt8aMGL1UMDGQFZUg98nLnLpioYYFZQo6GuQwDacomkxFrCCUJZpkkpcZptxAUVU02eB6p01VADUSKCmwKnWc6QTVaKJJBos4BK1GkXuIooK/CHCmh3R7bYYX55DBaOyQyyaKYlIKBqu3d9hcX6JiSaSRSFKmKIZJnoYUXohQBLiTCyI3Qq7ZLOYFWtOiWAx58XpBs1Pl5OkxCIdImsxyW2f96gp6ewlBlkBWGDgxjUYDWVCwm5sMRh7VZIRly5QEzC5ENF3ElEoe/+3PSUIBKja99R6iICKKEEwydh9+SqsjYteqvD4LOD3oU+la3H27gZQOcB0IwgRN0iDxabYbpMmUKgFJ7tO6WseurtDutWlWbcgTYneOlKkYpk8881i69Q6VepP57jmT3MF3PORSIs4UVLkgkQquf/c7FEnMswcPmU0niIKGHvik0RAFcF2XIrMQql0m0xny4IzR2R7V3jrzucvWe+/jDCfkk4hHHx9y+mqP9//F93jy8IzxZMHmRoXjTw85/uKQ9TsbxKMJvU6Dybjkxccfs7Rm4VFBX94gXoT81r/6TfY//xy5lNl87zpWq04aRtS7Ov3ZFGNlhzCOkNSEn//n/0QWxVx//x6vPz1gdafJyuoGnz/8hNW1Lt/7w2/x7PNHjEZjbr9/hzIMOHr4Ar3IcUdT9KZBms4w7Aab6zdJ45LJ6YJqzSfXzpD1DmWRoUoRmShg6VVkKaNUwCdBNyy0IiITcqQ0IxfyS5OncgkYlMQSVVWJihiKS5hHLsgkpUBYRiRZhmGYIJSkeUyQuf/FxZJfvykmqihomLJNXW4zYYSqa8RZgFCUSIpG3bawTfvyJJNkSAUSKUYSRGRRIshzyixGSCeU6hIkBUUGpSyQZcWlabCUUBSdLI+plyabDZu2bmEm6eVy/uQESdLIU41IELCXLGqWBGWCnKuMB0My0UTIQK6V1FMLkCm1As9zMNsymixhkBIvPIZpgSqXlIoEWcJieELqeAyPTpjPQpz5DD8VWb++TeoOWfgVhHxOFAps3n6T8XhMqymRpQLnxy5ytUJ3bZ12p4Ym5HQ31rGqPWRVRsgz0jgiDkpEOUfWFFRVwPemtHbWCXMLvd5gPAyRMgdVcCmKmJSMsWOwfzzEqFvcfGeDMIEHPztiZbVBkRU0N7oIiYNcWgQHfQbHxzhhwXgqsFnTEeOQZO8Vgzylt7qOpOkElEQzg9ryGn4A7uyUxTii2lonUXPcPCLPEuJ5n1F/TCE/R8hNhCzijXfvE5cwupizN4pIwozz4zl3btZ57w2bcLSH4+QEqc75s1PqjQaL45d4syE3rm2wfmODSX/GL/7qQ5bXmvi6AkaHR4e7lKLBu+/ofPrLXW5sNhk8+4KlnXVefXzKrTe2ufvdN/nwZ09Z2ahzcb6gvdTg9PUxpmZCZONe+HR32hT1kK98/T1UUUep6fTqyxSOz/J2myzMEMsFqxvLFMMJP/n3f0nN1EgDl8d/e0Yhxdi1FtV6h2kWkx/OMCoVJHF2qf2x6ujNGrsPX6NJMUa1SVnpsHL9KrJZxV7aQFxozIa76JKPlaUEooYoyORFQZhO0YUc35tgmC2kMkcQSkRJwg89KrqJLmnM/QVxGhNnIXZuE6YhaZ5i6DarxvKXD7QpyJdqkDxHUhTiPKGlN6EoycSEht3CNCsUUklJjCZmhGWEmJcogs7/BzTLJANBqWPpNRD7qOolxbAQCup2A02SidOcntVis7dCU0xpWQaiohL5IZIkkSNhtmoYhsbo/DWR6xPOfaIwp7RtejsrJKHD/GLO9HyG4zhkQk6uLlPW6qzfvEFWxqi2jWVZFKqBJIgo5YzMm3Hw/BXnx1OiJCaRJQRJof/8CWb7Citv3efNH1aZj4dM9w9o17ucHR3TqDXoXW+xmPpM916zXr+HZjXRFJ0y87FrNhIpoZRQrdtkYYwgQBxMcC5mLKYRaqtJo9ei1Rxx8tmI0dmEeaGR5RIZCaUqUVEEJgOPzStrtOpdsjClkEqatoY7yhmPZkSJSu/6O8xe7NPdlKi1DOo1hbi0GR0NuXi1QBETlIZCw+6xYtaR9Qbd6xvUWzWGuw8gy1hZX2X3hYO/qLJ+5028IMfQBaqmhDs5YjGOOD3xSIUcUS95/4cfYKkS44MxxwfHfPuPf4uzR6+gLNGWt4k9l+rNBu7ZlDKf0alaaLfeotpskp8OaS5X+OP/5nexLImLizNavW0On/cZzDXeXr/K8VHGlXduc3Yw4Ns/fJsvPntBHkX0j45oOE22vvkuV99bJXRmPPiHTzBrPc4OHJLRPoOXZ2z/ziqCZxMEA65sNujvjWm2ahwkEWenYy70KpqpUdoKi1FKa6nKNMoJL2asNgLmccZyp8W1d2QMq4GsCdRvvk3s5dhNHclUyNMEkhmqXmGxKIkzmcGszySJySUNXdFJ0ogiiRGUSy+6YuhEsX/J4ssFkiJDLAps02Yw7yOXInGSUJbC5c9oQaBnr1CzW18+0IpmoqoKhVKgiOqvAPc+jjNDKDXkXMZ158RGC1uWEAWFNE+oSFVQRco0I00vjXmKdEl8DBMXSTMpChG1LOlUlkmKHFWS0VUVJRhQMTtEwxmqaJBnEorZhLKgjELmszGUCoEXI8gWSk1kHkQcPD+lXrVQgVQQQFVBsjFrNhXbxKrmqJmAlLskoYREjmLB8SePCWYTytwEZU5c1Kj3utQsAW/SRKrZlIsjFpGGICrUlzdwvYjNmzU0IcWdedSWq2yaMqKcU2tWkGUVCp8ihtidcfTykEanRmOzhxTD3pOnzGcBeqVGnkw4fzVACAr8YA66RFMrEcQmUV5iNqpEs4h6XaHa6uD0B3RWauiGhDvokwURipah2jnZ7IS1noTRrmPKMqqtYygavaUtKlqV2SQgVTQ2N29w951bGFoCWYyQLbBEg1LJ6R+7LK00OItCzp5+hlmvIFsVXn8+5OnjJ7TXOjRW1+ltbFGptalpCYvZkKtXW6ytvcvJJ58QRwGeX3KlIzA5G1GelsTxHEGyURSfes9mqVmj213i/GBIfcVmchExOt7HFptsvXGLzXvXGR+84trdq0wnc44OTlh268iaiuOHNBoacqXKfDrj/KLP/Xt3iXOdyfFrdq41OTyF97/9VcxSIDVGWGHOg598wsqd6xiKyCyC9Tv3aLY1zvaP2Lh1kzxTmM1mrC13MGpfIxocstat47x+QeAF5OU5pShRWzJodiyKMEWzTMhFEj9Cs6Fi10iW1jgjZjHdR0oLgjhAEEtkUSUtS6RCRFct0iwiykNkxUIAJESy4nLEJZWX06SyLCkoqRlNqoZ9+RX8ZQOd5yVZnOLOF7iiQ1HA+XiAF7hUzCoTb0a9XmceOOh2BUUVgRJJ4FczKY1cjClygSwvkXWNNL3sKlOWxKXPwDlis3udnaWb5NEMTTVRqSAKBaIhIScS0XgEgkycZARpgqhIiHJJISTEno8sKFRrFpPBmDhzybKMAh1ZKeg2BVbaKrPDAVtXrxKFCXZNx51cEJx4RPMxTz55gb28TKXbY61hIko5RS7S7PaIF0NCV+DsZEQm5dy6d5tmR0bOtEvYYMtkdWuFeDEjnIUszg+5eBWiVFTi1W3GgxMkQyNRqpztT8iCSxRNYVdwS4n0wiMtHfovjomyjMif4s0zVMVkaXOJd7ffISqh3tIRsyHZdMDB0TFx6OIFBUgmCQWJoFMKIu1ekzifo8shQgxJkDI8GzJTJHbeuMfStWusrXaIp0f0vYJOs0EUXpDnc+aDIYmuYbdU6i1wRyrTicfRk9dUKnXe+v1/hWRZ1AiYHx/Q1V12nx8QexFHqUaW55iNBqXSJMwdnj2ZkucitXaTdz/4bY5fv0TIXJSKzT///cfcvLpDtQaiH1LTQzZ/8PscPXyG1hSZTwUeffSYb//eNxhfDGheWaNqpLz+eE4misi6hpg4KEqT8eGcY/UlX/ngHq8/O8K5WPD29+7hnVzgjl3qFYOFkxNnAuNhQiH6vHHnOtHknL1PX2DbdZJpzOqGSqdewZJiTnY/orZ5lcnpHDCY+wltOaex0SRYzEg9D7IUhBitYpJlBYQ5umbRaLTZFhRyWef0/CmarF3aMESRUiwolV8J50qJMI7QkcmKmDQv8eNLdDWiiIhEGKdoiokh65halWk2+/KBlgX5sv+cRiRlSp5mBElAXpYEQYCkC1QyE6EUCZMYQRQAgThP2GxvksYx02CMWAjESUAuZWR5TpqmFGTYSo1abe1ygypMaVe7tJttlDBDiAOyuUMQBJSaSpYV6M0alXaD0ekxUVIwX1x2S42mzXQ6ZrZwyPMcP4JCyrl9axtZ1JkufK7fu0Uap1g1lSKe4k/P6e+NqDS7dO/KCGqImpUYJozPXTTb4mx3QHO1SppNWL+/jVavoQkG8fgIRReoNzXUxRyGr3BOT1h94128WKW71UWtVWjaOvW1OqMXL1DyjFIukcyCxcTj9PUB5xcT7EaDZstm9dYWZ6/7jGcBgWFx/ztfYbWrcrF7SJ4oaNY2pdKhfqWCPLugfxCytNxhOp5jShpx5DOaTZn5LkHiEtgKuh5iVNrodZs4jpFKheXVNYxWndqSSDA6JJ5MmI9TBnOBxK3in/eRlQpamnB2cs7ME9FWtvGUCtsrS2yu5Lx+8Izx9JhXT59T7WxSadeZuyMqtQaLFDq2zrK1xnxySvfKdZJI4uF//jkUHou5R3tpiTDKGF2c4j11+M6f/A4vPzlELJ9iVHOOPn1Ma63L937wLs/2RoSLmGvvKDx9cIZBzI2r26SKjCCbvP/d7/HLj/8dWTHGHAfUehs4izGrU5fHH3+BKWc4q12q9Q5f+4Pfpd/vk7gBs+kuriPR3bzO/a/dJY5KxudHzC+G9A8u+NYf/ybTSUZrewlJXuLpj3/OrHJA81xn49ZdnEWJLimEaYJdraDZDVRJoSyhosgsVU1E4Sp5LIMv4wZj8jimYajkso0iSpRCiYJMlkdIhYyq6qRkCCiIZX6pDEpjDMVCkVVKAXxv8uUDrZYpEpfazyIt0SWDOL3cVEmyCKu0EBFQUJjHc2xJpigKyrLEMirkpYYznyIIAo7rIEQChqRTlgUlJYZo0VIatA0RvQFVQJxPSNyEIs1YjIYEvk8UhMwWHlqthWlILEYjStmguVkl7I8ZH89JMgFEjSTKEHXQTYvZyMFaXyZPSkbnC9a21igTj/7xjKWdt+luehx+9ik9M+Pw1TmOBGev+8yDnMbyCnfubpH7CwRNZnpxCkcn1Jp1ikKgf3pOoy0QOR7DhQ+azdHBK26+/S6VjkBRhiiFR+iMSLHxxwGLYEzmBZh2nStf+R20kz7TwQlekPDL//AhKzsrdFbXefvrVzh+9Ixzt45hWFy5s4VlXDqXy9hF1kwSu8Z8NCAOJaZRQLNRw67bJGFEho4kaxiNGq4ro6s2teYm+soGqqYQDAcsAp808ggWLqVUY2VnGV3XefrhnCcfv8KbjUnDiEK1aDVWWN6yuXVF4Bf/z99zduxirN1ka1Pj4mCKc77Asjto9Qaz8ZDX+6+5ee8eRwdDDnddrt69ip8EqNUaiDXOJ1Pe+va7vPx8l0xucLJ/THOzThkuKP2IUpU4ePkcoaywdXuHZLWB3x/S3mrjHiRIziHX37jLx//wC3b3ughiwdKSTppqNJc1jPW7XLuh8otfqJCVPP3FF/yb/+7fMJ8M2FqrcXAQsbL2NhU1RXDGFM4Rkq6zcOeUcoW3f/ObzPoTehsN7LrA46dnXPvGTZzzCSfPXrJwLo0brWYTpdq4VBlV6iShg2ZVyFIVU5PoUSJv90gO+uRpSFAWFGUKRYFcShRFBvklxKLMC/I8J0kSJAQE6fKKK6kKeVkgSRphkRGn6ZcPdJI5yKVKkoU4wYioDFBEDaPQGCcTJE0AZOI4JpJzyGXyPAcKyjzBCxekJPhxgJhLHLvHBFlEQ21hSxXWaysI+Rw5lJCLDEm18c5HLC4mxHEIZUnkB0iShKlrnO29QLNaXAwXVLoB55+N0ett6lXz8gdSHlPrNpAkC9k2qVSqWHYbWTJotiwkKQVTZ/P+FbI0IfcC8iTk9ZMjJLvKoH+K0d3gylYbwj7OSR8vkakvLaOaCoKZU6lKeJMLqtWQ870Js8ggUdv0bANn5CA8O2d5xSF2Xdz+lMXCJ5Elrr37Fjdv3ccbTRkcHEM6YnVDoFlpkUQJ46GJJWdMLp7x8Cd9CqNDXS5IFkMejUbYjTrjyQI9Dn7VE5c5PD7CXr/K6lKdIkrIg4KZ67FIK4z7Po2FwfUdg6XNTYrSoN5sXBbr45BMklAbLbISJsML9OCYtXdu895v3ubppwO8/AplGmBUcqYHL3n413P+6d8NOB6n3HzvHpbocW1nieOXn1IGEqEskWUJFAklGYIg8IP/+g+ZnA7ov3yF3bD47r/8Ad7onIMnjymcOVe2urS3twgupsyOj5E0jXTmIvZqPP/nC3Styt2vf40Xz3cZnI1pNUsyoYIomhw+fU5ZyEwOfXRrSrwQMasGzpNfkvdWObKucH42ZrlV5d5793j2xUsEVKIwpKkbtGoazjxiMFdoylVkMaVlVdj5yhWiMmc6sdh9coIipniZymc/eYapgCGo6EUFb55RZBGVdIQkSZw9/oxqp4PRamG2eoiyhZiJCEmJrdTxlTle6OGXBVVLJBezS1l9GmNKFRRJoSwFktRHERUERIRSJM9TBFEFuGTsqfUvH+g0TUnyiEa9iWVXmfsOWZEjIFMIIqIkkaYxXgkVrUJHW+JYPMWNPNz5giANSJKEJEkQCgHdsEiiBEOuQJqSeUOqrSYmEskwYpZ4ZG6EoqnMJg7TmUdGiefHTCcuSRxg2CWiaSBhsH3nNtWKQDAbMZv65FnCxSxk7cZtVje32bp+laolk/o+UpoQzTxKxaBakWA6YXbWJ0lkmjvLTC48rtx7m3B8ztnL1zRW1tl+/w61uoWQuKhKSeqHnD59wXwW4YUFudHA0ExuX29RrcoYzRuIZUD/1Rmnr4eotSqZklNpNugfnuKPhihCyWzh06la7D16QhGH+IsYBZnz3QtkQ0bRbNpLBt44ROpYaGXK8f4RK+stopmC64fEUkai1Hn+aA93eQWroaEYPaSKRVUSWL5dx7IbXLuzhZ6FSEXKWqfEG56CJNNZ36F0zwmCEF0sOPrigP1DjxvvbXDzfpf5aMLFyznD3QUvj1Kaaze5evstvmJJPHrwCM28zcvXLlfvfBOSiCxeoCAjd3Z46841NFnAH45YWbO5df37HLzY5dO//BF6rWDp2jaKtUwy80ndKUoto2au8fzhC9zhhMZiQe/KLZ5+9pzHv/w5K9duMnKnZLmEpBZ0N9rM3YKrXYnDswOKhc4kDWmuNREqJUevL3ixe8K12xtsbC5x/nSPnt5ka7vOwe4BRb15KYSXc0zBR9Nsums9Ri8OeP3JmOUbWwhFiW2WhH7A6rrN0pV3WTg5eu7R3apRFDqzvQHIMm5UMDtxaK73EOWCPA6QZA1L0xB7bc5nY3x5wZg+FCVCLiOUIoKYUwgCiAJZmpGSEaQhIhJpGaMKKoIgYegWYXLJwl+W/3+MraLEIk6H2KVNT2hxXpxQ5BmFlKOJCpIooogKUlkQpQmRHF4WNFL/0j6fhUiKgCrLRElCzWwx9ceXeKIyJS9z8rKkDFJMzcSLJ/jeBM8LKZERyhK1YrDS26C+Dn6UU23b5NEQUzQoM5/TF0egGQiijWpotJsydstEl1LkZIqqtcjiiMBfIKgVKjWbdOFTKg20ZoTmOGRzgUpTJZ8PESWNrTfepN1pIucQzAYYZcpFfw5yQZbKSFqD1a0O9V6DOHIogxwpVnBevmQ6npAVOaUcYxlNGiurRGlAHBQ4kzFpkKHbGsOzMaahsftqH2fmIVs6pSWSlwInB+eMjo6xGy2iFFTB4O1v/BY///Ff0DQqyJrKaORjNJvcXFlmcnLMjWtfoyJFTOs5rrNg2D8gc8eI2w30qoamLDEaxNgVA38+J3QXJLOQTKmQ5SXTMCOY7fHyo/+IbjWo1pqkss3Ndz9AWZpx6+46r3/xiDKrcP32VYJggaQqEMWoQk5UqiiGjRzNCYd9ejev4s9jkrnI8ckxw/6Ijbs3cYchTz865Lt/0KWQBSb9jMnU7SzFDQAAIABJREFUQyoStIqJaitc7I3R9CF/9G9/l5/8zT9QWg2yICLSTEaHR3R2thAzD8WQsRWbx4fP+NN/+y/ZOzznzpu3OL1I6NQ7dJsFw8NjJDEkCiQGAxdZlMiyjFQoOd3ts7m8SkUu+fG//0samkq9u8Fi4BOGIVqjgd5qcHE0orMk4uzvU7UUAlNgNuqzebPHbOhR0SpsvFVhPhwgTsbUV29QlgJ6pYqqWGxv3UarNBm6fbwkxlRt0jIjTwvyErLkcqNPESXiIqQi2uSC9KtiRkJcFnhpTEcW0eRfa6/6LzDFCgVJuLwXz5MQxJK0SCkNiZbQwStnUAgUkgB5zCyaoIkqYSYQByGFIKIpFmleots2mlLBjwMcb8R6a4cTP8QyoCrD5OyUbOYQhTmO59PoroAUkmWXhMRWByqOhxB7JEGIG4xZODH2+gZJWFCzdUBg7oZYZYGmWViWjZD5ZKELRU44OidwA1rbHcQiRQXIShI/YTp2kStdtu+ssL1dY3F6ysWZg6kLnPSnhH6E73pUl9cRFZ9gmmLXpMtPJcGlf9wnSSIOjkPUepUbd66TFilxOCR3clSrQShKnJ2dYNRrKJrF3qsBjZUr2HbIfDAgnAZEeU6qFlx/+6sIWoWlnWXaDZ8yOuHK9Q0mU3AnM6I4p12VkSWFu+/dQQ2POTpY4OcJgS9yNomoNursPjthebOFN9ulYfYol5YIFh67T/6OPM9RjTr28hqNjTeRFh6B0EGxq3z/j3+LD//Dn7Nx1WT/z3/MP3zxKRtXNpmeT7CWNti+tUJrqUIWzjh6dk53uYmQRJhmlfHxGScvLVRTRjN0JLnKTtem02iws2HjDAoOn7/i7MUJoR9w471NsrSCLMF44nD/G3fxy5Lnnx3xnd/9IZ9++ACFgsIbcueb7xE4h+wdzviT737A//G//hVv3LuD3qgivTgimJxTa9cYzU54+vk5K+ttJDdi+4bGcDggmfl89VtXGM2mbKytMZ6ec3TsMx5GdK4sMRwv8LIBag5tCirNKls3OlitNYxmh9n+LmcvnoFaYXSsU5QxiTyjSFOsZg9DUykyB1msXCqZhIyOJaOoPebh+zza/XvUQiKRIkRBvlTf5CIVzby8Q2cpmSygKTpyqSGrCkWeIAOKWkMi/7WB/rV96L978Jd/NlkMkbWSnJI0zRALFblQaNot3HyBKusopUQpFciyQZRECLKKoRZ4cQhlQZj4tOwlAjdg7J2TpDFrpoqi2tTsCm1TpqqpJF5CgIBq9vBLiWmUQhYRhB7hNMZxFniOi5+FeEGEaNeQhZJWyyIOHQxFod6qUG+vICswPZsT+yF5KSHJErlqgJKSjIccfPGagxd7pIpE4C3odJvIio8cZzz+pweUZpeEBVmY4wcZUZERlSKNlRU0zaTIM/ypRx7HnB4csghAbN/g/gfvQnBOEqtYloGi1LFqDcbnx8ymLvZKlyL3EaWcdk0g9yIEUcCsKoRhSJZfys0tS+PNd5bQs4j+7j4XBxdIqkXsznEWAY21Ku4sogwmzKZT+uc+bqoh11c46c+5/+1vs339Krmks7W9TbvXwNTAiwuuvnWX5laPzloLXTNob6zQ6sks+s8gWLCyuYRUxsymAk8envDmBz+k1m6xtP0mH/zR77G1U0MOL5gf7ZH7MYvxHFMTWVvrMTjtU1tq0GrXqdRkZLlgOnZQiBg9f8Hxs13q1SZffPyQaq/LxM3YfbpLvhiz88YqrdVlzo9dqpqKWVdI/AC1jLjy9l0++tkz/NN9qpUmatXi+afPSPOczlqNwWDG8f4JcZoiqQW7z47Z2uiydHUdZ3BKrd3io4++oN3tYFRqjI/71OsQJgWqaiA1l7h+cwvJEhAyBb3RIIs8wgia7QaD02OieYCzmFGt2OhGSXO5x3yWMh6foWo9fMcl9xwUwkt4hyqTFBFCEiIUETkycRxSpikpMUmUkuYpmqlgKTGLOCUuQizJQhJlCrHA1mr4mUdeRDS0CkEWcv/qN74cgugfP/vRn439IbIkQQlZkpHFCWHk0a4vExEiiQJJEYEMuqwTRgkV1UQWQ5JcpChE/NjFFE2m3ogoDVAVhbpRI80lNFGgK2mIrkcclwhlSRYn1GomrWWTimGiyBJRnJBl4eVLwSLKBERNZWlziTSIqVRM0jhBr6yweWUdWdSpd9pUmiZlEbIYOyi6jqobfPHoiKvv3kUUM9zpnCRKiIOYLNfJopCkFDk4OyYMBGZzhzKFw4N9krjgs0+fMDjts7TcAbHk8OUusbZM+/oNVtaqyKWHIZtU2wZPHzwmjEMUYpx5yHDiIZQStl1FETWKQsaoNlGUksGpg6xp6FaVNJYpVQFnJLC23iPPSnTTIHQX+FFMISv4bkiaxEhJTJKqFJKIm+gIssKdtzZRohnL3QZry1UMtSQPXMJARrJlMnfO9HzAYniGICqIpc/R82cQl6DVODnuc3J4zt2vvcv6ZguhcLlxa5MiCVgcveKLn/4z07GDpukoqkylLTM4PifNYDZdIGUFg4sx9U6d85fn5EJA4s5x3BSx3kAUU4rMQKvVMTprDBcRoZPjjc5ZXa1iaTIpMYQuQTBDs+qM9vaxtpc5P5pTMWDr/jZPvzhGkiQ0VWTnzW3+9v/6KXfu32YaxwynERUVrt3cZHh0znQ6Y3V7h1pdw16r8dkvHqNLEkEms7K+xup6jTRxSXMRVSy58sZ15o5Po9VgNB4iCxrTiUuWFQQJVDsdLnZHWHWb1nKDoBTp758RLWYMz3wWMxdZFsjjHNdx0Cs2uWhxODiiLHIS6VJWkaQxlUqFUoCkyCnyAgGJrABN07EUiySPKCmoSDphkvLujW9/OcBBIsQogkrBpRupLAXCLCQpY3IxpaP3LmFmEkiyiiKbVCsFQbBAkQLkVCQVqr+6V+csPAdNVGhqbRAbXKvb6KIKQUywKEDQEeUCRYyYnJ0SSRZhAooqEcQyGDZSKdC2KyhoBI7P/HSAbFaIphGdlTXaXRvKAFXK8ccT/FxFNk1a6xvkaYzni7z1/hbz/iHjwwPiMMZ1A8LSolNzmC0EnExm/coWejbmbH/EUT8lSEri+HKuu/lGh5e7R3TX1uiubyKqGno+xhRTjp6/RjEs0oHKynaPeDalfzwlLzK2NmtMpwlZEJMhoOs6gpCz92gPVdXYubaCUjFpddcYLQRWli1kd0S0uICiIPUjwnmMV4hYNYPUn+NlMqqi4XgFv/F79/EuBhhpwOrNFdbWTC4OhgSZRb23xfpSm8ibIpQxilFw9iLk9OKMZkVi7/kFidrk3vsbGFWR/dcOlm2TDZ5yvn9EETk02hbjgYPeqjE8u8CqmTz68AGSrbGysYkfz6kvN/EmDuPRiOHfnnH7jSs4C9Akm5gzlpdWyMKUlSt1RmcXdFo2zbeXmAcajuPw4Yd7VLWCZreLbpsMdi+obcAsymnLc9773ps8+fAxjf0TVE3GDQOSc/A+2r8UJNgWzVDk7a/eIRvP+Mcff0y6COktt2k3e/Q0+NmPfkHVrlEgsbLWZDG/4OjViN7KOkmZoVVU9h48RZQT5sME33eYxcf0ej1ku0sQpoTOhNpmBTkOGR9PUFs17OUGaqYgKz7NJQNJB8lQUFMBgZyGrXNl8y7ji108/9KTLooisiAiEJLlEjk5oqFgYtHQK+RljCCJlJkAskpWeL8usr/+hP7xL/7vP0uFhEJIUQSNOI3Ii0vB22pz41L8LUhIkkLN7LKIprT0Jn46RxN9pnFKlkOSRIReQBB5rDfXub5SpyMn1MsSw5UglJCbVURSFjMHz/Hw4wK71UDWCnS5QLN02rUmrYbNfDRjPEkoFP2ySZX4LG2s0ex10SsWdqOHmEuomoUkRwhiQf/4DKtTp0jGnD3e5+DlHkGQMRqMGY7nbKxVKAWZzXs1Lvae4c1CECrMPYnq1uWYY2ltldnsgiwuSLOEolSwKilPPn2IM3cZOiE//btHPHt2TmdjlRcPHjBdhIwWCbNEJ0kNlno6ReTiL0Jay5c2jFJMaPdarK03aLcl6mbO4Se/ZP/RC6zmKrVaA9+9ZJnP/BCtYmLJCmVe0Oo2kWWBerOCrhrYYoDTH/Hi6S6fPjjDmedohoaQe+hSTho6jAYLQGV1p8Nk7ykPPz/g3m+8ydGLBwzPQxrdHW7c28YfHfPs40c8fnjKy8cnjEYh69d3MEyT9nKDLBRJipj6yiZRKDAaOQhCgbeYUsQCaBVeP9tlMXcuD4Ba4/JLSUi56E+xGz32904QAp8sj4jiBISSaX+GKuWEgKQpuAOPpfUG07nP8ccPuP/BtzjZHzGZTmmtrHF6fkyjUeOdd69z8GSfWsVm6WoLzWjQXmsyW8QstbvsXO9wMpuzvLGBJMpUZIiSEF3TaNRqoAioFQ3LruAGLsHUp7A0xpMcU9FRNBmyhP7JPv48wB+MONvdx5BkZHS2r61TX19GNarIRUEwX2BU6yiyjSAqSIaE5/qMp+f4qUdRgCzKCGJEzVQIA5AVlXXzKrEQgigSpN7lCEuU6FkV+v6Ib976kpDAMAvQJJUyT5FFAUmSAChKkUyQKVEoihJByJAKiThO8UsXioIwESkEGV2rM3cXeMkCSZaxdI1wEWNoCpKio0gCkqiSzFwCZ4GYC5drnpmHMzlHlmUMy6ZWkUkCh/OTCSdDl7Wr21i6RupOSZKM2dmUaq2JVo0pvSGlUCCKKnFSkKQ53Y1N0sWQxdmMxcyhREHWM0qh4MrVNaKZw3Ce8/SjB4xiha2bNtnkFMu2CAdzwiTGkXO2bt3jePeMtWs3qWtzzl4coagq04FDf+QhVusstVcJF1MyqpTEyIZIb9lmqdkgd4YEcUQSuew9eMhk7pIlIYkb8bxU2b6zwacfv+Ct7/8+b39wFT05wzmbEAUh8yBj4/o2UThCiEU0o0sUTinQuPHGmwhxn4uDOUFu4ngLVm6tkUQJR8djIq/N6OwJVUtF1C36iyOeX3i4M5+7d3c4efKcza11MrnKlTdWIXU5OjynlHWuf+Mr6PVV3nnvGrPDp8yHU9JMRxTBqDRxLo7p9nrUVlucXZwiaSa2XWE6PmbhOmSOxptf/SpkLmariWma5Nkp3mwKmsQXu8fcurZFmWR4cYFotzk6HPHWt5aYTkKKQiR2ffoXM9wABsMT1FYN5WJIHHroRpXZNCCZXLB89R6NmsTo9VN666v09y/41nff4fzVLs50jFEWmEqVobdPq9tleD7geL5PvddAzSKEehW708KZhVQ0hWajhtZcIptOePV6F6mQqffanDsT2t11arVNsmxO5Ln0X72ivtxCqzTx44h6s4UklKCmSJpGWQr4rouhV4kW5xiSQSIFJHmIWJiUUkzL6pGXCVkWUZENQuFyBdtUFILUv6QE/Zrn1wvfixRbr7OYz5HlBAGQBR1LM4gTn5pq4BY+ZSngZRGCKBOmCdKv5tOUNpook5cpQbZAzFSm0wmtjo5RyghRjpjrSHmAN5mxmIzJCogykTj0CbwMQbbQo4TjvQDFbiLXe7x19TrCYkAwd/CDmM6V+9TtKq1WC0WBNI7Jk5SMGKVqYZYiqpyThDmapgAR1ZqEM04wW3Vmzpw4NwizBbQ3WDYNNFkljqbsH51y9xvfIIoLRqM+taU13l9RUaKEz3/+jDjXuei7KM0WV27cZnmnRzw54IuffUKzu4UsNimlkpW6zfjgBaPzMbv7B9S7K0ycOYVUEkQpcaKSSym7v9zld//091Djc57+4znbV7cZjSIyDKyeTjBJuLgYotsd8izDbtkoioySjwkjj/2DUzDavP2dt5kPCm6/cxV/dEqRhRSlSpCZxPMSU2tx4Z+SiRqeoJHVG5i1JhVJ5KMf/QPNZpfp2Zj5ImJnZYPVNYmnP/mPkInEhUijoZMJKaIhslJbIhj7xHGOZGpYksTu64cc7C74xu//AMMo8PwzgvEEBOX/Je09erVZs/O8q3J8q94cdt5fOvn0CX26zW6KFB1EWLBBQ4CsiQEDNmx46n/Av+ChJx54Ihi2AcGgKAqURFkkOxz26ZO//O2895tD5Vzlwe5xG2DXX6hatdaznvu+L+ooJS9ixseHRJHI4eMPEfod7N0tUVVSVD7OR4/59ufPeOcnT0hyA+fgADfJ6B+9hSHExFGAZJSoaUSdh7T6Xc7PZnz0E4vp5TXT6znbVUG2W7NeeLz//iN28y3WaEKwfsqwa7AJNhhdF3fS4+LlawaOi9HIRFOfvXGXogmItkuCFKav7hBrD6drMTkYIAkRB4/a3F5sKEWZjZ+SCRlRtqHXy3EnbQRJZDdbIqoi7eEEkYbHRyPWfhufgPVuSZNAWYMsqjzuPkQQNM79Z9RlSVEUVGWNKRrIjUxZaVT57xBBFMY+lmpiSMZ9268STMWkFDTyekspt+9ZvWWIqLewKUEpaCSVIAlIExnqLTkpBTkjY4LdcvDygkPdoIlEVss7km2OKCs0uk0aN1RagWTrhLOMSoKizNFHfSb9NtFqSnC9Iy9Soryge/AhJ48P6do1eRAgyCahtwVZIY8j5CzDHhzc53dXkOUJ7VGHu4sFlSBwfX6GZXRxuilNoaPZOoapYrcV7t4EVFWApsNwqPLWk0NuXnzLt89meFGK1uthWF1GzoTJ6Sn9jkt4fUESC7z/D/4z0u0CTW+xf6zys3/7N0xnKbEfcRNr+OsE29YpooayFlBsmx9/9ojN7AWv/vqXKO0u//Ef/YBkW1I2OY2qka+XXN8G7D14m6tXlzx8PMK2RF69eI5Rxzw/29E52CcLY6a3JbYN4XzK7HpJe3zEycMxplazXm7o7I3Q7B+zmi/YTles5jtWLHj343f5yX/yQ9Kdh1SYDI77NOmK6bcr3vr0Y9bLW8pKYHG+ZPDwEZrQ8N3f/YLB4SG7xGd7tWCzDRClFv/wT/5z0uUtqzSlKCPCKOPo6AD75CFvfvk5c/81Jw8PqeMd0XKJqI1xtSVC12a1mOMc9KijEn9+hy4J9CwXp6cT72KyOKCoa/T+kEEls12+Zn/c4hd/9beUskywWxNnsLffRxArvvvinJO3D5ifn6FQ0ggSne6AJNwiiRrdgUEceTiKShQl+GnN4jbC83xMu4067ONtWmSLNdP5f8BwusThBRIKolTSH1hsF1NaRg+9c8p8GiDympatIUo6hqKgqyZpnkARYAgqaqOyKqLfhAUabJMZXhnihztacotIDkmyBAERTVEp0oKi/h06tCRJKKKJJEZUVUElyNh6i4R7g4VYFqiihCbIKA0Iko4kxWSNSIVLUeXogIpJX9vDlh1amkVHyaCWkKsGQ9aRRw5FFpCFIi1buL/mEHRGDybIqkSVpXjbHdc7H+p7un2726Xt7uGOTNotlTrPkTSVsoBG1BDKDFlVSHJQfyOn01omq9s3hKsVZ68vSLHo7feQE/B3FYYpUtc13b7GF3/7HarV4vjDE7azK7JtQ7DYcXa2Im0UdLvFB48PuZ76TB4+5uiki5ztUIYa3axme/MSoz1AEFL+5f/1c0RFZ7jXZ6NuedSOETWJIk8Jk5zjRyd0HZnnv3yK4bQZP36fH34wJvOWbP0S3y8wWzLzecD45JD1csGjkxGXb254/0cfcHR6xNYTOHn/I6oiYTI+5OBoQpnE5PGM/vEeo6MOcp2wmW6QpQZ/Nae316Zl2xSZz6kzYLeNefHta8LpGdv1Di9J8SOJ09M9XLfh6RfPMR0wRI390xGCEZJud5y884jEjzEkCESX0fGAg6NjCn+L2m5hiBrzixyr2yMowE0DnnzwhNubKdv1GlnQWS582sOCvKyQVyGyrNEyba7vLlEMm86wSxJn1LsN5CV+WLNeLBl0WhRliFKJ1HXJ7XzOo09+zOz8jtOjNqvNktV0zQ8+/YQoS0mTHGfYJi4KwsJDMmTCImJ5O8XtOyRBfW+4UBR22y0PHpwgqDbees7+vk7FQzZvXqHrOlEpoEgx457L3ZtbTF1Fl1RqIaHRbKJIJbz2aPdAFLaMun0022W1DEijGEWVcO0eYbhAEh3i5JymEagFoMkQS4uyjEiFhKRUyKUCtf4d2FaSINMoJU3T0NQ1kiiDUGJIkKYxvrrAlNvIiORNhSqIiFILucyQRBNBCEjzCF3XUQyHoaLTVjI0uUBu1Hsah6BSlAru+Bi5zNjNInrdMYIukRcVZRyDVCE4DeevZ/gBuAd7NGHJUUeko2l4dyuGhwOSOGR1fYPQZORpRmsyQW9biFJFnuRs7y4RSri63iHafdy2jd0dM2nB5dkdotEhz9ecvbxjeDpmc7vk9Zff0t1z0XWd3G+QW30+/fAhSrXjy1+8QN874K2RhlQESHWJN90QxBV+UFH6K0Td5O2PD5g+u2J+t0QUTRbr+F4wIObohsDdq2e8TCU+/KOf8tOfPKErJuiqhlfb9PoSQu4TpyWDnkOT7+i3NZSWxd7xhGdffM7B8RNGB2OcoUtL69JkCY4SEgYJWy+nN5DYXGzpHw24Pr9DtV1effeze6ea3WHtVRy//YjTdx7w4quvKfU+7eMjzFrkp4caF9+/IPVFvOiGbjXgzdNnGE4Pqux+293v8MMff4KaV0hVzGjYYnH9GlVpMXuxxmobGHqL8WGX3XzD1evXtNoaJ4cTbs6u2AQzJuM2VQOVoZA2Dk3ssVns7j9ufPxOTVJoTF9fcXzaZ2/skkQT1uuMIo5AlomymrZpYxshtayiKhFXiy0TyyELPbJUoaljbm89XLdDGMSUgsbl+Wu6gzZJKRPNl0iKyPXzGf1+mzSPCBYbNENHSEQob7FsHUOAvb4M7TbXtxGt0QjCHZEfUF9dMzx9iDBps7ktsF0V03Ip8wzFbui3+yyLhmT+mlG3T5BuScqEvc4jyrqiWL6hqGNcRaTAoc4qhEIhTjaYyu/ghy7rAqmWESSBmpqirJByBUFuaCqgEhElKIBNcEfHkNHFNoJW0spVvFSB+v7+Wld04jSlozgMjAEjfYzsivQPG6o8IdnG92Ht7KirBkVqQZyymE8JtxFerWF19nj0xECrBVrdNlarjaRpdIcO69tbZAEkucBfZfhZwzqeUadXSK0uD94Zk6Y5WZIgayoqEook0Hi3bPIWk32H+fUFm5mPbLYoqwKjZRJ4NdEiIjM1JodHHFoV87OXmL0DrD2Hw5GBTUqyi3j+5oIozOmNxnTbOtPrc6LpNedflQRpSIFEKRQUgspuuaMWRU73+uimRB0H9NQds+dvKMcmYhLSa7tMb5Zolk0tZqgGeHGOKFlMF2vef+uUvUf7tB2D5SygSXcISpvzyy3HrfewJxFGJuCMB0iySHh3y+PP3uf7X/4Sy3SYezXv/OHv8Uj0aWkVqqbi7bmMDvpMDrr85T//Cy7yCYLWQpUawlXIk+PHDA5GTN+8Ia0sJg8+I89z5pc3mF2Xw3cfs//WKY8VgWh5w7sfHJB6W8IwZXv3iqIQEVST2+s7PH+LorokyFzMQqwmwh6Y5KFAHHjIqoa32OEejHn+dMXD93qM337M7d0MQ1tj2zVK28S7NSgVE60qkFsy68st++90eXPhMR4dMDLBbDsE8wV61yXYrHjx3St++NkH+Jslh/t9mqjEVlMSNAyjRSM2VLLNy2evOHj8gDLxqQ2ZZJfRGpicz7YstyAZGqgmcaUwdgw0u4tuN9SNghBWDLo2dZVQpkviXY1uKEiaQxX4iIAiOZiKSU8pOBl8yHT2ktdUkO+IU/ueRCk05KSkVYqpCH//gq6o0GTlPk60kpAFAU27R9c0QkOSZej6vROkiVM29Q5VVnAMnRINqZTvwwQl4Z5aXyuUdYWuqkgUNIJAuIrQNZnAWxOtfbZeSpTEFNdzatVA6/QZ7z1hrFaUcQRCSVnUuE6ffs+hZcrUcQy1QByGBF6Kqsk4UgGahTgc0Rq41GGILDUEhUQtaqiGRpFGJKKKUYW8+GZB4CeklYRY50ThigqZ3t4hilYzGnfA98gSm8HRW3SHE9q7KWZdc/XmEsuZYLTadMYiL759iq67UEpsVxFhqVLLJlarYbkomJz2abdVTFXDny/wsoq8VLlZpKA1hFcpP/npO8yfX5ELIlWdEOUeRdmQxCWy0TA67BGsp/hhxnlWc/p4zHKa4AUNP/iHP0RII/JQ4eTtE2xTJ9osmaUZtz9/TlR3cQ5c3vtPB5TLM159+4qi6RKVEYO2TRGf8+u//oqHH34ETcpuV2PaFp8ePEapd1RpRuxFmP0hYbCi2+pjdl1UW0RJcpLN+b2lUGpz/fo5eZ5ye3ZBTUxveMjWy0n9kCwUefh+B3XekBY5m6rGDyIe/eg9vvj3U3RridLqYus6VddleXlHli5oP9rj8qsLJicduq6DkFbMtg1JWuCSMRwf0p5ozJUU39tydzVlT5XYeDueHHW4PtthtmwqJaesUmYXc4aDPlJhIEQemmFgdS0WyzXHD/Yp8hRJaZOFS7TegNU8wNIVgjBmTzNICh/bcgn8FKkpECQFuyMjd9pcfPMSTQqRVZ2D09597ZQFltNhGd4gyhZRHlPXNZv1c+6COUnqY4gWYZEiiRqqoFFXUDQgCfXvUNBNiWU6COEKEQlV0yjqAgkFVVBpKKhrDSSLXfgKRRXIjIRMV8hqE6QtdVGjKQaqarNvPeTDSRs1L5FqgdALsDSN5e30PjvMNnBkESGQ8MWYJKuwZBmp2hAtMwpBwXG6tIY2hw/20VWRMtix2PrkSUYZxQiSSpCW0NR097pomoStVlxfLEjiilpWqfMI01apFAmpLnn+/TmJIBOWFVmeMnQFDEWkY9vo+pYklzDEIWrvlO7ApQw2GGJOnsSscpBkuLr6Bqvd5dnnMwRqbCPn9cszcsnEciRQZVREUnFDuvOoBRNRFqDVwpYCNEvj9vU1eRTy9jvvEK2XVE1OtEuIsgBFU/BXW9ICPv7BkNmr7/nyxZI5xje5AAAgAElEQVQ/+C//Kba04umvn/LgvQ+oioTvf/4zHjx6i6IWGPcdgutbvvjF14xPjvn9/+pTbl8+Iw4Trr+6xuiN+Ef//R+xW16RbXzu5jNcrYtlavjTK65nMR9//JjXz79AVXookkxRhUjWEG/toekCVDHXz8+xew6a6VIvKwrP5/bqBYIgsFp7tDomtagy+/UFclPQOehTiwpXb14SSiOiTci7nx5TNS2Wz57y+OM9/sO//CU//HQPxAq3KXi2WNIe7SN4PknsM+o9ZLNe07YMjt97wtdfPCXdBXz5t7/gp3/0KYO+TJVqiKMeq5srBsM2z15+y+j0kHS34cXXr1EkGUXU2Holi/UtB3tDyjzg2bcr8rREQ2C4P0LptxCrY7LNFZ1uBz8K2T/ep5Y1osWaeOWjiw3Xs6/59Kfvo9oQeB7doz6FJ6M6Jsvphp7WIPW6UCfYukpRJGRZSlKoXCy+QdQM4jzGsIbUImRZTLvdoZQqpEq8xzv/lue342S/+rM/PXBPyZKUXbKmZ7rkRUWYBORljqKo6KaLLZq8nP4SRZAQVRFHb1HnJbpi0+uMeDyc8KTb5ZGrYNdg6BpSVpMEwb2UtCzIS5+rs2t2QU6ttdAth/39IbJcQ1FiGQ7tQZvJ8SHHB917h08QUCOi6CoSIqIiU6o27rhFx+0SbVc4HRtvPkOUZDazLYWkoqk1V29ec3G3w/OWRKWBanXo2Q1VXlLUGqubKTezJdu1iNnf49Gjt+iMRJp4x3a9I49igizE3y05f3HBbBqSNQqnTw4RqphgG1EoDXmUESUlWsuhKGNkU8FpdXDMinwXEIYptaCw9nP2Tw7p9G3alo6qSkiGRV2VrO62DPYOuL2aMTzdZze7RXPH/P4f/wFWdkMZR1QILNZTklzkyScfE3hrun2Fs69e4EUV3YMus/NzVud33J1dM53H7L9zwrBrcvP99zz/4ju++fx7xm2Xui6J44RcMnnv3Se8/Ppbam2A1pFpipjF7Q2dURukAsfusFx5mG2bpqp58+I5Qg2NLFJqbbZpjV8YKJJOiYjd7aO0VDarCEmCyK8Qkkv2jrtcvZ7iqnB5sSJbrnDHIwa9NmVZ4m9DXMdFkXOWl3Mc10UVZexOCymJqIWIumpoDU3my4g8ionTnFquef3sgk7bohIKxKLm7MUdnpdSZjVZUlBWDWpdcLDfx3Ct+4itVgtFM6mbklqoKWIP1VTYbNeomk4hwvZ6iiSIFEGKIiskfkRrYCEVEoouY/eMe8BsW0OzbKoixR50qOqGbZSRJFuuNjN24ZyepbFJFURZwit2qJKJLAhEcYQmanRNF13VyNOa3//oT/5+whJF0PHSDSIKdX6/WpdofrP2z2iahqK8XyxUVYWoSdSqCUAp1diSQ13MkfMUVRtQVilJWhPvcso4pcgyymTLbrkliGJ6e0cYpsxu56MIFf4qgSananIMU8XUZbSmJA39e0mdpBIEIXWVkyUpaRhhjMZIZUmR3+M3r55fYrUMyrLB3ush1AmvXi6Y3vmMTh8RBQlau8XBxOb5r69ZbSN0KyStZNBU9k4nvPuoz+bmFaWtE2cihycTFm/O8dd3zGcphWRz8uNHOELCm+dP6XW6zG+vyRSFSm1hahqa08Jfg0ROnTfEpUAtalSKiKgqdHpDOr0up4cdhKJBx6RsBL7/7paD/R6r2RzZULi+mPHT/+ghdRGzOntF4nlkdc7XX10iyAadkYz0xVM6HYNYE9hGCeP9DnlW0e710VSDuK556/QJWpXhrTdorRbj/T5FCV8+vWMwbmPrNZ2BxK9/9pc4g0P29lsISc11EtA5PCDwMwzLIckL2gOHdLMhjjJOHjxgutxiCCVStUYKt3Q1gTwWGezvkaYRIiJ226ShYZfFqLWK9+UloycPOXtzgzXsknspdS0hqq17dpcgEQcJVbhFUnQkSSJNCqQW2IbLeraibXf5+s01bksiLeDx2xOKqObs+5fsgh377QlhJJLVCTqwiQv82qatucQFuNuUNM2RlBxJbaHqGpXiIqoN3spnsbvBMQ1ubz3Gow5S95i2mWMoLSy3jaQeIeg6/uUMcb7C6LvkRcHNyxkqNccPeijKPW3m5Gif5fMteb2gY3aoah3LUCiLGqGBqs7Jyxqhvrd7IjRUZYX4m/r6e3Xof/3Lf/Gnu3SNLLdY+zdYpkUe50hFRZSssO0ehiYShDtyIg6GjznpvUPZRPdn5iwmK2pqqY0qiUiiiGsOUASJIs2ItitS32cTVghlzXy+Zu0lNFKN73ts13NE1SaKEhprhCKJtJ17hZJQCqyWKxpKAs9HUnVk1aVpcpKgRDV1orS+v4rwYxRLJdltuXlxwWq9xi8F/GCF5HR58sAmmt1xczknEyuCJAXT5eFkgGUpRLGE0e0zOT3i4HCId3VOHBW8Ob+hlHWGh/usrl/xzdMlk70hq7sZVmeAJMGwb2BoOvFuQyPq9Ec9ECpqakpJomxqPvv0IUMxIFgvWS0T3n3vmMjzkOuG3mSCKKdkeYKitRh3dWLvhjKU2Hpr3lwuuJhG6KZGoWpcvZnx/kf7eEFOmik8+vAUVU4w1ZKvv7xhNBpgWybrxZaq/A2nrCxJBYfTdx/T6RnEu5jIy1lFJs7AYTVd0u65PP/+nGC1w7JtLEuhriKuzp/jz3y8KOD2bsP8dsG4b+F5G9a7giCVUGSLVlvn4mLBy/mOtZfj73zKPMbSFLahSFwJjMcuja6jNQlxlNNtW1idLmVWEe7WTA73yBoDqRb4+LP3sFouSZCyCXziTEJXodtt4eoG+4cHpLM5VZNTIxNudlB6xAKsNzFeVLKIchBtFp5PWYs0VU5TVmSZgCHLqKLAYNhlt8lA0pCaguHhHoYmkWc145HFLiwwFYnQj7BVmTJb4Yz75JmKt064u54hJxGDkYludUnTHKhohIZ2/5C7+R1QIWgtKO6NGT4eHXNAWRWUeYVhGyjGPfpYROIn7/+jv1+HFmkIAp/eYEwl1PjpDhGDpEjYFRluXdwvo6oIR3YJd0vOo4Djg2NEQWNdJezZA/pGQBaviGub3LGwlRaqIpOnBXUj0NQxom5iITC7m3N3uaWSbfb3uoRhiCQpKIWPqQ4o0hyamrIq0DSZWjIY7Lcpkvuri7qAzpFNFif0ejL+3QbDVFm8OeNuviZJ7qWEklwS5io/OjL4+m++AaOFc7RPcLFCsVQ++fFHOJZCk9cc7I/QFBGpjrn69pw02HL++hbENlGwIVuucfQuw15MdzhCBeq8wNEdFt6WRRAxPhrz8LDP01/9HbulRyNryI5IufE5f+MQhB5BUPE//Q//mCZbMl8t2Qj3P4ts7pOu5yRpgzDo0tDCNCXiSiLwU0S7w2Kxxh71+PCzJ8y3Gj/4wQHjnsrm5or/+//4G/bf/ZQ//qe/x+L8lnZ/QHdokqcShbhjO48Ig4w62mB2bBzbpDex2fkxQhLz7TfPSamQG4FKliniirvLGVUZougamzxHtw0efHQAUY0fbInCEk2qUBQRyPjyVUytdmgM8MqCJG/Q1zldPURTbEoR7q7mqGrJLgNFNjF0GYOCVeTjthx20zn7B3sEnsTlq1sUocI5eYS6FTBNC3/n4XY7zOMVV1c3OLpOt9eh5WR4c4O7ZUYj+5Rym20U0Z2cMNw/ZvLoMZ//+Z9TCgJZUSKWIUkqYw9HzGY7ksxjMBwSp20uX19jaTLtrsHN7exeRLWIOXo0pqBGkgSSKKPnmsitLk5m0Jgdwo2PtFzRORhSI4FoEEUJSeFj2QaCJOKnIb1Wh1bdwhRsAmGHIsm4ZhvEhn5nzPr217+1Q///wOrunVWNIKHJBkHu06WgQaQRBNIyIikt8iJGU1Ru11d0nD7jeoS325FlFUePPoJyTsvch61HEWV4ZcR2tUSRKrZRQLQLWW/vyGsJydQZHD1GFaGlSwRphSRJ9MZH6EqOptRkYUqKjigpTPYHrK5uUCkI1itQTBRFZrfaEkYFtinTJB5XVytKpUZrOWSizrv7j1G8Ff/mX/8ard2jo5Tc3K4om5q3H+8jBzNG43dx3RZiHUEjIqcihu7ghxmau4eRy5y++5DV9Rml3Obks2Oy9TUtNWG585nuGgzX5sSqSMMFF18viP0SL29o0oJkmfPexx/geSus9ph/9l8csX3zJWb7gNGDtzDUhouLK16/nuMOD1gHMwhiFCEmCXR2Ox8sg5bWcFFo7PUGvP/RWxhqxbMvP+dVIyM7p/w3//N/h61k/Ls/+xX9QQex3JKnDdtgRxCtkI0BLdfl4HTM5//qL3l5teXk9JRwN0fVRnz0ox+Rxj6yVOPlW6JYQNRVUk/j4mxFq2dShFu0MkVRdGxTwlT6rNYbLucesqGQKCZREJLmOQ8evYvnz/CWa4pKom81UBXEpkG9y8gUCc2W8bwMw/JRZBFZNdg/Pebq+xc8fOcICZUkjBAij9ldiGsFnL77mPVsxVtvn/CgOeWrX31DsF2RFjGyUoGssV36NK5CXVYUuxt2wYJ4+YzR8R56GtLq1Ohqi163jaxU1JpEGQkoko4mZ9ijCdOLCwTNwHY6UGc4p4ekoU/TbnH77TVV+YaDrsanf/gp1pOP8PyQQCu4/PyC7sRClg2COKAQZOSyxhRKckGiEmv87YzJ8QFNqFAmFZqlIxo6+9094jSi2/3tiSW/deT+F//un/9pWsR07C5R7JNXGR1JwC+gbbmIqkxLd0gqCRoBP1yhmRqqrpFn95D3iWMhNQVNnuBoLYS8JPNTyjRiennHJsmRFRF71ENSRGgEul2DaBeSpSLWcMJofMiwIyOmHtFmSxolyKaOoekgy4g0JF5ImlVIukZRNWRlyfBogtQknL28RHN76KpCkefoVgsNn1/99fc0Tpv9cYvNYklaqahWC5GGdqvL9u6WZD5n6gfYqgaNSpJl0NQYbZdx3+Lsq88prAFPfvQ+wnbKm29fcnOb4VcKb733kDRZEm1TkjRiu/ZYhyWVIFFICqePj9GbmqMHR5wc2cTTG8o45uw25OCoReGnbLyInVdQNiLv/97HGErN9CpBN238VKQ96qGJFn/8T36Cks9ZXqzYejWr5ZaDx58x3FfI52ueffOS/tE+lmmRptAedMmbBn/hIesq46HL9Pwl339/ywf/4A9QtZz9/Qe0ejJp5pEHAbUgsLe3j6LqxHGIO5xgD4ZogGwL6KJG00B/1CNOYtodF0FXiMuCTSRQZBKdjkZTRtR5RFGVCJKIiIKuy2R1QtPcG36OTjrImsn6doUu5HRHLmWY0OmNaek2lmmzWN5hWg6ttsN2G9PSZVqWg6aKaE3D3SLi6MEB09srmlKiEUoquUNcK8RxxMCAuk4pGgNZtWmT0HHuEUJKy7qfiESB3SyEYoVl6UiKTG+yR+7taLdNWh2TOM+osoL+gYboDmhqgSJrmD1/jW6JdPbGJGlNWdQEixVCWWD0u2yzhtvV7f3xNNkR5RVCo3C8N2Ab1ZRVgmnY9JyHlMmWTbpClQI+ffJP/n4jd/Sb0PqGkp41JNj62G0Z/IKJM+EuXiKK0LKG5NGCpmlQ0DA0A7WqSKKYaRjy7sGYYH2/XLPaLbJqyc2LGYJs4N9dISom27sYWQar6xDvUkzTxrBsDkcyYrGEUL9XX5USaRbTLHY4AwWnrrAtHT9MCLMEW5UZ9g8xWgHh/JYkgr0H75EnO5arBNM0EdSSf/9vvkV2ewxaIrOrG9JGxzAURkOTUqppD1zC2GXyztu0tRSpBkFKydINSVhg9tpcvZmSuw/48EeHvPrFXxGEMnFlY40VBr0+r599x/5hh9evdkz9DUUj4Lou+0MXTUkRY5+whullRd88RJAtWv0TTDTaqsG//eaXKKZLo9d0j0xeffkl11cLPv34Ee1ei/UvPmd76yMh8X/+r1/x3k9/n+1myoHR5q1Pf8ywJ2CqOl4Oj3/4KZu7KzRbozceEHk70mBNZ9imPeyynd/xi796xeknP+ThqMtyGfH8119h93vkcU5vr8tmvWYXbZEFGZmKwdDhgS7x/Nc3zGe3dE9OMUyF2/NLEO/D5avQQ5clZKlm/+EIf71DS1NcsSApC+JGRGsZNLJOEiTUlLx16JIuI3RXozt2qRIBKROxugNMSSSII8q6ptueIIkSsijw7nvHhFEKdUZdiMThmh+80yEpEnq9AZmlohoar+/uEOs+taxR6S1ajnoPZog2yK5ClBWooooh62zKmnCxQXJlvEghKHeYRoaipjidAetIJHj9FNeUGBw9YP1qi27LGMcTFi/OUNpDbs53pP630MrZ2x9RCTaaqVNkPkJl4ZguSRFTJAJVBoVYs7y7wui9wy6849B5SFhsmc5fYFg64/bvgMLJ84yGBllVkAUZ1VNw3RbabIOsC4hFQynWmJJDGt8iFhJhGIIIBfcRRHGeUdcRuiWhorH49jV5VCCIMpJRcfTOQyoBDmqRhooi8NmuN2wyCbuSqac2476Dv0vpjUdAiRmnlKKMpusIYkLoZ4z2Ouw5+2ymGYpRkocg6jotFc6ePsPuuExvpwiiymoRsLd3QBR6LOYRuqFAUmDq9y9XiHPOnn/HZHTA6vwrfMlmMOgQeiF57SIbHjdnl8RlymYR8rO/uOb4YECR1xx8/ABvccXN+SsQJC5ebhCBR/snWG2I1ztIc+q4oHV4wlhMCb0NXjDDNY9QLZ2jk4ecffcNljsmzQoURSHZRtj2kA8+mdC1d/z1n/8Nkqvx6FGfn/31N6Rqj5PHD1GrjIfvv4UuZMiyTpZ4qAps716BbCLWBWXkM7+8Y3B6hGkpnD07pyoUfvAHnyAqBrF3y2Y2x3QtlrNrHr53wpvv3mB1u/hznyAt2X8w4PLpK95czZmHGe8/OOB2ekO31cdWbZxBiyossa0W+AnjtsvtfIVk2JRGG68IGR25xFVKmoQESYFp2rTkGsO1cTodsjBHaGR6Q4ujgyfs4i2aUiG7BoY7RMxrahIawaIsMmwdnJ7Fbrak1R9RRTGGJWM8aFGWJZUAZa3wzc2OIglZRQF+LKNUJQcuqLJNz+lSVjmVLJIvwvtElFrE7JsIukmWZSR+QjRfYo06tA8mqPaEVxevODk5YbfZYWwu+PEffspiuqFRchq7Q7JeIadr1IFLmkkYtUGeJwiiTJ5FqHmMJjoopoJmjrHVgsjqYZoGr6dfsQnXHOlHGKb1Wwv6tw7kTQOqrBFmHo0MlQCFpDFwbWRFvY8iBagbsjKDRsTQbGRRpm21aDstgt2KqChpGoHSixAlg7pMaZqK2eUtl2evWN/dsdl4+Lstd3d3bHcp3dGE8f6Yt94/pjtsc/pwTLulIiMgyA29wQBdljB1A0VteP1myvxqSlaFXN5uwWnjuhZJmDJ565S0LDB7A+paxnQt8iwkywt6kxFFWdMI0DQSuqwg1yJ+UHE1DVjGKqViIlQlupjT0woWt3OWqx3TyyWy3uPdx/tEW4/20CZe3xHEAVUNZdWwDUIsS2PcaWj8kKYxsDoKlViTrNfcXW14drYjp8/Bgc3d+S2mVlMhYOsqZVNjGSaKbGF1YWLHvHy1onO6h9Xr8+L5LbU14oNP3uPbv/tbhnsjNHFLp9tCliKuzq4pkpyzN2sGgwFpkHD75pYga9jczXn6/Rtct3VPzpQlHj4Y8/nPvkQyLYq8xnV6fP+r7wjDmtcvpyRU6LZK6FdsSjDdAT/8wXsMHAlTbyHLEmpLId7GlE1CQ45iSBhVhKqIkMck8Y48z1n5S3xvSxxlNJKMrBtohknHaWFaCgcPhhweHyLIOrvNDUKeUVYgiwpqkyA0JbKoYNsqdVHSsh00XaRqwFDke5ELDT3XZth1ib0U21KwNZkHhyNc16Fvt+iYMh1LwZAFNLnkwaNj0rpmE3g0QCOWBNsldRmhGjp+0ZDUAkJV4YgKQ3vLo/ceICk5Bw8naN0xsze3DE9HUA2QZAEUCVGx0BUDxVZJkxjy+5DNHKgkhbIuSfMIQRDZbWccDAbEhUdWZORljtyIyNLvkPqpyhpNWVBnAooqoykSRZMQ1zEDpbj/aKmoqi0VGbJrIYkKVVEiVAV9w2W5DaBxMYSQcOFTxBFnV7eINKSlAIpOIbuQJyyWM/JUwuj1qRUBsblPuJx0XKo8ZrMMaGSRJEhIgjMkxYDRANlq6A8tVndbGsNCMArKnQyChWLF917gGlQqag0W6x1FLuGOJqznMxK5RXdkYTcFZ9db+vsThl2bj9/Zw1tNIcpZpRJlVrDyQhBFdM2k9/E7aMUdr19cUSogJj6vX5wTRBmypOP0FfYOXBrR4s3Z1f3E4Gps7hZkiAjkRHXGg4MxiixTyhq50WYXzOiNh0xvvwUkJntdrs9uqXORoMiZbXwePzxgvZgS1y1+/IePCeYhH3w05m/+n3+F4RzwX/+P/5jpd694/vwVi22E3XK5u7rGdSwSMeKHf/gp8ewabm+5m53z/bM7fvzZJ7x4/h0f/cHvM718wfD4gHAb0aoVVF3g7U4HsY7IclhO54iU/OjjD0mja777uxWSY7NbrZA2FoO2A9mWbVBjmzKGJnIsK9xGGbKkkBYlStUgKSKqJCGIBUKp0+nq+EFOX+2g6AUKJcO2SpLWWBpUpYBtK1RVhdu3KPOK0AvodXXsrk1eZhy/c0IelqiKhFJJiNyP9u1eB0dR2XoNebymyWuENMCxVMowQu20EFWN+e0dcVMzefuUq4stwWLJ+LDD9HJOI+1YTteYqsLecZvVyifySjr7Co6tk6cJLVfEtMfUWUOcx4hZQbTzsZsYYWRRSwKCVJH6JR3TZhGKVI1B29RJ6xS5UYgEhziZEpUKVQmKqBEUCY3W/R0KWtCIioww89gbjFB0hUbQkbUcRSvRRQWxUelbFnMB2tqIogrI85y0LOi027Bco+Ue/tUGf74jTVMU3aXRXY5GbyMpOel6zt1dQnfwAMPU0A2QFJODtw+wLAVL1pBFFwSFMi+QFItGVxgMDK6fPSWPRdJGQHX6WKMJFAFeWOA4FRI1SVpAU5HsEoLAo2VKzKuQ6a2HH6a0WiqtSqRMSz5895TR0ZDl9Q1XL25IkoaDiYOqG2itBsVWuXozxx0PoLxjs8sJi4bjvQ4X59ds/AbVdBn1bV7czHAcm7JYYY9tvGWFF8R4iUi35xD4BZs4RZId6usFeRrxo5++S7jKSPMVcVzT6be5fHZD1NSMLAWzN2Yv3xEkKbW9R758xWqq89k7+zz/5Q1Vq0et5fxv/8v/TuBDb9RGjEERcop2i9HpCcE2JFisWc4WfP6rC/7kv/1nVOWfcX3zhqOTD1neLdisEo7bOYop86h97xu+fPaUVNZRWiLucI+jVoU3f8N0HvDwk3dpiga784RgdoOhyyS+htWyiIMASRbQyEmrkizKaJqcpqkRZZ2urSIIOvt7bVqCiO0oKGpN1RgEeU7bsum0RRrRQqxqVF1CoaBOUwSrw6gj4S8DZN1EQiWOCob7vXu9giSzWe/wLs6xZBXT1nn/owMuvq8Q6oZCFonWO4aTDnUlk9cCYSEilSmL1+fosoAz7tDp9ykmQy6+u2B/4tI57ZIm4O1uqEwNeSNSlQ6arjLqnBAXCYKgMnrwkKc//xw5D2hrJk1ZIBc5fiMyHu1zu4k4Hh4SeVuyLMMy3Hv6pKgx315hOQNs26RMCoRKxpB/By23YzkUcY6iqTSaiIxKngs0kgiaSVl71HWNKZgIKGiyhSHklFQYskGYx2y2O4LNEiqNmgZvF9OfHCHIAqKQkYU5htvFNh2KNGO7W7D0SzqDPaS6QKtViu2GTRwhZDWq00Pv6ShSwurmGkWSSeUcXdKoBBHLyInjAqfrIOQ5giSTJzlFkSI3BZHnUykaZQxxWnL06BFCkZDGPmu/YBOcM71b8v47Q8aHD5CkgsvvL/HvAmRZJg5CcsUh87cUYc7S2zLs6nzz+TO2lY5lG0zaBjs/YTxwiHY+w4NDnn/3NU0toUo2k70BSbjGSzMOjk5Jox2Tw1PyMEGsNZI0ZLOMcDptFBXcvS6HjoMsl9zeLMmUDrPZFkv38DYJL+LnjOSaUqgJdylv/fhjvrj7msHRHsgS73/wFlKdoqkyf/fzn9GxRgT+mrox+OT33ufX/+9fcPf6Gn38kEzY0en3MFWTpkw5mji8/OYrikylOxkh6BaaIPDNF1/gdS1k2WF0NCFY3NLrDggXW24uZ7RcB03TqMsKzdJIkowsq+haA0opZBk2oGhoRs3IbaOIMvsdh7bbQlFr4iSnkgrqAjLfR3McnK6MpFik4ZYSgW7XoRJrFMNGa4NlqBSNQnswIAsi6lrENkxuoxlWy0ESGwxVY99wWRnXVLkMished4Bi2LS0BmuoI3gVL768YTg0ERQRTbeIQ4HAnzLeG6FoOsvL/4+091iSbM2y877zH61de8iMzEhxM6+quqWbrG4QTZAEDEYxwZivUnMO+QIccdpmNANhAKwB6+ou2V11tcibKiJDunY/Wv6Hg6gpLsyKL+ATt2X7P3uv9a0NhqGwi1rIazQrpVVcFNkyP7vA8g0KoVKaknDo0cSC+TphlCXQCaz9Ia3aYpomuwiqqqE2BL5rUykNipTEecnJ/RGG0cNmjqYJiv8Kgui7vdy/+ptfLLM1pmtyND5ivVnSigZFBdu0WM5jdMNBEYLJcJ9WbZl6FhkNEzsg2hWc7k0wqNHUDI+QaLVF6yqKPMW0HEzdItvtiKOYpMxQMOmN9xgMbfKkZXIwII9j5ldX1EInzRPqLGJxcU5TtixnGwrFwR/6ROsrtrdbVFqyuARKovWcLEroasnbyzn6aIJjqnSdgev6aEqBoQlSKTk4GnPy6Aglv2F7naC6Di8+f84yVjh89A5lmlCoffaPHC6fv0DtjaC45uI8J+o0pqMe+/2Aso5I8g1xUnC5LVgla1axQiY1To6OqXz2rfoAACAASURBVKIZ221OODrC7goc16bMS/67//EnKLsVe0djZC5pBXhhn8X5JYYuOH9zhhr6zBcL/tk/+yFff/aG3mjAKOzI846bs4R3f/qUly9ec3QyoW5qnn7wkDZf0e/5vPp2wfHegFIqhFOX6zev2Gw2LK5uUAyfg9MxtqlhmS5lMqdqd/zu7/6Jxh5zvdtguwZa22JZBlWb8frFG26XG47un/LZPz6nqBTqOr9Lu3k9+sOQwDUpq4LR3h4D38e1VeqiQZEqvUCn50h818S2YX88oO+7VHVFV7domkAoGo7v4wcemm0STvuUcUrohwxGA8JpnziKGY6ndNRoqo4iO1qlI+j5xEmK4+psdzmarqGrAt3SqdDRlATN0BFSw7INOkVjfrHCUBvcvQNq1SfKW5ZXN1jUWD0bypImy+m7KoO+xv6zR6C7aJ1GLzSQhs0uvfPwO6Mpl+evyW/XBCIjGDuIsI86sBCyIK0FpZRUeU0t7pbIhtCxdIcwPObZwx8SWi63q3PaqsFRfUzH5oN7fyaX+9Oz3/3iZnGFHbpM+1P0siNqYizbJrDhZp0i2xLDNHjn5CmrZIWnaRiqDaqB1glMRcVpK9pFQ5mBaWsYtsPk3jGGoaN1NVmUkSYJdVnjhX0GexN6/TGBb9C1d5tOwwlx+y6KkHRNg+UNqNsaKUwGA5PZ63M0VOq2RVoDTNOgLEqqsgNaEAZSb7C1js16RdEUjEYBhtIyu56j+UMOxybLs1tqaTB98ICGFLsXcHTS4/rVBd5oQlPMuXh5TaL4fPj0gKu3DQUq945GdGnCeDpgG8fIUuHNIqWQKm2lIlUN3+sIdZPVcocaDJj6GllWUFQKh0cD2k2EZejsZteM79/n7fk1Pc9Aio4oXhOnDUFP59337vP5rz/FCkNW1wt6ew9J45jjx09xfYe9gzG3Z1e89/0fEm13PPvw+7TxDts2GI8PQBS0NWwWC4q0ob93gOXr7JZL+k7AJx//kjffnLGJDOxhyLBnMQkM0t2KX/3yD5xfzXhzW+LsnTI+OsBQDB6/e0yR3GI6If1xyKhncPHia3TbQu06VAFCCAxVIJWGJM/Ymw4xNYHn9emHDoGtc3uzYP/+IVVbogqBpav0gwA3DFHbDsfQMRwLzXNI8wLDVFF0B1WAlBJFNUl3G4Sioasq/iAgi2rS7Yq2aXF9G9vT6e+NWZxfY3UN/Z5H2zRYlorfcwlGR7RZSSck8XbL4eE+3rSHbva5vVnQ1g3GwOPy+SsCu2U0DMnKEtdQGU/6qLqONxxDOODTT76iXC9RqRFCwZgMkZ7NZrVhPHDIxYhZNCfPU3RVJRwMGU3u0fdNvn77e56ff4JtBoTmgJqavdGQp/s/+fPu0MEgxBEmtB2yheHggOubWwA6oUBbg7CQUpIWO05Ge2SbNV3bUjY5RZwjPB2zKegHA8xco5UqCEFXlGTxhquzOX7fZ7g3RVUa2kpB0KBrDbKsaTsFqWhk+Y5q06LbNm3ZYektXady8PAI8jXloEdW5Jh6n9H+AFMqNDnERUpNx3w9QxQJb683bDNJbxKQZxXL9YbJZIrutqxuYgzbYjjqE2/nZHUDhsYm8jg9uYesF3z6fE6m2vz1v/6Il7/5DVKxeOfBiLrYcZ227EnJeheTpQ2qpaKUCpIWx7IY9obUZY7t9Ql6HkWcoBoBSZ7y6OgBgdEw2h+xuVGIspQHj6bsNgmvn38JRogqFL747Vd0HzwhySWz+RxreMi7Hxzwh19GLG7fMJubuNqWWvr83X/6W9796AdQLYniHNUyKNuYLN5i2g50LUdPDolWN+ididEb8OkfPubqdoemmwzIUTXQhcLzz895s8gR431s12Mv9Dk+PMI2G96+fMn5tykH+0cgBE2Vcb3YMBgek5QN4/EIVeb4vQHz+ZymkxweDHEMQNhoWoaq6xjGgPtPxpRFzMnRMVdnb+nvDYmTioHWYdoOZV6g2R5K3WJpKklc4no6LR2KopFnO5zAR9NM0jimlQ3DvQGLm2t6tkaWF2i2Sttl2JpGVKooVUfT6TSZpOgq8psvUHWPQtFxfYe8q2jXKbUeYToGSZ6zeXXG4SRktmxpmwhv1OPlyy+5vZ2zNxkyPXxK3m353ofvc/HlJ1RVhm9bjPo2GS3SCok3K4LDU+q3HUpbEjhTpsMjOrXki68+RbWgaTIUYeG4NmkOUZl+l2S/e0L/w8f//heb5RqtpzEcjGhkxzqa4bg2plGxWja0ImTaG3KxPeed48dsk4iozjEtMISN1uQc7R2yH46poxhN15GdQrLZkaUZ09MpWl2Tbdfs1lsqVDa7DNO0sHSdZDUnXe9YrTM0b4hEoJmCpqjRfZcmXfPqi9fkbUetDhgd9vFtna4q2MwXd9U8ioIsal69uCZuajQ3wFYVbq5muLZKXBdEUUWv59G1sNqmCM2ld+8R94+PSS7estmsUN2AWqZ878cf8O1v/kAhVcb3RsTzGwp0Hr2zxyefPke3fZIS6lpgmwqqJghslSLOqRuV0ciHMiHJav7N//4/czrROTgY8cs/fMn904D++DFaF/Hq5SWa6mL3RljBgG2SIUyXMkmJpcpmlTMIFL74+Dl/+a9+yOxyzigUKGoPNwhIMpUf/egp89srVM1j0PNI8xVVISiqnDbf8vyzL8makqpUUQyLbaagGCof/Ogj0u0tu0XGi29vmBcKz947QisThtMQERd0ouCPv/uSm2XDO08fYzs6VAmyKrACF0WB0bDPanlz13l1G6HpKtNJH9cUtBIUCY6rE/pjLNehriIc38Z1fObn11iOxXg6osprVFVF0wTbXUzd1HcvPENHCB0BWLaB4TrIBhy7h6LZqJYJdU0aRYRBQNEJ6rJCKRuirENVK/JWReZr/FFA0nTkmWB5swDZYGoKQtWIpeDyek6x22GZKuPxPstdQROvEarACX3WqwjHUNAUHTQNVbW4fnXJtBcQBgFhf0DXghoYdF1HVOxQFRDBAKTO3vE+m/yWxfyaIitxPAcpVXzHxTRsZsszwkHAR0d/+V+c0N951MqaEtN3MRQDWUuiPCXwBxjCpuHuZOWbCpapodWgyA5NU6nLHOqOtqoxNZfQn4Ai0R0LzTCgqrBNFcc3aeuG5TYm6ywmD9/hwbsnfPDhI8aeSZelIDTySqHVDLxAJ90skFIiFEl0ec6bl1cowZje0T2G4x492yDfRqR5iVRN8qQkimuKvEWxoARMx6WoWp58+BTd8Wk7iyePj/Etn5MnpwxDhfGeTnl7xu3rlwjdYBdvOX/+kt2u5vPf/4FFUqJ5AdQpmufRxLf87tfP2dUaAoFsazRNgxpCy8TQBJ5r8ux0gNFmpFLnv/0X7/Mf/++/YZ1l/B//5//FzcWMf/s3v0NYDV2TczOLsXwNWRd0ukoYhjx+eo+y0jCFxns/fkpdxByfHPDm0+cMpz1adchk7PD885d4oUVRrqiygrIsMXshQvVRNairiqK1ubwtiVIDTXfQVAXfkByOJuyurskrwZvLHYfvPCK0YT3bYds2m6slUV2xLUz2Hj3hX/0vf02dr7EtiR+Y2JoCdUGTFFy+nOHZ+yS7ioPDMZbQ6JqW2U3EoD9mOB5iOx5lkeF6GnVSkOwirs9vGJ4cYlgOhq6g2TqGrhJHFYf3HxGEQ9AdLMu5e2rLjqYuUOoW3VBRVAlqR1N1KLpB0A8o2xJVFHRtS9dJevcHnD+/RlQbcPtcvHiNrylMD/fJhcPZ8pr5fE7XteRFjKVphL7FaDSgTlYcHvhMHp1QZB2OANPZpyw67DDE0C2qukY1VFZXb3H0lkaH4eEEzx0iRUCmj9i0BXF0S3AQcLb4mlcXb/j2/DnfvPkH0viS071HlGVOUkssy2Fkjb5zQn83UyxdE4Y+y2JJ1RZkRXYXzu857NIIXddBLdE0DV3XaSQIVRJXWx4OjsDIsFsLXbn7ro6bHflmfUdnPLskPJ6glCWaYaJoCl1bEy0STGHQdS2GYVCXORqC0XDA8tUZumNRpTHRNma7SQn7Ac7QpovXdIrGZQIIBdcOUIDA9ciLiFmWs6kh8MeEruB6HnGtW9ie4MnhlDrO0Syb3eIWVercvlniDQ7o2h3nr16Ro5JlFZgmpmNjjwZMRzZVlNBkMZukY1s1YNkkWQ6WjtZU5ICjK6RliR/2MHXJbFsgDYWv/vEL3v/xz/gPf/sf6O89YP9oj/1JyMUXf8RybO49OEU2DWksicq3GIbk7Pkr6s5gsS3QLYWThw8ZhDpqo3E1i3jwKCRZbigUA8+tePv1NQenB1Q03F5e0BYRX378NePT+9xczunvDVHVjDRLoIE4TbCtgqTIkYrLO0/3yaMtTWdwOLTxgpA0vUTVbCb7BnqmsLl6xXDic/biFRgGfduklSV5WnJyfJ+ODKEqqEbDcnVLfiX46Oc/4fmnn2B6AaMgYH9vTBYl9IdjirZEt8CwwHB1ttstYX9AXZR4vZAsXWCaBhgaSZRSyw7PsbFdjyTZ0bQghgaartEJk+16yXabUBc5QjZYtoEwDEQS4RwcstpcYjkCbzhlvY2oq4iDEwd9fYiJzdXlJYOjQ0yzRm5rsiRH93rIAryRRv/hAWVU8r2/eMjt6xDP18jqHOocw9AwggFxlXLq7xFtY9SmorNGbHZvcZWQyWjK2ew5umYTmjrSksTtG0rFwLZtZm/OOfWHqKpD3nw3l/s7J3RbpaB31GVF1dQUnc57p9/jfhCide1dq0an3CFpZcnl7BVC1qRJxPnijF2VYzs+RqfTNA2q0tIKnbJR2Xv8IW3RkEYF1C1KG7G5vWG9TNnlOY3QMLwA1xvTKDqvvn7OfL0hiiuKTKE/OeD+6RRd6ei2CVFSk2UpKiqBc2d5FJpCkqx58XaJPfB59OgB472QJq/xpvv0XZvQdokuF+i6j+/7DEZ7hPt7HDw4YH5zzudfXVKoOpphIo0A2xvyg7/4OT/8/mPIMxbzLWfXGVeRiuYY3Bva2LaNLFMsy+EgDGkxGY/H+HrFi5dzCgGyKMhbm//3//n3rHYC0XXs9XT2fI9xv8fV5S223mAJDdPU0RWbJOowzZCiyPjw/WPOvnlOVYKreVxdvmG6bzBbXvPyxZyH9/fZG42p6pTnH5+RbSO2ixV//PQbrqOM3viQB0/v0Rt67O09omtKzl69pc1z0kKC6TI7u2AXdyAE7zzeZ7NaslgnWD2TKtnx/I8v2SQJm+2Ov/vlF2RihGEEGI6PIhwm00PKKsfUdXarGZ9+8oZW8ZjsB3z5298xGY052h8xCO9KApMoJt6tsHUN0QpaaYOUGKZOFu3QHQvLs7CtENmpRIstsuswdAXdcNjtChx3QC8YYhgWmqVjuhaa53L67mMsJyAcjjHCCW1RYQsTYSoUncbt+SXr22tcPyBKC4r1hntHfXAqus6mHwxJE4OqjtHtii5fYQYW88st84tbrNChXSbcOx3ROgOS/O6cFno2ln/H3Vtdb9Ecg2xXINodXjDE83ssdjMWZ9e0RYWGSlru7uguukPV1FRtQ5Yu6SiJy+rPF7RqDanqgqZpQTTILmAYOBRVQy11FFW542JJiS5MhGmSdyrPDt9Fkx5504Kpo5g6huFAK8l2a1oNumpJslxSxHcOsSiukFKiGTWmLdA1g05WROmOYGDz7N0nnD48YX8aYrkqyzdv2O5qKk1QKxpRmlAoBgidumwJ/QBdbcAOePLOfcbDAN8Q6GWNoUmqZMli9hpN0+ifPGIwHlDGKUJT8Ay4fHOBbRuMRiYChV444eHjA773wQmBGbG+vKIpUnZJQ1x3+JbBzz58RDQvMQwVRfXo6og8T6m6Et2ouFzENMLAUG0UzSaJY6JSRTNMoCAYjZmMTBrNRsNCaSWOp1M0KUJv7qpks4osq+h5Ng+/9wEPJgrPP/8cYar85tdfkVQVi82aB8cWebbm0z9+jSEKHL1ju9zSdBq9gcXi4i09L2BvMqZrluR5znR/D1MYVFXL9csF4fE9DkYBihLRdDGmryCjDZuLC3ZpycViy5evrnlxueJHf/FTnr2zzyDQacsMz7FoZcnlYsGXL99SKSrTox6r+Q3r9RbDNqCpKfOKuhNUTYnoQAgNwzKoW4WuSrCEimXauMM+TWcCEkXVMW2X3nif/mSEFw7RbYVePwDDojVNqvKuCkkoLY4p7hxmvQA37LG6vcD0TBzX4t7JA+oCjH7IfFdze3nO4DBA9ye8fT2HomB0f8Rnv/o9x8c6uTHi8os3+KGLISWH9w6YPjthNVuhmCr5LsYf2vQnR8yutszOz9A0g/FwhDkeUscl3shAL3ccDEds4zUGFppqYQibKitw9YDDyQGGBlWb4To9ZAu6YlLV370U+05Bm9JEtgJN05ASLMsgSi6ompy2k6R5Ql4o0AmqtiLOYgC+evktp5NTXMPDEAIlz6mTnDhtsHyTqsqYXd6iWkOk1qI7LpqhU5YKq1WO5vUIRiM0IfEcE1U3aOsUWkka7yiKgkzV/1T2ZaIoHUenTzk46qMpFbt4w9XNFWXRYujOnVHjds5yvmQ41Li6npMUJYoZEK8zbHK2mxuCScj69i2XFzOm+xNW85TZpqK394hKtlhCsLy65tXzW3TX5duXt/SGAQNb0sqMjz/+BGfosdjs6AcmimIzHA/ohyHr2wRFqMhOoZEdum7eca0UgaTlyaM93n71NbPbNefn56DB4f1DZN3QAlGyo1E7DOvu5Dfc9zlyS5a3CT/+5/8c01JxehOuv73FHbtso5JX3y740U+/j26ZtGnKbJ2hdoJRb5+n7z/kzbfn2IFNkQgaVcf2A+z+AFOX2IHNR88esJifEW82fPP5SxQG1J0g72xqqWI6Pu8/e8C77x5T1xVtnjM6nKCpkkrWXL1d0bQ6tuvQG/b44pOv8PpTOlTSKOXq8pY0jlgsZhRNR6fcEWVXm4Te2McLdJbzBbv1Dt00sBwVFIlQKyyzQ9dbZF3RNQWyaMjznLZKMUyFVlWglXcLsK6jqwtUU2OzXbF/7wFSKrRtg6ko9IY+Xdtg+D5JobF9O2My1hnsTSlrlcXbWw4e9rl5u+RkT6V3+pTNVUTdSfJ1RL4pGI5Hf+p+s6gbyfxijtNW2AMfw9VJ0pKqamjpaOoO4ZgU23MMKXBVgWP3KUVNWsZMBkPCYIKqqmR1Tj+8S1hpKCio3yno79xyf3L5u19orYnhCjwn4PHDH2HJLYvdkqqtyTYZuuoyHo1J8wjRCnQLNEzSOmFgBhz1DzDbimq34urNC1aRSr8XIDsD0xBoXcNqHdFh4fc9zP6Qw/09NEqoa8qqIN/FpElFVkqaTiPsufg6qJpKVd915xabW4qsYRfFKLrFcpXS77sodUpXSkzHYLu65c3VEtvv4zoTHj48xFY7tN6AkW+QLzcsZmvqRmNbqoxGIf3QoIxLDg/7tEXJ64sZ/b4H1YIsbjlfbFilNffu32e+qxkaoHQw2+YYlsfJ3ogoibjaZiiqTejbKJpgFS1Y5h2updPzfJY3O/6nf/Fznr57QrQuGe6FuJbg+TczhKLQSZhfz5lMNSa9gNnbGddnK5ZZReCrfPv8hvnNHDMM+MufvsfVm2uiKKVtMnSjIioqblc7Dg96VEXCq5dv6doGIQSdarI3nHBwOmY9X6NIlQ9/8AHL3TVFVmF6Qw4Px6xv5hTlHaZ2etojVFquLs7ocHj0/h7R4i3Pvz0jzmyKusNW4eHpPsv5gqoGoZq0XUZWNEymU6QicU2bXhBgWCCLFss0cH0DUVfkacUubdg/3se1VRbzJUIVmJqJbFsEkjiuqTsVhErb1JRlDZ1ENzRUC9pORVUtqjqnawqKLKUtMxzfu7NhhirXlzvyNMG2FNZFTZqVbKMSpYjQepI3b2NuX98i25y6KBkdHpLGO6bDkMG9AzRhU5cllgNmv8f8ekmaRTR1QmA6tI1Kk8bsP5wghQ4WtGrJ2WyBF/ZRhUBFpxENnumw3c7p9cZ0mqAVHZvNHE0xsHWbqiv42aO//vOMJf/02b/9hWLZRMUWVdM52R+xnL/garth7ITM1wlC6JieoMoqZKNgOxa21OkNBoi8YCIKitmMb/7wEmt4hOVo1HlCI6ElZrva/Ckn7GK7Pnv7Q9QmoilrqrQA3cYNelimjmEIRJOwml2RRjHbLMN1fGZXr1HdgCJLsE2HwWh6B3GrK9bLGVJp2W4XLNYVhqaTlRUn90e0SU6HQhNtWV4tuFoVnG9L9vf3sc0GYVocHp8yGDjUoqXpUvb7Nm2y4+PP3hIJkyqDcNjDUhtGjuDics4iycibjkeHHvOb2d1TsZUcDmykFETpjqiQ2LZFnVW8/8EBH777AGTOx3/4FNe1yeOGNCvpNINokyH0hqfvPmF3vcbyJ4QDSVbXdIbK5x9/RjCcYngWD0cGr1/OuJwvmUz6TI9cfvMPL1A8h++9/5jZ7RwhXGxN5f7T91HoEEJhvrqiSzqqpsZyVLbLNVWpsEx3jCwLy1SRisI6iqnKlu064XKRcvr0CZ5m8nf/7rfMtjXvfP8HdOUWypJNkVC3ClYYkO521NIg3kYYtofaVfjuEKFIPNNE1XQsHUzHx9YESVVjGRa6a91ZJS0LXbOxHQfLMkjSkjy/A+k1naSqKlBUmlay2UR0TYveCUzDxu7ZWKoFQifNoWtb8jS5Oy1pBlfLmDaNaboGxxuAqkIn2OYVL764Yv90RGN7XJ5vyMuCer3GMhWm4wG+HeAEQ9pKYtoalaNxebHm6vkrxhMfwzapypLBZIjnDzAHDmUhKZQCxZ6S5FsQKlJX2cQzjg5OqOsEy80xbZ+8y9lutrimwLR8MOCnp/9lQX/nk7tqoKlqtE7HNAP6tksnLcqioe0EgeffNeS1La5u0iQJLS2O57JbbZCoRJuCupAMpmNEm9CkKWXRgCJZzbdkJXi9AaZuorUl8WzJzdk169mGRpg0Vcbi8pLX3z7n9euXvHl9zipJmFUKwWRMtlvR4FO2Nf3BGNt1yNIdXZUhyxaJoGka0qTG7vUJJ/s8eHJAk2bIrka3WrbrgqtUkrTw0x89Iwx13LDHZGCzuviWtoxwNQXfMLi9WpPUYLlDRCfoBSa9ALLdilYKdp2gAI6OD2iKBtcf0NFiux3rzZy2q4jTEstwkU3NvXsjXn5zxq9//TUvXt8yPnnAzTbjar5G00KqvKZVVQzdxfcEu9Zm//GQMiuwvD3ef3bK/v4DNM3jr35wyma5oVV0hB2yf3LMV8/XvPvRMw6Ge6TrHXvHe9jGXSKuKjekaYooKzaXM6quwPVM1sslummw2Wz43rP3KdOMaLciayRZ1VE0LVFcklQFbq/h+euXWIMBmqGyu7lmt9lijwaM9/cJxyOKtGI4CtjuEpLO5OjRlLpuydIdVdtg2zZ1nuFaPoYGdSOxVIsoK7H9AL8/YH59g5QSqQgU3SCKErxeH0WoVHnJZr6iTBIuzm+Joohos6CWJU25pYgSdnGKZoq7/9ywcHoBlmWjCoVHz54AFk1Rce90jN+z6R3a2L7B5HSfF8+XbG4SdE+DVqesJE2XcHF1RZHdonuSVrQIIXAsQZ6V6IbCYrHi2y++wbUtiiynbSuEreAOQmxzRM/WEZpLp1h0UkUoBttNzCbbkJZXoNRo3JXA13WLpEW2/z8QRL/547/7xc1ywSAc0moFtDW7dcU222I5AqezSOISx3cQqqBTCqQq0ISkazWmfR/PFDSzHev1ms18QdlpYIRkyZo2T5jfLDE8nZ7vIDUTKxhz/PA9gsGIOp2TbCKSOGabpHRAWkuE2aPvmyzfXqOYNqIDrZNUZUvRNkS7LZatsl2v0FWFJKlxHQ/dUKiKhPV8TVkqIODV8zPWao/3fvABHz2eMrs8QxY5Vbql2uxoswrD1bg8v2azjVjtYs6vNhRVRZQXHO4NSHYJ6ypjvp6Tdhqq4vDhowHbVUILIEqqWqFTJFe3GY5n49k1eSnpD8cYhkA2sNpsuD6/5PTdIzSpE4YaXSXZP/aom5ZouwZb49XnL1AVwT/89nP2p1POZxHjyYDf/+YLGtPlIo748Qf3kHXBwd5jLq9n9HSVoOdDnbLZrNFMi5ubGW1RsYoqvv/RB+h2x+X5BabhQ9cy6vX45rPPKBrJ27crrtcppjCoZUurSA5PXJ5/NsMOAnxPZTI8YJfPOTl5hq6pNHlNV+QsbpZ0ms3+vSn39wJmry/Ic4XJIGR6OMWyQNdUgsBHCjA8m1bAaO8QpauYzxeYQUCZlRwcH7KLUhzPoa4bqkpi2CZ0HUWrEgQeaDpNJ7Btk6YqccIBumkRb1donaRpSpS8xh2HCN1B0rGeL5kvIhaLHfluSz8MibMcodVEeY5sciwpCTyBF9j49gAnHJAWJl0e0RtPCKY9vvzsNRYVvVDHcUKkEGiNYHowwOmFaIqLKlRyy2UXn5HXLZ7qcFsljNweq21MXEXYVo2pNiSZgS0s6rrG8/rUbcF/8+R/+PMmtGF4JEmC7Fom4eQu66mFuLoPikvTdUihMHJ7aKaBbksapSbKY5zAplYNss0KAK0paRSNrMwokhWK7FhtYvRgjCocKjugfzSlF2p01Yw2uUJ0giwrqBtwwkM0t48/7KOoBarh0x8NUWWF33dpZcdiNWe9SNAsGyF1JsMJhtcn7LkkWcZ2tmJxu0JXTGRbcHU5Rxs+4q9/8pRBtebNt98ghMPVTYJuhWzqhrXs+Md/fMU2Ubi+WlLUAtOxiduW/uSA5XLJrhD0egdIEbI/OeSvfnhKnSY0ZYFpFRQFhJZOl9UEtk4SZRTSw3Es7o9CyCQPHu9jOjbrXcPtdUW82ZJGJY5v8fyLFxhSspxldFLw+Okxi/mWf/1vfsaXL+d8+OEpX/3Tx8RtRxpntHmHUFvmuy1ffvI7zDzCtGp0zyTdNTiei2nqtF2Dbtj4noFhapRxitppAq8LYQAAIABJREFULBYrhCs4u36OY5nssoy6E+xN+zTU1IpgejhAk9ZdRa0hUDsVXc/oG4Iy27KL7sL7imnh9XzuP3jI2DIpooTB+ID3f/CIXt+nqWPi7Q4hBFGeoJgaNAqarlCVEWlZAJIiLhmOe8SbNZYlKYuCVoAWmLQSTE9lPLLQXQXPFvihi7BcilanLjM0o0KoDk1bYVs6emCTbzO6tsbxXcquxe/ZtPmO3rhPFG8pWsniOkejo6lM6rahkSqapiJlgVJXmFZNXSjUXcrs4objx6c0TYxrwCiweHB8QH9vSBQnQEdNyWa9QKuWBHaIQcnQazApsX2Prq3RhEbZjVguX/7J3VZQ1BV1V9B23522+k5BT4cPcSyX9WKLoZgEIqQXuDiaRV1UKEID2dE3JI1sUU2Lu5EkaRqJWhcomSTPM6RwyZMUwwiwXZemzojjGNsRtJ1Cz9EoNmsU3aCWGlndEccxptcj7A/QNEnP7xG6LoP+GENmVEWKari0VU1VFniOSzDoE3ohqqYR5wVdnrLbldRNgaIKVFVnnhdspUXv9DGPH4wwiwXLqzlx1rLeZdx79ynb9QqhSNoywx/vsdzFVIaHqrokWYmqGTw8DnEdn65J2axj9g8G7HuSwBTcXt9tyvNNhdlJlqsNqXCpOoUHD04oi5i9/pBPPv4DjdKxuL2hkgqboqTuMu6dPqDINwyHBvcfvsMXLy7Qw5BxYNJUkm0MVSUZDVxef/MNJ09OaJKYpqkQssV3XcpSIQh6/NW//JfM4i2ogijL6QUhs5s55U6iyoZez0A3SzTLZFtmHBwfk2xiXCtkVxYIbGw3QJMNumoyHbvM32xoqpQma+gKmIwGLK6WpIpF0WbopsIu2WHaIe7AQzFTzi9uqVWV0aHPqGew3czoB0NMz0HKFs1QMQwDd+BTxi2KIuhqiWt77B+f0LUaWVlRJB1VXpBvM6qspmkatFYl3WYkUUwrIC9LdvO7m3a63lJkBbZvE/RGFIVkt9kidA1dM5HUdJXE6w1Jy4o0XkOVkMUbpCmQiWTsWZiagy5UpOyQjU6/Z2PrLv6kR7rZsIglV9+esV60KMKgNxnRm+5j2g2aZdNJgaprVFVLmUpW0RLXM2mVjrbtsFQTU9NRqQnMEMPuIahoNajahovrF4j/ypb7OwVdNzmh3We5W1EoFVnX0uoC1wvZbC4pyxJFk1RNi1kb1LVEKmBoCqai4JNjSY2qKLm+ucQOegyGLrZWsotyjo+PuT67JM3W3F7cEO9ylte3qChomsHk+BDV0NFsE9+3sV3wez0GQYhj2Xd8MwUa2UCjUjeStmswRE1UZGiqwirKGO0NsSwNxVAx/TEfvvcOP//hY058E6NJuVhHZJ2OP5myP7JoVi/RRUuWNUSNDorC3qRPz1CIior+cMRe6DG/vGYd1yRSw7I1dEWDTnB5fYPjjIh3EUWnUGqSTd0iVYkXCJa7Ja6ukGVbYimI8oKL2Y6qKDk82uOrLy7w+waPnr7DZH/KNk6ZTkYMQ5e4LDh/c8vweMQf//6cad/j/HyD63kUTUNbG4S9Mb/67Ut2SUt/5LLJCk6PH/L662/IsoTf//ETXl/lPH32AM8NWO8K3p6t+PiTrxn2AxTRIIuCKs0ZTsZ0VDhOg6oYTIYO8SLjvQ8fI/KGru0IQsHtMsXr+wQ9nTyOuLpc8uiDd0l2t+i1xu1VhmtK9Lbmy89fM1vlnD49pWobDN3Cc/u0LRiWiWwavNChLSvG4yGGKSjqHG9oYpo6sivohELXFnRphtBKGlo0S2CpJl3RoigKiuERJzl1q0CnoXQqwtBRDA3LNaiamLJLcU2HuKzI8xWqoSNUn/lWYtsGdtcyGvRxPcF46qB2HbSSXqhTtwrufo+ihLSQuGZNJ1zqVqPIW6LFhrZZowgHxzIwPY1klaNqd5DArIRVrbIoFFRdkEUzluktcbHD0F106xBZzwnNHk1b4Ll/IuP+uYLOZEzfElhWjyypyKoVUpHoqkHSlChmh6Z3NLiIYkGT19DUIMFSTYxasF0n7NKUcDjAEDWiTnl7doHbH5FEawzHJN4USNVGs0KEYdHSoesq28UG2hZR5UTLFVkcEe/WxNstqqpSFi1RHoOioJoKCgbF9oqb2TV6V5Ns5tx7eI/V9TVVCcFgnyfvnBCYCtc3M1TTopM6ih4yOewz8QyaOKEuOtLKoH+wz9A3scyKJttSlTAYakTRhsvliqRRiDuFnmEgWzAVle1uzdU6paoqqrqjqSRprbM39DgYBNiqjyF04qzFtkPCMERpahTVoCgqtpuUo+MJ48MeqqHyn/727+mNQoaHYy7OXmDoDqqjcf9oSJKtuDh/CbrCb371O37+03fwRi6TacDTZ6f8+GeP+dU/fUGTXfP28pI3Fyl7p4+YLVv604CLq2teXV8wGLq0RsB0OOXFmzN0TcEZDvDDMV2W47gGAo00K0mTiKO9fYoyIhz0MU0N3XAQ7ZrFbMvs7Yxdq2LbLv/xP/89VdkiSIhvX7EuFC5SnR//5CM2t3NWywrV0NG7DtPScR0T1TRIky2aoeMOxyznG9KoQqO7A9SrDlYwRCo6VQ4IA0300c0AL5xQ1ZKGDlW3ibINwlZRNRNh2OQyQTVVOkDWIDQNmVbQZtSaTbxKcay7TwdlaHHzZoPRKlhegarXuIZgvDckDIY4fQ90gyLJ0UyJVB2iOCO+vWLyYIgsC7JS0pYN3t4IVXFp6e7aPpIYb3DEkRtwPzjCM0aMvENu4g1lU+J6fcqmROlcXCwsodN1ChO/d1fj/OcKuus6hGFgOxZ1W9I2kkWyoGwL6kqiGne/vs0SZNPQlBWqZqBqFkZX0xUtlmNiCJXrszOypiJPC4LBmJ6ZslrtWMUx08MTLFfF0iWjsU9bxKznM1RL0JQxZ5dXNEJnm+c0ikNdlLy5OicpCizHxrFNFEWh63KqSsN1XdIopuhU1ldzbK+PHQYMxx6aLPjm6xum+4dQZ7ihyd64x/5wdGde6O9T6SHDgwPqKsMxDaq8RbPHOI5DnUp0e8hweoBje9zbc6jzAtMQbJYLFtuabdLgDYM7Aw46niXRVY3Li1uyNKZtW2zdJC8bJIIawf7+Hp1mITQVpahJVxu++uobtrEgayo2i7fMb+eklSQc+nz+8Vf89Oc/RDc9dKGTVlDWJdu44Cc/fIhSxVx89S3/6//23/Pm+TnLZU0H/Odff8Jg/wTbksxvN1iex/nZLelmTR5lGJ2ObGtm8zmeq5A3BdEqZrPJkQqYho9m3oUhrq+3VG2O60taqRFLSa4omKpNkhX85MdPGYQOtmOQNyZPnn2fp/eHrK/mPHjyjOnRlO1yS91KyrZBMUxkXqJbHl0roEuxDIXedIBQJYqi4Lg6WRYR9G3MnoPqGpimTtNUtFLQG42xe3dsbM0y6VT9rgerKMijAtkoWF6I6fVpyu6u6SJOeXBygBMOaaTLJmmo0g26YSDaGscx7loqrQ7PMXFDC9U0sP2QqjEpqpYi2pCuV/iBwXFfJU4VOkWjqRU6oaK6HmprYqoap0ePUOMMTbsbcGpbY+oGpmmCbAktgWu5jIMTpOgYjw5pUO4uNvK7EUTfKWhhqGDZmJ5FJxtukyVpkRL/f6S9yY5kSZam94nInScdTW129/CIyIzIzMqqQld1o0GAJEASbIBocEFwy0fgM9QDcUOgNwSJJptV3axmZeUckZEe4eHuZm6Tms53HkSECy1wGYvshe50obhXfsjRc/7z/dWeJEoxGhxHUnYNvY0ouuMS+ziKyDyNHjp6XWNlzGc//TlZmLJab3HcgV/+xzc4ySk/+enPsWLAcUcIN+KwKem0wfVjqm1OrRXZyRnTacbFfEGxuqHoenw/xOiB5WNOfmh4uF9TliW90XjOiCDKOD2/xA1cDDVpLFnePqClx49/9jkKh7bviCYZptxQNg3b5QohWqZTSb3fkD8fyBvFJPNRpsCiiQM4HTmcz0ccHp/YPm6YzEc0RUHRe3Qi4vrFBVrnXL9+hRdYQidls6zxHHB8w+GwI5knrLZLxCAQQnDz7gOBhfk4ZZsXvPnjB/KuY3Q+RrU1sRNjRMDpyRnLDysEPvnjmqbpEF3JX/7Zp3z97ZbpOCNQGoHD+dklv/nbXxCNUvbVwE9++pKx57N+eMvqqUW7AcoJ2O9yZllMMvUYzzL+4bdfcTY/oW0Myjgsrs4YjwMCel5/ekXblawfcvw4wXMUTzd7lpuSpmnYrmoePt5hbEVqPeq2Z31o+et/9mNW736FGAoG1fLmt7/i7//+15y/+oT4NMbxNMqx9N2AHuw/laAQJjNMA2EcsLz5iNU9QRAReCHJaIKfZbhpxnhxRpSlBFmGFwaEWUCaTXH8MYOUNO2AxGH1tEMPFVW9w/EV+b6grXNQkrbdodwW6Sr2H3NmkwgTaMI4wg0cRtEIL1FEviCOU4KRjx0l/OrXX9G1LdL06GLN9uGR2atzfMfFD1OkhM5VPHx/S1+vaKocN7A87msGDSoMEXHMoHry7ok/vPsKH8ti8SMGUlb1VxjTUbQlna1+UNA/OLb63fv/+Dd5VUE4xlE9+8MKrTVBFJPbHb4T4qOYhWPSOGNTHMjijIXrMGwOJNEcv7ds7+55f3ODE8ckyiPPS6bzBV21xzE9ZW1ZXIyhK4jTjCQMacsDVneYbmC/f6Y45Lz5domfzTDSYoaA8SRFOQYEBL7A8VyCYMxkEuAqB2shSiI8P2C/eSaenOK7Do93N9x9fMdhtyGQAUVXU1UH1g/PEGUIJ2P/tOHljy6QOmf58MzD4xrjeMzPF9x/fGC7XXNoIRxN6PsapKRuSyQOn79aUOxrvn13h+cnHKoa17H4UcTTtmSwAkcOqF4RpxnDANOTKXQ1toP/5l/9S375ize8+Pw1+VPJ9Mxn/1DwfNhRakU2SZGyQVQ9q13N5CTEUw5FayibAdXm3N0veX/3wOvXlyzXhn3d4Q2Gph1YHYYjWK/pGAWKfXWgbJ6pu4GqbjmdnaP7gXQaYxwHVze0+njz1nqDaQWOUowXJzhW88eH/REvK2BxcorAcHm6oK5yHu4P+IHPdrXCCadsdx2+1MzPPuP160vqaonSA8l0jCM8ur5hvpgz9B1JFLDerHAyh/afUkLiOAHl4ydT/CRFSZcoCJB+iNE94SijamqiJCaOUqIsQTou9T7HDxVRlrLbbtHdcSnIKIEwPWqc8eY3v0e6LWkypSwgP2yRjsR0JdNsQlMcyOIxo9NLBnwabek6Q7EsGQUglUOUTri8fEGS+Ggz4Pgxo5Mp0nFYPTbk25z98oFwGtB1HfEkwnopbXNg225YbR/5y5/+l3jSQVpJazXP+QfKXDNKx1gp+C+++O/+tLHV0B/LnFE6QSmFNQKJeyytlcJawSjNyKsSL4hx1XEbsxnAJjFCFGxX99RYkmxEU7f0niGdTNHNAakcimIgmZ3gIVFGsr69Y7M7gHIYdEddFSBiCAKSiaLJVzS15vxiiu01Sjq4ro8dLMV+h44zhr5lty+Q7oA0PU2RM5pfkoYRd7cfEUpSt5Iwm7Nc76mbjs2qhdkZ89M540zy+U/O+O63v+W7P3zLY15z/eNXZNOA9WpP3rY0wiFIPdy+Jw5Cum5AuiHni5jV0x1398+42QmdbogjFyUk+7zGSocoiUFL9n1L3uR0pmaz3VN2hrKuuL15ixvEfPjmPV9//47YCcFxScen/Pwnrxiagig8p2n3nF0ueP3pjF3Zo10fN5J8fbvHypgvvnjJ4/PAzd1H2q5jsoi42+yYXUQUjcZV0Jqek8kUR0cIbcAJaYcSZ+qy2pQko4DBdoQ+CKfHmAHtgTtxScKGzWbFSTYiUKCUwsiCV68vGU98/EDx+rMTRiOfqhu4uH7BX/38C05OElxV0eaPPNysycZjrB0oigPr9ZZu0Fgh2OZ7rPVxHZ8gdAgjl54AL0lxohg3DomyBC0syAECn6qGbDzBcTycwMf1PfwwZHJ5ccx71jWu4yPdFDcaEyQJ3QB5tcWVAUNlKJZLoshB4+Dj4jvJUQtK4nke+BY3ctgcjs3cduhZP++xbc9o7GMDF9cbEyZj/Dgkz3OEhTQVhLFh/DKjpMeJXR53B5QSVLpBCcHL888I3Ijx5BwlJEEQIWyE7/go6SF/uCf2w/vQdVvh4uCFirqtQVqiKCIvt1j6/98oLpWPkj5plNLSg5ww0TXPb5Y4bsYoEcdDHfoIYzC6ZWcCoomHEi6pB+WuwHcFYRzTN8f/64MNwBvAlOwfDwTplGwR4bse5aHEC112t2usY9nke/blwM9fjFl+/57bxx2XVz8jf36iqgra1Zamthjb0hLhuIr5Scq7d0vS4JzJSxfKHNqSx/sHHp5zZDjmcnFJnuccHlY8biu0HzMZL3BCl7yoEFg8oej7Hn+cYfqGx21N4SiyrmKWJHy4vUE7EQbBgGUkLH0nGacR2/2es9MRy4cNnXb40Ysr/uHvvmM8Dfnl047//D/7S375q99R7CUyDvndL36BchLcuGV+dkExWKIgYhAlme/iyJ51PfDzL0/omoLPPrtkuV1zsjjl/fvvsVIyCmPePNwzSTM+82JOJ4J3H3Oq2rLbr/nsRxf0reFsMWL98IDBRzn62Jj79hYpXC6vp6wOe4p2wPcNaZbhtjUnowlu11H0Le0gWd0/gRPxX/+3f0V595EPywHPhUhYbuuOn/z5l0eE1aHGdWIur15S5GueHh65vr5mfH1JXR44PT9hcCSOG1NZhckVg+nxYp/AUWghMdZSMWCLFsd4lFoQ6OPmnjA1wgnp6xbXU0gZYvsG0w8YK/CICCOHunbQviJ1JfU0Zf10wPMdkrjHug5eEgGS5XKFEzjsNx/JQpckHHP2+pTtoSFdaNzEAwy+qyjygfXNO6SxWNNjnwoWP76mVCui8ZS6ylltH3FCxeniC5p9gT+KqIeSSbIgUHOGYU0QeVTt8KcLOgg9DraErmFoBUaAQqB7jZUG7Qw0MkAqeNp/JEtjajR1tWNfVKTnE7rnhro3+IHDdrXGixShkfS6RXaS5+2Osm+Zn30KVtFtC+YnI7TQxMqj2kkG7XP92RWe9WmFwHcDRN+wWj8yPZ1xd7cCLUnHI+6Xd3R1z5efXbHb7Glb8KKUQ33AxJLl/ZowcIj8kPffPXLxYsT28QODmrF63vL+/T1xnHFxOqVpGva7HCt9vLFHikKGIflyjTQpJ6MYrV2enh4QXsjFLOHupsZ6IXPfIvuOp80BNxpTtS2eoxj5ir5vjzPhvCIKxtRFy663SNOh3JqD1YxCD+lKHtdPiMOa2ctrLhZXHJY9tzcfGacB8TSiaQ3rR0NvOqZzweqhIiFg+bzhd7//lr/6mWY+lbyaJLxpMl6dKd7ebsA92j8Tz+X9zXtmizkff31LnIT0leXzn56THzYIIgJX4EWax9slTReiVMNXv7zBHzucjCZs9h0iSDibnbC7W1IEIVHiEwYur37yGaEDd9+8Q9qO+eVLMs/w9vfv+PFf/JT3b98y/tmnBE5K1TWIckugAs7PTmjLHCnXuK5im3c44wXPjy1NC4NpkNKQpT2TUUavO6zw0FbiCpfCQP6Uo/UB13EIVU+iNMru8ZRLme/wI4e+7GmqBu35rJY5XuKTdween/aEccZo4hGGHkE4JUwTWqk4LPeYwHD79c2xSZdXzGcLhO5wgxSsC6KhyS29qFguNySeoi1a5uMRve3o8h1hNmEaL9gPHb7j0zOwL5eI3qHuanbNFsIFvZrg4IOSaC1+UNA/PIfuLI3uSGUAQiG1YBgM1gosDlGUYq0lTVOK4kAcjEjdhPPIY3FyTrMq0PRMJiFVOTCepHR1x939M2VnqNsGzxd4wscTLeOMo12v10jT8nCzZFf3nF0tGBpLbzqcvmK3eWCz+YjWPW25pT6sEa5inPpQd2Rjn6LcooQGoYnijEnm4irD+eWYn335gunJhKvLBVQG6aQU+ZogGeHEM5LxiPX+QNkZktklk3GCZ2s8Bdubj6g4wc8Mh7bh4f4GlMPVLOPD+3smiymBFHRdQ9FBMp7R6oEkcBklHsJq0nRE4HrEQUYURSz3DUpIXlwveHxYo1yPtoE4PtIsZ9MFURQj7QblOmTZGCMFh32JK3NW24bpdMbpeIHVls5x6ZoeKSX/+A9/AOvz7//xN0g7sNreU/fN0RetDCpSeGHKdtfQY3BFyNnilOXNGtfNsMo5Ujp3NbaBOJVIq5DKoW8KOquZZCHTWNCWBUGWIQaDrxzqQ4Pta7bLJT0eGhcnPK7BZqdTtodnvvjkmsF2CE+glIceLM/LNcoLEE7CLh/QKubQaW7uOyrrUHeWTnfs8wNPqy2392uKXNN2A7qDzh4D2HfF8VP1A9va5WYneM4DajPgJSkKj6GXCCNQ2pLEMY7tmU9nOGGMHiwnJ1Ns35FmPl6SIpXicXOgfO5QPYzilDhKyRYzlBMwOwvYr1uavEf5HvvNnigcUeclrhJst094QUBb1IyzjOebt4h2QxqMCVSAxBJHKevDPW1bUxuPznq0Q48YwKgfJpb84A3dC03oeBTDFiVcej0ge5i4E+77nE7X0AusgEqXWGFJhaXvW9pck4QZVbFmuSrZ73c8PVqyeYBW4AhJ3SlOLs8oV88sZp8jDSyuR+zubtiUGifLOPEk+/2ebtCst0+Y3qPoOuJxxMk45O3v39JJgepqyiYmnfgMTY10XLw4Y7d6pu40z887hJdgbcBytUQ4Dne3H9n1gmkI/SDJTgTzrKFv4HRxRVmsiGLF80POri5pOp/zH32Gzg8IHbB5vMX6CacLyfL5mdnZOUOxp2pqWitZnM5ZPW7wHBfXdxjKEk/A8+qA9R1021GXOVZKBqtJopjnpoROcyiO3cz9rkRGisPHhn42I1+uSedjxsmcN3/8lvOzU7IkoUYzzTJGicv9esP57JSffHLFepCcnCnWxQTHdZHSozcNizTCtD2O6Ij9kDfvH8nClMXLMdvyiTRKKfOWIHA4TX2+u63RCIptycniArPd01QuTuSiPHj/sMWXkKUztNZs1xuysxGP373n6pPPmcxTimVBuSvIq44X12cc8hVWSKyAXh9JHFUxMLk6o697svGMoXLZtrDctkzPHbq2xRGGXbkF4PBsKKOaYTzBbRR9p9FaU5c5Upjj9+3AMBj8IOCxsJR5zziTuNUON9G0K01RtASzGKF9tqsDoyxBaYOykC4WCCWJQ4+HXYWuS26XS3xlCZ2e9CzDRVNqh37VMn4xYnmzRXsH2qIDvSZ0Yna7HX4UsM5zkj6k2h64kRDVA15skFZhbMe+fuT64iWPq2fSfqAtPoBjwID6TxlbeU7IJDrB4uJgsAT0uqPsG8xgMT0Mw8Ch2pN5PdZaqqYlET6qU7TFnt3uQNc3JH7M6emM+w9bagImrxZcvzqhXK8I0hH71Za+63j+7gP72mKEousaemtxjCV0PcJkhjeJmc5iVLnj3bfvGJRGSrBeyuXrS4amPRIxgojV0yPrVU7TliAFkyxkHPsMZc63X3+DE3h8cjEmH1rS8YjqULJvY1SW0PYNdT9Q5DtwBw65IJkGxKZhud5QtCXZfMo0S+kOkI4Suu2ax13J4EpeXJ0zlBXW4QiIaEuU57LvG4RyCBwfN3CoB4m2PZEMcb2QoVPUXU7VlHi+oisb8tpy95zzu1/8mtK4fHJxwtvv3nP2+Sf0XYGWDW295PuvvsH1xgztwOXZiI/PK64vEz6+G7iYRBjRU/SC88kU19F8+pNzng5r3t/f4wWW8rDn8nzOb3//gT9+d4vnOTjS5bsPD8xPJgjlEqiI/HAgSg3eKGJXtuy2BWfnMy6uTgkiy/T0hIGYalMRzy+p6p7l4x7HT1ne1kRJQBC7BEGCkgFpNqHKD+iiJosdxlGIciXSi3lsJXd7S9+7DL1hONREWYruQEmfKAlxHYnyFfv9HuWBm/gEcYTjBjhBRJ6X9MPA9nlJmPq8+f6Bx8cdRdfSFD1eFFNsnxmPM3rjMNgGKzguGYmKpu+oG8vbt29py5Yg9TC2ZRxFDEah/BCtNdIx7Iuc3/3D1wyhQ1F23L55S1MatpslcRJw2O4pqz1NVdLeLjmJE6QjyZsDloGhrZkkc8qmhMFizAbdliircbSgF+2fLmgrQLoOYLHKRZiGQQlUCONoTD/UDKbH+pIkm1F3B6ZRiq8ctOhwIp+haFg+b/n2/Uf+8O17xtdXRL6H7CsOqxXJbM6L6zNcR9FXLXlTsd9s6U2H6/qIvgPlYgXQt9TrNV2leXrc0bWWqoDRySXXL2fo7Q6amr5taA9Lkiji4uoKKR0urq+4efMtd8t7SuOSTuYE4ymbbc3F6QX7siRbvOTyKqMrdiSpTzqS1NWSh/We6dhnKEvWecv1jy4ptseqZbU9MD8bYZqBTaMZzxaYdmD58AE9dNihBrNH+ILGDPQ2Io5D1vsNdd2gfA/HcVicjnm+/4iQhtl8ghQGx4VBxdysl1hH0AkfY1vyoaAXPmfZGD+KCdIML/SwqmM0TpnPJtx9fGRf9bz92CBNz8X8hLKucFxJnuekfsjzek8gM6pCcXff4MUhv/7Vr1BhiLaSt2/eMYiWeByzXm+JZpCNE6IAmtxii47XF8d0xXZTcFhVpGlMEkpmC5csSjiZn3FxuWA89ogiRTz3UVKy2+0QjkK5LbvtI5Ef0emBvjOsl/dIBHXf04qISkvy7YaTsxPmFwuU23FxveDy1QXTacx4nDE0A0k6QinJYflAWdRk8ylh6JONJqSTKZOLc/qypupb7p5WGDkincyJT2KsSijLmrY8IKVEYYjShNOTF8TTKXljyJuCw/IBaSxffvEp0+tzpJvgRSHR2KPYLsmuToiTMb/+2/+bUBS8fHXO5GSEG53Q1YbTccrp9IzJ6Rllacm+WzN7XnEhJf75CPmLAAAgAElEQVRg8PwEaWG7q0A65O2WVtd0XUPb1vj/KSX3avsWOb3G4iGkQxiMEFIjXEmz6wj9AKkExnS44ZhNtecqcOllyxB2iEEi3IAsicnmU1LfZd92zK5mONUaZifEkYftB6xpQVu6eiAIU7q8QccW2VmCyKOu9ui+PQqb4+HrtWBxNkWJAdUJlHI5FCWjNCUvO6xY4fkjposT3v3xW4wKECb4J5PBQLndM788pd4+k2RznL7CFR6Lixnf/uY7DrscG4eUZUkXBXhaEYYBH799JJwsaLuB+eLoFKs7jTY9Q1fz6fUpte65uXtiPMk47FqENFRdi6ckm80OIY6RLZ5jOZQDsefwsCvoBoWvDLWGqmyOBEsRkJcFp4uUMm/YHSpOz8YokdNUNYtXI2x1YFPec3Jm8LyGj5sG07s0h4Ku26A/GHxrOBwafDfCWElbNXz34Q4/8QiFZTSOUANAzs1qy5enl8hhQAuDlh26jGnbJ1w5xuqOwHfpbM58cUaX7/ETj/qwQXsZk2TM42FJ0FUMZY1QNSqK8YWLNgI9tIxHCUVdcXl2wX79TJSEpOMUtGA0WfC01VTlgJCWT7/4jLrYHdHIQqB1j662+I5FCoemqzhsGuI0wXEkoavQTUWaRQgjGBxFFo1ZCck4HZEkChRINEngE3gRdtBk4wl57uCqBilc+rYlOp1y/3BPeagIiHGFwTgetddhCosb+yhRs3wY8JwnDuuKYgj5/f/7FWcnJ4z7inQU42iPrmnIHAh8zTAKGZoGczCMzzSeCPGnU9bFCmUNp9kVH7Yf0IgjkUUC+oeZYj8o6Mn4hHX+SByf4IqOcZhR25yu7qn6Csdz6IuWMIrxkgWCkjerA196AXe/vMX1EppBk2Qpy4fv+eP9mi//+q9pioL1/QPp9IIub3BiqKuBMIoQfoNQhsiPcJSD9Xq0HVCOpWsHwijlsHvCT0YsEp+8VcSBPcLmhpZ4MsLThl6MUAzHtEtX0PUG4bo4UUC1fmTx8jW+kISBx+nJT+n6HFuXfP3rX7PaWLz5FB33YFqi5BRpDFEsGbTH2cUl2+fnY25SMOd5ucFIl9HI5SRxqYYN7z8ccJXH+mnLdH7K9rDGWghin76pju6nUUpxKPny1Scslw90jcJxBRrBMAyYrqXVmiAKqRqP5+cG2w+M7o/xMvPsnJu7HZPZA8Zoikrx9o93jM9PGPo1W2eD1CXZKOT+fscsOL5uTY0jJZlrOVRg24LZNKCoCwI/peskoePhBBYrBfvHCj/0CX3FZHrC6qEhHCu6qqc+WEYnA27oYAZDbx1GkxnQ8eVffMn+aYU2ljAcoYTHaByD6Onrga7VLMYJ2+UKaxtOzq8JkzFiaOhMSVE3uPLYa/BTRdeXPNwuOexK/v7v/h1ikPzFP/8Z0+mUTjRMxildcUB5Eqkk290jfT8Q+y7j2Zh8l5PGMXUjODtLaPIcO/UZ8EhDl/OrS9bLZ6T0MSqj7nf0RcdiEGTpnLLYoByLVIKqBT8M2egNxbs7vvzymtZ3effNI6cLh/OJwyCuWK7vaMuCdB4RuwGLi2ue1498eK/5/LMz1GzBkNZof0bZC+q2QpkeKS21bdgeVuihh95FSkk7bP90QftOxD6/QbkOyngYYxiMAO3iSg+JII4SdsWeKm0xRnKSxvhK8vk/+4J2l/P1Lx7IW5fJ6WcYZ04aTZB9TuiOSJMR6ArH9fGDY5pAkkwJHJfDbk9R5niex+rxkcEoJtM5VVWQza/A9vSdJnJ7pPEo8z2dha7zmJ9dk/oK34HV04o/fv0OmWScJS63t7fML19ycTKi2OxQQ8Xq/RN//O6OxeUC5Z2SzmqqakecOLz9bs9sPsFPLEoK9vstQoE2iiSLEcJSK8uuqng5yrCq47u3BUmYHLfRXJfdfs1gwHcd+qpHW80onWHqgvPzmKfVI0EYs6sP+JHD4dAQujGe59BUOVWjMQzg+KRRxJv3W0Yzn9U/fsvIiajrniwN+ct/+Vf82//zHzAB7PJnnDDA8yWm74h9jQh84lKhjaFtW8q6R6mU+XzCh493/PhHVxy2BjNYcDq0Y/nDzQ27TcnrTy/xIkkURZiFy3bbUw05SRbSGU0yTomSCZ6osKJBaoHtcpQY6HuJjQUyUuAaAj9gW+7wswAnPb739X5ArJ/4fH5KUzsY09AXPSpycWNFrzt+/fe/5be//S137z/g2ZpeuLy7ecvrzy65fHFCc33OdvWM4wcI7XLYl/QWAkfxxednnL44oWtSXv3sJe1mia3XKHVFsT9mtIWyQ8Uew34gCFyqLmR7eCCaZPSmI3JDlOOAdOmGGs9dsHv8npdf/BhTCyajEd9/94bVruT69JJxXPOcnGNUS7MzeGcp94+3TNMJk9Mx9481SfOR8/glq6/ekf30FTvTslwuGc1PcQVMognPZY+mQIoAQ/ynC9oogasC6rYmc13aoULTYjB4jks3tDSyoLMN0jk2sTYaLuYZu6cH8sctbjzi8tKlKxvOz8bItuDhYclsPscyEIXpkVc1dLQ9eEKwK7Z0VpPOT9DFFqMVbjLGlT1B6CMcj93z9tj0iCL6as/90wYndJlNT7FioGsGglFI10hOX7yi3j/x/FCSjE44PQlY3t7hKcX3H94xOBOuPnnN0/0Nq23J/CrFVZLv7xpktiD0W5Q5OuBU6FN3Lfu25dX1nMcPz6z2GqsMjhPw4f2S6WjC4XDAjWOUNpRdhVVgBkOchVSbDiNa/Dg4EjltzdN2B0gc4WFFh5TdcUSoNX3bkGYBbXfANhGDGditNKGyzE4ShOvixpa6VoRhSOhL7OBjDbRas5iHuE5DZQxpFnDY1CACrBBH55HqCZSkri1G9VRNzShL2OYFm2XBbDricNixXT+wuLgGK5GyIXYkvumZTE8pih2H7T2zyQiMwnUEXVVSHDS17jFGkDkZdV6xfjyW27rpGOKAfbHHUQLdWLo2RxtJW7cMumOoSrKzjN/96iv+9//t31AUB9qhpykbhKMYBSlfvfmeb9++4c/+4uURlFBIVg8HTN+yzXNcIfjl30ecnYf86//hX3Ny9Ze8ua8ZeYq2GWibA54vGBqPJAT5TxRbJWFxcU7bDHQtDIc97mLOIKGrDXVzDHxYP74ntJf0jsJxPRw/RKLwrMOPP3/Bd9/8AaQidDsqkVFXhsVYMruYI2OH9cePjCZT2qcHnCTElUejUiP2vJ4lbLsVxg1xlAcm+9MFXdW74wGJA1brB9J0xtBqmrIk9SL2zY5AKDwFTV8RuAGvZ6fIpka5EeN5xLBcUx8qimLDbpvTDD4X15+B0xNKQbktuCv3DMpnnI2oreFQV4zmC3bLe7Z5RzKdMR+PKDZr+r6h2K4pC0k8DfGGjndvv6fofV6+XCANPN/e8/rVNYoO6w90fYXxZiyuHKTXoTuF7npWdYMKp4wSwR/+8Du8k2s+/dkVm7v31NblJz87w5YNZVWz2tacX1/RbLaYruXqesz9u3c8loo4Tnh5Meb7t7foKCQQFTLwsG2PpaPvBGno0Zke8JhPT9iVOXnXobSm7XpcL8JxoG0MUkp8L6E3A1p3COnS9z2WlNYZ8JVinzd89sWnbA9ruLlhlv2I9dO3KDHguj6e7+NJgee4xOGA9MdQVtRDy+nMQxhN4h3NQy0NOg7phhopwFHgB4aqqfHCiOJQoccBxozpqpJGC5q2Z74Ysd0UuLstpu+IshEoi4MD+Lz79gMySxgtJkyCgGHoCFIPXw5MZgGO6HhYr9ks7zmfn9FsN/TdpwxYuqFjGBrwG9o+4P/5u3/Pcrmk1CB6TWclgx7o+4IwllTAf/gP70mDgNa2dF3Dfq+RCBzHYVd33D/v2d//L/xP/7NLnLrIQ4UVR0w1yiNvN5g44vuv3+KFAbqrj32RdsD1Y6znYYYa680JRzH10wrHScjXLeZKslvf4EQQCk0nYHMo8bNHTl9fYVpLVQ3MxyGN75Dnlq55pF85BCOXu+9vqLVFp3B+MaKva4Qf85t3t/SBQ9OVWFpC1/tBQf/gcsb/9bt/8zfWatJwRFXVrPIlP37xF+x2x7wfjcZIUEikdMjLnMhJ8JXBUR377YFil/P8tKIqap63OZ+/fkW9v2e/23D7Ycvd4xqrPIRzbLgPWjAfT3BsB0aQpCmxH3LItxjbsNs39INDPxxo2pz3335Hqx2S2YQ0TAg8ny//7M8RVrN6XnP64hVhOmb98T1JnCKsou0K3nzzyORsStvAN998oA7HXF2d8varP+DELpGf4dEipYe1A+NpRt/lyF7jeVPms5SPq4YoCEgSzf3zlqKznEzmNFWH7XpmsymbfU4YKcqyIfQcjDa0ZYFUgsBVHMqaZrAY3eG4Fs8PaEwPumPoNK3UKBXhO4K667AGsJooSNjtN5S7BhlGSA+U1UShR9tZBtNS9Q1B4HM6CxkGwX430NUli1mKFwTMZxEMmqbosSKlLkvCwCdwHdwgxLYupW7oWx+qAS/1yHc9eV4jUDytnjBDhbUdrh/j+4LdekdVlJhOEyQRcRRwWB/o9IDUFjVYFIa6b7j9+MgwaMIk4lAeGI8WGFMRjKcc9nuaWpBrzXrX8Pvffs2mqQk8D6ylEgrfdVDWIAFjNYGrqNqesuioOzDWIoWidyXCulgjKOqWeQpnszmifiKIfHAGbt8t6VHkTYVwDXc3H9nkJR9v78ifKqxryFKHp7VmfDri3/7tV1T7gnSSoPBZb1aIvCYOQ5R1OT1LiGcnbJ/z4+/UOSeLUwYrMM2AH/mUVU2aheDEjE9HnP/kmsknJ1ROyNoaelMzm31O3lTYsmR2esK+yfmvfvLf/2kY3//jV//r30R+AkrgWIfNfg2iZxSN2ayfMK7CkS7zyZyyqynqA64Mif2E6uM9YZDiBv5xpLN5ZrKY4SuJaRVV3rHK4fz1FUns4gmwxiPLEqwxdJ2hyvfs9gWELgzDsTwaasDQm4GnmyW7VvDy+pQ4DhiqjlefXhPT09YlZdNjmoLl8wOvP/+MD+8/MlgX02ui0HD7cc1oFHMY4PWPXrL98C3j00uqpiCejMi3e1wvoW0HtG4YtKRuDFmsWK/WKAG7XQmepNeGcTgC3eNFAcPg0DYFjdUI7PE5KEHguAwWJtOEYl9RDZY09BBWMYpi2rpFqBbdNihPYAaFVB7S9qAHUIJBW8xgKNsWKyRN1VE3DeM0wc8kq0ODROGjYbB0bcdqvaYzA+eLGWEW0lYaKQYcKamtRljBar3BEwJHKKyjaTtLWbcEStH3HXYY2DU9wTjmUAiyOCIZpThOwCiLGIYex3ik4ynpfITpK3ptUEiSOMYYy+3NDa4r6TqFq0KyScbH+1uuzz9lPJsgpIvnSzw35LDZY4KUvDU4yQjdC7w0oT3kCEfiGA0GpAKUwJgebQTNIBisPpaojsRTHJ+hkHiuwhU+mSq4fnHB0FlsqOha6KXl5m7F/fsteVGSt5auaei1JRzHDLpnvTVMAgVBxKE4EBoH2/fo5sB2XxE6Ci0turFkIx+8FLoaXRdEcUQURYg4YP14TzqZcNjsmV5MMVFCT89mc0eYJBRIirahMYq6XKJaSzaZsC2f+Vc//x//tG2rWvcIC3awJEGK57is9kuW1T3Ci4ABrXviKKNvesBhsIbnusW/nLKvdgT9gDAWPxgj8KnLhofnW6zr8uLTMX25Ih6NGI+mzMcprgWjBcYY8rqjcxSOH2CEgysd2v2B1f0DNx8esEHKjz6/pBsG0tGc1z/9gknq8XB3y9ubewYJRT0Q+xGPt3dMZiHTZMChQnuSn/+Lz5Cu4ZPzhMc3XxFMx7z98Eg6maMMCBMwnvqErkFbiZQQeop8u6Jreoq85eTkhK6UNAeJFwS4UlDmJXFUUTUWR3j0lcFBMAkjTDsQxymHbU6SZkzShLax+L6LcgxWg+kUSmVk8QiNRTka5fg4vjpmdRswOFhrsQI6Y1htGw6N4e0f99zd7Smr/OixVpKqNkg34/TFAilBS2gHSTiZ8bTdsjsc8Fz4/EcXtEONQdNqh/NFShJHEIBwFLgWYxXb5UBXFOwONcKExCpEWHkksEymZEFAt815uCupyh4RCZ4f1zx8vKdDUmmFil0aoTnstoxGKd9884ZgGjOZjY/WV9PjBAF0O0Kv5/rlnH/+L/6cy+srpO8eLwYswhPHDSgtMVbSa4nAgONiXYHrunjK42QyJRnFiDigqVquslOmoxP8JKJuJPmh4un9A0+rktvHjzxuCqp9Qd+7HKqSD+/ueb49BhXk+476eU0YxayrHWXb4AUuo+mUVkt22wNhHHL3/SOJ5+BPQhpnhLGCvDyQqI4Xn16iaRifXrH88EjiW9yRg5eOaauaF7MJcRxjTIcQCu04dEPL4+r+hyT7w4J2vYRu6LFWkxcb+r5nko7p64bxbIwnQtq2JXJj2rZmmsxJ3JjzsEccamZOyDdffYd2fUZnM9yqJs975hevEEqh+hbdt1T7nKqt2NU5h3LN6vGB+8d7GuNwfpryeP+Oqut5el7jjE5olcvZq2umCx+QTKYjJqMArynZPOc0wuXi6pLYU7huiPJS4nGMqzXr5xXv3z9T5TVf//L35NsVRVmzfNryuGm4vkzZPG05SSO0Lfn4fsOh00gt0IMgTRIqJ6CyhihMqYqCnpY/+8vPSIXAlS6+4+C6I1phkC7MFzNse6Q1tlbT9TVVa2namn6oGISlMyW668EBrcVRiE2Law2RUFRVBQR0xiKdI+9NKUWPRktJh6DWApWm1IPhcTdgcGmFojYO8TxGGosxknLfko3g3bsPOEFIrAKUBVfClz+9JowcQmq22y26aQjDmKrrMEohMFTNlloI2lLz4tVL3j0tKco9/dCCq7F0aFxG2QQjNLq2lHXFU1NS14L1vmb7uKGtWzb7lu3WIEOXt9890YmYQ35kvbuyRw4V9C2jMGQ28Xl5eYqrFEaD53i4DuhBou0RNimlQLmKUApSTxO5LkHs0dclfXNAdTV/dh0zWXisiz3rzY6PN89o07HuKrphQ3Eosd2Rj1cUBTgBnkrAi0nHE95vtjR9R2ANpj/OxPvGUreWpqyZz+fc3d4hpSUv9kzjYw+o6npa3fGw2vPLf/yK9tBixIYwmfHm3/0B/dUGc1sQ6pbu7g2jXnOdTgmEhyMgL3Pqf4qb+pMEre3xxjXCIKyDtZLUi4mDkLvnD7y6/gLhBhzKAow47iULzfbQMppkFIeS6fUlTigYJyHWC8kmAcXDezbbJ+zgMkrHyL7DKpcwSLBGoE3HfrfCDDt+/cvfsFwW7PcF6cmUIDBMz+aknmIRj5nPTpnOTpD9wPNuw3K3wfckcjC0VUsYB8ynCc83DzzcL9luW8YnF7z45AvG8Yi7hzVvbx6xXsbVLMEjYjFOeHy4RYgAL/XwpYMeWrIoZrt5wlYtrpuidUnRVyjnGKwmPMjbmmHQ5NsNSQhdN1CWJbPTBf8faW+yLFuanmk9f7daX+6+fXeniyYjMpXqlUJClMoKQ4WYwEBDuAEupK6GMWBMMAZliIIqJIQpM5QZGRlxzonT7dZ7X/3fMVhHzCoGks/dbdte62++73vf522PFhcdPk4+8ywVBCvJDVzkFTaCDz1BOOaLlLbrUdrQhw4vJb3tkVKiEfgQ8AFciAgRGa3nfndgd+jx3lMPnoP13DweOHbTdVBLw+AjSij8GEEpdF6SlWdEGblcXVFlFU030vUeqSJXswW2b9B5ih8tHkFRpEgso7T8zd9+xXbvMPnZxwzrc4IUJDkkeYcRkt4OjEGhxRlBeR5PW159OPHhvuXDYY/OHElpyPKEm/cf0BLGtiMr5rhB4k4tttug1ICM02y6LFKEEigxSWuvri7JkxKlFFmRk2lDVVyxKCr0R420ClAg+OlPP0EVhjwvJhSw8mzrFttbnj/5jLOLpzgiw9iTz2cImeAHhzAp3u2IUWB7KLKU1YszlEmIOjKbaUIy5/H2hsXlOW9vd/RNz2H7nmyZsn1c058GLs4uePHZT+jHAVdHjruafLEgVAn6PKHWhsZ4xtjTHO8RTPFKrTuiwj8D4xuHE95bovDUtkYmhqJcIUTGp6vP+e7tP/Dbn/8uD9tbuq5ncCeUlFSZ4v6hY/ZbX7K4ekKqNM1hT5lLTvsd+z6ymC3Zn7astxverLcI6VBhZBgDTe+5WF6Dkwidc3X1hNnsfALF9ZKLeUZaVsjUoPIIbuT7b7/Hm4SLq0tWVcEsFZydVfTbt7z85deobE6x/Iyz83P26zd88w+/4OuXDxxtxudf/pgvXizweI6HLUUWuNkcqccT7e6B2/s7yjJnGGuiyBiFJ4wHhhEGH3h2cY499ng30o4jaE83CsIYWOQJmQnsNrecfENiStzgyHJBECPN2JNow6G3RC/oRoVUEe8bBh8ICqwVpFKC8MTgaHqLNBIlIZcJMjgiltu3W9b3e9rRYn2kC47OegbruLnfc7cfuT2MHNqBxKTYUbD5UHOqN1gXuF8/kFZP0Vqzul6itebQnTi0DukVtoc09UjnSBNFRDKOI6mGx4cTfd1zOh3IZjMaN9APHhc8IfYkaYYIPWOvkKFg0COPpz06ZBwPHXdvWtwQKBcl9bFBWANSIBGEoWb7/hHbd+zv7ynyhM8//5wsn4EqeXZ1RaYNWTmfssqFZnF5wSzPicqBcjjnEELxX/3sSy5Xc067hocPJ5p6oGtaxtHhrOKr//Bz1ps9n33ynNNJoZTChxaH5/Fw4m/+3a85X+bIWcGvXr/H7/dcn2tmWY4SEq16zq+fUe/3nF3N+e7VHd/+/Te49oiPkiIr+PD+e55fZpjlMx4etgjXT5qG5kRuZvSqpLVwbBx3hy1OaHzQxNF/DMT7j39+uCn28//l34BHRDgcj3hy/uSnP2PfrrGxIzUpb95/x5ef/4w3t68pygRrR+7rgeX1c5JY09+eaHYnhvpAPwRCSJCVAT/y8vV7ksWCVDraQ8O3b29Yrq5YLSv2+z3WSs6ePEOKhKrwRA8mSjrfIbzkVA+ErubxdCCtzqjKhNVyhYoSHwfWH+7Z1z1NN3D57AXbh9e8evWSIUZ2pwGlKl588hQTISsL+uZENksIo+ehFfzu7/4+hYSrZ5cEqTjcbVgfWnxqMCZn041UlWEep87tsXGQgBYaKyNFOmdRRIRUHHuYZTm9sxABMTDUgjzPCB7OFgvWuy1SKsoi0nUCERVRWJyH3Bjs4FBJjnMWKTQxCIIYcFFgYyDGMF1xvcIoxRg8WklGL3BBoHTg0PfYaGiODaO1lLMMYRO0MXjZst4e6OqAMYbH3ZpAADvVz9IqNII0KxAREiJSRLwMaOXph0CiIh/eb5DSYYeOtrcYlWBIaboAuUGJkfZkcA6EHLl+9hkX15cszwzN0eOCoDoveLy9I01K1o9bhq5mvTsSRODx/kDf9izzkqvnL+iOR1ZPrskSDUMkkY7lYsUwtLixZuhGsiTh959VPLtOyWYlUUO5fMqhqwkx5ZtX71guZry7e2R0gYebe8rzgs32xLJa0LaeWaIZhWf/eODpRQk6YXMY8WNPVubM85Gr63OS3HN2doUjEkho+pH97QNnz665e/89Kk/59uev+OSZ4Ysf/5hsNqO6nhF8yrCtWeaWIm+IosSbirqfbl0DNZl2/NW/+O//iQgiN+KEI0SPUJGIo0ou8T7QDZ6hsyQqwaPJzIIqW6CzhD724EdElMyrnDDU3N1ueP32HpEnXC5XKB9BKqR0jK3n+wfL1ZPP0G7EuwGtMtJEMzQWozTb+w0qUdzuN0QbGOyINhARrMo5iQ5EIVjOJEUiqHdHmmDQ6Zzzizlvf/Mr9nUgJEvQC6r5kieXKatFxmhbdrsdj+sDbd9z83hgMVtwVkQetltev7zh9Tfv2BwcISspE8lh23CxSDgrc1bnS4TR6MTQNUe22y2pzpE4umFgVw8E54ljj/IarROEzHE+IqUmqMh+v8GJSIwCKVJssCSJRCFItUEYiUgFPgwIA0ZMyJ9oIfpA9JIgwEYYoyeEiBEaTySiMdKwXbfEGBnblvXJ0wVP7Sy7znFoHIlc4odIXmgO246zeYUuMxAeoUBlEa0N6uM8VOVgtEDJgFYV/SA49YH361se9kdCyEiShPOzJT4MlDNDqkbimFCVmmVV8uz6GWPbcr/Z8D//T/8Xs/MS9Igde7JZyb7ZTY0rPzBuHxB2jbcdbX+iq/f4bsfiesW7d2/RRKqzgtXVU/qxZxx7XIikEj65MJzaHdVsSZpokAm17RiaCT09qyq++dt/QAhFNUsmWGFoiSKyftyh0pG66dHRILI5tzd7UjFwcVnijeF0bIl5ghMCZw226Xjy6QUqMXiRsW8csm0x1ZLD44bZ5Ypf/ep7/s9/+79ze/ea11/9kuZxzerJEu1yzotPuMorns6XXM+WrMo5QYDR1Q+e0D8oLBnGlqI8w8cRbz1SW7wpWchznPLcHm5wYeDm7lv++I/+nFO9ZegeeL66Jgs76ncb2k1Pdbbkp3nK3f6EiZrD+sDt+shnn32GGzvaqJktDFUl0cDQW/Iy4e7hkeV8TmoEGxsI+5aqWmCbgWSu6Zsj5fk1Ripu3n6PkpH725zusKWNihefXfD65RtGcmRREHxLURlmRcX5asH+/pHTds9mt2b0CbNqRbSRx67jZy8C/8///Qt6laOCQs+h3o+cl4p6N3CxWjB6R5EYqtWcD7ePU3CaS4nKkotANB5hM5wfmFUJYRxIU2i6Bi8E0aTTLL/vGISAmFDNUly0RCUxUjJ6jR8t2giG0ZEmM0QcGd2ITlKs12ghES4iTcAGUGLK7VICgp9ABjZG8nxOP+6QIiHIgPUZw9YjtUBaz/1xII4R5ROC8hQyYdz7KTvMZ4gQsXiKmCBn04kstEf0goe7W0xqeMiPNMcp30ysDizykhAHiD2pToidwKaRSrJyIWcAACAASURBVElE4dlsNiRZRZEk/Pl//sd89/UrfuePf8rjww7bTrgd63o6J7hbt2zfjgxOkRhLkJKHxw3C3lHbnpf1lkQoRCoQXk+oI60h6chnhjx9ziEeiTeGy0+e8Pq7Vwx2hOA59VsaKfBNz6ADsTC4TmOUoHWRlZKMiaVxilw7bCI41p7Pnio2RxjThLev9vzWb5esZjPaoUZ2np98ds52scTZlvfrhqcXGemTa7rW8fTJEyIavKYJEtccMeOK6Dqa5kAnS2pveNyvcX4kOEe6yH9wQf8waH9op93fDoy+p9kdeDzteHL5OaOH8/k50WtCdNzv78ikRssE1Q3TCb0sUfOEx/UNb28+YNueQ73Dio5lVfL69bcMTnJxvuSyqhBuIEZPUc4QwNMnn2CbA81hR7ksSGk57tfELGe3faQNgfdvX/OLn3+NUppmzBgJiGrJ9dUF4+ApFiv2jx/YHI6gLBLF+UXCr7/6DaO07Oot89Ull2cVcmg59TV/8NMFf//dGjFbTjWUDHTNRHBxg+fq+RWbY8tykSJ84OXL71g9uWB9aiE6PrteYYPFOxhdREmP9xZp4GG7x8eIHT0qjsg4ki0KpIIgxVQnx0guUmwISDWglCDLHEIIZOwZvcKHiWoiY8Bj8WIED5kQJFqDCrRuRMgEGdQk7Lc9QgiQAhQE4Rj8QJQDQwjUx8DoNVE6rA/cPwR8cEQpMQnIJBIHT5QR30PhUhKniDKijAYlMfoJXmsGZxn7AZM6jnXN4mwOUXIcBs6zxXT7qnu8DLSnE3234ZuvvuKXX/2K48ORi2dPEAoGpWlGi212jFKjTYYSERcDUgSCt4zRkSQGoQRDcPiP2K0oHU6MDFbQh5pMjrgu58s//UveHGp2hy3b/YZf/Po3fP+btxyaHhstx9OASROcC4QQSI2gtYIoEjIpsc6RZAaRJbz8sMNIz+BOmDThw6sNr77/QH9ssYPksOkJzZ7KCGIuefO+oVnXJKbgw5tbxrGn6wMPmy2nYWBUEbsUeFOwrWt62dHZhhACCsUnV5//0xd0sI7eW4IIdEOLJ3KzuWe5XDH6nqqcU6UL+q5mGNe0HAmxo3ORIfQcTwGVn7H48guW159xtTrHCMPl+RIXI/OLJ2Sl4t33X/PdhzVNm6D0nM1mh0wEQ7fHeYVjxDcNp+OIdxoROiQzxrZBOEFeSLaHns9++ydU1YLnT1acdlvuP3ygP+0pinPKrORx57h8csbNq3ecPz1HBEGVlsR+T73f0UlHVQjevN5ysSzBWTabhuWiYn/quLycsyhzvn37hi9+/JTgPKlM2Hee3bYmURlPz5d43xIFxChw48iiWqBVpEgzqqpECIlUkBcZY/CEaKdTUEX6caQwKSaCVAIZJVmuCF4ikWhpKJUgwaNEIEqFCAotNMQpAkbKSY+caUWMkSA9Sk6d0hgjBA9eMtoGKSWEiFCakYB3EYslIMH5aRxEShSOiMJkglmWMgaPTFJ8TAhRkZjZ1ABzHmsHxtbTDWfsDyNVkUB09K6hzHKsPDJ0PW7wDG1AaUHvE1Sy4OL8msPhkd3DHcXqmigCSmbovMS4AWM8WmvKLCWEgIhTqRWDQ6BJEkNQgbPzDCECznm++PwZWV4So+SL3/0X2PSSu909x/qE7QX3t0eGPuJtIArFbF7hh2mi4N302y4EfJhKp2AlIjhmhWVEsutGlmWF60eePL0iDJbdveXx9gaER6YCmRoWqSamkmM/YKqM+ZMr8qJiWRX8y7/8T/ij//JPydIFvvU0uwOp9LR9jxAGhUJIh/znMMWEEECYBAzDAEGweXyJzhYI71AaVosSETy7xzu0nEiMt/UH9vIF2bMLFlcauxk5my8JynE67Pj+5RahUs4WkrbZE5JrfuuzS5TsaYc9ZxdzXNuTZiWzswXt4cRx1FhZkGQZISpwjsLkeOk5nRqK6pzHuzc8rB/57vtb6n7AlMXHk+nAoa750edPaY81q+dfUqjI5uFAG3uiUZx8wOgcI1Oq2YpMe9aHms8/f8LbN+/JckU5N2wPRz67uuTDq9d4OfKLt9+DKTkcGoq0ZfBHukaSlClKQBcGTvUa7wT7g8WPERc8JkvQWqIiCBERerJMLsoComV0kRjAR0V0FjcGtE5wwuOlJwT3kSE6bRxBBLRJMVIhg0V9fLJKQKI9PgaQkVSnxEQhhEeKBFQgikBrW0IIDK7B2xQXLE6MBK/QMmJICAH6qOiUAq/oIiADiRSkxqG94PbxBq1TZCoI/ZFFssKOGb39yE3PR8Z+RKczElVSJCmnY0vbb3h4OGBdy/pxy6u3b9i2Lft2xiBmrK6+RM+v0LJkdb38qG23jFagp0wJFBYfhmkTGxMImkxrTvUWb3N+9hf/HcnTn/H2++/45OmP+cWvv+P9h9dIlbA7Dowy0seRut6TqIzejgjpSVSCJpKiGEKPNnDY16Si5POnZySrK9brLXm54jcv37K6OKe4zHEiMisVxeKCIAVxEDx5mqKLwHg6okTG9y9f8fD2FfbNmv0vXiObRxazCh0FuVEs1YzYegopEBFUMfunL2gpNWGYXoYgwCSKffOOU99SmIre9qRJifcR5wL3N7dcX39JWs5QSqJlipEVT1YrshgYdz1ZMePq+oyq9Ow3NUlIuFxFbl695O7hwHGMYCU6nXHcn9hvNnSjYDzeoTI4uywYbc2+GbBe8vBYI5ICKXs+vHkPURFcJKvOaJqG3jqy6owizcikpCrmxMFyvzshyhk5KV1nmM0qUqk57BxXT5fc3RxITcbDw/cgBc+fP2H94YGLJ9c0dU9vJY/3LYMTzHLNxfkCpQtwmtpPHefNsUUoTTtMp4xTIFMgxAny7iLeK1JXMNrIKstQEvpmpMdPWU8xoHXB6KYH7JxDihShDT4GtHBIKUm0RGlweiRIhUKgRIKIFuk1RkSEjPwjkSrGSAwaLTRKaEQwyDht4hYLNhKIeDESkBNr3TsyA4n0BOFxTUM7BJzUH7PODBKBQpFEgdSKxbOKPtT0ncUOI4d9T1Aw+Ig2oPEYoxE25VDX/PL1G7761Sui1RzWXwMj+wH2Ief60z/k6e/9ZzzsFFKUtAMkJtK5ljF4Bu/wPuJHz+G4hlGz3vf88pua775+JKD55uWvoN1y++0ti8WC799uOW43RBEINmDHiDEpaWUQCpLEYGNP5z1Oecr5ghAN0mQcji3NpueT8xJVLjmt77i4XrHbnkiKnBgD2/UGbY/MyxnpcoFdn0iEYbFagPRcf7pClRV3dw90x576VYu/H5g3F8ztORei58/+8A/wJqEbWgL/jDk0bjJcOzeyqs6wOuX87AW77kg7tAihGNyAE5ZUp3g3EOLI6Abumwf2g2O3fsc/fPV3/Pt/97/xdt2gqhJTaD6836DTOQ+HHe12IIgMJ2FRZdS+m9A8BvxgUVpijKbIIq+++Zb3dydEAodjTTmvmJUJwgguzy5QWO7uPzDUexbVCkuKzBe8ePGCDPBtA7GnLEuuzmbkZYYIgv2xxtkBoSNfff1rjoNDxZ7oM9L5BcfNmuXVBd9+8zU3uxPXn644HA4ICfW2xTGg5VTXmkTy4W5HkhqUAIEkyB68Q4bILFWkQuOtJ80SWj9CNCgliM4yuGkcJFyPD+qjjZKPNTSEOMJHC6uSCUZJhFJIESc1mPSgIGqHNgIXHbnMSGTABA1RkSiFERI5Kc1ROpJoj1KGGCNOCmIUmKiQcYB+IHpPmWqi81NTTxgWaUr0jhBg9B+vvzIQVQAC+90jh6bnft/S9JEoAnkSEaolzcD5jsx4EpNTJDPKfIYy5/yHv/0V3YNlVQaeLnO6ww5Chx4a/ou/+q/xuuA0CDabgeNRUB8FQ6fAGfrRE7zgpm7YNZ561KyunjKMHjdu0dJx6moOa4clwWQpiIAAlJlq56Y5AR7np1CJwmR0LVPKHWBkih08q1VBvblltCdqn+AOJ5L5guNpwDnD3XpLcxp4fHggMyND0CRZztvX33Lz7jvqx5r2sOZ46tjsdqhKkFQpQ+HoZaQXgdP2Fd3YIR2YJPvBJfuDc+j/8f/4H/6NiIK//NO/4ObmPdnFT7gopoiP9eYNQYmPYowdhIh0kvXwwIuL51jvWaYVsQ7kVc7F8pwkM6jY0Teex4ctMjeURc79vsaQks4TzrIC2zhEDAydRSYlIgYYLbv1HpEvefHikoyA85FZteB8vmS2mCNjz36/42w1x46CfLlCSrhazWl2j1SLBcf6CCbnYjmj2W357t0dj8eB88USjaCxA+vW88WnT9gPHU09kOaaT5885cOHDY2YKB62dgQiUacsS01VlNyta0bp6XpLmiYMwXEaLFmW0g8OnUr6U09Slkg0UsF8Nsc7QW9HqllCmhTUdiBRCqIkhoEoNIiIDX4aTxHQSqKFmn4nWLQCGRN8EGRSk+XlVDMTSXWB0D02JIzBIaXAWktWCLyd8EKJMgQnMULixSTokAoQBmJAmxKpNIP3dL0nBIGXEKJAysmkE5SAGNFRErUkjJZEatphAmH04wkjU2Z5iescRMh0QpJnBDfQW0ewAR89ox/YPDTUhx1nC0VSWH70k99jfxx5/8tfUBaBL774KWV1hpCKRbUEqSmyEqTB6ozf+uRzfvTFp/zJz/6IP/tXf87t7Utif4fvPPc3b4iJZ7M5EEaBFxCVIrh+av71ktmswPaRNDF44bEhkEVNqjXlIqHvAk3TMy8150/PGcfAqfeIrub59ZL86pyH7RE3BmSacPP9G57+6Cm//Pot9bZH6TOGvmNwEiMTrhczLq/nqFRhFjNaAjuds2+O6LRk9I5dvee/+ZP/9j86h/7BsVWZFPSmprEZRi0ZxxopSx7vvsY5i9sdiEaRpim29Qxx4DK7wIbIi/I57W5LflYht3eMQuMHS3t0yKLi089+RNsdef/2wNnzZ8yzEsYdD+sjggSnFOmiIOz3WGoGIVHlnPninG67oSxL8pliOUu5e7jHrxW+6ahWFbPzOdfPLrDHgfNlTnc88eTpJzzcf2CWL/E+8nd/9w0jDk/OF09nNGPPw/HIfoh88tk59eMJQkJWSpxt+fbbVzyeLF4pnjxZ0tYtXsL1WcZZkfDq3S0dKVFCCJAmGcr2SK0p8ki0BYduh0sKYpQIPDEI2u5E5zxaBbCeznboqBEBamchCPAWIQOJSuhDRImp+4pWCB3QyqCANgS0lkQJfdOiUw0igAz4IHBuQIaUGCNC5YAniome+Y+vg5MRG8fpNBfZ1CkOH6/hEcbWT4ifMF3hhRSE0RPSiPQCLTMQEi3BxUDjM067B5wZyNI5vh9pnWN0J9JkTlFMUalJmSOoiaKgsw1lluKHlrvbEYhcnM846r/japYw++k5X//9msf1VwSdsMwFy2VFNltxff4MpUGnS65XF5y6He/f3/Crf/9vmT+TnF1e8d0vXnH/0BB1INUF3geMDnhvcVIhHUgt8N7jYkC5CVgptWeMA8pHdNToUnLcD5hO8bw+cFYtGHxk0zTk25r8cGRZGpTw3Lx9hxOK776+4clqQTJ/Qr25JysSsnRO9WJByEsaJXAPJzLl0bon96BVj83nHOuM1Xzxgyf0Dy/oZTERNMeaoDySE41N2Hc7TJoy12fsxzVpVk4YoqHHe0F9rClnc1op6IeBp9dPWGQ9wgVEnpGmivWHPXe3axoPT7OIbfe0YcQkcpp3R82pO6HUSBg1xkxdPh9qZGo4nraoRPL+5pG6dawuL3n+7BmzxZJVrkm9Q8iRrh/RWnOqDzRNw/544HZzYowarVJSEXjcr0mE4eQjf/C7P+Hdm98QMaz3Jz59umJ1NuPnv/oNXs1Q0iGHkdTA6AQX8yXfvXzFPgjKPOKHAAqUDuzrjnm1pEgFu85iR0mRaOTgmF1kdMeWMThcYPLy2ogk4KIjy1OG04gSBp2BDZYxOIL0CCkJMaClRAiHipOZQ1hLFArhLGiFEQpPQvA9SqYkWEYRpg1CKaxLESoihMdbh9EJkYiKASEVXoAPEREU3dCTG00MDhkSBgYyleN9P3XQMYToQHuiz6ayIFVs1wcUihZPiiVfGKKLSJGDHhEiRaqI8p6iMoQ+QJBIGwhpShs1d3d3jM2SCy/I8um5/f4fveC7V/d8eH2PZ6BrtngE9+YtiwuNl5q/vjtR5SnBSs7PFf/6d/6Kr755xfr+HeXsjO9efiAoi041AUH0ChjwUqKcJHhLkcj/f3LgRiiKhL71mFPPYjWnOVr6zrIPKctFT64Fq6tzXNeSXeSMRuAeDzy/vqB1kSItEFrR20esdywuvsREj2Tk7CfXqHmKbxQPwbLfH5hdVnx4CBR6IM9zNsfNP31BI6HK5rixR0uwQmCiQAWDkCkvLj9n6Qre7d4hdEQOijA4uniiUAVdHLkqVvjdiTF2AMy04f7mnt1uIK0u+fKTFNsdcaJEJIKbd6/4cLD83k8uMSpDJgqTGFxdo1VGosB6SIuM9eOB0TlCcBwPe6rFJT+9WqK9oz7u2eyOmLRCS8vh8YHDsaU9WWznicmUTtl9zKXadoGrVcrbb39DMZ/z6ubIs6tpbPKr37zDy4IkkcxnZ6RZwvrxkZ/86AXffveWXmaMvaXMIYTAk7OCph2IQeJcpOsdp26PkAUXVxXHzYn+6FAmpTt2IDRaKkYb6eJHu2mEMZnMHXliGOvppdIqQ+Km0ZewCB8RKjB4yNKStq2RScY4TqFsQ9+RFRVRRJzp0VGClfggiDoQA0QMQhtC7BFRYlRGDKCUwcdh0paPGqcdWabx0qGcpu97UqUJWhBURDBBBJQWhCgJ7YDOyinrmYEhzOiHjqpMEFrRNBYpehZlyag9mgyWgniyqKDxSjCOFhE1292Juu6JjFw8m5HFhE+vS5b6jF3Xc/94Qo2S2gbszZYmKIyaMpf/1V/8jFO/5m/+/ivsaeQwKOKwxXkIo0fngkRqBiAGQ5YZ+n7ARIOSln5UyLFjtZwxNpZ8ltI2lgsTqKoCOkc9BhJrkX3kYqX4f7+v2T3e8/T3Ljj2iv5+TzUrcHGHkIayWqLODTc3N6TB8sSu+PA33/Lpv/wx5uIaf/OSPLugQSJNQt02BA+b+p+xoAWwnK8Y4wBTtUbTtSSZpmtHorA8kYI1hnWchu1JkrGarXg4viexU4czqpHqXPE8XvLX/+tfs6sdukj48ZfX3L9/T58XjLsjdTuiQ+CLz14wup62abg6n5MpycGCTAREQX3sECrQWU+MguvrZ1QXV/zB73yC3T+ikoR6GJmfrSB4uiGSzzPiYY9Dszi7ZH86IRKN6HrGkPLppwuOuxNJZtgedlyendH0Ow6nCbc0uI5TOzArFH0nuFouub3ZorMZtmnQOjBPFaeQsa9BBEealMgoJ0qKNVwsFOvbDUKBSRKa1iHIWJYJp2EgRojRk+Yp3kkyk9ONgRgUOrVEJ5jPUuoT6ERjdKC3PUI4CikAh5aGGCWlSgCBFYLrJGXfHEkVWAJOOqJPkAICAuVHlEhATp1uF8I0Aw8OzURZEWokWIkTYJKcLtSTE8x63OiZaUnISjLlphuCEIwa8CdUkqJCipcW34IuUzpXAxlOaIIJqFQRnYDGUSYFIvVEF0mThI31JKNApwIlUo6PllM8kNUbfEi4PjNcfJHTjjNuP+z59PmPeXK9RImO3eMDjx9e8usPDZubNaZU7LcjhZKE4HFofC+oCo+0hmAiYxuBQJIkNINgsdCMg+K07TibJVSzM277HdvtiEkNTTdiCOxOkvOl4eW3N/zW5xdsNwa7r8ivBOJ0xI4tOs0YfeDu9WtmZUKVL8nLgn50JCbj5uc7tNmw/PScZmxZnF9wf6wxs5LG9YjwwxjfHx5bKUWic1x0qETh/ED0gfl8jseya/fc1jWZTJBRTgmMSUmuFgx2z/lixmDHicLRjnz9Dy85X15iYmC1vKQ9HJDCsr29Zf3QcWwCm9Zzvz3SjILl1RVRTYF2plCIVKF0oJpJxrZGxJGyypG64Pxiho49ST6jrRvqukMpQZAG6xUPm5rjviFPFQ+Pe2Sa4pzjth6pVjOa4YSXHj9GYpRY0bE/jWR5Qs9AiJqnl+eUuabruo9AB2jHAYEiEYboPDpG0kRSB/BhYDYreNzveXq1moQQQkEQVElG8JMQRIlIiI6gIlLlzBONEhC9hxhhcKiYIYTADQ4venQcJhqIEohYopMZQU85VLmRJDInRkGhUlrbE41G6UgUDimmkUzEY6JlGCzIycgRpZhcQ0LTRYcXHhGgSgxZKvFxRCUS7ySjFfgYkEojhSbTI8EFopSoxCBJCXbqGiMcvvcTPMFZyrPFxw15unWoPpu+m8MQHIYUrRNk7DirFEUZKGSg0JLMwCyfEwdJbgxiiBSd4cr3/PGLiovcIu2aw65nd2y5/bCnmAl6LzhuG6RStIxgFEFGpJZ03ch8aab/uZogEHV7QgrN0I4YRlSpCKnAtjV5oaasdC0xiaBanCOFZvSakxfsNw0OTVkKDuua/alnc+xwcaSXA71TnPqRutkzDkeqixlPnjxjcV1x8dNrVCZIZnN8fWCRp1RZgjISpX+4y/2DC/pgD9MLExRCSWbFfGqm6AxFyvp4y8vdPQhNkRYsV0tCHGnGiCAjhAYyS1rkNC6w+GSOP8v48j/9M7Jc0fvIEDRjLxBLwfVlTjGrJtGEiaw3d7y523O3GXEhp0w0fTsw2EBeLZhXJZkWfPZ7l8yM5FT3aC0pi4rL1ZL22NK3R477Nad6wOQJve2QqWB72JCVCX/440tSd2Ls+imJw0us9/RDg9aSIDT9GKkWM66XGV0zoLTEuZHOjhhjkOnAxfkMFzN0KZGxJ1MpF+dP2O+3H00UA0ZnWOnJU0Pd1QQBqc4Y+jAF6wVBKh1BGvZjjxcSJUaC9ox2IDWaMU5z56kT7T+SOjzt4Bk7R2JyfBjxZkSIgFESqQLKOyIa6RVSCgSTlFAZTV7oSYWkEoQYkEYyRShJwuiIOjJKj9KeoCKDHafNxTaQwugtvZQc2xEnEjonqOua0XcIoxF+Uq75aIlGgRvQURB1ZLMZub9b04mefrSMNYggQPWQQjKbMStTsiojmRUUM0E506R5oDrPmM0KtNZo4Uh0gS5zdvsjbjSoMDKbVdztao6HibHWh4A2A9FPtfjZ2RmBCKogjgEtPJkyhDECcoqhFQJEINGetokYKViWk1ouesvz60t0HCfVnR14/nnBox1IFjnffXeHlgaZlOi04Pv7ntPacX4242JxRVrOGGUFo+PhzT3aS5RNMJfXnLTkIWqOVtKLhPvDA0k0//QFbaRis9khtEBqjVAVQmW4Ppm42MPIGALz2SVlMccogxQJXggqfcFZIjnDkSlFsiyQn8z46R++INot7fHAYb3nce05O79AtI53b3d0fc9ZJdFDx2HfsN4daKOnHw+sd0dOLWR5RZaUzMs5+XyGtAKTJiwuVjR1zeAlVZnTHg9s7jd8/+aRxXkBwP22Zhwdn734BGE76nbkVMPmIOkRGCNJ9FRSKClxvaWqzkg1DM2AkQYtFM3HlMtx7FkWFxQmYEUkVYpTF1BRUa8f0GISWpxOFiHUVGOanCYqgtdoI+miQMkpSSMvDAmSNJ1C0o3JkSL5CDaIJMpT6hSjAyJMeB0pQUiHVgHvBqKeGmuJ+qgQc1MtGUWCJ5LKSfcsRCSIiEYiVSTYESUKlIuTyw5FVAqhYKwdbpw60sFNeWJSQtdOmWbDWNM7z6nrpqyxKDBBgbEIA7t9D2Gq8TqbsDk1jNZhQ4NPM+rBopOMqEGWCdudwGs41ZZkXoL1qHSyX2ZZxvKsIs9LrLWYHIwxzK4UMkI519xv1jysH7FDwr7vOR0blsslSmgyk6ED+KGHbk8iNdIExuBJ0xRBRGcKoRKs9WQ6RVKh04Kk0pzahhAHstQQPdB2uMGxPC956ALb1wc+X66whyNpptCuJ9WW0ig+v16RzlLkCFoMeNEyKwdGp/BK83i7J7lIUeU5O+c4+ROH0OACCB8ozQ9zuX/YPonndDqAnGx+wvVEP4Ccrk6dt+TVkkV1gRAKnWhmxSVtU9P3A0SD0QXvnOcxGoS1fP/rD2gnUDFgJWRFjkkm5laa5sgkI1Ea7z1jM3CoPTp4jqeItRbrHFZakkxNsajR8uH1G/KqQsXAvDzDeke+TPEyJTrPi2dX1IeaYztyeXVFagJ9feDURnZ1T20DSaGoskA3dljvOZ8vMeipvPCWizLjeOpxYsb2eMLkM3aHPWn6MW+q6WmHhl3do6XB+6nT7N1E1BBaMfYdV2cVp+6Ad5E0jXjVkRuJHUEnGVoXBKFJPyquHB1ZlqCixKQlhgQrBEJACA6EJ1GSEEaCDEQUMkqMyEj1jEQphPbTKeQUKuqJNUQgRo92jiwrkSKndQOIiBQCJQQiCAT/+LcZXG/xQWKjJephsmbGOI2ogkKGacHDFFfrI/jRTD7pzOCSSON7RjvdJhbnS9roeHezoWta+i6iVY7tLQcb6PaCLEkZW4dXilgkCDQOBVoTXPw4esqZzWYkoSQGTZGmyCIlTWY0rsE7R9d0dKcjRIsxE7xfmECazMiNRIiIJlIWBhEtEUmSRoQ09GPDGCyuDfgOTkNkqD2JUBgx2YwvzmfI0PCT50+xQrBZ3/H5j15Q5hnS5DibTxPIYeR8nmGNhgDL7ILQa1xoEF5xuVpyvNnj2i3KSSpRUCYzopx0+VX6w/bJHzZnDA5TFQyDJE9SmvHAMOxQDERyvB25WH5GkRVksiBRk0tqHFv8JLshZhXOSAjgHj3poHj17gYrZzy5PuPJckb9eJx0qrOUL67Tj6PXhC6kLEvF4Dy7oSeqhN5Oov6m3U+NG6fJsyVf//xb6qMn+oFhPPHVL75mvV5z1zSYxDPUI97lbNYt10/neC8IOmHwgaqaMdMS7SIiRooyxftJKX04HKjKi7EspAAAIABJREFUAiENaEPAs5xXuGGP8SmTY1nTDFAVCUZO88u0UCSpwqmAjh2LKmeMnlPbkmZTh1qqhEommI/16xB6vLN4LCSSNIM4JnjXo5TCJJHBO0KYBPpJEoheIELE/3+kvUmrbdud5feb5ap2dapbvfsqKaSQIpQRikyHs3ABCemEgMRgcMv4U0THX8S4ZTfcsruJIZ0GO42xcQHhzMiQIiTFk15x3y1Pscu1VzFLN+YJu2UlSBdO58KBzT5rrjnn+I/xG06QUwKVISZUTEz+jJaBaTzh5pEYzwzRM42RWlqyBFlblAjkMGOUeEw4UbBTzGiT0UIwhIRcdCgBkVjm2UoX84ooO2Mgk0PEmDUuwixzeRFEwRg9535CuQpVCYY44oYZpWtSgMknztOOOc3cz2eqTcdff/2B97uRV988MI0eOZWrxnLTIqVg9IEYNPvDTD+GksNfwO1tT4qOh/5IVUtCkI+fqyKlgO8dUkWMNAzDgEiei8WKwY/koZwoNpsLhPcsVpJzKDFKKSVJR6q2YgoRlTMmG5qm4e5uZOwT++OOCUVVL9m+vkXoCik9qoJxzISsOe0movCcTidyjmSdkcLQXTR8OGxprpZMu/dcr2rOboAkyGKkMR2ff/b932JB58zHL76LpCBcpvlEcJHtwwOqNeQccUPgavmMp5unaNWh1QpHixblaPJu+5YftFc8Cw6dE76a+fSHH3F1WbNcKs7TB9aLhqrt+N6LNYfdwGl/4hQCi0rQWstKWp4sDNlPBYSXYZoFWi4eazwlf/jj7/D0puH1m1c83O55+DDyuz/+A773ySfkkJjHicXa8tHzS+7enximEpRYrStevrhApkiiI2I47CemGBFCcXO1QeF5+3pHxJDzmdGdCKrGNjWn84DrJ+rKYoUij4nZFyuknwPJB4KoyI9jOy0V4xDouo5+mAhSk6kRSGQqo6nxdETrxMIoEAktivV1uzsjZIWViTk5chZoZRkDSAMIQwLMowtNeIlLgra9LIQTJI2QyOSJQiFiwvsSZrBWUxuJ8wMkRy0BER5NKA4jFPM8Y6wgZ8U0Z2IAIStiLA42QSwL6XB4JKhEtCixzxhFYXNZT86J0Rv6vsf7VK5yuWMY4Nh7oq8Zbh1d27A99BzDSD/PZCLb24Ht7UQIFU+eXNN76D2cxMRpOnMcHach0W9LB/d276jbhpBrco6YqiZHSRXKGNJUDdmoYlsWGo9Emxp3GkBURKd48bRlmCJRlKDa/NgBdjpPZAJ9P/HJpxuePLtB58zLqw2H3uG14t3dK07nmfF0JOOZpxPrqyUvrm/Qy5e8ux95+/Utw/7IurN89nufcRyPTHFkd9pyOO2RWnGeHejEL99+9ZsvaKsrIFOrCqUUVjUopVjIFj8VI/x2/y0P45nd/sTV8inBe2TlUcowB8l+PDCFHl95wlUJeYy7LcJo5pOnnyVojTCRaThQV4bkLBdtxX480FSRdbNgHCS329JEMcwTRy8ZcuLz3/89Pv/OR8z7E9vbPVLXoCo+/d7vcNp9yeQnHh4eqC6uaKuacTyDXCCl5HJToXzkpz/5goDi/ngkhES3WCBl4OKi2C932xOyUpyHCZXgPBalevJnKpGp6rJPj+OZcwy4lFE5kFLCZ1nMHtKS56KeJqmIWaJk4NwPJCnJakbIQKUkRtcIEbE8LvDRo2zxJ9ftAhcije5QShAoxfBdVZJiVlQIUzF6zeALDjmFDEkQkipHcm3wfsZWNVY2OBcwsiI/JuuU0CX+KeviIxeamIvVNUwahQIREDlCdqQsiTKQZQAhSVkgksH5Yn1ubU3EEH0x3swxE31gGhONeYQVpISfBIftGT8FlAGRBbJeoNUFkYpxjJxmx8NwwFSGt2/ukDJz1x+4exg5H0dqs8JlSwo133n5O2Qf8D4iqoykJJbO00jwM9Iqco4lkaZK+i24zDSM+ORLKk6DHwZ0VUirVSvwwhTK7fVNOX0awTSc6Ps9D/0ZmTyrG01IMy61PPSJQx/xGLxQ9Psd8/HIi486nr5Y8/z7n5OT4OuvPvDw6j2eBbG6JoXE5AOytsyTR5lCrPnNF7Sq+XD3JRPlvnSxvqKTFX/4cgHCEbJD1YHj3Sve373i7fYbxnlggcPqCiErTlPPLXCsrvDSoy4bNp9/TELyYbfDWluUR/H/JX/UUrM/n1l1lwgHb+7e86u7PVknLtsVb97saGRAKZj6E8fDgFbl6HmxuuDZsxsa5fj26z2/+NV75HKDVBERTsgoWDWGRW3ZPhy4283IpqGfHVF6TJM4DnvmKbLfTgzzTJKa5y+eoEXk3cOEWRgWdYWmZXO1wktPVIFhygwiIqwkC0sSApLEWosSkm5Vo6PkerUpTK+UqDuL0ol5imhVsR8mvMjU0WI2C8gOTIV3El1BU0USkNEkOhrbYo1mnM4omWmUYM4RISNGZqSoyKknZIEMnqqtqGqJFgVZZGvN6AMpREgVc4AkHFPIWK1JcmaOCdPaktQS8THWmYo7DCDHopznGqUiGkHSJdRwmAPDPCOkw5GYBIhcore1rMjZ01lLciXGKRT4KEhuV8ww48wUIg+7nvf9xBQ8/Tjz7u4WbzQnJznMmtvdmS9fHZn3d6h25HyOfPXll1TGInNgbQRSJQSKXnqGMAEJkc9YDTpBXdcEXbQGsiGGkg8Pk+CyWSB82bGF0kwpoczEdtcTnOfV+yNCGDaLFYdzwrgy6ru8WrNQBetUG0C1DE6xiwNvvvoWGQPxPGG6JfLxfv93fvQjvKygWrEyljYL/sGP/5jD4UTO6f9/wf6bFvSiaTkcdqToEUmQiPRu4lVfQHhSSnRM/PRf/RnH6cirdz9n0QYm74r1TyjQijGMzJPHqYruaYdKcDr1fO8Pfsj3vvOSdVexaCqGOYDw5HkghkwLjC6VFNblglo0vP4woKsF20OZrb59d+J43nJ7ODO5gNCCL3/1C778+lcgEh9dr+hsxycfP2W9XpcdyHj2hx6lmkceV0bJ8mUc9hOYGqFtuXNFSDrw6vVXuDzx9KZjZcBU5bSwO56JIwxDAiVpjOXmYslhOoIsPUQiZ4aTo2tauoVlOu/xaS64nGSoRCRJzUKW3S/FwBw8798dUMZCTgTnESTOx4l1a5BRkdPMNE1lt6REJYUQEFxhY5tAVB5Hsc6iJSkUqyJIci53b90ooip5ZSWLpVU+PhlSNOhYxjM5S7yMxChKGEeCFOlREX+MZOZyT9WpRQmB9xNJzlhbl84qByI3SJVIdWSaAuM0kVUi6MQpwjgPHLxkta4JUVLVknZ1wf0+Mkya6C2TEyzaiuE0Mh4Hbncjm80zXr3Zsf0wo5qK3fbM3W5PEBXRe2oyK6uxtKgsqVVNcIo0JWJwdFi6ugIjeXp9QcwG7xNJZbyfuX5yScoBN3tQltvbA9cvL7k/B65uFniXqLRALjQf9mdu9x4bRuTa0LSG4RzKHV2N1M5zuVrSNBc0bccwT/ggePv1LT//H/53uvs9n68LbMGnzM++/hkxDYwn91vs0KahEktCFCil2J62zDFw8A6tBHiJERrX92hh6Psjp3FichqrGlbdJatmw6t3XzLbxN0cGesN9jtP+N1/9GM2i46msXTLlouuLsroDH6WLC8q6s6wXCzQWbI0nt1+W8QVH/nVh3fsH0be3b/nzbtjKVyXlpAkl1dPCyGzNaSupVvVyBQYkyPkge2+5xQzZwInnzGVYZgT5yBZry749GpDZyKn6USOnpaM1A3P1xt08lRCMQ2ZcXSliDsmQggEZoyI+OGEpIPkQCYwGaUT+JnsA7PQJUEmi1ngNJd2y6gyInkqK1HNgphBCUnCI5UuoD4Ki7q2AWMUUi8R2WKEICRJ1hmlVNmZYi5whOwY3QRZMMdIUiXiKEJijjPag4iB4GYUprRLJkMMZXRpasEcSxzSewWijOBicoiUEdEiUyqEE+FwQqCMIwcAgRaWpmoQQpFSwjEhpShqd9Q8nEaIGSMVMY0QJlKS3G7PVNKyuvisIIBy5jB5pmni6y9v+ekXb4vKbpZUxvLq7j39HJh94jhncjZIbcjR4R+TYU5nZCXwSpBDoA+QsmGKgvtTz3lwGKPw04GqScyAS7n8uBM5gKotfd9Tdy3DduDiyYrXb4+EODP7iS4JPvnecw7JcdwF1Hni5sVHKDmzeFbjnGF7kEynM37a4+aem8uKRWd5+vwpz37wMZuPn7M/K07HHZObOe5Lv3glfos59Lrd0OmOulqAkkRmLi8vqZRF+MiyWxGTxtgFV1cvkVITUmRVdVyuPyPlQNeu8SHj08QxnNjGxDZWoBLJeR7efUDNM/tTKW0LCOYIbddwGjznEFitNP7kUHVNJQT7oWe5eUqcJ+6Pe77/+9/nk+fPqIVH60hwgXq1ps6Kjy4vyfPA0igaIRlj4jgXxlZMjuVCkudAzPDiyQ05TXz77i335xkfBPthQusFL1/csN/1SG05usjZO7quQ4tIEIlIZKEKSG+aCh1EaFXGeVnQtaBb6P2Acw5VVVgtWVQCNybIxRQy+0icc8EHxUDbGKS0CCXR2ZKJRB+xpi73+PmIIBO1QUiFFKYcobMkSY2PkizK2Ek9kkaMEMhcXHRa1xglCTkwJl9GbEKA0gQ/ILJEeIWMmRQlmYKkyiIRRblPRjyR8qBJZUBEgs+4NJJFJmaBShKVJEZLQni8o6eAF5EkJbNzTHGErNGtILuENJbVzQ1/9Pf+iO/94PcZfEbLCicyn/3oB6hsOU7lCCpiQISaKCRCalJ0hJzQtiKk/GiUgdM5YJMH6THKo+pcapHjzHK5QArD3E8QYVPVZJUYXKJSmmH0JOFZdBJhNedzgVTMh4lVt+C4n0nZcJzPLKzkolO0N2uGqHn1q9cE07G/3aIFVAtJHwMxgtWS4/FIf9wy9md2r96VF/+5B9XyfntP8J4UJc+ev/zNF3SjG5qqop/P5BDJE6zXV6Uvd8h89+Xf5T/8x/8Zf/qn/wX/zt/+E2o6plmRk+Z5d83x4QM3m+dcVms+3L9nmiNZljetmCd0s+Kz3/2E/jQjZCltu93u6RaWd9/c0c89y8sVQoJLJeC/PY80jWFtJF+9/cBNd839u9c87O6IQnPYj/iYWK8uaJYbon9gv93x5atv+cu/vmN7SvRnh6kqrBGInPBEKpnY748c5sDJaaQsXcvPn64wJE6nE8vrNWOYGMLMZnVB9iM+ZzaLjkUNjkDvI0lW1DVoKdBS4d3I/ijYnSLjGElR0nUtiw6++PY9nkRWFQ+7PUIapLUE1aOUolsuWFWKHAKN0Rz3B2KS9POIEpFMgexLOZJNxLmACpJKmMLNlhKRQab8qIpHfCpHc2syOTpckpArfMgl9ik9MjnQxdAyPM6bY5qQuianIvRpQBldmFdKFPGPhEgFJ5xRWCmIaeQ0HJB6RsjEMA9Ys8RHCUmgtSxEEA+ExDxb1EJwPgXO88gXP/srfv6Xf47NkU4H/OS5vXtgDpLkA5iIqAx9dCXWGRyzy0RZFPaFViyqBmlKP5lLGREy8/nM9cUFcxY09Zo4OzpjCICSht6f4JFrP0+exWrFprsg9pknq4YxBqZJlphqmulaC3mmBobRsa42nM9njBxpukhXSxbrJ9Cs6U8nnHPc7fb86tUd5/2Izop5Hunf7VkKycXNmpvNNc82VyhpWFQd1Ne/+YKu64r96R4/HZFkYsi8v/uGnBN+dvzZ//IvuMnwfL3gSVfRmAUhCoxe0JkN188+52L5ORebJ7x/eMfN5XNyiIzzzKQyQpzZ7e9ZrRtyGhn6katNw/54pneSkBWvXr1iNyS6S8lud0IbqGLmdndmyooP2w/8X//yC2TXYupy9L26XCPjzN2Hd5xOI5unV/z89cCrfkc2hqcvO9zoCL4Uqk8h4EMmEdFZcX15yYuLK2qRkFkiq47j/sBpOJCDQCXBOPSopmHT1kwuknPF6MpMuq4ifkwcxwQpcAqCqDLT6AhJUhmFFZb9wZHRXHQt2kqUMlgJyiRUakElpsPwaPXMCAWffvcGpRQpaXwUaNUQXSyRxxwZxxlTK5LwpWkzeKK3hCRY1S1khTFLtDSoGBGS0pUlHW2jmcIZkXn0iStCmomhYI2MqclxJqWETJmQcgEMpohP5fPFACqBEvnxcyuSqJljWVyVbR5LBhxKJy7bFj/FssioQRlqIwjJ4+YTw/0dP//zvyTlGWkSl0+esrm8JvQzSWWS9CgZISoEEa8karVinI6FcZ4LTVWTERUsbI2KGSMl2VvEHFmu12yPB46zQ+hMt2h5exzoqhVVNriUOUYPbodzE3MMDPuei25BqjOjD3g0g6fs2LMiz5plm3m5WaCEpE0t83lk3n9gUTlWbc3y8poUMhetxaw6ZrlgOI2YVjNuT4jTkedXN/h+phYNP3jxI968/6vffEH7EIlTYuhHRI5kkSAqVpsrZAabB/6r//o/Z/DDo/fZYoxi2XT0YWJRP2F8zAc3ukOooqxKQNs1m9UFbXPBar3Ae8Oz51fMySFzyTMbY/A5sV5WHPeRQSacjnjvETFxtVqx3tzw9//B32HdNIhUU+vM4e6OV6/vqFeXuKj52S9e0XYdP/zO56xbw+Q8pjYYoSEXiH3VWtrOsNksMDKRmblc1igf2B+PbPsMLDiOHmtr2togReY0ZM5T2fEqmeiMoa0blA5Uj4H4FDLjOBNzIOaAsTCee0KSdM2yZHHxGF0eOqk8p/5IDLIo5i5RIzgOJ9JY3GzBT0gCMkd0XYIMIUHWZdcc3IBWASVrlBAYBdN8ABGJYcTLSBI1LoGMApPLDh79jBAKnzM+JEJOWKXxDvyjwpqyIidVnGzJl904R7RSTMETZSTnQI6RmCZIHoFGyRrvE1PICJ0RQjG4mWRjaQ6QAmMyIRtyNlBlxjQzJ0dwHiUND/c7dK059idkdo9NnQp0ORGIGHF+4mK5QKSM8zNdnfEugfcIOZEMhJxJRjNHOPZnghcsW4ubRmQs3+12dyLEkeXKMsdIfyhuxhQF5yCJcaCSka6y5btLnn72qKrmdj/w5sMZ3cDNzXPe9xN75zmNcDyMLC+v6ceeem1pOoPLmvPpBFZzf7cn+oCOks5UdBdrXDgh25b234Ag+rXxSZcDRkty0lQGYgiFHy1CSVZ1T1msLf/bz/6C2/ffoqVBZMWLy0tyHHFUXLWXvHWahbhgDANr3TKmkShr2tUCw4HNzYIfqJfstzuMlXz0vOPu1tGHicvuiunsyLmmAvSccDmxWKz4Wz/4Dh8/3fDZ02vcccdxHjgeJr5+f2B51eADvLn9wNXVijff3jP1B+4OnkOeCF6gtWYKkRwTtbU8bzZMYYCYeOg9qIKJNVQ0tUFIx9VyycW14nQIuCBZqoSxhoRgVdds3cx4PHG5rMjBcD5PhOxYWMMUZmLQqKQZ3AhCEhmRydAYxTwFLlWDHyW2qojVmZwUy7plzANawq6fWCiNrAyTz9gmkoJhPHs8M60paqtIGVJp1UgqQzR45RC5ARLZj2SpMCLjxIRJsnSJZU1CI3LEhRGTJTlXKClJcURkiv9bKnyEmBSkhMyaEAJWmkeiqChiagogVRkrRo/LsXzGELE2M8wZUQBoCCFIKTMFh8mqNKuYprjRokflxOwc4dAzCQhTBCyNMkQFyWZm5zBJo00mBMnkIgpJ9o4ag1CBFBRKWM7O87Q1jJPGywk3JbTKNNUVSz2yP/Ykr6hVhqpiCBPV2XBzveBwdJxPjtVSMD46zxZteRGiEmEaqFrDOCrA02pJc/mMw+2W0yA4DHueXxlu35+ojOUPfvgcpCwjtqtrTtsD1z/4iO1u4Hg+YEXHm/evWK5/Cy+3mATX6xsW9RqdlyilmOaZ7f6BJ9dPsZ2mvbjkYXvPed/z0eUTcrYYYxhPB45jj08RH0oeuT+fmSaH1pZJdbBSrJ4taLRCCWhXGz57+oTx6Km7BfhUOoBrwI9IkdCqJukOrWZ+8tO/xNuR43HPbndg7Gd+9pdf4TO8uxs4HO9pFAyTY/awO3t8BKMsbbVEaMWm7vj0+Ue8vFowTmfmORM8XF1c0lYrrKiRWvPscoP2iXkMHB48efY0eJTORJ2YppGH8xHvikYw9Jn7+xMpK4QQuOhKZavODP6ML01ARCexbYcUBqsN5zkiRCaGgIqC5Dy3h1vaKrLuOlQUBBRSaBABJQWtjWQtyaGirTQ5BqRsizZgJciE4DHP7AckMyEppjyTQ4AkcFGjFTRNB0YRcyIALvM4tizRWYVC5YiQRU03ImFUacDMIZJFLMJdAv0383gvUI9bh5UCssTlwBQiQtaQI0oIhmkihJIYdSGSgyL6gDIznTFICV5kolPUWbIwNW2TiUNA+wShFM5VcgWpIsnIskvMPmJNSz9JVqbG1g2jjNRKomxHsr6c+kQkpMDY7yBHrNAYLdkdA2GO1N2Cs5/xecLUI5fXlmGe6JZlx97OgjBrpJjpjGdZNWQ94FzPohUssubZZy8RlaKrBUlYhGnZHSZ+8tMvefXlVwgROR+2LOqOw7sz8/DAzeKSF88+IkZHjPE336H/7Kf/PUIbOnPDfTrx6fV3yKbj1A+srjp2uxPn84nsjqT+hK0M6+UFMSh2/S1ON+j2mk8/+yPufvnP8c4RzUhXXXI+90xa0mzakqQ5OS47zZtX39ItFXeHmaRqaq0QEQYzlre2C2iTUNJSty2//Ml78qeOcOwZjgeWmzV733OxvObUb7HWMvYj0lZs6ppN1ozBgdAomakUzK4gXI2ySDzLq0vef3hLU21Yr9ZI4dntB3xW2CyRWmFsIM+Ru9PEnAR59sjGkn1kjonZT2QlySKzsop5Dkgl0LZh8CO1aSE7MoJxcIxTKMmdeoHSI1ZUtIsGn8H3NUJoXAwIBTx+5hnBWi2QKhHHhFKRfuypKk3KoJIp1xafUEmQVSZEXXZU5YkZ5ixQQdJUFUOeEN4RXekzM6JEZ1VIzDJAyriUkNoQUyITH6EMgigTmVQK9lIqAZU0ooQGFUmxIolISolGR1Q0IBM+jAiZCG5G6DIDt7J0loUsqHIkxgS6Lrxt4ahVw0Qk6shwKt7qrAYEFlJgihPORdpaluqgeES3mTh6bLNG+wHnKYSSXEIwaMPkJVVb0Q+em2WFq2K57qhIzgY3TODBy4g2lmkeqJsl5+PM9WVNmDVhDng3EILE9T3pmLi52ODJ9Hd3LEfJWms2FzegYXY9H3/yjJWS1K1FCYvWNR++esPl55c0yw2LuqVZL2mObQnX/KYL+qNP/pjGKL55/SVeWeI8cfftG1Ce5Xd+zPc+/j2srLhcrfnpw2vM9YaP6hWNNOz7A1v3gavFEzbLT/m3vvvv8xc//T8f548z66ZjF7csqpmsDdl4DuPAR5/f8JO/+opltcbUgXbpGLYRrS0ZyegDT2qLpmGxWvLJRy/RwdNcXVDVDVJqnucrtts9qqo5TzPoDSs7YruK20NPlA4ZPaZZ8M37V6WATGTW3YJzzBze3PLZi48RsQTTz37EihqbJTfP1gznA3dHjxCSwYPKkXq9QOSA9zMNhjFnZC6iUj+NWFsDAhc8BkkMI4iElLKIW7ouwQHvEdGTm0CMklrCbBLnc6A1ElvXHAZH11rUEPBjT1a2TA5k6Yw2AUKKCKsgTQghqazCjSNCSIKIyKwhhdLHbQQ+zOSsqCrBwXtizshHlWvSCWIGAbaSODdDVsUthUJIgUmJlCXIiMAyBY8WFidjSSSliBAaoQJZBMYQqDEoBFFpvIwlXqklggr5WLOnjCAGTVJnYrBIIIuAAGSuMFoBU7G2uoxOGSEcqKKgD2ePUoLoc4Ed+pHgIsFHhIgMw5ZamlIiIEAlRRKZw3CkNjXjUIwc641lGBzCwJAyYs40tsU5x4XNzIeB5eaS0FX4h5lKSpbLimZVsXs7gw3ESnIaBS5NHM7v0HmiWywQ45Hnv/sxczBUzYZv392zWWXEQ+RoZ5rFDW+/esPFZsN+N/zmC/rueMu/97f/A053d9xsWn7x+hVPrm748puvmHYzu+Mt5zByf/ySxbqibS/omo7p/IBSht97Yrnrd7TLlzy7/gNOL+55GLbEcGLOlo4O5wNhPtDYG0ya+fLtN3z89Bmjdzhf4HSjSKSUsaa8VW+PIzeXNVlpZp9YXhgqMutnV4yHHV+9ukfaiq/f3bJoN4R4ZhgDr/cPnPpECmOZn96fIFckK5AkHubIi80l1VPBm2/vy3FfgxQV7UqBV9y9e0/ImhhgUieUXlKriMoztsrkVMIKJkeimKlEXagc0pLjQMRgFNS6wjMjQi4LWoIwCi0SU6wQMTMPI7mz2EoQfMR5Af6Etho/7ZmzohIVWig6KTllsFhcnmm7Fd6F0nBpAgGBqQ3Ra3LwaJWZlSSJRIyZyni8j1i9QuSAEUV8iXis0EQkpJHZZ6SQhVwqBKDIUHhVsZTZKWWZyRih0JQCwpgSKIUSLS5OaCOJIqGyJWdXmjkQkBU++5LyyhKtJdY0jGOPp/R+jT7RtZbsIiY5xmBYNnA8e6pVh2Au36VSTJOnbhRzFNQGfND0o0NKy+wd6uzRC8GLzYL7voeYSMIjRUW/n2kby3H2bPcjSoGPgcpCcoowz1wuGmIWCATutOd6taL9+Bkf9hPT1OMGx+b5mkqv2J57TvuJZVchBayMxdiGbAKv3t4iAoTLEa0TF9dP6a4uWbpAXVlUTnwznumn6dcu6F97hx6HHf/6Zz/hs+/+CCMTzg0Yq5Ek9m/e8eLyJc9W3+dpfcEXX3/B+/3XqBwhea4WLV9++5YvvvpzRn9GKM3V9UtCiqjacp5GtGrZrDp8m2m7JVFIXn78lCkqatOQTURj2LSbMv8MAtPUfP7xJX/0B3+L3//uZyxryc3FU549uSG6kWHKuDlzmgIXz66IsaB3u1XHR89f8PSm5XJzRdP7nlm5AAAgAElEQVQ01FqjrKLuKoztuFm2KD8QThPLpuJy1dKPnixLflcbQ9W0GKsQtaHRLVYFLq4alk3N6ZRxQTKmslMKDDn7oizHAEpTIamULg/m4JhJBfIeI84N6EqiKfekKQnOU8bqiohAWIkQCpEsOVd0piLkgCsoOSyWMQqEqsFDiB6hNGES5KAgJkR0BZigDVIadLZomXExoXXF5KeShy42L2LypCxIEqTRSPlYjZQzKpvSApIjIBEyo2lQObGQqtyrc0YmiZQSJTRSCDQVMhkICikSVhhk1mXMFErhvUZQCVHQxbMny4BIYJIl+Iw2JeqJlRgNAUlWiupRBFYqI6wgqgjZYKVg2dREQbGdpoTLhikYYpCM5wOXXWkKjUIREOTa4EIkhseQS0oljz3DEDM+wek8E6Kg7TaE2vLhNFIpSdNqrGlR7ZLjybF9/xYbAs8uOrpasBAGbQzIgbqu8d5hrS3ioXqc7QdRcM7DSHwUOPltvNxVqnm4/4bD/sgnn/xdpKjQyiOTZHd74PnLH/NP/v6fsFxYTvLMYdyD1aAUbw7vGH2gP77m7bsvOc+B69UTXJpQ1Kho2HvFQ15gn12S0oCWntP2xGYpmaaJJ5sNInpsHGhSIKeJRR344qtbfvHFL/lw+y2ilpz6A2/f3LE/RI6nyMVHz2haydNFze//8AWXteHb27e8fn/H4XxmzBIhA3Vb8fGTBRuVWRiYB88cFPdnxynMeJ/46OaGpdF47zkeDkx5JomIUhmTBRnH7cPI+8OEsQ1WlsUohCq5bpnQUhfEUJB4Hh+MXKqFZEp4F0GYUhYgDC54YvCk5PBZcRgCePFYg1OaLebgkXpCpsiyusBlR7NUKDWTVcJaT86RfprQQhT+ts6FQoJnCh6RAR0hRHykOKwej+EpBpIISGHJUoAIhBTIIaNTRRYKZMkIS1F+T0hLzp4gCgpYScgqMYuEVIkQZkKaShmeCqAk3s+IKMkEFIIsA40ubSBZS07BE/wEoeXJ1RU/+NH3QQpy4UcgVcbHxDgrtIhIH7C6KuSa3qNSolKWmBRJKvo+k5MipFJ6N4vAeVSEXNMfPcYotJD0fWScB1wS2EqyWdQYJWiMxUhDqwRCKIIQTHFgnif6Q+AU4P/+4j0f3t6z7yfOU896sUEZzXma2Z8mpmFmCp5xnFjYDTqXSLAg4vsTMkXO5zOHhz21qqisZLVaoftzQd7+mn+/9shdmgsH7rdv+ItfTPwn/9Gf8s/++X/LJ09ecrB77qcHXpwN//Yf/z3+xc//D5SsGPzI03pDioq6bfnh9d/j4cMXrDZPubwyjOOJxhpCyOzZopoNNz7wzdtbYhrRbULOFugxKiNry6qzGBu422eitHzv8xu0VYx4ogy0TccYZyovcK7nw/v3oCp2h0A/TTiVmbHEySNNxc1KkeOCrDMkR9CW7D0uwzDPtNrC6Jmdwuaec4ikMWAk1LamzyM5Ws6uqMVNpbBVwRed0gxOQfbFtCEkGUndrsguEHPGRY+XZbF0XWaaAv08cV3X3B0OVLZBKFi2HafhRIgVqlYls20tbh5ZNxpESzQRkUasloQx0aiGHGe8gEppppCY8dQZvP+bGbHASkNMEwKDthXzLHB+IKWCF0pKknxCyABJoRFkGpKIjMkhqMgUjlZK5ZQBiZHIMhesr8wFuJ/+5oQiBCIKshKPVZgSoSRZeqQuLDRrGiSB6DJRCkY/s6wsH336nM16zZdfvmbR1IQwo6REKM04zyysIopMjJGzD1hVUbelEVPIQHQDpymxsDWVmRFSkVIoYqEZidGxXq3px5n1pmL7cEZIyxwGtMscU6QxGgFYrQmi+NBdDhAlzXTk2XWDC4bdaaD30PpMlSPH7ZZKC9rKM0cDQqDtSBZFxTeVQTWGYfIMYebziyvcEGi0Zzx5bCWY+y1oyXz89fHJX7ugl82K94fX3I73vPy441/963/JP/5H/zH/8//4TwnHPdPseX37NW/ubtGVZvKOTpSjEiljTbHmXS8E27u/5lR9TggJFwMvnrzk/vhAJRJGClrbsD1Egpw47XaIXDA5188WxClj64kYBqS11JXm8vqCdddyUT/FnQ8QBG/fP7DdDyA37PcHLpcrqq5lzgMpNBAHyJKkDNv+Dt0YzveBCVl2LKHQBppGEX1LV2mCc7g5YGpDInHqZwICaWaU0NhOU0lD1hDcGZnrUnyWHIHil4jSQh6pGsP+HLAyMiVojGXZLHBuC2QeTj1NK0vYo1xKyVoQciTEjBGQ/FRyvVZwOpyolhavIEhHChVCW0IcyFlz9hNI+TjnVcScEY/4Ih/mEsIQmjlHXGkBIwqBSeUkEXLGIAkpFQppzgAYKcpCQZJDRqiy60mdH0UyTcgBRC4jK1VgGFJqsszlb5tyUclFwFIjmFHKoDTFiRgjEQWp7MAf3r5j9+6ewQ0IIzDJkFF0leQ0eKYQqYRAKUucZrQ2xOzIQhOCxguNlIHJgxSWqi48NJXBZEMUiuPxSKwM9w8HagXt8oLjIAhjJsXEEASbRcDWLZvKcDqPzNkwDxO9MsT7ga7uuFjUmHoJMbHbHZgODyxti7aeri7mFZ01Vy+u6E8euStklbZukNqyHRwxTMzzzJWuaQ+Om5dLQrfiOP76OrpfbyyJHisajFQcTw/sbr/kybPf4Z/8yX/KP/3v/hv+8MXnvN3+gp/96jVGNCSpkCHx7ftX3LQ1v3x4w/efvGA3n4h5yy/fzMhgmKaJi6cL7u8/sGkq8jYiraGpDA/bBwKC7mqDVRolYVQn7s6Zur4Emen3I5urhma5IYUzQWj2h3uq5ZInqwYXPHZpuX1/YHARZRueXV7gJs/92bM97EjO4LCIVrLRDdKAzQZpZw67iZQjLiSiCTTSsh+PxGiwuuKiFswxsN4odqeBIRegQ44GnwKVAG8MUkisUFTG4KPDB4NShfRhBLhYmj2y0FirSt+1sayNxcuEImKSpDYVxzkgZMBqiTGFTdWommnQ9G5i0RnOGRY6QWxBaqwFm8vxecoBrdaI6EhKkOIEsoyfyB4lJCEBAqIspgylADw5A0KilMJHgZAeTSaJRLm1CTKqtHmg8ZkipAmJNBEhBZIKJQwhjkilsSLj54gwhijKRMCnQOsyLpWRlJEJISUmFf1ijgGZJeOQMDYiyByPihQMti0E03PIRAVaJ/pjoGsNb45nKm2QMaCaUnKfvC56hE4EH8lZEaRARoowlyRj74gEjLHEWO7259EzzSfIkmWtUXNhmI0pMxpB9hmdDdPhAxaouzWjlzwMA5e2Ydc7KlMxIbn/sKdqLLVoIAdCSMg0opuKy0XpkDv1B3Sy9OMe86xhbX4LppjrRxZNzZwmTicPWvI//bP/kl++es0//Hf/IV///H/Fu8wvv/orgoiYekG//cCy1ZAmFvqClV2ShGRRN/hxYP3kijQJvvjwDVIa3uy26Lamq2F9teCiWyKD5usv3nB7ciy7BSkahnPE6UzVaLqFxeqGoYdsNM5FLm6e0NYz5+0emw210Hz/42c8W1ueryrcuMc7hY6ZtbE8v1lyUQvWC4NVgTAeOfVbtrdnDuOAFiUvrAZPP46kUHG5aPn86TVJOJLP7E8JoTQFvhMLkC5mZp+IuYhCphbENBFzwkePRBWmmCns63me8S6iRMbW1f9799ZACBJZVQwpYerM0U1orQlREb1G1Qb0gDCK4BXisUpVoEhuQmRwaS5hgwSE0uQZQ/Fg5xBRYYYSDkNmjYzFrSUlGCERQkOZKBFFQDA//n8u7q4kSs+0FIQMRnpU8uTgMQIUEZFdwe88+rlDLnZOWQWykvg0o0XCEHA8EkNzV/LlusZaS1axcM4qQ8ZxJnE/OXLy1JVAhcJOy25iacTjuFIwxojOghAd0ghkqlCig2hLu7ZoSppNFLOOoWTaJw/96B5fyAL9mJxLItNVNX62/w9pb9aj2Xaf9/3WuKd3qLl6OAMPD0Wag0VaMRSFjmEkSAIoNhAECWIgQJC7XOYzKJ8lyV0QxBcJEAe2eWFHCGzJoiRKIg95xp6qu6recU9rzMV6KeTGxwDTN91AF9BV/e6111rP/3l+D4epjFt9FlTCcN61ODkzTQNnXUW9WtGPnkxEWUVMBimKR77WiqNz+HEmxKk46lLGVCseXz3wyc+/5PWrezbvtjy+3WOERGvN7cX/jwXdNB3T4Is1kozMEyln/vH/+T9zdv2cL97c8fL+K6p6hdUVtbXs9m/Z9ffY5oo5jmg1U9sKmRRzcqzXT1jWS7z3/PiHfxc3vEVWGnky0PuYGf2eellxfnlJ9oFpmKnqmptVibMd+z0pSlaVRbhMW0G/fWCY4erJLY+bO3w84rLn/dslm4ev8HMhbYQp0zWafj8yHgO7zUyYE8Epgs+YqmZRLxjDRD86DjFDUjy5amhxjP0eN0l8zPhYIo9IQY4OsiRkR1YCCciomMeZLCRGVUWlFIXPpoVEKk8mcLleQMqctTVCFkxTxFLVlhwnRI4YKoyyYASt1gQEQXisNoQpMEWHZ2JwDlTCq4QX8XTEVqDKjjn7RCbgRYHqBynISp6aJl3x2ouElpkoytFYm4zIiRRFUaozhestfTnS51wgj9IgpCEjiVriQyqONk4RTCIQEDkXX8Gv1W+lQCWsqDECRPLUlaRRiiwS189u8bMsJQNporILZheQRBQCW0XqZSYiSFIwR0ecE0JGXIhoHVACpCzXB2IhrigUthR7nlBNDoRn1RiklOQsmMZc7LNERI5USjI4j1Ka7EOhuhpBEJE4jqzaGi8D94eBoffEHNgfBzZ9z93jhslL5sHj/czlxYowFQ9/VdU8eX7FWVvzwQcf8NF33qc9W3H+9BL7jVvu/cDgPGtTfd2S/bcADqqKx+0GQsS9faDLb4n5yLJq+Oqnf85/9d/+d7x694qbJ0+Z3MjN+RN2846jk8j1JaZa0tYdgqKC7ocD+82G9fqcnDO1SQSpeHN3j11a3jy8KQGGQZK8ZH1W8eZhV9ocu8jgJ4Z54uyqY1FXvHn9ksfdwN1mz/3eMXnN27sNH37re/zW+++h08TjbmL15Ana6hIgMZnBZxySOWbWqyWyyizPOtqFAhWpq8x6uaIyEtvA7fUNx03P3X7iMGe8TGSdOFu31DZSGUi5IiCotaG2stDkACFrpKipjERbgZINwWd8yuhoCGQGV3qTdV0QQpWW9FNPfziiKVgmLSJLXfG4n5nSEWHLThsymEbgssdaTUyBkEdAY0NEJoXznowmx5JiSghyLrtlRqOoSFEihUXLWFJTZIhltxRCo7PGCEmKEGMui1YUiD/Clb6tHEloIhmRBFaWsZU5jenKL11UXTIojUgOpECnGi8iOUeun5xjrGB91fLkecvm8R4RSzSTrHB+JGcQyoDJiKh5vZ3xUTIT6cdUyhCkxuRAXVtS9Ehd+sP86VsRmVKbqwValkrZOUM/RW5WHU1r8TjmPBOjZwgRNynatibKjBcZGUqfV0qRncvMo+C21Txbd1wuNGcVfHBzw9PLa1aLFVUrCNbwMDoe7x4wKhdXIXDY9nSrpojDVJwtluxi5t3mkQkQoiF48bUL+mvv0G83b/nuN7/Hi8eviLUCelzK/Pb3fpdPfvZP+Nm7z/gv/sF/yS8+/Tl//Gd/iBWegMM2mv3DHVZYkrDl3js8gqKoreOR1iyY9gNBWNrFguM08PTjj/nkX/yUWUuef+cjzJC4urzhId8zbiNaKD7+8BtcLM/p6kwjVqyXlqGfoKuJwaGbxOe//KvSqewcj/0BZZZMw8QsM8oY+ikBM1IrjqHHzYpGDyQX6EPAhUxXJ8Y4ITO8enhJdoqq7RimnqgUKXr8LJlSxPmAomB805hK3lhJBOWhbmt5aubMOHcsu5NIJG3Q2ZBPzLboMqZa4AOEcKDpaoiSnGIx/RtQHoYps1yCcwkRFDmVJJILAh8yKpd5b9CZ4GOB6OcRBOQokEmipSXlDMIzhrns/kDOkhw1OSdSzhgNMSgcAoEnqYjKAoTAYhBCkqQkBI9RhigjWmqMjCihGH1JoqnqtHcIicoKdCwtHsgCWAiJRgnsqkVER9NJFp3lfnMEocmneXJgIguD0YGVViSd2M8zMRqMiEUbSSPLZoEMGmkEWVQ0WhRFn7m8zFIuIpz36FoRsihBjlzEtF5ktHYsbY1PFJihVjjnOB48666ibiwhB3IQ1E1LdJH9biLXkq7OKCvIOVFVin4cyQiGyVEZSys0aI0TCZEiISS8sfzysxfYRjK9vufZ82uWIqCX1/TmwB7DvNl97YL+2h1aITE5E48jq2aJUjNLu+LDi5bXuy+4e/1LpmTJyZJdLm4oKcBq8uTIKZQMcYpk0TNNEyuTiO5A348gM7YCz0BcZOTsEMbS1GsuV7qID34gEbFVoYz4aaQ/vuHLX73gOCY2uwOP+wPBz9SLjoddIKmGq5tbuqZhcdZxeW6pZEAkw26YGHZH3j32bI6O+13meBiYh8yYNC4JjBGMYyKhmHxgdgKpFTF6pBaQHeuuQaSJ4F0hXipJJSTCnnLBMVOsnokYe2Qud1IfM1YKdFaEkKjrGpFL9/MwB6Lz1CrTWINC0XVdeRGETE4OkYtdNMwwT4F5nnGJkg1OhWvmXcT7koASQiNIZb4c3ckPXdou8ilgARS2N7nclWMJW4jTDisIaFmSZ0KcghhCIlQ5ekNEmiJgkjIixyK2xYIfzlmWUAeZWmW0yuioChQyGVJUCA1Bwtm6Y311ztnFmv3QUxmBWuoTJUXhg0CcdvugDWN2OBcJOSBkMV1YWQB/WgmUSMx+j6wDh/6IbTVZCqIq0U+hFDFm2tqgtSWKxBg9VWNBRKpFVURDmal1ud4Jo9mNjn4MJCeJ3uH9jGSkXQu8jOz7wHbvyHQcRkcUhr0bmVxidpmEKbhkY6nsCl13qKTo1mcMY+Tpsyswhur8nKPfU1uBBXbx8Jsv6L//ne8z5Z6LOvDq8wdgyW9/5/c4vP2Eno6UJ/7pv/gJv/M3/z2W9XMuqwsWTUvwjr3rmabMi7cvmNwDQmRG6fj+Rz+gqsrcuF6XtgYfExe+RgTNommxRnB8HFBNR0LQtUsQFqlqDvvA/iAYHdRaohHYpJmOmU+/3PLND5+xbjWHzVcMweP6zFdvNzRPnjPMES2XVMs1F1cXPLm+4Js3F7x/e8vF1SVda1jVLau64eZyzc1iwe3qnGfnLYuuQgmJIaB1xcLWdG1FRFPrJSIIlG4gG2ZfForSmmVj2R4FCU2SgmXTMceE1hojKxARjaSqPM4FpmnCVNDYAgfc7nesF/a0IGuUXWJkRcySqtZkY1BKkpxAqWLHjDhyDvhYduAKhY4GoUy5U6vTfTZ5ctIYTsXwyaFk6dWWlN5onTWyKtHGsvMaktRIQElfjuhCUeXCGjNKYJRCqXIKqaVEyzLbrkxLpny/USSM0tTa0HUCTaK1RSy6uLmmWZ/x3e/+gKubJTJ5QhSEcAIZJIWIlsN4ZBojIRVCrZKWLANJJOTpWiFl4d7104jPMIXSpOpzQktF0gGlG6YQ/hq9lNH0h4EcG9w001S2AACVopKaplJkBS55HDOjMAUNnDqENzSLc4KRRFmKCmSGrqk5axdo1THMks1+5HAMHGLgeDyw3W7RboJ55snFOdMYwc+w90iROe4HdBXYbbZfu6C/9sj9f/yrf8J3fvv3eLj7lMMwcZtuaPXIv/zLf46qrkmzRzSPOCy/+6Mfs9t+SmVqdpsHtvt7UC11dcFgArPzNOaMDz74EfN+5PXbn/CL158VDvfQYawkJM+UCti9nx0XpkOqhvt3rzDG8N6H32D79sjTj25oUITxiPee5fmC8fGRH3z8Pu9efkEIAXLFZndgnAfq8wXDbsP5RUtwEfrSJPj27jWSpgggIjGfPP3KSJi2eGo6I9FZ01SZFDTeZy66Bq0lbzYTXiYuOgt1y2O/ZQwJI4vIo3UiOIGSlpgDte1wzhFjZnC+mC5cZtEugAkvRlCS3RCYprkgg5qKwxzQWlPX0O+PRFNj5EQOFnLAmJZ+3pVKF6WI1MQYSrukbZhjIklBqTPJaFEwSSp50okRpigNGIhCHs05IpEkEYviLoEkSSSUCighiTmREUgpyqOUI1qAkZmoCkOsxhObjEWTTCTMEXEaBS2MYnCBSrS0C82zbz3l4npBd3nDcnXFdrvly5/+JdMhEWMi+YAXAiUMEYcRmjEJKgVCeISwpHSKddoaF2dklgQcIZZyIcSpPcONqEWL9+BSSdIpo1ExII1lmhMxhZJky4ZWJ4LItJ2lsqoUKXiFyZnWGkJq2I0jSmRuokKIhhglj1OPQpPSQLO4wLuBLAOVrUgiMBwCPY7D7DjuPe/fLKiNZnW5YDwExoeZy/fPYF1TqSVPvl7k/vod+vr2t/jTn/1rlmdNOR5h+NUv/oSjm1BpoJ+PxOj49Ktf8fG3PmJ/PGBysSb6MJLVXHLT8R4tIkbW9Nst++MdPkkeDw/0LlCdP2H2kWEqAfrez1xeneNGT0yONDn87PjiL37J5t0L9puJurZIBNMw89WLF/R+5qtPP2cKntWyw6jI1VnH2aKjUoJ975jGhBSWtmpJBzhbXFLVBiEMUmpsU6OUQidozZLLtoWUOIZIPzt241icTRTUj9Sai9WaSijm4cA0BsxJrV+1NdM0kYTE2oSS5aidXWk3DC6hTaTSijh7pEg0tS3H4yCoTE2UEMPJqhgSboqY2hTAYlb0sYQvgpswMuJDIEvx10dPhCAnTyKACCerJpDNydQhyWi0sEg0SmRCKMB8IQNZRoqrWgGZlDNKgEAhckRkDU4CCkTZvRQKazUVxT+t7BItWqLQBZOrJK013C7OWK5X1EKhyUgreO+9b1BfX3Jx/QGL88tCM0kJa1qyK0YVLQrQUOkEKqBzhdQFYhhCaRMxaEhFYNO22F1Lu2YuZhMKhUWbTEwFopiDRwSIQSCjKGGtFFChmGX6mFAyoZPEDzM3N5rV0hKSIoyBq0Zyvm7ISTC7QFULskiMLjC6CRENzk0k7TFWYCpJ22pabVi0lovzJyibmFTk3bt35Nlz/eyC3Foe77YML7cMr3dcdF8vin3tgl5dXXIYE3unEUtBe37L3aEnqpsyCM/FBvfLz/4Yrxu+8dF3GePIdveuiBwLw/lFy+gEOa1ojObh3ed8/pD57effo/cHwLE865BSMR8H9sPM8vyMEAKmqghx4sNv33B1viAmzxAcVdUQbUUyDVFrLs4uaO2K3keOY+JPP/mSL98O7JzgMCa29yO1qVHCc39/z91hx91xw253IBBxMTA5fyqzrzCNJWno55kxZ6BQNK8v15iqxiDLvTWOyAzDnHj0GWkyTW04W7ekJKhUw+gjjS0F7lUNQnum6DFNxRgTQkt0nfBzmUtnJHNMSKtZL5ZoI0v8L3vGAGMuiZ+/hv+JSAgOhMBHjY++ZJVF+eD1aWZsRQEERDIhZnKEmDjV3UQC5VqQBYTskTpjhAAFIUR8Uqea2YQUgixrTMilXwwwhEImtYE5lyO2biTSgjGKhbVYbalVTWcX2JyRKXK5ahFm4v0PV3z3e99n73u+/70fsU+aoT8gouZwGJBNQ8ycsL2SFAxuMkgcImdiTqRUEFfCQhAJpQyjKzU/PitCTtRGnp6tBmsUWUVCTswx4aMr2GItaa1GK8EoJEJGmq5hnBPTNNBHweHe01Q1VQ111zLOMxcLy3tPlgV4aSWXa0NtLMoCJlMhqVWJjCYlGAeFbjuU7DBJMHnN9j7gk2C3Hbj78pEgJYvbc7onZ6Sl4dH733xBy6j40QffZt71dLctD/0bklF4FG17QWNaUkrcv/2UV4+v+eg7P2Jpz7hZnZPiRLus+ez1H4MwBCSCxE/+6H/j8uZ9+sd3OBdoF+cs24rt4x32fcW3f/xbyH4mzYpaatpFW/qIU8ZUZVG93XzB/dt7HrY9aTwwTgOjG5mdI0fJh88+4Jvv35bMc13hqdntH9j0e1RTs6wXrFY3rK7XLLsFTy4W3CwtH9yesawCVZ0geDRQKcmz6zVNBX7e04nMjOBhPyJpOF8qphAwOtLZtpS158Sxn4kykfLIfjyQwsTQR0LSCBEhOSqp2e89hz4zJ4lpJDpBpSDHAa3AJIXBIZEgAnWm7Ni/7p4SmSRKR51SCplt2WVzWbQuQfIaz0xMnhwn5jggpCTLIojlfLJspoxKGhE10df4WLq5sjjNnYloVQoXUgp4o5HWIFQ5qhsTsVKw0IaqDTTKsLDwtFth0VgpSdJQWUndVjRCk7Xnw2fP+MEPfkSqFgx5JAnJ67tXOOHoj/vSpuH26GzQ0oDMBBFPLLHiwkMbhM60onz/zktciEhRQy5jM5lTYc0by0obVO7wSZaZtshlzq4zkRm7kJjKUhuBz6Cjoqotc1BURuGjY3v/gDCeYxwwTcWw9+QpUzfn1EZwtuh4fiMxNrDoLE0naZqmQAyc5tl6gZWJppbsp3dU2bHoNBdX1+iqoV5qrJUEHbib7rgbH3nx7v43X9CH8ZH6coms1pAlbZtZVAGEQ2iB9x4pJV1b8eKrXzDMpYrG6EIauaw1r178EskCIw0qJ6w+53y5wHTXVKJi3T3F329obq5oVi24gdtnt1xfrhj2e/ww09kWFwNni47HnaMfEo7E+aWlalqm2XG4P9JPM4M7IvNMrU41rkFyvqpYrc44W66QRrMdjozzlv6w53674bNXLzl6QT8cOPaOMAqi0CQBT1ctYZphynTVGqEVu+1IrQyVFvhREvG0qsbo4poSWaNkwuqKRIXOiqYpzY06C7S2gEYrRdtqvI/kGAk+Ua8sSSpcUMzjRBaQtC6LFYFPBRkUQ/n4BBqpMkrW5Did5r4VEVdYYlKShYSckVFArpDCEJOH5Eq5AaKMX3JEZFke7hQoeKxAKd9J+CQQKLRqSgxQlbsAACAASURBVGpLFGNIJRPaCKxQWG1oRY1Nis7UdHWFkKbMglWkUpksZ4SMKBFRUnJ5c4muEotlR5o8/XHHzc2Crz75BcbW5JxKzY7RCBlJISBSgfaHAGRzeqEZbF2ipuQZpCCmgWF0yBPBZXKpCIMmk6Uh+dN0gIwA5jCXMVnSiKSxZlEoqLNDZseQZlw/0xhNTAKVO6yCh36knx1RaY7DgcfNkWEz4uZMLWoOh4QfZxZVxfvXF9RaMbkZmTJ1pbm5ff/UGjLjxj2CyPFxSxwj/jhQiSXaJ2r19aD9r+eZyNJ613DG02pJw45bccexXdPPsFiuaesrrNsxD+/Y+4nvf++HfPH6HTdn3+Zbt7/N4fUOxYIhCtI088Mnf4tvrM/JH3zI9uGRpxfvMfzyBaNYEtJEnkfOzjv8YccwBx76gdpbyIYUA74/8v7779MCMiT6/kDInignQpD88Hf+BvP9G3aPRzb3DxySQ8+SEBsUEsWAsZJ+EngfyEqxtEuiE2AVVWWZ+ol2seD51YrNZsPjMBWkz1g6k6pW0dSGHDPb7RGdwXaKFIpNdJwcxhqstaxFZnKepZRIXSONIwGVygjvqE2FXSjGnSep8oCF7Kjqimkq9EyjSsJGq7oA/FNECUOWEiEk0QfiSUkOeHJKxR2WFSZBUsUDHWQB1qlU9ltJICGR+YQLlalgcUVCx0xUmazKTNtKQRK5ZLeJVKKYVmQEC2htSgWODui6RnlJnTMxeux5YvNVjzYNK53IYsEQerJTXJ2ds2g0QjdIETGV5e7uNdYrVnT0ckNdGWCG7IkONA1JxtOVYyBkS5aGSiRCdogUWXYtsw/kkKh0KQjQssY5h1ECN8LIIyl7tFQYpYoFNilcgNRPrFcVzvmSRnNHkmu4vrLs3nmG3rNYGYax5MfPuobdbmbzuKOqKrzSHIaiG03BM+eZh70khEcEitWiZQgzUx+5ITOMjuc3FaM0/Orlhs4eef5kiTaJeMgs25rVxRrH+Jvv0EM/M+4H/sF/9J/wrFvy6csN2+HIrT2yEluGec+6Eby6/xVv3r3kpz/95/Sh4vDuDevlguBHVs0adIYkGfstn/zJ/8K//tP/na4WPL14xttXX/Ly8Z718oxKlyNudJ4herSN7DcDk4faCoTVnF9aPv3V53x+t2U3e4SxZNHy0bc+4u/8u9+D7YGYNFlpnr93xTfee8rF+RotHJt5IAvNeVPx8fUFH16ueNJpzi9brAnEnBgnR71YYrXgL774Fa+3PeOUmUJgN3ioBE1tqJQsbZYh0jSW5EYmn+lD4X41TYPKxUHVGUMWFbURGCFKkN9oknKIqkIZi64KM2v2kWGYGAdPuag4UlZ0tjRBFhtnIk6/PlYPCFOg/jEX8UdkVeABRMLpiO6AJCCkTMgJhUBSMs0Kj6DUyhJLlhtdRk/Fp61IQpLIWJmRBNClIywTQAukHrE20KqW7AYaU0ZqWrWk6HGqJoSeJAUxJaTXrFbnYB3NWUNlHQ+HHZ1tqRdnHMcEdUWzlFSr0lkWfCLjcNGjpSjs75Mq7/1MUMVHMPrEMHm0zKQcGeaJEAX69ALMMqKt5jC6AhNQxbff6pIVd8Ezp4ntdouVgq7OGFsxRQdBsVzUGK0JfcCqRMozw+HI8/du0JUm4NCVQTRlTChTscY2TfmMos4c58C0T1gVGFzgcqFZLBY8aWt+67fe5/Lqij5KjsdQCh7szNshc3Z+85sv6O32ESMVm8e3vNy94mxZ4/VTZOx4T8J750sWeWDZPaEyZ7x79xlCV1yfX7AbjmzuN6d5X8f7Nx+yHQLPvv19khZoeUDS8+bxJVe3H/Dli09JWaCqmtZWaDK7dwduL9dcrAxBZELs0VKxvlxwdX4BUVDXZzx9+pQWePPlI1+8eGA/OFwy7Puex/ueu9d7jg66+hwranzyxDwQQukx2h8HRucIIXCcZt5tHvni7p5xFKe0ViF3aquoa4hpxjaWt9s9jhmpKItEGVxMmLqiNQaSOMH2ImjY9Dv6eSSlxDiOxNgWhljyZDmitUbJQFVpwliYZSFHjK6ZoiPhTx7qhqyLCit0eWhCShTVS6F0wJiMFIKY5/J1EVROaDJGGsgeSMW2KEuftOHXWCEQqvzMEkEtNZpfj3ASJIGRikpmjPF0VcWyaWlVS1UZTLUiZwFGEPWCwy4R5UQSmTkW+GAKhrZW3H54g2kkqluz6CzLquEwz1glWV5dECpF1jUKi1AgZZlE/LqSJ4Zy5bFGnQw0JfwgRGJwnikVM0xnG4wuVM88ZbIqJxp1mllLMkJJVNsCoKjRsji8yIaztiML6Dcj1gTqtoAbTFY0tkI2DeN+R7s2bGbHsZ8wdU3KE0pGzs5qhBAYU2OzRVmD6RqmqHgYMptj5O5NT9ee0y0MtzcX3N7eMs6eh80jeYJGRlaV/c0XdKsDWir+5Gf/ilkK1usnDPaC+/QcUV1zIQWbHeRoIUTOq4rPH7/gP/yPf5/nlx+wO3rqRc0kBprumn/4n/33fPuH/5D11Q94eRj45KtfkAm8fLjjs4dX3B3v0RW83Xj6Hq6e3nCxqpj3Hlt3LFTN45sjdd3QdGDbjuVlgwgjr98defX2EbNYMG737LaPOGHQRnB7teTZ5Tl1lRndAe8NLx8GIpm5n5j7QM4BLQ1SJWQU1NZytlqyXjZ0jUVnRa0FNmuykjxuDgg0i6rBWosRFSk5rJInxXUAEWmrljF5alN2Rq3KC6V3ER9GnAu4Y0Jri0gBJUu+WmrFbiwpLBdL1/Sq7VBkrAooOaFMAKEQ0pSZNoAU2FOhmcxAzmRZQg45RyKanGNRs8no7BFZ/tp6jpAJGSUylsLaLAZII1IrFBarFJVV6Fyh2iLyZCKKiro1aH1OjJGjn3EpsznsUbJmERIWQ44akQVNrVnWK8SsORxhs3uk6irm/kitQS2WZJFoUot7dOQI2dgSgjgl1zIFoKAloEVR/wkngL/DpQTZkrLCZ8ngS/WR0Ibx4JDCYEwFSpGyZJ57GumKQo9H1h0BeLvdcpgGrFYM2REc1NRkoXmcD3gfuVy2xbl2cDw7W5VR5v7AftQ8jvDuYWI/emZKL5iNE1U909jI+vIK5ye8svzil1/w5tM7JCO1zVRVh0iGKBxB1Vx8+PXdVl97h/5gGRlz4mZ5gVkveP3lFxx2A0+fvcdX7gWdeMvjOJC0xnmPkBWf/fKPuPjuf8C//+P/lD/6l/+Y+2mDbiqePn2KkB3nlx9iL5/xhz/9X5nR3KxuEFuJFxnbrrHWUJvI4sklRmfevXlLW1miTHg07330Ic5l9ruRdZ1482YPjIgwsuhq3m3uCF7i+4F9MujKwDQQ08j+UOSdxUJT1ZIhBEiSrD0+G4wM3KyWKFt42NvBk7xgxtMIiT09QMMkTrUumcurC169fou2Ndl7tBHEGKiULfw0kRCx4thPnC0W7PYjVdB4AXNIGDshqhZjdSk9dxmRHaoBm2EYBUqPCKEZJoeQEWFqKt0wxXJqMcoShMRKgBIyiDGWOl8kiBkpM8QSsIjRY5QlxhGhFqQ8Y5UprHAJMksyc8lzSwvCI2Wxp5os0UohMJgokW1HIy0xZDbjhJjvSUiO88w3L9f4zZEhJYaQeXLZMgwjWbes2obVteSjH30P15xzPL7Fjx7qBZ9+8jNSlOwfdoy7nqubmod3M+MxoZImi4yiJpPwOWGERkUBIuFTeZmpVJHyxOCOpX4nRDAWoQRzCGibsVmUU0uCJAo7LQiDEAGRBTqPWGPYhogbE8uuor45I+wORGOphaBqFc5LXrzbcb6o6ZYNx4On0gmJYl0bbhqN6yekioxu5uhnYliiXOTmyQqZPN5brtcZmQ3t4oL+OFGjuD6rSYtzvJVcP33O8d+CIPr6sZXRJL+nVg1uDvSzL5EvURy8WRwwJjP5iSFJZHPNj3/n9+nniYf9K/rwtnhth3f8X//sH/H5X/wRm8cXNF3mh9/9u1y177OSZ8Q4I5h4PBxolgvOby4QYSKkRN0YdvMeXTd0Fyt001EvG2Yn2feOOXiSKXG43f2WNCuGITCiEFagMQjdkWNBsV6uWty8Z388MDhHIFK1hvWqJmPop57jwbE7RFQFwkq0tsxZIKoGJQ1GJqTKWFvTH45EoTFWYWuB8QGdNfMsqCuD0oYsSpBiHkqIQihZ4PQyM03g0wyFMUrdClxK6JDJQlDp6uTHVmUGm0umOxHRRiIpJBJEOPVORUII5euTJOaMQpPTr0dUES0NnoTUmsRY7szIU/MJJeusdBn3KIPVFqRGy6okpJRA6wVWLaizJTjPrh9oRE0UmcPcozK8fPkGW7fIeoEPGYNCG0NEEnKi6ZY89lvWzTlJnTElh5s9Ilguz9Z856OPefJsganXZJFoK6jrYnoBThnmjJQ1g5tLvplECiczTTRUqsZqjbCUvyvZP2QuekSc52JZleWKIXLxqiNLNFPZAqgYQiwtmv7IKAQiB4QprrRuVZMF3G0PbLZj+WxURcwwzT0qTCyWDSqoUpOUDVIEfHS8fLvDJUFvDV8+Hnh137Pf39MuCwV1ip7AiKgzzZNrlP76I/fX7tB3mwOrasHbw46Lp7f83t/+d3hz9xV/9vkvuT6/wIeKRV2R2jV/6+O/zbzd8ZN/+j/y/Bt/g9Xzj9G5JuPQpmfyAjvNPHzyU14tYXM48r1v/k2Gfsd+uyHHxIRmk8rsWFWOcT8gMrS2YrN9YNjsqZszlGpIWuGsYZoG7jdwHD1e1aicaFYVq0bgSKzkis3+HbtomKMnyICtDef2ijQFhrln3iWiysQcsSRMlfHBIQ6ZLAw5RqzVdCLTT5nd4Hh6teJhX5oy2rZFZU+SRaQJWUCCWUxMTjHMM1VVE6RmGA9YrYkiUQuFz4E5JNwuc3N1TZp7Ql3jxgliJiuPzQJPQAiJyx6TJBloTMYLiRCn8Y0o92ktIlPMZJWKx1yASyXLjPCFn50lCVdy2USSKr/nJEGVW6WtZIHnk2lVQ4VAWlN+xmGH78CoNVM/INC82x24Oa84+oTC4AJcSEEM5WgfhKXKM+uL0tdd5vKC7f5Tnj35Foe+R1iByYl3uw3NesEQJePjnsrUPHl+zmeffgmAY0KnqoyvGKmsKnB+55EKciwmE61VGTs5ASlgKk2UGp8zKgdEY8mzx+eMVhXSC5SQjCQWqkIBV6uOF27HcehB1HRWsN3NBBJ61aLmyNOrFS9fbVlYzeNhZsqeWiWSqvEuYPJA1Qqm0XOIikMsAZkliuHNhpAlQkJbgTUa8arn+j1FlhW5lSze/4DDPPLFX30Cf//fvGbVH/zBH/wb//KTz179wVl7xSQikzsijeLlZz8nDrC4vsKKHcNcvK1/9fnPmMPE4bClbjvQFyyl57H/OVPQ+EHx/Q++z88+/TmOwOe/ukdURz559SssNT/8+Ns8DgfW7Tn57T3+OCKN4rDbElNGTIl23TFPM1orUAprG7rFgkZNdIuiRl6vl+g8UmnB0iQ2+92piuYAuTRYHHtfkl5KlziflSzamkpBU9dU0jHnXBofU8bUivPW0iw6Xr7d0raWKbiCFkqCm4sFfnQ0VhemNhldKxa2Yo49cwBTQZxnlFRURhKTKgXuRhJDKgaRCD5PVKYleo9tVigBKpSu5JIxSiijIBtk9ghxEsOCIotASp6YK4QS5BRQ0uCFRyt9KgqUSEEputOlOTCJhBQgEBiVkFrQCkWlADXTVg2VkTgxUdsFowsM3pNjzW5/YL1c83J3z9XqjP3kqapipY1RUmmBNoqoBFZqgsxYOXO2WGGlYf205c9e/pzo9qyWH1CvLdNw5HJxxtuv7vmrP/0zrp5KjMk8vN4hhSK5ggGXp4kBOYMUuABSRkgSISWKomzXVhNzpLKl7UJKRXSeHDIxQogRpTQmC4L0WC1ISRCGEaMUVZOZoiTEAmywMmKMRCrFNE9EJONxw+3lGW23QFcZISAJzXASJ6KItLac5AwBpSVro1gYwfLCsqoazmrN8+sVxOIbWLYNZ9e3aF0jlwum5Pj0L/+c//z3/5v/4TfaoTcBqnDgxcOXdIuWG3nGorumUZRicnvL7I8wfE5yl8ioCNNb9o+XtPwFIkWkaoheIKTE50BtBftXL0i5Yjsa/t7f+6/5Z//of+LTL/5vptnx3efPkc2CMGRGnxFVgwkZPx3Iekk0NbZtmPyvEzWJGDKHzcgYAmE6MISBZbeCGDi6xL4/EEJmIqCMxbQapWZUUlSVJiOY/UjIGq0rejcAouCPQjFovN6OdEdQ1uCjoKuXzPHIWV0xjwdElpimdHrVUiGjpl237MYRYyLBOWqtCGSOLhTCh06Q6+JLzwmBL/3a8lC6oxhLTNHU+HDEaIvHMPsZq2tCitRtxb73JDmjMUxCIknFf61aYh6RsXiwo/SAJPiAMqaozTkjZUIKg8gRW2l8CsWuqAwytzgXkLVGp5rpMOOCZ3IQ6kQWMIaJi/ocHyVKCmaXqWWiXXXU1kAO7A8TcfB8/M3nXK2gW654+t4a3SnsoePTLz/ngw++z0X7nHfuFamCiOCjH30D2KEOAmUPGFtxPGxJUWIqQ0yRhEAEj5UwzanACDnZXlUi5qLc+5iQtsH7WCAMUmCkpJJVackUpvxf1aVSh1xRtWtqMXKxbHgzHwmuMMDrxRLJQB4j5MAUW168HcjpwOVtQ7eQRC9hzExzT5CGd/2RlowxhtrWgKNZrEj9QLdYYYzHp8TN9TlNU2HWZwx+pLt9nymBO/TUq/OvW7Jff4feb97wl7/4f9hP9/RTj1IzPhwYZsf+YYcy57ybd7Rty3E4Mrkelw5cdh1Ka2KMpOhRYkFMia6qObu6ot/sqLuGjz76O/zut39Eyp6D27KZt2ymiF5a7LIjxB5bW6y1+DmweTsR5kASmu5iQZaKaXIcxpkQMscxsL495+OPvsE8z2RriSikrk6Au0CMnu3xQH8I7CeHz545RGIod6f99gE3KcgVMXnGcWboHcFn5hQxxrBeWWo9IxLUlSYGgW4swxAorNKIzDN93yOlJgVR/v2siKc/Z5EI/jQuEZnJO6IohBBSQ8oS5wpnKqb5lE8uji2lMy47EIZDP2NUVapt1K/HMIpMhDiXulxZgHg6K5JImEqThUBIjVIWLSxGarQ0ZUfCkrLFe4WSFR7L4Fy5E+aEEBopJfvjDlNXvHroUcbQtAYQXF2e4VJC5UxlDEKV6GTbNhgZkRRvd5gE83FmYWukkXz15WfMvefy7JJj37Pd3XF5fYFuF5xfLtAtuHEq4yWdSLlYYnOmxEaTxOgWdXKwCQG4xDhPxCzwLuDdVLqmsy8QQjI+jiAUAUlnOhpdmiqyMWy2D0SpGPsj6iSKCpmLjdZVGNmgTWTVaGyjCVJwvzmy3wT8PPLs8ozz5RkyZkAyoRmDYRhT6amSgdpWnJ1rZCM5X9dMUbDZbDi+3TEdZ5wrLr7Dccu6XfzmC/pxeM1nb15D6Fkv1mgiD3NAtR3d6pxN3IFWVMtrxH7k6HukOEPEA4dxQxSOyi5QyWCx/OGf/4Q+DPgoWC8bri6f8vrNl8Ts+ObTH3KzLA0Z97Vh+UEFnpOqWiPMgmYlEWJkcBP9BH3fM/sJ2VaouuPj79xiEvRHx6LVyOTRqRxDhFbURiJyAmHLzpdhOAQOhwN9n5l8wNYVi0qjlcO7SJKSTlVcnbc0JiPdSG0jPkUqU7zByrRoGxlmkFJR6Y5Fd4HrAyqAtooYJFKWEEH0gTn4U2Wrx48FJOBCwGoIbsKluXxtmJEqorXERYmWGYnCJolSGaszRpx22TkUYLss3mFURolUwh2y2HSNVEhRUEky5cI+k8U+aiuJlWvmnNkdZ1IUbHaPTNOEd5n748jgYTcHeu9pmo7jMdB1K1qtWLSmvNySpTE1BM/d5pFle8bxuKXrBLOHu7sdfjqy2x0KUte09OOBF3e/YtkkXJ7ZHF6jkmfYDWQZkauW88WaRVeBgZTKFSXKWH7myP9nIee/bmmMSlDbmugCOUXIEoXBKnuCOyQqazFaIvWE6Up1rhbQaYhJEodE9o6V1iglQVRYYYlEZh8gaiKBi0Xm9moBFMhFU7VM/UynFVeXZ1TGYmRDp2uqyhCc4nic6MPMZ5+9xPmJF2965n7P+fX/S9qb9Nqanud519t/zWp3c/bpq04VKRUpsxEVS4iVwAbstEYGRgZJBgGSqf5D/kRmmQQZBAESwEAgA4njDGQpskHYliVSFEWxyGIVq+p0++xuNV/zthm8W8pMAUpnfHBwsNZ6vu9p7vu+Ltg+fUDz5IJweyTe3LIi8Wi9+eoF7ejQboW0S2LO+JsjXgVWq55YBm7u7jjfnHI3Kxa9o3Ut6/YciqDBQRSEvERhgcxye8phHmHbc/nuFa9ev8aXxNnZQ+Tc8+1f+U20VVwe94ToWayXmM6gjaTtJc5IaHMVCIwz1d0rGWdD27bI2NE2llXr2Ky2NLpn01tyODLNnhACSikslSiYUqhnGmEQ+h5zmjL7KRGTJRcNRYK1lByYc2a9sVxdHUlR1CD24GlkwR8iyiescCihCTlxFIljHumdRchETHWDHAp0skXqBqUjyomKTRGaOUVCDjVu554YmaRFa421EUq4PytFUgCrNGOcyGii1hShUUEzDrlut4VG0DGHmuCppUWqCijX9/7hUAo+SbzXjPNAigUP7IbAVByjT0xHmLNkPx3wIaCVYxgGXKM5HA7shwPeR9q+4/X1DSF7juOEMA2v374iKcNuF3ny8CHWaZxbYRoFbYNterbbM17fvuHuZsdxPFKkYHm6ZXFqeHy+5Hhzg+kM0nYstcO0DTlDihIoJHEf5EeNBJam7j+klAzToYpNrMQZRWs06h5Pq5RBoJCyIIVBeo9WlpQSTWcpIuLDSJQSZV1NS5cQY6CoSJKZlGAePLf7SM6RrtfMceR43COyR1lVzT7C4owgao2Vim7booskTDWRJ46BIg270XP39h3z/kivV4j+hKvDEbRlWP8N7JN/59/5e/wX/9l/w3e++w948vib2P4RKWSEDCidEOKIsksmLzh79IztdstwyCQyHffeWixpjoSQkFoRcmB7XnGy7979lFcvf8FHL76NyzOLaYCSSHFm0bW4pp7Lcs4oZ7m8fIMpimG3J2eQqtrTtr0ijAdEmllvVzSdQZTMft5zOBzo+x4rJSebJYtly2bTIZuWftUgRabcnyzqZkigjMQ6wbIzdNZxvl7du3sEt8dELhafCtMYSCEiVSBrSdaeIgCZCDLQSEuIGqsEq8aRYqynn1zZyzlnGruo9sUcyAmsgiIq7cFIgVCWXGaMcJRUb9BaOQiKkuuDQyaBiIKU6kxbRFWACZEJIRBjJCeBn2OVRc6FVGYSM0rke5NDJuZKWpkiGFmBAVbWxdNcMjEGFKoGCIpAuE9ynZgQjUAGOO4HlCyMUyIXQ6stSMNm7cghcnf9GrM44TAEFqslx7t32KamdX7z69/gy+svmYaR5bLn4r3HxDxTxpkmFI53O463Ox4/OSd6jxUGq1Nd7omAKLoq2XRCS4XQglIS1jYIWYF53nuMMdWUkkGJUs9gxVCyouhELB4pNQun6ZoeX+q4IguEUhinicFH0gxaWeZYnV9ZKI7DHo1ijoLBZ/ZTZL8fsbLw4tGKxWJR1YZxxMSZZqE42ax5+PABy7VGu6Em7RqLXi159MEjvvXv/z2Qmv7igjTFv7ag/9qlWNs3dIuGR90TXLOllRlrH7Jan/J2/Jx/9fHvcbwayBk+2PZ8cXvL8w+eodRLrt7ecBUM64cP+OXla042a/bHmUbDyWLJx4eBn/7sJww3P2PVPeAf/ef/Nf/7//VPEMeBUgo3PhL1jKZuF42QLKVFiAbbaIRVTNNQf/QyYhqH1pqr2xuu3+5IERq35jjecns8EpUkHiesUTUDLEkyFm0EjapPz/040XYOITILnSlFkBXc3u3wR0WWkk3bcDveUoph0ddMcBU0XVe/zI0z+OLR3qD7Bl8mbu92BDKdE+z9jFQRaRpKCsw+4xpDGSakbRBlomtW+FgDFIxUWCsoKdIKxxQ9SkqMlQx5wk0V5xrSXJlSSRJz1VrHJJDKkYqv8lApkaVU/XVxxAxzqcELOUMmchcSIWa0Tegc2Q33b67kkc6QSkBqVzsBGYlzQSTFvCtcNTuklhQh8FPg/UcndE5Bs8HvdwR/JM6CzUnDu+tLHj3dcnJ6zqhB5aoVH68PnJ52XB2ukcLh2gsGv+Nqd8OzF1tONhO/+PmreoLTmRQKWmek6JFCYYwgxoxGUcqMwBBiHR8gYJ1jPwSkgCgKrdPMqbbsmoiPhnkaaKzhcDjgbMNhrCae3gqIhlxmZiFoTI8uA1EUXN8xjEcEht0hIxX4UhA5sNCGlBW7/QRJcn624PPDEdSCaT+CmXh3CdP9PH2yVTx48YyytvzgR3/M893Me+99yLt3lzy+ePLVC/r//Oe/y7PNBrc9IQhYtz3+9gt+9LOGv/8f/Kf89m/+Q3IY+Mf/9//K8e7Pud1r1ueR6XhHyS0+3jGOHY9OH7NZdTRby/DlD3jz8g0L1zP6G7rF+8jpc/7gT0/5+re+x5/84F+BLFz5wInUDNIideJ4fcuYLWupuLq6JeYb2vNTotCsmw1zeM3rd1d471FFMIYjfg4cY6xERp+Ysmc/17dl8DAy4WNgvVAoHXjYnpD8iM+Jm50npYo3Fc7QNhrnHDHN97AIQUkVlpYzDGNiuzllGAbkvb665IDPEu0k0yiJUeAA3XaMY0KZjNGZaZporKuAOmnIARqjkSogRUTqhqatrGOnHGEApy0lCjwTc4rEXFvokgshZpRqyClSGJH3KTKUQimSlDOxZKZU6LUm54CQhbko5hRRuSBixqeayJnJSKFIMaNEdSalVFBI5mGi7RpmlaCAEY6UZ/qmZQ6F4iKqJPwcsD3DVQAAIABJREFUUb3CNS03r9+xOtly9e7AmSukCzjbnPJ6d8Pl23ecnf0a7aYlj5lxnHDxmvOzBapZE5A4c2TRz4w+U2UWFe8jcmYea1xvSImQJ2Spf8O52u3MIZFTwijJpjXk6JH3Ef+tKnTGMTFQgNELnBmJWdFIwfFYaFuBD2BMxMeRWApCOd7e3mK1w6hCKaoq2WREa0NJGa8VapoZhWL8YsdmqcllJMbIEcO2kyx1x7ozbDYbDsdA2e85f3/NbHe82x95dP6MMfq/tqD/ei23NQx3XxL8gPd3lJLx6pYjL/n+D/9H/pd/9j/w/T//57SdY7F+QBkKY4hsVidENNIJ9scd3/rur3N7SBTpcM1ThjCym65ZNAtaY3l7KLz+7M94+/ozvv3N72JtR2cXSKnZDUeM6+i7NeeP1qw2Let1T9+tKdNEKzPBe3wWHPzE/pCYYmH094aFrO/b4MJ61XO+WlbXk8ssXUun60cwzXDc33GIY82UtpZuY2k7SaM17cLhhxHvJSVrMKp6lFNNEMnpXmYZCqqI2o6mhJGKHCTWFVA11iuHSNdpolf4OWOFxQeBVKGG0FMgJ9Q9LaHCZizOORbNAqsiWdSkyxQFCnvfOscqA5GCFOqGXBZDKlXZVkqqo4owhFTjj6KItRNJ4EsNk5cKcqnWyq5xKJnvFWfVrCHvW3kh6n3ZqYySDiJEAV27olmsQArGIdOZDqUFTXZ8+uXndKsVMieGfaRRjng3crFdsl2f0rgFMQmaRU/f96ybJSePzzC6RTVrckmsH66xbc31EqKKZIqQzGS0NeT7n7UWGqUTxtTlV5gTyRdaaeiMpKQCsp7xjTFk5WpE8xwQJESJHOdY4X0U2lZxnA7ke1tq6xqCT6R8/1ngiSWRVcbIwMPzTdV0h4nRz9zNE0pV5NA4zmgS682SzlmmySNFIYqIF4GcFN2iJ8vIuJvpm56SMxvTfvWC1ibx0a/8OqerE6Qo/PznP6ZtFecXC47yHV+++5d88ur7fPLzv2CIlovHpzxatrTNQz782vf4R//Rf8X3vvYb2NUF//A//k84TFf8wQ9/SOSU5XLJ0jZcH3bspgGtNYM/8PEvf8rf/s5vVaSM2vPk8UOMrbMPUnFzdaDdPuDk6VO6doPIhpAm5uOAKAIvFLN0KGvpVmtOHyx5ul1zvt3SuY6mFXR9XYjkMqOdJswRqwxFKOYJ7g6BaS64psM0NSp2dxhZLBYUAosWLlrLYT8z58AYCykeISecc5gI01xnqb6VOFs11FLYyuqaIc4RbWO1JuZKUSxFVBsjHoRG5w6CxLqajrk9b+lWhW6pcTaiVUEIXYmRxhJLNWAITPUty/oWlaIQYkSkzDGMEEPd9CdPDJlIodBhi6kmLCAVgc/xvjAk6p7AkYtkDBFnqNt3IUlRYYXi4CPJew6HAyWMHKaR43DD9W7PerkhRs/ea2zT8eXVNeN0YLgbOD/ZIm31N1vg+XtfwynJYdqx2C4ps6B7uOXtJx+z2BoWy5YkNFbb/y9GKUWsrsYTISsxJGNI2RJjJidJlgpTFa14wCfwSSJzwarq0iomUKQiU8iioXFruD8EhuQpxTGlwi5AiBPbpaS3YJRFSYMsCpUrxOH1mzv2ISGkYQyZaUwc7nYIZ3g3Jm6PiSFksA7dC5rG4polN7eeeRzQ7YR2Gt04UkrcTXest4+/ekEb8ZqSRtarFWfrMzyZKTmcbJj3VzS2r4qsxZopjWw2K47jW15dvmP0M//y+7/PD/7kx/jpin/9R/+U/d2OtrO8fvU5h+OOL64/Y3fccfQHgvHM88zu9g1/8pM/5W46YLaO5YklhIryDHeBt3cBaxsk9TRxOI6kMTBniVSuokr2N9zub/j08095e3vNtZ+Y44yIIzo37HZwGDxxDoQpQVGMfmbnZ5QxnD7aIFXm7uaWefIoEVE2MMRbbJMISXI7HFgsHa1tMCYhWni325GlR9jCnCNDOJCyx1gQUd4H3vWsFwvmEPBBY5RE64qcSSkRsqExCyiZkgPGOXJSRDnhmgZnO9bNFq0bGllopKi32Ht6ZkXShBpWKPR9QYJEU7Kk05YoJSLPjL6QhcAIzRyHGjckBbkIRNJoVQgpkbOkdU11IRmBQjMWsFLRaEMgop2i6y3TfbC+NoWT0xVKZ+7mW9JcN+KrznJ9e8Pp6Sm3h3ckIZneTDjtyMOR3/jNv8s//Wf/MzkcuN29ozHQW8Pw7oZHj884WdXQMKcNJSYaaclFoK2jCmI1OUBKMyreJ5EUUNS3qlUWqTIiC4qoSjKtKyZHSDjexXrOShqhIJcRZzNG1S5ludYYUwg54XNiDpqUJVZLEDWeuesCTmo6q2gNUCwlCbIsaAPj4DFCMGdJih41zyyVZJ52RB9Ybta0p4bjEEipcDfsiNHzyU/+mOxfffWCbrsJ3To+/osfQSh8+PBrJByT3zP7hs36jDgmFlqjm54gElEcaN0Jn77+BScXzxinI7/7u/8E0a+Y/EiYEtIc+MlffEyre9Kc6fvaXp2vVjXQPmdKURyHzNWbK1pb24yXX7ymURk/H7i523Hna1B6QOHM/ZNYGpRxdKs1rmmYp8g4HslFICOQZsYQWS42WNPRdA4hDCLXFlprzWE41juztihZahcwZFIUjBMgEiJXsFwomRwgDwWFRRbJMYR7gb/CCYcxNSLWOolMmVwim9WCrnGEWPXixiistWgDEY8zmnbVoJuI1pLVScvFoxdoJ6tQ37U0rQYyrTJIUR1gEVEB7KqiY7MoRATC1DdUFiBLRkooSpNSIYWIztTEUCDlQhSFUmp+V06lYlilJqeC0ZLi8z30HbK8j/1VhiAybdsxTAmnBNErlmaDEPXzNRo++/yXDMcDURl+8ckXpCPoWA0fjdQMd5dYVUP7SjyidUfTLiiyZzzC7au3jIeMlo4oPFY7yPVqEEOCIu5baP6qs7DWVkWepGKBSiGVKntVGpSM+BIYfWL0uXLLVI13jrmG7ytVjSib5QKpHHFOlJTRUmBtpKFqG5SXNL3GKUuOhYcXPecbR7swjCSEFiwXlhMn0MIzpYGrq0hWCw5+Yk6Fu/2IctV0RJyY9MTLz3/Cn/7gD796QTe9pG0dTZr4wff/NV4nVCksF5FF95DXb15yexv5lecvWJkOJSXDdEPKno8++g95cPqcGGN9k9iGw2FgtXGcXTzn0fM1b65fMaYj627FlCba9QmNbZAKTk8esG16WimZxwnTWR49PWW7sZQx4HThxElkt6CUUmfeZoGVhTll/FAFB+enZzzcXnDadtAYotAsO8PsD8zZsz/OKNeiiuD0ZMXxOLI7TBQkfobZ12ADJS0FBUEQZs2YEnMUlJAp2jMT2J4sSBiEXqJkgx89PhRiAOMyYZ4IYiLhmePM6aKhbwwpzIT5SBESWzS6BJwxtb1+sGCxWqCUYj/tKDKhpKM1gu1ig3GgHHSqQYmEFgGdMypbQh7rGSvXVlxR7ZxSypryWTyIRMyJqYj6UMt1++tDoOSASBBIxDRRiCz6HmMMTteOYg4RK6tXehw8xJnj7pbT7ZLb3ch2vWS7WTDnicXptsYdWsP11R14ydvrO/a7HYdPLiml8OM//he07QNSnNFR0C5X+FDwh0TwR5JXrFctv/6bF6wfCpTSCDyGejJ0TiBVgRg43W5YthrrCrnUPUsR9eETSkSIfWVdo6uJYpakHGlMpkjBeLxmnBMhCmZ/T9wImmHwdK2630lkfKigPqM7pIg064Z+4fBipIiJl69vOBwGwlwBeSaBjtCuetq+p1u36LbFZk1rLCXBSdth1IK5JNoe/vAP/gVnp0t2r9589YIuqfDy5Sd8/BfXnL54xN3tNVlAcQ4tDGE2uBL5Nz/7C5ZSc335S1KJdLbnbLHki5uXvHh4ysV6S7n9si5tZMu8Nzw9v8ALz36/R7eGrCSTD+SkSRkkAScbUrmPPS2Ftl/iulNU74g+cBgDrkRiyRwPnttjZTR11oFRnG5aRALCzOQT12Nkf/TcjUfG+T4uV2rSNOMayTRGtDX1TX2fxZaKqPOVTIAmiLG+jUT6q+VUJx0LOrRU4DMhzDRtqsC05FFZoYUjZsEcZVW/CYsfR6wqWK1QVqOSRdmCUIaEIsSEjRPdYqQ0huH4ht41NCuDXQnkMvHei6csl4Z2saBxEmsN2YiaS6ZdjRHUmhLDPT5V35MVqxOJophzbcuzyOimWgijKEgsOWYQNcmk0hsjIY1Y26CFBJFYt47DuCeHqXK7dGQc7jCqnpBEHlm0HYerGyCzah1TnHj15i3awJ//+HNs6OnChCl3/M5/+zvopqNtF7y8fMXZesGTiwcI3TDnyPLBlndHz+QBEZiKwRdD7yr6VkvLannOYRg5+IKfa+dCCfUHnxVCGBwOXyLzFNDlPhGFwqJpcTpBs8TIuvdorSDOI0MIGKGJY6K1GmstUiV8hmOKeAT7XWWMz6NmSoLIzFwSWWr0fYbbIUneXB0ZxsjtdSD6gd14ZJgiFslhzExl4pjgZx//hF4p+m7Boun/BgVdlly+/QUPnz/gMAc61xHCzLurV6w3S77z4iOEr2KIo5/oXM0dvpth3bfsrt7ivefF4wsOhzvOTh7QGov3nr/1je9itePoDxz9wMMHLyAXnHP4MHJ3uCOEO4TRjDlCydW+RiU1Ki0qQyrU3OyusZyfdAg1YReAqkCyriuseo1oJL2yCJHYLFqePlnz7GzLydJgTMCnxDj7ikRJNXivacA1kOe63S1xZm0Nymhap5n8SLfUBDzZmoqJNYKUEjbWwH6BReiCKIGFadAqMmeByLKmTAaPcRZVarRRzjWtdLm2WGVZrFvaRaE1kfefnaFs4vRsgTKek4eWx+/1bE+ga2swgS4alQVWNfchDPexPBiMkDhV9XWiUB80GbSqAgytJSVbtIRGa2TJFECWgjNQSsXqSGkrA5uEyIm2reRNgcLaBhU0BVO3xTJydXuk6x3n5w+wwOt3B05OzkjSsFkuePLkCZ/+/AuebB5QhOYf/2//Ex+9/xskIdk6w3K95TBMrFrFarViyIEyHtCpLgBlquifyVeipDMS7z1zCJQ0Y5SgUMMPRakJJ1JS2d5SUmTE2Fxz0IpgGmocVLVcCpa9RkmNbjSrpWSep7r5zwIfZ5AKEaviaxoLfi6UIOiUYNm2nCzXPDo/48NHF5wvexa9Y9X3SArDYaTrJN3KsFr0tNZBmuhPJMIKok9cnPV857t/iycXz3j0jV/96gU9x5aTRy94+GhLaywhDni1pzcDP395iZ8c2p1w+fYLzKrHLRyZJft0y5vLX3LSWF5d73l3+QsOaEqCRiukFXz65SWtbFmYBfM48MXLjzke97x59xlD2FNiYWpnNg97+tZQpKNvF+xvromhoKxjuT7hOB7Yv77myzev+cWXl1zuj/hxQlID2Y53ns9vAne3B6Kf0KaiYfY3A8VHsg9VLURBioTOBSUrqfD6biAMgXGKJKVJSjGUBpAoXZCl4XAoeK9Jc2IeQmU2q4h1Ci9rSAGhkLKlXRhaWd8kKc/MOdMbRw4zxllsW/9dVSRNK4gpMU+BIizaKo77icfPXmAXLZuLLf1qTfSJtT0l+4QUleVs0eQyVdVdkVUqKiRFFoqSZJnv5+WE0oAQlZZ5ry6z0pJKjUz6S35zKXX+ziLU+TRERBYY3bEfIyl4InAcJ7CWRrUMKdSwyFy4vb0lpYiPiRfPH3H56g0nJ6f85NOXXB93aNewu7vBdkuKlrx9+SUXzSl2e8HNcU+/WXEMgWY5s+nPaJYLhLIIpdD34hgtwbWZFMdqQ9VgpcC5hC6GXAzCcn+TDxXmrjTCp4rIlSBkvWOXrGjbjtlH1JSxUiKlhaDuLwcWYRVO189NIjhfSs62LWenK5SBoCRWCobDRPSZMB/omxo00ZaJ1UnHo4tTlm3Hql3i2gbbabbPeoRNhHlk+3xBEvsaroDil68++eoF3feGpCyrk+d8972vk3WlLby7ErQp0xrJNIzkOHJ5fYUsE35vOGkX7N5+zLvdkdPTB2wWPfv9S/KcmIOgbR1vb9/xbL3l4fqs8p6GPbv9LY83z2hUj80HtFwS/cR8nCjBc7v7HKcFKtUCyRSW6zWbizNOFitO1ht6t2E8FNa2Q6WaaRVTjaPVTiBEQGXF6CeuhgNjLiRlSELgdGK50LSumkesk7junqOERMTIcZzrFjkbjBYYfT9jO4VuLFa2dG6FT7CwsiJYTP3SU8g4UUUeWok6u4Zq6Mgho6VBq4btRc/+cA1yZDgmstf0tmG1bjkej/S9pDvr2K6WKFVw20KjKghekCmy/FV+sy0KLVXN7tYWYkHFqhiDGlWUUiVnFCKae/14qs6tWGqOtRLgjGLyVYordKWBtq1AlgGkIEtFI8Het/zjODMMA9vTUy5vJt7eXLLYNojsefq197i8fEvnKuz+enfJg36JNi2itbw+fMq/9+9+j+M88O7wBrtqEc2CpFa8/PInvPnsksVG09pCtokpR7TTpKSYU1WvWZnp2oaQZXVXWfD3wozGNCSlmXzCWgs0lKzRNBx9xFiBNhG05t0wMeZAihmpGjxQVKIIQUgZYxI+DBQC1gj8cCSkiDYFoQsra2hk5vow8cXVgUMU3E6Cm6uJ4zgzz4W740joPItVi58LGc2rq89I8ZbV+TndonBXJHdv/wZB+0KMvLmdyNLw5fUVWXoUM+Fg+Pqzc4ax0gbQDdEHUnyHFpE2R37y84/x0fPi6YriBN36AUZ0GJEZd7eE4vnmNz/ie+9dsHBripZoZfn07S94f7MGJkIcubx9R7esOubOdRzHAbWolMJ5KqwWC3IRuNahVaLtDF//+of0ja0+caEpMtKtNMvllpAFPhdCCYScSCFytz9wPCaOU0EgCTnSOIuU1XJ3drIllCNjjCyswqJQuiOJwuDnOqOWRJgji4Ui5BllJP1yS9/JujwRmRgjUUS0UbS9o+0sQnqQ93E4eUa7QgiBdrWg7RakWCFwSkv2xwNZz3TNKYqW/f6IaztsWd1vcuu+QRhZNd5SVhKl9GgMWuoama9AC0X1W1paYbES5hDJUlKyvIe81dlZKYVxTbXDUrfnpSTWJ1VJtl1saI2l7xpyMRSfMUpy/nDNPGWsrDporRwyNihjGe8SX//oQ5QoLNqO6+uJH/3oUxoiH7z4OkOMfPyzP8DqjmEYsLIgYv3erYPteeDBObTLHkWV/ZIDIdcHlTUKpQzDnMmhgDLkkDDKIQqk4O+B9/L+vu6JaUJohVGWcZgRHpw1SFGvF7OfICZWC8MUIjFGQhGEKHn0YIXrO2QSbFdrWtehkyIGGOPALkz1tFY0jYz0Dh6dndRARyUpWXD3LnH91rNcLaAsSCHS9y22MSxtwO8KTjRfvaBVusHZjlYkTk80VgXmg2W9/oBhPkEwMYcdSvdcj68Y2PH+k8TXHiashptDPXuNJXJy8pynjz/kt3/r7xOSxqmG6+M13/2N/5L/7nf+e5xsGP2Bb733jIcrTaMloo08fvwYhUK2Bqkr1mS4vEHIzGqlubrbEaXGx/pFCgyXl2+4OQwEakKEmD3Hu8Avvrzkaj/gvUTSE7xgpNIktKphB0YqrDLc3hzRqqVpDZdX10Tv6G1HCQmnNTGNiGzY9BtKypRUfchGL4hjxM+KaR6IsyT5KhaWKpN0YQyJcSoVFF6T/VASZGhIk2Ce53pekYUHDzuUUlxf3lKypOiW3Ek62fLi+Td4+vApIg2Yktiu23tQn0QbUSWbWgOFojxKZArpfrZPCFXqQ0+DuyeFRKo11JR0P7ZUdxtxJvl6d56miZwzubSUXNt7gYboaTtNsYqiqQq4LLi9u+LZsyf4NHM7jBwOHqkSN5dvad2GIgsffvSUB2cPWAlJ6zrWy8ckfc3f/bXvcWKfcp08roHpIBBa4RYLPBNFCowoKBUIWWBxtE3PLBO7IePnytqWUiLub9et0QilQSSsVFijmMeh0lJI5OIpsQICV51BioRzghwyyjiMMfTW4kzDol0Qi+bqasCPHqUzV8dblj2s1i3GWZzqWboVxmZsCxSHVRbyRLswVaAjC2frntNHDWjL6dKy2Tzl0arD6YKYDsSUOX/07KsX9PsvfhuRMvvdDTpsWBvNstG8u7rhcudZuCPnpxpjBSXP4AOHqz0//OEPef+9DxjHI/Po8fGGP/z93+WP/vT3+P4Pvs/3vvW3+c4Hv8b+9iX/9s9+n+IawjzhsmC6+5TX1wNjgUhb/aybnjD4+nRcthhjIB047G7x4o7GatAKIS3jsCOVxDiODFM9G7nlEqMUi96wWbW0veR8veZsu+JitebpxYpvffCApdJoG3FaomQmpolxrvRDmTNZRVqnScKglEGqAFmRAogi0bYQREJocLYQp8IwZ5quUFD4uRCnhEyFEgHhOBwLykMQgsXS0S0dTz9sONk6Whchw2IlWG41y1VHZzy72zf86je/w7vbG95cvmQ4Tpw93/D+t07p+wndRCiKkgoSgcJhlCKnCYUiq0IQlStpRT3v+Rxx98B2WepbXJQMOZNiTVoRQnCMHqeqr3q/v8MZyeFY6BtN3yiMkEw+cnl1y+nSsVoa3l5ectJq2nZB9jN3wy2348g0JEq+hhw5vhsRk+f5e+9jZsW4/xJvG37w0z/jN779m1zYBbJM7G8+Y3HWsTq1nD3Zcrw93gceWIzQYDSzH4lzZmEkK6tAFzTyftShhjsUUFQJrJQFqRUmRxoTcUqhjCWS61mubytM0Lbk6InzhNaaafTMU0ASWTQNicLgNcobjocKgS/ZcjMH3t3uON7MiJQpMjNRc8OPSaK0wT3oWG8c6/MOegl24Mnzc6bjNbNfEG8kV1dXDLubr17QaRS0whOc4uXbS+Jtx7pZ4f3E3c0bjjRkucTplpICN9eeT7/0dA9+nR//9Ic0xnI31Db9gydrtkYg/MAPfvxvmPIBKe4Yj695dfkOmQUogcozF71idWEpObHzt2T2ZCXYrntEqFG2hILRDoWjmIR0AqEFru8wWrPZbFi0HdokQpg5P+95fLpks64YUakSq2Viu1R4n7gZBhKGOUh2U2COBR8Efq6bd2ktTlcg3DgPVXwxAykyxEhWCUTh5s0eIxpy0WRR/bjSnVByJBeFMw0lgVWFGA9ILUha0khJEBOrtcMYh7GZR+9f0G+WpGRQes3ZxVNap1ktW7KCb/zqC9LxyPLBirMXT7g6RLLTdMWgha7nMAJSapR0FSp3/0eUGgZAkfd42FqwQtQdhRACqf/yxBXuUaypespN7WjSXH8+cwrMKaGLgBhojAVl8SnijzMPHj/n6vaO6TixWXd0iw3d0nD+aMujZ8959eaGZtljlpK765mU7jjrt0TvyCXw6cuf0i1aVguH7s+QFGTfcnVTo4UbZ1DZoWMi3LfSxgiktczMhFTwImOVrPrylEhCo0VEy6rNV0IihEFLhw91GYiso5RBkoWpQvw44aMiToFcZlIeq/+9ZKJXzKNHNvUuPY2R47hjaTRLoympME6gVUtKDuEURc4kYYlDQa8UbqvZj3uiHJCblqzukLLDdAsuh7eMJX/1gv7DH/4RZ+ctpox0q4JvX5Nkw2pd2KzXNMpwspHsrz7nyXaNniwvPvo7fHb1BmMcrUo0JnNy+gxtF2huuH77ls0DzdvbW066JXHe8Qe/93/w9GTNk1Vmv3ifl/vDPa9I1JNA02GXDrdweAQWze7mlne//Izjzch0yKhQTekyJPw4c7g7kCicbM95/PiMq+sdV9eeuxtIh8A0Ba5uAmkKaC24299iZCDMkr5xuM5werbgyaMTkqgbU1kMO18wjWF32KOcY4oDhqnKLKWg6AGnJCF4emfpNTUTGrC26rpda8mAkA6hLFKDiBkRdI0tEhbTbLkeM+9/+Cs8fv6M955/nZvDNZNPGNOie0mUkV04YhYW2/XIwwHmFlU0QowgJVEYpIpQPLoYhCj3UPZ7n5KoNMko7j3dORLIaKlxzX1gP+r+nKURaKZpxljASOaQ2a5PiNFznCZW54bNyiEI+FzQfcumsez9QN9XmydjZLwtNN2Cn/78C77+jY+I48ib17dclTtuSofPjix6hjGyHwLP33vE2fkDFl2LcR2r9Za7yyNdl8neogGvPEoEpCzVhZUDxkpSqic9STXKNAZWLoGCpsmgcv2dldqVNNoSJVhTZa+lVL+1dIbS6RqTbAtKaRAFYxQyF066FtMI5nkkhMxxKhQyx5DwaBaLFetFi80BLRLSKpgUYahXjuXW0C4sw7hnlEtevnrDWAoyKB5+8CFPt44wzl+9oLt+iTInXI836OLpgmV3M/Boc45B8/lnN0iOCHHHcPUFUp6RpWSM962uc/hpZDrsefj4EaPesVyvuVh/wJvXL4lOMJeep2fnXJw/wIiGRvd4ccpcFMLCnEfmfs/Dr58glMIrj4+3lJLAGJxO99vYyDh7boYDxwBjht3hjuvrHb/85Wvu7m5IMrBoJcY1hOyJ0fPl9ZHrmx0hSgqOGCPD7Ek+Mew943GgUUCps3WFxRXapWUaA1r3CFXpkClKUoFjjDgraxa1MaT5UIu2SMYxIzCoatiqc2qsmV/bzQqjK1v64vxDvvnw2yzaNbc+MZaJ8fAlyEyzaJnmOy5fX/Hs2a+yWm5J/sji5ITto4gwGWtk/WykI+ZUyRBUI8acMrmEynumztNgq5tKmvq2ygWKxNzLYefJ40msF3+ZKCpY95b9cSRlQUiFIgMlCsYpoJTgcHMkePB+JGcwasHbqyOnq5YkJt6+fs2HL77GT3/2Mcoalm3Pw7MNS9dzSBJlBK/v3jGowufXb3n/m7/FycmK1iZuXh04aSHbCSUSPlcShhQZXWqeXQwS5vp/hUhMAmE0zkoyutpRzaqC3ZWomF8glVg1EsO900pMjCFyGI4JfpMKAAAgAElEQVTEoFBmwTgFrFkQg+BwDEwZbv0OIQStXZKERNsEudC2rtJUSsAnkNqxXi5xuWXRt5ye9jy8WPPs+UM2p0/ZLh/Tdytsb8gpcLrcM2SFWZ0T+esDDv5/tNxPefXmJdZk7kzm7eFIuRpYFIfWFtdsGKeOkxPL1SEjG83Lqy+RQrNue1at4C5kfG5583LP9sFDTBn44x/9PzQmo5sW2y6h3KEDSBHZDTf07QKVFFIHUomIziE1XL/ds+g2HEePMILgCzEFpvHIcd4z+IAqMKeRpATkQvYzWjrafoPJudIEiVgtMRhSAWUaVnaNU4LNsqMzVdb4lxCzHA2JwJxnOm2xNhOPkUXryBSUNoxHj6Rg5eI+1qguT+58QsgWg64+aVlvoErayiymoFWhiMT1zR0hHkhecvXyiqZZ8Ga/IynJ8uEDzs/PEEazPx6YgmS/m4n5iJcRbTpCzIjY0CuLUrU4pcqUUhD3YfKV01x11Tn4ms+tI0ZBaw0xe6QUxFLPWSFVbI7Q6j70EbTUJJ+rBbBVlJRIeSagiYe6aCrKMaeIM4LbvefZk0f4XJDasvMDJ+seWQyvX/6SdbvFjxP7w8jVLy+BjBAjOSZ2hx1d03AII40B1T8khYCIt5jFGn/M2E4hZTWixFTbamUFiFgLqyiU0OQ0o0tEZUmJGaMdISSsWqCFQJiOXCJBCGa/r3NyLDXMMdXTHUWT04SQGas02lr6vmeYI8cxM08ebKZpFcYoThYLjNOY7j4yWledeJxG9EJhFx39ZkvXr7k57nn19oYYFbJzLJxBmsjl7SXXh1s6E8jmbxAS6HRifzsQ0h4nPI0F92DLPntikXzwwQf440RSM5ienb/BWk1rG1rriCIxxYCfPGedgjFyufu3vLu944P3n1JExueR481nfO/pC84WBS0ToQg+ePQUZRXdyTmj1ChhiHpGTgOuXbHfjZVMqKq/2JmG021PjBkZJDJ6lJHopsU4CcUyZYk1HTO11XSN5sOHJ5xtlwhXSGImprmK92VVfM050naOk5NNzTZbCMLoyEWinKLVAqMV3aqC6bVVIBXjNJCoET4peeaQyaniUBCZRKhwCjGR8kSjLYuTlofPH9T8sC7y5t2fk/wbUBIpYXXyFG0T0zQxHW8x2iNKJuWRYxxYb1qO+7qtNWJBzpoYKy41Z4sREkT9t+67TLomVy93qacuI+v8bLVEIXHGAJLN0tY2NlVQ3ZQ8iULxMOyvuHjwhFa2TBlyEHSq4XicWC83rM9O+Nknn+DjjGs7vnh1Q697fEkUJVmddWSl2D48IYVIzkDqkMpys3uLSh5fjnzx5Q/41re/yXiICDaUWXPx5ARlJKhCCKm25LqQUqFpmopYag0Sg9RVzZaEwiw0SRdyDJhG4KPChz0IQyMaZJEoUUkcWktW64ZV1zJNU3WcFYHA01vI7FlvFItFNYXsd4V3tzsOR8/NzUg+jJhQYfWrxQLXNmAEtihWqw2uWdJsM9vTc4bLmX36ee0MjEaiOT99n651PHvwnAf93+BslY6v+drDghIKXSIX2x6h4SA1U9jx+RefQCN57+wxCxX/X9LepFez7DyzW7s7+zRfe/voMzOS2bAVxVKRBVEuFQoCBLsKQg088//y3GMDroJRhuFB2bIhlNVSEnsyMyMz+hu3+frT7c6DfcWhDJCzRCCBAG7cfc4+7/s8azGdPmIipyzrCcPQ5UlwONDtHD/4l/8di/SI+598ytP7x0z13Rsw7nn98gW7naNgTqNr6kLTB80YIq2U7NYDv/rHz3ny5AmmqHDR0202mDTiRwO6QDqJjpLFYoExCts0LJoltpDMmxnLecn90ywR851HOAWqZBg9rov03Z2aVgmSUjifG0mlMrS7PavbLbFPtBvH4B3KSPwY2HYjwyDZbx2FAe5SQzFJRNC4IIgqoa2kkAorBNI4BBLvFIXKmOIueoZuZLfecXy/QNv83SrUnKPpOW3bElykqWds2pHFcoKOPd/73vcoioJlXaBViT8k5KKjUJ5S5CikFhpNynFHmY2VSecEWAzyrmYpwKtcyyxLtNYYneVulYBhcNSTBi8iqsj97dJkeiXa8PbymuXiGAkcnRxTl5rpNAdk+rZjPjni4b0TunaLR+FiYDrTvL295c2Xb1ken3L5fM2smHJSaP7Dv/wzQmh4dP8DLrcrqnLBxD7kF3//E6ChnliOjo5Yzi1u8IiYYRDeZ81uURX0sUWrxDDuSSKLF2WhM2B/AOFzDDR/YjgaM8/9aCMQYyJFh/SeXTfi2w7pPcfLbL80xuSVl61pSsthjMSQb3xlKVjWU4LOK7wRhQgjVglCNxB9QBcqywVdpGgigpKimvJu2GOmE0LokD4So0FWC/pNz2G14cj+Llzumy0xNpQk9v0Nbe8RIaFNRMRE214SksfrJbLJ9IbdzYo4BE7vPeJoMqEylt5H3mxGNjeR1bXAlB19mGVxnIH67CGu6JHmhFIWnM0KDtsWqS1SOU4azexBQ8+B7tBilWb56JiistgJJGGQCpC5IrhcLnH7AWUFVVURGOn7gc1tR9sfOD1qOFrOWcxmDELTuhwO2a6zCsYHRVlYjCowOqtuELk0X05qtJFoka/K2uSCgpARJWH0geQDKsKYBoQMGT4XPCOe0QV8F3Fjl8GEMUAyPHpo8S7SvRvpW4lpZIYtGnEXUpAII7CTI2wjcfsXJKNYXT3nsL0iicBh2CEqST03lDNQOvukIvmXNMqsoyWOGA0iJZSMvwEkRhkw0mCEIvpAEpGyKu4aW4JSWQqTcs45DBSFJglJEJqEp+07lFLs9wcqW6IsdC7Qt1uIgdcv3+C9xxqdiZxO8eEHX0OrkrdfvaCcKp5/dcVkVvO//fl/4g8+/QYXdspSF+gY+Lt//DH9sOHDr38nAy8Kw37fc3xR5+64KpAxkaIkury6M6KmMLnqarRi8I4hZf+XRNCPnrFzJBFxIn/rC+kRdUXw2a5pC0EfE8kYut7hgs9dAhm5vd0yHFomBpT8p61AdkYfmUBlC4zNmOQhBHryt7QfXSadFBnhPD+e8PzFOz745DGHMdFUhqaZ4tIUbScoK1C2Rw7mtz/Q1XRJ1yfacIUfb1jtt1RlzFFK50nR4NAsCs1iMuVx7fjDb3+MiQahDONwS7t/g53W7LZrTqcTxlvD+xd/wKRc5RB6dU4QI+ZkwvLiA47rOdvDwNHxI7yTzLTj+c2Gi6ff4eRoSbOcc7Q4grHIA4l1S+h2TGYVbecZ44iqLRePj3JqqksMrUdXBXJaIEzBCOy6nuvbNcOhpao1dVWwnE2xpqBKkbLQVEVFQrHreupyQjcKul3HYjbFGMPQB4ahQ5uAsZF9r6gqC/Sousw5cWDwCikqrNLIO8GcQiN8xIkMFNgOkZMnipMPap599ox3b94ikFy/fcXN7Vv2IVBNZ9hpxeLIMqiePkaamWE6ndLHLf12w/tfP2V+JKhnBqlB2xGroEgGEQp8yFgiqQzeKaTPk28go3xSLlQURUn0KV+v08DoA2VhkVIyuJG6qOjbjkntKGSi0JZX11dE5cF4LtfXLKcnlKZkNpmz2bYYXXP/+ITkRt5cvQHhSK5nNW4Zg8cPIyE4Xlw+4+S84HRi+W9+8O+4fHvL9y7u8cffeYQJI7Fdo2SJ6zYsHjQ0s8S9R/M7RHIujfiYwYMhjjkjoDwJkc2bQuG8J6lEZS1CCLo2INNdJXLInxxRZbMXZLzU0I3owhJ8lin4pFE6Ik1FEjJvdgpNiIIkNWU1pVLZW52MpdCKUk8RRqOU5eRojikklQikwjDebHjvdOCkiOy8pN1dU09mCDFnuxmYHn8HW/wOU+6hT9zsXhKSp09HnM5qpjNw6xYFRHGLjO847KYspePR5IT21RXnS8nb28+43Ck+/fA9rvYbnt18yfLJDCs12yEh5JY0Jj7/6prCSkJ7zf/9v/8DJycLkpb86vVnKBNplMA7yW3b8cXLF9weVuwPAyJlp7IxeWBlbeLsdJFTQsOATDXSNKSqxDY165s9VlqaUqOiQkiN1jJLzgbFtCgwNkJUlJMGqRJCOnxQLJZTxsFjLRyflvTjhk3ridKjbJGd0S4QcQydR6kpbt8jlKGyDcb6zIxOJVKVqLrKD5gSlJc0hUQLy+nRMY8enfDkwwu0lJzdO8EsZhSVwrme3vWM3Z5U9OwDPH38HtebK0Lw9Ls1RV1i5zVG1VQKrJJIf1euELmUYFWBSAnnhlxCKAQxRgw6WyGEQ+KQRMYIvesRIYviV/s1UpQsmjmC/IZe3bagIpUuqIsCP0hSNBgleXvzDms0bmixpaEoLS+u3iEKjU8FN7c7UjQ0taZ1Dhc16/2BRki80Pzs+Rc0J5ZvfOv3MeoJ2y97lrZks9qzrA0XD09p20Byid16QCRAOowu8KEHFYl+QLkxc9NiRMdEFJ7CTvMzzAhc8simzDl9UxBEYLM7MGlmuJBoyobKFjRNhRuyP7obBUoJrLW4EPEHiR8dUeQcu0TRh4Eh5J9NRd76uCrjidCKom74+Ntf4+l3nnL84JTv/Kvv8+zla+4tlgzDgTfPnjNJAj9EyjLy47/8Oecf/g6g/Zj6DLBPNVIco1WN6AcWYkSmiJErarPn2fNLxlVi/WyLaTT7mz2lNRhb8vE3f5DLFKNg+eg9Lh6eEyJ88t53OCksMQ00ZSKZxDd+/z5KC+pCYIIkJMPp6UfUxTEiBJ587T7n50tiHPEKZpMSLQYm1YTd/ja7mYBZk6uDMfUsFxPOZ8fcf3BGHAfS3TfTGDyHdiRgMzdsVOwPLq8oug4fEyGZDEg8jCQ0MsFh73CdoDIaozRGJlKRudW1Ltl3HV6Sw/0yEZODFPJ11WpicMQwoiIUwoHMQEFbKtqh5emnH3H86D7nj45pxy2mqPAKXBjpfZdVNjJRakVtF9TTSKEspWxopgsO2x2T2ZLLVcsYA42xCPI3mxECT8rl/uiQJGIYKIRBqrt2lcrq3JDy8Mt5QFRYU+DigUJpXBoQssKNAqkm+MEjZMg77Jiz6DNbcTw75vnbt5zeWyI0eD/S2Jrdbsc4eFw0NDPDw9NHvLt8i0Zw7/4pCE90e7abFX/xX/4X/vUf/iEx9mzaLY6B7/yLP2Z5vszrQgTbNjF2/1QT1fTBIZUFeZfukiK/vYXDoSlMg5aKFLJah2gyysma/OfKo4UiuIFIyCxvlfWubT/gfI/FYHy2jJIMUXoG15O8Z1nnQ+e6jFH2CFJh8pt9CFhtUUZycjHj6OQYrwJtN/JXnz3ns6+e4bqefmjZbQ+MQ6TrDjhlEGnDrv8dqJ+2uUBUM6I44mR5n0G8JAxrXj1/g1l4yrKkT1N2acOkOkJVFde7N2x2t0i3o9Lw53/1Y3749Y8xeLo4YJsJMsH+K8NJf8KZbjG8pPOBm3TJ89crlBYoWVBEzbR+QKE1U+N4fPEBj86fMBwOTIpsbAguUipQXjD2+bt5t3OMfkBJyep6w+X1G3a3a7becXtoWfV7hEhMJlNUUbDZrHh7e80YBDFphBqRQZCCQxeWEaitQNcSW9RIrXI4JBlCkmx3LruUBRSFyesSo9h3kdFFnIcgI/04YowmeBhJRN3ktpIYchihVfzt3/wjFAVFmRjGDU1VU5qK2bSiqib4sWOzvkWoI7qhZd6cspxoTpcfIMJAPVnwi7+/5OxkwkffLNF1xDYCpQJBKfQdDC/eXSOlKIjSM3qPkAYfgaCxJgP1p1VN51u8CDR6hncDJhpCCOgqd8CDy1HavL7p2e1XbIeRdnOgqWo++/VbjpdzVrsWazVHsxNiGpktpqxWa97dXvH06fvYiUaMiU70HLYDpbKkcsb15S/pWWOOCk4ff8J+9PS+BTGA0IhRUzcqB3tkpqQqWeJcHmw6VTAkKKRFaoPzLTHlLUimGjjGfiC5nE1Io0VoSfQOkcjwSNdTVoJpNWVST3PDrrAsZ0tmjUYbyxg1h1GwGw60fYfWBZVW+UEwdAQxUtmSelrz6P37GDRte4VcWGKsubh/zqQ4Qk+POC3nHLziti1IKjAOkbLoOPzz5/n/50Ary9W6Zbl4DyvAh8ze8p3ChFtqu6CxNXVZIGvLVmv27Q1lCY/uP2XTjrx6/YzlyYIzpbla3XJ29phYCH7d/Ywvrj/naw8eksYtVTFHs+PeWcVJveBsOqGIhjRaUImbzcjs0YzXl88pTyqc79l30IWALAtkWTG6AaULpicFRmkGn9Da44MiCElhJIUsaSZz0l2ZYOg6hDHYQt5NdfMvaMKQUqAdWmKMbHZZf9O7lj70bHYdznfUxpKSYFIXSBL7YYePEJOhrmsCIUP83IgLEYLACoX0Eek8KiTqWjI/anj6yYSHD864+eoFSgSaac28adhubrHFFGsifYxMFseYcs4+Dfz9P/6a6axGV4mmOeX67YpHTybMzxaMg2JqG2QIFNqg7gZ7IsSs+JGBLrYIWWDvbJSKzLROMhsrvR8RGIJPJJFvCkkFXIqMfYtRMBI5uIH7Z8dILehcRIwObK6laqvZbdZUKMbDCEZRTxtuNu9o25ayzFL2ly9fs9k4JBXbAT5/9ZLl4ogX12OWNTx+wqOPv824u6Wyls32hv52oJglqmmdYYspYoxBxkBKnnEc0SS0FIytR+sRiKToKaJCSMsdhgwtMnCimhb4scc5hzUua4y8p217dOVo+44Ye2I60HuHD4aTScNiOsWIkJ3iUePCyDCOuG4PISJFRVl67l8cc3HviD4oAj0xOm7blk9Oltx7/IekWcN+veFP/uhPGeJADGvc83e89+HvUVe/A8Z3bB1NhDhafDTE0bHuB6Qe6IYF58sl+8FRFobNdWS/n3B6ck5RFmyuE8kNHNVzrD1G1Oucd1YO5xz1+RHhPLCJ75iZD/Ghpx1e89XtHmOnzAqLH6ccDgfa/sDJxTl/+Xd/g7QJNwp2XX5Cj1Gw2t8gU2J23FAvKwgRbSy1bRjGXF0cXSI6wEXWhx1u7BmiB5mhek29oLI1w5CjlaXViJTJKxJBkoZIwidNjDkBJhIcxvY3awwpCmqrGb0jEUjS35kbPLrSFMAYOpIqibrAu4CQEm1BRMe2PeCKmjSVeDljHAOlbTCN5fz8HhBR1jA4nXlnfqCqKky9YLNas77pmTUFs7lFTwxJQVKR0/MFRoEW4jdd5iQgRomkIKn8axB9IKWEUYq2c7krnRR39iiKqiAKaLd7oof2MGJtJq02tsaPgUpnNNEuJCSOtm1JvScOiWkzYVZOUNLR7x1H9RHD0LM/DHclCclyXpEGQ6Ujyk5AS569fsbQw2J5wU9/+nOU35PkSFk1zM+Oubj3gCSKrLfBEF1e0fkAQUiCBJJBm5LoDdEntJ6QVEH0HvBYqxApf0aVumYyqRGmJjiNSCMhRVyf8D5SlRNiUERlEcFjkqdr9xjNnYOspDBgqyLf6uoFdTXPOfnC4Jzj5toxP63wukBQsrv6iu32mugS+90atOLd5UtS1AhaPvjkQ9qdp9/9Dm4rYSpWtzm26Mcdozzn+t2O+qyEoGnbt4xuh7InLE8vOOwdy7PHDEPHs19/xg++/R0+fvh1/vZvfsXZgydIU3C1eosj0m33tCpxKHo+/+kr/vw//5RxgLA50JQVwXVUxRKpAoYxly+iIEwCDx/NWMxLNvsdy5OaaWn5yc+fEYfE9YtbXC9QKaJlnw+byLgf1zuG6KgLjRYjWkuaumQyn4CEQ9vx4OyC5XSCJmGUJkbPOHgG7xl7weFwACTRe/qxQ4oSqSL73YgInjGAdwkZwejEEBxGa1w7ElXE6pLkd5TCU1SaGEsOa8noHU3ziJQElS0p6zPK6RGvbi/RUSJ8l3fmDDgvuby85P/90Y85ffyAX/z9rxlvPfc+PGF6csLs4j1UhJMjw/QClvcND5/O7+yT5R0fTOOTR4iEjCnXIQkIXG6aJY9PI/vOY3RB5xPbXccQBYPLqNs+RXrXo3REmSonx1S+cVSVyVJ2AmVZ4H1CVYKoR44mJVVZZiC+1pwfT9gftpTNEV99+YY3Lz/nyEwxI1zvNqyuX7A7bNmunrG5/BWzpkDLwBgkzbzisF8TugMpiazRVRI3SuqyoTQ51Re9QxcekVz+tBI9ifzp44JCIUgCVPLsN7eklCjLHmtzIORkOaWaKLoh5n52qRnbDhcSPkZiHClUxFpDoTRlUaGUot31hGFkSB3GKMatwe1gWgumi4pUzDlQsKiu+eXnX3BxMWVeLbFmYG4di2ZOO5T87U8+Y35Wcnzyzx7Zf/5AT5qCSlq2b6/YdgkrT3j55TN2254QDbZ4RGGecHF8wQ0Ds+OOzfaGaX3Kp/fu84sfbWiE4PGTJYML9F2HtZYGzaxwTFTAxw0Pv9FjOWWzfgjG8vkXPydVNbIo2W3XnC/y+kEWU44ff8ibF1eUpsFQUBc1JioWC0O/XlNWeYd6cJ7BK4SymKKkmU2ZHk2YTAvGLpKKBmsrUoDQewSRqpYM457d4YBKkTFGUigprQEZ8WGkqSpMKhijw+gGhSB4iTEBFx2VbqitZtMd2B88WhUoWSEpMnBOmdzv9h4zRrSCyank7N6COKxI44EHizOa5hxhj+ncQDOxmLgjiYiVJWLUlIXm977xfW5ebfGHxPNXbwkhYeyEcdRM6zntOPL448c0RzNKJiysotAKLXIJQZHQMuVgRYrkkZlh8OJuqJjjkx6HSAKDRAYYIzRW5eu5z0zrrtvlPLvzRFHiDi22kjw6PQElGRPo6PFJUxrLclHQ9Vv6oeOLL69Y2LzOms1mfPOjb1OWhlSYu8+ZBiE9YdzywXsPWA97opbMKsv9Dz4mdIp4R+C0UuJdJMUOLSWjt2hjKO2E0QFKUluFkGDqASHBh5Z+CCA1UWsOzmFGSKNhGAIiCYZDZBwC87qmLAxpTByGnl07sOtbgte0fU8K0B06XAoMQwCpKMsCFQxJQFlJTs9r6qUm+kAUkna/o5yc8eXrnzErVnz15g3JdgRd0IgWIx0ffe0Rvd/x/M3vsLY6qi1PHh6zbXegM5mhLo+zGXJY473G+pJXP/87upAo7nlcO1LXJUOx5cHjCZPZlLdvv+CrdyuaomZRHzGvpqyGDmiIoebVOvDp955SNgU0lqhHoml4/folqfBIpTJEYYzgDghjaQ+OyVEesN1udxwf3afte3w3cnxUYORdBU5JxhhotwdWtwdubw/0gyPFjADy0SFN/m8TEut2YDcMrIdIRBJFtmZKKTFGEVy+fkkUzcTkCSgCKQwH5xhjzjtXRY3V+e1d1QofAilASoGgJVI3eAmjysbI65uOxcWMk+MFZnbK68uv2Oy2HM0WzMspFQWb1Vv+9aMSv7ui0pB0z5svt/zs7/esrxylbairJYXJ+9HHXz+hmc4o5ws2/TVnTyrKSmWdjcrEU5Ihxkw7RdssiBciv6HuNLbeJUqtSTqvvoaQFarGGHxW37HddewPHYNPHE1q6rLm6t0WUUgWpwuWp3Nu9y1PHp6jpMEazRAi56ePGUfP+nB7Nxfp+eyXL+lc4OLsHrvdBsoJqJJnN2s+fPoxRTHSucCDR/e5+vwt/dCSYoZEhBQz1tcYut2BWmVqSze2GFkwDiCkInnFYZ1JpipZJtM5MiSaumQ6nTKahK2nCPydihaEkuy7PQDt6KiaGbOpZbGYZsVRFBgB9QSUMTnYgqZ1BwptkUZyfHFKUTco29MfWnQaoNvytY++STM9Y90faKoJe9/hVMHWB6wcmcxPMLXHyfVvf6AH37Lbddxsb1Ai0Xu4ODpjNrUMKbAfAtY2iMFTas2mczx47xtsbwPT4yVffPkTXrx9ziCrnL4RHUgYo6O0c8aguLzqoTD8p//8H/nWR59wVBb0YchExkKxOQwMXlExYHXe+R3fmzJ0PY2pYIDrTcdkUqNMwTDu8V1gOZ+jSUTnGYYBZbNneraYs1gsmDUZu6tkLrkf9h3r1uXVlUukFNEyIoWma0cmRUGhc2tGqJH5tCFFk992GqwscM6hEb/xLfkY0apEqxxoSSJfTUvb0PuUKSsio2yOTya8eX3L5mbL/uqa0k7Y3a7Ro+eH3/gh129e8PSo5n/9H/+Sj49qnj97TZFGnn9xQ7fb8/E3H2KsIoWWcdhhKoWYNojilHevrpiflEQCk0piG3HnYrqjvAiViStB4mWPSB6NISForIE4UBrLMDhSSiQfMDIbP5LzdG0gpMjgRpQWDF2HaSpGJLebNWEYCb1ntz/w6vI1x+dHhBCYW0VV9BzGA6vtlsO+yz1mKbHFlLYf2By2lEVBGN9gleRHP/6vlPUSP4ysrnfowtIPjmgCPgHBILWmi9n9nQRYk4swpsjZbEHAmPzQ0kkwxuye8gKsrhAhMowt++2KpMCWJU2jiD6xmFeU1rJcNKiUUFoCiqQlTVkS6SiSxSrNfNbQzCqMqvHeM7ENttbYuaQ5yc2+4dDy3rzg5c2Wj9+/YN0bqukUyTGTMrBZjbxbXZPcHmGPEKH/7Q/0zX7g6LhC2wMOR+96nn73gtdXtwzRYq2lHQL3Pv02TdOQwgTNPaqoWb25oCw03f6G9x4d5QlrCgQCp0dzTuaKolqyWUWiGvnDPznni18/53vf+hajUIx+xcXZnFEY3nvyhJ+8uEKYitnpU3wIPHjvPmUlocwuIx93SBKnF3Ps9JiQErtujx96TKEYuo4QBkJ0BN/jfMzlkHEkDln/uRt6JtOKqjRMJzXJS7aHA0P0BJ+5T8VdnBQkMeQ98ugjQUbKsmYIe6QKWBNRSmJLk9lfRW7m4B1ibLE6UBYG7Q1hMPS7kbKQXF+/pqqn3G6vmdoN3/39f82Ll285+D3GS0xRMW5mvPzxPzApK7Zbh7KRD77ziO/93r/CCsdRoyjm8i7OuufkuGK+qAim5+RMURqFJtcMC2HwImQqKEDITPKEp/Uj+0oDLkEAACAASURBVH5gPptQ1AJlSgbvCCSCztfWqqpwPnC7W+EZUcbShcDow93DUOH9SF0qTqYzlCz57MVzdGFwXrHfOx6cnyBkgYuOoml49fySzasvkRJOZxNOjud0dHx6/5h3ux5jG6yZs9607G9eoq3msBkhOAI9IhSZ02IrfEh3oR6fJ9hVRUoVPijQPYURlFVDGD3aWMIYSUjmsxOczm6szaplvfZMmwXDmAEDYzvkoReJrusgwGa/I+mKNoAbcvW2HwJlVaHLEpUCMfToYqQUHQTPfG75yZsbunbPxgWOGSmU5qMH36KYzPA+sjpAGDdIe8TxmfvtD3Rd11zd3nB2dES73WCQ3O5nPHp8welMo4qGSXPMzbpD+5KPzh9y9e5LBrnhP/5P/zNNdcTO7Vn3hsVkykyDH9fMJgWlmqPbCf/Df/jvqThH6T1xvEXIAs/Abuy52e8oTAmyQghB61u64ZbiJHGIN1RW8vLVmg/uPaQUNbs+cvX2wOgOKB05XS4pmxIVJUqCUhYlDfWkISUISaF0IuCI3mGtRt+FMLp+xPkuB18qSdKCzWEgokg+kfwALlDVGqUNwQuqIiEwlGVNFJnAOXYus7ZjlqUnAaMwCFXQevBuwPmO9aqlHxNNWbFZv6ZSknsPPmHT7nn55iVlPcXLKWcf3mfsIsGPfP4Pb/jq5Rf8i+9/iE+Ow27Dh08/pi4KVLXksOtReuRodsJsseDDjz8iWYnweQD2TwCTWimESPQi+6pSNHReUurMhotBMvYqhzBE5l9VpiCGgboy2bgYBEFIhmFktdmDzxSWSOL20HPYj4SgkEowdp7XlytUqXi3Grh6t+bh2QlHy5rNZgVpYPViQxq3PDm7x+1+DcWEy9sWPwaevf45Z9OnaCFoR89mNSJDBQh8igT+KWPv0NrkN7ewHA4DpVaU1uS6Z7Qg76qVMStqtvs9LjpklBngB5S1BSK73YrDdmAcBzAVfdehVGI+ybeCaT1DJ00KMf+dMt/AtHBMFxUPnx5xfn9OM6kQcYZuDOubLPLb3h6ITFjvO2a2oG979r1gTAKfNG8PjnfXl+xX9rc/0BpJ2ZwyJJBGY2VJUjMePHrEUR1g32OFoqnmdN3ArDrm8vYS7zYI+Y71/oAOCcHIcnKG7xTL6QPeXu6I3Ryk5HT+LWw6RxZnPHpyxBfPfkVyIyKN3N6uSSnRBsOkapBC0IXE+XTG2fEFMpX4saOaaoSKlMLRVJLXry6xlaQbICaFF5m1XJiS2WSKSJoUA3HwjEPMe0hVYG2NMppDN+Bivl5WuiS4SHIj1ggQCqkqClOSZGJ7GDFCYowhRUg+Ie8Oc9d1+DASU6IdHT6M+AiltoiYmNQlY1JUcXZHMrGISmOPTjkcdjy4eMrLyxd0hzWTxZKvXm348l3P9fYdSVp+9JPP+LM/+xPSfA9hy2EYKcoJ26TZ3h4oyyNqO6FeliQ1oFSi2wiKYoE1BbaI6MLdYXoNOjkgEjwURKQocUHc3cT2DMFnXBEeJUasKOkHRx8zCtdqy6TOWtnb9QFbW8qiRAnNzrWcnMwQPmFszeA9+/2W+8eKeiLZbK+Z2iNW24FP3/8mFw9PUUNEUlEpgxs0+x3URKKA69WB3XZkt+0QIdJMLNLklZkPPUZldVFKkUprSlNgrUEi8GOPFAXBBVznSMIzxBGrDY5AciNRZvSDEgmVPBApihJjNYk8/CsnFSkahkOWUARBDjo1BWVVEIOk0BahLBrBrk0MW8n6bUDLI2ypWBzNefLgQ9r1isZI1OwI6Vesb1cUpmFSNnRDD9pATFzc+/C3P9B9t+fmzS1lfcbFyQPqecNh0/LuukeJjmHzFlvLu8lhSZ80JIeVE+YfCqrjEj0/o6wnxFDwxWfvGFzL1eaWF5+/oain/PVf/Ig//qN/T1N+RLmU3AwrPAlrS2Sp2W9Grq4OjH3gk/tToleY+UOiVNz7+JxPvvVtyvKIt282zGYNN9fXdJ1jfdvTNJbACEnTD1lbs9lsOAwHvISyLFFSUhmB1pIYA7vDAEisEYRSIKzJPmCrmU1LCl3ltc440jRzQgCtB6IIhARFVdK2Hc5HPIJxHBE6K3UEgeg8bdehZQDXURjJGFsG13My+YDp8j7x9hnf+eA+YRxQyaFtyWb1gl/+7C3jKHm3essoBSeL+/ybP/1jOBTU1ZLVm+eA5ObdK8ojS/QBu1AYGym1ZrI4w1aJ4HtKVWJEwegUg88UTyl01hGp3CU2GipT0LZD5nQV0OiCeVEw+qxc9U5gksDIxHJRoTWZ6y1bdvsNQgdiHLFRsRlXHD1cZlb3tKJSU/pRUdmKrg9s1xvef/+cn3zxObvYIsSeEARh/Y4UC/Y+0IdLbi43bFavmJclwm04e9QQSEjh821OFugAIuSYrBT/tFaqcM7hEWglsFozBp/RVQiG/oAtakLMOKJZ00AQBO/wKXO2S1tQSIHzkaGDm3WX3VgxYk2JkJLhcKARMJnW+SbQ9ax2ey4vd3TbnrrRVOWMSTVhiB6tNYt7FySlud7uiN1IqTWPz+7hxcjMLqgnFYvpjOdfvf7tD/TJsub06JymyGzkq5trrGmZyZ5nz99we9hzuV0xSk89b7jt1ojpEmNHPv3ev2MUGmVLVrsXvFu9oPUjb65+ijk2eBEpleHVF78gqiXHJ/d4+/rnVHQoITh0A8F7DmNLs5hQTywze8GDs4br7ZoPv/mAP/8v/8Dt9prgOyKB5thiCsvx8ZxZ1VAWBVbWWCVRFGx2LVvnMqu5H/Eh0Y8B5xSHLnPAhciDtJQSOpRYpalsCSFznqPPNMcoU+Z/qYCVFUIkUrj7oUpBTPkfSmpFdJmwqY3JPqwYQWl8kpRGc/wwMT+WvHn7U/7xL/6CzeqW51/9mlV/g/C3tJsdURx48tE573/jgpe3X6CS4fnlczbdJfWx4IMP3qfzt/z8J3/Nv//T/xYhNSE2bG4u2XW3bNqXfPbjn7E4TfzBD75GSoKRcDflLUG2WbOqFEYkfAoUqsiR1OBIIYvpRaGpJ0uaqmBMDoenUJooNDIZ9r0jiEQIjr4b2W63jGNk7z2bvePXP/sM4yOMnnuPLlDGIgzM5pZ3m2t225Gn9885vFnj0kCi5Tvf/i5dCLRpjbaRRXPG8aIiisj5g3P6HsIQ8tZF5huETyOyzD9/oSaYskEImdttOHzosFoxxlzIUVqghEArmE6n7PYdh/2W45MpURRMrUUGSGOiDyPaCvrdbS5cJDgMI/2wRxtYTBfoJj88QgfaGGaV4ul7DY++1VA0nsqW2M5gXcd+/5ZjDSWX9IeOs8ffopkMNPOG2kz4wdc/oSmX1Mlxr/gdhmKyLslhKsNqd83EVhwfXUC0eCNZHN/HdQe0qdl2298QPobQs3q34Wb1muA6XAJbCooycHrxmJPZgnppWeiSiRG8/PVL3r18BVHyzW//EYiB2tbE4cBxGfDtOz44Oeb1za95vb5htqwp5xXKBnY3V7hxzXxaIMdErWrm05rJvEYViumsBAXNpEALgU45rdMGz6HdIWRiCAMCiVLQjwOd7xmH7DiOMeODp6XNLS5dIGTJGAVBBIIX+CgRSbIbDhDH/I2EIrpwp3aVdMFlUkmA2mh8TMgoGHyg3eQE18Ef+Pi7n2DNERAZ2y1HJ6dM5gE33PD2zQrvLklRsbsc+f0ffswuJLAwO6pxHrSNvLm+BieYzC9ywksLujYynU7wu5K/+9FPMvjv7jsvSFjOa5S0lEWRD65MuJBXNUplkKDRGqlyAUMKj5YGawzTUqKkYLvdIpKiMtnfLITCFoKmKmkHx37Tokz+O+89POft6+fQHvBdwrnEtGgYDpkgev+9x4TO4bo1Xzz7JYPrCX1PDu4LmrJhs36NFAmlBYuzAqMh4FEiMqT8sEoYAokxeFARSdbiEjTOR6xSSOVR0tANeeCkgKouiFLw1at37Lsel8DYvKbs+sCuPRClIITIOHhCind5A5X//y6gtM1cMKlQpSZ4w+27NYU0TOspCU3RHtjstgg7QVY1tiz47PUb8DfEAA+P7zO6KYwdz379K7Z9+9sf6JubG1TleHH1mvsnE9rDjhRGoh3x5gQXK85O7/H29SXb/QotA2eLOdtxx+e//BnKFqhG0gdHj6acz1nfetx+x2gyiG7XD9im42235XWv+X/++v+kj3tuN2uGduDi2OCHLS9ff856vOb5z7/CHN1nsx35gz/6Lg8ePODtu4GAoOsi1dxSKnjz/CUp5DwuUtB1PVVtqQtD6nvwnnEcGIPLyR5t2O+yNL2pS6TRlMpQyJIoBfuxx7uENYokBT6MGJUtjqookIXBaI2RJa4PaCUoCoP3+ZpdliXaTkimZNV1RATFxKIixLZic9kzLWckOaUfB7zYksIlZTnj7YtLxnHFw/Mpy2lJiiXtGHj08ZJD7KmqhtcvdsSyYNAS797w6fvfpcQQdc3Nqy2z6UNspXn1ckvvND/8t99FKocWOVDyzd/7BHu3QjNKoYUkBI+5cymbggzuJ6OZVusDk7pEAoVVzCaZ1eC9Zzap0UYwmTWkVGG14KOP30dKza4NhOi4utzy9L3HdF6ADzTVEct7E6alpLCC2+uReTkjekuQZ2gtaYXDIagnp3zx4oqHj04JMVIVie7gkEFQSjCUJG8ATQoBLRRx8ASX34xKOcbYI7WmbEq6PmOPxnEk+pEkPHVdIqXk3skcpRTOZcXO4nSBJIAQjCngXYutyjvzRsuu63ExsB5attsN0YEhgBNQBKrllqDXqEKxFydMHj7g/lFFEhrfKay1HHa3FPqY29UvWdol71ZXbDcvCf1b5vfu//YHev/lLRdPnlJES1HVTCcGqQseP/kQq88Y08hq/SXzSQbIYQyXt9f8/JdrHn3UUBeWKELeaY6BWTGwuX7O4mTB0fQer1YrvHzHX/3X/4vTydHdEEDSjop+HPj+tz7lzeaWn796Q72QnAmo1htWr36F0HvOHhgoWqpSURp4d7PHa8Xtu0tev9kQQsBai1YltjaI2OPGgWHocSmBklijaMPIwXu8UHjAOYG+o3hUU4s2GW9rpwrvIm3boSmIWiJUnqy2uzYPygTc7HYkJTn0HdoWVNZSmBI3eLbtlqqyDD6bM5MyiKSgyBN27zaM9IQRREx03RtW269o3cDiccVnX3zOZrfna999yL2TC/7i//grDuvIbXsNIrDpI31veHW5J6SCujwFscboNddvdujY8t3vTvny5V8hXAYWECKfPf+CliHjkPyIjAEtJGMKuLy+JYaBpAoG79DK0o+5+nO1GlhvPdYUTK3msO8QoaJSiklREkbH25eviWmg1JrdIfFmteWLX3/O0VHJvScPcOxp9Q2H1LE57Ll3/4jDLrLuO1bdHsaIoUB5TRg8g6xYd1W+FY6S3WYkqpCJpsr9Jl+vdMoJNpkQKFJKuAGMbSA4fD9g75DGRWmoqgqhsoWykIqYBHVlcP5A3/dsNhtsVWe8L5KgFIdDi4+S7aZFKkNpFYt6wmxSUCnFxfmE3/vhEe99bUY1qSgWLaaO1KeG11fPuHrzkpq3qFRyvxY8fe9jNl+WjLsrIh1dv6VWK44XT2i3vwNT7OQ48eXLVzSVJARHbMGYBdvbEVMIhrajDwfqMkfvDv2B3WHN81/sWU5PeHjyPlb1TKqKbpSM0hMY2PcFpWjo/IrbtuP73/83pAD9MND3A4KCWdWw79eMMlHYRDvuqE1JEWdMhpbF6X0Oh47ZwvDep2e4wyGvEYRnCHByeoRUU3RIjMOAwoBskMZQlQWNtSilUCp/O0kJRgsKrTM4PQYikjA6Qsy1Sk1JSmCQGFOQRkGK5OaSyBAA5ztKnVnOkcTgBkyRzQxt21MVE5RVJDUwjB4tJNEkzo8vSAGOzye4tGUMgtLOGHqPLRLb244vfvmM3mcax9e/+wekdM77D+/RDZHlyQWuu6aqp8xPPqA73JK6K9a3r0gp0m8GLJIH753QHCuuXzrOH8wgZbDd9arj6Tfu430u8Eups9j9/yPtvXpsze47vWeFN787Vq46OXQiu5vNJJEUJQojyZ4RDNmYG8MYGDbgCwP+AL7yZzEwhm0YGMMB8FgajaAZSRQlUszd7G52n1znVNx5v3kFX7xH8t1ctC7rrlC71l7h//s9jwLbWTwhaRrTtjVV16I0aCkJkFgEdWMoiqJHBgtH2WyQMYigZbgzwGNoGoEMAoZZSBoGOBEhCJldrVkXJTK0IBTeSJ4+OkfbkFE+wbcgfYhQKWl+n+P9ABUr1tUKIQLW8xopNZLeJRUQEgpD17SvoQMWhSCMJNJKpIhRvu9P4yVCSBSCQEucMJi2o+m6/uGrM1gjECrqndkqfs2Ll+AtxjgsjqbtCOKUuqvAWPJhRj4eMJzEHN6bouWY8jogEjsUVYEMA+rtOfONQwmIE01VlGDBFJ5nH3+On3WsyxdEYUbdbamvDMnwH0H97GrB1elTJocDlpclv//738WHhrUV1JVBBillLVGxxglH1RTkozE3T/Y42t/HlI+Zjm4RWsFyvWBZxTTe40oHrUKwZbQ7wvmINFbUPiKNB+ASJlnGq03HqrE4tUYFks1cowb7XGxWXNUCryJMGfP133qXVaNJxzkhOUXZ512jQBAmMTduHLI3HrK/u0+WRkgV0NqWpmspSkfX9jrUUITEQUQS6d6WYSV/3yevvWW+3tJ0FhUHFHVF13W9BN22CC1A9zteEArAESDBgRS9zK8zpof/WUkWTXhdciJKElzbUJeG+YsLRoMB6/UVTdNivGMymbDees6fLUBkKCc4nA753/7lv2K4d8i2mvP4xc+xDm7eu8Xj00u6ZkVlCvZzy3K2oWkV0QTmlyWf/HCGMxHJSNM1LVprytkKHbZo2YPuWmfZPRrQWIN8/bPp6AM2BlZFiVIe5Xrm2/5OThQrms7QtobWwOnzBa6EZy+WPbg+6uFLTjgCBeloQGuhaisWiyuC2CNUiYocSnrqpiSSnlDJ3r1NACLhxdlzprpiL8lp25LabNGhwNBz1Dpr4PXdX0UR2r1GGRNCZLG+RwvJIEQGHid6vBIqYrNukK6j3m7QQS/ra83rhJySVE2DRxIpCWGIERalBGEU0Ln+xdx3DU1VozqNDQNePp7TzhvG0wmDvXtUPqXDUKzW7B/e5nh0wI3BmEHUIPSE8/NXOH3J6WePMdEM256xM064fS9lcu/LX3xBt1tH4iXD5Ii333ifv/v1Jzx6+oTTixlt01BvC0JhWFUzpllGqjWSjMNb+wTxEe+9/yY/+tlTlpsGLRXFasut4xOKuuJyfUGaNQThhj/91/+STb1mEEoSNSCLhjy6esrLV4/Z1TMyNcRYReMqSEENHpAGCWXbECjDZHfAJI/xxlL4hsMbJ7SmxNZbwlBTVCXLbsN8ddnnsKVCiohQhxjXz2G17kMQykl0FL5+HZVo5SlM7ySytkOqXv+apikiCJFBSKR6+Zhw0BqBVyHCCcIwpLMdWvWv3o6+hSVQNG2F84Iu7BG1RAXRtIOoxtaG0WhEYyR5OoJIM9x5i/mi4/LiCQc7Y06fX3D/4T06X2JVwd033qI2lmF6yGZTAC1NJbl35z4i0ATBkNZ7jr48RmaevYOU9asF//xf/C6d6xgEU7wViKjB2YZEx3zzg3dB9bnwvhu+6fdjafrU2+vATxYLFpsS62QfLrGGsquQEsJhSJT2J4DZpuBisWBTGzbbBVHgadoCEYfcvn+LtgUfJHQbw97tAeP9MbZeM4olWoeMkoydfMytkxAjM1SSUm8E9VWLaF5nrmWIUBrrA4xxCDRVaxFaoQJFXVhq275GV73mpyuFc55EBuggpPUa4TXbsqZuDUEc4bxGWk0YJnSN6QOkdUuiE+q6693iYR8lrkw//jO0JDIlinNsZPHMaesV48E9ymaNMTWuXNFIz6Nnr2j8FVKcoUxJmqfk4wltOydKQg5ufoP0JGG22H7xBb2tlkinEa1ktrgEW9J0LaP9MaPxhKrc0lU1KkxQ7YbEANKSDfcIopBHT1cQNOxP9rCNYTjpmdPCthRNRWfGyEhQdRuEK1DthiAKWSwWeCUJleF62XI8DdAiZFFWHN4YsC43dNWWg52Ww5snLIsVm6I/breNQyvJ7s4IIyVSK9rWUC4burr/xzRtR1uXYCAKQ6I4JNIZaRL1tkrnMVXTB0yMwKMQSrzOowuKssQ5i/Mdwho6U+OtoXOWJIlRThDoGKUFDqjaDiP73aNpOqxryGNNEEfYRtGWHXXXUjZbVNIwmk6w3hJowHQsa0WeD4nVhJkRvPnVd/nVLz5l/3CffLDD7vFbTPbewjvD558/Jgw6alvTOk9hM8ptTdsaRjt32FwbcjViZzImFgP+zb/+96Rpzrd+5xtIE+JDAaIH9H/22Wc9AliHeCvAh32RQwbgHOtNQeU9g1HW+6NsS6hDFP04zgvDclW+/sLsY2nOObrG0biEz55f8vJyxTjPWC5rUh2TDwLWq4KPf/ac1s5pzRwRRgjhCITn4sVLlpsYt7bMLs5Zrw1JPETIEG9DtOqvELFOSJIAaxokglAFPVMsifrdGEiDiDBS6DBBhQKlHQjbN/KsYTwY0nWGulkRB643tLiWLMtRSmGcxFhLkKR9QKkxxJEiynstk60NXVNw580dBgcxm3LBMIi5tX/Akycfs7tv0cry4uoVURS9Rj5ds3M4Qawck4MM34V4qXjx2VOu10vOXr344gu6cQl7N3ZYX16RpKaPAw4StrMCr3pBNnrA6ePnVJHjkx/9MZdPzhiOJWWrObsq0IHn8aMZ948Oib2mbMzrhxbJMDnESPBdwdnLK2pfsaoaaCzb2YyDnZRr03G9VaTZmPWi5vaDfY529tjPJeG85e7bO3z+65eoVLB7Zw9vNmA6FpuKo4N9VBwwHMQcHO+zs5MjnSSIAibTIXGkGQYRaajIM4Vy0FlP0TQ0bYVCsCm3aPqHFalj6qpFqQjnersG8vU/qe+P5c45glhDCLEOiXxA0/Q4nTjIQVqE1+AgEJCnMU0lSYM9gixjdLjD9DDHGUugJlxewCRxxIMRhort9YphOuBrH3yTkzuHJGnDnXe/wg//5k/BD3j28lX/ReAVB8dTlpuO+jIhVLs0JmByYJFBxd0PbhJPDMoo3vvGff79n/8ZAS1vf+OEIAjonOLlxTO6tqSxHhVo8jxF6xDreliEsx3GWY5u3MR5w6apWJTXZHnMaDDmwVu7LIqCxWqDlpI0VAyHKTsTyYP7R5wcTvC24+z0kt1JRuc9XSWRkSIfjnn+6TWdHfLe197lYLAPYc5woFhdhlTFBavFmqre0Pg+kedpMb6f0wosxvV8dC8ECoehfW1C6bU5ItQUmyWi63vhQdhHX5umYzROqOoVcSgQxCgZY33fqpOqIww1w+GwB0Y4iws0Dk/dWLqmJU8HHNw45OD+gLLowHQkw5inj5+xWm149ORTjBLUlcP4JavVgnQwBFFRrV5gww1XL1bMrjv2p1smeyNk7Jhd/COCJavLksuzc548ecH5rGO1LNFty639g96+1xkSoXlw503aNiQ73mN5ek6ae7arBVEU4Syczx8x2n8L03YEJNTlivfvv88vf/oRDSlv3dpheXmB9wVls+Xh/QccZSmmS6BKOc4tbTdjdm0xSuGaLZuzgotnEc8enZIOhzx8+5jzT89ZzSuqquDhvUOePD5lcblgs24p1iXrTUXdWYTzeCdwSvTzYatZF4Z1V7FtKoSXdKLXriIkKIHwAo0kCHvVbFc3BCqg6RxCSFznyIOo16MQIa0nzjRxpPFS4pynaQ0yTPEIltuGTniargf+LU47tANnM85frBkOdhAqY29Hgqug89TNFld7puMRz04/5WR/l6pY89lHPyWSnnWxpbi6RqgB3/vmNzFmS7v9BJaOj3/8CaNM0m33qVtNVTgMEtPAhz/+Ed/73u+we/gms/UlxhusM3SNQ4SCIJDgW5qmQ7iAIOwpKypWhCLgzr3buFb0DC8bUNYddVsxHGta5yhbQ9N1OAHrouTyumGzansQoVYEYYkXAZPgmOE0YrI7ZL64giLAA6fPPoRgS9vMWG9LrJAEsSKMsp7l5hO8CACB8gkSi5QKa/xrNLFHRzFN3Tu+wiCmaRoCKRFBRmcsXWfZVpAO0h7+0Hp0mCMIGaU5zlniIEQKgal6+6m0kjwJiUKFcA58gGkNUmg2mxWL6wWqi8jGhmAQoFOJijrGO3vYNkD6mjz3NPWW1fKctotpZMbpxWdsmg43VcS1YlW1BEPHRqxplldffEFfb1fIOOTk/i5d1/QfatXy7PSCrrPcfHCP0jhM19EU8OabX0XJOW44oGjnLBYLlPCc7O1z+umvuHF8SCAUh9NdquoK6WXPvV5t2d0fILsVoZHozuCrLSJKMCTMtg1CFezfvoGVMcloRO1azmZLLmdbqi4myBWHd3PyQcyNBw8gUSzKNaO9mP2jIeOdEcNhSpalpGlMFEX4riWJNa1p+7K5cyRJSKgloewpJyrqYXNt2/aqN+OwzhHEEcZa0jCgwdK6HljvpcAJaNuOTdUQRFGPxrEGFTjiUPQLQvAPaFnXOZraMnscsXjqMdJz9uoa2VqapqFrLNVsidSew0nKOJH8Z3/4Af/qf/xfObu4RrqI1XLD4vyag3EMFj7+5CMGcUoqU3QY4ZOUpoL944zlumK9XNBsHNkwQrVDluuCv/jzv349ouoVO11r+c63voF0njhIScOeDupkP7YSVmJ8j6cN/t7E4QO0VnhaZmWDFJrWSzpr6ao+iNPYhrPLM7abhsZ3lGvHG2/eJWDAxasC5yBOPXs3h1SbLT/924/YbNa47ikuAKssq9WGs1cXPdRRCJTWvTJI9K2wTjp0IGmkxyuNxaK8QwqHFQrrBQiHQFFhUTKgrRtoBcYYEBrfQRSFtMagdFr7/gAAIABJREFUEDjnkdYhpCbUAXmi+yKHaAiUIA0CZNDjmgZpxjCTfPCVB6iwQKcZl4slcRpSlxXjNMc2NbUZsLNzk1YvGeZHROEOizm4asBo7w7CG9p1wba8IPKLfyiMfKEFvXP7gNHRMa/OXmBaz+FAIiLFtqw4nO4ThDFpnnH68owMw/rlK4g2bLstxixZFS1Sx9jlnMX1j7gqPaHr7y/N1vDG/Rv40vHZ8oLz7SkyyDkc7zMcxoSZJY2GKB/Q+BHa1OwcHLGaX9M5xZ2vfpPadBzfvkuWtKjEMzkYsHfjDgcPJvz8Jx8xyGMWFyXbTUOxWeNQJGGvuWlMR6AjloWlMR3DUdbrTURI1XQ42/dlpegF6N4pcBIvxeumEcgoQGmNMALnLUIJQtXrWMq6xbWCKMnQQjAajamrFtcJ8JIwiQleR0yrztE5i/cVly+e0xZrRvshSWjxsqWqDaODQ6QVfOnN9/nBv/0pv/7J5zz88hsk4SGNSxhNDpmMd7i+nJFHCpHsUpQwmd6iVJY0q+jcjIqOfBQzPy146+Eu43TKH/7RH/HRRx/jnGM6nvCN7z7EYwmCgDv3bwISLXq8b209ba1ZFf293FrDdlORphFhGBBHgnu3BhyfOLazilGe9KQUodg/HPH3JYcollTbBd7CxWLF5eICH3vSUcB6U6KsIr+9g0wkMstJw5r9B1+htjWiLphfrqjmDU2hEEJgvQPbZ2991yGMp6sNiQpwwmGavh4ZqoA47hedafovzEBI0jQjDnoumQ77xp/SAAKtQox3tF1FGEdUVW8I8U6QRQOatm+WhSHkyYAsSckHMYPRSZ+wHOV0KA7uvUVlFWaz5fjgLdq64ursQ5qmwNgIrSJ0NGL/+IiDhwlt53CRhc0a21wSBgHWnX7xBX3/9ttsr+acP3mMMGCTA3wQYsqKRTlnc33OIArI0ohplIH1JFPBfPmcG/f30GFIIjKq5VNm6wtePvmUwc07TCe7lKYkSRXb85K9nf1+ntelPH/+hLOXH6PiBzgVEmUBrRuBj9jfVVxfXrJ3cpPr00+I9yRy4NhuC7SLObh9m6/99jv82//7/yWSYW+ZTBTjNCUKFUpIqtqAcPimw8v+ESNJA9Z1hfewLQuQHqcEyitCpzC+705LpRBSIgNNEkYkUYoAKlO/VoZKrO9jnUJJ4iDrdw8ZUjcFSRr0IxAtifOQ2lis7UizEHA0r1+3CzcmtDlZPgAnOLz5Jq4bYmzLzYf7yHTA9NYYwhzTKR6+8RZhLjEo3rz7Jm/cukWoJKr1zGcbVFyynBfI5IihHCMLjYyvuZq94s33bvKnf/pnRCLhN7/1AXIT4qMWFYW0VnM9e0WgJI1rsF2LNw2eFiENqP5uvdicIoQmEpokgG0zY+f2iO1KkOiQ0VBxa2/M7/zON7hz+4gkFowHO6TZgDDU3Htwk49++hlOVmTDhtPnL7l1+IC//X8+ZbWYE4bn/OF/+vtYGzK/XDG7OiUbKPLDAUqb11bIjn+oT6oAp0AGAus6Iq9xKCxgzAZb9+RNIzzZOMd5T9V0JIMRjbNY6/Gm55QXRYE1DUGoSAcxQguSJEVJ+tx7EJJHQyKdYWz/8JnEOd4LdFrTqS2u25L7Ffup5M03HzJfX+Bth9AZu0cdR/t3GI0mYGOG+QFdYVlfz6nLCyY37jLbXLM633D5KmJ/Z++LL+j57IJAhZwcDclSTbHtODk6ZlMbnj255N1332WUSap1QZcm1K53ORlvMC4jH6SEXnP77h4hIYI1n3z8iHA8ZdM5dJwRJA07J7tMpndRtkMrQ1F1hCrk6uycYrYmI+3pmZEnTDRKWj75xWe8uiwwwrLRAeFozOx6yff/3b8hlDCcZoynCcMwRCrLnZu30RqSvIfk9ThbxbLcYhtQRiEM1FWBFOBkv3O33tJa89pZJPBWEoYBVV287hU7pIc4yvBOUDf9g0kPNFCYtkZpgTcQBBFCerR0CBeCdeAcrXF4L5AqZj2vSGTE7vgYJyTGtMT5HrgG6wW125IPBqjBEG2vkK7hT/6P/5NyvcF3LT/525/y6dPPcXKCynd5cXrOcm45OtklDnXPCO8sySBHRzFvvPMurm4RCn71k1/x4tcvuGqWWFejnMB7RWf7EEbT9b5krUIiIUhV2IPw6g6HQQhHPki4vFriwymbqmO22lA3grpr+fBnn3P68ortpmG+Kig6x950wPtf/4Ao2aObhbx4fkk8cZzcO+bk9pj15QWq7Th7fMl80bBczAhHGpVWlJuyT9u9/h1RPXRCeItyAus0gv51XQiBN5b9vRFREKLj/jTVbGu8c4RaEqmeqBkEijBOCcXrtJnSBFFCU3YEBAgBVvR0VGMb2q6jajui1+POOJNM90bkI0flVkgNoVvx6vkVYep454PfRIslMtxBxiPOLn9NrGNkYOhcxHR/yvROALLhYgUeSCPLwXSXq3n1xRd0upNSRi/RwQAtWqqq4vzpGYFOOZwc8PMf/ZrOz9kdaxYXz6laTRCMSKwhywacvbqkaa84vyzQ4YSjGwe8cesWL08vuX2j5cmrz3E+oLzaMvKWsquotGccnGBm53z7Sw9462BKW6/oRIRsS0zT8uL0jKPdm9x6+CZV3TIIQ8JQcu/thxzfmpIMU86fX+NMhJBtf6f87DGz6w3F9nW10Tqs6NBe0Pn+ydlqTzpKaduOWEQgHHVdg/OEWW/50AEsV1vE6zFIlOREaYZKMqTzSGV6Wwaeuimw9DtZ07UkcY5t+geYzjQYelGZ9wIjIspFyWI27/PMwYAwGTGvA57/+oxXzx5RVwm//Mkl46OYTbkhiHLuH+7yn//RHxC0axwBRzs32dRzXp2+hFTw0eNP2TmKuHhZkmcJYSqJDjxpFvCN732b2WqJ0wA13mm+8RtfZzrZ5f3fOsIJR71d4YTDe8kgifrecxAgVUjnawIB6/WKKMmQMmBZvGT3QLC4nGObPvvdtX3O++X5OZGROK8p6wrvBNfna/YO73BxekU6njAYhiRjePLsQ9rliqjriO0exAMGNmdvchdXz/FeMcxHSBVRNSXKCyKpUTJEixDbOZqiJFCid0sZixBw/MYNEt1hm/6zVUoRRgnbqqTrOjwtzbZmECX9l3IU4vAIK9nf3aMzdd+USnKcb8mTATs7O/2Lt7FEWmFNn21IRUqax6+zDBsuZxd4C59/8phFs+STRz+nKGJcdhMSQdmdc718xkc/ecL55RWDUBEYh9dTXpzPqbcXvHH/1hdf0L/+4V9SFwYbBOhIosKApum496U3SAeGp59/ClFBkocgLF70itbTx5f4zQLZbAnjgIOTW3RFRhCMmOwe8+rJ5zw9a3l1uuR73/knzNcbvFccjVPqraM1CbdvvUsoIsJkn7fe+gqdq2jqDbsHh9gOHr/4NdvtNQQByigG2hO5mjROGA7GpLHi8vIcPQzQ44jRZMggiSnbNZFW1LZjW7bEkSYKFYGwKELoQKpeRIeXCK2Io4i67kvzWmsiJQm0IwgVse4NhdXsGi8cOgrxr8kdWvd0SCEUSZJwfX39GlAnehILEm/hd37zy0TCE8gJabzDZjFnMI5xpuXq9Dm37h/x6ycvGU5ShM/ZP9IsrtZczEquipqNDfnktMSJgLe+fo803uH52QvW11uybIAiYXK0w3Aw5lc/f0ZoJywuSlx0yF/85Z+RxQ3e9vPOH3z/J5w+vqbmEiugaQ2m62fASvfvCtZaskwigpDaNJy+uOhf4Gm5dXfAvXdOqOaKUEGA43/47/87DvamjNOcfD/mzXs3iCPF4f4YZ+HjT37BzjTmb/7mb7j35V2uX61YrAv2vtSST3PWVcWHnz7i+dNPeXjvhM4IttcN69Om73Eri8T07m1vcL5BKFCBJE1TWuf79pibcfn0Mf/tf/Nl/ov/8js45xlkMUki+t3ZWwbRkCTJSbzju9/9Eq6xdK+BG2VpCHSKcY6mrIiCkMCANx1hpIh1QKhCkkAyTkN0EpCNjuhcglY77N+9ydX1KSq6ZFWsOTqaYKoLRNdR1obF8hpnekjGYGfERf0p7fwFg903SPcfslicYdTZF1/Qw70R2oYoP2C5OO/lZNcb6vkMFRkmqUH5LYXR5JOYsixJtSZMRuwlGceTFFTCrz+85Nbdm6zbFbPylMkwoNqUxKMRV2enlFVDqUfM5oq3b9xnnI94ubymcZrZpubTp5+BbwiCgKvZms12S7o3oSgXSJnSVVsuP71g83LLfjKgWXVYETCYClbbOavtmjiGLA2ZRgMC4VA6JM9zRBBhGw1G9Uc12VMvpeo5Y1kUEkYC09G/7DqPD0OMDHFaoFWErVt8ECOE6iucMsF5RZgEtPTw9bqs0bLnfPW2w74GZ6zlo48+6j8M27C+rkFkaD1BBRFh3NG2jnrjEU3NIJdMBxlDlWGdpNWSq8tLZhdL4jBkPr/ml3/9CaM0pygK0kz3JwxyXjx61GN2qhX33nuA8xWjKYx2j4iUJlCQpQmxirAEbNolxr9WpwqBbRuM68mf28LQ1huEViy3FVVT4J0jG3vidMLiYsPBwYB8NOR//p/+F7I84fRsxnJR8e47Dzk63mW6P6FVNR9++oiiafnqb9zDGoW1Ic8+WaG6B9x5cB8d7lM3itFhws9+/DNcG9OWAWkuEAZc1xNnutYjtcBYiRI9eKOpKoJQYrzj/W+eoMUFH3/8jF/8+Ff/kBYTMkSqgLJqscYwiOFbv3sXlOS9D95BKY2xHiX7CLewijSK8ELSaUGSpXjreq+49WgdEscxcSowIsf6BGO2FLZEasFi1WLqhrKERiRcXD1mXS6Zr7esrpfEPmY0uInWkmQM0pdofRPnQgL/j8D4Hn3phGommW/XtE6ipGH36AaPHp9iGsdy5nj5zCBsR+FFz1AKY6LE0ZU1OlZEqeb502uK4nOKRU3dbmmUZrWdMZzcI9wfMB5OqRuFDx4yOLiHHAQUbcl8tuFg/wa+7hgEGmFq5s2GbbsimYyY7IypC0dIyWBnwvPzOSejKYc7AUdHI5Cas+fnWG+wTYRrLTt5iAsECAvOQOeJYoFSAd512K7pxy/OIIJeEJ4mAw53J0Q6QuqQQCq0VygXUBd9McB3LYH2PRSwLokUCMJ+FEIvQhOZIoo1vuvntCryvSamMhT1ila15COPqkNCFSNETqwSRsNdvLEYVRLvHnJ+0eGCfbTxlGfX3D2ecueNQ4p2xUV1ThzUdNU1o2nCINtjMRcsZhecnj/m7rtvQ+TZvf8WmoKTG/dYXl4jBSgDgZCcf37J/FLx1W/ew1ASpwEYQWd6c6V6PQfWKqPaNqyXfWe8tZK9oyGdy6HVXF+vMV3F7MU5Dx6ecP/kBLxk3ba8enHNcDLkzYe3uHp+Bj7gwx//nKaeo0crWjsnCwYM9JSvfO1dIpEQ64B33r6PLWPKpeZgb0o2iVBhQqAkQnZ0/v+/M2vRj0W7bU2sNHs3brB3/Ca21Jy9ugI8rusoNgXOWAZpTI7hu79/i1fnFX/yJz/mw19+jFL9LLtt+jqu0o6qrgmFAuUoii2DPGU4HDAaZ+TDjHSaoROJlSFep8yKDUnU9ek6Kyg3l9i2Ix7cRooJpUlwckQr1rjBlkod4sUNNmXDurtkL48Y5l/ik0cfffEFHeDIZYVWjlXhqK+WlNWWvTs5olvx5rfe5vq5RGhHFO0Tj04IfEI2PWFTn9N1G6St+NL7+1gZgUtpS0tdlnSuIRCexasNSXaEMD3Y7Woz5+nlM+7dmlKXCy6KC3aOBwTRLosXM1S5QSnJYl2zanodTbeFhXE8Pn3OZ/PP8LuG3XsRXesZnIyRumK0n/PwjRssSoc3Cu0Fzih0JPHW4l1LFAUMBjlhEnKwv08e5QijsO7v/0wOpCJNIrA9ecRKCELQgUDHUR+eEQ6tQqqqIohCTNNiakdg+5GMk5IwDEmScX8/Q7NzovrE2SrqdxvX873CYId68wLpNjy88yU6K1n5PepIcza/YDWbs6kFoa7YtBUqz5ivF1inaZuSYrPhna/c5+2vvMetm/f46V/9iPVyjluf8+JsTdUFECis88gkQEURtos43r2HyUsEHfv7Q5SyeGmJ0wFWamwD9+8c8Xu/+5vkScibX73Xe666DYH1vPuNW7TW0bQOIwRf/vIDvvbePcZZzLa+RAWSeJTw4GtvEac5WgvuP7yPVy37NyPe//1bBDstP/nwY66fn3P3cMLFacmnv/ycq6dzZCdpqhU3bg57VZFSNK0g0UGPfJJ9eMhjUFFANgTT1Ky6gD/+4ZrPH1eEYQgyIBABRkDTNHz1N+9hfMxi2wvjTdsCAuMcxkKgNG3XoQPHuiipypbRZMym7EdZeRAhfcj6VUl5rRgiuTENWNea1dZw+vIp7fpj7rz1u9x57yFXsyXJ9Ijf+sZ3adeeiBHuWnP5+S8YqxM2XUvjG85OP+Vo9xghh198QWsbMJ3k+G0HXY4yku3FDLwhyo7Idid0rWS5XXF9tkTKFKkSytKyXm1YzT3CdoTpFlO11EXJerkAWZDEGhmFyC7AuRilDb7pePriOeNByGePrhmOB6jWgzVcPalolqCtIk4TAtEfZfPIEciG8xfn3HpwhEuOGR7s8P433+P45oDdsSfNFEfHe9RNQZTFqACy4YB8GKDxeNVgvSMOEpzoKR1aK9abBZ1t6RqD8BpJgMb0c8gwQHb9WEMpgRaKpukbXK01hGGIN5ZQ9o0vrTxxHCG8x7r+fte5GqUCAiX43h+8SxZp4lSgI0/TbnpJ3npOPghwXhDkEaGwfPboGd//8x+wWCwY7t3kqpqxNQVOOLqiY1O1VKWhKg2LqzlSJFxdriiWBd/6znf5jd/+NooA31ZgG1xVYH1AOhyigwDpY37x7z6k2DasikWvuD3KUELRlgUxcOfOAUk+4tWrc8JsgIgUje/oRAa25lc/fcbuMEOHFhLFYF9xfHOKMYbRaEKeJSAt4/1d/qv/+l8wX9T81fd/AmHN/v5bCC/wgWJ67y4vl6d8/slLlN2gk4CqDpjs7VK3MBrt8957b/biBGPwKJTryaYigMYYvBR877ffpSkr9o8HWCExXlJVdU8H1UAreOetE/LdhF99+IIXpzO0EohQs9lssF6gpKcoW4I8AR+SpCkKaLYrgkQQhzFbY1BBSJAo8kGEUinXlcE7QZoLarGl2Viunj1hNZ9TbSvu3rnP+WZBTYfoZszPloRyzPqyY7yb0Nia0WTIpt4SiPSLL+gwnfD5sxXxKOHe5IAsHnDz/ghR1cQ7A65nL8myDK0NXkGsO6JUMRhvuF4WyDZivahxXYJtGnAdZ+dPKOoC3A7KJFxdbzl/8ZJIDzCmtwUGwZQk3mU03gXXF/B3diVBGpCPpiRBDDiyJGWx2tDVG45v3uPo1k0en67Z23+b9UoxPZoQ5CmdTLl4+oz52rBcFawWJav5ktWypGsdaTTs79PSkGU5N6f7FOsNKooYpTlZFCJ8h7UdgY5xrSMUAUJBKBSm7o95idRkSR/c91rifEecJcSpJhoELMqKJMuI4oC6bPBNh7MNVWNRWYaQDhsXlMU5STzoVaZ2TpRP8WGEVQnT6ZSj8YTNeoXWmunuEFu37A7vEeuM04sVy02NkJZuswGZcb1Yc3n2gloKUEvuPnjITn6Cbw1PfvEK6VPGOylBENA2NR+8f4cw0kyy29igY29/h1tvnBAEuvdBdQW7hzf49LMnHL55iKk8N27cIptEdISEum+vxXFMpCO8cGz9gp2TIU1VM9tsuZxfEISCUT7gz//4f2dvpNiZTMAN2Lw0vPqs48WjK+6cPGB+WaJURWGGnH+2IkoCjj94m+OT+yi55OhgzNe/8RUk4LqW2ji0DtASlJIoB4NhhmRA2+n+xNR1SB1iivr12FExnhgWlxXLuUR6IFJI2ecXnO/ofEOSh6RSIaSn9ZbReIwXAbEVOFsQhYowVFhVUciW89kFj59dYFkzn7cgLMcnh4SpZrNa4FXNrz75KR/+8Gc4NkTZhsP7E8Y3hvziJ3/Lnd33sMWA63nBYmNYmv/gev4PL2hPy/7xBOtTjFvyyeNHKDTDeMzy1XOSscWua/bGt9hcvyLLGoxt2RumiHif4d6w12VaiwpClA7ZtGvQA7JgRLE6Z/3qlFm1wLiW2eYVB9Mhno5NW/KrTx9TVhVnjxb4JiDOFaPxELnaMM1qZNgiggCR7FJLRRpqRLeg2yxZ07CcQd10xAEMh5rtugfeK60ByOKYw50RQSBAdEwGIyKpObs4R6AZZyO06/vN27pDBZKm6bh1vANSoKT8h1I8UmO9oJOmL5w4g9C9OvZLX71HsaqJgLauEdKhpcIBaZQSRhE//MEv2bqS23e/jEP19U27ZBwPefLLjzkYTphmgr1xwLzasr+7z7vvfg3igsvnT/FbhxCeaT6EOCFPM6qtJY8qLl9+yMMv7bBZnFKgqX3E9fmMNB9y4+YB052M52cXRFGIVhE///mn/Pa3v001c+TDCZ1dcufebW4e7xBEjv/oP/kW3//+jxhFATQGiWc6mODbkmoj2BvmWBzGSkZ5xO2jI9adY2Uu+Kf/9FsM0jHHd29Tbgtm2w1CxfzeP/8egohtVRGOPHtv7fHO177MT//m79g7yLmYLZm/+hhLxY23xvzl//XndE3B40+WvHh5zfT+DloH/OE/+zbS9L3kpmmIhMC3jtpYvDP86O8eEYYRgzjHth2lbRmOp9y7MUSFA17NW5abNc1rakueZ0x2pkipEITUVUtR1ohA9/goV5HGEhmHoHqGWVOUJANNZwqcc4wGOScnX2N2dc5X3v1tGOzgTEXnY44GCQ9u3SLdm3Bj/w5JOEJIRxuBTiWf//zH6MYTxrsEQchvvPedL76g5/MFm43FYRmNs75T6nsd7HTQIF3GcN9R1paq60kaXhScPfc4IgbDXdI4ZrVo6ZqSXEv89pK2sD1FMixZL0pCHRENQsJ4wM7ggNPTVzjjsKoCF3B9tqHbtngC6iLula2qxwLNrguuTjdcXqyYXXb41jA4ucXtO3c4uKFRUjKIApCCwWRKGCUoCUkUESeSzgp0B4oQY/s7l7PQurbfaTJNW9WkQYB3jjSNuXt3lyzwdLYlCjRaSIQTKC2wBnzrcC14p8myhE9++GustSglCUJFIBRJEhHFOd4alPZ88otXONNhFxpJb4pcryomwYQ87Esh67JifV1SF2XP6p7G3Lidc3TzBpQFzlq2mzkukjgveOPNW5h6SxrHGNkyGk1QQtK1JedXz6mLmpPbN/mtP3gPFbTEWcymKrB4/uqvf8C777/H1WVNUZaEwzG7+zsM8wF6eMQkzzg4EJT1Va8cajeEgWCaDDjc36FpDNt1QVUVFKst3XqFDOeUm1O++t477B4fc+vGTWQN5brj6OZN8uGQbLhLIMcoG3I5q9nfUyyvr9gWM072DphGGXu39hjmY1bFnG9/9+sM05htW3P3JCeeKgy93QJn0a/z58alBGlIs9yiZERV16SjAUkSU1yfcXIzRYuYy7M5znUoBE1nkV7QYUmHA2Idvg4bOdqiIU6T12DFhKPdXbAAjiBWBDohJmK73hAkjuWiQDPhlz9+wrJt0JMMKTYMcomLchazFYvrGdttRnyUMsokTbFFWImUELuE84sZhftHZLml1IxPMkSQUtc1h8OUUagIdc3Mjui2V4x3Mmy7YpTtEA0Czl48xVhNJwRKOspiRdcplBU42xJ0KV++/w7KWebrgJO3pxBKqrIhDFPOL2dICZ3rI3eREzQbh41i6mVAU5WcbUuk0URBiJCKIFpzsDNguJsz3h2jAsH87BWblUG5HOk120VFtZ1xdXmJtx3TvQF4yfVsiQ1i8izBGkNdVjjb9mV5IVnMlkShomsMVdfSNBvWs5J335riLLzx4OT18avr892vH7yMd2RBwnA6ZC8fIlGEuidTCjRSxdi6QAcKKQyRH/Ludx6wrUpkkyOlplppulThpGQ62UXS8Xx1we5kF5zg6vlnfPL8gouLDY/OSsZ5TNFU5MpRLEuOb92h7AROF2wbQ4RCW0W96TCyZDxI+MWPfsa2rfm9f/Yfc3Xxssf2eLBGcX0152DnPstiRZApgsTx3lfeoJpXRKElzDrKtuWNexFpecEf/e4bTIe7yDDgYByQ5A3ZWBGMQlhXqKjjjQ8m/N0P/oK93ZRffvwReZygrEN0S+6+vc/ixZpqrvCbhtXlJV53eBUQJmMoBXfvHPP80ZZ2U3C0c5Pli2fs38yhq/jgt0+wcsl4Z4RQAmSft06zkNZUDKcBWZDQ1RWxEASyo1n1eW9vQ56cXlJ1HusE26pCIdmsC7rCEnvBzsEugzTDG4u3AukdIHu4hY4YTIbIsKV1niRJCTWEqqCoW+azVxyPj5hMb6HbjHZ7TlN2bL3kw19+wujkiIuz56hkh2XbIJVi7+Ztlsst8TCnbq64uTPhvNh88QWNhUUl2RlpdLjh/jsDymZNOBjQrmesnzXUNoW2wzczDIaUY6x1YA3XqwJnEvKdFpVEbFYb7r/zWzTLGS0FjWmoSsXe/jG2WBPJnKaq2B3GWK/Io33isGR3P2Z5URMnHaMY3r19wGa1xQjBOHQEoyFFVSK9ZP/eGzSbK9zyKavFFulLIi1wKDprCKUnz8ZUm4a67Tg4nJLE/QyyM4Zt1ZBkGdPRiPV6RRALjPU0qiMJPd/95j2SoCWd7iGE+P9Ie7MmSbLzTO/xc/z47h575J5ZWVl7VTeq90Y3gAYG3GnkjGhD05ioGZpJJtMfkJmu5rdIsrkhdUGJkpk4uhjNkBzACIBYiG6gt6rqWrIqt9jDd/fjrovAtWQG/IaIL8I//973eQiGvU0H2gDTEAjd4joKhKasC1579w5alVBX2JakaSW2p8iyOa0JqywjzsBtPHavHTCdPyWvSsoMlKPJ5zXFumalaOXMAAAgAElEQVRndwAiI8sEq7MpHUdw+uqS/FwiGptqXTG/uKKuS2y7Q03J97/3Q0zHpbFNtJngO5u90XbAtyNee/19hgcGy5VFneb81rffxVQGviXwHAujqHn16TlV2mywvOaa/njM/dduI2ix/RLPLLl1fYck0VBBWxjo1Zxvf/A23/iDjzAjiOdLruYLcu2gHcEf/ck/5+6NQ6gyPv/8S/7Fv/k9GmtAbrV0+4LuWPPsi1f03IhwuEO1atFXS+ZZTt2L+MU/fM63f/td7ty/yXgc8OJiTbLanETr0qVKCowWXGVj0CC0QdlkCMvaVFsFjA9ClBY0zZK3PtohXsb84ufPaauW0HVxXZe6ahiO+nQ7Hp4QTKdTur0ILwyojA2CuUoW3LzZUiVLWlFhYmJoWE5mCGFiiJJV/ArXrPG8gFvXBlw7eo3u3tcpc0meZiSrGS++eMq1/R5xnKDXDovLK3qDiPWlxpMjlvOcJ5/9HNk2v/5AF1mKY3ewpIXGJM1L4rKhNiwOtgPCbo+8KaGpcQJNXa5x/C66ETSixglgNV9S1jOEMmnaijqd4VRLBqLAUxLpSa5fv87YC9j2FRkVaVJh1A3dzhalhO1rI4o8Zx1nFJmg1TWma1NkAtvb9FedToeXkzVS1Vyen3K5iImijV3RVIKyzmm0gbQtsqokqWp6nQhd1SgDRLthawV+hGk5zOcLKs3GpKCbTWJIN4yGe/h9D6NpcSyDLz7/BSbmpntrNJtH60ZSZTm5LlgmZ1y8uCLqd1nGCbQSRLsB2SkPU26Y2JZvsVw22AMX0YIuC9zI49GjL7H7KXGyIi8VjgpZJ5eYtmCarFjPJugqJ/A9VklJjYHtuXhel4vLM4Rlow0BokYFgtYA08yompbHzx+zczygyl16gYeQzYaTZmnuPdgnkxn3X7uBKWsKnWDhYbYGV4sZOwc2fs/l7q0j6sLl/d/9Zyz1erO2qISCjLo2ObyxjRsaVGaM6UekecmLq0eINsVzekTBiF9+es7LySucoYXhh9iWy5vf+BpF0SJkS7X0kSIgK1sM18VWimBgsC5LarehzCZ0ex6GZfL48WOMRmOaJYauuXnzhLxKwYTVsqGuaySaB6/dJi9qvvbOG5ilwhkopFKbzH7VYJoSUxrkaUbdaFoTtkYdiqLAs22KqiRNCoKgBb/FcWvSJIFW0R0HCAd0qjefc5XhtqB1xZOnT3j15EdsbV+nO9rHk4rX77/Ntt9jFpus0wSTFTYNwsg5vn2TZNniGyHjvQ6y+g1A+41RoucTwtDAC20wFLqtSZKUy+cplRWzWjQYdsVo3MWoXSzpYgddANzIpq1qkIcscoPQMrnRcfjWN+/x0Rt9bg1hd/8EoQVnp485e/4FlagpmhpLSZ4+e8w0y+mNxhxcG2OKEFMazJczVnlLVtX0RwOGyiJOl2iZkcZLVnmDIRocuYVha7S1Jq/XCMPCMBSepXAtmyRL8X0XIRVSueRliZIN+SqmbhuCyMf3N40p01I0tUTbFnHp0Oic2w92Wc035Q3b3+xXja5IkjW2VNx8cIxyNk8ijTQwTAMhW1zlohXUhaapDPK8QBcljz99xvatDrvXt6gLk9NHSywxYD1r6PYjklc1g0hRSAGOzagbksYTXL9kMBxS6ZpWQxAExFmOFIqTmzcZhDvsdg452HlIKdak2Qucjs1nX/yYuvYo0ylxHFNj8+C11zg82WWax/R9xcGtPeYvF7Rtg3BN/H7EbH5Jf7+H63bIk5qVyHl0seSsUMTJS+K2IElXzCdXROGAj37nm5RFTWPmSKPm6eNT5ssn7O/0Nwin8gLHAq08LLfPzviIH//jz/nFZ9/jfLZguopJJ4LBeIf55RyjUUzOz3jx/FPW5w2vLlZU5Yqo30fJGtNxccwQS9aUVY6SkrRIiFc5bV1iy5xlssQ0JffuH1CvJYvV5hyktQbbZHerS7fbQecpt+7fJM8TXNfCC31cz6YfefiWYnfQYXqWozExtI1ruZieBZWPq7r4dpft3k1G+/u4lmb6asbOcJsyfklTuXiuZJ2vMRqbMslIJzH71zTd3jZVrbF7LslyhYp83GiX5WLy6w+0UVsM+h4y6OJ63ubxxSg53o4Ioz6nZyX94QDlReR5TqU3jymVUaAsqNsKTEng96iKjLq0sew9zh7D088khrdN2/g4dYMVSRrREHgu471DvKBHDSjDI6krvMAhcFpop6SpjasULpLV7IoX0wVKOvi+RzxP6Pg2cd5yNTkn6PdZxUsMe9PBVUoxWaw28U5j43sumpI8K/DcjUdYmAbdcLP3nl9d0hjguja9zhDTUkzPL9m/1eXNb72O7wcIZW6wPE2Dcj0wJJbn8PrtY4bDPnnR0BQ1RgmeKZgvVrS6xrA0jbTIS3jvww/46p/OifoDju+dEHQcgk5LoUr8ns06niCMAmFoyjpBNjl7R/fIKshS6G5t4wd9sqrCt010tsRQBrfff4MyL0mTDvPaxo1mlPqSqDPE64dcTdZEW326O11eLa/4N3/+JwwihygKiHVO5PlMz2JaE8aHh3z68U+wHUErKihNpHDpb3V5/NVXzGcxx0c22SKj9TXx5ZqXV2dYnsvt2x9sUmZywDRvuLxcMdiRDMcu08uYOp9jyhaFiVHG9E2Xtz864fTLJ9z52hF1VaF6LaqZIMs1+yd7HF63oVSEgUuVTLG04N72IW/d3t8ofmyH2XyOkBWoFatlTCsNdvYH/PSfHm/egpsJ6ybn458+wjRNtA1lnjC5mnP3bp/Is5lePcPr9rhx+xpnzy7Is4rtvV3645DrD0PCUR9ED4lE5yXrSYwWJVWeoFqN1DYf/9Oc6auXHN+4DWqEGw0ZdBzOF5q6rvE7Yw58l/t7gjdfe5vC8JFqiOX0yWcJrt9jlkKy+g2in7aSOMpCucnmi20ZWGaXfKqxApOjkxu0RUWSbjzKbSNRQgEWjisxmgytPOaThL4dcuvWLp/96GOef/EVp9WcdelhtiWT54+wLAfpSJZXU9yBzyKeUyczjvZ3yIs1s2lCMl/SpIpkPUdIH6OF1Som6nQxHUHRrjF0TVucUqzPGfR26YeKNNYY5aYK5/s+3W6HPIsRQtA4LZ3IBQ3KtClKTd1oaAyaCnzbRykTS5m4FlSNxe5BRC1WFNWCiobQsajLDVM6LzOk40ArWJ4vCQaSwPcwTYluochbLKUwhIMyDHqWz7/+0/+C//wf/oHA6SBVRFYmlEWL3+mCVbGcFXQGIaoLdrLEMmzSpOLRJ8+YribUZUkQebRpS1eESGFTZQWh5/LjH/0j/e0DfMelKjXL1YTFbJvZcsburmB7f4/Hp49oDajihL/4i/+VsOfR7wRYlcHly0f80Z98hzzJOZtOMWTG5asrGjug0TZ2kbFaVmRVyf2vvYYVQH+ny+07XbpDheUZWKHi7PkL3NbZXAaCiiyN0WVCXYNvmkhHIYWLxKXJWu58+JB1lrM+rzm5P6aSMXGZo2yL++/fQJgJRq14fv6Kb/3eA0b9HmbW8M2vj/mv/7sHSCOmE/pobWD5DobRsLiqsYRg91aE2YBjKxanE6KOi+0qdN3iSA8lPYRl8+XHn/DgzRG2szlXFkVBFDnMp1OeP39BWyTUbUqeVazjCUFgYqqWOqsI+g6lUVA0a9bxhLDn0OlFLNIJL85O+eF//nsCN6Uz7MHylKrQVGVGZAxZXsDs+Ss6vsHZyxcou8J3QSIJvJ1ff6D7/SHaKKmL2aZJJC06wz7TqympVrQtRKGHbgza1sYAhNbsBCOkE1CUCXVTUmiD6WWLNfC5miU0fkbaOpustyqJ+jmtaeIN+xjC4upiQmuAYYQ8fnKKQYOnaz544x4nfYdCG6i8xA1tht0ejSFwAoVSNl6vQ2fYwTQlZV1QlmtU62MT4NiShooiibEdj7quuXHzgBvHB9i2TVbkBL0OlmURdgJef+8OWghWSUkYDfhv/vxPKZMMx7EwlcFPvv8lyrIoq4aqhrKs8VwHyhJhtKR5Rlw1lBabmp5logUMRyH7hyMMHLYOBhi+oLVqaE0wbLQBAoOz0zM8s0PQdVjPVly7do+9kwN0ckFSlJgKLKNCGBmuMvECF9MWVEmC7YTcPNwmjVP2jo/pjwacn39JvpJMzycIK2O2TBCWy+pqgTAlpunRmjXpKsMXmusHfeo6wfQtWsOkrGKCvk2d1zRaYmKRZDaGjKnLguNb13E6Loe37hN0IvZu71EUNobjUBUKKS20yvFNj4d3X0cKj0wb1LTUZYXRtMjaINobYBSbs2Xke2i9Zuugh6FzRrtb/PLHn1CWK+arhLqJCUNFWdYYnuAXH+ecfpwwHIaMx0Pm8zlFXmNYAfEiJs9L+tsjilXKnQf3WcwzKnsFUrO1FVLHCZZtspytmKY20jYIw5RbD0/49OefYpoCqRRoTbpYkVcJTdXQlJKyaFHSxgoEupFkRboxrgTg2TBbZ1T5BVme4PmS6WSJLtjI9VYvqN0u5/MMry+xnZBKSDAKRvsdpldXuFYXw/4NzlaWLNFyTl7V1CgsQzObfEXVXpLnKZFlMJktKZuWwB9gCYNuFLA78DcsqbjGEz3yPGG6uuD8qy/ZOTJIWk2WFdAUrJNzkkTTGIL0copru7x6eY4jNYcnx+z0FNWqQKcmTx+95MXkJabtg+Mx2N5mnaVoYVPVDWEwJDQDXFnRj/ZI2xSdCJQTgSxZXWXky5ymgV7kMxx7DEYedk8gnAZhQTRouHZjDy0S7H6AFBv38HpxwY9/9lNeXr1A+iueTU65OF+Q1xlJUaLalqO9bcq6AKOiamFdzKmrlLZpmM0n6LYh3O9wOpvw4P07SEvy+3/yHf7if/orWkNS1Gsun8womhzhFkg0vhMRly0717ZZvTqntVyubd9kPYlRuaaoWzojl0bnWGXD4cEJ6Jx1XXC5zHCVYne8hzI91vkZF19d8dp77wOa549PefnoMbdubZHFJVl+SdbAjZN7WC3c3u9ybbSDDLoIIbh1+z6t1aVIcsb9Lq9On1LqFXVdc3ztOq3pIKIOf/Xv/k9WlcPf/s3Pefutr29+zJwWDIOgv8X0xZx4kYFyGQ973L57jZoNHjgyNJPVhKvJKWW95I1v32d+GdM/PKRcrKiqgnc+PEE1XZqkYeuaz+LRkjdfv8nL+YLPX074Tz/5DEP77J3scfvhayR1Sm1sfjB836U1ct77va/z8PXrKK9DbW5DqyiThH/5r75D6FkIIQitEF2AO8zImxVtaRB1fWxLcvNkl37fwfd2cfo9KkoK3ZBVDcryUZ6NLluMpqUsGixbYElJmUj6/Yi2eEGtM+LZjLbNGEQ2ljWkKRqS1YKuZ+M5Lm2zptN12NoaIJVBXvwmZyti6jOLQNaUZcq8nOBbDb2+T74G5Wz6wUfjHcqFhyUMdOMxma02TGpt0gobW0m++0e/zeUXlyQt9Mb73L5usM7mJCVIXFphgdVjvpxjoTHSFfFiQmM4pM8SzGZFpgomTUm328d1BVK2WGoAjk9jVrQNPP5qumnGZCXXDjs0ekhWC7Ro8fsOW8Mu+9sjpGEw2AtwgwplplhKkMcV99+5w2ePHpOs1qwnU67dPeD6jTG26/K97/+AQT+mkQXDnRHvvPchvlAEroMdOBRliu96RIG/qV72JK7Z0nFGG+1oUfDd3/0WZqn4j3/3A77zh2/xl//z/460foWWFYIf//0/4smK1bTEUh5Ws6a8qpi/WDIa7vO9f/gp3/nD3+Le7WuURsNBfwvTk+R5QZydcjCMWKxrHMcjb2pm8xWf//znjA4HhPaAr73zFheLM2rZ5ca1r6Grhu3tiIuXX1Bka2qjojd2eHV1ycGxx707A+bLBcI0qHIDz+rR2CVb40P29w4xzIplrMnqmjxZEfgph7dvMD2t2Bt5BIFHUdbY0qfRmqIo+d3f/wamDHEsm92TLrXMNoD+oiDXKVHk0NuyaYwuf/O//R2PL+aUsuH2/QGSgr3biu7oJr1hSHfos3Uy4tOfntLpHXBxcc6Xj2csVxlBz+XsyxcbjlxrcuP2EMev8XpDPv/8OReLp+RZy3qZ0ngNveEW3/+HH/M//tv/FiVN3vrGEcqxccUeB1stt+7v893f+YjQVFRFwutv3+Hi1RK3H5JnLaa7odGYrcQwbaLOAGG6VBn0vA5BdxdDDMmygtwaMOrAsmjIqz7D3QEn/ZTXTxRmsSBPn+K4CkFDbSpeTTNaPUPo9tcf6HyWY/k9dG7SojGEopEtpuMz6kZ4SqBLRd/3MTJo6TLaHZJWGUVaoyuFrQzqVBF0W8zA5f5b7/P583/i8uwl1IpAefgdB9s3yPOUk1uHBLJif+hgNgua+RU7A5O6U1HR4FQ9Rr0+palYrFIMQ3G4e4ypLQI3YhA5uK7LYhWTJhlF5WEhqY0K2zMoixRlSaTQ9Mc9kqrAFC11sUY6FUmWc+vhMbYf0u93yS5jHt4bU2QZdWNyeHOPncMOUlm8fPaUt969iRPY1GWO/6td3BAWabpm72SIMCWT+QW25dHf7RDHCVUNPatDtLtNUqasiwInCDk4OGI7CKnLiiyb4wYKK2rp74ZEQ4fGUSS1xZMvvsJTI9IUHLdP02boJue3vvs7eK3FOt5oejwlodrs7Ms44ezZS4pa0olCmqxEuB0abeBKRcc3OLy2hWXBdHmJFBU/+/wJKjJpi4K61DRSoxxFZ+STxCnz1Rrf69Pt9Hn57DHTyTmV0ETjbQJp0+0FNLIhrTK0aCjyJXVd8eTlJVLZOEHIalFSScjKjTkyzfKNTsZaY0qPk927HB8fU5YlYbeDbnI838ft7+D1ba7fucWjX57T37YIDEVnPCJLN/BF0ZoYbctg1KdF8vyrFX/+3/8BWnskyzn5qkZJwWtvHvHBR+8j0XTGY/76L/+Svb0BXl9hDzp4nZA0e8Y8fc46v+S3/vibG4jhbh/sLUSjWa/XGBZUzaaIYTQVtS4JQhvP8Bhsj0kria6WNFkD2mS6nHA8sHBNjzjP8KOKYlVii5poaG70Q1lGnS0R5RyrbBj0f4O2VS4W4K+4XGkq7UMTUgsojBolMhbxS+o2J2zXjO0MU2R88uiXSGUCBk2VUtUODz94wM9+8APMyOCLVz/k8E6HZn2AYUBruzimh0TSHw0wHEVgCzxzmxtbPZQNciciIedsPWfvZId5lrNlb2NUOess5ypdcNgPaLKYJL6kbSzStkB5NvEqYZXFVEaCsGD/2hYq8Gisimk1oWgbtCgo0Vy/d8JqHjPoWFRVjj8IiMsSU1XshCb9rse8VEirpcpdHj8+44c/eszhqKUbRbw8e8m9u7dpK83x/phrdw5om4JhEFLpin/2X/4Wf/t//WdGex2+/Ucf8rf//m/p9Ezuvb7N9tgnSa74+m/fY5ImnL16QRBJ9u7skBMwnxYsl2cEbRfbCqmlxnIVjjPYlPnbNelqzcXLFwx7HqbQZLpmEs/ZOznhy8dfMNwdEq9LsqQhW69I0pJ3PnwN2dq8+cbXuVwmmCakjWS4N6BULp89O6doNWVTMB6POTw6otvtczF9xcOHD8nzHBHaOO0r7h5C4Pn4kUJYJn/6r/8VjSnwhCDNL0BVGEaAEDmWK8DvYUqB742xzYqHd2/iBi7zlaQ1bNq2Q78TYLSaYRRQSGj8BaWu2TseUTcNjz9NMGtJ25icL07pjHfRQnLv4RAvMLBtkw/+4DsUVUWexXz800cEDphmTa8jqFpNU0kWyxlvfniD/Xt7DA8P+B/+7X9FCaQU2KHLMuuye2fAT37wPap2xoN7A6SsKNYt50/OOLm2g2fZdMd98myNozyUkhjKoLvnMrtYM1/H2JXmSChcbRCnHlU6x2quyOMVq3XDl19MaK2CxjUodYYR9ljOG8bjISUx5fo3YIq1KqGx1nTsgLZVlEmONAWGtMnbmrPnZ9y7f0L5AkzR4IcO8SqhE6jN2766RkWSnSOfUQ+Ec4qtpswfOayLTUGi0C1lauAIgWMUrF++JGkkn3z8BUlbE3a6tEmINEz6/SF5ndP3bNbJBUoL3nz9NZqsYXI6xywWRGMbIUOuHe1i2R5NnbNY5Gxtj3Bdm7fffUCdFWBKkjJlq7fL1tGI8W6EGVhseSa/9851pFMjOyF5PKeoUw6O97Ad6Ac7FGaXq1cTlCHQccZ3Pjji9SNJNwi5995NDFVsCv9o8tKhFoKyaZC65evvfYMbb91isSy4//oD8qXiYPcGdAX33z3k+dmCJLnC8TdJsSazWVWCpGw53hkz8EdcnFY8eHidsswZ72+TlgpDlrRWg7d1jTt3bqE8C8+zcVC0oqLMTjm6ew/PsQl9FzNwsYwGzwmw3JxXk3OcqqVvStokJgg6NIZDabjYyqFMc4ok5fmj5ywvF3hmAyG4wub24R6BGmJLwWy+h8hM/K7iJ7/4KVpAhaTThdYzqVpBsjCR4cYU+fd//fck6xhb9tganuAPejjeCISLzgwas2a+SvH9EJMl0raINVy8/JSgd8T68jn3755guwrsjNPVK7zIpHtzyO44YO94C2lbCK2QVsPjr6ZIu8tH33oX27XYvX3CfLZgmayRPRPPV8xI+eu//muGwwMcI6FxXJS7jwoOef3dHZ4+/5TxQxevY2O6NjdvjXnjrbscn2yh85rR9QFx0ZAlmzVqmVto5rhIrh9dJzq+TZQVZKsl/tYucd3S73ZpXYGKHPIyw7A1eaG5fnJAtWipS0WyXrIz6P0G/9BVgtndJy1nG1h5oygakKbGdVN8NyBQML1c0oSCvEgRrdxwtxSs4hx0w/mzz1mnK7rbHV5+6jCZlaiBS1EsMKTAagS2CHDcwUa4Hnjs7vX5/AevePppxrNnz0C1bO1vMYsnCLMgKzce4bLQDP2ajmdhmwaWt/FSeV6DNBuCUCFIGEZbCOHz43/8mOHBNrIRBK2BIyycYIuwG4IJN49HnH5+ydZghzabcngYIQyT1x9exzclV1+dI+0eN27u8cEfv093W1IUkjfePUYVFaNewEfffYe3v/02TZNSFCWL5RW25zCfL/H7Pd7/6Os8+uRLlOdycueE08tXnD674vBkixdfvSIKbXrjLi0BuSzJ0wwnHJAsV+webRGNuyg34GR/m7bWKF1imGB5Jo2REu2MQOYo26EbSGbzJcppWScpQjoo0bJYx/i2ohuaG8qGaXJy8z5GLQnNBMez6HoOhmwRrUUnGhJ2Qrb2B/zB736bnb0HrCb5RmvkWuzvjlmsc3SVsposKBBsH2zhCpsiv8QNKmxlETgdAt/A73uYpsL2Tf7sz/4M07JYrUscZ2PTCKIeIrMwPYvSqEnSGessp6585lcxp48/5bOvHuGNNLtH1zBdH+H2mE8WbN2OWK4FppXx+3/yTeaTFa6yePsbNzYrIJI4LSgLTX+nw/Ryyqjrk7c2Sb6g0CWeG3D71gm6lWjt4xs2pAbR9oi7D45pGmiUIOrZ1E3F3vGAGydHVFlKJWpWZxPKQm/oLraHcjelne2966xLC7t3yI5voclJao/JbEmlbYRlooXGUhIDiaFXtCXUy3N64+tQ/n/O8/9PUszUzJKKWmh8+asstF3geA1+oOh1B+RVRqUrpOORrEq2el0MLIKuR2nU3LhzTNFqGiFxk1tYbp/jGz2kgq6/xtQJz548w6yhaivStGG0s8OXz3/G1k0De2tN7i/odofMJimh71ElK5ZZQVYL1vM1J10PQ87wvIJuZNIYmnE3xPEV4x2P0f4WypL4vs/OrWtcO+pQmYJvfPgui4sl6ZUm8A36puLs9JwzMUWGIY5ngZlgWCnhOMCyI+7e6FGVLcqxuR5oqlzxKluhbIfhICAMJVFksnd9j7bJMdqa3ZsHVEVGHieYKuE//NX/jXBaksWKN957jb1r+4RhxMV5y7sP3ybqRdiRg2XDOtV0hhHri5wg6pJlUxZXKVQGg6MerpAsrxaUwqDSBk8ffUy/5+GaAse32N7qY7Qp0oSmKbl+9yZ5ndGxAZ1x6/rr6ARyo2F4/YhRr8N4tE2WFdRrsJW1Cfy4AcrUdM2Cysj47PEz0irF7YecPzrHUhJbWOTxM9y9EGlHLF98Qdf2cUxBXsWIdY40BL1ughOZVEnM3QcH/OX/8u9wgpB1klDXEhVIsCW257ISOeicVXqOKB2S1OGLvz8j0wY7J29STEOE36eqHQ6GIVvuLh/8zgdcvrzg7GpBFGzOra7r0hnd5MGDe7RGQ5pqjr92m7wt+fDhu+webDN5OaVqNrXLg7vXOLv4hGh0h3UxZzj26aoh6bxgGb9gebGiaAq2ryeEg5AnL664eDXn+ltbxLOcZL7G9SyW5xWWFihc0gJUP2JVwatFjWt7+OaUWtY0WtBKSff1Bm2A6XoY0qJSXWpjjdENmS8aztPfQFbnWAakF5SGRy0UkCMbQVos0W2BHyiyakVmu4T+JjYnKXGEiV0uGUQWhszxnYw3bh5TzQTabIjLisaDUpjUcUb/zh7zUrHICwaRx5NPfsj2tdustYH0Ooy3R1wuW0S1geCvagtTurRVQdpe8qMffUWaNjRmgSkXhPYQfQ6qjfG9Lh1/yEpnjI8kImiIxhZHeyfsH92gu2szr9b4gzH37+2SWJKVNrBtgyIpCSMLrzPmP/77H1DnGdlqE1+sDY1AY5aa+VlL3Us5+pqPEhXC0zx7/ojaKDg7O+Pg9nXyPCf0XN757rs4Ycvh4RDPtfib/+Nv8MM+994cUdEgw4hikRAFEcPdGxSOolEwumbQ31K4VoPvt1BBUxYYrUFvcIQyLIRSWMohrwTvPnyfNCkZjw5oDEUrBVJ4PP38EfvHR5i6w2vvfsD3/5//hNYVrg3FLOb1d97i+VlGQcPi4gJlmyhTsD67ImRFUwqSvObh/T3MOqeKU6oqI+yHaNEwmSUsig2eJ5U2p6c/RDhLZkuB4TQ1oagAAA9jSURBVHapVxcEnTGu26FMW+6/cZ/+9oBMa+JkSc8dUWho3Q66XqM8m9Yw6A5H1JUgv0y5/uY2F68Kjg5P6I13SSsDo+kx+9zkvW98k+3uISc7JyR1y4uLX7Lb32IQdPnyly8pRc3lYsZkOefi5YROUGGoKZnREAU2kR+wf7DL55/+GKOI6dkZddYwzUsML8c0LZQd4XU0aVZiKNBmiTtckekzAlNxfO0E33Jw+jZNkDG9yED2ee+te6SlRTy5pG3XPL0oyPJztoYZ06sE4XggPbyBj2KOFA4CwXi7z1ePXjLwUoadm7/+QFM7SAqqGuqiQihFqwsMKpK6YHWxwjENtFkhbIllN4QDl0baFEVG6DskyxgKh7oy6e5r+qMGqzOiqVuQCZPTz8GsMGwHoSW9bkNjRkzXBX6wg6hKtkcBdbFiwYrTeUEpBVVe0Ov0qMsMu9+yPXYpq4Km7VBYCeZWTlGv0WaA5URUjaSyXFrXIhi6fP133uLqao5tO7TrlvHeGMuKyWqBkB2CUDG7ekF328eObCwv551v7FObGksK8iShbDXvfHiI3w0QyuPozhZ1HXPr7dsEAxdPtRweHrK73afnOewcDfjJ3/0ELId1lbEz7vJ7//KPibOEkwe3WExT5nHK1ZUgDAasZgvKskRXDW44Iq5bxjs9Xj15hhAtI9fH8QyUKHBlRUNDUWiKOuHpi0vcJqPT2ZBPkrQlnieEomX6Ys1WZ8iTL75kuB1gRGDaJTv7EXkuyGvYHkVIr6SsJnQCk8BMuXcj4O5tRaNjmmyObSjC0MfxIpRnYdoamo290agqbKUIjYRGtIx2epSZS2z6WI5NYw6xfMVFvKC2oNQ5rufjR1sYsqFoavJkii0UTr1AmQESF1fY2J0+wgTqAhOXIBBkWcLV2YKmLWnKHFMbtLYib1qy9QpPbiwkwjUwjZL3PnwNP+rQ6oa4eYljKtpmwfJyjt9qjFZz9uKUIrtAGCa0LZluaduKoqzxxyZxXuB7FrIuWKVTVsUUbBhuN0R9E2U4RL1DtvdGVHXDkydPqBqLOFszHG+xc+cmtj2kGy54/Z03MLSg0jXLdI4lUpQl8KwIXRlYRoXZmvidwa8/0EUVsL/VYdhVKBra0iKvfSo2sc5e10PLkCC0mV0uKeOW/aNbJIsUrUrcMOD5y0dMFxnzdIureEXkjeg5girO6eicB0cjsmJCmczoerCaTCjXS8IIhNcnCC0uFy/QeYJhNySLnIKCyNS8du8+lgmLOGGeJ+SVg64MdLnGDUE0GR2/wTdsmirF7UTouqS2Q14+fcLk1SfkMmawF6CXGtna1EVNFI4Y7m9hugmqY2HYLv2DHcavHZHVGiUKrm35QMxgx+LwZojWCttwSeqGeTynG1qUTYpytmizmn/+hx9w++Q6tldh+9UmwXXi8g/f/wG7x/vYnSEHwy1u7m8RyT5lYZMkmxOXEpJudMDziWZdpWxdG5EbBlJrxmMfN+pv3gpXKcd37tMfbBP2hjhtl74vSZI1rrVDk5yi683+KGyfb7//gHgeE4wPyR2X7/3o56yLOYc3rjMeDzfnFwGdvuZrb4949POK3X6HWydDxrsDhGWzmKx487038DojKlExHI2RVY0X9FC2ixGVNMIi6h0zW7c0ponZHxDHKdLIefzJ59S0xOmKQjYskgo/aDj99JJO5GOWK/qRgniGJ3v43W2MymJ33LJePWXrOCBiwclxTass3EDjmBLLVhimT9lUWP4Fos3pCEFLgecFDHf3uDy7JGdFoabYMqVVGeMxFMWSTkexrq64mDzGESlbB30aEWN6Aq19suUc01I8+mVObSjq3KC1Z1g9A8equX4yIEmmZEkJnk3YGWLLliLNsSKXy8WMq5dLssyiEQmF8Y9cnl/h/oqmKmTMdt9Ez0/puJJ+X1KphqvJ7NcfaENanF8aaHo0QmILB1kJAttES0Xubpy8TlTijzycSNIKB9OcksznrHIbz1dYXoB0Amgj0imEnsRXFUP3Hs+fN+S1wlJLqFa0VYkTBYx6knwVYzkCbUjWrcfFswVuGLFaxviBhU6es14l9HfGuIMejmcgLZtOp0e8WqJch0I4pGVMMv+Ki7OnmL7Nkyc/ozUrlGfRFpLFeUJlVnz+yQtUJ0IGEqMruX79IaG/wcSavuTJiwW1hLrR2AYQFtidlrhYY4UOwyAgBS6mBetUo7XF6YsrbFNyePcaT776ElRDKy2GvS3muU+arBCioVln3Lpzj3VRcHhjn6KcEHY9el6XpqkRZoFjOdCeM1vFxKsW3Vwyu3qOY/mUtDhK8enHv2C2WKHTCVFY8XI+o6xbHGkz7neYzE7pWgYX6xXPn51z7e410qQiK0oGeybLIqW/PaZpoNUFtmo5uO4wncScvXzC6fmaonBIi5ww7KCtJc+mz5jHc9LGJdUalTfs7A7xfEmiGwJDUUkTU7aEnktS5Fy++JJk8YSiXCNUiXI2nm1MG+jS8TwMoyUKFcq1yEuDs9KkqFOUrrAGPlm+IrQNPv+7jwksi9fvD9nb6jFfpzhjl3XesM5TZCBxHIfRrk/ZappW0QCtEdO6F7ROhjR+TjF3uHw6JUkyzl6lhNE2ddHgOy3LaYw2BOvSYdDrkacGva6B0ZrE64rL01NEGrCOUxbxlNPpI/Zu38Rsl9jdkKSGneMtqnzOnQevoZyAwXiPVpjUlUuePwE1RxcmurF+Zd7YmD1kutEP1U3B3s5vQv00LSZxwXK+wjQVTVVCa6NrgWUaWG6Dp1Is06cpcxQNnz/+J9brlKbxsE0D128wvT5lPkO4PVo8nr9M6Xccnn45xRoYSDWkrjIurq64WC4pZZfa2GB4ZlfnhG6DH5qYjUOv38e2TLQwWa9gsU5I8pYylbgeGGZLpV08b4xuNqD968dDbt8b0elFSJnhdSOUtSQTa0odoGwT6fqEOz6D/hhPKUInYDZboUxQvsQf9pgva6J+B9nCIk3IDI+8rJDCJa9LprpF4+IKl9kyxzRNZk+XCMvg7PKCtIaqzXB8B6ks4tWSr3/rPnWbMr+a8LOffozje6RGRZrlGK2DJSQdr0+RSLq+i/yVFbPKM6QjMNpqc/cXEVQNbxwdoLOK450OTa2ZzmPu372GQ0tgDfEs6ASStkwRAuJUkKbPyC8uaWRNVdVYToBtOTi2zXg8oqp8ZqsG59DkyeSMi2mKiLpMXs2g7WELh7ypKcoczwrwopDCbNDCoSwgX9a0pUFnsI1pCHSyxrDcTTtJr4g6Pnm9Ji8ztNY8+/Qn9Lohh0cDRp0tyhiMwKaiJM9mSCNitBNi6BjXsViupiymKQ++fo04WVGUmlhs8ENJWlOrkhbYO7mGVVsow2GdJ3S3trCtksaArKp48/UTBiMfU2ikclnMzxn0txAyIggipGnRtgWGEjhmD1eG9EYdAqclW5XoxsQyXZJi4xAfb3UwsFhNFiRlSt00GKImW14w2tulszXEMCV1I4i8m0g3Yb1eUxclupZMJxOquqX2SvxOF0uFuK796w+0lj3MVnLzxi6+bdDaLVHoU1UVWZ1T1zVVvUYYLrYOaNqMui4ZhR6DoEc3sEiTmqADtVVgqIxSJERyShhEJCojwcRsVjh2QmtkWMMBrTBABgRdH9PR1BVYomU06pHFr7DsjWM5NiukPyLouTz56XOSZErbLqnzbLNzGSauuelvR1EEMqCRNjQhhiWQKkA0Jsumocor6O1RGBW2obAMh2yV0dgmghUuOVVSUBiCtjEpasVinWCZkuGWxvQkVncX2/foDnbxXBfagkG/xqjnzJIFGQUVKVpXWI6iMjKaSOKHJj1/gGtrTLvk+bNTiqLAtEyc1mS/F7KepwSWSVKvaFiRZpdoUSGBWq+x9YzpfEFexCyefkqtFWlt4UlBll6gjIbD6yfsHFzDCEY4hUGrKuK0oNMd8rUPP0IaPZxuhF4/p8JhsDskbxvyaY1pb5GZWzTeIWmVYWDj93o4ocZxLRwrxa5TfG+I9He5ej6lrRVFYhHHNag+5Ip+FKKTDF21VHVG15T4aFy5RmcZaVHi7nsk+YpOd4fZbEF3PKYuJZFqcMOY8S5UlaaM13z2/U+wxi15teLZRcPlWUnk+awWa+7cus06rUh1inQNmnzGweEW8fkL7DbnsyeP0GZNUev/t7176W3biMIw/M4MyeFNN8tSLDuunYvT1N0VKdBNf3xX3XQZFEWLFm2QxLEtWRLv5HDILrRPF13F4PMfPpzNOd+hKQOK7APFzlCVBh2M0eOQdZLTVJIibVCVxestu6ynMT3VvqaWHWW1w/F9Vk+OkcKSNpJedWzv/+JouaLItoQjH1d7VLagamp0MGJ9e0OeGcY6ItlEh626XmJyQ9856CjkIcnZezM2xkNHx7jqf0xoa3v8+Am0IIWgbjSusNAevhhiD91S311bLp7mTFqJoz1EHzEdT2kbcN0JpRUIx1LXhmlUU1U7jLHMTnxUrHFKi5Yh1hjoA+ajAEdmlPUaIwTGGZNtMrTvEIaaaTSh2FWM3RbSDO0siRcgfQdXNbhhRpLsEK7DLm0RUUjjLTFtQr1/oEofEP4RpvWoZYPvBHRG4vSKxWhOvnlgc79G+h46npGlBdttgBy57POM0PPxwnNKI9mkKY17gix6qsYwnWiKNGO1OMUzLtcvXrNcneDpCNPmSA5VSWHoHdpBAo0bxCTrgnS7wYsC5tOYIPRoW8tmlyI9j3r/HlFZmsYjHGlE7GKDkPEkJNttCUqXk9UMvJapP2J++hVtB8m6Rbg9X5+d8+ntP7iiw/cqvn9zebgccgT7fcNmvSearXA8y2I+5sP9LZkt2JZ3RGrEty+fU0jFx+QTSguazS1///oWFUqKNDl0qemYjgVCKWQkMRTU3RnO4oJqe09X3CFlQ3g0wVcGZS3hbIyjQkI1xnU0neqROqLO73j/+59cvb5iOlkgpOb4aMJs+YKbzTtm8SXJVjF5NSN6OefyzY/89sc76mJLdVfzzatn/PLTz1yePwPXp8rvODsNmYxjLlZHzGSO75RYO6LuplSpZnTqH8r3XcXp2YLl8x+w6hTR3rJNbmAaYJWhE4CjD4UZCoxqObuc01YC8GmF5iYzpPUePYoxNLRNSdL2mGqPUiUmyWkdgdPHOIDrSTzPp+sb2t7BdpKnV9fUVUaxvqeoJa7qebjNPxto0fefX/YeDAZfjv+4thoMBl+SIdCDwSMyBHoweESGQA8Gj8gQ6MHgERkCPRg8Iv8CScHBOucj8BAAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["show_image(im);"]},{"cell_type":"markdown","metadata":{"id":"mxy1L2fG2N2P"},"source":["The first axis contains the channels, red, green, and blue:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5D44wnoJ2N2P","outputId":"b589bee9-1f7f-486c-abcf-cba9e4d291ac"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAp8AAADnCAYAAABYBj2NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9WawkWXrf9ztLbLnftW5VdVX1vrBnelYuw+EiUxIGJEVLliDR9osBG34zDBiQAQN+MJ8N2K9+NwEZhk0DFk1JpAhJpEgNOcOZYc9M9/RS1V1d213qbrlFxnbO8cMXkdktSy0DFkZS+35AofJmRp44cU5Exv/8v///CxVC4Cqu4iqu4iqu4iqu4iqu4scR+t90B67iKq7iKq7iKq7iKq7i/z9xBT6v4iqu4iqu4iqu4iqu4scWV+DzKq7iKq7iKq7iKq7iKn5scQU+r+IqruIqruIqruIqruLHFlfg8yqu4iqu4iqu4iqu4ip+bGE/7cPmv/6bwV/O0OMhTCao8Zjw5AlEEYxGqOdegpNDwt33oa4hSVhvPx5DXaO+9ouoF9/A/72/g4oiQlHAw4fSBoAxsLcnr72X92czKAr5bD6Xz5wjlBVqNIR+H4ZDUAqmU/m815PvGgMhQFlKn5ZLcA6yDLa3UVoTqgqePpXPQdqJY0hT2W9Zwu7uph/DISSJtDudyvbDobQbAjQNDAbSh4sLyHPpi3NgDOrgAK7dhNMjwmol+zw/hyxDPfciRDHhrTelP9aC1tLXvQPC0yMZx9EY9dVfJFQlfO+PCSfHUBSo69fh+jOEN78r/c9z1J1noTcg3H0XFgtCnsthWgu3bsk4n5zAZCJ9Xi6lP97LsSWJ9MN7iGPUT3xe+nj/LpydbbazVsa7rmEwQF2/KX9fnhNOT2G1AufwswV6NCAsc1S/t2m/qmR8owj17LMQJ4TDJzJ+SsFoBGWJevZ5iGLq3/2HmEGC2t+XYw0Bjo+lrSyT+coymY/RSMa/aeS9Xg8WC3nv4gKiCPs//Jb613Yl/VsSv/XB/xJKV2K0YSuZADCvFlhtmCQTYh1TuILT1SmegEZR+ZpB1Mcoi9WGm/2bbCe73JvdBaDxNRflJbGRa1YrQ9/2CAQUCq0MebOk8Y7YRMyrBQA+OJrg6NseiUmITUwIgcpXACQmQaGITUzta3zwLOscpRRFU9CPeqQmxWpL5SpKV+KCxweHUgqrLEYbnHe44EltSulKfHAkJsEqiyewavJ1v0MIGKUpXElmU4yyBDyVq1FKTocQAoOoT2pTfPCUrgSgdCVaacbxGB885+UFGtW2rUltilV2fSz9qM9Wsk3lSo5Wx6yaHKss/WjAdrLF4+VjAoFlnXPQu0ZqU05XpxSuoGj3aZTMWwiB0pUopUhMwqrJKV2FCw6rLLGJsMrigscozXa6jVGGy2rKsu7mQ45dKYVCE2lLP+oT6Yja1yzrJZWvyBv5jcpMum5PK4NSisbX1L5BobjRv44Pnnk9X89LYhKcdwzjIUYZPpo/QCnFIBqgUSil2jkKxCamaAp6NsMjfatchVYGqw2pkfFfuYJFvcAqy994/j/6TF2z/8nf+X44mxds9RN2hjGT1PJoWmKUYrtv+cqNIT88XvLeyZKicgxSy9m8ZDKIiY1wR7/+xnUOhin/+9uHDGLDonLcO1kSmQ23dHsnQyvwAaxSTEvH5bIiiQzTXK7HonLMi5r9ccYoi9jpy/V+kTcAZJEmizVWKTyBog4sSseqaliWDVv9hGujiKoJFI3nbF5RNg6jZcpia0gjQ+08q6rh2jjlfFFRNZ5RL2KYWFa152S6opdYQpDbgNGKonZYrdkfJVyuapZFg9ZKbt1G88Jejxe2Ux7NSi5XDucDTxcVw9TypRt9ah/41oM5Ze1JIk1kNHv9iK2e5WRRs6wcz0wSfub6FoVz/NGDC85XDXnl+IlrPZ6dZPzue+ckkSavHJ876LGVWb71cMFlXpEXDQHQSvHywQAf4N3DGaMs5vZOxrx0nM5LisoRW40xisQa6sYTR5rXDvqME8P9i5KjWUkI4Hwgiw1aKRrvGSaWyCh2+pbLleNwWlI2jrJyXOYVu8OUZdkwSC1aK4yS6y0vG2rnef3miH6seTytuMwrQoBRFhGCjPGd7YTf++EJwywiiw2NC2wPEo6n8nuwPUiY5RXDLKJynmEaUTuP9wGlFDcmCU/nNYHA6azEec//+Z//5L/0ev1U8Im16F4q4CJNBcSMRmtQwmJOuLwgrFaowUCAgtECnkAAWFMT5hdy49/aEoAQAuszy1ppvwUqTCYCFpyD5ZKwKlBxRCgrfO0wHfDsQE8cC5hpGmlzNtsAE5D/td7sD+DyUgBmB1S1lnbiWNocj6W9ppG2OnBzciLHrrWA4o/vI4qkH94LEC0K+ZdlhBBQ3hGqCpVlhIuLDdDc3Sd8/zsCxFrAqp59DuIUlgtUmglgHYxAGzh+CC+8ito7gFUOL7+BSvtwekI4OkS9/BpcfwbqCnXnOcKP3gJAbW3JmDon+2oaGY+mkT5389UB6jgWUKqUjFVZyt/eb4C4c5tFhLVtm5owm8l8t23q0QC0FuD58fEKQebdGEJdo/pDGeeiEADaNPLZ9AJ18zZ2eyjvddG24S9n6G4uOtDanVtd/7Nsfc6EssJPl/+Kk//fzeiAmRZYSOFWAsS0AK9lk1O6kiY4UpNSuAKjDD4EUiMjolDkzZLSlfRsRhFkzEMILegz1L5Zg8vEJBhlUVpAow8OT8AHj1byW2C0tN2EBqMskbY0wRHrmGWdE2kBbalNKZpi3d8O4K5cQdEUawAMAvhiHVOGksxm1L4hhIBWZv152axovMNqg/MNSilckJvEZsw8Udu/whUoFKHtf+1r2YcrqX1NpCOstpyuTnG+IShDbCL6tk9AgLUA2kCsYxlbPAe9Axpfo1BMki0iHXNZXXJWnHFzcIPMZEQ6Zjvd5oPZhwCM4xGNdzKeweNCQ6wEwMc6pvGO0I6xQrdj7jBK44KjdBWNr9dzqhXrsenmRKFofMOqKdbgPm3n0wf3iXHqxlQhALjyFbGOsToiuIrC1QLu28VCYhIiHbVzrgXIoqh9Q+MbrJa+dMCz8Y7M9lqAW9OzfXzw63Nv3sz/dVwi/9ZFGhnKxpFFmmnpGCQC9Pux4e75iqN5tQaeRe2IrFxTWWxxPpA3DdNVzbLypFZzOC2pG4/VGmsUxmiqJjArGhofuDaMSa0iiQyzVc2qci3ACVit2erHTDKL0bAsBaz1Y43zgRDgsmxIraZoPNYofIDEGgLyG5xazUXerIFnCAjYijSDxHCRe8a9mNoFmhZgKRRZrDmZlVijqZ0nLxt6iaXxcg5GVnOR1zgf6KcW7wPTvMakso/aB+aljONF3uC9gONeZPmn96c4H0gjgwuB1w96aAXff5Lz/G5K7QL7/QitYFHX/OKdbTyBeVVzvZ8RGc3nrhe8dZTzk7cHjGJLz1peu5bxB+8VBGBnmAgX1e63cdLP2gWK2tE4T2xlHLVWDFLL6byUfhay/dmy/gTo9u19zflAZNR6vC/yhrwUAJ7FAjbltZHbaukYZnI8AMM0Yl46itozTAyLQvPRyZzTyLAzTMhiy73TFYPUrs+tVdWglOw7L5tPLGaGaUQayd/aKlZVQwhgjWJVeRZFTd34Tz3vP/3+2wGiqkL1eoTpFDUYEJyTzxdTmM1wswK1qjD9VJjJLBOAlqaQpHD6RICktcIcNo20m6YbwDedCjvVAg7KkrBcokZDwmKBylJM1H5PqQ0QiiIBF+fn8r2dHWlzOt0AQrP5wQ15Ltu3r1WSyPZZJmCl3xdQBRs2tKo+waaGukGlifS3GyMQVnAwkH1qvX5ftcfTAS3iWN6/fkMAZFVtWLrdXQGeVcv8bu+ixluo175KKFdw/Vn0tVtgIkI+QyU9Ql3Ca19Ebe/BredRox1QipD1UGkG774tx+Gc9KHrs/cbcL1YyPtbW7Jf79fbhbMT6X8H8rtzAzZj1TSwWhKmFwLMu+26ee6+04H9jgGOItnWOajKjy1sFrLPrS3Ic8L9ezLeIUg/qkrOgxBweYXuN9JuXct2IK/zXN7vGNCiIPjA+qr8jEUTnAAEpQn4NTsY6YjSlVS+YlnnLOrlGlj1ox4hCNiyWq6v0pc0vmZROxb1sgW1EQqN0QJMCle0wFMTCLjQsHIFsY5xLbD0wa8Zz9KXGGVb5lHAzkppBtHgE8eglCIz2Rp4LOoFlauw2lC6CoUitSlaGbQybX+EebParIFT7RsqL+xg09RoZUhtivMCgF3w1H5FrGMSkwCsb6AhBBovbQQV8O37mc1ovJzbru2fVZmwpgF6tifAMDTspnvUvmYcT0hNhlGW0hUopahcyTgeo1AMoiGRjshMBsALo+c5Xp2gUBilqdv9+RAw2pCYpGVhFU1wDO0QrTTOO6rgwdfkzYraVWil14x24x0uNCQmkWNz1XpB4UJD7ZtPbA+GugWvpl1E2HZOfXBUTsC4b885gMrXDE1CExpc44lNRKpSOa9a8K1QbRsC+oumENZYGxpf04QGrQylK9f79cFjPgacPysRQiCL7RqoOe85GEYU7Y27bDxV45mtKqrGkUaGURaRxobGe0apJbOGvGk4X1QYBfOVALTGeyJr6cWGZeU4X5T0E0tRe2KrWFWOvGzop5a8aMhiQ2Q0cQtu56XsO4s0y8rz+DwnspqbkwyjFWXtGSSGLDbEVlM1nkhrpkXDqpJz9nxeMu7HxEozTCxppNkfxhSNZ1X59T6rxqMVlI30yflAP7GkkVmznmUj95rYSBvLymOMxiiF84HDecWscExSRWTkvVeuZTyeFZS1p248K++407LA08LxhZs99rKEW6OE13ZH5KXjej9DK0VkNYPIkteO2bJgpxfxxo0+40SYv70sIbOG8ect3360IG2B5aJ01M4TWRnLXqRJo5hl2bBY1dzc7gPQuMCqbADLvHQ8vCzY6kVc+oBRwvbWjSeJDd4H8tozn9VkseUyr3A+UNaOQRoxzARr5KVcz90cai2AtagdJ9OCm1sZF7nM9WSQkJcNaWTQWnE+L4mtYZBatnrCfmaRxmhF03gBzQqmec0zOxFKqZbFdhilqF1gq2dZVW4NsD8tPh181jWhqoWx0i1r1LFmQPAed3yKMgqdRHLTd05u+i0wIF/AyaG893GmsaoElHgv7a4KSQt3bFsIKK2FCezS6eOxfPfpU+lDm9rn8lJSutf2N2zafL4Bh9vbAnK61HIIYC2qrjesH8j38nzD7qWp7M85KAr8Iic4jxn2hKkDAZsdM5hlqPEYsr6AtsePBQSWJarnwHt5naaE/X249Rzh3R/KsY1GImWIYsLpMarXh9e+hNq9AUmGMhZcI/NgInAyxiGfE5aXMBiDsaAtNDUkPZjso67dgb3rUK6gLODyTMZk70BY6Yf35bg7sDwcdr+KMhZ5DoeHAsoHg814KCX/ey/j7D3B+/8nqFyt5Nhgs1jIsg0Y786Tuoa4ZY6Nkff7/c350kkk+n35rAP8cUx0s5VtlOWG3e3OsY6N7gB30wibrzeruM9SdCBEa0lLF77AE9ap6bJNX3c38g6IWG3QLWB1vqFwBbWvybr0utL44ElNjEZRe0fhSmEJWwDTeIdRBhccqk1H96MeCkXlBehoo1m5isp1qfdozXCWriTSH0/t95lVs0+kfmualpV0BDyFWxFCoG6Bsw9uPRYdcAvtZ679zGjbgm1hbYeRgLdVy5IKGPPo4OTYtCLTKVYZMptxWV6ilGIYD7FKGJ+8WRFpy35yjUm8hUN+V5RSrJqVjKeTBdO8mrGolxz0rjGIBjycP8ATeKZ/k8z22E52SE0qAC44iqYAYJxMCMFzvDqhcCu00gyjoYB8Al75NWNcNMV6zIwSBlcrg1URWmmsFvAskgNhjK0WBlzS+7Jg7ObGGGm3S7l3IF0rLUC9HdvExO15kq7nWHjZFnYqhdWG2AxQ6DWjnJKilaZq2eUO2Mv53BCb+DMJPleVMGJJZChqT1l7ThY1qdXMCvn/bF4QGUkVD7OIsvE0LhBbTeMD06rmqGXQbMc0akXjNgBgUTRMlxWJNczLBlUqvA+yKKwE+CbWsNW3aODh+YrGB/ZHCZULnM5LVpVjq59QNB4fFLNVhQsRVe2YZCmTzHA4q6icR7XgLY0NVeOFzfQBVznmRdOmmw39xLZA1rEsPctCUsT9RFhd54Mcc+1xLjBMI+5sJ+z0LU8XDe+f1ASjKJ3Huk7W4enHhts7GXcmCX/wwZReYuglhp2epRdpHk0r9voRX97fYtyL8CFQNZ7GB+Z1Td44rJLz/O7FirNlzfPbKalV/P77F2z3ZB72ejGR0XzjxW1WjaP2nouiYVk5nn91l9I53jrOuVw1GKXoJZZxJqn0svEMs4i8bDiaFQySiMjIfFWNQytoCDjnmfRjWQjEwn4bpQhGAXoNdHU791YrRv2IqvHMVzWJNYBnlMVs9Szny4qy8URGc32rR2Q1kywSVnpZM+5Fcos1CtuyqdlOD60Vs7ymrOVaL2s5D5MWdFfOE1tD44TZNv+fwKfWqDgSkJdmwkh5Lyzo5aXcyNMINyuESepS0mm6AQdZT/71+6jnX4bRWDSiUSQA8eBAdIpJvAGoUbQBKR0TNhpJu6sVLY8v7JjWojfsgO10+knw65zoFrUm1PUGoKQpwXsBtnku7/V6m/RxByqXyzVQ1llCaBpIEvleB9hmM+j1JLU9HIt28fRkPYbCmhZyHFEEUYy6/oyMS56jdvckVf70GFZLVJLCF76GvvmCgEmCjENTQ7kiXD6F/gjyOWF2Dk0F412wEfzgW4ThCG69gBpsQVWgdm8QKrmBsXsAgNq/Tbg4QnlPePJww0Y3jYxHkmwY3DgWnaVzhE432QHPKNroVEHGvn0dqgoVx7JtlwIvChnbDrzCRjdbrDbvd6Cxk1OAzEOvt9nHfC7tdoystRums2OY23MWkM9WK7h+fcOOfsZCo3AgwEhHRDpaA0PfgsKOpYpaQCa6SmEQnW8w2lLXAgKu96/Tj3o8WR5ilGVRLxlEfVzwLcMpTFunl4x1tE6VJyZpgatCB4UjsGqEaRxEgzUgrXy11lOGIDdEqwwueFzw61R4m+UhBE/erNa6RZEZiJbRKEvtKlzw7d8GjwAei2kBmW73Z+jZ3nqMOimBRjSHkY7Qysh7WtOP+nLM3jGKR/Rsj1k9Q2MwCp4fvUBqshZmaUpXMKtmzOsZ9+cfcXtwC4APZ/dZNjnb6RY+eH773h+gleIv3vlpnhnc5LKccmtwC4LCEtG3A5rQsBVvU/kSHzxPi1MaX2PbtLZrQbOwwTIXqU3btPqGvRQm02J1hGmvK6M0dZBtOoDeaVlpz4lOQuFaCYakzmucd8QmpmlWa+CrtV6n34Mrccg8aiXMplFy2xF2tWWc274oJYuZqGXXmyD9GER9Mpv9675c/o1HGhlqrZj0Yw5GMVbXKAW9yFA6SSMbLQtKa+Qm3wGCtGW3Yq3px4ZhFvELd7a4vZXwzQ+mrKqGs1nB9sGQCx9IY2ERXZBUdxxp+iES8GsNW4OYfiwsJ4BRiotljdGKYRoJ4EFS3U37m2q1IveB1LYMmRc9Z90IgOxiupSFyCC16/Ttbj9iVjimec2qaoitsKiqhl4qms/ICuie5TWx1dzaStjrR8RG8eiypHYea+ScT6wi0orEaGKruLOVUTlPGmlujCKem2QcLkQTutuz/OzNbbYGMY0TVm+2ani8zDlZVrx1lPOVZwbUPnD36YppXtGPDWmk+e47J6Sp5fK5bW5vpTy8KPnGy9ss64bUGl7ZHggQM5pEpzgfeOfpap2Wrl1gVtT0E4s1miy2xJEcm2tZzzqA9wHvA3EiAN75QO08WguwbypP1ThiK8ylVsJ0rqqGLDHYFsjW7fEpJTBNAGyJ0cJcAtSJXH9l7fAhYlV7jFaczKs1G9ql3rvx6sWaRRHopaIb9QFmhTDXz+/3GSafvlj8dPA5mQhbOBhISjTLUHEiQLQzsRwcYPdEn7lmI7NsA8pMJPrDF19Bff5rhD/47U2qvNN7KrUBFWX5SdaqKDbaS63l74MDSXErJcacNBNA25mLYKMr1RpOTgh7e6A1fjpH7+8KsB4MNiwcCMDVenMsg4GYU2ANrFVnsul9zDjjnGw7anWV0wsZN+c27J1twWqeE5oG9fpXCN/9Y9TOLrzyefTzn8f/zm9KGzfvoLavEcoVygozRF2KdvbpI/jwfXj9K6jBGIolvPN91C/+GuH4IeGH34dr14RBNU8I3/s26pd+ReZquAVpX4Crd6jxLryxA3deEmb0wQcyznUN+YIwn62BNf2RpN87PWg3P52W0rmNThPEJNXJL8Zj2aY1F61ZyHbBEBZLFIiZqgO/ncyhMyZ1IL6qNvNUFPJ6tZL5KVqA350DeS76XmNgf1/0t0+eoKJoDZY+a2F1tGYkG1+jlSbSEbFmDbisNmv2qm61d1ZHaBS+HZfa11zvX2cSTzhcHq41mZG2bRuBgG91kc0nzEguCDsZCGugN4pHotlUkYDSECjcChdCCzKFNRX2LqJwBZnNWmauoh/1MNqSdACLDcCKdMSiNdUYpZm7stV4unW7kY7W5qbGu1ZfKPrNJjQ0rlkboTYsrl+/F1zBTrTDUX5EZjNG8YgbvVt87+w7DKI+w0jY/ePVIbWvsMqyaBYcLo94//JDvvX4A37tpZ9kJ91h2eT8vbvf4/bgGS6rKd98/0PGkwFv7J/y7vk9fuvN7/Bf/tyvEOmI/WyPQTwgNSkX5RmZ7bGb7jOIhjSh4aw4ZRgNqX3NqlmxcsWa1e3ZnsgUlMJi15rVWMfrVL5oMeXcabwjbgG30QarLMtmidGWxjsSI6C1chWNb/AtW137WtLjOtoYktp56hYfneazCU0rS3BrwNlpkn3wNL5uJRYRqUlItaV0JYlJ1jKMz1JsDWKenOeMUsuicCgF49QyySRVrtHc3u1R1J5pLuaccS8mizTDxHA8l0VDXnu+dmfIc9t9/q93TykbR1ELMFlW0u4gi9ZsZ+PCOo3fOE/ZOPqxAMhpXvPsbsbxTEDmzUnCJLV8+6Mp85WwXSDsHAjgeXhZcHMiC4npsuLmdp/aeQZZxDCNWBaiH3x+J6N2gWnRUDSe7b7lfFHSuIALAWs0Uas9TSJNGhn6sebJuWOQRewNLHnteTjdMHAdSwpgNMxLR+0Dr+xYfu/9C+5sJ3zx2oiX9ob89juH7A8tr22PqJ3nraMpl6UwwpdFzUcXJfdOlvzo3jln8+3WPBR4852n3Nnp8f5JzvHhlDiN2R6n3D2c8fYPn5CXL6G14rmdjCwuuD6MUcBOmvDazojr/Yzaex7Mc3azhFXjOF1WPNFKdKmxZrtnOWnns59YLpYlvcSy1bMoBau6lWLUstCsG08vEb3nbl/YymXZYI0WY5lWaCVa0PmqJrKax1rJNlqvzUI1wriLnlQWFzfauZyvwlpr3M17EokZaYWndp6Pni6IreGZnR6TzHCvcswLR+M//dHtnw4+W12gmmwRFnMBJVkP6mrD+nU3+tFIbv6rlbiXez1CHMNiSjg+Qv30z0OZEx49IJyeocajTxqDoki+37GfH0/HJokAwroWsNOZSpZLVBwLSMraVfFqhZ+KGUiPW6CYJGtgq4yWvzvAMhhIP/p91M074ujuDEgdw9e97oBXHAuobEFXaBqU9wLYzs9aratMHk2zAbfzOWxtobZbXWdRwM//MirtQTpAfeM/JHz4FurZ11BRQrg4wa/mqKxNhT/+QPaxmKPuvkXYvQZxLM7yj94hfOdPZH/HxzAaEc7OhB3+8D1xzU+24YVX4eIYBmNUkkHSQ032xCg03kVN9ggnD+Gj94SFaJ32lCtU1iMslzI+/f5G2wsbuUWSbFzlHVv98fHuvuecgNJ/3tRkjADOstxodrXeMKLdoiIEWRwp9UnZAAjo7ACqMRuWvK5FFmGMVF34DEbH7MVGjDxGaWyr9zTaoILCBAECXap91RT0I43VMbGKyZslLnh6tg8oCrdiWecM40HLdjbyfWUpfLnet0LS9o3vUt8lTcsSxjpGWU3lKxSaRTPHKovW8l7VCKDptJf6Y1pHrbS4qFudYGKSlrXMyExG3uRtelm3hiMBpp7QgmXRMYrEoG5ZNY9RlsY3VC1TqlGgbTtmbWrMleyk2y2IF9D2E1uv07QA64s7X+Z4dbh2tT9ePuKts3e5NbwBwNtnd1k14lL/kydv88xwh1HS53Sx5M3Tt/nO4X2yXopzng8uH/Gdwyckaczv3/8eT/OcW6MRn9u7Q2JibvSvc2d4m9rXuOAYRkOuZQeMojGLZk7tj0lJyJuc2IjuttPAOsSs1LG8HQsaEEZTK0Okha2MtF0DVN8yltKObo1OcoPsjGXdgkMYUmHmAFyrIdWotY4zsz2RKriiBfi6Bc61OOKVsLm6lT7MqwW9SDRynf70sxT9WH4/t3uW87yhcp6dvmJRdbINMCiMVox7knpdlDVZrElbA0/lPQ8uSr6wP+JsIU7mRycLtscpsdVrdqufWC4WFXWbFldKzCurNu1+kTdcLismfXHSb/cts8IRac3DqTBgkdXkZcP5vKTxnn4aCcNnDVUTqBthzJTa+HtHqaUfG7Z6ltd2+/zJo+k6PXw4LSWd3LJkrmVo08gwzsTdXTYCcmKjxeU9kwVVFlugoWzlCv3YsKw8k8xwYxQzjiXN/Msv7mO0omo8f/mFfe6f52RWXPdvPV3w3Y+m3Nrt43zg4emSvGzY3++zKGrefjwDhIX84OmSy2XFwY0Jde2YLSuOjxeMtwb86P45s1nJW6OEvZ0eSWT44q0x9ZbnrBCW8UY/43o/5c64T1E7YEHtA7UPDBNDXgtLa41oNtPIsNWLiK2iagJ55dZGovmqpvGBnSxmmAoLntcCJke9iF5sqF1gZ5gwy2usUSRWs6oc81W9NhZ1rnsfAmUt85fF4LwA+b1hQmwVT+cBImi85mxecrEs2RulraZUkyWGZdlQNZ6dYYJSkFcbCdS/KD4dfF5eyg29N0A5J4ync4Sjw01pocPDjWEnSUSPaa1oEFudnkeSSy4AACAASURBVNrdg8EW4Xt/JKWH0mSzj6JA3b4joO3yEl/W6A6UzmYCULwXMNKe0cpacVRHEWE6/UQqnSRB1zVu1rKXHXua5xuTTLtfv8jRWsP+PmprZwN4ZzMp/3R6Kn93aeI7dwQsDYeorV3C0WOYTvFFjZlOpRzVaCR9Azn+Dky3ZiYVJ6if+kuotEf46/8pqj+BSAxIBI968QvtS0/47h8K6B+OW62nIXx4F/Wrvy4mrscftTrOS8IH76IOrsOrr4O1hLd/gHrmFuH4iPDu27jDE0LlsHffk/6/8DJhvA39Ier6c4TZGSrto6IEDp6FtE84/ghVrAS0nh5vgGdnHOv0nrY9jS4uRF8bwoap7sxLdS3zkCQbprh13qu4BY0f14F2c1GWso8837Cng4Gcl8ul7KczLBlDOL+Q86tboMxmYljrwGkHfP1nj0UBWLmC1AgbOIj6JCZZG296bdryspwyiAYEfGsYkRR65zRXKHaSbayyPFo+IISwZp66lPp+tkfe5BRrF7jF09B4R6TFzCNMY7R2kncGEik5JExXx5BZZSnblLJGCWuJOLY700mnfSxdSWqyDWsZGkpXkhkptdR4Rz9KWjPUUPanTduvhnk9bw1TotO0OqJqlqI5dAUNYJRlEA3WTvdXJj+BQbO1t0OiUzFY+ZpHywcc9G7ggmNez/i7d/8x9y4u2Mk+YK/fJzGW758c87d/8m/yaPmYbx/+iEfzM/JlwcPZU758cIdfeeErJCbh9z78Nn/hzkt85+gB75+ccvb0kh8W9/n27keMJwN+4fbz/PD0Hfb7O7yx8znuTt9nGA15ZfIamenxTP820+qSopUwVK5as4UdA90Eh/WmlRN4Gi9MZMdCdrIHYS2rtvSRAEirI2Il+t1Iu0+YgtYyh7Z0tFaGlcvxwVP4kp4SE4dH9KGVq1pWNGLlCgGovsYqS+5XrQbV0rc9MVCY+Md5Gf3Y4mhaksQCvG6O5RhrH3jvJOfGKMFoxYdnK9F7poaoZ7l/mgs4zCyryhNrzbPbCaMk4n9+87GwZaOUQSqmkbrx/MT1AU8XNU+nBXXj8ZFoRuermr1RunY0D7KI2GoGseZwJvfLs7ymqFsDjdEMxylVLeV9OvZtWTYsCnHO+1Zzer6omeU1Rin2Rwm7fctJLovVp/OSW9uZ6FKVuKeNVrx+Y8j5qmGUGp4Zx3xwVvJ0LozvdFUBCVuZ5SyXhU5ROyonWshRaiid59Y44efv7GKN5j/b6eGDnNerynH3fMHtUU+A5iLnd79/zOVlwf0nMyaTlH5iWeQVX3/tGovS8fbDC4zRLBfFmnX+/K0JHnjn8ZQvv36Nd+9f8PTpgunZlIf3SsY7Y7Z3R4QQePvQMOnHvLCb8a2Hc/YHEeM4ZpRaXt8dsZ0U5NWUnb7lbNlwWbT6W6OonOd8WROCGNCs1hR1xdYgxoVAZDTzQoDlIDYUTctgaqlecDCMaUKgbDyqkMWG6EI7iYvIa+rGM8os01zY0WVRcxlptnsR01XDdt+2YBkxh9ViXtseJAzTiNNpQVk7docpiRX5xyQTY9unxaeDT6UkxX3tpujxQgAlgEoNR4SHD0T/eHCd8NF9AR5bW6jJFmQ9VNgWEKoNKorxJ0cCVFWrD81zcTPv7MNsSqhqMS61KdXgvYCG/X0BNh0b5v0GBLYMn7p1G4BwfCTf92GjsayqjX5Qq7VzW4MAkfNz2N5pdYfFxuDSpWv7fWEtu/JISonhp6o2RhgQ000HsuZz2X8nLbAR6itfQ+3cQG1dkxR+NpJ2XCO6zWIJgxgVZ4Tj+9LmcikAu5MQnJ4Sfud/RX3jr8Pdt8E53DzHjrfE3NU0ECeon/g84fED6h+8i5ut8GWDziLCgyOiV3vQOdizKeHuW6AN4eXPQzYQpnVrn1As4evfgLNDmEtlA6pKWMTO2NWZswYDGa88x19MpdZrN1+tjjbUDapLoRuzKfPUlc3yfg0iOTiQ92az9irRYirb25VTc2uXcH6+AajQSgBaJjbP5e/BQKQS/b5s16Xm7aef+v+uRudeH8djLsrLFjCKOznSEefFOcN4SGoSptWMSAsj2NXFHEQDeraPacvgzKvFmnU0SkroDOPhmpls2lSuGGukbJPRlqHNWNSLljWza0NRz2akNqX2DXvJFrWvuSwvgQ3D2en+miBmIdWCT+mHANyCFT2XtTVCm/X2WmlG8WhdMzLSYd0eIKCnNch0wMwHMWN1BhmrpW7pTrrNS+OXiHRMotNWk+opfUHeLFk2S06LM6y2jOIxH8w+wIVAai0fnJ5ztFyyk2Wczxb8d3/4m/ztr/01TpZLnh1PaBpHz0Y8nD3leHnOrdE1fubmq/zhg7d4++5D8lVJUZTEccRsumR7e8S9i6fs9ftclnO++fhtIq35hVtfYjvd5qB3s3WpW16dvMqiXnBRnrNqVlS+WhuxXOvejzREJqZpmlZ+UbdsY4MJwkY7L8xm5WowrEsgdWn9xtekJl2n2UfxaH1OyHxKdYJOqzlJJhznxxgt6XgxurWyIqXWKflukWSVLC5U0IRQEH0GAajzgVtbGS9sZ7zzNKcfa6wSJ/QoNbx9nBNbzWvXenz/yYKdfszBJGOnb5mkkmodxRG0Za/P5hWR1ZJMagGDmD+gaA01SWQwRrEoGly7CN8dxCxKR9U4hkmMUvL57iBmpy+s7JdvDrgsGt46ytfmlq7sk/dSEaJxHttqCRNrGPWgajxP5xWTzLI3sExXUi7K+UBktdQVTQ2zwlE6T1458sqRGL12jgM4F1hVniYICzjL5VgTa1hVDUbDX3vlGqMsYphJKr5xgWlecbwoWTYNH16uMEoxiiO+92QhzF9iODvLmc1K9vf7HB0t+N+ezPmVn3+O8/MVNw6GaKMpa8eiqDm+yIkiw8FWxrv3L/jRmx+SZAkEiOIIAtS14/Hxgskk5XxRcu9oTmw12Z0JT1cF/biPD9CPLL/60j6neYXzCy5WUjP1dC6ylLxsy8dpxTC1WCOyiLNZwTCLqDstqG+BeONIYyN9rVybJJTfvq700eVSanU+u9ujagKni4rUauZasSwark0y+onllf2MP/pgyqyQdhsn5q8ssfQTS9V40shwa0+qlYxTqdO6KJp/pdkI/t8Yjl56DU6eEP7sW1KgvGW1wnIhN/iDA/BuAyq1JsxnUuKnN2hrZPYIdbUpjwSi87Otg/7BBwIyYKMhjGPUs89Kqrcs5LutSSQ8eSIAKI5hew/1ua+ibr5AeO978O474D1mayjApy1rhDHCgFm7Mbh4j58vpUxPV/IoSYTVm05Rt25L0fPWQKW2tiXFf3ZGODlZSw5MT9i80Bmh4liYU2NE03nzjgzn534ObNufagVWJAPh9AlMT2Gyh6orqe11eB8GY6q//4+Ir2/hVyXm61+X/V5eEv7ZP6T5s+8T/Qd/FeMcFCtJkVcF4d23US+/Ck1D/XSO3e6jjObovVPu/OoXaN67j33BCUBOU1R/AJMdeHgPrt0hrFrZws0XCWVOWM6EIQXC2elGFlEUMr+t2504lhJZ7mOO9a66QNMQfJAKA51mdLXazGsHQjvjUyd9gPW2Kk1kHn76F+AHf7YpuVXX60VJqBrUZCJyhMNDSbO31QrW0pCu7NRnMLRSHPQOmFZTjvMjJskWLjREOiJvcmrfkJoE3wIIRdyqPwMeT9Yxir4hjVKpTfmxNG1nSJlXc3Fvw1oH2rMZfSvF2T9ZqNxxUV6wrHNiE7Edb7OT7BKZhPPilCfLQ0AkA5uSPhEqKHJW6CCp/E7/WfmaXuvC960T3geH85phPCRvcjwKo6XMlPdialqVxfqH2H7MOd2l9zMrDu9RPGIn3aX2NaN4C9saZJatVODB4j7vX97lwewJz01uUbqS0pV8OH3I9cEWv//dtxhPBiwXK776xg0+Oj2nLCr+xz/9uzx6cMwv/cpf5T/+qTFHy3PyuqZ0jt/81h/zMy8+C8BsnvPsc9eZz5a8d+8Rv/RzX+T49JJ+FGG0ZhjHXB+MuTU64IPpQ16ZvMzp6hiASbK1rj4QG0mzJy5Zyy7m1WJjTGp1s6umYNWs6Ee91lTksa0RTIwuFoUA0lVTrOt7fnzsgHX90a6EkxT0l3T9rcFtTlbHa2OXzGfA+aatnSrzcVFeYtvUfxUEuCo0sYk+k5rPEOCLNwb8/vsXnExXPL8vN/IsNpyvGpZFzUvXRHbgfWC6ashizdmyYadXM4gtjQ+kxjArGtFNtud44wNFXjHqRdx9WqyLyaexITYaHwWe3xsyTMRp//A8Z3uQsNOz/On9KatSSvJ89ZkBf+XlMeNexNtHM/7Je+esKkdkJDXca5nbxGrRdgJPpwVpWyJoWQkr+tJ+j8uVY6tn+fC04mRe8eJexv3zAqUMo9RwMJTz6tF5wY+OFmuXfz+x+CAgy4dALzYM054Y/XZSnhtLVY1JPyaNRPN4dFlgtOLPTy5588mS9w/nvP7MmMfTS3qR5v5pzrgX850/ucdgMsDVjr29HmUh4/Rb/+BtpodP+cKv/yyv/tKL3D2ac3JaMBjId+68eB1jpMTa7sEOznmOHx5z/Zltzs+XOBeoKsfWMKGXWA4mGfdPc758Y8hFUZHXjp00Ia8FaO/0ZCH28FK1DnXWJbi2Wwd6bAVYdvrYonZtuSS9BpersqFxmiQy6zR71pbmStu6ntaIvjeNpOrB6VJY635qyWLDN17Y4c8Op5si9a30wXkxgg2zCK0Vj8+X9NOoZZYbbk4ylIJJZnD/isv108FnrwfPvgp/+o82Rpyu4Prp6eYCKgq5ik5P5Tu9HuH8FNUbwOmRpI3//J+1YPZVwr33CB89lHRrV7qnS7+2AFbduQP71+H8VEBSV7+zMyhlGeqLX0V94ecIlydQLFE3npdaoiFswEzLkIpu00Ovrd2pVMvGCXDuGEvV60kRkSiCvWuoyfYnx2Qx/5iDvTVH7exs9LG9PkEp9C/8KuHwPur6s6jtA8L8HFACOo30MczPhe28+0MpffToHmE5FyD84muE99+WE/DRGad3T7l5XTSe9ZNT/N0n6CyGJw9QL7wK56eouiK8+efkbz8ie3pKc5ljBgmhdtjtPne+cY3inYekL90QpvLyErW9A2/8jOhJD25JfVFXgw/COsUZ6vYrhN0bhLND1KMPWrb4qTCySqHGEwGlVUVY5pjxQADjcLipgBDHKK02xd87FlLrTR3Oj6fCu22U2mh9jUHt7aO2ruEPDz9RSF791M8S/vzPNoXzQSoSJMmGLe/S+l3q/TMY/WjAMBpxnJ+glF7XTYx1zKp1JDcfAwyrVh8YQmBZL+mZ3pop+2j+EYlJ1uWF6maFQlH7GoVe6/hMq5PsnmTUudf7tv+J8kfjeMTtwR3G8YR5PZNyRdGwBY/CcDahwSIF6w2dKzpaG2NUW0AdxJntXViXZ5IyPpZhNFy7s33wODYO7gYnzGx7zF2RfIDPb7/BRXXOMBoS6YS8WeCDY1rPiEzCWXnKSX7Mol7wjx98j1d3nuHe5QOOlxfMypJ/784X+AcffJf+IMP7wNvvfkR/kOEax2Kx4uTkghDg9+//gK8/8zJb6RAfAt8/Puajh8fMZ0uMMfSyBNc4JltD/tpf/Gm++eZ73Li5S2wMH11e8rVbd/jp61/ivYt7PDO8RuEKls0SFxy5y7nRu8k43mJgh5SuYNHMSX26rqfZ+JrYRDi/GUepX+ro2XhdFD7WMUvytjSTWRuLYh3LAqYttySLGLN+rdvFgJiIZHwnyRYfzD4AQDiywHOjZ3myfCKlnNr6r5lN14XrgRbwrpgkk/XC5LMUu6OE24Me1kwxWjFv6y5OMsvJXJ5C4zw8XdbMVzVx5FEqYrcf8eCy5LU9w3lZspXE/M77TxmmEddHMZfLSgCi1esamaotXK5aV/Qr1wY8t51w77zg7knO7Z0ekzalnUYGpeBvvL7PC7sD3jqacTv0uDXuodtMQtfWomjYasFR0+pJh1lEYjWNC5SNY3uQUDnPqpYnJRmliIzmpZ0ez4yTtoxXYFY40ZlajW7d3UrB9a3euuD6Tj/C6Ia/9fp1Hk1XXBuk67Rx1XjO5qKxfJqX/Oh0QV57vv3eU+4cjPjw6ZKzeUFVOV66Oebeoylb+1tMJhnv/ukPeLuQLFpv0GNxuYDg+dYPDtnd7THoxQyHMY8ezSiXOe/94L7cL5OUpnH0+zGvvvEsP/rm99l/6QXKsuHiImf/jetcG6eczkrGvZjjZcnjmdT7vSwrXt0ekWWGSRaxGjnG2ZzUaO6eFZyvpObp7iDiaFbhfWC+qtnqJ5S1Y9yL6SdSyD6LrTxcwGhGvZhlW2/VaEXcalxhw1Z3BiKtBYAO04iqkcXBs9s9fvN7jykrx7gvTPivf+U6v/vOuZTGajypknYnvRhrRFN7ntc4J7rfrhrDvyw+FXyqn/w6evcmfjQRIFdVm9qaeS6GD9gUKHdObvDdYxODhyZANiA8Pdm04T16MtowW2VJmM1RvdbAMhrB1q6womenws4NhoR8uXHZv/Qy6tUvE558QPj7/wf82t9CbR1sSiUZI6nW2Uz+rmvUoL9haJFSQDqN1iyd6kDo/j5qPBFT0CqXJzlV7eM6uycbdUamvT1heb0TXebnvoruUuujbZSNoDdEaQMESa+7hlAsCXf/HOZTwvET1HAsqfAQpN7lw/tweUl8fQv1V/466X/735N/8y3MUPSwblFy/P4p+/kfk/6lgNrZhy/9LCrr4/7sHo/+6T22r/Uxg4T061+SdP1ySQgBdznHH79F9IXXoD8U/ej0AlY54eihOPNv3BGWOO2DjlGjWMo8gQDPblxHo02JJGuFnexYz5bBVO3TsdSgv3HTd/rb9lGtFEVbf3RPtpnNNrriqtqU4LrzAuHpY/luVx5rT4rr891vCcDt5mdrS6Qg3WM3z88Jl5eo0UgY6c9g3BrcImrBWqe1HEQD6tZF3Iv6Gwd32DwNqPb1ugi9Vpq+HXDYHIpj3em1eafT3vngyNuySSEEEitPswkE8jpfP07TB3mqklaGg94Bg2jIWXnKh7MP+Pz2G2uzi9VhfXMBSQ+DMKewKejePU4yNQkKjVZqU8NSRxhlqHwl5YfaBcbKFa3e06EQkNwB1trXvDB6kdgkxDpZO/QjHZOajNpXnJdnGG2ZVVPePH2LvC5Y1pKmPl9NyeuaG4Mx3zt+l8QY+oMe/83P/Q3+i7P/iffef0hsLVkas1qVnByfU9cNp3nOFw8O+Knrr3NZFLyfxNy9+4jhZMDWeMjrNw84W614fDklsoayqHjz3fu89uItalfz3sU93j9/zDvhEe+e3ccTeG3nOZ7p36RKqraEluglZ/WUeTVvpQZS/N8qC5p1uSopui/p88z02nnR66cUdeMfELAvWmJJr6ftIzrzZkVmUpogBeyVUkQ6YhSPOC/PAFpdqGWnv8MoGnOkjtc1YXVrjstsRuWrj8kspATW8J97GMFnIf79l/foJaJXfKoVReXYG8SUjed8XrLb6jFnhVs/TrKsXZuOlmqrndP7bCljfr5qWFWO7WFCFpv1k4mEAbNYrdnpx0wyw7xyPDwvGKYR2z3LsvKcLWsio/n5F8bcHPf47XeO+OYHl/xXP/ccoywiaYHpohDXtAvtE328Z5AKI1Y3nqQ1O3UMqUYRR0oeZbmdst2zHC1Kcae3bvei3gDONDJoBXe2M/qJJrWa2gX+8gv7aCWPhuyiG4O8bPhwtsQqxdGy5N5ZwaOzJYNejNWKk6WAy2E/5t2Hl2xNUubzkl/+qWd4ejzj/P5H8gCXEHCNg4snPHg/ZXo+5satbb72uQMOD+dEWUp99AC8Q2e3OTgYkuc1s1lJsrNL0zQcPZpz884+D47mlI3n+HSJMYqPnqZYo3nxYMgb13vMKwGYg9QyzCKimea90xVPphWN9xyMElbVhphJIimjZI2UprJGERtFXnlhta3mfN4+wtZqIqvZHkiR+7rx3NzKGMSGk0XNVs8y7kUUtSxOksjw7FbC2yeSiY7aElpffXbMC+MBjT9dWzK0VlzfytgfRBzOKkap5WgqDPukH7M/3MzPvyjMb/zGb/xLPwzHH/5GqEu4OIEi3zz3ez4XQNDpGb0Xo0cv2zylKIpQr3wOZpdw+EAYQ2vFOX18JKxYx4zlOWG5QkXCqqqXXpV9zS5BIW1NdqQO5nyO+vpfgFe/BH/y+4S33xQX+8F1eZrS0YONwaVLBU8m8rp7LvtqhT+/JNQOPei1RqGx7AeELT18AvOp1Ac9P9uYmjrndadddA41HMJP/RLcfA79/BuobCBF8rP+utQUriasFuIkt5bw3T+E8ZZoKc/+b+7eLEay9DzTe/6zn9gjMjNyz6y9qqu7qrdqdrcosUlKoihC+4iSLEAaG4aBgT0wMIAN27AvZMA3BjyX9o2F8QgaybY0sihRC8VNEskWu9kke+/as9bcMyJjP/v5ffGdiGwBMz2GBxhAfYBCVlWsZ4mM7/++933eQ+h1UY6LfvyI9AfvYK60UT/2eRgfo5bXKJ1dJL15l0fXD9h70CcKEnq9iPZmE3MyFJ6nbRF9+Ss4CzUeXj9gPIjxDY2VhEyuPybrB5DkuBsLpJ0hVrOCsk2oVNE/+B4cHcJwgMpTWFoTrV0qhZ9yfClKdS6YJtsBNOr8ZTFMHe7/fQ3odBw/zY7v96XA/HB30zDk9mmUZ5JIITrVlU5H9EVhqq4+C+Uq+ltfP9HfmibG5/4R+m//AkYjKXALjafe3iHbeoyKAhm/j0ZinHMcUGC8/NP/4//H74h/MNtesP1b42REkqeYhZtd4imDmaN7Gr0YFmk7TsH7LFllGm6TcaFnFDOJhQKiLKRiV1BFelKUhcRZgmVIIVgpnPDioAavKFpGyZBUp5yunaFiV7nVv8VBsI9t2JSKMW9YvDeNpCGduNsz4lyygsMsJC4KGs/0MAwTf8axTJmkwUyT6FouSZbMNKDTggtFkXgkuevr5Q1abouq0xA+aB7jGtIFDbIJvfiYTnTErd5tMp3xtQffou5W6UVDusGEB/0OZcfhRqfD967fYb3d4lcv/RQYY1YqbS6ut3lv+xEPb+9wPJ4Qpxl5mNJebDLoj+lEIZGa8NqNLcplj4PdLonOME2DnU6PnX3RNCulOL+xTJSl1Mo+kyRhvTbHd7fv87jbI9YymjvTWBV6QTZB65yqU8dSpiwQkIQgrTUL/gKO6dCLejNywVShJSNveyYlmJqXhA2ri+JTtKVx0VVXiCRDzmM2CyvQWrNYWsQxHB6OHkpxi3RRV8qr3BtsFW55JbxWFON0wnHUK0b7kpQ0SkYzOchG5czH6jP7wd7wt+73x/i2QZhJcV52TQ5HkmBjFTGWUZKxezyh7Fo0Ky5JrvFtgysLNY6jmPcOxuRaUn2Ox/LYpYZPq2wzSSRXPMs1jm1Q9WyeXyuTas04lolDmGacn/d51I/pjiJ+7ellNqol/pdvb3E4kmSqcwslXNPk4SAg1ZAW8ZqOZbBcc4gz6cqNo5TeKKI/kcVJrWTjORbrTRfXUmituN8J2O6FjBPRtnYmKVEqBSgoTMOYsS3DVNMoWVyaq/D0Up12zcW1hX1ZKliiwzDl8XDCg+GE794fokz41q1j6YAOIqI4Y/dIGlcHB2PubR3SXqzx7KkW860Sc2WH5nyFo9Bk/OA22WQiE0DDpLK0yKg/YjyKGCTQOx5jOzahtsDx0ZMR+1uP6Y9SDNOkOV/n3Ll5whhqNZc4zlhfrLB7MGZ/b0CU5DiuyVLDJ0xyDiYxhqlpug5l16Rm21gmlD2RD1xbrVFyDO4chYRpVtg/ZBy+VPckljXI6AwjBkGCaRhomOXC+45F3bcYBClhkpGjOBzGpB9y2o+ijCjJ+PS5Bk3P5s9vdmZ59Y2yw8+eb/Olm/uMwoyyZ2MZimbJ5vbukJs7A1mIFLKLXINliu74J87P/1s/rx89ds9S0SImBVtxZ0cKz8mE7HiIOS1GowidZqg0lS92raWzVK5DuYK++YEUBFqjjzvSmapWT5A5WSb539WqdLv8Euw+PkHwpHIQSFPUufOwfAr97b88ieSMY+FUdnZPRrkfzmBvNmV/Coh6Ppqg4xRzpTATFVge3e9JETTF8IQhpImYmqZpP1pLN22KlZqOcO/fwHjp86LpnO4XWow8g6PCYZ3BuI/+4XdgaRV2H6Hv3kJdfR79wdtkb3wfY2MN5ZjonW3UmSNUpSa57aMB/sVVGgcjRqMRj44DNlolevc6ZHePaG0e4zzewWqUMJp1nv7lCvkk5P63tzjqPKBWdWj/xz8hCVW2jVuvy7EzTKi3SHeOyKME56lzYjCbjKDWQg+PC9JBBeVVUOeeQa+eRT+8gbr1nhxjv3SCQiqOsZ5MUJ4nxyxJ0KMReRBjOKksUqZdrmkXfarbPDg40WVO05amhrHV0/DuGyeFp+ehnnlBjFFTJujUTNTtoiwTs+KiWk1ZEE0ZpFMH/sdwS7KYRE9xQhlBFpArgzANBcxuVwpUUY5VjMvF2ZwLS7NgYu6Md3FMu8gqF3STNeM4ytjdNV0qdgW7KFimTvksTxnnKZ4lrvC238ZQBncHd8l0Sskqz0xQk1mRa5AVePZp0pEkDRWpSQVEvWT6hUawSCXJo5lucKplnBpZsiyfcS9Nw4Sc2XueJBN2gx1OV87OmKdTiYBCcRjsE2Yhw2RIPxrw+u67bNQWOZx0efXRfX7p0nN88/4H/NWb73Pu1DL1RoXD8Zjt0TaTNOJO7wE3Oo958clzTIKInYMuydGYlQvL7B0eMwkjjo4HDAZjHMdmYaHBf/SLnybJMv7oq39HtztgYa7OF194hWE8KVisBi3fx1SK1coi/f6Ifm9Es1rmbGOZSRLQcOrsTvaIsoil0gqW6VE16vhWmX58zFF4KDIJTqJEpWOdE6Wy2NA6LIxG4paf6zO9zAAAIABJREFURnlOO9OpTskzPTOxpXlCnAub0zEd4iwmyRPhhpoug7hf6D/lelstr84QTobOMZQQBybJGJAc+pLlz7S800XNxxG11I8T7nQC1usu7YrNzb0xB2jGYcrxSLpX05xtyzSIkhy76IAuVQWJVLItHh8PJIoyzoiSnGbZoeaZmIbiaBDh2YIvWmp4VFyTimOzO0zItWavL07unUFMlOQ8s17DNhX/x5vbVD2bZsnieJIyTlIOxhGTJJfvfsA0DfqTmHbVnsHMHcvENEUT2q570s0zFWGaMwgzhlFWoJZkLJ/l0PSt4jYpXubLNiXHYBLn1DzBBnWjmKXcI05zpgjJqRbx4WDCJM3YHyb0g5ivvNtnc6HCTnfC1laX568scaPb5cHWAafOthkNQ/r9kKNRzOPOmKNhRJRkPHtlmdeCK/R3D2FwQPn0RUaHXRgcMDl2uHF4SH11hWqjzJUrK9iWwTf+7AcwOMD1Vzl7vl1YEWIqFRfHMWk1fDzbZDAISROZLrTrPsMwpeWLmcu3Y84VZUqzbPNibY6Dfsh3so442wuAv9aygNBaEobGcUYvkO+yMMmI44xOlNGouqSZgOXDJON4khIVCUmDScwkSmmWXRxLClwxNsni54PDMUlhJnIdk0+dqkspViRmlV0L1zY4GETitPdt2nXZx+1ggu+YmErNuKT/tu2ji88ogM6B6DcNQ9J9inxzo/yh8SpIB1Epgb8vLkJ7GVVtostHJw7x6UjcsqTLNzUtVSriOJ9mvR/sQiKidXx/VvCqcxdgfgn9zT9Fb91DnTl9AqQPA3HWFxGRanVNOow3rsvtxegdw8CYa550MAGGQ/Q0zcg0UWfPge2gu0ci3p9mw08d8EGA2jiNuvISetAB28VYPoWOQ1QSQbkBaHT/SPBJtks+2IV710WXmGXw6CFqaQkOD8m+/CWUoTAunEPfu4fhWDz4w++ymaao8xchjlDPvgxzC7QvXqL3z/+Afj/jQXdCpVdk69p9BjePOPtf/Rp6666M2HPNysV5vv/aI85+8SVYWEL/zTeJ9/u4Z1fESa816sY7pP0J3uVN1OWr0qVOE3Sx8tNhcVyqTXDLkh2/eVmg891DdOfwxNk+zajPxcFKoyHmLctCmalgqdxidBtEGFMKwVTOEcfy//X6jP2qx2OU66KqTfLdHXleR7S76txV9Hf+4mQxYFknyUtTbJPjnHRjPU8QYh/TeM0wC2fJQRpdcDWFmSgFpFkUBgk5miRXqCygbJVxDXG9R7mLU4yerCI/XZMX2eqC6xFGoJh9lFKMkwmTdIypLDxLkEe5zpn35nFMh63BFsN4yJw3J8k4WgDuvlmajXZNV4rMOI9ldJ5naJ1jGBZlu1QYDkRnqnRKrk9+fTXcOrnWpAW70izYlGmuyBUEaUDdqfNE9UmCdEKmMxpOkyiP2A22WfAWUSgOwj0G8QDf8jkMDvmgc5tv3L/JaBJyo3LEc0uraK35vTe/y2Qc8qsvfYJXH9+nVa/wR1/9Lvf2jnj53Cl2R4d8dvM57hw/5MWfP89//Tu/S2Qn7NzchaqN5dpYlsmNt7b4rX/ya7yx+5CtgyNM0+S5q+f5wbff55WffgqAL7/xDmGUsLBQ57BaYqFc5luP32TQH/PspdM8u7jBo+EBO6NDJmmAazocBV1Mw2Lem2PBW6RsV6k5DaIsYpgMCNMTPmuuMzlfRTFad+sMYhm7pXmKYRozg1CcxZiGiW96VGxJXoryiCANabrSiTYNiygZoXVOza5JfKieJjBZ+FaJ3clOcY6TWdE/Hd2bhnRrp8SFKW0hyk7e88dl2x5E7A+kqC4V4+zeOGYYJJQ9e6bP6wwjGUU7JnuDkNPzJVaqLq5pUHdsPFuO1ShMaVXdmSZzmlbkOybDIMEyJAXo5tGY67tj2jWXimcTpRm9MOPFzQoLvsfvvbXLfi/g0kqNLBcWaJjl1BywDUWjZnNuwaPsmLx2r0+YTPW/ktCzNlfGtQ3uH4zojiI25it0JylBkqM1XF2roJTiXieUDq+pZnnxtmVwNE54bq3CK5vzsw5qybWIkoy3d/qcapaJkoydUcCkgN0/7kdc3xtzfavL/m6f0WaLy6daDFaq3HnY42i/z09+5gIP9oYstKtc/84P2Xm0wfqpBWh4LDV9OoOI//QXr/K//qvvESUh4/u35URV53FqNeKDHZ5/foOd/RFvvfmIUrVEtT3HMByyvD6PZRm8/u0bGIaBX/EpVUrUGz4HR2PCScjaxhyXNps8OhqheopxmEjR1guIs5z1usfpWpmFmkur4vDsYoO3DvrcP45mOexxlhMnGZYpsaQrDY+jUYJYKhRJIjrPLJcgAScz0RqW6x7jOCNOJcZ0qVmaUQbCgvV6rl7hW1s9DAW2I2ayjVqZ7zzq0J8kdEdRkXaUzdKn4jTFsSRlq+JZ+I7FMExIso9OOProsfutH/yWfnBXNHOGIbijqfHDtk9iDj9sGnFd6XyePo9a3ICde3D/rjwujlHlcmEwik50f3mOHg5Rc3MzTees61lEN6p6A5ZWBaTe68moPc/lvWmNWlySsbnjCAd0NBQD1IcB7657oh+cgtCn0Po4Rm2eRrWX0LvbMoKexjxqLYXplBUZRahGE+PpT6IW1mTMbtkypnZ89N59VLkO0Vjg7XffhVEPLAe1tgHHHQHkP/ciylIYz15D+Q6qOYc6cw4ci84bt3COjnF8jSqVpAs9mcDyGnNX1mn3DsgGMaYhCIjFBZ/afBm7JNrIg2+8h1txefDOHhXPorVaAd9j90+/x9aNDrUowFmdI9/dJ3rrBt6PPoc6dQbiULrT3SNUlkL3sIhIlaQm5XiAEkB9qw3BENXryKJj2ulUSkIEposO24Z+n2wSY7WqMxlEPpxg+K5k2rcXodtBD0cYjgX1uhyrfg81jcQ83IZhoQWt1UTWcXyAvv4e9PvoMEK1Wiej+jSV661SOUlOMs3ZdWV85hc/ViM8gO3Jg9/qRX1ycuI8Ic4SPNMtwOtqVpTapo0MuFSRMGNRdsSsNMkms/zytEjKAYiyGI3QC9ICqeMWmswoi8ShriTHezo690yPg+CQpNBhavLCMKSpO3VMwyIvDEFRFhX56pJproveXF4wH6cMUd8uFfshsYue5dENj2d551MDUZRFha5VGJeO6bJSXqNsV8UFj3Tvqk6DB6Mt6k6Do/AQrTXvdN6jFw2ouRU+sXKBQI8YxDEvr12k5Tv85LlnWGlVCNKIC60lgjTivbsPcS2LQZ4yVynTi3rsjno0vQo/+cxVOlZENwyo1kqEUczGapvl9QXu97rMVcp889W3qZQ83nnvLlbZpVwv49gG33vvDod39klNqNbKHHT73Hq0x6euXqTmuriWxTiJuHvcxVQZu+Mu7VKTplcvwgJ8LGUVRiGhD0zSCeNkjFJqNj63DXHTT7uSo3SMRlOySpTtEqBJivtVnSp2wUCVcyW57g23QZhFhFlI1akQ5cKBlZQmn5bbJMgCelFPRvt5jF+kVCVaoPa+5YnLvXDGK1WkL5k25+qXPlaf2a/f6vzWw+6EtBhV7vcl1cZ3LDzHJCg6UsbULASUXZskg9Mtj7mSy/4k5P29ERXPpD9JuLBYlmjOULSEhqFI8pxRkLLS9OhO5JhqFI4lcY8lx2St4dL0bb5+55goyWYMzSCWtJozc56MYUsmaNgdJByMEqJU7jMO01mWu2sZdEcxZc9iruaR5jlRqjm/4LPecPjuVp+d3nRfpcA+GiVYpkHFE4yPBq4u1WiUi/jbNCdIchbKLneORzRcm04QcxwlvL07YacX0a66XNlskLmSOW+YBspQfOJSm+XlOr1xjOdaxGnG3uMOtl8i04py2WESZXS6AalSvPzsBgPlcdyLcNuLaGXSWmrhNpo8fNhh49Qcd199ndjwCB7ehWoL0/VwPZv9R4fo/XvEyiNJMiajiF53xJNX16iUbIIkI04y+v0Q25FzttIssdlyqTo2rikJdK5tUHEtDK04DhOOJ+ls3A5Q9qfTIfBsg93jgNEopln3Wah5aA2TSNBLzbLDZsvj8bF0uR3bYKHm8UTbZ2+YMAxSTrfLHAQRnUlKu+rQKtlcW6uyNw55c1uMWmGcsdT0qXomo1Cg8o2yQ61kzyQf03NlmQa/eGXx/+fYvXs46zrOVKZTw86Ux/hh5/tUYzkdb2YS0zgbgZdKAqrf2zsZvY+ETammRV4cy89pglG5DLWGdOCuvzO7TxYkWNWiw5UkUKnKqD6J0cFEXgNkrJ4kJ+P5PJciqVaTYrU1B46Hfv8dyWMfDIrnq8z0Vpgm2vflfS4sisZxeQ0djlGVBrhl0UZaNuQpqr0O0UQKz9e+Cmcuob/+ZdSpM1KknjkPno++/QFqeR12H0GlJscqDFC+z/rTK8T7fdTmJnrrLuxsk+8dYL5wDZpzOAs12scBu3sTNlZlFfl465gNfwvvuUtUWyWc5SZR9JDdIEZ97Sbnzp6l34ukv6E1o+/dwllu4D15uqAC1ND378L9+6if+2U43IO6D0ubKNMSA1ZanB/TRnkVWD+HnowkXMD3TyI2Wy05t3t7UKmgp2PuhQW537R7XquhFhZm15Q6ewa1sCgLgDCYdSuNz3+R/P/5HSESfOan4Nb7qNWz5F//41lnU00pBFNjmGmeIJuShOx4IE78KcrpY7iNknGBJJJO09RAA5K7rtQ0dzxC6xw+nHWOTAOyIjrRVApbCfYmSAujn1JFxzQtUD4WYRbORqogfEfPku7L3kQ+h1oL59NSlmSAF122IJ0QZ9KJHacydrUNu9COFuxOFK5ZmbnYp5nlnbBbwOJl3C8JOQV3sMD+RFqiGUtWmabbIMoCbMMpjBpp8b4CVkqrHIUHkrW+9TWeXbzMv3j7G1yan8czLTbrC7yy/gx//fBN2qUqf/3gHRqeR5imdIIJlmHwyZeu0O+N+JknrvCXt97HMAz6vRGeZdEuNzAtk1Pri9y5t8Pq4jxZmnHjziNW2i2urC2zsbJAvSGmmnRnyOujd1n/hSbDwQSqNoZh8MH1+7TnGpw9s8LuaMinNi5w42ibmwdH/Def/CXePryBa9mcrZ/CNV3qTm12fMp2BUvZNJymHO9kVLjf+2BAyfLJdM44mcxSoqT49CnbZTnnBUdWxuImYWbiWz5z3hzb423CAhjvmg5PNC/zbuddcp1xvn6BvWCXkl1mq38X25Qcc0NNnc7JLERAYcwWSZNkXHTGrZkD/uO03e8E+I7FKExn3cvpz0xrXMek6kmizTStyLEM0lx0uqaheNQPSXMZRV9YqhSZ24VhzzFnjMZykZcepTmdcc5SzWF/kLDedKl78ppfv3VMvWTTHUWESYbvWCgl2KyqY3O/F7AziAmSnGEgHcmKZxNnOSVXcTwSiYbnCFy97BgsVR1cS/E3t455fasnCUJ1j3rJFhx3wWZuliyJ3PQtzs97rFRcjscxFdeaGat822QYpSz4Lje6Q+Is42sfdDi3WOGtW4e0WkKacG2Ti+tNDvoBWa75yncf0GoJPzaKZLF77bPPMpkk/PizK/zVG495uLWH67lUKg5BnDIchKw/cZpHtx5CljHoDgjvvAvzmwwGbWrnLwMQexU4uM9Rbx/HfQEmA7Bc0Dnx0T7ML3LxqXV2d4ec2mhw2JkQhim/9unTvHa3y3zVY75i8fA4nskZ8oLt6VgG6w2fSZryqBdSdi2ConvpmHKepwitKM6wLIO1+TJLNYcHRwGWqVioeazUnZkp65mNOpfbZf76bo/OJMUxFRXP4hcuLvIv3xKH+z+6ts6rjzssl3z++MY+dd8iiMVsprUmTpl1pJVSlB2DIM4ZhslMKuI7/z7Z7r3OiQay2Zwl22TdPuYTF6SDVKlI5/LgQEaqWSaFxPyKsC8f3pOCpFRCtebQveOTbO9ppOK0wzgYnMQhJokUp7UmLK2h/+6vpZjxPBnbTxXy08cqA324f4JBsixBIBXg+Hz/EOVYwoCs14vcMlOKvlpDitPHhc50RaLxGBZYJc8XN7nroS5dQ/lldJqgSrWTQtuyIY3Jt++i5ldgeIzeeg/OXkZ/9UvQaKDv3p7tr7r2EurcE3DcIfrW6zjLLdRTV9F3bkG9jln1qP7aL8t9T50n//IfYzRq6HfeJt7r4fzYC1SjN+gPYj54OODsUplTz66w894e9YM38NtVjv7uNkYBe93vhzT/r28wCFPGWc6jBwMqFYd4b5tN18Y6tUr+tb/C+PRnYf2U7FOlCs0FONpBh4FoLks1cH1QBqpUQy1sgDJkTP/4wcl5HQ5PuK6jEfk4wvRt0c8mCbp7LDrhRkM4sN2OnNeXPgODLty8LhD5NEX9/K+gX/1KYTp6BtVeRxsmejKQ1ymV5DpMEnnN6Yi9wHYxmUjRahon9+33P/LS/4e6haloHOM8wTUdHMNmlIwJs5CG25h1JTU5YZqJC77IIi9ZJdI8phN2CNIA26nimi6jZEyqJQoxz3Mp2oqko3E6kUx4MtJcAO2u6VAyS+wUo1XXFBf5tKCY5s0DDOIBecF7tIoIzEznDJIhQRrgmi41p45nyheHYzozxqRSalZYuaaYU9BimjGUwjE9ynaZeW9h1qGViMx4piUNs4B3Ou+wWd2gH/e53r3FK2sv8r+9+WWeWVzifr/HOImxjQ6WYXJt6TxxnvAnP3yLpaU5XlxZ53s7j7BNkzCI+C9f+Wn2xkf8J8++wu+8/W0azSrv7O1zb+tNvvhj1/jauzco+S6PPnhMda3Bs1fO8ea7d/jdv/w2Swstbtx8QNHSBUPx1VffwrAN8m7M/sExS4stdg+6VGslltst/tVrf8evf+IlLs6t8Hi0y0plgXm/xYPhIwbRmM3aCgv+AhW7wnHcZa28iWdKPnyu8yJowCbLsiK+VL6Yx8mEJBdDmRjN5FinuWh2p6akJE85WzsnUoksppt1SfKUJ1tPcm+wRaZTFkuL2IZNy50jzdPieW1swyZIQzGJza6RfJaYlOQJqtAkT9O3Pm5brpkhcJxi9Hw4CBkEMReW62SmQXcUYRiKNNdEiUDXTUOxVimRpDl3jkKCKCP1NUstm9tHkjjjWKINnPIfS67N8STFMQ18Wwq++YpNwzc5XS/xB+/sk+Y5QSwOaVMpcVUbCruIYLx1KPxewSwp1lsecarZ7sUc9UN816Lm2yxUHOziu6flW0zSrMgNjykXnV1TKSZxitY2vmOwUrPxLJPNahnfNjEMhWdLJOQkznBMg3GS8me3Drm2VuVoHHN9P+Dp9Tpfeu0Rp1ZFevNge0C97jIKEyqeTdW3uXXzANs22Vyrs/XgmDTNOTwc8ekXN/nh/S7nNxtYlsFkEvPwwTH9Tp8nn9ngzs19DNsmH/cIB4q5516i8+6bfPBnW7ByQb5fXB+aK5Al7Fy/I9+ROhfZYqVJ3O+xt1unVvd5681HvPiJTXzH4q2HfZ7ZbDCOc3b6MYNJzDDKWK2nRPWMbhhzrlWhXrK5OC/+hx/sDCm5FkEczmJR00x0nVpr5ho+m02PMM3pjiLSLKdZsqg4BntFbvynN+eI84yjYcgwEPnVP35ulVe3uyRpzidO1bBMxVMLNbbHE4ZRSsOX47jfC3hwOGah7s1G+9No1lGY4lomJddipeFzMPhomcxHFp96MjnpLAZy0RHHGLZ5MsYOAsEYWRbowqXcasnYORyLrrDIPteDvozMg0CKNq2lGNB6Nj5ncfHkNsMQjtZkJMXCtNCs16HTO3k8iDN+alTxfXGglyroO7fQxz3yMMWqiLNa+b6M+WsNcZx3j046okaR/Z6mUrxunIW5RVStJTno5TpYLmoGPC6YomkkPw8fS0fpeF/G1R/8APXUM2LCOTwU7epnP4e+fwfluFCt477ykjAzW/OwcAyPHmHONQqkUZ/sveuYpzfQO7uoxTbmMIDRCOeJ03i3DzEL7MH48TH9QcxwlOAcTFhdr7G2atC9kzDIMvqDmKVi9ae15qgTcPlHNrCuPgEPH6Lm5wS5lGdSUDbnYO9xAY8PYdBFj/qotfPi5FdK0qsWNuBCKBGcpdKJUz3LZiYgoxyh6nXR1hZzJOVYJ8af0UgKxNWz6K0bJ6Yi3we/ir55UxYwn/gJ9P33odpEf+PPZsxXTFO6rNORe56fxH8W8g7Dd08QYVN5x8dsy7QshsyZ8cacsRezPCVXCgOzwBSZ5IUxpOJWigx4MSaJa1nul2nJPzeVgWmIplOn0sn0lMItxvLTGM40TwmzkDANMQvcU8kqE6QhjmEX3U+bVKczYLlteTOIeJRGs7+rolie6k1NLeanUTKSTus0IQdmj3FMh4pVLRBBmSQUmT66yIY3iqJzmIWEacDt3j3SPKEXDyjbPl+++7e8vHYGyzDpRSHDOOaXL/0I37j/Q2zT5EJrlV+69hz3eh3mSw3Ot8a8f3DIXKPKre59hnHE77/2Gmsr80yimFa5xGCuxu1ul1OrbY6O+gyqNpWSz+PHB6L6OQ54ONhhcW2e5aU5dneP4DAgqnosL7RIGmJU2NvvcvXKWZ4/s8Gtow6tuRpHQY9+FHG60WaztsL7nduUbZ/jcIBtWhyFx7y89AnmvYXZ8fStMm1/iX48KIq9rDB6WbNjaCiDkuWLXCIXqYVvebNrbNqt9K0S3XFHRvhZQsUuk+YJh8EhjumwVt7gMNjHNT2uH1+nbJVwTBuwGSeT2TnJdFbQGHKMQnYxNc5NX+/jtnWGIa2KS5pruuNkFn+oNez1AtwCHu5aBmmuiZOMwSRhruri2gadScw4SovQCM3hOGUSpbMiDwQIDtKpSrKcjZZPmObEqcaxRBf67sGIqMDtADRKDkf9EMNQRfcTHg/CmU+04VtUXeGRXt8bMwoSKXht0f1VXZPuJGWubJFqzY2DENcyWah75LkmywXPBLDWcGi6NiXLomRJ8erZkoCUZAJTt03NURDRjxN6Qcr3Hw/pjiVa8qvv7HFmTUwxu52ARsPjpfNzvHrjEMNQtBs+T15eYlx0apeXq4xGMeBzf3+IbRu88fYOtm2RJCnzCxXGgzGPH/eZX6wTjAPyUg2/XqO734VyUyg2ncewsIFdKpEMMwhHUG5QrpfJaxWCcQBRyOoT51hYKNHpBDTnqxx0JwRBSqvl86hrM5jEeI7JoOCUHg5CzrWW2KyXsUxZQDRKNpfbNe73AsZxRnckJyrNclzbxLUFsVQvOQwjKfSFRHBS4h1PxO3eKju8sdOZOdLbVY9BnPDa3WMqns2Prs9xrzem7Xt85UYH37Eo2QamAbsaBkFCs+IWCC/5ExXkA6XEvKQUBPEJT/rftH1057PTOTGCTM0/rotyY/nyzrKT8XkiFn8A1WigSlXyB9fFzBOnKN9HOQ75UQfVbMyMRzMoeAGRV56H7nQE2H7xMnSP0D98XYrgclnMRJUq5uGh/Nv3paN6tC9Fr1+StJ79bXT/WBz2uUanmWS5e544vAF93JF0n35X9rHdllF7cw42zglSaOUsqlQF2xU4vFJgWLKySeJZoZbvbKHKNTkeO/fkPXQP0T/8gXT0funXUVEAG+fQf/5HqPMX5PglMaxswN735JgPBqgf+RT0OuiDfXBdzLVlJn/7FkbZwY5TlGOR3twijxLmzy/QaFe4/f4hF6+tMNzqoYBSanD3tuTSAjyxUGH/OKRRtlldq2KWHNZXmoRbhzhbW6iVFUFe7WzPjD6q30WPR6jmvBTS7/0AnnhG8t+VUey7dJDV4in0tVdQ966jp+dUqVm3WjUas6QoOh3Icil2HUe6nlOpQziGUX/WnVQ//tPo//O3yfpjrM9+TlaZ1abcZzyWMX6SSHe1P0QZCrXYRvf66CzHmC5OpuEEpgn7+xJJ+pEX/z/czTLsWbFoKJOSXSYrIhAVxszckeTGzDQkefAOR+EBGkEy2YUbflxwOzUFazOXYrbhNjELNmOQyn180y9iJ48wi+jOslUiKRzpjunMwPVJJvGMjulgKpNBPJwZorSWzmpeFIxmwSOdonem7udpV8wxHCp2mSRPqNo1ylYZu+BZmoYtyCUUYTZhkk7wTZ/3u+8z57UwMLjbe8hqdZH7/R2+f/8R7/kH/LMXfw7bsPj86XV+/4Nvcm35FI+HR0ySkIut02wdH9H0atw9fo/fvPqjPBjs8HhwjKEUl0+v8u6dhwRBzKHvUC77bD3aJwpj5ufrzM/X+eDWA544v8Hh8QBSCcDY3+lg+jamY7Hy3Cke3d/jUGs2VhbwSx6nz6yws33EnW6Xs3MtjiYTbnbEETuIInZHXUZxzJlGm5pb5rXt23xq47IYsJQYe+I8wlI2rulzunqao/CQfKILDa90uj3TIzNEWqEwiPIA27DxTA9TWUVaVoHBSgPGyRhLWeRGzmpljdu926Q642xlHa1zfKtEmAV4podXLDSmcabT4tJANJ5Vw5yZjxTSYZsk44+l4cgyjVnh4RQGjjDO8GzpNE61c7ZlQCIYLq01G03BDe2OAyZRSpRkVFwTz5JO6XzVm6XgWKYizTQLNXG6lx2TXiAd0CuLFd7dH/GoG2Kaioprc3beQynFw6MxjmlQ9y1WajbdIGW5JglCjqnoTFIGRZTih93nwyBBNaU42e7H7A0lPWcYJszXPFolm1GUsdZwMA1F3bHZqJWp+ha2KZggx5KiexRG9KME2zD4zsMeC2Vxax/2A1ZbZQ76AY8f9zk4GPGzP3qKVsXl9JzHn7yxzcuX2uz2Q5plh2fWa7x6u8u1Uw3+9PXHfO75Fd591CcoIijb7Sr7ewMOdw7p7Haoz9cJRgH9Th/Hdag2q3R3DmmtLND9YBvcEkZtlXzYIzeb2NUqi0+c4fH7t0l9l/nlObRuUC47PLizi2W1WVqqcHAwJooyoiil2w1I05wkyVhrV6n6NkeDkGa5IubJLCcq1luebeA7Jj9+eoHdYchfaFlMuLbJJEqOVe1qAAAgAElEQVSpeBZlz8I0FKYBnWEiuK1WCdtQ7I9k4VEryfi9G2RUPZv+JOYzpxv87vd3COKMLzy1gFIK1zTYnQTkWuQQ0wCAcZhgGpIRn2Tivm+UhfV8PJY0vCzXbB2MGYcfvVj86O9f1z3Rehbj9RlAfn5exqt5ftIVTVMZz88vSoF3sCvdqvFERvODAWqxLUXsaHRSiNg26vQZ0WsWhiC1cQosWzLjPU/A73NtWFqBB3elQ1kumI5PPCvJOwWiST++LxrSiURmGr4rRYlfxCpm6YkzOgyke3fhkrzvxrwUnc1FVGNetIqWI4Wn458cm1QKTx0FEI4xljbJ770vtx13hN9Zb6GefEpc93/7V6jT5yCJUc+9gHrieXR3D3X6KXRnB+P80+jxALV+Xp5jZwuOi7Hz0hLemQM6P3xIaRCSRgl2tRgjzldJxxHnLs3hbcyzdP2Q0z92Buunfor9//m3af/6T6DOXUJff5eNrfsY7XnU08+jnvoE+ht/TPkZjXrqOfSrfy062KMj1Nlz6PFIAP+lkhSZfgmefhHcEvp4f5ZPD0qOjeVgnH0aTj1J7v8F+vq70q2eam7X1qRbnqYyPm8voJaXpTvdP5YC/ZWfFJD9ZPKhzPg62WCMubmKevLFk67nV/5YTEmehz4+htEIY6kt14rroqpV1PHxiYTDNP/+Ymem2/h4bdORtGWYs1F1rjNiHVO2SpL1rsW9DMLjNA0ZuRtFhKY8XuIMh+lwFruY5OmsGHVMm/LM+COw+opdmUVpTpFGNaeGY7h0wiOMIh3HMRwWvDaH4QGO6TAuxvqOaRfsUFOKnoLpmWkxKSV5gqUE66QwaLpNMp1Rd+qz6M+aUyfL0+K1XGxDNOpa52idCzop7jGIB1xsXOCdzruUbI93D+8RZTHt8hyfPHeaplflX7zzVX5s4zxRFvHZU0/x0uILjNMx5+oXeTx6wPMvPU+QTrj26edJ8oSW10TxAWEaca65RJxl3NzaJksz7mxtY9sWZd/DSlLG45DLFza5tLnC4WGPH//CVb548RX+uz/5l/wXP/45nmhd5Ht7b/LB4Tab9RbPLT7JM/PP8Kf3/pzkqZQXl57jD29+hfb8Ah8cHfLKxnlud3cZxTFNz8NQijP1dS40z5DrnO3xNgqFXXSFTUu62lWnQc1pYpsOO+PtQssr2uCG05jRB7I8o2yXqLt1pvGdcZZwuXlZdPHFZioLqyhOW26TBa9NP+6h0TwYPqDm1DCVRZwLZ7ZSAOoNZVC2S4RpiGM4BaDeIv4QEu3jGK/ZLDtCCChG7lNN5yRKWW/4REnGOEopudJ9rOU2jYrLas3BNhWTNKPiWYRJRqbhXieg5ju4jhQljmVwNAixLYOnTzcYxwJ0Nw3FpbYYge4eTvAdi9NNj1NNl41qiQ+OhoJmqot57+XVFu93+ozjnLd3xlRck3bFpjNOGQYJrmVglB0cyxR+ZFZkhtsmri1O6NVWibNz3gwBVbEtFkveLOPdMg2cAmoeJRmDIOFwEnGrO+ZwnPAj63W+vzPgbLvMzd0RvYlklF+7ukyz4vCd9/f50ScXGccZP3dtlc9szhGmOafnS+z2Qn7mwiJZrvmly8torXlls8U373UZhCmnnvR49U6XvaUavV7A47feBbdMc22ZcBISBRGLp1a4dGGB9w2DT790it94boX/4Uvv808/d5az9QrvHvV568UN1hou15brnJ0v87W7Bwyj03xytcUffLCHfW6eN+4c8TMvrnFjd0QQZyw2fLTWPLFUpmQbTJKc7UGIZ5rUHJsaYJuFhKHi0K6LROUbW106o5iSaxFnOaebJUZRRpZDnORszFe42PZxLcX+ULrqv3h5gTjNORrJwtG1TYlmncSszZe5ttzkTndIzbH5q1uHtCoOVddkZyD819W5Ms2SyCQWqw67fVkQJpmmXrJnXc8kzf/e74V/0/bRxafWJx3Kqds7z6XwnDI+p5pHVcQgApTKUuDVGqJZrJQlXWY8Rp05c/KYaXyiZUknzRLIuy6yt/X7b5+YhQxDNIhRJOP7PBezUK0BpaoYeB7chXv35PkuXERVkCSeMBTWY70uBWkxYleNpiT82A5cfAbVXCgc0jUpuECSiUxL/mTF+86LFnuWCjT+ndfgxZ9ALW6ik9tw6WnRLZZq8GgL5lbIX/8e5sufRs0twZmnRC+5ek4c8JWm8EQXT0lHVRmwcYl8bgm1tAlZhnnlBdrPfh+dpoz+9dcZHY1Z/Ge/gX7jdeyz6+iDQ5ib49w/+QLq9HmMT3yOxf/9KYz2BvgVeOmnMZNI9qPo4qov/ufoyQDVWIRLnwCtybfelUjQyQhKFZTjo4OR6FcMJeMG2zkpPAsIPYaadZTVky/C4T46y2YdZeWXwHElpaoAveswFB5nvY6uVlGnr6BvfF+eL8vkOvvhqxiejbp8RY59vyupS92uFLTlqvBnXVfCApotSag4PpLzPWXPTq9Rrcn6I/6dwbP/QLesMOSkaVo4vO3CsS6FqEJhGAYW9gyXBFJsojVVu8aROiJXYjwJ0gntUps4SwotaTxLuZFuYg6aolCIGcZDwjQsCkSFwUnEp6EUFadCySqL7lRrenF/hmgqe61iH1LCNKRslfAsjyzPSHNJJ/IKZ3Suc1ruHHnBC204TeFP6hzX9HAND1VwInOdz5KKxsmIR8NH/MXW6/xnV3+Jy80neLvzDj9/7tN0w2NMw8RUjzhVX+Frd25wZe4SS6Ulmm6Lil2TJCVlca5+aaYbnR7Xs7WLrFfWWPSX0Gg+vb7N1hP36MdD/vlffpnBcMx/+7O/wJ/feZOzzRaHkwmb9Saf+eVf4Wz9FM/NX+Nf/+Y5FvwlPNPn2bnnZ68xTW/6x5d+k3EypO7O8WTzKlrn3B3eZrm0MuvoOqZLP+7NGKp2oa/0Lcm/TnVSpD3lGJiYymTRW2KUDBnEAwzlzsbvpmFiaE2oc0wMJsmEVKeUrTJKKepOg250VIzNc1zT5SA4wFQmTa9JTk6YhZSsMmkuCwjP9gizALNYSEzP6TgZU7KLLnnBmxU3vTzHNFb147SZpoFrG6S5OTMJKQVnl6qzIqxWcqS4UxZ5LkbApiddw8WSi1JiGNnvh/THMVc36nTHKa4lekmnMDBN8UsgEZfjOOf1ByP64xgDJSo226QTRuyPEuI0Y7XuUCviG19/MGKvNyHLNbWSw0bDZa5sMYxsDvsh9ZJDu+YyKjieni0OesdSxKlmqWrTLrkkec68Lz8NFCXXFF2pqUiznDiFcZSyPQi4czxmux/zg3td1hsOl9tlvna7yxeemudhLyJMNKMw5YX1Knd2B7y4XuNMoyLoH1cQQyjFWssnK4xISoGpFJvzJZarHs2yTZTmfGZzjoNJRC+K+Z8MRWe/xz/94lW+favDlfUGh8OIswslfvWFZRZ9j0tLNX77N56nXrIpOSbnFiv83BMaQzHLTv+Vq2v0JwmtisN/v1QhzTV7V1eo+RbplZMEosEkYX8UsjsOaXjQdB2qtk2OFii9Jb+ncxscy+KJxRp7k5D392AUZbSrHi3fwrMMxrFkv6d5zu4gphekLFUdqp7FvO/ycDDGs0TWsFx3ee9wiOeYfPJ0jTTTBGlG3bXpDiMavkWzZHJzP6HkWizXXVq+Rdk12O0ntMo2hlKYtoFdLKCmefP/ru2ji89p6sy0exVFMmKfshLHYxmXl0ridga5r+Oh04K9Wa8Ly7LTw1xdOmFBFsxPHYQQRtDrniQmGYZ0w6ad1uFQuqWAfuPvTqItL1yRT+oPviUF6eHhTB6gxyPU/OJM46caTZiTsTrBRPLQlzZRXklG366MZ1W5JmYi2wGUOLwtWwpCraXwnPTBcsn3H0jhubSGfnBDcET1ebh3XdicV06hVzdR565gXf0RVKUlBZqhRGlumIJgAumqKgWmI8VhnmFcfknuk+eisTz/HOQZVb9Eda4N5QrqF35FOo5+tciMz0UWYDkY5br8n2FK4VyqI+D74rRbLsqvyu2WI6959VOzInKqu1VJJMVnPEHnOcoro4OR4JbyvFh4xOAUC4jaPFx7RQIKxgPoH6Pv3JSOue/LtfDMOuzvw2iE9n1BafUOoNdBXftRuPUePPsj6C/9nsRhPv1JIQc8+QL88Dvipg8CccW77oku2ZtI0RuGQktot9Gj0QnXNU0xa2Xy0cdT85nkCSoTA46MNpMCpWQW8O9UnMqFhtL4UAxnohOiLKRkl0jjlH7cp+E2PlSgmqQ5JPlEup+GM4tZ1GjSPCPVBeBd5zO3+qPRIxl/K4uaXcdQBo9Gj4jzeMaTdG3JhPctnyRPWfAXZp3PJBcHZcOtzwqoXOcMEjGNuYbLcdalbEnKUtOdkxFwkSKe5Al7kx18q8SD4UP+7+vf4rnlTX548A5Nr8ZKeZk3D97DMixeXr5Gt9njufln+f2f/Qy+VQYoXlNMOffGt8l1zpK/jGN6RXEnHawL9cuF415hGw4X6k+gtab28xXmvBau6XLlxcucrZ3HM0tYReyngVAH1iunUcrAUhZKGbgIXcBShRbT8HBcF0OZmJbgz55qPiuLdldMWLKIqBfH95hxMmLOW2CQ9KlYVTKdzopy1/TQOscxPdbLm4zcIUE6IcxCDiYHM+lEmIXMe3OMivG3QvSgw2TAJJ1wpnaG7fFjlkrLvH30FhW7woLX5sHwAXPeHAfBPnW3TpRFjJIxuc4LlFKCldszeUWQhtSdWtHJzgvGrMYzPQId/If9MP0H2CZRSpxkVH2bSOVkWU6z7M7A7r1xTMWzWao5POwERElOtWliGwbjKONmZ0KrbLMdpxz0AzbmhZYwxReleU6vyIX/wLM4M+czCDMsQ9Ep9KFpJp8TQVpp/vr2Mb5jUfFtNmsl4jznbx52aJUtRpFNFGe4lkFnknK65TIIM1olm6WqzSjOaZUsbFNxes5jpSaxltuDiCTXJLm4tI+CiOWyT8kxZznwWaEFDeKM250hJctiux/zN+/sMtf0ef3+EMcyeGmzyt/c7knBdKpG1TV5bqnJK7+yMBtoZbmmP5ER8e3dEZMkZaXis1CA1SuehZEq1uf8mSnXsQw25ktYhqL06xYNV4rSVzbmWGsJRN0p3qdS8hpzFQejGEPnRUc5zTWq2Jdcayk0s+nvUHnNPJfpwXQx4FoGNd9iueYzDKRYDZMc21Qzl3qUiAQjiIWx+cJyi8utGkdBxKNhwB9+f5eVZomqb9MZhDy7vsCN/QmDSULFNam78v59y+SLTy3z7YdHnG9W+MP39mmUXc41qvzddpcn56t893GPVlUWEnePBIklSK2c2NEMBwn9KGMSZaw3XTqTFCOX6Ncs16I9Df59xu5ZJsWbbZ+M3kF4n9Mx5mQiP7MMHYSoOIZ6SzLXb30wQ98Yni056H5JxtBxDHGMznJxIU+B4MVYdopU0kEouCWtBf1U4JzUxobo/x7ekcITYGlJCppSCXX6vBSXIIals5fA8VHNtoy3K3XBJGmNTiL04WNUoy3mhWiCLjdQ9fmi6MwFG6XEAKXHA+kGBmMpTgF99wbqxU8LPN9QUpBOBqhnPoUq1YuCs3ieJEMPj9HjHqrSRD+6BVmCunhN9iONpRvqleU1TeGHYkmkpfGF35CiEqRQdHz5OZVITFXh5odOb56BQXF7fnJ/wzrZR6Xk70l4UrROx+qlmhSWhiHdWr8q989zQUsoJQVumoDtoFbOCqi/35WEq6MjOT9xjNmsyXFqtVBPPS2d8qVN1OoF1OKmyBmqTYH01+uojTNS/Cax/AnGssgBWQAVvFZVr0tXNujLYmV/Hz3tehrGyeKmVpPr9GO45TonLUbnuc5mWs0wTWZjkCiLcJH/T/OEXOfYhk0/7tEJOzMjiTidy5hKYjrDNJs9x1RzKeNXOZapDgjT8CShCMUknRTmJqMYwTsMkwFpnmAqY1aQeKZHy20JyNwU53TdqQPgmd7MbW0qkySPMZXJ7f4dVsurBGlAkic4hsNqaR2lDLTOybSglPrxMf14wP3hfQxlcHGuTcOt8ub+XT5/+iVc08U1HVYri3TDY76w+Xmqdh0DgygPCdIJUR5xFByyO9ljwZ/n5vFtdkdf55W1l2XsrxPa3iJ1pwUF61QKUgPTMPjJtZ+SeEu0FJWGBwUxQOgDJ9pHrXPy4txM41GnLFTJGz4ZZ+niX3EeYygDE0seozWe6WO6Ji13AdtwqNqN2ePG6RBLWaS5sFdd06dq14vzGdGP+ozTCQ2nTpLFM56qoUzqTo1Up1TtGov+CkulVRSKU1WHbtShZJflcXlCrrPZ9TjVEIdpWOjKXDGbGRajZIxtWGL8ivqC45qi7rTIQ+L84/eZDaJCi60UhpJs7ZJjsH0czgDz4kDPiYs0n1GU0XQdtroj7h6JLjZJJVd9oylj7XGcc6gT4kCwPJZpYBkCb/9/uXuTIEvu+87v88898+21V3d1o1esJEEQBAlqRFIiRY+sJbR4PHZ4wuHw6OJwOHz2ET75Yh8cc/REOCY84ZE8lGckeUaSRVLcCYDYgQZ6QXfXXvXq7VvumX8fflmvqAMxEb4JiagIoPBevvfyZVZ+/9/fdzmvUpRcRmmp8WzpgB9FkiVpmYqnN+useg7vDybEeYmhFLfXazzqh6zUHD67VcM2DDpBTpyVhFWjzVbV6e2YJh1XHOx12+Kt4xk122AQS9B8x3O42hDSJytK8kKTlzKuHyUZD4YhTc9kZ7PBC1dbvHc45ZlLdQZhTt2zWauLFvE//cw2Dc+iqPrre3NhL3thyqNhzBMdlwe9mD8f9KSjvOMT5QXXm3U2mi4N31rqVpOsRNkGL11ZqZhYiTw6H3snWYFlGpSlmMKKqkwly0uS6hjJn8iqfEepZd8KiEHIMJQw0pZBUaqla1wyT01W6w5u1WIEUJaaUZhhV/rdKC0wFKw3Xcy54nAe8f5JiGkoap5Fkhe0ag6mUjy9GXCjE+CZBps1jxsbNa6uBhiG4re8LbqThI2GzWc3OwRVjBLI52r7khoyjUVT3PBt2r6FYyrGUUnLNTkahviOFI2MI9GVKqXo1J1lisMv2z4ZfOY5ZZyiskyCzm1bgOFiIY7hc+1cFIlO05eGIrWyTfln/0L2EYbkoznW7Wuo1gospugsWzYOKctEeVXGZxXJJAyWh44iqWKs2DX9+JHoEkHA7+FDYTFbHRm/b16GQRcu3xAwV2ugN7ZR65flOe0NYffqbXQuJiodh2IoWt8RE0u8QJeFjNvrbQF8Rb6sx9TRTEBlvYNa3UZfuoEenMp4PJqhzw5QL3wdPexiXHlSWFMQ136eUd55FX3/A5QfSJ1nqw2Xn4A4Qv/Fv0B98w/QC9kP/VOMl3+ryqr0qxG3JSxtBQIlQ9UU8IgCrS6AYJlfgEuoflcIYD4/L/KqKKCstLDnLOm54920LpIHnAuz1nIzTGiuXlSKJgt5TcdCrV6Wes6bt9GNxkXt5Wc+BzvXMD/7Vfke0xhaG8ittFmF1G+gZgP09g1ZJBQ5+rmX4OxQFi6eJ7ph112ymlprVBILQz+smPRuV4Bosynn1fq6SC6yT16V/X3dSl2wyBJMw6zC5U2yQvrM7Yo9O2ecjKq96Dx8/MPRncrxnizZR6cKEs8r9/GFntKRHMZc2Ki8lP7n8+ijuJAInSiPljE5hjKYZhOiPMIxnaXZqCgLfCsgKeIly7oRbBLnEaYySctUKiC1ZppOqh76gOdWnmWezUmyBKMafxeUmCjiIiIpBQiP0xFn0Rkb/gYdt8315jWOFsd8afNF+nGf++OP+Y0rv8YwGfFM5zlsZZPpjEk2Isojvn/0Q/527w6eZRFlGQ3X5VZnE9d0+F9+/n/x377wu2RlxkfDuxzOuvzRs/+VVFgqi7gIcQx3mVHpGBLuf+4Y11q6tUEyNcuKBS3IAS0B7rrE/AX97nl/eqEL0iLGMV0Zo2tFrnJMJSHVuswwDAvFhV7yHMw27NZyf3ERLUFwzWqAJwsUz/LQWrPIQ9bcFVbcVbaDHUCRl6kkCFR5rSAxVr5VZ8VdwzFcyuqcmWVT0QVjUuh8eSzk/5dLLfE0nVJqTZTPsQ1bnPalmNJ8K/gPasj+Pm5KKebLbEQTpRQnccY8yri8UiPwJJJonhQErkWptbBYgc3/8d4xlmEwjzPGYcqtrSZrdWELz9uCzuN46p5NXpacTTPaNYfhPKHmWsuonPPHvXs0Z6Ph0J0mbDVs9uchcabZrNtLAFVz6zy31mB3KiP4aVxwrSN98zXboARajs0iyzlZxBRac6Ue8OUdOefmmZz7lrpgEadRLtWgRclJGLE3TPAdg9WaxTeeXqE/z/mjL13hYBby4VnE12+08EyTL17pYJkG0yhjEmbMU4lievPRkCjKcF2LnynwXQFS3/7pAf/gM5tsNRzePDrlaBjxP/z6LRqehWUqZnFOmosmNU5Fx5gXJXHVFGUaSjKUkSzONC9xlYKKCS0QxtNwL0bQpQZTQZgWzKKc1YZDmpfEWYmhWEZixVmBa5uCSyoQaBgSddUO7GWxhmkUy4VJp2bznGpSas16Ta6r01nKN59e4UvbK1xdC1AIox1UuZsaYWDXGi4N3+a/brp4tkFWaH6VVXYnC+K8pO6YhJlokJuenHtFqVmkJXFeSui9Uuz1FjQDZ3keOZbBet0hTj9ZJvPJ4DMIMEBu3Ekio/Y4vhi1LxYXerqikBH7ubtYawEWYYgyRQ+qB2dLYHnuoFcb67JP0xSNXxzLvmo1VJpSTmYYvi+vvbGBCmrog31YXYP+mUQlOY4wYqaFevJ5sFxhzbJUWpbcoAq8nwpDW2SolS10KCBP11vCcjZXUG6AshzIEvmW0lhA53QA0VzqMl0fDIPyg59JsL2hIKjDjWfh4Udo08S4/YWL8XaWoqM5un8MkyHqynWyf/tnWKtN0aROJ8Impyn63/8x6pnPwcFj9PER+omnKi1oIp/BMC/c9ucMSJ7KKeX4Evmk9QWLbBvyWZb5p7YAVsuUIHyArBAQatoCaJOoelwmIFRXpiuQx1mOvBfLqYCtvmBb3YqRNAzwahi3XkBvXYOTR/K+ZyPUlSdR7Q1hU5fPqTicUtpvMG1orFassQlFhuHX0V4gkU6T0QX7ed5eVBSyKKoqYCUntinGp8VCWpJsW4B/8Okcu1uGLYDStMnLgjBbUOiSttvCVBZZOqXQpdRmov4Oo3Ue0J5VAPMi21Eim7LqO245TWmcqYwheVkQ5RFNp0GYRyRFQs0OSMt0CWBAgE9cxNVrZBLdo6XJhjwkKiIG8YCm0yTKQ/IyZ5gNifIIy7DZ9DcYJkP2Zgds+utcbVyl466wU7uCawpQKcqcnIxcZ3SjU7phl5pVY8PfILB8fnryKu/3HlFqzbX2Jl/e+gJ7kxNs403+4ZXfXGo4i1I0s3uzXXrhkD948iv8s1f/EsMwoAUf9I54eNqjKEr+p5/+a37z9rMcTPt81Ovx0tY7PNN+FqUMsjIlq1jJpEhYcdcBSMsE0HhmQKGLqn5SGFvTsCh0jsIASkxlVWH7wsQqFEmRscjnKBSeJcf6vJf+PMvUNhyMUgPSq/6L+tHzsbuhjKUxTaEwlUnDbnGt4TJNx5iGSZRHdNwVPDNYgny7Wnycg+Hz13UMB0wxoOU643JwlbBYcLTYZ5pOsZRZNRmdL2YKPMtmkc0B8C2PwPKXLGfNrosesToOn7bNd8XVvlJ3CRMx74RJzmbbp+mZzCJFu+aQVKziSt1lJRAgIKBFEyY5ppJx7+4wIS00DdesWChYb3okeUngmKzXHcJMWMZWYHM8DEmygpW6y9ksZafjMkuko30lsDiYxHR8i3lSMI4KxrHoBx+MFsySgkVasBJY1Cpgsz9OCLOCppfzRMsjzAveOw7JNjU32zU802Sj5tH0RUcaVwxsXpSchhG7Y1nMbrds1n2Xd05nfHQ8xzQUjwcRv/Fkh73egqLU/NEXdigr0Lao3ss73QndScI3nt3gz18/5PBwwsaG6JPvfnhClmb0+wuef26TLC/ZO5zw41sdXtpq4zsmeaGJM3Fxz9KcJ1RAqWER52jE8HPeJ/+LOZdxNXIvq4SBrCjRGIwXGbZlkOYlB5OQhmPRLm2SrFyO04tSEyZiHDuXHpxXiXq2SV7ttyzlO/+74e2KlbrDi1aHWx2ZTM+SnO2WR92T60Vr0bjGWVnlxIocYLUu93TflsmL1porqwHNKprrve6chmvScE1mScE0zslLzVrNZhbnRGlBu+aIqW2WUJaKpy+3yAuNaVxEfP2y7RPrNcu//pNX1PMvCBN2nvcJwh4pJTf180xOJe1HavMS6spNONldZjeWsxjDMVGXLkte5Hlr0rl2czKRfWqpsSwGY4ytTQm0n4QYVy/L6wMcHclYfW1dAFI4vwiLDxoVw5hLD7lpQdAQ5iwTc5Oe9lGuj54MBOi4PhS5VGTGIcqyK91ovWLlIvR0KKCuuSpAyLTksc0O6vZnYTGGVgfVWgVDod95HRp1VHsdshg9OkWHMwG//VP0vQ8xn7wlzPJJV1aUpkm+f0r6YB/7ie0KzGnYuiRh9e01dHdfGMDxGbp/KO8ZLUxskV+YgEAii851jmXFaJZ5NWIvKmAdVWYqW94bujJWFXIcz/Wp0RwcV35n2RcAEb0E5H9nlH9+xhvSMKRcH7V+RaQOl2+hau2lXEHekxJQG07kv+NQxudlISA3nsu+0gTV2ZDza20DlYSoVLSdS0NcUQj4zKvjcd6idd5qZZrQldYd49d+/3/8xKvj7+H28fTuK+v+ujCbv5Dx6RgOWZmTlpKhaRrmsju7YTeo2w0W+RxdaSTn2RzHcGg6Dc47vc8BgaEMoiKi4TQpdUFWpiyyBX6VCVnogjVvjZKSogKmtmkT2AEaYdLiQgxFUR4xz+YMkyGFLnBND890qdsNSl1gGRanYRfHsDmLeziGzeX6JY7pDRcAACAASURBVJQyqNt1pukEu4pqqtuymBmnQ44XR0R5xJX6VdpuG9/0GcQDNoJ1vrz9eWxLsxmsU7MDPMvmteM7rAZ1Vt1VJtmYx7OHJEVcdaHP+dHBHZ7otPEcm+PJFN+2adcDTgdjDg97XN5qYxkGvm2zUWvw0+PXudq4zHF4RFhFT90b3yewPUpdcBoekxTxMmwfBaNkIIwmBUkhgDsrEgzDokQabeb5tFpceHSj4yrD1CXXGaNkuDSCHYUHtJ0Oi3yGUoYA2/NWqWJxURRw3ghV/YOSCkdDGdTtBqayaDmdpab1nG3VCpIi5iw+RVPQT3piKtIZWZkyyYYYGEyyEYFZY9Vdp+N2QJ0vPDLSIsUwDPIqySCpGO6giswqtVR7OqZDmIVoNLdaT32qrtlvv3Pyyq/c6JCVYFsmSSZs0aW2j2MZjKKMRZxjVmNf3zG5ve6z7kut5ijMSbKSySLFMg2e2arJyH0uoeWWaeDaJuNFwk7HFxf6LGW8SJexO0lecG1DTDoKeHA6o+7ZXG67BLZJd54xTYQZDbOScZRzNs9YCWw26jYdz2K75rPIczq+TW+R0XRNHg5jDKX4wqUGvmWw5nkM4oSmI005TV8ajnqzlEfTObvjmJudgM2aR8OxOAulje8bt1ZRpuLJDZ9hlFPzLPb7IVtth7pt05slfNAfM8tyUDBLNW/vjliEGaurAdNpSp6XNJo+SVIw6o7Y3lkBBY26Q6lMvvugz+WOy/3RnFJrThYxb57McKrb5YPxnLQocA3JW9UaevNEAHRaMAxTDKVYJMKKxtViYRZlZIWm7llM4gzftDivn5wlOWlRYhsGHw6mrPou/bm0HJ0bpYpSM40k/7PUF673opBEAV2xkQpoBTaOZdCpACFaXOjjUCpQp1HG4SimLDX744jAlgVKVmjOplJkcDKK0cDTm00+t9VkzbM5CxOOJimzKEMDcS7yCLQwqut1h3GY4bsW2w2HTmBxPEnRwO88u/FLr9dPBp/v/uAVVbm+f3G8TqeDcpwluFy6k9MUdfsp0XR++I4ARs9DpZEolTa3AC3Ps6xlbztpKqznfA6zGarIBUI1mzLlrdflMaORANxbT0GjCdORRAA99XmoNYWJm0+E3WqtgkbMMfPxUrepvBq6f4xau4wyTVRZymMLAaJq2eCjIJyi0wg9OIF778LdtwTUmYaEzfs1eb1aE3rHS4Csti+DJ6sQffQQ7r6NvvsuPH6AuvEkjPrkb39A9MEuylCY1QqlGM/JRyHG8EzY4rMzODuGkyNhMIOG6INcXwBaIaM55XgVAETAmq7qTItMoouiGcqwqnio8kIXej5uB3mOV4NotjQ56dEpyg0oz/ZFg5ol8rhzLWk0FzBqORcLkDSqjnV+oXE1DAG95+AQfdEAEU5F6jA8RpkC7MuH70qU02KM3K1ED1w+eOsiBqu5hrr0BJpCAOjZmSxktJZzsmLe1cqKnDvnetg0lUWU72N89Xc/VTcygONw/5WkSCsm8/yPGNTtulRh5nHFbEq3ea5z1v0NLGVxHB5jGdIBLswn+JaPoQwWeYhlWIDCNKSBxqlG9GEeUVJWcTm1ikETsHPOsjYc6VOfpjNsw6JhS+93oUvG6Zi4SNjw1yUg3q4zTIbM0hlSC1mjF/e51bpJza5R6pJVb0WqNk2PNW9TmE+d0Yu7TLIxj6aP+Zvdn/G3B29wFh9jGrDirWAog0Esgejv9+5hVz3KO80NNv0NkjLm7f7bfGfvVf52/x3e7D7gK5eeIytjfvzoEe999BjTNKnVpOJzNF1gGga7vQGFbdCbL9if9Tiaj8EIablNXNPFVCa26TBNJ6CE0VPIMS50LnIGwyAtU3pxl250ugx/z3SldVTCOJYVU+qZHk2nzXF4gGtI/MrD2UNaTpP3Bu9zqbbNPJ+TlSluBR7H6XCZ6aqUAUpY2HMpQF6ZztT5IlZJNqqwszmZTulGJ3SjE07CY4nUshp8OLrDdnCJSTrCUAajZAhovnP4XfrxGZdqlwisOnW7iW+5WIbFMBlhVudZrvNljmfLkUWERmMZoktNKvb40wY+3z6evRLnJa6lCFMZk7uOhIbXHZN5UjCLcxzLpCg0YZrzpZ02UVby7ukczzLwXZMoKzCU4tqayBNGYYbnWNiWgWuZLOIc25b99SYRtmVgKEWn5pIVuqpNhP4sxXctaq6YhoZRzsk0Za1ms0jFALNIZTy83RSX97rvcryIGIY5udZs1GxOZhlfu7rCTkPinFqOQ5gXtD2HlZqDa5tMo4y9UcjubMEbh3PefDziOx90udNbYDkmLc8kyko+PAsJ05KfPRyCYbJISrZaHjc7AWlR8jePB/zl+2f87P6A1+8PubxewzAVk0XKnXf3ybIC0zIxTYNwkWCaJh/fO6ZQFnFS0J/G5FpzusjZbDgkRYFtGtzsBBzMIrTStF0bSxnYymCe5iR5CQrCrOBgFvJgFGIoWdz1wwRDqyU7bRhKzE/KoB3YvN+bEFgWlmHwxumYDd/l1cMJTzR9cbfnJZYh2tHDcUTNkfxTYVphEuUUGuK0kErLKCcrZWmZ5iWDeco8lt+lecnZLOFOb8q9wZy2a1NzLD4cTNmq+UzCjDgrmcYZkzjjTz44pbuI2a65NAObtYbL5YaPbZV83I/w7QvwPJgleLbJpbZLmJXLfNYwK4myEts0+O1n1n/p9fqJcwy1vonunqDqddFpFoUAiDyH1sqS7QQumopWt0SLOZ9DvY6qsiOLyRwrSwXALhYCWM/BgNbw8OEyukl5ki2G6wqAmc3ktRsNAXi2LSHucSQ/SSSAMZxCZx1l2jAbQXNVgKdXE4Az6kmcUiAMmGquXISlF1mlj1SVvjNHT/ro7h5q+wY6z8TYNOijbAf9/uvw4tfgjR8snfsM+7C+CbWmsJKF5EvqXhdOTsD3yf7VH2NtrWDdegLryha9v3oL92gEgH91FV2UzO+f0vRs0dCencHNm3B8AGcn6J3rMO6jnn0Jffgxauua8BnKQBmmmKmCBjqNJQy+CsPXw2PUxlX08SNUZ+Mis9Q0q772EsqC8uF7GE99EXQp+tXOpsgQyvLiGJsWZIm8hleX42+achyzVFhLFOhcjkueXWg7ixydhAKYbU/kCOMeqt6S8Xsaola3BcQqAz04AstBP3wPHt8Tl/3KtryX5jrGc1+hDOcwHAjorNISzhc+nNe9luVFnWuzKRrmT+lW6oKaXVuGsQPLCkOl1HK0bCkTXbGik3RMocul+cdQBmEe0anCwBf5As90UYjmqdQlg3iAbwmb6RgOpmEJqNWlaES1xjJknG8og7RIl5FMrumyyEL6cZ8Vt4NhmQziAdu1bcbJhJbTwlQmR4tjtoNttoJNPNNj3d8kK9OlGUWhqvFtxjyfcTDf5zTscqW+g2ncIc5zPugdsVVb473ePV7e/gJ/ev97ACRFweliwu3OJdaC9jIhYMPfIM7fJcwyNmo1/ucf/RntZo2XnrjCC1cu82c/foteb0yUJFzd2aQoSqazEKUUq2st+vMFX7x8ib3JCdNkwbXWZQ6mJ3zriV/j7ugenulL+1IphrBudErLabPI5liGRalL4jzmLOpys3mb94fvcqV+lUbF7HqmX5UBaBzT47Xuz/nq9q9iKIOH40fcaNxgO9gGYMVd5XhxiG/5pEXKOB3RcleY57Ml6zrPZjSdNlprSkrCfIFSIa7pEeUhi3zOMB6y7m9IRabO2Z3ushFs0LAbzLIpHbfNJB1R6pKPpncI7IAfn/yMO73HXG+HPL/6PLbh4hguq+4GcRHTcBrEeUxeSESWZVj4lkdW5pRUzSmFMPWB5V8A4k/R1vRMBoucpmfiWJWpJS2WVZtKqWXXe82zyEvNqufwZnfMeCE5lxLFYzKLMqlVjHKOhyGtmoOhFLktTFV3HOHYZtUYZFT7l+FWWBmf1pouw3lKzZGGou4kwa3GvHFeEqYF69W4Ns4164HJME5Z9z1qds7uOCZomDy7UcMxDQLbpOVdjF/d6rNEqTil3zqd0l9kPLnusdebU6s5RGnBIMw5GCV89UaL798dkBUl01nCLMy4tinTGI1mnuZLY4zrWjRqDt/7+QFKKa7utPjWN5/lBz/+mMNHp+TTEf76BoZhUOY5x7tdVjZXKAqP9ZWA/jTmxx/nrDc9FknOH35mg7N5hm2qyjgkMUp705D1wKEfpYyinI4v4/K9ScyLmx7vDqas11J26gG2YRA4JpMkwzIUUWrw3ftDfv85yW29exby8qUON1ddSjQ12+J4HolG0zKZZxk7ls+8CvM3DcXZPGGz4YnutAKY0yTDT0xGcUZSFDwchTyzVudyU9qsTmYpt1cCOp7D8SxixXMYLBIsZXBnOME2FO+dhHTHkbC6CwGWqw2HzabLM0mTOyshJ5ME1zYqFtZgrSmLF5Cx/TQuSPJC6jjdT+52/w+M3f/4FdVZQS/mwjomyRI0KrtiOz1PAKTjiKv9xa+i33tdwN3GFnp/j3I8lZD3ek3AZxSh01T+lGhNuYjIJyHmpU3odCiOuxiWgdrYkPgk2xYQ026jnrgBzTZq44p0rl+5hfJqMi43bWH/QumIV7nQ8Ho2hHAmbm3Twli7JOAnlxuzng1RjRUBTRV7p2cjYfWiBTy8g378MerqdYxf+daSMVTXnkHt3BRtpOvB4KwK3Q+FmQU4PUCVknWq9/agLEked7GMAtVq4aicchpx2g05ejCkHlg82ptxdr/PbLfH6pOblbwhE7Z5Y1sC7LUsBJRfl1F1nl7kpyIjb73/USUVMNBHD1CNDno2RPeOUPU2Oo1QZUHZ3UM1ViENq2NUiZ6zTECeLlG2jY5m8t0XOaAu2NBzo1KeioP/XB+aCWOjo6lkSn74qrDE4UzAZpGjX/8b1FNfQHmBMMyLCXrYBdtFWRb6/Z/B3n2yP/1TzH/wVXh0H1bWBFibluhxw6nUnd6/V318fREJFseyMBqNltmhqlYDL8D4wq9/qlgUgHvjO694pkdSpCRFTK5zLMPEVJa423WBa4om0KyA4Ya/yeHiEMewaTpNJumUuIph8i2feTYXZ2elEcxLYd6iIsa3fHzLY5bNsQxxQk/TqQA5ZIweWAG2aZOWKZN0QmAFlZZQshun6YxpNqPh1DEwyHTOIB4wiIcElo9jOlyqXcY1PRb5HFOZDNMBHXcNx3Ao0YzTIafhCYUuOQt7vN+/x/50zFd2nuSfPP27BLZPXES8uP4FvnLpBTq+zxOtdU4WfUAT5QkrXhsFPJw8puF6NFybh6MBizih158QqpJLjQZlYON5DvNZyKPdEyzL5Kw7pH885ODhCTee2mEcC5uSFim3O1cJ84ioqFqgLI9FtmBRAbtzU5VlWLzVe4cr9R1qdo13B+9Ts32iIuLu6C5tt0VUhCyyOafhKRv+BvNsRsM5z00tKcip2UG1X4NhMsC1vApQGmz62+RlyiybVuP6nKPFAQ27WX23KSjoxz1Q8EbvDVbdFY4Wx6x5q2Rlxl/vf4+vXv5VmnaLQdKnF/Xohl1Mw8S3An5y8hrvnH3Iv73zNr//zMu8enSPzXoDQ2mCihnPStGp9+I+hlJVY1ZLMlwpcU2HMA/FiGP5eKaHZVhcqV/7VF2z336v+8rllsM4ztkfhCS5OMHPWaQSMZ0opZYxP1+7scp3Hw6puxbXVjyOxjHjhYx9A8+mN00oEWBSapZNSZMwY7vjs932OBlFoGCn47HbCwlcAbYaaFXVmUopcg3rdYe2Z1ZGRZjFBUmuWQ0EQGkEeB1NE2lE8iyuNgIc88KxPYxS2r6DbYqxZXe04N2zKS3P5OEg5t7pgt2jKTsbdf7py1e40nKZZQUvbbf54tU2622HJzbqJEI4YpkGLV8yOx/0IwotcUWn/ZDxOCKOUhzPxnUttGHSXm2QK5vFSJJZyumIcjZi8fBDgp3rjCcxizAjK0uevNQgLTSn8xTflo77XpgxTQtOFwm+bXA0S6g5Bm8dzFlv2Kz6Fu8eh+SqYJaU3OmGXGo5hHlOL0q4Nwi53g7oRTE31wIWWY5rmiRlKT7cKKekZBCntF2baZqTFAU7zRphUnAaxtRtizQvuT+aseoJkZDmoj3tRwlaww/3R3g2nM4z6q5BlJX8+/t9fv/pLRqORS9KOFnEjOOcsJD38NbxnLcPprx9v8+Lt1Z5d29Eq+lQt00C28IyDZK8pKDg7f0JliGa1tWGR9u3GEcFG3UxqWV5yVZLosLavsWXr3Z+6fVqfOKV0e9L9eHZGXo0Rifpsv9ch6GwTOfMp2miLl9GtddQ7VUZvc+nApAMhRF4AgomUp2oHAeCAJ0kKMvE3l5FbW1DkqBMg2Iyl3Yh2660jAib2myL/jFPUSubwo4lEXg16ZcvKsCkDKi3wPFEY6gM6B+LDvM8s7PKtlS11sVrZAnlwV30B6+iX/sO+gd/VX22K2JuKgsZve/chCRCBQ3U7ReECX7+y6iv/56A2HAqhp7uEZRa2p3qdYowJRosqqNvYLgW9RdvcP3la/i+yf7BHM8xicqS40mCjhOK8Qx9dIzu9+CjdwTU5eLA1+Me+uBj9MMPZGSexuj9uxBOUWuXYHyGPnyAuvYc5f23K23rQj77Yoye9FDtdfRijE4iVGMFXeQC2MtCpAeDE2E5TQvlVTmu034FeFPK3Q8qt3spuZ6G9Xdc9Mqy5flXnhIZQHcPPRtRnu5KuL9hoAcn8j7mkyrOakzZP4bpGL37EPsP/wDuS4OUfv81+Z6LQkCvG8giAS40yCAtV+fGK61l8WTb6DwXNvpTuC0y0VPOszlhFUFkGTa2YS1H4GY1WncMh7bbJrDqtBwBH4tsIaNQpGFGa01aZDimvYxcOh+nbwWbdNw2WVXduchCisq9fZ7RmJcZlmER5+KgPwez98cPqvpPA9/y2PTXMZRZAQ2Xht0gsHxGyZh1f2PJ1vqVw7ppt7CUhQbGyZBXT1/lr3a/z0+OXufbd39OzfH5/OZV1v0V5tmc07DL1cYOw2RAURbcaF5HofjN67/Kf/nMP2Y96BAXEYUu2Z+eMI5n9MIZ60GAMhSLRcxWFTWntebW9gbPPned9dUWszDGrXngW2AZTMZz+qMpR5MpvcWC7++/QVpmxHlCXuachl3uDO9yZ3CXWTonLmI+Gt1lnIx5uvMkw2TIu/33+MrWy9wfP1jKIFpOm6RIGCRiyjqLu8RFxKa/halMoiKqEgGmDOIhSZngmi5tp0Pb6TBLp5SUpGXCx5OPlyH8o2SMUoooXwj7qUvqdgOAW62bjJIRJ4suR4sj3h+8x2fXnqbUJXvzPda8dUbJWJjsPORocSgxWMMe//hzL/HqkaQEfHfvp5LdWcoC2TYcKSzQZcUoSQ6toSTupdBSLKCRGLDzRqRP23Y2TdgfJxyNYjGD5CWduovvWISVKaVTOa5tU/GZrQDfMXlm08ezDU6mssC3TIVri9QmSnNagYNtGcuaStNQbK8EPLsZcDSKKLVmEedYSmFbhmTilpokFXf2LClI8pKthuRNfnAaUmhNYBvstF2e2fRJC03dETf+dsOh5phkheZao0ah9S8wYhKrdA6ej6cR/+7egO/fG/B/v33K6x+cslJ3+fyT63z+SpNhnLI7iVkLLPZmC8ZJStO1GIY5n7vc4L/7yjWurUh96CIreG9/zGSRctSb02y6WJbJYrogz0v6o5AkycnzkivX1ghaDTFAejXJ0165zGQ4ZdSfMhlHpGnBd985IUoKRmHGOC6434t5Y3fCG7sTFknJ7ijhncMZp7OML19rMI4Kfro749dvtjmdZfiONDptBx5xUbDIcm6vBnw0lEzjmmUR2BaTNENrOJklVfaqQcd16HgO676kBxgKZlnG4SwmzUtmac7hOCXKCsZRyiLNSfOSNc8lsEye3Qg4nmY87kV8/+GYH+yO+NVrTfphwpvdMWu+ZHKKa72gF8UEtkFvGvPFpzd4d2+E55h898Meo1jG96XW2KZinhaYhrGsJM2KErdi0CdJQVmKgey8VOBB/5Ov109mPv/237xCKjpBpZQwYr6PeuI6zKYXI06lBGRubMGV29IFPj6D01PIMsrpnGIaYTYCYQZ9/yK2Kcug1BjPvwDrW+Q/eRXKErPuQRBQdnso24LVCpz6wUXuaFEIW2faoj/MEsgSca6nCUz7sH9fgGBZoNYvC7hKFsJ8/oL2UY/P0CePxdxz/wP03iOKt97G2LmEShMBnklcdYu3JYx+7y56fCaGprIUJ7dpSS5nZdzRjx8Q/T9/S3rvAB1GmK7N5GTK/ntd8t1j/LpL1ptSzGMcRdX7WpBozaQoOLvXw5nHGPMYPZliOgbK99FHe9JB3z2G4ZmAyZUNAZZeDbp7ArQ1Ii8IZzKO7x6IWWpjR/Sv4z5GcwU9OMForlAe3EO5gRiCpgP5bN0DjKtPycVajeeVV5PR/HwsJiBdorNUgG9Qh9lQGFA3kPcWSyi97u7BqAePPoJVcf7qe29JzeZiinH5JjoJ5fh19+HaM6g8lqzQNIXpBOXY6HplJLNs+Zn0ZfzfaCwlIKreEKb9vNXqnKkHmEwwvvmffKpYFICPJ3dfOddfGlUSQc2uU7MDkiKVAHPDRCkDU5nU7Bp1u0lg1UjLhHE6odQlSZmwyEN8y186sIUZq1pYEA2lb/nsz/cxkLB6z3SZpFNyLWH2dbtOWqRV7eaYcTJhmoqzudAFcRGj0ax5a8yzOWdRj3ujh+RaBOtPNK6y4W8wzSY07AZmNdY3DZPT6JhXuz/j1ZM3+XCwz/1hj5/efcCXrz/BIJrJiCocslFbpeO26XgdPhx9xHF4TMOpi5awSCSHUkmIflLEPBjt8a9+9BoHvSGjOKZW8+idjXnrw4d8dHCCgWISRoxGM/K8IMvl5lbGOUQFp/s9FkXOdDwnznO0Y9B0HfYmXTp+nUfjA2ZpSMdvcqW+Q1xENJ0md4b32AjWyHXBpr/BIO7Tdlt0wzPyMudS7RKe6TNNp+zUr9CLe9StOq91X6PjiamqHw9oe212Z/u8sPYF6nYDQxmM07HUZeqcYTxgzV8jLzPiIubHx6+yXVvnNDzFNV1aTofACljkC1zTY39+QD8a8cODd7je3sZUFm+cvY1tGOQ659mV50QKgebjySNe3Pg8i3zEz08ekxYFg6p+ueFabAWb+FaAaUgMlWmYuKYrUVqI273QYlJDXUREKRRpmXKr9fSn6pr9sw+6r8RZSVGJsy1TYpGeXPeJc3Feu5aBRoLMt5sOO82ArcBjlqXsDhOSrGS4SAiTnJpvU2gqSYaAvUUiYOMbT61iGopXHwyWnfHtusPBICTJSi6vBjy7VWOWyoIgTEvGsTjwfUfY0CgrKZEMyLTQPOhF3O9H0ijkGDy1WmclcJglGZ0qfuc8Fuhef8a/fOeYn+6OGIcpg0nMaXfO555a5+OjCWlRsj+IuLriEzgGq4HNq/szHg1j1uvS3tP2LfpxQpRJFFChNfe7C37yo/uMRyGTaYLjWESLmOPHp/R7c5Rpkucl4+GcIi8kFikvKn/AnLR3TIJLkmSU2iTPNa5v49kmpmGw15ujFOysBtxa85gnJc9t13jt8YTLbY+ihGc3fY7nKZebNt15hmMptuoubdehGyY81WkQFQWOafDnd3tsNWxqtsUkybnS8rjTDfna1RWark1e6qUxKy1K9qaLqhlKygD++qMenYbF4Sym6Vqs1lxcW7SoddtmFKccjhM+PpqwvVpjkRa8djAVi7Aq+PKlFQo0aVlyvxfz5LrP8TTlw90hWV6wCDNMy0CbJleaLk3PxqnC7SdpQSOwafg24zDjcttlEhfMY/HpJFmJYwuLPotzfu8zm///DEf5n/xvr5Aky3w1naSoKzuosvi7ruKKWVLPfV6AaqMjer+33xATkqEkz3NtddmzrW7cgt4ZeU8E+IoCDvcp+mMM30bVAnEnj8fS0/2Vr0u9ZmtFTpoiF11gOEM1OgL6DFN+xj1hJJurS0e7Os+irFqAlGlV7UW/YJaJQ9j7WLSJjoN586ZkiLoejPoyStflhfObyrQTiklHrV+GWks+P4iLPovh+Ih8GjE+mTHvzggCi91eSG+acLg3wk4K0igjigrabYcsLVmkBTXTZF6WZGFOnhS0d9rsfu8j3JNjnK/9igDs8UDanFbXRc86OhOwORuj/LrkmCoFrTUZu58doK4/K2PuIhd21rSkQSmcov/Nv0Q9+ay8/8OPUbWG7K/IxbBlmOjegbCfJ49Fcdc/ks/aXEHfexvjyRcEhDZXqxF+1fNaLVKIFmKkanageyAd9mkE7XWRELz3GmzuCIj+4HX0G69DpyOLmTSVqtQyR126Jt93vIAP35TjEccCQONYXm82E+0wLGs9SYU5/jSCz/eH775y/u8SXF7S8TpLp3JWpuRlXhldCtb8dYoyx6vqN/dme0vzUKlLWk6zYjoLVtwOizwk05LpmeucRR4S5VHlnrewTZtFHlKzAjaCDQpdkBQpe7N9wjxkGE2Ypwu2auvU7Dq2YWMqg6P5CRvBOlfqV2i6NRzDZcXtIH8cxIHvWT6BVVu2Kk2zCXmZcbLo4ZoWvm3x2Z0dmm6NhuOLnnNlBwU4psNxeEJe5hRVx7tnuVyqbVdaxk71d06RFDFH6ZQsyzk9HdDvjWm365w9PiOeRPS6I1JKdKmJ04xWo0ZRFCRZjtv2KSYJSZGTK81qp8kb7z7g49Mz/vCFrxDnCWfhiFEccruzQ8Opsz87ZLu2xSyd0XKahHmIoQwu13bYDrY5Xhzx7Mqzwv4qhL2tsk7DIuSfvfnnfG7jKhrN/vyAttNmxW1LFJOSNqi7449wTJuD+T55mXNUpQFs+Bs8nDzipY2XeHfwLituB7nFiebSUAZ1p0ZUhOxNu9Qch9PwjFE8ZZzM2K5tApofHb3KrfZ1Gk6dHx69yo8PHrLq+xzNZsRZzka9UG2CvAAAIABJREFUhqbgVvsaNatOrnN6cZescr2bhlmZmkph682L1qPzUTzwqTMc/fOf7r8SZwVlSdXtrnlys4YGslITZgVhWizNJN+4tkZZaNo1G1XC9x/0WSQig3Jtk622R5yK2eMr11vsDmJGM3Eyn05TzuYZo3mKbRu0Aoe1hsvxKOKJjTrrdZvjikntzRLyQmKcskJzZcXDqACwBg7HKTdWPb50uc1qzWQQ5qzVbEqtifOCMC9oOjY19yKofBAnBI5BXEjOpGObtFueAFRb4og+s9NmtSbPOZykdKcJNc+it8hpeyYd36btOqwFUg+cFCXjuGQUleR5wWKyYNQbYxgGxfFDyjgkGk9JtYkuNXmW49d8kjiVlkGnimHMYspogXZ8Bo/32D+acunqGp4jxqjBJGZ7Vb6Xdw6m1D2btNTMUzEHlRpurwRcbdQ4nMW8sNUkK0vSsqS3SFnkwnLGRckf/2CXz17v0A8zjiYpvqO4tuIxisXpPk8L3unOMA3N/jSi1PDW8YJZmlFzDKZZyW9cX+P97pxEFziGQZjllTRK03AtCuBwHIvWd5JIn/ssZb3hUKD5+eGMFzZbtAOTn+xOeXA0oVl3mc5Soiij0XBJ8pLPbTepOxZxVvLe2ZRRmDNPRKMcpiWeYzKYZ7QCWfRkheiP01y0qH/w2V8OPj9x7K7Majyd52CalFGKcj1xecexMErnOkPHkTH3449k9Prw7nI/Oi8w3KpWsyhgOoXOquhHQU6CqnHGrLuUaSGAIU1R7Rbq69+S6KOgXuVOVrmSwx5EoegzAYZdlONCcwUdLwT0XLohY2plQKMamxumAC+lAC2ApyxEeX37Obj8BKrZhnZH2MvBmXzmtS1Yu3QRFXR6KPrL3ok40L0qdzKcCagyDFjMsa5dwllv4Domp2chu7tTLAWJFofY8TDi3vGM7jBiMIxJ0oKWY3FlPSAuSy5tBPSmKe98/xE3/4uvMusv0McHMJ+B54vh6drT6PPjbllLwxC2IyYd0xTzVWcT/Drld/9UdLL9Y2mjevP7Yva6dh3dO0K/8xPUZ15Gn+s2xz0B7GWB/un/KyzjpC/M5mIi58eDtzG+8h9LxmpzVUL3R6fo4Qm6yCkffwD1jpjSTAt2H8j3Nx7KouL4kSQRvPh1Ocbn0VC3b8NwSHo8lLF5UaBufU7OgbJEj84u0hPKUnTChnGh8zyPXbJtOa/O3fCfwu1cPxjlMvKIiwTHdJb6vl9siTnPbFzk86qC8nR588/LHNcU0F5o6XkXjag0GuVautZNZYiRCUXNClAYNOw6z699Ht8KqjHzKVGeEGYxvXBIUqT0oiFxEbM/O6Ju17nWvFoFs5tLFlSj6VT1nmKACsUNWiYs8qqiEcXn15+h6UrbyqX6GuN4xsl8xLNrV7ndvslOfYeG06DttNifnpIVGdN0Tstp41s+Yb5gb77Ph8O75GVGLxxxY3UFx7GpBR7TRcSjvVNoOBBYuJ2AQW/M4WmfQW/M2WDMbBHSbNW4tLECvskTN7aJhwve/8GH/Of/0a+QZTlvnX7M6aJPYLlsBA2uN68xz+a8fnJ3+X2dhl1c06WoWo660SmbwRau6fF/3vs2RVnwcLLLWdTjX9//C+I85mtXbzHNZvzpg7/i2c7T9KIeGs04GZPrnHk+42fHb5OVGcN4hKFMDufH1O0aPzn9Cd+6+g3OolOu1HcYJEOOwyMezx6RlAnv9N8msGpcrl2i7jh82N9nkUbc7Xe50d7hg8FHHC2O+Orll6nbDTzTwzUdfmXnBr0wZNCfUHMd0qLg5e0v4JoycYryBWmRYSprKdlQGCzyxfL8dAxnme0pAdufvmvWrrI6dZUPGSY5Lc+k5gjLuEjyiwhlSzSOR4uIMCn44f5oGXQuz5dxZ4lUS55XVp5vfuV+lwYjg2bgkBSazbbPf/PSFZ7fkril8SKVcJs0ZxpmxFkhsoCi5HQqfd+fv1QjsE1maYZvmSzSAtswWPc9TKWo2zbzVOQ4cVYwS3OyoqQfyuc5zzOteRZH/QVnw5B2zeGlKw3ank3Hs7m56mGaBg3XYDWw2Kw7NB2brCz5qL/g393p05tLBenGRp0szYTRjBek3UOpk/bqmO01siQj6p2RdQ+Z9Edyj9Yl7UsbYDkEO9dAl4T33+XFb76ILgpmYcqDo4nkbgbyftKipD+JqLkmWV6S5pq6J39HFYq92YInVwPqtsX/+v1HAOyOEgZhzp+8ecI8LfjSZ7bYGyX85Xtdbq95nM4y8kIzCDMmScYwSfnodM4sLTiapJzNMvrThMtNh5/tT/nmjRXuDCZcX3GxTcVJGHGyiFlkOT87HFOzLa6veGy0PHaPp0yjjN3jKbc2a/z00ZijacyLl+u0XZtxVXBwY7vJWT8kjnNWVgKKouSbT68sx+pxJmy4ZwtkPK2MR0ejeFmJaiqF70jma5oXy3znX7Z9stvddUTn2enAdCoXgeuK7vLO+5Ur/BfGmQ8/gs4q+u5b6EcPyacROi+wV+oXwfJ5Lr3c4xFEkdQ1nldPKkUZZZgtXwLEq5E/cSQMV5YKwB12IVwIAwmo1hr6+LFkaC5mwuTt3ESfPBLzz3SMnk9QNz6zdH+r9StiqllM0IcPZJ+xOKzpHone9HBfWMB+F324jzJM1MvfkvrIIocvfF1AmONJJef4TEbKWSoAPFqA51Oe9UEpPtidUKKZFRfJ/7daHoahyNKSUZSxN4nxDYMcTTooeaYT8M7RlIZp4hgGvb94jZWnNiFNKV57DfNLL6GeeV5yVYsC6g306b447le30Acfo7auSqMTCODPEqm9zDNotMENyP/FP8f+/FdRv/pb6I/fE91qGmNsX6f8+XdQTz5PefIYeseor/62uM9nE8rv/RXq9/+JmJg2r8rxfPQB6omn0INTcc7Hc9HlOq6M/Ncuwcu/gX7/VfTRAer5l+Bw9+J77mwKs7z/sUgd9vdJ988wPAc9m2N4vsgdVrbEANVcFe1wUBMtchzL+eY4kqxwXhF7HvVkmjKO/xRuhpJqx8CpE2YLCRVXFo7pEuUReVkAKaa2qNk242TEirtKNzphko6J8hjbtKhZNQmq11K/GFg+SZFUujyjMo1kaISdsqrw8kLnZGXOWdSVwHEEEJ/Me0zTiCdXdojyhFvt67zfv8v+tMsii7AMk8+tPcN7g/fphaOldvV81J4UCRv+JlqXDOIe7w3e52B2yiwNCSyP4/kQBfz44B4vbF7l8eSM9892SYqUf3j1G1W4usW3nvgaCkVgBfTjPvuzAx5P91AYTJIZhS5Z8Vv8aO8xhqF4/MG+aDmTomq2VFy6tgLAfBERpxmzRQSlZjqYMe1NWd1ZZe/nj2HFxb7U4C9+/BbXn9ii5jj88NFjvn7zJl/c/Az3Rg8I84jPrl9nEA9Y8Trcat3kg+GdCpjOqiapkrRIOJlPyHXGzdY1GnaD79y7xz+6/Tv89vVv8ebZ29xoXyLMIy7XL/H9g5/wpa0X+Gj4IXvTY/7R7d/h3vg+B9MT/vf3vsd//8Xf4/F0lyfbt5mmE97uvccL659DFzFPtZ9lGPeJihDHlDrUy7Ud/ulz/xnffvAX3B10+YOnvsJZOOBg2sU2bFpOG5jx4fAuYRbzbveAw+4ApWA4nbNZq/Fo8pgr9SsAeFaAbQjw1JSVq12KC0pdkubhkhUHYfA/jfWaUseoWG16jOcJpdbUHJP1wOHVx2Npy0FRorE8mw/6U55ZbfBOd8T+ICJKL3Si4kLWFIVmvelxMv3/uHuPGMnW9Ezv+Y8/ccLb9K581bV9XXtDdrPpOUOjpjQSZYaEIAkQZiFIEKDF1UIQtBAEmYUIkCOKI4nkTHOGwxFNd7PZ5nZfb8tXZVV6FxkZPuJ4o8UflXdmw0VrdxMoZN28iarKiBNxvv/93vd5JRVCm/E7U7KZXy9DVxVKOR135tX78HRA3pDjQM7UOOhO8aOEtWaBNM14at7h0ZnP2cg/X9k/Ne/Q82IetafkTI3TvE7F1CkZBl4SU7YN3CBmazDlnYMRu10XN4hJMznYAtx93OOFa03ORj6doc/fPurz9cs1VAHjMOYL60UcXaNk6uwMXbb7Po86HqdD+f59OpHvMbs7PUzLZLp5W1JTkljyoTWDLF9CMzSMQoswCIknE2mbcycMHtxFa63gbt2TBJiFS7z3+kNKjQqqqnB4OODiRpXrCyXe2BowdEOeWq2y3fVZrFg8O5dns+uyUrZouz7NnMnxVNbHPglxzRcNajmNs77HcsFm8brF93cGXJwvMg1TqrbGm7sjLjdz/Gh3SHcc8hvPtHh9b8TJ0OfR4ZB//4sr3Dpx+cJamcf9Ke1JxLPzeSxN5XK1QHsS4CcxNUfjeOpTswx+++Vl/kBRuLfT40vPzHM0kNaMDw4miGW5zb5/6nHQnbJ7MKLfm+DkLU5OxrRaed7ZG7NSyJGk0vPpx7K8oO8q+GmCgZDr92nI2I8wVPlaFULqicn/n+HznMMARO2B/Np0FvpJko+h8096s4c9qbjtyIk/DSKpeJqmHARyORkasm2pNNbriLFLFs7UzCgCIQj2uljzs/DR2ppUxZJIflbUmdqng1OQg0wcQ7UlldHBGVg22cOPYG4ZSjXIlxCLFxCGRRaFiPoSIFPuWfdYsjpPj2XFZb+PqNXg6Eh6QXcfI5rzcmh1HLIPX4NaSw5SpuypFyAH0HFfQu+jUA69dm72OEhbQk5R2AkCVCG7SyxF4cOzCSVVpapr6ELIpgoyCqpKJ4rwJymqkG8c5YJBt+tTfykHvR7KypL82cdDONoj29tDfPXnpC/VsMjcCWL9BiQR6Z/874iv/xokiYS+G6YMAh3twvo1tH/ntxBOkXTvvvz5hj2ym2+Q6QbYObLOoYT0bz2QqmOxCgc7KL/zX0IYkJ0eIK4tkG6+j1hYJ5uOUVavkvVOpDdTURFz6+fKdXZ29HFV53QkH6s4Ak0nG3TkKl03iF5/G8VQ8Q/7WIsV1OITfJJCFgVy7X+wSXZyjGi15LUYRR/jvCxLDp/TqbzunuCYPqHKp0CcB0nc2bAZJMGM0SmRS4YqG27UWbf3k053+b0hqvLELwq6ojMOJ+fBoqJRZBAO8WOf3GxVHyQBgzggpzvEaUTRKJJmKQ8HD8/5nhWrSNOpMpdrULfrJFnKlcoFVouL9IMBc7km93qbLORbXKqsYakWS/lldEUnTmMWnRWSLGZnssXWcJtTt8dWv02aZWwP9rhWr9P3pXp4OOlyoTKHqRo0czW+tfe31KyyvMlbFeljRaaoz7wzVKEyiWSjUpKmJFlCkqSoqgplE9ouFA05gDoq229vgaFC1UTVVNkQlkKhmmd8PKR70IWSAUmGkzOJ44TlZo3NXo9LzTpBHLI3PmSzd8hHRyf8B5/6AqpQqFoVHgwecqV8mTAN+Z/f+2P+4TO/BMgBvmbnUFC4233I882n+e+/9h+R1ws8Hj1ivbjKzniPO937TCOPql3icHoEwP74dJYmL/Mw3uF//Mp/Lq0FkyMWcovc7N3kqdp1vNhjwVnkxD08T79fr9xgEo3xE49j95i5fJ07nWP6/oggDvFjWbF3OD3E0eT73b+6/RGKqnB83GVhoU6azFQTTarvcRoyCHp0/R4Vs0ySJoRJhEA5R3OJTMGLfQxVhkKTWTDpk/ahqZLdqAjoTQLSNKMzjajahrwl/mt94bYhO9v3xi7v7EnfdBglGLqKZajoqmy/GbpQdTRyusJCNYcXJvhRcv6WF4YJbXfKhbkCUZJSyhlysJxGsxVyRsHWWao5rNcsVkomfpLy4rLDMws5hn7CfMHgo6MpzYLO16/XsDWVjVIeZRajaJUcxl7Mg96IO6cS0bPXHgMwmURsLJfwo4SVhQJRnHJhtvZv5jX+8v4ZmqIQpynPLMiQ3yiMpOcxk4/ZaiNPfxriRwl5S8fOGbjTAMrzMGxLzraigmaQHj4kNXLEVl5u3EKPzB2i1OYlFu50X6qkgSvvQUnChUuX6Pc9lpZKuH7M/cMRfhhzcDCiUbQoOwbLZYMPjycslw0OhgHfuXPKzz7dJM1go6RRK1hoiuB4FLJYNPlHX78IwN7I45n5HB8cTtnsuIy9iGLOYODF1HI6u50pfpJyuWEx9GL+u1++wc54ylLJYClvczT2eWbOoedFtByTMzegaht4kUrZNDhxpQq6OwoxZ5Wt250ppq7QG/pUHJPDYcjxKMSPUrb3BkRRij/1sWwp6KmqQiWnE6YJcZLRc0P2+rJy1dDE+fUUxgLLUJn4MdMgxjE13DAlTeUh6O/6+LsDR9/901fxpY9OLeRIvRClWkLYOTlEPGF0appUKl1Xqle9nlTmJj6pH6FaEuZOGEK1imi2YDqWg+h0SjINUCsSjaOQoC3PyWDTC5+GK89Lz6Vhw7ADm7flBVRpIIo1GarxpwjLlsPGsCcVx+aChLLPraE0liSax7BlZ3sUkLkjspMdYLa+zxelmuq5sg98cRHRaCIu34D5FYl1euoz0v8YRxIqf7IPowEMOtA7kdYA/WN7QXbrQ/BclLxNdNAhHPtEYYqhCExFYZgk5FUFd7YacZOUIMtIsowkgzjLiDKIM2hHMUGYUM3pVJbLqE/dIL3/EGWuRbb9WML8X/mCXEPffg+xckkeHkZdCH2Epko8k+XIYFZzQX59YQOOtxHrN8ja+wgrh8jl5Uq9UpeP5fE+NOZg0EWUqygXnpHPwaAjn5u776K8/DXZAmXmpCJpmPLAYFgyBOaUpMo9GcihPQrJ7n6AqNZh2IecQ3Z0AO0jxOIK2XtvSLzTzi5RZ4xqGyiWjlqvINYvSnU7l4ckhc4hHB38m7YO25aHnicFBU+CbtOp/HoUoXz9G58o/xjA1mjzVdmrLtfmYRpSNGRyWXZSyS5tTVHhX2MperEnqyCzaLYOnfWNZxlFo4ClWbiRi5f4hElIlMYUjAIgMTk1qzoboKpYmlRZ/STgXm+T1/bvYOkqa8VFmnaDqlVlGrnYmkWaZbSnHdruGUv5OZp2g8vlKyznVzFVk5wmu4nP/FN2JjvsTw7w44CDySkL+SqqIm0B947bVPMOLcfhc0vPcbl8gZJR4HL5CiuFRTRF5XBywr3uY46mbY7dNqdeh4JRQFNUDEV6yL69fYtR4NLIOxz1Bvh+gK9kaLZBaipw5kPFZGYkJYtT8OXwGQYzZS5KIU7BjfH9ELNg0WpV+crqZd492qeZz3Pz9JCyZfHbz/0Co3DM93Y/5FptjQVngYPJwcxHm+Dotkx8qzrXqpfwYo+najfYGm2xVlhlf7pP1arODhFDLM1EVzV2h0esFZc4nLS5WFnmqerT2JqNn07J6w7fP/wxX1/9GmEqET0bxYuoikqYBthaDj/xqFuSQDCKhhiqyTSe8uHpPZaKVbYGJ6yW5jgYnXG/e8zzrUt8e+cNFgsNdqZnDIYTTNPAMDRyjs3TrXmqdpGGVcdUTSbRmGE4kNuu2TWoqzpxGp0fDrKZrSIlQRMyJHe5fO0T9Zr9s9vtV70wwQsTbEPDjxLKjkneUkgReLFMvGuqQjWnM/ZlxeXZOMQLY6Z+TBgmxGkmN2hJSqNoslw22TzzieIML0qYehG1omRD6rrCpaUSpi7T6atVS3IydYXTkQyqlByDy80cDUeXyeyZYulHKXeOp2x1fTbqFlfrDhulPKuVHEJI3+o4iHnQHfGwN+FBR7YwdccBlYKJrqsMRj7bOz0MUyMFvnKlxqW6Td5QWSs6XGs4VPMqfT/h9uGYnb7P0TAiTqHm6OiKInvkTY0PH3fpjnzKZZtOe4Q/noA9aztEwLQPhfqsghp5j5rVSGdxJP/bsOU9PfLPKTj1xQaXVsrsHo6olm1Oz6a0ag5femYOXVP4YKvLcs3h8ysVen5IkGSSe1ow0BVB34+42syRZBnPtoo87LkUTRU3TmjlTNrTkEkg6zMLtk5n6FMvmOz3fa608ry8UEFXFKZxjGMo3G5P+eJKDS+W3enXGyXqlkGcZliqxjiMqeUMLE2FDAqGzsHIpz0O2Zgvsnk4oFa0CZKU7f0hl5eK3D4Y0irb9NyQ6TRCM3QURWAYKhtLJRRFYb5koAuF+70xxyMpNnpRymDWqFWwdFmtKqQnuZQz6E+D86rRX392/idsOPrOP3tVqCpEMaJeJxuMUQozhWoymdVVjhGVsgwHHRx8nCAPApKJj9AUmWa3TdLxFFGrIprzZP2eDJCkKaSgXFw/X5Nmroty8TLkizJJXarLwYVMDlW5/HnSOeufyiFINxCqLkM/2QwsrpuIXF6mtzWdzB1JtuTRIwnCPzshe/d12N3G/fPvInpdlIUWYm5e2kHXL0uPZ3NFtiCNurL/vdxALKzLIcabyAEsQ67gj/bkz9TrQL8v1bjBAIKA8cmYoR8RZzBOU3pxiiLk6iWepds1IchrKqoQ6IrASzOiLJNriCSlgMLyb/+aDG3lcxJePxigfON35L9vfxsODhDTATTnJUbqcEuqxroOe5twdiyVxnFfVlqauY/biLJMDvXNZZT6Atndd+UA2T+DCzdkKn3cR2kswtwqSnOFrHsom5xaK5J6kCuev9iF6cgXdRwhyBClpjwIkMHCsqzKPNiWa/6DPcSFS2Rvv464cJls0EXxpqRegLnaRIgM5cYN6eW9/CzkCvL5v/eBXKMnibwuC4VZKC2RB6MnamcuJ38P8qDzU7/6ibqRAdzr33pVNuDIoXEUjsnpsj89iP0ZkscnN1OpBsEAVciwR5IlDIMJhirVfFuzmUZTcrpDTssxikaESYgQAk1RqVlVIDtHOrVyLYIkYBJOZNVmGqMo8HzrCgv5JiWjiBAKO6NdekGfnGZTMoqsFJdASGi8pVqUjBKmJgMOJ94Rw3DIR91b7IwOOHV7/NmDD9gbDPjBzbucuFPWalWenlsgzVJeWbjBenGNBWeRnJZjd7KLrujUrBrXq9coWQ5+4tPK1bE1i54/4GB8wpk34HjSY6fXp+bkCNMUP0sZ9idMhy5pGMuh0pPhDlLkgDmNwVDAkm/A6KrcOWmK/J4kI1BS/quf/3uMQxfHUHGjiEEQ8F+8+FvsTw4Y+COOJn36fhdTU6laVe71NpnPN1CE4EFvi2O3zSgaEaURD4ebVM2qVMQQjKMxS/llFpwFFpwF3m1/hKao3O3u8NXVz2FrFmd+l0VnkaJRYNFZ5sg95O2T91krLmGrNiWjwiQeo6CgKRpt7wQ3mZJkCQu5RYpGBU0oXCivcLVyka3RNmES8aB3ygtzq/zl4/f53PI1RsGEnj9mEkU0aiUyAZ9aXEAVgpfmnqeVm5vxDLszlqy0bxiKDKs8qfuM0ogojbE0kySVQaSMjCvlG5+o1+yf3Wy/CrLfu1Wy6Qx9nJxBCnSnsWylmobUCxaNvM6DY8lajhNZqzj1YzRNdnPbhsbEj1koW1yoWmz3fE6H3qw8AJ5eKmIbGv1pyDSIWalauGGKpgpKtjorhVN4erlE1TGYLxpMw5RbbZfuNGKhaOAYGus1G8eU96hMZNRnzMk0y9gduBxOXW4euzxsu5yOfN65fUIQpdy9f0IQZSzM5bm8VkXTFH7u6SZzBZML5QIKgjtnY9w4pmzqXK07WKbCOEh5aj5HhqA9jnjcmdIe+nTHISenE3I5A9+PiRMYD6dy4ETI+9mTxj5FPSe1kKUyaEwmB9HIl/dAVZf3QeClVy4TRAnFgompq5imxq882yJMMsIko+9GHPQ9BpGsHb1zNOHqnEOWwYNTl4GfsNsPMHSFH2wPqDk6LcdkEEScuSGXqg7zRZMbzTzf2+ziRwlbpxN+8ekGCTAIQlqOyXzBpGKa3D+b8v7RmNWKScu2KOZ0Bl7ENJKFDMdTj54foQlB2TIo5wxymspyRV4Lmz1pmRgMAloNhzs7fS4uluiNA7woIY5TymUL142YmyuQAS+ulbhYdshpKnfPJjP8VsbQC6k4BkGUoCiCJIPJjKhg6bIiduiGgOAbn1r4yYbP5M/+4FVhGKRTD0VkZHGMYpvyRj/z1QmAUkn+93RmFp/1bCdj73xtr9oGqR+i1CqIxVU4OZLQeMNAUTI5GPV6RCc91FYdUS7DxjWZQA+8WSgolb8mg4/xOmki1db9LenbTMKPTz1pIlPvT/rbQSKgTg9gMgLPRVx/FlEsYly/hLqyKDFGgz7ilS/LFXq+JGH1liP9oKoG44FEBj1BAk1GMp0deHDWhlqD7OgA0WiQdTqgqiTdAWF/SuQmuGlKN4oZJSl+mlGYeXIEMEkz1Nn6/ULDwc4Er7ywwIVaDkYRVy6UMBQfcjZi9QKiWkO88Ir0Ry6sI1avwPoFaSXY24JDOdiJjevysSzX5KHhrR8iWvPSB3v4GOXScwinRHb4SBILTEv6LVVBtvsIsXYJUa7DsAuTAdnpPsrqddJ3vw2+h/LCV6B3ImsxhQLDDtnOPbKjLZTlqzJJrM8wR1kmiwGsHMKWKVgURRYXhAHomgTzl8rEt+6jz1chTUmDCGFoiHIVanMIpwjjHtn25sfkhSd1r1EkrxVN+9jfWa3Kr0eRHD4/gd3u73XeeRUgnPVkx1mMpVnEaUycyZCdKpRZujglmWGUwkRaXtzYO6/PzGk5mXg3i2iKRpiEVMwq+qzyMJ4Fk9wZkinNpEK3Pd5lEk1mUOroHKlkqiaDYEDecCSWZ7DL4VR6TauzP1cRymzYdYizGD/x2Bntsj86oh+MSdKEr6w9zUqpzKc21pgvFzBVlUf9Lr96+YsESUjFquDGU3RVRxMqOS3HIJSVm8fTNkIonEzPmMs16Lg9jiZdFgpyndzMO0yjiDRN6Q4njEYuESlJmICXQJhAkkFBR/phMvlrEoMqWL+wgF2weeWzT7F4cY5B6PPU9XX2pl0sXeGnV1+h5ZT46dUXuD94yFJ+kUvlC9yor3PinvJee5NbZ5sUDYtn60+RkFKxSqjAFP6NAAAgAElEQVSKwr948Dbr5TovNV/gYHLA5fJlikaR/ck+Xb+LIgTjaESSRbx59Iinm6vkZ9WkfX/A5ugRl0uX+dbet5hELr9x6e8zioY07TmEUBiHQ271brM92uHl5stYqo2j5WfczZiclien5XD0ArqaUTByVGxzpqLHhElI2crzztEuecskyTIGgzGRKljIl1gqzFGzagCc+h2SLEGZURNkulsyYWUMU66atdk1kWQJmqJzufTJUj5/97WdV8M4JUkhSdPZGllj6Ek1NGdKlm29YND3YtxA1mg+Qds8aSYCuZb3gpj5ss1yyaI9iWiVTEo5Ay9MiTPBYBpx0veYq+Rwo5SipdEehQQJ2JrsLe+7spqx5mh4ccbluk3RUtk8CzgchZyMIwqmSjUneZWWppI3pWo7jiJunkzZ63q4s4HkymqFnK1zbaNOLieRWmdDn199YZ4oyajZH6+KM5FRMnXcKOZex+VBe0qSZuz1Jb3kqO/RmwRUCxZ7xyNUVQaosgzO2kOC6RRUA4KpHCqfFLAosjgFKy/JKrF8v9PKNfKtJsuXl8mMHJlus3BplTjLUFWFjVaBq3MOX7lcY7PrYaiCGy2H55aLtKcxm8dj7u6PqORNNuo2jqHSKhiMgpRbu310XefferrF457HYtHE0VV2BwGPex4lS+H1vRFJmnHzQYeLy2WSTA7Y99tT9scBV+sOrx/0aY8j/t1nFhhHMRXLQFEEXpTw5sGAURjzmaUaNcugYMrHN4pTKjkDS1EpGDqNkkajZGHakv+aCeiOfTRVYXtvgK4rTCYhvheiaSp5x2C9nmO5aAOCu2dTolSyWyd+POuNl5uJJJUHoTTLsA1JKhhMQ0qOwa89M/eTDZ/R//N7ryq2QdybQCTbgvADRBLjPzpGa5Zl1/qlq/D4kQx92Pb5zT8euugVhyyIUasl4rMRaqUoPZXbW2DbpNu7+NunpN0BWt5EdSy5cl9eRbSkOZ1RF7YfSJWxVANLKpmiOo+oNFHmVmHpAqJURVTnJAw9X0RZuCjX7Gkik96hTzbpk334Fmw+gMMD4rfeIXv0iHRvD6EpJLfuoj73vBzUli5IFc925Jr4ZBtO9uTQG/rye85OJa+y14HeGdlkTPbmG4hSSSqesxpHtVHFf3hAlmUM/Jggk0byaZoRpBnDOGXJ1BFASVN5aqVIkmR4XkwaxDzaH/Hcp5exL82h/Nwvy/aoh3cQn/oCYm4VUWuR/dPfh41LUqUtlEFkZPs7cqDrdRBXPyXZp4c7iJe/RPbad+QpMU3JOgcySf76dxGmDh+9CfUWJDHBP/0XqMM25IyZv1eHzTtkqrRcKJ/7FQAZ/DnZRjhFRK4Euo6yck3SCLJEJu57x/L7+m3578wyiWSyc0AqV/DtE7LtHUZ/8WPsS/Ny8HR91FpFHlhKFWjMQ/8U9h/D/u6/2dsex+f0hHMyQpbJ4Fy7LZ8TXUf50q98om5kAO+dvf2qIiR/MSUjTuPZABhz4nbI6znMGcR9Ek1mzTgZ6ozh+WT4VFAoGkXG0RhHz6MKVXatC4UT94Qzr0ecxahCwZit9zMyppHEBLXdLo/6u6iKQivXoGpWMVWDeWeeqlllMb/EanGJVq7OSmEZS7No5lqsFzbQFY1RNOTEPaIf9JlEE/7y8Yfc2j/kcafDaw/v8sHeLo96p6AK3t/d5/PrF/CTgKuVKziag63naHun3O89YG98wDSeMAhGjKMpnWmfC+Vlev6AUThlFHr8zYN7VPI5Tl1XguWFYL1eZfOwDQL8oeROkmQQpLPPCVQtSDPUms31p9YJwoiDww7H7R5bDw749Gef4kKzzu88+wtcq13kT+7/DV9b/Rw1q0bJKPJff/f3Wa+VKRoFGnaVhUKN22d7uLHP0fSIK5UNjt02Z+6Af/vaz/L7N/8aoXr4ic+j4WMKhsP/8OY3WSoWefP4A65UNgjSgP/rhz9ga9SlUTIZBRNMVedWZwtFialZFX5h9RcIkgBDNdkcPKBqVsnpDpqicqNyg+3xFm48RREKB9M96laDtndM3WqRZDE1q4amqERpwDicsjPscbfT5i/eeo/LS3MUZ3izvGNRz+XYqMxxsbwxs1B06Ad9kiwBBH4sD4eS6fnEJ5YRphG2liNMQ5IsxVD1Txzn83d/uP1qrWgx9iLiNENTZGtNnKTsHI1oVnMYmsqnlhxuHoyJk/S8LzyMU8ZuiDbjaJYck+7Qp+iYFG2VB+0pRVvjzsGIg5Mxg2lAztZxLJ0oSQki2SPvmCqTIGb3zCVDcLWVY61qUTZ1mo6BoSgs5m3qjkY1p3KlnmPesWjlbNYrDppQGPsxexOXx32P00nEne0ej7d7nJ65PN7ts3cwYPdoRIJge6fH01caOIbGxaqNqggMVWFv6PPR4ZSDYYgbpRyPAkZuxDSIuTKfp2JrhCkEUcLW/hAQeF6EZWlEUcricpnD+9sIpzBLs88QimkyE6nGYBfkIGoXqK6vo2oqo61Neocn+L0eL3z5WVoNh1cu1XlprcRrD864vlCgYuk4psL/9Kd30fIWeUtySK8v5Nk+8xh5ET0voZY3+PGjAaoq+AcvLvKvPjgiEAI/Tnl3f4hpKPwf33rEXLPAN3+8x88800RTFP72x4/oTxIaDYdJELNcsbm9P8TLMq41HX7pSku2DKUZH7aHzDkzqoCpMp+3uNUZMQwj4iRlsz+hlbN4PJiyULRJ0oyGbTGJI0ZBihvGdPouO9s9trZOac2VWFkoopsati1boZplm7WaTZQmfNQeczDwJSoqSgjjhCTNiBLpR05mlo8gTCjaBr1JQAY0iha/eL35k6GWFFs/RyllcUoyCUi9iLg/JfWi84Q6SQKOI3vcnwwAqorqWKReJP2GYUgWxnIA8FzSsx6MRhLM/ATppGkwPy9DIsWylMGnAyjV4cpzsq2ovoBoLEmvp2nDrBuccV+GnU62pawOs5PODH8UB2R334Gt+3LQabVIRlOSiY9aclCbUhHUXnweNq5Cc1GqeEkkB8/OgfR3uhM5aFabch1db8o///T4fM0rLl+Cfp/06AS6XRmcarawbY3OjKOWzjydANNErtYHcYKlKHhpynu7A3r9gOMg4rTnowLm9TWUVz4r/95cEeWn/55kik4GchX94qdJfu9/k4Gnwy0Z8nnuZcm6zBfI3v0e2Xf/EpbWZTtTswVLa9I+MB2TdQ6JP7wrA0GdU3j4EfhTrJ/5IpM37oNQiP74jxGr16BcleGu7QdkvWPSt/6a9OZrZP026cP3ZHDJsEjbO2RvfAthF0gPNkEzZftSriAPBEksh1J3hFi6CPNLUKsR9afkbyzKg8jnv4xy7Yp8nJ+wQvsdaB+QnR5LZXMwC8Q9WbVrmjwEJcmsaWmmmj8JJH1CP550nQN4sY8b+7PPnvRyzhLGAIpQUIXsYw/TiCRLsTRztnpV8WJXDgCqhR/7s9pNucYTKASJvJYtzZrByYtYmsU0dlkrLvH5xZdwdJuN4gYLzgLzzgKWZtMLehxMDuh4Z0yiCdujHUbhmCDxSbIYS5WKa5AE/GD/Ld4+vs1GpcK1xTniWIaBLq7Msd6qUzRNfvnp5/jy8me5Xr3CfG6eaTyl5/fYHu0wDCeMggmbvT1Wi8vMOXWealzCUk06bg9FCBxd56W1ZaZRxHg05WQyIUlTFvJVTEOn35XNJETpxyFMP5HDZy8ATSFxQ+68u0n7bABejK6p6I7JU80mn1+6hhf7REnIf/b8N6iYVbzEQwjBP/rsL/K77/4NuqLzeLjLNHL55YufxlBVFgtNXj96lz/48IcsF+fZHu3w4vwqS/l5qlYZSzO5139ArztiEk653z3jO7uvESQB/8lXv8bDR/uYqsHvf//7vNB8nqqVp+v3ea99m4PpHn++/Rf84PCHHLsn/OjkR2wOH6IKlVu9m/zV9vdo2E12xzvoik7X7wBwON1lGEqrhhd7XK1c4Wr1AhvlGkmS8tS1NRQh+OraczzdnEdX5Ho2b8jndBJPCJKAJEsYR2OSLEaZ2T6ehI1ADqKqUFFnhyNFCJIn7+ufoI8wTBi48nUUxSn+zP/ZnwT4fizT6oqg5yW4QUwxJ31+USwfi4IjV96aqhBGCXGcsFQ2ORiG9CYBp+OQKEnRNIV05h1dqeXIWxqWrtLM64RxxlrV5us3asyXTJ5pFrlQytOwLTShMAoj7vXGnEwDplHKVt/jzA8YhiFhnErFNYk5GgX88EGXg+6URjVHve7IdHkUc+Fig5WVCrmczpc/vcpvPjvP9abDatGh44bsDDzuncg0/MSPePNRl5WKxVOLBV5eL1OyVDZPXVRFkLd1mnUHy1JJkozJJMIwVBolG7Pekqg/OK98RihS7TRs8EazGu6M3uZD3Mlse6moUKyTJKnsNHdkbeR/+sU1Xp6vEKUpqhD8t//gGe7u9Vku2HSmEY+7AeutAuWcQatk8fDU5eB0zIW6zb3OlJcu1s9DOlfnHB525EGrPw0wDJX/84e77A98/uPffIGTvTaqIvj23z7gsyslGkULL0r55gcnfHDS50/unPDn9zucjCN+sHfGG4c93DjmnaMh7+yOKBk6WwOXimUwCEI0IdjqTZmGsq3K0VU+v1rimcUC8zUHw9RZXKmjaYKCpVPM6XievObCOOVhx2Or53M8CumNAw57crOdZmDMkEuKIlBVgaYoCCGo5GSw1TY0ouTvfr3+3crnn/zjV5NpgOqYpEFEMvYxN+ZJJx5ZkqItt+SNvN+VXrskOQ9zJGMX4pQ0ThC6SjKRD7q6sgC+h4hCxPoGyfae5IfqGtpiEzG/gHj+M4jGIpnvAsjVuaajbDyFUBSpbD7pXc9SybfcuScHmfl1GTTKV2dyu0J6tCWxC91Tycfcegy+j1IqoDmzJH4+j7j2FNlZRzbjTIYzD+Vj6RvptmV6PolgMiLbvIOYX5KraU2HuSWwHUStidi4ioh8hOfKVS+ch6uGhyPOZj6NSZKRAEGWUddVSpqKpShMUtnvm2YQZRmaELz0s1dRn39OhmZGfbni392U3rL9Lfnv9V2UF16W/z/0Zein04ZH8vtEloJpIBbXZtzUnKwofTRrD8o5KFkoQ0B3bhG+exNVjRGvfAlt/z4i9FDqVTA1sscPEU6e7OaHKD/7m2TuUA60S5fJvv3PUb/yq3INr+oStRQHoJkotTmy7snHdgjDAkVDVFpyDT+3ApMe8Ye3SYYemeuhpMHHQSHDkLWZgy5Z50SG27KMdDRB5CTzNBtPpHWgVJLP7WQih9EngPmZSqp87Tc+USoKwIfd916NkhhLNYlmQPWqVSFMQwRQt+sS0B6OidIYVZHNRNGs7YcZUF5yNT0MRadklhmGQxShMpdrceqdzYIqMqFtqAZ53SHOErp+lzTLqJplbM3imfozqIqKmAWTptEEL/HpBT02BxJndLF8gbol1dEojciylLv9O3SDHuPQZXvQ5fbRCYqqoFsGds4iJcNQVS5UGnx0eshyscwgHLA73uNB/zEd74xRMOFa9SK2Lofnd07usVxsEiZyvVswcgihUMuVuVG/SJCM6IYBF6pVpmHI7qjHxA04G4zkyj3N5GeQAl1tVqmZzdbuhiIPlGFCogm++sXneW5ulTRLOZqcEqQBbx69j5tMeOP4A7pel47b45WlS3T9LuNoSsOu0g+GfOfRPSw9Yz7fYLVcpm5XWSks0w96zDstvrv7Nn1/yHJhjkj1ea51mfdPtnn9zkNMB7649BIfDbaxLcFCo4KpwzvHj7lRX+Wf33uff/j0rxOlHrZmcbVyhX986//l59e/TMfrULNq7E+OSImwVJMlR7YpVcwKJaOMoxcwFIOG3cRWbRacRTIR88PtO5x2BnRHE3rJmEkYoCoKC4UiZfNJ6C3FS7xzgLypmrNmKVk9mtNsafGY2TVMzSKZsWcVIbhSvv6Jes3+L99+9GqSZJQLJl4QM51GrM0X8EKJQFppFgiTlMftKVGSSZVQkxxFL0yIU5ksVhVxDptfazg8bE+xDI3nFgs8OJkQBAm6rrJYl6D0qqPTKhq0x7M2noKBrSt8Ybk265bPEAhGUUTPj3h85vOwPcU2NK7VHeq2yXzBJoxToiTjxwd9Bn7C0IvojQN294eUShaqqlIo2iSJDDcWHIPjsynlksn+MODO6YTtns8oSJn6MZdbDq2iQZjABzt9agWLOM0wNQVNVRj5s5+x7hCkGVMvYnG+wHAU0D6b4vsR4dSd1S9Hcu2eRNLjWajJlj5FkUNorkSKcp57ePrT15irOdSKFntdj+404u2dAe8eDPjhgy6nbszDU5eiY/DwzGPsJzQLOgVT44OtLn6SsVrLMVfNkTdUnm4WuH/mYukK720PaI8CGkWLvhvylesN7h2MOD4akS9aLFVt9gYRQlPYWK+jGwp3D0fMlWzeuXvKv/fyGjtDlxcW86yULf7o7UO+8ewigyDiUjXPR0djpolsfarZBmdeQMO2qNgGjqlRyuk0ciY6ChcrDgsVgzcf9zg7HdPrTghSQRAlGIb0t4J8u7MM9dwj3B14FPMmlq5yMvDIMqluGprC2IswNAVDVwmSJ61k8Pd/0rV78uf/5NU0jFFtnWQakPoR+oUlko6EumvVAulZj3QwQllcgGYT+n2yICD1Y4QqZBo0zYhH8qSvLbZgOiU9OUXZuIDoHBN1J6i2jtqsIhwHVq/I2szuycwcrMuQSjRrrZkOJJ5H1cn6bTkgDrpyvUyCsAvSjxm44I1l5/vuQ5mwH48Qc3NSFatUZBpaVaEwG4amE8TCqhwoK02ozyEaSzJp7xTk130X4bvS62nJKkc6JzJF3jkme3Bbqo31uuRQNlqgCILbj1GzjLKmEkUpJ2E8q0IDQwjWbRNNCFLgUtkmp6poGRRMncalOspcC2pNqWy6E6jWyV7/vhz++2eIRovon30TZdiBYV9yWntnKL/2H5LtPECsXUJceobsR99GeenLUjV+63uSFNCcJ3t0j+TeQ9Sf+1Wy3gnuO/dJDtoYz15D7G0hnnsBYZhkm/ckiWD5IskPvofIq/KxCAOUG5+B012yUFaYZu1dGYJKY8T8ikQsCSFV7DSRne+KKh/XdHZjL5RQ3Q6aqaAuzUG/T9LpozRqiGpNDvyKhiCTHs9+X15D1eI5VF5omnx+s0yq6Wdnszcd79xU/klMu79/9u6rcl1p4cU+QRLRyjUYhiPCJCZvyL70JEto5ZqUzTKTaMo0nn58008TdEXDjQKEgIKenymnIRWzzCSaMA6nGIoOyLS5rujsTw44nLRJsoSKVaZslnFjyRodhgPG4Zg0SzicHnGz85CDcRdVgZREhn+CLl7iMo5kFdz77ducuSO8OGajVsWLYxYKBTYqso3I1DTm8xX8JOByZRlN0WjlGsw7csU7ikYUjDyOliPKQjpun5Npl5xm4iU+h+NTkiyh4/b54d5d7rU7XK7XqNk5nm6uoYiEe3tH6KqGWbTwkhgmM0xXIn+pNRvV0Eh1wdLaHLmchbA0ysU8V1cXKBomlyrr6IpKzxtyobLCH919nWHgc+aNWSxU+L3Xvse215sN/zHvnWzz33z2t7jfe8RycY5L5Q3+8Pa3+fLKi+R0mz++/x2u1Ja4Ul3j/fY93ni0w2889VOMow4fPN6jPZ5wfXGedjDg+dY6iJS7Z/t8bf15LpQ2+Najd1mq2Nw6e0BGykvNV2j7u+SNHGWzxIPBQ+52dylbOeacFgeTA1nHqiikpEyiEbqqowudKJNDYtEoopkuuq1wbaHFznBIZzRhoVhgqdjA1kyauTqa0M6HyVE4Jq87597gNEsxVANNUSnOmp5km1UoWbKK/olLu//uD7ZfVRRBwTFwvYgoStlYKNLuexJ3UzA5G/mM/YjrS2VWqzbtccA0iImT7HztmWUZnheRphlLdYez2ffcWMhzPAzpDX0MQ6PsGIz9iMWyxU7P53TkE6UZzaLJSjHHJIqJ05QT18eNY/wk5V7b4+7hkN44QKgKiiYwNcHp1GcSxQyDiJSM24cT+rOV61zDwQti5hoOzYpNAmiaQqNkoSgKcyWLsq1xoWYzVzS43nBIgGZBWs/GYUaUZhz1XKZBwjhI2D1zZyqb4OZOjwebZ1iWzlwtx2euNnDTjN2tDolQ5ZApVOn9VJTzKk3yVUCAVcAsFzFMA7VQotioceViHcfWWSpbLFUsJmHKZ9bLvL/TJ50RaYo5g9fe3qc3DkETJJngtVsn/NaX1uhMI0xdZals8te32lycy1F3dL51+5TVZp6Fss3j9oR2Z8pLF6vEisq9B8d0zlyarRKxgLVWAT9M2O26fO5SjRutHG9s9ihXTR60p2RC8NJ8mX6cUMlp+EnKRycTetOIRt6gkdcI0xQvTuj6ITlNJYzT8wYtMbteHE0nszVcBFcuNDg5nTCZhBiGij7jxTbLNmVbZxpI1X04CikXTBBiVmwAyzVpUbo657Df82RuwJcWzQx+8rR79td/9Go8cNGXmiRnQ0hT9GaZ+Lgru5CLNvHZCKEqqC+8iFi/DA/uQhRL72aWkQw9uZYaeujVPMriHHge6WCECFyEbROf9rEuLyHWN+C5z0jPxmQosUdZKr2eWSYHUCGk2tk/lV/vncqeeUWRQ2S1KasiU1n3KJ4kuTVVgsyPDqXKWavL3yeJTEdvbSGKBcT15xC1uVli35WVkd1jWf04OJN/R5aRdTsIXYfxiKzXQUQh2UcfIlbWpCcxS+Sf+eynZODnwjX03gH339jl1Is4CCK8NEOf1ZU5qsJTDYfFZo563qDRcqjUcyxcqtO4UEP/ypfkgFatI57/Itg5RHMZ8ezLsLKBWFwBQ0dtNRCWJa0FUQSbm0R/+zcoc0149FAm3Xs9so/eQiytyu8bD8mO9hEvfh5xsC0H+umU47ce0fjMJYSYBXfaJ4Rvf4i6ugTvvwM7D2HqEv74bbT1JcRLXyX7q3+CePHLiOqcXH/c+0iu0huL8PiOPCA8uCmbsDauS9tAFMjB0y7Ix8qwoFREJAHs70OphFIpkR4cITQFMbcobQK9nsR7ZRnJyEUt2OelB+LJqr3RkBD+zfvyGgnDcx/uJ1H5vN376NUgCWnaDXr+AEUo2JrJIBiTIesyx+EERQjWCqvYWo5j95iMTNYYZiluHJBlKUES4ug2FbOMl8i1u1RFBUESUrXLWKpFM9fAjV06bhc38mc98gFhGmJqEksUpzEH00N6fo+uPyBOY4pmDkszmXMaFAzZjlO3GpSMEikJlqZzOGnz8KzLfKHAQqHEzfYJozDAUjVu7Ryw1qjxixe+zIIzzxP/YMkocuK2KZtlTr0zBsEQLw7YHnSo2jm8OGB/dIYfh/xg6zGX6g3WK00ajsWjfo+fWnsWTdF4vnmdB+4hN999iDf2YDhDyylCHutNlYvXV2g1K1iWSaNRJp+3WV2dY2GuxtfWn0YIqFplPr/weQpmjjlnjq+tvcTL89d4rnmROafJhbkq6+UaVcuRCfJuh//7re+yXK/w/skOu+MDBr7P9/c/4GK1ycXKIgfjE7regC8svcRxeMrjwTZFM8eP7jzgxpVVgmSKoaocjnv86MEjqsU8P9h5wFsnd0ER/NXNd7k81+Snl7/I7935Q35+/auYqsH++ICPOg9YKjSYy9W5dXYfXVX5zs5bvHF0k0/PP0PTnqcf9AhSn7rVwlItbC1HwbDRtITbnUNWikVWqxW2BwMg4Ub9wmzwlFWRcRrjJ4FsxxKCbHaASbKEvO7IQ048IUzDWQpettFd/YSl3f/0TvvVTmfKxlKJwVhyPlu1HO2eixDgzDA8mqrwlcsVrlTzvHcgW3dsQ0NVBKNJiKoqjEYhxaLJSt2hPQro9F2GYUYxZ9DuuVxaKqMogtV6TnJFpxFBlNAoWHSnEV6SIJSMOJNtO/dPPYZ+Qt+LiGKJNrIMlWpOZz5v0chZzBdsHE0jSBL8NGPzaESn49Ks5agWLe4/7jGchPh+zM7jDhtrNb7xqTmeb5VQFOhMQ8qWzqkbYmqC9/YntMcRYz/iqDPFsXVKOYPuOMCPEh486uEnKaapUanYxHHK155pYesKzy4XuN8J6D/alIEibyRVzxnjGDOPPb+I4ThYBQdN1yjXSswtVKg38mzMF8kyqOd1fnqtTjWvYmoKr6xXuDyf58ZCntWqxY0LNS4uFVmo2KQZjIOYb37rPivLFQ66LjtnLv2Bzwe7Q2zHYrlmM/ZjFEXw4kqRSQI3D0a0Sja37h5x45kl4jTD0BS6M9XY9WK2Tie8vzdCVQVv3D6lXLL54oUK37zd5isbFQZ+RM+Lubk/xlAVyo7G/jBis+Pxwe6Qh22XL6zXqOQMRn7EwI9oFS0KtoapK1QtjZyjsXkyoV61qVVthuMAgKJjSoBPnBImKd2Rj+dF5B1D0nmSDFNXidOMhZLJ9YbDh4ejcwpDKWcQxSm//txPOHwm//IPX02DGK3skPTGJF6E7mikQUQaROgLDZQsJo1SlLyFCH3SrR3SaYAwVJRCnmQwIZ0GGK0S2tUN6Qs9OCDYP0Mv2WTjCVmcoH3pC/D0KzNlcyR9jJORDKA05uQQqurQ3oNHd+TK3Z9xRb0ZUHx+CdFclmpjSXoxM1dWPHLnfTJvKlevQiDyRYQpf8/ODsnEI9k7ROkcQqslm5S8ifRN5kuSU1kowf4jGA0RliW5oMUyYn5Z9s57U1l52T6Ww/LP/DLU5xHza7Jv/trTaG++iTuJCDMJzB09SYxlskc3nCRc/NQiiRsSuiGFT19De/5ZGbDRVKn6Ba4chCf9WeBmSw5v/a706Dp5+XgtraP81C+hvPQKolpHVCqI1qL8udMEsXqJ7K//JaLRQDzzMtnbP4RCgeD7b6O/8Bwlw5eHg/tbKOsrcHBAGkSoSgaLi2T7B6hf/BLaz/0ipDHJ7/2vKM+9IJP3do7stW/JFX5zAQyT7MEtxPMi9v0AACAASURBVPK6rE39zNfJRmdkJztk7lhaFrJMNlOYORlKij3wJohqVQ6UC/MSMQWy9rPXkxeq70tWbKMy621P5POjqvKQEfqkjx4j0oS4P0UpSfan8rO/+Ym6kQHc6d18NUhDcjNMUgYYqkynpxnkdHuWegdD1ZnGE8bhGC+WaXRd0c8DHjW7TMtuYms2He+McTilaBTwEp8kTVjML2KrFqfeKW23Q9cbYqgaw2DManGJDKnMPOhv8l77NlESyW5yf8TJdICpamyUlrhYkoNJ2azImk/vmJ3xLn+z+w7TKGKpWPz/uHvPIMvy87zvd/I5N8fOPR0mz+zOTtoE7C6wS4DLgETQJgmblOgglmzKKqmcPlhSbZVd5SpLH2xLqjJFl2Fm0KJIGARIJC6wu1hsnp2cOueb8z05+MP/YsgvhqvokmTvqeqarumu7tO3+577nPd9nt9D2coiS9KjSs39Xh9FVbh3cMit3iaL+TyyJHE0rhMTM5+ZI6tlMVSDW60H9NwB89kyfhQwl61yZfocZSuLE485HA3Y6bdJ6zp/++LPM52apmyWWO9vcnX2BN/fuodju+DHwp8eJ4/+7ex16IQuVy+fpt3q49gez51e5fLsMnOZaaI4ouP2qDlHbPR2OBgdcq+zxttHNxkGA47GdVpODz/yaTkDzleP8++d/Wl++syTLGSnmM3mOFteppyySAi5Ov04/+Sdr3J5Zpkr04/z7e0fsJyv8qfXbnB1aRXXhOVCgev7hzy9uMq7ezv4fkAgw/NLK9zY2eNXr7zAr176WYpmlv/me/87Hzt2ip3BPnkjxzc232A2U+J0cRVLtXj36C7nKydQFYkvnPg0R3aNmn3IoX1IVstM2olcTDVFySiTEOJEAzK6xdBzeHLuOGUrR9UqTSbrPmEckZDghA6moqPICt6EzqArOroiRGjLbSMh4cXexJ+sfORQS7/73sErQRBTKVp0Bi5BEJGyRPNQFMXMVTLECXhhRNrS8eKIh/Uxg7GPpSukLY3+xB9aKac4t1jA1GT22jb9gUelYNEZeiSSxGwpxWJR4JWO+h5eGFHOiG71y/MZVFlCluHm0ZjbB0MMTcX2IwZOQKPnUMwaPHksxzNzRXRFxlBkhl7I9Waf64djPtjskCRwfDFPJWvSG3t4QYyuK/T7LoVimrWtNrfrY2JDZuxH3DkakzZkZjMGCcKT+uBoSJLA6kwOU1eYzpk8f6KApmn0/ZAoirHtkMWpDL/ysQVypiACvLXZZ2U+x831nggcxaF4HYwm9cqhT9g+IvBDZCtNFEV4jsfiUpmT83mmsjpOENMeB+yPPN7d7rPesrlzNOLGbh8vlrGDmIf1MYddl52WzWo1zU+cLvHyk4uYusp0wWSpnEIzNEpZk58+XeYP3tolnzZYLpvcbzhM50w+uNOgWkqhpAzmK2k2dnuszOa487CFPfbIZAxKBZNafcTLV+f5tRdWcOKEf/HNNU4uFtjre1QzKl+/0WC+lOKx2TSmKnP3cMjFxSxhIvHiySIPOzYfHg2o2x5ZQ8GQZAZOiKHKFFM6GU3BBTRVYLrKeYtEgnLWJG2qBKEQk0M7YDBwWZnLE0YJbhCRS+noqkI1q+FFMWsNmwQYuQHFjIHthfzCpf971NKPbThKolhMLoOAJIqRVJkkilGyJmHXhtlZklaHJIygXifZ2RFTwR9VKYQhxvI0iTNhKw4GsHqSsDUgCSKi3pDEj9CXpsVUL4knOKMJFiFXQLrwLMmwh1SaJhm0J4Z/5S974cOQZDxCOrYqBGM6j/QjhleSCOF5/4bgTObykMuT1GskD+8R7tVQUjqSZaI+85QIFg2HJLc+QP70z5MMOuL7KQrJ4TrJ7WtIpao4z6lZMZldOYOULZLsPkSanSd5KLrVpYtPQf1AdJfnC4Kz2WlSPDUtaul3RUAmr8iUNAUZyCgKCQl339wlnVYpl0QlaTLoIykKTM+LtH8qK87h3g0S10WaWxSic3YBqTgt2ojsEdQPiG+8h/T4ZdFM1WnC4oo49zu3kDJ5+MIvwYObJN/4V0hf/GUIA6Jv/hBWTyG1mzAYoJ5aRjp5jmRzE/9QnLeWJEhnTovvU9vF/f0/wnjyMZL1+9DpII2HJOsbYBhISydh0BHr/Qe3RQXrD/8cKhP7QyZP0j4U9gZZEXetSYL8+PPEpWloHSL5vrgR0Q1xMdl4SNzqIFfLJIFokMJxiMcOkq5OLjahaLtqN5FTJonnoxbE1DPqj/4f6r3+/3mMQxtvwlgNYtE+A2CoOiOnT1pLiaBHHHM0ronppGJMksfiyOqZSchDxo1cpqypR0zGYSBaSvJGDjd0H9VpqrKKJitk9TQvLj6HHdiktBRdt4sqqxTNHJZq4IU+XuhjqSpL+Vlm0zPktDyKrEyQPhHbgx3e2L9BStOYyxQAuN+uM/Q9jpo9ZFkik03x6RPHcaOAOI548+AGXzrzGbpej4yWJk5i7nXv89ruLabTGdJ6itOlVfaGh5wtnaag56mNGyzlq7x1sIUiSTy/cJl73Qc07S5ZPcVUqsLIH7M4XyUMIwZ+T6zdJUl4PQFyOqqq8IO3b6OpCtOVAh3XBRoYik7eyHC2dIqsluVhb40f7N8gAR6vruBFPguZGWbTs+yN9qmPW9xtbfC1h+/y/LEzKJLCZm+fJ6ZOsZCZ4dubd0hraV55/pf59s4bfGvzj/n1y59lJjXNb3znVS5OnWd/2KLnupyYqnC6uMqH+V2uH7VRFIWNboufOn8eOxBJ+X/8na/xmUuPsT+oM/A9xoHD9f1D4iThQuUsdbuBoaq8uvsuq4U5vvLgTymaWaqpIpZqsDHY5EL5gvBuRuIa/3j5EkWjyM5wh6Qq6Ac5PUdGS+OEDqNAQO69KJzwJwUnVpWUyeQ9wlItnNDBUERiXpd1TNVkFIz+DTyD/s0eQRjjeSGOJ4K9siyJcIilUW/6nKxatAfisd1u2zw4EvWYYSier34QsziVxZn0qI/ckIKlMHZEqLI78gnjmLlyCj+MaNshmixhaIro45YlPr6cw4tiKrrG0dAnYyjk0zqOH+L4EWMvpJo3uXosx3xWePx0EHYJT4Ru1o4GzJXFtXXkBNzaaqNpCrWjPgCmpXNquUghM0OSJBx0XX7mbIW9nkfGUBgHIdcPbdaORLhvKm/w8ZUcHx6OeWwmJUJXdsB8Jc1Ba4zjhMwXLd7eHdIZeeQsnbmCyVHfo1Ap0HPtvwweBy7oKREs0kzQTDzHQ9VUjIyBpskcdGz8KCZjaDy3mhWAdz9i/WhA1tI4t1gQifZxwtPLecZ+RHsc8s5GmzfuRVw+XiZOYL9ts1JNs1qx+M7NGs0TBX79J1b509tNvnunwRevzLKUS/HH39vg2dU8jb5Dd+SRzxssliw6x0s8WG8Lge2GPHGmytiP+dZ6mz99fYuXP7bMUdchiGK6I596Y0wlZzL0dPZ6HmEU89qDNufnc/yfN+qkDJVj5RRjP8IPx+QNjZSqEsUiVLRcSvNzhs61epfTUxZ7fR8vsLA0mShJWOsOyad1LENFUWTGXojjhyiysD/8qC71cOCjyhJhnJCzdJJkgmT6McePnXx6v/0br4wbQ8xKhrA3RtZUZEMVrNYgRL98ASmXIdo9REoiYttD1lXCvi0+LwghDAk6Y9RiRnjxUibh5h6yqaHNVpANFen4cbj0HJKZEncr/bZIsiexaBIKPRH4cUaQKUAqDd02yfYGDHpI+QLSxY8hFaaESEti0TG+9wB2N0Tb0HgIe3sk6xtIU1WQJNw7W+iLU4SNHv6th6hTRZGu/lHgqDoHw54QxHEkgjqzx0BTIVcU0w/PgY27sHhcnMv5J8TUzRkLf2a7jmC1OCRHeyilPOmMzGCtjRPHk9YZsGSZlCwzX7Aol0zmLi2Q/unnkM5dQDp5XghdWYZ2A452SfY2kRZXxCQxDAUnNUlI3n0NDnZhc134I3d3xLRZ14VwGw5I7t9GWl6B7Yfi/dl5pMtPk3z368hXX0D1W0jHVgm/+W2UL/1N7N/5I/SFCs6b10k9eRo8j9Zb66RPL8BgQPjmOxj/9T+Ad3+AtHIC+aXPCeZqJo106VmC//U3kHtN8D2ksxdEFejDB0hnzovHdfG08PFKElJKrN5RNDF1LlTFyt9KiXVnEsPRPoxGwmusi2aa2PGJRy6yriJnJ61GigKmIfyenvArYZrCc+wEqD/3Nz9SUxSAd+pvvdL1huT0NKNgjCZraIpKguCwzaTEJHM88WLGSYwiK4RxhKka+JFAJg38EaZqAAIoX7ebyJJMTs+K4ICWoWgW8aOAhIS63aJgZpGQeNDdYBSM2BseTsRrFSQRulnv1hgHHqvFOT4++wxZPUdMjB/5NN0G11s32OrvkxBTG4+5fnjAvaMjjpWKZHWDtb0ax+arNFt93rq3hpkxJqDjhJbbZC4zjRM5AiEFPDN7gadnr5DVU1iqSW3cpO12uNa4zZnScep2i59YvsR8Ns/RqEHByLLVOyClmjTtDu8crTNTzJMpZ9lrtEUVsDRZu6dU9LRBtZSnXMhy6tQxPv/EEzy3cIGPz12l6bQwVJ2dwT7v1q7zXm2TZxfOcr58go7bI6dnyOoZvrr2Ku8fbXCttse56jzr3RYlS7BZZzJlOk6f727f5MrsMe511viDu2/yicXzfP7EJ/n9e9/k6sw5lIzNTLrKH91+l3/43K/yP337q8xOpfju9Tu8fOUxBnHIDz+4x+Mr8+z2W3xr7Q7/7LN/l//j/pucrczzmdWXOBgfkTYUPnP8Bf7Bt36LfUeEx67OnuJ+e5e7zSbPL55Dk1WuVC/TcproikZOy0+CQxqQUDBKWJqJNQkPZbQMXvQjFNd4Ej6T8GKfIBJT+KyeARKCOESXNdzQJfwrCfhxMMYOHS5Vrn6knrO/+cbWK436gKmpDJ2ei2Vp6Jq4EfODiEvLBUxdZac5Fq9ZfoSmyowdscaNJxu03sgna2mi6z2G3thH11XmSil0VaaQMri4kBHFBDL0nZD5gkkCXD8Yst/zOBoFuGFMWldwgoS+7dMd+yQJnJnLcXUuj6UJGL0bxhyMHF7f7rFRH9If+dTbNlt7PfYPB5w9XiFtamzttJmbL9Jtj7h/74BE16m1bXpjj82uy0zeBAlSukI1rfHUcoGfOjVFOauy0/M46LocDnyu7fY5M5OhOfQ5MZsjmxZTyoypUuu5FNI6tb7LxkGfciVDplykM4wmU88f3SiWkVMZCtNlrLTF9FyJpy8t8MzxIi+eLNGbwOzv1GxevddibbfHhdUyj89nuX80JGWoPLeS583NHq/drPPB3TpPnp2h0XMwdBVJgjBKSCSJt+41OLtUZLfr8pXXtnjx8Rk+cbLId+51qOQ0FmbzlNIqN/cH/K3njvF7f36ffDnDzXtNPn55HtuPeHD3kOMrFep9l+sPmvyjXzjPn9044uJykU+eLOLHCbKu8MLJIr/9F1sMXZ8IODOfY602ZGgHLE9lCaKEz52p0nJ8IuJHpQBZS4jQrKUynTLJ6xpuFFLJaPhxwsiLaQ1dTE0MxWRVxvVDDE3cnLi+sNAMvYihGwnovCSRMTX6tqg+/RtPLf71Jp8kCWGYEI09UGSUjEk09kRf++TjUrmKrCpIskSiyEiWiXEiK4RBIYf3cB9JU4htFzmTIokiZEtHUiTBbJyegZPnkcyUmDTGkUhAR4FgaJqWWK17jhBzt98ncR2BMJIkESo5e0n4BZW/8uMYlkA01Q9IaodEa5so2RSSoRPdvkfYGaNVxHmq00W8wy7um9fRZ/LIj5+Hfg9q+2Kimpsk1qMQqTQruJX3r4vvUSjB9Jxo6XFs6HVIGkeE126jnjiGdOEy1PZJJiGYxHVBljh1PE+ubqNrCrIsUaxYpE7NEHsh6vwUaJrolIe/rAwtlAWyqr1P8O4NtE5HBH98T/gbC2Wkk2eh0yLe2kZaGCM9/5J4TDtNsNIkD+7i3dvG/HRZCLp8JERpbR/5F3+N5HtfRf7if0jyxjdQn3wCfIfaTp/VO7fRylmwLNTPf4HpS5uwfFKIx/Vtwn/2j1FOrgqhmMmTrD1AunAJolDcYHzyJ8UE+bXvID3/KeHV3FmHldNI6RxJrwGGRVLfEVO35fMTUa0jTR2D5j7JBMPC4R54HmHPFgb4tCWm8T0bOZ8VQvtHbM9+X4TbykUh0CfA/7Dz0ZuiAMJTl8SEiWhHSWkmQ3+MoeiEcYgqa8iS/MhHJ0symqyR0eVH7UUdR0wrwjhEl3XBg5Q1YmIKeh43cskbedzIo+22ASgYWXRFY727i6Hqovs78tGVKt/afpOB59FzXUqWxVQqzdXpJ7DU1KNkfUyMLutUzBI7/UMetNsctboUClkUReb2YY1Wo0sqbVFv98nlM4yGNjuNNv28x+NTU6x16rSdAefKyxT0PKZiYocOsqSwPz7knYP7HMtXmDHKnCwe415nnZE/ZmdwwEa3xveu3+PZx07y4tIF1rt7tJ0RZctio9slCELmZyqMcg7lQhZZlimWcyyUCrQdh9VCYfLz5Wk7XbFqH7dY1RYYBw5HoyH3946QgU8sPYYTekRxTEZPc7I0z3R6xPd3Nhh4Iz536jK6rHE4amIoOt/ev83uUYtTpSolK8+VmVlGgc23d17j713+Ff7ph7/Lf371P+JbO9/lp06fpeE0qDW7fG97nenZMj3X5T+48AmuTU9zdeYxoiSiNn6Dv/uNf8qnzp6hYGQxFIOb9V0+tXIRP/KplvP8+uXPkSQJv3/vO/zyuZfxo1d5ffcWV2dPkpBgqSkM2WBjIG42np/9hEAmSSpVc4Yw3qdkljAUk8hp0vXGkwm6WKGnVAsv8lElcd0WWCGFIA4ZhzaarJJW0wRxIEJxgf1v62n1r+2w7ZBk0lSk6wLubbshmiajKBJumKCrErIsIU/qKy1dpVywAMiYKnuNSaFDFGNoCqoskzZFVeJ0fsJb1RU0RaIzQenM5Ax0RaI+8MgYGrYnKjCn8iav3m2IydXIZ7qSJpfS+MRyAUtVkCQwFBkPwXgsWCquHzEe+wyHHtmsgesE3HrQpFXvouka7bZNsZxBVmRsO6BcTrFQTlPvO9T6LmNfQ5El3CDGDmIsReFrtxpsHQxYnssxnUtTTmusNWw6Q4+B7dPuOdy9scuTHzvBxaUi6/URQRhTLlisTdb/hmXgxUUqC9MoqkIuZ5JKaQyHHqapEUUxpYzBTsfj2k6fo/aYWk8EfgYjD8+LOOjYjFwR7uqOfF7f7GN7IccX82iaTKPvsDor7AFBGHNhIct37zQ4PBiQSuk8fqzAMxdmuXs05IOdiC9enOa3397nP31+mQ8Oh8wUUzxsOYRhyPV7DarVFBuHfT752DSrszkem0vTHIWossT/8LUHrC4W6NgBi5kUX35zjyeWi/hhTLWa4teeX8IOQn7vnUN+4clZvvLOIXf3esyVU/S8gLQus5xNszuyWWs5fObUFLoqE8UJGVNl6IbMZA0sRSGIE/Y6LsORhz4hDWQsjaHto6uyKD9IBPLL0hUOOjaFlI6uySiyRHPg0u26P/Zv/8dOPsM/+a1Xgr5N9rElgqMuWiElXuB1FX06LwJCUYg86JB4gcAgaeok8CHW1UGjRxJGKIYm6hWLReLDOurqMaRTZ5EuPCOYj926EFCNA7E+N0yk+VUxvXLGYr2bLQhRFk5aaixLrMELpUn9JoLnJSuCy7m7RnK4C7UaciEnxIws49w7xDw+RdAYoJYyYloahhgXTyEtL4mJ4rFVpOPnBc+zfSSEbq4kQk/Djmgyml0QoHfDFOv19Qd433+LeL+G9swlaLVIHtwTa/iZuUcs0+DhDu3dPrWey3TZorhYwFgsoVg6kiwRNfvIGQvJMmHUJ6kdiMldv0Ny8zrR9j6ypSEZOhIx5ItiCnzzGvHNm0jDPvKzz4Hnkty5SXL7lrAdpNNI07Ooi7MkB/skmxsi/fbe+0T310jefwMpDEjufQj2GKlSJfz616n8V3+H/u99ndRT50iOaiSbayKkdfsmUiqFlDZRfv6Xkc88gfcvfhPlsbNIgQeZHOysIy8ukKw/EIQAVRFhpUxG/O5cm6TfBFVHyhYEAsoZiZBX4ArBb6QEiSDwYNwXaf9hn7jRniQZY8KBg5I2kHUNTJOo3kLOCSEabB8hJRFSPifE6NBBP7vykazXvNZ6/5WBP2Y+M03PG1IyC/S9oajDtIqUzCIJ0PG6gqFIgiopuBP2oiqrNOz2xCuqoUjypJmoT07PktEzVK0KbuiyPdiddLO3mc/MkNZSrOSPIUkJ48DBj0LmMgKirMjgRSFly2I2UyWjpybsxuhR0vlhb40bzfs8aDfoOA7zpQIDxyUMY/b3Gpw4Po/tuOQLGWRZJo5jPnZylZOlKmfLqzw1+xhPTj/BdGqKlttGlVUKRh5pYheIkoCL1bNs9PaIk5ihP+bD+hHfv32XWn/AZy4/ztF4xA92HoKUcGlmFYkEWUq4+XCHVqdPv9YnU8igqQqQ4CcxmqpSGwxZLBRIaTr1cZuNbh1JSrADl9d3N9iptcgXMsLEHzmcKCxwv73D9cY2HxztUhsPeXn1PG13yA/3N3lrZx0vCdAVWMyVODs7w86gw+sba0RSwju7W2y2W3x97S0MXePrmz+kNu6xVKjyP7/2Z3z5b/yXfPl73+Ti6iLbnS632/uULYs39h5QMHVSmszfe/pLnCkd57/97le4uHAMRY6IkpjauElal3nr4B57wwPiJOHr69coWhYL2SJxElN3GqiKQs7IMZ2aZugPuN25Rc/rgBST1fOklBRO5OCE9gSlFGFPBGSYhAy8MYaqkZCQ1tKMghGmYiFLEh2vQ0KCoeiMgjExMVOpykcOtfR7Hxy8Mhz5nDteod62KeVN2l0Hw1Ao5y2WKylR6udH+GEsWp8UmSCM6fRdsimdVtclSRJ0XUGSJGYLJvsdm4VKmmpG42RVPKZ3ag6WJtNzAk5ULHRFEj7HUKxgFVkWHe+6QhiJyWva0qjmLNKWhCbLuFHEOIhwwpDrtSE39gY02ja2HbB0rECzNSaVNuh1Rpy/MA+Sgq6rlEoWQZBw7kSFqbwI4bx4qsSV+TzHyxZeJNLbOUMVWwwnwrJUXjxdoj4KaA592kOXo8aYzc0WUQSnz83iOCE7jRHIEitTWfp2gKLJrN/bJxgOIQxIFI1Rf8Ro4OAHyeTakXB8qYiqSAycgCSBhWoGS1fZOOxzeDAQ1m5NIYhjqjmTkRvQHLj0Rz7dgcvxhTzNvstBfcRefUQsSwzcCENTOLMiUvXv323QGXr0Rz62G3L7aISuKvzF7TrbjRGlnMmr1w75R//+E7x6vcbCXA7HDbi/28c0VbZbDvNFk5EX8aVn57m4kOMPXtumWrUoZU2iBNYaYzKmxvfvt3jYsJGA73xwSDFvUsmJVsH6OMSPEgwNFrMpnDjguxsdGrZHSpFJ6yo5SyMKEzb7Nm07QJYl6j2XKE5otm1sNySfNYhiEWLrjnyypoapKezUh0RJImgKTsDA9jm7VOTzj03/9SafWjmDe7cG2SyxF6LMTRHvtJGnVKS0SElTqhDUe0iqgpLWSYKAaOCilrOQzZL4EbKlEbkByoVzEASoMyWky09PEEdFsdZ2bSEuihUhQJOYpNclsUfgOEjlqpggbq4LAeF4KE9ehaXjYjJmCr+JpKjE23fh1rvCv7m1jaSLiRe6jnT+ApkTJ0hqNcxyGbrdR+lnfB8pXxJop6lFMRGMI5LixJMaRSS1HQGUzxWgNIt0TiG5e12k5uMY46nHSbZF44508YpIxIchlKqCv7m5gb5QpTJwsCyF/KlptJV5gq0DgsaAaOSRvrSCdOIUVKeRVs6LYNHRLsweQzp1HtXzhCD3PfA8koMdGI2Imh2Ux88hLZ+A2r64CXjhU3DnQ7Hu3tsSuKjCRMCbJtLKCZRyGWlmQaCosjmS998ReCJZIfFC/P/ty+SfPw+dDu5OCyVjoi/FSJ//RWjVkHwXHtwk7rXRr5yHwEN67meI/+TLSIvLQjy7LtF77yMX80SdPsrcnPj/4VBgrk6dh5kl8Tu0MiDJSNmSQGb4joDTK5qoNt14ALYtJvBRjGxoqDmQLUNUwWazj7y6hCFJEBHb/qNGBXV1Aen4qf9XLxr/Xz0MRccLfTKa8G2mVIswFiijlGoRJdGjekxZkjAUY9KEFJFSLSxVXKx+1Hg0ZVUZhyJotJJbZhiMHomFlGaRJAlT6TJr3S28yGdv0EFXFBRZpmJludNa58P6IQPbQdNUnp0/zZniScpmGU3WsVTxNa61rvG19bcZeC7N7pBU2uSg22eukOPTKxeonWzxzuEuq/PTtEZjiimLZhix0e3y7HwBQzEomyV0WccJHXJ6FlOx8COfvdE+e8MjKlaBilVhtbDAt7c+oJoSqd9PPHaKW0c1oiTmhUVRZpCQUDILjH2HjW6XxaVprJSBP12mOl3kwuwM91otup0BrUaPx04scmn6OFWrxNnSOZpOgxvNO6zmj3G8KJrafiR4O06f92sPaI7HtB2Hjy8uc7a8yoPOFqai8msXf4qvrf+Az514jnuddeYzU3TdAWVrzLMrSzxePcFGd4/ZTJW+N6RiFfj+7h1WC2U0WSWbS/EPX/0tnr5wksZ4zMFeg1Ta5FSpxN+/+u9wZNcI44hb7btcq61zeWURSzX51LFP8I/f+x3OlKcnnesxD9ptptNpFFkmbxj4ccjdWo2UpnG6PMtCep4gDljMLLKYWcRSU6TUNE44xlQsUkqKptOg43bxYx9FlgnjCEWWyegWeT2PHQpBqkrKpGJTEXWvf+Uom6VH1ZwfpSOf0YnCiEJKJwxjKlmD7b0+uqpg6QpuEBPEMZ2RSML/KEXshzHTpRSljMFGnKDrQlA9tpCjOQyYKVqslk0ao4DVkknWkKlkVGQkAkvj7e0+tL4MsQAAIABJREFU3sTPaWhiaqcqEgNb4qAxwnVDikWLZ46XOF4yyes6OV3D0hXCKOZf3q3x3nqbMIwYjXzyeYPtnR6ry0XOL+TZao7ZPRpQLJq4bsho5DPojal30xQXC5QslYymYochTduna0fMZDW8MOTmoU3f8anmTNFc60U83OsyW8lgWSqPnZ9la6dLKWNgldIUMzq2H2FqMpoq0+k4HDs+i+uGOGMXWZE5f26Gbt9lOPRIEji5UuTZ40XKKZUzxRz3uwPe3OwzV9Q58fQCYy9GkSUO+h5b9SFrB30sU8V1Q5ZmshwrWdQHPgvlNMfPVHn9QZOffGyK+3WblK5MxHzI46cqPLWU473dAeWMwWiSejc1hdWpDGM/IpvV+R+/vsbCQh7bDdnd6ZDJWnhBxGefmKYxDLB0hbWWy73DIVNTaSppjcW8yT9/dYvTiwWafYeUoTIY++TSOtVqmpliCkWWaPQdmgOX49M5em5I3vBZzKS4NFVElsDQFAZOSMZUyegqmiyx1XRQFQlNk/F94S9OpzUypggmKZKYxIexSMP7foSnR48yBidmczy5mP2xf/s/VnxKhoGqyGDbxEFEVGsi6QqSppCMxtBsIBVKop7PEqv4JIhEAClJIIrwhi6mKpOoE6/Uj8JISQxTyxMYuimQRr0GtDpiyhknkMkimRZJuyFCKGEg2JmahjI7B0snkPIVkf5GwOjj++8JdFAQiOrHq0+CpovJ29IKSeMIaW5RsCXLU2JiubOJbOkC4K7rwp8ZBbC1AamMEI26OVl/2yQ3PoRjx5CGA5KjAxiPCXZrJH6I8aVnRcL6rFg5022C0xFNQAcHBFuHqKU0WilD5bRo8CGK0J66iCZJYNtIV55FmlshGQ9JQl90rucnq//KHFz7AUmnjVSdItnfJXi4jf7ic6iLx+CJZwUUPwzFud75UHhd+31wHEbvfgNnHFD9matEBzXUj7+IdOy4EP9WimTtLvIv/yckD29AkqD9Z38f1u+QHO2LRipvD/NYWkyed9YglSFpNCCpi5rVnA/7WyLZXqmKG5TBAOnp55BvfwhhiDI9jXT8tAgXTS+S/MXXxI1Frihg84UKSTyp2pNlUESFoZQpwPxxkmtviyBWkpD4IdHQEf5bwyDujJBtsY4HSJpNkmjSTBMEIgC1euIvmaIfsUOTVVRZxY08/Dig7ohmGlmSGYc2ZmiS1bKEsUDaaLImfJ5JQhAHGIkQGGqsPup+/1EDjRu5qJNmG1MxmbamqDsNjkZNnNDDDT1WClNESYwdOLhRgB14nC6X6aVdLkwtMZ+ZQVd0Gk6TillGlmTePPoh+8MaiiRRTaV5dn4VVVZ473CL89VZvrt9i4vTizw5u8ix3CxNu8P7R9ukMxaKJBqdauMmM6lpbvZuUzTyHIzqWKpBw+4y8sf8cHeXM1NVWk6P6/V9WqMxb99ZJ0kSfvblS8xmijw9cxEv8tga7LHVO+J6fZvtbo92q0e+kEXTVE4szhDEEXuDARempwkqFWRJ4mdXX6BqVel6PeGFlHWm0xUyWoa8keeb269RGw0omiaN8ZjtTpfPnH4cO3R5cfFj7A73RK+5kvDHD19nfzDgN298iyiO2dh8jeHI5oUnz7Pb7HBp+jRXZx5nFIyoWEW+tfUe/8WTv8L79Wu03T7/3Sd/lbX+BrebmzRtm21NpVTO44Qhb9eusZSb42Gnhh8d8OmVixwMG/zg4H3swKWaSuFFPj3X5QunnuU7W+8TJQlnymU+Pn+FUTDip5df5F8+/HOORh32RvuMghFL2WWSSUGBKmto6MRJTFrLspJdxYvu4bkC4+LHASoKhqKjyRphHBLGgWCJSvIE6SWoBkEcYigGRaOIIin/Fp9Z/3qOjCk8644fEoYR240RpilQOK4fsdf1WCgYhGFMNqU/Wq+HE5B3EMUMhx6KYjJ2AmQJ8pbKwPFpjAJmsrrIFKgKczmd/b5Pve8ShDFjL6SYMQRgxg2xdIWBHTBVTuGHMSdnc6Q0GT+KqTsuKU1h6MX8wc0atZ5AQeUyBo+vlHH8iP2UTtbSeHetxXTRYnUhz2o1TWPoc3+3SzafIgxjHC/i9tGYlC6z1nSJAceP2Ou5NPsumipzd73NwlyOzfqQ7b0+w6HL7Q+3SeKEn//CZXIpjedPFFlruTT6Lju1AbYdMh779DsDzJSJrMgUyxmCIGZrp8f0dAbDUClkDX7pyiyyJNG0fTb6Q1KawnTOoJxWMRSZ6/tdDtuCK5o2VGw35Pxigc36kIsLWTZaLkddmySB/faY4dDjK2/siGlhbch4OObxi8c4PBywVLZEliOtIhd03t3q88WL02x3PfpuyN9+aYXdnsfN/YGAtRs6lqWJGtG2WF3vNEdsHMV84fIsP9zs8bUbDVRFppA1GLviRu2p1SJvb3QYuwFpU+PcbJrdrscvXZ3jK+8fstsaUUypxAmcr2Spj10MRaYqG2RNdWLbkLk4VaA+Clhr2ETRhG+aMzA0hZSh0h37+GGEJAkLSGvgTppMpUf97hfm0hjqjy3Q/PFr9/jVP36lv1YjndUY1wZIbiC8nX4kAkSShJROEW3tQgzK3BRSEpN4AZAgTVVx7u0gJwmKpYtAj64jzczC/LJgQbpj4ed0RiJcVJoSU8bAJznYhZ1tpKlpkm4H9vcJ7m6gnjsjxFexBNkCkqYLgeY7sPNAhE1GQ9GEk82LViNJQioUkdIZ4SONQ8EHNS2kyhTK+fPi63me8Aa2jsAwxfTTMIVYyeShvg/NpsD8xBHRxg7BYRvvsAtJgr4yK0Ry4IuwkmEKJmW9DoMBytI8UpIgyQlRd4xs6USNDvJ4KCwFuRycvCAsDLkS1HZI3v0+bK0j2QMYC8GbbG7hfXAXdaqI+vkvCu9pFBH+we/C2h2kSplke1OEbSoV8XOZJjgOuasnYTRCzmYIvvcG8qCJ/OQn4PZ7AifVOhLnLyEmrnOLcPcW5HLoUzmC/RbqZz+H+zt/iNJrIC2vQLeLtLRKcvsG0nM/SbL1AOnEGXBspCsfI/nBq2Ky/PglpFSaZGsdDvaQQg9pYQlWzsDDW1AoCz5o4E/qNyPB/ZQkUDQRSCrk4WAbJRboHhJQChlIp0lsG4mYxA2Qs2ni3pBo4KBmTTEpzWaR8gUB3//Yz3ykVngAd7u3Xtkb1sgaKRp2Byf0SCYd73k9iyyJF/2G00KRZIpGgYQEexLSsVST7cEBEhKWalCxykhAWkuT0TIYikHLaeFGHj2/R9frc7ywJFp2k5h77SP2Bl2W8hV2+m0Oh0Nu7x7y0onzNO0O1VSJvJ4jpaXI6wUGQZ8bzbukNLEG1BWZrJ5ivVsjiGNmMgUKpslyfg4n9NjuH6ErGtOZHJfnl0nrYpqT1dOMwhFFo4AkyZiqjqHoFM0cO4M6e90eHcchSkL2u326nQFhGFIoZlkqF2k5fexozMAfYakGTujSsEeMA5/jM1WCRIQDO/0Riq7SG4xpuS45w6Bopbgy/QSGYpDVMtzvPuBrG29wq7lDkIzpuF0+qO2yWW9xOBwync3wd65+EU1R6Hsj/vtv/REPh3VWiiUetBs0bZulfJ4gjpnNZum6LstLM3THNuVcmj9552023BovrzzD19ZfZ7lQZXe4xzh00WWN9f4OJ/JL3GxsoisKpWKWznDMrzzxEv/LG99hy25wdXaZo1GfxVyZb27c5hfPvMSt1iafWnoKP/J5dv4Cf3jvdeIk4aXlJ0hrJm/s3eStg3UyBpwqLXFl+nG+t/cOJStHy2kSJCF1u44fu6RVAY9XJRVdMUhraXp+dwK5FqilvJ5DUzTcyCVB+JUNRccNhQVEkZRHf5OpScf7Qnr5I/Wc/ca95iubez1SOZNW2xYwcEVAvDOW/qjH/aDjgARL1QxhlOAEEXEMC+UUa7s9kgRSKY25UgpVkZgrmKyWTappjY22S8+NGPsxzVHAiapFjITtR9Q6Nr2RR8rUaHQdjmpD2h2Hq2emJilyjemsQUpV0WWZ7cGYrbbDciVNzwmQECGoWtcmCCKKWQNDV7l4LE+MxN39PpoqU8yaTJVTJIChK6xULCRJopJW8ULRYCTLslh7Hw04OugxGPlIskSnYxOFEelsmpn5MoalMrADhn4MEmiqgh8lRHFMGMYsHitNekQk+t0RSQK+H+C6ouWpnDe5NJ8npSqoisTNI5vX1zrsdxx6bsTR0OfD+03abRvPi1iYzvILV2bY6rh0Rh7/6lv36TkR5YJJbyhsQbPVDGGcMFNOM3ZDcvkU3a5DuWzx+ru7NMcBJ+dyfP9+i4ylsdfzqA89ZGDox2RNReCvgpj5mQx+GPHyE7N8/Z097Cjh4lKRnh1QzOhcW2/zhSuzPKiNefl8hZSukk/pvLXWwtRVPn2+StrUee1eg+3DIZqlc3EhyzPLBb7/sM3Ai1jvOBRSMg3bZxQE5DQxPNQU4edcyJg4ScTQiwmTBNv2qeRNcikd2wsJIlEFm7U0uiMfxw3JpHQMTSGX0pjJaWx1PF46Uf7rcT7j73/1FWfjCGsqh+yHRG5A4IbIgFpMifrCMCA6bIAsoV54TJDt+32C+gA5dEmGLrKqIBsq2nMfR5qZQzr/JFIqJzyengO9SYJ7dxPJGT1qK5LMiejY3BQJ5YEwVkuGJjyUui6A8KksyeZtpGxRCLZ2DQZ9sG2CH7wDnS7K6rKYREYRSe1QJNolWbzZIyFQXUdMc59+UUzIFk8L5uidayJdXzsQtZ5RCL6P93APv9ZHtjTSX/ocmpGI8y6UhJjSdSH4GjWxIh8OBQ5oMCJxA6KBgxRHoMjImbQIcF39GFK2INiXvQb02ki5AtKZCyR3bpDcuIH/YJfYCzHOLCF96mdhb5P4O9+EdhPZ1PH329Csi/d36iinVnF+eIPwoIm5WIZSiaTfR0qnUV98SXBJQ1cI9U5LiMP9HdGSNLsAuxtI5y6QvPcu8pUnUbIGUrFCeP0m6uULSKqKtHwc6conCb76xyhajPTEM8JGMXMMSMTHV09DsQpJhDTsCRyVLCOduAC1XShNkbz7uljjjwdgWEKEG9ZfrtHjWIDp50TrlOy7AjCfz4CuE9U6yLpKEifIuQzYNkko8GCSoYtKUVWBTgf5xZ/7SL2QAdxsf/hKbdyiYhXx44AgCvGj4JFA02QVSZJp2m0kCVbzK6JtJhjSdYeMA4doshY1VYNj2QUMxaBiVXEjh67bZRSM2ervsd7d4W7rkHE4ZLtfx48CVgtTjHyH6/VDxkFAf+yQy6awNInl/Bxe5DGdmiKjZbjevsGUNUXFKrLR3+FBu44TBPz5hzfpui6X5ucY+A6GovF+bYuMrqPIouu77Qz5sL5HkiQ07BGfP/ESKS3FTGqant/jnaOb9LwhDzp7FMw0hZSBHYbc3z6k0+6Ty6X5Wy+8xKHTx48D5rNlHiufQpKF1/VWc4e+52F7PnYY0O+PCfwA23bRdA3LMsgaBqaq8tnjn8BQDGp2naPxEU2ny+nyMZ5fuMRf7HzImzsbbO3UiOOYyyuL/NKZl3lt/22+/PZreHLEdCnPUbNLzRtTsix2622uHlvitVv32T5qsjhXZTGXQ5JlDEXlP37mU2z0anjRgPlshTvNfQpmiluNA/aHHR6rLnGr+YBPLz/Dnz64xsePHcfQZZZy07y184Cnl48hSRJPzp3mSvUSX7n2F8TamI8vPIEd2qzkjmEoJo9Vl5nL5qlaVXRFY+D3+fTKFZDgbPEMA3/AYnaGP7z3Gg2nxSgYiPpHRSOtpZER4jMmQldMKlYFP/bwYm9CVzBRJIWBPySehOQsxcSOHLxIsGpF45GKpVri3LInPlLP2T/88PCV/dqQUilFFCV4XojvR0RRQi6rTxqJQrojgU/7+PEiYQJ9O6DVcRgHEZ4foaoyuq7w8vkqUZIwk9VFWtkO6TkhG80x94+G7NaH9LyI7dqQGAEKd72QZtshCERrjWmqKKpMPm1gqDLH8iZpVeVhd8SZUg7DgBv7Q/brI2wn4OFaE1mWObFYEOcpwb2JZ9KcpOOP2mMO6yM0XaHTd/nEaYEmsjSZoR+x3XZo9F0OuzbzlTSrx0okqszOdht7aJPJp3nyiVmOGiOQhD+zkjVwgxjHj2j2HHo94X1NEuh1x7hjlzAIUTSF6lSOXM5gupLm554QDPDNnstWx6U9DnhsLsMzqwV+uN5hc69P7aCDJEk89cQsTyxk+crbB7x3/YBiOUV1Kstg4OF4EamUzu5Ol3OrZa7fqdEfepTLKZZmc6QzOooq8+++sELLDggTyFoaW0cDDF3l4U4XO4io5i02GmOeXCnwwzsNVudyIMskyOw3RizPZbG9iJfOlKlmNF671WCcSFxZLhAlULAUFvI68+UUiSRjTeDviqLwwtkKjh8zldUYeRGFtM5bdxt0bZ+tjsvQT1AViZKpEU1qTMNJXet0ysCOI8ZBTKvrUsqb6JpCvWujqQpxnJC1RFgtjAUezNQUMqbKQk5nveXys+eqfz3x6X/5n7/CyCFxAryxh6qraCkdb+RhVDJCOHkeYXtAZHtoqwtQrxM2+0RDF+egiz0OSM/lMZ6+IJppSlMCpeN7sDdp3GnXxXq21SK6fgtp0INGg+DOGkrkQ6EgREc69SjNLB0/DQsnRNgn8JGq86CoJJ2aSFE7NrRaKOfPIKctMZnLF0TwpjoN+aL4BT+8B+020vwibG2KBL4zgjgkefM7sHZPfH42j5QrkrQbAn9kaCiRR+L5BJ0x4d01tJIQkMnmJv7330Dxh7C1Dq6D9+5t1FJWTDezGYLDNrEXsP3hIZWTVQF6P34Kjp0UgiuVERPU7TUh4mQJ6dwlpOkqSiWHUsgQbh/Q+8qfsf/tDyi//DSMx4S1DpKqEI081Plpkv4Q2VDRP/sZVMkTIa2LVwW4XdeQFFWA4FNpkrX7UBPCPby/SXTYQLl6RQjvZl2EugY9kt09pFyG+OAQxR0jPXGVZH8b0im4cx15dlYIzHNPwe6aoAK0jv5SQB7tIT33M0hmWkyUD7cBieTt1wkfbCIriahZ9WwRPhp2SAJPoLgUTbyFgcAz1Q6J+2OUShGiiKjdR9ZVJFkSXt8gEASBYuZRpapkpUBTkZ/5qY/UCxnAq/uvvjIOnMm0U6xG/DhEAvJmRvS5SzJtp0uSwJRVoeMJQTkK7EfAc0s1OF5YwlIt/NhnHI7ZHx1wo3mP9d4++4MObcfhcDjk/YebjJOIrutybWsbRVeopNLESULOMplJp8npBo9XTrOcO4aEWJWv5FZBgt3hLu8cPkCWJGrjMS+cXCVSJPYGfY4XK5iqwUp+ipRm4oYeP9jdouu6fO7kZR60j/i/uHuvJ8ny80zvOd6kt+VNV/ue6Zke0zMYuCEIECQIEMSSS3JDFFcR4oXES+lKio1QzD+gu42N1QYZlEiFuAoZUhIpkgsQ4ACDsRjT3dOmqrq8y0pvjre6+BVGd3sBhUKKqbvuysrMOnmy8j3f977PO18s4iYzul6Pf/v4R3za22ejNsdSqU3dLLM1POXlhWsYasZMSnFmHsPhjI8P91mbbzIJA570uvxg82Mm6YwfH24B8ODJPuuLbeIswzA0xmMHw9A5POiwutjiUrXKa0u32KhcIs1SKkYFWZLZHu+zNzlFUyS+vHSH6602C60SrVqJd7f2+JMf/S3f//A+f/iN1+l5Lsf9EUmSkiYpc5Uy/ZmDZWr84Su/ClbCJAz5zWtfoGLqzEIPScq4UpunoFu8d/qUvd6AQeRxcNajO5ry+pVn8JKQd08fUzAMTmdjts97VAsqO4M+kyTmdnuFD8+2uVxb5r3uJsvlMookc3fuJbbHO0RZRN8fYFxA3zeHu/zy6peYL8yhSAqfDh6jygpvHn3I/YMTbMtgqVRj4I/xEo+O12EajakaVQzF/Kw9K8h8xuGYMAsp6yU0RWMcTpAkCUVWUCSVKI2Is4SCZqNICgXV/qwJaaV46XP1nv2v/27rjTTNiaIMz4swTRVNU/D9hHrNIssuUEqzEN9PWJ8rcTIS6+kgSOj2XDwvptks8NKVBnGWk6QwDVLOZjFPTmfs9VwGE5/ZLGIw8Nh5eo6iqjhOhOvFWJZGqaTj+zGGobLQLlCxdb68UeFGs0CaQ5imXK4W8ZKEe2cOm6dTDEM8zxeemeOs6+D4MS9eaVKxda7OF4UwjFM+/rSDrqv83lfWOBz6XJovcTQO6ToxP3zY5aDn0iiZlC7ajE4GHvWSwdSP8IOUwA8ZdAbsHwxZ32iKkNHxhI8+PSVVZI5OZ2RZzt7mCfNLdXw/RlZkoiCm2izjuwFz8yUKBZ1XNmpsVG3cOGHxAmz/6fGUR8dTel7KzcUyL1+uY1ULyLrKR58c8+YHBxxun/Ddb91m/2TK7tMuORK6rlIo6MyciHLF5DdeXcHNBLv11nIFP87ElDCDVtmiXtD5YLPHeBwwmoaEofDC3r3aIEPi3acDGlWT7thnPAmoFA0ePumQKTJLzQLv7gxZrVscTkKqRQM3znh1pcJ232ccJJzPYpYrBnGa053FvLRaolXQaRQUNrsBjYLK5rnP8bmDZalcapcI45SRl3A4CxkFEfWLAJGtK+iqTE7GzsBnFsTUSoKcMHEjDE1BufCuDh1hp6kURGB6rqxTMhRsQ+GL67VfTHyG//2/eSMY+VReXCfpjMmSDL1qE0x87KUapBnS3Bxy6BOdjNAvzZOddsiTDLczpXipheSHqGULZaElpmiKLERF9wSmY+Hd652LVXYQIGWpEB61mqhxDAKYTESgJxaeT/k7/wHS4jqSLJO7UyRNF5ie/imQw2wi7mdhCcIAaW5B3Of6Vdi4IVqCOicQ+EgFW3gVK3WkRhOpWhOT19kESdfBMMQ0E4RftFAU6KZ7nxLsdMjjlMiLMGo2siYjtZpIaYqyviywQ2lKsnPIdLeHvVwj93zka9dQWjU0LadxYx757itiRR140D0VPEvVgPND8vNTcQy6HaTQEyL94ICs00VZXcL+pVepX2mB44hj06qjXr+KUtAhjlFeekEI62EPaWEZqV4n39mC3R0xBXz1a2Do4tgXiuR7O0hxjFwtob72Kvmj+zAeQ7EoJtW6jqQo5Lu7OE/OsP7FfyXE/tYmyZs/Qf39PxAe2UKJ/N0figuOYU+8fooCgy75+RlErjg+05FY8Ssq0uVrKPUS0sq6OAGXNy467OcFoF5WhABWVSTDIs9i6AuxLDcbkGUkZwNxG0VGtk1R/ypJAs2oKsJSEQZIl64i3/rC5+qDDOAfjn/4hhP7XKuv0fOHBEmIpepkeU7NLJPlGWW9TJRFeIlP1SwzjWYXPr8py6U5IT41k6JmYaomo3DMmXfO0/EhfW9GludMwhA/SdAUBcM2WCyXqZomy/UqnZnD2PMJ4gRFUbhab/G7175L3ayTZAnDcIR9wYA8dU+Ep5QARcrYqDWZRQG3mkssFEtcr1+iadcYB1PudQ/w44hn2wt8cfmGQPHoKlWzyNGsx6kzomXbrFYahGmMF/s8GZywUq6zOTzhzcfb7O2doqoKYRhhmTpOGLLWrDPyfG4tzDEMAmRJ4qQ7ZDiasTBfJ81zvr5+jXrVJpRzbq0v8a3Ld7jeWKfvD9mdHJCTUtZLbE92OJh2cKKIU2fAsXPK01GHD0+O6Xs+r1xa5XsvvsLiUo2B73KpWmO+UmKj3cQwdLwk4auXrnCzucaZ02O+WKNhWTzsH/D+6SG2pvGbV74GUkaQhpQMgyNnLCp6bZPfvfMK75xscu5OWSyW8JOYumWBIvOoe87uzgn/+rf/c/anR3zUOebvtz7kj+5+k0EwQZMV/nrnbeaLVXHupBHT0MGJXT7pHuIlU3LE65dkKWmecqtxhUZF51K1jSarPN+6hRO7XK9dw9YESkuSpM8EKOQ4iYOX+NiqRQ6MwsnFil2ioNlMoimarCJL8kWLqUl4UYbweVu7/+k7h2+4bsyNjTqjaSi8nSUd309oN2z8KGWtVcCPM3p9j8W5EidDjyTNGQw81teqBEFCsahj6CqaIotJlRux05kxdkJhdbiopJxrFag3i5TLBpalYdsa/b6H60aoqoJta8zVLH7r9hx1U8eJE85mIYtFizjL6XgBcZozC1M0RaZeMQnjlJevt6mVTWxNxtYV9gceRz0XXVO4vl7j+fUakyAlTjPSLOfg3GHkRDTKJs2KiRskhHFKZ+xTsXWO+w4PPj5kcHhKJslkUYhRsBn0HVZW67huxO1nFjjtOOi6Qq87JYkTWnMV0jTnhVttjKKJ58XUm0Xu3mizULWY+ClPBz5+ktMu6nxw5OBddJdP3YhH+2MeHk54ujfEMFRefX6R524tUJmv4fgxy+0irbkyC+0ikiKhKBLX12tcahZwoox22UBVFI4GHoNpgKJIfPVagxwYuDEFS2M8C9F1FV1X+ebdZd7ZHjCYBSzUbSae4LVGScbByZRRf8p/+XvPMfQSTgYe9w8mfOP2PGfjgLKl84NHXXRNZeDEF+GsjPNpyPbJhHMnJszgbCaKMfw4o2FrpIpMrWSgqTJrdYs0hzuLBeI0J8xTypr2mbCsGBqzJGZv4LNcL5BmGZ2Bh6xIwo5lavQnAeqFv9PQZBbKJpMgZb1mcnuh/IvWa/75G253RmG+hHc2IQhSiit1/J6DvVQTkyXXJY8TkrEv/I6ee1GRGaI1ivT3R5RX68S7J6jXr4jAUZbC4Jx8MkbKM3Bd4cW7fgtpcUkgccjh+FhMPU1TiAZAev4lpLllMGzycQ9JN8i9KVKpLpqNZiPyx/dESOrhI+TnX4CVDWi0hJf04Cn54Z4QKAsr4vnWmqJtZzIUCe+HD4RH0rKQ7ILwhpIj6TrZpw9w3/qUZOggSTKDM4fhMCB2IpSZh1G3kL7+a0Lsei7RvSciiNQoImsy8vPPCSG2u0sydDh5exfL7aPUitBoke9tIxWLcLxL3j0Tq/pNtUPSAAAgAElEQVTJBIZDJv/7T4gebGH+8hdFoKZYRCqWxRSw2xXp9Ze/SP50U4jmSgWp1hDiT1HFcQ98pEtXkF77ZSG0D7bJD3aQrj4r/J2eC+02VCpEb76D0qiQ9wdIjiNsAV/7Fjhjkp0j8jAh//Bd1JdehM4psq6QffIx6d4RyuI8+b17SPPz4v5LZajWyf7+b6A/QLp2A86OhKCtt0T3u26KdXsUigsNVRVT8nEfxn2kSkOgrmRVCNBKC9wh0mwkzpPplHQwRdIU1EYFTJPkpI9saii1krg/EMel0UK+8crn6oMM4O2zt94YBS4Nq8w4dEizlJolmJw1s4wiKSR5QpAGzEKXhlX/LGGc5pkAyrsDGlaFrjdkzm59Firan/QZ+T4ZMIsi5opFXl28wnyxgCaDnyQ87nS50W5h6RpFwyBKU768cos5u42MzLnfRVc0JuGEhtlAlVV6fo8f7N1nGAR8dHDIb9x8hbXSEiW9QJInfNh5xCfnJ5R0nWdaq/S9MYvFFk2zzt70GE1Ref/0CF1RWChWCdKIrjtDkyV0ReHd40PuPdknywQW6eR8wHQ0Q1EVLMugVS3zn7zw6xiaTJyFPNw/wfdCFpdaIMvcXVzizJnw6LxLrzfm3pM9znOX5UqJsl7kQW8PXZG5133E9uiUME1xooiu6/LTe5ucjaf87gt3MTWJSRhS0DScOKTredRMk19Z/xL3ezsslio07QINq8rO+Bhd0UnzjCRLeK59me9d/SqtQoEPOvf58dEmdxeuszs+Jswy1ioVnmsv828/fI/r8212x2MORiNqtsXvXP8GPf+cx4enRFHMTzsPudaeI88TKrbF//noEx4enXBtvs07u3vUChoH0yFV06ZVqPEn7/wj3fGU20vLDPwx42DKammR9fIaFb3MOBpx7g2RAKQcQ9XpeOdMoykVo4yt2qiyiiwp2FoRyHDiGYZqkpMxCEbIkoSmaNhqgVE4QZUFNshSLRRZRpdFOGm5sPa5es/+xcenbwyHPu1mgW7fw/djlhbK9PouC+0iiiwx8USGYjwNmW8WCGPB2AzChHbdZu9gyMpihc7QY6VZYBYk9KeCh+m6MbquEMcZtbJJvWSgKQpBnBJFKf2+x6XVKqatYZoqcZxybbHMRs0iI+doEqAqEh0nZKFokuU5u8OAj7cH+FFCb+jzpZvtz+D0Tphy72DE3uGEYlGnXbYYuSHNkklBl+lOQ5Bg5kUUbY1yQac3CfAjgSjSFIm9owm7Wx00Q6NQq+CedyF0yVSThdUWS3NF/tmXVjmdhEiqTKczI41TmnNVZFmm2bQ5PnM43B8QhQnd0yFDP6VYNFBkicOeg6Gr/GR7wOnQI8tyJFnC0FQ65w6SBF94fpEwyzg8m2HbGk4QE0Ypy80C37rVZKvrMV+zMHVVgO4nAYaqkCNYrDfmi3zxao2ipfP+3pj7O0NW20XcMIGLoNC15Qo/eP+IKytVhpOAo7MZ7brN69caHIwC+n2XJE756GBKuWyKLvUcPtzsc3w2pVG3+fRJj2JJ52zosVi3KRoKf//OAY4TcXmlwsiN6c9CqrbG1ZbJtUaBSSSCbUmaYxoqQSSqMSdBxlJFR5MFeklVZHRVpmHo7M9C6gWVoRczdSM0TaFgqBRMlc7AwzBU6kVDYPUUGUOV0TWJl5erv5j4TP6nP33DH7goaYqUCRSD3i4heRGyqYuEuCyTxwl5lKCWTaQkIRm66K0SqRsyOJlSXa6it8pIq2tCaBgWdM+QFJV8a0tMxDwPhn04PRZibzwWYqFQQKpWkYpFAaQvFEVCPnBFWjoOxOQscGHzY/JHnyAtryEVishNwdri9ED83MmBSM4Ph0ittvi5OCLvd2FnU3gcZUmA2kMfqTknhPRwACcn4jmGIca1VWQ5RymamBpkcYqmydjtksBIXbtJ/qPvC9+o75F6EXkkYOvZ6RnR4z0ABg9PWfzOS+B6yNeuQaEorAFzK9CYQ2rNIzVbSC9/Fc4OMBs25te+SD4akm7vodx5gfzoAPmbv4X0lV+FRlOIN3cmbAprl8VkcG4JltaFyHZEfVm+eV9MMPeewvEx+b2fQbmE9PzLSFGIpOkoi22YTJC/+sukn9xHNjTyD98nergDeY710g2UhRb9P/5L7JtrOO8+Qa3aqJUCBD7xcQ/FVGA8Rrrzsli3LywiLS2K9qjpWKTZXQd0TbQipckFw9WGxhw8fSguGqo1cVLKCtLPKzYlWTRNSSmMh+A45EEoKmBrZbLBSFATJPEwUq0mLnTqddGycuern6sPMoCfdt56Yxb52JpBmiWk5BR1C1VW0BXtM/9cdhGgMRQBnR9HM6pmiUno0HUnlHWbklFgvtCmoNkEaYAbu5QMg6HvkyPE5tbwnJ3RgGkUMgoCmsUClqpSsywMRWGj1qRmlplFM2bxDFmSibMYWVLoBz3eOfuQt44fcWdulYppsFqvMgwmHDvnLBRaPB7sMgw8plHIM60lwjRmGvocz3q8dfKEKE1YLbe4M7dGzxuzUhYM0ePZkK2hwD65ccz6fBM3iihVCpiaQLpoqkKjUaFWLLBWafLffvQTTENnFoZkeS460aOEg9GIg/MBxaLF2emAP/j6a3hJwnPtdQqaja1pPN98hhv1K1ypLjNfrPHtjdfZGj0lNRR++/mXOJz2uN8557vXX+Zges4f3v4dvrX+GpausT85oudNmIYBV2qLnDk9LtdWWC8vUzfLTCOHaejy1zvvkRPzqH9O33F553ALWZH5zauvoCoSQRJyba7N7mjA7958jQ9P9xj7AT/au8+jA7EVunvrMiu1Kn/8dz/i1voS7z7aoVwpUChaOFHA+WCCYemcOQ4vzl/i3O1ze2mFa3NtrtTWGAVTamaZgT9CU1XO/S5eHGCpJpIksVpa4n5vC1VWqJlVxuGYOI+p6GUxgcsTTNVCk1VGFxNUN/ZRJBlbE77OnJz0onHLUk2iNMZUDbI8Z6208bl6z/7Z+8dv9PsuyUVa2DQ16lWTMM4uUu8KuiZA4CgSSZahKTIjJ2S+aeNFKceHA6yiScHWWapb2LpCmkMQpyy1CnhRQpblzJyImRdx2nHw/ZjpNKTRsJAUsRlSZZl62WSpZhIkKeMgvmg7Etih7YHHewdTHh2NubxYEZWLmsLYi8VSTFPYPZ8RxQK9c2mxQnoB0J8GCff3hhRtnTurFaolk7EbMV+1qBcNumOf876LpMjMZiHlaoEwjLFskyiBVFLRLYNiuUAYp2imzj++d4ht68xmIUmcEMcp07HLaOTjexErq3WmE5/v/uotUGRevlS72IJJfPlyhSttm7mqxaWWzTdvtPj+vQ6yLPHizTZumDBxQn7/K2t0ZhH/xS9d4YW1Cn0v5v6pgxsmnz3/kRuxVLdpFlRsTeZ8EtJzIt582CVM4fB0SpJkPD0cM/NinttosFC1RG1po8Bxz+Urt9r0nIjD4ymf7I04PhK2qNW1OtWqxY9+8JD6fJWdHVFbWijozDwB9rdLBrNZSLVkMnQirq/XuXWpTtlScaOUWkFn6okt1eOeh4RECnhhwmrD4qDvUS3oLJR19kYhQz+maWvkGYSx0H2tksb+KGAWJAQXYbc4ywjjlDQXITlZkmiWTEZuRL2gkWTw5Uv1X3Dy+Vd//oZzPsW0NLIoIQxT5DDButIm9SMxwUtTJF0VtYaaQp4kZG6IUjQJDgfCgG5rqJUCUrEA8ytCIF10r2OZImXueRAE5DMHSZZJhxPkUgFpYVE0GjmOQCQ9+ypSfU74Bcc9mAyRlq+KcM7iJaQ4AFUTK/JSmfz4UExQn27CdEJ+dka4dUL8cJt0dx8lC8VaezZDeu2rFxNPG6lQIv/oA/Gc01RM/5pNpGYTRiPkZg1ZV4i7E9IgptQqIFs62gu3hXeyWBQe1olH3Jsh6yqZGxL3Hby+i1kvUL57HWlpSQjPWy+KJL2mC2tCHMLOE9GedLBN8s4HyLYBmioqLFt1uP2qCPF4U3j3ByL53TkRKf/JBMmyyX0X9neRTJP8g7dBVQTjMwyEt7RYQlpYANsme/QEaTIUIi3LRFJeVUnffR/1C3c5+h/epLRUQWtXSaceBD6zd59QWKiglkzS0Qz96grJ+QhZylAqBaTlFdLNp8jzbfB9uHQVmgtQqIi+e12HWkOwU1VNkArSVBy/Xkf00BdLcH4KRzuQihU9kS8IBlaB3J+K749GJP0pWlWEirJApCVBQmnVBM/V98UFDRny3V/5XH2QAbzbeeeNIAnQFY0giZiGPrqi0rJrZFmG+lnV5kUL0gXoPckSFFlm4E+QpRxbsyhqNlmeoUoKB9MTAKI0wVRVlkplBr5PlKYEYUTJNHHDiJplcrU+jxMHjIKAZ1vrvNS+Q9tqUdBsztwOo2jC5colvMTjdvMWk2iAJEnsT/rUrSKf9s7peS6PB0d0nBk7533OOkM+2d/n8dkZnpwzDYUV5p8/+6sMgzGmatCyK/ztzn3qlokTiUalpVKJxVKJc89lsVYllyVmjk+e5TQaFeyCydc2bvDOySZF0+BkPGE284jji67smUcQRLhewHyrxosbq1TNAs80V7hWu8LOZJ+qWSLNM5FqP/+UxUKL9zuf8MPHT2hUishSxp35q6xUKlyvXeFG4zLHzjF/8eTvkKSUU6dH1bA5mIxpWDZ+EvJh55CWXeCvtt4nzUWXsq2JCr/5Ypk782us1+t8sL/Pzuz8As6dsjXso6sqf/vwE/7J7Rf5n//xHVrNKpcX28z8kFkU8cmTfWrVIgvNGk4cM1ctMxjPiPKcdr3MRrXG1lmXWlEjB67W1pgvtKgYFWzNoKQXqZkVOm4PUxXp9DgThQK740NWKwvM222OZ2fc626jq0LceKlLmiWU9AqQM7xox3Jjl7JRRJFFjR8INFhBs9EVnZwMRVLJyNgoX/1cvWf/x4/O3uj2XQxDFX3eXkSS5WwsV5j5MVGakWUiGKSpMqNZiGWo+GGCbagcn81IMyhXTOplE+UCMTdwQhRZJohTMeHSVaI4JYoygiCm1Sp8JnbnaxZemBCEKa9dafDSYpl2QcfWFLYHPnGac7luUTQUNhoWJ9MITZHpTgMWqjadoUd/7DNwQgZDn05nxqA74fBkwlnPxXFjHC+mUjH5nZfm2er5hElGydK4vzsgznPCKEVRJOZqNqWSQRinzM+XCYKEXJLI0pyl9TaGofLas/Pc3x1gWTr9vkccJcRRjKIqeI6HoiqkSUprrkyjWcTUFRplk2tti91BwOWWLWwMTsLP9kYULY139kY8enzO/EIZQ1d4ab2CrKrMl3XWGxaP+i5/da+DrMicjXz8MMH1IuplUVH65GiMqql8uDvEjQRDuWhpZHnOUrvIxmKF9cUyZwOPrf0hbiZYrcfnM9I04+HuiCsrVe7fO0Q3DVbXasRxhuvG7G6d0l5q0ajbyLJMsagzmQQ4TkS9blErG5x2HEolHVtXWagYKJLEUkUnR4jtpYrB0TgQ+CNJQlNkWmWDiZ9SL+q0ixqTMGXrdErR0sglwZeNs4xW0cBSVHbHHr0LYH7REgGlPAdFkZEkiXrRoGxrzIKEgqGiyBKvX/4FxWf0F3/8RjD0Lsb2KUmSoakSxvocEjlKtYRULiHVauTjCXK5SNIdkwcxycilf+pQX69hvnhTQNMXli+4jYqYXs4mYsoZBkIYqKpYJ9s2smWQj8YiOJRlSNdvCUC6ooi1bBQgFcqC8xkHgqd5dkh+sEvyk3eQK0WxWh8OkV5+Fck0yA+PyMJYQNJfvo1qaeS+j6Sq4vGfbkG3Q++/+xtsZmBZJJ9ukY9GBHt9tJWWEGSKAmFIdNwnmfjYCxXs3/wV1NdfB6sgJo9RRHpyLnrudZXUCcmCGL1ZpHiljbKxirS0TD7ok91/gFw0hcfx50Gj8xNyZ4qUpvh/8ZcYv/Udovc/QfJd5LtfEGD5j95FcicXgP4YQp98bxd6XfLhUFSUSpJY25+dED09RlloCeTR3IIQ1YMenJ0i1WrIz9wWWKjNTSiXLqbRQ+RmnWxnj+rX73L2dx9TXKoQHg3J04wHn/ZY/49+DVQV7eZlsv1D8jglmXioLz5HvruDvLKENLcIi6vw+BMR9uqeiHPh6SNwHQGcv/cx0q3nRDOSMwW7ICa36UV3/eoVERirtcXUW1bERYhdhsMtmE3Jpi5qowyqSub4yLqC0q5feD1DIVjnF8hd93OJWnq789M3BsGMim7jxT5xllIxC9RN0fSjX4DdTdUgyRNUWcWNPYI0YuCPOZoNaFoV1itLGKqBm7iMwjFFvUCSJRzPRsyiiDTPqJomRV3H0DQ0RSHNc3ozh5SEOMv40vINVFlBkWTGkQgyVY0qdbOGhMTWeIf7vUdsDc/5u08esD7X/AxA/uWVm/iJx25/iGHoqKrC1569Tqlkk+Y5eZ5jqCofdrZ52D/jz3/wIzwjwdI0PtjdpzdzOD8bMtessjceU9SF7/XofEDghzQaFX7v7iv82tWXGQdTRoFLmKac9USVpqapeG4gajTrJW5uLNOwLBqWxcFkzI+3N5mrmNxu3qKg2uRk7E1Fc9I0cvizt97iP/v6d/j+w/uEMnx97SXeOX3IXz75ACcd4CU+uiJWy/e7Z/Q9l5HnI8sZhqrS9Vy2huccnHRZbzUYBz4r5SZpnrE56PLB0QF+GvFPn32VcTDlw+MTLF0jSlOGvs/lVpP3jg749ku3+cF792m2aziuT5pmbH6yyz//9a8Qpilf3bjOg/NTdF1jPHL4leu3ePv4gGcX5mnaFa7UVvmk+4SCbnLmdtEVlUf9HbzYZ3t0yvd3HnF36TJNq87xrEPdqvB4sEeQBpR0m+fb18nyjLpZFyt0SaGgFTEVk65/TpAGOLGHrZqfNW0pkkJJKyJdcNQkJGxV1Ele+pyJzz999/CN8ThA0xTSNCNNcwoFnXbdRpYlGkWTatGgWdLpT0NcLyLNc5IkY+ZGnJ2Oac+VWZ4rESUpRUsjTnNaJQPvIgUuSRKqIlMq6FRKOqatk6YZYZgShimpBLqq8MKlugh+qTldNyZIM2qWSs1WUWWJH2wN+fTU4aTn8LOPjlheqhLEKWmWszpXYuaJaaqiyFi2wbVrbbIMsixHliU0TeHtJ30OOw4/fvMJermA68Ycn06ZTkP6vRlWyeS042DbKnGcMZ2GJFGCVbC4ea3F2lyJ3jQgiDJ8P2YyckmSBNM28V0fRVWo1Essr1YFdzLLOTyZctSZga7x4opARJ7PYs4mAWVbZ7sz47339/n1r1/jo/unqIbK9cUybz7o8A8/O+FoFjH04otjm9EdeiRJiuclBKn4ezUcB3QGHmdnU+bbRRw/xtAU/CjltOuwtT+iM/R45dYcbpxyfDzFKmgEQUqeQ6tls3sw5saNeQ73+5iWge8nAAx393j1KzeJkoybazWGs5AsgzTNePnWHE8Px9zYqFMvGbTLBg+PJ1QKOmfTGEmS6Ix9Rn7CYBry4aMuK3MlbF3meOjjBAkHPQc/ybENlV+6WmMWppiqTNlQMRSFgq5iajJHU49pkDF2I2xTxfFiVFXUaS43CqiqzMyLkSUROvKTjG9cbf5iDUd5mlEsaiIAg0hxSarA3QBChMmyaNlJxSQz8yMkTcE7nQiS/8Y8VCritj//mcG58IqGgYChVypiNVurkZdKn/W2S+2WuL2miUDQwrpoREpikYL2nYvWmwF0zwTwPcs+g9wnH93D3z6naBjguki2hWKkpBMXBgP8+7tYr78EcUz48ROyICZPMwaDgGaS4L37GFlXsK7MU/in3xStS64LUYT74BBJlcnTjKAzIf/rf8Dvzqj/wa8jtefJd7YFtuLasjD7frqPudYkOBpgvHyX/OiA9IOf4T46ofTSBumbbyKv74kQ0PoVYU3IMvLtJ5hfuE1+7yP0qytId1+DQfezgFbe7yE12lAskx/swvw8UrmCFPiiR77TIRtNkC1DIIh2d5FvPydei+yiDEDXCf7dWxhff01MTG2b6L1P0F95/rOgVxYmeP/HT5AlifFHB5SuzDF4eMq11TLuX/2IwndfB0lCeeF55F5PCN5GG2lhRVxgDLpClLcWRDtTqQLnJ+LxTUuEjMoV8rd+JIT0z6HwioJ08xm4fAOptUQ+6ZMHLlJjURQF5LmA6ucZBAFKyRQtR4vz0BkiL68IEa0oIpQly+L3Ho3+H31o/P/1S5IkmpaYxMmyQnbRl53lmajgU3RkSSJKI9IsQ5F+DpKXmIYOiiTRsCqf3T5MIkp6kcPpKWfukChN0WSZkmFw7rosFovoisLRdErVNGlYoipPzXOKms1KcZnKRR/8OBwzCIZUjSq70z0e9fc5dRyBblMVDicT+sMpu/un8DqMg4Bq0caLIrIs43Q248H2Ib/+0rMcTiY82jsRBReKTBwnyBI82NzHsk2urMzzvedeoOuNORiP6cYJ+3tnorPa8+kNp/zr3j+Qphl/9GvfYLVc54OzIxRF4calNnGWsvn0mPnFJv3emC+8sMGPD7fYOu/R7464fX2dv3l6n4/P96iapuiTN0psD8/oui4v3rjE/7b1AXevrPPN9bvsTPY5mc2o2RaGorJeWeR01uXx4JSlUpnFYhU/CQnThMPJhFkQUTB0NE3lQeecL66ufvYaa4rCpUaNdz99StO26XkejVKBH9/b5Ldfe5Gt4YCT2QxZlvmLH75Lo1rm00d73Ly5ztOnxyxszPO//PQjfu2V20xDl6+ubdDzZhzoOjWzxPeuv8A0dDlzhrixh6kanLtDGlaFUTDFT0LqVoXXV+4wX9jjf33yAXGWUdA00jzDCSNeWBABtzl7Dku1cGOHhtnAUiwgx088MnL8NMBSDcH4lMRqvaIXSbIYS7UJ0/Cz89qL/f9v3lT/L37FcYZta6iqTJKkRGFMsaiTZTmqLCbGRUN4KdMsR5IkkiRD1xVOTlxkWaZSMfCjBF2VyXKYK+lsdRycIBZBSwmyPGc8C6kU9Ys/rSn1uhD0jhORGjlVS6VVVKmbOqGW0XUiAqBZ0PjpwVT0dU8DoihF1VX2Dsb4fkR3e48vfusuk4kQnpPxjDzLcVyb3vmU1+6uctx12Hx0iqIqqJqKYYnkdL83I01S1i41uLW+wlHfJYoSOp2I7nGPJIoEA9wb84OTVcr1Ml9//SrhhTDVDI12rUKSZERhhG6KY3dzrc4HD8+J45ReZ8Qzzy3z5HDE2cgny3PW20XyHLZPJsRxyuVrc7z3oMNzzy7wSzca3D8WfNCNjTrPr9cp6DKbZw6DWUClZFCyNLIsJ04zTrsOWSYuiCVJoj/0WZ4rUi3oTLwYz4+Zmyvy4OMDikWNOM5YWCjx+NNTnn9hBdeLOD93yfOct3+8SalW4uxkxPpGk4O9AYWFJd7+6VNe+cIGu50pjbJJuaAznATCJnCjjSzBUd9lOBMBs4Oe+xmTM4xTDFXhtSt1KgWdtx+coSgyti367YMgQbvoaw+SjPmShhNlGIqMpSpIiBKALAc/SqgWdaIkwzBEM9aNtRpOIPrngzgVTVlBytCN/r3n/r938hn8yb96Q63apG6IlIsrGKNooDVLpLMA2dLFmjxLyZMEKYlRCgbR+YT+uQtAeb6IVKsKuHu5JsTmqE8+ER49ul3SwxNkVRFTRceBdhupPSeEj2GIxqC1a2LaFTgiNHOxTpVUVYjR00PxGKMhiq6QdfukU7Fey2eOEJhHfbS7z5Ofd5EvraE/dxOylPD9B7gnY2IvpvKlW7S++zrBzx6htysoBRNJUyAMSD7d4ujNLdzDAZNRwNHhlN4w5HwUcOkrV7EuLwihc96B8Zh0FqAUTILtEzI/RrZ0jFefR5IlvL9/l2TkUXztJtLGBlK9JkJCnki0S3kG29vi35YlRFOawuE+dDv493bQrq5BuYzkOeTHh0iNhqgirdbIJ2NxPGUZgoDjN7epfeEG8kuviLT5eATO7CLNH6E2ykT3nqA+/wzp0z20uTrxkz2UG1ehXIbhgKAzofmVG6i6DHlONHIpzJWwn98AxyH8+AnhJ1tozSK0WjAawnR8AX33xaqfnPydt0RvvSRBcw5yYDoi398T3M8vfw1JkZG+8BUkTSV/ugXTobAXFEqiDcsZi4mvpiNZJfJiEXaeIOsa6cRDrleQr26A6xJtHaLUSgJAXyoh1Rvku7so3/kPP1dTFICfnP74DUMxLlbpKVGaUDZsKkaJKIvRFf2ix11cQIZZhCarTEKHvj8jyjJKhkme56Sk5HlOzx/ydNSh53kEScLZZMrueQ/NUNkfi6T1c3OLFDWNjuswVyhwo7HIWnkFWZIZBH28xKNqVJElmTRPcROXreEpDctiFASopo4fRARBRLVSZOC4eHHMyUmPb9++TSdw+eLyBi+urbM17PHhwx26gwmGpvLV29f57Ze/wA8fPKRYtFEUGUVTeDrq88nWAR/d32Y0nOG4PoPhhMALCd2Q733jVebbNc7cKYfTMRPXJ89zMlni6LhHmmaUyjavX79MlMb848ePSdOMLz1zlbuLl6lbJpos4cYxQeITZQkfnh4TZxmr5TJ1y2Lg+9zr7fOod8ru3inPrCxiaxoPe0ccTkfMFQoALBab7E96HE4nFHWdkefxwUebfOeV5/n6xm2eDM7ouFMOJiN0RWEahSy26zw8POXLlzZ4fN7lxcur/PDBJq9fvcrVepszd0IYxVzfWEJSZVzXx/cj5uZqvHBtnb7n8s6THT7Y2kUp6DQti643YRI6xFlMlIoWMFVW+HebjylZMn4asVRskeUZo2DC28d7BEnC7z/zRRQl5VuXXsHSM/bHIybhjEHQw1IN5u05+kEfN3HRZZ2CVsJWLUbhCE1RcROPsl76rPSg6/XRFe3CHyxjqxb9YMDtxp3P1Xv2X/1w941iUfgWJUkSoHVLY+7CE6hdCEo3ECzFwchndb7Med/l/HSELMtouobnx96exsAAACAASURBVBRsjbKt0RkHnA08Zo5oLjs9nTEa+SiKzHQWUSzorLZKBFHKcOSz1C5yZ73GStVAQmLoJ0yChKqloisyYz8hSHK2TiYoikya5oI5a6hEUUptoXUxRU0YDx2+88vXiCSJZy/VsUomR2czdjZPCb0Qq2Dx1dfWuX6lxZv/+IRas4xhamiayubukL3tc/oPPmbmZ2SzsRgsGAJhePfrLxDFkEowHIkpvnwRcBn0ZuR5Trlis7xcwfFjHn96jGborF1q8PLVFkkOqiKT5fnF1gG290bIsiQYoA2b4TRgp+dxdDZjb/uMS+tNhk7I5skUx49pXaT7K7ZOZ+TRH/oYhkLnbMbpQZfXv3SZtfkS24djBtOA4USwR4MgYWmlzvHxhGeuNtnaGXLtxhxPHp+zsVZnqV1k4kQYtkW9UUBWFMbjAN/1WbnUZnm1znQWsbfTY3tTWNRkWcJPMhw/pnfRWqUqMqoi8+TpAPNiNW7qKkGc0p1FHJxNGQw8Xro1R5hm3Nmoo2gK/bFPkuf0PWFzaBU1xkFM34/QZSFC54sGWwMfXZUZuREFQ+XL15pMg5TN4wllW8OPUsq2xkrNZKfr8s9eXPzF1u7+f/Mv31BrBVI3JApTrILwfiq2Th6nKCULqVImG01Q5tukgynJ2CP3YwI3ptEw0VslpGYDqdmG00Pyo30kRRGTpzwXYjPNkCTE6luWxf95rmBzvvyaALZnqVi3T4fCM+pNwSp9NgUVjUhHBB88QjYUEYgyVPSFOsq1DSTfJe7P0FbaKC+8CPu7ZE93SY866IsNzGYB+85Vkc7unKFe30DOYpQvvEp0/wmjn+3S3R8R+AmVikjNDWYRG8slNFlmutunWNKQr1+B4VB03Dsh/vYZ5GBdajJ6cIJdURn89XuoqoxsayhKjlStwPEx0ouvIq2uC6xQsYz07B3on5MdnZANJygvvCDW0rtP0VbmYDoVdZxz80LIjUZIV66Tf/wzqNdJd/ZJuiP6905Y/k+/S7r5lPj+Y3Bmou2nUiF8+2PUapF8MkFdmoPxWPgzwxClYJLuH6EsLiBVK5h3rkOSkPbHaPUCcpJi3b3F7M37ODvneEOP0kYLWZXIun0k0xDPcTwWXNHxWMD/DQMUWfyekxH5g3tADqWSmHZub4pVe68jGpJW12A0FLzVehs++akQnkkkSgUkGbqHAtsUBGQTB3lxDoZD4t1jEYazNbKZjywjHn8yRvn273+uPsgAfnj8ozcEDzNiGnmUDRtdVrE0E01W0WUNVdaYxQ5Ns8EkmjGLPFG/GfsYikLDqqLLKnme87PONqezMaaq4kYRpqoy8cU6Os2hVbCJs4zdseB+JlnGb137EovFBcI0xE88ev4AL/VxYtFAFGUxs8ghygK2hn02d46xbBFY0Q2NSrnAjfk251PB71tr1Xh16Sp/s/2Ae0eHOFHM6mKT9lydr924Qssuszk84/bKIuM05nvP3OHN+484Pu5y2h1SLFhUSgVycnw34OqVZaIs5fHeCc25Ou1Cga4jpkjTicNk5JBlGc12jSebhyglk++/d59Go4ymqaAplAyV+91TfuPKl7jZWAcJ2nadb6y/xLnXYXMw4Gzm8JXVK9xur3Hv/IjVuQbHkymjMODO/CqSlDHwfb64/Ax/s/Mx69UaW70+p/0xBwcd/ujb3+Ct3T0+PNzFz1NKhsHN5hxvPdmmUrLpTR0uz7fYn4yZL5cYBwHFosXjsw7tkkVR13l+dZkoTehNHOZbNaI44eXLq/zDB5/SH04ZjKasrrRRNIWT3gjN0Dh3Xfqex0q5zNFkwtD3KFrigqSsmwD8+GgbLwm4XKtTMgzePNwmTGJ2J6f4ScSV+hyHkxGLxSrXapf5weFPxLkWz2hZDSzVYhgOiLOYIA3xEp+mVceJhc3DSwJKmo2b+CIcKCtEWcTt+udLfP7LHzx9o1DQCcMUxwmo120cJ8KyNZplE01VWK2ZHA09WmWLncMxsiaLtfvUpz1fpVjUMU2V+ZrN3rmDFyYYuoKsSBcTOSgUdDRN+AWns4izvovniyT8b99dpGgoDLyEMMk5HIeMvISxn7JUMciAk0nELEzonDucHg2QFGHFKxQMDEOhVNLp9xx0Q6z1S7bGzx6cMxoHQE6jVWFlvcGXXlgmz6E3Dbh2dQ7Hi7myXuODd57iewH+aALlOoZtg26SpynVlSWC0ZD+JGV9o4ksS3ieqJScTX2iOEXVVFRN5XS/Qy5rPPn0kNZiA11XqdUs/CjlpOvwzefmWKxajHzhmf36c232Bz5BIED764sV5ms2j5/2KZRsHDdiMg1p1CxUVSZKMm6vVvnZZo923ebs3KHfcwi8gH/y7dvc2+yzezQmSVIqFZNG1WTvYIRpagwGHqWSyXgWYpoqrhtjGBoHB0NarQKWpdFuFkiznOk0pFq1iKKUubkSP3t7kzDKGPfGrF1dJEkysgyiKMXzYxwnot2w6Q48un2R4E+zHFWVCeOMw9Mpmq5QLhoszhV5ejQhz3OGbowXJrSqNqfnDoahcme5xPsHUw6GPk6UUy8qNEydvakrxG6YMpgGrLSKHA48jvouQRBjmRpuKPyukiIz8WJ+7xcVn+Gf/Zs31IpFOhYdp1rVxp8EaJaGUjSQK+X/26dZKJD1RqRTjzxOsUwFa72FcnkNqd4QQZo0QdJUkWT+OWJpfh5pfk7glKJINACNp+D7yM/fgY2bImCiGyKQErgwGQk/oGGJRPzRDvm9j8jOzkGWBWT81k3Sw1MkKWf85gO0gpi0Dd56DI838Z+eQZxivHQLwhBpbQ3piugbz7e3iD7dRW1W8P7+HYzFKmarhBHHuE5Mp+djaDJzDZMsgzzPWf8X/7EItfR6SJevQPdcpNvDGLVik059yi9ukPSnFO9soLdKaC8/j3zjpqgkPTsTIvJ4n/zRp0iWSX52RLq1g1KwyLwIWZdJ3vzp/8Xde8XakqfXfb/Ktatq53ByuLHv7dvpdpiZnhmSQ86QHFkeBpESbVI2REB6sAD7yU8GDLTfDciQIYsGBMqGEwTIkkWJZtBwGCan7r4dbj457BwrZz/8zzTfaICAYaD3y7nAuSfs2lVnr/q+tX6L5YMTKm/dE8esLIVgu7gQx0IqxXGNY2RNRdlcw9ltiQmyt0Jt1YTwtG2QJNStnghz/WTqmufkF0NkXSWbrEgGC/R7twQZYCHS6cVclAjkixA5jek/n7H1y59h8uCU1hdeZPSNj3Bevy1W71d7H6nZhCAg/vEj5DwRNxuqQvnRR0g7O8IqYF2l/RVZEA529uHjD0kePEJp1ZCu3RTnTqsnvLVZimRUkKwqZZ7Bu98HVaV0PeTdbRiNUEyNbOahbnUplj6ybQqmqSQhf/U/+lS9kQF8q//NdyqqSZCK1LCjW/hphCorqLKKIgv7S5pnmKrJLFqQFhnpFYh+3WnTMKvIkswy9piGLram0TRtFnHIPIp4bXODtaqDpir4aUKS5wRRQkHJz+7fZq+2/UlDkiKruKlIazfM2iee048mT/mjRw9ZrHwcR9Tu3d/a5Gg4pVIx+OFHz2m2akRRwp+9+4j3To8ZDeeoqsrr+9tMw5Cv7L/ATn0dLw357uEh7z874fpGl69/8DHdXpNqzaLIChYrn/lsRa1qY1R0PD+iWa/y3/3W30eRE5ZxxIvdHsezObqufdJTnOcFL93eoz+a8eX7L6IaGm9fu8YrvV3CNOZoMWfDsXkyP+aPDx7Scyw+njznh8dnGIYu2lbI+L0H7zLoT/mlV++jyCWKLJPkCR8MhlfTC5+B56PIEkGesd1qsLvZpaRg4gesN+soskzXshj6Hq9sb3DpejSsCrNITFb60wU5MJ2uWM49XtrdAgkeT8cATBYui6WH6wYs4pjheMF//LOf40ePD/mFN17i69/9gFde2MNPU7I8R5YkurZNXpY8eH5KSkkpg6WpfOfshP1GnZoh0Co1w8JUFRxd5zObL/DB6JxvPX5K1alws7VGz+pyq3GdhlGlKAt0RaNu1FFllafLp+iyWNd3Km3G4Rhd0fHTEEe3SfLkyjaSExcJr7Zf/1Rds//0Tw/fsW0dz4vRNJVGo8JiEaJoCnZFw9ZV6hWV40lAu2ow9xOyTNRIViyDjTUHXROIHwmIM8Hf7NZNVn5KlhXsb9Wp2hp5KRqUoignTXOKouTVWx1aloapyciALEmMPJFe326K3ndbk3n3dMm7Dy5QFAWnKoTYjWstZvOQoii5PJvR7tZYLXwefXhKf+gSeCEV26TTsSlLeP1Wl5qpMnFjHnw85PGjCzq9GsenC2pNB83QKZDIPI98fIbR7pEVEnGU0N7b4e/+yquEWYGsyGx0HS4GLtpVg1Ke5VQqOpoh/KxfePs6iq5wfbtO3daZrASUX9FVng09Hh3MkFSZD06WnJ8vxfGsaKRFwfsfD0mihL/1ldss44xKRUVVZZ49FwzpsRszGnliyFLA/n4Tp1YhygomE59azaTREDfTk2lIq1UhDIU/Mkky8rzAdWOSJGc19wi8gO2dNnFWcHGFdkqSnNUqJFgFhHGBPxrzhS/d4/hozI3b6zz68VPWtjuIgoIcw1AoJUSq/uGZOB9kcQPSv2rQqhgCnwSg6QqqKrPVshjPQ47PlhiGSrdZoWKovL7t0K6KYgdTk6nqKg1D48ORT1mCH2fc6NkMFpGo2FzFbHVsgjjHMlX8WBAW/s79v6b49P/H//4dveWQuSFpIoy1eZqjGipap0rp+pR+ILyZaYosl2QzD6VWQa2aqG0HqddDunEH2j3h97OrUKuLSkbT/AR9wGBA8N5zCi9C2+wg3bopJqRrW0JUuTNw5/D8kVgbDy+RdMF7ZDqCwSWSqqDcvY2UpUhr68i6QrlcoSgS+kaTbOai6wqyruD8zS+iqYUQboC0tgZZSvnsCZJhUIYRslSSexHTxyOOHgwYT0JmUcYiy5gGKXVdpdmx6H7lVZDFG5bUaFJeCiEoWRYyOUpFR9vbgFYL5c5tpDc+jyQVYpqnqpS+J1qBuusC97S1Tf6975MenKG9+SrS659B2d2GNEHe3sD60udhOCA/PBHtTT/x4IYh6dNjpCwVdoiNdSGsd3agKJDX1v4SMTWdUkxmlPMFUr1GdjYknbqotYrw7voRZZqTL0PiB0/QX75F/uQ5WX9CfDZFrVYo05zxwQTXTent1TBViA/6aJqC3qwIK4ZhkJwOUWoW+fNjtL11YTFQFCECazXh8U2uuuQvL0Qg6MljgU/Kc/KFj9IRuC0qlmi0am9CkSM5ddH5XuQQuTAeIWuKoDD8wtcgi8Vx3O4hk0NRkK985GYD+cu/9ql6IwP4+tnX32maNfw0orgK5qRFiq5o6LKKACyVNM0GeVmgyDJBGmFrFj8Jdzi6RctoYqg6L7T26Fp1dEWkX1VFIi9Lkjzn6XDM8fGANMvZX2vz+sY2EtCz2sLUHwxZxEveHz7naDnl0eSMlmWKFqD5MQPfx6wYvLq1QVwWXGu0UXSF/nQBSHRbNRYrH0NTMU2dX337Pssio6JrVHUdSxeJ/u9dHNNybEpVxjJ0Ti/HHJ30OTzps/ICiiCBIMNfBdRaVfb31rl/e58o9wizlJph8GQ6RVZkLNNAVhUcp8JOu8mdTpfXd6/x9uar5IScreY0TIt55HG3vcaNxi5Hy0te39jnX3/wHs8HI/72/bf4D258lr1GA6SCW2s9fu7uy/y4f8zz8ZS2bVGWJfWKiZsknM4XWLpOf7niVqdNWhTcX9slL1NeWtumZzu4ScSF6zJcrDiZzulUHfqzJYu5i1kxUDWVOErI8xzPj3jv4JSX9rd4Npxw1p/geSG9tRaBH3Hen+AFIUbLoVF3eHQkSAbdbhM/iqlVTEaTJZKmcNAf0es2aDs2VV3HTRI6tsXRlWdaU2TO3SVrtsOjyYSD+ZAkz8nKAsvQaZomlmaQFintSpu0SLFUG03WMBSDosxZJS62ZrNKXF5s3QVKJuEMR7NQZJmsyIjyBE3WeKV9/1N1zf7jP372Tq1m4l8JxbKEPC8xTZW6rVOUMPUSdtoWaV4S5QVJmguovKESxaJT+/5+g722xSvbNUxDA4RfNC0EPSCIMy4uXCYjF1VT2NyscW2zhiLL7DQN/KTgcpnSXyWcT30Gi5BnA4+qZZDkJU8HHmEsQPXX95rEac5ay2LhJldh5JxmyyaKc+Ioptlr8sXPXeP0Ykmv55DnBVZFYxVmPD6asbZWpZRE4G50OWV2OcIfjsiCQASI85QszcEwsas23fUGmQR+JPIAo4mPZWnouoosS1i2wdqazcu3uqyviapMLym5mPjsdau4Ucq1jRq31yzO5xE761UePBwSRRm//NPXeOt2h3rNJMkKuh2baztNHh7PmVz9HCSJet3EdRPGY59Ox2YyCdjfraMpMq9cawlBtt2gWTcYTgIWi5A4zhlczHFqFVbLCHfpi6wCEIfCahEHMScnE3obDeI44+nDc3w3pFq3SeIUb+FRpDmFXqHaqNK/mCEpCvWmw2oVYVk6Z0cjjIrJ4HJBd6OFZYsSgbKEWs1gOg2Qrv52B5EgecznIZNlRJaJAJuiSHSuxGeal2zUdOZhhq3LaIqMLsvISsHJLELXFC7nEf/5F6/h5jkHfRfb0tBVUQwxWcUs/YTffnv3rxc4StMCxRHGYFWVkXQFXVcoI8H1zL2YIk7RuEDe3xVCrizJFgFqvUI6djHuVcCpg2kL/4ZTh8PHokt9taKYzJAdC+p1rM/dE55QSRIf77wqJqarmehdn42h2UGqt8Qavtm9ApIn4mtkGc7OYGeH7NvfI516grGZ5Qwej9l4aR25oqNf2xQ1ko4jsDu9NcrTE+FtzHPChycojkkyWnHyaEIU51SrwktzZ7tKkhQsljGjeUR/HvF6/Rh1MEb9D79G+fgjME3K4QjJsclXISgyej0lf/Ic5XYJh78vxNFnPw+ei7S5I/yc8yllmlL+4AfInRbG525THj4n/taPKNMcY78HkkSZ55BlKO2GaBza3aP0XPL3PkCxdOR2U6ywKxWkRkN0pLd7AgE1m5GcT9A3W2TzBenMx+60hPBs2PgfnGK/ssvkvVNMS2Mxj9j+tc/D0RFFnKGvNVAsHWWjh3zSJzyak6Y5ZZphvnqLcjQmeDIAIPdi5DQX7Ve3YyRNofQ8AaOuVETVpaZR/iSMFoZQqwnhqWkU/SHy7jb6+rqA7S+mQnzu36H84LtQsShlGUlWRfBMksTXz+biZsJbwnAo0vdHF0iajFK1KONMiN1P4aMoxZtNeeXp1BVRzpDmGZqiEWUxy9wlL3O6lS5+5l8FXcSEKSlSNFlDkzXaZotpNEOTNc7dAU+mE5ZxzHLh0WpWub3W5c56jyBNSYsCNwn54tZrKLLKMBgxj1aMgxkdq8p2rYMqK2zaG/SDAXGeoygiuPR4OuV6o8HvvfeA1cr/5Ll8+wcf8/JLNwDo1YS42axVaRgGTdPm4/GA3XodWYJnp31sp8LhxYjTy5FIkDZrjEdzbt3ZxQ8iBpM5w8GU4WiOZVcY+z6/9dIX+OOj9+laFs+mM2qmgbvycaoWsyjiG0+e8eruFt86O6BuGPzyrbc5dwe8uX4XWZI5XJ6hSBJ/ePCQ2xs9fmrnRf7g4H3+1+99B9PUqdUdNFnm/npOq1JB68i0KhV2qj0G/oTHl0NadQdLVdla69GxHCxNhGw2nC7fu3jOYOUyHs3pdBv4XshksmStVWc6WdJoOhwd9rlxc4ujo0scu4LrB/z2L/4UPzg7Jwwibu9vMl55bNRrpEnG6eWYIi3I84KXtzc4q9k8fHxCmKZEYcxKllnMXcH5BeYLF9+IsSsGm9UqG071Ksgm4yYJN5odPhz1sTWNaRiyW69zp93mwnUZBStalSlvrd3nmxffQ5VVthxxs1O56m6vqBXCLMTRbBbxgkWyJC8LlvFKePokRXhxr87pT9MjywpqFY2xLKEoMqoqf1KvqasKSZYzdWPcMGW/56CrwnO5XMafCNCKrmBpCqYmM71KG1/OA8azAN9PCYKERqPCi7c7AhEUpsSxSFK/dNVsM3RT5kHK4qo6sVMzqegKGzWd47k4HysVDdNUuBwKrM93f3RKHMaomkqWZjx8/4i7r+7TaFjoukJ/6nPrVgfbUOnWTB4fzbmxU8c0VR5+eE6tWSUMAqLZDH5SnZxE1La2yLMcf9CHwMXPUtjpMJoGvH67y4dHUxxHF4nxikYYplSrBpNJwOnpkru3O/wff3FCs1nhq69tcDQNeeNaE1WS+ODcBeDocsnLd3tstSx+/zsnLOcedtXCtkVg6ZUXOui6wv5uA9vU6NQMTkYeq2VIo2mhqjI3r7coS8jykkfnS9YaFR48HTPsL1gMxrS21kiiBG84wqnbLKdLnIbDfDRnfafL5HJC7q1A0fjK197k4ZMx7sJj78YGq1VEvW4KPutCBGo1TcEwBOPz4PE5npeQJinzWU4SJYRhSp7lLOcesizjqQpr64Kv22gIu4wsCytGECSf2BccR2drq4bvJ7hhyjJI+exOlW8eLVkECXlRoWaIyaeuSCKY5MV4UcqPB0uOJgFpWjBZRVR0leqV1zTL/urr9a+cfBb/8p+/o9+9TnI8wNhqkq8i8YkSFMdE1hXcgzFa1URp1kS443KOXNFQGzb63/5bcO0FsTaXZZFyHl7VWl7VVhIG4t+6/glsXnrpFaQXXhZ97ZfH4v95LmSJAJJ31sQkNU1geEm5mMFsBp2OWNtf9AkPRkTLCGu3TThyae418S8WVLYayK0G0r1XkNY3hWd0PgPXZf5HP4KVR7II0OoWJ+9doukKraaBosokQUZRQtUR/K4iE36aeBnS+cwtwQQ9PxOeQs8lvZgyfjqmtt9m/J3n1H7158Xv3GgIkftvv4G62Ua69yblx+/CZIx09xUoRMqbMED6zBdQ97ZR33pd+CYDHxYLsosR8o19ou88QFVyAYOXSqSqI167wQgpz8Qq/fyMk9/9Q9TLIWfvnyOFMYvDMekqwmhWWH5wSv0rb+L96BnWjR7B40vsvQ7joznbP3MLXI/wSZ8yTtE2O8imAVGEvL1B+OwCVZUZP5/Q6hoUYUo28yjzHL1XJ76YoTgm7oNjpLxANjWkNL16/RM4PSUfTpAbdbGazzJoNkXq/uq5MJkIYdpoIF2/I84nVRFWjCy7Ollz6J8g6Trxh89Q19qU779LPl6S+zGKZZAvQ9SddaQ8FeL9U+j5fHf8o3fW7S7TaEnDrBLlCWmeIUlgqSa6onG4OKduODi6TZiFLGIXRZapqAZf3PwsqqyRFhlhFjKLFxwvL8iKHFNVcZMESZGpmyZxnpMVBWGW8YWdm7yxdo+22eZgeUSYRSwil6zISPKU/foWnUoTN3UZ+zPGgcvY82lZFm4Uc3AxxPdE4Gf/2garpU+v1+TifMzmZoeWafK57Rs0TYtlHDLwXcIs5dsPnuCFMWEQo+saj5+dYeoavXaDsizx/QhkCdMw0K98q6QFXhhx/+Yejq7zdDakomksoojheEG/L4DyDx8f8w++9LOMghWb1SpBlvFvHvyQnXaDz62/wR8df5tlHPCZjZfwsxVFWeKlHr9084u8sbfP/e19brW6LGKPg/mMs/mS3WaDP/3oKYVeMA4CdEOjoom/J4fjKdnVbPoH56f8s//zDxjMVzx5coqmqhwcXTKeLmk3qzw9uuBrn7/P+0+OuX5jk8ODSzY22lz0J7x07zqXrkv/YgKA7VRQVYWFH9Cu2UxnK2zL5NHjE2RLI05SPC8kTTOcqo278tE0lUfPzyjyAkmWUK6CLXlRcLpacjqYoBuaeH6Rj3M1FTVVFUNVOXdXjF2PqmnwYmePql7FUHUqqoGtWQRZSEU1WSYrVEmh7w8xVZPLYECaZ4RZjK1VcBOfltlAkiDKY97ovvWpumb/lx9evPPK9RaHFys6HesTvA7A3nqVjmPwo4+H2LZOzdIpgdE0oFIRK9Lf/Mwm63WDohQLsLGfcT4LCOMcVZNJ0wJJEoGa+TISJSoSfPFuj5c2baqGwsNhSFaUhHGOJAkb2XqjQqOicrFMmHsJyysovWmqrFYxw8GKJEooi5LeRpPZaIFTczg7uKSz3mSj53Bzo45liDX7yhfi6MGDM8Iop7jil07PB1AUGFUHTdfIfJcMBVmRkXSTwnfBn+NlGtdu9ojSHD9IPwnx+H7MfLwgTUsujgf8jS/f4Xzk0WpU8IOE7344ZLPncLtn8e8fjiiBu5s1TsceSzfBtjW+/Mo6jU6Va9t1ttcc3Cjh9NLF9xNsR+fjR0NKVWE6C6nWxLY2TQvGE58kLcjygsHQ4zv/+o+ZzmKi06dQloRJSTIdITl1Vmdn3HrtNqOLKfV2nfHFBM3QyAKf3s19hmOP1cxF0zVkRaEohEWiXjdxlyFqxWR8cEyumixmHnmWk8YpkiyxnCyRJInF+SVpISErMrqhU7EM4jgjCFJ8P0VVFaq2jqEpSIpMHIsJqG3rLJcxy2WEqslstm16VZW8gIalUdEU0rxEkkv6rqjxfDYQIv50GrIKUuI4x7I0gjBjo2URp6JK9a+afP6/1msqrRrhQR+jXaVMM9xJgG6I1XWZ5gxPFphFjn5jC4IA/fom+luvoXz2c6JRRxLJaCQJJn0IQ8rzE5FMVxTka9f/Etlk20i7+6KNx3JEqERCMB9Xc4Hn2doV3y8KhSB1l0itLixmeH/yLvr+GqsfHVDZaSPFGUcfDAijjP7xkvXtOuZXv4TkVAX2J8/h/Jzk8RHeR6eYvSqVe/sQRkyeT0gS0Uu8WomVSK2q026bRHHOYhHjZbkAMZfQub2GVKuCaVI8OxD+mysWZvVXfxH7zhbkOcXDx4TffwRxiLHXQ9rahsGZSJ/P58JCUBRI6xtIjTa4C8qjAzh4xvhffANDKZC31lHu3IanT1Fv7Ir+8HPvhAAAIABJREFU+P6EMsko/ZAyiiHLyWcu2eWEdLKidW+TbBVSbVUwmha6KqNXNNJViKJITB+cULE1JkczavttvOMJ1UYFfbdHcj6hTHOKKKOMYqQyF+1RponjyFhKSRpkaGlKOnGZzWLsugFFSTrxuDycUZZwebLCSgX4Xd3oCmGsacLzOl8iBT7Jxwcouag2JU0Fhqt51W4URaJmc21L+H8XE5F+dxpi/R6sIA5JHz5DXWshxTG5G5LNfSRdJVuF6OsNMQ0Ogk+n+Jz86B1TNThz+0J8ZgmTYEXVsHC0CvN4xSoR+JxOpU2YhaxZHa7Vd9l2Niko8DOfIAtIi5SRP8VPQw7mM641OrQrJtu1GsCVYFW5v7bLut2hRIgvQ9GZRQuGwYLrjW2uNbZJipQgixj5M87dCS919/h4dMkPHjzltRu7PD26ZGOrw2y64qPHx3h+xHA849aNbX795TdRFRj7S1RZ5slswtOTPidnQ7Z2ery+v83I9Tg87pOmOZqq4AURuqpQq9k4lsnKC3B9wTzc2uqSpCn7Wz1MVcJQVT7uD5FlmSCIoIS/+/bn2d/ucOkteDwY8dHhOVFZsNlusF1tcBkMmIUu56sVB4tLSuDVtX2quo2benzr7CEPJxf88z/6BoUqc3d9jXtrG3w4GvDm/g7jIGDi+iRZRpgKyZmkGaPZktPRjDCIuX1nlzzJabeqOFWL6lVwKghjNFXlux8+xTR0jk8HbG60OToZ0G5UabXrLOaeWMF7Ib4fEYQx213RU2/XRHpYU1WKvCCOE1w/xKoY6IbGoD9lOJ6TZhnDyYKKoeN5EfW6Q1oUGIrwl0VpxjDw+PDwnFSV6FgWcS4mvGu2g6IqpHnOyXLIndYuVc1hlawwFIO63qBjdigpKMqCC2+ApVWQJelq6umiyArL2KNm2JiKQVpk3O+8+am6Zv/VR8N3Wo7BwfmSdrNCUYrOdtNUsSyd4Sri6HCMZuhsXHW939yqU7MNrnUs3DhnHmaUJSRFwdE4wA1TvCBhp+Og6jKdlkWSCY9npaKy03EwNYU4L/ET0Zg08RKmbsxe16ZpC5E79RKCOGcVJux2HJ6fzjl8fMGN22uMhys2tltMhgsmx+cUWU48HbP38m2+8tY2cz/BizLSrODkfMnzx5esFj57N9bY2qqzWETMTs4hS1GrDdIkRTd0JN3ErtkEbkBZlGBUqG/vEKw81rbaWKZKxVQZjQMkCcIgIYkTvvpzd6h2a/THPidHE85Pp2iGTqNhUrV0zhcRRVEyW0b0r7iqP32vR15IBGnBk/Mlk2XIN77xEBSd9XWHXttmOPbZ3KzhujFhKERWlomtjefFuMuQ+dTDXfo4m1tEKxe1vYHeaKBoKqrlkOc5qDqTjz8kj2OC6Qyr0yaYTNDqTbprDeIoIw5jvNGEvJQpioJur0qWFUIkyhJpKaOqKkVREM0XoKhU7AqBFwgyQJ5RFgVOq4m/9JFVhdCLMCs6RQG+n7ByYw4PRkiKcjXJ1qiYKp2GiaorKIrMcB5Qc0waFZXzRYIsQ81U6VkGNVNlHmY8OV+iaQpNR8cLU1arCF1XCYKUdt1EkWUkWeI339z6a9Zr/qv/+Z3SD4inHpqtQ1GShymKBHq3Rjr1kPKc5hfvfjK1LP2AcjgEXUEqSxEOKYTXjuPngsUZBNDvi49Xk7xyNBad382GmGyCEBPT0VXlYgKNFswnoqKTAkaXYDmU5ycwGjE/mBCdjETjTtMiuFwwncXEacHOlkP1hXXSh89Rei2ka7dgOSf76CnxxQzVNsj9hP57Z8RuTBCk6JpCo2FgWSqul9JqmvhBRp6VxHHBW7/+Ku39FrYho7/5KuV8DpMJUrNBdjklDxJqdzeQFjPQNLIPHuM96TMeBszPF7Q/84II8UQh0p17SL01ig8/QlrriePluUiaJhLjeU6lKQJGwQ+fojcM4sM+6q1rJB8+Ix2tMPbXkNe6pKdDksGSzI1EsEeWWDwdMR2HVBsmeZDw/MmM6TjANFQ0TWa+iPG8hO6aLXyRcYa5XociJ514WHe3iC9m6L06FCWybVL0h0iKjGzpOOs1jPU6xss3yU4GaKZKmeZMzldEYcbpPGSRZMwWMWqQUJFSyjBGruhItRrF0iW9mGHc3Rc+XscRKffpVHTK710TjNn0Cqs1vhQ3IZYlgmyyAtUGuAvU5UiwYQ0DuUghL8RNTFmideuizapSQf6Fv/OpeiMD+IvLv3inoGARrURdYRqyjCNsTcfRLSbBAkWWudu+gSqrpEXKMnFFXaKiEmYRuqyTlTlZmfHD/jNOlguWcczhfEaQpSzjmKHvM3Y9/Dyjosn07BZlWbCIXYbBlDCLkIGmWePSG7PtrCNLMufukDW7ybfOnjFduExnK84GU67f2CSJE5ZLH/8qTb+32aO33uL7z59xs9fh1d5tnswu+PjonOXSp9Wq4bkBHzw7JQxjgijGsU167To1p4LrR3Q7dZIku8KVw6995XPCNiLLfP76dY6Xc2ZhyHrVoT+dkyQZ65sdPrq8wDJ1Hl0MmE6WzJYeFxdjfual21y6S0oy3tp4kc1qnR9enrBbr5MWGaNgAZRceIJ72ujUibOMB0+OWevWOeyPeWljkx8fnuB5Idu9Flu1Gk9OLnGXPp4fISG4p0cnA/qjKY2qQ1EUHJ4NmA0XqKaKIst4QYgXhOxudpFlmThKaLVqmKbBfLZib2+d0XhBxTJQVQXV1JhMBX+53qhiGBpr6y1e29vmbCz61ZMkY7bwCMKYeB6IKfEVZ7XMCyHOFZluzSHKMkajOS/sC3yUpii82N3kaDEjzDLudTbZqjaRpJzHs2NGwQgvDVBkmbiIMVWDqlZDkzWm0RRLE9xJ0XQEJQVxltIwq594lV/rvPGpumb/p++fveNFGbN5iHnl0VvMAzRdpWJpzFcRWQ6/9sV93DjHj1KmbswySGg6BoswY7thIEsSyyvkTRCmLJcRk2VEXpbMFhFpmjObhciyRClLtKoGaQGrKOdyEZJkBZahimFLmLLXMqmbGqezkLql897TMZ4bE/ohg8s5u9fXGA2WhH5IuZpApUptY51a3eLZ6YI7ey1e2qzy4HjG+cmUKIjYvrbG6eGA+SxkPp4jaTq641BtVQEo8oLeVoc4TETTVQk//XMvsnRTFFXlzs0uo1lAGAvizHQaIEkSTs3m5EKIofPTqaBWDCe4XsSdOxuMFyG2qXGt5yDJEud9l42ujRflhElGkhWs/IR23cRwLNI0p3+xYH+nydNnI27ut3l+NGUxWbG53UTXFU4ORwSrgDRNybJMcE2HQwhdzHaHOIzJhmfkizGUkhiWXKHLjN4maSwmiNVmDdsxGV5M2NpbI4xyDEsEfSzbZLkM0Q0d3dQxLZPuWp1m22GxiMiimHCxEnbGIoPYA9MhSYtPjmeWZpRIOI74nrPxkp39LpomCAUbV4GjIMpoVA2yvKRm6wyXEWfziFWY0LCFeM0ocHSV7ZrJ06mo5JSQkGSJAjFfVBSJetUgzQosU+PXXl3/63k+s2UAgKbKJGMXSZHpDwK2tmyQJVIvwq6ZRE/PMe+/IDx8AO224G+miZh8mjYMz8Rvl+dg26SnA9Kxi77RQK1VhLC4eVMIy9AXfj1JEiGcohSNSHkOnXXxfd0l1FuUTz6G6ZT4co6qyrR/5kXCj09wPxYm+rgoeOXNTYyNBrJjody7g3TjBcqTAwgCcj8iTXJmA5+NvQa2rdL5/C3iM7Gymh/NWLkJL/zUNY5/cMpsFaNJErfvtAkeXfLeh0O+8J98TkxuZzPhtdSEz65MMoooQ7ZLGAwYPDinUTeYLCJe+ew26dNj9LffgM4aZ//NP2X7N34a5T/9B3B++Amfk9VcNPNUqyj7+5QHB9i2gbS7x0e/+032zxfYGzX09TreD5+TZgXuKqF3sy2g8mmOd7nEsjRMU2VwuuRkFojQSFHy8CjkmmmgSRKaLCHrKskyJEsLZMtAsU30Xo3ocEj1598UXtWtbcrREFnThIXgo8coFY3wcIS2CLCaFrNLl9lMQHAHQUJdVdjYsPju6Zy2n5JOPbSW/YnQhCHG/RfIT85RtjcEYP/JY3Eiald+zt4G0moBL7wimo/KEuZTMCqURS4sFEAexCjVgvxyhNJtovgJuR+JlH+lApub4ubnU/iI84Q8ztEUDS8RDUcDz6NjOYLdWRYokszT+RGvdl9ElVVaZgNVUonzmKIscDQHQ9E5Xp4jAYaiYFoWT077nJ+KaaOqKqiqwq1Wiw27hZv4eEmAoeisWW0KriD1ecLN5i5ZmXPmDmgYVf7k+AlhnDCfuVQMg7devcWDR0ekaYZtmXCZ87kvvUzLFoGTt3f2uNXc5c9PP2AcBIRBTJ4XDAZTer0mtmVy9/YOh6dDABYLgUr6qc/c47vvPmY6mtPs1NnbWePReZ8fv/uUv/crPwvA+WLJfquJLEkEQcxi4WFZBs1GlXEQ8Ozggs31NrOzFW/dv8Pj6ZSf3buFpZn8w9/9Hf7h177Mf/X53+Dp/BBZkvDSgChLqOo6WVHw1uYO7w0uaNUcdmpt/tm7X2cyWdJqVbEsg/cfiuedZRnXb2yhaSqeG9DvT6kYOtSrnPUnpF6EbGmgSCxOZmAqIIFsaciyzHS6Er3fmpiMWLbJ0VGfL7x+hyjL6FgWAIokJpQPTy6xbJPL8zGz6RLLMrjoT3CnLppjkicZjY0G25tdPvrxM7S6QxglSJJEs1WjZhiMVx6v39rj+WjCdqtBkud87+IYRZIoyxJNUTEUnZrh8Fr3LuNwiqPbPJ+f8ELrOrIkkrdRHl21b2mMwyndShtD1YRPWVZoGHUqqsUwGP7/ck39f/nwr9bRAsUTUqmozIYznOrm1edTbFvnTz4acne3QcMxaCBW48/6LnVbR0aI9uEyvgLIFzQaJqcnc46fuWxfW6MoRHNSs26y3qgQJDlelGFqCjd6Nn4irtcoLejVDFZRzuksxNQV3ns8wvcTAi+gLEteeeM6H/74CNM2ceoOK7/GC6/dwLbFJK3lGNQqKn/0oM98Ll5b0za5OB5Rb9dBgpev3WA4FDD6OIzRdLFWf/D9p7AYgtOmvtHl6GTB4IMP+PyvfInpKmI08tnYqJLnJbPRnCzNaPVa1BsVgiBhMZrRXGtDnrK1v04QZ2y0bdK84Hd+54/5rb/3c/zKF3Y5m0UUJaiKxMnYQ5LAizL2N2ucq6J2VJZg9vQxf+oFtNdatNcaPH/Sx1/6UORs3tgmz8VxG52NBIe82iK4PANVR2pvUqYJeHNYDkEzoFIjDmOIA1EDXpaEYYpVteifjbl9T6CoqlVd3CiUJdWqzvMnQxrtKqP+QthgNIXMi8GdgGZCpUZ1d5+d/S4Hjy9QdZWyKIkWK5y6Q7NZ4ex0wf6NNfJcWDGm05DpNERVZRGAtHV0VUGRJV7ZrjH2U7bqOk+GAWUJW3UdU1GYxwlRcsU6XYS0qwahJby3sixhGyq3ujYPzpZ/5bn/V6fd/4d//E4apuj1Cu4kwKwaxEGKIksYlkbixlCUuJMAZ7shvHuGLliU9SYYplifD04hCsTUczoleX4ORYm+VkPZ2fxkLS/t7olVfVmKWs2KBXWxesb3hLhQNTh8LPx+oQ/9SyFMohjn7jbeD54x6XvYtsbZmUeWF2ze7Aiv34v3xCTRtJDyHGZT8AJUTaH1Qg/Z0Kh+5q7wEaY5/Q/7rL+6BV6EP3SZL2JGaco4yxmMA/JVysuf20Hd3RST36smp/zJAXmYoJgaasMiOhoRn8+Ioownpyvu3Wxi/+LbqDevUY7HeP/y39P9r/8LpDKn/OY3kKwKpbuE81PRi16vIt25R/qNv2Dyw0PsjTren73Hxu0OqqkiKzJ5EFNmBZfnLnFSMB941CoKKBLWdotk5nNwuCSOc8ZZxkWcsW/qpGXJIhPtBVVNZTkLKUswDAWlLNC6dWTbRO02BAD++g3Kp0/ANEmfnaDevonUqiPvX0O/sU12egFFSebHjBcxeVEyyzIMSaZICmqyME137qyhb7aFTzcIkNIEqdVCrlXF6l0T4SEMQ0w+G03yP/8zyvML5HsvIW3fEs1bg3PRkNRaE+fZZIREAUVBMXeRr+9RLhZkqxDZ1AUOyzQFiupTmHb/vcN/944iyWiyCBeViD52XZGp6hZRJgDzq9hn3W4xCmZossKmvYmlVQjzECg5XJ7ipSGPJiP60wWnl2NMU6e31qTnOKLpSFF4ubeNrVcI04i0SOlYoj7z0h/R96ekuYCEP5keocoqfW/GwPNQFAVZlnjt9j5/9oOPCKME2zI5uxxTliVray26NYf7aztkhbC/RHnEMo5J8pxKxaDdrmE7Fm/c2GXkBxR5wfnlmLt395lNV/RHc6bzFaWXEvVXjNwVrh/y9tsvXVE2YK/ZIMoyng7HUJZiclgxuDgfc9mfomsqh88uePONO3z1xRe51VrjYD7k3777Pv/oN/4+YRbxLx5/h6qhculNOVxMeDQZslmt8vnte/xvP/ouz48uqbeqfPODh9y8tYOiyFcrqhhVkTntj5AkiYvLCaokX7XW2HheyPhiim4JIVsOfFp7HcIyg0UCsoRsakwXK9Isp+5YFHlOo1mlUjHY7DXxkpQXOx0+uBwgyRLH5yPubK7RrNnc7XW5udHj0VkfXdcIwpjQj8SU8ao6cDxf0u41MTSVbrdBp9ugW3NQZBlkibphsNds8PBiICailoWhKHhpwr3ODv/7+9/l6XDI7V6X17qvICEzCif4acCN+jWC3KcohdVDkRTCLKRX6RJmIVmZY6oGNb2KIslkRcq91iufqmv2H/3B03d8P6XZrDAauhQFyKpKXpQ4VQPPiymKksnEp9uxGS5CHFPlesdio26S5EJAPRsFzP2Y/tBjuQyZjoV/cGO7hePo5HmJpsnc3WtSFCVhkosbEUenbiqczyMuZoFA9EgyF7MARZE5H3tkWYGqyqiaEIjvf+shmmVCCf5gAGmE4jRwqgY7PQf/KsxUShCnOXa1gm7oqIbO5maNRqPCbBYS+jHe0mN9u81kMGc2dcl/knaPPOKkxPNiXvniK5yfL6nXTXY3q/hhytnZklanhl0VGKdxf8b4copeMfDPT7n7hdd44VoLXVMYzQNOzpb8l7/9No8uV3x0vMDQFaIk53ziMxr5rHdtbqzV+Pq3DhhczKjYJifnC9au75DnIMkSoR8hKzLRdAyKgjuakGQlZVHi1B3COIXVFJyWCErPB7SuXSMMErH9VfW/bGQsMrBqSLKEUTFpNG1qDZsgSOn1bA4PBfx+sYjodh1qjQrrPYetzQbn54I0kQYBJAHoFcgzktWS8WCB4dhouoama9Q6zU98qooiU6sZ1KsG44mPqiq0WpVPPKz76zV++GGf04slmabwN1/sACVjP2O4jNhvV/DSjDQvOZ4KnRDEGb1GRQy9fMGNXWtY1CsqZ7OQ33zjr7l2n/+Tf/xOkZfYOy2mpwva9zbQwwhVldHbDlJekCcZnpfiNE3IS/K5i/JzP/+X3dxJBGUpJpTzOaUfkFzMURs2ZVEiZQnSjRtId18Wnd6rOeXgHKkEbEcIDG91VeMZCcbntRcgjiifPxGhFUVBXusQPzphPvRwqhrn5x6VisK1/TrGVpMyjEjefYi6twFOFXqb4C2Rt9ZJPj5k8mxC44svkzw64uK7h+hlQcWQCaceT09XPJ8HnMcJt+wKtzcc9tdsmg0DWZGQ05j8tI96/z7Zt79PtgzIJh5qw6L/7jn1612MnRa1vRbbNzs8+/El9dRFLWJQVYyv/Q0YXVJenMPGBpJZQWp3kZwqUp4ivfYG6e//AeHhiPZv/xLFZZ8iTDD3usi6gtZroNo6uRvRu7tOo2HQvdGhTDPUpo3qGFAUNCsKp2PxB8aQJRRJoqqomLKMl+doCLahVEJnu4asqaTjJVrDEpzQ2y9QuiuRPHccETJTFFGBWeRgVlA6DfLLIbqhUjcViqzgwk9QJQizgt2ujaYp1HYaAqFkGxDH5HOP7GKI0qqhNKsUixXFdIHc6yB1OpQff4S0uyPYoScHoJTi5kZRAElc7FEgOu+nU/LJnHwZIAUe6huvUY7G6HevQxiSPTlC1pVPJefz/zr4v99RFYWWWaPvzehZDaIsRpNlWpUasiQR5QlRltKzmyDBuTvizd59vNRFlmRm0QwvCfj2+XOSK09gEMQ4VYuiKInynLc2t3hz8wZZkXPmjjhcTFAViU5FTDYWsYulGoCEl/i83HuBkT/ldLUgyYWY3G23+PHDA8qyxLZMTs6G1Ko2N65vsdZtMPMD3j065uZ6j6ZZY6++zqU34e7GGu8/P2G5FJO37338nIOjS3RNxdQ1xuMFl/0p3uGUMsjYvLNJb7/H2nqLes0hihJmK4/hyuO17T3+/PET3JUAM+u6yqPHJ2xtddnd7rG70WH72jrf/vP3CQzwy4SubfPrr3yB01Wf09WYa402Vd1iw+mw7tQZ+Uu+vH+ff/LtPyQIYv6zL/88D0eXxHHK9noLWVNp1Wwcx2K59Ln34jV0VeX6tS3yPEfTVJyqRVmUVGsWi5VPKZWgyIRxAiWYHYfMjSlloICCkl67gWHqzCYrAe2XZe51uwx9n0UQUquYdJriHAjSlCDLUGSZzXaDwWKFoWtUaxaOXWG18GARQwnbuz2CIKJatZhNljh1Gz9NCeOEJ8eX2FWLTtVh4vkMZgscy+ROp8sfPn/El67fZBwH/OD0gERaUNUrVHX7ijcr6l6DTBQQXHpDwixmFs35zNobDMMh284WUR4zjWZISJ+6hqP/9t89fkeSYL3ncHExxzA1qlUhFup1k27LIopzVsuAWkNMOAezgK/e63Ewi2jZKiM3Ze4nHJ+vyPMC3w0J3IBmp4rrilT8vettdnoOCz9huAyZrWLivGC9YZIVAjZeq4iGGlmW2O9Y9BcR2VVtZJ6XOI7Ok4/OsRs1irwgmowxWh2q62usb9YJw4zzgcveRpW6pVOtaExWEbatcfx8SJ7lNFo2x4cTFpMl7bUGUZSwnLqk4z75+AKKjOr121S6azitBoqqMJu4xGFMlJR02haPHw+vAksivT2+nLC13+PGCxtUGw71jXWefuPPSZ0Oiqawu+bwxu0Oz0Y+UzemZutstmx6NQNDVwnSjHu7Tf7NN55RliVf+/m7PDue4y082t0qsqJQqejU6hXmU5eN69voloVZ+3+4e7MfS9Izve8X+x5nPyfz5J6VVdXdVdXN7iY5JIeUNMPhDAcaWzAgX8gXNnTjv6P/B9saGxB0Y8OQF1nGaCCNOBuHHIpsLt3srfaqrNzz7EucOLFH+OJL9lyZBsaWLXcAiUSicCozzomI7/3e93l+j4csC3NPWZbCnGe5lICsKFRZRrQMRDFd7wm2eVmIabCiojqeSKcK1kRRiu2Y7O/WmUwj0lTgtCxLRK+WZUWalaRZycZmjel0je44lIaH2WiQJSmshe5z6/VbLGcrNF1jOpziN7zPzUUnL4e4NRvL0livU64ul2iaws6mx8dPxxzu1UGWODtfMspKogIcXcExVapKIisrgrhkHuWcDVdkWcF4EfMP3tnk5STinYMmSV7y4cmMvCj5z7+687cbuwerDMtS0Q62sB9eozRraI2AZLJCUmQUzyQPRZ6rJIHsGkQvh+iLCbR6NwVBCJdnSLUa5dkZku9hf6MtOlrzOeV8iXRycgNIl8GykRotWM4hif6mwCgKqskQaXsfFlPx1WwKtM7z5+SvrlgPlrR268zPF9RqOo2WTbJOcbttsG3MdztU4QppNKD6+fti3DuZoG/W2dhukH72AmSJjQebAJx9eMFqlREVJW1NZfsGQD2bJfh1E/eb90UaU6uFeusO1dU5AGWcIds6sqHR3vFRd3osvv8xaVpyPVgzjDMevC30ntJrb4giO4mQ+lui69toCRTVfC4wSo8/Q5LA+3tvUWUp6WCB1vIok4z102uMfgNJkdGaLsnVnFfPZ8RpwYNv7gnneZqj1h3KWLBJ13GKryokZcWkSInKCl8Vn2FeQadjQVGhdTwheWg0xHtlu0jRGvb2BMNzew/WKxHlaZpUizlSvYnx1QeQZVhBgPzDzzCmIbasoEoiR3j3oI6kKWi9Fnge+aPnSBLovTrVcIRkmci+C40G6cdP0Debwuik68jf/l2BXHI9uDwVN/OdN2+uFVFkk+coNeGUV1yLar1GNlSkbpfsRz+jiFJUy/p/Yu34D+6I8xwtE9nbyuKKll0nSNes8wRD0VEkhetwSl6WSEhoskqcJ8RFJMDfmcZgPeRkOWDT9fjsasBGq87tfg9FkrharVguQ96/OGeexMiSRNN0MH2VrCxIywy5EGMcQ9U5WZzzpd4Rx/MzwiwS2kBZ5uV4yqfDGctgTbfb4OxiRKPh0es0CII1HdvGqtXYPXqd0+WYVRrzyWBA3/f58OqKvf1NJAk+PbnAdkyOaltUVcXzl5csRgvQFbyjNlleMJkHmEbC4f4m7x7ucrpY0LJt3t044MPrY0zLIEkytJuUlIO9DdoNn48+fQHA5dUEioovH+wyj2Pe7ByhyRqObnFY32Sdx3TsJo8mL5nHMd/afY0fX3yKbujc3+lzuRoxnSxptnzKCq4uRkQNT8Cyt9qcnQx4cXoFYca733iD6WQpxtY37E7L1IUhqOGwvl6KrqSeInctVEUhDWI2NsW51i0DyzIwDI2u42AqKq6u88ZGl6ws2XQ9JtGaAJCBURjSsCzePtxlnWUUZcnTs2suvQn1rSYA08WKmmujaSo7ez08w+DkeoyiyOzt9JjHMaosYxk63zo45M8ePWYSCff8aB3wn772FV7Ozzlq7PBsdkKcJ3y9/w5ZmaHKKussZJ1HNyEIMo4mRuyKpOCoNpfhFUmeseXW/r+7sf49HfE6Rjd1Nhs2D01RbNi2xni8RlNkujWL04t4pq/OAAAgAElEQVTlTfSmhKEpLIKEV7OYvbpOXsH1MmUeJtTrJpPJmv1DgQmSJInr64DpNOLjuKDTFtKLuq2T6CWGKlLKorhAlQVCZ7pKcAyV02n0+UhYliWCIGG9ilB1FUmWiOdLJMfHb/qEyxBNk+m0hJH1ehYxCRKGoxDPM5hOI3pbTdK04PJigevbeDWbdZgQLkMxwTRdtM4m2SokuB5g1Bt0t9rsvt7j6kpA0r96u82PHg7wfJtVEBGvY5rbTdjukKYFP/93TzAsg+TqDOwat/Yb5EWFawiIvmdqJK6BfsMrfnixoCgr3r3d4YPnY7a26zRqJsNFTJEXtHp18rxkcDGmvdEUUPbdDi8fn5NPB1DkuPu3mA6n1Nt1HN8hXIZIhUSZZfi7eyxPjiFaAqA2eyBBPrpEbW4A4NZdsjRjY7OO7wuof71u0m3brNYZuxs242VMUQjN83qd4Xk6u/vtz33cUZTzKk6xNzcoioLBxQRN19BNnc5WB8NQmU2FZGL3oCsK2VQY0O690ePlqxkvTubEcc46ybm9W2fVceg3baarhNEy5p39JmFaYGoqWVmK99XR0VUR5/nj4wWepbHfNPiXH1wJ6Ydn/Npr/9cWn5oqo2sypCnFr1gO3LCi8gJJU27o+mIEI/ke9gMbXj2Do5tkoptM7+r8nDJKUVxEp+v0kiJM0O/uiRzwrT3B7UwiUVjWmmKn4NWpfvIDpL1DJK8mxvH9XZFuA1QvniPJMmWUohkq8/MFkiS0MqoSU9+uMfg3HyDLEs37fZQ7h4J/eeuI4v2fEj0fMhmG7P7Dr1M8eYW+3WH18+cUaY4iS8RFyb0dnyQpCENRjAMMr0N++N/+Ob/znbtoRQHf/G148ZSqqpA0BcU2UA+3UXcyVv/uIZNpgiJL+J7Og//sN8So+c4dAKof/gXUapQvjgUvdTKG4VCMpKtKdBl3+0j33iT5F38kCsKqYvyLE+K4oJxcYdsqpqkSRTn9voNu60QXM8yuj2zqUJRUacHBvkf0fM4ky1ElCUuW0eSKaVZgSDJbtoG308DYEoU9lgWmieQ4YkPQ6gojVNsXKUONFtLWHtWLx0iHd0SW+94hGCbVR79A80zutV0miwTPVOl0LIo0R/YcpL09qqdPxcbFMUQSUcujWKwolhE6oL/9hmCZrlaCVXr+Cmn/CEYDqN+44IO54McmEVK9Sf7wCZIiUywjgXaKIpS336Rar0mvFxi7TfHefkEPTZYxFANFkrBVC1VWPtfhZWVOkCRYmiYSkDSXw/o2V+tr2maLKF8TpCFRlvFkNCZLM6I8Jy0Krocz4ijhndcO2PI87jT3PsfmTKMFTatGnCfUdZ8/evoL3t7YoufURJfT75MUgq36yXBIzbFYLlZomspgMMW1TWaLFbNZQL3m8ic//gjL0Ln/+j67tRp5WfJ6p8NPX5wwHi+Yzpf8w29/jZ8O59zZ2+Th8zPiJENRZNAUNrpNoiSlqnKaNY+iKDg+ueLDH3zGb/2Dr3EymfH7h++SlS9Ib15nmjoP+hu8nM1unPM5SZZzuL/Jb7/zBnGe81Z3h6RI+d7xL2lZFo8nE95ot3k8uWYex/QchzCL8A2To06Lb2y/zh/+9Z+iqgppkvHBs3OyomC6WOE7FoYpkpBu7/dFUtHVhFZLFFlVVVGUJb5rE0Yx6zAGTxdfEpTjiLRm4Ld96nWXjc0WTdPE0jSWSYKhKMyTmJphMI9jNl2PuuHhGy63mwq/HJzyoNtnEC6oGQYH9Q4/uzxBUWT63RZBGGFoKrIsMw9C2p0697tdHk8mN2Bvk/F0yWanTlnB9WDKz4C7/R53W5ucLEYc1nv8/PoZb/ducREM2fF7zOIli3TBtrvFOltjKIbQG+YJeZnj6y5FVXKnfkRapKyzGE1WsdUv3oZRN3RMU2j/JEnCdXXStEBRJLIbPWGS5NiOKbSApobUdrgOUuqmWIskJKIo4/xsTpZmlKWPoshcX0yoqoovf+WApmfQq5koEhQVDJcxG75JUVVYmsz7D6ds9VwMTcHWZWzd5CQr6TQsTi8D6nWLPCtYB2uSdYJiWRRJTDAP0A2dj3/+Eq/ucfu1DeqeQbBOqdVMXr4YE8wDiqzgra8ccnY2x/cNXr0YkCUZiqJQALrvk64jZNO86bQWnL+85OwnP+bBd3+Lq6uA7Fbr8/dN1VTqDeemuF0ThzGqqpIsAtqvv8Hd17qskxz/RrLyr396TrtlM56s8TyDs6HQhRuGynAR0287N25/lz/562NALL3PPnyG4Xucv7jEdExs18Zv+WibLZbTJavFCr8h6B9pLJz3hmmQlBXL6RK53qH0xd+dTwfgNtB72xiWgd/wcBwdz6sRxyIRKIwyTEMlSoQByFAVNho2Wlvm6dmMW7t11klOhQh4GE3XZFmB3/RJkxRVVQnXIdFsgaptcHSny2AgztW0dC7OJmxuNcnzknCVcHojZxAGrJyNhsV8ldLyDIqyol+3sHSVMC3Y9HXCpKSsIM4KojgnU2V8W6Ph6Bx1bS6XKZObVCff1n7ttf9rx+7rf/pP3itLcL90RP7yEmunRXoxw9isC/TOKiZcJNi2huoYKIZKsQyRWg2kvSMxLj99QfXqmOJ6RBllKA2f9NWVYC42HOR2S6Tu9PdE0fkrfeevCgpFEVrI81PBvdzZF/+makIDmsRUyyXrlyPWYYZlKVwPIjptC9vVKdYpze+8jXP/QBRhIBzmF+cUYUKV5rS/cYf1z55SxhmUBc8+vCYIMhRV4ipMMUrp8y7wdJlSFrBeZzRMnWAQYMsl2oPXkGyb7JPHyLrK4niCs9si/uwVatNBS1MGw4jRKmH3d7/Mq3/+11x8/1M6XZXlDz/j4sfPaH5pX2xl3JtkKNelurhg/L/9EHunCZMRytG+GCU3XMymTf2og+PqmA2b9STE367jHvW4/PSavKgYXwRYVU6+jBgPQhxPx7NUojAnryoUSUJBoq6q+KpC09dpv7P3N8YpwxCShzAUpjCvJuQUugHrlfi51kJqd4UsorspOt6qiiRV6Hf2MIfXqKVI79B1GfegjdJuwOUl6Dqy5xA/u0RxDNLrGeUqYXI8xTvsirz6/paQX4QBUrMt3qPVQpjOqhJq9c+vh+rkBbIiU84DtJaH1G6LcwkCoTe+miJbOspGB/k3//4XaoQH8K9PvvdemKa81bnDdThiw+kwjma4uo2jW8zjgDhPcDQd33AAMSJvWQ0BTV++4pPRMSeLBYtliKIobNQ8np9ek8QJ7W6DlmPT95r0nDbjaMY4mjOOFozWc9pWHUszKYn5eHBFWua81txjsB6jKRpRFpOWBaNgxXA4J0pSTENnNF2wvdnGNHRUTeU7796j32sRpCl5WXIRBEyiiDhKMAyNu7d3+OWjYzRdJc5yPvn0JUmeC9f3ICBVIU1z6p7NaPYr4btEZSos5yvqdZfXu5s0TYuPz8/QNJXLyzFu3eVyMMWyBF4oSTMGwxnfeec+//SP/5K/+Pgzal2bn3zyjI+en/L2rV3WeU7Htnm9tYmmSDyeDPiLDx/SbHhM4wX3NzeYlRm+Y9Hu1Nnd6qJqKn7NYTJesLnVplZ3+fTRK3RN5fRihGMarFYRg/EM33UwNI0KyNJMhCUoCpKtYlkGmqZyeNjH0kRMZVaUNC2L8XoNkkTbcqmZFoZqMI4WNAyPbW+DLa9BWmTs1jYwVQNLNSirlAf9LV6Mx1BVzJYrDE2l5jm0O3VORlM822S/1eT4YojjWlxeTVgsQ8bjORu9JuNVSMc1KauKcRRw1BBdnqTICLOIYTjFNxw2nQ00ReNqfY2rOSzSAEszaJlNLNUkLVPW+ZppPMdQNFpWi0P/9hfqnv2v/+zFe2VZ8fpBk9Pr4PPMb1WVcRyd2SplPo9pNCwUVUaWJMqq4qBlkxQlsyjn6dWS0SgkL0pMy6BWM7k4HaPpGq1uDdvR2W46bNV0roOUdSI6XLMwo+MZ6KrM7CbbXFFlOjdFqarIzFYiwGW5TBhfT4VUTpIoigK/VQeg1a3zzju7KLrKfC6S1Var9IbDGdNo1XBrDmfHwxu0V8H89IxCVqlWCwjGFKoFsoyiqZTLOZWqUyUJODXmszWtjo9padRcg5OzOaapcXU2wnIswpUA3a/mK3THInjyMTv37vDjf/NTXrwcsypVXj4+5/TViIOjHlVV4doaLd8iyQumy5gPPjjD9U1WaU6v4xLFBb5vsH3Yw/UdUFRMxySYBfR3RNdxcnaN4disFwGGbRFM58IMrYgNW1VWVFQoikJVVqiuj6wqyLJMvV2j2bRvYP8ShqEwm0WYpoqmCeSRrsoEcYZraDRdHc/WkRWJbs3CUIVmvgAOtnzOLhfkWU4wnoKsoBg6XsNjMl6haQrbO3WCIMWyDabjgDTNWU6XuDWHKMpxPYP1OmMZpriWhmuK583ldM31TJiSOp5OWlbM1jmGphBnJaau0PZM3tiw+cXJgiDOGc0ibFujW7P4j+91/3Zjd91QCJaiW6HrCmUYIekK2k6X9PgKY6eFMVmjOgb5PBR575oi3NmXJ5AkQiOo66h/9+9AtKYKV+i6LqDyqipGt72+yGlvdITJqCzBbkO9BU8/FV3VjT40WoLP6Xg3494ZhCFlmKC6BvEsYTSOcR0Vu2YRziPcDY9yMKLKCpSjfVFQua5IYnpxjbnbInl+yWq2JklKFo8naKrE1pbLoxdzthyDbtfixUnA9SJGkSTICoZpxqGpcvibB6hv3IbxkGo8RNJVFFPD7ThUywDZMSijlLICw5D5jW8dUXz2mFWY09+0+eR/fJ+aryNLCIxQt4tkWVBvUf3sJ6BptH/7Aav3n+D+wTdJ3/8I2dLFjXqwS/Sjj5hdBdQaFu2v3SJ8eMHVT47Z/dYtsnGA4pgklzPKJKO3X6dYCUekJkm0NY1ZnmPLMh1fZ7Pvom/WhYNdVcXnmKZic2AY4N8UefMp7B2B3wC3geR4VIsx9A9E59prwSc/EeQCTcc87NJ1zRvTj4be8cG2KYYTisEC2dKRVYX0eo651yY5n9I6bJGeDqGq0N1X4oLc3BSd18UUdIPq4WeCsNDeANuHqkQ6vEOlHaOs1zfGsQzCkPzJMWq/jeqZUFZInv9/f+X4D/DQFYUgFWlFnm6TlRnOjc6uqEp8w2EcLTBVg3kSfJ6ANI2nPJ4+Z5EEJHlO13H4/VsPGKynnCxm3DvcRpYkdEXhS719jup7gOi6KJKChMSG28JRbf76/Jc0TIe3N7Y4rG8zWI+pGR4XwZBpHLFIEqaTJbqmso4TLocTfNemKEpmyxWbvRaPhyOSOGW/1ybOc243m5wtl4SriM2tNoPhTKQWjWZkeYHrWXRbdc6uxrjbdQ73+3z88CWj2RLbNIjilGKZsLHf5e03j3i71+csGPBqPkXXVcqyotWqESQJmiZGlr5nE6cp3/zmm/zbTx/h2Ca9ToN//ic/otOsYVkGUZZxu9VBkxVc3eYHp8/Z8X2+cu+IT16e8Qdvv8mfP36Cqqm0GhamZfH+Z89ZhTEbG02+/OCIh8/PmC9W/M7feZvLwZTDW1tcnI9IkpSdzQ5xIp7BcSpMRlVegQa+a9Oq+ziuRcOy0BWF+EbHaaoq9zpdLNVAkmROF2O+sX2Pba+HqRh4msDb+HWPpEjYsLt879VPaJoOvuHQ7TUxTR1DF9eHX3PwDSFPeHlyxdC1KIqS+Szgzn6fJ8cXHBz2mS9WrFYRn5gGnq7TdRwaps84mtNzmnzv5UdkZclebZMgDWiaTQ78fZbpEk8XY2FZkkmKhFE0oWd3cXURR6rJv3a5+v/lYVkay0UEgKLIKIpIOALEKNzSGFsamiYTBCmaIpPmJQ+vAlRFJkpy8rxkb6fOVstmtkoZzta8/c4uYSToH7c3fRq2SpKXeIbKioKaI9H1dJZxwZPLBd2axVbTZqthsowLfFPheh6TZAWrVcp0LNKmkmAFZYV6Q09I4oTlPOTVmUQc5+zvN4hjYaAaj4UJMMsKolVEEiWshwOQZMx2B9M2mVeA49PsNZmeXpJHKyS3JlziSYi9ucX9L+3SqZlkRcnx2QLXM8jzknq7/jmLu8gLuttdhqdXNB+8y5PHAzBsnIbP8cNX2DUPwzIoy4pewyIvK1qeweOXU27t1Zn1ahw/H/Gtbxzy8ePhzTkI7e35yYgszXBrLg/e2eeXPxUNjvtfe53hIIB2jeHpNeQZRq1GkRfky5lARNo+xWoOjtCvunXBv/V9E12XKUtxf8myxO52Dc/SSLKC4XTNa3e7rNOCmqnimwqWJlOUEKYFR12bv3o8oukaVBVs9uvMZoJjXBYllmvhugZxLDO+nrFaRhR5gazIHNxq8+p4guVapGnBdDgTMilDpdGwaHkmSV6wWTN5fpkwm8XUHXGtdFyVvbrB5TJlEabkZYWmygxWGVeTkL0NH9cV51TeRLv+nx2/tvOZ/LM/fC+OC2pvHlBcjwXfUVehLMjna/T7dyiOL3B/8z75cIZ+tCPy2jsdgUhar8ROQNeRbIcqCoVBKE0FNkmWkXRddD3LUiCGkgS6GxAsYTamevlMdN08n+rsFZJpioKiyOFS4JQWP32GXrMwKGn1PaSiZDaJ8H0d++4mZZhSFSXZqyuyF+doOix+9Ahrv834g1PMpsNqvOZkGOJZKt2uzWKREscFx+uEJ+OQ4ziloSn4qsIozbm/6aMoEso6xvral2B7XwDvFzORIqEqLB9dsbgKyIKENCtZLFKadR2t5eJSMBqs2d2v0bi7QfM330A6us36j7+PttG46eomUBQkzy+w374NqxVKv4tcZlRpRvTBc8YXSxxXw7u/TXo1Z3A8oyzBqZtcfXpNNgsp8xKz62Fs1imCBOegQ7ttIec5dVNjb8vFb1hYhx30r3/5BuIffx5XKdmuoBComqAXbB0gNTpIuomkajcZ6w0kRUGyPaTqhqsZBtDZRPJdlPUCWZfRD7fE5x+GyO0WslySXs2JRiucW10kWaJKc4xbfRTPQtZkilkgIkMlCZ49Qer2hD54uUA6uCXc67Yr/r7lXHRE45h8MEOu/SrMYBfpW99GyVcono3kushf/d0vVBcF4H959sfvFVXFb2ze5yK8RpFEclFeFkRZzGFtl1E05bXWAUmeUjNEvrOh6PSdDS5XA2axMKW5us4wXLJKEuIiZ51lGKqKqcpsexss04BnsxOqqmTT7XC1GnMdjvlsNCDKM5qWzc+uXmIoEmmZkRYpD0dD1knK9fUEyzaggp2tDkmcEcYJG90md/b7nF2M0HWVk/Mhs0VIoSt89ugVR7e2+OiTF2xvd3jx6pI4zdA1lU6rRpJkLMOQdBYxeHwF8xSpriPLMlmUsnO4iaLIrOOEt3f32fM3GYRT1pVAj1BVnJ0NieOUNMmI4oTpPMBQVbyag+tYjEZzbh32ef3WNl892udOa5N/9dFHNDwbRzMYRQFRnvPw+Jzfun+XRRzR9l3ismAZJ7w8H7COUnRNob/VYTCe8/LkCk1VUDWV5y8vWC3XZEVBu1WjVhPGzP5WB9+1ieIEx7Xo95pYpkF3o8nfu3OLZZKIUbuqUjNE4dewfNp2g7IqudPcYcvdxFB0JElGlVVczcFUTGzVQpJkZKkkSEO6dpPDRouzaC7kSq0aWZqLz6dRw3BM5vMVo9GMdrsGqky0Tmg3fequTbPuMVmsqNkWTdvmB6fPeL3dR5EVns8G3O9u0jR9OlYbXdEJMxFqUFER5SJ6U5M1dr1t7tTuUiGeJ3Wjxo578IW6Z/+bP3/xXpYV3D9qczX9lelNFKAV8KX9BuMwZafrslynbDQdbEMU4YamkGTFzQg0Q1MVFlFKmhYsg4QkKXAcHV1T2GuazKKcx5dLVEWm7ek8uQqYhSnXwxBJlakqeHS+ICsqVklBEGXMFjFhmDIbLTBtE9t38TsNUUiu1vhNn/52k1fPrrA9m+Nn12SFhCRJDK5mbPQbnD6/wG/5rM5vcIu22PisgzUshhCHRKfPBH7Ib0G4AFnB6/eRJIlglbLZ89jvOMyjjDgWvMyyrBhejlnOlpi2yeR6ArJMGqfUWj6W77Car9jc73PntR7tjstm0+bDhwNqNZMozZkvE9ZxzuXZhHtvbhHGGfW6xXKZEIYZ41FAnuakccruYZfz0ynhy0dUlo9mmgwvRqymC2RNw+828RoeaZLS3NrEqNfJsgKr0cByhGTEdm3uv94linOiSIzaazUDRZGpO8bno+rdrkfX1bANBVdXBI3GVDBUibarkeYVBRLTVUK3brHVdnl1uQRJwnItyqJkvYpxPZP+doPFPGI+mlNr1SiKinid0u6KqNNOr8ZqleK6OjXf4PhiSbthUVQwmK5p1MUIvefraIrMdC0kiVFeMVul1BwdW1f4xu0m3z5ss0LCMTVqtsZ377b/dm73+J/9k/eSpKT2YA8pDMkXa9S6g1pzSE4n6C0H42gLPA9puUT2nc9BqtINWF7ya0iuD60ukl8TBUmWidFyrQabO59zMSlyYSSJI8G3lEDq9ES8Zp6JiMVojaQbVNOx6J6uVuiWQj4NqbICWVEwez5KluPc3iA5HlOsYszdFpKmoH/pdbJXl9h3+ozef4nji87kZLxmZ8MRYmRNZjaLeblOKKqK66ykpyvsOSbTNKNn6oK1pci07vXFeU9GSJ0NJNcif3WBpCoko4D6fovaW3vkgzlhmFOvGwQnU4yWg61JLGYxpqWiGjKYJlqvLjST0Zry5Iz0YoJiG6LbaVkUJxec/vAFzEPsvTaNL+3DOuLRD17xyYsJWVriWRpGLtxttq3h3d1AcU2qpEDrepRpjupbKFGCRIVRs5AUGWOzgdQVo2584WSXuhuiG/0r7JWmw2qO5Dao0hhJUcHxYb2kShMkv0m1mouu6OhSfK+3YD5GrvliBN7pCDj8ciliNuMUe1/oW+OTCWWUIVORTwPU+3eRKUSHs7cpuuCWQ/onf0YxXaLUXdE9n41hOhId2stzquFImIw8V0SpZgnln/8pkn7D+iwK5G/+wRdqIQP43umfvpcWBe/0XmOwHpFXBb7hoikq42hOzXDZ8foYik6QrXA0W0RpZhFPpi9JipS25dF3G+z4G1iqxipds0xTeo7DXq3JltdFlmTSMkOSoOe0WCQrlmmILEns19pkZcZ4HRIkCUVVoCkyx/MphqKwzjJcz2YxC8jyHCpoNH0MTaXdrfPoySmyJNPdaOLXHN492OH4esTR/ibv/+Ixezs9ri4nVFRsb7SJE7HwjqZLikEIqgRxATUdv+mxDiJqTZ+qLFEUhcODTeI84WQ55LVWH02pOL4eYVoG4Sqiv9Xh9naP4XTBchWxs93l+npKu1MXEoHRHMMxMTUNKOjWPA4bG4RZxJPJiIvrCY2mj6YKre2z0ZgPfvkUipLNrQ53tzdYRjE/+fkjrh5dorgGvmsjyyINznMt+pttFEUmzwtqDY9wFWGaOjISsiShqQqGqWPbBp5pMokiNj0PVZbZcFxsTRSVdcPD110W6Yq21SQuEjRZxdVd5umCpIipm3WCNMDRLQbrCS2rxobT4SwYIKkKnmnQb9bxLFPEq96MXTf7HXRDZ3A9JQxjLMfk/GLEl/a2qBQJV9e51djAUGHL6/C/Pv4Z51djNEvjQecAT/c4Xr6iaTaJi5hxPEVTVFpmk11vB4CPJh+hyqoA78sq+97RF+qe/e/+6vi9JM65s99kGqas1xm2raFpCstlgusa3N4UrupVmtPyjBstKEwCQZ7xLJ1+y6HjGyJ8IM5J04Jm06ZXt9ioW7+yCeCYGk1HZ7rOiNKCsqrY2/CZrRKWYUIc52iagioL2PyvnO6yqrGcLknihDROcWsuXt1DMzTOj6/xGh6Oa9JoeWxsCAh6q+3x+GePOLx3wGQwB93EbbdI1hGSLIuxerQUqKCqBM1Ab3YokgTVr5FnObqh099uUFTw7HTO7e06nmdwerGgLEuKrKDTb+PXLPK8JB1e0drbJo7EJk03DCbXEzTDoF4zidOCRt1is2ETZyXXwxXj4ZKNrcZNFCk8fzZi+OgxqutTbzrUGg7Bcs31hx8QDa/Qto9way6SLLOaLnAaPrVmjTQRWeuGaRAuQ0zbpMgLyrJEVmRUTcX1LDRDJAE5jqh7ap6BY2o4hoqhCWd5kpfULBVZEg7zjqsxXGXkJbRslUVS4Fsaw2WCZ2k0bI3RKqEoKixLp9GwsR1h+MnzirKC3lYLTZNZzEOSdYJuGlycDOlt1lBvxvibLQfL0jjquvzgoyvOT6dUyOxt+KiKzKfnAfttizAtGS4TZFlip2nx5S2f6yDlf/7gElNX8S2NJCv5+290/nbFp/bJ996Lzye4d/rIWxvkZ9cYG3WoKuG4rpnIhwciV1yVqIIVyasB6lYXqb8jig5FERrByZBqcIlk2QIhJCF0g42WKDbnYxheQ5ZSnR4jOZ7ohtbqSFEooOBxjHT7NUhF0URRQFGw/vlzBlcrXEdjNo3Ig5gir1CrEsURhdvi4RX5dCUKU13h4vtPsG0VzTVYz2M27m2wHK7QVJnRKGK4zsiqinFW0NNVDk2DIC+wFQUZCOKce//o65SrNdIqQKrXkGQJ8hx5OSd+Ncao2xgbNc6//5TH5wH7mw7D65Cdf/x7TP76IWVR0rrbo8oK1C+/JUbcd+9RDS7EDnEyQT3YhjgiORtz/JePWQ8CFFXGcXUmJzMe//gYiwrf06lpCkf3uwzOAy6Ga3RFpv3OLtGzAVVeUMzXaG0PxXcog4gqy3H2Oxj9hkj+6fWQLAvJ85FsB0mWxYag3RPFp3ITHFBrQxQgmTZVVYrPApC8BmQJcrtPdflSPFDitTAmXZ+LzUOWic6nLAtnuyRRJRlVkosubZIjGyqDx0MsV0ctEqR6nfSjJyjrhdjoNNvIlopS5dBui3Qj14fBhdjMnJ9QXI5R3riLtNGnevQpBA0fcfMAACAASURBVAHZ+QilLSQFUqOJ/JXf+UItZACj9PS948WAe+19mlaDWbJgw+4QFzHTaEHLqtN3NlkkC9Iio6TkPBjg6TZdp4kiKdiaiafbnCwvuQgm6DfdtKQoqBkWNdNlHM1YJCuuwglFVfBwfE7LEgidplnjZDHiIghQZZmv9m8xjYXjs6wqSio++ewl43lAzXOYLVesw5g4TimLEts20TSF09MBaZLRbHgs44QPPn5Or12nrCpmi4C7d3Y5uxhimyaTeUA6WYOtwjKFhkl9s85itMStOyRpxjpK+C9+75u8HE2IShED2bRc0iJlsF4zHS9wXAvfd/jZh0+4OB1y97U9jk+u+C+/+1v86JMnTCYLbt/ZQZIkvr5zSJTFvNU74nRxRVbmXAYBb+70GYch15M5f/H+JywWIZ5jYVkGZ2dD3v/wCXXfod2sYfgmtw77HJ9ec302QjU1jo52OD25JkmEqdKyTTzfJo5TKqDZ9IWOzrXYrtepmya+YWBrGnlZosgyXbuBoWookkJW5RiKTl7mWKqJIqtIyKiSgqO7pEXCjrvNIBqyTALiPMU3XD4bnZKXousY5Tm+YXA5nolnEyDLMuPRHBCDjqurCbZtElLSc12eXA54Mh5g6hp3mttYasWiFPnvipxzUNslKRJ83SMuYs6WVxz4O2w5WzyaPSYqIobrMZ7uUDNq2JrNlrP3hbpn/+p08d751ZLbew0Oui4nwxWOo4sRuyZjGip3NxwmYYYiywRRxmAqtLw7HRfbUJElsA2Vl4MVyyhDVWRUTeB5VFXGUBWGQcIkSDmfhqiKzMvrANvQsHQV21S5nqwJghTb1rjV95mHKWlWkGUlcZxz/uyMsqzQDI2iKIjXMavpAuWGJ5mlGcv5iiTJaTQdRsMV12djNg62uHw1IEszdg77jC7H1Fp1ouEVrBdg2JBGYLoYG9ukowF6q0MWBFSywne/c4+TiwV5XtFoWEiyxGyVEMcFcZSgGzqNpsPx0wviixO233mL61eXfOd37vHZp2csTs84fHCEZWm0ayaqKvNa3+fJlXgeDYYh7Y7HbLpmMQs5/vAROYooiIHRxYjp5ZjGRhuj1QWnRm+rw/DhI8LxGKPRZHu/y8Wra0CYBE1bGJPyTGysbdfGr4v11PdN6r6JpivYpkpZVUiyjGdpaIqMqojNparIlBWYmoxyQzqoKuh6GuusZK9ucjpPCOKcIMqwDZWzwQpJktA0QRtxXZ3LixmyIpPnJWVZMRsHpHGKqqmMryaomoppWxiGwtmrMVejkLwEzzXwPYMoExrfXKrYbtpYhkqcldQshU/Pl3z5oM5O3eAvn80YBinHF0t2ui5NW6Wq4Pd+TedT/rV3hmmiG0J/Up2eiu9ZTj4LhW6u2SD/4COQZfJpgNRuYe62kZpN6G0Jxqdli++AtLkjkEnRmioMb4wpmtAXLmZU45FI0NneE05m16P64KdUDx+K3Pd7bwqkzzqkSlMIAtKHL8nyEl0X6Kd6zSBJStyaiaTIlHmB3vFoffddat94jfx6QvjxKYosoVo6Z8+mqJpMeDalueVzfB5g2yq6LITdDVWmqSpM8pyGqdGuG6RFxW/842+SPjvj/T95jLS7g3T/bWHMGQwoU9F1lDQFyTKJkxxdlvA2ffbu9wj+5ffJi4rWVw/4+V++wHzrNlxfi2JaUQS+KY6Zf3TG+f/+Po++95Qqzel2LHb/4G0mk5gkynl0ucS3NOYLASIezRLe/+k5lqVy77UWm3c7ZNMQ61YXxRaO0nS4JD4eoLY89F4NWVeoslz8XkkC3QTTogoE7gVPmL7wW3B1Kow/cSjSGjRdbBaitXhdGkNZUEUrpJ07sLEnXp8mSO2e6HBXlShC45hilVAsQ6gqFNdAsQ2KOKNKC7a+sou51yYdBRBFwgwmy6DrVINLYVaybaSDO2KTo5vidz1/hNRooH7pDZBlVv/DH4lQA0lCf/ee6HpOJqIw/gIelmrh6sJYt0gWlFVJXCREeQKArui8XB6jK2Ic3TDq6LJK02zQs7okRYqlGsziJRISu36HOM8/H8M7unDPy8i8WoxYxDGKJPNmd4+W1cBUdf7ty495NZvzervNt3Zvo8oKqzSlqiqCNOXJ83NkWcZ3LExDp+G7pHlBs+FTFCWqqrCx0eK7X3+L/naHpxcDLs5HqKqCpqs8fXFOp1nj7HRAf6PN1dmQhu+Cr4uOp6GArjC/mlPv1nBtAVL+R7//TX5+dsH73/+Y19ttvnv4VYJ0zTAMKcsS3dCwHZOmaRKnGbKt4Tgmbz444l+8/wuKouStN4/44Q8/4us7OxzPh2RliakYBGlKVpY8fXLG//RnP+Znv3iMbmjs9jv8J3/ny1wMxgTBmuvn1/S6DUbTBWmacTWa8vOfPaJZ87jz+h77uxssFyv6/TaaqhDFKcvFiuurCYap4zjmTefxb65fWzPwdOFoN1QVT7cwVI2mWed0KZK8VFlBlmR0RSdIA9Z5iCprZEWKLusssyXb7hZ3m4c0rRrD9YS3ejvkZYmuqEyXK+I8R1Zk0iQjz8TIsNnyiaKEqoL9/U3u7PeZThYMw5AkyTAMDVNVeTo94cPBJWle8LWtIzbdDqqk0jCbTOMppmLx1Y23aZpN/tXx97gOR5RVxe36LXRZZxrPKMri//X76d/3YekKlq2TFSUXc6HZ+1WhoCgSNUfnr55MkCWJJCuwDRVFkbm/U6Nf00mzgrqjEyY5uirTdA3KqsIxNVxLo+2bIvZQkpiFCfINbPyg59GtCVPYx8/HrNcZr99q8vqeIIgUZUWel2RZyXggxsqmY6JqKrqhU6xDap0mZVGimzrbex0evL1Hu1vj9GTGfDwniRMmgyl5muLVPa7PRnh1j8WzR/g7u2INudnIoNsk0ynWRp+yKFFsh9fe3Of9X15y+v0/xzAUvvtmjyDKPkcMWbaJ45rYtogFpdEjiTN6+32+/8Nn5FnO4bv3eP7+L7m1XePsOkBXZTRFQpUlVuuM61eXPP7gKcPHT3B9G2djky9//YhyciUmEYsRqmMzvhqzWqyIxyPOPntG/dYRnddeo96pMxkHtDfbqJpKlohucRIlqKqKZogEsqKoUFUFXVcE5k6CMMpwbB3f0mg4Bl3fYLSI8U1BHNAUiZqpECQFs3VO3VJF/KWpUFQVB02To55Lr24xX6e8edQmz8Vz4fpyznKZ0Gi6mKZGEokawXItilxsHpq9JvtHm8ymK1arFL/hIisyhqEwD1NeXS4Jw5T7t1vstBx8U6HjaIyChLKC/+itHmUF/9UfP+Xx6YysKPn2231cQ+HZIPy/vPZ/becz++//8D3iDK3lUC5D1JpNlRVQVJRpjtZvIesabG6SfPIcbasrNIKtDmzuCn5XkcNiTjWbIGUp1XwGWYa0f0sUnrIsxuqSjNTqCJanZYvX/PIDgUU6OESybfH/ZWLsQ1FAFFEtV8zO5zS7LkUoFljbM9D7dSRFxtxpkS/WJI/PUWyN6MWAi7MlaVoSBinNhol70KZYRjx6OGGaF9iSxCjOkCVoaxqSJHKhXzuocXoZ8vrdBifvH/Pq2QTP0Oj0DCTfoxoOYDJBrvtkwxnxJCR8NUZTFY6+skOxjJlcLHB7Ho03tymWMY+eDvEGE9QkRu02hF5RVSkePSOZrMjzil7XRq07yIpEFScsr5ZEcc692y2CZYLn6TT3msyuAg63XLqv99B7PsHLMck8QopS4mmIXrPQuz6SpiJJsH4+xLi7i6SpQn+7u0d1cY7kuki6jmRaYFqCQ5rGQlupKOA3IUtgfAmyglRriZ+9pngq5JkwHr16JDSYugFFTvXRL5FuoPTEMZIC6dWcfL4muZyhuCZlmCDpKpKmIGsCoE9Zov323xWSi56A8BOtRfFpWaKgdHyYDKgGV2KUL0kwGKBoMPr0CqeuIx8eiq7raoXU20B+99tfqC4KwI8HP3ovLVI23Q7LNMDTnc9ZnnlZ0LIaSEi0zCYvFid0rCaqIuPrPrqis0wDgizkPBgzjUKyKmMRx1TAfq1DUqQkeSqiOCk5qPf4dHROy3I5Cwb88OQlPdflQXcTqAjSNWmRUVGxSlOmccx6nRCEEe1WjSBY4zgWnmth2yayIlNveEynS16cX6OqKqenA67HInt8FcbsbndpteskUcrTp6cQFei+STQOQZPxNmukYQKqxFa/w9npNQ/uH/KTj55yeTWm0fbxmh6GWnG6mDJer+l4LoswYjZZcnw+wDINvvGVeyyDNaenA+oNl6ODPvNlyMWLa87XAeuqYK/ZYJmuWKUJL2YzlstQoIo22siyhKwoTNcRq1WEBPwf3L1Zb2R5mt73O/saJ/bgviRzq+rau7u6e5ZuzQxmwciSIdsXvvVHqWvfGdC1rQ8gQIYhwLKlGblHY3u6aqaquqqyM7NyI5NkMPbl7PvxxZ+VHhtQXwxgGKoDECQzGcFgnO35v+/7/J4H754yX26xTYNez2O1Dnj7rVMBwO+4XJxPiOOUIi8JwgTT0Ol0WqiqQtM0TCYr7p3sIckSpqZx0m7z1XRCxzIxVRVXN/B0B1ezCYsYzxBRqQNzQFIlLJIlsiTT1tvkdUHf6qHIClVdEZUxjxbPWCQbHM3EUHT+7uIVJQ2moROkGaqqkKY5UZSwmG/o9TySOEVRFTRNoWhqTncGLPyQ/+Ynv2AWb7jbHdKz2hR1RiOBZ2i0dIehPaBuaoqmwNFcDMVgkS4wVJWvZi/Zd/vs2COKuiSvc3pmj337Pw6t/k9x++e/fPlJVTV4rkGaV7i2RppXb9A7ewMHRZE46Vp8db5mr+fgWBoDV8fVFbZZRZSWvJ6HhHFB1TTESYGiyli6cutsr8iKCl1V2OlYvJoGtCyNy2XEq8st7bbB4cglLWqCpCAva1RFJs0r4rggy0qyJMPxHJIwwXItNNtCNwWZ4jsH9XoVU1Y18/GcaiXiJMuqpjPsouoqSZSQvHoCmoFku5RxLPRBd0ek/gCK5VAsZziDPtOrJcHrc5y7bzPa9bjxc+aLmCyrUFWFOM7ZrgKuzuc4bYd3Pzxhs0mYP36CMxxycneH9Somnk04n2XUKPR6NqsoJ4hzFouIKExpkHAGfeqmQTd0NpuUKClpJInRvTOCTYCqqewcjoiSkvbOgOFOG1mRuX5+RRKJ+dc8ijBdB8M2aGqBi/KX/q3DHgxDZdi3ubza0mqJAA5ZlrB1FVWRCNOSrmtQAz1bI85rpkFBUTWMXI0orxi5GqaiEBU1q7jk0bXPbJvimBppUTGZRwRBRrfnEAQZuq6wWgaiSzFe0O551HVzm6wkzEqdjk2SFHz8/i553dBtC7xSLQkTXF7VeLZO19bwTIV1UuKZKklR82qRMOjZPP52juHovHvQYhLkKLLMcdfk9+/0/mFt9/if/3efmGdDJEUmH6/R/8mfI0U+UlNRbiK0vR7F5Qyl02L96TMMtUHueqIKeCs4mE9ElaksBR/S84SRZrmAMhdC02nB5Irm8SORjy41SJqG1OkguS2ayY14/Hd58b4PlkXx9VMUW0enRlJl6qzEOh2iDVyQJLSdrshE77Qo52uuvhxTFBVRVGIYCmd/cA9rt01+s2U1i3kdpDiyLIIIAE2SKZoGU5bZ65i8vhEzbbNFwjYtOc9ydgyd6HpD7xcfwrdPYTQSleDxgmCd0jnuEq0TslWEJoPlmahtm2IRMHsy4+GRhzV0WV9ucFoKUp4x+dd/i/f+KebAxt1ro7gm028mokIZZ2y2OX5SogK7Jx38VUK8TijLhjAsaCk1jz69pixqbEtF1RTMgXvLH9WJv72hCjOcH98nP79B2R+JaNAwRNo/pIlDIeokWYi4OBJVRcMCpy3a70kkWiamg6SqYLeQVA1J1cV+r0qQGhgdip/VDRhfEv/6JeVkhTbqEHz2AutsJI61ZYT7YIfrb6Z0zwZIiixmiy8XqGfHonr68AdC1JYlkivSr6TeAPq7sJrRXL8WxwhQfPolSsuGPCe42tB+5wip26N+9Bsk10FyHOSf/tn36kYG8C+f/4+fHHk7uJqDnwX8eOdHzJK5WGkXCSO7zzxZoisaX86+pWuJm/6+s0dWpQRFwDr1cXWbvC5YJQmmqjKPY+ZxAFJDz2phKAY34YZPr1+zimLypqBrCte1rWl8M58KlJcsk5QFQZ5TNw2vxnPclqh4lkWJpql0Oi0MQ/AuB4MOXdti4LnM1z7PX42RZImiqHAciz/46XvIhsbN9VxUD8MMydPJ8oJGkZBNlcxPUB2DTrfF+GqGYmgslj5JEFPMY+yew/nVlPfPDvhmNmPXdcVs92LDcu1zeDDE92MmszW6riEBLc8hTjO+fX7Fg7ePcV2bq8sZmmexThP++sun/PTeKW7H5WCnD5rC46evKYsSVVXYbEPWmwBNVRncmqPStCCMUnw/QpNlPv/qGbquYeg6iizT8hxR7dUUJpMVRV5y794hV+M5+/0ulqqyTBLu9nr4WYYqy9iaSUPDKvVp6e6tEHVvzTwJlmri6S1kScZSTQzVwFIsGhrKpqRsck68feIyEc9TRDx6csFstmY47PDs20sGwy62bbLZBBztD3n09IKD/QFlWTHqebwazznd6TNPtvzJnQ9F1a4U7faGmoPWgJEzYJNtKOqSrtkFGv7m5u+wNZOamstgzr3OIW2jzVV4hXNrjjr8nrXd/9v/6cknuyMHXRVNyH/2wYhfPV+hKDKyLDFoW1zOI6pG4umLFZUM+12H+0OLvGpYxSVRVrLTsQmzkiQtURSZ1TqhqGpqYNAyaNk62yjnycsVYZgjaaJKiiJh6ipXk0CgmgyVOC/JS4FEWiwiHMcESaCDDMvAdi0URVRsvbZFq2XQ8iy264jVzQKROGfgdDx+8nv3iWKB9cmzHJCFKEUWHTTLE0Yj3QbdpNosQDdFbOVyDFWJ7La5vpizc9Dj5san37fRdTET6y99+nt9/KXPzdUSu2WTVTJu22W18AnWAf3TYxGLGaegqGyDnCdfv+a99w9QDZO9wz6yojL99hVJVqEbOul6TV3WNJIsRFrdEPoRVZyQpgVFUTP79jlWvy8WXrqGe8v7lGWZ1XSFqqnsH4+Yz3y6XRtFEeapft8migoMQ6XnGkS3CwTH1Og7Op6hiBSyskZXJI66Oo4u07YUTEXM4+qKTFk3lI3McV/se02W8eOcy5cTFpM1/VGHy5c32K4t8INVze5+h6tnl1iuQ5ZmdLoui5nPcOSSlTXv3unhmBp5WWNqCllZM/BM2rZOlNcEWUXf0aibhl8+nuNaGlXdcHG55v5pj/2OyWcvVziGxqil/1bx+Vvb7kpbzD3UUUJT1bB3KFrCgKTIwkVsaTCdMvzJHSRdEZXMshTCBG5jNl2IY8hzyr/7Uvy/pgnhqaowu4HeEOmDHyL9+Ke3jvacJo5FK75pxONBRE8en8LVFdpH7yDpKk1RI1s6WVYRvJixfTRG3R9SRwl4HulXL6Bp6HbFAO6dszZ3fnEXedCjjnPW05CrZUxPVbiz67DTtwiqioYGQ5ZQJYnzVULRNFRNQ940TIuCnipO1LP/8mMhim8xTs1iAYpgst08nXM9jdANBfeHdzBP+igtk2IdM1kkKC2Tp59P6O61qMKM7GKGokjkr6dIwyHysE+d5gyOxIFdVg2LpOD+iYckgz7ykGWJ5SplnRZ8Gyb8n0+WnBy63Pv5GaapolgadVmxeL5g9tkFasdmPQ1JvnopojPXa/EemybNZoWki8hLmlrglVoeGBZSfxfJdJBMG2mwj+T1xZxn3UBZ0uQpTVUKkWpYYLVEa94wwG0jPXgo4jQVmfTbK7wfn1H6iRgN8Eyufvmcs3/yAa8+u0QbiFx34927wpjU8m7HEjSa5YLm8jWSpkEYwHYJ7R5Sp4vkuFAUqJ6A48vGrZnNMGiyWwe/JVKPvo9b1xQ52HmVU9PgaW00WUOTNXRFQ0LCUg2iIuZB75CqrlElgRYyFOGKn0RbLNXg9XbLMkn44vwKQ1GwNI22YaIrGpNowZHX5+fHd/jjuw9o6TrTKCSvKlZJgirLyIh2n6mqnLb7TKKID8+OkGWZ5XKLoioEYcLNzZLxeMHesIPvR/Qtiy+fnCPJEu2WQ1033D3Z4/337uJoGsktYilYhaArDDoe/XYLooI6r1BsHcc2WU03IMtUdU2RFzBPkYYmQZzyp7/7IdotZqpjmkz84A3i5upqxs3NAtsyGO10Obmzh2Wb5HnBduWjKDJffvOcft9jGyVczQUX9JvpjL5l0bcsYVza7VMUJXlWEPgxbz04FsD9gyFVVXN5OaUIU+Lxlm+/fc39033ee/cM7Xb4v65rZosNry4mtNsuN7MV569usG2TmR+gyTKWpjEOAhxNo6hr4kK4xQ9aI3pmm117F1dzaOseB+4BfbOHp3vIkoypmqRlRlIlaLKGoRi0DQ9DMW7nLFt8tHuE5zm0XIvLiykfvXeXsihZLbd0uy3+/f/+a/7rP/4d/vbzp7Q7Laq64f07h6RVyWFLRLs6usUi2fD55OoWB5WxTNbsOYL/qcs6WZVhayaKJJNVYqGiKzpVXaFICjISRV38/3Va/X+2DQa2cHQnBb2WgatrtFzjNqFIIHhcS1S13n4woO3obx7bsRSR++6nhGnBapUQxwUvns3RdYU8r1Fk4Ty/nIc4psq9ky4/uNdHAqabBF1ViFNRjNF1FV2VMTUF19Tw/YyTky5FUbFdCoPPZrFhdjVnNVvdiqgc01R5/uRagPIVBVmR6e0NOTwdst1mpElGut5AuAHLBcN64/7Gn4kih2GCv3gza0m0gaqAzg7Zes07H53hmBqWJVKgFouYqqyoqorNfEO5nmO3xHs52B+gGypFXlAuJ4TbkM35OYZpsFyEbDYiven89YZ220BVJbargNbe7htsE4C3MyDyIyFot1uK108hi2B5RfD6nOGD++wfD6FB5KNnBcFsyXI8x/EcwvGY8cUMWZbx/QzDUFDV774W3cdNnOOaGj3XYL9j0HdUBq7Knqdx2jU47ho4uhCjtqpQNw0NoEigqxIjV6Nni4KLbag8PO1i2iaO53B9PuH0/gG2YxBuQiRZ4jd/8w0/+6P38a+usByLuq45PetTloLZmWQVTdOgyBLPLjbouvLGmGbrMvMgw9EV8rJh4Jm4psDUqZp4DZukxNJVuq5OkP32MZnfWvmUP/ufP6mDGFlX0Q5HSJ5H8+olkmNTLn20k33q+Rp50IUkQe51BKdyZx+SUAiS69eiWiVJEATINDS+j9TvI3UHYja0KoXxaD0XYlWSwDBFRa2ukPb2RbUzjmE6FRD6Xg9mMyTTpI5ipk9mGIZC+609jJ6LbOlIvS5Mp+RTn/UkxO1YUNW493fYfDOmeD2jiXOoG242KX1b56t5iJTVHLRN4qzi/mGLOC7ZlCWeorIpKxZlSVDVHOg6liqz++6++BsERZ38yQXheEtdw+4Pjzj6g3eoxktmjyd03jvh1b99zKtxxIc/OySehezf71OFGf7YZ37lMzjpoHkWclORvbwhvt6gdx3mVz6KLPHWP7pHMvGZzVNcStK0Yh7m1MAPdlq8/XCAZmtoPQfFtVi+WJAHOV5Lx9lrs73a4vVt6qyk3MRQ1RAGyB0h+GhqAfPPcyGqDUNUF/NMjDyoGkgSTRwIqoGsgOUgabf7rCygSIURqchFS7wshAB8+gTFMUguV5TTrQgaMDQuHgnRracpow8Pya5XqHePxWsoSzHzm+disfLqJdJbP6BJYiTLAa8tzGmSBMEGyTCBRhiaRiNsrUEe9kSrX1UEJQGQf/Gff6+qKAAvgieflHWFoRqctI6AhmW6RJM1VumWXWfEJt/S1j2yKqOlu6ICphhchleUdcmz1YSgiLFUlVWSIKsK2zjlrN/jrHNAS3fIqgJHs5jFG2ZRgK4o9CxbuDOrirNun02WsohjtlnGMokY2TYvV2ssQydNc64nCxzb5Oh4B8PQsC0D09C53viEQcxitWVvt09TNwx3ujx/dsXCD1kut+iaRrgIaI/arJ7PieWag+MRQZhwdrJHGCfkRYlmaNTbFJZi4eHueFR1zd2TPaI8E0JPknj2eoLvx9A0vPvuGT977z4vr6bc3Cx4eLLPp1884fxiwo9+9JDAjzi7s0+a5lxdzQiChH6/Tdu1ScqSsR+wmG1od1zmyy1N0/CHv/cBl+MFi9WWBvDDmMRPUGydveMhD986uTVaqbQ8h8vrOX4Q0/VcOm2X+XxNvyteexCIm6efZfRajlhAyDL3urvkVU5SpliqyZ6zS1RGyJJM3dRAQ1hEVE0pois1B0d10GSNuqkJixBd1sjqHE8X/M+O0eJvLp7hOCZlUXFxNcO2TQbDDr95fC5eT57z0x8+5Hq84J2DXZKyZJtltE0dTVHoGh5/cf6EPzp9m2Ui0FXH3j6OatM1O6zS9e3R21A3NY4qINpDe4AsyciSjISELMnc+Z653f/9y80nWSFoEH94v8fjecx4nYAEqqpwPLCZbhLatk5eVnQcg922gaPLXG5EB2y2Emg0x9ZYbxIUVaWqak4P25wMXWxDAMFblsYyyAjTQiQZmSqaIpMWFYOOxTZICZOC9SYjzUvabZPZLMIwVLarkDSMaXU9vK6HZmiot12m5TImjVPquqY76gqOZcfh+nxGllWs52s0y6JeTVDafZrpK8qswNo7oGxU2vu75GkOkoxsuzTRFpIAFA251aWJA0an+6S5GEWoqobNJsFf+dDAyb19Rif7TK8WhBufnYM+F09eUy6n9B8+pK5rvN0RaZyyna1AFtVM0zKoa1ivU9I4xW7ZJKHgYb79o/tMr5fUSYxmWaRZCaoOlovi9RjeOcZrWxRFhSTL+CufsigxWw6mYxGtfbSWR57mlEVJkZckWY1z60A3DJWOa5AVYkbT0BVGrkGYVaRlTVY2VDUkRU3VNLeECwlL4NrroQAAIABJREFUVVBlWYxXFMIMOAtLdj2dOK9pWxqPXy6xHAtZlplcCnHf7rVYXowh3rCMJPpH+yRhwmDk3SZS18iKhOfoWLrCo5crjvdbpHlFTcNx30GRJVxD5WKZUtbg2RoLP6XjGsiGimdrNAizlKbIyBL86T8UtVR//pef1JMFSttF+vhnsF3DdgOSRHGzRnM0IVRMkUnaRDHy+x/B6AB+8wWsF0huSxhMFOWNy1na3UXaO7gVDZXggYJIyDEsmjgSnMn5TMzzPX8mqoqaJhzZXlukFOU5xeWUfCwcl4Ofv0UdpqjDNrUfEn3+gkf/4Zy9d3exWuINsg66SIqE3rbQ2jZffzYmCgvSusZSFe7uuDxdx9zEOW+PXF7PYtZFyZ6hUzYNq7IiuU15+PDA4+4vzpD394QwVlXKJy9RXBOFhu5P7pE+u6GcraiSgtk8YfLVNUVR8/7vnxBcrnn62mf/wGPy2udqHvPWR/tsLrcoWQF1TR1nOPd3UCwdW5dx9juU25gyyun3TSRVIQpzNklJ1TRcBCn5MqXf1nn1xQ2O3GB5Jpoqsd3mVLFgjq6XCTKI4eueg3q4K4Rd0wi8kr+luboQ1ALj1kykG0iOR7OcQOyLtkmwFm7FzYwmjZHaQyRNF0IcxGo33IjHKyrNN19RLAOR9GDrlJuYxfmanX2X9Trl/Monud7Q7ttoe32RbmQIqD5pAhfnYBhI7c5tu98RVdYogDShuTi/PY4MUTHVNGRdEfOqUURxPUe5dwea5nuJWroIXnwyT1b0zC4nrVOiMiQuE5IqYZlsbsHzJS3dIa0yirpkZAk3/F9cfIqfB+y3ekRFiqVpJKVo4531utzvHSBJkJYZQRbh6JaIQzQs5nHELBIfnmHw68mNuGDKMvd7fQxV5eVa4NMmkxVBEKPIMj/98CGLtc/RTp/z6xmXVzN+85tzHjw8RldVNE3FcUwc18KxTaq65uXTK+KqoJHAbdm4fZf46YJg7nNwf4+L1xPyNMewDfKihLgEXYGy5s4PjvnxB/cZ2jZRUSBLEo8vb+h0W0jAew9OePFqTJBlBEHMJoj45tsLmqbhg3fvMp9vOH9yxf7xkFcXE6Ik4+23T5lO1yRpDopMGEScHu/SyBK6pjLa6bHxQ6qywrUtNE0ljBKSbUIjQXC+YpknWLrOq4sJjmVimTrqbaylpiiEccpyHQgObt3gujZuy0aRZVRZZuQ4hEXCl9MpH+/fRZEUsipDU1Qc1WaVrUmrlKoRs53b3GeVrUirhJ7ZQ1P0W6GnsEgXLNI1dVOjKxp/e/2CMBSCqNWySdOM5y+vuX/3kDwruHg+5sX1lE7LodV2udft4eo6siTR0i2+mLxAkiQcTcXWDHRFpGsJI4zCKlsDEoaik1TJrRlOomO0qZuacXjDrrOLJqscf884n798ufpk7mdYusqHhx6fXwbUTUOSlRRFRYMkFk2mMJukecV+x6QB/uLrKYau0HaFYSnJKtK0wrJUhkOHUdt68+9RVtCyNOG+NjSmq4jlOsX/rnL5coUsS6iqzNlhG0mWubwSyWCTqwVN01BXDQ/fPSIMMvb2O1yez/DXIdvxlL2zA/KsoOXZaLfBBJIskyUZ+eUzatkAw0Y1TZR2n3ouxKGxe0S0XN+23i3ROQtXYDhQpHROTjl5+xTTVMmyCk1TmM0CPE8Iv93DAePXc8qqIV5uoCpZTxagqHj7+2yXW/IXX0NrQDwZQ7iid+eUyI9IohTN0MnzksHIE50PSWaw02W1DEUqkWkKUH6aimpskdFsZkRJhWyYLG6W9EcdmkZUmFM/oKqhqWvqYItsWpRFidtx6XQdqqpGliUcR2fjp9zcBBzteni2RpjVtyYjlUVUIkmCDhKkNUVdMwsKwrxiYGu0NJWGBk2RiPKay1VKlIqAiYtJSORHyIpMf6dHnuXMxwu8YQ/sFum3XxLNZkhuF7tlc7Dbots2kWUJXZW5XsUEQYZt68IPYGmoijA5Tbcppq6Q5hXDls54neCYKhdjn72+Q1pWvJ6F3N9zkSWJP37wDxWf/+p/+ETeHUKSIH38uzSXr94A4vOrJfpuB8k0BD6n00EqC6R+H5RbExEIJ3SWCRf4bIE0GiK1WqIqupwLjJJlw2xCMxnDdCJ+djxBOtiH6ZQmjJAODoQQlSQhOiYTaBqqjRCu7p0BdZxR+QmS1LD44pIkLnnwn72L4piox/uQJKh9D9mxCb+6oA5T5quEpK7Za5uESck2zNmUFX5Vs29q6LKMjkRU1eiyjF+JlcCOrnLlZ2xfrugXEfU2pJqt0O8fI5XCFNUUBd9+esXOu/sopsbuR4eEl2tO7nbxb7YkSUXb1lhOQkxT4eSwBVWDe9KjinPMkz6ypZNfr5BkmWIesLjYUMUZ7XsjwlnIxblPmJb4VcW2qnjo2eRlw69vfBwkWq7G5fkWy1DwdlyUumGzzZn7OXc/2qdKChRLR2lZAkH04AeiiisrSDIipSjYispmZ0izuBaVziwWs6D+BlYLIf5En0i05mVFtMkjX7A+dTE3JN1c0AQR5jt3kPJctB5mEV+cb8iKGhkJFYm2qyFlKcqdY9huhYmtrkg/e0Q5W8PNDcrhvhgLMAxo98TrNwwIfHGMrVaU07VYIPV7UJaCDeo5IMvIP/+n36sbGcBf3fzyk57ZQZIkzrwzxrEQgTUNN+GMkd2nbEoALNUkKmIaara5T1SIUQQ/T4iLghfrNasgYq/tockyUZFwvl2Q1xkds8WTxTXPVkte+xtmfkiU55z1ejyaiFbTcadNyzAoa7F6v/ED6romTTN0XePoeIfZckua5mRlyXS6pq5rfu9n72IbOoeDLuswptNtoSsKT56+pqpq/CCiaaDb91itfGI/EYHVskRjK+iGhm7qJEGCaZuUkehuMLBYvl7ybDxFc0yiomC+9jndG4p2Gw1hmvHk2SV3z/ZxHIt3HxwzX255eO+IVxc3lFXNcLfHbLGh3XLYHfWo65rRTpcoTLizN0TSVV5fTjEMHX8b8vpqRlM1HJ/ucX0953I8R5Yk8jCDTcbRR6es/YDFt1MaW8XQBFy/4znsjHqkScYmiMjTnPfeOcP3IyxLR9M1FEXm/Z19qqYS1S9NY9/tM4tXmKrBnrPDMl2hSAp5lRMUEdfBlHXqk5YZRVOABLZqockaVVOxzbf0zS66rKHKKpfJnHUQ8dadQwoakewUpTx9dE6UpKi2TlVWtFsOUZbz9t4emzTm2BvQNT3+l8ffcD1bcb5asd/z6JkePavDgXuAKqvYmk3V1Diqg18EbDKBwRlZQ4HVyjc4qoWu6N878fkvfnX1yX7XJslLfnjQ5vkqQbl1tkdxQds10BSZJK9oOzpFWRMVNUUtDvk0r0jzirysmM0isqyk17ORZYk0rxjPQyrAtTSuFhGX44DJPGS5EG7kXs9mPA5QVZndXRfLUMmKirys8X3hkG4aMB0Tr+exWUekcUocCaaloig8eP+OMNPseCzmAbZjIEkSk9dTIVobSXQwbZdqNaX2V7f3CoVKtdAcm1pSYXEJTkeYV+sK7Dbp1QuWywTZcqmqmiDIODxsI8sSkqwQhRnBOkA3dfr7Qwb7AzZLn9HJPqvnz1CdFsbOAclqjTkY4B0ckiUZw70uaZLT67tipvpa8CyDTcDy/DWNorF/PGR+sxLtdrMlWu5ZhHP/XYr1guTmilqzKMqacDrFaLXo7vSFWA1DaGr6R/tkSYamaUiyjCTB8UGbrKgwTRXb1jgaOlwvY9qOzlnf5Gqb4xgKRdWwSSquVwlRVuEnJX5aUdQNli7T0lXyWkSs9m3tloQgkcsSi3nIaK9DUQgmbBqnpNNrqrIWhRyzRZXEpKVEfyRG+hxDxdZVHj9fMJ+smU0DBjstTE2hZWnc6Rv0XZ2OpVE0cNwxuNpkrMOM5Spmb+hQNxAkYp61a6v84b3+P0x8lv/yv/+kHC+grJDKRFT36hqShHIdou2IbNdqEwrB5bpI3R70d+DmkuZmLARIWUIQEH19iX66KwTKwTHS3bdFNXO7opnPKL99hVTm0NTIo6H4fU0j3NhhKFrvmiZyug1DQOyrEllTySdbthdL0m3K8tWKwz//AO/HD8mevkZWJUgSqm1M8nxC+GLK+CZmPItZliVlA1oF3bbBM1+c/H/2cMhymaGpEuNUwLTHeUGNmO/Y13XSuuF3fveER387Zu/BEG3Qogki5JaL3O8Qf/mK3Xf2aLKCF59d0awCkrRCqmuSpOT5POagb7H/wyOmL5d09zxkXSWfbknjArPv0uQVim2g7fUp5luaqsY77HDx5Q3zZcpllqPLEkFVIUsSbUXBryp6qsqob+F6BrIEvbd2yaY+63VGq6VxfK/P9NmSwYeHqMOOAL97HlJVimpikUO7K+ZxWx5sN0jHD0QFu8zFBeI7PNN3re8sFdVTu4Vke+ICkiXimNF0JMuh+fQ/oLQd0m+vSMcbAf/3Y3w/J6lr9tsmLVfHHbmoXQdpu4bhEMm0aL75Gm23j/qD+8hSLS5o+0fCsFYUML8Rx5YtUFF0OqRfPhcr2P0hbDYojina7nWN/Af/7Ht1IwP4q/EvP/kuC7umws99ZFmhrEum8YI9RwDiq6aiaipM1cDWbCRJ5uv5K56tVpiKQl7XTLcB05slJ7sDLE3j/eEZ7wzvUNYF18GS6zDg6mYJkoRhaBy128zjSOQaA9ssIytLTFVlFkXot7nGWV6gKDKL2YbFrcln60f8ye98wPH+kBeXE8qqZh1EhEHCeLxgOluzWPtsFj5EJdQNaVVysDcgGG/AUnn4o7tM5iss0yC43oAqU85iITwb6B50ScOU3/9HH/LZ509598ExuqGxiRIcQ2fHa/Hi4oZ33jkjDGK+fvSKNMmhQcyXlRXrbUjLsXjrrRPOLya0XAtFkVnOt9A0eG0HAN3Q2Gt7LP2IIi/pdlt89sUT0qyg2qbkcgNRAaaK03EI4wS1ZTLoenR7HhKSSECarNgGEaN+h9Gwy8vzMXfPDuj32/RdB0cTLfPDlnCOD+02V8GMgdUhKhPutu9gqRZVU1HUBZIkYaoGHaNFz+pQ1iW2ZmEoBkNzRFSKtKGwCGnpLn1zwKc3j7Ack+vZisnNkr3dHmmSE2YZVZijWhqdTouWa9PuuEyTiHvdHrZm8pcXj3Fsg/ePDqgUibQsudMZMbIHlHWJrugokoJIwQZHs3m2PsdQdFq6S1zGqLKKpVo0TcOd71m2+7/41eUn021CUTZEtYjUjLKSrKgoypqeZwohmBTkZUXXNW7pRBIX04DxJMBrGaRZyWwasJws6fQ9HFvjveMOH550CPKam1UsYjKXEXUNrmvQ6ZjkuZjLExSDkqqukWSZ9TpBVcWMYpaVNHVDHMTEYUw2nyKbNu9+eEyn5zC+3pAkJYGfkYQJs/Mx23UA6wl1lopCRVNDXWMMd6lWE2j1cU/OyIOQugFW1yCroouWCfyec3SHIkl55/c/4uWjc7qjDp2ORRwLw0+/bzO5XnFwskNRVEwvbshz8b6VZYlk2pTbFWWj8PCje0yvFsiqjKIqLCciUrLdbaFpMrqhY9k6/iZE0gwsx+Lm0WPR/m/qW5OtWBQVmiuuKYaN2Wmjmzqm12K422G9EO13t9dBtW22iy3H9w4wbQPH0VEUmUbizX4deBY365iuY5BXNSd9E+uW7ZlXot0uyxID16DvChaoLEt4psyeY+FnBbOwIClqTE3mwNP58tUaSVFYr0K2yy37h302y0Dsi+1EeDGcNkbbY7DbI89rLFvD1FVeXm/J84qDww66IToQ/bbFnb5FVjboqsw6EVVZx1CwDZXfnK/RdYXZOsG2NGxTw9IV6kbiz9/6j0Pmf6vhSPZcimWI8tY9JNtGOjwS7dS6Fuwh0wSgLv7eYKmmC+RNlglhEkWg69RJhvvhiQCp7x+J6lkq0ElkokqqPjxD2hlRR7fCpmnEZ1mmWm4oJ6s3z0e7TbNaUycFwXMxuF+UDa2ezel/8bGYvfziMcXMp4pzikXA9tWSm3HI5VUocANIFE3Dh8diJXWxirFkiT98a0BVNQyHFtdRxp6hEVU1tizTUhQsWebhgy6OLFMlOfOipFiFFPMAeX8X+n3yZ5eYxwNkSyN8vUKSJMKo5GqbslimTNcpm7Kk9/Ye3/zFcxZhTjgLkXQVtWXinfb51b9+TD7dog7bkGW8eramc39EnRYM+iZV02DJMrokYcoyO7qGoYvXJ0sSiiqThCIX+vzT16RpyfBOF3fXo/QTTv7sHbHPWi0h7sNQuNI1XQjQ7zifZQnDHZrxc7G/klDsv7oRZjKvIx5jOUJwlgVNEkDsIxmiWi0uQA2cnlLOt2xeb9DalnD9zxKiqkaTJaKoEBXXukHWFOh2RZV8MkZyXcrJCmm0h3T3HtLunnDSe30It0IsF7l4TUGA5LbQd9vIpiZCCgYD8vFKLGK+Gwv4nm2ubrNKtuzaO+J7zaW+FZqKJFPUBYZivBEjuqwjIfNy+xo/y3A07U07uq5r7t49IK8qfjA4pqZhk/kkZUZcFCiSzI/unXDc75JlwgxSVDWGqqDIMtttyHixJioKdEVhYNvMFhuKouT6ek6S5pR1zenxLn/2ux8y9n1+/eyC7TYizwvSNGe5CQiimMl0Jf5ARQJVYu/ODrqhcTNfCeH5/h3iJGPQ8dhONniHXQgK0GTomWCrHB2MwFQoy4oyzvGTjOXK57ArKrTfvLpiZ69PXdfc3Cxp2SZ5UTJ5OWW+2rL2I6pZzMMHR/zyr79keynGBxzXxms7dHse/+bf/Iqr6znHvS5xWfLifMzpnT00TWV30BWsSlXcQPB0zKGLLEtoqkrdiCpFGMRIksSXv35G0zQ8fHCM27IJo4Tf/Yk4ZzVZZp0kVHXN0G6hyuqbbPSu2SKrcrqmxyv/FdtsS1AEuJqLIsk4mkXP7CJLMrZmUdYVeZUzS6diDvgWexTkIWmV8MHOEX6ccv56gufZrDcB601Atk1AkchTwTb87mPkOPh5xixec6/XY7ENGdotPtjZ415vQFlXdI0ufu5TNzVREaPJKlER0jE6uLqFoejMkjldo8Mm3ZKUCTXfv3O26xj4fsZbBx5N03DaFZVOQxNmorJqUBVxm47S8s3jZtuEJCmwLI0oKVBV4Wa++9YhlqVyNHAIs4rzVYofC8auoki8/daI4+MOcVyg6yJp5zuj3Xods16nVFUtkvFaOvOpaL2v52sxv5jlHH/4Dh99fMp8HvHsyQ3hNqSqKrIkI4kSZNOE7Ry8ASga6Bb24Smy2ybbbsHp0rtzQhqnqI4LqzH09qG81QyjUzBdHM8Bw2G9TmA7wzBUFouIVktHVWUuzleM9rrousLyZgllIVr+51+RLReU2zX4Mwb7A57+1a9g/JRoG6FqKo7n0Bl0+PYvf8l0sqXdNonjnOzmkp2jEWVZovZ2hAFKkqFIwW5DZ1foH1kR7vyyItyERNuIl4/OqSqRuKSbOnmac++dE5Lb9z8IMoqiEmYjoGVq5GUlDF6WhmdpfD2OWUYly6jEvGWS2rpCVTfkZYMqS3QslaqG55uQtKrxTAVFlkiLmrSs2enZ1HXD6vwSRVG4uphTliWkIbQGonBUiYVomuSCPVrWxFlJv2uxWQZ4rsH+bgvXFtV2TZGYBDnzsGC8SakbeDpL2G1pdNsmuq4wnfj0PZP5JmG2TYmy8v99uP8/tt8qPqX3P0Lf68BiIebqvguKV1URXXh0RBMnAjgvy2KnqKoQIvM5bDZIR0cwmSApMuu/fQVhSPPNr9+05bFdsGyBVfJE/KLy9n1hKOrctlRtG9nSUTs29PuC+Xl5iTToo3gmuq1jHfY4+Kc/xv799yAISH/9HCQJ5/0jmqKiWIk2g2WpDAYWWVlT0vCwY3N1E3GeZPQ0laGmoVo6V9chgZ+jSBI3WYFyC+pVJHAUmb/5zZy4rvn0ixsMWWI99tF//jG0Wm8QUOpenypI2WxzTt4esHfW5SovmMaiyjfSNP7m337L8ZHLDz8+oPvOPrOncyRV4a//t5f85E8foLgGjEa8+F8fc3Dg0DQN0TJmvkjIm4YdQ8NUxcWja2lsk4Kuq7MqSixTQVEktpuMnZGNd9iBuqEpK9SWSTnfUsX5GzwRrZYQ++bfwywpihCgtic+0lt4bHL72bCEON2shPCLAkgjcTyouqAeRKIqRFMjHZ6i7vawbZV0HbO6WFPVDUNN5aRn024bZFmF4hhI3c7/HcPZ7VKOF6K1ullCbyCOHdeDOBDjIMsZzWRMM74UM8GKQrmN0XquGNmQZRTPEhSE7+DG37PtfvsusqyQ1zmypGAoBnVTUzc1qqzS1j2CIgCEyzitUm7iiXC5hyHLJOHtwR4vFktkWebJ09csk4S/PP8NcZFiqQa77oAd1+Og1cJSVVq6zls7QxxdZ2jbVHWDroj4x3bbpWeadEyTZ/MFBzs9LMug7Tkcn+zwj3/vIx4e7/FsPOXyYkqrZXPnTJh51usAU9ewDJ3hoE1VVEiajLvjCczSdUDHc9E9E1VVuLyZsw1jMBT8ZQAdHdq6iN+xVL76u28B+PTvHqO7BrPpiv/qox8xtG3OFyvaHZddT0RZ5nnB8fGOyC6fJwRXG4pFBF2Df/fvPuPeyT4/+5OPOLt7wMsX18iyzGf/xyN+8Uc/xLkF1X/+62ecHIxQVYX5fEMQJTRpheLouLYFSYljm1xPl9iWQR0VtFwL0zLYBhFnp3v0+x5hEFPXNa5jEcQpRVGiK8J4YGmacMJq5htxpssqQ7vLrj3C0703YxaTePamvR4VEYtEGH2CIiCrMlRJRZd1HM0hqzIUWUGWFE7b+1imzrDXJokzLi9nFFWF6hp0dzq0Oy5+EKPpKpZlsOM4xEXBwO7wxc0NTd0wjXxOvT1auk3HaBEVEUERsc7WlHVBXhX4eSBGAW6TmDq6mPnsWz3iMkGRfnsmyn+K2x8+6LAzcFgGOccdA0WWhGscUP8eq7MoKmRZIitrce+qhZgpy5pBx+LycovlmJw/v2G9Tvni6Rw/KbB1hZOhS7dl0G2baLcLn7t3e2iajOcZ1HUjeJO2Tqtl4FgaXc/k8nJDfyhEseM5HNzZ5eOfv02vZ/H0yYzlbEun36a/0yMJE5IowfEcwf8cHtyaTC2wPeLlinp6LsSmZlBXNeVyShndFjI2UyGMdEvcY6qS2de/hixi/OIKunus1zEfvLODrquEYYbXtjBNjfnMRzM0Dt8+Qzf1W+PpQoit/jGLJ09wjs+49yd/ys7xDsvrGU3TMP3mEQc//R1kWcZxdMbfPEYbHVBVNdHap1yMxXM4XTGDGm+x+n1YjcXfEa5x2y6aoVGu54yO9/B6HvntQly43BOKXAh9WZbwPANdlbEMcc+tG1AVGddQGLU09jydtBRjSrOwIMprHF2Iy01SUDcQphXbrMJUFWxV4cDT8dOSvGqo6oa39lsoioQ9HFJVFdFsLoqFThfZ64nKZyAW87ZjcLjrCse6IrHaJLhthyDKsXQF/bblXlTCAb9NSzRFJs4rNmHGIi6ZLWLarsHxSZfJOsa1NZJc5L//tu23ns3N5Fp8oes06yWoKs1qTbUOhAjIc2E20gWknH5fCJcoEN8fHkJVUfkRUqeNvd8hu5iD44hZwTy/dUbnwmi03YrHKQL9QlEI0VKWNHlJU1Y0j5/Q1LUQJVlGU1QYhz30uwc0yxVst1Rxhvn2MfrdA8pVJCqSloY7dOgOHeK4YKdvodye4H5Vca9lkVY1bVfjm0dzamCbCGhvVFVClEoSdSMOmKqB6hZ7kNVix0iqirR3SFNUNGVNNVsh2waaKjM733D1bMmuptIAXU1FkSROdxxR9v74B7z465dsthm/+tUVXVUheTVj+nTO6l/9B7odg8tLUV3Ni5pO26Ctq3TaBmFRoUoS26Sg7xlsw4KRruH7OTeTmLyoeX0Zsr0Ube7n38z5/PMb1N0em6dT6strEVvZat+u8nKRk75ein0UhWJms6nFxWR8KfbTdyECeSqqnqoKlk1T5mIfGZZYzRoWaCZNlsDeMfHX55gHXZyjHi9vQgxDod8z6fcM+j2D0dASiKSiEGa1pqF5/Bj1eJdyJSgKAHR6Yl64rsQiRdWQ9o+QegOk3/sFzVe/JluGNGUlFkamiayr4rmr719aCgghodwaR7Iqw1QNNtmWoi7QFJWyKUmKVNzgJAlbtSmqkihPcHSNs06HeSyqHR3XFiD0lS8MLXlEUmZkZU5cZDTAdRCI+WYgryri2za7SJqtSLOcryZTNmnKrtdi6UeUZUW35zFou7zebNlmGaqmcu/uAYOux831nO02Eq3cls1o1GWx8Tk53kFVVAxDp6wqeg9GRHFKp+Xw6JuXyLJEHqRQ1FDUeB0XskqcsEUtMt/jEonbn7vdHvaPSJOM5v/i7r16JEvzM7/f8T58RPrKMl1VbaenZ0iOuBQ5xErASsBigdWlvpcAQXer1YUA6UaCdleiyOXQaYbDcd1d3WWz0md4c04cb3XxRlcTgrZvBAlQH6CQ1REdkVF53jzneZ//Y5qGsR/Q2+WOXlxNubiawp4NloJ72EbRFB4/PqEsK358csSXz86I04zffPEat+8yn605v5zws69eYVsG85XPahlQ7PI+3a7DqN8hCIW+NstyRr02myDCaFv4QcR4uiLLC27HC2azNe2Ox/NXV7x8dUXHtTm/nLBJUnqWxcC2UWWVpmlYJT7rNGCTbdlkW1RZbEp1WefV6pKyLlmlG+qmJqtyPN1BV3RczX33s2jrYhRvKAaO6pCUMcfuEfP5hk7XY7TfY7nZUlU1vbZLr+3hWAaHe31MU6RIiJgkhb+6fM3DbpeiKHeu+JiH7ZN36QqHzj5ZJSYznu7yw8GnXGwvyErBygBkVUbTiDiw8nvYcPRqnpLkJacDi1fzBEOVmAcp6zAjzytcU6OUIl/YAAAgAElEQVSoajRNRC95pkaSleRFhecZtFoG622Gosioqsi3XMx8Bn3BfhVVQxAXpHlF1TTcTUPRgZ5XVFVDkpTvRut13bBeJ5ydr7mbhuzteWy3KZIk0Ru2URSJ5TKmKERX+eFJH9vWWM3WxGH8DogZpkG5muKMhhCuUXQdJBnn4QcAGN0um1fPBaDLIgE+JRlsT9zvJXmXIe0KadU3+d6NaIQatk2KoqKuG6Iox3ZMijhmcjVj/vy5AIt2B3oHoCi0Hzwi8rcc7rtMX7xGUlWCF5+jDQ/wVwGL6zF//zcv0XpDivElwSrAcGzw+mC3UVttCJegWySTO+gfU259MByCVUA6HYNmMLuZEawCdENj/vw52XLOYOCyfvuWOM5pt01cVxjxAIKkoChr0rxi6qfISCiyRMdUuV0lIvZKlXcmT5Fo8Q3L2TZE3qetqSRljaUrmKrMMio57Rps1tG7mk+Srfj5SZJghg0b8+hUXLcb2IQ5sixxce1j2xpFUSLLEkVV82DkYu7WnqMr6IqMa6p8cuDwX/xwj2c3ogVJliV6baF/NbSdI7/+7knFd28lZRl1ryf+nuc0F2+RdI06K0XuZxBQLgKaXNQzSvYut7Msqe6msF7TTCYo945Y/fsvqPwE471DpMEQ9g5FS40vdt/N2WsBNpZLqGua8fidgxzfF5FAsoR0cizillq7QNe2hzrsUN7MkFoeqCrKk0ewvw+ui6Qq6IcdFNcknEeUiWg1Wq5S2o5GWdZ0VRU/Ldnrmtz5GTdZjgzkdcP7Bx73DINlUaJIkDY1sgRZU5PUIiahaBpuxhHN7S3N29foj47IJz7Xf3+J/3yMbavsPeqJ/nVV4Q8/3Setav7Jf/l79PY9hj864fP/5t8TxyWeq6HLEuuy4uWZj+NopFmFbmk8/ckxF2/W9O93kWWJIC85X0QMPJ2TtknLVFkFGScHDlld82wWEmY7t/KTHm7b5MX/+oIPfvqQe0MHioLhP/8DAc7KUrjJvZbYOXZ6cPoIXE/8vS4FWx0H8OgDccEYHiJ1hrB3Imo38/xb8BqsdvR+hdTqiddJMmQJ+n6H7G7N+a9vuL/nUBY1nY5BmlZorolx3EM9GsLBAdXVrdhklBWEIeZPf0+Mzf21YD4lWezk9k8FEE0iEd8VR2JkD0j3T5E++EiE03faAhin6f91tX8vDk3W2HN6KJJM1ZSs0/WOycqRd7/uy9SnrCtUSaFqxA1dkiQmiw2bNOVsveak2+EXv35OWVYcjXrsOS2Gdo95vGYSLaibhovNBkWWiYqCuCiYhCFVXYsqvzAhChPquuG40yYqBMhQFJn9YRfLNln4IS1LRI883R/RsyzRU952OToaYBgaq1VAGCYMu20ub2d0Ww4yYomuxmvars1suoKoxDbFez18cozRswnmgViXcSkqN/Ma6kbk+KkyZxdjns1v+e3kLZ+cHrGYb/jq63Nu7hZYps6Txyd4joU78vjs99+nrGr+xX/6E3RD4+njE/6r//HPSNKcTsvF0DXCIObs4o5hr81mE6IoMk/eO+Hmbs5o1MXUdcJtwvhuTsu1GZ0Ko9PKDzk9GpGlOdObBWVZYegapyd7GLrGL/7hK/7g9z5gOOwQphn/+X/8GXGUABAXBZ5uk5QZbcPjSe+UluHSNVvkVUHVVJR1wU8OPmXfHnLg7NEzujzuPMLTHKq6wlIt4jIhLCKiMhRso9lnla0o64q0TGm1HVZLn5evrrh/vEcYJ7iORZYXeJ7NYNDm3t6AT0YjPp9M2KQpaVFy4fv80w8eExUFm2xL1+igyArFDuCWdUlcJtiqTVzG9M0+RV0wMAfsO/vIkkzH6JJUKeX3MOdTkmDYMglS0VT0u9sIS1epqoa6bkiLimCbidpZWaasRdsMwGy6ZbWKWa8Tqqrm8tkbyrzk/sMBfU+M7+9WMesoI80rNpsUy1Kp65qqqlksYiE/kyDPK6IwxTAUBgObpmnQNBnL0t+ZcnRdFVWNWcWDBz1cV8dxNHqjLvefHCMrMsEyENFGpw+IpjO8+48wLBHfF93dgATZcgGaKSakVUn74WNxDV/eCSIh3bGhOyDa7K4ds6sxz14vOb8NuHevw/h6zt3llPXCx3Bd9k5GGPtHyKN7HH/6EYqi8PSHj8iznHtPTvjr//7fguUKLePBI4rZLeF8he6IiaKma7SffEB8cyE+s6JA7FMuJtA9QBkei+lfFiPZLiQB1fRSnEjTZnA4oKkbbn/7Ox7+5DMkt01RVPzwP/l9yqLa8Wg1zi4bs2VpdF0RbdRzDdKyfvfng0OXjqlw2NI4bOl8tG9x3NGF+UuTWCUlYV4S5gVxXnO/++3rF1FJu+NQVRXrt2+FXCDdgmaQxQmaoWHaJqPDPg9OO4RhThjm5HnFdBry/pMhWSY+70lHp2WKTexRW6eqGy5mISNHNC71XIMwiGnZGv/8B0MsQ+W9PRdFlsiL766w/m7wqesC/EkSxVevYbGg2sY0ZYU+2Jk8JEkwn4OBYD0L4YZXnr4nXquqlG+u8B4OsZ7uC32n+01guPLtmNdxoNcje34hnOxlKd7f90FRaL5B0aa5G707sL9PtfLBdVE/eizeazAQMoHJRIDfuhZOVj/GO2qjWjobP6PfE9ECd9uM6yxHkeDlPMKvSp64FnnT4KkKt7OYkgZFEmD0Ii1Rd45sEOznsa7R7xhEP/+a+K9/J3rEj7osN4JNSdKSbBlydRdxNLJZTkK2VQWdDvpem+Rsxt7IZl1WZHnFpix5eujRNLDd5niuyOyUZLEzanYa2w/ut7FlmU5bBOwrqkzZwJu7LZNcxEeN80L03rdMtpsUx9GYPbuj1dKIv7ph8W9+ifrHf4TUH4hR9nanh5Qk8XV3DkljpOER0sFDES5/cP/dSEXqjJDuvS9qOBVVmI1swaY0ZU6TZ0KwHQegKKSXC2RDwzJVfD/HslTCqMA0FfS9NlrfFcay8RhJkcU5liXx2Gwm2pgMSzCxl2/g2S/BX4j10em9052y3eL7Oc3Vlfhspkl5MxObpeL7dyMDMBSDntlBQuIumhAWEUmZoEgKtmaSVfm78aWrueRVTlGXFFXBowPRNuVoGs/Ob3j86JjhqENZ17QN751eUFc0XF2M0numyW9enLNJU8q6Ji4KoRndjVy+YbCGtkPftrnX63J1O6Pv2DzeGwJw0mpxsd4wjSIuFiuqHSu9DSJGoy6yJLEOIobdFmGcMj+b0dxFaJ7JbCyAZ+u4SxinKLbOzWRBUZY7o1ED6+yd6QhFgrrBdEz2h11+8+Kc355fo0gSnmcT7xjQvCi5uZ5xczun7TksFj5plNIxDIajLpc3Mw72+qRBQhBGZLOQ09N9odmMBDDrDztouujiLktRCXjvZA8kiX7HI4hEXmeZl1xeT2GVQVTiXy4xdQ1VVQijBNs0ePnqCk1TubyY8L//4gv+5ac/4tDzeNjZY5vHKJK8a5PKsFUTUzHIqowDe59D55CW3uLEO6GltxhaQ/pmn8edx7T01ruGK0ezBVhtSuqmQpM1/NxHlmTmszWKqmCbBuPZimG3TV6UGLpGp+vhtWxMVWUZx5y029xtAlEvKkm8Xq3oWxauZpFVImD+f7v4K8bRZKdVdZGRv2U7y5xJPMGQDVp6iyAP0GX9e6n5tDWFrmOgyRI3y4hFkOLHOXUtdJeqIgngpyn0WwZ3qxhVEbE+oz0Pw1DRNIXQjzh8+oB2z0VRZDxLY9Qy8CwNVZHpuAKwVlXDy6/vyLJqp6qSKArxvYqsQN0VHHiegWEIN/b0bk27LVjWqqoxDIW7uy2bTcpkEpLGwhVfVzXtQZt4GxNcX6G4LbazJfHZV+Dv6jY3K8gTjNE+LG9E49B8BaYt2M48gfUOhNbVO1e86thYLZe7qzmLRURZ1rR6LcqiRDd0JFliPd8IM5Qis1kGVGGApikM9nv4qxD6xxCuqcqKejURoBeoq1rkYiryjhnc3WsVBePovjhPnTZVHAkWt8xpgpWY+qUhFCmarlHXtWhxkhXePr9GkiSuziY8++0Ff/DZEY4jTD3xzlBWNw2aImPuxuoAD3oGH+7ZPO5bfDhy2HN1jj2TA8fko6GLZ8jsuTqPuhZdUzSh6apEsdMHNw2EWUUUZoSbELU7FHpV3YLtElkVetdWx6Hft1j7KftDhyBI362Fs3NxvnVVZhWXxEXNz9+seDlLSIuK475DXtXERU2YFqRxymSdYKsKT/Y9fvFyTlnVJPn/A83nbrWKsXdVU8UZdVJQ5yVK1xPM6LC9c34ZAnhajhjDbja7qkwJ9ekDJFWADkyTZjmD6Z1gPvNc6AU3G7i5wTjuU859odGzbfEVkE2NKkh3XfD5DmCUKAcj4WR//Rb/Z1+Q//or8usZ+dWUuz9/hvbgCLXrYH10SjQOePH1AnO385gHOUlVs6epiBhjMCUZw1AwFZnXSUpUCfSe1g13ecEPHIOormmpCg1QNrCpKu7/Zx9zd+Vz9XpF8sUZTV7iORrdjw7RNRnNNmi7Gp2uyfU8xi8rfvVf/wWyqbKYRuR5RdbUeJ7OOC+5mUZsq+oddb04W7I+W6AbCoprihtkXnMwECYDMUqpubdnE5TiwuIqCq4i027pxGMfr2MiKxK6JmOfDrA/Ombwx+9T/fwXAmAGm29H7r2hGLfvDqkz/Hbc7bSEe912xS/hNzme7QFSb08Az6YRO8RWH0nVkRzRkkQYICkyWZgxPN2lJdQNlqWity0kTUZqt8VFwd+SXi5Yf3krNKSKgvTkqciO3THsaLsNUpYKMCorgjmPQpAk7v2zj5H298XzuZADSIos9MTfwyOvcmRJpmwqyrokLASTVVQFnu4gIdGz2tTU727mbcNlHkds0pRlkqApCu+d7JOmOePbBV3L4iqY8mJ1+a7b/dpfc7PxmUYRh8dDNkHEnuNgaxqmqiJJ0s4tKyrh6p3BKy9LHt87IK9KXk/nfP7VOb96c8l6FTAZL3n56oqPT4+wbJPje3tc3845f3PLqN8W4DZMwFBQjjxh3lEk6BiYuoYkQbVKBPAEoY3xc7RHXcgrzL4jHmsa0iDhT3/8IevNluvbOV9e39E0DbZlcHQ4oChKTEOj03VptRzupkuIS/7Vv/krFFlmOhduWeoGxzIhKbmbriiygiTLQYKb6xnj2wWGptHrt5AkibIs2d/vU9XCyaqqCifHI8HOKhJ4GnQMbMvA34SMRl0cy8SxTPb3+zx+fMwnHz/kf/7qc3RZYZOFRHnMNF6x7wxIS6Gl1xWdkT2iampM1aRn9JAlGUMxiMuErMrI65y+2aNndLFVG1US4/u+2cdQDDp6m7beZpEu0TSVuqoZDjsoikyUCGOKutObDx0HT9eJy5KXd1Pent2Spjm6ovAHh/cZ2i0c3UKSBHDqWW0kSRJxTpLILIyKCEWS+XT0PkfOIUVdUNQlZVPuJCLW//e/UP8vH5IEZV1T1A1VVZMWFVVVUxQ1bdcQeviOJWTLuopjqERpib9NKYqaMMxRFImD4x5RELNeBNiWxtU84utbn7wUfe13s4gkES7xk/sjttuMk0PRjqdpsnC9S0KGJssSVVVTVUKaMzroUFUNl5drLl6PmU23xFHKbLxmcjXh8dMRqipjuybLN2dU8xvs/UMkWYJ4I1jOwYn4BxcpWC3KvBQaz7raxfZthZu8SOHBZ5AnyO2+SFaJfMoo5uMf3qNpGiaXExaLGFUV8rzRfpuyKJFkCbnVQ9VUwpUP0Zpnf/UrLEvDn8yxWu63RtMkwL8bQzCjjELyLCdcrtluhB7esAwUVSHb+EidoQCVRUqVpSjtvniPPBaAua7QdI3tesvwaIjUHmDYBg+eHtPf73F4usfPf3WFosiEcU6clWyinEHLJExLHFOjYym0TAVZAldTGVommiyhyqJbvdzhgH3PYGAadAwdT1Op6pqBrWOqEsc7lnLsi2tAVRSYjilMXwCtAbIsU2RCg6oosgCbF2smVzPiOEdVZX708R4dW6frGu9Acd8zqHfNR5Ik6sfnUUFZNfyTP3qPj046xKXAK4oio6kyPc/4zrX/3eBzPP7WjFI3KN0WpR+jtmzBVJYlHB+LMWYYwugArs/FCe524cEDYWKJIhHsPmoJNvWbnvYkgtCnKQpQVfLzMeg66idPhUbPtsUIP4hILxdoP/ns3WdqqgoWC5rlimq6pFxHqN9UKQJa1+HgDx9CGBJ+ccXdnz/D7ts8fthmMou5WcZ4ukJHVem1DDxLZVtV3O9YjIOMV3GKpyi0VIWbLGdRlKR1Q1LXSMA4L+hrKm+SnHFe8Gf/+u8JwoJplGM9GOG/meG6GvnUxx04xH7CoG/y4tWamoYnroVfVmQ3KzZ+TppV/PSHh+RZxSe2xZdRSlrXeK5Gntdsg5yru4iDh13yWUD3yZ440aqEpitYpsr9h20uphGOotBWVFqKwvsHntC1+jlfPRfs4OCnH1LFGZUfUc595NMTmsmYJolppmPYO6L5zQ6QqhpYLs3uht4EK5rpJU3o72o1M9B0ms0cskQ8DuKCAhAFNElIk4RiI9M0qB0b0zOJ5iGnD8RoIksr0T60Y6vK6wlNVaO2bTpPRYIAliU+j+0KOcD4Rmxg0gSuzqCqaG4uYDkTGx/ThNGut74skU4fCXOcbb2rif2+HetsI9pgdsx8S29RNTWGqgt9Z11wYO+jSAplXaArOm83N8iSxNC2+WAwwNN1ZkGIYWj0Bm2qHaNpKCpBFrJMREC8bei8Pr9DliSeHIzY5jkd0xQj1yRjvd7y0/sPuQoCTFWlqCqm25DLyYKruwVRmGDsGD7LMjg9HvHB+/e59gMuLyZ88eUZ+6MuJw8OuH07EQYkx8Tuuwy6LXRNg3XG4ajHbLqiWWVgqaLRZxJDItZssU1BV0hvA5SeBW+3sEj47/71n7EOIsIo4b2DEdPpml7bYzJdsbfXYxsmDHttXp5dI8syrcMOdVmzXPqEUUJelvz4P/oASZJoPR5SXPmQV9imQZrmhHHKzWTB/QcHLOYbjo4F02sYGt2ucLk/OD1gthRRUXgaiqXx4N4+ddMQxSlffXWOYej8+ONHJEmG74dMxks+ONjj1WqJn8bcbgPutfb52+tn6IpGy3B3xiIVV3Oom5ogD9AkDVMxd497pGVGVmVUTYWhiE54RVaIipiwiIjL5F0kl2UZyLKMvwk5GAkpVl6WKKqYSpV1LUoEEGz3ycmI416HtmFgqgbH3j4t3eUyuMVPhbHo/7j9gm0RMkvmrLMNaZmiSCpH7uFuA1XSM7rkVY6lmKTl908q83aRIEsS6W6a1XUMwjDHtjXMnQv9yb67a7kRAHQVZmiaQqtlcO9eG8vSSJICwzJodT3SrCQvKwxNIcnLncNauOdvLhfIssTBgcdmm2JZYoweRxl5mvPgqIXvZ7tQ95LNJmG9iri6WIoNpa5SlRW2Y3J40ufw/gG3twF3V3Nuzu5wj44xju4TX59TJgnq4BDcPqZriza6MscZ9qn8pQht10xBGGwXQkKlqBCuwWpR370Rzy2vwZ/wD//270jWPqomGNlgl++5Wkbsn4yIggjLtYQGU1GQhidgt7i7XkAuWpiOfvgDqqpCPnoi4p1MFxSFIkmhLMgWc3r3TwhWgagA1U2aukFRFNBMvEGPavxWfC6nC1YL/egheZZTlRWzL7/E9mzuPdxnPtmQZwX+KuTJ0xHj8ZYsqwjDnOO+w6++nlE3DT1bw1RlHF3hwLGwdhu6tq7TMTQsVWHfNsnrGltVcDSVjimwjq2pxEVJlIuRe1k3aKoszH+eQ7gJcfZG70AyEmiGhq4roqK0qinLmv17Izodm07HpCiFtENXZWbbnPE6Ic5KzqdbJAnOp1vOliljP8PUFf70/QE9SyXJaz47EhNPU1NY75J2/kPHd4NPzxM38LoWGk9FQVJkJEUSesw4FpWZpiY0dIuZGHuCGIHP5wJEhiGSplCuIsrLsTCQLBfCxGLZgs0sCvTPPhB5k5omAMNkAkCTV2h9l+biQhhQskx877KkinOSsxl1kqO2LdS2hX7Yp85LkrMZ0ZdX6KMWvZMO8TKmLGs6LZ2hZ5AWNY9PPLbbnGWc82HbJs9r0rpmX9OwZJlFUZLsWIoDXSWpG4KqwpAlxnlB1jT86f0em6p6N9VDUWgaGH18KGKetineSVdkfAJtXSXIS1o7OcGTDwf0ugY3FxtcV+PXOzNCSUPnkeiBnkc5eVOznW4xT/qU2wTLVIjjkqurLWlW8fnzBY4sY8oSVdPg6QrjWcLNbYimy7x32mL43oDkxTXawEMZdCiDWGwO7j1Acj2k41O4u0K6/0gAuyKHxQRWY5rf/i28+B38+m/h+jXNegppTHP58tv/7+XvaH71lzSf/5xmPafJU+FeLAuR+RltkXVVRLQUNctZjKEr2LaK4prfrqWqZvPsjnITC3Y9SYSMItiIOKjZmObta5rlXBQZKKqozzw4FmvKMATYnc2QvBbNYgbBhjrJxchd/v45ZwE6RhtP98jr/N0Ys2kadFlHlZUdmChRJBk/DxhHU4Z2F2vHWF74PnlVURalYBC2MbcbH1vTuAn8HbgRu+CirvnR+w/YdxxMVWVo29xut6iyTJYVdDoub9YLyl3f+zb/9jOt11uKvEQ3NNFe5Fqs/JDJ3YLrSxHpM+y18X2RqtDaazPst0nDhH63xXS5IQ0SDj48emfeUfoWKJJIcJAlUXbhalDWIlPTUqjGIdgqT//4fajBsc1dEHaD59k8fHhIkZcEfsTJyYg0K1BkBc+1iGIBfmRZ5r0Hwhz1xVfnuK5F8NVUtChlFcNhh6YBf+6Txxm3N3PuHY8I/BBNU0mSjLcXY/Ki5Le/eYm+60WmanBsk/PzO6aLDYqi8OGHD+h0XF5djhkMO7ieTZbmLOKYH4wOsTWNp/0DztbXPOkdsEm3BFlIkG9JyoRXm9dcBBe8WL/iNrojqRJkSWaZLkScVlNzE97ycvOC15vXxEVMWiWkZYoqKyLzM4+xHVMwWcB0sUFVFVqOhWXpeJ4YuZuqyufPzwnDhONhjzDPWSUJq8RHlRWm8ZKvFhecbabM4y1N07BOA1zNRZUVVFncUJMywdEc4iKmairySjCg3zz/fTratkbHUt/9tySBpsnUOxPretdeZ2oKmyhn5id0HB1dFxmci0VMUVSkSUFd1yRRyvW1T9vW8aMcTfnWWW0YKg/eGwlgu9NvzucRsixi1dy2y8WdyLJMEpFtraoyuqERhzFFLgCu7ZpUVc16FbOarVnPfWzXxu24ZIkwD8r9A3THoVzPae0NSLcRzXaNff8J8TYWoLO7L5hNWf0WhOq70fvqBrqHEK1Bt+h99EMRD2QYlHn+Ttbz6OkhaZyymm3oDDqUxTdTj4omCkBWMCyD4ZPH6IbO7Yu3OC2H+vo5aAaUOe29gbhX7Bzy8TbG9sRE0XItCNdkK/Hc9vJcMLaysgOgHfLZHWUUo2oqncdPUVWV8c2S/qiNbmiUZclsFnH/XgfP0+m0TcabmL2RwybMmG8z0rLG1CQ2WU5e1cyTFD/P0WUFT9fI65qeqeNoKpss5y5MWKQZZV2zzWryUjCjSVETpQXttoksy5DFRHe3kKdImk6r16I/bIkpUVVzdTYhWG9xXYM0LciyirSo6Dka27Tg7XTLIkgJU9GguE0KjvoOqiThGMI0PdsWtEyFGz/HVkVta1k32Ma36/r/7vjuZ78JiC8KYfiQZWTHoNzEohGn1YLVCuXRfXBdwXyWpQCcqxXp1xdogyV1nFNnBVWSC8OR6wkdINCslgJYHB0JVlOonylXW9TTQ8rzW0p/x6LpugAOdS1YsH6fZrZBtnSsn3xE8fqSKs7xn91iH7SRdAW90yKfB6gtC1mRsAYuq3XGOMj4vU9GnL1cEdU1+U4zkZUiz3NTVdiyLMLbgaGmUjUNEkJX0VZUXicJcdVwM4nQJYlVUaJIEtHnlxiGwvZsRuDnmKZCcb1GUyVarsZqm6NKEpOi4GNN4c9/dcUfvddjGmR02jr/WKZbhSnBtkCW4ONHHTESiTOoanRLo1ok9PsmTY0wVDUiEurA0QnTirSuOdp3CcMCVZFYvl0yeDxEGXRZ/ewZvX/2Y+h0aNaLXX6ZLMBobygYbH8jGNCtD1UpWOq6hq+/BO2F0Ip+8zrLprk8Rzq+RxNskKKdy+7+42/d5aWQbUiKTPfAY3y+odPW0doW2r7I9CxmG7KbFVle0T3ti+8fx3B6KtZKEtOcvRH63jgWoNR1kd4fwTag2fqCmVdVWC5pLs4hTWlUMVZsdkHK38ej2Y2VirokLcVotabeGU8qFElhnW1o622yKmNkDzjfXANwF4acX01YtoRYPQwT4XI0DSxVgM6qrrnyfWrgca/HxWZDUdckSUZZlJyM+nx9dk1TN+iGRl5+q/vpWRayJPHlfIPjmHz86ITL2ZLAj1gsNvT74mJt2yZRmGBaOtswxnFM/G3E/HLBJz95ytXNTABKRcLfRui6CopMFWTILZ06LMS22tGE210Cihp9zyVfCf3n7WQBloLvh+iGxsVsiSxLvH17hx/GGJrKYi5qe13HJM93DuxYOEG//pvnfPQnH1CUpYhWMRXIK9A1TMsgTTNQZT788AFFXhAmGZqmYtsm08WGfsejLCumWUGS5siajNdxCcIISgFCN0FI0zQURcnx8ZCjdou/+MUX/OGPP6BlGEwiMWXwswVJUbDvDLBUUX8qSzKzZI4u60zjJQAvVm9QZJme2RbVfLKGoRhcb++45x0RlTF5dMc6DRjaPRaReF1cpCSxcFS3Oy5BlGDqGrZj0u+2cHSdSRgym67ZbCM+PB6i7DYZHw2HlHXJNo/53fSK03aXt+slQZZhaRonrVjEfUUTemYXXdbZ5D6LZEHZlLQbIRH5ZvT+fTsUCbZZhYQYdQOYpkYU5ZRVjWUoTDcJp4RsfKsAACAASURBVEOXt9Mtex2Lsm5I05IoKri5mGO5Foaps9rpcod7Lfw4p2VrlHXD2k/RdYV+32a5jJlOQ1RVJk1yBkOP26sFVVmhGZrQDIYZmiZjmirdrsXF2RxVU+n1XVbLkGgrYpUsx8J2bSRZosxLTNukyApkWWSO5strjn70GbdvriFYgKoL4CkhJFLhGtyuYECrQrQIVYUgEjRTFIs0DeQRq5sJqLqYwMUBq5UAe9cXC7YrH800KIuSPM2RWj0xGd01JZnWIbd//ec4H/4+GZCEwqxHkX17IooUDIf2g4eURYnjWgTrkHp3TtR2l7qqRTtTGgoNpduBYCkiBA2DPEl3NaQ1w6MhZVlz9+aKD378BMtSmS9jdF3cd/K85sFRCyzRUmZrCp4u5EqrLCfKK6ZRgSanYhwPKLKMqyl8OY14MrDeJV9WdYOuSoxXJXklsoI3G1GH2z48EJpawPZsXM/CsjSCIMVfh2RJRrvfFpIjW6fTMUXF5jrhehYy7FiMFxHLZYyiyOx1LJK85BdnKz6730FvG0yDjM3OuW8o37rcv7kX/YeO774DW5b4o+tiHJqmIqYGqNNcMI87ZkJqdQQAmd7SzOegKJg/+YTseoXimRj3hsimRu1vRXxCty/yGGVZAIgoAtumCbY0eY467JB99ZZiuaUpK8zf+0CACdMUAOTiAnwfbdTBejSimUzJJz7ZzQrNUEW8kq5SlxXWwxGSrmIfdshXEXFc8tnjLr97NmORFbR1FVOWSYoKTZa4zHLSuqahIasbjgzhQI/rmk1Zsy5rPo9E0Or7tsZNXjArKjZVhS5JXF/4/Ob1iq/ebpiuEpyWwWSaYHsG/Z7J+w/bDNqCPSo3MYYk8auzNfdHDsulYFcemjqPXAu1bbPdgVW9YzOdJRTLENk2SMIcTVPYBjmzZcJJ3xa7VUliGucc7tmMPJ2LcURdNcRxSZHXLF7PSb54S+8PHwuGMIqQNE2AyDRFevqhOP/9Ec3Lr2n+4Rc020AATxAja0m0RjWBTxNHAlxuVoLVvr2m+fq5aBnSDZrnXwjKPxajbuPhAcgSuZ+g6zL2fkusjTCmTnPyuw3LeYJjq8ieIzY5gwHM50j9AeXPfkZ5N6f68vk/uoorMJ8KhvXuTqwnRaHxA8GiqyIOrE4KoQEtv1sM/f/X4xt2SJc1JGSyKkNGJq+Kd93ecSFYLUWSGYczroI5kzBEluDHT+6zmG8Y9tqcHo+o64Y4y8kqEaH0drOkb9vkVckyjnF0nbquMU0d17N5cS4yLwF++uFjJEnCUFWiouDzmzuWScJw1GU46nI1XzGfbwi3MYau4fsRmqaiqgp7B30kSWIw6JAkGVle8PCje3z5y5f4q4BOzwNZoigr0am+TCEpqbMSsgqpb4IqC4d7XEJRk5+txd2+rRPOt+DnwuQDvHl7y/PXV7x9cc1yHeA6Fn4YY1sGw16b48Mh/Y4HacU2iKFj8NWvXnO8P2C7Y17lY5eDR/soikwQJaAKt7AfRKxXAaqqsN3GtBxLdLVvtowGHVRVQVNVfD/keH9IZ6/NciJG2PGO3Ti/nPCbF+c8ff8Ue1cEYKpC8xVkGT/YuwfAvjtgGq/55fgZSZEyT5boikqQhxiqRlJmREVCVuYokkKQb6nqmjP/kl+NX7BKNwztHmebKwDyncP8aNDFsgy2gQDmnY4rWNxcPB/4Eev1Fs+x6Dk2nq7zqNvlyve53znif3r1Gy6Xa3725g31jmnumSY32wWTaC6iwGQNWZLZ5ltaukgzKeuSuEjflSV83w5XV3D0XSSWrpIWYlwuyxJJLhzHV+MtmiIJF3zTcDUVZp+6bnj/4yO26y2tlsF77x8CkGXlbuReMVvFeJ5BFBVst5nIDrU0TFNDNzSuz2fUdU3TNHz66TGKIr3rUR+Pt2y3Gd2Bx+HJgOViS7AKyNOcPM3JkkxUszome4ddFFUROZep8GSYR6fc/uLvYDPFPDoV94CdIZnYFzFLRSa+Du6Je0oo7iEUKc31cwFS+ydCOxrMwZ+BrLCcLNlcXhG8/hqSEMuxhEnLs9FNnVa/g3N8CmnIaibY0+jLn6M6LlW+Gwc7XdSDh6iaKgBlnqCoCtFmy2YZoJs6WZqB26UsSuqiEK58rycyrIMl1sExeH2aOIQ0oq5qVE1lcjlhNdtw9PhUxBYVws8RhoJdfHQifA33hw55UTENC7Z5ySYtyKuaMKvxDFmkIOQVSSlKWOZxjq5KXAcZP78MWEQ5hy2Dq3UmfnyJ+H3s9Wxs18Zf+dDUaJaJoihUVUNZ1iRxjr/wkRUZ2xH5ru22ITrdDZVnr5fM5xHP3ywpyxpFkQWA9lOSvKLj6KQ7tnURpIw80d50F6bMFzFdRyfJv/v39bvBZ5YJcLIbtzfpjq2sajHaQhiBME3RiLP1has4TQn+4rdkv3yGcdhB0hRQVdH48+H7NHFMc34mInOSBPZEGwu6jmSZFLOAYrykKSuqbYracwVADUMBJHYMaL0JoNejDBKSt3PqrECxdahqZFun9BP0h0fiPVoW8d2G+SLBtlXengfc33dRJIlNVjJsifytiyTjyND4Qc/BURQOdY11WeGXFZuyZqgp6LKEKoElizrLtK450FVMWWJelrwOEsKqJqpq9noWy1nMe5+Kf+PGz9FcE9NUGWgqd+MIddcr3RvaLJOCgSaMQlXVsHwxZTSykZF49fmUJCkJNinlSoxLdF3GcTRaroYf5OiKyAXbdwwmsxjP0+m7GratYpoqvZ5B91Bc2LEskSaQZWC7SJ3eu9Yq4hDShGa5Enmu3T6SriN9/GOkh4+Rej0BCEEYwIBmsxGbCddFevIYSddpJmPhUN+sYP8Y2j3qjTAdWUddOm0Dfa+N2rIo5lvi11MADj7ex3m0RznbiDXo+9SrDem/+0uUR/dR93qijGC1EtpgXafJMxp/g/TeE8HIBoGI3ypLmtVamNrqXWvW9zTns2pKXM1B/kcxSiBAhND2GRiKTt3USJLMNo8xVJVlkvCr373mN68vOToZUTcNeVWxf9Dn04N9VknC69WKVZIQ5TkHrieApSJunIv5hulkRZEXxHHK3kGfl8slszBi5Dgi97Mo2W5jRq5DFCasVwFNA5qmIssyrmtRFCVPDkYkcUq/32ax2BCEovHn7fWERx+dQg2b1ZaDPdFGlC0ipJHF8ScnyIaKcdKmCQuh+axqkdNp7KpgVRk6hmBERxaYCvntltVkTV2IKKaTgyF+EPH0yT1kRWYbJliWgWHoyCOL28kCzTEgq3EcUwBNQxFa07rm4nzMoCtGW2fnd5R1TRBE5HmJvXsf1zZxbJOVH1KW1Y55MLkezzF1nd6eAKW2adDxHI4OBuiGhmsarJKEvCppGzaeYaDIMllZEO80kd+kDnTMNm3D44fDH/Dp8ENausueLcwSYZFQ1AWLZI0kSXTNFp/tPaFteFwHY6bRmqTMRDyTO2QZCX3YYNTBsU3aHY9Bv02W5ry9nRLHKY+fnHDvdJ95EOLoOtdBQNU0/Le/+Vt+tH/AQdvjD05PmEcR+i7Luapr/u7mBUVdEBYhi3SBowlt8jfSgaZpkJEo6u/fhrGmYeRpGJpMVdXCNd40VJWIWdIUGV2XUWUJ11TxI2EKiaKcs+fXnJ8tOLo/Io4LZrOQ4X6Xk+M2cVqyXCVEUUFRVAwHNooiYVlic7pZR4R+RF3XlEXJ/vGA8TQkCDIsSxPd8ElGFOU4js5ysSUJE2RZRjO0d5meuqHT61nEcY5laczPr8miGLKYdD7DfCCyPdPlUoDBphYsaHuEdf+p0CIaDoxfi3G7YYtoIM0U7KKsCEY0T8DdSfqitYg/yhNoatR2jyRKePDkSJiEtoLk0AwNeock8xm4fbA8nLYD67H4nppgS1fTFcbRA7DbrF6+AEl0vMdhLLSe2e5rtTNH1Y0A0m6XZD5Ds0RslOS0cDsuqqbSHrSRZAHkgyAjDIXkqNXSkSSJTZSziXOqBnquAGpDy8DWFD7ut/nByMNUZA5a4nyFeU2QlfhZhaGInM8fHzu0TIU3y4QgLnB0hff2HEa7tqaqquiNehiuS3fUpdP3aJqGq7dT8jRncDjg6MEB8Q7LLZcJkiTx62dT2m2DXs/i0f0ueV6hKBLGbox+M9kSpgVBUnC1FDFLAFFaMA1F21mSV4TpdyfKfPfYfbkUY+6yRO2JzmJJldGGnmAYFAWp3fo2DF4TYfTVfEXrTz4WjxcFHB6K93JdJE2jWS7FibRtEYu0i3NClqnDGP10j+TrK/T9NmrHEVmjhkE1X6F844Lv9ZB1neTvPqfJK2RLE6amg87ucyrUsQhWXX49fqejmWxSRi2D0cjiehKhyxJ102DbGm/WMW1V4X7fJopLxrkImdcliXlR4SoS11lJVNUcGSq2LFPRvKO/3yYFnzgml1mOLUsc6DpJUtLpGBjHPW7+4hX7ezZIYBoKe22T16uIrG5oKQr/7nd3/HDo8ewu5YEhQl6vxxE1DXtdk9k6ZZaWtDwRm7Hd5riuRhSVaKpMKlVYloqqiCpPU1fo7LnEsdCSWn2Hpqypk0I0JyUJHBx8ywKWBdLJA7E7vfcevPpSmHOOjqDbF4D06o04d44nsjZ1HWSZJo6QBkOaPEPqDQSg9VpInR7N1YVYH7IChoE8GqDsKk/1/TblOkI/HrD5ekwYFliWQqtliiKDtED1fcrZBnXUQfIT7v6Hv2Hw/h56UUCvh9TtQncAwz1hQjIt2KyQHj+l/MufIW0C5E8+ov7iGXVZQRzTJN8/8wKAnwcokooiyXQMD1VSQQFd0UjKlL7ZR0KseUe1OfJGXPpzVkufP/zR+6ziBFNTGTkOsyjCVBWqpmEex1R1TcswuAtDjjwPTVFIy5Ikztjf63FxMabXb6NqKi3LQEJisfS5Ao7aLbRRH0vT+PXzt4KlcCyULGcw7FDkJb22y2IdkBQFr89uUBQFxzJZj5d0ex5t1+bs/A7ZUlEVwQ5V2wylY7I36FAUJfU2J8uSb1lPRYZxBEkFA1OM4r+pKcwqCHI4dGCVglajdW22UczeoMuw5fLi5SXDXptoJ0HY63cZn0+FhrSt8/Lnr+k+HpJt1ygjAT7HsxWqqrA/6DFf+ZRZwcHBgHLH0hq6yjoQm8dvHPaeY7FYB7Q9h3bbYb70GXRbWLZJluUkcYqiKCRFwXGrRdU0ZGXONsv4/YOHxEXKvdYhF/4djqbzXndIW2+RVzlX22viMkZXdOIywNGEa3ybR4zsHkmZ0dI9FElBlzWG5oC8LlBkUVagy3DY8riuBOvb6XrEUcJB2+NmVwhQ1zW6rjEcdojChGWSUDfNu0Dtf/Xnf8do1GXeizlseXRMk5Hd4ri1x00wJSxiYMGBc8BddEdW5Ry7R9yGdwBCPvI9rMR9MQ4ZeCauodBvmVR1I4Ll3fpd68zJnsfdRlyvJEkS4fBhwunjQ8JtJmQn8K4ms6xqFovonSlpuYzp921UVSFJCqIow/VMJn5Iq9cSLKiuoCgyy8XO7W2oDIYtXFfj9YsJsiIC7JMoYbjXxvcTRiOP9Tphu824eXUJqobmeRSTK9S9EwzTIJqMBZiUJBGhVqRgeZieI0ba6/EuYL4tGFBJFrFMZS7MQN5gZ0aSxGurEtp74rEyB7dHVVUYukFRVGwnU7onRwSrAEVVdjIyMUVA0fD/4Wdw+FSYjVoiWq7ZzMlUXWR4Aiyu0I/foyxKqjhC9VqUiagNreMS6hKz3yddrUCSsT2bqG6wXAu35bCeb0jCBN3URSRUyyDPRQJNUdQ8PG6zTQo+PG6zCnNO+yYPeiaaLDYZbzZbtnmFpkis4wpnN6qfbAu6tkJS1CiyqNi1NZX9fYsoryiqhqoGR5fZ23OFkSxMMCyDPM3xPJOtHxOvNiiWhdNykHY1ylGUY5oqRSE2wr/75Rle12PmWvR2zYOWrjLwDKwdU3+ziHh61Oar6w1JXvEnj3v8/O1GRMtVNWH83eDzu5nPXk+wRaqK0vGokxzZ1EjPF8KApKrQblO/eSvYpdkYigLl4SnZ80vCv38lRulXV5TjJXieAJ7GzoIvy8KNvGNXWSyQLYPidoH5YIji2aijXbf3fIEy3OWAep5YjIsFzY7arfMS8/4Q5f3HKHsD5LZHnRXc/i+/JopLgiAnjks6pkanbVDkNR1HQ0XC01RuphEKEt2d+P9FECMjcjyjuiauGzRJomz+T+7e9FeWNL/z+sQekZH7OZlnv/fcW1tXdVe18dI22DNjidEIJBBCIPECwR8Ab0FCvIDmBYi/gFcIJIsZXoxkBhmPkUfjmR53271Wd1Xd6qq7nnv23JfYt+cJXjxxzrWQXNYgYXCFdJV5M/NEZmRGZH7j+/suNSPL4CavsDWNWEhMDTIp0TU1mu8YOkUNt0VBXgi+uA6Iv7ghSSrMfguj7fLyQuXgWZqGo2sc91xOHJswLJBAjTI29TsWvm0yX+cI1Jly3oDtLBMqgqRlUpQSzzMpC4FlG3Q7FuORh8xKDh/16X/7BOoazdRB17B22lSLAPniFdrJKWiaYildTxl2grUKlRcCrdujvj5HfO97fPxf/k/84r/+Pc7++99DfvY5rFZqZJ9lSscbBNQf/1QZPu4ak6JIjcMtWwHX3V2stx/gHA+pZU14rthVxzHwPINWx1H6LllThRnZpy8x33tE+uUVRstm/O1jsssV+fmM4rPn1JsN9fUF9T/7Y3VGajuwf6QAqK4p5n21IjtfIksBloVmf/3MCwB9u6c6s6mxDfu+v32TB/cNMb7VYpEtqeqKn95+iaZpPDoc8+XZNZfnE4aex6vFivU2omM7TKKIHc/DNU0cw2DP93EMpUNaRDG2YzGdrTk8HmM7Fj3fI8oL1nHCeLfP5fkExzAopeB8ub4PdI6jlIcne3xzf4+j3QGappGmOX/yo8/wHAfbNEnTjE63hefYlELQ7ijg5Do219MlGBqtxok9fT5RI3ZRK2BZCHB0BUR3XTVmLwREDfi8C0GOS2UWEjXlLELXdZ6+uuLV1ZQwSvHbHp1ui/OXN8roYKrRfW/Ug7HHJojAUZ3x8/MFo2GPtu+x2obIWkIlycsS17XZBBFlJeh3fISQ7PQ76LqOaZq0fY9hr42maRwd7PLWo0OEEPfNQd2eT5rkfHk94Z3hiExUXIchXbuNZZikVaaisETFuLXDTTzhD15+n//09/4H/rO//z/zX/3vf58/vfyC22iOoelEZUJeFWyzkO9f/YK0SmlbbUQtWaVb4iKlZXqIWrLbavHRwT7jUR+v5bLdRIRFgWWpyJZ+v41pGggp0XWNLy9v+fWDE56d31LXNW+/c8xqFTC5WfDk7IpFknARrPgHT/6cuEzxLY/91v79fhyVEaWsWGbrJsfUvG9s+jot+32PeZCxjAs8xyQtBI6ls1opxreu1WPirKTfsgmbOJz9owHX5zNW0xWmqTObbkmSAsvSCYKc3d2GLNKg13MxDHVitF6nuK7Fehly9HCM61r0ei7bbUYU5fQHPovpmsFATcDm88bMZxokYcKDR2MO9tqcng7J84r1fMOrJ6/weipKrEwz9F3FQEop0do9MCysbo/s6kwBRiBPc/Krl2/yPIv0jQazSMHrNmP5JkJP0xXwlM3I3rQVMxqtMAyD7OwL5o1URUrJYDygWC1Uw49uqr9vD2HvLUWEiFK1Fl1/ibN/BF5bjfQ1HTSdIisatlNpWE3XQxa5MknbrgLOtkv38IBa1gzGA05OR6RJhmmZGKaB53sEm5iriyXjsY+UNdNpSNs1absm021GnJWEuepnf7VJ+IMnc/6L//En/Le/9zH/3T/4jO8/X/LxZcg6qXi1SJiEJdOw5J8/33ATqhOyoCzZpoKiqcAsqhrHMnjwoIft2rQ6LYJVQFUpSYDuurgtF9d36fY8allze71mvNPi+mJBsI4YHY0I1yGbxZbnX1wxm8XcziJ+8vmUTaRiot4/7tH3DIpCsI0L5nHJbJNSloKWY/6VDdZfzXzaNnVeoHW71IFqC5FZib3fU9dvp+i9BggKgTYcUT/7ArZbnHePcQAOD9F0HbPbuOX7feooQhuP1TrXa/A86tfnaJ4L7TaWpaoVZZKhdzqw3bL++Bz/eIDzW9++f3kySmj9xrtkT85wP3pLsaw3N4Q/fUkcV3T6LnkuGAwcnp1tWVeCj467SKlqxeq6Jq8ldq0xaZzrp57HTyYBO6bJrCzxdP2e9bxbMlmzaxmsqopJIeiaOpmUdA2N8q6XV1MZoJdZQSAEn36xZLdjky4iykI0Dnr1GE/XMQyND97u88nzNXuWQVHXxELi+xbrMMazDJJSjf7DuGR+viFISw7MFnEiGI081uucsqpVcLWo7wW/mmVQ3G7INilVKekcdNEsA5GVmINdxXQ241PaPdiuoMip77SdVUnyf3yPP/rxJWXDZjhpzpPf/5S/9d41VstBVoKbq5BZmBMJyaH7MR/9J38PbbijmNW6hjRSz5Xn6oSm5aBbBq0kp5yrM+5Wy0LTNLaXa9o7PuEqhVXK/rcS1QV/HXD4O2/RejymChKco6H63IVA+8YHCjgnsWrQ8tvItMR8+zEIQevf+NdY/8M/UWakr3HDUS5ybMOiEAWmblLKkpbpYeg6Sak02jo6tm7z3s4J//jFpwC8/fCAmpqB6xK1W1hNf/jY98mqih3PY5mmJGXJeDTi56+vGAw6WLqONTKbkOUSo+WR5yWvz27Z2enyr//aN+/r1jQNHp0ecHk95zvfeptJFPHp9S0X5xOqSkX6lGVFu+VxeTuHqGT/dNy0gwhlZqgkRVnBRpmHzD2Dq08vYWBDXIFvwrZU+s47siytVIZmJtR131Sg09QVUP0LPcSr2zVkghdnN7hNy5JtmWCpuBpKCZ6JEIL33jrm6csrqGuEVCYo0zRYbUNankOd1hTLEDmWbNaqlnIw6BBsYw73d5gtNsRJxrDXpt3yMAy9aZcxmczXbLcxtmUy3OliOxbBNub4YBdD07F0HdswaFkeQRERlymrNLp3sf8vT37AP/ujHyswDsz1JS9e3fDsV9+l3+9QCcHVxYzb2Yoky+l3f8B//u/+2+y1dnBNh0JWBGVIUqVkVYWl6zimwdDzyPeHbCNlQvBcG8MwWCy2eC2H21tlVDrfLkmTjOvbBd947wEPHu4TbCPajTt+nsT87QeP8UyH22iOhoZrONR1zWnnIZnIeH/4Hn9281Nc0/3rO4j+Ghff1ikqAVgUpcDQNaKsYmfHoywls21KVtpUTW+3YxlcXCmj2cHJCMcx6XRs9vaVhrDVsrAazeh45LPeZEoD6phcXmwY7vjUNXiHA+K4oCwFaVpRFiWTs2uGByM+/JUH6LqG4xjqBGncI9gmnL69R5qWfPk0YnZ2RWvYRzYtf1VZUc8vwfGxRvuIUlBKZdKrdY0y2N4DTbPTpbp6rhjMeKNAZNIAT91QhqMiUUA1jxtHvKEubU8BUsu9B6bV4gZERXx5Du0BRVYQrJTTPY1T1c7nqWYiZ/+I/OZCrUfTwfaURj2NoNv8FuYxZDGFbUKZK0NVWuB02uRxqtJbPBfdNEljpRPVDZ3L13OKvMA0TbpDxaLWRU2np4BnXUOrpVqCLFOnaqQVeSnJK8k/+viWH/7hn72pHHXb/NMXZ/SOD3FbLp2Oyx8vQ4JlQBWs+d96A37zd97lvcMeXdfgfJmgay5RLkiyiqoS9PvqZL3I+iSx2hbLtjBtk9V0hevusZqoCMZ1MCJPc8r1Evfdtzl564D1MsR3fDodNcU9Pekx8B0WQYZltJhsVDj94/0O21TwzQcD/nSVMu46iL9iUmF897vf/UvvlP/kH35X67SpZ3M036eOU+pKUm0TdNuknAVY4z7a6UO0bk/ldlIr0DpfUJzPEefXmDtdVXeZZcooZBgKkCyXaKen8OoVmm3Dycn9qD/65Bxz4FOHEa+/94Ldd0cYnkP5+gbz4aFi3HTV/272WmAYVNMV8eeXmP0Ws+uAPK3oDxwWi5SdgcvDUYvNJgc0qkoS54LHR22+WMRomkbfMHgWpexaJtdFhWfohEIxmWVd0zUNOqZOLGoObIuLvMLSNdqGjqxhaBksSwVGi7pmKySprClrqGqJIcBEw29brLc53ZZFlJb0TZMHpz02qxzH0NGE0jg5usbpgx5n0withlhIHF1jKyRBUlLUsNzk2LpGFJXEcUWvq1iSspKYpo7bdrD3+5z//JosE/SHrgJ9nq3yIEdDWC2RXz5V+sjVDG3vSOl3F3MoCtIffMIf/eiCL9OSbSV5mqrnFnXNp9OI21nM80nIWZzz01AF89/mJec/fIbz5CXdgYN++hB6QxVGv5xDWRL/+BlVmBLNY5y2g0hydMukyku8rkce5dzeJhSFIHs9w3YMeg+HFLdbnHeOMDwThFT7jq5DHCmW9vI1fPpzSBP0tx+h+UozXPz0CWWQ4X3rMaQp+t/99/+bf7mfiv//Ly+CZ991TYewiOjY7fuw+W0eYegGmzygbfn0nT6VLLmOplTNiHUWRtxO10yCkFG3zdDz2OY5r5crWrbarxZJwgejEZ9MpvQ7LY47HaZhhBCSVy+vGe8NWawCPvnsJe9/4yGmafDqZs7+sMcmy3Ask0IIdvsdSimYzNbM5xtansPlZI7nOPQ6LTZhzMnBLn7fJ8kyHNtSZ/lRwruPjxXL6RrgW2TnG6zjLnKbK7BZSKXxFDX0HHUmKJvrmxxcEyxd3da2IJcKfNa1Aq/N9SrKqV0TWUt8z2W1Cel2WoRZRqfnsz8aEAQJjmOR0nTIGxrvvveA68kCKWuKJFevMcpYRzFlnLOOEkzDoChK8qJi0PXV91GaYlkm3a5Py3f5xacvsU2DnV0FLPy2h6Zr9FseizTmyc0Ex7a4Dme8Nzxhk4fcRlt6jsP3Lp7yx3/4Q1hkapuiUoFs4PZ8xtnrW85fchlwFgAAIABJREFUT1jfrilfbyGuyMKMP/nZZ3z/8jmnR6OG5d5F1BWzeEXHcfnF6ytVlbkKafkeeVZgWgqI93ptVost59cz8qLkcrrEMAwO9odEYcp4t8940CUtK6KyYKfVYhIF7LRanG3mfO/iGZfhlIN2H9uwMHWTp+sXSCl50DlC1JK3uu9+rY7Z3/909t3djmou6ngWaSEoKkkQ5ug6rDcZw57Lya5PnFdEWYlh6hiGwfR2w+xmRVrUSh/cskjTipubLY6jWuPiuOD4sMvl1ZZ+36Pf91ivU7KsYj3fsnfQZzbZsH7+lPG7b2GYBpObNa7nqOxQR3kFHMdG1zUWs5BwE9LqdYgvz3GHQyzPJdsEtI9P0JwWeZzgdX1qWSO2a6xuDzk9V8yjqJDrqRqzp6HKba6lGrHXUj3G8RUz2RsrltPrKrBYFdAdqb+TlQKPpmocunfJS0mFiWmZyCRSTKWoMIdjpOUi4gbYNVMgpGBwekoya0b98RosDzYTZJ5BHiGSBEwXkSYN8FS1zjLcoLsepmVycLzD7RcvqA3FNNZ1ja6rE0lN14njkpvLFXWtEReCk70226RkG6lUgp+8WvODP/iBMlZVhQrcFyWUGfn8ljjMWJ29Jr06Q64nUBXIOOTyy9f8/MWGwf6AMK04HHikpSTJKyzL4PXZElnDer7Ba3v3jG4apQzHQzbLgDIMIIuZ3G6p0egf7JFECZ7vMdxpq2SErKLXc0mzEgFMFwmfPZ2TFoJu28YyVf/7s+stQtTs7/ikheDf+/b+X3q8fvXYXUqQEq3TJn9+jfHh+8iywmi7yFxVa1bTtTKthFs1sl0u1Q/9LCC42mDttBG3c5I//FOSf/FziulWjd43Gzg6oo5jFSA+HkOonO7FZIM97lLOAm5+fIFt62i2ieHbuH/vb6vnADg9RYSJGu1HEYtPr4njiroUBHHF7rjF5WVEklTsvr1La9ym13XwfZNWy2TQtfnsIqBvGmjAsqqIRE0kJL6uMbZMMlkjAd/QyaUkEpJT1yIU4p7drGrFhkZC0jY0ZoVyvevQsJs1H+22uSkKni1ippOEh/vK5WZqGq5jcPl6SxAWyhik6ww8k9M9n80qRddgVVWUdY2j6RioPvmoMc08XSXchDm5lKw3OTtjH13X6HZstsuE8NmE3V2P8chjtUipwgyZFOiuibi6RVxPVcC7risd6GquPk+gjhNuXq6YloKOoWNqGq3GzVw0LOimElzlFdd5hatrhEIB762QPF1EGG89VGeUaXwf3VTfTqgrweJKyQ8++9EV01lKXQmKQvKPf3bFk5eb+/iR/M45JyTeW2PKyxmarqPtje9bsEgS6rMXymy0v4/2q99B6w2oF3PYbLA/eKweV5ZfW+azkIViznSLSTzjQfuErMrxTAcdHSElYRk3znfJcWePTZ4TlwWrZcBqFWBZJpeLNf/0Z5/z2dPXxFHKKk3Z5BkPej1mccx+p83A84jLkqoSbNYhw2GX2XTFF88uGHTV2M9xbf7NX/mA20gxch+Ox8RRiqnrRHnB2fktQRQjhMS2LHZ3e5zfzIjilP6gw3DYod3y8Fwl1O91fJ5+8gpr5CsAGZdg6JTbFGStbs8apt1s7t8WGLut5rGaGr3LWulBU6FArKibbFBNMZuZ4PG3Tykvt2xWIctNyNHBLnlZodvKCDSZrwljtS2apdPttzk8GnFzs0AWgnyVKKZV8mbEnwmlPb+aczNZkmY5UZIxGvWxDBW2v1wGXF3OONwb0uv6XFzNmlzFAF3XmWwCbjbKkd9zHAohmMQLklLt09s859Xl9J6hxdEbwxVvtj2tYJYqMK5p6pegECBqVq8X7Hpt0ionKmKW6RZD1znfbtA0jdubBYZp8JOffXm/v6Rpzsf/4gkvnl1hNQ1XWaHMB3lecnC0y2yxISwK9nodDrtdwiInF4JfLiYcdvp8Y2eH/+Abv8tbvVNkXROVMe/0HyNqSSmrr6XbXciapBB0PZtXtwG//c6QslJ1l3UNUtYswoyk+f6zLYP1Wo3IszijDEPyNGdyveTJx6+5vlhQy5ogUH3wo5HPfJkwHHq02zZhmJPnKh7MciyuXs/ZvnoJ7QGOY9Fq2fzWd07JsgrT1Hl42GXT1DJHUU6wCsiTFCkkxnCP3rBLPF+CKGl1WnQGHcwm9khUAv/ggPL6JdrBWwrY1fUbI5GmQ3+snOZ5ov6fRapes7P7puM9XitApulK63n394apAFpdg2HSfvyuun95RbWconcbg1Iz6md6BmWG2R0o1rTVg+Ehq+mqyYkO34zk78Cw4zeGqKdq3bWEcKm63702hmmQJRmXZ1Pc0Riv7bFdbpFCUuYltayJg5hgE2HaJu2OQxTlXC1ikly9x+u44OomUOs2HQWo757/DiQnW/X6QN0vRfMeWLCZYegamyDjdpOR5CoObrVOqcqK+c0Ct+Uy++UXbJr4uDLLmX32CcnVawXQTRsyRcJJIRmM+iTxG9Z8OGypMphcMFskHI59jo66/No3Rhzv+koFGWT89nsjFQ8nJJX46m73v5L5ZDyGsqS6WVBd3KJZyqUoiwrvo7fInt+ofMayRHNdtNEeTCeQFbg7PuagQ36xoC4F/gfHGD0frd9XYfJBAJsN1cUE3TEVIBUSmRSIOOfy6YL94y5ex8HseJi/+evqTb++ps5ztDyHvEDrtJHrAD3NcdsOIi3YO+xy+XrbHMgm+SYlWqV4nkmSVM3Zo0adCZZlhaVpbITkG57bhMVr3BYVg6ZGMxYS39BxdI1pURHJmqKGvqmjowCmrWtIIBA1bUN1FSeyxtM1Pg8yylqRMGkpGTgmL5eJArWVxDF1ilLi2Aa+Z7KJSoZ9hySpqMuaSVnRMZTTvm0YFFKN90UNaDAvKxIhsTSdKqnwXJOykvT32rROdlhfblivczodG1kJbl+ucItChfP3W4gww3BMtAcP1Y9RpwdpgpzM8GoFuLtlzaKqEM37c7e9hYS1kJQ12LpibAemgW9ouLrO45GN/rt/FzYr6rMXkKZkX1xwfb7l2TLhYp1S1TXLtORo6HJ9EzN2bTZlRQ302zZHbw+Z3YR4eq1GBwMfmZfoSPB9tBMVNYPnoRkm2s5IRS1NrsGyqF5coNcVYhlhv32MuJli/jv/8deKRQH4cv3ku76lajRvkxnLfIWsazWGlyWPew+ZxDMGTk/pEYEdz+OLhRp7DwYdXM9hOlnhuDZHx2N2u23ats3Q9VhnGcsk4Wa2Yrfb5mqzpa6hyEvyrODies5bpweYho7nOfydt99mm2dcrDYIKUlFRZRmtD2XbZggKsnuTo+yrNjd6fHi7BrbsvBbLtsgJokzdF0jSjI8x6aWklKHchErnWZYou+3qFFgUk5jGDqKAW2YSCydepmqHbWQivm8A4Oq31ABL88EtHtgur5cKYBb1WS6oNv2mU5XWLZJsInQG41jp93C9zyWm4B+V2kf86qimkTquVwDp+upsbymzF5oQFIh0pLSqClLgWkY1HVNr+ezt7/DdLpiGyX0Oj5JknEzWWJoGlLWuK5NGCZolsGH4wNVi+n1CAtVk9rttBgcDXH7Hqtl2JivmuB9iQLaWaUAuq2DqVhkXAO96yB8k3/r3e+wLSJmyZppHHEThlxcTLl8cct8vUXKmjBMGI36nF1MGOz1SbMCmZVYrs3j0wPOr6Y4tk1ZVgyGXYQQxHlOy7b51f0HCFmx22phagbf3nuHsTdims4wNIO4jKlkxTrbctw5JCxCPhh8+LU6Zn//08l3T4cemai5XcY8uwkxDL2J5xF8+NYO5zche8MWjqkai3YGHtN5TFUK2jt9Wr5HFmc4nsPOuIfjWLTbNv2+RxQVpGnFbBrQaqnIpbzp466KiiRQDTi6YeJ3W7z9aMBymzKdqCSKOC2JImVqiuOCPMvp7fSp6xrXd5lf3Kiwdk0jjjKklEghFfDs+sRBDKYHm6lqBCpz9NExddmM0lfXiu3UDaX5rAV4PQhmCjTWtWI+66ZN7y6fWdPU6L2u1eO8HsX1qze3GRa17SlnPSDzXIFWKZBa004Ub6DVpc5Stb7llQJ9duO4v2vpK1MF8orsnm2tdBukxDCVs32w22V5M6fcrnE6HbI4I5nPqXVTdcZbFnmS43gOpw/7Kmqs7TRjd8HOwGNwfIDe3SVcrJXu9a4WUzfUtmu6ep2G2bjth0o20B1Qaibf+WCfKC+ZbVPipCRNK1bzLcX1K4qliqhicY4x3KeMIszhCJnG6rl0g+7xCdntBTnqe7A/bFMUgiRRjVv7uz4S6LZt8kryYNRm6NvcrjMVCZ6U1GhMVymn+x1uVgn/0XeO/x8yn1WlWM2yxGi7mN0WZselFk3jkWgCnItCudYtuxEHa8i8xNrtkr2aMD/fILKS/Gr5hqXabqEoKK8XamdxXVWxebuhWidcPltysN/CaDu4p7uYH75HPZ9RX14qHeloBJqmciCThPjphDQqCFcJumORxzl5IXjrcZfDozajRwN2xy0m0wTbNpCiZr3OqWromgaJlLzjKSPUHaOXyJqboqKl65w4NrGUaGgUNQxNHVkrYOk0erFAKGNS19CUphMoGpAq6ppMKkZwXVXcrjNmZcVFXlDUNeu0wvdN0rTCsnXarslsnuG3LDIp+bDXwjfUx+XoioHsmQaiCb1PRE0oJNeNyUnKmk7bwuy1qIKEzaZg0HcoSsntJCFNBbWQyKwkv1xRTLZUt0vqKFR1lUWO5nkYvTb2QZ+dx8olbWoqZqpjaLi6xraSCnhr6j5b0zh1TA5tE0vTsDUd46MPYHqj9hPThNWKcpuyCAssTbt/b/qmyiGbZSVBrhqgclkTBAVXz5fs7rgslxmyqFTl2e4AGakIrvrZU5hO1fXZlPr6Qm3DaA/NtjF8m7psonfSlOiLm3/pH4q/CYtt2OQiJxM5rungmQ4Dt9fE8SgGoBQVhSzY5FtykbNINuRNXqPtWKyWW6aLNWVRslmH9+ueJwlBnrNZh9i2hWea+K7DYrZms4m4niw5OdhF0zRGe0M+OjnkyWzCZRDwwf6YUadNUpa0Oy2iouDl2Q1lWbFYKJY9DFWk0sOTPfbHQ06ORvS6PkGU0HId5frOC8qswNxpQVDQPh1g6E2Mkt5EKS0zcI2GBRUKpMpagStNU0yn3oDOtFKP0VWAPPCGBa0bhrAQ1OucxTqAVUZxE4KpkxcFO/0uSZarHviuT5SousS8KNj76Bi9a2PZFq5jq3O6YVuBPl2/15/K85A0zdE0Dde1cV2b+WzNfK0c70JI5qstaaZY7ThKmd4uCYOY5TogLFIqKUiqDNc0sQ2Dse9zujtUxr07vXrLUtuVCwW+LV1tq6lD11ISBEBD49HOkOtwSi4KoiIjKgqyrFDvgWuq90pKOt0WZVlRiYo4ybBdC0pJluS8vpgw7HXYBBGGoSOE4LDXaO6rkh9cvmIax0yiiItgzR+9/Bkvtq+wdYukSigazWAlK0pR8HJ7/td0FP31LbZpMAkL0kLguhaOY9Juoo6EUNr9u1SEeaBYrUVj6tANHcu22K4CkusLwk3IcrbFNJuYvmWixuvLEMu2Gh2nSRzEpFFKOr2l1W1j2Rajwx0ODzucXwVEUcnpox18X0ltfN8hyyom5xPyOGU1WZCnOdE2gjRiMB6wc7zP+GisPq9gjdtyScJEhcKXGfT3IA1wjh4pjWVdKybP8ZW7va7VSL2uFQsHCnTejdVBgS5Nf6MDzWOFNwyrAWeaYkurQv0rC8VWlplaj6aj9ZSuUzNNpfHME5xe47Q//qZ6HtNWQM20FQNbNsDvzvC2nVIHK9ANZWjVNDarEITAGe4ipUQsbqBI0XSNLMlI45QkStiuQspKYmgaRSWaTh2BZ5t02w6Gob95bt1Q708WKVB9Z84qc+gfvKnMBHo9h+k2VVFdslYmoE1Kvtm+ia6SAkanKgVgfUOVpup5ygzyhGAyU1KHqkRUCkMMBh6+bxPHJU9fquzP5TqlqiTPLjecLxI8x2C+TTF1DUPXVExXKTh7vf7Kff+rwecdqKxr1en+YB+ZVZg9j7oUyPUWzdBV9FG/D50e9dUlSIn9/iOqZYg18On1bFqPRjgPRtTrjQK1aYpcrBBJjiwqgj/+KeVsgzXuUgvJo984wX//EOdkB/29dxTbeX2jmpTCUDmWHykjSX4+w95tM/rtd/A8ky9/ueDJyw2nDzsUhWqzWbzesFlnHB/5ZFlFUQqqSlLWNYlQl6CYu6Ku2TFNBqbOA8diVlZshaBout1PHJNASN71bHxdJ5UKPJ06FomQ2LpGUElWlcTVlSNeA9KmSWlVSTZVRSJrnqYlr7ICTYNX6xTd0AjDAt3QWGclX1wHtHSdvb0Wp4dtdls2uZRYmkYqJQYagRD0TPVRDk2T50lGkpRkmUC3TXTH4sFJm7KSxHF5H2T7518u+fLZmpvXioo3ep4Ch46rxu6mMn4Zvo190Oethx26hobfgF9T09ixDPTm8sgxeNtT49FUSmpgxzLRjh5Atw/RFvH8FeVCdcQGQrCuVCuUqGuWZcWfvVjh6hrLsqLrWfcMsqZpzOYpjmOwfL2mClIVaC+kMq4dHCiZyHqNtn+gHPZFAcGGOo7R9sZouzsqMmy1Igi+Ogbib+qSi5xtESBrSVykDJ0BSalczLZhscpU24Wt29iGRcfq8GqzZNRp8/bhmDCIcV2bfrdNt9em2/NZx4nqn64qwiBu+oAFf/rpU1abkIOjEb7v8s33TxkMu4zGAz7YH/N0viDIcvquy2XT7/6t8Zg0zbm+nLE/HvDtbz3GNA3OriZcv5pwcrBLkqhu+LPzCVGs+tXDOCEvK+I0A1OnClRfe5LlWKYBaYXb9aBlwr4P65xy1hjmcqFui0oVq6TRmJFqOGkrYOqa6lI0DGFaNSyDpi5lTZYXCrCGJcxSfM/l9moOwDqIqGsIwoSzlzdYpkm/1+b0aI9B1yfNcupCEMYpeseGsADPUEzkoU8yCSgq1eLT8l06nRaPjvdJ0pwgSsgTBU6fv7zm1fktcZJj2RZHoyFty6VluYRFgmc6BHlOXdfst9uM94dqG/zGW9o49TF0pYFtWbDjNs1yCpTKWvLh+ISxv0MlBV8sFiRlSVVW5HGmXrtvgagJrzd88ePnWKZJdhvgOjbWQMXJGYZOnCo27K5MYJNlTc5hyluDAaB0xMfdPlFRkJQZVS1wDYeu3VF6W6tFJnKWyeb/i0Pq//Xldq2kVXlecbjjE2cVbddSzvW0wDA0LFNH12DYcUjTil7PY+9gQJmXiuW3HHYPdunvdEmSEsPQFPBcRaphaxPx7JfXhGHOcNzHbbkMHz+mv9tjtNfj6KjLzU1InlfYtsFymeD7Fgd7bfK8YjnbcvjogG//5rtohkExvaJaL+icPEBKSbAKWNwukFLi7+1TFiUiiRVbaLmK+ZSCfLWgKgrFtu0+UIBo50QZjIpU/T+PFTOZbBRwsr039/uDN29cLRUQs1w1ltYaOGOYShOqawrAZZFiUh1PBdcbFnWeq7+NVuTXZ2DatEdD3Advg99V65NChd67bTWKB7Wu/sE9sNQ0jXbHxXEdrLZPVVaUYahes2GSnT+j2qxI4xTLtmj3fLotC9c2CJISzzYpCkGclTiWzs6Od9/whCjfAGDdUJetHhy+0xyvGcRrZJow7Hn3TOpkElGWqjiALFKyBSnUuuIN4bMnCugHC6VfbQ+b9aVNCsCaJEqIwvReH5ymJUdHXTodFUR/MFT1o0LWlJVE0xTojLKKTsdmts3YrkK+avlK8CnjFBGlkKYKZHY6GL5NuYxo/avfQqblm7zPvT3qyzO04xMVnRQEmAOfYhZgtV2KecDi+08pplvFfqYp1UYFtlbbBO90F8N30B0L/1vHKuNR1tBuUz9/QV2UaEeHaN2uiloCyu//iOSLa8x+i3QWsvzzFzx5saGqa9476VBVKs1/MY1ZrZUe6uYmptOx1YlXAzg3QrBvWfRdk7Jh8c7yHFHXGBq84znMigrf0IkaoLosJatKkDQ6UFPTqFCMaSZruqaOqYGuaY37XY2iqxqObJPzrGRZCqq6Zlqo0f+0rFiEBZOwwLGV411HIxKSm9uEzy633MY5fd/CM3RWlbgHgTrQNnQWVYUG3MYFm22OSAsmn09I04qqlJSlxNWVftXTdSIhiOOSIiuZ//CVikpaL98cyJZFdrGkWsW8OA8YmCYnTdjsY9fm1LE4tA1ajUbW1rR7Tapv6PzKf/gdNfq+OqMOAnTbREQZZ69DNlWFqWksykploNU1uZR0bRNDg5+uIjzT4GC/Ra9rY5kqcHkw8rn55Ibox88QSXMW++oV2kf/ivpOOn+tHO26ptz7k4liW8+uEVFOXVbofyG94Ou0BEVIIQpkLXBNh47dwbdazJIF7w/fRdaSXBSYukHX7nAZ3vC3Tt7HNU2mUXQfo+M6FmEQ8+UX5xR5qdi8siLLCsqyIgoTRntDWr6HEIKDw13VIe9YDF2Xz2+n2JbJ4+GAlmky9DzSsuRPPn/GbLKi12+zWGz55Mkrrq/n1FXN3oMRAGVZEcQpaZZTlhWT+ZqO37o/CUHUEBRYfY92y1OsrWeSXW0VmwgYe74SYzu6ApJ141JfZQpk5kIxfpVUY+eqyQSFhkHVFEjVNQVI+w5chI0zHsgqolUEy4w8L1XNp2kgCsWellXFbLnh1YtrZtdLxjt9LM+BsFCO+Rr1elxDvaZCspxv2Gwi0iRnNluT5cW9m9hpOVSZYoAM0yBKUkQl+NHPn5JUOWERk1UFRjOW/Px2yjyOef7sErProu96YGq0D3u0xh3o26CBfaBCse9zUYHf/q0POdtMebZ6zSrd4poGSV7w9PmliqlyDMUu3x1Dpkbb96DnEDydUdc1493+/WfW77bpdlRG688+eX6/r34+m/Odw1NalsUvJjeNwS1i4PRZ51uCImSRrpBI0ipF/xpGLc22KXkpCNMSyzI47Lu0HJPlNuM7741JC6Wz09DwXYsoq3j3YR/PM9msEzRdI4kSnJ1dgnXA5efPKcvqXi8qhaQqlJt9dDCk08TY7e4P0Jv9vdt1ePligW0bjMc+hqFh2wabTcYvv5wRBwnDUZeb17d8/ovX1GkMjo/Z30UKqRzSYYhME/I4JZ5O0HUd3WspMJPHipkcHGD2Bgo0mTZMXjRMXtaMwdfqMovuG4fuQeDdOL3peqeWjW5UU8+hG+o221OgcnCgMkQbHTRFqv5/ByLTANzWm9+5NCCazsiuz5U2tLvbsK4NuC1zxaYapopoykLqYEW2CUjTktnVTMkNhFDrdDzFyFqu2v4kRNM0ppczoqwizivs5oSirmE6j1lsUp798ga93cPcPQR/gLd3gHNworbHtDFHh4o5FtX9e7H39kPWQcY6ykkLQbttk2Ul85u5Au2mo17DHbiU4k2Y/+XnKq5q5wCjr1hhc3SI7disJituvnhBVQp0XePsbM3JXoednRbPzjdqH4lzTnd9oqigFJLZJr1n6u+a7v6y5SvvrTYJIsyUqQfQPvo1NEsFwid//gRzp6O+yDcbsn/yfZXHOZ1Au03+ekZ+s8bstTD7LS5frGgNWtSlYPaP/gwA+9EBZq+FPeqi6Tp6y4VWi2KyQUQZ1Tom/eQlxSxQzz8cKnb19Tn5Tz7HfHiA99aY8z97zfV1zNV1xOmBz7fe31UVYYXAdgwulwnvfHPEYORzfNzmdpJwvk7xdJ1NpUwyfcdENzQKWePqKs+zZ6ovu+dN69GyVD3vk0JwYBtkssbU1Ii9b+pc5RUHtmonshvp2N1j/iLD+iQpWFYSCbR0HUnNi7SgkDXzsmRalvzkdstWCEIhKOu6ab5oPpdKsYQGkDT5on3TxDd0OoaB03TTr8OCs49vqERNFJfUNYx2XQVUTQMJhEJpYjvv7tN/Z4x4fqZYw7vFNBFxTvByzvG+T15LHF3n19oehqYRCsEDx2ZsmfQMA4ka/1uaxq+fDlQjlaYpUfN6jUgKnv9iQiHU6CEQknkpCSpJKtV7cpXm2JrOqWszyQrmi0wFfJ/28UZtnAdDDENnMY2pS0E525I+uyH/g/9TyTe6XcXGm5Yasbz3DRiPsUY9NFOnmAV/ZQbZ39QlKVOiMiGpVH/xkX+MpVu4psPHs8/wLR/HsKmk4Gx7yUnnkPPtDYamcXUxY70M6PZ8XM/h9dWM3d0ewTbm+z//EsPQOTrYxTQNuj2/ySGs6XguwTYmz0uCbcyTF5cUeUklBOOWT9dxeHY95bOn5xzuDdk/3OXJF69ZbkImixUnJ3u8+/YxfsslipWzfbnY8uEHjxj0O5wcjri8nbOdbel1fMW8DV0sU2Vr1jSjY1NXDF9WISaxYviShgGZpSpq6Q74VfUbENWx1XWrAWBV436/e6ysVVB9VSvge8eINgAs2SbUUcn82VQ9X1pRJ9V9Vi2mCnIWshl3x6UCth1Lgdy7sXdYEqcZz19eURSK5TUMnV7HJ08LesMuSInYKv3rO48Oef+DU34xmZBWJUNXxbsYus52E/GLlxccHY2okgJZSh5+4xjbtkg2MePxAL1j0/ab/uxVBpbO/qM99rsdPNNk1xswTxIMTefjnz97M8JfZOo92hTqPalhNd1AIbAe9qninG2UoOsax4cjul2fg6NdOn6LoigJg5g0yVnMN/yvP/whWVXxoNdj1GrhmjZPFk8xdRNbt9hxB1i6ybYI0fn6HbTrKCdKS+K8ou1Z/O3TPk4TFv/Pf37DOwddTFNnFeW8vNnyYNfncqa62WcXt2RxxnBviK7r5BfP8XZ2iLcxX356TqtlsTvu4Xd9Roe7uK5Fmpb4vs1mFSqWrqj44rOr+zFry7PodhwmN2tuLuYMBi38bovXnz6DYEkVBvSODhg+PMHxHPI0R1QCasmjj96h1W3TPjggXy2Q4Ub1n4MCh7pxz9JSFQqY9fagbcBkAAAgAElEQVQUu7i+UaHvWdhELaWKYdQ0BZb+YtyS5aqR/J1rXdPUeNq0FWg1TNWYFG/e5IEallpnq9GTSgGTVwqUgWpR0nT1t24H3bIUcK0K9Zq8jmIe7ZYCfrrRrKdi+uIcigyRqu9cp9sBIdD9zr15yBnucvrOAUeP9nn9ek1dN4UBzY/6Yh7y8tmMzqCDLHKqqmL83rtYtkW+DemP+hjtLn7HV3mjeazW3erS7bpoGqqcoBS4rsnFi+s3MXN3hq0785IoVaZpvIHdh6AbiO0SEQU4wyG2Y7N3PML1XTAswk1Inpcspyv+9M9fcXsb4jgGVSUZ9zw+vdjgOAauZXA88rFNg2XTLf9Vy1fmfFbbFHPoqwpNUCxSrwc3a6ihWoa4j0fUWY7hu2hNF3y92eA83id/PcXouMS/vKaqamResp5G7L69C66rxqGOSbkIcd85Iv3yEt2xVJVnUaF5Nu7DXTTbopxtsZZLuLwEwN7vIW5nFLOATttS/456iEiNp56+3GIbSpz/wWmP2eWW9SZXo6BKcOjbrNIS3zDIpaTXtVmuMjxd42VSsm+ZDTMoaRk6NTWHjslNXlHV0NKV5vEsK7EaHSRwr4HsmyqeSQIG6jtaMZlqyZqdzjTA0TTyusZsxvpFrQxMpqaRCFXpWdQ1NTU2ahxvatr9uNrWNGpq2rrSrqpxvBprt4TJ7Sph7NnsDC0qUeP7KqDe0zWGjkMcV2y/uAVg53e/qaKyNut7Xa6sJGeXIde5kgdUdc1FXlAD81JQ1jk9U+We6prGiWPTvmORkgS6XerLc8gyzEEb29a5SQs0IBKSPdtgUQq+0XIIhMpAzRHEEh77HkJIrm9i3tvvotkmumdz+JsPKWcBs6dzhns+/gdHStMZx8jZgrqoMD4q0fYOod1BMwxqTcNoL5BpQbfnfPWR8Td0SaqMluli6iaWbtAyW4r5TBfojX7uqLNHJUt8W+mvTV11Rp883GO9CjAMg+VyiZCCKEoJooR33jrG1HXiLKfVcgnDhNOTPc6vZgS2SZ6XWE3kzuGxYjA365DnrRXzMMJrOXgth+UmJMuKpn5SYzTqs1hskVLy6uyGVttjvtry9uNDxbSB6m4HuqMu62WgwKKUDPsdZsuNYhJnKQxs7JZDsU4VqCsbxjJsXO62oQ7EqFSn3ZauHhMU6rrV7LN3Z3l3GaCyViYdQ4P/u+Fa1mpcnVTquqZBrrrkV5tQgVpZM1tu1ZToDtTqisG12i6lW6nXUNeEq4iT030uLyaMxgMc2yLLS/qDtmpH8l3qVk1RVTw/U7rl33j/MR3bYxqvmcYxQko8z+GXT8/JVrGSFADn5xO1PXHFrJhD21KgEcUUa5qGZZm4pnr8JF5QSsmo1WLY73D18lZtj46SN4Ql7HsqyqmpJi3nMcNHu2RZwfnFlA+/9Vg1nlSCb7z/kNVyy/nllEG3zdHJGF3XKYTgFxfXGKbBW6OY3zl+H1M36NldKikQUpKUGYMGXH+dliDI6fVcTENntU056bbY7TrM1gmaBrNtxrff2WURZPiexTxQJyR5XnH6/kOCTYJpmaRBBG6HNIgwHYedgx2qSirXum2SRCmjUYv5dEuaWIhKYNkWRV7w4PEeSVKwnG3xPIvtVkWJWbal5FtJTmtXabnb/TbRJqI2a+LFUjUaRTH940POfvYZZn+XKkuhKjAGY8RmoUCS16XVaZEsFooUyGMF5mqp2M4iadjIjgJ1d+ymaDSjjq/G33esqGkrQCmFil66Yz7vAOldo55smMi7oPqqUCB3c6vutz01os/jN855y0HOLhrWMlEh9bJSr9FRKR6koQKyyVbpWUPlmLfavuq8d1zVBV/XUNfkiymLfhuAt94e4VrKPLYJSoSQOK7N8uyCbRap7vg0ZnZ2pYBvGrBZXUFvj224aV5jM5bXdLWpus4mUVMVXdewHZti9hd8DX7j8LfVuPx+W7dT2HuMblnI2QX2wb5yq5eCg5MR+XjAzcsriqzg4OEeeqPpvLkJsG2TqpI8POhi6ApIO6ZBJdWEdbDT+cp9/6vH7mmBbpmIrWpbYH6DnM5BSESSU1cC48ERmmlg7nabsxSp3PHLAMN3KaZbjJbDztBFlILdt3awdtpQqPD6ahlhDXyKixlmT7X/ZNdrjLarvrR/dMb2Jy9JL5YqnFwItJ0hmmWy/uyaeBqi6xq9x7tsLzcUScHZ8xXDnk2/59Dp2Dw9D7hdq4M2aFzhRSk5GnqUteTRQP0IDwcur/OCfcu8H58Xd4ylrAkqBQxNDdxGG6oB3Wb85OrafXB8y9CbAHkNgbq8i2YCaBsarcaolDdAUwLXhSCTNYlQzwuwrCSREOSyppA1uVQxS56u35uPZK3G1o6uHOaapljRTV4qN7+lbhNVjW3p/F/cvVmPJGue5vUze2333WPLjFzOybPV2lW9VjeqbmCEZkAgBBppBELwAbjiC/ARuOMbcAEjIQESPWKEBK1eZrqr6K6u5dSpynNyi4w9PHy33ex9jYu/mfupuUguUHerjkmpiMjwcDczdzN77Pk/S6UNTx/KwVAaw8u30oAQ/+C5BP4P5URf3izZbEsxEFoWlWnQTUPdNKTGMHWFQV3XGmVJY9Na1zw5lYO0OruGsqT87BX5mzs+/V9+wjyusBAA7lmijxVtrFzZ60YC+EvTcJ+XJLUh14b4ZkN8vqSax9TzGMtzOHo2IVllmKKivFmj1zF26NPoBuvRU5r7W5qLM5qrS0gSqnmMKWp63zh954Hx67qUusJVLnGZsC1TsjpjVayxkR7tXOc86j0CwLNdkjrhKJrsjCy2bRPHGaNRj8logG1ZfO2TpwShT6U1B/0em03CweGIm9mS0biP57kkiRxfQeDx809f8fLFJetVjLIsRlHApCcnvbOzGzabRFjUx0ecn9+itebscsZoMsDzHEbDHi9eXYm+E8SVX2iMMRwfT6DSDCfSUzzoR8LaTX3QDWXenlS70Pi0NZmVpj1p23JHHokxhgYZfddGWNMuoqljORv4FZrcps0NZW9Miqs9oOwAqNUyhPNcnhNEEuAreb020qnKCnntyNnpLjdxCplGKYUfiFGpH4USGj3oUWtNkhY8f3VBkub84Ocv+KvLt7w/eoCvFElVMZ+vJRjfs6HScl6WnSksa2ewakG4Liq++bX38D2Hl7M5h9GYH93ccLne8C/+9Y9lnVSrn41c+RooyUhtgSeRA47F4vU9aSLbfX+/5uZmQVXWXF3M0Nrw3pMT0qwgzwpur+ci8wglXP6fPPttpsGYQpesyw2u7ZDVEkB+2j/+uzx0/kGWopBq5Pkqo6oMaamJ2/rXupa8xg8OAmxLxu7brGLYk8ik2fWSIi9Yz9f4/QjCPuGwz/TBdAdQh0OfqqgYjntcXW1wPZe6q1MGlFL88gefcnMuAelaG/p9jyjyGAxDzn/xmtX9irqq6Y/73F3cUZUVm9t78AMa0+D2e6xev4ZApiFyLCh0WeIdngjg643Jkgx/PBFXeZfl2bUW6VrAZCZTzl9h6aA9ptpcz44ZbYz83BmU2pvpnUGpY1uNlufuXOLLq12TEbram5eqXACm0TLmrnIBvF0sVBds74WimeyamUBAoq2oshzlqF0n/ODJ051RaP7FC+bXc37+k3Nev13xqK0sz/Oaxd1SmNLeRIxSebwP2vd7+23u2N+6xH/wBMtxmM82PD7q8fnLOefnK/6fP/kZ5TbeA27XF3a5A+tFIvs76Mu2zM4wG/ECbOcr4rt76byfbUjjjMmDQ2xlE29S1ouY5XwrxrU441vPpox6Hle3Mct1Tl5p1uuCstS8/3T8zs/+u4fyypYsyKwknyc0/+rPsPsRjTYE7x1SrxLM5bUwTkBze0ujNUynOMMQ56OnqH4g5qSmwQk9Pv3Lc9F6eh7EMd6jCU075qpmW4q3c/yTISavyO82BIGirhuG/8H3ROtZVZQvzqk3GZNvnbJalww+OKS8XtFvQeTRYcB2W7FYyrh24DkElsWilNHzs4OIk+OI22XOxHHQdcPlPOOLWUzfthk5qmUe4b7SjB3FyFGiXwaOXMWmDZ9vENDZUzJuHzuKoWN30zaGysZvR/Omkcd6rSs8sC1s5F9HtohDnHb03z0eFrVoTItGRvMaSIzBa0f6U9fZTQjrRqpAfcvmqqxogFVcso0rosjB8xWeYxMnrZu0gcI0rNYFr1+tKS4WNDc3oBS26+AokQYEtoVn23i2MLXdh8drnwOgMIbvHA/ktUYB3vd/j/KHP+Xm5zfcvZhzlRbcVNIm1bG/3bKsRTvrWxYOFkeumL0aBOiGwwDHsSgvl7uaUmcUMTgZkHx2if+tZ6hRH05Pcb//PchSiVzScifcbDaoyMP2HazRV49FASh1TegEVEazKrY8Xz2noUE3hoEXMc/WrIolhobSVOS1tCF9//HXGQ57PDk5wPMkt9FzHDzP5Qd//RlFUeIoxTrPOTqesN2IM30533B3t+TwcESWFdzdrXAcRZ4X/Cd/8JtErssqyTi7mlHXmg8+fMR8ueHxk2Nur+ccHo6xbZtBP2S9jinLGse2GY37OMohTnOauuHxeycM+xHLTYLbD8SANl8zv1qAr3B8V0BjI3pQfNVGJyEXrsOgdb7btFlqO3c3kSPsYP0l4Nh0I3b2GlDH2tVw7kBqB0Bbwx9djJLdfl8L8K1niTw2q3dxMWoU7F+rbo1OgWJ9KQ1LmzhludziOA5N06CUTVaU2JYtoNU0JFnO+fU98/maL5ZXHEQRA88jigLyopQIO8fG8sSUhdPGtXTbbomm9aOPHpPEGVEv5L/6re/z19dnnL2+5uzNNTcXMzbXKwGZpdnlgUqgvxb5AAiTO2mZlVyC7UcjyRx+8+aa8XRAry+NMtPpkLu7Fd/+6AmjcZ9HoyH/9gfPcG0XT3nkdUGhSzKdYxqNsmx6bvR3fwD9PS+2beO7ijyvieOSv7xa7uK0Hp70ub1P+NHZmrLWLLY5WVHjOzaPT4ccPZxw/FDGpFVRgXIxxnD305+0ve4BVSWVivE22+kzi7QgbOUWi9sFhD2qsuIP/+gTBgOf1Srj7mZFkhS8/+0PMGXBw6fHxCvpgm+apr1+r6g3S6o0hcEETCMj+HzL4PETgkGPMi8FHJY5TZZQ3JzLyNyy9iPvdCUAqwOLIKAoWcrPut6PxG0lGsbG7MEryPd5LEAL9sdxN5ZvzH703OlELUsYTJDn6Z6rSOD2VVvVHLYB9q4wnbYj33dZoF4INy/lveyPoK5EYtNec7Z3832bUtvIlNzPWS8T3txuORiHhKFLEAWYPJcCnsaIJvPLYDMaCxitihYcn1DEMaODEf/Nf/Zd3t5uuTq7lRzP7f0+rL7bZr/V32YbeT8aI/ur09NuZlBmRKMBdhixvFvSG0Z4bb7yYDwgizOevH/I9HDI4WHEJ187YZtVlJXG9xVFocmKmiBwhBCMvHd/9t/1y6qod3f9ru9Q362wPv4YO3Bxp30a01AvxUmcPZc8RfJc7rI/+YTm5pbyaoUua4ZjCab/5m89wGQlerEG30fHcldb3qzxTkbYreu0aRrcyKcoNNttSfHj5+K8tyycQYBJC4rrFcdHITrOsRzJH726SshzTWEM/b5LlmnGY4/rsmLquZRNQxxXvL2OORoH5MZwFRdclxUDpThpO7+7estDV4DoTVmzqg12a4xxLIvCCNM4chS6aVhUmtJI1/ui1px4ikWr7fRbVpT2+7D9wbHAtaCn9j/nRpjFqmlIjfzrxvDLWmMA0wJMg3y1EOBXNEYmjJa0LPnteH5Za0ZDj7o24qa3LW7XOU3T0HelnWCbyl34z//6iurlOeXzM+5+dslgGuK0n4MDx5HrLcKElu26+bZIAGzL4nqZ4zo2/f/iP5Z9ebvm7X3K2SxtAXJD0ob0d/szb7W2IKD6bVHRVzbfnfaY1xK79MvP7gkejrEcJUxs36e4lOBid9KjWSwxSUb2p39D8/ZMjFOOi3X8ADwP6/gYnZbotBRT3FdwMY2YE9I6I3R8FsWCJ/3HRG5A35M77evklqk/ZZ3HTIMJutFcbG/4jeNjZpuY5XJLVdUEvkvTNPz2dz4miTOKsiLyPLI0x/dd7u/XPDg9YDCIqGsNDYSBR11riqrmzz5/yaYo6AU+QeCRJjnz2YqjqehIPd+lyEuW6y3KsrAdG993Waxj6XJfZwz7EeQ12yTjerag3wuoSjH4VHGO0/fxxq1uMasFxE0DYeYWuYAg2TF7TadjC/iqzA4cdiYm+u6eqVTW3hXv2uCqveZz54SnjWVCftdFF3VsoKskyL1bfLUDmsNBJOupGwG+w7Ye1JPszfQ+ZtAP25ezcJRim6SYxuD3AmFJtym9KOBnn73m7XrN5/M5ry7vODgccXwwJgp8Do7GNB2Tq1uZQF6LGUuLpOD2Xsbv/+0//mcMvT6X90vulxsuru8FcHfbB3vAXHUXdmQfLnJcR3Hy0YmwqkOPXz5/y9HRmOEgoq5qRv2IohDn/GAQcrORi/9f/fRz/vXbt/zxi79iXW7ouRGB8lGWYltK7JKvvnrHbFVpOQdWBs9T/PWbNb/73hDbtoh8B60bbpcZTw/7LBYZX3s0Js5rikrz5PGIeJuTblMxD1lAA4ff+g2W9xvm84SyrKVnPPJZz9ecnE7ojeQ8YLTBj2Sf2rbNZ89nZFnFYBDguA5FWnB3taB/MCHeZviRsKhVKXXGeBFWT27iHVdC2u02Kihex+TLFa7f3phkGxlh9yf77E7bEYDp91rner53ZRvdBq03Ajp7kz072QG/qhCn9o7hkzajHRvaxivtQCX8aoxSpyPtXqOLMdo9hy8/20pArR/J43Zd8y1r2j6nub8knE4IoqA1RlYiIXA9+XvlwnoGXsDixz/g7i7m4npLXRs+/PiYw/dOCQY93PF0H+/UAch0JfurA9fbJaOTQ/77//rf4qNpxMXFmnqzprx4Ab1xe3zm+3D+umwlBGoPaPMYhkeETz8UgBwOSa8vGUwGWLZFkZeMRiF1VZNsExzXYbWSOKdP//aMV6/mXM8TslLz8LBHr+cS+g5aG6pK/3/6Kt4JPl1PUc1jLNsiXrc5WiftuNJxaEqNyStIU9xpH/PmrUQgDUck/9ufsPrxW1Tfpyw1dzcJl5cJ8V3M6mKNZVs0SYoKXUxZoyKP5OUt7sGAuxdz1pcbljO5M5pOA5KLJXge9d0KO5KsUXfaJ3g0QYUevW8/Jt/mnJ728H0l9ZSewvNsfnq54dT3uC9k3BuGikHg8OlsS2Db3FQVB46Db9v0AofbqiY3ot0s23FVN2o/chW9tgfdIIwhCNjsxu2pFpazr2x002Daf75l7djT7u9Duw1rb+DQtYnanyNl01P2bjQ/VBJmL+N7kQQ0NC1rKiN6qx3r2wgbqpuGxBhspKEpCBR3swzXVazzmpHv4jo2vm8T2LKu10lBZgyvf/CWptIcfeMBOq94+qjP01GIZ1tcFBWXpeanScms0txXhmUt++ksr/jjecyfXaxo4g3Fn/2Aqm18epkX3FaiC60bWqOUEuDRbVPTENg2Y8fmsiyZxxUT5bCuNR89G7J6PSfdFuRn95TXK4IPjtCp5B+arCR/c4/3cEyzXsNsJm1NloV1dAz9PsGTA/Lkqws+dWO4z5ZETkihS5SlGHtjtDH4ykc3mlyXlKZkGo5YFivG/pCeG/HP/+QH/PL5Gb2ejHjvlxvOLu+4vLzn9nZBP/BJilJE8EVFrxfwxefnDEd9zi/vWCw3zBZrXNfhaDpkNltTG8NyLWNVYwzTwxHjyUBG6CdTirJiOh7ieS62ZaO1IQp9bj67Ipj22Kxi8GwCzyX0fZbnC7nQvd2iIo8w8AgDH70tBBxVRgCcYws4DB2JNOpG6R1oqgzMWlG8a8toXv8bALUb33dn0e5k6isBiKYFmq69Nw7BXjPaVXhG7i6uacea6oblYivPk+t2DN+OstNaAF3k0OuHzOZryrJq+9f7RIEvrvbAQRvD/GZJQ8MP//Y589WWjx+fYFkWj58c8/7TBzx6eAjrAhYF3KYCsjeVaDZLAenbv73m5V+/ItcF/+vzv6Qo5JjS17GAZ9WeXDxbJA6dwatrTAoVBA7p+YrbmznOgz6kNU8eH3NzsyDLpUHr7cUd/Zb9rCuNZVmcvb5meiD5n7M05ce3z0mqFNuyqU3Nw/4Ry3z7lQSfnqdYbCQaK00rytrwZBiglL0zHmltWGclBwcRN6uUSV8YpT//3/+S2YtX9IY96vsbiFcUd1fcv7kgXsf0el6rB7RI45zesMfnn76hMQ2zi1vSrbjT/Tbfen4ro9fFfIsfSBrC4YMJvWEPXWuGI7mB6A169KcjUEoyI7WmvnyJmhxj1nNQroydG0N1+bI158xEy2ga3KOHAjrLVEBkZyiCfZZlb7IHhbYS8NoBwTYsfgdSOwDYjeiVKwCyC4nv8jA7VtWy5TGO17KZbVNQN8bv9JTpil2NZ5mJSacDyMoV/WTHrrYMojGG7O5WwGeRyPNXbVi+0WJcWt1C0Of85RV3NysGAw/fd/jwo0OeffyQb35XTEDEc9lvupJtr3IxCRlhl9cvv6A0hv/hh2IYI+gJk7u82p+zXF+AfgfAd/8fyLrMz8nu2rpTo/GPH7Cer2Wqdbfk6lzakZRS1HXNdpVw+foGL/CggfW64G6VoWyLQc9jvsmJIpckKQncd6dTvNNwZDkKtMH7/u8ytX6M8/QBrJborEQvt5R5he8psk/fEP7Rb6FfvMYaDGlub+j9/tcJZ3NMVqEv12RZTb8nTEp/6IFlCetpWxJY3wpZ559dc3A6wPYdNldr+oc90A3Rownl52/xTqcQBLgHfeyHJ+jLGwlyfXvP6FunXPzVGa/vE45Cj6o2XG8KjlyXVV2z1Zqhowh8hx/N19JRWlaYRvI9m6bhi03GptaUDaQ0zGvN10Ov1X42eFaDazUcuYp1y0Ja7OOVFpXeScLuK43bvtlDx6ZsWcyhY7OqDSNlYwBaY5IwnuBZYsSZOjaxFsazbhoitb9X6Lea0tyIIWqtNbpphISAVl8qf2tbsNWat+cx21KTVVomfIE0qoSh0ORZpnG0aFkv1jnLvzrn2984xAk9gkc9lj+6RAF/OB2wLiquygrPEk3rptbMKs33hxF1A7/3n/826b/4c6JvPGL9YobXjhr7yt5pWU3TsKn1TmYAon/tWRaHrgBO3TQ8moa8XaT89MWKp4cRDz455OzTWyZxiX0hjM3yek50scZ1bExZ4x708U9PxSTX69FcLODuDudkgvfqjuqzF+/+8P+aLmIe0nw0fsZBOGbsjSiMmPAqU5HXJbXRnG3O+e7ht3m5eUXkRNiWxe989yMW25QiL0nzglobAt9jOIhwPYekKEli0ThVlQT9V1XNL375hveenIjbfZMwHPbaoPk+F7dzJtMh40DYgGkUcjVf4fkum3XMk6cnfPaLN2xmG/oHfYwxxNuM/vsT8qIFSBMJX06XCSiL+j6FyMX35HzSjamluq8dL09boDJv9aCVka+rYj8mDx0BVZuy23kCpkCAptOyIo0B39mP7a32AU3LgtZNCx5rMUMllTCeXZB7B1o7AFoa1DhAb4pfHd9byHN1rUNJxZu3t5Rt9JRlCUNlWRIW7jjChFqhg6mN1KPON2Tfesb0YMTTgwk/W8XM5xuefec9NknGfLbaa/NziZs6/e4TtDb8s3/3e/yPP/8LDsKQPC/phQFb29oDctPq+WZZ61pugXdaQ+SgDkL0XQp1w8nhmMv0jvPX1/jDkG99/X1en13j5yWbTUJR1ZRlxc1siVI2Va3p90OiR0ccRxMOwykWFr7yOY6mxGXC680Z/+grJtVWSvq/v/O1I0JP0fMdVkVJWdZsM+lmV8riF68WfO+bJ5zNYh6MPVZ+ydPvfoM8q8iSbB/A7iiCyVhG8ZWhbKO/LLu9KAGz8xsOHh1T5iV5atEf9SnzkrAfcnE2ZzTtc3gYEUUurqswpsHzeqRJydHpIZdfnMF2gXvyGKMNlBnq4QdiLmrjiPzIp75d7XWcftR+1h2q+Z0AM6Pld03TRixtBeQFffk6OGw7zut92HoHZDt9p672YDQQDwPZVkBXF8XUBcS3OZcMDtvHbfYModF7x7xlyXoHAwHIjYH+gYyzbWf/+66BCeTndEWxaFnQeC3gNOi1wNST75M2u7QuaeZXrOI1rywLL/D4+idHbCg4f7vg+BtfQ9cfiSyiXZo0Btfj6OkpWmv+o3/0Mf/dH3++0/XuJAVhm1MKLWgt5PPheHsQHAz2WlldwfAAdE1x9RaUw/CTT5hf3FCkNlVRUa6WYFkUSYDb1qeWRQkEOI6N7ym0aYgCh7IyBIHL2/vknZ/9d19/d3fwrgBEpWiuLnBGEeX9lvCwT71KCT44pvrZ57jf/bo0zTx9CosFTaWptxmTDw/p9da8frPBsjxcT5O/uQcLgvcOaWoXvRbBdRg6WJ6i0Ybh4zH1KmW1zHEXKf1RgPfxE+j1sCcTuLlBDSKaokT1Az7/v19wn1ZMXNms61XOfVXx2PcwDTz2ZWf/4HLFRhueBR6VaRgom5NxwN/cbljWBs+CE1e1WkpB76vaUHQfNOQasdENB45N2ZhWvwmx2Wsh7Rb4yfVGAObwS3FOUk3ZECmLfgtSc2N2uZ0g4/+hsqnb0XTZgle5TjVUiKu9bsRV/+W/9W1pYXKw0A3EhfTDi0selpuSYc+hMTDoe/iepqwMcVzhILmln/7inm9/64im1jx+f8z8JuZsllA1EsT/aOgThS7TowjLU3jHI67/9oLsxTVNpSku5tzNMiojlaOlEelCZzICAZ6xbjh0bVzLYqsNI0fh2haXZclh7vL+QcRqXXI+TzmYx0wnPsqxmc9zikLz/gdjsrgQvYnv4H94CsbQ3N9ibTws16Xp96EosG0LZ/zV00YZlEgAACAASURBVI91S6A8PFuajmzLZl2scWzFMl8z8vsssjXj4ZAX65eM/RFvt5c8GT7gry5fU+QCMJ8+PmG7Tbm8vSf0PTzPFVc5cHg0xrIg3maEoTh1u4vc8fGE9SomzQqub+ccToZ84+kpyrKYHkz5Yi61nV0W4Q//5hfyvK0+M14nkGliZUFeEz0copTN1U/OwbbwHg8pqxpWBcN+xM3PL9sLDHAQQlrBUSDAL62FSay+FJ2k21F4Vu9HyZYlo3Cr2bvZSwNRy+51F27X3ptuAqfNArVa9u9LzKdjy0g7/dLrwr5RSFki/eh0pX47prdsWQfYaSq11tTtmJpCk/kFtdY4jqIXBm32KWziFEcpyqLi089e8+1vPpP342SC6zp89vxMXLChx3uPjvEDj/FkQOC5jIOAX55d8emdZHTOgdl8jdZmnwjgtfuxMrL/2vdnZ6DalDQDD0Yu3OestwknpwekecF2vmW52NCPQizLYr1NyPKCRycHbdyMwXUU3/rgMYHjcJ+tMDQ8HpygG41pDJZl46t3a8h+HZeukeaDo4hfXm2ZRC4/vkoZ9H3WccF0GpKmFY8eDvjlxYrvvD/l1e2WfuDiOPauQ/3w449Y3i3R8UYY61qzXScSbD4ISFPEmBT6OI5DXdXYts3keML6fk1ZlGxXW3qDHg8fDmgaODyMmM9lUmZZoLXi8hcvhFEcTGX8vpYGIb0RcKfGh+giJ/niU2HXJg8hF6BpOQ7N7Zv96HdyKkaYXRbmeq+r1JWY2TpGtNMqwl7D+eURe1XI39WFMHqd4x322Za2I0C1a1YKh/sgd+XuHfN5th/Ddyxpmf6qo77TjHZZno2Rf2EPNnN5XVvJmN1oAbyuJ+vWtMeR34N0xfKLnN7TZzz/wsJ1FWEUcPn8jTzegunxlKgfMBwGTCYB48jj08/v+fEX9ywWKVlWkW5TkUJEY9mPbisZ6BqgXF/et6Av+zRZimnKdgRUW7bodrWGeMn6fo3lenL+2a5BV/iHJwRRQFmUOK7DycMxQeBQVZrbVbb7TM83OY5jE3r/P5hP78FIBOvbLbbnwHpNeb3E++gx9U9f4h4P2yzQTE6w8zlmvcWezeDBA1SWYbmK4nrF1XVCEChGI4/zi4STY8NqXXBaalTflwtL6KJCFx0X2J6DySpubxKaBqZP+/T+6b9Hc3EhB+2rN9hHB1SvLknP7nn9ZotuBOAktWFbVOTGcOA63JQVl2XNNyOfVEvz0NgRoHOvaz4OA354s+auMrwfONy17IdoLQ0HjiLRDd/p+STGoJu943viKG5KaT86DpzWBd7sdm5nPOqYy87JjUitiJSM0Tfa7NhMEBAZtxqrDoCuamlPAvbayXabFaKV7Csbx5JoKJGjCchtgNtKdK2paYhsW6KodENZaYZD0eY4rk1RaAHTymKTVHzxizlKWTx8EDGZ+Pi+zWpd8nKV8otlSrloOJ0lLGtN1VwwcRSHT4ZE3zzlL/7nnzDyHM4K0b3122irTkMK0oKUmmqXJDB2FButOfU83uQFb+Kc9wkYDj2GwO1dynjkU+Sak+MQZxCAsvGrmiyrJWHgfonzjW9CEtMYA5eXkGVkL67xnx6QfHrBu714v57Lo/4xjq0odLHTfi6La47CAzZFwmE44SaZE1f7u1LPdkmqjO8cP2SVZjiOYrNJuLy9lzFv6HN5O2dc9Cjruo3bsGXkBjiOwhhDYxo264T5SvqpT44m/NPf+21+cnfFwPP54nbG4ajPy7Mb4jjj9n6F6zgUeQkNxBcrAWtdA9CyoIg89CqXAHjPptYaVgX90xE3v7wW0Djyhb1MKzmpx5XoPvMang7EdW5aU09t9vWQ2ojOsjTy2KB1u/t7/ZxsYPtz2Y71u5F8ZX7VCd+BS5ALZ+RA1lYQd+P5uh35Ny2o7Trm/fZEbVtt6L2Az/h2gzX0aCqDFcnpWtpE7FZfWxNFAVleUuQlg0FEVWt+/vwNnuvy5OEhylF851sfMJ+vOb+e8cXzcyg1zjikLirIarxpxPRgxPuTMf/Tv/xXjAcRi9dzAZawlwN0elanBdUdyzv2MXcZ/adj4nVFfLelPjCEgcfkZMxiHfPk0RHXtwt6oc+DYwHFSZyhbJs0K3hze89/+bvf51H/hMrUxFVC4Pi83dxwEk15s778Ozlm/iGXySTAdxWzbcWijQm8Xab8zkeH/PD5Hf2+ONvTvJamobigaaCsNdNpRJKUuL7LaraSSsfxCbrSFLNb1OgAYwzJJhTdZ0/0ewC61jSmIb6Od/mUo4dH/MH33uf8Whro5vOU0ShgfrcmSzKq1ULymmtHguLXsz24iedgNNqypK+9YyOLVIDl9CHN3ZlstK2E2dze70Pm/Z78zejBvhKzC4D3e3uDkhfKz13FpnJ+NQC+03FadgtAzf418+2v1nV2WZmw/xqv5TWcdnLSmL0hqtNOftmE1Gk7QV7v9rWwit3vO61nleNEEXWS4/T71Mm6Nf4dQJmRzOYkF2/xT04x2tA7nGBZFvH5GYvNnEXV6sY7vXU44MlvfJ2vf3LEn/6fP5H/39wJmB8cilygY3O/bMzqWOOgLyB1+lgem2/lOYIe9uSYenGLNZLiEGc4IogCgF1TU5mXzO9jPvr4iHHPIy1qIl9Mz3lec3zc4/XbdzeSvVPzqQYBlicnZDUIwPeFMUpTov/0n4CWusZGG5yDPnq+Enrf8yBJ4IHUcW6uNvie4vTxkC9eb9DacHObso4rLGVTLhJU30eF8maq1iV1eb5B64bpxCf63tfaN1pDlmGPh5iZ3GEkac1k7AuR0b4/fWXzyPfo2WIY+m4vYKM1Ky3AaqgUuoFvDCLeFsWOcQssm2NP7vRSbRg7ilmlmTg2G61JdTfmNnwYeFwW9Q5QdmPuujXk2BZMXYlC6pjRwLYYdCAUiHVDrA3HrsKzYOzI4zsA2znJ85Yh7V5DNKkQ2Da+Ja57z5IopMIYlrX+kuFIgGoXk2QhVZ9We+HUupEaUgscZTEe+xwcBPR6bmusMmjdcH4R8/LVmqpuiCKHTw56HLoOgW21wLPhP/yjZ/zhP/4EU2o+/5e/IDGGN1lOaoS5Ncj6e3bXE28xq2oeeU6bnWpLjJVpWLcNTgC3acnbRYrn2czXBZ+9WTO7z7ibZZi8pl6lOIOA3kGEMwxpSk3z+XOp3qwqYe2LUm5q8ooiq/kqLp5yaWhQlo2nPBxb4doO2zLm69OPpeGoLtmWKX23J21I7eMLXfLR4QHrtZiOJqMB40GPs8s76lpzO1uyXMeURUWa5LiuwnNF99W1WVzdLahrzbAf8btfe0ZaFyRlJZ3uvZCb+xWu67DaSItSXWusVu9oHQQw9sWkkGus9wYCPIuWjhz7mNpw9OyI+O2qbS/S8vWgZTtzLdmeq0LMQ6t2tD31YV3CcSQAtOqiXFpQ2o3HO/2mabWZnVEH9i1Ipv3/0BFQ5in5m65JyWqF3XWzH7m7tkgIuiVoTTwGWe+s3hum7BaYtq/ftMxtU2qqWnSSNqCNIYoCmgbGgx5PHh3juo7cCGQ1RVlxdjnj9dsbrq/nFEXF4wdHjI+GEChpTCo0f/Tv/y6//3vfpKpq/vzHv6RKCmZv7yWvdNsytEUrOehMWg1wGErNZqd/BeJlstt/eVqwvFkReB7r+w2f/vUXJGnObLEhTQuWS7lJ8XyX0ahPnpf8Hy9/xl9e/YR5viRrHe8AuS7RHZD4Ci39UHT3jhJ3cD9wmAx87jcF3/vasTSLFZqmaTgYh8zWObZtUeuGLKt48GBAvI4p5jOco0coR1HPLqFI0Xfn0q0OGGNQrSkXC1zPxbKttgIzpXcw4bvffUxRadZrqUDt932WCzEzVZs1RBKejuMJcBkc7l3gbgAHT/fB7o0RM5DtSEPP6k4e0zGYXU1mxwqubnZM4G7M3QXKp6uWzQv2gLTTZnbazXCwj0/qYppUy3Q2jYDP4XE7baj3fe+dAanrhPejvfYT9qCtyx3dOejtXc7mLvC+e3w34u+WllWtyxIa0zY3TsQY1C3pGpRLcXNJdf45ydvXxHf37Lrug34bBZXx3h98j8l7T0m2GX/5F58Lszw724PpLs+z1XECsu7TR8I2u36rW3Uk71S5+/1y8xJTi861eftzKHKpB40zqqLaGch6bcnI1dWGN5cbdNOwyeT81jRioEvTd1dYv5P5tHuhNMU0DXq7z6urZmvct2e7Ojp30kN9+D7pn/4I78EYZ7OBkxP0Z88xecnwpM+gMlRpwclByMu7mNI0DBzF3eUGx7XxiyWDh0NMUeOMI5LzBYGv6PddouMB1ukpTVlKg41tg21juQmmFAPL7SIjdBVnaYGh4aHr7UxDE8fhi6zgse+yqcWAM1A261qTppqerfhZlvO10MUADhY3lVQ/lm195qGryNrRcdJqFrsRed3Ax6HbGUcJbIu+snbXKElpsVoDExw4wkYOHZt+07DRMpLvxviztkmpbhoe+S7LWgBzboQBzdtud2WBbhqKRiozL4qKumk4cJWE0Lfvo2fZFOjduN23LFJjSGpNU8EkdKhqw2gSspynFIWm3wtQyuLwMCDPNY6y8HzFelWQZTW+pxgOPILA4XefjoWtDl2yuy32bEtRaH6ySCjbrNRutE5tOHYdzot61yQVKZvEGHq2TWoMA+UyUFA2hmPXZaulhnSkHJ5fxwyUzbc/HHN+HuMomywuKCvD/EyaF04f9fGfHsDREVbUA9ejsSys4RAn+5x6m+NH7jsPjF/XxbVdxu4IkLajylSEKmBTxsyyGWV7lz4JhhyFR7xYvyJvcxSn4Yg/f/EaXWsmkwFGG7ZxxtPTI15/cQm1QY0C1puEpmkoSonSUa0Bb72O6UUBo37EZDrgpNcjrSqGvs/A8zBNQx76FEVF6HvMrhdEY+k1R1mEY5+sKKi2Od7pgPJiA0dhW/vYEPge+TxhVi6kHvIug+Nw7+IGAYJ56yD3WkAYOGK2kZ0iXy1L2NGuwx32Y/OO0dzFMbSjZmjd7+3j2xE6gRJg2ZmaRp48b/fYrsYzULv6Twot4DWpINbCwLbaSWFf2zE3csxYoUOTGoxvqHVNLwrQWpjFoqwp6xrPc+mFgTSHtdsUBh5xknO/3NCLxPQVeB7f+OazVu/ts1puKcuKIPB4/aM33ahG1q8ywuKGSt4Hu5U4WOwjrQoNE1++zzX+cZ9inkCl8YYB129usfouTz94yGy+ZjIZkmQ5g17I2eUM33MYD/s8++CUrx8e8qB/QODIunp2dzOlCJyv3tg99BwGoUtRG9ZpSd2aLpdJQVbWEt6tDb3Q5Xeejfnn/9crTk769CMXy7I4f7ugKirG7z0lSzKKbQyTExmHt8e6NBlJrF5vKKDBGEM8l87v3ukjpkdjikrTNBBFLp5no5SLbuOZ7KiPSbbYvQFmcbM35bi+ALdwCIsLATxlugc0RUJxnwvYuj8XANjpM4tkbybqT/espeMJ4Az6+9zN3vBXNYvduLtjNztQDC1ItWS9ovE+YL2LLoL981S5rFMX69SBvS5js9u+ZCmAOJ7vszerNrrIsuQ1AexKmNvhkfxdI+DW6g1p6hp/MqFIMkg32KMDjGq3X7XB+902dwC5ZXG9yURiAy1Y3m+oSpHiVBcv5HHd/qjyVkZU7pnePJX12d7vo5dGJ/t81S5JQLkCTtON6HY//i2KOAZviE62aNenWOZQJOQHDzk8PeTkpE/gO4Se3NhYSIJDr+cSBO9Wdb6T+Uw/OwfHgTTFmQr1bbe5T9mPnmO7iihy5IS0WGDZFs4nz4T53GxQxwfYgYcahOi8JMs0V/cpB75LXylM01DrhptZxuVVQrVMsEOXepHg+g7TwxDPUwS/8QHNaoXlurusT4qC8mZNfr3CNBLxM8srvn3c53cejykaQ2HEBd6Bn2WtSU3Ds8AjaesdLSwuy4qhY3PaXiC9NovzSYvyjz1FYEvbkAAkYS0TYxg6NlPHRjdwU9bCULZAy7Hgth3hd2Yhz5Kxmegfm93/2bBrRYJu+iasoLCoFr5t7ZoBC9O0cYXS/Z63WkrbsrgtBayttWGrNbHW5MbsGM+yNSZ5lsXQd7hMCrbbktlNTJr+KiPY67l4rs1g4OG5NtNpwGjoMRy6OK7NsM34W85TmlITbytevN7w8/MN95UYsg4chWdZnHqOZHIb0zLCsi1dLilI3WjRyiUKI/uwp8SNXzaGR32fuoFfvFrjOhZZVpMkNZt1yePHfQ6mkoRQ3W3g4oImSyEIYbWCy0t0WkpQffHVZD6XxRrHcsh1Qd/r4VgOtqXQjeY2uZfPnhdiWxabUgKdT/snnPZPqHTF109PeHB6yGAQUbQO6/ulmIHskY9pDI6jmM3X3M1X5JkwU1maE4U+o76Yk37zvcfMswzfcYhcl9skEef7YstyuRWjXuiQrhJOPjzhwbMT0rygyaQpqMxKublNa6g0weMReZK3DKUlYDJ0CI760IA9kAuPc9JjV13p2vIckSMHmGXtneWe2us3O7BXtt/nXdyR2huAbGuf8dmNyLv+9/rfYOQ6t3o3au/Yz6JlWDtgWep9ZFNat8Yeva/g7Hrncy3spy9mo9Ggx/xmySZOiZOcLMvR2uAom8B3GfQjhr2Qo+kIz3E4nAw5Phgx6EU4jkIpG6VsVquYsqxYrWLOLu749Bdv2kB6BEA7toB/G0kQcFu5gWmZ0E6OMA1gU0odn2lEKzrwsEKHMi1475NHKFtx9vklStmstwnKsri9X3F6MmXYjwh8qVT98fUNd8mCqT/BbVl8gE0ZsynebWD4dVxeX65xlEVVG6Z9n37gELiKWjdczmKUbdHrediWxSqT6kTfVxyPQoxpGI4ipieS9VmXNdSVsIzhUPrJq4KqrGhWM0xZYNr0lqqoCIYDnOGIxjQcH/fIc5HUKGVLvGGhWdxvKIsSk8ZgWZj7S4LTp9iT4xZctUx/styPvZtGwE0HLkF61RsDoyNhEVtW0374oegOO3ZPVwKiuogg2DvZ3UAAla4EZHV95WW213d2zvVO01mme0DWMZfK2TOYyhX2r8v0rIs9swnt9tnCTJbZfvSeLPdaT5D/yzb7cX2y3OtIgx7NagZ5QrFcQpGBF2Ky1o0/Opb1mTyU1+hNZF16Y9l2X2QTxXqN4zps5iuy+3uq+xt5XV3v5QiT05b9rffbYCtZ/44VHh63JrBuJN/u20BMXWp0AJZNcf0Wy233fRBBVeBPpngnj+kNe6TblJubmKo29EMX27JwHRvXVSwWGXn+7mvsu6OWpn3qN5fSKuQKyGiMwRQyLrdGQ1TPl9zFLMMZ97AOj2Ay2Y06nWmfpqzJc83dLONg6DMvKu7rikfTcJfJKZVOhvRmgxU4uOMI23elDcm2sU4e7PL16vMbsp+/obqTsfz1bYrv2Hx41GO+Knh7m7Th6mKuSY3Bs21C2+bAkVYgr82lrJqG0LY4dBX3tYS335Q1tgWzqiY1nWPcYujYbQxTQ6+NPkq12cUwjVpHe900eBZ4ts03Io+ho8iNkeiklrnssjw3WgxPwE4v2gXRg9R49r/EdrqWtQOtpWnaUHprB1rz1ti0ai+ImWnwbQFvdSMsZGLEkb+sa/JKS3X1tqDW8h4o2+LtufS7Z1mNrSz80MF1bVzXxrYt1usSL/JQgYczloyvu8sNtrJwW2D9xHcx7Xo10AbfSzTUUCm8Nvu0bMG81TK5eWPEiNWOcg8jD8+yuCkrllnFwFP0XYVpYDD0CAJFf+CyWZc4joWKfNzjoQT2VhXkGfryhup+Q365JI4rvOCryXxGTsBtdicjd8vBtmwKXVAbTej4RE5I4Pi49pfG87aHNpppOOK3H3zAOAp3tZpZLpW08d0Wsyo4no6Zr7ZYyiIKfWqt2W4SgtAnCH0cRzGZDkmqimfjI0zTEDoON7cLXr25JktzHEe1DTwuJ48OuZ0tubldiDbTbcfRcVuJ6Vgw9OSi2ekNO7ax75DPYvAU5iYFA/V1LKxjx0q6tjB0WS2ANHT2kUEgP3ePB/kQPozktTp3ezdSr9oRf2n2z9Oxrh047RbP3gO2Lsezyw2126+5lufuRv/Vl7YxdPZh+A3yWNumbjV/NA15UUqTTVXjuw7XsyW2ssmLEgP0+yG9KCAMPGzbZhNLJmjge/QHEcNBxHIpOZvDXihA71F/H3pf6D0zHDnCzrr23p1fm/1Xy5KsV8/GNJKS4DrCOJ99fkngu6iBT5aXBIFHWWsOJ8NdvqhlWUwPhkSei7JsTKMlaL4uWeZbruMFynrn5erXchkOfc7vE4xpGPd9eoGL56o2rNvlYBAQBMKOlrXh8DASg0lRE0Uu43FAXdXE6xgdbwQkDA+FOdwusMIeTbIB18dyPfIkpyoqwn5Ib9jDD/xdLuXhJMS2Lfp9j9ntmvM3d+haS1B8tsUKe/in75PP5xKpZFn7nnZdCYgMhwKelILBwZ5dBNEXLm/k85UsATDXLwUgeuF+lN4xfrbad653jnUv2rOjyv3S67UsmxsIgOzAYtfo0wHcDmR2ofVdBFPHwEbtKLzTbEKrRT3ZhcTvlu39no3t1infymO+DEzLfB/wbtmim22nRV5rgsZWEl8UDgUEKgc29zuNZ2/YA8clWW6wlEL125KU6aO98alIZL92wfGd+78D27YSiUOnUe0kEEZjRX0Z3+sKffO6nfx44rBXLqRb7KhPsVxQ5iXxOmZ6NGIw8CmKGt9RVNqwTkqyrGK9FqPau5Z3Hs2mqHCOJzCdolcx9SZDr0Wc7J9OsN57D9tzsA8m6E2OjnOaIoc0pVnIh0tvU+5fL/B9xeNHPeJYGnd+6+FIPEp5RdU0LGrN5VVCXRtMVmFqyY8zRUXx2Wua16/aD4noi3Rc4Iwj0qzGVTZHh+IK3GrNqq556LpEtiJrW4AcS+omuzrK+1Z4XRoZWfdtJf3rxuC37UIDZe+ige7KetfhPna6zE3ZfZ1r3W21nZ0O0m31knn7GsBO62la7eaJq4jUviLTRgCkY0GqhdH1LGvXBhRrsytcAVjWWnRBbYMSsNOXrmpDahpeZOWOhaybhquiln1h2Wza1qRUG9K0RuuGi0VGURt++HLJxU2C0Q1pXEokVeAQDHyiyKFMS5xJxPbFLY1pyLKaNK2Yl5UAWyMGqQ6ol400MaVfAs020hi1rA0OAvIBVnVNT9n4yibLa+pG0goyLVpVz7UZjTyWy4I4qcRAWBucUA5mvc4k3/PkIc1mhXpyioo8/JMhyrFkLP8VXJIq4yCYMvKGxFXMutiQ1CnKsnnQO+ZBdIKvPAIVsC42ZHWBaQxDb4iyFGfra67vl1xe3zMe9DgYD1mtYnAsTj96QKU1xTKlyTWr+YZtklFrQ11rlLKxbIv1Kub5xQ1/e3MuTmalcF2HutZ4vivMl6N4cDQhzQsBV108ksW+icexWk2nwvdc0R8CrGTcq3xXwFnZmnq0kerIbly8rfZxQEOv1Sq2B0kHNjsmcuLL9/3WJGQaAbhddqhj7+OT/NbNvtNANnsDUtPs8z1t9qxpd6bNtazvl/WgHSitW7NUUsFFvNecdvtkXeD0fTZxAo5NuUiJ0wzLspivt/SigOc/ec31bIHWmiwrcF3JCu33Q/pRQF5U9Pohd232ZtPANklZbRPMZQzLtu4zlGYkirbBqNQiWXBaNnnkyTb23R3Ir5cZBNLG1DRSdeo+GoKvyPJSbkyGPTbbVIwwWY7vuTiOg23bpEmOY9s87B9xk86I3ADdGB70pji2zTQc/T0dRX9/S1HUPDns8XAccL1IeXm9YRkXWBZ888mYbz7s0e97PBgHrJJS6jhdxfEoIAocsqzGGEN6fQlBTzI70w3YCvfksTQOFik0Dc3iRvIgQZqOsgKtNUVecH6+4vou2Y3kXc8VU6w26LKEwVTYt6yVr2QbAWVFutcYeqGAPsfDCdvfOd6eEXTbaswOhOVbAVudFnR9u39ux2+ZzXQPnIBdXWbUsoJd6Ho3Tob9Md7JaTpA2QWtdy55o/ctPztH/JcAUwceux70MpO/7Z7f8do80UTY0y4SylZi/Gka2bbu+y4PtEgl69MPKM+/EFbYFRc5XkDQj3BGEwGPlk1vMmR+MxfAmm5o0hi9Xcn+ihdtA1S7rV+WNHTgW7n7VqYOKCtXft+C/qZbv6P3BPAbLVKJsGVH/UgamGyF4zr4oc92k2JMw9Ek5GwW02sNRwcH0Y5Nf9fybvCZlfDgASwWlHcbLGVTrRJUr33Dh2OCbz+Dfh+d5NihB8ulBM1//BH4Pnbo8fD338cdBq2exOGj4z6rtYx6bQS4HbgOQaBYrgpMUaG3OVbgoAYh/u9/B+s3f4dmdof57JdU860woggzF0UOZ9cxcS7tLseui2MLGzhQAkDrRtp5BkrxRZbTb5m3bhy+0ZLJeeA6ZC0rqdt167V5nBYSEZSbBvdLMUEAeQsmI2Vx1wapb7XeVV6apvkV81BnQqoaaVL68ti8M9mMHWFrEyOa01gbwpYJ7cbwHQjtwGmiRedq6HT/DUXT0FcWE0e11dTW7thc1FJfaYC81mzaCJyqXd+N1ryaJaRpzXJZSJOUY3N7lzGbZVIQYFtcXafEueZslZEbaXXqGpCqpqGn1C74PrItklYv21ciNXjkO9xUNaUxLCpNT4njvdCGk5OIo6GHbmDqOjjKIstr5nMZN1qWxcGjAY8+OWBxm7C6kxERJyc0l+ewXkOaUq8zrPb9Li72+WlfpcWxFYfBIctiyaYU9rrSNaEbUOoSX/k86p8w8ccYDIHyqEyFaaQCd5XnPDyc8O1vfUAQ+tR1jee7PHrvhNliQ5LmoqHMaknCAJbrLXVVk6WFuLBDnz/62of8O0+/zlUc8zev31KWFf2BnJSStCAKfc5eXLFNJOg9Omzv0rWRMW6pBZQOPWxPsX29kLD20BGACOhF1mZiqh371rnExdDT1XX+/AAAIABJREFUjojTWv6/G9l3msWsZleZOW/ZmW0lv+syLTumr9Nq6ka+T+p9GL3NPtOzy8VsELZwW7XsqS0gzVf7Ubxp9pWVsK/Y7BhPx8YeSpgzlYGei21bNMtiFx+V5SWbOMFRitU6htChyWpWd2vSNGe2WFPXYliJ05z5ckMQeAShz2oTc3O/YDXfUNX1XiZgWwKA2/28C9/vtrEL5D8MRXeb1fL4nhi8msowHQ04OBxR5SVe6OG28Xfz9RbHUWhtOH1wwAfvPyROM65u55RlxYN+n0W+ZpXHFHVJVhcEjo+yLBbZ+u/qsPkHW4pC88FByOUq426e4jk2aV4z6nmE/y93b/YrW5bnd332vGMeznzne3OqKruzsgd3eZCRZckWAssMQhYSsizx0CAkhAQPSLxQ/geQEAL7AfoBeAHJFjQgpLKwwep2t91VXVVdVVlZlZk373zGmCP2vNbi4bdW7JMSfVuiDerOLV3dc+JE7Cmm7/7+vkPkM+2EPDkd8miS0O9EpLcmNqIPhSAIOP76BySdRDSfQUTn7B71agm7lTCDu8W+YrG8udzrQDu9Dr1Bj6+9f8Q790dcXm559sWMIAzoDroCSpqaIElpzp8JOxZEMD6zcpVum5vpeWL8iVKaq9fsw9kHhwKINjZWqTdpHekOJMXdNtbImWG6o9bMY7QAW8cqOqCarVpQ50Lc9yN2y5jWhYyhnZFI1e02037LpgZR67Q37oKykH3QdoQcJW3wvdsvxyS6AHzHguqmvV8QyraiWLbdGUJVteasy89hs4Cq2KeIuNanppJYLDYLCZDfLQQ0u2Yop1V1jnwHOEG24zI+O0NhxN15G53IusqMTq9DODmSIP3uUMD/8lJio7SBqmB4csjR4/t4vke+EslWpxOy3FYsFjnLXUVRNkSRZNcul8VbX/tvBZ9B35p7Dg6IjoaEQ8lpqy5XFM+uQSnMUj4QdF7hRQHm4hLOz6UKc7Wime8wjSI6GLBYlqhGU9WK8SihtoDpJIno9yNerwpm25osa3j5fC0B9+/dx5seYF6/gDzHi0PSx0dgDLMXUq85HEQEnkfke0yTkFndCFtZ1+R2XH0UhuRak2kx3oQePCtqSi0tRrHncS+OmDeKWa0Y2nairdLigre5nEdRQGG1pK6Z5yCUD9au7+8d7S5zM/a9PQuqEH3nMAz2zvWlBbOOzBc3vYBUBy7lu0fu46o9t0oin9zPwuzKyN61LjVG0mEiz2PeaDILCgttKLWAXgHV3n49LgC+G0gUlbKazLJSXC4Lfvjja4plzqAf8WZd8OInV5xf7KhrRWk0kzC0+yPjdWl5ku/ani8/D4OgzTO14LnShtMopONL3NSiaTgIQzKteXmxo6o0udYEgTg9542i0YbLsma9rlhcbFHbkrNfvMfRnzqjXmyhrvHe+zpUFWa3w1QSjN7thGSrt78x/qQuxhh8z6cf9RnEPTpRSlYXXGcL3uyu8D2fXZ3tncOhH7IoV9wUcxrdcH84ZZUXKKXodhM2WSFTsrxg0O9QZiXkDeMHUwI/YP56zi4vyIuK2XLDcNTjg3undMKIH18/p2ga+oMu48kAz5Maxwd3jugkMsINg4B+v0N2vRFws6hEcxn6xAfiTNdZLYYXkMpMZTWHvZDBtN9GLKXBrUgl02oxj2zsUm5NPp637zb3k1DW14sEGHpey5bGFjBWNjYJWobSrd+xkx27ntRqSR2wDCx7G/st2wo2tJ1WHlDZ+zoGwxM9qt7dcozmjURNudUkAWVVY2pNVdZ0UhcbY6csWrNcb/nkZy9o6oZ+NyUvS37+2UtevJIWFlMoBuO+AFprGJJIKCN98IMIfPBHScsAO7C/qeCkKxcFkQ+LkuhQvAHn15J6QC4Xs2HgU65z4iiimO0oqoo3FzPWqx3f+PojPvyFdyjykqJpeG/ykEk6ZFvn1Kom8AIGcXdvjPsqLb1eTFYrTocp03FKGkuo++Us43tP5yShj9JGYnfymk4cUNeKZ1dblsuCLKtYL9ZSldlJZMRrNPlsht8bCJBYvBaw2BmI3tAYil2BahRJJ+He/RHaGN7Y8f/R8VDY1G1GfnXJ6OxEWsUmZ5B0LANnXen5RhhFF43kAFvab0FgtmoD4nvDW87ynozD076szwHDg/vymL0RJ7POdhuk77rPVW3H1H1hN124uh/I71EqYHBvTDLsKzfTvoznXdOPMVavqm1e57AdvTutcRjfYkptF3xdtgyn648PItlX1bQ6UXfMuRACAqLjFhR2bOj7+koyUoGgN4BsRXn1BrWwoLA7gvGJrMNFRkXJl6tJPb+Ng3IAvMpbY5hrhFqew+QuaEX+8qnkeTaVvIaaEsIYf3wEqwvwPNYXV6xmKw5OD7j/wSPKrCSKAt69M+ThnSFF1dA0mijwSTsx61XO25a3i2g8D/PZZ1BVhAdDoe4bhcoqvDik+s4/ZPfxa6gq/CTCjwJ01bD9wTPMeo1ebYgenRFMR6x+fiku6n5MpyOjmdCT3vEw9Hm+yLmqGw76Edc3BcNRgheH5D/8DLNeyQv++Bjv8JD1959z8ck1k9M+ydEAgPEgptsNuSnlw3qnFTulKbVm2SjmTUNpnesBAjwPo8Cmq0irz3lVs7Y1mYnvW0ZSmLrTKCRAopwcaOv6kr25te1CwL6RqDa2jx2JTartKCrwPFLL+LlMz9gXLaT73Tnk3TrddK6yjGll8zyXjRbTljVcyc8t4+gjmlEfMRfd1IrE8yiNYdFoFk2zJ4G0MZKXbQyzpmFjxzMGkRc8XeV7QDqbF3x6tWOjNG/WBWkSEtovPAfKQ6tP1Uj1qLbWgUEQcBSFcjFlpDUqsK8Dx47KOZBjmjeKg2HCtmxIfE8qUj14fNAl8KSe82CaEvgei5uc+cdvaFYZfhxS//ATzHd/B+/xk/3FUXTQlxD96KunHwPQGF5uJQt3EA0ompK8KVFG0Y+6/Mbn3+GL1Wu0UdSqIfB9As/nfHtNL5ZKzr/w8BFnkxHn5zOqumY66tNJEttO1oU0IMtL6ostlIrxsM/F9YI4DNFK85Nnr1mXBbXWHHW7jNKUzz97zbMXl5weTRjamI7+sEschRLPk94y/GgDeUO1yAVk1jba5yqT8TjYFy1s1pkAJld5WdqxduDBmTUfbZ0ByCPpxLbbXMw+Om8kUij0WgYysg7uykYgpYGAy8Qypy5k3fNsVJJqazM9D8+xh27s4XI7I8ugGuTn24vToDrGxTKf++3b86JXdiyujYzoa3vOVhXbrMCPfGg08SBlsdgwGvToDzqsNxlvrmaYWrNcbInjiG4qUoPNOmt1nINI9r3RGMvyRp2EOIoEdGbWCBVauYKHHdXLh5YxBm5yzo6mrOZr6EbU84yqbrjz4JiyqiD0OD2c0EliirLi458+Yz5b0+11+L1Pn/Nff/8fcX9wJt8RtrFrXmyJgoiv4vLDFyuUMUwHCUob1uuSomgwxvDrv/mCnzydscwblrtqH4/37OWS06MeZVHz6N0zJtMe6+sZqAa/PyLoDeS+VSEAoynh6gsBeYOJBamy/ZcvlhSlbO/4uC81p6+vqYqK3tkZURJJPmgQ4Ic24zPuCLja3LSAzGgBOU3VhsY77aHnCUDKNq2px7GDzvAyORPgWGathjRO2/G2Y0Td+NsPWpd6lbUGGwf+XNZoUwq7qeo2IN45690Y32ocZb+SFrg5FtHd35mInF7UxRm5v7n7uWrP5blsH1rtKwiwnr9pfx8eWzbyFLpjms1aAKdNDQgmx8I6p32RVTj96T4EP2/X67SyrjLU5Y2GsTj23XmKu3Leig3JnUet89+uKz48QVclhAnRcETYkyasixcXrJdbesMen/zkDf/4u6+4M+0ShmJkLCpFtr3F4P4By1u/geNHp9SzLfg+Jsup5zvp0VaaoJtQX2/YbSrYbOzaPEyjWS3lZJtaSTRSmnLwVz7i/T//kNEo3ksmdkpx77BD08jI+b00EeNLozm/ypg/X7C92FD+1u9BlkFdU338lDCJODjuEh0OiE9GeNZl9WyZkyth+MRT4HFZKx4kMQYbTReFRJ7HL/c7TMKQ2LrYa2NYK6nVPIsDPskqqdwEeoFEF41CGX0PbmkYYw9GYbAHiI5ZzLQE0NfGcDcWJ9jOah2XSlnCxDCyoM2N+l38EMjneWYZTtGqyrorKyc7jALmNjqq0GZPiJRaJANuPbFdZ6HNfh8yJSyl3F/TIDmgxj5u3SibBiC6UmXgi7zkvK4Y9GMGgc913VBpw2fXO77ICjKl2VmNq48A+OMopOMLO/yqbFmc1Bq+HqURs9q58xsMki5QaMObquJuHPHpfEdjDB3f57Qb83Qr4/Z3ngyZDESv8urClhjcl3DecNIjuncEBwcyNnr/HeKHJzSLHUWpqFx25FdsOUwnLMolvudT6YqsLgh8n7wuUEbxarNkVWZs6i3KyDkIvIBFsSbwAibpkJPulA8ODvmbf/nP8+E3njCdDinrGq0N29WOs7NDO6b1GNyfsHg1FxPRcs3N9ZLlcst3n4ne0/c8nr66pNtJOD2aMJ4OGAx7+L4vOr/Z1oaVN+14d1PjnXYF2FSaeNqF2Kf7eCoH6eKPdnWrA00CuC7aMbkz9nRC616XD8Kysq/BTgja4KWB3G9j2dOuNSCNrQbU6W3m9sv6tpHJaTW7USvC1gbjRvedoDUlOZa0Y4GtRwtaldnnZO4bmLRp9abKMquFEiDq6i59TyZTlR2Hl4rAF51qlVdQKZbP52wv14xHfZI4FnlBrZifL7j44rLV2zZajsEYOXYkC5JZQV3V4mD3gMYQnQ0kM7VQbe/7QQqVplnmdB9OOP/8Aj8JCeOQo4eHVOdb1tuMD965z/R0Qlk3vLmas95mnBxNCAKfbi/lztkBT6YTfrZ4yiQdMoi71KqhUopd/dWbVjw87rPOakktKRp2hYwtlTL4vsduV7PdVnx+nVHbqVSvG7Oc7/A8GI279Psxo1HKL/6FbzB58oQoiVCNEq1mtqI7Hbdj7u4Y1jMJOs8y8l3OerHm2Rdz4lhIoTcvbvB9nyiOGB+MWhChNXpxxb5r3BmFyl0bLeTilzy/dW87h7jny+MckJy9lPU6trCp21xPB1o31tjUG8vjnSnJMZn9KfsuePf60EpAqQOZTl9qw97pjlu3u9Ng1mVrYgL2tZ3Qjrideco5zB3Tuc/4tNsrtq3Z5+C+rBva8f5+rK9bINhUciyL15AtiUfj9tw2FerqZdtEVGzbF1AYt0733qRlQ32vvUDoTex5r4XFbMqW+d0tYHqP8s2z/T7Fx3cgFynV6PgQxicYbSQ/tq7o2c9vYwynd6ecnQ34/GJDEgYkNgkk3+X7QoM/aHk7/TMcYqoGtKa6WhMd9Ft3uzEk96dM3jmkenUDvkdw7wyAO3/uMfX1huXH56gvXsoHZBjSrDLbnFCQF1L1uFiW7BrNYRKxVPJleFnVvC4r1quKqtYkf+lbkCTg+wSDFL8T0X3/FL0r8ROp/fv8WqhxF1yeKc1pFPEkjXlT1VxUDfPGthMBK6VYqYbrWnEcRZYY8TgIfTrWue4jMT/ONb9s1L4O8ziKeFPV+J7HqlF4SOB7P/BktG61hYEdLQewd35XWljGQhtWjWgcK2PY2rxPH/bNRLkW0HVTt7mY2oJR2aYwpm7dzkWvDTaMXn4XcCvr7gciBci1JteGjdLc1IpMa1aN2utdt0pxpxPzrccTrupGMkW14XdfLHlV1YwCH4Uh1xofb18/KkYp2ac3Vb0/591AsklfVzWR5zEIAgJ7nM+Kmq7v26glceVrq4/tW+NYqQ1lpXlv2GG3a/jBzxestjXPrzMmw5jNtubmizn4Hs1si5ot7Rd+D9Zrik9fU54vSeKA8eOvpuEoCRKyukBpRd4UnPQOrXvYoIzm3ckJ74zvsCglouwwPSTwff700bsoo1gUa0I/5OHoDosiZ7vJ2Gwy1ptMgFulWay3mMYQHnTZXK0hDSjWOdW2ZLbc0O93+MsfvEfg+4S+T5rGJGnM0cmEzTqjsgBwfbNuNZLW5R0e9eAoxczLPbNXFTVkDXlptY67huCwa9kK+1in8wwtOxnLSF+ilQQoesMYzqUf3kUZRWEoI3jPazM2A0+C77VpzQXQhqkrqyP1aKORXDao04R6ngBqN253eknneje0IBm+7JwHOS8uDsytP7RA0+2SMsJEVlrAY9bQqIazRyf86q9+Q8b9EgbMz3//C4qbrdWcBq2pq1Z7ULk/d1c5RL4kDExTwiikXuby2E4gPdKpXUcvwj9IrRlJtpXtCkkomBdoo1msd5x+7QytDZ/85Bnz+ZrZxYJhv0sQ+FxczVFKs1pumc3XZHXNOBmwrrbMihWLYk0cBNwbHP9//wb6/3k5GCT7n28WGYfDVOp/Q584DLh30uedRxMWu4pBJ+JXHo3xgA8/vMNyUzKfbUiSkJNJh6JoyLaZPD+5bayJO2RXl60RxbKUzfwampLV9YJOr8O3fukeZSlj0/64T5zGnN0/ZL0QEKLKQpg3B9AsI+idvWPzL+cCphxTWGXt/csdTO/IQToTT9yB8ak1IqUtsHNMZtyR/c/Xdly92Rtf9sHwcadl/RwDqOoW+N2u43QMp2pac5FnX+9N2QbNu9G/c4z7QWvgcUDTAUd3X8+T/91o3Wk+HTh1jGu2bI1Jtxz9k8eP+eZf+iV5fCy56tXrp/J7b2LBvNdGVDmHfW/SbrPYSAapi6xy+tqk22alqkbW7xqiPF/uU+VtTqlWVLsdTE7RSrN6/gzWNzSzi32KwW65kfrW5YaL13OKomHck3NdlorFIieMQs7uvN0g+IeCTy8MJGheG7yjQ3QpRoPk3/k14v/0PyP+F35VRu5JhPfwMaZReA/us3k2Iy8adG0/iOdzOl+7R1VphoOIN5uSQRCwbRSVEdNIz8YBAZzGEW+2JePDLur3fl9CZGfSaJTcm+L3OuiyZvv7L/js9Ya1UsS+6D5dcPmsaXhaVFTGMA59PugkFmCGZEqztoHns6aha13ws0bvG40iz2MYSGvQdV2zbIRRHQYBH2elaDUtsAvsqD3yPKZhuCdJLqqGWd2ws3rL2JOGo1JLnujINhpB66Ivbo3MB4GPQvScHd9FNRkMMjp3hIm2//qBG3nbJ9gTAOv+tlZOaylgume3EVsQ2Lej9dCDjVIkScD3ni0ZBT6jMGAUBFRa78HuedXsmU4X6n8YBSSeT2XanvtCa87iiGUjuaOp7zO3jvjpLfY30xoDPExi1ko0urnWdO3VpTEGP/DYNPJ8H09THh5JT3uWNXgevPnZDetXS6mE9TzodOHoiPTRMdFBH9/3SN6//9aX/p/UpR/1CbyAJEjY1RkH6RRlRPTwrzz+6/x7v/BrfHT0p4n8kMgPGcR9tlXOSeeYV+tLtpVcpTe64TrLePjoDKU0g36H4mZLOEwpSsny830Prx/hes+jXsJ6uSVJIv7Jixf4nsf5doPv+4wnA7pJjGoUr19dc/lmBusaOqGMqa3ZppllovusNSQB4b0hNJr0bChZl7WGQSRmo44d+zpm0ekt0wBKTbMqBGQaA8MY82orAMvlVCaBAFSDhNY75/pVLuxlbtnxTijj6EK1Y25j2vG5A6g+AjZ7Vh/qqjMdK+pAoxN4ayP7H3jyWDeKd2YkaFleN8rPLfvp1qksmxqJA90sSjppzO9+/xO5T+TjTRLZdinnlJUbA+o299TVaIKA8FqjNiXxQZdmbc+jNsIQV0pMYQBZg54Xsl/TVM7fppL7D2J0o2mUIitKAaWBx+nxlKPTCd00YbsrMMZwfjnj/HImbmtjuMmX3OufctI9oBd3iHyfJ6MHf5S3xh/LZZwG+L5HbJ/Pu9MOYejT7Yb8l//Gh/zdv/FN/tWPTpj0YuLQ59EkoVaah0d9zs83aCXNdPNtSV1rju8cyrg97Ums0X70bBmx7qiNGfID2K2I4oh/9v3XhKFPlkkY/eRoTF1LzNLiaiFAssplvaoWsKMVZnXTjpVjaz5qKjh6IMCo3Mk2r57ZAPW8NehYmQpgx+FNO+4GuHkh/zudZ9wRJtSYtqO8ygX45us2AL4u22N2rKSTBTh3fF3uY4z2elE3ova8dmR9m928PXZP+61z3JgW/HqeHLPTYLomKAeU/aDVolpGOIxCfvg7P2u35wxcDri681jlrcHJsZru3Lns0ckdC0jt8e0Wcj8HyOui1dI6/adWbQB/lcPWxjVtF5CviY/vEB/fIR0P5baqYD1fUyzX+JZkK2rFwSDhdNqVZsQo5KP3Dt/62n8r+PR8X77AbbZn/flLvNBH7Uq4fAPDQ7xOF13W+J0I0g7huIt3dodXr7dMj/uorUQvcXqKyXI6Q2nMOUpjZnXD3GoLV6VELi0axVkas2jEwPKDH1+hdiXeYAidDsHZMeWrOc31imKZ8/2fzog9n2EQkNlQ9cyCo1IbHiXCfvaCAIPc9rQoKaxWEloDzLxRe5PMeaU4rxTLRnNeKbZKGMInacRaKTa29cj3hEVMfR+NaDsDz2OnxOh0P4m4qhWnUSS1kVbrumr03ojkklikXlMC7WO7TpGNGU6iwLKB0mBUWHawujWiDxDg6pzvsWVFA+TfVpn9eH8SCohNbARUpttAfmDf1vTj+U5YT9jni3YDYV2FYTb7vvnSrtuZiZyO04FrZXW1vSBga1nu16U0SY1Dn/Oq4VEqHw7zpuE0CiUKRilumppMK3Zac3TU4Z07fRJfOubzomE0jDk57tDrhvS6Ib7vUc93Yn4rcsmpffIEozSn37xD/oPP3vrG+JO6BH6AQaOMplINr7ZvMMZwk234bPUpcdAyLf24S+zHHHTGTNIJL9dz7g0OWVdblNY8GY8pyopBv8NmmxNNujQ3GVzneJH0rPueD5n0i9fLHGrND34s53aSpnTCiIPxgNVyy2qbscsKXp5f05/0YBLDtsasKnkBawQkTRMZ4wYeSosBprjYCPCxoJFh3LrOjWXtllWb6bmr23HyUUdud2P9RBhSfxALm+sC013E0N0erEris75lGy0IzYTpox+14NAZcG4zsPsTHO2ZR9KgzfJUdsTtjEuO8Qz8NiYqsGDTLdZgRa3Y11s67Wdl/7fbfvr9Zxjn3vfkNUHkC0j1vfZ4h3H7eGNaQJv4e51ttS3luEdxC7YXpTCdkwQaTf/OSADzm53c1gtlnZtK2OuiYTLqc3I8wYt8Lm4WbLKCOI44PhgxHYk+cdjvoZTm9WJF2VTcFAvu9E7J6oK7g2M+XX7xz/fN8sdgqe0UrGokY/nHL5d4Hmw2FZ/fbElCn1JpOnHInUmHSRrztbtjPrrb4/rNDSdnY8pSEQU+vV5EnpWEcSjGlrTfOqNdFWW2ahtxrD7z+rOnDIYpqU2vSNOQ9WJDnglg1XmGN5gIiMnWNmap27KF/YM2P9KxflfPWzDlB8Jy2v73fYj8+soG1et2nA0ywofWLBQlLTh17UMuIN3ldla5jLg7QwFeQSTr9jzZV5D/XexQZ9jGIjlg6uo9nQzgdlyRA5+e1Xq7Mb0bzUN7Hwf4bW/7HhzuDUlhy57ma65/9EPR4zo20rHL+5zQnH0l6W4h98mlhWgvBwA5prpsI6zcuN/pQB3YnN6Tc7e+apMHVC3bs/vQGQ3xRwfQGVKtllSLmRjUTu/SOzoCrfDTlCiOuLzc0CjNfFvy/mkfpQzvvHfMDz69eetr/+3MZ6eHyitxtWtDOEiJDgd4gU/5P/2vsL7BvHopI/cnD2G9wHv3XagqTo67EHgYpSEM8Q4O8Q4P8DsR9x4OqWvFQRTS86XmMvWlO10mWeI+7/g+v/RLZ8QffQ2z3YAxZP/0E+av1xTPb9huao56Md1EYnkSN7LVxlZihigEFOVac1U3olM04nA/jSOboSlA8SAMeJhGVEZMRu92YgprFirs2Dr2PdYWOLo8zr4Fr/rWF88kDPaGoQdJxLxpLEBlXy0ZeRKA78bjlRFzju85J7wSdjIQEHrrq4h5rfbOdjHNikHH99ibe8RwJWDXIOA2AOsml4763LnOgY49Js+eEx8Bvqk1RNXGsFKK0o7qe4HIDJxRahoGJDa+aqMUfZuTWtkLgcjz6QXSYBR4kvMZ+8LGHtgolhdlyd04YmeB8DAMeJgmDANhUzdK8erVljeXGcNhTNEovlgVfPpyw2ZbM5uX9Ecpk2/eQ+cVJi8w15cwPcILAtQqJzr66uUFuqUTdqhUQ6nEZNQJU4ZJj8D3+Y3Pv0OlSl7v3qCNYZpMKVTBWfeURjf0YgkjV1qThDFn/SMO+j38wOfuqcgUkpM+pAFmU2OMQa0KCD1xYUcCnn7low/4+vERszzHGMMnP3/Bzc2S7SZDKc142KOqRePpOxCpLCgbxtxu/TGzAq5z9pEJ41jIEucCTy0QNUZAz6Gt23Sj6FrLCL1SEhFlEFPQNEHPClQp7CulEsavaPa6x+py247KZ0U71nexS67n3C3ayH6tqzZc3tCCSNce5sxC3q3RfmMEWLpRu7sN2jf+tm6NTBZAYxvG8DwBhK6b3jFKlRbmUhtYVQSdqN0HB7ZB1rWVStAwjffsbtCJ5Lwsyva4XdOT3c721ZLgpCfP2abCT0LS04GA734EteZ6tuJ6sWIyGkje6PmaF2+uyIqS1Tbj+HDMO+/epSwqtNZ8urhmmo7Z1qJvO+0d/dHeGH9Ml3EnpK4121KhtWGQRgz7CUHg85//4y9Y5zU/v5YLibujmEVR8ecfDamV4eD0QHreG0UvjRgNEvqDlDAMCcdTAXS9iYCK1WXbZ+70n+kAhoe888t/ipOTPlleYwxcvp6RbTKp5PQ9vPQWwHKjXwf8Boctm1lsBdBs5+1o2AG/3bIFfGm/1W6OTtrJQZVZNjGU9bmMUDdqduNjB5bSQTuOjjvtMcZd2QcHuDc3st3G6h6rTABtuZP15evapjC6AAAgAElEQVQvm4bcCHq3lMdFiQA55+h3jKMDk57XnoPS1nIaY7Wr9rGOeexN2kpOZ3S6zf6C1JQ6/apjqZtK/jmwe1tC4J4XB1z7BwJSs6XIGhyjWRc2vP5K0g+Snh25J/inj2U9wyPwPPJdjt4soTcS09fqkvrmgjIr2S3XpIMe99+5Q1WKCe5qljHtJ8x2NXnecHbQ/UNf+28Hn01NdbmCQsT21dWa6MEpfhIRPzhB/5P/HYIAUzV4J6eYosBLEpgc0O9HLC8l/kZdiWjYOz0lfU/Cvj/4U0fue0Dc2cYQe5Jf+aKs6AQ+4zCk8+ETWK9BKYrvfky2yklin5ubHK0NYeTz6SZn2Sg+zUtyLSP3O3FEbUHmTut9Hucw9HmYxHR8n9SX7EvX/rPTMnIvrK7zp1nJde1C54Vl/CwXI5KHjMm79udBIKajcSCgM7DA6rpumIYhqe+iiwzDUMxDOyWAdRS0o3dtBCTKiF/aj6RARVzzhTbS/W4Bq2s8kkmdBch2hO70psCeqRzbEXfstaaflY2Sym1UU6E1y0bbMbjZf/etLJur7H75eJzEIfNa7d9DuTZ49hFbJVrQysoTeoHPyh6XHFtAz+7gZ3lF6GGrQg0ncUjXJg48L0rWlik9DCM6nZBeIpEkJ9MO70zkDbnbiSnm2dMlr3/7GcYYvCiUutflDLNYkNybkv34pTBLX8Gl0Q3n22u0kWzHWb7k4eAeoe/z/vQhr3bP8T2frC6YphO29ZYkSKzZqMcsW1I0pYjJe4d8dHKXszuHJHHEk4enlBsLwhyj5nvQGKqrHX4nZNDr8O7ZMZ8vFhRNw+99/JRGaZIk5upqQVFVVFVD9WYD6xr9ctOykdOkjfDZ1vK771kQ46KOfPrdTqsVLZWYXxo7wvtiLUDTOcw9D3OVW22X3oMzU+vWYa5Nq+UMPLgppK6zE9qoJKuP1LRsas+6wm/HJTnGEiwLavWflWU84+DWiN6O/Nyo3addl8ssDb0vM6ye14LF3ILk7S3taXOLBXXaUQcYbSuTymsZj7v2IicNcNvJGxnbdgWkRlEo7LLbbs9KEGoN5xYs1BpVK5gmeJMEva4oLjey/koRjFLCMKDf7VDXDUkSc/r+GYHvSxwT8NkXb/ju9z4Rs2AYMIhjPls85zqf0486fLF6Rex/Nd3um025nwAvtiVPTgb0ehFfvzvki5uMaSek0ZoHo5RZ1jBNYg66Eb1ezM21VCKXteJwlHLnzpDRwZAgCEjvPLCj8kHLkrkmoO1sD1w6nYjLyy1aG16/uEZriW1aXs1pasmYNFfPBbStbXVndySAx5lfPL+tdkz7AuKcPjPtCvDL17KO1WULGuevBAQ6fSbA1VP2oeydYTuG7wy/DA6LjTUo2dF2lLLPDu2O2FdHdkctsHOj78zGCuXrLxt/wtiO87MW6DkHP7QufWOnBXUp/4KwPWbn7vf8lqF17OVtzabTndZFa8JyrC2wD493DK1jTJ2hSTetxtPpT8NYzq8bp+8lArrdDweUnYZ2OxcjmTECuJ2kyA+gKojShP7XPmoZ3SCgWG949fScqqjQShPHAZu8ZpVVjEYJn71Y/qGv+7d+A89+/X+WY/29T+h+8zHJN9+X7MTAEzMHQNNIcHfSgasrTFHA/AYvDtGWRatvNpjZDUZrOD6m8/4drl6vmQylsWYahvQj6f92msKuZcjWv/kxFAX5P/pd/DhkcHeMMXD8YIQx0qpzJ444iUOepDEfDbo8ThIiCwonYchNrUg9cV57eCwauXIJPY9XVc1Oa15XinUjOZe5NlxW0gg0DkUPmfoeo8Bno8x+/FxbNvS6btgqMQ3VxqAwjIKAyBPmb9Y0rJWiY93zIOCyf6tW07USObd8bMHmRkm+ZaZaV7t8x8ianJbUtzpON3KvtLCNbp0Gcedru72tElBZGfah9E6jWVgQ6jrsQbJCXStT5HusLDPp4e3zR1eNYhIGbJRiZCtF5X9hno2R79xPc6ktXTQN4zAk9DzuJSGZEjDtnp/SaPu3mGEgsgPPg1fLnFleM1uXbLY1ea446MecnXa5+86E46MOk8OOvC6jCLZbiBPodome3MXvxSIn+Qouv/H5d0iCmB/efMz9wRn3B2coo4n9gHW5I1c5V5lop7XRnO8uWVUrdk1GN0zJmhqNaO6uszndKOXJeMyDBye8uZjJuHzbkExsAHVqQ9+Lhm6asNlk/LMff0ZZ1fzTH31K2kk4OJDcwMPDMdq+PoOTHgwjvHt9xg+nxEe91pgzTmBV4sUB6cngS2xjnERszlfygnaOaxDWNLOB7tLW0LrSXYRT4O3B0r6+s9R7008wTgUgRoGNYLIjfpf/WavWHLUPhLfMZana331hAGXc4LfbLJp2ZK7t/b6k77RPoufJ8dxmTUHW4wxN7sq90S0TCewrL2MfBnG7P84gVNmRu2+vFiurA82ava61k7b6V+PG8atK9m9u80ADC4Td9ueFdNDnDXRDgmlHAGzgoRrFerllvdqxuVpT1w0XNwuSOGI87HPvziF3Tw+ZjAb4gU8YBlxnkkWrjeHu4ERqYL+CUUv/xd//Cdttxe/9/JqvP5nyZ987pBP5pGnI9abiKi94epMR+j6dMOBHb7ZcZDm9MCRJQrTW+L7HclNwbbOLj456HN89pDh/1Y58R6eSK2mMAJTdwrbXKJ4/vUIpzY+//4w4iRlNR9RlzdG9E4IwQCklzvXBIUzOCI/uQN+2Brlx7vJc1ueYUMewhjG8/pl1edtMzCCSn2+DTgfGgtAGudvxeNqX3x3ocppQ1Ugbj9Ft7JHR4hiPO3Kbyxa93Ux022jktKH7sHjbh+72FVrtqIsqclFPbtTtWBcHzNx+GtOalNw42+0/fNmZX5dyDvsH7Hva034rUXAAvLIX0Z0h+2zRKhdJhGNGHfu5lyNk7TE5AJ70YH0tDHG+aatNtWo1sbNXst/Flno5Z3sp4DRME6bHUzqjIUknIYoj4iSiaTSrrGKd1Tw+HZKmIWn69u/Y4Nvf/vYf+Mfkk3/47eRbHxIOO5jVmubVNeWzK7p/8SP8npzs6ns/wQsDgq9/gP7pTzHXN3hHB8Tv3qerc4zWhP2UwFPQkSsJM5vT7Ubk84xYefTTULKhtAyMh2FAgMe7D4eMf/UdAKLDIcHhGJoGs84othW7rKHfi7neVnsQ9MNtzrxpxHTk+3xeVHyjm+J78KaqbQtRQD/wWSvNTilWjYyBT+LQyp6E6XSVzcIiCjgbhD6J7+0bhnJ9qwHJ8+hbjeNV03AYhdRGnN+FNra9SOKT+oFPYNlOz+ojE98Xf4FxKS4yVq8t81kb+dnpSisjLnIHDDXsx+yp7+33XSPfG1sloDbwPEvWSLB87HmUpp3oKeRvBhiEAZnVcsZ+y9D6ltn18Jg1ioMowCAXD5m9eBCXv8frqmESBvIe9TwuKmXbndh33i8bzcM0YtEourYbHk+Op+P7dPyAnpUJ9IKAo1GCUXLulmWDaQyLVcV6lksxzumAaNrHn46gLCHPpFEijgmHHfRqS/Q3/u2//dZ3x5/AZVFdfPu9yWMO0im7Zsfz9WvOt9f8mdMPMZ6hVCUv128YJD3u9s94tn7Jpt5ykE457R2RNVuiQMxISRiRNyW7umBTVSRpTLYrKHxNr5NSNwpd1ML2DWKqoubrX3vEnXtHBEHAYNhjPO5TFBW7XUGWlRgMURSyW2wJujG6aCherlDrEvAENC1KwntDiYt6s7GmHJ9gnNIs872zW1p2rMnlNgsJ7ajaOctTq6X0bznOKy23d0LwwCwKAUwOwDo9qYs2SoJWX2poAZgbryvTAkIH8FyMksE+xhqe3Mgdex/fk78Z5M3qqDC5smTfNuG5Y7TA1Y3gS8W+kem2w97lkYa+gN8kFO3NomxNRnY0TiLxU00AZluDDyqwz8m2tg79wK7HbvO4K3+L/RYEb2q8Xkhoqz2rbQG+x/HxhNqX578sKrQxbHYZs/mGvCgZD3sMhl1G/S7bqqJoKg46XQZxj0k6IqsLfvXkz36l3rNflPrb33g0od+L2eY1L2YZn79Z8+feP8Lg0RjNT16tuX/Q5eE45XefL7nY1Lx31OXdu32W2pe3TRwS+h7bnTB063WJjlLqqrFspxHTUFPa0fcA6pKjdx4yPRzQ7UZ0+l16/ZTdrqDICrJthu/7hHGIml/uwY5+/XMZLztgs72BO+/Dbi3MaNKz7xPrevc89tXYjoVzgC8I299V0zrMjWrH12BZ1k0LxLRqx+KOaSx3Xx7Xp70WeOmm1YwaI+chSqzetGy1mq6bPbTmIceK+r4FqzZfNE5b6QF8OaLJgdSmksfhtSDVjdjhy/IH18nu+e2o3KgWNO+ZWK8FiFHaRlc5M1JtM1gduA2tzte1NA2OYDeXUHtMmygQRGK86g7kufV9AafdgRxrsYMgRFcl+dUFTQPG8xkdjhiPU7JMxu34cDhM6Xcjilrzt751/w98v76V+cx+/xnecASdDsWza6KzKdvZDm88Rr2+gOtrdFETnU3B9/GHfcrzJczneEcnhF9/R8K+51vRfQ4GcHGBd3QISu/73sfjhDj0xa3uSaXk4/t9xh/egzjG+4UPYTLB7HYsP37Dp09XVLWmKBRXs5xxFNg2IkXX6hYzOyL+xX6HnZbR0lYZEsuIKtMe/DD0OYlk/O7bMTbY77Nb93OgzjGPt409a8tQbrVUanZ9X8C0ve80lJB6VyVaWRDZsa1IW6X3zKI2ss7Q8/aB87NakdkvVhfe7vrRXYWmpo1XgtY172KXeoGcYzFVefu/u6Xre/t2ouSWC94t2hhmNrsr9jw5NiPgVTwT0prUszFQfV+MRb4Hs0YxryXo/8NejDYy0h+G0i+/UZqPs4pZo3lTNTwrG14UjfS/ex4r1VAYw9cfjgh9j92uIQg8Bv2IaSdiMko4OUh5cL/PnQ8OUaucerZBXVyD1jAe4929B90u5aevMLcFul+h5fn6DUedIwya8+01Z70jfv/qFcN4yNVuxuvtBcpoumFKoxvSIOZie0PRFBykB3xt+g6xH+0bkKadEauyZBDH+xHp/bMj+t2UbifB70oIctpJ+MY3HvPOg1OGScKv3rnLYb/Hdpfz5s0NN4s1xhg225zZbEV33BPA6RjDQBjKeJjCcYdmkdNUVlvVFd2hyusW1PUiOO20bnOnvbQO7z1jqIxoFp2hx72c+5EdUysBU74nzJ9rT1pW4oB3tZKu4cjFIzmHfmNBqQN+t8PjV9a178b6bnFg1f3sPmgaq3t1MtLw1rrcFbADuLVq7+M0pp3QAlX/FhNqhPEsnebV3u4c7mkg60oDvNCDjhgz92zuTS6j/Ts92edayXnK7Dpf7+S2XQ03hYBaGzZfFxWb2YYHT+4Qd2KWmx29bkoQ+IxGffq9DqNBj8PJkK+9J+kTq+WWm4VEK43TlFLVbKodrzeX/2/eDn/slx88nfHNsx5JFPD8zZrDYcp8nnNvHLPJa777bMUur+nHAXmjSOKAT14sWFU1Hx2N+cVHY8LQZ7Mp6SYhcRyyWOScnPSl8SiKCfpDouFI2mq6IwEp3SH3P/w6T945YDhMuHc6II4D1quc3XqHKgvSbkq121EuV4SHd1p2zZlUohQO7ohucz1rgV2UtGxlGLdaw3RgR8x1a05y7OQeGN4Cok4T6brXb5uI9qBSyW3bedtqlK/bMTy0xqXbEU2OcXUsqefJuNqxo7dBZRi3ofGOWazLFii7fXH3dfs1PG6NQ45hdWaipNeu37G5ztBUbPZpAnuA63JFnWzCMZ975li35881GXmePF/dsZz3upR6Tjd6z1YC2OOuaDvLHdy8Ij27J73ukbQleZ5HcnhC0BtI69JgyvTeKXiwWWyY3UjM5WiUkKYh823J65udZAO/ZXkr+NR5hf7e9/C+8aEcSBTJlGk2I/y1fx+yjNVr27e7WqBXG0zRkP3Wj2C7wTu9Q9BL8aIAej3MxQUcHgoTFfgMjno0jabbDYljF/djeFVWXFzmFF/cQBiKqWm5pHwxozNMeffxkIMnBxwddmiMYWEBked5HEYhH/U63Esiq0GUlqNVo3i/ExNZBnGnZUzeC4K9qehVWe+BXH4LXN5enCG0NoZZrRiHgc3ZFMB5USle2xzD3a1Yo8YYGsy++afQwiTKmFmYUMcwaiQrU9hGAaEnNiS7shFNyrSVnLkWDaab5Dmnece66yNPwKxPO653bKjbPzdmF+e+gM/E97ioGnp2H3pBQDfwST1hNRVifOoHckxOIuCYVakz1bckAqIvVcBZHKKM4VnR2Bgp2d/Egl2XApBZyUGh5XXx8bMVm0ZRNpo49lksS5IkIE0DGiWOUbWW+JZw1CU4kgsjtNXoRBHJk7N9x/tXbdlUOz6e/5R3R+8R+iGhH7Krazb1hn/58V9lV+esyowkSChUSaVrNlXG75x/n1rXjOIRaZigtKYbdjDG8GfOnlApZRtQJiiliaOQshKNLRqKVyveXNzw4vyGyPd5vloyzzIWszXDQZfjgzH37h1xMB4QRiFZZgPhPWCa0H0whoNU3NW1BaRFI4HmIAALrN7SBq4XSoxALivTjaWDW8ATWuNOo2U93bAFjr4n4Gpeygg+t4A3tSyeY1UTCzYdK1qoltl0OkuNvdKzpp9J0gLjKGj3yY3noWVBPQtoYzvSdoDVAdD9m9uu2wFMl/9pkNuToM0XLS1QDH055q4Fp/OyHbu7SKnQl5F5Y6TO1J07e1FA3khNKQjIdGyyOx+3M0sDT5jTraz7xRfnYjADoiBgPlujtWbY71KWNVprNmvJkU07Cf1Bl1praqVQWhEFwsJvq90/p3fJH59lvS75zidz/sX3pUChsvp5gP/wLz7meplzdbUjsJ/5801JUSj+u99+RaEUH572SOOQJAm4f9hju624e3dIWSrqqqZn28TqskZnWwEg+QZmr7h6fcNnn14DcDmTas2yKEnShGTQZzAZ0BkNocpp5pe3XNxTAXe9CeS7Nm6o3MHpE9n53bIdd/cm8rdy17rKHchzQBPa94QxArKciak3ae8fJQIEy12ruXTj+e1MQFaUyjodo1flbUWmqgV0udG7i0iqS3HL3wa+YdwCOmhB623XuzMkOfOSc43DrW027cjbjfaNaRlZB+jDWIBi3G3Zzyi1RifLHq+vrYGqK8eV9FqJgru/A7bdsdWZWgmBA9kOlDvAXO4sKy460eLyXGpY8y1JN8Hs1jR1Iwy4UoRJTFmUYMAPfDrdeC+nigKfqtGkSUjwh3zHvvWvficm//yK6n/8e3T/k/8YPV8yujui/P1Poczx/sq/xPB0AGEIQYDalmSrnO5f+AUBjOMJ5as5alOQ/+5PQSm86RR1PcePQ8JRl24/piwVd856TIcJfT/gvV6HslYUmwKCQMb1to1nu8h5/mLLx7/9ko9frbmsa2Z1wyQMuRdHouu0b96t0nsXPMgId63E8JJ6YjK6rKQHfq00k9DfA8LYF1axMeJoH4c+w9Dnxgr0jyJxdt/USow1Fug6gCf6SsNGKSK7nsiCwtJmWzoAWWjDvFaSvmLYb9N9Z66VZl7LNrrWtAPCRHqIcWhW630we+zLvtT2uzO027feEOmpt9vBbh/Ys5zaSNuR65zv+D6/cjqUcT9QGC3j9rqha41hW6UYBOJmDz35oLyqG6kTtcDXhz2Tu1Kaoygg9tgD/cbIeZ6GPoeRrOdV2ZBpzb0k5jSKuKxr5o3clueKXi8kyxrWq4qm0aw34ggOB6lEcl2IvpGqgrLA6/apz2eSwvAVXOIg4sX6nO+8+D/4t97/N1mXGw46HX508zMa3fBXH/wljrtjBrGAurwpqZTi/elDrvNrOmGHWb6g1jU/nz8jDRO0MVxvtnQ6CWEYMB73aZTm7skB/W6KlwYMHx/QNMpmFobEQYBSkt+7XG15fXnDD370ORc3C5qtBMinww7RpMtg3Edp3Zpw3NXctqZe5aLltCMdQh9WtTCEpRYGMwlaIOiC2EGYwMgXB7lPayDKGgGccWDH5VoAlkcLYF0VpmNSXYXn3umu2u1AC74cQ7mtW3d7HFjdKbIN9wHVmHabYIPq7X2ioNWEgvxc6RYUYtfjGNnYFxBZWt1ZP+KDb70n5zHw2v3OrW71MJX9c2N6tw+75su5oi5mCoQNHsb2XN8G6qGA1NTqY7cSfJ8c98X1vqthWVJtCuarLd1eilKa2WKN73tUjeTzDoc91uuMm+slxhiWRcFVtiarCy62M3z/q3fBGEUBnzxf8Hd/8wX/zd/6FcLAJ4oC/s+fzVnmNX/9l884OurSi30i3xeMVzb84qMpL7cZBri42pLnDd//fMaTeyO0NsxutiLnCgLiNIa6IuwPodOHpEt4+oiqrDBadPRhKO9Xow3rmwXlfM7l5y/JXz9v9ZBhJKBTq3bs7EwszuCysnWbbtyeLW3uZdmydPvA97o1wgShNTF1WwDpwucdcHVOe1fP6cCUi2lKB60esinl93LX6l6daei2PjJfy23OqOMArh8ISC+21jjUbYPh94+1zY4OAAP7Nic3Cnd5n057GqXtcbtAfstoTj/42pc1oX7YGqL6B/YY+8KoulD+7axNBDCmva0p2224fXRaVGekul0vWmzl9oN78pzVBdQF5WoDYYIqC8rNFtYzmu0WDERJRJEVrBbbfRtXbWPBZvOc8LZe/f9heasiNDro06wywnEX8/f+e4Jf+w9I/4dfZ/vdz0i+91vw+rV8EE2nUJUtmzSfozYZwclLqqJm9KfvSlj9eIwpCumG9zy2z2f07k3wU9EnpGmFv4Ek8Xl40mf0rfeEtZrPqV5e0SyF+j496ZDninBTMVUhnU7Am03JulGURmKWtkpYvEdJJMbYIGCnFfb6gzdVTS8QQFlowyjw8bx2/J0pAYAuczP0JJR9aKOFOr5Hph04FTC3UZq+vfpfNoqDUPSfldH7KWDosa+4dIDUjcKd2Sf2PNZK4p4qY9gpYS99K/IKPdFk5lqT2BF87MvftWf2Y/vI82hs25CLZHLM4v4F4LWAMPV9MiWaStd01A9kHz672WGM1HPeCQN8PGa0wBZa8NoYqSrtB/4eoC4bsT11fdF8uhYm17a0VnL8mZZCgGkQMA4MN41ioxQXVY0PHEQhwyCg1IZZVdNtxBhmjNk3g7x+vqLfj5jeH4PSlD99Tji9IXhwF4YV0a98iPrxT9/6xviTuvSiDrs6Z5wM+AevvsO/9uRfB/4+z9bnfLb6jEW5koasIGFXb4UV0ZpVuWFX54ReyLLc8Y3Dx2R1QegHzPMV2a4gSWNmszVnZwd4no146aTs8gLf93hw75R7JwcUTcNVWbJcbMiLim433QOH5WZHkCbyYZUXmEVJDa3zuhsRnvRk5N6NxLgT+gIy56WArdCTi1EXKu+qOQ1tBJBz0GcWZLrReWKzMuOwjUrqhK0j3dVmOqOO57X6xsjqNV1LELSMp3cLqBnvy0YhN0EJvJZtxZNPX8es3gaZjZa/GayxyQLE5tZI3q0v8GR7nRByy3CEwnr+7LOX7TE60AjWte8ME7TO/Mx23OcWdDspQ2wBZRLYEX8AHR901cZG9aXpSFdqz1KXNzsbfp/QH3TYZgVN1dBkIhPwLas7ikJeXcwYdFMODkYMhj3JhV1uie4FvFxf8PWDJyyK9R/lrfHHchmNEtbrksD3+Dv/7AXf/qvv87f/wc9Z7ir+8Ys5/9cnwkwO04DLnTy/ngfPb3ZcrUu+eX9AWTa8/2SK73ls8pqybPADqcecv7rg4MGZMFdRSFNacOTByf0T7t0bEUU+63XJblehlKIz7NPUKUEYUEQxcRpTFVWbDenqK51RZmBrb6uiNRvF3X1H+B68+YGwcdlSgM5u0ZprXPWm5wmorAthWF0MkmsScuvzvRbMuZxPz4Kvfeh9h32VpNNN3g7Yd/tqNFhJ0ZeinBwwqwthE51ByUkJ3HbDuJUHgDwu6X1ZUpCtbDB83d5n7zjvgWqYf/G8ZWnH0hYp8ViJnAfHaDoQ7zSyLrrJ1Xu6AHpneLrd7V4XrXFpcGjXkbRO/F1tzU+T1v3uoqJcCH8QsLuZQRDQm47p9jvsdhWL2ZY0DagqxXAon/FvW94KPo0x1Ksc9fFruh+c4f+3fwfvb/67DH7xR6AUu//tN+W1MJlCGBE+PGPYKHReipv4+XPirpyo6nxJMplDp0N8MqZ4eonne8w+v+Hklx9QvpqzXFZS9BFJ64Na7wi0Rq12ROMualvQrCsC3yOKJVRXKU2WNdRaAtN7HjxKYmKbH7qw5qNBEBDi0XiGF0XDaRwwDgVkhZ6M0bXBgiSpgtSGfff6RaUYhgLONAI0FxZgrhvNaWzNRfZvICDM8zx8I0H2S6VEK4kYdjASyN61OtK1BbyhBZSSRyoj6dqIe115ziBr8PFQtOPzyPMoNTTIyN7dDpZM8bwvMaruf6djDRBQvVFK4qUsIBwGAVv7xgo9ySJNPMnz7NqmotSXJqZCG27qhkIbzuKQSRhwXkk150kccFPrPahfN5q1Eq1pP/D2Olp3AdAPAiZhQOJJdWfoQWA8vihKeoGPh4ePXGTU2uBpg9nWHBykDPoRXhySP7smPh6isgr18VPirz2Cfp9g8IfnkP1JXEpVcZOvmOUrHo7O+F+e/QZ/7dFf49nmKbWu+e7Fj0nDhE6QonRDL+ryYHhI2dR00w4vNq+YpAPKpuZqN8f3PNZVzmDY4/pqIW005zMeP7nD1eWcm8WaMAjppsle47OrKjabjOnByLbXzEljkewMex3KuqEoK0yloBfixQG9OyN832e93kmQfWBZPaevXJYCsLqRNPT4ngCrTAsw3Jt2LFgEAUHOaAQ29kgJmMoaAbS+10Y2Ge/LGkwXnwTtGLxUrYu9VM6dx94p6Fx7Tpfpee042hmRoGUwo1u/O3DqTEuBHbF7XqDZERQAACAASURBVMuyOpOSMySFHuDb47EgOvBIRh3KvGoB9NZ+6bnz6cC4sZpQx4xGvozqN9ZI5nuiiQ389gOjbORLyAXix7Ivem6lFN2wjYbKZLvb5wu5PQ3xOyG+1ZIBZHnJqN8lDAOp23xzQ2pZ9h89fcn50ZhJOiQJbsXxfIWWLKt5ullwNcv4r6KA/+gvPuF8W3CdF8znOXEc0I9DlKkJA4/HD8Y02pBXDd9/uabfT9AG3lxtiWOf3U4yePP/m7s3iZUsu9P7fuecO8f85hwrM6uKxZpIdpMiu9kSm2rLsgYLsAVY7QGGNgZswYBXXhte2gt7YRheGQZswIAN2wttDAvW2N1qyWST3WwORbKmzMrhzS/muPO9XvzPiRtJSykIkiGxLvCQL9+LuNOLG/Hd7/8N6xSvl3D9/IKH7zzg7NmVjKz7E9Fz5oVtNILVqiAMPfLAZ3GzIEoi6rqmN+qxWW4sw5l1Y2Y/lKlktoH5pR35hl3VZdt07OVuwHq6EDBVWeC6da+X3ajZjdRZCPBxUUMuDim0neeONXQgtzeWx/cmna7RCzsnvOtVd+tzdZq7v98dp7vfl1k3Qnch8btB8FUBXtSN8h2z6p7rwCnY8PesY3edm95Vnxq/Y2RdkkDbQGvH517YtRT5kZyn8S25KXDH7kxRbfuylEEbYYPdc5dX8m80kJsDl4dqfDj7GPbuyPdBbNc9knF806JjSTuJkojr8xuCMMAPfD796JLeMOHoqMeo9+rr9ZVzjLaoCI+HmF5IWzdsPnhB+7//j3B8m/b735UHGUU7m9KePgfPIziZUM02qCSmOruh92tvU69ywvceUX76Avp92NvD9CNy+4anI59ymYlpdhCw2VRUdSsAwRh0HFDNU4KDAYGvGYwj9h/sUZYy5ltVNbfigJ6WTMyrsuJpXjCtKkLLXM7rmpUNgn87CTnwPRZ1w7QSlrSyQG9eNVvDaWjH025pWjHIRFrMO69HPiNPcyf0t7maygLHgdFcV43oGC2gC+zIvW4llkhZneRmZyOF1X1udsbClR2vu9xPbV/InhKwWLXQc+ypEjDnCJlYK9b2gy7RavvcBqwjvhu1uz55EBb0wLKMmdVt1ghzelaILimy21zVEslyZqs2I60Y2g/ZuT0OX3Wjd3e490LPGsW6gH6XQ5rYcHqAvG0JlZQO3FQVgRagelFWfJrlnNr++INJRK/nYbSSLNrDAf337qJDn7aoCF47hjSF9Rr13vuveun/0i7TbMEkGuBrQ9u2/PjqY753+V2GwZAP5x/jGx+jDRfpJZ+tntEPYoZhj0WxsskBS97df5Osynn/8AtMsyWHyYijfg/PMxRFidaa0PdYrzOM0QwHCbPFGmXlFkVdo41mtdwwGPZIopDhsMdkMmC5kSlHscrpj3qgRB+4ul6xeDGzINOOb5el1aE00rDT8wVQZrX8vAWbHSYXg4ZtrJEQ7bJ4FhyGRuKHjBL94i7L6TSTjuF0d+2h1Ty6cb1zvBdNN2p3jna3uMB8JwVQO8ymA7fQAUjnfnSsqNNwOiDatrI+dyyBHXG79Tj9KkBsUH2fPCsENII8flNZYbrXmaXKRjSz0AFkX8t5hw7cbvcF2+6EbS6yulc38TKqa0+qWygl45NV2Wlor1Ka5yuqyzXlOmfQj4mjgKKq8H2P8WTA0ckecSzMycO7x9wbidP9dv/z1+1e1y3jcUQQeOR5xXd+esE/fHGDrzW/+/EcYzTGKD66TvnOkyWHw0jCvOcZYWC4nGd86/0T0qLiN947ZjrN6PV8xuMEP/Cp5lOiQU8wUVnJuFwbVpc3eJ5HFBnKsiHPK9JNwWgiYeh+4BPFEeuzM7lJyNYdOHS60fmVMHouR9OZcJTqQItj9xwIbGox0zi3uxtD+5GAJhfk3jYydnZayN5E1peM7PVQdWP4ZCSgyfW/V4UAOaeVXN3YWKewYzMdOAQ7Bm9f1p629tpz7Oo2Z7PpNJzueS5b1D3XHZsDyEp1Zqz1tHOiO4OSaylytaUuiN6xtU7S4Co0q6LTgvqhMMkuz9Mdnzuu/l6nN3WO+MSWrPT3u32tKznf0UDW5wD84gJunlsALvWqKgxpipwgDPB8j8mh3MwAHJ6M6fdD0rRir9+16f2jlleCT/9gQHGxILg1xkyGNFWNeutt8APSnz2XDDig/tlHoqnTGg4P0aEPTUNxuaA+u6SarVF37qACTwLjVyvaqqaqG3xP0xYVdd0ymcgBDAc+yfGQzQfPqG8WlFdL6lVG+viKw2+/gxlGzJ9O6fV8wtAw8D1WZb3NhZz4HmMbpwTiuo61JlSK24HPZVkyr2qKRioybwUefWMEBCHA0S2BVi9VXq7qziGukHF2ojWxVtyU9daB7isJdH+aVxICrwQ8po2AtaLtzEUSrt5u45I2dbsFwLX9ck77rGmp7ahfGFBokHakFtmGC7h3o31pYdJbYLnLhrvj6qKcZOwfKOmoPwp8tGVrq1ZyRxPt2FTFWVmhgetKXO9FKyH/vlI7IFlZUkpx4OutzhXg9di3kUtyDOc2hkkSBYQBlRSBhrqF+2HA7SBg3/d4Kw65HfgMjKFsW55eb1gsCoxRKKMpr1dU8xT/wS2C4xHVxVTyaTcb2uXnb4QHcNzbZ5YtCb2A1jZdDYMhkYl5uhCne9s2PFk8Q6PZj/bYi8YYpanbmkW+5iq9Jq1y9qN9QuOTVwWLXILnl5uMOA7ICjGKHO2PCTyP44Mx/X7Mk2cXVFVNuskoy4qLsxvef+chSinOL6fsjweEvkc4iMidmz32SCY9/L0ERvKG5SWBXBiJx/B4JM7xVBp4mITyFZsOlDm2066Pgd+N5fPaxiztjMN9I0BrbffBMYxNK9pGx2A6cJs3XWRSZmONMjvur3bArmM4ZLzR7VfZdCC0bP6/Dn3HFLqlbV82Jv3iGN8ZkLIddjXy2Dscc3Kw17nsq0bG6IGRr6qR0ZpS8q9vOo0rdCB0N+A+MjsMCpIy4PavaoTddKBaWZC+FnBalzXsR+iR/L282wPJcU08VGS4mS2ZTVfEYYjRmtl0SZ4V3D6c0B8kVE1DWpbUbc28WP7TXQy/BMu4F7BcFgSB4fJ8znKZsx/7HPdDPj1fYoxCa8X3Hs8wWnFvL+LBQYwxirJqWCxzLpc5m03J/XFIrxeQZTXTmzV1JSNkz/corCRE+QFojY4ihqOY588lhaKpG4xnmN0s+eKXHlDXNfOLK7zhBD/wJZrHsYNBLCxjf9K5tcNkG00UndyxbUVWc+iYRm26Wk4XlwQ24sd2zsfDLqPSdZhvm4+MgC/oQKsXiIPbmZlAALEfdkwrWOPRpgOSDsw5A06YyLbathuNO4PRtg6z7dhRp+t0wHIbPN90x+ZYVWdoctty7nWl5NjDpItNAjlGP7IO9h3Q/ouSgG1+p9eN5HcNRW6fBwedLnaXxXX727YCOJtKvsJepws9fiRpBsaXG5fZOe3sUvS/QLbOKIuSo+MB/aEYVIuiwvM01T+L271e5wy+/ib5sxuh2NsWxhM2/8V/RfKf/2f0vv4WzaagySuJXppOIYposoLqeklbNZ0OtDdEeVpCv/t96rQgz2sOv/0OymiCQHIgw8Bw8s4x3n4fHfmYgzHepIeOfHTosfqDj1g+n7NclQS+Zmn1RbOqEmNOVfFhmjO3He9P84rrquJ5XvI0r/jjdcbGGoKyRhjFZV1zUwnoeT3yunYge4IiC+I+zartCYu0tkCyYVXX20i+FvlZ0bb0dwTyeSMjdmf8mVadC7xpO+2lmHKcJrT7vwOV0JEoIKyg7I+A0Z7dpkamYcCW/XU/d9sbeVoAbyujfU/J818LQ/pG0/M0F0W5XXdhdaOHvqFsxKzlWGPnzHdHXLYt06pmZPM+Xb5oZKOlXAvTZ1nFcWCo2pahcTmowvwOjdnqYWOtuCxLLstKWGPEVOWC/SsLmo2RsdPyak1b1pSXS1a/92PK6xWmH2JODmlmC9qff/jKC+OXdSmbijf37pNXBZ69411XG/6bP/of+Gvv/we8f/Am83xN1dQsihXPVqcYZajbhrUdX83yJVmVk9c5nvYYBAm/eusO61VKGPh8+c3XAPA8CblWCg6PJoRRgOcZkjAgTqTVRinFJ49PublZkKY5TdMyW26IwoBylQkrtijYPJtTLjNbT1lSXa4FNC0KFp9e27Fv04GuRdGNhiehAEwHfhQdAzrL2fauO81m1Xb1nI71dCanw7hjUFv7OKcjdWYeZ3DyrWHJOcLdhdnSMaK1fXPf7X5XyPduPW4xFoRqJUBxq9FsO5Y1MB2gdRmeoWZ8Z8KwnxCHAZc3cykDcGBbI+ynpzpta1q9DIYjq4udFpIm4JjlomHbXd9YlnYuGs9tfqiLmlqVXX+8p4VlvtjAoqBZFmC0sG8On1tWO4wD0jxntlzj+x7pJuePfvwJy8WGsmk46skH6+nq8p/z1fIvflnnFe++sU9R1ERWG/2zy5T/8H/+Pv/lX3qXr7x5QJpWbPKKm2XOh+drxja8+/R6Q1U1XNhw+QbwPEUUGe7cHYkj2fO5dXcfYzWgQRjQG/S4++gWbdti7GdvFPvUVU22yTh7MSNdyXjVCzyqskJ5NrdycSGA7voZLK87ljFdCuhbXpE9/WSbCbodxzvQU2bCrjkgpZSMe3MLVmdnAn68UNi3zbwbi0e9jnV0VZtu/O0FHehzYe8unsnpSF2VphvTh4msL1t1ek7jWTlA1bGj7nun63RMotNT7gbUOxb0FxlIt38OwO/dkd/5gWzfhcm7sX7Ys/rMTbe/2455rwP0ua0KdU1TZWb3qe20s8srtj30ux31Tk/q8kXDnmg8nV7UjyBdCTBVChZ2PWECeUa+WBLGIZvlhg9/8ozFbM1ymdHrBTKRdpOXf8zyaubzCw+gbTG9EMqS6MEh7R/+gZzP//6/hV6P4GSEDj3MrSPKyznq8ITicknbNBSbAv3FL5DNUggC2qqRtpmiwBsljEch5ek1KgpRgUee19R1Q3Ehdys69Fn/4SeU13JiFxcy2usf9en3fJ6/WLPMKp6kORqFAeZVQ0/LiDZQmiNfai+HniYxwkY6MOXG5wMbt+TGzk3bbh3lWSPmmaKVGsyhJ2Pvpm23PeY1EGq9zc48Cjw2dcOslhiiaVVb5zxb5rSnJdqoyxRV25xOb6vNbC0IFm2ne4Nx/wZajtlTMoaWAH1FYkf90OWFyu/l/32j6Nu+eN+Osx2wvR8GjPo++0mA52nuJSHXpehms6albzTrpmFey5dMNNW2Hz7QosUMlGSG5jvn0lPi3Hfn9bSouWWB554v5qz7ocdRICz0VVWzrhuJKmwkKzW3AL4F+sbYtqZ6G+vUti1101JWDU1e4h30Ce5MMEmA8n2oa/TemOzx5++DDGA/kuaRmyylamoOkzE/vPyAfhDxN57+X/T9HqOwh288bvWOuFhfMwnHrOwbXNVUHMQTVmXGJBzjaQGmzxYzRuM+g17Mp+dXKKWIQp+yrKzuOhN9s1Z8/MkL1qsUY7QAisBjPOoz7Cdc3swp85L5qW1Ic/pDT6ESDz0OBfxoxTbXzFU7uggiT3dB6g5k+kaAkowjOnbSNRT52o4SWtv2U3fMY9nINutWTE1KCbB1zKemA1l50+kvHbCETsvp9hNkX7ajd9i2Irmlaa2uU3dRS27k4RaX3+nAY2tBslu3rzk8mnB8MOHW0R5xFHDnZJ91auOQcmeCsMAzs6DTsZku71Przjnf2mNzv3PnqbZs78BqZQO7v7EnbKZWsCg7xjWrJITegehWHO3yRlhtGdOqkl7zum5YLTfEibRi9foxkWcwWpP4MdPs8xe1dDyKyYqaPK8osoJH90f8vZ9eorXi//jgnDujkKODHr6nubufcL3M2U88ZrOMxSInTUt8T264j3s+WVZL+scipzfs0d+fMJtutturbU3xcr5Ba4XvGy7Ol2RpSRD6KKVQWhHGIcGgT3Z5QV0UtMtpB5BAgMroSMa6UV+AjWsXCpPO9e3G8bvtVLtVj9rrgKHTPjo20WlFQQDR8qYbEzu9qHPBuxG78TtNZtR/Oe7IgVJg2yzkwDFYZjDvTE674NGxn7tud+eA98IuS9SNv53swA9fBp11CYMDVNzD2z+WLNaB7WJ3rKnxRd9ZV50hCLrRv2tZahthKtfTThKgvQ6YO5DpEgBcRqjx5QagbdlWejrtqjMWuf2IrAbUJQU4MA4QBKzmK/aOJvTHfaIkIkkCm8hQ8+z81ZOKV4LP4scf02a5gD/Pw//m10m/9zN0HNCkJeov/jbhX/hXhN3UmvJySTu/2QrJjVaor/8mkz/3J2gvzzBJIM74Xo96lUn9ptYUL25oq5o49jg47uFPetSLlOD2HuGtMaYfETy8xeGv3qOtaq4+m3N1neH7hkHkcS8M8JTiThhsNYOrumZmzUb7vlQ4HvoePTsSboFD32fTiHHofujjKQFF06ph5Omtc/20qLemmFklmsZ107DveYw9zayqWdW1fJbAtsfcjeB7Rm/ZOcdwJpYRLixj2NiLwoHLqpVReW2ZUhCmL9ECRGv7eGc02sq/WlmnZ0fvQ6MJlLjKD3yz7bJvWolNCrUm0ppIKQ48nzu3exzsR7z+a/d59O4hF1lJDTaDVNIAqpZtFWbfrt9pZOu2tUyyHIk7LqfTdJpWJ9F7XtRk1mg09AQEJ1pvz0+kpVFqVtXMbW3ntKq4qSqe5wUH9m/r1n1TVpzPcmazguvnC6gbTGTf+JJENMeAvz945YXxy7r86OpjjNI8Xy7RSvMrh+/yfHVNoD2WxZqvH/86v3n31/G1R93WbMqMvM4J7BuTb3y+fvw1vrj/GkVTEBifoR3p5Lmwhb1+zGq5QSlFHEccH+8xGPYoipLxZMBkb0Ach9w72ufRg1usVymXN3OuZ0v6vYjBMGFyZwK+4ejewZbta1clzVUKdYuahGzzKZ2ru2zQB7GAlrJBHyc7Tm3bshPaUbyrxnTtREZBWuMdJDbv0p4wozrGMjJ2BG7H5e55lQW4RnfgL9TdmN6Nl7TqvnfLtoaTl/We8LJW0oFTT8mbgAusb+nikFy1Z+xtx+jJKOHOnUOOb+3zm196i2+8+wbX04Vkdm4s0Cwb2/3edOtjZxtVK6kCaSX777Snbv8c2+xrAflXacegOqYTLIim08xaVluNgm2X/OLFjP7RoNPhFjV1WrK4WpDlBWeXU9JNTtKLKYuSVV7g2RvaoRsFfo6WH350xdU8Zb3KePj6Ad94NOHsbEkUeXxyseK337/NX/21O3hGU1Qt1zcpp8sS36Yt9HoBf/Xrd/jCgwmPpzm+r7l90mc4DGmbls1yQxQHLOcbjGfwA5/BZMDRyQilFEni0x9E+IHHyUmf4d6QdJWSbTKKTSrRTNpgRvvQVKjRgex4mcHsvNMmOl1ikHSgxvgCrNpGAM7e3a42EjqNomMy4yHbfnanudy/2wFNF60EbEPWHajV3stxSs605BhYx/y5GCXoRvsOFEInK3CZprtd7E5GsAtk3b7vxji1bbefZW4Buv28GR1z8PpDDu8c8o0/+QXe+5XXOhDswJ9jTR0oD3sd+PWsqWsrRbA6TacDdVmfzoyktOhInXY87HV6URewvxt6ny5EAlGXEtm0vBZtqMsRdW759RRWMzarDSur9/c8jTGawSAgSTzGo+iVr/1/ouFo9cOnouEcjSh+5x/QZBVtWVOvMvjhd+CNd0XLuVxSrXOaP/4R8ZvHAPjDCC6ek373JxS/+13qZQahuOTaUu52vf0B/uEA7UtQ7mqeU1wt8Y+GUNfkpzNmP3nB5vsfk350jhnFxLFh0PfxjOI6lRfN0EineM++YbawHauv6oY9z4h2sG5Y182WGazaTn9YtcKc3goMd0NpIeobxb5vOPTNlhW9Kms8pdg0DR7C+qVNw9DTzG0g+rRqUAjTlzctM2ts0lYXWTTtVtvYxTXJz917edYI8+nbr1C50Hhhbh1D6uRZDiwH9ueJZWaHnpFqTJTNLDWMPY8D32dkjGhWjabvGw6++hrRKMZ/53UWZ0vKtjM/ue24fdy2JFnG1e2XOyZ3TkH25abqzFWBVhwFZjuCj7TiRV7ZsbzizTjk0DfMqpoD3+P1KCRvpEteYq+Eeb0qq22CQGI0fW3oeRrPnotquqHOSszdE9hs4OYG9vcxg1dfGL+sS9O2fPf055z0eozDAX/rs98HYJavWRcpl+kZd3p3Rd9ZrFgWOU+Wz5hEQ1paYi/kxfoFH0+f8oPLH6NR3O6d0A8CqrIijgJ6gc9o3KcsK4xWPD+94uZ6zq3JiLKsWC42nJ5e88OfPebmekEQ+iRRSL8X0TQty8WGqqrxQ5+Li6kwadC5xoF2WQpIdFFBbQuJR+O0m1Ur37ue9tjrxu+hkef2bG2kA6O+plpYsb9vTTiJJ2xm2XRGm7LpTEAOtDl3ujMcVW0H4hzo3NVsOsDmvswOk+vvAjbV6TZ9Y12CpgPcfQGayo2+d1uMjGI87PHtt9/kzf09vn3/V7jcbCir2taP2vPmQGRey/FmVcfUerqr2XT75KpHYyP7ltcva0vdB1mLnDt7Jzm4O5a/wVL+HsFdYVxaZ0yy61o9nwvTDOhRiIqMNGUBvu9RVTXLxZoHxwf4xvBHZ2esyw2pi9D5HC1N0/L06Zz+IOJokvC//s4Tsqzi4mLNxSzldJ5xr9/DN5plWrJYZPzB4xl744iqqhmPIh7PM06v1/zNH50TBIb7B30x/1U1nu8xGISM93o0TYMf+Ewvpmw2Jfv7AubnszU3F1M+/OkZy+kSpRR+4KM8D+15khHqe+ikT5vZYHOluzHubnj5LogLk514orDTSTrA53I4g6RjCt2I3UU5bRbdSLsqutG0Y0brsnOPb+OLqm6M71g8l7fpdJVOj+mikIK4u35d7qVjUZXuQGvbynP9sIuIiocdeBufCHhz7Uaj404q0N+DMOFL793izp0R3/7iIbPZTsf7ts2olP1352Qz56WGJndM7viNJ8fl8kPThYB9x8a69e82RDlXu9OrNjXs3ZKfOWDd1LLt+dnLzn0XzRQPoIU8zamKiskkxvM0V1cbBv2QqTu2f8zySvAZvnmH+OGRvPHNZpSXS7xRTL3K0b2Q9oMfWZTeUp5NKYoaPRmhHz0QO34S0v7O3yb5d/5NMRWlBSrpU//8Y8p5ymAvoTyfoXyf6OEBXhywXBV4gwjV64HW+Hs9hg8PSBcZi3nOkx9f4vuaNKuoG6mnfJoXfJbnfJoVLOuGshVNp1aKgTFbALqo5Hd7vuRUKuCzrOTIF8PKygbNDz15Mw6URC9VbcvIM5a1k3NzU0qNpnNkaztWd+1ARdNyUzXboPYGiW+qWsntrNouUsixlWNPGNLdqKbaahqbtt2GxmvsRLCV3E0Zd8sYv29s7qfVWGK/7zmAqWW8PTTSlX6QSD2lrxTvfPsROvTxxgnFDz8kTcW97mo+wcrG7L46kOmkAwvr3H/Jq2BNUonVeuaN7HNggWpiZDy/qcX8dVFKgPy8qgmVyByaFvKm4VEUooB7YcD90GdkJRMDYxh58nfeNM02X6wqG9JFRvF8SvX0jPJyDlEEp6fbzNjP2/Le4SPuDw94bbRvdZs1/SAiqyq01jxePibxegTa52J9TVZVnCSH3BvcEjZcab538UP+9P1fJ6ty6rah5yf88PSMum7oDxJm65S2bXn46DbGaIqipN+PGYch+33p5x6P+9R1w3qTcX45JYlDShuxpDzF8tmM8motY+6Fy4usoEWYssh0o/OyESDpGMJFIYDV5Womvvzf6S/zGvKGcBCxrdV07nlnQHIsZEvX0gPd3dIvAky3LactdW7x3QaiuukYTqePdNuAl1nPlm4k7yQB0LnYEx81DDChj2/HoV7oE/gee+MBw1EPzxi+9dV3OE4m7McJn8yeskpz8k3e6TSVHTG4ek2XK1pZLWdedxWnbh9dZWnsdXec7svpV90H9cgXM1jRsDxfoFzUUtVQzFLCkwH4muCwhzlKJG808TChjx4EKBTtpsJYNqppWjZpzmy24uMXF6zTnPsjiewKnTv5c7S88/o+b715QBT5FFZ+sL+foLUiCj3+/rMpk55P4GueXq2EzPM0g9hnMonRSvG3fnLJv/vNeyJZK2qS0PDs6Yy6rkkGCde2vag/kqlPvkmJY59e5DMaRcRJxGA8oK5qmrphs9rQG/ZoGzEi4XnkLx7TTC8kiN31kLtWnyDqwJAz+WgjgLNtBcD8ImsZJPKzqN+N56NeVysZDbpxsBspO+bbgbBtQHz4cs6mc4HvGntAtuOMUU7D6UCWA3tygthWe+6CMehiptx2vMA66XdqNYNY9re/J48dHYg5K13y7q8+4mAYEcc+z2Yim9hWZ26NSuFOgkDWAWSn4XRxTA6sO7bWueadqQm6fXej/GQkGtDNjG0lp3vs9By9f0vW3d/rZBTxUOKt4mHHgCYivzCeoSor0nXKbJaRpiXDYchylRNFr0zyfDX4pG1pG2saUgrlaZqqxvRDlNZQlvDxB+g/++fRoYfv3qgXC5RnUL4h+/QcVgvCRyeEX3kL2gZztM/wW+9hhhH+F16jXog5pK0bjg5jLj+bs/z9D6hurNbz0ytuphlx7PHgvSPStJYsUPuaOvY9EqM5sLpBEMf63cDHWFYs1IqvDRKOfA9fKY58j4uy5F4ocUJF00i4uW+2znWXt+nyQBPbjS4NPMYabqSpp2klbijcAVUuz9KZeppWgODAdMH1NcJw5k1ngGosqCudPGUH+GkEyIZabaOU3OclCFjum848lGjNyBiGnmFsDHuxT6QF5PZCQxh5xLHH7UmM984bpB+dSVSW0by4ycgsW+xc8YX9DNrU7bYbfldX+osB/Q1wJ5TWqU3TCji0+5k3LUOjObLVoVXbbhnqqm25rioipbdVqFdVuY2dWOZLfAAAIABJREFUOoyDrZxhHHoMjKHvGQ5in+OjmOEoYLWW5hRvnEDT4h+NQSnq+YrSvrY+b0tZV+R1gVKik0s8n0B79HyfQPtsqpRpfs3Xj7+2jdcqmpKqrfC0QWvN+XrKPJ+zn4x5OLzPdXbD1+/d5bd+9R2UUtybjFmvUgqr9zyYDLm6mvOHnz5llmYURcXFxZTZci0axFsHkgdqDUhGG2HJeh5Mgi7+p+/hHSTyPm9NPsntkTjgm5YgCSUaaBBgYp9tn7oDnotC2DqloOeR32w6UGUUDG1+pRvrO7f2P8rhrdXLes6XetbbLscTOre7W3bHbq6vvW479rS1QFXvrFurbuxvmVKtNGEgNcGB79O2LXujAZ7WJFHIraM9vnH7DebFmsvNGk8brq9mAoqdu34XVLrtKtVJBpyxyDHKID8bBvJ7F2vlzFN1K+fRZYQuS9gL7Ygf2rMNeifQPp9uQCuKsmI86ls5Q00Y+HjGSLNV7HEwGbI/HrDeZDRNQxQKEBgkEYExbKqSq83n75qt6ob5MiOKDKu03JZlgBAaH15sOF1k/JUvndCLfLI054NPbnhyusT3DWXdMFtkPJ3l3Nrv8c13jzmfZwyGEfceHmM8w61bA4qipm1a8jRndDjh9Nk1H35yw2KRU5YVs6sZ2SbDeIa94z2ml1PCJMTzPagq1P5tAYq9STcWd+PpPO2MMievdyxgYM00+/e6DE5n6IEOpIJl+BYCOl0QfG9iGb1KgJAb77dtVy3ZtgKq3LjeBbw7A43xuucEsRijHGO425fuwKoDlw6UuUB2xxy6asxdiYEDnfEAvAAV2+1bbaTWIkdRB3f4wmsTnl2vWS5ziqrh4tmlnCMXDu8imnajoHaBsGNzXVC+A+RBLBIHkOcr3cU6JSMbWWXZ58nt7nGLyy56KYhp1suOIdWW9XXAPIzFIOWFhP0+XiTNR40lyzbrjCQJKIqa9bpkvS5e+dp/9dh9vcF/5w2i3/gVGI2I37wlmYmVoOl6uqD96Gdw93XK6xXhfl+ibKxTVHuG+C/8aZo//gHEMerh67TnZ1BVUFWEb92H9Zp6U1DNNtvopskkJLw9wfQCijPpjldKEQ4jvL0+WVYxnefkhbidF3W9ZS4vbHzL87zirCwpW8nUTLRhZR3wodJb13ugxXhTA2MjPe2ndh0Do7dGHcc0BkpMOpEWIBpoyep0nz25Y13tyXVZmhJnxPZNJbMaRWMfY5Q8zvWsl23ngHfTul9cnMnIU8LSBkoMVYE1Ebl1GaXo2QDnrKip25b9SNiU9bqkLGuOjiVTFSOu1vJySWJEg+l0tE6v2Tddq1FiNBNPwPfE09tIqEgrBkZC+UdGAv8lhN8Bbxui3zqjlGZVd4xo1kh007yu6WvDphGt6appOCtLLtOCaVVzVVZ8ss7oRx69nk9ZSulA07S8+bXbTGc5z39+BUB1I9oX8/A+4d29V14Yv6xL2VR85eht3j94C6MMvvHxtEfsyd36k8VzPl58zHFyi6zKGUcRn8yeUTU1TdtQ1hVfO3mbD6ePMcqwF+1xurokMB6zLOON20ecrVZorVmvUrTWFGXFYJAQxaHE6i03aC0h4vsHI5IkoihKZgtpyaqyguXNSgDbymoTbeZkdb4WJm5RYJKATWa73mOP4vFsyyLWrt6y7wkrOc3ltevMSbvXjKe6vM0WyGrauY1TCkzHUio7GndaS6M7UGnf07aMZWsZxG2EEx3D6RgVRQcsoVsvdKN3N+J30UhAOIgsPlRbwF6UJWHgk+YFeVmRlyV7ewOMTbfwjeHp4pI0LbptuZaibTsTnQxgZMF7z3vZBDUKOoPRquxMXQ6YKyVmraKW87MbTl82sBdK2HzsyeNsYgGznJvZYpvTunk2J45C9sYDkihktUkpy4r333nIJst58lwMgbPFmmmashf1GQSfP+azrBu+/PoBv/WlW2ituDqf0zQtYeiRhB5n0w1//+mU+6MEpeDuvQl5XnF8kGDs3+0vf+Mun15u8D3Nu8cJm7xiPBaJy8HhgMUix/cNdV1vKxEnB0PiWG5oFjcSt6SNZjAZUJWVANXLc6pMjIjt7LLLzjSegL18I2BOKQFEvbG4o2vbknP1rNMIOjbRsXWpHaf3xt2o3gu6MbIbtRc24N4BtN16Sjc+DntdJJJj/Zy7fusQN933jqV0mkroDEaOLXVtPg4cO7OOYxbdDaYfdiHtIIRdaQ1JyRDTG9BkMn6eHE4YRHIz6fuaFzcbqqrqDFIu79QZu9JFp1UN4s4EpO35cbrNppYbg9l5pz1VqouKynYc6+48ak++/Eh+NjyQ87WZC/vsQK5b1/UzvCjGC+TGMl9vqKuaw/u3acqS4uYKrTWzWYrnaY6OegwG/ww5n7Qt1Qcfo956l+IHP6Oerwm/8hb1Ksd7/R7pz8+on53Cakr04JDorbvU6xwGA8l7uljQfvAT1FtvQRxT/87v0Dx5CuOx9LVnGZQlxelMdJ77fXHIzgoef/859VriOZJJwht/8X2i+/tUszV7exH37/QZDHyb99xy4Pm8HUd8uR+z53mcBB6hUqzrmpPA47qq+Mkm56Ko+amtoTvyPfpGgssVEg80q8Q4NPakbvOtJKBoZOzeN5pN09q2oYaJZ7YxQ1dlsx0nS8an2TrA3Ul2rOXuSdf2MXXbsq6FFVzUDb6SuCfPThprsFKCjgF1OZqR7hzysGMisq7/vm8wRhH40me/aeRFtbTdzP1+IGCsqtChT/L2bcwwsufIJ7Ajc63UtkIz0IrA7suyrrvj1wJMp5bZTIwmbRqe5jUaYYTt5cy8EilEpBUnvrcNph8YeUSLAP1pVXE7kDfKWCtC23TR05q+Dd1/tsp4PstYVjV5UTMcBDRpwa17I24/mpA9vhQyyvPg4oJm8+q7sl/WJatyPpo+JvFiPpw+ZlmkxF7Iqsw4Svb5bH7BVXpD09aMogH3hidMswWRCSmbimfLa/7GJ9/jaydfJvYifv/0O1xubuj5Cb4xLPKcyPO4vpqTpjm9fkwSh9zcLHjyWAKplVLs7Q345lffRmvNcrnh+GDC3ZMDBv1kG5vkJQHRyYDwZCBM5NhmdxY17EVy/Z+uZax7uhZAsxdKzM+y6LSJuR0h92Xcy34EVYsa+LZXvQN27Nk3xLqV9W6qDkw6U48bS4M1LWjZZ6WE/XMgrGk7nepu5zrsMIt2Pb7uwK0Dp9BlkTqNamCoqhqjDXEU2PGrgC6tFZs0Jy9KBr2EW0d7VE2NRvFofEw/CIlCn5N7h3ijiG30lAt93x3t5003cnf7W1htp2N5F4Xsb2DZ5AYxJVWNHM84sC1ReqvhZGXP56KQcy2jEXmcOw9Wrzqfrbi5XrC5XlGUFZ7nkaY5J4cT3nx0h+VijTaaSSyVsb9whj8XS920PL/Z0As002nGerHm9MWM5TJn3Av45PGUn1+sCTzNXj/kwa0hkSUOtFKcnS357/76T/nqa0OS0OOv/+Cc+brA8wyep8myCqUUp59d0NQNcS8mCAOuz2ecPr8B2AaFv/H2XYzVB4dxSHR0ghfHXb94PMQ7vA3jI2m72a1l7E1s/NKVgKjZqQC33qTTabrxdtvIc/t7Al5dlWSYdG7qjU3DGBx0ADBdCOByRhrHbLq2Imeuga4OczdaaNtgpDvHuvEtkMu7EbXTQTqg6mQBjjHdzLaVmHIC5bEq7qGSPng2+1RBvZH8UT/w6Q9jprYi9d7RgONxTNJPJOvTRSjtdtE785Bjcl04/a6MwJmq8o0cuxd0LHCZd1FYv+jEjwdWfpDLzcH8UgAodFpQY3W7VqNbXZ9RLedSOFBK7vNmuSEZDTh44xHpOt2O2qVw59Wv/VeCz2qZ4d07pv3+dwge2hdI09D/N34TkoT+N9+WN9gPfoD69/8jQExKzePPCH773yJ+dIj61m+hxvuwXlNN1+j9CZydWZbNUF4tCI5HhLfG0LZ44wTjKR79xkOUUYS3xujQ4+n//ROu//Ap1WzD+cWG6+uMzaaiZ+OAUutaX9edFlMpxbRq+Mmm4KqsCRRMPIlfOvDN9uDPi5o9T8bxgG0x0rQtzKsarRTP83IbhXRhgZYC6/ZWDG095KYRzeZNVW9ZPegAInQANLIAzv2x3O8c85lbjalWilh3bUvuuS42CgQMDoxmaMzWhd43AoDrupEJWSru/7aFZVHRj6TGNEk8kVF4Hm1RUZzPUYHHZBy+lN0JLi6p3VZhAluta9W2PM8rilbOcwNs6obCEiexXZenFCeBtz3WWdVwYY1DZ6XoTMeemI3E2CTfe0qxqRuyRh4/q+ttwL+v9DZM/3pV8vEncz784SVmGBG//5Del+6RPbmm/OgzMAb/0Z1XXxm/pEtel0ReyNnmnNuDI273ZRRzu79P0RS8e/iQZbHmbHPKv/fWX6FppXHrJpvzW3f/FPeGB/zbb/8ZBv6AtMrIq4Kj3j5lU3Js8xbPr2YMRz2iKBBs43sYY/gTX34TgIOjMVpr/uAHH3J2dkOeFUwXKxarDetNxnDYY3Qypiorsk1OvkhpV6UNX0eA0cVma1whsWYiy2r6ngdpJbFMzswTW41ji9Rvti3touhYvbIRoNm2wu45QOSC4hu6cXXdynjYud7bHdgTmg5Y7oJON8L/xWX3HbhuXr771PbO0tZRGt/Q78eE9kbL8wxN07JYiWZvnWZEoU8Y+CRJSM/3GQZ98rrgfH1DaAKOb+3TSyKqvOzimVxElTu/bds52kEAZ9tKLqdWAjDdMTkHe9vCkR3xiQhb2GZfixSiaOT5wLZLPq3kX3vu27nNZh348nO7DX8UU5QlZ1c3fPjJc/zA59G9Y954dIfp9YIfPj/F04bXhif/dBfDL8Gyzioi3/CjFysmk4gv/4lH9AcxUeSRlTXf+tpdirLhw+sl/8k3H6C1uIpPL1b8x3/qAV9955i/+ue+QC8wPL9eM18V9CJpS4pjjyAwTK9XTI4meL7k8vqhjxd4fOUr9xgOQw6Ox2ij+eyTC6aXMl3I1xuyjcR1hSd3CI7vQttQrTdw/UIYTqd1zNeS/6lN1zYU7kT0BIGA0tGhgM5dwNS2XTXk/KIDiI7RK1K2uZWus9xpQbNVBzqd69y1GLmAesegOqORY0UdmHOd8Q5wllnHekIHQJ1RZ2vgqbZjdtMfgi/pAkop2Cwt85oRDIeEoxHaCJ6IfGmUmq5y4sAwPhgRDgc74NC64rOlHEtmmWRXiekanFxNqDMFuSgn6Mb1yYhtFmrhpBG+uNjzHc+D635PrazFbWM1le339+UmwrHHUU90vusF6+mMMA45uTXi+PYem3XBzU1Kmld84c7ola/9V4/d6waCgPrpCxiNWPzsTHI6yxKePaN8dkFbNRS/+x04f4p664soz9BsCtrf+7voL70P+0fQ1JSPTwlu71E9PWf9k+fQ69HMl3iDiOB4BEoR3BpTTtdEoaE4m9HWLY0dI/UHPv2jPteXKVlWk2YVSeKxKGs+WWfM65rrStqEFnXNTVmT2QajN2Of16OAiWfI23armbypak6LkqPAbNt9EmuQGXsC4hKjKZpmG8M0r5ptfBCAQpjOoWcYeprMAsbExhwVlq1rWmE0HWtZtQJyndlod3Fuda14yZXfs0B3F8iCyAMcyxlpMRMFSm/76qdVzSKvWNYCiA9CXxjawDAeh4y/ch/vtVtwfk703kNpn7pacXGTcVVKRakDjlnT9c/v+YabUsxCWnWpAS6bs7DMp8tT7ZvOpOQY4p7RVrfa2jgsw7JuUAh7fFVKjNVJ4LNuGgKt6VmQPTQyjl/VDcu6FomCp7l7EDMZhzx6Y0yTlWQffIbyPHq//jb+wRB6PdSdzyf4nGVLjNacri6JTMiz5RWeNuR1yYvVJRfrawD+4dkfkNc5X5i8vr3x+cn0A/7k7W9wty/nZpGvOOkfMM+X/Oz6gsQLWaYZo3Gf8WRAVdUcH05YLCRL7/mlMCmZnSwkcch43Ge2XLNJc9KsoJdELGYr5mczGesuCwFwm6oz+8RGwt6P4s7dndZbh3p5uYZBIDIdN1ouG4LYvuk6lrFubSRQbaOSVFeL6YBfz+/Al3OTK+T3zQ5I03SA04Exd9k68Opin9zI3V2jjikNTQeGXVC8VnhJgJcEKKUoq5q8KKmbZmvYalsY9GLCQEL84zDgS2/c58vH97hKpzwa32VdllxsFlxfzfn48Qsx/rjjdDFRRgsgddFRnhaA2LYdC1o1Xd5n6HXB/MqNW+y5CXaMVnuhsMiOES0buEyJ9noCNpV9fOLBQbSNXWJdQioJCnvjIXEY8uDuMWVR8vNPnrMpSt554x5vnRwxCHo8Gt3/53SV/MuzzGYZnlEsNgXH45irqw0P7o+JIo/rRcbjixVl3fC//fE5Vd3yrTfGxLFHWTb8rU+m/OX3j/izjw4IjCLNK27tJ5RVw2ePrwkCj82m5OBoiGdNtHv7fdbzNU3d8OTpjNWqoCzlpskLPJJBwvzKZk7a3OT86pLi8lRA5uq6y5lsamEB42HHcDrAB52O8uqZuL6dXhIE3PSt9MmBpbbtRvtlLut2LFwQ0wXG+7IvYU8AljPhuM743crK3QzQIu3AqANqbWtZzLIby7vooqoQYAfCwLrxd9QXQBYmkAzQRkMtI/umtE7+4T46llG80oo3vniHL799xHxT8MbtIWlecT5LmV3NyU8/69hgx0YmYwG4rvPd7Vvbvhxa78xVQSwa1LC344K3bn0Xp+SOuzcRcBsP5TnpArIVerTfvWcZX/Yh6neyBzuOdy1ZhDHDw32yTcbTJ1c0TcvxyYDRKOJgFPP6wauj0V4JPoNvfAXqGrM3Iv/eT0huj8H3qT/8hCYvyZ9PqVcZwV/683BzCXcf0FY1TVGRf/ScdjYTkepogv/FhxBF1GlBW9WowRB99zZNWdOWFdXNmnqVExwNiQ/7rK83tFVNOdtQbwrms5xnH15zfpOyLGpq4GKeU7YtJ4FPojXLWmoYY605tmP3upVKy6UNIne6QoPa1mgmWvM4E5BbWOA4rWpCrZlZNiO2DNu+L2NeB26FdRNGTgFDo7YRRLOq2UrBHAgDtgHxN9awIOUq7UsytV0TkcZpOtnWf2rL8vUsEI2UuNmHRpqirqrSti61rJuGWVVhlOKmrFiU8v10UTCaRKh+D46OKM+nwkg3LcGdCe++d8jtwBfZF12UU2KNRM5sJKYVAd0KYXFdk9NZUVuwiY2JEiZ3YwF93UpiwcBoPkoLFIqRlTMo4GEU0ACPMwE0WdOgERPXse9z6HvcCnwhv7TiRVqwXJUsVyXPnizIphu8cY9qtpZed6VQDx7SZq+OgfhlXb64/4CqqQm9gD88/ymHyYjQCyjqkqqpOV/PqduGb9/5k6zKJff6dyVRoSn5dPaMJ8sn7IX7jMMRd/rH5FVBXhUExnCrf8gXDmU00zSNhIO3Lbdu7XN0NGa9lkrNtoWyrHhxccOnT05ZrkQ3phRM50uoW4JxLIDEMY3DQNhNRQdG61ZGwWktgBTYNgcpMbdQdaPvYprKiDi14MaF0Se+rHcl2jLjG3TP75zpkWVNi1rqNp3Q2kVAgVx4CgGvuwynu2h32UzPAj3HHLr98LVsK/YEfPZ96AnLqZSiWssoq5dIH/riciFmhZuMNCvwjGa9yRgNe7y1f8SD0W02ZcY4HKKVYhRGPLp3zP27x2hlR+1Gyb64gPpdI5Vz8Dt3vmN107o7B+uyY5frVrSqyjLNvpa0groVqYNR8rPjBHxNdrnqGOFIJBFB6OMNI8xQ/tamF7A4mzO3NzBX0wWL5YakJzrhtCyJPI+vHr/PIPj8ZfPGsUdeNgxin8/Ol4zHEZN+yNMn11zdpNv6y7/29ddYFCWvDRPW65L5POXHT2f80emKQezzcNTj1948IA48Fqsc4xkGic/RUY80LUWysZRGpMPb+xzf3qOu261JONtkLKdL5ldzlJU9eUEgFZ1Oz+m0mk0twKu/L0DN6QgdaIROowidi3t2Lv+vcgFJ2apzcIOAKGeMcRFHLqPTGYDca9fVcC6vOtbQgVilZD+V6tg+6MCYy9B0o/UyY1uxafxOSxn15csZqPxIjFf7d8V4ky4lncNtb3qKCbqfN01DkRdESUS/H/D6UY+6aRnGPlHo4Xuah2+ewOS4i4faAmQl/zoQDV1lqTMe2X3aPlcpMRm5dbjnOX2qF3QNT8OjTl97cB+0kTQDdw7DXpfh6v7eXghRj/byKaTSW784uyBPc7lxLms2GzHNff3hmF7wSnj5T6jX/MGPpbO9aYj+9T9D+P4blE9OoW7QkxH+fp/oz3yT+u/8bdpnn0Fdo0Mf0w+pV7nE2vzh79P+7t+BwQAmExobVN1eXkAYYo72UVGIGcU0aUF2Nrd1m5pqtiZbF1yfrbie5Ww2FUeTiDfvDXh4b8DhMGToGZmSacWtQO7YN03D87zkeVGzbqTWclbVnBWiO9z3PPK25bSomHgS7zP0xHg0tM0/rlPcRSaVbct1WW/H3Z6yEUFNY9uNJBBemL3uHLpcS73z5djPxILIpm23oeoSd+PYzvYl0xIIAK13/nh9GzMUW5lA2rRMy4pEGxZ1bYFjS9ZK3NFxIDrZKDTsj0O0Z2hXa9qf/Qz/3Tdpzi+p5inZkyt07JM2DQ0tr0eh/Tx6ufYTOkNUs/N/Z6oae3pby+lebKVln5sWLsqGFph4Eha/rmsMcFlWXJZijjrxfUKt6dlK06uqYtU0PC/EdHRalFyWouW9riqerXPOs4JPlykffjpn9tNT1E5PdntxTvX9H73ywvhlXT64fsyqSFEo/tzDb3Gnf8S6SPG1oefHnPQnvLf/Fn/z6d/lIr0gNBGx5zMKB2R1yaZM+e7Fd/kHp/8Pg2DAfrzHupSg77qtGYQh4yjCN4Yg8EjzgsvLGU0jaQ9lUbFabthscnzP0LYtJ4cTbh/tcffkgP3RgHAQCQ5KfGE4i0aYs6tUtIJFI183mXWnN/LYtJLHTUIBiY6VS7wOBDYWHLYI8HEjZN9smc86LyUj1D3PNRC5u/627dzpu2NzpTrDTmOf4651B+paOk2nG2u70bVlmNAKHXsYz0AqmrzyZgOBochK8sJGQpUSG2YOEqpSTHT3bx8SRgFN2/Lh9AnvHLzBi9UFyzzndLXkpC/5q3XTcO+BHVM71rbZeWNyeZ277v6iEUDqxvVNK8ywc7vPrcasrAWMO7OSqx29zqTO1KUJuBD7ooGLFDYVxeWa6nJNfZNC1VJfbKBsqGYpm1XK/GLO+dk15+dTjNEYrZhEMWVT8t3zP/rndZn8S7M8/WxKWTcopfhXv3SLe8cDVlnJYNQjigyv3Rvxr717yH/9u5/we0+nBPazUSnFfJ6xKmr+zw/P+Z++/4Jx7HFrFJKmFWEUUFQNYSg5n0Fg8EOfzaZgejWnKCQJpCgairzEeIYgCjCeIeknTG4dMdwb4gUeajARnZ8fwcFrsuObubCPTmPpmoHWUwFJUU8AUrFT/+iH1kQTdgAwW3UAxwss2+l1gNExkm0jQBA6Y5DLfd3MuhG9iyVylZHOKe5Aq2NSnRbUmZ2cycmZlhyr2DZd13k8FOPV8qarmsw3FIvFViqglJK4IjvW9ny5zkPf8Pd+dMY3Hu3x/GbDdJZxOc8YDEKMkezO8O7DDiS69ACXCLBrmAJrGNrZf9dl74Lj3e8cU6p0d9wO1OebLq7KBfA7htTJKLbxWUtZ7+y8A+zZGoqU5uo568Wayr7e+v2Asm75nQ+nr3ztvxJ8et/4qpiH0ox2uaD+7DnVfIPuhTQ3M0wckP6N36PJKjESPf0E/3hso3oUajSh3WwoXlyD51F878eEt8b0v/LA6o4qoas9T0a9N2uikxHKM3hxQHA8onc8YDAMONqPuX9/QBx7GKNYLgumi4JFVVO0DZdlhbZsZqgUt0OP24GhZ6OIXDXk0BMDzJOsZM83rGvJsdzzPBQSq1S3LUqJ8cUBrJV9XGBZPZdfeVHUXJadHnTkGQ486SQfWuC1seBr6Jkt6Moa2wHfyLpckHuLNdwqCO0Hnxt19400/8RaM7ZjZ/fZuW4a1o2Mn+8lIVdlyWAHECdab3vnZ3XNPC0ZDQP84yHqzm1JFTg9Rb/xiHSVk3zhhNmzOQp4LQr5LC/Ys8flPlMLy9gWjbDLzv2/Z4/bnbeN1Ycu6pYa0YOu6oY9X5M3Ek9llGLP11yWNRUttwOfo8AwrWoubGrBoe9zJ/Dpa81NWbOoG9KmYeQZ7gQ+x77H7cCnZzSJNtyJQt577wjf11TzVNqNDg5gvebiRy9eeWH8si6/cedXmERD8rogr3M+mj3lbH3Ffjwhq3IUiu+c/YCbbM7T1XOu0kv24hHLYk3T1BwlhzRtzc9unlA1NZ/MP+P+6Ij3Du/ja3G8G6UIPTHGnD6/Ym9vSF03xHHIeNhjNO5jtGLQi9mfDGmahrppuJkvuZotyDc5VV3RXEh/NH1PgMye1XWGFvy4PvZhQNO0nQY0s6aWsZiHTBJsMzl1aNt/QMbpjrVzvehlI93kzjjjaWE4XcyRy/x0DngHwjTdSF0rAbNucaYjpToQ7HI2HeNZtzAI8AcRhALK66YBTxjPwa0RpBVRElK7lqHEk8dVMhIvqxqtNb1+jK8NRV3yeP6Mh6N7BMbwaHzAB+cXANy/fcTT5xeYQdiBYAcwwTrsazmOut1JCVBy3tJKQOWmsufOsrmJtwX2KrDsbVptne6MQ1iXoretGsKRlU9Mgk4GERjRh/Y91GEk57/nb/fj4UPJj51Nl4zDiGHYZ1Es+d7p4/8fr5x/Mct/+ttf4s5ewnSVsypqPnwy5WaecffuEK01F1cb/pd/+IzrRcZPni+5THPC0KOuarRW7CUey7zmxj7/gxcLXrsz5N69EXv9kOUyp67lJkYpxXK6pDfsUdei/R+PI4ajmHSVUhUVURJR5AUZS4j7AAAgAElEQVSLmwU3L86pple0i5tOD+m0lM4Ioy2D2FRWO2hZyCITIBoNupB1pW1c07gDiU6XCMJiaq8zFIGAv8VFF5FkPBnXu23thqgrJc932sx83bnU3f5DF7Pk5AEuVL5tBEQXm26UHw1kv1z4u80mDW8/gDLHH44gjOR5g/3/l7s3i5Etv+/7Pv///+yntq7qvfveOztn05AURVFLIoeSYlmWAxuIAwfI5jjIU/KalzwxLwkCJAgQ5MEPDgzkJUCUIE4cwQas0AoZR7IokkMOhzPDWe7WfXvv2s++5OH//9fpUaAxYCmwOAdo3L5V1VVnqVP1Pd/fd6FpGpr5jQHM+un9wKNqWvK85g8+vuVn7w/J84r9rZCbm4S6KMCPyZ896cxHNu/Tgu67dZ/WPGXBpTUNWbCt3A6o25zSsN+BUytNiIZ67G63r0hRgy39d+FA74Mq7/Z7XXXPbUGw6+MdPMALPIqsII5ddkchZ4uCH5mUmT9p+WzN59OnFO9+RPrJJRQFahATvv4AEYa6clMI2rrRuZ9K0k6ntHlh3jOtbjNKdA0fT58S/Bf/Dct3T/nB//y21o7GMTQN9fUM1Qsok5zickG9ynD6gY5fKrXpZL0uOTlZsVyVPHm6YjrLWTU6OunKmFUatG7TthzFSuKZKsmRqcu05paRo2OANKOm9ZKuEHri17Q4RssZKbmpqhw5kuuy/lRP+thVG6bTFaalqG03v2tdpwZ91ikeGADnGMeibQlyhA6oz5sufsjmZXpmHRSdYXZZ631j3es3ZcWqrnmc5Oy6rm7NM12+gRQEjtqwlM8f9YgmkT42iwVOP+DZtz+EumbrjUOEqyiKmoOtkCjSOZq2mQnYREVZ7akSer09sz32Ozs14/i00aN3XwgWla4JlWjG+qOsIJSCfdfdtD7lbUNPKnypc1qTuuGTLGdVaznErufgCVjW+viv6ppAapPVVuDy3EHM7k5I27YE+0P8wy39npvNoCzZfnnnM0+Mn9Zlni94ND9lmi0o6pLICdiJtggdn6qpKJuSdZnQ8yLatuU8uUAiadoGKRWOVCyKFa5UzIs5f+u1v8kPL57w93/yAwCO+yPKpuFmsaY/iKnqhmSdIaXQtZtpbsBmy+18xfnVlLysOLu8JctL2rKBtNLgJHY2zJvq+5pNGxkA2qJBm2+C0C/TLlvSkxAqpOlbr23eZttqMxIYJhP9XLnRfFqNqI1nsqH1rRlXCNEBUht/FFvjgTlxrHmnbY0Dno17X1dLqo4FrVszdhdaVlA1lKsMJSXtba5B9G0OVctytsIZBNR1Q1Xo0X8QB4SBv2FbHxxp1rNtW+b5Gkc6/MHpJzRtzRcmhzjSoa4bXnr5mK2tHsNhj5a202zapijnj33sB6pjRu1+g07SABo02vGdK+EiwXUc1CjQ229yRYUNyW+BvCE/WUBW4YZ+11FfmPildUVrttPzXfYOJxztTQhC3e1+sD8hqypCxyepUg77n7+x+8PbjHce3nB1k3C7LplMInbHEduDgJubhNVKg8fUNPl973RF6DvEPR+lBJErOZvnFGVNVbf813/1TT55MucP/v63SYuK8VaIUpL5PMUPfapSFzk4jiSKXPJcAzA/9KnrmsV0gRBCA6K7TvEi7RjKbKWBSzKDrX0DRgzbZsfB2aobjVs20ZqNQANK0H9nay6BTaB8kXTAMuh3z9O2nwaNNpC+LvWPjTyykUhWZ2qBmo1SsjFMdqRvQbP9UU6XuxkO7mhc55CtyG+vob+lMy4TzQq6phCCeAjKZbg9JB7EuK4iSQqUkrz9w1OatuUrr+3iSElVNQx3xsjYxDVZ4Gkjoyx4lKpjJe1+sSyu3T7rlLdZoW3bbd/s3EgJ+h1LvakslRvAX9+c3WFTA318oOuet61Ojke0s4M/2iKIAvzAZ+9gSJZVOEqSFhVbW3+Kes38x49YPbxGeg4ijilOb2jXa4onl2Tnc5wHB9yeLkg/uUSMtzZvLGcrRoUe7eOH1I+eonq+Nhj9g/+RpoXt7VCP829utHBVSe1ydxXuVkw2SylvVtRJQb3OWa0rjo97HB7EuI5kMPCosXmbGphdljVnRcWi0q73R5ke2xZNg2dYStsA1FcaEN739fhq23WZVRWeFJwVJTuuw5brkDQ1I0duplbXZb2J/csM0LLxP4Vx2+dtN2a3fei6YUj3kw+NCcmGz3tmRG11/IEx99ig+EAKthytiewrPW5Z1w1XZb2pC70pKy7LisqMsW3uqSsEFXrcrhDcFiVJ0zBQipubTBcB+A6MRroQIKuhLFGvvsT63VPKqiE3UR02SL5BG4k8KTYOdym6SKjKjNTTpt0Ynpq2ZWLc71JoucFA6crPsSM3bUnTqtLmJKmZy+IOa/tC4GunPmxirl4OAyYm0qoFrsuSvGlY5xWXlynLVcH5yYImLWiyQscsAW2S4H3xC595Yvy0Lj+6/pjT5RJHOvTcmKTKqNuG63RK2dTsRhPevbrkfHWDIx2atkYIQeToD4qny2d8NHvKVjBg5I94++Z7NMBBv0/ZVIzDoX7fei6e56KkIIoD0jSnyEuapqEsa6qq4pUXj9nb1lfS21smWNrWObpSj86nOSQV9SzTY/fL1MT9iK5as2q1Qz2vcXd7ULWovk+zNFmd01y35kSeDjUf3gGMadU5vO82DvlKv37RaI2jwOpFurF97GjmL3Q6w5JlU++OqyX6MYGjf1dC/98yqqC1k7nOJtURckIzuVLo11hXVIU237DWjvCiLFmuE/1/R3IzW1LXDa7r0PciXKnIqopFseL+4JD3b85I1hnLxZpePyIK/G4drV7TShGEYW9bAzobNBNamJ+81usvDGscKK3rtODBdyjSgvpG63kt29xa93/kIHfDDYNdzlLwJYPjLX0R4Um9j9clWZpTVhWXtzOyouT07Jq6bsjLip045jqZcb664bnhwZ/16fIvfPmjD6959PDGRJShMzmV5HKWslpmbG2FnDydc3W1xnMV66JmuS7Y2+vhOIo/fLzg5HrNVs/n9b2I3/lAN5ERD4l8B1dJsqzE913C0CXqRzoCyIz6q6qhqhrqqmb3eJeory9KncDvRteOx6bXfHmtf19pcyE3J13W58a043QjdS/UYGewrZ9LCD3uHR937JrtG5dO50a3rxmN2ATal7lm4mydpq3MLIxzW7m6gclqIm12pmUMraEnGhpTkol2smyeG+h6TMfvTE02N7NtupxRG9NUFAh7oTncpcxL8nWqQ/ebmvV8jVI6Uabf83WCwTrjclUyjj3efzxlerPU+auei4gHbPI1k1kHhNv20w58y/IWSRdJ1bad+cp23ve3u2No0wdmZ51ByQ06eQQYsN12Gtewh9q9p2/fOuwyQV0NeJPFijzLWc1XCClompadccTNIuN2lfOFe1uf+d7/TPDZFBUnp9oI1GYZ1TylyUqk7xK/uAeObq7xdof6i71tKa+XZl+0MJvRVg3lzYr87Z8gBiN6L+xw9PVXwXXJ33sEu7uo8RDhOHgHI+qkwPNM2DkwXxRakO8ogthjMgno91y2Bh5JrcGXEDqXc9d1NoHwFhitm5ZV3W5A05Zp0Dn2XS7LEiUE87pi5DiUrQ2Ub7uYJQRDR27qOq0G0zNMyLLWHePJXUawbc0oX4/9PSnIW50VOq+bDckQGRlAbV53bcxQkdJATRufGgPmGlKjX72t9Lj+stSa01nVcGuAcdNqKUBitJrS0BjTuqJu4Z7nsahrnntzl5snM9T+DuW7HyK3xwSBgqYh/8N3KNKS0dBnPA6QUjBwHbKmYc8wvYkJ1pdCA2WrS5VCkNRat6qEBs62wcjqZT3BJsO0MftsUWsT2Y7rMq+1Salo9fFd1DWnRcHEdUgaPWqXaKY1MIy1JwS7rrthYq2JY7UquTk1upY4pr6daz3yYvGZJ8ZP61LWNRfrNUmZcbo+QyK4TedEbsBRf5etYEDVNEzCoWFCK6aZZjvaVic5uFKR1wXv335E5ITcHwz55eNX6Xsx02zBvcGAcRTiOortnRFVVRMEnjYhlRV5VuCaWJcw9Bj19YdZ4Jt8zrs94ZHTmXnuBq8nlt1AazzTCnZC7XQPHQ3gQkcDs7b9/8Yc9dxOsyno9IegX/9u9qddLMiyjvZlqSUAed3lXFo2FTq9qJUHWGBWGhbUjq7LxjQFNXp9bV+6Nfxsbtf1o0Ta4d/MtUxifDSGsuaF5w64upqy3Yv5cHrFfrxN6LpUTcXbF+9RNQ07OyOO9sY0TctgENHY2KO60T9V25mh2vZOMkCj979nDFFDn02gvpUQlI3ePy36m2OlswzZDjrjmE0ImOY0s1wz2Vm90btmedGZl3oODDxcrzN21XVNlhecnl3TNA2x69LQMs+X7ISfv2II33eoioo8r7heZJRlzdmN1s8d3xuxtx2DgOef36IykXlCCPqRZsCLUo/frxYZ33+2Zit02NmJ+St/7edxpGSxLuj3feLYw3UVQRRQFRXJOqNpWoqiJs8ron6E5zn4oU/Uj/ADX2d85jrTcTMGtwCoMrfddaBbLadtM/LCzh2/vNFmVujAoDKaQjtGhi5o3Ys64FdXnaFJ3qmY9KLutUE/xhp0gp5xkAfaaQ8dqLJObssiFml3u200skyjlRpsXtf8a9zfVV5AaBzhqynScYj3dsH1uPfiAYvbBeNxyMnpgoNJhJCC09uUHzyZkmUVW5M+jqtlFErZKKP+p+UE0DGz9v9Voff33RB6C+RBb4M1TrWN/t2yzb1Jx5aupt3rWGf/6kZfZGTrjSSAMteMbqRZXV1vuoKmoSlybs5uqKqGUc/DcxWrrNo0df1Ji/rGN77xJ97plGff2P+1n8V7/QXE1jbi2QlNkuOMIpqsRDmCIHRoshLnwRH4PtXjZ7iTPvU6xxn1oCrJT27JZinh8RbOL/wCnD9DNyQtcQ53Ya2djuXFTLuTfZfFLMP3FGHPw3cEMnRxt2LS24TZvCBJKhRGJmRqJEGzjLcmH9LKtu77Lj2jlfSFZF7r7vCq1SPrvlIow+qVbQvY0HbBotbMkGUrV40GVmXb4kiBK/WcSgqtqYmlbj9yzN/YpTCysbxtCZVgXusqSl2rqT/P9evr8HVP6qzPFs0iukJwUdYsTaxR3lqHvGBtNKWegKtSh7ZHStCTyoTTN5SNTgWwvekT9HuyP/FxdscgJe3ZDfXFLdJ3cQOXYLtHudDBsZfTDMdsY9Hq9bNf99EdNrdGfx9lhrW0eyBpWkJjsMobrV9Nzeh+4irWTYOyf9vo5ird8mTrUeVGznBlpBhZ29BTihcnEVmuNbmj0EEJwfFRj+HA4/wmZdDzGL64i/iVX0MeHSLbkvbmFvWv/dv/2WeeHT+FS+yLb/zS0Wu8NnmRnhszzWcUdclRf5eyrnCVQ+QK0rrguL9H2ZTM8xV9L2JZJIyDAZ5yeTS/5DKZc6+/zRuTL/DD6/fpuSHzfEVLy8V6Td22zGYr0kS7a1fLFMdRWmDvaxd3HIck64x1mrNYJqhQgwkVuNpE5MkuAsmOfBuQ+xGtp53iwpMawFiwk9edi9xmewZKm+cw2lDzPNi/tYycJz8NdgWdphE0OPOUMSpp1m7Th27H15YZhK6ZyEY4WQ1OZs6EqtXjdWXGzRbQVWYllND3BzrWSPgOTVZtnrM36ZEXJdUso5Atge/hRT4/s7eHq1ySMuUmnRO5PoGjOOj1mOc5eV1zcnJJ3ermmnpZGPAtuigoCzxbsz+s1tQasKqmMx9ldRdLVTYa3OdNFy9VGeCZ1RuzFJHTaUyzCmqo8wpcxeGDXYqmoc51O1ZVNRzv7zDeGnA7XRKHPl95+Tn+xqt/ibd2XidwXWb5gq/ufu1zdc76nvzGr33liF/6wja7A5+zdUlR1uR5TRi6DEKXwTCgaVt6gUvdtMzXBVs9n7Jp6YcuVdNyfZtwvcwZ9QJ+/dUJv/NHzxiPAi5vU3o9b+NCXs4T1os1nu+RZSVh6G08dUVeEfcCsqQgXadUhWnCEVIDLKuxtIHsVsdZFTDaM2NeVzOK+VqDRqtbtOPjMoO66EbiAg16yrQLq7dgEAzwk1pTWlfQGnB2N5fTN+zdhn01LnEbsdTUXbWnEN1zWTON3Qarh7TbVuVsWoDytf476LSjoNnbPNkAU6/XJ12nsLhhVQgG4wFSKfp9j7JpWSwL8rqlF3lIJdgeR1xd6+a3/OaqY3y5wyTbKs8iMetoAHuVG2f/Ut9vQ/UtU3pXohD0P30clAnCtwA9W+rjZsPtBd1+axvCgyOqzIBuL4AyIz44wPN9yusz/PGYB8/v8G98ZZ+vv7jDTV6zSAv++hcP/sTz9bM1n5emCtP1YDTGeXCA/1d/E/m3/mPcox2t8VFS6+nSlOaDD3XD0fPP49/X98vnH9DWDY4jKb77Lu13/xDxq79BeXpNNU10AK1SVLdLhOfoVoZ1QRg6CFehej7SdVherVk9ueXsPOF2kVPUDadFybyu+SQrWDU653NR19pYpCSREhz7OoYnNwafT7LCjNodPdJV0pAaGtgMlNo08CgzEi+aO65z2MQcBVLfF0mx+bFO9dCYg2ogMA1BSaPH0AsTwZQ1LfNaAy0NILXDHjRLuzK5oKCNO6lhOa12dG7G7w3t5nEW9C7N460haNd1Gfa9TfuS7yn2v3jI8kcnkKbUZ1d42z0+ef+GtqioVznSd6mqlqpqeO3FES/txhtnfmE0nIG0sVOdo31Z69rQvomdSoyp6m4gvgXwkZIEQhuQGnOfa3SjNvszMYxv2rRclLU5Jno/5U3D2SyjbluuypJHq4zrvOTJ0yUnJyv2xiFb+z3K2xXlb/827bOnMJshdj+fms/L5JKmrQmdkMP4CCEEf+WFX+cv3vsN+l6MQJDXBV8YP0AJxQe3jymaiucG9xmHQxzp4EqH6yTBkZLvXvyIH1y/y7/5yl9jmi2YZmuOejv6i8zUaDZNw3KZ4HoOjqOYbOtw4cUiYbVKeXp2zWKpR2PVxRqmBfXJknpd0D5bdyNtG/Wz5WvGblFofejJ6o6rXXSO88KA0MjRzumq1oYjV2pgVNTd4wMTb2T1jvZfT0LoIDxF0Au7yKW+q9/MaxP5VBmQaQGaBV12jN/S6UoFHbObVnqsb5eqMWYnwzpaTWWl2d6mbbqszIFHL9JZec52hOc43Lu/x+nTSz66vWGeL5mEET88v2CarcmqioHf26ROfOmtl3jtlfsUSa63p247kF0bwNiit6kw8Uqu6mQGdtsssEwrvV9Dp4u4sOzvXfbZmrss67suO32sYYivpwvyZQazgvnDG6qk4OT8ik8en9HvhezvT7jNMv7223+PD2cfcbG+pudFf7Yny5+D5Z3zNfOsInQUr2/32R4E/Ce/8TJ/+9/6WV45GuIoyenZkuNJzMUs5Qc/uWaxyHn9QDfkuEqyzkrquiXLKv7PH13wD9+/4T//628yWxcbDZ6UgiQpkUpqc0hebMbuo5FOn8jTnNntkvntnLquoSz0eH09hfOP9Yh3ed1FFtlg895k43ymbbUj2gaXWze8BYeb6kgTxB72O1bV6hzrqjMdWT2iF2qjUdA3lZu2CMHVr2EZPvs3dkRe5gZ4ul38kl0fyxg6nl5Xy3Im826U3zaaCYSuxtPeXhV6H9nxeBDjBR5+6CPH+wRRwPbugGdPrsjzmsUiZzzp8eThJaukYDpNdYNZ6COVZHB8TLy725mILMtpWU33juzFhuPbKlPLGG+OTav/rSwgNeem1bNazasF53bfe2G3j2x3vOORLtfdMb56DEKynq/J0xw1OSAexDRNw9/51hP+r8e3rPOKncFnaz6dz7oz/4MfaP1m5EMUQdvSfvc7cHmO+Nf/HfjwHfL//rfJT6fEv6Q1XU1egVK0RYHY3oblEuk6Oj7peJt2uYJvf1O/+DDUVzXjMU5Z0uQl/t4AebOiqRqmFyuGAw+UZG3GcEGguE5L6lYzZVIIjnzHOL9rbsqKhpaJozZsqB2Fe1IQIdlznQ3I84U2uLRmzHvsezwrCmPo1KN7TwqKuuW6rNnzlB6Ft5/WPdoxs2dGzz2pcBAI9P2R0g7tadVsguNr2GRWbgypaOPUsjZmHjMarNG/DhzN3PZVx/Y6AoaO5GlebYLatcZVR0w9CDzKtuXpLGXLcTgrSqaznPLdM8b3Rlr6oG4QnsOLb9Y4wwjhOWCAed20uFsRl5/M2fNcirzYyA6AjdMfNEg+8vVoflE1pFXD0JEMjZRgVbcbEFq14Jtppu10X9U6eunQc1nUOku1auHW1HDa7nowcjUBfUdxmhUc+R6+I3EdSV7UuJ5i57CPCj2ElDg7Izg9heFQX/R8Dpfff/YDel7IUW8XV7kMvR7v3PyYZbHk60df5yq95JuP38ZXp7w6eYGhFzPLl3jKo2oqRv6Qj+ePcaTEU4qdaMw8X/LDm3cAGAYRSkqOBwOatuWmrplsD5nPVuRZQVM35HmJY2KWrm7mjIc9rmdG5mA1kL5EeIpWoEfsQsDABSy70HRaxcg11ZkG5MSejlRCwLJgfG/C7dUMmhYppI5R8qR+qrTSjF2iP5c2pppNw48GWEIIXEdRxz5VUOnGJQsC87vg0YwwbGzS3XF7YcCdHbnYU8Q1gNZ2u5dN5+ZfGhbDU1DWWsea10gT0Hx5M6MXh2TXK7JeyMnTS3Z2RoyCgKTM2I+3+cV7WmIyDodU5gurqmqOJmPefe8R9+7v8/TsqnP4Y7bfGruE0GN22wOfmC82G4RfNRo8BurT22U1TlLobQudTeD/Zv84Qu9/R2gQbhjorUGPi6s1wZFOSujFAUmaE0cB+7tjhqOejosaDHi6OOOgt4OvPrsr+qdx+daPL3EcyaTvM4w9nl6u+B++U/OFgx5/80tHfO9yxj/5zhM+Op3jeYrRKODRo1sGgUIimPR93vnohvW6YHc3Jg5dTq/X/OOHU5QU+L6iNADT9xVnZxWjyYBkndG2LdeXc9p2gO8rZlVFUzc4jkO1WiCjnr4YylZaP2iZM8sY2qxIG4VkQYsFc3aM7d/RFQJqOKFeGDYVOgBlW3hsRqgQnUnIglHQ/3qhJsVs4L1tBLI5lmG/A4W2hcm7E3pu2Uw/7sbZbd2N7u1rpItOWmDjl6xByepNmxp3e5+6qlnNV4RxSD4/J1OSi7Mp+8cTxmNdIDAY+IzeuofvKe2lcKTWytcN957b4b3vfaT3S1ObdY46va0NiW/bDoS3rWFEjQShKjrAebca1DrVoUsfsD+gH1cYkG5Btq1DdX38OCS/OYGtA6hrosmYZJUgpCCMQsaTPq6rUEry8CphdxgwsJ/1f8LymWN3+d63viEH+g1SPDxD3T+knc9Z/98/wj39gOL77xLcn+B95Q0tvn3xBbxJjNg7QHz9N+HtPyJ7/wnlIiV8bgdBS3E+R7mCpqjw/9KvwmIOFxcQBOSfnOPtDmiLCncrpk1ylKsosorpLOd6laNagWyh7zoMpCRQkp7UY/O81U73omnxpaBEO8CF0EyiEtppPXJ0M05sMj01u6bHtmXbMlCKVdPgmjEzdBTx2jByvhkx12jHtp7eCWJjpIkdiW9G/ZpkaM0oWv8rwbQqaUDpmFF6TTcVdIzTuzQMYNbo19Cj+IZIys2kclVrR7916FudqRK6fSlpGu0gVwopYJ5VvHDUZ3mT0DsawtERIk2oZ2u8X/kqcjmjOJ8z+MI+Tl2zvloz7LtMF8XGWKWEBs6uEJv1rtE6WJsHKoQGjFmrj8HORv8pWZtjkLfanOSZhib9/I0xlOlorJGjne9VCzOjg3WMxKJoG5QQPM1LfTVVg5KCyTjQIKWscHf6SM8B14XVCnH/AfKrv/65GuEBnCSffMORitgL+Xh2wv3BIYHj897tx8yLKd+5eJt7gx1en7xEUZfcHxwTOC6H8QFf3f0Kj5ePeTQ/ZV0W7PeGDPwey2KtWZK25leOvsbp6pzT5RRXKZ6eXXOwN0ZIyXgyJFnrkVRV1UznK5arFM9zcZQiCgOEp2gcgR/6eI5DWVYaXOZ3xrXLUgM4R7JpaXCkHuEGxijkq435Jy0KzdilFY2u32LjbkMYzSZd1NDdhiPjeO/1I1zXYdjTRp2kLjvG0+odLcNp10fCJjutgU2rkl3aVv+d1ZrmtQanVida1LpFyI5TZAfmZOjSpBVtURPEAbUSJKuM+/d2mc1WRMOIVyeHjII+02zBl/dep25rLpNbXtzao5UNH13fsL0zYrlYM7ucd/IBCxaBTYOEHfVj1qXvaZazbTe6XGcQaHDcdzWQtMAzdjW7aVuTPHOsbKNT3nSyCiVhVbFepdD3qC4TGhoaqRux+nGE57kUecm97S0mYcRWOKRsavaiHV4Zvva5Omf/p7fPvnE00Tq9h+dLlBJc3SZ8+w8f892rNR9crLl3NOSNB1uUdcsvvjTGjX1+4cGQv/jSDr/38Q1pVbNaFexsx4S+Q5JVtEJQNy1/+cv7fHC24vo6wXEkt1dLJtt9wshnZzcmy/W3TZaVLGdL2qYl7scIVzdu4bi0Vltox7B+rEGJZ5g4G8Vj+9uV07GedgQs5MZM0yYLrR9MFqYFqemMTZbRy00uqGUoi1SPvR1PA0vXwwlChOvR1oYtrYtuPe9qSavC1FYaIFuZcbPf08DNgtpNfFGjX8sCN9uYlK87ZtUNNHEGICQyjLQ+cjXD6fVplA7on+yNmU9XuJ7L3k6M5yqKsuYvvLrD6Txjscp57v4Wq7RhPlsTxBFZWnT1l5bRtAwldCN369avcg0+adn0t4NePws6HbczM1nWum3vjO9ld8HQtl2dJ0BdUS/neh/OLzbJBU3VEMYhUT+iaUEpiecpxv2ArKj5wl7Ez9/f+uccu19cIu4/h3jzi7pq8/YWsb2t35RS4E56lNM1LPWbrP3xe1RPz8n/0e/RfvN3qM5uqBcZHz1ckJ/cUvjN5oYAACAASURBVC0z6lVOvcopr5aU3/on2vF+7x7UNc5WzNPff4S7M4BWty/kaUWSVnrU7ShOk5yTvOA0yzktyo1Z56osWdc1a6OJvKlqLouKA8/ddLDbSshlXRNK7Xh3hdiM3C2os9do06rSkUpGDxpIwZ7J97P/94QGQ/4dnaedSO3shPQiZ9OzPjLO7Fga5zeaKbXtRpnJw7TtQIuq0UDXALmVMVjpMbvYOOt13SZclTWRYWLHjiIxRqh13XDguUgE12WFJyR9pZhOcw3Mn17C7S35kyuCX/9FfvRf/a96+58taNKSapUTDQOiyGXU84w8QX6qZrQywDowQNz+vu3qytFmc58wbVS1aTHS6x4paTSfgm3XMUkBetw+VBpkS2DHddhxFbuuY6K0tPShbHWslQB8R9Lve6zWJXXV4IwiqumaNs0gTVn94DHN25+/wGqAZ6sr9uMdvjB6BSUkeZ3jCM2SlE3JVjCgaEqKuqCl5aPZQz6ZnfB/fPK7fOfyOzxbXTLPM3748IRlkZJXBWVTk9cFN8mM7178kLwu+OLuA8qmIQg9/uCP3mM0iJFS4PkuZVFSlRVSSgLf5eZ8yuJizu1sSbLOjLmpJblZaSA5N8YC4wh3D/udQci2AlmdIWjnu2XwjKZTSaP/TLWmcAOuoHNtN61+LoEGRNZIAxRlReh77O9P8DwX13EQkRnhW9Bm9ZzWrGP1nzaGyDoJwTASVu9ovjQC1YHswBit7HY40gTu61F1nZdM9rdACubzFUpJHM8hNeH9V9MlP7k942R5wc/uv8F/94f/gKIuOVnMuVhPuVyvGcUhvuPg+abNyY74Qa9nXncGITvJaIzmtag7UAww8Khu7Bdiq4Fl7HTyhaFvIqjMvg3VhiGVu6He9r6rj6ErO9nE0N2sV9O0ZJn+TDrYG3ObpuR1RV4XvHP1kG89/af/HGfEn+/lvfcvWWclf+HlLZQSeK7amIryvGbS91lnFU+utS/ie49nTNc5/8sPLvi73z/l2TRhsch59uic84sVWVGTphXTVcGzyzW/9/6NrsHd66GUQLmKhz95xnDo65SLyGW9SmmbFtdz8XyP+dOnZOenFIsFdbLW5TFKduylZf+SuQZoW3ufji2ybng7+rXnCnR6zty09cwuOpbTRiX5sWZC7dgX2EQeSbUxQFVFwXB7iDMY6tH/3QpJ22R0N36obT8Nhm03PXSsodV72ucQQj/e1lVC58of7Rpta0m1XBAN+yAE6e1UpxdIQZboIPwkKUnziuvbhLeeH/N3/vd3WS5zTk7mXFwnZGlOrx9SFiXD7WEHem0w/ObzJunW3+pmQ5MkYtfPLndNYm3bMaB12dVm2lG7fYxNCfBjDUYH2515qW00yJWKMsuRSmp9q4A49iiKmrpuWWclP/jJNf/t//bBZ773PxN8isCH3QPat7+L/0tfhtEI6hr//oR6kSHCABW4UBS0U62jE0rgDELwPMqZPmHSpuH8ZEF1u9IxDtsD3EmPtqq78aeUqNhnMPCoblfUi4zpNKeqGjxX4riSqmkZOw6+FKRNy47r0Hc01VsDrhT0lcI3ukaAh1nBeaGbcloDlpQQXBQVq7qhNqYf0EYXTwhmVWVArcATerwdGMA4rWr2XMVAdTrFHVeZpBbBK9sxvpQEgcJ1JK6riFy1AVcjw3JKIDYfuhr0tgaIsjE7ZUYjmhswajMw7XegDah3hI6P6pkIqakZUYP+m4nr0AIv9gNc0fXGf3K5JstqVg+vIU3xXzwk+Z1v47pay+soger5OLGP6vlcXCZcLnMOPJeqbTf1pHbkbnWdh76jm43a1oTp65grxwDtvGk4ySstqatrE5uo9a9Zo38GxpCUNZoRVUJnsZatjltaNw11C1uOImlaykaH0I89bXSZznO2JwFB7NGWNd7eUL+fpeT9D25pbDbk52zZjkYcx0f87pNv85W9N4ndmIaWw/7uJvvTky5ZnTPNFrwwvE/kBigh6Xt90irfTFU/mU5ZFgllXdJzQ2Iv0vcLQVrlOqfV9xgNelxez1guElbLBM/3dC2kWXpbsQZbmQ5R91wHzzWd7aGjR+qe3MT1lGdLPSZvzJvd5k1eJPr2li6sfF1Bz9Xu96bdjOqDQfhpxrFngKQFgnfimL74pZcZ9WOi0CeKA+I4oBeHhP6dlh5l/r37iWm7zEHfb2NXbDyUZWDtYoFpaL6Q7ZjasKCe62yyTf04IM8Lju7vIh0dsRb4Lh8/fEaS5pyd3XCVJEROwLeffl/H6wBl07AdDgldl5Ef8PjpBadn1+wcGqe4lQk0dOtu6z7vamKte30DSpuOubV5oY153LLQo/rY7XSe9nkiV+t3mxZWRj8bmQirskH5Lsp3CXyPLC8YDmJc12GxTvnCZELgeLjS4bsPn1A2n79zNow8HmzH/L3vX/Drb+6xPQhI05IXXtrBcQRl3RB4isvbhHlS8DP3hvQCl9m64Gjokxm9Zz2/4fZmxWKlK1rHfZ9ezyOvNCCoKh2tFMUBQRxweblmPs9ZrXIGQx2/5LgOdV3jjMab2kwVxThRpBMJ7jqvbZ97VcDlYw02rTnmri7SBr3nfww03R0D20ajttXg9G78UlXo24K+CT0vGNx/gBP4SMdhOIo10PP9DlDZ3vOm7tzvVdGNry0YtazoXUbXxg3d/QnMCH+jSdWZoo7jbHSW/miLqqwYPniAE/d0exlw+/AReZqznCesVgWjUcD/8845eZpTFNrM7HmSrXGPMHRJlgnzsyvds25d/ba5ya7PBjAbAG3NQzaeyWo5s1WXf1qkRqea63VOF/r4CdldRAjRSQ1A37687Y6lNYQ5+ri1bct4b4wQOmap13NxXUndtPzkh5/8M9/7nwk+8Tw4PyF/dEHxR+9ohhMoTqe6JvPgAPXmq5TPrhG+h3jtTaTnIKMAEcfUywzhKr7y1SNmi4JinhI8tw2jEU1e6maSHWP8aBraqiHc6dGkJcLVAC7ueyyWJWla40jttK5beGu7twE9p1lO0+ou9cd5ybzWI9sHgat1nkpwWtQbUNYYdtK63WMpN/mTsVLkRs9ZtS21GS9fFhVZo5t3fOOu76lu9zXojvI0rRgPfeLYZbkqcZTW3WyFrgZHjmLsKlw7zhcmnJ4uZtCakSzZsqhaklo3NFlmVZnHaG2oSaQxtZ/P+Q51C7ueox9T6crK27RkL/K0/KCueTAJeXyl+34X//RD2tWaap1z76UxYjgg6nmUNyuC57ZZnMzwfcVbL20h0PrWG7M/rfZ121UbJtgao+wxGjuSxGhvhZEGbJlaUBuJZbffyg4iJTf6WNdIIzyhDUnzquG80FmumMfOqorzrKAwo8+nJ2vKvKJeZlSzhPzpNSjF62/tapPF53Cpmoonq6c8W93yzvUHJFVCoHyeLs5ZFgkvb73AUW+PZaEvDA/jQ3zlEbkBRV1wmy3wHYdffeMVZmnGukx4YXTMUe+QqqmYhEN2oi1WxZp1qQ0MW1u9Tb2mUpIo8klS/SVY1w15UUFRc+/5A6QQKCVZzoyJaFHArNBjXCVQezGbIPNprtkxG5sUGN1nUnZ6RF/n6FGaMe/dyKWlCUvuGeYzUJ92taPbR5aLhN3dLQbDmJUxUdl2puHOUDOttkrSU90IX4jO0GSnAMKMzq320REd42hH92nVgbq+t1nHqjZGp6IhTwscR3FxPdOVpJ7LKsm4d7zLs8tbXEfx4aNnfPf8MVdJwiAO2QoGBI7DqlgzCUMe3kwZDGK+/KVX6PeiTkMrhWYmG/Tr2QpMGykFn46pKpouhD9U3fYkBkwGSt9vg/tbIyswbVTCmsnqdpPrarW/dVJQ56WOYALOLm8pCh3XdZUkrIoMX3n8zP0jbtI7LujPyaKU4MlNwu0s5Zs/vmSZlhwfDXj6ZEaaVrx5PORwHHF2tkQI+PpzY52yoiRPZxmrVUm/7/H8V36Gxe2C1argeL/P8VaoZdShx+GOHsOmqa5o7Q9jmqalLHVjluMo2kanIkgpTfHIJeOXXwHA9V3y1aoDkDb/UgjYNjmQftzdBp3eULkmpmfUGYfuZksa0CminnGnyw4w3h0zA7QtcmuX5Wypv0P6EZdnt93FbtjX6+MG2pxk9aJCmrE03fjasoIWqNmQ9rvSATvCtxWXRaKBqHIhHFBVld6ebEl+dY7jOqxmK4I40NOdPMcbb5NNZxR5wbOTWy4v19zerOkNe8SxSxR55HlNr+dtbt957mgDXjcg2YL68fGn191KEyywt/vcGrBsQL9rK03v9NwbMK+jrYz5Kk/0hYXr631iDWNeZGREmZZLGHJhejnF93WsHkBR1MyTgsnhzj8zaumzwedgQPvDH9DWDd7+FrYO0xnHqJ5P+q3v0nzwIdJ3qKYr2DtE9HsQRbSXlwTP7eAMQ4IH2wx6LotFSb3MoNdDRT7F5QLqGqZTyDJU6CKEQA2CTc5nWdR4rmQ89gkCRSAle67LclnQj11KE0M0dBQvhz6vhB5HnkveNFwUFfOqIWtajn2HnhKbC/axqwikbtVJmwZP2G507UR3hcCTklqnfnLgOUhgUdd4RuPoGU1i2eog91hJXLdjPfcfDBkO9ZfLzk7IW69sMXIcXY9pjDOxAW53QZw180SyazjqqS7uCbTRKpACV2ifgyN0RBOw6bO/LCoiqRnDVa2NO3XdEniKncDj2W3Gbt/j5ibD39HtIf7egHSaIl57g6Zq8I63aZKCpoHd1/d1JETbINDRTnakPjRa29uq2YzRI5P/GSmxyfV0hW5p0rpZrVGtWg2s78ZlKSGojRZ0XdfMq5rLsma+yQNV3PddXgsDXo8C+krRV2ojQws8xdaWT1U2yNCjrWrqlX7v+Qcj1KsvfeZb/6d12Q7H/OjqQ0LH2RhQqqam50VUTcXvP/se798+RAhBVuXETk+/lxyf09U59wd7eFLx3PCAwHWYZillU+NIReQEXKczyrriKllro5z58uoPtGZSSrlxwQ97EXHoM+pH9CY9lusE3+9GQ6rvM3h+AuNAVzPWre78tmHnQ0+DvUXRGXYChTeO2IS5S6ENRlJ0Y+S21VrS0ABGy3Zat7cBYSJQDGLdABMEHo7rcLQ31tviKI7v7fLFt15iPB50OlGrRQ3ueDUdA5YtsynQj7HufTAjSNE54Teh9cZsldY0Ra1D9h2BdCWz2QrQn1e+6zDoRZxfTTncHfPs8pYw9JlmGZHrskpznhs8wFOKYdCnqGvquuYrz90j9Fzmq0Svp9WklmY0XjVmxC46jSZ0QF2KzkQFulLTVfpiwTP6Tim7JAILWpfmomJV0t5kG/ZZ7oYM7m3pOtG+h9sLoGhompYo9Bn0ItIk08fEcVgVBbEbctgb8rXDV/5/OWf+RS6TScQnJ3OiyGVvFFKUNUoKtnd6CCH4vR+d89GzBWVR4juKnutQNS2Tvs+TqzWH+z1cV/Hy87ppZj5Lma8L+r4iDlyuZimLtGA+11psYS7+ej0PKQVN0xj2VAedN02DVBKxc4/Z9QzHdXQrUlVC2Eds7XXgpEh1TqTN4LRtO/b/YFjSfsfCCaFd07Yf3ICrNl3rDEnL1FngZ/MtzUjeguO2bSmLkngQa8Y2WeO4DsOdLXN+5fr5hOgYUcu23q3utKDMut5tFFFddSYqm4HpRV2U03qqi3JshWhvi2SZUOcZTd2gHIUTR5oNPdxjdXWrMz0dyWgrYjVf8a+8uY/rKsLQRSnBar7i/vM7CCkoZ7edW99qV60mdhOHJLrt2YzhxR3Nq5Ez3GWCvXAjFdiM8i0zatlh+/zhQGekjnZx947138ZG+lDoi8WwFzKfriiKmqLQBSOOkjz3/ITXXpp85nv/s8Gn6yJeew3/cIvqekGzTik+OsF76Zi2bimnCfL+MSoOqG5X8O73aZMExmOaswuEEsjI5/E3f8LRgxFx7FBczGk/+pjs8bWu6Dw/1zWb/T7FlUbZNsi+v9sjz2pdqXmR8HCesaxrLc9o4YNpwqLSY9u8abkuq039ozSj9z1Pse0qLgvtol2aPvXLQtdk5m1D2WpneIsGPjb3s0VrEpsW09Wuwe9tpZ/LAirPADwBLNclZdHgupImr3B7AduTAM+TtG3LVuig0CaloWn2sfmVVdtuuuNtp/zd+2MpNgdMgmF19S39O6zoygTfW4Ba07Ksa2IleZzm+L4iL2u2+x6ni5ymhfXZnDopcAYhV1cp7bvvMPjqi2QfneG89iLD/R7uKOLJ05WOnhJiw/za2KRV3TByJCNHGWAsNsdDZ6xqsC6E1uAmTUOFzgNVaBNS1rQG2Grt6EBpnezEVbwSehx6rtGPSrK2YdXUuIallghiJdka+kzGAcOBRzwKccYxKIk77sFigRrGFN/78We+9X9al8gJ+fmDtxgFfdZFihKSj+ePeX5wDykEs2zNa5MXN3WbHy8+ZpYtGfl9yqakbCoCx+d3H77LUb+PKyWXyQ3P1uecLK9ZFwlXyS2vbh/R9zyyNKcotIEkCH3G20NWq5TlOuHsasrV9ZybuT6v06xgejHTrKcQNG3D4nxuTGHGkBIoDew8pXM906pzV1cNVA1FaSJ/7OjWVciB1zmupaDOyy4M3pdaT2oXX0GgcJQGy2lWsF5neJ7LIs05Ho/YP9wmDn3KssKR8tMB9C0dqwmfNjDZxV71K8FmzGJzSW33vCc1KJNowL0sNzrUptFmpSj0ubmc4hlgMOhHPHt2TRh45Hmpq4ODgDzLeef6PZ4b7pCUGV87fIWXdrc56G3x5ORSg3FXfXqdcxOvZBnQlk+H8SvRrbMB+m1aGYOI2QeBY1qk2k6fa4PoQ4U8iOkdj0xeqKSZ5yxmK81U1S1VXeEMAsbDHlHgMx4PODja4YV9PRF7bfvItHTVfDI7+TM6S/78LJ6n+NrrewSew+U8YzrPeO+DK954YUy/7zGdZryw3+fgcMRiXfCtpzfMVjmuo79PpBBIKfjhjy/ZPxrT6/vc3CS8c7rg0dM583nG5eWaOHZxHElV1VRVQ55X9Hoeh4cD1suU9WJNskzIbm/JV4lu3BGCfJ1QLubYvM92fq3BSqm1jJuKR5urCUYz6XRB7zak3moYw17nJreaRujAkVSabbTs5ybKKKKqKhrz/et6Lk3dMJr0iXcmOJ5JbxjtdoDVi7qIJT+6M60wr2njoe7KAKzO1IboW+ONBW42yD2ZbQCfkEKzho5Lcv4ML/Coigov8Jg/eoTX77GYJaRpSRy75GnOdz655cX7I8qy5sH+gAcv7uM4gtnVzKyP00kF6lJvhw2Cr8sORG/qMH29Ptatbo+TBaHQsZwWXNrAeNffaGyd7f1uv5c55JmuS5cK1gvwIoLRgKgf0Rv2cFyHOPa0RNJzmM4y8rzmxx/+Kbrdub6mPTlBfulLqJ5P27R4b7xI/uNH1MsU6Srdl727i39/QvPee8g33oCq0uOUVU5bVIShQ/RLbzB66xiA/NlUawS+eF+P9qtKtyUpSVvVlPOUJi9JbxOiyCEMHQa+w4Hv8uJuj8BVXFclCja5lbVhyBa1Zsduy5pZpfu+tx2HbVdRtNqwYgdzkdJd7juuiyM0yMtNgLqDYKgcnYHb6GaJyOR19pQyfKgGPIGQm/YjgMKMgj3DJoaTGG+7T9O0KEeP9iXoAGihgZYntAFJCq2hjKTc5DsHUmzApCMEK8NeKHMAGyMPkAj2PZdXQ59tR21YX0DLCQw1vlwWbG8F+J7iSy+M9BRuElNeLVD3D3npl5/TJqSdHapFCv0+wlGc/cFDBn2Pg9hjz3WoWp0uoMf4mr30ha4RLRqdNWoBddo0TKuGom1MJnXLoqppW+32Pyt0RquNsFo3+m/TpuGe7yEQSATLujH625ZYKnwheZTmRiurvxPTtGKxLHj6dEmdFXjHO1z86FxHewH4PqW50Pm8LTfZlHmx4Mu7rzMOh7S0HPf2efvqPa7TJUpKM4oPiL2Qty/f5V8+/hrLIiGvtKmoamr6vs+/dO9N7g93AXg0PyWva3aiMY50UELhKqVbjaqaqqrJ0pw0yRgMYqLAJ44CdraHPHe0h+Mo8kWKCB38OKA3iGgLw1TmTdcGtKogVHi7sW7HcSViYEbTZaOBUlbhjyPDtrHpdg/iAMd3taSiQYMkX2lmbnQnpqdtcQOPKPTxfY+6bijyQscTDQdax93vsR1FSClwHNUZjhzZjd2V7BjYut0AtE0u5t2WJtv+Y3WjliV1JYwD1FHfjNzrDVMbDEKSVH/Jr9OM0aDHsBfx2mvP6fsDj5vrOYHj8csvv0BSpexEW6zLjN1oG1cpvvnwJ/T7EQd7Y8YTw+AGd0CoQEsK1mXHgtqYJCm6243RcpNZ2ve6WCbLBlvDUd3qBA1Pg+jVzcq8lgbw/WHM/HQKAjxXyw2SLKcsK2azFYv5ikkY8sH5JZET4kmXvXjC2xcXf+rz48/b8vTpnFVW8muvb9MLHOq65ctv7vP+Y92A0zQtt6ucve2IyTDgH75zyS++ss3NMud2lpGVmoypq5qfeWWb4VADpQuTIbm7G+N5iqJoUErQ1A2zmzmrZU7TtKRpRdwPCcIAIQX9/T127x9oycxiqgGHH+EP+h1DZsPiQed+ComcHOioo7rU4KdITMZm1o10m9owbOa88CM9gk/mHfizzKMXdoYfy0jmmWbchIQWbWpUuh+9N+xp17X5jiPsm7F71bF+tjHpbtORdYYLocGkBZ52RL1pcHI605HjweTYbKfeH23TIkKtPyXskywThttD/MDn/pff1ACtH5JlFZ6nePDSISenC1ZZyXpdMghdfF/x8U8uNNPs+oj+VgfYheyMQraPfRNz1XbsZ77W+14qI4XI9XZHxpRkuuk32k4rf+htbfJVK8u6WtDrB1S3F0ZDq/08bdNSFRXL2ZIw8tndifnovac0TUsQOOxtR9xczD7zvf/Z4DNNIctoDfJtq4bVP/4+/oMdpPmQr06vIE2RX/0abVHRlppad7/8Bt7PvYl7vMNqXVK8/wjnP/0v6f3WL9PWDdHzO4hXXkHcu6+/JJRCKIkMPdxhiHQU4SQ2V3fgeRLfU1zepNxkpc7RNKDmcV5QtO1mvPwsryhabXJp25YneUHS6NGwHpvrsfvYcTbB7tK4sEEbjypayla3H1ndoo1JaoFASBxDdRStjk4SQrAzDgh8zbhUi5SmqHCGEc44pvfKvo7Uc/SI2JNdZiVoA5JCZ4+6ovNaeEJHROVGBxpJDcKswahoYVG3ZipoGFNajowuLjPGpFXd8PMPRkyrmutpRpKU3E5zhiNfAwEpIMtwfv5LCCVhtaL/H/4NuLwkvV7R77lUdcNg6G+ikQQaRA+MLMDqQH0pGCoNyu0ycqSZPurbLHMaS3VHeiA3rVU2geC0KDeRTgIYOUqDUaFlEEro1wtdxXbPw3UlSgkOD2O83QGUujVEvPYqbZbDZIIM/5gz8HOyTLMF6zIlrwvqtmZZrPnm4+8x9HvErgZx6zJlWa54efQCTdtSNSW+4/LFndf58t7r7PcmLPKM8/U1//5r/x5f3X+Lpm057m+xE23xhfELm9fzA48g8PTIXUmiONQietfBdx2EEDy7vCVJc6JRTFs25EXJ6mKhQafVaea1/qk1C1pcrvW4PXZop4ZlcaQ2CtUteWLGUZ6EpqFZFmQGqEn/zkjc1fdv6iNdrXUs03xDgmxvD/F8vW9mWUbkOIx8n57n8fxkTFlWBKGvwaFtZAIj2FbdKNte1dq4J8sc2tssSLOd9SbAXkmp8xTrVoM6Mx6XQlBlBS+/fI/5cq1/VgnT6ZIo8KmqGtdVPFvO+bn91/CkS1FX/NYLXyetUq6SNaGr3+db44E2XN4d+7uG1VyVJr5DddmmYGQKd7ZPiY0+VNp2JE918U1WtA36+EqJ62gWW0YuwtE7fLlONxWiACNjMqrbluEwZjwZUpqq1vv9Q5bFmkk4IrA6uM/RUhQ1VdNym1RMlzmuK/nw0XTzGeZ5ipPzFZ88nm2I9chVLNOS3/q5I37zrT0OxhF1XXNytebv/rs/x3/wr75IVdVEkUPgKl44HlKW2ngklSQexLieswEKQeDi+i6O4+D6LovpQgOgeKBD1MuC/OpcRyv1xp1jva42msnm6oRNiPx6qlk1ITrNYVXo27zQTA/MSDtP9XjcLnc1jlZHbcfDXgCOgxd4KHMxVBUVSgn6/YCd3QF7h2MNUMvcADW3Y/GsE97qPNtGb4NlQtu2G/srx4TZl53RJ1t12sp0qXNGA8PiZmuUo2izlP3nj3TNcJpT5AW3V3NczyXPdctUllUc7PcYDHwePZ7xH/3ll0jyitksI+yF+jyVDm1uWEvbXNSbdAD6/+XuzX5sS8/zvt/6vjWvPe+aq87c5/TpbpJNSmySMsVBk20IAmw4MGADBgwEyF1u878ESJCb+CZIciMgSixLsRRZFE2REseeTnefPlOdGve81zzk4v3W3oeC0LmQLYdcQAPVVXV27bWHqme97/P8nlYYu4EI7LoUoe93ft7T+uoqvp0+t8LSC+VjvwPzSznnVlC3z4PfgdTgqHzph2+DaQBRLyIIHNKsxPM9Rj2PJCnY6wf40WdD5j9TfFpf/gpNLC80dbiPPeyguz7cuoWz10eFLlgWzXxO/Zf/EfXwAZyewtkZp//mj1j9wXcozybc+93PQ9NQ/+//I/pf/3dQN+iOB+fnNKcvBP4cRdRJTp20D64in8VkmXTXNk1DkpZktaSl1+YKx1WWaRtSjGybe77HG6HHb+x0uee7JgEvE8t5JSt2/Yrv0Le2IietawKlTIpcbexLDSI6ZQLakNc1q7reiKihrTnZjzjYD4WBHdl4oYvyZXXhfPENLK0orleEocODN3cYO/bPBY2ATdI9qRuSWpqTuuYP3Y6jKZu29WgrhgHjOZVziuuaZVXRUZL6PzSw9sNxwMDWfPxitRGtAOfzlKpsJEBW/vLyGQAAIABJREFUNzTLFZbjYCkFaQpJTPnkJd3X9lmuCvZ2A4a7Eauq3kye20aiuGrYd/Smbz2pm023fbtSV5aI1J65DxXis7Ut8eNq5DFwLKkNtWBDG5hX1YZ7agHnRpQGSpHVDYu8ZGbwSq6jcQchzrjD6oefcvvX78JiQX42J/veT7CcX74/ZABv775FXKQs8iWhHeBpl4Hv82Bwl1HQJ3Q8qrrmMp7yJ8++y/3hLc7ic+bpiv/hx3/AH336fabpkt+6/SZxkfK9i+/yW8f/mLhISauCabpgni2wlVQ5LuZrkiSjquS9sV4lQrSwBRmT5gV1XZNnBXGagS22C0IHq+ugAwd3N4L9kN03D2VC6RvvobZEoBX11r+JeEVpGvEVrkqcwAMlTSFlmuM6zjbZvmq71OtNf7rla8JuyJ1bh+zs9CmKkv6gQxR4+LaIoHeOHuAoxTRNCEOfX/vqW/SHXUl0t40+zSvjdjBoIn5enFb1FsHUckPBTHTkHKtFRrMqUMYyYA09WBeMBl06/YhHn57iuy5pVuDaNpP5krpuyNKcPC85XS7Jq4K8Lui4Act8yfdevsv90ZhFnPLa4R6v7e0wX663j2vrXWpbojpGsDds/ZuO2mKY6lo+b0JTdVZuEVjaCGtHGxqBEa1NQzFPoKxNII1XrBTyb5qmYWXwW/u7Q7q9iPvjEY+ur/ntN17nMrnmvetnvHf9GEf98r1nf+1XjsmLinVe4zhaPIEDn7duj0jNBDxJChbzmO/94Bl39rs8uliTpgX//f/2I/7Nv3/MfJ3zja/e5vo65v/59JJ/8fYJ63XB5WVMWlQkeUWv59HveyKI0lym/XnFbJYyn8X4gQi6ZJWQJZlM8qxXXsdhDyyF3elh792A8Qnu0W2Bz7fiqG0IatfXbXionV62ItR2ZEX9qigE+fet91C3XMoGvADdHaC0wvE96rqWHnSgqirSpOD+7SGdjstinqB8n9Fr99hUaLY/uw1BtUGbVni+ilvapOH/RrIctitq0w6kXA+qEqs3gmyNH/qoIOTsQ0l652kuYnOdksYpRVbQ1A3TacJOz2exyHBdzdmi4Onlil7PY3Y5ozfq4XSibctSNBSh2Irf9n7YLpsKU9szTUeGhdqeYxviajctbZAq6LLpq6/Kbco/W8vPAgmJZfGW45qnkKeUSYLWGtu1cRwbz7N5+XLJ628dcXqxJssqXk5jPP+zi1w+e/I5HGPt78F8DpMJHBzI509PwXHwTgTfkT2fYEUR9fsfgu9DGHL0j94meuMI3fOp1wm6F8BqRRPPcUYd6rSQ22tH8E2DezggeO0AlEU5i1mt5Wvdnovv2XQ6DoHxOY5tm6PQYz902bGdzQX94cAnVIrTdS4J6apmbVLWgbI2KXVlCfNyZgTNvKw2vsu2UrOmIa5qdMuiVIJ0cs36veVthkox2AkJQ5vBwJX3y8kI/94h3s3xBidV5yVNI0KvbiBSSmo5tWLkaEItYrSm2VjIKraDFGW1vNJtKnxZydTVtkSgNsCR63JRFNwL/A2EPsvlF9llURA4mo5nk2YVu12PxTJHdzx05GHdu0uTptg3D4RA8N67OL/zm+jIpa4b7F7A7GpNaPBHrYCuERsDyCR0VdX0bU2N8EojA5BvLQKvNiSltUxxG7bWFAmByZTUMt+T1DUNjakerXDNpDqra9MbbxnwPRRljeVo1N4O0edOZLJblli+Q7VMBTj/S3h0nIidYICnXT6cfErX7eBpl2k2o+92OIjGNNScr6fcH97i49lTlKWI3IDfufN5xkGIrTSOcnC1w3l8QV5n9L2ItMyJ3ACtFI6ycbXN0dEOu3tDAGbTJUmcYtuaTjekE/n0OqGst32XYb/D4e6I0aDHcNRFWZKu3d8Z4tg208VaJqEbKLl5oXedbfBlVVJdJ1vMTyBNSpS1+Bq1Ii9aD5Ta3p5nwjGeiOJuFDAa9QijgJsne1iWxa1+nzd39jnodOi5HRpgsowZjXpoy8J3HfFmenp72+0Ltk0ytuPUGhFlLRetxRiZtbSs7y2BzBc1w6Mh9TxjcDSgMS1CVVVTVmJJiAJPWoDSjOP9MUmWEXUCok7AN2++RlblDLwueVXwdPmC37v7LXzbxbY1keNwFccyhbSsbWNT02z8r2Duu6e3uKh2Mlo1IuDrZiu0s3pbD2oh37/pjwfjKxIxqhDhvyq2QjyvsE1Ard+LcG2bxWLNuBfxxs4Nfv3mHbpuhDa/Z+q64rDT+c/3xvkvdPQCR8DjZY1lwbgvSenJMmNvJ2R3N8K2FX7g8Y2v3ea9JxPZsA1Dbt/bRWvFOi1ZJgVJUvCdx3PSoiIIpMChqhqmixSlLNbrnMGow2DUoSorFvOEeC28Rt+XiVbQCXB9F9cXyHx3b4z2fJQjqfWyLPECD4qcfLkSWHzL9nTDLa6o9REur7ahmWSxndwF3a1IbWqZqvmdbdK9FU22C6VQNfrjPkopoq6EjG6/dsiDhwdEHY9u4LBa5ayXIgL9wNuu61sephtsOJUb7mVb39kKOjD+ZY8N37JdY9uu/HvbxT84pl7O8I5u0qQJaIeyKEWwV6VMlz2Hpm7wQo+qrOgPI3r9gNs3B5RVzf5+h27X5acvFnzt/o6E7roSqtK23vwsmWpm2ylsK/RbS8OrRyugK1ndb1L+6dJ4Oo3vNVluKzZbSkEbImsJBbNz+RmGOmCFHeyoA0rLhYArQanj/Q43bvRxHM1kEuN5mqtJwnD4N+7b3zg+U3zm/8v/KmxPAN+nefIU73BAs45hb4/iaonuePi396guJhIgKkvIc+rpnPyltOSUsxjlaPKffUzz4z/H/twDqjin/um70jjjulieh3WwT34+xxlEUDcs5hl5UVPkFat1wXSZc12WFE3Doqp4EWd8vEy5LsuNUPxoEnNeFCyrilVdUbMFzHe0rLmrRsRNz9aGN10zsrUwXE1627EsPEttmJvtBsBXbRDJvEYti0VVMzlf4wxDovsHDL94A/twTPzjJ9RxhjUco4Z9LK3Y//wRi6W8AT0zlc0Nz7IVkQprw9AENhaCtG42TU1DE+rZdRRdrVhUIq6nZc1lUWBbFqdZTmT4n+eLjLxueNALuEgLyrIm8G2SpOTWnT7JJKZaZ1CWFN//MeXzc+oko8kymiefYL3+gN3XdlCuzdVVymHkSljXTIJ7xu9ZIZPJspEJddU03PAcZibw1AazFBLSuirEl6ssOU/52yQNUo4lYjVUitCch4XFeVFufoZlQVcLssk1E23bthiPPJydLsWnp1A3pM+uxVLQC8AC9f9xVfaLevzp8+/gaY9FvuK4u8dVMiF0fGbZgp7XZZLMmaZLjrs7zLIlF/GMdZFwtrpika1Y5BnPF1cs8hWRE/Dh5FOerj7hRu+Q3XDAdTzD0x6RE3Dc3eOt3V0JG/nS6HE5mbNaxiRJxmqdMlusmC3W1HXDfLnm5ekl11dzplPpdi/WGc+eX1BcrSlj6XKnbmQSZ4HVd7f4ntJ83jd/PLoCKC9zYX/WjaRM66IWvM+mjtMA3Rs2MPj5KubycsbNQZ8H4zHfuHOb14YHvHt1TlnX7If7HHVGDDohX7x9wvMXl+RliRt6xkdqbcVYy/h8dSXfThfh50HyAD13y8vsOlDUTCdLsCxmsxXDYRe6LldT4e3tn+xwbaadWitmyzU3jvdI05w8K8iqnEfTZ8TGh9c0DefJBW/vvs7d0ZC+5/Hk+QW3jk1vtGt8q23/emnEflFvJ7Q94+kM7C2qqoXDp9W2371dD7l6axlojPXBUTD0DB7LDBksM3kNbGxb49iasqyo65rBoMNhp8vz5QUAV8kcZSk82yavKzz7l++C8bs/PaOuG15MYq6uYrKi3vgWV3HOZJIwuV7x+Ye7zNY5cVwyWWV8/GRGllU8fvSSySQhyUt6PZ8Pn894ch0TRS5370raOM8rIt8hCBxGo4DFPEZpRZ7mzK/nFHkhFzp5yXK6pDB1j0oplqenVJNzCflYCrKU9eWl9J3HM1jPt6nrdl3d4nuMX1SEm1kTexGsZtvVrhdsOZvt1PFVKLrBBBVZQbyKuXH3gBu3d3j9zUP6fY93f/ycpmkIXE2v59EddLl1b5/ppfEbBt3ttLCd4LUCtBXJsA3wtFaCNmlvKZk8uoF8j9KQrkjXktTPXj4Dz4egQxqnaFvTOTpieX5JkRVCC8hLjm7vs5jFrFYZWVHx7FwyB7YtqLgX05SvvLFP2Ano9ELSq0vsMNxOa9t60FaY+52tHaENZC2vXgHG19ugUVsZarsipMtcHhfYAuqD7pYQ0OKmmnrbF++FkuB3bRzfQ9sa1xdiwiLOieOC6+sE15XzKcv674ZacvYEKs9qJevYbgc1GpC/nMFigXcyIv30Up67tMDZ6Yr4bBrUsI970Me7c0C1TLACH/fLnxM/hm3TVDVqZyQPznRKM5tBEFDFGcVkhT0MCQIRR5NJxlVSbJLniQmyVCbM0jGT0AbxAJ7lgkMa2TZdE+6BLaquMsKlZW1GJnndNJKSj0yneWtjsiw2U1EbAc97Zgra0NC3tUCe6wb79rEk32wb3Q9oqprmZz+hni1wD/ooz2bn/i77Y1/wTsjPiA0KyTZ+zzZh3973fUdv1vJ102y8ndeltB71tAjPsa0oEbG6qKqNhSCtJUjl+TYNDauyotN10FpxdrrC9W3cwwGcneEcS1mACjySD87g6grr7gNBFlU1Ozs+66wyeCoDj0emtC2cv2Mg/K5BUUGrHwSxJP31NSNbCVLJCOtFVXNVVsRVjaPkdl8WBWe5TLM8Jd31B67DwKxeciN0fVfT67l0Oi7euIMeD7BsESrubheKAv2lt6GBytRA/rIdu6FAfyMn4OXqkmUe03FDni3PiYuEod/jxXLCXjjCVpqR38FVDoHtsRMMeTA65qS3w2U8o+uGfHHvDVbFiqIqSMuMUdDHtjRXyQxtaXYCWVvHcUq3FxF4HmlWsFolzJciOrVSFGkuSCQTBLIdG7fni0BZ5JtpnI7cLcNTWTRt7zsYJJCINiuwzRq7FZgOWmmqupaJQ15t+ZOvtiWZOslBNyLPCy7jmJPuDoHtMQ6lMx3g/ckjVvma426XyHX50oPb7O8ONzD3TbCoYZuABzZsTIstTL6dIFpsz7etCp2kIo5bLmhcMp2v8FxpilKWRRh41HlFkmb0OyGubXNp/rgOh11+dnnG0O9iKxtPuzxfnlNUJQ8G9xkHAbM0ZTTusVwlIgpbId4GoFrRqS25b61IblPsa0MOaJFVXTOxyuutX/c8/rl1en2VwLW8x1TkwNgXm8U4AEf+QBWmBWvQi+h2QkbjPjd6Y7MdqRl4EXVT8+0b7+CaCuVftuPOSZ+qbnC0MpvehiBwOJ8mgkNLC/E1Kouyrun3PYqyptt1OT7oMN4fMhoFnJ+vUMria6/vcbpO6PoOWVZyNA5F3J4tWa1yHEc6xfM0x/Vdgk5AFmdMrhas5kIhaJqGcjmnTBNZ51qWWaH7hodpBIzfERi64/+8l/DVta8Rc9rzt1M2N4Sgh6XN5DGIzOrX+BODjogrxzfonwLHINq0trh/c0AUOOyaAGlVNTw+X1IUFd2uR1U1HN/a24ZoWnRQnmz9qq3AbPFPG5C78TraJqDo+LLujufycdtV3yKP6gqyFMtxIV5S17UA+R13M8HUtuby5YSoG7CzEzGbpXieTdNIi+PjFwvWWcmXjiMODjqsFjFW1KNcGdh7O7V9dTIL8rmVgcBrQxewDb/T8f/GSr3e+mibBuYXhgYgVZmszQVBi7lyAxHdnaG5oCioyoqqrAg7Ia7nMhiEm4DbzjDAdTWLWczJfpeiqND67yA+iSKax48lDOSYX6RpivebX4M4ltU5kL+cQt2g+l2a1YpmtYYgAK148e9+igo96PcNVqmD9fY7EmgpS/ljkucQx3B5iX9jTFPVZOcLXE9TFjWOq9gLHbKmNr/rZRrZTsxARKdjWRw6Du90Azwjeirj1WyrGj0jHHdsEWHuKwK0aBryRhLibTK8MMJItmjWRvyBwftZim7XoWOq/7KffrxZvXlHQ3Qob15145g6Kykna8pFwnyRm9YiWRe3UHvXkvR3u5bWlqS886Yx3lb5fG2evNZTaVsiPpdVTUdpg2KSaaGNxbqqGXZcHl/H3B1HWFhMJhkH+wHzZY5ybLJnEwGxt61TppkKy6L5v/+QpqoplymDnYhuKLxSeRysTa2mbyabLQYqeEVA17DBQbXpdF8JImpdN4wdLZaI9rHGhJAs4bgmBqe1rGquitKgsRR9W+Oa6XQQ2PR7Ls5uF3Z2SJ9cUa0y01DjgC+Tz2Ky/syX/i/qYSvNs8VLmqYhckJ6bofA9vitm1/nKpnS0DDwfK6TOWmZ4dvez7UWJWXGnz55xNDvMvKHTLM5RV1w1DnAVtvJU1EVhI7Pk/klh/sjmqZhuVgTBh5JJre3M+qT5QVVUoCSaj8dyBTNsiyKUgDkzm6Ec9zDDl0J3hT1tmGnarA9ByuwsXcj4WK68gdU1t6YaWZNWVU4tgEeW2Yq56mtmLIs8ZzaFqNRjyjy0UrxaPKSqqlxlM3ro0M6rk9W5Zz09kmKglWeU1QVs9lKku+2alcUxhOJiDOzLt+s15tm67HMX1lbO2pbclDI1FEF9malPRp0xUqwKuh3I56eXvLg/g081+F6tqTfi0iyHM9zuL6ec7lc4Sqbsi6pmpr3r6+wLIvvnv0lvu1xnSR0A59+P6IbvcJIbW0DLabKVTLltM3Xuo6cX3sO2hLBaSvDYq03RIKNF1ZbIqYjR/itSUk9y4T3eZFQLTMs28LWmsB30VqhlaLbC3ltPOKku8+zxQJfO0ROKJNP7XEZr/nZ5eXf19vo7+1ogJfXaxYm6xD5DsPI4199/YSyrFkuEhzP4WqRSkDItYnTglHfZ53Kmve7f/gD+n0frS0eX655Nk/pBg55XuHZWvzBWUkQOMxmKf1BiKUsyqKkMlNnkPBIVVbSle64ImRsG3pjWQPnRsR1hrB7S/q9FxMRLS2gPV3JCr1tBDLp7Lqut6gjM2VsWstde7tpC3k33sMNK9TFcR2ibsR6nfNXPzsnTuXf3rkv7OlVnBOGLut1znSyJstKWS0HHWFVthNC2GKGYLNSlkS58X9qW1bdIB/DdpKbx3K+trPxtEa7Y2xHJr7dQZf59ZzRwY7U4a4TBjt90jjFthVXV2um0xjbVnjmQuDZkyuSvOR/+tNP6YQu8TJm53AHK4hEHLZ4p3bS2TYTtWiltiFKaQmItRcDbTK/nZ5WhYhKx9sSAPJUJp7tVLidYCcL898SHXXRYbTBb2lbs7vfI4ocDnYiLi9jrmcJvi+T0UHkkiQFV1fxZ772P1t8xjHWjRsiRm7dkheiZcHjx6AU+t5tdD/EffMu3j/5XZqlgSIXFda3fgfr5k2Ov3kf72QsQjOKaD5+HyaXIg729kBrqkuBzDfLlXTIVw3LlVz1l1WDVhZBYDPwHDpaERlRNbQ1h6GHZynqRoI/2rI2oZt2wjkpJNDS05p1XVM3DataJobakmDMsuVimmmk+btnfIZs1rppU298mJ4lIvF6njF4/QD3oE9TVpSzGJKEpiixj0w36nyO+81fw3JtdCB+GmVuV2o8RUC6ytp4g9sEOAjHtG8r9l3NkWeT1w0DW4vIUzKtrWm46blclaXYDUxIR1tSsflykVE1Dc8mCXlT8zLNWSwLbh53uDxd4p0Myc7moDX2b/4GeB4Ht/rCYR2NcI/GEhzLpFVDWzLtVGYr6loWaSvaa9P41Ap35OueEj/trKwk3GUCYMqco28JOmtg602TlG0sEL4lq/qO+VxLOKgb+RmeJ0LeHoRycdM0UNW8/OELqYEtCsgy3L0+na+/9Zkv/V/U42I9oedFKEtx1NnD1TaB7fN89ZyB1+Wos0/khhx19vjG8ddIywytFMs85pvH/wBXOfzT138V1wjNyAn4dPGEy+QaW2njIZWpwCxdMs8y8kpq4tZxZpqNMIl3zaDfwYk8XM+hEwUM+h12dwcS5ItLAs+TYVldU64zlGWEXVqBbWF1HcpZQhOXlPNU3pSOoo6LDecTMB7QirIqqfISq/VkwrbysWnQro3rOJyeXfGrd25yu99nlqbERco8W1HTcHdwjLIspumS37nzJYqqwrdtsqJg1O8KT7A9Wo9nG7LR1lZ4ZpV4OiNHVtLVK2LU06i+XJjaO6EINGVBaDO5lomHMwq5ni2oyopPn5+zTlIW8zWrdcLBnvA7D3aHXJxNeLq45E5fWK53BkMiJyRyAjpOgG3A3FHkyxA5M5NOhYjzpNwKfsPj3DBAW8ZnUspz0nVkEmoaqZhlcluhjWs8XgKiV7i+A6Hpbo9Mr7uyUJbC1pq8KPFdB8e16fU7aKXwtcfI9/mPp0/laW1qbOUQuS5f2Nv/z/zu+fs/Hj+bU5sg5mDgyzTMVvzJh1OUsrh5a4Tnu9w77PFPvnRInBbSE55X/LffvsMXHu6yf/+OVExXDau04NFlQlk3dLsetrY206myrMgy8YE2dcNqviJPc5RSeIEnOKBehON72H6AH/p4UUBv2JNu9yLFGw6xbFvEaLwQodlOpKtCRN384udh80rTFKYms+VPNoZwo4wYTVfbBHey2OKQjGcxSzIGI0lWS5OaxXSd0em4HB52SdOKs7MlX3prX6aPjkm2rw1aqGV2vlKP+XP96K0wdUMRd+2U01IioJWWCa2l0Hs3YHENSmN1+qyvTJd7f4fZ1Yy6qpleTiVkFMes5mvGB2MuTidyX9cpRVHzrYc77A8Cjk5G7PUD7h736QYOnYEUDGwCX26w9cq21Zibx8zenlc7EW1rQ1sQfZGadqpGJrit5aAzNufV3bJaW8i8G8hzqTRVVW2g/m1nfRuOi3ybNC1490dP5XXkOez3XKLI5bW7o8987X+25/PZpQjPJIFnzyAMKa8WJO8/p1nHVB89xr11AN0uzaP3Ud/4FtbBgfzh//QRXF+TfnqJdf++TDj39kSEdvtYnQ5WFIHnoW+fCOfzzm2aqsYehniuwnUVUeRQtqgPYK/nsRu5KMRruchKlAW3B4H4D6qKZVXR03qDT9p3pYs9Mv3qrpIg0pHr0Nd6k9b2jaCxLVnv5o0gmBowtZ6ydreNN7RoGm7uR/i2Jn12LXYEEPuB52EFPmQZOA7Nak1zfUW1kspRreD4KGIvdPAta8PzbPMJoRGhLXA+UNYrH4v4Tutt8j2vZd0tW6+GRVnzPC+oGgkZ7XbczTS3pxXHfR/fdNBXVcPZJKG4XuHtdrFu36H5/vewfu+/Ivy9b8F4DJ5H+uiU4N4euuPR63vsDnwG5vGrkPuqLQn9tG+cRVkJisoS2L02j2cLx28HSH1bs6hqE8KVi4HEXCDUSGCsRCbSrc+zZ9bucrHQkGU1WVZRZyVqZ0Txw/ckbNQ0WK4NStGsV9hv3KO+vP7MN8Yv6vHM+OXiIuH56gxXO7xcX/Lji0fkdcGTxQtu9Q6pm5pHs4/49o1/QGB7hI7PWXzGB5MXPJmfcm9wEwuLQPv03B43Oie4ysFVLsrS3O6fUDU1Xz95gGVZeJ6D69r0eiGd0N+gOBytuXm0y/7OkKqqmM1XLOOUwPc4urWH69rkWUG1zNCh+EaxlSSrbYPqCR0RdmmFPQzwfFfW7hbyNYCmwfZdGjMxbVrWZtls4PQgPMSH928QeB7vXVxytl5jWRah4+Nqh57bQaGInICqrjhbCyhZWRbjQZeTk132xv0tWN4z6/Qag31CpprKMmGdWu5Dz93C183vszopwVXijaoaEXjzHO1o8mnC3rhPUZZQ1fQ7IYe7IyzbQmtNWVTEScbVdMFop88X91/jo9kTvrTzRb529DnqRsJ5712f8oW9EzytGQ66nBztigj0zRo9N/f11fDUIt/6VItaxGS7oq/F4kCg5ZzKxtSe1uRJDk1DsyqggTwtZEIKG8Ht9nyUUlTG5hSnGTQQrxP2wi7/9vH3eWPnBmlZ4mgbX/uUdcFXDt/kMv7l3Fb0Oh7PXyyYzST1fzaNee+TCY6jubqK2d+PSIuKH71Y8S++doJSFlpZvFylLJOCIHC4cyAcac/RjEKHL93o0gkcQlezPwikNzwuuXnSpyxrvMDDcR0JjngORVbgBy5Y0B/38SNfcEFxxnqxlsrZ42NZy1eVMECjvkwAW7B5b08mpq9wPe3Bjoib1k/pveJjbKBZL7bIolc72I1opanpDGVKmaYlMzM1tCyLYSQXwaGxGFRVw8fP5hRZQVEYjFJnCANz0WK7W65nK87aJiBgw8kscwgH8r0t7F5piMWXXZXV5nub2SXK98mvL+j0OzI1riu0remP5fFpjChM45Tr6xg/9Ll70OVP37/iH9zt89u/cswizsnyivc+vubuvR0c18YLPFzfTDD96BVOabidbBoPqqzaDSjecbf+W0tJaj3sy/m00+S6Es9uu45v+a1tCKsyHt+wi1ISLmrqRoYEeclslhD6Do+ezrh1ayDDBleztxfhaIubxz3yV6uO/5bjsz2f4w7Nxx/TrFayNjdpQ//uHpbrYH/1HRgOsd76Etade5R//MdYD94wLUaPYCTKtzk9haoi/84PsAZDmj//E6z7D2gWCxGjwyHpB8+wTm7JKt+SPnQ3cOhENjffPgRoGzcpW6YlDdOipGoaLpYZs6KSqajSjBzb8B9lQgowLSsiLevbW55LXNU8y3PKpmHPsSkaSbgrZIInKXdp7/HNtE2b9a62pAlpMc947eGYuqxZX63xDgfEH7wk/+i5hHeuFlAUqG9+WzyHkcfi02tuf24P37dRJuHuK7URmC3wvg3gBMoS75eZhL40bU1lI17R0HhUIyX3rac19wJnU60JcLbMOQo9urbmsij5weWSse/w8ekK27a4e9Ll6vEEy3do3n8P67XXaH7yfUgSrOMP0aUJAAAgAElEQVSbWG9/Gf/eAdUqwz0akqclRSGBrqxu0EBSi4+2rQVdVxVjA6OvGhGeIFYGhQneGpxSXtf0W5+oEeNR6+VtRPz7ltpwQOX8JTUfOlrEb1lz+NY+4dt3YDwWxNXRIQdvHZA8OpfwnOvCZIL+9m985hvjF/UYBz2m6YKqqem7HYbegLKuuNHbR1uae/1bVE2Nr306Tof/8OJ7vNa/x/l6yjyb83B8wiJLOY+vqZuKH5z/jKE34P98/Cfc7p9Q1HL123E6XKyveWv8EACtNbqtR3Vs7j+4AUDgu9S1JNFbPEq6SsjygovrOctVIiuryKHbCXA9B+VqrI7gkvI4ww89yCu8o678Qbxei6ez6woCCMCyJLAEIpKaZtspHjmbtbDrOSwXMQ/fuAXAxWLJjV6PT6ZXnK2ucJTm6eIlXbfD14+/LGsmpXh0ccU7b71G+Cq7rhWTDSIyW5B8G0ZqKzZBJoTt0X6PEXxNgwRzxv7mMcOC+XLNoNfB7wRcXs958d4LdgY9nr28xLY1t072ODuTms2/ePE+D4Z3OF2foi2Nr326TpfdMOTp4orjbhdlWRsWKkkpwr31erbIpGVhEu/IlDJyZBoN22R7u/5Ly+0k1LexHIXtu4TjjpmmVtiRtxGnlrbIswLH1nSigMAXwP/B0Zh37tzkc7v3+drx67ja5p3DI/7y9CO0JSHDq2TKt2+9/Z/oXfL/nyOKHC6uxBtdVfXG0rW3G3F9HXP/7ojVqmDc8ej4Nv/znz3hc3fHnJ2vePcswXc1g4HPX713QdNIsj0ta37wZMFe32eZlpIHczVJUvDlu8KtDQIH13fp9Dsopdg76JOlheCCTJLZcR0sZVEVUr+5nC5JVokMkoIObuCLf7vbF6HTJtTbkE9vR+Dk05fbfvfFlRGhJgmttORK2sR72IPueDvNsx3SOKU36jG7mpMlGd2ux7Nnc84mMU3T8PiJTB5/9XP7Uu/o2jz/5JS9h69j2bZM/dqgTSs2W4RS6yttbQIg57Gebr9epIaBGW6DOC1o/pV2puVsSdCNcAKfMi+Zf/Azom7E8vwSbWuGe0PWq5RO1+P9p1P2BwE/OY0JHcXDoy5vHnfpdj0uLtaEoTz+eZLKe201lcd1ebX13MLWw2q7GxSTpV85l6aW729tB71defxbhqcXQtjdQv1tZxtgclyoxJbhhz6u79I0DSe3xhwf9xh2XO4e90mSgruvH/H+e2e4rsbVim7gcPB3SbtbYYAVRfIEhiGW46C7Pk1eSvr92VPxdiZrmg/eQ4/65L//f+Df3qO5nmC9JbBy6+YtrLd/BWXLC8369d+ATg+rP4CiwNJahO5HH+B86S2aqt6Mnc8vEq4eXRKGNp5v47niYdkZ+rx+1OXeQE6wo7UJsQg6KatriqbeeDhb6+u0LNHAqq4okSS1Y1kbdqhCOsVbuLxrWQTGd1gh4tRXypSaSGORPQwJ7+wyePOIapXJudQN5SLBOdqRN1cSQxCgPIdwFJJPJB1/uswY2hpPibAVBqfcV19ZJkQrk9kWOt/TFrFZZ3dMgtwzLUuneUFc19zu+JQNXJUFHa0ZujYfrhJsZK194Dp8sIxxlUVe1ASRQ1XKmrpZLGkuL+H6GuvgGI5u0fzgu9Dr4R6P0Z2AoqjJMul4F+uCdLpndS3hJsNPXVbVJhiUNjLNrJq2QlPW8mJjEA9vV2vSphEaDRbzqvo5/+vA9Le37VAaMZzbWOztBdjDSOwhjkP+1+9iDYe4n7/P1fnarEIz1n/9iTwfv4SHb7uEjk/VVHi2S1KmZGW+8XU+W54yzyRp+b2XP2IU9Pnjp3/GUWfMeXzNN46/hrIsbnaPCJ0IVzsUdcnv3v0NOk5E5ITkVY5v+/i2x0fzT/iHdx5SlhWuCQW8vJzy4tkFjutQ1cL8tCyL/Z0Bd28esH8wxtYK1zFlDFmBVoo0K8iLkrqsZXIJUEN6tQJlCVg+KU14SMtULTMhJkcR9kOwlYhZy5KpaYv2AdDyO0Upi+Nul6+cHPPOjRPyquJGfyg83yrnVv+Ipmm4TicM/R5VXTPohJytVuyEIZP5Stb6DTLtBBNAMlNEy5L7V9bb72lbkIxtgI4j909ZFKdLWOQcH++CBavJCnwbz3OZvphia0W/30HtBFx+fEE3CiiKEtd1KIqSNM3JqorL5JpJNqXrdrnROeF7L3/Ebjjk4fiE3bBHnAnfUd5c1pbxWb4imiNns0anrKnXBdVCppNYoEJHBGobJrCN3zMpaZKSsiiJl/GGYVo3BkhfCedT25raXHw2TcPR/pg7wyE7YZeuIzSGu/3bvL33kE8nU9Iqo6hL/vzZhwT6s6HVv4iHVBJqRqOA4TAgzkqSpOB6knB1MRf6lSdQ+Z8+neL7Dk8uVwyHAcuk4B+9tUtZNty/PaTblUngi0nC1+70pTXH1mRFzcFOxNFRl/dOl9y5MyKOc5RWFHnBYrLg7MUUz3c2jN48zRnvDzm6fUjQlRW467uybi8Lsd2ZoU65nLOBkKdrWceDeC5b1JEyIlBps6pXYl9Rtvgalcb2PPEgpuvN5NOyBcfVG0Tcfu2AwbhLWQqmqCgq8rxiNApEuNcNeV7hBx6DnQHz67lMH+fnskpvW3/a6V663HpQlb1FKrnhtkqz9XzarvDI/S4sxefa3+lDXVHH0hjU6XdIzk6pK5kss3PC+uknBKMhWZLh+S6rmVgTZ7OU02nM+TwhLWve3Av57kcTel2PN14b47qaLM1QthGEIEKzhfe3ArL1qkYDE/TKaJK1sTh42374pjHBJV/KA5LFdk3fQuSbRrRKKGUASiss28bzPcFIKUuapEIHz9EcDwOyouJop8O9GwMW1wvqumGdVzx6OuPl5O/g+bTeeNMoZgWLBc1shrW3S52WkGUUHz8XEHldyZ12XZy9AdY/+5dyA2fP8e4f0zx9QvPJI5zf+qasZR69S/PiKQQh1nhMU9eowAXPE+ySo7Fcm2SVUZY1vqfJi5pux2E2zymqmrNJwqcv15wuM5NwL/AsRaAVSV3zMi9IaulmBwz0vGZo2/hKESq98f+fF9KIFBlRuagqYiNG80bW68tKBFVumKGOJWEn39NMPrqiSnLscQ8VuliujXvQx75zIj7DsqT58Q8hSbBv7GM5Gm/c4cO/PuOtGz1Jz1vKTACbzVr/b3uiZPUOHS2tR6E5X1dJqKj1iE6SAmXBpJBzmeQFoVJ4tiJ0bbSp4rwoSq6vU7KkFJh/UWGNhlTPX8J8TvPRB/Dxe1SfPME6PAStqY152nWUCc02hIazaZn7mNX1pvClMsEu2wSnRrbNdVkTG8EKMuldVpWk1o3/NW/E1yrIJblwmJQy6Y60Qpnn1rYVo77LYK+Dun1TJpyrFe4XXqeZTmlenJJmJfWzF5BlRF99SLP+5azXfHP0gJ4rGwoLi/P4ijuDY2kKw+IqmZGVOZETUjU1eVVw1N3j9+78Yxb5ilW+4uH4Fj+6fJ8//PTP+fzOA6qmZJ7NOYvPCWzhgMbFGlc72EqEpdaSko1jAc7bjk1ZlHQ6AbP5iqqqeHkx4cXZNVfTBWlWEK8SPNfB9hyqoiKdrKGoZGJZ1xtB540jcBSO724RRutim2TXFsQlWS4A87KQlHae5HIbiTQJOYZd6HouH5yeExcFO0Gfrhfga4eR3+co2jPBnYr3rj9mka25O9yhaRpu9fv8xQ8/4K2Ht+iEAU7XZ9Pd3tZLtkdVbxFRrejchKC0MC/b7+uJ4Lu4nsvtxCXkFdP5EgIBOXdCH2Up/MMey+slV9MFeVbguiIYdsOQs/UVZ+srzuMLXqxfEJcFD0f3CB2fomX1WZaIwYaf73BvJ7SvrsoCg0uyQPc8WBTUBhNHWsm5bOo3lQhTIOyGBuNUUy9y6lz8aFoptFZ4rnzf7qjPeHfAncEu9wY3SMqYB8PbLPIF715/TNPAJJUu64c7+yTVLx+h4uGtIeNBQBg6PH065fTlkoNxxOXFkt6gw8sLmYqWlTTjLJcZgav5118/YRbnXK4Kbh12ibOS6TRh2PO5mCX86MWKi0VK4Chu7UY4WuFo8ce7jsa2NUVWkKc5ZZ5juzZZVuD7DmmcoW3N9fmUq7Nr+Z6iJF+u0LbGCUMoC5JL4+10jW+yEj+l3R9BVaK7gy3vM1tvP1YaVlPpC4eNX7HMMrmtNhhTFTRpguM6XJ1PKU1ZgetqPE8TBA7Dns9ymeN5Ns8uVjiOkvCVrdk/2WH29Bns3dlWSsLWXtIyMMFMM70t3qmuRGimKwHplzm2bQSqAbXPr03PeiYiazVfgeOJpcFzoAH/+BbJ+UuSdUKW5nJhDHS70gQ0W2W8nGf8h8cLzs5XfPP1HXqhy3ye4gc+QSeQFijb3Xo123YiyzIBoVIEv+1KwKoqobcjOCwwlZuJhKiWE0FddXe2j31LGWj9oYWk+Nv7WteC/+oOuuzs9TneieiFLh1Xc/+gi+9oPno6E8ENrPOa8TAg8j+7RfAzxWfz4QfUkxnWvXtm1B7AYoH9+dehaXBuH8Lz56KktcY6OSF7ckHzb38fa2+XZnItUyhX1mPNYk4znWANxuKFPLkD/RGW40iz0dkZ1s6+1HTmJVleMxr6vDhdSxNW1RBFNp3QNngf+YM6tm18JVO2aVmZ/nVZt6+rauOLDA1yKG+kB35lGo+EHynhH41MIBdlRaBEsFpsRZVvAPO+sjgZhwyHHjufO8LSimqyQN2+KWipoyOoa+o4lcdOa8pPnskaWysWp3MevnNMENgMey4drehoTagVebNNswMGXSQr+bwWjFKoZDW9KKvNZLflgc7KGsfYAjpakZtzyJuaZVGK58dwNG+HHo6tWC5zRvsRyxczyqdn8svgcg5hSPPh+9j/8l/RPH0KoxHFZE1V1fT67oZHmtYiMNdmIqvM1BhESCtjX/CUxayqCJVFT5t2KeMVbRuQAq1kza6szYp9aNvsODZJXRs/rnyhaBocx2L/sIN3NIDlUgT/5SXWrbvEf/YjilnMnXduUCeFXL0mibwGfwmPdycfcra+4nbvhjTeOCEX8YR7g5vUNBx393i6uKTn9uh7XfbDHT6dnfJHz/49kRMQlwmO0jwY3eYrh2/xfHXG6foM3/bRlqbrdHCUg7JkgjVJ5rwxeg3Pd9FaEDqHeyNOz65RWmHbEjryfQ/HscmLkoaGKPTp9iPidUqZFeJl7HqE3ZBmnovHRnhjZEmOpS2KvBCPYmaqYKtGUuImFFPlJXbH2070Kpnkt19vmobbN/bp9SN+/bU7dF1J+t/o7pNWBSfdQ2qk2UVbmr1wzEfTU+IixVaKd1+c8ZW3H9Drd+h1QrRWW55laRL2tiWTzrZBq201yg3ovmnk40YmfySl9NnXDWFgkuOBTB1tLdPT6XzFKk6pm5ow8Ojt9PBdhzjJ2Nsb8PL0mp9cXFAagRnYPhfJFf/1W/+cF6szXOUwS+U9Oxx1JfEOIiCVtSULtNPMBnmMa3PfPS3TT1ehNizPZjv1bRrCTkCdlIShT5rnUNV4oxB/HMlt+bbB+EBhYNw7uwPu7oxompq8LrhMJvS9Pv/u8fdxtcOvnMgEepEvKKqCvtv7+30z/T0cz67WpEXFO3dH+L6D79tMlhlf+NwBWluEoYPraiLfpihqvvDaDi8v1vxf716zSgqezTKUsugGDot5wrlZ4WdGqD3Y8+l7mi+c9EiykiQr2TXJ+LoWLm5n2GN+PZeLNsB2xG9YV7X4G5EkvA4C8vWaIo6lZrE/xItCWaWbKT5uQJnn4EdU66UEXIpMBFtTg5IaXpSmSqSNiNysltsVsWlTwo+wOx1c3+Xk1i4Anmcz6vskScGDoz5pUeH7Nt2uSxg4XF8uKAq5+H3x+Izu0RFe6MHw0PBoAza96GW29U62HectR7P1nCotGKJ6SwUgTyR85XsGCSVwdsuywPGIFyvqqsZ25TXv7x0INitOiXoR56cTptOE2rRI9UOHySrjv/mH93g6TZnHOfEqle56pdC94fa+tEGp9rBd+fmGhwqYtLpMnS0/2FoLWpZq02yCRdp10Y4DtiftVYMdeVy8gDzLN6gopRSdrs/hQYc4KymqmkeXa6q64YcfXKK1xYM3j9BacTqJsbXiePSKuP9bjs9Ou5+cUOeVeD7jmPLH74mQfPmSahkLHsk2tUuOQ/rH38G7vY/1W7+Lde8+2DbxDx4JSmG1wuoPYb2mefyRtCb1d2A5p4lj4TEOBjQff4j35h0s12a1ytG2xd5ugNIWi2VurtqkThFEEE7KiswEbiRYJGGjuKo58tzNShtkypnWNc/zEs94LNuEdmpQToWZrLUC17VEqLVB1tYHOp1lnL6UdW61SlG+A6sV3udfw+r3JagF4DjEP36C/eZ98rMpdVLQOxmgOz7a+Ch2Bj43+j4aNnihVbVFQcV1s0m/x1XNs0zW0dOy5sCIsrqRNqFdRxtmqAhuTynGvkPZiCj0XEU/cggczaqoSNKS3YMOq2mCH7nYNw/QN+QXP5OJ+HIf/Yz6akLbk93d7+K5msTUjCrzXPTN1XVbY4p5PG1LkvEWsjpXZrobKYWjLDpKbXy3Lw3Ts+WDOpaiMW1SA9veTKCzWtioq7gkTwpphhkMwLap45Tm8Ud4N0ZYWuEMI+ydHqxW1KuY5pNHn/nS/0U97vROmGUr4jIhLTP++vxDum7Ek8UL0jKToAdQ1hWO0vz+R9+l73f4+uFX+fz4DXzb56/OP5LVuvZ5Y3SfT+cvOFufc5VM6ThdkjJlWcjkeCcY8v70Y758ItPVNJXJ2N64Dw3M5yuUmYqu43QzIZ3PVtLxbYFyNa7joJQijlM6Bz2ZfrYr7GVOk5RwlW5B521op/VSVo14RS1rK6I8LSLWVHqWRcnF1YzpRNaCcVngagdtKV4f3SKyxVLgaRetNO9fP+Gdw4d8PJ2yLgpu74056HTwtMZzHW6d7HHn5EDEJGCuULcT0FcZoyBBHi1eSWc3okyNyC4qCG0SUz+KpyGwGfY6m0mk7zp0oxBtWSzXMUVVMR73WMzXBIHL3cGA0PaZZ0uSMqWoSt6ffcDp6pJFvsKyLO7ujHA9l3WcymSyZZ61rUZtjakRpNq1N48zHZnk1Ekpa3b/FUxTA/GlvB7SPBc7AWxS3LrrCes1KygSeQ2mecFisWaV55x0D9jxx5ytr/h4/imHnT620vTcgNB419ZFznvXH/2nfrv8Fz+++tqYoqhYpBVB4HB5uWI2S4mzkvUqY9z38X2bnm9jWfD9d88ZjwL++RcPeHDUp+vbfPBYrBnKDAL2hwE/+OkZaV6xG3hcrAqu44KiqAg8mydnS8bjENuxWS/WNE1DdyDQ8TQp8AOHLMkoi1JsEnXNer6myg0GSUtQSSlFnuX4x7e2288ikylcuhYGZVtt2QqfIqWuxGNped7mY5SxyJS5rPVbMHwD8+s5UeSwWKT0ep701R/26XiaPK9wHEXg2Tx9Nuf23V2Wy1RKC3YH9IZd+Z2wmqI6fXRoEt1t21GbwLe97cSzTZcnC9PdbqGHe9S5qRFtGrn/ytom5TtDgiiQpL+lNr7ZIhdOa5EVhJ2QNE4JooCTkz6jfkBdN1wtM+Ks5DufzPj4bMlkkeL6LruHQ7EuFcXWW+pFWytAK5SbRiaVvifPQXs+VSEr+LbD3XYNpsmSiwKgKgrTEJdRZhmWsszEWgm+rig3FyVKWazWOcejiIeHXX766Jpnk5jRKCDLKrKsouPbuI5mMk/49GL1ma/9zxaf06lMJK+vwfNYPzoj++gF9PuyJt/ZkVBRJvVZ3re+gvW7/5TmZ39lYv0x9iAUwep5NNNrrNt3YLWSr//oL2AwAsdB3TgWkep51OeXOKOIvb2Q0V6H2TyjLKSRZzrLiOMS10zudlx705oD0Nf2BiAvnd/bxHoD7JkAzL6jN8nsUBnYOzI97WrNRVGyqKrN15QlIqjFPDmWxXjkc3gQgVYEb97EOtgne/dTmotLmbDlOcpzyD54xuXpEk5PWX5yJYnxUK5SLEdx56u32NsNqKuGHccmNF5P2xJBp8wTpcx0sEJCSLkJ+FwUJS/zkmPP3gi2q7LYMESrpqGuG+4FHnXTcJ0ULNal1IH6NoFv8+zTOY6jhMMYx9DtokOX4sWlTLyjLmp/F/pSHhA8OCLNKrNRbDYVmw1icfCNcMf8f+ulbc/JV4p1XeMp4ZC2/941vk7fUlwXJRdFQWYEU1oL33NuMFqRFtRVN3II97oiLs3rVkUB8z/4LpZWlPNYnsDxWKgKtqZ6dvqZL/1f1OMymXC+WnCdTPG0y0/OL/h4+oyeJzWbI7/Prx2/Rd1UFHXFF3ZP+O0b3+IvL/4KrTRJGTP0A5IyRVmKrMp4OLrL2fqKuml4b/oeu8EOylIM/Z54OcMxH00mRJHPoN9hOOwwm6+YL9b4nst8vqauawLfxXVs9kYDOt0A6gbHiKqiLNFaagTj9JVwTllLsKiooe8aH6WZ0rXCaZqBp6hnGUWSSTrbNGxoW5upp/gNjw+lDrT4f7l7s1hJ0jRN67H//2333c8aJ+JEREZG5FaZlVlrVldXdXV30fRSPYiRphsEQiwXjOAOxA0XIJjLuQGBuBguEEKAADFiRqBpuqmm19qyaqoqs3LP2CPO7rub227GxWfuJ1uicy5GnVKVSaGIyAhFuru5u732fe/7vFXFXtjnsLPHvekT4Z6WKVVdUdUVb51/wI8eP+Xu5DEfPjrmpe1ttoMAoxRGKX7jC5/h9o0rzBcRuueJaLOsj7WONI9ffCmXKCZLRHU+XsEsF1HX+FuzRSLruqqGVCYtnd0ujm04PZ9sQlv9bhvfdTg5GVNVNbZtOFouaTsBXbfNWTTCMy5tu03HDXmme0jfC/n8/jMs5pFcTJJC/r/JehKCfEaaFTm+xrZNYytoBHLLyKQ2Ky8tBEkhX1ShIJWqWUp6upRUcFWyWsaU41hYr3WN7bu4jk3oe/T6bW72ehRVwSJfEBiPP3n4NgO/S17mOFqg+TU1XTdgkf3i+bTvnUcsFhnzVc71gw5nj05Ikpy2b3N4vc+w7bLXD0iKiiCwuXmty7/x+lX+yXsjXFuxSAocR3M0kvN6cjxnvEz5/Gf2qIH/+4MxN4cunlEUhWzI9gYBk0mM4zr0t/t0BzL5TGMRH/NphLENQTvAGENn0JEVrNJo38dv+agmXKiUIlmuLgMqfgtaPXl/tAaXq+41NF4bWIzAC6lnF5AlIgibDanV3Wr4ojZYYLs2fuizWhVcvdrl5ZtDTsYrno4jHo1WFEWJ59mcnkc8vX/CcpkxOhmxs9Nme6fD9naA7dgMnr1Fu9cI0TXjc530XtdLZqvLNLxlNY1AkgIv5xPBNtmNLQAuW4iUgeWEPMux9w5RWrGcyvRzPTl0PIdoEQnYP3CJogzbKFq+zdksJvQMi1iE4JVhiG1rnr81FGpIlsjqHETQr2tJ101NzeMpFvNL0W4a6PyaSer6l9Nd4whmyXZhfkG1mDbJ/5w8SSmnF+IDrUpsR2pXHU+qej3PkBYl41WO62r+9C/uEniG+SzGcdQm4Z5lFXFafOJ7/5PFp9Y4dw43fES77eEebmPt7WMFActv/0jWnHWFdf2GsC3/4B+Lx/H9d6HTwf3tb1J8JMy2+oMPqUcXl5WdVQmLmfz7SkmafjrFMprsbI6y4OJ4wfkyYxnl5IW06ziOIJPKGsa5+ADXvd/zZs2eN0noWVFykecsG/TL+r+vE9jrFLuCTVNPVde4ljA/XUtWwCJea9K6Iq4EeRQnBXFciGBzHIqPHqF8B6vXFSuC62J97RugFcOdgPiDI958MCUfLTFdH+XbqMDFcg32sEW747DX8zYQ/fWPor6c8hZ1I+6aEFLPCCtzXlSb6s2i+f2iLFmWJR2jOU4yLMui3fg4bl1vS5Ch56K0xWiVkTV92tnxGJZL1I1DmUjnOfXpMdZnPittR1tD0gdnxHFB0HwJSYDosumoaIRnUolIXJRlEzKAs7zAa85RWgk31f6YX3RVVSyrilBr2lr64bOqJtSaA9fGsYSHuiwrNNDtOHIzZDcsT9uG3V2cro/a2cLZagtFYTzGevYO1qCPfub6J771f16PvCq41d/FKE1WFoSuQ9sJ2At2yMqc/+29v6SqK/Kq4Nn+IZ5x+Ud3/4CszHm6PMLVLr967SuM4xlVXfF4cUxNzXbQp+e2cZTNqlihsLCVput0ZL3vOMxnEcbWXFzMuJjOidOMVZzS7YaShtfSw34+mbEcLQVAXlUsoxitZMJSlhVVE14hatpHqqYNKCtFJLUdEXKbxDiXXkpbE/qe8GgL+U5Yp9C1VmRZTpbmtByPLb/H/elTAFwt6desytnytlCWxY2tAT88fsLbb9/n0WxG1w0IjE3bdel5Adc6Hba2ehxekZXgOmTzV4JFdeOhqRpRmsmUk6xqMEzVJeZoWZBHKSxyrJbN+dkE1zYMum200Rxe3UFrRb8jCeXTkSRyjdEs4oSkzDhs7+Ma2aZERcRLw+c4iy/Yb23zg6O7ZGlOEHhs2jkcJWv/9YTTkqmnco14cHUTpBqnH6sR1XIzYCtJsmfSzERSYnUcSe4ri6qocHwHZzvceErzQrzl/X6bMPDouiHLPCYvC7aDAdtBwE4wYCccYpQhq3JutK+z1xry8vadT+lT9Okdizin1XKaexKLzrCH4xiGbZl4/sGffESWl0yjjOs7bSaLlP/9xyfMVxkn05ieb/idLxwwn4tPU1qRCmyt8B1NkpckeU1e1hhjsdvzxc3imM1a9ezJOVWSkCWZCKjGk6uNfF6TKBE/ZiYoqDROwYKqrGRqliWyHUtj8QuWDYpoje9xAxnG6CZgtE64Bx2UH4ggbCwjddlMUKsapdRm1W1ZsD8MeP+p4Awdo/EaFFUUybUt7IbMZzHFYk5RVAwGvpRCAJ7vMtjuoG0tq+hNmpwjXVsAACAASURBVN65bCtah5HWzUXrmk/H/ysd55vVfZ5KC1S2grBHPpuilBI8kgXDvYEgl7a62I5NEiVSwanlHBVlxY2dFkYptJIw5Gs3Brz/YEK36/HkdEmySlBB65I7uu5fT5uByjqB32rA88rIa72cXE5Li1zO0bq1qcgEs5Sn0N1p/J4K6kpW8K0+eAEYm3wpmK1uP6TVssnziigpSLKSQc9na7fLTtfnykEHxzGUVc2dnZBOx6Xl/3N4PrEs6tGYcrEiPx4T/M7XhfGZio+x9fVXqKNGkScx1vVnxPt587a8AEpRzybYv/JLUNekT8YSULJtrF/9DerZlPr0BKvTxTq4JhNU18XqdVG2Ibi5zXiSstN2BRoLdLouWSZhlbSuSBuYudckvmtqZmVBVFU8TrPGZyh+yqgsRaTWYCtJV6/h7iWXqfIa2LLtxkNZMTCGtBLskWupzVYvyyqKsiZ69wjimKoosYzG+tbfob77AdbhIfV3/hz32hat124yPlrw7E4L9z/8j7A8lyrOBcBfViyPZnQ7cgHsak3YeDoDfQmaT6qajlENEkrEcqAVSVWT1/J3O1qmvNNCfJ7Oxyaks6wgKytCpXj7/ozh0GM2TWm1bA63Q959Omf0ZCbTbseRCXVVQxRhfe516vMTUIry+IxiFsv6tKELWMCyFK+pa1mb7aPTTJeLuqZnDBdFuQknDYyhBFxLJs77ntMwTDVdrRkaQ9ico47RaESkOpZFoCSIFIY2QWCwbN2QF2K563Nd/JeuixAF9LBH9uSC+r13hDebZZ/41v95PRxtM0nmzNOIebbkX37uCzyYjSjrEkfb/Mrh86RFhqtdJsmMl4bP4xuXL+6+hlYaY8nNyRf2XsVWhrPVqKnf9Hhp+AJZlTNLZwy9IVdae6yKFYHxudXfQmlFuxMyX67YGfRwjMZoRRB4xHFCnheSZs8rCeuE9iYJn6c52Soln6wuMUW+EbG2LETA+QYCWT+u8UBKWRvcUdANoKhYLmO6gw7UCNDcMdiOTVWJLSDPC777+CFHy3OSQqasr+99gffHdzlfTfj73/uHGGV4cesKRycjbj1zwN/75X8XgHES8+ruIY4yfDAes7Pbx3Fs7J4vj2kt6taiDRpRqi4FqNdcFNYd6U7zZ6smhNQyEowKXKaLFVGcYNuGD+89ZX9/yGS+xDaaGwe73H1wxGSyIFrGVI13Mi0y0jLjsHWNosrxtMvTxRnTRAI7qyjZtCkJt9MIt/Njgak1m1C7Tbp96EENVle+o5yOB3nF/vYA3XZRHQcCQ+h7uI6NMopOJ5RfK7E9tDoBSln4risCy/cZ+F3G8Yy4SNnyB7y8/QxVXbHIIjpuyOP5CW+P3+WwfUBW/eJ9Zo1WTCYx5/OEKC343OcPOT0aU5QVbc/my184JMlLXrnaxrUVv/HKHlFa8JmDDvNVzjjKmSYFX35pj05H2tum04T9rssXr3epqpqTRUbH0zx70GO2yuiFDr4v77EglCRzuNXH9V2iecRwq0We5cTLmLIoSZNUiDfGRtt6w3os0pRqHdw0H4OdZ8klvsiyUEFL6ifTleiCxnPohKH4SssSr9OGZIWlNcoP0L4vNZ9ZQRzFHD0eM43k/Gut+Pe/doO3741QyuLJozGWBQfXZFLo9vv8B79zm9ks4eRkQdAOODjoMJ+t5Aa4qkVMrtt/jHs5TVxPGJu1NWkkSfK6ll+vm47WIao0bkD1Fipsk84XlIWEdY7uPaU76DAfzwVP122xfHCXkycX5A3/Ns5K8rLi7pMZ+32fp5OY6wcdoihj1aDjqrhBK61xSrYrQj5LxI+6Xv1njYd2NYegIw1JYQ9sFyvswGpKOOxv6k1xfIxjsMLmJsAXqoEXCkIraAWYIMD1XbRWJIlUZs5WGaNFyn7fp9uVYoR2S8pC4qTgOx+NeP32kLTxC/91xyeLT9tu/FUV5TKBxQL/5ZtyZ+LJC25duSLtRJMJD//efws7O9R/+m1Zb3aaCWchX6rey8/IvzmdYu3fgMlEAPWjC/lSnk6ltnM0wd5uU+clWVVhjJIJo7KIo5xe1xVQeSNMtAUdowVLYQnn00LE2dq7mdfiP/Kadf06pFMhU0wLuYYNjN4ElMLGQ1M208YameitJ5HztKDdslG2oY4TspMZ9pdfg7feEOH+0UdweEj8wRH0evz0yYztWwM4ewphiHn+GZn2Kov+q9ewdzpcf/0GnWbat247ajUC07Gk2jOp6s3UE2BRfjw1DuNCglSjvGBeVJsV90mes2jaaLYCmz955xylLd59umA2z7i918JzNVWUwcUFFAXmzg2K0QIe3oWHDyFJ0IMu03FMkpQS+lpfyGATfFLIOn5gNKO8oEQmx0HjZz3LC1ZVhWtZnOQFjmVxb5VIcr85p2ldYZScu2khNohVWUmAuZLnpbWFZTT2bh/r6rUNTonHj6nmS6znXhRhujGLZxD9YsKqAQLjEdo+Ub5ilizwtMuXrtyhritaTkBge3TdDrNsyjJf8e/9L/8l28GAP3r4p2hLcGVZlZGXmUydugd4xuPp4pRtb4eyLvFNwHlygavdBoUjve8HB9torUiznMB3KapKUrV5waDfIVoleK6Dbrq9O60A22g8175sDWpEp7X2SVqWrHsVElyxLJmKljV4gl2jLRD6JMskEa8sVg3PUi6SOXmaU+QFiygmCD1aroOyLOZZyi8dfI6Hi0fY2uZn50/52vWb/ODoAR035Gfv3Ofa9V2SMsE1Ds/299gPtymqkld3d9lvt/nmqy9IWMiyLntjA/NXgPKbkJSvLyegax7oev1tK1lrRwW2MWSLhHy8Ik4yjFZs9Tv88I138Ryb+49OmC4iDq/ubhql3jp7SFKk7LW2qOqao+iYe7NHLPOVlAg0q/uNKF6b2C0u+93jAnoudeNPrakvA0YXMfUyRxlFNlqBtjh+fEa5yrCwUEZRNLWhVV4xny5ZrmKyPJePZVbgOVKp6QceN3t99kMBgCvL4tHiKXlVctA6oKhKHGVjYeEZsQtFefypfIY+zcOzNWVZMZklRCshubzymjByO4GD0RZXBgGutnh8EfE//fE9Or7NX3x4gedo0qIkK2pOZzG2rbh6tYvjaL79k2MOOi5JI3Lunq9oN5OooqyIopxWJ0BrC6UVWmthaPYEVu+HPnmWYxwja1fXwW0F0mLjuWJnyVMRbeu0O2xWu1bYkT+3FFW0oF4twWuJiG31ASl8UFpRVzVZkoEbCMh8taSMY+o8o1xM6Q67lGVJkhaMxzGfvTng7iRqvuoLDq4NOHo8xnU14/fexQ99FllJGDrs7bXZ2grJspL+oIUXely/c/Wvtga5wWUKXxn5s2zVTBQHl9D7NRs0T0VIr6emeYLtNf7VXFqNjG3w2yFH793F9Vxm52OSOKHzzG200ayijNOLFZNlynbHI01LPmosE9NlymDgc/z4Qj6fWbxJ2KPtSwj8OjzU25WAUSVNROvWpnpyCnmKdhzq+RhafaKzs0seq7Flel2WVEUh5wjI0xxlDGmcyqTYsijLCtfV9FsucVrQCWzOZgmdlkvgGoqywnMMqmGSZ0XN+fk/T71mUQhnK3TxbmzLSrPdlruXIJDaRa0hjsDzmM0zrO09EZ7PvySg57AF/S3xEP7d/1h4oV/8CvXPfiACNo4l1BKvqFYJ5fkY/fnPYd+8Qp0V3Drs0O+7GCNNIKNRQhTltI0mqYS72dV6E8yJqmrT5e4qyalHZSk4ICU1nKumGchYIkTX4nTdKFQDq6pk1ij3dZOQhQDcHUsCT21HM5mk+M/ugFbowIHtPepVhLW1xdmfv0/94Ue89+MToj/7Kb/2yzfw7lyFixOsl16B0Yjy5FxWDL6L9uXNXTQhJ08pXGVt0uMVMC9rhkbR0hYdo3iU5LjWJSN0z9GMGvh72HSr301ShsZsGoGGAzHxr8V1W0ublFIWQddHdzw5z76PdeWqXPCPnkBVUZ5eQJKQZyXLXPyxVS1T2baWqfD6sdcIm3PLljrQuKoZF8IBLWoB01dArwmE6OZcJJWwWUE4nj2j6WpDW2vspgXKb6D8W0MPuxdQjOaXvqGXXgZjUMM+9d0P5E7XslC+w/K770n47drhJ771f16PtMwo64qdcMgw6IlVpMhYFTKp7jhtVkVMVuZoS3MxmbMb7KAszUF4haRIGpySja0Mv3X4WwB87eB1Ppp9KDVrVU5airhb11J+duc57gwGrKKE6wc7BKFHUZQURclsFhGtEoa9NkkqK7JW6KO1Ii9KlitJvAOo0Bbr5Lry0W1S61HRBIhktW01d1taqUY4VVRpQT6LMVqTZ7mIXFvhhR62K9M4y7IYj+Z8ducKoR1Q1TU9t0dVlxy293n/yQnTJOK9D5/w/9x/m9/5F77EV6/d4Dy+4LWdF8nKgqeLUypq+l6Hoe+TFA3maS06jZJV9PqmbFXItFNbAnYfJZc1m76WyeO63tLV4GnSh1OCXggt6VMe9DpkRYHtu1iWJYLAGOq6ZjBoY4ym63ks8xV7wS55lXMRj8jKnFWeEGWSrp3Ml9hNMwx5JV5NW8sq3Tebqaw7DCEpqaK8Sb83YSQkNIirLxP+QJkVVFmJYxu0Uri+Q7sb4tjCM7Us5EbDc9jZ6eM4hg/GI/IqZ+B3eb5/m6ws8I3Lh9O7FFWJUQbfuPzg6B2SMuFqa/9T+AR9ukdeVriuwfdt9ochz+51GI1kEtryDLd2QgJHcx7lVFXN/Z+8h90MHV691iV0Dbttm1evdel0XP6zb73Ii7eGfOWlXd54smCZ5I2XEDqeJs5KxsuUg/02/b5PlpV0Bh0sZW1E4PnpjCzN6G31KLKCqqzwQg/Xc6UwIsslBGNstO+LAFqzORuBVi9nIjaDVpMyl8S1ZVlNQNmhzHOq5QxjS/e7pUQIe4OBeCmNjTvYYjFZcHC4he8aqqrm1SsBJ4ucwyttRscj8rxk9tYPODuLuPHlz+MFHj95uuSLzwrRJI5ztLZotWQKX5YVujtsxGNxaQ9Yw+TXK3jbk+T9YryZLAKCKVon4t0QtE0+GeF4DqrdQzkuftj4Yr2AoiigyAUnt0rY2R/Qart4nqGoal7Ybwk+ytacX6yIohzbFq9omqSo7rAZqsh6H8dr4PCd5vHmuIMt0IY6TeVxZcnGs1pVlXhxG4TSRjQjnl1lDLbn4vYHm3OxTus7rkNvEBKGctN4bStEKYvPX+9iG0XgGt57MqWqaobNqv3DuyNmScFzN/uf+N7/ZPHp+9DtYh0cCINzuWxYXqWIzigSYXL3IyzP486XrgoX8to1iJbU775NfXxEfXokifD/4j/Bev3XodURMZMkVHfvQ5pSHz1FDXrol56HsAV5Tj5dEScFVVkzHHhcjGKyvGJ/P8AYadGxGhD5aZZv+sVl4CD+yDVqKW1W6NoSyHrYhJQspAu+p/UGXL4+Vg0/s6LeDAlWpaB+2lqTFRXzhntXRSn+b/7y5rnW5+eMxwJ3tSyLH7x1iv+3f1smv7dfhjSmGC+os6YLvtejSnPy0YLnrnc2XfLrfnpjyYSz1azh21oxzstNVeVt3xYMUzMZDJXFviMXLmNZPMmyDUf04XnE1pYveCnPMOy6lEVFHBfiQ/UdebMvFtQXZyJG53M57wCui+1obu63SCr5/yWVeGnrGtzGB9pqXtOqlsc4K0p2miT+0GjSuqaqazxLmJ1VExTrGSPQ/7JiXAg+y2r+HxYyCXYa3NLZeUw+XWE6PuwegO9Tv/u23NjYtoSPHIP10styAdzpQJZRH/9iBo6G3oAtv8eVcJe+1+EkuiCwPU5XI0I7JK9yKSOITqjrmt/7tdcZJSNeHD5LUia8PXqfUTLiIpGA0d//0X/Fi/2X6DpdFvmSqq54ujxhma04io7xjcteuM2Ov01eycUlzQqKomR70OX4fEKaZgwGHRzHxjQ4pmUUM50vcR1704wEiE8zLkQQSToNtIUaeJtpqOVoqXB0NVVdsRn7KxGqWitJyyMTuCzPJczkOA2LVNbPH06O+KWDl7iIR0TFiqPojMVcpuLGaP7ijbf5u69+S8S8v01aZhwtxxKyKDL2W9tMk4RpknDn1tWGu2ddsj1NI4xbTb+5oyTxbjVr+IErE8+iwUe5mt5uV/6uZ1gdz9FGk8cpx2djrh3sUFYlWmt2hl2yomC5ivF8V8DabsgyW3EeX+Bqh7K52M/Ty9TpnWevkaf5ZWCrqmQKu0F5iAWgLBtPZ7r2qDY/5w1+Z30j0ASpOj1J5s/nEasoIV2lcqNSFGR5jmPbuK5NtEqYThbMpku6rrvx174z/oCe28Y3Hqs8oagKDtvX8IxLy3FZ5hFnq4tP4RP06R47XY8bV7u8cLWH7ximUUa363J0Iudsnsim6r3jJb5r2Ll9kyQreWa3TV7VHE9ifvhgyqNJQr/l8j+/ecy/9YUDOp7mQYPCOZsl5GXFeJXj2RrfMbx6vYcxiqwRl64vmLP5SDyV/WF7E5bxAo8kSpiP55h1r3sheLCyaPTA2rdZ1yKOvBAVtkUMuUHjO2yE0No7WddQZA3YXm6kqrIijVPpZ3ds0umEIi/Y2Q55660jbl3v8ZOjFYu05KMHE+FgAlQlT9+7x+9+9QbDYcCLuwHTuODkRGwBFxcrfN8mSzLqGgHEu6G0Bm38lE2bkdN4Qo3T+FgT+X1nW55nkYp4My52u72ZfmYnj6nKiipeMTmf0NvqQlniuA6dvR2wBGNVlhVaK4xRPHg842gm51wsGCuqqiaOc1aLlUyi12n3dV1muhJbQBqLGK1KsrRZy6+tAcmyEac2dVGgnPUNp3z3mY48tk1ve5ygjfS4W5Yl63jLIksykqQgTeUa/OKuj9GKHz2cEbgGxyjagcPFxYo7O7K2Hw4DVmnBePmx4Oj/z/HPaDgKJSEM5E8vZEWc56R/+U/h5EQu7nUt1Zu2I8n2NVT9/JR6NofxmPLNtwVOvlzBfCz+0Jc/B56HOrxKuYwlhDQcYm3tUN+/C4eH1EW5Sbu3Og7GKA6uhGhb4/uC3KlpAPDNhDCtZeUcVbWsjJDvVNeS9HtV13S1oUJwQHldC4C7uYPPm4lbWUPYJLEDpTetRlldkzb/9vbAY39PYK9llJL9+Rvw6BHWtRtQFHS6joRzmo7yejaRafLWFeqf/gT7b32LKs2xPJvq6ET4mYuE8wu5w4obUPuB44iFQF2GkGZF9TExJr7OttbMS5lArr2e80Kmvk7jq4yax/L+4zm+UkRR3giGil7XZXkyp5g0a+luV0DzeUl67xi0Rm/1KU7G+J5gLjQCj+8Y1Qjf5nVsRHNUSTe7ryxcZTFvxHuNeFvHRcm0lP73ltZoC87yHG1ZpLVMSPNacFi2ZdHVmo5tSKoK32iuvbhD69Ub0GphXbuDtbMrgv/6TTn3ywhrZ1uSmMrC/eXPb2pffxEPR9v0vQ5VXXO8vKDntllkK948fcTZ6oKW3cI3PvvhLvutbbZ8SXcWdcE4mbDKE7Iy48PJQ5Iy4Xi5JC5WLIslN9rXUZZiOxiQlTnb/jZdt0PP6fJo+YSvXn0Jy4Lt7S7j8ZxOVzx/Ozt9bFtYcbYtXe5pnBH6HnGSNRewGuKPeYTy8jK0k1V026EUcuSlILUan6eylEzltNqwJ7VS+K5LK5QLU5WV5HlBUZZc2Ruyf2WLsi6ZJgl/dP/HPF4ccRAeADDY6nLY3SFOJCwVFytspek5fb539BP+9u1vUlUVjtI8XZwR5TnHs8VGtFLIY+tdH8jkc+3vVJYIuaKS5+YI6F11XXn8jiCZVnEqglTujCkX8vs8y3nn/YdopZnOl5u08fagy8XZhPFoxmk0YzvoM4qnaEvJjYfxaTshZ6sFYcsnjlOZGqsmPFQ0QS2jLkVzKhcgHCWPf80DrWtBK80z+VEhgaOqZv54guUbCYnVtXj8M7EP9LttBt02s0VEGHgc3tjjGy/cZq/VYT/YIytz0jJjL9xtLB85e+EWXbdDUqR8ce8VXO0wSqZ/45+fT/swSniIaVFyOospyorT0yWP759yPIlpuxoFHDYX9Bef36EGLuYpD0YroiQnzgoenInIejpaUVQ1d88ibu+1sIB+y2GZ5LRdQzdwOBwGvPV4xrDnY9uG7qDNbDTDdm20bdPphTiOxnZEEGapBJGCdiDooLxo3s+RTDzLXCaIfktEWpETdNtURZN2zpqwTmcIa1uxpRr/c1uak2wtifokos6zzfQNS5qUjk8EF/a97z/gzQdj9jsOk5Fg3LKsCTjlCY9GK9K0ZK/t8sbbp3zrazc3vvKjowXz0ZSLkxHju/fkmpAsRdj19+V9a3sblJJ4OqOmpanxhQZtWXHbHtjuhoO66UWfXzS80oSn7z8ApVlMFxthbSmL2WRJHOekacFw6HP/bEHLs3lyvKDVcun3PSaTGC/w5DVZV48WmdR+ahvLdS89tlVJXRSSal8zP5skv2r3YDWnGp9cNjzZDsX4HOqKenq+gf1nDSYv7IR4gUdZlLi+S6fj0elIQccz3ZCOb3M+T9hquzw4npPlJdcOOvR8g9EWX/vMHq5RTCafXArxyZD52VQg8uMxyreh3yd99wGm68tkSTWtBqMR9fkZH3z7Q+lrX0mXqNVuYb36OXRbYKOqFUgV5599m/rHPxDWZ11jXntF1u91LYGQJMEyhva/+CXs3Q51Dacn0Yb3mSUFrdCgLFBY9I1M00ZFsWkI6uoGaNyEc9pa4ysLy4KjLMOxFBXiJSyR7nBlNWn4RkC5SrGqpBJyzQKVtXy94XymWUW5TCUVrpWwSo+fQBxz5ZufIX3nPmd5we/+61+CR4+EQfk//NfyAp8e4bz4jHgqVhn2dht7q804yjlse5SNt/RukjIwikArQrWGscsqvmekktJqHvs119DSin/l9euMi2IT7nEsi7iq6WgB7c+Lkt2+JzaEVYHnalzf0D4c4Oz3yD98JOJzMCA/m4vvd7qgjiLM/hB/u4Xrij+2QOgAFXwM1t8McNQ6ECXNRn7TxJQ11IE9x7BtG8q6JqoE3VTUNRd5QVKtkVlyPtK6YlqW3Fsl5HWNZcHs8ZT0wRk4DvXklPI734X9feonjyS5fzYXIkORY772VZhMSH/0DtbhjU/8YPy8HlG+4tH8hItE2i3aTotH81O2wxCjNEZpfO1xHo+YJHP+jx/9hKRIUViEdsCV1jbP95+j77VZ5TE9z2ORL3hv8j735/epqSmqgme6h5yuzkiKhNP4jNAEdJ0uv/OZl+l0W7iuw9On52z1O5SlpNg7nYC6rvF8lyD0WK4SSXevL0jr4E0u61wdOCKKjGLyZNzUUTbTOJC+cMu6XG8bSV/HaUqa5eR50bT51LiOTZYXnJ6OWcwj4iLH0ZrQcfCNy1F0xCxd8lvPv8ibp4+4GM/4z/+13yMuE2xl84/u/V/0vQ6jZMSV9g6ecbmIZwx9n/1um9OLKVeubW9CO9O7F/J41tPQot7UgNJ1ZRpqLKq8gi1Jn//K3/oy2SK5bGBp2cLb7HoQ5RRpzu5WD60V8+WKsqxwXJtev83Wdo8Px2MhWjghk2SOthRFVVBRcaXVY9gOcRwjIn6RXXpOgcBz5aLbvN55lkMFbscX64O2IJVplLfbxh4Ecp7iQibStpJygMbnql2bqqpIs5z5YsXx0Tkg1pqnj8/4cDzCUYaoiPjh8QN2ggGjZISyFFlVsMoTkiLlxeFtzuIL/uzRm7wwePZv+uPzqR9xVnDvdMHJJKasaoZtjzyvGO728RyN0fK9+mQcs1imvPH9+xRlxSotNh3ar17v49qaaSRTxLNVwtks4cOTJaNJjN38vfeOxFP4/Q/OCT3Ddsfj1Rd3BJ8TpyynS9r9NnGckaZCJVBNjabtSMd6tlgKO9JSm5WzAM49jO9L4EVrVqOxdIwbI7zMMr/scC/zBjSvUJ5HGqfkad5gkEIoS4wxlHmOCVvys1F4gYSjXFtzPM+YnI64dXuHx/eOAfjM1z/PIs6pqor/7juPMUbx9uMpL94aEIYOeV6ye32fTr8DfpvWsC/is8zh7L5MFrV92XIElyLZbzeCNIH+HmQxt778GlUT4qPMIezKr40tQrHM6e/0ZX0epziew2C7R2/QptVyieMCzzHs9wPG84S6GYS5RuM4grrK0oatOjsTdJLfwfJ8IRLYjQfVNGEuS2HaHRHGji83BoDubWG2rlximPJMfr24aM5LjnFdwTrVkKwSlmPhgNZ1zWSy4vQ0IssKklJsG56tidKCVsshyUq0srg/TvjV54bcO1vyx997yDNXu5/43v/ktbsx1MsI9vfRz96EPKdKchFaSSJr+DiGsuTuf//Hsso1hvroWE7Y1pZMMff2RJDu7VH/5Z8IHzQMNwinej4ne+sD+f3+PoQhdVGQvf0RD994jN94jZKk5OgowhhFUdYYJSnouoZFWZI02J6qlqnheS7tP3UtiCSFRag0rhJ8kmNJslrETknciJ20linbtEE4pVWFaynm5TpgI6bauoZO2yY7nZGfL6iTXKwKDx9SxwnVbCFd75YFOzssv/+BiPLbz1GnmawkfF/akeYxVZxx/M4pLVvT6Tp0tMZtJp0nmXwY0lpg8wqaqk957quyYlmWHGcF47zkH//gEQNjaClFRwsN4MC1yeuavjEEWvHeecQ4znnmzoBrN7pURUUxXVEuEuznb8rF6PycKisEIWU0VZRSjqZSw2mJH1Zhbbyyax2R19I+ZSwJa9mW2BssoG80ftN2suaEtrRiXgjSatjgoLKqZlmWzEsRy55SlHXN0BhaShMEhsELe7iv3hGf8dYV6ryUm5owhF4P71/6TQnB3b+7SV+613dkCv0LeMyzBasi4Wp4hdv969R1zTRJaDs+RVUyzxYs8iV1XfMP/uLbXL2yhWVZRMWKsq5oOy3em7zPYVsmgfutPj86+ykDt4+rXYqqYFXEjNMJHz8VIgAAIABJREFUTxfSqlNUMinLqoy7k3Peefu+hIiMQWvF0+OLTQ+57zoEviseySiXdW5W0rQUXNZOAmVeYrRG+zZWx9n4OK3ANB6okmLZgNmzUpLvi4w6KynzEte1qVLhWWZ5gWMbkiynP+jwdD5nmiQsskye8/gBFhZxkTJLpTXm2d4N/uj+jwlsj+cHz2JrQ5SvcLWLaxzmaUpalrz14SM6rYDt7d7lOno9MVyjl9aw3qoJFy1z+XmeCac0K/nT//MH2C1PBOpauPZcyrwk2G6jHM2TByfMFytuXt/jmRv7UpepFHGc8uWDQ/KyIC0zsqrAa9Aq8zSSgoG6lklKXsoEc71qrwUvx1rIu7JuRUG6Si/9nq4UBGR5TlmVknDPK+pc2ow2/fB5RRlLJ3y7mT47gYvRGs9z+cyd63z98A674ZAtT/ipF/GEvCzoOV1+5errdNyQ96cfyApQaa53txkl40/1s/RpHMukYLnKub3fZq/vk5cVeV7QarlczBPGUbFJef/k+x+htCLOSuJUWqKqGh6cR+z3Axyj8BzNtz+YcGuvTV7KzVleVizinLPRivOZNPEoy+J8nvDGT494+NExrW5LGnm0YjGRKWqWFRI4MoayKCXZXqSXk7V1EKeWKtwiEasFRkJIdV1jHEeS1UUmAilLhPHZDFaqxZQqkzW74zmSH9Gy/jWuIIuCTouL8wWz8Zys8Yx/92cnkEQ8fjSliGOwLPa2Q+49nOB5Njd323ieJi8qbmwFdLsui+mS5XTJxfEFJJHUYXZ3m41JsAGvU+aXqCWQP4+m8hzyRDygtsfdv/gedisU8dfekintYBeqGmewBa7P5Okp6XTG1v6QnStDomXMYr4ijnN2t0M8R1NUFVlW4jQlGWVVE4a2TB49t8ky+CKUEUFoKUs8tGYd1HShroT1mSxk5e63m7BQKagsNxDBaWx0f+eSwVrkFKsVdTTH9WWaa1xX/KBaEYYO29sBi0VGaMvN6zzKuHs859m9Dl+5s8V2x+OND85JCrHSHRx0N/fQf93xyeJzPscKA+qP7srF/bnPUK4y6qygnMxlJd/4Pbodh60vXMd65VXKZSoCII4pPnqEdeOWCMuzM6xv/R04PYXlknIZY928BRcXgvcpCllLP3MbK2ihXBvfNwxv9LmYCRIoSguSpKBq/I2uUZTU9I2m3+B4KiT13dLWpv4xrdaMzmozKFnzO41lMTAyGXWU2vTBS2OSllRsWRI26/eiki7zVsvG9AJ0y0X5NpZjsFrSFLF675jZz55y9njG89shWBatV6+DbVOfHoOysDwPRiOKRYzpBtRlRRAYgsDw5CTiG69dkc2WsvjWYX+Tsg+0gO7TWhLvgVKcZCXKstiyNXktwaRVVZE0XlfVBIE0IqqtppY00IonD6YsZ3LnZRlFdjwVEsFiAUrhHvTRLRfL1uiXXyAfLVmNVzx8Gm1aoAKtNqJ4PRmuYQOXzyoJGK3B8AKmrzevc1JJMj6rxRawZq5GjXWgRqpEt2yb3Y7Ldt9l/3pPboSMoT45oT5+gPnS50AprNsviE81iRn9wz8XL+iDe9BuU86W/DM/GT+nx/HynJvdK7w/uUtWZjzbu8Uqz8nKnLwq6DpyNxrawsD7wv5VbvduMUnmLHP5cjtanrHtb4ugLHN+/do3GKcTlnnEKo+52blBXhVNCK7ifCWioGO3cbSm3fLZ2RtyOprgeg5ZXrBYrKjKiukiwtaygie05Yej5UMLzfSywbEARVlSpjlaCQqojERcYkm4xwrMpu9dWSLanKbAYTpfolyD1xPEj9GaQa9N4DoMg4CB7xMYQ8sOcZThzbMn/PD4iNPxjJc/cwtH27y0dYCyLBb5At+47ARbPJ4fc7wc03FdTpZLjG3o9Vq8/9ETvvGrn2sS5BZf/s3XLtuPfCPPMynl+QVGbAa2kjR/IRPfPE4301/Xd2QiqS1WsxUWFm7Hx3Vsjo9HLOYrWu2AdjsgXqXcm454ND8WTJMSQLujbV7evkNWlcyimEcPTwWfFBcbLqllpGqRuNhMLsu8lMdkWTKBRZ5TVVcoS+HYNlWUC3qprkmT7LJmNK/kxsJVLKKYMPC4tr/N/s6Am89coawq4jxhmi6YZhO+fu01lKW42bnOcXTKPJvzD777bY6XF5zHI3pOhycLmYr+oh3v3RsLv/JojqMV37wjIY3lMmU6S3BttSFgDXYH3Lqzy0vXeqwaLFecFTw6WfCFwzZpXlKUNf/OF65xNkuIsxLX1dzYCoizkuk0ZjyON199O11PigSQVWt0MRGx2uQnTDOxc/0m3e6HsnaGyzYipUW4lZeczrVnEBAOpu3IlDRoo8M2VDV1EsuNkHEwni980ijBtLsijrSWhL3v0tvqyhQ9TglaAcOOK18PkyNWixWMjwiee41buy3299sMBz73TheEgcPnnxnwxr0xp6fLTVuPeFYzWC24+erzIjbdgO5Lr13Watrupb9z3RAUNQMLr7UJJ+XLSP6tRK4pVSWiPJtNsbRA+e12m9lozmK22gS45tOIrChZpQVGKTptl1bL4WC/TeBKu2Map8xGM5kgW0raiZqEfpEVYlGoa3A9eY1zIQbQ6suGKJFyD6UUtu+JoB5cgSwRu8A6vZ/FIlgdj2g0wfEc2v02XujRH0owbX+rxfhiwdkq4c4VuYbs9QNOpjFaWXz/rROUUvy/756z3w+Iohx/TTD5a45P/jQnCcX5FOvgCla3R/1n30Y5BrSiLioRKI4De3ts/f6vYT13h/q9dzB3blBPp5QPnlAVJfWDu7Kmryr48XdEyHa76EGX+u6HcO0aphfKnx8dUf/oB9T3PsIc7LD3hUO82wcMOy55XtHxbVYrQRxd2wkkcaUURU3zo24qM2scpfCb+kZhegqQ/TjLpW8cQYlkzRo7bj7lVS0AelcJU9NTItjKusYgq/ui+bvFdCVTQMfgHO5AuwvtNukqww0lmXrj3/wmb/43f0jy6IL65FSmn/v71PfuUZyO8e5cFZRVKS0Wva5LXtd856fH2JYEcc4nKZ6Sys1tc9niNC0qTjIRAvOG7fnbOx2uOFK5OS9KTrOSs1wE50VRsCgrVlUpqCNb43sCh53NMpRnE8cF2cmE8tFTaLVQvY485p0dAEwvJElLslrW57ZlrUtaNhgkVykUzeCH9fbRagD5ch6iUkD4s0ZcnuQFdQ2TQqpDg8Zi0DG6CTVVTIqCRZRjOwIXtxqvWhWlMD6nfv99Seon4put0wQ3sAUd1QDozde/hvXaL33iW//n9VjlCW8cf8B2MGAv2OWti7extabtSBhlns0xyrDjb/Nvv/4Nnh/e5N3xB1xp7TJOppyuLkjLnPvzB3jaJS9z3hm/g7Y0jnZoOy2Oo2OuhPt4xsVRNo/n59yfPeEiGXGjt82XX3qWZ7YG7G31qaqKfqfFapUIXudwD9s2+J4jE8G8Er5lVsqv135ER7ySWonns7hYNeuvZvXeiNN6jSzS0qiDrcgLmdjUi1wQQJYlVY/KwrEN03nEaCUYkGf7e/TcPj2vTVaWtB0HbTS//8qX+E//8H9klkWkhaCEbnSu8cHkPossYi/scxZFeMZwZX9IqyVcwu/94B15DlnJbLqUNHtW0d5qLtprgTZJ5eeVMEz7r+wLSzMpRQQmBenJQiaSyxzSkrKqSJMM2zaEgRArJuM5oW2TphknyyVP5jPqumY7GIgv3R+QlilVXbNsmKFl3gSGBBaMVposycEROoDVPH4cjWUsed18OV/VKqeYJSTz+HLVblnyPJQlBQBl4w1VCpY5s9mSyXxJGMprVNU1ytKUVcUyX/LDk5/hG5en0RFlXTHPFtiOzVkk3tWiLvndW1/nq3tf/dQ/T3/Th+8bnp4vubYVMmw5/MG7I8LQ5cqVxm7WhIWe32vxlS8e8sL1AW89nPDyrSGTZSo2RVvx4UVCkhRESc6fPx5jlEU3cLi63eLNRzN2uh7GSNI7y0qenC+pa9jdDblx+wrDYUi41UdrTdgOmU8jtFYMdyUBbTUQdECmbMpqUuE+OI5wIpspXJ3EFFOxgFjr1XApa/Uyz0UoWUoEkCUgeWMbyuVcmJ+BBxbEUQw1jE7GpHFK2A5pdUOGLRfX1dC/QqsnAPbPfv46/+s/eZflMuPNnzxhvkh5ZrfNw4sVs1mK6xriZSzUC6WgPQA34P5ffncTOJodn4tAS1eShi8bz2o8F+H5sXW8c/15mRymkaCX8gQi+eyRLCFeCCoqlTpR27XRRjO/mAjbtCh59GjG6VlEXlYM2y5KWVzbbvHg6Qyl5CagzDJBIDUMzvW0sswymbRqjTFGpsquj9IKqxHu2B717IJqPiafz+QGIZpKICxeyHdo2JfnubZQFCnJSmD4rU6I59lNTS5s73Z5NEu5ezqn2xL82cOnc07mKfPZiidPZjw5mvNPPzjHGMXvvbL7ie/9TxafeY4OHKy9feqT4w2YW3dbVGl+GTg6PZU/qxr0hutS5yW6G+LcuipTUGMkwf7GT2QN39+CPKd4egaTCWanD0FA8v4T6HTk3+52Mb/0FZL3nxBFOfOFdL0PBh5KWSzmGSdRSrpelzdrdwUMjayItCWBmJqmTadeI4EE6WMhQRiD+CKzJhG/RivNy5JlWeEotUnCh0oRr5sXjEZ5NvYgZPXmg83zDK/2Mf2A2TyDOOaVf/WLuFcHWO2WTHhtm3olQG3rueepskK63tsey2XOnWsdesZs6qIDV3ytjgXTsmRe1nS0xXleUtQyHa2QFXyv53KSFbQbtFKTXWBcFFQ1nOclp1nBpCh4vEq4e7bEaAG2231BKejQRd+5JSGzokDt74qoOzkhO56SpuWmSnM9Ka5r4azWtSCSXKWYFCU1NWEDhY/KajMF7RpNjeCx4qpi2LRRdJpp9bSo2LU1SVWxKitaWhOXcg6rspbXa9gDx8F84+vQcMpYrWB0Bu02VrcvN0ytllgigPr4KXz41ie+9X9ej3mWkpUlO/4OF8mItMwYeB6WZbHMYzpOh/PVmOPVqTRpKYNnXALjU1QFoe2zHfRZZhFaaZTS/PjsHQIT0HN7xEXCOJkxTae0bJ+W3eLBbMrV9i41NX2vzW/d+iKPZzMWUUwSiw+t0wmxLFgsVpxeTOWO3FaXVY0fY2BaxsJaT+TqJozTMpte9I8HeZTbJLEbjBJAvSpkMuBpQQDVNWHgCRMU6LQDrnW79DyPHx4/QDcTtRu9Hn3PI0tzbGX4/c9/icPOHtvBAFvZFFW5gdK/vPUcvjEEts12GLJYrLhxbRdlWRK8qQSGLQ8SFqOFTIts1QjOxl/ZvAY7w56s4EO7aUYClEWyjC9X9WcxpCWzsxmPjy8wRtPphHRcF2rYDgJeP3hu04e+TryP4imP53PSJGMRrURcrr2oyISLqsLytBABliJE0RZGG6qspCjFGuG0BS5PWl4m4S3rY0isHLoNmH6Vy2q+hlWcslzGdHyXV3b2yaucL+19diOMAeIioeu26ThtlFIM/TaOdnCUw1l8zml88il8gj7dw7YVWVZxe9vnwXlEnJV4nsEYRRRleLZmvEj58DwicA39wGY2S9hpOxRVTT90cBzD6Syh1/G4d3fEH79zBkhIKclLJvOE47HcbO3utjg+mnO428ZosWx8/oUdFotUmoyKgrqu8UNP0uFpzvRiSl3VMjGMow2mZ11TuW4u00ajjBFx2fSP16mwPnGaJiOlIM+wXBfdeEKreEXe5ETquhZfp++KgAJJZFc1tmtz9OCYTsP33bp1k60t6Woviopf/+VbHOy0uPPCHr2OR883jJcpZVnx+kt7GNvgBR7bV7YACPsd2Lq6Wad7vc6mA70cn156QMvicspb11DmIpCLTHyeXksEaJlLLeW6z34xlkT5KmI+nlPXNWG/I1WVtqHb9RgO/Q0Ky9aKqqopy5rFQhqrAHSr03jbFbievC5Ko0IhEhTLOTgeprlxrouCLBYvqtXduuSCJovLSk6ngeXHc+jvys+rOaZzyWAtGspMXdeMFilfeXmPh+OU4+MFRVlxMl6htUWUFBjb0G67BIHDSzcHzOcJ748+maf9ieIzPx5jGU0drwTcDRI8MgZlNNXTY7Bt4g+PRHjO59TzBcWb76Ff+UyTgrflgnL9Fjz7LNnJFM7PqUdnlPMIszck++Ah1WwBjoN3+wpMJljXrmMdXKN+/BD36oCDK6L8e10Xd7cj626juDEM6DoSPtqyDUNjGNqGgW1oab3xgeZ1zUXjG4wrWUWDrIijsuIoK0hr+bvGkm71UCu2bYNtCUNz3ZteIivs2SLD0gp7q4062JcpnKUonp7h7HVJjqYcJRmzP/yheDu7jQG3qoj+4HtYzv/H3Zv+WHaYZ36/sy/33L32qq6uqu5mL+wmKZIiRe0SJY+8jMfjWJ7JBAGCASaTQf6A/Bf5GORDMAkCeybBBLFi2M7I8lhD2iJFcRObTXaz96696u7b2Zd8eE/dtgOECRBYhnQAorlVd91b95zznPd9nt9jkkcJxekJDz/pYCxUoShYXKuy8MUtPFsXYPvZmsTQsVWFTpKiK7JaXzY0arpKWk4U/KwgSyUl/vEsYpDmbNsGV6suu1GCrsCiobFs6mxYJs8uV9EVhccHItzCJz3ctivp/Q8/hYcPRSh3u1AUJIddyAuG43gu+gsk5GWf9f0qwh09A8GbyhkMP2PBEEFtqYJeaus6y4aBpUgbk6mKlPVUlQVDcExxKRpmufz86hWD9oonorLRkPrPQU8qXdfWoN+n6HTKdfyhCJRul/zJnnBok4Ti008+98T4ZT3CNBVSQNlTbmkmUZZRMz1szeBgekjd8virvVtoikqQhoyiCe8e3+R8dQNd1WlYNVzDYaOyzpXWFgeTId2gR5D6nPg9XMOm4/eJcxFpzy+t0fEHtKwWpmrwcLjP9aUlLu6sEycp9VqF5aUmjabwKHc2V+bYJXvBQ6tZaFVLwi2GShFnFIkgl4pJIkG+OJeQDEgtZZjBICJPczA0NFUVf6ipY9WlbUi35NqTJHJDVVWF3nBCVhRcaGzw7MI2hqaRFTkPBods11fZHY95snfCv7n5NsuVNjXTwzUckjzhPzx5B0PTSfOMKIv4yw8+Zaki16WFxQa/8eJ12s0aRZhBVW7c7Y32U8GZleuZEoovfMT0abo9yeHYl1+XHDavnYNBXHbXqrDkYDdcLj+7haIo7B12SNOMh90+bsVmHEX88OFNdsfHRFnMNPFJ8oR7/QOSLGM0nqEqKoaui/DXVdBUdE0FQ6PIxBuLo6MZGpZpkExCqvXSo6eqxNMIc6kigSNLm0+dURS0miUTzyiXBwlVAlW6qbPQrLG9s4qt6ax4bfKi4DTocHfwkIvNcwzCMf1ghKVZdIIepqnzcNjl4XCPqumhqxr3Rw/+3s6rv6sjiqQ15kE3xDTKohRLY60pPsX+NCJKMj590GcSJBiagm3rvPeoz7l2hYptUHMNNEXh65fbrK3X2d8fc9SbMQpTRmUIqdOZ4bomLc/i/FaT01Egm/M049HJRDZuiw38iY9Xr7C2VqNalYTz0voCliMeQKPeQK1U0R0HzXFQdV3EYRTJSnlSNu7kGcXZyj0WJmbeO5LAztlQRFXQDAOrUQfNwKw3IBZPZ5YKBijPc2zXxq26NJoVVFVlpWowncYsLdd4fP8Ehsfs7g7RNYUgznBtgzTPeePWMVkmwjRKM9JRn2cuL2GaGrplsn1xpeQnDsGqEM7CsoPeEqE26cpr8VpPO9+LHCJfPJdpDEf3YHgEC+dRWysyWQQRoK7c71vn1sjznFF3NF/9V+sSvtzdHTEpm4xURSHNckxTI45iwvEE4tIOpyiyMVZkAq1qMlzL8xwMC82QyWrSO8WtV8v0vUIxGUClhuLVwWtKSr4oCyWcitRrBrOyMlQRW4Km4TU8LEvHNDU0TR6EhrOYNz88oN12OTyecno6w7Z1bj/sMxlMmM1i4jgr7R46t47+f4hP45nzMjE6OiLv9OZVheQ5WtWWH8BEnuiV5RUYjVAMXaaiC8uy5nRd8DyK3YfQ6eB+6VkJKk0maF94DpaXyaYh6oVtGI/JJzOZUEUB2ZtvzltrDg5nDKYxSZoz3R8yOZInid4wYhSn84aiMyzPIM0YpClJUTBKM5JccD9BnuNqT2s1QZqEFg0NBQVXVTFK8XQGpc/K31NFmQeQtPJru0dTsklI+mgfY7EGUYD+jGB+NFPnymIF9/yCcFJnMwlwqSr+JJLwy+/8JvT7aKrC3T+/g1Z6P7NJSJLmNHWN33l1k+UlhzXbZJpJYv2ffesiblnBGebSHGSX/5ykeenHE9HWSTIaDZNZVnAQS4Cnl2QcRDEnvXDe4GQ5Ooopqf34QPwtyemIrDdEsSzSDz/BWKzPeYtF2fZ0ZmHQFBhkKSpnKXdpMJJwlzJndZolMkorBecky3BUlawQ7urZxFYt8w9n9aJKGWxK0wLFUAXtNZlAkqAsLhN8eE8mz6oqk/gwJPn5bRRNpUgzVM+lONyDPCe49fhzT4xf1uPqwjpr1Qa9sMep3ydII3RVJSsyFEUlyTOyIqPr+6xUluj4fWzdQkFhtbJKmEa4uoOtWXw6uEOUxaxXG+QU+GnA84vXqBoe/XBEw6oxjEdEWYymqHTDLv/r7Z+VnfE6n372hE6Zmtw/6HB6MiDLcjr9EWEYk+dy8cxyWUNFs1CmmFkhYg3mNZpzL+hZchxExJX/T0FBnhdUPUcYlZlU8+mmTpbnEmgoQ0+7j48Zx1M+6T5iwXUJUp/L7XNEWUzDstjcWOLG6goV3WUUTTiedciLnIfDIYaq893zXxMm6CzgT9/5iIphiF3kLPlqqPz6r3+J5dU2ly5uzHvnf++ffuvphPCsi97RwdEFK3OW1oskkNRoeCK0J4mI73FM2Juxd9iRSVN5A3JsE9ux6A7GjIKQjj9iEs9wdYdbnXts1BbKgKSQOuJEgPAAiqYwnYhFxbJN0ijBtAyyIBHLg6kx9QMsU3A4qIgoHQV/Ky2vW0bpE/0bcH1VgTwnzTLiOCFJMlarVeIsxTMcVtwV3jm8O588B2lEnMXc7T/GM002a02mScAs8XE0m/eP7/ydnTd/X0e9buO6BrMwZRIkREmGpkmw8qyX3NRVwjDBsXQOhyFeRbiKX9+pE6fi9V9t2Px8b8x0GmOaGqNRxGgW88J2C9c9myDKtMo0ZXIYxCnjcUSjBIj3jntEQUToRxwfTzg9FfEwGc5KH2gx3y5kaSYhJL9kfyeheA71UmyaknqX4E7JqKy2xJ+oSXpeUZT5dO/s99QrLnmWS+VnVeo3i/I6MR4F1Nt1erOUSkWYvSjA0jaViolr6YwmId2+T6cjfzU8iy8/t8qHn3XAH/Kzn9yVdrVmjTwvgzvNNbZeeZHtK+dwWuUaWrd48T/5radd70XxtCtdK9vLFHU+KSURTiZ5Kiv62JcAU5EzGU4gCkmTlHqrjqqqTCcBndMJhqHS6wXsd6YkWc7DozELLUdW6bohkH4Q1meazpuozoom0iTFdB2yOJbX4jWJggjDdcXyYLqYlkmRpiiaRpFlqLpelgPIA8AcE2VX5i1JeVl+kCQ5UUkX2Wy77D08pigkjDabhti2Tq87Ic+FXappCg/2R4xHgbznn3N8rvjMD4/JTnvk3T5qq0FW3kiCT54AoFgmWW8oCntP0DZJd4JWsSg+/RjlyjV5kqnV5IeXJEQf35f+97V1CedMJpDlJDfvgOuifee7oGkUUUT4pEtx62PCJ10u7NS5fnWB1S9t0+1JYs/zTHRVoapLgr0oRBCNSrZlRdMwVZlaKqXXUOOMXV3MQfQVVcI7s1IEnQHOZ1nOLM9RysCqpSoYqkLNFM9lXBREccbgzjHx8ZBsEojXUFHIRgG7j4Zs/c7LGM+cJ3vwmOlHT4hPRoz/9G2qqzWKIKS48wn5eIqqKYxmCaplEPkx/qMO9ZqJq2pE45B/f7fLIE5xtTJpX7JNPU3FVRXiMmSUFnA0DInLOk4FWDN17h1PqWqleCtg3TIIyjaoqKzefPxojHNxmTxI8F7cxry6g7G+gP71r8HWFqpjkPYm9A8n+H8jFGSVgj0tJGCUIw1RqsIcPD/NhTwwTNMyiCSifpAK4xMEHg9iK8iAlq6jKQrnLOl8r5z1vtdN7J0llK3zQl0AmE6wNlowGpHun0pYbn0TY3OZ6eEIZXtLHoY0WTE6F1c+98T4ZT3G0YyT2ZiOP8DRLUbRBE1R+PnJIyqGIzWG42MsTSPNMyqGS8cfoCoKPzl8hxcWb9AL5cHDKEMrDwZd4izBVOWCP0mmZHnO49EhVaPK7176dRzdom7WGY+m3B/scjyd8uILz/DCcxf5jZeuE4UxpinBHMswqHmuVFKeHYGk0jHP2na0px5PEPGZlqJNLf99mXK3Lfm+0izDD2QCIxB1qffUNW0uPONE2oj+j49/zsF4TJrnDOMReVFwPOvz2e4Rv/XcDUxN48e77/Nx5xG9YMQffPImDdsmyVPuDu9zPOvh2hbTWYBrGKRJyu2jk/kNdTCZ8dc/+oAwiOZtRmmez2tBcbTyaVmCPgfHPRFuhvA39bbLyUlfBGpRQJJRXa1DnBEnUhk6OR1zdNRjpVIhCmNe3t7kH1y8ykZ1gW9ufIXN6hotp844mrJ73MUPo6ehHUW8nEWB4O40TUJDRYFpCE3An4UQpBRBKg8JaQa5WCcoQNVVmS5nBek4hCTD9RzQVWlnUhUMx8K1LZqNKsv1KtcWtrA0E8+sMIpH1C2LQThmb9whzlOW3CWeW7zMw70Tnl24SJjGZEWGqmjsNNZ+oefSL+LIspzRKGISJoxnMZ2B3Nv2O1NcW8fQVJIs52i3g6GpDGYxw1GIaWr867f2+NpFwSxVLRGUuq5ycthnNPSpV0yyXFa4tm0wHErL2X/26jrLDYe6Y5KmOcOZPAhSzZdJAAAgAElEQVS2V9pcvrHFF15YJwxi4jjFtMTvadomqqYKRD1NKWbjsqnIkmuqXSlDtI4ITFUTUVpWawt/soBQ+tXTJCWJE/Isl9KDIiebTeZTPcu2BDNUHsE0YDae4U98HvcCHEdnPI6Y3f2Yy6+9gK5rvPnhIcfHU1RV4cn9IwxDxY8EZZUkOVSapOMRmqbiT31Go1DW506VSsXk0VvvEBw8KQHyJrNZIkJT1WSKqahztNSoWwpM3SzX2gnJoPd0rV0UWKubMO2XlgIVZkNOd4+4fn2VoihoL3isrFRZXHT55vVlprMYy9KZ+gnjwRhN0+ZiXynb+84CTZouLW5EoWCripxwItzVLAie+nPTSN7HOETTNKkBzeW9Jktkha/p6F4NwhmGI21wXk1CmpqmsNR2sSydziRicW2BwSBgPPQJ/ZCXt1vsXFhA0zWev7pEGKYopV83y/L/+8f9bx2fKz7VG8+S9qaojgXtNqploFcdnMvrKEuLxEcDtPUV7PML5MenUKthbC6jtWoE796m+OA9lHPnS/SCSXrcw9papggjiv09ivGI4vgEre6i2uUUYyxja+XSNWmtcV2c53bwvnyVyjdf4L0ffEKaFsTJ02T4NMvmLyQpChbKBF9SSCLez3O8Mjw0yvKSCKJQ0TS8UtDkRTFv1gGIygpIXWFeSwmC/5nEUl9pKgpRlFFpu3IxPmsGCkP0S+dJ0gL/g3vkh8doK4tyYV+uo+oq1mYb9VuvQ5aRBwl5VmDrkug9OfEZT2KqNZMv/4tv8LN7fX731U1WqiZXHZswz+nvjbBLaHu3REqJmBRBt2JqrFs6K6Yk9OO8YMMy+ELF5hnHxFZVFgydiqZilavxZ17dIHzSxWh7+LcPGP3wXZnUGibEMekkJNzrMR5FcyvAGcg/LafDZ/WaZ3WlwHz13tA0YZIC03J6LH3vqgjWTBBXGlIKkBQy5R1n2Rxe76gKuqaiGMacDYuuk/z1O6jN+ryPXvzIOeg6lmuQ338ocPkogtnsKUj/V+z44soNpnFMkEZseKssOA3aTpU1r07bqXM47RBnCTeW1ng83qftNNisraCrOu8fP+SD05tcqG/jGhUc3eF27yHXFtbIi5wn430myYQoTaiYDm2njp/6jKIRlm5yob7D9soinulwbXGd37xynd9/7ov8z3/xFmmWE/gRetnlPhiLzSPNxDuoVS0RXiBTzzBDdUosUJSJrcdQUV0D07OwKzakOZprSoORqkGUkaTC9mzUKtKEVBRkecZ0FpCkUv8YxwmN0iupIA9MURZzfeECaZpxq3PMLI55YfkioyhivbrEcqXCuWqNK80LZEVO159iWwZVz8UzbPb3Txn0xjQaHv/NP/mH/PTdT/nt3/kq1VqFnWubkOQcdAdPW4/8smM9lYlnFCcSOPIM8AxqVZfecAJ1C/VcFVYr0tzUtgVjZRlg67z24hVOZjN2Vhf56b1H/PGtj0jL6balWZzM+nx0csx04s/B9GcnplKGJzkLk5Tna5rlqK6Bbuq4C578vabJ96yVYSRLJU9ysjzDckwRyaZGmmWYnoU/DeYhMMexQIH1ahU/CWVSrqr82YO3Wao0ALjYXMczHPIiI85lVXyn/5AbixeZJlNOgy6f9fZ+gWfSL+Z47ZkFxuOQLC/4wk6LlXaFlZbLQt3BtXR6k5AkkXrL9z45JohTrpxvkucF7/zkHj95OGRrwZXnNFMnilKWVpvYjklnFPDodEqjnK4+e2UJ30+52wlwLZ1rK1KvOZvFVCoGFy4u8tLVJd748W2CWUASJXieJN1DP5R0OkCeiTdQ056yL7MMzRKvMX4ZZtE0jGoVq+rh1DwRTRUJ3hmWMfeJKopCpVEFvay/TDPSVNbTShm8MS1TvJJlgnoyiXn1hVXwWhwfDBj0Z+xs1qnXbRZbLrqh0267vLgl4jzPc5lEGiatlkM4HHNw7wlxGPNPv/9FPnnvHtde/yqVc9voi2uQxnROx/J6iuLpNDOcyGS0uwdee+57ZSzQdip1qC0Jj1NVoLGMVfXkgVk3WbuwwYNHA1RVZTQK2d8fEYYpP3vQZ2u1Rr8fcP/uiQjJ8sjzfD51zpNE0u9QNpIZhH2p/9RtC6usJjVMgyKJhU86HaK4HmmakkSl4DQsFEMe2s16Q4oDdIsiL7BLf7xt62RZQX8U4Ng6P35nl83NOmmas7RSp9asYuvqWfaT+7tDVlY8ej0f0zIZDYPP/ex/fuAoCLB2VuRGfnqKcvEC+koL5ZXXoF4nHfoo5zZRVFUqItOUvD+EZhO95ZH2pxS3blJ8cgulWpPJoGGgrK7IGrrTQdE1wr0+mueIR+/0BGVlheK9t9EqFsQxWXdAdG+fg//9beIiZ+faAs3FClbFYm2zTsMyBHBernVHqVRq5oVwMNNCxE6c5/iZQOeLMsVewFxwnrXp2KoqjUIlH/NsFRznBRVN4PR5KbayrKB/NEG1dIz1RYp+j6LTheGQcZKSTiPUSxLcMRaqKI06oZ+w9x/vUXz6MdTrjO8ek2aFdM/aOp5n0qhb+H7KZ//2LRTgL97fJwgyHFs8qFmal2zPomw9En7mUnkD76c5eSnEFyyDgzhhP0o4jBNe2mrwKIwYZznHcUJd19hs2ORxivP6lwCofP97VC6tkAWJBHl6PchyVFNncdGZC8u/yfi0VXWOtNKRSfOl1SqXFytoitSVntEI3PI9FjuEeFadcvLpqIJjshShGPhZTkVVaRk6zYZFbalCNvElJHHlKrguxj/5fZTrz1OMRjINLZP5VKsc7k9QDI3i5JTs3kOUrS20uvO5H/1f1sNPA660lzE1nWP/lK3aJtuNdX5t6+uYqkk/mPLq6vNYmkmaCwHhYHJKzargmSanfo/H4yfc6d+nYdYJ0oQFt0HdqmJqBqe+9HE/GXWIshhLswiziE3vHG8evMVGrYalyUXt5yd7/MG7bzHzQ7Z31qjVK5imwfJqm3ZDbkIKyhyhJC1H6XzNnvuJ+Aez8sOW5Li2VU4vY0gLsjx/Os3TVSqOjaZqpGmGY1nzX+NEKj+TNCPNc45O+hRAy/Hoh0NG4ZTjWZfZLGQcRXzt3A0qhstKpYKpGkyiiD/58BaPxnu07AZ3TjtkWY7jCtHCsS2WV9skScofvvk25AV//O/fZjiYsLQijVpJUgrOIBMBqCjiZzWkqY1ZAmmO2XA4f26ZdBhALyTvBly7ssVwf0DRj5gOZtRrFdbXFgiShN+8+ByLrss/f+0bbC62OJ4NGERDToMOhqqx4LqsrC0QlpMkpZzEFhRy48hykjAWYamqbG+ucGlrXSZEI5+iKAiiCLVmopU3f9XSIc1xLIssy1FNDduxRNyHwjDVLYOlVoNW3WNltY2uik1gyW3h6Bb/8vnvc7m1jZ+GmJqBZ7ooqDStBv3+GFu38JOQ292HbFY3WK58PrT6l/EYBRnttsssTBjMEp5Z8ahXTP7x89JkFAQJN7ZaaLrGcDBjueFwPAwwDBW36nL3yZBhkPLR3piNls145FOv29RqNrMopT8KSNKcXs+nYuvYtsZuP2Cr5fBHHxyztlbFsnQ816TX8/nBn90inU5ptOvUmxWyLGfjXHO+AhdvckwaRbLWzaQ2kzQS72cYiDhTNdDEh5ilGVEgfNA8l6mdqkqozrBk/V7kBWalQhzFGKZBEiXzlXtRFIR+SLXucm5rif40QtdVCVENjwmDkKtXloiSHMfRcS3hlX56c49b+yOurtUY9mciFFWp97XqVZx6jTzP+eEb9wH49D/+VEDrAKomNpI8k9eYxpLyV1TBGekmTHvzHnjt/LPyumcjmA1oX7pIeHwA0wHR1EezbLzlJapVi2++co5hd8h3v3yeWs3m8HCMqij4UUqSSJuZU/OehrjKh8aiKFANqctMEwn5oGksbG/SXG7LSt6Xn8N89a4qYLqlJSDHci35fU0JPemGLpPRyMeqV6nUK1iOhWFodDozZrNYGqKAf/WPruKYOq4rU/RazcZPci6fazC7d4vZLKbmmhw+2Ke9WMUp7R7/T8f/K+czPR2SHPUoggAePyY9GZD82Q9RbBvnwpKM1TUNrWrDwgJJZyJioOWhP7OF8rVvoXzzdYqDfaxXn3vaCT8YQKuF8tpXqX3vFRGjk4kk3g4E8ZP5MbRaaBurWF+4wsLFBTbaLt29MapjkCcpj+4NGIQJKsLyVBA2JEgVpqsq1DVVhOdZMxBgqAq9JJ2vfM2yPvPMy1nRRPjEZTuPoShkSLVmnBdzf2lRFGRpgWLq4m81DIosZ+9Hn7LomdhrDZm2TadYz+5w+9/+FNvW2fztl4QCcHSEt9nCMBRJH1YrtJZlhbH+D1/maBLhaZoA8T3xBhmKwmSaCIZIU1gxtbn/E8AtP6xpAesVi0bdlJW4orBg6Cx+/QorhjEXgsM05dL3rvHhO/swnYpH8tNPIMvJ/Yji+Ijos10JeVVtxpOy/rL0b6rIej0t5P0vCvnniqpyeCIpyygv5t/XmbWhoOC8bQlwHkEp2aUfVKahApRfMMRQr2kKuqHi7CyhteRGVMQRileleOevSX70lwT3TuZ+z+JwH8KQtXUPpVZDfeklVNugOD4WL92v4DGOJvhJyOG0h5+E3Op9xsHklD/49E+pmh7r1TZ+GmBoctFvWg0G4ZiqWWHJrXGltcON9nV+bfNbdMMeL61cYRxNy/W9iq2ZXGs9w/NLO+iqRpRFBGnA/uwAR5dJYt2qsuot8p2tGzx3fp2NlTYnxz3cikOSpOztnjCe+qiqQpaXXMismK+ncfU5aumsqhFVBUtj2p+iKEjbkatjmTJBcR0L0zZIM7HJKIqCZRlkUUKcSFsLQFQGGuI4IckyqqZLzapi6SZ/fOsjGg2PlUqFrMjph0PO1Zb579/+EQC//dLzTGOfXjDg1XMbeFUXVVXxDIdz5wUr8i++/i0OjnvYjuBoKp5TNrfoTCf+08R7RRqOKNuBNLUM7xSwvbkiX3/W++7q/IPnr0qYpxA8VX845nuvPseP3viAfjiibrvcPH1MkCY8Hg6ZxBPe3LuJrVtYmsZoOEVTVdI4FbGeZPNfifOSFgDVmstwOCVJUpI0RbE1dE3HsSzyNCeLU+qLdeGPquBPAxzbRFM1quXEpN7wMJuOrO+Rn8Wy57HsSpJWVVQszeKvD9/hncObPBr20FXhKfejPqN4zJWr53F0i+36JnW7ypPxHn7y+XV9v4zHKIg5OhrT6UhV5p2jCd1xyP/41h5BlGIYGlGasbBYwzAN1hsOpx3BIF26vMz2eo2v79R5dafBj28e88qL59B1leFQmo0urjf44oU225uNeZK6P4m4dzpjo10pH5x0mp7JjWcWWD23gFWvE4Xx/Dw62B8yG8/QjdKbnGdPGZMApoNSqYkWOGsGSiQoFw7HpEkqHk/Xw3bt+UrYsAxZHSuSaLcci6LsG1dVFUWV4JFhGqiaShgkNJs2G+0Ka0sV3v/pA9i4wsJKm07PZzKLaNRs/uQHP8O0Tb72tUt0BwEHw4Dz222IA3TLpOYYIqbznO/9+vMMHj8pLT41nIpDGkZSnZll8/Ym3Lqs4M964K2KCOySCXoGfScJodri9a/sCG9TNyFNyKKQr3z5Ag/u7DOaxWiaxju3Tuj3fcKZhIqOuzPabZdgGsh7ZhkkYSRr9bLrvigKKN+fQnyGzMYzoiAiCiMMy8AwDfla36fIC2rLC3NyQBIlGKY8FJzVpXp1D6vRpMjFJ1/kBYuLUrEKMJ3GhHHGj293+fnNA3YfnbKxUSdJMt5/1Bd73eZloijh4rJHa3WR06Mhuv758vLz0+6PD0lHPsbVCxI4GQekY590ElD4PkrVE1GqKPM1plZ3wffJZqGIruGA4vYt4pt3Ua5cJ907EQFar5cX0pITt7r6FCz95EhWqqoi4SSQyWHbQ1UVvKpBOg7QXJNm08IqMUMgvsF105gLGJBWoDN80popaeuzdiMNgbbb5QmRU8x73zVFhJypCmReo0QwKSJKv/TaJoqi4PsJ2SSUte5wiKKpTKex8PHOLaIsLkEQkO0fcfX7L4sXQlXFitCf8PjDQwBcVyd6eMyw6ws8PYp48VKLuBBf5mAco5erdq9iEOSCjYqLYg6jn2bCMV01dXQFNjY8ev2QFVNj2ZBmod5ff8Ysz7ns2iRFwTTLQdNI84Ls0a58/x8+Qj+3jPWNV2WSqCioG2sk3Yk8nRVFOQFmvmJXkR+lqUrzxtXzNa6/uMLWf/kbADR1nbQU8AuGzoZjceWZJssNi6yQCSjINiHICyxFxdJV9JI8YOgqlqlRpNlTHJfvi9/YslBMDffqOjSb8nAzHJIfHGG0PdLDDsXNj1BWVsiOTmX6/it4vHP4GQeTMdcXd6iaFUbRhKNpn93RiDTPWKq0SPMU17DZHZ0yiIZUDIc4SziejSgo8FOfO4M7/OzoE3Zq24wjYV0CZEVOWmRoijpPxwPcH+ySFRlxljEqBbCfhlQMA93QqVQc8jyn1arheTJ1DqME8gK1YWE0nHm1o1SUlR5QVUFdKKfUaokxAkxDxzANaduJxccZhwmWaWBbJrZpMOhPwHhqmUmTlFdfvkaaZoxGM0ZRxKq3yN7kiHE0JQzlKf+Z9gq2Jhy7OEv4569+E60Umbqq0fH7/OTRE6Iwplav8Fn/iJPj/hyt9MrLV0tvFoxH5U06k1pR8bWWnNIC8X7mBUlnhrUk67ntzRU6J31omCLEgTfvPoCsoLHVFkj3NKHtCL7mVucYFYUPH+/x2voOv7ZznTiPqZom69Ul+mFIvz8mKXuoCwrIeYq+0Z76P29cv8D2zhr/6jvfJU9zWo0aySQkzTJsx6LZrrG20mZ5oQlxjmHLTS3PcyZ+OIeW25aJZRlomoplmxiqStttYOkGpmrQDfpUTRdLN7m+uIGj2wzDKeN4wpPREY5hEKQR7x1/xIXGJh2/z05j4+/wzPn7OX5+W7BIO5t1XEsnSqS96N7dDo+eDKm6JseDgHrdIpgG3D+ZYhhiJ4nL0Nidjs+904D9vQHtms14HFGtWmIts3RmcYZjalxZq5JlBbqmcjjwGZcp6zTLGUzjEvlT4HgOeZYzGYfouorjik8w9MOyHKKGViJ50I2nLyaXUI5Sa6GUDTma48ybcs58inEUz0Mtuq5j2RaWbTEdTSUMo2koqkKe5Wxflqa1PBPI/FLd4UlnylFnNk9mr6/X8DyTZk0efn7rd16R8FxWsNhy6Y5Cbn+8B5rO0voie8cTglmAV/eouwb1c+cEf1jkBLMA03Wg81gEW1yujuNgrk8Eo9QFtyGcT1tsd3ORCrx76xhmI5zlVRifSoA6L0jHI+49GYgvvD/DdQ2u3VjDsXR8P2F9oYJhGvNAF3EoDU7hTCbBRQGG+G8BrHLzcm57CVVVsRyLeDIliRIsz6O+UMdyLOGhFtJwdpaYP7NSmLaJoirYro3lWNiOSZbl7Jxv0mgI1tL3E/rDAF3XWVhukmU5/e6EySTiZBjgNTxO90/583f3efELG4z6I6Io/dzP/ueKT0XX0Dyb+OZd8Sb6EfbOiiCB+n0Bx89mJZtPQ2ktoDkGhCHayiLFYEDx8/fJHu2KH3LYJz4dUQyGKC+8grK4QvrGmwKqPzyUyaEu3Lh87wBzuSEp+zAkeuNdtNe/g1c1SOKMJ4/HpJMQ19W5dqWNxplPU9a7miKTtAJBJxmKwkI5Pj4TOSI0mTcHZYVwKuO8EDg1CidJMkf9uGUK0SyT5L3HAzlZHR1FV1EcF2ybdBzQCxLaLZtb/9uHFEciLrNJiHL+PFlWEHx0n9nP7kKWs7risr5RZW9/SubHdLsBla/egCxjPInlHqWqrK+4VKsm3z7f5KQfsG7pAozPRPydIaL8vOBi1cbPC0bjuPS8aszynNf/5bd4uDshKQqufuU8tqpypV2h//Y9Mgqmd45AUzk5mgrpYP08tFpY33gFRiPiMOXcdlNY4CU/tUDec7ukA5Sagep6A6NdJfjzt8iKgn6azms2TUXl4vPLqJbB3iCgrmtE5UTZ02QymlMQpBl1y6BiaRimKn3DjRoMBlLjqqoUvT753gFa1SUdzsjuPyKbBjCbodom1o2LKJoito/xGG19hfjW/c89MX5Zj41akyjLuNV5SFZkJHnG88sX2Wo0OJqdYGkmCjJx9Ey5cLmGTT8Y8UxrnWk847PBPe70H7FaaTFNppzMxuQUPLdwnc3qBh+c3EJVVfanR/L51x1qpsck9tlurLI7PqLj9/njux9xpX1+XvF2/94+QRhjmgYba4vYloGiKeRpTjINxX8YpE+ng7aGWpXvVzf1EhJvUGQFUSyTuSLJ0S2D6Kx6U4FxZ8zEDzFtA9eWNZNM6hT63RGKAhXXJiibvjzDZRLHHB/3aLVq/NGHH/BotE+YRhzP+mxWN1AVhTu9I/749k3yomCj1WB1fYGHDw6ZxjFRGPNfPPd1kjxlOvFJ0hSKAs+Tm++3vvsy47Evvs4oEzvBmQAt0+/bmytQ2mWmsxDDkXaj//qf/Tq3bj8GP+Gbr94AVWHz0jpv7e4CcNAdYOsWj3dPiLKYy82LtKwWX9t4maNph9PxhLW1BSxTEEtFOU1OgkgS7IogkTRV5fLSAmuNGv/uo3cF8N0bgaES+1KB+MLzl1hcarJ72MFsOCRxQpJmVD2HMIrnWCvPtXEsU8oEgLYraJlxJEOKfjCiGwzlGjvr83h0iKULSxXgm+efwdVtsiLnaHrKRnWFD05+9c5ZRVGoVm0OTqaCqDE0VpouC4tVmSJXzsS9JL6rjkGlUibFNVnVvv9oyCdP+ly4uMgsTEjTnK2NOr//0grnWxaf7A5wLZ37JzPiOCPPpT88TiXRPB5HHJ9OebI/5sWrS/N0eeeO0AUqFZOVc0sCgi/X0lkcizibjaHIxV+o6+iepLNNS5iTZ0zLszV7GotgzNJsntiedXtEYUSRZbKmL1uS8jynW/ouJSnuUXON8r8V5LMJXt3jw58JgktTFcbTiMWajW3rPHg84IMP94mSjKW1Nhsv3ODwwT7d7oygP+C1lzfZ7UqS/yzEUGvVqDaraBdfkpS6W3/aiV7kczsBhk3j/Kas5CcDDMsQ4H4c8PpvvMju/UMwLJ578TyYLrWNDY5Op6iVKg/u7JPnOf2TPs9eWuD6ZpNn12tcu9Dms8fSMNRaFqsFZumjLQqyWCwJAEks0P7180s0Fuo8vn9EnufS+GSYpGWJhmVbVDyLUXeE6TqkSUqWZZi2SRIlc0uE67nzetXZJEDXVWquga6r9Ps+k0mEYahkWUYYJgRBimmbeJ7JSc/n5S9s0FpuEYYpH396wpe/eY39h4ef+9n/XPGpt6okHfHLoaqYKw0wDLTLFwk/eUS2fyQiFCiynKJzQpEXfPa/vE120kWpVGSiNpjJjd92cC4uy3gszyhufoj+xRflD0sSlGoVplPyKEF1LLJpgFqtEN3bp/uoT/HBu9hNl+qSx8Z6hdE4Js8KTo6mZMh07CysoqDME9I1TaWhaxJg0TV0RcDyVU3DVBSyAsJykqeVkztdkQmBp2klw1KQQGlRzMMvx6c+OdI5b642xHidJChls1LzC5tESQbDIUUcEx0NZU2fFSiaSp6k5LG0+ii6xua5Ks6FJdZWhR0Y73fnE4m4KAiClD/ZG7B36hPkBUvllEFV5L8LiF38k8vLLqaiYFsaC57J4ygmLeBn/8Mb9NNUJrqrTUZpxpNBQJYJCL56fQNFga2vbINhkP/wz2AyQVlYZvbRY05PA9IgZrXpoHC2LRVAv1+GiBRECHcf9bn3Vw95/4Mjqpq876YiXk/X0tDrLh/fPMHPcoIyPS997jkVTR4CbE0V/IiuYts6dsUkH46h1UJ99hqMRsxu7ZNHKUlnRNIZo33hOfRvf5s8iMgmAenjAxRdI+lNyfojlAuXpAP+V/Q4Hk/wDJtZErDkNjFUnVfXrvLO4V0OJ6dM4ilJnqApGv1wiK1b/Os33qAbDMkpSHPpBz/1B9TMGufrixRFgaEa3Bs+5Eprm4ZZI84SDNXg8XiPOE9wDRs/CalZHh8c79PtDPmsv8uFzRWarRpXrp4n8EMURWEwmMzTkIqmoLoiKqkYKJ6BUbFotKpzlJCmqdimiBlFUzB0DbICtexDliGemN91z8LQhVPp+1Ill6TSE3/aG6IoCjM/ZLNWIysygjSSz7Bp8KX1TdI0wzVsLM3k49NT8TXnOZu1Zrn1SJnGMY5hsL2zxjOtRZZWWvhpyO7oFNPU5bWUN9C3/s/3mIxnjCYzGk1Pns5KwPvT/vec9fXFcgWvUq9XSI6nkBb8d3/0I6KTKbgGz7TakOTsH3eIwhhNU3lle5OCgv/8O19myW3z7z77C3Yn+6y4y/zV3iOePD4mDGPWVxaerkoVBcUUCL/0yAsU/26ny827T7j92RPcio1lm6imhm6b6JrGcqXCzz+6RxJExGGCbugkScp46lPzXKI4wbFMkiSdT0E1TeV0JqJzo7pMmEU8HHbp+kOCNEJVFF5be4lXV15kFE5I85TPeoeM49l81b7kLvxiT6Jf0DGdRuR5geMYhElGs2ISxCnbG3WSOOXJ8RhVVTAMDafisNedomkqN99/RL8fUK+Y6JrCcBiSphktz+LC+QYKEGcFP98b4zkGaw2bSbm27g0DqXXUFGlCqtsEQULnZMj7n56gair1pkdlY5OT4xFpmjPqT0iTVKaYqopuWbKCtxwUp4JV9ag0qhR5geu5qJp4UjVdm3/minLyphmaQOvLCa5Zq6FpGm7NE3GUZqia/Dmj3gh/4mM5FtWq0DEcU3ybRDOuPLtKkRe0azaWoXF8PCXNc8IwxbbFz5gkGWmaM5sELJ1fZXOzweL2OQazCN+PRThm2bx1qffhO2RBQHKyL4GdLP3bXe+aLlB6t6ysTMXKw7gLqsZ/+MFbZAf3ADi34JWSVCYAACAASURBVEE0Y9zpSTFLUdBaahEOhjSXmvhRylu3jtnrB2wvusxm8XztbtkWqCqqaUGlhmqIF1Yt6T1FUdA9GTHsjshSaYYyTNk06RWXOIpptSt0T4ZEfkAcxaiaSpqkBLNgLmTPHip0XUfTNVbWGhJuVBQsSydLMyZjn7u3j7AdC8cxeP3FNV5+blUsdqbGgydDFpdqAqXPCzbaFby697mf/c9fyjcauDc2Gd87lSfl/pTkoCNr9WlEHiQUcUw2LNNt+/uoO1tceG1L/v+9U6hIr7l1cZ3iYBdF11EadYq//KGs2luSAqfdprh7VyZaaUYRxRJiUgXivvrKebJOH+f6Fvb5Bay2R2u1Su3CIpal0fbMucAJC7mpLRoGlqpS13SGJWAemPMvp38DVyQiVb5ePJ4qs1LMKYhoKsrpYlpORk1dZX2lQqNhMfz4gCKO5fWWXspk6LO67MLiIsMPnuBcWIZHj4jijCLL2d2bEh0OqFxeoXs0pf27XyPa7+MtVqDdpnv3lE4nKF+LjlcxWDPFKgDw7GadbdvCVBSWDY3vf/Ecq4aBCjiLnqCNRjG3Bz47tomjKkzKhiAVCB+f0tI1Xr22wNuP+hwnCWqzLhY7x4Q8l8BRt0tx5xNiPyaKM6yVOnle8PXXNsmRSXBU5CJoy6nwRsMhS3MMU2OSZfTTdP7ebrgWG+sV7rz5aC5YZyXyyVZLxp0iPxc/y+d+zyjKUDQVtV6d97kznQrvM8tRLR3n2iazH/yY4vED4pMRqmOSdMaMPt7HvrBCHopH2Vis/n+8PfxyHYtuk+dXV3jncI/jaZd7/QP2xicURcHpbEacp4ziKeNI7Cz74xMWnRbfeP4K0zjkyeiQqumhKgpX2lt80r+NpRvYusVPj99jzVtmwVlgEI1Yctv8ePdd7vT2SfOMOEsYhGOiNMYzTb59/TIVw+Rrm5d4aXWVFc9jbanJudU2Vc9hoVmjUfNQFZU8knrGWq2CaRg0axWGJyMs0yTNcvJcUEqTaSCQdFURf5OuY5UhGMvUGU9nYpBXFOEkFsyZgmeJ0Ys767TbNT49OiHJU2pWhSAVnFCSJSwvt1hwmvxk/y5f2diiG/YoioJR5NM9HfJkNODqwgJ7hx2+f/1lHo36rDfr6KrG+3sHHB31yo1GG8s2wdGJooSVxSYvPH+JpSsrIjhNjW/9oy9RX2+CpbHdkOR3mKZ8dncPbckFW5PGoaKANOduv4fSsvjqa8/x7hsfE/VmNO2KXI9UDUe3WHA9TmY93jx4myhO8MOI82uLZFnGN776grw3rkkRZmimLhMPXaXdqDGbBrgVGz+I8Cf+3LfZrFW4sL3GOx/fI4xi4QHPEtI4nftuAVp1jyAST5uqKCRphltxaNp2WXgg8PsLzSXGZXHJ5fYWP7j3F/TDAZPYJ85T7nV7/Pm92+w0NpglAY7usl5t/aJPp7/zY329husa9Ho+UZLx8HhCv5zeqZoqSXdDI01zLNtgf39MzTFY3lgkSXKOB+LtNAyN5VaFaZjiWjphkvGXd/s4ps7LW02GQUrF1un3A4IgFf9nXjD1Y2YzeYjZ2llkfa3GxWeWqFSkmarZ8qjVTBrtKpVaBdu1BWs2GZHnOZVWQzrYbYtZp4du6GWhg0o4C6WvvaznPBOeqioPO7qhE8yCuZjSdBGlhinoMpAHyrNqzv0nPYazmJZncXQo2MfZLKG51GS54XDzTodrlxe5dyhtXnleMB1NGY9jtraa+FOf73/nkgD3KxbNisXDe6eMuiNIYyqLbdyKDc01gbEDl1+4INNP2wPd5PlvfxFjYQWcGqurVamprC/iH5bpd0WF3l7J+Cx4dDwG3WT72R3uf3CbYjbGcU2sep1W28PUNVzX4GQY8M79HmGYYNomC0t1VE3l5S9fLq9lOnkcPa0HRTyz/lSEOQVii9DEK2vZFtVGlZOjIUmUoBkGzP6G/1aRbZLt2sRhLIxVQysfMBSpLbcE9VUUhbBCi4IkSWk0bP783X0sU2M0CoUfu9+jczLG8yxmZVL/wjOfb237fPFZFMxuPqH9vZeID3oYmyvSeHR8gtH2JGRUrqStnVWysfyherOCauqojoH/9i0014JqldM//BFFnEgSucQFFB99INPTIIDFRWg2sa5fQHEdijQj649IuhMUTcW/e0wxm6HsbKOUbzLAYBAxnMYMUplM1jWdlq6hKdDSNfqpVE02dKl4tEphaasyIT3zd8Z5Mec/g1QfZwW0PWPeV64okFFgqQp+krHye19FVcFd8lAcB8Zj9PVFgajbBo1lj+iD2wwGEXqrStobY1sa3cdDhmEiF5D395hME/b/zY9RbQPn8joUBcsvnkNRFL7ylfPSqDSOeXG5xs1ZiK0q1HcW6CQJOXDOMvnDn+3xIIzYsk1GB2OaukoQpHiaSpgXbFomr15p851vX+SrL63xwU/3qeka3peusGlZbNomRJGUBOSCMCrSDDY2CD+6R7cb8MwXVhg97rH5/KpMuwtJ2QvfsygZngrtts3SxTb3+rMSQC/BpIICy1KpPrtONxJLg62q8wapfpriqKqEKgtJ41arBmmao6kKxnKNbDCG0Yjs6FRYji0P/fK24KwqFZwLS6R3HlJkOUqtirnaoNcLYW2NIk4pdh+jbv7q+ccAsjzn/b0Dfuvic5z6M24s7ZDmKdPExzNNmrZMEw3N4FJrkzRPyYqMJbeKqxs4usXH3XtoikrV9Phvf/Qn5HnOVm1DoOPAze6n9IMRJ36XG4s7rFdbbNUFx6QqCv1wStf3sTWdTzqnnM76vLh8jYphoCkqUZox8yP6oymD/oQsSrAqNq1GFUVRqHsup/0RZs3G0DVMQ0fTZPWrqnKjStKMLM/IspwgjMsqUFXCLKbB6lKL8USqJBXladAoSVL+q9e+i2kaLNQ9amaVh8MDztWackFWddarVd7Y/Yij0ZgFt8HD4R6aqvJgMJApXxTykwePicKY/+mnb7JcqfDK+g5JlvLCxhqTWcD3fu1VDEMnjhKu3Njm4/fu4lUdLrZajGflA+W5Nj/+03cYHQ3R2y6fdbp4i1WmEx/TFt+X1/b4yutf4Pf+02/zpa/e4CfvfUqj5vH6zjO0Ntu0zrXJ8pxRNCErH7qPp2O2G+vc6uxzdNDl1157nvtPjrh88eln3jT0+fQ1zcqJTKvKxnKb23d3JQimqXMgvaZpPLe9wd5Rlzwv8FxH/KhFgT8NMA0Dy9BJ85w0zTBNCX8ZuiYQfF3HT0M6/mAOlX9t/Rptp07LarLdWOXj7mekecpWbZUvbqwzGk6pmhX8JGR3ssel5vlf5Kn0Czls22AyiXjpmnAelxoO43HE49MJjYaDbetMw4QoSpmOfVotpxQj5SbI0Pjo9imNhs35xQp/+qNPCeOMa+t10qxgqWqyNww5HYXMwhTXNXAcndWWy2gao6oq/X5AXLbS7O4JB/P5SwsyJUszfD9l2JPJpz/1KbIMvVrH8RyKXDyi/tTHbbewK/YcHJ8mqaS1NXUOqacQ/+aZ7/BMZJq2SRzG86/Ns1y4onnOF79xXQStpv5f3L1ZrKR3et73+/a19qpz6uxL9+lmr+wm2c1mkxxxNJyRRrNJsjQRYHkBZFuCESRIjDjJXYIAuQuCIDdODESJEdiAI0uCHGsbSTOj2UQONcO1m81ez+mzn9rr29dc/ItnFCAmEBiSoPlfkUTzdFWdr6re73mf5/fQdA22Tzzm5qug6ti2RrVm8d13DxgNpmiqeD6arjGZRBBHjEcBH7y7RxzG/PN/9X2aTYvl5SquqbKyLp7n1s0rqJpK4EcsXThLefAQDBvX1YWvM0uQnQrvfP0t0uM9qLbp9wOozBR5RZt5zRq0b36K7muf58Kty3zwzg40F1hdrmHUG6jVBratCdZmXpBk4jPMMTWOjjyGx0OeubyE58W4VZts5tPWTR0UbbY5Ff+t2qzSnG8y6o1mm4sZWm6Gqjpzbp7AC8RgqatgVyHPCT0x8KuqetqSZNomgSdeN8fRGI0j4iRnMApZXWvgT3zOXVikXrexLA3TVPn6tx+RJDmmqdHuNhjsHrKyUKE932ASJCx2/gOUz3xnD9lQKft9oRhlGdqLzwlPSJggd+eQTAPFMUn3esiGJtqJVJUizZF1lSLOUNcWRD+4LJFNQjg4QLp6XXTC+z4EAeHbD4T5XdPEEFqrodgGad8TflLTEOtp20ZaXBbhA10l9yKMWe85iIrNmqqQA5aqEBblaU/7xwONIkk0VIXbr53BnqGUPm7ekZgRRxBh1NufOcv+ND79GYYko8wwQgDl7h6ePzPWajO0gOuyuV6lSHPUmo3acOi0TVhaQlJlrKq4e0zLErtbxZ6FCupNC63lgqqSv/M+yfGEcZKRezGmoaAoEu+fTHmx7ojO91Ew87TCs7dWaKoyNxou0zxn79Bn1TBYXHBIZz7VaZ5zcOijn1vFWKijSHCcZiLMpclsXe5QRrEINGQ5kmmiLbQIv/EWkqrQqBtorQqWpeLtDBjuT9BliWuvbZLPnk9aitcxSwuKKCUrhdJsykLdfPVCh4WlCk++9YjkLyTgTVkWCqcEYVEQzvyfVUNlfs4my0pMU6HwY5SKTX5wgrK8QB7ExLsD8sc7RB88hjRFufECRZphPXdeNKwMfWRZIvnBB+jnVsnuPRLcyB/D89FgF9c2GcdTAPwk5ErnPHGeMIoiOlYLWzPRZY3Hoz1c3cFWbQCCGRDaSyLONtYYxRMMQ8NLQ46CE87Xz3Ic9EjzjIKSbz39iKNgQNuqo8kaLauOqRocTKdUDANN0QizjLXaAm2rBYCuKKIcRJqhh4Bqo4JtGaRphqGpeEGErqmzkLtMFCdoqkKtWeXTrzx72tNeZAW6pqKqCvmsmUNRZG48d57HTw9RFDGMqoqCLMmYhhiIHo126feFl0yXdaIsIclTllfmGEQ+miwz71Q512mzUV0jmnVZR1kmfFaVKrqhkWY551cWqOgWNd3l+wf3OfJ9glD0leuagqIqfHj3CWcvrpLnBX6aEk3E8PmZW1dBk1k7v0Q2idjdOaLVqOJWbPK8QNVUPC/kwf1dPrX6DK2qSCdPpgFtq44iSVy9coasyEgLUaVaN2rMOy7f3HlPeC8rFmcabVzXYnvvhKfbR1Qcm9svXoI4F2v3MJspw1AxjNOAlG5oZFnO1atn6Xab/NnMJ21bhlA0XUvwRmXhwZsGQgWpVRxqNYc8F6pnlufkZcmT0R7LlXmmScDD4TGTxOPJ+IQgC3i2cwlD0TjXXCeaXauKIvMn228z5zQ59Ht/NW+gv+JzcuIjSRIDLybLCqI0Z77tMPUTjg/HzDdsTE0hTQt0Q6daMTA0sYXLMkF2iKOUrcUqB8MQRVEY+Ql7w5AX1mts9wOGXkIQZ4w9oTTXqyZN10CbYflE3rdCxdYIg4SqrTFf1WeYH3HzphniZgjAdG2xqi6FehmHsbBfzKDxSSTWu27d5eKzq2IoKsRQpBnaaTUkiK3E9Rsb+BMfJNG4I8nS6XpfMzSmU+F1dCoWpiYTJTm6LlNbW2M4DFEUmUbDorvYEDfWmizaeZIUNJ12xxVf/qNjqs0qeV7SqZq88d4hYZhSeGPCMEVRFRRFYe/DR9QuXkep1BkOZ+goSeKln3hGQOTrcxD5HOwcQ6WN4VgQeWIAnfQZHA3odBziWCTHGfdYbNoYlsGl6+tMJvGpX3JroUqaFtx71Mf3EyzXOl11S5LE/t4EWZFZXO1AkZOlAvCvzLY6qqr8qANeVUjjlPZCG9M2ebozJE+FvxNEOEk1BHO3yAuiUKTshS/UFIxPU8XzBOx+b+DTadqYplCip9OE3vGEOM64erbNwlKDC2fE53rgi2vrh+8dYJoqkzBF/dha9O85nzh8lkmObOlIa2sYqy3odsn+/G3KJMO8skn2eI/owQE0GpR5QdqbQlGQHg6RNQVJU3GeWQDXpdg/pHqmg7bYphiOKZ88FEicZhNaLYKeLwaCKIKDA8H3DGL0uarwnGoaRrcG7TblnfdFp3rLJfdifD8Vq15b1AQ+jRMqukqcFaRlSVwUzFk6oyxHRQxhaVkS7Q2JS8Ge/Jg1mZTlaY2moyhoW6sUpfB8GrIkAkczxdVUZP74N94mTWfcvo/hr0GAUTXJvYjeR8fE28Lvkbz1HpM7+8i6wtRLaeoa/SdD3PU2WVYgqwrJyZR8OKEIU4yFOi/cXMIfhQzDjOEkISpKzpxvcZCkHD8dM84EmD06nuAqCqapcN6xuPLKGldvLWM1LLaaDgUlVUXhcBwjbWyiLM3z4n/9C1xuOlCtcvb6As7Pf45sGqFfPSf4avfuie50RaZMMtq3zvDm798jinKqzyywcGuDBdtA31gUbUSzAFJL16httpEUmYoiAPOOIjy3sq1jLDV41PeJS1EAUFVkwrygo6lYsoytCO6ho6sYhuifnutY5EVJkeUCyyVLZE/2kHUV57XryLqKeXEdwpD0m98l63l4X3+b8INtxtsD2i2TfByQ7R6hLnZ+1Iz0Y3aSPGetVmOjvkzdNHF0i3uDRwC8trbFznSfu70dOnaDpMiIspiSkp3JkCjLyMuCObtOlMX0ghEvnFljo7bEKJ7ycPKYOEtZcDu0rTq7JwNs1eTQ75HkCWEa4acRXddFk2Us1WClWmXObvPuyV00RaGi6wwGE6JZUGV5qUNRFAyPxziWSZxm5EVBEqXMtWqMpz6yLBOEMWEUs3fQIwhjAZNX5dMEt65peEGIqii8tLxGkmYica1r5LOmIwDL1Pmff+cPRddyEFGUBY5mosoqrmMRZxkPh0MeDHsceB5PJk955+iAumkSRQm2Y3L3+IStdgtZklBkmbu9I55MDpCAjm3z6stXGU18JtOAydiHAi5urfLRg132xhOBltJldkdjZFujWnXors2xstbl4vk1HE1jbWlupkZWOdrrsVZZ5srcAv/Vz/0s166cwVB0Llzc4FevfxaAlcoc+96Yd08+ZKkyh6WqDKKIl85t8r997U+ZjH2arRqfevY8nWaV28vrVOdryLNGqXrV5cL6IsZfaFWxLYN8IoJG3U6DpwcnQv0KY5yZUmJbBq5roakKaZqJYBegaSrNZvUUceVqJmmRs+cdM46nvL5+nSRPudxZY5r4vHX4NlmR84eP3+bp5JCHgyGL8y1OAh8vCX7kVf0xO/rMv7jWcTFNFVmCyayPvT1X5enRlMO+TxxnWLZoLEqz4tTHGMQZa+tN4rQgTDLRy96yCZOMnWFMmOSEScZCw2I6TahUDBRZYhqmyLJEFIkbwMEgQFcVqjUL19J440GfVqeKLMskSU4URCRRQrUp/JmhH6KbonEnSzOiIKLeFt3wZVkShzH+xKfXC/DG3qnlJU1SUXVriMCLaZu0Z2KMpouB9rSdB6CED//0DZI4oVoV4Zt21SRJhFrX7005ORozHkcc7A7YP/YZDkOKosQfiyrrft9nfqEB3gDd0BgMQoZeQhxnVCoG3We2iMKEcW9MFEQgyWyc7ZCHIf2TyQwwHxIEoomJmfJoV2ysRo3OQgupvQSjI1B1iv4BlqURxzlf+cJVmlvnsHSFtc0O18620TSZ9TPzpGnBnacjoWDPBrwzW3N8/7v3KYpC/LmNJoYleMVmxUFRRAjJcizmuxVMU/g0P1aKxeuo0l1sMO6PybKMJEpwKg55mmPYBqZtCr8qYvg3bVFC0OnWiaIMw1BQVZnhMGL/yOPgYMpXPn+ZSkXHrVpMJgkf7gxJkpzvvrnNYBAy6o2ozLXIkkz4VsMUx1A/8dr/5LW7ImOszYGmIV+5CtMp2dBH2dqAIECZJfEIQ6HYAfT7FHGKpKliXT4/B8Mh6WDWKlOtIpu6WLMvLAjWpWXhLtfJHz4Rnsk0hTRFazgUSS6wQ7KMsdGF/X3K4QjFMVA6TRHaAaqaSpBkBEXBpmviJxlJWZCWBS1NeGCUmecwL0tu/8QmqmswynI2WvZM8ZRmiueMCVgUYJqokoSpiCS3SLyDl4u+eEdRsEyV3I8hCknv74CuY59boAhTZEni8f0B/UFE7kVYbRdjpUWWFZimgm2rSKpCWBRkYYKxuSD8MXUb5eWXIS9wmja3vnKJshSp9+kgoKNpJGmBq0g841rUXr2EDFRcjfW1Ct7OALVuk04jls61eOXWKpok0a0ZlIEPWUb4+99m48VV4q+/gXFhjfTbb4g3fpIwfn9P2CNOTij8H/lvJQmalxdR1xbxP9jj7AtLZLvHYmiXwJEVxon4QDt6PBRtgrIIJBVliT5XE0okEjVFZZrnRGVJQ1NxdJWGJlBYSVESpTmGriCrYqhWFQlZV8X1IUmkJxMky2T6B28iXbxAdOcJLCygzgnvnHttjTIrcOoWRrdGOAhQmxXyo96PEF4/ZkeRZZ6d30BC4uWl6wRpxDCa0DCrQiHLM/Ky5CQYUtFtsiIjzELCNKVmGBx4Y+adJqN4SpBFjOOYqu6SFwVeEtC26wyiEaqsstxp8vbRE6q6y5PxHtMkYMFtEWUZddOkKEue757lg9599r0TJMDWNDRNJZslpCdeQJJmrKx3CaKYdAaDrzdcgihGU1XyvKAoC1568RKaphJ5Iec2lpAl8WGbpKlQChWVNMtxdVENZ2gqRVniOoI5mcyS2EmaUa06pGmGn/m8fbRHVmRcaLcxVPHY3vlom95wwsPRLh3bpm6YIgRgaDiGTsUQpIAky1ipVlEkGUfX+cm15zFVlVa9wpdeeU6sFRWJ3tTHNHUCPwRTYeuZVT579hkAbMek223SOxkJJmcY0WrX+OpPv0y94jC/1BZ1wprFb975AVdWl/ijJ+9wY2mRtw7fx9ZMCgp+8HCHiu4wjKbcHwyYBCEr1TZeEPLMmWU2mw0eDoa8cvU8h/6YqT8b6iQYjkW14Qe7B2JtbmoiEFaUbK0uMA2FqmnbJpkXi99fzUGWJepV9zSgkM6+mDVdpVJ1yDKRrh5GPpqsMAjHGIrOb330BhdbW2yPD1hyu7TsOpPY43JniTjPsXWNtVqN/eMhhqKzM+mxPd77a3xn/eUcSZK4er7DySSi5hoMpzHDYYhhqDiORp6XDIcRhqHSallkWYEXZURhjGEoTCYxK3Muu32f4TRG1xVqlo6myKf+T9fU0FQZyxKezyjN2TnxmExiGnWTKExxHB1Flri81eL9+32m04QkyalWRQVnHMa4dZc0TsnSjFa3RZqItHRZllTqFQGSn50kSlg9s0AcpxSBR2OucRo0KvLidAj9ixWaiqKcIpk+Znzqpo7SWhCIphlaavtggmkqtNtioJIkiXvvPSGOYlRVYn7epV43TxmWui5eS7KE/uEA19VJ84Jq1eQLzy9R5AVr602eu3VWpMWB4TDCatSEcqlbUJ/n2pm2GD7LArVSI/RCDMsg8CIq9QoXP/0SAHJrQXxvyRI/uHvM+maLHz7osTxf4fHRlLKE6TTmYG9Is2IgyxJHh2NRwNAQ+LTuQo1KxWAyiTlzrstoIPBJ4qKRRQNVWtA7Got2xZlSXIxOME31lAqlGzqZ75HECYYt8FeVeuVUWS3yAn8iKAh5XqDrClEkXuckyTjYG+A4On/4pw+5fWEOWZY4u1bHtjQURaLedFBVmUpDeILzPGd5ucbTnSHbJ5/8HfuJw6diaZRBCHlO2RetPcb1Z+D4mOD9p0iug7m1CN0uRZyKBLGiiGRxb4psaUgLi0g//WWM5y5gLM3YYIZBcdwju3MfWi3yjx5iXDkrvKHjsVA3fZ906KPWHWRdIfpQdMcjy0izuqp050isH8qSfpLOVrUlFVfD1oTSZssK/TTjJE2pKgI3JEsS+lILxTFYNnQ2v/oSuiwRFcXM5ykQTI6sQKWCIsEwzcgpRZe8LniZhirjagqrr19An69RJonAUM1WyWrdZv7WBhVXIAuSgc/0YELa98iKEsfRSOIc9cwKjqogq7JIt1VEaCn52tcpkhxjuUG03UOW4FzdYjJN2Fx0UVWZnzzT4vytFaI721xbq4lBq1PBrFk8+d4TcQHOVSmSjGeud7FtTdxEHPaxfuZTaGdWUJsO/T9+lyIV64Xi8JjmZ54lf7gNtZoA+hcl/vtPkQHl6kWYThmNY4yzS2STAEUSg/HHzFXZ0nn3eEpWltz6wgXCouALP3MRpWryrTd3kSXxe1s3DaKioOlo9KOUes3AURSamkqYFzQ7Nt4wQK1aqKqMcXYJDAOl5qLWbMo4pnJzi/LOXdS6Q37vAfGjQ/RujfDBoQghnZlDrZhUt+bJh1NkQyM5mXziG+Nv6nE0jWkiPkAH0ZAoi7nQ2uTh8Cnb4z6ubvN8d4s5p0mUxciyMgvdGPhpija7dp+bu0LLrLFYqRDmEQfegLwoeOf4Pl27w6PRLq+vX0ZTBPey64gB6dgfUDEMGqbF49ExmqxQMyq07Tol0A9Dkpn/azQRikg6s+QYmkpeFFimzmjoMZkGuI5J6seUJVzodGi3atRbVf6j2zfRNXW2boe8ENWa8+06Fd1BU1XCOBFD6eyDWZIkdFWl5tr87ZdeolFx8JKAlWoNW7OE/6ks+cK5y7Q6dUzLYHcy4elkwiASvdiVqkNWFFyfP4dlG+iqSt2s0LbqGIrCHzx6UyiWpsmT8Rjd0Lh8eZMszTi3tQLAK68+ywsXz/Du0S43n7/AfL1Ku1Xj7GqX7cMeeV6wMd8mzXNuXz3HwkJLBMaCEf/w+Z9kq9mlbpr8yd37GIpO1XAZhGO++sINnowPha8X0Rv+1sE2kiTx+sYlAKYTn2fn1pkmycySoCIpEqqi0nVdfvjuA/Is53Ofeo40y/nqVz+NJst858/exzJ1gihmfrnN1A9oN6pMZ+qnqYtK0Mk0oNOpMxn7p2n3V9c2MFXBF8zLkjhPuL10lu/u/xBXt7g/fMIPDu+jKRqPRsf4ScLVuXl0ReGZlQX2vBMapsXD0dFfsb1J+wAAIABJREFU+fvpL/soikSc5kRpTpyKQb3dtvH9lF4vIM8Lmk2Lpa4Qd7IsZ+LFs4RySZYVTIIES1cwDZXFRVH36EUZ0zBlr+ez2rJ5cuxxcb1JpSIG07qrC3UuyXFcA8cRdZxBnKHrCs26SZrm9HoBcSyS1x+rmmmSYlrG6fBimAbTkWBnVhqV01T1xmqdet3GnZ/j2uWugNTPlFKAPMuxHIuBJ0DqUSC2UaqmYjnWqSdUVmSev3UWy1KJ0oLleREWzfOS9nyNF19Ypdqoohs6O9sDjo99wlD4TU1bcCovrjehNk9RFLiuThSlSBL81vd2aLUdbEsoopZr4bQa+F7E4qoI6c1dv8HZyxs8OJxgNpuY1QqthRaLa3OMtncIfTGEFkVJc2MN3dSZejHjwZQbl+ZRFJluy+Heoz5BlOG6OnGc8czFLk+PPRquwfJKA7dicdj30U2dixtNiqLk+HDMynxFhLVm/ln80anvd3J4TJqknLu8SlmWvPbzP4GmKTy6t3uqiNYW5onDGMuxmA6naLqKYRlYjkUURsRRzGQcUq2KJPvWah1dlanVhH83TXOuX1vit7/5mLk5l/4k4sn2SNiaZJnj4ymKIipYF5ebxHFGveHw0b3jT7z2P5nzaZlIC12kObE6B8QaVpaxznfFOt0LTtmcsmNQ7B+in1kSuCRdRfrsL8DDD5HWz4hWmlqNYuIh1yqoz1+Fw0PKJBdpzvV1aLUgCEQqXpHJpwHZNEK2dErPp0wSwvcek/Y90r748qpZ2umk39BU5s62iNKCymwNrkgSVUXBK3I0SRKKpiTx9P0jZFni5HffQv4LPk5nBnC98XdeFKGrGRKmqWsYukKcFXh5wTTJhV/TNNFvXkWyHaHuxjHJ4Uh4XpOMNCs48w9/muEwFn/f/RPCoqDRcRgMIoFiKksUW6f0PAovQHId0qMJztU10pMpZZJz/lyDpeUKYy+l9cw8D3qi6UK2DYpYoCXKJMPbHzM58dE1BWeri3LlInffPaa3M+ajA9EipS7NEfzbb5LcfYzSabK376MvNFEcnTLLOfnDt1HObZJt75OMAkajGOfKKqYiC3zWiUgbUqmgtVxuXl8AYLVt4yiy8IwiUVcVyiQ/ZaW++9vvn/a4f6xwLjgG9ZqBq8i8dzQlLgpWFhyaloZ7Y4vqYo3h/gSzboniAkURLVpLbbKBD7aN/OxV1I1lZFPDuHEJJAnr8jrW5z9FmWQkR2PU1S7KXFMozTv9T3xj/E09H/s5VysrVHTxnnU0G0PRWa93mLfbDKMJuqzTNGtYqsH94Q7r9Q4glNPPrrzOt/beZLnSZcFpYiliRVM1HD6z+hKHwQmKJGMoOlfn1nB1h9GsAUmRZKZxTD8MmHerjOIpfhryvd1HBGlKlGWoqnJag5mkGd12k43NReI0O/VzqvpsDR6npx3viiTx4b0dDE3jD+7ePf05zAIwiizzy5++TdOsE0cJcZLhOiamqYs2pbxgNFMgG2aVnzv/ArZmcuh55EXOSRDgJwleGiLLEv/JzZ/haOqhSBIPh0OSJGPecRiOhJ82S3OxKZEVgiyiYzeI8pznukuM4oiqYbDYbdGZazAee1xdWuCd9x/Rqbg0TRNNUag6FuMoYjINGIURhqlzYb7D5zau8e0/v8v2cMRHD3bJy4JFt8W/vvtd7pzs0XVq7O/30BUVTdaYxBG//o0/5bnuee70djg46BP4ESvVqlAyZY27B0ei3lCW0WSZ557dQlFkNlcWxPCvCO9sterQtm2hKBcFX/veO5AVpFmOrqn4YUSjVsFxLeo1l48e75HmOcuLHeZaNT514SyLi20O93tYlkGYxYRZhqHo2KpBLxAq6wvzl7nYOgvA59ZvockKi26N19efJy8LpnHMzYUz2KpBw6ye4pp+nM7HLTIrLQdDU/D9lKZr0KibbK43cBydOM5pVUwaVRNFkTk58Zmbq6DrCvW6yT+6vUqU5tiGylJT9LxvPx1h6gq3z7fZH4XIkmjQc6xZaKUoURQJTZPxphFJkqEoMmM/wfNiHjwaUOQF46FAO5mOeRoSqtQrLC+LIde0hcL48cAYBZFoJJJlNEXm+HCEN/L48IH4vDVMA0VR0A0dSZL4idsbuKYmqizh/135KIkB1ak6uJbGC+fnMDWZnYOJuNE9GmMYKuMgIfRDvvS5C8JvKkt4XkwaxVSqFsPeBD9KwbA5d2mFds3i3gf7VKsGvp/Qbtl4foKmKXSXmtTbNcb9MfW6ib+/h2FqtNvizxim8SMEVJBgtDooqsLWuQ4PP9wljVOiwYAsK1lea/Pugx737gge8tH+AGXmgyzLknd/KDi9OwcC1j7sTdBmpRi7fZ8oEhWaR8MARVU4e2FZKJer6wDCMpEl2BUbTZNJ45Ttp2OePDgAOB3y/YmPW3ORFRmn5nCwfUiapLQ6VZyqw8LqPGvrzVP/7MhPUBUZVZVZXGqQZQXDScQXX11nteOi6wqv3VimWjXQdYXV1QaKquBWbS5sNjEMlXr9R8Gzf9/55LW7ZUFZUu5uC4+cZYHvE3zwlNwTlZFp34MoIjkYIZua4HLe3cZYaSOtLFP8zr+g7Pcojw+Ev3M4RLYMitFEQNllWaTEokj882QCuk4ZJxhrc+RejN6pCj/k8QTJcdAX6pibIsafpgWqJlNVFXRZIslLzM2u6GjXFbw8x5hVNs42TGw6JhQFyxc6LHRt7j0VwRk/L2YVkeICSXdPoNcjL0X4Jc4K/EgggyqKzO1//DqelwqvqiJgzdrLN0DX0ZdaSIaKUnMpS/jon/0eo3HC8XGAMVNOFdfAtjWSwyHttoV1YQWp0RDK6NEQY61FejxivDcm9GIqf/dnUWydqCjQljtcXakRBBnRdo9gGDCZJmidyqmRHKBMMiTLplbRKYqSW88vgqJQDoZkfkw2DKAscRz19Dko3Q6dL70IRUFyKO6ylm6skvXEuoOjI4LHJyzcWIN+H+XyBZz/7r/FlGU6G0Ldzr2IiiLTTzOmD4+xFJkiyzl7rokqQVVVMGThEd24voAfZKiyCIJ5ecGjfQ/HVik9n2wa4dgqlJDsC64sSQJpSjYNST7aodzdpdg/FOr78bFI6ScJWDZKzcFYaZE82IUkoYgSzO6PX080gKUaFBQ8njwBwFQNhvGYD04OGEZTojzi0B8QZCEH3gmGotEwKzyd9KmbNktui//lvf8dCYmkSDBUnZ3pAXlZsjs9omk28JOQpMhIihRZkhlGE2zNpKSk67aJsozVahtdVnkwPMRQNJarVdZqTdJZQl1VFVzHxNA14jTlxaVlojjBMnSiWTIdOOVzNjt1NEVh69wKa2tdnjw5QFUVPC8U3M9Zc8f393fph0NIxDowjBKmfogqy+iayq988TVGE8GPtFQTWZL5hWduI0sS51tzdByRrg78iP/hO79D4If0+mPkGbPT0UR93aHXY2GpzVZz7jREMwjHnG20mSQhQy+k7wf8x89/kaZpMh77LLp1rl7aYBLHPJ1MOPQ80qI4Dfnosx5nSZJwdYdqRazgXn/lGoNoyDCakOYFR75PkgvmYtVwyYqMim7wa595HUPRudfv47oWn796kVEU0W7WeDo9YjoJ+MmL59geH1DRdf7Hz/9jVEVmaWUO2zII0pSKYzPpT3nQ66PICid+wNaZZSRNxpqxPhVF4dzWCmmaoasqVddm4gXs7p+gaypekuD5IaYlntfD4RBFkkhm/NhpkvDRYI8D/5h7g0eEWczD0TbTJOA4mBJmEaZqsODWuDfYJSsysiJnpVr9a3xn/eUcYd0oeHw8pShKGg2TOCvY3hkxnYU4xuMIP0oZe4JZqWkKeV6gaQqOqfHrb+zieQnduoUiS5xMRFjreBzScjRGfoKmiqAOQBBlaIpA6XSqJkVRsNByyLKCfj/E92IWF6vU6tZpglqW5VPMUlkK+H06K3YQmB71tH4zSzPqnTquqdFsVzBsg/3tIyRJIo6Eh1idIb6eHEw4GQZkWXbq681mti3d0PnFn71OkRfoqoKhyVRNhZsXRJVtpWqTJDnjcYSiKvz+Nx/gjTyGvTG6rmDYFq6ro+kax+MIe26e9cUqnaqJYRsEgQDyA+ztjhn0fb58exVVlUmDAMNQaW5uEgYxu7tjplPhxa23aximgW0L/FDkR/i+UHunoynrV89hWSpBkHBy7BFMAyahWJkrioymySwsVHn59hk0TcH3BRbq4pUlBoMQfzTl8NBjNAxYXKrieQmua/D8Mx2SOGF+sYmsyAwHHka7g3d0zOHhFEVTCMOU1c0ulOBUHREMk8ByzNNqTd3QifyI44MhWSL65KfT+Efs0IGoevV9YXWYjEOOjnweH3s82BtxeOjxg3snSBKMRiGdukWrZaNpCgczIH1RFKyuNj7x2v9k5fPMlmgfCgIxeOo6DAZiTbPYoZjMGIuAtbUg/Hh5TpHleO9sI813kdyKCBCdnDDj5kBRiEDL3Tvk0wD14haEIdL8ItLP/x3K3T2Rrq9W0RebIsikyOLnl6XwgOoCNm06OoauzCoeSzZWXOLHR1iyhBdn1FSFqxt1rt1eZZiJi9o0FfKxWOl3vvLSaatRPvODenlOVVGIdwcgCRi9PBtIl2cA+IW2zd1f/wZRXrDzu++I1H5ZEv3Bt8A0KfxQPIf1dRY36tSqOklRsPXqJoah0J2zyb0Y21aRNZWlv/tZKAriu0+Y7gxQqibRkx4Hb+/RurKEriv0/9ffoMxLXvkvfhaShO4rZ6nVdGRVYTJNqVV1FMdEdQwaaw3mzgs1C1Vl+UIHRZWwzi2K3+3KMgeHPvaLz4BlYRgKZRgiGbpolfI86PeJJxFaQ/yOpw+POf+3XoDpFHOxjtKsIW1tCavEm1/nwtU5rK1FkqIUqjcSNVVhZ2fK869t4j3uodYs5k0dQxJ97sMs5873nrJwtsnmRpWXf+0z2IqwM0ymKdkkZH93ih9kyIYKiiwem6KAYVCmgpma7x2RTULhvZ29iSgKyr1dpJc/JdixWQ6tFsprnxYWjx/Dc7G1xZzdJC0yTMWkottMYo+GZbHgtgizmLZVI8piDFWnblSIsxRDUfj2k8dc6Vxgo7ZEnCf4aUiYxdSNCvNOFVVWeb9/h7TIOd9cw0+EovLZtZd5PNrnyO8zZ7foOKLW01B1ajNengSC85jlYoizBUsSYH21y4E3xbFNokQMQFcvbfDFV58j9UTy3dQ1jnyfpmnyKzdfQ5ZlkZbPC8qsZDCaYlsGo9GUhllDsYXaaRoaq8tzQplbaPObf/oWZVnyG++9RTobav75D/+YulllEHp4ScKl9hnWum3aNZc4TnlpawMJmJtvcuT7WJZQP/7JzZ9DUzS+f3CXN/ae0rLrbI8HvPl4h2cXu2iqwv/01r/laOrxT7/yZUaxz1euXqdlWVQNg+OjIS3LQlMUalWHzUaD1zbPUDMMbNXi1Svn0FSFF5c2CLOYq53z3L23w83FFSq6TcW1yIuCIIt4Op1wEgyIspjxyGO100SRFB71B3zhxaucBFPanTq2ZnKhtUnFsPitB7/PM+dWubbQJctyaqaAxGuOwfaTQ37qJ57jcL/HVrdDt90ky3JkWWI8nPLBncesrcxz7coZ/tOv/BSOJRqNDk6GnAQ++3s9AcFXFUxVnVk6FJpWTXCGJYlDv0cvnOKnAQUFh57HcqXBod/jlaUXMFVRcbpZX+blxRvMOfW/vjfWX9JpVgxURWI8jXFM9bRi0zQ1mjXrNIme5gU1V2euKT6LVVUmilLm66J6VpJgEqY8Ppqyd+JRqeiYmsKfb4sN1aWlKgMvxjU1bm616U8ixl5CwzFotlwmYYqmicEoTVJUVcb3E2zXpFIRK/Y4jMXw1arw+OlYBGGSjEqjwsbWAteeXSJLRfNNkRdMQsEPvX5jE6finK7pJUnCG3moqsp4HLPUcYUSKgvWp+Va6IZOo1Pnd//kI0I/5IfvHzKNMpKs5M27R1QcncCPqVR0Wg0L0zZxXAuGB5w51xWjRqPCZBJjOSaKLPG3f+4asizxR3+2TVmURFHGuD/hzp1DVtca2I7Ov/h3H5JlBV/4yg36/YDLlxdotlz8achkElJvVbAsMdA1GhbLG/OCf2qqbGwt0pxrcma9gaYpNJsW/cM+l66vs9xysF17NrxDHOf4ccbe3oTx0EPXVcEl9WIuv7BFnhdYtk6aFix1KxiGyqOjKQtrXc6s1SmLEmP2OmPa+BOfl185RzANsG0Vu2KTpYJikcUJ+x9tEwURSytNvvKFqyL5rqlM+iOiIGLQ90nT/LSP/WMPaJblaLrw3R/1A3afjkgS8Tlw7+4R6+sNhl7M+fUGlqUxGkW0GhZfen4J19b+vy/62fnktPuwLyo0ZVl0n4Yh6DrWy8+SPNhF0hQxEFoW0u1XAcj6U8oZZql8/z3Ku3fEwLi8LFTN6ZR8GqJUHdHgo6tiOJVlyicPKb/zh5R5gTLfgiiijGKKRAwe2uo8xXhK2puSPD4QzNEsJ0lzdElioWFhN2yysVibJUXJxpKLWbf4wXd3uFR3uDDvij72B0dIilBcr316k6gQrTpLho6tyGI9H+cCqI+Axj9ztkYU5UgSrPzqFwninAJ4cCwGTyQJY2NeqLtrKySHY+j1CAYBlqWiSRKjDw+ovnKRzoV5kCWCQAzE43/zdQo/JDkaYzdsJFkm9mK6l4SfdjiMmU5TJic+0vMvwby4+1N0weoKwwx9rsr0wRHmWovDj3pCfdZVyDLefWOX5Z+6KgJdvg+ex5nbG5AkSAuLLP/8S7NuXhn5/JYI9RQFjS/cQtZVlGYVTVfE/18RTRZlEFAeHpI9fMrJ//G77D8egWkKFmqYoMsSbVfn8me30M+vY1ZM0lFAnBXc+NVP8+JPnqX+F6T5OM4JvvM+DUvDtlU2z9aRTU1YfSWJIhT80cIPxeNTREuSpCkonQZaw0Hr1Cj8ELVqicfS7lDuPEapueKmJc8pf/gW8cHo/+/3xN+IcxgcI0syiqSQFSmT2EdXNF5bvcb9wQGKJFOUJZqi8tLCc0iSJHx2aUrTsfm9R9/i0WiXsizp2nNEWYyXBhx4Yyq6zZE/wNZM9r0T+tGYHxw+4nsHP0BXVDZqS+Rljq2KgdNQdNpWnZNgyEkQ8EFvn9osqHPcH2HoGo2ay2KnwSiK0FXRlnN+a4VOs8Y3/vwOKxsLnDu7gizLPB2OaNk2QRrx+ZeeBUA2VFrtGrZpYM1WeUd+D8sUSv/LNy6KOkFN4z//3BcZe8K39v4Hj9BkFUs12Ww0CNOIS50N7p30OAkGHI2nTKMEw9C42+vx6uoZrs3PCz94UZDmGf/s7f9bqHW+z2a9jqUaHPs+63Mt0qJgMJiQFwWj4ZRzjTOYqo6hatRNE1mSSOKEjm2zfdjjbLPJhye9GZaqjiqp/OY3v8/Pn38eSzUYx0IRfP7yGYIsZqW6wC/dfhFNUUnzlJeWtojyjKzI+JVbr9G27VPQ/lKlhSJJVEyd7fGAXjjk6XjI196/x6MnB9QM+7SX3jR0WvUKX37pGhfbHSpVm7QoCKKYf/q3vsxPvXId0xFqmaPrBEnCHz+4T7NewdA1zqwv0HVcNFVB1YTnLMlzoizDS0JkJLQZVq1t1XF1k47dJM0zKoYYNjt2g7uD+1iqQZLn5GXBm0c/5MAb/rW9r/6yztEg4HgQoGkKvUnEzt6Eoiw5t95g/8jDNFQ0TcYxNbYWquRFSZ4Xp+vbt+4c8dHjgShAkSUmkxjDUOn3QyqWUPxMTeHBkQh/HA4CvvfhMZIk0albxLMbiiTNqds660s1iryg3w/wxj7aDHCfpWIFXKlXiKKUfm9KWZQkcYLtCvHirbe26a7Os7w+j6qrPNweMZlEKIrECy+sAmKt7tbd007xOM5OPZ9FXrC5NX/Kwfyp22uEMybu4fYhRVESZQXdjkNelKys1tl9OmLixSRRQpJk4LbYfTpkcbHC2a0OUZSKEGNe8LvffkKc5owHE9pzVVRV1EXWGyIYt799LAKJcYqlq7OKSR3DUGi0XEIvxHUNDp726C422Nsds7JUQ1EVOjWLhx/u8uqtdfwoI4qE0nn+iqjTnq8a3H5h5fT3XqsZDIeRuLm9uY5tq+i6CGRlWUGtZjIZ+cRxLiqzg4S7HxwyHkyomJoIZOWFqC9VVc5fXMQ2VGrNyunW6NOfOscLNzdwahURlAKGw5Dvvb2P7YqbmOZCm1rDRdNnf38JritCZknyI5W9UjFwXZ1gGmBZgk2rGRq6KuOYKg93x8LC4YkA2XceDNg//A8IHCFJSLWGWCv7vlA/4xjyHNk2kDY3KcIEwpDy4UdIqoI6V0fSFJy/9wvkEx/pxduwuiraaFR1plrJ0O2iL7WQb9wUPs9mUwy6WYbcaVEMRuRHffEYFBm51SDbO0FuNzHOLol6yjBF1lTmOhadpik4aeOQLE7RNZmckn4/Ip1GuJpClpd0L3UZTxMqn3kOpeYSvHWPr3/tI5ozzM9o1j/ezzIq6y2K0YR45les3NyiWtN59u+9zA//+/+LsChQgAVHF1aBx49+9BpFEc4XXiF860PqFxeJ45zNjSqKKkMQoJ9b4+nDAUmaUxYFWVYib51hb8+nzAuyUUD1XFewU4uSpedXiJOc+VsblD98A+nSs0Q7PZzrGzgvbOE6GlrLxWzYRI97VCoauC5qt0X5+BGLczZYFuV4LG4iwhD15jXQNErfI72/TZkXgrPa7wtVMU6Y/N4bGKsdyjDCffG8uC5aLczPfQppZpNQ1xa4/1TUJQ6/8R5VQyWfRsjA+pUu3keHhG/eoUgz1JpFXpbg++j/4B9Q01WWFh2evH+M3bQxlhuomkhmup95ntF7e4ymKbWlKlmYoNZt0XDUblOOxii2jtZwyI6HwgrSFXYMuTuH9KVfhNVNob6rIvxQ7B8KMP1Msf9xO4NwjCZrxHmCJMk4ukWcJQRZiKmqNM0Gu9M+aZ6x64vu3dVqEwn4Jzd+iUPP4/W1V9lqrrLnHZLkKaNoQtt2WXTnsVSDteoSDbPKNA55prWIqRpUdIdpErA/PSbMYmzNxNUsticndOwGV+aWkIFpklCpOix2W1RdmyQR6ftRKMIGZVkSBBFBkmLOahrPL3cZT32+eP4KS5Um39n9iP/z974tQi6uzXA8RVUVjgcjnl1dYhhN8ENR4/nS0iamqfNf/uxX+G/+zb8+ZYG6tkVaZHzQe0DHdjgKhvSCEb/2/Gd592SXc3NtkiSl06wx5zj0wwk1w2HvsE+SiCHPT1JeWrjGnSd7KLLMSTDk2fkutqYxiiJunV0nihK+cO0y25OnvLRwjcejI57vbnFr6Txz3RZNy6VStXn/8IhuRUDvV6uLvNf/kMVui5pRIc4SsiJjknh8aesFbNUgymKeTgZiJSqJFPmC06Sg5F+++z2e626RlwWvb5ynZlS40F7lqxduUzMMPuzvc727wYf3d1AkiX/33vsYmoaXRFiGzqdvXubRaMR3treJ45Q5xxFBkSLjP3vhl7Atg60zy3xwf4eGZbHZborhR1X45Vu3effpPp4fsr48R5KktCyLlmWxUp3n4eiIummyWGlx4J1gzfycWZFxsb3KZ1ZfRZEU5uyWuHbznKfTIwbhGF35ZA/Z39SzMl8hCFKiSPguPS+h5uhUKjqrHZeKJW7A9wYBqiLTatmkacHnb60Sxxk/9+o602nM9rFHrWbieQnVqkHTFViluZqFrimkWUEQpFiWRqtqEsQZvUlEpWKgawp116A/ibBcC9vW2NyaExhBoFq3sVyLJE7I0ow4jEkT0XA1PBmRZcKnHfpi5Z9ECbWauAnd2RnzjT++c9r1PhlM0AyN4fEQ29bxvIQkEj/3wlqDatXgS5+7yL/67bdPh95au8YkSHh45OGFKccnPp6X8oufPcd0mrCyIVqZ5jaWxQCZCA+sN/bIkgxVkQmDiI05l2AaEM5QU5eeFUGd0ShicW2O6XDKxmaL9x/2mW877Pc8tlbr3LzcRTM0FuddTMek3/Oo1a1TluUkECxSQ1MwdcFl9f2U6+c7VCo64zDj/s4IVZFRFInxOCYMUxoNm3uP+qwvVNnfn9Jo2qKxsWHx4o01qlWdk2HI+TMtvLGHYRq896BHWZToukoap1SbVYIg5YP7oo5b14UVwjVVvnK9iyRLmI06oR+y//iA5eUqk+EEVVO5emWR0WAqsGm2ThAkOKZGtWrQ6QgrRrNps7ZcI4oyWvMNoiil3XZYXq5h6Sp+lHF4OEXXFeIo5fDYZ2dvIggDn3A+cfhM33qPcneHsjcLZ6SpAMD7vgiUrG6iXDwn1vJJQhGnpAcDrCubZF/7IxTHpPzwAzHMKIoYAJZFKARFgXYbihyp0RD/3u9DnpPtHqE8/xySroqBaOYFycOEojcAXUebqzHpCxVDNjQqVR1dE61H1nITL8q5tFpjft5GtXTOv7wmMBXbfeY7lmhVarUwV1tYssy1v/8yLVvHlGUuX2jz6U9toL96A7lZR5clPvPLN/n+v3wLRZagLLFtldtfvoShyJz/3HnKx09In+wLhdd1KfsDGI3IpxHq0hxTL0U1NIyqCZpG9miXuTmbPCuJ94a4y3XiP3uHc69vYSzUKaKEbBKgnl1Fv7DB4M4+83MW4cNjmE4pv/NNci8m3j4m2T6kveDi391HX/h/2nuzGMvy+77vc/b1nrsvtVfX0tV7T/cs3TPkLNyGpEhKpkxTi21Bsmw4SAQIyEtiwI+B4RcHgZ0gTwECOAYcOA9CBNmWzNikJG4jDjkz7Jnpnumt9u3u29nPycP/To3ykHGCRDRI1Pel0dXVt84999y63/P9/b7fbwnJVNneGYmdR9uGLGPpv/l9SFMkTTsjlmxvC1Xb99EqLrLnwsKC+Jplif1PUyMPI6R67WwHGBCqdpaRjqak+8dkec7qM/OUv/oiV3/tecg3tPC/AAAgAElEQVRy/CwjS1LiOMO6uoIkyyi2wcqcS9obEvwP/yM3/qtvYBgKS0sFsmlEsNtl49dfYv61S0LZVCWuPz+PrKvoFQfZMsjHE3FTsriAMt8gPOih3r5OMpxCpyOivKZTeO8n5N/9NvlkLFTaJEUuFkhO+hhLv5hd0W8cPOV40j4jLIokM19o0Jn2Z/3sKstejWz2OoZpRMcfcam2wB88/GM2KlWG0ZAH3W0AyqZHyfTQZZWi7mFrJoNwiC5rbFYWSbIUT3c5mfZZL62QkVM2PbE3mQSMwpBeMKRul6naNsOJj66pOI5FvV7C82xsVWW1XCLJMm7e2GC+VUVXFV5/9ipZlvHw8IR6pYgkScy5NVaKRUxD4+996TNUigVs0+DixiK/9Nnn+ZXNV3B0C0VW+Ce/81v89//6TzBMnTCJcGyT3/zip1AUhV/+9G1Op10+7J5ytb7BpcoKJ9M+p36X/cGQS9X52e6lTst1yfKct473KZZc0iTldDrkmVaLN4/v8ZVnrtFyivSCCeMo5Fp9mUXP44Nulwv1KjvDAXGW8F7nQ8Ikoe33edTbZblS4kHnhEXPY7VS5qePdmn7PSxVjFL/2dd/D1VWibMUV3fI8pyng30cXfz7fKGEKqtsllfQFI2iWUBGBHQPgjEbpSXm3Do5GYqk8N29e3SDAFWWORyfoioK166v86vP3OY//6UvIEsSveGYznTKJIy41Kij6xqubnJhZQ5VVvknP/qX/OPf+FssNCpsrs2T5TmH4zF/+7WXuHFRHEcYxly9toapqJQrHuYsc1QY1FbZKC/wuHeMpmgcjXt0/QGjaEovGHG/94B/+/gnZHlGlIr4L1PR6PhTCrPn/YuExw9POGhPcF2dSlGY7ZaaBT7cF53q7WGArir4YYo8WyeK44yt1TJ/9L1tDEPlW28d4jg6rqVh6grloomqyliaTJrlDP2IwUSQCt+PUWWJ/iTk0xer+FFKvWSR5bkgo21h6pIkMAwVfxoyGoobuVLZgRws26RY8Qj9kOWNOepzFeI45fnbSyRxwt5Toay6tnDUX1yvYLkWW5db2AUb0zbZ2Gpx/bl1rl+soaoiXunXv/E8f/St+wBosw7yWy+sE0cxi8tV2sOAp7sDSq7B4lyBKErY6QjVeGneE8asmkMcxgwGAU93+1iORRzFdLo+S8sVfvyow7XbaywseGe7lgvzHvPzHt3TIeVGmdPTCYahsL03wPcT9tsTTgYB9YbHwyddGs0ixZLNh997k3fvn2I5JmGc8g/+zh0Agijl+HiEbWu8v93FNlQkCVbmPZI0o+yZFItCSazVbNI0ZziNaTZder3px9WnM/V0OAx5ujdAURWcgsWdqy0+/7nLACL/tCQ64YtFEdvkmBrFqkd/EvHP/vABr392C6/s4RZdKs0KD+4f85nXLlGpOsKhX/PY3GoiyxKVis00TAgCsYPrujoLrQIHx2N0XWE6CZBlid3dPv1+wFFnwv33Dhl2hyJH1jPPSnOy7JOzeT9551NVxMjcNIQhSFXFh3qxiHb3NowHIMukuwdgmsiGJpTQNEVZFsYWxmOS/ZnlPs+RqrM9xF5PjOG9EvlwyKyhHqlcRb28AZYYp8qeK/b4NA29XhDfZxiC9GQ51noD584lkljIynmWo19ZY65hoWoylVevoreKZJMQSRLRFotfe06MrX2fZDQLGy8WWd4Ud/B5lnHyQVsomJrGOM1AVbn1+Q2Kv//bBPeekKU58emIa1+8iKQpxP0pimOQ7++L59yfgmHg/sorSIuLpGmGeaEm+jqzDKVoUX7xIpIMeZKKCKssR7l7F9nWkXRV9KuPRlCpYFkqZsP7WLHTNBRbR1Jk9DvPMOqKUbPyzHUkRWZ11YNikXRnX6w0fPtbYnWiWIQ8Jwtj/He3odEg+fAp0l/7NaF6ttviJgNxXFrFQTJ0kXYwUyzRdRGldeclJFkiTzJcVUFvFZHmF/B/+gRJVViu2JDl1L7wDJgm9lYLpWDSev0GsqmhehZ5lqG5Js6NJWRDQ6sXyE/bsLgIhQL2Sg3z9hbG5qwasFAQyvlHNyuqit4sIpVrmMs1UFWi44F4DnkmVF4gHYcYNy+SDUaoS02kq9c++VPh5xQVS7i+VVllGI3QZ5Vsc26dl5du8fbpfQxF5+lgH1u1MBQxqrZVi3m3jqPZPBnscjweIksStmbSsKukecbD/lPSPKVuVRnHUwbhGFM1qFllLlVXcDWXOI1neY4+0zhgvSze72mWEacpiiJzqVrl7toKvh+iqgoZ8NzcOgtzNUq2xaVajZpt4xnCYatqKr989xnKpocua3R8nzhJ8ZOQgmeTZTmKqvBo+wgQ6mkyjUiylNeev8o//szf5UeHTwnCiKPJhL/5uRcpmxb9cEzFsnjY26EfjvBn1/3XL91itbjIZOxzvbGAMhtjXaxUeWV1DVVTGUURt5pbTGKfL1/4jOhUt8TIaxxNWPaaRHGCoSjYqoqr2bi6g6mqKJLMc61rbHd6GIrCqyvXGEcRzVYFz3B4OtxFRub7h2+iSApNp4I7i4L6892nrBWX+PO9d/nl9ddJsuTsZkCRZEbRlMWS6Jm3NQtTMUizjLJZ5FGvx6tLV87itEqew6eXVlkoNPjB/lNkSeLi+iJZnvPZCxt4hsEL6yvYqsk3n3seRZa5XG0AoCkKLy9t4hkGV+t1JnHAl9dvU7fLbC42eXV5jY1KlTTNWC22Zu1lMpPIx1QNFFnmev0iQZKQkTGNY/wkxNUcJnGMIin4ccBzrS2eDjpsVRa4Vtv82b6ZfgYY98czxVNiGs5aANOMcsHg6orosvejhL3jEbIskeUiQusjD8LBbptez8eyNFRFwtQUmiWLLMv58GiEKktUXINJEFN2dRRFplG0WG0UCJIMQxNGnjgWRFfki+pomkK362OYOguLRdZXy4RhchZkvrlexfEcdF2lWhXvQV2ViUJhFrzz3DKrjQLlssVgHIm8TDjLBR2PY/Z3eyRpRtE1zuo3X/30Br//+gZPTkbYroiceuFTFykWTU5OBDHuDALiRFQ7B3HK1+4uslxzGPXHLLREfXCSZGysltm61BCqfZKxtVzm6GjM67fnURQZaxYhOPVjsiw/q5pUFJla2aJUMrEsQaSevVA6I4YbyyXG45Dq1haFgnFWefon9wTPcS2NOBTK6mQSM1+xeXw84m/calK09dmUQMa2NWRJwnF0jNl6Q7Fo4fsJzaLF9nafq6uVM3OZoirU6zZpnrNzJMit4znkOdy83EDXVbbWKhiawo3L4n1arzukqXBar643WVgqk6UZ733YxrZVLEOlUrFolCxqFYs0zZiv2qiqfKaijqYRkgQvrFeFaUkTRRTh7HqNw5g4FFnLq0tFxuOYWs2mWf3k6eInj91lSRAWSah9H5ESXBfJsslHQ0FsPipDn7kRpctXyE9OYX6e6OmRaJSxLNFMk+VI9TqEIdLaOv7/8r/BaMT0z95GWrkAUYDUbJEfHyKVSkiXLmP/7m8izc0hNRvIK0ugaUiqQtHTRUxTqYRbdxhPEpzFMhSLVBqu2FE0TbIgRlJkLt1dwlkXu5IfkV3j1bs8e6sFe3vYr91mrmRiLFZYfHkdwpBk+5CqqhLtniBbGsN/+j/z6J1jGg0bY2OeyYMj5MuX0VdayAtzSMsrJL0xWqs8I+4m+fExG5/fEmqdLsxS0/cOYH4e0xCLxsQx6Tgk+vd/imwZJIMpsqog/fI3ASi8dBljtYG+viCIYKMh9jllCdptWr/xGbRqgehP38C8uIg9V4TxWJyfNIULF6BcFq9hq4XiOViXFpEqNdSSw+l//Y/EesVHKvTstZQNTTjMJxOyw2OO/497SM15ZFuH6y8QHQ1Qr2xw9fObIvlA0cizHNkU6xDmhTqTH96HIEByHeSFOdLTLsF2m2ToE3//x9hf/hSSpmFtNsWaQZ4L1XY4RLu2KRRy18W8tCRU9ygRJHh2nHmSijSFv+SGTfoT8tFIkNVc1IUSx+JGRpbJfvzjT7z0f14x7xYpGiIHT5EUJCTSPMNQDGQkJtGUhlNhFEWkeUpBd4nSlBu1q0ziKctei3fbuzw3t4mjCXLaCwYsFZokWcKN2lX+ux/9IQ86u7x5uMNWeZ0sz2hYNbphl/lCg4VCk69tfJqGU2HRa84adwThUBSFbhBwoThHo1lhPPbRZBlTNahUPTRFEc1BksQ4Crl9c5PNhsi8PJ32cDSHr66/xGsv3WAYhnzmykXKRZfFSonPXBc1oqfTHm7Z4VHvgLJp8o9+8M+593CX5ZUWN5tzvH10xIXiAmulBS5Vl9goLxOmMcvFGkES4hkuh+MT/uadF0mzFEPVWfGavHV8xNXaBq5lECSiHSpIEn549GNUWWU0a+J5feU1ZEnmC+uXKJsmLbdIkiU07So5ghx3gz6/8+wrLBXL/PGjt7gzf4GFQgE/DvCTEFM12CytzHZ3UypmCUe3uN1qseQuUrUs/rM/+G8xVJ2KKYw4VbNCLxiyVqrSDQbEWczh5JT/6bvfZrO4Qd22eXHuDh3f59nWVf7+Fz9H1x9jqcK4pMsKy/M1Xphf4gf720RpyoWSeN1H0YS9YZtBOOV7e+/zG5dfoWQUqNk2QZJgKCrDcEyWZ7y8fImNWQ/7yysXmCYB/SDgaNImzTPKRml2/gJWS3VOJl3qtkeYRARpyFa1Kswp5KR5ysFohKao/Ojo3n+qt9VfGSRJYrFVII5Fv7eiSAymEcNpxDiMSdIM19Q+shSQZUL5XK5a9DojLmy0sG2dZtli5Meos7D/9cUisiRxfbnEH3zrAWGY8Ma9YxbmCviRULWOhhHzZZv5kkXBFvt7wo2tULD1M3KRZTllR9RB5nmO55msNQtYjrghCmbZle2hCFuvtcqMgpjjgc9Kq8CNCxXWLrbo9wNKZQe3KNqcnn92if3TMYNxiFt0OehO0TWZf/rvHvHgg1O8sst80+X0dMKlhSKVikW9brO1VGIwCrm0UWU4iZhGGZ1RyM1bS8iSaO2xLI233z1mpe7OlFCf7jhkMvJ541EXTZHPRuN3t+ooisSdOxewbR1dV4gSoVDquoqiyNw/HPPqC8tc36rzk3ePuXa5gWnN1gqetHFMlbmyjWuq7B2OkGSJUsEQcUWeQZJm/MN/8Y5YmygYyJJE2TVwTQ3X1TntiwYlWZbYfnjAs8sFsizn9c0K02nEs1t11i+2UFXhKNc0GV1XuLDRotFwOOqKPFbX1PCjhGmYsHc8ptcL+Ml7x3z11XUWmq4YpzeLZ6+rHyYUHJ1qwcTQFOpli2mQiFar2RqIa2kYhoKpyly5vsD+9inV6sfGN7tgk2WZ2B1OMgb9Kboqs73/yVnan0g+ZUMlO2kLl3scC9K5tAJJQu5PkSwbyXFRt9aQli9ArYax2hAO46IHioK+uSRITRQJ4tDvQBSR+z757g7m3esQhkLx6rbJu12xO7m/T/juE/IPPyD/0Q9BksG2kZotkSlaqyAbmjAN9ftYL1xh/VpdtCANh5gXalgbTZLHe8JFV7CQTQ3tlRcJ332C1JoThqbJBPvZizz6k/fBcWg1bfRf/RXk27eFazrL8AxVqJJ3XiAIUhFu+/e+jrR5Ee9LLxB863uCXGsaVOqkI5+kPURa24T1SzAaIdVrKK6F4pqQ5/jjEMk0qTbEWgBxzKTviz3KUgmt7KIULfK3fiAU2FIJaWuLvD8QZHIyET24ioy0sACqyvCDI/SFKml3IJz2skw6DckGI7Fm0OsJJTXPxW5kvQ6ajvT1X6f22esiwL8xR7J3cpbdiiKjX1kDVSXY6VC7sSD2ck0N2geYW4tIC0tov/XbHP30EEIf53d/A6Voi2pWTUNSZVhZmf08TVSHzpfJ/AhtrgJ5Ls6XY6OWHKRySTxn3xd7wKPZ8bdaYtczzcTusCbWN5TlBej1yLs9KJXQm0WRVGBZQulNEhTHEN+f5STbh0LN/wVEQbcZhCM0WSHJEjRZY9GdJ8sz4ixhyZtDl3Wu1JZpWHVKepH1cou98R6SJPYWn58TCpOo3TwScTBZTC8Y8tP2+3x96xYrxQaXqjWOpyfsDA/YGe1zOD7h3uljfnjwLt/dfxNNVjEUQY7SPKVuF1mrlHE0jWkS8OWNK9y+us5GWZC+W60WLcchTlMsTaNiuZRMk6+u3+XN3X1KRoFxPObEb1Ozbb7z9n02y0uUywV+98Yv8YXVu+iyJuKLHEGKvnHxdYZ+yNQP+f0Xv8JL87f4nZuv8sdP3kGXNQq6w5K7SJ5nnEz6XKqss+at0vb7lGYk3lQ0cV7HU2zVomJZ2JpGlCZ0fJ8kS1kviZFz1SrwxvGPCZKQJa/Ji/M3idOYII049bs4mtiDKhoFTMXgfvuErWqDvVGbaSLik+I0Js1T9sfHnExP8ZOQqlmdqati1P6Ni1/h7sbqrM+9zPbwmKJRxNbMmaN9HT8OuN/Z4+baEjmi3nAST1goFCjpRb65+df4znsfkuUZv/fsV2fuctAVFc8wuNFYp2aVqVhF8jxnrSSyfNdKDaaJTz8cseIJVbNiFQnTiDTLqJhF4iwmTBPm3DoLbgNVlonSWYSOrLFarNILhgzDMUWjQNOp8nQwoKh7rJcW0WUdWzVxNJuKZXG/s3t2U/WLBM3QaPd9PEdnEoi9T1kWqtIkSKgWTBRF4sKCx8WGQ9HRaTYd3tkd4BRsLix4LLRcNFVmOAwZTqMzRzXA994/oTVXQlEEWfHDhCTLOer7nA58PjgYcP9gyNHphMFYZHw26g6TQLQeCac7JFnO6kKRza0mqipz0JuyPNvPjKIU19EpWBqqpnLtYo1u18fUFE4GAQ8OBpSLJod7XQxDpeBZ3Nys8cxSEV1X0TQF27WJ04xbSx7drk84Dfn1z61xZ63M3est7m33BDFWZGqOIOlP9wasz3lcaljIsoT9l+ocazWbUW+EY6iUG2VcV4TAj/ojsjyn6hnCNOdoHA4C+v2ARtHkhetzostekc8UPzjbNuP9Rx2aTYdO3ydJhDt8Op4iSRKPDgbstCeMRiGVaoFoFuNk6TK/cmuO65cbWLrCas2i1w+Yr9iksxrNimecxT61lhoULZW5OXG9X95qsFgy+Ae/tMWTxx10VebXX1zCsjSKRYNyQTy325t1dE2mYInfMQtNkfNcrzuMA0FIS7ZOqWRiGCrjcYwfJvQGAVGS0huFOKbGetMlCBLCMMUxVRarDvM1l2mcMZlEzC/X6fcD4jil5BqUysLFXyyaeLMc2XbXp1z+5DWZTyafjiXGquPxmRqVt08gjpFUlfxgH9IE6dOfJ3/8oRjJr62R7x8gXb+JVKoI5XTWo52ddgS5CgLk28+J7x8MkDY30W5dhSMxNvsoSsf47F1BPqZT8kFfHEOaInke6XFbENYkE6RpeRX7668LsjEeIzfrqLduEO73QJFRLyygNUrk4xHGc1fIhwNwHKRiCSSJ1U+vIXlF3M/dhkKR7K2fgGWRjsWx6ze3yD94QGHOo1o1if/0++RHh0j1BpKpEd1/grR+kfzPv42kq6grc+RvfB/8KVSrSAuL4DgYr90FXUdRZfLxGPf1FzBXRAalU7VRPJN0ex91bRHJdZGcggjdn1+EQlGM8zsdkGW0hof+zW8gf+23od+n8to1wt026mdew/7qa0L1DYXqSxgKFRCQVJX0/kPhXO+ewns/gUKBrNMD20G9vC72SpNUkPsZETTmSkLlHvaRSiUolIgPO+T9Luw+Zvnzl8m3n5K/+w76cpNRe0I6nGB/6VPiOshzpLVN4tMRydDHeuEKuR/A7i6pHxHtzNYzHAcqFfLezN06EXWgtNvgeSjVklibcF1xPbz8eZI9EbXEwQGUy7j/xW+L/+v7YBjIlgGOg1Iwxdj9uTuf+Mb4eUVGzjCcEGfpjDRGhGnIJJkiSzLTxCcn5zOLL/NkuEM37HGlcpFH/V2uVDdoOtUzt6Qu63zYPaVsFEmzjNvNq8SZmH5slFa50diiE/RpuTVs1USRZV5evM2SV+d4MsFPQiQkdFnD0wucTgd4hiH2KJ0a12qX+DvXv0TdLs8yMpe4u3CVfhCgyTKLhSaXq3NIksxrGxvEWYKhGDSsGstemduX11gqzPO37r5Ew27wfvchiqwyCkOiJOHTS9f4/uGb3Gg1KZcL/ODgHU6mbeadeeq2zY+O7rNcWOL7h2+iKRrX62u8dfIeo3hEy6lhqSYF3eHZ5g1M1RDVnmnIF9duMe8WedzfY6VYIs0yfnLyLiXDpaA71K0KtmZSM2sUjSKjKGQYTnA0i7LpcWfuNi/PvcwgHPPc3Ao/Ptrna+uv8bevfg5HtfGTcGYYk4izFEs1CNOQk2mXZW+eYTTiZHrC9cYap9MumqzyTGMTGYlRNCHNMvzkIwVVZaHg0fbblAwDV3N50u+zO97n6egJz22uMorGvNf5EIB2b4gkyfzmlc8CkGQJz9SvcTAe8bh/yHp5nmkS8PbJB/TDMXujY2xNo2QU2CitMozGyJKMn4Q4msmj/h6OZjPnulysrOAZDlEW86sbX2F7eESYpiiyjK2Z/JfP/Ro5OYaqYSgGhqojSzIl06Rhe9ydu/2f5k31VwjLsej1fOSZqhmGCXGcEQQpcZIx8mMGk4hXNsvs9AJ2T8YsVQX5uXChzHAaMw0TolgoT3sHwzOV1DJUDEOlWDR4brPG8pwwNg2nEXXPRFcV7m5W6fRFF/poFOI4Ot3exypcrWpjmhqmplApGHzl1hyLTZeRH1MvWZiGUAbjRJQXgFBzdV0hiFN0VcZQFUaTiK0rc1QrFrWaTc3R+A/vneD7MeOxCIm/0Czw3uGEZtNFURXeeNSjPYnRFJlKwcD3Y64vl7i3N0BVFRbnCnz/7QN2+iGmplC0xQrR5paYbhqWwciPefWFZTzP4KQzZfFCC1NTOOhMubBcoloSSl8YphiqwnxJkMAnO33CUBiVWmWLq/MFTocBtZrD/v6Qrzy7wCvPLwljk2uTzKopHz4R9Z2yLBEnGYutApossdMLsQ2Vk0HAQlGnVXdI0py9ozFJkpFmOZ4ncr89z2CnF7JYd7FUhTBOaU9i3j0dc+NaiyjJ+Nc/PaFSMGi3p/hRyt2tOkmWMZhE1Aom7a7P3tGIctmk3w/4zhs7BLNkgckkZnNllsedZgRBwk57Qqcz5aAzIc/B8ww2V0oUZ7Wr37zV4sHhkOlUxHC1jzp85ZU1dFXG92PyOEJRJIqOTrniIEnw2uX6J177nzx2B+RnnhFEI8sEWex2kZYvkCeJMNacnMDuY0EOkgTJdpAsk/zkiPxgT+zuaZowrzz3LPlkAuUyea8jiIemia/tiQDw/EA4cPE8pOa8aFT66GcnCXkYQJ6jPHMdbbkp9v/SFOKI/PEjMd5dWxNfUzUU1yBpjyGOyaNImGl0XRBcXQdZgWYT5cKyiBryPBgNkIpFochWXa792nNIt++AZaEWbRZ/7xsoriEes32KfnkNve5B4IvjBajXySY++d5TkQbQPhVmJDE7oXRzCanZInnvIeqLdwRh9SwkWSYLE0Gov/6bkIge8+AP/i15t00yEB3rGAZSrQaGRT7uIT3zHCwukkcJ+fGhGDmnKeZiRexs6vpMyVTIx2NBIrNMKNDHx+J8awr5B+8hXb1J8oFoPlIqRbEu4ThIuko68oVJbGkZqdRAqxcFObSd2VqFuBkgirAsVURpAezvi5uIRx+IIPy/5DZPB2MU20C/MCduNjQNxmMkXUfyxOMnvQnS+gZSsSIef9bNLtk2jAcoloY2VyWbBkKx/ulPxDUVhuKYlpfPkhRIU/IP3v9//AHx8wQZiUuVdVzdwk9CojSmG/SYd4RhpGQUeDLY43h6QpCE6LJGySjiGQ7jeEw/HFIzy2R5TjcY8NrKVYI0QJVV9sdHdPwBuqwRZREn0w6DYMzxpIOlmZiqQcNqsOItULGEyz5KY9I8Iyfn2dYWBd3CVHUATNXk3c4DMU5uXuN0KtzbmqIwDEMUScFSDTRZ5VJllThNkCUZWRJk5e7CBnme42g2WZ5hqyZZnrJSrPJbn3+JK5XLeIZD1SrwD7/wN9BlhYyMftjjQrGBJssESUDTrqLKChWzhKHodIMeORmP+7sseXNkeUpOziura7TsJg+629xobKHJCroiVNw0y7A1ky8sv4au6JiqwR89/jNG0ZhhGApSpRjMuXU0WeM0OOF67TLrpWXCNOVoekyYhuiKzkKhgYx4jlWrhCorBKl4rVzNYZpMeDTYpmwUKRkFjqbHXCpf5I2jn1CzyiiyTJIl6IowC+2PhgRpyK2WULTnXJdJ7KPK2pkSWzIKJJnIYLVVEwmJR71dAJ4Ot3F1nZr9sfIYpSl5nnGltk7DqeDpBTpBV+wAm1UGwYggCXlp/iaqrFI0bfrhCE930WWNQTSkbpdY8ZoMwzGarLE92uHpYI8gCQnTkJbd4HjSxtMNVFlld7z3M343/dXDckw8z8CPUgxNwXF0dnb6lMsmpdmYezSN6UwEwQzDBLGllbFccxmMAhpF4brudn0cR6c/jZiGCYfdKf1+gKbITKOUJ3sDBoOAk5MJaZ4TJSlNV6PkiQYzyxJFDZNJhO8nzDVcSo7OYBCQ5zl1V+PN7QHtQcB6qyCqcHVF1F4GMYNphG0LZ36zKghZEKWMphGuI4iha2rYpkaQZKSpGHs3azZXbyzywkqBMBFRhl98dQNDkxkFCUmaUykY1Cs2rq5QdoSx5tK8R6Vi8bTtk6QZnVGAZ2kUbI0gSLh2fZ7Nhs1ue8zqnHdWXfpkp48kgWfrvHapynzFxnU1fvDuEXtdoehlmUjFSNIM19BwTYX5ik2zLAxMj9u+MB8DxYqLpas4pkYUpTTrDq6roakynqVxMo55cjrBNYXx6MPTgK25AnsdYTSbzm4gHEsTpTNRyv2jMUVbp+2HKIrEKEjQFFf9Vu0AABCuSURBVAldVVAVid4goDsKz9RSTZHYbU/ojkN++rSL74uAeN9PmEwiht0hg0FIs2Sh6zJlV6fXHaNpClfWq2RZztFeh4WawyRKCcOEME6xdBVNkTidueAX5grEcYqiKPzzf/UjDjtTojABWUFTZB4dDknTjCzL2R+En3jtfzL5zDKi73xfED/XFaPYPCd/+ghARNgkCXlnNqbt9cjbp2JHT1EESZAkqFSQLl0lfzhTRz8aGzu2IBq+L753NhZFVQWhiSN4/Jjg6alwbUuSICOGJULrNQ11qSXG5/ffF+THNMn39gQxfPceequIeaFG/PQQyXHEzzk6OtthzR+8D0FA/O5D8ukYaXGF/MlDMbJNEqGyyTL52z8SKpuhgu0iVcriODsdoexevEje7yI1m2LEm6bIrg1RRPD2Q+Ew73TEsdk2nTe3yZ8+Qa0WIInRrmwIg1ehgFpxiD94Ck8/gHoL0hRjYx6Oj7G+/DIoilh5uLAOnROyf/O/kt+/B74vxvrHx9Dtkh8di/H72pp4/U5PxZ9ZhroyJ85BpyOUxt1d0oHIcc0/fB91sSmIeKMhXrNZSYDW8MSNR3Oe/IffQnrmNtL120L5VhSix8JwhefhffqKuI7CULw2mkb66CnaCzeRNFFIML1/iGxoqBWXrNsX18bsRoR6nfzBfcLdthglHR2KSK+rN8S1YhjiWAZ95Dt3xDrG4vzH4/qPJIAwPCP9WJZYIbF/MaOWVFnljcO3CZMIWZLOFLS23wbEXqCtmvTDHqZqsD8+phf2aDl1dFnHUHSSPKWg2ywX5vmguzMLMvfpBUOaszifjt/HmBGlri+CrIMkZJpM2B8fczQeUzILmKqBo9kUNBEZpCsaa6UF4jTmg95DPEPEC33Qe4KrO/zo6D43G6t8aukyO8NDTNXAUi364QhHt8jyjL3xAbZm8s6JcOSvekscT0+oWiXxIWlX0BURiG+qBo5uUTWrNJwqBc3lfvcJAC/O32Qcj6mYZXRZQ5LkWf94xn/Yfh/PcDmZtumFfWRJ5lsPHrA/PiDPM2zV4lbzCnGWCrImSRyM2+yMd6iaFbIs47nWFv1wwF/fehVD0dBkjcvlLfbG+3z/8C/4oP+QLM8oGgZhGjGMRkziCUmWcrm6SUn3GMcTHM1GkWQW3CbK7CYgzTK2h/tMkwBXczmYHFC3KxRNl7pdZhSJUWCQRBQMA1MxKOke/+rD/51PLd7gWvUy++N91svzbA8OUWUVUzX4yrXrpHnKJJniGS5Fw2NneMTt1iajyCfNMu6dHKEpCoai0/Z72KrF3uiISexTt6q8efJT3jnd43Q65dTvsj3c57nmNbI8w9PFXnaQ+rw49yyGqnG1tkGQhMiSTEEXVbBhGjKOxyRZyiSOmCYB8kcz0F8gVCoW43FM0dYxdUUYSxSZbtdn7MdkeU6W5XSmCe2RGA/7kahS1lWZuZpLxTXojSNeuiUi/QBOulOGw5Bq1SJKMrqjEFWVWVjwMAwVVRZO+MfdkNFEkJgwTDFNFdvWsSz1THk1TRU/Svmz904I4xRdF+P0LIf94zHzdZfGrNbTMFTMmSFFkYU7//R0wnAUcnQkRt4lR2cUJCzWXZGh6YjR/p8+7Iv9UtfgzmpB7BqqCge9KQBXF4s8Op3S8Aw8WyNKcwxD5dHBgO2TMZMg4dHBQFSNWhpv/XiHh6c+o1GEa6psLpfIc3AcEe90MvB5eBqIVIBUkM32KOD1O8tnpK5gaZwOA/7ln20zmETkOZTKDnudCUd9H1UVvzOWazaaIhP44SwaS2KhYpPn8PZOn6Ef8e7TLr1BQMFQ6E1jqgUDRZGwLI0wTCi7Ou32FMfRSNIcQ5P5w5+eUnYM6q7Obj/CMhS6w5A4zijYGheWSyRpRpSIVYv9/SE/+u4DlheLGIaKZamMeiMKJZEOMA0TNE1hvzPFMIUB7eFun/39IYZlsHM85t7TLheXynQGAUVTJcshiDNe2SihqTI3tkSlqGmb9Ho+uqGCLHPSns6sNKoY289M4P93+OSQ+VAEhlKrCVIwaydC15FsFxxXEKCjI6RqVeR1xrHY0ev1xAf+YIDUaIoRdBwLojMYCIIyCzKXLl0DwyAbjJAWZi551yX6N/9OGEXg46imYKa8NRqC0HyUD1qrQZKQPHgiiIskiXG3IiPPNZEtob7i+0S7p8JYk2Xi/5om2tqCOJ7OiVAJHeeMbGNZYuQbReLvvbZ47FpNuKZdl+yde+I5LawIta/bRbp4UfSol5yzY0oPxdpC+fqCOE/1Otnb70AcixD90w7S2hraYkMokz/4c/G4obiLkArFj28EpmPyt39Meu/9M2U4POiJkXQck8UpSsWDx48hy4QqOBuNUK0KAjeZCAJarwsz1MwkhechXbkhHndG2mTHQr64Ieor956Km4OlNdh9LHZx4xi1ILJakWUoFJBv3oDBgGTvWDyfNCf64Vtid7PdQWt6pOOQbBogO5ZQZmMxokcVlZ+KbYjHLRTEjcDJIVKlcqamEkdiBcQWZJ9iUdwQaBr0+2drHxweku3siVKE5tz/28+JnxvIskLR8FAkBU93Z+qgg6HolI0STadGPxriaja2ZjJNfCbxlDiLsVSTtt+lalb54eHbOJqJpqj4cYCr2yiSaPu6UbuKKiscTdoseXNos/3J7+y9QZIlBInYN1VllXE8Ic0TalaVMImoGGVc3aFp11EkmXdOHpwd+0sLN87im0D0ycdZwr3TbRacFn4S4Gg2S4V5FgolZElBk1Xh7lbFDcXptEtBd0hz8btDk1XCNORKZZOSUWSzvELZ9LjffcIwGtGw6gyjCbujA9ZLwihTt2ckKIk5HJ+SZCmNssf97mPqdoW/OHpHEEfd4WTa50p1HUWSkSWFN45+IlTn2fk0FQNTFa1FR9NjukGfYTQmThM83WP3pIOnF1AkhW4wwNNdHvafkJEzCMZIiBpaa/b84lnmZ8kQ5D5HkLqSUeR69SqdqdhXVSSZul3iev0CT4Y7/PDwHRzNYr24RifoULNqyJLMnFtHlRXKpkdBd7ha3eJk2mEaBziqg6Ua/PunP2XOrTKMxmxUKsRpSphGyMiMowlRFhOlMeN4jKHoVC2Lum1TNArYmsnT4R5Nu8aj/jZhKhT57dEOVbPMOJ7O4ro62JrFzvAIPwnIyWn7Peq2R9Us0rKbP8u30c8MqioTxCl+lOJ5xtnO5mASUfNM5qo2HxwMMTXhdu6MRHLLySBAVSSenIyoeybbJ2NsW5SOnJxM0HUZz9JxTJWtOZHE0O36Z/mbqiJzb6f3f3Ev9/sBjqOJpqM0I4xTigUDXZW5uFiiOxQk0tSE0nV1rYoyc9Q7hipG/50Ju4cjap5JHKdUqzayLOG6Bpois1y1WSqZLM/ySkdBjKGJgPPuKCTJck5GYj/RMxWuLngossS7ewMmYcJm3SSMMwbTmFbZxvfFnmyv5xNFGaenU8Iopdoo8uR4RLlk8taHbdqjgFbFJkkyFpsFZEkiyTLe2emfEW8AQxEO9I/+/tFKRJZD3TPpnAypF02CKOX0ZEir5dIZiVUGx7VQFXGuLF2cD0NT2Nsb4to6UZQKAmyoaKrMteWyCLN3jZk7PqJWtnmyP+DDwyFDP2a9IVoVN2tCoa7MrhFJkijZOteWyzw8HtHt+/hT0fX+1lu7uK7OYBAyv1wjCiMcR8cxNZEpG6cYhriBkWUJTZMpFG0W6w6Nss3D/T5LDZcPjkZEScbuIOKt/QkrdZfBJKJYKVCuefR7E6bjAEVRUFWZ0SjEMBRqNZut5v8Ht3ueZmg3LyFVax+PqWcmD/wJbFyFioi3Yf2SGAPPAtbPiIAqFC7m58WouFz5WJUCGA4FkQkCsbP30d3teIx2eR2pXML6ymcEoVEUMU5uzpM/eCCOZVaZme8fQJ4LJTEIxM/u9YTxaTwWquKMbEmqItRPzxME9iOi6rhiBSAIkAqeeL6NhnisMIRc1Ebmkwn0RW5i/O3vihPpzNz8g77IxAwCocoNh8imKoit54mfbZoojgnz80gLi0wfzJTYIEC+dkUovC9/VhDBZ18Q58swxLmsNcWfUQi6IN/+h8fifI9GwoxzciJaiMJE/F/XheFQNAQNBoJ8zVRrqlUoFpG8IornIOk6eZZBp0O+81gQuSwT5N5xxLnSNEGcbRemY9K33gGvBI0Gyqc+Jci6KchiHgQizqkvWqDyKEGfExEicX9K0puQhTHJKMB/sE9y1CGLRMKC5LrC5KYrwiAky2T7h4Iwm7PzDeSdU3F+Z5mlZz9fVcV5SVOk+SWR82lo4nXPP/mu7OcVSZZws75FQS8wjqdnY2pXcwjTiIJewFRMNFnlgrdK064TpcKk4GouWZ5hKDppnrBVXaVui/YfTRGxIFmeE2cph9NDkizlYNRHkxXimSHpQnGegu7wd29+iSQTrtpRNKZm1rjXfkDDqaDKClme8WiwjaPZtNwqhqITJCEdv4+tmXSDPqqsokoqw2hI1bLphj0czcbTC+iydha9M4rHZwqhnwbMuXWyPCdMYuKZyWUYj4gy8Tz/6NEPkSQJSzVmY3Ofslmg4w+YJtOZ679G0ShQNj3afp80T2m5Lo5mca26xQ/3d5AlmeNpjyu1VSzV4tXFuyiSzI3aZRzdwtFEBEvFrFAyCtiaTZoL5/rhuMuc0+TR4Cm6oTMIh9iaRZTGM2JeI0gC0jzFTwIm8RRTNUnPxuk2njHL9ZQUdEXnxG9zv/eAObdOkiVUzQo1q0RBd1BlBVM1uFLdRJd1vrv/NiByXK9VL2GqJq5uocoKYRpiKjoPe23iLEaRZa7U5oVL3x9zMBrhaDrt6YTt4TEgorR0RcNUTFpODVvVyPIcRVJElauiUzSKFE0XXdGZJBMkJGRJRPdk5JiKLhRao0CYRlwpXybPcyzNpGIVz/aNf5EQRSnPX2mw3nTRVXEuTFPFcTQ6HZ9pmNCfCOPL9SWPetkWxE9TyD4iqaMQXZNFtufMbCJJEgXXIE4z/Cjl3qyB5vR4IMaxs/50S1dZaRT41I054jgjjlNOTiYs1F1GIzGmdQyVaZjw5HhExTNotQpnOcHDaYSuyYRJJtQ6QyEIEkolEz9KKXsmjqWhKDLX1qtIEkRpxihMaRQ0ZPljNftk4HPamWJqCkejiNGsD/0vHndFzulMSY3THEtX6I5DNEUW6YuaGP8bhsJ4HJ459W1D5ZmVMicnY+I447g35ZmLdQqWxo3lEkma89JGFcNQWG66ZFmOayizbvaYasGkWjCZTCLKrs6TE+FkH05jMbov2lxcKOKYKjvtMc2myATujkOiNCOaiWeuq1OdrTeoioSjy2yfjtlpTyhYGo6hitavmo0fJdi2xsSPsQ2VrYbFDz5sY2kyRUvnpY0Kui5KA3qTEFmC/jii2/WxHYNyvYSqqbO1hojBwKc5V6LX89k+GmIYorXItjWsWbORLMtIEpiaQpSkRFFG0dZxDBXXUBhMY/woRVPEZ0CSZNi2LgoAyg55nnNppYwkSZSLJgs15z967Uv5RyTwHOc4xznOcY5znOMc5/grxn/UcHSOc5zjHOc4xznOcY5z/P+Fc/J5jnOc4xznOMc5znGOnxnOyec5znGOc5zjHOc4xzl+Zjgnn+c4xznOcY5znOMc5/iZ4Zx8nuMc5zjHOc5xjnOc42eGc/J5jnOc4xznOMc5znGOnxn+T/tUN2ID7BawAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["_,axs = subplots(1,3)\n","for bear,ax,color in zip(im,axs,('Reds','Greens','Blues')):\n"," show_image(255-bear, ax=ax, cmap=color)"]},{"cell_type":"markdown","metadata":{"id":"kNBX4-3V2N2P"},"source":["We saw what the convolution operation was for one filter on one channel of the image (our examples were done on a square). A convolutional layer will take an image with a certain number of channels (three for the first layer for regular RGB color images) and output an image with a different number of channels. Like our hidden size that represented the numbers of neurons in a linear layer, we can decide to have as many filters as we want, and each of them will be able to specialize, some to detect horizontal edges, others to detect vertical edges and so forth, to give something like we studied in <>.\n","\n","In one sliding window, we have a certain number of channels and we need as many filters (we don't use the same kernel for all the channels). So our kernel doesn't have a size of 3 by 3, but `ch_in` (for channels in) is 3 by 3. On each channel, we multiply the elements of our window by the elements of the coresponding filter, then sum the results (as we saw before) and sum over all the filters. In the example given in <>, the result of our conv layer on that window is red + green + blue."]},{"cell_type":"markdown","metadata":{"id":"bj6-7sFK2N2Q"},"source":["\"Convolution"]},{"cell_type":"markdown","metadata":{"id":"9sD9QP6b2N2Q"},"source":["So, in order to apply a convolution to a color picture we require a kernel tensor with a size that matches the first axis. At each location, the corresponding parts of the kernel and the image patch are multiplied together.\n","\n","These are then all added together, to produce a single number, for each grid location, for each output feature, as shown in <>."]},{"cell_type":"markdown","metadata":{"id":"jOwWuTRs2N2Q"},"source":["\"Adding"]},{"cell_type":"markdown","metadata":{"id":"jv89OLdT2N2Q"},"source":["Then we have `ch_out` filters like this, so in the end, the result of our convolutional layer will be a batch of images with `ch_out` channels and a height and width given by the formula outlined earlier. This give us `ch_out` tensors of size `ch_in x ks x ks` that we represent in one big tensor of four dimensions. In PyTorch, the order of the dimensions for those weights is `ch_out x ch_in x ks x ks`.\n","\n","Additionally, we may want to have a bias for each filter. In the preceding example, the final result for our convolutional layer would be $y_{R} + y_{G} + y_{B} + b$ in that case. Like in a linear layer, there are as many bias as we have kernels, so the biases is a vector of size `ch_out`.\n","\n","There are no special mechanisms required when setting up a CNN for training with color images. Just make sure your first layer has three inputs.\n","\n","There are lots of ways of processing color images. For instance, you can change them to black and white, change from RGB to HSV (hue, saturation, and value) color space, and so forth. In general, it turns out experimentally that changing the encoding of colors won't make any difference to your model results, as long as you don't lose information in the transformation. So, transforming to black and white is a bad idea, since it removes the color information entirely (and this can be critical; for instance, a pet breed may have a distinctive color); but converting to HSV generally won't make any difference.\n","\n","Now you know what those pictures in <> of \"what a neural net learns\" from the [Zeiler and Fergus paper](https://arxiv.org/abs/1311.2901) mean! This is their picture of some of the layer 1 weights which we showed:"]},{"cell_type":"markdown","metadata":{"id":"IL3wehjm2N2R"},"source":["\"Layer"]},{"cell_type":"markdown","metadata":{"id":"YSrEu6gw2N2R"},"source":["This is taking the three slices of the convolutional kernel, for each output feature, and displaying them as images. We can see that even though the creators of the neural net never explicitly created kernels to find edges, for instance, the neural net automatically discovered these features using SGD.\n","\n","Now let's see how we can train these CNNs, and show you all the techniques fastai uses under the hood for efficient training."]},{"cell_type":"markdown","metadata":{"id":"HWPKRSi_2N2R"},"source":["## Improving Training Stability"]},{"cell_type":"markdown","metadata":{"id":"iOsdBq3Z2N2R"},"source":["Since we are so good at recognizing 3s from 7s, let's move on to something harder—recognizing all 10 digits. That means we'll need to use `MNIST` instead of `MNIST_SAMPLE`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6jAVUcD52N2S"},"outputs":[],"source":["path = untar_data(URLs.MNIST)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3ItrS3kJ2N2S"},"outputs":[],"source":["#hide\n","Path.BASE_PATH = path"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"d-PokL792N2S","outputId":"3d41ae32-1786-4438-f1a9-8cee2e5fc4de"},"outputs":[{"data":{"text/plain":["(#2) [Path('testing'),Path('training')]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["path.ls()"]},{"cell_type":"markdown","metadata":{"id":"XLhcG8vd2N2S"},"source":["The data is in two folders named *training* and *testing*, so we have to tell `GrandparentSplitter` about that (it defaults to `train` and `valid`). We did do that in the `get_dls` function, which we create to make it easy to change our batch size later:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YrML2_7u2N2T"},"outputs":[],"source":["def get_dls(bs=64):\n"," return DataBlock(\n"," blocks=(ImageBlock(cls=PILImageBW), CategoryBlock),\n"," get_items=get_image_files,\n"," splitter=GrandparentSplitter('training','testing'),\n"," get_y=parent_label,\n"," batch_tfms=Normalize()\n"," ).dataloaders(path, bs=bs)\n","\n","dls = get_dls()"]},{"cell_type":"markdown","metadata":{"id":"93kr_hfM2N2T"},"source":["Remember, it's always a good idea to look at your data before you use it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"JMj7fLXY2N2T","outputId":"68d20f54-81f8-42ba-d157-f5a7d56d127d"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAOsAAAD4CAYAAAANSBHgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAdtUlEQVR4nO2deZQV1dHAf5d9QFYJm2ELIhHBJSibfEBYAi5gCKCicFDCEsBEEQ2iAoIQDIugAkERzCdGXEI0iDlGAcNOHAwIKIuon0GBGFQQEFCgvz+G6u7HvHnvzdu671C/czjT9O3XXXNf11TdunXrGsdxUBQl/BQLWgBFURJDlVVRLEGVVVEsQZVVUSxBlVVRLEGVVVEsQZVVUSwhdMpqjOlnjHnXGPO1MeaYMWa7MWakMcYELVuYMcbca4xZf6bfDhpj1hhjugYtlw3Y8s6VCFqAKHwBPAzsBE4A/wPMAU4CjwUoV9jpACwAcoFjwCBgqTGmneM4awOVLPxY8c4ZGzKYjDGvADiO0yNoWWzCGLMVeNNxnJFBy2IbYXznQucG+zF5NAeuBt4OWh6bMMYUA8oDB4KWxSbC/M6F0Q3GGFMR+BwoBRQHxjuO83iwUlnH/UAlYGHQgtiADe9cKJUVOAxcDpQFWgOTjTF7Hcd5Olix7MAYM4w8Ze3uOM5nQctjCaF/52wZs44G7nQcp0bQsoQdY8w9wHjgBsdxlgUtj62E8Z0Lq2U9m2JA6aCFCDvGmAnACOBax3FWBi2P5YTunQudshpjxgOrgY+BkkBbYBTwTJByhR1jzExgCNAH2GmMEYtwzHGcQ8FJFn5seedC5wYbY2YA3YALgOPkdeACYK7jOKeClC3MGGMK+iL/13Gc27Ipi23Y8s6FTlkVRYlOqOdZFUXxUGVVFEtQZVUUS1BlVRRLiDd1c65Hn1JZIqV9lzzad1FQy6oolqDKqiiWoMqqKJagyqoolqDKqiiWoMqqKJagyqoolqDKqiiWELr1rEp6OHUqb2XX9u3b3XOrVq0CYPfu3QBs3rwZgP3797vXLFiwAICWLVtmRU4lcdSyKoolxFvPGkja1+nTpwH4+9//DsDSpUvdtjlz5hT6frm5ue7xT37yEwCKFUvo71SoU+aOHz8OwK5du9xzDz/8MADr1q0DIq2mfNexCs1feOGFAGzZsgWA0qWTrmwSqr6T333u3LkADB8+vMBrhg4dCkCNGoUrvyTvVqdOnQAoU6ZMcsJquqGi2I0qq6JYQuBu8MGDBwGYP3++e+7JJ58EvEBIOnn88by6zXfccUcilwfmyp08eRKAd999N1+buKi///3vAfj444/dNnFxq1WrBsDNN9/sttWqVQuA888/H4DatWsD0LWrt3+VvA9ff/01ABUrVkz2VwiVG/z9998DKbmmCfPQQw8BMGbMmGRvoW6wothMYFM3R44cAaB169YA7NixIyhRQsmaNWsA6NChg3uuoMDQdddd5x6PHz8egEsuuQSIHSCS7yAar7/+OgC33HJLghKHmxIl8l51CSzNmzevwGvFCvv7WzyORAoMPv/880BKljUqalkVxRICs6zFixcHoEqVKkl9PicnB4DvvvsO8JIA4lGhQoWknpctvvjiCwD69++fr03+qv/2t78FvLFm+/btk3rWX//614j7+rnhhhuSumdYESspMQv5GY133nkHgJo1a7rnDh8+DMCUKVMAWLiw4P2+JDaQbtSyKoolqLIqiiUE5gaLGys5qJJxE+2aCy64wD0nLqC4JZKxI1NA0ahUqZJ73Ldv31TEzjhvvfUWAJ99lrdTo3/qZOrUqYAX9ClbtmxanukPpPTo0SOt97aR5s2b5zsnWXAydIhGo0aNAO97SjdqWRXFEgJfdSOWsUmTJu65Rx99FIDp06cD0LlzZ7ft0KG8DdHatGkDxLaowsaNG93jBHOCA6N8+fKA501IfjTAxRdfnNZnffvtt/nOSQAuVv5wUUUCbcuXLwfg17/+tdu2Z88eAI4dOwZ4/TNkyBD3mokTJwJQuXLljMgX7jdXURSXwNMNE+HEiRPucatWrQBvLWY0fvCDHwCwaNEiIHJqo5CWNVQpc+lCUgkbNGgAeN4KeFYl2ekgH6HuuwMHDgCwYcMG99zixYsBePbZZ+N+Po39FA1NN1QUmwl8zCqpXf51l8Lnn38OeCl0ULBFlcR1gEceeQSITNVTPKRihIz369Sp47ZlyFIEwjfffOMeb9q0CYBp06YBsHbtWiDSq4jFNddcA3hJ+s2aNUuXmAmjllVRLEGVVVEsIXA3WNzfunXrJvX56tWrA7B69Wr3nJQmUaKzfv16wJt+6NmzZ5DipJ033ngDgFtvvdU9l8gU39lIggpAu3btAC+nPQjUsiqKJQQ+dSOTzcla1q1btwLe+s00E+rph8IiK3okLU4CMBJsgbSWIM1638nKq1KlSqXwaA9/VQkJcvbq1Qvw3tcMJY/o1I2i2EzgY9Zkkb9wYiWU+MiUllhUmaa57LLLghIprUjCy4ABAwCvYHmySKlXgFGjRkX8lCmgESNGpPSMwqCWVVEsQZVVUSzBugCTuCH33nsvkHxZmASxPsDkz32V4nSCFPbylytNI4H1nbj5L774YoHXSNmacuXKueekPwQpWgfwt7/9DYCvvvoK8AJL/t0errjiilTE9qMBJkWxGessq+S1ynrWDGOdZZUkEwmOdOnSxW378MMPAa+v33//fSBjVSGs67tY7N27F4DGjRsDXqUSSTCB6BUmkkQtq6LYTMqWVdYA+re6kHFlIkgamH/6QKxtNKQm0UcffQScW2NW2V1Pdo2T9brLli1zr5GqGLL9RoRAZ75rGafdfvvtgFfXCuCHP/xhusQNVd+li7Zt2wJeIsmvfvUrt2327NnpeoxaVkWxmZSTIsSXf+CBB/K1JWJht23bBnhRtniIJS1ZsmSiIlqJVHNYsmSJe06im/66TBBZpDuR9DepvSSWwG8R7rrrLsCztrJQwkb83oW8Z5KWWtj3R1IZ/VVLIHodq0yhllVRLEGVVVEsIeUA0xNPPAHAnXfe6Z4777zzAC/o5C+5IowbNw7wyo0m6k7INvODBw9O6PoUyXqQRNZiSonLWMG2WEjutD8/Vr7rWbNmAZ5bLfu9+q+pWrUqAP369XPbxDWuUaNGIiIEFmCS/WqHDRvmnpMCZ7Lf7aWXXlqoe0qChKxrFXTqRlGUfKRsWWWqINpfFdm2ItqkuwRQpGhyNOrVqwdE/nUfOXIkkLXd4LJiHSZNmuQeT5gwAfCCI4kEj+rXr+8ei6fSrVs3IHbpVSlW57cOMhWxc+fOfNfLthB33313gff0kXXLumLFCgD69OkDeOVGAbZv3w7ARRddVODnjx49GnEfWVkDXoDq7IoTalkVRclH2tINZesAgLFjx6YgkpcOJ3toipUIgIxaB0md9G8PcnYyQzTLKltsSFLD5MmT3Wv81Q2SQayRWGiZmgN46qmngNi7qfvIumWVVMBoXsHo0aMBL56yY8cOwEssAa+vY+31Kx7dH//4RwC6d+/utqWxaoRaVkWxGVVWRbGEtLnB/kCRf41govh345Kq5yHInsmoK7dv3z4AGjZs6J6TfrzxxhsBqFmzptsme8tKBX2ZXgkpWXeDpcSPP089XcgeS/PmzQPSv6PfWagbrCg2k7aCabJLOXgJDjNmzACi5w0PHDgQ8Eo8+ifaz5W9QcVqHjlyJGBJigZXX301ENuy9u7dG0isdK0/AaJFixZAwsG1jKCWVVEsIfBKESGnSK7JzBLad8mjY1ZFsRlVVkWxBFVWRbEEVVZFsYTQKWu9evUwxuT7l6Fd4ooUBw4cYOjQodSqVYvSpUtTv359d/2vUjBTp06lVatWVK5cmUqVKtGmTRt3XXGYCN3GVLm5uRGJ1EePHqVp06aZqhpfZDhy5Aht27blggsuYNGiRdStW5d9+/a5y+CUglmxYgUDBgzgqquuIicnh3nz5nH99dezcuVKd+42DMSbugkcY8wgYA5Q13GcvfGuP1cxxowH+gONHMc5Ee96JTbGmK3Am47jjAxaFiF0bnAUhgCvqaLGpSewBphhjNlnjNlhjJlqjMlIuf2ijDGmGFAeOBDv2mwSOjfYjzHmSqAZkD9fUTmbBsCFwItAN6AWMOvMz1sDlMtG7gcqAQuDFsRPqN1gY8w8oCPQwAmzoCHAGHOCPEtQ13Gck2fO9QJeBs53HCexwsznOMaYYcA0oLvjOMviXZ9NQusGG2MqAH2Ap1RRE2If8KEo6hneP/MzsV2/znGMMfcAUwmhokKIlRXoC5QCnglaEEtYDTQwxhT3nWt05uf/ZV8cuzDGTADGAdeGUVEhxG6wMeY9YKfjODcGLYsNGGMuA94BFgAzyRurzgPWOo7TP0jZwo4xZiZ5gcw+wAZf0zHHcQ4FI1V+QqmsxpiWwHqgk+M4y4OWxxaMMR2BR4CmwH7yxqvjHMfJ3oYsFmKMKUgJ/tdxnNuyKUssQqmsiqLkJ8xjVkVRfKiyKoolqLIqiiWosiqKJcRLNzzXo09aRyh5tO+SR2swKYrNqLIqiiWosiqKJaiyKoolhHo9qxKdt99+G4D77rsPgHfeecdtO378OBDsNg9KZlDLqiiWoJbVIr755hsA+vXrB8DXX38NwA033OBeU6yY/v0tqug3qyiWoJY15Pg3qb7++usBbxPmyy67DIBXX301+4IpWUctq6JYglrWkCMRX4C1a9dGtC1YsCDb4ihnkPjBtm3b3HOtW7fO6DPVsiqKJaiyKoolZN0N/vLLLwHo1asXACtXrgTAX16mefPmALRt27bA+9SrVw+Abt26AVCnTp20yxokb731FgDPPJO/uGPNmjUBqFKlSlZlUmDz5s2AN332wQcfuG1ly0ZuftCzZ0/3eMqUKQBUq1Yt6WerZVUUS4hXMC3t6wr//e9/A9CwYUOAlHc5k7S6l156yT0n1jYNZH1N5okTeXtKtWzZEoAtW7bku2bTpk0AXHrppcnKlg2K5HrWq666CoB//etfhfrcgw8+CMD48eMTuVzXsyqKzWR9zCpjy+eeew6Am266KaX7iSW65ZZb3HOHDx9O6Z5BIpv4RrOogozXleyxd2/eJob+MWphiPV9JopaVkWxBFVWRbGEwDKYevfuDXjh7W+/9XZ4WL16NQC1a9cGIsPdO3bsAKB9+/bZEFNRAChfvjzgrXB68cUXC/V5mepJBbWsimIJgecGy/rL8847zz13zTXXFHi95GSeTbly5dIrWAi58847gXPjdw0bYlknTJgAeFM4/sCmfD8vv/wyAI0aNXLb2rVrl7IMalkVxRICt6yJIHWFAEaMGBH1munTp2dLnMCQaa/ixYvHuVLJFBdeeCHgvYfPP/+82yYWVbxFf6LO+eefn/Kz1bIqiiVYYVlnzpzpHr/++usRbfIXa/fu3e65Tz/9NOIaSXwHKFWqVCZETBuSwC9poJUrV3bb7rrrrrQ+69SpUwAsXbrUPWeMiXh+NDp27AhExhnCiP93kHpVkydPBuDIkSNAZM2qPn36AHD11VcDXl9EQ5Ijbr/99nxtkvDTpEmTpGWPhlpWRbEEVVZFsYSsr7oRZLVNtFU3q1atAjx3YtmyZW7bF198Uehn+V3nWNNCUcj6yhFxy8QF87vBBw4cSEEcz/X75z//CXglYwq7gkRWNcn3U4A7nPW+O3nyJOAVPY9VEicWt912GwCPPfaYe05+xw0bNgDelI1/yPXzn/8c8IJOKRRa11U3imIzWbesUlqzR48eALz55pvpfkQ+7r//fvd44sSJhflo4Ja1UqVKbtt//vMfAEqUiB8XlO/VHzySQN0//vGPAj8n95YkAH8pVP8UGkCHDh0ALyh2Flnvu5EjRwLe7+lPHpFKDdddd13EZxYtWuQejx49OqKtVatW7vGYMWMAGD58OACffPIJEFmtY8+ePQCUKVMmGfH9qGVVFJvJumX9+OOPAW9yubBIQoCUfRw4cCAAOTk57jVy7yVLlgBeGhhAxYoVC/O4rFsHsajRtsGQxI9YUzj79+8HYP78+QCMHTvWbTt9+nTEvcUCTJo0yb1Gqk+I1ZwxY4bbds8990R9pkwBnf2rFChkfOL2nfye8+bNc8+J19S9e3cABg8e7LZ17tw57kPFWibybsozhgwZ4p7r2rVr3M8liFpWRbEZVVZFsYSsZzDJGlVZtSCZRzVq1HCvkXKl0aZpqlatCnglTGNx+eWXpyZsAMTKmkkECZj43V9BitRJUE+yvySY5EfKkDz88MMFPktKxgaBDG3+/Oc/u+ckaLlw4UIgsUDPf//7X/d4+fLlca+X7KbZs2cDUKtWrQQlTh21rIpiCYElRZyNVIAAL3h08OBBIHJdoPz1y9JftKwHmB566CEgukVr3Lgx4CU1nF1UGry+Eo9l3LhxbpsEXMSLkeoc/sQUCbLIFIcEcvw8++yzgLerXQFBu4z2nQTJ/B7EAw88AEDJkiUL/Jysh163bh0QGSD67LPP4gomHl2bNm3iXpsCGmBSFJsJzaqbOXPmuMdiUYVBgwa5x9kcIwTBFVdcUWCbrPSQCX4pSSrpceBNZfz0pz/Ndz9JcJDpGEmLSzTdUMZpkm5YoUKFhD6XSTp16uQei5e4ceNGANavX++2iTcie9n6kz2Eiy66CIBdu3YV+DxJfc2wZY2KWlZFsYTAx6yLFy8GIot9y+S9bF7lrySXarS0kGR9zCoJBqNGjQIikxLORsZt/miujD9lPOpPFpF+lcLo0ahbty7gTfrffPPNbpts6ZEgGe07eQ/8iwjE0kcbZwsyzpc+k+QR8LwRGedPmzYt3+cPHTqU77kZQMesimIzqqyKYgmBucHi7knOpn8liKwDlGmaTG//HoPAdkITV9U/NfHCCy8AiU0xRBXozHctLmT9+vUBqF69unuNTMs0aNAgqWf4yGjfSR5utBU/UsanS5cu7jmZthI335+EczbvvfceAM2aNfMEOtN3EsCT52co4KlusKLYTGCWVUo5+lfjCzLA90/oB0So9hgViyr7s8pqmdzc3IQ+/8orrwCeZRWPJR1lMqOQ0b4Tz0wCPn6kKF6qQSD/+laZtjp69CjgrZX1l8ZNcO/VRFDLqig2k3XLKjVsZDJbphj8UzIy+e9PMwyIUFlWyyiSfbdmzRrAq/ckif0QO82xkKhlVRSbUWVVFEvIem7wa6+9BkTuxwqR+a0hcH8VJSpB5AQLalkVxRKybln9pR/9yI7SiqJERy2rolhC1i2r1P9p0aIF4KWEtW/fPtuiKIpVqGVVFEsIfD1ryCmSE/tZQvsueTQpQlFsRpVVUSwhdMq6cOFCmjVrRuXKlcnJyeHiiy9m+vTpxHHXFfIKqBlj8v275JJLghYt1NjSb6GpbihUq1aNMWPG0KhRI0qXLs3q1asZNmwYJUqUiNhgSslPbm5uxCZRR48epWnTphF1lJT82NJv8QJMocAY8wqA4zg9gpbFJowxg4A5QF3HcfYGLY8thLXfQucG+zF5NAeuBt4OWh4LGQK8FqYXzhJC2W+hVFZjTEVjzBHgBLAemOU4zuMBi2UVxpgrgWbAk0HLYhNh7rfQjVnPcBi4HCgLtAYmG2P2Oo7zdLBiWcUQ4BPgzaAFsYzQ9lsoldVxnNPA7jP/3WKMqQxMBFRZE8AYUwHoA0x0bAhKhISw91so3eAoFANKBy2ERfQFSgHPBC2IZYS630JnWY0x44HVwMdASaAtMIqQdmBIGQK86jjOf4IWxDJC3W+hU1agAjAXuAA4Tp7Sjj5zTomDMaYlcClwd9Cy2IQN/WbFPKuiKPaMWRXlnEeVVVEsQZVVUSxBlVVRLCFeNPhcjz5ptYPk0b5LHq0UoSg2o8qqKJagyqoolqDKqiiWoMqqKJagyqoolqDKqiiWoMqqKJaQ0SVy33//PQAnTpxwzx0+fBiA5557LuLaDRs2uMeyedXPfvYzAFq2bFngM4YOHZrvXE5ODgDFixdPRmxFCSVqWRXFEtK2MZXfej722GMAvPHGGwCsXLnSe6CJn4UmMiV7ba9evQCYOnUqALVr1457nwLQlLnk0b5LHk03VBSbUWVVFEtI2g0+fvw4AAMGDABg//79btuqVasirm3atKl73LhxYwD69esHFN5F/eCDDwB49dVX8wQ8I//69evda/bs2RNx7+3bt7ttZcqUKczj1JVLHu275FE3WFFsJmXL2qxZMwC+/fZbt+0Xv/gFAHfccQcA1atXd9vKli2brKwxEWsK0LZt24hzhw4dctvKlStXmNsGbh3mzJmT79zw4cNTuufs2bMLbOvYsSMAjRo1SukZhKDvonHs2DHAm1Z8+mmvbnzdunUBaNCgAQBbtmxx2+69914AfvOb3wDw4IMPAtCiRQv3mnXr1gFQrFjKNlAtq6LYTMpTN2Jh/RRyXJgWVqxY4R5369YN8KaTbLSsYlFTtaLJItZ32LBhyd4isL4Tq/mHP/zBPbdv3z4AHn30UQBOnjxZqHs2b94cgI0bNwJw+vRpAEqX9jaKeO+99wBo2LBhMmL7UcuqKDajyqoolpBybnAQLq+fZcuWAdClS5d8bd27dwegVKlSWZWpKCDudwpucGDIVN2IESNSuo8/MFq+fHnAmyoUrrzySvc4De5vTNSyKoolhHFjqnz4845zc3MB+Mtf/gJ4ecj+3GAJpy9atAiAkiVLZkXOdCJTKLGQKTI/0i+pEu3e5wo1atQAIpN7ZDpHAkoSoBo4cGDW5FLLqiiWkLZVN5lgx44dQOS46exURhmPDhkyxD139915u/alsNpGCOXEfqokMi2Uht0FA+s78cSmTZvmnpOpvR//+McAVKpUCYjeB5K4I9f4EcsqPzdv3uy2/ehHP0pFbD86daMoNhMay+pfCDBz5kwAnnkmb7PzL7/8ssDPjR07NuJnmilSljURiypj1cWLF6f6uFD13XfffQd48YtE1kr7GTduHAATJ04EoH79+gDs3r07XSL6UcuqKDajyqoolpB1N1gG5O+//z4ATzzxBAC7du1yr5Fc3liuihRV69ChQ7pF9BMqVy5VEnH9JKhXVFfdFAa/bkiwUnKMX3jhBQB69+6diUerG6woNpOVpIgpU6a4x6NHj457vaxoiLUusHPnzoAXZpdkCfDSvrQUafT1sGfjX9+aBotqPZLwIFOA4FlU8U6qVKmSdbnUsiqKJWRlzPrhhx+6x7/85S8j2s6ulwSxLeumTZsAb8V/tFKksqr/vvvuA6BixYrJim79uCvWODWN0zRRH53CZwPtu3fffRfw1rD6kaLys2bNyqQIOmZVFJtRZVUUSwg8g+ngwYNA9DzMaHzyySeAV6BNMkukNKmfc7EU6c6dOwEvBzYWacj/jYV1fScsWbIEgB49euRrmzt3LgCDBg3KpAjqBiuKzQS+njVRiypITqbw0ksvAZ5FAbj22msBL3h16tSpVES0iuXLl8e95lxeqxoLCVpOmDAhX5t4KjfeeGNWZfKjllVRLCFwy5oqMr1Tp04d95xYa3/h76KM36vI0oqaIsmYMWMAb3rQj6yHTWEaMGXUsiqKJWTdskoB5nTXRZLtDCBy24NzgViRX//4VC1qfmScCrB69eqINn/lwsLGVjKBWlZFsQRVVkWxhLS5wf5yoVKGZevWrUDkfjhSOLlly5ZJPUfu9dVXXwEwdepUwFvfCl4+bNWqVYG07OoVSnr27Bn3mt/97ndZkMRe/FNdso+NrNaaNGmS2+bf0yYoiuZbrChFkJQtayLlQv0Tyffffz8A27ZtS/gZUqwbvBC6rF+NtuqmXbt2APzpT38CICcnJ+Fn2YCsUY1V0FsCS7o+NTriCUYrtNe3b18AOnXqlFWZ4qGWVVEsIeVEfkmSb9q0acE38T0jkTpA0axlQcgu5127dnXPDR48GEhLuD2UyegBrlEtDKHsO3m35s+fD0QWh5fNp5YuXQpAmzZtMiVGPDSRX1FsRpVVUSwh5QCTBDA++ugj99zLL79c6PtIpXOAw4cPA95Av0mTJvmul927ypUrB9i5U1wi+PN+JTgXixC4v6Emmvsr9O/fHwjU/Y2JWlZFsYTAK0WEnMCDJP5SogWtqAlp/m/gfReNChUqAHD06FEgchWNFKD3r+AKCA0wKYrNWL+eVQmVNbUOiYtAKCxqTNSyKool6Jg1NqEad0kyhIxRJUk/pCmFoeo74aabbgJg7dq1AHz66aduW4i2W9Exq6LYjCqroliCusGxCaUrZwnad8mjbrCi2Ew8y6ooSkhQy6oolqDKqiiWoMqqKJagyqoolqDKqiiWoMqqKJbw/ynY2wK6C+yWAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["dls.show_batch(max_n=9, figsize=(4,4))"]},{"cell_type":"markdown","metadata":{"id":"ESSZN5Kr2N2U"},"source":["Now that we have our data ready, we can train a simple model on it."]},{"cell_type":"markdown","metadata":{"id":"NL4SG1G02N2U"},"source":["### A Simple Baseline"]},{"cell_type":"markdown","metadata":{"id":"sQd58-Bc2N2U"},"source":["Earlier in this chapter, we built a model based on a `conv` function like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"myW_t73-2N2U"},"outputs":[],"source":["def conv(ni, nf, ks=3, act=True):\n"," res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)\n"," if act: res = nn.Sequential(res, nn.ReLU())\n"," return res"]},{"cell_type":"markdown","metadata":{"id":"b6UVArmQ2N2V"},"source":["Let's start with a basic CNN as a baseline. We'll use the same one as earlier, but with one tweak: we'll use more activations. Since we have more numbers to differentiate, it's likely we will need to learn more filters.\n","\n","As we discussed, we generally want to double the number of filters each time we have a stride-2 layer. One way to increase the number of filters throughout our network is to double the number of activations in the first layer–then every layer after that will end up twice as big as in the previous version as well.\n","\n","But there is a subtle problem with this. Consider the kernel that is being applied to each pixel. By default, we use a 3×3-pixel kernel. That means that there are a total of 3×3 = 9 pixels that the kernel is being applied to at each location. Previously, our first layer had four output filters. That meant that there were four values being computed from nine pixels at each location. Think about what happens if we double this output to eight filters. Then when we apply our kernel we will be using nine pixels to calculate eight numbers. That means it isn't really learning much at all: the output size is almost the same as the input size. Neural networks will only create useful features if they're forced to do so—that is, if the number of outputs from an operation is significantly smaller than the number of inputs.\n","\n","To fix this, we can use a larger kernel in the first layer. If we use a kernel of 5×5 pixels then there are 25 pixels being used at each kernel application. Creating eight filters from this will mean the neural net will have to find some useful features:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qEbbQes62N2V"},"outputs":[],"source":["def simple_cnn():\n"," return sequential(\n"," conv(1 ,8, ks=5), #14x14\n"," conv(8 ,16), #7x7\n"," conv(16,32), #4x4\n"," conv(32,64), #2x2\n"," conv(64,10, act=False), #1x1\n"," Flatten(),\n"," )"]},{"cell_type":"markdown","metadata":{"id":"TCjeDNqY2N2V"},"source":["As you'll see in a moment, we can look inside our models while they're training in order to try to find ways to make them train better. To do this we use the `ActivationStats` callback, which records the mean, standard deviation, and histogram of activations of every trainable layer (as we've seen, callbacks are used to add behavior to the training loop; we'll explore how they work in <>):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ltKDTTWt2N2W"},"outputs":[],"source":["from fastai.callback.hook import *"]},{"cell_type":"markdown","metadata":{"id":"0f5gbQA42N2W"},"source":["We want to train quickly, so that means training at a high learning rate. Let's see how we go at 0.06:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"p8KsNAwm2N2W"},"outputs":[],"source":["def fit(epochs=1):\n"," learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,\n"," metrics=accuracy, cbs=ActivationStats(with_hist=True))\n"," learn.fit(epochs, 0.06)\n"," return learn"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hxmjjI542N2X","outputId":"1166546b-ddac-4c60-9602-9af2e05076eb"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.3070712.3058650.11350000:16
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = fit()"]},{"cell_type":"markdown","metadata":{"id":"VTsGxedv2N2X"},"source":["This didn't train at all well! Let's find out why.\n","\n","One handy feature of the callbacks passed to `Learner` is that they are made available automatically, with the same name as the callback class, except in `snake_case`. So, our `ActivationStats` callback can be accessed through `activation_stats`. I'm sure you remember `learn.recorder`... can you guess how that is implemented? That's right, it's a callback called `Recorder`!\n","\n","`ActivationStats` includes some handy utilities for plotting the activations during training. `plot_layer_stats(idx)` plots the mean and standard deviation of the activations of layer number *`idx`*, along with the percentage of activations near zero. Here's the first layer's plot:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"4tuDBqgj2N2Y","outputId":"aab51212-1792-4f1b-a2ff-d0e1312aa800"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAs8AAADWCAYAAAAuNG/NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd5iTVfbA8e/JVGDoTUBhpAsiKIgiXVEUdUFdy9p2/a2La1l7wY6uda1rWRV77wUVFQsgvQzSOwy9w8AwM0xN7u+PN28mySSZZCZTkjmf58nD5K03wyTvyX3PPVeMMSillFJKKaXK56jpBiillFJKKRUrNHhWSimllFIqTBo8K6WUUkopFSYNnpVSSimllAqTBs9KKaWUUkqFSYNnpZRSSimlwqTBs1JK1XEiMkxEjIgcWdNtUUqp2k6DZ6WUikMicqQ7IB5W021RqjYQkUtEZJOIHBSRt0UkyWtdgojME5GLa7KNKjZo8KyUUkqpuCYizYG3gXuBwcApwFivTW4FdhhjPq2B5oVNRJLj8VyxRoPnOkJEponImyLyiIjscX/zflREHCLygIjsFpG9IvKo1z6JIjJeRDaKSIGIrBCRa/yOe5OILBaRXBHZJSKfiEgbr/X27eDTRWS6iBwWkZUiMrI6X79S8UpEBonILBHJcT+WuN9fW92bTHW/Bzd57fMvEdnmfj9OBtrXRNuVqkYdgWxjzIfGmGXAN0APABHpAtwEXBvOgdzXxfUiMlpEVotInohMFZFOftv1FZGf3dfHvSLylYh08Fp/tHvZDvd7cZmIXOF3DPva/W8R2QlsD9Kmae73uf/jb17b/Mvd3gIRWSci94pIotf6Te4Y4X8ish+Y5V7exn1tPygi+e5z9QvndxWvNHiuW/4MJAGDsL5l3wN8D6RhfRO/HbhHRM5yb/8GcD5wDXAM8DDwpIj83e+4twO9gPOwLsKfBDj308BjQG8gA/hURJpE7ZUpVQeJSALwLTAPOMH9GA8cdv8McAHQBjjRvc9o4DngWaAP8BnwVHW2W6kasB6oLyL9RKQBMBRYJCICvAncY4zZFcHx2mAF25dh9WI3Ad6yV4pID+B3YA7QDzgVcAK/iEiqe7M04DfgTKxr6ATgbREZ7neui4CWwGnu4wRyvrtN9uMRIA9Y4G7PeKxr9d1Y1/ObsK7tD/od50ZgDzAA+Kv79/MN0B04B+gP7Ha/jhYhf0PxzBijjzrwAKYBi/2WrQCW+S1bghXoHg24gO5+6x/wP47f+uMBA7RzPx/mfn6+1zZHuJeNrOnfiz70EcsPoKn7vTQswLojA60DZgIf+i172r3tkTX9mvShj6p6AOe6r3GZWF8gE4B/AZPc16Vv3OveA9JCHGc8UAK09Fp2ifuamep+/g7wid9+KVhfbMeEOPZE4HWv59OAtYAjgtc5EigEznU/r+8+75l+210JHPR6vgn4zW+b09yfDT38XsdO4IGa/j+tqYenu17VCUv8nu9yP/yXtcL6pixAhvXF0yMR69szYKVlYH2T7YH1zdu+m9EB39tLi+0fjDG7RMQJtK7g61BKAcaYAyLyBjBZRKZg9XR9bYxZE2K3HsDHfstmArdVUTOVqhWMMd8B39nPRSQdGAecBLwArMK6Q/sBcD9wV4jD7TDG7PV6vh3rmtkK2IJ1p6eziOT67ZcKdHGfvz5Wh9S5WL3FyViB6VS/fRYaY1zhvEYR6Yl1N+ku9+sF6AnUA74UEeO1eQKQKiItvV7LfL9D9gT2G2NW2guMMYUiMs+9rk7S4LluKfZ7boIsc1AaBJ+C9Y3VfxtEpD3wA/A+VkrHPqzerl+xPgS8FQVoj6YNKVVJxph/iMh/gTOA04F/i8gNWL1pQXerlsYpVbu9Dow3xmwTkRHAQ8aYEhH5AHionH39r2n2e8rh9e/7wBMB9t3v/vcpYDTWF9fVWGkWzwCN/bbPK++FAIhIK6xUzA+MMc97rbLbdCFWL7a/rHLOFejzQoIsrxM0eFbBLHT/294Y832QbU7E+jZ7szEmH6wBEtXROKVUKWPMcmA58KyIvIpVReBr9+oEv81XAgOB/3ktG1jljVSqFhGRfwBijHndvciBNSYIrM6fynbuZADHARuMO9chgCFYKVSfutvkALpi5RRHRERSsN7zq7Hylr2tAAqAjsaYHyI89AqghYj0sHuf3efqj+9nSJ2iwbMKyBizXkTeAl4XkTuxBj00APpi5Xk9CazD+uZ5m4h8iDUY8IGaarNSdY2IdAb+gXUreivQFmvw7x9Yd4JygTNEZAVQaIw5gNWz9bmIzMe6czQIuCLA4ZWKSyLSDmug3CCvxdOBW90Vp67HSoGqjMewUiA+cN8Z2gukA2OA/xpjMoE1wGgR+RLrvXor1ns44uAZeM2971VAS690y2xjTK6IPAY85l7+C1b81ws43hgTKj1livt1fCQi1wPZWCktqcArFWhnXNDb5iqUsViDKu7F6q36Dfgr1oAKjDFLsQZbXONefztwc420VKm6KQ8rf/ITrNuxXwKzgRvcOZLXY43U3wosAjDGfI11m/hOYClWtYBQF0+l4s1rwBPGmE1ey27ECm4zsN5X5aVthGSMWYWV9pgGTMa6Rr6Odbf2oHuzW4DNWDnOv2HlTX9RwVMOw2r/GqzBfPbjYnd7/u0+39VY459mup9vKud1GKyAfzVWKtgCrMGVpxtj9lWwrTFPgt9NUEoppZRSSnnTnmellFJKKaXCpMGzUkoppZRSYdLgWSmllFJKqTBp8KyUUkoppVSYNHhWSimllFIqTDFV57lFixYmPT29ppuhVK2xcOHCfcaYljXdjkD0/aqUr9r8fgV9zyrlL9h7NqaC5/T0dDIyMmq6GUrVGiKyuabbEIy+X5XyVZvfr6DvWaX8BXvPatqGUkoppZRSYdLgWSmllFJKqTBp8KyUUkoppVSYNHhWSimllFIqTHEVPK/bncMn87fUdDOUUlHgdBle/G0dhwqKa7opStV5uYUl3PnFEmas21vTTVGqxsVV8Hz6c9MZ99Wymm6GUioKfl21m2d+Wcsj36+s6aYoVecZY/gsYxurd+bUdFOUqnFxFTwrpaqOiEwTkQIRyXU/1lTl+QpLXADkFTmr8jRKqTCkJiUAUFCs70el4jJ4drlMTTdBqXh1gzEmzf3oVtONUUpVj6QEB4kOoaBEg2el4jJ4dhoNnpVSSqloqpeUQH6Rq6aboVSNi6vg+ZROzQFroJFSqko8LiL7RGSWiAzzXykiY0UkQ0Qy9u6NzsAiicpRlFKVlZKUoD3PShFnwfPwbq0AKNHgWamqcBfQEWgHTAC+E5FO3hsYYyYYY/oZY/q1bNmyUiczegdJqVolJdFBYbH2PCsVV8FzgsPqo3I69aKrVLQZY+YZY3KMMYXGmHeBWcCoqj6viPY9K1UbJDgEl36pVSq+gufEBOsiW+LSb8ZKVQODZlUoVWc4BA2elSLOgmdPz7OmbSgVVSLSRERGikiqiCSKyGXAEGByTbdNKVU9HA7R66tSQGJNNyCaEh12z7O+uZWKsiTgEaA74ARWA2OMMVVa61kpVXs4RNCOZ6XiLHhOcFgd6frNWKnoMsbsBU6swfOzI7uAxvWSSEuJq48tpWJGgmjOs1IQZ8Gz9jwrFX/mbNjP0Xf/AEDX1mn8fMvQGm6RUnWTiHZOKQVxm/OsAwaVihf7cgs9P6/dncumfXm8P2cTxc6Kv8+LnS427M2NQuuUqjusahs13Qqlal5cBc/a86xU/Ah2d3jY09O4f+IK+j/6a8j98wpLWL3rUMB1j05axWnP/M7O7PzKNlOpOsOhaRtKAXEWPNs9zyVa51mpuHfgcHHI9Td/upgzn59BQXHZGdHmZu63jpEX+hhKqVJaqk4pS1wGz5qTpVTsM4T/Ps7OL2bt7hzenrURsILjX1buBuDxH1aRXU6grZQqn5aqU8oSleBZRJqJyNcikicim0Xk0hDbDheRqSKSLSKbonF+W4KmbShVpzz03QryCkvo/dDPnPHcdB76biUul+GSCXM927w7ZzMPf7+yBlupVHzQUnVKWaLV8/wyUAS0Bi4DXhGRnkG2zQPeAu6I0rk9ErVUnVJx4Y0Zmdzy6ZJyt3t71iZ6Pug7T8vbszeV2a6wxErdWLj5AOnjJrH7UEFU2qlUXZIg2vOsFEQheBaRBsAFwP3GmFxjzEzgW+CKQNsbY+YbY94HMit7bn+lPc9abUOpWPbIpFUV3vffAXqZ1+/JZf2eXN6bswkoP19aKVWWaM6zUkB0ep67Ak5jzFqvZUuAYD3PERGRsSKSISIZe/fuDbltYoLmPCsV61btDFwhozJW78phxLO/4xCJ+rGVipYIUyBPEJHpIpIrIrtF5Cavdenu9MjDIrJaREZEo31WqTq9vioVjeA5Dcj2W5YNNIzCsTHGTDDG9DPG9GvZsmXIbTXnWanYd9Z/Z1TZsf1j50gGJSpVDcJKgRSRFsBPwGtAc6Az8LPXJh8Di9zr7gW+EJHQF9AwWKXqKnsUpWJfucGziEwTERPkMRPIBRr57dYIyKmKBodi13l26btbqbjXuVVaxPsIvtFzqAwvYwyTV+zSzxNVLSJMgbwVmGyM+dAYU2iMyTHGrHIfpytwAvCgMSbfGPMlsMx97Eq2Ue/sKgVhBM/GmGHGGAnyGASsBRJFpIvXbr2BFVXV6GC051mpuuPh0ZFnhv2wbKfP8+nrfFPBpq7ewx9bDrAru4CJi3dwzfsLecdrAOLWrMMs3nqwQu1VqhyRpECeDGSJyGwR2SMi34lIe/e6nkCmMca7AytoKmUkqZEJDsFo2oZSlU/bMMbkAV8BD4tIAxEZCIwG3g+0vYg4RCQVSLKeSqqIJFe2HaDVNpSKN/WSEjw/b3ribDY9cbbneXJC5B9f+X4Tpjw1eQ2XTJiDMYapa/Zw1TsLOP9/szn58d88FTm8ZyEc/J+pjHl5VsTnVSoMkaRAHgn8FbgJaA9sxErViPQ4EaVGOkRwavCsVNRK1V0H1AP2YL2BrzXGrAAQkcEikuu17RAgH/gB602fj2+uVoXZPc/FTq22oVQ8WPnwyDLL/rj/dKbdPoy+HZpyz6juDOjYvFLnmJuZxf68Iq56e4HP8r05hUDwacLX7s7h2yU7KnVupbxEkgKZD3xtjFlgjCkAHgJOEZHGER4nIg6RkKlOStUVidE4iDEmCxgTZN0MrG/C9vNpQJUMeU9JtL4LFOv03ErFBRHhon5H0qVVaadZswbJNGtg3awaO6QTY4d0Ytm2bM59aWaFz3Pm89PLLHtjpjVbocvAvMz9zFq/z2f9Gc9Z+/ypd9sKn1cpL54USGPMOveyYCmQS8FntKv9s7i37ygiDb1SN3oDH1W2gVqqTilLVILn2sIOnu0JEZRSsWXljrJl6v7z597l7pecWLmbaPtyi4Kue2vWRt5yT/utVFUxxuSJiJ0CeTXQBysF8pQAm78NfCkiL2AFy/cDM40xB4GDIrIYeFBE7gPOAo4jGgMGK3sApeJEtNI2agX7AlpYrPeVlIpF3gP4bjytS4gtffkHz3blneoQyQCq5duzycoLHqirOi9gCqR/+qMxZgpwDzDJvW1nwLsm9CVAP+AA8ATwZ2NM6NGASqmwxVnPszW4qLBEg2elYpF3yPvXAR3C3s8/Vg40qOm4IxuzdJv/OKqKefKn1Z6fi5wuz2dPec55cSYdmtfn9zuGR6UdKr4ES4H0T390L3sFeCXIcTYBw6LdPpHgYwCUqkvisue5SINnpWLSu15l4ZqnpYS9n31Bb9ekns9zgFG9jgBg4vUDGX9uD8/y5y/uU+F2vjJtg+fnSD9vNu8/XOHzKlWT/OukK1VXxVXwnOAQkhJEc56VilE7sgsqtF+H5vW5fngn3vt7/zLrXvrLCax/9CxEhL8NPNqzPKkCpe4C2XGwgDdmZDLbPaBwa9Zh8gpL2Jdb6LOd1sdV8UBn5VQqztI2wLogas+zUnWLiHDHyO6e573aNebuUd3JyivC4RAcfj1mF/Y9ssxU3RU10qtSx2fXDOCi1+Z4nm94bJRXCU0NOlRsi9Z7RqlYF3fBc4JDi7grFYu8e2afu7j8ChvB/HjTYNo2qUfjekkB19sTrXyWsbXMOofAS5eewHUf/lGhc3sHzgAHDxd50k9KvArk5hc5qZdcNk86r7CEr/7YxuUnd0A0UlG1kF5elYqztA2wRtnrDINKVQ0R6SIiBSLyQbSPnVdUmm41sucRFT7OMW0aBQ2cveUWlABw46mdmXHncK4f3on1j45iVK82DO7SosLn95aVV8Ss9fs4/dnfySssfX1LtgWe4vuRSSu5f+IKZqzbF3C9UjVJv88pZYm74DnB4aBEg2elqsrLwIJyt6qAnIJiz8/1k6v+ptgl/Y9i7JCO/HNYJ45qVp87RnbH4U6x8C91F04wHsi2A/lc9+EfrNuTyy2fLvYsn71+Hxv35THwiSlMWb0bgAWbsth2wJoKPK+wpELnU6qq6dVVqTgMnhMdQolOz61U1InIJcBB4LeqOP5+90QlT5zfqyoOX0b95ETuGXVMwED94dHH+jw/7sjGvH5lP+4+q3uZbUO56p0FZOdbXwpmes1Q+MKU9Qx/ehrbD+bzf+9ksPtQARe+OsfT46zf/1VtpNU2lLLEXfCc4BDteVYqykSkEfAwcFtVnWPFDqsGc7/0ZlV1irAd1aw+HVs08Dw/lF/M6T1a83+DSqt1pKVEr3d87e4cn+c6bkPVVlo1Rqk4DJ4TEzTnWakq8G/gTWNM2VF2XkRkrIhkiEjG3r2RTWiW485BbtUo/PrOVcqrk+3PfY8EfMvbLX9oZNRO5T8t+X1fL2NrltaDVrWMdjwrBcRj8Kw9z0pFlYj0AUYAz5W3rTFmgjGmnzGmX8uWLSM6zz532kaDash3DkeXVtaEbjPvGs4VA9IDbnPtsE5ROdfjP672eX6ooITbP1/ieT7uy6X856fV/rsBVkWP/X41pZWqKnp1VSoOS9UlOhw4tZ6qUtE0DEgHtrjLp6UBCSLSwxhzQrRO8urv1qx9Cf5zbdeQZy7qw6WbD3Bk0/o+y7sf0ZDVu6w0C1cV3sK2c6UBPllgdfhPXrGL16/sx+aswwzv1gqAPg//ApSW4IvUn1+ZTc+2jXjIL89bKX+1452pVM2Lu+BZc56ViroJwCdez2/HCqavrZHWVJO0lESGdi3be/7dvwZ5gubkILMUJic4KKrkwOWiEheHCor5cdlOz7INe/M49ZnfAfhk7Mk88/Maz7qx72XQulEqD/2pp6dqiL+5mfvp1rohTRske5ZlbD5AxuYDGjyr8OjlVak4TNtIEJwurbahVLQYYw4bY3bZDyAXKDDGRJbUHIYWabUk3zmEpAQHKYnWBCeJjsAfoT/cNLjS58ncl8dx43/mri+XBVx/22dLWLDpgOf5zyt38/7czazbkwvAryt38/Tk0uDa6TJcMmEuV7w1r9JtU3WTTtyjlCXugmfteVaqahljxhtjLo/mMV3u9+zlJ7eP5mGr3GUnt2dAx+Y8dp5VXu/kjs1ISXSQlFD1Qcb2g/kBlxeWWJOxXP1eBi9NXe9Zbs9wuMJvcKJSkdCrq1JxmLahMwwqFXuK3YFdUpA0iNqqRVoKH489GYBLTyoN/Hdm+wa2Y/q05ZvFO8rsf/4J7fjqj+1RbVNOQUnAz0B7mVYaUxWl/c5KWaJypRKRZiLytYjkichmEbk0xLZ3iMhyEckRkY0ickc02mDTnmelYk+Je5Cv/8x+saqZV04xBE5Hefz8Xjx5wXG8fmW/qJ77sjfmccWbZVMzinUgtYoCrfOsVPR6nl8GioDWQB9gkogsMcasCLCtAFcCS4FOwM8istUY80mAbSOW6HCQX+yMxqGUUtXEEzzHWM9zMHZO9PHtmzDimNZcNTCdN2ZuBGDj46NYufMQPdo0QkQ4rXsrBnRszpzM/VE7/+wNvsf6etE2dmYXhL1/bmEJW/YfpkfbRlFrk4p9mvKslKXSwbOINAAuAI41xuQCM0XkW+AKYJz/9saY/3g9XSMiE4GB+I7mrzDteVYq9pSmbcTP1Xn+PafRMDWJeskJPstFhJ5tG3ueOxzCx2NPptM9P3hSKx47rxf3fB14oGCkcgtLuOXTJWWWT1wcPF3kts8WM3nFblY+PDLg9OWq7tKrq1LR6XnuCjiNMWu9li0Bhpa3o1hDdwcDr4XYZiwwFqB9+/IHE1k5z1ptQ6lYUpq2ER89zwCtGqVGtH3Pto1Yui2bOXefSpvG9aIWPB/74OQyy9LHTQq5z6qdVh3rDXvy6HVk45DbqrpD0Jx5pSA6Oc9pQLbfsmygYRj7jne34e1gG0Q6Y1mCQzwXYqVUbCh210SOl5znQG48rQtv/jV4fvM7V/Xnw6tPok3jegD8cGPly91F4nBRCXmF1hTp9d295ee+NLNa26CUUrGg3OBZRKaJiAnymIlV89U/Ma4RkFPOcW/Ayn0+2xgTtbllExM0bUOpWGMHz0mJ8Rs833p6V047pnXQ9c0aJDOwcwvP80D5xv3Tm5VZ9tKlx0elfb0f+pmeD04mK6/IM4MiwLrdIT/KVR0iIhhN3FCq/ODZGDPMGCNBHoOAtUCiiHTx2q03EGiwIAAi8n9Y+dCnGWO2VfZFeEtwOLRUnVIx5lCB1ePZKDWphltSu/x8yxCf572PKptCcXavNlE5l12N45/vL/RZfvpz03l00ko27suLynls2w/mszcnav0mqhrE71dbpSJT6bQNY0we8BXwsIg0EJGBwGjg/UDbi8hlwGPA6caYzMqe31+SQzyTASilYsPBw0UANKmfXM6WdUvX1g1ZdP/pvPd//QEY1q1VmW2iPevb/E1ZZZa9PmMjl78xjw17c5m0dGeAvSI38IkpnPjor1E5lqo+mvOsVPRmGLwOqAfsAT4GrrXL1InIYBHJ9dr2EaA5sEBEct2PV6PUDhIcglNznpWKKTsOWmXUWjWs/dNzV7emDZIZ0rUl6x89yyeto0Pz+p6f7zyzG+2a1KvSdmw/mM9pz/zO9R/9UaXnUbWYdj0rBUSpzrMxJgsYE2TdDKxBhfbzo6NxzmA051mp2LMl6zDJCQ6ObFq1AWAss2tg9+3QlLN7teGS/kdRUGzdZbtuWGeuG9aZvTmF1dKbO2npTvq0b8LAJ6bwl/5HkZzgYPTx7TihfdMqP7eqWdrzrFQcTs+doNNzKxVzikpcpCQ6op6CEI++vPYUz8/+WS4tG6Zw0tHNmLexbOpFNHn3Pn88fysA787ZTMZ9IwLOpqjig2jXs1JA9NI2ao2kBAdFJZrzrFQsKXa6SEqMu4+jGvGX/sHr4Tepbw3IXPLgGVVy7n6P/MqAx3+rkmMrpVRtEXdXq9SkBApKdHpupWJJUYmL5DiZmrumjTm+Hc9c2BuA4d18a+P/dutQpt4+jMb1kvjvJX2q5Pw7swvYmZ3Pa79vwER4j//pyWu44s15VdIuVXl6Y0gpS9xdreolJVDsNJQ4tfdZqVhh9TzrlTlaxhzfjjtGduOFvxzPVQPT6duhKd//axDN01I4ukUDAEb2PIIL+x7Jv0f39Oz3/t/78+C5PTzPxw7pWKHzD3h8Co//uJopq/f4LP9p+S6WbfOdU2tu5n4enLgcgJemrmfGun0VOqeqHpF+IVIqHsVdznNqkvV9oKDERZr2ZCkVEwqdLpL0/Ro1CQ7h+uGdAXjw3J4Bt0lNSuApdw/1hf2OosRlSEtJZGCnFjz03UoA7hl1DBOmV7yi6N/fzWDTE2d7nv/zA6uG9NLxpWkjl0yYC8C9Z5cG7XtzCnl9RiZ3juzmGSipap5+vVXKEnefSvWSrGllC4o1dUOpWFGsaRs1KjUpgbQUqy/FEeUp0mevt3qS7/l6mWfZrZ8uLrPdRa/N8fx81TvzmTA9k39+sJBNUZ6cRVWO9jsrFYc9z2mp1ks6eLhYR30rFSMOFzlJ1gGDcek/k9ew+A3fPOZfV+0ps93irQc9Py/ffsiz3dJt2cy/dwSHi0pITUzg8R9XcXSLNC49KfjASFU1NOdZKUvcXa3aNrbqxO7Mzq/hliilwrV61yE6t0wrf0NVbY5t18jnuV2De+yQjky6cVDYx/EOiitiT04h2fnF9HhgMk/8tJrXZ2z06cVW1UtTnpWK457nvEJN21AqVhwuctKsgU7NXVssf2gkSQlWN+Px7ZuwaMtBJt04mNenZ3LziC4kJjj49dYh5BU6Gf3yrCpvz+M/rALg0wVbPcvW7MphzoZ9XHTiUdRPjrtLWa2kdZ6VssTdJ47DfV9JRwQrFRuMMeQXO6mXnFDTTVFudv4zwKdjB1DiclE/OZHbR3bzLO/cqiEA/zq1My9OWV+l7fl97V7AGhBu31Qc+fx0AMZ/t5Inzu/FJSHqW6voMZr1rFT8pW0kuAe7ODV4ViomFDldGGMNWlO1T3KiI2TP7m1ndCPzsVFlJl6Zd89pnNu7bVTasDO7ACjtHPH36KRVER2v2OnScqYVoDnPSlniLni2P1x1im6lYkNBkRXEaPAcuxwOoXG9JDY9cTYL7xvBH/efTutGqbwQYCKWji0bVPg8dhDtLyFBWLApi4WbD4R117HLvT9yzoszfZat2nmI9HGTtLpHObRfSqm4DJ6tf/UNrlR0icgHIrJTRA6JyFoRuToax813l5W0a7Sr2NY8LcWTvy5+XZWZj42iQRXkJx88XMyFr87hgldmc+tnS0gfN4nXg9SnzikoBmD1rhyf5V8u3AbA5BW7ot6+eKE9z0pZ4u5q5Unb0J5npaLtcSDdGNMI+BPwiIj0rexBcwtLAN88WxU/Xrui9E/E4RDOO74dADee1oUNj43i9zuG8dttQ8vsd4dXfnUkvl60HYBHf1jF7A372LQvj/wi6wvaN4u202v8z2X2ufaDhbwxcyOgKX/l0d+OUnEYPHvSNvQDUKmoMsasMMYU2k/dj06VPW6eO3iuih5JVfNG9jyCh0f35Kk/HwfAVQPTmXfPadx6elcSHEKH5g1Ib142lePaoZX+0+LBiSsY9vQ0jnngJ35ZuZubA0zOAvDj8tLeZqfTsHqXlcIxN3N/pdsQCRFpJiJfi0ieiGwWkUuDbDdeREDhXaIAACAASURBVIpFJNfr0dFrvXEfw173RpRaqHd1lSIeg2d3z/ODE1fUcEuUij8i8j8ROQysBnYCP/itHysiGSKSsXfv3rCOaQfPdplJFX+uHJDOhf2OAqxUjtaNUn3WJziE7kc09Dzf9MTZOBzCkgfO4MebBvPXAR0qdN7N+w97fv7Hexll1qePm8TU1b4TtpS4DLPWW0HzT8urPYXjZaAIaA1cBrwiIoHnV4dPjTFpXg//PJXeXuuikmKlaRtKWeIueE5wv7vzdXpupaLOGHMd0BAYDHwFFPqtn2CM6WeM6deyZcuwjqlpGwrgo3+cDEDjekmeZY3rJ3FMm0Y8NPrYCh2zKIyKGte8v9DnudNlaqTUqYg0AC4A7jfG5BpjZgLfAldUe2NC0q5npeIueHZ4vSItRaRU9BljnO4L+5HAtZU9nh08N9DguU6zvzz9M0i6xo2ndfF53r5Z/aic1z/Afmnqeh5xl74TseqQV9O1pCvgNMas9Vq2BAjW83yuiGSJyAoRCfQ+nC4iu0TkKxFJD3bSSO4WacezUpaoBM/h5mm5t71ZRDLdI/Z3iMhzIhK1q6Z3HdDKTgurlAopkWjmPKdoqbq6LDnRwaYnzubaYYH/pG49vSvz7jnN87xLK2s691cvP6HMtpUph+ftuyU7OfuFmXS+90fAuqZs2X+YLxZuo9f4yVz/4R9ROY9bGpDttywb606Pv8+AY4CWwD+AB0TkL17rhwLpQHdgB/B9sOtspHeLNOdZqej1PEeSp/UdcIJ7xP6xQG/gxii1w5O2AXDxhLnROqxSdZqItBKRS0QkTUQSRGQk8BdgSmWPnVtopVhp2oYqj3fO7VMX9uaJ83sxsucR9OvQ1Ge7u886hj9FYYKWfbmFrNx5CICCYidjXp7FkKemcvvnS8gpKGHSsp2VPoeXXKCR37JGQI7/hsaYlcaYHe67QLOB/wJ/9lo/3RhTZIw5CNwEHI0VbFeK5jwrZal08BxpnpYxZoP7DQ3WXSAX0Lmy7bDZAwZBy9UpFUUGK0VjG3AAeBq42RgzsbIHzisswSFQTydJUeWwK7Kcc1wbmjVI5pL+7RERuh7h2zmbmuTg2Yt6R/Xc475cGnD5LZ8u9tSOrqS1QKKIeOen9AbCGf1uCJ1VUd76sOlVVano9DxHmqeFiFwqIoeAfVgfDq+F2Dai0fsO/WasVNQZY/YaY4YaY5oYYxoZY3oZY16PxrFzC0tokJJYZkINpfw1SElkxp3DecYvMD7p6GY+z5MSHCQmRHdIzzeLdwRc/vWi7Zz5/AxW7jhUqeMbY/KwBuE+LCINRGQgMBp4339bERktIk3F0h/r7u1E97qeItLHfYcoDXgG2A5ENod5AKJZz0oB0QmeI8nTAsAY85E7baMr8CqwO8S2EeVjJWj0rFRMySss0ZQNFbajmtUnJdH3LsXoPu2Yf+9pvHTp8QB0be17+QmnF7phJf4Gtx/MZ9QLMyq8v5frgHrAHuBj4FpjzAoRGSwiuV7bXQKsx0rpeA940hjzrntda+BT4BCQiZX7fI4xJird4zVRiUSp2qbcTwsRmYY1+CCQWcC/CDNPy58xZp2IrAD+B5xf3vbhcGjvlVIxJa+ohPrJmrKhKqdVw1TOOa4t5xxXmuu8dPwZZOUW0b5ZfVqkpdCpVRqPTVrFKZ2bc+/Xy332X/bQSP700kyWbvPvC6o+xpgsYEyA5TOwOqrs53/x38Zr3RSgYtMzlkMvr0pZyu15NsYMM8ZIkMcgKpenBVEasW/zDp6Pbecf0yulapuiEkNyogbPKvoapSaR3qIBDocwpGtL2jWpx8uXncCl/dtzavdWZbb/9oZB9GhjXTeiVQov3mi/s1Jh9DyXxxiTJyJ2ntbVQB+sPK1TAm3v3uZbY8weEekB3A1Mrmw7bN5pG20b14vWYZVSVaTE5SIpQbu0VPUREd7624kAzM3c73Pd2LDXyo7ofkRDtmQdDrh/MNsP5tOuSfxed/RdqpQlWiMqAuZpAQTI1RoILBORPKypfX8A7olSO3wGDOosg0rVfiVOQ6KOVVA15OSOzTkxvXTAYWGJNSHKI+cdy5MX9OLzfw4A4PQercs9Vkpi3M07VoamPCsVhZ5nCJ6n5V7nn6t1VTTOGYyIsOmJs7lkwhwKi3WGQaVqu2KnK+qVEZSqqBuGd+alqetp1TCVi09sD8C6R88iKcHB+j05zFq/n0P5xfTt0JRL35jns2+LtJSaaHK10Yo4Slnidoh7alICWXlFNd0MpVQ5SlyG1CQNnlXtcPvIbtw+0ne8XZL7y13nVg3p3Mqq5FFXry9abUOp6KVt1Dr1khLIL9K0DaVquxKniwRH3H4UqTjlP538BSccWUMtUUpVt7i9YjVrkMy+3MKaboZSqhwlLkOS5jyrGJOSmMCU24bSvEEyABf1qxvBs/Y7KxXHaRutGqZy4HAxxU6X55abUqr2KXEaErXahopBHVumseDeEazceYhj2zWu6eZUOU15VsoSt1FlsnvUs9Ol35OVqs2KXTpgUMUuh0PqRODsoZdUpeI3eLbvAmvwrFTtVuLUtA2lYoEgGjsrRRwHz3bRe5eODFblyCss0cGlNahES9UpFRM0bUMpS9xesex6lK4Klnrec6iAV6Zt0LI8bs/+spb0cZNquhlVoueDk+n/2K813Yw6q9hldIZBpWKEXhOViuPg2b4WV7Tn+YaPF/HkT6tZvSsHsD4w0sdN4tlf1kariWH5dMEWlm/PrtZzBvLCb+sAcMVYGkyJM7xvTzkFJQGX3/75Ev7xXkal2jD65Vk8PXlN2NsXFDvJLQzcnnjkdBmf6ZGVUrWTvkuVssRt8OxwX4ydfsGz02V48bd1ZB8uDrl/njt4sXOm7X9fnrq+wm16/te1EQffd325jHNenFnhc0Yifdwknv05dJDn//usbgs2ZZE+bhJLth4sd9vPM7bS+d4f2XbgcIXP98XCbfyycrfn+eb9eRw8HHpyhP25hT5fMpZsPchLEfzdnPviTI59cHLkjY1RxU4XiVrnWamYEFvdJ0pVjbi9YnnSNoxh4eYDrNhh9d5OWb2HZ35Zy8PfrwzrOHasaMdClfnm/fyv6zw9uJFasyuH8d+u8ARlRSUuXpqyjoLi6ObqvjAldJAXzQGYV709n273/RjRPr+t2gPAGzM3UlxOr/LExTsAyNybV7EGBjD0qWmMeHZ60PV7cgro+8ivPP9rxe5QrNp5iHV7civavJhU4tS0DaVigeY8K2WJ2+A5wSvn+YJXZnP2C1bvrR1slhd02h8Sxv09u7oHHk5cvJ0XvQLtaz9YyDuzN7Ely+pF/Xj+Fp7+eS0TpmdWa7sq+nvYtC+vTK7c1DV7KSyJLCnd/v/4bskOnvhxdcht7bY6Qnzih/oysG53TsDl3pPv5BaW8Owvayl2unhl2gbGvDQLgMkrdgfctzxn/XdGhfaLZSVaqk6pmKEpz0rFcfBsp1AW+QVnnoCqnBxL8etjtver6m/eTpehoNjJTZ8s5hmvFI96ydZUsHZubmGJ0/08dPpJMMu3Z/P+nE1k5RVx9bsZ5aYi2K+7z8O/MGPd3oDb7M0pZOa6fWWWz8vcz7Cnp/F5xrYKtTWYRVsOAHD/N8u5+6tlDHpyis/rKA2egx/juSBpNAXFTvbl+v5OfltVNiB+9ue1vPDbOr5dvIMnf1rNjuwCwAoI/c3N3M8bM6r3y05tZ4yhWEvVKRUTRLuelQLieIZBOzj+z2Tf3kk7oPIMKHSZgLND2Z8RU1fv5eHvVvLWVSdayyuQuLEnp4DDheGlV9zw0R/8uHxXmeUNU63/KjtYtntTSyqYRmHnUe/JKeTXVbt5b87msPYrKnEx/tsVPH7+cbRIS6ZjyzTPuotfm0PmvjzevupElm3L5sbTugCw1t2Du3T7QS468agKtdfD6+XaL/39uaVtn71hP6N6tSG/yMnczCwg9Af+gk1ZAZef++LMMukT8zaW3dbOjf9o/haf5YH+Wy6ZMBeAC/sexepdhzipY/Og7QLIyiuimXvq33hl9/xrz7NSscFo1rNS8dzzbAVM3y/d6bPcTpO117/y+wbOeXEmf7h7MW12uPXcr2vJ2HyAHQfzPSvSx03iug8Xht2W/o/+xrCnp4W1baDAGSA1yep5zitykp1f7KlOUNkc5GVhVvLwDj+NgYtem8Opz/zus03mPiu3+Kq3F/gMjLTbmBCFXgsT5Geb/f/6lFd1i2CnnbpmDxv2Bs4vDpR37H2crVmHefzHVZ4vYws3+/79BOp5tl359nwunjCXYqeL9HGTgg5C/ef74f+NxSr7y59W21Cq9tN3qVKWuO15DtaRZQ+4s3um7TJwOw8WQPvgx9ubY+W52h8ePywLHORWlUR3e6//8A+KnC7+PbonEHnwvGTrQT726iWdtsZKwSgvj01EPBvZQXK4nO5jl5cqY9uTU0BaSiL1k8v58wzQaDsIO5hfmnIRLOf5qrcX+DwvLHFyz1fLuX54p4Dbewf/f31rPpn78ujXoWnAbZ1Ow+wN+2gQ4DXYlULsgPupyWvo2rphmTz8rZWoEhIr7OBZBwwqFRs051mpOA6egwVMTuPbCxq0M9RvRYkzspxnuxJEUpRuR+e50z6K3Md1VGAGxa1Zhxn98qyA6wLdilu96xBdWllBXbAg3ekyFDtdnp7xQFx+Pc8Fxc6Av5eXp67njB6tOf05q5rFpSe1Z+Ki7Xx53Sl0a90QEfEZdBioRYF+3eF2an6xcBtf/rGNQ2HkkdtfIDL8epxtJS7Dpa/PC3kMO40D4B/vZTCws28aR3nVRKqTiKQA/wNGAM2A9cA9xpjIyqX4setwa6k6pWKAfsdVCojjtI1QwR6UBp/esWd+kZPVuw4BZT8j7B6y8nKeDxdZObCDnpxC74d+jrTZQc3J3O/z3G7Hx/O38vWiwAPxPl2whZs+WcTCzVnsOJjP4P9MDXp8/xh87e4cznx+Bs/+soZTn5kWdL+x72XQ/f6fQrbdc2ve3bvY/f6ffNJernxrPku3HeSpyWv486tzPMs/mreFvCInZz4/g9fdA+282xnoe0OgL03+Oc+PfL+SUwOk0dz79XKA0hQdL3mFJRyOYArvilQl8f/bqmVThicCW4GhQGPgfuAzEUmvzEGLndrzrFQs0Y5npaLY8ywizYA3gTOAfcDdxpiPytknGVgKpBljjoxWWwAKigP32gWrwCACN36yiF9W7mbFQyPL7Od057CG6nn+bMFW7vxyKW/+tR+7DxUG3zAKvHuK7/5qGU3qJzO8Wyufbe76chlg1TtukBy8Zxh8g72CYif3f2MFkou2HAz5Wn5bvcezT3nH9k578C7lNn3tXrLdVTKy8wP3+j72w2pG9jzCZ4Dksu3ZzPP7UmGnbYT6kvPGzI1B1wGs2HGozLKeEU5aUpGBnP69//lRruFdGcaYPGC816LvRWQj0BfYVNHj2rnhOmBQqdqvIgPmlYpH0bxivQwUAa2By4BXRKRnOfvcAeyJYhs8ggVzdum6lEQrmPTuIMxwV14oLHGVCZLtHjLvxUu2HiR93CQ277du4d/55VIgcFWGaLPTSMD6ouCfvzvGLz0jr5xeTO/fw2u/Z3peQ7g9qA99F3zSGWcYg8LCOcvQp6bxzuxNPsvenuX7PNAdhwtemV3tvbjRmEymNs+ELiKtga7Aisocx/47TtQBg0rFhlr8uaRUdYlK8CwiDYALgPuNMbnGmJnAt8AVIfY5GrgceDwabfBXUFI2WCpxuvhuiTXrXH2/nlih9Ja/02UCpG3YPc+la65xV0MY+tQ0n21TE0P/Wu1axIu2HOClKet4YOJy3p+7mcd+WBVyP2+B8mHnb8wiO7+YohIXi8OYvtqbd6+n97HDzT742K9Umze7gkjIvOgKjkLxD8iveX8hTpchO9+3RvOO7LKpGFUp0slfAGat31/+RrWAiCQBHwLvGmNW+60bKyIZIpKxd2/geuDeoj02QClVdbTMs1KWaKVtdAWcxhjvGSeWYOVHBvMicA8QMqoRkbHAWID27UOUw/ATKG2j872lY5sO+gVXhtI86I/nb+GPLb7Bp91Dluuu62vtUxrwTV1T2oFeXlWJPg//wsL7RnDe/2aX8yqCK3aWDTYvem0O/dOb8dKlx0d8vCVbS0vW1fP6YlGZqaKLnS6WbjvIqp1WGkSj1OB/bsu3l02VCMekZb6lCAtLXHS978cyPb9b9h/myKb1SKqmgWn+k/PECxFxAO9j3WW6wX+9MWYCMAGgX79+5X4jCueuhFKq9tA6z0pFL3hOA/wLBmcDDQNtLCLnAYnGmK9FZFioA0d6MbYVlpMv+sHcLT6pD6t2HvKUo3s2wKxzgXJYvTtLf1+zl3ZN6rH9YD6dW6WV2dafPVNgRQULzuZvymLlzsgD0ZnrS2cG9O6Vz8oLPfNgKF3u9S3EcP/EFVzYr5KTpIQhUMrEVe9YaS2DOreo8vPHK7Fuu7yJlZo1yhhTsektveiAQaVih75LlbKE1Q0nItNExAR5zARygUZ+uzUCcgIcqwHwH+BflW18KKcd07rcbT5ZsJWfVlgpBf49mP4CBZHeMdo7szfRpH5SmeXBVLanbfvB4DWA/+aX/xypeiHSKypre4BKFtXJ+0uCitgrwDHAucaYqPxHegYMaqk6pWKC1nlWKszg2RgzzBgjQR6DgLVAooh08dqtN4EHE3UB0oEZIrIL+ApoIyK7Klv2ylv/o5uxbPwZYW+fuTf0xB/eM9bZ/PN07ac3frzIs+y3VbsJZFGEOcn+PssIXJ4uGrxTUKJtzobYyOtVvkSkA3AN0AfYJSK57sdllTmu3fOcqD3PStV6IjpeUCmIUtqGMSZPRL4CHhaRq7EusKOBUwJsvhzwvnd/CvAScAJQ/gijCDRMTYrm4coIJ6Xh7+9mBFxeXItzYr3LyEXbfe4SeCq2GGM2UwV3bUt0wKBSSqkYE80r1nVAPazScx8D1xpjVgCIyGARyQUwxpQYY3bZDyALcLmf157CtlXMvl2tIvfaFX25d9QxNd2MKndGj/JTj2KdPZZAS9UpVfsJvrO8KlVXRW2SFGNMFjAmyLoZWIMKA62bBkR1gpSa4l2Jozy/raq61Ih4N7LnERQUO3k0gtJ+0ZLevD6b9gfPN4+m3kc1qZbz1CS7VJ2mbShV+2mpOqUseq80irZkhR9U/byy6lIj6oKqLm024phWAZeHEzinlFPnO1xtm6RG5Ti1mdPT86wfRUrFAu13VkqDZxWjEirZBVKVFUVev7JfpY/x/t/7M6ZPuyi0pnbTAYNKxQ59lypl0eBZxZQxfdoC5U9EU57UpNB/+oEm2fH27zHHBl3nP3tlMA/9Kfjs9YO7tPSZzTJe2bn/OmBQqdigKc9KafCsYkw4NbTDYU8V3q5JvYDry5tF68K+wdP0ww0Ek6OU3hHL7ImKdMCgUjGgDnyhVyoccX/1/uDvJ9V0E6IqVmZii1Zg2DAlkV7tGnueXzGgg8+6irKD55M7Ng+4/vKTOgRcfsmJVpXFlEQHI/wm4klLSWR4t5Yc3bJBWG04vUdrjmoWOHivK4q1VJ1SSqkYE/dXrEFd4ms65h9vGlzTTQjoPxcc5/O8TePIB7s1rmfV5W7dKMWzrF5yAh/+4yQeGXMsX147gBPTm3nWPTymNO2hRVpyROeyB/XZwZu/1CA50Tec2plNT5yNiPDSpcfz8y1DPOuOb9+Et6/qH1Y+9eSbh9AiLYUZd54aUbvjjadUXYx8KVSqLtN3qVKWuA+eAabdPqymmxA17ZrUD2u7ji3C6/2MhiFdW3Li0c18llXkQ/byk9tb/57Ugdeu6AvAnpxCGqUmcfnJHejbwfccxSWlqRVXDTw6onPZ1TqKwpysxiHwv8tO4Mimpb//1KQEurZuWGbbcFIQuh1Rul/zBqWBf+tGKbx91YlhtSke2MFzVVdPUUpFj9Z6VnVdnQie01s0oGFq1Epa16h6YQ5GKy9t4u+DIgs2Q7m431Ehq1/cMbJbWMcRd8htgB5tGpW7fadWpaXD7YD12Hbl7+etyKvnuV+Hpp6fDYZTOlkpHW/+tR8z7jqVUb3aBDzG8e2teswO9++gvIF+/sH1Mxf19vw8/tyeDO8WuExePPLMMKil6pRCRJqJyNcikicim0Xk0iDbjReRYhHJ9Xp09FrfR0QWishh9799otO+aBxFqdhXZ65Yy8aPrOkmRF3HMHNr/X157Sncf06PCp93zt2n8sf9p3PWsUd4lvl/qNoBZPtm9bl+eOdyj/nGlf08xzAGGtcvf2r1vl7BbqI7ZzbcesH+Pc9n9GjNF9eewvnHW+XhUhMTmHBlP77/1yBOO6Z10IGFAP861Xp9wS4s/p2qVw1M93k+rFsrVv/7TDY9cTZnBQnQ41WJlqpTytvLQBHQGrgMeEVEgpXl+dQYk+b1yAQQkWRgIvAB0BR4F5joXl4pdgdHtAZuKxWr6kzwHI5rhnaMKKc4VEAVTdcM7Rhw+YleaQxLx5/hsy5U76d30OnvmCA9vnaJOIA2jevRzCvVQKR0sgvPsqBnKHXnmd345ZYhLLh3BCN6tOa849uRnODgT33akpZs3Sm4upwecjs9xR5IGc6Ayu5HNOSyk6wUkaOa1fe8BoCHRvdk/Lk9GNCpOWkpiRzrNVgxGPsOpveZv/jnAM/PmY+f7fl5/aNncU+AqcWD5VjHu2ItVacUACLSALgAuN8Yk2uMmQl8C1wR4aGGYc0e/LwxptAY8wLWx1OlB1jYb1P/z3ul6hq9YnkZO7hj0OAxkEDb3jKiK+/9X/9KtePU7r637e8+q2ywBb49nY1SfXtqK9KPN/7cHjxzYe+A65rUD91p4fTPgQujAX3bN6VL64a0bGgNEOzYMo21j57F0S0a4HAIGx4bxb1nB37tNnsAoT3Y0Dtd5Zohgb903DyiKxf1O4qfbh7MYPeAUrtHpWFqEn8beHRENZY9wbPXPv3SffOz7zqzO60appCY4KgT9ZvDpaXqlPLoCjiNMWu9li0BgvU8nysiWSKyQkSu9VreE1hqfBOTl4Y4TtgS3Hf2XJrzrOq4+EgEjpK0CPOina6yg81uGtGl0u04OsBgv2cv6k2LNCvIvPus7qQkOli9Kyei49539jEcEaIKxt8GHs22A4Gnn+7RNviXCmPKDiBpkZZC5t48LnaXdgu4XzntDWcQ2cNjevKPIR3ZmZ0PlAbBANcM7cRr0zMBePnSE2iRlszFE+bSt0NTRITuRzRiw548a79KxG726wjV3GuHdeLaYZ0qfpI4Zec864BBpUgDsv2WZQNlRyXDZ8AEYDdwEvCliBw0xnwc4XEQkbHAWID27duHbKD9JbdEe55VHafBs5dk9z2pu87szpM/rS53+5TE6N1q79wqjfV7cgFo4B4UOLhLCx47rxcA559QOinHNUOtIOzur5YGPNYJ7ZtQ6FdF4tbTu3L14MA9sd7sIKZZg2Rm3jUcgE37DnNMm4bc+UXg80HZ30XDlEQ2PDYqZEAZjd6LlMQEOrdKY8fB/DLrvM999nFWLvGmJ8722caeDKUywbNdq/mkowPXjFbBFbsMiQ7R3nilIBfw76VoBJTpJTHGrPR6OltE/gv8Gfg4kuO4jzUBKxCnX79+IT+U7ZldnU4NnlXdpmkbXuwL+DVDOjL9juHlbh9qiuZQ/AM4gF9vHer5uUdbK8/2vOPbeXJyAwsccHx6zYAyy248LbwecbtqhgD1kxOpn5xIj7aNQgY3Ilbu8MuXnsDT7rQPESsQD7VfuIP7IiFiBc2Du7QIawrvQCkXkep+RCNm3DmcqwdHr4JJXeF0GR0sqJRlLZAoIt4f1r2BFWHsayi9IKwAjhPfD7XjwjxOSHbPc5k0PaXqGO15DsDhENo3D11PecptQz25uuUZ06ct3yzeEfb5zzz2CL67YVC5ZdeCxXuRDr7qfkRDHrCrb0joY4dy9nFt+GXl7nK3u2ZoR+onJfqUhosme4BebmFJudval4DKhm+hv+SoYIqdLi1TpxRgjMkTka+Ah0XkaqAPMBo4xX9bERkNTAcOAicCNwL3uFdPA5zAjSLyKvAP9/IplW1jgidtI7z6+ErFK71quQ0OMBNhqOA4JYLqCIkBgtmP/3Ey390wKOg+vY5sXKne0HB2zbhvBJNvHsJPNw/hlM6Rz8QYqPOhNPc5eANaNUzlphFdwuoZroxQtadtdns1baBmlDi151kpL9cB9YA9WCkY1xpjVojIYBHJ9druEmA9VirGe8CTxph3AYwxRcAY4Eqs4Pr/gDHu5ZViB89abUMBuFyGP7YcqNE2bD+YzyJ3G/bmFPL4j6uq5e+zzgfPvY+yJriINHgqL+4rL6VjQKfmdGpVfbMABtIiLcVnpjtfFQtoPKFziN3DKSdX0fN6i+S/tCrCt8tOak+jOJmcp6qUuFwBv1wqVRcZY7KMMWOMMQ2MMe2NMR+5l88wxqR5bfcXY0xzd33n7u5ydN7HWWSM6WuMqWeMOcEYsyga7dPgWXmbMCOT8/83mzkb9gfdZt3uHN6bs6lKzr/nUAEDn5jCef+bDcC9Xy/jtd8zmbl+X5Wcz1udv2pd2NcaiOddxzgc5fVqXnFyB/7z5+M8z5+8oFeZbRyV7O209+7vVxbNWlfBY0fwmRio+cFS4U5ML03RuKhf8Aoc0RROBQd7eu2hXVtG/fyPnteLpXE4OU80FTsNSVppQ6mYkKjBs/Kyxl3xK9CAfds5L87kgYkrgk7pXuJ08dPynQHXr9iRzfo9wauK9X/sN5/ndqEEl8vgdBl+Xbm7yqaSj1rwHO60ou5tQ04tWp0uP7kDGx8f5VPNwvbOVSdy6UmlpXvSvfKgI005uPjEsiWAKpspYO9/Tu+ys9KlpVSsx7N5Wgoje7bm1ctPCLg+2auXMPDfpDsNwm/pJ2NLBzFWxYQggd4g4Xw5OaZNI5Y87ZpDYAAAGF5JREFUeAYX9C37/6+qXolTe56VihUJWqquVtuZnc/y7f5VCqMjc28ub8zILHe7lTsOsWxbaRvsgDbYF67Xpmfyzw/+YPKKXQBsO3CYA3lWhtHZL8xkxLPTw2rf5v15ZOcXe56/Mm09V7+XwZTVe0gfN4n0cZPo9eBk0sdN4r5vlnH9R6XnrIhoXrUimVYUgkwtWh3Oc0/BbAeCwVI2erZt7CkVB/DVdQM9P4cTmNVzB4kN3bfuJ904yOd4Fe4dDrL/6D5taeXO0/7vJX24Y2Q3RhzTmrYhajv7S3AIr13Rr8wkHwAfXX0SU24fWmZ5oFfh/+upiTq+4Z7SnmBFVb8Sd6k6pVTtZ3+OuzR4rjHfL93Bha/OLrN824HDDHh8Cue8ODNq5zLG8FnGVvKLnFz02lwembSK/CIne3MKMcZ4rv13fbmUBycuB2DUCzM496WybShylh1kujM7n7W7rZ7lrDwr8B305FQGPuk7tvX9uZt5d/Ymflm5mwcnLsfpMmz36+0e+tQ0Fm89CMD/vbuA2e5Ukr+/m+HZJsddROCDuVuYtHQnG/flRfor8YhKQqbXtKLHGmNygZkiYk8rOi4a54imcWd15+tF2yPez3tK6nAGo43q1Yad2flcfnIHwArGe7Ytne45UMxwfPsmEbfL9t9Ljvf83KpRKtcP71zhYwUSzqDC8u6QVGegpIMAaz8dMKhU7LB7D1fsOESX1sHGy6iqdMNHVvq602V8OqV+DaPSVaSmr9vHnV8s5dVpGzhcZAWex46fjNNleO2Kvp7tSlyGd+dspkGIO95FJS7qJ1v/2nM8DHi8NEhetv0gS7ZaFcYOFzn576/rPOvu/2a5z7FOO6Y1V741P+i5jMETPIeSkljx/uNo9TxHOq0oBJ9atMrZpdzuGdU94n3t4C+c6loJDmHskE7UTw78B+Xfe710/Bl8MvbkiNtU0yU3TYCfA/WqT7ltKHPuPq1K26IBc9UQkRtEJENECkXknWgdt8TlqpJ630qp6Mty306/+dPFnlld49k172eQPm5StZ7T5TK8OXMjb8/ayDuzNrJiR+A0jCK/idA+X7jN8/O63Tm8PHV90FSJ2Rv2kT5uEmNenkV+kZO8whIKS5wAHC4qYbZ7wN3Bw9b/d+a+PA4XWevtY87LzOIrv07I/03b4Pl5/Z4cpq/d63l+w0eL2Jp1mDOe+53u9//EEncvse3j+VsZ/fIsz/Pnfl1LMC9PXR90XSSSKxE8R6sUQETTgRJ6alEfkUwdGq4EkYATlYTD4RDw+8ZXUf5xXqPUyNIH7P2rKiG+IkonHSm7rmPLtLILo3XeIMsfPLcHAzrpzH9RsAN4BBiJVUorKoqdpkqqryilou8v/dvz0HfW5IbLtmXTpnHUPgqqhDGGNbtz6H5E6DkTgpm8Inhv7updh3C5oEfb0mO7XKbSJVinrd3Dv79f6bPMO14Rsa6zhSVO6rlnIzbGsGLHIc82pz9n5Qm3a1KPUzo3p/+jv/Hcxb0573hrbM93S6x5JxZvPcgPy3Zy2+dLOKZNI368aTD3fLWMbxbvYPodwykJMZPkW7M2hnwd/rnKM9fvY/B/pnqez1hX8YoY8zZmVXhfb5WZJTqssFtEpomICfKYSeTTga40xuwwxjiNMbMBe2rRQNtOMMb0M8b0a9kyShURIvzbfvS8Y+nmvkXl8ASs1r8P/aknl51UsaC+sr2k9t41FTq3bWJ9cNamnGH/3+hVA4+u8AenKmWM+coY8w1Q/r2wCGipOqVih/dg78pWi6oOH8zdzJnPzwhZSi3S463fY5XbPvP5GYx6YYZn3dasw3S85wcmLi7tjbUHqt362WLPILhip4uFm7M8aRAFxU6y8orIyiviho/+YM+hwoDn3rL/ME9PXuN5npVXxNTVe1i185CnV9jfvI376f+oVZHilk+X8K+PF5E+bpLP3Wp7MrFVOw9xqKCY9Xut13fgcBF3fLEkot9PJF6KUu9xZVQmbSOsnmdjzLBQ6905z4ki0sUYYyeqhDutKPhOLVrlIn3PX3ZSBy47ycpbfuy8Xjz2w2rPh8hfT0kH4MN5W6LZxLDUdIrCXWd1o2+HppwSoGc3Bj5XVRWI9E5RsVMHDCoVi0J9xhtjyM4vpkn95OAbeVm4OYuWaanlzuzr7XBRCYkOR8hb78u3W72xm/fnRXQHcm9OYZlJ0pwuw33fLKdhSiLLHiotQfrOrI20bpTquR5/v3Qno/u087kj/NUf2xnQsTmjerXh6Z/X8PasTYDVo/y3t+czNzOLsUM68v3SnWw9EDgd5pbPFrNwc+mEJLd8upgl7qoWj54XeF6Jj+dv9Xlu9zh7e/Db0jDtuPE/08c998XD368k3seFVubaE5UuH2NMHmBPK9pARAZiTSv6fqDtRWS0iDQVS3+sqUUnRqMt4ajMpfr8E44k474RNVI9IpiaytpISUzg7OPa+ATxxlOqrnp/P03dH9JHt6jZiWfqukjvFJU4XRFPJ6+UqnmhgucP5m2hz8O/kLk3N/hGwK7sAvblFnLBK3MY8pR1S//Jn1bzjldKwPUf/cG0NXvK7Nvjgcn0e+QXT0/vnpyCoOexL5H57h7atbtzfHqIvf20fCcnPvor871SA96YkenpKbYrNtjGf7eSaz/8w1Mi7peVu/l+6Y4y1SV+W7WHng9O9gTOAJ9nbGVupnWexVusHOCdAWomz1y3zzPIzrbEqxzcO17HDMcnC7YGXWeXe/MO1Gsje4K7cH3w95P47yV9onb+aE5/dh3wFta0ovtxTysKICKDgR+9Zki6xL1tCrANr6lFq0NN99jGszBm564SfY5qwjtXnaj5zTHGf8S4Uio2BOog+TxjK0c0TmXKKitXeOO+PI5onMq2A/meCals2w4cZtCTU8sc4xX3oLO/DTyaYqeLSUt3MmnpTn67bShHNa3v09N8qKCEmz5ZTLMGyVzx5nzeuLIfI3q05pP5W5i9Yb+nXCzAnA37+cvrc7mo35F8lmENrlu58xBXDkinnTsFsajExfdLdwIwy2uWujdmbPQMlgzGOw3hho8WMeU237KuPwWoKXzHF0s9P8/fZAXRe3LKpm1c/ua8kOdetyf0l5RIVKZ8W3Xq16FpmUGHwXxz/UD6HNWEKat9c9hP7ljxeCFqXT7BphV1r4toatGqVtsu1Rf1q9wEHbXpzkpNtmVYt1aVGgCgqp8OGFQqNt32+RLSx03C6TKeFIU7vljKFW/O93RQFTsNPR6YzBnPTSen4P/bu/PoqMo0j+PfN3vIAokJSwIkhF12EyCSAN20rG6M4DCACMehhR4YRu1zZhQdwWUUx2OPY5/T4wbdNopwZloQRzw6p+2maW3Q9ICC3YICAjJIGxdWUULu/HFvVd1KKkmFkNS9ld/nnHtI3aV47vImb731vs8bmsDi+MlzESvO7swSf9j/BWe/DfXl/cFjW1mxeQ8b3j1cb5B8IC3ZrWur2HHgC+58aTebXV0Uvj1/gd84rdeBijPAU1sPULHqTY6d+IZ1Ow4z55ntwcrzv/86lCrts5PnwjJJlD34P01enwmPbW1yHz9qrMW3sk8eu1dOavH/EU2dyJ06GGCmM9FZalIC//33lcFW5sQEE+yKUtozN2wCuZyM6LoVRXIpW559ozUanm8YURicSac59j80LerJPOryYgN64JeaB0OTFjDGJGH/vkgEEo0xaUCNZVk1jR/ZOKWqE/GnQEts7+VbqOyTx/MLRwe3vfmhXVF1d42Y8vg23rpzAgDzGmhJvfqJ0OQas5/ZXq8v74vvHOHFd47wuCsHMIRaq2stmPX09uD6DVV294SVr4Rnr6jLnW84GtWnG2+Fjmc/HNsLg2HJuv8NrntlaSU9ctMb7eNeWpQT7AqSn5XKu3dfxe0bdrFx51G+1z+fe6+5PPiB47LMVB6YPpgnfv0Rnzst8f+1+EpmPvmH4Pt1SAlvKMtISWT9reX0zO1AQad0BnTNYvuBL1k0LjR5dccOyey5bzK9l2/hjon9WnQd2mfluRWqdj+ZdXF9aVrylXWgn2/WRU7F3RryMu1BFkXNGPghvnAPsML1+ibgPmBlS95Uk6SI+N/vP64Oa+kNeG1PqKvC0a+/4Xf7PmfTrqPsOx5dN4O7N+6JuP7YiYb7N7d3762YxLD73ghb968zhvKPv3q/3r7ThnTlumEF/PnYKSfXcy1rtx8Kbv/byl4MLszm9g2hrBvXDC0AYMm60PsM6R6a/A3g3msuZ1SvXM5fqOVPx05y98Y9pCYlMHd0T17YcZhsZ9blwGR12z6qpiQ/k1llPdhQdQTLgnnlRcwrLwrm2S4rzuWTVVez+9MTPLPtADNKu7Nx51HunjaQNW8dZMmEPnTOCs2mnJSYwMM3DCGS/Q9Na/I6NsU7ta425MUW24uxeHxvcjJSmFHasm4fl1JFnzzWLChjbN9LlFZQPMGyrJW0sKIcyflaDRgU8ZP/XHwlN7paAAOWvbizyWMbmxWuvVr3w9EsWvtHTp1r3pd4KU5l9J2DXwZzPA/r0YmO6cnsfXAKb31czS2/sKemvm54QbDyvG7haPYdP8Xc8qLg794pg7sF39ddeb7tqr68trt+X22Agd2y+fOxkxG33VLZK/hzIBWeMXD/9YMxBuZfWQzY2cuWb9zN7FE9AFg0voQNVUe4fnhB8Pg1C8r4pPps8PWQ7h15YrY9m/LmpZUAjG5B3+WL1S7/asVL5TklKYF55UWeG3A1YUAXVYgkKjVKVSfiKzlRpp+LZ8XON6uBb30Xj+/d5DHf7x9qULrhisLgz8O6d2L3yslh+5Y4WaPumtrwLMiWZbHi2kG8umwsJfn2/i8vqQDsTFjuwXBpyYl8/C9T2bSkgjF98lhQ0avJv9G/+tEYstKSqWkgX91r/zC20eMDAjMsF3RMJzHB8OD0IcGp3eeM7snbd05gxbX2ZNQl+Zl8supqBnYLzc0wYUCXsMq4V7TLGk5bp1ETkchqatVtQ8RPcjqEJsW6blhBI3teWinNaJB58qYr2LH8Bxf9f91U3nCO+omXd+G2q+z+sr+4ZSTzyotYPL4kbJ9HZw4Ne/0fc6+gm5PRY2zfPH7y18N5eUkF868sqtd3F+CuaQNZPb+MhWNLWDS+hGdvLmPz0oqwfc67Zv976UdjeHVZZdj2upXjpMSE4MC5aJQW5QAwfUQB04dHvs/rFo7m6XmlTb7P47OGc9/1gyJuL+iU7svGNnXbEJGYqbmgAYMifuIeFFaY0zbTcz8yYwh/NaI7/e55rcl9B3bLDuuGAPDCwtHMfXYHeZkpTQ72e/vOCRR0SmfbR9Uc+uIsgwqy+bdZw9l5+CtmjQxVqsf1yyc3I4XSotx673FjWY+wNHRTh3Tjd8501JMHdQXsLhYNZa4oyc+gd76doOyuqQPDtg3r3pH3Pj0RrNyCfU/qDtYLfKPX3HzIdXVISeLxvxlBekoS++ukxBvTJy+q95g+orDpnXymfVaeYx2AiADw1dnzankW8ZHEBMPgwmz2HD3JmW9reHTm0LCKotvBh6fR664tF/X/LBpfwlNbDwD2YDF3fudOHZLpmp3Gku/3oTAnnRt+9nbE93h6XimFOekMKujIrnsnkpSYwM2rd3DqXA0Lx/bizQ//wusfhOf+LXBaiF9eUkH16e/o09muxNbNU103VVpgsNuo4tzg8VWHvqJrtj2ILZCJqqlpzf90/+RgV4e69j44hURj+L+vz5Gb2Xj3GWMMm5dWUHRZ8yYOe+zGYVQd+rLe+oYG37VX7bPyrKZnkZjb5SS437r3c7g2xsGISNR+vmAUc5/dzoIxxZx0DXRbPm0AD235MPja/bc2LzOV6tN22rH05ES+OR/K4ewWeI8ZV3TnxxP7c7D6TLAVdl55EWu3H2LXvaFcwufqvI87B/Qkp5UXQi3mL/1dqPvDweqzwHF+PLEfu458TYYrc1Wk1tzGPDJzKI+4umvUbVke1y+f9e8eYUhhx0iH8/pt48hKS2qw4gwE5zGIdhrzod2b3+o8o7S7p5IQeFW7/L5UVWeR2NtxwJ7Y4IBPZrQSEVt+Vipv3D6ekvzMYOV1VHEut44LDZx74/ZxYcdsWVZJRkoiGSmJ7LkvfIAcwIQBnQHo7Qwa69cli5SkBPp3DbX4PjB9MJ+sujrsuFSnRXpksd2N4boG+udGkue03nbtmMbqBSODWRxaw7Qh3Xh/5aR6ad0C+nfNCrZ6i/e105bnWEcgIg2N4hYR/wi0CgcyIvTtnMlHfzlNn/zMsP06Z6fxwf1T6h0/vEcnBnbLCk6GYTXz14Ixhqp7riI7LZkLtRZpydG3CS4YU0xeZmqbDXzMTktueifxhXZVeb6pvCfPbz+sbhsiHrBoXAmPvr6XhR5MQyQi0cnPSg1rDV5/azl7PztFgjNg7dVllZz8pn4O48syUqiptdjkpFc78uVZ0pITqewb3SA0t8DkXM2VlJgQl4PZpPWZunPEe1lZWZlVVVV10cfX1lqcr60N9hsS8TtjzB8tyyqLdRyRRFNev625QHJCQvAPrUg883J5hZb/jW2Omgu1WNRPqSbiJQ2V2XbV8pyQYEhNUMVZxCv0QVakfUpSpVl8TE+viIiIiEiUVHkWEREREYmSKs8iIiIiIlFS5VlEREREJEqqPIuIiIiIRMlXqeqMMZ8Dh5rYLQ+oboNwWovijx0/xl5kWVZ+rIOIROXVFxR/2/JseQWVWR/wc+zgz/gjlllfVZ6jYYyp8nIezaYo/tjxc+x+5fdrrvhjy+/x+5Hfr7mf4/dz7OD/+N3UbUNEREREJEqqPIuIiIiIRCkeK89PxzqAFlL8sePn2P3K79dc8ceW3+P3I79fcz/H7+fYwf/xB8Vdn2cRERERkdYSjy3PIiIiIiKtQpVnEREREZEoxU3l2RiTa4zZaIw5Y4w5ZIyZE+uYAowxqcaY1U5cp4wxO40xU51txcYYyxhz2rX8c51j1xhjThpjPjPG3BGjc/itMeacK8a9rm1znHM7Y4zZZIzJdW2L+X2pc21PG2MuGGN+6mzzxfWPN154LhqjMqsyK+G88Fw0ROVV5bXNWZYVFwvwIrAByAQqgRPAoFjH5cSWAawEirE/sFwDnHJeFwMWkNTAsQ8D24AcYCDwGTAlBufwW2BhhPWDnHMZ51z7dcB6r94X516cBsY5r31x/eNt8dpz0cBzojLrgXujMuuNxWvPRYRnROXVA/elvZTXmAdwCW/Wd0A/17q1wKpYx9ZIzO8DM6J4sI4Ck1yvH3AXnDaMt6GC/RCwzvW6t3Mvsrx4X4D5wAFCg2V9cf3jafHicxFl3CqzsbnuKrMxXrz4XEQRs8prbK57uyiv8dJtox9wwbKsfa5172F/YvMcY0wX7Jg/cK0+ZIz51Bjzc2NMnrNfDlCAfS4BsTyvh40x1caYt4wx33PWDcIVn2VZ+3EKM968L/OBX1pOKXXxw/WPF158LhqlMqsy28558blokMqrymtri5fKcyb2VxVuJ7A/mXmKMSYZeAF4zrKsD7HneR8JFAGl2DG/4Oye6fzrPrdYndc/ASVAIXauxleMMb1p/Np76r4YY3oC44HnXKv9cv3jiaeei6aozKrMireei8aovKq8toWkWAdwiZwGsuusy8buJ+QZxpgE7K9UvgOWAliWdRqocnY5boxZChwzxmRjnxfY53LO9XObn5dlWTtcL58zxswGptH4ta9tZFss3Az83rKsg4EVfrn+ccYX5RVUZutsiwWVWW/wRZlVeQ3bFgvtprzGS8vzPiDJGNPXtW4Y4V/ZxJQxxgCrgS7ADMuyzjewa+CrDmNZ1lfAMexzCfDKeVmAwY4lGJ8xpgRIxb4nXrsvNxP+iTgSv1x/P/PacxGRymyQyqx47bmoR+U1SOW1LcS60/WlWoD12KNOM4AKPDQS2InvSWA7kFln/WigP/YHmcuwR83+xrV9FbAVeyTqAOwHrU1HogKdgMlAGva3FXOBM07cg4CTwFjn2j9P+EhgT9wXYIwTc5bfrn88Ll55LpqIUWVWZVaLx56LRuJTeVV5bbvzjXUAl/DG5QKbnJt3GJgT65hcsRVhf9o6h/01RWCZC8wGDjpxHwN+CXR1HZsKrHEKz3HgjhjEnw+8i/1VytfOL6iJru1znGt+BngZyPXafQGeAtZGWO/56x+Pi1eei0biU5lVmdUSft098Vw0EJvKq8prmy6BVCIiIiIiItKEeOnzLCIiIiLS6lR5FhERERGJkirPIiIiIiJRUuVZRERERCRKqjyLiIiIiERJlWcRERERkSip8iwiIiIiEiVVnkVEREREoqTKs4iIiIhIlP4fgTPMolXoa2wAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.plot_layer_stats(0)"]},{"cell_type":"markdown","metadata":{"id":"nutsu5Zi2N2Z"},"source":["Generally our model should have a consistent, or at least smooth, mean and standard deviation of layer activations during training. Activations near zero are particularly problematic, because it means we have computation in the model that's doing nothing at all (since multiplying by zero gives zero). When you have some zeros in one layer, they will therefore generally carry over to the next layer... which will then create more zeros. Here's the penultimate layer of our network:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Lt3kcLL52N2Z","outputId":"780e2f6f-a95b-42d6-e136-efa6efe0faf4"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAs8AAADWCAYAAAAuNG/NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5gcVZ3/8fdnLplJMgmQMAQFQwQTlShhddSVGBfvsKsPuKy/VbKAuhgXFsH1yrqiiK6iq+yqD4Kw3OSqKyCweEEFlODvJwY1YBQCAlHuE0JCZshtZr6/P6o6KZqemZ5MzXR39ef1PPVk+tSp6m/3zEl/+9Q5pxQRmJmZmZnZ6FpqHYCZmZmZWaNw8mxmZmZmViUnz2ZmZmZmVXLybGZmZmZWJSfPZmZmZmZVcvJsZmZmZlYlJ89mZk1O0sGSQtLetY7FzKzeOXk2MysgSXunCfHBtY7FrB5IeqekByStl3SBpPbMvlZJv5T097WM0RqDk2czMzMrNEmzgQuAfwOWAAcByzJVPgQ8HBHfrkF4VZM0pYjP1WicPDcJSTdLOk/S5yQ9nn7z/ndJLZI+JekxSb2S/j1zTJukUyXdL2mzpFWS3l923pMk/VZSn6RHJV0h6TmZ/aXLwW+S9HNJT0v6vaS3TObrNysqSa+RdKukjem2Mm1ff06r3JS2wQcyx3xA0oNpe/wRMLcWsZtNon2BDRFxaUTcCXwP2B9A0nzgJOC4ak6Ufi7eK+kwSXdJ6pd0k6T9yuq9XNIN6edjr6SrJO2T2f/8tOzhtC3eKemosnOUPrs/K+kR4KFhYro5befl27szdT6QxrtZ0j2S/k1SW2b/A2mO8A1JTwC3puXPST/b10valD5XTzXvVVE5eW4ufwe0A68h+Zb9CeB/gS6Sb+IfAT4h6dC0/n8Dfwu8H3gxcBrwRUn/WHbejwAvBd5O8iF8RYXn/jLweWARsAL4tqRdc3tlZk1IUitwLfBL4GXpdirwdPozwBHAc4BXpMccBvwncAZwIPAd4D8mM26zGrgXmCapR9J04K+A30gScB7wiYh4dAznew5Jsr2UpBd7V+D80k5J+wM/A/4v0AO8HhgEfiypM63WBfwUOITkM/Qc4AJJryt7rv8DdANvSM9Tyd+mMZW2zwH9wK/SeE4l+az+V5LP85NIPts/XXaeE4HHgVcDx6Tvz/eAFwFvBV4JPJa+jt1HfIeKLCK8NcEG3Az8tqxsFXBnWdlKkkT3+cAQ8KKy/Z8qP0/Z/r8AAtgrfXxw+vhvM3X2TMveUuv3xZu3Rt6A3dK2dHCFfXtX2gcsBy4tK/tyWnfvWr8mb94magPeln7G3UfyBbIV+ABwffq59L1037eArhHOcyowAHRnyt6ZfmZ2po8vBK4oO66D5Ivt4SOc+xrg3Mzjm4HVQMsYXudbgC3A29LH09LnPaSs3tHA+szjB4CfltV5Q/p/w/5lr+MR4FO1/p3WatveXW9NYWXZ40fTrbxsD5JvygJWJF88t2sj+fYMJMMySL7J7k/yzbt0NWMfnnl56belHyLiUUmDwJydfB1mBkTEk5L+G/iRpBtJerqujoi7Rzhsf+DysrLlwIcnKEyzuhAR1wHXlR5LmgecDLwK+BrwB5IrtJcApwAfH+F0D0dEb+bxQySfmXsAfyK50vMCSX1lx3UC89Pnn0bSIfU2kt7iKSSJ6U1lx9weEUPVvEZJC0muJn08fb0AC4GpwJWSIlO9FeiU1J15LbeVnXIh8ERE/L5UEBFbJP0y3deUnDw3l21lj2OYshZ2JMEHkXxjLa+DpLnA94GLSYZ0rCXp7foJyX8CWVsrxONhQ2bjFBHvk/RV4M3Am4DPSjqBpDdt2MMmJTiz+nYucGpEPCjpjcBnImJA0iXAZ0Y5tvwzrdSmWjL/XgycXuHYJ9J//wM4jOSL610kwyy+AuxSVr9/tBcCIGkPkqGYl0TEf2V2lWJ6B0kvdrl1ozxXpf8vNEx5U3DybMO5Pf13bkT87zB1XkHybfaDEbEJkgkSkxGcme0QEb8DfgecIelsklUErk53t5ZV/z2wGPhGpmzxhAdpVkckvQ9QRJybFrWQzAmCpPNnvJ07K4ADgD9GOtahgteSDKH6dhpTC7CAZEzxmEjqIGnzd5GMW85aBWwG9o2I74/x1KuA3SXtX+p9Tp/rlTzz/5Cm4uTZKoqIeyWdD5wr6WMkkx6mAy8nGef1ReAekm+eH5Z0KclkwE/VKmazZiPpBcD7SC5F/xl4Lsnk31+TXAnqA94saRWwJSKeJOnZ+h9Jt5FcOXoNcFSF05sVkqS9SCbKvSZT/HPgQ+mKU/9MMgRqPD5PMgTikvTKUC8wDzgc+GpE3AfcDRwm6UqStvohkjY85uQZ+GZ67HuA7sxwyw0R0Sfp88Dn0/Ifk+R/LwX+IiJGGp5yY/o6LpP0z8AGkiEtncBZOxFnIfiyuY1kGcmkin8j6a36KXAMyYQKIuIOkskW70/3fwT4YE0iNWtO/STjJ68guRx7JfAL4IR0jOQ/k8zU/zPwG4CIuJrkMvHHgDtIVgsY6cPTrGi+CZweEQ9kyk4kSW5XkLSr0YZtjCgi/kAy7LEL+BHJZ+S5JFdr16fV/gVYQzLG+ack46a/u5NPeTBJ/HeTTOYrbX+fxvPZ9PmOJZn/tDx9/MAoryNIEv67SIaC/YpkcuWbImLtTsba8DT81QQzMzMzM8tyz7OZmZmZWZWcPJuZmZmZVcnJs5mZmZlZlZw8m5mZmZlVycmzmZmZmVmVGmqd59133z3mzZtX6zDM6sbtt9++NiK6ax1HJW6vZs9Uz+0V3GbNyg3XZhsqeZ43bx4rVqyodRhmdUPSmlrHMBy3V7Nnquf2Cm6zZuWGa7O5DtuQNEvS1ZL6Ja2RdOQw9STpi5KeSLcvKXM7HDMzMzOzepR3z/OZwFZgDnAgcL2klRGxqqzeMpI71iwiub3zj0nuWnd2zvGYmZmZmeUmt55nSdOBI4BTIqIvIpYD1wJHVah+DPCViHgwIh4CvgK8O69YzMzMikTSCZJWSNoi6cJR6v6LpEclbZB0vqSOSQrTrCnkOWxjATAYEaszZSuBhRXqLkz3jVYPScvS/zBW9Pb25hasmZlZA3kY+Bxw/kiVJL0FOBl4AzAP2Bf4zEQHZ9ZM8hy20QVsKCvbAMyoou4GoEuSIiKyFSPiHOAcgJ6enmfsK3fuz+9jy8AgJ7x+/lhjNyscSSeQXNF5KXB5RLx7mHrHACcC84GngMuAT0TEQLr/ZuAvgYH0kIci4oXjjW9gcIhv3PxHjl3yfKZNaai5y2aTLiKuApDUA+w9QtVjgPNKwyUlfRa4lCShzs3ZP/sjf3y8L89Tmk2qQ1+6J69/0ZydOjbPT6w+YGZZ2UxgYxV1ZwJ95YnzWP38nl76tgw4eTZLlHqq3gJMHaHeNOCDwC+BbpLhVh8BTs/UOSEi/jvP4K76zUOc8ePVPLVpG5986/55ntqsmS0Ersk8XgnMkTQ7Ip4oryxpGck8JObOnVvVE2wbHOL0H9zFjM42ZnT4i681ppfuvctOH5vnX/1qoE3S/Ii4Jy1bBJRPFiQtWwTcNkq9MRtf+m1WHNX2VEXEWZmHD0m6FHjdBIfHloEhADZtG5zopzJrJpWu7EJyFfhZyfNYru6WbE7b7ElvmM+xS/YdT6xmDSm3Mc8R0Q9cBZwmabqkxcBhwMUVqn8L+JCkvSQ9F/gwcOF4Y5CEc2ezcXstz/4y+wVJayXdKung4Q7cmTkKbrNmuap0ZRcqXwXeKZu3JV98O9p8k2JrTnn/5R9Pcnn4ceBy4LiIWCVpiaTs4KhvAtcBdwK/A65Py8ZF4K5ns3GQ9B6gB/hypvjjJJOO9iLpobpO0n6Vjo+IcyKiJyJ6urvr9kZqZkVWurJbsgh4rNKQjZ1V6nnuaG/N65RmDSXXwUoRsY5k/eby8ltILiWVHgfwsXTLjeReLLOdJelwknHOb4yItaXyiPhlptpFkt4F/DXw9VyeN4+TmBWcpDaSz+xWoFVSJzBQmtib8S3gwnT41SPAJ8nhym7JY09t5q5Hk07sTifP1qQKNdLfH8JmO0fSIcC5wN9ExJ2jVA9ybG7+wmtWlU8Cn848/gfgM5LOB34P7B8Rf4qIH0r6EnATyZXgK8uO22nrn97K4tNvZGAoabW7TG3P47RmDadQyTN41IZZSbU9VZJeT7KU1dsj4rayfbsCrwJ+RrJU3d+TjIn+4MS/AjMriYhTgVOH2d2VfRARZwBn5B3Duv6tDAwF7z5oHn/1wm4W7zc776cwawiFGu2fTBh09myW+iSwiWR9139If/6kpLmS+iSV1qU6BdgF+H5a3ifpB+m+dpLl7nqBtcAHgMMj4u68gvQVI7PGUJoo+Krnz+J1L9yDttZCpRBmVStUz7Nwz7NZSbU9VREx7LJ0EdELvCLXwMqfYyJPbma52TKQTBT0WGdrdoX62ig5eTYzM5sI25eoay9U6mA2ZgVrAV7n2azReNiGWWPY7J5nM6BgyXPS8+z02ayRuMWaNYaBwaS1trcUKnUwG7NCtQD3YJmZmU2MobRzyrmzNbtCNQGPeTZrPP7Sa9YYSld2W+RWa82tWMkzXqrOrNG4xZo1hvTeKE6erekVK3l2ezYzM5sQ24dt+LPWmlyhkmfwsA2zRuPPYbPGUOp5lnuqrMkVKnmWfAnYrNG4zZo1hnDPsxlQtOQZeak6MzOzCTDkCYNmQMGSZ9zzbNZw/DFs1hiGkhsMOnm2pleo5Fng7NmswbjJmjWGUs+zc2drdsVKnuXbc5uZmU2E0qjIFg96tiZXrOQZ357bzMxsInipOrNEsZJnj3k2axj+/DVrLL5JilmiWMkzXufZrFG4qZo1Fo95NksUK3mWb89tZmY2EcJL1ZkBRUueax2AmVXN7dWssXjYhlmiUMkzeNiGWaNwUzVrLJ4waJYoVvIsJ89mZmYTodTzLF83siZXqOTZDdpsB0knSFohaYukC0ep+y+SHpW0QdL5kjoy++ZJuknS05LukvTGXOLL4yRmNmlKY55VqMzBbOwK1QS2DAzy0PpNXuvZLPEw8Dng/JEqSXoLcDLwBmAesC/wmUyVy4HfALOBfwO+K6l7vMG5lZo1lvCYZzOgYMnz/97xCADL711b40jMai8iroqI7wFPjFL1GOC8iFgVEU8CnwXeDSBpAfAy4NMRsSkirgTuBI6YuMjNrBJJsyRdLalf0hpJRw5Tb1dJF0l6PN1OzeP5PebZLNFW6wAmwpNPb6t1CGaNZCFwTebxSmCOpNnpvvsiYmPZ/oXjfVJ//pqN2ZnAVmAOcCBwvaSVEbGqrN5/AtNIriTtAfxU0pqIuGA8T+7VNswShep5LhkYHKp1CGaNpAvYkHlc+nlGhX2l/TMqnUjSsnSc9Yre3t4Rn9TDNsyqJ2k6yRWfUyKiLyKWA9cCR1Wo/jbgSxHxdEQ8AJwHvHe8MfgmKWaJgibP/lg2G4M+YGbmcennjRX2lfZvpIKIOCcieiKip7t73MOizWyHBcBgRKzOlI10FUhlP79kvAH4JilmiUImz1vd82w2FquARZnHi4DHIuKJdN++kmaU7S+/TDxm/vg1G5OxXAX6IXCypBmSXkDS6zyt0knHcrXIwzbMEoVMnj1swwwktUnqBFqBVkmdkirNc/gW8I+S9pe0G/BJ4EKAtJfrt8Cn0+PfDhwAXDne+Hx9yGxMxnIV6ERgE3APyXyGy4EHK510LFeLPGHQLFHM5HnIH8tmJEnwJpJl6P4h/fmTkuZK6pM0FyAifgh8CbgJWJNun86c551AD/AkcDrwdxExcheVmeVtNdAmaX6mrOJVoIhYFxFLI2LPiFhI8ll/23gD2H6TFPc8W5PLJXmudvmctO7r0hsubJD0QB7PX87JsxlExKkRobLt1Ij4U0R0RcSfMnXPiIg5ETEzIt4TEVsy+x6IiIMjYmpEvDAifpJHfP74NateRPQDVwGnSZouaTFwGHBxeV1J+0maLalV0qHAMpI138cbg3udzciv5zm7fM5S4CxJw01i6Ce5acNHc3ruZ/GwDTMzK6DjganA4yRDMY6LiFWSlkjqy9R7Ocl67BuBLwBLKyxnN2ZDER7vbEYO6zxnls95SUT0AcsllZbPObm8fkTcBtyW1y1+K9nm1TbMzKxgImIdcHiF8ltIJhSWHn8H+E7ezz8UnixoBvn0PI91+ZwJt809z2ZmZrkaivAaz2bkkzyP6SYKYzWWZXRKPObZzMwsX+GeZzOgiuRZ0s2SYphtOWO8icJY7cxNF9zzbGZmlq+hIU8YNIMqxjxHxMEj7U/HPLdJmh8R96TFudxEYWf5DoNmZmb58phns8S4h22MZfkcAEkt6Y0b2pOH6pQ0ZbxxZA0MuefZzMwsTx7zbJbIa6m6isvnAFRYQue1JDdr+D4wN/35hpziALzahpmZWZ42bxvkwl88wFObB2odilnNjXupOhh++Zx0X/kSOjczwfdH8JhnMzOz/GzZ5s9Vs5Ji3p7bPc9mZmZmNgGKmTx7zLOZmVl+PNbZbLtiJs/ueTYzMzOzCVDI5HmrxzybmZnlxqtsmO1QyOR5y4CTZzMzMzPLn5NnMzMzG5E7ns12KFTyPKMjWXlvq5NnMzMzM5sAhUqerz9xCS2CrQODtQ7FzMysMORBz2bbFSp5njt7GocduJcnDJqZmZnZhChU8gwwpbXFwzbMzMxy5H5nsx2Klzy3OXk2MzMzs4nh5NmswCTNknS1pH5JayQdOUy9H0jqy2xbJd2Z2f+ApE2Z/TfkFWP4nkZmdc9Dns12aKt1AHmb0tbiMc9mO5wJbAXmAAcC10taGRGrspUi4tDsY0k3AzeWnettEfGTCYzVzMys7hWv57m1hW2DwdCQu7OsuUmaDhwBnBIRfRGxHLgWOGqU4+YBS4CLJzrG5Pkm41nMbDzkUc9m2xUveW5LXpJ7n81YAAxGxOpM2Upg4SjHHQ3cEhH3l5VfKqlX0g2SFuUVpIdtmJlZIylc8tzh5NmspAvYUFa2AZgxynFHAxeWlS0F5gH7ADcBP5K0a/mBkpZJWiFpRW9v787EbGZ1yFeIzHYoXPK8vefZkwbN+oCZZWUzgY3DHSDpNcCewHez5RFxa0RsioinI+ILwHqSoR2U1TsnInoioqe7u7uqIP2hbGZmjaR4yXOrk2ez1GqgTdL8TNkiYNUw9QGOAa6KiL5Rzh3ktPSrh22YmVkjKV7y7J5nMwAioh+4CjhN0nRJi4HDGGYioKSpwDsoG7Ihaa6kxZKmSOqU9FFgd+DW8cTnHmez6o1h2ckOSWdLekzSOknXSdprsuM1K7LiJs8e82wGcDwwFXgcuBw4LiJWSVoiqbx3+XCSMdE3lZXPAM4CngQeAg4BDo2IJ8YTmHuczcYku+zkUuAsSZUm/54EvBo4AHguyRCrr4/3yf1l12yHwq3z3NHWCrjn2QwgItaRJMXl5beQTCjMll1OkmCX111F8kFsZjWQWXbyJemQquWSSstOnlxW/fnAjyLisfTYK4AzJjNes6IrbM/zFifPZnXNPVlmVRvLspPnAYslPVfSNJJe6h+MNwCv82y2Q+F6nj1h0KwxeNiGWdXGsuzkauBPJEOsBoE7gROGO7GkZcAygLlz5+YRq1nhFbbn2WOezcysIMay7ORZQCcwG5hOMml42J7napeX9JUisx0Klzx3eLUNs4bgD2Ozqo1l2clFwIURsS4itpBMFnylpN0nIU6zplC45NlL1Zk1Bg/bMKvOGJed/BVwtKRdJLWTrLjzcESsHU8M/q5rtkPxkufSmOfBwRpHYmZmlptql538CLAZuAfoBf4aePtkB2tWZMWbMOieZ7OG4GEbZtWrdtnJdP31pZMYmlnTKV7Ps5NnMzOzXMnfds22K2zy7HWezczMzCxvxUueW71UnZmZWZ7c72y2Q3GTZ/c8m5mZmVnOCpc8t7SI9lY5eTYzM8uJhzyb7ZBL8ixplqSrJfVLWiPpyBHqflTS7yRtlHS/pI/mEUPWlNYWJ89mZmZmlru8lqo7E9gKzAEOBK6XtDIiKt39SMDRwB3AfsANkv4cEVfkFAtT2lo85tnMzCwnXm3DbIdx9zxLmg4cAZwSEX0RsRy4FjiqUv2I+FJE/DoiBiLibuAaYPF448ia0uaeZzMzMzPLXx7DNhYAgxGxOlO2Elg42oFKvsouASr1UO80J89mZmZmNhHySJ67gA1lZRuAGVUce2oawwXDVZC0TNIKSSt6e3urCmhKawtbPGzDzMzMzHI2avIs6WZJMcy2HOgDZpYdNhPYOMp5TyAZ+/w3EbFluHoRcU5E9ERET3d39+ivCOhoa2XLNifPZmZmZpavUScMRsTBI+1Pxzy3SZofEfekxYsYYSiGpPcCJwOvjYgHqw+3OlOntLJ522DepzUzMzOzJjfuYRsR0Q9cBZwmabqkxcBhwMWV6ktaCnweeFNE3Dfe569kansrm5w8m5mZmVnO8rpJyvHAVOBx4HLguNIydZKWSOrL1P0cMBv4laS+dDs7pziApOf56a1Ons3MzMwsX7kkzxGxLiIOj4jpETE3Ii7L7LslIroyj58fEe0R0ZXZ/imPOEqmtnvYhhlUfwMjSadK2pb5Qtsnad/M/gMl3S7p6fTfAyfvVZiZmdWPwt2eG2DalFae3jpQ6zDM6kH2BkZLgbMkDbeM5LfLvtTeByBpCsl67JcAuwEXAdek5WZmZk2lkMlzZ3srmzxsw5rcWG9gNIKDSSYX/1dEbImIr5HcKfT1ecZrZmbWCAqZPE+b4gmDZoz9BkZvk7RO0ipJx2XKFwJ3RERkyu6odJ6dWZcdYvQqZmZmdaKQyfPU9la2DQbbfKMUa25juYHRd4AXA93A+4BPSXrXWM+zM+uym5mZNZJiJs9TWgHc+2zNruobGEXE7yPi4YgYjIhfAF8F/m6s59k5yuc0ZmZmk6DQyfNmj3u25raa9AZGmbIRb2CUEezIalcBB0jKZrkHVHmeKp/KzMysMRQyeZ6WJs9e69ma2VhuYCTpMEm7KfFK4ESSFTYAbgYGgRMldUg6IS2/ccJfhJmZWZ0pZPI8td3DNsxSFW9gVOHmRe8E7iUZivEt4IsRcRFARGwFDgeOBtYD7wUOT8tz4GEbZmbWONpqHcBEmDoleVnuebZmFxHrSBLf8vJbSCYClh6/q7xOWf3fAC/PPcDk7BNzWjMzswlQ6J5n32XQzMzMzPJUyOTZY57NGomHbZhVQ9IsSVdL6pe0RtKRw9T7gaS+zLZV0p2THa9ZURVy2EanxzybNRAP2zCr0pnAVmAOcCBwvaSVEfGMlW8i4tDsY0k34wm+ZrkpdM/zpq0DNY7EzMxs/CRNB44ATomIvohYDlwLHDXKcfOAJVRYZcfMdk4hk+ftq2142IZZA/CwDbMqLAAGI2J1pmwlsHCU444GbomI+ycsMrMmU8jkeVpHkjz3O3k2awAetmFWhS5gQ1nZBmDGKMcdDVw43E5JyyStkLSit7d3fBGaNYlCJs8dba1MaWvhqc3bah2KmZlZHvqAmWVlM0nWZq9I0muAPYHvDlcnIs6JiJ6I6Onu7s4lULOiK2TyDDCzs42+zR7zbFb/PGzDrAqrgTZJ8zNli4BVw9QHOAa4KiL6RqhjZmNU2OS5q6ONjU6ezRqAh22YjSYi+oGrgNMkTZe0GDiMYSYCSpoKvIMRhmyY2c4pbPI8o7OdjR62YWZmxXE8MBV4HLgcOC4iVklaIqm8d/lwkjHRN01yjGaFV8h1ngFmdLrn2awxeNiGWTUiYh1JUlxefgvJhMJs2eUkCbaZ5azAPc9Ons0ag4dtmJlZ4yhs8tzV0U7fFifPZmZmZpafwibPMzrbvFSdmZmZmeWqsMnzzM42+rYMMDTkS8Jm9Uge62xmZg2osMnzjM52IqB/q4dumNWj8FhnMzNrQIVNnrs6k4VEPGnQzMzMzPJS2OR5Rpo8e9KgWX3ysA0zM2tEhU2eZ3a2A7BhkycNmtUjD9swM7NGVNjkedb0KQCs699a40jMzMzMrCgKmzzP7kqS5yf6nDxb85I0S9LVkvolrZF05DD1Pirpd5I2Srpf0kfL9j8gaZOkvnS7YdyxediGmZk1oMLenntHz/OWGkdiVlNnAluBOcCBwPWSVkbEqrJ6Ao4G7gD2A26Q9OeIuCJT520R8ZO8AvOwDTMza0SF7XnuaGulq6ONJzxsw5qUpOnAEcApEdEXEcuBa4GjyutGxJci4tcRMRARdwPXAIsnN2IzM7P6V9jkGZLeZ495tia2ABiMiNWZspXAwpEOkiRgCVDeO32ppF5JN0haNMyxyyStkLSit7d3xOA8bMPMzBpRoZPn2V1Onq2pdQEbyso2ADNGOe5Ukv8bLsiULQXmAfsANwE/krRr+YERcU5E9ERET3d394hP4mEbZmbWiHJJnqudlJTW/aCk+yQ9JelhSf8paULGXs+ePoW1njBozasPmFlWNhPYONwBkk4gGfv8NxGxfcJARNwaEZsi4umI+AKwnqR32szMrKnk1fOcnZS0FDhL0nCXhq8DXhYRM4GXAIuAE3OK4xmSYRueMGhNazXQJml+pmwRzx6OAYCk9wInA2+IiAdHOXfA+MZdeNiGmZk1onEnz2OZlAQQEX+MiPWlw4Eh4AXjjaOS2V0drOvfytCQLw9b84mIfuAq4DRJ0yUtBg4DLi6vK2kp8HngTRFxX9m+uZIWS5oiqTNdxm534NZxxedhG2Zm1oDy6Hke86QkSUdKegpYS9IT9s0R6lY9Aancc3bpZNtgsLbPvc/WtI4HpgKPA5cDx0XEKklLJPVl6n0OmA38KrOW89npvhnAWcCTwEPAIcChEfHEpL0KMzOzOpHHWOMxT0qKiMuAy9LLyUcDj41Q9xzgHICenp4xdVXttetUAB5av4k9ZnaO5VCzQoiIdcDhFcpvIWm7pcfPH+Ecq4AD8o7NwzbMzKwRjdrzLOlmSTHMtpydmJRUEhH3kIy//MbOBD+avXbbkTybWX3xsA0zM2tEo/Y8R8TBI+1Pxzy3SZqfJsMwwqSkYWLYr8q6Y/LcUs/zk06ezczMzGz8xj3meSyTkgAkHStpj/Tn/WrTRS8AAAsMSURBVIF/BX463jgqmdnZzozONh52z7NZ3fGwDTMza0R5LVVXcVISQIWJSYuBOyX1A99Pt0/kFMez7LXrVA/bMDMzM7Nc5HJzkuEmJaX7yicmvSeP56zWvNnTWf3YqMOvzczMzMxGVejbcwMs2HMGDzzRz+Ztg7UOxczMzMwaXOGT5xftOYOhgHsf7xu9spmZWZ2SNEvS1ZL6Ja2RdOQIdV8m6efpmu2PSTppMmM1K7LCJ88L5iTLTd/9qIdumJlZQzsT2ArMAZYCZ0l61g3JJO0O/JDkBmSzSe7ie8MkxmlWaIVPnufNnkZHWwu/e7j8Pi5mZmaNIV0W9gjglIjoi4jlwLXAURWqfwj4UURcGhFbImJjRPxhMuM1K7LCJ89trS28bO5u3Hb/ulqHYmYZSleqGxzyzVLMqrAAGIyI1ZmylcCzep6BvwTWSfqFpMclXSdpbqWTSlomaYWkFb29vRMQtlnxFD55BnjVvrP4/SNPseHpbbUOxcxSLWnyvGGT26VZFbqA8kuoG4AZFeruDRwDnATMBe4nWUb2WSLinIjoiYie7u7uHMM1K66mSJ5fve9sImD5vWtrHYqZlXnSX2rNqtEHzCwrmwlUmtCzCbg6In4VEZuBzwAHSdplgmM0awpNkTz3zJtF94wOrvntQ7UOxczKPNm/tdYhmDWC1UCbpPmZskXAqgp17wCy46FKP/u2nmY5aIrkubVFHLboudx09+M8umFzrcMxMyDSj/MHnuhn68BQbYMxq3MR0Q9cBZwmabqkxcBhwMUVql8AvF3SgZLagVOA5RGxfvIiNiuupkieAY45aB4R8LUb76l1KGaWsW0w2P9TP+R/Vvy51qGY1bvjganA4yRjmI+LiFWSlkjafjODiLgR+ARwfVr3BcCwa0Kb2djkcnvuRvC8WdM46tX7cMGtD3Dwgm7evHDPWodkZsAr581iy+AQH7vyDmZNn8IbXjyn1iGZ1aWIWAccXqH8FpIJhdmys4CzJik0s6bSNMkzwMcPeRG3r3mS4y/9NR9843yOPmgeMzvbax2WWVMqDcL86rsOZNepU3jHN3/BsotvZ9HeuzC9o40I2DY4xMBQMDA4xLbBYGBoiIHBYNvQ0PZhH2b14vL3/SXPmzWt1mGY2QRrquS5s72VS459FSdfeQdfvmE1X7vxXg7YaxdesEcXs6ZPYddp7bS3ttDWIlpbWmhtgRYJKZ85FnnO1MgpJKtju0xtb4peWCGmTmnl4ve+inNvuY9f/+lJnto8QIugvaWFjrYWujraaG8VbS0ttLWK9tYWtwGrOx3tTTMS0qypNVXyDDCzs51vLH05K/+8nmtXPswdD67nJ394jCef3uabNVhdefFzZjZF8lyy2/QpfOyQF9U6DDMbQc8+u9U6BLOaa7rkuWTR83Zl0fN23f44IujfOshAepl4cCgYGAqGckqo87zEHDjJbwbtrcXuxXrrAc/hoP1ms3vXlFqHYmZVuOffD6XFl3zMmjd5LieJrg6/HVYskmYB5wFvBtYC/xoRl1WoJ+B04Ni06Dzg4xHJ1z5JB6ZlLwb+APxjRPx2PLHN6GxnhuccmDWMon+hN6uWW4JZsZ0JbAXmAEuBsyQtrFBvGcks/kXAAcBbgfcDSJoCXANcAuwGXARck5abmZk1FSfPZgUlaTpwBHBKRPRFxHLgWuCoCtWPAb4SEQ9GxEPAV4B3p/sOJrlK9V8RsSUivkYy//X1E/wSzMzM6o6TZ7PiWgAMRsTqTNlKoFLP88J0X6V6C4E7SkM4UncMcx4zM7NCc/JsVlxdwIaysg3AjCrqbgC60rHQVZ9H0jJJKySt6O3t3enAzczM6pWTZ7Pi6gNmlpXNBDZWUXcm0Jf2Nld9nog4JyJ6IqKnu7t7pwM3MzOrVw21vMTtt9++VtKaUartTrKqQKNy/LXTiLHvM8K+1UCbpPkRcU9atghYVaHuqnTfbRXqrQI+LEmZoRsHkExGHJbba0Nw/JNrpPZac26zda+RY4fGjL9im1UU7B63klZERE+t49hZjr92Gjn24Ui6guRO2McCBwLfBw6KiFVl9f4JOAl4Y1r/x8DXI+LsdFWNe4AzgLOB9wEfBeZHxNZxxtfQ77njr61Gj78RNfp73sjxN3Ls0PjxZ3nYhlmxHQ9MBR4HLgeOi4hVkpZI6svU+yZwHXAn8Dvg+rSMNEE+HDgaWA+8Fzh8vImzmZlZI2qoYRtmNjYRsY4k8S0vv4VkImDpcQAfS7dK5/kN8PIJCtPMzKxhFLHn+ZxaBzBOjr92Gjn2RtXo77njr61Gj78RNfp73sjxN3Ls0Pjxb1e4Mc9mZmZmZhOliD3PZmZmZmYTwsmzmZmZmVmVCpM8S5ol6WpJ/ZLWSDqy1jGVSOqQdF4a10ZJv5F0aLpvnqSQ1JfZTik79nxJT0l6VNKHavQabpa0ORPj3Zl9R6avrV/S9yTNyuyr+e+l7L3tkzQo6evpvoZ4/4umHv4uRuI26zZrz1QPfxfDcXt1e510EVGIjWQZrm+TrCDwGpLbBy+sdVxpbNOBU4F5JF9Y3kpyd7Z56RZA2zDHfgG4BdgNeDHwKHBIDV7DzcCxFcoXpq/ltel7fxlwRb3+XtLfRR/w2vRxQ7z/Rdvq7e9imL8Tt9k6+N24zdbHVm9/FxX+Rtxe6+D30iztteYB5PjL2gosyJRdDJxe69hGiPkO4Igq/rAeAt6cefzZbMOZxHiHa9ifBy7LPN4v/V3MqMffC3AMcB87Jss2xPtfpK0e/y6qjNtttjbvu9tsjbd6/LuoIma319q8703RXosybGMBMBgRqzNlK0m+sdUdSXNIYs7e5W2NpAclXSBp97TebsBzSV5LSS1f1xckrZV0q6SD07KFZOKLiD+SNmbq8/dyDPCtSFtpRiO8/0VRj38XI3KbdZttcvX4dzEst1e314lWlOS5i+RSRdYGkm9mdUVSO3ApcFFE3EVyn/dXkNw//eUkMV+aVi/dxCL72mr1uj4O7AvsRbJW43WS9mPk976ufi+S5gJ/BVyUKW6U979I6urvYjRus26zVl9/FyNxe3V7nQxFucNgHzCzrGwmyTihuiGpheSSylbgBICI6ANWpFUek3QC8IikmSSvC5LXsjnz86S/roj4ZebhRZLeBfw1I7/3QyPsq4WjgeURcX+poFHe/4JpiPYKbrNl+2rBbbY+NESbdXt9xr5aaJr2WpSe59VAm6T5mbJFPPOSTU1JEnAeMAc4IiK2DVO1dKlDEfEk8AjJaympl9cVgEhi2R6fpH2BDpLfSb39Xo7mmd+IK2mU97+R1dvfRUVus9u5zVq9/V08i9vrdm6vk6HWg67z2oArSGadTgcWU0czgdP4zgb+H9BVVv4q4IUkX2Rmk8yavSmz/3TgZyQzUV9E8oc2qTNRgV2BtwCdJFcrlgL9adwLgaeAJel7fwnPnAlcF78X4KA05hmN9v4XcauXv4tRYnSbdZv1Vmd/FyPE5/bq9jp5r7fWAeT4i5sFfC/95f0JOLLWMWVi24fk29ZmkssUpW0p8C7g/jTuR4BvAXtmju0Azk8bz2PAh2oQfzfwK5JLKevT/6DelNl/ZPqe9wPXALPq7fcCfBO4uEJ53b//Rdzq5e9ihPjcZt1mvT3zfa+Lv4thYnN7dXud1K20lIiZmZmZmY2iKGOezczMzMwmnJNnMzMzM7MqOXk2MzMzM6uSk2czMzMzsyo5eTYzMzMzq5KTZzMzMzOzKjl5NjMzMzOrkpNnMzMzM7MqOXk2MzMzM6vS/wfiI2mA+SNXPQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.plot_layer_stats(-2)"]},{"cell_type":"markdown","metadata":{"id":"iLzE_moA2N2a"},"source":["As expected, the problems get worse towards the end of the network, as the instability and zero activations compound over layers. Let's look at what we can do to make training more stable."]},{"cell_type":"markdown","metadata":{"id":"NS54H8Qm2N2a"},"source":["### Increase Batch Size"]},{"cell_type":"markdown","metadata":{"id":"_FNHPWz02N2a"},"source":["One way to make training more stable is to increase the batch size. Larger batches have gradients that are more accurate, since they're calculated from more data. On the downside, though, a larger batch size means fewer batches per epoch, which means less opportunities for your model to update weights. Let's see if a batch size of 512 helps:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dz2uNdoE2N2b"},"outputs":[],"source":["dls = get_dls(512)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oXbgmstG2N2b","outputId":"20d7d035-8384-4a14-f566-c98513927ae8"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.3093852.3027440.11350000:08
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = fit()"]},{"cell_type":"markdown","metadata":{"id":"0Kg2Ykks2N2b"},"source":["Let's see what the penultimate layer looks like:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EFg-iEkS2N2c","outputId":"8dbf1760-baae-4cb3-dea5-b35436232f66"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAs8AAADWCAYAAAAuNG/NAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deZxjZZn3/8+VpPalt6re9wWFRpuBVpRNRnTEhRco+uiACM4oDojLOOrMqDgt7j6j8/PxQQRHRBERR1kfEMdRUMAFGqWFBuyGhqYbet+rqmtJcv3+OCfVqXSqKtV1qpLU+b5fr/Oq5OTOyVXpujvXuXOd+zZ3R0REREREhpcodwAiIiIiItVCybOIiIiISImUPIuIiIiIlEjJs4iIiIhIiZQ8i4iIiIiUSMmziIiIiEiJlDyLiMScmZ1uZm5mc8sdi4hIpVPyLCIyAZnZ3DAhPr3csYhUAjN7h5k9a2Z7zey7ZlaT91jSzP5gZm8vZ4xSHZQ8i4iIyIRmZtOA7wKfBE4FTgIuzmvyEeAFd7+pDOGVzMxqJ+JrVRslzzFhZvea2XfM7HNmtj088/68mSXM7NNmts3MdpjZ5/OekzKzVWb2jJl1m9laM3tfwXE/ZGaPmFmHmW01sx+Z2ay8x3NfB7/WzH5jZl1m9riZvW48f3+RicrMTjGzB8zsQLitCfvXprDJPWEffDbvOR8ws81hf/w5ML8csYuMo8XAPne/wd0fBW4FjgEws2XAh4BLSjlQ+Ln4lJmdbWZPmlmnmd1jZksK2p1gZv8dfj7uMLObzWxB3uOLwn0vhH3xUTO7oOAYuc/uz5rZFuD5QWK6N+znhdtFeW0+EMbbbWbrzeyTZpbKe/zZMEf4ppntAh4I988KP9v3mtnB8LVWlvJeTVRKnuPlrUANcArBWfYngP8HNBOciX8U+ISZvT5s/5/AW4D3AUcDVwBfNrO/LzjuR4GXAG8m+BD+UZHX/nfgC8AKYDVwk5lNjuw3E4khM0sCtwN/AI4Pt1VAV3gb4FxgFvCy8DlnA/8BfA04Dvgx8L/HM26RMngKaDSzlWbWBLwK+JOZGfAd4BPuvnUEx5tFkGyfTzCKPRm4NvegmR0D/Br4HbASeDWQAX5hZvVhs2bgl8CZBJ+h1wDfNbO/Lnit/wW0A2eExynmLWFMue1zQCfwUBjPKoLP6n8l+Dz/EMFn+78VHOeDwHbglcCF4ftzK/Bi4E3Ay4Ft4e/RNuQ7NJG5u7YYbMC9wCMF+9YCjxbsW0OQ6C4CssCLCx7/dOFxCh7/K8CBOeH908P7b8lrMzPc97pyvy/atFXzBkwJ+9LpRR6bW+wx4H7ghoJ9/x62nVvu30mbtrHagLPCz7gNBCeQSeADwJ3h59Kt4WPfB5qHOM4qIA205+17R/iZWR/evw74UcHz6ghObM8Z4ti3Ad/Ou38vsA5IjOD3fB3QA5wV3m8MX/fMgnbvAvbm3X8W+GVBmzPC/xuOKfg9tgCfLve/abm2/uF6iYU1Bfe3hlvhvukEZ8oGrA5OPPulCM6egaAsg+BM9hiCM+/ctxkLGPj10iO5G+6+1cwywIwj/D1EBHD3PWb2n8DPzexXBCNdt7j7X4Z42jHAjQX77gf+aYzCFKkI7n4HcEfuvpktBP4FOBH4P8ATBN/Q/gC4HPjnIQ73grvvyLv/PMFn5nTgOYJvepaaWUfB8+qBZeHrNxIMSJ1FMFpcS5CY3lPwnIfdPVvK72hmywm+Tfrn8PcFWA40AD81M89rngTqzaw973d5sOCQy4Fd7v54boe795jZH8LHYknJc7z0Fdz3QfYlOJQEn0RwxlrYBjObD9wFXE9Q0rGTYLTrfwj+E8jXWyQelQ2JjJK7v9fMvg78DfBa4LNmdhnBaNqgTxuX4EQq27eBVe6+2cxeA3zG3dNm9gPgM8M8t/AzLdenEnk/rwe+VOS5u8Kf/xs4m+DE9UmCMouvApMK2ncO94sAmNl0glLMH7j7/5f3UC6mtxGMYhfaPcxrFfv/wgbZHwtKnmUwD4c/57v7/xukzcsIzmY/7O4HIbhAYjyCE5FD3P0x4DHga2b2LYJZBG4JH04WNH8cOBn4Zt6+k8c8SJEKYmbvBczdvx3uShBcEwTB4M9oB3dWAy8Fnvaw1qGI0whKqG4KY0oARxHUFI+ImdUR9PknCeqW860FuoHF7n7XCA+9Fmgzs2Nyo8/ha72cgf+HxIqSZynK3Z8ys2uBb5vZxwkuemgCTiCo8/oysJ7gzPOfzOwGgosBP12umEXixsyWAu8l+Cp6EzCb4OLfPxJ8E9QB/I2ZrQV63H0PwcjWf5nZgwTfHJ0CXFDk8CITkpnNIbhQ7pS83b8BPhLOOPV+ghKo0fgCQQnED8JvhnYAC4FzgK+7+wbgL8DZZvZTgr76EYI+POLkGbg6fO67gfa8cst97t5hZl8AvhDu/wVB/vcS4K/cfajylF+Fv8cPzez9wD6CkpZ64KojiHNC0NfmMpSLCS6q+CTBaNUvgQsJLqjA3f9McLHF+8LHPwp8uCyRisRTJ0H95I8Ivo79KfBb4LKwRvL9BFfqbwL+BODutxB8Tfxx4M8EswUM9eEpMtFcDXzJ3Z/N2/dBguR2NUG/Gq5sY0ju/gRB2WMz8HOCz8hvE3xbuzds9o/ARoIa518S1E3/5Ahf8nSC+P9CcDFfbnt7GM9nw9d7D8H1T/eH958d5vdwgoT/SYJSsIcILq58rbvvPMJYq54N/m2CiIiIiIjk08iziIiIiEiJlDyLiIiIiJRIybOIiIiISImUPIuIiIiIlEjJs4iIiIhIiapqnue2tjZfuHBhucMQqRgPP/zwTndvL3ccxai/igxUyf0V1GdFCg3WZ6sqeV64cCGrV68udxgiFcPMNpY7hsGov4oMVMn9FdRnRQoN1mdVtiEiIiIiUiIlzyIiIiIiJYo0eTazqWZ2i5l1mtlGMztvkHZmZl82s13h9hXLW4hdREREDjGzy8xstZn1mNl1w7T9RzPbamb7zOxaM6sbpzBFYiHqkecrgV5gBnA+cJWZLS/S7mKCtdJXAC8F3gS8L+JYREREJooXgM8B1w7VyMxeB/wLcAawEFgMfGasgxOJk8guGDSzJuBc4Fh37wDuN7PbgQsIOnK+C4Gvuvvm8LlfBd4LfGs0MXz7NxvoSWe47NXLRnMYkVgws8uAi4CXADe6+0WDtLsI+A5wMG/3m9z93ijiuOvRLcxoreeEBVOiOJzIhOTuNwOY2Upg7hBNLwS+4+5rw/afBW7g8M/hMffbp3Zy12NbSJjxwTOW0dZ8ZAPg2/Z3c9W9T9PZk444Qomz179kJq9+8Ywjem6Us20cBWTcfV3evjXAq4q0XR4+lt+u2Aj1iDzw9E52d/YqeRYpTW4k63VAwzBtf+fup4xFEF+5+0leOneykmeRaCwHbsu7vwaYYWbT3H1XYWMzu5jg22Dmz58fWRDP7eri77+3moRBZ2+G6S11/Z/NG3d1sn5bB2ccPZ3BKjY7etLc9sjzHOhO85/3bWB/d5q2ptrI4hN5ydxJR/zcKJPnZmBfwb59QEsJbfcBzWZm7u75DUfSsRtrk2zekxlh2CLxNIKRrDGVcSeT9eEbikgpin2+QvBZfFjy7O7XANcArFy5MpKOmM06H/3JGlIJ478/chqX3vBH7l67lctevYy7Ht3Cx3/yZzp60pxz3Gz+18p5UJA/H+zN8Pm7nmDDjk4Alk1v5sb3voJlM4qlEyLjL8rkuQNoLdjXChwooW0r0FGYOMPIOnZDTYqDvUqeRcbAX5nZTmA3cD3wRXeP5DvUbBayh3d9ETkyxT5fofhn8Zj41ZPbefCZ3XzpLS9h1qQGXn/sTL5w15Pc/MfNfOTHazhu3mROXjqNb977NLc+8kLRY7Q113HDe07k2DmTaKlLkUhoTgGpHFEmz+uAlJktc/f14b4VwNoibdeGjz04TLsRaaxN0tWrmiiRiP0GOBbYSPCV8E1AGvhiYcMj+Qo4k9XIs0iEcp+vPw7vrwC2FSvZGCt3PbqFSQ01nHtC8IXWmctn8YW7nuSj/7WGOZMbuOE9J9JUl+KtJ8xj2/7uosc4emYrkxprxitkkRGJLHl2904zuxm4wszeAxwHnA2cVKT594GPmNldgAP/BHxjtDEEybNGnkWi5O4b8u4+amZXAB+jSPJ8JF8BZ9018iwyDDNLEXxmJ4GkmdUD6SLfAH0fuM7MbgC2AJ8CrhuvOHvTWX7xxDZet3wmNclgQq/50xo5ZlYrj2/Zz+fffCxNdUHqsaitiUVtTeMVmkhkop6q7lKCC4+2AzcCl7j7WjM71cw68tpdDdwBPAo8BtwZ7huVhtokPemsRrFExpZzWJXikcuq5lmkFJ8imPHmX4B3hrc/ZWbzzazDzOYDuPvdwFeAewi+LdoI/Nt4BfnA0zs50J3m9cfOHLD/42e+iE++4WhOf9H08QpFZMxEWbaBu+8mmL+5cP99BBcx5O478PFwi0xjbRKAg30Zmusi/dVEJpxSR7LM7PXAH919m5m9GLgc+K+o4shknYxyZ5EhufsqYNUgDzfn33H3rwFfG+OQirr70a0016U4ZVnbgP2nv2i6EmeZMCbU8tyNtUHCrLpnkZKUNJJFsNjCn82sE7gLuBn4QlRBZB2KXCssIlVm/bYD3PKn53njS2ZRl0qWOxyRMTOhhmf7R55V9ywyrFJHstz9o8BHxyqOrC4YFKl6mazzsZ/8maa6JB8780XlDkdkTE2wkecgedZFgyLVQ/M8i1S//3liG49s2svlbzrmiFcSFKkWEyp5bugv21DyLFItNNuGSPV7answJ8CZBRcKikxEEyp5PjTyrJpnkWoRLJJS7ihEZDQ27e6irbm2/9ojkYlsQiXPDTUq2xCpNirbEKl+m/Z0MXdKY7nDEBkXEyp51gWDItVHZRsi1W/T7oPMm6rkWeJhgiXPqnkWqSbujjsaeRapYpms88Leg8yb0lDuUETGxYRKnhtU8yxSVXJJs5Jnkeq1Zd9B0lnXyLPExoRKnlW2IVJdcjmzqjZEqtem3QcBmKeaZ4mJCZU81yQT1CSNrj4lzyLVIFfrnFH2LFK1Nu3pAmDeVJVtSDxMqOQZghk3NPIsUh1y5RpZlW2IVK3Nu7tIGMyerORZ4mHCJc+NtSnVPItUCY08i1S/TXsOMmtSAzXJCZdSiBQ14f7SG2uTmm1DpEpks+FPJc8iVWvT7i7maqYNiZEJlzw31KpsQ6Ra5Eacc0m0iFSf53Z3MV8zbUiMTLjkWSPPItWjv2xDNc8iVelAdx/bD/SwqL2p3KGIjJsJmDyn6OrL8Ksnt3H1r58udzgiMoTchYKqeRapTht2dAKwpL25zJGIjJ8JmDwnOdib5vrfbeTLdz/Jtv3d5Q5JRAZxqGxDybNINdqwswOAJRp5lhiZcMlzQ22Szp4Mz+3uIutwy5+eL3dIIjKIXM6sCwZFqtPT2ztJJoz5U5U8S3xMuOQ5qHlOs3lPsOLRTx7ejOuDWaQiZbU8t0hV27Czg/lTG6lNTbh0QmRQE+6vvbE2xZ6uPnrSWZbPbuWp7R08+MzucoclIkX0L5Ki3FlkWGY21cxuMbNOM9toZucN0m6ymX3PzLaH26qxiunp7Z0q2ZDYiSR5LrVDh23/2szuMbN9ZvZsFK+fr6Em2X/7H161hBmtdfz991bzqye3Rf1SIjJKmm1DZESuBHqBGcD5wFVmtrxIu/8AGoGFwMuBC8zs3VEHk8k6z+zqZLEuFpSYiWrkudQODdAJXAt8LKLXHqCx9lDyfMzsVm59/8nMm9rIB298RB/QIhUmlzyr5llkaGbWBJwLXO7uHe5+P3A7cEGR5mcBX3H3Lnd/FvgO8HdRx/T8noP0prMsbtPIs8TLqJPnEXZo3P1Bd78e2DDa1y4mlzybwZzJDcya1MBFJy2goyfN5j1dY/GSInKEMlphUKRURwEZd1+Xt28NMNhAlRXcPrZoI7OLzWy1ma3esWPHiAJ6OjfTxnSNPEu8RDHyPNIOPSIj7dgNtSkAZrbWUx+WcCyb0QLAum0dUYQkIhFR2YZIyZqBfQX79gEtRdreDfyLmbWY2VKCUeeiSwC6+zXuvtLdV7a3t48ooAfW7wQ0x7PETxTJ80g69IiNtGPnRp7nTTn0/8Sy8Kx4/fYDUYQkIhHJv2BQs+KIDKkDaC3Y1woU+2D7IHAQWA/cBtwIbI4ymGd2dvK93z3LW0+Yy9Sm2igPLVLxhk2ezexeM/NBtvsZWYcecw255HnqoeS5pb6GWZPqWa+RZ5GKkl+uocFnkSGtA1Jmtixv3wpgbWFDd9/t7ue7+0x3X07wWf9glMF8/s4nqEsl+fiZL4rysCJVITVcA3c/fajHw5rnlJktc/f14e6iHXo8NNbkkueGAfuXzWjRyLNIhclPmLPuJAeUaYpIjrt3mtnNwBVm9h7gOOBs4KTCtma2BNgbbn8DXAy8Ksp47v3Ldi545QKmt9RHeViRqjDqsg137wRyHbrJzE4m6NDXF2tvZgkzqwdqgrtWb2aRfefTVBecD8yfOrC866jpzTy1vUPLAItUkPxaZ9U9iwzrUqAB2E5QinGJu681s1PNLP+r1ROARwm+Af4icL67Rzag5e6ks05LfU1UhxSpKsOOPJfoUoLp57YDuwg7NICZnQr8zN1zVxScBtyT99yDwK+B06MI5JhZraw66xjOPHbmgP3LZjTT3Zdl054uFkzTtDoilWBg2YaSZ5GhuPtu4Jwi++8juP4od//HwI/HKo7ceW4qoW+KJJ4iSZ4H69DhY4Wd+l4Yu+9mEwnjopMXHbY/N+PG+m0dSp5FKkRWI88iVSfXV5NKniWmJtzy3INZGs64sU51zyIVI6MLBkWqTi55TpiSZ4mn2CTPrfU1tLfUsXGnFkoRqRTZbP5tZc8i1SB30quyDYmr2CTPAAunNfLMrs5yhyEiofw654xqnkWqQiYTjjwreZaYilXyvGBaExuVPItUjAFlGxp5FqkKGnmWuItV8rxwWiPb9vfQ1ZsudygiQsEFgxp5FqkK6bDeSiPPElfxSp7bglk2ntutumeRSjBwkZTyxSEipctdq6CRZ4mreCXP4RR1z+5U6YZIJcifnk5lGyLVIfctUVKzbUhMxSp5nj8tWHXw2V0aeRapBAMuGFTyLFIVchcMap5niatYJc+t9TVMa6rVRYMiFUKzbYhUn/6RZyXPElOxSp4BFkxr5BmVbYhUhPzRZlfyLFIVMmHRs5JniavYJc8L25rYqLINkYowsGyjjIGISMlyfVXJs8RV/JLnaU1s2ddNd1+m3KGIlJWZXWZmq82sx8yuG6btP5rZVjPbZ2bXmlldFDHkrzCommeR6tA/VZ0uGJSYil3yPHdKAwDP7z1Y5khEyu4F4HPAtUM1MrPXAf8CnAEsBBYDn4kigAGLpKhsQ6QqaKo6ibsYJs/BjBub9yh5lnhz95vd/VZg1zBNLwS+4+5r3X0P8FngoihiGLBIikaeRSpWNuvsOBAsMpZWzbPEXAyT53DkWcmzSKmWA2vy7q8BZpjZtNEeeOAiKUqeRSrV/u4+Xvb5/+Gmhzb191UlzxJXsUueZ7TWk0oYm/fookGREjUD+/Lu5263FDY0s4vDOurVO3bsGPbAKtsQqQ65RDmTddKa51liLnbJczJhzJpcr7INkdJ1AK1593O3DxQ2dPdr3H2lu69sb28f9sADyzZGGaWIjJlUIkgX0lnXPM8Se7FLngHmTm7UBYMipVsLrMi7vwLY5u7D1UoPSysMilSH/JHnXF9V8ixxFc/keUqDyjYk9swsZWb1QBJImlm9maWKNP0+8PdmdoyZTQE+BVwXRQxaJEWkOuRm1ujLZJU8S+zFMnmeM6WBbft76ElrrmeJtU8BBwmmoXtnePtTZjbfzDrMbD6Au98NfAW4B9gYbv8WRQBanlukNGY21cxuMbNOM9toZucN0q7OzL5lZtvMbLeZ3WFmc0b7+omEkbDghLf/gkHN8ywxFUnyXGqnDtt+zMweM7MDZvaMmX0sihhGIjdd3Za93eP90iIVw91XubsVbKvc/Tl3b3b35/Lafs3dZ7h7q7u/2917ooghv1JDZRsiQ7oS6AVmAOcDV5nZ8iLtPgS8EngpMBvYC3wjigBSiQRpXTAoEtnIc6mdGsCAdwFTgDOBy8zsHRHFUZLcdHW6aFCkvPITZs22IVKcmTUB5wKXu3uHu98P3A5cUKT5IuDn7r7N3buBHxFMNzlqyYQNHHlW8iwxNerkeYSdGnf/irv/0d3T7v4X4Dbg5NHGMRKHkmfVPYuUk2bbECnJUUDG3dfl7VtD8aT4O8DJZjbbzBoJBrR+FkUQqYSRzjhp1TxLzEUx8jySTj2AmRlwKsHV/ONmZms9yYRp5FmkzLRIikhJCudaJ7x/2FzrwDrgOeB5YD9wNHDFYAceydzsyaSRyeqCQZEokueRdOpCq8IYvjtYg5EuulCKVDLBzNZ6XtB0dSJlNWCRFNU8iwymcK51wvuHzbUOXAXUA9OAJuBmhhh5Hsnc7KmEBfM8Z3XBoMTbsMmzmd1rZj7Idj8j69T5x72MoPb5jUNdfDTSRRdKNXtyveZ6FimzAWUbGnkWGcw6IGVmy/L2raD4t7YrgOvcfXf42foN4OVm1jbaIJJh2YZGniXuhk2e3f30Ilfk57ZTGFmnBsDM/o5geqwz3H3zaH+JIzF7cgMv7FPyLFJOWiRFZHju3kkwgnyFmTWZ2cnA2cD1RZo/BLzLzCaZWQ1wKfCCu+8cbRy52TaUPEvcjbpsY4SdGjM7H/gC8Fp33zDa1z9Ssyc3sHVft74qFimj/NFmDTyLDOlSoAHYDtwIXOLua83sVDPryGv3UaAbWA/sAN4AvDmKAFK5muews6aUPEtMFVtN7EhcClxL0Kl3EXZqADM7FfiZuzeHbT9HUIv1kB2ql/qBu/9DRLGUZPbkBvoyzs6OHqa31o/nS4tIaOBsG8qeRQbj7ruBc4rsv4/g2qPc/V0EM2xELllQ85xQ8iwxFUnyPFinDh8r7NiLonjN0ZozOUiYn997UMmzSJkMWCRFQ88iFS0VzvOcS5418ixxFcvluSEYeQZ4QasMipTNgEVSNPIsUtGSBTXPGnmWuIpt8jxrUi551kWDIuUy4IJBjTyLVDSNPIsEYps8t9anaK5Labo6kTLKT5418CxS2ZIJoy9z6ILBhOZ5lpiKbfJsZsyeXM8WTVcnUjaZ7KHprlS2IVLZ+keeM5qqTuIttskzhHM9q+ZZpGyyWacmGXwAa7YNkcqWSoazbbhWGJR4U/Kssg2Rssm6U5NI9N8WkcqVSiT6a57NdMGgxFesk+c5kxvY1dlLd1+m3KGIxFLGnVQ48qzkWaSy5c/zrIsFJc5inzwDbNrdVeZIROIpKNsI/hvKZMscjIgMKah5zpLJui4WlFiLdfK8dHqwdstT2zuGaSkiYyHr9CfPGnkWqWzJhJHOaORZJNbJ85L2ZsxgvZJnkbLIuC4YFKkWuQsG01lXvbPEWqyT54baJHOnNCh5FimTbNZJaeRZpCokwwsGs66RZ4m3WCfPAMumt7B+24FyhyESS/kfwprnWaSypRJGOpslnXXN8SyxFvvkeen0Zjbs7CStq5VExl0mGyxYlEyYlucWqXCphJHJOFklzxJzSp6nN9ObzrJpj+Z7FhlvWXeSiWCxBZ2/ilS2/kVSsq4FUiTWYp88Lwtn3FDphsj4y3rwIZxIqOZZpNIlc8tz64JBibnYJ8+56ep00aDI+AtWKjOSZqp5FqlwqUSif3luXTAocRb75LmlvoZZk+o117NIGQRlG0bCVPMsUumCeZ6zmqpOYi/2yTPA4vYmNuxQ8iwy3rJZwrINjTyLVLpUuDx3VoukSMwpeQYWtwUzbrhGvkTGVcYdMzTbhkgVyNU8p7U8t8SckmdgUVsTB7rT7OrsLXcoIrGSm/IqYYYGnkWGZmZTzewWM+s0s41mdt4g7X5mZh15W6+ZPTra108lE/2zbaSSSp4lvlLlDqASLGpvAuCZnZ20NdeVORqR+DhU86xFUkRKcCXQC8wAjgPuNLM17r42v5G7vz7/vpndC/xqtC+eK9Xoy2Q1VZ3EWiQjz6WeDYdtP2xmG8xsv5m9YGb/YWZlTeKXtAUzbqjuWWR8ZTxvkRQlzyKDMrMm4FzgcnfvcPf7gduBC4Z53kLgVOD60caQWxilJ53VIikSa1GVbeSfDZ8PXGVmywdpewdwvLu3AscCK4APRhTHEZkzpYGapLFhZ2c5wxCJnWzWSRqabUNkeEcBGXdfl7dvDTDYZ23Ou4D73P2Z0QaQUvIsAkSQPI/0bNjdn3b3vbmnA1lg6WjjGI1kwlgwrYlndih5FhlPubKNpGbbEBlOM7CvYN8+oGWY570LuG6wB83sYjNbbWard+zYMeSB+kee+zJKniXWohh5HvHZsJmdZ2b7gZ0EI89XD9G25I49GovbmnhGI88i4yq3SErC0AWDIkPrAFoL9rUCgy6Pa2anADOBnwzWxt2vcfeV7r6yvb19yAByI8+9GnmWmIsieR7x2bC7/zAs2zgK+BawbYi2JXfs0VjU3sTGXV2quxQZR4eW51bZhsgw1gEpM1uWt28FsHaQ9gAXAje7eyQX9CSTQcrQk85qqjqJtWGTZzO718x8kO1+juBsOMfd1xN0/G8eSfBRWtzWRG8my+Y9XeUORSQ2sh58FazluUWG5u6dwM3AFWbWZGYnA2czyIWAZtYAvI0hSjZGqiY38pzJapEUibVhk2d3P93dbZDtFI7sbDhfClgy8tCjtXz2JAD++NyeMkciEh/ZbN4iKUqeRYZzKdAAbAduBC5x97VmdqqZFY4un0PwLfA9Ub24ap5FAqMu2ziCs+H3mNn08PYxwL8CvxxtHKN1zKxWpjbV8pt1O8sdikhsZFyLpIiUyt13u/s57t7k7vPd/Yfh/vvcvbmg7Y3uvsAjXDo3tzBKb0Y1zxJvUU1VV/RsGKDIGfHJwKNm1gncFW6fiCiOI5ZIGKcsbeO+9Tv09bHIODlU8xzcFpHKlUwcqnlW8ixxFsniJO6+m+AromKP3UdwUWHu/rujeM2xcNpR7SHQsxQAABkOSURBVNy+5gWe2Lq/v4xDRMZONhsukmIq2xCpdLk6Z/dDibRIHOmvP89py9oAVLohMk4yWSeZCL750cizSGXLH21OauBZYkzJc57prfW8eGYL960fu/mkRSqFmU01s1vMrNPMNprZeYO0W2VmfWbWkbctjiKG/kVSNPIsUvHyZ9jQyLPEmf76C5y0pI2HN+6hJ50pdygiY+1KoBeYAZwPXGVmgy1udJO7N+dtG6IIIOu5RVI08ixS6QaMPCt7kBjTn3+BVyyeSk86y5pNheu+iEwcZtYEnAtc7u4d7n4/cDtwwXjGkcnmXTCYHc9XFpGRqsnLmDXyLHGmv/4CL180FTP4/YZd5Q5FZCwdBWTcfV3evjXAYCPPZ5nZbjNba2aXDHZQM7vYzFab2eodO4Yvf+pfJEUrDIpUPI08iwT0519gcmMtR89sVfIsE10zwQIK+fYBLUXa/hg4GmgH3gt82sz+tthB3f0ad1/p7ivb29uHDSK3SEpCNc8iFS+/5jmlkWeJMf31F/GKxdNU9ywTXQfQWrCvFThQ2NDdH3f3F9w94+6/Bb4OvDWKIDK5eZ7NiHAtBxEZA/kjzwnTdBsSX0qei1Dds8TAOiBlZsvy9q0A1pbwXAci+eTsn21DZRsiFS9/tFllGxJn+vMv4oQFUwD403N7yhyJyNhw907gZuAKM2sys5OBs4HrC9ua2dlmNsUCLwc+CNwWRRy5RVKCso0ojigiYyWpqepEACXPRU1rrmPe1AYe2bS33KGIjKVLgQZgO3AjcIm7rzWzU82sI6/dO4CnCEo6vg982d2/F0UAGQ8WSUkmgvpnEalcqaQuGBSBiJbnnoiOmzeF1c/uLncYImPG3XcD5xTZfx/BBYW5+0UvDoxCNqx5VtmGSOXTIikiAf31D+K4eZPZsq+bbfu7yx2KyITk7rgHZRumRVJEKt6AmmddMCgxpuR5EMfNmwyg0g2RMZKbmi63PLfKNkQqWzKvbCO/hEMkbpQ8D2L57FZSCVPyLDJGcrmyZtsQqQ4pTVUnAih5HlR9TZKjZ7XyyHNKnkXGQq5MI7dIipbnFqlsyQGLpCh5lvhS8jyE4+dPZs3mvaQ1h5ZI5PrLNsxIGKp5FqlwA0aelTxLjCl5HsIJC6fS1ZvhiS2HLbomIqOUS5b7yzZU8yxS0TTyLBJQ8jyEly0MFkt5SFPWiUQuV6ZhZiQSmm1DpNLV5E3urJFniTMlz0OYNamBOZMbeHijVhoUiVruAsGkBaUbGnkWqWwDVhjUBYMSY0qeh7Fy4RQeenY3rlExkUjlRpoTKtsQKYmZTTWzW8ys08w2mtl5Q7Q93sx+Y2YdZrbNzD402tfPT5hVtiFxFlnyPJJOnfecWjN70sw2RxVH1FYunMr2Az1s3nOw3KGITCi5eZ0TZpiBzk9FhnUl0AvMAM4HrjKz5YWNzKwNuBu4GpgGLAX+e7QvnkgEF/fmbovEVZQjzyV16gIfA7ZHGEPkVi4I6p4ffEZ1zyJRyvjARVI0z7PI4MysCTgXuNzdO9z9fuB24IIizT8C/Nzdb3D3Hnc/4O5PRBFHbpVBjTxLnEWSPI+wU+eeswh4J/DFKGIYKy+a0cKUxhp++/SucociMqHkqjQShso2RIZ3FJBx93V5+9YAxQapXgHsNrPfmtl2M7vDzOYXO6iZXWxmq81s9Y4dO4YNIlf3rJFnibOoRp5H0qlzvgF8AqjoeohEwnjlkmn87umdqnsWiVB+2YZm2xAZVjOwr2DfPqClSNu5wIXAh4D5wDPAjcUO6u7XuPtKd1/Z3t4+bBC5EWeNPEucRZU8j6RTY2ZvBlLufstwBx7pWfFYeOWSNl7Y182zu7rK8voiE1H/IimJ3CIpZQ5IpLJ1AK0F+1qBYgsRHARucfeH3L0b+AxwkplNGm0QyWQ48qzZNiTGSkqezexeM/NBtvsZQacOSzy+AnyglNce6VnxWDh5yTQAfvv0zrK8vshE1D/bhpmmqhMZ3jogZWbL8vatANYWaftnIL9D5W6POuNVzbNIicmzu5/u7jbIdgoj69TLgIXAfWa2FbgZmGVmW81s4Wh+mbGyqK2Jma31/PYp1T2LRCV/qrpc/WRWCbRIUe7eSfB5eYWZNZnZycDZwPVFmn8XeLOZHWdmNcDlwP3uvne0ceSS5qSSZ4mxSMo2RtipHwPmAceF23uAbeHtTVHEEzUz46Sl0/jdhl36cBeJSCZcYTAZjjwDmnFDZGiXAg0Es1TdCFzi7mvN7FQz68g1cvdfEVxTdGfYdikw7PSxpUgqeRYhFeGxLgWuJeiouwg7NYCZnQr8zN2b3T0NbM09ycx2A1l331rkmBXjlYuncfMfn2f99g5eNLNoKbeIjMChso1DV+5nsk5Ncmxe72Bvhv9+fCu3/ul5Ht+yn3TGeesJc3nHy+ezqK1pbF5UJELuvhs4p8j++wiuPcrfdxVwVdQxpJJKnkUiS54H69ThY4d17LzH7iW4MriivWJxUPf8+w27lDyLRCBX4xwsvBB8EI/FwPP6bQf40s+e5L6ndtKbzjJ3SgOnLG2no6eP/7z/Ga7+zQZWzJvMG46dyWuOmcHitiZMF0OJFNU/VZ36iMRYlCPPE9q8qY3MmdzA7zfs4sKTFpY7HJGqlxt5TpqRDAvIoi7buOEPG/nM7Y/TWJfk/BPn89pjZvCKRdP6R7q37e/mtkee5/Y1L/DFnz3JF3/2JHOnNHDSkmmcuGgaxy+YwsJpjUqmRUL9U9Ul1SckvpQ8j8ArFk/jnr9sJ5t1TRAvMkr9i6QkDo1iRTnjxs/XbuVTtz7Gacva+fe3raC9pe6wNjNa67n4tCVcfNoSNu/p4p6/7OC+dTv4+dpt/Hj1ZgAmNdTwkjmTOHpWC0fNCLbF7U201NdEFqtItUiGs21o5FniTMnzCLxyyTR++sfNqnsWiUAmb5GUZMSzbdy/ficf/tEjrJg7masvOIH6Egqp505p5IJXLOCCVywgm3We2tHBwxv3sGbTXta+sJ/v/W4jvelsf/u25joWTGtk3pQG5kxpYM7kRmZOqmNGaz3TW+qZ2lSrulCZcGqSWiRFRMnzCLxi8VQAHnhqp5JnkVHqL9vIq3mOYpXBmx56jk/c8hhL25v59rtWlpQ4F0okrH+U+W9fHqxqnM5k2bi7i6e2d/D0jg427uxi4+5OHnp2D3f8ectho+YJg6lNtUxrqmNyYw1TGmuZ3FjDpIYaWhtqaKlP0VKformuhqa6JE21KZrqkjTUpmisSdJQm6QulVDJiFQUzbYhouR5ROZOaWTZ9GbuXruVvztlUbnDEalqhctzw+hrnq974BlW3fE4px3VzpXn/VWkpRWpZIIl7c0saT/82udM1tm2v5ut+7vZvr+bbft72NnRw86OXnZ39rCns48NOzvY09XHvoN9A0awh1OXSlBfk6S+JkFdKkltKkFtMjHgZ03SqEkmqEkmSCWNVCLYl7udShipZPAzkTBSiWC0Pxnezo3+JxLWX4Oe25dMGBZOJ5ibGSVpRiIRTOOZyHvMcsex3GPhv68ZZoeOmf94fjvIXUDKgOck8toe2jewjTHwmDI2NM+ziJLnEXvDS2bxf361nu0HupneUl/ucESqVqZghUGAbOk55WGu/92zrLrjcV57zAyuPO94alORTGNfkmTCmD25gdmTG0pq392XYX93H509GTq60xzo6eNgb4bO3gwHe9Mc7M3Q1ZehuzdDdzpLd1+Gnr4svZksPekMveksPeksveksXb1pejNZ0hmnL5MlnXX60sHPdDbYl8k66YyTzmZjswx6sQTdKEi6E0HSHdwP9uXuF0vWD7tP+Jzw/jXvWsmcEv8GqpVGnkWUPI/YG186i6//cj0/f2wrF7xyYbnDEalauUQ5GN0Mbh/JyHM6k+Wm1Zu4/La1vObo6Xzz/OOpSY5f4nwkgpHkJJSh+svdyWSdTPgznXWy2UP7slnCn4f2uTtZD0bYM1nHPWwTPpbJhscNn+8cahfcZkDbrDtO8O2DEzwnty/3WrnXcA9fL+v9ZT3ZvDbZMNbguYTHCx8n+JkNHjjseR6+ZiZsD2HMeb/fgOeR97yC47l7LOqAc8tzK3mWOFPyPEJHzWhh6fRm7nx0i5JnkVHIXyTF+keeS0+e12zayy1/ep6fr93Kln3dvHLxNP7veZWfOJebWVjOUe5ApCr1jzyrNEZiTP9/HoE3hqUbz+3qYv60xnKHI1KV+ss2EnllGyWOPG/Zd5C3fet3JBJw8pI2/u2sYzjj6BlKnEXGmGqeRUCfNEfgvBPnk0oY1z7wTLlDEalauVHmZN5UdaXO83z1rzeQdecX//gqvnPRyzjz2FlKnEXGgWqeRZQ8H5EZrfWc9dLZ/Hj1JvZ19ZU7HJGq1L9ISt5sG6WMPO840MONDz7HW46fw7yp+uZHZDzlTlKVPEucKXk+Qu85dTFdvRlueHBjuUMRqUr9i6QkgrrnYN/Qz3F3vnjXE/Rlslxy+tIxjlBECmnkWUTJ8xE7ZnYrpy5r47sPPEtPOlPucESqTv4iKaXWPH/vt89y85+e50NnHMWitqYxj1FEBkrpgkERXTA4Gu87bQnv/M4fuPVPz/P2l80vdzgSsdyUXrm5coN5coO5cnNz6mayTl84f25fxknn9mWdTP++Q89JZ8P5d/Pm5E1nDu3Lv9/eUsf7/3rijq4emm3DaKwL/iv68I8e4ZNvPJrTjmo/rP1T2zv43J1P8Jqjp/OBV0/c90WkkvWPPCeVPEt8KXkehZOXTmP57Fau+c0G3nbCvP66TTnE3enNBIs59GU8/Bks9tDXvz9LbzpIJoPt0O10xsMFIIKEsjeTpS89MFnN7U/nFooIE9C+zMBEN11sfzZLJnxOXyZ3+1CiPJ4SRv8qcKmEcfSs1gmdPPeXbZhx6tI2vvq2FVx5z1O89/ur+eklJ3HsnEkD2n/+zsdpqEnypXNfqr4mUiappEaeRZQ8j4KZcenpS3n/D//Ijx7axHknVs/ocybrdPam6ehO09mTprM3Q1fuZ2+art4MXbnVzvoydPdlg5+9GbrTwWpnPbmVz8KVznrSwe3c/d50kCSPBTOoSeSWIh64NHFN8tByxLlli5MJo74mQaouFSxbnChsW2zfoccKXysZ/sztK3a8ZG6J5NxjiQTJ/vaH4sstnxy3hDBXoZFbFvrcE+byqhe1c9Y37ud91z/Mp954NCctaaO1IcVtj7zAPX/ZwSfe8GLamuvKG7hIjKnmWUTJ86i94SUzOXHRVL5895O8bvkMpo3zB3s6k2V3Vy+7OnrZ3Rlse7p62dvVx56uXvYd7GNfVx/7Dvaxv7uPA91pDnSn6ehJl/waCYOGmiQNtUnqUknqaxLU1ySpSyWoSyVpqU9Rl0pSV5OgNpmgNtxfm8rdDvbXJI3aVDL8mduXoCZ1KMmtSR5qm5/81uTdziWeUt0OjTwf2tfWXMdV7zyBd3/3QS654Y+YwfSWOrbt7+FFM1q48KSF5QlWRACtMCgCSp5Hzcz43DnH8vqv38fbr/k97zxxPq85ZgZzpxz5FFruzoGeNNv397D9QDc7DvT0395+oIcd4bazo4c9Q0yV11yXYlJDTf+2qK2J1voaWupraKlP0VKfoqku2JrrkjTVpmisTdFQm6SpLkljTYr62iCZNX1FJxHL5NU85ztu3mQe/ORreGTTXn739C6e2LKf045q5y3Hz6EulSxHqCIS0gWDIkqeI7FsRgv/97zjufKep1h1x+OsuuNx5kxu4OhZrcyf2sj01jpa6lP9SWg6E5RAdPVm2H8wGCHe3dnHrs4gId55oJeDfYfP4FFfk2B6Sz3tLXUsbm/ixMVTmdZUR1tzLdOa65jSWMvUpmCb3FijRSOkonnebBuFapIJXrZwKi9bOHW8wxKRISSThhmxKzMTyafkOSJnHjuTM4+dyVPbO/j1uh386bk9/GXrAR54amfRRDinNpVgSmMNUxpraWuuY8H8Rtqa65jeWsf0lnqmtwS321vqaa1PaQRYJoxcOXzhyLOIFGdmU4HvAH8D7AT+1d1/WKTdKuCTQE/e7pe6+4bRxjBncgOzJzWM9jAiVU3Jc8SWTm9m6fRmYBEQjK519Wbo6EnTm87iHlytnKshrq/R19AST2etmMXJS6fR1lxb7lBEqsWVQC8wAzgOuNPM1rj72iJtb3L3d0YdwDtPXMDbXzYv6sOKVJXIvtc3s6lmdouZdZrZRjM7b4i2q8ysz8w68rbFUcVSScyMproUM1rrmTe1kfnTGpk9uYEpTbVKnKWsSu2zFviyme0Kt69YBF+BtNTXsGBaky7+FCmBmTUB5wKXu3uHu98P3A5cMJ5xJBKmaw8k9qL81Mo/Iz4fuMrMlg/R/iZ3b87bRv11koiMSKl99mLgHGAF8FLgTcD7xitIEQHgKCDj7uvy9q0BBvucPcvMdpvZWjO7ZLCDmtnFZrbazFbv2LEjynhFJqxIkudKOSMWkdKMsM9eCHzV3Te7+/PAV4GLxi1YEQFoBvYV7NsHtBRp+2PgaKAdeC/waTP722IHdfdr3H2lu69sbz98ZU8ROVxUI88jPSMGnRWLlNNI+uzy8LHh2qm/ioydDqC1YF8rcKCwobs/7u4vuHvG3X8LfB146zjEKBILUSXPIzkjBp0Vi5TbSPpsYdt9QHOxumf1V5Exsw5ImdmyvH0rgGIXCxZyQNPaiESkpOTZzO41Mx9ku58RnBGDzopFKsBI+mxh21agw3MTNYvImHP3TuBm4AozazKzk4GzgesL25rZ2WY2JbzY9+XAB4HbxjdikYmrpKnq3P30oR4P6ydTZrbM3deHu0s9I4YSz4offvjhnWa2cZhmbQTzX0rp9J6NXKW8ZwuO8Hn9o1gl9Nm14WMPDtNuAPXXMaX3beQq4T070v6acylwLbAd2AVc4u5rzexU4Gfu3hy2e0fYrg7YDHzZ3b833MHVZ8eM3rORq5T3rGiftagGj8zsRwRJ8HsI5p+8Czip2PyTZnY28BtgL/Ay4BbgE6V07hLiWO3uK0d7nDjRezZyE+E9K7XPmtk/AB8CXhO2/wXwDXf/VgQxVP37WA5630ZO71k09D6OnN6zkav09yzKqeouBRoIzohvJDwjBjCzU82sI6/tO4CnCL4i/j4lnhWLSKSK9tki/fVq4A7gUeAx4M5wn4iISOxEtsKgu+8mmAu22GP3EVx0lLtf9OJAERk/g/XZIv3VgY+Hm4iISKxNxKW9ril3AFVI79nI6T2Lht7HI6P3beT0nkVD7+PI6T0buYp+zyKreRYRERERmegm4siziIiIiMiYUPIsIiIiIlKiCZM8m9lUM7vFzDrNbKOZnVfumCpRuOBNt5l1hNtf8h47L3zvOs3sVjObWs5Yy8HMLguXl+4xs+sKHjvDzJ40sy4zu8fMFuQ9Vmdm15rZfjPbamYfGffgq4j6a2nUX4enPjs+1GeHp/46vInSXydM8gxcCfQCM4DzgavMbHl5Q6pYl7l7c7i9CCB8r64GLiB4D7uAb5YxxnJ5AfgcwQID/cysjWB1r8uBqcBq4Ka8JquAZQQTqv818HEzO3Mc4q1W6q+lU38dmvrs+FCfLY3669AmRH+dEMmzBSscngtc7u4d7n4/cDvBH6qU5nzgDnf/jbt3EPwBv8XMWsoc17hy95vd/VaC1bvyvQVY6+7/5e7dBB15hZm9OHz8XcBn3X2Puz8BfBu4aJzCrirqr5FQfw2pz4499dlRU38NTZT+OiGSZ+AoIOPu6/L2rQF0VlzcF81sp5k9YGanh/uWE7xnALj70wSjDEeVIb5KVPj+dAJPA8vNbAowO/9x9Pc3FPXXkVF/PTLqs9FRny2d+uuRqar+GtkiKWXWDOwr2LcPiN1ZXQn+GXicoOO+A7jDzI5D7+FwmoEdBfty709z3v3Cx+Rw+lsrnfrrkVOfjY7+3kqj/nrkqqq/TpSR5w6gtWBfK8Hy35LH3f/g7gfcvSdcEv0B4A3oPRzOUO9PR979wsfkcPpbK5H666ioz0ZHf28lUH8dlarqrxMleV4HpMxsWd6+FcDaMsVTTRwwgvdqRW6nmS0G6gjeWzn8/WkClhDUaO0BtuQ/jv7+hqL+euTUX0unPhsd9dkjo/5auqrqrxMieQ5rY24GrjCzJjM7GTgbuL68kVUWM5tsZq8zs3ozS5nZ+cBpwM+BG4CzzOzU8I/2CuBmd4/VmXH4vtQDSSCZe6+AW4Bjzezc8PFPA3929yfDp34f+JSZTQkvcHgvcF0ZfoWKp/5aGvXX0qjPjj312eGpv5ZmwvRXd58QG8HUJrcCncBzwHnljqnSNqAdeIjgq469wO+B1+Y9fl743nUCtwFTyx1zGd6jVQSjBfnbqvCx1wBPAgeBe4GFec+rI5h6Zz+wDfhIuX+XSt7UX0t6j9RfS3uf1GfH531Wnx36/VF/Le19mhD91cKgRERERERkGBOibENEREREZDwoeRYRERERKZGSZxERERGREil5FhEREREpkZJnEREREZESKXkWERERESmRkmcRERERkRIpeRYRERERKZGSZxERERGREv3/iu+ht1/5Ym4AAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.plot_layer_stats(-2)"]},{"cell_type":"markdown","metadata":{"id":"xuTSDs4S2N2c"},"source":["Again, we've got most of our activations near zero. Let's see what else we can do to improve training stability."]},{"cell_type":"markdown","metadata":{"id":"5LW0ksNv2N2c"},"source":["### 1cycle Training"]},{"cell_type":"markdown","metadata":{"id":"3js8XD7f2N2c"},"source":["Our initial weights are not well suited to the task we're trying to solve. Therefore, it is dangerous to begin training with a high learning rate: we may very well make the training diverge instantly, as we've seen. We probably don't want to end training with a high learning rate either, so that we don't skip over a minimum. But we want to train at a high learning rate for the rest of the training period, because we'll be able to train more quickly that way. Therefore, we should change the learning rate during training, from low, to high, and then back to low again.\n","\n","Leslie Smith (yes, the same guy that invented the learning rate finder!) developed this idea in his article [\"Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates\"](https://arxiv.org/abs/1708.07120). He designed a schedule for learning rate separated into two phases: one where the learning rate grows from the minimum value to the maximum value (*warmup*), and one where it decreases back to the minimum value (*annealing*). Smith called this combination of approaches *1cycle training*.\n","\n","1cycle training allows us to use a much higher maximum learning rate than other types of training, which gives two benefits:\n","\n","- By training with higher learning rates, we train faster—a phenomenon Smith named *super-convergence*.\n","- By training with higher learning rates, we overfit less because we skip over the sharp local minima to end up in a smoother (and therefore more generalizable) part of the loss.\n","\n","The second point is an interesting and subtle one; it is based on the observation that a model that generalizes well is one whose loss would not change very much if you changed the input by a small amount. If a model trains at a large learning rate for quite a while, and can find a good loss when doing so, it must have found an area that also generalizes well, because it is jumping around a lot from batch to batch (that is basically the definition of a high learning rate). The problem is that, as we have discussed, just jumping to a high learning rate is more likely to result in diverging losses, rather than seeing your losses improve. So we don't jump straight to a high learning rate. Instead, we start at a low learning rate, where our losses do not diverge, and we allow the optimizer to gradually find smoother and smoother areas of our parameters by gradually going to higher and higher learning rates.\n","\n","Then, once we have found a nice smooth area for our parameters, we want to find the very best part of that area, which means we have to bring our learning rates down again. This is why 1cycle training has a gradual learning rate warmup, and a gradual learning rate cooldown. Many researchers have found that in practice this approach leads to more accurate models and trains more quickly. That is why it is the approach that is used by default for `fine_tune` in fastai.\n","\n","In <> we'll learn all about *momentum* in SGD. Briefly, momentum is a technique where the optimizer takes a step not only in the direction of the gradients, but also that continues in the direction of previous steps. Leslie Smith introduced the idea of *cyclical momentums* in [\"A Disciplined Approach to Neural Network Hyper-Parameters: Part 1\"](https://arxiv.org/pdf/1803.09820.pdf). It suggests that the momentum varies in the opposite direction of the learning rate: when we are at high learning rates, we use less momentum, and we use more again in the annealing phase.\n","\n","We can use 1cycle training in fastai by calling `fit_one_cycle`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"01IhIVW22N2d"},"outputs":[],"source":["def fit(epochs=1, lr=0.06):\n"," learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,\n"," metrics=accuracy, cbs=ActivationStats(with_hist=True))\n"," learn.fit_one_cycle(epochs, lr)\n"," return learn"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZV-gNdVK2N2d","outputId":"e8779959-8a41-4050-c1ac-d454c22d7fb0"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.2108380.0848270.97430000:08
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = fit()"]},{"cell_type":"markdown","metadata":{"id":"QTvXoItE2N2d"},"source":["We're finally making some progress! It's giving us a reasonable accuracy now.\n","\n","We can view the learning rate and momentum throughout training by calling `plot_sched` on `learn.recorder`. `learn.recorder` (as the name suggests) records everything that happens during training, including losses, metrics, and hyperparameters such as learning rate and momentum:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uvm4Wmqz2N2e","outputId":"8d9c2d36-e7e4-4703-b387-48dc513b60af"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAuUAAAD7CAYAAADNeeo8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3yV9fn/8deVvXcIMwsSRoAECFtw7wEuVBSxWrFqqxattbb+3FqtqK1aFfcoqCiKew9AhRBG2DOEQBhZZO/k8/vjHPqNaZAEknOfcT0fj/Oo3PeHc96nmMPlfa77+ogxBqWUUkoppZR1vKwOoJRSSimllKfTolwppZRSSimLaVGulFJKKaWUxbQoV0oppZRSymJalCullFJKKWUxH6sDOEpMTIxJTEy0OoZSSnXaypUri40xsVbncCT9zFZKuaqj/cz2mKI8MTGR7Oxsq2MopVSnicguqzM4mn5mK6Vc1dF+Zmv7ilJKKaWUUhbTolwppZRSSimLaVGulFJKKaWUxbQoV0oppZRSymJalCullFJKKWUxhxXlIhIlIu+LSLWI7BKR6YdZJyLyiIiU2B+Pioi0Ou8tIg+IyF4RqRSR1SIS4aj3oZRSSimlVFdz5EjEZ4AGIA7IAD4RkRxjzIY262YBU4F0wABfAbnAc/bz9wITgPFAPpAG1HV7eqWUUkoppbqJQ4pyEQkGLgSGGmOqgKUi8iEwA7ijzfKZwBxjzB77750DXAs8JyKRwC1AujHm0AzI9Y54D57OGMPm/ZV8u7mQ+sZmAPx9vQkP9CUyyI9eEQH0jQgkNtSfVl9sKKWUQzS3GP7+2SZGxEcyOjGK2FB/qyMppVxMWU0D+aU1FFbUU1rdQGlNA1dPTMLPxzGNJY66Up4KNBtjtrY6lgMc387aNPu51uvS7P88DGgCLhKRPwIVwD+NMc+096IiMgvblXfi4+OP6Q14so/X7uXJr7exvbAKABEwpv21of4+pMSFMKR3GCPjIxmVEEl8VJAW6kqpbrW7tIY3lu3ihSU7ARiXHMU/LkqnX1SQxcmUUs6ooKyWFTtLWbO7jI37Ktiyv5Ly2sb/WTcloze9wgMdkslRRXkIUN7mWDkQ2oG15UCIva+8LxCOrchPAlKAb0RkqzHmq7ZPZIyZC8wFyMzMPEwZqQ6nqbmFR7/YwtzFuaT1DuOBqUM5c2hPokNsV6DqGpspr22ktLqBfeW17DlYy/bCKjbvr+SD1Xt5c1k+AH0jA5mcGsvJg3pwXEoM/j7eVr4tpZQbSowJZu3dp7N+bzk/7yjh2e93cNY/l/DA+UOZktHH6nhKKYvVNzXz4/ZivttcxPdbC9ldWgtAkJ83g3qGcvbwXiTHBNMvKoieYQFEBfsRFexHkJ/jahZHFeVVQFibY2FAZQfWhgFVxhgjIrX2Y/cZY2qBtSLyFnAWtt5z1UUamlq49vVsfthaxJXjE/jb2UP+5+ubAF9vAny9iQsLYHCvX/7xNrcYthVWsmJnKYu3FbNodQHzlucT6u/DqUPiuGhUX8YlR+PlpVfQlVJdw8/Hi5HxkYyMj+S89N7c8vYabn5rDbUNzVw6Rr8tVcrTtLQYftpRwvurC/hy434q65oI8vNmQv8YrpmYxOikKAb1DMPbSWoRRxXlWwEfEUkxxmyzH0sH2t7kif1YOpDVzrq19v/Vq97d7P6PN/LD1iIemDqUK8YldPr3e3sJg3qGMahnGDPGJ9LQ1MKPO4r5bN0+Plu/n4WrC+gbGcj0sfFcNjqeyGC/bngXSilP1S8qiLdnjePq17L52wfriY8KYsKAGKtjKaUcoKSqnvlZ+by1Yjd7DtYSGuDD6Wk9OXt4Lyb0j3bab+zFHK45uKtfyHZF2wC/xTZ95VNgQtvpKyLyO+Bm4BT+b/rKU8aY5+znFwObgJuAZOAH4DJjzDe/9vqZmZkmOzu7S9+Tu3p7RT5/fm8d101O5i9nDe7y569rbOaLDft5K2s3P+eW4O/jxYWj+vK7yf2Jj9b+T6XaEpGVxphMq3M4Uld9ZlfUNXLhv3/iQEUd7984kf6xIV2QTinljHKLqnhhSS4LVxVQ39TChP7RXDomntOGxBHg67hC/Gg/sx05EvEG4GWgECgBrjfGbBCRScBnxphDn5TPYyu219l//aL92CGXAS/Zn6MQuOtIBbnquPUF5dz1wQYmpcRw+xmDuuU1Any9mZLRhykZfdiyv5JXf9rJu9l7eHvFbqZk9Obmk1NIiA7ultdWSnmWsABfXr5qNOc9vZTbFuTw3u8maNucUm5mR1EVT32zjQ9z9uLr7cUFI/tyzXGJDOjR3q2LzsthV8qtplfKj6ylxXDBsz+x52AtX8+eTESQ41pKDlTUMXdxLv9ZvoumZsNlY+K56eQUHWumFHqlvCu8t3IPty7I4aHzhzF9rPaXK+UOCivqeOLrbbyTvRs/by9mjE/g2knJltcOrnClXDm5d1fuYc3uMh6flu7QghwgLiyAu84ZwqzJyfzrm23My8rng9UF3HRyCjMnJDpsRqhSyj1dMLIP72Tv5pHPN3N6Wtx/p0gppVxPfVMzLy7ZydPfbqeppYUZ4xL4/UkDiHHxn2utdBQA5TWN/P3zzWQmRHL+COvGh8WFBfDg+cP46o+TyUyM5MFPN3HGPxezLLfEskxKKdcnIjwwdSjV9U08/Nlmq+MopY7SD1uLOP2Jxfzjiy0cnxrL17OP557z0ly+IActypXdE19vpaymgfumDHWKjX6SY0N45TdjePmqTBqbW7h07jJufzeH8pr/HeyvlFIdkRIXyjXHJfHeqj1sL2xvIq9SylmVVjdwy1urmflyFl5ewutXj+G5GaPc6h40LcoVhRV1zMvKZ1pmP4b0bjtO3lonDYrjy1uO53fH9+e9VQWc9uQPfL+l0OpYSikXdd3x/Qnw8ebf3+2wOopSqoM+X7+fUx7/gU/W7eOmk1P47OZJTE6NtTpWl9OiXPHCklyamlu4/oT+VkdpV6CfN3ecOYgPbphIeKAvV72ygjvfX0dtQ7PV0ZRSLiYq2I8rxsWzKGcvu0qqrY6jlPoVFXWNzH5nDb97cyW9IwL4+A+TmH1qqtPOGT9WWpR7uIPVDfxneT7npfd2+q+AhvUN58PfH8esycnMW57PuU8vZePeCqtjKaVczLWTkvH2Ep77Qa+WK+WscnaXcc6/lrJozV5uOmkA798wkYE9XWvEYWdpUe7hXvlxJzUNzdxw4gCro3RIgK83d541mDevGUt5bSNT//0j87Py8ZTRnkqpY9cjLIBLMvvx7so97C2rtTqOUqoVYwwvLsnloud+ornF8Pasccw+bSC+3u5fsrr/O1SHVV3fxKs/5XHakDhS41zrvz6PS4nh85snMTYpir8sXMdtC9ZqO4tSqsOuOz6Z5hbDvOX5VkdRStlV1Tdx47xVPPDJJk4c2INPbjqOzMQoq2M5jBblHmzRmr1U1DVx3fHJVkc5KtEh/rz6mzHcdHIK763aw8XP/6RXvZRSHdI3MogTB/bg7ezdNDa3WB1HKY+XW1TF1Gd+5PP1+/nLmYN4fsYoh++ZYjUtyj3YvKxdDOoZysj4SKujHDVvL2H2qam8NDOTvOIaznt6Kdl5pVbHUkq5gMvHxVNUWc/XGw9YHUUpj7ZkWxFTn/mRkqp63rxmLNcd398pxjM7mhblHmrtnjLWF1QwfWy8W/yLf/LgOD64cQIh/j5Mf2E5H6wusDqSUi5NRKJE5H0RqRaRXSIy/TDrIkTkNREptD/uOcy640XEiMgD3Rq8E45P7UGfiED+oy0sSlnmjZ/zuOqVFfQKD+TD3x/HhAExVkeyjBblHuo/y/IJ9PVmqoW7d3a1AT1CWXTjcYxMiOCWt9fw5Ndb9QZQpY7eM0ADEAdcDjwrImntrHsCCAISgTHADBH5TesFIuIL/BNY3p2BO8vbS7hkdD+Wbi8mr1jHIyrlSC0thgc/2chdizZwQmos790wgX5RQVbHspQW5R6ooq6RD3P2cl56b8ICfK2O06XCg3x5/eqxXDiyL09+vY0/v7eWJu0XVapTRCQYuBC4yxhTZYxZCnwIzGhn+bnAo8aYGmNMHvAScHWbNbcCXwJOt7/9JaP74e0lzF+hV8uVcpS6xmZ+P38VLyzZyczxCcy9MpMQfx+rY1lOi3IPtGjNXmobm7l8XLzVUbqFn48Xj108nJtOGsA72Xu47o2VOplFqc5JBZqNMVtbHcsB2rtSDiBt/nnof38hkoCtSL/vSC8qIrNEJFtEsouKijqf+ijEhQVw4sBYPlhdQHOLfrOmVHerrGvkqley+HTdfv561mDuOS8Nby/Xb6PtClqUe6APVhcwMC6U4X0jrI7SbUSE2acN5P6pQ/l2SyEzXlpOeW2j1bGUchUhQHmbY+VAe7NTPwfuEJFQERmArQBv/R30v7BfcT/Sixpj5hpjMo0xmbGxjttCe0pGHw5U1JO1U28SV6o7FVfVc+ncZWTnHeTJSzK4dnKyW9zX1lW0KPcwu0trWLnrIFNG9LY6ikPMGJfA05eNJGdPGdNfWEZJVb3VkZRyBVVAWJtjYUBlO2tvAmqBbcAiYD6wB0BEzgVCjTFvd1/UY3fK4DiC/Lz5MEdvEFequ+wrr2Xa8z+zo6iKF2dmutU9bV1Fi3IP82HOXgDOS/eMohzg7OG9mHtlJtsLq7hk7jIKK+qsjqSUs9sK+IhISqtj6cCGtguNMaXGmMuNMT2NMWnY/l7Jsp8+GcgUkf0ish+4BLhFRBZ1c/5OCfTz5rQhcXy6bj8NTXoPilJdLb+khouf+5nCinreuGYsJwzsYXUkp6RFuQcxxvDB6gJGJ0bSN9Kz7nA+cWAPXr96DHvLarl07jL2l2thrtThGGOqgYXAfSISLCITgSnAG23Xikh/EYkWEW8ROROYBRwae3gXtv70DPvjQ+AF4Ddtn8dqUzL6UF7byOKtjullV8pT5BVXM+35n6mqb2LetWMZ7UE7dHaWFuUeZNO+SrYVVnFehmd+ZTQ2OZrXrx5DYWU9l8z9WXf/VOrX3QAEAoXYWlKuN8ZsEJFJItK6P3wUsA5ba8vDwOXGmA0AxphKY8z+Qw9sbS7Vxhina94+LiWGyCDf/36bqJQ6djuLq7l07jIamluYf+04t76XrStoUe5BFuUU4OMlnD2sl9VRLJOZGMXr14yhtKqB6S8s44C2sijVLntbylRjTLAxJt4YM89+fIkxJqTVuneMMb2NMUHGmAxjzBe/8pxXGWP+5oj8neXr7cVZw3rx1cYD1DQ0WR1HKZeXV1zNpXN/pqG5hXnXjmVwr7a3qai2tCj3EMYYPs7Zx6SUGKKC/ayOY6mR8ZG8evUYiirrueyFZRRWamGulLLdf1Lb2MzircVWR1HKpe05WMPlLy6noclWkA/qqQV5R2hR7iHWF1RQUFbLmR58lby1UQm2wnxfWR1XvLicg9UNVkdSSllsTGIU4YG+fLlxv9VRlHJZ+8prmf7CcirrGnnzt1qQd4YW5R7iiw378RLb6C9lMzoxipeuyiSvpIarXsmiql6/slbKk/l4e3Hy4B58s6lQdwJW6iiUVNVzxYvLKa1u4PVrxpLWO9zqSC7FYUW5iESJyPsiUi0iu0Rk+mHWiYg8IiIl9sej0mqyvIgY+3NU2R8vOuo9uLIvNuxnTFKUx7eutDWhfwz/nj6SDXsruObVFdQ16s6fSnmy04bEUV7bSFae092LqpRTs+3UuYI9B2t5aWYmGf30ps7OcuSV8meABiAOuBx4VkTa27J5FjAV20zc4cA5wHVt1qQbY0Lsj992Y2a3sKOoim2FVZye1tPqKE7plCFxzJmWTlZeKX+Yv1qvkCnlwSanxuLv48VXGw9YHUUpl1HX2MxvX8tm074KnrtiFGOTo62O5JIcUpSLSDBwIfatlo0xS7HNq53RzvKZwBxjzB5jTAEwB7jKETnd1RcbbP2Rp2lRflhTMvpwz7lpfLXxAHe+vw5jjNWRlFIWCPLz4bgBMXy54YB+DijVAc0thlveWsPynaXMmZbOiYN0Y6Cj5agr5alAszFma6tjOUB7V8rT7Od+bd1i+w5xC0Uk8XAvKiKzRCRbRLKLijx3Q4gvNhxgeN9w+kQEWh3Fqc2ckMhNJw3gnew9PPblFqvjKKUsclpaHAVltWzcV2F1FKWcmjGGuxat5/MN+/l/5wxhiofug9JVHFWUhwDlbY6VA6EdWFsOhLTqKz8eSAQGAXuBj0XEp70XNcbMNcZkGmMyY2NjjyG+69pfXkfO7jJtXemgP56aymVj+vHMdzt4c9kuq+MopSxw8uA4RNAWFqWO4JnvtjNveT7Xn9Cfq49LsjqOy3NUUV4FtJ2JE4ZtB7gjrQ0Dqoz9e0RjzGJjTIMxpgy4GUgCBnd9ZPfw7eZCAE4dolNXOkJEuH/KUE4cGMv/W7Ser/UvZaU8TkyIP8P7RvD9Fs/9hlWpI3l/9R4e+3Ir54/ow+2nD7Q6jltwVFG+FfARkZRWx9KBDe2s3WA/d6R1hxhAfuW8R/tuSyF9IgJJ6RFy5MUKsI1Fe3r6SIb2CecP81ezbk/bL3mUUu7uhNRYcvaU6R4GSrXjp+3F3P7uWib0j+aRC4fTakieOgYOKcqNMdXAQuA+EQkWkYnAFOCNdpa/DswWkT4i0hu4FXgVQETSRCRDRLxFJATbTaAFwCZHvA9XU9/UzI/bizlxUKz+wHRSsL8PL80cTVSwH1e/toKCslqrIymlHOiEgbEYA4u36dVypVrbXljJdW+uJCkmmGevGIWfj25501Uc+f/kDUAgUAjMB643xmwQkUkiUtVq3fPAR8A6YD3wif0Y2MYpvg1UALnYesvPMcY0OuQduJisnaXUNDRzkt4JfVRiQ/155TejqWto5ppXV1BZp/+aKeUphveNIDLIlx+0hUWp/yqpquc3r67A38ebl68aTXigr9WR3IrDinJjTKkxZqoxJtgYE2+MmWc/vsQYE9JqnTHG3G6MibI/bm/VT/6tMWag/Tl62J9vm6Peg6v5bnMRfj5ejE+OsTqKy0qNC+XfV4xkW2EVN7+1huYWHZGmlCfw9hImpcSyeFsRLfpzrxR1jc3MemMlhRX1vDgzk76RQVZHcjv6nYMb+35LIeOTown087Y6ikublBLLPeel8e3mQv7+mXZKKeUpThgYS3FVAxv26mhE5dmMMdz5/jpW7jrI49MydLfObqJFuZvKK64mt7iaEwd65ijIrjZjXAIzxyfwwpKdvL0i3+o4SikHmJxq+/z8fkuhxUmUstbcxbksXFXA7FNTOXt4L6vjuC0tyt3Uob9EThqkoxC7yl3nDGFSSgx/+2A9K3eVWh1HKdXNYkL8GdYnnO+3al+58lzfbj7A3z/fzDnDe/GHkwZYHcetaVHupn7YWkRyTDDx0drz1VV8vL14+rKR9IkI5Lo3VrFXJ7Io5faOT41lze4yvdFbeaTthVXcNH8Nab3D+MdF6TrJrZtpUe6G6puaWZZbyqQUvcGzq4UH+fLClZnUNjRx3RsrqWtstjqSUqobTRgQTXOLIWunfjumPEt5bSOzXs/G38eL52dk6v1pDqBFuRtatauM2sZmjkvRfvLukBIXypOXjmBdQTl3vr8O+3AgpZQbGhkfSYCvF0u3F1sdRSmHaWkx/PHtNeSX1vDsFaPoExFodSSPoEW5G1q6vQhvL2FccpTVUdzWqUPiuPnkFBauKuD1n3dZHUcp1U0CfL0ZnRjFj1qUKw/y5Dfb+HZzIXefO4QxSVpLOIoW5W5oybZiRvSLIDRAh/p3p5tPTuHkQT24/+ON+tW2Um5s4oAYth6oorCyzuooSnW7rzce4F/fbOOiUX25YlyC1XE8ihblbuZgdQPrCso5TvvJu52Xl/DEpRn0iwrixnmrKKzQv7CVckcT+9s+T3/aXmJxEqW6187iav749hqG9QnngalD9cZOB9Oi3M38tKMEY9CbPB0kLMCX564YRVVdE7+ft5rG5harIymlutiQ3mFEBPlqC4tyazUNTfzujZV4ewvPXjGSAF+9sdPRtCh3M0u3FxHq70N6X91ty1EG9gzl7xcOIyuvlEc+22x1HKVUF/P2EsYnR/Pj9mK9sVu5JWMMf31/PVsLK/nnpSPoG6njlK2gRbkbMcaweGsx4/pH4+Otf7SONCWjDzPHJ/Di0p18vn6f1XGUUl1s4oAY9pbXsbO42uooSnW5/yzP5/3VBdxycirHp+rkNqto5eZG8ktrKCir5bgB2rpihTvPHkx6vwj+tGAtefoXt1JuZUL/aACW5epN3cq9rNtTzn0fbeT41FjdsdNiWpS7kZ932G5Cmjgg2uIknsnfx5tnpo/Ay0u4/j+rdGMhpdxIUkwwPUL9WZarN3sq91Fe28gN81YSE+LHk5dk4OWlN3ZaSYtyN/LTjhJiQ/3pHxtidRSP1TcyiCcvyWDTvgru/Wij1XGUUl1ERBiXHM2y3BLtK1duwRjDnxbksK+sjqemjyQy2M/qSB5Pi3I3YYzh59wSxidH6wgji504qAfXn9Cf+Vn5LFpTYHUcpVQXGZscRWFlPXklNVZHUeqYvfJjHl9uPMAdZw5iVEKk1XEUWpS7jR1FVRRV1jO+v7auOINbT00lMyGSOxeuI7eoyuo4SnWaiESJyPsiUi0iu0Rk+mHWRYjIayJSaH/c0+pcDxGZLyJ7RaRcRH4UkbEOexNdbFzyob5ybWFRri1ndxkPf7aJU4fEcc1xSVbHUXZalLuJQ/3kE7Qodwo+3l48NX0Efj5e3DhvtfaXK1f0DNAAxAGXA8+KSFo7654AgoBEYAwwQ0R+Yz8XAqwARgFRwGvAJyLikj12yTHBxIb6s1yLcuXCymsb+f38VfQIDeAfFw3Xb9ediBblbuKnHSX0Dg8gPkpnizqLXuGBzJmWzqZ9FTz86Sar4yjVYSISDFwI3GWMqTLGLAU+BGa0s/xc4FFjTI0xJg94CbgawBiTa4x53BizzxjTbIyZC/gBAx3yRrqYiDA2KYpluaXaV65ckjGGOxeuY19ZHf+6bAQRQdpH7ky0KHcDLS2GZbkljO8fo//F62ROGhTHb49L4rWfd/H5+v1Wx1Gqo1KBZmPM1lbHcoD2rpQDSJt/HtruIpEMbEX59q4IaYVxydHsr6hjl/aVKxc0P2s3n6zbx22nD9Q+ciekRbkb2Ly/koM1jdpP7qRuP2MQw/uGc/u7ORSU1VodR6mOCAHK2xwrB0LbWfs5cIeIhIrIAGxXyf/nKzsRCQPeAO41xrR97kNrZolItohkFxUVHdMb6C6H+sqX79QWFuVatuyv5N6PNjApJYZZk5KtjqPaoUW5G/jZ3t+oRblz8vPx4qnLRtBi4Ja3VtPU3GJ1JKWOpAoIa3MsDKhsZ+1NQC2wDVgEzAf2tF4gIoHAR8AyY8zDh3tRY8xcY0ymMSYzNtY5dxXsHxtMTIi/biKkXEpdYzN/mL+K0ABfHp+m88idlRblbmB5bgn9ogLpExFodRR1GAnRwTwwdSgr8g7y1Lcu+8298hxbAR8RSWl1LB3Y0HahMabUGHO5MaanMSYN298rWYfOi4g/8AFQAFzXvbG7n4gwOjGSrJ1alCvX8cAnG9l6oIrHp6UTG+pvdRx1GA4ryjsxXktE5BERKbE/HpV2GqVFZKaIGBH5bfend14tLYasvFLGJulVcmc3dUQfLhjRh6e+3abTG5RTM8ZUAwuB+0QkWEQmAlOwtZ/8goj0F5FoEfEWkTOBWcAD9nO+wLvYrqRfaYxxi6+JRidGUVBWy15tR1Mu4PP1+3lzWT6zJiczOdU5v4FSNo68Ut7R8VqzgKnYrsoMB86hzdUVEYkE/kI7V208zdbCSspqGhmbFGV1FNUB900dSr+oIP749hrKaxqtjqPUr7kBCAQKsbWkXG+M2SAik0Sk9fD9UcA6bK0tDwOXG2MOfTZPwPYZfhpQJiJV9sckh72LbjDG/nm7Ik+vlivntq+8ljsWrmVYn3BuO80lhx55FIcU5Z0crzUTmGOM2WOMKQDmAFe1WfMw8C+guPtSu4bl9r7GQzcfKecW4u/DPy8dQWFlPXd+sE7HqimnZW9LmWqMCTbGxBtj5tmPLzHGhLRa944xprcxJsgYk2GM+aLVuR+MMWI/F9LqscSK99RVBvcKI8TfR1tYlFNraTHMfjuHhqYW/nlpBn4+2rHs7Bz1J9SZ8Vpp9nPtrhORMUAm8NyRXtQV7uQ/Vlk7S+kdHkDfSO0ndxUZ/SL446mpfLJ2H++u3HPk36CUcireXsLIhEi9Uq6c2twlufycW8I956aRHOuS+3V5HEcV5Z0Zr9V2bTkQYu819wb+DfyhI72JrnAn/7EwxrB8Zwljk6N1PrmL+d3x/RmbFMU9H25gV0m11XGUUp00JjGSrQeqOFjdYHUUpf7Huj3lzPlyC2cO7cnFmX2tjqM6yFFFeWfGa7VdGwZUGdv3/DcAa40xP3dLShezo6ia4qoG7Sd3Qd5ewuOX2MZS3fL2Gh2TqJSLGZ1o+9zN3nXQ4iRK/VJtQzM3v72a6GB/Hr5gmF60cyGOKso7PF7Lfiz9MOtOBs4Xkf0ish/bTURzROTpbsjs9A5tXjFW+8ldUp+IQB46fxir88t0TKJSLia9XwR+3l7awqKczoOfbiS3qJrHp6UTEeRndRzVCT6OeBFjTLWIHBqv9VsgA9t4rQntLH8dmC0inwIGuBV4yn7uKiCg1dqF2MZtvdRN0Z3a8txSeoT6kxj9P5vnKRdxbnpvvttcyFPfbmNyaqxue6yUiwjw9WZ433C92VM5lW82HeDNZflcOymJCQNirI6jOsmRt+J2dLzW89h2flsHrAc+sR/DGFNmjNl/6IFtxGLF4bZsdmfGGLJ2ljImKUq/mnJx905Jo1d4ILPfWUN1fZPVcZRSHTQ6KYr1BeXUNjRbHUUpiqvq+fN7axncK4zbTtfxh67IYUV5J8ZrGWPM7caYKPvjdnOYuXHGmBOMMS866j04kz0Ha9lfUaf95G4gNMCXJy7JIL+0hvs/3mh1HKVUB2UmRNLUYlizu8zqKMrDGWO44721VNQ18eQlGfj7eFsdSR0FHVrpog59ZTpai3K3MCYpiusm94MYC4AAACAASURBVOetFbv5auMBq+MopTrgULvZyl3awqKs9faK3Xy9qZDbTx/IwJ7tDbZTrkCLche1Iq+U8EBfUnvoD5+7mH1qKkN6hXHHe2sprqq3Oo5S6ggigvwY0CNEJ7AoS+UVV3PfxxuZOCCaqycmWR1HHQMtyl1U1s5SMhMi8fLSfnJ34efjxZOXZlBZ38Qd7+lun0q5gsyESFbtOkhLi/68Ksdram5h9jtr8PES/nFRutYELk6LchdUVFlPbnG1tq64odS4UG4/fSBfbzrAgmzd7VMpZ5eZGEVFXRPbCquOvFipLvb84lxW5Zdx/9Sh9I7Qnb1dnRblLijbPhf30OYVyr1cPTGJcclR3PvRBnaX1lgdRyn1KzLtfeXZ2leuHGx9QTlPfLWVs4f34rz03lbHUV1Ai3IXlJVXSoCvF8P6hFsdRXUDLy/hsYvT8RLh1ndyaNavxZVyWgnRQcSE+LEyT/vKlePUNTYz+501RAX78eDUoToa2U1oUe6CVuSVktEvAj8f/eNzV30jg7j7vDSy8kp5eelOq+MopQ5DRBiVEKk3eyqHevyrrWw9UMWjFw3XXTvdiFZ1LqayrpGNeysYo60rbu/CkX04bUgc//hiC1v2V1odRyl1GJkJUeSX1lBYWWd1FOUBlueW8MKSXC4fG88JA3tYHUd1IS3KXcyq/DJajM4n9wQiwkMXDCM0wIdbF6yhsbnF6khKqXaMSrTPK9cWFtXNquqbuO3dHOKjgrjzrMFWx1FdTItyF5OdV4q3lzAiPtLqKMoBYkL8eeiCYawvqOCpb7dbHUcp1Y6hvcPx8/FipbawqG724Ceb2HOwljkXpxPs72N1HNXFtCh3MSvyShnSK4wQ/WH0GKen9eSCkX145rvt5Oh23ko5HT8fL9L7hrMyX4ty1X2+21LI/Kx8Zk1OJlNbWN2SFuUupKGphTW7y8hM1Kvknubuc9PoEerP7HfWUNfYbHUcpVQbIxMiWV9Qrj+fqluU1TTw53fXkhoXwuxTU62Oo7qJFuUuZP3ecuoaW/QmTw8UHujLoxcNZ0dRNXO+3GJ1HKVUG6PiI2lsNqwvKLc6inJDd3+4gdLqBh6floG/j7fVcVQ30aLchRzaNGiUXin3SJNSYrliXDwvLt1J1k7dqEQpZzLSvomQ9pWrrvbZun0sWrOXP5yUwlDdn8StaVHuQlbkHSQxOogeoQFWR1EW+cuZg+kXGcRtC3Korm+yOo5Syi4mxJ/E6CAtylWXKq6q568frGdYn3BuOLG/1XFUN9Oi3EUYY8jOK9WbOzxcsL8Pj12czu6DNTz82Sar4ygnJiLhInKXiCwUkS9bP6zO5q5GJkSyKv8gxuguvOrYGWP46/vrqKprYs60dHy9tWRzdzrCw0XsKKriYE2j9pMrxiRFcc3EJF5cupPT03oyKSXW6kjKOS0AvIH3gVqLs3iEUQmRLFxVQH5pDQnRwVbHUS7ugzUFfLHhAHecOYjUuFCr4ygH0KLcRaywb0qhk1cUwG2nD+S7LYXc/u5avvjjZMICfK2OpJzPOCDaGNNodRBPMapVX7kW5epY7C+v4+5FGxiVEMm1k5KtjqMcRL8LcREr8kqJDvYjKUY/6BUE+HozZ1oGByrquP+jjVbHUc5pKaBb/jlQSo9QQv19tK9cHRNjDHcsXEtDcwuPXZyOt5dYHUk5iF4pdxHZeQfJTIxERH84lU1GvwiuP6E/z3y3gzOH9eSkQXFWR1LO5SrgUxFZDhxofcIYc58lidyct5eQER+hRbk6Ju9k7+b7LUXcc+4QvRDnYfRKuQsorKgjv7SG0dpPrtq46eQUBvUM5Y731lFW02B1HOVcHgT6AXFASqvHACtDubuR8ZFsOVBJZZ12DanO23Owhvs/3sT45GiuHJ9odRzlYFqUu4DsXYf6ybUoV7/k7+PNYxenU1rdwD0fbrA6jnIulwIZxpiLjDEzWj2utDqYOxuVEIkxkLNbNxFSndPSYvjze2sxxvDoRcPx0rYVj6NFuQtYkVdKgK8Xab3DrI6inNDQPuH8/qQBfLBmL5+v3291HOU8cgG9XOtgGfERiOgmQqrz/rN8Fz9uL+HOswfTLyrI6jjKAg4rykUkSkTeF5FqEdklItMPs05E5BERKbE/HhV7I7WIxIjIj/bjZSLys4hMdNR7sEp23kEy+kXojFJ1WDeeOIC03mH87YN1lFZrG4sC4A3gQxG5TEROav3oyG/uxGd2hIi8JiKF9sc9bc4nish3IlIjIptF5JRjf2vOKyzAl9QeoazK16JcdVx+SQ0PfbqZSSkxTB8Tb3UcZRFHVnnPAA3Y+hsvB54VkbR21s0CpgLpwHDgHOA6+7kq4GogFogEHgE+EhG3vWG1qr6JDXvLtZ9c/Spfby/mTEunvLaRuxattzqOcg43Ar2Ah4CXWj1e7ODv7+hn9hNAEJAIjAFmiMhvWp2fD6wGooG/Au+KiFsP1z+0iVBLi24ipI6spcVw27s5+HgJj1w4XAc6eLAOFeUi4i0iV4uI/9G8iIgEAxcCdxljqowxS4EPgRntLJ8JzDHG7DHGFABzsE0RwBhTZ4zZYoxpAQRoxlacu23Fuia/jBaj/eTqyAb1DOOWU1L5ZO0+Pl671+o4ymLGmKTDPI449LiTn9nnAo8aY2qMMXnYCv+r7c+TCowE7jbG1Bpj3gPW2Z/bbY2Mj6CyrokdRVVWR1Eu4NWf8sjaWcpd5w6hd0Sg1XGUhTpUlBtjmoHHjTH1R/k6qUCzMWZrq2M5QHtXXdLs5w67TkTWAnXY/pJ40RhT2N6LisgsEckWkeyioqKjjG6tFXmleIntQ16pI7lucjLp/SK464P1FFUe7Y+rchci4iMik+0tLJM68a1iZz6zwXaRpPU/D7X/cxqQa4yp7MjzuMNnNvxyEyGlfk1uURWPfrGZkwb14OJRfa2OoyzWmfaVj0Tk3KN8nRCg7a3o5UB7+8a2XVsOhEir73OMMcOBMGA6tg0y2mWMmWuMyTTGZMbGuua3pdm7ShnUM4xQ3bFRdYCPtxdzLh5OdUMzf31/Hcbo1+eeSkQGAZuAecBN2NpINotIRzYU6sxn9ufAHSISKiIDsF0lP3SXWmeexy0+swGSYoKJDPLVvnL1q5pbDLctyMHfx5uHLximbSuqU0V5ALZewO9F5A0Ref3QowO/twpbEd1aGFDZgbVhQJVpU13YW1nmY/vLIL3jb8N1NDW3sDq/jMzESKujKBcyoEcofzptIF9uPMAHawqsjqOs829gLtDPGDPeGNMXeM5+/Eg685l9E1ALbAMWYSv+9xzF87gNEWFkfCSr8susjqKc2ItLclmVX8a956URFxZgdRzlBDpTlK/HdsPQd8B2YEerx5FsBXxEJKXVsXSgvcHKG+znjrTuEF/giD2SrmjjvgpqGpr1Jk/VaVcfl0RmQiR3L9rAgYo6q+Moa2RgaztsfUHjSfvxI+nwZ7YxptQYc7kxpqcxJg3b3ytZ9tMbgGQRCT3S87ibkQmRbC+s0k29VLu2F1Yy56utnJ4Wx5SM3lbHUU7iV4vyNiO0lvzK41cZY6qBhcB9IhJsH2M4BdvIrrZeB2aLSB8R6Q3cCrxqzzNORI4TET8RCRSRP2ObDLC8Y2/XtazIs331qUW56ixvL+EfF6fT0NzCHfbNKJTH2Qsc3+bYJPvxX9WZz2wR6S8i0faBAGdim6D1gP15tgJrgLtFJEBEzsc2Veu9Y3hfLmFkvO0bztW79Wq5+qWm5hZufSeHEH8fHpiqbSvq/xzppp+XOvAcho5dqb4BeBkoBEqA640xG0RkEvCZMSbEvu55+/Ots//6RfsxAH/gX/bzjfY1Zxtj3HLUxIqdpfSLCqRnuH6tpTovKSaYP58xiHs/2siC7D1MG93P6kjKse7ENqf8Y2AXtpGFZwFXdPD3d/QzexS2K/AR2K6wX26MaX0l/FJsF1YOAvnARcYY172Ls4PS+4Xj7SWs2nWQEwf2sDqOciLP/bCDnD3lPDN9JLGhRzXUTrmpXy3KjTFJXfVCxphSbPPH2x5fgu1moEO/NsDt9kfbtT/wy9YWt2WMIXtXKZNTXPdmJ2W9meMT+Xz9fu77eCMTU2Loo+O2PIYx5kMRGQFcgm1e+Vrgb8aYbR38/R39zH4HeOdXnicPOKEz2d1BkJ8PQ3qF6QQW9Qsb91bwz2+2cc7wXpw9vJfVcZST0S0indTO4mqKqxp0Prk6Jl5ewmMXp9NiDH9+V9tYPImIhGO7Sj0K24jD44FnRORLS4N5kJHxEazZXUZTc4vVUZQTaGhq4dYFOYQH+nH/lKFH/g3K42hR7qSy7f3kY5J08oo6Nv2igrjzrMEs3V7Mm8vzrY6jHGcBtivU3wBvAW+3eigHGJkQSU1DM5v3u/WwGdVBT3+7jU37Knjo/KFEBvtZHUc5Ibfdnt7VZeWVEhnkS//YkCMvVuoILh8bzxcb9vPwp5uYnBJDQnSw1ZFU9xsHRBtjGq0O4qkObSK0Kv8gQ/uEW5xGWSlndxnPfL+DC0b24bS0nlbHUU5Kr5Q7qey8UjITo/SubNUlRIRHLhyOtwh/WrCWlhZtY/EAS4GObBSkukmfiEDiwvy1r9zD1TU2c9uCHGJD/Ln73MNtiquUXil3SoWVdeSV1DB9bLzVUZQb6R0RyN3npXHbghxe/nEnv53kluP91f+5CvhURJYDB1qfMMbcZ0kiD/N/mwhpUe7JnvhqK9sKq3j1N6MJD9TdudXh6ZVyJ3Son1xv8lRd7cKRfThlcA8e/WIL2wu1z9XNPQj0w7aXQ0qrxwArQ3maUQmR7C6tpVA38fJI2XmlzF2Sy/Sx8ZygozHVEWhR7oSydpYS6OvN0N7ag6i6lojw0AXDCPLz5tZ3cnQqhHu7FMgwxlxkjJnR6nGl1cE8ychWfeXKs9Q0NHHrghz6RgZy51naSaaOTItyJ5S1s5QR8RH4+egfj+p6PUIDeGDqUHL2lPPs9zusjqO6Ty62TdaUhdJ6h+Hn4/Xfb0CV53j4083kl9bwj4vSCfHXbmF1ZFr1OZmKukY27a9gTJK2rqjuc87w3pyb3pt/frONDXvLrY6juscb2Hb0vExETmr9sDqYJ/H38WZ4n3BW6pVyj7JkWxFvLNvF1ROTGJccbXUc5SK0KHcyK/MOYgyM0X5y1c3un5JGZLAfs9/Oob6p2eo4quvdiG0nz4eAl1o9XrQylCcalRDJ+oJy6hr158wTlNc28qcFaxnQI4Q/nT7Q6jjKhWhR7mSy8krx8RJGxOumQap7RQT58eiFw9lyoJInvurQzuvKhRhjkg7z0LE7DjYqIZLGZsO6Av1WyhPc++EGiqrqeXxaOgG+3lbHUS5Ei3Ink7WzlGF9wwn00x9k1f1OHNSDy8b04/nFO8jOK7U6jlJu6dAmQtpX7v4+X7+PhasLuPHEAQzvG2F1HOVitCh3InWNzazdU6b95Mqh/nr2EPpGBnLrghyq65usjqOU24kO8Sc5JpiVu/Q/fN1ZUWU9d76/nqF9wvjDSTp5VHWeFuVOZHV+GY3NRvvJlUOF+Pvw2EXp5JfW8OCnm6yOo5RbGpkQycpdBzFGd9N1R8YY/rJwLVX1TTwxLQNfby2vVOfpvzVOZEVeKSKQmaBFuXKsscnRXDspmXnL8/luc6HVcZRyO5kJkRysaSS3uNrqKKobLMjew9ebCvnzGYNIiQu1Oo5yUVqUO5GsnaUMjAslPEi34VWON/vUVAbGhXL7e2sprW6wOo5SbiUz0dZXvlL7yt1OfkkN9360gfHJ0fxmQqLVcZQL06LcSTQ0tbBy10GdZ6osE+DrzROXZFBW08DfPlinX7Mr1YWSY0KICPJl5S4tyt1Jc4vh1gVr8BLhsWnpeHmJ1ZGUC9Oi3EmsKyijtrGZccnauqKsM6R3GLNPHcin6/bz/uoCq+Mo5Ta8vISR8ZFk682ebmXu4lxW5B3k3ilp9IkItDqOcnFalDuJZbm2D+oxSXqlXFlr1uRkxiRGcfeiDew5WGN1HKXcRmZiJDuKqrU9zE2sLyjn8a+2cNawnpw/oo/VcZQb0KLcSSzLLSE1LoSoYD+roygP5+0lzJmWjgFmv5NDc4u2sSjVFUbbJ2vpngCur66xmT++vYbIID8enDoMEW1bUcdOi3In0Nis/eTKufSLCuLuc4eQtbOUuYtzrY6jlFsY3jccPx8vsrWv3OU98vlmthVW8djF6UTqxTTVRbQodwLrC8qpaWhmrLauKCdy0ai+nDm0J49/tYX1uj24UsfM38eb9L7hZO3UK+WubMm2Il75MY+Z4xOYnBprdRzlRrQodwKH+snH6k2eyomICA+dP4yoYD9ufms1tQ3NVkdSyuVlJkaxvqBcf55cVGl1A7e+k0NKjxD+ctZgq+MoN+OwolxEokTkfRGpFpFdIjL9MOtERB4RkRL741GxN2uJSKqILBKRIhEpFZEvRGSgo95Dd1m+s4QBPUKICfG3OopSvxAZ7MdjF6ezo6iah3S3T6WO2ZjEKJpaDGt2l1kdRXXSoV07D9Y08OSlGQT4elsdSbkZR14pfwZoAOKAy4FnRSStnXWzgKlAOjAcOAe4zn4uAvgQGGh/nixgUffG7l5NzS1k5x3UUYjKaU1KieWa45J4Y9kuvtl0wOo4Srm0kQmRiNh2cFau5e0Vu/liwwFuP30Qab3DrY6j3JBDinIRCQYuBO4yxlQZY5ZiK65ntLN8JjDHGLPHGFMAzAGuAjDGZBljXjLGlBpjGoEngIEi4rLN2OsKyqmqb9J+cuXU/nT6QAb1DOX2d9dSWFlndRylXFZ4oC8D40K1KHcxO4qquPejjUwcEM01xyVZHUe5KUddKU8Fmo0xW1sdywHau1KeZj93pHUAk4H9xpiS9k6KyCwRyRaR7KKioqOI3f1+2mGLPr6/FuXKeQX4evPUZSOoqm/iTwvW0qJjEpU6aqMTo1i16yBNzS1WR1Ed0NDUwi1vrSHA14vHp2Xorp2q2ziqKA8B2o5vKAdCO7C2HAiRNkNARaQvtpaY2Yd7UWPMXGNMpjEmMzbWOe+Q/nlHCYN6hmo/uXJ6KXGh/O3swfywtYhXfsqzOo5SLiszMZLqhmY27au0OorqgDlfbWFdQTmPXDicuLAAq+MoN+aoorwKCGtzLAxo7xOp7dowoMoY899LcyISC3wJ/NsYM7+LszpMXWMzK/JKmdA/xuooSnXIFeMSOGVwHI98tlnHJCp1lMYk2e4hytIWFqe3ZFsRz/+Qy/Sx8ZyW1tPqOMrNOaoo3wr4iEhKq2PpwIZ21m6wn2t3nYhEYivIPzTGPNgNWR1mdX4Z9U0tTNDWFeUiRIRHLxpOZLAvN721mpqGJqsjqW7SiYlZ/iLynIgcsE/F+khE+rQ6nygin4rIQRHZLyJPi4iP496J8+kVHkh8VBDLc9vtvFROoriqntn28Yd3nT3E6jjKAzikKDfGVAMLgftEJFhEJgJTgDfaWf46MFtE+ohIb+BW4FUAEQkDvgB+NMbc4Yjs3ennHcV4CYzRySvKhUQF+/HEtAx2Fldz74cbrY6juk9HJ2bdDIzHNi2rN1AGPNXq/L+BQqAXkAEcD9zQfbFdw9ikKLLySvX+DCdljOFPC3Ior23kqekjCPTT8Yeq+zlyJOINQCC2D+f5wPXGmA0iMklEqlqtex74CFgHrAc+sR8DOB8YDfxGRKpaPeId9i660E87ShjeN4KwAF+royjVKRMGxHDDCf15O3s3H+bstTqO6mKdnJiVBHxhjDlgjKkD3uKXN+cnAe8YY+qMMfuBzzn8zfseY2xyNGU1jWwt1L5yZ/TS0p18t6WIv509mEE923bfKtU9HFaU28cYTjXGBBtj4o0x8+zHlxhjQlqtM8aY240xUfbH7Yf6yY0xrxljxP4cIa0e+Y56H12lur6JNbvLtHVFuaxbTkllVEIkdy5cR35JjdVxVNfqzMSsl4CJItJbRIKwXVX/rNX5fwKXikiQva3lTGyFuUcba+8rX56rfeXOJmd3GY98vpnT0+KYMS7B6jjKgzjySrlqJSuvlKYWozd5Kpfl6+3FPy/NwEvg9/NX0dCk493cSGcmZm0F8oECoAIYDNzX6vwP2Ir5CmAPkA180N6LusIY267SNzKQ3uEBLN+pfeXOpKKukd/PX0WP0AAevTCdNoPflOpWWpRb5Mdtxfh5ezEqIdLqKEodtb6RQTx6UTpr95Tz9882Wx1HdZ3OTMx6FggAooFgbPcPfQYgIl7Y7gNaaD8XA0QCj7T3oq4wxrariAhjk6PJ2llKq+FiykLGGP6ycB17y+r412UZhAdpa6lyLC3KLbJkWzGjkyL15hHl8s4Y2pOrJiTy8o87+WrjAavjqK7RmYlZ6cCr9hbFemw3eY4RkRggCugHPG2Mqbdv9PYKcFb3xncNY5OiKK5qYEdR1ZEXq2735vJ8Plm7j1tPS2VUgg5gUI6nRbkFDlTUseVAJZNT3PtKkPIcfzlrEMP6hHPbghz2HNT+clfXyYlZK4ArRSRcRHyx3dS/1xhTbIwpBnYC14uIj4hEADP55a7NHmtssu2eomXaV2659QXl3P/RRk4YGMvvJve3Oo7yUFqUW2DxVluv5CQtypWb8Pfx5unpI2hpMdw4b7X2l7uHjk7Mug2oA7YBRdiugp/f6vwFwBn2c9uBJuCP3R/f+SVGB9Ej1J/lO7Uot1JFXSO/n7eKqGA/5lycjpeX9pEra3j0Bg5WWbKtmJgQfwb3au+eKaVcU0J0MP+4eDi/e3MVD326iXvO8/ipdy7NGFMKTG3n+BJsN4Ie+nUJtokrh3ueNcAJ3RDR5YkI4/tH8+P2EowxelOhBYwx/Pndtew+WMv8a8cRHeJvdSTlwfRKuYO1tBiWbi9mckqMfgArt3PG0F5cPTGJV3/K49N1+6yOo5TTm9A/muKqerYVal+5FV75MY/P1u/nz2cMZEyS9pEra2lR7mAb9lZQWt3ApFQdhajc0x1nDmJEfAS3v7tWb2BT6ggOjcX9aXuxxUk8z8pdB3no002cOiSOayclWx1HKS3KHW3xNls/+XEDtJ9cuSc/Hy+emT4SPx8vrn9zJTUNTVZHUspp9YsKol9UID/u0HnljlRcVc+N/1lF74hAHrtY55Er56BFuYMt2VbEkF5hxIZq35pyX70jAvnXpSPYVljFXxau0znMSv2Kif1jWJZbQnOL/pw4QlNzC3+Yt5qDNQ08e8VIwgN1HrlyDlqUO1BFXSPZeQeZnKpXyZX7Oy4lhltPTWXRmr289lOe1XGUclrj+0dTWdfE+oK2m6iq7vCPL7fwc24JD54/jLTe4VbHUeq/tCh3oCVbi2lqMZw8uIfVUZRyiBtOGMApg+N44JNNZOnYN6Xa9d++cm1h6XafrN3H8z/kcvnYeC4a1dfqOEr9ghblDvTt5kIignwZ0S/C6ihKOYSXl/D4Jen0iwrihv+sYn95ndWRlHI6saH+pMaF8NMOvdmzO23ZX8mf3s1hZHwEd5+rI1uV89Gi3EGaWwzfbynkhNRYfLz1/3blOcICfHl+xihqGpr43ZsrqWtstjqSUk5nQv8YVuSVUt+kPx/dobymkeveyCbY34dnrxiFn4/+Paycj/5b6SA5e8ooqW7gpMFxVkdRyuFS40J5fFo6a3aX8bcP1uuNn0q1cdyAGOoaW1iZd9DqKG6nucXwh7dWU1BWy7OXjyQuLMDqSEq1S4tyB/lucyHeXsLxKXqTp/JMZwztxU0np/Duyj288mOe1XGUcirj+kfj6y38YB+bq7rOI59vZvHWIu6bMpTMRN0gSDkvLcod5JtNhYxKiCQ8SEcvKc91y8kpnDYkjgc/3cQSLT6U+q8Qfx9GJUSyeKv2lXel91fvYe7iXK4cn8BlY+KtjqPUr9Ki3AH2ldeycV8FJw/SqSvKs9lu/MwgpUcIN/xnle74qVQrk1Nj2bSvgsIKvSG6K6zcdZA/v7uOcclR3HXOEKvjKHVEWpQ7wFcbDwBwsvaTK0WIvw8vXJmJr7cX176WTXlNo9WRlHIKk+3tjYu36dXyY7XnYA3XvZFNr4gAnr18FL46YEG5AP231AE+W7efAT1CGNAjxOooSjmFflFBPHfFKHYfrOF3b66koanF6khKWW5IrzBiQvxYvFVbu45FVX0Tv30tm/qmFl6aOZrIYD+rIynVIVqUd7OSqnqW7yzhzKE9rY6ilFMZkxTF3y8Yzs+5JdylE1mUwstLmJQSy9LtxbS06M/D0WhqbuH381axrbCKZ6aP1IthyqVoUd7Nvtp4gBYDZ2hRrtT/uHBUX/5w0gDezt7Ncz/kWh1HKcsdnxpLaXUD6/eWWx3F5RhjuPejjXy/pYj7pwxlcqpOO1OuRYvybvbZ+v3ERwUxpFeY1VGUckp/PCWVc9N788jnm1m0psDqOEpZ6riUGAC+36ItLJ310tKdvLFsF7MmJzN9rE5aUa7HYUW5iESJyPsiUi0iu0Rk+mHWiYg8IiIl9sejIiKtzs8VkS0i0iIiVzkq/9Eor2nkpx3FnDm0J63eglKqFS8v4bGLhzMmKYo/LVjLstwSqyMpZZmYEH8y+kXwzaYDVkdxKR/l7OWBTzZx1rCe3HHGIKvjKHVUHHml/BmgAYgDLgeeFZG0dtbNAqYC6cBw4Bzgulbnc4AbgFXdmrYLfL3pAI3NRltXlDoCfx9v5s4YRb+oQGa9ns2W/ZVWR1LKMqcOiSNnT7mORuygZbkl3PpODqMTI3l8WgZeXnoRTLkmhxTlIhIMXAjcZYypMsYsBT4EZrSzfCYwxxizxxhTAMwBrjp00hjzjDHmG8DpP60+WbePXuEBpPeNsDqKUk4vIsiP164eQ4CvNzNfzqKgrNbqSEpZ4hT7+NxvNhdanMT5bdpXwbWvZ9MvKpAXrswkwNfb6khKHTVHXSlPBZqNMVtbHcsB2rtSnmY/d6R1RyQitbLzXgAAF5FJREFUs0QkW0Syi4oc259XXFXPD1uLOC+jt/5Xu1Id1DcyiNeuHkN1QxMzX87iYHWD1ZGUcrjUuBD6RQXy9UZtYfk1u0truPLlLIL9fHj9mrFEBOnoQ+XaHFWUhwBtbyUvB0I7sLYcCJGjaMo2xsw1xmQaYzJjYx17F/ZHOXtpbjFcMKKvQ19XKVc3uFcYL1yZSX5pDVe9uoKq+iarIynlUCLCyYPiWLq9mNqGZqvjOKWiynpmvLSchqYW3rhmzP9v787Dq6ru/Y+/vxkgTAFCSJhHgyiUQSIICKJWWtE6MFTFW1vrzM+pWr1t7/WnhXtvtYP9XUVBWhTFOmDVeoXrUFtrGUSJyhTByAxhDCEhA5nX74+98TkcD0iAnH1O8nk9z3keztqb5LP3OWfle/Zee226tmsRdCSRkxatorwUCJ9+JBWINHA0fN1UoNTF2STGr3+Wz4AuqZzeKdL3DhE5lnP6dGDmNUNZm1/Mzc/lUFGtwkSalovOzKSypo4lG3R3z3BF5VX8YO5H7DlYydM/OpusTP2dlcYhWkV5HpBkZlkhbYOB3Ajr5vrLvmm9mLVhbwmrdxRz5dCuQUcRiVvjB3Tit1MGsWzjfm5/4TOqa3XXT2k6hvdOo01KkoawhCmtrOFHz6xg074y/nBdNsN6tg86ksgpE5Wi3DlXBrwGTDezVmY2GrgcmB9h9eeAe8ysq5l1Ae4F5h1eaGbNzCwFMCDZzFLMLKbmW3/t03wSDC4b0iXoKCJx7cqh3Zh++QDeW7eHu19aSY0Kc2kikhMTGHd6Bu+t26P3va+8qoYfz1vBmvxiZk4d+tWc7iKNRTSL2WlAC2Av8CJwm3Mu18zGmFlpyHpPAW8Ca4C1wCK/7bB3gUPAKGCO/++xDR//+NTWOd5YuZMxWR3JaJMSdByRuHfdyF7824QzWLRmF/f9eTW1uv24NBGXfKsT+8uqWL6pMOgogauoruXGZ3PI2VLI768awvgBmmpYGp+kaP0i51wh3vzj4e2L8S7uPPzcAff7j0g/Z1wDRTwlPsjbS37RIX52sW5eIHKq3DS2D5U1tfz23TwM+M2UwSRqViNp5MadnkGrZoksXL2zSR8Vrqiu5abncvhw035+N2Uwlw3WWWhpnGJq2Edj8NyHW8lo05zv6Fu8yCl1+wVZ3HNRP177LJ/7XlmlI+bS6KUkJ3LRmZm8nbu7yV5TcajKO0K+ZEMBj0waxMSzNKOZNF4qyk+hLQVl/OOLfVwzvAfNkrRrRU61Oy/M4l6/MP/JyyubbKEiTcclg7pQVF7N0iY4C0tZpTeGfOnGAn4zeTDfz+4edCSRBhW14StNwfPLt5KUYEwd0SPoKCKN1h0XZpGclMDDb63nUHUtM6cOpXmS7uInjdPYfum0SUli4epdjDs9I+g4UVN8qJrrn/mYlduLePT7g7lS9/yQJkCHc0+RQ1W1LMjZzncGdiIzVRd4ijSkW8/ryy8vG8BfP9/Djc/mUKYbDJ1yZpZmZq+bWZmZbTWzqUdZr7mZzTazPWZWaGZvmlnXsHWuNrN1/s/aaGZjorMV8a95UiLjz+zEO7m7qaxpGvP1F5RWcs2c5azJL+aJqWepIJcmQ0X5KfLqpzs4WFHDD0f2CjqKSJPww1G9+M3kQSzdUMDUP35EYVlV0JEamyeAKiATuBaYZWYDIqx3FzASGAR0AYqAxw8vNLOLgEeA6/Hu4jwW2NSgyRuZSwd3pqSihvfX7ws6SoPbXljOlNkfsqmglD/+8Gwu/lbnoCOJRI2K8lOgsqaWJ9/fwNAe7Ti7l25kIBItU7K7M/tfhrF+10Emz17G9sLyoCM1CmbWCpgEPOCcK3XOLQH+B/hBhNV7A+845/Y45yqAl4DQ4v2XwHTn3HLnXJ1zLt85l9/Q29CYjDktnYw2zXklZ3vQURrU2vxiJs5aRmFZFX+6cQTn9esYdCSRqFJRfgosyNnBzuIKfvLtfphpmjaRaBo/oBPzbxhBQUklVz65jNU7ioKO1Bj0A2qdc3khbas4stg+bC4w2sy6mFlLvKPqbwGYWSKQDXQ0sw1mtsPMZppZi0i/1MxuNrMcM8vZt6/xHxU+XkmJCUwe1o33v9jL7uKKoOM0iA/y9nH1nOUkJRh/vnUkw3qmBR1JJOpUlJ+kw0fJh/Vsz5gmPI+sSJCG907j1dtG0TwpgaueWq5bk5+81kBxWFsx3vCTcHnANiAfOAicAUz3l2UCycBkYAwwBBgK/HukX+qcm+Ocy3bOZXfsqKOkob6f3Z065w2VbGz+9NFWfjxvBd3TWvLatFFkZUZ6m4k0firKT9LLK7azS0fJRQKXldmG1//PKE7LaM1N83OY/cFGvHuRyQkoBVLD2lKBkgjrzgJSgA5AK+A1/CPleHdcBnjcObfLOVcAPApMOOWJG7le6a04p08aC3K2U9dI5uivqa1j+puf82+vr2VsVjqv3DqSzm0jnkQRaRJUlJ+EovIqHvvbl5zdqz2jT+sQdByRJi+jTQoLbhnJhG915uG31nPvglVUVDeNGStOsTwgycyyQtoGA7kR1h0MzHPOFTrnKvEu8hxuZunOuQPADqBxVJEBu+rs7mzdX87yzfuDjnLSisqr+NEzK3h66WauH92LP1yXTevmmqVZmjYV5SfhPxet40B5Nb+8bKCOkovEiBbNEpl5zdCv7v458UldAFpfzrkyvCPe082slZmNBi4H5kdYfQVwnZm1NbNkYBqw0z8qDvAMcIeZZZhZe+BuYGHDb0Xjc/HAzrRJSeKFj7YFHeWkrM0v5rKZS/l4cyG/njyIB783gKRElSMi+hScoGUbCnjlkx3cNKYPZ3YJP8srIkEyM+68MIu5P8xmx4FyLn18CX9bp3Hm9TQNaAHsBV4EbnPO5ZrZGDMrDVnvp0AF8CWwD29oypUhy2fgFe55wDrgM+A/Gz5+45OSnMg1w3vw1trdcflF0znHyyu2MXHWMqpr63jplnN0l06RECrKT0B5VQ2/eH0NPTu05O5vZ33zfxCRQFx4RiYL7xhD13YtuOHZHKa/+TlVNXVBx4oL/nCUK5xzrZxzPZxzL/jti51zrUPW2++cu9Y5l+Gca+ecO9c593HI8mrn3DR/WSfn3J3+1IlyAq4f3YsEg7lLNgcdpV5KKqq5++WV/OuraxjRO42Fd5zLWT00hbBIKBXl9VRTW8cdL3zGtsJyfjXxW6Qk6/beIrGsRwdvRocfjerF00s3M3HWUr7cE+l6RZHY17ltCy4f0pWXV2znQJzcMOuTrQeY8NhiFq7exU/H92Pe9cPp0Lp50LFEYo6K8npwzvHAG7n8bf1eZlwxkFF9NQWiSDxISU7kocsGMOcHw9hZVMEljy9h7pLNjWYWC2labh7bh0PVtcxfvjXoKMdUUV3Lr95ax5TZy3AOFtwyktsvyCIxQddgiUSiovw4VVTX8uD/5PLix9uYNq4v147oGXQkEamn8QM68c7dYxmblc6MhZ8z5akPddRc4k6/zDZc0D+Decu2UFpZE3SciHK2FPK9x5fw1AebuOrs7rx11xiG9dRwFZFjUVH+DWrrHB9t2s8ljy3muQ+3csO5vbnvO6cHHUtETlDHNs35w3XZ/G7KYDbuK+WSx5bw6LtfcKhKUydK/LjrwiwKy6p48v0NQUc5QnF5Nb94fQ2TZ39IeVUt864/m19NHESblOSgo4nEPE0KehQfbdrPzPc3sHJbESWVNXRum8LzN4zgXN21UyTumRmThnXjvNM7MmPh5zz29w28+mk+D1x6Bt8Z0ElTnErMG9y9HROHduWPSzZzzfAedE9rGWie2jrHCx9v49F3v6D4UDU3ntubn1zUj1aae1zkuOnTchS1dY59JZVcNqQL2b3ac+EZmaTqm75Io5Leujn/ffVQrhnegwffyOXW5z8lu2d7fj7hDJ1ql5h3/3f789ba3fzX/65j1r8MCySDc4731u3lt+98wRd7ShjRO40HvzdAUwWLnAAV5Ucx6rR03r57bNAxRCQKzunTgUV3nsuCnB38/r08Js1axgX9M7jrwiwGd28XdDyRiDq1TWHauL787q95LPmyIKpncp1zfJC3j8f+9iWfbiuid3orZl17Ft8dqDNNIifKnGsasw9kZ2e7nJycoGOISIwrq6zhmaWb+eOSzRSVVzMmK52bxvRhTFZ6YMWGmX3inMsO5JcHRH328amormXCY4s5eKiGRXeeS2ZqSoP+vuraOt5eu5s5/9zEmvxiOrdN4Y4LspiS3Y1k3ZVTBDjxPltFuYhIBKWVNTz34RaeWbqFfSWVZGW0ZuqIHkwc2o22LaM7lE1FuRxL3p4SLp+5lIFdU3nhpnMapDjeWXSIVz/ZwZ8+2sbugxX06tCS28b15cqh3WiWpGJcJJSK8m+gDl5ETkRlTS0LV+1i3rItrMkvpllSAhedmcn3BnVm3OkZUbmBmIpy+SZvrMznrpdWcu2IHsy4fCAJp2Au8KLyKt79fA9vrtrJkg0FOAfnnpbO9aN7cf7pGafkd4g0RifaZ0dtTLmZpQFzgfFAAfDzw7dtDlvPgIeBG/2mucC/Ov/bg5kN8dvOANYBNzjnVjb8FohIU9Q8KZFJw7oxaVg31uYX80rOdhat2cWi1bto2SyRUX3TOb9/R0b26UDv9FYaTyuBuHxIV3J3HmTOPzexr6SS3181pN4zn9TU1rF+dwmLvyzgn3n7WLGlkJo6R7f2Lbjjgiwmn9WNHh2CneVFpDGL5oWeTwBVQCYwBFhkZqucc7lh690MXAEMBhzwV2ATMNvMmgFvAP8PeBK4BXjDzLKcc/Fxv2ERiVsDu7ZlYNe2PHDpmXy4aT/v5u7h7+v38t66PQCkt27GkO7tOKNzKv07pdKzQ0u6p7UkNSVJxbo0uJ9f3J/ObVOYsfBzJj65jGnn9+WiMzNp2ezIP/W1dY69JRXkHzjEpoIy8naXkLvzIKt2FFHuz9ffv1MbbhrbhwkDOzOwa6revyJREJXhK2bWCjgADHTO5flt84F859zPwtZdBsxzzs3xn98A3OScO8fMxgPPAN1CjpxvA252zr19rAw6FSoiDcE5x6aCMj7eXMiKzYWsyS9m475S6kK61uZJCaS1aka/zDY8++Ph9f4dGr4i9fFB3j5+8doa8osO0bJZIl3btQCgqraO4kPVHDxUfcT7MyU5gX6ZbRjavR1n9WzPyD4dyGjgC0ZFGrNYH77SD6g9XJD7VgHnRVh3gL8sdL0BIctWuyO/Saz2279WlJvZzXhH3unRo8cJhxcRORozo2/H1vTt2Jprhnv9TEV1LRv2lrLjQDnbCsvZX1pFYVmVbqQiUXFev44svv98VmwpZNGaXRSUVgKQlJBA2xbJtGuZTKe2KXRp14JeHVrRI60liRofLhK4aP2FaA0Uh7UVA22OY91ioLU/1rw+Pwf/aPsc8I661D+2iEj9pSQnfjXURSQICQnGiD4dGNGnQ9BRROQ4RWseo1Ig/PZeqUDJcaybCpT6R8fr83NEREREROJCtIryPCDJzLJC2gYD4Rd54rcNPsp6ucAgO/KKk0FH+TkiIiIiInEhKkW5c64MeA2YbmatzGw0cDkwP8LqzwH3mFlXM+sC3AvM85f9A6gF7jSz5mZ2u9/+94bMLyIiIiLSkKJ5G65pQAtgL/AicJtzLtfMxphZach6TwFvAmuAtcAivw1/2sMrgOuAIuDHwBWaDlFERERE4lnUpgJwzhXiFdTh7YvxLuA8/NwB9/uPSD/nM2BYA8UUEREREYm6aB4pFxERERGRCFSUi4iIiIgETEW5iIiIiEjA7MibYzZeZrYP2FrP/5YOFDRAnGhR/mDFc/54zg6NL39P51zHoMIE4QT7bIjv1z6es4PyBymes0Pjy39CfXaTKcpPhJnlOOeyg85xopQ/WPGcP56zg/I3ZfG87+I5Oyh/kOI5Oyj/YRq+IiIiIiISMBXlIiIiIiIBU1F+bHOCDnCSlD9Y8Zw/nrOD8jdl8bzv4jk7KH+Q4jk7KD+gMeUiIiIiIoHTkXIRERERkYCpKBcRERERCZiKchERERGRgKkoj8DM0szsdTMrM7OtZjY16ExHY2bNzWyun7PEzD4zs4tDll9oZuvNrNzM3jeznkHmPRYzyzKzCjN7PqRtqr9tZWb2FzNLCzLj0ZjZ1Wa2zs+50czG+O0xvf/NrJeZ/a+ZHTCz3WY208yS/GVDzOwTP/snZjYkBvLebmY5ZlZpZvPClh11X/ufk6fN7KC/nfdEPTxHz29m55jZX82s0Mz2mdkrZtY5ZLmZ2SNmtt9//NrMLIhtiFXqt6NPfXYw4qnfVp9dvz5bRXlkTwBVQCZwLTDLzAYEG+mokoDtwHlAW+ABYIH/oU0HXvPb0oAc4OWggh6HJ4AVh5/4+/wp4Ad4r0U58GQw0Y7OzC4CHgGuB9oAY4FNcbL/nwT2Ap2BIXjvo2lm1gx4A3geaA88C7zhtwdpJ/AfwNOhjcexrx8CsoCewPnA/Wb23SjkDRcxP94+ngP0wstYAjwTsvxm4ApgMDAIuBS4pYGzxhv129GnPjsY8dRvq8+uT5/tnNMj5AG0wuvY+4W0zQceDjpbPbZhNTDJf1MsC9u2Q0D/oDNGyHw1sADvg/i83/ZfwAsh6/T1X5s2QecNy74MuCFCe8zvf2AdMCHk+W/w/qiOB/LxZ2jyl20Dvht0Zj/LfwDzjndf+9syPmT5DOClWMkfYflZQEnYe+zmkOc3AMuDfh1i5aF+O5C86rODyx93/bb67OPrs3Wk/Ov6AbXOubyQtlVArB5xOYKZZeJtQy5e5lWHlznnyoCNxNi2mFkqMB24N2xReP6N+H94o5fu2MwsEcgGOprZBjPb4Z9KbEF87P//Bq42s5Zm1hW4GHgbL+Nq5/cmvtXEVvZQR93XZtYe6BK6nNj/TI/F+wwfdsT2Efv5o039dhSpzw5cY+i31WdHoKL861oDxWFtxXinuGKamSUDfwKedc6tJ362ZQYw1zm3Paw9HvJnAsnAZGAM3qnEocC/Ex/5P8DrKA4CO/BOIf6F+Mge6lh5W4c8D18Wc8xsEPB/gftCmsO3rxhorXHlX4m39+tX4rTfVp8drMbQb6vPjkBF+deVAqlhbal444Vilpkl4J2urQJu95tjflv8i1C+Dfw+wuKYz493ug3gcefcLudcAfAoMIEYz++/Z97BG9fXCkjHGyf3CDGePYJj5S0NeR6+LKaY2WnAW8BdzrnFIYvCty8VKA07ItaUxdv7FYjPflt9drAaUb+tPjsCFeVflwckmVlWSNtgjjwtEVP8b15z8Y4ATHLOVfuLcvGyH16vFd4Yv1jalnF4F0psM7PdwE+BSWb2KV/P3wdojvcaxQTn3AG8IxWRPmixvv/TgO7ATOdcpXNuP96FKhPwMg4K+1Y/iNjJHu6o+9p/jXaFLicGP9P+zAPvATOcc/PDFh+xfcRg/oCp346ecajPDlJj6bfVZ0cS9OD/WHwALwEv4n0LHY132mFA0LmOkXc2sBxoHdbe0c8+CUjB+yYdUxeHAS2BTiGP3wJ/9rMfPj03xn8tnifACz2OsQ3T8WYgyMA7YrEY7/RuPOz/TcDP8GaDaAe8jncqvRmwFbgL74/q7f7zZgHnTfL35a/wjjCm+G3H3NfAw3infNsD/fE6/Khf/HSM/F3xxlPed5T/dyvexV1d8cZa5gK3Bv3+iaWH+u2o5VafHXz+uOm31WfXr88O/M0Viw+8b6J/AcrwrlyeGnSmY2TtifeNvwLvdMnhx7X+8m8D6/FO2f0D6BV05m/Ynofwr+T3n0/1X4MyvKme0oLOGCFzMt4UVUXAbuAxICUe9j/eeMp/AAeAAuAVIMNfNhT4xM/+KTA0BvI+5L/fQx8PfdO+9v9APY1XMOwB7oml/MCD/r9DP8OlIf/PgF8Dhf7j14TMsKCH+u0At0V9dvTzx02/rT67fn22+f9ZREREREQCojHlIiIiIiIBU1EuIiIiIhIwFeUiIiIiIgFTUS4iIiIiEjAV5SIiIiIiAVNRLiIiIiISMBXlIiIiIiIBU1EuIiIiIhKw/w/mTPgGRC83DgAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.recorder.plot_sched()"]},{"cell_type":"markdown","metadata":{"id":"G6kNSqZj2N2e"},"source":["Smith's original 1cycle paper used a linear warmup and linear annealing. As you can see, we adapted the approach in fastai by combining it with another popular approach: cosine annealing. `fit_one_cycle` provides the following parameters you can adjust:\n","\n","- `lr_max`:: The highest learning rate that will be used (this can also be a list of learning rates for each layer group, or a Python `slice` object containing the first and last layer group learning rates)\n","- `div`:: How much to divide `lr_max` by to get the starting learning rate\n","- `div_final`:: How much to divide `lr_max` by to get the ending learning rate\n","- `pct_start`:: What percentage of the batches to use for the warmup\n","- `moms`:: A tuple `(mom1,mom2,mom3)` where *`mom1`* is the initial momentum, *`mom2`* is the minimum momentum, and *`mom3`* is the final momentum\n","\n","Let's take a look at our layer stats again:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MHjPRYtX2N2f","outputId":"f041f69a-bcd8-4bb8-ea3c-6fe9477b7c19"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAsQAAADWCAYAAADW1JQ6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3hcZ5X48e+ZLo16tyXLcu9xXNIdEpNOJ6EEkgC7QIBQf5AldLK0pbP0JQllN4QSIAklJAHSnAQSx3bcu2XZVu8jzWhGmvL+/rgzsnqxJY00Op/nmcfWnTt33rE1M+eee97zijEGpZRSSimlZitbsgeglFJKKaVUMmlArJRSSimlZjUNiJVSSiml1KymAbFSSimllJrVNCBWSimllFKzmgbESimllFJqVtOAWCmlUoyIXC4iRkTKkj0WpZSaCTQgVkqpGUBEyuJB7uXJHotS04WI3CgiVSLSLiI/FxFnn/vsIvKCiLw5mWNUM4MGxEoppZSacUQkH/g58GngUuBi4NY+u3wUqDXG/DYJwxszEXGl4nPNNBoQz2Ai8pSI/FREviQijfEz5C+LiE1EPiciDSLSJCJf7vMYh4jcKSLHRSQkIvtE5D0DjvthEdkpIn4RqReR34jInD73Jy7HXiUiW0SkS0T2i8g1U/n6lUpFIrJJRJ4Tkc74bVf8vXUqvsuT8fdfVZ/HfFBEquPvxceA8mSMXakpthDwGWPuM8bsAR4CVgKIyBLgw8D7xnKg+PfiURF5rYgcFJGAiDwpIosG7LdBRP4W/35sEpEHRGR+n/sXxLfVxt+Pe0TklgHHSHx3f1FE6oCaYcb0VPy9PvD2jj77fDA+3pCIHBGRT4uIo8/9VfEY4Uci0gI8F98+J/7d3i4iwfhzbRzLv1Wq0oB45nsD4AQ2YZ0Nfwr4C5CBdcZ8O/ApEbkuvv89wPXAe4AVwBeAr4nIOwcc93ZgDfB6rC/X3wzx3N8EvgKsBbYBvxWRnAl7ZUrNMiJiB/4EvACsj9/uBLrifwe4AZgDnBd/zGuB7wDfBs4F7ge+MZXjVipJjgLpIrJRRLzAZcBLIiLAT4FPGWPqx3G8OVgB9E1Y2eYc4GeJO0VkJfA08C9gI/ByIAr8XUQ88d0ygMeBa7G+Q+8Cfi4imwc815uAQuCK+HGGcn18TInbl4AA8GJ8PHdifVd/Euv7/MNY3+2fH3CcDwGNwEXA2+P/Pg8By4FXAecDDfHXUTDiv1AqM8bobYbegKeAnQO27QP2DNi2Cyt4XQDEgOUD7v/cwOMMuH8dYIDS+M+Xx3++vs8+JfFt1yT730VvepupNyA3/j66fIj7yoa6D3gWuG/Atm/G9y1L9mvSm94m8wa8Ov4dV4l1YmgHPgg8HP9eeih+3/8BGSMc504gAhT22XZj/DvTE//5F8BvBjzOjXXC+roRjv1H4O4+Pz8FHAZs43id1wDdwKvjP6fHn/faAfu9DWjv83MV8PiAfa6Ifz6sHPA66oDPJfv/NFm33rS6mrF2Dfi5Pn4buK0I64xWgG3WCWIvB9ZZLmCVRGCdca7EOkNOXEmYT/9LOzsTfzHG1ItIFCg+w9eh1KxnjGkTkXuAx0TkCaxs1IPGmEMjPGwl8OsB254FPjZJw1Rq2jDG/Bn4c+JnEakAPgFcAHwPOIB1JfWXwGeBO0Y4XK0xpqnPzzVY35lFwEmsqzKLRcQ/4HEeYEn8+dOxkkyvxsrqurCCzScHPGa7MSY2ltcoIquwrvzcEX+9AKuANOAPImL67G4HPCJS2Oe1bB1wyFVAizFmf2KDMaZbRF6I3zcraUA884UH/GyG2WbjdGB7MdaZ5cB9EJFy4K/AvVjlFM1Ymal/YL2x++oZYjxahqPUWTDGvFtEvgtcDVwFfFFEPoCV8Rr2YVMyOKWmv7uBO40x1SJyJfCfxpiIiPwS+M9RHjvwOy3xvrL1+fNe4KtDPLYl/uc3gNdinZAexCpx+BaQPWD/wGgvBEBEirDKIH9pjPnvPnclxvRGrGzzQK2jPNdQnxkyzPZZQQPi2WV7/M9yY8xfhtnnPKyzzo8YY4JgTSKYisEppSzGmL3AXuDbIvI/WDPnH4zfbR+w+37gEuBHfbZdMumDVGqaEZF3A2KMuTu+yYY1xwashM7ZJmy2AecAx0y8zmAIL8MqYfptfEw2YClWje64iIgb631/EKsOuK99QAhYaIz56zgPvQ8oEJGViSxx/LnOp//nyKyiAfEsYow5KiI/A+4WkY9jTQzwAhuw6qa+BhzBOkP8mIjchzVh7nPJGrNSs4mILAbejXUJ+BQwF2ty7A6sqzV+4GoR2Qd0G2PasLJPvxORrVhXdzYBtwxxeKVSloiUYk0m29Rn8xbgo/FOS+/HKkE6G1/BKj/4ZfwqThNQAbwO+K4xphI4BLxWRP6A9X79KNb7eNwBMfCT+GP/DSjsU+roM8b4ReQrwFfi2/+OFdOtAdYZY0YqDXki/jp+JSLvB3xY5SQe4MdnMM6UoJe3Z59bsSYefBors/Q48HasSQcYY3ZjTUh4T/z+24GPJGWkSs0+AaxaxN9gXQb9A/BP4APxesP3Y81OPwW8BGCMeRDr8uzHgd1YM+RH+jJUKhX9BPiqMaaqz7YPYQWs27DeW6OVTIzIGHMAq+QwA3gM6zvybqyrqu3x3f4fcAKrZvhxrDrk35/hU16ONf5DWBPeErc3x8fzxfjzvQtrPtGz8Z+rRnkdBiuIP4hVivUi1gTEq4wxzWc41hlPhs/6K6WUUkoplfo0Q6yUUkoppWY1DYiVUkoppdSspgGxUkoppZSa1TQgVkoppZRSs5oGxEoppZRSalZLeh/igoICU1FRkexhKDVtbN++vdkYU5jscQxF369K9afvV6VmjpHer0kPiCsqKti2bVuyh6HUtCEiJ5I9huHo+1Wp/vT9qtTMMdL7VUsmlFJKKaXUrKYBsVJKKaWUmtU0IFZKKaWUUrPahAbEIvIBEdkmIt0i8ouJPLZSSimllFKTYaIn1dUCXwKuAdIm+NhjZozhJ1sqee25c5mTnbRhKKXUlPq/f1Wxbl4ua8qykz0UpdQECEdjPHmwke0n23DabCyfk4kgLC7KYFlJZrKHl1ImNCA2xjwAICIbgbKJPPZ4VDYH+OojB4kZw22XL07WMJRSaso0dob43B/3sbYsm4fefwkikuwhKaXOQmugh9vu287zla247DaixhCNGQBE4A3ry3j/5sVUFHiTPNLUkJS2ayJyK3ArQHl5+YQfv7IpAEBde2jCj62UUtPRM4ebAdhV7WPr8VYuWJif5BGp6a47EuWBHTW8eeM8bDY9gZounjjYwE+ermRPjY9IzPD1G87htevmYszp+OahnTX8/Lnj/G57NZctLeSmC8qZm5NGTrqTstz0JL+CmSkpAbEx5i7gLoCNGzeaiT5+ZZMfgNr24EQfWimlpqWnDzdRkOEiZuDuZyo1IFaj+vOuOj75wB4e21fPf7/5XHLSXcke0qzVGujhsX31vFjVygM7alhQ4OWNG8p448Z5rC49XQK1cm5W75/v2rSAX209ya9eOMmt927v3efChXmcvyCfZcWZXLWyGJdD+yeMRdIX5pgMx+IBcY0GxEqpWSAaMzxzpInNy4uYl5vOdx8/Qp0vqHMo1IhuWF9KMBzlC3/ex6ce3MOPbtqQ7CHNSsea/Lz9Z1upbgvidth456YFfPzaZbgd9hEfV5Tl4SNXLuX9mxfzfGULoXCMww2dPLCjmh88cYSYgbnZHt6woYwLFuYTCkex2wSn3cbOU+1UtwUJR2OsnJPF2nnZzMtNJxwzhMJRBMhOc5Kb7sJmE7p6ItT7QqS7HBRmurEPuKIQCkc52dpFa6CHjmCYmAGP08Zj++o51hTg8mWF5KW7CEdjzM/3UucLsremA4BILEZPxJDpcdARDHOsyY+IMCfbw/ryXB58qYaTrV3c+rKF5KQ72Vvj40RLF3leF4uLMmjoCBEzkOd1cfMF8ynPP7MMeUoGxIlLCpohVkrNBntqfLR1hblsaSGLizL47uNHeL6yhdevS9pUDjUDiAi3XDifbVWtbD/RluzhzDq17UHue+EE//fPE7gcNn733ovYUJ477vIVp93GpUus1YivWlnM+zcvpicS47ljzdy9pZIfPHmU7z1xdNDjCjLciMDvt1cPe2ybgNftoDMU6d2W6XGwam4WjR3d2GxCUaabHSfbCIVjgx6f5rRTUeDl648eGnRfpseBwyY47DZcdhsdoTBpTjtLizOx2YSdp9p5ZG89FfnpnFeRy7f/fhiAfK+LigIve2t9PLK3nsJMN06b0BLo4VXnzKGcaRAQi4gjfkw7YBcRDxAxxkRGfuTEqmwOIAIdoQidoTCZHudUPr1SSk2pZw43IQKXLikkJ81JdpqT54+1akCsxmRhQQZ/2lVLKBzF4xw5K6lGFwpH2VvjwxcMk+ays748t/ffNRYzPLavnnuePc72E22IwNUri/n0K1aecWZzKC6Hjc3Liti8rIjWQA/7azvI8DiIxgzBniir5maR67VKZGrbgxys76CmLYjTbiPNZccYaO/qoTXQgy8YJj/DTVluGsFwlL01HRyo62BZSSaRmKHOF+RNG+exsSKPfK+L7DQr5uoIhVldmk2Wx0ljZ4hI1GAT4XhzgPwMF0uKMkac/GuMoaY9SEmWB4fdxtHGTjxOO6U5ab2PC0djOO22fo85UxOdIf4M8Pk+P98M/Cdw5wQ/z7DaAtZ/4NqybHZV+6jzhTQgVkqltK1VrSwrziQv/gV3wYI8/lXZkuRRqdGISB7wU+BqoBn4pDHmV0Ps5wa+C7wecALPAe81xtRMxDgWFXkxBo43B1gxJ2siDpnyWuOxxqJCb29wFgpH+c7fD/Pz56roiZ7OlnqcNvK9btq6egiGoxgDCwq8fPzaZbxqzdwJDYSHkud1sWlJwbD3z81JY27O5JZXFWV6ev9eku0ZYc/TRKTfBMHFRYPbzPUNhhOPOVMT3XbtTqYw+B1KZbNVP7xpSQG7qn3UtAdZWqy9+pRSqSkSjbHjRBvXrz+dDb5wYT5/299ATXuQ0kn+olNn5YdAD1AMnAs8LCK7jDH7Buz3YeAi4BzAB9wNfB+4fiIGsbAgA7BqWTUg7i/QHaGpsxu300ZxpoeqlgA/ebqSB3fW0BOJsajQSzhqaOrsxiYQ6Ilyw/oyrl1dQlGmm9ZAD08fbqIjGCbP6yLdZWdpSSbXrZ4zqA5XJVfK1RAfi9cPb1pcyA+fPKZ1xEqplHawvpNAT5SNFbm92y6Md5h4/lgLN2zQsonpSES8wA3AamOMH3hWRP4E3AJ8YsDuC4DHjDEN8cf+Bvj2RI1lQbyPbWL+zWxV2x7kqUNNZHgcBLoj7DrVzp921dLVEwXA67ITDEdxOWy8aWMZS4oy+ceBBrI8TuZkewhFoly9soSXLS3sd9zNy4uS8XLUOKVgQOzHaRfWz8/BbhMNiJVSKe3FqlYAzqvI6922vCSTnHQnW4+3akA8fS0FosaYw3227QIuG2LfnwLfFZG5QDtwE/DIRA0kzWXVZSZals4EnaEwNhG8biuM+fXWk9z3wgmWFWdx/fpSLllcwM5T7dy/7RQvVLawrjyXy5YWMj8/nRVzshDgqUNN8S4Ifgoz3Tx1qInuSP9Sh9esncsFC/IJRaIcru8kK83J2y+uoCDDDcDbL65IwqtXkyH1AuJGPxX5XtwOOyVZHmp1cQ6lVArbVtVG6YAaQJtNWFOazb46XxJHpkaRgVX+0JcPGKrG7zBwEqgBosAe4ANDHfRMF75aWOjtvcI6nf19fwM/eOIIu2t8GANZHgfz8tLZV9vBsuJMnjjYwB92VLO8JJOD9Z2kOe1smJ/Lo3vre7spZKc5SXfZqfOFyPI4WDEniwN1nbxyzRzed/kiwDpJSEzmUrNDygXEhxo6WVuWA8DcHI/2IlZKpSxjDC9WtXLRosGLcKyck8XPn6saNAtbTRt+YGDBbhbQOcS+PwY8QD4QAD6OlSG+YOCOZ7rw1aLCDH637RTGmGm77Pc9z1Ty5b8eYHFhBh++Ygluh51TbV0crOvgI1cu4YMvX0I4GuOuLZX8eVctt1+9lH+7ZAFet4PuSJRjjQEqm/08fqCRjmCYz796FVesKNL3hwJSLCAOdEc41RrkTRvmAdbMSe2tqJRKVW1dYRo7u1nTZyWrhBVzsuiJxqhsCrCsRCcWT0OHAYeILDHGHIlvWwsMnFCX2P5pY0wrgIh8H/iCiBQYY5onYjALC70EeqI0dHSPuQvAVNpd3c6XHj7AtatK+O8bzx22PZzdZudDVyzhQ1cs6bfd7bCzcm4WK+dm8apz5k7FkNUMk1KnRYcbrBPrxId/aU4a9b4Q0diErw6tlFJJV+ezroAN1Uki0S1gv5ZNTEvGmADwAFZg6xWRS4DXAvcOsfuLwNtEJFtEnMBtQO1EBcNwutNEolPTdPPz56rwuux8443naK9kNSlSOiAuy00nEjM0dGgdsVIq9SQ+24qHyOgtLPTictg4UDfUFXg1TdwGpAGNwK+B9xlj9onIpSLSNzK9HQgBR4Am4BVYPYknTFGWNUmsxd8zkYedEI2dIf6yu5Y3bpyn6wqoSZNSJROH6v14nDbmxRs5l+VaWZPqtuCkN51WSqmpVu/rBqAka3BA7LTbWFqcwYG6jqkelhqjeAnE64bY/gzWpLvEzy1YnSUmTU66FWi2d02/gPiX/zpBOGq0o4OaVCmVIT7U0NG7Bjb0DYi7kjkspZSaFPW+IDaBwkz3kPevKMlif23HWS1nqmaHnDRrlcO2rnDSxtAdiRLps8IbWGVBdz9znGtXlfT2S1ZqMqRWQFzvZ1mfVekSWeHqNu00oZRKPfUdIQoy3MPOkl85N4uWQA+Nnd1TPDI107gcNjLdDloDyckQ17YHueJbT3PTPS/0C4q/8teDxIzh069ckZRxqdkjZQLi1kAPzf7ufrOpPU47RZluzRArpVJS/SgdAc4ps7pPvHRSu+2o0eV4nUkpmfB1hXnbz7bS2NnNC8db+cGTRwGrs8Sfd9XynssWMS8vfcrHpWaXlAmI99RYM6kHrsNelpumGWKl1LR1qrWLe58/cUZlDfW+4JD1wwlrSnNwO2xsPa4BsRpdbrorKSUTD+2s4Wijn1+84zyuX1fK9x4/wo6Tbfzs2eNkuB28+9IFUz4mNfukTED80sk2RE5nRBLKctM1IFZKTVv3PFPJZx/ay6GG8XeDqPeFRswQuxw21pXnsLWq5YzHt+NkG++9dztNWnaR8nLSXbQlIUP80sk2ijLdXLQon/987SqKszx87P5d/GV3HW/SzhJqiqRMQLzjZDvLijMHvXHKctOobQ9qL2Kl1LT0fGUrAH/ZVTeux3X1ROgIRSgeIUMMcP6CfPbXdtAZGn/mr6Y9yK3/t41H99Xzhb/sH/fj1cySl+5MSkC8q9rHufNyEBEyPU6+/PrVHG8OEDWGd2hnCTVFUiIgjsUMO0+2sa48d9B92otYKTVdtQZ6ejPDD++pG1fZRL3P+kybM8qqYhcsyCNmGPeqnUcb/bz9Z1vpDsd408Yy/ryrlicONozrGGpmyUl30R6Y2pKJ9q4ejjcHWDsvp3fby5cX857LFvLuSxdSnq+1w2pqpERAXNnspyMUYV15zqD7+vYiVkqp6WTrcSs7fMP6Mo43B9g/jp7B9fGT/JFqiAHWlefgsEnvc43FlsNNvPr7z9Ia6OEnb9vAl163hoWFXr7998NjPoaaeXLTXXR2R+iJxEbfeYLsqrbm/6yb1//7+5PXreBTr9DOEmrqpERAvONkOwDrh8wQay9ipdT09MLxFjxOG3dcuwy7TXh0b/2YHzvSKnV9pbscrCnL5rmjY1vl92RLFx/41Q7m56fz1w9dysWLCnA5bNxy4Xz21nSMuNBHdVsXv3juOPe/eIrbf7eLt979PLXtQY40dPL1Rw/yyJ46QuHomF+jmlp53vjiHMGpK5vYebIdEVgzYP6PUlMtJVaqe+lkG1keBwuHaNo9NycNEahq0YBYKTW9vFDZyvryXIqyPCws8HKofuwT6+p8Y8sQA1y5ophvPHZo1El44WiM2361HYC7btnYb9/XnlvKV/56gD9sr+Yzr1o55OM/89BenjrUBECmx0EsZnjDj/+JLxgm0GMFwi9fXsTP3nHe2F6kmlI56dbiHO1dYYoyR/+9mgg7T7WxuDBDJ86ppJvxGeLuSJS/7WvgksUFvSvU9eVx2llSlMHu6vYkjE4ppYYWCkc5UN/Bxoo8ACoKvFS1BMb8+AZfiEyPA6979LzGNauKAfj7/pEz0Pf+6wR7azr42g3nDKrdzPO62LysiId21hCODr6kfqCug6cONfGhly/mqdsvZ/tnruI3t15EMBxlcVEGz96xmQ+9fDFPHGwcdz2zmhq58YB4Khfn2FPj45yyweWOSk21GR8QP7q3npZAD285v3zYfdaX57LjRBsx7TShlJomatqDGAMLCqzAc0GBlxMtXWP+nGrs7B61w0TC4qJMFhZ6eWzf8JPimjq7+c7fD/OypYVcu7pkyH3efN48mv093HT3CxyJTwb82756vvf4Eb752CHSXXbeuWkhFQVeXA4ba8qyefaOl/PAbZdQlpvOey9fRJ7XxXcfPzKmcauplZsomZiiThMt/m6a/T2smJM5+s5KTbIZHxDf9/xJ5uens2lxwbD7rJ+fS0coQmWzfwpHppRSw6uJT/QtzbEC4vn56XRHYr2T5UbT0BGiKNM95ue7ZlUJz1e24Bti4QVjDJ95aA+hSJTPv3olIoOvtoFV7vC1G9ZwsL6Dq/97C6/+/rPceu92vv33wzx+sJEbzysnO73/pW+v24E9fvUu3eXg1pctZMvhJt577/YR65HV1EtkiKdqcY4jjdZ38pJiDYhV8k1oQCwieSLyoIgEROSEiLx1Io8/0Esn29ha1cpbzy8fslwiYcN8a7KdXqZTSk0XNe1WQDw3x8ryLsi35kBUNY+tbGI8GWKw6ogjMcNzxwZPrvv5c1U8tq+BO65dzqLCjGGPISK8+bxynrz9ct572SI6QmE+cuUStn76Cv7n5vV87Oqlo47j3y9ZwAc2L+ZflS3cdM8LNPt1wY/pYqpLJhJXGZYWD/87p9RUmegM8Q+BHqAYuAn4sYismuDnAKxLLe+/bwelOWnceN7w5RIACwu85KQ7NSBWSk0bNW1B7DbpnRRXEZ8UfHwMdcTGGBo7useVIT6nLJs0p31Q+7W/7avnK389wJUrinnnprEtkZuf4eaOa5fz9H9s5iNXLqUo08O1q+eMqZ7Z5bBx+zXL+N17L8IfivDpB/ec0bLVauKluey4HbYpK5k43OAn0+0Y08RQpSbbhAXEIuIFbgA+a4zxG2OeBf4E3HI2xx04ecMXDPPInjrecvfztAR6+MktGwZdohtibGwoz9WAWCk1bdS0BynJ8uCwWx/DJVke3A7bmDLEvmCYnmiMonEEEk67tYzzi1VWQByLGe5/8RS33beD1aXZfPvNa4ctlZgMS4sz+djVS3lsXwOPjKPdnJpceV7XlJVMHG7oZHFxxpT+3ik1nIlsu7YUiBpj+nZu3wVcdjYHXf35xzAG3A4bkZghGO9hWZGfzv/cvIHVpWPrXbixIo/HDzZypKFT65WUUklX0xakNCet92ebTZifnz6mFpENHVaZwXgyxGB9Dv7giSPU+0J84Fc72HaijfMr8rjnHRvJSkLbq3ddupAHX6rhvx45wMuXF+Fx2qd8DKq/nHQXbVNUMnG00c+VK4qn5LmUGs1EBsQZgG/ANh8wKPoUkVuBWwHKy4cvdzDG8IHNiwn0ROmORHHYhMJMN0uLM7l0SWHvRI2xePN58/jRk0f52qOHuOftG8f8OKVU6mnq7CY7zYnLkbx5xTXtQc5fkNdvW0W+l+NjyBA3dloT78YbEJ9fYS3jfNt929lxsp3/un4Nb944b8Q5GJPJbhM+88qV3PzTF7j5nhc41NDJh69YwrsuXZiU8SjITXfSNgUlEy3+bloCPSzR+mE1TUxkQOwHsgZsywIGdZo3xtwF3AWwcePGYYvHRIQPXrFkQgaX53Xx3ssX8Y3HDvFCZQsXLMyfkOMqpWaWHSfbeMtdz/OhK5bw/s2LkzKGSNTqJtE3QwxWHfFTh5uIxcyIQWoiQzyeSXVgLeNstwk7TrbzmrVzR2xXOVU2LSng6pXFPH24iYWFGXzp4QO4HDbedlFFsoc2K2WnOXtXQZxMhxusDhNL9YqtmiYmMj1yGHCISN8Idi2wbwKf46z8+yULmJvt4eN/2I0vODU1Ukqp6eNUaxfv/t9tdEdiVMfbniVDQ2c30ZihNLd/QLygwEtPJNbbgWI4vRnirPFliL1uB6vmZuGy2/iPa5aNb9CT6AdvXc+Oz17FH99/CVcsL+Jzf9zHe+7dRku8A8XRRj+docn7zK5qDnD1d54etIDTbOxd73U76OqZ/OW1D9VbLfc0Q6ymiwkLiI0xAeAB4Asi4hWRS4DXAvdO1HOcrTSXne+9ZR01bUE+dv8undms1Cxz3wsn6QiFKchw4QtO3WpcA53uQdw/IF5eYmXL9o/Sn7exo5tMt4N01/gv8n36FSv43lvWMS8vffSdp4jLYcPrduBy2PjJLRv4xHXLefJQE7f/bhdHGjp5xXef4d9/8WJvgGqMobpt9FrrsfrttlMcbvDz8d/v7p3Ifc8zldx67zZ6IoNX5UtlGW4H/u7IpD/Ps0dbKMtN0w4TatqY6AK624A0oBH4NfA+Y8y0yRCDNankE9ct5x8HGnj6cFOyh6OUmkK17UHmZKdRke+lLZC8q0Q17VYwNzBDvLwkC5vA/tpRAuLOEIXjzA4nXLAwf9iV6KYDh93Gey9bxB3XWkHxzT99AYPhxao2frX1JAB3P1PJpq89yV/31A17nLZAD2//2VZ+++JJ2rt6+NCvX+KuLccGZX1jMcMfX6qhNCeNg/WdfOqBPXz1kYN86eEDOO0zfu2qcUt32enqiU5qwqg7EuW5o81sXlakHSbUtDGRNcQYY1qB103kMSfD2y6q4CdbKvn5c1Vcvqwo2cNRSk2R+o4QJVkestKco5YlTKbhMuCDSSIAACAASURBVMRpLjsLCzPYN1pAPM4exDPROy6u4I87a9hd7eNbb1zLAy9V819/PUAoHOWbf7OaGX3hz/t52dJC0p127t92io5QmHduWkjMGN7/qx3881gLTx9u4pt/O0yzv5s/7arl/m3VRGOG+fnp3HjePDLcTmp9Ib73lnX861gLv44H3a9ZO5dvv2ltb1u82cLrdhCNGbojsUnr+rH1eCvBcJTNywsn5fhKnYkJDYhnCpfDxtsunM+3/n6Yo42dLC7Son41e8Xr/vcAvzfG3Jzs8Uymel+ItfNycDts7K8d2BRn6tS0h8j3uoYMOFbOyRq1Z3pDZ4j15bmTNbxpwW4TfvjW9fzrWAvXry/lokX5vO+X2/nSwwfISXfyg7es49Z7t3PTPS9gF9hx0qr/ffxAI8FwlN3VPr56/Rq2nWjjiYON/ObdF3KipYvfbT9FQYabl062895f7sBuE7wuO1etKOY1a+fyiWuX09AZYnFhRtK6byRTRnxxFX93ZNIC4qcONeFy2LhoYcGkHF+pMzErA2KAt15QzvefPMr//vMEX3zd6mQPR6lk+iHwYrIHMdmMMdR3hLgmy40xTNniA0OpbQ8OKpdIWDU3iz/tqqW9q4ec+FK6fZ3JKnUz1by89N5a57k5aTxw2yX8btspFhVlcF5FHp+8bjkPvlRDdyTGV16/BoAv/mU/8/PT+a/r13Dj+eXceH450ZjBbhMuWJjPm86bB0A0ZnjiYCO/3nqSDfNzSXNZwV92unPUxZ5SWWK1wa7uqNVMdRI8eaiRCxfm9/6bKzUdzNqAOD/DzdUri3lkbx13vmbVuHoaK5UqRORGoB34J5CcHmRTpL0rTE8kRkl2GqFwlGA4SigcTcpiELXtQRYVDh1trJxrda/cX9vBxYsHZ9A6ghG6I7Fxt1xLBXabcGOfVnHvuWwR77lsUb99bjxvcF/loT7f7TbhqpXFXLVSF4boyxsPUidrYl1te5DKpgBvnQYt/5Tqa3YVRw1w9aoSmv09vHRSl3RWs4+IZAFfAD6W7LFMhfp4b9WSLA/ZaVYGsCMJ7ReNMdS2B5mbM3SGeOWceEA8TKeJWp9Vf1ySPfsC4rGYjWUOEymRIQ70TE5A/MLxFgAuWqRrAajpZVYHxJuXFeK0C3/b35DsoSiVDF8EfmqMOTXSTiJyq4hsE5FtTU0ztzNLvS8eEGe7yYlfEk9G2URHMEKgJ8rcnKED2vwMNyVZnmEn1p1osVayq8j3TtoY1ezVGxBPUob4+WOtZKc5WVEycB0vpZJrVgfEmR4nFy8q4LF99dqTWM0qInIucCXwndH2NcbcZYzZaIzZWFg4c2eFJzLExVkectKs2tz2KViidqBEd4uBHSb6Wj4nk4P1gxb5BKCqxWrZVp4/ffoIq9ThdVslE4HuyVmc4/njLZy/IE8z+WramdUBMcDVq4o50dLF0UZ/soei1FS6HKgATopIPXA7cIOI7EjmoCZTvS+ECBRlenozxO1jLJl48lAjd2+pnJBx1MYD4uFKJgCWlWRyrNHfu0hEXydaAuR7XWR5Zu/ELzV5vK7JyxDXtgc50dLFhQu1XEJNP7M+IN4Un7Sytao1ySNRakrdBSwCzo3f/gd4GLgmmYOaTA0dIfK9blwO2+mAeIwZ4m88eoivPHKAU61nvzpazRgC4uUlmfREY1Q1BwbdV9XcxXzNDqtJkjGJNcSJ+uELF+ZN+LGVOluzPiAuz0sn3+tix4n20XdWKkUYY7qMMfWJG+AHQsaYGVUk7AuGOdLQSVNn96j71neEKMm2WpUl2pm1j6GG+ERLgP11HRgD928bsdx6kHueqeSeZ/pnlmvbg7gcNvK9g1uqJSwttnqjD1U2caIloPXDatKk95ZMTGxA3BOJcdeW4xRnuVmu9cNqGpq1bdcSRIT183PZoZ0m1CxmjLkz2WM4E2+563n213VgE3j6Pzb39qwdSr0vRFm896/XZcdhkzGVTDyytx6A1aVZ/PbFU3z4iiVjWr2sqjnAVx85iNft4N8uWdDb+qumPcjcbM+INZSLizKw24RD9Z28eu3p7aFwlFpfiPkaEKtJ4nbYcdoF/wTUEO881U5VcwAR2H6ijQN1Hdz9to3a5lRNS7M+QwywvjyX480BWgNTP8FGKXXmqloCLCr0EjNwfIjygr6sDLHV2UFEyEl3jalk4pE9dawty+bDVyylsbObh/fUARCLjTwR95t/O0QkZvAFw+yuPn0FaqSWawluh50FBd5BGeJEyUZFgZZMqMnjdTvOOkP8+IEGXvfD5/jIb3fy4d/s5P/+dYI3bCjTvs9q2tKAGNgw31oCdccoy6UqpaaPQHeErp4oF8Qn6DTEu0gMJRSO0t4VpqTPYhY56c5RSybqfEF2Vfu4dvUcNi8rZHVpFp/74z5+v72ajV/+B595aA+xmOHRvXX9AvIdJ9v4y+46br6wHBHYcri5977a9tCoATFYE+sON/QPiBMdJjRDrCaT1+U4qxricDTGl/96gIUFXv7x0cv42/97Gfe+83y+pKvCqmlMA2LgnLJsHDbRsgmlZpBE3fCq+MpujSPUEfvipRF9l0LOSRs9IN563Jpse9nSQhx2Gz9863piMcPtv9sFwC+fP8nmbz3Fe3+5g/fcu41INEawJ8rt9+9ibraHO65dzjml2TxzxCrNDkdjNHSOLSBeXpzJydaufpm60z2INUOsJo/XbT+rDPFvXjxFZVOAT1y3nMVFGSwtzuTSJYVJWRVSqbHSgBjwOO2smpvFds0QKzVjNPmtAHhebjrZac4RM8SdISvwzfScnjaRk+4ctYZ4+4k2vC47y0qsSW7z87386Ob1vOPiCrZ8fDPv3LSA5s5ubjxvHocb/PxkSyWffGA3lc0BvvnGtWR6nLxsaSEvnWqnIxTmREsXxsC83LFliAEO1p9eoKOqJUB2mrNfYK/URLNKJs68hvi+50+wdl6OlkeoGWXWT6pLWFeey29fPEU4GsM5hgkzSqnkSmSICzPdFGe5RwmIrWxX3969OemuYVeD8wXDZKc52X6ijXXluf0mAV26pJBLl1gLlHz2VSv55HXLsduE6rYg33jsEAAffPliLo63dLx0SSHff+Iozx1ppiMemK8rzx319a2dlwPAzlM+NszPIxYzPHOkuTcjrtRkyXA78J9hhrjeF+JgfSd3XLscEZ08p2YOjfziNszPJRiOcrBu6NWhlFLTS/+A2ENDx/AlE4mAuF+GeJiSid3V7az7wt94ZE8dB+o6WD9/5ODVYbchInzl9Wu4+cJy/vLBTXzs6mW9968vzyHT4+Dpw028WNVGbrqTRYWj1wAXZ3mYk+1h1ylrQt7zx1s40dLFGzeWjfpYpc5GuuvMSya2HLbKgy5fNnNXtVSzk2aI4xJfejtOtrGmLDvJo1FKjaapsxu7TchLd1GU6eFYY/Ow+yYC4owBJRPBcJRQONqvtnHr8VZiBj7++93EzOlJt6Mpz0/nS69bM2i7w25j0+ICnjrUhNtpY2NF3pgzZ2vLctgZD4h/++IpMj0Orls9Z0yPVepMnU3JxFOHGynJ8rA8XvKj1EyhGeK4udkeSrI8Wkes1AzR1NlNQYYLm00oznLT2Nk9bCu00zXEp0smCjOtRToaB2SW99b4rMd0RxCBdeU5Zz3Wy5cVUt8R4kRLF+dVjC3ABji3PIeTrV0ca/LzyN56Xr+uVCcmpRARyRORB0UkICInROStI+y7XkS2iIhfRBpE5MOTNa4M95l1mYhEYzxzpJnLlhZquYSacTRDHGct0JGjAbFSM0STv7s3qC3O8hCJGVq7eijIcA/ad6iSiUTrsuMtAcr7dG3YV9vB5csKqWkL4rTb+tUdn6nLlhb1/n1jxdiXrT03Xkf8/vt2EInGuOXC+Wc9FjWt/BDoAYqxllB/WER2GWP29d1JRAqAR4H/B/wecAGTVjuT7jqzPsR7anx0hiK8bKmWS6iZRzPEfawvz6WmPTji5Byl1PTQ1NlNYUYiILb+HO692xn/cs9wnQ6IFxRYAXFVn/7BwZ4ox5r8nFOazS/fdQF3vW3DhIy1JNu6hOx22Fg9d+wlWWtKs7GJtYTzzRfOZ0mxXoZOFSLiBW4APmuM8RtjngX+BNwyxO4fBR4zxtxnjOk2xnQaYw5M1tgy3HbCUUN3ZHxlE0ca/YC1qqNSM40GxH0k6ohf0n7ESk17TZ2nM8RF8QU3BpY/JHSGwmS4Hf2WSy7KdJPusvdbUONAfQcxA6tKsynO8lCWO3H9fj9y5VJuv3oZLsfYP3a9bgdLizPJTXfy0auWTthY1LSwFIgaYw732bYLWDXEvhcCrSLyTxFpFJE/i0j5UAcVkVtFZJuIbGtqajqjgXnd1olj1zjriKuaAzhsQukY+mwrNd1oyUQfK+dk4bAJu+MrUymlpqdYzNA8oGQCrOWZh9IZivQrlwCrTGp+vrd3sQugtw3bZLQ2u3Z1yRk97ptvXEvMGO09nHoyAN+AbT5gqMsAZcB64CpgD/B14NfAJQN3NMbcBdwFsHHjxpHXFx+GN34lxd8dIdc79t+7qpYA8/LScWjrUjUDTchvrYh8IH5G2i0iv5iIYyaDx2k14N9TM/AzSik1nbQHw0RiprdkIvHnsCUTofCggBhgQUF673LIAPtqfOSkO6dVhmt1aTbnlJ39xD417fiBgWdeWcBQvT+DwIPGmBeNMSHgP4GLRWRSWiIlMsTjnVh3vLlLV1FUM9ZEncbVAl8CfjZBx0uac8qy2V3tw5gzOrFWSk2B0z2Ircywy2Ej3+sathexvzvSr8NEQkW+l1OtXUSiMQB2V/tYNTdLZ8irqXAYcIjIkj7b1gL7hth3N9D3Synx90n5RfW6rU4m42m9ZozhREuAioLRe2wrNR1NSEBsjHnAGPMQ0DIRx0umNaU5+IJhTrUGkz0UpdQw+i7KkVCU5aFxhJKJDPfgDHFFgZdIzFDdFqQt0MOB+g7Or8ifnEEr1YcxJgA8AHxBRLwicgnwWuDeIXb/OfB6ETlXRJzAZ4FnjTHtkzG23gzxODpNNHZ209UT7Z2sqtRMk5RCn4ko+p8s58QX5dhdM/hzpjsSxTfEylZKqanV5LcC374BcWGmmyb/cJPqBtcQQ59OEy0Bnq9swRi4ZLEGxGrK3AakAY1YNcHvM8bsE5FLRcSf2MkY8wTwKeDh+L6LgWF7Fp+tRA3xeALixOTURDtDpWaapEyqm4ii/8mytDgTl93GnmofrzpnLgDRmOHjv9/NX/fU4bALL376Sm2Or1QStQWsE9Pc9D4LbWS4OdIw9NLrVg3x0CUTYM2OP9rkJ91lZ+08rddVU8MY0wq8bojtz2BNuuu77cfAj6diXL0lEz1jL5lITE5doAGxmqFGzRCLyFMiYoa5PTsVg5xKLoeNFXMye5dLBXh0bz1/2FHNspJMOkMRjjb6RziCUmqyJTJX3j5lEIWZbpr93UPW/3eEImQNkSEuyHCR4XbwYlUb/zzawvkL8nDqDHk1y6W5rIA4FB57QHy8uQunXZib45msYSk1qUb95DfGXG6MkWFum6ZikFPtZUsL2VrVyr5aa3Ldj546ysICL19/wzkAHKofOgullJoa/u4IboetX/BamOkmHDX4gv3LmrojUXoisSFriEWEmy4o5+E9dVQ2B7hkUcGkj12p6S7NOf6AuKpZW66pmW2i2q45RMQD2AG7iHhEZMb2OH7XpQvJSXPy5YcP8Pvt1eyr7eC9ly1iYYEXl93G4WEuyyqlpoa/e/AkuYIMq19qYsJd775DLNvc1x3XLuf69aXYBF1yVinoLQkMjqNk4mRrF/PztOWamrkm6lTuM1h9Ej8B3Bz/+2cm6NhTLjvNyYevWMI/j7XwH7/fzaJCL69bV4rDbmNRUQYHNUOsVFL5uyP9yiXg9AS7gQFxZ29APLiGGMBmE775hrVs+fhmlpXo0shKOe02nHYhOI4McX1HiJLs6dO/W6nxmpAsrjHmTuDOiTjWdHHThfNpCfSwpDiTq1cW9y63urwkk+crZ3x3OaVmtMAQGeKiREDsHy4gHv7jzmaTCV2mWamZzuO0jzkg7o5EaQ30UJKl9cNq5pqxZQ2TzWm38bGrlw3avrQ4kwdfqsEXDJOdNnTGSSk1uYYqmSjMsL6MB2WIu62a4owRAmKlVH9pTvuYa4gb4wvilGS7R9lTqelLq9/HaXn8kqrWESuVPP7uyKAANyvNgctuGzZDnDVMyYRSarA0l33MNcT18QVxijVDrGYwDYjHaWk8INZOE0olT6A7OqiGWEQoyHDR3NnTb/tYSiaUUv2ljaNkot5nBcQl2RoQq5lLA+JxmpvtIdPtGHYBAKXU5LOWYh68OM5Qq9V1hqySieEm1SmlBrNqiGNj2rchniHWGmI1k2lAPE4iQnl+Oidau5I9FKVmraEm1UE8IB6my8RQ+yulhpbmtBMaa8mEL4TbYdN5NWpG04D4DMzPT+dkiwbESiVDNGYIhgeXTAAUZFir1fWVWMQj0SlGKTW6NNc4SiY6QpRkexCRSR6VUpNHvyHOwLy8dKrbgkRjg5eIVUpNLn/38Bnfwkw3Lf7ufu/NzlBYyyWUGqfx1BA3dIR0Qp2a8TQgPgPz87z0RGO9M2uVUlMnMEpAHDPQGjg9sa4tECY3XQNipcbD4xxflwmtH1YznQbEZ2B+vtXA/0RLIMkjUWr2SWSIhyqZKMwYvFpda1cPuV7X1AxOqRSR5rKNqQ+xMYaGjm7maIcJNcNpQHwGyuPrtZ/SiXVKTbnRSiag/2p1bYEe8tI1IFZqPMZaMtHWFaYnEtOSCTXjaUB8BuZke3DYhBM6sU6pKddbMjFEX+HEl3KD73Q5U1tXmFyvlkwoNR6JgNiYkefKaA9ilSo0ID4DDruN0tw0bb2mVBL4423UvK7BAXFRlpUhTtT3G2No6+ohVzPESo2Lx2XHGOiOjNyLuEFXqVMpQgPiM1Sel64lE0olQaJkYqiV59wOO/leF3XxrFVHKEI0ZsjTGmKlxiXNaS18M1odcUt8AmtBhr7H1MymAfEZmp+friUTSiXBSJPqwMpUJbJWbfEva80QKzU+iYB4tDpiXQlSpQoNiM9QeV46vmAYX1c42UNRalYJ9AbEg5duBqvGP1HX2NZlBcSaIVZqfNJc8YB4lNZriZUgh7pio9RMogHxGertNNGmWWKlppK/O4rLbsPtGDogLs729NYQJwLiHO1DrNS4eMaRIfY4bTjtGk6omU1/g89QaY4VEFe3BZM8EqVmF393eNjsMMCcLA+tgR66I1FaA9YVHM0QKzU+Y60h7gxFtFxCpQS9xnGGynLTAKgeIkP8l921PLKnnvL8dO64dvlUD02plBbojg5bPwxWhhigsaOb9niGWBfmUGp8TpdMjNxlwgqINZRQM5/+Fp+hnHQnXpedmvb+GeLnK1v4wK9e6u3h+IYNZSwqzEjSKJVKPZ2hyJCLciQklpCt84VoDfTgsAmZI+yvlBpsrJPqOkJhzRCrlKAlE2dIRCjLTR9UMvHPo83YBB79yKW4HDZ+9uzxJI1QqdQU6B45IE4sIVvfEaKtq4ecdBciMlXDUyoljL2GOEKWZohVCtCA+CyU5qYNCohfON7K6tJs5ud7uX5dKX/YUU1rvPWTUursBXoiQ65Sl5AomWjwhWgLhMnTVeqUGrdEyURo1C4TYS2ZUCnhrANiEXGLyE9F5ISIdIrISyJy3UQMbrory03rV0McCkd56VQ751fkAfBvlywgFI7x8J66ZA1RqZTjD0VGrCHOdDtId9mtkgldpU6pMzL2PsQRMt160qlmvonIEDuAU8BlQDbwWeB+EamYgGNPa2W5aXSGIviC1kz23dU+eiIxLliYD8DS4gyKMt1sq2pN5jCVGmQmn8j6uyNkDLFsc4KIUJJtLc7RFujRDhNKnYFxBcSaIVYp4KwDYmNMwBhzpzGmyhgTM8b8BTgObDj74U1vZblW67WaeNnEC5UtiMB5FbmA9cV8XkUe26rakjZGpYYxrU5k733+BHdvqRzTvv7ukUsmwJpYd7K1i7ausHaYUOoMuB1WeDDSwhzhaIxgOKqT6lRKmPAaYhEpBpYC+0bY51YR2SYi25qamiZ6CFNmYOu1rVWtLCvOJKfPJdoN83OpaQ9S59N+xWr6mG4nsr/bdoov//UA/zzaPOJ+oXCUrp4ouaMstHH5skL21Pho9nePuq9SajCbTfA4bSP2IfbrKnUqhUxoQCwiTuA+4H+NMQeH288Yc5cxZqMxZmNhYeFEDmFKleYkAuIgsZhh56l21s/P7bfPxni2eFtVGx2hMMaYCXv+mvbgqE3TlRqLkU5kp+IEtj2+BPp//H43/vjSzEM5vRSze8Tjve2iCublWe9PrSFW6swk2ocOR5dtVqlk1IBYRJ4SETPM7dk++9mAe4Ee4AOTOOZpI8/rIs1pp7otSGVzgM5QhHPn5fTbZ+WcLNJddu55ppKNX/wHP3zy6IQ8d7AnyjXf2cJXHxn2vEOpMRntRHYqTmDbunpYMSeLmvYgTx5sHHa/RMeW0TpHeJx2PnndCgCK432JlVLjk+a0j1gy0RGyTmS1ZEKlglEDYmPM5cYYGea2CUCsJp8/BYqBG4wx4Uke97QgIiws9LK3xseuU+0AgwJih93GufNy2FXtI2YMP9lS2TsJ72w8f7wFf3eEB3ZUa5ZYnbHpcCIbicboDEW4fFkhNoHDDZ3D7tsWX4p5LFnf61aX8JtbL+TqVcUTNlalZhOPa2wZYu1DrFLBRJVM/BhYAbzaGDOrimWvXFHMiyda+fv+BjLcjiFXpXv7xRXcsL6MX737QjpDEf73n1Vn/bxbDluXrjtCEf6+v2Fcjz3a6KcnMvJynCr1TZcT2Y74l2pxppuKAu+IAXFLoBtgTJ0jRIQLF+bjdtgnZqBKzTJpTvuICZdOzRCrFDIRfYjnA+8BzgXqRcQfv9101qObAV55zhyMgUf31bOmNBu7bfCKWNesKuFbb1rL+QvyuGplMfc8U0mzv7v3fmMMsdjg2mJjzLA1x1sON3HpkgJKc9K4f9upMY/3aKOfq7/zNO+5dxuRqAbFs9y0OJFtj9cF53pdLC3K5HCDf9h923pLJrQuWKnJpjXEajaZiLZrJ+LlEx5jTEaf230TMcDpbmlxJkuKrKzwueU5o+wNd1y7jGA4yhf/sh+wJsZd9Z0tnPflf/DR3+7k8QMN9ERidIbC3PLTrVzz31vYU+3rd4ya9iDHmgJctrSQ69eX8uzR5jGXYfxpZw0xA08eauJzfxq2EYhKcdPpRLYtPqEuO83J0uIMTrQEhs1KtXaFEbH2VUpNrjTXyDXEpzPEGhCrmU9/iyfAK9bM4buPH2Ft2egB8eKiTG67fDHfffwI6S4H/zrWTIu/h83Li3jiUCMPvFRDdpqTnHQnNW1Bcr0uXv+j5/j8a1Zxy4XzgdPlEi9bWkhlUwBj4FRrF9ml2SM+tzGGh3bWsmlxASvnZnHXlkquX1fKxvjKemr2MMacAAZfzkgCX9DK+uaku1hakknMwLEmP6vmDv59bgv0kJ3mxGHXVeeVmmwep51mf8+w95/OEOsJqpr5NCCeAG+9oJx6X4hNSwrGtP9tmxexq7qdh16qIc1l5xf/fj4b5ufSE4nxzJEmHt5dx/66Dn5yywY2zM/lo/fv4rMP7aWmLcgnrlvOAzuqmZ+fzpKijN5a4FOtXaweJSDeeaqdk61dfPDli3nlOXN48KUavvboQe5/z0VY5aRKTb1Ey7WcNCfprkzAmlg3VEDcqivPKTVlRq0h7o7gdthwOfQEVc18GhBPgOIsD197wzlj3t/tsPOLfzs/XiNsNUAHcDlsXLGimCtW9J8Vf/fbNvLpB/fwP08foyTLzYtVbXzmlSsQEeblWavlnYovDjKSP+2qxeWwcc3qEtJdDj50xRI++9BenjrUxOblReN4xUpNnERAnJvuIs1lx2GTYeuIWwM95GlfYaWmRJrTTlfP8H3BO0NhzQ6rlKGndUkkIr3B8EjsNuHzr17F3GwPd/55Px6njTdumAdYtZSZHgfVbaPPiXr6cBMXL8onK/4BduN588hOc/LYvvqzeyFKnYX2oFUXnOlx4HLYWFjo5cgwnSbaunp0KWaVMkQkT0QeFJGAiJwQkbeOsr9LRA6KSPVUjC/dbaere6Q+xBFtuaZShgbEM0Say86nX7kSgNedW0p2n+Vo5+Wmc6p15AxxbXuQyqYAmxafLutwxnsk74z3UFYqGdq7rLrgxMnh4qIMjjUFhtxXM8QqxfwQqwd4MXAT8GMRWTXC/v8BDL9yzQTLcDvw90SG7XbUGYrohDqVMjQgnkFesaaEb7zhHD569dJ+2+flpXFqlAzxs0ebAQbVOa+dl8Phhk4CIyyXq9Rkau8Kk9Ona0RpThq17cFBX8LGGNq6esjL0IBYzXwi4gVuAD5rjPEbY54F/gTcMsz+C4Cbgf+aqjF63Q6Mga5hOk1oyYRKJRoQzyAiwhs3zqMos/9StGW56VS3dQ17Fg/w3NFmCjLcLCvO7Ld93bwcYgb21PiGeaRSk6s9GCa7T9Z3bk4a3ZFY7zLNCZ3dEcJRoxlilSqWAlFjzOE+23YBw2WIvw98Chgx+yEit4rINhHZ1tTUdFYDzHBb2d/hEiadoQhZaZohVqlBA+IUMC83jVA4Nmx7nFjM8NzRZjYtzh/UTWJtfKnpXVo2oZLE19VDbp8SoDnZaQDUtof67ZdYlENriFWKyAAGZiJ8QObAHUXk9YDDGPPgaAc1xtxljNlojNlYWFh4dgOMB8SdwwTE/lCkdx+lZjoNiFNAWe7InSYONXTS7O/hksWD28LleV2U56VrHbFKmrYBJRNzc6wrILW+/omwRMY4XwNilRr8QNaAbVlAvxml8dKKrwMfnKJx9RotQ+zvjpDh1pIJlRo0IE4BidZrw3WaeG6Y+uEEPT+QdAAAFo1JREFUnVinkqm9q4ecASUTAHXtQwfEmiFWKeIw4BCRJX22rQUGLiG6BKgAnhGReuABYI6I1ItIxWQO0BsPiP2hwQFxLGasgFgn1akUoQFxCijLtQKI4TpNPHu0mUWF3t5L0QOtLs2izheivWv4FYmUmgzRmKEjFOm3FHO+14XLYaPW179kIhEQaw2xSgXGmABWcPsFEfGKyCXAa4F7B+y6F5iHtcz6ucC7gIb4309N5hgTGWL/EBnirviCHZlaMqFShAbEKcDrdpDndQ0ZEPdEYrxQ2dqv3dpAiZKLgTWbSk22jmBiUY7TAbGIMDfbQ+2ADHFbVyJDrJdoVcq4DUjDaqX2a+B9xph9InKpiPgBjDERY0x94ga0ArH4z8M3CZ4AiexvYIjFORJZY80Qq1Shv8kpYkGBl8rmwb1bd5xsIxiOsmnJ8JMrei9R+4KsnDuwpE2pyZMIcnMGZH3nZKdRNyBDXNMWJMPt0Ek8KmUYY1qB1w2x/RmsSXdDPeYpoGxyR2bxuu3A0CUT/u5wfB99P6rUoBniFLGo0EvlEIsZPHe0GbtNuGBh3rCPnZsdn8TUPvpqd0pNpPZ4hrjvQjNgnaQN/H082uRnUaF3UKcUpdTkyIxPmPMPsVpdZzxI1pIJlSo0IE4RCwszaPZ344sHGAlbj7eyujS7d7nmoRRkuHHaZVDNplKTLVG33rfLBFidJho6QkSisd5txxoDLCocMmmmlJoEHqcNmwzdZSIQD5K1ZEKlCg2IU0QiUKhs8vduM8awv66DNaUjl0HYbELJEDWbSk22RFlESXb/xWbmZKcRM9DY2Q1Yk3rqO0IsKtKAWKmpIiJ43Y4hJ9X1lky4NCBWqUED4hSxsNAL0K9sorotSGcowoo5o9cFz8lOo04n1akpVtcewm6TQasv9vYijp+kHWu0TvQ0Q6zU1MocJiDuLZnQDLFKEfqbnCLK89Jx2IRjfTLEB+o6AMYUEJfmpPFiVeukjW8m6InE+OojB9l+ohWv28HXbjiHOl+IP++qRQTeuGEea8qyh318JBrjSKOfOl+QixcV4HHap3D0M1OtL0hxphu7rX9dcGKiZ017kI3Q+3u9uMg71UNUalbzuh1DTqpLlFHoJFeVKvQ3OUU47TbK89P7ZYgP1HUiAstLBq0EOsicbA/1vhDRmBkUnKSS6rYu3A47hZlujjcH+Nmzx3nyUCOfeeVKjjR08rPnjnPxonz21vi47rvP4O+O4HXZ/397dx5ddXnncfz9vbnZ90A2AgkKgSAIiGjdaEGo2rpVcQWdOtNWj9baxdbac6ZqnbZ2OT3T1rq0dZwqbadOHRdcOnYclxZFRiiCBSEGBFmSkBCy3IQkJPeZP24SE7LdhEvuks/rnHuO+f3u75cnj883fO+T5/d96HSO5zdXsupzp/Od1Vvp8Pu57JQitlc3kZYYz5KZudy9egvbqgKbTN26ZDpfP39mmH/ayFdZ30phVv/62FMnpJIU72HTngYunV/EjhofXo9RMkEJschYSkvyDlx2rSshVpUJiRUayTFkWm5anxnirZUNTJ2QSkoQa7wKs5Lp8DtqfW3kZyQN+/5otPtgMxffv4aUBC8/v/YUbv7tBnxtHUxMS+S2P2wE4MK5hTywYgE7a3zc8eRmFpRk85Vlpeyvb+WSX6zhovvXkBDnoSAziW8/u4XUhDhaO/w8/PoOclIT+MHlJ/PSlioeW7uLT59cyBceX09ivIePl+byjfNn6h+Po1Q2HGZOUf9Z9wSvh/lTsnr+alFxwEfxhBTi47TKS2QspQ22ZKKtgwSvhwSvYlJig/51jiEn5qby+vaanlne9yqbmDPMA3XdirrWbO6rPxyTCfHug83ctGoDZoavrYOrfrmWzOR4XrhtETmpCVzx0JvU+tq4++KTgEDVjidvPqvn+ul5afz4inn8+KVt/OiKeZxaks3OGh8lE1Kpamjluc37Wb5gMgWZScwpyuSi+9dw2YNvkOj1UFaQw+Nrd7Hugzr+7bMLe5YDjHfOOSobWjlvdsGA50+bmsMDr1bga+tgR40qTIiEQ2qCl6oBKhD5WjtUck1iSkhGs5n9FlgKpAJVwI+cc4+E4t4SvGm5abR3+vmg1kd+RhIf1rVw5anB1W/v3ta5sr4Vikf3/Z1zbNnfyKSsZHJSI2N73YbDR7hp1Xre2lmH12M8esNpmMHdq7fwvc+czPSuqgXP3no2vraOfg939Xbh3EIunFvY83VpfmApSvGEFL64ZHrP8TlFmZxblsfr5TU8snIBi0pzeXX7Ab70+4389OVyfnTFvOP000aXuuZ22jr8FGYO3OenTc3B7+Av5TXsPtjMsln5Y9xCEUlL8g5Sdq1DJdckpoRqNN8HfM4512ZmZcBrZrbRObchRPeXIJx54gQAXtte07PjXDAP1EHf3epGau2Og7xRUcvL71WzraqJzOR47rroJJYHmYyHWqffce9zWzAzNu6pZ+v+Bu78VBkXzS3s2ab6ldsX97kmPSme9CFqNY/Uv149n72HWpg9KbAcYMnMPJ754lkUZGp2uFt3ybXCQfpkQUk2HoM7/2sznX7HRb0+jIjI2EhL9NI0YNm1DpVck5gSktHsnNvS+8uu1zRACfEYmpKTQllBOi+/V015dRMpCXGcMW1CUNdmJHlJTYhj3whrEdc1t7PykbcwM+ZMyuA7l8zm+c37uf2Pm2hp7+D6M6cGdZ9Ov+PFdyv5sK6FWxZPO6bdyB57cxePrd1NQpwHh+MXKxZw/iB/lj9eMpPjyUzuuzZ2et7wDzeOJ90l1bpLrB0tLdHLSZMy+Pu+Rm44a+qAa41F5PhKSwzMEDvn+vxebmrVDLHElpCNZjN7ELgBSAY2Ai+G6t4SvGWz8nno9R1s3tvARXMLgy6JY2ZMykpm36GRJcRv7TyI38GTN53BwqmB7aGvO6OEm1at5+7VW5ick8KSmXlD3qPigI9bf/+3ngoNmcnxXHdGyYja0e3Dgy38+KXtLJmZy8PXn0p7hz+kM78SOt0J8WAzxABLy/JpOHyE28+bMVbNEpFeUhO9+B20HvGTnPBRKcnm9g7yh1hiJhJtQvZ4qHPuFiAdWAQ8BbQN9l4zu9HM1pvZ+pqamlA1QYCls/Lo9Dta2ju5auGUEV07OTt5xDPEa3ccJDUhjnlTsnqOxXmMn11zCtPz0rj3ua10+t2g16/beZDLHniDmqY27r/2FBaVTuT7L77HV594h6t+uZam1iODXtubc443K2pZ/vCbeD3G9y47mURvnJLhCFbZ0EpCnIcJQ6w3/8qyUl69fbH+P4qESVpiIAluauv7u9jX2qGqORJThk2Izew1M3ODvNb0fq9zrtM5twaYDNw82D2dc79yzi10zi3Mzc099p9CesybnEVueiIn5qZyakn2iK4tGkVC/OaOWk47IadfOazURC9fXjqDD2qb+Z+tVYNef9+ftpGZEs/qL53DxfMm8cPlc/F6jJe3VvN/H9TxxNt7hm3Dc5v2c/YPXmHFI+tIT/Tyx5vPVCWHKLC/oZXCrCQ8Q9S9NjO8KrUmEjbdyyKa2zr7HPfpoTqJMcOOZufc4lHed9oorpNj5PEYD61cQHJC3IjX4RZlpVDfciTwiy6IT/7Vja3sqGnm6tMGnom+YE4BxTkpPPz6Ts6fXdCvPeXVTbyzp55/vnAWRV0J7KSsZP56x7kkJXi47pF1/Psbu7jhrKmDJkUHGlv51lPvUpyTwhfPnc6l84u0c1KUqKw/PGiFCRGJDN0Pzh29W12Tyq5JjDnmqRczyzOza8wszczizOx84FrglWNvnozGwqk5PdUNRqIou2u73CDXEb+18yAAZ544ccDzcR7jC4tO4J099fzkz+U413fpxBNv7yE+zrjslKI+xzNT4kn0xvH5RSeyr/4wX/vPTdz17N+pONDEmvdr+fxjb/Pu3gYAvv/ie7R3+Hlw5QJWfqxEyXAU2V3X0lP1Q0QiU/cscO/NOY50+mnr8Ov3rcSUUIxmR2B5xMMEEuzdwFecc8+G4N4yhiZ3J8T1LcwMYrvn18tryEyO7ynxNpBrTy9my/5GfvFqBQeaWvnh8rmYGYfbO3l64z6WzcpnQlrigNcum5VPWUE6f/p7JXEe43frPqTT7zALrF1eUJLNX9+v5UvnTmfqRG3pG03qmtupaWpjZr4qb4hEsu6kt3ct4mZt2ywx6JhHs3OuBvhECNoiYTY5K/gZ4iOdfv73vQMsnZVH3BBrQL1xHu67/GTy0hP5+SsVFGQkcdvSUm77w0YOtbTzj2efMOi1cR7jhdsWAVDf0s79r1SQlujlyoWTuWnVBjbvbeCbF5Tx+UWD30Mi0/auiiLBfPASkfDpTnp7zxA3dS2f0BpiiSUazdJjYloiCXEe9gaREK/dcZCGw0e4IIj6vmbGVz85g6rGVn7+SgUP/2Un7R1+vnPJbE4/IWfIa7uT7Qlpidxzyeye46tvPQe/cyTFxw12qUSw8molxCLRIH2AhLj7v7WGWGKJRrP08HiMSVlJ7A2i0sR/b6kiJSGOj88IrkqIWaAU2oLibLZVNVFWkM41p49yj2ggwavKA9FsW1UTWSnx5KUPvFxGRCJDRnKg5GHD4Y/KrmnJhMQijWbpY3J2yrBLJjr9jj9vqWJJWd6IZmjj4zzHlARL7Nhe1ciM/PRj2pFQRI6/pPg4slLiqeraah3o2cpZSyYklmiaTfooyhq+FvEL71ZS62vn4rmTxqhVEkucc5RX+yjTcgmRqFCQkURlr4S4uwSblkxILFFCLH0UZSdT09RG65HOAc93+h0/e7mcGflpnHdS/hi3TmLBvvrD+No6mKEKEyJRoTAziarGjyZKmjVDLDFICbH0UZwTqAu762DzgOef37yfHTXNfHnpjCF3GBMZTHeFCc0Qi0SHgszkPksmqhvbAMhKHnzbdZFoo4RY+pg7ObChx8YP6wc8/+gbu5iel8an5gxfXUJkIGsqaknwephVOHj9ahGJHIWZSdT62mnrCPzlsKLGx5ScZJITVOVHYocSYunjhImpZKfE87fdh/qdqzjQxKY99Vxz2hTNDsuo+P2OF9+tZPGMXD2hLhIlCrq2WD/QNTP8fnUT03PTwtkkkZBTQix9mBkLirP524f9E+InN+wjzmNcOr9ogCtFhrd+9yGqG9u4cG5huJsiIkEq7EqIKxta6fQ7dtY2U6pnACTGKCGWfhaUZLOjppn6lvaeY51+x9Mb97JkZi65qh0ro/TC5v0kej0sm6UHMkWixUcJ8WH21LXQ3uFnep5miCW2KCGWfk4pzgJg456P1hH/9OVyqhvbuHLhlHA1S6JcU+sRnt9cyZKZeVouIRJFCjKTAahqaOX9Az4ASpUQS4xRQiz9zJuchcdgY9c64ic37OX+Vyq4euEUlVqTUfvJn8upa2nn5sXTwt0UERmBtEQvaYleKhtaef9AoEqMZogl1ighln5SE73MnZzF8+9W0th6hO++sJXTT8jhu5fN0c5iMiobdtfx+NpdXPexEuZNyQp3c0RkhAoyk6hqaKWi2kdBRhLpSfHhbpJISCkhlgHd+PET2VnTzOd+8zb1LUe481NlxMdpuMQSM8sxs6fNrNnMdpvZilB/j7aOTlat3cW1v15HYWYyXz9vZqi/hYiMgcLMJCobA0smSvM1OyyxRwv5ZEAXzC6grCCdt3cd4pzpE1lQnB3uJknoPQC0A/nAfOAFM9vknNsy2huu31XH+wd81DW3s72qib++X8OhliMsKp3IT6+eT2aKZpVEolFBRhLrdu6n0zn+6eyp4W6OSMgpIZYBeTzGN86fyY2rNnDb0tJwN0dCzMxSgeXAHOecD1hjZquB64E7R3vf3761m2fe2Q9AUVYy55TmcuWpkzln+kTVrhaJYidNyuCZd/Zx1cLJ3LJ4eribIxJySohlUEtn5bPxrk+SobVisWgG0OmcK+91bBPwiWO56bc+PYs7LigjKyWelAT9ehGJFZ89cyrXnl5MUrx2p5PYpH+xZEhKhmNWGtBw1LEGoF+1fTO7EbgRoLi4eMib5mckhah5IhJJPB4jyaNkWGKXnpISGZ98QMZRxzKApqPf6Jz7lXNuoXNuYW5u7pg0TkREZCwpIRYZn8oBr5n1XiA+Dxj1A3UiIiLRSgmxyDjknGsGngLuNbNUMzsbuBRYFd6WiYiIjD0lxCLj1y1AMnAA+A/g5mMpuSYiIhKt9FCdyDjlnKsDPhPudoiIiISbOefC2wCzGmD3MG+bCNSOQXNiifps5CKlz0qccxH59Jri9bhRn41cpPSZ4nV8Ur+NXCT02aDxGvaEOBhmtt45tzDc7Ygm6rORU5+Fhvpx5NRnI6c+Cw314+io30Yu0vtMa4hFREREZFxTQiwiIiIi41q0JMS/CncDopD6bOTUZ6Ghfhw59dnIqc9CQ/04Ouq3kYvoPouKNcQiIiIiIsdLtMwQi4iIiIgcF0qIRURERGRci+iE2MxyzOxpM2s2s91mtiLcbYo0ZvaambWama/rtb3XuRVd/dZsZs+YWU442xouZnarma03szYz+81R55aa2TYzazGzV82spNe5RDN71MwazazKzL425o2PIorX4Chmh6Z4HRuK1+AoXocXKzEb0Qkx8ADQDuQDK4GHzGx2eJsUkW51zqV1vWYCdPXTL4HrCfRfC/BgGNsYTvuB7wKP9j5oZhOBp4BvAznAeuCJXm+5BygFSoAlwB1mdsEYtDdaKV6Dp5gdnOJ1bCheg6d4HVpMxGzEJsRmlgosB77tnPM559YAqwkMPhneSuA559xfnHM+AgPycjNLD3O7xpxz7inn3DPAwaNOXQ5scc790TnXSiA455lZWdf5fwD+xTl3yDn3HvBr4IYxanZUUbyGhGIWxetYULyGhOK1S6zEbMQmxMAMoNM5V97r2CZAn2D7u8/Mas3sDTNb3HVsNoH+AsA5t4PAbMCMMLQvUh3dR83ADmC2mWUDk3qfR+NvKIrXkVHMjpziNXQUryOjeB2dqIpZb7i+cRDSgIajjjUA4+7T1zC+CWwlEIjXAM+Z2XzUf8FIA2qOOtbdR2m9vj76nPSn8RY8xezoKF5DR2MteIrX0YuqmI3kGWIfkHHUsQygKQxtiVjOuXXOuSbnXJtz7jHgDeDTqP+CMVQf+Xp9ffQ56U/jLUiK2VFTvIaOxlqQFK/HJKpiNpIT4nLAa2alvY7NA7aEqT3RwgFGoJ/mdR80sxOBRAL9KgFH91EqMI3AmqdDQGXv82j8DUXxOnqK2eAoXkNH8Tp6itfgRVXMRmxC3LXW5CngXjNLNbOzgUuBVeFtWeQwsywzO9/MkszMa2YrgY8DLwG/Ay42s0Vdg/Be4Cnn3Lj79NrVN0lAHBDX3V/A08AcM1vedf4uYLNzblvXpY8D/2xm2V0PAXwB+E0YfoSIp3gNjmJ2eIrX40/xGhzFa3BiJmadcxH7IlCm4xmgGfgQWBHuNkXSC8gF3ibwJ4Z64C3gk73Or+jqt2bgWSAn3G0OUz/dQ+BTfe/XPV3nlgHbgMPAa8DUXtclEigj0whUA18L988SyS/Fa1B9pJgdvo8Ur2PTz4rX4ftI8RpcP8VEzFpXo0RERERExqWIXTIhIiIiIjIWlBCLiIiIyLimhFhERERExjUlxCIiIiIyrikhFhEREZFxTQmxiIiIiIxrSohFREREZFxTQiwiIiIi45oSYhEREREZ1/4fwTGrw9LcOLMAAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.plot_layer_stats(-2)"]},{"cell_type":"markdown","metadata":{"id":"NKksHTIz2N2f"},"source":["The percentage of near-zero weights is getting much better, although it's still quite high.\n","\n","We can see even more about what's going on in our training using `color_dim`, passing it a layer index:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"v1FZWMqo2N2f","outputId":"23b860db-dfe9-4e29-a9ce-37be26673150"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjwAAADNCAYAAAC8XqoPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2dzY5kSZqWzf8iIzIrc6qqK5lWA6JpDaAZaYbZgAQIiQ0bJJbcAkskuBtug9sYwYLesGAxQgIBhdQz9ZcZ4X8sanok/77Hw9/0yO7OMD3Pzk/asWPHjp0Tlu7PeW1xPB6HiIiIyMwsf9cNEBEREflN44RHREREpscJj4iIiEyPEx4RERGZHic8IiIiMj1OeERERGR61o/9479c/ptn8876//u3/6RtW+xPP3/1X79rZY5/9surj7n+xc9PPv/w99+2Ml//w00/5qrXVdu6+baXufm2X44vf/mXvf7N6QG++cWrVubdV32ue6DRAFPizTen7VjAKFk9wEbYtLtdXDwecoBjbk8/b/tpj9X7vm0BdY1F37TclfPe9zJE3W+MMbYvT0/05vveiPs3vTOO0K7t69ONy4dehsbc+ofeLrqW6/enG6kN1F8raMe7L08LHm76jlg/cKzjFdpO13b9LnyslWLLXS9C2+g+qtuOMM6p7w8r6Ix6y2z7jodN32+xz673YV32pe4Kx8CyPAd2d1Sob1q97wc9Lk/3pWcMjR0a+/Qsvf/8tCGre+jXR/9inme5hY1hv27Kfbp9BYVgnNN5E3UsLuG5RudNfVif56v7vt/+BbQhaCvVdeh/Xsd/+Y//4ewTxG94REREZHqc8IiIiMj0OOERERGR6XHCIyIiItNzpYL16bF72T2lzfenUtVh0+d3oR+JHG9vTj4/vIb6SQqkaWYpd7jpRZYgHW6/uG3b1t+dGnIoUYLslQp5tW0krxH7F723X/3fU0Pu+5+CvUZ9CP1Tz4nkXTrvKgWOAeLmGOO4KMItyHckMqOkXg75/vdAUCaRj6TG7y+LoSS2Nul3jDGg/VVEfPW/u6n7/sve2C3ckxWSio9wjXDf2lY6HI0dEnpBLN/8cPoZJXgQWweMnXqeNL7o/luAFN33ywTlKv2OEQrioQhMInbdGSVvuN57kNnrf8+PIHRXSXoM7p/7N5f7jNpA503HXJeXIw70DKCxD2OgSsoovNOLFwCJv7uXp5/xuQntevgM+r9c390dtAHq3wfjifqQ/qY8ht/wiIiIyPQ44REREZHpccIjIiIi0+OER0RERKZnGmmZqLLl/q6f7lM64HhzujdKbjClTGRUkl+3IKNWQZkgSZOSP1ORuQpyKBiG/PDVaWdgejEl6AZTdRLaViTvksxJYuD+chkS65Z7EiRPP5M4TdIvyflVgOa02UzAHJRK+93pAe4/74UoETgRNY8kW2L6L5RrlfdNmDpNwxXGwO7laUOqxDzGGFsQNxMRmMbhgdx/CiwvEi6mmqPE2svta9L5GGNRGoJlSKYO3l2gZ0yakF3PiZ+t2b1M6ef1OYASNrSVkolrmjCJ05iQjcL7aTkSv+mrC3qWUspxhZKcqb+wHa0RfdOuv2eD160moqMwDn34GH7DIyIiItPjhEdERESmxwmPiIiITM+zdHhWb/uq5PTbcPU87r/4uA7P8pvTH/XX96+j/ej36fp76x4Cm26+6dvuf9J/EK2/+ZJTsIMQNfytm1bOLb+30srGFJKYBJ+Rq7EHd4m8hersrGBVbOr7PYU8wu/TtRyVodA8dFmSEDXymWih5NJn9Ns9ulhQbkXhliWYbHV/2SMag/tnV/pnT7/n03/DaFu9luS7hOGNGMxYyu3DQESqvwcPQhkKfSRvr4xrdi4ebeFfQ8GJ9T5KV/rGIL1gFWz0CeGebOGscD3ovDH8FbzGVgauUQ35PFeuhpQS6EbRPV+gMYEru4PDWP82jNG9oTq+xuC+Jv+ueZOhYkPtam0I7+XH8BseERERmR4nPCIiIjI9TnhERERkepzwiIiIyPQ8S2k5pQpgFI72FOpq6fdvYMVrCqcjYbEIWet3vQwJnqv7brnVlZ8XYNKSyJwKvZsqmJEUTcIcyoOnn0lgJEGZQvnWIE9XqA9xBWcMEKyf+/EoGBBl2iJwo3RIIj6FidVrBOOLAvgICpGsQm8ayJaMMZQ0ScwOAjxRnIbVoTGwDoT6FsAHsigG0QVhaHSvJSLtGDDGqL8wpA3qCs4pEY/H4Odau7dCsZyk5TqG6XwoWA9fEgm2ofxP1ygIjKR2sQANL3aUbenK6ATdI7X/6TrSeePfIxCekzbQedNK660ueAY/ht/wiIiIyPQ44REREZHpccIjIiIi0+OER0RERKbnWUrLx7/Zk5ZJCqtyIsqWT+HrX518XBx+0tsAQt5xSdbWqbRFwmpd/X2MMe6/6AUjyRQgQTlZkXh3RyZc30SSYUugpURPcjlhW0uIRUOvb0qSkMcYY1/uFl7ZuO9H1y0RrCl9GVcND1xXGoco+YJwW88JJW8YOyh9lnYc4XxIVkwSaGmc0HhavYf6Iem1yaKwYjQKpOS11gBakKRx7ONK34/XTWXG4PR2bH+Vlmkl7lAEbi8lULvCBOsmqQdjYowzz79grGACdPAyw48HLYcLJfXkWUf3KKU2E8dAsMYV56H69Q/QjpvLgjW9gEDUl1XohYoPjVr2Gx4RERGZHic8IiIiMj1OeERERGR6nPCIiIjI9DxLaXn5zQ9t22Hzedu2KsmcT0mojMBEXShHInAxSCkV+trZKaaphv4XSmdl1KxRAoX64QS2r04PuvkO0otfkQUKm6qkHiZrU5IzyYmtDImCaZJsbRsdj6qnlO7S1ySfYzgyyJbHBQiLReZEwZckb5IygycOyqJwTq2vqe9hHGJb6R6psjZckAUIpElicvqCAF24QxOgoS7o51T+r+OJX7yAdoF8XIXeNAkZXy6o4zCUtekcMaX55vHPY/S/KWOMsQvS25Pn6Llyta9J3qVrhH0RPJ/onqH7b18H4oAxQH0PfUjtry+h4IsXcB0fw294REREZHqc8IiIiMj0OOERERGR6XmWDs/x2+/7Ngjzq8FwD28+7mrpu7/3s9KGXua4ynyH9tsqNDV1TepvpOlvxbgSN/zmXqfJabAe1V+31d9txzjjENDIrecULqRLAYLU/zffnFa4IzeH3InAzcBVf+k3eOif5Hfz1AeCn+XbNYqcpDHYVWs+Qi+D7Q/cA3QDyDVJwxvrNlh5nXZMVypv+4EDQ+GQbZxTCCf5J9B+XLm6toPagM+nvu1jhgVWB4nCQfFZl5zjGD3gD9q6e9m3Ub/WdlAb8HlLAZ7VqYLzppXX0fWhsNSyK65UT14dOVvlmUXXYwkBnsfEB0od2UfwGx4RERGZHic8IiIiMj1OeERERGR6nPCIiIjI9DxLaXm8/aJtQpGyBlWFwlzK7rPTA6DgC0QrIGPYF4ldIKaVMLT1u257vX8JdZFAStRANhTaQI4DsbyKs2lQHK7EXUczBetR34Nsiauelz5LV2HG8LgqNUKKGl0PlHDrWKEy0KwV9Q+Fe5VyJKmnK68vi5x4fAVtIKE0EGep7Xg9gtWtxxhjWWRUklhRyoT7ocquFApH0i+uoF6D4uiawQWn59PVojGJwMHLESiMh7QxRhIr1Q99nYyV9Lyvhl4QuLJ+et7i85xehKhtgDKpyLwvIYzrnhGMgbA0zmugI8rh9Kx4BL/hERERkelxwiMiIiLT44RHREREpscJj4iIiEzPs5SWH37/s7YNkznLNhKcVm/ftm37r7+Oyj0UiRgTPamHg3JLWtE5lKK3L0933n6WpRcf1mQBQjtuL583niMkfzablqRikqJJwKxSG6ULB6ugjzHGDmTaVVkVPkrMPrctWPEaIbm2ppuG0m+S6krbaEV7SsimpNcqNeLq0GGiaiL649ihciQk15ceKC03XFm6ysFbGF8ErnjdGtE30croUV0DROMgUfdsO6pgHa4IT5Z9krSMidZBajO2LUyYpvF0se7B9x+2v0rkJBVjonFWLiL921auG60kn1Lvtyhd/wJ+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZnmcpLW8/I0OrbzqWZN/tK4pdzVi87pbhYX1a3+6OTEFKF+7bFodqsfaqMHkXDlll0VTUXeyz/mkyOFwOSnemNNDd3elnlCFDObgJknQ5KK2T5F1KIS71YXIt1J8Ii1WIHiOXj2v/J2nJY7AEuHwH5cp5P7yBpOVQHqwiYipOcx+eVra6D+9vKpaMJ+hXFE9JFg0EaEzRpvTism8izY5x7kUFKFdTwMOEaTxm8l9qksFJGA7GGJ4PJbWHY6yVoXTk4PlEx+OEeihX5Xw4xz29kAMp2kk6NbULXxoI2p+mgBP1WYoCdDj2f43f8IiIiMj0OOERERGR6XHCIyIiItPjhEdERESm51lKy5TqSinBVQQmIYxk5AFJy8dvv2/bljsy68p+NKXERNJj+QzpyLDf7rZvrKmxJPIdbkCmTpODywmQYFjTmM+1IxHYUJAM/FSUNINE7jHOSL5l/KCcSmI51L8uknJNIB6DE1WpXGvDJouIxVRXkjLrNaLqw/86tTFMEja0PxFK93d9v9W7TGRG+Xh/uQwmU8PYaYL75UfHj8UC0ZjGCdYVjv0KpklDuzDpugq38fMQygV9Rn2P5YJEdLzXaLwG9afyLl7vC3WPMcaK7mUAX4SoZULxO0qQp+cJHTN40SK91x7Db3hERERkepzwiIiIyPQ44REREZHpeZYOTw38G4PD/I4PJYCPgr3evIyOSSuoP7z+xWkZCKLDVXmD36draOIYY4wFeDHkJdVd6XdUCBkkrwddluXjn8+ROARp6FWyMj3WRb9P0zUKfuumvkEnCeqvq2UnYXVjnBnD6OzUHbO6aAxXsK00poOxj35I4hGN7kuRy0LXO3Ve6jnRedO9fKQxENyTMaX+NFj02lXV8dqGq563ILowBBAJ/C/sC1rhHIrVex7HSbiyezJ2rl25nK4ZuYN03hSMWtuahF2OccYHSq4R/R2A61aDBuNx8gh+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZnmcpLSMkDxaR+bgE2XmTGX+Lf/THbdv6/Wn9GNhEIWqry5IpBQ+SJEYhjItDNaD7fhjuRiIl9mtpA4W2hfJxbxfsR20gsbWGnNF+6YrUJCTXVaopiC6Uj2v/YN8TyX9RUGqEUL73vSCt2l6vdx1eY5wJnwyk6/1tlsCXBJ9haNuRUtr6puUOghnLatOpnE/3Q1t5PQy7RLm57kuBbOFq4Mmq7alkSi9a1H7llw1oQPVNbQVy2o2Md6qK7vl6T9Jfx+xdktY/FHiK1y14ESIdh/gsSl7aCPo+LYdjJ3zWXR1K+wh+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZnmcpLb/7qs/TjqtuaB1rIjPIUvc/6UviUmjl8vseUflQV1qPVxsPyqViF8miRWRGmZNSMklgJCGvnie1NUzL3d+VMqnsHEiAKFamqxaTcFv7hwRMWmGZLtL28gXG60bCeyCZYlIxnWPwRFhCWmsqybZzIsH6CStL90J90+qBRH/Yta5KDkJpmkpbBeg67n88IGzC+68UpH6GHfH+C1K6eWVxkLxhTLeXI0IhlpLg68seqUebklzvNDm4rZZOz8Pk2XpmWytD922YrL2qYxOeYZgeTocMytF9Sy+5YHr0E/EbHhEREZkeJzwiIiIyPU54REREZHqc8IiIiMj0PEtpmaTGASmfVXJLU11Xb9/2um56V+1qyjEJbZAiSttqQuhTUoJbim8WJo3TX0pBrfVT2nNsFFbJLRSgua+hXLDfHlKIMbG1jDEUKyk1FqhCHgmSqazdknGTdN4x8J5Z3pNdeeHzOCPvkigdCNbpOKwnisJkIv2eaUeVcGPhHepqIigJxDAOE/mfZOHdHYxpkqkDeZ5S2SluO3lJAOVUFG6za9TK4PXI7u9WDqT+RModo/crCuMvIP0chPrW/ySkh88PvCevlfOpXOkzut4EJkCX9uM5pn/bft2eDysuIiIi8vxwwiMiIiLT44RHREREpud5OjwvYCMEsrWgKjjb3V2f8y1qoOAY44ef9W31Z2Z0hGhKiavr1pXds9+wW7jiGGNUhydcJZlC7ZLAulXqn9B5Vzcj+W19nPEpysrMtF8aiIi/+9emkttAm+h35iDEkMcJbKsqWbgyM60avgf3Y/Uu8MuorRRsWMd5mhSH5WqoHfgP4ROO/IDq1CzB2aIVqdHRq/uG9yR5YvU+3b0CF+uhbcLOZjeqfKTxRGM6cKgw8BSInh/0DAuCFM/t3DzK8BmceIHoT2G4IlRfh04YwknH5DDQy/dkXfX+xwNcrmuE+9E4bOGNH2G24jc8IiIiMj1OeERERGR6nPCIiIjI9DjhERERken55KVlCgHEEKREWgZZ6v3nfc73+rYv03pc9p23n51uI2GuSVxjYOBblXVRXoPzxuDBFu6WyXcHCuAD6awKkVT/4YZktctCIYYApvLd5rIomIZqYfhdLUJ1kTwI1VdJb4nCLVw3qCtZIjoV1xcQPFhl/NV7ClykdgVCLIbVheJp2fcIYXi8ynq2knhra7jidbTSd/hfTZQ5S1upXXtaaRoD+KBcct6pZF+fRfRiBImtRHXUw+cC3acc4FlPPKs/ake68joFvZYwQhTNaTxRv9LfnqCuNLS3jif8mxgGo9YQSQyLTJ8V5w8jIiIiMhdOeERERGR6nPCIiIjI9DjhERERken55KVlglYCRhmrJS33MtvPsjnf7mUvt6+JzyjyhW2tVZGwCrIlJZfu72obehlOCc5W/yaBu0Kr5FL7acXgviNsCzzHujL3GGMs0pRgkOHqCsgoO8eCda08TNamhNtAtkShFE6c5MRlSROmMZfKg3VfTvzu23g16CKp40lCI8Jr1P47uAM5H5LOk5TuKH37TLtS4bm1AVKhE9E4Hk9QLEnSxrGT7EhF6FlHxdIxUPdLX1So8i69aIOJ3NCu4N7C7gqT85tYHqbRI8F51+fJGBiwD2ne8Iz8wBmM3/CIiIjI9DjhERERkelxwiMiIiLT44RHREREpudZSst7kJaX625V7ben8zkSqEhU+/YffNG2be8uS3SUVDwoFRMFrdL+h94wlCEp1bVsIrELRbhQAqyJxktI3kX5ddvLNXmQ/DwSNyMZErZRuSDNdowuemPqKlwPTLgtHYvSXkgkW6bSYSARL6EQiZuREEsCfxrjW+tKzzEd53Ubpp9fTpMeY7Sk3TS1GeXmuh+dNyWFxzJ4LZQlfuPYb7Y2FLkyQRdFYDifBb2MQfduTbBOhXG6bqVt6f1H17ueJ94emNoMddFtVF4wwTGH5ndwTHqehMn2re4nPCM/4DAiIiIizxsnPCIiIjI9TnhERERkepzwiIiIyPQ8S2mZpKoVmFyHKr6BYHi46XUtjr3c+n3ftn9RLKpQaFskScsg7aVJxauH03Io2mHiMCXEklB4+hnTNCFpmdpaBegFiM2JuPnjzkHabyi+oVhXq6LUUkywhk2lrdT0xQ76guqvZTC1GYRxkqnhmA1ISsXkWtq3FEwFxui88Z6B6h9oXyi3vXwfLRPpd2SJsCx+X365IEn6PUdL/KYy4T3DicmnH0lsPpD4HZCkBv9YMK2/XO8o/ffM2K8vjoTXFu+/6n3TOYaeP6Vt17+BT5GDa9tQig8T6pvv/hG+nvEbHhEREZkeJzwiIiIyPU54REREZHo+eYfnu3/2d9u2IwT8LWtw3xhjUcIIm9MzxtiDw/MAK6jff05BgOUzrU4LgYgUkngoIYm00i06CrBa86GuWAv9hSGGaQDY7rLbQCtqJ/Aq8VAOVwK+/ONz/Ps0eVal/niV58SVocOF1639Vk+/59PYCYPVlsUJ27+AJmDA2HVuRupZRfvR6tngA6FbUgMXw5WysR31kBR8Fw6nxC9DfyN0XloAH67qnS2X3u5dCjEM+6KG39FzgVcbh7qAdj8/IayzuSxUFz5vL7cLryP1BfhABwiETcJfsX5o/7VjJ7kneYX7D3vG+A2PiIiITI8THhEREZkeJzwiIiIyPU54REREZHo+eWmZIFl0CfJS3XbYgCwM0vIOVkbHldbrNpLvQqlqWeSu/Q72C1cNbwF/YSgVSrjBNpQCr13hPAiYO19/cN6hVIz1gxhfSTPOarYlSoHhyvEtmIxkYZJYk9WtR79HsF0gixLt+qI4nbW/75i14erVuTHIDeqi/q87Yzhk3y0S46kMNBZlZ5SIiyyKJw7NCsYdPgPovFG8T9oATcAw06RfoS7aLZCWWd7t+6EoXfsnlanD+yh6kYP2O1yunwRrehkD6y/tP4ay9mP4DY+IiIhMjxMeERERmR4nPCIiIjI9TnhERERkej55afnbn/UmLm7v27b1uhtgu12Nu+z10wre+00m6dV9j5CgTO0ijofSVpQaL682PsboicAkiYHAjVYmprPWVeh7mXjV8yoPYspnmKpcN6EQmxp/QCJdk8GICcAlPZXk10DkQ0geDVczX+BAv3xITIgNpMlEFj5LrZ8kbIDumcXD5X1RKoZ7C8XWep54beGgtK3KouE9w3XBtnICeN/iCwFUV/kcjhMUy5M3AugywrhAiThJHE6kYiJM0aZ7t/bFAf5m4SHDlzb6quSp/X85aRkFZXp2X5sgH6Trnxzmg0qLiIiIPEOc8IiIiMj0OOERERGR6XHCIyIiItPzyUvLh03ftiA5GGTUzebUttxBUi7Ja/vbLkLtX0Dbau+RcEZyIvmEpW3LNSSlLrrxR+mpi32RDq9Nrh0jSvalutJU11Z1mBJMgviHCmx/DaauQrlaP54PNTYoRv0cptK2dtD1rgL/mfpRIK1SI0rYUFcaO33pgCmpAE1CbJrw3XaEuqBY60Nqa3o9ykMlln6Dusbo121B5xiK8f2AsA0TdIP60/RwaisJ6FUGx1smFONLX+P1uMleoKgvQuALG0QivA+Q5dPHGsYol7FJL5zASxA4Nuu1xOfhh923fsMjIiIi0+OER0RERKbHCY+IiIhMzyfv8Nx/2betIMxvDX7Otrgs6xsIJ4RgpN2rfkwK36qhSgsI81uRNxQsT7ugqSj9Fr2F32QTtwgcmCMln+FK4uV3WtgPVwJOXJxo6d4z1LZSVbgCeegj1HKYDBj6UokXQ6D7EZx3/Ft35n5cTQvgS4MaYVsdwul+4SrVx7pKPPkhO6gLqI4Q+k3hdWtDDEPt6L6FupKxCc8w3JHqqtebtJVr/wqFuhzeM3QtAwcM+wvDG8t+qfOEz6LLzlZM4ArSOOfx1De1cvjMD55h4/pV3B/Db3hERERkepzwiIiIyPQ44REREZHpccIjIiIi0/PJS8sUXHQD8vFmBULy6nQ+t1t383gLgWO0gjquZFxEqyWIwEsUzC6LiEsIUjyAFH2EVbZb9WEg2xL6lQTrYw2+SmVIogXwZbJlFHJGkDAHUGBkawLJimm7ajkKE6NwxaBdC7jeuHJyKjdTaGGr63oJt+0Wjtdjsy3TVZ5p2+X7CMVNWg06PWYlDcBs8nx4vFTUredJY5NEZipXq0//i52IuVQkvL8HBU3W5lN/wXMZzzvpw/QZWcMCUZwOVyDH8VSKhIIyknQ//kkM2v8Rvp7xGx4RERGZHic8IiIiMj1OeERERGR6nPCIiIjI9Hzy0vLuZTecbmlldNj2UFesRekQ5OAbWJUcJLfj3em+a0iAJvmYROAqN+9SeZckvSLbUaryksRWcmTpmGVfFGLJTEMxN5FYoQ/3tJRxUBcKq5BEjQm3pV/pANRfwerGR4prTVZGH2euUS1D4xclU9hWZfmnBC9Xz5jk17SqdHX0AiadJ8nE6SrVRLIrXcckLZz2e8Kq4Y30GgXjFd1wOu0gcfgp0NivY/GIjQ3F79plwXN6jJGNAepn6sS0DxOx/Nq6UqGe/4ic7gZ9iM+wR/AbHhEREZkeJzwiIiIyPU54REREZHqc8IiIiMj0fPLS8uFlF+ZebHZ926pv265P53P7my443b/Y9GPe9G6hJe0XJZmYUpXXlMwJ7A6nbSUBer/rMvWehLlA1iaZmqa/JHgeigR9PPR2oawGbW1CdeihLje9f1oTQsmRBG6UWGuXwfVmzzE4qSTaeZwRdeuma1Oux2B5sPQjioJXytTUBny5INiXuvAAYigmikOadOsKlEUfad9JQ0o74EUC7K9EWk5E8w+h1pdcxzH6/TEyKR3vGZRRy3MtbVd60HracI1SSba+JID7wWMzSRw+wphepF9dBPcWSuThyx513/QaoUT+EVPZf43f8IiIiMj0OOERERGR6XHCIyIiItPzyTk861/8/OTz4q67ObdrcHhg2/3+9PRqEOEYY6zgN+btLf0YDfsWr4fcojWF5qFbcvm37iWsCH9YXw5/WoHvEioj+IPuosyTyadhz6Nvqv7MU34/joqQz4QrfV8OaTse+v8XyD+hALPkl2f8XZ5cmaANhyQkjCqjY6JDEPonAVe7GRToSSvO065wzDouMOyS6qKuSMIbQ5+prhIfhzdiwF9YsJagQ5KjV+/vcOxEwYN0j4ahktG9lQZUUlW1qRhkSnteDtdbpn5WehvVtqZ1Xds9tN+VIaIfit/wiIiIyPQ44REREZHpccIjIiIi0+OER0RERKbnk5OWv/nT3z/5fHP3QytDgvLNkuTm7cnnLUimmxsILHzRu4XE2bovCcorCPjbQzvWgbS1QTn48pyVAhFJ1j4EdY0xxmJxeVXhtK4qYtN+6NEGQXfBArx/VRe0C/rsUOTBNYydHQTYUV21bUf4v8eCwiGvFClJzKZjJpDgSyTOMtWEoZjAYV+S2wKh+xwoNzdJNmvXEoP0aqFeJpXzl4GNmorrKOwHpCJ+q59WDU8JxkX6IgHWVQM2of70ZY9679JzjZ7B2P66ijtcR3wRJh1PZRu+4ADgM6Xs+zHHIZ1jHFL66+N8UGkRERGRZ4gTHhEREZkeJzwiIiIyPU54REREZHo+PWn5b5+KiC9vH1qZuyIjjzHGLayWviureG/XfXnaG1iVfHvb6xLrHkQAAAiESURBVCJuSrLyDcjUBCUmb4uASe0i2XkP5SokO5PsRRLdHtJlF8XcO+DKw9lK4lXoXS6zVOgkkTkV2lCAxtTbyzIfiuWBBLi/fBnHGGMsg1Rd6hsSp3cwXJO+jhdjD5KDUxGRyq3K2E9XcScWV8rgqUDaEsWhrlggLuVSkXYN0jW29cqk6zglvVBfBvhxv0TMhjbA84PAcZdI0aHQW1nDcxr7HsrV/qHnNHFtW5eUrh+mgNe20n4rGP3JPb+Io6PP4zc8IiIiMj1OeERERGR6nPCIiIjI9DjhERERken55KTldz89FZN+dnvfyrzZvG/bXkDS8sPqVATe7PvpvnzRpegdyMEkgL0o0vItSMskGhO19j0cLxWZqwC2BhkvFUNHIMiR2LyEuFmqf1P6kCXpfsxEzE2lZZQHcd/TtqWJwMkxPzQx9LQdJSkVJFA6x5sbEikvHy9N0U5I+zBKzQ4Srcc4J2BeFnqpX5ehCJyQJHKP0aXV9Hhp/ZX0/kuOSX246u+SXC1Ap+26Vtam+hPxnq9RJu/W/kmvN43phKeMpy4tX/8MTtr/ofea3/CIiIjI9DjhERERkelxwiMiIiLT44RHREREpueTk5a3f+M0RfnNiy4ov1p3kXkFctT2eDqf260hqfgI20DKpCXtX92cCs+UZFoTVs/VVaELEyexFlYghlIbUABDibjIwXBMaimm5da6whRRIumfJ4nMkJCd1E/jqV4TTKu+FvhvDAmAdEQaF/WcWH7N0nKT/k9FRBJgr4W7v0rw16dCJ/ulabad65Jrx+BrWUulT53kObCC5+G14xCfJyTShsJwfbmDXhxJSfa8tl+Tvx9jPO1FiEp+f3+8lzGuHYeP4Tc8IiIiMj1OeERERGR6nPCIiIjI9PxOHZ7ln/5R2/b6J9+ffH774rtW5vPNu7bt/tBP5W5VgsPA16FtFDxIfsirTQ8trDzse6rWkn7hLYdMfZ1FsEI71UW/TyeuyRj9N+Q1eDd5ONZ1Tse1vw3T+VD9seMUtIu8gt8k+zB4kK5bWl9Sf+LwpKuNE9V7Sr2x9N6q5fYQpnmtf0KkxkhtV+p00Ni/1kGiY67Bcbs2pDJpa7xSPZwjBV7WfdfpMxhXDb8cUpreM7Uc5DReXReRtpWea/VZkfTNOZLr/aF/B/yGR0RERKbHCY+IiIhMjxMeERERmR4nPCIiIjI9v1Np+X/8q8/btr/ze39+8vkrkJZfr3oY4Ri3bUsV6w6rbH5HKyATN0XSS+VBYlHkZlrhfAXtouDECrVrA+W2IFiT3PybHDS/Xb33rwDxjc6xlkpWqj9HFSlp5KTBZ13mo3bBeArlxJt1CUl8imhcytG9toWwS64sKBcKq0R1lMk9R5kzqPtjhsKl/2sF5/qjtoM57WsSXfmlgV5Tbf8KJOn0xYtE6E2f5yRFH6IXFdJnxeXxmgaeXk923W7Wl/8mrpaXA1zHyOR8uraP1vlBpUVERESeIU54REREZHqc8IiIiMj0OOERERGR6fmtScurt2/btu2fdCH5D15/ffL5b938qpXZg+KZyLskl92telry3eqmbcNk0SJfvdt3FZhSm3dHSF8ubbtZ9gTl9QKSoqEvmqwdpiofwGpcJqtnkxgaypBdYu37pcnXta6PmfZM9VVpPd0vPeY6TIBuZWIpN7tuSVtTQfJasZ/2qzJnmix7rVieyMhjnGvr5WOm+yX3DPGhgudj7SJQ4C7Ce3I+5+qq0HWktGdiRWOlbEteXBgjWyX++tdZroek7rT/K9eu7P4U6jE/xmTFb3hERERkepzwiIiIyPQ44REREZHpccIjIiIi0/Nbk5b/+7//g7btn//8l23bH738Xyefv1x3sfkv9q/atu2qK4U1mXiz6FIxpRe/WfckZxK77g+Xu2936O3aHfsxd0VIZiEWJDTQyarI/AAJyg+L3nZM6wQZvPYZpUKnIiUJyZeOd67+SL57Qhr2tZBYXq8bCaUkAu8COT9NgKY+XF+Z6noE4Z3Ou0Lp3tQuSp2+VoAmYTUZr9eOOdo33S8pl95r175IQC24ti6CrgclZCc8RcSvz4anpFAndaVC/bVjJ71GlaesGHBtGxJxPe3DR9vzQaVFREREniFOeERERGR6nPCIiIjI9HwUh+f//Lt/evL523/8rpX513/4Z23bv3jz39q2n67+8uTzA8R9rcBbuT90P2dTPJiXyx4yuFlQOBOs4Axhgd/t+wrtlQM4FxRQWKHgwU3osrTjgbu0PvS63kO7DuAb1baRw5O4IGOM8VAcJ/otl/qQrlEtlzgk545JXPtbelLXGsbhYdnPu/bXGODswH9j6HrU++NcudrXT3FZHor3Rg4anSMFYCZtSP2Na30mIlqJOxybieNGPCUMtPIU36het4/hYTxWF5H2Re1req5dC43za1lEK7HnVE9zE65m/lF9SKiqXt+PcTy/4REREZHpccIjIiIi0+OER0RERKbHCY+IiIhMz6PS8n/6n100JpbjP5fPsGourPS9PXY56leH09C/P9/1lcs3iy70ElVufrnqgYJvll2wvl1u27YHkJa/Xrw5+UwhfSQ7k9xXRTGSll+E22r9JKF9B/1KkiYJpDelvrtV7684DC0QuFNpMgnlS1djJ6rEmO5H7a911T4d48z5wNDf1VW9QTSn86YxhvJuaWsqYGLg4pXibHJtX5DIHoQ+jsHBj10sT1ehh2DRYyLn03Oz13XtSuLXsgpd0aRdqax9reT7lPNerS5f32tl8FSoT8o95aUBYj2uk7OvFb+prfQsTaTxDz1vv+ERERGR6XHCIyIiItPjhEdERESmxwmPiIiITM/iePy4qY0iIiIinxp+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZHic8IiIiMj1OeERERGR6/j8jStwSQ8E4SwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.color_dim(-2)"]},{"cell_type":"markdown","metadata":{"id":"-j096sOc2N2g"},"source":["`color_dim` was developed by fast.ai in conjunction with a student, Stefano Giomo. Stefano, who refers to the idea as the *colorful dimension*, provides an [in-depth explanation](https://forums.fast.ai/t/the-colorful-dimension/42908) of the history and details behind the method. The basic idea is to create a histogram of the activations of a layer, which we would hope would follow a smooth pattern such as the normal distribution (colorful_dist)."]},{"cell_type":"markdown","metadata":{"id":"fo2yA0yw2N2g"},"source":["\"Histogram"]},{"cell_type":"markdown","metadata":{"id":"IYPu1Hm-2N2g"},"source":["To create `color_dim`, we take the histogram shown on the left here, and convert it into just the colored representation shown at the bottom. Then we flip it on its side, as shown on the right. We found that the distribution is clearer if we take the log of the histogram values. Then, Stefano describes:\n","\n","> : The final plot for each layer is made by stacking the histogram of the activations from each batch along the horizontal axis. So each vertical slice in the visualisation represents the histogram of activations for a single batch. The color intensity corresponds to the height of the histogram, in other words the number of activations in each histogram bin.\n","\n","<> shows how this all fits together."]},{"cell_type":"markdown","metadata":{"id":"0Z8ThGOL2N2h"},"source":["\"Summary"]},{"cell_type":"markdown","metadata":{"id":"3LUzw_aZ2N2h"},"source":["This illustrates why log(f) is more colorful than *f* when *f* follows a normal distribution because taking a log changes the Gaussian in a quadratic, which isn't as narrow."]},{"cell_type":"markdown","metadata":{"id":"2MP8pbDe2N2h"},"source":["So with that in mind, let's take another look at the result for the penultimate layer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CaOBVZEZ2N2i","outputId":"ccaf01b9-be25-4515-f2b7-9e251f878e69"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjwAAADNCAYAAAC8XqoPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2dzY5kSZqWzf8iIzIrc6qqK5lWA6JpDaAZaYbZgAQIiQ0bJJbcAkskuBtug9sYwYLesGAxQgIBhdQz9ZcZ4X8sanok/77Hw9/0yO7OMD3Pzk/asWPHjp0Tlu7PeW1xPB6HiIiIyMwsf9cNEBEREflN44RHREREpscJj4iIiEyPEx4RERGZHic8IiIiMj1OeERERGR61o/9479c/ptn8876//u3/6RtW+xPP3/1X79rZY5/9surj7n+xc9PPv/w99+2Ml//w00/5qrXVdu6+baXufm2X44vf/mXvf7N6QG++cWrVubdV32ue6DRAFPizTen7VjAKFk9wEbYtLtdXDwecoBjbk8/b/tpj9X7vm0BdY1F37TclfPe9zJE3W+MMbYvT0/05vveiPs3vTOO0K7t69ONy4dehsbc+ofeLrqW6/enG6kN1F8raMe7L08LHm76jlg/cKzjFdpO13b9LnyslWLLXS9C2+g+qtuOMM6p7w8r6Ix6y2z7jodN32+xz673YV32pe4Kx8CyPAd2d1Sob1q97wc9Lk/3pWcMjR0a+/Qsvf/8tCGre+jXR/9inme5hY1hv27Kfbp9BYVgnNN5E3UsLuG5RudNfVif56v7vt/+BbQhaCvVdeh/Xsd/+Y//4ewTxG94REREZHqc8IiIiMj0OOERERGR6XHCIyIiItNzpYL16bF72T2lzfenUtVh0+d3oR+JHG9vTj4/vIb6SQqkaWYpd7jpRZYgHW6/uG3b1t+dGnIoUYLslQp5tW0krxH7F723X/3fU0Pu+5+CvUZ9CP1Tz4nkXTrvKgWOAeLmGOO4KMItyHckMqOkXg75/vdAUCaRj6TG7y+LoSS2Nul3jDGg/VVEfPW/u6n7/sve2C3ckxWSio9wjXDf2lY6HI0dEnpBLN/8cPoZJXgQWweMnXqeNL7o/luAFN33ywTlKv2OEQrioQhMInbdGSVvuN57kNnrf8+PIHRXSXoM7p/7N5f7jNpA503HXJeXIw70DKCxD2OgSsoovNOLFwCJv7uXp5/xuQntevgM+r9c390dtAHq3wfjifqQ/qY8ht/wiIiIyPQ44REREZHpccIjIiIi0+OER0RERKZnGmmZqLLl/q6f7lM64HhzujdKbjClTGRUkl+3IKNWQZkgSZOSP1ORuQpyKBiG/PDVaWdgejEl6AZTdRLaViTvksxJYuD+chkS65Z7EiRPP5M4TdIvyflVgOa02UzAHJRK+93pAe4/74UoETgRNY8kW2L6L5RrlfdNmDpNwxXGwO7laUOqxDzGGFsQNxMRmMbhgdx/CiwvEi6mmqPE2svta9L5GGNRGoJlSKYO3l2gZ0yakF3PiZ+t2b1M6ef1OYASNrSVkolrmjCJ05iQjcL7aTkSv+mrC3qWUspxhZKcqb+wHa0RfdOuv2eD160moqMwDn34GH7DIyIiItPjhEdERESmxwmPiIiITM+zdHhWb/uq5PTbcPU87r/4uA7P8pvTH/XX96+j/ej36fp76x4Cm26+6dvuf9J/EK2/+ZJTsIMQNfytm1bOLb+30srGFJKYBJ+Rq7EHd4m8hersrGBVbOr7PYU8wu/TtRyVodA8dFmSEDXymWih5NJn9Ns9ulhQbkXhliWYbHV/2SMag/tnV/pnT7/n03/DaFu9luS7hOGNGMxYyu3DQESqvwcPQhkKfSRvr4xrdi4ebeFfQ8GJ9T5KV/rGIL1gFWz0CeGebOGscD3ovDH8FbzGVgauUQ35PFeuhpQS6EbRPV+gMYEru4PDWP82jNG9oTq+xuC+Jv+ueZOhYkPtam0I7+XH8BseERERmR4nPCIiIjI9TnhERERkepzwiIiIyPQ8S2k5pQpgFI72FOpq6fdvYMVrCqcjYbEIWet3vQwJnqv7brnVlZ8XYNKSyJwKvZsqmJEUTcIcyoOnn0lgJEGZQvnWIE9XqA9xBWcMEKyf+/EoGBBl2iJwo3RIIj6FidVrBOOLAvgICpGsQm8ayJaMMZQ0ScwOAjxRnIbVoTGwDoT6FsAHsigG0QVhaHSvJSLtGDDGqL8wpA3qCs4pEY/H4Odau7dCsZyk5TqG6XwoWA9fEgm2ofxP1ygIjKR2sQANL3aUbenK6ATdI7X/6TrSeePfIxCekzbQedNK660ueAY/ht/wiIiIyPQ44REREZHpccIjIiIi0+OER0RERKbnWUrLx7/Zk5ZJCqtyIsqWT+HrX518XBx+0tsAQt5xSdbWqbRFwmpd/X2MMe6/6AUjyRQgQTlZkXh3RyZc30SSYUugpURPcjlhW0uIRUOvb0qSkMcYY1/uFl7ZuO9H1y0RrCl9GVcND1xXGoco+YJwW88JJW8YOyh9lnYc4XxIVkwSaGmc0HhavYf6Iem1yaKwYjQKpOS11gBakKRx7ONK34/XTWXG4PR2bH+Vlmkl7lAEbi8lULvCBOsmqQdjYowzz79grGACdPAyw48HLYcLJfXkWUf3KKU2E8dAsMYV56H69Q/QjpvLgjW9gEDUl1XohYoPjVr2Gx4RERGZHic8IiIiMj1OeERERGR6nPCIiIjI9DxLaXn5zQ9t22Hzedu2KsmcT0mojMBEXShHInAxSCkV+trZKaaphv4XSmdl1KxRAoX64QS2r04PuvkO0otfkQUKm6qkHiZrU5IzyYmtDImCaZJsbRsdj6qnlO7S1ySfYzgyyJbHBQiLReZEwZckb5IygycOyqJwTq2vqe9hHGJb6R6psjZckAUIpElicvqCAF24QxOgoS7o51T+r+OJX7yAdoF8XIXeNAkZXy6o4zCUtekcMaX55vHPY/S/KWOMsQvS25Pn6Llyta9J3qVrhH0RPJ/onqH7b18H4oAxQH0PfUjtry+h4IsXcB0fw294REREZHqc8IiIiMj0OOERERGR6XmWDs/x2+/7Ngjzq8FwD28+7mrpu7/3s9KGXua4ynyH9tsqNDV1TepvpOlvxbgSN/zmXqfJabAe1V+31d9txzjjENDIrecULqRLAYLU/zffnFa4IzeH3InAzcBVf+k3eOif5Hfz1AeCn+XbNYqcpDHYVWs+Qi+D7Q/cA3QDyDVJwxvrNlh5nXZMVypv+4EDQ+GQbZxTCCf5J9B+XLm6toPagM+nvu1jhgVWB4nCQfFZl5zjGD3gD9q6e9m3Ub/WdlAb8HlLAZ7VqYLzppXX0fWhsNSyK65UT14dOVvlmUXXYwkBnsfEB0od2UfwGx4RERGZHic8IiIiMj1OeERERGR6nPCIiIjI9DxLaXm8/aJtQpGyBlWFwlzK7rPTA6DgC0QrIGPYF4ldIKaVMLT1u257vX8JdZFAStRANhTaQI4DsbyKs2lQHK7EXUczBetR34Nsiauelz5LV2HG8LgqNUKKGl0PlHDrWKEy0KwV9Q+Fe5VyJKmnK68vi5x4fAVtIKE0EGep7Xg9gtWtxxhjWWRUklhRyoT7ocquFApH0i+uoF6D4uiawQWn59PVojGJwMHLESiMh7QxRhIr1Q99nYyV9Lyvhl4QuLJ+et7i85xehKhtgDKpyLwvIYzrnhGMgbA0zmugI8rh9Kx4BL/hERERkelxwiMiIiLT44RHREREpscJj4iIiEzPs5SWH37/s7YNkznLNhKcVm/ftm37r7+Oyj0UiRgTPamHg3JLWtE5lKK3L0933n6WpRcf1mQBQjtuL583niMkfzablqRikqJJwKxSG6ULB6ugjzHGDmTaVVkVPkrMPrctWPEaIbm2ppuG0m+S6krbaEV7SsimpNcqNeLq0GGiaiL649ihciQk15ceKC03XFm6ysFbGF8ErnjdGtE30croUV0DROMgUfdsO6pgHa4IT5Z9krSMidZBajO2LUyYpvF0se7B9x+2v0rkJBVjonFWLiL921auG60kn1Lvtyhd/wJ+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZnmcpLW8/I0OrbzqWZN/tK4pdzVi87pbhYX1a3+6OTEFKF+7bFodqsfaqMHkXDlll0VTUXeyz/mkyOFwOSnemNNDd3elnlCFDObgJknQ5KK2T5F1KIS71YXIt1J8Ii1WIHiOXj2v/J2nJY7AEuHwH5cp5P7yBpOVQHqwiYipOcx+eVra6D+9vKpaMJ+hXFE9JFg0EaEzRpvTism8izY5x7kUFKFdTwMOEaTxm8l9qksFJGA7GGJ4PJbWHY6yVoXTk4PlEx+OEeihX5Xw4xz29kAMp2kk6NbULXxoI2p+mgBP1WYoCdDj2f43f8IiIiMj0OOERERGR6XHCIyIiItPjhEdERESm51lKy5TqSinBVQQmIYxk5AFJy8dvv2/bljsy68p+NKXERNJj+QzpyLDf7rZvrKmxJPIdbkCmTpODywmQYFjTmM+1IxHYUJAM/FSUNINE7jHOSL5l/KCcSmI51L8uknJNIB6DE1WpXGvDJouIxVRXkjLrNaLqw/86tTFMEja0PxFK93d9v9W7TGRG+Xh/uQwmU8PYaYL75UfHj8UC0ZjGCdYVjv0KpklDuzDpugq38fMQygV9Rn2P5YJEdLzXaLwG9afyLl7vC3WPMcaK7mUAX4SoZULxO0qQp+cJHTN40SK91x7Db3hERERkepzwiIiIyPQ44REREZHpeZYOTw38G4PD/I4PJYCPgr3evIyOSSuoP7z+xWkZCKLDVXmD36draOIYY4wFeDHkJdVd6XdUCBkkrwddluXjn8+ROARp6FWyMj3WRb9P0zUKfuumvkEnCeqvq2UnYXVjnBnD6OzUHbO6aAxXsK00poOxj35I4hGN7kuRy0LXO3Ve6jnRedO9fKQxENyTMaX+NFj02lXV8dqGq563ILowBBAJ/C/sC1rhHIrVex7HSbiyezJ2rl25nK4ZuYN03hSMWtuahF2OccYHSq4R/R2A61aDBuNx8gh+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZnmcpLSMkDxaR+bgE2XmTGX+Lf/THbdv6/Wn9GNhEIWqry5IpBQ+SJEYhjItDNaD7fhjuRiIl9mtpA4W2hfJxbxfsR20gsbWGnNF+6YrUJCTXVaopiC6Uj2v/YN8TyX9RUGqEUL73vSCt2l6vdx1eY5wJnwyk6/1tlsCXBJ9haNuRUtr6puUOghnLatOpnE/3Q1t5PQy7RLm57kuBbOFq4Mmq7alkSi9a1H7llw1oQPVNbQVy2o2Md6qK7vl6T9Jfx+xdktY/FHiK1y14ESIdh/gsSl7aCPo+LYdjJ3zWXR1K+wh+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZnmcpLb/7qs/TjqtuaB1rIjPIUvc/6UviUmjl8vseUflQV1qPVxsPyqViF8miRWRGmZNSMklgJCGvnie1NUzL3d+VMqnsHEiAKFamqxaTcFv7hwRMWmGZLtL28gXG60bCeyCZYlIxnWPwRFhCWmsqybZzIsH6CStL90J90+qBRH/Yta5KDkJpmkpbBeg67n88IGzC+68UpH6GHfH+C1K6eWVxkLxhTLeXI0IhlpLg68seqUebklzvNDm4rZZOz8Pk2XpmWytD922YrL2qYxOeYZgeTocMytF9Sy+5YHr0E/EbHhEREZkeJzwiIiIyPU54REREZHqc8IiIiMj0PEtpmaTGASmfVXJLU11Xb9/2um56V+1qyjEJbZAiSttqQuhTUoJbim8WJo3TX0pBrfVT2nNsFFbJLRSgua+hXLDfHlKIMbG1jDEUKyk1FqhCHgmSqazdknGTdN4x8J5Z3pNdeeHzOCPvkigdCNbpOKwnisJkIv2eaUeVcGPhHepqIigJxDAOE/mfZOHdHYxpkqkDeZ5S2SluO3lJAOVUFG6za9TK4PXI7u9WDqT+RModo/crCuMvIP0chPrW/ySkh88PvCevlfOpXOkzut4EJkCX9uM5pn/bft2eDysuIiIi8vxwwiMiIiLT44RHREREpud5OjwvYCMEsrWgKjjb3V2f8y1qoOAY44ef9W31Z2Z0hGhKiavr1pXds9+wW7jiGGNUhydcJZlC7ZLAulXqn9B5Vzcj+W19nPEpysrMtF8aiIi/+9emkttAm+h35iDEkMcJbKsqWbgyM60avgf3Y/Uu8MuorRRsWMd5mhSH5WqoHfgP4ROO/IDq1CzB2aIVqdHRq/uG9yR5YvU+3b0CF+uhbcLOZjeqfKTxRGM6cKgw8BSInh/0DAuCFM/t3DzK8BmceIHoT2G4IlRfh04YwknH5DDQy/dkXfX+xwNcrmuE+9E4bOGNH2G24jc8IiIiMj1OeERERGR6nPCIiIjI9DjhERERken55KVlCgHEEKREWgZZ6v3nfc73+rYv03pc9p23n51uI2GuSVxjYOBblXVRXoPzxuDBFu6WyXcHCuAD6awKkVT/4YZktctCIYYApvLd5rIomIZqYfhdLUJ1kTwI1VdJb4nCLVw3qCtZIjoV1xcQPFhl/NV7ClykdgVCLIbVheJp2fcIYXi8ynq2knhra7jidbTSd/hfTZQ5S1upXXtaaRoD+KBcct6pZF+fRfRiBImtRHXUw+cC3acc4FlPPKs/ake68joFvZYwQhTNaTxRv9LfnqCuNLS3jif8mxgGo9YQSQyLTJ8V5w8jIiIiMhdOeERERGR6nPCIiIjI9DjhERERken55KVlglYCRhmrJS33MtvPsjnf7mUvt6+JzyjyhW2tVZGwCrIlJZfu72obehlOCc5W/yaBu0Kr5FL7acXgviNsCzzHujL3GGMs0pRgkOHqCsgoO8eCda08TNamhNtAtkShFE6c5MRlSROmMZfKg3VfTvzu23g16CKp40lCI8Jr1P47uAM5H5LOk5TuKH37TLtS4bm1AVKhE9E4Hk9QLEnSxrGT7EhF6FlHxdIxUPdLX1So8i69aIOJ3NCu4N7C7gqT85tYHqbRI8F51+fJGBiwD2ne8Iz8wBmM3/CIiIjI9DjhERERkelxwiMiIiLT44RHREREpudZSst7kJaX625V7ben8zkSqEhU+/YffNG2be8uS3SUVDwoFRMFrdL+h94wlCEp1bVsIrELRbhQAqyJxktI3kX5ddvLNXmQ/DwSNyMZErZRuSDNdowuemPqKlwPTLgtHYvSXkgkW6bSYSARL6EQiZuREEsCfxrjW+tKzzEd53Ubpp9fTpMeY7Sk3TS1GeXmuh+dNyWFxzJ4LZQlfuPYb7Y2FLkyQRdFYDifBb2MQfduTbBOhXG6bqVt6f1H17ueJ94emNoMddFtVF4wwTGH5ndwTHqehMn2re4nPCM/4DAiIiIizxsnPCIiIjI9TnhERERkepzwiIiIyPQ8S2mZpKoVmFyHKr6BYHi46XUtjr3c+n3ftn9RLKpQaFskScsg7aVJxauH03Io2mHiMCXEklB4+hnTNCFpmdpaBegFiM2JuPnjzkHabyi+oVhXq6LUUkywhk2lrdT0xQ76guqvZTC1GYRxkqnhmA1ISsXkWtq3FEwFxui88Z6B6h9oXyi3vXwfLRPpd2SJsCx+X365IEn6PUdL/KYy4T3DicmnH0lsPpD4HZCkBv9YMK2/XO8o/ffM2K8vjoTXFu+/6n3TOYaeP6Vt17+BT5GDa9tQig8T6pvv/hG+nvEbHhEREZkeJzwiIiIyPU54REREZHo+eYfnu3/2d9u2IwT8LWtw3xhjUcIIm9MzxtiDw/MAK6jff05BgOUzrU4LgYgUkngoIYm00i06CrBa86GuWAv9hSGGaQDY7rLbQCtqJ/Aq8VAOVwK+/ONz/Ps0eVal/niV58SVocOF1639Vk+/59PYCYPVlsUJ27+AJmDA2HVuRupZRfvR6tngA6FbUgMXw5WysR31kBR8Fw6nxC9DfyN0XloAH67qnS2X3u5dCjEM+6KG39FzgVcbh7qAdj8/IayzuSxUFz5vL7cLryP1BfhABwiETcJfsX5o/7VjJ7kneYX7D3vG+A2PiIiITI8THhEREZkeJzwiIiIyPU54REREZHo+eWmZIFl0CfJS3XbYgCwM0vIOVkbHldbrNpLvQqlqWeSu/Q72C1cNbwF/YSgVSrjBNpQCr13hPAiYO19/cN6hVIz1gxhfSTPOarYlSoHhyvEtmIxkYZJYk9WtR79HsF0gixLt+qI4nbW/75i14erVuTHIDeqi/q87Yzhk3y0S46kMNBZlZ5SIiyyKJw7NCsYdPgPovFG8T9oATcAw06RfoS7aLZCWWd7t+6EoXfsnlanD+yh6kYP2O1yunwRrehkD6y/tP4ay9mP4DY+IiIhMjxMeERERmR4nPCIiIjI9TnhERERkej55afnbn/UmLm7v27b1uhtgu12Nu+z10wre+00m6dV9j5CgTO0ijofSVpQaL682PsboicAkiYHAjVYmprPWVeh7mXjV8yoPYspnmKpcN6EQmxp/QCJdk8GICcAlPZXk10DkQ0geDVczX+BAv3xITIgNpMlEFj5LrZ8kbIDumcXD5X1RKoZ7C8XWep54beGgtK3KouE9w3XBtnICeN/iCwFUV/kcjhMUy5M3AugywrhAiThJHE6kYiJM0aZ7t/bFAf5m4SHDlzb6quSp/X85aRkFZXp2X5sgH6Trnxzmg0qLiIiIPEOc8IiIiMj0OOERERGR6XHCIyIiItPzyUvLh03ftiA5GGTUzebUttxBUi7Ja/vbLkLtX0Dbau+RcEZyIvmEpW3LNSSlLrrxR+mpi32RDq9Nrh0jSvalutJU11Z1mBJMgviHCmx/DaauQrlaP54PNTYoRv0cptK2dtD1rgL/mfpRIK1SI0rYUFcaO33pgCmpAE1CbJrw3XaEuqBY60Nqa3o9ykMlln6Dusbo121B5xiK8f2AsA0TdIP60/RwaisJ6FUGx1smFONLX+P1uMleoKgvQuALG0QivA+Q5dPHGsYol7FJL5zASxA4Nuu1xOfhh923fsMjIiIi0+OER0RERKbHCY+IiIhMzyfv8Nx/2betIMxvDX7Otrgs6xsIJ4RgpN2rfkwK36qhSgsI81uRNxQsT7ugqSj9Fr2F32QTtwgcmCMln+FK4uV3WtgPVwJOXJxo6d4z1LZSVbgCeegj1HKYDBj6UokXQ6D7EZx3/Ft35n5cTQvgS4MaYVsdwul+4SrVx7pKPPkhO6gLqI4Q+k3hdWtDDEPt6L6FupKxCc8w3JHqqtebtJVr/wqFuhzeM3QtAwcM+wvDG8t+qfOEz6LLzlZM4ArSOOfx1De1cvjMD55h4/pV3B/Db3hERERkepzwiIiIyPQ44REREZHpccIjIiIi0/PJS8sUXHQD8vFmBULy6nQ+t1t383gLgWO0gjquZFxEqyWIwEsUzC6LiEsIUjyAFH2EVbZb9WEg2xL6lQTrYw2+SmVIogXwZbJlFHJGkDAHUGBkawLJimm7ajkKE6NwxaBdC7jeuHJyKjdTaGGr63oJt+0Wjtdjsy3TVZ5p2+X7CMVNWg06PWYlDcBs8nx4vFTUredJY5NEZipXq0//i52IuVQkvL8HBU3W5lN/wXMZzzvpw/QZWcMCUZwOVyDH8VSKhIIyknQ//kkM2v8Rvp7xGx4RERGZHic8IiIiMj1OeERERGR6nPCIiIjI9Hzy0vLuZTecbmlldNj2UFesRekQ5OAbWJUcJLfj3em+a0iAJvmYROAqN+9SeZckvSLbUaryksRWcmTpmGVfFGLJTEMxN5FYoQ/3tJRxUBcKq5BEjQm3pV/pANRfwerGR4prTVZGH2euUS1D4xclU9hWZfmnBC9Xz5jk17SqdHX0AiadJ8nE6SrVRLIrXcckLZz2e8Kq4Y30GgXjFd1wOu0gcfgp0NivY/GIjQ3F79plwXN6jJGNAepn6sS0DxOx/Nq6UqGe/4ic7gZ9iM+wR/AbHhEREZkeJzwiIiIyPU54REREZHqc8IiIiMj0fPLS8uFlF+ZebHZ926pv265P53P7my443b/Y9GPe9G6hJe0XJZmYUpXXlMwJ7A6nbSUBer/rMvWehLlA1iaZmqa/JHgeigR9PPR2oawGbW1CdeihLje9f1oTQsmRBG6UWGuXwfVmzzE4qSTaeZwRdeuma1Oux2B5sPQjioJXytTUBny5INiXuvAAYigmikOadOsKlEUfad9JQ0o74EUC7K9EWk5E8w+h1pdcxzH6/TEyKR3vGZRRy3MtbVd60HracI1SSba+JID7wWMzSRw+wphepF9dBPcWSuThyx513/QaoUT+EVPZf43f8IiIiMj0OOERERGR6XHCIyIiItPzyTk861/8/OTz4q67ObdrcHhg2/3+9PRqEOEYY6zgN+btLf0YDfsWr4fcojWF5qFbcvm37iWsCH9YXw5/WoHvEioj+IPuosyTyadhz6Nvqv7MU34/joqQz4QrfV8OaTse+v8XyD+hALPkl2f8XZ5cmaANhyQkjCqjY6JDEPonAVe7GRToSSvO065wzDouMOyS6qKuSMIbQ5+prhIfhzdiwF9YsJagQ5KjV+/vcOxEwYN0j4ahktG9lQZUUlW1qRhkSnteDtdbpn5WehvVtqZ1Xds9tN+VIaIfit/wiIiIyPQ44REREZHpccIjIiIi0+OER0RERKbnk5OWv/nT3z/5fHP3QytDgvLNkuTm7cnnLUimmxsILHzRu4XE2bovCcorCPjbQzvWgbS1QTn48pyVAhFJ1j4EdY0xxmJxeVXhtK4qYtN+6NEGQXfBArx/VRe0C/rsUOTBNYydHQTYUV21bUf4v8eCwiGvFClJzKZjJpDgSyTOMtWEoZjAYV+S2wKh+xwoNzdJNmvXEoP0aqFeJpXzl4GNmorrKOwHpCJ+q59WDU8JxkX6IgHWVQM2of70ZY9679JzjZ7B2P66ijtcR3wRJh1PZRu+4ADgM6Xs+zHHIZ1jHFL66+N8UGkRERGRZ4gTHhEREZkeJzwiIiIyPU54REREZHo+PWn5b5+KiC9vH1qZuyIjjzHGLayWviureG/XfXnaG1iVfHvb6xLrHkQAAAiESURBVCJuSrLyDcjUBCUmb4uASe0i2XkP5SokO5PsRRLdHtJlF8XcO+DKw9lK4lXoXS6zVOgkkTkV2lCAxtTbyzIfiuWBBLi/fBnHGGMsg1Rd6hsSp3cwXJO+jhdjD5KDUxGRyq3K2E9XcScWV8rgqUDaEsWhrlggLuVSkXYN0jW29cqk6zglvVBfBvhxv0TMhjbA84PAcZdI0aHQW1nDcxr7HsrV/qHnNHFtW5eUrh+mgNe20n4rGP3JPb+Io6PP4zc8IiIiMj1OeERERGR6nPCIiIjI9DjhERERken55KTldz89FZN+dnvfyrzZvG/bXkDS8sPqVATe7PvpvnzRpegdyMEkgL0o0vItSMskGhO19j0cLxWZqwC2BhkvFUNHIMiR2LyEuFmqf1P6kCXpfsxEzE2lZZQHcd/TtqWJwMkxPzQx9LQdJSkVJFA6x5sbEikvHy9N0U5I+zBKzQ4Srcc4J2BeFnqpX5ehCJyQJHKP0aXV9Hhp/ZX0/kuOSX246u+SXC1Ap+26Vtam+hPxnq9RJu/W/kmvN43phKeMpy4tX/8MTtr/ofea3/CIiIjI9DjhERERkelxwiMiIiLT44RHREREpueTk5a3f+M0RfnNiy4ov1p3kXkFctT2eDqf260hqfgI20DKpCXtX92cCs+UZFoTVs/VVaELEyexFlYghlIbUABDibjIwXBMaimm5da6whRRIumfJ4nMkJCd1E/jqV4TTKu+FvhvDAmAdEQaF/WcWH7N0nKT/k9FRBJgr4W7v0rw16dCJ/ulabad65Jrx+BrWUulT53kObCC5+G14xCfJyTShsJwfbmDXhxJSfa8tl+Tvx9jPO1FiEp+f3+8lzGuHYeP4Tc8IiIiMj1OeERERGR6nPCIiIjI9PxOHZ7ln/5R2/b6J9+ffH774rtW5vPNu7bt/tBP5W5VgsPA16FtFDxIfsirTQ8trDzse6rWkn7hLYdMfZ1FsEI71UW/TyeuyRj9N+Q1eDd5ONZ1Tse1vw3T+VD9seMUtIu8gt8k+zB4kK5bWl9Sf+LwpKuNE9V7Sr2x9N6q5fYQpnmtf0KkxkhtV+p00Ni/1kGiY67Bcbs2pDJpa7xSPZwjBV7WfdfpMxhXDb8cUpreM7Uc5DReXReRtpWea/VZkfTNOZLr/aF/B/yGR0RERKbHCY+IiIhMjxMeERERmR4nPCIiIjI9v1Np+X/8q8/btr/ze39+8vkrkJZfr3oY4Ri3bUsV6w6rbH5HKyATN0XSS+VBYlHkZlrhfAXtouDECrVrA+W2IFiT3PybHDS/Xb33rwDxjc6xlkpWqj9HFSlp5KTBZ13mo3bBeArlxJt1CUl8imhcytG9toWwS64sKBcKq0R1lMk9R5kzqPtjhsKl/2sF5/qjtoM57WsSXfmlgV5Tbf8KJOn0xYtE6E2f5yRFH6IXFdJnxeXxmgaeXk923W7Wl/8mrpaXA1zHyOR8uraP1vlBpUVERESeIU54REREZHqc8IiIiMj0OOERERGR6fmtScurt2/btu2fdCH5D15/ffL5b938qpXZg+KZyLskl92telry3eqmbcNk0SJfvdt3FZhSm3dHSF8ubbtZ9gTl9QKSoqEvmqwdpiofwGpcJqtnkxgaypBdYu37pcnXta6PmfZM9VVpPd0vPeY6TIBuZWIpN7tuSVtTQfJasZ/2qzJnmix7rVieyMhjnGvr5WOm+yX3DPGhgudj7SJQ4C7Ce3I+5+qq0HWktGdiRWOlbEteXBgjWyX++tdZroek7rT/K9eu7P4U6jE/xmTFb3hERERkepzwiIiIyPQ44REREZHpccIjIiIi0/Nbk5b/+7//g7btn//8l23bH738Xyefv1x3sfkv9q/atu2qK4U1mXiz6FIxpRe/WfckZxK77g+Xu2936O3aHfsxd0VIZiEWJDTQyarI/AAJyg+L3nZM6wQZvPYZpUKnIiUJyZeOd67+SL57Qhr2tZBYXq8bCaUkAu8COT9NgKY+XF+Z6noE4Z3Ou0Lp3tQuSp2+VoAmYTUZr9eOOdo33S8pl95r175IQC24ti6CrgclZCc8RcSvz4anpFAndaVC/bVjJ71GlaesGHBtGxJxPe3DR9vzQaVFREREniFOeERERGR6nPCIiIjI9HwUh+f//Lt/evL523/8rpX513/4Z23bv3jz39q2n67+8uTzA8R9rcBbuT90P2dTPJiXyx4yuFlQOBOs4Axhgd/t+wrtlQM4FxRQWKHgwU3osrTjgbu0PvS63kO7DuAb1baRw5O4IGOM8VAcJ/otl/qQrlEtlzgk545JXPtbelLXGsbhYdnPu/bXGODswH9j6HrU++NcudrXT3FZHor3Rg4anSMFYCZtSP2Na30mIlqJOxybieNGPCUMtPIU36het4/hYTxWF5H2Re1req5dC43za1lEK7HnVE9zE65m/lF9SKiqXt+PcTy/4REREZHpccIjIiIi0+OER0RERKbHCY+IiIhMz6PS8n/6n100JpbjP5fPsGourPS9PXY56leH09C/P9/1lcs3iy70ElVufrnqgYJvll2wvl1u27YHkJa/Xrw5+UwhfSQ7k9xXRTGSll+E22r9JKF9B/1KkiYJpDelvrtV7684DC0QuFNpMgnlS1djJ6rEmO5H7a911T4d48z5wNDf1VW9QTSn86YxhvJuaWsqYGLg4pXibHJtX5DIHoQ+jsHBj10sT1ehh2DRYyLn03Oz13XtSuLXsgpd0aRdqax9reT7lPNerS5f32tl8FSoT8o95aUBYj2uk7OvFb+prfQsTaTxDz1vv+ERERGR6XHCIyIiItPjhEdERESmxwmPiIiITM/iePy4qY0iIiIinxp+wyMiIiLT44RHREREpscJj4iIiEyPEx4RERGZHic8IiIiMj1OeERERGR6/j8jStwSQ8E4SwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.color_dim(-2)"]},{"cell_type":"markdown","metadata":{"id":"a7BkDf7X2N2i"},"source":["This shows a classic picture of \"bad training.\" We start with nearly all activations at zero—that's what we see at the far left, with all the dark blue. The bright yellow at the bottom represents the near-zero activations. Then, over the first few batches we see the number of nonzero activations exponentially increasing. But it goes too far, and collapses! We see the dark blue return, and the bottom becomes bright yellow again. It almost looks like training restarts from scratch. Then we see the activations increase again, and collapse again. After repeating this a few times, eventually we see a spread of activations throughout the range.\n","\n","It's much better if training can be smooth from the start. The cycles of exponential increase and then collapse tend to result in a lot of near-zero activations, resulting in slow training and poor final results. One way to solve this problem is to use batch normalization."]},{"cell_type":"markdown","metadata":{"id":"o6wggAq92N2j"},"source":["### Batch Normalization"]},{"cell_type":"markdown","metadata":{"id":"YA7BpNK22N2j"},"source":["To fix the slow training and poor final results we ended up with in the previous section, we need to fix the initial large percentage of near-zero activations, and then try to maintain a good distribution of activations throughout training.\n","\n","Sergey Ioffe and Christian Szegedy presented a solution to this problem in the 2015 paper [\"Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift\"](https://arxiv.org/abs/1502.03167). In the abstract, they describe just the problem that we've seen:\n","\n","> : Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization... We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs.\n","\n","Their solution, they say is:\n","\n","> : Making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization.\n","\n","The paper caused great excitement as soon as it was released, because it included the chart in <>, which clearly demonstrated that batch normalization could train a model that was even more accurate than the current state of the art (the *Inception* architecture) and around 5x faster."]},{"cell_type":"markdown","metadata":{"id":"FQk1mMqu2N2j"},"source":["\"Impact"]},{"cell_type":"markdown","metadata":{"id":"JOdWXW6q2N2k"},"source":["Batch normalization (often just called *batchnorm*) works by taking an average of the mean and standard deviations of the activations of a layer and using those to normalize the activations. However, this can cause problems because the network might want some activations to be really high in order to make accurate predictions. So they also added two learnable parameters (meaning they will be updated in the SGD step), usually called `gamma` and `beta`. After normalizing the activations to get some new activation vector `y`, a batchnorm layer returns `gamma*y + beta`.\n","\n","That's why our activations can have any mean or variance, independent from the mean and standard deviation of the results of the previous layer. Those statistics are learned separately, making training easier on our model. The behavior is different during training and validation: during training, we use the mean and standard deviation of the batch to normalize the data, while during validation we instead use a running mean of the statistics calculated during training.\n","\n","Let's add a batchnorm layer to `conv`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wcKN53bp2N2k"},"outputs":[],"source":["def conv(ni, nf, ks=3, act=True):\n"," layers = [nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)]\n"," if act: layers.append(nn.ReLU())\n"," layers.append(nn.BatchNorm2d(nf))\n"," return nn.Sequential(*layers)"]},{"cell_type":"markdown","metadata":{"id":"WRnR7f6p2N2l"},"source":["and fit our model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Pw2SPJn82N2l","outputId":"ef5aa201-17a9-4abc-9916-1a2f94e5c1e8"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.1300360.0550210.98640000:10
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = fit()"]},{"cell_type":"markdown","metadata":{"id":"o_9zhaqk2N2l"},"source":["That's a great result! Let's take a look at `color_dim`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hcxC6DDe2N2l","outputId":"93034400-6a6d-4c05-bef7-0afc8c2a2a60"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAjwAAADNCAYAAAC8XqoPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2dy5IcR5peIy91AwgQIBtg07ppo+nWQhrrkWkxO61legK9ip5MT6B30E47mcmM1JimmySAuuRFC3aPdf7/qcoPUVm8eJ+zq6CHh4eHR8CZceLzxX6/n0RERERGZvlTN0BERETkqXHCIyIiIsPjhEdERESGxwmPiIiIDI8THhERERkeJzwiIiIyPOuH/uN/Xv5Xv1n/kVj9278/3PDdu1Zm87sv+37f3bRt17/55HC/Z6tW5uy7Tdt2+6oPh/X7Xdu2vD3cdvO677dfLnpb7/pwunl5fM692PZtOxi5F98dtmtz2duw7Kc9TTDK99CsfenG1U3fkc6b2rEu+5593/v57nlvxNm7Xm5z1euv7NbZ9Vj06qft+eG+dD6r217X1Td3bVsdKwvo+yW06/pVH8PnpS/urnp/ra/7CW0vYFz0pvbjfdcH4vayH/PiX3pld88Pz7uOpWmapt1ZbxeN/Xo96DoSS7hGd59Q+w9vkt1Z9v/Fu3MY5+8OT4D6i+6Zxe74vUXjkPr17H2vawXjotZP55P2Ybsf4BLROdLYr+3a0nMN9tvA/VCv7Q/1HZaj67F+3wfi9Wf9IbzcHLbj/Nu+H/17RNeNnkUVuo7/47//t3sfiP7CIyIiIsPjhEdERESGxwmPiIiIDI8THhERERmeB6Vl+fHYX14c/L198zLa793ve7kqcpHcNy36pV9dd/Ht9iXYZMUwu3tO0iHsBtPrKrltQdxcgyi4uu113RZ58OqfQbR73c+HxFYS/uo5bS9aEZSD6zlO0zTtSzFq1wLWuXv3617uk/9zKCK+fwu3NUqTUOy8b7t9USTZ616G6r/+/Kxtq4L1Fo538SfoL5Iay+UleXe/ykRg2rfKwdsLGBNbumd6/2+qrAu3JI0TEqyrLE/CKomtJOFS+2/KxwskpPMHASD0vji8cHXcTxOL+Nef0X16WD9ds1u4RrfwfLqA867Pzfdv+vg9h48LaOzXsUP9vF/2ti7P4EOCMl7pQ5LNMxD2P/RyH97AByaLw7ZekGj8HK4HfrRx+Dd90EJ9QWOsnjdJ/SRYP4S/8IiIiMjwOOERERGR4XHCIyIiIsPjhEdERESGR2n5Z8Li+jAxeffmWSuzvO4yGQmYVUy7+CNIgSDJ7j7tdVFKaZVYMaUWXDIST69fH865UZAE05GSllcldPrDr/oBSawkQXn94bhASn2/CB06klFbXWEq9Pe/KenFsB/1fZqYXK/vEqTDD296H56DfFxFb+rDNCH7w+eHx6RxSG2luuiYtW3Uh5SGTeL65vLw7+df93uSxnQiB68gAfrD590Gv/i2HxPHeWlrFXDvY0mp0EU0pfFF4ildo3o9rl/1vr+EZx21/w4k3/ocoGcfSfBESxz+Yz8hEoFvXxwfT6sbeB6C0EvPippOPk3TdPtJkNROyeAwzs+KUE0foUzQh3fP4P4r7af7Y00fUDyAv/CIiIjI8DjhERERkeFxwiMiIiLDo8PzM+HD7z8/WoYcHuLs3eHLT1z1F1wWem++69lb0/n3JSwQ6qeAMVrV++qfD9/53r6k99O9rsTXWL+DUDV4R06+0c2nFNZYjkehdvDefPWhb9tclbrgfHiFc2hWWXUZryPc6VQ/r+Jd/4ZwSHBB6LrtSp+dQXgZXY+7rrRNZ+9q3XA8qIzGJq6yXXyH6ptNE/tSFOhY20r+ycV34PXQOZU+/P63kN4IvAfPitta7iMIJKV7mQLl1mXbBwgUJFcmGa/U9puXwcrl0z3jvLhEFJRaQx+niYNXq1ty92W/RhScSOdUww5pHJ5/ezwEcJru8fZujj/PW3DmxO2/KUG15NBtgjDNaZqag0S+Hz3DHsJfeERERGR4nPCIiIjI8DjhERERkeFxwiMiIiLDo7T8xKy+eNu27d981rat3x8aWbefduPz+m1fnhuF4SLfkThG0h5BoVRVyKNVw0mYIyGvSsq0X5U0/1wSjnlYjuQ4EmIxxBBWY28re5OYfdm3UchZ23eXybsocG+OB0GiQEyLqi+Ot3UHjuzypm+j1d7rNhI+cWVpGAObqxLAB23A8QTtP/u+H7OGwFG/0thf0tgp46KKwdM0TXcQgEkSfA15ROET7jVeob1vq6GY9IEDB0b29tfnDB2Px0AvV+XpLYxp6i8KtcO+qAGbtPp7ENL3w76Hf++XML5IdiYpuowL7HuQyAkMdi370kcJl/9CQZm9XAut3GXnSP8e1X/b6F4j4f0h/IVHREREhscJj4iIiAyPEx4REREZHic8IiIiMjxKyyeEBOXt19+0bYuvoNzF4dyTE2+zZN9NFZkxnbdvI7kvEWCpLhI3SRZtZSg5k5Jxk9Bp8tlQBM5WY9/XbSSLEuQTBiIwkaQop0nCJAKTMNyuCQmx8L9Oe2hIlYhp/G5phXAYTzXlmFK6KYF2olXu4ZyqpE5tpbFDEnG9jyjxtsrCP+xHdR1uo+u9A4l1hYnJfd+aCn0DqdA0BqgP6zhPP2ag8Vr7rN2P0zStaPV3+LCDPkroYn82DumcmpBM5w33Mo2Ldn/DM5LGCUn89Iyn/ql8+ByE9OBaUj/fvsj+nalyNv6bBeL3Q/gLj4iIiAyPEx4REREZHic8IiIiMjxOeERERGR4lJZPCAnKyz/8u7bt5lWPjFzdHBpZ17+CGFEAU1BLmi0mDlNdII4RLU0zlC1Jkq1CXpoSTHJfTRFFyRtEQZQ5Qe6r0hy1gWRLEveq9EltpT6kpNcqau5AQiQZmaRulMZru6APWYqGbaV6EoEpSRal7sVhZZSWTGOHuP7s+PWmsbOABN0k1ZqEUroe3IclgRbSvUnWprpYBK37ZWL2LvjQgtq1eXZ8v2mapkV51uHzhPoLxjSOi1KMkn3pAwQSpet9ih92wLM7Sb6++FM25qj9JCjXduAzAO7JOg6nqaf6032L140Gf7ln6GMGelY8hL/wiIiIyPA44REREZHhccIjIiIiw6PDc0JwZXQod/7H/gL//W/gRXbhDsLEzsFbuHl5fDVleudLPgWFmvXVlGm/46FztC1d1Ts9ZqsLA/7CttZilJFIOXfBitrkh3AwINRf3m2jAwOeFZ0jnhMFytW6KOww+N8pvLbkFsF1q+eJzgWAwYborxUXDvypNfkbwerfHCwKTYDVpiu4Ajm0FR2eIIQRxxw4Nhiw2drVt62uadtx14f6a0VOR+hG1XJ0OuQITfBcruOJPKvqoE0Tj+F6H1FwH0H3La2WXsuhMwlO4/rdvNXk+blwvA/T59VD+AuPiIiIDI8THhERERkeJzwiIiIyPE54REREZHiUlk/Ji+dt0+Z1X4749tNuhW2uDueeFEp19r4f8vp1n7PW8CcS9CgsEOVmCKqq9W1pZfEgdG6aIJQvlNBoledV7YpQpCVxFldVD0ISSVqmclXARGmWvFAKAAvOG1d/DyRyIg0LTGRRPB61FVe5b60IyrDMuQGpdLmtS333MiRAoxBby9D50H7BExpXGw/HOY7hKi2TYB0GbLbzXPYTp+BBfFbUbz3wAwEQxsOPMdbl+UdyMMrmMPZrv5JYjgT3FgrQaV0gwdexQv1F9wfeb8HYT59P7XrT8zw43F/jLzwiIiIyPE54REREZHic8IiIiMjwOOERERGR4VFaDqEU5Sopb968bEW2F31OiUJvKUYrcdM2EhZJ3GvHgyu/JQmNUoKLTLYFgRiTgylFuW4LU1FRkCzlqG8wnRVWrt5SInNpG5031bWBY1ZpEkVXuoxBCjEJmQT1IaYVl2OiYEh9ncjgYaoyybW1rXRtOUEZmhXIoiTKo/RLK15X6TO9RjQ26zXCFbyhMmg/tqNsIxE1lXDrea+hXTROUMSuq2fDWI2k/nvK3Zb0aEy+BlD+L22lexLHHN1HgQi8DBKzp+me1ctL26hda0jDputWt+E50r8NUNfdi1oI9vvIn2z8hUdERESGxwmPiIiIDI8THhERERkeJzwiIiIyPErLIduvv2nbVlMRmUFa3p33OeXds+PzzLvn8wXlKrmREEag0AZNrcmoKI6R8Aftn4rARqIgCb0kizZhjo4H4ttdD8hmKTMQbik1ls67to2aiknLwf+ioBQP20goTARSEj634XWr50R17c57w/aQ0Fv3RYkyFJlJgK3lUgkUhdtAqCexlcZm25fG9Cd9G4mteL/VMZaOkyDRmNpFIjMl+9b6sQ1hwjTJ4FFCNpWhuN/S1/gMJrkdnh+LILUZk9RhTNOzelk+XqAk51Qsb8ejbaEM3mTt8COOh/AXHhERERkeJzwiIiIyPE54REREZHic8IiIiMjwKC0DmKpMlKTlm8+7JXb3vM8pSTROEiNJZEaKyEWiHaV3osQayMck5FGaZpJ8jP0A+5HMWafv1AaS3FACpFToItMub8LrAcVqXYtdL1Rlwmm6R06sknr4vzGYJg1t7Qm3vRNX0Bc4nhIRMaSN6yAteZruETdJgi/9g+OJ2kUJwFVSD6VfPsDhn5T4jRZ8OlyDthIoqJZ9aUyToEzUexKFd7hvMdmXnon1fgivByY5B+M8FYGbrB2kwE/TfYn+veDuLEjmp2cK7Vb/baC2BrLzNE3twxdqu0nLIiIiIgUnPCIiIjI8TnhERERkeHR4Qja/+7Jtu357+LJ+c9nnj5ur/qJz/aG/i7z95LDc9jx74Z6s4EyhcDjVxXfi8N40aNoCguKSlasxII/e+VL767tuep9P4Y1rOMfAcdqBy4LAMZfbulx6L7N53jcu7yhospQLVsCepnw16OpKLDe9ss0zaCu5E+W6ofdBfgVco/WHsro1BRbCebe+v6f+2tdp8CDRXANypXBH2FSOSW1fwDnSOKfxVPu/ja9pmpYLSsXsm6p3Qb4R3mvkXpX66ToSeI2ClMQ9PPtir6f+yxqujE4BmLSt1QX9lTwjp2ma9tVNhPsb/x2g5yu1o5aB+tHPCcI6DR4UERERKTjhERERkeFxwiMiIiLD44RHREREhkdpmXjRU+3uXnZDq0rKFIJE225edWnr7pPjAh4JyiRtJZIbke5XpbY9SI0omKE4ezyAD4U5CvvaHm8XNQIlVpDoWhvS0DyScIOUOQwZpHbVoEkK1gsD+JIFiantdDppsGFSF68kXsYO1UUru5OES/Ju6Z+7F9l5Y7Ba7evw/iD5uI5rKkMNoz7Ee6vKoiSiQl0USFk/VMAwvHQF8jbOIUQvDXTEoL4i797Cc4HOkQJCa0hiELp6X7tqX6PQHQbJ4qrtBb4/ejnMD6xtpTbQMyz40CINuH0If+ERERGR4XHCIyIiIsPjhEdERESGxwmPiIiIDI/Scsh+BatB70qK6EWfP+Kq2+vjgmSaEozibNmWrPw9TSzDcRpoTebM6qe21mPu09RjTL2tMmcvQyJzuhp0q4s2kgicrNYcCtC4OnCQNooyZyijtm2hDIkCdB2bYUpwIj8uSDxOU6dhvEb7UTEU6ku7SFhFC/T4/cByfgfFUxr7wf8G0zFRii7iehqMS0HOSUo3tZ0SplH0Lmye9wtCKcT4sUctRn0TPtdawjt9zPCY+6iKxr3I7A9hYjE7gfYj4f0B/IVHREREhscJj4iIiAyPEx4REREZHic8IiIiMjx/89Ly6ou3bdvmzcu2bXdGiaeH20hC24HsfNurj0RjFFYDCw2FNpJ+w9FQ900Th1eQXNok1lCmxsTQ0q5U/CbonJqoGZ747vJ4si+mHlMgaSAap9cjSV39oeDhn7tnqZA+LyUYJdxAdMTE3sdQx3komeJ9WquGe3L1gZJ9g2OGbagC8TRl4iymC4O8i88ZKJdAKd3tvJNY8OmecUE3V0l5x1Ro6msar6UudOfTBOi2I+1HNyA0KxDqU5kaz7vY5vhRAj2Dg4dWcMmO4i88IiIiMjxOeERERGR4nPCIiIjI8PzNOzy0Mvrmee+Wi//XU7tu/+7wBXuy4vk0TfesNFzLZAF89P6+7poE/k3TNE1pGFoNAKP6Yb8NuCytreGK8/j+u7YrDOkj9yD1A1oReq+NPsXxyjBILxgDeD4Y3AfHnPl+nUj6Iln9/YdydIBkR9gvvk2PL/28X1Igaa+rh2JCgN0lNSJZPhuOB6ugp0F0Sf+k9ddSqU9D7k8d1zh+6RzDgM3WDFzhHMYAeSrln4tt6sVgQGiwBHkabEg+ZHUA0RWFbfBcaCGG4SrxtOL8VJ4NqDzp8IiIiIgc4oRHREREhscJj4iIiAyPEx4REREZHqXl7961TZvnb9q2D2+7aXXz8nC+SMFeFKCFoYJVyCO5LxB1fyh2XO7D/UjkowC+QBTDMtjWcjyS3CgAjA4a2Np7kA7TlcTbouG0sjucN60m30RBqItCtSIBPVwhnMMVqf7StnDsIGjJliJw4iw3H5d3o/0mXkm8StcseYfjqUi42C4Aw++C1dFRPifpOjCU00BHCpmrY5/HF9SVrF6P43CeAP3nraWu402YpntWXk+ekdT+QOqm649tCFclT4IyMaR0H4QKkl+NH8IEH+k84gOEfz3MxxUXERER+eXhhEdERESGxwmPiIiIDI8THhERERmevylpefFPf2jbbl90q5hWRt9ckvhWylzBQUG02kLicEK+CnZJdSVpL115HazlKlyiZIqr5B6vi4TuVNbu+1EyLpQjmZPuDBIDKyDfkcyerCKdyokkYrf9ILV5ClNv62rvsaSJonQSVx1uqzJnmKhLleE1Cq43SsWBkMwrTc9rA4HiNK6qTmPseLsQOKd9XYGcxgSlNqfierAfCtDU1vpsCJPasX/KdaNhj/f3xy7//UAbqP7kXx58xjxCsu8HgP1Qbg4+SlBaFhERETnECY+IiIgMjxMeERERGR4nPCIiIjI8f1PS8vJ/f9O3/e7Ltu361UXbRjLt5tnxY26fhUmsRSjEJNBUmKuBwyAFYsonbFtukjThTPrdQyptO0+S3khGJVoUclBmyuXBmmCNbSUxlK5lJF1D9Rf9AK2t1AYSN0N3vkqMKNzStkTAxIDYrGFN/CaBmJJ3QxE4kcFRZE/akYrZRK2K5FT6aOCWbvDg/k779Y6iqMt+Z8H4naZpt4Zyta9pSNOzjtoapLA/Ss6v50n3AmzancN53wX3Xziekn1jmRpl7fI3fiQC2+jDmnq5qW8+Uur3Fx4REREZHic8IiIiMjxOeERERGR4nPCIiIjI8AwtLa++eHvw9/U/ftXKbC+7kXfxpy5Hvfuyl6siMyUoY3IwgAnAtQxdrUR0TGVnStmF9leBbZfIndOEo60KcpjyGaY2N0ESk6NhU5gU3WRgumZJ0uh0jzzYCj1iWy1CSankmGKSczXqjx/vh8pgW21HKk5vemPxGgWkqbHteifnc0+5RRucUFco1Ld9wyRyEt6z6N1sGwnJzQ1+hKQeSeQp9CFEHZr03ElTiGtd4f0Xi8YBsdwcXCP8EIJk8FURrMP7Az96qJtmhlD/Nf7CIyIiIsPjhEdERESGxwmPiIiIDM/QDs/uq0OHZ7/qLwFvXvU5393zXu72Ra9/e1FW+obe3IWhc+19axxC1tvaMs4eEToXhWPB+914peHkXTftBr5A64vQ4cG6MHSsbEtdkCTADFcRp1A7CFabu7o1sIfAt2is4PUOwgjRbaCgTBpkAelu2GdBR6I/E4T54fLZ8y5cC2CcJjxvDNtLxnDodMz+3+c0ZLUl0UGZ0E3EVb3rvUX71WcAtYvaQY4KPRcSdxCvI1yQ2SuvZ0GyWK5uovFF543jMAiahDDCh/AXHhERERkeJzwiIiIyPE54REREZHic8IiIiMjwDC0tL643B3/fvO6ne/1Zn/NR2F4SKpgGoSVBVQj5ciSZ1tWtU7k2PGaT1UiKJkiii4ITSXKDclXcI5kz9fhIMqz7PqZfa/0oGFIbgrGT/m9MOg5r06itaV31HqHzgfoXMM6bIJmOk/Sy1XPC8w7rr+eJ43BeON3+gvoQdkuvUS1HkikFqlJdyThPxdZVIKiiQBymdSbjPA2frFDT048l2rMoFN7p34YEOm/q+7RcJRTLo4DNj8RfeERERGR4nPCIiIjI8DjhERERkeFxwiMiIiLDM7S0vH1xcfD3LSQok6C8uezbKGmySso7kgfTVZHnCrCUvFtXFU5X2E5X5a3TZBLOYHXraGXpVOZMzolWV6YVfuNA0sN99yTXUsouJQ5XyTAUDDHotXZ16iqGSaxNGKYxB4L4AiR+6rO2H41D6FfIm+37zU2bBfA6xgJ3kBKMEmgg9NLxML04HK9JGnaaFB3J2gAJvcnxdlm6Oo2xdnnTttIzZRk8K9J/B5IEeequue1P+2sD5cq4o+dCtDL6NDUBGvvrI+9vf+ERERGR4XHCIyIiIsPjhEdERESGxwmPiIiIDM8vUlpe/NMf2rbd2apt+/b3Vwd/by+64LQ97/Vvr7pBRUnLSbJyE4in6Z7kz5mgABYIktB2SrNNQPExdMn2lCxa66d2zZRRF5AEuoBpP/mprR9D23lJwl9pP0qB1DdBIPOCBHvygNfbo+1C4OIuL7K6lue7o2UIHGPb431Iwm18zEUVMPtAwbEJ/bPvg6fvB+3ne+twWyzdw3MHZdp6TlQG7qOsX0OZmpK12/0A/QXP2z09jOix3IqF/RV87EHXEaG+KH2932bjMBLSifDjFerrXhfsNzetmq5Z+qHNXw7zUaVFREREfoE44REREZHhccIjIiIiw/Ozd3hWX7xt2/bXPfHo5tfP+rZPD+dzm+e9/rsXx1dBn6Zp2pNjUbfR9JHe8SevuuMVZSlMLFmxNvMFiPZOPHwniy4LvOPt7YKNQXBY6jZUV+PPW4NN4btuaGvtC2wBqQf0Hrv2NaksoaeE78Rrv2K4IhyTggfrLUN9A+N3C95Cq5/GdG8Wez1UrrBK7qtpmnYQyEbn2doQim/L6halXgk1YXn8mEsIAdxDV9D1TvaLx9NZdVnC8w6PWZ+lc8c0Ej5iqK8rmHUZOU98zOS5P99BCvcLvNb4ej+Av/CIiIjI8DjhERERkeFxwiMiIiLD44RHREREhudnJy1XSfn2H37bynz/m54WuIFQwbtPSpnnmTS7uwQBDEPNyt9JmekeASxZVRglUwo+q8eDuohQil4uijwIZVbn3dzc7XpDVonomMqctV8ftTI6taNsgLGzh3MkqijNcm0WalfPk/q5iq7TNE07um5BoBxdD+pXkufn9v8qWQI+vN68cnUgsdIhYb/lBfR1vSbBfXXfMVsbKLCQyoVjIGFFci0FLpZtC7pnwnHYn5HHjzdNHLBJ1Ht3SW0I9iP4wwgoF4QFLuHZis+FmdeIoL7YUQBiuefT8UXPp9aujxSU8TiPrkFERETkZ44THhERERkeJzwiIiIyPE54REREZHh+dtLy/s1nB3/fvO6xx5urLkLdvuzbqqS8o5XRaRX0dIXzItwuQBIjCQ3FzSA9tUm599CE2DDJNGWueLoGebDWtYPzpoRbkgCr5EaJvakAzWJulYMp8hRWDQ+kTKorvd6V3S7bj/5vh9pRxw/JtSlzx05dIXyasmtJ4yRNZ23J3bQ6dyijLmFcZG2Y12GxJDuzD9Ny25KOu4K+x/soqJ+fAVFVXP9q3jXawf1Q711MNU8vbZKEDG3AeznoszTh/Qzk6TpeKUj/lM+6dGz+63FmHUVERETkF4QTHhERERkeJzwiIiIyPE54REREZHh+NGm5JihP0zTtvurbNleHkvL7N31ORoLy7UuSj0vdL0BiXYOASenIF11oWwbyI4mzKEDXImR7AZRIWkUuTB8NReZErEMxNJTJ5kqZcyG5L6VL0ZRaeny/aerXbQ2J05iYDOOplsOUWoDkwTU8ERIRNBUdk/2IuTJqIp/fVy7JOab7KJFFH9Ou5N7K08lJ7K9lSEamsdnLrcpzjK7jEp63mMoejGtMk8brke2b1FXPkeqaex3vO2aFpd+sD5Oxwtdt7kcV8z4cmdv2v8ZfeERERGR4nPCIiIjI8DjhERERkeH50RyeGig4TdN0/faqbfv27w6bdPspBAo+g3fKsG13Xt6j0uqx4E4sz8HXwQDBw20r8IHSd591G73fXZMPNBNaxZZWrCXaeZPHELosPcwPVuCd2a7UgSGSd8Nb8gyg/qQcHW+9hlWRgRqYRnXh+YT/u1PHSjpOiMwvO+4ppWyhfvZDjofOxTlxJ/zfyHlm0T3nSP0a+H2YkwohoqvEgQmfO4vF8VA7gp4Vm0V2Qerzle7bNTmfwKbsewbji8YmnWHiitK1xRXIYd/k35V01fME6sOkL+h8PrZd/sIjIiIiw+OER0RERIbHCY+IiIgMjxMeERERGZ4HpWUKC9x+/c3Rctf/+FUrc/eyH4pCBW9eH0pImysQlGHbjlY9Pz+UoxYgI9PKyeszWtUbyhX5isqQaEXb1kGoViodnhIWCh+xJPFRshWLSWCsfXF5dnu0zH11YcuKiLheZVIxSd1JH6aSXi2Hq1aDgPmYMLSEpH46R5S8QZJNjkcPuLlCLBEuTD/VjMptvJL1zOBBeFbM/biA9ptL2l90zNqutL9W4Ur1tW1rEI0ha5Sf+7vD/qfzWdKq4TMf59Sv58E9k5KHdR5C7aJzvAg/9ngs/sIjIiIiw+OER0RERIbHCY+IiIgMjxMeERERGZ6Hk5ZfPG+bVlMXmW//4beHf7/q1b77oi8pe/2rfsjtxaHltHkOstQFCL60mnlJVsaEY5CFz0BaJmG4Sm1n4SrVidycpJZO0/zE5FOm5aZ1kYT21JJsJe0vKrcrY+AxfZhwimTRv3ABAmZaV21HTZFN94sJUo+nKUuATtNsqaVJ71D9c887lTTpWXRK6hmlfTO3D1OihGmSlsPE4blQ/TQu2n6hodw+SsiaheeYtPVpP4NhqL/qv6+neN76C4+IiIgMjxMeERERGR4nPCIiIjI8TnhERERkeB6Ulm+/et223bzu0vL1q2Up0wWk6zPjgYsAAAYOSURBVM9BwLwAgepZEfLOYdl7SExeBonJK5CKL87uel1gbZ2vezprLbYGmXBu+vISlLMd6GQk6a0Xp5Mak4TNVDw+CxJP08TbKG02rIv6lfr/dnco3qcp2sk1ojYQ6bhIWME4wQTrUv8ZJdCGGuhmf/ismJsmTcdM++Ex4vqcMtMU3jPQr3MToB+T2vyUMv7cjyymaX7y7tMmwzP9E53OKZPOH/PcPCvb5o5pqj9NUqek5eSjhI/9iMNfeERERGR4nPCIiIjI8DjhERERkeFxwiMiIiLD86C0/H//42Xbtj3v5bZXh3/fQTry9nkX8hbPING4pCOfX3Sp+AyWva+pjNM0TauSrEyyJSVPUjkSgWviKUnLj5H02n4nzQedz1xJlpgrnlJfVCEW9wvFN0oTvlofjkWqi/Y7o4TvQBRM21qlQ+Kk4/AR8uDZdHhvnbJdaQI0XQ9sxxSIxsApReMtjOnkniEhPaW2n5Kdnzo1nUg+enhq5l7b9MOIhFRIn71veIpz27GGj4fm1rWAe/kh/IVHREREhscJj4iIiAyPEx4REREZngcdnu/+DbwHhoC//WUJ+Lvq71ovznpwH61KXv2Zc/B1riAskPyZ+o4UVzyHbefL3lbyCpKAvzW8d97Re/lS12aXRFfd45EELgsx16fAlcWfONyN+vBydVfKZPthqB2M8zqe6jWbpmk6h66f66TMXc187orqVFcKhivCvVU9m1OuCE99n9xr91H3TYM/ibnXaD0db+spwxunqZ8nuibwXKN+pf5P9iOSunC/mV5g6t0k9T/mnkw4ZVjkUz8/0rFZnxX0PPlY/IVHREREhscJj4iIiAyPEx4REREZHic8IiIiMjwPSstnv37ft4FoXFccvwRB+RzC/C5Wvdxl2UbS7zlso3I1VJCEM17xOpOjKLSw1TVTcqP97kDaS0S+VGJOj5lA7UKJeHFckEyFvEiAPqGIeEpIgKfrloSVnTLkbJpOK0TWezcVXef2RSr0cp9tjpaZK2A+5YrkH8NcaTxv/+nCAnf7x0urf+GUsnxSP4ViPvUYSINRa7lT9s2j6sq+2/ko/IVHREREhscJj4iIiAyPEx4REREZHic8IiIiMjwPSsv//tdft22X655yXOVBkpEpvfgMhMUqH58tKNGzi1ArSCT9scXAx0hvd/vjhtYF1L8N5qxpajNJmRfBftsw0Xhu/5CQTud0ysThhJ9C7nvqYxK1/rnp4feV6/v1ZwyRjute/+meC6lMvVvN+1Dhx5bnqR2PacPcupK+oOdO8iFJekz6YGN2/eFQPfU5zWlHOg7nfggxt65TtMFfeERERGR4nPCIiIjI8DjhERERkeFxwiMiIiLD86C0/J8+/19t2wqTcHdHy5wturScyIMkIyeibgrJwiRWbjFldfnRZe5jW8qlcl/db5r6Oe2WpxUfa/9TemeyHxFf71UXW2nfp4TaNbcNjxnTP/Z5n5LHCMRPLaUn/FzGwI/N3OdyKuKfkrStp7xuP9e66COgek1+ivOZe8yPvWd+OXeYiIiIyEyc8IiIiMjwOOERERGR4XnQ4fkvn/zPWZXSe1ryW4haLvVp7vb9VGo5KnMLDk9SF7WN6trBnDLxbtI2EHPdImoX8ZSO0GPC12r7V+Gq9+l5J/VRXbRfPc9TtzVpw1we019zr9FPQXKeyTneV+4peUwb5vqEc4PoUubef/J40nF+yrpquVPcV44OERERGR4nPCIiIjI8TnhERERkeJzwiIiIyPA8KC3/h/PLWZVu97BKMghtd3sIQZq2pUwPmLuDum73VH/dj2TnPue7Bvn4GiTiKhZf78+gXVRXL1frokBEkrbmhn2lgU1JMOPcVbFPTSp1V0650jdBdVUorPOUJG1I25H2M9X1lNcovT7ptU377KfmlP1MPOZeTvrwMdctYW77qQ/Tvq7lnrqux3DK+ufW9dRj+C/4C4+IiIgMjxMeERERGR4nPCIiIjI8TnhERERkeBZ7kH1FRERERsJfeERERGR4nPCIiIjI8DjhERERkeFxwiMiIiLD44RHREREhscJj4iIiAzP/wfEY39V6lGjrwAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.activation_stats.color_dim(-4)"]},{"cell_type":"markdown","metadata":{"id":"pUkPfyTF2N2m"},"source":["This is just what we hope to see: a smooth development of activations, with no \"crashes.\" Batchnorm has really delivered on its promise here! In fact, batchnorm has been so successful that we see it (or something very similar) in nearly all modern neural networks.\n","\n","An interesting observation about models containing batch normalization layers is that they tend to generalize better than models that don't contain them. Although we haven't as yet seen a rigorous analysis of what's going on here, most researchers believe that the reason for this is that batch normalization adds some extra randomness to the training process. Each mini-batch will have a somewhat different mean and standard deviation than other mini-batches. Therefore, the activations will be normalized by different values each time. In order for the model to make accurate predictions, it will have to learn to become robust to these variations. In general, adding additional randomization to the training process often helps.\n","\n","Since things are going so well, let's train for a few more epochs and see how it goes. In fact, let's *increase* the learning rate, since the abstract of the batchnorm paper claimed we should be able to \"train at much higher learning rates\":"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"c5Tqehzp2N2m","outputId":"ff2709e0-f149-4b5f-e129-314002da9272"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.1917310.1217380.96090000:11
10.0837390.0558080.98180000:10
20.0531610.0444850.98710000:10
30.0344330.0302330.99020000:10
40.0176460.0254070.99120000:10
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = fit(5, lr=0.1)"]},{"cell_type":"markdown","metadata":{"id":"yycf2ZjX2N2m"},"source":["At this point, I think it's fair to say we know how to recognize digits! It's time to move on to something harder..."]},{"cell_type":"markdown","metadata":{"id":"YhyJEIIs2N2n"},"source":["## Conclusions"]},{"cell_type":"markdown","metadata":{"id":"aqQPbrWn2N2n"},"source":["We've seen that convolutions are just a type of matrix multiplication, with two constraints on the weight matrix: some elements are always zero, and some elements are tied (forced to always have the same value). In <> we saw the eight requirements from the 1986 book *Parallel Distributed Processing*; one of them was \"A pattern of connectivity among units.\" That's exactly what these constraints do: they enforce a certain pattern of connectivity.\n","\n","These constraints allow us to use far fewer parameters in our model, without sacrificing the ability to represent complex visual features. That means we can train deeper models faster, with less overfitting. Although the universal approximation theorem shows that it should be *possible* to represent anything in a fully connected network in one hidden layer, we've seen now that in *practice* we can train much better models by being thoughtful about network architecture.\n","\n","Convolutions are by far the most common pattern of connectivity we see in neural nets (along with regular linear layers, which we refer to as *fully connected*), but it's likely that many more will be discovered.\n","\n","We've also seen how to interpret the activations of layers in the network to see whether training is going well or not, and how batchnorm helps regularize the training and makes it smoother. In the next chapter, we will use both of those layers to build the most popular architecture in computer vision: a residual network."]},{"cell_type":"markdown","metadata":{"id":"bjsI0EVd2N2n"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"eWOUjxCO2N2n"},"source":["1. What is a \"feature\"?\n","1. Write out the convolutional kernel matrix for a top edge detector.\n","1. Write out the mathematical operation applied by a 3×3 kernel to a single pixel in an image.\n","1. What is the value of a convolutional kernel apply to a 3×3 matrix of zeros?\n","1. What is \"padding\"?\n","1. What is \"stride\"?\n","1. Create a nested list comprehension to complete any task that you choose.\n","1. What are the shapes of the `input` and `weight` parameters to PyTorch's 2D convolution?\n","1. What is a \"channel\"?\n","1. What is the relationship between a convolution and a matrix multiplication?\n","1. What is a \"convolutional neural network\"?\n","1. What is the benefit of refactoring parts of your neural network definition?\n","1. What is `Flatten`? Where does it need to be included in the MNIST CNN? Why?\n","1. What does \"NCHW\" mean?\n","1. Why does the third layer of the MNIST CNN have `7*7*(1168-16)` multiplications?\n","1. What is a \"receptive field\"?\n","1. What is the size of the receptive field of an activation after two stride 2 convolutions? Why?\n","1. Run *conv-example.xlsx* yourself and experiment with *trace precedents*.\n","1. Have a look at Jeremy or Sylvain's list of recent Twitter \"like\"s, and see if you find any interesting resources or ideas there.\n","1. How is a color image represented as a tensor?\n","1. How does a convolution work with a color input?\n","1. What method can we use to see that data in `DataLoaders`?\n","1. Why do we double the number of filters after each stride-2 conv?\n","1. Why do we use a larger kernel in the first conv with MNIST (with `simple_cnn`)?\n","1. What information does `ActivationStats` save for each layer?\n","1. How can we access a learner's callback after training?\n","1. What are the three statistics plotted by `plot_layer_stats`? What does the x-axis represent?\n","1. Why are activations near zero problematic?\n","1. What are the upsides and downsides of training with a larger batch size?\n","1. Why should we avoid using a high learning rate at the start of training?\n","1. What is 1cycle training?\n","1. What are the benefits of training with a high learning rate?\n","1. Why do we want to use a low learning rate at the end of training?\n","1. What is \"cyclical momentum\"?\n","1. What callback tracks hyperparameter values during training (along with other information)?\n","1. What does one column of pixels in the `color_dim` plot represent?\n","1. What does \"bad training\" look like in `color_dim`? Why?\n","1. What trainable parameters does a batch normalization layer contain?\n","1. What statistics are used to normalize in batch normalization during training? How about during validation?\n","1. Why do models with batch normalization layers generalize better?"]},{"cell_type":"markdown","metadata":{"id":"NYjzQ2NK2N2o"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"7A89zJd_2N2o"},"source":["1. What features other than edge detectors have been used in computer vision (especially before deep learning became popular)?\n","1. There are other normalization layers available in PyTorch. Try them out and see what works best. Learn about why other normalization layers have been developed, and how they differ from batch normalization.\n","1. Try moving the activation function after the batch normalization layer in `conv`. Does it make a difference? See what you can find out about what order is recommended, and why."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vB7Da5sQ2N2r"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/13_convolutions.ipynb","timestamp":1712447930670}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/14_resnet.ipynb b/notebooks/oleg/Education/fastai/14_resnet.ipynb new file mode 100644 index 0000000..f4be31a --- /dev/null +++ b/notebooks/oleg/Education/fastai/14_resnet.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"C6m1826c2On9"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"Qy250TmZ2OoP"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"YcXQ-oYQ2OoR"},"source":["[[chapter_resnet]]"]},{"cell_type":"markdown","metadata":{"id":"rJtnNw4Z2OoS"},"source":["# ResNets"]},{"cell_type":"markdown","metadata":{"id":"GsRMkfCV2OoX"},"source":["In this chapter, we will build on top of the CNNs introduced in the previous chapter and explain to you the ResNet (residual network) architecture. It was introduced in 2015 by Kaiming He et al. in the article [\"Deep Residual Learning for Image Recognition\"](https://arxiv.org/abs/1512.03385) and is by far the most used model architecture nowadays. More recent developments in image models almost always use the same trick of residual connections, and most of the time, they are just a tweak of the original ResNet.\n","\n","We will first show you the basic ResNet as it was first designed, then explain to you what modern tweaks make it more performant. But first, we will need a problem a little bit more difficult than the MNIST dataset, since we are already close to 100% accuracy with a regular CNN on it."]},{"cell_type":"markdown","metadata":{"id":"HVbF8r2-2OoZ"},"source":["## Going Back to Imagenette"]},{"cell_type":"markdown","metadata":{"id":"1bQM8gXh2Oob"},"source":["It's going to be tough to judge any improvements we make to our models when we are already at an accuracy that is as high as we saw on MNIST in the previous chapter, so we will tackle a tougher image classification problem by going back to Imagenette. We'll stick with small images to keep things reasonably fast.\n","\n","Let's grab the data—we'll use the already-resized 160 px version to make things faster still, and will random crop to 128 px:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fyFKzZuN2Ooe"},"outputs":[],"source":["def get_data(url, presize, resize):\n"," path = untar_data(url)\n"," return DataBlock(\n"," blocks=(ImageBlock, CategoryBlock), get_items=get_image_files,\n"," splitter=GrandparentSplitter(valid_name='val'),\n"," get_y=parent_label, item_tfms=Resize(presize),\n"," batch_tfms=[*aug_transforms(min_scale=0.5, size=resize),\n"," Normalize.from_stats(*imagenet_stats)],\n"," ).dataloaders(path, bs=128)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MxD7Y-362Oof"},"outputs":[],"source":["dls = get_data(URLs.IMAGENETTE_160, 160, 128)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wsL5PtBE2Ooh","outputId":"ee172984-1d93-4a35-a9a1-967d7fbed872"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAVkAAAFkCAYAAACKFkioAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOy9eZBtx33f9+nus919m33evP09PKzEQpAgSEqidtlW4khx4rIqkpJyllLJVuJYiuWkYmVxnDjlVGK7HKdSSWTFUSxbsWItJYmhKFEkAZA0Nj4AfHj7MjNv1jv3zt3O1t35o888DB8BiBDxBBB1v1Wn5s7pe/r08utf//q3XWGtZYoppphiinsD+V43YIopppjig4wpk51iiimmuIeYMtkppphiinuIKZOdYooppriHmDLZKaaYYop7iCmTnWKKKaa4h5gy2SmmmGKKe4gPNJMVQnyPEOKCEGIshPh9IcSxQ2V/WwhxSwixL4S4IYT4T9+ijp8QQlghxF88dO9nhRCvCCEGQohrQoifveuZ60KIiRBiWFyffou6P1vU7R26918JIc4LIXIhxC/c9f1PFWU9IcSuEOLXhBDLf8zhmeLbGN8KbQshHhVCPF88+7wQ4tFDZX8UbT8qhPi8EKIvhFgVQvzn76Bdrx5aE8OCxn/jUPkPF+8eCiGeEUI88G6O2XsGa+0H8gJmgD7w54AI+O+B5w6V3wdUis/LwKvAj9xVRwu4ALwC/MVD938OeBzwinpuAH/+UPl14Hv/iPb9GPCHgAW8Q/d/Avgh4F8Av3DXM/PAUvE5BP428Ovv9VhPrz/Z61uhbSAo6PU/KmjoLxf/B0X5H0XbrwF/E1DAKeA28K98M+26qw8CuAr8ePH/GWAf+ETx7p8HLh9eG9+u13vegHeB4K4DfxX4ajHBv1JM8L8HPHPoexVgApx7kzqWgfPAz911/x8CPwX8wWEm+ybP/13g793VprdkskADuAg8dTeTPfSdf3w3k72rPAT+FvDaez0H0+veXPeCtoHvB9YAceg7N4EffIs23E3bY+CBQ///M+Dni8/vpF3fCQx5YzP4aeC3DpXL4tnvea/n4Vu9Pijqgn8D+EHgBPAI8JPAg8DLB1+w1o6AK8V9AIQQf00IMQRWcQTxy4fKPgJ8GMdo3xJCCAF8EictHMb/JYTYFkJ8WgjxobvK/hvgfwY2vvku3nnfUSFED0eAfxUnzU7xwcW7TdsPAl+1BScr8NXDzx6q481o+38EflwI4Qsh7gM+BnzmUN1v265D+AngV4vvgJNsxeHXF9dDb/LstxU+KEz271pr1621XeA3gEeBKm73P4w+UDv4x1r73xb/Pw78nwffF0Io4B8Af8laa/6Id/8Cbhz/j0P3fgw4DhwDfh/4XSFEs6j7w8DHgb/3TjtZtPmmtbaJO5r9Zzh1xhQfXLyrtP3NPHsIv8A30vZvAv86bpO/APxv1tqvvJO6hRDloo5fPHT7/wO+UwjxXUKIAPjrONVG+U3a9W2FDwqTPSwRjnGTPQTqd32vDgwO37AOL+KI5r8obv8Ubrd/9u1eKoT4aeDHgT9trU0O1flFa+3EWju21v4toAd8Ugghccz7Z6y1+Tvt5F3t7gL/CPgXhw1nU3zg8G7T9jf17JvRthCiDfwO8F/i1BYrwA8IIX7qndQN/AjQBT53qK0XcNLt38fpeWdw+t9Vvs3xQWGyb4ZXgTvHdCFEBaeov/tYfwCvKAf4HuBfE0JsCCE2gKeBvyOE+PuH6vt3gL+G0xn9UYRgcUefOk4F8StFvQcSwKoQ4pPvpHOH2jzHNxL2FB9sfCu0/SrwSKEKOMAjh599G9o+CWhr7S9Za/Oi7J8Af+odtusngF+6S2WBtfZXrbUPWWs7wN/AnQS/wrc73mul8Ld6cZeRCXfE+cfALO6o8qO4Xfe/o7B04jaXfx/nPSCAj+B2z79clDeBhUPXM8BfARpF+Y/hJIz736Q9R3HqgKB4788C20CneNfhep/EMeBl3rDu+sVzvwz818VnVZT9CM7iK4v+/VPghfd6DqbXtxVtH3gX/AzOePrTfL13wdvRdh13KvsLxXsWgGeBv1mUv2W7DtVxBMiBU29S/xM4r4VZnJHvl9/rOXhX5vG9bsC9IsTi8/fi9EYTnIfA8UOE+Du4I8sQZ+n/6xyyuN71jj/g6124rgFZ8ezB9Q+LsgdxhoQRsAv8HvDht6j3ON/owvWLxb3D108WZX+pePeoWAj/BDj2Xs/B9Pr2om3gMeD54tkXgMcOlb0lbRfl342TLvsFDf6vQPlQ+Zu261D5zwOff4v+fgGnWugC/wuF58G3+yWKzk0xxRRTTHEP8EHWyU4xxRRTvOeYMtkppphiinuIKZOdYooppriHmDLZKaaYYop7iCmTnWKKKaa4h3jbSKEHHv+oBYMwGaIIUFJCIKUELHmWMR6PGQxcQMdoNCZNUrS23O2zIITA2gP/5wPPpHcfotg3Dv4aYUFZwCCLANnQwGNNxb+9fIQfrrSYkTDOxgCM0zHVWolypYQVAmMl2gau714ZIX2GNmesoDpTp7wyg5x3sQCT3g5rN2+S9Ac0LJQtRLLYx0ROLiZkQYKuWGzVw2v6AESdgKBjsPUBojZElDKk58bbWIswEoFEG0uWZxwEi/m+wPcUWI8s9en1FGlSK8a7zVcvjPj8l9f5yvkh125buiM35pNckBnlIiSERgiLLKbGWjAGrJXgVfGEhXzoygDPC0GEpKnGYBDkxftypBUoAkAhRIwvD2hGYYxE+AG9eHjYCf49w0o1shmQaYPJHWEoJMoKBBapoNmq8+gjLnT+I088yrmzZ5ibbTM/N4OPQacTAPo72/S7O2TxmDyNCXwPody8JyZnNJkw7o+oVjvkssSF1dsAbOSaxpGj/PI//X/wEsOJ1iwbly4D8OTjj9Kea2GUxyQWaO2ztLQIgO8phqMxWnikWrJ2fZX+2hoAdTNBTfbo9bscObJA4oWoShUAqwJSEzGzdAoV1tFGkOeuD+mkiy+HZEmX4bBHWK5za22Xestl0hxsrrNQExw91mLp+CLDScz1G13Xj9spt7f3iXVOfabG4soSO7uOZnLqbNze5dSxEvFgg9s3V+k0m8V4W9A5GxtrZFmCEYa84AtaWJACqSxRYDjSrnJu9igAVRFy8bWv0dcpmVKEYYmKVwJgYf4IslLmM19+DhtJzh6dZzLUrp09w9qgjyoH3Hf/OXbXRszVFgA4ujzL0pEZqrUWzeYx9vYG+KHjCf29Dfp7Y/a6I3KZMcy2ePVrLr5iMkjolKucPVnit1+4/Ka0/bZM1vMkWJDKw5rieaOxgBQSP4ioSIVSjlmEYcR4PGY0mpBlGcbczUgP/r+7Le8ew7V3/UXcfcPdapV9FoOAyGqENpA4YisLSwBoq8mFxQqDwUXMZnmCECEGH2E9SATECkwFgMjPmKk0iXNBKU0JkxwvcYxGCoWRZbJMYbIMkVpE7hplE00y9PDaNWTLh+YIXXUTbIIUKzQCiVIR0npo7dqjjUZag1IJQSlhrizBFNG9+T6Liw2e/vAKr70+4bkX93nhVZeL4/Jazq0tzd7IklqFFZBbXYyTyxokMdh8gCFACrfJGJsS5zGIBKQPJsCNFlgERubkpDiy8ohtseFpg8BCMv5WpvZdRZ5pMgG5tVAEP1njNhlPOEbWbpR5/PFHAPjI008xPztHrVqlWq2wuXaLSxccQ/zcp3+beqXE/GyHvc0NyqWAzuyMe5FnWN+8ya0bNzhy7AG+44d+lB0yAF744jPsJ2NOLbSJuwMmuxssdhoApPt9+ianMb9Eqqr0RERvt8ilkg+pVSOiMGJrfZM83uP+420ATjZD2mHOZNxFhYLS3CyDYpnvJB5X1nps7a9Ra1lG45Sg4ADlqmTY6yEYMrNQZXt7G8sQP5gDoFKSrHRqHGk36d2+xcvnz7M3cOMm/SXmmrM0OnMM0yG9nX3i1NHT8XMrzK2cQGZ98smYs/c/QrPhBIEXvvwcWTrBeh5SGHSeODoBPGFdhpjc4kmLjTPG+06YO35qmStCEngBE6uJ05jcKgDE7g5L1eOcPH6Sl69cpDcZ0Wq594VJTikpEScxOh7z2CP3I5Ny8T43DtduvE61N6bXN1TKbu3qbAebQ7NWxyAoW8Fm0wXC3dxfJ8ktmzuTt6S1t2Wy0mYgQAq3iAAMAqMN+oA2hSAI3UITUiKVhxCS0WhMkqQHTsa8uT/uvZBmD7HZu/L6HHyMPEEt8FgqlYlQWJuR5ykA0hdYX0DkkZOBTZDGEYzOJMaEGBtijM9kaJE7gqBUSKsmwY5i9GiMsIYQEAfMS0uQHoHnIYVFSIs2RfqCOCXXQ2wO2VjDSOB3HNF4LYGNMidZovCFj/LcpobMEDIHodE2B6uxdlz0foQUfRrtCk894fP4uYDR2C38r14w/NYfdvnyKyNubuXsjDRx0UwjJAZ36pBC4FmFtQdkYlAiw2CxNgWR4wJ0uFOOdKcGbMQBeVmpscUYvl9gjEYLMEhcPiA4OGj5QhL5iuX5WR588H4A9na7XL9yjfbMHM1Wh82NDZ79wosAbO1bNvtDLt3cJRuNwGSY/DX3HptjrQHpM9J7nNkeMTOzAsB8c4ZauYRXKaOtgCDEK8ZTCsXxoyeYWTnKla0xG6tdgoqT1rq9EaM0oeR1qagxZx+Y5fFzpwFYWZglS8dM0hGTfEBYhrw41S2ZKpTX6PU1YalEpbZE4Ln3RcqQTlpcfv1Fbly9QGd2gR/+s99NnLlnJYqFZgOjJ9y8+irXJpaw2gHg+NEHOHH0YUpRlX5vl1ymdEf7AGhPMYwNnvGZm1lmca5JWHJ08dqrrzBMB/Qn+/gSpDCoYg4CpVAIbG5gYsi9lDxyAkQep/hSIbQhyXImQhDnbgMaj1Oa84sszM5x4dpVeoMRnTnHZJWvCaQizgz97i7ySEapFAGOlIf9EZaM0XibwT7o1LUz8DMa1Rom8xgOc7RRhAeCpTREVsPwrTWvU53sFFNMMcU9xNtKskLHUEg2BxKicLoCd64qwnIPjlue57mdwVq0NmRZhtZfL626mu5llNlB3cYJs4V4IswbMlfFUzT8iIrn4zutMxlO0gqCACIPEfn4UiLyHJsVEqdJ0VqTm9xJspOMeCfFDrZduWcYjPZJx0MyBV4YEhZ6YJkLEB7CeAjloceWcVroAmuSsBYitUHHYHo+yhQSTaqwVYn2LKlOQSqEXxypAgn4aCtBKrTO0Nr1Q+D0rNbEqCAllBPCsjvSfPzxgPtPVLi63uKZl2P+4Ct9Lt5yEvDu0DBKJZn1QUVYO8Ga4ihkDfYg1c2dMT4Yb+kKTHGCwPDGHm7dBNzTeX+HsBZjcERxoJBGgBZYAUZDo1IjHxW6+knG7m6f/iDjuV/5TW6tbTIeu9OPUh6+5yGswGYBlVLNKbaB3s4uySRB+Aa/v8Xgn/8GJ88eB2BpeZbZRo0WE66cv06r1UZItyRHqSGsewhPc2q5znyrwurWnnvf2CNPJuS9PZp1xXK1w9F5p+fcvHGZ6zfXGCcxSTai2aygfFfnxAZ0ohYPPXY/tdY8xnpkBb2MhwMsNc499AAvvfwigzyldPQYB3k+u+MJO5kEr8Hm/AlKH5PI3ElzefUYW1oxb0Kq5TajwQbzJSd1557ATBKMMcy3Okz2+qBd2eNPPMGLrzxPcjslTSdk2uAVxOVhCZWHNBKTWXzrkY4P9McxnfYMe7dvkeeG3JeooNDl5posGVH2ahxtNxlkI9Khk3Ln2zWS4QTygP72DjevXebEMaee8VQNiWRhZol4v89Mu44vXP+8UkRsE7r5hO44RfkereY8AMOtTYIk5WhxOnkzvC2TTSf7BGEJIb076gIsSOF0CNaCNfbORCDBE4og8AkCD8/zMMYRorUFLQsO+N89huMGEoEwBmXf6GzV92h4EXlusBI0mvjAgKMCEqGxNscTHmFQBV0cJ23seIqFLMtIc0ucanbi2I2X0GAzyCcMyYhDn6Z0qpTIhvgywA8lQgsyz5IHbuSsUKjAJ6hFeJ4msyk6dmVSlNCjEnmQIEsWLQy5cG3NvZygLPFLChR4qgSBmydtDFmak2mLtp7TI0s36iqK6cwkNNshJ495fPzxGi9ccO189qWEF7+WsL6VEWtBToYsxsZQHKkP9lz7Br8VCISVhXHTYoXGigMVQaFCeD+hoGMr5aFbAqRECLdYI7/E6pUbAFy/scatjV02u0OGqWDx6Ck6S+4YevX6LeozC4RhyPbmFtTr1CpO11eaSUiHAwajPUbZHi+9fpHrm06X+92feILHzq0w48dU8qO0ZxYIai0ARrmk3JrHD2t4KkRnhvl5Z8A6uVfn1ZdeYP36TUrlI6TDhAsvu7TC2xsbtObnOHXuCLtbm1TrDba2dwF4/eWX6OeXmNvcpbNyFBOGbBdG6+5kQrU9gzeqYVaOc3N/j89urJFWHaMZYBgnEj8vY1WF6MQZwkLH5GUlZisd/FSh17fweztUym7d7w/3qAxG9IYJ0en78f2Acsn14/5HztGYbfDrv/Vr3N4aIaQgL0gmzQy+tQTSwwsUVnrEaaEj1YZarUy0oTnSKRHON+nMuDprMqCtJJ16xANLD3P11irDzBnhys0a8caYtt/k1vY64/4esXZqjTwTqNRSLleIBMzXffzcrYlMWHaSAaGnKFc8jPSoKTdP7ZkmOzducebsQZKzb8TbG75shk4tSB8rCt2MUAilEEIhBFgJb9hMLFiLkAKlFL6vyLNi0R9IPPeYu95tUpPWXT5vSLJV36flV1DC6V1jnZAUDMj3IJGGzGQEqUUZhZeH7kEjkVbiIch1xsgIhha2h27yRzoF4XbjshCMxgmlIs1sFUPNl5R8gfI1WmXIyDGeignQMiATGYEIMJEgLRqrRIi1CjKDF2T4viIrxjKZ5EySDJ1oghBE4CEKS4ZSAcoPwQqyTDFOvDunCiVyFCl+kNKZjWk14eH7nG7qu56s8/vP5XzuS2Mur+bc3NQUAhu+VBgpyU3BNIW94zHieK9EogANVmOKyTb3+Ozyx4FFEPgeRinSwrvAGosoiNqmOVdeu8DWtVsAxFqSEqBUiVMnT1BpzqBCt7BvrO4RllqUymXUXgp+xZ0EgCgq4WUChSXyA8YixCs5muhlCdujfWq1Kkc+9Ch+tc5EuudG45RtY4njfTIrSbRlPCkMhyImXq5SK52m60WIUpntQk+fddqYis/yUhupJ5ioRqvQndZ6MXmWUDl+lL5nyUPDJHBS5WTi0xUSQcAo9VkzNUa1OmnFzdxAJsSRQGRllA4p5yPqgaP7UgKbky3y7SH1nQ2W1IDS0DGvupkwUxHsBxLPjohmlri1uQnA6tYNeumQsFzF98uYNMM7MJYbSLQilRIhFTa3eAVtj7KESEHJ83jw7AIf+YGnqbUcQ5yplhmtrmEGCZ5f5disYb3n2rLRzzi1NENr/iSTZwfkeUISOw+JqFIjSTVbO7ustEJGkx5+7MZUG40faiqBZGtvn2FsqVTcAlWhR6Ua4kVv7TTztky2UQlJtCVJs2JhQW4FQimUF6CUQgpJwX/RFrSxKCkJAh/fU6TqQLKyWPuNTPDdxGE7V6HcuLO4ndnIoer5zEZVSoFjnqkBe2Bm9SVWuuOt1RqTS2xxdDdYEgMTDRMtGeSWrTjjRtcdY3biMQhB5CkiYSlLKBf9LwlNVaZUpCAUGiUzgoLJNmNDNErx+pZo6BF2QsKOm2AVGGQkUL5AiBQhDaFfWHW1JM8sNraYXEBqUWHR88I2Zgwoo6jZKlnRjzhOmWRjUpVQKiUEUULJd304e1JybKnCdz9Z4fPPp/zuMx4vve6OW3tDyFBYIcjveOHpYmwMlhxZOM8JLPJgYxUH33r/QGAR1mKMcboBQFqJEgZpnWS+vrpB4LvNJyw3CCpN6jNVZlotStUaXuSk1RPL80gMXpbQLPk0qhGl0D1n0oQkD0hLNfzZDpWZU4x9x2RfUim7w4xIKjzpo/OMrnGnot0sI5U+aW5JrGAkPSapK4tGPVbKIceaJ4mIyCoNVMt5F8w1aszUK+TVCslQEU9gZd65Pj3xoQ6Dfp8HnniIWKTESjMp1u7ISPYzyc7EsN7XqLzLreEece48Iaw0+KHHvtLkQiCNhyqMZjvGkk76yFbMUkXSzgIqY+dx093RWM+nFglUxaNcD5A7rs4jR5ZZDD2WT5/guWeeZe3ydVTi1oRJYrTOMdZiBYzHE0oFEQ36e8zMz9NptJmtNlhsNqm23PptNQKqusRI7IPJWTlWQtWLU2HPMndkDqFmOLtzgovXr7C3ddM9t1gmS0MyHbPcWcCi6Q8cc468EoPBHu1TSyzONri2vkeWOtpuzy5QCwQ3bl19S1p7WybrS/A9H9+zpIVeMk1z0izH5BlaeXiej1LeG4QrLJ5yTNbzPKQ48Fv9kzkuikOfjHBGfWucq2xYFNY8xUwYEkoJSpKmFi90XMkPFL4SBAo8BUoZrD7YYDSZNVilSPOUnfGYl7dHbA0Kf8ksJUe5I461BAKiwPU/CBLKUlMVkiqCsjCUxq7e+jin3APpp/irmuZcSKVgsqWWotQOiNoSvxFhKyNstdAF+gbpu/6ZFMwERGENFp7BWIkxBkmGZ2OULiypscLGZXITkHgBouKjKq5OL0zwwn3OHPOYb/ucPl7i8y86KeFL52NevTxmd18BPhr1hhpJZFih0dZikEgrCgX++0oTewfKQq41Otd3VLKeJwmkwDMAHoPc4BW6VdIBTRnS8ST1yKNZD+/078n7V+j3+qRxQlt5SBUjtKOJiU7JSgIqFcLTS0w6Eau62LR0xiUVIrTANx7SBoyUe18eWHxf4uc5MkmRuWG+OGavRA3uKzd5sDnPfFihVSoTBIUka2GQpLz6+g63LvcQo5TRjGvnbLlCxzaIr+2TS40XSUqFEFCOSixVGoTzDfRKhY1hl9V+n7WhszdsjPa4MtjlYj5mID2iLEAW/uP7vmXcAR9LuN9ncnuLhdhJ3YIBVkCzs0CiRkiZIpRrz8e/65Msnz7BlZs32N7dhiynUkgHt29cY9Tvk5JiyDFo4qwYm2zC3PwM1VCyMD8HmaRcnQWg3qnjSw9JQDyckBtJSThharbi4YWLXL3UZXF+jt7+DkMc3dfKMLSC3CqMUATlgG7q+h6pEsoofAv1cgA6ZRy7PhxZnseWFRdfeOktae3t1QUCtM0JhMQL3K4VeIos06SZJskSRpMxQroy3w+c/lYIhLUopZyvLaB14YfIIVvJu4xvkJKFM2JoYcktRIWDeENZWp6lFFis0cQ6v2Mc8JQiVBKpBEiLESm60C1mNkf4gnqlRH+QMRzssZvGiKqb/AjJfqwZGY3NJSYXmNhtTtYKfE9SRlBD0RCSSqFKqSaaoK+p+JZqJOgPNMG6k3aCsqU9W6E5WyVqhvhtSTjjJAGvnkIlR9ZACQuZRRSL1OYZOpNkOQhrnGN34TImE0WQKFSqyPOQwQaMPdf/Sq1E1ADPy2noCR89l3DmqCPSpx4t83tflnz22QmXbiYkWpIfuPaJ4pgi3fxq6/GG/Krfd5zWl+50JQWogi4CX+FLidICg2Sc6wMhl8hTtOfnOH3mOLWyZLK3iip+/m12po1gD60yhqaPTnN07sa6EpWozs7TVQJvpszX1Bt1+nUXnKBExCizCE+RSje3SmTYdIyfGmZTwRHj81jHBSM8OHeM+ahJORMwGJPdHpLm7qe1BpOYcZ4RpSnN8ZhmJWSx6dZnp1UiiuoYfIaDIUlvQlbYE3S2h5SbxOUKpXaDIzNVjnRmyJacn2wvy1gf7XNhsMvL6+vsjMaMczf3w7IirtS5CmgBvdGEettt6EelJOtdp9yoEM2dxGsus/iA8z1utDpsbG7R6/VI8xS/HPDoo48CUKsHnH/+eeLJhDy3eL5gUPiVZ+UQrxlSC9pYFaBtlRs3Xf+39xP2NjeoiJBkJFm9vcXVrR0ARFTizJlZwigAK6k3WqRD91yl5BEnln4vYfX2NsFSi6jppPF4mOLJElurW4hWFWk1eebasj/Q1CsVvGIDfDNMXbimmGKKKe4h3v4H+KxGSYkn7R3XEiskJgzItCXNNHGSkWRu9zVGo43BGIs2oKTAK/Q2eSbRxc4vuHfS7J2mH/okcFJ5tWhL2/eoSUPFs2RxxiiZUPbczosM8YSPFJaUjJiUvAgP1YHG8wRBSxGomPFqwn1nDe1Ft+NlXsDOQDOYWHa6KXvdjOHY9XmUQS8XYCESglBIyoXRqGoFVQS1VFJPBPVYUPFdW8uhZbgP21sGVRL4NagWgQph3aPUFLTmfEoVgQhzRKF/wqZ4QY4IBcnAsj9JUNJJpJ4XoULPGbImkvFIkewVBqzdAK9exQ8FZBM8aZivuP63VjLOLIU8cDLkM18a8vwrMWtb7nVxIf0ZwCnpPWcVvYP3l1bWU+AZ11S/GGvfEwit3YlLhBivTFpITwvzizz1yU/w0LnTXLtwHuyESuj6l/duIUc9yGLs3ja+5+MVbo0iCYhyRZgaWvIoy2HAauqOxFu5Yqx8KJdJZUaajVFFyHTZ5tSHKeeiOh9dOcJD9TZnqs6iHSSG3u0d+js9snGCTlP8qNBJtmoc68wSlRVrbUjjfc7c747StU4LGVXQYQVjBXmcYYaFJDtMGO0NGffHjLc36a6tk0ch0ZwLYIk6be6rzXO8Nc9Tiye4vdPnudecl8T5/S7bQjAqVbkd+tSORVAtXKq6N1jsHGMwMMjOKfzWEisnzgGQWcsffPo5vvClL3Lx0uvsd3eZ6zhXNC01MhLITCC1xVj3K5IAl/e6nJlscHLxNLnxuXZ7n41hD4B+PGRzfY2yDRGpZJJI9gqXMVUJyOwaFS+i292nVp3h+poLcU7GY6KogR8E9PYn9BslaqGji/3NPtWowXgwYXahRbNRYbvnpONbt0bMz/vU52bfmtbejhBHkwR5x1PALV7PC5BSOearJIHvkRbW9zTTxGlGarUzfEiBKlxkLM6F8hsibd8lCL7e8CXAqQuKMNEAp4sF6IQBJQFSZ+g8Jc810ivCQ0UEuYc2Kda3CO+N46RUFuULbKyNuZAAACAASURBVCknHSeIyPKxxyPmj7qjgiwHDFJNnEpubyVsb+cMnfcMG+sp67sxexPNWFtG2lCkEqBrBYGQVI2imlqqmaFW6MqqnqAyyvB3R3i+hx9ZonKhnqgYGnVJo2YolyzNpqQ9XxjMagLZSpG1nMCz+MrHCPecFjm2ZPFEjpeBrBj8XsEQ9yV66JF1Q+L9iCALqLQKXW6jT6eyyw/cp/jQ6TLPvJrza592x63zF8YMY0GOTy4PXL0O3P4UhQPYuzPZ7wKUcsKDVAqvUBUduObpzJIDEyGwhQteKgSXb9yiu7tDd+0Gy7N1vELXF9gx2WSb8d4maTxARVW07xY2XoP1zWvcmIx54tEH8OsNysVQV0SJXAbEOkeT4dmEeubURCeVz0ePnODjiyc5U21TG01I1l0o58bNa+x1dxFKUeu0aZ2Yo9p0+TOiehmdJ+TJEC363Lr5CuOx85CwwqADHxOG1GstGmGdTuF5EIY1mp0S84ttMusxGiXs7w3Y3Ch0sldvEtZqVGbbLC7McWJ5hfvajuk/d/U6n7l6nat5ShxI9qsltiNHM81yiSCap1aS7IZlNBGViRPKZmeaCBnQbs3z8MNlnvvC57jw+iXXDw8mmSY1FqUExri1CHCzP+azL12AD9fwdInxZJfuxOlW9+KY8Vgx2elRoYSnKpiyW59eWGa3F7MTr3P5yk2On76Pet1tIpsbm3iVnF4vxfd8eqMJ1Y4zbIatEDKIvDJGZ9QbAWFhYFaEaKEIypW3pLW3ZbJXbw8oBYrQl4TBwW7v4Qc+vh/geT4CiV/oXT3fJwjDr5Nu04KAhXyTvALvMu7WyQprsVikBc9CvWCyM2FERQh0lpHmGaHvEfgFkzUSmyrnSi+gXA0xlSLZh50gQwsVhdmXtDseZ09UKDVdj2QppZ5PMMawMiNdWN7I1dvfDOjultnoaW51U25uJ2z23RjtJ5ZhptnJDD0EPoKw0HfVMkU9NYQqQWIIfIiKHbYcBbSrAY2Sh4+mGkHDCQKEdegsl2guWErlHFkVmHrhPB55pAGkfo5vU/xGhufWi5NsJinJVol4OyQcBGTjgiv0G1DR1JcHzJ7IWfleycnCV/Sf/7bgD56dsLsvmBhDLnP0gTbKHszO+4fJGuWRG+cPkepCr2wMmbEYDFqkpFZzwH8zAd1RhvSqzB5/hPF4l+e++jIAS1V46OwRnnr6SfZ7O/THMTGOAb908SovXL5Kt1rhSJ4R+Iq4CJRPFShfUJeSxiSnlQk+3FkC4ONHVnioPUczMcSrq2zduspou7BgmwGL8y1mlhepNFtkuWY0cAx49foOa9euEQ9HJKMBt29cwTtxHICNW9dRQKve4PbOHo3GDF6xGRgR0phbptZZIGzNsnzyFCfvO8rciiOo7sYGm91ddm6s0l2vMrOwRHPBMagffvA0Dx89wi898yVe6O0wUZq1wgPmTOcUW7sBo27MjszxKoZWoa9uaMn+IEVngkCEzHcWObLsdMCNWpkwiLh2+RLkGZVyQDwppG5luLLaw4y+wvH2MoGqoouTqBVgY4NJEsLIh2SPQDgGXO14DPt9kmTEWOfEmeTM/e7Hdb/84jPM1Vu0ZipkWjDRKV7hs1yJPMabYyIZYEzMzFyDldSV7Q5yKuUSS4sLb0lrb8tkt3sxUgiUEHgFYUQFw/U9ie8pvCC4kyBG+T5SeYW7losEE4UkKwoT7h3h5k/AX9biDMDSOvetSiGRdvyAEmDynCTNCJSHOsjalRssBqlc/L7VlrQgilhlBJFCBpJMSNptRVQGi5t8haBMiiVB+gKBQuJ2w9kjEWZRkeDTH4b0exV6+24wrm4kXNsYsbqd0k8swwyGjv8y0prdTBCmlkhYQg1B4enhjVLWdie0oxINP6ARhXS7BWPzDc1NQWdW0KxDo6EJWoVXwozGzkhMPYcwQYQJhSCPqmnIDX51RCWPkK+lZIMis1dWxsY+OR5BkNE5mvCpD7m2nFmu8tSHQn790wNeuJAxSCEp1CGZPYgafP8gFUVykdxg8jeCJiwHLoqK0PNRyg3M0tHj/NC/+qMcWz6Oh+DSKy/x2vmvAXB8tkOuqyi/jedpKmVLteQkyzy+Qb87Yah81nt7zJ2AtOw2yZFOCYSH3B8wO5rwZ8+e4/vvOwu4n2tNb28wXF1nsLpKOtymveCW68KJ4wRBSDIasPn6Va6+cpHehvP39L0SeaqJRzFHTpyksnSWxZWTABw9ch9Zb5+K8BhGXUrVOt0dF0U27A+Jk02ufekljJKIWkTt6CInHn8QgNMP3099pU14c8jW9WtsvXKZ3lXnNrZ0+iEeue8cf+X7v4NffPYzfObGS2wUXgLnexusf+6r3H9kntwT0KhzdME9N0o03/kdn+Lo0hG2bt9irlYnSVxwxNx8B18KapUK7WaTyxcvsbXujvZ5NiZJLN1kH7WT0woalOtuvKudCktzVWQbgjQm0AYVuNPBIL3GjStrDDHMLp/g9tY2lY6TcnMsndkaXqnJbneMIGVS5AFBxeTBGJn7hMqjXNHc96DLTjbRIYuLR5kv8iO8Gd6WyTofbecQWQQZMU40gswxXwWeekNEtRZ838MLfKSSGGtIUscttDbcy3iEN1QFRUYlXOivwKkLfAFV5Yi7IRWBMaA1WZYhlLjjpiWwCAVKSHIkSa4ZJa4PWckQBAHS88iBelNCoDGFKiU3gsBKyBXkYHtgewVziQXaz4jmPCqzgsUZgynMzPePBf39GuOhx+W1mBtbCWs7jjC6I0tvYpmMYT8DMpCFnjAQlpoypCPLbj4mRFIvux3d8wXlvqJ0GyLf0ihnzM25ds4tSaoLEtUylGYksupDYdXGEy74xPcJmhDUYkzhBREnGXFq8aXEln1yK1CLjgmd7HgsfarEQ0fq/NKvdvm9rwzYK3weE6EYG+sUoe8TWKsxOnebauGKJaXbjJWSzv3QL+MHbvHu9cYMhwnKL1MOIpaPnuYn/93/EIAHTs6xfvmrVOdnqC+dYX84Ya/QdebBLLloYHKPYX/MrBV3Uj4Zm5ONe0TdAU/NLfOj9z3AnHYLbf/aFXa+9irDnU1qUcDJs8epzznpeDza5NaFi9y+vs6gP2E0yhiOi/SX1Qof+1N/htxCkmkWK1XiURFWurCIjjPKfgmd5JBpFoqQ0yyJGQ8HqPrr7O5tETQjopJh++p5AFSyTbPd4PTcHOcePcKou8eV19YBuP75beKtHRY//AA/9tRHyPWYZy9eAeDG6gW2X32Zj37qL1BZLvG5zevM7zm/3YapsTg/RyQtJxZn6XeX+f3f+x03QVnKfWfPcvnyJY6fOsVjTzzJr//KPwPg1pUrYDLmG7MEw5y0v0/pIBrM9GnOrXDqviOoeICfpRSmIC5cusZCOOFGktOYr/HShReZP+Yk54889SRnHjzB4rETWFFiOOwjrGP4vh4gxinZQBOWfPy2wqs7SXaSB8SpYJiM3pLW3t7wdZgoi793UhFY68LRM/31MkqqEePkzjNCHBDUn0TUz11ptwqvIgWUpKRWSLI1IfCNQRhDnucIL0DYgxRrEikEGZZUG1JjMYUUrnyJ5wmUEiA0jQbg51DETeeZxcsVclgj2xR0Xx+xe9U5NMejIaoMsqqpL/rMnixROuYYVHMmpzGnESLn+DnL/l7EeN/tsDtduLw24ebtmPWuZi+Gfbd+mSQQ57BnckpCUJEwnDj/TD3OUCOB8hW+Cmj4gnbhFta8pGm1JDOLPivHyjRnIrzAMdkgFBBKLD4m9VHNAJUU0S2xC1VOUpj0IE0y2Ds4ipXxyyFHPfi3np5nOSjx2y84fd6lvQzlRwx19u5N9bcIqTOU1qg7uRZACfCUwFfgoVEm5tick1iGg01efvaz6OGA0Ctx+uRxPvr0xwDotMrIKKRUlmzvbnN9PCApUu9FiytUWjeJkwHewFAzPrXCh9Yf7mN7Qz4xf5wfe/ppZtOU9JYL49169WV2b11iZrHNmQdPEUjJ5vnXAbj05ee5fuU6o9xSWVjmse/7AeYfcHlvr12+ypWtPt/35/9NXvjs58B6yLKLz9dBmVxqbKlJ0o+JmiWqx5264Gsvv8jIE5z9Mz9A6Fl0MqK3scrrX3kOgFdffg07GdNq1pg93uHoIyc4+8BxAErXJqxf/DI63eb4J5/mP/jE99OcfAGAL269QO2hc3zh2g3KyQy2c4rdzAkC3UGfY60WkWcZxQPMeEAh5PO7v/H/Mhj36e7vg435H/6nf4At1AX/9//+j9jc2yIXPjOtBsnWBhRBHDbR9LauMZwTLDRriJFmcf4YAHvbe+x0h3S1YHPjBuVGSKwd/XZmO6A0ad4n1SOMJwgLvbKShtTLyKwgNpp0OCJOHQO25Tb9kaFRjPGb0to3TZVTTDHFFFO8Y3zTkuyb4S0NWYdvvKny9d4YQexdny1uF/GAmu8xE7ldu66Uk2Sx5EYTeB5eEVARFDkZnDIXrBJEJadfsmWLsTlJmjLKUhYqoEkRhSdAnhmMjLAD2Ds/YevVHLvrziolaRgriAUMbqWMV2HxYaevbRwtIysTRrZPZV4ShCkcd1MzN7acHESYeJadXcvFm0Our7lde3VTs9uH7j5McstQ5xT2Rio+BMqibE6WSFZHhlbPqSfmI2juGm7eSrh8ETqdEo1G4d7WsNRqKeWKBeHyItQjd2SWWlACEAE2UTQqc6gix6ewgmRPke4kLOaWn3zyBPcfcTlO/85vvsyF3fFBgNT7Ar6weHdSjjt4uBwXnrUENic0ObrrDErZKOHFL+1x6cLr9AcpP/dz/zEyOgPAxOTYks/GaJfV/jobk3XSwktgmN0gELs0tSLcTmiPYWbkpKfba5s8eewkP/H0xzlTr7L5xS+zcd7lqJ0Mtzl2/3FOPHQGhOX6+fNcuuB0wL2Jonb6wyzNzuOVq8RpxGTL0cRHPvXDhFpz+Q9f5MziMa5eu8Ioc5KzVJDlGcP9ETMzywSVMrcLj4XaTIuHnnocIS0bL71E2u2ihpZK6iQ0A/TSHpdujtiyI1b1NY6cdrQ9M7tAbTxh6/V/SbPWYvbMI/zg8Qdc/69usFor0/dK3OrVUNRoVJyEOPJhZ3eNtL/D+a98nleee4Z+37lGPXbuGAkZL71yntu3LvI3/pOf4exJ5/qlJ0OaQYndcZ/mQgXqIb39IgdBakm7E/afH/H0x57k0XOPsn3d5Uq4eq2PYI6KTFjv9+gszHDz5nUAlEpZ6s0Q1ZvIZpnV4T6jImlHuVbCVjrk1nLp4k0WTx6ltuz0yrbis7e3R6XUfkta+5aY7DuHQNw50lvsuxxqeyecnsLKiEUURq+q59EOnU6rqhQ6G+MJi7EWXzmfUXDqAoHB9y02BB1aoqZbin5DMNYjkjRlkqZUqz7Cz0gP0hkqEMqQ6IzbuwnJxNDw3WFhthNBw2O0lzDspYxuptzInJPpycoRqn148YWUmQWL35Gc+rB7ZyWICRsxtqOprEhmTgo+Fjt90HBXsXorZ/XmhK3djI2+ZW3fMdKhtvQNpC5bJaEMUEX2Bh1n9GJDoMDv5YS3E6qVQnVRNnTKOa3GGFWSKBRnfVdnO6pglQfGJx2ANoLGrNu4RMOQ93I8Aw1hsdmAI4U+8/65Fte6Y0b2fWT8svYgQO2OMVYJAcYlBMk0GAWjPbd4Y1WiMdfi4e/4hPt1jEpIUuixZ2abDG2V26trpDVDmhmu33Qx8Rf2XkfOeLRrHSbdEfnWgKBIaN3ZGfDn/vSjPL6wwM1nn+P6+X+JnbiyR7/zY1TaFUZ5zOrVi9y+eY1+4f8YHj3BwpEznDh5hsbKCn6lSrLtmNPOq6/ihx6txSY7uxsYNWFUhMaWNFgMo2yIigX9iaCz4Fy4IhXQ/dpreJOU4Y016vUm1YU5jHHzK6sV2ieOsd7dpp+MSMSY27Gj33g4pHNkltz02bp8jfWv7XBpYwOAhZpHz49Y0yHj8gySkFHxayEZGm0zqlXB2TNLzNef5srrTiWytbPGeDyiUirxnd/7XSRxyksvPguACSyDwYQMwUbWY65ZIk7eSKspjWJ/ELPXm9AdjAmbjgE2Ok12r90mnmQIpWmdaPPVy07n/PCZ+/HjGjOVozzyiad5YeMKX928DsDEU2Q5JEpzM79BYHzyIqy2RM4Tp+7nwyun35LU/oSZLIeY7EGYgPv0dYrdP4bEc+AldLdx7UAnW/M9mn6RH9JohIXkIDGIpwiKsFJlBEgDKidXKdo3UC6yrdRBxWB0TqlqCSKD9CyFXYx6ADKOkUKifEsiQdRcvdGZKuWzHu0BbF00hBNL9bQj8PKSZbydsHfJkt+C8ori1OIbwRGml5PEY1QHqm2JbDuppdkWHD1RgX6VbN/j1lbC9W2X1u3azojVoWF9YLi9m5KlGd2inWMDVSnwjcDmEpFBWPxcSG1oaHoZ9Z2cUiUiDALGhRv4ct1QrYeE5RKh9MmHOaNN15awZtGhJawGqLFCxwa96yzXTQwBFl+8fwxfQgVYmxT+BIUvt3UBM9Zacg1CC84+WEhPUYWtQcI4GyNsxhee/QInjzujydKxORLPJ67WEM2QceQxPgjeyX36N7aJr40Y3rjF/m/+Du05p2//vsce4pHOLINrV7h94TyWhFOPOt2qDhQXr17mlee/xOrFCzBMmCk7967lmQ6h6DFJrxNfW6U006B51ukda0dbDPZ32R1vo5ouD4dfLIrN7nVKlTKt9ix+GCMzy3DH0cvASGQjonxskZMPncUvVfDqDfzi98i+9JUX2dzbI1E+zRNnqJcCsE5C3t+4wihPCGfrbF/rksf5nRzEijL1RhUhErrcZL5cYXfDSeRXhxHnHn4QkecoE9Oulzj9Q98FwNr6Nb747OdJYgi04fjJcxxfcZ4XLz33DJdee4Xt/Qm97T1KjSZBcdoa7e8hLTSrIb2NHTaam3RmXe7X6lyD/dcu4wnF6ZUVNtOYUtOdJtfWbhBoy9e++Dz/P3tv9mPbkZ35/SJiz2fOPDne+V7OQ7HIImuQWmpARttudaNtwHbbgOH/ww/94gf/IQYM2DAE+M0Nt2Q1UK2hJlWJZHG+85B5czh55j1HhB8iMi+LIkuy2qL4wADIe2/u3OfsIWLFWt/61re+99Zb/MFz3+F7z78IwMeHD/nLX7+HqRrefv0Vpwi2cGtCLTRlC0F/B3a+fK597Ub2S8cX8lXAbxha8Tk1rd9mge0Xjorzai+gH4YMvYhGYJ2QTd22iEAhpEScC9kIAcpA0CCjFpUYRORBdWWwQUOhW+LEYmicp+w30UABWhMlluGm5ORTzdKHHGdnc5IwRb5Ss/1dxXAWEiTuekS0omlaRjX0atgQEs77f8WS9T04+7Ah7krGLw9Qbm1TtHPCniHqVCRbgue3A25aR4pe1SnH64aHh2uOzxoeTyyHx87lXkwtTSUoSqhbp51qvHhzXGu6StMvIV0J0iBicV40sWjodRuG3Ya9bpdRRyIWXuFo7ar7msJSFYpgAemZm4j/dNzn7njBpz4D/E0YVWPRSIwA6eUFrRJebccSSEloNZtehSsbDBHtlNXTJ7zx5jt859XvsD123MiqFtgwY6YVkyDk01KzTB2/NLn6PF05wDCh11ljA8V2x72j79+4wUgInty/w2p6xOWb1+l5nujh4QGPn5wQBAMuX3mNfpSxP3RGdruzQxKkxMMei3LFwdE9ptZ53EEWkLcF2ajLcDzGBiXHM7e7fvb4E7Z297j+yov0w5TiaHKhMRykHcq64uD+J9TLEt0KRJAwX7u5XxQ1QRAgsoyqKEEaBkPfoLF/lXpeEQwCFmGBMWvSXWe8Cmvp90PSek3HrgkWC4ZeWvLKeADTFZODpxRPTpjPTlhN3XlhP+Dll57j6u4V+sMbPLgz4YmPKj67fZc3v/s8Tw9P+ODjA2azFSMvEm5VQlW35HnL/duPiJOMxDMBlmWOVU4NMAtCqnJB7CULT+fH7G9vous104PHBIGm9QnKZDJle1khzpYEQYfZdMlmz917aBoOb7/H//3rT3nzf3rnS+fa125kn+kyfdEkfvlwAIP0HrALd57xFH7TpH7RUp9DBbEUDOKQkfdkI5xuaG00QimemWOeub6hhVijEoP0PDuVgBSWvK6RylF+BBB7TLZpnHKS6MX0L0Vsby8pD9yEWj2smP21pvOGRV0zmK2G1jdEDEuJmgq6jaOaJUH0zHKbCjkvEMcWO5PI7ZTVwi2aw89aorClO26ItyTxtkSPvIhGr+baqxl7m5KsHjGtWx7M3Pc9nbVMppaTE5hM4WShOZq76ywaS1nDtICAhsRWzDxyebKqGHQse31BkLd0RorIly+peUAch1SzlnbRogpLWrkN5vfGY974w9f407z8W9/31zUa4bRkpZBEXpYwTmL6/S7T0wm6rrA6xGi3mJQcc+PWTb7/T3+fN7/7JtsbmwxSZxAioQhFTBhkWNWwqAxLrxi1KmsKbQm3N9jY2eN6nPDWjivB7FrD2Scfs37ygEBZom7C4cSF9ncePqaTjbjxwjUCLYiCkNBHW9nGBv3tTUQnQRUrsrbmXHtcr5cEK8vxk0d89N4v+Oizz1isPBe2WHP0+IjZkwmDKCITkks7TtF/d+cKnWTAKOuyKODk8AjdukpBgCv7eyQ7OzRSsa4amlnO2vPHrVB0drcQxhKmMXqdE/r5m2x1SIchw5OaJocd+nz/ihO4fuf6LbaVZjkz9AaSvspY47L2rS6JOzGRiHn3J3/O/cOCypO5y8Zw6cZzDEcjHj6ZMlu0JN5wp1kHXZcUtqUtK47P5ryz6TYuE96mlhpEyNNHT+iPUmLveD1an1GanCpsKaiodcXq1L2L5Z37jGYFwVrTGSbEV3bo9bznfPKUqVzxI1/U8GXja8dkv9Ijdeygz/343GDKCyN7/ivmwlTbi984P37OeTzPsigLnSBgkMQMzo2srZECat0iQvUMlANX5hUqRBqikgCbtojYk9WVRghD0zaksVNwEkZcFFro1l+hCOhuxVx6TXBqXDhWHrUcftDSrQSbIkA9J8+7cBBWAXquSRsBIQgZQeNeotUlTVFiWggCp4619k0fV6eGqAR93GJji0qh8RVf6pJlOwsR04q2NGwMLBs33cSvk4iiEUwnmuXccjq13Dl0z+vpFE7PNGczw3zW0pZr14YImC0N3UqiRMKuVKyEIEz8c35SE2SKaKGwjUa0JbHXfCjzBb2NmFc3vzlwQa0NxgjiKCYMHVZ/7dp1XnzxBX72059wcnyCCPrcddAiAxlwbecKle2yWLdsDSSJhwSCFjoqQlqJJsTGA5rQGeDVWtB0I7IUrGnoZhmpny8P33ufvMmJA0Nvu0fUS3nga+lJMm6+8AbNomY9W1GGATPftl7PpywmBxTzM9bLBY1u2Np3Xm5nOKTMV7R5w89//HPuPT7i+k137N679+j3B7THNYKW7771Fv2Ri3F1YVgePqFjQwZ7l+i9MuLkyQGnXk/WpAGNEhSVplq1hEGEKXyyeByThzk0Dd1RSjNZo3zXhDRO6G/2ubI8oi8S/qsf/Qt+eMOF/UM05uyIaLuhIxOiswjp6YKT+gglFdPVhPV6wubWLrefOKOXVw2f3L7P/taAS1f2ye88Ze0LdFQQE8cdal1QtQ1PTqa8/6GDJ86WawrjktetFsgzy9YlB9nNszWrImdeLOj1+1zZ2edKzy2mq2Qsjs94990PePDxHXR/xKJ2azAsCnh6SHrz1a+ca99SuL4d345vx7fjH3B8jZ7sFzNbXwIV/AYK8EzqxV6E89b/+/PnupYnAoERFuG1X60v5JQWsiigFwZkPoQJtfM+a6NBBr4Ftv9qBUJJjJA0UmIDgS9DhxhULRDC0kslobAYIxHGXWsoBLZWCC2RWUjvpRjlBYqXH65ZPW5Z34ZWCIakdK/7hFoj0Iucno5pZYuct7QPfMeBIKHMFbmFxAqsBqO9WI9wddXD7ZQqslSmYTb3pbMt2F8nFEeCp0drutdh43V/XqZJIsPVLUU4Cmh2BW8/76ZCbkIeTTSPTy13DgzLM8iPnDdzOmk5K+DRcsXVqEsTZYjKk6AWNbKGThNBBG1bMvSaD6XVyKgib785xQiBUAgJWtf0ei77/Pbbb7K1tcmjh3eYnJwgtaFcuGy/Co8opwOmhx3M5S5hm9LMXJQSpClpHBBY45pyRhkzD5XMI4uJQqgreqqklyYkHm+vnh6RF0u6l0aEwYC4l3Hq9U2zdExnNGZZLyEWxJtDuj4BG01POf3pX5AfHzG+fImwMyD2/YqayRqjnfd7/94hMpHMV84D3r98ncBIKGFd1swXDXXr3nsv6YNtOProNu17H5Hu7RJdvYRu3TvMaWgWp4RhSpAq0jig8ZVrHz28z8PVI1554SbpRodCnRCer991Rd9Ifu+5F0mGe7x2eR/h2+jMlwvsYsrk8QFn9x8xOTjkcObEbLo3ezz//Rcp1iUytIzHfQ7O3Lu4MrjG8WzJ8uwEi0LGAavKQWF6vaaXpIQEWBtwtiz5yc9+DoBUASYMKUqNsYpyVTLyEIRKFE8mp4yWO3z4/vtc2dxhGLiFH68a5OGUUWk5XdV88uQzHi3cux/GMS8PhyyeTr56rv1/mJf/kePzeMBvwWIvDOwzBsJvQ26FACECTyv4nNKTF5GWFnqdhH43dtgBLrllLbS6RarU073Ov97ReJpGULa+fYs/GFu8noEhC0AagdDq4iEqaREiAhthrUB1LN0XfUiZBchYs7xvWX9cg4nIpK8SCQRmXpNoycpqlgdrTpdesb2TYU5BtZIgiLAmQvnKl1i7Cq3ulS7DKwqb1iRL9/IbWppOzXKuOf20ZLmWZLsOe+zvBihRIYyEWqHmDQMv9j3sGLavwos3At4hosgVB7fd4r7/pObug4rlw4J5s0KoDOlr1HVjKDVIbQlTi4w1qU8m6lrSOb3jDgAAIABJREFU3U9IF9VveZNf7zBNiRQgw4BLey5kvH51j7u3b7OanxFQsbM54OWrlwEHL6zOPkAvW6p5wvxo7t41EG/vMZ9W1IunBPGIXiYwXgzb2ApkizANibCkSLRvXhjVGtU0yKYlTUNUKOiMPKUq22KtDY2SEEUYI2i9wWu1Qmzs0Y16ZKMRTVlyfM/RqaJextbzV5lVFf2NPvdPD0j33CaS9UZQtNjGEgYZy7bgzqETnTmsDFuqQ7w1xBQNbbdHZ2NMzzfwm8/OKPSKIFzQ5GvKYg0D97m38xVP6yk3IkF/1EHHAtV6idNFQVA1bEQRlzY2aCbHTM9caN+PAzqdlE6/T9np0w4aJgtnrKplw6C/yRvffwdd1SzmlvG2Wy/v/Kf/GfvXLnH7vV/x/i9/jnl8htdToq4ram3oRTFRkIJomCzdvKvqJWEUYMMQrRVlrTmaunchoph8uWa2yvnZX/2K/Y1d3n7ZMT364y3aoyk7aZfRS9skj57QTZ20ojGGftYl8b3Svmx8zZjs56haX6wc+Bvj86KFnz/J8IzV7j9PWKw1WKsvPkxJTxIQsNFPGfQSxzQHhA3QRUXsjzuFe99bSBiwAitCRJgiAkHrS/YoDdXKsFobLm/gseLggiIjANMK1tOadmLJ4phw4L2PmzEjIRBFg3igkXca9I6/j90QCs/TVAYjYTL3te+Lls4iJG5CkjDBIrFeEyBoIYhApJJwLGEAlyJnSGurMYuCGk3cQrdQdCuH86pCQ+D6NFGmnH6y5OzUZVK7ew3bLwf0Rw1BbJA9yV7HTZMXXlE8fJzw67+oSQ9rVNRgfHY6bzWNgVhIeqFGJRbrW+HopUbsKobJ56n//7gjsC0SiFUAtbv32x++x907n9GJBS+/cBXVQpz6DU1qpMrp9wpmpx9yoo8IU5e1HqQW3bQUJ/dZNRO6UrDjk5qxqKlETWhLIm2plytOTh2ndRPQccp8vWS7G6HbnMxrxppowBKDVhoZSVSrWTx1563nU5JOn95gSKMk66ri6Mwlt+K2YPlQc+/oAck4ZZBuEI+dcZovVjS6Jg5CCAzHzTHBwhm86mjG8v6Une42N269yk4a0azXLCp3/2dPD1kVc9/nqKLRFUq5pNk6TmnSDjMaNqKYoJug1+e13w2ZUNz+8AOaRcm4s8dO5hJRw36HpBcSKUHYQGgDFt6TP6mOaEvD/s2r1N9bkkQjfj9x+HHY3WC4t8d333yT4XjMp/ePKWp3/5WpyJuaQIVYqdAEtJ7VUlQG0dRIpbDGULeap94DvXz9CuGy4mwy52FywI//7D+Q+Ijx1SvXSDd6jJZ9FuuK/SyhWLt1vaoapG6Zz78RniyfQwz+NlaB5DeN7Pk55/89K2KwVqNt5ZS2hHWtVnCCzKGF2EBkDJF1wiYA0lra1tARksRCY2q0P1bIAKUkYRTRSUNMEl4UTTRVw3qt0Y0lUMpdp5XI834iVrOaN9x7YFndFlyTCTs3nTqPvJQQRYIg1hirEYsWVv455AZdVtSBRncNO88P6Xo9BDuR6FXtvPJQ0MiWpvH8XiNpC1g+WjAH1E5Dtu08iHSc0NQaCuvJEpLQOCMnioYg8d6/NSyO4PAjd4/dqaS3ndAfCZJmgVIam/jvSyU3riaoacK6NWSxRnkopQktdWuxyhBlLVkCZuX1axuDCQra5JvTFrwfSarWENqGg4cuRB11U15+/gZRHHF6/JTHd+6wnLuigt//g99j6/ouh0ePOfrsY7pbV1ChC19ZK9TODkOR8vjRCbIsGHq2WoJiVTdY3dIRElOX4Deb7Mol5GpBlZ+wXkwhH1JrtyTvHRwyLUp20oxRGKIXazK/bvq7WxhRgy6JOilNanj6kTNOv/7xn6GzgOfevEk4zGiKCQ+PngCwWBagBVXREASWS3GHDc/HjrYyHn70GYerGYss4FY3ZD+VHDxyz6ZeLtjsppjWMOgNGO/tcBq5+zhsS0oFp03J5axL0IspH7vriVqNWVWEbcsnv/wpvTd+j9HedQDiUGFNhQgsaTcj7XTpZp5utcqZHs3Zf/4SvY0htrHc+o7jrf7lT/6aD+/f5a3vvc3xyYzRcMjYa0x89OuPKNYlrXV6tHH4jDzfGEPbGITQCBTWPnNYoiagayPKsyV6o+Lxg4f8ygtK5Xdvo07PYLmmqQ2kXcZeNjRTCUkUsmzmXznXvj4j+3c2sF+U376QpuGLws8Oc7W4/coxr7xjRaAhAUZS0teGjhFkXvVX6Ia2bglEQIzAWk0jPKajGtI4QgUhqo1o1wJzruovLe3KkCiHAjuZss971gZhNWVhODuCztwgjzy15LJAm5rprCVXFhFqtn1raKEMdVUjlWadSLJrMdnYTeDiXsv8ce46v6aaNmio8dQZCVWtqR+tmZxY7Bb0LrnN4pW3FKoOESu3AWllEJ6KRlBjVY2RGpEYItMycM4c6Vyiqghag0oSRFkjfLvpWEElBL1YIRLoZpLY9zcTHYFuJUZaTN9gM3mxGYgWrKjR4TeDlg0wSEOWVYXWmtrjeeONATev36AsC+rlmktbW9zad+H7d5+7DknI43eniKcVRhta7+GvZM14s8NbL1zlcl3weHbG41Pn2dw/PuFuvqKwml6cIHVD3HWh5XA4IjgStPWCfLoiKktk5LzOh/NTPjk+4JWtMduFJTxasT121K82i1g0CxpR0tgR9+5/xLv33gPgyfIJtpH8lz/41xz9+E9ZL5bMvGATKiXO+syrkjavUMcN1/cdvHRt/yr7z11mMc+5c3qPcCMlG4Yo48LitF7yyu41zh4d0JcdkqWgVF4XthuS64KD5ZwXsyFJGqI9XitbyfzglNGgx51PP+H2p79mf+zYDodPalTXsj0eE/czOv0uo6F73pP1GSePJ+gWOoM+j+/ehs9cs8KPPvgFv/joPh/fvsfP/8NP2dm5xPUbN9xnPnpMU9QYa31RUHIxDy2ud5/wdjeIApQXXi+qmiiKKcsV9dmMOErBy0B+8v4HJKs5QVuTVyXJpcvYsfPG+9dvkPW6zO7f+cq59vXN+nNI9vzvn/vn53508dNz9S5rLQKNcOkpd9T/ssLdQAJEwnFMPSJAKqAjBTthyNUoZjuIyc6bgrcNZaNRMgSUI4nZcwwYpLSuhUOuoJB4KIzKQpXXpDJCagW68WK15uKC0n7MlcuW8KhBLzWrEwfyFwuojGVaQ5OA2gB7yeGuRhkaDIkEE0oYaOzQHdPdmiKr0I2gCWuEkBeFAy2GUS8h2+0g9JK5rql8WW2bt4REhGtIG39n3sjauKKNKhppCWpcm3F/Cx0DoTRotUZK7TrJnD8bLZFtSGQDItuipIXAJbPCTksnCKilIdiwiDSimXrLHVhEGFLPvzniBUEskY1guDlC+IKDo+NThg8f0e/2yJIM1R+S+dY0k8f3KI0laAU3Lr3Izf0X2N12kn3p5hbxzibReMB+L+Mlq5n5hNnDp0fcOX7K09WMdrVCTyfYxr93oVFhQF0bTK4RmosClWBrxPT4KQ/XE4K1ZWOx5HTicNdaaurUUIYNbbPF8eljSN2zffUHr6GSkLIqyecLzKpy8BCuk+v27k2UmHB0csL6eMnivntHh4tD+tkIISMOTz5lVc84nT5gr+MgplRkmOkpybokVZpqeob1z2bj5phQSeZlzlrXDLoplY8opRasny4Ybo1pdcPHn31Ap+vr/BtY1lN++Dvf5+pwjyANiRNn9DpRh/l8Tl1o4l6Hui159+f/HoCDR0955dU3+OmvPuKzB4cMe2OWPgk56HaZqYnrqq0hNQmBD7e0qZwtEQJrrMvneDrdslwTDTPKecF6ckrYH2CmboNpJseYfEYSwnqxIBjFbEbnrYAWhKGgl341FPYthevb8e34dnw7/gHH10vh+js5MsJ7sX4nxKAwXjXJOZjnO0OEq8Hf7sSMkohMKYaeWD5QAbFu6VrD9ShmE0XsPTKtDWVj6MQhhgCJdNQWHJNAtAqdC4JAEhBijfvMRitkVRKnLRTCeQ+hyx4DYAxKWLYuha4cdbuCI3fT7YlFL0CGkF1SdF4KqJ7zQhkHDblyybo4k5C12NCrsjfaFzlYVCQdnaJyn6kNhBuS/usb9Do9Sgoq6cSDVaph3qIKQ9oqGikuPG4rNVYY1y5dW6yx+NunDQw2bWjChkgYUAJrz/WBJZmMWTcGQ0CkFFp5WlZcoTJAGEyqIYpQ4Xk7+Aah+5jym9NMcVVUVFbx9g+/z3DDeVYfvPdrfvHTnxFKRZkXxKIhesOFoZ1piIgytFKoNCXp9dA+MbI4maDaCrGeEW/0UUlEz+N5L+3ucmk0YlauOT4+4FBZZk+d2PUqn9MJFaIBs9YoLTgPtuRGn7rNqUzBaNjj1c1dopXzOp8eP2FhcgopqedTivkZT48cJjjev8Lu9pg7H3xE3CgGsosy7h1dHV5mvHGZjdE1DscTTj/7jHbqS7uDgDCKSWNB3EmwkcAoy9KL2dy89jJpAXLR0JYFUZgw7rvy4KkQjK1i3tSs6wLZ6RB03JoReYNeNXTCDv3BgJ++/wG1cpSqje4Wn372HluXx1ze3ifMQqLImaRu1qVoKhaTJTujIePdXR4/cfh4Vc7odhK0tZQ24OBwxnjoPMsf/fCH5PM5B4fHBDICbVBeLF4YiRXa5TeU9AQkT5VsarpBn6U1tMsVxXzKSenWYFTniGqBERYjS1aTB7ReHKhft1x6ZQud9b9yrv2jgWRfpcckhEBKsD6ZpDCkCALrLjaWgs65slWieGV/h+00Zq/b5XJ/xKZvFxKUNbYsaddrUgEjQPoywKptyY2mF6ZYIRFWEuhzKyOwpUQLiwwFUoUXgt7KRiQio2pzynVDNJAIYUB5zEeCpkX0Lb0sIN6JaSfuXHMEWysFUYLZkIjLDYuhM4jtsUYMraNApQaiEhn5ZFMDohIoDVEQUKGwxbPkng5b7KAi3GkJk4bMq4kJCawEtgJlFSa07gQAaRDWsRPIJUEF6lwsR4KIDUaBtAq0QkiPu0qLEpqo1ehGItrKQSuA7AaozGJFi0oNpqovusCiG8xxjVl8c9gFy7WhM4i4euMaG5sOB7x/7w737t6lm6YMuhn5qqL0jRRFf8BkNud0MmM1qcmPC0YeP+0kXXqXtrn1ozfQRcF6NqHxPFmBgChkd3NE2Osyp+WscqHttFixN9pHoTDLFsqWeMO/v36Hg+MGmhWMNjBlRS91x0w/Ia5alhhWVUNqFXbtO5CUII1iPV0Ry5TIRGSe7ymagNMnUwoZESY9uqM9hK8ii0WMLhpKWZF2+sxXBerqgLTnK9cay9nJFFuVpHFMkjTktYcvziSjfsrKGhZFTpN2ic7bupxMkFoicsvezmX49BPuTtwmY8IOT07OePT4CeYdTZgpovTcyHaYL5ZMDibsv7TH5s4eb//gdwC49frv8qd/+QH9fof/8d/8Gz75+a/5+Od/6e9jhS4LsjDCGgnaXvQb1MYipGPaS+nE+a3xXU3Kkma+ZHcwol0XTOc51gvZbyUh3axD1rGMRwlVU1CUnj8dKf6vf/f/EHSH/OdfMde+RiMrcd6p+LxSAPBF+VmN1QLlPdkISLzu50DCpUHGzbHbNW6Nh9zopgylZBREbEoYeCwoFILSWk6qkjCQZOYZEb4yNY0wqCjECE+p9U6WaH1XXZztFOGz65NS0Y0z8kaSV5qOCgjS+MJ4GakpFdhGE0iLEgGxb3ootkNEG0IjsIGh7rT0vISg2lWM3kmwkxYxaCGu4by5XyvctcQW07HUsqXxdfGxEXRVh7BWYBqIoDG+DYlUiDbAGkEtNUEsnxlZYVFGooygLRSqgtBvMk4QMUSa0onmaMl57GCFxRqB0Zq8rlk1OaEnESdSolSMSiJIa5bLHOnUZ0mEZHmQU1fniPk//qgsbPcTUILHT1wG/fjkmLZt2RiPePPN18jXCx48dN1Tb77+HOnmJouHR5TrM8JVQOI1eDd7Q8ajIcNOFxsJellElTuvM58tWJ2dscqXzKbHHN39zDEJgEYq7Hgf02hsLqnOFvSuO89ZGEmhwHQTqsAyXZ4gznxdf74gGfRI+iMSY8i6faLUsVhm+YqqqIniDoP+HtPTkuNj5+WuiopWB5zkc8L+kI3NTV737bnD1VM+uv0et08mTIzgn/zBi6zrmEHiNqCzWlI20MlSkn6MTmDltV8DG7GTdDgsG6brJUV/i8wb2Vwd00GxOJgSd2OCMGThJRt1N2K0u8ejh485evKES51NIq/dnCUJ4SLg5OERiDeJ0w5J6mUgX3iJvVtvcO8gJ+7sc+PyLa5fdeyCd3/8b6lnM0ZJj3xVsS5LGm9LtAqorUVoiNoAKdQzvFRZmqZl/9pVDh4eslIJgadDxgGEEuKNmPzkEXne0LnqNp/JcsKnTx7w3sNf8D9/xVz7extZKaVrlggXf375EH/jX1/kDfzm2RYp7EUCK7Ku4GoLeHmjzxuXdnh112VZL3di0jonahqSuqRrGmJffSUaDeucbpmTZCmhbtD+5Ta6QYUSEQparVFWuKoDzo2sS6lpq7GmxfpKsSAOSOIuS5FhaTFRDMMMlN/VREFsata5pSlBWU0gnSEN4wZlpYMjgDCwSL8hqI5Evh6AUthEOpEC763Ge4bhCxrbStgqKKyg9PSuUMH9+1NEnRNdi9m4HhD7+oZwGEHtFIlaBXESYL3Bt0YiNQijoFLnzdzcPQqJMAHSKAgtGn0hVtN4AVYTgIlAd0Bn7v4aVZOgiInBQtKD9VNnaCKZUdQG3zT0GzG0EGS9Pk+fPuXuPReGrouC/atbTBcLfvzjvyCJBVduumKEK7ee43QypW407boh3cvY3dsDIBSSZrlCYkEKF3pLt0BTYYlDwaosoMgppxOEdQ8iyLpEWcK8btBG0a5LrPeA0ygGAaU1LNqCYJhhpo6xUJcz6maNEhLZG4EwPLp/H4CT+QwtBYONHd545xbPvRVz+9/+CQC2WtIdDJhMzyiOV1R2RBu5+vwwXLOcT7DNihtXbrA33uPOJ3fJXnTGuyVgOp2xM8wQxhDrBpG5eRirmrBYQmmYrmEVtKQbboPNI+iHMcXTJf1X+uiyYuWTTSvTMtjZ5eDxEw4ePWHv5RFB4mmWoSAJQvJyzeJ0Rm9bXsBdVX7K1Rtv088aTuYCuZOx8ZITUN8+vkt1eoidzkmoCXXB3LNxykBSCQmECB24NeCPNUHLqi4o0UzbgunaYj0corKYwWiD7Pk9TL/L5MMP8d2FyDa67D+3z18dHn7lXPt7GdnzzL8QXx70f7nR/btnliWO4wqQAltRyFvDHr97ZY9XNwZs+O/N1msy2xC0LbIxhBpnMAFaTVAVBFVJlARIXVN6/KXWJSjLsi0JlfL0W29kLR4eUGhdY6y8qGqKRIBUko3OkLVskSTQS8GHlIgVYWTo1DV10dLU9oI+YnSLaltka9zL/Ry2LAMN3QKkodCG2EYoHzaJ7zSMb2XouYSkobNq2Jm4Y2kSMJu1nB5ULCYV734EjXMg+J0ftFwLN9gIu2jZIlqLmLpno5IUlAI0ujQ0RqPPuW8SMA5C0aqiFCAiXx5rAGkxgYBYEg9Cqp67v7OgJLOaUZMQaInGqZUB9E2H/mZCZ/7NoXAhLGXd8le/+iV7e84L+u/+h/+ena0R7//y5zy4f5trN67zo9/9XQBeee07fPbxp/SyHu2iQDSG+ZEvKrhynUQGmLrGCJgtJiy9QUzDmCTtIIRlcnxItVoyz92mnFxOyfo9VBLTlCW60rQrByVEWcBmlCCqgnm5ZtXWdP176G4OCfoDFjKhCCRxNuDmK68DMPnZT7BYTifHPHn6hHSwQeEjpoYSIQpsYjFlw3o95WTijMNLmyGvvXSZ19Muw/3rvPfXf8WgM+bkwW0ATuoGU6wYji4zXdf0RMBg4CZblqWclZau1hTGMGsLstgZ2XYQ01YSc9awHw/JZEzl+2ORKBIx4MN3/5rbDx7wnVdeR2UO2gikIJUBsmo4eXCf/s5VhG9Y2jQL7MljBt1bLA+mzGdrlkMX3Z50MtbGMlAKJUErWJ9TuFqNUYoWAcaiLQjcHG2bhrwwnBYL0u0ux2cLKq8wF17a5aRa8bi2XH3ldQamZO0LWFbzKct8znz91R7Ef1z7mb9LX2/xeQKD5cvb0XDh4p5zXc8vbCtUvDbq8oPdLd7sdblUNyjf2kMJTaQ8nqid8brwk7UG06KEJZQgMBgfSmurQUJtWoJQOdqW35mixHm3xjQY7ahdymeFBAEYSSxi1lWEWASwzrDnL8o0BBsBYU8TdAqw+gJbNm2Lbhp03aJrjS0tonbXGjSWIGhRWpIqhRAW4xu8VSpHbgiCfoBOYIBi09Nq5KOMrWnJlWXONG94uKpY+Ocb6oa6zTlq1mAE5kBQu84m9J+ExL0YsRFiG6eLW3mub6U0FoWoA1TYImlphZ/cEgKlaaWgMBathFMxA1CSGsOqbeiaGGmV84aBqtJElgua3DdhBLHk8cExP/jhW/zX/+1/A8Bbb72Fbkte/85rrFdzHj24y3g8BiAJYjpRSjdMMIkgQpB4HVrRGpRUaGtZrlfcuXebR/eccRr1RuztX+ZsPuPo6RF13WJ8N9LJyYTJyQSVZTR5TpEXSN8Ic7MzZAPFYlVgejGFbdBd5x33gpTe5iZVrvnok3uM9/bRtVsTz1+7Tm844unpEYM0Zl0tSbtuNVVtSWOXSFkg2xJVRdQLZ/CyrU1u7G5T1y27gz7f+Vf/kocPHnPsOxyIGDq7G3Q6lnyxIBAbZJHzcvNFSVRpNoRkpi3UNSLwXZMHIfPTJSrQHBwes72xz+DoAQCxtcgEVrHhs9WEY1uzlbkwPAgjekHC0azl+P5Dnn/nMspHcHk1oaunxGZNlEru/PlHPN50a6J/8yWWt+4wfe99rJZo6aRMwesmC4MRhlYGPrL0DqMMqYGnkyN2djYQouJ05lS/wiRG1DVJlvLSd99i/usPaDyN8vTBIR9//JiN34KEfUvh+nZ8O74d345/wPH39mS/yov9zZ9/DoH1ntK5MyMNF0Lc5lwERhiEcNVaff971wddXhtv8kKnw3bb0CtKl2wCrG6dZywFRghaaREeW8VaWgkqDlFh4LCyc+jRWqQSqEASBJJICZR/EkJprG1ptcZag9H2wpPFhFALGm3RRpIfWTpJzdo4r3ONJhsrkpEgHChEphGJr3yRTkjGWoVpNbrSCOspTnlLW0uUCcmnDaIs8awTYpzoCrToxmKkQoycRy7SFmssaRSRNJL+kabK3Q47HCTYdU3n+ZDVWcuiNRx/5rwd+XHNMC4ZXE/Y6KWElSI8r6eoFcwVpCnkliSRND5MragvYI44UIRSYv09pDImUxGRgEAIyubZ/VW1Rs8LlBl9+WT6RxhKKbKsQ7fbp/RiLuv1iuGwS2k1RVGQJDFl7hggQhuGnR6dIKQRDRGK1FfCub5wUOc5J8sTHh4+4dGx8wBPJmdM5gueHB7w2Z3PWCynF403tZ7wcPs+2yqgFZDnOUnuPMukGNApalbrGpMoGmFpPaZeC8vZYkLY20YpOLh3l43M4YdJUvPqS6+S17dY6Zqj9ZKtgfMOTx8/olpJTFHRzhYQd7ALh8lmJkEWS1IbsC0D5GrG5cxy5VWnT9Df2uLhw7ucHB+ynM2IlGA9dQm1Kq+ZaYtKI5hAksbsXHJQwixVnAY5cqSwwnD5yi0+fOSaNy4fH3PlxlV2d8ecLmY8nZyyMb4GQJilJEFClw6L4xm6MCgvWn66espoc5ckzulsdBiP+vzlfQd7XH7jZfqvvU05WZFXBlEqlMeAgzonDDRWGoSyKC0JPGfOSoGJLNpYAmt459WXGe+6JOR49zJJ1KFeLWlFh51rr/Po0w8A6HUiZPGIkfhqV/b/V5Dst8MH9sLQPsMjz8NH5dBS6fixXWG56sPQV7sJL6QhlwLB0FoiJR1BFEBKjLBoCVoKWm0w50Iv0tJIEFEIYYCVCsm5doHwdV7+YwInXwigTYMQBiEMrXWVX4EP600dokSArQ1CBzQngrJtLrKleSBZHreEiWZrJyAaghp4vm/HQNIikgYVWWQIwlf3sBauMZsKOS0KpivLlt9ltnquvlrWlggB2iIiF1Ja2aCNxqoa0YOwAz2vDIWVsMq58ocJZmbJZw1nnk5WHAvalSHPNZ2wQVtN5Msgq3nL7BdnBLsStSmJdjJ8iTqd0CJahWlqgigmzEIazxdMTEhXZcjQYmxO1TZo39NLKEFRNyj1zQmcAhRvvP4aaRzx7//4jwE4PT7k9ddf5U/+3R9z+Pgx33v7ZV686RrktVVJEoTE0om8h0Kgzv0HnyPIVzl5VfP45JjbT5whyVTMbFlwcjLhZLqkafXFc2jygpPDE7Z3rmLDkKquEWtnuLrjHa4lXVApsm6RYUDuxVNsW1G3NYvDY3a29lgwRXhBlu/ceoEoLwlMS5qERMMB1zbc5vbw4R06qqXXDcnLhD4B2ssgKiSb29vMzg4pyimNbVkLzeuv/xMAZJrx/oe/4GwxIesMWeYVEy9YE4cpJ2cTZrKmUnD70WNe+0OXgb06HLIUDzEKytWcna0xI+PMTvHwkI3rN7naG3P84ID18ZRg67p7plmMDiIG4YC8KDi9N2HjeZ/tDwOW+VOS/mWyNOLylTFHf/5Ldx/Xb5Fceo69txsOiSgOHhIUbp2luaHWOa2xWFujtUZZ33pISqwQlIUhny4Z7eyz5W1QWFZcu3wLtX+FKzdeZGO4yY//5McAzI6fksQJqfoHNLJ/Oy775RwCJ3r4BREYYZHWMgoEr3Wdt/qjXsaLSchYGgLr+jCJ2iv8ZAlWWBoMNdAqhfYYcG0MlRBkUmGFcq2bPBYmrUAKhbISbSyNNijPBZVSECkFxjrdVtEirS82qEswIUELSRuiG4NtFFnodm1NwNpUVFiPzkt9AAAgAElEQVTipyFxNyD02f54YAmGGtlvodsikmfuurAGGRlMIlED11mAsTdQY7ep2MZxXm1psaXXLqg1tAJ04KDu2GIuHqWlVRo7FtjWktZwZeb5kmc9mpWiDBeYVlOsBNJ7ZUVhOH5QwoEl6lriTXjudx32llzLMLUkloY6UgQ9iUr9hhdpR+xWAh20hB1J3PGe3iAmTQXt6puDyXayjFdfeZUXXnqBd3/lFuj/8b/+ET+59hcIKRgNJe/99c+gchvajcvX6cQdojCg9YUj0htXqSQqCGiNpraW0lhOPdYZmjX9/hbDrX1WDRirqT1+WpgZZVGjkoQmDDDCUPmkWAfNwEiS0iBkS3djg2HmW+HkKzpY1g8ec3r3NplKubzj+o1tjwasZ2cU1YoWQZTFXL3sjOz4tmRzo4MSCUWcYUtLad1aOi5OiboRnRsjrr35HUZXr6HGO5ybiHq5YvvmiyxqwcbGHr/+5fuc+iaMg0HIqoSkkxELzf137/DxhksA/OCtH7LZ6XB2PEMoxTBQbPiWL8ezJUHd0lMRB6uS9XJ9YQrCJEQFIZ2gh1qecXJ3wu5zrm1NEnXI8wnr1UM6vR6dgeTWntMS+OjOAZujITevv0Q1yzlYlRivJBbJFUFTEFrri5r0hRa0sIpAKtrGMj1bUU6XjJ930UFlDXW+4vlXXmfn8hXs3h6Rb2nz+JPbbG1uUK7zr5xrfy8j+3dKeLlL//xJz35qf/OYPf+/cRc0jkOe67kbvJnG7AUQ0lI1BoUkij1B/JzdYMFYC0oivEdmTEAtG2IVYIVCt6C96GRgA0IZEcmI1vq2MT6kUKEiEI5TKqx1hQrnHriusMaiDMQ6ACMI1sop/QABEbGuMbYlzC0mMDTnMpNdMD2L6hpk1yAGFjn256UVQdSAUYx7im6nIun4ZxVqhHR11tYALZzbfNlKbAWmxBUdaIn2x0QtqVqFlhYbaFRkiCPPIe61SKuRaQ3asHc5wh57sZOnls6Jpskb8rZlmmsWXg5vbDOEtkgrQbWYpCbedvfQxJZ6WRCkISYxRJ0AteklulpF2A2ZVN8c7QKjLWi4dvkaq5kziP/7//K/kUQB/+K/+GcMRx1+9hc/5uzMNe9rdUvcywjTABGAlQZz0epIIKRCyAChQkSUsPRULCpDrWFvb59VoZkv54ReqEjHDVXZoqKYWmsUinzh6uW7TcmQhMtpl46eMzs+I/IYUmY0tiyRtUblS1aLA+bKfd+1N26RXu6RxoIwCWisJu84CKnz04BUtASuqzvLvCL37vjheo7qxHRVTHpyRHD5OoMgxXquUtOsSfrbBJ0JlY2oiDmZOcNiSBht7ILU5OWKOOpz966jxV3Zv44NgchiaSmbFVte3/ZoecLDR3exMiDr9zidz5mtHTwzjiJEFBCGKbJNOHu0fCYQXwnKZsa6d0xndIvxdoe3X3Sh/f1fPeFUrxkOM3p710geHlD4vmmSiFQESNXQGotEEJ0nvpCEMgQMdVOyqltqX8QwX84pjOXmKy8TdxKCOOKf/WuXLP3k4AlGSar2q6sZ/+E5NefG9QvVB+eihRc/wHmxiYCtOGIvc9apF0iUFw7WUiJkQOPPFMYQCIiFwGiDFfZcL4tGt4RYYiUdp7e1nLt5kYxIVUIYRJTWd2r1IT/WCXoHUiGVRYjgomW0aQ1YjbAKqQVYgTAC6XVTMxmTiAhtKmytkUoiG4/5FJZ22qJjg0gNomMJR+6Y7HexYQ09S9ztEqc1QrsXbFWJjVvnKQYWQvuMMSbAWok0AmuEq1Y718WuBKIEoQWyEVAYGv8cpWgR0pW/FrZBDlqCXXctvesxw1WMyDPKsmW1Lsm2PZRCgzaSotE0RqBVjRr4Y3FL0VZkQYwNWmQkEZ4Cs1IVw06ICb453Wr7WY8sTpmenPHx+07B6sUXrvP8Szf57KMPERLG431uPu+8pyiLiTMHkRhlaERL499RoxvatkVaSLKMIE448u3Qu1GHSlvirEOUZNRnU5LEYaQ6qajaBpVGNKYlbAzVyusIz+fI2YzqwX2q1QxiReFzEd1AkbaaqG65urNNO8ro7ruQqXtti3h3i41ehq0KqrJksHAbRXe4yToviELJbL7mbJpfCLIcTtds746xQcbh4ZRsfIzRCa3vd58vVyzOZpiqodU5QrdIf/+x1IQ0NFrT29rh2tYuy1P3nfdOD+nECZNyggoTlCnYec6pcP3V7fe59+Qh+1evopXg9v0HPHnZQRC97X1ML0CfKcKoy3p1xvzYl7n2OtjaUK7O0DpnPN7ljReuA/Bn7z/lk1nBQd3y+vYm40tXWD267573/ITIup4NeVsjhXBqeoAwFlpNqCBH8MHd+yy8d7p3+TLfu3WTzb1NkkFKGCf8J//yn7uJFAf8n3/0RxB/dTXj10BctH/jr8/s7W9aXiUgU5JRqBj4XVtaQ6tdaGasw03Oh7EWbZ8VLyhcc0SAqi7JsKTKoqR1NCQPCSoZEAYRUkRI02CtRXkAXGuHw6oAV7cvuNCTNVIghdsQhHRGWwLC74bSSJS0KITzrLW5wIFNK5AEmBxkLrFLSzP1oXZiMQGQGlRX0CiB9KTssBeiegbZs4hM8/+y92a9kh1XluZn05l8uvONkRGkOEiiUkNKqarMLFR1oV6q6wcU0C/1F/u10C+FblQiZ0mZTEmURAYZjPnGnXw8g039YOYeIVFUCo1OJVGgAUHwXr9+/Pg5drZtW3vttWLhiSYHK+PARKJKDQLRBKi22x8oQs56nST0Gtp8Li0wgHIFZRQE6WnrdEytPWZk0a7CeMFeVAy5vXAlW7SusYAqNOiSKLaBJuJkIOLw0eN8gLzkLXzHSFX8DtjqDz4mpubi+Uv+54v/wYcffADAf/4v/4Uf/OkP+fCnP2G5mvOdP/42e9MUEJVRqEJQTWowEImvTDsBYkQgKE2BQLHKvEnnDBsksa6wOuKFY/8wNdOsL89Yhg5fArVksD3TUaKMPf75A3718DHLxYqLp2dcNBWnN1L3lSJwZ7rPveMTqv0xFxdr2qwxcKdbEdUJOMtmvaJdbxhy96AsZjz/7GMmE7hcbXgxX+2scPYWLdYJTNS0V1c8+/Bn/PKv/5qMsDEaT/n044/o257CVJzMSo6+n5wDQoCz52csrWPV97imYdmm3YH97AFv3LzBZ08fcHnVcvPyDu9/N3WZ3X77Lj/6h59zzC0m+3tcXl1zmWGW/pYgTg22UaimZrMKfPpRKm7de7+kEGOGVcvy+oJ6dMIka/TeG1c8fH7OfBWIpzNOb93mbJQWoJ7UcamlSi2dUmS+OInmaFMhWRbQBs8nz1Lx0pqCH5YFe4d7FKUG4Tk9Tffpv/4f/5V79+7x1//zL75wrn15KhFfja/GV+Or8b/g+MNmsrymb/3aKzG/IGLyQBoBVXwFCQglUUKhVWIEbAsOQQpCCIQQiKRMYkf+9w4lBFomYRPUK6UppQRImQpvMXV/iJytuhCIUeQmipiq9zthA4UWqZHB564JrSViexVjSBlNFEiZ3r8FMEJMhT4RBMKCRLH1FXQrD0ojiojTgQ6dWmuBogbVBFQdUI1HjgJylK9NMSAqhxgl+CE2kZC1BKL0ICyyBNFIZJRs5RtCnxohjNUYK/GDRw5bNSKPLSNxANsNBGVxWfMgCo3fQOc8++UUFUeQBaElA8XaIouY4Ryxy/B7axmc3YlxfBmG7Xp+/Jd/Rd9vOM5t2t/+9vd4/3t/zP137jO/eI7AMQypuONET9SOelqhtEwwTC6yihCRLlAhaaSkiIqqSuT4RTcw95FOCVbDmuvFOV+7n1p1XXDM11dspMXXCiNryAJHP/vxT7FaomvN2m5QFmqXrvX88oJ+veL05gmPLy9ou7Az7PzFzz5idH4NheHy/IzFYkmWr2W/3uejTYRxASbQyw1DfgpfdhYbJaEfKKWmWy559KuPWGU/uePb9zh7ec1gI5v2CucFJvtardueR4/Pue4GXrqetYQqq2mpquabpyfIJ58gVmueP3vA4XFiCbzztXs8e/yYSsAb9+5zdbakLtPOQdQVw3jATjTuWhFMSdtn6ps1CFdwffEEHx9glWdoU+HvdGw4FANnXc/88pL7szFH+f6uHpXErsT6FiEUw2sGqlqkeCBEQOAZQsTmdvPFdYJK/DBADDvqKYCRkj//0z/l7smtL5xr/4JB9rdXkl8xZ3+7REwRI1UMmPxAyhhQQiXVnCiJgM+vhRCy7EziKYQYGbaC1iFgtAKS/5eLAZ8jvFIyBdmsI6BiIES7O6aLmiAVRIkXnpCDrNYice4UeBnwPiB0oMgkUxEC1kWUUAiKdK5xi2emeC4U2OgRwaPNq42E857Qp+BGNGDSBPZWwTrgsInpUHlUtoPRRYGqPHLsUeOImKZACxBHFjnqoMl8X2GJWS0sjEDUEqJCBoG2Cr3Fjl0k9hKxbujnGzwDJqvHh65kfQ0qGGpdEi4EMcMsZTFG9h416ulijzYGmekxMkpCH3DdlyfI7pkyUdFQTLJjaak1hVGMb50yHQsWl0+5uNgaUw5YtUc50uAdsXeIXEiMfZL/E3agpGZS1YwzE2DeLWi7HlzAOM9wcZULLCCKGtuvWftAqBqEhJcZy33y4jmdFNy+f4evf+fbhLbD5i7A69WKEZKuszTeEC8j3VnaZv/q07+n2J9QTMc8fv4Yj6CaJC7sSJSUFFTFFFNIolrQZjrk+brnF5+dca0jKsK662l7y2U2Gvzg0T+lQlnbs+4d696+KvZIjXWB1nk64emCpcwFtRcvLlgtV9y9c4+jyZjV/JqXnyU7nKO9I37wne+g9Yh37r+FvF/u9CCq2R6yKpF6zOjkhEN7h01IBazryysKI7l4esHV4mOGwjPJamH7TcFEDMzDmudPPuEbN/6IH/75DwDYPH3Ak48usA68UkRl6HLmpYMgRQvwIXU5NnkROZwdc/PwFrUqobeg1a7W5Dcd3kWmxdbS+vPjy9NMLiOS5GYwVYoqcwkLKZEIXIgpy4QkWkJS7CqVRCKRIlXg5db2u9AUWhOFwAaPDa+MxKVWSKUQQoEIRKHYpblCYKPGxwJJgRC8KueHVFkXCgol6J3HCouU28kWsDGAL1GiwEeJ3boKyPSZaJExYofLtDGtBS44XLAUWlEoxSrzT1WhaVSD9okjS+uJbW4PFoEgHRiLLj268sgmB7LpQDyUiAOPmARkZVEmPaTRBDwRh0MIkRgVOnOIkYgyXXPZRqxLEo8Aqh8zFRWjWcSsJO5cIF3KSsRII7SD0hOtRGF2nmK1KJCDwLgvz3Q7lQqPAqWoc8ayvHjBYFuqSYU2DiU78Imb6l1BCC1NqSlCRFpPzO9zztPbgc52uGgoqoKmSdfFXC3w6xbVD0yCoOodZw9TkFkvO8piwno5UOua2HeofI1G0mAKzdHshNXlnNhDmVWhjvZOONzbQ8SCvekRtRtz9TIVmtaLazbdhmLQPH9ynUwFq4TXdjbQ9RCcIlgBXuByoFy3jh99+BlyuaTfdHSDRWhNm00IBx8IQqbnMAqi0ugqnU9VjVBao4aBsF4gvdtx2S9evOTRJw958+YJo7qhVAU/+tu/B+Dg+IjZ0U2ELDg8Pebdb3wnOeoC1WxKxBNveZTT+KHjxbMP07le/wLcEjFULM83XLjnhK1FkrnF/buHdM9bHj9/hPVv8ud/9scAfPbB3/Hw4x9TlAULFxiE2L2vcw5lk2iTJSAKxd4sYbnffOtd3jy6RfvkJc+fPscNLS7TwmSA4KHrHYe5SPqb4184k/0Nyk78zfw1ByARkCKJwkyV4qgsmGYuXVMYtBAMLuKiT3SZLbtAiNTJlY+Xgmn2lVISrTUo+VoWmYtpSoFMWwUhJELpnciLCuCjxktDlCVaG8ocDGPo8XZA+mSHU4hcDNsWvrRCCJmyHCGIXuzYDkIUSJWUtlRZIKTHbbNn46mLkiJafBgQpaPKtJtosveYVwQrUV6hfLo2oY/4IULvGZYWJSJyK8xdb9DHkeokIvZAjO3OfoZiQBQBZSJCiaTmtG0PEQIpFehIPSsoBpCrlCWsNwXFMGWkDUgPvoAh8yiLFaEZYBKSu6pUO0HkWmm006ng9iUZZdujIphRxXKZgtDl2VN6u0aYGnQkMqDyAlqEgOosjTSUUaSHayvZJ8BpgZWRIVqEkZS50cTZltX8kmGzAjdQysiTD38JwPV8zcHNE9rzBaPS4BYddRa7Pto7Rh/sc3Bwg/W8w4xqlm3Kqsu9Y9bAP338KR/2n7Ket8yzsMzlesWgAm30tLajHwZMztStDbgIw5CU54ooMX7rwxZZ9YFu4xkGwbp1yfIpG4x6BE3dYKRgVNU04zFFnU0Yq5KuH1gsrlmtPN4HypzYrfsNnzz6lNPDPQok5aihylmnNBXj/QPe+NrXefu73+bkjbeQGXuLyITYFR42jjh4ijI7xArN0eFtXj57SrSKXz6+pC/TzmH/YJ+yVpSFYzSOdHa+03t+91vv8vTh+7x4/gzbr3nZDwz52XVKoUPal0kFTV1ytJeC7I3pBHF5xdU/rqFfQd9SZjhECkXRjDFfqJD9r5DJJrjgNxVlE65VIzgwin0lKbbOskLig8cHkfRNxWtYboy4GAjBE2PEekuXJ02hFVEKXEg9YC4KxLbjSEh67+mdRZJcbrf4WhACLyRBpIw5kLRp0/siBE/wDh1DCk5SJslASNsIEfE58405uwZQMqJNcnNd90tEIXYPoi4Nqki487LzrOOKySR//9qipcN7hXcKRYEmzWDpNcJrfBtolwOrZU9Y5h2Aral1ahcUVhIXLUPmAncyEgqHrlK3m4Nd/5s2El0JlIjoxqBLDSHhi6UZMWxK9Kag8BKUwQ85446CUHh67aBI12XwifOIDBR6xNJ+eZwRhn5DZQq6oWVu05Z4uZ5jhxZEar2M0m+hcXSM0A2UQoEPeMIrnVIJsVAELVGlYbw3YZxbWX20rNbXdMOGoERqpskMmFkzZmQqnn72iJWRjLxjqlImVx8d8NNHD/nR48+4uprTry0hPxPj2Ri7XqGXG9xmYDM41vmh6L1DGJLKkifTItP7SqmZTaZgPbU0TLVh6LfW3R1FVbPwAR8CIUYKIzjM6lbOO27evIHSiqqsWLcrLi6T+PYmBjatZdMO4AfKLdWH5Gu36ltUXbK6XtNdnGO2wbmecP+99/nOn/47jk5vp13otu8+RoKPmavu0QJ8Bpf7oadpjpjUe5SjEbUaePAsUb8u1yWTyZiqkty5s09hLJeXaefw1rt3qeR/5oOf/AN/8aMf0UpDHPJuxFq8hhAEI1NQyoJ+nbICu1kxKTUn+zOMmFLq5GYNgFCIosCbfzW44NerXK8pGfx6jhvTnBhryWFhmEjFlnUWY0gZg5AYqYgyYl8roPiYYARBRCnJOGOZpiqREax1OBdxkZ0lOEqS4O0kdxalfAVmS5kyOSHxInFLXf48Iz1CJjw1xqwoFgVsGwBsTG2+QmClQEpNzBPcRomKKdN9ubhgiAOzWTrX8dQgQsALTyQgCdjcJlkrSdkEKBRRSYRysIUnokE4CR2MDjVyqXCbdGXDEAmiZLNMJn3FqMTmjNwLQdGANBlv3l5jwEbojGV8ohAjT3ARsc5C4KGkHQpsV6CtAQV9TBNRTC1Em4poMq2EQy6aOK9RowNi9eVJZYMWeAWX1+cw2xYZDVKmjo8oHEG4nVNxEpP3GGPwImJFZMi7JrvVVfYeHSITYxhtZd36Dm8HNu0aS2Dl2p283q233mN8csQ/fvgT4nrFD7/+dWazVEAxQfHzv/kbHl1dM9iQ6IE5I2W+JFpL3VvKIFkGR8jOue0QMQJKpYjOU5PKr+n8HG6zwW827M1muMmYdc6Ah82aozduslccoaSgNAo39FQ5JV2vNzQm0A8986tLLhdLuj7xSKOIOA/Ri1T4VZCbEik1nL5xk/HelLNHD3nw0w+pM0/YyILj/RPGzQwlNFj/qvmT5GoAEoxhvV7RLtNieHh4zHK1YLPZoJuGf//v/pzbL9Mu7RefnqGk4/hgn2K8x+ms4Ubuurx1cItvv3uXk6MpF/NLnvzl31EWKQO2QuJNMlgMJNW1LT/+5XrBsD9h9I33kESqokBtY4kPoDT8jiD7FYXrq/HV+Gp8Nf4Fx79QJvvPMQu2Clw5n5URo+Gw0dxoKmZGU2xXtJAsa5RMW1Bk2An5C5n8wBSSkLOKMneKlXszhPOUbc+qG/CD3+FLUkiEVJRCIoREK0mIW5pWREiJEKmw5ETA51TVYRHCEvEEH5KgN6DEtmiUnBykTzBGVBH0FuvUxFhgVM3tg4Kr9TV9zvQu7QZTBcpaIHWkihJ5no+5kYSxR41BlD51hun0Pp8x6VZ76smYooZ2nrKk1aVlqmpKpRFCIoOmyH4TwyCTelcjECogtSTmFsLYDfRm4Gk3x5Y900Yz9km7wLcDQyegkxiXoJEh88KUHVBuwLUOt3EURqKysI60IJxA+C8PXNDszxL+ZpfUB9mrazZNTRYqXVcfUzESwEWFix5ZFjhStrijpLmAGjxmM6CXPeWqZ9KnOVPbwLSumTQ1sdXIUjKapOs5uz3j48cf0emW+tAwvr3P+EaCC/7xpx9w2XYsegsIjChQReq11lWJkZKmHWCxoRIDg07Pko4e6QTKSaZ1yUQJinxvJ6bmeDbDEPGLa+JiziRL0+m64Ma4RkwrunaNd5bWd8wvEl692fRcvryks55N57AhIHPDUBACXRSM64LNZsMQhqT/Ady+MUJ0ayqSeNGerHnn3jcB+P573+W0nFH2EFuPa4edvu2wbtmsW5arJWdPn/DgH/6e3iZI4Pv/6XuMJgJzOEEpSds+ocka0+/MHNeXK/bVDd58422Ob+xxfJyu97iqUKbh3x/+Ry6vLvmnn3zA82zdbpSmKEpQEtetIVQUJmXcl+2GJ+sV786mjMZjBBHbpV2Zmy/oLq/YzOfcee8PXvj6/Hi90+v1tlohoSokp+Oa29Mxe0ZTyledS1JIpEh2NyGG3fZHkjUL8rF9DLutfREj0Xk2XY8PkcEHpN5uiQPRexCK0hi0NrhsshiDReeOrhAdznUMZC6oDilmqoi3Ee89BInKE7WWEu0DMgZ0soLdbTmICmljamcdItqaHd+3a+HJi3OitJzsjxgR8V0KlpdxQFSSZlpQTw3UAr+ljFXQnIwxOIRoGWJHS9rCbYTnaHybaCPOQr+xO2Hyup5SFhBsl4p4AUTmyUYrqXTNYaVgvAHtEcsMMwwtmXJMDOB8JOhMC+sHxGBxwhJiRAiF2po6Wos/u+berTv/3yfP/8+jmk4hWExXITKVLuIRYlv8k5lZsmUQWNqhw0vog6MWYif4bBwUQ6ToIoWqODm6ybfupgfu7J1z9m7c4Gt37/MsDsyaApXv3/5xzddmd3lD3uLt+28SL665XqZA8uzpQ2LYUBhFOZpRmxGxy7i5LBnVFQdGUJue8axC1bkI5y3BDjjbY5Si1hqZg2wtNXvjMaO6YXF9xepi4GYWYto73ufACK6WS55+9oyL6w7vA3qrRGU046Zmb1JSFAbiK+nB0XSC0klTxLmeelTi8nX77ve+zV/99//Ow7/5O77z7nfYX8MP/uTfAvDG4SlXnzxm/ugl6/kKgtjR26QLuLZlfn3GYv6Mlx/+iPf/4/fSd3RLFn3g1ntvMWxaxPOXOJXdeqcVYrbH2dkzms0BR2aP4Twpoj1bX+P7iDYTDkaS24cNi3mizOEVzvrUARYGhm6NzZok8+dP+eiv/4p7Vc1YK2K7QWYDgLpMNkH+d2gf/V5B9jff//vJfHxedUvy64F2a/utBNRacVBXHJcljSD5JeW/UkLiYsLAgvevJBOFSFxVEVEi6bx2m62vVLL89cHjo2DV9+iMaSkpCUgQkohkcAFn00WT0aNN+nwZB4LdEMlyfmVBUWmMSm4KXR/purgL7DZ6RPQp2AqRsvXdFw7gBoiR0nu8dbu2zEoW1KMjogyUUdJfLxnmWa9hCFg5sDYdsYiEEnSTK5uN5PAEem3ZPxbIAo4yty/qDcv1nFo2FKqkGc2wfeYQbzqcDYRsEx5NgMx08NKj0ZhYpIKDeU0IRQ2IQqC1RzpPaQpkDlB9TBqt47ogxIiuS7otPuwsLloW5484+r3mzh9gaIUWiigkVZ0yxOlkj6qswSdxICXUrnlm6DpavYGo8NYhfGJRAGgktJ6w7jHCcPPuff4sBxKipphOeOP0NrJbce/2XVSd3ne0P+Hnf/sjfvnpZ7z33/4bz55+SqXS/dO9w3QeM0DXz7FhxcSkItSsGmGXK67XaxSCTR9xIiUC9aRg72CPa+dZrNbYqtxxzledY76Y887929y4eUBdBGxWtNOlxi8uqbzn7TvH3LlhGTUNym9do+Fgb5/9/T2aZsR0NqVdJzx3sbhmsVxgo2N6eMK6b1GjlAUWInDz9AR7veTkcIa+fUw7Ty63Z89KLi+XlNSMY83INNSjhJGORmO0rjkKAws7Z3T/Ln0Wein6A2Rp6K6vuHzxlM3ZC1SbWRJmwtt/9Ce0zx/w0//n/+Tq6deAFBNmBzOkKHjwq4eY+pBGdpQZc5caNrFjsFAbSXAD7Tpl1YUusVdzysFxvHfA+MZNbC7CKW1QRbHD5X/rVPt95mPq33k1fpdgXfzN/3ut0rVtQoi/kclKIpUQzIRkHEF/7igCH2Pq7BIRvVXMEgIXA1KIRJkKgS7LyCnAGEOIghAihdaMt7y+ssR5QCoiAuv8jgVQFwYhPEI4SqMQGGx+sSxLdGFSz3OAWgWkCjsaCDFiCp0KZwh8eFV0kKn/IXH/YpJPlPnGaGAkZObuCi6kIWZKWYgRepBdKu4FEYhZaGUo4OWLBa1ymDuGZr+inKZM4ACQVYHwgm7eYi89Jh+z0hppIhssvfDYymHKdC6mlKAF0eHOiDQAACAASURBVIlkj6NFFg0HIwJCW5ROhSGpIiFDKVIIVFFQ7CtsuwHxyoARITBa7xSPvgzDh0gzGmGKiqPjRIC/efctpvvHBL/Bbnp851FZ+xQfGZYr5NAwrRvUWhBzthaEwAmBN5qgBfXBjPvf/zYA8vSE3nvGkxE2tNx+8202m5StNlpyVBieWMX5g08pnE1iPsCeqaiiQrhUbJVC0Pdpa/voyTVKSxoC0XkqIlsKsrcSd3FON8B0XDETPZPcGDBuNCfTGWFYsr5cYoJD5UYb1/dsVmuEafh3/+GHuG7BjZs3efKrZKOjgsAPllv7I7z3VMLy5ltJ0PuzTwae/vJDXlzP2bt/B6ZjQqYSPnnwMx48fYa8XPO95x9TBcfDXzwEQIwk5XgPes+tm7fYbw6QVVpkiskYrRX2ao/mVx5jLc/XSUvg7Me/YO+dG/i1oV+es7l6QXeZPNW0B3v9GePpHno8ZbV6iB0Sy2UyfpOyGoO9wgMHswSbAdQmIFXJ1arPer+CkOfr4OHJxTUvOsvN45vYunwV3rQGKZNX4BeM3xsueD1Ov46t/ta/Eb8RYLev/wZPdlfQF9AIwUQIqhASE+p1rVmRflIqsQD0liSQYV0ZU6B+/dg+BPSWx+gjWipM3t5sXQoQEh8jWqZjQMpkCQ5cDzodU2/l0IIkBolwEd87hj7ZC9e8wnqV1ggpCBESepsDqQxonegx69Dhhd1Rw0IM4H3aIokABZijlF1JWzFsenw34HqX7MazfbfuBcILDouS/hNLOBdszQc2useVG4Qs6VaB9SJgMmfj9uEhk0mNFJogJP0QiJO8nGmRKLDOJSrOINM/QHqJihGJQ0iBi32CTPJt8oNFBkvQNlGg8sMdlWCwnpHe6j7+648YJUVZI5Whzp5plakZFhv64ZqzF2dcPn2Byov2qKyZ7p/i1vDud7/L+S/nCJOwPnFjj/KNm4zuHiKOx4hZSX2YoJG337qHlBrX94xO9xkYmJ8nC3IpHbdv3MG6wGZ1TeEiZZnm6N37t3lrs+b5zx7iiQTvU6s0oLVi/7DhoJCMu4HS9egyXevJwYSht+wdjDg9OaWdryBDT3vNmDduvcHq/Jznn36yvRLpv8FBcKyvFhxPJ8yX5xwKw8uLlM2VssJaTzxfsek3rItrXHaUsF1H04wQi4EhCLrB8/RlEnM5OBjz9tff4+qj57z59te4/MkHmC4FPc3AG2/d4cWTS+TRiObwGGczpKcVTihE3VBNjijOXzIs04L+i198wLG95u0/+Sa6LpjdOub4VhLPqQtDUzW0bYvxDt2XvHj2AoAnD3/K7TvvMplUXF1dM25Ksm0aAwItAqaQBCHpfKTIgSZIw4Mnz/nHTx7y9f/wv9EcHyZXFlKQjTFR3r5I/+j3CLKfJ119juP6az+8FmB/az9CzFnsq1xWS8FEayZCUhIp5SvVedj2/ScKVqI45WPFkKlUZO2C1BoJUGmD0ZrgIs5bpNBbeI0YAlLqhB0SKWQgZNzK2iGJdIeBIQxswoCV2wJORJYRozSxi9jOoYKgzhmbUjJpUKpshwM7MewoU9YdAWUEqFee7857kJFCSqLzCCJ1JjuL2uBrQ99brEsFt7iVRgqR4AJr5xFdTJoP+brppmC5WCYcOxhoFSHbwdgiZV9GFZSqIkhQuVDjlccpD9IlOcdBEdqsf7ox+C5A5ymjAJm2WQBRRTrb44Y+YY4mYl16uIOUDE7Q91+ewpdQmr53rHvPuk33/vLsivjLB8xXZ5w9/RVudcE043JxGimbnvnVktndm9z82vc5OLgHwGjvCLM3Rk0MvoyEUUnQW1K9AaEwTc3JZMT4cEa/St1Z8/OnPL84428/+JCf/NNDZqXhB++notC773yLb0R4eHlFGyR4ySRnSwd7I95445QGy6ELlO2aJt+Ib77/bZz1TPdmCKX4+Je/4PxpCniFV4x8RJUVbT2iaRr6Pi0i602HNYplXNKuHaWcsHx0zb5Mff/Cgi5K2ouBVbumV47evuKD741G3D5WqNGUcz8wf5J0cQ/LiqP9moMbE0ZFw1DUO7NPv1lycHLA6nrJ/Pkj6nUg5FbsjQ0oNGZwXD54wrNPHnGVBdS9KFiuO9abDlVFTFEgM9x1cf6EtdKsFnOs9Ywm++jcfdZuFhyd3mD/6DYf/ORnjMYNdY6MvQv0wRFJ9M4QBW1WKKuMIg6eDz/5lGfLK0a3j9HZ8j1IkZK/Yasx+vnxFYXrq/HV+Gp8Nf4Fx+/OZKVM/f0xfk5B6XWc9vOQ7+d/8+vqW78uEVOoVPSaaUWRi1jbYwQSayDTk7Hep+11fjVBBQIfUlZrclappURLhRKeECJai52jQ/ARpQTeWSAQo6Pr0xbGDz0qepyzXPUblsHT5yzBaYuNa0IUlFJRo2lQjDPWUCiZilkyUYCU0dRZuFpqnXRrZcInE96+FboBbRRFYRImZwdU/o4qCjCKWqUuNIRgyCuzD5EoUvNqstBRFLlnfjQSTMKIvgtIWSPGFS6XQIWSDJG0pdcRZQSm2FLNItYPSOlSM4VVdKuUQbmVgVZS+oIQUrauc6YnKuiEw/Y9BYJCvMq4S1MxnhyxeDb/3Lz41xq6qlksN2xay2XeEl+eL5ncPEXrCc3ohOv5mvnWV2sQ1NMWUZXocsLk9A6To4RJymoMoxqnHaqSeCWSPxyAEMQoksC8NExObjLJnlvTvX2+98M58+uOH/Njrp5e7YReyj4y9YI/vn+Pau+Q8WhGkaGZaVMwnpYsz59xJCS36rvUWWHt1uSA58+fsnzylPHsgEkwdC7dP+0icjVQSkklFcpFZE7ASkpECAShOTu74t2bN3HPLxnmuUffQnUwxnYdQhXUo/FO90BryY2jYw72A+erBWVVwVspy9+/e4vLzYq3v/Eej5fXlNMaNUlz1PVruvkF01HFyw+fsPn5E/b3bqdjjmZQjjB1zezkJuvVJd1VypwbO6eMFf11Rz2VOOnYP0zX9M57d1hfvcSvHWLo0d4gbQ5zocBGQT2ZIUzBaG/K/kmi783PlngvcVHghUYVBX1+Xrog0FqzuLzi0Ucf8d47b1JnFkS/6ehtT7AD5fHpb59rv3MimhIhJMH7V50vrwXbuC2e5/kUt6H39V/m8Wr3v+UYxJ1ebqUEY5W8f2opUVIkeUJSGIqCXNzKv8hYa4gRJckOATEViXY4ZyRu/4VIIV9ZJ0YSZhq8I9AzDD2r7BLqhgEVIxtredl1rJAMGSfzaKxQDD5Z0DRE6uioM8e20hqtBISAjBGjFFXulqrqirLUaCWxweGCZxdko0cUatdAVhcmLzSpYp8e1LywiVcmDi5GvAAroPNJ9KXNfdquHRjaDiVKTCkRSGLmCQsjoYrEBmwxEJolIjsclHXA0CHCAEWF7yTrbuvuoClthUHg3IAVlphbiKsyUDUSpzRaKIRXO4qTcwrfRkT88gjEiKJmCB3Wwvw6bUPPzheUL645u3zM409+ztWTB9w/SVifCBp0xezgkJcv1pydvyCqVAmvGk8dkzOxEAZZGMzWRBKJ9AKRRXZwkZBbOZXXfO2NbzD938f86ft/wuMPf0GZ8dPKKqargduioCxqqrreCXMbFXnx4hkffvBT3pyNuf297zHK/PChb5FacfHyik8/+QzZRbYa701RMC1HWO05I9Kt17SbFER7D21v2VjP0xcv+fbbb7KKlrJK96wcN6AVRTNiNNKEWqG3Hm4icjCbURYFJ5s1a2e5dzd9/xdG8UgO/Oj6Oa6EWxUsY/qOYnHFsLri6Pgucd6x3FxRFul9s9NDRD1Bm4J61tBtrnGZSmmmJbe/c584Dqy6c148e0YlExVt0hzQdgIfR1TjQ5AFzufvaCMPPv6MN94ecXjrPnp6h1YlhbJn/9dfUljJ4CMxaII0hAyHtL2llIbN9YJHP/lHPjmYUWZtla7r8URs8Pybd7/5W+fa75z1RVUjYsIpt1ngrp00T6H8293Pv2Y38zqFYPf3OdCJuCs+11pwWJaclCVV9KjcEAAghEKQ6FhEKITcZau9G3YfMQBWCnQmSDtBlh70OcPVu+KWkCLrIVg8A5tuRT8kfql3gRBgPjiuHKyNIZapwNEXNQsXue47wmCZKMEYEEOaNFImFS3pA9J7NJEyrySjsmVUmMT/jQFBSAGZNEnLQhErh5AZcNfbqiCpCUOJ3RKxxXhKUqCN3lEQiEoic7W4KDUyaIKDEC0xgM1HkEFTaUlRC0Sj6JuImGVKyr6naAYYWnAeUSrIOgp27jBCJIwXkDLSx7QDcPSUhaAwyZ6DTUFoc8bdSXywlOKLLTr+0GPv1i2CKLCPnrHq03luLDhR0FnFECscIxypAOmp6YfARGmM1gyrNXaeKEx7Zo+qB6k0fhiIot+1U3sHbmNTpVqAG9bYNmfH6yVhtaJYtdyf7nHjnfcQbboPF2cvuBEEi/MrNu2Avq9QeU5cLl7y4uqC89XA7YOaNkQurxLOK1ctQQjsZoNvexrVMMoWM8I6SqmRRmCMZhg6dAYlvQNhe0L0nL08w/mB64sn1Dl4RRFYzq8ob5wwunXC+eaacpqei9Io1vM5m/6KsjDcOjggZo++zeoKpzWXdsNV9NyezijH6X3rqyvW15ec3rpHMS6JlWDt0nPYqEgxLnHSUI5KJjdv0Lq0yPQLx+zglF61LNoFmw4eP0vsgs5JHn70Kx49+IyqPubdb36b0WlyYojtGidLqtlNjusbHIkab9Ii+j/+4gOeP7/CyyI1JDi/47Fb7xiGns1yxS9/9guqqmR2lMiIuihBKaKU/JsvmGu/M8gaUxBDxIeA2BmFBXZgwW+jhokvzmRfj7tx9x+oheTAGCZCIpzFEZFi202SA0mMyBBQIezEXJIstsDG5EXvCgVZqUeIbCroA0UUmPiKQSAA6ywRh8DiQofKwtRGKTob8dHghWElC65d+rzH6xVPlmvWg0MSGUnJWIodlzAKgZYSE0EHj45xVxQbdYaxMYyUogSMgOwwg4kRHT2NkYxKTakldV7Rq0KjjU5dWTJ9aZWDszEaqSSlNtRZWcxlTm850VCDH9I9cc7v/JqGGNDRUGpFUwtMZUDldEc5gnTIWbo/avBM80tXqw12FbFdg5KSolL43IzgfIdyAdkZCIbu0rO6yJY2fYmpR+h8bl+G8Ud/9qc8/PABP/7pL1nnbeF8Y1HlGFlOCWpEH0vIDIJmfIzrA8JHbhwe04lI+zzxPR9+fMbe7ABZG7ztcHhUDmwITbfpiT4gomfoljsqFrYnbNa460saetxyRXudFq3r85eUmyv2hh6nNK5vefQsfV5v59y6c4vZtxruzPaSpGcuMrrliuACh5N9DicndC+vMXGnVs+wXiJUSdNUiSObn7MiSpZdy8gI2tUlMQzIIuwCu3MDojaEwuCNQU2mkPnFGIHok3jO+uwFcnCMQgpCxWZNjaG1kavlhs6MKMr0vu7sjLPHjxjtHbOcbxiwlFtKmbcYCaLUeClRh3uIeWbcxBE//dnP0LOCjd+gpsfEKn2PoZ5x8s0/wc/ucXm+YanG7I0TlFCOAi60fPrZc7Su6Lorzs5ScDamRGVI0geP7S2FysVnoZDCM3Rrrhcr4njG7W99J99fwfOnTxlyovXbxu8MskJKBK8Uql575Z/5Oe4iqvjcX7wKtVu+67QwTKVEO4+KYdfhla6oJgTBEBwxhNRtxKusWuSgHoVEFTIpYZF0G2T++1pIpPPkRZkYAj4O+NghVUcxSWwDAOkVfgPGakTQXG08P71IldKPly0XzkFRoo0k9h3GWWqTK8n5vA0RFSM6BMocoCo70CjFSEpqIaml2ImINAIqIuUg0G1PISLjfMyxVpRaYbRAKYFWIouRQ1UaitIgjaSoDEpLhkzziaXAjDQyRLwLSBcxOcgGb4nVgNMSpRxKObY+Zn4IhIL08ImIUD16lhauyUlgdd0ztD2VLwBBmfm1TqmEJ3eaECLrl47NZV64uogwctd+/GUYe6cnPH70nHk30JRpq925yGLTYQOgNIent7j71tsACLfh5YszZtOa0+MRUQceP00c0g//7x9z+/QOo6rCFAVmb0xzmqry1WyGIhn2GZEq1W2GDly0dG5gXGrMaoEaWobcrik2G0oRuXE8oZeChXLMNylzHpea/bJi1Oxx1IxojOb0zTcBWIfHrK+WVEcndINDtA63TIFbSRg2G4paUlcVGyV2tZKiqBiKilYP9G6gXa/YOzlk8SgFdtsp9PSUTbC0lxd0tUGt0v2ttEBuNtxsRqiipF+t6Tb5M5uS/WlDaRuuuoFVhP0mBUvTTHj84FMuFhua8RHT8piYkwvrHZWWiNowxIA62WdMwsDbc0G7OGMVe3plqA9uobKiXUvg4PQGb914C/3JZ6yXHauz1NWlhGS9vMKFR4QAn3z0KX1u/RZRYpTGhcjgLSJaRE4ClUoUUBVh/vIZn3z4M2aHCWYo6iT+Ph1/MT3xdwbZHa81Y57//MgB9LWqmPgtb4vkVtrs8Hg0HjEWAhUCRib3ge12a2fbwrZrTOxaabcfGdML6IxfQiqWiRiQCLQUaJHVtUhQQpIxTDoAo2OJnqRz6deR4bnFuxIXRjxdXfIwy/mtmxGqbohlQVBgh5a+2+AzXSe4iHM+cehCQEqRJPIATaDwgcJDGdNWv84XqUbQAI1W2ajRU+VsdaQkjVY0KlmbjJVitA2yWjGuCgojIQaMUZDbK3UU1PuGslJgArIIhGYrLu4QtWAoHFHaDHNkJwoNrtQM0oHzaD9gdMLCmiNJnAe6zQI2Bh0lTZ2bJlRFaC1ho4iDwF0p3CJN/L1yH4aIl1+82v+hR+8HVKn42nv3uHUvFWnu3D2hW12xuHhGIRx33rrD0UnKgpYXG4KHdb/g2ctP8K0gmJSRDu4Z3SLS+APK4pi92ZT9O6nBwUynqU03JDfmGBzOZSpS37KQgqkWxKuCvigxufmhXy6xRPbv3MDLwMfK8GaTznNPRg5MwZSS42oMw4rRaSq6LAVMT0+J4xHnL16gpjVFXrCLEJAiELyjqkpGVUWRG1T2Z8ccNAeMzi85W5yzvLjgxvGImGPHer2ijDOinkFTctmuePE8dWA1RjGLkTieMFES23mGrNBlRcRUBiMVHXDZ9tTZYieIIsEhKMrZDZrTE0aj9D2qoyN8Y1gLy+Adxgi6jA/7pmR/eo/n50+Yv7xm3nasNuleXC+vOTy5gVYln/7qAQfTQ44P0jGPjk7RQfHs5SN6a9ls3M7yfOh6amPo1h2SSCFBi63jicMNAVFUCNtx8fABH2auZBBweusWb7795hfOtS9PavHV+Gp8Nb4a/wuOfyaTDbsMUmz7Tl+jpux+Fq+BAtvU99Vvfv2Y+a3NqOLWSUq57xzsUXcDUni0SgZ1LpfQW2fxMXV5KbLH1lYUJsPCLgMIUopf+zwZE8aihUIpvWvzzB6JFBKccYixQB/lTpMK/FoQQsO8rXgcAt1ewuXqvUPqeoJTmqAEjfQIPyByI4N0gr7t6bsW52zWTUjZY+8dS2fBe0xMLhBmJ2aTBG1qH1AEiB6VidBGJl2HWqVsdmI0k0zvqp3jEMGJqFNW3DvEJre5riz1pWQ6MTQTTTVRVLNc8Z4Z5CjiBPTSEovENABQZaZ3BUkldWJ6ZNkzYQLVkWa47vBGUFYjhrxV2awDRhuM14jBowdJFRJVZ1bsg1T0YvUFM+0PP2YTxfvfvMPB5D+xlQatRoar5TPk4jOmpaIImlXWkJjMDIfHb9GMNMv5BYt+gRmn737r/hHlKjCd1BwcHjA5OGB2mjJZMR4lf5LBgnPEoUNlPVnvFbPJhML1eFMQjdkVdY2Q9NZR1CWHRzOeB4cWqTPtwDuaqw0HoqLuPM+ePuLjTSqmheCYTQ4ITYE4nBJchGWqrm/mC0oJQgTKuqRuKrRLT0xjDJO9CUQF0XP14iXTmaA5TZl8jyFoxfn8gvXQMTeSF/P0mcvrc07KknB4xKEyhMUi7SoBPR5TeTioJwgt0UXDuMwi8B009ZTi5JDJ0Q1iM2KZ6xvXj5/w8pe/4tOzF9STMScHM8IqbfvbxQV26Fit5yxW16zaJZfzLKzz8hmTg8e89e573LnzBrdu3mVcJxaIlprAAa3rWa7X3H+zpM9sjq4LWHdBPziisyR96pythsC67SmjoFQF/brf+dfdvneXb33v25zc/GJVjn8myEZihgo+j8LukNFfIxekPf3WqfQVg0CEhPEWpmI8G/HG/Rt8780kUPydGDj59BENASnT36lsQ1FJhfWBGBySFEjDtuNJJNFuH5NSfSleBXWJQGT6VszntD0ZqSWlSDKFViaH2MzIoGhK6lnFVVdxvYG+KTEZQ/LVCGlqyqIBbZBaIBkIXdoaFUJRdgN912OdQ8hs2khq+7W2p+86grW4wWJzcG6dJzqLdoEqkgppWboR71EhYpRDS0Fh3U6hrFGSfR84EYKZMUjnKTLtpFoHquuBkdkwbgSzmeHgMGOr+5pyKjEHCjOtE/xhclHM9wzLmLysvES2CpEtZhgM0pQU+woKiSlrVqssTecjRaXRqiRKixaBWmVpxd6BdLjw5YEL3rp3gBJ7fO2dfZZXqfgR+pZHnz7DHBdYb7HL53SZXTAuDxChQHiP8I660GR/SbSGMAwU2lCXNdFGfGYJSERy0+g6Qtdh1wvWy/R5/WaJX62xV5eI9RzRrZnn4la7WOF1oOs7rBgzdxsus5hL9BG57pGywrUtYdOzKNJ2eXR4yovQ0m0srQr4YWCUi0L9fEBtWmZ7YxARHxzdMi180kamk2OMVmzWawbbsd9Pdtjj0fiI1hp+/qMP+eSTh4jTQ7qsRBWMoVeSXivM/j7TmzepsrGgL4rEIW5qLtt1IoJW+Zoea3TRMJSGdedZn10S1oklwRoWm45PP/oVR7dOuPndb6EyBXC1CSwu5iwWV1xdnTM92eftr70PQD3Zo8MyOtinmk756OkD/LYWYR3dcoOSilE9YjJpMLl19vh4j2FoWbUrWuuTPMmOKgpRatYOCgvVemDUpOvyvR/8W9791jd2Fje/bfzOIJsonwHv7E6vldeKTp8bIlm8SB0hQLQOuW3z1Jr9/SNu3L7De++/yx9//z3eNOkY05/+nNmLM0a2J3qHdR631QNQGilEbkhIwX4rzBGJiX2QbWKEeC2TjZHgA955ohToGF4pe8n0xZ3zKC0QRuy0EpQuqJqSYA1r39OGQMbGqeqK8fSAotmjtZ62XaFkSdFs1ZgCUkmE0SjnkVJSNylFHI1H/L/svdmvZcl15veLiD2efeZzp7w3b85ZlTWwilWkxG6ZajVk2LD94gf/kYYBPxh+aaDV6Ha3qKZEUUVSNeY83Zt55zPvOSL8EHFvsRtiCRDQcsGoALIIsCrP2Wfv2CvW+ta3vi8MA9qmYbVcspovqHKvLK9bTNNiygrTGGzd+EEJz6HFHTK6qdFNjfDZcawkaVDTWeUkSpIISeYxpp4ISAREQpPIluxkTe+1u29ZbOlnkq3tlMl2wmAS0un52xYpUDEiCalyTXnR0vMjhIoIKxJiOlTU1I0h8oehwFAuW1AC1WrQ39r2mKamFpZA/NdH9f93Kw4btK2JoobNsft9L79+yunLh4w3txhNdnjz9iVV4bKnfNawCmpC3ScLQ4pywdPffQnA2cOXDM2IZbZAihNYlWivQiWSGN3WziSxqTHFmtx/ZttWUDbo2hCpGBE0rFeXVEKLTFMqYyl0S6kEJ5cMgvmKJIfZ2pJVkrTTx6YuqE2rgrOqQnczZmVOMVuw2xm7z6wKmrNz4kFKmKS0kWBauOC8Wq5ZrgtkZ8DZeo5ViioIqXw2NxyOkE3Ezq196vMletRnf+ItBySETc122qGfdikvZsxmLsvNNjZYrgqqQHK6mrNsSkTqMOlZ3rI6PGatW4LhjDgdsTNywwi39m6xheR0NiMIQ3Zu7LFeuM+8uLggSHvUswW9zR1uPrhLZ+zud2d7wNn8lLJeo3PLo+cPuThzWS6NIUZx/doemJyda/e49+6PASjzmr/9m19z+m/+HUoY4iim8hVcY8BKRSsDWqmoas1y7pKLNE45fXvM2zev+Pn1W//gXvvOICulRLcNum2x/1WQvexuue6+79BJgQokWjdgNGGgGHiS9P7uPvfuPeCjTz7hxz/7iJ2djO6R03mcfvU1qbUoY6jbliiKiAK3acrG+O+2gHFGhVyqdjs7cIPLGJWSCH/6CM/n1cZZgsfGXAVnjEGblsZokjRCJ+bK3jiyEiEjcm1ZNw294YD9994F4Pr99+gPdxBhl/mqoFgvENQ0hbvhq8WUxXzOfLqgWRfODtw38JIkYzzZcBKJZUGxzln5TaO1RgnQVU05W1LnBXXlnWUxTkBcN9iqwNQVpr3MgBtKo5k3LaJsCCzEPsjGGCIJkXCaCGlgSLzlViw1nahlPNOM35QMMknPswQ6mSLrR3Rjw0gmmGXLxdILjGQpWRag4ojlsgFdMfLZXNha8qIB5TJs05qrZ5FECqs0HfGHLTr+udff/+Lf0csidF1c6V0cPv6aanZMkyiOV6ccvnzC1q6rtjYGO2RRRGQt/U6P7HoP5i6Tm33xlvM3p4zSc+pCkV2P2PRZfNztOgU23aDqCr2OCPxzaNsKUzaIpEdoNc3qAhE78Rhbt9S6RWqJFgobJUyXbr8EKsB0ElYXFawFYRTTeprhqq04z3MWxYrPHz8kNJZi7H7DWESARXW7ZBtjZusL6tTtl/WyoqjmRHFAM0xouyF1JyOdbAHQGEVdaTa2N1GDCW03Ixi5sr82DeV8RlO3nM2mlIsVyv/+i7MpXxwd8qoXMO8owqZk7kvtP9m5y2Rvn4PPv2K9eMPe3QGFp03NdItpNXqU8dnTL5j+QrM9ctnj+cFL9jY22bm7R5AKzlYHaO/HpU3OsNthc+sazz20cQAAIABJREFUq6JiI+twe+8n7t4sc/S6ZnM4YD59RZxoQj+psahm3Lp9nW4Wcr7M3X3yca3F21xhMNJi0Lx47Mwwj18dcOPeLY5eHvzBvfbdcIHRmFZ/G5xwWqzy9yashOBqkshiaZsKlCVJA25e2+X9+/cB+PnP/oT773zA/p2bxIOAujihmrmyaXV+SqepCCXI0E1mXY3AWkMgBdaA0ca5E/hrkVJihcYKxywIpLyiXUjheKtKiis8+ZKVYExL3dRY6Uj7tXI+8uA6imVruchrCm3Yu3mTH/38XwLw4U/+Bd3+Fq3MsDJEtAVFMWM1cyfl9PSE8/Mzjo9POT46YzZbXEEbUgbkRUVdN0glGY436GSubLLWEIUh5WrNVJ3QdmuK0nX0jYc6rLW0ukW3jRMcx2WIpq4RbYMuK4rV6kq0Q1mJ8DQ2aQyRVoT+ZA6FJqoNSWXIli6z7XoVp0EA49DSD1tGgWCsImTlnu861GyPIYgtwsQooMrddcZCEpkQREDYiZGipLrU3IzdJs3CP6RT9M+/8otjRsk2J6+fcn7kjPYGwzEP3r1PbzAEKbh79ybjTUfFklJQrBa0Rc66aZnO1rx98QyAcr2k2xsQpxmtdfSw7tiR3KNRz2FlTYWoSpQ0aOHuS90oTGCwyiCahmo9Jxi4rFNRUxYzZCsxMoRQUnl+6TzXrERAP1VUeUO5asj9fOw8aJBRxPOHXwKSIIwZbLhAudsbERQFvY0JYS/DdCIij7mGY0NbGKo4QIg+iyZnrQJy/+qfvXiOrUOaJoQgRUYRxms3n50fcfz6FR0h2O6P2NrYoTv0wjKdLurWbVYHj8jrBaK1tH5f6NpQLXNGyYBr+9exWZ+jqcvy59Oc9XLNKmx5MT3h4psVf/Kxk48UssIUFwyvdbnx0T7x6AZV7WCGxckbUpEwyDY4O8s5TrocvHYCOTfvfkB/f8Dh40d04gHX33mPbOyw1CKv6Q+2+fGnP+XtX/yCvDVcCu5L6RK51rRUTUUdBpyfOVjnq9/8hh/90afcunHzD+617wyypm19VuroUO4LlcNjrUF4OPZS9ssqSNKIyeaQd+/d5pP3P+BnnzjP808//oSdG3d59uopr18/Z3r4hOa3v3Wb+/wMoWusEoTKBXHtA2ISKIxpaa310oYWcaknq8SVY23kByCuWnDWEb9CpVAydArvHh821qA9LYRQoq3A+AaAARbrhvNVjYgS7ty7zT3vp761vYmQGfPcEggYbo7RdUh03W2oQHyAEpKqrHnx+oDnL15x6mkuZVlhDCzmC4qyRAWKtec9XlycMxwMGY+GKFrWyyXtzN3Tsm4JYjdVIoxTC7ucs4ukwviGClojV0taT50RRuMtd9GtIW9ajN/cVtfYunbZ79qQBJB6v5+BEIytZRRIMqnZTjQ7HZeBBrpiujpna9Bjq9shFgJbecpYGBEHhrypaX3TTvxe1dM2NUH0/SGzJJGk20loiyXDrgteWxsbpFmXpikpy5yqKTk9dIHUWE2/30ciqIqa2XRFFDoq0r0ffUx+sGa2nNPtd2iMwXianUgSnLYuIAy2jbDNJYVJY6XEWEtrS5Lta4RTV77bdoYQlhqJNgopQkpfpQgRMjWw2c0YRB2ENSRj9++G/YDB1g7j8TVMkpB2OowujQuLkmZ6xnq9plUN82JN5Sd0+pMx63mOliFx0Kc8y3l1fErf9yMeP35CUIe0VcT2/i0W5xe8Onf6ruerGU1bcnv/JqPJBmGScn7hguXs6JSX8xnr2ZReYqkWq6vhALNcEYmU0DaETcWD+3eZXrj9e3JwxvbWFsMY7ud3ufPuDT59zyVsi+Br+nmBqZYcPP+cge5z674LcreubzN7eUS71NhlwzAck926BUB3sMXf/Kf/zNsnj/nZv/qEW7feRXia1vPlQ776/FdYo8mSkHJV+9F3wICSCmsMeV0QCovXqufxV5/zb/+P/51QSn76v/2v/+Be+0cbX8Y4B9WrNpfRTq7w9yBZ5TfUeGvC/Qd3+eDDd/jZTz7m3Zu3uDZ2p2igAn79t3/D4ekhj599yemTr9nwOo//SxyzZTRhU6OUQnoxbfeFXiLQmCv9AuE72ka4bNriMmpj7BUv12h3MARKIKTACoG8tPGlceTwIHCQg5UEfuSzrgXn65JZ0RJPJmztXiP1+FpTN8QpjEdDhJR0FOSivXIxztsaLIRRwv7tfYYbExazpb8eS9bt0zYt04sLprMpr1+/AuDFi+dIIZmMh+ztjDl4/ZKk52AWrWGVl6xyNy7ZTbpX975pa/dcAiebOBr2EX4uXDclutWY1qBbgW4Mref76qZF1w1NXbmT2TSsPdNh3jScN4ZMWGIsGWtuDdxm2+soGhoCVkSNYRQkRNoFYCMFQc8Rt03RUJcViXeiaJqKvK5I0u+Pnmy+mDE7Czk5fHHVpGmLNW3bUlYlQkk6/T4b11yp3R0MAEuzXpMvF1grGW3uAJBdG7PsLzh+ckoyGaGyDtbbtpjIc7eVQdAiTAd7yZOVFiUiZKQQaUMnGpNcBtmlRkhFOojIBmOuj7r8ZOKvxcL7KuWO7dJdC6r5knnpqqnC5CyPZ/To0JiA/HzJyak7KMKyoqss+fyE0d6EII6u3rNGt66B3LYM+xPU2Slnp3O6nzqOaZQNmJ2eUi9LbtwM2RkNaLTvG7Q1ZS1YnJ3z2dkvEYTkfrhvYaCIEqZNTtKP+NG796kPXWm9Wrzl3Qfv8d5P/pjR1i5J0ufVwjeRk4RkMGIuNIOoy/HrN8y3Xda5sbnNrg45uzjg4fPHJKMxxwcuYWkyybB3i/lyhtIt3ajP0kMpi5Nztjc2OHn6iOnxMfkq5+LEXUvTtPzZf/8/8X//n/8XWRxR1pZ87nAdoRRW2Ktx/HWVk/qG2fT8GFGtuffO/T+4174/qcUP64f1w/ph/f9w/aONr0uRhMvEVVsnUKKkJAgUvYHDUwDe/fA9Pv2jH/Hee3e4vjVhZzDi8Vdu9PDxkxe8ODjk8PQNb45eEMxOmfjPTroDTFs5uUKlEErSevywqhuwTrFKCTfmK66uyfrGl8eGrbkUtnL6gdY6mTkhXLl9yZPVjm4VhRFWtpjGYvxpV5SGVWkpW0HS7dPfGBN673ljtDeqK2mbGq1ajMnJYp/pNpq6bjHGolREEHwrBbjMc+q6YjQec/edO0RJhMVhvednZ/zm17/m9fNnzBZrqrpmPnOjvIvFgqbVICVShag44FIITQnnXKqEoCpL6rYluDS3G206upsxWCtoG3MlTdc2Lbpp0J7FIO23I86BbtCrNfNlTlvV6NWaN96x9IFOCaIOA2M5ny9RoWEzcs0PIwOEhlBpVGBptKb1lKPNbp9OEsL3yH4mjlM6nR7buzcpPQ0tSnuIumaxWBGmKd3BBpM9N8nT29pmeXrE57/6a2bnF3QGO2QjP4G1d51y9hoTTRFZTKsEjU9fgsCJ+9g2wOoA0wbo1JfvWUpV1sggRMYJtS7o77nuetQfU9UanWiasWIlWsae8nd+fsFnRy/46u2U8vkZrGvCxMFLvW5MP+kjRUBuW44uTjh+5Sqm+/s3uHb7Bi++/JLaGCY3x9jGe8mJijSMaWpBv9NDrBvOz2ZX4tRNYxmMxmQbGb0sJen3ObtwuKQtWgb9IVVVcDFdEkZdWj9JpuKE4WBIvbB0hz3+5c//FDFzEJqcnrB3fZeNyYR8MeXw6RP00v2923v3Uf0NZi9fcvriiKcHD/mRxz0/fP8jOJjRzXaJZ2cM012W566/Y9dQyZrp2zPyZeH8ujwkkigItxOKBzskqeA3v/hPBB4Ka1v3rn38kz/i7GzJ+psnDH0FW2hL2bZoYQmDEGsthXfHXS7mSNOQBv+lFOzvr+/GZPl2vPVyWZweadbNGI2G3HvnHT79qcNd3/3wXW7d2ydLFbOLc7741We8eu66pc+ev+bNyTGzfE7aEdzaGLFTuAstlgunJwCuSyo1xvze91rX6VPCN8T8u6qxaJzR36Xc4VWQvdQGBEctk8KZMAJt01AVFVEvQAYBgYrQlQ+GtTNZtMoSZz2SXg+pLrEwaOqatl4ihSWUBoGmad3vaHWD1q2DWbRBSEmv51+oMKAoSspqjZ5WKKWurufw4ICXzx7z6uVLdF3RVhVNXfiHUDsMKIhoTcX6fI0K3cZI0g4qDGi1IUkiOp3uVTMtTlPqqqauKjew0Wq0udSvNY4/bN1BFCpJ5MtbKWrqes1iWbCYVtQXS06OXONAz5eMkogbWUYoarRpaC5l64Ty2pcKlaR0sorKN/0aYekkCWVT//PaI3/HmmxfJ+50idIBdekbiSLCKkmYjUm7PaxKObtwHf21huXFKd2NXeLuJiLMiHqOwmSiiOlqSWcyorsxQiQBlb005mzJ85JivWJ1esrpq1dXvNzd2zcYDMcUywXVfIGoVgj/3It5ztHhCdPVKe3A8FiXfO0hwllZ0lmv2DaSe/dvsdkb0Y198zlfIAvD8nzJxZtjTi/OwGufpv0h3cGI8eY1lAqQbUCTeyPBumDU65AGIR0bEOQa1QjKpbue997/EL1YQ2VQoUUFho5X8Lp77w53P/yYoml5+fI1ZWMhcsF5XdXYMCTu9zjJz/jFr37Jh/sO9njvxk2SQcbB8WvyeU5VGmg8pCRh59o1jmdLJnGfF5Xh9Lnbh+H7P6G7s4U4t4z6E04O3pCMPNwnKua6ZOfOLdb9OU++/AblsXMZKBpTsXdrk6ybUjc5SeSe4WAy4tnDp3TSEbv7+/z9519fSaMmcYS2UNYVNnBiTcbHoLJtePH8KXujf6J2gTYu+zHYK2BBKUWWZdy8fYMff/wRf/zTn3LnrjvtO4MUqQwvnr3g1aMnvHj4hBdPngOQFzUiCri2vcF77+/zQBh2n7kTdtSektYNQmsa3VKWBcpTuC6plZd4rDYG6S/GeJ6ss2/+Vt/A7Tb3xw2kuSDb+AadbloSFToJwVASXYrSAnUjmJctjQ0IOx0IQ2pvFy4bjQrxjbcWoxvCSFD7jE0bjZQCazW1I9cReirLoN+l3+tSFiWr1YqTt6c8e/oUgFcvXzheoTBMNscEQnBx5K5nIQ1RKImjyDXy4hThP3O+zGmtpJWSumkJQ8XuNTdptLmzA0hm8xlFXmD98wSnQNa2LQKBVAprNcbfm6paY3VEdzSiHZSeruM2oj58zdRodJjSS0N6pgHcb28DgxYRpmmJLHTThNA3wFrdYglZVg2d79pw/4xrvlwTJx0qLWk8tWw5XVFXNVEnY57XTMtj9OEbAIYbG26iUHWIByFCJcwWLgMuixesqpJuZ0itG9rlnOUzV8FVRy+5WC0o8pxyvuDts2es/QDAtfkcEQSYWhNj6dJC4f5duVixnBZ0hglSarhYImvPVLmkJ4aCuqNosohSeyaHNbRVznK9orUQdXsEvkuzrkqOT0/Z2t2lN4iJehELPynV1g1GpoRJl2XVYMKUqtRcnLkG1o2tATZVXLt2k1ZbgiQjHLkDvdKCznCEmecsViVGhUy85kO7XlO1LXGcEDYx86Jm7d/fWkW8fHPEo7//NcJIIrpsdm8AkFc5Fycn2Krm2nCDD2494Oy5a7Q9/rsvSNEslyeYzHD66oTqtcNy4zhA1i0H8UNMpTk7OScdumsJuinrcsnO/h4379zhr3/5C979xAkU3r73AVVpODo4caLjFoyvppGWKIyoaiet2mhzNcRQG8vDR4/YDA1/+gf22ncG2dYPIQghiLyYy9b2Jvfu3eWTTz7iw/ce8O6du3RSd2qdzk54+fgFn//utxy9eMn6/IJi4TbNxnDM7v51NnY36cUScXZMt3UvaCocHBBIp0zeGoO+pCJJgcIxCywWY/XVWK1vwTmOrJQEQqIuHRWshxEupcCkoPWBhNYQy8A5VbaupWd8fbcuDavCYFVEmHbQ3jIcQDYNoWiRoUKhMaZFazDqW0jFaIMxTpNWIK9OQyEhDCL6/YwwEEzPjjnx1KG3hwf0+j12r++zvbOFKQtC4++NbJGmwbZOhczWmiB093vSTSgaSLsDbt1/l+OzM5ZzBzMMRwPe++BH3Lh5kyCKmM3nrP3wQ57nlFVFXdeUZUlRFKxX7jnly5w8XzNvFki1xMSa1jesWmnRi1MqqVCRpZeCEq6Ezes1rTI0WhMVmsRYYr8vqlxQ6/bK0eH7sB4/e8nWzfvIzgi9dr8h7HbYurlNlKa8PnhBUaxpfEaqakGaJhhbkRcaY4urCTal1whtiZRmna/cRJ/XRc07ITmGKElJR0PS0YSTi8vprB129vdo6gJbrGhnJ1y8cM3gql7SSkuU9rGypC8lff++GBWjjWVZLPj65UOey5eohftMcXaGWJTQBmzfus2d2/usPcUwjQRZL2GUTRhvjAkzycHRCwCePnpJIYbIVDAtSo6qhmnecvDWlfbv3t7i5Pw1j58sCaKMm+98SDZ0vFVZW9Z5QVFWbO7sUlmYTt0+XJUFtbGoKGBzssW0XfMf/uqvAHiRJtwc98mXBW1Vo0xOtXYVVSiHnB4tODlbIuuWneEGJ69dwjZ7e8rx4ozDk0eM72xSqJLzubtvSgma1Zpxd8hwOHGHnrf2VqbFSEHTCA7fHPPhT/47Nq85qBOl2Ll+kzxvefTwKZ1uj9Zn8VVrHAQoQ8qqJcDixe4ogpbjixnPXrz4g3vtu6s3YZGBJIljdvdciv/jTz7i009/zHvvv8Mw6yIQXHg85OGTh3z295/x7Mlj8oszrg36fOBtg29u7xCEIav5jPnbBfHqHHL3IGxbobUklAmhCrFCcjk5K7mUqBWOesWlFaM3SRDOiFF5LVd16eDgR2oRXrJRySt+nmwtVhpM09KuDSYUmMYbHtoAEYR0OkPS3gArFJeGrHWjMaIhEBIhW2Tggnntu/attlj/QMCZQWq+PSyE0sQqhigkji4Vt0AKSxwFXLu2xf6N67x6/JD53N1TdEGsBNbWBEqgjaUqXUBUsUVZhbSGn3z6Maui5jd/9xkAZ8fHvExS9q/vsrV5jV6/e0WL01pT1hVN06K1pqpqSg/d5MuS1WrN8fKQtloR5C2HLxzk86o4p6kMjXIW4rID8tLxcq2xwk25oTVNaxxtDvfftMaQRt+fYYRb735MZ2OXzuic9doPooQJ6WCTVZFTtCGliSFwB8XFqqE8mzE/OaNYLGnqhrUfnTVly0e3P+LmTsJqvmaZl4Q7jic7enCX8bVrTLZ2UMKNHT98/ML9PRWhVchaL6jKJU0+J/bWLJNhj9PjGXWTY8s1PQUbXk3LIJjXDWfTc+rGkIqYxD+/XtUwzjJiG3Lr1j63Hzxg7qlWSdByfW+LzY0dhFBMl0cE/gBdlCUXb47R4ZxFXbEsS9a15vDYZbJxb4gNQg5evaY72KJ68oTWXI6pd5jO18xXBXF3QBQlTJcusGnd0skyev0+ncmATjFD7TjG0fU0Ia1zTNNwtjykXK2p1v6daGKitoM2EaPJmOJk7qzmgTBQqE6CDBWPHn/Dql1f9VuyrEsn7qJJ0aSoNGR1mVzMLriY55xNa9756H102BD7Q6SzLCibinc++JAbd96lP9riL/7NXwCwvpijNUihSMKIQEkuDcCz3pDV7Jw26v7BvfaPUrj6gx439vf45BMnUvvHP/sj9m/uMR4OoLW8PXjLV199BcAXj77g6fNnXJyc0As0w70u+/6GpkpxdnbB2XxBkM8ZtnPA3zQTEKguENF4AeXLEUxrfEYqJa21mN8bzbx0qA2lIpSSUHzLzDTG0buUH/VFSXTpRVesQFpJY6zD40xA5O2yoyAijAWd/pC03wcVYq5oLm44w1BjZe2GJATUl6LdxuJgTsfRNcIiLkHiK4zYUFUFVVVcNZvGowFZJ0FgUNLQ1gXSz4WHElJlSbKQ/Wvb9HpDvnziYJbj2RpjAnIrefX0GT//8z+/+r7//Fe/4PnTR+zsbDLeGBInHT+aDKVuUFisdDbmUkZEvmEWWEUnTRnf7BMrzcAEvL7hguxntuLVyUuMaokjgbIVxjfThFIIYYkDp7spW7icqRbGgrD0POfy+7DOZ0uyV4dcTJec+MaebmaczUuWqxVn03OsEnQGrrEn44AXB894+tXXtKsGJWOMf9WubYxIsj7GGIrVkqoooXDBq8pX5G81B4dvKMuG5988Zzpzh+QXXz3iyeEhQdiSBiVdW3L/zi0AJt0+QfCExcUZTWFJpWHz0u4l6qDyhnmu6MQxwyAj8jj93mDITm9MeXrB7Vs32BmPGGcek5QF3X6EVYaz0wtmyzMiP5GZ9rucnpfMpisK0xKEIaFSnHot5UXZYpOMCqfN3M7nrFYusAsVY3C6z2EQYLDcvuWaVHEnRUURWmuSfka3zKgalyGOk4RwOaMQJzRVzWI5o/KVkVm0DKMJ/eE2wnZQsiH2AzOnJweMexlCRaxLzTxvqAtv0W0Lht0uoZyDeuPGkr2g9vsfv0/WVZyfnfPi5Wv+7P0fE/p58lcHrwhkQCcbcP3uHT745BP+8v/5hdsX+pxAxiipQEqyLKPxgxjXb91mftIlHP7D/l7wA4Xrh/XD+mH9sP6bru/MZPu9jPfef8Ann350lcnu7u1gdMPJyQnnxxc8/PoRjx4/BODZ4XNWqyVJEjPuJyyWa56/dI2DbhRRFCVn0wX9egEqJwhdFhTKECkCIMBa4wSzuJwbNg6ClQKNc0i9dNOwQIAgUwExThj5MqtsPVtBSoGQzqTwspsvDBC4DNcaoBUYceluENJYIIiQcYpBcAkluuk2gxEtmJq6kchAcdlu8/I1SKlQUhH4P+AmRrAWY1rAEIUBw4E7RZM4JO6kJElIUxUsphcYz1iwukYbQ9SJoa2hKen4RkYkIa8bar3m+bPH/Pxf/yveuX8HgDeHr/ndb37LqxfPuXf/DteuX0d7uKRYLinrmrwoaduWMIoI/OBAJwkhDGg7EUpXhBVs+mrkgw/f4+gX/x4lrBu5RiM8XKCEQmrn6ilqgak0yt+4oLVoKbnCgL4Ha7ZYEx+d8OTxM775/AsAyrwi6fW5tn+T4cYeKokY77hpvqiTcHR2gYxf0U8StjauX40NJ9KyXK3JbEQnTcm6PaR/tsV6xenZCau6RWvJep0T+RJ9NluwNxrQ6ybk8ylBR9Lx9kmxtGxvDNgcZzTlhIvpGWMPtyyihPA84HR9grABNzevozz7f6s3pJkuELFiupgSddIrw9IoNrw9OaBYlVQlhIki9gJGg3Gfsq1YrGcoDN1+BsZQeBji4O0pvaxPMhgRxl1GGztkQ/c+NY2lkw2I4ozVumC+XJIqPyWIIRQWlYScvj3ASMuL564pGFy7xnYYYtYV3TChiRMKnyFOV0eYoESbmtPpG1ZVQd64iuOrR5+zNxpxNDtl1lYE6QDhKVWLkynL3JImESKWZNubdL0R6q17NzG0HL59Q1PnLJYzLryB6uHhAZPhiDJ/xNHbY85Pjhn1XcO3mtSsy5ZSa8qmpSqqKzpiXtQMJ1to9U9kF3zyycf8/E//hAfv3Wey4XUly4Kz01MOXh3y7OlLXr54xcXc4TbawmRrwq1r22x3O1wcHHLiy42TpqXVhqquSWxJlBrCK68udUXZElYgsVfqXUoIjADj/1dIeeVkKzCECFLlSlTdtNS+YVZbQ6ACwjhCBgrTaIR/6R0rwXERdGWh5YpLV7aCojHUSAgDNKCuYoNjIQi8/JkQiN8zaMTjxRKJUgFREBJ4XQcpnG2MADeJJgWZ3+BhoOgOumS9lM1xn0E35bV/gQWaRtdUwrJcLFmviyu+qxTuHtRVyfnZKS+eP2Vz2wXE8WhAlqWcn57w6sVzoijEeChhvcxpTIsQkm6WEMUJkX+BoyChxTDTJW1dURTfWrAPBwO6WUqoClrTUpuGyGtEKiFRCAKpENZQ1Rpbe3dR4bR867Li+4LKvj44pMwL8qIm9ewJQ8Hbt6eE6YCkPyZNw6vSfnZ4wMGbY8oGuv2MvZu3WPmGiqxrjDZU+ZreIGJze4Ns37E8TnVNaTRJmNLrT+BmxK9/+/cANBbu37pOpyNYdlpuTLr0PYdWFgVZAEnWQwVD0m7Kud8T0+k5dbUmDmNWq5LpeknmX+WiqknCiM54Qonm8PQt+coFp/4gJF+/ASvodbcIVHjFAU+ziNE4YTqrEK1LsIxuyT2eOVus2dm9Qad/ThSlJJ0U7SfXhHVOuKZtWJ4c0TYt5tJVwKaMhj3yYsX04DnLYk3r8doyDEm2d5h0egRtSSwli9Dd7zZqadYrzqYNrTHkpiL3gfTlrKYTacp6RTbssrW/R+Mhn64xJDKgN+jSmWRs39sj7Ll7E8Y5YRSxQ5/T6ZJf/uW/RfWcVsT27i5xlpIGCflqxeziFOvV7vr9HkJV2KqhbnPKsr5Kng5ev2XU62LKf6LH17/+8z/jRx+9Txwp1p6w/fbNG54/e87zZy85PDgiz0sCb0GyPRqxd32bn7z/LtudDq8fPeGzX/7K3ZiDE8qqJg4Eg7AljBXKex1pI9HaEmJ+r9Hl1pWNt3XtrkBJhHQPsNW+MWYu9QzEVXOnsZYwVIRx7ETAK0e6Bxz1RVlELQhNCIGi9LKLpba0SiHimCDtgDcodBfjFceEcG66SjlbSR9krcUPCniZRfSlT53XyJVYbSjWObY1TCbuAS/mM3RTEauMSBgm48GV6llVV4SBZJWXCOuy8uqSpCcE1hpa3VJVOY8ffcPpqeuyTmdz4ihAWzeGrBQojw7FSUhMiApDwij0NC5P76oKahqMqMC0tK2mucScMXQ6CUqXNLaltprAe6MhAQPCGLQ2tMYgLocmwgBtLPp7lMlubl1j//p10rTr6HZAlJRczFa8eP6SFweHyDgm6TscOUgD8qKkk/WYTDa4e+c2S59cxBg6jWESZ2xPtsg6XRLvZjrKUm698y5GCxazFUfzOdbjjvPplNVvKZuQAAAgAElEQVTFKeN4g/079xgnCumFsKtVjslL6sp5buWmoY28QtVqwXpdsDHYIFIFi7Kg9HuiS8yN7ev0s4zatpydnly9Q6ppaBB0ux3CjmMoXHLAERqlJEkSUq8LpIBOFrFeu9HS8/MpWu9xdvqG0XCTOi+4OHbN2YCQZrQJGpZHR7RtS+SNFBOGLA4rWtswTgNs0dD1TrZytaSKYrrCieC0QtJ4apQcZmSbXRaLhrLOSeKErjd1XL04YknJ1u1dhrf3GG9v0no+s9ndoiMUQmhUVxH0BWvrEj0VpMRxh0kQsrF9h7/85Wdc33XY8e2775CvZuzfvkUoItqy5Te/ck1kvSqIwoBMBJRVQ1vbq+p2Pl/S5CWd6J+YyX7w4QO63ZT5xTmvX7vmx5MnT3n06DEnx2doDd3egJ4X9t2+vsWPPn7AJ++9Q19Iwtby+qlr0nzz6DnzVUEvENhMkMmQ2JOkTauwGkIl/NDBt0HWendcYx0dS0l1NThkfFNMa++qGQTfDk8IgQoCVBC4tLNtv80qE+U0ZbUlxLkcrH0AKIyhEQrChDDtoaLI2RgAQgnvvmBBCIyFpmqxv9/bMtYFMyOQRrvvxme91qKEdXQzpegkfpqmTsjXc0RTMzs9IQ0UncQ9tIvZHBmHSGNo24Iwimj93alQoARxEpFlKWWZc+7NC9tWE0Yhk8GAjY0xvW5G5TNLbVqMcQ4MLpY7NoS/4RhTYWWLUgIZSM+PgCAMuJyzM9IgQguXchAWaCy6bWnbFiUkkVfdCgNnUNeY7w+FKwhD1us1q+UK7Q8RbQxhHFHUOU1V09Y1rT8ptnrbbG9uIwYl793Y5861PsetCzKyqbl+bYe97X2EDTh+eUjjA0Knc53+eEIa91j318y++oK1zyzfHh1ycbzPH3/wHpNORH76htNnTmdAL+ck1tKulpxMT2nGPVZez+J4esGiLOgNuuzuTOgPRuRev3Uv6vPgzgPaqqRUmgbDxCtNWb1G2B5RKGlyTZ1XzgMOV001TY4KQGtDUeSEaZ+idLSx46MT2rqiWi2YlhVNUVPnLnuLZURQFnSzPh1akl6Kn1NgfXKAGPQxGFSTc2Nng7p2O2p+dEYxPaeb9dgeTQgjxWDsKuZ1VbCztcdoco28ynk7PWPpucAmVTTTFfd+/CF3PniH1qxp+t6r7OYuW70Rq4tTCpujM8PUT7Wlkz5N0/Dk4RP27/yUuzfvECVeE1eHVLVrBnf7XQaTISNfvc+nS5qmoaktwl5OUbq/JgwIbVj6JPQf3GvftRF73YzlfM7BwQFffekYBE+fPuP585es1yV7ezcYjSeMrznc6t6D+7z/4Yd00ph2seZsuuDCe9N3+0MWeYOkZZhE7HQzBn4qJCgCjAkJhUIJN0VwKXVojcFeqpRLrkp1cKRghBvhDK2jtrTmUtDbBVmhFNoPE4SXlKLACYEH1oIXxfakBmrAhG4QQUYJIpQQus9UASgj3B+rMI0FK9Dt5UvqOMWXwxGI/2I8gqauUVFIL+uxWiyYzZw8WyAlo34PXeUYo4gCReIDcFm1mMYQBYpaaSIMlyBboRsaK+gPRuxc22A0HqA9YC2EREjBeDIhCAKSJKbxOrRuylgipHQi45fTcuBdLZwQkBKCMAppPdWs0oa2qdCiAWUIOxLl9Uh1KxElmMZgtCFQijjwUIJUCKuvqHDfh6UkZJ2Uzu2bdPsOPz0/u2CRr5BJjIxiZBSSdNxz2NjaJAkV5DM2uiCrYzLl9naWdRlNOpTFlLrQLNazbx1EpSUuC7Ymu4wGEzZ2tul1PV67ylmdTxF5zWo6Z/HmLXrhlVVaydnRG1ZHb1lRI+KAwkeua7fuMoliylKDFuxe26NI3WcG85yyLFhNz+nubqACgbrMVgmZnS2YnhyiiOh1Biif6ERBRFtPcc5MgvlsxWa3z9SLiJ9Pp9Rlxe7mFrQN6WSDwLMrVhdzdFERmwqUJpKa2HqWgDQEpqaoC4RtiMIOHW8HI6uaYZQRWUmnmzHe2yXyGrWlaRBWkHUywqzDaDnj8ydfA7CX3eFv/+Nn9LY3eef9Bzx78nckXc/UkQnDOCTrdZG9McFmxrR1mWwTWlarNfPRmmqeE7QhqxMXHF+YV5TtnC+p2RyNmU8vSFPPuIkEdq1ZrwuaFtrGXLGYAqWwCvKq+IN77TuD7HI+5+WL5zz85hu++NypwB8cHFAUFYPBhI3JJqPJmJt3XLPl/nsPmGxuYhYrfvObL/jlrz7j1RtXvrZWYqUiCWCzm7LZ7dHxrpW6tt7bXIB145+XCam5sr4xYIUryf1PbLTjZdatIWhbjBVU/pR0k14SrKX1QdZeOtkae6XJ4HJlg9/a1EIg44i0myED4aAJ5YOstCifqQrjtqMKlPdlANt6Xm4sCMLQYbKXnk1KOaxZgsQwHI1ZegL5dL1CKI1tSpbrllAFbIwdlHAQJSzmczCWKAyJkxbpM8RWCEQUcW1vhxu3ryOjlKa9DLKCQRDQH/SJkpiiKqk9pocAqZx7r5CO9nYVE4QkjWKkEqhaI4WgvrQL1y1CGBpdESYCEVukr5La3KCkC9hSuGz/suJorKPg2e8RXDAeDxgMu8RxxMaOz/SkIurFPHvxEmSECkLWHj98/ewZiZLc3h2xsTnCyIp05NX4e2OKQDA7Pefo1RFB1EPUDuusLs5RbYvViiRIUNoS+Vrz+mjMOEp5+/lDOk1D0DRX3m6z6YzZ23OytEssG0wQ0fV0o429fdZScn4xYz5dMD07pevfpSgJOZoesbg4YxQ0HD57RrvhKVPDHqvTC948fUQadVkGGcNN95nSCExTo1tIkoTT1ZIWjfKZ7qosWC0WbAyHVIsLTLMmXzgoITKS3nhIJ+1SRIpWawJf/6TDHlpYDt+8YbCzRd0WhN7FIcxiuv0R+xvXkEIQDbukHkJrfIPs6OQt4+1trt++xWePfue+r9dlVuecLhYUdcPmxjbK0wM7S8Pq8IzqbEq2OaIzGDLqObW08+KctlqhG3j2+HMaO+LDf/E+AHkLuirZyBI2Bh1ubG1zeuAUur758mvCOCBOY9pSk4rgSiNECsDqqyboP7R+oHD9sH5YP6wf1n/D9Z2Z7LOnz/jm66/45puHvHzpsNXVckWvP2D/+j63b91msrvD+x86E7O9/X3WiyWPfvMF//4//CWHT1+x8PqQZVlRNpowkvSjkFgplAfri9ogDSCtV876PXEXvHmicSLQ2hga3/XT2jtKCoE1Ft2aK3xUSeWYCb4JI6W8spiRwhJcVlDSoIWm9JNipbWISJFmKUEgkcJciU8L6xo7DtEw3l5GEHjLDJUopJREUUQYhiilrko1qZTDOaTTPugOxow3Hd51dnbB2dEJd25sMep3yVc5d+7eA2A+y/nm60csFwtq3ZA3Bhm6U3MwGXPj1g1u39mn1+tQ228HJ9q2ZeShAhWE5EXp1Lxw9Dbrs/tLzQYpLhXKBDaEOqgRRQu1xHqthDBSdLspnSYkThtspCHwVYI0CBl5DeIWrINPwFceMvw2Xf4erCSSSBqiOLlyzDg6PSUvFkw2xnT7Y1arnNmpG0mdnZzSy1LEjW1Ev8/R8gjpn3uLcKXv/i3MRY5RKTK81Nl1DU9dN5y/OmT69i0b/rU7XVf01jXrx6+RMiCU0GiXdVqtWU1XvHl2iu0HjDohvQ03RaYWa2YXZyyrirTbI5SW1FPpev0M29S004aDJ48pzy9Ya7cH+1KSyYCukmRxSK83ZOTn+rWqeP3qFflySTLYhvWSoq4IOy5DXlclp6dnbO0PadqCUCpGXt9V2YAk6hDHGUkcsVwuUX4MvzYN5/NzNnZ3KUWDCCTGU6q279/l5v49Olphy9r1RrwjSDoaMtjcdo3GrU1UnNDtu97PF8+fko5iKixv356xNcjY8PfG6DkHZy85+voZPJHw6Buyuy6T1YMI0pjtG++weeMDgmDgW+2w3x0y2b7HZHuAigLmF0v0pXGlgTAOSDNBY2uEgtorollriEPXFP1D6zuD7BdffMGXX3zJq1eHzOeX/kIOJ9na3OKd++9w5/13GXtngGJd8Pmvf8vvfvkrXr06ZL1Ys1y7L18XBbQNNlaIuqZcl9Se0NM0EBhXdIfCpeBXLRLhTSCE+4e1v9+lFoQqIFIBUijAEPrRw0iFqCBESEkQBBig8S99aHBfIi1GGmphqPw3VtZAoOh0U+ecYA147QIrWkzjbG6sMJ5NIIgTX/4EIW3boo1GGQVBcPUihmHoJoLynDLPscYQeRzt/vsf8eJZwsujIxa5ZWM45MZdR8XKepuMN3Z59PARs9kUoSTDkQPr9287U8owDtFG0x8OOTj0QWE2o9vrMxh2GU0mKKWutAt0kdPUjpVgrNNauJzFlkhsYKlVg1nX6NLQ+t9QLhYgDEksiRKBCVtI3b3pEGFLRV0YGjQWcSXuE0hFybfOvd+HNRoOGQx6WCyHb1xZeH5yyubGBt3+Buu84uzoxFFYgF4nYzIeM97Y5s3xOW9OXpNkDlu8LgdEAnavb5L0J8yPp5ilF9wJJHGpqU3CdHZKO52zG7u/93g+J1ws2d29RTVfcvjqgHXlIKS0G9LUNXlbcXYw5XA+5z1/SE2kxM6nDEdD9m7fIgliSj8eevzkCfv718kQZGFEvz+k9qZ/IusRlA0ZkkwKQq0pvchNOk6IVECZN8hOiyCgKhsiv7fzdeFK8+1tmukB0giu33BiLraxpGmXLBvw5uCAFkPc85NynQRzkfD41XNOF2fc+dGPrtwIsk5EMOpjCsPRmyNePn9G6w+L/XffYbKzSbc/pG4q3jx+TOUtooqqojMccLFasM5r/vaLz2kvHCz58d0PoNen7PZQacT+Rx+w+eCWu84swoQBKo4RIkRry4kXABLGkAYKaSVp2kWMYz79oz8G4OnT1/z13/yOqlEUjcXiGrmAT94MTf1PDLKPHz3h+fMXzGfrK4pPGncIZAjaEqoAJQUvvTjCy1cv+Zv/+AvePHvJer5mtViy8AIxSEk/joikoasEum6puHQ6dRqNdVuDtISBusJMr5BT6/QLrP228aWUIlQBINHG/f9h8C2Qr5RCCNfJL7W+8uwJpMs4US1WGWppKfyDr4SFUBJ3EoSwmLZxGgiApsa2AuIAoSAIQhCSsrhUompJEqe/gGcatP7EWy8W5HmOMYYwCInCkNRzIre39rh35wGvDp/z6tlTllV9NYs9vnaT/+HGPf7H/9kwn89YLBdXGWGcRQwnA6wwFI3l8Gh+1Snv9fpYBL3+gKZpOTx8c2WnkSQJQRSibIA2mrZtr9yITWNpTEMlG1QLTd2y1u73LacXFMUa2TPEqaCJDdob0QUGhLJIYbFW+8abu04VCNq6xYjvT5BdzefsXtthPp/y1ldp5f/L3pv+SHak536/2M6We9ZeXd3N5jqbltHMSJoZSdeGAcH2Bez/1R/sT/5gQBZ0rweS7lBDcshhr9Vde1blfraI8IeIzGqOKF5ggCsTBgNoVDeTWZl5zsn3vPG8z9JYBjuHuLqhSHNOjh7w4rMvAEi1ZtQfUORdVA7vffgTsiIUS2EV9bLi9OUZd9dTzp6+YrUIHanudylGI1ZfnPKwGHG0t0+ehqZkN0+R6yW5BNnPaaeKT78IRP39YUGeK5Jhxng/oTseUHQ38tiW/cM9uicPOHh8gvaSV7FYvLO7T3VxSa9t6fWHqK5kbsLgJ3MeIzWHOwd4F2KvN36yqdZkSYKwgqa0GJlQLhvyyHK5uZpzdjlBasPDJ+8xvbomidhqsdPHWzg9fcHV9TU//qv/nuki4LXXdxM6e/vkqxlHx/uIXp8vz8J7vbOezu4B7c2S81cvePnyJTfR4OjF1QU/+cXPGe0MuTx/zWfPPuefPguiETXo8+O/+AWf/ed/5qcf/BHD4R5tNE1aJznv/OQHZE/e4fbuhtGH7zM4CZxlkSVYJaitxQtBJjXvDUMz05YNvW4flRpkYtDK8SfRoevZs3N+9Y+fUDuPb1vqtsHFgUPbOFpXb3flX7e+sci+eHHK9G6BbT1ZFk14pWY5W/DbTz6jaS2Hzz5nHSeJb9684bNf/wvNco2vGpbL9dYmUGmDsI6+0ewXGVhPHYtXR2lyLdHeEry12LIEiO5bQS3laNx9smxQVoUi61xgG9gNZcp5nA0XUmMD11ObTQHWSAUIS03N0luW8VDUwuKUQGiJtTWuae9NwkWLIOiXhZRY12KSjF4098WHbXpd17jW0tQ1TdRNG60ZDIZ0ig6pSUizdMsxtT6wEg6Pj8mTjOntHbOYkXR2PsFFG8Mk0aRFL3B0AYfl7OyOxXKBRbJ7/Ijjh6HLHY/GWNdyM7nhs88/Z7lYbkUF450dhjFCp20avGBLp9NeATLcnLSEVFFW0coxDr6SVKAKiU/BR7igrSp8E4xhrA/HyQu3fZ9e+u0Q8NuwXN2Smozd8T7vvBMy3H7zL/9Csy5BJqRFhhYyeHQAezt7aCFYTO4oxj18K2njcSmyDjSCV1+85OUnv+P29BwRd1td7+nu7bHT7fJgHDicbRUNtlNDubjj5vKU2/mM22pORVSRDffp9BOsE6zFnFW3ZR2aQ2ThkIOUzl4fS8PdzYQkKsXevP6MvaLLk8dPmJ5dgvOMuuH6tFWDV4p8MCTv5ST5mFV8LzLz9Lpd0kxRNS1ZmnJbrhkMwyCqrCxXkwWnZ+eo9QUPTx5TxB2VkgnGFAytZ2UdF1eXLGLa8uvLC+gUiLzD+c0FhdYcfy/Ai2mWM6nXXF+esi5n1K5mtQjX/e214Ormgnm74tdffMqbxZRP5qEAu/WS4fETnHfcXF/y0eN3yY6C2blWhjrLSA8OybME2e1hutEtLDXU3pKI0JAVRY+2iuZAqUeZBKk0vm7wTpJm4YD/2Z//kv/p9Iq/+/t/4M3FJb6uqbZwQUNiEvLIlPq69Y1F9vpygm09aWK2dzSJYDlfUi5L1lXF09MX1NEObj6fs7yb0a5LbNXg6qAqAnBeYKTgeNjjnZ0B6WQW3apCkWmjBbeMyQcbnCw8N2SKKSEwQlGLuO3XGmJ3K4SgahrWkV0gMkkeuanWOVxMrg2v50jwWGpKUTHHs3DhoFXCgZGBbF+vEdJtzTeUFGglUBKEYuvrul5HS7Syoqoq/LZbTRjH1NJer0uapKRJihKB/G8jDhy8cBWpyjjYO2R/Zw9b3Tuvr+ZLqqqibWsQjibeuJq2odPr89EPfkiWd6lQJLG7KpIOja1J8oJOb8BytWS1Ct1Fay3rsmQxXzCbzRBS0o1he5lOIJU00qLWFu8kNhLEnW2RwiOlC2wI2W4LaWsltnU4J9ASjBTbjrt2DV4Eatq3ZbV1w2o2R2lNpxNgm+MHj1hXLUIZmqrCaM33fhAKwvT6ijcvntM2Jc3Zaxrv2dkNpiDvvvs+y+sZd28umF/eIOqG4SB8sfMsIVHQ2jXragYevvxt6Miur89Zy4RuR7Nar/FGsXMQnjc+3iXvp1SVR+NI94Ykx9GjtVC41PLq6iXy6g03L15znIXHamm5mlwyTHMmb16xu3tIHaWqQkqyLCHrpXSGBcgCGSV4zrT0+306uWY9b8j7XW6Xd1vntDxJqSpHI1Le++GfUiQaF2EkvEAbTT4es6dTvNQgwrXW2dtnVq8pvWf3wUNeXr/h9nl4P+88fp/b6yt6XjEYFYySB+xEvqtKNINuysubc17cXdF0eyQxU+31szM++ex3/PTdD9l/+JD9ByfhRgdok9LpdME7KuuwaLyIpF2ZoqTAZCmr9YqyBWfjLAKJcCbI8KwKwqHYXO0dPuK9j37IP/7zx7RtQ1mt8BHWEMbTuprZJtTsa9Y3FtmyLEmThCy7l1361uK8x9YtNzfXNJNLKrt5AY/ygmZV4dswINoUWQ9kRvPO3oiT4QBdNsgyDlRaibQW6QPFCdhGe/uNikuEYqSl3G77VXTj9x5ab2ltECsAGGWQCFrraL1DKr2lWs2rKnSzuSQbFrhyzSJ6iq5chaelatbktsE4gY6HySiN1gqlBV4J0jTl+up2i1dLKcmLIli7dboMBoP7O5z3WGcDV3Wj0938EIFGhgApNEJCEotekRXIfU/bNjRNA+Ie25RKgIrUNKFZO7HdkrfB9YEkTej0umSdgh0ZtkbW2UiubiirinK9ookDh3pdsiorJtM7JmeXKKHpxE6ovZ0GT17VojKBUJ4meqpKK5FCh5tQIjFCb3Pr6zZKnM23p8jO76a8OX2FNpqLyxCj0jrP/uEh80XJ0y+fsXdwyP5hDEvMM4o8wzYNbWtpW099F9VQp2dcvXrD3ekb5rdXiNqioypR9iSL1YRZXbM4ewHLFTdluF7mxjJZTum3BVoLTNbhx78MOKBQjvOrF9Sp4/DhO8hhTqnDNXp2c8nVbIp3muPeIVktWanQVdep4vLqFj1JOHn/HZTziGaTstFihaQYjhkdjqlqUHW4XqyyDEYj8kLjJzUaSaI07cZCMSsoK8fNdIU3x6yaFWnciY3Ge1SrmtliwXy5YrZYch3FEXfliuvllP7REfvvPOZ3F885fRZ8lJVWfHR0wq4uyFtP/2gfexJuXJPbCYN+DzmdsLu7z9Kk7ERryexJh7/+6c/5n//qP/De/iFdqbdG/ogQxKqEoOiPaJ2l2dhI147aO2zV0Dqo2xWpDs1jplO8TNBSBXc65Pb7mRcpUqa0jWe8M6a+rrcyfOuhru22Yfy69e3Zv323vlvfre/W/w/XNwcpChmpSCZgkQQ6ldYClGPd1izLFXVMHFBCoBABjwrWWVuAWHnQeIaJpFqv8Y0NvgEAMcFAyiA59V5sJbCBFeCD76mQIX3g7UbQB6lr41yIUI5bmCwaXzS2pfUOIYJ0ECBPNTL3iLwh3UlIFxYb9evLsoJ6jXUN3U6OTgQ6hsIZFcxmGttQVy3X11PStMPuXhhkaKXIOwXdbpdEJ3jnKKMSxGgTnbiCuip8nk2n19K6GmMMWkicl9sBFnhSrUlSTZJmeO+2Q0iPAyHxAmw0Z9kIB1rb4KI23SQG0bZbVpz3PuwwZHDNyouCNGLubtChL1KK5RovNbJt6UaHrsnrJKi/xhaxI1AVtOvwW51zKBXOISpAMxvjHCEgSxQm+7YkfMHtzS060eSdgskkyGMrGxIxnNAU/R5JllJH2EZoidAC31iUFNR1xSLGd599+SW3kxn19A65XuEqyySmEfSbW3b0CmMUk8kMsVpTRilyqWrWoqHOYDzeZ//hOzz+/kcAzMo7Vq8a+h3B6GiXST3lZhYYBOeX5zip+eidD/jo6COG6YCbq/DYl6cvOG0WnJ8v+NsP3qFjMg52AwSxvLlhuZjhtWDdLKkbSIoAZ0nh6Qz6mMTg3ZKmrCjSAhvhtzQqzJ6/OOf9R316mWB6E/DT85ev0TKhbQCRIIViFKW8B4M+H+Yp6bjPpy8+RxjJYC/GwXQyuuMRj3YfwGxBL83I09BZ7iwWiKzDQwRrnXK9rumeBFrj6Ie7/M3PfsHh3mFgD+X59n06L5jOZkgEptNF2BbUBi7QNFXJoippHCyWK4b9GN2eaky3g3cSELSNR20Ui14yKMbs7x0zmd2RpTllHAY3TY33LnqnfP36xqu+KDKSJEEIgY+DKCWCE4hzDmdteIH4ZXLOB1VTfL5EbrevRnq0b/GrBZfWMywtXRe34ULhvMW6Fu9lGJps3kQMTwwggaD2fltkrQtb9OAj4JAiZGFBGG7hg/OBjKbdOgkHNEnB6QqvamSWMMhy8jio0K2gszNgvDNiOOjhcLRVPBGtw0vPul4jjeHowXEA/eNrbpgNzlmqqkRLvdXv+41Dl5Qh4cHZLb/WKI2PfMqADmn0hl8r740Uww+xTav1ANLjhcQBFnsvj/XEghwLupTbLU1kw8XzFmGZDWNDaoQypLng6NED7GpJso6GJl7hjaTzQFJ1F7RljfKRKyoFtbEo5RHWI7XGNZsLT4B0ePHt0dWmnS46zUg7XbgN8ub1as7F9RXT+YKXz1/R7fUZxYiV1XzK9dkpu6Mx/U6f2eSSqzjRn09nvLmckzrLSAZTeB2/Bc1yia1Lxnv7FN0Csaq4XoWtNOsZde3wnYLv/+IvOTp5RBNhhjfnV5wurtBOYnoJRnuOutFQSM/o9Xf5o5OPyMhpliVlZAm8Xsx4Vs3ppBlfLm6ohOJRlLH2D3fQ6wLTT2lEFXmpMVOsbjBJitIJQnjK5Rqf5zT1xhxIs6ocZ2d3zG5mDPb7FNHO0Hoo8gEm7aLSDk4b6gjbJcMBC9fw5dkLrudzOuM90iQcm3d/+Efs7hwirCKRht5gSLrxuxgMuZnOMCahn3XxtPzxn4Zpf68z5IMn7+HWJU1VcVvPtwNm6zx3kzu0VOzu7qKl3NYL6QXGpBRSgzas1g0yfmfXVUsnC/MgJRSo+0qmleR7f/TH/OTVC168fsnZ1TnLOPR0osV6j/hD2QXGGHT0S91EvljnaJqGuq6obQ3+nmMerVOiFFYErDBW+CJR7HY0HW+RrUNxT9PSMgyomtaCdQSDq4jfxW+/2DhfWbfFXUNkeYiqcRH/3TwmpKBpQliN1hpnJD62Vq1vqJsFPlmReUcyGBBl6JiV5OjhIaOdIbaxVHWNrWKhFJJEJXSHfdKsIE8LpDDbu5iQwQZRShPNYNT2/TdtgzACZJCdSim3mWMCiZIp3gduhfBuyxMWLspeI0S0ibYJn1+H7DLvaL0NoZJig0mrwCn2QZ6gpNpat21CJ8OHiq/z1jls1mGAl6aapgZbBX7ternAaOgOJZUrSYzCrVQ8ph6rG9LUILzDFtDeqXh+NaiKmvJbk1Yr0pTB3gGj3R3m0Tin0Qm3d1POLs54+vwZVdWSxRvzcj7HlUv++Effp5tl+HqFXYRimTSOk0GXTAg6zpIp6MYYGZtqBp2Ug70xB/1dVOPJLkNxvvKO55fPedIa4rEAACAASURBVPbmDUvnmPuWq1noqj+9eM6nF0852Bnz7pMnHO7sbRuPrFZInZNbxfTuluevXnMZDUpupwvK0vLg5AGzquGqWdCJ3sRNtUQKia4dJvFUVc08Rs8XvV06eZ9eZ4AUVyzWJVXjWIqYKG1TKguz0iFlhyLpbwui1DlZZ0BSDFBZF2cSmthA+CylWs2peI3VBbsP9nhxFTHZfIjM+0xvp+iqZH1zzXgUbiRJkrJoG9JOj/ff28WYLkeHwTHLN6BLR7W2lOsSLyxtHFw3TUNVV4g0w4sgalpHfnjrHCIxdIcjdF6gTODLAiiRkJochQIrg19sNDSRwOHJCe9+8CFpUgTzp414R6rApecPLLJS3pudbLqgqrXUkUrVWvdVdVakRjgvEAiEd4jIv0xlwl5qGCnFSBsKrzCbDyFCEXFSYC0x93DrWBCKghAIIfG4r3SAUigcwYtAydCxbd6M8x4vBFKFPxuwumnX1GqFUBVSKlbKUcaa7owm6RTUbUs5uaVtPHkWtlRZp0PaSUgLgzHp1pNRvH2ARfzsbLrXzX8WWGtx1obPp+6HQDJaFgZVWzjmJj7ut8d4c6MLvxk21LZgQiO++i5C8yiJcTTB/2EjDhAiXCRSySCaAIhMB4XAtS3Veom2Dc16ga+jiKEp0cqhpWe1bMgotpeQkKBSSeI0UjlkJqjuYicgJCiLTb49nezx43fZOTxi7/CATmSAfPHlF8w/+4zueER3PGB2+pr1LJoL6ZzuMMEYRZZIukZBN0y0+4cD+oMBCR4/n2GkoNMLjIXWCOwgx5cVFJbhaA+ij/Cz+ZyKFyy9YCkEjAaofjhm68uE4uCAsi6Zr1bsjPyWSlj0R0zu5jw/O8XqjNPVHV9Gnf18tuS4t89BNqKarrmaXdPthZ3WdL2mU3S5u/B0OxlZ1kW1och0koIWwag3QirNfFEx9xXTCBO6ZIDVhrvWMa0EprtDLxrrmKxL1h1j8h6YDKcSqng11gI6puDBSYvp7zE+2qf61d8D8PLpGWJuGUiophOks7jIYsoRXM6nHOw/pFeM6WZDkrhrkl4gV45qsmC2nDE4GGGiaEK2NUWnQ56keO+oyjV2GV2/pjPu5jP2jk/ojXZIiw5l3KU1teXh8TuIJAfbgpVbCNG1DpNpBp0B48EOqckR0WWtcQ2Nbbc+HV+3vrHIBjJ/+PuGY9k6R+N8yNtyPuZZhRVM8O7jtSV+O2UtlOM4zdiTOT1nQ+5TLMCtt8hNkREyuOzHjjR0YjKgtj6EFUr5VSmoVhLjFFqIe+MGFW4OG7cpLwNZHsJ2Pi0kamCQPc1KOlbxJtIIKJuWdVlikpw87zEaBcw17Q5wRYuXNm4l7j95WIKN20pQg7WI2FkKD3ezsI1JjAkZSptgPOGR3mFbD1LSVjVeb1I7wzmQPpwDKe+7dYcLii0fOnYhBNZvsCmHtxa8w7lgurOVuVoHPggKg3Xj/TkTzqOlxCiBszXOlogNg0BYvKuxbYNtQtes45ZRFAKrwKBAeEQiaCM8YNuWTLbo5BuuxH/ndfjwMSbT6Cwni2yN/niHdz/8iL3jB6yrirJebbPmHj14TGEk407GznDMqPE0kTky6Pco8hzKCl9k9Lo90lgsWi2Y0uA6BTs7+wx7O9hIpSt6A0wvZ++9j6hNxvVyheyF47k73KebGOY356TdPsnuzjZY4vpuwqcXL5FZl8H+A85tyet5gDx6UvLB8UN2sg7rySW5F4zje0mEpNvtkSYpedEhy/tsOFxCpbQtdAe7iCSloqYWgipe2620OCW5cy13TpLsHNOLJkZSZ5isF36HE7RW4PwmZFGhLPTMiDfzG94sz8jrcNyEURiXYfIEerBcTrmN2/BJueazl89oSHj3ZICYLrZKsV7SoyMSZrWnmZeoQ00WYZ3Wlrj1iqaqmE1umN/dspgG7Pz8/IyPP/4Nj97/gMHuPh/+6I+3NDzhJfV6iV1V0Hi0SBCRO66UxltLkeWMhyOMMLQxg0/6UAn+4CIrpAweqT4YMUMg9rfxS/sVg4G3/7X1dLUkG7hAwFGSMfIGXbeAj7aGhDQEHwjwYVAmcRHjEEIFEruQwZPUurANJwxbrHcodOi4pXzLhDj8WziPEx6kZ+MvbYQgHyTIkcD2E8oa1rEAqSwlLQo6vV7wxyxGFHnkJyqNlQ4nQ4Sjdx4v/ZZPF2VpxOYxGo2H47ZYLPjit5+D8+zt7ZHnOYN4YRSdDutqDY1j0OsHqV682FSWBQ+G7bTv/pgLoKwqnAC0BBcGXhCK52q1RBtDEx2C2mh1aK3bdtWbVF8VdwBN1YATJFpQtxajwG/4vL7F2QqFo5MaZGNQcSgoc0kjG6gsTjWoJMOK8LpV22AUpOm3h8JlioKik1O3LZdXgcJVNy3HDx8znc0YPfuSnb1dynn4gmrtOTo6YNzt0JOK490Dqosg5fR1DW1L29Rk/R793nD7ZbBG090Z0Hl4QncwZjldsowu+ofvfkDx26cUJw/J9g9YlDXXr4LiK3GWjuox2s9AS55en7OK5/bLyRnPpte00ykfDHYpbbPlIH/v0bt8/8kTukqRHuzQ9S27seuSZRkSLNIck/dIit42jVdmXZT1dA6u8EVGKebUMjRTAI2sQXhmVcnFbI2THZSJiRJW0tYa78NOtA2DEABUkvDik8959uol1/NbejsDvvcgDPd29ndJM8N8OeFiucCbjPNIh7yZXPPJ82e8Pp9w/uqaJ7uPeTwMydfDoxEm7bBzcEJlHa+fnbJ8+QyArJtg13OmF2dcvznl7vpmW2RXqxVvXl8yGI7oDUd0OgUHD4KIQaFxZYurLBKB9xYVI6mUDDXEuxbXWhKdbGFQTYsrV1sR1Net7yhc363v1nfru/XfcH1zJ8umi/W0dkMNsqELcg4RoYL7VjkaVQsZ9sceNjvEQsCeNpjWR8ete1aC8BKB3mJOAoXfUL+kRGuFxVO2TaAKbVLPoyl2Yy11a0lTtZWc+sgicz5AHEqIrS+sU5bGNAhVIdIOq9JTxTtR0etx+OCYvf19BAolE9rYVTfC0cYBm/cxrcHdD6mkEDEB4R5b1Ru5qjas12uW8wVFUTCZTLbH2VrL69PXVMs1B7t7YB2jKOdMjUJLExgJNuRtbRpnqRVt24bXxNMSHO0BsjwlNSllXdLWNUqrkIYAEaj34dy2FucsZpNOaV3wffUO4S1FmlBHdYt3wXRd+AAluVoSFdV47fDKYWloqZFpB2IH1VJDmqK+RXDB3XRGVZecX5zy6jR4F5g0C53s9I4i7/Deux9ye3kOQK/I6HW7+LZhsZoy+OiYOg6Uyts7bO3xJVSrJXPnMBFKyHt7ZDs7NFJyenHG9HZOKTaT9zHZ7pBXswkvrq9Z3Vxy8/wzALpGMt4Z4lLB09+94sXykt5BwI511qUtOtxOFpg0572H75Es4omwLdPpDcV4jNcKnfcpontVR6UYk5J2+5i8i0wyfOzW0AmLsqJ7eo4qCqwK84/N3sPZBi8868WC8zdXzO5qjoYbuZgEa1BCI7xEopHxum8aeP3ZKZ/8+mPe/6Pv8ePv/ZjdjXtXqliVSy5ev+aLz5/R6pY6OjtP7m64WS6Z3MwRpeLB4AHDOBTr7R9CWmB0Qqc74PTsFReLQGEbHI6w1ZzJ1QWL2ZT53WQbg7S/t8eDR08YHxyyf3RInqXb74tCo71GKkWSJLjaxdDT4O8gNJSrBU1VBr/lOMvwTYn0Zkur/Lr1jUV2M81urduG97U2fCn5N3+p+MrfYlQ6faXYUQrdBqhARKksbB0AgcAgUEq9NbEP2/7W2UCViEMwCIkCUgqqpqWxliz+vxCgBCklqVbBc0A5iIMXkUOTN/hkTZJ4VpVjk4MmeilojUoTvJU4KzbBXVgZ1WetRSFQ3uHk/WQeuRlCEc3CLW3Mc1JS0u10ER7yPOflixfb9IO7uzumd7fcXd2SGMXLL5/xy1/8PLwfEekb3nF7O+H09SnjaGwspKSsK2rb0un38BKGgwBtlFWFQLKYL9BGY1u7VdEhxDa0wXuHawN9LjwWVHdKSJCGxHp0NAKR3qOUo20dZWtRlaONKhyfeIoMnLRYEYx3hInnULeILPuvXG3/vuu//NM/0u0VrFZzVMTGDw6O6HZ7vHrxgrZueHjyiJ3NAGu9IDUGhaOs15yfv8REKZFMQBddZJ5w8+IVdbNiL56jzuE+c9fw7NnnnF1PsI3AxHP0/OIVt7M7ZuuSZy+eMn3zml6EZk6vLnh1+YYVNS/nVzQdRR7xw/2dQ/qDI14nZ9xd3fL44IRmL2x73zx7ytHxQw5/9Mf83f/9f/J4/5iTOJUfDQ8RTqCSDKSKkFc4HtZ5VJrQHx4wHO6RmQuaqmSjyBetjTaWntn1jNurBfYkQEWZSpBeo2SC8wKHRMYh1eJ2StIa9gf7vH/yLoejg61Ev2zWlLMVk/Mbri8n+EKQxogdLxOOHz7BWElPdknynKwTBo3UDevb6+BmVzYc7B3SPQo3oP7hEOEq2ocnzG+uePP8JYsIQWR5B51m1NZxdnrK0aN3USY81u0OSQcjROXxbVBnEucbSgWvi7Ze01RrbF1vrxnpJXmaU9Z/oKzWu3BQrXW0mxwk6/Cxi92sTZG5x2Q3PzxJ/K9DbRgIibJN4HbCPT0rhiR6gj+AfKvIbto2t+F8SvGVtAGEwPqYlfB2kbUuMhPiQVIOGyPI5UCgxgIxElBIyrXA1psLpkNlYWVblDBoLVCbdFwVip1vAxbrCK3yJtgxgKOhyCrkVooMsFwsQvaVUlhrmc/mTG5CN1uWK+o6GKyMx0NePxMsl4FTppTcChBubq65nUzYPwiDuDdnZ8yWCy6vr3n4+BGXV1f85C9+Fj6jVnzyL79msVjw+J136A8HW/7BhvMg/Cb/0N/Tu+JuJEhiJcIK0tiVCQE6HHISJZH4LVZf1w1pqlEKvLRshL3huFlULnkr1vf/87W4m/Pw5IQHD04CjxroDvqMd/eZTm5JpEI4yzwandiqZjWbs7y5wc6vMW25NY/pdLqQGEZHB5AmSBQ7D4INoMw7XJ8+Z9m2JP0+ne4I0w3GI7PrKz44OkEozfuPHnPmHWmsereZYVkvwa5I2jU74yFHg+Am9WTnMXvjQ7o/HlAtKxbTOeVNEL1MujP2Hn2Azfu47g4Tq7iqwnkfiW7I0muS7XnefAettRiT0e/usD8+omO+YL0u7/FEH6TfwlvW8yXXFxPqdXTmK4J7lxQKZ2OIaGzKlND80Z/8KT/82Y8ZH+6QDArSbrieUpfTuJYszdEiwXqPjoO4+WzJ8cERHz5+j/XVjKa1NJHyWK9W6FZQaANpTj7uYYu48+0aZtMr3HrJYLSDbzyvIoe4qmpM3qHfHbCsasY7u3SHm+FdQmst5WpNs6rRwpClm7QJjXDQ7RWkRqIl95isUugk2e4uv259Y5F1Lh4wa7dfJu/cfXHcHP+v/Nxs+UO3msQHx1pjnMV4+xX7wvBThByvqMsX+n7ajfdYgvF2G02yNzStjU8siBD6p8Q2WDZM3R3WOZSJpGEZg99yh+kDuWS+rri9MTTrcEB7aRenNKuYcVWoBiPjEEoaEqlwIuR/Ou/CVD/CCS7StwITwFLX9VZlVjV19DbIEUIwGo84OAqdyXq14MXzF2glsM6yszvm8y8+B+D7H35A0zSkacJoPODZi6e8fPkCgKvrK6q2YXJ7gzaK2+kUHbf2r16+5OnvvuTowTGIcDHYjVLM3dPuBCKG8G48c0X0gwj/j4vikM0JltKjtMAIiakFTexWa+INCL89LpHogTWEoaP69hTZalXy6OE79Id9Xr0Kx/P89DVaJazmS15++YymXLE/joYtu3usbidcnb6hkzjKXs4i8mtXbYPwcPL+9+mO9rGtoxMVT1Zpuk3FB50OptujdYLTN2cATC6vuT27YWd3wP5oyP7wx9statPW1LZivl6wrpcsljN6aSjOJ51DdjsHSGFosgJdanZ6wZfiujNjd+ch1Qp+8oOfM+oO2C3CTbksU2gFkGJU0Pdv7CgFLYk29Iohe+MDCp0iPej4bbV4nA1sovlixfn5JetV+Pz9XAVPDi1wRiFyhYwCnX4ypPvBEVolCAmNaIKlKcHVrZMXvPvoCRc355zPr5neBb7v5GKCKx2Pd094dPKYjx5/Dx2LXmikBFoa0lRhhgU+i5CebBBSU9aWVGhM3iGNpkl1O2e8e8DDd9+nGI3Ze3ASzGyAunE4L0j7XfKBJDHplr1EVSHbGB0lPLapaGI8uRdgkpTE/NvX9n+lkw0Ftmmae6PsCHYK/L8qstuyGx9PuA8zHesE4wLGIyPTyW8LcsAyA7EgEPY3Llytt7TOUbnwc0PNAoLnaqRpaSGjFPced3TYYK4tofY1NuI9WaZQmaD08Pp8ycWVYV0F7qIyKV4pGufw0uFp8RF4FF4g/EbL43He/j7BInTbsS23rcVG6bA2it3DPRJtEAj29vcYDMLJzzNFVe6wni9Zzu+wtiaJ8c/KSJQ2WNuQ5wl4x+nrkBxcNzU6SbBtHYqa0cFEBri8uOD6+orHTx6RJjqk+W4RHh/ZCg6IGO+2yHq8UPE0S7yTeLcRf4R0XKlBxy+ojDh3qjRGRX9aa7F1Q11Hj962xrf1/cXwLVgXr99w9uqUxazH5Drgedc31yxmC+4m1/iqZFjkdOO20K9WdJTkhx+9j6QNIYwxEDFJMrQydEcHCASr5RK72cWkCabXx2lN1bR8/JuP+Yf/9A8A/PbpK2ovGIwykJ7HT95ltBMKIkJyN73l008/Rs1uub26ZboOW9vmqGFST7i6nJBnPawTnL8MMt7UFjzZe49OkZEbQ64zXPSTFk0KQobsOSkQOMSWOSLwVpCnBXs7++Q6Urvi8ZKE+mzxTMs1F9M71nH3o3cGIBW6k0NiwnW/cYorK+a3cyQKYxRVvWJdxmywVJNlBlm3fP6Pv+HV9JJRdBpTNbhljbaCXt7h+OiY3Ec3vBJa22JxWClwTQOxuWhlS6fTQx0c0UkMtmkY7QaTn+uLC4qiy97hA3r7+8hOd5turWwwkGlri2sdi9sFLpqEy6YmNWF3uruzh5aSRRSiqDwB5zH6D8VkXQghbJp2G9Pw+13sv35SJOj7UGQ3G+YdY0hwaBHjZPxb5PmoDPNC4qSgJRRXCEOrNhbY1jn02xphCUIrjJYoGbb13m6CFC0i4otWtLSyxap4QRmBp6FsWq7vBPOVYBODJpMUL2TogOPwbvOZPeFOvvnzli7g/uPHDlBKSZKawEmNz+70CtIkQUmFdTXTqG/HVwz6hvFgB6MdJoXvvRs8Tqt6htEG61pu724wieSgH7qktm3ZPzjAPDVMZ0ukVLyJUs/ZdEaeZbRNi98ER25UON4DbfwcQZC7kbwGGEdGnq9EOL2lfiEkSgvkxpxbNFixcQRTSHR4jg9/NhxT51pc22550d+GdXcz4fT5M45OjknjbuNwZ4wxmuPRE9S7j5C2YXoRus7b2TWjfp/d0QO0NiiTopKAHwpl4uwgo2pqpusKHYdb/V6f/sEBTkgurq/4/OmXfPxZGG5Z4dk72sdS8+L0KacXp+g04I4nj99nOBrx5nrCzfUFi7LZFq7/6z//A01p6RYjTo4fs17W1NFD4uc/+2tG6ZCOyjDW45cNMsbPaB14rLQSL++hAohDYuFJsozBzg46TfBS0mzsKr2gkuCM4MouOVtPWcawxKVv0M6xnpasFivWi1WgOcXf27Q1eVGAN7h1tQl/ZlR0EcJzMBjzP/53/wOXyzte34ZB4/puRj/p0E8KDsd7NOsSEWtC4hNaLLa1eCWoFmvKWegsK1uyezBmvH9IkaY0q3VI9QXK+oy7uwuOn7yPayzT88ttXbONB6dwDWihEdZjNpYASY6Wjt2dAx4/fpdB71fMYqx7U1UI2eI3Nixfs76jcH23vlvfre/Wf8P1jZ1sIK1/VcpJdMxi+6+vhwsknlTAMAJz+8aQ+RB8KKXH2bfgAhkMcoWSCCmweJo40W+9w0VTGIuPMt23WnPvUPgYzeu2MIMXFq3Aa0+lLCoFlYfXM4mjFRXWC6paYoUKE1dCJytkAPCBMOB6a7IXVG5fFWK8pfeKIgSwrsVJSRMHJ2dv3lCuSx48fMDe7h55nvHyaehovvjsY6Rw7OyMGQwGFFnO3SxGqdslw34fECSZ58HDfcwmEty2FHnOk3dOmC0WfPbZF3zxWcimHwyH7IxH1FVNp+iSpfkWC3PWAuKtrjwkUoTjJgLxGoFDI72gjjHVddOSyQCTeGkRii3Oahtom5a2dAgXTMjzTTeTpejU4ITk2yJHePj4hG43ZzTuMxht6HISbRsS71jfBUww7YTrwiUJ3STHyDQYmbf3ps5Zp0feGyDSLlV5y92ipBNNWQ4Pjym85/LiDbfzO4RRPHovDMVabxFGsa5XPH3+W8rGYVV4vedXtzx8/A6nkwkXV1doJanKMNwqb6coYUhWNbfLmtn1nF/+9JcAfPT+9yl0h9wpTGNRVqJMgMJWraRtA1QkNVElGHemxqAKTdHV7JwcYoYd2jNFHeGg0nsqQCWSWsPlbMInvwkR3aa1DHoDkiRFaU03TbaKTW0StO4FCbeSGPw2D8suShCOg+EeP/nRn/L07OWW5fKMlOXlhPJmSuoVrmooo6hmWS9pG4HJMzpFn8J06Obx9VJF0cmQElzdgHR0OgFXN0nO65evacuadl1S3dwh46BN6xwlDdInSCRSbyTpIIRFINjdP+K9Dz7i6OiE2xiTczO/YS0srv4D4YKAKf4edcD/a6jgfmotonY/FOJUwE4EwA8SQ4r9vSncpsgKvAxFFimwzm/jZ3xkHgQKg8O+9Vmcd7RNS9XWaBTS3RvZIMKAxhqHSh1JATIyQFTiaLVFixQvUqTOtibZ2qQIZQJPN95BtikNzuEQuLeGd28vH41xNn4L3jpuroPhx8f/5WMuz8/53g++z1/+/Ofs74452A+0k6vXBTdXFzz74oa6rhkNh4zGAZt68+Yc7zzdbpdOJ6RyDqNSzFq7tSrspAk//OgxIiqw9g6OuLmdczdbsiorCuthW+Lkltwcju/9SQ0fW+DCHAvvJdF7g7ZtkRpa1+K1R6UCFQcOdu5pSotdB56trzxNDKA0SqOyBP/tQQvIegm7h2Pe++j9bZF16yXt3S2uLLHCULYlWRKK5e7hO+TdEZ3BiKTTx3T7pP3wPJMXaGOol3PsYoXKe8iIaV6cvuF3X/6WX//6H3FK8ODxQ07efwIEqOvF6QuQkrzooJOMq2ngbf7zJ7/h4y+foiQgHNVywc1duJaMSdkZ7dF6aKoVB8dH/OVf/xUAvWyAqx1eKNrahZtkNGT3MkFlCSrXmMKgjERu1GCpggR8uSAbdRnsDeFzqCNLwCvAC6QQCOdYruaU0Tio283oFCm2teRpTpJk2HjunXX4usECWbeDkAajw/dJKomzDXZd0U5XzC8niLi1Vw24ZYMoG6YXl9j5mv39QFMbPTrGpB2SLEch4twmJpusFkxuz/Fti3CgVUKio8dEd8zN2RWf/NM/8xd/9Uv6RYGtIysBjbD30UvCuy0bRogQZdU2IZH7j3/8Y65uAo4/Xc1YVSt0es8k+v31jUV2Kzz4msFZpFmGE/D2AIv7ji5Tgr08UqPwkZ4SPAiCQclGgx/vGSLSib5Syb9qfOK5Jx44ZymbinVTkQiNcWLLJ/NxziOVRxqHSBwyix8kdajUYzC01uCEwcRQQ51kSK23hjSb8Mbweh7rLX4bvP2v18bRQESLxk00Dd7z+MkTfvCjH9Lr91BKsBsn1z/46D0mu30mk1ten55xtL/DB+8HTLaXp9zc3DKfL3h1dUm5nDO/DVPmL798xvX1BJMYdJLws7/4c/76b/4mHDWVMhzvgsxYrGtWa7tlF7RtyDxzURodbhwRmyJSvLxCOI9wNX6DydKSpTJ0ssJBKpAmDg4QSCsBRaIMOEkbDTasb6C1ePtv3+3/vddsseB2MmV2fUca2SGyqbGVQMounVFB3vXI6G8qsgKTpICgaVsa66ji57uZXCDwSCXxOqO/d7T9Zk1up5xfXjE+PObJhx9S9DqIiAHrJOHB65ekac5wNMYi+OSLIA/9p0+fs5gu6XRyZtNbKltRjEOxcMYgOzkHowNSUlh5/tOv/h8AfvTke7x//BivDbKbIdNkm5islUEkOoSHrkvqcoVfRJ6zb2iaNYvVlGo5Yzwc0MsMInZoKtGU1qKURkmNbGpW8zD8Ed7S7xU465FS453d0jqNMTRljfdQLVa0bbMN7RQ6hG06L1ivK85evObqLkicdeNQteXzf/o1ty9O2dvd52//4/8KQHZicHVNXdZUZUXd1FsrVt+2uKYh0wlp2sG2Yus1280GjIe7/Orv/p5MG/7kxz8lUTGfz0lwMvZVjqCY2kTat1jf4sqa4XDEz37xC97EMMjzq3NW03JrJvN165spXNZ9jYvXVwEC+GqxDexKTyI8uRTsRL/G1HlS4WOBDB6nG/MU6zYdlMP6MBjbaLFb62htECEYpYKhSXzBqq5Y1yWNb8Mdjfae+SU9yEAjctpidYvaTLdThzAS1wimy5Z15chijpdOshABg0ISiuymk7XeRW+F+5uA+H2CXOy8m6YhSzOOj48B+O2nn/Lq5UsevfOIBw+OsbbF2RiyqCBVkkEn51JGdVHMux8Peig8udEoPAc7I4aRn3l3fY2WgjTP+d3TFzx/9pw/++lPAOj0smAdKS3aJKzr9j5TzUa4ZkPE8ILW3xvyOO8QLkFbh3INlnCjkHJNmnuktni1eXK8wVqBdDJEfxiD0moj+GK2qvC1xX+LghRfv7qh+RNNmu2iksiV9BUitQhtkA7aqt7eTh2a9byirEqqukZIsTWGrxvIigKVGrxvSYSjiZ2Vspa944esqhV1YzGNKG+9FAAAIABJREFUY9AL568/HNHtjpjP55TrEqk0jw6CPv/do8cs6prz63Pm0ynCCHYG4bHeYEC/N+DR8QNylcPas7sbhqHjw12GJ/sk2uBwLGcLmmUohr60NOuaplzTVCVaQZpHFosGpGOQZ8yynOPdXd4/Od52sipLaZ1HGo33kAnDRaS+/cs//orVu1MOjo7Jix5N3cbWF7KOprINxoSk2MYJmngdmkST9Ytg7HR7zXyx5NXvwk2mWc3oO8H69TnLRUm/lcxOwxBytztCRHN1hEB7thTTRCZImSCtIHEGp2Qcz0G/1+PDjz4CV9Pr9vHRuBsgTQxetDjnQi2Sls3WSyYOmSmUyEh1wo8O97apuk+fP6P8Xct8Nf83r7VvLrL+7XL6TRxHsf0pCMqgTApyIdjZJMR6B+Le+k++rQyTAq0VXkVLw7ded9PHyojZKim2Hdm6qmlcQ5oqskzhpQscW0AZgZUWbzw6B1eASOIWRjZ4YLFumUwt6yqnEzuW4DEZCqyKr765R20CGaUQvwfEvvXXLcFbUDc1iygq0FqTJAl1VVOXFZlOqMuATd1OJlxdXKK1Ik0MO+PBFstdzufYukYrQSdLGA+6DIeBOrS3M8RoRd7t8vrskt/85rf86E++BOBnf36AE4LLy0u6gzFNY7dOas6FLnZj6h3w1w0xLW7lvEB4gfINSpTxPK1JMotKPUJZaEA2kd7VSrwFpx0+c0jTbg15pJeI1uC/RQYx66kiTw8psgPKVfjMzWyNax2IettKyJhLpoSGVJPkHYwI12waGwg/m2ESTWMb7qZTlFFknXA97R0N6O/scHF5xnw5p23Bx/A+1wqKrM9qXqO9JzcdejuhWP75D/+M/+3/+N95+tmndIc5o9GQNCrMqptrnr54gZ8uORgf896jDzg+DpxrLxyXl+dkQuPWFavJ3UZNTpHmGAQa6BYZJlUbHxesq5E6uN8V2nAwHPOj9z6giq85W8yZzxe0bZjq23LJs9nHACxO3/DoyXv84E9+zJMPv8f+0YOtIqqWDjXsREglwSjBJshPaInDYtclSZax0+vTj8WyWq4xvmV9d0czXaBNF7WM6cBC41qHVR4vFdIkW+GLlhphwVuHaBxVteI6dseDcYf9o32k/iFFv0dlLX5j2m3rQA81Ep0l6FShNjhvLpFJkP5TO1zbsn8UmqfDowecvn6Dl/92A/HNQse3C8mWvO6/AhW8DRwIAnVrM/TqK8Wu3hRZHziYm98r7pm2UkqUlrhNSu1baIHcqI9EYPQJGdJtw6/xeAkmUZhUhQTZ2D556bCiRRhP2lHIjsSa6ELVlrjGcjf3rNYiwAURk1U6QcQONiRChPcN4JT/Sh//ew6uAY/2IITEGElVltzdhoiOqqrJsow8zzEmULtm00i8nsy4vZuTpoa6bqjrlusyPG82W+Cco6oqmqYF72k2kSh48iwlSVOkUtze3jGfhzvzqixJioS6Du5JTVtvKTvOtVhnt+q9jXgAIr1rO9dzINy9UIEGk4DRYbdCa9m0Cb6JN57E02YtSpZb74K93ghVJtjut6eT3dt5h0T1qZaechE7dQxp2kUnGqEkMtHB3QyobY00AmUErWuxbc3tPJy/tmlxWlE1DbPFkt2D3S2HVhlJ0zb0+yO6/RFpltOPWG6RFeg0Z9jdx1Uti/mSOqqTdvIBB3mXd4e79Mfd4Bg2D/zSu+UUlObpbz/hIn9DJhP2h5HWt6wwo32MSjHWsz8YUZhI4neetmmwtoW4qxTxxpuYFC8t08mE0y++5Ox3T1lf32yjr5d3d6xXS4RSCK2QzrOKYoxPb6757cvnfHb6gj+9+kv+9j/+LxwfB3GESXOkNjjradYNdt3gNsqtck1blWgBuZQ83tnlMu5uJ7cTmsUUU5WIpAujKc1N5KaiUEqiTKSkObn9LloLwnpcY7G2pZUVMjZX/y9779VsSXae6T3Lpdnm+Drl2hs4DoHRcAYxokJzMaF/ol+okHQzwVHIzAyNCJICCaKB7ka1qe6qOnXcdmmW1cVauU81gAZmKJHqUHReANW16+yzc+fKL7/1fq9RM4nbOJ6++JzPX3zBv/jX/y33X8vFkmDQpkUZg9Qyjy1K4Y7J4XtLCiNh9PSrDTcXmX65ud2gpOK4KMd+2/HNWfXfHt8e3x7fHv8/PH43XAC/Q3Xw24+pr830LcNJGW5VKZZhVIJf64VlSTSYiPyvpi0IckBjEiLjteIOk5VaoIWgaQ1mXiN0YgKrx+AIwqOMIBkIypF0MfTQgSQl/ShwUZJEhamnTrZGFDSWlDvrICc1lATujG0Qv9bNTgkGIhGCR0jB/ft5G1fXNeMwcn5+L8uBg8WVrZHQFfVsQfCeJAy9jXsowYdsNLPbDTn5QZl9t2NdQMjswbvZ9pye3ePBo6xvH70nWUvdNsWse6KeUYw+sp9sCCEbsE/DRGI+v5hpXYk7s29rR4xOVJVEh9wFTQOHGCRSapRRpFoRXWQsn9O4hujU74xN/qc+3nvn+zx69Bbz+Qki5g5RK0NV10QRceX6OJevw27YUi8qtNDYMBC9Y/D5NSkEgUgUORTT1E0m38NeAl6ZGqk1pmlZFHqXloYYwVmP3VnGbdgzAZqo+fEf/Igfvv8eQVg++/ITnheivttuefDmmwze4+zIdrfi2bOcjFDdf4N5XWOCpEqRVipUyelyw0BKCaWzW513Lg8wAYRks1rzi7/9O/7Dn/wJH3/0AUILfLmfdtsVgx3RVQUh53pN+X2bZNluOz75v/6Sj65eoI4P+a8LDHHv9D61MITeIX1CxLRnNERnid6i64rlbM7r5/f5opjnWCR9SGg0FRrbO8J4F5YolKHvR2yEJPXd8F1kmXgULmucZpKz4vUhqsR46bjYXjEMlj8+O6A9yTsOrCA4CGHEuQwJ+JIb5saBYIsYJAS8d1x8kSN0Lp49x2iNricrnd88frfiazJega9Asq/WXcHdtn8aeuXBFxwZzbxUxGrCANLEDrhj22Z3/lwEUsw3uUjiK79rUluVX1K+0OxuZVqDWtTZyjDkRRrGCBrMQiFmIOtEKlITWSeS0vRW4aNG6GoPF+gqF9msWiq/S015PjJvq6d1+WtPoFQ+Z349Fa+C/L7trCXGHJ1jrWXRNLzz/vcAePjwPmPf03Udth94+Og+65Jbf3B8gxtGrq6uMEZzdv4AX5Q/zeyWYRxJKJp2xrvvv8+Dx3n7085n9KPP2JgAY+Q+gNH7iIh5O5Tx2cRESksiFm8Dj4ielML+941uxFQSY0R5CN0VWYFAaoOqQVYJ6yGUIkvRhX+TiuzRwRFtO8/BkcXuL8TEaB2RyOgtg+/pbS7APo3IdpkfLHiqmdm7qGmhid6xfblivbnlxfMv2e3KICRFxr4neE9dt6QkePQw82SPjk/zgNUrVKzwXWJznTH8B8fnvPXoAajAy5sXxGi5KtiitSOj7WnnS+6dHfPuO2/zxoNMb7p/cEpyDpxEeZEHWuW6yyjwIT80o0iE6PcFz252fPTRx/yn//Sn/M1P/4Z+3DE/mhOKErCPI1QCNavY7rYMg0OVwtIuWmQTud52fPLZp/xP//P/wHabv7d/+2/+Le8+fpu47WhknW0yCxBcVw1WSpTMZkoHx/c4Os/rV7eHxF1HlJGdkNB1ZfwKu6HDLCRWRrwWCMOdYUtlqGqTUz+0RLUCWU+pLgNnD8947a3HPPnlR2gVceu87e+3lmEzQCBbfYZX7/MsbdeqQtYg5u0+1USIlBlY46QZ/c3j9wy+SkXcA6mvlsZXodpXEdqEgr0QoS54Zj3h3a8U2KmEi5hFD9lpi68SGBKvDGjyz0wT/UgElWWy1Dn2xE9dV3KoSqDmGtqArBPRTLLaiJSafpT4qNCmQZsiRlC5u4iUzlu8csYlgFCIwqP49S5//7kz4VuQE2TvXsy0Lu893ThQN7mjqZoGQiISUElQN4bzLLfG2gGdBOv1Gh8cJ8eHhIKTtYtjttsdvfM0Byd89/vfp53n92xmM1CB0QZMpZFa7CewQiZSVASXh3STYxlkEUeKCaKDZJH7FIw8+KsbnYclNvN0pwKcUoOQGiFzlLIkEUtsjQgF3/4v3Rb9Ix63Vy959vRzDhbzfSKrkBJNxmO1kuAjoQg4Zsuag6Ml1UwjUn54xULbGXY9Xzz9lL/4s//IMA48//LpHc3QB7RUnByf8vDRa0QPK53xdkNNU8/RqqZWkmV7gDoovE0VaFuBCz3j2HFycJyln8DqZoONn3Lv4UPeePQ27731Do9Oc3Gai5bKKmTIHNmxH3LaBbkhcVIwxABaYQ4WiDKM3Fx0/P3Hv+Inf/8zVsFTLWdYo3Dl+nbe5bVlalwaGH2iLfOWxbzl0ECVBLeD5bNffcz/Uniyj07u8/bJIxamwcQp0aR0SUpCCgy9w4iKannE4lFmULiDQ7ruJucZKoU5qunbwo6ZQXVc00hBqgzCmP09mqOdKkRMJB/wfmTc5YIf04DygQdHJ2xmM158+AHtWzlmfLxZM247jKowVY2pWmSJVlK6RYiKSA4/vXj+Bdsiq/Xe4p2jbr5eV/v/yOEz15SvjsAo9K0GwYk2tNMvEsWzoBC9cuDiZBEYczKkyI1jKUfliykSqlSAepkdt/KPpTwIkwmlEjF4xim1UniUUYgqEVUgSE8Sk2dqKbKDyEW2bpGF3yXQuciWQV2YyALkLjU/J6Zgx68Wjen8494T4NcYvikHuTiy361zU7eeiUKz+YxhGAle0BYF2nJxhEiJ5vAUUkQrSSgT39eaA4LPkcQ/0JL5csFm4uUKialV7kRkfhrLciJSimwpOT0nEnc8Q1H4sxFS9Mh0x5MWQlC3Bh9SjoRPd1aHMpGnui6QfIIgmCxqZSCneopvDrtgs7nk9voCF95Gl8GQUhqlNaYyoGt0DXoazatA6HsCCqMFY9/RbfOQ8frqil9+8Lf87V/9BfcfPkZEv180/a5j1sx5eO8hrWnp7EC/ydeorztEq6CWxAAaRV2ohCRL9B47WlJIVFVLXRqBSmqGbUd3s8GvO7YXV6xdOYfmCK1mOXerauiHAV/M0sWspZq3aKOzLagWDMW0+sV6xc8+/ohPX7ygXRjaWYvzI64UxCBqRicZbgf6ARA1UhQTGSuogRMzQ8qKq37kya8+AeAnf/nX/Oidf8Z3Xn8XnXQegJUmYfQOWxz2HAlzfMDxe28CcPzP3kO8PsPMKvRsxuHZOYffyVBY8/CI+uQIoRRJKWISjLuihhsdonPEweG2PeNuw2Az3UrXATvsWKiKNx8+Znv9kuoP/wAAQ4USO8ZhxWDBzO/t/Tx8DAgxIybDzdUNf/6//0c++1Vm8YgUEES8+wd2srLY+qV0Ry7+atl4ta+FLCvIUMFCSc6MoS0/oaRE7ZlPMt+gkwQ25aeuKlP9xJ3KKlGUVCL7x9ZGo0tu+84OWSFW7vCYHH4ad+uEkL4kIzjGODJJl0yMSCXYdeCjwtQ5HjifYCmjX8VEygmnLFAQfKXIpvTVbyGfpNh3vtPfRVJ2Niu4c5xoHylDC6PLBPck2XdQupoB2ThdJMnOun2X72M2d61aDUoweLf303Uh4JMojma5cE4k8Bg8MYa7EMy8RSjnOlG7AkLEco3LjZYmp6+ETwKlJVLdUexSCLjBQhsh6H2ksvP5fb5BaAHzhebRGw84Pjsq9n8wqX2UVkgjUQpkYbJc37xg7DYsD2fQGLa7NUOZrg+7LW7omLU1InpkjKgiAPBS09YNB8tDKlPhZdhn1MkkiD4whoFxsNjRFskzIDwyeELMQhE3BmZFRfbg4JTb9Q1y1bP+9Es+4C8YH2XxSvO9H3HvO6/RLhZUypBEwJanXYiJkCTWZWI9MXBzmSGID/7u7/nsyZPceYsWITTD0N2lfqiWbvAMw4BzAan0nQNbdMiYSsqyZlFpYkmB/eTjT/nlR094dO8xjcg+tqHgwKJS1JVGC4NsNXVbcfq9DKX8gD9mN97kuUvdcHh0xr2Hr+UPYwwoA7pCJEkaHf1tvhab6zUqgnABMTpECDSlgTJKsDyeI7Xk5Pycrl8hUmlKzMhufEG3W9N1O27Wn3OwzPOUxfwBIg64QXLzxXOeP3my/94Wyxnd2HF7e5d08uvH701G+OofvvraFDszUR1EsTisgWOtua8Ni1KIzL6gRKagxKk4pRhzCKJIJR77bmuZUtjXLKUkWut9JxuKiXfOVw/Z7ak8DaQWuGRxPkvubHIopsWm6PrEtgPrJcu6RZciK2VWtGgl0FqAEvtiKGShdvFbRAivHEKIIpq4C+pOMe4TFiBLlqcHglQKfGAYRuq6yZ10+bfj6GiblpA8dhgZhgE1KeW8R4jEEDKOWIxh82ulP04i/9oYAtFPxuuBUIps/mrvHgZxqrhC5JhvLfeKIeuy4kegSfhsbzelA2sFPmGDBw9VzOGYAKPPcuj4DVJ8SZ1YLFqUYJ88mpKCGPHDSCTi/IifhltOoLShpkY6QejurqcSoETi+OgIrQ1SCJrSHc9OZpwcn3F4cETbzJBJo8tNH4Jnvb6FKAg+ZSHHJNiQEl01RJdY32z58slTQnGaOlMLqtDDrYcnL1mtKgZXhmnvBObzOaO1RBnog+dmW/DhCLU09KstWkClBbuLLA/9/IMP2Fy8pEJAyHL1JOTe4nSMkSEERiKeSPQWbOGkS01ykQqJrw1q1jKb5a775eULfvp3f8OPf/xHVIcNRmuaNivXRKtJMmL9SFKQasXyUaaivdP+kO3uJqcfeFjOj6jI57i97JEyUB/oPOMJElGgiGADWimatkLPayojUGUnL6u8e/N46CTWbbn8LHek43DD86cfIvEYpbh98QlDnVVdy+/8mORbnv3iC559dsFRq7mp87p3tqfbbfYeEL91rf1nr8pvj2+Pb49vj2+P/+Lj9yQj3Hmh/jbnrVRwy7vX7pgFx9pwKCXFkwUlJYFUjFdK1PikzAzZODqmQEgCIUwZnwFC5CGUTNlvljsq0BgDJkIMiWADzqd9syiU2OuRZSqm3ntIULLaJLZdZLCJw6pGFZNlIRVSZdxNa0F8hV2QSmcq9iwJ8ZtQAV/tZKevJgmBkFmsIIXM5i6lIzXGcH15xZdffIlSirquEYUes5jNWS6XILJBC4l995iFBAFlBFILpJYINcms1H4HEEPMcMGU0+YzHSXDBrEEP05dbTbyRsj8d1ISCi43jJ4UdfY5iJIUX8lbMwoQjH0gukStF3szH4nE+4CKX9/9/1Mf2+2GvusYdh1jV9gTvUMkidFmD5moovhatIdoI2lNTYieWs1Q+y5e8OjRa9RVg3MeLTW6OJAtl4c8eu0N7j96nbae0W92DF3ujmNMIBLtvC2uVXepH0kJ6rZmGBqCh9XzG/Quf6EHg8QMkrjx1N0K4xdUjzO2qjc74stLhmGkmi2IIVHt8vlpNJXKSiipI5VQuDLA2V69xPc7hIhY7+h3FqEkfWHrbMceG0NWVEqJs46Nneb9EiMUWuSopAmyArja3vBXP/9z1OK/p318iEYiyneKUfjoEGOeKwwpkcosYn50n3GMhKQI3uM2iV2ZN4w6oKol9cFBZsPoRD3P16I5rmhrQ1MpJHm3MXQFr73qwUfGYcft5RdcPX+CDPn82zpy/fxDtrfPePDwIWfnj+m6bMhz/fnPqPQRz598wM/++ufMz+7z8GEWH3x+0cDz7Ov8dcd/xuCr5GpNW+bJejBOMN4dfqkAnRKNgGOjaYXYD76y2jSVrWmeJk3+21oIlMjsghhFYSFMZNhMF0pKEJC4KPfmxSGmzFuzieQNldEZCyTDAMJrxAh6lIg2oMrgSwjDZgedTXQ2okyFmipwyrE5QqqsYRZpr4bKD5tJDfYqp60MFtLdv4sxsxD2ht8lOFKW+Jzg7tIP/Djw8sVz/vLP/gxrLdoYTLmBq6pmsZhjTMazZm2zVww9fPyIpm3wIUt9pZg8wNizHBJ5OBVD2G/Xg3cE77IBkA+kqLKCi8LYIGVsFiBJpJwMmCVKVghhQHhSknuXNqWAGLHRIaLMKb7FIlEWqbFO35wie319y/XVLQ8fOiTFX8MYtNQYXRUjE48pBUGolDPeokRJRdsu8eRi2eiGd96tees9gVSaMFquLzM1SGnD+WtvcHjvnDBYZNehy3XXpkIqQztf7NWFotDCRGVIPhJv4WC+ZKFqxk0ueO7FLWq9ZmYDrUiYdo32ucguawibGw5my0yXCgJTBlSVqBAiYaoKKo+sJM7lAmTDCLUghkRvd3T9iKpr+jJk3Q4jCMFsrlBSIQnYwlvdBlhUirZW6DYRjdgHr27djl988jNeri84b94mRIEb8/eWnEQZjTQtWgm6fqDrCpujbvBWIILCIBl2A7FQMA+ONCn22O4GGxwu2n0moJ6B0Jl1FKxjWG94/knmEN98ec1wu2PcrojjhuvnT9jd5qTit7/ziLZVrFdrrm3Hct5yUnwkxu0LVpefo+otwrzgyccf8voPc9Dp628+JIjI7Wb7tWvtd0eCi0kg8AofcpLjycJlFXf45BQ50xT6VsNdIUWUiX2S5V/e4XMSMpWoGLCkCK80slRGoSvDdpQgVHZ1IlulSSFRGEQyKMCXhEnhKlQyiC7mNNF5hSxFNqqazilGEqLRmLairvONppRAKEFSkihTxp2n7niyeuPuGTA9POAVLm8q58MrU/syvJNKZdy60rSTvjsGzk+OOT08IMZI3/f773TYbnB9xzAMWOsgJR6Up+bBYsbBwWOClBl7TeKu0MeYebAkEpNsdn8id9f4btRY/jsiRPGZFYCQ1FXej8zaOVVt0LJG4olRYMugRoqAFAmHoxIVyfp94VbFzUx8g4rs1cWGTz9+yvvv/ZCDeSGkK1V2GgolUsajy0cOwWPHERcz/u3TSLEiZTmfc3B8jJrNQEpWV9c8/zL7AdvOcj9ln+IYEtXhAZWaXLiaPAxOYLuBYbvBF6musy53YD6wbGe8+/gx6bNcENajxztPlRx1CuiwJdr8c/Nlhamz/DcSss1RaSCUzGGWCUBD0jCmXNT6OBJ0oveW3TgSdaIbOrZjXhcuJIyR6FbTVHWmBMauvBbYeo9RAeNzXJWdsFwXMJXg5x9+yPL0AX7MJjUA88WCs4f3MbMaUmLod7x4mQUXjx+cszyaQ6Np65oY7mxS27ZFqEC/uiSpnGQ90UGttVgfud0N2Nst/fWapx9k3PXqs+d01yuGzYrz+4fcO7tPKPaRT3/+hLe//zqz2Qmjv+XpJ78klHrx6I138GmH3K353h89hp9bPvr5nwJgjt7mjTdfJ372+deutd9ZZE/Ozojek6JDTjlXhecaUmJ0AedDjhYhswRMYRacakMrXun4xJQrJfZd3Z5LWBRIOfZblfTX4v4jQ94Ga0W0IJXYG/vKYiyjpM6mMj4SijVb9AIjNMIHpHPZhm/vjatY94khgmkbmtmMqilwQfG0TTJHgEtAlQGOiGJvrCJEZigozf4cJ8l/ipSt9J2mOqYchZ5iIMlMabu+yhe4rgxnJ8f8+F/9Sw4WC15eXlKX0DhrHVopNtstwXuGfuDwMHey989OqIzGpjwgz51nKfiCPStCSLl/OOZLkRA6Jw77FPfG6Pn6FjBIUMqvJBSWgKkqlDKZvB8VKSRcYSwYGbK2vwJTgd/5knh7N1gT3yB6QVXPefLRZ9z+yxV18RuVRKILiCTw3pEjPIuC0I15a6sT9bzGtC265N17n0AYpKxIUpHQDENeo5v1mu76lnRymh+cWuFKfHS33TGuN/hhZNz27NY75k3+LFXVUBtFVSuOTg8J33mP8Zc5XPOLzz5lFAKlNbN2RjNvGMbcSdnkmLcGpyKDGwgoVKF+KRGIybP1Hd71oOF2l7fLN5sbhmDpvcUmz2w2ozaK4ab4MwygNSULDJIXe3/gEGFIgsFLhC9rMU6sIsFsdsAXXz6j324gJJriMS2SAz+gokCJyPFMIM4KN5UN8yOF8C3RRobdyK74ctxevQQEdZNZQaP1dAWC6bc9fnTcPn/J9uUljVSE4k0Re0t/fctudcP5vUOGbkSY/H3X84pnz9eENDA/nLFa3bD52U/yuceON979LvVCsLq5QlaP0LPMJvjTn3zE+Zt6b9r0247fXWRPT0nBI5LDFAPbujY52C/Cthu4XW/o1vlCMQ7URA605syYnNk+MRBeoWzlQ+yduLLyKBZ3rZyPOT2ZfPLIIEleIYRGKrFP9BQyoaQqW61ISv7OLDgWmlReEQgcU2hcSIJNlxi9oGpnmKZBT8F3InN5Y4rZQKV0pZApbdOnFiKhSrHcT/RlpikJrXEuok1dsErwfgTh8/ZMSZCaw9OM67hhpKlq3vvO+8zqmoePHrJc5knqrJkRguf65obtdksMAV1w10hiiHfutq981HIqorA1Qtk5TGKELPdMUqFkznb6jeHoHuqQlJ0fTdPQVBoti5dTipSmDFlJDII2asxMI27v3kpNa+AbxC44Pj3j6adP+fzTz2mKA1vbzOk3HQgwTUWzaGia/NrSHGQnJgXSZEZLTBPvGlQ1y9zgfiD2llQeTH70rK+ueaY1u+2OcRj2Dx+jNApJrWva5oAjvaQtKQbGGDCJJC1BOObLlllJaVAqNxghQZcCg+3wfb4Hb23HspIELXEiEETClm7V9lvsMOB8RzVT1G3N4b0sY5WNxsYRF9MU00djDKcHeR3u1JDphzuPlZI4JpQvVDREttysDU0lqYyiLjOFZSt48PA+81pyejQjOMe8zedhpKARO3SwBO+R/Q5VwiLX2w2Xg2PYDrjO4XaWblX4xZue2sxYLo+RpqazI8+eZxvE9WqNUpIXn33O5dOnvPX6Y15/nPm1ZiYYRYc1I+3ZkmG34eIyC0Pe/cF7vPHuY/78f/0f8SHDRKlgzk9+/rdsbp7z2ttvcnbWEuwVP/phfk/V3OMc1KmRAAAgAElEQVTf/W8fcr3+B1K4hBBZBSM0dTFnbpoapU22QBM2e85OW8YUqSQcas2BUjSvSLdCKbL5ps843TT4yRBtzI5byiClxpWCYJPPw6ugymsQyuJOeWJTdPgCVLyLN5E57kLIBDJmJVMpJIGpyErMskHpO8VIzAmCxFj6uFf4sIIMVwiZB1tS5RiP6XUZBShJVc3oO4sPZOcsMv2sqmuMSWgpSUHsaWO1aWiqGq0Uq5sbzk5PaIpkUSCIIaKrhnqWhQ5V6XIjgHXIlPa7AVGGdCG6bCKdAtblEMM0dZI+Fensq7DB3Z/E/n8Tkvy9AxweLFjOBVUwiKSQUqJLJLjS2bS6jhppZElDLZdCZBhjL7P9BhxNXXN58ZJPP3nCozcy//L88X2Wxwt0W2PaClVppqTiFCxCCwI+b7mFIJUiE3xic7vDDQNjt6PfddSFpjWrWpL1xNFRC8FsscjbdrIc16gKLQ2EbPs3CQSTiEiVnd+iTKh5TXVWEhyOFgxuy9B3VJXi4OSI+n52vQpNRXW0INYtvrc4FxHF27U+bNHmjLrW2WeZyHbIHfDh4RFj5/E2kKQg9oGYEkuTOzQpFIN1xD4PqCulWDbL8l0qFo3icKaYNZKDkyMevJ6/04evPeaNN9/i3fff52QW0FWNLR6u43rH9bOOcdcz2oGu37Eu6qzVbsdq1dGvHf11z/Zyi7fT+hHoqmZ+eMjx+TnVsuX/+JN/D8Bm2PLaW49J0fFs/ZRmFbn/WjbHF5WnPtCMPnLx4jNOzu7x4otcnA+PT/jxH/8bvvvdf82HP/szYgXzw9zlhn7H048+Zre+4Ls//BEnR0dcX+bv7b/6wQMqrfgPf/nB1661bylc3x7fHt8e3x7/iMfv7GR3uy2KhJER4vRPE1IFRufohwFrx70/pElQidzJNmRTmGnWEaasrpIs8Kq5SiyvZcmszFv2gvX5lKfYOtVUWhDx+Km7KO7eoXii6qIKg+yToCYlp0qgYo5BBnYD7HqwTtDWLcpUd+IHAFGkp4ASCikKmzmprH4SInsmKPL/T52uzPQ0HyLamOyRW1RmUoSs5y+qLymqvZpjsVjmqbbSjK3Lb5rk/vMIqZG6Yr6oiNz5MxijEU2WMEshcM7uB3hdv6Otavp+R6qaTNsKk2MWBOcYrcUKT8TfRalHVah1xVMzJVLKeNdyJmh0RDhPcA7r2Od4qegwJuCjR0VBI8z+GgtB9qew3xxM9ulnn+FDz8WLL7Dl/BYnc/C+pHQMRJfwJb1iIsyPdsR5j/eRoQxw+nWPTILGGIySNGiacmsFqVlUNYezWcZ5S3glZPgpD0IV0SdCTHt/V1KGwEY/ZvrioqF+kOGl+VuPqc4OUEqyOD7m6PVHLCdjoPN7yKMDpKmy17BP+52IEmY/uE3Bk2Lk+CQPUR+fv0kr/woXdyihWMQFlaupRO7IKy1Jc49WgrY2zOcthwVKODs94Pz+EQ8eHPPw4T0ePn7Mw8fZsEYpTbftsMOOL/7+p7jB0q8Lfrzp8duR7cUtQzfS9SPrLne5fYpcrtd0vSclnQVK5X6JIdHZHi8SJw/v8fp332Fd8KlPLp/QnGvOTo4ZGbm8vWLXFZqW0sXcyPLph3/H509mHB3mLpcRfvWzjzl/8DYiBZ4++Wu2xZBnfmRIqeLiyxtIH/DWW9/lsMn5fMMw8M+/d8rs4Ptfu9Z+Z5G9vb5GCTAy7qksWmuE0rgQGazPOuTJ+FfcMQtaAerXiqxgYhbk4rGX1VIw2CQJMZuquKmQypxwq8qQKeCy2gj2stWUE/8y3DDxDGPKAzQZM/1GJ2Jx/9n00I3ggqBu59RNi5w4jzJTdO5YBHJfgEMx8FYFQgiiJDzIOzgh+cx/rOsZAomb4rFSQslUKFASJSqMnIZbnudXL1BJspjP6bY9XSqTW+doZi0uhIwJS4EskQPG1BkeKZ/ZaUMq+83l/IBa5Umw9UNxtJ/w6phDEYcRoSxCO1QxH1EuIi04BFFblEh0XZ6UR3uF3TgO5A6XBgYvGGx5qIWIkoExBBqZgxqVmFR+GSLy3yC44Iunv6LRFdvdJdvbwgQYbpFC4r3DB09MkW7M29ftbkNIMfN9dY0xc3TKcM/JrMVIiZYZfw7Bsig4r++2uH5g7HpcsAil9mvNp4gLPt8RCaII+yFrSFkG7SsQWqGPlxy9nSlFb4SRWihmszmzwwMOzu+zeJDhgpPX34RmRkJkh//APuYJJLYb2N7cMq63JOuxxX/hfHHOa8ePWZlLtBKcHh1zfLJETjaf0dHODOfnxxweLzg5O+TsXi76i2VLWxu0kDlV9uIZP/84T/SHTYezHiVrgodhN9KVsEi77kmdZ7hcZ5Vl2yCKZP7o/IQNGz55/hSrFWY535v1t4s5gx65vLnk4ssLunZAzMo9WAs62+HDEm0MXT8wFlrY/fNTnLrF7la4fsPVzXN+9OOc8vv6H3wPsWhITc3bf/gj0CMf/HUusv7aUi1rpK65ednD+AkPisT39P5D1sOK1x5NZNXfPH5PJ7tDpoAk3mn5y6AnCUUSmQ9pSoNiBMyV5FjrPbNg4pje+cjyqh737j3J3q0+BFwKRJW/0LrRLJczfNBFKhvupIcq01JEGemLJPfvGVPMZGQRkTohTNoH2HUbgfOCEBVNO6ee5bRRAKk1Smd/guxOFe4sAmMEqUlC5u6iYJxTCKEqBVCrCoQkxcwxBpBCUxkK31Uikt5r2K9eXvKTv/wJTz/7nJPDozx0mNgOQlLXNT5GhJLMFwteezPfbK+//RbaGHo/Yr3L+N803IuB9bBBS5Vt2oRCyjtZbQSUCeiYctR6KtZtwZBkHhHmnCNLCLnziG6F2/bI2Q6lHWiDKCi4HDWjH/DSohYa4eP+OvsAPhbJ7TfkWK1eUJ+es9vd8PJF9ga9unhJ284yfziG7DZWLn6tdZ5PzCuUmqHELM8BAOk9kkAMju12TYoeU9ZaipGu65CVpq0aXAx7H2FfuMtKaow2JYQwfz5PItWS+qhFzwyL81PqMgx9+MYbVEiU0EQh0U2LLu5rKWjsxoHSmKZBCAhDftLb3Y6XT7/k8umXpGFkMWuoC43wu28/Zvxv/jmr6wtiGjm/f8y9+0c0s0LynynqRnN8ckgII0Pf431mHlx98ZRus0V5SRoifu0I27KD8xIla6KH3W7A+oAqQg18QvtEIxRG5ODOWHyUhRswDVjTs5KexUFFV0QFffQMfsRVYNPI04svaGcZH45J8vzLC1IXsINjHC2bVV6/8r5ByYbZ4gQXArNDTT8ZAJ3NOPv+e5w/uIe7fsFjvsfldebXXnzxIX5tWRy0mKbi9nrDbpcfIlZJ5icHiGKJ+duO3z/4Kn9+dWqd+aDZClC9ogQzQnBgDKemyj6yImInUxJZKE1CokThHxaXm1yI8rQ0xEggMYlCmnmNWrT4TcgWfcFT1kVe9IV3KlLKmutpAccAMSAJKBlBR0S5uP0osUGgqgbTzHJERpnYZ+6tyOcXAi5GfJjceCRCJWIRT6gY8BK0nHiIGiUy0C1SQEpJXazkREpYO+DGgNYVtVETIpDzv4zBDiMbuUEKwVAW22q1QkqJDT4/pkoOEcD9xw9RWtN1W3zwpCbs8+4TkWEYadoGO0wUu/JQCAEXcgRNEqCUQkxDSKVQSuRhWrn+vhhXxzDgx55UueJrIPbnrtEIoYhKoZW8s6yEol6749R+Ew6lE9Z1bDc33FzlyfA4OGZtRaUkQmd/gyRKZFGssqk6GqIkxrQXWzhnUSoiVWR+NMd7y8sXeft6s7lhLhZEJWmPjpDeEfvyffpMF9OmomlyBtbEy1VKIhuFbHMisEgpD1aB2AfsZiCETB+LNiBLJFHletQm0i6XzA8VMiVc2Z4Lb5kJy+kcRCVRDKQChzy8J2n+6A28P0VJT9MqKiMYS+x3iCPXl0/ZXSR2ux273W4vRlivd/Rbx6I6YsEcsQmkXQkJFRVaWXyIjNbCrGa2zENdby3WbhDRYWSFtwO9y79vWCdClbAqsI4D9+4fU6fMhAjWs/ryJS/XG44Ol9SzBcuDvO03VcVu27E1LUZXrFZrros3c28tqm1R9QFR7LAy8cUmswsejGseLzTN4zMsW+yq4vS9bIMYpOfy8yfYbUAHhzCGbbk/f/nkYxabA84e3vvatfZ7TLvv8KO7v8x00yQmhVPcV2AjBYdac6QUM5k70+nGUtogKOIBqYC7zkaKDCuElLsqCiMAQNSaZBRIh48OF0eqPXRRQWEqCFko9VMia4qIFEAEkgqg0r6QdFbigqCqW5SuCrvg1fl6hhtijCR/lz3vk8y4qgOVYiHgg58KjTQQLESFVhVt0+y39rv1lqur5/TdhqPDE5bzI1LZvhutef2112iritpUpJReKbIHSKXYdR3briOkyHyep55919Pbnt4NGGN4cfk8WwqSKUDWDnfpC68Y2sTi7u6co1CX91LIzKnNyrGJ82uLQkcSyu4gr4vwSqdeVwYRQn5wmZqUxN6HlhRBcvff34BDquza1u06XPGFnbWHGD3LXFBi6eLLtXcO7/3e5Dyvj/xeSViE8FSVYHl8yGbtGEKRnFYS0WhW3Zb6/JRqtkRNXWeR0WplkDLvnqb4da0F1JqQskxZhMS4zffL9csdl08vGHcjzgVUVXNwljHCe48NYnCI4FF+i4iWYZULSWugCisCl4zDmu1mxW6THzDBd5ho8X02Hn/Zd7hxJISCdynJxZeXjDZ7FO96xzAUVdfOEoLk/omGRYXcjKRtLvqt8oimJRLpuw2RnkkGKgCbBhSBShlsCOyKZeBwc8OqldwOlkvb86bUvP+dbHKvhELVv+SDDz9Bt5LXlxVH9w8AOLs94emTLaISzJsl69UtN33uuG+HHfO2RbYLhGoRWIZitn27XXO1uebMbuBwxrYCWx4GD3/wA6q65uIXH3F9s0JWAXlYkoplx9P1S063t/x3X7PWfk+Q4ivtyPRX099Mg6w7l4F9eGIrBHXh2k1beynlnqAcUyq81rv33ouBROa/TnBBMrmrRCRc9LhoWRTuopKGofNU2hTeZ/5ZKDZyIiJEIMnsfTCROkeXi6wyNRGBC3dkfEmGGkQIe+LpBAvkIu6zazqBgEcAppgXRxLBJiQa2WggMRa99eXLS25uryF5jNoRXcq+q+SHVYqJ+/fPOT46wo6WvtBc3nvvXRLw8a9+xcXlJVVT7x8Hv/zFB6x2K9pZy/n9B6y3Gw6O89NeVTpH7Fi7j/fZCyP2JunplYdL+SyIDIekCIXl5VyJRDGCykwCk8l+skAlSiIwqOID4Zl4zyBEQFUSab85ii9lsnOxlAZjynpSFW7M112IQEgDrrhweT8SYiShEURkCfAEEDpzWnUNUTvG2DHEQoA3iaAim27DcrPGVGfUBQqSMWPZcRwZh45x6Pbc29nRAqOWCF1D0oRhpLvN77l6ueb24gZiwtQVbS1Ztvm7bY3D+Z5xZYlbR/I7xlWW+K7HLb67ZVhdsb25YXO7YrcuYgNr8c7Sb9clKVkipCHuIR/Bs6crbldbXBL0PlHEYIwBhKpoF4JFAOxIHPL2ORiHWdQIrXCdZ7PrWRXebjWfYbTOnhYp4RPYabcZBV9erri4HdjIxNVqx1uFDHV6dsb3fqj46d//FUdnSx68c8q9e7mTdeoxvd+g0Ji2pT6Yc7nOnezTi+e8+fgxojJIpVFC7mvXdnXL82dPOXxwzPnDe8TjJcMqf5a5mvPu0R+x0DM++ov/k+7mJZNZsk0ttlF8/MkXX7vWvqVwfXt8e3x7fHv8Ix6/G5N9pYv9TfLNRFrPHSxAKwUHSjETImfTC/aCAyEUoQy3YozFQzb/nJSSKBKysKNQ7EnuupKE4IkEpMqRxrLOILezMW/nUiC4iIjyKyGHiZDbBZW9VlPJchqcwvmEUIaQsnT1TvGZ8NaRgiuuQnfBiVJCyvQBEJEYHUIIdF22DoPLaqjMASKlRFcoKV23QwrJ4uCQsRsgJA4XmVx+dXWFGy2L2YwH5+e4cdxvwxfzGbfrFVJJ7t07xXrPZ59+CsBqs9pr6S9eXqC0oV3krWiIkSSz25cRginrHshUmAIRZEjg14JhRLl4CEgCXygS2kybgYhSgvmsxpbI7ME6dIzoRpFDl/x+zilVQs0rGvf1ER3/1Ic2NXFUaDNDq7wtHAZbGCACpRKJ8IrLWIWRCqVrlGlzJImZQHUPlUWJMfs1aI8oMdSpClhh0bVEyojdrLCTcY4LKB9xw8B2t6azO0TpjmM6ZSEDul4SvSL2I7owbo4ONOZRzhtTWqCrgIiZIbG5umAY1thhTbAb7Paa/ipPycfVNWG7xe863OAYx0TYG5bnoVsMBlKGz6xPDAV3TUox2prr2zVDgiHCtDEZgaQccx+YpYgUiVCih5wDHSJSSjqhWAeLLXE4Rntqo2iEYmcdIgnMMneki0VDeNox+gSV5sXFDS8uMs49ny84PD3mh//qD2jngnuvHTDlGD6s7mFmhuefXpK8ojpdcvlp9kP4+IvPODo5zApHLdAyUwsBwm7H9csLPv3iE9rzJebsCNVPNK2Rh4tT/mB5AnbkVz/9a9Zl0DVsLJh2vxv6rWvt9y3GX9/gpVdfSNkzv5oKgpIcG828DI+EEnt3qygUAZn5buWm1ntOa8zeVqXISp0wxRRXV4rdZiRGT5IRnxyqLETb21fURB7NnXIr82IzdUvoBFrR+3xT9IPAeoGcVQipvhKF40Mg2BGCB6VfhZxz1EsYMZWiMnqvBptoYzGMCFOR/RkCMYa9Tj3GvD3v+571zYqDxZJ7p/kiphQY+h3JO8ahIwS3Zwl4b1mtblnMW84f3OfZixf8omjYUwqcnh1zc3vDdrNGVw0hTKGHLlPcRE76Ta/YMoYiYc5BmWIid1Auxn5AKXL4PKMtmKyOSFmgAiUxlWEs33g/jugoqBtQvqj6JhKIAlnLvdn6N+FIVMQkmc2PWR6dlL+VVHVFZWQ2elbV3WxACYTWCFMjTQXI/MBlci7zhGFNSBEpLc28qKycIuERMjD2W4b+FlEGkdondEzZH8QPaOFQheWC3WFXEcsNfnAkawklnLHRt6hFx9h39P2O7bpnU2SdXb9ht71FRI/wHrfZ4DdF9t4NKBsxGJRqkUHhS5H1PhJDzmfTdYVLiWHc0g2FB93WpHrBOrykByxgC5QwANZHmnGkTYmmbgiFwtYNgd31mhATQ4qMpsLKfI7BJox3HFQKEwImRk7bDHc1yxlNW1MZxSAil89vuShF9vT0hKOTBe+8/zY366c4MbAogaX3Ts85PD3HzJfYXeTg7IziVUPXj6zWKw6kzjCFSPg+F0u7XbG+vIAvDQdv3KM9WpCK4qsXkXS0pJ0fcu+997m+vqZ/luEB322olhVCfP284fcU2a8Qr+6O0ulIsiN8U4CNA6Mzs0CpPH2Wci/zJJWpPQIlMu9V68nM5JVUXJlQWlBNU3lJ7hxlJoYLCboI7VXKQ6NXP98eKRaphPqBLPStrji5D07iQh6cCWXyLVKGW8la3DBA8AhToYTc2w6KEHCuJ0lNdDrTxKTEF8xSpEDwjqrK1omiDOQgTz2Hcct2vSk4ZtxjnYfLGck5rq4u+eyzT9FasSuYbN/vsMPIerfFBst2t0Ptu9wFy3mL9xbrA4N1e5pLPV9kip3IHrYisY828d4XH4G4tyuUe18BgRDZpEeicpEd8nvKZcievDKRXMRZSywilZRkfnB5qB0Q4h4fVzpfC+e/OeyC1a5jWZ9x//GbvPXe+wAsTw9o523GazWZ9FoWV0w5xTeFiB8twY64IklNYYVghbPrjD2OA8bkQnp2dkDfW4LdMW4kVZDU5barlcQoQZIJpwxD8HSbjB9uhluEAkHEjjt2qxvGLv++brNiu75ls1qx2WwZRks3SVWHAQGcHJ4w0zVhl0hdMV0ZFbiAEBW6OSAKvc/EG/oeHyJVWyFnS7x37FxHX6xDdTKEZkEnJbsYcQhs2YoOAvqUqHzgQCiOFzP0ZFHWeVa9pR8GhpSI2hBkbjvHEMA6hggHAqpoqYb8QFA7R5KBZtFwM3Tsdj2Xl7nIdn22XTy7d85ufImpDGf3c/LobH7IaBP14Qm1WlAFwxuPc6TNs7/7EOkSM12hZnO2Lx0+lPtsdU26FsSXmouLZzw8egc/NXMaxlqziZGtFoTFgqPHb+bP8vw5m+seWX99A/EPD1JMGU5QAurSshxqw4kxuZOVMZtUT1PrkClcEpnds4xCqLwQffE1SAgQCaOhqsvPEWm0xMbIGHxelIWuUqsqd6EhIETOwQrTrlhkEYLUIFTmt5b6w2jBB0ll6tw5CEmYqGYuMg4DhICMeag3uWxJETEyUCtJ8gPDMCCFIhWSffCCujKoOneQUklmZfuuDAgV6LZrhn4gjA5Vniy1yZ4Ms7YmeEffbdhsyhPWDiyXS4a+4+r6EmUMh4cZLpktGqQRaCXY7Ubm8zm67Bycc9SzOSHmLiOERCiT2+hdjvohEVLAu4AsU22ZJEkI8uBD5U6/FGdnS98qs79vjD47UAFCVAips2AjyMzDVdP5CYSIr5jA/39/7HrLg9MTXn/zbd753ncAmJ0fIJQghGJqPnqCLd2qDTkkMgSCtwTfEYvhs0grVFpR1WSvAB84aPLQpF4cEoPEiBrpJHKMqOIUJ51j7Hvc2OODZduteXGRuZmD3RHCgHM7uu6azfqaWFqy3abj+uqGYbBYn39n2BuiS+azJacHC2SqCUEQx/KS1QgbsEIhpCHVLVGWIhs8XdcjvaWRlm7ouF732LL7mc8k3rS4qmE3dFjATXacEkYh2aRIrxUnRwccnBejGxvpb3ak3YAdHKmukfPc5cpgWV2/oB86UmtQbsfNs/ydytuKtYTq3jFxJXFbx4ubPMB7dvGc9777mKqpOb13n6PTA3QZJkYFojXMTI2i4VAf8If/4kcAnDcLNh895SAaVusV7bzd70bwI67bsru+5PblBfffeh1TIoR6pdimgK416fSIo/ffoy1CoqOra37+Vz9lt3r5tWvt92KyvxUuSEBJRNBAXbaBB0azVJqmRAekr/ycQJYtqBLZ4zIU5ZYLEZ8SsbADlH4FQvQOQcJHjw0WISNjwXTaasHobPZsFQnvA3HCyUTKQW8qkmTmg267/Im6MZGEQlcN2tQZm5w4pD5kDDIEvMhUHjkZ0shIwmGTxEeP84G6avBj2XI5iRY1w9AhbWYezBf5qT1bnCBl5PrlBU+//BItBGNXoopDILjA40cPEQSuLl/uIYph6BjtUGTC2fAllO6j7wKIyKyumT2Yc3TvHrPFvHynibG3JQgz5eIwddxEjMoGOBGBDwFZukwtZM4HK7sVIe5cz8AX5/6SnCASelpBRuKDZPSBECVJSIyeuvgsQ67MP/yZ/v/20agDZs0BIbDvAuUNkDyu7wjWEn0kTYnCSZb1G4lpILFFyrx912zRYYu0iUpL2sUC1eQiE0mM48j28hK7Hgphf9o1Bbr1ir7f4cLIdnPLxbPsS7q5ucB2G0IYGeNAEIKqzQ/X7dby7NkNNkSSNgw24CfzdKmw1vBaNGDmqFoR62mGHvDO4mzApiyNXhe8fdV7NtsRT08bEkEmrG6gGIyn+QIbAqmZ0Q89AzCWLbKTEJSkTx6vAuag3vPOO7djNPDoB9/jVGhuhpEXJY1hvb5maySKxLLJ/na7dZlh3K7o6hp18hhZKah3/zd7bx4sSXLf931+mVnV5+t3zJt7Znd2F1hggcXioEEABAiQFESTtOkwDzEUlIJUOBSUQ6al8EGZtCIk6orwGXKQCocVtmhKYlCyxPBF8RBpkyDAA9QSILCLBRZ7z/3mzTv7qq6qPPxHZvfrmXnzZhbE7AJwfyN65nVnZVVWVeYvf/n9HUlYioKtd2qd1kqP/f41esfWMS3NVqJLgtZ4lTEqHK5WHGutcbKV3NseOUvP5OjdCYP9Ldr1Mt1mVIJoK8qG0B/02buxwXB7m0YKG1YodkcDGt1VWF9ldWmZdgo3Xh2XNFs9nvudT961rx29W23KaH+Y0Su6ucRdDZppRlvWho5S5BL5QhcCKs2+cacAidFOokDpWZhn7T0uZdQSFaITeBJsroxbxBR1xaQuyY3gEhckxhBCiZLpPrnzjY9L1KB83BY7wGAcrzcsHEEMJm+ikiZ7YPdKdEMIeOdQWCRNBsGVlFXBBAda0W63ObbWQ5s4MxcjR117qskElCPLMkyiKFSWY/KMtbVVxJYYJbSSwWx/d5+drZ2YRjJeaaaR9gd9NjY36C33aHc7XLx0eWZMc65mPB5x7vx53vv+99NptcmnuTq9pqgiL+u8oy4nkWuGmCEr01G7RHDWzSKbvAp4Sb7QIQoXZ6eGClIgSEwFKQpazcRHZ4pi6CnxOJuCQ9Q02i8aJ8PX0PYzp06dpa49zz37Rc6ej3H/b3n8YXq9FhJ85N/rMNtpw0iOTjvYai2IcmidnovUhOEYP5kg2uDrCX4Qece6gu2NbTYvbkAJuWljEyfb3++zv79HaSd4PNVkTJ1412p3l/HNLWpbUxlFaHfxK7EtZRUoSk3hQMQw8oEyrVK0ji5DlcmQdhcl+Wyi8KGmmhDDrCclE2qmG8hY00D1NN6W1FmDrN1kqWHwiZrS7QaqnJB1OtjBLkVwlOn9OgOowKgYUVUjuksZa8vRb1WOL4HLePTxd5F3V3n56nW4Eg23nbqH8ycpB1u0Q40qC1qjSIlcuXmDvd0BZX+HYqlJdmaZYykfQvPUCkUWaJ9cp9kIDEdb7CU3tdbSEqbVoVKevbJge9Cn34t3eYw23fUOjW6Hrj3P+NUxzWbs981uxm41YnP3OjcuXuTEmTOcfTQGI9SDMf2iRnvFsJ7QbXUok+yaTIbQbbF6/PRd+9rChWuBBRZY4AHiaE1WRU02ajW3aiExlPRzRtQAACAASURBVBUyoDXlZLWhrSRl3I8a0SwbfggYBYToWoQwC4F1npRkJeU7CH6WTKR0UNRgXU1pK1qNZkxoTNSkG0bFTO1KUFrj89TOXKEbCp0DRvBKM4pGciZlQJkMZTKQgw0H439pMzsdNxJ0dUVIjuWKmnZDs35infWTx2i0W9RV4OLFyMdUpSLPu3gk7tPVOPB2qGsHCO1um2CXUd7NNFkJDluVrK31MKLodJuz8FgR4Qtfep52u81DDz9Eb2WJTjcuRQf7e3zqk7/Hpdde4+3veAdnW63oGA9Mijpu3y06GWyYcXpMo/WSV0XcTHG6TU6KwZjmk3CeOmnASoXZljJI5KpV0maikUsgKOJGmYHpfmMuWHCW+msndQEPX3iEcuS4uXmDf/P7vwtAq+VpP/4I7U4LJdFZHRufp5EGWabQuiKIx1PM6AItffb3r0ZbmYq7IpTjtPvBXsG1ly4x3BrRWz4JzSWKxPNubFxjc2eLUixeQR6ETsqYlWctnG5hJ4K1Qo3Gpr5dSoZtdCATfLOBKwuK8TTE16HFcbMYYlodGihsIsedWMqgovtV5Rh7h2vFPtheW6PdyBgVY0ye0Vnp0ei2mCSjZ2UrJs7SaOQx+10W+U8A3Ta02w1Wmh3e+vgFnnjX45w5Fbf21kqxvzMia3qsHnHsXJcPvuU98R6XmgyGu0wGOywZRVtBlTTZzz33DDz3HHtGkT98mrUzZ3jfO98HwLC/x26YcH55mXK0w8aNa+TJG6nZbCF5DtTYhjAKNXt7kefu1hknpcN6aKK7OWq5x3gYXd9ylTLcVTWD6ze48dplTqQMZfXOgEFdoTF4o7le7HP5tdfic7m5zwmfJQ+Tw3GP3WpBkZFnjVlIZGnruJUJHk2goaCblhRrJqMrGvEeS9xzahpvrZTggyMQ/WFVCLM93YPXM2piur1FmZZUdYhhuEYrUJ6lToNGc6qAlzhdU1hLprMY652sfLol6BaoBoTMELRhkpZNpSXmMVAqGs7m/EQPkonHtHN5pmeZkYILdNs5p4+vceLYMSo825MhVeqIZanwPu7eYLK43c40vaByKcy4rhgM9ilHo9kyYrA/iFm6NIyGQ/r9/qxep9vG2orjJ85R25LecodTp2PGpauuwtc1F195jddeeY3H3/EkNi1jnPM02218iDy4NzWSuNVMQaZ0jFDzLt7rbJZRkW9NXtC2rinLNMmIJ8g0gi9axf10vzXVJDMZ3sQUfl6YCeBApCNmQv5rAGfPn2OwO+LKa5d45aUvAfDEux7i0beeod1ZodY+cu3TNJdOg3eIcZGTDQM8yW2q3CAwxtlAOa4o+mOGN6OXwPDGgMnlbXLfpLsEzbwRdx0GRqM+N3c3sZmm3Vui0Wxjkr9lI2tjx45qvEXhoHQGXyQKrWEoG03qhqI2MMZQpIxgN4cDgi253N/GKkVbGrM8AmEceVhrHWVVUzowrThht5dX6SwvIYM+1lma3SVW11bY341bJIWhJUNoZBkOj+loVlcj/99cabG6vMSZlXUeffxhzjx8inRafJiQ+YrB4DrBtlB5F5P2jDt9aoXHOqew5QDjSnQ9Ybwfn2m+9CRLZ9tcKfr0mw18O8Pq2A/ztkYMtNttwngPXQck0Ys7GzfonTodd8RtZqyurFEXsY/uXb3JxuWrnDc9Hmkdo3f8BFf3Y9Luem+Hwscw26oOXHvpFc4cS7sfeM/m1UtY61k5exq11MX24g1u72wz2N+n46fEy524R+4CUojlQbo/pQIiUcBmArmOobQA61lOFx33kJLo4qRngxJKV6IlgK9xZYb3U//SLApYPEorXBnI0hYVeZ5RBcfET8gyjeQBIt3DpCwYjMaUCtpNRd716NbUZG+R3EHmUcYwrqKLEUQOWDINaro1+Vw7RfAqAwLKO1w1wU6ixiLUNLIOS+0mAuzu7LG3N57lSyAllgEfedCqmg3STAzOOiZFQV1XhOApUqKQrZs3OXniOL3lLjdvbHLt2jUaadfS7Z0tOp0Wp8+cYHd/n3F/xM5O7IiDfn82KQTnyYyZGQV12ipHK4PKFXg3c30zeIxKW7DLwTY0sZ6JgdLBQhCc9VRVHKRGQ0p5Fhce01y9xDBVnenoe2uj/3RSxvHio5L7NbSR4s7ODp1Wh+VjbS69EjcovHr1FV74covtzWus9E6y1D6GSQYO8DhXUfa3QW6SNft4H12Kbm48z7HuCUIAZ0soS3xKyuJu7tAYVWR5C9cfElq91Edifo2iKqmDoZ3lqGaHOgXM2LqmyBvsi2KAUAXFaDidzGFIhVUGqwTpNlg+E407RXeLwtVcHuwyrC0d1UCmhraRhZFFTwJq4hHJ0Wniq0vLoD9ivz/EBktrqUNtLZNknCU4lpbatPZz8laTfDln7aGo6XVWexxbWeXCiTOcOH2S5bUeeSOufvYHe5jcsrycAznjuqa/F4MDrvghWUOhqVhbarDaadBsRmF5+tQSLj9Na9jihcEOm+U22zspl0DnOD2EbFzSI+PM0nGGafud0gXGgyGu26bdbtNZ6iFLsXOf7q2z/GhGdXWLpYkmbzra6zGxy+7eFcg0a6dOsTfoMxmMePW5uNvBieOnGFzf5tWLF7nwvndz7LFHaK1Ef94TjxlsdxfHjbv2NbkjAcwCCyywwAJfNSwMXwsssMACDxALIbvAAgss8ACxELILLLDAAg8QCyG7wAILLPAAsRCyCyywwAIPEAshu8ACCyzwALEQsgsssMACDxALIbvAAgss8ACxELILLLDAAg8QCyG7wAILLPAAsRCyCyywwAIPEAshu8ACCyzwALEQsgsssMACDxALIbvAAgss8ADxDS1kReRPicjzIjIWkd8WkYfnyv4bEbksIn0RuSgif32ubF1Efk9EtkVkT0T+QEQ+PFfeEJG/LyLXRGRXRP5HkWl251uu/1YRmYjIL8z9JiLy10XkUrr2PxeR3lz5D4nI76c2f+KQc2oR+bvp2gMR+WMRWfkqPbIFvk7wlfbtVP4eEflMqvsZEXnPXNlPiMgXUt96VUR+4pC6nxKRfRG5IiJ/43W06zkRGc59rIj88lz596ZrD9MYeMdX85m9aQghfEN+gHVgH/gzQBP4b4FPz5W/Deikv88CzwHfn743U7kibkzz7wM7gEnlfxP4FLAGHAc+DfytQ9rwG+m4X5j77UeB54HzQBf4v4B/PFf+ceCHgL8BfOKQc/5d4LeAh1PbngSab/bzXnzeuM+fsG/nwEXgPwEawF9J3/NU/teA9xET+r8tlf3ZuXN/Efh7xJTtjwHXgX/vftp12z0I8ArwI+n7W4E+8JF07Z8CXpqOua/nz5vegK9Ch3sN+M+BZ9IL/t/SC/4x4PfnjusABfD2Q85xFngW+GuHlCnge4lbX51Iv/0R8Gfmjvlh4PJt9f4s8C+An75NyP4S8BNz378FmADt2+r/xduFLLAKDIHH3uznvvg8+M+D6NvAdwJXSQn702+XgO+6Sxt+BvjZue9j4B1z3/8l8FPp79fTro+lvjydDH4c+JW5cpXq/qk3+z38ST/fKHTBDwHfBTwCPAX8BeCdwOenB4QQRsDL6XcAROQnRWQIXCF2iF+cP6mIPEMUgP838L+EEDanRcy2Xpx9Pyciy6leD/jbwH92SFsPq9sgzuT3wrsAC/ygiGyIyAsi8h/dR70Fvn7x1e7b7wSeCUmSJTwzX3fuHAJ8K1ETnuJ/AH5ERDIReRvwIeD/mTv3ke2aw48Cv5SOgcPHxXSl9nWNbxQh+zMhhGshhB3gl4H3EJfi+7cdtw8sTb+EEP6r9P19wD+9/fgQwlPEHcV+GPjduaJfA/6qiBwXkVPEJRdA2j6OvwP8oxDC5UPa+mvAXxSRC0ko/xe31T0K54Bl4HHioPtB4KdF5E/fR90Fvj7x1e7b96w7h58myoj/de63f0XsdwWR9vpHIYSnX8+5RaSdzvHzcz//JvAxEfk2EcmB/5JIbdzPuPiaxjeKkN2Y+3tMfNlDZlsuztADBvM/hIg/Jnaav3X7iUMIkxDCPwN+UkTenX7+e8AfA58Dfh/4P4Ea2ExGhI8Df/8ubf054J8BnyBqCL+dfr9yz7uMbQT42yGEIoTwDPDPge+5j7oLfH3iq92376uuiPw48CPAvxNCKNNva8CvE1dpTaJd4d8Wkb/8es4NfD/RxvE7c219nqjd/gMiz7tO5H/vZ1x8TeMbRcgehueAqVBERDpEov65uxxvUvndkAGPAiQB9+MhhLMhhEeBbeAzIQQHfBtwAbgkIhtETu0HROSzqa4PIfzNEMKFEMK51J6r6XMvPJP+X+x++f9v/En69nPAU4kKmOKp+boi8h8AP0nkQ+eF3KOACyH8kxCCTWXzk/z9tutHgX9yG2VBCOGXQghPhhCOEY3LDwNP8/WON5sU/pN+iMaBj899/2ngF4hW/33gB4iz7n9NsnQSJ5e/RDQkCfDNxNnzr6TyDxKtnDnQIi7pB8CZcGBMOJPqfhC4DHxnKmsDp+Y+/x3R2HU8la8RO54A7wC+APzYXPt1au9/CHwy/Z3NlX8S+IdEHvcJYJNvAOPA4vOG9e2pd8FfTX3ox7nVu+DPEbXnJw5pTw/YI9JnKvXvPwD+Xiq/a7vmznGOaFe4w3gLfFPq/8eJRr5ffLPfwVflPb7ZDXhQHTH9/XEib1QQl+cX5jrirxOXLEPgBSIHNN0i/WNEAn/AwbLmo3PX+Gi67hj4MvDnjmjfrD3p++Opzjh17v/0tuP/AlFTnf/8/Fz52dT2IdEF5i+92e9g8fn66dvpmPcCn0l1Pwu8d67sVSL1NZz7/E9z5d9B1C73kzD+n5nzjLlbu+bKfwr41F3u93fnxtw/JHkefL1/pkJlgQUWWGCBB4BvZE52gQUWWOBNx0LILrDAAgs8QCyE7AILLLDAA8RCyC6wwAILPEAshOwCCyywwAOEOarw77zQD8OqprSe6IsPRnVQZCBgNGgBJtFDIYwC1fYW+xefZYkh6y3L9333RwG4cPYYEixaNAGF9dAflgDs7m1T2zHtZs7q8hJLrQ5KRfkfqIACxQQY4MImg0mMVnX9F2DnBQbXbjDuO+xEs71VAbB5Y0JZamqfs9WvuTmqGLp4X/2qZlBZKsD5DGebBJoANFtdTp46xwc+/BE++KEPs727zyd+OwZlXb92hfPnz3P92hVeffEFmnnOF7/wBTauXwNAaUEUnDt/hqeeehvdTgMVbHxuGkwmiBascxSTkrKMDRKvaOVNuu0OmTGU5QQlHoBGpgihYG+wwe7wOhO/T61j4FfIHMoImgypOhTbDfZSfND+dhNbnqeul1CiCSHgfB3bKQofAoIheI33AlMvE3GIWMAhQTA0ia6L4JQliEXhIQS8CD5En3aFpqGbqBBwtkSwqOTuLsGhVYYSzZcGvzzvBP+m4cf+we+FW0Pl4Vb/fIhf797ckMq8GLwoAoJIQPAo4rtVwaGDRePQoUb5Gh3ie6iLIU0jdFs5S50mRenYL+OznkgLS0YQA6JBFCG9h0C8lof43sTHT2xNivoP6T9BZg5E9//oDx6F3PHbgUfSnWXT3+SOS93ftW+tJ4ec535x0Mbbz3nndV4Pbq9/cKL//kefOvSsRwrZqmxTF55q4gg+HmqDQauANmAloBVI7DO4gaPsV4z2CoyZYDVsb+8A8OjZY1S2QmdNPB7rFcrETtPtdiA0aDYymo086dex0ygEUAQ8LowZVvvsDLYBKDb3ufHsNmroGe1bLr22zSuvxdBpWxmWOiu0Wk1Mc50L6yu011YB2ByOeOall7m+vYuYHJGM2kZhOKqHvNT/Mhsb13nm83/MmXNnaeTx/tbXe2xcv8jLL77I/s4uJ46dgCA4mzq4MgTv2e8P2NsbsNTKUT69bOfiLRkgeFRwmDQQg/e4qmDiHS4LZHkNxMmitp66GlFMdnF+jMk8YuK7tCq+bFs5qEt6xxq0G/E9BSrG+/vUexUSViE0Z+PQB49I8uHDoDCz5w0lU/EhIoTURgAVhDDrMpKEsJq9p7ouEcCYDI+m8vEeRMc+E5gc1d3eYEwHy2GCdb48fjvM01Fm//v0FCT97VHE/qSCQ4Uag8WEmmALQh0nSTfaR1rxWem8S1NpJqYBQB0cHo3HJqEphEMC/QICMn8fAhJSjs7D73FW9y7em/OTy62PQ4jC6zBBdZTw+soE72HnvxNHu6DKId9ev4Cdexa3Tbz3c66jheyOpthTDHahKtLMLJaApSwrVBYwmaDTfRrvMeWYemIZuQFhqceVSzEq7/1PvZUQAh6Pc4LzAZMq+kxRVZ5xMWQ0sjhn8T5peViUKqnqXYpqk0l9k+H4JgCjzSGvvliQTWBvu+TVV8fsbMd6bzlzjo9987fxyIW3M554rDK0VqOQ/fLl1/jyS1uUg23QFozCJ83ZhRIfPEUxYjDcYzzZ58IjFwC4sXGZpz/9NLvbO+Bga2OT0XCMMdnsiXsC46Jkd3efh08fR6W34K3F4cA5PA4VLEZiW72JA8FpQamAtxNUKnPOU4zHDIYDJlWFaQZUHl9blilMLlR4aqko/Q7Sjvdx/EKDvSuaajKhKhTiDeJ1eqYKERcHaAAJ8101xj9IGkwhDVqYakWCIEhQcRDP9XGlGngJTLzFisOn5xIMqMzRbHeO6m5vKOYHxx3aU/yP+x1MCh8nLInqgCJOogASanSoMMGi/QRXDrBFP1ac9NGqEV3/s4pWe5kyizN66QPOe0IgTnSiEJmu7tILC1Fznm/cgUANs+8ydx/zgvWoezpMIIpAmF6TW5/PQZ07T3pvLff+cFcBHm4VtbF9Mjcf3C4k59tz7ziBW+vdqRnf634WnOwCCyywwAPEkZrstc/XDHZKRrsFZTFdvg4pqh2cr2n1VmgvLdFqRQ1pqQMhlNSjAl/1kdDj5mbUOoMHrTSjYsxgOGZvMOLK1ajlvvTyi2xcu8Kwv89wOGTYH1HXcblF8ARqlKrIm552F3QW+QlXFBSbQ1QphEqQsEKnF7WnpeVHyRoP0++3KIqazvIKuzfiPXzh869y4+ou1AbvwTuLSwSiJ+CCxTrLpBzz3OfH3NyMRGdRFBTjEVVVYktLMRrjajeb5LwDRGHrQH8wwYkBifcRGeAaoQRfoaQmqOk9Orz2OANOgbKBpAhRV57d3YLrGyPG45p2W7G2HpeUrSXBWYtSgVwHyrrGuTgzZ1ro9CqKvqZfF9iqIITIOyMqrUADBEcQpgwfkTaIKoAk7m82jUukDFRQ6KCISpSandPiqLBYHai1wiVaI1/usfboQzzygcPSir45CDK/HJ7TBJnTyG5RYZLd4RZVKGmLPvGwElABNA5JXLyEGu0rtK+QekSYDAiTqMk2QknuPcpW+FFF1mzQzKO2nwfBukBwDh+EMM+7hkRQHDT2ACLpjU1XHHejQ+6FwzQ0STTT3TXYu59f7tBoXw+ObLfcesaZNn/kZeSWd3+kPnvo/d2/Vn6kkN26tkkxLKgnFSHEF6y1Y6XXpNFeo91bxmQGlQSJciOq8T67m1cJ46uMzi3T1XH5s72zT6bgtz71W7z8yitcvnaZK1cuAbB5Y4NiPCa4gHeBunaYVK/RaAGeuh7jKclyj8mn5KJHWY32GdobOsbQNi0AJmGJoNe4sV3x2qWLLC8vs7kfudzPf+GL7O7uozKF4KmrCptkRRSyHo9nUpXs7fcZjiKHtrq2hjYZ3kU+M9MaO5lgtJlWBqXBK0ajgsLXGBV5SMsI58foUKBCiVGOhkn3YQJOeUrvqOuAocFkHBu0vVVz/WrB9lZNXUOjAVUyNK4d13SXDaYZl5YqCEol40gVyBueTtdRDCfYakyQKV2Qp14VQBxCIEyluljAI2hAI6IJ0+VhmIpeQRGXxtPZwJHoEB2QTMB4mmtx67EL7/8gT37vt7P+obNHdbc3FGE2Dg8MQ5H9nyu85XjBywGRMj0+/uGR4JEQkqC1qKmR0VcoVyKuIFQjqIZoG/vTUlPRNR47meBGBXplmUZ2DIAGmqoC5wMeRzQ+TgV94njmJr9bRcYcRXDLivjeEuEoHvSALjiq3jzdknD7sv0OYXs/of1fIcdwCw6uc3sb78EOH3F/927XkUK2tW5pH8/IGy2araghNpVGTQLjYcHO7k0G+wUhdShf9mmoguBKhv0dNq9doxEiD/rCl15CG+Hnf+6fcuXKRWo3obbRu8DaOhlhFMErgheUigKoqsCY6JEABq1lpuUFnwxoIY+alRNU4nknqmashoSmw+cFz1++zJXN6wDsj7ap6gJvHXkzp5UbJjbeQ1GVsWMrwfso8He29wAYjytsVUXtLRB5Y+Fg2AWLBIsShbOByeQqzVZ6NqpPZUc0pMKIRbyFKglZC6ICJgSCU5RWuHYt3uTG1ZphX3B1F/GauvBsb8ayauJZKxS91Zy8oVHK4X08ZwigdUWjBVmumagJyrXSm80Thzi1UYeZxs3M0CUIhhDUgQY147oibxskEJIG7MURtMdri9ewcuoET3zrRwD4wPd+nBPve4grvfKo7vaGwieNL8xRmiqkTd3SBOQDzFwklIq8OeBCFLpqNvkENAE951mgkgeBchOMK1C2wFVDpB6RJ0txr9WhkwlF5amKAWInNHR8nk2BiQ3U4hJn7ucMX3OzAtNhPydAZppd0mRvEQj3Emi389C3C9owb/ua1TnSqDVt5+08963/3Ilwx4FHHDTfxsMPCXe06f4E92Ga+t2MiYfhSCHbbpdICGSZJvNxl4h6WDC4scPu9k02rl+hri3epaWRL3nsscc4f+48L26/zPbNm/RaUSPzDjIjaTUawIfZUkZQeOcT0R8QiVZ6ABUsmdIICleDqwJ50nIJ4C0EMdHKLo5aopZgswH5esnpY8ehsceXLn+OnVGkLlwoCKFEa0VwFe28QZalZYOvGU5KnAsoFEYpKhsFz7Dfj+2W6MbiXECUmml6ojyiLFqBdxU3N19laSXef6vlyVRNwGGdxVZ2JruMFpTRBBeoK83layUbN2LhaKDwroWWLqiM4B2uirRHf7ekHNeM9xXr6zmdrkerKMiU9iCWLIdGK6cYWmo3XQFMDSBTLybPgXdB1JIkKAgaRANTARwHupcQl684wtRApyxk0Om1WDq5xmPve5IPfvy9ADzyli6122K0vQunnziqy71xkCklwh2a64E2ePBtqud6CTgBLwqVBLAEj/I+jkDvESzKxxVMKAfgCnQoCfWIzJf0ksLSa0UXv9poShTe1WQu9t+ONtRiZkLdyZzL2ExYTidKmU30B/J0qs0Kh93dDOGW/+4QfLfLkjAntI/Uem/54/6X1nc7yVE0xB2/pMdzuwIvtx/zepvyFdIdRwrZL//Or1KOxwTr8DYObDsZ4OyIQLR6+6CwVZyZG3mTk+9/N+958m1svvI5RqNdRuPIMe31d+m2DEZ5vLV4KwSX3I2c4H3UwkKatSXxlcoLHoPRiuDSUjWkej4QnCcIeB0IWMQky3sLVtabLB9rMP7CHv3hLlVynbG2ot3MyTKD9Q4JnjwNmE4zx3mPn5R4Z1FMPYShtBbvA8YYEME5hyjBJipFmamWB5V1XL22Q3uY3NR6mlZDaKhAFiD3hkZavmfKYIewP6jY3Xdc3wpMJo101RZamoSQE4JJAypyq74uKOoCW1rqwrN+TLG6FnfrMFmNk4o8d7TagVEWcFVabgr4EGfj6YRxqKuSTBfQ02Wqx0v8iHiCsvikAQdjOfPQQ7zvwx9AdzytZc2xVnSnW6quU+7v8sj+za8ZITu109+qcQkhTNnpMPdvfC5BQlJ9o0Y3tbILDq08OmmwkugBAOoRYkdIKAnlgBzHUivxrpmmmtR4MehGB+88ahxXTe2GQ1QXrzNKr6hFEVQarkkJUcljVt2qo8X7EBVf9K2uI3fiEAF0+/I4nXL6JO6sPCs/XPjIvYTlfTXxLurpoceSVphHnPNuUva2SWd2zrvew71XB0cK2c3nnyb4OFPq6bKJkqreo65LrAW8ISmyNDrL9HJ45MwJ2s0WN3YvMimXAdjb32Vl+TRLS0s4G7CV4JJLkfOCD4qQFkQiBw/Be0VZWpxWqCB4ZGbcEQSlomO9tZZMBWxqzLXr13n22WeRx9+KsxWNTNNKrk/iQSlFbS2iMyprKRJdgFa0c0NwjkE9wVo3a0smQhUc3lqEEPuwVtRVCjhQ8bxBAwr2R45BHTW9nZEizxWNTNEQTeYVmU/elTbyrOOxUBQaa1uo2bZIGQGFEoNoTfAcuLeJgNe4esJ4aNl2DlvEtq6vtWmvNgh5QbutyXPNZJSW9iFSBNHz0hPwqGTAUkqwvkLEo9JEwtSIo6LxxYslKI9pajq9+H7XTq7y4Y9/lO/6dz/GK68+y2f/zW/RvxIn5refeAdLo33qa9eO7IxvJA40P5kZweITibRAHPhRW4Q4ERGiQNMSy3SakbRYGliMrwh2SKhHiB0DoPwE40uwI4wvaTUMuZ66xDl8cFhrI5cfwkyTbTiF0TlVllEETR0EO5OIGmQa6BC9aaejM4giBIUTRRCFBM+MdD4MtxfdIpyOpgHu35Xp1rKpbj2vad5Z9VYxd2g75gTi/SuZd3Add5z27qe52+Rz9EUXLlwLLLDAAg8QR2qyxhYIgvN2Jqy19uTKgXJx2ew1Lk0pJjhGO3tU44JGrhmPBwwG0V1lvz9G6yUys8KkEKwDpeNCvN3t0lnq0ep2yRsNjDEzg8qkGFFN4qcuxwRXzRZHeZ5hRFPVnrqM2lZdR430+sZNvvilFzi3tspjF87zR+1nObm8BoCz8OwLL7LcalJ7i7MeVyWjjBK01iw1cjTCsJhQJncyLQoPOJdCRpXQbDZwSbMMElB5E9VQkCms9rOy0SSgKtAiKBfQNqATR6qsIFaDbyAhR6QLIRqpgo9uM0rpZHixhKlmSYjWGgSCwVaG/Z308uo2mcim4wAAIABJREFUJ41Ax5HnGXnemHHHgUhzOCq0ZChRBwYsb3GhjtFeUiMqgJTp3avoCeEraqkI2tBqRX585WyPh95+klbP02yU2NEW4634nkbXW+iiQI2muz+/+Yhvct6xHlyIDv8ydY/iwLAXiWyPEh9d15KrFkBOSSNUUI+pi31CNUJJ1OKzUGKokFCTNTW9TotmHldwWjyCo64nKGViv0pjSePRWFoGuqKZVIHSJSNqEJTE9y8SUOGALghEox7oNE7CrVrkLbTQIRqu3GPxezce9g5V8oDlvZtl/mj97xYG9VZNdkov3JVrvR/yQY6+z8Nq3RdHfCeOFLKT8SC+NO9nF1DK410k9bUSlIrx+gASKvZ2rnHz5hW0tlRVQX8/CtkbN/bY2XVk+SlMdozucofV4ycAOH/hUc6cu0C3t4oonZZpadDbEluNwRVMil3Ggy20jp271cgoK8fGxk2uXH6ZUX8LG2Ln7q606babBO84f+4MH3rvu9jdjm3JVM6LL7+MSe5aLaOxjSjwa+8REfIso9dsMWm3GRaTVBYYlSXjqqR2Hg8sdTtoneLNqwkmz2IEmRaC8rjEWTrxaYkXLb7aC9qmwWYN2meYkKOkAT6PVn1AJEPS8tAHi/UW55PQUxalaoKrcV5BaFPX8UXd2IThZMKx81C7OvrQhqnhZIJCgapx2GTgknRORSYaqBE1IsvzWURbs5WjGoZKGpRhgtMWr+KyeDDa4ObWa1y5DEV/i7Mnj/HwqZOxntJULtDsrd2rP75hmF+wznhXSXTBbIEXZiR1FMYuhcxGgWvSZJe5EcaNCeUQV/bRriQ3sV4uFRJKRBydZsZSp4nR06s7NAGcRZTC2gqXrqcCeFdjtKWpHE2pKVNLSx8QlSUDj5rRHfGcB77Nt8uBW63k0d916rFwuNCYD+S9nZs9QsAKc8/wT4472nYE33rk8v02697RFMVdW3Okwe8wHC1kq2om9Hwy7gRvo6tLgDqUEAqmAjHPDTvbl9jaukigYDIZsnkzNuL69S2GI+Htb/sIw2GHs48+zLEz6wA0221M1sA5sHUgBD+bZ5R4Ok3NubOrnDm9xFLH0cji9eqq5vkXXuTXf+1fc3PzKnu1jbwh0Go1KMuSz37uWexownve9XY++Yk/BOC1ixdZ6bTZ6ffRRtHQCp8SFHjAp3wDjUyz0ulQdbsAVM7TL8bsDAbsj8ZUzqFqSzvlYBBnogYYAtZ7nPgD44iCoKJhhRDDeCUZvpQYRHIUDVTICMEQQixDaUSmuRssjhKXdgYXPMHHMGQjLYzpMnUgmBQTBkOPv1kzqS3jfk5lp2GtDq0UWnm8h0AWk/4QHbhE1TQbGWsrS5w6cY4LD58DYG29R6vXwnQMqqXQHU2eLOVrx1d46PxJcAU3JiNWHle85eEzAJw/cxpxASNTF7I3H1ONccpOA0lYRVMSQuQzE4SAluiepXHga3Sa7FTVR9kBUhWoUJAbT3tqo6prrCvRwdLIMoxy+KSRxgHrMEahjYLgZ+MMgWBrAgUqCG1p4XSaeJ3FiyakZEuOg6Eu0So38zy7FTKnyd6u5R4InaNFze3Cdq7uVMYeoebdt/Y456V2CG38leGe7Zv7Pdw6xUzLv+rBCFmzi86Shjf1LignhKrCu6nbT0BkutQsGQw22du7TqCkqsa4lHhlOBrjvOGhR54g6GOYjqGSqCE6Mdja4KzgLaioZwFQ1iNC7Rn2PepMixMnWuikHb568TJ/9JnP8PTTT9Pf28J7T5YSpGRG0+8P6JcWN6oo9ybYRCW8culSdN4nkCmFCz7lNwKjFEHFbtMwilyDmarq3tIU6GhNpRRiHX40xqRn1NMGJTE/QxUcE+8pk5CtQ3TFQQQRQaHQ6aoGQxYMmY8arQ8NrEShHz0vawITvIzwjHEp0YrRGRIyxGtcyJhUnpCS1VhqynLC8GYBKgcXyJvRY0GJRpuA0h4hQ6s2dZ0mNaV49MLjfPRbP8Q3fdO7OP/wWY6fTtbwlkZphWgBLaj0AZLQFryzFGfOY+uSdid6QWhjCASMTP003nxMB68wt4SWOLUHOXDfmvZDFQKGgBGHDhX4EpWCCowdYuoRJpTozNPMFHlybSvLmmBL8oah3WyQGY1Lrsg+RB/wZitHlIkT8cGSEWqLG/cJYUKrsYqkydw5RxkEJy2cilbW6ViPfr4hfmTqnXanQLhTI503d83jbgaoOU3wjt/uJnlexwJ9+k5uqXcnPyCH/HZXvF5+INz6wz29JO6CI4UsShBR6CzDpMQVPmuinEf5QPA1IdT4ZBH1vsBWE/CWTquJMZo6uXdtbd/g88/8EVqtsn78IQSDVykZRumwtQWvUUSedXp/RtpUkxHXr22hjaO2K2xuxkixX/u1/50/+sM/oL/fpxgX4GqkHbUlEcX62iofeuqdPPmWx3nl+deoiiic3/vE23jxtUtMsgylwAaHmaWRi0EILprxqetqlqGrmsRghCx4jrWa8VoebPKjFefJAY0wCTDyMEw3MiEG1XpR8Qgx6PT4TcgwPifzOTo0cKGFl+SmhSdgQaKgDVLG70DtNK28SzPvYEtL6RxrS1EgnjzRoV8EBhbKWqN1m3OnLgDwyIULnDu/iugJedah0zzHCy9cBODq9Uu8+6kn+N4f+ChPPPUQJlcHAQ4IWunZkkwOjO/gAqHymCzDtFYZUzAYRU2vuZSjjMJVDvO1I2ej98Tt7kNzCVaEWUJBNB6DJ8eiQ0Vwk5kHQZOahrZo8RgFDQM+TejOTtAaOp02rU4LozVZkgjOB6gtTeeprY9XnNI2WpF7x6Qs0LYkMxk6PbyJaFzQyV9ZEzAHTvIhutfJdDV4i2CdoxUCyX3vttu+A0dwo/O/zw59fT6th7lM3e2gQz0MDqES7orZfHKLBL/rJQ8NK77XNQ7B0Vm4Jn1qUTPOEWLnERe5Ka0EY9QsY5QoQYtieWmZPIN2q8POOIayvvLyc2xv72BrxXd+zw9zPHsUn9K6VRaMasQY7ZBiW9LAdt7SaDTQ2jIcjvmlf/kJfuPX/wUAu3s3aOY5eE+326PXWeMtFyLP++iZNU50G2zt7PKvfvU32Lqxx7kTpwH4pne/i6VOh+deepnhZEQ7a84ie6zz1LXF+hjTHwgwFTLOooOj18hYarZoqozxqKDfH8SHYwNtJ2QCEyX0tcKkXjxAKFDUotNjz2dLdBUaKJooWqjQIIQ2KkR/1xBKUGNC8k0VLTFtF+C8wjpNw7RotYSy3OVmP7pJ7Y5KRHt2RwWiOpw+cYwPf8t3APB93/+nefu71tnrX6XfH7PUOs/Tf/gaAL/9id+m9AO29q5Ru2W0GDBTTSgDYthwDLtVc0qGEJRQjUtMO6f2js8/+yIAb3/HOzm20qEa1XTaR/bHNxRaa6w9cIlTJiMEHz8ECJYs0U+ZeLJgyUJFqMeIHaPqaMhr5Y6WUTFyD09wlnISBXBdVbSaOa1uB1GGoDSNRpxAXQBblGROqHyBh1nAiPeBVsPgbIUKNd6P0T6Ol7ZqUYW4vkEEL/ogNFii1q0kThJ+ThDNG3umAvbOjFr3UvfmNN5D+Nl598u7Yl6w3lURPdwfN17jNsF/+Ak4/F4O45IPOWoWzHE/OIzUOMDChWuBBRZY4AHiSE1WSXR/Vl4d+DOHCsRCcFjn8F7NJL7WiuADrawDzjEajGaz3Xi8x3C0T6fT49Of/j943we/k9MXngLA1YFmu4G1FuUdwUOWIreazQxnxxTFkFOnTnH69Dl6yUo9GvdptJocW1nl/JmTnFzvsNaJ88ZS7llqKvo3b/L057/E/u6Q3d2oeXSaSyyvLLO80qPatdHQlqz5GgETM005PLW1KYQU8lxomAwT4lJOV45WVZOnucqI0LCBYC0NpQi5YNNzqxHqAFZpgs6AjJA4Si9Z+uSIGMCgklEsiMKLQUmTgEOJmXlXmKyJkpygLMsrKyiE/n7kazMtrKyswI19rG/SWerR7kUqpbua011pEEybnd1tlC74nu95FwDf/rF3gBbWTmU02p5AOTMA1L6i9kJDtfE2RJemZIyxHrxW6OUmTqAqDKNh5PGZKHQptMjv2SHfKGhlZslOTEqqE1cJMYpQCGgcmUxdqmKorLiCSX8LcQV58mSpa0uWgVHRRuGdo0p0QVlbWu02OmvGVBXeY5opKEZrMB6VeaSyGKWZJHqtYyt6rQ6qqTHBUYYJdUiJZbImExeYzLQndaAuhYDgomffDPNW/1s11mlGrUO9BuaRCOxbPBQOrXIf2t990aj3Os98u+cpirtrwAe/yh1HfuWQW57JYThSyC61s+RJENAzrqiNycE0Nb3eCp3W8iw924m1Y6yuHEf5jE994pMUozF1cvcyeTIKhREvv/Q0nZUuK+vR+ry6eo7xYA8jGVrFGO5GyqalgiNvxjwB29sbGGP44Ie/HYDdvU3qasKp9XXe++TbWV/J2bj0JQD2blzCmAzrPFprVpZ77A6jkP30M89wfG2NyjuarRbW1th6mnXm4CXU1lFZO+vAjdxggGZQNC1kzqO1YRrtaKsSV1mCCwQtNCRMV9oxBYCKLjNOAkEFSMlAvI55AJA40CQc8K4i04xYXYQcpapoeAGUVmRayHOo7T7VZI9Ana4n3NjZpnIB02ijG45BeQOAwWgPb4+jQ4dqAF+++BLHT0T3tieeeoxWt0kQhw8KFwxVsqKPRmO8g2O9FtoovIPdfnymn3v2ecZ1yVPveYKVXo+iDCQqm82Nm7Rllec++zk+9n0fO6rLvWEISuNc9JXVU6u9IuUecCjx5MrPtorx1ZBysoeth5hQ086FbDq5hgDeYp3DWUdVVezvRwppb2+XoqppLS3T6y3hrGV/lKLBVMakrJmUFZVLk3MjUgLj8ZjVToNWrlBeoKxRabcMyWAQPMbVaIn02rzJKX7C7PsB5r0Lbv1+96Qqs6qHCLQ7z3vH8v2enOv9uU3d8W2uESIcPUncIXcPM8/d2o6jguTu3rLDcaSQ/fM//MMsNdqsdLqcWIsp2E6cXGftdI/WWgNl8pQBK2oomQhXL+3ysz/7M3zxuc9jlCLLY6cp64KgA8WkxGQZr774xxxbOw/Ae97TJFQlKstiHH8ocWUc9DZYGqZDoGL7Zspj24wCOD9xlkkxpt1scvLEGd7xtnOcXI2k32f+YJ/Nzatc29jGBzh14vgs/Lc/GLE3GuMJ5K0mUmt8EiQSAsHZ6MajFDrTZImTzrWiow2mdPh+AWWJmjhUCoTI6zrucQVYAir42X5I0TNHRY7TW3CgkpnZ+EAePHlwZGFCQGOT1mclutC54AlKISpHzfySaxSeXBTa1eTCLPTy5tYuE1cTsozgLWzDZ5+NbXn7E2d497sfo5l16baOcXHneb7wxS/GZzPe4wMf+SY6Ky1KV7Ld38WmkOPgoJ13Yt6D4FFaWFqK/OLZsyf4uX/8i/zmb/4O73zyvZw/c56rF2O+YMqSy6+UvPj8579mhKxDsD5Eb4mpv5OPeWANcWsgE2KoLICWmuFol8sXXyRzY06udjm1HlM5BmpqXyMEismEne1drt+IOYg3NjYYj8dc27jJN7///aysrlKmCb2qx9HdzwVq67HWkufxvRfjEeORYaXbpJkpnPM4l1zGbEHLNGkRqEJNZYUs8bziY/+NERPTjnL4M5gmUjm88M6q81yo3GF0uku+2DvO8zocspJR8m7c733jLsa/ux50u9HrqIniPtpxpJD9j//yn0c5oZkfCBqlFD4GJwEKZ2FrI2qrr13ZY3tjmxs3rsbIIV+x1I0C0YeC0tboTLO2tkyWNbl+6XkATq2uc+rkabKg0B5EKqoUADAY7LG96XHB017qcfrs+WShJ2oB+ZjR3jYXX7nEmePLdLux42emwfWNLfb6I7JGg6yRk2exXlk7mu02SkPcDCbMEtIYLXgfAy0yragrx/4gamveWp586Ax2PGRnZxc9rln2iiy5P+VeaCqDF6jF0wiOdjJk1DVkIeDqaJXXzmNSMELuHJmvMIxQQKUyhjrmLhjSpPaOmjqm1zOaqe+F8mBS/tKTq2t8x7d8N48+GlcHTz/7NJ94+g954dJValtSVyP29jYB2Nq6jguORrOFbjd5dfMy1zevAvCB3gdR7YzSOybO0i9GiIs9yYQmnZUVMmMIwUZXtGQTXem1Weku8au/8hv8v7/yr/me7/5B1tOEt3H9Iru7F/nWj3zzvXvkG4To8SpopWYOUM5V4GqMglz5uCdXMm7VxR7F/jY3Lr+CG+9hj6/Qyx4DoNtt4r1HKYV1gf3BkK3tXQDGRUVVB169eIVme4knn3yS5V4vtiHEbZycc4QAWZYx6Cflouij3Zi2OUMzN0jw+GoaFNPHtFt0TItJXTGuKlTq20qIhjtJ+Sj8vG1yPuH24Wv2eS308D3ADjM0zWnEh1n877zC4Qi3/Tl3qqO159chFO8Ht08+R9Ab95Py8Eghu7baoZ5Ymg1zkAnPQ62gsoG9fsHebsWNS9GD4OprV5gM+zx64SFefbXH5taAYhy1oCxTlFUAL+zc3GNtrcluGQf2C1/8NCa8k1bDICF6LpRl2mzOWVqtDiIKWw0YD/fIm1EAGW1otbpQVmzd3OaFL73Iow9FjXttZZ1uZ4nB/j6iPYhmuodBo9mi0WrhQwxp1FlGI/nJu9LPll6Vs2yNRmxsxqVfVYw51V4mG46RytIOsGIyQhKkWhk0GvGeJo4VCWTpwS1Zx6T2hFCTeU/mPSZ5LZjgEWpQglcwFk9ILlwTMdGTQwJeQdxNNqT7VxgRfLAs97q8/996L6fPpdBhM2a32GV7MGBrd0AzMzx0NibNPn36FEprrAjtYz3ax5ZYlvjcTj18GitQlWOaeUav253tDbZ1fYR3nrKsyDM/8yYBWOo0ObG8hi9qjFdM9vaR3nSHYzhzbpVzj526Z4d8oyCiEfEYnc3ywlrv0HhyFTChwk8GDLZiDuLta68x2tng/2PvzX4tya4zv98eYjjzcOe8N4cas6pIShQHuSWxJUpuoWFLgAzYBgw/COgnw/+B/wY/Gzb8agOG/WC70bKlbktqURKboqjiTBarsirnvPNw5hPj3tsPO87JzJs3b2axxTJh5AKq8p4hInac2LFi7bW+9X3j0wNcOuG4nNFvVtX+G9eRSpJnOVmSkaUZeVYsjxPXAorCcvvOXZQOePedmwDU4pgyL8jznDAIUFJx9/5dAO7f+ZiNfpvG136TjfVVHKCqcdo8QQVzGvUmmVNkGlzpHwY6jJGhRyWUxrB8Ci7NJ1dfhsxFPJHDfRqv+vT3Fq8f//Oc3MOL7AWF/2cxsU869yeO9tzo+SXwrZcO9cX53ovscpysAKl9b8xymMo72Du7Mz65vc/weITNqgJHXpKkE7aurPDrX/1V/u47I04HJ354znOzOisxpeBo/xhV5bTmowFlMmB1pUsYSOI4INRPwMbMHCsUWeFzXEjvgBqtPpsbV+h2mpTJmMODfWqVNE1Ua7K6vs14PGc+nZIZhanwrEEQYYA0L3BAaQwiqGBRpsSIiNQITiZT9gY5Y59CIyRmMDY0MohFSF1DTUXLmoMxICwoK3DWZ8qq7kq0c2TGUzkq57+jFnLawsvOGvx/WkpfgANExfUqq2SbsxaxaAYTAoQjDALqjTqFyTk589Hq9vYmV7c3aNUiRoMpwhi2Nzy87crmBk4K0rKg1onobfY4mfnrlJgCqSRNXWOaDCmSOatt3x7bub6GlJAmE4Lg6SJWMp6QT0e0I80X3/4K771+lcHEO6iTbMrNL+xQVkvvXwYTKkBaEEqzYBmTeBkfTUmZjJkPTxif+nN4dPcWyfCYMpkQUZJMRjy4eweAQDik1iRpijGOLE2XkvZKaUDgJMxncz65dQtRQcZef+0GSgjKZM7odMZwcMZg4AMWZw2f3L7DSq/Lf1D/KnFcX+bppSsQNkOYOW2l0K0604oAPi9TnJDoMMRYj8V9apF/Se5SPP2/pyNFnugSuyRVcHFkdy77ufRVLxtrXp4HPu/Xn3Nmi62eyRc/NRrhU4YX+9CL9vxiZ/sKwvXKXtkre2W/QHtxJBvKSm7Dv2UtHJxlfPDhGSfHJTZTyAqnJE2OdRmddsAf/Me/QxhM+OtvfguAwXBCoGOsC0BHFHm5bMfN0hmPdu+TZWPqtZgoCmg1PWKh3+uhA8l0lpAkOWU5YjD0y3epAqZXr3Pj6jar/TbNumJY6Xi1G3X6a9scnYwxLvIdNXKxhBPMsgLrINABST5bQqYSY5gkJaeTlMPBmEmSkC+XKZqpDNnYWsecnGLzklluaFb8oHElBe2cQToB9vFzzjqHs47CArhFfIp/JagonzFIUieXIjCedNk+/pPHihKLwkAQxeSm5Gef3OJXfvUtALrdJoPBAKylVYupBSGuKmBJaYljzShJKSlp9lrUmz5/OhwPyPM1glATWUGj2UVUfLmGAhdogiBEipCKydr/bpMZw6M9lJ1TzPa4/dEYUzFRyZrgzu2MjavbvPv2pTPuMzPPyWFw7nHjixQOLQWUOZPBCaPjXVRF9K5sjs3naAyBBEzJeOgpzz75OCcMY5QOCOMYZx26qmGUhcE669nXlCabz7l96xYANk1Y7XcZDQeMhgOiOKLb9vM+DiWj0ZAPbn3C5pUdrl69RlmlpRYIFGNmGCcoMQRVgwqyRu4EeVFWKZHzkdb5KPWC6OyC5bjPMrgnvn9REerlltDPCSQv/OZFPLSPd7K4L18+In66knfxuHCXVQTPjeXft/BlgNI4htMZriJNmWclP/7whPv3plBGtGt1rPP5oNn4mFo4Z7Nf5+3rK6z+0e9hZn4i/rvv/Jh55sidqRQK5NJxl84ync0QUtBut6ibGnHNk7K0u6uEQchsloEpsXlGTVdtrtmMyakj6SvKtqHR3GLBvWGco9NfY+PKjMk0o3Q57ZYvOMznM8bTMbV6RJpkZEZQFN4hDEczBqMZg+mUeVkShhJZJWyLomSoNPU33qO+VZDvH5IeHyGmvljRwBCUlhRPN2cRy3N0zutDFVQkNAJMNYNKITFCYZTGSkWhNFmV61xmiJ3fUEqJdIsih/SsaE4wS3MOTwdM5/48vv/jH/DX3/wOzjgacUyr2SRNfN4jzeaoQKJLyXResL1zhV7b/94762vooiQdjhkfHdFrNpG64lGogwxqRFGAQPkJUs3FfJYyHx7TCnNsus8nH51S73iHsbK1yUcfDqj3Nvmd37psxn125ikkfaFq0ZUn8cQqJs8ZnBxx/Og+22t+zvTaNcxEkZcV50UYLB9+8+kU0RDUohgtlVfUWBRfjEEphdaKsvAIBFFN0qO9hyTDE1rNOhv9DvVGnbDuU2G3792n0+0xGI343o8+wMqI1b7Pt4eRJwp3LsNZQZJnBNJfPytCpAywxs8beX5B+2Q64PGf5+yC5bkQS5GFywpfL2VLL3vZRufSHJce88VOES7KMV983JeyT3G+lzrZ8STh5GzKx7fvkVacqklh2d+dk4w0JinRbYXGV1Lz2S79ENrakRxNudqp80f/9CsADA9O+MGtR+RlhpIh5aLlrxpv6RyzJAUpieIatYafNEhJkicURUaWzSjSjG7XF76UrBOFIbac8+DhXebzMe2mZ+rfWN2g3Wxz8513mE1nvP/+9zisbopGLWY0nhOkGdPJhDTLyFM/8efTlMIYdBiyutJB1SOmiYfOHB0PGaQFQ9Vk/Z3XKbuHyPY9kk88/Ckfn6GsIROWGZABReUsCykwSEogQ5AjyKsLVUiFkQFWBSADjNIU0heNnNRIPMO9sw4pFLoij1EIcIai8CoTOmjyf/2bfwvA3Xu3ODwe8M6bbzAaznE4yorkJ88z8jyjFoUkRcZGv0tnxxfFIuv46Dvv8/H73+fH77/PO1d2+L0//AMAHmYj6lvrvHHz8+haC2cFpirwHD3a4+zoEfPxPja1CJsRVkW/SK1QqgZh2HmJKfnZmLOWQGlKk0MVdQqnMbYky3OGgwHHB/sEuZfQMckIkyW4sgRdtZovgPxW0ohjmrUaxlpyU1AV+4kDhdIBSkkKU2JLi6hIfFQgaMYB2+sr9HtdhFIUVVQmpUTqAKEjdo9Oad9/uFRFXl8NUMYrKZ/OShLdprXti2mZyTFE1Bst8jyvWsIvijqX7zz+/0VR4xPvuSfev9DpPfMel1b6xaUR6OI4T0af58/j5ZzrU/t8UQC6kOw5/41zh3nm97lkGJc62T/9k7/i4f1djo5PKRZ4Tx2gRJOaaCONYVrmqMrJUg4IREQyStn98CE1pZYFkqurfR7snzE7GWNcDlIvx+UQCOcojGUyLajVgmUTw+nZIXEUIrXl8HifKAjYbvpKuCkNUjtOz44pTcnR0QHrq764o5ViZ2cHpQK+/s9+n8ks4+//4TsAZAaGk4Q0TchzD6FZwJTqQYvVlTbN9TayFTDMZsz2vQCj0CFho0sRNCgaPRo7NepacXzk8aCT0TFWGObCMQVK8YS0ifNaWb4ZQZIhSasURS41pQpwMgIZ4oTGVpfGVQq9qixw1qBkiKZi03LgbE4pHaWNuHbjPT645WFxh8dDmrUWrUabNLFkpSGvovUkTcjylEYYoHFY57BVlPvhTz7gh9/8O97/22/y8M49Tm7d5XjPF39+Oj3gC7/7G6xsbFKLmmDgeM83OPzg/W9zsH8Pk48IQ0E9grr2D6dOXbK9+Rq/9qtfuWy6fbbmKnYwZ5YFeCkCbJGT5QXz+Zw0mXO47zW3dDlDlhmhVgRaI5VerlKls4RoQgdOCnQtpFbdWVNhMNYgsARaUBgPuwNY7bS4sb3FxtoKSgusc8TVqmF7Y53JLCGu1dFBjcks4eDIFzWFLYkDzd7+EXf3zpCdTb581aeJQikZZgWuXBAgPosCeBlkwUXe8rzDe6no9VKn9vI7eNqBP5nyWDjaC/b1jGP897AAr6iCAAAgAElEQVRnfsN/pHTB//o//c8k4ylhEOOqmWilIIga1KMO9ShCq5xQ+bzVWlcCEWmas39wxu7DveUoCqe4trVFhmZ/MCZ3JbJ6MltncFisFZjScnJ6xN27lcprFLGxtkK/32V1tUuv2yGpyDeCQNNstfj49h1qtZjZbL4kc+l2OqTZnJWVdXr9Df7gD/+QgxOfr/349h1GswRTGuq1NnFco1Z1mK211+j2+6hOxNTOSAZHdPt+nJ3+Da7s3OTqzhuEUhE6h81TbPVDJ0owF5ZMQmL9005X56+RRDisACs1hQjIKhYyKwJKEWIJwXluV+eqSNZphFAEKkZJ59tqKyFJ6cDJACUhjPq8ffNL9Ht+Sfnf/4//LcfHu5SlQOmAZDZnnnmnl2QJDx89ZGvrCliLshZRIS9Od/eZHJ9xdnTKStxkq9njRz/5KQDDuiEOBHGskRLyomDvkWdE2310m0bk2G43qOmMrMhRVU623wx54+3X+fzn3nnxjPyMzDm3xLa6hca88ATYaZqRJkkl7rnIP5UoAaHWhEHoO/0WdWNTEKmAVhwTRgodKpLMz9ETlzOdzXAGhJAV6be3ehDQrEXUIkUQSIJAo4NKQNOsMRuPcG6E0XWEDhkOK2n6wRGtWkSWlySTAbNpRjLy6JC416AZh8zyHCVVxXt0Pg97PkJ80p6fs3XPwL/Offc8zvX5v/6lnz47xmfHv/zGReewiJ7P+8GnPPXzx7DQeHveaIXg2d/uEmd7qZMdHu8SWolyBvNE2J9nczIxZCgEtVjR73hnkdZjkjSnGYREUZO8FGTVclIG0uNa4xhrB15Km4UgoL94nqPWMZsV7O56DG271SAMBA5DoBX7BwfLQsU7b7/BPEnQSlKvx2RZSlCJJdbqIUILWt02US1idWOD9z7vuRIe7B3SRrO2tkmvt0an3SMKvZPVwsO7cpdTNy22VI+1NX9bNDsrtNt9YidoZgl6cMRw7x55NvXnHypOc4s1joYIiSs8LIB2gpqTNKRiKjRKR5QVC1fqFA6Fdcrzw4oQhL/ZrJPg/A2thAfOywq3KgRY68FeQdBBR02+/vtfB+D/+cs/4ezshOksYzJPH/PZAvfvP8DJb/HWW29xfecqtSCgXm9U5y/55M5d5llGu9bieDzmdOILjb3VdVZ7PWpxRFlmnJwecnTsYUz1esnORo2mKDBpiigtVbcq3UZMv9tedjP9MphAeM4KKar2WlDSJx2zLCPLFtLq/u5RFTGlrlIFSuklRlhYR7Neo9ftEMeKIBQUhb+2oSgZhZLxaEqeFkQSajWfd+13WnRbTVqNGnGkiINgea8GvSbTjR7TecZJoXBCUpZ+TJG29LpNrJMMZjnZpOD0kWc8u76yiQslxcxW99gFbFIvFclyjhrxcj5Vsaw/XNTO++xxnrEL8wlPj+Gli03P+dp59q4Lx1BlC55MF5/P4r48O5e3VxCuV/bKXtkr+wXapZFsO1ao0mHz6TJWl1JSFilWKFQQ0Gh0qTd8hDIcDblnU8rVLmkhWF3ZpLMoYCnN9z6+jV5UWssn0gXWF3WcdQRaI5RbCiJa6+h2u0wnU27cuMrOzhWOq2X/eDqnLEu2trfY3lpnb2+fWs1DkXaublOrx+wf7rO5FeKU5Gu/7fvmCytJc8Prr91kOssojcVUpN1J6UjSHJUWtI1CCo0LqqRdrJCuoFFMaA4PGXz8Q2aPblOkHl1xbDL2XEmEJHSCOoqgAp7HnpzWow6cIEUs2zktghLPtiWcRjjP0gXgNZs0Go10i0h2of8FBoMxYKwiywtSjxGj39+gFjcZDEccDU9RgX7cUukkeZpz/849WnGdq5tbSxayVrtDs9NifWODyWjM4fEhs6qdUyY5o1GKc3B0vMu3v/MNPvzht/1nYkin5WCSEgiLDjV5dbya1AhTkqQJQXMhgfP/rQVKeQUM4R7D5fDz27cLS7TWaFk1sAhNgEDKxxHRIp4JtaJRj2k16wQhaAW1SFbHgVajzgFHjN0EpQK6XV8AvLK5wcbaKvW6RskqC7/gs6iF7KyvsD9MOTqYkuU5m2t+u+1eg367zmiaUotDoiRneHAPgJtf+BIuKDmzBqEDn5x4MoJ7Mn15vm/2XPfBU/yzLNXAnpsuWKAPXmTi/Hi4GGjwPEKapxsKns3Hfgp2hGe+uKh5PbvN01Hw8wh1LrJLnawtvfSLKS12QWotBbm1GAcN1aRe6yMq5qfJdEIoLSdKMR/O0E6B8sveMI6p1RvI8YQwCEjLgrIqxIgqQe+7ZISvolYTIEsLHjzYY31tlWazQ5EXtCp+go31DcAxnY0JgpB333mbccUKVa/X2D/Y58GDfd77fMHbN7/A+hVP2t3u9dGBpiwVP/npPc6GY7LFosA6RBATaUnbNYhFRFY5mTydUJcZweCE/R/9PcOHn4DJOcv9Me9MhoyMpatqdISk7iB2C/UDsKWpRCkdpbPkFc4nE5BLT64nnCf1FtWlscjqPf+ZcGJJaCKcQ8kQISyz+Zy9owGNTkUEHni+hnSYIoRA63CBOMJZmI6nTEZjttY3WOl0aVQwtbc+9x7/4r/+r8hmCf/uL/6S/+X/+N9ZXe0BsH7lGkq3ONw/4t7DT/ju97/J7l2PrFiNCnYaFpV7h5QD44mfF7EKadXrzOdD2r8kTlbKBYTQ+s45PCROK0W9Xqfd7iDmp4QVdDGwhsCxlCl0zi3djpKCKNJEoQRKjCmWYonNWo04jBDG0ao1EE7SavnAY6XTod2ooTX+Mess1TOZQAes9nqsrWYEJyllntHveF6KazvrhBKy3BBHIVo4Jme+ODs9OyJqbiHx+nLuvLt4yldc4ErOEQIsGRTP5SmfZVEBJ57AcC+/9QKXd0kG4KlUwbljPZk6ePYIFx/z0zjGy77wEk1tT9nlygj5FOU8o1S2IDqxIIPAsweVMBweLEXbep0O77xzk2yScHI0ZDYac3jsk/X1RoPSeDzs6moPc+YoqmJLWXoOWa20z485u6R8y7KSR7uHZJlB6xqvXb/OyooXYOz1N6nFEQ8e3mE+z1lfW1nK5OzvHzAYTdk/OCG3sLa5Q6fvncXqeg8QWKdYXV9hmmaUVe44lAIRBigRUmQB5BBXP1O/EHB0wMFH7zPbv4cxM87KjA+nHl1xmGdYGRI4QVmLyUpLWF2oyFiMc2SmJJWCHE1eNWPkwlEoL00jrQKnlvk+qpZb3GPco3ziikohsc6Q5imj6ZTVTV9lfvPmNb79d5IsywiDkFazRVgVVZLpnCxJ0VpS5AVZljOt0AVrG+u01lZJZ3P6167SurLp6R6Bu7v71Oqr/PVff5vD0zucDI4QupJuLzNyExCKGvN5zmwG+4OKtyLcoh6vMDg8ZnN9+7Ip99lZ1Tppn4I4eV2sRrNJf6WPmxyiq3kRWYN2IKwFJxauFgApBYESaOXbsssig6Wz1Gip6HXatGtNirwkruZ2PQoIcGAMQhhPBVp5WWMNodKs9vtcvWJI5tMllrnXblEPFWlW0KwPCLRiMvN1gTu3b9MPNjC6h44vyMdeCql68u/zTo1zjuSiWO+iEPB5Lu9TNNVe5GCfyZlePraLd/yity7ez6fVub3UyTqTUuBp4RbiqU44clMgEeRZzie3T5arjt/5rd9ge2eHux/fpUQwzQqGQ48zvHol5Mtf+RIPTo7JheNz793kzj0PfTo5HqCkAifBOb+/6ononMAYODo+Q4qQna0b9Lq+l359dZs333qD69ev81ff+DN+/NOPWFnpL7c7Ph0ynafcvnOHrZ/8kPX1SqK61sQ5X8TY3ukxmUwxR1XPeGpoqAgThUzzlNLk1IsFMeoDzj74LoOHt3DMmErDrWTMvcSjKwqpiXRIITWq2yWdTHFVsUIK/1Qv8UQvRjjKBeGHAqPw1W0UWK9Q+/jiORC+LUE695iQ+QlwuLGGJE9QVWpDBZqsSJinM2q1Bs16k3bD44vffP1N3nr7TRBw9foOURRRLqBmOkAiqccxtZUV/qMr/wJd8Tr87KN7bG9u8md/+qd8fGcXScj29usA1G3Jz350m9O9jNEwp1VbpaiKd+PiDf7Vn3wP1Q549wtfvGzKfWYmrMMJLz2ziDrB42frtZhuu8M0CqGsOGOlQjsNxni+YCGWireqcrChFlipkDxGLDhbgDMEKvBEMVIShlVRTEqwBmtzpPSS8Sb386U0BqtjOo0G77zZJk2mbK14J9uKAzrNOmla0Kof067FJKk/3p07d5g1rrL1zlbVDHOuUv5M5Pg06clzHe2lyIEXdUc9/epToJ8u3v3j59tyjO65X355E89DK7zUts+3y51sWYDwB15ETwLf5qmkRknQ0lFr+CVgq9PkRz/7KaeHZ4RxTBDHDKceJdBNEh7s7vHO229yPB7RXe9TLuSr5wVJkiGEROBQUpFXrZwL8pQsKzg+PeOTe/fY3PY8tL21dVQQMRxNKQuPm11Z8TjZXr9P+pMPOD0bkeUFj3YfcnziMZ2v3Wj5iyNgtVfn+s4a5D51MT9NsBmMywmN0FJTOdkdX7k9/ODvyHfvsBYpfng24bvzAYfCklZVcydDcJI4CFi9co300UPKuY8whJA0gwgtJbYWkzoIq6eTdhA4AcIr2IZWLknSC2UeV22dF85bMMR4pyt9U0CeM50O2T/yPKankzH/9Ou/zxe/8GWctWxsbFKvRBbr7Rqf+8rnWVlbxeE4PjmlqG7Sh7tHBLJGZ7XHHIHutnmY+nTJtx7u8bub11HdPqlRtOMOa1VkGhvNv7r7AQf7KbHuEdbeohb5lcPD+w1WNrcpktFl0+0zNSWEV4d1glAvVDEsohDEcUyz2UBJSfmULLiPYWylILlIM4RaopXPYEpZ0WUuOOCtgUp5QyA8/2+1SAmVQOMoTOnpL7UiqKCSzlhMWaKV5Mr6GpI+q7EfSz2wxErQazXotZqcNurMs6r1OghpNZo0G03G+bPe7GWivudV9N1TWzztnC+1J6Lnx9jW8/v4FOYej+R8fvxFY3FP/P+CIf5C7FInq63POwnsUpE11IpYa6yxHmcaR/SrRH69HnN6NmSWJbTiJu997h2alXrsLE1w0juSKAppt1vsbPsc03SccHRwSpbnqED5fNlyKaaw1mKtI5nPuX37Ns1mRXUYBKyurDCdjFhb20CKklq9ynetrHHlyjbjyQwhJNPxiIM97/CvXb2OUgFlYanVFDs7PWTl8Y+LE6YHE0w6IxJT0uP7HH/8PQDS0V3a9ZKH8yl30hnHWUkWBujQQ3JyJ8kQ6Fab166/yWiacHbq8YuN0rIuQxo6gKDOqMg4qFjEY2F9VCUUggCFQi2jVYdxBqTASOuLVxVJunYRgZEEIiMoLbPhmNOxd2RTCzc+/+v87Z99g199+ya/8evv8ejkPgCPRgfk0mCVoLQWpyQ/+MEPALj30SNsKbE64s0vfpGipglW/e+d5DkfP7zLn//Nv2GWTlFKM5h6B6xyRW/1Kr1mize3fp3XNr9MMvMTvqOusRWvYeT8JaflL96UXzQRBgGiEkvEVjet8U70mQDK+STBosDjqpVIoCVKCYwtcTbHmpIFs5fPmwf+elqLsNazPOGpC5XzzSBKePY1V3WfWWvIS4uwJbVAUQsD6tJHuYEroEiphQEr3Ta74SFRJUsf9VdoNVpYY0Cop4pXj+1ZB3k5R8Azfz7z6rJDPBk9X0iP+DL7uOCDl406n35oPP+47nwh8GUG9hL2CsL1yl7ZK3tlv0C7NJKNVUCWZcRaLTuCAgTCOjLhMLoCwlfLLa0lK/0uxjrOTge89cYN8swv32ezGZsba/zgZx/QXe0jhaLX8cvJZqPBuDYhSWa+auskqhJSFMIvwcJQk6Ypo/GAj255Ha/ZfMKXv/Ql/tnv/4fEgeS77/89ScVBkBeWJMlotVrcuH6d4XDEfO6JXJJkQqvVQzgLKGo1zZUd36or5pZilNCb55zc/oDJ7R8gBj53rMScXTL+fnDAwAFRDeUCTKVwUDqLrIWsbG+ztb1DuLvLuMplZ+QkQhIKhXb+nFylxoAwSOHJPQpRwypJVOX0tHMoW2KEo6jy1raCcClXQ1mJxBCagrOjPe49uAfA1uvX2Vl7kw++f0BBCxG2SSo61zKX1HWD0GmvRhF3udbx1+n+5Ba3PvyYBwd7rLY7fPm3/gnbOx7NcffbY1w5Zjw55vhwF7Wxwr09L0F+8vCMk/GYpq5zMDxhlnxAM6z4a69c4+7uLo2mAXZeOCk/E3MlQRhjfeYS8CgBpRSukoV3rlIXwEcjQgqk8Mt+Z71gIvjimZICZ0qKIkNQLvvyBQKc8/VLqLI+/jNjvOSMc14gk6oLzY/PIZxPSSgByhko0uqjBKkiIh2y0umw2u+RGh/JjpVmMpliZ3NEPeTpuPTpBf/T9jT3wIsj4BfYcyLgl5ULX2x4cYpiEY++TCj7cyZZ/xH3eXm6QGjG6YxOu4asqi0BCoFES4GNI0olCKqlSp4XdPp9MlMyHg/ZP95j79D3va90u8zSGY1GnfF4zMlwSFFNqK2tdbrtJnfu3OP4+ITSlMvJrZTymlJCUFcxRV4wq5zlPBljKYhrIb12G60jjo8861dRGI5PTsmylCgKuXr1KvWq02Y6HtJud9HVwwFnqLe8N9x6rY+YjNi9s0d+/0MaswGVuCgfzOd85/CQo9KSq5C0AITALHW8DFpIrl+9Ttxu0d5YQTb9fsempHSCiYAGEYm2pMI72ZICJxwGRYHG8pgZKiJAo8mxlNJVxYzKOZsEKUCJMc7OSJKS/V1/Lf7ga/8F2STgc5//KvUwoHVlh9kdT7GXJZLQRehSIgwEheKLb70LwA/+73/L8a2fks1mfPdf/0se/PR9/vl/+p8A8Pr6Or1mh7dv3CQ5HnB2OGaufQpgdDrhZDhgPx3yUXkXLZr0Wh4yN1MHDCf7OJHwX/LfvXhWfgbWqAUkFf3kIscnlFdcRggvn1SWqMUS0jmcs1jn0S/OORaJVym8jA3O+RyscKgKcmOtIysyjLBoEZLnObVaJcPhBMk8JYp9CS3PC8qF+qTzaJs4DNFSEAi7ZO9yNkNYiXCGdrPBzpUrFMKniQ5252THx1xZf4OoLj/d8pynK/fiyQrTy2z/guX9S5m47OX545+jYrzgiJ+mkHV5O+3Pn7W91MlmrqLhkxoqGWqLINIhUmsKFSCVoFMxX+FgOp9SmIxWp8E0m1KvhPayMuPk7IRut8X04IiiNIiq7zIKJHGvydVrmxRFymg8Iaiq5GEcYEqDdY4ojElTSavlGw7anQYnp4d846/+gu3NK0wmU05OvJPNi5Kr29c5ODxiNMxot2Ok9NtNJ7lvE1QAJWU5Wz4o6mHCtjymzPfIaoajQvHDQ1+8+tHJiNNCkBJgZUSpDEJK7KKAJSSdWp2ra1cIGx3ClVWocKGj6QkTa2kIqGMYCEtSySYUzhcTJQYtLAGOaEG/ZxSl8wUYS4aTGU5UEY0agiiQwQTUDOsmiEq2phbNSacl9VbA3oN9Xk/XmFahrEECCozFTmbM7u0SVuJ+r2F5XQkeFAn3f/wPnB3fpd7yD8MkjFHf7zK5N0JMBYPjIbqS4+33Vwh2ahwdDZnPS5ApU+EfsIflh2y/tU4YXk5f/FmatSkQewe7BBD7G83hi6jW2qXasHfElYPF4ZyrVkKejEgtWGaE9PqFC+ytAqxECO1zpFovxUWlDiiKBO0klMY34JgFYsE3QyglMUWGcxaTexSLlCUmzzCEBEGTtZU+J9NqLEFJGUQoHXw6D3MeWbB0ti+xjycCzGdj5aebBZ4byT7HSV7m3C7rkhXLfy+ClT3/uE+fw6d4wFxil876VGniXodESFT19A2VRiiFc1CUlqwwqEoTO4oiRrMpp4Mz0iQlEJJmvJD29rXVIi+JwpiTwTHTxIP49/b2qNVDWs0G7W6TeTLHVstlCRgcWkmUhEYtYr0Cx9cjzcN7tzne2+XK5hWCMCbQfgJvrG1x/fqbHB7NODico1Sf8dj/aP1+DWdBCAOyROscl3oIV37/Dvmt71MvTijdjJ+dHvKTqsPsNDeUMgSpKB0gFdY9lmPWQnFldZPN3iY67iNbV3DNNQCGYg/jCmZSEDnDGZZsUeQQElE6pMsIbEpkHfFCJZUAo0KcKiCY4vQMLb2TDWVJrAs6LUPcMXRWSkxF3vwv/8//AeGu8uaV3+Pk7BG3PtLMZh6zHNU8+5RwBjM8Y373FqYSi7wRw7VmwMFJwmCWcfZgyCf/my+YiahBu76FlnWy2RSVQ1FBjqZ6iApDcjdhWkwx1qEKf35HWchWRyPqvzwlgNLMkTpCK+mhg/AU9Z5zjyPchQkW6BrvLBYOIwhDpNIV9FY+dTsKIauHucZYQWnBVKu0Ev93bh3KWYyl4u8AUZZY48iJUUGJxCN5oCra2RJjShCWMIyW6bWNK9uY1evoKPa8BZc52gt9yM8BY/oU6IXnwcKedG7+5WWpjcUnz372tHN+gYN9zu5fFqlw7oDPtRc4WcUbr73Gyekp87l/iibWYfKMPM0pS0MQBiz6QqIoIhuccnY65PT0jHoc04x99Nhv99hcX6fILe1GxDBOOaqW9lkxR6ouceyB4UrrZXARhRECsdS0bzXr1KOKT9UaKAqGkwmhkvT7q/Q2ff4wDEKK0pIXhjQvKZ1bdkrV4gCcwZkM4RJEPiE/8GxSw599wHTvIY9ODvju7iN+dHjEYaWcm+K73QpXNWUoL35X9RQQaM1GZ51uYxUr2tC4hmh7uNlE3mJmCkIM0mbMrSWp+fGU0qJljiqnBAhqwlGrKsk4RyodOizR9YSwmVFv+CVlN7Z045J2wxK1oLbmyIyHcH3v2/eZTbus/tFNZsWAvYki1z4ir0mNmQ1AdhDjMbXpiHLoHySRzun0QuQhlGVJYcBUuVztCko790QvWYnNSwrnx3l4OCa3hVeSKEpfua94b5E5j/bucby//+IZ+RmZkj7PraR6XFW2pmrvthhjKhXZKhXkFtGr/6rHVPp5HwYRUiovvV61sS5dhFR4D6KwVnjJdvWYK5jAYaT13xPycSneeRFEISVSCqS0C9pbpKBqAPLIBCEFYRXMNEQL2+5iwnDJV/xcOx/9nYduPW/7CxzLeed24abPrvYvefkSD4eXcJAXnsdzHOPPhbV9CT98OU42CnnjV76AufUJH/7sIwCGZ0PSeYozJaGUrHRboBZLI81slpLMMubTnOkoJa0cQqiaCBERxyFRKAivNhcoF46GRwRaMU9SisKgpSaq+Yi0025TlgWj8YgwDKnXQmqRn6TNZow1dfI8ZTwa0Gu3CaqTnk7OEIGgdHMKlxPUSyw+l1tkJ9g89iD70yOKgz3mD320Ntk/4f5gxHce7fG94xMO85ykmnypXSgbVGl467GNi7nZCBusd1ZphE0sNVxjk3D1BgC23iEpZhTaoURJriyEVQSsJVGQEBpBREZHCNrWO3ahHKYWQMsR9AqidkGt7r1ePSxo6gItC3JrMGXKQn9yo1dnP4UyH3N4+oDoSgmVkxVOY5IJ1BrI0hIil8xmeZ5irEUIhXGCSV7iYp+CqAdNyiAktTlJmTJNZ6TVOHObk5mcvPCyPlLKZVTmcijGBQd3D180Hz8zsy5jqZf9xD0lpAdveZpD8ziarZzsElooHrc3B0GAFMqvDoSngXxMNuudrDWCwjmMUKjKIaq4jhaGokgosH4eyYXUkEMohdS6ShuUyNIfT0mB0oqK6h8hFVFjIVvTxtQbJErjuwRfbnn+dDT6ggjwBc7teRCwC4/Lz+HcPl0W5KW3/3kj2BeN+pdn/fbKXtkre2X/P7RLI9myNHz88X2SDEzFxp9ZTWIFJjfksqTlLGLBUiUEZWEpcs9FUBSWohJZzIuS2XxGrxtSFoY4llzZ8BwEYc2R24zxdEyjHoEtl0uXMBQ0mw2ktHQ6bcDQ6fmn9upKl9l8yvb2OseHZ0zHY5LZqNqnohzlFHaEDiWlPePg0DPL56N7mLNtVttt4sEQs39IcuCjrONHh7x/9yHfPTzmUZoxE5K0yoXlzmKFxPlwxwsj5gWB8D9jo9ZitbuBVgG5yCnrltpW1WW1GjIXjigsCQOLCCGPq58thAhBaErqQtNTgjZ+GW6xFJHE1UHUS2SUI3VFJC0KCuflwpUUuFxDJTETFDXWOi1cMUeTw3xKKPx2WiuyvMRYgYsa2EaP9MTna89GBeOpZZZAUmgyq8lLH3llZcgcR2ASktKQOElWwclKpzFV04hzxmtoVRFBR7fo6zZ2Wr7UpPwszHPJSmzVbAMQBpK6CrEuIgwUUgjkkozH1xQkVMlZgazIf8IwRskAa0qUkl7loNqnlKoKliXOGKxQuCpdUCAIgpCyzNFKIdEsoyhb4CoScaTw6hhVFU7CclxOCJyUhFVaTsk6pdI+H3sRA9fCxAVvvUw0e2kE96xc+HkJbiee3eqlIsifY4n/aXhfPxW0zO98+bZ4zvEXdqmT/e2vfY279/eYTFJExeIfxA0iJImx5HnieQ0qmkBjQCrJbDYnmSd0Om1WV9rVoAriuiCqWYajI5J5Qlbh/qTMUZSYMiPLcur1aKlbn2YztK7TX2nR73fpdtvMpn7ZOxwPieshWmnW1ldwuWV/33d1FS6jK/uEoSGIYHD2AFmxfpVKku/dJp5l7MQNugQcP/L5wvc/usP3dvd4NM+YCUUiPIELgFMSW2nZL3JvZVmiKsrGTmeF/voWpTSkDMiinHjdO7bmumVWZsQ6I9SGKIaFRokMDEpYpE0JAS0sloUjdX72y0ploXSoxQ2MJzTBSSgFEoWt/NjoYEzc7HF2fA9RToiyDvVqnPNhwo++9WOS9TFdAorTktNh1VY7dezlgjMXkAYaF0QkmZ9G2TSEVo+ZmZMLQS4lxlXk4jbHkQIJwnrBwMXydrXR43e/8jWi5Oev0JiuLakAACAASURBVP5jm9ZNjAxxzqKqh08throqwTmasYdNSbdYogdoJ5AVplmIxyWuKAw9vtYqlJZoLX2XHlVOVoASATIQOFWiKoL4pCgphaJwnkBJGMOSbclIz9vh8LCxJ9p4rTGUVmGEh/QZJ1BV16FwMQaFu8hJXrrMr14/Ly97Lg/6NGbgAvzqeUcLz7B0fao0wc+5xL/M0T59Dr+Y48MLnOwf//Ef8/DRMf/6z/+Kv/t7r4+lpNftSoTH9qVZwd6Bbx2tN1sIJEpJwlDTbERcu7ZenZHl3Xd3uHfvAXtH95iMJ+QVZ6wOAuJaTKMWkKVzstSwvu6bA/b3j0iTOddubBOGkk63wWjko66iLPi1L36BT+48YDpJ0VozGPlIVoYCHQtkCMIIkmHKWiW3vL3SR89zdu8eUMqQ2Co+/OgeAN9/uM/uPPURLJLMWsqK7s4KAVL6fJxQKBHglCUM/ATf2L5Ge3WNTEImcgqZ0FytpM3XOwyPIMQQmJKweKz15AofzUotEZSkrqBQ3pEGGiQSLSS6DHA5S+ibkWBicLGiTC3pJKVWMW2J1JLaQ+aT29SbkGQjjPEPvOQg4Tv3fkixlXBzfYeTw2NOZh7vKlevkp+ekI4mlKlFuga6yq2aIsLYHmXQonBjShFChXQQZAgxwceGDuHMMierpeLtmzfZWNu8bLp9phZGDeZOIoVDUlX2TIK1M1Q5RtoJNptWD1SQQegbBmyOcTmOnHocVvtSvihlJVoqj5m1i9ZPXwQrjcGiCeMaKvLzZTyfkI8SJpMhm8UKjSgkruZEpDVSKESF3HHO4qpqsLEWZy0ljlJYz+a2UBQ2AVZWTvZ8fvRcFCrgGd/w3IjuUxapnktNyJMu+cUIgqc2uPCtSyBeL8gtP/nRC1EYlw3xBc+IS53sZDzma1/7TfaPzvjOP7wP+J7qsiwrSjZBmhbs7flluJKKZjNmc30duWmZzSdsbvhq/3vvvUm7VeeHPz7BuYxZ6nllAYSUDAYDjHHEYcBkOiOt0AyNesx0lnB0eEyv0yaZp/S6HsKV5QVKR7RbXXYfHKGFQ1cMR0IIsmROaCA0ghhLq/o1VuKI9dU1gnnO4HjMRw8O+U4lFniUZkydR1FkxlFaR+UrMNagtEBrTRzXWV/fpshKOm0P03r93fcoAo0TkkJICqtotfxDZn1tmwP9Y1oiJ1aOQFkWPQXOeIdplUMogwgcrqIQtBJC6+kWRS4whed+ADDKQm5IS4MtLLNRidMeiqUKwdFwl3pfobsr3L03Ih95J7tTu0Y/6BCrFY5OMz54uI/u+NXIO2+8gd2/RSYdqc0praLe8A8859rIqEmBwbkSgUFUZDVSSAwpzklMBdw3VcSdWsvto0POhr88BDHWJTjqaAVxVbhNZ2fk2QnMzkgmx9gyRbgF+c8iTWQxlaPV1bI/DEBgKodtobTLRgWLwVooS8hMhgjipSbcLM05G4756Qcf0GzV2Fjrsd7xPBGb/Q7dXp8gCAl0gBAOy+K39kgE5yylKclciYkqYhkZeNSCW4iBi+dEoeeizycjz+elGJ556xzE7XlSMe7pfz91gemZ1IZ76X08H+b1+CH4QhMvUQy8xC51st/622/x5pufo9ftLC9CnmWYsgAExjrSNOds4G+eZrOBUv6i9rptyiIhr3CUb735Gu+//z4rK110oBiOp9Qr7G0UxTg7ZzabEwYhzQacVDnCdrtFs14nTQrOTkdEUd0Du4FAx5yeTKjFTVZW1xiNJkQV4D0II1xuiIOQjtREGNSs4jd1mlqrxyS/QxLWsKsr7FY/+gDLzDgyIyookl1iEHEOW/rlZNhs88Zrr6GDOkHoSWkanQ65EjitSMsSax2EfvJHYYNYa4LCEkqHLB3REvolSZ0itQahHFI5bAWTUAp0KVCFr9KbKbiKfq/VjcjImGcF0lmkcSQzH1k2gph2AJFMMXbC0cMR8xMfVe/cvMaNt29SX9nkG9/6S249+gm/ee2rAGy9t83O4QbXkw3qZ1MOD6c4U4HgiSjtiFAHEIJQAcECdG8FxA7pYtJsRGlSsuraZ2HAP9y9zyf3H/HfvNS0/MWbdVOkaCCQRBXKIxulHB88Ijnd4+hwzwtULqTZHRhnq3SsQAqBrq6tVBWJpSuxRlb7f0JvwfqHkLMGZ80SleCkBl3jwcGAyZ2HKG3oN/w9sbPS5Z98+StcvfY6dV1Dqohy4fDx9x+uxJkUS4hxC2pMXaXvPAE+8IxzEBe9ySVO8glzL3Bwz8vJPulnf16I1Kdyzk8ev7LFsZ88/5dtjngc9l8w9hcM51In+7MPP2Q8GlOL4qX4m9YK60oEHk9YFAXjSmgvSRLSNGYyHlCWCY16zOGBx18e7h9TFPC13/46f/ONbxJHDYrCD7gWx6z1m0R6SlEU1GtNssyHebNZwtpKn24nZjbNGJxOWF3xkaMtweaSbr9Lv5sxnmaMJj5f68oCWY+IajXcrGQymxJ1vDNMhgk/OvqQH915RG/rCuNajVHlSAfOUTqHLTzLmAftP+7CUXh4UrfZpB6HxPUGYeSjD6EVRoAzPtoP4wVRLNTjLv1uDzsYEUeOZhxQK/1NU6YhSSooS0EQW5QQVcxSQSoLS5laSCyj05yTiqP2ytUWjTVBqCRaCDJhmc78zb2+EfPa1XUaN9YZqoCDnmBe+uJIPZTEzYD+Tp+1GxvM4gFb73qu3c6bdX6z8QWu/cYqqqyzfzDjo+967oaj+yNGk4yEFKE0ke4RshATNIRS0Gk1UKEgLRM+uO3lyXW9yclkzrT85cnJZtmYsNGvYr0qXWALDvZ3GezeZbS7Ty9uEys/721S4oxXtQBAPubXQAkMFotvtxVVygQW96Z3NEKB1CyX/UJr4kaTZqePi2qMZkMOJ1Wdggnz1OIKh7KCMKizEMqxucGSo2yOMgKlOxizyB3XkISLQz7fLoNwXRLdvUwx6eKcrHsiKH3JCPaZl5/COXNRyuLZY194rhelB8Qzf7y0vYJwvbJX9spe2S/QLo1kB4MRRV6wsb5KUD21izwlTeaUZYFUHsq0ILUYjSdEoUIiyOY5vXaTwcA3ABwdDtjZeo21lWtYE7Oxep2Ts2H12RRTlmRZhlKCN964QVhVYO/df8g8KWi3ejTrbabjOYH0kfP62gaz8ZxI1/jSr/wa7W6H73//uwAMh2Mi2yQNQ+azGaIsSMc+Arxz/xjiCFOrMxKKH9x9wLQ650XjgZaCQGuKwmDKRUNFiHEGZSU3rmxCkeKKmGuveSKUzuoaWSmxThKEbSIdoUpfUGrUXmNr8yajYkocz9ncahHN/fL94Z2Uw+MRMwFrvYhWl2Uka0uLtTmidFAIkrHjoJJ1ycsp11RM2NYo5XCFIZ/7aCcdBmyvbuLGfUQcsL4aIioehXodpukeOrrGf/6f/XOm7qu4biVcWU+4+SuvseM2aakVkhH8efk3fjDXI9556wvcPbxDUqYUiWA2qFICs5J0nlCLa6xs9Dka75NWfAhrK2ukTtJcQP1+CUw6Q6x9bSFP/XwaD484OdpnOjgjSWZstlfQVVdXJhy+ecE3JSAE8okWLF/pt5VigkcDAD53CljnsBiUdKSFT7+UJsdJaHaaBK06vc1VhhXpehwoorgODoo0x9QiAl3pt7kI6XxeXONJlNxSeDPAOYkQ7vL22F/QouJi2ZpnlMaeP4gLamHu3BL/hfZEJOrZxD5dBHzRYV4qd/scu9TJXr96jXQ2Z3VrnW7Hk8BMxiPKsvA0cNWyoCj9DZqmCfN5SBQqep0uWVowGVUTKhWMBgl3PnyIFi363YAo8sv+RjwgzxLq9ZiizGnUW7RavmCWpSWT6YTjkwHbW5tIBPfvPQQgT0s+/+7nWOn2OdjbJ1KCjRW/3d5sTJFmTMZTYgSBDHl07FEQe2cD3nr3Juurm3x8eMzPPr6/7CfXUYQpcrI8QTrPmbAoEpgyx1rD5sY6rSjAzua0miv0Fh08paXMHVKEKBeRzQRVWpKyaKPjK2TiQ2ZZgkwckV8Zcji1HJxlTG2KNIoVFdGo4FYO51MQ0pGWAlcIXIU9PjnNSCjorof0mhHzscLM/HlMrGbYCkkSxbilcKqNrnC5BCVn80O+8Q9/wRtvvE5zrUGRVEvRkeX6jRuUtJirGt1whT/8umfhionRNPnKV3+FtMj55KdHfPBDfy2OpyMe7X3IwenHiCCjEGNUpZm40g7JnGA8/OVJF3QbbaQsSPMZo6Gna9x7eJfp6BRrC+IoRErnCbjx2l3COf9exVehFhV94Ql8zP/L3ps9S3ZdZ36/vfeZcs47Vd2agMIMgjMpES2JCtPskN0O26EIh+U3P/Xf5vCLnxyWH7ojWmq7bXWLlESRICYCVajxzjmfeQ9+2Dvz5q0qlKjuEBvhwEYAqLp585yTJ89ZZ61vfev7sEGj7pJ7K4X/k7HGOypEgrr1F4VxLdZJeoMuiYUahwkUJxnFJGmKEAJtWqqqwKnwsJfOO2xI6bm6MsKG69dYr/xFdFnY/0eNi/42az0NJ7aD0OXP1suTcryOgudRh9+0Lwh/LzJ3/Mc8EdYB9jm44sXrZU2+DeTznxBg4R8Isv/Dn/4p7777Lumgy5/92f8EwL/9v/6C+bwOWazbWCgDrIqC8aiPzmtWScwrt2+wmPsc8cGDp1y/fpPJxWNWqxalunRCcNp/8xbvvPUGNw4P+PDjD5jNJ8TBo6NpW548eUxdV8xmM5I4Znfsu+S6qckXC777jfdwzjKZHhPf9N38IS2TswuMMbQqQiMYXPOvHQ6GTBvNr/7qZ3z+6CnT5dKDZUDdNKQqRkUS3TRIBHFoVKRRxN5wlx++9w63Dw9YrCpsVfDp3/89AFn/gJ39OwilKXVNUYEJfNcos0SDLmqYsqwsT+oliyOfyS+mlsoZamOZTFomrmVP+Ag13MmoE8XCGaqiwdWCcaCMLYzjN0cNnaLm9kiQ5o5O7T9HpgSu1mhrmTWGVgmy0NY2Rc75KqdpNT///NeoLNnMvnf6A24eHrGcFZRLzSAZo3Qg3ZOhW83j0895evKEojDMpp7NUNcN2lZYVqBWEBckfb+/ZLDg1bffIc2+Os4IiUpxtmY1O+LkyT0AdLXEtjXoljTxClg62BIZ2yADM9Y6h0Js1LSciGhs6wVi3BqPvPRoszgMDqQgTmJsELtQiSKTCdcPr9FYwayoQQXt4jglirzKXRx7XYTG+KdylGjA4uO4xAm1CbIu2DVte1/91lSp9Ru217qz/yLXgO34tAm4Lojn+L/64ArdLCaJI7TWG5cVbSzWOKzzjDe/iavtqRd6hb/sYbGVwf42H3cTQJ/BYR2Xwk+/VZB9iavCS4Ps22+/RafbwTnJ+z/6EQC///v/jH/zF//aixA74YPYWrzYtJRVRb+TcnRySq+TceeGL6W/+OIhve4QZIpuNVmnS14FmpaKuPPa6/QHHczHChUnhEQOYyxZljIe91guFhjdMB74IDvsDqjLBXU+5/vf+TYP7+V8eOz9uIbKkkvLbDlDJSkySZlXIYOQEbPFkvuPnnB+PiWJE+rCB4C2rHBxjBNgrKaTdPn2N94G4Cfv/x7v3n2VQdIhjVOOnp7z8PEFx+eeXdFWFl1qqtoCKVHaIxmGIY5uQ9xz7OwPYDagMJrjiXe5PV9qsqTnfaeaCjEH68INpRUcZDTa0dYQaWgCu0BLSTzMWAnN0dxxwyiGa9W+tmRRTZiXjrNKUTtI1jJ61mGcQ1uDcQ6pIqKgXpZEGZ99fJ+z4wuKVUknGRCFQZQs6jEe7LIzvs54eJdIrhDOPyjiWJDELURLjJii5Zzu2H+Jr76+w+1Xd5Fx92WX2+909bOUeX7G7Owxk1Mf2G7sjTmOI/Jli0ERRxE1QVYSu/GFM86GLGwNF8Q4K3FSgZII6TwvD3xn3TmQPiGRcbJx/22Mp4YlaYazfmjjXvoZAGnWQUYRCIeKJM55QXAAIw1GaYyxGOGHEYxYU7jkRkvkMs7848ts/9fLwPHSZpi4/G2B13RQYZhIrtXzeh3iSNE0DVUdphmd9SLl26Td7aAq1inpsxBEgG62j/u5g/qHPuwzn+k5BsYzXIb/BB7tS4NskkXk+ZKiNhsR7fe++U3+37/6vynLwnfdt9J/Yx3L5Yo7N66zwPL4yVOyQKnSxvDg0T1uv/Iqg1GCtjXDsb9577x6jSRNePjoKbXW9IdDqspjuTKCNFXsjHs01Yq2anDGf0l7O9fpZF3y5QV//r//b9z/9EMy4TOP1+/eonNrj4+fHPN4MmFaNpxMPfaW1w23X32V0d4uUkaIxtIEjdbcOBprqbHEScQ7b7/Ov/yX/zMAP3n/R8iqpJ7OqRYrmsmEui9JjA9Qs9WS08dPOLmY4Jwi6w4RnZCRJzOkOGdPFXTaDudPcxZn/tzMdcTMOHrArbTHgbSYeRBeEQ2dbofISUTtvELN2kgxzaDfQStNUVfMKk208ZbSrEzJrJCsrMQSoQN3M5IEHVwfMLQRtNrvz8Q1bW1BNQzHXXZHe3SStfhIj93RPr3ekL2da0gck4nHECOlKesz5ssaK7vE3ZisH4fvacSoM2ASvfRy+90uW1IsTjh5/BmD1B/X3Vs3aGZv8rf//hxjNNaYTaCRSoTqzQS4AALkTGukn8ZzAqeicMOFiS8BwlkEwWVBRBvmTK0dTkk/dCAEQkWUVWA6DLuoWKKtxliNVJcqcs55WMAYMAJsFDi84KUV5TYO+Y+lS20Hl5dRtLYjy+W+BMKrhIVAH0eKSEmiKPbO9u4y6buS/TqBVy8Tm/1s8TNwQm70e/3k2LPH/dKP8sK1/RBx4uqn3daSdWtkV3hyyfr/m7PwD+zspVf9B7/8JVJm7Fy7SRSmVITw89ZFvgr6mZcNAGMMRelHY29cv8bJ8RGPn/gsYTzu8/DxPVpXcXD9BlYopPJBtjMQ5O2Sew+/IOmkHFzf4cMP/ftkLKjbkuXKUjYFpm0YDP0wwuuv3eDs5ILzs6d8+OsPiZuSt171VKSOhCfTGcui5N7jI0rrVbQAZouc/bolkRHdrEvdlpumQhKnWNNinWE8GvL+97/P+z/4AQCDXpe2XKLbnGr6FL08pusKuoHIP04NialpFgvO5zmLIqINwtyVXOLsihxHZmImc0HbhMxOKWQkcLZgieFUwCh8abI2pDPNSMG8sBjraAKUorsppp9iE0VVW+bKEYeqIorBRoaZq6mMJBIWsSHIE5DDNeYkN1qq1tWknZTDwzvs7x4yHuzigj5BHKXsjsd0e7C/77Vko6PQ+CoLOhpG+7tYMmSkWZQeKlrM5hwclOTz45ddbr/TtZg+gmbB4vwpTbA8v4cmi2ISGaNwlFW5wb9b3QBelyFKIvr9DmXpP/ujxyegLUo4xqM+sZKocD6zLCGKY5xXHMBZiXDBtl1KRJQSxYrYKQrNJpOTkUJGkqqpWBaWfielE4Z3pJI46zDOYgijt+sPJgVbA2f8ozpcVybCrqZnV1xhN3CI2/zuWn/XCYd1ArmekrQOJyxFUUAYntDBtHQdZEWAOPxnvxrqLuv/y/Kd7YD4AqrXbxNg15t/7jS98H2X6msbJcptSpeTQXfixetrCtfX6+v19fp6/ROul4/Vzqfs7t/g2v4eT099Z/70+HiDUbjN08r/vhSSvd19RsMxe7tdhv2Ihw999/n84pysk4AyaFcxGI9oQrn1i19W3H/wgNVKMxz2OT4tOD72Qi/5akmjW56ezSnKgiRRHC+82HdJxdH5MTtpn34Uk6UJ57Xf6G/uPWVlHCezktmiojcaIddaCU5iCk1nZ0BROayQVOGzNEJikSRKcvvgOu+8cpciWNrcf/QFZjmjXkyZnJzQ1AUHO33q1pd/i+WUbgav3Nyl001ZlC1l8GUaiA512TKfrjgqNLXt0QqfycYiJoolEseUFZ8rwzBkndPKUF7kdNKEsrUUSpIH07GiF1EnAh0rRNKhBZo6jLJKqKVhERs0jgxJEqbIonU7RoASwmvdhFJUKuj3Uq7f3GV/f5dIpujWb/Pm4SE/+tH3iOKcOKlIogjXvgvA7GKJrjVJJKiqBbPFCYvC47Uygd39fZbLi3/oevydrbY6Znp2RC/xwxwATx48YNjtYbUliRLyVbGxg6lWBVIKIqXodFKqqqZp/Hc7vViA8ZN7k8kM4cwGFu31OnQ6HdJORpSkrEqDDGIuLkoRONJOSj/t4qqWd95+B4CDjmW5WrI4P6abxOyOhty6tgtA0kuQMsbhsM7DPi7kskJ4Y8jfrlnzzN83PaB11vgMdCC4HHIQV1934RhcgFJsKO210TjrqBsbtG+eMXUREoREhGx804dyvsnottJSIS5x2OfGdrfx49+i6fVcxuuVlvzRPfde9yV/Xu9PIl4SSl8aZM/PT3n3ve+QJjHHR57mUpaFl2UTAitAOLkBWeI44dbNO3z3299lPj/m7HRBp+u71sZqirLETQx1nTNejekN/aRUni/44tEDhuN9tB1xcdJs/IzauqbX65G3NY2SxIOMs9o3qX7+6Scsz6aooaOXdtAIHpU+4E1yy2Sx4unpAidiIplCCHhYKJYrhIHFYkVV1xuub9O2xEpx4/p13nrtLsdHR/yv/4t3x9XFkmujHoc7AxLpKSgPTs6YrfzxLPIKZEQrJaqbksUxBJA/sQpjFEtrWTYttezShCDrhERGEuKW3BbU0jIN38GsssyKikFtmBnLIktY9PzXtuooSgVWClQaeyX/5dpk0X8/LlPIRKGMQlyKMAS+J6FMI6j6e3nLJq7QtqGqV0hZU5X+vA2rPvs3dojTjDSu/TZaD/kMhteIo64vE23NYnHMyekDf7pFiUwcP/j+6y+73H6n6/T4Hp9++BGucRBkAusi52yeY2pvhqiNJqhckqQJUgqstUGY3JIEMR5dN+jakqUxdVVjmhoRGl9xrBA4VBSTdbsk3R5Jx2PcKumQ9gaM9vbpj2N00/DeO28BsDp9wEcff8RickoSKa7tH3BwzVMetYi8P5uIcEQbeUkAXAtOB2EZcaVj/4LuzgvXRjXLbQfrNWtAbOLrZcUsEKhNr2D9+5uX3Ro2EFxqRXp6mxNi4xfsAYhLSGB9JBtW1pWm2DYoernNZ9pV/+ASW7GaLw3O2w8G+9xruJdzcV8aZDudiEhZZtNjxiMfLN//0Q/4+ONfM5te+PFAu3UyhaS1EtnbR2rHpDiirHyWcHBwyHRyRrFYYaoGUzW0AdPKBn2cFMznJYvJY1IXsVb6s3VL1usy7Pbpj3rUpkIFDPj85IJMRJwvV2QyZV43PJr68HR8PmGVFxhjSZJkmx6Oc1BWFQ5Bo1ta3WwUwZSKuHZtnzffuEsUKX72t3/HfOqz+NsHu7z12ve58/ortPmKe/cfcD5fkBe+WTHNS2pt0U5gEMRZggz4qSgkynVwrk9jNZUYbYIsziAxiDSmVREFkioQ9xupyBtH2rY0QtJmirzrXyszQSO93bQVDmKBDdYISSOwrSV13qjRNDVNwBeNMd5ixbpwXsSmGSGkIolT2qahaSriBGwYOy2bJTL2GrerakEslRdDAaK4h5BQVxXCGTq9Afv718P+cmpdbNwXvgpL1wWpBCMtde5paKZqqHJP1XIGsiS9xNOc3QzLZJ2M8WhMv+dZLlXRcHbsXZaTOKbb7WMCEyCKBGkS+9rBWIpVwXzpH8qNccg4YziZMtzZo7WWV295mmHbVjRtzXB3h/PzC44+/g1vvuWz3H73Fm3bYLTARSHJCQ/JJMKrc0kCL9Vuvtu1iqL1aeeXNMzFJjFcy41uXrkSZB0bTNYb5iGFV6hDXDbD139QSj0PgG4YBWzUyi7R1mfx2avDFZuAu5V9X259K1i+IPat4/LV3tmVp8Zz7xGXof7qhp0Mza//yCB75/aQ2eRzhMq4FvQCfu977/B//vmQzz61YG2Y678Ep1siZnVMZ/dNXn+vy2cfePUuY2v2R/tUUcT5ZEINBF9D6rqmO+jSExnKRbjGkC/9jd1WmsxCphtGox55VW3Uu8q6JclSThdLJqszTiYzFiGrbFtN07YopeiPhqSdjDx4dWWdjKzbIUtTrHM0bb0RQe73u+zujjk+Oebz38zopQmv3vCf/cfv/4Cf/ot/zsHNQ55+9CF//auPqKyA0BScX8w5mc5pjSPJUvbUCBW6zHVd0RSCUmdoJK0bYwIX1smKihwZKWwnpnURQdYAkyjq0pEUGmcENlbUobxthPO2JQ609cpX4dmEqg3ZvKYTRQgEpjabbriREuccRVnhHAyGQ+LUZ2VRFBGr2ItUh5smideDEYZlvmDQExitcWgvmAM0xYy21GAdkRLgWpRaC1dHxLJLFn11Jr5cCzeuXafKS+aToE9cN9RFBUYgYkUcJayHCiIlGQx67OzuMByNGA1HmACjOAOdtMNiNqXfTdnfGSPXRqDS0ev6h2mrDVWrWQYRn9kqp6hbVvMZptUMxiOmZ148vqMEB9cOmMymVE5wNFvy8w+8BVS/N+TmuI+g9U0mAZHw+1M0CFJwEUIKpJQbWG/rNn0+hl2emU3s80od6wi9zjHdJuG7Elac1zKx6+1uMQjW+rvgOcOXL/oNyTAVt7V3nmc2iI2GCFw1e9zmtAK8jJq1RgMuo5Z75neDetmaCvHcmXmGtREqQfmSS/ulQXY0hDhpyTpdekO/laLMGPY6YXeXJQR4j6/OYAeSAa2LGe++wg9+4DPgR5/8jGpR8c7d18gixclsQp4Hc8amxRQNqtNh3B8yGowZBmvrqVmiyopUG4aiYocIG3Cyh/OC43bJw9mS86KiqOqNhqmSChtOqFAK4xxtmN4RUqCUQhtNnq9omposBJluJ6MoVuSLOcpZ7t68xh//4fsA/Mmf/IRbb7yBNg2N83bpx7MF8xDYn5xdcD5b0RjjTSVNTSeo2ZvcUuUxhelgRR9r+zjl4RJUR1Q9fQAAIABJREFUTCsahJQQK7SVuDVjI46xSqFsS1w5lFXYtZ6JBpEqjLBoYWkl1Gsr8cYyWBrSxNKmMVrFmOCNFve6yDjm4mKKA1579S5ZKJm1dV7cRsYoJLFSm+s0X845PTqiGkbk+VMiaVlL2QjrhW2SOELEEYLLbKbVoGsQNn3Z5fY7Xb1kTJTWiN6QyPrzMjmeMSnnSGLiQUKn09t4pg0HXXZ2xvT6PfqDPoP+iGngOSsZce3aAXVZ4HRLN42IQxKYJhGDfg8pBK2x1K1mWfggO18VLIuKuvEGjJ1uByX9NSoxnJ2fsaobVHcA6ZLfPPIB+PrBE/rfeJN+lqCcIk0UeyP/wK5bTVPl2Dj2EomIzfDDhk0ixQszPP87/r+bzG7NKng2bm2NynpDSXe5h2fjFj5obuY0rgwY+J9z9Tlw9fDE1oOB5+PmswF5c+wv+oxivfVnIBSx3o7Ywpuf3e7ze3eAkA75EgrBS4NsmsWoOCbppCRBlrA7FHQGAxDKA91SbrAYEXcYjK+DTBEyYWfU5/CV2/61fMJnH025mBX89I//gF999im//NRP2uRFTeQErjaslhWrvKGf+Ytm3OmQGOtLzskUjKEMZefZbM7UOs6XOSvtidkuBFndGpRSpGmGlMo7MQR4QgiwRvvSxhoiKekH7FhimVycEwt4/dVb/PQnf8if/Lf/NQCHN28wmU74za9/xb1PPqXUmovlikfHXk/30fE5dWuI4phFUTJfzhh1Q2ATGdYMqehB1AOdAWs3V+vPofVfooskOnwOiyRWMcrAsLUkrdg06QppaVC0qaSQwfYlXDuZk+w1gja3tJGiTFPyNQUo7ZB2ulSlJ7R30j5x0EbFBtjECZQD5S5l+5q2YnZxRrnyltptXeCNrWE0yNjfHzIcRd66RSpsgBKqvEa3NXW9Voj4z7+uDQ6xdk6/64XQAeYHS6bnC6yWGGO9G3M4Z2nWYbQzpq4rqqpiNBzTCffEcrng+sEeu6/eIl/OmF+cbXoK1iZYG6PiiET6B74Lwx0iEiSdhKKsaRtDGl9yr05OjhGxZLS3xyTXRL0xq1CmfPH0gp1ul9dvXaM/3mFR5CRj/x0NOoqTXGOkJrI2VOOX0WbtruBeGM3WP1jDAldffM6e5pmszr0gsol1FrvuJ11pmG1jnWKdFD73ivM/uMRPv7wyv/IZvhyWFYgXROArNLUtPGXrcXK57c2urB/MeslBfU3h+np9vb5eX69/wvXSTHaRl8SJQKZ+nBOgcRKVdv2EiVQ4sRYIhijuMtq9QdYZsTfe4527d2hnQVWoM+atN9/j/r0POJ2VvP/++8R9r+/62YPHFHnBrKzJpKTNV5uO/Y3BiDSKcdYQKcGyaZiEjv2sKjFJRiQjpG0x1l3SypwljmKyNMW0mmJVbNS0IqUwTYuMIhIVYYXBBSihKTWpVLz52m3+7E//Bf/8T35Kr+dL6cf3P+Nv/uZv+eUvf8VstiDLOjw9PefpqacmFVVNqy3KGKIoYlnXtK0/N1liSOMOWjg/cuUEIuC1Eot0IIKgvpFyI1jjjIAG4lqwWwl2rEAHmtq8rigLTdtT5F1B7hxp0OhNhaKjQeUtcdfSKoFe03yMIUEiZYQ1GuHEZgrUaoNuahI1ppcmCGcwIbuNhaHKp9g6pZOOUGKIs2HUs2qZT0qaqiJJPQl/A8H0U7q9hKr86mgX2NKQZBGdOCUO0MzNw0Om5wumkyVZltG0LUU45qZuqOqKpqnI0gTTtiRBu+D8/Iw0jsmyGCccMlIQVLEslqopMTYCIdDWbsZKm9bgnCOKHBhLnc9ZLTwEESvJaH8fm3Y5WU2wUbapUk6nKz6995DIGW4huHd0ir3wE5LL7AA9fANih3XmSsbph04A4fHNdYa4vbYbT8/TwNwLstmrr6+pUJvfCbbkl42tK1vblO/iGWT1Ks3LZ69i6+/PrRdm5F+yRDCZZOuAnuV0beEel3S2Zz9BoM4Jd7m9F6yXBtnVqmS0O8CiNrJ182VOFGV4+wuupP9xkjHe2WdntMf1gxscHlznl/f9LLaxCTt7t0nTmEcnD7DZlDfe/TYAt956hy+ePOTh0ydML2Y0jXdtBTjPl+TOMUpj7ryyzxALc39BzbIImfXZFx2mi4qL2YLp0nMz66ZGOChXBcViRdu0m26pUoKmrGgBZy1xFJEFsYSd8ZCf/NEf8N/99/8Vb7xxh+XknJ//1f8DwMcff8Ln9x8ynS/oZCm7e7vMFkvK2tebzjmUkqRx7E9JdDnK2miNFA1WVBhRgFSIUGontiHVLapxtHUgs2zK94ioFWStYLeVvGIEMtxt00qzLFuaPGLVU0xii1qraTlJ6yy2bhDaohXUYX8xNkBODmu9MHnwYfUIq9G0VU5TKNI0IpZrbYoapws63R5NoXFGEoWmmBGafNlQ5DVCGpQSpIkvi3u9Ht1ORpp+dQqnOi8YdFN0rVmjzp004cbhdaqyAeFoGk0bzDed0RRFjsCgJCynU/ohSZjOl5ydXbAqCm4cXmNVVAyCw8FwZ4QzLW1T0zQNZVVSVmFkWmuvmuUcdVlTLnP2djxO3xt2kFlGE2dcu56wbGLmQSPjYr6kY2oyNGVdstKGZYDCzplx+/tvIdSawrUtdMJlFS1eGCK5EiA3/1n/fEPuemHNvvnVK3W/D2hX6VcvepPf7jOkgcuevrjc+9Vdv/hh8bK1va3nj8Nvby1nCWzcXlxgQQjEBkITYk2f+/IDeDkmm/ZoDSzzktR5jGkxWzAaDuhmGU1VXwGklZQMOhnXdkd+rPXhY+ZBL2A4vk6Vn5MMDnlz94CHR/eZax8Qr9864LX3vsXO6zc5fvyEycNTJo88zjltamzqKTDF7IL+Tp/0upddvDnsEakeWTLGtTFaw8XcZwJfPHnA8ekJddMgnCNVaoOv9bIMqbzs2rDf42Bvjx9++5sA/Oj3fsidO7dYrC74y3/9r/joo484PjkDoKxqokixvzsmTRPiOEYpSbSxE5F0spTRoI8xFqccZR0ERqxEYrCuBDcF16AIbhNNQ1YvSG1BaxpExxBnPruyRpLUEFlBgqBvBIOQrfeFY2UsbWNZ1pKsq5g3Pltd4MnfmbbEraYVBhsY8jLyqYEQDofF6GZjzqiERWK4OD9ltZxw43CP8d5g8/2OBjFvvnUd3QjmsznTmc/i82IB0oZzEqNbRVP5/ZWrik5XsxNogF+Fla8WHN44xLmWJDwMIOLW7ZtMp3POzibUdbvBMDEKrCJLI2IpaOuKRZD4XK5KJvMVpxcTokgSK8n+rh8ceOutN7h+/QBjJIu8pixK1hEoUgnOtlxcXBArwfXD3U1vIIoVNoowWMb9jNvXdiBcS6t6RWMNJ9MZRgn2b99k2PEBf7D7Ckm/j44TnPCDQhtFrDXG6Fxg0zzb2Nk2l/Gvb7DLF1nTbJYL2O/zHSyxiYByq+l0+SsbOpW4yhB4Ft69EmS39utecDTPrWeeB+JF7xGXj5i1yM1lpDeB9uZC/0mwdqkA66vsOHl2i5v10iA7z2tirbCrlsEwZCFtzd0b17h5bZ/lbApObzbjdEVia27u9Gkrzb3PPt+UjJPcotIRo90+jc7ZdYrF0k9SfX7/lDjRjIaSt/YPMdmY1b53Nn34xSMePH6KyS1xppCrGZ1AicmyLpG0FKUlU31i1WE88BfbN15/g/feeIMkjinLkslkQhWykjRJiCJPY7p2cMD+7i43btwEYDpfcHR6wunZY45PHnN+cc7erteovXXzGt1Oh8l0zsnpBXXd0k1T0pDN9VLJzWv7JFFMHMc4JZkVnoNZ5A26cWBaIrPE2hpl/PvStiWzBR1TYZuKuDRUwRivAVwlMNYLihcYhuGq6QGx87zXpHZUCspQ+s4TSd04rreWqGlRraW7oWkJENo33DBoU2NtaKM7TRILlquS1bJCSU2S+qst66eoKCLtpvTGEYODhOt6FD7fivlswWqZ0zYaYSEKlUMkQCE2syBfhbVYTlkue6jIokOwjJMUZESaJayWCwSSbgh6WZrQSWMiJRDOoJuGKgiyF0VNb7TLYDTEaE2Rr3h67JkA2lry0kMMWrcoFREFoZzJxQXzxYwbh9dJY0GsHGZDHYl9T9E6Equ41o+wO/6hfFwqVlWBFjE6L7k13ufNNzyHtu0dcmxj4iyjyAuU3AqU1rCmJglUeMhuh6xnA+iLuafPF/5rNtblz7dAh80/XHllHVjDfl3IIb80y4U1ne5qwP+y9eWvfHk9tfb4BaHERlvBWuuVPgRepGarKeicJYoU6wbwi9ZLg2zWG3vr4cZA7S/EnSzh5k6Pa6M+nzmLdXazw2J+zvToHn31h6xshdMrovUTdrzD+cU51BYhU1QyZjz2N326Smhnx1RPnnLeVhzs7nB77G/e8Tvv8Mbbr/H44pT7j55QFAVlEVxPzZws69HtDLFigXVyY3w3yrqM+n0E0DjLsN9jL/bbjOOYJE3IixIETFdLumGI4dHpKcvVgsXiHGFL3nn7Lvt7Piu5d/8Rj54cURQVq7ykLEoiKRgE99h+lvHunZtYY6nrhlo7CApWtJLcVMSixWGI2oqo9RdC1zjGwtI1BtVYGm0JVEqWUlM6hUGwkI5zoUnC+ZYStLAovDBH4wyu52/EVTcmX9YMGkGmDUlrGQYMsVUKqQRRHCEjiZMOp9Y3or/ojbGsiori8SmrMKp7eOcmF8uY8yJDmBQZKdJAC+sNJMPDmjqfsJqeUi6mG5K/MA5hLbaNX3a5/U6X1iV5vsTQoNcEYtHSNJbVakFZ5kQq3hhzjgb73L51k04ao+uSycUZJ6e+2pJCMJ/POD49QQBJHHPn9i0A+oMBdV3jrPEuw85yHt4XxzHf/Oa3kMIRCUtTzjfcTGMtWO1vcGfoyJhru/5eMs2Io+Oa0hg6QvHBp5/T2/eSom2VonZvUNY1sZJ+Ss2sp/k0SRL5e9ZZvBbtVgddXIYfh9husG/WGkJ4Nge+DLDPsgtE4Fy/IOhtN+m3aWMvWFcCuNt+3+V/r64X8Mg22fk2xrp+afvB4WE0G6A+IT0lFAjxTuDW3nZ4dbDF/By49sJjf2mQtSTUbYmtDUcXDwA4GI2YHT9mfnZMJ/KEdRHww0gYPvnVf+Do93/A4eEdxoOEJhzobDkn6fUp6hZnGzpx6hnhwEE6YJjVLM8f8vjhA34jHrD3qs8sX/n+N5DdPq/vjvnxT/6Is0eP+ejvPSn7+OkZs/mK1aKgv7fLcG+PKGitrlYL5tML+v0et2/dYjQaUwT92rwoGO/uIpRiMBwik5hXXn2F9Rn95Dcfc/aLY4rlkurzkp0zXxIbbUjTOGQ1CVVRe2ubQCnrxhH7vQ7DbofPHzyhyAuiYKQoW0djWox0xAIya+mF7LHrBAOlSJyloyFBUITv+ziC81RhI8FMaKTzVuUAMQ6coecESMFMOspB0DUYxzhpmDcOJzRC4vVJAalipIsQQqHiGCMklV0HGusLIRWTZgMsAu1CCdu5jugcUst9GiMxxpEG6GJgYZBlDIb77A66uGafZZiUq/MKUxv0V8hIsSpXdLsZ2qmNHOV8nlOUOdPpBUa3pHFCFGCUXq/L4bVrjPo90kji7Bs0QbNiXtZMVjnzxZzz83OiKGJnx1c/o+GQLEtQSmJ0w3w222C51w+vezlFZ2hNS5ZmmKCiZlxwEbAOYw1Sqo3Ifa/bJc0yirLiYjqlag2/+IUXjt979Vvs9F8j6fSRysse2pB49DoZeZ5jnCZRCVeUtsS6bA8s2aCKdYXkH9x61w+CqznvM42hKxmpZa399lyqGt72oibbdjSVvAik+C1taa7E202uyouDsz9W5zRrPQgpJHKd2ZpAk5Tp5jXb1pydPQLee+HuXy4QkzcI68jimCj4V6/mc/LphN1uTD3uI1WyEbzIsh6J0Hzy658xHna588oBF4Hcd5ovaa2fxJLGEktBHC7SNM9xT06Ijy8YL2pa6fjZL7xewP/xwUe8/cP3eOd77/DBB/fYTxP+mx//kd/mkyN++ennfHFxwWQ5ZVYs2O17GcQ3rt3mcP+A04sL/upvf05Zt9y547OL11+7S288RMYRd998i5OLCz743DfodvcPkL0uJorQznFydjk0sb87JpISJSR74yEXeopu241CzrjXoZ/EDJKYQRxRC0k3yDk2keWsMtS6oWMEsXUMwsBFJgRaNxhbo9BIJQjO0jQC2m6E6cQ0NqKo4bjw57TfOPZMhGuhNpZT4SjCpG6eNAwPUwonqXJNN5Uka4cHJMoKnPUwhBGwZt077bACDg9v8Oqdu+zsHdAb+0y+d3CN3Zs3kVFErCQRbmMXvlzkVPOSjmwYJI5uIji47h9cpmlpVgWL5VeHXZDEPhBafNUBUNct55OGqip9U9AZzBpKiBTdTobAUZUlWLNxq93f36W/u0vTHnKwv09V18RhLLqTZUjpyFdLyrLg2v4+o9Ew7C9MLzp/A7fBbh5ASIWUkkitmzB+WwCvvnIHYx2PnhxxMZlijOHJ46DbnO5h+k+5/cYedVuj4oQqaNRqYxjt7VJVtccY1x0lrsIB66zuWWeuZwv+q8LWz7xnSysWsdbllVsF+WVxfjXsXnJv14e43qnb+jP/mAC7tRGB2BrJfVE265vXQsTogG8Zq9FGo6REKovRW58PRxxBGn/5yPhXp9379fp6fb2+Xv8/XC/NZH/98X3mkxNiHEkoY1TbcHF0Sr/TYaffp2wtnY5Pn+7cvs3e3i6PnnxB/m8rbr/5LsPrdwBIuop8njMadVFVCbMzRi64DM7PefrgN5jZBTjDtKo5azwoeYrh/l/+NX/94Sd86903+e5rr/D3wWJmv5/y1p0bdIYZx6sFTy9mHD31Eolnj08ZD4c+60oTxvu7dPq+3DqZTVgZQ380YKZbfv63v2CZ+2mkb3zrW0SxYl6UZGlC3ETkpc/WooVCOEhVRHcvIpWC/UEXFWTd7l4fcedgyGqZ00kE+7sdVOwxWVklnD6aUM01g84QGTnaIN4shZ/0KRvDihYnYBpGIReRpO4CI4izDqVJcDOfmeSzljp35MagIkmbCarIv6/GUShJMYroxjFk8UZYR1j/BBcItDEYazfC69Za+v0+3//ud/kv/4uf0hsOaQIksDKaWkrqZoWVkkY3yAD5JLRIYVFC+u0bKIu1IpgFEW88sb4Ka7WYUxYlcZqQ5z7D1kZTlgXaeA8tsSWCIoTHWtMowgC6rTelfSwkzhlWqxUOnyVn2fqzWlarHCkFNw9vkCSxt1wBsizDGu2hBAtt3WzKZhVLb1fjJFL5PLAO7II4ybh2cMBssaSuG8q6og583qPHDyjEiLo13L77OnEnZTAII7fGUlQ1QkWh+Lrkvfqccl30h78Jwbbq1CbndGsfsa0T+iU8VSfMVtnvz+dlhiw3uK+4+rYr+amHrLZ+KC77QJelf8iO1xDHJlt9Jh93a4HwAH2sueM4cBaExRmLdpqq8j2FssxRkaTf75OkCaDQAbKTwpFlkuvXxs+egM16aZD9+NPPMU2JaxqioPITG4era9KsR5LVrOp849o53tlDxBEPHzzhZx99SPTzv+aVt74BwKtvfpPx+IDdfgc5L0krx9thLPHxoxkfTY5pTEEjBZ+3FSchVS+VoLGWk7MZs9kveHjvMT/+ju+kDgcdUIL33nyF73VjPnv4lF997PVrHz2d8fT0FKEkr732Ct/57jd49bVXAUjSDo0TRGnGh59+Rl7kmy7y+dkxZblCtyWVrpDqspmmjaUsKhIh6ccxmYQ7ewMOBr6M++7r13nzzg5Hp5bG9rBxRBwu8HGjmbczqnnOOzfvokzKx/e+AGDZNChhMcpzCmtnNkG2iSRaOYxuSLQkyTqIvSDNl2jOpzVLaekgMIlChGEEKzWVkuSdiERGSAFJuF+U84E9ihTOWbTWvnz0VxtFVXB6dkyrS4pS0K7x2jgiiRKcNYhIIW1LGmhhmUpIiJGmpSlLqnnJ5Nw3eJy1JGmMVIqDN192xf3uVlHkTC8m7OzvsyaSWwN11WC0b3q0bQNd//1FcbQJEQhBmmZEgRI4WS7Jtd50o7vdLk2wKTbaY63DQY8sS3HWbH6vLkuapsZaTSy9Y9iayx0r5YOh07hW0+gWFx5o1jr6vR5379xBCslsPqcofJLQiAkm/oKmbWnbktuvv0PSCzq0nT66NVSNIV7T1tw6yNgQeNymB+SE3Sr/t5tgIry+VbC/AIr1bwuhO/i2PIfmrqU2uQz06y1d6nJ5hS+77ugLixNmqxmmcG4dyhReT0PgQoNvrSuwtv9xgGlLskTijE9YpGs9D9w2tLomL1YsVr7BvspzOr0eibpOGo9QImOtgRkpS5HPmFw84cvWy4cR8ookUlgup7pUJEhURpoOidIhcXdJ1vNde5H0WTUF01XOw6MjGmv4/LEPerfuf86P//in3Hr3PYZdRbLQqEXgWB4/xOqCWWL5uGj4wmrKcGK0AOu8JkFlWz57eMTZuX/f67cO+P1vv8HBzQMO9na4cf0G7//whwCcTRZ8+Mnn/PqTz7m4OObf/bu/5PEjjxG+9trr3H3tLd559TVuXb/J4c6Yk9MjAD78+ENOjx5T5isSJegkMb0QgNvGUuQVIknBWL755iuo5oA4XPz7/YxEOrppxO64z9FsASFZv7U7orp1jdXRgm+9fpfe6JBfH3uLnVJqmrLFKYtyUDlHvW72C4WxCqvDpJdokEHHlFGKCwIusm5xwuHCVJtNLJUwrJQhBYZVQxzG9uI4xSlBtFboMnaTlUnnEEqA8pbV89kZq6Dfq3pdjJIsy9wbTTYNNgQTXVa0eUFbVdimxmq9maSKE0XaiUmy5EtaA7/71TYNeV4wGBmS0FPoZL45E8Ux1vksX4fkotUtZVUS9XpY52gbjS5CI7WuWFQVKoqI4witG09gB8ajHYbDAdYYdNugdUsZKiNv5RTRttrTuyJJHHDeNElRUYxSOohyawgDOkka081S5N4OZVHQBD0FgLZcIJbn9AYDmmKGbUvW9KLFcknUHZB0Mi+R4BxrLzLPnnKbf51Yh8NLnqxdZ4ziKpK6ncRuUM5NRBYhXLqr0Xjr97fXZQK6nfUq32DfZNUW5wReJNzTqC4zch+rhAhTlcK/7t8FQoapN+nopJJy4Xn8tpmzmB6h25xeL2F5crLhuJdlRcI+be5oVYsTPYQIOtnC8OjBh9z/zd8B/yMvWi8NslJIL48nYn/jATpMb0QCsmHK9e4eKgvUkiijbmoqY6nbFo2jDMMB5UcfsJhe8OSjt3ljOKC/nNOZ++7z+ZPHXJiWe9pwv24oxCXVVxuHkMo/cZ23GF7k/sb+4PMnPD2f8cG9x/zge9/g2++9zc2Qtr+7k/HazS7vf+cWJ2dTfvXRAz774j4An3z0G/Z3/44f/+ER77z3TW6OR5w+8mI187MT6tUKZ1rqFrI4RoaLe7EqUCgGvT7D3oD33ngLs5pxceIDtNDgGse4P+I73/kBab+7oZvl8znRec3x/g43ro9ZCkelfHDWGVTa0RjtfbgEmHCzWRFhiDBCYIWj0e1Gdd/Fkk6iiOKItLY44zaasUiBiaFqNHWtaZsCFfmGSxp5kRnfufb+ResbxQQJ5bzMeXr8iLqqOJ/577C/N6bSLZVuvOdVq7HBHQBtiEVEphIimeBUtMnY2tZh0NR2+3b8z7uMtpjWEEXJ5jiVitnd3eOtN9/mwYOHLOaLjUGhcVBrDUVBWzWYttk0P2prSJIEIQV1XTHo9xkFQfo0TRBAFCmkSHDObKQjtdYY3Ww4mF7QKHCZY4WQkk7kM+airFmGUfOyyImiGGccvW7KzmiwmUybrCpWk2PSTpdvfvvb7O/0adYXTJrROIF1Aj8ccJUl67PYbXWt7TbUOlhezTefXc//3Ac9t4FerjabrhKnLrfs1o0u57NP4STrCUkR/NL8VyMRImI9xoyTQVrXH6kUYiN57ZzFuZZYCjrdiKaaUuYhBj39DfOLR2SJo0igLvPNw3CxWBGLgpkrSKVB65TVyp/vQb/D6uwJ1eLLXT9eHmSdwAoB8hKDQEiclDRNi9OOOE5QIRPQQlE2msWqCDw7tzmfzlqe3L/P2YMv+FmasBPHDNd8z7ah0pqjumWlHU5uiUjjEDZgR8552CR0ybV1nE5XLMqKx+dLPn14wu9/26vvv/fKLtd2Mt64e4Mffv8b/MH73+PP/9W/B+A//N1nLBdz/s1f/gW//uhjsm7G4yOfVRar0tNFpCJSCiUUZbnuPmvuHB5y58YNDoYDmtoxu1gymwXJxkWJaSVRJ6VaNXT7OwxDqaYnCzIE33nzFTqZ4tMnRzSBeK6FQySCtvLTI3GsNnQrLZS3fJYSIy1CuQ21RFcN5NAtNLs1YAUmuEWWraDRgri2qNKCayDz+1N9MFpTVRVNE8qlQFWyWtAaw2w559GTxySRYjbzQyMykxRNhVXQlCWubhHhClYIhPL/SqGw4lIt3jiHbi3CfnWmETqdHnXVYrXzEpOAcJLRcEyW9VAq4v4XDzb8yChJaZ1jMZ0xvZggrGV/33+3WbfDqixQUnFt74Aki+kGKEwKqCoPC3gHXI1Zwy+4jV1LpCKSJCYOAVjg7xkZK9IoBeTG5qmuW0zrpTGH/Z7nsuu1A+6UWZ6zmhzx6a9/wejgkN6+h5fKpoYoCsHpKlfAawxsGxdsd+D93y8D7LN6ruuG/7M5LRs+6RqPvbrW7rNbP9rCUgmMBIEK02prbqrYwAze6dYiN0agl64fUno937VarQWMqREKmnJFvTqhqfzU6cX5IyanD9gZJphuTFGsOD7xuiuzZY6QGudaDg+vUa5yHtzz8eJ73/km7751l/OnH/Nl6+XOCG1LJRSNFGgbTloS+acsGolBRRoRNDBbY1gV6yeAxBnjmx6AUB4fcU4wWa64MJY03Nhx+MZ13bw6AAAgAElEQVQq650uPaUlnGt89qqC5Y2KJFr7i1Qbg3OWstY8Pjpnvsw5DbKDF998hT/8wdu81h2wKjUqSXntNd+EM0TMFy0PHp+RF0uOT0+YhGwtihUiSqiqMpSFlnW5FUcJ/W4fKSKcFTx+eo5eFuz0fYbYjSP2R7u0zjE5m1O1gjSMx37x4Jg46/K9O2/xcFZyMZlu+LXOamIg8f0ivF5IKNeMxbUWa4DIN6g2DgN5TTJz7KwstypwMWgZsNxY0EpLt4RhbkjlVtYZvgdtDDpgietAY/FEeKUi6romkgnrm6FYLjHCYiOvcROlMUGXG9tamrqmrjSSyNuNh+O0zmGFxb5kKuZ3vZSMWS0KZpM5WZgg9KOTEmsdu/sHlG0bxmC928Dx2RlPHj3h4uyMbqdDsn6flCRxwt7urrdvjyQqXNvO2g2+a0wbMNCrjSB/PMLrv27m5RVxkmCMo2kbBJBE6yATo6II57zYEcP+piRuW01VnaOrJY/vf8L44Cbfen8PgF5vnwo/tIJUIOTl/SkF0ikvHBPKb7elFX1Z9ocjF1yRBty8Em7cbSwXpC//RfDQ2sJdA8p9Zbv+/4He5XxTWMDGAdhPBIdkI9Df1hKnUkQbFwYhHAi7abw5QAlDJAzHpw/RxTmR81h2mV9QFhO6aQcpFNPpOefnT8PFEuNsiaDm9OQpn312zPGxTzxGw4RhN+b05Msx2a8pXF+vr9fX6+v1T7he7ozQ1Ki4g8OXqwBGCGrbErmGRDYo6YiUzywXRc1sdkHbtr5jaB1RULdyxmGNQagEFSksAYoAmlA22XUZ4N8R/u8tNOIk9k0B4cg6Hp6o65qyrPyTzDkWi4JPyuByO19Sli3/rHEc3tgj66Q0gbHghGU46jBcdmgax2JpNv5HCkGv26UTRxRlhTVukyVIITg5vYDaoHtdzKpAL2dEez6TNXFEGue+rCwN7dkUEp/JHs8KRqMdXH+Ho/vnHJ9OUKE6yJzykAjS1zjOY6kAWkGUCmytcApUK4nCGGi0MnRy2KklB43DaUuz7qRKQW0McWnYK6GXOmSoAITz30u300EpFXBZvwwOKwRGQFk3JJGHTMCbWqrMm/iFdsSm6LTW4/Bt02CMo9WWNoh2G2dpTUsTfK++CkvKiLPTC84vZkGaENJuh9Zo8roiyVLiOIGeP6Hn0xlNXTOfztHGoqxjtvIUn939PS8alMTESYRS0t8DgG4bf/1GETiD3calnd2ItThriJXa6BpEUUSv2/MsgZUXmI/DcQohkVKhjdci6HUyP7KLvyeatuV0ntMWSz751d8x3PM6IHff+yFxrHBC4qTx0F84FGHD+KuTm/pfCMG6Ne+EuBwOcOuMM2SW0rseO2dZeySsq00hFJGSOGsw2iDlFu66gQvEpQffNoMh/CuFQ2KQIrhGSA14w8iwk43/i9huitnALFjf3EIRSwm64ez4IcvJw00me376mLaeU5c1zkqcKekEzY4ojVCyJV9NuDhfcHZaUwcI8W/++q/AVZjmywXpX67CVeTIYUJrzSbI6v+PvffqsSvL8vx+2xx3XfhgkMwkM7OyqrNM13Q3JGBkIYwwAgQIgr6BAOlRH2P0eQS96FHSQJqZxvS0qa6u6spKSzKDLuy1x22nh73vucE0VE8D05MY5AaSZEZcc8w+a6+91t84hye6b+ZaoKUcOtM3N1dcXl1EFhQxyA61RWPS1smjpaQY5YwSbtI7R900eOuSEdtOnGHblDG9wfQmwlemcZuW5zl936cbmrCEiUX2/GLBv/zLT6h7x3/yj3/B0dGUv/j1J/HC/PWnkb0jNGUxZjousalxsD+b8qP33uX5y5d88uWTuFVLN3BSlRHu5ANt13NtDU8+f8LLl3GCH4xKijxj0/U8uH+fs4cP6V08x+uQ49UY3WcYOabtQCRabaUyCIFcKJQIWO+2ngko49hsepTMQGukd+RdvPmjxjPqAiMnqDxIFzhuE7RECFpj8Z1h32ty6dBdvDZlCBitqHRJlmdxkdrW5qRCSEXfW9rOMC6KN9SbvLHYEI0YrYdkLYUxnrYzGONxLpaOXKrjOx9o+pYmeax9H4Z3URjm5upqZ6KZ6ejwqyU6z9FFPlyX9XqDMZYiL5BZxqbtCGleHB2fMK5ytqK8d3nvAJnWBJfhrMHjdrXLwBA8ZYiogS26wLkIqcq0Rqvo1LDDknq8t3jnouBMpilVTDwent3DWkfTWRatpV5c8zd/EXsRs4Njjt75EKElNkBAD0lNbDSFGMDTwd2toAbYKXel1/r03G/xpsFFjLdWeqjxu609uvQEYdFKDkHWORu7/TIejwsBmZIyT4SqCTxKCTIZMH1s/G3qOcG3EX4VAkVeUiWNlL41NG2HMT1SCcpRQZlw/FCQiSgVgOt4cf6Ubh3rrpvlS0a5x08lZTZCTSp86iF0zhFsy6rp6bqSo/0THp5FaN9yccPzry5Q4u8pEHPz8jm5c1T7xwN8pA0e19som5cV+ACbNmYory9es1oucd6nBzdeyDgvfDJ18zgEhZQJ2AvWWETXIaRHinjRt9mj83FFsinbBQYwd1EUaK0xxrGTf0zZsfWcv17Q9J+yaDtOT6f87ceROntxPef+vUPefXDMl09eMSqqIVv7+U8+5Jc/+4j//cVLtNK8//ghdVq1vBOYztB0DbNcExAs23a4+X1fEYBV26PKisnxCZtEODDFAfrwfSYnj/hAnfHbLy95eR3hI5LoVuu8JPNQOMi3Xl2dA+/p8PjgkFoySkF2vxbsWYFysdqZC8i27rGNR6MTOBswjqqN92JmwUhJKwJab/GfaYhYq7Me2s7QtGYQNA9YUGCI99f3Dp9wuca6GGRttLQxzu8sdEJCMbzNCOkfeHgc41GBEFP6lHVtmpbOWYSQdL1h1bb0qY7tQ0ApDaZHyxgMVWpS9a4HmROSP1oMjEnVTEW1K+8sUilkcAOt04foDZVlGVrELHZb5zR9z3qzJsvyoQm2FXpxxhCExIcQj0OKIVkblSWP3nmXxarF+A3LvkGaRH2+esnp2X3yPKdxAUeA7U5TCEKQCZMaRb1d4I1AC1ECUIikTJWw3JkUBGeQGGzf46QiL5LtOQLvLUqCzoFgd/blwtP3hrwo0VLF2qvcmW96H9CA8g6tPLc3EQnwxee/wXQr8IbpdMz90zNWt/FIV8uazaamaWv2D/c4OjmmzGMmr3WG8BHBc3p4wJdKcr2M6J9us6GQMevWWtP37aBb4QMEa1Fk0f5qveZwL8JWZ/fvcf36aQRZf8d4a5B99folpTEcaE2+fUCyktbH7KRHEKSgTRNxuVpgnR0A7sDgRiDErjzunKe5Y3oYvMc6h5QSkQr6wwPqPQKRMIgKrdVQLgipixihHoDgDlxD4Lzn8nbFr377BYcvK0zCdN47O+Dxu/f5w5/9lK/Or3h1ccXp0TEA63XNF18+4/XFNZlSnN07HpAVT56+YjIZs1+NCcSu8o8fP0SnFe/ebEwIgXnTUU3GdAFG09h0eOfHf8Le8fsonzM5OeEP/+S/RpRRZ8G1SzaXzzn//G9xxjKWYiB/SAJKwKJxbJzDZQKRbNbHRjNymuA9qxAoBbhU5G+9o5YSkWkIisIHZmlxyl0gI27ztIqSj8M2NikMWePZbDoyFDIdi1ABmQmCiq9zTmJSgDIm0PaGOiEW2r4fHAC6rkdITZZQKN+H4YOl73syzSDYUo1LGmPpA2y6nrZphrkdgFIqvPMY21JmE8ajeD7eR/FsJQEf8F4M2aoQMYiGPCN3GUoyNC4dsXQlhUBKhTF9LFEQ8Zx91+Odx6dymB8aiR6ZgEyZlmglI9AeqK3j+PCIRw8b2u4pSEe7iE0aWy/o17fMqhFe5hghCemx9kLiUhNJCoVIVuLbefG1dhZKBFQyCVU4PAalHL6paft+2MpPpgcYYzBdgxAh0QTiaNZrXl9eMZnNmOwdUE1nmO1cQ6AkqBAQ9ATX40wU67989YTzZ58wrjJ+9tFHBDvmyecRnnl7s8BYh/MWrd/h6LBCpoarIiBDoG8ari8vcb0ZGmbeeUwf2KwbJIGub4frLZGY1tB0PfP5CkJNmZwyiyJjs1oyGv099WRt33N7e80GqE7ialgdnVJUE6QuyXWO1gqXalPW2oitC4Hg3TcQG8GHeFNDwBgzBGLShVdaR0m8EIYSxFYcI4QQt0xCsEl4wa7v4+tCQot53gCMCCTGBW4XNUF47p9FDO2jx2eMx2OM8Xz4/mN+23w+CDf/5uPP+O3vPuXyeo7Q8OLVZXITheVqzS8++oizwxPWN7dIAYdHh+RpZc4TFXJyXOB1ToeiKuIDLP2Y2wtD23RIlfPOT/4jTj78RbrOK5bnn/Kr//v/4JNf/xmbZsVWeVB60B4qIajx9D5sG8JgHSFILJJepi1WSmnWCuYF+KmkCJKygyLVzqdst62x3u2cw4WtVqdMNbIoHtP3jmC30CuH0DEwxNqxxvvttjCSVkKq59rgBleIIKDve9ab70+5IPhAWRbszabcO4uKb8YHFnXDpjfcrNY05+cDQkIKOeAutZKMqpwi1dvzQpMV0aG37zq88UNmGbzD2h5BiE6+OmPLsvKFjXTdPMObFmvtUJOtygJjbNzJpS36dmsvZTKqTLJ7SsoBaqaUYrVY8v7j92iN4+PPnnJ1HRE3X3z8W/aOjtFFSTE7RmUF3ZaeKgU+KJy1EWkgIHjBFlkiBxRARAhk2c6hw3UNrq+5uXpN326oqhJZxedJiYrL65c8+fxzyiLjg/ceD4va9eaGxfULlotL7vlHjCfVwOKNduYK4Q1aWrpmiU/6vSeHI86/rLGtYH+ScTQruEpKaq+aG7yHIAJdc4t3pzgT512ZSRaLJR//7nf8/ne/Y7NcosSW/FFS5Ir1qkUm+9zbecxynQ8onbNeWzYbz3gM9Srh31ceJQV99939hrcGWa01jXNsFnPalMl2UpD3lqByfIiqOtfXUaDYWJMAvyFJpe048buAusNPbrf/w0h1p20j6+5rnHM47+iNeaPZMoy7iJHtD0L8LusCq03Hu4kpdTuvub3ZsFpaNsuG+2dnHM5i+v/V8+ecv3yN85YsaF5d3NClRtP+3j73zh5weniM8IJusUSpMvKzgZXpUCr6W83rnsW85Z6Omawc1RSjI7zRbLpAnucUBzGTlRxyb/+Q/7KcUC9W/O7jv2C89aIWgQZLI8DkEjdWuLSKdsCq90gkeRD4sGt8bVKQ7ccCJaDQEBKvNtOGTDh8iHqjJi1sAFIJENG7zSPprcOkWqrpOzyO3lmCAKkKZKIcS61i3U7nFDLW1UUqwcQamRkwud+H4bxDK01Vjjg9jTqgIss47A2rtkO8eMn5y5dJkBmUilv53vQYZ2nLHYlhNBoxnpTY3qTew85GJRBouxbvLJmKnnLbTaESUYpQIaKjhPA7oXMlETKLtfHexF7I0J2VuBTu+pBgUdvfETUY2mbDH3z4IV89f41Ntu0vv3rK+G9/A3nJg2pCXo4inAsIQSGVJoRItUaIQSpxO/y2Q+ItOMtWqjSTHm9bnnz+MV294qOffsR0FM9js7zgqycf89tf/xVnp8e8//AQ28bvbNZXBLOmKvY53Z8yqXKybY3fRduX4AMyeFbLG169eArAZJzz4N4h3WbF4vo17vQYn9yBq0zivEdohe3XrObXEBIJ5/4ppm0JzrM3mXL7ume+iMFShg6JxrSeccJJt0l7Y1O3CNGyXLZAzrSa0SStk65vwfuBGfht4/tTJPth/DB+GD+M/wDHWzPZo5NTDjNNozVNKgLX9ZqrxYrbdcNq3cTaaSqAO9vjrCWkOipSvsErCbAzdpO7ulUg1mxVpsmyDOfcnUx2h+qKTrR3fiB2n7H9juHfCXISQiBTirZ1g8XKq1dz+q7n+Ve3mN4xG08idAUoipKyyFnVsYlzdbNiMokUyQ/e/zGT6RG9VVzNG16ev+J4MuZklkREigJL4GLV83y+ZN70XDVx9bXyAQ/OJiDH+HyEIYfk8bU2jjKMOXr3Z/zxP/5v+OzZF6y62BQzwrKRklYJ+rEizDRdgpbcikC38XTGI61gGqBP2b0R0Gmo8wAaVC4x6X1q4jnNA8qE2Iy8o2OqhMRLibWWxXJFKySmi1mCMQYfPMYl31vRD1U6KWVke2mZsr+CLI9Zbm8kSiny748xAlIpemsGFTIAGTxFUWCFjL0E5yLkh4gYsN6hhWAymbC/tzcgARJsfpisUoo7c1YOjStUhGvJrSec9zjraPuoZjaucvRWIySVwDKtyfIC6wNN2gk474dNvNQZKDXAIZ3wuGBQKpYRfvmLX/BXfxtV626vFzx9+pSDh+9x9thGaNS2ZxIgEyqCB5xJJCDJwOEWAk/AJ2hUcBYZ4vEI3+P7GuE6bLui3cz5/JPfAnB1e8PVxSW4NQd7D5lUkq6J2WPoN+TSc//kgKqQrBc36HKcrqnC9ZZMRD2Nw7096sO487u9fIYWsH98SLte8+zzLynSvTg7PuHV5Wsm4xF5mXPx+oJf/02kvf/iF/Anf/yPmI5/yce55ctPf8U4CQBlquTy9VecnRwBGXlWsr8Xdzjr5Qumsz0enh1ye7tivVmzSa4fzlu6vmOnNPbN8dYg+/DDn5GVmhpLkzbiV3XD9brGENi0dRQ1HoLldkOxZY3swt4byuciTsqBTreNpGKnQqS222W2TJwtSO9rYsJDnP2aqdodWmdeFLim5fIqFs77tqVtO2zveXh2xvXtipvb+Lu96ShOqBBwLlL2jg7jxZ5OT/jn/+LPOT9/Qd+07I/HnBzcpwsxenTWxi1Wobl3/5g9FKtEc71ZL9k3G0bjMUU1wpGRqNHYkNMHQWMdP/r5f8bZw/+LX332lwA0MhBGOWYvIxxmOG3YpIKtl4q2CLQLi6g9UirqdNnWGnoVcbZBS0KmMamG2MmAjXWZAY2oUnNPuYgEUEpGLzW/u6rOtwmHKRKCxA6undbayKhRarh3bls8DhHbOU6L1fdhBAJ5UVBUFUImlEBv6VzPfLXi5YsXrNeroXELUFUV0/GY2WTK4eEh+/s7ebu+jbTZOE+3aNE4IlsxR8mICPB2u0X3eOtwpkeajlwIyqE5GBEJxvqhTr6t0yulEUmlS0iFUIptOlOOivjAC491PScnx7zzbqxlLm1g2bV0XYPOBFp6VFKhsq2jIqCVpMgD3hlW68VAqd7Ua7x3SC3QWqK1QG7p3X2N6RvODguackYmOpapay9cz9FeieumHO2PCLZhk2zP8T2jSnNz85pPvvgCkVd88ONoaHp6/yFCKmxvcF3DerkgpOt2enyMrRfUixvWmxW5yDk9jfY7Vxe3mMYgJtDVHZe3G4yNEK62XRF8R282vLz4iv3Dfa5ex+d+XddU1YgQZNTaMC1VGefr6ekDLl5fkqmK2XhM17RcXUetgiBFbMTLuynem+OtQbabnVGMNcquyIn1l1IFZFdjfYeQ8WZum1SEXSf06z6SYrAJ3iKdYcdvjsP5gHH2jex0yFZTYN7lxLuXiTt/3iUzbCFdOiETXr6MEJA8UzjryVSGNdE+u++2Ns0LMhUFPYKQzGZHfPh+1I4yvebzJ885f3lOrjMO9045OHiHXKe6sekYTybkkykuK7jetFw+ewbAs6sXjI7POBtNGPkOU0tITaPZwRTX1IBAjk75b//7/xn+38iLX+cNl2HBs5tznOtAS6xONa2JxOcSKwRCWOre0iWBrtVBhhlnBAfCOzIUVXKyrbQjmwW8j7Vu4QMydZGlTx1gH2jbFmcDXcKRtp2hay3G2FQP97iErDDGDPNACIG/w6f3Cb63c4X99z+22ODeuMh3JwZDrMMYQ55n3D87HRZ0ay3TyYSToyOqokQrNcC0RJrzUkgynUG4A10MgSzLyHQJPmD6frguyeEFiNhSJXSyqYiYUbxABhmhYW7XSBRKIbVH6oS4C4LEayHLFEqNED42xsbTksePYgBqgieMJvzylz9mVMJy/pKb661fnsAWI7COzWrOejVnfnvJOgmfWNMihUOp2PQSMtAl6KJzPdPZlKqqcNbi28BEJ8LQqqEqCx6dHTPKJZv1LXUSTVqtF9St5WZRs24sDx9/SJlgcaXWWOtYrxfU6znPv/oiQqWAUe64ef2CSZXz4/d/gnfw4quYrc7nC4KHvnVIrRDshIqenX9BWUKZCbJMcnS8z+tXURiq65rYfOz74R5uvd+c9XSt4fnTcwIBneXsJwhXayx9b9D5d4fStwbZK1cx2z9ilu9TJyEFPauQhcYJKEYj1puWeerCNZtNYnFsg2TYzaI7I570HSWfEIvqeI/v+ru/Sa8Nb8Tmr2P3hh/e+art+4SIjQClFX0yg0RoikJhOstq01AWxR3FqCaxygrG4ymP3/2A6fQkXo/rNfdOHrM/e8DeaI9JWfLs9Q0HiRyxP5tAPsPrMbIYoXpNnowUlfPMqgqlHI2ZY2SDtDGLmJCx3qwIXiFHM975o/+K/+69HwNgRx2X3Sv+z3/+v/HZ539BaxYYmW4+nk4LwlijbKANlj7FMVPICNHyAhUE2gdUgtWoyqL8DpDjrB2wb0oIfMJg1nWN6R1tgr71vcUanwJsNJsztkvXzQw6CD6RTgbIkfcopQYW1PdhFEVBAHSeU41itzsrCsR6xXKz5t2HDzDe0SYMuNKaw4MDpuMJztrUTd5iOmWymYllBu/c0G32QqBUTA9cMHR9N4hva6Ui28s5eufSopdmtweEIFPR+DCEHYnBuXjtsUAWEDoM23qpYsNaygxrAz50VGX83f2zfXqdI6lpNhe8PH/Js6dR6MR2Fhy41uKsxfQteEOexfdWpULLgDM1pm4IwdAlCcxNs2Gz0kz3Zkxn+4zLUwa8ehktW3pv6eo5a2FZrWMpbLNZYZxAKbh3csyDk1OqhNul61AY2vUrbi5fYNob8tQVs6ZmMqnw1vBv/vLfoJVmPIpZ597eXoQRdh0ZZSRrsPVpy5HScnVzxRdf/p7zrz6n3cS45rqGYA2qKFhvNswmM2Z7cV7cXN1ye32DaXv29/YQSFYJ2ucC2OCjddB3jLcG2Zcry0EvOaxGOJloY0oxGlXMZmN6Y7E+o+rjqtV3LcaYHdgj3OGNhG/+bOeUScLk+bSFDd80VvsGeuBrJdmvvXxLZhBA3/WDaM/2Q7TOGZVTvPVs6pYqua5G7J8lyyvO7j3ggw9+itbxBgppOTl6yPx2znuPfsL903t03QZr40Pjy4yNyBipiiqfMioVp9OIv716/ZrbJ8+Z/cEUNROEUWDTpQ5lK9FSYGxOJwtaocjuvRdvUN7wQO7z3qOf8tWXf0vbzhF5yt2VQDgR77QLFEGik9RhUyfqbS7IAG09dpt1WrsTO0Ik0e5twIiwLing/tkDNpuW15cRArRZ37Bare94UQV8CtzOuaGWvg20dxEiSqlvokn+PY7e9BR5CUKyqdN2+vVrFqslq3pDAMaTMXuzFICznKqssMZyfXWFM4YP3ov6xPv7+wgCWim8djhrUYN4SqzDOmcxRqL7frAgl6lnYX1AaY3MC1RxFwMenwNnIoxL61TUtg7rEzlFSoQMyJRJBR0REDoEhFD03Wb4vslE0eC4vX7KfPWK2+sbujru7mxnKLOSyWhMJisyNSHLJVnCwgbXsVhcsVmtsLZB6UBZJYPGvSOsd7Rdw77cZ29vTJeYh7lyLNe3zJcLDo8PCURYKESW4GhygMciQo83NdLFxakQFmPWuPqCqxefIKRnNokZxMXFEmdaHt4/Ax2p3FvxnOP7U7q25PmLF+R5yS9/8nP2jiJE7913H+FMR9euULbhcFry2e9j7XizEuRKUuZZZPUpyatXkQ12fXnNaDSCvKRtI3NRJiJVVhRkOsO8xe/+7Zns7YpXVyN64/Emrj7OrgnBUpY5o3FFVlSUyUWzrWu6toU77KxhhCG03vkzjZSJxkm1/cHd3+8ibPhayvr1T7vbaNvyr411qWkWh3WWtmuxxlGWUXWnG3C5Dq0URbXPvfs/Yu/gXZyN53e4X4LVYGBUVNw7fcjj9x5zntR6OtfjRQzgMoA1ntkowkduu1e8/PIpKi8Yv3dGnu0NzJ9udcNEHUCZ0TqDR6BS/dSLgHOGg3unjI72uXn5aqd/6gJZ66g2gVkb2Ddiy+xkiacOAZcgQpMasrTaFmNL6aBN2Y9zbsg6hZCRoRQiQaTrukGJKkr29YlaHDPVbblgC937xk1N//bef68gXFmW0RvD5dU1L19GCGJnOh6994gff/ghHs+m3gwBWBBwpscaw+nJEQf7BwOmtdlsyDON8bF0ZlPzF+KileeaPM8py5KyKAbmllYKay1d2+F6S8hzlilz3qzjAjwZR0cFEUi2OHFObPsfLrhoUSPSFkZIeuNwwpPpImrWJsp4kIL1esXi9RO8kgglmVXxHLKxZm8yYm9ywmR0xGwyo8h1LAkCfb/h4vWY83PPze0l1nVYH4/15mrBfLkgEBhPR5yff8nVVcwQ67qm6Vq8txyfTjH9kvlN1BcZTfZ49PBH7B/ep6z2GI8OKFMd1PsO7zbk9Gj62HxNLLIqk/QIJpOCg4PHfPbpp2zdfkKosbYlzxyrxRVdvUYfxnO4OD/ncDajX9X0i44vfvM5KjEy3zl9h/XyFiWhzPPI+EplQCk9y/mKTOYURRk1I9KzW+QleVngtg/et4wfIFw/jB/GD+OH8e9wvDWT3aw3zOcrqixHpqJ717b40CMzzXRcEWROWcVs5sX5C97MUcMb/zvYUNz5yRuvfeP/dlnQ0NgS36zxvpkv3f2FSJ+yq+duhw8hLi868s4n48mQZa1WDbPpjKOTd3n4zh9QjA5pk5P1aCTpRx3L2zmZ1GlbkTHdi9CS3FuMj1mz7TqEkOQ6LrGjfMRifctyvqC/Lsi9ZZRWbScb8ul+vBvSI3GUKfMuMrRzuYEAACAASURBVMXGw2SUU0xLxIWApE+ges9oLThaw0kLU79DbJTe81IEFpWldIKDTWCcykYHG8eoD9gywonubu1lMsjzLvDpp5+wXOyyuS4pbG3LAe4NAWq+BU2SIGNKJWbZd9sm/0MPlWmaTcty3TGfx6xrMhmTZzmm77i5uQYJ03HMnoqyjI27IKLWBjuL7kxneGsJ7OrRW1RCCI6+ZxCMMX1ylSDWwq21nJ6e4bOMFzdzri5iVv38/BxC4OzsjB9/+CNme1OESiUtJYgbCB8dMEQYbOnxEq1y8AFnPaYzA69eAK7b4NoNVrhI6U3bXuc9ze1L5vlrRtVR3N21zVbcirLSGNOxqed439G0K2wqFVXjHNSE6+trVqsblvMFFxdXu2taFEgF1ixjOdHFLN31gWCXvHv/D9jbP0ZQcHMT78XN5RWL20vqxTW+XVOvF2CS4aVp8a7j4vwZZ2en/OS9x1xeXAJw+eIc7wPBWFbzmouX54yr2KSqNw1/8eIlly9fsJzfor1gkVBFuYBcZmSZRAnwrqdKVNmDoxlKZvSNo+n62PzaQuaMiRrbf190QV/XtJuG7GyClPELjRBYs3U4zfAhugkAqSa3Y2m9WT8VKSDeLaSG4eZ/vULwRuQMpAD7tbAc7rz/W8YAZuAO6CC9QUqBVJE+2JuOLhWysyzn0aP3+elPf8nR0Sk+ZIjUaMqygslkipQSrVRyG3VDV937yEoL3kemitSDQ+t4MsMZR1VOyFSBaDxF2kdo6WhXC2Tpme4fMXOO7CI2E3NR49rnrJ5/Qb9aoVxAJwOwcu2ZreFeIzm1kgKGLnMeYNMFNhuHtoGDJmeWtkZjE8hciPx3Gd0732DPEevjy+WS1WozoAusjRZA3kfasw9RtWm4v3fUuu7efed8VFT67nn4Dz66vud2PgdRUCWspHOeTz75lPfff8TDdx4w25sNxxwRAVtftCik4tJ1MQS02mFf+BbGovcR1midY5No6G3X4KwjyyuCynny4iWf/P53ANxcX+Os4/nVJU4JPvzwRxwfR/agFgLRt5G6DvFbUzSUKifLMmzX4Y1FeEmWnt2AJROCUaYxIoqBY7Y42UCVl3i7Yb2I97Zt28GrLK8Vm3rNerOgKDOs76i33m9WMZqMOVaH9KZhcbtmnkTwpbRUo0OqqqBZ37BcrTBJFrBvl/zNX9Usri/IizFZNqKuU7lkVVOv11jTUTc11vSERAvPFSgZOJqNyUXg9vIV69tkc7XZoLMM4aHUgtXtFc+ffQ7A4cERCoPAsFnd8Pz8SWzwAc7WzPbGdD0gHFmhqKo4L/K8RLJmwQbr/ICWgUgXj4pf310UeGuQNW1HW3fMpofMprEBsFkrNvWcputRWUVvJBcXy3Sj4kO71S/Y1WG/lnHGmfhGDU9ssbND9pvy1yHAfnfW+11jCOvbJsTwETFI6EwjpaTve/IUDI+PTvjFL/6Qhw8fAlGMY6t7qZSkKqvkfRQ/t+vaAbXQOoMNPumH5qhKohIkJx+N0E1LNRpRFWMCniJlllp7+s0C5S1qrKl6iU5889XrL/j9Z/+aL1/9BlW/5rj3qESTLjeBWQuVizey8OxWHCmY2cB646h6x9goxkl8RIa4ICQjkeiDtHVpGAJE/Nu+sYhEJXohZJzI253CnXu4XWTv1mhDuCOT9z0ZSmmk1ATkIGWplGY8mfDee+/x8J0H2K2bAUTjPCEieaCLJIxxGVElWkalqaiUFcH6d2GIsfEnKcsxdb1hsUxInVQX/uzLLxHZiNvVhvkmJizFOPp2Leuaz548Ia8KsjLev/GoijRmH/dqSmWoLGbVSlcE5WltIHjFqBiRqCPM6xUqKGQQSB/IkOh0/xQB6RxVmYPMUFmGd+Xg7Tef37De3HJ1c0WWS8azMUU6nrzI0JnENT3OhnTN4ud2Tc1mpcizffAaGSzltpkWoKsXnD/5PVrllOUk+XVB2/bMb+d4HxLlOFCvkg2SilbcV68NcyVZL1esUg3bOUdRlEip6WrD1fVqh0s2NZevXvLqxTnLxTUCg07WHn23Ybnsycucg6N9RuOKMu1UNqsWZz15luHKkrquBxjeVgwr+/tCuHzI6HvPeHLIz395L37h5ojb+SsuLm9Ybxyryw12CBYRcG3T1t4PElkMES5KpcUH7g3pwhRMvwnR+vuPbQAQvJnJ+hQ86HqsdGRZwaNHsVP885/9ko8++iiaAdqAkrsjEpIIxM4U4On7FqEZFJCkjBNYa02mMoTUyCQFWOYl4yynFBKCx2BYtYk3nVtKFJnzNOueW9Mhr2Mz7env/5wnn/wVdDfs+wacJVVnKFtB5uL17BDkIqDZTeA8CLIgEMFjvMdsr6yKKlT2DsxqG0ijilpkgmVZhkp/x/PzCWIkknKU3DFd0oK6DdLBy53NeArm30CM/HscIUTx96Z1g8C0UhrSz4+ODmg2G9YJbhRljiUmRAy1YHddtIxOxsZZTN/TG7NDt8gdYuOuJQ1Ewk3TNPz+k884vPcOP/noZ5wkHQXTdzw/P+fi9Quub254+uwrJinROT05RkuBTWWHvCjItoxFkZNJHbNS4WKJIDXMhBfgIBPZALV0CWrmnMEKx6a+pLOeACxXy0HxbtPUEYEiHC6hRbZrprUG501UuQuK8XiMTpoW1vSsliukgExKyjzfCctYR0YgE55cBUZZIE8on1wHrM3pe0NZaLq+HWzPCQ5nDU0d2YXj0Qitt0I+geBbnI/XOzjDxasnAFy8fILte4I1VKXE9orVMu4q0BlKFxwdH7J/sE/TNoik+TAeTVgVHYv5JV3XIZUcFASNMQgphvv9beOtQVbpCU1rWG0a3v9RxG0W5Rm9WfD5F0/4q7/6hK/Or3fiL+HOQ/b1QmnKcpSUiXYohhrdLvMR/1Zbyr9TQE4YXBF2gXb7wCspqUYVJ8f3+NlHPwXg0aNHyEQrzVWBRKGSlbZGYY2lLCqkVHRdi8wUMmXBucpQIlI2FYLgAnIr+J0VKJUxQtBnAj+qaNIDHMwte0Ihek247amvXtGfPwHgq+e/pw1zsmOF9wq1sExsfKBGKfc36RxbsSOerPG0SmAqRcgVN6uATau2zgK5cAjcgCy4q3omRPS511on76dUEkiyetuU1YcwBIyBGLItC6mwtabf/uJ7lMcCROtvZSL+Nw6VFkhNsI62aSKjkQi3MjYKxEsRXWW3W0StFJlSGJ1FxlvX7a6nCFHohEDf93jvyZMjrfMO5wPjyYT33/uA9x9/MAjSdE3D8eExT76Y8OL5VzTrmq6OW1sRotC9ty6SZpyjTY0D74GsRAYIzmGMpUlb4tVixYuvXtGGjpMHJ4yKCfOkjOaMo6oy5stbRK5RWnN185pNoiVOZzOOT04IckrdRsTA9lilEnjrUFJRlVNMB01aALrWAo6uMdSblrLMBwSM7SyZzpiORoyqEUrqQU92PMrxYspyvUTK2ONoU012VBWRwq3gdnFFVp4y3Y+7irreQIjsPLG2eCfwbksoceiyYFQd8OzZM5RyWBfPL0NQVjmHhwf4ELi9XWBMPJaj/RMO9g5YzleY3kQ3kVRC7Psuuj6770YXvD2T9Z7V6panT78YjPaOj08IjLmdL+i7lvVqOayUOlMoqVLGEgjfICKkBzi9Jtz5nrCTLfo7jO3nvuXFd8oP34rPTAtBvWnoprHuA7BaLsmznDIfxyZGsIODaC4yQm+oyipKPCaZxW2EkUqhkpUzLnrXb7NcrSSlkoxzjSg0/UTTJ8ZQV7e4vid0Djm/4uLjv2G5dc8NNeZUsnm/oNsrKb5saD9Oq2/foW0gE9Gm3RIwqTR0kwkuK8FiKtEochFI72KiPfsqRLUsYmDdbX+iqaIPLjK3nB8yPR88AjUsHAPdOV3wAX6X6ud3SwlSyLeu9v/QQylNCCZZoiQgvxCUeYG3juViiRTRighixtJ1Hd47lIzzavtgNdYiE0U5y3KywRE2ZrGBneC2EIGQVKGatmFvb4+8nLC8XfKv/p9/yWHi55dFjpaC4/0jTF1TlTl745jJ5lJhe4vygUKqSNVNiljOd3gfHYOlDAjs0Pjy1tF1Pat2g/Gew6N9bFqwvVNInSNzhROW8WTCw8fvcnUTt+gIQWtN1MBFsKkbqpTlFiJDq4xqNKIoxiy6hk2C/SmpmEymZFqxWtXgBeXWKqdd45Tn6CDj8OCQtmm5uIoNs55A6y2tacnznKACWYKbFZMSIQKmbxntjcnH2dCgc128p4UsaLs1zsIo6SEc3D8hhMDNzZzV5pqurzk6ik2xajShHJX0fc9qvaGpW2yfnmufU+Qlh4eH9Kana7sBvheCp+s7tPzuUPoDhOuH8cP4Yfww/h2Otze++jXOLnjy5BN+/etfAXBxkWHskufnz7m8fE29WSHEjvutVMpSg4iWvNsR3vyHEDvIj5Rbxaxv5qZfQ1/9ncd3QruI2ZqxDudafAg8e/aM9SrWex4/fsEvfv5L3nv3fZTIIpIgi9mMQpHlWbTNSVvzN7rqkDrPsWarlCZs63BKQKkpphV9oWhNQ9KVIZvk+Jslly/P6S6+4tnF58xdrNfqd0aIP9pn/UFBX4EfZ7TL5ElVt8yM5whN7gXeB5p0svOx4moG66kkUwohILnoYDNPlcVaYhTC8QPl1TmHlnLXCONrnfI7F3NQRYMhG9zd3zdrsELsbM6/D0NIGZlvBLRODUER0SZSCgikbGWrx0AqlUSfu860hHTOwkuCiwiDIlNgLbOEWJAi1u6REqU1hYLRVqinrxiVJcYp/sWf/pp/9ad/xvFBFJ0pi5zpZMSozNifjfnJjz7knSQuLnC09AQh0YhEUkh1TufpggWZoYNCCD8gBPb2pjx+9C6fPnvCarWhabshGx1XBZ1xCK1YLG5xEkaTGVOfOPpdT9ubCN8Ld+c5tE2HlpJ8mhOCwAdQiZ12dHDA/v5ebPjNb9H7BTo1YItyhBSC3lhubue0TUudyhO172mDwViDExW60kwS5DEvkp9aBtOjKUIEuqQnG7KAw9O6Bhdi51+Mtm4Thq5rafsFRaVAlpyexF5T8Jq2MyyXS+q6By9wiT15c32LS1ocIvWS2kSNJgRGVTU0x79tvDXIShVxsS9fPuGT3/9tnBjtlK5f8vz5C25vbuj7BpGixbajHP/2b0bIO6wuH3wUR7lbx9sqF4XwHUWAf7tw+yb56M164PYYffpuYwwXiTpa1w1lUXJ8cMKonJDljmz7MBFV7PNME4JP+E8x0IO38KZt8I21m2SMl2eYaYk5qHCVpru5IU/b5yMfMM/n/OZXf82L5XNuiprw8xjYJ//kPuIfHbCRHeaipj2A9jQJk7wWtK0Ha5kg8QoWiXJbjxXdyNPn4DW0RXRYAGhUoNEBLTzWu4h3HRAEASUVUsR6nxBi2BohBEplCCTWbv28dhjM6KKa/lNygLkIxK608j0ZLrHZvN8tEFmWRb8trREi+dFt3R0SbEdLiSfSh7tuy87q6OqePJMczEbkMmDTfciVQNlo7BdENB4dJQpoIXOk93Q+Z//gEOvgdhnr9H3XMSoz7h0fcHpyxIOz+wNmd72cRxiX0sgQ0AJ8SnSM7elcR1AFGRnO7KyctFY8fPgQn2m+evkiUohXm3R+gWw8QWhJ7w1N32PWK27nETkUgqQsK5x1NK1BSTmwrEwf8Qud7qhbx2pdD8gDlSuCCCxWS1wIg3oYQDWeICUY77m8vsE5R7altzsHxlBUJdZZOtMNtOK6a3DOUo1ygkmsw3T+stDkmUKLjL2DjFJ3pP4k63qOkJJ3Ht/n5OyE+WLN4jYmV8vlAmtAK89m1dB1FimTv5sLb7Aiw50yWQgBnek3jDO/Pt4eZKXHuZambtlPYgn/xX/+n/Lk6e/55ONP2KxXZFqyS1B24jA7haw3A2P0DPIRR3QnAu/quG8eg/jGv3bp7t/1md19xjffEfybOglt2zKfz2nbhnE1iccqdtma0BG+5K1NAh/qDoAiAftTLTZicVOQzTLMdEQ/HZHlGXLjUKnpYFZr5l8+5+n5OZdiweSnJ2T/w+N4PP/xjP5QIlcBdbGhXtVsko4nE4mpBX5lOQgaX2oWs5QljSRSx+aWDz7W6bbiIy7iNXvfJ2GX3QTy3g1ZqBTRmkakqlLsoga8j0pc7m6QFSLaPSf4nnd+6MBCooR+r4KsTzA2dWdHJQfiBFv4WlK89wmap5VGZdBbOyhYffz7L7i8uGFUZLz37n0+fO9d2pStylwhQogGg85GjQKdDd+nhcAIic5L9o9PmGx9w5xBi8DB4R77h4eMphN0EuRVmUZngkwJnDXkeYFNNdnOWIJWGEvMdMssEhKIz2RV5Dx++AApJU/Pn7NabcVaGsQikO8F8qpEZorO9ExmsX6cZSXrdR2DYW8ZFQV9nwgWrSHXGmc8i2bB9XzObBLft1otWK+X3M7nHB0dYpyllJGmXoxGOB8RGZ23BG+x6TOd9Il27LDGJNeGXbbufJTktH2PsR0y6UBmWUS8BBGiCJDdLZS9aSNszmUUVcU7e+9wexO1C1brNXk2pt6sWC9bghcovQuqIqFptonkdt4752iamlm6Tt823s742lyAcBwdHXN4ELcNe7M95je3zG8X0c/I75omgoDSKfCEbwbMbTMkBI/38o1yQoyxgsG4/VvHt3zm/+/YptC8JREOQyAJIbBcLpkvFhwfnaJkhFzFYxQJ2qRoTR/LI1LiBhzuFjkam0cSOTSJhFDkxYRJvsdUj/BiTu0igPrl1Qs+u75gLgNqOmL2+Bj5fpQ67A8knWwJizXh6S310zndbcJwKXClIGsCBWBGiuVevKWmTBuYAMF6pBGUfTzOaeOpVgahVbT4vhMs+z7axHR9h3UWa83QlAwGnI+mc9vSgUpZ7vY8IbKHCDvjP+cjimGb2X4fRgg+NlS8HBIBYwx109C2HUWeI+4qyqUdlk+C2U1d8+lnUQz7V3/9N9xcLykzzXp5y/HBHnuTGEisD+A8PkRhHut3MDulc5ASHwRNm7R6261AekuZa8ajIgnjS8TWysk7umZNriVKCQqhyZIgffCeoHPIFELl6LzEqyRg5H0UQAmaR6enFCrjq6TbcLtaYF2Pby15VlKWBWa9YpKabSrTLFcde/sT+tbguq0QVES29KZn3cR775yhbtfpWAs26w1lVVGUOW3fEta756lpG7q+RYSQYIHpcgvBeDJmUk24uLykaWpkQjMIKQgi4IxHqEDbtOhs28SVlEWBNY62XmH6nW9aVmU0Tcv6pmZvdsRBWVGkcokLjrqp6WuPVhk2CaoDQ5DO8zwtwgnCBgPOfts4/7bx1iBbb664f/8e//Sf/hM++kmEcF1fXvLrX/2W66tblJSYYNgSBfI8Qw5i2Skz3QqPqF0Qiw/tDlEQEUFbnCW8GWW/mcH+vca3BFgBIAXBw1Zr3rvAfH7L1fUlH7z3I5RWg0KV926ANg3bgzu1R6WSuZ1UsfwRBEOb2UMuSkZiypHcQ04fceNjSeCZ/5Kb5Ya9fEpGQ3Ve0/0uKhUxGWH3DN1tjX29or3c4Fap7mk0Tga8FngPXXBs0ipkPNFi3YF0kPeBSYrN0zZQ1g5fuiFj2zrLzhdz1psNvTGxVmvNwFoTCLwIiRrqyPNsu/4QzBa0n0o/gjvwLo9QcnhIvg/DmPjwOSuGueGcp++iFGHfF0gZCGGniSukQKhAEPHB+uo8IkBeXVygZIn1gYvLK168esXD+xHvWo6muL6Oi5iLkK2QdhROeKwLycerpxxVsaYLaLlHkUnGkwk6yyLcTG+V4rKIPFYKIQXL5TomAwBCQZCJRZbhgoAUEDIV1d6CtYzynHfO7jOZRTTDy6trvrr4kpvFHFUGCI69aTnICwrVcbifI0VO0/SY3pKnfbgdRyH84B2jrKTvRzTJF67uLevVhiIvWS+jItgWe4sgSnwGx2xvFp+1LRTKeYJx9L6l0DmZziNDjwgZ04VGhtj1J9ghk63bDcKD9DoyFKXYyjYjtWDVbuh7g1AZPkjaJJ6z2dQEqyj1FBk0KD/4m3VmlzAAZJlmMomlm9lsynK14DqJeH/beGuQvf/gMf/rP/tnnJ1krBPb4ukXz3j29Dmr5RohVSr6xpu4fnk52BgPilpD9rKDU30dUrUNrN8MsG+O8C3/+mZ369+uTbZFHe1KEIGu71ivV0kf1e9458EgZRYzoLB15PWoLXxDRsdWqXUUUnbb5lDELwYULhtRqwL2TiiymO1Mxvco68C7ouSBBXkOT/861srMFBbvQ3fT01/3UAd0wmmJxpO1UHpJ4QNd00PSYPZjgRxpMgvlyjPbSGYuORasDV/1L1kFx21T0xlL3caH4naxQElNXhbs7+8T2O1UjHPxgS8yPElgPW2nMxkX2IifjSWHAUeq8wiYL74//jPBR6qv9yGSEIhJQlGUKK2j6Ljp6U1cfISITgpKSHShmU5njMdxkQxBILOMLM/pjOX8xQt++gcfAnDv5BApSkLwSK2wzjNIxgZBkPG6rtdL+r7BJMp0VeRIsljOcQ4f2LEST04oMoVJ1FqPokzss/F0j8YENr2j73uU1uSp0YQztF2Hdw7jAk5oZilTbYzli+cusptWDaOxZja9N7jPeO8QwWFNy8HBPovlcsDJTso9mkaDC3gjqIqS5W0sQzSbjjKvEF0MdkVWoV2cBx7HtJzSmRZJZLBt3Y9Na8k0kcLbtckY0Q/3yZuA7S0BT5bn9AlD225qlr2hKiaMqilCykG9rO8MMtPRUkhGnQ9jt8mBRKkMbx31piXPyyExJJEvZGoIRyH2LYnHUhQFVVV951z7/uzffhg/jB/GD+M/wPHWTPZ//J/+F/7kj36O7a757W8+AeBP//Rfc3uzgCAwveXs9Iyj4+gc8Pr1Nb3p38hWd02lpMMvxDcy2WHc1Tq4ozPwLS/7lvduc9ih48bdn7yR376RuabfpxcoIQc2mrUmQpvEttRhyNip4MdVzVOkbVOLQCuFyjTeRYUet6UOC4lUOWI0oZYlxgaKMq6G949GHAnLw77lj/OM5aXFfZ66xe9lrEae+bnFvfbopSRfx+Mp68B+L7hnFftBMrUOv4or87UFpxWlERzMPcedZJy62rWExjtCrplmM0Y+OkEAlGWJkppqNGJvf5+u7wfq4WqzQfZmOHelNEVqMVdFhZIqAUT8Hb2CaBeeF8VAmfw+DJ1lkb11Rz1Ja83R8REhBPq+G0RftmMQ0iYyivaS+tpoPMF6iRexmeN9YNvz29QNrm8guIi+0Co1f1M5JaiohiWjJkGbanshOJyPiltFWdD1Lde3cUdV5pogFE3TIQhkeYFPNNZ17/ndp1/w+dOv6I3n4YMH/Oj9JC4+HaWaqUtz2g+c+zzT9F1Hs+mouyU62+PZk3PeeTfCxgICvGa1WBF8Tlv3IJNrhJxQ5gV9Z9g0NU3TDOI5+IAUCoWmUCXHh8eYtEX3OJCevjP0TaSnFkXMrKtxye1iTfPqkqvLS2b7swFdsNk0BBxFqZDKU5SaPKktzUZH6P1oXSOExHrHYr1M91wz25/hbKDMR2Qi7kgAJuMJ3crRdxbvYwO83+pWqJ110lZ9rk9uIa8vXjKZjAfCzrfOtbfMQz547xFnZ8e8fHZNl+Tubq5uWS03eB8oi4JH777Lg4fxRvzZn/9q160P4RvKS7Fj/U3Fp90LUvy7QyTaxspdYL1bKnjzRW9UcsPwx9tOEcKbXmTbB8k5G7vL1qLTNi34ELc81RihNA6BDztaLdYlCJMm+EAQDp+2HCLLKHVB5iQhy7BlR6Vic0B1n/KgXPC+tPxIV+TVEQc+bj82n/Z8uVmTXxvctaTYZIySAeNe67ln4NiF/4+99+q1Jbny/H7h0m133LVVtyw5ZJvRTMuOpBEgDFrAQPoGA30yfQA9DKQ3QQ9qSC/CSGqoe9hGI5pmsey1x26bJpweIjLPKXMvi2ySTQgVQJlzcu99dmZGrlix1t9QRY+RET9SYFXkZu2Ye8Vbg+LESYqxLt40NCcFoSyolEm00IwVVRnCVM8aZrM59x88ZJdVo54+e85ms6VtW2KMLFdHLGaL6XqHEBnptiHcRSwkxlPXvn4i/s7HHczvXRzwiIzwgFZmanAgso9XpoQXZckq+zzVdcXgBEanh7Gsa5ar9PAqreg7z9C1uWEjsDkCuxDxSDabDZfn5/TdfrpmZVmlJlVZMGsaZk3DJitbDVpSGsViuUyuC1FwyF35z7/4jP/1f/83/OznnwCCf/KP/3iqHxZG4QcLMaCNQks91XK7rmO73nPx4oqHb5+y37Qc2htGwf+Hjx6xbzu6g2PobkDICZuqlebs3jFD5/HOc9dENUEei6kZvl6vk4wkcHSyQqhU4zdCQxC04daR99AObNY7rIu8enk9LQjzeYNSisOuI0SLEJ6ySscWy4bV8YLZfIbzjmHf43LAXyzmNE3Dyxcv0uJUaUI+wd2uJTrFYn6CpODF+QtUTp6ESsaq1rskBSrlVEJsmgal9FRy+qbxxiD7Z3/2P/FP/ugxMgys16nYZwdHcBGEYLVY8eF771E2KSAE56dOnMjA7nHEhGD+Gkg9HyUjLdN77xAyv1amfQ2/QXyrgPpNv0x/dxKryRTTru+x3mNDROU6kVEVAoOplgjT4HTJxnqqnEXoqmB/6Ki0xMcASiOLDC2pK+qyRLuQbLsVqAy8ng8HzoJn3rccRctZKFnE9ADvho7z847deWR96SmvPSuXHvwTL7nnYBUiIqZ/hnzRBydot5YyBFa2YBElcRSymTUMZwt6IaiFoS6q286/EJiiSBTJouTs3v3J+eLRw7d49vwZz569YLvdIqPAZh1eJWVqeop0/74EJMg7g9H36vdhjLAcYwxC5GaT1hht0CYFn2SZk+11YkCEgA8BlYNtlbN4qSRaKMpMVJnNmknMpTASlzVq4yia7s8fIgAAIABJREFUlIdSCqLg8aMH/Fd/+l/y6vxi0mENbiDYgdVyTmFkJkmk93lnObhMADCGgCDmOfjs1QXPXl6AMiit6e9YiQ/WUhUGrSSR5Fo0NnXdMNC1PU29pCoapI3snEyNQeDmcsvl1RrnI97l85CjxZNAS0Ndldw7PUOhGDLzJThBWRR4Z1mvbyjLcvI4u7pyRBHwwlE2S7QuOOT33ayvub5ZczgcIELbthOC5eHDP2Q2a7hZX2Jthw9D1kgApQaqymIKTcCjdXEnW11QNzWr1RwCVKXixctkwNh2lrOjE9ptIDhL1SwJKuNko0Nl3LcYEwh/m0CkhffXlDr8yY//in/9r/97/vD7T3j+PH2Z9c0GYtoW12XNg/sPpi1jU9dopRlsYqCMqxdAFLdf6st8rDGpuJNZvOlLvW68Jsbe0gjiVBMQd//IKGgyIh1kyoj3bctgHYO15F0283IOKIQqcSi8UMyaOX2+4KOzaPDxNlPK30lrnRofOGKwlFKgdjkAbzT3/ZIfqBnvmVMKM2NWpMD2B1rwoz38/OWAvbGcdHCadWFXXnASInWEMXyND7GPSZrR+YCNAUecFr1CaxplQAi0MCipp21zTkaTZoF17Dc7yvxdzk5PMcZQlzUXF5f0w63ppRQCpXKpJYSEQMhapZGA1mqyD/+9GBEkgqIopiBrilsygiLdM63H65I0VuUE3VHUObkoS0MlK+rS0JSGxXzGIjfFRLAg0qITSfoWOgeLPl/fZqH48P23+f6H7yV1OIDg6Q4HrB0wKplijvdvcA7vLZYkAi6LGpGbqIfe0g2WoqoJwPXNmouLlDm++zgZHDqXcKd1XeFzcGjbluAis2bB5nqPMoGH9x6zyvjP58+fc3W9QesK5wJCSOarlCHvtwMX8prHj+7T1CVVVVJmfQJZGVazIyQKa5M1T1kmeOK+2xEF1M2C05NT+mHg4jJl67vdBqJnPquRUrJaLaZE4IMP3mc+n7PdnXE4bNnubthk+UjnLBcX16y3a2bzGV2GIgLEkOJAWVQYpWnb7hYZpAMXl9fIMKM0M3RhkBnrHKPL4j4p2GolEbmZWBhN33YUIzPjG8Ybg+zHv/gJ/91Hf82Tx/f43ntvA+QHRyBlEi8udMnJcapNvf3WY569vODi8jqzYe7UZkkdvAR252uIrDFjfVMuOtVyv1KUHYVJxO0Pd47dLQXcPXAXq/DloO9DYLfbst3vWS5PJ+tnrQyg0ucIQdu2ye99FLcJES1kttfOETYHYCUzO8wN6KBRRtH36X2vNtAOFa0qOMiCXrZc5hv8M3Z8vLnh6nqPHDyLoDjJ1ZZlgHlM3ctWCg4K1llpay0jcVkwdJ6rPYgYmZfpds8KTaUMaIUSOtVSx8tCJPpUJ4s+sg2bCV1gTIFSmuV8zm67oe8OU9BZLmYsVwuKomDokyD2ep1qYdYFpBCUxe9PTXacDEqqSU8WUmZnB8vgUyCTo5SYSLsrFRJmVSk1BaC6qlG6oq5MUtgvzK2AiLUYrYllwWBtUi6bpP4ch8OOVxcXKTCacqr9VVUKBEWhkWi6/RaZ52hhVNKIjQnHGzM+HUBkacqoVCJOKMnxUaLqLhZz9utrBIGq1oRce4bEdHQu0ruBQ7dDm8iDh/dps/JXu7cMXcAphzElTd2wnKXdVsQhQ2Rzs2HoTd7d3D73CChMgdYpmI9Bb3zqiqIAIdgfDmy3ac54P7BarVgtVzTNnLqeTcSJrm1p6oqj1Yq6LDBa4vOCfn5xzv6wpSg1ISQ5Rpdr4FdXNwx2oKnLRGfu44S8kFIn8oZSWJecesu8+ProsUNHYTRNXWO0pshzuTCaly9fcnJy9Nqp9sYgCykbWi6Xk3Zm+r5p+xcjbLY7fL6gddPw4MF9dvuWvu+/BteSd5pRd/9vSkLv/mJ8zRiQc6H2m7Nc8eUP/Fbjy3XYu78N3rPdbjg/f8nD+29ND8woLK6FotIF65sr3KMnzDLdMcQIKqJEehwc4TbIxkgdBQsXYRiwWnPIN/hCH/Eszim94AWWsjpwPks18L88CbyUkv1zhdZwEIE+Y3odgi6XVtYycmXgpkznta0E/VwhSsl5DPggiPOMsywVQZAZXQHbd3euQWZ7SYvVmu7QssmloqquOTs9Y1ZXGCWTQV8cFbkcUkQKk7zui0JRluN1S/A8pV+/2v+ux+1UuyPXGEZbHZ90R6MjxhGQ7oikhlnhPIvVCpPvX1UmGyItJQKf5nkYA0lI230KpBRY7yfGV93ULBZzAil56fphsq1p2w5ne4a2QxYl0c9QI/NQkEk7IusIxFuYUHCpjKELhJTUdUkzS1muUpKyMElL2A2EXtJnfr61Fus8fW9RymAKwbPnL7nO9dPFYsViccQwBLQqCEFMEpFFoQghZXt1XWTTyPQ3h87THg7EAsqyJoQ47XC0KbBhwHvPxcUFF5cXk5rWw4f3mM3maFVS1TV2sFxlRbDr62s2mzNOTo4yZl1M5YKry4S7PT25z9H8lIBnGG3rQ2JyaW0QY0aftwfeJ2H1kPHhSjiGPu++Y0BLSVkajJYoFSe9lohnsZpljelvHt9BuL4b343vxnfjtzjemMm2hzVHyxknx0eTmd6QVyFrLfu+429+/GPaEc5wcYnIDYPR/WDSTolhgq4AX8o6v1UC+g1Z7u34Fk2v145xOzi+P6vsdC3Pnn3BO08+4MFxKpXEmLrkulYs50s+f/YZ15cXLCbFJZVWYiEz0B1Cvl7BWooKGiFwfkhMqnlWFXr4B6xXz/ip9nx6dIP5/hr/H6Ys6en9wOaTlvZjDbXghY+EPuuYBpXME4lcmMhFAesmrZv9UrGrIqqUKBthAF2OTCMLtiW4AQaILtwy87Kwjdaa4JNot86dUyVqmqpgNptRGpW45vn8dusb+vaQSgIi7XjqXKcqy4K27b9kuvgPPZQAT8xg/pyViCIL2wiMSUIjMtuhhJiolmNhVAhBlcW3F/MZ3ifzPSkjRiu8Tw0c17cpK/Yu0XSjn9SdjJLUVYH3gVJLjpazica62W4Zuh5nXUZ/aNxk7Z1orkoqfIxEpcl8IKK3VIVG1xVSKpqqoskMq7qucN2eMFh8iAgdsTlzTs4HkaIqUdoQYk/X9Zgy0059xAeB9xHne0yIKJNKCZGCskpKesMwMPSJEQbgbKSQkqOjE4qiYr3eTqpnRycrhBaUlaEbDkQiJm/Dz87u0bU9z56/5Nmzl+x2h6nZVBZlaqRHODk9IQZJ12ULqDZl8k21oioWXF5fTn2KxfExh27DYd/htMLZwHqTdmneeapS4kJAiICUSaMDsmaJCNih5RAt88VsIh/s2wNChEls/JvGG4OsiAPHRw+ZNzOev8hWKTr5YkVn2bUt/+6nP+OQ+daHQzvVhBKW8s42/G6t9O8TE38b4y5QNpdSnXO8fPmCVy9f8MHbP7x9abbKWS5W4APry0uGsySXVpgiSy/koGX9FGTdYLFEWhPwyqUJnX3kZ/e+T3/yOTcPljT/+AD/7GM276cu80u7pg01/rQhXHRsjSPu03c9DJG5S9vFrYFtI+lm2eCtlAQREEScAqvhkKmHQnpCGIhBUHhJgbyzGCbk8GS7EyMj8aUsNCfHS5bzBR8pQfR2CqRVVSCUJOJx1iGVmrbTqfZHtq75/RiCiIiJZ+9GbQYSldI7R6ElWshJJlAKsMERRIL0aCUpckd00VQMvaPveiQRKeKEpNivN8Rg0SpBF51ztygPmWik+8M+m/EpYnYU2Gw2iOzhZWRN9BGf2WcqN8+UTlKHXiqCGOu8A6WRVFWJEJLCyKlxK0UkeIv3jojEB88wmkE6l/y8REQViqFzdH3H2b1k3miHwM3FNQKdlNiUmFiCPlqEKqlnJVqbpClA+lytJWVZUxY1l5fXdO3ASTaEnM+WyFKB8AzOcnJ0ijZZRNx5+q5nv93z6sUF1vrJc8tZT/CRWTNnsbCp1JJRCW4IeAlX51uC09xsdkTSM1g1FVU54+bmnOW8pqlnUz9iNk+C/EJItM5IDnHbQ/DRE2MqjIbophJEUWq8G9FN3zzeGGTL0vDeO0/w3k6ybsZoTGHQQeG84+rqCncHtgXJd0dKRQj2zqf9qqnr72qIr32f0VFhs7nhxctntHkROZqJxIX2jllVM6sa+vZAm3GkoXCp6YDI2FBPHCUEvWcQgRvtoAIhPGL0elrdY6juM3/4IeUPPe6PgZQ8Y0KJGTTy7Ab/bI/XitakG9rvAtshogHXaLqFos+QMRc9woN0Ae0i2oMYKb7EzOdOmD/hby+BVCJjJyOCiFYSnQNNaRSrRcOsLtAyJvM9MTY4PIUxaKMI0SSs6WhBYi3O3Z0L//Ajhjt46NFNOyTvKO8cSE0gTtY70ii0lKAE0mhKo2hz9ljIiAsDwrukUNb37PfZaWN3IAZLU5eJ5ODcRG6RKj24bdczWIsUidQBsN1sETEFdxkjWspJsETLCu8sfdcRIsiqSt8NUsNGK7RIi4YkQoahETx1XVJVBb31uCgxudFmyhIkDK5HREXXt7TdnrJ6BIAyEC9T3VJphYuePlveRFEwlyVN01DXFdFJNtnWxQ+RTgxcXq559eoSISRtDojn51dU8wqpEtGl7/boceFarKjLGSdHpxx2A/vdIXmUkXKi4APeeoZ2oOu7W8iYDXR+4Nxfsd/12GARWU2rWe958OiE+/fuUxVJnWxsNCo10AVHXTXUpsAYNdHClZLoQmOdZb1d03aHyYni0VuPuXh1zv7y1xSIaZqa+/fP2G7W08lHYsKu5Rngwq0UIELQdW1mA6nM/b9FvN4V6n4TUEt89ajgtoP/Te97U2b8pa7aa9pmXzk0ljqGoefy6oJDm4Ko0irZvDhHoQ1HyyPW6zWH3PUsjjQhLzQud5JdxigKIGrFVgZiqdAERM4i5mePEWaFiAvC0KPKWTKjBKLRyEJjyhKnNAPD2GtK8CIfiUriZ4a+gl6MNjIC5SNlH2l6WPhIk7nf2ka8SXJwIpdxRkKGRqX7GQNGa2ZNPcFxZrWhKhRSBBbzisW8mu6nHXoiAaVmCfwuxMQU8wdLDB75BouO3/WISIRQiDvzQkmZMlyRmmExxqkzLdBEJdA62ctIkc4ZIHiHGwacHZAx5DmSAmI/WPq2xbmA0lk6Uo4Pr8OGQDcErJdIIm7k7rtIsBYloTSGINTElCJmgfa2xYdIE8Fk+2oRA0Yrgk8Z3qzSk3V437UIsk1SgBDlBKvrhp7eDaCSXY7HIbVg32W92aiQKqlfCS0whUaODrkKfLD0/UBZlAgUXZu37wdHu3cc9g4hkkfeZ58mYR2pJYujOVIJetvSd4fJbLI/Ccxmi0SGCAJn45QtapVkFXfbPUYXDMMwZbLRJX1ab3u63iM0VE2ad0Pn8NZT1gYQlFXFk7efpOvdPSXYPaenJ9SmpCrLSSDGFJrjkyP27Z5PPv2Etm+/bAnu3ISY+Kbxxln/8OE9uu7AZrOZfK76oadtDygtMWUBIk6q+oO1tPsea90kqHBrMJbUt36PDEvvjG/6UtkS27lbrGthGJzHeoeWitVyxWa9njzmT1fHycAuJoQBRA77LPkWA1JJvNE4CWrwNHkBWs5rFuUM2w/sOksYAi7fGh0U5SFStmB9qnvJ/OAXFgqb5Hm8j/gYJ6SHiCl7rQdYOsGxF1TjM9p5ehxOpgeNIG6dVIHgAtFoqtJwfLSYjqXOKiwXNU8e3ef50y8YRjKCULleGamKgmY+o8xZghAiMWp+Q3frNzKEQAiFFJKxMVyWBYUxKYgSc2abMySvUzZrNEomBtB+nwLQZrula/u04EgFQtyhWQqkSjAxIdMiPc6nkFXaQiR9FymmoO58QOQlwLuA9Za+S0E9BoFSGu8jvbWUPjBKdQaXJBy9SB50SorsrpicY0UMRAExSqSQ7LKV9vX1JSFYjk+OiAyEOEeqOftDXih92gEpGTFGMV/OkCoF9q7bsdvvcENH9BGFQasiv89SmQJnk6Hk4TCwyYtvURVY73HBEvFY209eaLttT1nWtIcuMQ6jTOLcQCwkUqSaatelxW1M1pUwIHVaQKOEEbcOtG2qM0chITgWiyUnJ2cAbO8N9AeP0RprXbIVF+NiaJjNF8xXS6q65mZzw+XVRT73gceP3kpqYK8Zbwyy3/v+B1y8umC9Xk8YRx9CYj+oJGDb9/3ked51Pd5HhNBoo5GD4NbE8deMrr+B+u0vU/cSpAkEY1IuJu69VulcAKTRSCPw0eOJNM2MWT2bbKPX6zXz2Tx9ktK0XcvNOoGkq7qmNAVCGETvWfaCoyFTYEPkZN5wFTucdXRXA26Vv7t38LLF3PSUXST20LTpux73gmaQOB+5khYhQObmloygskpX7VKDrPQjGyzie0cUgiADSDkxVka6oNEFq9Wcs7Pjybfee4sbOo6WD/nw/Xf42c9+yiYTKsq6RhYGoTSRQHs4TCWCBJMJX8Kj/kMP55PosxC34OzCGMrCUBaamMsGfS4VOa0wsaCqK4zRaCWnBWaz3bHd7Cl0gVGw2+25ukoLr7c93luQ0OgGbcx0HUxZUhmDqWYJewu5Fg6L2Ywiw+S0TBz88TFIKncOm5mJ1eAIbpTqBC1NWtCVptTFFGTb/R6iR0hFlJoomfClVVkwn6XGZtsOaGlo6pK+TbCp7tCiVUFhNIKAilCONjLmiL2IeDvgfWC5muOydrESFYWu8U5QFBWr1Qln95IMJArWuzW7/ZZh6HC2mxpYQ79Hq1FSs2KVd40AXddSFiV11RB84HA4THRkowsIKhW7Yko+xiw3XA1UjWCxqpKKmfW4yUYmmWta54lO0NtAme9T2w18/sVzlBKJsKJLjo9SXdlZx6OHj+jb17MZv4NwfTe+G9+N78ZvcfySmmzF54c9zg1pNYaslFMw+sj3fT81xZxzSKlzzUrS3SGw39rLxF9eMvh6L+r25yw+A1/OTf8+ye7dRDfmmtzkglCYCVYilECXBUIkz/uyLDk+PmG/TzWmq+tL5vUMpTWdc5xfvGJ3SFnu8dk9CjRxbZkryUqUmMwLb2PP6qRic/Oc7hcv4f4FxmQd05mgliVLU2KsImwCi33KLN8aDEdBsXMe6y0HQC1GuJXA9JFyiDRB00hFkaFYIRsrymxtjYiMHkneB5RWrI4WvP3WQx7eP5t2KteXF1xfX9D393nyzmN+8P33efnqHIB6PqNZLpBac3295ounL9hlW+iQt8i/T5WiIetsiFtUFiJGlEzC1kEEXLATFEuILPAdky2KkWpqRMUoaHtH3yafL5ezK4ChP+DsQGWrJDCj1GS5Jw4HyrKkKErsYBMKK47kFWjKkjYVJamqklmGdxlTEGKkcZ65dXCnXuusZeh7HAklURXFVOob+h7bt2hj8EKD8hMterFY8CB6zu6f4oPjo49+hu0cyybBDCuTts8hJiPDVTNDm1FEXHJ2vKKzBw77A4e+R5kRptXghogbIqaomI07PWDX7igHh9Ylu/2a7tASM7zNx0AMHms9SsYMe8vOEC4ZoQ7DkBwZtttJCN0og4sk2xrniTIm6BzgXKBtO3zoWS7mHK00/WCnY0dHJxR6BkFhjJl2Ys47bjbXtO0Ba3vK0nBymqjBu92O85f/jnkWSvqm8cYge37+CusGTGGmbaQgBZ9+6Gi7LteeRuzgrftB8kvSCDF2leMkHxDj19ivv3TkXfyvIWzwbeoNd/i88UuyBhRFkdwxgShTZ1mg6O2eKATHJydcX6etYde1rDc3RCHYDwM36+sJY3q0OqIQkmYfWcoCSsk+W2a0VeTkyYr11c9xH31EPd+yPM2iM99fsp4pnsdL1luP3MFR3ordc7CMgjmCIQjcIdLn5oASETMIll4wQ6KlmhTBegWdjASR68cxBVdI3O+q1Jwez3ny1j0enJ3w/HkK+Otzy/XFOS+fP+PevRP+5E/+mM8//xyA6/UGHx3LWcPp0VucHi+5uknB+dBbXr664upq86vevN/a6LLnVmE0YqxixIAgoSJE9BA9Mj+gkoCIPpVvsjpblxcR63zSvpC3lOtbY8qQBcBTYwgpseMxBPMA3gZuLi4RBEQOsoVRyGBzrdQzm89ZrRJ103pL2/X4EFHa4J1jn5uv7WHPbnNgCKBV0hgpRr0FHNEHvPB4EYlRTXjWvrWIaLh38ojT0yNcbwnR8ehRgidqrdjt9my2G5zznJyccf/+g3wte3btlt517Mo9Co3J2FwjS+zgafcDRldIbdjt0gJ02A0IUeFDx9HyDBniuNYzDHZC6HRdS/B+wrsKAVeXVxz2W+qmxjmLz9hxjUTEVP6SRIQCXabzr2pB8IHdtmO1XKGVYZMREm3b8e7b32O5uM/QJ9RJm+vR1g4459nvrnKdPjIMKblw1rE/tGw33Wvn2huD7M3NTQqKd7rP+8OB5y9e0XZd8rHSMnk6kYKnUikIGZNW0JGfn+ClAaKYFJB+9ZGj7DcADX5T0Nvk00Wi8MbkYDoa2AUREUqgpCYcBC56juZzTo5T8Xxzc82LV8/phh6hC+p6xtEsae0283kChxuN8pq9gEPGtPpGcnRScM93HK97Vp/0LI8ySmAXefXZnvjJntm1pe4Ex9kduImSJioQ6R8XLFf724e7ijATqT7XChiyvfUmWFqSp5IQGpBTcyB4j5SBxUxx78Rw/9jg9mmR+djuORwGLl684NnRkrfffZvZMj1MX3zxOZeXVwztjiJW1KWaGkoiBOqqnDKq34fRO0fwPmNOb7GZzlp6ETAyIEWYMMKCkAJu9ATvaQ/tnUwWtDYE7wjRY4ee/T4FPSNBy9G5NzVSB5tr3MBsJoghcNhtk/DI2BsImk4J+rZFiKR2dsgPfSBZdFufjCBjECDGDnpyPggu4JzISv+50SSTrGAcBlCGoCLneSfyxceveHm55dWzPSdnK/b7NaujOeJ+gpRVTUN1smI+O+b66prV4oT33/kQgMurS9SVQmlBV/UMrWUxS7oO908fUJYVn/ziU05P72OKil98/DFAggAqxXq7xiioj84QuUZ8cXmB9YFZWeKCx9l+Ik4oY6ibiq5vCb2gyE4W6VikLAoG5xN6QnhEDs6VLplXFaZc8fjh27g+sL7JRpK7lrN7Dzk5fkzXuURKyXNlt93gfUg26vs9MYTJpQE0TbWgKH9NgZgxI7XO0WXgcUq3Q+LzZ8WlEaU1SsVJKbNsBZP9Shpi0pr9pSN+6T+/9KV/3wB7txwhcjartWY+X04qYyGfVVEYiqrED5ZAZJl1RedVnY3hBlRRslwdI7IGpjIFh6FDFAs6FLs64OYpCll27Naf4q6/4IlVvDMsaD9NnPHzF+c011v+oFcUxYJoDxS5k/pQNSxEzdaAVj0v4pqLIT1QGliYkiJIgizYVxWHUbTb+wSqz2ftg5g4+qlBFTAmUhWRugCT2SxnyznPu2v2+z1ffP45x2cr3vkgCUIvVw2ff/oZP/nJz3n5Yk0QmvPz1KhwQXJ0dIzWzd/zLv3mRnLoTQaPPmePQ98x9D3LasZ8VmNkxdCkez9Yiw+pieHtQHfYTaaHhIhUMomAq5RBinw9o4/J943AQCQIOfahiELSdR29tZPW8si8g7zgCYlUgv1+z80m7wSkoKxqlC7w3qKEoR9uzRKllCiRGIrRefbZZtxpEuMsRoK0BGnZrnOQ2Xa4Hl48veLy/Ib5vOb85Q0vvhi1X48ojMZ6hxssn/3ikp//+Gn+mxZikmVs6ho/BPwmlS9MH3n44BF6sKwKhVIRl62s7OYc5z37zZroA4UpWJg0R2w5Z9e2IAUyCryME2616weGGJkvFxyfHBNiYFApI314esa7776LD4Hr6xtenb8iW4ry+PEjpIJ79++x3+wYBkslUwlG+D3RB7puh5Sa7XZ/u4iG0bVQMVhHWRT0OR5qk5xvHzx49Nq59sYg65yj7wf6tmO/G7dGWe5La5wPODtKFzLh90JwkLOCMcuVUk5asvFbZLHfzJ79HYCA0n4PKSWz2ZxHjx4zn+cbIQXWenRZMF8u2F3f0PUdJguhLFZLiIEoBIc+4Q5H2IkRieEjzIAQkTDccPX5CwA+/vwjPv3rn6I3exZ+QXFwyLz9ic5z0kneqxc0M8tF5zhWKXv8I3lGo2f8pHb8TFxw6Df4UTHMp2AqhcJLwaBua+QuCMTo0C0DUTkiI9A9+SrN5hXzxYzZcsnZaXpgtg87uj45r17frPns00958FbK1BGRV6/O+eLpC2KUPHn3XZ688x4AbR+4uNlxOLzebO53PYJIGaEQcqLHGm2IPkGJDvsBo0Hl/asUyWeLGPDOJsFtP2ayySFDiUhpDFVZUOcSk5aR6F1OOBLJYcRYxkiCfllLVTdoKRn6FCyElAipUg03BsqyROfpf+haBmsplUYqRaELDu12+sxkx556H0rpCR1iQ0iW2YTETitqZvM0d+8/Klidabo++dsJ1VNKj1RpRX/27AWLxYqu7Ti0PXYIEz12tZgRbEv0lrPjE4wyqJwH/l37t8zKivXNDT9qKparGYduPEcB3lIFi7WRw3aXyBqA8JEqKg5tj3eOAJOAeqMbmvmMxWrJ0fEx9+/fZ5mt1D947x3+6T/99yjrmo9/8Qv+5v/5W9Z5cXrnnSfEGNkf9nz43vf5/PMvuDr/cfrMoqZQkscPT/EBjBZJNxvY7Q6JoBQjIJkvlpO8gBAKrcwUI75pvDHIbrcHYggJliVHU7w0SZIja7IgGY9FEsRLTDXa22Aq8iod4VcsF8Rvl87+hsZodS0RNM2Mtx494ig3HKyPxDhQ4ZCFZFCBaHtk3gYLrYmjiaBvqXScePFGt8lHfrvh4uUFf/fJX/GTL/4KgC+un+G85K3ie6zVI8LKc+8PsxvmcaT92TNeXX/CkwIeNjVzlzHLsWXXRD4+9nwsDlzHwEB2EN06tjcWJzSFBoQg5tsthUIi0CTnsEGkAAAgAElEQVShbS/C7fc0kvm8YrVaMJ8vqao589Vow/GMwQa2hz0uOAbf8/jdBMepZzVPn71gu91T13NA8uGHyUzQlHP+zZ//BXZ48du8db/SGOefc5bDIT0wXdvQtQd6HXCdQ8bbhq/LTK16sMxCROkK22cAfHailUJQGk1TGmajFJ4GKUsC4CIIXSKzPq+Ngr53yJhqvtE7ZMhQScCGiCmrjJ/1E+dH6YLODkRpWcwqhJQcsjvsmMgkmHZMTbrcoJo3Bd53+CGpcBVlSVmlZ/f4tKYbBpQpca4kRMvx8YrLy1ROeKCXWJcgWtZKlDQsl6lGrDBsrgLCV6zmNd4GmjJlpPW9Y957+wl1VTIMHSE4fHY/UFqyP+zZHTpsLxCy4Co70v7ik085v9jSlDX3Tk65Wm8nCrD3YKJi2A/c+DWP7z3kP/iTfx+A733vfc7OTtHGUFcVp2enXGUcu/eB58+fUdcNj996i+1ug81U5R/84B/xn/+z/4zj41OsdXz22VPKzL4LUfD99/8RN+s1L1++5OLqYpJINKbg5OSYonx9KP0OwvXd+G58N74bv8XxS2uyMTJZJ0OCOsTo0ToipErMrhEaFCORpBoUAe3clDEIIQjEicXybceXbLy+3Tv4+jt+eSo8fs9RtxYRqUzB2eqYyey3OyB6z80X16zXN2w2a0JwzLIK13y+oK4rlJK0XUvbt+xyA+Ty6oLLi3Oef/aM8+cvOLRXxCKtonqpkfWcG7mlnnluzkpevZO2eIvvN9w0e3gK7zxreatvOc012S9mhvMjzY8fKV4uBHtnuL7KWzEXmFGx2UsqJDrqKUsSITXDlEi6mAEHjPYdirLQGKMIPtB17aT/6Tzs257zyxs2uw3rw4Y/PE/Z6h89+CEPH94jeEFRNDjn+fGPf5ouW+/5/PNnk0D078MQIsG0kGZqyAlE0lW1Eo9FYhG5jKJUshgJ3uGtQ+vbGSZiQgUoKagLk1SwctNPiUgMNnvfaYySk2mlF5rkaZH0Imzfko0YcH2HA4qyojAG5SzZihRTNai2o6wqTk5OkcDL81SK0UYjXWo2eutRSnN8koDzTSmwziBbiRMRLwLdsM0n0dHMDYPtOTqeUVUFzaxEjGaJWtJ1e7SZJeqsSDs9gNJURH+PUleoqMFDIbIYdpCI6Ni3LVpKtBZTKWEYOqTwnB7P0aZB6oL5KgsONYpueJcQBTebHW1/mLLFbkgkEZV95D76u4+4yRn30fEKqRTD0KGN4vTeGbPscfb555/z9NlTlFb86K/+LdvthouLxNx66/Qe/9v/8D9yujjClDXb/YFlJhwUVU1RNTy5d8bD5YL94TFP3n0/nZ82PH36lAeP7r92rr0xyGptGPqBfhgmdXznQpbCS+rvPt4G4BhjxtLFqTRwd4zQrZET/OuPHLh5nYg3jIF1wkWIO7+LWQphwoXdHiM3hGIMXJy/5M/+l/+ZF599CoCKkotXL/ns6WdcXF0QYmA5n3NynDBzTVOjtEJrxWa74ermijYXyLu+o+86ogUTktgEOjebosT2B7r+FV6/QA9LfO5exuFAu3SUD0peFY5P7YEPyJCyQnBxotj+4AjxoGB4+orDVZvPUWLKOeEQCc4kkZncgZZBoGXEy4BSFi97gsg8fFNkfKJju9vhOs/1ZXoQr2+2dJ2l6weu1lte3Vzyb3/0twC8/8ETPvzwfbpDSMLOZcOzpy8B+PjTZ9zsDmx3rxfR+F2PcfEOwdJlumrfl6n5VQpkHBBxmMRVtNYoXeC6DqkPSF1MXlUhsyALJajLgtIo1DifvCWGrO6kNFqC0aPTRkFvI4OPdC4J1RS5lBC9Q2pDVdd47/BBTIudjyHrQEiGwWK0uq1lKokpq2RQKAW6KCbW4UF5TCFQWrI6XjJEz0muq+ojQ9kYYtTM53PqpqYsDCfrdB6H/Q7nk+FmXTdoXSAz9q0fOvquxZjI0fyE1fwEk4OsbQMKRWUqokvY+vGJ887hgsPH5EQREcgqlRkWp2/hPJxf3tCGHfOV5pDZYLPjBdYFBhcwRuG85SrPUWtlxn972q7lk09fcJZVv5QSHPYDJ6dHCCE5P7/m/lkKjidVxUPbcby/Ie7XHCsD18lyy0WBi/DiF4LODrgIr/76L9OxAO1gebFa8q/+1X/7jXPtzZianNQRxR2bBo8xBWVZobROfk4j7TJ4iBHnbJYEvA2Bd4Vi3pRYxq/EX/Hlf6XA+hXkgbgLdP/qZ98xWPzmP5uPj5+Zra4FgvX2hr/4qz/n008/AqBQCj90xODROtW6+n7Ns+ep5hNioKoqjo5WdH3Hzfpq8mwSArSOydkyalSsEU3m9ldgB4tzO3abF9gvbuCzVMi/bgcOzlMOPedKcFUarMg6rcsZ4q0HFN//EN0IxGWBzM4IUVn6rQGvMKHC2wo3io46j1AOIx1aW6LsETLXu1yy9fY+0nWWIAWHbEGy3u7preX+vTMCgZ99/Av+j//rRwD84Afv8Z/8x/8pxU+f8tFHH6GKkssMj9ntdkih3mg297se3oFWCq0EJi/6SgmMUal5GULiaOQJ6QZHjJKiLtFaUZR6Ek2SUiGjQCpBUVZoUxGyUA8RtCkpyhJVlAhdYbLTBkpRVgXBRc6vr9ncXPPWw4Q9LZs5IgZ66ymLgkYVk7IX3lM3M4SUqU4pSOIuQBQiSU6GkBKgGO6IlzhsZ4kSZKFRteH+41RXvV9rdCWwtkdKKCtHUcDyzOTTOMLnRqpSBQKV4X/QtoK2U5SmZlbVVFoSsnvuEAa0aShKTfSCWiYKMaQGnZDQuy2d3dI0TSKuANYGnI88HO7z/v4d/s8//0vOLxMq4e13PsD5yNOnL9jvW2ToySAehDoQhaQqa3xUbLbthAGfzZYcHZ1y/94DPvroI2wf+IMf/jEAZ7OSpbBIZ5GRtG3LQ3qPybTmk0YjosBnGrMSiqJYYrvX79LeGGRldrXUd/CNIiQgU297hE8r9G0ATV1WKZIgspYKlbfhISZc5hi4vyov+6Uf7gbaOwH2W41vwNB+/Wdx5+c4nStk8HgMSNJ5dX3L9TpbcDQVjVEoHRHC5a2knARUCimpykhhHMRAaQI6a7im14gk5B0Tb95lzc3QWXCBUpbQb9l/fon8myy+cRTpK4O/kpjiiP3xnC9suh+nzUNOix8wnD+idR3mXDHzadWO4YBoOwqnKUSNDBKfHzZHC7QZThcQXiLzhVPSUBYNVTlDmxIpNCbreNazBlMYzu6d8cM//B7vvPeA//dnPwPgr//mp/zRH/0JP/jhD7i+2vHRp0+5yUF2GBwueqry9SIav+vhYsBIgdC3jrRRMEEPpUjNHTmyjIJPDWBE1u4QEzRIG4MNEJGocoZuloiQHjrvNUKCVwZEASh8DkBIi3cR7xxKJibV+GD0g4PgKZSkKCqEkgg1Ni4lRVEilWSwkSiYMKQJVhmxwSc4ohITpU0bTYgeFx3WDRTcli7UTBBEh+87tocdxZDtVszY8FaJcCU8gS7LRKbPlaVmUZfJYlx4XDwQ8zMhKxBFoBddgsAJO2k3RASIgFUtwjiYuSQ0RCIg6iiRg6A4mnH/nQVn7ySo5OnZA54+e8HSatQ2UBeOo0UupeiIkJqjVY0PDTfrwP17KTtWSvCWP6OpSy43HY+evMOT9xNTa9ZUBNfTx5Awxtbebm5jTIQO79J1tWFipiV6WU+xeL0ux5trsiKpDUmtbuEqkiyHFoEw0TPTlxG59ioIHpTWkz/WYO2XbMF/0+OXY2XfdPQWjkNmQQXClP+OuiZag1IeI5Oo71iznraeUXI4dHh/SO4QuEkwWclMYxVgg2ewbtKkBE+tNQtj8NZh2h7/dxlS1RiKuUbZGmFLbKXZmPxguEfEjx/RPV2wjzX6oKnXydQyrPcY56mCwghJFI4YU0aq2BFEgZADSnVIATrX3mbVipOjB5wcP2CxOMFbx+ByXflmzXq/p39m+ef//D/iX/7X/4K/+NH/DcCLly/Ybw8cLx/w5MkTdq3FxzFz3bI+tHS5G//7MOIYIqVIyk2krbopa3ShUdGi7jCwdPSEkFSv6hAzTjx9llSCotKUxlA0DdVsgckKVTEO+AxlDEIBCsYq0Shi7npWs4JZcWvQ1zmPVIaiqkCaZEmevcGEc7gY0FGkwCslmd+AR9A7S/CBuq6YzWbMl+m7KGHpB4+MEWUkRWkIYoShWawdGLzDWoeQBm0EakSr5IAaAyAkAjERACIOKXyS4Qx7opeImBcEDH3XJ6lIoTCiQObr7UXEuYEYDwhhafe7Sb0sRoFShhgVQShOHs0mqUxlHMdnBeX8lKq4z7x0LOcj8yWVJBaLRPvtbUXMaAbEgDYKa3f8F396D60LSpNKKXVxhEAjZJIMiHHqxCQYXAwMfYezOZvP12UYAkPn6O2v6Yww2ERti9zxix/35jFP1HgL2RqN6EJ2D0g4vUzpcz4pPv3K4yvBMX75SBx/94YYentYfPkXMSbM7h0SmRDT2aSmH56R66c0aBXRMqaAGcfzTV/KZyFook27AO+njN1HgSqSDmkInlIEdHakVUpTeJke6plgUS7Y7TPM5SaidUCJCuFKvJoRihxI7RPC1ROMXDCXkdDvkLuUdbtuh3EBEwAsLnYgclNMZNm90CEpqXSBlumYZI7vC/o9rG9aLs5f8JOf/hyAX3z6GS9eXvDk7UeJOz9f8qf/8r8B4ObmgmHbsV93iChZzBc8yNqoZTlDXt1weXXz+pv0Ox6d7ahNyi7H7aRUmqKoMIVGBAn+rnaBQhqB84nKqnWBy5FtGDqiLJO6FZ6In3ZGUuicSCYJ7ZBlCgGi1FhrqQpFVTcMvcXZNJfMbIZSJhk7xoTnLbI5ofcWqQXSSJQq8UEgsrRgU89puxu0lhwdLalnM8wkw6coJCgsQYxzOFvIhIEoPNpIyjqJVmujJ5sVYwpCCAy9I4RcsstU++ACPjiInhjAuzgeApLeAUIShUQZjS4yO0okbWYRHUYLhBSTxUzwkTgk+JRUhroRuAynK4zi7F5Dbw1GSqQbpnKm1hIpWoIHKxKmf/Apgei6A25vAU9dVzRzjeu3+e8pjKxQmfyRyowjk9XjvEXJAVFEjCkpsgX7XBYEryd45DeN358i2Xfju/Hd+G78/3C8MZO1g83UwzBtDaRMQriRFOzHOhYwqckTU1OhLEr6ImUCg7W39hFT+vmrjq+jCcTXfvqmV4ivk8VGZMFXMWKT7Xha6aUSk4CIHBV9YhJJ1kqCUhOrzYeQaq3WIr3MWfaYFycuuSJQC0mjBHaE64SIFpI2DMRjEOUS+UXOnveWom0oWFKzoi6PqHRiWc3kB5zoD6jMEZ2MXHHNZZeojq28IKoBKQMu9HixSzQngAAiqxpFBmJUxGwx024V5887PvnonBfPX/HJZ3/Hx599BsB2u2O7P7A77BFaYeoZRc6S7t+r2Kob1ldf0LY97aG/07UfkgLUWDf8PRhRRHz0uOAp8g2W2qCLElMaRFDgJWSdiNSxBt/1mCI1t/TYDFYKGwM+2GS1Hd2UWUoh8xRLc82HgJC5DyAjFo9zlv12yIJKuSbbtWhdJDcB75L2Qy4lKKWS8ImW6KLk0LnpWispkIS0Wyo0WinUqJalDHW9QhvJ/rCl89tpFxacAyIKiVElIgqiV9g+QzeHIbPJYqbSx1EwDIGBKFMWGpNJ5WiC4UMiWSidfMgcHWQki1QKiIQh0g8gkbc7ACXTs+MDEk+hIGSlMeFBCUkhHNEGlJSTgJXzaZtqrSO6gNJi8pYTIrlEdF0HUZE8B9K999bj/J4QfVLhk7dODJAy9Un0xwzEHNekLFLtXr0+lL4xyPZtl2qs3k/NrdGJNllEiXHXDUAUSbMAGamrmqPjkyl47bOw7reux36tgfVtmF+veUHMsKxvfH0KzJPGgrhtygkJSt8G2UAgiohEEF3ARp+bIOO2XxCkShNeZKewOD5QEhnT9ZLeoQnpISZdN11InAwMR6Duz5E2BS+9dchtgbYzVFyi4jFap46wLGYIXVDUFYVReNHTtVnMptAIowCJ7yMxGGKuIxGqpFAUFTForBPEzNm0UtHuDZcXA6095+effDY1/ry3KK3Yt3teXV6k0uJ4713EDp7DvuNmveHly3Ne5fLA7tBy6IcvuxX/A4/Hbz9kt7umHzpmVWL0KaWTktYoYi4MRt02jYSQBKnRWWpwLH4pY/A+Ju+0GNHGMMvSd0YLnB2mZEW7WxseHwVSglGKYRgojcLkrfR+t0cQaeqS/cEmfGned8YQiC4QpEDKiBQBO6RyTwhDogDjUhmi0hS5LOX8QNtZapEQEioKxlsSfaLySqEQUhOjQEaDy8LyzvnUsEYSokgBdoRixnRcIDN9nok6XBhBtH0yfdTg8YTcaPTeksTOJN7GDAHN8DadHJOVkCghCMFTjDmCHfA+oS6c8Bid2Kfp/B1SRqIIOG8RMbl5AInhFjVKJ00W53okIwrEptKniGlBiLn5RUrtBCKJKAlJHPzkBiNQJD+o1xcF3pzJ9kNScs8fl/6dBFRS7XLMHO/As8ZXidR1l2PX6Cup5Lem1n4Jz/qVh3Q053rTs5uz5njnHMYDXwUcfO1Pi1QnGq+fjwFiMoqMGboWPJPKD+QmYJQpEyCJfkDK7JVUED2ekOq8Gcoiokh1LRkYKk/xdoXqU7ZqLsAPEuENwdYEV4LNsJoIvvD4ekBqgbAtQiWBGNSBtKjrZBboPD4/UTIqRCiQMa/kQeFDmgpWQrcv6A+aXWtZbw7s29H62dGoEhccl1cXrC8vYJnqwyLAbrPn+nrNxcUVr84vuNrs8vsEWhn+v/bOrDeS7LjC391yqSou3ezuGVmGoV8g+P8/+8F/wAbGejAkwCPb0+yFZFVl3i38EDezipyesTRAS/NQB2CzWfuSGTduxIlz+rH7mS/qb4u+t+z3lXHbrxmZ74JqBjiHcwYrDtuyTtOkO0frGDYbUilr9mitp7OW4B19vyF0GxZVrFIqGB09dwawdRWIoVZC6NgMw6p0t5wT11fXdF1P8B3eL+6zerdpquRScMZSc8ZSWFhhiDZbu7FjGFSQZRj0eDlOM58+feDhsdJ1DtvXUy5TDCVrc6+0ZMiIIy060k1LFmmJkjEsmkI5Z2KMasLpPIiso7ydD1ivmqzUxqpZaI22OUGIuhs7F2glWbVrL4ngreo/yLS+R4ujFoOzhcqMcadYkpu2itrVH+m6QWusqMusMcJm2+nwR0rUhQUiAJW+8/SjftZxzutjlqLJozVNg6WxToLvAXVZ+Cn8PLugisrBWbsGC1qzR1WDmgH2IqItpyA7zxMfPnzgcGyOlqAqQ8stznUN+DGNS86ue/7Y57eTs9sJz0i268s9yTSe0i5eBNUXwXcRFm8/pwJCK4WLwWBBdIZt6RK3EIaIUrXUR2pJP1R9SQQygrWCW8Z7xCPFQi2UMiPXleE3SlfxfxqZD1qGqKJGy7E2RbT8mU9JKUi33RWbrWF80ud7PEwc570yTKwlmYi01V53QQ6qcv6MeKQF2UPZc//+wM3NgHiHNWF9D8YYUtYS0jQd+Xh/T5r0QBy7DTGqULIxhq4L9L2eaClXStNn/bXg+rpnv7fUFHncNzUta7DB4Vrm1/VhHRzIKTLNsXmpVUIIbJsoyG53IGZd84d+SymGWhtNSdDF1agItWbL+nRBBMhMxwkpGuAWpo6Igab65FzAucByhDnXUSVqVpkrJeWVKmmkanbcOfohsNkOjJul0RQpZYuxbZH3CdfI//ieImoDvj/sSSUjEk8C41bIbbE2Vgn/S7aqQVfjQik6hbVwc0vV40FEmUhSoOYTL1lF+fQxnXdrJmuWLN1mrM/0TnWPAbwxlAjWVMadEPNHXNsdjKPaw5QMcXSMG7sOPx3myDTP1Cr4boNzgeO+MW6cw3mP9Vra894ztuZWSjqwYkpVjnQX1se0oINF9RfyZJ21zTq5YpdlpJ4FIau/l0RZ2kosAillcjnoC+B5sFzVuL7gcKB/y9n/2z+yUADM8+tWPC8HnNugr6/3Rer67KJnxF3lHi502jVPN1BFO56mbZ2ssWdUFn1ca+3KwljWhtSCj7FCdUa3euvCZXFZoBbMYaLzkevbNtV1dcPTpnDMidhqfrEFqzlVzAR+UkESjzAsxHoKuRyYakJsR6GuWypdtGtTjzJAj3Vt1LMKnx4O/NefP3J1W3B2pO/aiWhnhEwqmR/ev+c4Hbh7/U37yCwpFrz3vH37Coywvdcyw//e33OMkb7/JeySr4N/+sdvub0d+e7fvmO80vf36vUtu+sd220PkkASvrHcfa/lF2cDNjhSUWcF0G249QO77YbdzXU7spoJn3cE56g1k8lg7brLxlpqnQidEvPjPDNs9LXEeUaMoes6nbAMHesRZh0h92Cg6wL14YGu0fr6flAaYS4M3cBuu1153LVW+rFXe3IKqR4wnb6HfuMJvUom3n+852H/SC55HXLAKFd4blt1UPEZ0GwVVBsW0aC5ZHbGyKnEaN1K6QQQ0azDWoeI0Z3hIhFpKs4L42gRCt0AriVRpmY67wnBEkbh4fEBuwh6ixCc4DrVtHaeNbnoO4HbLZ8fDlhXibOslDkphS44NpsOrJxJf9IWFNWR3my3hHCitOZctcT4S2uywTlyq8cuW2JjzCpyLFW3LQu3rbaCeKmq6VRa1guLrsEJX8xMv4S/4Ga6+ptnj/mjuz17viW8mpNI9/k9l2C+bIuWTNa07L4K1tDk6Oz6bCICVs3WlP519v6rYFB7E2vVgmThpOdU8LGJmU+RIBO7sfFk+4DpHXUQcpyp9ahSkoCkiM+vqHvD07zH5D3zY7NwTgVTVGeiyEJDWrIdQVptrGJIhZX3h9swxZn/eb/naS5U21Ob5qa1jlL3PO6P/Pt3f+DN2zeU1r3zZsOHHz7y+LTHOGG7C2wnPbx2MfBm3PLu7d3//2X+jVDKzN2rK/7h27fYogHq7bs3jNsR3+v2XGpaywXWWFzn2YxbnAkcDtMaEKwTpI2sDoPHBUi5Nf2mjHdmVdKSs0TBh4ALjs1mw/39PVOaeb3Vz2h3vWOOkZrVf7gfe/zCkzXqAr3fP2G9oxrL0KhWMSVev76jSuXq+gaMXcn/vgvkOXGcjxpEfMWtYu1aMqiF9qPb+qX2WCRromWFlBPeOUzbiVXUFdcY1Xx14tdzqkpBlsZ5s99ZaJ3Gaq3VOi1F5Dkxp8XyZWoKYQ4jkaF3uOVzM55+GDC2tjJOr41KwIrFGc92syEEwzQ/nVxuJSNFrdy7PlCrEGzrYWDauQmYSkzTydKnFFIs2Db9GHxYa+dDPxKcp+aLkeIFF1xwwd8FPy8Q09L8pc4CNF1YnZAqpZByXjPIxXywFVp0O7xYeyy3WR/9tFk3ZxfJygT4UpPrxUXtH2tsqyicb+7PigEvSwVrpnr+d4OcXdey3KUDW0VrstKGGIxtup11ub5qd9nZRl2pp/do2+eDwYslFJjaFE0WJWpbU6lzJu0fkKAk6dELkxUmJ0w2UZmorSZbMpQYmWQmy4TkR6ZZm01zitroEsHYgjen8oRFmlBPkzGxlmzW6hvGXnOc98z1iPUdeR1tSlRRCk4u38O//Ct//E8V0Xhz8y13r94SgvD54TMfPn5YlfxFCle7kbu7mx99h383lESJhbvX13z8QfsGj08P3LzaUsVRRLV1F2pQLDNiBd85jBhSnjlG/ayzHMnpwMPTkcfDNam8xjUKV66qnuUa86ZWWZ0YsJ1qWXSBYesR29Ft2ndkhLkmUp7p+4Hxql8ZC4ghxoTvPXGelGrU6mMxRYw17DZb7t7csdmOxEXXwBpcH5rmQmVOT2u93VlPSoXpOJFSxvtAGDpcK5dMacL3HpJhzjOuc/RnW20WsX5O9vIAMcZVg1p7FJzGu7NmwAFHjJlUCnNTaqs14pzl8WHCuUrwuzWTFyr76UBMR65lQy0DtoWylIVjjMzzgdDr99S1xh9iOexnSnGU7ChJqCy1c8N+H5nmhFY/ZJUvSKmSUiIEfR/VyumcL1Uz//wLJ75qFUqp60TMctlS4F7mvPumAh+6bpU5PM4zxrr1gDoejlrHWIPlyyB6+vVTFYIf3bMFS2PNlwgOvLjZGaQ9j3l+n+XWzR1hDbLLRFcLrtVIC1QWjJBlMSHMCEKplpgzKWvTUD8bj7U6iqg7NUPfxk6Ns9jOk62Q08z+w8TDKz3xh10ld5k+eEbXkWrh2ISGczVk9wEfLSKVlB6IWWlTuRwpVHVj0EHnU51aKrIKTy5YPFHAVIuYASOeGGcOcfFWqoR+qXV5pmni+/9WIe79Q6RmYXc18rg/ckzpmQPGfj9x/ysyUry+7sglcXM7MjZx5s/792wfPG+6V5iSyW3BBD2xS6087R/ZjFe8en3L73+v4iJ3P3zPw+EBKZWb1x3dWJHanESKLlTWB0SUv1pXDYnIFAtz/Yz1nu2tJdHUpKaZQqWYyJQnHidIoqWgOGXmmOlDj3NQzUwryeJCbcdoorpCIvLn980mhsLNzQ7xwjwdSTWyOFlN8UhKkeN8IMaZgjbpls68E0vOCWMq293YqFqtxl+KTnxhELE463Gt9np1tQMMOWWqsAZKvWNqjBtLmjU2tOoMpWRSKnRBGSDb7YahfU/T/sjD5wdi0jHhkoXg2xhsMaS50HfgfEFM4XaxPbJWzSdNIE6Qo135rSlF9vsZYyrjpk28La+1Rh0VDj21WOYC83Gpx+8x2HVR/RJ+nsLVDgYfTpYZ1hilj7Sua62qPAXaoUtZrTa6vqfvenJd/JNaAb2pw/y1ZopmiZQvarmacJqXNzy7Vk5J6xm54NkFL/lbLwL2koXXKkqJUw4boIRsWRsgmUJFMhxjJOWyrvYuONXXAFKFvFaYwMeJbArTRjDdwLT3HL7Vz3T/beD4pyO7+RrxlcGyhQUAAAHeSURBVCOfSG0uPIrhWCYCn8glEfOeVJrZXp21RsaysTjbHQiNiaGiNaqYpu8h+IDBtWDgqBIYgmag737zln7cM46J6yvH3esrxtBe5+fIf/zhO4zXsczb2yu+eacycnOcKaWsBoK/Bty93XA4PPH4+MT7zyrJuBl3vDMDtt+As8QSmfNiP2MYxgFjM+KPGDfw298pze6b391SSKSYsBiGILiWzd3e3uK9WrDnksk1EdNS4xfmqE4Bh3nGW4NZJlRqwXlPNsouyMaSm85AJDLXBNKz6Qbe/faa3at/BuBpv+f+XncR1R35/oc/8jTr4uaC5TEmZC6UnPAeUht9no+ZOU6knIhpIpZImSuuCcR0Q6DznjkJU8xQwTXhKG14Cd75lsWas2bbwojw+EaDW85h2ymboBZhs3FYa0ipDQeIBTuz3Tm22w7nV/FIYq4Y3xHMwByFOBX6RhmLU2KeEv0giMyEzkBTmAuhQ+rQ3IOhVrMaiE5TYTpqE867HkvQwA+t5zSSbU+1Wg+fmr9bnBP9MLDd/LRAjPmLG1AXXHDBBRf81bg0vi644IILviIuQfaCCy644CviEmQvuOCCC74iLkH2ggsuuOAr4hJkL7jgggu+Ii5B9oILLrjgK+L/AMtPNgxYD5QPAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["dls.show_batch(max_n=4)"]},{"cell_type":"markdown","metadata":{"id":"NH95k-e82Ook"},"source":["When we looked at MNIST we were dealing with 28×28-pixel images. For Imagenette we are going to be training with 128×128-pixel images. Later, we would like to be able to use larger images as well—at least as big as 224×224 pixels, the ImageNet standard. Do you recall how we managed to get a single vector of activations for each image out of the MNIST convolutional neural network?\n","\n","The approach we used was to ensure that there were enough stride-2 convolutions such that the final layer would have a grid size of 1. Then we just flattened out the unit axes that we ended up with, to get a vector for each image (so, a matrix of activations for a mini-batch). We could do the same thing for Imagenette, but that would cause two problems:\n","\n","- We'd need lots of stride-2 layers to make our grid 1×1 at the end—perhaps more than we would otherwise choose.\n","- The model would not work on images of any size other than the size we originally trained on.\n","\n","One approach to dealing with the first of these issues would be to flatten the final convolutional layer in a way that handles a grid size other than 1×1. That is, we could simply flatten a matrix into a vector as we have done before, by laying out each row after the previous row. In fact, this is the approach that convolutional neural networks up until 2013 nearly always took. The most famous example is the 2013 ImageNet winner VGG, still sometimes used today. But there was another problem with this architecture: not only did it not work with images other than those of the same size used in the training set, but it required a lot of memory, because flattening out the convolutional layer resulted in many activations being fed into the final layers. Therefore, the weight matrices of the final layers were enormous.\n","\n","This problem was solved through the creation of *fully convolutional networks*. The trick in fully convolutional networks is to take the average of activations across a convolutional grid. In other words, we can simply use this function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dw9ZrquY2Ool"},"outputs":[],"source":["def avg_pool(x): return x.mean((2,3))"]},{"cell_type":"markdown","metadata":{"id":"OE1AnbuD2Oom"},"source":["As you see, it is taking the mean over the x- and y-axes. This function will always convert a grid of activations into a single activation per image. PyTorch provides a slightly more versatile module called `nn.AdaptiveAvgPool2d`, which averages a grid of activations into whatever sized destination you require (although we nearly always use a size of 1).\n","\n","A fully convolutional network, therefore, has a number of convolutional layers, some of which will be stride 2, at the end of which is an adaptive average pooling layer, a flatten layer to remove the unit axes, and finally a linear layer. Here is our first fully convolutional network:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"o3bTGYg_2Oom"},"outputs":[],"source":["def block(ni, nf): return ConvLayer(ni, nf, stride=2)\n","def get_model():\n"," return nn.Sequential(\n"," block(3, 16),\n"," block(16, 32),\n"," block(32, 64),\n"," block(64, 128),\n"," block(128, 256),\n"," nn.AdaptiveAvgPool2d(1),\n"," Flatten(),\n"," nn.Linear(256, dls.c))"]},{"cell_type":"markdown","metadata":{"id":"4J2xU6qz2Oon"},"source":["We're going to be replacing the implementation of `block` in the network with other variants in a moment, which is why we're not calling it `conv` any more. We're also saving some time by taking advantage of fastai's `ConvLayer`, which that already provides the functionality of `conv` from the last chapter (plus a lot more!)."]},{"cell_type":"markdown","metadata":{"id":"S21fuib32Oon"},"source":["> stop: Consider this question: would this approach makes sense for an optical character recognition (OCR) problem such as MNIST? The vast majority of practitioners tackling OCR and similar problems tend to use fully convolutional networks, because that's what nearly everybody learns nowadays. But it really doesn't make any sense! You can't decide, for instance, whether a number is a 3 or an 8 by slicing it into small pieces, jumbling them up, and deciding whether on average each piece looks like a 3 or an 8. But that's what adaptive average pooling effectively does! Fully convolutional networks are only really a good choice for objects that don't have a single correct orientation or size (e.g., like most natural photos)."]},{"cell_type":"markdown","metadata":{"id":"gO4rOA8H2Ooo"},"source":["Once we are done with our convolutional layers, we will get activations of size `bs x ch x h x w` (batch size, a certain number of channels, height, and width). We want to convert this to a tensor of size `bs x ch`, so we take the average over the last two dimensions and flatten the trailing 1×1 dimension like we did in our previous model.\n","\n","This is different from regular pooling in the sense that those layers will generally take the average (for average pooling) or the maximum (for max pooling) of a window of a given size. For instance, max pooling layers of size 2, which were very popular in older CNNs, reduce the size of our image by half on each dimension by taking the maximum of each 2×2 window (with a stride of 2).\n","\n","As before, we can define a `Learner` with our custom model and then train it on the data we grabbed earlier:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aFW4wU6G2Ooo"},"outputs":[],"source":["def get_learner(m):\n"," return Learner(dls, m, loss_func=nn.CrossEntropyLoss(), metrics=accuracy\n"," ).to_fp16()\n","\n","learn = get_learner(get_model())"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TD9Ye1GF2Oop","outputId":"fad3578f-cec8-46ae-cd24-31f631f1ebed"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["(0.47863011360168456, 3.981071710586548)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYgAAAEKCAYAAAAIO8L1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXyU5bn/8c+VnSyEJUEwEMImiAgCEUXUYutWa4u22qrVaquH1rZWWtvT1p7TnqPn2Hq6t9YqVWtrtYt1+VnrRq07ggYEWaLIKmFNwpKErJNcvz9mgBiHACVP5pnk+3695pWZZ5tvhpAr930/z3ObuyMiItJRSqIDiIhIOKlAiIhIXCoQIiISlwqEiIjEpQIhIiJxqUCIiEhcaYkO0JUKCgq8pKQk0TFERJLGokWLqty9MN66HlUgSkpKKCsrS3QMEZGkYWYbDrROXUwiIhKXCoSIiMSlAiEiInGpQIiISFwqECIiEpcKhIiIxKUCISKSxJZv2s38NVUEMXWDCoSISBK7d/56vvLHNwI5tgqEiEgSW75pNxOK8jGzLj+2CoSISJJqaG7lne11TCzKD+T4KhAiIklq5ZYaWtucCSoQIiLS3vJNuwE4fmiSFQgzG2Zmz5lZuZmtMLPr42wz08x2m9mS2OO77datN7NlseW6A5+ISAfLNu2mIDeDwX2zAjl+kHdzjQA3uPtiM8sDFpnZPHdf2WG7l9z9/AMc4wx3rwowo4hI0lpWEdwANQTYgnD3Le6+OPa8FigHioJ6PxGR3iQ6QF0b2AA1dNMYhJmVAJOBhXFWTzezpWb2pJkd1265A8+Y2SIzm93JsWebWZmZlVVWVnZpbhGRsFq5pYY2J7ABauiGCYPMLBd4CJjj7jUdVi8Ghrt7nZmdBzwKjImtm+Hum81sEDDPzN5y9xc7Ht/d5wJzAUpLS7v+UkIRkRAKeoAaAm5BmFk60eJwv7s/3HG9u9e4e13s+RNAupkVxF5vjn3dDjwCTAsyq4hIMnmzItgBagj2LCYD7gbK3f0nB9hmcGw7zGxaLE+1meXEBrYxsxzgbGB5UFlFRJLN8k27OT7AAWoItotpBnAFsMzMlsSW3QgUA7j7HcBFwLVmFgEagEvc3c3sKOCR2DeeBjzg7k8FmFVEJGnsHaA+57ijAn2fwAqEu78MdFra3P024LY4y9cCkwKKJiKS1LpjgBp0JbWISNJZVrELCHaAGlQgRESSzrJNNYEPUIMKhIhI0lmycWfgA9SgAiEiklQ2VO9hTeUeThtTGPh7qUCIiCSRf5RvB+DMY4M9gwlUIEREksqz5dsYMyiX4oHZgb+XCoSISJKoaWzhtXU7+FA3tB5ABUJEJGm88HYlkTbnrPGDuuX9VCBERJLEP8q3MSAngxOG9e+W91OBEBFJApHWNp5/u5Izxg4iNSXY01v3UoEQEUkCZRt2sruhhTOP7Z7uJVCBEBFJCs+WbyMjNYXTjgn++oe9VCBERELO3flH+XZOHjWQ3MzA53nbRwVCRCTEGltamfPnJayr2sP5xw/p1vfuvlIkIiKHZXttI7N/v4glG3fxjXPGcnHp0G59fxUIEZEQqqxt4oLbXmFnfQt3XD6Fcyd0b+sBgp1ydJiZPWdm5Wa2wsyuj7PNTDPbbWZLYo/vtlt3rpm9bWarzexbQeUUEQmjRRt2sHl3I79OUHGAYFsQEeAGd18cm196kZnNc/eVHbZ7yd3Pb7/AzFKBXwFnARXA62b2WJx9RUR6pMaWNgCKBwR/z6UDCawF4e5b3H1x7HktUA4UHeLu04DV7r7W3ZuBPwGzgkkqIhI+TZFWADLTUxOWoVvOYjKzEmAysDDO6ulmttTMnjSz42LLioCN7bap4NCLi4hI0muKRFsQWWmJO9k08EFqM8sFHgLmuHtNh9WLgeHuXmdm5wGPAmOAeNeR+wGOPxuYDVBcXNxluUVEEqkp1sXUY1sQZpZOtDjc7+4Pd1zv7jXuXhd7/gSQbmYFRFsMw9ptOhTYHO893H2uu5e6e2lhYfddYSgiEqR9XUwJbEEEeRaTAXcD5e7+kwNsMzi2HWY2LZanGngdGGNmI8wsA7gEeCyorCIiYdMUaSPFIK2bbswXT5BdTDOAK4BlZrYktuxGoBjA3e8ALgKuNbMI0ABc4u4ORMzsy8DTQCpwj7uvCDCriEioNLa0kpmWSuxv6IQIrEC4+8vEH0tov81twG0HWPcE8EQA0UREQq8p0kZmemLvhqR7MYmIhFBTSxtZaYkboAYVCBGRUGqKtKoFISIi79cUaUvoGUygAiEiEkrRAqEuJhER6aAp0qoWhIiIvF9ji85iEhGROKItCHUxiYhIB00tbWSpBSEiIh1pkFpEROLSILWIiMSl6yBERCSuxpbWhM4FASoQIiKh4+5qQYiIyPu1tDrukKUWhIiItBeG2eRABUJEJHSaIrH5qHtqgTCzYWb2nJmVm9kKM7u+k21PNLNWM7uo3bJWM1sSe2i6URHpNfYXiMR2MQU55WgEuMHdF5tZHrDIzOa5+8r2G5lZKnAr0elF22tw9xMCzCciEkpNLbEupp56JbW7b3H3xbHntUA5UBRn0+uAh4DtQWUREUkmjS09vIupPTMrASYDCzssLwIuBO6Is1uWmZWZ2QIzuyDwkCIiIbF/kLrndjEBYGa5RFsIc9y9psPqnwHfdPdWM+u4a7G7bzazkcA/zWyZu6+Jc/zZwGyA4uLirv8GRES62b4xiJ7axQRgZulEi8P97v5wnE1KgT+Z2XrgIuD2va0Fd98c+7oWeJ5oC+R93H2uu5e6e2lhYWHXfxMiIt0sLIPUQZ7FZMDdQLm7/yTeNu4+wt1L3L0E+CvwRXd/1Mz6m1lm7DgFwAxgZbxjiIj0NPsGqRM8BhFkF9MM4ApgmZktiS27ESgGcPd44w57HQvcaWZtRIvYDzqe/SQi0lPtbUEkej6IwAqEu78MvG9goZPtr2r3fD5wfACxRERCr7ElHIPUupJaRCRkevyV1CIi8q/ZfxaTWhAiItKObtYnIiJxNfWmK6lFROTQNUXayEhLIc4FxN1KBUJEJGQaW1oT3noAFQgRkdCJTjea2AFqUIEQEQmdpkhrwi+SAxUIEZHQibYgEv/rOfEJRETkPZpa1MUkIiJxNEVaE36rb1CBEBEJHXUxiYhIXE0trepiEhGR91MLQkRE4mqKtJGV4Bv1gQqEiEjoNOlKahERiacp0tazz2Iys2Fm9pyZlZvZCjO7vpNtTzSzVjO7qN2yK83sndjjyqByioiETVhutRHknNQR4AZ3X2xmecAiM5vXcW5pM0sFbgWebrdsAPA9oBTw2L6PufvOAPOKiIRCj79Zn7tvcffFsee1QDlQFGfT64CHgO3tlp0DzHP3HbGiMA84N6isIiJhEWltI9LmoWhBdEuJMrMSYDKwsMPyIuBC4I4OuxQBG9u9riB+ccHMZptZmZmVVVZWdlVkEZGEaG6NThbUK27WZ2a5RFsIc9y9psPqnwHfdPfWjrvFOZTHO767z3X3UncvLSwsPPLAIiIJFJbZ5CDYMQjMLJ1ocbjf3R+Os0kp8KfYrEkFwHlmFiHaYpjZbruhwPNBZhURCYOmSKxAhOA6iMAKhEV/698NlLv7T+Jt4+4j2m1/L/C4uz8aG6S+xcz6x1afDXw7qKwiImHRFIl2qPT0FsQM4ApgmZktiS27ESgGcPeO4w77uPsOM7sZeD226CZ33xFgVhGRUGjc18XUg1sQ7v4y8ccSDrT9VR1e3wPc08WxRERCLUwtiMQnEBGRffaPQST+1/MhJTCzUWaWGXs+08y+Ymb9go0mItL77D2LKZlu1vcQ0Gpmo4kOPI8AHggslYhIL5WMXUxt7h4helHbz9z9q8CQ4GKJiPRO+7qYQjBIfagFosXMLgWuBB6PLUsPJpKISO+VjC2IzwLTgf9193VmNgL4Q3CxRER6p32nuYZgkPqQTnON3YH1KwCxi9fy3P0HQQYTEemNmlr2tiCSpIvJzJ43s76xK5yXAr81s7hXR4uIyL9u7xhEMt2sLz92o72PA79196nAmcHFEhHpnfYWiIzU5CkQaWY2BPgk+wepRUSkizVFWklLMdKSqEDcRHTGtzXu/rqZjQTeCS6WiEjv1NTSFoozmODQB6kfBB5s93ot8ImgQomI9FaNkdZQ3OobDn2QeqiZPWJm281sm5k9ZGZDgw4nItLbhKkFcagpfgs8BhxNdOrPv8WW9Sj1zRG+8eBSbnmiPNFRRKSXaoq0heI+THDoBaLQ3X/r7pHY416gR83vuWlXAxf9+lUeXFTBb19Zx6765kRHEpFeqCnSmnQtiCozu9zMUmOPy4HqIIN1p0UbdjLrtlfYuKOeb5wzlpZW5+kVWxMdS0R6oaZI8nUxfY7oKa5bgS3ARURvv3FAZjbMzJ4zs3IzW2Fm18fZZpaZvWlmS8yszMxObbeuNbZ8iZk9dujf0uHZVd/MZ+5eSG5mKo986RS+OHMUwwdm87elW4J6SxGRA4qOQYSji+lQz2J6F/hY+2VmNgf4WSe7RYAb3H2xmeUBi8xsXuy2HXs9Czzm7m5mE4G/AONi6xrc/YRD/Ub+Vf2yM/jlZZOZUtyfftkZAHx04tHc/vxqquqaKMjNDDqCiMg+jZFWcjODnA360B1JO+Zrna109y3uvjj2vBYoJzrA3X6bOnf32MscwEmAD447al9xADh/0hDaHJ5cplaEiHSvZDyLKZ5Dnm/azEqAycDCOOsuNLO3gL8T7craKyvW7bTAzC7o5NizY9uVVVZWHnL4zow9Ko8xg3Lf0820pynCHxZsYMceDV6LSHCig9Th6GI6kgJxSH/tm1ku0Rnp5sTu5/Teg7g/4u7jgAuAm9utKnb3UuAy4GdmNipuCPe57l7q7qWFhV1zYpWZ8dFJR/Pa+h1s2d3ArvpmPn3XQv7j0eWc9ZMX+NvSzexv+IiIdJ2mSFsobvUNBykQZlZrZjVxHrVEr4nolJmlEy0O97v7w51t6+4vAqPMrCD2enPs61rgeaItkG5z/sTohHn3zl/PJXMXsHJzDf/10fEM7d+H6/74BrPvW0TFzvrujCQivUD0LKYkaEG4e567943zyHP3TkdRzMyIzl9d7u5xbw1uZqNj22FmU4AMoNrM+ptZZmx5ATADWBnvGEEZWZjLcUf35c4X1vLujnp++9kTuWrGCB669hRuPG8cL66qZOYPn+frDy5lTWVdl753W5taJyK9VVNLeK6DCHKofAZwBbDMzJbElt0IFAO4+x1E7+f0GTNrARqAT8XOaDoWuNPM2ogWsR90OPupW3xm+nB+9Mwq7rh8KlOH9wcgLTWF2aeP4qOTjmbui2v542vv8tDiCqaPHMjk4n5MHtafqcP70z8n4yBH3++ldyr5/asb2LyrgU27GqhtjDCyIIfjju7LcUfnM3FoPhOK8snpcGaDu7NqWx0vvVNJxc4GLp1WzNjBeQd8n6dXbOWdbbVMGzGQE4b1IyMkP4Qisl+YupisJ/Wll5aWellZWZce092JNXLiqqpr4t5X1vP8qu2Ub6mltc3Jzkjlvz92HBdNHdrpvhAtDlffW8bA3AyOHdKXo/tlkZuZzurttazYXMOW3Y0ApBgcc1QeBbmZRNraaG1zNlTXs722CYD0VCPS5nzk+CHMOXMMowftLxS76pv5j0eX8/ib+wfd+6SncsKwfpQUZDO0fzZF/fowICeDftnp5PdJJzMtlRSLjsc0trRSvaeZnXuaaWhpJS8rjb5Z6eRkptEUaaWhuZXGljYK8zIpKcj+l5rHrW2+7/1Eeit3Z8S3n+ArHxrD1846plve08wWxcZ73yccJ9uG2MF+YRXkZvL1c8by9XPG0tDcyrJNu/nxM2/zjb++yUvvVPE/F06gb1Y67k5dU4TczLR9x3x9/Q7+7fdljCzM4c+zp5Ofnf6+41fXNbG0YhdLNu5m6cZd1Da2kJaaQnpqCiePHMipows4dUwB2Rmp/Oaltdz7ynoef3MLowpzmDS0H6MG5fL7V9dTXdfM188+hkunFVO2YSevrqnmjY27eGbFNqq78MysFINhA7Lpn51BpK2NSKuTm5nGSSMHcMqoAsYNzmNpxS5eWV3NwnXVVNY2UdsYob65leEDs7nkxGIumjqUwrzo9SfuTlOkLTT3xxcJ0t7JgsLSxaQWRABa25zbn1vNz559h/7Z0b/GK+uaaI60cVTfTE4ZVcCEonx+Nm8VhX0z+fPs6ft+IR6pHXua+fPrG1m0YSdvVuxie20TYwbl8tNPncCEovy4+9Q3R9i8q4Gd9S3srm9hV0MLLa1ttLnT5tEf1oE5GfTPySA7I5Xaxgg1DS3UNUXITEslOyOVzLQUttY0sqZyD2u211HbFCEtxUhNMarqmnizYjet7cZWMtJSKB3en6H9+5AXa40sXFvNwnU7SEsxxg3JY+eeFqrqmvb9p0mx6Dy9g/OzGNq/D0P79+GovlkU5GZGWy8DczjmqFy1QiRp7W5oYdJ/P8N/nj+eq08d0S3vqRZEN0tNMa770BimjxrIXS+tIzszlcK8TPL7pFO+pZaX3qnkkTc2MbR/H+6/5qQuKw4AA3IyuHbm/jOCq+qa6NcnvdO/vrMz0t7TJRWEuqYIr6/fwdtba5lYlM+U4f3j3rFy9fY6/vz6u7y1tZYxg/L2fW6tbU5zpI2Glla21jRSsbOBeSu3UVX33tbPoLxMThtTyPRRAykZmE1R/z4MyssiNUVFQ8KvKdIKhKcFoQIRoNKSAZSWDHjfcndnTeUeBudnBX5JfVhuFZKbmcYZYwdxxthBnW43elAu3/nI+EM+bktrG9V1zVTWNlG+pYYX36nk2be28dDiin3bZKSmcMKwfswYXcCpYwYybnDf9w34i4RBU0u4upj0vyQBzIzRg3ITHaNHSE9NYXB+FoPzszh+aD6fPHEYrW3Ouqo6Nu5sYNPOBjZU72HB2h387NlV/PQf0f3ystIY3DeLYwbncfb4ozhj3CD6Zr1/DEikO+0bgwjJfBAqENLjpKYYowflva/bbFd9MwvWVrO+up6tuxvZsruB19bt4O9vbiE91fjAMYV8/ZyxjBvcN0HJpbdrbFEXk0hC9MvO4NwJQ96zrK3NeWPjTp5esY2/lG3kvJ+/xOUnD+drZx3znhs4inSHsJ3FpAIhvVpKijF1+ACmDh/AF2eO4qfzVnHfgg08tnQz15w6giuml5DfR11P0j32D1KHo4spHGVKJAT6ZWfw37Mm8MT1pzF5WD9+9MwqZvzgn3z/iXK21zYmOp70AntbEFkhuZJaLQiRDsYN7stvPzuNlZtr+PULa6IXIM5fz6XTipl9+kiO7tcn0RGlh9p/FpNaECKhNv7ovvzy0sn884aZXHBCEX9YsIEP/PA5/uuxFdQ3RxIdT3qgfV1MIWlBhCOFSIiVFORw60UTef4bM7m4dBi/e3U95/38JRZt2JHoaNLDhO06iHCkEEkCQ/tnc8uFx/PANSfT0upcfMer3PrUW/v+6hM5UhqkFkly00cN5Kk5p3Hx1GH8+vk1zLrtFVZuft9kiSKHbf+FcuH41RyOFCJJJi8rnVsvmsjdV5ZSvaeZWb96mV8++w4NzWpNyL9u31lMakGIJL8PHXsUz8w5nbOPG8yP563ipFv+wU1/W9nlswxK79DU0opZdH6XMAisQJjZMDN7zszKzWyFmV0fZ5tZZvammS0xszIzO7XduivN7J3Y48qgcoocqf45Gfzqsin85fPT+cDYQdy3YD0f+vELfP6+MlZvr010PEkidU3R6UbDcsv6IK+DiAA3uPtiM8sDFpnZvA5Thz4LPBabZnQi8BdgnJkNAL4HlAIe2/cxd98ZYF6RIzJtxACmjRhAZe14/rBgA3e/vI55K1/koqlD+dpZYxmcn5XoiBJy89dUcfwB5m1JhMBaEO6+xd0Xx57XAuVAUYdt6nz/jEU5RIsBwDnAPHffESsK84Bzg8oq0pUK8zL56lnH8MI3ZnLVKSN49I3NfPjnLzJ/dVWio0mIrams462ttZx3/JCDb9xNumUMwsxKgMnAwjjrLjSzt4C/A5+LLS4CNrbbrIIOxaXd/rNj3VNllZWVXRlb5IgMzM3kux8dz1NzTqMgN5Mr7nmNe15eR0+axVG6zlPLtwJw7oTBCU6yX+AFwsxygYeAOe7+vnMB3f0Rdx8HXADcvHe3OIeK+7/K3ee6e6m7lxYWFnZVbJEuM7Iwl0e+NIMPjhvETY+v5N//+iYtrW2JjiUh88SyLUwp7seQ/PDcyiXQAmFm6USLw/3u/nBn27r7i8AoMysg2mIY1m71UGBzYEFFApabmcadl0/lKx8aw4OLKvjCfYv23ftfZEP1HlZsrglV9xIEexaTAXcD5e7+kwNsMzq2HWY2BcgAqoGngbPNrL+Z9QfOji0TSVopKcbXzjqG/7lgAv98eztX3vMatY0tiY4lIfBkCLuXINizmGYAVwDLzGxJbNmNQDGAu98BfAL4jJm1AA3Ap2KD1jvM7Gbg9dh+N7m7bnwjPcLlJw+nb590vvbnJVz6mwX87rPTGBiSucMlMZ5ctoVJQ/MZ2j870VHeI7AC4e4vE38sof02twK3HmDdPcA9AUQTSbiPTTqavMw0rr1/ERff+Sp/uPok3Ua8l6rYWc/Sit1868PjEh3lfXQltUiCnDFuEL//3ElU1jRx0a/ns1ZXX/dKe89eOm9CuMYfQAVCJKGmjRjAH2efTFOkjYvveFU3/euFnl6xleOO7kvxwHB1L4EKhEjCTSjK58EvTCcjLYUr7l7I6u1qSfQWDc2tvPHuLk4/Jpyn6KtAiITAyMJc7r/mJMyMy+9ayMYd9YmOJN1g8bs7ibQ500YMSHSUuFQgREJiZGEuf7hmGg0trVx21wK27m5MdCQJ2MK11aQYlA7vn+gocalAiITIuMF9+f3nprFzTwuz7yvTFdc93IJ1O5hQlE9eVnqio8SlAiESMpOG9eOHF03kzYrd3PbP1YmOIwFpbGllycZdnBTS7iVQgRAJpQ8fP4SPTy7itudWs3TjrkTHkQAs3biL5kgb00YMTHSUA1KBEAmp733sOAblZfLVvyzRVKY90MJ1OzCDaSVqQYjIYcrvk86PLp7E2so9/ODJ8kTHkS62cF014wb3JT87nOMPoAIhEmozRhdw9akj+N2rG3hsqW5o3FM0R9pYtGFnqMcfQAVCJPS+ee44ppUM4N//upQVm3cnOo50gWWbdtHY0sbJI1UgROQIZKSl8KtPT6F/dgazf7+IHXuaEx1JjtDCddGbU58Y4vEHUIEQSQqFeZnccflUKuua+NL9i6lriiQ6khyBhWt3MGZQbuhv864CIZIkJg3rx/cvPJ4F66o556cv8sIqzcGejFrbPDr+EPLuJVCBEEkqn5g6lAc/P52s9BSuvOc1bvjLUs1Kl2Q272qgrinChKPzEx3loIKccnSYmT1nZuVmtsLMro+zzafN7M3YY76ZTWq3br2ZLTOzJWZWFlROkWRTWjKAv3/lNL58xmgeXbKJ6/74Bq1tnuhYcojWVe0BYERBToKTHFyQLYgIcIO7HwucDHzJzMZ32GYd8AF3nwjcDMztsP4Mdz/B3UsDzCmSdLLSU/n6OWO5adZxPP92Jf/39FuJjiSHaF+BKAx/gQhyytEtwJbY81ozKweKgJXttpnfbpcFwNCg8oj0RJ8+aTgrN9dw5wtrGT+kL7NOKEp0JDmIdVV7yMlIpTDkA9TQTWMQZlYCTAYWdrLZ1cCT7V478IyZLTKz2Z0ce7aZlZlZWWWlBu2k9/neR4+LXSfxJssqdJ1E2K2r2sOIwhzMLNFRDirwAmFmucBDwBx3jzufopmdQbRAfLPd4hnuPgX4MNHuqdPj7evuc9291N1LCwvDOSuTSJAy0lK4/fIpFORmMvu+MrbXah6JMFtXtYcRBbmJjnFIAi0QZpZOtDjc7+4PH2CbicBdwCx3r9673N03x75uBx4BpgWZVSSZFeRmMvczU9lV38Ln71tEU0Q39wuj5kgbFTvrGRHC+afjCfIsJgPuBsrd/ScH2KYYeBi4wt1XtVueY2Z5e58DZwPLg8oq0hMcd3Q+P7p4Em+8u4vvPLIcd53ZFDbv7qinzZNjgBoCHKQGZgBXAMvMbEls2Y1AMYC73wF8FxgI3B7rj4vEzlg6CngktiwNeMDdnwowq0iP8JGJQ3h72xh+8ew7jCrM5dqZoxIdSdrZf4prcnQxBXkW08tAp6Mw7n4NcE2c5WuBSe/fQ0QOZs6HxrB6ey23PvUWq7bVcvMFE8jNDPJvQTlU66rqABgxMDlaELqSWqSHSUkxfnnpFL565jH8vyWb+MgvXuLNCs1KFwbrquoZkJMR6jkg2lOBEOmBUlOM688cw59mT6cl0sZFv36V12J3EJXEWVdVlxRXUO+lAiHSg00bMYDHv3IaQ/v34fP3lfFudX2iI/Vq66r2UJIk3UugAiHS4w3IyeDuq06kzeHq371OjW7ulxB7miJsq2liZJKcwQQqECK9woiCHH796Smsq9rDdQ+8QaS1LdGRep311clzk769VCBEeolTRhdw06wJvLCqkuv++AaNLbqYrjvtPcU1mbqYdO6bSC9y2UnF1DdH+J+/l7Oz/jXmfqaUvlnJcUZNsltXGSsQBclxFTWoBSHS61xz2kh+9qkTKFu/k0vuXKB7N3WTddV7GJKfRXZG8vxdrgIh0gtdMLmIu64sZV3VHq6653X2aI7rwEVv0pc83UugAiHSa80cO4jbL5/CW1tr+Oqfl9CmWekCta5qDyUqECKSLM4YO4j/+Mh4nlm5jR8983ai4/RYO/c0s6u+hZFJViCSpzNMRALx2RklvLO9jtufX8PoQbl8fIomduxKtY0t3P78aiC5zmACFQiRXs/MuGnWcayrquM/H13OqaMLGNQ3K9Gxklp9c4TNuxr5R/k27nhhDbvqWzjv+MGcdkxBoqMdFhUIESE9NYUffHwiZ//0RW596m1+/EndTLkjd2dd1R7mr6lm8YadVO9pZndDCzWNLURaHcdxh9rGCLsb9l+tPnNsITecNZbjh+YnMP2/RgVCRAAoKcjhc6eO4I4X1nD5ycVMLhoPmBMAAA1ySURBVO6f6EgJ9Wz5Nv5Rvp2de5rZUd/Mu9X1bK2JnhJcmJfJkPws8vukU9SvDxlp0eFcA3Iy0xjSL4uj8/twzFF5jD+6bwK/iyOjAiEi+3z5g6N5eHEF//XYCh754gxSUjqd0qVHirS28X9Pv83cF9fSLzudQXmZ9MvOYNqIAZw0cgCnjCqgZGA2sQnNerTACoSZDQN+DwwG2oC57v7zDtt8Gvhm7GUdcK27L42tOxf4OZAK3OXuPwgqq4hE5Wam8a0Pj+Nrf1nKQ4sruLh0WKIjdauquiaue+ANXl1bzRUnD+c/zx+/r3XQGwX5nUeAG9z9WOBk4EtmNr7DNuuAD7j7ROBmYC6AmaUCvwI+DIwHLo2zr4gE4IITiphc3I9bn3qb3fW9586vFTvrmXXbKyx+dyc/vngSN18woVcXBwiwQLj7FndfHHteC5QDRR22me/uO2MvFwB7z6+bBqx297Xu3gz8CZgVVFYR2S8lxbh51gR21jdz0+MrEx2nW2zZ3cClv1lAbWMLD35hOp+YqlN9oZsulDOzEmAysLCTza4Gnow9LwI2tltXQYfiIiLBmVCUzxdnjuKhxRX8861tiY4TqO01jVz2m4Xs2tPCfVefxMSh/RIdKTQCLxBmlgs8BMxx95oDbHMG0QKxdzwi3uhP3PsAmNlsMyszs7LKysquiCwiRAesxx6Vx7cfXvae0zZ7gvrmCK+uqeZXz63mk3e+yraaRu793IlMGqbi0F6gZzGZWTrR4nC/uz98gG0mAncBH3b36tjiCqD96NhQYHO8/d19LrGxi9LSUt1MRqSLZKal8sOLJ3Lh7fO5+fGV/Oji5Lw2oq3NWbmlhrL1O1i+uYblm3bzzvY6WmP3nhozKJffXnUiU4cPSHDS8AnyLCYD7gbK3f0nB9imGHgYuMLdV7Vb9TowxsxGAJuAS4DLgsoqIvFNHNqPL3xgJL96bg01DS18ZnoJM0YPDP0pnu7Os+XbeWL5Fl5cVUVVXRMABbkZTCjK58xjj2Lq8P5MLu5Hv+yMBKcNryBbEDOAK4BlZrYktuxGoBjA3e8AvgsMBG6P/cBF3L3U3SNm9mXgaaKnud7j7isCzCoiB3D9h44B4I+vbeSZldsYWZjDf35kPGeMG5TgZPG9/E4V//f0W7xZsZt+2emcPqaQDxxTyCmjBzK4b1boi1uYmHvP6ZUpLS31srKyRMcQ6ZEaW1p5cvkWfv38GlZvr+N/Ljiey04qTnSsfZZv2s0tT5Qzf001Rf36MOfMMVw4uYi01N59qurBmNkidy+Nt05XUovIIclKT+XCyUM5e/xgvvTAYm58ZBlbdzfw1bOOSehf5Zt3NfCjp9/m4Tc2MSAng+99dDyXnVRMZlpqwjL1FCoQInJYcjLT+M1nSvnOI8v4xT9XU7GzgVs+fjxZ6d3zC3n+6iqeWbmNip0NbN7VwOrKOgCunTmKa2eO0hzbXUgFQkQOW3pqCrd+YiJF/bL56T9WUb61ljsun8LwAOc7eGdbLbc8Uc5zb1eSk5HKsAHZFPXrwymjBnLVjBKG9s8O7L17K41BiMgR+edb2/jqn5fS5s6PL57E2ccN7pLjtrY5q7bVUrZhJwvWVvPU8q1kZ6Ry3QdHc+UpJepC6iKdjUGoQIjIEdu4o55r71/E8k01nH5MId88dyzHHZ1PS2sbr6yuYt7KbQzMyeDEEQOYUtyfnMz3d16s2lbLj55+m601jVTXNVNV10RTpA2I3l77/IlDuO6DYxiQo9NSu5IKhIgErinSyn2vbuC251azq76F08YUsGJzDTv2NJOdkUpjSyttDqkpxjnHHcVNsyZQkJsJwJsVu/jMPa9hRK+9GJiTwcDcDI4d0pfS4QMYNqCPTk8NiAqEiHSb3Q0t3PnCGh59YxNThvfnY5OO5gNjC2mOtLH43V28srqKe+evp29WGrd+YiJ5Wel87t7X6Zedzv3XnBToOIa8nwqEiITK21trmfPnJZRvqSE91SgekM0frjmJIfl9Eh2t19F1ECISKmMH5/Hol07h5/94hxWba/jxJyft626S8FCBEJGEyExL5d/PHZfoGNIJXYMuIiJxqUCIiEhcKhAiIhKXCoSIiMSlAiEiInGpQIiISFwqECIiEpcKhIiIxNWjbrVhZpXAhtjLfGB3J887fi0Aqg7j7dof81DWdVyWyHxHkrGzZfoM9Rkeab7OMsXLFW9Zb/8MO8sXL9dwdy+Me3R375EPYG5nz+N8LftXj38o6zouS2S+I8l4kKz6DPUZHlG+zjLpMzzyfAf6DA/06MldTH87yPOOX4/k+IeyruOyROY70PpDyXiwZYdDn2Hv/gwPtO5AmQ6UR59h58sO5TOMq0d1MR0JMyvzA9zRMAzCng/CnzHs+SD8GcOeD8KfMez52uvJLYjDNTfRAQ4i7Pkg/BnDng/CnzHs+SD8GcOebx+1IEREJC61IEREJC4VCBERiUsFQkRE4lKBOARmdpqZ3WFmd5nZ/ETn6cjMUszsf83sl2Z2ZaLzdGRmM83spdhnODPReQ7EzHLMbJGZnZ/oLB2Z2bGxz++vZnZtovPEY2YXmNlvzOz/mdnZic7TkZmNNLO7zeyvic7SXuzn7nexz+7Tic7TXo8vEGZ2j5ltN7PlHZafa2Zvm9lqM/tWZ8dw95fc/QvA48DvwpYPmAUUAS1ARQjzOVAHZHV1vi7MCPBN4C9hzOfu5bGfwU8CXX6KZBdlfNTd/w24CvhUCPOtdferuzLXgRxm3o8Df419dh/rjnyH7HCu6EvGB3A6MAVY3m5ZKrAGGAlkAEuB8cDxRItA+8egdvv9BegbtnzAt4DPx/b9awjzpcT2Owq4P4z/xsCZwCVEf7mdH7Z8sX0+BswHLgvjZ9huvx8DU0Kcr0v/j3RB3m8DJ8S2eSDobIfzSKOHc/cXzaykw+JpwGp3XwtgZn8CZrn794G43QtmVgzsdveasOUzswqgOfayNWz52tkJZHZlvq7KaGZnADlE/8M2mNkT7t4Wlnyx4zwGPGZmfwce6IpsXZnRzAz4AfCkuy8OW77udDh5ibaqhwJLCFmvTo8vEAdQBGxs97oCOOkg+1wN/DawRO91uPkeBn5pZqcBLwYZLOaw8pnZx4FzgH7AbcFG2+ewMrr7dwDM7CqgqquKQycO9zOcSbQrIhN4ItBk+x3uz+F1RFti+WY22t3vCDIch/8ZDgT+F5hsZt+OFZLudKC8vwBuM7OP8K/fjiMQvbVAWJxlnV4x6O7fCyhLPIeVz93riRaw7nK4+R4mWsS602H/GwO4+71dHyWuw/0MnweeDyrMARxuxl8Q/WXXXQ43XzXwheDiHFTcvO6+B/hsd4c5FKFqznSjCmBYu9dDgc0JyhKP8h25sGcMez4If8aw5+so2fL22gLxOjDGzEaYWQbRwcnHEpypPeU7cmHPGPZ8EP6MYc/XUbLl7RVnMf0R2ML+U0Cvji0/D1hF9KyC7yhfcuZLhoxhz5cMGcOeL9nzHuihm/WJiEhcvbWLSUREDkIFQkRE4lKBEBGRuFQgREQkLhUIERGJSwVCRETiUoGQHs3M6rr5/e4ys/FddKxWM1tiZsvN7G9m1u8g2/czsy92xXuLALoOQno2M6tz99wuPF6au0e66ngHea992c3sd8Aqd//fTrYvAR539wndkU96PrUgpNcxs0Ize8jMXo89ZsSWTzOz+Wb2Ruzr2Njyq8zsQTP7G/CMRWfIe96is7u9ZWb3x251TWx5aex5nUVn+ltqZgvM7KjY8lGx16+b2U2H2Mp5lejdQDGzXDN71swWm9kyM5sV2+YHwKhYq+OHsW2/EXufN83sv7vwY5ReQAVCeqOfAz919xOBTwB3xZa/BZzu7pOB7wK3tNtnOnClu38w9noyMIfo/BEjgRlx3icHWODuk4jehv3f2r3/z2Pvf9CbtZlZKvAh9t+3pxG40N2nAGcAP44VqG8Ba9z9BHf/hkWn/RxDdB6CE4CpZnb6wd5PZK/eertv6d3OBMbH/ugH6GtmeUA+8DszG0P0ttHp7faZ5+472r1+zd0rAMxsCVACvNzhfZqJzmYGsAg4K/Z8OnBB7PkDwI8OkLNPu2MvAubFlhtwS+yXfRvRlsVRcfY/O/Z4I/Y6l2jB6I45Q6QHUIGQ3igFmO7uDe0Xmtkvgefc/cJYf/7z7Vbv6XCMpnbPW4n/f6nF9w/yHWibzjS4+wlmlk+00HyJ6HwLnwYKganu3mJm64nO992RAd939zsP831FAHUxSe/0DPDlvS/M7ITY03xgU+z5VQG+/wKiXVsQveVzp9x9N/AV4Otmlk405/ZYcTgDGB7btBbIa7fr08DnzGzvQHeRmQ3qou9BegEVCOnpss2sot3ja0R/2ZbGBm5Xsn+Wsf8Dvm9mrxCdYD4oc4CvmdlrwBBg98F2cPc3iE5yfwlwP9H8ZURbE2/FtqkGXomdFvtDd3+GaBfWq2a2DPgr7y0gIp3Saa4i3czMsol2H7mZXQJc6u6zDrafSHfTGIRI95tKdJJ6A3YBn0twHpG41IIQEZG4NAYhIiJxqUCIiEhcKhAiIhKXCoSIiMSlAiEiInGpQIiISFz/H4FwmdEFnnoaAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.lr_find()"]},{"cell_type":"markdown","metadata":{"id":"lVqhsDV12Ooq"},"source":["3e-3 is often a good learning rate for CNNs, and that appears to be the case here too, so let's try that:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zIDex4d_2Ooq","outputId":"97de70ef-7b74-436e-dbfd-57472af21cd7"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.9015822.1550900.32535000:07
11.5598551.5867950.50777100:07
21.2963501.2954990.57172000:07
31.1441391.1392570.63923600:07
41.0497701.0926190.65910800:07
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(5, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"11WFpoel2Oor"},"source":["That's a pretty good start, considering we have to pick the correct one of 10 categories, and we're training from scratch for just 5 epochs! We can do way better than this using a deeper mode, but just stacking new layers won't really improve our results (you can try and see for yourself!). To work around this problem, ResNets introduce the idea of *skip connections*. We'll explore those and other aspects of ResNets in the next section."]},{"cell_type":"markdown","metadata":{"id":"mNXrVcSV2Oos"},"source":["## Building a Modern CNN: ResNet"]},{"cell_type":"markdown","metadata":{"id":"Zg6pMWbb2Oos"},"source":["We now have all the pieces we need to build the models we have been using in our computer vision tasks since the beginning of this book: ResNets. We'll introduce the main idea behind them and show how it improves accuracy on Imagenette compared to our previous model, before building a version with all the recent tweaks."]},{"cell_type":"markdown","metadata":{"id":"Mn6DIEOK2Oot"},"source":["### Skip Connections"]},{"cell_type":"markdown","metadata":{"id":"tqOLf-y22Oot"},"source":["In 2015, the authors of the ResNet paper noticed something that they found curious. Even after using batchnorm, they saw that a network using more layers was doing less well than a network using fewer layers—and there were no other differences between the models. Most interestingly, the difference was observed not only in the validation set, but also in the training set; so, it wasn't just a generalization issue, but a training issue. As the paper explains:\n","\n","> : Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher training error, as [previously reported] and thoroughly verified by our experiments.\n","\n","This phenomenon was illustrated by the graph in <>, with training error on the left and test error on the right."]},{"cell_type":"markdown","metadata":{"id":"txMYNoj42Oou"},"source":["\"Training"]},{"cell_type":"markdown","metadata":{"id":"f4KuBrGk2Oou"},"source":["As the authors mention here, they are not the first people to have noticed this curious fact. But they were the first to make a very important leap:\n","\n","> : Let us consider a shallower architecture and its deeper counterpart that adds more layers onto it. There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model.\n","\n","As this is an academic paper this process is described in a rather inaccessible way, but the concept is actually very simple: start with a 20-layer neural network that is trained well, and add another 36 layers that do nothing at all (for instance, they could be linear layers with a single weight equal to 1, and bias equal to 0). The result will be a 56-layer network that does exactly the same thing as the 20-layer network, proving that there are always deep networks that should be *at least as good* as any shallow network. But for some reason, SGD does not seem able to find them.\n","\n","> jargon: Identity mapping: Returning the input without changing it at all. This process is performed by an _identity function_.\n","\n","Actually, there is another way to create those extra 36 layers, which is much more interesting. What if we replaced every occurrence of `conv(x)` with `x + conv(x)`, where `conv` is the function from the previous chapter that adds a second convolution, then a batchnorm layer, then a ReLU. Furthermore, recall that batchnorm does `gamma*y + beta`. What if we initialized `gamma` to zero for every one of those final batchnorm layers? Then our `conv(x)` for those extra 36 layers will always be equal to zero, which means `x+conv(x)` will always be equal to `x`.\n","\n","What has that gained us? The key thing is that those 36 extra layers, as they stand, are an *identity mapping*, but they have *parameters*, which means they are *trainable*. So, we can start with our best 20-layer model, add these 36 extra layers which initially do nothing at all, and then *fine-tune the whole 56-layer model*. Those extra 36 layers can then learn the parameters that make them most useful.\n","\n","The ResNet paper actually proposed a variant of this, which is to instead \"skip over\" every second convolution, so effectively we get `x+conv2(conv1(x))`. This is shown by the diagram in <> (from the paper)."]},{"cell_type":"markdown","metadata":{"id":"REh2PBw72Oou"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"NXM0KFJ32Oov"},"source":["That arrow on the right is just the `x` part of `x+conv2(conv1(x))`, and is known as the *identity branch* or *skip connection*. The path on the left is the `conv2(conv1(x))` part. You can think of the identity path as providing a direct route from the input to the output.\n","\n","In a ResNet, we don't actually proceed by first training a smaller number of layers, and then adding new layers on the end and fine-tuning. Instead, we use ResNet blocks like the one in <> throughout the CNN, initialized from scratch in the usual way, and trained with SGD in the usual way. We rely on the skip connections to make the network easier to train with SGD."]},{"cell_type":"markdown","metadata":{"id":"YyVzBEwF2Oov"},"source":["There's another (largely equivalent) way to think of these ResNet blocks. This is how the paper describes it:\n","\n","> : Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these layers fit a residual mapping. Formally, denoting the desired underlying mapping as H(x), we let the stacked nonlinear layers fit another mapping of F(x) := H(x)−x. The original mapping is recast into F(x)+x. We hypothesize that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.\n","\n","Again, this is rather inaccessible prose—so let's try to restate it in plain English! If the outcome of a given layer is `x`, when using a ResNet block that returns `y = x+block(x)` we're not asking the block to predict `y`, we are asking it to predict the difference between `y` and `x`. So the job of those blocks isn't to predict certain features, but to minimize the error between `x` and the desired `y`. A ResNet is, therefore, good at learning about slight differences between doing nothing and passing though a block of two convolutional layers (with trainable weights). This is how these models got their name: they're predicting residuals (reminder: \"residual\" is prediction minus target).\n","\n","One key concept that both of these two ways of thinking about ResNets share is the idea of ease of learning. This is an important theme. Recall the universal approximation theorem, which states that a sufficiently large network can learn anything. This is still true, but there turns out to be a very important difference between what a network *can learn* in principle, and what it is *easy for it to learn* with realistic data and training regimes. Many of the advances in neural networks over the last decade have been like the ResNet block: the result of realizing how to make something that was always possible actually feasible.\n","\n","> note: True Identity Path: The original paper didn't actually do the trick of using zero for the initial value of `gamma` in the last batchnorm layer of each block; that came a couple of years later. So, the original version of ResNet didn't quite begin training with a truly identity path through the ResNet blocks, but nonetheless having the ability to \"navigate through\" the skip connections did indeed make it train better. Adding the batchnorm `gamma` init trick made the models train at even higher learning rates.\n","\n","Here's the definition of a simple ResNet block (where `norm_type=NormType.BatchZero` causes fastai to init the `gamma` weights of the last batchnorm layer to zero):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7IZdLJne2Oow"},"outputs":[],"source":["class ResBlock(Module):\n"," def __init__(self, ni, nf):\n"," self.convs = nn.Sequential(\n"," ConvLayer(ni,nf),\n"," ConvLayer(nf,nf, norm_type=NormType.BatchZero))\n","\n"," def forward(self, x): return x + self.convs(x)"]},{"cell_type":"markdown","metadata":{"id":"D4qyrxRR2Oox"},"source":["There are two problems with this, however: it can't handle a stride other than 1, and it requires that `ni==nf`. Stop for a moment to think carefully about why this is.\n","\n","The issue is that with a stride of, say, 2 on one of the convolutions, the grid size of the output activations will be half the size on each axis of the input. So then we can't add that back to `x` in `forward` because `x` and the output activations have different dimensions. The same basic issue occurs if `ni!=nf`: the shapes of the input and output connections won't allow us to add them together.\n","\n","To fix this, we need a way to change the shape of `x` to match the result of `self.convs`. Halving the grid size can be done using an average pooling layer with a stride of 2: that is, a layer that takes 2×2 patches from the input and replaces them with their average.\n","\n","Changing the number of channels can be done by using a convolution. We want this skip connection to be as close to an identity map as possible, however, which means making this convolution as simple as possible. The simplest possible convolution is one where the kernel size is 1. That means that the kernel is size `ni*nf*1*1`, so it's only doing a dot product over the channels of each input pixel—it's not combining across pixels at all. This kind of *1x1 convolution* is very widely used in modern CNNs, so take a moment to think about how it works."]},{"cell_type":"markdown","metadata":{"id":"XDtxJaiH2Oox"},"source":["> jargon: 1x1 convolution: A convolution with a kernel size of 1."]},{"cell_type":"markdown","metadata":{"id":"di52Z2gD2Ooy"},"source":["Here's a ResBlock using these tricks to handle changing shape in the skip connection:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0lrJ8j8t2Ooy"},"outputs":[],"source":["def _conv_block(ni,nf,stride):\n"," return nn.Sequential(\n"," ConvLayer(ni, nf, stride=stride),\n"," ConvLayer(nf, nf, act_cls=None, norm_type=NormType.BatchZero))"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qQcP7ojs2Ooy"},"outputs":[],"source":["class ResBlock(Module):\n"," def __init__(self, ni, nf, stride=1):\n"," self.convs = _conv_block(ni,nf,stride)\n"," self.idconv = noop if ni==nf else ConvLayer(ni, nf, 1, act_cls=None)\n"," self.pool = noop if stride==1 else nn.AvgPool2d(2, ceil_mode=True)\n","\n"," def forward(self, x):\n"," return F.relu(self.convs(x) + self.idconv(self.pool(x)))"]},{"cell_type":"markdown","metadata":{"id":"1NxrW3Ym2Ooz"},"source":["Note that we're using the `noop` function here, which simply returns its input unchanged (*noop* is a computer science term that stands for \"no operation\"). In this case, `idconv` does nothing at all if `ni==nf`, and `pool` does nothing if `stride==1`, which is what we wanted in our skip connection.\n","\n","Also, you'll see that we've removed the ReLU (`act_cls=None`) from the final convolution in `convs` and from `idconv`, and moved it to *after* we add the skip connection. The thinking behind this is that the whole ResNet block is like a layer, and you want your activation to be after your layer.\n","\n","Let's replace our `block` with `ResBlock`, and try it out:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"c56aGbR02Ooz"},"outputs":[],"source":["def block(ni,nf): return ResBlock(ni, nf, stride=2)\n","learn = get_learner(get_model())"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XwbiafF72Oo5","outputId":"53e3e8c3-c6d1-4681-8821-7e22db57309b"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.9731741.8454910.37324800:08
11.6786271.7787130.43923600:08
21.3861631.5965030.50726100:08
31.1778391.1029930.64484100:09
41.0524351.0380130.66777100:09
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(5, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"VxG3gvwT2Oo6"},"source":["It's not much better. But the whole point of this was to allow us to train *deeper* models, and we're not really taking advantage of that yet. To create a model that's, say, twice as deep, all we need to do is replace our `block` with two `ResBlock`s in a row:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Otd_kxqu2Oo6"},"outputs":[],"source":["def block(ni, nf):\n"," return nn.Sequential(ResBlock(ni, nf, stride=2), ResBlock(nf, nf))"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"q0iJUgBb2Oo6","outputId":"926f2bd9-b696-4962-d4ec-8f8f2a84b5c1"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.9640761.8645780.35515900:12
11.6368801.5967890.50267500:12
21.3353781.3044720.58853500:12
31.0891601.0650630.66318500:12
40.9429040.9635890.69273900:12
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner(get_model())\n","learn.fit_one_cycle(5, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"465YBXWW2Oo6"},"source":["Now we're making good progress!\n","\n","The authors of the ResNet paper went on to win the 2015 ImageNet challenge. At the time, this was by far the most important annual event in computer vision. We have already seen another ImageNet winner: the 2013 winners, Zeiler and Fergus. It is interesting to note that in both cases the starting points for the breakthroughs were experimental observations: observations about what layers actually learn, in the case of Zeiler and Fergus, and observations about which kinds of networks can be trained, in the case of the ResNet authors. This ability to design and analyze thoughtful experiments, or even just to see an unexpected result, say \"Hmmm, that's interesting,\" and then, most importantly, set about figuring out what on earth is going on, with great tenacity, is at the heart of many scientific discoveries. Deep learning is not like pure mathematics. It is a heavily experimental field, so it's important to be a strong practitioner, not just a theoretician.\n","\n","Since the ResNet was introduced, it's been widely studied and applied to many domains. One of the most interesting papers, published in 2018, is Hao Li et al.'s [\"Visualizing the Loss Landscape of Neural Nets\"](https://arxiv.org/abs/1712.09913). It shows that using skip connections helps smooth the loss function, which makes training easier as it avoids falling into a very sharp area. <> shows a stunning picture from the paper, illustrating the difference between the bumpy terrain that SGD has to navigate to optimize a regular CNN (left) versus the smooth surface of a ResNet (right)."]},{"cell_type":"markdown","metadata":{"id":"pOzY-s4w2Oo7"},"source":["\"Impact"]},{"cell_type":"markdown","metadata":{"id":"gVZ8RqMN2Oo7"},"source":["Our first model is already good, but further research has discovered more tricks we can apply to make it better. We'll look at those next."]},{"cell_type":"markdown","metadata":{"id":"sKBTUZ4b2Oo7"},"source":["### A State-of-the-Art ResNet"]},{"cell_type":"markdown","metadata":{"id":"J9ZDOqrA2Oo8"},"source":["In [\"Bag of Tricks for Image Classification with Convolutional Neural Networks\"](https://arxiv.org/abs/1812.01187), Tong He et al. study different variations of the ResNet architecture that come at almost no additional cost in terms of number of parameters or computation. By using a tweaked ResNet-50 architecture and Mixup they achieved 94.6% top-5 accuracy on ImageNet, in comparison to 92.2% with a regular ResNet-50 without Mixup. This result is better than that achieved by regular ResNet models that are twice as deep (and twice as slow, and much more likely to overfit)."]},{"cell_type":"markdown","metadata":{"id":"wHfUtano2Oo8"},"source":["> jargon: top-5 accuracy: A metric testing how often the label we want is in the top 5 predictions of our model. It was used in the ImageNet competition because many of the images contained multiple objects, or contained objects that could be easily confused or may even have been mislabeled with a similar label. In these situations, looking at top-1 accuracy may be inappropriate. However, recently CNNs have been getting so good that top-5 accuracy is nearly 100%, so some researchers are using top-1 accuracy for ImageNet too now."]},{"cell_type":"markdown","metadata":{"id":"dA_qPGKE2Oo8"},"source":["We'll use this tweaked version as we scale up to the full ResNet, because it's substantially better. It differs a little bit from our previous implementation, in that instead of just starting with ResNet blocks, it begins with a few convolutional layers followed by a max pooling layer. This is what the first layers, called the *stem* of the network, look like:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wUHESYX92Oo9"},"outputs":[],"source":["def _resnet_stem(*sizes):\n"," return [\n"," ConvLayer(sizes[i], sizes[i+1], 3, stride = 2 if i==0 else 1)\n"," for i in range(len(sizes)-1)\n"," ] + [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)]"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"x5DSBSxQ2Oo9","outputId":"bdd1d9b6-aa5a-4fa5-e6d1-04b9a317d0b9"},"outputs":[{"data":{"text/plain":["[ConvLayer(\n"," (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n"," (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n"," (2): ReLU()\n"," ), ConvLayer(\n"," (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n"," (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n"," (2): ReLU()\n"," ), ConvLayer(\n"," (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n"," (1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n"," (2): ReLU()\n"," ), MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_output\n","_resnet_stem(3,32,32,64)"]},{"cell_type":"markdown","metadata":{"id":"fJXHawow2Oo-"},"source":["```\n","[ConvLayer(\n"," (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))\n"," (1): BatchNorm2d(32, eps=1e-05, momentum=0.1)\n"," (2): ReLU()\n"," ), ConvLayer(\n"," (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"," (1): BatchNorm2d(32, eps=1e-05, momentum=0.1)\n"," (2): ReLU()\n"," ), ConvLayer(\n"," (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))\n"," (1): BatchNorm2d(64, eps=1e-05, momentum=0.1)\n"," (2): ReLU()\n"," ), MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)]\n"," ```"]},{"cell_type":"markdown","metadata":{"id":"eB9z51Ap2Oo-"},"source":["> jargon: Stem: The first few layers of a CNN. Generally, the stem has a different structure than the main body of the CNN."]},{"cell_type":"markdown","metadata":{"id":"xaj77xOB2Oo-"},"source":["The reason that we have a stem of plain convolutional layers, instead of ResNet blocks, is based on a very important insight about all deep convolutional neural networks: the vast majority of the computation occurs in the early layers. Therefore, we should keep the early layers as fast and simple as possible.\n","\n","To see why so much computation occurs in the early layers, consider the very first convolution on a 128-pixel input image. If it is a stride-1 convolution, then it will apply the kernel to every one of the 128×128 pixels. That's a lot of work! In the later layers, however, the grid size could be as small as 4×4 or even 2×2, so there are far fewer kernel applications to do.\n","\n","On the other hand, the first-layer convolution only has 3 input features and 32 output features. Since it is a 3×3 kernel, this is 3×32×3×3 = 864 parameters in the weights. But the last convolution will have 256 input features and 512 output features, resulting in 1,179,648 weights! So the first layers contain the vast majority of the computation, but the last layers contain the vast majority of the parameters.\n","\n","A ResNet block takes more computation than a plain convolutional block, since (in the stride-2 case) a ResNet block has three convolutions and a pooling layer. That's why we want to have plain convolutions to start off our ResNet.\n","\n","We're now ready to show the implementation of a modern ResNet, with the \"bag of tricks.\" It uses four groups of ResNet blocks, with 64, 128, 256, then 512 filters. Each group starts with a stride-2 block, except for the first one, since it's just after a `MaxPooling` layer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QHCmmiHu2Oo_"},"outputs":[],"source":["class ResNet(nn.Sequential):\n"," def __init__(self, n_out, layers, expansion=1):\n"," stem = _resnet_stem(3,32,32,64)\n"," self.block_szs = [64, 64, 128, 256, 512]\n"," for i in range(1,5): self.block_szs[i] *= expansion\n"," blocks = [self._make_layer(*o) for o in enumerate(layers)]\n"," super().__init__(*stem, *blocks,\n"," nn.AdaptiveAvgPool2d(1), Flatten(),\n"," nn.Linear(self.block_szs[-1], n_out))\n","\n"," def _make_layer(self, idx, n_layers):\n"," stride = 1 if idx==0 else 2\n"," ch_in,ch_out = self.block_szs[idx:idx+2]\n"," return nn.Sequential(*[\n"," ResBlock(ch_in if i==0 else ch_out, ch_out, stride if i==0 else 1)\n"," for i in range(n_layers)\n"," ])"]},{"cell_type":"markdown","metadata":{"id":"kKeJnFE-2OpA"},"source":["The `_make_layer` function is just there to create a series of `n_layers` blocks. The first one is going from `ch_in` to `ch_out` with the indicated `stride` and all the others are blocks of stride 1 with `ch_out` to `ch_out` tensors. Once the blocks are defined, our model is purely sequential, which is why we define it as a subclass of `nn.Sequential`. (Ignore the `expansion` parameter for now; we'll discuss it in the next section. For now, it'll be `1`, so it doesn't do anything.)\n","\n","The various versions of the models (ResNet-18, -34, -50, etc.) just change the number of blocks in each of those groups. This is the definition of a ResNet-18:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"-ogP59tF2OpA"},"outputs":[],"source":["rn = ResNet(dls.c, [2,2,2,2])"]},{"cell_type":"markdown","metadata":{"id":"Qn0s_Xzw2OpA"},"source":["Let's train it for a little bit and see how it fares compared to the previous model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KjG--TIM2OpB","outputId":"12d1fe24-4ed9-4a33-b9f9-f5f87c5df97d"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.6738821.8283940.41375800:13
11.3316751.5726850.51821700:13
21.0872241.0861020.65070100:13
30.9004280.9682190.68433100:12
40.7602800.7825580.75719700:12
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner(rn)\n","learn.fit_one_cycle(5, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"4DiqN6nM2OpB"},"source":["Even though we have more channels (and our model is therefore even more accurate), our training is just as fast as before, thanks to our optimized stem.\n","\n","To make our model deeper without taking too much compute or memory, we can use another kind of layer introduced by the ResNet paper for ResNets with a depth of 50 or more: the bottleneck layer."]},{"cell_type":"markdown","metadata":{"id":"oPGfF7XR2OpC"},"source":["### Bottleneck Layers"]},{"cell_type":"markdown","metadata":{"id":"mSM-q4GD2OpC"},"source":["Instead of stacking two convolutions with a kernel size of 3, bottleneck layers use three different convolutions: two 1×1 (at the beginning and the end) and one 3×3, as shown on the right in <>."]},{"cell_type":"markdown","metadata":{"id":"UZUmPcds2OpC"},"source":["\"Comparison"]},{"cell_type":"markdown","metadata":{"id":"FZYht1tH2OpC"},"source":["Why is that useful? 1×1 convolutions are much faster, so even if this seems to be a more complex design, this block executes faster than the first ResNet block we saw. This then lets us use more filters: as we see in the illustration, the number of filters in and out is 4 times higher (256 instead of 64) diminish then restore the number of channels (hence the name bottleneck). The overall impact is that we can use more filters in the same amount of time.\n","\n","Let's try replacing our `ResBlock` with this bottleneck design:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QfDNeI6i2OpD"},"outputs":[],"source":["def _conv_block(ni,nf,stride):\n"," return nn.Sequential(\n"," ConvLayer(ni, nf//4, 1),\n"," ConvLayer(nf//4, nf//4, stride=stride),\n"," ConvLayer(nf//4, nf, 1, act_cls=None, norm_type=NormType.BatchZero))"]},{"cell_type":"markdown","metadata":{"id":"gkrykzZ52OpD"},"source":["We'll use this to create a ResNet-50 with group sizes of `(3,4,6,3)`. We now need to pass `4` in to the `expansion` parameter of `ResNet`, since we need to start with four times less channels and we'll end with four times more channels.\n","\n","Deeper networks like this don't generally show improvements when training for only 5 epochs, so we'll bump it up to 20 epochs this time to make the most of our bigger model. And to really get great results, let's use bigger images too:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"i4O6fJ0I2OpD"},"outputs":[],"source":["dls = get_data(URLs.IMAGENETTE_320, presize=320, resize=224)"]},{"cell_type":"markdown","metadata":{"id":"IUUnnm-S2OpD"},"source":["We don't have to do anything to account for the larger 224-pixel images; thanks to our fully convolutional network, it just works. This is also why we were able to do *progressive resizing* earlier in the book—the models we used were fully convolutional, so we were even able to fine-tune models trained with different sizes. We can now train our model and see the effects:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cwkqxhBI2OpE"},"outputs":[],"source":["rn = ResNet(dls.c, [3,4,6,3], 4)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zsIjvXIB2OpE","outputId":"0b277120-eb9a-498d-96dc-e9bc2935215f"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
01.6134481.4733550.51414000:31
11.3596042.0507940.39745200:31
21.2531124.5117350.38700600:31
31.1334502.5752210.39617800:31
41.0547521.2645250.61375800:32
50.9279302.6704840.42267500:32
60.8382681.7245880.52866200:32
70.7482891.1806680.66649700:31
80.6886371.2450390.65044600:32
90.6455301.0536910.67490400:31
100.5934011.1807860.67643300:32
110.5366340.8799370.71388500:32
120.4792080.7983560.74165600:32
130.4400710.6006440.80687900:32
140.4029520.4502960.85859900:32
150.3591170.4861260.84636900:32
160.3136420.4422150.86191100:32
170.2940500.4859670.85350300:32
180.2705830.4085660.87592400:32
190.2660030.4117520.87261100:33
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner(rn)\n","learn.fit_one_cycle(20, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"WyyrnUFD2OpE"},"source":["We're getting a great result now! Try adding Mixup, and then training this for a hundred epochs while you go get lunch. You'll have yourself a very accurate image classifier, trained from scratch.\n","\n","The bottleneck design we've shown here is typically only used in ResNet-50, -101, and -152 models. ResNet-18 and -34 models usually use the non-bottleneck design seen in the previous section. However, we've noticed that the bottleneck layer generally works better even for the shallower networks. This just goes to show that the little details in papers tend to stick around for years, even if they're actually not quite the best design! Questioning assumptions and \"stuff everyone knows\" is always a good idea, because this is still a new field, and there are lots of details that aren't always done well."]},{"cell_type":"markdown","metadata":{"id":"a-rnZHLc2OpF"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"RTgb1Xng2OpF"},"source":["You have now seen how the models we have been using for computer vision since the first chapter are built, using skip connections to allow deeper models to be trained. Even if there has been a lot of research into better architectures, they all use one version or another of this trick, to make a direct path from the input to the end of the network. When using transfer learning, the ResNet is the pretrained model. In the next chapter, we will look at the final details of how the models we actually used were built from it."]},{"cell_type":"markdown","metadata":{"id":"JJI3w9ZM2OpF"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"kPzZNZGs2OpF"},"source":["1. How did we get to a single vector of activations in the CNNs used for MNIST in previous chapters? Why isn't that suitable for Imagenette?\n","1. What do we do for Imagenette instead?\n","1. What is \"adaptive pooling\"?\n","1. What is \"average pooling\"?\n","1. Why do we need `Flatten` after an adaptive average pooling layer?\n","1. What is a \"skip connection\"?\n","1. Why do skip connections allow us to train deeper models?\n","1. What does <> show? How did that lead to the idea of skip connections?\n","1. What is \"identity mapping\"?\n","1. What is the basic equation for a ResNet block (ignoring batchnorm and ReLU layers)?\n","1. What do ResNets have to do with residuals?\n","1. How do we deal with the skip connection when there is a stride-2 convolution? How about when the number of filters changes?\n","1. How can we express a 1×1 convolution in terms of a vector dot product?\n","1. Create a `1x1 convolution` with `F.conv2d` or `nn.Conv2d` and apply it to an image. What happens to the `shape` of the image?\n","1. What does the `noop` function return?\n","1. Explain what is shown in <>.\n","1. When is top-5 accuracy a better metric than top-1 accuracy?\n","1. What is the \"stem\" of a CNN?\n","1. Why do we use plain convolutions in the CNN stem, instead of ResNet blocks?\n","1. How does a bottleneck block differ from a plain ResNet block?\n","1. Why is a bottleneck block faster?\n","1. How do fully convolutional nets (and nets with adaptive pooling in general) allow for progressive resizing?"]},{"cell_type":"markdown","metadata":{"id":"DZtoHA7l2OpG"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"lu4mm_Ks2OpG"},"source":["1. Try creating a fully convolutional net with adaptive average pooling for MNIST (note that you'll need fewer stride-2 layers). How does it compare to a network without such a pooling layer?\n","1. In <> we introduce *Einstein summation notation*. Skip ahead to see how this works, and then write an implementation of the 1×1 convolution operation using `torch.einsum`. Compare it to the same operation using `torch.conv2d`.\n","1. Write a \"top-5 accuracy\" function using plain PyTorch or plain Python.\n","1. Train a model on Imagenette for more epochs, with and without label smoothing. Take a look at the Imagenette leaderboards and see how close you can get to the best results shown. Read the linked pages describing the leading approaches."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Uy4fZ1-X2OpG"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/14_resnet.ipynb","timestamp":1712447942694}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/15_arch_details.ipynb b/notebooks/oleg/Education/fastai/15_arch_details.ipynb new file mode 100644 index 0000000..05c7183 --- /dev/null +++ b/notebooks/oleg/Education/fastai/15_arch_details.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"ydMuuqsr2PZy"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XckeIlYH2PZ5"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"GBHDJRgB2PZ6"},"source":["[[chapter_arch_details]]"]},{"cell_type":"markdown","metadata":{"id":"L7afdjeP2PZ7"},"source":["# Application Architectures Deep Dive"]},{"cell_type":"markdown","metadata":{"id":"LGtQbP1s2PZ9"},"source":["We are now in the exciting position that we can fully understand the architectures that we have been using for our state-of-the-art models for computer vision, natural language processing, and tabular analysis. In this chapter, we're going to fill in all the missing details on how fastai's application models work and show you how to build the models they use.\n","\n","We will also go back to the custom data preprocessing pipeline we saw in <> for Siamese networks and show you how you can use the components in the fastai library to build custom pretrained models for new tasks.\n","\n","We'll start with computer vision."]},{"cell_type":"markdown","metadata":{"id":"o9q5-9T_2PZ_"},"source":["## Computer Vision"]},{"cell_type":"markdown","metadata":{"id":"La-Ui7KV2PaA"},"source":["For computer vision application we use the functions `vision_learner` and `unet_learner` to build our models, depending on the task. In this section we'll explore how to build the `Learner` objects we used in Parts 1 and 2 of this book."]},{"cell_type":"markdown","metadata":{"id":"D7qmyHbU2PaC"},"source":["### vision_learner"]},{"cell_type":"markdown","metadata":{"id":"Q5A0DZre2PaC"},"source":["Let's take a look at what happens when we use the `vision_learner` function. We begin by passing this function an architecture to use for the *body* of the network. Most of the time we use a ResNet, which you already know how to create, so we don't need to delve into that any further. Pretrained weights are downloaded as required and loaded into the ResNet.\n","\n","Then, for transfer learning, the network needs to be *cut*. This refers to slicing off the final layer, which is only responsible for ImageNet-specific categorization. In fact, we do not slice off only this layer, but everything from the adaptive average pooling layer onwards. The reason for this will become clear in just a moment. Since different architectures might use different types of pooling layers, or even completely different kinds of *heads*, we don't just search for the adaptive pooling layer to decide where to cut the pretrained model. Instead, we have a dictionary of information that is used for each model to determine where its body ends, and its head starts. We call this `model_meta`—here it is for resnet-50:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TzdnmWV02PaD","outputId":"348df094-5c60-4a48-a394-970a6bfea861"},"outputs":[{"data":{"text/plain":["{'cut': -2,\n"," 'split': ,\n"," 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])}"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["model_meta[resnet50]"]},{"cell_type":"markdown","metadata":{"id":"KFgwD7Bw2PaG"},"source":["> jargon: Body and Head: The \"head\" of a neural net is the part that is specialized for a particular task. For a CNN, it's generally the part after the adaptive average pooling layer. The \"body\" is everything else, and includes the \"stem\" (which we learned about in <>)."]},{"cell_type":"markdown","metadata":{"id":"pNZ8JJcw2PaG"},"source":["If we take all of the layers prior to the cut point of `-2`, we get the part of the model that fastai will keep for transfer learning. Now, we put on our new head. This is created using the function `create_head`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hqY5dcbY2PaG","outputId":"e13f47c4-dda8-483e-a80f-2415fbd2af5c"},"outputs":[{"data":{"text/plain":["Sequential(\n"," (0): AdaptiveConcatPool2d(\n"," (ap): AdaptiveAvgPool2d(output_size=1)\n"," (mp): AdaptiveMaxPool2d(output_size=1)\n"," )\n"," (1): full: False\n"," (2): BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n"," (3): Dropout(p=0.25, inplace=False)\n"," (4): Linear(in_features=20, out_features=512, bias=False)\n"," (5): ReLU(inplace=True)\n"," (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n"," (7): Dropout(p=0.5, inplace=False)\n"," (8): Linear(in_features=512, out_features=2, bias=False)\n",")"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["#hide_output\n","create_head(20,2)"]},{"cell_type":"markdown","metadata":{"id":"EO8h_Jmr2PaH"},"source":["```\n","Sequential(\n"," (0): AdaptiveConcatPool2d(\n"," (ap): AdaptiveAvgPool2d(output_size=1)\n"," (mp): AdaptiveMaxPool2d(output_size=1)\n"," )\n"," (1): Flatten()\n"," (2): BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True)\n"," (3): Dropout(p=0.25, inplace=False)\n"," (4): Linear(in_features=20, out_features=512, bias=False)\n"," (5): ReLU(inplace=True)\n"," (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True)\n"," (7): Dropout(p=0.5, inplace=False)\n"," (8): Linear(in_features=512, out_features=2, bias=False)\n",")\n","```"]},{"cell_type":"markdown","metadata":{"id":"lptbfRBR2PaH"},"source":["With this function you can choose how many additional linear layers are added to the end, how much dropout to use after each one, and what kind of pooling to use. By default, fastai will apply both average pooling, and max pooling, and will concatenate the two together (this is the `AdaptiveConcatPool2d` layer). This is not a particularly common approach, but it was developed independently at fastai and other research labs in recent years, and tends to provide some small improvement over using just average pooling.\n","\n","fastai is a bit different from most libraries in that by default it adds two linear layers, rather than one, in the CNN head. The reason for this is that transfer learning can still be useful even, as we have seen, when transferring the pretrained model to very different domains. However, just using a single linear layer is unlikely to be enough in these cases; we have found that using two linear layers can allow transfer learning to be used more quickly and easily, in more situations."]},{"cell_type":"markdown","metadata":{"id":"46_WD0vP2PaH"},"source":["> note: One Last Batchnorm?: One parameter to `create_head` that is worth looking at is `bn_final`. Setting this to `true` will cause a batchnorm layer to be added as your final layer. This can be useful in helping your model scale appropriately for your output activations. We haven't seen this approach published anywhere as yet, but we have found that it works well in practice wherever we have used it."]},{"cell_type":"markdown","metadata":{"id":"PVZsJkFw2PaH"},"source":["Let's now take a look at what `unet_learner` did in the segmentation problem we showed in <>."]},{"cell_type":"markdown","metadata":{"id":"XRMo7AOJ2PaI"},"source":["### unet_learner"]},{"cell_type":"markdown","metadata":{"id":"r04nKohL2PaI"},"source":["One of the most interesting architectures in deep learning is the one that we used for segmentation in <>. Segmentation is a challenging task, because the output required is really an image, or a pixel grid, containing the predicted label for every pixel. There are other tasks that share a similar basic design, such as increasing the resolution of an image (*super-resolution*), adding color to a black-and-white image (*colorization*), or converting a photo into a synthetic painting (*style transfer*)—these tasks are covered by an [online](https://book.fast.ai/) chapter of this book, so be sure to check it out after you've read this chapter. In each case, we are starting with an image and converting it to some other image of the same dimensions or aspect ratio, but with the pixels altered in some way. We refer to these as *generative vision models*.\n","\n","The way we do this is to start with the exact same approach to developing a CNN head as we saw in the previous problem. We start with a ResNet, for instance, and cut off the adaptive pooling layer and everything after that. Then we replace those layers with our custom head, which does the generative task.\n","\n","There was a lot of handwaving in that last sentence! How on earth do we create a CNN head that generates an image? If we start with, say, a 224-pixel input image, then at the end of the ResNet body we will have a 7×7 grid of convolutional activations. How can we convert that into a 224-pixel segmentation mask?\n","\n","Naturally, we do this with a neural network! So we need some kind of layer that can increase the grid size in a CNN. One very simple approach to this is to replace every pixel in the 7×7 grid with four pixels in a 2×2 square. Each of those four pixels will have the same value—this is known as *nearest neighbor interpolation*. PyTorch provides a layer that does this for us, so one option is to create a head that contains stride-1 convolutional layers (along with batchnorm and ReLU layers as usual) interspersed with 2×2 nearest neighbor interpolation layers. In fact, you can try this now! See if you can create a custom head designed like this, and try it on the CamVid segmentation task. You should find that you get some reasonable results, although they won't be as good as our <> results.\n","\n","Another approach is to replace the nearest neighbor and convolution combination with a *transposed convolution*, otherwise known as a *stride half convolution*. This is identical to a regular convolution, but first zero padding is inserted between all the pixels in the input. This is easiest to see with a picture—<> shows a diagram from the excellent [convolutional arithmetic paper](https://arxiv.org/abs/1603.07285) we discussed in <>, showing a 3×3 transposed convolution applied to a 3×3 image."]},{"cell_type":"markdown","metadata":{"id":"LyI_subE2PaI"},"source":["\"A"]},{"cell_type":"markdown","metadata":{"id":"OYb7o8Wp2PaJ"},"source":["As you see, the result of this is to increase the size of the input. You can try this out now by using fastai's `ConvLayer` class; pass the parameter `transpose=True` to create a transposed convolution, instead of a regular one, in your custom head.\n","\n","Neither of these approaches, however, works really well. The problem is that our 7×7 grid simply doesn't have enough information to create a 224×224-pixel output. It's asking an awful lot of the activations of each of those grid cells to have enough information to fully regenerate every pixel in the output. The solution to this problem is to use *skip connections*, like in a ResNet, but skipping from the activations in the body of the ResNet all the way over to the activations of the transposed convolution on the opposite side of the architecture. This approach, illustrated in <>, was developed by Olaf Ronneberger, Philipp Fischer, and Thomas Brox in the 2015 paper [\"U-Net: Convolutional Networks for Biomedical Image Segmentation\"](https://arxiv.org/abs/1505.04597). Although the paper focused on medical applications, the U-Net has revolutionized all kinds of generative vision models."]},{"cell_type":"markdown","metadata":{"id":"tMAcL2AK2PaJ"},"source":["\"The"]},{"cell_type":"markdown","metadata":{"id":"t-PXwkFa2PaJ"},"source":["This picture shows the CNN body on the left (in this case, it's a regular CNN, not a ResNet, and they're using 2×2 max pooling instead of stride-2 convolutions, since this paper was written before ResNets came along) and the transposed convolutional (\"up-conv\") layers on the right. Then extra skip connections are shown as gray arrows crossing from left to right (these are sometimes called *cross connections*). You can see why it's called a \"U-Net!\"\n","\n","With this architecture, the input to the transposed convolutions is not just the lower-resolution grid in the preceding layer, but also the higher-resolution grid in the ResNet head. This allows the U-Net to use all of the information of the original image, as it is needed. One challenge with U-Nets is that the exact architecture depends on the image size. fastai has a unique `DynamicUnet` class that autogenerates an architecture of the right size based on the data provided.\n","\n","Let's focus now on an example where we leverage the fastai library to write a custom model."]},{"cell_type":"markdown","metadata":{"id":"Sw1qhl3d2PaK"},"source":["### A Siamese Network"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rOMPjys12PaK"},"outputs":[],"source":["#hide\n","from fastai.vision.all import *\n","path = untar_data(URLs.PETS)\n","files = get_image_files(path/\"images\")\n","\n","class SiameseImage(fastuple):\n"," def show(self, ctx=None, **kwargs):\n"," img1,img2,same_breed = self\n"," if not isinstance(img1, Tensor):\n"," if img2.size != img1.size: img2 = img2.resize(img1.size)\n"," t1,t2 = tensor(img1),tensor(img2)\n"," t1,t2 = t1.permute(2,0,1),t2.permute(2,0,1)\n"," else: t1,t2 = img1,img2\n"," line = t1.new_zeros(t1.shape[0], t1.shape[1], 10)\n"," return show_image(torch.cat([t1,line,t2], dim=2),\n"," title=same_breed, ctx=ctx)\n","\n","def label_func(fname):\n"," return re.match(r'^(.*)_\\d+.jpg$', fname.name).groups()[0]\n","\n","class SiameseTransform(Transform):\n"," def __init__(self, files, label_func, splits):\n"," self.labels = files.map(label_func).unique()\n"," self.lbl2files = {l: L(f for f in files if label_func(f) == l) for l in self.labels}\n"," self.label_func = label_func\n"," self.valid = {f: self._draw(f) for f in files[splits[1]]}\n","\n"," def encodes(self, f):\n"," f2,t = self.valid.get(f, self._draw(f))\n"," img1,img2 = PILImage.create(f),PILImage.create(f2)\n"," return SiameseImage(img1, img2, t)\n","\n"," def _draw(self, f):\n"," same = random.random() < 0.5\n"," cls = self.label_func(f)\n"," if not same: cls = random.choice(L(l for l in self.labels if l != cls))\n"," return random.choice(self.lbl2files[cls]),same\n","\n","splits = RandomSplitter()(files)\n","tfm = SiameseTransform(files, label_func, splits)\n","tls = TfmdLists(files, tfm, splits=splits)\n","dls = tls.dataloaders(after_item=[Resize(224), ToTensor],\n"," after_batch=[IntToFloatTensor, Normalize.from_stats(*imagenet_stats)])"]},{"cell_type":"markdown","metadata":{"id":"LpSSJN-n2PaK"},"source":["Let's go back to the input pipeline we set up in <> for a Siamese network. If you remember, it consisted of pair of images with the label being `True` or `False`, depending on if they were in the same class or not.\n","\n","Using what we just saw, let's build a custom model for this task and train it. How? We will use a pretrained architecture and pass our two images through it. Then we can concatenate the results and send them to a custom head that will return two predictions. In terms of modules, this looks like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8DOnZaJP2PaL"},"outputs":[],"source":["class SiameseModel(Module):\n"," def __init__(self, encoder, head):\n"," self.encoder,self.head = encoder,head\n","\n"," def forward(self, x1, x2):\n"," ftrs = torch.cat([self.encoder(x1), self.encoder(x2)], dim=1)\n"," return self.head(ftrs)"]},{"cell_type":"markdown","metadata":{"id":"FXTlqTOQ2PaL"},"source":["To create our encoder, we just need to take a pretrained model and cut it, as we explained before. The function `create_body` does that for us; we just have to pass it the place where we want to cut. As we saw earlier, per the dictionary of metadata for pretrained models, the cut value for a resnet is `-2`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KMGlixKI2PaM"},"outputs":[],"source":["encoder = create_body(resnet34, cut=-2)"]},{"cell_type":"markdown","metadata":{"id":"XmiOllHG2PaM"},"source":["Then we can create our head. A look at the encoder tells us the last layer has 512 features, so this head will need to receive `512*2`. Why 2? We have to multiply by 2 because we have two images. So we create the head as follows:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"42b8eOrS2PaM"},"outputs":[],"source":["head = create_head(512*2, 2, ps=0.5)"]},{"cell_type":"markdown","metadata":{"id":"l4pgL-rX2PaN"},"source":["With our encoder and head, we can now build our model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZvEWUcTT2PaN"},"outputs":[],"source":["model = SiameseModel(encoder, head)"]},{"cell_type":"markdown","metadata":{"id":"5InQeYL62PaN"},"source":["Before using `Learner`, we have two more things to define. First, we must define the loss function we want to use. It's regular cross-entropy, but since our targets are Booleans, we need to convert them to integers or PyTorch will throw an error:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eU87IlTw2PaO"},"outputs":[],"source":["def loss_func(out, targ):\n"," return nn.CrossEntropyLoss()(out, targ.long())"]},{"cell_type":"markdown","metadata":{"id":"P_d_EcaZ2PaO"},"source":["More importantly, to take full advantage of transfer learning, we have to define a custom *splitter*. A splitter is a function that tells the fastai library how to split the model into parameter groups. These are used behind the scenes to train only the head of a model when we do transfer learning.\n","\n","Here we want two parameter groups: one for the encoder and one for the head. We can thus define the following splitter (`params` is just a function that returns all parameters of a given module):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"w4o17wGW2PaO"},"outputs":[],"source":["def siamese_splitter(model):\n"," return [params(model.encoder), params(model.head)]"]},{"cell_type":"markdown","metadata":{"id":"vFvwqqbp2PaP"},"source":["Then we can define our `Learner` by passing the data, model, loss function, splitter, and any metric we want. Since we are not using a convenience function from fastai for transfer learning (like `vision_learner`), we have to call `learn.freeze` manually. This will make sure only the last parameter group (in this case, the head) is trained:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0-Gai4192PaP"},"outputs":[],"source":["learn = Learner(dls, model, loss_func=loss_func,\n"," splitter=siamese_splitter, metrics=accuracy)\n","learn.freeze()"]},{"cell_type":"markdown","metadata":{"id":"BvStMmDq2PaW"},"source":["Then we can directly train our model with the usual methods:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yLImsQMN2PaX","outputId":"db9e8fb0-7db3-49df-9627-383b42890bb9"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.3670150.2812420.88565600:26
10.3076880.2147210.91542600:26
20.2752210.1706150.93640100:26
30.2237710.1596330.94384300:26
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(4, 3e-3)"]},{"cell_type":"markdown","metadata":{"id":"6IkuepeF2PaX"},"source":["Before unfreezing and fine-tuning the whole model a bit more with discriminative learning rates (that is: a lower learning rate for the body and a higher one for the head):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tUB37jel2PaY","outputId":"d451c74b-42e5-419b-ee7a-589a3599a21d"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
00.2127440.1590330.94452000:35
10.2018930.1596150.94249000:35
20.2046060.1523380.94519600:36
30.2132030.1483460.94790300:36
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.unfreeze()\n","learn.fit_one_cycle(4, slice(1e-6,1e-4))"]},{"cell_type":"markdown","metadata":{"id":"alHG-L1P2PaY"},"source":["94.8\\% is very good when we remember a classifier trained the same way (with no data augmentation) had an error rate of 7%."]},{"cell_type":"markdown","metadata":{"id":"XUDBvVH12PaZ"},"source":["Now that we've seen how to create complete state-of-the-art computer vision models, let's move on to NLP."]},{"cell_type":"markdown","metadata":{"id":"VvbB0Hn42PaZ"},"source":["## Natural Language Processing"]},{"cell_type":"markdown","metadata":{"id":"KgK7PZe62Paa"},"source":["Converting an AWD-LSTM language model into a transfer learning classifier, as we did in <>, follows a very similar process to what we did with `vision_learner` in the first section of this chapter. We do not need a \"meta\" dictionary in this case, because we do not have such a variety of architectures to support in the body. All we need to do is select the stacked RNN for the encoder in the language model, which is a single PyTorch module. This encoder will provide an activation for every word of the input, because a language model needs to output a prediction for every next word.\n","\n","To create a classifier from this we use an approach described in the [ULMFiT paper](https://arxiv.org/abs/1801.06146) as \"BPTT for Text Classification (BPT3C)\":"]},{"cell_type":"markdown","metadata":{"id":"gaWZrbYC2Pab"},"source":["> : We divide the document into fixed-length batches of size *b*. At the beginning of each batch, the model is initialized with the final state of the previous batch; we keep track of the hidden states for mean and max-pooling; gradients are back-propagated to the batches whose hidden states contributed to the final prediction. In practice, we use variable length backpropagation sequences."]},{"cell_type":"markdown","metadata":{"id":"sR_G6mqf2Pab"},"source":["In other words, the classifier contains a `for` loop, which loops over each batch of a sequence. The state is maintained across batches, and the activations of each batch are stored. At the end, we use the same average and max concatenated pooling trick that we use for computer vision models—but this time, we do not pool over CNN grid cells, but over RNN sequences.\n","\n","For this `for` loop we need to gather our data in batches, but each text needs to be treated separately, as they each have their own labels. However, it's very likely that those texts won't all be of the same length, which means we won't be able to put them all in the same array, like we did with the language model.\n","\n","That's where padding is going to help: when grabbing a bunch of texts, we determine the one with the greatest length, then we fill the ones that are shorter with a special token called `xxpad`. To avoid extreme cases where we have a text with 2,000 tokens in the same batch as a text with 10 tokens (so a lot of padding, and a lot of wasted computation), we alter the randomness by making sure texts of comparable size are put together. The texts will still be in a somewhat random order for the training set (for the validation set we can simply sort them by order of length), but not completely so.\n","\n","This is done automatically behind the scenes by the fastai library when creating our `DataLoaders`."]},{"cell_type":"markdown","metadata":{"id":"RsFNgZFf2Pac"},"source":["## Tabular"]},{"cell_type":"markdown","metadata":{"id":"aAEytg5j2Pad"},"source":["Finally, let's take a look at `fastai.tabular` models. (We don't need to look at collaborative filtering separately, since we've already seen that these models are just tabular models, or use the dot product approach, which we've implemented earlier from scratch.)\n","\n","Here is the `forward` method for `TabularModel`:\n","\n","```python\n","if self.n_emb != 0:\n"," x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)]\n"," x = torch.cat(x, 1)\n"," x = self.emb_drop(x)\n","if self.n_cont != 0:\n"," x_cont = self.bn_cont(x_cont)\n"," x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else x_cont\n","return self.layers(x)\n","```\n","\n","We won't show `__init__` here, since it's not that interesting, but we will look at each line of code in `forward` in turn. The first line:"]},{"cell_type":"markdown","metadata":{"id":"Pa9kODlj2Pad"},"source":["```python\n","if self.n_emb != 0:\n","```\n","\n","is just testing whether there are any embeddings to deal with—we can skip this section if we only have continuous variables. `self.embeds` contains the embedding matrices, so this gets the activations of each:\n","\n","```python\n"," x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)]\n","```\n","\n","and concatenates them into a single tensor:\n","\n","```python\n"," x = torch.cat(x, 1)\n","```\n","\n","Then dropout is applied. You can pass `embd_p` to `__init__` to change this value:\n","\n","```python\n"," x = self.emb_drop(x)\n","```\n","\n","Now we test whether there are any continuous variables to deal with:\n","\n","```python\n","if self.n_cont != 0:\n","```\n","\n","They are passed through a batchnorm layer:\n","\n","```python\n"," x_cont = self.bn_cont(x_cont)\n","```\n","\n","and concatenated with the embedding activations, if there were any:\n","\n","```python\n"," x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else x_cont\n","```\n","\n","Finally, this is passed through the linear layers (each of which includes batchnorm, if `use_bn` is `True`, and dropout, if `ps` is set to some value or list of values):\n","\n","```python\n","return self.layers(x)\n","\n","```\n","\n","Congratulations! Now you know every single piece of the architectures used in the fastai library!"]},{"cell_type":"markdown","metadata":{"id":"vngLYaOG2Pae"},"source":["## Wrapping Up Architectures"]},{"cell_type":"markdown","metadata":{"id":"Dwysj9N42Pae"},"source":["As you can see, the details of deep learning architectures need not scare you now. You can look inside the code of fastai and PyTorch and see just what is going on. More importantly, try to understand *why* it's going on. Take a look at the papers that are being referenced in the code, and try to see how the code matches up to the algorithms that are described.\n","\n","Now that we have investigated all of the pieces of a model and the data that is passed into it, we can consider what this means for practical deep learning. If you have unlimited data, unlimited memory, and unlimited time, then the advice is easy: train a huge model on all of your data for a really long time. But the reason that deep learning is not straightforward is because your data, memory, and time are typically limited. If you are running out of memory or time, then the solution is to train a smaller model. If you are not able to train for long enough to overfit, then you are not taking advantage of the capacity of your model.\n","\n","So, step one is to get to the point where you can overfit. Then the question is how to reduce that overfitting. <> shows how we recommend prioritizing the steps from there."]},{"cell_type":"markdown","metadata":{"id":"Il8RKqNF2Paf"},"source":["\"Steps"]},{"cell_type":"markdown","metadata":{"id":"9tKl86xE2Paf"},"source":["Many practitioners, when faced with an overfitting model, start at exactly the wrong end of this diagram. Their starting point is to use a smaller model, or more regularization. Using a smaller model should be absolutely the last step you take, unless training your model is taking up too much time or memory. Reducing the size of your model reduces the ability of your model to learn subtle relationships in your data.\n","\n","Instead, your first step should be to seek to *create more data*. That could involve adding more labels to data that you already have, finding additional tasks that your model could be asked to solve (or, to think of it another way, identifying different kinds of labels that you could model), or creating additional synthetic data by using more or different data augmentation techniques. Thanks to the development of Mixup and similar approaches, effective data augmentation is now available for nearly all kinds of data.\n","\n","Once you've got as much data as you think you can reasonably get hold of, and are using it as effectively as possible by taking advantage of all the labels that you can find and doing all the augmentation that makes sense, if you are still overfitting you should think about using more generalizable architectures. For instance, adding batch normalization may improve generalization.\n","\n","If you are still overfitting after doing the best you can at using your data and tuning your architecture, then you can take a look at regularization. Generally speaking, adding dropout to the last layer or two will do a good job of regularizing your model. However, as we learned from the story of the development of AWD-LSTM, it is often the case that adding dropout of different types throughout your model can help even more. Generally speaking, a larger model with more regularization is more flexible, and can therefore be more accurate than a smaller model with less regularization.\n","\n","Only after considering all of these options would we recommend that you try using a smaller version of your architecture."]},{"cell_type":"markdown","metadata":{"id":"1aoCUXUj2Pag"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"z0REo13D2Pag"},"source":["1. What is the \"head\" of a neural net?\n","1. What is the \"body\" of a neural net?\n","1. What is \"cutting\" a neural net? Why do we need to do this for transfer learning?\n","1. What is `model_meta`? Try printing it to see what's inside.\n","1. Read the source code for `create_head` and make sure you understand what each line does.\n","1. Look at the output of `create_head` and make sure you understand why each layer is there, and how the `create_head` source created it.\n","1. Figure out how to change the dropout, layer size, and number of layers created by `vision_learner`, and see if you can find values that result in better accuracy from the pet recognizer.\n","1. What does `AdaptiveConcatPool2d` do?\n","1. What is \"nearest neighbor interpolation\"? How can it be used to upsample convolutional activations?\n","1. What is a \"transposed convolution\"? What is another name for it?\n","1. Create a conv layer with `transpose=True` and apply it to an image. Check the output shape.\n","1. Draw the U-Net architecture.\n","1. What is \"BPTT for Text Classification\" (BPT3C)?\n","1. How do we handle different length sequences in BPT3C?\n","1. Try to run each line of `TabularModel.forward` separately, one line per cell, in a notebook, and look at the input and output shapes at each step.\n","1. How is `self.layers` defined in `TabularModel`?\n","1. What are the five steps for preventing over-fitting?\n","1. Why don't we reduce architecture complexity before trying other approaches to preventing overfitting?"]},{"cell_type":"markdown","metadata":{"id":"UeBRfrZB2Pah"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"aheAjFB92Pai"},"source":["1. Write your own custom head and try training the pet recognizer with it. See if you can get a better result than fastai's default.\n","1. Try switching between `AdaptiveConcatPool2d` and `AdaptiveAvgPool2d` in a CNN head and see what difference it makes.\n","1. Write your own custom splitter to create a separate parameter group for every ResNet block, and a separate group for the stem. Try training with it, and see if it improves the pet recognizer.\n","1. Read the online chapter about generative image models, and create your own colorizer, super-resolution model, or style transfer model.\n","1. Create a custom head using nearest neighbor interpolation and use it to do segmentation on CamVid."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IwiBiQhl2Pai"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/15_arch_details.ipynb","timestamp":1712447957517}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/16_accel_sgd.ipynb b/notebooks/oleg/Education/fastai/16_accel_sgd.ipynb new file mode 100644 index 0000000..21dd907 --- /dev/null +++ b/notebooks/oleg/Education/fastai/16_accel_sgd.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"PZtmmaC12QF5"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"s4WKZxOr2QF-"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"2E3ZfFMA2QF_"},"source":["[[chapter_accel_sgd]]"]},{"cell_type":"markdown","metadata":{"id":"oR3j86-y2QGA"},"source":["# The Training Process"]},{"cell_type":"markdown","metadata":{"id":"RmcrsRjY2QGC"},"source":["You now know how to create state-of-the-art architectures for computer vision, natural language processing, tabular analysis, and collaborative filtering, and you know how to train them quickly. So we're done, right? Not quite yet. We still have to explore a little bit more the training process.\n","\n","We explained in <> the basis of stochastic gradient descent: pass a mini-batch to the model, compare it to our target with the loss function, then compute the gradients of this loss function with regard to each weight before updating the weights with the formula:\n","\n","```python\n","new_weight = weight - lr * weight.grad\n","```\n","\n","We implemented this from scratch in a training loop, and also saw that PyTorch provides a simple `nn.SGD` class that does this calculation for each parameter for us. In this chapter we will build some faster optimizers, using a flexible foundation. But that's not all we might want to change in the training process. For any tweak of the training loop, we will need a way to add some code to the basis of SGD. The fastai library has a system of callbacks to do this, and we will teach you all about it.\n","\n","Let's start with standard SGD to get a baseline, then we will introduce the most commonly used optimizers."]},{"cell_type":"markdown","metadata":{"id":"gEXw84H52QGD"},"source":["## Establishing a Baseline"]},{"cell_type":"markdown","metadata":{"id":"WHyiAgj02QGE"},"source":["First, we'll create a baseline, using plain SGD, and compare it to fastai's default optimizer. We'll start by grabbing Imagenette with the same `get_data` we used in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HGNXxpOZ2QGF"},"outputs":[],"source":["#hide_input\n","def get_data(url, presize, resize):\n"," path = untar_data(url)\n"," return DataBlock(\n"," blocks=(ImageBlock, CategoryBlock), get_items=get_image_files,\n"," splitter=GrandparentSplitter(valid_name='val'),\n"," get_y=parent_label, item_tfms=Resize(presize),\n"," batch_tfms=[*aug_transforms(min_scale=0.5, size=resize),\n"," Normalize.from_stats(*imagenet_stats)],\n"," ).dataloaders(path, bs=128)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KiV-6OlN2QGG"},"outputs":[],"source":["dls = get_data(URLs.IMAGENETTE_160, 160, 128)"]},{"cell_type":"markdown","metadata":{"id":"wk9TSR4k2QGH"},"source":["We'll create a ResNet-34 without pretraining, and pass along any arguments received:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"f4olei8A2QGH"},"outputs":[],"source":["def get_learner(**kwargs):\n"," return vision_learner(dls, resnet34, pretrained=False,\n"," metrics=accuracy, **kwargs).to_fp16()"]},{"cell_type":"markdown","metadata":{"id":"dC9n2Rrw2QGI"},"source":["Here's the default fastai optimizer, with the usual 3e-3 learning rate:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ffv0ihaW2QGI","outputId":"d7feed9f-cc5b-4676-9461-462522998655"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.5719322.6850400.32254800:11
11.9046741.8525890.43745200:11
21.5869091.3749080.59490400:11
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner()\n","learn.fit_one_cycle(3, 0.003)"]},{"cell_type":"markdown","metadata":{"id":"05p7qXUX2QGK"},"source":["Now let's try plain SGD. We can pass `opt_func` (optimization function) to `vision_learner` to get fastai to use any optimizer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZFVyr5Uz2QGL"},"outputs":[],"source":["learn = get_learner(opt_func=SGD)"]},{"cell_type":"markdown","metadata":{"id":"piaIewSv2QGL"},"source":["The first thing to look at is `lr_find`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"frMcXTKK2QGL","outputId":"2a78a6f9-9f39-405b-cafe-968d456ae5b5"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/plain":["(0.017378008365631102, 3.019951861915615e-07)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"},{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAYIAAAEKCAYAAAAfGVI8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3deXhc9X3v8fdXI412a7HlfTfGYDYbGxNKYxxCEhIIJCHNpU3a0NBCkiYkN0/TNM29tOU+Cbmla5qnpQQuoQFSEghroEAbtkAM2JjF7LaxZEm2JWvfpdF87x8zkoUsyZLRmTmj+byeZx7PnDkz58NIzFe/81uOuTsiIpK9ctIdQERE0kuFQEQky6kQiIhkORUCEZEsp0IgIpLlVAhERLJcbroDTNWcOXN8+fLl6Y4hIpJRtm/ffsjdq8Z6LuMKwfLly9m2bVu6Y4iIZBQzqx7vOZ0aEhHJcioEIiJZToVARCTLqRCIiGQ5FQIRkSynQiAikuVUCEREMsCjrx1kV0NnIO+tQiAiEnLuzpdv285dL9QG8v4qBCIiIdfRF2Ng0Kksigby/ioEIiIh19LVD0BFsQqBiEhWakoWgtkqBCIi2UktAhGRLKcWgYhIllOLQEQkyzV39RPNzaE4Ggnk/VUIRERCrrmrn8qiKGYWyPurEIiIhFxzVz+VAZ0WAhUCEZHQa+5WIRARyWpqEYiIZDkVAhGRLDYwGKejN6ZCICKSrYKeQwAqBCIiodbcHeysYlAhEBEJtebOZIsgoCWoQYVARCTUhlsEJSoEIiJZqblLLQIRkax2uBDkBXYMFQIRkRBr7uqnrDCP3EhwX9cqBCIiIdbc1R/oiCFQIRARCbXmrv5A5xCACoGISKgFvbwEqBCIiITa0LUIgqRCICISUu5OS3c/lQHOIQAVAhGR0OrsizEw6GoRiIhkq+YULDgHkBvkm5vZXqADGARi7r5x1PNbgHuBd5KbfuHu1wSZSUQkUwwVgqCHjwZaCJI+4O6HJnj+KXe/MAU5REQySqpaBDo1JCISUqlqEQRdCBx4xMy2m9kV4+xzlpm9ZGYPmdlJAecREckYM6KPADjb3evNbC7wqJm94e5Pjnj+BWCZu3ea2ceAe4DVo98kWUSuAFi6dGnAkUVEwqG5u59obg7F0Uigxwm0ReDu9cl/G4C7gU2jnm93987k/QeBPDObM8b73ODuG919Y1VVVZCRRURCo7kzMZnMzAI9TmCFwMyKzax06D7wYWDnqH3mW/K/0Mw2JfM0BZVJRCSTtHQHv7wEBHtqaB5wd/J7Phe43d3/08y+CODu1wOfBr5kZjGgB7jU3T3ATCIiGaMpBesMQYCFwN33AKeNsf36Efd/CPwwqAwiIpmspaufJRVFgR9Hw0dFREIqVS0CFQIRkRAaGIzT0RtTIRARyVYtKZpDACoEIiKh1NydmlnFoEIgIhJKzZ3JFkHAS1CDCoGISCg1dPQBUFWaH/ixVAhERELoYHsvAPPLCgI/lgqBiEgIHWjvpTgaoSQ/+KsFqBCIiIRQQ3sf81LQGgAVAhGRUDrQ3sv8WSoEIiJZ62B7L/NUCEREspO7J04NqRCIiGSn5q5++gfjzJsV/NBRUCEQEQmdg+2JOQTqIxARyVJDcwjmqhCIiGSnVE4mAxUCEZHQOZAsBFUl6iMQEclKB9t7mVMSJZqbmq9oFQIRkZA5mMKho6BCICISOgfaUjeZDFQIRERCp6FDhUBEJGv1x+Ic6uxP2WQyUCEQEQmVxs7UTiYDFQIRkVA50JYYOqpTQyIiWWpoMpkKgYhIljpcCNRHICKSlQ609xKN5FBZHE3ZMVUIRERCpKG9j7mz8jGzlB1ThUBEJERSPZkMVAhERELlYAqvVTxEhUBEJEQOtvcyN4UdxaBCICISGh29A3T1D6pFICKSrYYuUak+AhGRLJWOyWQQcCEws71m9oqZvWhm28Z43szsB2a2y8xeNrPTg8wjIhJmQ8tLpOoSlUNyU3CMD7j7oXGe+yiwOnk7E/jX5L8iIlnnYEfqZxVD+k8NXQz8uydsBcrNbEGaM4mIpMXBtl5K83Mpiqbib/TDgi4EDjxiZtvN7Ioxnl8E7BvxuDa57V3M7Aoz22Zm2xobGwOKKiKSXnWtvSwsL0z5cYMuBGe7++kkTgH9iZltHvX8WHOo/YgN7je4+0Z331hVVRVEThGRtKtv7WFRxQwrBO5en/y3Abgb2DRql1pgyYjHi4H6IDOJiIRVXWsPC8tT21EMARYCMys2s9Kh+8CHgZ2jdrsP+IPk6KH3AW3uvj+oTCIiYdXZF6OtZ4BF5UUpP3aQPRLzgLuTK+jlAre7+3+a2RcB3P164EHgY8AuoBv4wwDziIiEVn1rD0BaWgSBFQJ33wOcNsb260fcd+BPgsogIpIp6pKFYPFM6yMQEZHJqWsZahGoEIiIZKX61h5yc4y5pTOos1hERCavrrWHBeUFRHJSd2WyISoEIiIhUNfSw8Ky1J8WAhUCEZFQSNdkMlAhEBFJu4HBOAfae1mUho5iUCEQEUm7g+29xB0VAhGRbJXOoaOgQiAiknb1bYlCoD4CEZEsNdwi0KghEZHsVNfay+ziKIXRSFqOP6lCYGarzCw/eX+LmV1lZuXBRhMRyQ51aRw6CpNvEdwFDJrZccBNwArg9sBSiYhkkfrW9E0mg8kXgri7x4BPAv/o7v8T0LWFRUTeI3enriUzWgQDZva7wOeBB5Lb8oKJJCKSPVq7B+gZGEzb0FGYfCH4Q+As4Lvu/o6ZrQBuDS6WiEh2GLoOQbomk8EkL0zj7q8BVwGYWQVQ6u7fDzKYiEg2CEMhmOyoocfNbJaZVQIvATeb2d8HG01EZOYbmkOQCX0EZe7eDnwKuNndNwDnBRdLRCQ71Lf2UJCXQ0VR+rpdJ1sIcs1sAfAZDncWi4jIe1TX2sOi8kLMUn9BmiGTLQTXAA8Du939eTNbCbwdXCwRkeyQmExWlNYMkyoE7v5zdz/V3b+UfLzH3S8JNpqIyMzm7uw91MXiNPYPwOQ7ixeb2d1m1mBmB83sLjNbHHQ4EZGZbM+hLtp7Y5y2uCytOSZ7auhm4D5gIbAIuD+5TUREjtGOmlYA1i+tSGuOyRaCKne/2d1jyduPgaoAc4mIzHg7aloozc/luKqStOaYbCE4ZGafM7NI8vY5oCnIYCIiM92OmlbWLS0nJyd9I4Zg8oXgCySGjh4A9gOfJrHshIiIHIOuvhhvHGhn/ZL0r+g/2VFDNe5+kbtXuftcd/8EicllIiJyDF6ubSPu6e8fgPd2hbJvTFsKEZEss2NfCwDrMqVFMI70ntQSEclgO2paWTmnmIriaLqjvKdC4NOWQkQki7g7O2paWLc0/a0BOMoy1GbWwdhf+AakdyqciEiGqm3p4VBnfyj6B+AohcDdS1MVREQkW7xQk+gfOD0kLYL3cmpoUpLzDnaY2RGrlprZZWbWaGYvJm9/FHQeEZF021HTSmFehDXzwvG39qSuUPYefQ14HZg1zvN3uPtXUpBDRCQUdtS0cOriMnIjgf8tPimBpkguTHcBcGOQxxERyRS9A4O8Wt8emv4BCP7U0D8CfwbEJ9jnEjN72czuNLMlY+1gZleY2TYz29bY2BhIUBGRVHjjQAexuLNuSXpXHB0psEJgZhcCDe6+fYLd7geWu/upwH8Bt4y1k7vf4O4b3X1jVZXWuhORzFXd1AXAyjQvNDdSkC2Cs4GLzGwv8B/AuWZ268gd3L3J3fuSD38EbAgwj4hI2lU3dQOwtDK9VyUbKbBC4O7fdvfF7r4cuBT4lbt/buQ+yesgD7mIRKeyiMiMVd3UzbxZ+RTkRdIdZVgqRg29i5ldA2xz9/uAq8zsIiAGNAOXpTqPiEgq1TR3sayyON0x3iUlhcDdHwceT96/esT2bwPfTkUGEZEwqG7qZvPx4errDMcgVhGRLNDTP0hDRx/LQtQ/ACoEIiIpU9Oc7CierUIgIpKVhguBWgQiItlpaA7Bstnh6ixWIRARSZGa5m5K83OpKMpLd5R3USEQEUmR6qZuls4uwixcF3hUIRARSZGa5m6WhayjGFQIRERSYjDu1LZ0szRkk8lAhUBEJCXqW3sYGHS1CEREstXQ0NGwTSYDFQIRkZQYXnVULQIRkexU09xNXsRYUFaY7ihHUCEQEUmBmuYuFlcUEckJ19BRUCEQEUmJ6qbu0C0tMUSFQEQkYO5OTVM45xCACoGISOBaugfo6IupRSAikq3CutjcEBUCEZGADc8h0KkhEZHsVJOcQ7CkQoVARCQrVTd3M7c0n8JoJN1RxqRCICISsDCPGAIVAhGRwNU0h3PV0SEqBCIiAeodGORAe29oh46CCoGISKBqW8I9YghUCEREAjW06ugStQhERLJT2OcQgAqBiEigqpu6KYpGmF0cTXeUcakQiIgEaF9zYtVRs/AtPz1EhUBEJEDVzeFdfnqICoGISEDicWdfc7gnk4EKgYhIYBo6+uiLxdUiEBHJVkMjhpaGdPnpISoEIiIBGb4OQba3CMwsYmY7zOyBMZ7LN7M7zGyXmT1rZsuDziMikir7mrvJMVhYXpjuKBNKRYvga8Dr4zx3OdDi7scB/wD83xTkERFJiermbhaWFxLNDffJl0DTmdli4ALgxnF2uRi4JXn/TuCDFubBtiIiU1CTAUNHIfgWwT8CfwbEx3l+EbAPwN1jQBswe/ROZnaFmW0zs22NjY1BZRURmVZhvw7BkMAKgZldCDS4+/aJdhtjmx+xwf0Gd9/o7hurqqqmLaOISFA6+2I0dfWHerG5IUG2CM4GLjKzvcB/AOea2a2j9qkFlgCYWS5QBjQHmElEJCWGrlO8LMQXpBkSWCFw92+7+2J3Xw5cCvzK3T83arf7gM8n7386uc8RLQIRkUwzPIcgA1oEuak+oJldA2xz9/uAm4CfmNkuEi2BS1OdR0QkCDXNiTkESzOgjyAlhcDdHwceT96/esT2XuB3UpFBRCSVapq7KSvMo6wwL91Rjircg1tFRDJUdYaMGAIVAhGRaefuvHmgg5Vzwt9RDCoEIiLTbm9TNw0dfZyxojLdUSZFhUBEZJo9u6cJgDNXHDE/NpRUCI7RM7sO8YP/fpvY4HiTpkUkWz37TjNzSvJZVZUZp4ZSPnw0jHY1dNLTP8gpi8uOum9XX4xrH3qdW7fWANDc1c9fXXRS0BFFJEO4O8/uaeLMFZWhvk7xSFlfCNydK3+yjeqmbv7ls6fz4ZPmj7vvM7sP8a27Xqa2pYc/+u0VxOLOj5/Zy/LZRVx29ooUphaRsKpt6aG+rZcvrsyM/gFQIWB7dQu7G7uoKMrjy7e9MGYxqG/t4XsPvs4DL+9n2ewifnblWZyxvJLBuFPb0sM1D7zGstnFnLGikmd2HeKZ3U3MKYly8bpFGbHOiIhMn60Z1j8AWVYIDrT1Mr+s4F3b7nh+H8XRCA99bTNX3rqdL9/2An/z6VNZUFZIY2cfb+xv5+an9xJ352sfXM0Xz1lFYTQCQCTH+KdL1/GZf/sNV966nXjcicWdgrwcegfi/O0jb3Hmiko+eOJcygujFOVHKC+McubKSvIi6p4RmYm27mmmoiiP1XNL0h1l0rKmENz7Yh3f/PnL3PuVszlxwSwgsTrgL1/Zz8dPXcj8sgJ+cvkmfv+m5/jGz15612vPP2k+37ngxDH/ui/Oz+Wmz5/B1ffuZGVVCZuPn8OGZRU0tPdxz446frGjju89+Ma7XrNsdhFfPXc1n1i3kNxIDu7OvuYeork5RxQqEcksz77TxKYVleTkZEb/AIBl2hpvGzdu9G3btk35dS1d/XzoH55gYXkhd3/5bCI5xh3P1/Ctu17hri/9FhuWVQCJzuCn3m6ktCCPuaX5zJ1V8J6miLs7bT0DdPUP0tUXY1dDJz/81S5e29/OijnFVJXk8/r+djr6YkRyjE+uX8RV564ed32Srr4YDpTkZ00NF8kYda09nP39X3H1hWv5wm+Hq9/QzLa7+8axnsuab5OK4ih/+fGT+OpPd3Dz0+/wR+9fyR3P72NVVTGnLy0f3q84P5fzT14wbcc1M8qLopQnv9ePn1fKR0+ez8OvHuRHT+1h0J1PrF/E2oWz2NXQya1bq7lnRx0fP20hK+cUU1aUR1E0l7cOdvDsniZ21rcDsGFpBeesqeKc46tYu2BWRv31ITJTDc8fyKCOYsiiQgBw4akLuGdHHX/3yFusqirhhZpW/uJjJ6R8iJeZcf7J8zn/5CNHKF25eSX/8vhu7nqhlo7e2PD2aCSHdUvK+fKWVQzGnSffbuS6h9/kuoffZE5JPuccX8WWNYlbaUH4F7kSmYme3dNMWWEeJ86fle4oU5I1p4aG1Lf28KG/f4KBQSfuzta/+CBzSvKnMeH06Y/Fae8doKM3xoKyAgryIu96vrGjjyffauTxtxp58q1G2noGiObm8IE1VVxw6kLOO3EuRdGsqvUiabXlusc4bm4pN35+zDMwaaVTQyMsLC/kWx89gavvfZWPnDQvtEUAIJqbw5yS/HEzVpXmc8mGxVyyYTGxwTg79rXyy5f38+Ar+3n41YPMKsjlMxuX8AdnLR/uc4jHnY6+GLMKcjNmsotIJth7qIu9Td187n3L0h1lyrKuEAB87sxlNHf189Fp7AtIt9xIDmcsr+SM5ZX87wvX8tw7zdz2bDU/fmYvNz39DqcsKqOlu5+DbX30D8ZZWFbA+1bO5n2rZrOgrID+WJyBwTgVRVE2TTAjsrW7n7cOdtLWM8DskihVJflUFkeJJPsozCA/NzLma0Vmsuuf2E00N4ePn7Yw3VGmLCsLQU6O8fXzjk93jMBEcoyzVs3mrFWzOdDWy61bq9le3cKKOcXML0uMgnq1rp0n3mrkFzvqjnj9mnmlXP7+FVy8biH7mnt48q1Gfr3rEK/Wt3Gwve+ox1+/tJzLfms5HztlwTHPl3B3Drb3sauhk5wcKIrmUhyNMKswj/KivGkvNv2xOF19MXpjg/QOxDESlxgc3QnfOzCIO8NzSYIy1HIryc8dLrISXvuau7lzey2fPXMp82Zl3hDwrOsjkMPcnV0Nib/u8yI5RHNzeLW+nRuf2sMbBzqI5ubQH0ssqrdyTjHrl1awZn4Jx88rpaIoSlNXH4c6+mnp7iee/DXq6Y9x30v17G3qZt6sfNYtKWd/Wy/1rT209QywtLKIVVUlrKgqpiA3gieC0DcYp7M3RldfjIaOPl7f305L98C42YuiEeaW5nPc3FKOn1fCqqoSZhXmUZCXQ0FehKbOfmqau6hp7qatJ0ZhXg6FeREiOTm0dvfT2NlHU2c/rd39tPYM0N0/eMQxSvJzOXVxGSctnEVjRx+v7W9nd2MXg3GnrDCPBWUFLCovZNXcEo6rKmHV3GLmzSpgTkn+Ef05Y+mPxbn/pXrebuiktTvxOTZ19rO/rZeD7b3E4k6OQWVxlMriKHmRHOKe+Ln1x+J09sXo7IvhDicvmsX6pRWsW1LOovJCKoqilBfnUZQXwcwwEq01nQ4Mxl/c/Qp3bqvliT/bwoKywnTHGdNEfQQqBHIEd+fpXU08/OoBTlhQyubVVVNaKiMed554q5FbfrOX2pYeFpYXsqi8gNKCPKqbutjd2EV1UxcDg4d/96K5OZTm51Kcn0tFcZQT5pWyduEsVs8rwTC6+2N09Q/S3jNAS1c/Ld0D7G/r4e2GTvYe6iIWH/v3uLwoj4qiKL0Dg/QMDDIQi1NRHGV2ST5ziqNUFEcpT7YyivNzKciLUJCXKICv1LXx0r42Xt/fTlVpPmsXzGLtwlkU5EU40NbL/rZealu62XOoa7hgDinJz2VheQHLZhezYk7idsL8UtbMLyWSY/x8Wy3/+vhu6lp7yIskhhhXFOVRWRxlYVkh88sKqCyO0tYzwKHOfpo6+xiMO2ZGjkHeiM9rMO68XNvKzrp2+idYDTdx2i6H/NwIxdEIpy0pZ/PxVWw+vopF5eH88soE9a09nHPdY3xm4xK++8lT0h1nXCoEEjpDv3fT8RdqfyxObUs33f2JL/vegUEqiqIsqSyaluvFxuM+4TyNwbizr7mbPYc6aezo41BnP4c6+6ht6aG6KdGBOFQozKAkmktHX4z1S8v5+nnHs3n1nGn5HPpig7x5oIOG9j5auvtp7R6gJ3kqy3EG44mWRO/AIG09A2zd08yB9l4g0aL49OmLuXjdIiqKo+85Sza5+t6d/PS5Gh770y0srgjv2mIqBCJpFE8uTvj6gXZe399OXUsPHz9tIe+fpgJwrNydtxs6eeLNRu55sY5X69vJixjvWzmbxRWFzC0tYH5ZAacsKuOE+aXkan2sIxxo62Xz3zzGJRsWce2nTk13nAmpEIjIUb1W386d22vZuqeJho4+mrr6GPp6KMyLcNqSMtYuKGNlVTErq4pZM6+U2SEefh00d+eKn2znsTcaeOxPt4R+pWHNIxCRo1q7cBZXL1w7/Dg2GGd/Wy8v7mtle3ULL9S08NPnaugZONyxvnJOMRuXV7BpxWzOO3Eu5UXZc1rp5qf38uhrB/lf4yxImUlUCERkTLmRHJZUFrGksmh4bHw87hxo72VPYxc769vYtreZR147yM+21ZIXMbasmcsn1i3inDVVM3phxJf2tXLtQ69z3olzuTxki8sdC50aEpH3JB53Xq1v594X67jvpXoaOvqI5BgnLyrjfSsqOX1ZBSfML2VJxZHzMjJRW88AF/zgKdzhl1f9dsa0gtRHICIpMRh3nnunmWd2H2LrniZe3Nc6PEy4KBphzfxSNiytYOPySjYurwj1Ei9jOdTZx1dv38Hze5u548qzhpevzwQqBCKSFj39g7xxoJ03D3TwxoEOXq1v46XatuHhtMtmF7F+SXlysmIpC8sKmVeWH8plSp7edYiv3/EibT0DXPvJU7hkw+J0R5oSdRaLSFoURiOsX1rB+qWH/3Luiw2ys66d7dXNvFDdyjO7m7jnxfp3vW5BWQEbllWwaUUlm1ZUsmZeadqG2vbFBvnBf7/Nvzy+m5Vzivn3L2wavsrhTKFCICIplZ8bYcOyiuHTKu5OfVsvexo72d+amLG9q7GT599p5oGX9wOwem4Jv3fmUj61fjFlRam73sZvdjfxnXteYU9jF7+zYTF/ffFJM3Jpd50aEpFQck9MxHvq7UPc8XwNL9W2UZCXw4fWzudDa+exZU0VswK6CNNbBzv4tyf2cNcLtSypLOT/XHwyW9bMDeRYqaI+AhHJeDvr2vjpczU8/OoBDnX2kxcxfmvVHD51+iI+ctL8SS30N5H61h7ueH4fD76yn7cbOsnNMa7YvJKvnrs68NVmU0GFQERmjMG4s6OmhUdfO8gDL++nrrWH0oJcLjx1AZtWVA7Pfp7KEuhPvd3IV27fQXvvAJuWV3LBqQs4/6T5zM3AJaXHo0IgIjNSPO5sfaeJO7fV8tDOA8OznqORHE5eNIszV85m04pKTl9SMWbfgrtz06/f4XsPvs7quaVc//sbWDGnONX/GSmRlkJgZgXAk0A+iU7pO939L0ftcxlwHTB0dZQfuvuNE72vCoGIjCU2GOedQ128tr+dnXVtbK9u4eXatuElyiuLoyybXcSi8sLh1sLB9l6e2d3ER0+ez9/+zmkUz+DZ0OkaPtoHnOvunWaWB/zazB5y962j9rvD3b8SYA4RyQK5kRxWzytl9bxSLl63CIDu/hg7alrZWddGdXM31U1d7KxrG76QUo7BNz+yhi+ds2pGzHo+VoEVAk80NTqTD/OSt8w6DyUiGa0omsvZx83h7OPmpDtKqAW6wLiZRczsRaABeNTdnx1jt0vM7GUzu9PMlozzPleY2TYz29bY2BhkZBGRrBNoIXD3QXdfBywGNpnZyaN2uR9Y7u6nAv8F3DLO+9zg7hvdfWNVVVWQkUVEsk5KLjnk7q3A48D5o7Y3uXtf8uGPgA2pyCMiIocFVgjMrMrMypP3C4HzgDdG7bNgxMOLgNeDyiMiImMLctTQAuAWM4uQKDg/c/cHzOwaYJu73wdcZWYXATGgGbgswDwiIjIGTSgTEckCE80jSEkfgYiIhJcKgYhIlsu4U0Nm1ghUJx+WAW0T3B+9LQ84NMVDjnyPyTw3ett4jyfKO2eKOSfKeCw5J8p2rBmPlnM6Mw5t0897cjkz9ec9Vt7p/Cxn2s+73N3HHn/v7hl7A26Y6P7obSQ6qY/5GJN5bvS28R5PlHeqOSfKeCw5j5LtmDJO92epn7d+3kF/ljP15z3WLdNPDd1/lPvjPX+sx5jMc6O3jff4aHmn4mivm2rOibIda8ajvXY6Mx7tWBPRz3vsf49F0D/vkff1855424TvkXGnht4LM9vm4/Sah0km5FTG6ZMJOTMhI2RGzjBmzPQWwVTdkO4Ak5QJOZVx+mRCzkzICJmRM3QZs6pFICIiR8q2FoGIiIyiQiAikuVUCEREspwKQZKZvd/MrjezG83smXTnGYuZ5ZjZd83sn83s8+nOMx4z22JmTyU/zy3pzjMeMys2s+1mdmG6s4zHzE5Mfo53mtmX0p1nLGb2CTP7kZnda2YfTneesZjZSjO7yczuTHeWkZK/g7ckP7/PpivHjCgEZvb/zKzBzHaO2n6+mb1pZrvM7M8neg93f8rdvwg8wDgXyEl3RuBiYBEwANROd8ZpzDl0mdKCIHJOU0aAbwE/m+58I/JMx+/l68nfy88A0z7kcJoy3uPuf0xi9eD/EdKMe9z98unONpYp5v0UcGfy87soFfnGNNXZgmG8AZuB04GdI7ZFgN3ASiAKvASsBU4h8WU/8jZ3xOt+BswKY0bgz4Erk6+9M6yfJZCTfN084LaQZjwPuJTEl9eFYf0sk6+5CHgG+L2wZky+7u+A00OeMZD/b95D3m8D65L73B50tvFuQV6PIGXc/UkzWz5q8yZgl7vvATCz/wAudvdrgTFPBZjZUqDN3dvDmNHMaoH+5MPB6c44XTlHaAHyw5jRzD4AFJP4n7HHzB5093jYcibf5z7gPjP7JXB72DKamQHfBx5y9xemM990ZUylqeQl0WJeDLxIGs/QzIhCMI5FwL4Rj2uBM4/ymsuBmwNLdKSpZvwF8M9m9n7gySCDjTKlnGb2KQeorNkAAARLSURBVOAjQDnww2CjDZtSRnf/DoCZXQYcmu4iMIGpfpZbSJw+yAceDDTZYVP9vfwqiRZWmZkd5+7XBxkuaaqf42zgu8B6M/t2smCk0nh5fwD80Mwu4L0t5/GezORCYGNsm3D2nLv/ZUBZxjOljO7eTaJYpdpUc/6CRNFKpSn/vAHc/cfTH2VCU/0sHydxve9UmmrGH5D4QkulqWZsAr4YXJyjGjOvu3cBf5jqMKPNiM7icdQCS0Y8XgzUpynLeDIhI2RGzkzICJmRUxmnX6jzzuRC8Dyw2sxWmFmURMfgfWnONFomZITMyJkJGSEzcirj9At33nT1Uk9zL/1Pgf0cHlZ5eXL7x4C3SPTWf0cZZ0bOTMiYKTmVUXndXYvOiYhku5l8akhERCZBhUBEJMupEIiIZDkVAhGRLKdCICKS5VQIRESynAqBzAhm1pni491oZmun6b0GzexFM9tpZvebWflR9i83sy9Px7FFQBevlxnCzDrdvWQa3y/X3WPT9X5HOdZwdjO7BXjL3b87wf7LgQfc/eRU5JOZTy0CmbHMrMrM7jKz55O3s5PbN5nZM2a2I/nvmuT2y8zs52Z2P/CIJa609rglrg72hpndllxymeT2jcn7nZa4ctxLZrbVzOYlt69KPn7ezK6ZZKvlNyRWqsTMSszsv83sBTN7xcwuTu7zfWBVshVxXXLfbyaP87KZ/fU0foySBVQIZCb7J+Af3P0M4BLgxuT2N4DN7r4euBr43ojXnAV83t3PTT5eD3ydxHULVgJnj3GcYmCru59GYnnwPx5x/H9KHv+oC4yZWQT4IIfXoOkFPunupwMfAP4uWYj+HNjt7uvc/ZuWuDzkahJr3q8DNpjZ5qMdT2TITF6GWuQ8YG3yj3iAWWZWCpQBt5jZahJLF+eNeM2j7t484vFz7l4LYGYvAsuBX486Tj+JK2EBbAc+lLx/FvCJ5P3bgb8dJ2fhiPfeDjya3G7A95Jf6nESLYV5Y7z+w8nbjuTjEhKFIZXXrJAMpkIgM1kOcJa794zcaGb/DDzm7p9Mnm9/fMTTXaPeo2/E/UHG/n9mwA93to23z0R63H2dmZWRKCh/QmJ9/88CVcAGdx8ws70krgM9mgHXuvu/TfG4IoBODcnM9gjwlaEHZrYuebcMqEvevyzA428lcUoKEssOT8jd24CrgD81szwSORuSReADwLLkrh1A6YiXPgx8wcyGOpwXmdncafpvkCygQiAzRZGZ1Y64fYPEl+rGZAfqaxy+QtXfANea2dMkLioelK8D3zCz54AFQNvRXuDuO0hc2PxS4DYS+beRaB28kdynCXg6Odz0Ond/hMSpp9+Y2SvAnby7UIhMSMNHRQJiZkUkTvu4mV0K/K67X3y014mkmvoIRIKzgcSFyQ1oBb6Q5jwiY1KLQEQky6mPQEQky6kQiIhkORUCEZEsp0IgIpLlVAhERLKcCoGISJb7/3JpPASwEr3ZAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.lr_find()"]},{"cell_type":"markdown","metadata":{"id":"hM9VDeMH2QGM"},"source":["It looks like we'll need to use a higher learning rate than we normally use:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"sJCBNDw-2QGM","outputId":"22f8eb93-2348-41d6-97d5-379708635052"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.9694122.2145960.24203800:09
12.4427301.8459500.36254800:09
22.1571591.7411430.40891700:09
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn.fit_one_cycle(3, 0.03, moms=(0,0,0))"]},{"cell_type":"markdown","metadata":{"id":"y69t0Xfn2QGM"},"source":["Because accelerating SGD with momentum is such a good idea, fastai does this by default in `fit_one_cycle`, so we turn it off with `moms=(0,0,0)`. We'll be discussing momentum shortly.)\n","\n","Clearly, plain SGD isn't training as fast as we'd like. So let's learn some tricks to get accelerated training!"]},{"cell_type":"markdown","metadata":{"id":"BQYdWyzP2QGN"},"source":["## A Generic Optimizer"]},{"cell_type":"markdown","metadata":{"id":"YfRBVQzn2QGN"},"source":["To build up our accelerated SGD tricks, we'll need to start with a nice flexible optimizer foundation. No library prior to fastai provided such a foundation, but during fastai's development we realized that all the optimizer improvements we'd seen in the academic literature could be handled using *optimizer callbacks*. These are small pieces of code that we can compose, mix and match in an optimizer to build the optimizer `step`. They are called by fastai's lightweight `Optimizer` class. These are the definitions in `Optimizer` of the two key methods that we've been using in this book:\n","\n","```python\n","def zero_grad(self):\n"," for p,*_ in self.all_params():\n"," p.grad.detach_()\n"," p.grad.zero_()\n","\n","def step(self):\n"," for p,pg,state,hyper in self.all_params():\n"," for cb in self.cbs:\n"," state = _update(state, cb(p, **{**state, **hyper}))\n"," self.state[p] = state\n","```\n","\n","As we saw when training an MNIST model from scratch, `zero_grad` just loops through the parameters of the model and sets the gradients to zero. It also calls `detach_`, which removes any history of gradient computation, since it won't be needed after `zero_grad`."]},{"cell_type":"markdown","metadata":{"id":"QqVNah952QGN"},"source":["The more interesting method is `step`, which loops through the callbacks (`cbs`) and calls them to update the parameters (the `_update` function just calls `state.update` if there's anything returned by `cb`). As you can see, `Optimizer` doesn't actually do any SGD steps itself. Let's see how we can add SGD to `Optimizer`.\n","\n","Here's an optimizer callback that does a single SGD step, by multiplying `-lr` by the gradients and adding that to the parameter (when `Tensor.add_` in PyTorch is passed two parameters, they are multiplied together before the addition):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_yk3b6aB2QGN"},"outputs":[],"source":["def sgd_cb(p, lr, **kwargs): p.data.add_(-lr, p.grad.data)"]},{"cell_type":"markdown","metadata":{"id":"a4orkQxj2QGO"},"source":["We can pass this to `Optimizer` using the `cbs` parameter; we'll need to use `partial` since `Learner` will call this function to create our optimizer later:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"UePNNAXJ2QGO"},"outputs":[],"source":["opt_func = partial(Optimizer, cbs=[sgd_cb])"]},{"cell_type":"markdown","metadata":{"id":"mknXR3aV2QGO"},"source":["Let's see if this trains:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"mc3HNOU02QGO","outputId":"b6bb9575-9e8d-489d-cf32-778a82cfbfa6"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.7309182.0099710.33273900:09
12.2048931.7472020.44152900:09
21.8756211.6845150.44535000:09
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner(opt_func=opt_func)\n","learn.fit(3, 0.03)"]},{"cell_type":"markdown","metadata":{"id":"xciGP7332QGP"},"source":["It's working! So that's how we create SGD from scratch in fastai. Now let's see what \"momentum\" is."]},{"cell_type":"markdown","metadata":{"id":"1YSRXv6H2QGP"},"source":["## Momentum"]},{"cell_type":"markdown","metadata":{"id":"j362EO_E2QGP"},"source":["As described in <>, SGD can be thought of as standing at the top of a mountain and working your way down by taking a step in the direction of the steepest slope at each point in time. But what if we have a ball rolling down the mountain? It won't, at each given point, exactly follow the direction of the gradient, as it will have *momentum*. A ball with more momentum (for instance, a heavier ball) will skip over little bumps and holes, and be more likely to get to the bottom of a bumpy mountain. A ping pong ball, on the other hand, will get stuck in every little crevice.\n","\n","So how can we bring this idea over to SGD? We can use a moving average, instead of only the current gradient, to make our step:\n","\n","```python\n","weight.avg = beta * weight.avg + (1-beta) * weight.grad\n","new_weight = weight - lr * weight.avg\n","```\n","\n","Here `beta` is some number we choose which defines how much momentum to use. If `beta` is 0, then the first equation becomes `weight.avg = weight.grad`, so we end up with plain SGD. But if it's a number close to 1, then the main direction chosen is an average of the previous steps. (If you have done a bit of statistics, you may recognize in the first equation an *exponentially weighted moving average*, which is very often used to denoise data and get the underlying tendency.)\n","\n","Note that we are writing `weight.avg` to highlight the fact that we need to store the moving averages for each parameter of the model (they all have their own independent moving averages).\n","\n","<> shows an example of noisy data for a single parameter, with the momentum curve plotted in red, and the gradients of the parameter plotted in blue. The gradients increase, then decrease, and the momentum does a good job of following the general trend without getting too influenced by noise."]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"khasgt3Y2QGQ","outputId":"bbdc28c2-c817-4bbd-83e4-31c2ef231670"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3hU1dbA4d8mBEhACEhNAEFRBGnRWDCCFAUuIgYVBXvnqlgRDVe5dkWxtw8VvIKiwBUMCCgXBKQjwURRBKkKoYUSigQIyf7+2DNhMpkWppwp630enpCZkzkrgaw5Z++111Zaa4QQQkS/SlYHIIQQIjQk4QshRIyQhC+EEDFCEr4QQsQISfhCCBEjKlsdgDt169bVzZo1szoMIYSIKCtXrtytta7n6rmwTfjNmjUjOzvb6jCEECKiKKX+dPecDOkIIUSMkIQvhBAxQhK+EELECEn4QggRIyThCyFEjJCEL4QQMUISvhBCxIiwrcMXIhpl5eQxctZathUUkpyUwNCeLclITbE6LBEjJOELESJZOXkMm7KKwqJiAPIKChk2ZRWAJH0REjKkI0SIjJy1tjTZ2xUWFTNy1lqLIhKxRhK+ECGyraCwQo8LEWiS8IUIkeSkhAo9LkSgScIXIkSG9mxJQnxcmccS4uMY2rOlRRGJWCOTtkKEiH1iVqp0hFUk4YuoECnljhmpKWEZl4gNkvBFxPO13DFS3hSECBZJ+CLieSp3tCf0k62BlzcJEU1k0lZEPF/KHU+mBt7+JpFXUIjmxJtEVk5eQOIWItTkCl9EvOSkBPJcJH3Hckdf3hScr+b/Pnrc452DXP2LSCNX+CLi+VLu6K0G3tXVfEFhkcuv2VZQyFNZq3hkYu7JXf0fOQK//+7T9yZEIEnCFxEvIzWFl69uS0pSAgpISUrg5avblrna9vam4GrIx51aCfGMX/YX2ulxd0NEWTl5pI+YS/PMGXR6aTbrOnaH1q358MJrSH/5exkiEiETkCEdpdQnQB9gl9a6jYvnFfA20Bs4DNymtf4pEOcWkSHYwx+O5Y72cz0yMbfcudzF4Gt7g4T4OJSiXLK3c34d58nigd98xJm5S1jWpA2DfpxCXs16DD3Yl2e/+Y2Cw0Vefzb27y2voJA4pSjWmhQZThI+CtQY/qfAe8A4N8//AzjT9udC4P9sH0UMCGWXSFfnemRiLtl/7uWFjLZuz+duHqB2YjyJVSqXeZN4ZGKu2/M7Dx053jn0XrOI+5Z9xfgOvXiqx318PPl5npo7hl8anUVucsvSeN39bJy/t2KtvX6NEI4CMqSjtV4A7PVwyFXAOG0sA5KUUo0CcW4R/nytkHEc+kgfMfekhjpcnUsD45f95fH13A35PH3lOSzO7MamEVewOLMbGakppUn9lKN/8/ScD2m6bzsAyvY6juxX/Gflb2bkzLdYmXw2z3YfhFaVGHLFo+w85VTezxpB2tbfuGRTDmjtdmjI07CTdN0UvgjVGH4KsMXh8622x8pQSt2jlMpWSmXn5+eHKDQRbL5WyASiBNLduTR4TIi+zAPYDe3ZkobHD/PPZV9x+8pv+O4/g2l0YDc3XtTUHF9cDFu2wKJF3LZpEfcvmcjoyc/zd5UE7s0YxrHK8QDsTziF+67KpO7hfXw1/gk+nzSct6a/RtXjx1x+H96GnVzdoZyMQLzxivAUqrJM5eKxcsOgWuuPgI8A0tLS3A2TigjjS9mkL4un3HGcH6hkG9d2pWhrHgweDNdfD506lXveY9uDbdtg4UJYsICMBQvI+PVX85qV4tCV4pgzdTjV17SARzebZH/8OABP2758a816/DPjX+w65dQyL7uq0Zncct3zNDi0h9P2bWfIovEkH8jnmdteKBeCu5+jXZxy9WtWMbJJS3QL1RX+VqCJw+eNgW0hOrewmC9lkyfbK975zsBdsu+yIZtZnz4I778PXbvC66+D87EbNsBNN5k3hG0O/z0ffhhSUmDAABg3DpKT4YUXYMEC4g//TfXZ31G9/qlw9Ch07AhDh8KHH8J338GaNUxbso7rh00gp3ErUpISuOmipqV3EkkJ8fzUvB3TWnfh3fSBDO77OO23r2PS2Edh3TqPP8fKxcepd+jESKq7793xZ+Xtyl02aYluobrCnwYMVkpNwEzW7tdabw/RuYXFfOkS6ctdgCveyinji4t4bMFnDPpxCvtbnA2ffQuvvgqPPQbLlsEnn5hE/fzz8H//B/Hx5o1g1ix480247TaYNw/S0szzHTpAZadfm06dICfHbQx9gb4dW7h93vEOJadjT5ZndKTz0Lvgootg6lS45BLgxM9xyKSfKdaaN6e/zpVrFnLuA+PZm1iLFA8/K1+v3GWTlugWqLLML4EuQF2l1FbMnWw8gNZ6FDATU5K5HlOWeXsgzisih7cukUN7tiyTkMC3XvGeElFaSQHDxz9L++3r2Nj/Fk4fOwoSEmDyZHjtNcjMhJUrYc8eOHQI7roLnnnG/P3OO+GOO2DiRNi0CW65xSR9J4EoN3X5s+nUBq64Arp3h/Hj4dprS48FmD7yU65csxCAW1dOZ1S3Wzz+rHwdMjvZN14RGQKS8LXWA708r4H7A3EuEZ1Otle8Y4KqVXiQ/dVqgFK0jj/GV58/BYUFMHkyp1999YkvUsoMu5x/vknkl14KI0ZA69Ynjpk/Hz74wLwp/P03NG1a7txBHe9u0QKWLIG+feGGG6BOHejWzbx2w0r0mv0OGxs0Iy+hNrflTOf0kc9ypYdz+nrlfrJvvCIyKO1l3M8qaWlpOjs72+owRJizJ924QwdZ/v4tvN/xOj7tdD3zZ79M/Z9XmInW888/+RNs2mSGdh59FJo1K/NU+oi5Lq+GU5ISWJzZzef4Pb7JFRRAejrk5cGiRVC/PnTpAn/9Zd4QDh40Qz7vvAMPPOD2PPZYqxYdJb6kmENVE93GKj2CIptSaqXWuvztKNI8TUQ4eyKa8XEW1YuOcP/yr+jcrwv1f1xkkqA/yR6geXPzOi74O97t0x1CUhJ8+60Zz+/d23y+ebN5rF07c8zFF8Mbb0CbNrBrl/mzc+eJv+/axawt22DXLmocK6QExZLT2jG9XXcuefyecnHJJi3RS67wRXQYO9ZMsIJJiocOQX6++XuQ+HuFX6Gvz8mBzp2hqAimT4fLLjvx3NSpkJFR9vhKlaBePXNHYPuzgUTm7NEcP3iIvmsW0mTfdg5Urc7ETv1p9O8n6NPpbJ++bxHe5ApfRL81a0yFzYAB8NlnJiEGMdmD/+PdFbpDSE2FxYtNff+555Z9rm9fmD3bVA/ZE3ydOibpOzjD9icrJ48ek3+h9eZfuefHKdw951P2LZ7CvDGT6Dqwp0+xi8gkCV9EhzVr4MwzTX381KlmotMLX8aqPR3j76bkFa6IsQ/hOFOq7BW/FyNnraXweAkrG7dmUOPWtNmxntGTn6PRg4PosmEUD1/hvueQiGyS8EVA+ZtET9qaNabKpmlTM25dpYrXOL2Nn/tyjD/j3VZVxDjfQfzasAWZvR7g06+epf+MTxh29A5AVtZGI+mHLwLGl344Ad828PBhePBBk/BTU81jVauaq14PfFlRGuxVpxXp3xNIru4g5p9xPhPbXs4/l0/mrD9X8/0HE6B6dbNGQUQNucIXAePL4h6vx+zfbxJ2tWreT7h8uamj/+MPk/SHDPE5Vl/Gz0Ox6tTTHUKwyiNd3VkAvND9Li7ZnMvrM94kr1Z982b6/fdw3XV+n1OEB7nCFwHjdxI9cAAaNYLERDjjDLPSdMgQGD3a1KDv3m0OPnYMnnzSlCMeOWKS0ttvm1W0PvK25aGvxwSLqzuhRybm0iwAHSwd7ywcHaxanSf+8SAt9m7l0k22/Yk2bvTjuxDhRhK+CBi/k+iuXVBYCH36mPr5vDyz2vXuu02/mnr1oG5dswr1pZfg1lvhl19KV6BWhC8N3Xw5Jljc9fWHAAyDYZL+4sxuvHV9hzLf46LmqUw4t/eJAyXhRxVJ+CJg/E6iBw6YB+66CyZMgNxcU0+/cSPMnAlvvMGmS3uxJDGZu68eTvpZN5G18VCZ1/K1l7sv4+dWjbGD92GjQM0luPoea7z9xolVxfPnw759fp9HhAcZwxcB40uZYkZqCmjNitc/5mjBAZZ2urL0DWHwqPm8BzzwzTq6N8kzx8bFmdWuzZuT1bAdw/a2ovBM25WvU9VMRXvb+FJhY9WqU2+97+HEm4K/Y/0uv8cpU0wfofnzTcnn7Nmmtl9ENEn4MS7QE4NeE+QPP5Dx+ONk/Pij+XzIlWQBw6asIn1PAQCbiiq7TNTeJnz92UQl3LibWHWUnJQQvAZuqammRfTMmdCvn0n6c+ZI0o9wMqQTwwJeIunN3Xebxl/btpmJ2BYt4K67yH/8Ke79/lOu/+V/AByqkuByyMLbpHA09XJ3nlh1LjK1D4MFfcOS3r0hKwtWrzZJf6+nratFuJOEH8NCtbtRVk4enV+cDaNHM6ddF6ZNmmf6zY8ZA7t3c/ecTxm8dBKdN/3EptqN2GHbBtA5UXubFLayqiYY7BOrm0dcwZvXd3A5lxCSN7l//ONE0u/eXWrzI5gM6cSwUCQL+11Etf3mynBh/ZZMmrmekmoJZHTuDHv30unVeWw5cKzc1zonam8rU6O5l7u7obKQbVjSq5dpWXHVVSbpz5ljKqZERJEr/BgWiiti+11E0hFTTVNQrUbpXURWTh7pry1gy4FjbocsHHmrmrGyqsYqIS0d7dkTpk2DtWvhyisD//oi6OQKP4aF4orYfreQVHgQgP3VTgFOzBfYz60x49Qak6jdTR57mxSOtV7u/jZwc8ftZH6PHmYbyMxM2LEDGjYMwHchQkUSfgwLVrJwZB9yqHXEJPyCBJPw45RyubCoIrtFCSPQb3JeK38uvtgcuHKlWQ0tIoYk/BgX7Cti+12E45BOQnyc23LDSKyoiTZey1tTU02v/RUrJOFHGBnDF0FlH1dvhknk1RrWd9nHxS5SK2qiidfJ/Bo1oFUrkB3pIo4kfBF0GakpPHxuXVCK756+kozUFEv71AjPfJrM79jRrL59+WWz7aKICDKkI1zyZwWu89eOPGU7F48bZyb44kySD8X8gTg5Pk3mv/SS6bHzr3+ZvkejR/u/YbwIOtnEXJTjPGkH5hfelxJHx69NPrCLp74fTe8/lnCoaXNqjPsPXHppsMMXAeDzG35WFtx/v6nYefZZ07bay+YzIrhkE3NRIf70pBk5ay2df13IwJ9nccHWX1EaXu18CzMvH8h8SfYRoUJ3dxkZ0LUr3HcfDB9uupu+/LIk/TAlCV+U427SLq+gkPQRcz0mgk4/ZPHSd++xtVZ9Zp3Zkdc630JerfqoQ+6bgInwcVLN2GrVgs8+g5o14ZVXzKY0b77pNekHa0cv4Z4kfFGOu+X6Ckofd5kI3nqLEd+9y/zm5/HPfsM4En9im0KpvokMJ3N3V5q4a17BiPR8rn/7bfMG0LAhNGgADRqwQVVn9l7ITWjAhg4dubD9aUxemRf4Lp/CI0n4ohxXk3b2VbCOShNBh2R48UUYPpy87r158PxBHNEnKnCk+iZyVLS/Upk7AqV4Iv02fq7dlLsS9nB68SHYuZNDi5fRYOdO/nnMvMbRbyqz5LT2HG2ZzldtL0MrUywYqa2sI4kkfFGOqwoad5txbNt32Cyzf/VVuOUWUsaM4blVO+VWPUJ5a8bmPAxz+NjxsncESvHFOd35wWHFdM8Rc8krKKRa0RHab1/H5euW0XPdMkZ++w6/NWjB6ganl365LLwLLkn4wiXnFbjptl9aR0qX8PoPo2H5NDNp9+67UKlSzPWziSaeSjJdje+742rj+iPx1VjetC3Lm7Zl1lkd+e8XmdQ5vL/M18nQX3BJwo9SzldiXc+ux7w1+Sd91T20Z0vGffA1PX6Zx28NzuDblum8NutdMlZ9D48/DiNGSGVGFPC0PiJ9xFyPO3A50piLhKE9W7q8a9hfrQYA1/z6PU327+TLDr0A6Hp2vcB9M6IcqcOPQq7q6J15ras/doyfXnyXw5O+4ufaTbl06yrabPmdEqWopDV7ayRR51ABvPCCWXwjyT7qNc+cUW4ex5uE+DiuOS+lzAQtQP2De/jxg1tLP7+/7xPMaNVJmucFgKc6fGmtEIVcVVo4c7uz1aFD8MYbFDY5jXOfe4xL1izj/qWTSPj7AC/1GMS33//CT0+/zoGEmjxz2SDS4zqSlbstSN+JCCeehlvi3LzhFxYVM29Nfrn+SQUJNTkcX5Ufmp/LqgZn8PJ379KkYIeM4QeZDOlEIV9/acoct3u3GYN/913Yt4/fT2/PW5feyx91T6PJ/h2saHwOKEXSgm0cLW5N4R0fmK+TcrqYMbRnSx6emOvyuRKtXVZygfl/Zp/XKb37BC69ZzR7EmvS6OAeZv7nAd6b+goP3v9uML+FmCdX+FHI14mv0uPefReaNoXnnjOtD5Yu5Zr+L7Lg9PPYUbMuK5q0KR2yKSgsCsk+uCL8ZKSmUDsx3uVzyUkJPjVds3dPTUqIJ79GbUoqxZFXqz5Dez9M+x3rGLNmclBiF4Yk/CjkqhOls9LaeK3NDkYdOphNqr/+Gi66qMLVEnIrHhuevvIct11Ofe2AmpGaQu7TPXjLYWP23y7oxoYBt9Ni/MfwzTfB/jZilgzpRCFXlRZuq3Q2b4a9e+GWW0yPcxt35XnV4iux73D5drhSThcbfOly6usajHLlu0fTYW0u3HYb5OZCkybB/FZiklTpxLrJk+Haa2H5crjggjJPuep1Apx0J00hvFq3Ds491wwxzpgBzZpZHVHECXq3TKVUL+BtIA4YrbUe4fT8bcBIIM/20Hta69GBOLc4OfZkfsO0SQyqVImZJafS1+kYTwuoZCWtCIozz4Rp0+Dqq+HCC0375Y4drY4qavid8JVSccD7wOXAVmCFUmqa1nq106ETtdaD/T2f8J9jnX6bHetZd2pTnpixjpKq1XxK3LKSVvjLY6fMrl1h6VLo08f8/dNPYcAAS+ONFoGYtL0AWK+13qi1PgZMAK4KwOuKICmt09eac3ZuYFXDFlJpI0LGfsGRV1CI5kSnzKycvBMHnX02LFtmhhkHDjQVZGE6/BxJApHwU4AtDp9vtT3m7Bql1C9Kqa+UUi5nY5RS9yilspVS2fn5+QEITbhir6hpdHA3dQ/v59cGZ5R5XIhg8tSCuYy6dc2+uTffDE8/DY89FsIoo1MgEr6rJXbOb8XfAM201u2AOcBYVy+ktf5Ia52mtU6rV096agSLvaKm7Y71APzasEWZx4UIpgq1YK5aFcaOhUGD4I03YMmSIEcX3QKR8LcCjlfsjYEya+211nu01kdtn34MnBeA8woPsnLySB8xl+aZM0gfMbfM7fLTbRO5M3cGDy6ZQLGqxOr6zaVnvQgZXxZolaEUvPaaKdO85x44diyI0UW3QCT8FcCZSqnmSqkqwABgmuMBSqlGDp/2BX4PwHmFG+7GSH/4dBq0bUuPPh0ZPuv/qFl8lFcvvZVT69WWskoRMr4u0CqjRg14/3347TeT/MVJ8btKR2t9XCk1GJiFKcv8RGv9m1LqOSBbaz0NeFAp1Rc4DuwFbvP3vMI9V2OkiQV7OOfBh6BODXNrfMUVND3rLIYBw6wJU8QoXxZvuXTllWbNyHPPQf/+poRTVIgsvIpCzm1slS5h7KSnuWDrb1RbuQLatbMsNiH8sm2bWRGelgZz5khbbhekPXKMcR4LvW/pf+m8OYe3+g6WZC8iW3Ky2Wxn7lyzUbqoELnCD1P2hSl5BYXEKUWx1qT4eOvruLDqwr9W8cWEJ5nZujPF4z4j49zGIfoOhAiSkhLo1AnWroU1a0z5pigV9NYKIrCcd6wqtr0p5/nYe97+3KivV/DONyPJOzUZNWqUJHsR9tz1byo33v/hh5CaCkOGmLJN4RO5wg9DrjYMd+TzNnD2xmjz5kGXLoELUIggcLU1Z3wlBQqKik/kqdJmfV99AC+9BD/8AJ07WxFyWJIx/AjjbcWrzytit241H9u29TMiIYLPVXVZUYkuk+zBYVXuk0+arpoPPADHj4cy1IglCT8MeVvx6ul5xwVXX0xeTHHVqlCnTqBDFCLgKtLaY1tBISQmwptvwi+/wKhRQYwsekjCD0OedqzytEDFecHVKfk72Jp4qmwyLiJCRVp7lB7brx9cfjkMHw67dgUpsughCT8M2ff9TLH9p46z1RqnJCV4XBHrfEvc6OBu8k6pK10wRURwdaETX0kRH1e21r7MRY9S8M47cOgQPPVUqEKNWFKlE6Yq2nM+Kyev3ERvw4O7Wd6kjXTBFBHB3QpcV4+V+d04+2y4/Xb44guT/KtVsyL8iCAJPwrYh3IcVSoppsGhvWyvWU+6YIqI4e5Cx+vFT0YGfPyxqdjp2TNI0UU+GdKJAq6qG5IP5BNfUszupPrSBVNEv65dISHB7IMr3JKEHwVcDdn0XrsYgIv/OUC6YIrol5AA3bvD9OmyM5YHkvADyFMP+mByNWTT77d5/NqkFT36pockBiEs16cPbNpk2i0IlyThB4hP+3QGiXN1w9m7NtEqfzPFN9wY9HMLETZ69zYfp0+3No4wJgk/QHzepzMIHMs4FXDThkWUVK5M+yH3BP3cQoSNJk2gfXv4739lWMcNqdIJkArt0xkEpdUNR47A6XebSgXZF1jEmvvvN9sgTpgAAwdaHU3YkSv8AKnwPp3B8vHHsH07PPpoaM8rhEUc58465Tej4Oy2MHSoWYwlypCEHyAntU+nr/bt8+24wkLTPfDSS02ZmhBRznnubMuBY9x70e2Ql2d+F0QZkvADxHkc3VsbBJ/Nm2ean82Z4/6YzZtNE6kuXWDHDnj2Wdn6TcQEV3NnSxucxbepl8Prr8Mff1gUWXiSMfwAqmg7BJ/MnGk+LlkCl11m/q41rFoFWVnw9deQm2seb9sW3n7bXOELEQPczZH9++Jb+MefK+G668zvTmJiiCMLT5Lww92ePeZjUREsXmwSfFYWbNhgruI7doSRI83S8hYtrI1ViBCx74zlrhanSuNkGD/elGrefTd8+CHUqBHSGMOR7HhlMVdbupW5S+jYEZYtO/F5fLxZUdivH/TtCw0bhj5oISzkamcsR6U7YqWmwAsvmNbJtWrBXXfB4MHQrFloAw4xTzteScK3kKv/uGX+s5aUQM2a8Pff5tY0I8NcsdSqZWHUQljL0xagKa4umpYuNUOdX31lhkP79oWHHjJDn1E41yVbHIahrJw8hkz62fNirU2bTLIfPRomTjR1xZLsRYxzN26vgMWZ3UqTfWm55tS9pHe4h++mL4XMTFi40FSxdegAY8aY6rYYIQnfAvYr+2I3d1el/6Htdzjt2oUoMiHCny9rXly1Onlk8R6yrr0PtmwxF1FghnmaNIGpU0MQufUk4VvAVSmZo+SkBFN7/8QTZrxREr4QpXxZ8+Kx1UlCAtx5p6lumzfPDPNMnhyS2K0mVToW8NRuISE+jqE9zjKVBXl5sGgRVK0awuiECG/udsZyHLd3N8Zf5ndPKbN2pVkz2Ls3iBGHD0n4FkhOSnD5HzJOKTNhu/wbc8Xx6qtkVWnMyBFz3VfxCBGDXK15sVe8uUv24GY4qE6dmEn4MqRjAXe3pK9f156MuD3w8MPQqxdZ3QZY1nJZiEjiOGbvjgLXrU4k4YtgctuG4awkuP56qF0bxo5l5Ox1lrVcFiKSeJsXA9C42Rs3hhK+DOlYxGUbhjvvhLVrYfZsqF/f8pbLQkQKX34nUtx1rrUnfK2jsi7fkVzhh4svvoBPPoEnnzQraQmjlstChDlvvxPuOtdm5eTxbu4eKC7m8menR/1wqST8IPJ5j9v162HQIEhPh6efLn04qC2XhYgirn5X7Nfq7jrX2sf9/9LVACjcmR/1c2QypBMkzm0T7BOu4DSOqDXccIPpkfPFF1D5xD+JL+VnQoiT+12xj/sXJJwCQK3Cg2y1zZFF6++YJPwg8bTwo8x/ppwcWLECRo2Cpk3LvU5QWi4LEYUq+rtiH/ffX8100Uw6cqjM49FIhnSCxOcJ18mTIS4OrrkmBFEJIezs4/4FtoRfy5bwo3mOTBJ+kPg84TpliunaV7duCKISQtjZx/1PXOEfjPo5Mkn4QeLThOuqVbBmDVx9dYijE0LY18NUTW7E7sRa3PHzTF7p3SKqh1ADkvCVUr2UUmuVUuuVUpkunq+qlJpoe365UqpZIM4bzrzucbt6NfTpY3bhkeEcISyRkZrCgid7UHfyBFrs2ETf/7xqdUhB5fekrVIqDngfuBzYCqxQSk3TWq92OOxOYJ/WuoVSagDwCnC9v+cOd24nkRYuNJswVK0KP/wgu1YJYbVevWDYMHj5ZTPEeuONVkcUFIGo0rkAWK+13giglJoAXAU4JvyrgGdsf/8KeE8ppXS4brcVQM5bGL5ZaR0XDH8QmjeH776L+u3WhIgYzz1nLsYGDYK0NGgZfWP5gRjSSQG2OHy+1faYy2O01seB/cCpzi+klLpHKZWtlMrOz88PQGjWct6EodfsL7ngiX+yp3V7WLJEkr0QYaB0geRTs8i4ZDBH46tC//5RuRNWIBK+q+YTzlfuvhyD1vojrXWa1jqtXr16AQjNWvZafKVLGP79xwyfO5qZZ13MtVc/Z/p3CCEs5XxRlqtrMPgfj5iCiocesjq8gAtEwt8KNHH4vDGwzd0xSqnKQC0g6tvTbSso5Ibcb5k1ZjB3Zk9lTNpV3J+Ryea/PXf1E0KEhqsFkrObpjKuy0D4+GMYP96iyIIjEAl/BXCmUqq5UqoKMACY5nTMNOBW29+vBebGwvh9Zs4UXpr1PoerVOOhPkN4vvvdaFUpqhd2CBFJ3C2QfO78AXDJJWY8f230tCP3O+HbxuQHA7OA34FJWuvflFLPKaX62g4bA5yqlFoPPAqUK92MOm+9xaD/fcLUtt3pd/NrTD2nKyDNz4QIJ+4uvhrUqQFffmn2v+3fHw4fDnFkwRGQOnyt9Uyt9Vla6zO01i/aHvu31nqa7e9HtNb9tdYttNYX2Ct6ooljZ8xXrn4UHnnE1NePGUNy7equa/GFEJbyuECycWMYO9aM548bZ1GEgVKGykgAABLXSURBVKXCdWQlLS1NZ2dnWx2GTxw7Y/Zes4j3pr7CwhZpFIyfyFUXNLc6PCGEB86l02W6bGoNLVpAq1Ywfbq1gfpIKbVSa53m6jnplhkAjhM/N+bOZHPtRtzTN5O6czdJwhcizHnssqmUWRH/0UdmWCcxMbTBBZj00gkAx4mf6scK+SupEUfjq0Z1m1UhYkafPnDkCMyda3UkfpOEHwCOEz+Jx45yOL5quceFEBGqc2fT8ypChnQ8kYQfAI4TP4lFhRRWqSbVOEJEi6pVTa+dSZNg926ro/GLJPwAcOyMmVh0FGrUkGocIaLJM8/AwYPw+ONWR+IXSfgBkpGawuLMbtQpOco1nWTfWSEihWNJdfqIua43MT/nHHjsMfjPf2DBgtAHGSCS8AOpuBiOmit8IUT4c+6lk1dQyLApq1wn/eHDTcPDe++FY8dKv97rm0UYkYQfSH//bT5Wr25tHEIIn7jqpVNYVMzIWS7aKSQmwnvvmc2L/v1v5n8+g8/en0LVDevQWnt+swgTUodfAR4XaAAcMpsgyxW+EJHBXem025LqK64wW5K+8gpdeIUutof73zCCFU3alL5ZhOuQriR8HzmupoUTt37Zf+5l3pp8thUUcsHxPUwEucIXIkIkJyWQ5yK5eyyp/vJLmD+fOz5eQq3Cg7w54w1a7v6LFU3aAB7eLMKADOn4yN2t3/hlf5WO/x3aUwDA8l1HLYhQCFFRHnvpuFOlCvTowdrzOpN1TheOxsXTpGBH6dPhvP5GEr4PsnLyXF4FQNldXBKKjgDw5W97QhCVEMJfjiXVFW1wOLRnS6pViWdrrQalCT/c19/IkI4X9qEcXyQeMwn/r2PyPipEpPDYSwf3c3f2r9k1qRFN9u8kxdW8XpiRhO+Fq6EcO0XZK/xE2xV+jTq1gh+YECLo3M3dgcMbRfc0mDCBxZndrAzVJ3Ip6oWnCZgbL2paZvyvTuEBAG66vE3Q4xJCBJ9PZZunnw779kFBQYijqzhJ+F64m4BJSUrghYy2Zcb/rtz0I4cbptCj94WhDVIIERQ+lW02t7VA37QpBBH5RxK+F95m8e0tFTY9fB4d168k8Y5boZL8WIWIBu4u+Mo8Lgk/evg8i//ll1BSAjfdZEmcQojA63p2PZTTYwozll/aSuH0080TG8N/51ZJ+D6wX8W/eX0HAB6ZmFu+b8bnn8N555mt0IQQES8rJ4/JK/Nw3gTW/nlpK4VNf5uk//33oQ6xwiTh+8hjk6XVq+Gnn+Dmm60OUwgRIJ4q9OxKJ3CvucYk/H37QhTdyZGE7yOPs/Wffw5xcTBwoEXRCSECzdcWCdsKCuHaa6GoCL75JshR+UcSvo/c/ePnFRSy6pNJrDytLVl5RSGOSggRLL62SEhOSoDzz4cmTWDy5CBH5R9J+D5y949fregIrXZtYkmDlmHfGlUI4TtXFXrOSiv2lDLDOrNmwYEDIYqw4iTh+8jdP36bnRuorEvITT7LfR9tIUTEcVWhd9NFTd1X7F17rdkAado0K8P2SFor+Mj+j2rvqaG1pse6ZTy68HOKVSVyG5m6/HBujSqEqBhvfXbK6NgRTjsNxo0L2/JsSfgVkJGaQkaHZJgxgzWDHuXsbevYWDuZ+67KZE/1JCC8W6MKIYKoUiW49VZ4/nnYssWM6YcZGdKpCK2hWze48kqaVDpGZt8hXH7X/zGr5cVA+LdGFUIE2W23QeXK0K8f7N1rdTTlSMKnAhsRHz8O8+fD7bdTfeM6LnrmERrWqVHhPtpCiCjVvDlMmQKrVpmLw/x8qyMqI+aHdLy1Py1D29bYtWgB8fEVG98TQsSGPn1MPf5VV0HXrjBnDjRsaHVUgFzhV2zXeu28yFoIIVzo0QNmzDAN1bp0gbzwKNeO+YRfoV3r7QlfObdTEkIIp+HhH2HhO5+ZZH/ppfDXX1aHJwnfp/anziThCyGcuOq3dc/mRH54bzzs3m2SvsUtlGM+4Vdo1/oVK8zH+vVDEJkQIpK4Gx7+1/YaprHa/v0m6a9fb1GEkvArtmv9iy9CvXowYEDI4xRChDePw8PnnQfz5kFhIXTuDGvWhDg6I+ardMDH1XTZ2aZPxssvQ2JiaAITQkSMWgnxFBSWb6BYOjzcvr0p6+7e3Vzp//QTpIS2yi/mr/B99vrrUKsW3Hef1ZEIIcJMVk4efx87Xu7x+Eqq7PDwOefA3LlmeGfo0BBGaEjC98XBg5CVZfpj1KxpdTRCiDAzctZaiorLl23XqFa5/OhB69bw+ONmW9QFC0IUoeFXwldK1VFKzVZKrbN9rO3muGKlVK7tT/i2knMnKwuOHIEbbrA6EiFEmMnKySPPzfh9wWE3e2RkZkLTpvDAA2YFf4j4e4WfCXyvtT4T+N72uSuFWusOtj99/Txn6I0fD82amW54QghhYy/FdMdteXdiohkm/uUXGDUqSNGV52/CvwoYa/v7WCDDz9cLGZ/75+zcaZZGDxwo9fdCiDI87XvrtZniNdeYCdzhw6GgIEgRluVvwm+gtd4OYPvorkC9mlIqWym1TCnl9k1BKXWP7bjs/CA2HfK4Ibmz//4XiovhxhuDFo8QIjJ52v/CazNFpUzVX0EBTJwYhOjK85rwlVJzlFK/uvhzVQXO01RrnQbcALyllDrD1UFa64+01mla67R69epV4OUrpkL9c774Atq1M7PrQgjhwN2QTUpSgm+NFdPSzCTuuHEBjsw1rwlfa32Z1rqNiz9TgZ1KqUYAto+73LzGNtvHjcB8IDVg38FJKPeurDUZv83jWN62so9v3AhLl8pkrRDCpQqt1HdFKbNpypIlIVmB6++QzjTgVtvfbwWmOh+glKqtlKpq+3tdIB1Y7ed5/eL8rpz+58+8Nf11bt60pOyBEyaYj7KyVgjhQoVW6rtz440m8YfgKt/flbYjgElKqTuBv4D+AEqpNOCfWuu7gFbAh0qpEswbzAittaUJf2jPlmV64N+77L8AXN60+omDtDbVOZdcYvapFEIIF/zeFyMlBS67DD77DJ55xmyVGCR+JXyt9R6gu4vHs4G7bH9fArT15zyB5rghed3ff+aSP38GoFVS/ImDVq2C1avhgw+sCFEIEUtuuQVuvhmWLYOLLw7aaWJ2pW1GagqLM7sx9dAiSEqChAQ4fPjEAV98Yfam7N/fuiCFELGhVy/zMcgrb2M24QOmY93XX8P995uWCYW2ydySErPsuUcPqFvX2hiFENGvbl1o2RIWLQrqaWI74b/6KlSrBg89ZK7w7Ql/yRKzO43U3gshQiU93eSekpKgnSJ22yPv2gWffw6DBpke94mJJ4Z0xo83n/eNvC4QQojIkJWTx8hZa9lWUEhyUgLvNjmHc/d9YkYeWrcOyjlj9wp/6VIoKjItE+DEFf6xYzBpktlxvkYNa2MUQkQlV6v9n9xl68S7eHHQzhu7CX/lSlP+1KEDWTl5/LznKEt/3cJj97wGe/fKYishRNC4Wu3/+ykN2Vc9Kajj+LGb8LOz4ZxzyFq7j2FTVrGfeKoVHeOSFf+jIOEUptaXVgpCiMCyN2102U5ZKVYkny1X+IFS2iHziensXbiUP5u1Kn2nPRJfldqFB+ixbhkzWqbz6lxrd5cXQkQXx2Ecd/5o0R42bDBdeoMgZhK+4w+74cHd1DlUwLhjp5b+8AsrV6VZwXYSi44ytXUXj13whBCiojy1UgbTg6ftdb3NJ0G6yo+ZKh3HH3bbHaZJ0U/1ziBOKYq15kjlKgDknVKPFY1bu9+4QAghToKni8iUpASG9mzJpa3rwrPNzJ63QRAzV/iOP+w2O9ZzXFVidf3mFGtNQnwcR+JNwv+mdWeqVYn3vdudEEL4wFMr5aE9WzJy1lqaPz2H9EFjyOrQIygxxEzCd/xht9uxnnV1m3I0vmppd7vKNUzjtKUX9qx4tzshhPDCXSvlrmfX831DJj/FTMIv/WFrTZud61nVsEVp3+qM1BRufO0xeOopxr51lyR7IUTAuWulPG9Nvu8bMvkpZsbw7Ul87MSF1D28ny3NW5W9kj//fPNHCCGCxFUr5Ucm5ro8NhiFIzGT8MH2w95cFYAh/7oR5EpeCGGx5KQEl6WawSgcicohndJ6+8wZpI+YW3YsbOVKiIsz+9QKIYTF/N4msQKi7grfXm9vHxOzT4CAbVhn5UqzIXmClF0KIaznuCGTvZGafW4x0KIu4bta3GCfAMlIrmx2lOnXz6LohBCiPL+3SfRR1A3puJvoOLx9J1x+uemGee+9IY5KCCGsF3UJ39VER80jh/hy8jPwxx8wbZpU4wghYlLUJXznCZDqRw8zdvKznLVzE0yZAt3L7bkuhBAxIerG8B0nQPbm7+OzaS/SfvsfVJo0CXr3tjg6IYSwTtQlfLBNgLSua7Yo3PSL2crw6qutDksIISwVlQkfrc3Whf/7H4wZI7tXCSEEUTiGD8COHfD11zBsGNxxh9XRCCFEWIjOhL9nj/mYmmptHEIIEUaiM+Hv3Ws+1qljbRxCCBFGJOELIUSMiM5JW0n4QogIlJWTF9SeOpLwhRAiDHht/BgA0TukU7ky1KhhdSRCCOETT40fAyXqEn5WTh5Z369id5UapL8yLyj7QgohRKC5a/wYyJ2voirh22+JKu8voKBajaBuBiyEEIHkboerQO58FVUJ335LlHTkIAUJpwDB2wxYCCECKRQ7X0XVpK391mfUhddSueR4uceFECJchWLnq6hK+PbNgBc1Ty33uBBChLtg73wVVUM6odwMWAghIk1UXeGHcjNgIYSINH4lfKVUf+AZoBVwgdY6281xvYC3gThgtNZ6hD/n9SRUmwELIUSk8XdI51fgamCBuwOUUnHA+8A/gNbAQKVUaz/PK4QQooL8usLXWv8OoJTydNgFwHqt9UbbsROAq4DV/pxbCCFExYRi0jYF2OLw+VbbY+Uope5RSmUrpbLz8/NDEJoQQsQOr1f4Sqk5QEMXTz2ptZ7qwzlcXf5rVwdqrT8CPgJIS0tzeYwQQoiT4zXha60v8/McW4EmDp83Brb5+ZpCCCEqKBRDOiuAM5VSzZVSVYABwLQQnFcIIYQDpfXJj5wopfoB7wL1gAIgV2vdUymVjCm/7G07rjfwFqYs8xOt9Ys+vHY+8OdJhFUX2H0SXxds4RoXhG9sElfFhWtsElfFnWxsp2mt67l6wq+EH46UUtla6zSr43AWrnFB+MYmcVVcuMYmcVVcMGKLqtYKQggh3JOEL4QQMSIaE/5HVgfgRrjGBeEbm8RVceEam8RVcQGPLerG8IUQQrgWjVf4QgghXJCEL4QQMSKqE75S6jGllFZK1bU6FgCl1PNKqV+UUrlKqf/Z1itYTik1Uim1xhbb10qpJKtjslNK9VdK/aaUKlFKWV4+p5TqpZRaq5Rar5TKtDoeO6XUJ0qpXUqpX62OxZFSqolSap5S6nfbv+NDVscEoJSqppT6USn1sy2uZ62OyZFSKk4plaOUmh7I143ahK+UagJcDvxldSwORmqt22mtOwDTgX9bHZDNbKCN1rod8AcwzOJ4HHltwR0qYd7q+1Ogl9VBuHAcGKK1bgVcBNwfJj+zo0A3rXV7oAPQSyl1kcUxOXoI+D3QLxq1CR94E3gcN43arKC1PuDwaXXCJDat9f+01vZd35dh+h2FBa3171rrtVbHYVPa6ltrfQywt/q2nNZ6AbDX6jicaa23a61/sv39ICaJWb5DkTYO2T6Nt/0Ji99HpVRj4ApgdKBfOyoTvlKqL5Cntf7Z6licKaVeVEptAW4kfK7wHd0BfGt1EGHK51bfojylVDMgFVhubSSGbdgkF9gFzNZah0VcmDY0jwMlgX7hiN3T1lPbZuBfQI/QRmR4ayettX4SeFIpNQwYDDwdDnHZjnkScws+PhQxVSS2MOFzq29RllKqBjAZeNjpTtcyWutioINtzuprpVQbrbWlcyBKqT7ALq31SqVUl0C/fsQmfHdtm5VSbYHmwM+2nbgaAz8ppS7QWu+wKi4XvgBmEKKE7y0updStQB+guw7x4owAtOAOFWn1fRKUUvGYZD9eaz3F6nicaa0LlFLzMXMgVk96pwN9bQ0nqwE1lVKfa61vCsSLR92QjtZ6lda6vta6mda6GeaX9NxQJHtvlFJnOnzaF1hjVSyObJvMPwH01VoftjqeMCatvitImauuMcDvWus3rI7HTilVz16NppRKAC4jDH4ftdbDtNaNbblrADA3UMkeojDhh7kRSqlflVK/YIacwqJEDXgPOAWYbSsZHWV1QHZKqX5Kqa1AR2CGUmqWVbHYJrYHA7Mwk4+TtNa/WRWPI6XUl8BSoKVSaqtS6k6rY7JJB24Gutn+b+Xarl6t1giYZ/tdXIEZww9oCWQ4ktYKQggRI+QKXwghYoQkfCGEiBGS8IUQIkZIwhdCiBghCV8IIWKEJHwhhIgRkvCFECJG/D93auf9SR44sAAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#hide_input\n","#id img_momentum\n","#caption An example of momentum\n","#alt Graph showing an example of momentum\n","x = np.linspace(-4, 4, 100)\n","y = 1 - (x/3) ** 2\n","x1 = x + np.random.randn(100) * 0.1\n","y1 = y + np.random.randn(100) * 0.1\n","plt.scatter(x1,y1)\n","idx = x1.argsort()\n","beta,avg,res = 0.7,0,[]\n","for i in idx:\n"," avg = beta * avg + (1-beta) * y1[i]\n"," res.append(avg/(1-beta**(i+1)))\n","plt.plot(x1[idx],np.array(res), color='red');"]},{"cell_type":"markdown","metadata":{"id":"BveMHDHy2QGQ"},"source":["It works particularly well if the loss function has narrow canyons we need to navigate: vanilla SGD would send us bouncing from one side to the other, while SGD with momentum will average those to roll smoothly down the side. The parameter `beta` determines the strength of the momentum we are using: with a small `beta` we stay closer to the actual gradient values, whereas with a high `beta` we will mostly go in the direction of the average of the gradients and it will take a while before any change in the gradients makes that trend move.\n","\n","With a large `beta`, we might miss that the gradients have changed directions and roll over a small local minima. This is a desired side effect: intuitively, when we show a new input to our model, it will look like something in the training set but won't be *exactly* like it. That means it will correspond to a point in the loss function that is close to the minimum we ended up with at the end of training, but not exactly *at* that minimum. So, we would rather end up training in a wide minimum, where nearby points have approximately the same loss (or if you prefer, a point where the loss is as flat as possible). <> shows how the chart in <> varies as we change `beta`."]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":true,"id":"md4QXTZ32QGQ","outputId":"2873bd88-2864-4b21-8487-cd6d9f9f5620"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAtEAAAHiCAYAAAAuz5CZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3iTVRvH8e9pKTRllQ0tG9kgFCpDcLBBVkV8AVFBRUDEiSjgHkABxYELRMEByrSioAwBlVFZBZElG9qyocxC13n/eJKSpkm60qRp78919Wrz5El6CumvJ+c55z5Ka40QQgghhBAi83w83QAhhBBCCCG8jXSihRBCCCGEyCLpRAshhBBCCJFF0okWQgghhBAii6QTLYQQQgghRBZJJ1oIIYQQQogskk608ApKqSNKqY6ebocQQoiMSWaLgkA60SJfy60gV4ZJSqlz5o/JSinl4Ny7lVIpSqkrVh+DXN0mIYTwdnkks8fZ5HW8OcPLurpdwrsV8nQDhPBSQ4EwoAmggZXAIeBzB+fHaq0ru6ltQggh0sp0ZmutJwATLLeVUm8Ad2qtz7qlpcJryEi08Ca3KaV2K6UuKKVmKaX8AZRSPZRS25VScUqpDUqpW83HvwWqAj+bRxNeNB9foJQ6qZS6qJT6UynVMBttGQS8p7WO1lrHAO8Bg13yUwohRP7g9ZltHq1+CPg6G99T5HPSiRbeZCDQBagF1AFeUUo1A74ChgFlgOnAEqVUEa31Q8AxoKfWupjWerL5eX4FagPlgW3AHMs3UEqNMQe73Q+rtjQEdljd3mE+5kh5pdQppdRhpdT7SqmiOfh3EEIIb+DNmW1xB1ABWJTln17ke0pr7ek2CJEhpdQRIFxr/bn59j3ANGAFcFZr/arVufuAoVrrP8yPG6K1XuXgeQOBC0Cg1vpiFtqTDDTUWu81364N/Af4aJtfKqVURaA0sBeohjGisUdrPSyz308IIbyJN2e2zeO+BHy11oMz+71EwSEj0cKbHLf6+igQhNEpHWUz8lDFfF86SilfpVS4UuqgUuoScMR8V1YXjFwBSljdLgFcsRfGWuuTWuvdWusUrfVh4EWgbxa/nxBCeBuvzGyr720C7kemcggHpBMtvEkVq6+rArEYIT1eax1o9RGgtf7efJ5tQD4A9AY6AiWB6ubjCuyuyk7zYfU8uzAWqFg0MR/LDG35fkIIkY95e2b3Ac4DazPzw4qCRzrRwps8qZSqrJQqDYwD5gFfAMOVUi2VoahSqrtSqrj5MaeAmlbPURy4AZwDArBagQ3GqmzzXDy7H1anfgM8r5QKVkoFAaOA2fYarYwSd1XN7asChAM/5fQfQwgh8jivzGwrg4BvnI1Wi4JNOtHCm8zFmE93yPzxjtZ6C/A48DHGPLkDpF1xPRFjMUucUuoFjCA9CsQAu4HIbLZlOvAzsBP4F1hqPgaAeRTkDvPNZsBG4CqwwXz+09n8vkII4S28NbNRSgUD7c3fXwi7ZGGhEEIIIYQQWSQj0UIIIYQQQmSRdKKFEEIIIYTIIpd0opVSXymlTiul/nVw/0Cl1D/mjw1KqSZW9x1RSu1Uxu5FW1zRHiGEEI5JZgshRM65aiR6NtDVyf2Hgbu01rcCbwMzbO5vp7VuqrUOdVF7hBBCODYbyWwhhMiRQq54Eq31n0qp6k7u32B1MxKo7IrvK4QQIusks4UQIudc0onOoseAX61ua2CFUkoD07XWtiMe6ZQtW1ZXr149l5onhBC5Z+vWrWe11uU83Y4skMwWQhRYzjLbrZ1opVQ7jEBua3W4jdY6VilVHliplNqrtf7TzmOHAkMBqlatypYtMhVPCOF9lFJHPd2GzJLMFkIUdM4y223VOZRStwIzgd5a63OW41rrWPPn08CPQAt7j9daz9Bah2qtQ8uV86ZBHCGE8D6S2UII4ZxbOtFKqarAYuAhrfV/VseLWrb6VEoVBTpj7CQkhBDCQySzhRAiYy6ZzqGU+h64GyirlIoGXgf8ALTWnwOvAWWAT5VSAEnmVd0VgB/NxwoBc7XWv7miTUIIIeyTzBZCiJxzVXWOARncPwQYYuf4IaBJ+kcIIYTILZLZQgiRc7JjoRBCCCGEEFnkiRJ3QniViKgYpizfR2xcPEGBJkZ3qUtYSLCnmyWEEMIOyWzhLtKJFsKJiKgYxi7eSXxiMgAxcfGMXbwTQEJZCCHyGMls4U4ynUMIJ6Ys35caxhbxiclMWb7PQy0SQgjhiGS2cCfpRAvhRGxcfJaOCyGE8BzJbOFO0okWwomgQFOWjgshhPAcyWzhTtKJFsKJ0V3qYvLzTXPM5OfL6C51PdQiIYQQjkhmC3eShYVCOGFZiOJopbesAhdCiLxDMlu4k3SihchAWEiw3ZCVVeBCCJH3SGYLd5FOtBDZ5GwVeFYCWUZGhBAi90lmC1eTTrQQ2eSKVeAyMiKEEO4hmS1cTRYWigIpIiqGNuGrqTFmKW3CVxMRFeP8AbNmwe7daQ65YhW41DQVQojMyXJu25DMFq4mnWhR4FhGEmLi4tHcHElwGMjR0fDoo9CkCbzwAly6BLhmFbjUNBVCiIxlObftkMwWruaSTrRS6iul1Gml1L8O7ldKqY+UUgeUUv8opZpZ3TdIKbXf/DHIFe0RBVdmRiqyPJKQmGh8rlcPpk41Ps+ZQ1jTICb2aUxwoAkFBAeamNincZYu6UlNU+EJktkir8js6LIrRoDDQoIls4VLuWpO9GzgY+AbB/d3A2qbP1oCnwEtlVKlgdeBUEADW5VSS7TWF1zULlGAZHauWpZHErQ2Pr/wAtSvD08+CQ8+CNOnE/bxx4SNaZ/tNo/uUjdNm0Fqmgq3mI1ktvCwrMwvdtUIsKPKHZklmS2suWQkWmv9J3DeySm9gW+0IRIIVEpVAroAK7XW580hvBLo6oo2iYInsyMVWR5JSEkxPvv4QIsW8PffMGOGMUe6SRMoXhyWLs1Wm10xMiJEVklmi7wgK6PLWc7t8eNhwAB45x1YvBj27YOkpBy3WTJbWHNXdY5g4LjV7WjzMUfHhXDKXomhzI5U2BtJUBijIG3CV6crV7Ry1wk6Ac/N38GmmGDj/scfZ1Xp2nTs2w6uXCGpVy92vhxOyFujM91ey/fI6ciIELlAMlu4VE4yG7KW2xFRMbSe8iGBV+Io8sMPqecn+xXmcJlg9pUMJrJZO0Kfe4zet1XLUpsteS2ZLcB9nWhl55h2cjz9Eyg1FBgKULVqVde1TOR5tkHWrl45Fm2NSXcJMDDAjwvXEtM93nakwnpHq5i4eBQ3X3S2lxMjomKYvnwfnYBkpVLv33L0PKs2nqGj+XG7ytci5O0X2XsylnrTp4JSqW1/Y8ku4uJvtismLp7n5m1ny9HzvBPW2DhomTKi7P1KCOF2ktkiR6xzu6TJj6sJSSQmGy+VrGY2ZD63AcYu3sma5GQWN2zHWx2G0vBiDP2LXSZu83aGbFzILScP033fOmKXfs6/gx+n0RsvQKlSadpt73uky21R4LmrOkc0UMXqdmUg1snxdLTWM7TWoVrr0HLlyuVaQ0XeYm9F9pzIY3YvAWptzE2rcPksShtTMBzNVQsLCWb9mPYEB5rS9QCsLydOWb6PhETLJUCVev/3fx/nrCqc+pgH+o9nfuOO1PviA3jsMThwgF9XbeeNeVuIu5aQ7vtrYE7ksZuLaEaMgHbtICH9uUJ4gGS2yDbb3I6LT0ztQFtYZ7Y1Z/OLM5PblikiPlqjlQ/xhf3ZUq4WLwWE8M6dg1PP/7RVXw6XqkSjjyZA5crQtSvH7+nDpWFP0veXL6l17ni675Eut0WB565O9BLgYfOK71bARa31CWA50FkpVUopVQrobD4mCoDsVtKwO+wFXIxPZFqzANZNH8KgbUszNVct9sI1msTuY8yar5iy9APKXI0zjpsvJ549e4mmsf+l+77JWpPke/NCztUiAbzY7Rk+aDPAqClduzbdOoWwfVIY/717L712/wGAb0oyQZdOpz7flOX74MQJmDkT/vgD3n7b2T+ZEO4imS3SyUklDXsuxidma36xs2kglvt8dArJPje7OMk67V+OL0PDGNh/Avc88pExd/r8eXz+jiTsn1U8t34usxa8gU+K8TOUvnYx9XGpuR0ZCcOHQ4x0qAsyl0znUEp9D9wNlFVKRWOs3vYD0Fp/DiwD7gEOANeAR8z3nVdKvQ1sNj/VW1prZ4tdRD6R00oaALecPUbn/ZEsq9uGI6WDCQo00fG3OZCcxBtHV/PGi58aiwEdWbWKDTOGUCnuFAk+hdBKERK7l6d7vUiby8ehz5dELf2VgITrXPXz51Dpm+3yVSpdKKMUszsNZk/j1hQ7fpiAhHiKJcTz8NZfCNu1hmV12zBj8TvceXgbYQ9P5d+Ktxg/31dfGQteOneGCROgRw9o2TIb/6pCZI5ktsgqV1TSsBUUaDLmF9csBgEB4OeX6cedPXuRRicPsLdcda4WCQCgnl8CdU4coOLB3RRLiCfFanqcJbM/at2PfjtXcq5ooNHWanVpU6QhsWXvRZsLLXXdt57PIyYybNNiWh/9hzuPRPF5y/sIv2swKEXKsePQazScOQPz58Pnn8P//peptov8RWnbjoAXCA0N1Vu2bPF0M0QOhLy1wu5cuOBAE+utSsa1CV9NjINAfmf5Jzy4/VcAIqs04tfG7Ri3/HPOlihL8IUTsGIFdOpkvwF//QVdunCpUhUmNOzBspotqHvmCF8tfJPiCcb3iy9fkZN3dGRSodqsDW7IdT9/wLjceF/zYBZtjWHPO90AqP7SL/j5KFCku2z5+qrp9N+xgpm3hfHUxnlcLmziaKkgej88laBAE39NHwK1a8OiRXDrreDvD1FRxh8VnC9KFN5HKbVVax3q6Xa4k2S298tsZoPz3LYW4OeD3+VLrJw1Er8qwZTatCE19+zSGtau5egH0ym9/GeK37jGDV8/tgXXo0rcKSqbr/IBRJcoz5sdh7Kydqs0mW09Qu4os31Sklk7YyhVL57ign9xooLq0v7QFuY07cpb7R9n8YJXaHjhOMyda1T/2LQJRo+GSZNAKcnsfMZZZrtrYaEQqSKiYuyGMWS+koYGgi+d5kDpyixq3IF+O1bw5rJpAAwJG8t3817lxsT3CLLXid6yBbp3h6pVKfHnn7SKSWT5z7vY7F+Mvg9Ooe2R7URWbcyh4NpMvO9WugI77QRiaLXSvHB8AgeTCxMcaOJaQpLdn+uPGs15ZOvPPLVxHr/Uu4Olddvw2U/hDNu2hDt63wnHjsG77xJx6Aq/d36aaTNfYH6nByn8sfHzZHb0RwghckNWMhvs5zYAWlPjQizJyocrRQK4UjiA11d/SenL5/HZdY7osP5U/i3C/hXErVuNWv1r11KteHG23d6Rr4rXo3nMHm6L3k1UUF1+CO1B6/s7EVevERMiTxMbF0+wTWZbd24dZXaKjy+vdB5By+P/8kWLe4nzL87oP7/hycgFtDu0zZiSt3Ah9OzJTxVvJfmpp+kzZQq/rtrOxnHhLNhxWjK7gJCRaOF2zkYp7I1qRETF8MmSKO788yfqx58l8HQMwZfOUOtcNGtqhTKszyugNa2O76T4jWusrN2KF/+YzbC/F+N77KixaMTi33/hrrugRAljNNp8n6M22WuPIzXGLLU7X9s/8To7PhxAoq8ffZ6ayX7f4nz78wRaHY6iUJMmcOQIPy3ZyJifjXmEr6+aziNbf2bQg+H8Uzsk06M/wjvISLTwNlnNbEh7Bc2Si20PR/Hd/FfTnftZy75cMBVn3NpZMG6cMbprmYpx/Di8/DJ8+y2ULQuvvw6PPUabDzfmWmaDMVhjqQa1Zu8ZYuPiGb0jghG/zYQXX4RJk25OcUlI4qkNPzBq3RzW1GzOiN5jiS/sn+12ibxFRqJFnpJm5ELrNGXdHFXSCJv2KqyeBSVLst9UhiMlKxBZtTELG3UwTlKKyKq3pj5mbtNuDI9cBB9/DOHhxsH9+6FjR2O6xO+/p+lcu2I3rKBAk91QL1OuFEU+mEqRKlVY0bu3cXBkE2jQwNi4ZexYJq8+nDpyMemuQdx1aCvjl0yl66MfQ5H0lzezukuXEEJkl7O8cVZJwzLyaumE1z99GIAxXUbil5JE8RvXuF6oCHNCunHD149a52PoN2FC6tU5PvoIpk41/k689BKMHQslSzptkysy23GHtzscfy31b0fqAkqlmNZmAGeKlmL8ik/5/odxvNjtac4WLcX5AOftFd5NOtHC7ayDa/aCNzAl3aDfA+EEmvzsX+46ftwYhRg5EqZNY5fNAhd7oktWYFWT9nSePNnYZbB5c+jQAZKTYc0aqFnTYZtsjzuSUf1qMOZPt6tXjjZ7GxC7MZ6gPZZNAaoYfySefx6GDiX2812pj7nu588L3Z9jwZyXeGX1TMZ0ezpL7RJCCFdylI8OM9vixg3YupXpJ37n1G+rue3oTs6ZSvBDU/ubXE7rN5p+fdsao81z5hid54EDjd0Hq6XdFCXXMzt8tf05zVVuVni07Rj/0LQr5wNKMm3JZFZ8NZLzphI80/MF/qrRTDI7n3JXiTshUo3uUheTny+B8Ze4+/BWWh7/F5OfL2/0apjmPEs5pS/7PEVSimZ51weB9NuulgrwMxaIWDH5+XLj08+NKhcPPGBM4bh0yVhsWL++wzbZPoejURZ79asXbY3hvubBaco1WRazWJ83dvFOozTUsGFw/jxUr54uYLcF12d6yz70/2cFvQ5GsnTW0zy5YV6G7RJCCFdzlI+OMrvGmKUMHfExiWXLQZs2NPpoAi1unObPRnfwfI9RDjP7hW714dVX4ddfjbJzmzbBd9+l60A7a1OuZrYNex3jFXVaM7D/eJbVuZ1rfv58Pf91noucz+hOte22S3g3GYkWbmd5R79v3PjUY1N/mkRQUidW/3cbrx+E45cSUEDgtYsM2PEbPzW4i1ciLzAxKMbutqv2VkP3DAlm6YQvaNTvHsrGnuK5xyZzD+UJc9KmzK6otlcHNT4xmTV7z6SrLmLvvDd/3pXhiMjndz/EwLP/8v5Pk/FNTKDh6UMklq9Ag5eflQUqQgi3seSN9e6r/n7GGJy9Hf6K37jKq3Pf4ZRvADHvvU/LB3tSvHx5egA9zM/pqIJFRFQMU6L8iK3yAEG/X2Z0oRi7eefuzLbegCujkex6fbsyvlFzLpy+wPtrPuOZP76BN87DN9+k7owo8gdZWCg8ImJbNPW73UG187GsqtWC22J2U+GKUW72UpGi7CtbjeuFClPq+mUanTpIp0c/YX+5aplenGG93XaxG9coceMKsSXKY/LzzVQx/4w4WpCigMPh3TM8z5alBJNlAUvqHwR1Bm67zVitfscdsHYtLFtm1JQWXkkWFgpvZFsnGhyUiNOaaUsm023feu4fOJnTDUOynNnW8lJmm/x803WY7ea2dVu1hk8/heeegwoVjFJ4jz4KxYrl6OcR7iMLC0WeYD3y0Dx2LwtPH+HlziOYE3IPaE3li6e4LXo3t0XvpsaFGAISr6OB6S36sL+ccTkvM4szbMP+SpEArpgX51lGFHIayJmdj+foPFv2RkQMwTB9Opw6BU8+aXSk+/aFdeuMmtJCCJFLrDPbx7xZScVLZxkRuYDCyWk7u34pSZS7coFKl89S+9xxJt/5MFHB9VDZyGxreSWzfZXK1Eh2OkoZ2R0aCqNGwTPPGHO+n3gCnnoKKlXK3g8k8gTpRAu3sA3Jh7cs4VKRovzYsJ1xglJEB1YkOrAiPzZyHEiZWZyR0Zazrlglba8Oqr35eA7rpWalXY8+evPrpUuNed7duxvbzgan/8Mihf6FEDllm9mWHVqfX/cd/9u5ipPFSqO5Oa852ceHs0VLcbBMZX5qcBeft7wPyB+ZbTsCna22tWxpDH5ERsJ77xkbs7z3HgwcyOouA3j1kA+xF69LZnsZ6UQLt7AOyQqXz9Jt33pmN+/JtcKZX7Gc2QV1GYWaK1ZJZ3Y+nr3zrt5ISnfJMtPtqlzZ6EjfcYcRyq+/DoMHp26Xm5WteYUQwhF7HdsS16/Qc89fzG3SlXFdR2b4HPkls0d3qZs67zvHbWvVChYsgIMH4YMPSJr5Je1nzSK0cADfNbuHyXcNlsz2ItKJFm5hHZIPRS3DR2u+btYjzTn25tel7k6YhXfnzqZQuLKyhe3ixsyeZ+/SZZba1bSpUef6mWdg6FCYMgXeegv+9z+Hi2dccTlUCFFw2OvY9t35O6akG3wXcg9QcDLbIke5batWLZg2jZ6B7Wm6eTXtD25iRORC/q7SmD9qNpfM9hLSiRY5Zq/2pu1CC0tIFkm8wQPbf2PVLS2IDqyIr1KkaJ16HmR+tbUjjqZQlArw4/WeDT0eTFlZVe5wakaLFrBhA/zyi7Gb14ABMHEi9WqHUa1QYcJ/m8aMFn34rpmxYEYK/QshLLKS2RaFkpN4eNsvbAuux54KNVM7yZD/Mxsyn9tZnU63N7Ewe5p2ZVGjDiyb9RTjl39Ml0c/ITYuV38c4SJSnUPkiLMFIRaWFcxLIw8yfM23DNu0mAH9J7D9lhCXrLp21C5vnxfsaMQ63WrwTrUJ+2+dUV/14MHUc08VK03b4V+S6OuXYVUT6zJVvuYFRFkZSRKZJ9U5hCdlJbOty7cN3rKEN36fwcYPZtP6mUG50q4Ck9lWP5v1lurNo3ezYM5LfN28BzP7PiuZnUfkenUOpVRX4EPAF5iptQ63uf99wLyCjACgvNY60HxfMrDTfN8xrXUvV7RJuJ69kMtoQQiAvnaV8l98ysa/F+F/7gzL6rbh2K0tmNi1Xq79smf2sl1e5mhqxpzIY6klmGLi4hkbsQv63Imau4od73xA+dPR7KhYm89+CueevetY0bSj00uOjhYQyXzq/Esyu2DIbmZbqk5M7NOYKcv3ce3EKZ7f8D2nW91J66cfzpW2FqjMXrwz9f5rCUmpX2+t3IBvmnVn0NZfqDXyMYffRzI778jxSLRSyhf4D+gERAObgQFa690Ozn8KCNFaP2q+fUVrnaWCiTKq4X6O3mE7Hc1IuM7A7csY9vdiyl2Lg44djYVwbdu6o8leL7M1psHYfvdGUkrq/4fSKayaOYLr/gHs//l3wppVdvhY65EQezJbm1tkjqdHoiWzC4bsZLa1NPWTn3rKqHW8Ywc0apQLrc0fcpLZFkE+iayaNZKAiuUgKsruYyWz3ctZZrti2+8WwAGt9SGtdQLwA9DbyfkDgO9d8H2FGzl6h+2rVLpzCyUn8ejmn/hz+hBeWfMVe8tV54lhH8DKldKBzoKsrPqOi09M8/+jlQ+zQnvRMPY/wq4fc/rYjOZLy3zqfEcyuwDISmbbExRogosX4aOP4LPPYNgw6UBnICeZbaFKlCBgyCPwzz8QZ39itGR23uGKTnQwcNzqdrT5WDpKqWpADWC11WF/pdQWpVSkUsrejszCTSKiYmgTvpoaY5bSJnw1EVExqfc5+qVM1tpYoW3W+ugOfp31FK+t/oJ95arRd+Akhj40kS7D+uZ6+/Ob0V3qYvLzTXMsc3/+DIsatudikaLwwQdOz0sNfq0plJxEu4ObqXYhNv39Ir+QzM4nXJHZ9jQ9f5TvNn9l1KF/5hljIfNbb7m07flRTjMbzP9vtWtDSgqULm1sqjV8OHz9NezfD+aF+FUvnOD5P7/lzZWfUfXCCeqcOZL6HJLZ7uOKOdH2XiOOrmj0BxZqra3fflXVWscqpWoCq5VSO7XWB20fqJQaCgwFqFq1ak7bLMysFydYShNB+nlblt2qbAWa/LiakETn/zbSf8dy2h/awtHAijz9wJv8XKU5QYEmJspCh2yxtxq8Xb1yaRb7gHGJ1t/PhwvX0taeji/sz4/N7+HBRYu4a8QsqFrN7qKT0V3qMmHuRr78dgw3ChWmaew+tlZuQL8Hwl1aXkrkGZLZXsxVmW3NR0FZP83tUWt5dOdv3Hp0F/j7wwMPGDvrhRaodbDZltPMBihp8qNtdBDV+73D3ef20/PqESr88IOxcy1A2bIsLVuRwL3/pj6m/44VJPoWotfD73OiYjXJbDdyxZzo1sAbWusu5ttjAbTWE+2cGwU8qbXe4OC5ZgO/aK0XOvueMr/ONV6J2JlmwYM9juZtwc0gKHX8MKtnDgdgatuBTG95H2XLlpQ5WbnE3mIhSF/D1M9HUenSaVZ/+hizQnsxvv0QTH6+6SuiXL/O2bbtKLs1Ms33eWzEJ/Qc0lveALlYHpgTLZntpVyV2dadN5+UZMJ2r+XFdXOoePG0MQr6xBMwaJAxEipyLCuZbVt32+Tny8SwhoT5XzLKmm7cCPv3s7tJG94wNWLa588Q7+dP8etXuFCyDHsWraDn7be4/WfMz3K7OsdmoLZSqgYQgzFy8YCdRtQFSgEbrY6VAq5prW8opcoCbYDJLmhTgZPV8kARUTEZhjGQZmc9/8TrhP82jU1VGjG/aVcm9mnMc/O28/a6OVwvVJgOQz4npmR5QOZk5SZnq9itXwPXEpI4llKOv2qE8PjmCHrs+YvDpYM5tbIa9GvHxkJleP+oYvAv07lnXyQbuz9A66VzWVa3DXce2c6bB5ZTOWSEm3864QaS2XmAOzLbmq9SqZltceehrYxdO4v6Z46wo2JtKs77Bjp1Ah9XzPQUFlnJ7HRXFBOTmbJyP2Fj2hOREMiUc7WILX9zlHtI4ekcjFd0vbCf974exy1fhcPtM93xYwlc0InWWicppUYCyzHKJX2ltd6llHoL2KK1XmI+dQDwg0479F0fmK6USsGYnx3uaIW4cCw7Wz1PWb4v06uILZ6IXETY7j8I2/0H9+38neYPLiDiWgw99v7FR637pXagQeZkeYJtUNcYsxSA1zsOZ/Pev6h1Ppoa52Not2MN/P0zrYHW5nPfbj+Erxr24tFrJpY0uJvHNv/I4ysjWLE0ks7dW7n/hxG5RjLb89yV2dZStCYsJDh1Kkj7A5v4atFbHAmsxJO9XmJHy46s69IxB99BZJWjzLYVGxdv9zXzXeQxwASFYXGFxtS5vR/Dv/wS7rwTHs6dUoQiLdlsJR9wVO7GWZmbzJTisb70VyXuJKtmPsGK2q1YUyuU19Z8SWDCNa5WDCbx7DnuHDCyqVgAACAASURBVDaTS/7FUh+XW5uoiMxz+Loo6U/Ja5cwHT5AzfMxXPQvxoo6rdOcU/HSWf6a/hg/turN/9YvcleTCwRPT+fwBMnstNyR2Y6eOyIqhtfmb2Xel89QLCGe9o9/TiF/f8nsPMDZ6wJwWtYOwDclmQWLXqPZyf2waRM0bJgr7SxocrvEnfAwR1MnnE2pyGikODjQxMQ+jXm9Z0NMhXx4dfVMknx8Gd/uMX4N6cyGn9dxtFsfikYf5dNW93PVVDzN4ySMPc/eSnGTny+ju9ZjT2JhtlZuwIJbO6XrQAOcLFGWn+vfSffNy+DCBXc1WYgCIdcz297vfZe6qVNInljzLfXPHOG1TsMpX6aEZHYe4TCzu9TN1BTJZB9fhncbBcWLw/33w5UrudVUYSad6HzAUbg6C11HpXgebFWVI+HdWT+mvXGpqZqJVZs+pfP+SKbd3h/fqlWY2KcxCaVK07XJI7QcMZsZLfqQrHXqL7uEcd4QFhLMfc2DU+vC+irFfc2Ny4eZmW4z87Z7KZp4HWbMyO2mClGg5GpmhwQzsU9jggNNKOAWE3zSyJeiRw8x7atV1Nq2jmF/L2Juky5E1mslmZ2H5DSzAfwqB8PcubB3L4wYAV4428CbyHSOfMDRzlQZjS5kuLBlzRp46CE4dcqoEfrii+BrhHh2LkcK93L2uoD0K8Ntmfx8+WPlBMofPwiHD0Phwrne5oJApnOIXMtsW1evGnWGDx1Kc/hYyQp0e2QaV4sESGbnIa7I7NTX0FtvGTsEz5gBjz+e623Pz3K7OofwMHu1KTMzuuBwxXBCArzyCrz7rlHuaOPGdHVCs3M5UriXox3Lpizfl/pH07ae6Zq9Z9K8hsq3GQfdusEPPzhcqJLlP+xCFHAuz2xHJk40OtDTpvHMiqMUTkqgcHISa2qFcrVIACCZnZe4IrNTXx8vvwzr1xuj0TVrQocOqc8pme060onOJ7IcrtYiImDWLPjpJzh40JhLFRUFQ4fC1KlQtGi6hwQFmuyOREtVjrwjozc6mXrN6CBjq9933zWuSthsGZydKgNCiBxmdmbs3w9TpsCDD8LIkWy5Yv/qoWR23uGSzLbw9YV586BtW+jTx6gx3bChZLaLyZxoAQsWwJIlxqW/554zRi4iIowdkux0oMH5AgiRN2Rn3mU6SsGoUbBzJ6xcme5uZyMnQggPOXsWhgyBIkVgslHGWzI773NJZlsLDIRlyyA5GaZNAySzXU060QL+NW8fGhtrzIMeMAB693b6ENvFK1KVI+9x2R/NAQOgYkV47710d8m0HiHymIULjdJmGzYYHadKlQDJbG+QK290qlY1dp68cQOQzHY1mc5R0CUmwp49xtdLlxolcazmTjmT65cjRY5kd95lOkWKwNNPw7hxrJnzK68cL5L6fIEBfnZr0solYiHc7NQpePJJWLQImjUzrhzdemuaUySz8zaXZbaViKgYWl5OYP2W47wfvtrI7KsJVLp8lktFiqbOjZfMzh7pRBd0//1ndKTBWDwGcPfdHmuOcC2X/dEcPpyEiZNoPTiMh5r14N07HyYmLh4/H4WfryIx+WaVH7lELIQbaW2UNHv6aWMQZMIEGD0aCsmfd2/kyjc6lvnPyzVUuHyODr/Pp0XMHppH76bS5bMsr92KYX1ekczOAfktK+gsUzkA/v4bmjaFsmU91x6RN5UqxQPDP+GhX75g+KbF7KxYm6X17yAxRVO6iA8Ddq/kp4qN0dWqy0pvIdzp66/hkUegVSv46iuoX9/TLRJ5hGX+c6KvH3cc3c4dR7cTW7ws26s14tL5aBqeOkSwVOfIEelEF3Q7d4KPD6SkGLczOZVDFDxbfQI5cdcgeu/5g4BEY/6cKeE6kxdNpuOBTYx++WUY86iHWylEAaI1fPihMW1j3brUOv5CwM15zmO6jqTS5bNsqdyA2BLlUcBh0xZ4803WP3s7+Pt7tqFeTBYWFmRaG/PmGja8WYVDOtHCgaBAEynmEndKQ7krF/jh+7G0O7jF2Ijl5EkPt1CIAuLwYbjjDvjlF9i+HYYNkw60SMcyz3lzlUYsaXA3sSXK3zxep47RBzh40JNN9HrSiS7IVq+GTZuMYuzlyxtz6O64w9OtEnnU6C51KWJeOV773DEWf/cCtc8dY/PUL41a0idOeLiFQhQQH35ojDz36gUmEwwc6OkWiTzIabWPOnWMA//954GW5R/SiS7I3nkHgoJg8GCoXt0oyl6smKdbJfKosJBgxnRvAMDjmyMISE5g06zFtHp2sFECT0aihXCPixdvft2/P5Qs6bm2iDzLaVnD2rWNk6QTnSMumROtlOoKfAj4AjO11uE29w8GpgAx5kMfa61nmu8bBLxiPv6O1vprV7RJZGDdOli7Ft5/35gPNWeOMTdaCCe6Nq9ufFG/PmWWLePu6ubbFSsal5WF15Dc9mJRUTe/HjbMc+0QeZ7Dah8lSkCFCsbOliLbctyJVkr5Ap8AnYBoYLNSaonWerfNqfO01iNtHlsaeB0IBTSw1fzYCzltV4E0YQL8/DMsX278gjgzfjyUKwePP27cNhfkF8KpMmVgxQq47TZjNyyLihWNOrUpKfJmzAtIbnux69dh1y64/Xbjo0ULT7dIeKs6dWQkOodc8deuBXBAa31Ia50A/AA43+7upi7ASq31eXMArwS6uqBNBY9lW8/ISBg06Ga1DXu2bIHffoPnn3e4rbcQDnXqlLYDDUYnOjnZ2G5YeAPJbW+1cyckJRn5PWUKmBf7CpFldeoYZW6vXvV0S7yWKzrRwcBxq9vR5mO27lNK/aOUWqiUqpLFx6KUGqqU2qKU2nLmzBkXNNs7RUTF0CZ8NTXGLKVN+GoiosxXWjdsMOakduwIEREwaZLjJxk/3ugEjRjhnkaLfMPh689yJUPmRXuLXM9tyWyDw9+Z7PrlF+Nzs2Y5b5zI95y+/gYPhgsX4LXXPNY+b+eKTrS9t8Ha5vbPQHWt9a3AKsAyfy4zjzUOaj1Dax2qtQ4tV65cthvrzSy7D8XExaOBmLh4xi7eafxSLFxozG1evBgGDICXXzYuu9vaudPoZD/zTMZTPoSw4vT1V7GicZJ0or1Frue2ZHYGvzPZ8eefxiDI/fdDjRoubavIfzJ8/bVtC8OHwwcfwObNHm2rt3JFJzoaqGJ1uzIQa32C1vqc1vqG+eYXQPPMPlbcZNl9yFp8YjLv/roHFi2Crl2heHH44guj5NiAAUY9UWsTJhgVOJ5+OvWQy0dKRL4TERXDqPk77L7+pizfJ51o7yO57QaOMnvK8n1Zf7LTp41KHDVr8stTb0lmC6cyzGyL8HAjv4cMgcREN7fS+7miE70ZqK2UqqGUKgz0B5ZYn6CUsl611gvYY/56OdBZKVVKKVUK6Gw+Juyw7D5kq/ye7RATA337GgeKFoUffzTmRffpA9euGcf37YN58+DJJ6F0aSAXRkpEvmN5jSRruxeJjNeldKK9jeS2GzjKbEfHHUpOhgcegAsXWP32J4xecUQyWziUqcy2KFkSPvsM/vkHJk92Uwvzjxx3orXWScBIjBDdA8zXWu9SSr2llOplPu1ppdQupdQO4GlgsPmx54G3MQJ9M/CW+Ziww7L7kK37j/xt7BjXo8fNg7VqGWXrduzgaP9HaBO+mgV9R3K9UGGWdRqQeppLR0pEvmTvNWItKNBkXN0oWlQ2XPESktvu4SizHR23sL06uPeJF+D33+Hjj3n1sK9ktnAqU5ltrVcv+N//4K23YO/eXG5d/uKSWlRa62Va6zpa61pa6/HmY69prZeYvx6rtW6otW6itW6ntd5r9divtNa3mD9muaI9+ZXd3YcK+dD7YCR07py+4P4993D4vgep9vN8fA8f4t5dq5l7axdGrT2ROmrhspESkW85ey2k7n4FxuLCWLmq7y0kt3Of0x3jHLC9Olgzaj11vviQYz3vh0cflcwWGcp0Zlv76CNjIOTxx51X9xJpSEFXL2Jv96HP6msCTkTfnMphY8UlPwCeXT+XZB8fZrTok2bUIrsjJaLgcPRa8FXq5u5XAKGh8OuvUuZOCDOnO8Y5YD2KWPHSWT74+V3+K1uVwaGDQSnJbJGhTGe2tQoVYOpUYyO2r2XvpMySTrSXCQsJZv2Y9hwO7876Me25e+efUKiQcTnGjgsJxjvKPrvWMLdpN06WKAvcfKeanZESUbA4eo28978macP41VeNeqMTJ7q5hULkXbaZneZ3JiXFqNNrWbfCzWwulJzEx0smUSQ5kRFhYzl8zZjfKpktMpLpzLY1aJAxGDJ+vFGLXGTIJdt+Cw/R2iht16EDlCqV7u6IqBi2VGnEumpNmH9rJ36pd0fqfZZ3qpZfqCnL9xEbF09QoInRXeo6/0UTBUqmXyMNGsDDD8Mnn8Czz0KVKnaeTQiR6sMPjU1TfHygbl1o2pRnzgbwb/Egeuz9k9CYPYzs9SKHylQmWDJbZFK2XyNKwdixcN99Rt+if383tNa7Ke1g9WZeFhoaqrds2eLpZnje9u0QEmKUtBsyJM1dEVExjF6wg8SU9P+/Jj/fDC8pCpEtR48au2A99BDMnOnp1uRJSqmtWutQT7fDnSSz7bh+3aj1XK2aUZ50+3biNmwi8MzNxblT2w7kozYD8PNVTOmbwSiiEK6QkgINGxrFCrZvlx0xcZ7ZMhLtzRYuBF9fCAtLd9cbS3bZ7UArhXSgRe6pVg2eeMLYgv6FF6BePU+3SIi86euvjZKQc+ZA+/ZERMXw3LztlLt8jmfXz2X+rZ3ZHmRM0ShauJBktnAPHx9jNHrQIFi2DLp393SL8jSZE+2ttIYFC+Duu6Fs2XR3x8XbL5quNRLGIneNGwcmkzFHWgiRXlISTJoELVtCu3aAceldA6eLl2Fc16dSO9AAFx3kuRC5YsAAY0Bk/Hij0yAckk60t0lIgN69jbl0//3nsCqHEB5TvjyMGmVcKdm61dOtESLvmTfP2E123LjUy+XOypJJ5Q3hVn5+8OKLsHGjsdW8cEg60d7mt99gyRJ47jkjfO+91+5ppQL8snRcCJcaNQrKlDE6CUKIm1JSjAo2jRql2SDLUUdZgVTeEO73yCPGgMiECZ5uSZ4mneg8znbnqpiPvyDJ3wjbyMoNaTNrl93tXl/v2RA/37QLAvx8Fa/3bOiWdosCrkQJowO9YoUxmiFEAWGb2RFRMWmOvTR4POzaBWPGGPNPzeyVJVPAwFZVZQqecD+TyRisW7FCdjF0QhYW5mGWnasshfcvnjpHmTUr+L5JZ/aVqcru8jWIiYtn7OKdQNq5zlIGSXjc0KHwxhvw6afQurWnWyNErrPN7Ji4eEYv2AEKEpM1aM2AVd9xPLAi2+q0pbfVYyWzRZ4zcKCxyDAiwnjTJ9KRTnQeZr1zFUDX/zbgn5TAj/XvYltw/dTjlh0IbcM2LCRYAli4RURUjP0//pZSd++/b3cBrBD5iW1mA2mqJN1+dAdNT/zHuC5P8sfvB+l9W7U050pmC3dxmNnWqlQxNl+RTrRDMp0jD7NdaNJ711qOBlZkW1D6smHOFqUIkZsso28xcfFoSL06EhEVY5S7S0iA2bM93Uwhcl1GOfxk5HxOFSvNokYdJLOFxzjNbFthYfD333DsmNvb6Q2kE52HWS80KXflPLcf+4eIBnfbLX4uq7eFp9gbfbNcHaFRI2jbFj7/3FhQJUQ+5iyHm8buo83Rf/jitjBuFCosmS08xmlm2xo40OhzfPWVm1rnXVzSiVZKdVVK7VNKHVBKpRvzV0o9r5TarZT6Ryn1u1KqmtV9yUqp7eaPJa5ojzeytxjFeqFJrz1/4qtTWNqoXboFgyY/X1m9LTzG0Yha6vEnnoCDB2HVKje2SjgjmZ1zGWW2hZ+PIjApnjdWfU6cfzG+b9JVMlt4VIaZba16dejcGb780qhvLtLIcSdaKeULfAJ0AxoAA5RSDWxOiwJCtda3AguByVb3xWutm5o/euW0Pd7I0aUVMHYXDA400Xv3WvYG12HE8O5M6duE4EATCggONMkOhMKjHI2o+ShFjTFLuftQaW6UKgOffebmlgl7JLNzLjOZbcnnKfc34detM2l06iAv3vMsgRXKSGYLj3KU2SVNfuneGALGIvHoaKPErkjDFQsLWwAHtNaHAJRSPwC9gd2WE7TWa6zOjwQedMH3zTecXVpZP6Y9YabLMPYATJ1KPXPwSgCLvGJ0l7ppKhJYJJt3ujpyJZlv6rdnyJJFqOhoqFzZE80UN0lm51CGmW2dz1u3wtrlMH48M6RuusgD7GW2n4/iakJS6m7HaSp/9ewJFSrAjBlpapsL10znCAaOW92ONh9z5DHgV6vb/kqpLUqpSKVUmKMHKaWGms/bcubMmZy1OA+wvhQYk9GllblzjXqi/fu7sYVCZE5YSHCa0TdfO3P2v27cBZ2i+WrQuPSjHMLdJLOzIUuZbW3SJChZEkaOzOUWCpE5tpkdHGiimH8howyjlfjEZEbN30GNV1fwTf326KVL4cgRj7Q5r3LFSHT6v5hgd7N1pdSDQChwl9XhqlrrWKVUTWC1Umqn1vpguifUegYwAyA0NNSrN3O3rSXqiOVy+OpZ31CsWSvKVarkphYKkTXWpblqjFma7v7owIqsrdmc/n/NZ3vRCixpcLfd+ubCLSSzsyirmZ1aMqx4PCxaZGyhXKKEm1orRMZsyynay224eUXxs/qd6bt+MZcHPkKFdavtFjgoiFwxEh0NVLG6XRmItT1JKdUReBnopbW+YTmutY41fz4ErAVCXNCmPM3epUB7krWm6oVYapw+yhelG8vInfAKjubbje06kj3lahD+2zSK3rjmeDW4yG2S2VmUlcy2niN9eMyb4OcHzzyT+40UIgcyqhZzokQ5Jt85iAob1sK337qlTd7AFZ3ozUBtpVQNpVRhoD+QZsW2UioEmI4RxqetjpdSShUxf10WaIPVvLz8yll9UNvL4Z32RwKwrGYL6XAIr2CvQgHAqeJleaf9EAISb9B97zpA6pt7iGR2FmUlsy2KXThL0E/zYNAgqFgxF1snRM45ym1rXzfvwebgBvDss3DypJtalrfluBOttU4CRgLLgT3AfK31LqXUW0opy8rtKUAxYIFNWaT6wBal1A5gDRCutc73gezoHV9woInD4d1J0TevfHba/ze7y9cgumQF6XAIr2Bvvl2pAD8AooLqcqB0Ze7faZS7k1q57ieZnXVZyWyLwVuX4JeUBC+8kNvNEyLHMrO2RSsfpvZ7Ea5dgxEjwM7rvqBxybbfWutlwDKbY69Zfd3RweM2AI1d0QZvYm9lrHXd0KBAEzFx8ZS6dpHQmD183Lpf6nEhvIHtfDvrOaULbu3I2LWzqX/pBMP6dcvS82Zqq1qRIcnsrMlsZlsUu3GNh6KWsbbRHbSvXdvt7RUiO6xz2946AJOfL/36dYTybxrbgC9cCPff7/Q583tmy46FHmBvpM66bqjlskrHA5vw1SmsqN1SivMLr2b9mv+xYXuSfHz48Pr2LIVplraqFcKFMpvZFn13rqLEjav4vPSih1osRM44fc2PGgXNm8Pw4fD11w53oy0Ima20Fw7Hh4aG6i1btni6GbnC8q7tRkwsv8x+liuFTQx6YTaju9bLV+/eRAHXowds22bsZGjK3BWWNuGr7ZYWCw40sX5Me1e3MNcopbZqrUM93Q53KgiZHRMXj69SJKeksPKbZyhbujildm33dPOEyB3798ODD8KmTRASAu+9B+3apTmlIGS2jETnIZZ3bSfPX2HaksmUvH6FUfeNkw608Hq2WyT/FTYYTpyAiRMz/RxZ2qpWCDewHmkDozpH83NHqH3yEKWeHOrh1gmRffa2tU+jdm3YuNHYx+LcOWjfHnr1gr17U08pCJntkjnRIuts5wm92rQ4tz3Qm1VJSST7+FD14ime7/4cO0pXZcryfdKJFl7Ldm5dTFw8Q68WY0W3e6kyaRI89JARyBmwnXdqfVyI3GZvbqe90nc9o5Zzo5AfRQYM8FBLhcgZe5ltt66/jw8MGAD33gsffggTJkDjxvDNNzBgQGpmF79xlat+/qT4GFOe8lNmy0i0B9ibJ7Rr8mcEXzjB31Ubsad8Dd5uP4TFjToA+etdmyh4HG2R3KdmH64oP049/HimVnnbK8EkawWEOzia22n7pq5IUgJhu9eyvHZrKFXKM40VIoccZfaz87bbH5X294eXXoIDB6BtWxg4EGbOZFKps8z8cTzbPxzAY5t/AvJfZstItAfYe4He8+8atgXV4/keo9Kdn5/etYmCx9GbwDPFSjHljgd5c9V0Nr07gxajhzl9nrCQYIof2Eul559lePfRJFevke9Weou8yVGnwlep1B3dAPrvWE7g9SusadWdXrZPIoSXcDZw53BUGqBcOVi6FO67Dx5/nLbAjcDSXCtiolnsXoKlOodwBcsL9Jazx1A6hVvOHqP+mSMsqX+njLSJfMfZm8DvQu5hV/maVH/nFbh82fkTXb9Oh7efo0H0Pv68K4D1Y9rnqzAWeZejTkWy1qmZXevcccasnc2ftUK5a+QD7myeEC6V0cCd091mAwIgIgJefRVmzaLIiRiKd+1EN98L+TKzpRPtAUGBJqqfj2HVlyO469A2eu3+g2Tlw9aWnZyWURLCGznbCSvZx5dXOz9B+UtnjZ3dliyBU6fsL2oZNw52GiMgxOSfEkki73O22crEPo2pWtyPqb9MJcGvMFc/nU5Ys8pubqEQrpOZ3Qtt31imyez31xNx7zAYPNiY6lG/vlHNIyEhF1vtGTKdw80iomK4eiOJkAuxAJS5dpFee/7k7+pNeKxv63SbVAjh7SyvZ0sZMFvbguvzzd0DeHjJfPjxRwBCS1ZgTKU6/F21Mb/Ua8ui8A2EzX+fRa1603vHSgrFxrr1ZxAFW7t65ZgTeQzrmfuWq4Rht5QgbPsXcHI/LFxIt87NPNZOIVwho8yGtG8s7S1EfG7edp6dt53gQBMfBlQkNCnJmDPdoEHu/wBuJCPRbmR5ocXFJxJ86QwAodG7qB53Av+HBkrnWeRbYSHBrB/Tng/6NbU7ZanE1Clw6RL89RfT7hnG9oq1aRazl3dWfMqmjx/mk4iJ7C9ThXG3P0y0qRTRuw566CcRBU1EVAyLtsak6UAr4L7mwYSZLkPLlrB4Mbz7rjEXVIh8IKPMtp5mam/NgOX3JSYunolHzF3NPXtys8keISPRbhIRFcOo+TtSF6EEXToNwP07V5Hg60ez5x7zZPOEcAvrEQ6728C2bcvUxhfRjXsCUP/0Ie7b+Tutj+1k9D3PcsOvCCeLlsL/v8PIBXORm6w3UbGlgcgdx2DoI0ZlmZUrjTq5QuQzGWY2GVcQ212ikvmL3fnujaZ0ot3AMgJtvYo7yDwSXUinsKJmCzoHBnqqeUK4le2UJctcOktABwb4ceFaIgB7ytfknQ410zz+VLEyNDnxn1vbLAoW28vT9rRfuxjOnDE2nGjVyo2tE8K9spLZ9sQX9ud4yQpU2b3bHc11K5nO4Qb2LnVYOtEA60I7urtJQuQJ9urvXrmehJ+vcviYU8VKU+HKeWq89Iv9mqVC5JC9zLZWJPEGw7b8CB06SAdaFCjZyWyAA2Wr8N/KDfkus13SiVZKdVVK7VNKHVBKjbFzfxGl1Dzz/X8rpapb3TfWfHyfUqqLK9qT19i71GHdib5t5CB3NkeIPMNeZyUxRVO0cCGCzQtXbKP5VLHSmJJuUPzG1dSapfkplN1FctuxjC5PP7j7d8pcuQAvv+ymFgmRN2QnswHWVW1CnXPHqLVtXb7K7Bx3opVSvsAnQDegATBAKWW7/PIx4ILW+hbgfWCS+bENgP5AQ6Ar8Kn5+fIV2/JIvinJVLx8LvV2z9tvcXeThMgTHHVWLsYnsn5Me46Ed+f9fk1Tyz76KsXpYqUBqGD+HXJas1TYJbntnLM6uVWL+zFq+0/QujXcfbf7GiVEHpCdzAb4pnkPThQrw4jIBfkqs10xEt0COKC1PqS1TgB+AHrbnNMb+Nr89UKgg1JKmY//oLW+obU+DBwwP1++YltzsfyV8xTSKR5skRB5g6POivVxyyrxw+HdSdGak8XLAFDhyvnUczIaORTpSG474WiL+Q/6NeXPoBgCTsbAK6+Acn4JW4j8JjuZDZDo68fMFvfS6vi/NIvZk28y2xWd6GDguNXtaPMxu+dorZOAi0CZTD4WAKXUUKXUFqXUljNnztg7Jc8KCwlOs4lKk5RLnm6SEHmCo86Ko106gwJNnCpmdKKnLp1qVEYg4x22RDq5ntv5KbNTN74qD7z2GoSEQLdunm6mEG6Xncy2+L5JFy74F+eJyIX5JrNdUZ3D3ltxnclzMvNY46DWM4AZAKGhoXbPycvSrG6dPRume7Q5QuQJmSmfZG10l7q8Oc94E1r+6gUanD7M4cq1HQa4cCjXcztfZTYYb9h8zONOU6fKKLQokLKT2ZZKN9cKm/i6eQ+eXf89PvlkFqsrOtHRQBWr25UB2+3ELOdEK6UKASWB85l8bP6zdClUqgQnTni6JUJ4XFZ26Uw9b5Lx6X9HNxH4dB/ZqCjrJLez6vzN6UO0aeO5dgjhYdnJbEune3m7+xm5NYIOS2ZDX++vre6K6RybgdpKqRpKqcIYC06W2JyzBLCUoOgLrNZaa/Px/uZV4DWA2sAmF7Qp74qPh19/hd620w+FEJlhHd6DT26VDnT2SG5n1YEDN78uXNhz7RDCy1jPkf717XspNHwYzJ0LR496umk5luNOtHmu3EhgObAHmK+13qWUeksp1ct82pdAGaXUAeB5YIz5sbuA+cBu4DfgSa214+Kc+cGqVXD1Ktx7r6dbIoT3unABwsONbWTz4VayuU1yOxsOWm01L51oIbJv1ChjatS773q6JTmmtPa6qWqEhobqLVu2eLoZ2fPoo7B4MZw+DSNHwrVr8N13nm6VMGyuXwAAIABJREFUEN4nJgYqV4Z33vGqer1Kqa1a61BPt8OdvDqzLd5+21hUCEZum/LHwighPOLRR+H7743R6PLlPd0ap5xltuxY6E5JSbBkCfToYYxkzJghHWghsis42KjVu2iRp1siCgLrkWg/P8+1Q4j8YMwYSEiA997zdEtyRDrR7rRuHZw7J1M5hHCVPn0gKgoOH/Z0S0R+d/Ag1K8Py5ZBIVesyReiAKtTB/r1g08+gbNnPd2abJNOtDvNnWtcAuza1dMtESJ/uO8+4/PixZ5th8j/DhyAVq2kPrQQrvLyy8bUqPff93RLsk060e5y4QLMmQMPPABFi3q6NULkDzVqGBtfyJQOkZuuXoWTJ+GWfFLcVoi8oGFD42riZ58Z0129kHSi3WXWLOMd18iRnm6JEPlLnz6wcaOx0FCI3LBhg/G5cWPPtkOI/Ob++41BRi9deCyd6FwSERVDm/DV1BizlDsmrOTq+x9B27bQtKmnmyZE/mKZ0hER4dl2CK9mndltwlcTEWX1pmzRIuMKYseOnmugEPlRhw7G7p8rVni6JdkinehcEBEVw9jFO4mJi0cDt0Stp2j0UTb1GOjppgmR/9Svb3z88IOxNbMQWWSb2TFx8YxdvNPoSCcnG3Pue/SQsnZCuFrZstC8uXSixU1Tlu8jPvHm3gODt/7MqWKleSGppgdbJUQ+NmyYUf3myy893RLhhWwzGyA+MZkpy/fBX3/BmTPQt6+HWidEPte5M0RGwsWLnm5JlkmdnlwQGxef+nWN8zHcdXgbU9sO5PjlRA+2Soj8ISIqhinL9xEbF09QoInRXeoS9tRTRg32Z54xpk3Vq5e1x8vW4QWadWanO77wV2MEWqpyCJEtGWZu584wYQKsXQu9e2f98R4knegcsvefGxRoIsYcyg9tW0qCTyG+b9KVoEC5FChETlguu1tGDS2X3QH8X5rM7WHtWBc2hPGD37IbtM4en1dCWeSujDLbWnCJIvD1IrjnHqmqJEQ2OMtcMK4CnTl3ie2F/Tk550dq2nSi83pmy3SOHHA0j65dvXKY/HwJSIin785VLKvXhiulyjK6S900j3W4iEUIYZejy+5vLNnFc3+dYXWNZoTE7E07pzUTj5+yfF+ut114XkaZbc3k58ukUmeM0nb33SeZLUQ2OMtsy+9igq8fG6o0xnfVSq/LbBmJzgFH/7lr9p5hYp/G7H9zCiUSrrHsrr5M7NM49V1TXn9nJURe5eiye1y8MVXqn4p1CNv9B+WunOdMsdJMWb4vze+U08v2It/LKLPTjFB3vIU2Q8OgalWWVL9NMluIbMgosy3WVQ+h48HNLHhjMnStB5cvw6VLDPntH4rdiKdowjXiTMV5ucuTaOWTZzJbOtE54OwPcljTINi/Epo3Z8YnTxolXMycvbOSQBbCMUeX3S3+qWRshnHryf38fkvLdL+jjh4vU60KBqeZHRKcNn9nzTK2lP/+eyb9cUwyW4hsyCizLdbUCuXV1TN5YclHsMR8UCn6Fgngsp8Jv5Qkyl2N4/22AzlTrHSeyewcTedQSpVWSq1USu03fy5l55ymSqmNSqldSql/lFL9rO6brZQ6rJTabv7Is0WU7V3Kc/SfGBRogilTYPdueOqpNB1okNEwIbJrdJe6di+7lwrwA2BX+VokKx9uPXEASN85dvR466lW+V1Bye0sZ7a1K1dg3Dho3Rr69ZPMFiKbMspsi6Olgrhr6Az6Pz8bYmON38HkZH7fsI8Oz3zLpLsGA1AkOTFPZXZO50SPAX7XWtcGfjfftnUNeFhr3RDoCnyglAq0un+01rqp+WN7DtuTK7I6j27GiVXw0kvwv//BwPS1oTMd5EKINMJCgpnYpzHBgSYUEBxoYmKfxrzesyEmP1/iC/uzv0wVbj35n92gdfT4AjaamO9zO6uZne4P8qRJxlzo998HpSSzhcimjDLb2rlywfR/sCNUqmQs5FUq9fFFixsLe6sE+OapzM7pdI7ewN3mr78G1gIvWZ+gtf7P6utYpdRpoBwQl8Pv7TZZmUc3I2YlDT8Oh/794dtvoVD6f+LRXeqmmV8HBW80TIjsSnfZ3cqU5fv4p1JtOh3azMR7G9k9LywkmLDEGEg2/Z+9Ow+PsrrfP/7+EIIGUQKKKGF1Q0FUNKIWN3BBqyJ112rVn4haW5daFNzXSkVrXb6tW9XWXasiiooLWK2KAiKrYhVlCS7IJkuEEM7vjzOByWRmMssza+7Xdc2V5JlnZg4w3DlznnM+x480Nj1Fn9tJzX2OrOIybx7cfjucdhrssw+gzBZJR2OZ3VjpukG9Kxh00p7wDDx1Zm/YLT860JB+J7q9c+5bAOfct2a2dbyTzawP0AL4KuzwLWZ2LaEREefcmhiPHQIMAejcuXOazU5OwvPobrkF7h3hw/ef/4zagYaNC1Hyte6hSCGJLFnW/ah+tBnxFoO2rG148qpV/jL93Xf7XQ5nzcp+g3MvK7mddmY//zy8/DI8+mjSD01q7nOk4cP911tv3XBImS0SnMjMvvPkPRr/v7TJJv7rmqhdxJxptBNtZm8B20S566pkXsjMtgUeA850zq0PHR4OfIcP6AfwoyE3Rnu8c+6B0DlUVlZmdW/fhBYj3XgjXHcdnH66D/2Skgbnh2s0yEWkUdEq3dy8aDOeA5g4Ebp02Xjyf/8LZ58NX37pt5pdvTonbc6GfMjttDN77lw/GHHTTdCpU1IPTXkB6UcfwZNPwlVXQUTHX5ktkr6Uq5PlaSe60TnRzrlDnXO7Rrm9BHwfCtm6sP0h2nOY2RbAGOBq59yEsOf+1nlrgEeAPkH8oYLW6GKkm27yHejf/CahDrSIBCPaZfupbbpQU9IcJk3yB6qr4bLL4MADobYWxo+HgQOhpnh3EC2K3D7kEP913LikH5rSAtJVq/xC8G22gWHRpomLSLpSrvtcqJ3oRowGzgx9fybwUuQJZtYCeBH4l3PuuYj76oLcgEHAjDTbkxFxFyPNn+870KeeCg8/rA60SBZFu2y/tnkpn7Xr6keiP/wQ9tgD/vIXuOACmDYNDj6Yr5evZeny1U1144zCyO1evfwVg7ffTvqhSS8gnT8fDjgAJk+Gu+6CVq3Sa7uIRJVqpZt3vlkOwNn3vZdXmZ3unOgRwLNmdg4wDzgRwMwqgfOdc4OBk4ADgS3N7KzQ484Kreh+wszaAQZ8CpyfZnsyJualvKeeAuf8aLQ60CJZFeuy/ZzOO7Pbe2Nh//2hY0d4660NI5ujplSxcu5yjq5dV69yAzSZjTMKI7ebNYN+/fxItHMNSoU2JuHpFx99BIMG+ZHoV16BI49MscEi0phUplqNmlLFo+/N42Bgq1XLGJ9HmZ3WSLRzbrFz7hDn3I6hr0tCxyeFghjn3OPOudKwckgbSiI55/o753qFLjOe7pxbmf4fKcsef9yv8N9++1y3RKTJiXXZvuJXv/TTNQYPhunTN04NwF9O/JlmNF+/8ZJiPm0jm2kFlduHHAJVVfDFF42fm4onn4SDDoKyMn/VQh1okYxKZarVyLGzmb9Ja1a0KOPW1+9hn3nT8yaz053O0bRNm+Z/QUepBS0imRfrsv3eV5wP334L998PW2xR7zELl1WzrqQ5pbXrGhyXPNO/v/+awpSOuNavh6uv9tm9zz7w8cfQs2ewryEiDaRSq3/hsmoWb1bOQec9RFXrrRnx+t1sWvNzXmS2tv1Ox+OP+zJ2J52U65aINFkxL9tvE604hb9sWNOseb2R6Lrjkmd22MFX5hg3Dn772+Ce98IL4b774Jxz4G9/gxYtgntuEYkr2Uo3dVNAlrRszbAjfs9TT1/FJf99ksd+dWEGW5kYjUSnYNSUKvb/01t8+/eH+e8OlYxasDbXTRKRBA0d0B1r3pwStx4LVW3Txhl5ysxP6Rg/3o8epyh8C/AzL37Qd6B//3t48EF1oEXyXPgUkA+77M5Tux3OuRNHcUvH3I9EqxOdpLoah52mT2TblYt5eqcDGf7C9LxZKSoi8Q3qXUH/Xn4U5Ia37qei9aZ5tY2sROjfH5YsgalTU3p45BbgZ4x5kOWbtmLM8eclvVhRRLIvcgrII7+6kLVbtePg24bD2twOYmo6RzI++4za3w7j5hUr2PX7r1jZooy3dujDz6EJ7volLFIYenTZEoDffDKG39w9HPR/N3/VLQp9+23o3Tvph4fXpd1zwWcc+tVEbjvwN7z04fccdZDmQYsUggZTQPYyX+9/xAi49tqctUsj0YmqqYETTuCoSa/TZ8EszMH/7XcSP5duCmhRkkhBCS9HeeeduWuHNK5DB9h555QXF27IZue4/N1/smizch7Za6AyW6SQHXOM35/j5pthRu62GNFIdKLuuw9mzeK6M27kmQ57Nrhbi5JECsjsUGmk8nJ48UX4+mvo1i23bZLY+vf3W4CvXZv0HOYO5WWs+G4RJ057k33nz+DaQ8+jusWmVCizRQrbXXfBm2/6BcIffJCTvTo0Eh0SvvCkwW44P/7oLxcceij7XXJ28tvJikh+2W47//WZZ/ymHvfem9v2SHyHHOI3Q/n443qH4+Y2wNdf89wbtzHp3tO5Zvw/+HTbHXl69yOU2SLFoF07uPtunwt33ZWTJphzLicvnI7Kyko3adKkwJ6vbuFJ+H7uZaUlGxcbXXihrzc7dSr07MmoKVWMHDubhcuq6VBextAB3TUfWiRPJPT/c906mDvXb5J02mkwZgwsWACbb57x9pnZZOdcZcZfKI+kndlLlkD79nDyyb60KAnk9qxZcNhhsGoVXx51IiPKe/N2q850aNNSmS2SZ1LuVzkHxx7rd6WdNs2XxQxYvMxuOp3oF17w85pPPrnBXX1HjIu6DWVFeRnvH9UO9tjDd6TvvjvVJotIFjTasYpm4kTo0wf++le4+OKMt1Gd6BRdey3cdBOMHg3HHBM/tw/dAo44AkpL4Y03oFev9F5bRDImpdwOV1UFPXrAnnv6mvIBV92Jl9lNZzrHfffBn/4U9a5YC0wWLl3tf6mWl8P112ewcSIShPBKDHUa3R52772hb19/ObC2NvZ5kltXXw277QZDhsB338XM7U7TPvZzqDffHN57Tx1okTyXUm6Hq6iA22+Hd96Bhx8OvoFxNJ1O9AEH+C26ly1rcFesRYGnLPzEF/m/6SZo2zbTLRSRNMX8QNxYJYZLL/WLC0ePzkCrJBAtWsC//gU//QRHHcX2UWK731cT+edz10HHjvDf/2bk0q6IBCvl3A43eDDssw/ccktWB0OaTid6//393JkPPmhwV/huOHVaWy1Xj/8H7LqrH/kQkbwX6wNxo9VzBg2Crl1V7i7f7b47PPccTJ3KE2/czg4rF/Hg8zdy+BcfMnDWf3jghZtZvePO8O67fnRKRPJeyrkdzgyGDvWDIU88EVDLGpdWJ9rM2prZm2b2v9DXNjHOqzWzT0O30WHHu5nZR6HHP2Nmmdt/dZ99/Py4995rcFfkbjgV5WU8ufJDNqua5+dJNlclQJFCEO0DcUKVGEpK4KKLfD5MnpzBFuZeQeV2NL/8Jfz977T/4B3GPng+h335MX8bdSt/feV2lvfemzYT3oOttspqk0QkdSnndqRBg2Dfff2Vxe+/D7CFsaU7Ej0MeNs5tyPwdujnaKqdc3uEbgPDjv8ZuDP0+KXAOWm2J7aWLWGvvTZ0oiNLIwG8P6w/dw3ama1++pGu9/+V//Tcn1Ftd85Yk0QkWNE+ECe8OOWcc/w82jvvbLx0WmErnNwOU+/fZPH2fHbBHylpvzXvPfgcH+20N692358Tj72WUV+tyEZzRCQgaeV2mFHTvuPX+57LmuU/8fZhJ2clt9OqzmFms4GDnXPfmtm2wDvOuQYfHcxspXOuVcQxAxYB2zjn1pnZfsD1zrkBjb1uyiu9hw6Fu+9m9H9mccWY/zVYCfrHTRZy9jWDWdB6a9qvXMyhg+/jx3YVKf1jikgBuvRS1t97L/1++whzyzYO0Ca1UrwRua7OkYvcTrc6R6zV+8fv2YHnP1mY+qp+ESkK4Rnx2w+f5fJ3/8VFJ1xN/yvPTzsLMlmdo71z7luA0NetY5y3qZlNMrMJZjYodGxLYJlzbl3o5wVAzD+pmQ0JPcekRYsWpdbaAw6AtWt5/ZGXo64EdS+/Qm2zZmyzYjH37XMi88u3SW6FqIgUtosuwtWu56SP6y8wLLIcyEpuB5LZIbFW7z/18YL0VvWLSFEIz4gH+hzHjPbbc81r93LfixMz+rqNdqLN7C0zmxHldmwSr9M51Is/DfirmW0PRCvkF3NY3Dn3gHOu0jlX2a5duyReOkzfvgB0+3xK1Lsr58/kkw47s8fFT3Hn/qdtOJ7UClERKVzduvHmjvtw2qevs2nNz34xckgh5UA+5HYgmR0S6+++NsaV1EL6txKR9IX/n19X0pzLj7yY8uoVnPviPRl93UY70c65Q51zu0a5vQR8H7ocSOjrDzGeY2Ho6xzgHaA38CNQbmZ1q/Y6AgvT/hPFs+WW0KMH+3/3WYO7Wq6tZtfvvmRip56sblFWr1h3UitERSSvNTbfefTBJ9Hm5xX8bdQIptx9GhXLfawVUg4UVW4T++++JMamCoX0byUijWsstyP/z89qvx1/3+cEjp8xDl57LWPtSnc6x2jgzND3ZwIvRZ5gZm3MbJPQ91sBfYFZzk/GHg+cEO/xgTvgACoXfs5m9ReCsufC2TR365nYsWe94ymtEBWRvFQ3b65qWTUOqFpWzfAXptcL5MPPO4EZ2+5I/zmTaPPzCi7575PFlgMFl9vRVu8bfiQ6shtdZP9WIk1eIrkdLSMeOug0ftpuJzj33Kh7hAQh3U70COAwM/sfcFjoZ8ys0sweCp2zCzDJzKbiw3eEc25W6L4rgD+Y2Zf4uXb/SLM9jTvgAEpXruDeXqVc8MXbjP7nJdwx5i8M+eh5aq0Zkyt22RDKqa4QFZH8lMjOWIP27MjPF/4egMVlW3DczHHcu3uLYsqBgsvt8NX74DvQdRM5HCizRYpYQrkdpcLHjSftxRbPPAHffedLmGZAWgWQnXOLgUOiHJ8EDA59/wEQdd/V0GXCPum0IWn77w9Av4Uz6DfhaX5ctZb2K5fQfuUSPu7Yg5WbtAT8P8D7w/pntWkiklmJ7oxVecUFsOlatjz6aOjTh0OeuAdOKI48KMjcxv+SHNS7gr4jxlEV8e/lUGaLFKtEc7suI+qrgKuvhhtu8HWkjzsu0LY1vV1EunSBTp1gxAhYtIgrjr+Wt3foQ9vVy/m5+cY9A7QwRaT4dCgva9ABqzteT/PmcNll/vuhQ+Gaa2DCBF/IX3IqkC2CRaRgJJzbsVx1FbzyCpx3nq/SluZC53BNZ9vvcAccAIsWQZcufLGnH5le0rK1X1AYooUpIsUnpZ2xLrkEtt4ahg2rV61DciOQLYJFpGCkvaNhaSn8619+QKRt20Db1nQ70QBDhnDZkT2C2W5SRPJeSjtjtWrlR6L/8x94442stVWiC2yLYBEpCIHsaNijB1x+OZSUNH5uEtLasTBX0t39ikWLYPhwuO02aNuWUVOqGDl2NguXVdOhvIyhA7prYYqIbLR2LXTvDuXlMHkyNEt9/CHXOxbmQtqZHUGZLSLZEi+zm2YnWkQkWY8/DmecAfffD0OGpPw06kSLiBSOTG77LSLSNJx2GvziF3Deeby61wB2v+SZqEX/RUQkfzS2UUs61IkWEUlEs2aM/stj3Nf3FA6f8hZPPTWcqqWrGxT9FxGR/JDIRi3paHol7kREUvTn8d9Qtf/pvLzDvrSt/gnMNhT915xcEZH8Em+jliAyW51oEZEE1dUinrnNDlGPi4hI/sh0XXlN5xARSZBqFIuIFI5MZ7Y60SIiCVKNYhGRwpHpzNZ0DhGRBNTVJq6uqaXEjFrnqFCNYhGRvJSNzFYnWkSkEXUrvOsWqNQ6t2E0Qx1oEZH8kq3MTqsTbWZtgWeArsA3wEnOuaUR5/QD7gw7tDNwinNulJk9ChwELA/dd5Zz7tN02iQikq7IHfFWr12X0RXe2aTcFpFik6vMTndO9DDgbefcjsDboZ/rcc6Nd87t4ZzbA+gPrAbeCDtlaN39CmIRybVodUWXrq6Jem6BVuVQbotI0chlZqc7neNY4ODQ9/8E3gGuiHP+CcBrzrnVab5uyiI/rehyrIiEi1ZXNJYCrcqh3BaRopHLzE53JLq9c+5bgNDXrRs5/xTgqYhjt5jZNDO708w2SbM9cWV65xoRKXyJjlQUcFUO5baIFI1cZnajnWgze8vMZkS5HZvMC5nZtkAvYGzY4eH4uXZ7A22JMxpiZkPMbJKZTVq0aFEyL71BvJ1rREQg9khFeVkpFeVlGFBRXsatx/XK29HQfMjtIDIblNsiEl8uM7vR6RzOuUNj3Wdm35vZts65b0Nh+0OcpzoJeNE5t2GiSt1oCLDGzB4B/hinHQ8ADwBUVla6xtodTaZ3rhGRwjd0QPd6q7rBj2BcP7Bn3naaI+VDbgeR2aDcFpH4cpnZ6U7nGA2cGfr+TOClOOeeSsQlwVCAY2YGDAJmpNmeuLTbmIg0ZlDvCm49rlfBjDqnQLktIkUjl5md7sLCEcCzZnYOMA84EcDMKoHznXODQz93BToB/4l4/BNm1g4w4FPg/DTbE1esTysFOq9RRDJkUO+KYuo0R1Jui0hRyVVmp9WJds4tBg6JcnwSMDjs52+ABn8651z/dF4/WXV/wVrlLSJNlXJbRCQYTW7HwiIfYRIRKTrKbRHJR02iE60aoyIihUOZLSKFoOg70ZH7p9fVGAUUyiIieUaZLSKFIt3qHHlPNUZFRAqHMltECkXRd6JVY1REpHAos0WkUBR9J1o1RkVECocyW0QKRdF3oocO6E5ZaUm9Y6oxKiKSn5TZIlIoin5hoWqMiogUDmW2iBSKou9Eg2qMiogUEmW2iBSCop/OISIiIiISNHWiRURERESSpE60iIiIiEiS1IkWEREREUmSOtEiIiIiIklSJ1pEREREJEnmnMt1G5JmZouAuUk+bCvgxww0J1n50g7In7aoHQ3lS1vUjobSbUsX51y7oBpTCJTZgcmXtuRLOyB/2qJ2NJQvbclYZhdkJzoVZjbJOVepdmyUL21ROxrKl7aoHQ3lU1uKWb78PedLOyB/2pIv7YD8aYva0VC+tCWT7dB0DhERERGRJKkTLSIiIiKSpKbUiX4g1w0IyZd2QP60Re1oKF/aonY0lE9tKWb58vecL+2A/GlLvrQD8qctakdD+dKWjLWjycyJFhEREREJSlMaiRYRERERCUST7ESb2R/NzJnZVjl6/ZvMbJqZfWpmb5hZhxy1Y6SZfR5qy4tmVp6LdoTacqKZzTSz9WaW9dW8ZnaEmc02sy/NbFi2Xz+sHQ+b2Q9mNiNXbQi1o5OZjTezz0L/LhfnqB2bmtnHZjY11I4bctGOsPaUmNkUM3sll+1oapTZ9dqSF7mtzN7QDmV2/XY0qcxucp1oM+sEHAbMy2EzRjrndnPO7QG8Alybo3a8CezqnNsN+AIYnqN2AMwAjgPezfYLm1kJ8H/AkUAP4FQz65HtdoQ8ChyRo9cOtw64zDm3C7AvcGGO/k7WAP2dc7sDewBHmNm+OWhHnYuBz3L4+k2OMruBfMltZbb3KMrscE0qs5tcJxq4E7gcyNlkcOfcT2E/bpartjjn3nDOrQv9OAHomIt2hNrymXNudo5evg/wpXNujnNuLfA0cGwuGuKcexdYkovXjmjHt865T0Lfr8CHUEUO2uGccytDP5aGbjn5/2JmHYGjgIdy8fpNmDK7flvyIreV2Z4yu0E7mlRmN6lOtJkNBKqcc1PzoC23mNl84NfkdlSjzv8DXst1I3KkApgf9vMCchA++crMugK9gY9y9PolZvYp8APwpnMuJ+0A/orvzK3P0es3OcrsRjXV3FZmx6HM3iDjmd08U0+cK2b2FrBNlLuuAq4EDs91O5xzLznnrgKuMrPhwO+A63LRjtA5V+EvBT2RiTYk05YcsSjHVLYGMLNWwPPAJRGjcVnjnKsF9gjN/XzRzHZ1zmV1/qGZHQ384JybbGYHZ/O1i50yO/m2hM7JeG4rswuPMtvLVmYXXSfaOXdotONm1gvoBkw1M/CXwD4xsz7Oue+y1Y4ongTGkKFAbqwdZnYmcDRwiMtwvcMk/k6ybQHQKeznjsDCHLUlb5hZKT6Mn3DOvZDr9jjnlpnZO/j5h9lexNMXGGhmvwQ2BbYws8edc6dnuR1FR5mdfFuyldvK7MKizK4nK5ndZKZzOOemO+e2ds51dc51xf8n3DMTYdwYM9sx7MeBwOfZbkOoHUcAVwADnXOrc9GGPDER2NHMuplZC+AUYHSO25RT5nst/wA+c879JYftaFdXfcDMyoBDycH/F+fccOdcx1B2nAKMUwc6s5TZMdui3FZmN6DMri9bmd1kOtF5ZoSZzTCzafhLlTkpRQPcC2wOvBkq3XRfjtqBmf3KzBYA+wFjzGxstl47tEjnd8BY/GKMZ51zM7P1+uHM7CngQ6C7mS0ws3Ny0Q78p/gzgP6h98anoU/02bYtMD70f2Uifn6dystJtuVLZkOe5LYy21NmN9CkMls7FoqIiIiIJEkj0SIiIiIiSVInWkREREQkSepEi4iIiIgkSZ1oEREREZEkqRMtIiIiIpIkdaJFRERERJKkTrSIiIiISJLUiZaCYGbfmFm+bkErItKkKaOlKVInWopapoLdvD+b2eLQ7bbQtquxzr3KzOaZ2U9m9rSZbRF0m0RECk0hZLSZVZjZS2a2JLQr4flBt1cKkzrRIqkZAgwCdgd2A44Gzotx7m/w27H2BToAZcA9WWijiEhTFWRGPw58DbQHjgL+ZGb9MtNsKSTqREsh2dvMZpnZUjN7xMw2BTCzo83sUzNbZmYfmNluoeOPAZ2Bl81spZldHjr+nJl9Z2bLzewBUw9nAAAgAElEQVRdM+uZQlvOBO5wzi1wzlUBdwBnxTj3GOAfzrn5zrmVwJ+Bk82sZQqvKyKSr4ouo82sFXAwcItzrsY5NxX4N/D/UmiTFBl1oqWQ/BoYAGwP7ARcbWZ7Ag/jRxi2BO4HRpvZJs65M4B5wDHOuVbOudtCz/MasCOwNfAJ8ETdC5jZsFDQR72FtaUnMDXs56mhY9FY6Bb+8yahNoiIFItizGgLOxZ+/64J/H1IkVMnWgrJvaGRgiXALcCpwLnA/c65j5xztc65fwJrgH1jPYlz7mHn3Arn3BrgemB3M2sdum+Ec6481i3saVoBy8N+Xg60ijHn7jVgsJl1Db3OFaHjGokWkWJSdBntnFsBvA9cY2abhj4UHI/yW1AnWgrL/LDv5+LnrnUBLosYiegUuq8BMysxsxFm9pWZ/QR8E7prqyTbshIIXxy4BbDSOeeinPsw8BTwDjATGB86viDJ1xQRyWfFmtG/Brrh/3x/x4+MK79FnWgpKJ3Cvu8MLMSH2i0RoxEtnXNPhc6LDMzTgGOBQ4HWQNfQcQMwsytDc/Oi3sKeZyZ+wUqd3UPHGnDOrXfOXeec6+qc6xg6ryp0ExEpFkWZ0c65uc65o51z7Zxz++CnpXycxN+LFCl1oqWQXGhmHc2sLXAl8AzwIHC+me0TKlO0mZkdZWabhx7zPbBd2HNsjr+UuBh/Oe5P4S/gnPtTaG5e1FvYqf8C/hAqfdQBuAx4NFqjzaytmW0fal8P4C/Ajc659en+hYiI5JGizGgz28XMNjezFmZ2OnB46Bxp4tSJlkLyJPAGMCd0u9k5Nwk/5+5eYCnwJfVXYN+KX9yyzMz+iA/WufgRhlnAhBTbcj/wMjAdmAGMCR0DIDQqckDox62AV4FV+Ll3DzvnHkjxdUVE8lWxZvSA0J9nKXA+cIRzblGK7ZIiYtGnB4mIiIiISCwaiRYRERERSZI60SIiIiIiSVInWkREREQkSYF0os3sYTP7wcxmxLj/12Y2LXT7wMx2D7vvGzObbn5L0ElBtEdERGJTZouIpC+okehHgSPi3P81cJBzbjfgJiCyMkE/59wezrnKgNojIiKxPYoyW0QkLc2DeBLn3Ltm1jXO/R+E/TgB6JjO62211Vaua9eYLycikrcmT578o3OuXS7boMwWEUlMvMwOpBOdpHPwdRjrOOANM3PA/bHq55rZEGAIQOfOnZk0SVcRRaTwmNncXLchScpsEWmy4mV2VjvRZtYPH8j7hx3u65xbaGZbA2+a2efOuXcjHxsK6gcAKisrVdxaRCTDlNkiIrFlrTqHme0GPAQc65xbXHfcObcw9PUH4EWgT7baJCIi0SmzRUTiy0on2sw6Ay8AZzjnvgg7vpmZbV73PX4/+qirxUVEJDuU2SIijQtkOoeZPQUcDGxlZguA64BSAOfcfcC1wJbA38wMYF1oVXd74MXQsebAk86514Nok4iIRKfMFhFJX1DVOU5t5P7BwOAox+cAuzd8hIiIZIoyW0QkfbmoziFSUEZNqWLk2NksXFZNh/Iyhg7ozqDeFbluloiIRKHMlmxRJ1okjlFTqhj+wnSqa2oBqFpWzfAXpgMolEVE8owyW7Ipa9U5RArRyLGzN4RxneqaWkaOnZ2jFomISCzKbMkmdaJF4li4rDqp4yIikjvKbMkmdaJF4uhQXpbUcRERyR1ltmSTOtEicQwd0J2y0pJ6x8pKSxg6oHuOWiQiIrEosyWbtLBQJI66hSixVnprFbiISP5QZks2qRMt0ohBvSuihqxWgYuI5B9ltmSLOtEiKYq3CjyZQNbIiIhI5imzJWjqRIukKIhV4BoZERHJDmW2BE0LC0VSFMQqcNU0FRHJDmW2BE2daGmSRk2pou+IcXQbNoa+I8YxakpV0s8RxCpw1TQVEUlMurmtzJagaTqHNDlBXY5rbBV4IjqUl1EVJXxV01REZKMgcluZLUELpBNtZg8DRwM/OOd2jXK/AXcBvwRWA2c55z4J3XcmcHXo1Judc/8Mok3SNCWy4COoxSUQexV4ooYO6F7vFwOopqlknjJb8kWii/SCym1ltgQpqOkcjwJHxLn/SGDH0G0I8HcAM2sLXAfsA/QBrjOzNgG1SZqYupGKqmXVODaOVERe8suny3GDeldw63G9qCgvw4CK8jJuPa6XFqhIpj2KMltyLNHMhvzJbWW2hAtkJNo5966ZdY1zyrHAv5xzDphgZuVmti1wMPCmc24JgJm9iQ/2p4JolxSvaKMXiY5UxLoc54C+I8Y1GAkJopxRvOdId2REJFnKbMm2dDIbksvtoErQxXoeZbbUydac6ApgftjPC0LHYh1vwMyG4EdE6Ny5c2ZaKXkpMsj67dyO5ydXNZgbFxnGdSJHKqJdjqsTOc8u3jw8aHxu3agpVVw/eibLqmvqvcalz3zKpLlLuHlQrxT+RkQyTpktaQnP7dZlpaxau46aWgckn9mQeG4DaWf2yLGzqVpWjeE76XXPo9yWSNnqRFuUYy7O8YYHnXsAeACgsrIy6jlSfKJ1Yp+YMK/Bm6S6ppYSM2pdw7dG5IKP8MUl0UY2wkdCYo2U3PDyTH6uWR93kUtk28M54IkJ86js0lYjGpKPlNmSssjsCx9EqJNMZkPiuV33feR9qWR2ZMuU2xIpWyXuFgCdwn7uCCyMc1yagETKFUXrxMb6bVzrXMLliwb1ruD9Yf2j9ghg40hIrPl2S1fXNForNFrbw7nQOSJ5SJktDSRaYq6x7KuTTGZDYrmdycwG5bbUl61O9GjgN+btCyx3zn0LjAUON7M2ocUph4eOSZFLdxFgNHULPJJZ8NFY8f1kyxZVLave8Esm2mhJJNUWlTylzJZ6glgEGCmVzIb4uZ3pzAbltmwUSCfazJ4CPgS6m9kCMzvHzM43s/NDp7wKzAG+BB4EfgsQWpxyEzAxdLuxbsGKFLcbXp6Z0K5PyQTi0lVruPSZTwG48+Q9eH9Y/0bDOFrxfYBVa9YxakpVzOL85WWlUZ/PYMMvmUSotqjkgjJbkpVoZkPiuZZKZkP03Dag387tMp7ZoNyWjYKqznFqI/c74MIY9z0MPBxEO6QwjJpSxdLVDefIQWKLAMMXe4RbXbMeSK4If939N7w8s16bllXXMPyF6dx6XC9uPa5Xg8UoQMLtClex/Ad2//YLZrbfjh/adWTo4TvBuHFw990sn/k5s5ptwRet2vNZj73Z/9wTOfrAXQJbaS5SR5ktyUgmsyH+IsBwqWR23TmT5i6ptz7GAc9PrqKyS9tAMztS5HSTaPkM6W3oIoVDOxZK1sWbTxZvEWBdICVyyS2ZIvx1Cwgjf0nUPUe80ZE7XptF3/depjPVrF71M6W1tZSur6Ht6p9ov3Ix7VcuYcvVy5m2zY60Wl/D3t98SvP1/hfHz223YtPn2sIXX7CmzZZM3moH2i3/kRO+ns5mn7zCuiduYG733Zm/dU923Hp71rbfniraprS7oohIqpLJbGiY24l0VJPdOGX854uiLjBvLLMT/V1isKEa1PjPF0XtEEdb+D70ualgNKhEAsrsYqROtGRdvPlksRYBhodP3xHjAp9vnEoh/0G92jNo4hh4/Z56x9c2a87Sllvwfau2LNx8K+ZW7MCR38+Eli3hiivgmGNg2jQ2ff99qKqCK67giKoOfL3KB3FpbQ29F87mgK+ncOA3U7jw8ydoFvp1Mb399ryzXSWv/diXQff+FkoaTkUREQlSspkN9XM7bzI7wd8lFeVlvD+sf6NtiLYQsWZ9w48Mqe6IK/lPnWjJulgjAOVlpQnPh0vkUmEy89ZitWnDczz2GEybBvPnb7itX7iQZrW1rGhRxq+ufI5f9NyW5z79nup16zc8vqy0hOP3quDmupGMLcoYumlnBp23H5x33obzvhk2ZsP3NSWlfNxpVz7utCt3HHgG5dU/scPi+fSZP5OD50ziggnP0fzDZ+Cx4bDnnlBZCXvv7b/usANYrLXrIiLJK8jMjqKxPQfAZ3a/ndvRd8S4RqdjBNHpl8KmTrRkXbRALSst4fqBPeudF2+3KNh4Wa68ZSkrf15XbwQgXpmkZNo0dEB3P1r8m9/AJptAp07QqRPz9tiXMV2as652PR936smX1VA19QeOr+xY79JfrI1hoP6lvVi/EErMWFa2BZM69mRSx578bb+T2OLnlRz7w0xuarccJk6Ev/8d7rzTP6C8HH7xC/j1r+H4432bRUTSUHCZHUW0qRfPT67i+L0qUspsiJ3b0WgxYnEyF6XQeb6rrKx0kyZNynUzJA2RO/m1aVnKdcf4QI62WxT4gIxV/ihWeCezKC/muV9+CTvu6EejTz8dSPwyYKzz2rQspWWL5o2OiBy/V0XU4/X+Htatg5kzYdIk36l+7TWYNw922QUefhj23Tf6P4LkhJlNds5V5rod2aTMLnwFldlRpJvZFWFblcfL7dJmVm9OdGN/D5L/4mW2OtGSE9F284sWPpESnasWbbttSDDMampg1izfIZ04ET78EKZPh2eegZNOAqDbsDFRF8sY8PWIozb8HOu8SHUd5mgLWJKuzrF+PYwZAxde6EfRL70UbroJyjQSkg/UiZZClNeZnYAgMrustCTqQEdkboOqcxSTeJmt6RySNeGdwWZRtnuNtiAjUiLzyuJttx1zgUd1Nbz0Ejz5JLz5Jvz8sz9eXu7nGh97LBxxxIbTE52Pl0w1kfGfL4r6yyZyMUyjmjXzixcPOgguvxzuuAOWL4cHH0z8OUSkycvrzE5SupldYha1Tna83Jbip060ZEVkSEaGcaISmVfW2Nat9UJ93jw/p/jBB2HxYqiogHPP9VMg9t475kK9ROfjJbqgpkG70lBv5LrrSTzf9wu2ef55Pz969939bdddfbUQEZEo8jazU5ROZkeOQAfdNu0FULjUiZasaCwkE5HowpPGQm3v2qV+Id7o0fDuu/7gscf66Q/9+vmR3EZEq18dLfiinbdqzboGlywhmIUn0RbPXN/xYG5ZuYIt//lPWLnSn9ismZ/nvfvusNtu0KOHn0O9444qmycieZXZQWRjOpldNxc62WogiYiW2aorXTjUiZasSOTTerT5dXULVSqS+HQeeTmu2fpadv/2fxz65UcM+PIjdvhxnr+jVy+48koYPBi6dEn2j5TwNIvI86Jdukx2ZXos0X7xvd51L6bvsT/vX34wfP01TJ268fbxx/DssxtPPvJIP59aZfJEmrRcZna4oLIRUs/sOpnI7WiZrbrShUOdaElbtNqbkQst4s0zW+9coAsybt16OR+9NYbOP8yj+49z2enHubSsWcO6Zs1Yutd+cPUfYOBA6NYtkD9/shIdEYHkL/PF3YCgWTPYfnt/O+64jXeuWAGffw7PPQcjR8KAAXDOOXDiiQmNyotIYcm3zI417a2uAkg+dCYTze1AM1vynqpzSFriLQipk3CptiC88IKvjwwsbtWG2W07Mb/Tjmx3VD/2Pv80aNMmuNfKsFgj1rGqeEDqO3CNmlLFX16dxakvP8AvZ/+XLsu+Y3aHHVh85fX84renaWQ6QKrOIbmUd5kd1q5Cnxec7cyum2JSElr0mczovyROJe4kYxLdzjVajc3A/7PPmgX77+9HWseOhbZtg3vuHIj1dxurFivADS/PZOnq5EpERQZ/s/W1DPzsXS5773E6Lf+eRZX70e7eO2GffQL5czV16kRLLuVVZheZXGV2Mo+V5GW8xJ2ZHQHcBZQADznnRkTcfyfQL/RjS2Br51x56L5aYHrovnnOuYFBtEmCF22kINFLTguXVSdfqi0R//ufn4bw73/DlCmw+ebw1FMF34GG2JfzIj/2VtfUcv3omaxZt75BqJaXlXL9wPiXQyPn5K1vVsKonv14tfv+nDr1dS758BlfreRXv/ILMlOYPy75RZndNORlZhexXGV25HNrPnX2pN2JNrMS4P+Aw4AFwEQzG+2cm1V3jnPu0rDzfw/0DnuKaufcHum2QzIr1gri8palDT5FR5ORLU/vvRd+/3v//b77wu23w8knQ8eOwb9WDiSzpWy0ah8Am23SvNEwjRX8a5uX8s+9juH5XQ9hRtvP4bbbYL/94I03fIk8KUjK7KYhLzO7yOU6sxO9X4ITxKqhPsCXzrk5zrm1wNPAsXHOPxV4KoDXlYCNmlJF3xHj6DZsDH1HjGPUlKoN98VaQexcaIV2HEGurq7n3XehUydf6/nDD+Gyy4qmAw1+sU1Zaf1yc8nOTE4kTBv7Zdm6/ZZwzTUwYYKfG33AAfDVV0m2RPKIMrtIFFxmF7l8yWx9AMqeIKZzVADzw35eAESdPGlmXYBuwLiww5ua2SRgHTDCOTcqxmOHAEMAOnfuHECzBeovTgiftxVeq7Lu52iWVddQWlI/JpoZtC4rZdnqmszMo/vpJz9lY/x4vyFKp07BPXceibYavN/O7aIu9tm0tFnU0aVEwjTehjD1fpn27Akvvwx77QX/+Y+fey6FSJldwAoys5uIvMtsybggOtHRPmjFWq14CvBv51z4v3xn59xCM9sOGGdm051zDYa5nHMPAA+AX6SSbqMFrh41nScmzNvwjxVv3lYsJWb1aoQCrHfQskVzplx7eHCNdQ4mTYIHHvAd6FWrfJ3na64J7jXyULQ5iZVd2jaY5wjRa5j227kdfUeMS3hzgUZXem+9tf+6enUG/rSSJcrsAlVQmd1E5V1mS0YF0YleAIQPBXYEFsY49xTgwvADzrmFoa9zzOwd/Nw7XStOUrLlgUZNqaoXxrHEmrcFmd8KdQPn/FSNO+/0W1WfeqrfmrtPnyZZei3eYp94IyCRO2HFqxUbM4w328x//f3v4cYb/eh0jx5+jvQppxRUCcEmTJmdB4o6s6WenGa2ZFQQneiJwI5m1g2owofuaZEnmVl3oA3wYdixNsBq59waM9sK6AvcFkCbmpRUtg0dOXZ2o2HcmFuP65WxrVDr+dOffAf6ggtgxAjYYovgnruIRAZ13xHjYu6EBTR4zzw+Yd6G82K+h9q08fPPP/zQlxScORMef9xPsfniC//vJPlOmZ1jRZ/ZkpCsZLZkVNoLC51z64DfAWOBz4BnnXMzzexGMwsvfXQq8LSrX5h6F2CSmU0FxuPn181CkhJv29BYEhl1KCstoU3L0qj3VZSXMah3RdSFFIHNyVq7Fm65Ba6+Gk4/3VfjUAc6YfF2wopXIqlOzPfQvvvCpZfCgw/CBx/AsmVw9NHw/PP+qoHkNWV27hVtZktaMpbZkjGB1Il2zr0KvBpx7NqIn6+P8rgPgF5BtKEpS2Xb0MZK8VQ0Mm9r6IDuGy4tVdfUBjsnyzl49VX4wx/86OYJJ8DDD2sL6iTF+jfuUF6WVK3YRpn5f6NXXoHJk6GySe0jUpCU2blVdJktgchaZktg1CspArEuw8W7PBerFM/p+3bmmxFH8f6w/hsuNd16XC8qysswfFDX7bQ0/IXpG/7D1zq3IahTDuNvvoE//xl69/Yjm+A7Zs8+C6XRR1cktqEDujdYhV9aYgwd0D3hS7cJX+I95hgoKYEnnki2mSJNTtFktgQqq5ktgQhkJFpyK1q5m8Yuz0UrxRMrTKMtiog3dyupQF6xAh55xFfcmDDBH9t3X/jb32DwYHWe0xU5uyL0c7wSSXWSusTbti2cdBL89a/QqhXccIOuHIjEUNCZLZmVrcyWQKgTXQSSCdfIx6Uanqlcjozqz3/285732MMvGjzpJOjWLaU2SX0jx86mZn39RK5Z7xg5djbvD+u/4ZxoK72TqRVbd4l4UcVJ3FG5lGNuvtlPw3n0USjTqIhIpILObMmYbGd2so+ThtSJLhLphGsq4s3dSsp330GHDjBlSkAtkzqN/dIM4j1Tr8pASSm/738hX2yxLZc9+wjMnQsvvQTt26f1GiLFqGAzWzIm65mNqnqkS9dbJSWBrPB2DiZOLKqtuvNJKvMuk9VgxbgZ9+x9PFf++nqYNs3X8p47N7DXE5HUqCpH/stJZqOqHulQJ1pSEmvxSlKfZF991Xe0fvvbjLWzKcvGL81YIydPdayEd9+F5cv9osMVKwJ7TRFJXiCZLRmVy8zWtJ7UaDqHpCytS0vOwU03QdeucFqDfR4kAKnOu0xG3EvElZXw3HNw5JF+l8mXXvIVPEQkJ7I9hUSSk/PMlqSpEy258cAD8NFHcP/9qsCRQUH/0oy27Wz4NrUQMXJy2GFwzz3+asPll8MddwTWFhGRYpPzzJakaDqHZN+kSXDRRX6EcvDgXLdGElS3IKVqWTUOvyDl+clVHL9XRfxLxBdc4P+9//IXv8uhiIhkXMqZLQnTSLRk1+LFfne7bbaBxx5TLeECEmtByvjPF20ovxTTHXfAzJnwxz/CmWdCixYZbKmIiKSV2ZIQ9WAkOz7/HC65BHbYARYu9HNlt9wy162SJKS1IKV5c7j4YvjpJ3jnnWAbJiIiDWgRYeapEy2ZU1PjO8v9+8Muu/hdCI84Av77X1/6TApK2uWXDj3Ub74yenSArRIRkWiyUTKvqVMnWoK3Zo3fhbBzZ78D4Zw58Kc/wfz5fntvdaALUtrll8rKYMAAePZZWLkyAy0UEZE6qg2eeYF0os3sCDObbWZfmtmwKPefZWaLzOzT0G1w2H1nmtn/Qrczg2iP5NCUKbD33nD11bDnnvDKK/DVVzB8uHauK3CB1JkdOhQWLYI778xYOyUxym2R4qba4JlnzrnGz4r3BGYlwBfAYcACYCJwqnNuVtg5ZwGVzrnfRTy2LTAJqAQcMBnYyzm3NN5rVlZWukmTJqXVbglYTY0fbb75ZmjXzpewO/roXLdK8tFxx8Gbb/oPV1tvnevWZJ2ZTXbOVea4DVnNbWW2iBSqeJkdxEh0H+BL59wc59xa4Gng2AQfOwB40zm3JBTAbwJHBNAmybbbb4frr4dTToEZM9SBlthuvRWqq/1mO5Irym0RkTQFUeKuApgf9vMCYJ8o5x1vZgfiRz8udc7Nj/HYqNcZzGwIMASgc+fOATS7MEUWTg96N6OUffgh9Ozpy9ZJ0Qrk/de9OwwZ4heaHnIIDBqUmcZKPBnPbWW2l7eZLU2C3n+ZFcRItEU5FjlH5GWgq3NuN+At4J9JPNYfdO4B51ylc66yXbt2KTe2kEUrnD78hemMmlKV24atWgUTJ0KvXrlth2RUoO+/kSP9tuCnngrvvRd4W6VRGc9tZXYeZ7Y0CXr/ZV4QnegFQKewnzsCC8NPcM4tds6tCf34ILBXoo+VjWIVTh85dnZazztqShV9R4yj27Ax9B0xLvn/YBddBN9/D+eem1Y7JH+NmlLFZc9ODe79t9lmMGYMdOkCxxwD06cH1FJJkHI7C/I2s6XoBZ7ZElUQneiJwI5m1s3MWgCnAPUKwZrZtmE/DgQ+C30/FjjczNqYWRvg8NAxiSIThdPT/qT6+OPw8MNw5ZW+HrQUnbr3SG2MRcgpv/+22greeANatfKl7775JvVGSrKU21mQl5ktRS9jmS0NpN2Jds6tA36HD9HPgGedczPN7EYzGxg67SIzm2lmU4GLgLNCj10C3IQP9InAjaFjEkWqhdPjjVqkPFLy009www1+busBB/hFhVKUor1HwqVVuL9zZ3j9db/QcP/94bXXUn8uSZhyOzvyKrOlychoZks9gdSJds696pzbyTm3vXPultCxa51zo0PfD3fO9XTO7e6c6+ec+zzssQ8753YI3R4Joj3FKpXC6Y2NWiQ9UrJ6tZ/Put12vuN8xBF+84zmQaxRlXwUb9QikML9u+4K48ZB69bwy1/CWWfB0rhVLiUAyu3My4vMliYn45ktG2jHwgKSSuH0xkYtkhopWbQIevSAyy/3i8ImToQXXoBttkn5zyT5L9Z7pMQsuML9vXvDJ5/AVVf5KUI9esBLL6X/vCI5lPPMliYpK5ktQDAl7iSLBvWuSOo/QGOjFkMHdGf4C9PrhXbMT6qXXAILF/qNMg49NLmGS8GK9R4JPIw32cRv1nPccXD22b703dlnw0MPQTN93pfClNPMliYpa5ktGokuZqOmVNHMolWj2vhJNeGRktdegyef9AsI1YFuUrK+deyee/qrHMOGwSOP+I18RJqI8palUY8nndnSZOk9kj1pb/udC9pCtnGjplQx9Lmp1Kxv+O+b9CfSGTPgqKN8WbIpU/yIoUimOQcnnwwvvuhrSe+7b65bFIh82PY725TZibl61HQenzCvwfHSEmPkCburEySSA5ne9lvy0PWjZ0btQJuReAd62TI/hWOPPWDFCj8qqA60ZIsZPPAAdOzot5OfMyfXLRLJmFFTqngiSgcaYLMWzdWBFslD6kQXqWXVNVGPO0fjYbx+va/9vNNOcPfdfhOV//0P9om2K7BIBpWXwzPPwOLFflv5W26BNWsaf5xIgRk5dnb07XqB5THyXERyS51oqW/mTNhvPzjnHNhxR5g0Cf7+d9hyy1y3TJqqPn3gs8/g6KPh6qt9JY/vv891q0QCFa8smSpviOQnVecoUm1alrJ0dcPRizYxFq0AsHatr4ywdCn8619w+un+krpIrnXsCM89B6NHw7HH+kWul16a61aJBKZDeRlVUTrSBqq8IfE5539/r1u38VZT478uWQITJvireStWbLytXOkf17IllJZuvLVo4Y9tvrm/tW4NFRXQoQNsu63fYVb9gg3Uic5zo6ZUMXLsbBYuq6ZDedmGMI08FjlF47pjejL031Opqd14gbC0xLjumJ6xX+zuu+GLL2DMGL/phUi+GTjQT+t49VV1oiUvpZrZ0cqSGfDrfTtrPrQ0tGyZn2Y5erSvrf/NN40/pnlz3zFu1cp/Bb9bbE3NxtvatbBqle9gR1Na6q9Mt23rb61a1b9tvrnvbHfoAG3abDy2ww7+sUVG1TnyWN3OVeGhWtrMwKjXOY5VbSNamMcM4+++83OgDzwQXnklI38ekUBcfjn89a9+hJS3kGUAACAASURBVKVVq1y3JmmqzlG8sprZUnyc81eCZ83yVYkWL/YjxpG3pUt9/oEfFR4wAPr29aPIpaW+s1z3tXVrfyWvZ0/fmU1kFNk5vztx3WtVVcG33/rb4sUbb0uX+g53XbtWrYKffvIj4JHatPELxI86CrbfHrp1K5hCBfEyW53oPNZ3xLiol/eiqSgv4/1h/VN/sbPPhiee8HOid9wx9eeRJimrv/zHj4f+/WHUKD+1o8CoE128sprZUlhqazd2PJct81/rvp87F8aO9Z3ntWs3PqZz540jx5Gjvd26+d/Ve+zhv09SxjJ7/Xr48Ue/Mdvy5b5zvWSJ32vi6ac3jnCbQZcucMABPs8PO8xPG8lD8TJb0znyWLyFJumc28DEifDoozB0qDrQkrTI0beqZdUMf2E6kEAlmFT07et/ibz2WkF2oqV4ZS2zJb+tWePLc44du3EE9/vvfQczmpIS2H9/X1J2221hm218NawUOseJyGhmN2sGW2/tb+HOOAPuucdPGf3qK3+bMQNefx0ee8yf0707dOrkR8+32GLj17rvt9vOd7jziDrReSzWQpNY56bs73/3b9Crr079OaTJGjl2dr3L1wDVNbWMHDs7M53oFi38roYzZgT/3CJpyFpmS+6tX+8z6D//8Qv3qqr8tMjvv/ejywA9ekDXrr6iUIcOvmPZtq2f2lBe7r/W3Vq0yFrTs57Zdbbc0lf/2m+/jcec83+Pb7zh/y5//NF/6Fi+3E8NWbGi/vzsceOgX7/MtTFJgXSizewI4C6gBHjIOTci4v4/AIOBdcAi4P855+aG7qsFpodOneecGxhEmwpNtEsr0RaaxJpfl/Lqbef8J8EBA/ynPZEkxRpRy+hIW7duPnQlJcrs9OUssyU3Fi/20x2nTYN33vG3xYv9fR07+kzq1ctPS2jfHnbZxVe7ysNKFjnJ7FjM/N9br15w2WUN71+/3k8J+fJLOOQQPxK9xRZ+KkjdrWvXjd/37p3VBYxpz4k2sxLgC+AwYAEwETjVOTcr7Jx+wEfOudVmdgFwsHPu5NB9K51zSa0OKrb5ddEWo9QtPIGGq7qjHUv50+O0abD77n5zlbPPTvvPIk1PrHmgJWasdy4zc6TvvBP+8Af497/h+OODe94syPWcaGV2+nKa2ZI9zvnSmn/8I8yfv/F4p06+M9evHxx8sO+8FZBYmV1eVspmmzTP3/fpjz/6qR9z5vh55HW35cs3ntOnD1xxhe9Md+0ayIeYjC4sNLP9gOudcwNCPw8HcM7dGuP83sC9zrm+oZ+bfCDHekNnZeHJiBEwfLi/FNWhQ2ZfS4pStA5FpFjVCFK2Zo3/5TVjBnz0kb9sWiDyoBOtzE5TTjNbMm/1ar9O6O67YfZs2GsvOPVUX+GiZ08/8pyHI8yJSreKTN6pW5z50Ud+cGXVKn+8vNx3pvff38/JTnHNV6Y70ScARzjnBod+PgPYxzn3uxjn3wt855y7OfTzOuBT/GXDEc65UTEeNwQYAtC5c+e95s6dm1a7cy38UmCsfwEDvh5xVGYasH69LxM2bJgPiA8/zMzrSJMQ/n5uZkZtlFwJfJSjqsq/d7fYwi+Obd06jT9B9uRBJ1qZnYKcZ7YEyzk/svnFF/72+ed+Z9TPPvMjnevX+1HNCy/0pdmyOGc5GyKnI61euy7qBm0ZvaKYCdXVMH06TJnib598ApMn+3/PX/wCXn7Zz0tPQqarc0T7OBY1Y8zsdKASOCjscGfn3EIz2w4YZ2bTnXNfNXhC5x4AHgA/qpF+s3MnkZE7yODCk+++g7PO8iuHBw2Chx7KzOtIkzGod8WGcO02bEzUc5ZV17Cs2od0IKvBKyr8pdb+/f0ow6hRfmW4NEaZnaScZ7YEZ/VqvxvvuHH1pwG0aOH3Sujd2486H3qoL79WwCPO8YRnNsTO7boBkYxXXQpKWZn/8NOnz8ZjCxf6Er7vv+8XcQYoiE70AqBT2M8dgYWRJ5nZocBVwEHOuTV1x51zC0Nf55jZO0BvoEEgF5NoK2MjlTYzVq9dR7dhY4L9BPjaa74D/dNPvirHeecVbUhIbiRaoSCQ1eAHHAB/+QtcdBHccgtcc03qz9V0KLOTlNPMlvSsW+c7UfPn+9v99/sqEIMH+6kZO+3kb126+M1JmqhEcjsrFTwyoUMHX8J36NDAnzqIYZuJwI5m1s3MWgCnAKPDTwjNqbsfGOic+yHseBsz2yT0/VZAX2AWRS7eCljDX/bGYOnqGhwbPwGOmlKV+ouuWeNrUP7yl37l8OTJcP756kBL4IYO6E5ZaUlC5wayGvx3v/MjRzfdBAsWpP98xU+ZnaScZLak5+KL/dzlTTbxHeT99/c58c47cO21vo7zxRfDkUf6HfSacAcaEs9t1TevL+1OtHNuHfA7YCzwGfCsc26mmd1oZnWlj0YCrYDnzOxTM6sL7F2ASWY2FRiPn19X9IEc65JfRXkZX484is02aV5vcj9s/ASYkrpFWHfd5UfsPv64oBZiSWEZ1LuCW4/rRUV5GYZ/X7dpGb3kUCCXv83g1lv9HMfbbkv/+YqcMjt5Wc9sSdyqVf4K6z33+EVlgwb5ilN33+3XTVx1le8wv/aanyu7bBlcf32uW513InO7JMYAm6Ys1RfIRy/n3KvAqxHHrg37/tAYj/sA6BVEGwpJtFqi4XVDA6/heP31vhj8k0/6T+IiGRY53y5WSbBka+XG3Kq2Sxf4zW/gwQfhyiv9jl8SkzI7OVnPbInNOb8I8N134e23YcwYP88ZoGVLX6+5Wzc46CC44AJfr1kSEp7bGc/sItG0r1/kSN0bKNYbK9bcpJQ+AU6c6EfnBg9WB1pyprH3fCIa3ap2+HBfluqOO2DkyMD/DNJ0ZTWzxc9jnjkTvvnG38JrAs+ZA0uX+vO22QbOPNPXit91V78joKYoBiIrmV0E1InOkciRujqjplSxas26BsdT3uFq/Hhf2mXEiMbPFcmgWO/5RDW6Ve0OO8BJJ/mFQ9dcox04JVBZy+ymas4ceOstvxPpW2/Vr5xRVrZxR7rKSl954YAD/P95dZozJuOZXQTUic4jscootWlZynXH9Ez+Tbdsma+TCOpQSE4FcUkvoUvml10GTz/tyzb+4Q/pNFmkUYFndlOzerXvNF9/PUyd6o917AgnnuhLV+6wg991bqut1FnOsqxldoFTJzpHor1BY5VRatmieXJv3k8+8eXrnnjCFx4fMKDJrzyW3Anqkl5Cl8wrK+HAAzcuotX7XgKS0cxuKqqr4fbbfXWoGTP86LNzfie5u+6Cww+H7t3VYc6xrGZ2gdPOBDlQ9watCu18VfcGjVWjMeFPbe++C/vt53dxe/JJX1D+k0/g9dcVSpIz8S7pJSNaCaaol8z/8AeYNw+efz6l9opEylhmF7tVq/zV0Kef9qPNe+/ty8vNmgV77umPvfSSn/980UWw8876XZUHsp7ZBUzDNDkQ6w1aEmO75IQ+tb33HhxxhF9ocdddvlJBeXlQTRZJWawORdWyavqOGJfwZcKEF7occ4wf2Ro5Eo4+GjbbLO0/gzRtGcnsYrVggZ+i8cwzvnpGbejvzcxXzbjqKrj55ty2UeLKemYXMHWicyDWG7TWOcpKS5IvKTNpEhx1lF908e670K5dkM0VSUu8nbCSvUyY0EKXZs3giit8RZqtt4aBA+G00/y0phYtkm6/SOCZXeicgx9+8NMx5syBr77yZefef99fBQLYbjv44x/9FKvu3f0H2003zW27JSFZz+wCpukcORCvcH/kJhW3Htcr/htw5kw/Ar3llvDmm+pAS95pbCesjGxKcc45fmvfM87wo2IDB/qrNOeeC+PGbRwdE0lAoJld6D75BNq29f+ffvELP23wuuv81dA+feDOO/05X37pq0KdcAL06qUOdAHJSWYXKI1EZ1lj5ZCS+tQ2Zw4cdpgfXXvrLb+qWSTPhF/SS3QOafgirvKWpTgHy6trkrsceOCB/nbPPf4D5lNP+dtDD8G228KwYX4epkgj+u3cjicmzCN84kZKmV3IvvkG/v1vuOUWX/nphhv8+pvttvMVNMqa8BSWIpOzzC5A6kRnUaDlkKqq4JBDYO1aP+K2/fYBt1YkOHUdjb4jxjW6Wjvy/8nS1TUb7ktplXhpKfzyl/62erXf4ezaa+Gvf1UnWho1akoVz0+uqteBNuD4vYqs81xTA/Pn+znNVVX1b59/7rfMBr8T4IgRsO++uW2vZFROM7uAqBOdRYGVQ6qt9XOgFy/2m6n07BlgK0Uyp7HtkyH2/5M6aRXrb9nS16AdNw5eeCH5x0uTE+396IDxny/KTYOC8vPPcN99fk3N9Onw2We+Ix2uZUt/hbNLFzjrLDj2WA3YNDE5z+w8p050loyaUhVcOaQXX/SF6Z96yl9OEykQiazWTuT/Q9olxFq1gpUr03sOKWp1l6eLqoxdTY2fljFuHPzjHzBxIlRUwG67wZFHwk47+U5zRYW/tW6tknNNXN5kdp5SJzoL6i51xJJUOaT16+HWW33YnXhiAK0Tya7IOaSjplTRd8S4DQFd3rK03uXAaJqZ0W3YmNTn27Vq5ad2rF/vq3mIhIk19S5c3pexq62FCRN8HeZPP/UVNObO3biotls3P6Xp4otz207Je3mR2XkqkE60mR0B3AWUAA8550ZE3L8J8C9gL2AxcLJz7pvQfcOBc4Ba4CLn3Ngg2pRP4l3qSLoc0vDhfuXzY49BSezVsyKFINrOWKXNjNISo6a2Yf3dOnW1eVOeb1dXO3r1at+hboKU27E1dnk6b8rYOec3Lvnvf/185ro5zXVfq6v9moDddvOVM0491U/H6NMHevTQKLMkLWeZnafS7kSbWQnwf8BhwAJgopmNds7NCjvtHGCpc24HMzsF+DNwspn1AE4BegIdgLfMbCfnXFHVn4p3GSOpckgPPwy33QYXXAC//nVArRPJnWidlZr1jvKyUjbbpHmDld7NomxukdJ8u80391+XLGmSnWjldnzxMrsiH0bSVq70m2o99JCfngF+UKVDBz8do3dvv+lQnz6+BGrr1rlrqxSVnGV2ngpiJLoP8KVzbg6AmT0NHAuEh/GxwPWh7/8N3GtmFjr+tHNuDfC1mX0Zer4PA2hX3ohVuLyivCzxN9E778B558Hhh8Pdd2sEQYpCrM7K8uoaPr3u8AbHuw0bk9TzxFS3luC995rqB1LldhzxMvv9Yf2z04iff/ZTML79FhYu3Hj79lv/vv3+e//7YNgwX+q0c2dorhmaklk5y+w8FcT/uApgftjPC4B9Yp3jnFtnZsuBLUPHJ0Q8tvA/mkRIZHVrXP/7Hxx3nN/x6ZlnFJRSNGJ1VmLNN032/Jj23BO22grGjm2qnej8z+333/cLqHv39tMRsrh9e9qZnSjnfM3lJUtg6VJ/mzMH/u//YPZsX8I0XOvWvsb5Pvv4qX0qMydZlrPMzlNB9MaiDYlGToyJdU4ij/VPYDYEGALQuXPnZNqXc2ntH19b67csbtYMXnkFyssz3FqR7Em2sxJY56ZZMz+K99JL8PHH/rJ305Lx3E47s0eNgttv9983a+a3ju7b19cp3m03//MmmyT/vAlIK7MjOQc//ugX+U2b5hf31d3mzfPzlqM57TQ/JaOiwnect902qx8kRKLJWWbnqSA60QuATmE/dwQWxjhngZk1B1oDSxJ8LADOuQeAB+D/t3f3UVbV9R7H31950MF0DSoiDKLY9VIqCDK37LJuElpoGiD5eK1LZcvL8mFpGQmXHoyWS5LlxcryRmqWV1NbKlIuQwWpVsvMURBBRb2WykCBISiC6MD3/vHbA2dmzvOZc/be53xea501c87ZZ/aXOcxnvrP37/fb0Nramnv0ekKVfVWrhQvDOp533hmuDCVSR0ptVnq1uZk7NzQ2EybAHXfAmWeW+89Io6rndsWZfd11cNllsGJFmEz91FPwq1+FccCwt7E+6SQ44wxobQ2Xlt5333CrcMhbUZm9ezds3br3aPKGDWFS39q18OKLYbzyq6+GCaydDj00DL047rhwAaBhw+Dgg2HgwL23wYNh0KCK6hephlgzO4HMvbJ+NArXF4GTgXbgSeDf3X1NxjaXAKPcfUY0QWWau59jZscCdxLG0w0FlgJHF5qg0tra6m1tbRXVnQobN4ZfEmPHwtKlGgct0ts2bYLJk+GJJ+D66+GKK6r+c2ZmT7l7a1V3UriGmuZ2r2X2rl2wZk1YkeK550Jj/Yc/wNtv99y2f//QTA8YEI7itrSE5vSAA8Jtv/3CyhV9+4Zb5+fu0NERbrt2hbWV33kH3norNPObNoXn/vGPMPwi2+/QAQPCMqQjRoRLYh95JIwaFYZhDBhQ+fdBRGomX2ZXfCQ6Git3KbCEsFTSre6+xszmAm3uvhi4Bbg9moCymTCzm2i7ewiTWTqAS+pphndFOjrgi18M4f2jH6mBFqmGQYPChSc+/3n46lfDRK4bbqj7eQepze0+fcJQjtGj9z723nvhPXzlFdi5M0zIy/y4bVs4QtzeHo5qb9sWmu5SDyDtv39oivv2Dfs/+OBwO+igMMxu4MDQrA8dGm5af1yk7lV8JDoOdX8k2h0uvjhckvWmm2DGjLgrEqlvu3eHVQ7mz4fTT4e77qra0ndJOBJda4nLbPdwhLmjY+/Hzs/32Wfv0enO2377qSkWaVBVPRItvcwdrr46NNCzZqmBFqmFffYJY3CPOgouuQQ+/vEwkXfo0Lgrk2owC8M9+vePuxIRSbHG+NPaHRYsCGMek+zdd2H69DDhafp0uOaauCsSaSwzZoTm+aWXwvjV116LuyIREUmoxmiizeDxx+Gb30zuL8XNm+Hkk8PlvL/7XfjZz3T6UCQOp50WLm60bh3cc0/c1YiISEI1Tpc2f344Ij1zZtyV9LR5c7jiVFtb+KX9jW9oIqFInMaNC8uQJWkcr4iIJErjNNFHHAFXXRWa1N/9Lu5q9upsoFevDhcXOPvsuCsSEQjrDquJFhGRHBqniQb4+tfh8MPh8svD+p9VtGhFO+PnLWPErAcZP28Zi1a099yoewN92mlVrUlEStDaGpa8e/bZuCuRGigqs0VEMjRWEz1gQLiM7DPPwE9/WrXdLFrRzuz7nqV9yw4caN+yg9n3PdszlL/znfALWg20SPJMnx7W/T399LDOsNStojNbRCRDYzXREIZLnHRSGHf85ptV2cX8JWu7XCceYMf7u5i/ZG3XDV94AT74QTXQIkk0dGhYqWPz5nBZ6W3b4q5IqqTozBYRydB460Sbwfe/Hy6lfe21YW3YXrZ+y47Cjz/3HDz8cK/vW6TeLVrRzvwla1m/ZQdDm5uYOWkkU8e2VOf1J5wQLrwyZQqcf344a9SnTy/9SyQpispsESlLTTO7xhqviQY4/vhwmd8f/AAuuyyMky5Ttjd3aHMT7VnCd2hz0947d90VPs6eXfa+RRpN52n3zqOGnafdOxUK2nyvzxnKZ5wBP/xhuAjLFVeE3NDqOalVdmaLSMliyewaarzhHJ3mzg1L3s2ZU/aXyDWO7hMfGkRTv65Hq5r69WHmpJF77r91x908PeJ4Ruwer0ksIkXKddr96sVrihrTWvZp+4svhiuvhBtvhJ/8pDf+KRKDSjJbEw9FShdbZtdI4zbRRxwRfinefjv8+MdlfYlcb+5jL2zi2mmjaGluwoCW5iaunTZqz19Nj967nANfeZEHPniiJrGIlCDX6fUtO94vKmgrOm1/3XXhgkhz5sDWrcUVLIlSbmZr4qFIeWLN7BpozOEcnebODatjXHYZDBsGkyeX9PJ8b+7UsS3ZTzXs3MmhV17Ku33789A//+uehzv/8yTh9IRIUuU67Z5L95/Rik7b77NPaKTHjYMFC+Dqq4uuQ5KhrMwm/9EwZbZIbrFmdg1UdCTazA4ys0fM7KXo48As24wxs8fNbI2ZrTKzczOeu83M/mJmK6PbmErqKVnfvmFs8rhxcN558MQTOTfNdiov15uY8811h4suYvSra7jy019h4wEHd3k6KX9ZiSTVzEkjs552HzigX9btu/8s5np95mn7vE44AT77Wbj+enjjjeILT5DU53aReiWzI0k/GiaSVLFndpVVOpxjFrDU3Y8Glkb3u9sO/Ie7HwucCtxgZs0Zz8909zHRbWWF9ZRu//3h178O68FOmQLtPU/PVTKObo9168Jkxl/8gptPmc6DH/63Hpsk5S8rkaSaOrYl62n3b3/m2KJ+FnO9vqSjiXPnwjvvwPe+V/k/KB7pz+0CeiWzM5TbfIs0ukRkdhVVOpxjCjAh+vznwHLgqswN3P3FjM/Xm9lGYBCwpcJ9957Bg2HxYvjoR+Gss8Jlwfv33/N0oXF0eWeXbt0aftkuWBCORH/jGxxy5n/SdP/qLl8zSX9ZiSRZodPuhZZByvf6ohxzDHzuc/Dqq+FnOn0rddRHbudRUWZnMXPSyC4rBIAyW6RYsWd2FVXaRA929w0A7r7BzA7Nt7GZfQToD/xfxsPXmNm3iI6IuPvOCmsqz7HHwq23wrnnwk03hUuDR0oeR9fRAS+/DL/9LVxzTTjte8EF4fMjjmAqgFli1z0USZPuS5YtOHdM9X+WbrkF+mU/HZkC9ZPbOZQ79jmXzu2V2SKViyWzq6RgE21mjwKHZXmqpLXhzGwIcDsw3d13Rw/PBv5GCOiFhKMhc3O8/iLgIoDhw4eXsuvinX023HxzuBz3mDGwaxds384Frz/Jji1vs1/HTt7p38Tyo8axpenAcCpv584wlvrpp2HVqnBbswbefTd8zYkTYf78MJYyQ5L/shJJi9jWEE14A52E3K5JZudQjclIymyRyiV93edSmbuX/2KztcCE6GjGEGC5u/c4v2VmBxJOGV7r7r/K8bUmAF9z9zMK7be1tdXb2trKrjuvVavC1Qx37865SYftQ9vwUYxoGcjglX+G7dvDE4MHw+jRe29jx8Jxx6XxdK9IKoyftyxrs9TS3MQfZ02MoaLCzOwpd2+Ncf81z+2qZnYW3X9RQxh+kaSxlCKNqN4yu9LhHIuB6cC86OMDWXbeH7gf+EX3IDazIVGQGzAVWF1hPZUbPTocWX7jDRgwAJqaYMAAHn5lKzc+3g7t7Ux7vY1pr7Vx4Oa/wZe+BKecAieeGJpoEakZrZpQlvrL7W40/EIkmeotsyttoucB95jZhcBrwNkAZtYKzHD3LwPnAB8HDjazL0Sv+0I0o/sOMxsEGLASmFFhPb2jtecfHJ86Fj71mRhqEZGcyj1tn+3Szw3UYNVnbnej4RciyVNvmV3RcI641PrUoIgkUzmn7eM+1R/3cI44KLNFBOovsxv3st8iknrlrCGa7+pzIiJSPfWW2Y192W8RSb1ST9vX25g8EZE0qafMVhNdhqSOzRGRwqqx/JkkmzJbJL2SnNkazlGiXJeTXbSi5+XCRSR5Zk4aWdalnyWdlNki6ZbkzFYTXaIkj80RkcLKGZMn6aXMFkm3JGe2hnOUKMljc0SkOFr+rHEos0XSL6mZrSPRJco1BicJY3NERKQrZbaIVIua6MiiFe2Mn7eMEbMeZPy8ZTnHyyV5bI6ISCMpJreV2SJSLRrOQc+FvDsnngA9Th/ocrIiIvErNreV2SJSLWqiyT/xJFvQJnVsjohoObNGUUpuK7NFki2tua0mGk08EakXpZxVknRTbovUhzTntsZEo4knIvVCy5k1DuW2SH1Ic26riUYTT0TqhY5ONg7ltkh9SHNuV9REm9lBZvaImb0UfRyYY7tdZrYyui3OeHyEmT0Rvf5uM+tfST3lSvJC3iJSPB2dLEy5LSJJkubcrvRI9CxgqbsfDSyN7mezw93HRLfJGY9/D1gQvf5N4MIK6yla96WRAP44ayILzh0DwFfuXpl3qTsRSZ7eOjpZ7JKXKZXK3M72nkwd28LMSSMZ2tzE+i07mL9kbb29VyJ1L825be5e/ovN1gIT3H2DmQ0Blrt7j3+1mW1z9w90e8yATcBh7t5hZh8Drnb3SYX229ra6m1tbWXX3X0QO4Q37LPjWrj3qfYej+vohkh6VDrLO1c+9FYOmNlT7t5a8Rcqf/81z21ltojkk+TczpfZlTbRW9y9OeP+m+7e49SgmXUAK4EOYJ67LzKzQ4A/ufs/RdscDjzk7scV2m+lgTx+3jLas4y16WPGrizfj5bmJv44a2LZ+xOR9MiVD72VAwloomue28psEammauZ2vswuuMSdmT0KHJblqTkl1DDc3deb2VHAMjN7Fngry3Y5O3ozuwi4CGD48OEl7LqnXIPVs4Vxvu1FpP6keZJLpyTktjJbRGolrtwu2ES7+ym5njOzv5vZkIzTghtzfI310cdXzGw5MBa4F2g2s77u3gEMA9bnqWMhsBDCUY1CdecztLmppKMaaRjcLiLFKXTaMFc+pCkHkpDbymwR6S1Jze1KJxYuBqZHn08HHui+gZkNNLN9o88PAcYDz3kYR/IYcFa+11dDtkHsRjiqYd221ZJJIvWjc9xc+5YdOHsX9c+cgNIAS6elLreV2SKNK8m5XWkTPQ/4pJm9BHwyuo+ZtZrZzdE2HwbazOwZQvjOc/fnoueuAr5qZi8DBwO3VFhPUTKXRoIQxp3HMjy6D1oySaTeFLOofwMsnZa63FZmizSuJOd2RRML41LpJJVM1Z5EJCLJMWLWg1kH8Brwl3mn16SGuCcWxkGZLSLliju382V2w1+xsB4mEYlIcdK8qL8EymyRxpLk3G74JjrJb46I9K4GGO9c95TZIo0lybnd8E10kt8cEeldDTDeue4ps0UaS5Jzu+ASd/Wu802o5Eo5IpIeU8e26Oc7xZTZIo0nqbnd8E00JPfNERGRnpTZIpIEaqJFREpQaNF/ERFJjmpmtppoEZEidS7637lmaeei/4AaaRGRhKl2Zjf8xEIRkWIVs+i/iIgkQ7UzW020iEiR998rQgAACEhJREFUtEaxiEh6VDuz1USLiBRJaxSLiKRHtTNbTbSISJG0RrGISHpUO7M1sVBEpAidM7x3vL+LPmbscqdFq3OIiCRSLTJbTbSISAHdZ3jvct9zNEMNtIhIstQqsytqos3sIOBu4Ejgr8A57v5mt20+ASzIeOhDwHnuvsjMbgNOArZGz33B3VdWUpOISKW6ryu6/b2OnDO809ZEK7dFpN7EldmVjomeBSx196OBpdH9Ltz9MXcf4+5jgInAduDhjE1mdj6vIBaRuHUewWjfsgMnrCv65vb3s26b0lU5lNsiUjfizOxKh3NMASZEn/8cWA5clWf7s4CH3H17hfstm642JiL5ZFtXNJeUrsqh3BaRuhFnZld6JHqwu28AiD4eWmD784BfdnvsGjNbZWYLzGzfCuvJK9tfK7Pve5ZFK9qruVsRSZFij1SkeFUO5baI1I04M7tgE21mj5rZ6iy3KaXsyMyGAKOAJRkPzyaMtfsX4CDyHA0xs4vMrM3M2jZt2lTKrvfQ1cZEpJBcRyqam/rR0tyEAS3NTVw7bVRij4YmIbd7I7NBuS0i+cWZ2QWHc7j7KbmeM7O/m9kQd98Qhe3GPF/qHOB+d98zUKXzaAiw08x+BnwtTx0LgYUAra2tXqjubHS1MREpZOakkV1mdUM4gnH15GMT2zR3l4Tc7o3MBuW2iOQXZ2ZXOpxjMTA9+nw68ECebc+n2ynBKMAxMwOmAqsrrCcvXW1MRAqZOraFa6eNSs1R5zIot0WkbsSZ2ZVOLJwH3GNmFwKvAWcDmFkrMMPdvxzdPxI4HPhdt9ffYWaDAANWAjMqrCevXH+tpHRco4hUydSxLfXUNHen3BaRuhJXZlfURLv7P4CTszzeBnw54/5fgR7/OnefWMn+S9X5DdYsbxFpVMptEZHe0XBXLKzzI0wiInVHuS0iSdQQTbTWGBURSQ9ltoikQd030d2vn965xiigUBYRSRhltoikRaWrcySe1hgVEUkPZbaIpEXdN9FaY1REJD2U2SKSFnXfRGuNURGR9FBmi0ha1H0TPXPSSJr69enymNYYFRFJJmW2iKRF3U8s1BqjIiLpocwWkbSo+yYatMaoiEiaKLNFJA3qfjiHiIiIiEhvUxMtIiIiIlIiNdEiIiIiIiVSEy0iIiIiUiI10SIiIiIiJVITLSIiIiJSInP3uGsomZltAl4t8WWHAG9UoZxSJaUOSE4tqqOnpNSiOnqqtJYj3H1QbxWTBsrsXpOUWpJSBySnFtXRU1JqqVpmp7KJLoeZtbl7q+rYKym1qI6eklKL6ugpSbXUs6R8n5NSBySnlqTUAcmpRXX0lJRaqlmHhnOIiIiIiJRITbSIiIiISIkaqYleGHcBkaTUAcmpRXX0lJRaVEdPSaqlniXl+5yUOiA5tSSlDkhOLaqjp6TUUrU6GmZMtIiIiIhIb2mkI9EiIiIiIr2iIZtoM/uambmZHRLT/r9rZqvMbKWZPWxmQ2OqY76ZvRDVcr+ZNcdRR1TL2Wa2xsx2m1nNZ/Oa2almttbMXjazWbXef0Ydt5rZRjNbHVcNUR2Hm9ljZvZ89L5cHlMd+5nZn83smaiO78RRR0Y9fcxshZn9Js46Go0yu0stichtZfaeOpTZXetoqMxuuCbazA4HPgm8FmMZ8919tLuPAX4DfCumOh4BjnP30cCLwOyY6gBYDUwDfl/rHZtZH+BHwGnAMcD5ZnZMreuI3AacGtO+M3UAV7r7h4ETgUti+p7sBCa6+/HAGOBUMzsxhjo6XQ48H+P+G44yu4ek5LYyO7gNZXamhsrshmuigQXA14HYBoO7+1sZd/ePqxZ3f9jdO6K7fwKGxVFHVMvz7r42pt1/BHjZ3V9x9/eAu4ApcRTi7r8HNsex7251bHD3p6PP3yaEUEsMdbi7b4vu9otusfy8mNkw4HTg5jj238CU2V1rSURuK7MDZXaPOhoqsxuqiTazyUC7uz+TgFquMbPXgQuI96hGpy8BD8VdRExagNcz7q8jhvBJKjM7EhgLPBHT/vuY2UpgI/CIu8dSB3ADoZnbHdP+G44yu6BGzW1ldh7K7D2qntl9q/WF42JmjwKHZXlqDvBfwKfirsPdH3D3OcAcM5sNXAp8O446om3mEE4F3VGNGkqpJSaW5TEtWwOY2QeAe4Eruh2Nqxl33wWMicZ+3m9mx7l7TccfmtkZwEZ3f8rMJtRy3/VOmV16LdE2Vc9tZXb6KLODWmV23TXR7n5KtsfNbBQwAnjGzCCcAnvazD7i7n+rVR1Z3Ak8SJUCuVAdZjYdOAM42au83mEJ35NaWwccnnF/GLA+ploSw8z6EcL4Dne/L+563H2LmS0njD+s9SSe8cBkM/s0sB9woJn9r7t/rsZ11B1ldum11Cq3ldnposzuoiaZ3TDDOdz9WXc/1N2PdPcjCT+EJ1QjjAsxs6Mz7k4GXqh1DVEdpwJXAZPdfXscNSTEk8DRZjbCzPoD5wGLY64pVha6lluA5939v2OsY1Dn6gNm1gScQgw/L+4+292HRdlxHrBMDXR1KbNz1qLcVmb3oMzuqlaZ3TBNdMLMM7PVZraKcKoylqVogBuBA4BHoqWb/iemOjCzM81sHfAx4EEzW1KrfUeTdC4FlhAmY9zj7mtqtf9MZvZL4HFgpJmtM7ML46iD8Ff854GJ0f+NldFf9LU2BHgs+ll5kjC+TsvLSa0lJbMhIbmtzA6U2T00VGbrioUiIiIiIiXSkWgRERERkRKpiRYRERERKZGaaBERERGREqmJFhEREREpkZpoEREREZESqYkWERERESmRmmgRERERkRKpiRYRERERKdH/AxLAPez3VQ2aAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["#hide_input\n","#id img_betas\n","#caption Momentum with different beta values\n","#alt Graph showing how the beta value influences momentum\n","x = np.linspace(-4, 4, 100)\n","y = 1 - (x/3) ** 2\n","x1 = x + np.random.randn(100) * 0.1\n","y1 = y + np.random.randn(100) * 0.1\n","_,axs = plt.subplots(2,2, figsize=(12,8))\n","betas = [0.5,0.7,0.9,0.99]\n","idx = x1.argsort()\n","for beta,ax in zip(betas, axs.flatten()):\n"," ax.scatter(x1,y1)\n"," avg,res = 0,[]\n"," for i in idx:\n"," avg = beta * avg + (1-beta) * y1[i]\n"," res.append(avg)#/(1-beta**(i+1)))\n"," ax.plot(x1[idx],np.array(res), color='red');\n"," ax.set_title(f'beta={beta}')"]},{"cell_type":"markdown","metadata":{"id":"8BgHQi5n2QGR"},"source":["We can see in these examples that a `beta` that's too high results in the overall changes in gradient getting ignored. In SGD with momentum, a value of `beta` that is often used is 0.9.\n","\n","`fit_one_cycle` by default starts with a `beta` of 0.95, gradually adjusts it to 0.85, and then gradually moves it back to 0.95 at the end of training. Let's see how our training goes with momentum added to plain SGD."]},{"cell_type":"markdown","metadata":{"id":"rfR-q14K2QGR"},"source":["In order to add momentum to our optimizer, we'll first need to keep track of the moving average gradient, which we can do with another callback. When an optimizer callback returns a `dict`, it is used to update the state of the optimizer and is passed back to the optimizer on the next step. So this callback will keep track of the gradient averages in a parameter called `grad_avg`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bwvtqrif2QGR"},"outputs":[],"source":["def average_grad(p, mom, grad_avg=None, **kwargs):\n"," if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data)\n"," return {'grad_avg': grad_avg*mom + p.grad.data}"]},{"cell_type":"markdown","metadata":{"id":"JJxIAaaO2QGS"},"source":["To use it, we just have to replace `p.grad.data` with `grad_avg` in our step function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2Woqy28m2QGS"},"outputs":[],"source":["def momentum_step(p, lr, grad_avg, **kwargs): p.data.add_(-lr, grad_avg)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"05wd21Vw2QGY"},"outputs":[],"source":["opt_func = partial(Optimizer, cbs=[average_grad,momentum_step], mom=0.9)"]},{"cell_type":"markdown","metadata":{"id":"_zZZnqla2QGY"},"source":["`Learner` will automatically schedule `mom` and `lr`, so `fit_one_cycle` will even work with our custom `Optimizer`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FX_Pabl72QGZ","outputId":"a9ab424b-ff4e-43ae-dcc5-8400a9c939e8"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.8560002.4934290.24611500:10
12.5042052.4638130.34828000:10
22.1873871.7556700.41885300:10
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner(opt_func=opt_func)\n","learn.fit_one_cycle(3, 0.03)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BIVBDqHQ2QGZ","outputId":"a1adc347-70fc-48a0-a1c8-d3518c40e3dd"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAt0AAAD4CAYAAAAwyVpeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdd3yV9fn/8deVTfYkjEz2JpAQQETcolVRBAGto9pqtWqdraNaZx1UqbXan7TiqBNwoYI4EBVkJIywAyEJJKwkZJKdnM/vjxz8pjRAgJzcZ1zPx+M8PLnPfd95H4STK/d9fT4fMcaglFJKKaWUchwvqwMopZRSSinl7rToVkoppZRSysG06FZKKaWUUsrBtOhWSimllFLKwbToVkoppZRSysF8rA7QGaKjo01SUpLVMZRS6oStWbOmxBgTY3WOzqSf2UopV3Wsz2yPKLqTkpLIzMy0OoZSSp0wEdlldYbOpp/ZSilXdazPbG0vUUoppZRSysG06FZKKaWUUsrBtOhWSimllFLKwbToVkoppZRSysG06FZKKaWUUsrBHFp0i8hEEckWkRwRub+N1/1F5AP766tEJMm+PV1E1tsfWSJyeXvPqZRSSimllLNxWNEtIt7Ay8CFwCBghogMOmK3G4EyY0wfYBbwrH37JiDNGJMCTAReFRGfdp5TKaWUUkopp+LIebrTgRxjTC6AiLwPTAK2tNpnEvCo/fl84B8iIsaYmlb7BADmBM6pOlh9UzMrc0vJ3l9JTUMzgX7eBPn7EOzvQ3igHwmRgfQM74Kfj3YrKaWsMevr7UQG+TEsLoyU+HBExOpISikXUVHTyP7KOg5U1lFUVU9pdT01Dc3MSE8gNjSgw76PI4vunkBBq68LgdFH28cY0yQiFUAUUCIio4E5QCJwjf319pwTABG5CbgJICEh4dTfjQdqthneWbWLv32zg9LqhmPu6yXQPawL/buFMCI+nBEJEQyPDyMkwLeT0iqlPFVjs43ZP+RS29gMwIBuITx66WDG9IqyOJlSytkUVdWxMreUzXsr2LK3kq37qig5VN/mvuP7xrhM0d3WZQbT3n2MMauAwSIyEHhTRBa185zYj58NzAZIS0trcx91dBW1jdz5/jq+yy5mbK8ofnNGMqmJkQT7+1Db2Ex1fRPV9U2UHGpgd2kNuw9Ws6u0hs17K1myrQgAEUiJD+fcgbGcNyiWvl2D9eqTUqrD+Xp7seXxCyiuqmfJtiJeXprD9Nkruff8fvzurD76uaOUB2tqtrEi9yDfZxezLKeEbfurAPDz9qJvbDBn9o+hf2wI3cMDiA0NoGuIP5FBfnTx9cbHu2Pv4Duy6C4E4lt9HQfsPco+hSLiA4QBpa13MMZsFZFqYEg7z6lOUWVdI9e8toqt+yp54rIh/HJ0wn/90Aq2t5YA9IqB9OTI/zq+oraRrIJyMneVsTS7iJmLs5m5OJuEyEAuS+nB1LR44iMDO/U9KaXcm4jQNTSA6ekJXJrSg4c+3sRfv9pOVV0TD1w00Op4SqlOZIxh7e5yFqzfwxcb91FyqAE/Hy9GJUXwx4kDOL1PNAO6h+DbwUX18Tiy6M4A+opIMrAHmA5cdcQ+C4DrgBXAFGCJMcbYjymwt5QkAv2BfKC8HedUp6Cx2cZNb2WyZW8lr16TyjkDY0/4HGFdfDmjXwxn9Ivh7vP6caCyjm+3FrFo0z5e+i6Hl77LYVzvaKaNimfikG6d/pdeKeXeAv18eOHK4YQE+PDqD7l0Dwvg+nHJVsdSSjlYdX0TH64t5I3l+eSWVOPv48W5A2O5ZHgPJvSLoYuft6X5HFZ02wvm24DFgDcwxxizWUQeBzKNMQuA14D/iEgOLVe4p9sPPx24X0QaARtwqzGmBKCtczrqPXiiZxdtY2VuKS9cOfykCu62xIYGcNXoBK4ancCe8lrmZRYwL7OQ299bR1xEF246oxdTU+Mt/8eglHIfIsKfLxnMvoo6nvhiK8PiwxmZEGF1LKWUA+wtr+X15Xm8n1FAVV0Tw+PDmTllGBOHdHOqsWVijPu3O6elpZnMzEyrYzi9H7YXc+2c1Vw3NpHHJg1x6Pey2Qzfbivin0tzWLu7nKggP244PZkbxiVr8a1UKyKyxhiTZnWOztSRn9mVdY1c9OKPiMCXvz+DIH9H3uBVSnWmoso6Xlm6k3dX7abZGC4c0o0bTk+29BfsY31m66ePAqCqrpH7P9xA75igTul/9PISzhsUy7kDu5KRX8YrS3OYuTibt1bkc/d5/ZiSGo+3lw5+UkqdmtAAX2ZNS2Hq/1vB377ZzkO/0KUdlHJ1FTWNvLI0hzdX5NPYbJiaGsdtZ/chLsK5x4tp0a0AeGlJDvsq65j/29MI8O28K80iQnpyJOnJ6WTkl/KXhVv544cbmbMsn4d+MZAz+sV0WhallHsalRTJ9FHxzFmezxWpcQzoFmp1JKXUSbDZDHMzC3hucTZlNQ1cltKT35/Tl6ToIKujtYuOYFPklVTz+vI8poyMIzXRulsyo5Ii+eiW03jl6pHUNTVz7ZzV3PHeOoqr2p4/Uyml2uuPEwcQ7O/D0wu3WR1FKXUSsgrKufyV5dz/0UZ6xwTxxe3jmTUtxWUKbtCiWwEzF2/Dz9uL+yb2tzoKIsJFQ7vz1V1ncOe5ffly037OeX4p76/ejc3m/uMPlFKOERHkx61n9ub77cX8tLPE6jhKqXaqa2zmic+3cNkry9lbUcesacOZe/NYBvVwvTtWWnR7uM17K1i4cT83np5M15COW3XpVPn7eHPnuf1Y+PvxDOweyv0fbeSaOavYV1FrdTSllIu67rQkuocF8PxX2/GESQSUcnVrd5dx0Ys/8tqyPK5KT2DJPRO4fEScyy54pUW3h/vbNzsIDfDhxvG9rI7Spj5dg3n/pjE8PXko63aXM/FvP/LFhn1Wx1JKuaAAX29+O6E3a3aVsTqv9PgHKKUs0dBk45lF25jyz5+ob7Lx9o2jeeryoU41/d/J0KLbg+UWH+LrLQe4flwyYV2c9y+yiDAjPYGFd4wnOTqI3727lrvnrudQfZPV0ZRSLmbaqHiig/34x3c5VkdRSrWhoLSGqa+u4P99v5Mr0+L58s7xnN432upYHUKLbg/2+vJ8/Ly9uGZMotVR2iUpOoh5vx3L78/pyyfr9nDpP5ax40CV1bGUUi4kwNebX41L5scdJeQU6eeHUs7kq837+cXffyS36BCvXD2SZ64Y5vJXt1vTottDVdQ0Mn9NIZem9CAmxN/qOO3m6+3FXef1451fj6GytpFJLy/ns6y9VsdSSrmQaaPi8fP24u2Vu62OopQCmpptPPn5Fm76zxoSo4L4/I7TuWhod6tjdTgtuj3Uexm7qW1s5oZxyVZHOSlje0fx+e0tgyxvf28dj3+2haZmm9WxlFIuIDrYnwuHduPDNYXUNGibmlJWqqhp5FdvZPDvZXlcOzaR+beMJTHKdaYBPBFadHugxmYbb/6Uz9heUS455c5h3cICeO83Y7j+tCTmLM/jV29kUFnXaHUspZQLuGZMIlX1TXy6Xu+UKWWVnKIqJr28jJW5B3nuimE8PmkI/j6dt0BfZ9Oi2wN9veUA+yrquPF017zK3ZqfjxePXjqYZyYPZcXOg1zxyk8UlNZYHUsptyIiE0UkW0RyROT+Nl5PFJFvRWSDiCwVkbgjXg8VkT0i8o/OS31sqYkRDOgWwn9W7NLpA5WywNLsIi5/+ScO1Tfx3m/GcOWoeKsjOZwW3R5oXmYB3cMCOGtAV6ujdJjp6Qm8dUM6ByrruPyV5azdXWZ1JKXcgoh4Ay8DFwKDgBkiMuiI3f4KvGWMGQY8Djx9xOtPAN87OuuJEBF+OSaRLfsqWVdQbnUcpTzK3IwCbnwzk/jIQD697XTSkiKtjtQptOj2MEWVdXy/vZjJI3vi7eWak8sfzWl9ovno1nEE+fswY/ZKvtlywOpISrmDdCDHGJNrjGkA3gcmHbHPIOBb+/PvWr8uIqlALPBVJ2Q9IZeN6EmgnzdzMwqsjqKURzDG8OI3O/jDhxs4rXcUc387lp7hXayO1Wm06PYwn6zfg83A5JFxx9/ZBfXpGszHt45jQLcQbn57DR+uKbQ6klKurifQuiottG9rLQu4wv78ciBERKJExAt4HrjveN9ERG4SkUwRySwuLu6A2McX7O/DBYO7sWjTfuqbmjvleyrlqZqabTz48UZmfbOdySN7Muf6UQT7+1gdq1Np0e1BjDHMX1PIyIRwescEWx3HYSKD/HjnN2MY0yuSe+Zl8e8fc62OpJQra+uW2JFN0PcCE0RkHTAB2AM0AbcCC40xx72UbIyZbYxJM8akxcTEnGrmdrs0pQcVtY18n905hb5SnqihycZt767jvdUF3HZWH56fOhxfb88rQT3vHXuwjXsq2H7gEFNS3X+wQrC/D3OuH8VFQ7vx5Bdbmbl4mw6WUurkFAKtPzTigP+a8sMYs9cYM9kYMwJ4yL6tAhgL3CYi+bT0fV8rIs90Sup2Or1PNJFBfnyq8/0r5RB1jc3c9J9Mvty8n0cuHsS9F/RHxL3aW9vLs67re7gP1xTi5+PFL4a534TzbfH38ealGSMJ67KJl7/bSWOz4YELB3jsP3alTlIG0FdEkmm5gj0duKr1DiISDZQaY2zAA8AcAGPM1a32uR5IM8b8z+wnVvL19uIXQ7szN7OAQ/VNHne7WylHqq5v4tdvZrIy7yBPTx7KjPQEqyNZSq90e4jGZhsLsvZy/qBYwrq4z5Kqx+PtJfzl8iFcNzaR2T/k8sTnW/WKt1InwBjTBNwGLAa2AnONMZtF5HERudS+25lAtohsp2XQ5FOWhD1Jl43oQX2Tja8277c6ilJuo7KukWteW8Xq/FJmXZni8QU36JVuj7Eqt5SymkYuHd7D6iidTkR49NLBeHkJc5bn0Wyz8eilg/WKt1LtZIxZCCw8YtsjrZ7PB+Yf5xxvAG84IN4pG5kQQVxEFz5Zv9dtB5kr1Zmq65v41esZbCis4OWrRjBxiGfcYT8eLbo9xBcb9xHk580Z/TpvgJIzEREeuXgQPl7Cv37MA9DCWykFtHw+XDK8B7N/yKW0uoHIID+rIynlsmobmrnxzQzWF5TzjxlacLem7SUeoKm55bbp2QNjCfB13+VVj0dEePCigfxmfDJvrtjFzMXZVkdSSjmJC4d0o9lmWLKtyOooSrmsw4MmV+WV8sKVw7lwqBbcrWnR7QFW55dysLqBi4Z0szqK5Q4X3leNTuCVpTt5+bscqyMppZzA0J5hdAsN4Ost2tet1MloaLJx6ztr+XFHCc9dMYxJKUdO56+0vcQDLNq4ny6+3pzZ332WfT8VIsKTk4ZQU9/EzMXZhAT4cO3YJKtjKaUsJCKcNyiW+WsKqWts9ui7gkqdqMZmG7e/t5Yl24r4y+VDmZrm/lMTnwyHXukWkYkiki0iOSLyP9NEiYi/iHxgf32ViCTZt58nImtEZKP9v2e3Omap/Zzr7Q+tJI+h2Wb4cvN+zhoQQxc//SFymJeXMHPqcM4bFMsjn25mvq5cqZTHO39wLLWNzSzbUWJ1FKVchjGG+z/cyOLNB/jzJYO4arTOUnI0Diu6RcQbeBm4EBgEzBCRQUfsdiNQZozpA8wCnrVvLwEuMcYMBa4D/nPEcVcbY1LsD23AO4bM/FKKq+q5SPuq/oevtxcvzRjB6X2i+cP8LBZt3Gd1JKWUhUYnRxHi78NX2mKiVLvNXJzNh2sLuevcfvxqXLLVcZyaI690pwM5xphcY0wD8D4w6Yh9JgFv2p/PB84RETHGrDPGHF4ebDMQICL+Dszqtr7acgA/Hy/O0taSNgX4ejP72lRGJETw+w/Wk5FfanUkpZRF/Hy8OGtAV77dWkSzTefzV+p43liexytLd3LV6ATuOKeP1XGcniOL7p5AQauvC+3b2tzHvgBDBRB1xD5XAOuMMfWttr1uby15WI4y55uI3CQimSKSWVxcfCrvw6Ut2VbE2F5RBOkqa0cV6OfDv69NIy6iC79+M5OcokNWR1JKWeT8wbEcrG5g7e4yq6Mo5dQ+37CXxz7fwvmDYnli0hCdgrcdHFl0t/Wnf+Slg2PuIyKDaWk5ubnV61fb207G2x/XtPXNjTGzjTFpxpi0mBjPnJs6t/gQeSXVnDNQr3IfT0SQH2/+Kh1fby+um7Oaoqo6qyMppSwwoV8Mft5efL3lgNVRlHJaP+0s4e4PshiVGMnfZ4zA20sL7vZwZNFdCLQevhoH7D3aPiLiA4QBpfav44CPgWuNMTsPH2CM2WP/bxXwLi1tLKoNh+eb1daS9omPDGTO9WmU1TRwwxsZVNc3WR1JKdXJQgJ8GZUcwffZnnuHVKlj2bqvkpveWkNSdCD/ujZNZ/o5AY4sujOAviKSLCJ+wHRgwRH7LKBloCTAFGCJMcaISDjwBfCAMWb54Z1FxEdEou3PfYGLgU0OfA8u7dutRfSPDSE+MtDqKC5jWFw4L181kq37qrj1nbU0NtusjqSU6mRn9utK9oEq9lXUWh1FKadSVFnHjW9kEOzvw5s3pBMW6Gt1JJfisKLb3qN9G7AY2ArMNcZsFpHHReRS+26vAVEikgPcDRyeVvA2oA/w8BFTA/oDi0VkA7Ae2AP8y1HvwZVV1DaSkV/K2dpacsLOGtCVpy4bwvfbi3n4k00YowOqlPIkE/q3tCTq1W6l/k9dYzO/eSuT8tpGXrs+je5hXayO5HIcOrrOGLMQWHjEtkdaPa8DprZx3JPAk0c5bWpHZnRXP+4opslmOGeAFt0nY3p6AoVltfzjuxz6xoZw4+k6DZJSnqJv12C6hwXw/fZipqfrnMNK2WyGe+ZmsWFPBbOvSWNwjzCrI7kkXQbeTS3ZWkR4oC8jEiKsjuKy7j6vHxcMjuWpL7bwXbZOB6+UpxARJvSLYdmOEm0xUwqY9c12vti4jwcvHMh5g2KtjuOytOh2Q802w3fZRZzVv6uOKD4FXl7CrGkpDOgWyh3vriOnqMrqSEqpTjKhXwxV9U2sLyi3OopSlvp4XSEvLclh+qh4fj1e7/qeCi263dCmPRWU1TQyoZ9nTpXYkQL9fPjXdWn4+3pz45uZlFU3WB1JKdUJxvWNxttLtK9bebQ1u0r54/yNjO0VxeM6F/cp06LbDf24o+WHxOl9oy1O4h56hnfh1WtS2Vdexy3vrNHbzUp5gNAAX1ITIli6XVvLlGfaX1HHzf9ZS4/wAP75y5H4+WjJeKr0T9AN/bCjhME9QokO9rc6ittITYzgmSuGsjK3lEcXbLY6jlKqE0zoH8OmPZWUHKo//s5KuZG6xmZufnsNtQ1N/OvaNMID/ayO5Ba06HYzh+qbWLurjPF9tbWko00eGcfNE3rxzqrdfJCx2+o4SikHG9en5W7hTzsPWpxEqc5jjOGRTzeRVVDO81em0Dc2xOpIbkOLbjezcudBmmyGM/ppa4kj/OGCAZzeJ5qHP91Mlg6wUsqtDe0ZRkiADyt2llgdRalO8/bKXczNLOT2s/swcUg3q+O4FS263cyPO4rp4utNaqJOFegI3l7C32eMICbYn1veXsNBve2slNvy9hLG9IpieY5e6VaeYXVeKY99toWzB3TlrnP7WR3H7WjR7WZ+3FHCmF6R+Pt4Wx3FbUUG+fHqNakcrG7g9vfW0aQDK5VyW+N6R7G7tIaC0hqroyjlUPsqarn1nTXERwYya1oKXjrlcIfTotuNFJTWkFtSrf3cnWBIzzCeunwoP+08yMzF2VbHUUo5yGk/93Vri4lyXw1NNm59Zy21Dc3MviaVsC6+VkdyS1p0u5FlOS0/FLSfu3NMSY3jmjGJvPpDLl9s2Gd1HKWUA/TtGkxMiL8OplRu7ZlF21i3u5znpgzXgZMOpEW3G1mWU0K30AB6xwRbHcVjPHzxIEYmhHPf/Cx2Fh+yOo5SqoOJCKf1juKnnQcxxlgdR6kOt2jjPuYsz+P605L4xbDuVsdxa1p0uwljDKtyDzK2d5SuGNWJ/Hy8ePnqkQT4evO7d9ZS19hsdSSlVAcb1zua4qp6dhTpL9bKveSXVPOH+RsYHh/OgxcNtDqO29Oi203sKDpEyaEGxvaKsjqKx+ke1oUXrhzOtv1VPPaZLpyjlLsZ27vlc3V5jvZ1K/dR19jMLe+sxctLePmqEbriZCfQP2E3scLeb3j4h4PqXGf278qtZ/bmvdUFfLJuj9VxlFIdKD4ykITIwJ8/Z5VyB48u2MzWfZXMmjacuIhAq+N4BC263cSKnQfpGd6F+Ej9h2OVu8/rR3pSJA9+vJEcvQ2tlFsZnRxJRn4pNpv2dSvX9+GaQt7PKODWM3tz9oBYq+N4DC263YDNZliZd1CvclvMx9uLv88YQRd7f3dtg/Z3K+Uu0pMjKatpJEcHTCsXl72/ioc+2cjo5EjuPk8XwOlMWnS7gW37qyivaeQ0Lbot1y0sgFnTUtheVMWjC7S/W7kHEZkoItkikiMi97fxeqKIfCsiG0RkqYjE2beniMgKEdlsf21a56fvGKOTWz5fV+WVWpxEqZNX09DEre+sIdjfl5dmjMDHW8vAzqR/2m7g8KINeqXbOZzRL4bfndmHDzIL+GhtodVxlDolIuINvAxcCAwCZojIoCN2+yvwljFmGPA48LR9ew1wrTFmMDAR+JuIhHdO8o4VH9mFbqEBrNaiW7mwxxZsIbekmr9PT6FraIDVcTyOFt1uYGXuQZKiAuke1sXqKMruznP7Mjo5koc+3qT93crVpQM5xphcY0wD8D4w6Yh9BgHf2p9/d/h1Y8x2Y8wO+/O9QBHgkkvmigjpyZGsytX5upVr+ixrLx9ktvRxH15pVXUuLbpdXLPNsCqvVK9yO5mf+7v9vLnjvXXUN2l/t3JZPYGCVl8X2re1lgVcYX9+ORAiIv/1oSQi6YAfsNNBOR1udK9Iiqrq2XWwxuooSp2QgtIaHvxoIyMSwrnzXO3jtooW3S5u894KquqaGKPzczud2NAAnrtiGFv2VfLcl9lWx1HqZLW12taRl3rvBSaIyDpgArAHaPr5BCLdgf8AvzLG2Nr8JiI3iUimiGQWFxd3TPIONjo5EkBbTJRLaWy2ccf76wD4+/QR+Goft2X0T97F/Tw/txbdTuncQbFcNzaR15blsTS7yOo4Sp2MQiC+1ddxwN7WOxhj9hpjJhtjRgAP2bdVAIhIKPAF8CdjzMqjfRNjzGxjTJoxJi0mxjk7UHrHBBMZ5KeDKZVLefGbHazbXc5fJg/VaYUtpkW3i1uRe5DeMUE6IMKJPXDRQPrHhnDvvCyKq+qtjqPUicoA+opIsoj4AdOBBa13EJFoETn88+QBYI59ux/wMS2DLOd1YmaHEBHSkyJZna+L5CjX8FNOCS8vzWFaWjyXDO9hdRyP59Ciux3TTPmLyAf211eJSJJ9+3kiskZENtr/e3arY1Lt23NE5O8i0tatT4/Q2GwjQ/u5nV6Arzd/nzGCqrom7p2XpYtrKJdijGkCbgMWA1uBucaYzSLyuIhcat/tTCBbRLYDscBT9u1XAmcA14vIevsjpXPfQcdKT46koLSWveW1VkdR6phKqxu484P1JEcH8edLj5xwSFnBYUV3O6eZuhEoM8b0AWYBz9q3lwCXGGOGAtfR0gt42D+Bm4C+9sdER70HZ7dxTwXVDc2c1ltHITu7/t1C+NMvBvL99mJe/ynf6jhKnRBjzEJjTD9jTG9jzFP2bY8YYxbYn883xvS17/NrY0y9ffvbxhhfY0xKq8d6K9/LqUrXvm7lAowx3Dcvi/KaRl6aMYJAPx+rIykce6W7PdNMTQLetD+fD5wjImKMWWefXgpgMxBgvyreHQg1xqwwLXM2vQVc5sD34NRW5bZ86B/+IaCc2y/HJHLuwFieXbSNzXsrrI6jlDoJA7uHEhLgo33dyqm9vXIX324r4oGLBjC4R5jVcZSdI4vu9kwz9fM+9luYFcCRvRJXAOvsV0562s9zrHMCrjES/lRl5pfSKyaI6GB/q6OodhARnpsyjPBAX+54bx01DU3HP0gp5VS8vYRRSZGsztO+buWccooO8eQXW5nQL4brT0uyOo5qxZFFd3ummTrmPiIymJaWk5tP4JwtG11gJPypsNkMmbvKSE/Sq9yuJDLIj1nTUsgtqebJL7ZaHUcpdRLSkyPZWVxNySEdGK2cS0OTjTs/WEegnzczpwzDg4e9OSVHFt3HnWaq9T4i4gOEAaX2r+NoGfV+rTFmZ6v9445zTo+wo+gQFbWNpGnR7XLG9YnmN+N78e6q3SzZdsDqOEqpE6R93cpZvfjtdjbtqeTpycN0VjMn5Mii+7jTTNm/vs7+fAqwxBhjRCSclnldHzDGLD+8szFmH1AlImPss5ZcC3zqwPfgtFbn2/u5teh2Sfec348B3UL4w/yNHNSrZUq5lKE9wwjw9SIzv8zqKEr9LCO/lH8u3cmVaXFMHNLN6jiqDQ4ruts5zdRrQJSI5AB3A4enFbwN6AM83Gqaqa72124B/g3k0LKc8CJHvQdnlplfStcQf+Iju1gdRZ0Efx9vZk1LobK2kQc+2kjLuGCllCvw9fZiWFw4a3bplW7lHKrqGrnrg/XERQTyyCWDrY6jjsKhc8gYYxYCC4/Y9kir53XA1DaOexJ48ijnzASGdGxS15ORV8qo5Ejt13JhA7uHcu8F/fjLwm3MW1PIlWnxxz9IKeUU0hIjmP1DLrUNzXTx87Y6jvJwj322hb3ltcz77WkE++v0gM5KV6R0QXvKa9lbUceoxAiro6hTdOPpvRidHMljCzZTUFpjdRylVDulJkbQZDNkFZZbHUV5uEUb9zF/TSG3ndWHVK0LnJoW3S4owz54Z5TOz+3yvL2E568cjpcId89dT7OuVqmUSxiZ0FLcrNmlfd3KOgcq63jg440Mjwvj9nP6Wh1HHYcW3S4oI7+UEH8fBnQLtTqK6gBxEYE8NmkwGfllzP4h1+o4Sql2iAjyo3dMkBbdyjI2m+HeeVnUNTbzwrQUfL21pHN2+n/IBWXklzIyMQJvL+3ndheXj+jJRUO78cLX2Wzao6tVKuUK0hIjWbOrDJveoVIWeGtFPj/uKOFPvxhE75hgq+OodtCi2/LRC9gAACAASURBVMWU1zSw/cAhRiVp35Y7ERGeumwoEYF+3PXBeuoam62OpJQ6jtTECCpqG8ktOWR1FOVhdhYf4ulF2zirfwxXj06wOo5qJy26XczheWFH6fzcbiciyI/npgxjR9EhZi7OtjqOUuo4Uu0XP3S+btWZmppt3DM3iwBfb569QleddCVadLuYjF2l+HoLw+PDrY6iHODM/l25Zkwiry3L46edJVbHUUodQ6/oICICfbWvW3Wq2T/msr6gnCcuG6KrTroYLbpdTEZeKcPiwgnw1Xlh3dWDFw0kKSqQ++ZtoKqu0eo4SqmjEBFSEyO06FadJnt/FX/7egcXDe3GJcO6Wx1HnSAtul1IXWMzG/dUkKb93G6ti583z185nH0Vtfxl4Var4yiljmFkYgS5JdWUVjdYHUW5ucZmG3fPXU9IgA9PTBqibSUuSItuF7K+oJzGZkO69nO7vdTESH4zvhfvrS5gaXaR1XGUUkeRltjyeaxXu5WjvfxdDpv3VvLU5UOJCva3Oo46CVp0u5DDi+LoilOe4a7z+tG3azB//HADFTXaZqKUMxoWF4avt2jRrRxq054K/rEkh8tSejBxSDer46iTpEW3C8nYVUb/2BDCA/2sjqI6QYBvS5tJyaEGHvtss9VxlFJtCPD1ZnCPMNbsKrU6inJT9U3N3D13PVHBfjx26RCr46hToEW3i2i2GdbuKtN+bg8zLC6c353Zm4/W7WHx5v1Wx1FKtSE1MYKswgoammxWR1Fu6G/f7GD7gUM8c8UwwgJ9rY6jToEW3S5i675KDtU3kZ6s/dye5raz+zKoeygPfbxRB2sp5YTSEiNoaLKxaa+uJqs61trdZbz6/U6mpcVzVv+uVsdRp0iLbheRkd9y6zJNB1F6HD8fL16YNpyK2kYe/mST1XGUUkc4PM5mrfZ1qw5U29DMvXOz6B7WhT9dPNDqOKoDaNHtIjLzy+gZ3oWe4V2sjqIsMKBbKHee248vNu7js6y9VsdRSrXSNTSA+MguujKl6lAzF2eTW1LNc1OGERKgbSXuQItuF2CMYXV+qfZze7ibz+jF8PhwHv50E0VVdVbHUUq1kpoQwZrdZRhjrI6i3MCq3IO8/lMe145NZFyfaKvjqA6iRbcL2F1aQ3FVPaO0tcSj+Xh78fzU4dQ2NPPgRxv1h7tSTiQ1KZLiqnoKSmutjqJcXHV9E/fOzyIhMpD7LxxgdRzVgbTodgGr7fNz6yBK1adrMPdd0J9vthbx4do9VsdRLkhEvEXkUhG5Q0TuPvywOperS01ouRO5ZrdOHahOzV8WbqWwrJa/Th1OoJ+P1XFUB9Ki2wVk5pcR1sWXPjHBVkdRTuCGccmkJ0Xy2ILN7C3Xq2rqhH0GXA9EASGtHuoU9O8WQrC/j/Z1q1Py445i3lm1m1+fnqx3t92Q/grlAjLySxmVFIGXl1gdRTkBLy9h5tRhTPzbj/zxww28dUM6Ivp3Q7VbnDFmmNUh3I23lzAiIZy1u8utjqJcVGVdI3+Yv4HeMUHcc35/q+MoB9Ar3U6uuKqe3JJqnSpQ/ZfEqCAe/MVAftxRwrurd1sdR7mWRSJyvtUh3NHIhAiy91dSVddodRTlgp74bAsHKut4/soUAny9rY6jHECLbid3eGlhvc2kjvTL0Qmc3ieap77Yyu6DNVbHUa5jJfCxiNSKSKWIVIlIpdWh3EFqYgQ2A+sL9Gq3OjHfbj3AvDWF3HJmb1Liw62OoxxEi24ntzqvDH8fL4b2DLM6inIyIsKzU4bhLcK987Ow2XQ2E9UuzwNjgUBjTKgxJsQYE2p1KHeQkhCOCKzRRXLUCSirbuD+jzYyoFsId5zT1+o4yoEcWnSLyEQRyRaRHBG5v43X/UXkA/vrq0Qkyb49SkS+E5FDIvKPI45Zaj/nevvDrddFzdxVSkp8OH4++vuR+l89w7vw8CWDWJ1Xyhs/5VsdR7mGHcAmcwJzTrbjszxRRL4VkQ32z+i4Vq9dJyI77I/rOug9OKXQAF/6x4Zo0a1OyJ8XbKasuoHnrxyOv4+2lbgzh1VyIuINvAxcCAwCZojIoCN2uxEoM8b0AWYBz9q31wEPA/ce5fRXG2NS7I+ijk/vHKrrm9i8t1JbS9QxTU2N45wBXXlu8TZyiw9ZHUc5v33AUhF5oD1TBrbzs/yvwFv2AZqPA0/bj40E/gyMBtKBP4uIW6/ylZoYwfrd5TTrnSfVDos27mNB1l7uOKcvg3voHW13d9yiW0S8RGTTSZw7HcgxxuQaYxqA94FJR+wzCXjT/nw+cI6IiDGm2hizjJbi22Ots39wj9L5udUxiAhPTx6Kv48398zL0h/26njygG8BP9o3ZWB7PssH2c8J8F2r1y8AvjbGlBpjyoCvgYkd8i6cVGpiBFX1TewoqrI6inJyJYfqeeiTTQztGcYtZ/a2Oo7qBMctuo0xNiBLRBJO8Nw9gYJWXxfat7W5jzGmCaigZe7Y43nd3lrysBxlrjQRuUlEMkUks7i4+ASjO4fV+aV4CYxM0EEV6ti6hgbw+KTBrNtdzuwfcq2Oo5yYMeYxY8xjwAvA862+Ppr2fJZnAVfYn18OhIhIVDuPBdzjMxtaim7Qvm51bMYYHvp4I4fqmnj+yuH4emsLqSdo7//l7sBme8/egsOP4xzTVjF85CW49uxzpKuNMUOB8fbHNW3tZIyZbYxJM8akxcTEHOeUzikzv5SB3UMJCfC1OopyAZcO78GFQ7ox6+vtZO/Xq2yqbSIyRETWAZto+VxfIyKDj3VIG9uO/Jy+F5hgP+8EYA/Q1M5jWza6wWc2QEJkINHBflp0q2P6dP1eFm8+wD3n96NfrK5N5SnaW3Q/BlxMS6/e860ex1IIxLf6Og7Ye7R9RMQHCAOOuYauMWaP/b9VwLu03Pp0O43NNtbtLtd+btVuIsKTlw0hJMCHe+atp7HZZnUk5ZxmA3cbYxKNMYnAPcC/jrH/cT/LjTF7jTGTjTEjgIfs2yrac6y7ERFGJkSwVotudRQHKut45NNNpCZG8OvxvayOozpRu4puY8z3bT2Oc1gG0FdEkkXED5gOHHl1fAFweDT7FGDJsUbUi4iPiETbn/vS8ovAyfSbO71NeyqobWwmLcmtxxypDhYV7M9Tlw9h055KXvlup9VxlHMKMsZ8d/gLY8xSIOgY+x/3s1xEokXk8M+TB4A59ueLgfNFJMI+gPJ8+za3lpoYQf7BGoqr6q2OopyMMYb7P9xAQ7ONv04djreuNO1Rjll0H140oY3HcRdTsPdo30bLB+xWYK4xZrOIPC4il9p3ew2IEpEc4G7g56moRCSflp7D60Wk0D5a3h9YLCIbgPW03MI81hUal5WZ33KVJF2vdKsTNHFIdyal9OClJTvYtKfC6jjK+eTax8Mk2R9/omVwZZva+Vl+JpAtItuBWOAp+7GlwBO0FO4ZwOP2bW7tcF/32t16tVv9t7mZBXyXXcwfJw4gOfpYv+sqd+RzrBeNMafUaGSMWQgsPGLbI62e1wFTj3Js0lFOm3oqmVzF6vxSEqMC6RoaYHUU5YIeu3QwK3Ye5J65WSy4fZzO/apau4GWlsEPaem5/gG4/lgHtOOzfD4tM1C1dewc/u/Kt0cY0jMMP28v1u4q44LB3ayOo5xEYVkNT3y+lTG9IrlubJLVcZQFdLisE7LZDJn5pdrPrU5aeKAfz1wxlOwDVbz4zQ6r4yjn0puWPmsvwBc4h5bCW3WQAF9vhvQM1cGU6mc2m+EP8zdgjGHmlOF4aVuJR9Ki2wntLD5EWU2jtpaoU3L2gFiuTIvj/32/k3V6m1v9n3doufI8mZZxMRcDl1iayA2lJkawYU8F9U3NVkdRTuDtVbv4aedB/nTxIOIjA62OoyyiRbcTWp3f0vKoi+KoU/WniwfRLTSAe+ZlUdeoP/wVAMXGmM+MMXnGmF2HH1aHcjepiRE0NNnYvPeYw5+UB8gvqebphduY0C+G6aPij3+AcltadDuhjLxSooP9SYrS34bVqQkN8OW5KcPJLa5m5uJsq+Mo5/BnEfm3iMwQkcmHH1aHcjcjE+yDKbXFxKM12wz3zc/Cx1t45oqhHGU9P+UhtOh2Qhn5ZaQnR+g/TtUhTu8bzS/HJDBneR6r89x+4gh1fL8CUmhZjv0S++NiSxO5oa6hAcRHdtG+bg83Z1keGfllPHbpYLqHdbE6jrKYFt1OZk95LXvKa3UQpepQD1w4kPiIQO6dl0V1fZPVcZS1httXfrzOGPMr++MGq0O5o9SECDJ3lXGM5SeUG8spqmLmV9mcNyiWy0f0tDqOcgJadDuZDPuVSC26VUcK8vfhr1OHU1BWwzOLtlkdR1lrpX3dA+VgqYkRFFfVU1hWa3UU1cmamm3cMzeLID9v/nK5tpWoFlp0O5nV+aWE+PswsHuo1VGUm0lPjuSGccn8Z+Uulu0osTqOss7pwHoRyRaRDSKy0b7gmOpgI+2L5GiLief5f9/vJKuwgicvG0pMiL/VcZST0KLbyWTklTIyMUKXhlUOcd8F/ekVE8Qf5mdRWddodRxljYlAX1qWZD/cz61TBjrAgG6hBPl5a9HtYbbsreTFb3dw8bDu/GJYd6vjKCeiRbcTKatuYEfRIdJ1qkDlIAG+3jw/dTj7K+t48vMtVsdRFmg9TaBOGehY3l7CiIQILbo9SEOTjXvmZRHWxY8nJg2xOo5yMlp0O5GMfO3nVo43IiGC307ozdzMQpZsO2B1HKXc2sjECLbtr+SQDmD2CC8t2cHWfZU8M3koEUF+VsdRTkaLbieSkV+Kn7cXw+LCrI6i3Nzvz+3LgG4h3P/hRsprGqyOo5TbSk2MwGYgq6Dc6ijKwbIKynll6U6uGBnHuYNirY6jnJAW3U4kI7+M4fFhBPh6Wx1FuTl/H2/+OnU4pdUNPLpgs9VxlHJbKfHhiOhgSndX19jMPfOy6BrizyOX6ORAqm1adDuJmoYmNu2pIE1bS1QnGdIzjNvO7sMn6/fy5aZ9VsdRyi2FdfGlX9cQLbrd3Atfbyen6BDPXjGMsC6+VsdRTkqLbiexfnc5TTZDuhbdqhP97qw+DOkZykMfb+LgoXqr4yjllkYmRrB2dxk2my6S445W55Xyrx9zuWp0Amf0i7E6jnJiWnQ7idX5pYj837yuSnUGX28vnp+aQlVdE3/6ZJOunKeUA6QmRlBV18SOokNWR1EdrKqukbvnrichMpCHLhpodRzl5LTodhIZ+aUM6Baqt6VUp+vfLYS7zuvHok37+XT9XqvjKOV2UnWRHLf1+Gdb2FteywtXphDk72N1HOXktOh2Ao3NNtbuKic9Sa9yK2vcdEYvUhMjePjTTewp1yWrlepISVGBRAX5adHtZr7ctI95awr53Vl9fv7FSqlj0aLbCWzeW0ltYzOjdFEcZRFvL2HWlSnYbIZ75q7X3lOlOpCI/NzXrdxDUVUdD3y0kaE9w7jjnL5Wx1EuQotuJ7Ay9yCArkSpLJUQFcifLx3MytxS/r0s1+o4SrmV1MQI8kqqdcCyGzDG8Mf5G6hpaGbWtBR8vbWUUu2jf1OcwMrcg/SOCaJrSIDVUZSHm5oaxwWDY5m5OJsteyutjqOU2zjcfrB2ty6S4+reXb2b77KLefCigfTpGmx1HOVCtOi2WGOzjYy8Usb2jrI6ilKICE9PHkZ4oB93frCOusZmqyMp5RaG9gzD11u0r9vF5RYf4snPtzK+bzTXjEm0Oo5yMVp0W2zjngqqG5oZ2yva6ihKARAZ5MfMKcPYfuAQMxdnWx1HKbcQ4OvN4B5hrNWi22U1Ndu4a24Wfj5ezJwyHC8vsTqScjFadFvscD/36F7az62cx5n9u3Lt2EReW5bHsh0lVsdRyi2kJkaQVVhOQ5PN6ijqJLz83U6yCsp56vIhdAvTdlB14hxadIvIRBHJFpEcEbm/jdf9ReQD++urRCTJvj1KRL4TkUMi8o8jjkkVkY32Y/4uIi79q+aKnQfpFxtMdLC/1VGU+i8PXDiQ3jFB3Dsvi/KaBqvjKOXyUhMjqG+ysXlvhdVR1AnKKijn70t2cFlKDy4e1sPqOMpFOazoFhFv4GXgQmAQMENEBh2x241AmTGmDzALeNa+vQ54GLi3jVP/E7gJ6Gt/TOz49J2joclGZn4ZY3tpP7dyPl38vHlx+ghKDtXzkK5WqdQpS7MPpszM1xYTV1Jd38SdH6wnNsSfxyYNsTqOcmGOvNKdDuQYY3KNMQ3A+8CkI/aZBLxpfz4fOEdExBhTbYxZRkvx/TMR6Q6EGmNWmJYK4C3gMge+B4faUFhObWOzDqJUTmtIzzDuOq8fX2zYxyfr91gdRymX1jU0gMSoQFbnl1odRZ2ARxdsJv9gNbOmpeiq0eqUOLLo7gkUtPq60L6tzX2MMU1ABXCsCrSn/TzHOicAInKTiGSKSGZxcfEJRu8cK3MPIgKjk7XoVs7rtxN6k5YYwSOfbKagtMbqOEq5tNHJkWTkl+oCVC7is6y9zFtTyG1n9WG03pVWp8iRRXdbvdZHfsq0Z5+T2t8YM9sYk2aMSYuJiTnGKa2zIvcgA7qFEhHkZ3UUpY7K20uYNS0FBG5/bx2NzToITKmTNTo5ivKaRrYXVVkdRR1HQWkND368kZEJ4fxeV51UHcCRRXchEN/q6zhg79H2EREfIAw41n23Qvt5jnVOl1Df1ExmfhljdNYS5QLiIwN5evJQ1heUM+vr7VbHUcplHV55eFWutpg4s6ZmG3d+sB4MvDh9BD666qTqAI78W5QB9BWRZBHxA6YDC47YZwFwnf35FGCJOcZoLWPMPqBKRMbYZy25Fvi046M7XlZBBfVNNh1EqVzGxcN6MH1UPP/8fifLc3QaQU/TjtmoEuyzTq0TkQ0icpF9u6+IvGmfdWqriDzQ+emdR3xkID3Du7A6T4tuZ/bSkhzW7CrjycuHEB8ZaHUc5SYcVnTbe7RvAxYDW4G5xpjNIvK4iFxq3+01IEpEcoC7gZ8/yEUkH3gBuF5EClvNfHIL8G8gB9gJLHLUe3CkFTu1n1u5nkcuGUSv6CDu+mA9Bw/VWx1HdZJ2zkb1J1o+50fQcpHlFfv2qYC/MWYokArcfHh6WE+VnhzJqryDOiOQk1qdV8pLS3YweWRPJqW0OWxMqZPi0PslxpiFxph+xpjexpin7NseMcYssD+vM8ZMNcb0McakG2NyWx2bZIyJNMYEG2PijDFb7NszjTFD7Oe87VhXxp3ZitwSBvcIJSxQR0Ir1xHo58NLM0ZSXtvIffM3aNHgOdozG5UBQu3Pw/i/1j8DBNlbCLsADUCl4yM7r9HJkZQcaiC3pNrqKOoIFTWN3Pn+OuIjA3lcpwdUHUyblCxQ19jM2t3ljNGr3MoFDeoRykMXDWTJtiJeX55vdRzVOdozG9WjwC9FpBBYCNxu3z4fqAb2AbuBvxpjPLq3Qvu6nZMxhgc/3khRVT0vTh9BsL+P1ZGUm9Gi2wKZ+WU0NNk4rY8W3co1XTs2kXMHduWZRdvYtEdX1/MA7Zk5agbwhjEmDrgI+I+IeNFylbwZ6AEkA/eISK//+QYuMM1rR0mODiImxJ/VeQetjqJaeWfVbr7YuI+7z+9HSny41XGUG9Ki2wI/5hTj6y2M0UGUykWJCM9NGU5EkC93vLeO6vomqyMpx2rPbFQ3AnMBjDErgAAgGrgK+NIY02iMKQKWA2lHfgNXmOa1o4iIva+7VFu0nMSmPRU8/vkWJvSL4bdn9LY6jnJTWnRb4MftJaQmRhDop7eulOuKDPLjb9NGkHewmod1mXh3157ZqHYD5wCIyEBaiu5i+/azpUUQMAbY1mnJndSY5Ej2VdRRWFZrdRSPV1XXyG3vriUy0I8XrhyOl1dbN3aUOnVadHeykkP1bNlXyfi+7n0lR3mGsb2juPOcfny0bg/vZxQc/wDlkto5G9U9wG9EJAt4D7jePtD9ZSAY2ERL8f66MWZDp78JJ5NuH9OzMldbTKxkjOH+jzZSUFbLS1eNICrY3+pIyo3ppdZOdnh+4/F9oy1OolTHuP3sPmTuKuXPCzYztGcYQ3qGWR1JOYAxZiEtAyRbb3uk1fMtwLg2jjtEy7SBqpW+XYOJCPRldV4pU9Pij3+Acoi3V+7iiw37+OPEAYxK0sXqlGPple5O9uOOEsIDfRncQwsT5R68vIS/TUshMtCP3727lsq6RqsjKeX0vLyEUUktfd3KGpv2VPDE51s5q38MN5/xP2N7lepwWnR3ImMMP+4oZlyfaLy1Z0y5kahgf/5x1QgKy2q5b16W9ncr1Q6je0Wxu7SGfRXa193ZKusaufWdtUQF+/H8lSnax606hRbdnSin6BAHKusZ30dbS5T7SUuK5P6JA1i8+QCvLcuzOo5STm9Mr5Z2hhU7ta+7MxljuP/DDewpr+WlGSOIDPKzOpLyEFp0d6IfdrT0c5+u/dzKTf16fDLnD4rlmUXbWLOrzOo4Sjm1gd1CiQzyY5l9rI/qHK8vz2fhxv384YL+pGkft+pEWnR3ou+3F9MrJoi4iECroyjlECLCzKnD6RHehdveXUtpdYPVkZRyWl5ewtheUfyUc1BbsjrJqtyD/GXhVs4dGMtvxmsft+pcWnR3kpqGJlbmHuSs/l2tjqKUQ4V18eWVq0dy8FADv39/Hc02LSaUOppxfaLZX1lHbkm11VHc3v6KOn737joSIgN5YZrOx606nxbdnWR5zkEammycPUCLbuX+hvQM4/FJg/lxRwnPLfb4dVCUOqpxfVrm616uLSYOVd/UzC3vrKGmoYlXr0klNMDX6kjKA2nR3UmWbCsi2N9H5wFVHmN6egJXjU7g1e9z+SzryBXDlVIACZGB9AzvokW3gz3x+RbW7S5n5pTh9I0NsTqO8lBadHcCYwzfbStifN9o/Hz0j1x5jkcvGUxaYgR/mL+BLXsrrY6jlNMREcb1iWLFzoPaiuUgczMLeHvlbm4+oxe/GNbd6jjKg2kF2Am27Ktkf2UdZ2lrifIwfj5evPLLkYR28eHmtzMp04GVSv2PcX2iqaxrYtOeCqujuJ0NheX86ZNNnNY7ivsu6G91HOXhtOjuBN9tKwLgzP4xFidRqvN1DQng//0ylQMV9dzx/jqamm1WR1LKqZzWu2Ua2eU7tcWkIx2orOM3b2USE+zPSzNG4OOtJY+ylv4N7ARLthUxLC6MriEBVkdRyhIjEiJ44rLDAyuzrY6jlFOJCfGnf2wIy3Zo0d1R6hqbuemtTKrqmvjXtWlEBftbHUkpLbodrbS6gXUF5TpVoPJ400YlcM2YRGb/kMvcjAKr4yjlVM7oF01mfhnV9U1WR3F5xhj+MH8DWYUVzJqWwqAeoVZHUgrQotvhvtlyAGPg3IGxVkdRynKPXDKI8X2jefDjjbr0tVKtnNm/Kw3NNn7Sfxen7JWlO1mQtZf7LujPBYO7WR1HqZ9p0e1gizbtIy6iC0N66m/aSvl6e/GPq0aSGBXILe+sIU8XBFEKgLSkCAL9vPl+e5HVUVzal5v2M3NxNpel9ODWM3tbHUep/6JFtwNV1jWyLKeEiYO7IaIrXykFLStWzrl+FALc+EYG5TU6o4lS/j7enNY7mqXZxbok/EnavLeCuz5YT0p8OM9cMUx/7iqno0W3Ay3ZWkRjs+HCoXp7S6nWEqOCmH1tGoVltdzy9loamnRGE6XO7B9DYVktO4v1DtCJ2lNeyw1vZBAe6Mvsa1IJ8PW2OpJS/0OLbgdatGkfsaH+jIiPsDqKUk5nVFIkT08eyorcg/zpk416dU95vMPTyi7N1haTE1FR08j1c1ZT09DMG79Kp2uozhSmnJNDi24RmSgi2SKSIyL3t/G6v4h8YH99lYgktXrtAfv2bBG5oNX2fBHZKCLrRSTTkflPRU1DE99vL+aCwd3w8tJbXEq15YrUOG47qw9zMwv52zc7rI6jlKXiIgLp0zWY77cXWx3FZdQ3NXPTfzLJP1jNq9ek0r+bLvGunJePo04sIt7Ay8B5QCGQISILjDFbWu12I1BmjOkjItOBZ4FpIjIImA4MBnoA34hIP2NMs/24s4wxTj2h6dLsYuoabUwcoq0lSh3LPef3Y39lHS9+u4OYEH9+OSbR6khKWWZCvxj+s2IXNQ1NBPo57Ee0W7DZDPfO28CqvFJenJ7y8yJDSjkrR17pTgdyjDG5xpgG4H1g0hH7TALetD+fD5wjLSMfJgHvG2PqjTF5QI79fC5j4cZ9RAb5kZ4UaXUUpZyaiPD05KGc1T+GRz7dxJeb9lsdSSnLnGWfOnB5jk4deDzPfrmNz7L28seJA5iU0tPqOEodlyOL7p5A6xUwCu3b2tzHGNMEVABRxznWAF+JyBoRuelo31xEbhKRTBHJLC7u3Ft1VXWNfLP1ABcN7abLzirVDr7eXrx89UiGxYVzx/vryMgvtTqSUpZIT44kJMCHrzbrL5/H8vryPF79IZdfjkngtxN6WR1HqXZxZEXYViPzkSOljrbPsY4dZ4wZCVwI/E5EzmjrmxtjZhtj0owxaTExMe3N3CEWbdpPXaONySPjOvX7KuXKAv18mHP9KOIiunDjGxlk76+yOpJSnc7Px4uzB3Tlm60HaGrWWX3aMi+zgMc+28L5g2J59JLBOjWgchmOLLoLgfhWX8cBe4+2j4j4AGFA6bGONcYc/m8R8DFO2Hby0dpCkqODGBEfbnUUpVxKZJAfb/4qnQBfb66ds4rdB2usjqRUp7tgcDfKahrJ3FVmdRSn88WGffzxww2M7xvNS1eN0LvJyqU48m9rBtBXRJJFxI+WgZELjthnAXCd/fkUYIlpmTdsATDdPrtJMtAXWC0iQSISAiAiQcD5wCYHvocTVlhWw8rcUiaP6Km/fSt1EuIjA3nrxnTqm2zM+NdKCsu08FaeZUK/GPx8vFisLSb/5bttRdz5wTpGJETw6jWp+PvoXNzKtTis6Lb3aN8GtR0GdwAAEytJREFULAa2AnONMZtF5HERudS+22tAlIjkAHcD99uP3QzMBbYAXwK/s89cEgssE5EsYDXwhTHmS0e9h5Pxybo9AFw2Qgd1KHWyBnQL5e0bR1NZ18jV/17F/oo6qyMp1WmC/H0Y3yearzYf0Pnr7VbmHuS3b6+hX2wIc64fpTO7KJfk0PsyxpiFxph+xpjexpin7NseMcYssD+vM8ZMNcb0McakG2NyWx37lP24/saYRfZtucaY4fbH4MPndBbGGD5au4f05EjiIwOtjqOUSxvSM4y3bkinpKqeq/69kuKqeqsjKdVpLvj/7d15eBX1vcfx95esBAgQwhKSsAgBwr7EyFptsQh4FdEioBa0WrRUra2tt9Y+bZ8+2tv23tba4gIFRdRKuW1RKhRXKlZZlR0Ewh6IBBJ2QkKS3/3jjNc0JIiQk0nOfF7Pc54zZ87MOd8vM+fHNzO/+U2PNuw/WsSmA8f9DsV3a/cd5c7Zq0Jnwb6RTdOGMX6HJHJR1BmqBn209yg7D5/ipv46yi1SE/q1a85zd2STd/QMt81cQeGpEr9DEqkVwzNb0cAI/Cgma/cd5euzVpDUOJYX77yCFo3j/A5J5KKp6K5Bc5btpklcNNf2but3KCIRI7tjErMmZ7G74JQKbwmMFo3juLxDEos2fhLYLiYf7jnC12euoHlCLHOnDKJNU93eXeo3Fd015ODxMyxcn8e4rHQax6mvmUhNGtw5mRmTsthx6CQTZiwj/7j6eEvku65PW3LyT7I5L3hdTFbtLmTSrBW0aBzLn+8eSGqzhn6HJHLJVHTXkJdW7KXMOSYN0i2sRcLhyi4tee72y8k9UsT4Gcs5cLTI75BEwuraXinERNn/X6AfFMt2FDD52ZW0Toznz3cPIqWpCm6JDCq6a0BxaRl/WrGHr3RtRYfkRn6HIxKxBndO5oU7QxdXjntmGXsKTvkdUiCY2Ugz22pmOWb2wyreb2dmS8xsjZmtN7PRFd7rbWbLzGyTmW0wM/URuEDNG8VyZZdWvLr2AGXlwehi8vqmT5j83EpSmzVk7pSBtE7U7iKRQ0V3DVi4Po/DJ0u4fUgHv0MRiXgD2ifx8pSBnC4p5WvPLGPTgWN+hxTRzCwKeJLQXYC7AxPNrHulxX5MaFjYfoTuyfCUt2408CJwj3OuB3AVcLaWQo8IY/ulkn+imOU7C/wOJezmrdrHt178kO4picy7exCtVHBLhFHRfYmcc8x8bxedWjZiaOdkv8MRCYSeqU2Zd/cgYhoY46cv51/bD/sdUiTLBnK8IVtLgLnAmErLOCDRm27KZ3cfHgGsd86tA3DOFXj3XJALNDyzFU3iopkf4V1Mnnl3Bw/9dT1DOifz0l1X0LxRrN8hidQ4Fd2X6K0t+WzOO849V3bSHShFalFG6yb8beoQ0po35PbnVjJ/Ta7fIUWqVGBfhde53ryKfgbcZma5wCLgPm9+F8CZ2etm9pGZPVTdl5jZFDNbbWarDx06VHPR13PxMVGM6tWGxRs/oagk8v5eKS0r56evbuSX//iY6/q0Zdbky2mkwQgkQqnovgTOOZ54exvtWyQwVnegFKl1bZrGM++eQVzeIYnv/nkd097ZHtjh1cKoqqMJlf+RJwKznXNpwGjgBTNrAEQDQ4FbveexZja8qi9xzs1wzmU557JatmxZc9FHgBv6pXKyuJQ3NkfWmN0nzpzlrjmreX7ZHr45rCNPjO9LbLTKEolc2rsvwWvr89i4/zj3frkz0VH6pxTxQ2J8DLO/cTlj+rblf97Yxv1z10bkEUEf5QLpFV6n8Vn3kU/dCcwDcM4tA+KBZG/dd51zh51zpwkdBe8f9ogjzMCOLWjfIoEXlu3xO5Qas/9oEeOeWcZ72w/zi7G9eOTa7jRooLPFEtlUKV6kM2fL+NXij+nWpgk39k/zOxyRQIuLjuJ34/vy0MiuvLb+ADdPX0beMQ0pWENWARlm1tHMYgldKLmg0jJ7geEAZpZJqOg+BLwO9DazBO+iyiuBzbUWeYRo0MD4+sD2rN5zhI376/+Fwyt3FTJm2vvsP1rE83dkc8sV7fwOSaRWqOi+SDOW7iT3SBE/vrY7UfrrXMR3ZsbUqzozc1IWuw6f4ro/vM+q3YV+h1XvOedKgXsJFdBbCI1SssnMfm5m13uLPQh808zWAS8Dt7uQI8BvCRXua4GPnHMLaz+L+m/cgHQaxkTV66PdoYEHdjLxj8tJjI9m/tTBDM3QAAQSHCq6L0JO/gmmvZPDdX3aqsEQqWOGZ7Zm/tTBNI6LYsKM5Tz1zxzKAzLGcbg45xY557o45zo55x7z5v3EObfAm97snBvinOvjnOvrnHujwrovOud6OOd6OueqvZBSzq9pQgw39EvllbX7OXKqxO9wvrCTxaXc+6c1PLpwC1dntuLVe4fQuVUTv8MSqVUqur+g4tIyvjdvHQlxUfzkPyoPVSsidUFG6yb8/b6hjOrZhl8v3sods1dRcLLY77BELsmkQe0pLi1n3up9n79wHbIh9xjXT/sX/9iYx8OjuvHMbQNoEh/jd1gitU5F9xf02MItrM89xq9v6k3LJnF+hyMi1WgSH8MfJvbj0Rt6smxnAaN//x5Lt2koOqm/MlMSye6YxJxlezhbVu53OJ+rrNzx5JIcxj71PqeLy3jxriu4W8PrSoCp6P4Cpr+7gzne0EYjerTxOxwR+Rxmxm0D23vdTaKZ9OxKfjR/AyeLS/0OTeSiTBl2GfuPFvFKHb9Zzr7C00ycsZz/fn0r1/Row+IHhjG4k7pjSrCp6L4Azjkef3Mb/+UN3v/wqEy/QxKRL6BH26YsvH8YU750GS+v3Ms1jy/lgxzdxVLqn+GZreieksiTS3IorYNHu0vLypn53k5GPL6UzXnH+e3NfZh2Sz+aJegOkyIquj/Hxv3HuHXmCp54eztfG5DGb8b10ViiIvVQfEwUPxqdyV/uGURsdANumbmCB+auIf/4Gb9DE7lgZsZ3rs5gd8Fp/vJh3boL6/rco4x58n0eXbiFQZ1asPiBYdzYP03dSUQ8utdqFbZ+coJHF25mT8Fp9haeJjE+msfG9uSW7HZqPETquQHtk1h0/zCe+mcO09/dyZubD/LA1V24fUgHYnSTK6kHRnRvzYD2zfnNm9u4rk9b32+bnn/iDL97aztzV+4luXEcT9/an5E92+j/S5FKVHRXISbKOF50lp6pidw1rCPX92mrU2MiEaRhbBQPjujKTf3T+Plrm3ls0RZeXrmX7361C9f2StHZLKnTzIxHrs3kxqc+YNqSHP5zZDdf4jhdUsofl+5i+tIdlJSWM2lQB743oguJGplEpErmXOSPX5uVleVWr17tdxgiUke9veUgv1r8MdsOnqRbmyY8OKIrV2e2qhNH6szsQ+dclt9x1Ca12Rfm+/+7jlfW7Ofv9w0lMyWx1r73VHEpc1ftY/q7O8g/Ucyonm14aGQ3OiY3qrUYROqq87XZOtItIoE3PLM1V3VtxWvrD/C7t7bzzTmryUxJ5I4hHbi+T1viY6L8DlHkHI+MzmTJx/l8b9465k8dHPb9tPBUCbM/2M3zH+zmWNFZBl6WxNO39WdA+6Swfq9IpNCRbhGRCkrLyvnbmv3Mem8XWw+eoEWjWG69oh3js9uR2qxhrcejI91yPu98fJBvzF7NxOx2/GJszxo/O+OcY8WuQuat2seijXmcOVvOV7u35ltXdaJ/u+Y1+l0ikUBHukVELlB0VANuzkpn3IA0PthRwHPv7+IPS3L4/Ts5ZHdI4vq+bRndK4WkRrrOQ/z3lW6hAvjpf+4gPakhU6/qfMmf6Zxj28GTvLHpE/76US67C07TJC6aG/unccfgDmS01u3bRS5GWItuMxsJPAFEATOdc7+s9H4cMAcYABQA451zu733HgbuBMqA+51zr1/IZ4qI1AQzY0jnZIZ0TmZf4WkWrDvAK2v28+NXNvLTBZvol96MoRnJDMtIpndaM418Ir75wYiuHDhaxK8Xb6WopIzvXt3lC18MfPR0CWv2HmXp9kO8teUg+wqLAMjumMR9X8lgdK8UGsaqm5XIpQhb9xIziwK2AV8FcoFVwETn3OYKy0wFejvn7jGzCcBY59x4M+sOvAxkA22Bt4Au3mrn/cyq6FSliNQE5xxb8k6wcMMB3tt+mA37j+EcJMRG0a1NEzJTEslMSSSjVWNaJ8bTKjGOhNhLO7ah7iVyIc6WlfPI/A3MW51Ldockvn9NV7LaN/+34ts5x6mSMvYWnGZv4Sn2Fp5m6ycnWbP3CDsPnwIgLroBQzsnMzyzNcMzW9E6Md6vlETqJb+6l2QDOc65nV4Qc4ExQMUCeQzwM2/6L8A0C3VIGwPMdc4VA7vMLMf7PC7gM0VEwsLM6N42ke5tE/nBNaGjgx/sKGDlrkI25x1nwdoDvLRi77+t0yQumqYJMTSOi+Yf3xlWJ0ZEkcgTE9WAX93Um6z2Sfxy8cfcPH0ZifHRJDWKpaS0nJPFpZwuKaO0/N8PtCU3jqVvenNuGpBGv3bN6Jve7JL/UBSRqoXzl5UK7KvwOhe4orplnHOlZnYMaOHNX15p3VRv+vM+EwAzmwJMAWjXrt3FZSAich7NEmIZ3SuF0b1SgNCRxNwjRew6fIr8E8XknzhD/vFijhWdpbTcqeCWsDIzbr48ndG9U3h7y0FW7irk+JlS4qIb0DgumkZxUSTGx5DWPIH2LRJIb55A0wSNqS1SW8JZdFf1v0vlvizVLVPd/Ko6TVbZP8Y5NwOYAaFTldWHKSJSM8yM9KQE0pMS/A5FAqxxXDRj+qYypm/q5y8sIrUmnFf+5ALpFV6nAQeqW8bMooGmQOF51r2QzxQRERERqVPCWXSvAjLMrKOZxQITgAWVllkATPamvwa840JXdi4AJphZnJl1BDKAlRf4mSIiIiIidUrYupd4fbTvBV4nNLzfs865TWb2c2C1c24BMAt4wbtQspBQEY233DxCF0iWAt92zpUBVPWZ4cpBRERERKQmhPUSZefcImBRpXk/qTB9BhhXzbqPAY9dyGeKiIiIiNRlupuDiIiIiEiYqegWEREREQkzFd0iIiIiImGmoltEREREJMwsNEJfZDOzQ8Cei1g1GThcw+HUF8o9uIKcf13Mvb1zrqXfQdQmtdkXJci5Q7DzD3LuUPfyr7bNDkTRfbHMbLVzLsvvOPyg3IOZOwQ7/yDnHgmCvP2CnDsEO/8g5w71K391LxERERERCTMV3SIiIiIiYaai+/xm+B2Aj5R7cAU5/yDnHgmCvP2CnDsEO/8g5w71KH/16RYRERERCTMd6RYRERERCTMV3SIiIiIiYaaiuwpmNtLMtppZjpn90O94ws3MdpvZBjNba2arvXlJZvammW33npv7HWdNMbNnzSzfzDZWmFdlvhbye29fWG9m/f2LvGZUk//PzGy/tw+sNbPRFd572Mt/q5ld40/UNcPM0s1siZltMbNNZvYdb35gtn8kClqbDcFqt9Vmq82OlDZbRXclZhYFPAmMAroDE82su79R1YovO+f6Vhjr8ofA2865DOBt73WkmA2MrDSvunxHARneYwrwdC3FGE6zOTd/gMe9faCvc24RgLfvTwB6eOs85f1G6qtS4EHnXCYwEPi2l2OQtn9ECXCbDcFpt2ejNlttdgS02Sq6z5UN5DjndjrnSoC5wBifY/LDGOB5b/p54AYfY6lRzrmlQGGl2dXlOwaY40KWA83MLKV2Ig2PavKvzhhgrnOu2Dm3C8gh9Bupl5xzec65j7zpE8AWIJUAbf8IpDb7MxHZbqvNVpvtTdf7NltF97lSgX0VXud68yKZA94wsw/NbIo3r7VzLg9COz3Qyrfoakd1+QZpf7jXOx33bIXT0hGbv5l1APoBK9D2r8+Cuo2C3m7rN6s2u95tfxXd57Iq5kX6uIpDnHP9CZ2W+baZfcnvgOqQoOwPTwOdgL5AHvAbb35E5m9mjYG/Ag84546fb9Eq5tX7/CNMULeR2u2qBWV/UJtdzaJVzKsz+avoPlcukF7hdRpwwKdYaoVz7oD3nA/MJ3Qq6uCnp2S853z/IqwV1eUbiP3BOXfQOVfmnCsH/shnpyMjLn8ziyHUeL/knPubNzvQ27+eC+Q2Ursd7N+s2uz6uf1VdJ9rFZBhZh3NLJbQBQkLfI4pbMyskZk1+XQaGAFsJJTzZG+xycCr/kRYa6rLdwEwybsieiBw7NNTWpGkUp+3sYT2AQjlP8HM4sysI6GLU1bWdnw1xcwMmAVscc79tsJbgd7+9Vyg2mxQu+0J9G9WbXY93f7OOT0qPYDRwDZgB/CI3/GEOdfLgHXeY9On+QItCF0RvN17TvI71hrM+WVCp+POEvqr+M7q8iV0qupJb1/YAGT5HX+Y8n/By289oUYrpcLyj3j5bwVG+R3/JeY+lNCpxvXAWu8xOkjbPxIfQWqzvXwD1W6rzVabHSlttm4DLyIiIiISZupeIiIiIiISZiq6RURERETCTEW3iIiIiEiYqegWEREREQkzFd0iIiIiImGmoltEREREJMxUdIuIiIiIhNn/AZgklY9og79ZAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["learn.recorder.plot_sched()"]},{"cell_type":"markdown","metadata":{"id":"msMSZupz2QGZ"},"source":["We're still not getting great results, so let's see what else we can do."]},{"cell_type":"markdown","metadata":{"id":"oftyyiRC2QGa"},"source":["## RMSProp"]},{"cell_type":"markdown","metadata":{"id":"ti5_2tt92QGa"},"source":["RMSProp is another variant of SGD introduced by Geoffrey Hinton in Lecture 6e of his Coursera class [\"Neural Networks for Machine Learning\"](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf). The main difference from SGD is that it uses an adaptive learning rate: instead of using the same learning rate for every parameter, each parameter gets its own specific learning rate controlled by a global learning rate. That way we can speed up training by giving a higher learning rate to the weights that need to change a lot while the ones that are good enough get a lower learning rate.\n","\n","How do we decide which parameters should have a high learning rate and which should not? We can look at the gradients to get an idea. If a parameter's gradients have been close to zero for a while, that parameter will need a higher learning rate because the loss is flat. On the other hand, if the gradients are all over the place, we should probably be careful and pick a low learning rate to avoid divergence. We can't just average the gradients to see if they're changing a lot, because the average of a large positive and a large negative number is close to zero. Instead, we can use the usual trick of either taking the absolute value or the squared values (and then taking the square root after the mean).\n","\n","Once again, to determine the general tendency behind the noise, we will use a moving average—specifically the moving average of the gradients squared. Then we will update the corresponding weight by using the current gradient (for the direction) divided by the square root of this moving average (that way if it's low, the effective learning rate will be higher, and if it's high, the effective learning rate will be lower):\n","\n","```python\n","w.square_avg = alpha * w.square_avg + (1-alpha) * (w.grad ** 2)\n","new_w = w - lr * w.grad / math.sqrt(w.square_avg + eps)\n","```\n","\n","The `eps` (*epsilon*) is added for numerical stability (usually set at 1e-8), and the default value for `alpha` is usually 0.99."]},{"cell_type":"markdown","metadata":{"id":"alDVWPli2QGb"},"source":["We can add this to `Optimizer` by doing much the same thing we did for `avg_grad`, but with an extra `**2`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lrih3-XO2QGb"},"outputs":[],"source":["def average_sqr_grad(p, sqr_mom, sqr_avg=None, **kwargs):\n"," if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)\n"," return {'sqr_avg': sqr_mom*sqr_avg + (1-sqr_mom)*p.grad.data**2}"]},{"cell_type":"markdown","metadata":{"id":"L4CEtt6F2QGb"},"source":["And we can define our step function and optimizer as before:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"iLLpn2xu2QGb"},"outputs":[],"source":["def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs):\n"," denom = sqr_avg.sqrt().add_(eps)\n"," p.data.addcdiv_(-lr, p.grad, denom)\n","\n","opt_func = partial(Optimizer, cbs=[average_sqr_grad,rms_prop_step],\n"," sqr_mom=0.99, eps=1e-7)"]},{"cell_type":"markdown","metadata":{"id":"Gby8-6FI2QGc"},"source":["Let's try it out:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CCVL7XtM2QGc","outputId":"83f95bf0-8065-4546-873c-a05e1eed3e9d"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_lossaccuracytime
02.7669121.8459000.40254800:11
12.1945861.5102690.50445900:11
21.8690991.4479390.54496800:11
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["learn = get_learner(opt_func=opt_func)\n","learn.fit_one_cycle(3, 0.003)"]},{"cell_type":"markdown","metadata":{"id":"jUb6G7lm2QGc"},"source":["Much better! Now we just have to bring these ideas together, and we have Adam, fastai's default optimizer."]},{"cell_type":"markdown","metadata":{"id":"vomuHw1l2QGd"},"source":["## Adam"]},{"cell_type":"markdown","metadata":{"id":"a_SDb5PK2QGd"},"source":["Adam mixes the ideas of SGD with momentum and RMSProp together: it uses the moving average of the gradients as a direction and divides by the square root of the moving average of the gradients squared to give an adaptive learning rate to each parameter.\n","\n","There is one other difference in how Adam calculates moving averages. It takes the *unbiased* moving average, which is:\n","\n","``` python\n","w.avg = beta * w.avg + (1-beta) * w.grad\n","unbias_avg = w.avg / (1 - (beta**(i+1)))\n","```\n","\n","if we are the `i`-th iteration (starting at 0 like Python does). This divisor of `1 - (beta**(i+1))` makes sure the unbiased average looks more like the gradients at the beginning (since `beta < 1`, the denominator is very quickly close to 1).\n","\n","Putting everything together, our update step looks like:\n","``` python\n","w.avg = beta1 * w.avg + (1-beta1) * w.grad\n","unbias_avg = w.avg / (1 - (beta1**(i+1)))\n","w.sqr_avg = beta2 * w.sqr_avg + (1-beta2) * (w.grad ** 2)\n","new_w = w - lr * unbias_avg / sqrt(w.sqr_avg + eps)\n","```\n","\n","Like for RMSProp, `eps` is usually set to 1e-8, and the default for `(beta1,beta2)` suggested by the literature is `(0.9,0.999)`.\n","\n","In fastai, Adam is the default optimizer we use since it allows faster training, but we've found that `beta2=0.99` is better suited to the type of schedule we are using. `beta1` is the momentum parameter, which we specify with the argument `moms` in our call to `fit_one_cycle`. As for `eps`, fastai uses a default of 1e-5. `eps` is not just useful for numerical stability. A higher `eps` limits the maximum value of the adjusted learning rate. To take an extreme example, if `eps` is 1, then the adjusted learning will never be higher than the base learning rate.\n","\n","Rather than show all the code for this in the book, we'll let you look at the optimizer notebook in [fastai's GitHub repository](https://github.com/fastai/fastai) (browse the *nbs* folder and search for the notebook called optimizer). You'll see all the code we've shown so far, along with Adam and other optimizers, and lots of examples and tests.\n","\n","One thing that changes when we go from SGD to Adam is the way we apply weight decay, and it can have important consequences."]},{"cell_type":"markdown","metadata":{"id":"1K7dLHSV2QGd"},"source":["## Decoupled Weight Decay"]},{"cell_type":"markdown","metadata":{"id":"g8okk6tq2QGe"},"source":["Weight decay, which we discussed in <>, is equivalent to (in the case of vanilla SGD) updating the parameters\n","with:\n","\n","``` python\n","new_weight = weight - lr*weight.grad - lr*wd*weight\n","```\n","\n","The last part of this formula explains the name of this technique: each weight is decayed by a factor `lr * wd`.\n","\n","The other name of weight decay is L2 regularization, which consists in adding the sum of all squared weights to the loss (multiplied by the weight decay). As we have seen in <>, this can be directly expressed on the gradients with:\n","\n","``` python\n","weight.grad += wd*weight\n","```\n","\n","For SGD, those two formulas are equivalent. However, this equivalence only holds for standard SGD, because we have seen that with momentum, RMSProp or in Adam, the update has some additional formulas around the gradient.\n","\n","Most libraries use the second formulation, but it was pointed out in [\"Decoupled Weight Decay Regularization\"](https://arxiv.org/pdf/1711.05101.pdf) by Ilya Loshchilov and Frank Hutter, that the first one is the only correct approach with the Adam optimizer or momentum, which is why fastai makes it its default.\n","\n","Now you know everything that is hidden behind the line `learn.fit_one_cycle`!\n","\n","Optimizers are only one part of the training process, however when you need to change the training loop with fastai, you can't directly change the code inside the library. Instead, we have designed a system of callbacks to let you write any tweaks you like in independent blocks that you can then mix and match."]},{"cell_type":"markdown","metadata":{"id":"CZ07kEKX2QGg"},"source":["## Callbacks"]},{"cell_type":"markdown","metadata":{"id":"FeN9T8Ev2QGg"},"source":["Sometimes you need to change how things work a little bit. In fact, we have already seen examples of this: Mixup, fp16 training, resetting the model after each epoch for training RNNs, and so forth. How do we go about making these kinds of tweaks to the training process?\n","\n","We've seen the basic training loop, which, with the help of the `Optimizer` class, looks like this for a single epoch:\n","\n","```python\n","for xb,yb in dl:\n"," loss = loss_func(model(xb), yb)\n"," loss.backward()\n"," opt.step()\n"," opt.zero_grad()\n","```\n","\n","<> shows how to picture that."]},{"cell_type":"markdown","metadata":{"id":"JcnkQJnb2QGg"},"source":["\"Basic"]},{"cell_type":"markdown","metadata":{"id":"ZsyOWGUE2QGh"},"source":["The usual way for deep learning practitioners to customize the training loop is to make a copy of an existing training loop, and then insert the code necessary for their particular changes into it. This is how nearly all code that you find online will look. But it has some very serious problems.\n","\n","It's not very likely that some particular tweaked training loop is going to meet your particular needs. There are hundreds of changes that can be made to a training loop, which means there are billions and billions of possible permutations. You can't just copy one tweak from a training loop here, another from a training loop there, and expect them all to work together. Each will be based on different assumptions about the environment that it's working in, use different naming conventions, and expect the data to be in different formats.\n","\n","We need a way to allow users to insert their own code at any part of the training loop, but in a consistent and well-defined way. Computer scientists have already come up with an elegant solution: the callback. A callback is a piece of code that you write, and inject into another piece of code at some predefined point. In fact, callbacks have been used with deep learning training loops for years. The problem is that in previous libraries it was only possible to inject code in a small subset of places where this may have been required, and, more importantly, callbacks were not able to do all the things they needed to do.\n","\n","In order to be just as flexible as manually copying and pasting a training loop and directly inserting code into it, a callback must be able to read every possible piece of information available in the training loop, modify all of it as needed, and fully control when a batch, epoch, or even the whole training loop should be terminated. fastai is the first library to provide all of this functionality. It modifies the training loop so it looks like <>."]},{"cell_type":"markdown","metadata":{"id":"i4M5Kaui2QGh"},"source":["\"Training"]},{"cell_type":"markdown","metadata":{"id":"emBonfuE2QGh"},"source":["The real effectiveness of this approach has been borne out over the last couple of years—it has turned out that, by using the fastai callback system, we were able to implement every single new paper we tried and fulfilled every user request for modifying the training loop. The training loop itself has not required modifications. <> shows just a few of the callbacks that have been added."]},{"cell_type":"markdown","metadata":{"id":"FbVkoQh42QGh"},"source":["\"Some"]},{"cell_type":"markdown","metadata":{"id":"So4EUiM22QGi"},"source":["The reason that this is important is because it means that whatever idea we have in our head, we can implement it. We need never dig into the source code of PyTorch or fastai and hack together some one-off system to try out our ideas. And when we do implement our own callbacks to develop our own ideas, we know that they will work together with all of the other functionality provided by fastai–so we will get progress bars, mixed-precision training, hyperparameter annealing, and so forth.\n","\n","Another advantage is that it makes it easy to gradually remove or add functionality and perform ablation studies. You just need to adjust the list of callbacks you pass along to your fit function."]},{"cell_type":"markdown","metadata":{"id":"5I5_61Of2QGi"},"source":["As an example, here is the fastai source code that is run for each batch of the training loop:\n","\n","```python\n","try:\n"," self._split(b); self('before_batch')\n"," self.pred = self.model(*self.xb); self('after_pred')\n"," self.loss = self.loss_func(self.pred, *self.yb); self('after_loss')\n"," if not self.training: return\n"," self.loss.backward(); self('after_backward')\n"," self.opt.step(); self('after_step')\n"," self.opt.zero_grad()\n","except CancelBatchException: self('after_cancel_batch')\n","finally: self('after_batch')\n","```\n","\n","The calls of the form `self('...')` are where the callbacks are called. As you see, this happens after every step. The callback will receive the entire state of training, and can also modify it. For instance, the input data and target labels are in `self.xb` and `self.yb`, respectively; a callback can modify these to alter the data the training loop sees. It can also modify `self.loss`, or even the gradients.\n","\n","Let's see how this works in practice by writing a callback."]},{"cell_type":"markdown","metadata":{"id":"XVcW8PoE2QGi"},"source":["### Creating a Callback"]},{"cell_type":"markdown","metadata":{"id":"J7qCYBy42QGj"},"source":["When you want to write your own callback, the full list of available events is:\n","\n","- `before_fit`:: called before doing anything; ideal for initial setup.\n","- `before_epoch`:: called at the beginning of each epoch; useful for any behavior you need to reset at each epoch.\n","- `before_train`:: called at the beginning of the training part of an epoch.\n","- `before_batch`:: called at the beginning of each batch, just after drawing said batch. It can be used to do any setup necessary for the batch (like hyperparameter scheduling) or to change the input/target before it goes into the model (for instance, apply Mixup).\n","- `after_pred`:: called after computing the output of the model on the batch. It can be used to change that output before it's fed to the loss function.\n","- `after_loss`:: called after the loss has been computed, but before the backward pass. It can be used to add penalty to the loss (AR or TAR in RNN training, for instance).\n","- `after_backward`:: called after the backward pass, but before the update of the parameters. It can be used to make changes to the gradients before said update (via gradient clipping, for instance).\n","- `after_step`:: called after the step and before the gradients are zeroed.\n","- `after_batch`:: called at the end of a batch, to perform any required cleanup before the next one.\n","- `after_train`:: called at the end of the training phase of an epoch.\n","- `before_validate`:: called at the beginning of the validation phase of an epoch; useful for any setup needed specifically for validation.\n","- `after_validate`:: called at the end of the validation part of an epoch.\n","- `after_epoch`:: called at the end of an epoch, for any cleanup before the next one.\n","- `after_fit`:: called at the end of training, for final cleanup.\n","\n","The elements of this list are available as attributes of the special variable `event`, so you can just type `event.` and hit Tab in your notebook to see a list of all the options."]},{"cell_type":"markdown","metadata":{"id":"m_NjgN9P2QGj"},"source":["Let's take a look at an example. Do you recall how in <> we needed to ensure that our special `reset` method was called at the start of training and validation for each epoch? We used the `ModelResetter` callback provided by fastai to do this for us. But how does it work? Here's the full source code for that class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ualJTRhA2QGj"},"outputs":[],"source":["class ModelResetter(Callback):\n"," def before_train(self): self.model.reset()\n"," def before_validate(self): self.model.reset()"]},{"cell_type":"markdown","metadata":{"id":"cKe82LEV2QGj"},"source":["Yes, that's actually it! It just does what we said in the preceding paragraph: after completing training or validation for an epoch, call a method named `reset`.\n","\n","Callbacks are often \"short and sweet\" like this one. In fact, let's look at one more. Here's the fastai source for the callback that adds RNN regularization (AR and TAR):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ms50Uk7s2QGk"},"outputs":[],"source":["class RNNRegularizer(Callback):\n"," def __init__(self, alpha=0., beta=0.): self.alpha,self.beta = alpha,beta\n","\n"," def after_pred(self):\n"," self.raw_out,self.out = self.pred[1],self.pred[2]\n"," self.learn.pred = self.pred[0]\n","\n"," def after_loss(self):\n"," if not self.training: return\n"," if self.alpha != 0.:\n"," self.learn.loss += self.alpha * self.out[-1].float().pow(2).mean()\n"," if self.beta != 0.:\n"," h = self.raw_out[-1]\n"," if len(h)>1:\n"," self.learn.loss += self.beta * (h[:,1:] - h[:,:-1]\n"," ).float().pow(2).mean()"]},{"cell_type":"markdown","metadata":{"id":"HjJc2F_z2QGk"},"source":["> note: Code It Yourself: Go back and reread \"Activation Regularization and Temporal Activation Regularization\" in <> then take another look at the code here. Make sure you understand what it's doing, and why."]},{"cell_type":"markdown","metadata":{"id":"Eyj5J2cw2QGk"},"source":["In both of these examples, notice how we can access attributes of the training loop by directly checking `self.model` or `self.pred`. That's because a `Callback` will always try to get an attribute it doesn't have inside the `Learner` associated with it. These are shortcuts for `self.learn.model` or `self.learn.pred`. Note that they work for reading attributes, but not for writing them, which is why when `RNNRegularizer` changes the loss or the predictions you see `self.learn.loss = ` or `self.learn.pred = `."]},{"cell_type":"markdown","metadata":{"id":"_-XOQJlL2QGl"},"source":["When writing a callback, the following attributes of `Learner` are available:\n","\n","- `model`:: The model used for training/validation.\n","- `data`:: The underlying `DataLoaders`.\n","- `loss_func`:: The loss function used.\n","- `opt`:: The optimizer used to update the model parameters.\n","- `opt_func`:: The function used to create the optimizer.\n","- `cbs`:: The list containing all the `Callback`s.\n","- `dl`:: The current `DataLoader` used for iteration.\n","- `x`/`xb`:: The last input drawn from `self.dl` (potentially modified by callbacks). `xb` is always a tuple (potentially with one element) and `x` is detuplified. You can only assign to `xb`.\n","- `y`/`yb`:: The last target drawn from `self.dl` (potentially modified by callbacks). `yb` is always a tuple (potentially with one element) and `y` is detuplified. You can only assign to `yb`.\n","- `pred`:: The last predictions from `self.model` (potentially modified by callbacks).\n","- `loss`:: The last computed loss (potentially modified by callbacks).\n","- `n_epoch`:: The number of epochs in this training.\n","- `n_iter`:: The number of iterations in the current `self.dl`.\n","- `epoch`:: The current epoch index (from 0 to `n_epoch-1`).\n","- `iter`:: The current iteration index in `self.dl` (from 0 to `n_iter-1`).\n","\n","The following attributes are added by `TrainEvalCallback` and should be available unless you went out of your way to remove that callback:\n","\n","- `train_iter`:: The number of training iterations done since the beginning of this training\n","- `pct_train`:: The percentage of training iterations completed (from 0. to 1.)\n","- `training`:: A flag to indicate whether or not we're in training mode\n","\n","The following attribute is added by `Recorder` and should be available unless you went out of your way to remove that callback:\n","\n","- `smooth_loss`:: An exponentially averaged version of the training loss"]},{"cell_type":"markdown","metadata":{"id":"0K_I4PgO2QGl"},"source":["Callbacks can also interrupt any part of the training loop by using a system of exceptions."]},{"cell_type":"markdown","metadata":{"id":"alg9oYA02QGl"},"source":["### Callback Ordering and Exceptions"]},{"cell_type":"markdown","metadata":{"id":"vrh2q_s-2QGm"},"source":["Sometimes, callbacks need to be able to tell fastai to skip over a batch, or an epoch, or stop training altogether. For instance, consider `TerminateOnNaNCallback`. This handy callback will automatically stop training any time the loss becomes infinite or `NaN` (*not a number*). Here's the fastai source for this callback:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HknmLvQj2QGm"},"outputs":[],"source":["class TerminateOnNaNCallback(Callback):\n"," run_before=Recorder\n"," def after_batch(self):\n"," if torch.isinf(self.loss) or torch.isnan(self.loss):\n"," raise CancelFitException"]},{"cell_type":"markdown","metadata":{"id":"utfG5uJd2QGm"},"source":["The line `raise CancelFitException` tells the training loop to interrupt training at this point. The training loop catches this exception and does not run any further training or validation. The callback control flow exceptions available are:\n","\n","- `CancelBatchException`:: Skip the rest of this batch and go to `after_batch`.\n","- `CancelTrainException`:: Skip the rest of the training part of the epoch and go to `after_train`.\n","- `CancelValidException`:: Skip the rest of the validation part of the epoch and go to `after_validate`.\n","- `CancelEpochException`:: Skip the rest of this epoch and go to `after_epoch`.\n","- `CancelFitException`:: Interrupt training and go to `after_fit`."]},{"cell_type":"markdown","metadata":{"id":"sCfDPpE22QGm"},"source":["You can detect if one of those exceptions has occurred and add code that executes right after with the following events:\n","\n","- `after_cancel_batch`:: Reached immediately after a `CancelBatchException` before proceeding to `after_batch`\n","- `after_cancel_train`:: Reached immediately after a `CancelTrainException` before proceeding to `after_train`\n","- `after_cancel_valid`:: Reached immediately after a `CancelValidException` before proceeding to `after_valid`\n","- `after_cancel_epoch`:: Reached immediately after a `CancelEpochException` before proceeding to `after_epoch`\n","- `after_cancel_fit`:: Reached immediately after a `CancelFitException` before proceeding to `after_fit`"]},{"cell_type":"markdown","metadata":{"id":"lRdMY4O82QGn"},"source":["Sometimes, callbacks need to be called in a particular order. For example, in the case of `TerminateOnNaNCallback`, it's important that `Recorder` runs its `after_batch` after this callback, to avoid registering an `NaN` loss. You can specify `run_before` (this callback must run before ...) or `run_after` (this callback must run after ...) in your callback to ensure the ordering that you need."]},{"cell_type":"markdown","metadata":{"id":"N2KdP-bj2QGn"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"TmV0kAUE2QGn"},"source":["In this chapter we took a close look at the training loop, exploring different variants of SGD and why they can be more powerful. At the time of writing, developing new optimizers is a very active area of research, so by the time you read this chapter there may be an addendum on the book's website that presents new variants. Be sure to check out how our general optimizer framework can help you implement new optimizers very quickly.\n","\n","We also examined the powerful callback system that allows you to customize every bit of the training loop by enabling you to inspect and modify any parameter you like between each step."]},{"cell_type":"markdown","metadata":{"id":"jEBQe2mL2QGn"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"bk1_ULn92QGo"},"source":["1. What is the equation for a step of SGD, in math or code (as you prefer)?\n","1. What do we pass to `vision_learner` to use a non-default optimizer?\n","1. What are optimizer callbacks?\n","1. What does `zero_grad` do in an optimizer?\n","1. What does `step` do in an optimizer? How is it implemented in the general optimizer?\n","1. Rewrite `sgd_cb` to use the `+=` operator, instead of `add_`.\n","1. What is \"momentum\"? Write out the equation.\n","1. What's a physical analogy for momentum? How does it apply in our model training settings?\n","1. What does a bigger value for momentum do to the gradients?\n","1. What are the default values of momentum for 1cycle training?\n","1. What is RMSProp? Write out the equation.\n","1. What do the squared values of the gradients indicate?\n","1. How does Adam differ from momentum and RMSProp?\n","1. Write out the equation for Adam.\n","1. Calculate the values of `unbias_avg` and `w.avg` for a few batches of dummy values.\n","1. What's the impact of having a high `eps` in Adam?\n","1. Read through the optimizer notebook in fastai's repo, and execute it.\n","1. In what situations do dynamic learning rate methods like Adam change the behavior of weight decay?\n","1. What are the four steps of a training loop?\n","1. Why is using callbacks better than writing a new training loop for each tweak you want to add?\n","1. What aspects of the design of fastai's callback system make it as flexible as copying and pasting bits of code?\n","1. How can you get the list of events available to you when writing a callback?\n","1. Write the `ModelResetter` callback (without peeking).\n","1. How can you access the necessary attributes of the training loop inside a callback? When can you use or not use the shortcuts that go with them?\n","1. How can a callback influence the control flow of the training loop?\n","1. Write the `TerminateOnNaN` callback (without peeking, if possible).\n","1. How do you make sure your callback runs after or before another callback?"]},{"cell_type":"markdown","metadata":{"id":"vnYN8ebD2QGo"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"0T5ObDWr2QGo"},"source":["1. Look up the \"Rectified Adam\" paper, implement it using the general optimizer framework, and try it out. Search for other recent optimizers that work well in practice, and pick one to implement.\n","1. Look at the mixed-precision callback with the documentation. Try to understand what each event and line of code does.\n","1. Implement your own version of the learning rate finder from scratch. Compare it with fastai's version.\n","1. Look at the source code of the callbacks that ship with fastai. See if you can find one that's similar to what you're looking to do, to get some inspiration."]},{"cell_type":"markdown","metadata":{"id":"5YCag_FA2QGp"},"source":["## Foundations of Deep Learning: Wrap up"]},{"cell_type":"markdown","metadata":{"id":"AogCM2iv2QGp"},"source":["Congratulations, you have made it to the end of the \"foundations of deep learning\" section of the book! You now understand how all of fastai's applications and most important architectures are built, and the recommended ways to train them—and you have all the information you need to build these from scratch. While you probably won't need to create your own training loop, or batchnorm layer, for instance, knowing what is going on behind the scenes is very helpful for debugging, profiling, and deploying your solutions.\n","\n","Since you understand the foundations of fastai's applications now, be sure to spend some time digging through the source notebooks and running and experimenting with parts of them. This will give you a better idea of how everything in fastai is developed.\n","\n","In the next section, we will be looking even further under the covers: we'll explore how the actual forward and backward passes of a neural network are done, and we will see what tools are at our disposal to get better performance. We will then continue with a project that brings together all the material in the book, which we will use to build a tool for interpreting convolutional neural networks. Last but not least, we'll finish by building fastai's `Learner` class from scratch."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uXsKypp52QGp"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/16_accel_sgd.ipynb","timestamp":1712447966649}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/17_foundations.ipynb b/notebooks/oleg/Education/fastai/17_foundations.ipynb new file mode 100644 index 0000000..62a8417 --- /dev/null +++ b/notebooks/oleg/Education/fastai/17_foundations.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"i6jqI8wj2Q3p"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"raw","metadata":{"id":"jedVYp212Q3u"},"source":["[[chapter_foundations]]"]},{"cell_type":"markdown","metadata":{"id":"LhcWP19p2Q3v"},"source":["# A Neural Net from the Foundations"]},{"cell_type":"markdown","metadata":{"id":"OPqCfsaR2Q3x"},"source":["This chapter begins a journey where we will dig deep into the internals of the models we used in the previous chapters. We will be covering many of the same things we've seen before, but this time around we'll be looking much more closely at the implementation details, and much less closely at the practical issues of how and why things are as they are.\n","\n","We will build everything from scratch, only using basic indexing into a tensor. We'll write a neural net from the ground up, then implement backpropagation manually, so we know exactly what's happening in PyTorch when we call `loss.backward`. We'll also see how to extend PyTorch with custom *autograd* functions that allow us to specify our own forward and backward computations."]},{"cell_type":"markdown","metadata":{"id":"ftiQDuGt2Q3y"},"source":["## Building a Neural Net Layer from Scratch"]},{"cell_type":"markdown","metadata":{"id":"LHHwcdqQ2Q3y"},"source":["Let's start by refreshing our understanding of how matrix multiplication is used in a basic neural network. Since we're building everything up from scratch, we'll use nothing but plain Python initially (except for indexing into PyTorch tensors), and then replace the plain Python with PyTorch functionality once we've seen how to create it."]},{"cell_type":"markdown","metadata":{"id":"auzq8Ljg2Q3z"},"source":["### Modeling a Neuron"]},{"cell_type":"markdown","metadata":{"id":"B1GOMIIB2Q30"},"source":["A neuron receives a given number of inputs and has an internal weight for each of them. It sums those weighted inputs to produce an output and adds an inner bias. In math, this can be written as:\n","\n","$$ out = \\sum_{i=1}^{n} x_{i} w_{i} + b$$\n","\n","if we name our inputs $(x_{1},\\dots,x_{n})$, our weights $(w_{1},\\dots,w_{n})$, and our bias $b$. In code this translates into:\n","\n","```python\n","output = sum([x*w for x,w in zip(inputs,weights)]) + bias\n","```\n","\n","This output is then fed into a nonlinear function called an *activation function* before being sent to another neuron. In deep learning the most common of these is the *rectified Linear unit*, or *ReLU*, which, as we've seen, is a fancy way of saying:\n","```python\n","def relu(x): return x if x >= 0 else 0\n","```"]},{"cell_type":"markdown","metadata":{"id":"bVEHk_ME2Q31"},"source":["A deep learning model is then built by stacking a lot of those neurons in successive layers. We create a first layer with a certain number of neurons (known as *hidden size*) and link all the inputs to each of those neurons. Such a layer is often called a *fully connected layer* or a *dense layer* (for densely connected), or a *linear layer*.\n","\n","It requires to compute, for each `input` in our batch and each neuron with a give `weight`, the dot product:\n","\n","```python\n","sum([x*w for x,w in zip(input,weight)])\n","```\n","\n","If you have done a little bit of linear algebra, you may remember that having a lot of those dot products happens when you do a *matrix multiplication*. More precisely, if our inputs are in a matrix `x` with a size of `batch_size` by `n_inputs`, and if we have grouped the weights of our neurons in a matrix `w` of size `n_neurons` by `n_inputs` (each neuron must have the same number of weights as it has inputs) and all the biases in a vector `b` of size `n_neurons`, then the output of this fully connected layer is:\n","\n","```python\n","y = x @ w.t() + b\n","```\n","\n","where `@` represents the matrix product and `w.t()` is the transpose matrix of `w`. The output `y` is then of size `batch_size` by `n_neurons`, and in position `(i,j)` we have (for the mathy folks out there):\n","\n","$$y_{i,j} = \\sum_{k=1}^{n} x_{i,k} w_{k,j} + b_{j}$$\n","\n","Or in code:\n","\n","```python\n","y[i,j] = sum([a * b for a,b in zip(x[i,:],w[j,:])]) + b[j]\n","```\n","\n","The transpose is necessary because in the mathematical definition of the matrix product `m @ n`, the coefficient `(i,j)` is:\n","\n","```python\n","sum([a * b for a,b in zip(m[i,:],n[:,j])])\n","```\n","\n","So the very basic operation we need is a matrix multiplication, as it's what is hidden in the core of a neural net."]},{"cell_type":"markdown","metadata":{"id":"GjcddLo02Q32"},"source":["### Matrix Multiplication from Scratch"]},{"cell_type":"markdown","metadata":{"id":"dNWlrzeD2Q32"},"source":["Let's write a function that computes the matrix product of two tensors, before we allow ourselves to use the PyTorch version of it. We will only use the indexing in PyTorch tensors:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vJTPDmSu2Q32"},"outputs":[],"source":["import torch\n","from torch import tensor"]},{"cell_type":"markdown","metadata":{"id":"6FaqlbDf2Q33"},"source":["We'll need three nested `for` loops: one for the row indices, one for the column indices, and one for the inner sum. `ac` and `ar` stand for number of columns of `a` and number of rows of `a`, respectively (the same convention is followed for `b`), and we make sure calculating the matrix product is possible by checking that `a` has as many columns as `b` has rows:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dimPRtGN2Q33"},"outputs":[],"source":["def matmul(a,b):\n"," ar,ac = a.shape # n_rows * n_cols\n"," br,bc = b.shape\n"," assert ac==br\n"," c = torch.zeros(ar, bc)\n"," for i in range(ar):\n"," for j in range(bc):\n"," for k in range(ac): c[i,j] += a[i,k] * b[k,j]\n"," return c"]},{"cell_type":"markdown","metadata":{"id":"alxiSCWL2Q34"},"source":["To test this out, we'll pretend (using random matrices) that we're working with a small batch of 5 MNIST images, flattened into 28×28 vectors, with linear model to turn them into 10 activations:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"9S5ysQi32Q34"},"outputs":[],"source":["m1 = torch.randn(5,28*28)\n","m2 = torch.randn(784,10)"]},{"cell_type":"markdown","metadata":{"id":"bJ17HykT2Q35"},"source":["Let's time our function, using the Jupyter \"magic\" command `%time`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"T5AyGv-T2Q35","outputId":"24388b6f-7a0e-4f98-8d57-cd8bfda47d5b"},"outputs":[{"name":"stdout","output_type":"stream","text":["CPU times: user 1.15 s, sys: 4.09 ms, total: 1.15 s\n","Wall time: 1.15 s\n"]}],"source":["%time t1=matmul(m1, m2)"]},{"cell_type":"markdown","metadata":{"id":"SnBTTuHD2Q36"},"source":["And see how that compares to PyTorch's built-in `@`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Oz6U95SA2Q36","outputId":"a122b8af-9443-40ec-aa45-59c75003db90"},"outputs":[{"name":"stdout","output_type":"stream","text":["14 µs ± 8.95 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)\n"]}],"source":["%timeit -n 20 t2=m1@m2"]},{"cell_type":"markdown","metadata":{"id":"mnJHlSCK2Q37"},"source":["As we can see, in Python three nested loops is a very bad idea! Python is a slow language, and this isn't going to be very efficient. We see here that PyTorch is around 100,000 times faster than Python—and that's before we even start using the GPU!\n","\n","Where does this difference come from? PyTorch didn't write its matrix multiplication in Python, but rather in C++ to make it fast. In general, whenever we do computations on tensors we will need to *vectorize* them so that we can take advantage of the speed of PyTorch, usually by using two techniques: elementwise arithmetic and broadcasting."]},{"cell_type":"markdown","metadata":{"id":"4LFq4hS_2Q37"},"source":["### Elementwise Arithmetic"]},{"cell_type":"markdown","metadata":{"id":"wlxFZcUS2Q37"},"source":["All the basic operators (`+`, `-`, `*`, `/`, `>`, `<`, `==`) can be applied elementwise. That means if we write `a+b` for two tensors `a` and `b` that have the same shape, we will get a tensor composed of the sums the elements of `a` and `b`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"V3UdolbS2Q38","outputId":"d4501599-2091-4274-93a9-c31575d0ec6c"},"outputs":[{"data":{"text/plain":["tensor([12., 14., 3.])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["a = tensor([10., 6, -4])\n","b = tensor([2., 8, 7])\n","a + b"]},{"cell_type":"markdown","metadata":{"id":"VdDzMbpx2Q38"},"source":["The Booleans operators will return an array of Booleans:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yc_87MUY2Q38","outputId":"0349038a-7599-4508-a37b-71712fcf0681"},"outputs":[{"data":{"text/plain":["tensor([False, True, True])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["a < b"]},{"cell_type":"markdown","metadata":{"id":"NOg789Vd2Q39"},"source":["If we want to know if every element of `a` is less than the corresponding element in `b`, or if two tensors are equal, we need to combine those elementwise operations with `torch.all`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3AED-9TT2Q39","outputId":"5edfc488-feaa-4066-b04d-f93819b0ccae"},"outputs":[{"data":{"text/plain":["(tensor(False), tensor(False))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(a < b).all(), (a==b).all()"]},{"cell_type":"markdown","metadata":{"id":"LB58wSXa2Q39"},"source":["Reduction operations like `all()`, `sum()` and `mean()` return tensors with only one element, called rank-0 tensors. If you want to convert this to a plain Python Boolean or number, you need to call `.item()`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KyEkhkYf2Q3-","outputId":"5cb2db0e-1229-4312-a5e1-5320c6be0d87"},"outputs":[{"data":{"text/plain":["9.666666984558105"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["(a + b).mean().item()"]},{"cell_type":"markdown","metadata":{"id":"K-lKDqU32Q3-"},"source":["The elementwise operations work on tensors of any rank, as long as they have the same shape:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"csdjxjDF2Q3-","outputId":"cb772e35-ebb4-48e3-de39-f9f2949aa965"},"outputs":[{"data":{"text/plain":["tensor([[ 1., 4., 9.],\n"," [16., 25., 36.],\n"," [49., 64., 81.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])\n","m*m"]},{"cell_type":"markdown","metadata":{"id":"5QSw-65t2Q3_"},"source":["However you can't perform elementwise operations on tensors that don't have the same shape (unless they are broadcastable, as discussed in the next section):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kjKEa1hP2Q3_","outputId":"05b24432-e64f-4ba5-c8e4-3996afd289db"},"outputs":[{"ename":"RuntimeError","evalue":"The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 0","output_type":"error","traceback":["\u001b[0;31m------------------------------------------------------------------------\u001b[0m","\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1.\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mm\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;31mRuntimeError\u001b[0m: The size of tensor a (3) must match the size of tensor b (2) at non-singleton dimension 0"]}],"source":["n = tensor([[1., 2, 3], [4,5,6]])\n","m*n"]},{"cell_type":"markdown","metadata":{"id":"q8GTtKSa2Q3_"},"source":["With elementwise arithmetic, we can remove one of our three nested loops: we can multiply the tensors that correspond to the `i`-th row of `a` and the `j`-th column of `b` before summing all the elements, which will speed things up because the inner loop will now be executed by PyTorch at C speed.\n","\n","To access one column or row, we can simply write `a[i,:]` or `b[:,j]`. The `:` means take everything in that dimension. We could restrict this and take only a slice of that particular dimension by passing a range, like `1:5`, instead of just `:`. In that case, we would take the elements in columns or rows 1 to 4 (the second number is noninclusive).\n","\n","One simplification is that we can always omit a trailing colon, so `a[i,:]` can be abbreviated to `a[i]`. With all of that in mind, we can write a new version of our matrix multiplication:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kFLt0M5w2Q4A"},"outputs":[],"source":["def matmul(a,b):\n"," ar,ac = a.shape\n"," br,bc = b.shape\n"," assert ac==br\n"," c = torch.zeros(ar, bc)\n"," for i in range(ar):\n"," for j in range(bc): c[i,j] = (a[i] * b[:,j]).sum()\n"," return c"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1onyyHr62Q4A","outputId":"f1fee7ba-3248-449b-d032-9af27d375566"},"outputs":[{"name":"stdout","output_type":"stream","text":["1.7 ms ± 88.1 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)\n"]}],"source":["%timeit -n 20 t3 = matmul(m1,m2)"]},{"cell_type":"markdown","metadata":{"id":"UbH8Hq-l2Q4A"},"source":["We're already ~700 times faster, just by removing that inner `for` loop! And that's just the beginning—with broadcasting we can remove another loop and get an even more important speed up."]},{"cell_type":"markdown","metadata":{"id":"1IOR8I2x2Q4B"},"source":["### Broadcasting"]},{"cell_type":"markdown","metadata":{"id":"LiT-gCWE2Q4H"},"source":["As we discussed in <>, broadcasting is a term introduced by the [NumPy library](https://docs.scipy.org/doc/) that describes how tensors of different ranks are treated during arithmetic operations. For instance, it's obvious there is no way to add a 3×3 matrix with a 4×5 matrix, but what if we want to add one scalar (which can be represented as a 1×1 tensor) with a matrix? Or a vector of size 3 with a 3×4 matrix? In both cases, we can find a way to make sense of this operation.\n","\n","Broadcasting gives specific rules to codify when shapes are compatible when trying to do an elementwise operation, and how the tensor of the smaller shape is expanded to match the tensor of the bigger shape. It's essential to master those rules if you want to be able to write code that executes quickly. In this section, we'll expand our previous treatment of broadcasting to understand these rules."]},{"cell_type":"markdown","metadata":{"id":"aXc6R-ma2Q4H"},"source":["#### Broadcasting with a scalar"]},{"cell_type":"markdown","metadata":{"id":"SPk-IOkL2Q4I"},"source":["Broadcasting with a scalar is the easiest type of broadcasting. When we have a tensor `a` and a scalar, we just imagine a tensor of the same shape as `a` filled with that scalar and perform the operation:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ukKCuLds2Q4I","outputId":"7b6f396e-3cc3-452e-b9ca-4a438ca03b6e"},"outputs":[{"data":{"text/plain":["tensor([ True, True, False])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["a = tensor([10., 6, -4])\n","a > 0"]},{"cell_type":"markdown","metadata":{"id":"1Z7bYXnk2Q4J"},"source":["How are we able to do this comparison? `0` is being *broadcast* to have the same dimensions as `a`. Note that this is done without creating a tensor full of zeros in memory (that would be very inefficient).\n","\n","This is very useful if you want to normalize your dataset by subtracting the mean (a scalar) from the entire data set (a matrix) and dividing by the standard deviation (another scalar):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nYWuBK_Y2Q4J","outputId":"36c85927-abf9-47ea-d509-e0c0a6b0d2db"},"outputs":[{"data":{"text/plain":["tensor([[-1.4652, -1.0989, -0.7326],\n"," [-0.3663, 0.0000, 0.3663],\n"," [ 0.7326, 1.0989, 1.4652]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])\n","(m - 5) / 2.73"]},{"cell_type":"markdown","metadata":{"id":"_fTWSQE22Q4K"},"source":["What if have different means for each row of the matrix? in that case you will need to broadcast a vector to a matrix."]},{"cell_type":"markdown","metadata":{"id":"-dWu4LxY2Q4K"},"source":["#### Broadcasting a vector to a matrix"]},{"cell_type":"markdown","metadata":{"id":"ttjaZ_rK2Q4L"},"source":["We can broadcast a vector to a matrix as follows:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ONcbwKwK2Q4L","outputId":"f80c67ec-481f-4e56-9dbf-c2854b3a52d3"},"outputs":[{"data":{"text/plain":["(torch.Size([3, 3]), torch.Size([3]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c = tensor([10.,20,30])\n","m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])\n","m.shape,c.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"8ZxPt6og2Q4L","outputId":"8a49a0a9-6369-4c24-938e-e2a1a96c700a"},"outputs":[{"data":{"text/plain":["tensor([[11., 22., 33.],\n"," [14., 25., 36.],\n"," [17., 28., 39.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m + c"]},{"cell_type":"markdown","metadata":{"id":"uDd0QCz02Q4M"},"source":["Here the elements of `c` are expanded to make three rows that match, making the operation possible. Again, PyTorch doesn't actually create three copies of `c` in memory. This is done by the `expand_as` method behind the scenes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"sff0VH662Q4M","outputId":"3251b6cf-f805-4bb5-fb77-813a86766de0"},"outputs":[{"data":{"text/plain":["tensor([[10., 20., 30.],\n"," [10., 20., 30.],\n"," [10., 20., 30.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c.expand_as(m)"]},{"cell_type":"markdown","metadata":{"id":"E7x0Dlp42Q4M"},"source":["If we look at the corresponding tensor, we can ask for its `storage` property (which shows the actual contents of the memory used for the tensor) to check there is no useless data stored:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ikdLd5vt2Q4N","outputId":"7f4f6d2f-5917-4483-d839-3fde347ac50d"},"outputs":[{"data":{"text/plain":[" 10.0\n"," 20.0\n"," 30.0\n","[torch.FloatStorage of size 3]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = c.expand_as(m)\n","t.storage()"]},{"cell_type":"markdown","metadata":{"id":"IYBhoK4o2Q4N"},"source":["Even though the tensor officially has nine elements, only three scalars are stored in memory. This is possible thanks to the clever trick of giving that dimension a *stride* of 0 (which means that when PyTorch looks for the next row by adding the stride, it doesn't move):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"DvtbV7JF2Q4O","outputId":"d08da03a-1186-4104-e8a5-0d58e1c0985f"},"outputs":[{"data":{"text/plain":["((0, 1), torch.Size([3, 3]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t.stride(), t.shape"]},{"cell_type":"markdown","metadata":{"id":"Ap45W5mI2Q4O"},"source":["Since `m` is of size 3×3, there are two ways to do broadcasting. The fact it was done on the last dimension is a convention that comes from the rules of broadcasting and has nothing to do with the way we ordered our tensors. If instead we do this, we get the same result:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QkzufJ2R2Q4P","outputId":"a6789977-5b54-4555-f7da-aa30f1265ee3"},"outputs":[{"data":{"text/plain":["tensor([[11., 22., 33.],\n"," [14., 25., 36.],\n"," [17., 28., 39.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c + m"]},{"cell_type":"markdown","metadata":{"id":"qVVH6Fa12Q4P"},"source":["In fact, it's only possible to broadcast a vector of size `n` with a matrix of size `m` by `n`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"S9ALxrYj2Q4P","outputId":"7d82a653-654b-467f-c2dd-c87b0887eaf0"},"outputs":[{"data":{"text/plain":["tensor([[11., 22., 33.],\n"," [14., 25., 36.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c = tensor([10.,20,30])\n","m = tensor([[1., 2, 3], [4,5,6]])\n","c+m"]},{"cell_type":"markdown","metadata":{"id":"rW1FSLrP2Q4Q"},"source":["This won't work:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"fne29z5M2Q4Q","outputId":"3368de4d-e2f7-4143-b5f6-5c2a600e48a6"},"outputs":[{"ename":"RuntimeError","evalue":"The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1","output_type":"error","traceback":["\u001b[0;31m------------------------------------------------------------------------\u001b[0m","\u001b[0;31mRuntimeError\u001b[0m Traceback (most recent call last)","\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m10.\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m20\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mm\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtensor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1.\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m5\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mc\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;31mRuntimeError\u001b[0m: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 1"]}],"source":["c = tensor([10.,20])\n","m = tensor([[1., 2, 3], [4,5,6]])\n","c+m"]},{"cell_type":"markdown","metadata":{"id":"DPttZX6n2Q4R"},"source":["If we want to broadcast in the other dimension, we have to change the shape of our vector to make it a 3×1 matrix. This is done with the `unsqueeze` method in PyTorch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PPRL_4BT2Q4R","outputId":"535bed2c-4941-484f-e1c5-e2857a5d3234"},"outputs":[{"data":{"text/plain":["(torch.Size([3, 3]), torch.Size([3, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c = tensor([10.,20,30])\n","m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])\n","c = c.unsqueeze(1)\n","m.shape,c.shape"]},{"cell_type":"markdown","metadata":{"id":"taEfJQ-c2Q4S"},"source":["This time, `c` is expanded on the column side:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oHlAhJlI2Q4S","outputId":"6a5a516f-ca8f-4076-b08f-27c589b37ba2"},"outputs":[{"data":{"text/plain":["tensor([[11., 12., 13.],\n"," [24., 25., 26.],\n"," [37., 38., 39.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c+m"]},{"cell_type":"markdown","metadata":{"id":"SHhYhpG92Q4T"},"source":["Like before, only three scalars are stored in memory:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7GP2D2bc2Q4T","outputId":"a3f15865-f935-4c0d-9929-c40d00eae7cd"},"outputs":[{"data":{"text/plain":[" 10.0\n"," 20.0\n"," 30.0\n","[torch.FloatStorage of size 3]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = c.expand_as(m)\n","t.storage()"]},{"cell_type":"markdown","metadata":{"id":"4U7ugpGm2Q4T"},"source":["And the expanded tensor has the right shape because the column dimension has a stride of 0:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nwoThtr82Q4U","outputId":"36e7844d-4bf0-46a6-861f-dcdd905b4be9"},"outputs":[{"data":{"text/plain":["((1, 0), torch.Size([3, 3]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t.stride(), t.shape"]},{"cell_type":"markdown","metadata":{"id":"Rj51hwad2Q4U"},"source":["With broadcasting, by default if we need to add dimensions, they are added at the beginning. When we were broadcasting before, Pytorch was doing `c.unsqueeze(0)` behind the scenes:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e2xu1nZ32Q4V","outputId":"c089c563-ff67-4519-c311-b46cd6ac98e6"},"outputs":[{"data":{"text/plain":["(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c = tensor([10.,20,30])\n","c.shape, c.unsqueeze(0).shape,c.unsqueeze(1).shape"]},{"cell_type":"markdown","metadata":{"id":"FGa1zgJY2Q4V"},"source":["The `unsqueeze` command can be replaced by `None` indexing:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"76OurDzr2Q4V","outputId":"703c0c36-3d83-44b8-a885-b28b36d44915"},"outputs":[{"data":{"text/plain":["(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c.shape, c[None,:].shape,c[:,None].shape"]},{"cell_type":"markdown","metadata":{"id":"Ngowt7Ik2Q4W"},"source":["You can always omit trailing colons, and `...` means all preceding dimensions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"O4wkR45K2Q4W","outputId":"5e5f2a00-36a6-43c9-9841-70ca7f423b33"},"outputs":[{"data":{"text/plain":["(torch.Size([1, 3]), torch.Size([3, 1]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["c[None].shape,c[...,None].shape"]},{"cell_type":"markdown","metadata":{"id":"QGEXTNc92Q4X"},"source":["With this, we can remove another `for` loop in our matrix multiplication function. Now, instead of multiplying `a[i]` with `b[:,j]`, we can multiply `a[i]` with the whole matrix `b` using broadcasting, then sum the results:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VikMC5gc2Q4X"},"outputs":[],"source":["def matmul(a,b):\n"," ar,ac = a.shape\n"," br,bc = b.shape\n"," assert ac==br\n"," c = torch.zeros(ar, bc)\n"," for i in range(ar):\n","# c[i,j] = (a[i,:] * b[:,j]).sum() # previous\n"," c[i] = (a[i ].unsqueeze(-1) * b).sum(dim=0)\n"," return c"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"PSgJY_3g2Q4X","outputId":"d06e40eb-f2d6-4d9f-8d79-d51fefbf8a60"},"outputs":[{"name":"stdout","output_type":"stream","text":["357 µs ± 7.2 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)\n"]}],"source":["%timeit -n 20 t4 = matmul(m1,m2)"]},{"cell_type":"markdown","metadata":{"id":"GFjqk9qy2Q4a"},"source":["We're now 3,700 times faster than our first implementation! Before we move on, let's discuss the rules of broadcasting in a little more detail."]},{"cell_type":"markdown","metadata":{"id":"KpKNj3L62Q4b"},"source":["#### Broadcasting rules"]},{"cell_type":"markdown","metadata":{"id":"09olfVXr2Q4b"},"source":["When operating on two tensors, PyTorch compares their shapes elementwise. It starts with the *trailing dimensions* and works its way backward, adding 1 when it meets empty dimensions. Two dimensions are *compatible* when one of the following is true:\n","\n","- They are equal.\n","- One of them is 1, in which case that dimension is broadcast to make it the same as the other.\n","\n","Arrays do not need to have the same number of dimensions. For example, if you have a 256×256×3 array of RGB values, and you want to scale each color in the image by a different value, you can multiply the image by a one-dimensional array with three values. Lining up the sizes of the trailing axes of these arrays according to the broadcast rules, shows that they are compatible:\n","\n","```\n","Image (3d tensor): 256 x 256 x 3\n","Scale (1d tensor): (1) (1) 3\n","Result (3d tensor): 256 x 256 x 3\n","```\n"," \n","However, a 2D tensor of size 256×256 isn't compatible with our image:\n","\n","```\n","Image (3d tensor): 256 x 256 x 3\n","Scale (2d tensor): (1) 256 x 256\n","Error\n","```\n","\n","In our earlier examples we had with a 3×3 matrix and a vector of size 3, broadcasting was done on the rows:\n","\n","```\n","Matrix (2d tensor): 3 x 3\n","Vector (1d tensor): (1) 3\n","Result (2d tensor): 3 x 3\n","```\n","\n","As an exercise, try to determine what dimensions to add (and where) when you need to normalize a batch of images of size `64 x 3 x 256 x 256` with vectors of three elements (one for the mean and one for the standard deviation)."]},{"cell_type":"markdown","metadata":{"id":"LPBULlFK2Q4c"},"source":["Another useful way of simplifying tensor manipulations is the use of Einstein summations convention."]},{"cell_type":"markdown","metadata":{"id":"720lZKKI2Q4c"},"source":["### Einstein Summation"]},{"cell_type":"markdown","metadata":{"id":"E9Oy94Z82Q4c"},"source":["Before using the PyTorch operation `@` or `torch.matmul`, there is one last way we can implement matrix multiplication: Einstein summation (`einsum`). This is a compact representation for combining products and sums in a general way. We write an equation like this:\n","\n","```\n","ik,kj -> ij\n","```\n","\n","The lefthand side represents the operands dimensions, separated by commas. Here we have two tensors that each have two dimensions (`i,k` and `k,j`). The righthand side represents the result dimensions, so here we have a tensor with two dimensions `i,j`.\n","\n","The rules of Einstein summation notation are as follows:\n","\n","1. Repeated indices on the left side are implicitly summed over if they are not on the right side.\n","2. Each index can appear at most twice on the left side.\n","3. The unrepeated indices on the left side must appear on the right side.\n","\n","So in our example, since `k` is repeated, we sum over that index. In the end the formula represents the matrix obtained when we put in `(i,j)` the sum of all the coefficients `(i,k)` in the first tensor multiplied by the coefficients `(k,j)` in the second tensor... which is the matrix product! Here is how we can code this in PyTorch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5QiyEaW92Q4d"},"outputs":[],"source":["def matmul(a,b): return torch.einsum('ik,kj->ij', a, b)"]},{"cell_type":"markdown","metadata":{"id":"dwB2odcP2Q4d"},"source":["Einstein summation is a very practical way of expressing operations involving indexing and sum of products. Note that you can have just one member on the lefthand side. For instance, this:\n","\n","```python\n","torch.einsum('ij->ji', a)\n","```\n","\n","returns the transpose of the matrix `a`. You can also have three or more members. This:\n","\n","```python\n","torch.einsum('bi,ij,bj->b', a, b, c)\n","```\n","\n","will return a vector of size `b` where the `k`-th coordinate is the sum of `a[k,i] b[i,j] c[k,j]`. This notation is particularly convenient when you have more dimensions because of batches. For example, if you have two batches of matrices and want to compute the matrix product per batch, you would could this:\n","\n","```python\n","torch.einsum('bik,bkj->bij', a, b)\n","```\n","\n","Let's go back to our new `matmul` implementation using `einsum` and look at its speed:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KaEcRPHd2Q4d","outputId":"29e8c231-fa94-46ae-ba34-549e997164ca"},"outputs":[{"name":"stdout","output_type":"stream","text":["68.7 µs ± 4.06 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)\n"]}],"source":["%timeit -n 20 t5 = matmul(m1,m2)"]},{"cell_type":"markdown","metadata":{"id":"RC6Y-Q0F2Q4e"},"source":["As you can see, not only is it practical, but it's *very* fast. `einsum` is often the fastest way to do custom operations in PyTorch, without diving into C++ and CUDA. (But it's generally not as fast as carefully optimized CUDA code, as you see from the results in \"Matrix Multiplication from Scratch\".)"]},{"cell_type":"markdown","metadata":{"id":"RhPMkB_k2Q4e"},"source":["Now that we know how to implement a matrix multiplication from scratch, we are ready to build our neural net—specifically its forward and backward passes—using just matrix multiplications."]},{"cell_type":"markdown","metadata":{"id":"0WC6N1KY2Q4e"},"source":["## The Forward and Backward Passes"]},{"cell_type":"markdown","metadata":{"id":"wHbeZFt62Q4e"},"source":["As we saw in <>, to train a model, we will need to compute all the gradients of a given loss with respect to its parameters, which is known as the *backward pass*. The *forward pass* is where we compute the output of the model on a given input, based on the matrix products. As we define our first neural net, we will also delve into the problem of properly initializing the weights, which is crucial for making training start properly."]},{"cell_type":"markdown","metadata":{"id":"0ah58Wh52Q4f"},"source":["### Defining and Initializing a Layer"]},{"cell_type":"markdown","metadata":{"id":"H8toYcTj2Q4f"},"source":["We will take the example of a two-layer neural net first. As we've seen, one layer can be expressed as `y = x @ w + b`, with `x` our inputs, `y` our outputs, `w` the weights of the layer (which is of size number of inputs by number of neurons if we don't transpose like before), and `b` is the bias vector:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"qv9Po9JO2Q4f"},"outputs":[],"source":["def lin(x, w, b): return x @ w + b"]},{"cell_type":"markdown","metadata":{"id":"A_IkKUhu2Q4f"},"source":["We can stack the second layer on top of the first, but since mathematically the composition of two linear operations is another linear operation, this only makes sense if we put something nonlinear in the middle, called an activation function. As mentioned at the beginning of the chapter, in deep learning applications the activation function most commonly used is a ReLU, which returns the maximum of `x` and `0`.\n","\n","We won't actually train our model in this chapter, so we'll use random tensors for our inputs and targets. Let's say our inputs are 200 vectors of size 100, which we group into one batch, and our targets are 200 random floats:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"viY558tG2Q4g"},"outputs":[],"source":["x = torch.randn(200, 100)\n","y = torch.randn(200)"]},{"cell_type":"markdown","metadata":{"id":"jbYRO-a32Q4g"},"source":["For our two-layer model we will need two weight matrices and two bias vectors. Let's say we have a hidden size of 50 and the output size is 1 (for one of our inputs, the corresponding output is one float in this toy example). We initialize the weights randomly and the bias at zero:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KgymuNLr2Q4g"},"outputs":[],"source":["w1 = torch.randn(100,50)\n","b1 = torch.zeros(50)\n","w2 = torch.randn(50,1)\n","b2 = torch.zeros(1)"]},{"cell_type":"markdown","metadata":{"id":"6NnFdgPh2Q4h"},"source":["Then the result of our first layer is simply:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"VZHaLCgF2Q4h","outputId":"d776068b-15e7-40ee-cf6e-b9d19cee0833"},"outputs":[{"data":{"text/plain":["torch.Size([200, 50])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l1 = lin(x, w1, b1)\n","l1.shape"]},{"cell_type":"markdown","metadata":{"id":"KI1L5Mh92Q4h"},"source":["Note that this formula works with our batch of inputs, and returns a batch of hidden state: `l1` is a matrix of size 200 (our batch size) by 50 (our hidden size).\n","\n","There is a problem with the way our model was initialized, however. To understand it, we need to look at the mean and standard deviation (std) of `l1`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QHpUGwrZ2Q4i","outputId":"3fb11a88-5c0f-4fd5-c3c7-b16683c67932"},"outputs":[{"data":{"text/plain":["(tensor(0.0019), tensor(10.1058))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l1.mean(), l1.std()"]},{"cell_type":"markdown","metadata":{"id":"4-W5ncfa2Q4i"},"source":["The mean is close to zero, which is understandable since both our input and weight matrices have means close to zero. But the standard deviation, which represents how far away our activations go from the mean, went from 1 to 10. This is a really big problem because that's with just one layer. Modern neural nets can have hundred of layers, so if each of them multiplies the scale of our activations by 10, by the end of the last layer we won't have numbers representable by a computer.\n","\n","Indeed, if we make just 50 multiplications between `x` and random matrices of size 100×100, we'll have:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Vw_lPLV12Q4i","outputId":"08e010ea-8b3e-4c93-feda-662b7b2b34b8"},"outputs":[{"data":{"text/plain":["tensor([[nan, nan, nan, nan, nan],\n"," [nan, nan, nan, nan, nan],\n"," [nan, nan, nan, nan, nan],\n"," [nan, nan, nan, nan, nan],\n"," [nan, nan, nan, nan, nan]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x = torch.randn(200, 100)\n","for i in range(50): x = x @ torch.randn(100,100)\n","x[0:5,0:5]"]},{"cell_type":"markdown","metadata":{"id":"oPEd0qVv2Q4j"},"source":["The result is `nan`s everywhere. So maybe the scale of our matrix was too big, and we need to have smaller weights? But if we use too small weights, we will have the opposite problem—the scale of our activations will go from 1 to 0.1, and after 50 layers we'll be left with zeros everywhere:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"p5371a4c2Q4j","outputId":"86377576-85c6-4197-966e-836362413099"},"outputs":[{"data":{"text/plain":["tensor([[0., 0., 0., 0., 0.],\n"," [0., 0., 0., 0., 0.],\n"," [0., 0., 0., 0., 0.],\n"," [0., 0., 0., 0., 0.],\n"," [0., 0., 0., 0., 0.]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x = torch.randn(200, 100)\n","for i in range(50): x = x @ (torch.randn(100,100) * 0.01)\n","x[0:5,0:5]"]},{"cell_type":"markdown","metadata":{"id":"HNYRYGK52Q4j"},"source":["So we have to scale our weight matrices exactly right so that the standard deviation of our activations stays at 1. We can compute the exact value to use mathematically, as illustrated by Xavier Glorot and Yoshua Bengio in [\"Understanding the Difficulty of Training Deep Feedforward Neural Networks\"](http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf). The right scale for a given layer is $1/\\sqrt{n_{in}}$, where $n_{in}$ represents the number of inputs.\n","\n","In our case, if we have 100 inputs, we should scale our weight matrices by 0.1:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wr_cM4fq2Q4j","outputId":"4792b332-47a2-4cf2-978e-3b2fdc420ca4"},"outputs":[{"data":{"text/plain":["tensor([[ 0.7554, 0.6167, -0.1757, -1.5662, 0.5644],\n"," [-0.1987, 0.6292, 0.3283, -1.1538, 0.5416],\n"," [ 0.6106, 0.2556, -0.0618, -0.9463, 0.4445],\n"," [ 0.4484, 0.7144, 0.1164, -0.8626, 0.4413],\n"," [ 0.3463, 0.5930, 0.3375, -0.9486, 0.5643]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x = torch.randn(200, 100)\n","for i in range(50): x = x @ (torch.randn(100,100) * 0.1)\n","x[0:5,0:5]"]},{"cell_type":"markdown","metadata":{"id":"4mBuuAY42Q4k"},"source":["Finally some numbers that are neither zeros nor `nan`s! Notice how stable the scale of our activations is, even after those 50 fake layers:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1SzG0nAa2Q4k","outputId":"c48065ca-b7ba-4189-c391-a9ddade59a15"},"outputs":[{"data":{"text/plain":["tensor(0.7042)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x.std()"]},{"cell_type":"markdown","metadata":{"id":"gCwtxsy32Q4k"},"source":["If you play a little bit with the value for scale you'll notice that even a slight variation from 0.1 will get you either to very small or very large numbers, so initializing the weights properly is extremely important.\n","\n","Let's go back to our neural net. Since we messed a bit with our inputs, we need to redefine them:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BUjd1FHC2Q4l"},"outputs":[],"source":["x = torch.randn(200, 100)\n","y = torch.randn(200)"]},{"cell_type":"markdown","metadata":{"id":"A0RJ9y2Y2Q4l"},"source":["And for our weights, we'll use the right scale, which is known as *Xavier initialization* (or *Glorot initialization*):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0X6KXmHw2Q4l"},"outputs":[],"source":["from math import sqrt\n","w1 = torch.randn(100,50) / sqrt(100)\n","b1 = torch.zeros(50)\n","w2 = torch.randn(50,1) / sqrt(50)\n","b2 = torch.zeros(1)"]},{"cell_type":"markdown","metadata":{"id":"LJqWTcoF2Q4l"},"source":["Now if we compute the result of the first layer, we can check that the mean and standard deviation are under control:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"IW-kQCkb2Q4m","outputId":"dbbe8f60-ebed-438b-8ccc-43988176e2c7"},"outputs":[{"data":{"text/plain":["(tensor(-0.0050), tensor(1.0000))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l1 = lin(x, w1, b1)\n","l1.mean(),l1.std()"]},{"cell_type":"markdown","metadata":{"id":"zf7t9kSN2Q4m"},"source":["Very good. Now we need to go through a ReLU, so let's define one. A ReLU removes the negatives and replaces them with zeros, which is another way of saying it clamps our tensor at zero:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1Yjh2IQk2Q4m"},"outputs":[],"source":["def relu(x): return x.clamp_min(0.)"]},{"cell_type":"markdown","metadata":{"id":"X2vrQZK22Q4m"},"source":["We pass our activations through this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"52VdBlBx2Q4n","outputId":"9d8dd196-962b-45d3-a34d-02c16e0ca700"},"outputs":[{"data":{"text/plain":["(tensor(0.3961), tensor(0.5783))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l2 = relu(l1)\n","l2.mean(),l2.std()"]},{"cell_type":"markdown","metadata":{"id":"AuODpf592Q4n"},"source":["And we're back to square one: the mean of our activations has gone to 0.4 (which is understandable since we removed the negatives) and the std went down to 0.58. So like before, after a few layers we will probably wind up with zeros:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"V3zY5-Ym2Q4n","outputId":"026ce705-2bf0-4ef4-ee15-fb92da7d9a80"},"outputs":[{"data":{"text/plain":["tensor([[0.0000e+00, 1.9689e-08, 4.2820e-08, 0.0000e+00, 0.0000e+00],\n"," [0.0000e+00, 1.6701e-08, 4.3501e-08, 0.0000e+00, 0.0000e+00],\n"," [0.0000e+00, 1.0976e-08, 3.0411e-08, 0.0000e+00, 0.0000e+00],\n"," [0.0000e+00, 1.8457e-08, 4.9469e-08, 0.0000e+00, 0.0000e+00],\n"," [0.0000e+00, 1.9949e-08, 4.1643e-08, 0.0000e+00, 0.0000e+00]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x = torch.randn(200, 100)\n","for i in range(50): x = relu(x @ (torch.randn(100,100) * 0.1))\n","x[0:5,0:5]"]},{"cell_type":"markdown","metadata":{"id":"JlTF5L3C2Q4n"},"source":["This means our initialization wasn't right. Why? At the time Glorot and Bengio wrote their article, the popular activation in a neural net was the hyperbolic tangent (tanh, which is the one they used), and that initialization doesn't account for our ReLU. Fortunately, someone else has done the math for us and computed the right scale for us to use. In [\"Delving Deep into Rectifiers: Surpassing Human-Level Performance\"](https://arxiv.org/abs/1502.01852) (which we've seen before—it's the article that introduced the ResNet), Kaiming He et al. show that we should use the following scale instead: $\\sqrt{2 / n_{in}}$, where $n_{in}$ is the number of inputs of our model. Let's see what this gives us:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"0FiN46ZV2Q4o","outputId":"dc9b1b7d-647a-442f-f9fc-fb0f39a223ab"},"outputs":[{"data":{"text/plain":["tensor([[0.2871, 0.0000, 0.0000, 0.0000, 0.0026],\n"," [0.4546, 0.0000, 0.0000, 0.0000, 0.0015],\n"," [0.6178, 0.0000, 0.0000, 0.0180, 0.0079],\n"," [0.3333, 0.0000, 0.0000, 0.0545, 0.0000],\n"," [0.1940, 0.0000, 0.0000, 0.0000, 0.0096]])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x = torch.randn(200, 100)\n","for i in range(50): x = relu(x @ (torch.randn(100,100) * sqrt(2/100)))\n","x[0:5,0:5]"]},{"cell_type":"markdown","metadata":{"id":"yXFrycLW2Q4o"},"source":["That's better: our numbers aren't all zeroed this time. So let's go back to the definition of our neural net and use this initialization (which is named *Kaiming initialization* or *He initialization*):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ul5LLt4y2Q4o"},"outputs":[],"source":["x = torch.randn(200, 100)\n","y = torch.randn(200)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"MpaCwTgZ2Q4p"},"outputs":[],"source":["w1 = torch.randn(100,50) * sqrt(2 / 100)\n","b1 = torch.zeros(50)\n","w2 = torch.randn(50,1) * sqrt(2 / 50)\n","b2 = torch.zeros(1)"]},{"cell_type":"markdown","metadata":{"id":"rv20bQbJ2Q4p"},"source":["Let's look at the scale of our activations after going through the first linear layer and ReLU:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lWnjPRaz2Q4p","outputId":"83d79539-aa23-4160-9d3e-5d7978fbd317"},"outputs":[{"data":{"text/plain":["(tensor(0.5661), tensor(0.8339))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l1 = lin(x, w1, b1)\n","l2 = relu(l1)\n","l2.mean(), l2.std()"]},{"cell_type":"markdown","metadata":{"id":"IasnGU3E2Q4p"},"source":["Much better! Now that our weights are properly initialized, we can define our whole model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"z8EGuTft2Q4q"},"outputs":[],"source":["def model(x):\n"," l1 = lin(x, w1, b1)\n"," l2 = relu(l1)\n"," l3 = lin(l2, w2, b2)\n"," return l3"]},{"cell_type":"markdown","metadata":{"id":"TZHwuALD2Q4q"},"source":["This is the forward pass. Now all that's left to do is to compare our output to the labels we have (random numbers, in this example) with a loss function. In this case, we will use the mean squared error. (It's a toy problem, and this is the easiest loss function to use for what is next, computing the gradients.)\n","\n","The only subtlety is that our outputs and targets don't have exactly the same shape—after going though the model, we get an output like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kGyTyyKT2Q4q","outputId":"ff5a5b70-e6b4-4438-fdd2-22961df5bb46"},"outputs":[{"data":{"text/plain":["torch.Size([200, 1])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["out = model(x)\n","out.shape"]},{"cell_type":"markdown","metadata":{"id":"-YV37TiP2Q4q"},"source":["To get rid of this trailing 1 dimension, we use the `squeeze` function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"89bs4LL52Q4r"},"outputs":[],"source":["def mse(output, targ): return (output.squeeze(-1) - targ).pow(2).mean()"]},{"cell_type":"markdown","metadata":{"id":"jg1Tkg1E2Q4r"},"source":["And now we are ready to compute our loss:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BRP1WrUP2Q4r"},"outputs":[],"source":["loss = mse(out, y)"]},{"cell_type":"markdown","metadata":{"id":"RmFdgzQE2Q4r"},"source":["That's all for the forward pass—let's now look at the gradients."]},{"cell_type":"markdown","metadata":{"id":"Z4nSDHVR2Q4s"},"source":["### Gradients and the Backward Pass"]},{"cell_type":"markdown","metadata":{"id":"2QCIXDgn2Q4s"},"source":["We've seen that PyTorch computes all the gradients we need with a magic call to `loss.backward`, but let's explore what's happening behind the scenes.\n","\n","Now comes the part where we need to compute the gradients of the loss with respect to all the weights of our model, so all the floats in `w1`, `b1`, `w2`, and `b2`. For this, we will need a bit of math—specifically the *chain rule*. This is the rule of calculus that guides how we can compute the derivative of a composed function:\n","\n","$$(g \\circ f)'(x) = g'(f(x)) f'(x)$$"]},{"cell_type":"markdown","metadata":{"id":"e3XMTiul2Q4s"},"source":["> j: I find this notation very hard to wrap my head around, so instead I like to think of it as: if `y = g(u)` and `u=f(x)`; then `dy/dx = dy/du * du/dx`. The two notations mean the same thing, so use whatever works for you."]},{"cell_type":"markdown","metadata":{"id":"W_s7n1x62Q4s"},"source":["Our loss is a big composition of different functions: mean squared error (which is in turn the composition of a mean and a power of two), the second linear layer, a ReLU and the first linear layer. For instance, if we want the gradients of the loss with respect to `b2` and our loss is defined by:\n","\n","```\n","loss = mse(out,y) = mse(lin(l2, w2, b2), y)\n","```\n","\n","The chain rule tells us that we have:\n","$$\\frac{\\text{d} loss}{\\text{d} b_{2}} = \\frac{\\text{d} loss}{\\text{d} out} \\times \\frac{\\text{d} out}{\\text{d} b_{2}} = \\frac{\\text{d}}{\\text{d} out} mse(out, y) \\times \\frac{\\text{d}}{\\text{d} b_{2}} lin(l_{2}, w_{2}, b_{2})$$\n","\n","To compute the gradients of the loss with respect to $b_{2}$, we first need the gradients of the loss with respect to our output $out$. It's the same if we want the gradients of the loss with respect to $w_{2}$. Then, to get the gradients of the loss with respect to $b_{1}$ or $w_{1}$, we will need the gradients of the loss with respect to $l_{1}$, which in turn requires the gradients of the loss with respect to $l_{2}$, which will need the gradients of the loss with respect to $out$.\n","\n","So to compute all the gradients we need for the update, we need to begin from the output of the model and work our way *backward*, one layer after the other—which is why this step is known as *backpropagation*. We can automate it by having each function we implemented (`relu`, `mse`, `lin`) provide its backward step: that is, how to derive the gradients of the loss with respect to the input(s) from the gradients of the loss with respect to the output.\n","\n","Here we populate those gradients in an attribute of each tensor, a bit like PyTorch does with `.grad`.\n","\n","The first are the gradients of the loss with respect to the output of our model (which is the input of the loss function). We undo the `squeeze` we did in `mse`, then we use the formula that gives us the derivative of $x^{2}$: $2x$. The derivative of the mean is just $1/n$ where $n$ is the number of elements in our input:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5LazCL8b2Q4v"},"outputs":[],"source":["def mse_grad(inp, targ):\n"," # grad of loss with respect to output of previous layer\n"," inp.g = 2. * (inp.squeeze() - targ).unsqueeze(-1) / inp.shape[0]"]},{"cell_type":"markdown","metadata":{"id":"_PGzcksx2Q4v"},"source":["For the gradients of the ReLU and our linear layer, we use the gradients of the loss with respect to the output (in `out.g`) and apply the chain rule to compute the gradients of the loss with respect to the input (in `inp.g`). The chain rule tells us that `inp.g = relu'(inp) * out.g`. The derivative of `relu` is either 0 (when inputs are negative) or 1 (when inputs are positive), so this gives us:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"84aGrMbI2Q4v"},"outputs":[],"source":["def relu_grad(inp, out):\n"," # grad of relu with respect to input activations\n"," inp.g = (inp>0).float() * out.g"]},{"cell_type":"markdown","metadata":{"id":"y5fuCJhN2Q4w"},"source":["The scheme is the same to compute the gradients of the loss with respect to the inputs, weights, and bias in the linear layer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"41NEahpr2Q4w"},"outputs":[],"source":["def lin_grad(inp, out, w, b):\n"," # grad of matmul with respect to input\n"," inp.g = out.g @ w.t()\n"," w.g = inp.t() @ out.g\n"," b.g = out.g.sum(0)"]},{"cell_type":"markdown","metadata":{"id":"d9lwwzzw2Q4w"},"source":["We won't linger on the mathematical formulas that define them since they're not important for our purposes, but do check out Khan Academy's excellent calculus lessons if you're interested in this topic."]},{"cell_type":"markdown","metadata":{"id":"8ENVQYCq2Q4w"},"source":["### Sidebar: SymPy"]},{"cell_type":"markdown","metadata":{"id":"YM1XYUeE2Q4x"},"source":["SymPy is a library for symbolic computation that is extremely useful library when working with calculus. Per the [documentation](https://docs.sympy.org/latest/tutorial/intro.html):"]},{"cell_type":"markdown","metadata":{"id":"QAXXHR9r2Q4x"},"source":["> : Symbolic computation deals with the computation of mathematical objects symbolically. This means that the mathematical objects are represented exactly, not approximately, and mathematical expressions with unevaluated variables are left in symbolic form."]},{"cell_type":"markdown","metadata":{"id":"MV3A5Vyq2Q4x"},"source":["To do symbolic computation, we first define a *symbol*, and then do a computation, like so:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Z0E5YXIF2Q4x","outputId":"de974b98-0064-4597-c48c-71bf0c528a53"},"outputs":[{"data":{"text/latex":["$\\displaystyle 2 sx$"],"text/plain":["2*sx"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["from sympy import symbols,diff\n","sx,sy = symbols('sx sy')\n","diff(sx**2, sx)"]},{"cell_type":"markdown","metadata":{"id":"UnWFb2Eh2Q4y"},"source":["Here, SymPy has taken the derivative of `x**2` for us! It can take the derivative of complicated compound expressions, simplify and factor equations, and much more. There's really not much reason for anyone to do calculus manually nowadays—for calculating gradients, PyTorch does it for us, and for showing the equations, SymPy does it for us!"]},{"cell_type":"markdown","metadata":{"id":"q6wqqm-X2Q4y"},"source":["### End sidebar"]},{"cell_type":"markdown","metadata":{"id":"16cftOY92Q4y"},"source":["Once we have have defined those functions, we can use them to write the backward pass. Since each gradient is automatically populated in the right tensor, we don't need to store the results of those `_grad` functions anywhere—we just need to execute them in the reverse order of the forward pass, to make sure that in each function `out.g` exists:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"RMryqqMG2Q4y"},"outputs":[],"source":["def forward_and_backward(inp, targ):\n"," # forward pass:\n"," l1 = inp @ w1 + b1\n"," l2 = relu(l1)\n"," out = l2 @ w2 + b2\n"," # we don't actually need the loss in backward!\n"," loss = mse(out, targ)\n","\n"," # backward pass:\n"," mse_grad(out, targ)\n"," lin_grad(l2, out, w2, b2)\n"," relu_grad(l1, l2)\n"," lin_grad(inp, l1, w1, b1)"]},{"cell_type":"markdown","metadata":{"id":"tXvBjsvo2Q4z"},"source":["And now we can access the gradients of our model parameters in `w1.g`, `b1.g`, `w2.g`, and `b2.g`."]},{"cell_type":"markdown","metadata":{"id":"jgUcfi0l2Q4z"},"source":["We have successfully defined our model—now let's make it a bit more like a PyTorch module."]},{"cell_type":"markdown","metadata":{"id":"YSDjDu-r2Q4z"},"source":["### Refactoring the Model"]},{"cell_type":"markdown","metadata":{"id":"cjgjCudq2Q4z"},"source":["The three functions we used have two associated functions: a forward pass and a backward pass. Instead of writing them separately, we can create a class to wrap them together. That class can also store the inputs and outputs for the backward pass. This way, we will just have to call `backward`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"J-yezj7U2Q40"},"outputs":[],"source":["class Relu():\n"," def __call__(self, inp):\n"," self.inp = inp\n"," self.out = inp.clamp_min(0.)\n"," return self.out\n","\n"," def backward(self): self.inp.g = (self.inp>0).float() * self.out.g"]},{"cell_type":"markdown","metadata":{"id":"6Q7XqY7-2Q40"},"source":["`__call__` is a magic name in Python that will make our class callable. This is what will be executed when we type `y = Relu()(x)`. We can do the same for our linear layer and the MSE loss:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lSXxsXsE2Q40"},"outputs":[],"source":["class Lin():\n"," def __init__(self, w, b): self.w,self.b = w,b\n","\n"," def __call__(self, inp):\n"," self.inp = inp\n"," self.out = inp@self.w + self.b\n"," return self.out\n","\n"," def backward(self):\n"," self.inp.g = self.out.g @ self.w.t()\n"," self.w.g = self.inp.t() @ self.out.g\n"," self.b.g = self.out.g.sum(0)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6QiE_B-Q2Q41"},"outputs":[],"source":["class Mse():\n"," def __call__(self, inp, targ):\n"," self.inp = inp\n"," self.targ = targ\n"," self.out = (inp.squeeze() - targ).pow(2).mean()\n"," return self.out\n","\n"," def backward(self):\n"," x = (self.inp.squeeze()-self.targ).unsqueeze(-1)\n"," self.inp.g = 2.*x/self.targ.shape[0]"]},{"cell_type":"markdown","metadata":{"id":"uibolNLI2Q41"},"source":["Then we can put everything in a model that we initiate with our tensors `w1`, `b1`, `w2`, `b2`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"g7HhHOID2Q41"},"outputs":[],"source":["class Model():\n"," def __init__(self, w1, b1, w2, b2):\n"," self.layers = [Lin(w1,b1), Relu(), Lin(w2,b2)]\n"," self.loss = Mse()\n","\n"," def __call__(self, x, targ):\n"," for l in self.layers: x = l(x)\n"," return self.loss(x, targ)\n","\n"," def backward(self):\n"," self.loss.backward()\n"," for l in reversed(self.layers): l.backward()"]},{"cell_type":"markdown","metadata":{"id":"BwOlShTD2Q41"},"source":["What is really nice about this refactoring and registering things as layers of our model is that the forward and backward passes are now really easy to write. If we want to instantiate our model, we just need to write:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5CPTa53s2Q42"},"outputs":[],"source":["model = Model(w1, b1, w2, b2)"]},{"cell_type":"markdown","metadata":{"id":"7sEzkhN12Q42"},"source":["The forward pass can then be executed with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ki__CjHf2Q43"},"outputs":[],"source":["loss = model(x, y)"]},{"cell_type":"markdown","metadata":{"id":"aYJx4oI72Q43"},"source":["And the backward pass with:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3TqIJKoJ2Q43"},"outputs":[],"source":["model.backward()"]},{"cell_type":"markdown","metadata":{"id":"syA938aU2Q44"},"source":["### Going to PyTorch"]},{"cell_type":"markdown","metadata":{"id":"pmk266A42Q44"},"source":["The `Lin`, `Mse` and `Relu` classes we wrote have a lot in common, so we could make them all inherit from the same base class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"DsEMRKZx2Q44"},"outputs":[],"source":["class LayerFunction():\n"," def __call__(self, *args):\n"," self.args = args\n"," self.out = self.forward(*args)\n"," return self.out\n","\n"," def forward(self): raise Exception('not implemented')\n"," def bwd(self): raise Exception('not implemented')\n"," def backward(self): self.bwd(self.out, *self.args)"]},{"cell_type":"markdown","metadata":{"id":"fiauIDWE2Q45"},"source":["Then we just need to implement `forward` and `bwd` in each of our subclasses:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"2s5xab_t2Q45"},"outputs":[],"source":["class Relu(LayerFunction):\n"," def forward(self, inp): return inp.clamp_min(0.)\n"," def bwd(self, out, inp): inp.g = (inp>0).float() * out.g"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e4PhaAtF2Q45"},"outputs":[],"source":["class Lin(LayerFunction):\n"," def __init__(self, w, b): self.w,self.b = w,b\n","\n"," def forward(self, inp): return inp@self.w + self.b\n","\n"," def bwd(self, out, inp):\n"," inp.g = out.g @ self.w.t()\n"," self.w.g = inp.t() @ self.out.g\n"," self.b.g = out.g.sum(0)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"StdWnnec2Q46"},"outputs":[],"source":["class Mse(LayerFunction):\n"," def forward (self, inp, targ): return (inp.squeeze() - targ).pow(2).mean()\n"," def bwd(self, out, inp, targ):\n"," inp.g = 2*(inp.squeeze()-targ).unsqueeze(-1) / targ.shape[0]"]},{"cell_type":"markdown","metadata":{"id":"RRExeIVq2Q46"},"source":["The rest of our model can be the same as before. This is getting closer and closer to what PyTorch does. Each basic function we need to differentiate is written as a `torch.autograd.Function` object that has a `forward` and a `backward` method. PyTorch will then keep trace of any computation we do to be able to properly run the backward pass, unless we set the `requires_grad` attribute of our tensors to `False`.\n","\n","Writing one of these is (almost) as easy as writing our original classes. The difference is that we choose what to save and what to put in a context variable (so that we make sure we don't save anything we don't need), and we return the gradients in the `backward` pass. It's very rare to have to write your own `Function` but if you ever need something exotic or want to mess with the gradients of a regular function, here is how to write one:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1boLmtJi2Q46"},"outputs":[],"source":["from torch.autograd import Function\n","\n","class MyRelu(Function):\n"," @staticmethod\n"," def forward(ctx, i):\n"," result = i.clamp_min(0.)\n"," ctx.save_for_backward(i)\n"," return result\n","\n"," @staticmethod\n"," def backward(ctx, grad_output):\n"," i, = ctx.saved_tensors\n"," return grad_output * (i>0).float()"]},{"cell_type":"markdown","metadata":{"id":"N_CGiKVV2Q46"},"source":["The structure used to build a more complex model that takes advantage of those `Function`s is a `torch.nn.Module`. This is the base structure for all models, and all the neural nets you have seen up until now inherited from that class. It mostly helps to register all the trainable parameters, which as we've seen can be used in the training loop.\n","\n","To implement an `nn.Module` you just need to:\n","\n","- Make sure the superclass `__init__` is called first when you initialize it.\n","- Define any parameters of the model as attributes with `nn.Parameter`.\n","- Define a `forward` function that returns the output of your model.\n","\n","As an example, here is the linear layer from scratch:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yZ_veV2t2Q47"},"outputs":[],"source":["import torch.nn as nn\n","\n","class LinearLayer(nn.Module):\n"," def __init__(self, n_in, n_out):\n"," super().__init__()\n"," self.weight = nn.Parameter(torch.randn(n_out, n_in) * sqrt(2/n_in))\n"," self.bias = nn.Parameter(torch.zeros(n_out))\n","\n"," def forward(self, x): return x @ self.weight.t() + self.bias"]},{"cell_type":"markdown","metadata":{"id":"_BmDJZ062Q47"},"source":["As you see, this class automatically keeps track of what parameters have been defined:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"COUj_JsQ2Q47","outputId":"097764a4-f59f-4394-d5fb-31c7af30fafc"},"outputs":[{"data":{"text/plain":["(torch.Size([2, 10]), torch.Size([2]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["lin = LinearLayer(10,2)\n","p1,p2 = lin.parameters()\n","p1.shape,p2.shape"]},{"cell_type":"markdown","metadata":{"id":"0Nfcmfyf2Q47"},"source":["It is thanks to this feature of `nn.Module` that we can just say `opt.step()` and have an optimizer loop through the parameters and update each one.\n","\n","Note that in PyTorch, the weights are stored as an `n_out x n_in` matrix, which is why we have the transpose in the forward pass.\n","\n","By using the linear layer from PyTorch (which uses the Kaiming initialization as well), the model we have been building up during this chapter can be written like this:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"XscJDP3Y2Q48"},"outputs":[],"source":["class Model(nn.Module):\n"," def __init__(self, n_in, nh, n_out):\n"," super().__init__()\n"," self.layers = nn.Sequential(\n"," nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))\n"," self.loss = mse\n","\n"," def forward(self, x, targ): return self.loss(self.layers(x).squeeze(), targ)"]},{"cell_type":"markdown","metadata":{"id":"nOQYQfH32Q48"},"source":["fastai provides its own variant of `Module` that is identical to `nn.Module`, but doesn't require you to call `super().__init__()` (it does that for you automatically):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wLMuBm1t2Q48"},"outputs":[],"source":["class Model(Module):\n"," def __init__(self, n_in, nh, n_out):\n"," self.layers = nn.Sequential(\n"," nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))\n"," self.loss = mse\n","\n"," def forward(self, x, targ): return self.loss(self.layers(x).squeeze(), targ)"]},{"cell_type":"markdown","metadata":{"id":"rlLGJSnf2Q48"},"source":["In the last chapter, we will start from such a model and see how to build a training loop from scratch and refactor it to what we've been using in previous chapters."]},{"cell_type":"markdown","metadata":{"id":"3UYZ1y_-2Q49"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"cybSJufy2Q49"},"source":["In this chapter we explored the foundations of deep learning, beginning with matrix multiplication and moving on to implementing the forward and backward passes of a neural net from scratch. We then refactored our code to show how PyTorch works beneath the hood.\n","\n","Here are a few things to remember:\n","\n","- A neural net is basically a bunch of matrix multiplications with nonlinearities in between.\n","- Python is slow, so to write fast code we have to vectorize it and take advantage of techniques such as elementwise arithmetic and broadcasting.\n","- Two tensors are broadcastable if the dimensions starting from the end and going backward match (if they are the same, or one of them is 1). To make tensors broadcastable, we may need to add dimensions of size 1 with `unsqueeze` or a `None` index.\n","- Properly initializing a neural net is crucial to get training started. Kaiming initialization should be used when we have ReLU nonlinearities.\n","- The backward pass is the chain rule applied multiple times, computing the gradients from the output of our model and going back, one layer at a time.\n","- When subclassing `nn.Module` (if not using fastai's `Module`) we have to call the superclass `__init__` method in our `__init__` method and we have to define a `forward` function that takes an input and returns the desired result."]},{"cell_type":"markdown","metadata":{"id":"OBGs0nGW2Q49"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"Z8cs6BCo2Q49"},"source":["1. Write the Python code to implement a single neuron.\n","1. Write the Python code to implement ReLU.\n","1. Write the Python code for a dense layer in terms of matrix multiplication.\n","1. Write the Python code for a dense layer in plain Python (that is, with list comprehensions and functionality built into Python).\n","1. What is the \"hidden size\" of a layer?\n","1. What does the `t` method do in PyTorch?\n","1. Why is matrix multiplication written in plain Python very slow?\n","1. In `matmul`, why is `ac==br`?\n","1. In Jupyter Notebook, how do you measure the time taken for a single cell to execute?\n","1. What is \"elementwise arithmetic\"?\n","1. Write the PyTorch code to test whether every element of `a` is greater than the corresponding element of `b`.\n","1. What is a rank-0 tensor? How do you convert it to a plain Python data type?\n","1. What does this return, and why? `tensor([1,2]) + tensor([1])`\n","1. What does this return, and why? `tensor([1,2]) + tensor([1,2,3])`\n","1. How does elementwise arithmetic help us speed up `matmul`?\n","1. What are the broadcasting rules?\n","1. What is `expand_as`? Show an example of how it can be used to match the results of broadcasting.\n","1. How does `unsqueeze` help us to solve certain broadcasting problems?\n","1. How can we use indexing to do the same operation as `unsqueeze`?\n","1. How do we show the actual contents of the memory used for a tensor?\n","1. When adding a vector of size 3 to a matrix of size 3×3, are the elements of the vector added to each row or each column of the matrix? (Be sure to check your answer by running this code in a notebook.)\n","1. Do broadcasting and `expand_as` result in increased memory use? Why or why not?\n","1. Implement `matmul` using Einstein summation.\n","1. What does a repeated index letter represent on the left-hand side of einsum?\n","1. What are the three rules of Einstein summation notation? Why?\n","1. What are the forward pass and backward pass of a neural network?\n","1. Why do we need to store some of the activations calculated for intermediate layers in the forward pass?\n","1. What is the downside of having activations with a standard deviation too far away from 1?\n","1. How can weight initialization help avoid this problem?\n","1. What is the formula to initialize weights such that we get a standard deviation of 1 for a plain linear layer, and for a linear layer followed by ReLU?\n","1. Why do we sometimes have to use the `squeeze` method in loss functions?\n","1. What does the argument to the `squeeze` method do? Why might it be important to include this argument, even though PyTorch does not require it?\n","1. What is the \"chain rule\"? Show the equation in either of the two forms presented in this chapter.\n","1. Show how to calculate the gradients of `mse(lin(l2, w2, b2), y)` using the chain rule.\n","1. What is the gradient of ReLU? Show it in math or code. (You shouldn't need to commit this to memory—try to figure it using your knowledge of the shape of the function.)\n","1. In what order do we need to call the `*_grad` functions in the backward pass? Why?\n","1. What is `__call__`?\n","1. What methods must we implement when writing a `torch.autograd.Function`?\n","1. Write `nn.Linear` from scratch, and test it works.\n","1. What is the difference between `nn.Module` and fastai's `Module`?"]},{"cell_type":"markdown","metadata":{"id":"81VLfPkZ2Q4-"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"zRq__tjQ2Q4-"},"source":["1. Implement ReLU as a `torch.autograd.Function` and train a model with it.\n","1. If you are mathematically inclined, find out what the gradients of a linear layer are in mathematical notation. Map that to the implementation we saw in this chapter.\n","1. Learn about the `unfold` method in PyTorch, and use it along with matrix multiplication to implement your own 2D convolution function. Then train a CNN that uses it.\n","1. Implement everything in this chapter using NumPy instead of PyTorch."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"TvIy0En32Q4_"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/17_foundations.ipynb","timestamp":1712447977368}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/18_CAM.ipynb b/notebooks/oleg/Education/fastai/18_CAM.ipynb new file mode 100644 index 0000000..fe476ff --- /dev/null +++ b/notebooks/oleg/Education/fastai/18_CAM.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"lFDneNah2RlH"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"hide_input":false,"id":"8jgOIfyR2RlP"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"raw","metadata":{"id":"j8ZtHsH12RlQ"},"source":["[[chapter_cam]]"]},{"cell_type":"markdown","metadata":{"id":"bqNGLtaJ2RlR"},"source":["# CNN Interpretation with CAM"]},{"cell_type":"markdown","metadata":{"id":"-nstwst52RlU"},"source":["Now that we know how to build up pretty much anything from scratch, let's use that knowledge to create entirely new (and very useful!) functionality: the *class activation map*. It gives us some insight into why a CNN made the predictions it did.\n","\n","In the process, we'll learn about one handy feature of PyTorch we haven't seen before, the *hook*, and we'll apply many of the concepts introduced in the rest of the book. If you want to really test out your understanding of the material in this book, after you've finished this chapter, try putting it aside and recreating the ideas here yourself from scratch (no peeking!)."]},{"cell_type":"markdown","metadata":{"id":"SMB3ahAV2RlW"},"source":["## CAM and Hooks"]},{"cell_type":"markdown","metadata":{"id":"q0HKBUpW2RlX"},"source":["The class activation map (CAM) was introduced by Bolei Zhou et al. in [\"Learning Deep Features for Discriminative Localization\"](https://arxiv.org/abs/1512.04150). It uses the output of the last convolutional layer (just before the average pooling layer) together with the predictions to give us a heatmap visualization of why the model made its decision. This is a useful tool for interpretation.\n","\n","More precisely, at each position of our final convolutional layer, we have as many filters as in the last linear layer. We can therefore compute the dot product of those activations with the final weights to get, for each location on our feature map, the score of the feature that was used to make a decision.\n","\n","We're going to need a way to get access to the activations inside the model while it's training. In PyTorch this can be done with a *hook*. Hooks are PyTorch's equivalent of fastai's callbacks. However, rather than allowing you to inject code into the training loop like a fastai `Learner` callback, hooks allow you to inject code into the forward and backward calculations themselves. We can attach a hook to any layer of the model, and it will be executed when we compute the outputs (forward hook) or during backpropagation (backward hook). A forward hook is a function that takes three things—a module, its input, and its output—and it can perform any behavior you want. (fastai also provides a handy `HookCallback` that we won't cover here, but take a look at the fastai docs; it makes working with hooks a little easier.)\n","\n","To illustrate, we'll use the same cats and dogs model we trained in <>:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CESwxGUm2RlZ","outputId":"a7a164e0-928a-4e53-976d-2ab6a5960b37"},"outputs":[{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.1459940.0192720.00608900:14
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"data":{"text/html":["\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
epochtrain_lossvalid_losserror_ratetime
00.0534050.0525400.01082500:19
"],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["path = untar_data(URLs.PETS)/'images'\n","def is_cat(x): return x[0].isupper()\n","dls = ImageDataLoaders.from_name_func(\n"," path, get_image_files(path), valid_pct=0.2, seed=21,\n"," label_func=is_cat, item_tfms=Resize(224))\n","learn = vision_learner(dls, resnet34, metrics=error_rate)\n","learn.fine_tune(1)"]},{"cell_type":"markdown","metadata":{"id":"YhBHpsEO2Rlc"},"source":["To start, we'll grab a cat picture and a batch of data:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"LG4bC-Eu2Rld"},"outputs":[],"source":["img = PILImage.create(image_cat())\n","x, = first(dls.test_dl([img]))"]},{"cell_type":"markdown","metadata":{"id":"0PwPLrwx2Rle"},"source":["For CAM we want to store the activations of the last convolutional layer. We put our hook function in a class so it has a state that we can access later, and just store a copy of the output:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"09tEyK592Rle"},"outputs":[],"source":["class Hook():\n"," def hook_func(self, m, i, o): self.stored = o.detach().clone()"]},{"cell_type":"markdown","metadata":{"id":"RkQhrvLa2Rlf"},"source":["We can then instantiate a `Hook` and attach it to the layer we want, which is the last layer of the CNN body:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"99-Xindg2Rlf"},"outputs":[],"source":["hook_output = Hook()\n","hook = learn.model[0].register_forward_hook(hook_output.hook_func)"]},{"cell_type":"markdown","metadata":{"id":"MP6XrJGx2Rlg"},"source":["Now we can grab a batch and feed it through our model:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"W3iFarW02Rlg"},"outputs":[],"source":["with torch.no_grad(): output = learn.model.eval()(x)"]},{"cell_type":"markdown","metadata":{"id":"hb2l3Y-S2Rlh"},"source":["And we can access our stored activations:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"uB7wwRXM2Rlh"},"outputs":[],"source":["act = hook_output.stored[0]"]},{"cell_type":"markdown","metadata":{"id":"7-blJOr52Rlh"},"source":["Let's also double-check our predictions:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"93A_QCDz2Rli","outputId":"ee426c43-9744-4857-cbe1-c413128773b8"},"outputs":[{"data":{"text/plain":["tensor([[0.0010, 0.9990]], device='cuda:0')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["F.softmax(output, dim=-1)"]},{"cell_type":"markdown","metadata":{"id":"YxEhYLwD2Rli"},"source":["We know `0` (for `False`) is \"dog,\" because the classes are automatically sorted in fastai, bu we can still double-check by looking at `dls.vocab`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"AWxheZIl2Rlj","outputId":"b177010b-e9a2-47f1-e993-2168cc1e4614"},"outputs":[{"data":{"text/plain":["(#2) [False,True]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["dls.vocab"]},{"cell_type":"markdown","metadata":{"id":"dD3YByiX2Rlj"},"source":["So, our model is very confident this was a picture of a cat."]},{"cell_type":"markdown","metadata":{"id":"Qngx4RMI2Rlk"},"source":["To do the dot product of our weight matrix (2 by number of activations) with the activations (batch size by activations by rows by cols), we use a custom `einsum`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Ev8oi_hd2Rlk","outputId":"d4da22b5-8a80-46ae-a924-2cb6cae1760c"},"outputs":[{"data":{"text/plain":["torch.Size([1, 3, 224, 224])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x.shape"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CbuRewcu2Rlk","outputId":"be1eb7d4-12bc-4633-dff0-1f7fcfb40bbf"},"outputs":[{"data":{"text/plain":["torch.Size([2, 7, 7])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["cam_map = torch.einsum('ck,kij->cij', learn.model[1][-1].weight, act)\n","cam_map.shape"]},{"cell_type":"markdown","metadata":{"id":"sdC6IYSW2Rll"},"source":["For each image in our batch, and for each class, we get a 7×7 feature map that tells us where the activations were higher and where they were lower. This will let us see which areas of the pictures influenced the model's decision.\n","\n","For instance, we can find out which areas made the model decide this animal was a cat (note that we need to `decode` the input `x` since it's been normalized by the `DataLoader`, and we need to cast to `TensorImage` since at the time this book is written PyTorch does not maintain types when indexing—this may be fixed by the time you are reading this):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rIldHAVv2Rll","outputId":"e9dd53ae-7914-4eb2-faed-948436d7872d"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9zZIkSY7n9wNUzdwjMqu6e2ZFuCO8UGQfhI+z78EjH4HPwlfhlSK7nJnlTFVlhLupAjwAULPIqs7s6T6wD+UlWZnh4W4favj4A/gDKu7O76/fX7+//v5e+v/3Bfz++v31++u3X78r5++v319/p6/flfP31++vv9PX78r5++v319/p63fl/P31++vv9NW/9cv/7X/9r05lc0XiL0BUaNpwd+K3jrtjHn/X51SUpiA44tAEVEBx4rhOU8Chaf5O4vNNQFUQm4gd+DxgDnwOMEN84maoG00cBATLP46Iowq9OdLy+Pk3DVQd1EAsL5Y4eROkdVyVYcJ/+p/+if/0n/+J+6c/IK2DNPp2Y0xnmOHa0H2j31/Q2wat4Tg2J/N4MMeB+wAbzPHExwFuiNa6GRKnRUQQcXDj+Xznl5//HZsTmJgZ4rGO7o6ZYXOiKphNbE7cHIYhBgxgODbAp+JTsKG4daY1zDvTG2PCmMK0xjSYpkyE4cox4TDHXHDtTIfpwnCYCNNgGAxzDjPMAdGQFZdYHwdDQBQnZMgAc0JeUn6M+LenLKGSMmUpU/WZWJ/pxvADc8MkvquqyFVOPU/kgghILDpuHn/caa3R6przd+aOEs+jaYtjui8xEYnrUULu3PN8oogoLuuTIBLPFcfNsGmYGe6xNv/3//Wn/+P//H//9//6H1ZOkRA0ESAX0ktAQqcun43L8cvPIqAi4HFDef/rgeCeNyYX/Zf1XRGJx5GCyJj4nKGAbuBWjzMEcp1DziuROL5IvetgjksaEZFQlFxED9VGpLPfNj59/oH7/RV3QYjFjwfueWbD3Bhz0IYiYV1wd1QVb8ocglkZpBTQaaDgZjSNcyK2jNYychKnI4VZSvBEUhhTKHAQS8FY+nGuSd1fyY3Juv9acJc4hyHxXERS+SWfd/69nn8er66h1l7j+4qmbZeUJcFwxGqVUwykZOCUqFJIzevydeJ83pTQS10VpyOBvJk4TsqZLtlgKbHX8a4iEzefxlJQ0ZQjj99dpT8Xw/Nm3A1czk+IIghNa6HO6yt9+HOvbyonueCyLJavk66bWrd7/UcpZl54Cdy5cmmJPIReU0nye6VMUFbOYqGXxXE0F93SS9Z9Qz4EqYd2XpRDmG09jUyu6vq95/WKCK+vn3l5+UTTzkARaYjosuYqAqpLIabN8FgS1x22M02C5b2KQn6/rLe74JLXI7V+shQnlvEifNTvNIXh+gCuUiZLMX0dLz3KMk6Xc13XAEDaeh5AXKd7OSPKkKq2eNZlVJahq+9KrluAFV9X6pfHE7K0zO0yTufzkZKhfD7qZQjrNyWn9ezT4Od14+nYU1i8blgc7PJzviX5RshDGke3kEcC/fjlmZRwxfV/fCwiLZ+MnEbtqjC/8fq+cq4fLIBFWn8R4bcIDPWIZRmW9I61GEuhL/BjCdvH47k7c86wVn5aQTi98PX2SrkpeCi1YB+vDs+rSE/kKfxu+R0Ntfr0+ol9vy+4FrBIQSw/JkhvyNbx3jANIbGUcL8YJFEpyculVdznby87cQlNlWFzvVsGrDSo4G0oeb1f93dCLUsl9fP2Ob9weW9ZOA2UgK5jqAiKM+yqULq8pjphOLH1sEOx1lFO5FKn+hp6ua9Dez0bILH8ev4f5Loe8+V2RE7PqhJQ16zeK0cgsW75WWpNvJzE6VnB0i6mg7AZ/04dWNezjEQaMUDq/3mddr3Uv8VzSi7asoHLsl/Vi3NVPN16vqOei35+4lceUrXgw+WcFNwN4ZNpYBMsPVZ+MBY7DIFcjq/lccTXuZdAShoHP/3M9eVp5QXhfn+ht84Yhu5KPUZVxXzi4qgKrSmkck5yvRRsRJSkrSHemTYCztYx5qmcX3tNFY3vjSPWqeCnAx5Q2syWcspXyhbHUaQpGMzrb91PYbtCjguMc9rSZlFBpUVYrjMUEUE8hXwJ5YeTr+dZv/dlWEuWZN2vuye8LURjlHoulJFRp9SzvJ7uw9+SBkVp2hJel3Kf3hQ1VBpSho6rp497K0O3LMUHwyd1g8sbx3qccr4wQqLOiLN/7Yh+6/Ud5bxApqUUaX0uiyMFOK7WW8KyrHWQ8B5LofJ7koHqFTpougdzx2zCnJF5MFsPRbXu77RWp6Yl5MMKxZ5BfnrdSBylZc3Y3UVwFVwVVaX3jgPTbHmruA/F5wxrnMdVjffL0Ahg84CMDaFhUyPUMz8ha5mjdfn5kPMaHCI+1vxQQkGXSJZYet+LfsU58zrFYoFTLVYippIxV5UOYxmKKShioUSa66IIrUJu4nFwPd5X7qA85xLsdZF1AKg4fN1aGdpEMzhYIraVPpLLNcvlh7oLSQMrDW0dlRZefV7QVyIEbS1jU0PtItMXb7GcdNrHOLYjmlD1Cm0zPo3HdDX/V3Rj/Bbq/Pr1TeVUjxjP8oZ0CUxkI5flKEMgkTQpC6JNAqdHAJoWsrzT6Xsdiwe91uNMPk2zzM5GgqGsZsGUBRsvFtyQWHDOOKalVW5NaE3inHOEh9K24r64b2Hfbpg7z+cTb53hk2ZC23ooJyH8SAAXs8mwiamgrdFEllKJJqxpgjZl+uBxHOy9Y/N8aH4RBCQ+i4Ab15VKwYh7CEPnp7UuI+iCG8xhzJney2P9ZynTRXZEE8a6Ih74a+EjjwSWeXrW9A5gmRvLeyi4mIpPQSQP+GgrkFN8WijdRXDreZsbIgH7zSqvAFS21a20hIDgFvF8XrFKQ7Uj0lZyq5I0lp64Ukkzk1Pn+i8wfaI5kYztfRlNIdZRNdCfp5Ei5ZZcp9IdLy+c6DKQwN+gnJkEj2BfssyhIby0E+YK4X0SKVHJC0uBKatouSiZSPuQVCprqNRTTS/plRA6rc0Jqr2c9CXlXl7MQRTRWkBHJUx9ebnyiHNMUEW2jvaOtE7vG611RFsIXVO0t6WYqro8rDaN7ycMnzbx3mLNMrY0D1GUrBfZ8Er6XiD9aWVXNjITKwXJr09UlICWC2qVdldWtfICJcSR4DsTWYovhVQUxazizHhmpejqihb0k3W2Ol0KHhl3npL9MVUTgjmtIHndTCrd+ncgpg9JoXSnBW6vKIN8HngihjJltVwlG1aKYQuFqCqtjFqtecnkUjajkoRVjjFnGXbVqGosGTXLzxih05X3OIEueg0Lf/v1HeWsm9eLsFzD+3R3acU0H4j5Wc/pW88Fy/omqwIEtciWFSw/SxyeD8jmiHhzZUjrdOciihDJnGWBSQhadanz7/K8ILQWyjY94a+DaKPvN/bbndY3RBVDaCI0aSuWUFVGKiNWRiys6JjG8TxQTVHLmAnCQzVtTJX10Jd2Us4moW0KTAHTqnFWUkQ8DIIsoyXnURJdlFxIGkrVzHJaKKatdE0onXwwAKV1rGe9cgUSCis4ahFmlMIFqrhERLXkS4G/QqL1U1p3T8RW4cpleZahcieV9ISUpxKXhxrLa4IHmrhclbstD3rmQuQMH2q9CeE5s9qJFDSShKKa5Ze4piiROZFCyxyMs651xaPf0c7vZGtL01OVLvg+XL18tcinbXBON1/WWokMGRePWV4zpOiUJDNjzoM5B2IzSifrIRRZ4YRdkbQILx+Kcrn36/kkhEhwdFO09YTVhqVHub28cnt5pW8boi1jyxTIPIaoMI8jDIaGouvW6a1H3fN5xAPShF0ZvwuRhe294zPSNOIFzE8DInmuSJjlIiW0WopeyCIFHwlPGkIlK3FmZCkFIfzjMotZqI/1P5VIqNjeXbD1B1aAnoordRCvZ5OkM796r+uz00iGuyzBhazlUjdykSY5/5a8ZxeJRJieH7v8lWgqM9nu61paZp3PxJrG+i7HE89h5U/yFTmDlOsrcim9sIqHzyRQZcYlCQ5iH+/tWiL6c6/vKOflAvKtKoRHcKzLGpz/P+NAUOY03BVpJzwzm8uzhXsvi31m5oS5mC/NTsU6vaCkP7+kzdURKWvo6/P1UOvZr8ydOtIskjStoX1nv7/y8ukzL6+v9O0G2rFpq7BQHihKIR4Qdg6YA92U3jbMGlPA5mBaxLhCwZyJ4my98xxjWdwFET0VjDBoXZUpcrKvMjtLrmXdUylexB3xl6tAIyIECYqUeRgxz7pjYWtzOfMzSB4gYjm3ZPQYmCqTQBPmvsITvBSvrRjUvKCsn/FcGh3Sw1TZKWqe/mF9Jb+3vCW+nruVd0tZk1+5Il+S6ykvC9ILq8Z9AcFUXFrrKZk3KNi6YmuvcEOYZh88+4ovrzqUziPDbyrs+15O6Lt1zutrCYiX9/j4+4svjMBZiLqQVBq9IF4wfDy/LyrB8FmWs7DPpTBIqXsqptQCFmSrB3B6IK2sZS1XnTvrkcMMGwZdafvO/dNnXn/4kfunT+z3l4g/dcMYqyi9jEcmBTRhjs3BHA3doiDfmjJHJNNUGwuuzQniND0N24Laft4nXK+/FtgXGaMUuXxuxT/rCAreUvgsno274iqRhb2I5ekyy5MpK2RJt+yXR1I4pOqrhaCqDFMZYbHzuecHWMmrZVadD3pWz1kkyR2XY6wPJHOJShTFt65VedJYOwImF6NeZY866Xl98enKekiyvVIR3Zl+VgvK85mlQ6hkWD3KcjT5XLXpiTLsiib+/Os7pZS8cwl/GBY04VlasI9mo+SlBIbTOjhnNnTFqACnp/OEtlLvu60YU6+Y/Vx/CtrmUl2v4vxdKm7xGVUBbQGrVOn7nfvrJz79+AdefvhM23bQxjSnJ+1qjhFp98x46tZDByINzBgDV6Ie6gGbT+OSsSGZzsh4MDzYxc4uQZaIV9PAiIOUx8wYdz0hyaRUkiSEDDc04VycHkwzMDyf7jpzopZQ+Iz/TVflqmQyMo4JfymId4HjEiqi5ZkIPrAXcUEugvuV0CzPtCxUiXqm/i7GHWGVmU6m0+lF17PXr6FjeauqWBf09otUXcpcGeashNslpl3fNecsvBeS8cXRJe9V/WtVkcs1//brm8pZdcoqRrpM3E5cbV5JglIP/xDsC5lFk7yJpHhJ1szKk0U4NXEbSX4iPKsbycmpdVtwwNeC+eUB5QO4QJqPnph6aqHwfeP+8srLjz/w8vkHbp8/0/ad6QLTmI8nTmOOyfMRvDxvsWpNnDkHrStmk2NOVCZ99IhH57GUU5K0vmqkPnG7lKJCOi/XnV5ZJWu7tjLWpEeqGDsSEknOFl23WSjHrMpXvmCouTOXx1u4kUUlNLA5Mau6qCxFt4S6AWvzGCIEfk5oSnCMXQQs0k7LR8kVBuoyBiXQ7udnKwZckLU8EafnYil6KXL9dFVaOdc4ua9XLvDJBuLj35AZWFlh3JU8UB7YK5u4amEXS5TnNlv1sIuz+Np4fHx9J1t72pilhAUHJGtEkkKUF1WeobinmpAgOJkzPlbalu/FqgXZwMgSDGcW9NfXlNZXLrm6tShffzhh2YJAlTMWtm3n8w8/8vlPf2J/eYXemcAxBmN6lBpEsWkczxE2qgsiDRvCmAdiDVOYdmDDMLvRtWHzQC4oACw8NnG86XORLc7M80U6vIQxFJnljTPhheDoynxdzZFl10Z4PFkK66mU00vPBTM9PYcHOprTmTMU29ClxJbvra4Uz1hUNeqvmYkurKmJJdVLPeP+VVN5PJJwp7zns/J0My7FELwYETI0aac3TdS1eBokw9Ujl1HnFyvtyBBIC1tdvli18qVMJfcFSz/SVhe7qTxjoYASx7oVN6ZXGCRpXP8G5ZxmsdjnpYRF9BNe/FofTmWcbkFBKwu44N1pYATBxkBSWMXDapNUN8+uLmAR5FU+ptdFJOlsExFLg8CH62wZAyNn/XW/3fn0+UdeXz9D6zzdGTaZ5jyf74BwHIMmytY3zCdKQ5swxjMgqTov9xscwpfHG29ffuZPf/ojL/cdny3KQOKrC2RaKFwIQmaok/xfEB6CUzyez/Bgc1JF8Io3e88uDwklmTbjyyZLOFbHSNPwliRBA3CMIwkK5pHgmdMYhzOmMU0x1yAPZFtYtMnBLKNlMNxDgTW7cFTQFus8C95B5ifOWnBAZ79k9KtWCVh+94IoivqXH17fQYoBVgSFivPC8PcWhsOTra+t0beNrhuOM8ZMlligjjBAWddEVia+gpLlAxxG1mIjrFgPb2VvC9bWV+Qq/R8YJ7/9+jaspWi7Z5zg6wRpmXLJCnaH0T8vpYL/Am0VBjiRAgxuqEWBWzx7FgO6Fb4JLuY6ywU6x0OeXlBBP0CHgtmankhUaL2jW6PvO/eXz/TtTmsb1hpqHuhkGnPaMgR9a7R2xoGiztY66sHQmdlv6nPwfBi//Ky83O9xLavdypYlD8vt0YqUtdCohyahOrsqAhqWI8oapXSwtMCtpQf0k+2jVYNLwU5O6jRfEDUEOSFkEhXmdOaYzOHLQ06POmj0ecKYHv+WUObh2e+J4DqRBr1nL46Gx53uCbcdsPi5YOxSolOIgchN2PVv0pArKnHdln2wJfpySTqS0P2k9sklcQRzGmZPBI12xPrdkivWujswrhxozlKLV+xvjglLtoUs26yY96KgckWgFcD89uubymme+KeyZh+yTGdwnaJ33lzCJL3wWxvXC43jTptJMAjBaYG9EokKUYdKZZVKDOQRMvgeHmBaFVpCocgOnwsdJYNYHVVJxXzhdr/Ttw20ZbbTEQvY6WMirdF6Y983brcd7aFJU6DvLUsKcXBVR9V5Hu98+eK83LbIDHaBKkW4pFKCq4YgTwJeuUVjdApvtb15og+wzPD2ZLj4yT6SbHROqxwhRLFwZHmi4MJKwtlcGEtvOx2flj/netlcLBer/kgLeOMJz61I9UqSIqKu16RzNcun2NYzrpj4TAJd0VRh3fptebEwxlePJLiUBmfCMpVfpbpBPKu7KQtzpnymfODolcWzkJlcvHYpVl5/vHFBcJblnfNzhTIXmrwq1zUL/2de3/acZdXkath8XXQpYzQ/8+Hkks9YPHgSnh6jYqNIPBo+bWWyot8vlDHTCog21P3Sg+iJfM4HaoSFFQ1fn+h1weeVEEGYptA6uu1oD5IBKJ70NLEwl6qN3hpKkAz2W6dtjYnhPtEW1m+64U3o0tisMX1g88mcT1SiYyU65jPuVUe7gCmt6SJgWH3G7WKCDRRab0gan6bKHINxRHaYmTe5PEfyhjk7V3wGXMNCKWMyQln/tI9T8El2moSiVeHTZyrMh36nZXHSmxguM6C/T6LdsF3isERLpZh2Ucy47FyLOL9KxMbVK1JxYkjGcplZAZBciJDPMxY9Bbf6Wc3O9i+apgPJNj+4xKKno3EvMkiVVeL+z2bsIuRcNKCSfXW/pS9Sj8vOpNafeX0H1p6Z0VCEhFlehipv/Kq46yY146jyeKGkq6RBWU7L31dfoifJPQrjLYkO4UFPBtHy3/kPW+eI8+i6urjyDL6Q3pG+oduGtCBHh/okA8ahoei+0XpkIKcdILfM0RiiEc8kYkuIKfSubB6llDmekK1W51olM0lYSjeOGWuRCQjREg7HZtbHmmIj3qs0f2W4pUKBC6JBYlwLHomk0PsMMSL5G7I8PWDAKOUMtBLe0wJSGrgFRA2WS6WudClnxbrRSR1jVdw7ouXRbE1TqO6Va29uXXY9qdOrLEH7YPhP5cvjXzKonpAWT8hYIin5c3RIr3WWbFhfR1h9wCzFiiNca/rlmIro0hJWg391T17/+eV7KTff6xr7i7i1pd+V2FmB74ej+7nWAhDMIKN6EeOmDV9dDQVXZsKn8pqSAtWk0G19/rSEmiRuJFPvV6NRiytVHA+h79vGfr+z3+/0/Ya27dJpI0gyTXtraFekC4YxxsGwA0b8LL3FPCCg9Z7xnaEYLS/abCRdMXNB7jgz4bixlrGyfekuFI3aqRtIzLgpmOQZ+9Q9Lhzhecz0nFG2SWstYQgt66nmoXRigRI0O/IYilsSFYzI4s48WSZTvMgMZQpW3KgZ61rco0+8PFlS/4IG6Kk8cgrw5Z8XSUoFvXi+FK6qVZ/kd5YsXemAhbBcrvX40IhohmhJJIlEpWW9vdT+epQVOi6n4JcYtYT+oy786sYKNaYXjVY8vvn6brP10rVLEBveTRYU+HgzLCExoKusY5jbSnGvrJUoZgOxkzeqdYwUyitPKKOqSDoJEQOhCzavq64MQFlhV7R39pc7+8sL+y3iTW09ujHK40p56zyMxkOZPhBXXKIv8LCEnwoyJet/dpZHfALRR1gxSvy7GoZLIUlIrsurqiYHWaNFDRzVjUFksqUpzTOLPiNuL9RxviYiM8UtG6Qzh+AZKMqMModaKrRH8qeqW7h+aGQnluJEJc4ZzjhUE3hkIOZFMQml90g01QFX+euiZddcQX3GON+vkhy1foTRswp9Em56SosukkbIQsWeWjB3wUIpseXjFbDksN4vr5ci+tEoSDkpW/JKOYwEGleV/tbr26WUS9B9ditUwuGSBucMoEVS8Uqx3BdslXxwRqT/itoUQlM5G0nrSvoyybjGIWMWkbhy8QrQEwZ6pdVjKNXqe02o4wjaOq3HH81xJAVHqkyhAmMOhJxy0JQ5x/Kw1TUhHpPvIFBElPWqrSofFFWfJNemHnIcB0B7KppbEPcT94oqbdsCvraESO60RAE+Lb1RKIPlnKKFnfKYxZ+N3MBEZsSh6i09fnTcTMjPkmseQtw4yQ01WS78zFVxy4M7FVue5BDJ83/tT06h90yPLtrb+o/loazCoTrjhyRLyR2rt9gRWuu0plyq9UsozmTUxfz4Mp0pa7KOfl41IElPvarZyg6vXhQqQZbFThYYKJT3jde3s7WZKhaR4GOeUDyaYM86LasbYT00WYrmXuyWibjRyJEj5mh2WXvGBMW4XIuSSYAz3W7RyJzCXnfql0WRTG2LBayre5g2g6hecitBXNdi0dgMRouAjcgit31HEcbxRLzF2I/W0ukH/HQj+j1b1Ol82npQHwUoDAaWJSE5PWYYGV1KJQIqhjQwm1lqyQZfCehtczCZuBhywDSJc+OYQnA+jSmVEfecgXO5pkpc1IPNBNC1+fwUzeKOnkjAspQy/cJagqV0a46QSOSuhNPDX0MQUllScO1yTrgqLF/pUj7/pSR13REOaGsx3vJyF1B18UQxC+3I5VmdslxwPCLtSgIV+lsKsOSsekbDRpw0nrV2VyX9xuvbsLblQatYbE7xN1Xb8qZrHEVZhLqIlZgICpckUcAjfYguwQ1sN83BI/PbrjGV5HnFKN9UAha1v/h+wEJZZAan4G/EcdUY27fOtm/R2jWe1GSBYQdjDLQrL687b+9f+Pmnf+P2cuP1h3uUWDxI75XF7n1DW5RUzAxpja23tWZba1GmMKPGW7jYWscgb4fS61rDuOfWo9wyxmDOA2nO3hrmk+EzkjRdaLSYzWse85amYTp42uT5NDwJHbMIBh4MH/FI/w/XWHsavSWamEmYWEgoirxuM6BqGpqVdJGzqyXm97TMNyhIi+TLDCLEcrIp25FXioy1La+THN2cvBGGPXITgxnMv4pHBVQKfVRGNuJK85ymwQc7sBq+K4SoOmyhRMnabKAxWYm4sgzuVaGs+JvL39EWdLV5lE7kbJd6/n+1clbWq1L0Ur18V2WEhFLnzx+UNC/fy+JEV24ip8rO2hJKcTmt4QUD1UjiNcj3eoIFK6BpUa3ymGm1tXWkbSCKW7Z6pYLpTAtpB+YDTNGp4UnnPKFhFvaj7uoLupfzWen4i3lfw60uMYuZo2o5iaCE9KP1xRzRmGEU5OuGSPJak7yBgrQcvNWym2I6PiYTwUdOZGiD0aOWeZ1YMYnOnDFhTqGYSyIt29WSgWRQKZgV0ixUdCJhkU5rPbpjCjlYVrolyziXhuzwnLEGojHBT5UwIDNHoNhYQ6Mrsdekg6Qy+5kky6LValuzq2zxdbtYNR9kd6sU1qtQKWXYCKOUv4MaFxv3V0mrXznBC1oO48FqhyvE/xvf+vD6jnJmXOQFM9OCwhm4+xJDKn6r1Vgd+km7ixk1AI2aQWtmSQy/xkZeq50LFXezGpmSQRP1cM/FzTmyxcxwXx6zbzv7beN+v9Fbxwl6XGXL5hz4DCK7ua3sK8WNLeJ5PZSrofiVRTJWo0C6iCq2l+UuwkbcbtXdtEKSxLRhDKbbMiKIrtKFZLYx1leXQRPNuuB0fN9hBhTrOnn6wG3gw5ienjvvr7KxoXQVmDTCuJ23uXxHea1liM8p6Z5Ehgh/qkwh657Po5x5C/KMRnacuDBzhlBlb13KWxP9qYu/tg6XVR1BPPME1pmpWqEkcY7TncV3Vc5EEfX0vJ7WhWH+tbNzX+c978Q/fPCcVHFeatmmb72+X0pZ9R1ZOGTVJ+V8r26oHlRdX+iWJLw8Y0nRuYjrnjdZnf2F/NVZgTV+UfJVeD4TBItvW+fINqp967y83rm/3ri93tn2jaBt+cq2xoMoWkzdQ0Dmtko2pTmRtInFzVg6f39WluqqfR3bEq5DCqwIapbWPZId+iG3bjhhLCyzvLSoHfcsS0guireR2zEYNiHIC0rrHbnBphtDJ8oTpsSWECZrFpS1uL2JJ5fXmaYZE0vC1JCE6CgKmuO0LD5cvE6VopehWYr4UbhDcckkT6zVijPL8Bday1Bg/U5OA3e6pxx+VhRPCvmF4fZyMAlQlk0QluP5oHhe+v7ru1gN33Z65aunjM9/TFyxMsic6/VVP/TXr+9ya08DIyspYcnuaDnF4HoR1yBXMrN6ooSqO4bld52Ix/zWM7dzlhmqyyxswMcA3JkRIZSXkSgqqyb00cbWO/eXnZfXV14/39lfd3TvEX/KSYZfSQFNYBQhA9vWUBekXbKKefZYi4jnoEX/JIEOrhJ2Nt2elbka03mNBioTG+vjBB1sZm47SgUtH+iJQMJzzClrTVzDc4so0jutSPUM7Jj5zIj4XZI73AKNYOFVZjK+orwZLCnx8KPK2QAesVm2M6vBXV0AACAASURBVNQ5JQnuouCxzhWjnuAijFJN1nNPZSOpl1y8UGLMmMmVRq/N5XFdfH1HPOrQZKfNSsQ4OIZ6XGc5lFXKWfJbsnrx5iLrOJWoPH/O5/zh5691qBSoBPyi4L9ywx9f31ZOO2uZmrCgYowlYHni9XcJJmVpWckCudihGkWBNVzGWg6BsyRCOLezNCHLS5WlCycZe1FoCwVtTdm2xv2+8fpy4/X1lZeXG23fkC5B86upfHIuoOhpXRFHWqdheItYbRHRl/jIgq24Ls++HsZ6jF+9Ki6+JL2cHEG6Si8e8S9gPmMchje6NIrlYiaRSMqyAdqyB3cGOjgGQYeLTh3VIAsEQcQuGcjYUkI119JZ/Z6GMS3axVz0IqaJqwScbBXThkpLM16oyyPGT9mIrHhlP4PIjkpOwIukk7kxaoIdzuEjklzmGNEHG4O0UgFXkJj14TJyZ5fFeh7Ouf+KmC76X5n+ScLQgA2nyFV+ocTQr2pZMOHXWLXWuF5yfum7r7+ozllq5etCYkHO0qsvrxd/lVWDmsIk+XMgkXhwTktrWJY3MpDFE43K3GmXrt63FqK8pTaldWXvyr539r1z3zdutxvb3tEU4lLyGgT21RHjj8Zlty2IgIMZt9xSKLIjIpsmzuMUXqr4aN1qxECSSRum5EjN3Cgq66bRhWHUTmMmmewgKH4xVjM8ZyRlkvOpmfAyQ7SDDkSfmEcHBrBKPdvWObZByHvQ6kRqLnCjayibEfNrDwc8SA5TOrm31mmIF1zMrCzhmaL866eHXJ/NzHlB1tbWWmhrkXxx55gTE2fYoI2D5yHY8Sh4tVa9knLAyQNPqlgNMa99atZLwrz4+bjy7cKBsj5T+lawvVQgTn2BiRfFXLaCMl5X9BsopFDVt17fYQi18yILptXv1hS2PLnU732Re10y4SByXqQU/Mg4IzN/J74vk1SL6Rk/SJIO4vcqa4UintXsILl1Xu53brfO1oOGZ2TNdo6w0BRUGuFFpf6cdx4oV7J8YIthElbVghiuNWQsnsJiLQmLohhQOW6rJhaIGNqU3oIEsBIP2bwadzwToqW49GA4td5xGjINlYhDgw9bZPO8nugiADnifTX227b4tA9/8pQZg/QzpjPR2CZRhO55SE/BlhLdyqinQKaShVcNxYy4c8Uja4yKSkdaY80CzqFj2nK8ZA7pdoHNY0LG9Mkxnrw9GvJsHOPBtMH0gxrqGe14XATsAkHLCQoZGmRLWyqTZ509FFkvUnhBZyURSzdTwdY3PijNifDSgImQ7Epf3/9LXt9OCBXtKQ8YsQJL689G7AiMl2d0OOfPyvKAer3BTNHHNIWyvKTfz52a8qCx9QC0gkZSccoJrQKSKX3bud1u3G49265i+8DjMJpHMNnKC/uMbGbISEKhWPLovexJNCBJ7LIQAnnO6FWL42bYFnedO3StBuJeI1tCqZvmVgEeRsKJeMEKBuVxJjEIrWmn7zutbaEsQYUC8YCdtrhXESeLZP4+0Im0Rt8EuUvshDaBeWA64gmphuDmUOnqHAGlidKbcphQkwERTWMZ59CEtbHVnyISP/cco9K3jd53RNtJQgohWyjMUq6c5NGrsLUN7THQu22dt3fl/XiDY5zpQPNMmlUZTlYiK0SqQOsZRGTxbGXClzJLzgxyS9SX3phwKuUWTw/rFwMg67Nfv1ZOwX19Tv+WhNAYk3OiXUJbryyYMI+IiVaBNqFcxWWSHs1xRhIQ5ozeuZo/2lpP4vuZil8+szQ9b2+Y01OBkPCGxwxFuN2UbU9CgBtjTnqLWp1m4sqyGbppKKS0SIZUwfi81yQlHAc+Bel6bgugLfowhfAWVdJQxbJrvoRj2/eg3+XDq/c9hbC36FjxkcbGJmNkrTU9x9ZvZ5FdG4cFkcA9GseHzRgX0no2hu+IPhlzYqJIj81hmznSnaljNauodPYdxlM5nvB4h7eH8RyDaZnIEQXtqHR67zTdsNbxtqP9hvQN08ZAcd1w3VM5Y31WnZecR2ShkEXxdCqeZcmQJ4oY8yzaq3bu99cYsfrmHHNgDIoUUvvArq4XItQJZYjRKCHFVQpMhNdakicqY39N/4Qwr31RCwYnPJJLvFplwSrXLKoUkcyKWntbCdMPUxX/GuW8Et3LVlyVseanegXLJYCpTJHYzgytk0kBp63IJYrcAVsd3Ff5pKUgrxH3SMSN6sk/1exvjOubMyx9XYfXkOimS+Eiu3pm+lq4toDIZ0AciRoLkkDT2M069sVouSUDrJkimaARTXZN0yV0rXW2vgOkZyiPmER5yU6NMg6txwBtadHr6RZT/YzoJc01HD4RDc4oykpsBXlhwjT6fovr6gGB5TkwP6I7Z++IK/vmPN8mj8QgZnDMSevKhtBkQ/oO7caUDdMdtjumHfqG64ZJ43A4pvB0wTySUisEyvsNqCtLXqAe1BIc1v6fpbRUHTSUwzI/gSjaFbcc2F3lmJXIibWIfH7JcSltsYASjs+qKJyViRJYQSmqXkr+ChuujdciTky8iHKcXWCdZ6h3nlPW+b73+i59r6hN1zF/tcjnCMF873K+qiudO40F5jO3VJSo74nVZjgXBZVT4UNn4jy1D4Zn9rG3UM7Yln0wx4HNjZVBtSiIWzYBu4+I6cSj82JXVDugMYakafapEfNdC+ZoMU96UgAFmkQrWwpaxEwtEzJhOVvbIskhki7jzFgiklS6FLbWwDUYP4F8eR4H71+esTU6ircWiZvaBqApWlPvSjgFtDeUW8xvao359sA1oK1u0CZJbDf6UOaeHiDr0boLL9bwdke226mcsjF1Z0hjuHCgDAPJxm2peR/ya8E7x1R+jFetQgxSBuTCQpLkA1f9WS610Px+OY4qxUipUB4nEj/n70oBXbJxPSd9yCXRZRVTpjKxIHEyhVIuanNocEwMOcvk63l80Hdq1EwZo29p33c9Z7ZI5WJVF0nh6qZ6eRBVyzoztlnxOpcts7SxvQEhsPNjIbf4nE1bGtUY0SGlpBeT3HqPGh2XhXLPGTFJb6v41AbuMRFPxSLGTLgT4z41Y8LsOc1kRd1bq8Zs0Wjjyh3AquUx0u6R7JAWBABNiHtuaZDXkhBo2IyH3COb3MJixD4sY/B8OxiT2G9mv6G9g8QUePfI7eBEgkUlJzkEotDe4BHD01wFuqIehiiyhTM9srBZxMCtdfZ759U70zdMdqxtGDsHnSmNp2k0Tk9PJ+1MLyUTikFmGbZchGklRkJ+9CKcqWgrLuOsf7oxsVV/tstsqXOXsvNVXqoUjTKenMf8MMen4s10LiuxVM5GdCWNnAuZJke+FkNNM0FUvaqecrpq1+4Xb1zQ2vjW67tdKcFQuVgrqYU+C8uLHLDwfta2xOkS2FwrOxfSRGzvZquPs26plG+m1eupj6FrxiR4qXhsAd+b0huoWDQmE7Gb24we4CCY4Myg580D1RhTWYOuVC1rn6QFlZiCkDETLmzbLRSyCa3vtN6wJkkedyQnFkhujrRvNTnhLCc48fd0Y87JdKPvG733lKFtjc14PH/h7f1gu71w+/SZ2/2WE+4abdsi3n48MDk7QXTrNMuG76czHs4xRvxONcgUruHhTHPCgdFpSN+53Xam75hvHLPxnMrTlOmhSGPGtL1hlcyLiqoThm5BHcIolhG/KmisyVkWK+WJuC+015bClmNKZZPk954H5ITHLMUOjzlRhKnBuY3fJ3zPbHsNqMtTnAkfyQTnR2yevzunZlTed+lzlszI7PF5PV+tw7kc33x9OyE0ixxQGabT1YvoIsZfdHMtel2MWcVZ6UmzM2ONaHQiViwvkMdbgX0yOmK049mobNnELCr03pCsBU6b6NTVtLzsmHnO3nkkAQGmS2Rsic59MwuP01puFqt4C2bO1nd0a3hTdNtoe3jP6TEjVlQiDEhywbbfmGbB2y1ytlXNL7KyE9hbC49IZHNb6zl5QXDp/PCHP/Ly6ZXeG18eXzAJG4FI7AWq7Xz4lQn0SKTMnCwX8SuYxOxd7S0y15ajO01pugM3mu2M2ZgI5JjIaTBcGDYZnmMiM+t8FtVlCWeUGkhPdIqlVSZVPlaWXaLcZJrOLr2Ri6HWMhQp+FmSnYgJmIkng+XoGCN2QGu5azVnlaHcdVFQP7wqFrzMEAkUdYYuBXGtjlWyL/W/i7NKR5Zvngp/PeE3Xt8Z8FUn+JjytVxA84tmroXOC0nLWU1eFZvFIKgK+BMC5UT0BlxnN4QAG728QxLeo5bmPJ8HWwPPpA9uzGGRcOq1NYHHniVz5BRzI4boRc0y+KiTeUymjrWYx3HE/s6yrfO5C6KxMWtrW8Z2RnPPkoosbyHastqhC9IEtI3apQhsrbPdbrnHScB0EWUck0nj/vKZT5//QN+3sOZHjNN4moF4nL9vudenZwfJzHGjExeCFXWMWMx2Ml4C04I0zy0lJAaBecTBMbO2YFwEKPVvrxmx6fGin/M0ytFgTCSrUpADThbUqzguFLVmOKlduNSVuKn6o54yHgOfIxm0aH+BMVe9/YKwTwfi4F/1V8qSy1JMQglT+SKx2HLAV/Ks7RJPau3als8Yo7YajFApdGXtgO5ZK09B+atHY9LOgdKVsDE76zULUnB61Lppcj26tmTjONWYHPtGOhb5eqZZzoAVtuJ+ki0/Brq1kPtlrZxpzhgH78/wDJ8+3dn7HZ9PnmPE1PYecfE5lU9ofWPbhLYpvceA6NY7bdvjzx57ck7JiUISWdJfvjzQYWzu3Lc9nvyaQUN6Tl11zvII0ct41ohrIoO0xv3zJ26vL7iRA7g706JMMGyyvcRmSnXbrW9RgJ8zstW9xzNRAuL3zkbHBJ7HY6X1JRNKrXfaFNDJMQ4mIzzr1rBn0gRdkpAOSM8On9M4xZ/oA13lllSimEGUwpZepqoKhRBrw9wEvzhRJnKEWWNQ01tX+WlxahMxrTElVPfnApYrliziQ4ViGl4iDGy1fa2ssi/FPK+tQhJQqkFfz8+lQb6W31aHjScTfXGPoUbABppgeeZvvb5T58wDrIyVrING/BRzYmpQ0oI3pAJbpL9jQlwsZJL2Tstm2bhtRLwxPZk5GgqbNx1J1Jr5mm1M2fT8eD7pvS1+prSOuDNmTG9vDbZemdaB9izL9Gi67luPeUJ7KmeLmp7huDboO18eD473B+1NuL2/8frDKz/86Y/0fYuVaUE01xZEflrPDG1mH5lZfFd062y3jf3+GvA+exSnTd4f7zzGEQZpa7RbvP88BmgO4ULpfedxPDGcbdsRVcacPI8HbYxY3BYDqFuDNgxGbGoMsUbbTsTMz3yu6kkB1NghzCY2JefpSmbbPRWnNk+KMsmcxpxhzDTHjRoZx6E5czYURNIYjZlCf23XEnAiJhSVoPHh9KZMyTm6GJMRwu/Z05mJIs3yl2ZYokVuISBviGeVSArmVPZVskl+UgOjY6gA4aVt1MdLB8Oo2Az51xom9nFgmJnFtdSg79LQ7+jnd7pS2sVLekCfJCQaEbNBIdjwcosRTHo/i1iwEQpaJWm/XlzCB880tkmQryVh8pgR3N/2HuMhbHCM+HzLMscxJm+PRxJ2zh5EyYSAaA9qWmsX5Wy07UbbGrrt9O3Gfr+z3W7QozgtPYr///rvv/DL4wuI0778zA/HZ96Pg09//IH7yyvbVtS08FS0hkpMOB/mHDMeV9s2ttud7b4jfU84FEI5fXJYQLW4tha7bnu0pfnyaA1tGx0JYVdhzMlhE585/iVjbm0twoFmxHgDQglbTE/QFhxWq5YshBhvUlTDyGKL5d+z6sZROmoZckRBR8EbLHJ+hjnoCWUTbNXc1lU/91MuygEVOSUaDiJ+jxg+a4srA5pwdRmMzG2kPEaSJuuQZ5iYsDmVM42D6YXxE/Z/lWvIDHTBYrPJFPDaHSDrtOcoklMJr00VKyP87ZDzO9laEsoWc+LiQItvGUpcC1r1obhxzRiompK1opLE4MtwiJYbXUH1Kj57eD4qiSAB4YKeGXc4p/E8nswZjJ+mjZ7bJ3SpM0c2tW/Qt5zIppLljy3g7n7ndn9lu++xd6gKsm0cY/DLly/8/PYLNEceoUj//uUXPn35hT/+4z/y45/+yJbF8d63eOA9Ei4Vc+nW2e83brcsi+gFEia4Qs/Mat+2SCplLc5VkB7Z3bbt6L4Bzvt4ctgM8sa2UZMUaD3bvXwZKulkb/WIzKlIIfR4rlIxYsTFqhpezIPU3jSSSSZRY3UReiaHkNgYCWlL8ioGjUl3KyERzzZLYCUJi2WTg7zGHCBkPfLg+Tw4jifTY1+Ya82zWuniR1nyE5TNE/ZSCKwUDDIGPOPX2htU1hcCIbJCrtCwWVA1QzyzdFyZBV6bFV3qmlL/+Ate3x1TMnOIk4ifxe/ySq7nwuZJPRVTltmxSzE2IW89usUBzR5Fq4Vi3UwcORZ9zIlqY993mnjsT+IBXSMjkRUriYRGeExdXQ8tt1foWxIalGUYpDa42Xda30I5m+IKj+eT9/d3Yier6LB/PA/m88lPb28852QCP/7xD9w/fyr7QrXFtd7oEuWX2+0eCZ6mUQaBs0iu4dmLhrjtsdmODVuKvO0bt9s9CBDAYQfHGMyMSTdVkCfkbtww8TGD99okqgTiUfuESsDHVhM5EX7FcCFhy3OCxvTC7FqZHvKgrqjndHs9E31uRZSJMkuYX1mQr6YSlOerTW4jpDMwo23RCT6Og+P54BjPqL1zeihfVxztb4vMQiUkv/XynEd1JqdSgk9FKjnMBv01RTH5zGsuc3nMknc/77tiW0oD/gL9/A6sPZU8eLWyPLWtg3905aGUsthwH2azkBnPPN6CyeWOgSpWV/iqErHLzGFMqo3bbUdwjqctSFGCUcmA1nKQ1xZCvm3R0dF7bIMgGrHNOZhKEy628DitgcL788GXL18QFW77He3K2/MLz+PAVHi8PznMOdyhNbZPL1GbtYBAqhozcolYusgJZdBLkYsD2nrPeDwTTGNGkcjCOAYkvvH2/mBgPJ5PjmlBMr/faSIxFaF1REIxIzue0HgtLtRArSJtr52cEypnQICQnSOmEa9FHpvVt5mJlyg1NNa+JFjQMKVGipLGujxogM36URKKW0KNgOXxnMbx5Hk8c1yMY2orrzFlLqhtcWKirS9INJZru6Zw5NnPuNAvXRSpzBdIWp5xQVvjolx+xt5fecRVHlRZCrv8zV/w+m5XyhV+Oic/du3iBFlb8qXJajHXHSw68ZN84BVH5lWWTzSb+JyZAALT8M5NImbKpq9YIDfGmNz2zuvLC3N0bD7TA+jZMNwaWw+l3LeNfe+0rtF61WJYVsRycRXnwlVsFEHe+/s7b+9vFKvj/fng3/79p+C39s523/npX/8Hb88nuu3sry+0vtN73qdGD+VCDeIXb0HG7xmbuyfdL94bM5Im5kHibskSGua8HUFuH27ItrHdbuy3F2QOpja8RZuNqSLTgwTvgwxCLjxf8r3IwLr2IFjIxm4bNmPotuQkeMgs9FJQOS0MpQCS4pOxZtUxc31LOZZRlwqNSoaSe92D1/oYB8/jkTOCg9a3rrzI5xUkeigzkI36xip2SDaW+6mgq+0sSyySxkSpTquShfJ4JdvlQCQRpZy10zTOcYEVwF5rtPK3e86adVNHquLqehZlXVYocWEO5QeL9bg4kNmRkjWVRAu+SPQVAwihN6aeLKAgAj6fwaFt+onPP37C/caXX37CcsTlNBBzOlmjy1amaGcKaJaZEMQnNavUM2lhBjodZ3DY5PH+4Pl4cownX376ws/vXzh8xE7WvfM//8M/8Pb4V97eH/z008/827/9xKfPsbWgp/WWjPfMZXVZIA23g7VF35yngJrjPhhjMOag98geb/sO5jwe74znQJpw33f6vrPtsVvazJEvkhC/SQMb+JzMYXBM/Ih/27DcXSyHDBJcY5EdlxtuHTxKScd0hml0m7msUpNlJqHqnR+VpGI3z9JLDuOmqIy+qIyWBPbpg+kDksU17OD5fGPO7HNL0VJRTKJRogzcGWBVfqTizAsUc04Dckn0VK6E9XMeyfNcOQPqmsOpEOqEv76QYnnskn358M2/7PXtUkrB1OuBKw4RWYNzP1iF+khlpowVIBdCqAVd30pyuVR8mvUlcHTCYYbQ2G87vW3YPHh/vPPvPzn3e4whGXPHjicqBTMyQ+dkTTQflCo9LX5sZlPeXHMjWajeUuG0tON58Pb+zs8//5zhrUMf/PzTL4zHAXPy008/8y///C/stxv/dPvPQc21EFqSGbQGNT9nJDbwHGadg4izNhZ7mThNhL33KBF4xN3j+eS2de6vL0H/2zaQaPF7irK3HmwgH3TRaCk7DHuOVM6BH6GUtbtYzN1pWP6ZoozcnzPKSaG4bp05z707DQ1yRdY8s8ZFPL3wGi5JbrgYoGrRWts31EzaOXAZiMSYlufjweN44Gs8SSq46no27jNiaT/Dg1MQCxNVmeP0WkLFXpoxsJ7vpYGrBFHVMpFCvzkVI2mZBXyrdOPaIHcQOOV8Wa11fWuszX9UOWsW6qkwviyP6hl4VzbqeprauyKYETnGcn2moGNA0YoxWEosrHVrLcslzvN4gDf2badpjLLQ42Df7ty3jm0b+IxWst6RHu1eoOlRw6tOO8+92CJJTp/DGSOGQSHBfDmeB4/HI7bdm/kgetTz/uVf/gcucOsv4DCPyc8//cLxGOy3hnTDcy+VWNRMtM3o2ZRK1dvMwdMRo7RMUtVOa+MYcY2xuLy+3vn0+YflFcaIUSJiThflcLBnWhvz2P5iOn7MVEyLskomgeaszXEjOzzMYm8W6fT9xv22I7NxvGXJa8bmuUbskTrNk+fbUlCXD6Oy+U6MJA2vmZMecgJFTGiJhxQQ05jzyeN4Y4yDFKb8jC8pshPYnVUFj5bCkw108Zz1zRQ5zVEm4oEy9EJ0F6KLJBR+ru/XGM0VixYNUIp0EQpa5MDVVF2cxoui/NUMoXmJK+1yc5XmLr0sZ+D5kRqca2R/piSFzyvuPPmKZpXZIjwWp7JXfKmdsKR4kLBx+raxtVi8Ywy07ey3G/hERbjfgkQ+54E9Z8R9mRnWUdFGWPVOtY5lMsKIvRvJDgcj9rdc1hR8Gv/Lf/kvDJv893/556Cejckvv/zCtu+8/fKF2/YpCaPhUIIVlfHlHAGrcidq8YBxknFotZipKFhkXucYoI377c5tv9MlG9mTlmjDsCOSQA2hbx1/e2BHpE2DWEBqk2R3SqKLWQrKmgg/szPHdcN9CxquCJlizmy9UG2WTpUwatZSbs1u4SVLLyzrlSYW1EE8ZtR67sImzvDBMZ8Mi/GgIh4Z7NaZPlaI5KsaYEEYyESVkIqXMaxnLBqjVC7Q1wuengkjleqYifUqcl/JfigVES5ddCRkthKjkjF3GhLN2HZlWE85/6uU0xMWVLwoOUrSFrcwIYSckIILLnck4oK1OFCsw4COWVmqQtvC6OTDDStj2eEixNbohwpbb/TecYkCvBwzAvOUgGMGR2WtwTC0hVfxBKzx0CTvqyM03CWzcbHAXWOSgKfSqjbUgsMrXvNcA0Y3FJ/G4+0Lz/d3bLzkWc5pDHMG71XOG03BdWRSrQ6A0zy757N85WaINva+Rxw0LLbMMIdhnPvDG2qgNMb0HFQv2Y2SE9yNYBtZMIDCe0Z5xDy6TQxloJhFiHN4xPCa8SyTVYYoVzkXw7yM0Qw4mzB22sj6ZXpCgpEzGUHT03jvGE+e82DawIs+V57J9cLBJRXtpOvJRRZXOS49t6Txl4o9K9q5JLJKF8uj5ilSKbPYUqU4v8Scl+/H4VaNInMqJx9gOba/VjkjVPIFyYLArmecZnmjWZy1HLV/Bsbngap9ql5rzTxrTETyqOLTOF9+F1ZxfFp40+dxIApba6sxGTf2rSM9apOe9dmmSmuOdmPLhmLP64/WpoComsVzc2A4rQtb27nd7qjH7tV725jziU/nn//b/5NjZpzbtvNyu3N7uUc72POIGHLKikjClUSXyrmpcGasU3iyvh4URpElNI4EPbB3erJ+fGS5YBg2Box5hlhRf0qPGX/W1vFTAuIOmEd5TcVcMVOmR1fK0PCiB1EqCjJ8dOzUuEtbClAK6gnbJzZnTnLIeLriS3yNMR0+mHbEkDHNKb325DmeHHMwfTJTFaX4sRTxnTMTi30QdAFq24+lQOU5/Kx8XrPLwCKtr6OooNVp80E3yj/79c0VllwHEXhC9pNtd57yW7NrvwtrPfsVcV9eMOakwqpgX+HogvUVCkeLGGm9Q/iDSuYWGVuzicxJbHaUgpm3be7nmIg0dDMTBzpi0ZvGzc85WGMiUY75ZB5PVIXbttFa5xgjaqKJadbeFRIQjynJP4249Xa/8+OnH3m5va57HdNorfN4fyBdefn0yg+vn/j0+srttvPl8Rb111L+wgxu2HHE/da2f2ldte63Ci0hfwGrsu7YtdHaRmsboj0g4HTmczAez2ASzfDA4sCE5sJwwQ7HhwdPdlyTQYLNEHMnYvRICDXMlYGcm2CvZ34+m+hPJfczySFnM4j143gyj5lZ61xjTY8p4D6YNiLJIwFthz15HO88xyOUdvnINHDuF/YOUE0V8c/lMWNIEotaesVzJCoL5MeZI6pEZELdqj4gmnTDChtPxaxy2LomqUzxulxIfVmN16kZ3/ab32UIZRmkTpJ1nBpQXHmq8qwRNhaWl+W6113N86G6eShnwh4xowvZnJ21UY8NbRTPsSEJJ/J65jSGzFzQ2IrgizzAYb/taGscR0DN0SKBdByDbevRYAyrpyG46lHra5bsIFd62/n8+Ud+/OFH/GeAUJD9JQdvbZ3XT6+8fH7l1raYXj89q4BO8+hGCWQRHtVsoL6Hs6l2t0v8U+UpF4kRIEQcpK1nRlFJTgHDD47Hg+NxhCGziVoYBkWoaXfmoZTMRR6hsAAAIABJREFUKBvENAOBpOW5R0uCeSc2WAoPagRVz6ttjEiSFaI65owyi6fv0sgozzFW8qZm68pi1xjDDg4/MCa0QEbDnrw933ge75iH0lLURi/4z4cK3lq4UsglsMbaeYzlJs71vTjHEt4VLy4Kan5DIvT62ushkolDVgy5FPR6bYSH9GpFK8i8lPyvUU5yQT2tXQ3bWgoS+zIm5ysWQItknIqb/rKU+/pnBcsUUaE63WUpdSxUmjPNFi8tNktsXTctt4Zw4+3tjefjyQ+fP/Hp9RP7Dzc8x825p+DYxL2fvYKWqX5zmsHqrPB43re+84cf/oi7o/IFR3j59BI82vtG3zduqaw/v70jEhyamK2TeMEMG0fsU+KO6wzCQdHpqJpbPvceSqg1QrNt2ZHiWQcM4sQ8wmuO5xMozk489E07qOOyIWJMdUYqR+11YpaKmZDWspez9tycOFMjQYRmTD7zag3mnBzPyfs4YtMlISiLLYZ7n22ElbyZGJPpI7pJOrgaz/nkeTx4zmfGn75kQrJlzWC1+xaMlaUDF8+atVTJ2OkckZn+atU588tJZ1vVCD+RjMsJZ4VS2tLNCk2ctanUSmYuvP/h/cIAZ/z551/foe8FEX1NMk8vGRSq2IPytEK+mlRjvmvui3iauGw6zZusgVjueAexSBPOakPLZEtvuXdlJ8gIW2NrLQZyCQgZzyREFd1AnMfzYL9NPr98Ymsds8ExHhzHwft7WLR960BnWg8vYmFwbMTIE7OYjdp74x//4R/Z953XLz/z8y9fEFHmGDzejOP5XMGjHYPbfY8k0vDYyoG4r3kc+DRaV5pUVrCmI9iSFc3+S5UWds88Ej9FoqBoj854BnQUi+6N5vFQe+t0d1wm3jfQictEPTzpHMY4jGM4x4BhygSGSSZ/LP4kk2rIZHqLbK6FITM8ecuWcRlrtk7FzKEvBjajFzWzry5G2xTUeR+D9+cbj/EI+lyLaYdnqcKT7pNJSCTLFWk9PerHATntIzHg4pg0PWANv5alPxlR1gNYEWZ67ArbvtKm8osVY5a3LFk8x6Dke55IzW0d6lsJ2+9ma83PeewVPbl70O2u+LpKDJwEgngyFUUlAVhYtEBRx11jE13JjYmc9A61p4UsqByTwmNGT9PYfiEmkk/mOHAXbreN1mMKwbTIju6bctvuaFOO451jTOztjTk3RF6i3WoOdAockZqqEZjmjjXh5f7Ktu388MOPvL2/8fZ858vbF94eXzieBz/bT0GkaKD3O5tGoqaEYx4H8/FEsJj0nruB1XoGi6gK3rl1hIPP2rBpBKRtwU01j2b143Fk6YSYT0tMNe+AujOOCSPayCLW9JicMIUxnTEkyBdkQsiFw+A5nadPpkyGhtc1AsIeM/c+IaC39saWkxBFFbOJjWzvSoLB6mnNrKz0gMAPe/B+fOF5PBh+5PR3gRkluNhCUFZcmuY4APaComS8aCsLK6kSZypELnDz16+Co4vhxGlcUrBXXBofleWsq3xJQWDOPEYdt2Jc1rTJ0Ka/GtaKSu7mnFanZSdBUs5YPX8sOLZqSeKrtlO3X9YjPreWjxV4axSCm9QOYCdEcI/EA1EpCFK0J7w1Ar7N6KBvomz7jX3fQHsyVzovrxt3u/P+/oUxHimcIcCHjIC3e1jmfa/+wLx6F7a+cbtt3F9ufD6evD1e+OXLjcfxDBaLOLeXO6/3Fzoa2dKYr4KNwTiOldnGDT8guj6Sn5nDwZCEcVYFxCQN1N6bCDZymsHjAT5zfGbcu5jlFqPGHDGCxQ6LkskAm7oQTLTMdbBskHZZyj/NiZRMZlG15g54JuWCrGCkUxdbGfuIF8NwOo7JyH8bnsPUJgfP453H8xH1zPx+CXvR+9bAZweXSQ3RKj53DYuLiY+B3irsidWSC7wmDfoKEz/En5IfElmfXopUnjDyJlD77fj6TqaeLgddkxIuHVyVXP2wf8t/VDnXOEw8O98lNuORnC5WMWLdXJZQFoyFVLjc5zKVSXMRtQV1TOYMRTPL31lsAaCC+KQ1gojQZW1449owkbRCirad1nNmizSQDrSIpbxhJph1RDrbTVHdwQfHgG0IswEkS4cTQotKTpnP9IAquxrbtrHvwm0T3r584eefB4856DPKNZtLKMiYDB/YmCszaDPoZzZneApnJch0izU2c57joG8bjWCuaIyWiNT888nz/Q2Zsa1fV6VrizUkOlPsMZjPic0iKBgzM7XTqt5bNd/qHEmWUA2HRqOMOifTzljUqn2KyELPIonYyJEsSVJPckHwjRzpoZjP+eTxfPB2vDHsYPiR3tUSsibMXIkeO2UqqXzhlX1tIV8f14RoVYorckIVX5YyeriHJm15u1LA7ACO76x+5qqPZuhWULfI98lIWsMJ6oLTMIgSDdmXuUN/NaytKQaxTn5qfmF9ygNyWTxd0N2sGPuZ9fLqTq9J3NHtgFsIYNPc5VqypBIp7NaVtkXztLaW40Bakgf0sg45tLeHchodIyhwY4ZmxNT4Bk1z64Oo3+GpJElCmGNeYieyr1CiwN8d8Yn6ZMMZAjdVmAElN4lZX1jQ9J7jiWE0DWX3YJmj3tZA5npKNjziM8KyLr6nOdOOFWupjZxzC00am3aadiQ7bXwe2JjYmEluj52/bAaMdZM0WMkpTphm1UEhl3MnLDOL0aRzVqtZeNhjjv+PtLfdkuNIlsTMPSKzGuDwfqykPXuO3v/J9p+k1d0ZEuiqjAh3/TDzyMJIA2p4mwMSA3RXZWWGf5mbm2OCRAJmWoGVixEtB8juob80N4wceK0nPucnxhrbgBUGlP5VFKv0j+eu8i3iIQU5VsnFDQKKlcyilL2ZHA3tqFhC2MoJhipR7657Rc9qh+xs128gaF/iO1P+7Yvfci/1Ncmn7A7IT77+QH0v8FZU3uwPRdTdK3z7N8d51PzOmyBs8oC2vaBaKQILeMgkd5E3KtdaR9mfiC0cLAalR8w71yroMLfOWU43qsWFGDHUqQWQTeNZDe5JjVewpwdzzYVKbwiNqeXkfQilix0GxMS8npjj2tvLTqXiDawVATJdZkyhzEQvI8hzbV7DA1zPByGhk7k5HiIcwKB+MFNb04P76AeNvJEt5d5oxMm6kj0PqGXCz1nGVhnPEnl9BuUvyUVuQmYlNwKCd8xCoBZKYM7Aa174nBdmDiwMGo8zqs15IX1x29vZ4R2Ya+D1/I7n+NS9obRopZAVSWrsqwyngJWSVV+LzdxKI2vdX333O6ATIi94AnfkrBcukE1FVqXCOnR7skiv52p/sGW7+W7Y/bLdCiwjkhFbuQwT1sJv+NM15z0jkzvk1zuaIspbAN835o6pNY4l0nykImMZudDcrEhMH0iAiEyk1mlErHHvFCxgmAF00JI5u3mgb0U8vm7Abu53GskBYE3b20lVvzqsUL0VQAQBJ2zAwZELmHFRmSAH1pxsss9Arok1CYDM5yeu799grWGq5gKkXZR8HJFsg5g36R1JmdCZMVCBvbHWDD50ri8UEgjH0anUXkoDESQkrNe1rw1ppO0lKYreqNl7r2ckf5btpIYwQkqp+nOCuoUBqf0tQ+TEuAae48JzXHitF4YNWCOy3ZpwAqdT8p6AL8xY+P78ht++/4a5JjnB1Wwz2xM5MtMfwRe8nRVIn5goIQ+5lCL2lH+ZW7JBl0J6XQZzG4XO8QaC8MN0yhYQqGvC2+8NovfdtSSvt+rcbS7395RPMJ5S/8e2+QdTKfokhUoVOo63ye8ty/BWZ5Zj8lZUORm2hql3F1lfrXd4LMQciEkaXgCI6Rju+PKV4E7rlLPsraNLYa1qpdeYGHPhcZ74OB8kGojaZ4LaQzfaG1lL3MRFz9jFjkGNWAUAiNNaNwDAGoFrPeEWiHlhjgvj9cJ1PTHWoDBXc3z7299wfHlQ7MsNWERv62M7DGNMnA+qvc/JOs2OhkMbw2IpYgsZdRejBbnVHuoAlWh2GWUMKhnOSzs8RMCv0a6bYNJEyeM86wonWhvAyCQ7yCjojSansgJjDFxjMPphwtpCOwytKzHNCe8Jb2T+vJ4Xns9PfH99x3VdYOKuQ9q0DGofVNGi3hLWncIGGUf3cSdwl/v0mezkPTjchlOtmHqmKQfONt+NlleaW6hrxc6dNL9F362CsGvNip6GN9NljVv150+Msr7+YFeKECoz7DVrMqzItxuYVdyajLQuritA3mSEG86uizTVBTwsodQ3tWiW5RZTNUujuJSiXKhkd6MebTMO9H7/fOK6Gs7jwMfjxMfjQG/9TpUNmOPC5/fvsFz4+vWBj8cDx/mBoxslIdMBdLgH5hwYo5YlMZaM8cLz+R3reiKDDuXohn40nM2ANZGzvY0xcaES0wpGiUOMH2b6dEhdM4QZJACYmFhUd/Nd92QCOdUXfvPSDgfaAbPEysEoPw2rkOkJXDMxFjeDkXpHdtAyjoFdi4qBE4yuKw0DYMsqbI+VZRJ5bc3gZ4P1RNglcGYBFniNgdf1xOfnNzxf3ykjqXYJ9Z20P1TZZp3ve2v0baB7m5gOt9l9yqmowPzVqnKs0a5KdX+o8eRsI9HuXsht5GYo3SxCSXkbpt7WkzIoTdMnIUSZmInwlgqVWS9rO8Wt8/+njHMFUTFqudieCF9BQvNxHLxZXiFbH0Eu5k5pGb0aivXB76dgL2UtsSbWGkxaveE4O45+4OzUDV3VR8kJX4FpwYVBxp7nkQY7qMTem/Nnjw5vhmsErvFEM+A8znuNQuiGexPA1LbezpgTfTbt+wQ8xCOdDD/jdeH1/QnExMd54HyQGGEHt1dZBtZ1YSaQ5nik42gnmvP1MhI4Ddd18bn1zqFq6d1GkT8it97RpTGy3T9z4OjHTtF4v6Xx4x2Hn8BZ28yW0nuR1XErGSxwsHolCQjzbSoltGoeaWJjiQroiTARC9bFWTObGi4iGDTHhW/fv+H79985i6vDDrVruK9kAouAHFSCVIunTjU/XdzppVLCkhApo07hGhA1k2GvZinvmnT/9w50qIBSRloD1hTs5k/UwND9CsU+4pkvDHYHoN29uEfF7nZMeYqbYvhPGedGrITOBkK7M+LuP+1vNgEBSncjuE9Rhml5iykFeNipsRqwmOwJ6nXg9M7X9UJEw6k01bXB617fThAHGjlLmDaMcW4SkciTh763jszANQZ8gTOSreM8Gs7HF3g/UOKdsIbn9ULiwsfHCSvhLxiWXVoA7KTHmeFojZxgJGIuzGDxaK1hGg9athN5CFkMoLZQLxCtOoTiWSRHtLZj4334/nzir3/9nxQMO0+cJwWsz4O19nEcOHqHaXyMQmoNzRmxK5pw54hDs26k8CVkkBrFciDDVXeK9J5gTzPFEV4T1xq45hMXPoGcOIyyo5ns6X7//IZv33/D6/WJjODOFmjLXPVzYTdbTM+1CPRVzyX+/sv2n5X5ChO861VQGkVTXXABfqWQYXibNnn7860ptNt+4upbpbJ85xob2+zSetXdSjRhBcJt3sL27q+ioKg/YZzH2RCRmGtgRMVlAOboR2cxnwQXqi1Va9qXahOXVsfO8aE+2pyUtpwTntxf8jgeOBpZLoXsNq0+mIuG26zjOE4cx6H+VY1V6faI1pcALhnK5VO7PI0p8+Jkyi9fv+Lrlw+c58E+6XnicR6MXGBv73VNHL3htI7eDHYQWbZ+4AnDeH3DfE2s10Jicv/l2TGfiePjgXae7FuOic/fvuNpT9T6s/7lgePjQ8gwAafnc+L760lj/O13/Pbbb/jyl1+ATPzH//0fRDvHheaG33//Db03/OUvX/Gv//Ir/u2//Dv+/dd/wV/Or3DJj+yJE0XAyLX7wxz5MlL3khE0nMYzA7hWcOg5Jq6ZuCIxxiQ76vrEFRcGPpF9wtuENbre5/Ud337/Hd++/Y5xPTfYF6E2BVXYWCu6wfJA9wPNE611IJPRuGLm7rfbPtUUvb6HBjypwJBqwZh2vdyVInYd6GrhuZBzyNE3VMnG8wd3qQcKb0Gixs8MVHzktXLHzrvQ1x2S+Zq+jfbHr5/Vnn8ojclhWPEodxpRinGsp7wGmA1bvtKVURzFHxXqGRnItTj5D3qz3hvO5jh6w2HQWsBQGvpQ3eW3hzOSwbt31IZrU3rbW8nsh7i/ayPLUbh6Jg5JVp6PD26kNkaRGWz7PD6+Yo6BNS9kBs4lNdZQjbjYk5wjtdqe6YllwpOi1kjfmlQEdwbIqmpAA3qAKgVKh+Zr4tvnE3/9/Xd8e37ib7/9ThJHNlzXwO+/fcfz9cTn9+94HB2fr08cR0NGYI6F5/PC9a9PXL/8G345vuBAh+VBACXn/VxlmDOEYLv6ncEU+JqB1wiu+kPDmInXWJgJvMZgbxKJ7IyGrTfYEYAPzPXC8/U7Pp+/YYxPrHlpbUdunjTHAu5ZWvOAYTLdLX5zxJacBGpovtQr9pCY0scbdLlRUGZAd7+0wCC8gauqZ98QWeBG+jNiDxi8/fWOfFWiUc2xhj6wU9ja11K923em0f+fr58LfMXc1bcLFAKAWp2QtVfDiMy2RgTRXDosFfK9iuJiFkmD9ejwPHBKXe+wZJtlLZ5+hmKmI6jUh3WZ+8GaszV0AQvNySpyo5J4aF60Vrs6cmcbAUZ2ZgEHB38n0zUDCCIdD93IUMN+kRQfJvKEA8FI481IVwsgF1Xf2fFsQNob33jRnwaQM/AaT5wfD4wL+P3bJ37//MTzujCuAU/Hv/367wCA1+fv+PY3clC7N3z/n9+4RmFONHd8HA+sa+J//o+/Yn2byF//C74ev1DsK5yjYLmwebkaZVtKoVmDEyBibRmYy7baXgBbNRTOLCR7h52grL4H5npivJ64Xt/xen3DGC85w9pmHjB0AoD2bl4sfyjhIlK6VZVHAyjFjfoVyZZb7HO+eL/fUsY7ldQf/GATtGgacmP/UumfqR1TrDAHsNUqYHveGMnn7rWbpWTzK7nWzzNbXFsQL/Wv937+P22cSwaWSNUFd/pItk6/IWMHasI3K7YmUUGsgGEJeKGnPWDoraFlIufEHOyD1VhVzAnEwtG0aEjykI/jRCwquR29o/cDq3W4hIWP5ji6y2CNdMNkOgvVd7WCbQMk1ZhOymqYJVpzHMeB1k8gF0W/kHQSdiBXIFaNWqmO3rN9DY6DB6s2QdcDTgeMigU5Es/nJ+YIzJj47ds3PC+KVc9rYDwv2L+Qo5FXYr0mvj6+4r/9t/+K//7f/zu+f/8dMRLzWnA0dD8oMPb6hjM+kF8a7OOBmLYV8+5ZTIJMAYhBlVvpJBVj3qNR6yRkeKcmMBrQT0d2w3LhEHPgGt9xvb5jXJ+INWsr4naOLu/I2l5kEA1qVz/a0LjSwvMN/Rchxorz7PvsFdRLttitHrGj5v40AhWhugemc6KMz3yDRJaQweKeXknA1IutEs293bRUL6T4LjsBtWnUryig6Kbu/GPr/AMSwluPbYNDbOBXkxzg5EBoMDqjjJjxv3mDdUNag0f1jzQ9PwYwJ9aQVsaciNDvIzVOxk1TzQeOfiAfRUZgKkuBvba9XoLjUAvsh+VaiDWRaoPkGmhueGgYux2sxR6PG1QZ1wvPiwtzHucDzTvmeAlFbsBleI7veD0nYlGhoGoRJm0NMZkucqEuNkKbuW5wIQLP5yfy+SSYNSllab1jXBPP79/x1//xHzg/PpBzIa6J9viCr+dXfD2/4Ptf/4p0YD4H1hXofzmQ5lhz4fPbE+sJxC8Huj+wlmHON7QVAoWyzKbKF1MNxkNdDqxKEusuh9kQx4VpU1M9LzyvT1wvDkuvWULfFRkV/WJirsFDKz3hyAlY3/Ix7kSrPZtYOLxGV9QGVJsCqNX2ljUYXQMT0n2y22neoUW1r92orOGemnKw1aXsVmao9HfTUW8bqV88k+UOsHv7mQwmUZrFMtA/+voDxXcaWBXxVEq7gZ+l1HPPeAIi/xYGpQc+2BinfIahw3Bu4SyupQsZZC6R5IVwJQy9HYyyrVLcN1DcSPgmmksZyUNLYotRkwKX5hyIcSFj4TxP/Prrr1znnonP54U5J86T28ZiDYyZaD6B3kgjVJtlzcBvvz/x/P7C2Z1r6J2pdNMA95qBLE9qSiNL/QGAraBTmguv18WBba0g9H7g7Ce+//YNzQw5qcDlAP7j//g/8f333/D8fGLNQH8cQDaygBaYorWOo30A0fB6TiyltmO9RcgyUB2qkD/lcL0R3FkLay6CQ5lINxyPA9ED0weWJWYMvMYTn69PfK+2yfXErZPk1OVVi6PWKOyWmtDpsAFvBydz4Eit2yuuLNsRzDxIOpDyuvLaivUsZ8BSRkbHHvHtPE02VTpOZbCVbkYxarJ45Tr1FQ73bCn/fxPyXBH1vcbdEj9vtNV32/zTaS0aF9SYccFOc6Y2sTRpUHqduuYy3YzFJvUMpmkyzMM6unVYO9CODu3AwjUXoNVy3jSInKxtj6Pj69cPCnfhhr1XJsacsNeFiMQ5DynDN6yai0xGqppqSKXNc16Ya+LL1694mFGWYy2MmfAW6P1E8wbkwjU4i/jl4wFgYV4T1zXx/fsTr+eAf3kA2dGa6g7dbKpHADUgHBoBW8GxKTOnegFDKpo5Pg6qt/fzgV//0rHmxOf1wtBM5ukdz1j4/te/Aap9eut4nB9ozg3XzRo+zi/4l1//nensJPtoimNMEkGqtpRmra6NUZL3w93RuqGBkyytzsNBA5s5cK0XXuuJ53jieX3H6/pkPzMWmteibxEjDaDCfs3yVrW5sGl3MZV1FTbhqIkQikrzvrIQSdWB7876/iqG0FuZus+nvkOJJSmlUaaW27zIC89yuLSkkqDdZexbO7H0buttuGVcyO9boNw/8wfB8w/oe01FPJGptKpHimsb93VmcXwYHeakjgxW7q3KvXH8qe2cXYW9Ul8PIsJHQdgyisyJ5+u1P2Rrd1pNLmfDx8nVeufR8TjZ16w9nSz6Hd7lBrVUd4yJMZK9OaXwYwZaS3ycHWy8hwgQJinJBNeuN0Q45gBGA87eGEGbYWEpYwwBL5NUukjU2gkz9kQtguNehVa3zqVLxwP/2//yv+L//L/+B3J9Apk4esfH+YGIhd46R8qMf9bRgKAo2ZePX/Dx+IrpiW+DGQDHwFxKBhTWJmpL5HYFr2/l3Xv0TnX8FI0zGhAmw4wLr/nEa33idX3i+fokA2gOFP/XkDJE7MGHFCXRxBemhRTjywBxZmsruNsCzFEbqbOMOYj8bLJ6gYbbJKFgt+emsOseI9vMTM8jCXrZm3HWNIsbqY6+I+SPVHWqGhBl5ja+23LXWlsS0ytcb0vOTUj4U8Zp3bQtm4W0JzTaswBrjEq6wL1XUW8650TMQJdygZeQVZbmT6I71+6FNTJMJFVSje6YUzefXM3qF3lzLqftN7MHmgHkhMbJA+7vnjNZ74AthTFJ82v9wEd+oHUyfBjJ2Qc9O5fUIqkA0ADAO9r5wPH4wHhdmDNxvQYexwOPx8HrWZPzjUmd1qK9xWJzuyQ8Mkira945MpdOmiFIeP/4+IJ//7d/h/+tYVx8jzipz+vueKwJax0fxwfO/sCjn/j166/417/8K45+Yg3W2nOuN7KBb+HosJrySdT2sUwJwecNn4QVyp0UFMsLa70Q+ULEwJxPvJ6fGKIyUkVRUzTmpMep5o6YAAxRPWeRR+CUvSmMw1oHcsoIRU5QdwA5CeJZrd7Q6t6dVjrE5Gd7r55/gn9e5IbUVNAbCGQywkwZqNlG42uR8N160YSR6HtlqJuSp1YNQaTth2o86jbaP2OcJRGSheztNHFp7IpjUVCqu0KKa+UVjP2/2n68AYJi9EgEOp1Rhv2thZwDawyloB3neeA4O7raLx+PD3x8fHAKpR0iwzehuVwua8b2AJGyIjsbwsg9zRV4jYX+Gox4/aCRg+j/mExReueExkjKOR7eYO3AeXzB1V5Y68KaifGcWMeikTlvq2Px4C/XSgYhksFaY4Qh02HWgfqVHakJmN4afv3lV0aCAH7/2zdxc9lDe8hRffnyC/7y9Qv+8ssv+PWXX/H18QUZ4hy7IRZJBFvyUrjpisQIOcPKiKwmOZjiyhVj5JKO0AsLT6x8Ys0n5vUN4/kN8/k71viEresNqqzZTsGwWbCn/lMAiTWUiBxggCJOJIBGtXe7YQyYNwKH0NB9AtaOKk2xyXYmVhoP8E5yCzkvquC9PGrDLDegWyhwAT1CcasE/SGdlvEXC5d1aO76s1L8m0jxM+v7Q/U9yeVnUe1okBkTsQbDvNCojImYQ0Rsolq9nawDrav32NC8o9sBT8dk4cOBYL32WgOxJqAhXe2folZNrboT86aJi0rUz2GtI12CyGq3OApdBvmmJyUmQ/o+a9diIGDV2CsdRS/0huNomFjb4bV0wKmq0IzD4XEFXr894TPRHifsUI8uHIiGjLbbNvVQxjKkP0C62gFYZ1o52dhemiP9OH/Bv/2r49vvn3gcX1gugD7uOE98/foVf/n1K375+gUf/QNmXMzbRcrIDC6fDeNqhXZiwbhaL4AJp/EFEJyIZjQy1oIRS9MpCwsXZnxizm+4nn/F8/tfcX3/K9b1DVgvUOVWbQVnHRbzlrpxriTfGRaUXgIh+ZEEMNnSyQDigDX2NJ1tA9zgTJVF4OKgzJ1BGXBL2Aht3gCRjCwiuIWtAFRe+QYd603YMqwMkmbmSjNcAyEk4dwAkO3A5kjTBuyK7ncj9o3d9k8aJ1N7oXYlDZ6skyCebUZQpW4tMUF4oErblmlaV6rBRgOKw2mFAtOrh7ZQRZILyvYVD2o/OucbDRgrsJ4vvOzSgzAcB4GRj/OB8yA41Pq5QaLurGfmGAz2NmBJvujzmoA1nAfQEgQ+1E+2AHeLmIj7mTAZ9NR2rq6Hs1bi+XmhzQU/D2QDprGOi2yM3w70o6EfTV6aagxrGubk2VoOYGl3iggW5/lJGz64AAAgAElEQVQL/ut//d+5UGkOrElA7ssXjtOd54HHQYcR2cmDLbUDcNpkzMDEQDZDWGCkUW0PpDnONBHaIY1VRzqjW01dPK9PfF6/4Xn9jufzd7w+v2FdL1ItjT1Qk0N0p5BZ+NqRi/dJqgcC/bygmVLCrj5mJjIm+4xu3DXalH56gznNqXlJkBT+QYdZbJOQukaa724CGWXMErz0ZEHy+s3Zth+YP0AiTMP0qVafROSKB11GXvcsK52mH9r+A3IT8ZOWys+NMxjR1mRUzKhZhVQ2qwU6aockCBztFe9OaDzF+kjTJAHePEfjSM5KsDdY0ckdR+/4ch54PE70fhBU8i4OY5Ny+01opvq4rsMlwtz73hRFZzjV6xMYMCaASxEicSrt7A17FjyaccWnHtJcgWskLvUkWm8YWi47wHV+mBPLgfDkKGXnWJsfXCtPxQU13yMR1jFX9YIbCRzgOBYN2fDly7/g8ah2DK+/9c4mulA5Og3DXI5rOa50LHQEJl4xcC2Kb1s/MeGYKcNdgVUtsFbTRWyfGTjqtubE77/9Dd+ef8U1fsM1vuF1PRFzkUlzHtJ9UkkjVk+YU7mg2hmtI2pfTJHeq9wBn40J9GENHLC2ZDhF/QOQpQ90z1vWz9TEU+WntUG9Siu+FgE+ss/e4aT3Hii/71bzqAgL7CHxLJDvJiDcKG6l8Yqqhjei/M+/fs4QmgMINvK5OmFzf1hRrOoN2d7SVWBFrS2PcPbosisaKX9fVYOqNjAyhnAckpRIkuBbw+t14fP5RO8d53EySpwfcFfr4TgIqrjh6F3rCprQZkYMQ2jo2kRq1w1KCKlc8NngTr2XkUA4e5PLgaMTvXQYN4olGTcZC6/JlPdwcGysAWMsjJiYFmhnw6M/cJ5Fsq9NaYx0S2Nh8I6VZJyEKH90/imQAjpgbddhCUVxNbzXCswFzJl4zcQIx7KOAccV4LW6DK6Zpk2SciFIUKte4s9eQ8wEc8a88P3bN3x//o6VTySWto873A5s9BRC83X8So1CueXmogImwey+sY3IhC8urOLRDqWnASo6MnOh0+DUiAXT4pr3pEdQ6lOGXkVrFl/3rWY0Rd8aKi1DV9S8F/1qNYgCAplF92D27s3r18q4DRd35mBxv/9NP/wnjTPG604ToAHauJcNhYqwQrHMXPxbcSqkg2pGUCXFjaWnSqTErULjYr13dANiOiPPGvj2erH32fpOjZqzr9j7gd4PHP1Eb11RW97UbmqhzJDOIQ3eFrxJZKvU/KwhYBgzkDnlLBypvSoxJw9rMzyMBz5bxxxs1I+V6D1x+oGjdTb5Ql7+bPDjA+34gB+Hah+OrMEPWN7snAw+PAIyufedNM3T6sTyvqVmZYvRE4a5gOsKvMbEa0w8r4VXJEaUHi3LECZnxkHqIM0yrDZOL46MtTsNnUup9JrI5EqO1hrCD2lBMWqvpakdxRYHz0TrB1MRYafWiyzet7GuCNhkilgRrwCeJuZPQTrdK/3Uu6XOqepkcY34dwoUrTSUKppiH41dHu16eDN/yqh+/N6KnTsrvY8ZVErf/0eGTjux+7rfr+GfNU6LutHYB2gFpz3qzHN1ge9UE1apKcGPJl1UR0eTd635OzMKI5f3YvpBfmuMC2sN1bdd0yYS7/K2nUCswMCCgVKWWX06M0aBjRQ3Gaejl7bqXHQgkERHJtaY+HxOdCfyi7OTfAEhys5Ids3FBUFOMbEwII8D9vEB//Jgj9AANIN3TW70EsWm8w1v+yGhlsqq/5eQ81PLJVXH78OgiL+H23k2MQbZTs/XwPOauCYj+7WIzF6RYnax5i4tpreCRVzhpUNmGDEpRzJfgIXANdtRY4UkX7KYP1Bdd3cZy0CIjlbGROfJoJ+axaWWkpvUEjQaBvFeLajk1805d6o0tSyjAF+Hs5cJva9Anvpz3cJtVWWYeAOOKorWns97SS52cKqN2/VVkNFttI77izTESpXNqMf0j75+XnO+CXBF3gBQvVHrWlbqBHs202Pn7AdQkyRGIngkZ79NxXloYsEzsCaX8sR1IeYFy8THceA8ThznA48HF+Qep2RH1N+sGqMOczi2kdbgrruRSJ1AOw60oCjyiuDiIQfTycU1BeFz971612QCiB4/54XX86L04sGofZ5s+Tw+ThyPk2va9QtFN4vAAm+pp2FcVHMAIFExRi9T32wuRqiFZOqWmmip0SkZVqKAiYXrmvh8TXy+Bl5jUd0ewJXAqCgZuY0T3rAkUUIigBwkPSU12ufAGBfGdcFNo1/gWgXUtIXqYKbspVDndxtjAys69Oa3YWaqq2IqkShc1moUMW8sAghmXRnwkKOrSGsVSN4zJkbL0vwRRKPrExorp1SwxFvkkX2+MYTKseDOHJtXrVxptcxHOEC9NgAxnLYJIX/4iX/COD1TQI9QEqWz7uSaEplrKM7/5vUa01Bv5/YUUDM3xQBpauoyaEysMbEGV/bFHJQ1UWrhjX1MM98e1i0AMPK1ZkLMAr1RZaGDNU+lfWENin+wdsB7IEC9m5WFwjEt7iBSuIISJ7E4lsUV5wvzdZFSl4bj/MDH16/4+HjgODva0WCdjKPsTA0BY6oIItq89MTzeqF2i9RGaO+UVokErsFayhtU6xAJrZWIqXoxgtu+1pyYc+I5Eq8FjABX+CUlMCe40m8s0socmjc0RuDFMMQaUW9A6uHEmhfJ/wYczTUJlruPTAmbBKodUqlfHUp3eOO28RRkaTozay2eICeP2sEer8buqVofdI0WIg7MiXSD47wnovKOorxFd9Qq5LTJKM2E8P7Q2ri/fiAEJjYglH8XJSFjS1SZcYNDwO188HZrUBhD/idqzgKCboqvbrIXIlv6Mion9FAIxnRJKTKqRoIpagDNOLqFJHlhXhwTyzlIgM/crZgMso0MRjnFOdCuA0ef6MeB3ieJ3sdCbxwfy0LxnLOeenqcpDROkVgLRR5uFktQVqSZww4eAKgXGmFaRShpMW8I67CWQD/hjwfa4wvsbEC3mrFWJqGcIn0jhStZ973mbv0zJXQnS0jyGddiHeaL4sgcAmLMvJXZ6azGJKNqRmAEsNAozmUNC4FlgTBp1KpebW8unH06OdmKL8a2FjmiXEIEpEa8IEehWthNSvJa6KtazZrvKGoqR/wtrTT1Kan03hQx246GFkULXRuCtVRJ4kaAR0i61WxXqi1TGf9dBKKm+oogUwjyvhPV3tvVLZ1fbRuzqiXL9yQ2x7zS8wRLth15K90XzW/RaphF/1njXHuFgCkaCmm1t14QylNip7dlGIZbe4cQd3IEyLT5+LowrhdT2N0zJehUEhDmYAN9DEpi9o7zpKf21jZkPufCnInei0J4R92mCF31XImsUxZy7Vo6Apum1VoTIsjDMF+DaaaDm65FaF7W8FwA1kLX+Ji7YShHKtkMsnGp1lBH+3g4ZixGvbWQYfBVE7EQF1YOrakHC5LoUwJlpelUHOBNbk/HMlLviPgS9FpwrKr7Ehz6dkatlOPYZzlJ3l6hhb9IxBrInADI3NEl6Zr0XKxWF7bd6qjvQ0WfrIOpJFNGXrUesyNXqql/apA+2QFI8ZY9HdlCNM7c98itsBHfkdJllPuXuco1BaBqwZlxZjdDxmQb5ElQo4rq9hyk3jW4AKUtfyLg6lZJ4GQN+cQ/scw/Ms4baLIdpm+pkLuA3qOs+v4SkC4fbKBsSfOG7oCtwDUujM8n4vVCzAGPhMXSRuhAGqMPkjOhrYatHyfO84GPjw98fPmCx+MLej+ZsAaE1EISmS+slfh4PHCenT5iURsoZjCyB+ursQKtLXgjAETCvAazE/DD0I4DmQuvebEnaMbIZA2jQKXFHl87mERz43bAFls5DqLUkQvHeQCtoTcCHUsQ/LUCM5Y4sTQCX9V7td2jjVwiG9ybq4j6UrBrBjBXYigtXHAaaFIz1yJxJODd2Toxg3JoItRgLzsLrQ2ytyIHqJ/AQQR3J2vKOuzNKMsh7iiqM7Rm3OmnlaQL7n656jpGIGYch1oaLvKAtwOB26A9JVezkfqOkJh21YillkFDVdtkB58yPJ65fS9DLa8yy2qVxL3xvWQ+GZwSWLFtAoqq3YoGyPesqbS3ua5/zjgNTT1LZ3qihjFgTClqy1jITgserl97UobyGNB8Y8TCeH7iej6RYwBroht3S95yKKxNllbAY044DJcRHRyTkyrH8Yl+nPjy9S/4+ssvlIq0xki4aBgjAp5sjQCMskhHPx4AnGDHXDAMlApbuIvAjX0ACdQ41jWRjSNsyxwzaDxoVaso3XMgwb0sMNIU16Ra+loLBxztkOxKo6DFjICthbgGJoDn61I7aslp3LB+qhaqHZ90h7d411g0ztcM7jOZC9ckSDTmUn9wwVMbvjzhhw4RKKc5JgWz57iw5sBaE5ETmQPuoXe03VOuWjMDe4aV7au20V1eu4nO53CpVSfEtomllRq2DYd7c27ABwHtnlGrRq9jitpMIyu7g4z6juSo1F5OI70S9R9ZOwVkGUCDxA2SluzlnsKp3q0nMkxGLsAuVTPLJCtS/+m0tvWTF1aG2e4+Zg2L5f2ZUFTGjZRpasArnYnJsakxRfWbQM1bVurx7mXzlqRwd0Aq7WsFXq8L5p+i6J0a9Wpov3TKWXpT/zT3oDRgsNbRIikGbAVKUS19ZuI1BlYEuouNZET6mjXUVu/2eCgVIrH9WgnTOvemVefXWNir1kFEEKTZAp1p9+drwsNwHI2LftwR1jChlBTAzE75Fqk53NIczBAiJjVppU/DoYJW1TGm8TVXBp7jwudr4jX40Jo1pGmLWHLyJ8y4DgOGFQuv67XbKBGDjf4fDpap9uKnpBpMbKrarvVqQsQbeq9WhVyZvs9LssQ5NG7WwNXx4uaC38c6b5Ki6acmU8TvCSCSDBe3jprqdCEwP4xpZWG3MrKsPy6MpVo9ubEhKEOpNBsGjsHJ2HfSWK+pGrlet+psWnsi8h+b4M+lMfuDRvEetr1udqVS9TGwx3OYECp1UKGfkOLBnLBFZT320Bb7qXSJe1g8dVPol2JHh9r6VXXh0Tr62REZZBEdJx6PDzzOmk6x3beKKgJbhwubtw70OHWwFmZyj2V22wAGktur6nBR/W9RQ2hOzDC0ILPFVOknnH27KYQWVGZwd3g/JX0yEWg07uR4VRokSwmMlbDjhK0AcmLGpC+rYQMk1nphrknQJgHTyJxryiatcyv2IlWwfgGGNKaArvuxACzpJRUZYWkL2J7rRWWAdVolfJY3uTxV4xQveNde4PBDtVQykjjP7gQYzvZQydR2nVgjixDgUsZ8/7PJe2qh6UTa7mz+0Iqhyir/fEXsV9ngjX5fajuRqfJGYFNZKaqvev/sJo8gic14pZM3W6hqVmQg/qyotEt6klmAIg98M1OW6rH7y+7/KB/MFdtoK9oAuUfIMtYeFyrkq/pv5WH48Pixas1Da1TNO84HjpPcWzPO111jwFrD0Slvsgt/JDIc3E9ExBQJzoYmx3jnCjTj7GaAfcfmtj//svJAQvo0wD0DwAgEJvmxTWvclVoDuaU7m7P286OJBpg0OiF8HNVyzGRkgwdwOJr1W1FBSoEzyIsdcwpVbDgOQ08NlysyEo0+YG3CnYr9ORdaSyLUrsOSAshWLcJlbeluKp8SWyNq9zFNaD3Ph6wUjiKNdJU8d8REJqNccRQh5pfUFaEep8kY06YG3UXHqxJLKW5CM5NuSm/bdhYVOaqtQb8Se4Y0FV+3zYE/V5R8q/6ljLT2otQmbVcKvvcGbbAGOxojQQAtWMfPSQQ88+PPGScLa6GLSTpepbJBWYSdLt5Xg9ubmcjxFhJgqiSjPGHufN1R6cSNYb2LBt9vISmT3inIdZKkcD4+cJzUuJ1rAi+S2QlQMOc2eQk6BdNBlOOp+kFZAqsx7W2B31IV+192U7GqVzoIvLTe4Acj7dI0BDLZyhGPNxNoxwO1ByYiJP0PHkzvQKfoV1SUOyTfshYMSnHBIfW0xdQUTLPWXBK2Kr7tYh/TG9I7P/sMuE9Y71iemFqKvFZSm3ZNrJxYMQBjHxkFuep5F5Jv+oymaMXIQxJ/ASGJYgPpsGaRVficu2iZ5lwqFYK6qQFFd+nKuEwAXEpczribcZMLDLZppkXkS50fQ9XV9SwL6LmPGZSxOeiUyj0XCFQKB5nYdStkwO9fuf+sbIhkm+tiDQ/8658zziKpZ1ZoBzbqA+xUZfd+Kpq/5flpDTXzyWipkniy1uyti6KHXUDXQwOYTp5OTdzqTbGveWgtwYnjIHOoHyegVCXHQGkS/bC6AZV6pfJwBwKw1qWiF9vzryAjiCSfvJFqt81G6mYAFtYcO9UPM8pruKnfqYOs+xgaY2ooHVkad0bSiRgjHRETGljGG7jgrskRcNjbtNvE7iVPKbAn0hRlWasvKefDqeY/IpDjwvLEsmA5ESku7YW5Bua6EGqn3Clb1W7sL5oyHRetDmBNzNLqTkCBmjrhuWGk9L1d2nCnxZnc0F2SgbW63VGkE2Yb7pRnsVAGxsQREE5glkjzLcRVjCAAN7tH3QVTC26r6G1QpdpFsaNhUQxrOk0EJ3nYMt76GQqpx5q4rhdezyfGeL2Fon/aOJkPE2VSTzM3vLGL8DLH3BW1alBAEwUq1kVMzqodhLhVn2mP5GTZh26Ktd03awfFno/HB47zA/18sMaSikEV7GGBOScuCYC13mFC8/htNE6zg6vqinUT9Gw7BYpkz7IlulW1ZvUxkXIgUWmzbh1RR6KpdaBNLQp+Jmdqo8gd9fAxVKvwnbxTtWEl09iM0vxh+nsVArvY50wGMgQcKAGvRW2kOQXEmXM7uBriXEYUWFoxmOCGshkTM15Ya/B7cm5Q424LxBbtchQAVtFT3N8CUIiOkCFmTZGVlHQXWpHiPW/aX516KPOizgfmDKWxfE1EsgWHpTGwZK3t93gYp0/IZyaaXIuVlKoXTbCMM98ApKzDZfo5OrhKZ/cGtJ39lfNSvbmm1AwH1nVhvV6ag/3H5vcHMiXVnA+xJnLfuGLv3K9ND7P7QJkiHudOW3jgQ0bRkDmxLmoDtSz6X26Ct6mfZa0Bnap0H18+tNjoJOAjmYoxFzywt1pHLLyeC2NMPB4PfHx8oeTIrn34ENy5DsJAxJYaqgcdjTxlRiDHQrQkPVAD5axBIRT75J8nWzcrQxHElJox3WQy4mIZGV5z7r7gSF4vU94DMEdHQ5GVRty9wKEJkWtRTK3aI9oNzjWE1pi+goY8ozR6crOYqm2wNMVPRhiNEI0g0B6oz1rL4dxJ4yVOTQee5hLxVuTHndGxXA2SNLRYyuCYY6i1FduIBEGwBj0rojLbWpLr7B4wu/WjLIlvWFIUHBozayKFEJfh83w3VoTKqgI6dT92OafUR7u89ufZ4ttbBCg3iYZiAbmnaJAc5JjXC+saGNcLOQb53X8+crqIxZXHS8goSr3ad41515vFNcztoZCMDJ714VJUXRmyNoJZvYbYP9ZEPjgfOM4H+nnC2qlDR15pNwV4r3aLGBo6wHldeL1e+P79E+fjCx4fX6jMV3236stBnhAcrL7rbBlnUp0usNCS+OASWFTvC+PBDIPaOCJaC8SpdodpdVWaYUxuWKMaBEUXVgTsmmi9UZ0g6RRncE6z2kkRiaE19dck6T2p/YdlDveOyCR7KgnMsWWy6DgOpvSz2jHJupL6UAORHNtj5JRmVFY/krFhLxkyDhXWnO7ezl0ZALSBuwxALRZTRCyKZYlD7xxRIFREIKtd5R1H96J7c2rnrSfN5CjhdeDyLZJF3isrwWxl9yurrDKWEvvP9f8dDbVHteY1IzYFZ6PohcyuDMQaFFobAzmojbXmQEpC508rITCyb5CZB00XENUEhj5ARYh9JA2ehpkTUTdOh7wQr3ewtxBASl1oB0rnrF/rVDQgpa76rtoypVG1WIHnWERnG4nnTQiu+1tjGtizeuS5ckStmvvm2veyyeV8uGNcJDVkAItRCAAHjZuLeULHsyJunmrc2cc2zgTvgbNGjBWwnMwmzMWZHTgysXLuenmtwLUYIdfiRMhYgWtxhO0pQvuVhiuBsx+AOwexDQhNjNReUm98UnORMwtXam1xPxvbdgQUyJKBXbioni+aWpOqQdPaxDLI2j+CMBHI+fwRRN9LgJonqXHiyZwrESUVWEp5jEa6gg36VAgXQb0i4C6VlPIjyUbzmsIJPY/bUAzaSKeiud438ta33Wde92hfkxG5zqDy4rguzNcLOSZyzq2XxbK//SRu/pFxpmmOE1tFYIM+dgM/O3KisC/hdUaE9H0F+P5AMvfbawm5q9qy990qaeeJfpysNzvXJvQump2iFtsBlCSpWcIaAN8sJ+/wTvlKuCZHdm2AfS0pQKYOsBl5MHDub6G9Su8oQtMzqbRHtC4zObEUB7ZKgEKmSfXzRm88psTUVMPOERhr8N7pc4aiKtcf8CGPWLgyMDIxBCzZGhjTMI31HDnXb3VygIygTMycmKDQNQH0pSb+0pEP/ZIxbcAE2zBrTUJvDc367mPWucjQvSmnYKyHqXtsWoDcdnZmcHRrWmyUu7fZ4JTpTGBexeYCYK4a1t4Qfr23MWPjaasHjR8Dg9nb9UIovO3gFLoThYXWNSTyTXJEpi7CyJpjj9qtwVWX1OCKTY90t9vY/1nj3B8iFQntLuy9Cuv9rRUzCwqCPqgLrbrNsgrnrcCmD79TY71+7x39ceA4Tljr2xDZ3O5ovW3AoUxsCXVzpZmuqZSt0qBohbyj9SZWyFOuxK4ZQofJexeySzw0pg5x8mCGUMtdd0e1SASfb5fPKRdzYMyBwzU9IoNr/QDA9x2jdookoBJiRXD7dAT7nCJmryZpkwVGPqh2zb4RyUQiewLJmnzNgRkDaWrvKE9MjV7jh/lERtQqBWqrVtV3PODcqpbpu1WxSyIH0pmWugxWvDASEwQQ1QGZk2nsWpM/Y6IAgg5wXhMwTXuYbbaX+ZtxVsll9oMJVEOP9a3AJr/P56YN8o7pufHM5CbKpO6PRhsBcKPAhev1wrwoFrBklCnNJBeIJPrAT79+bpyCu4lr2EboWKyXps0dQfURdvqQABvh0Xiodcai6sJMhXeRl3WDWRsFbA7Mp+H7c2lZUZPK3gOPjy9S2SMLiGJj1w+GfRhwdteMJHu2K4WNqoFuSMRgOuDy/v04AEg3NWsJMAj8NKZadDqd3nOnOFJgU7S0tWDJdsau03Jtr72SyCnbNupFRu5N1VSgn5gXKYV18CIDaRPLFqJTjSF7wkPAiaJ7WCB9stcaQW6MIkIYBbYXAlA7IlCZTbsPbwBuC95AATYsjq9pAqQ6DYWEunVR7/weJ8sSDOHQORKkvIUIAenCIVj2eCodtpSSRr22MrkwtK9fUbtnlgyFKbJpwN2qI8b4XaSGag/KvkIzZLcrUWhRBhQR6kvnD9ZkRqlOy2SkXAtzvHC9uAZxjYspNhSyhKlUdwxKk3+2q/PnaG3Uza8wXykKKVC18qwe5FvyrQ+IfdMRAc9Ka0xILJvUqPeRE6gJ8hmBvC64M8ls54HWuWeliYBfSm3eOlXqmktjqKG1A62/qyVU3UEvB6kHIplenq2LpF5eNVHjPxGKoFVXm7IEfewCEiwY6dxiTxzUoG/I4JfGnWCO1xhMscG2yxyDEaU1CnANTagsKuCla+QOC9MmwgPL+Pt0qfwqYkcdRjCaRo3kVX5jCwGyhSo137s9OMOiNL6urhAYOWINf2/ObGNLy2tgolr/aptxYPkmv9Ph8x7GXEBYNenuM9XuTCTFsa3eY4WDVgb1hhMUn7X0uOpN39r0dUr3XxSUCT3fm8d819/FWuPZIKo9xwtrDMzrhXE9scZQz1dnTRBvIukMQmWB7uo/+voD48R9o2D7A/BZlVsyvDf361PUrN9aHHvyTb3CrgchQGmuF+sRjWoxnNJ4I6kOcKod8uXjC+l6reG+l7aj3OY6Ws0nqkUD9VjNdjrC/3E4+NE5IXIcHaXoEBUN67krbTWl3u9puplq85IMp+2JWOD7cJWB1u2b4+J98Iah6RFfE8f5ANw475kTQ+soQullGpCN0W/kwLTBVHbXUwJP1Mej9MgU6pqaCDEsTFzrhZp1zFjUD84JtjcgA11SscDOekqyo7mUL4yC4ZVllZpd2sIqI61QCzm7PS0BZA05JwgCAZx4AoAa0QLE2lnbSDeYp6ygDMKr2NlvWS20HTfuKIr7bBYYCPB5Nmvs2lYqG1QnHOMCYuF6PjGuF/uX8wIiKBEqoevaKVQRK1A1p/8njLN+U0RYaDTH779NAKnpd1LxCrVklAlb6M1gFlsHp+pG1nfBWkILbwvA8dZwHCdXNjgV49daeL6eGHNokdGBszNi0kBZ265q7qcJ9dVr9o4EMAbX/ZWCXOucYVwBatHqWd7PtNJw7L+D0tm930MEiy3dz34MIxYKVCAhHh6w4KD16xrwFmidXnQFZzTRuaQpO9PUZayxrnVh5oB3x/nRMa4nBoYMgDVqWkLFGd8ziRwW2bo0e0Ib1FoD12ks6O+XCAsTXpu4UXxokS0WiSnWiJbX3KR5pcTMqjKhOnNt51Y1HVc0yqm3Mjxw3GrdOy0t6Oksb372cXSVfblpevXazR3WG9P9sk5eiPympp282lTsWx+9UXExWc8jE713lG0VoaTwiJWB6/XE8/Mb5nUh417VmOlb1QN4IzOIVUSA8u+i9z9jnIKr9JAZHfKNWlcLTLcxJ/TBcjN+TKAB7xEBhdzpQjWdNTiclKyAOw53eG8wSZ3MNZWWJR4Pw+PkrhS3xmFmJ1E/07i01m7vdCudCYSCIkpR+pSiVjoIHRivFDvpoCq1+aG/V/dJlLCqTyJsKxSUtszm0ArQgcCnWIFllBi5JqNfLKDPxp7cQSNfOREolPaJ+TKELdafEItH9Wa1FDVlHfUAACAASURBVMqd1BRLDUUWq6XI23C1xoSkekvkMiA5iF3bvwoNB6QJlZyNTWekihQ5ALdBAcVlredy82m9MhIR0Kt1lzDNbfIe+o6S4KBClRSNANs9BK0onQk7XHQ6fWYDStQ8OZlPJ1F7Z1NDCpkKOHKMY+xygaUQwbPX53fWlxJcR8YOUBW8tuPW2an0ljnQfwKtpcBS9Zb4ofbAbMHe+12V8sIBC01Y3H1Rj+3Md03XmiPR9g2hvarPWKNqVrzaDvdO79b79nj0QJqIt9uomjtBpFaTNUyF5n4v1+uWaiB2aszDRCPckbMc0E6C3mofpeJFQ1xLfc4CFbLAB5IAZkWExigUEcDKncIWccDS0M+O6QPhIgT4YHq6Bq7rhXY4AoEVl6JjTW/UzQbJ5MCuyVyHwkwx3RiBFsrrazolpPKvkbG00l3leajKj0BHGSxgRhZOmKKr/l32hOpnyttVqwVy7ogQ95qR+uxNhHYROtbEWvOtdQJhAMyWqs9pHC7dIBprRhmOOLh3GwXgiBx/ZtvSCqx18ZkHqY6hNskdMcmb5VCR3ddTDjBig2N3WWfqFvzjrz8kIezDVwX6/Rc8YPZDAqiDr5oRqd2WuKOSwKH3VkoqTWitepsn+nH3y7y1DfJ0pYtrimJ2AN3P3QRnQCRiWywg3mMuro1Fj96sYHSlsLqh5WSYHvIvbz8oKCWzEor6k13DFF6SipRl2CXLHTLeFYEmYnxsj08hrplLgtuJwxtWTsy8MOLFNNkmJi6M9RSvl9o+lBFZu8asgwqlpmWwKYwgFE0ti/bIz0alO6oFmtPruw71TsMMaJIDaVqRUaN5Wy/275HIQkaVafB7AnsVn7xYnQuH7f6nG2AZRJcrTaW1oVb/AbwXdX2W5W3v/ZihVDqrdZLV10zEzA2Yca0ENZS2w4qJHBNjsFVC/auJkh7YRg6V1yi65NsZq2St+X+uz3lHxvIIZYBljrZ/z5v898/ibQLdltIWpgZrLU0caKmNgwuE1K7goU7xXhmF5hQ5rQCI1nYqzdrJdiRtYu3w0u6xqchdDqoOAWqPxnYwqM+X+3MU77cedvW/dpTSIed1O+ZaO1pyLpRIHeeLExNBMS4klifSkt9jqTnNKdBBdWtOXPGk67CFyIHIISclwrf+C5TB8xCHGv5FpdyLe1STGjjkXORv98pKqg+pyKfPeGcovsuGIq8XXa8YQV7OTgZbi4LYFlEczZD7kLGAJc0GX5aohUobEdLO3Ygqn2Eqlc8yzAxmB+kbBHKBgtULrQBTJUzBQ/y0mmeNQMbEui5cFyVCxxhATGzFP118jcXtE1Q2ox4KJX8UNdt/AhACZJT4MQTvmqbqsB1J7vL2lhm5D/seRn3PH2HatXH3n2oj8FwB7yf2+ng1782OTfFjv/F+PdeNLv4jwY21oxXbFrpeJCw2BwGa2Lqvt25xJJv75SF3ys7vDBlovTcMd60p+h7beoEQip1GGZBwgmJhuVshpd2TWMBMSnCCc5WZBIYyJhITc10QhR1urJN4LMpgmeFwSqbuPY0JMrJmHcsNQFe6OolpiZtaVLualazo13onIwgdyEpf9bqVxqqGrNaIo9ol+LsbzQs3sB5tTpohedIlZUPNH/J2bX9Wpr+J9Z7JyDiRlabWZFW+vbHt/1/0GVWfm8S+Jrmwc5CwTjDxViN0z71O5Hbnt71ubrqrJFBbh6PReZ+p/4+vn2sIGZcT8Xn4jQ9ZoU/lT5PTZG8wubKIPeZUoz88xFzf1nqSdaMUxqAGOjjo7I0Pprmje0M7+iat935Iy9VQG8fqPWk/SmMj9yxjrTSoaYEyrkL9Cln1d49S31cNY7vfA3gnLleaxd9SbnNhLSkXiPdayJ/Vz9aokiKfWdXulRKr9lKEyrpHGTJSgjrN2cP1ihrOtLZ6EYYUkKHrRmVDDjRQGSGY4jkUYXRtUA1qVjOamqt1R/cOaOV9TXIUFdPge8LIZai8Z8W1xh4K2AAiGAHnokKGKbUFCobi/WZkN5HH7+exBdBM34NAesDr+aXmO4XeVnoTVvXh0n5YSrSswS0Ec1wY0lXmM6me/VuYUTTOaqYDgEgUG39UpK/0/WdfPweEtFhUFQTuOc3UM6topT7nPmjMdYvNQR6lsfenf5qxzwkztVjKg3Hpa9NSXO74pDEe7UTvt4IaZfu5FmLXxpk7pYkpMKaIBm/G6U6nWlUm078JS7ZcrMLovrR7Ps/FYqrXLGDBlLZz0uFGqFMoau0wJQGextyMwMkKetfAgqffwEUK+cxEb50CaQLDkCTNk0ZoaBrbwuYWJ2BOR+c0tqiB4v0kihvD/zKNdaQvWLb7uTvJIm4Ufa6dmPsfqxpSmMNG9UU62eVP7mhZvNmSHylcw0DwrqIze4wCimr9w7oHo/UBsB0tXZHK0tSzfJ8eyTtoZmo5E41yXi9uHpBhzqX5Sw3TG7hJjiOTc78Gyuh2/UtwtFJv339/F0ZvEwX/vHE2vC3aQaUqtm/EXEteWc1kHd+11E7IRTU6GcKyAJJ/lxESroptHIWyPs4T5/nBlQ/HKeCBAlzjomzicRycDSTevS+Ll7b2esKaN3Sj8+hCyTQD/lazRO1tpVfjR1SdrWkawsk7QkhZl4e5rLhqI9sDUjpYSwgo/5sp2mJdd4CGo+yEUcQRmJsZxA1tAtQwQfK8WD8FhTfQqaErLYW8kBTSgxGXdaE+fx3iMhhMAUmpcyCjcc1YiqJH56DBZnBgfQNClc6h+p2xHT10X1xgVqXJ5XB5Dh4yXIqMr7VUe9I4u/SJd4h6G9IOgV7WbF9bOeH6h6QR6fjI6OccmNdzp68hKVBLyBkArTNbMAdGOYssPEa9XrupkK50towSVpa0+x9/0jjVQ6zlRSZyQK3ajvWiUXlpgvouysccEGucLRkjzTkSyLmQa8JqGW/Z+yKP9fMaeLVPtOPE+fiFSu/HSc5pp8MY1wvj9VKa20XEJtoLjYqxZjEiY+1g1O2UrihhY64WZLrpvepY257QlCXAStHAND8I3MsvqsF819gRC+kLzQM4jG2dcIxpyEmh51ylzBfoZoh0LCycaua/ries2wZDbm9rMD/QnILZr+eFMS74dPiH4zwOmPWtSO7d0Ezki2SrhXOobYM9BMyGnnut28vtlMgeKjEwDh64dfFg+zZCC4FEKUJ7GY942UTWRFox7mtJOccyJIDPp9omsbSKwdiL3QoEERLKUqtCS5vTTX1lobwOtJ1HE4GNqdE+kR24VYAo7BwXV5Eg0AIAHEcrCU7V8DW2Bzls911XAnbfXwGUcw3xru9esf/EMP/QOB2a6lARu6UpACCTXFRAjB6/jTOgpnL1ltT/LM/ifpOUYSgldPYjm2rIg4JPlccHt13FGhsFKLpZRuA8T1HLFmLZW4ptSJEiCAhTzmQnFHV2lHeZPlt9pf5dnr+mGO57kUr3ZaRqDdVUB1Aptepyd85VFl4BAhmxG33VYzN04zqmAnbumUjV9wkp+nWmZuDs41qJoxncj521hAV6e8CyMVoUMGcVlQ1tr3+qVJQOynUWaFy6BCGh0B5UF2LbWpHe76SXDu3eMwOIppmJdGU5wUNfaacDen1sAKNQ4nrV97lcvgd7tVtKROezyhygeLpSlpeRjTEwrwvXYGsktc2tAxDNbZMpKqEoTncaly61Xp+dbRkdKgAEjJokVSv1rYj6xjT+f339oXFCN6RQSAAoOcH2Nhbk4IKaQvU2jU2FNt4eVHNHNvIVkYlcFHRuDq2r58p5bwSAvEgJspuqmEjhI5mg+lBWOqDaR1Fp6O4e4L0+qLQVSmHv4n6ntrs6BKoniCC3tSnL39PvRdIrwCM1jRD1+XnouqJFCEQrXYnKwYnRNGQjevtDeZGLr6V7bTD01pHHyQgDTpKkcxgAyTYOd0wa2tkQq2/gg03+A7WTs2pCAoB0NjU8zYOuG7kEOjkndliH9k14r4a7kMIN/GU5sFS/swaU31A2V3rLz6s8v56C0sKSSy2gzIDdF6/ntTGA9UbeT2jcjq21ORk15xDYE6neavW3iZdsxKHKltT7GbTEmQEKdbm7vgVgqQXBN1pctvCzrz+oOd8O7j7A97jNnjYHpHymA8nnxn4SDPF2wDmy08gv1XiVHef+sObtHry1IjTfDuJ+ELbrlJosgRwGQTgq4cESvVNKs7W3waDthfUR3+4T6/v8IYICyZWIKmTNmhhM9dAVKQuQ0n6UIl3sp7aR69wH08FhYTJqyiASLZkWTV1H6s9YpwX5POlb0X750v2SQ8LdHt+OKhNHP5DBHS/NDEc/1FvNNxvg0inmCU3G+Zbt2G2ElWE1gVEb7YYEnfcdVBalZ7VqAuZtoLp2XDKByNtbvj//ZLVv7trPrTaPl3GwDZcAe+pVeqsXOoLzuCsooJ0aZ+zegNb2fCbBvCQ2sadW7tqxtSbjLMkbOXDdxBrazlroZWIq5f3Z/nTktLcfpGGZ7tPdqn1XJ6sCnQU9a7tCMps1pAv8sQSKOQRDd+w61qxpmVDXgDWN1VvfxALC80xNNsqqXaGmFHQDwOqHba2f8lxmd3siayJBKZztM7o/+3snK6tBn3X0GC1Tg94ZqfE4GXJUTSVkOgB2SJLXB4e3RLcOCx28TMAa0VsUOyfo2Iwasw6ubnA7SECHtnK9zVSaPg857Wsf9OYd1eowa7AMeJIKCEVk0xxm24Z410qm4ehm1bu0fX8KqS2zrKC/CQDwPaheS38LxUZUZMrdtgEkylVYAAymwe/bYZchKC0O8nxDaCz7zQS8ptLaUqkgO43OxazAq1u9goMzuSN/RasfKXiJ9z6/G8f+vDbz6W541Gv9zPL49QfGebP3N1Jb0QO3UgBQZakiCaklMLDBzqSg85vCYItWEPvkEKSwoylFONDaeQsMq7XSK6/P1MLVkmq0DeRkBEnlcBm0RKYU6TkUbPLEolDp71wGWnVnPYhCXqt9wlEqpamJfSB201uHy1P3MPXRBZRWZjHVGHdlE9tBJJHArHaJPO2mqemQx45oulKNq3kl/t7Q0wFnFByiTzLVqnGtxJqqaY2lCbIQgjsqVanCWNh+iGJ0SCFKXNvpf27jwo6mJm1gOqGJEk+7MzEZQeb9M/tKthns6FU15w4cylC2gmO9XgRi1nb23NvM6nMVCLaNMmL3hBl1i8sjw0S9r64oi2ihrK4561C13TZ/++8Q8/9U5GSj/32/RXFU6TUsKpTL28uovaJoVjQssjMJ7TnFjQhuWuZDYTrWesch2UtzSpGUHpBBkD4cbn17TAhNnHNgZaL1A4/HA+fjROvHrhlueQ0RkSU9co+DKfopAt4znAJ56rOVlpCKfkMJnxH6z8XFwJyA192UkdeB4P3SZIRhz15aOjIbKArNLOM9suuKlMod4LdorYUAq8KiuOfUYJ1OIGbR4IovEwJADDCh6i5QqPCYLPTVtjOx3Bdyex4IPFQaVVXVLiMgGmE5SllYocaozCZrPM2qftqGW8qKsUT4878z0AKJ3Pa9b5oZDRPxQ+AUoAwq2bKZiuS5WOvz/toG67IaJOXBDRtpLiS3gNHelcpm1Z22Sycr4PRnxvdHxtnMtkep+i41lbJQ6a0a4sBdo+mGVrrbTFMiZnDJGK5smnZwHOcDjtzATwR7qKQaEHaPVYt0UvWmE5GRb17S1CmP2wWrH1Lti4oBZvvniyy/PZ/qFdu1EKdrzO9Up0AbAjmCcniCUYPKU8twb2GvcgbMIbQCEyeMtLm3w9pkAGmOdMeagKcI0uTs01ASiOSa9knybql98DJXUgYlTE624zgPRJtY4xZehhT5qteZJhwAagtFsW8dlu3NMN+Mb6egkKOy/fwr0dsHMdlmqrPSWgdsq9zq57GNcytvrKVS5pZ5SahGLX2qMtAstg+feneDde1FUV1YgB8F7BZyvfGR64q1SLnE3GwbvtLpZjtnrzLJvdpx7eYwa7L+jQaxM8v30vGfMs5elLhCHR27n9Rr2sMWtIpwGyY9JKR8pvBtkEEEQgrw9CYO5OJGZV2swbnJuXV8/eXX/TBqS1fTTUNSCJpcXPYtz6Nr0e4hnSONrBUbSRGTr2GFdtMIzdSO4UDvNkgYD+5OXW/aXEIOH8VhnYTn14IARQEFzFe3gcIkWMUplRk3vaxqdmTDArdvZxZVMlTrU4/HraE71zHUwtm1EnNMXHNsIsLjNBytw9sBTGAm11V0b4Cp17vHpXT0lTnQGagmA9FLyxucu1spb+cAKa6yktAUTJJiniEoCYN7solpfA2Dk/Ts9XOqjeuENLT9/jVtVHtMIpm5tIqg7mgWCHesDQKWk31Pq4HCTEznBQYpFoQMkBG+AMko3OCNaBC7RBIRIiusyC62w/p57Px55HwbVKY3s516lRive7+5o2vtC/ODc5SpNfBFXq9xIONj4WsUmKODGzFxXTwb/TgIWBjnM1OMDORESeG7GR4HVeuqzrE3IwsrKQ2T1GVuD14HIQH8P6S97XolR44zCDIij8p+973/C90Zu6STEdwfABgpb489Xa1+qm1XqY7yI0iCIEjGXuwGUb3NGsxlckePuDW2xQ6S9+3vF/k06HTWzUl5ay9CxT1gaj5SG7YF12YkPBV1C3aNMVGfPxFgzZPKI5aZ3ivx82thv7fW1AeJIPMPZbRBgf2ff/yB+/OLw9G0/On99UZpvTsnXOh+b03ib7me3vmC6s42kYezy5RSyo3oslSnEV1wLzh5qO2RH25dU+QMTVHcW8bpOKl8T+dgL6ZY/DuUeSIITTGL4yi7p1gD3CZLQsONEBW4JWao0u4WjV2tYo8tEhK6pM6PFUCMyoArDbpXMbcc5WKiyqwM2jDNfP+ScXYaXnUMVI8JgETAaAIhMhUpD9whAhJ7x76wDuu1B7BvfH1+kkkseupVgdHzP2+Q4TZOd5sPP3d0m1M2YYWQKKJzlq3C89Ih1sIdHZAj7+J1enuxm2WpEvJEofM8OjdV0Vpoji8uQa+5QWegnKXreaVnGQ6v6CjKCLL4GcqbOHGvWvAxB3BNsa/7BnuT15m9AxrxyNHRvHZhvRduP6/NiBYhoYbe0cRFljHFkuqmIljPhCCnHWooV1vhifDRx5AMrJ5BCMLvBU8p9GzfiO1T+w3m94S6AN8jGH3fX1/+Rl1PtZLN+ek1vKJQCAAMMFQ58YPe79Xvc0gBN8cEUueMoZNnez5b5HzIpQGwfLVhs+G1flsOiinEcVB/9/UPwnc9L/8TJ3KY/IEZNpzv5W9pYl0mNAVChWVOP/CgYiA1VCvaIADCimuM9syd4Tyu5Ywh8QpyvXwcAknPRga6aFRpFQ+tpHWzgjq8N2tYPRbRV2u0E4ie+GB45M/jFdIJyOdbZS9o01+NKqrh8jdI3YSIVp7L6MeYuOarofXeUG2PdzwiNYGQe0r33Ljfb2AV1l00vDhDuLAZt/mu2JLVeaAp+e3EQzyEmqvTKUr53BhtOZ9mhEL/d30zzPPMTt2vNc/bSKeol+1uBbPtfow+O2gWngSk66ZypgXsLLHm0V1Qc5B8HHMcBl//e253twqodJ+IYP+x3vFWDha6RmtuOSFEHPjjDP/d1z8SQnBexmxDHp8kSQjC7LUEyAxLGtU3JY+g3wDkVJLbsiKA13UBkGpFhEuKzLFSKLR3w90fAXTdM4A2Rvhn6aFsGYCNoIv8HkXhhFbX1gymZheY9rQipScmKD+113YdbEMRwWd522Hwc0/foyRgEmzz72+tu9uwBGxm4t6cSbt2obJQS/AZE4C2hKcy0r3Oa9fPH3NiBhnuG2/CVaRaArfWpiuPb3wQetejT1KB72eorpStBPoeBWy40Y/+GE5/BZoBfuZhjpIjVJJJR6JqJBbA2VqOA1v73GpdR20yaCNIZKacbdaW7loNEyYJB6Hplo66w8dQS6L36+RRzoUCRBU3v0U5xcmuNaPv0TxHwpLDX4a1bGg9qovSDeXjgs6B12G3YShPOd0IB94ZkqKjHgWg9w3COX3OyMTl3SjNgDHChq8P0RH+6FKdeKG/l3+WdCwWqNdD81HHk3FB/YFCJShm925WDvLMNngWz3nYXZB2fQuKpoUUlW6hoWGshoEpD/a6wElsi4rBZb6sB6C2SkubpMklBnGl8ji1htU63n/mhRyBhcUm86KIfy20uIPP6qQnVvwwz7JG9hkF+fyqTrTrP0h/pyLRPnwD4SLAhcw40xqK170fy4Zs+Sdhqj5/NAo7TwYG79o83IZ+XiQyz4IiBNU9W+fNeVzvRJE4xrpZpxRNFJEh/ReWc5hZ7p7x4YoTPR8o8H/6+kdCyDN49t64rb2UN3qvQ57kw4tAsA8A7reK8t8uG4w8oppZl5WBb07wThRWcm2A5WnPYnOKXYWdhj+/IUP0IyrDjBYJnJccguD9dwJ9T3D0BFfL9TbjTW1wuKBcS//c8BS22lIaKSA6QJOdpuqpwsOkLfPjlDsau0oXUJ6UgVmTSEZ1x0IC+6bLEVsYe2PnYX6rCtaveQZrQOqZRSiQLagXFJWDHVDdVR5/5EAtKXucGOx+uOjEp1jGGapbH3QuZ62nPez49fa2cmCg/aDgIfDsD4UcQbeHPeL2rmLH0yI+6Rp8/93SGBu6xixtAyvApSTm0UqnPHGjRe3ZOm90O1XwJUdqOgifxZYEsbDJPwg6e/fq4S7+9dff55ySvnUI3meVtyNP5xd5ArTHAdb21Gvnc6dYD0UZy90s2+qm2tpYwaHLBUWaWcwdiuTFFkkTtTua2Su7Lgv4fR/YR7CbbbjHJzvKeR+1IdNqZpF1MV5/dp66H0ZKQ81I5R8y4G1lVSIGuz9erw8AjF5Oy8oHSHlvRmCUja/g7WVWzXilxWE0fT/noMQWa7gVqYq1Sj47oII1wK2a8hyj1/dZB+xnuqVP9TDu45TlDh8QltfpvwtsQiYdSj1xHZqZw24QQDXjeezxCW3JHKcED4zCW+wty1l7k3n1ELPUeXbF4brI3N5rUaEmLa7P8hA059JlnSopywA6Ovf3crKf0wKdGQiiS/xAIlmRU7k6D9/6ReN8QBSPl2euwIJ70+pxXszWITYbd12T4/JrtXQKdQzxQN0ivB0aUVU02L1uRN5AcF2a62nIA8VMDnSXzF+9kbyiO0VqVxMJD2yGjqaCROXG6L2AffNPJXcbi32Djga9GlH36flKe2ue0K0NYCk9rqNTBmpQoh63nuNOQX7K9KYW+LydBzmcRGJEifhafYCxj1PnwT0oodv3FHksQ3vvNw00OM9o2JBk6CMUhcICbyp+c0Trn6shOnAmGz7eT/LAcgKijBYHyCSy310+DOHpKCH0wi3W0RGUHBN11rdqzEB2MKk0rHVpo3T/xRUaweeUbjWys7eQAKd05JyREzEkCAFzca5IfJB+M/TspNSCJsgLYeZpTfj3jJOHcfe/2xhLhkM4qIhUaJ0kii83ZmJmsBC99Sqi+OKCkDMVHffW+IcIZLCGVSjBtqI4Prw3kQZo9Y8dA5ox3S0sP1R8aMTmaDLLsM/3uPs8yDD3LUWK5vuA977uNyK3SBgbptjHLtswlq1iA/lyl0QR1oSi7wAjSuXAmIFYyWl8cO1MxJme790/S6yptbk6RCFEcXC0pyuUrsndJhKfbypkqEIKYAP1XuAEUT7b4RoeeGirjaUObHe0Bg5Z2ONHqg2Us4kUWfc+DqWKBgHnkQ9iC082mzn5bz8+1PZGNdaNt66Hi3WroHvgz52T7L85C4rtbwDRfaFGAZATqb2B3DiEl5yVA5JTvjiOhMotoUiX9HLivZmGVPAX8/dHXv3vGqfL4s/WsBnRzOJIH3Ao+hz2iyFfHSPWW4KwI4IwxusBcxQyHXlu7NgYyUPN5XoLozRTRvNrzSK3dLC9GuPFtrFu1QYjm+11Ml5Vkuf5E45srfzn6pag44CgH9uNbOC7yTAihLVu9VJKPF2EvP0yaqmLhfCaz2JggMX3sc+E+BGMUDTQjVg3bpWEAnzJ66bCCoqiU8/1frNObLH/QPaBLkFvPTm+22RuPxTt2Bqn5yKVVSSFHqln7M1gnE/M+2uoq2hrCd6tdOEMg2ZuhzhnqBxppWk1EnMJKz2epOQKwsOrA249IwfBvNKZMMq6WuCMSt1c0VfozieXUe6tETxbOapUQF4XAl+fw74M1C7TByIisLVIuILllN1Ow4nXLxkneuyCv+jAxI4R38CpFSr7AqF8bu9bWB4yXtHMGeoiCcS8gCKErTjbqZdY3H1/4Q1g7ImVR0mUOXC9XriuF02rDXX3gaABOeppV6itUbnIKT1FQ1wGozhvVr/ZLwfVLxKatOBP8f1WCTVkoGoAsTtXiSASKUEeCdmQyR0cq9h2VojeYo0KTO2NUdGGBfPYqHX3bCIBMDVpF7IoJujuor3h6e2JOGM+4CI74BlCieh/9+oFdCnBXT3VEjUake5RT8PDtrZKRLtC5+DwAkeex79hkqedvf7dhRt2leyOnOtWGQ44hq/3821QgD7UW7i5CHedhL+MErMDQK/0gB0Pf4aL2GzXZSQ9KUNfPIDREyDgc3ZO3//49Y8555MhBawfVYTxeVZ07SQZopBx1DfObVKLbzJ9oZxnA6QKzjwcUx77vrm6O3ehZuG6ICZA5IR2V7Tip+HPIa5OiaD6IB6fVWYuTlQtDehKRtvaJuP5AlIysZGh7WlcR+98ZM6LjgdQX2dw94gIIQv8XczuU1h+33yp9spL8G8oB6VB6bBkIGI3K2s5WynHdB6eSEXEUqdPPY6IcyF3yCgTDB92GiiJIKmh3KnU0TU6Ej5sAbu2qDcaf5Ml20jr0YTQb8T5qAwgXH5xzkzHRvWdkJG0sKOpeW5oy762c64j2L+ZFq5/nXJMxJn74w1qNDq+o+dAava06ooVFS18OYBV6qKcQJydtgJvyOeF/eXr74dKqzboH1VVZLU0t2fMzY813gAAIABJREFU2bADgIqu/L4QDLsu6z2zD7xrhGstvN+e0heYcxLCrRvea8Lo+IEcE7vYrTIjtLLhJWjMB0SfStc3xhEnmzSyxzQLvZc7ak5xm6oeFcczVew+qhOgmoTwRPkcF3rinrw1iSBrZ9UuVGcqWzlKyPBY7Qj987FfRW/gNY+GeQlyjTl515WIGbgjOEBsLZVvZIAbnTVZAgmgo1yp35NhgH2WcG4agHfN6DuYUyMQgo9NpvjfwcjIn6HFVRmcd2xeIs7x5TU+as7y+iHvGr5W3kCnG4ARmeruS4SZlwfLAZU+f8kRu4ZOIx3YV6Fubr+j4GD25AIe3lSN/YzLWcXm7UL0UADYMLfz8YMORm9jQ6eJf4tp8b+KnOgbDP1mxEBJyrSh9jGg9axVpe3VUhPy3Sk5Pr2hvNJxyiMQKRADLSEL5RWuT3aXA39lnFygwWk54qM9bsmonr+H58uzryMuPCWBcD5yPHtEwmP8Izh7rh6RM2tjJ4AV3mFv5duBz4I+vrYMQzBg1+l48LwdRzTu5tREvnshr0vGXg2Rd/cdsvujfM8uYzxmsrTqqhTNfN/KARtSopA5FGEKq274Sfq+u0TwiKBAMG1wPxsgZKLmeJFWdpLnxFYbFYTBCLf5GY50HGl59yQFT9/YQnJ+p08VEZ2Byh96KWMKzeSgQeqc0zi9WIs57JZhcq7yPH9PZ96DyXZ5yiDr0j5rbpr/j4TvJnnsvZjMH/gXj5PeEigdMhrIwL4pF4P0hxmnRDMyEIM1vN3JOYmK63UBL/7eW8t55nWpO0ARWjpUDgKjZ5P94jnQCY4gTRI5Rxbz1g/usI82UHvaA+3lpXH7P1l7rFSOKXEArQERJg00/qvs8EJRU8BfjtDRZ9Xpg906iDlG1+bu+03CzITENqphvm2deZMyLbQwbDzvOPXuBHsIF2trOe5xZpRGRz+XNoIIkmpq7zoR9ORqpWjK1/FEUGLy5dT93JcnBMoJm9kHjoHy8g/0plDgASmjHp/xXNthFAGhkIBHW/pXR6aMRjS4iYS22PKPHx8Y82LEfBh6YiAGVDvWu9aZDJ2XHjL9N1//CGtt22bdgL/cvBpaqfZ/PDy9dF9B00SlZB6QpzMMsJLRUYIP5a6Na9iDBTw7qBC4JpuNPz5eiAee77KG8i/IuBhhRQBs+2O0h2UZbYvV18Mra2QdjXRLdaIfd2ps/f5AdCYQykN0GY+EI8KkwYGZAZZznHuuAq4xsWNhyVBtVWSVeU3L0jWrWpIGAFhEpp8pYyvEOah6Dr1VGiqZtaADbWD8Gcy1SwfOKAXhJuyNnuTvlAKhnt9qJ+T3BECw15HVooqUA3i2HDqy794yx3eVDSn1yY2UTsQ8OfY5HxwERoniXw+/8EKhDdKpBoJkJCScsFGQE1OOiUCNR6D4JvB/OLW/MdC/b7bOZ8QABcF7txGwnsWHOVKHB8erslvczGaeC6l9cg8dbqDUFU/6gLXBN/YuvNenyhkT1/VqhnYODo/++voSIZR94159AEDs7+iDZujzFxQF6+z4Yjk6g/B8qcOG0cDrFKQxgsUXNNzEqOxc0zmxI/XexRwmopf8Eo5KS1PSym8goVUBgY4y62YNOBG4rolbTmHkQFzAtUc7prUWUOxntZ6YbXQbFSprGdovrtf7TgwZIR2Yv7YIJKUSzusao8uVN8LSZ2QpipiX2NrdUo9m6yp4sU9qVlRPxrSCbFefP7d4WbAOQPtptMVO7HWHEyMWEB2sh+Fyf4uaKMB7Y/qg96N36P2xY16IHPi2kBlApCK80wURo53F1Tn3//T1j6WU4Zt2n+E+wnfWjZZE7LvrO4Y7pKirVT08n2p8DUNAvr8WLtuIFcECPHjzmnhdNEquZtj4Wp8wJV456AlvvvBUwdkv3nkvgHY4jprRD+6h+NmJmBb9865YF5dgYW8ss4iRGNdEwvAwKZkL844iqiSCDpc1khPwmTM+h6UFR2QIA28JBThGgyI3CNOwaSAALOTmhEPKPE+0OUOVlQoUZYhDN77uJefa0IffW1YaGWpLXNKdFtXNEXasfq6AFWPV/21lzrPk4V0zVRr7ontc740eR1OPgCBkAGljWWPlwDDP82mD20fT7c/t6fkmoITIkENdJ0Rp2y1uMRjFTXil2XZNnn9EWH6emhvkmCJD85xFYEmw79r433394/Lco42g1Kkaiptc4QsZj8O/9fcMZYdzGlg1os9PkQ3KFdzcSs0rX8zOYllFRrQ85lBtTiMHal7I0GwZhjjB7CeoQ3t42tp+/L5yBf1aj+cWNriDTM4nyngyVahwZArAXKE3TlXRgR3dt+5dBfgDyQXK9Pcsm3vC4q47ehqFIPRO5m9INkinPm81HLTTrIac3T2zlzTs6tOEun3srPRnrhHTqYoAG7NLDo6Ufj5HOYYHLD2QhTmocuIytI/vP6sgOag5hK0pD9XZg3PVlpA6Ivt965knkooel/lMjsl/qe2TX1KlZcgQH4ytiZ5Obb6dmDDG9QtluqEJHM/Rm79MCKWvGDLOwMkllCI4Oo2R/TLd7wkVvU/yf9DPebn8tYOtTEcuqIbpoipniwTZLvhHIPNCTjfM8oXPOTGuqflB8lBtmTQGN/rygrK7Y5zUtxFvi7YpO+yJc/0PP4uHJtTGuVkeyYDE6jqQ4XvXZcnQQgf5xB001BbFxKL6Rhe/EcyHzIgHyOYiNDE+WG/2kuEtVVNJe+vm9xjmE7yab2tY2CH9mvi0QfjdZ/Tk+3icDzLARAY7RMaoLmmDCY0Q2exigH/CRACqBdfe1FpbCvg0cDtDOfkK1isNkUez/NRuZwZH3SiqLhnx2sdxxHZ3iZ8np0FGnu0DFpnT7qLzYrMHzxqynU8HOauh9O+/nHN+6zDwJ/6LryebWY/f81Zrexl6X3nIPtQ+2Hk8UG1N+ZOnWQv3Xhrmxb8/x2XeQeMsFrx09ZIMa0lV08OHnWfSfbVWd7QKquQkTBjEEWL4efTDZeTmfaKF9LabLk7D9Vc/Hb4wd8acV1lAP0Oe9AofgCMxZN3fFFJ+Yw+977PknQVkj6MC26N6bIxCVY5Qp4wh327yL/J7+Uu6dt3rMURHdtc3fUwN9XdlIyWeDz7D3ry2xT30nN5+EnxiAbSHhUmgkJIrOy8m8zDh1RLWJAumyK5Ecu6tVZSecR5MFoKigRyXZh/P80+PTixKFi2xOXXb6DP9DantR2w1qkFg/o11/q+Nsz84Du1tXevz+/x7hk37mfM8oA0PR/RNOMIgAga3SHCGqKGKwkXIY/vnVWlPYrL+lfs2CFcvXrYSw0OkhiLH1K4VZ/wrSrpXmZJyDehAYxcCu4XZWYS07KjgPfGQuOnZEI4R2/NjsOmdbZ6ADToYtRBgfVeNxdaM+oDJyYzgcGk6E8HjXUeLW4oYSK60B/d1usE70iUwgCotF/JF9vF3qXRKKryOmELpS22K5J9Oeu9HGnBIJsQpI+jNY20qnqj44rXdqiNXlJjkkk45AEU7RjqhIKETp18eWeN6a9lQRNwBj7Rqa6aUtg3QKC/kvFTHHEhNuKcjkiPknbYCrbPriD5vTmkKdl4PZASc1Q//4usfjfP5z65FPf79aaz+3vp2EfJ96vbZbaQhsmD39zZk7iOb2qdxGLAEeEjXwr0KSxF6jImMwHp/Sb3E2URsKzOc0GfpZw337fnFdjT1YCiVksKUDiNYbRswPQJX159J63RIi79kUIHCKMJQxtKN0OO3pvbE1YN5cw6h2433+xTSG9JKWrZ3KqozMo5ILLHro98RsJKrHNZNpzeUkux1ozbXzc8MbX1wTZNtcyMujGvSibW/FUEYxQjckRsyHMiRLyD4vS6dtGPIyQMs7fNaG3G/ZZyNIsGWDyKaUOeIYav9gA2DaHdgZ/LZqFTXcBgg27rYCjiCddKcF3K+mDJpPA5h7omEgM/GwxmFS2PHaTGKCk3kSZn8EW4z+yXjfBrgX422qjqX/KuB+mtXSbYU/bISSSbyIQkzCG+fEvjL59UjuqqLf5P1tPjgdV24rkvd9C79gi1R3eAt6bGjoKBr2ERqI6MwR+gj5IUfXSdCR30dpe79KHSvZj2NU/dn8zacCbCdrpTrFgRjxWvbUMO9oQFcivCOCpt5giArRJwAiERlnUjq04DEjIEZRfHSWsikcS4ZHB/37vpls89yWil2OAynZQzcYkbjoZzPumS4QtUYwudmqO5caiOsfnUu3vNQj0itekBHvxr5fceKi7g+Pz5NmahKrKLscW8N4YpjyHxkrAjM14UxPxA5UeAMoIOy7XWOcu151ve3tAmPM33+3WcIGcga2hv6r7/+0TjbM1ThCV+fZI7//Pn3nhfElEH1UOsUh+pI+7Qd8QgZnqDJCN+p0Zz/ycnuE6/rOtCvCjO5ut5tR15n0B0T+neISNrlEoDKC3nKGhZUFOiMhjwhR1vcjKw2TgkVsth/GgURFJ1Okr0EI/lQZ0ZFSDhNI9041PzeN7Cz8+OT45WGVFEzSlpik8TTGeXzVWePSjAVdJg7BvZQXpgcLl2bbLjLZlmc8jemxkUKFVTw4GzukGhiSLGJ3S19EumMDW9t5IDFBl46pXHZijIlueQ3BdDDQN9fVJJxqr6+rxVBAOosOkIOCTSkqJSBVm0NiFPUHBPXuDDGReN0/fl59g3JJXRv9Fgs53jcCZ01D2o5yAFdjjmw9n+2v79XCD2wM2ezyEPJDp/55fe/Fu2VSMqg2ayUVpFwLDizpc1N0aLhgRJ0cHW98wlh2y6vRAD31yfue1H08HphXlNiatU4J+uQp74HwU8TVOcsMVDajT9z6uI2LzkMroB3+QJAHVUNmVAXhvyMaLjubKi9OO7x8cwAkmKOnCXoFyO7JMGca6Nu9o1mlAQE+3hvN7Mbhsep+xF+TniF+xNKj2QH7bYTS0FWjSUJyMGECT3pTiMxQ2WQk8xAnrlZfSOI5q9rU4uMEqpJzAlcZpiXlF7lbiLe3mtOGdhoQ9uCz2ur1uvzm+xR3RVYO/G+b4oVNEbnTChQXfdREer7Rfs8uNyEIBseGYiijplpDL5BXlrhPMIMGXTt3fb1bxtnRyqH/yrtbg2MObistQq9bls/kAYK5MjWadrQc7i7A+ws6LX20f9zYZk3QeaMnR5nG9acbFd6f33h6+dPKXQSP377DXMymkamohnYMvWQ0gFed28ypJqpRN1wCSMMe2pxIp1GnIw8HRB7FXaiI5sPCWwIetOGsKIhmnnmIT91Phu0n314CiCC0cHXnAEUx4uoVK5JnPzbbpQPGwdYdlrvLeF3nUntekfQXhkPc3NOTt5AkC5DDlOqLKc2mWzGV/LFny3yT/dxIF/hOC1e/XdkxjO4Y2OvUBeKShJBQ3MrGmCJ3cZeHIFpJZslck/yEYO7Z+/Y+Lq39gHxfHA/ENOICkZln5Py33daJIdOHkPCnDgi/lRQgSJ76NyhhMiifj1yFuLkgw+2zQ8bumB6Rv45c5+/4GgROZ5IEDLMcstW50TKZQR1vTUrYjRcIykjqIaF9/3G++uNCOC3H7/h47rw8fpgI+0uedBUx3007ufjtB6WUdmT1lGLuSbQ3s7s4NBDnkFW9W5mhGsiAs69quHekbEZ3QlKAUIR8XACiph+B/p5PT3fqMWweW1Y8oawhtWGrDxUefFCMAfX+BW+uokxeYLcf7vDxs379/zirRwwBAVLnUBkzlMOODHyGKe/nuNIzXTy+eYDsgg9memFunWSzPvevmbI0OMbZPQ7hog+vpqz0Ij5NWWZC4G6b1wBopdITERn/BFowQaQTbzxXkIoTmfe7zoCsY/wJTtt6bcJ3zhvL37dOCOjk3l3p5BKl5rHxT0dGt/8UWkcga+NtwDqOIvsaAAnSQe62Jwgxqj71gPhdO+NAifc+dDR6OcY+PHxgY+PD8yR7Nq4l2CSnsYDWid252yZj2y3qh3BWdRbqNQGsNDBSGC7FsuYJJgayofPS3Q3BhEU7yPI8MCtbv1sBKkdERa9AufVKhENnhxBvVITf0mQYGx2SDe2VG0MbCzLBvUTRkANypB6i3OFBiy7LAzsdiIW1NCeAtSg5jHAZLLlGvfedjWnESIVkXzDZOhxsGTGA54qjxYx5BlN5g+QkE62s3Ue+EzuQK3Vk/A94b7AWnZU4RoDO8ZDxllSIi0FJ92rBRk+7IBKYdHw17+sodKbPey0DbHQ99GSyX/bOA2jlDNaUmWFxRypC4v+M0JqXvyWljHxhCHVGkdrAW/vtOzD6SLzOXQlOBSKBF6kNMXSXpMr7gLA+/2F++YHXa/XEd2L6UwxmdstZ9PeH/D/5/BA54B1XWf8Iw/UHPlNqmilTEeMktCgez8h4ogw1s3agWphfMlj+5wEFnshnavw6pDB6OnuE+dFW1CcfQB8L9c1sBYj/QrKIdeS94/gxrXNodVrLW7Bdg7s3FUwwgKJcHlBBleK+NhbKw5liCj0JL4QigEjvGvXBqc8vM7ReYp1KlrDWwWse1N9lVB7V+FeEDG2++9XBfWyeNTrNSjA84HHoC67ZKAeTRPfdQUdBS10R0FnJs7zwXEQp57PD+l8E3xOqWf865EzwMNV32HGE7SGI9FDwobnd5Sj3ZbXrS50o6DisnZm2PWAHQNpzwVCW+ZbG1XMJTlj9QzIigp8fn31lb1eH3hNjdLX76aMp2qhFjv+uZ2LsEqEnFhlGYH1qpHI4GAod0R4EFg+ZGw+IqHr9XydQCBSuTTE8EbB8075TCza0PMxEaX/J8FxmrMhZLP16xzp0NZtevc5AjsSOyauBNYNlBjNS1ve3gmxoAvOB9fmNZpZRqZ8akgVpYgfjGC+Bzskd7C0E1dqwx5VwfJSLqkbYmMEcz7nqVRhBaHgHPjabxpMqjAVA0uqME/9q6BaDHHxzK2Fe73xrs0zIT1wESZpswBzaN5nPlYQpthhC1TqqCidljQjCzlb55d++8609f7zPzBOlA6BogP8shWm/1rr5F+pzosM13YV7ipkeIOyYYzOYIATsQUInJdYjjZVegEA7IX7TuZPpc6FpELm800SZoyJ33584OPjxRxDj6QbXEuDh2tjSr7H2mYCO1FJ42Nk4yEbZmnr+3jOUoeMzi0siZt5ligV4kAaoJ1M5y2Kdglg527tbwCNPABLDdkvyoMhh7IH3AZHI3Xv4ToECwpZaBgcyQg0I/EaPNwDA1kD9y0jA7rZYQSJsBypqQQnskLIqEbo3QFdyjDbHCd6juT0jF0SX/Q1874TjrxoRMEdsZChcoMYgCYg3VwxYuAOarG/3p+IofGpqdGflaikeHKXSl1pCk7xoUtD2deXSj9ySGEF99eKTIMitZ51KwZ1HlpIsR1R6Qh+nRDaVJvIzNAKC93AuldvXWJivDvX9JsgY1rfuh48VJekHsdfQC+knM8K4kAwwmwsZ5Bq1tB9o4q7Fdd9o/bC9brw8brw248frOdpi9Qw7V+EbthcAOQdGC2kyABqHPHEZj6JsKqETGUypHIKiVvH6sAxD9Z6JiR8N/UtUlTs470BlnpsaFGYcdKJaCMRA6pUQzUIeBq7c/i16Cgt8O6DI2gbg583RNZM1xeL8j+XoVrNIwfkPk/eKb+G89x4zKuNM1LS+acRw4DKPI8uF0oQXTJaiCgtFdqci4RTgrkyep7SKkdyQmZ+dqBMHN4S/Ov+M7iR7b0WkBOhOnCG2s/AtZOUbqp+7vqePsOaaqMP+pBCBVOdndW5qbz6oxRWQLB/9JeN0yyX8yXg5FOJ5wYvyINXCwEsDja9VmCuOELzB4JG3di9IG/Gz/eUOej3coPzc2BnTWMDVAIJ9G5F7qTUjFTBh55fVQBXARbXDkyN2hRrzE6YR7tZ8XU0S4jS0OKSZ2dONdKGKzPT93vSgVvmCvvALkvApGjiR5Y6IpTJuhTT9VDO+JWp95p6OGVAoNTsvUYQzm1wf6d7CsGDu1aefErGEpP1OG7mrjPrN61wsmKMEdL3Su6J7yuVm7YQwVAXzN27Zgz0xAuXVDA4n2fdZL+rSPZUyy8fXUsw0ebOloLMCVXAbz9+UFivct3adhiUdqbEGFZmsfS0uNEt9EnRT0znofyomzuZMY+NhFod67QHRkQ3dkcbK0uD81flex7lwHYw9Vw+6PFOEBXGG4rqJp5/XoI6dzECUXiu6QRQJ4gjL5gncV7NVqE94HEm9MD8oNg8YNe0TjOx1o37/sI1Jn78uDCCc3HdRV9F2dqck/XSOlP4Ms7QK9TuFqcWzvvQKQKlz1QGtxw/8Kuh75n4Zwi3IW1GH9It+GNy7cxK9cE9pYlexruPrtWsIJ+1IpuWx64dWPcb982fRP3rwArpa6Eh1Q9JXb+rNCYjDxAorz/W1UtXHACk9nl2q+iK+mBuLOz7dGjAHUNW8ziXFRSpUk+rEJUDwd6LZ2jwXgoQWliPKoFywGKUXGvhVk195sC8Xox0Bdw7sCBHUPvk+gm8Buu52wHoYR+1ttDPd+hu0gtwWQbwkAL+3VKw+p/t7x9FCABn/qDQq/j8w4nHS1HqKPWj/2Z0UpmhlS2FjkaA5U7Mt9bjYJfDVmoshDZcrQUseCwiXXYA+h4dws8v/t4HlI/d7C3Uj03lmCMBL8YR8npeOR/gIqs356sNfAxCnbWonx1jsI904OQugWa4s3NWGue93Gfq6MyuDzhvemqW/Ty2t3ILiZQgsdvHAp2b9vZsOaPAJhydHtvpNYMSfzyNCIT726RAoOuYqXfixVHDVvQwpHSzAMwhbPXk6sVvEnHtgEzCVWiio3opZ2AtShIRZNkxptKcjc+f73MGdL/Lx0qGVesNT3c/awIBb/qaYwBjYldiArgR7JABuQQSNtxV443hJN8pnZxzwuLhUuG5B5brGjK4HxVCIh3aqr7zEP/i6x9GY7IJ2szaiMCYoTqUk2DX4vwyWXQNTwDwn0SyBqZD2NDAUUn1v3PthMsRzsdMZITGPsSRc4XHdRTu9xvrfmvl+MBeb6zQ4Op+4OpUUS0rfCPBqJ5QnXYtjITqY+B1JyPFDtLxpXapMaDie5cZHzCV6yVssBRqrwMsDNmCDmPOw4S6XtiSQgE5k1NLy3br+cwEiSXtxC7n14w+783p8FRsjY7wHHhVGLGP0NxnX/ev+Q6MSkzCcVxSaYpB63Zgj2dFTOam3Hac7p+lYjpXGybcA5rF3G2XS1E6Cbu4T6ZK74+GHTtUxlH/6r7xtW6uq1hLMUEtfkFya8wJqJSyEbgr2O1UQIyBkVMZ2llPbycz8oL3i8JXIhSzi+do5MA1yancdR/OQc70MaX03zNOKyXOaj0dgGXS4UA3G5SN1iyuk3hARWQYJcURHzyGb5koChgisxa5YAWJRQ1DBsbHsotrG5YmwO9YWHdgJQ9bxMRIHoC1FgIbFVPidO4xmWNgXBwi/f76QqHw28cHxki832+ypSOx1xvU9hryboR3lzr8VuCJcmvfcDk+UYixcd/vI87wS1d+FrBAYXFu7syG/dCzGhl4g/da29pSOwg2GHAS3GpxObAwYpFUyoYKTFuU+3spXT7elw8RNewmigyxQ1kMnVfBZ4IG7hosCqhIXHowGeYTdN1FOWcM64kLW62FazG/s3BlBgtGlgq6K6iQmIPX+P5a2Kn6Zznn3OoPZfC55qDIPa+euBBBjgPJpbnY5i/4s5jKRMP5vtd+39WBicQfdc8eMO9nTqfyi8bpFeYufyCkbCgrgKJ1lbwMezPAYy9MXfTl6OpOoV51PZFDLsXYu3Q3gvKvDXStEOXOjLsFBWb61gKj5grURIveASpgCh7FAS37AXNYzzdVmYZllsS6vU+EA5Uzgeti1LhmYCThFjTxbZfJFL2E0pSBehTci+sCuMhVJ1h6S4qwuY6iiuL/McZpVSvIoRTbw1ZxUrtQDsAOmjEm2UPBwb14+LYY4w2JxKsADGSoHj0OseP3JhUgDVdIgOHZDglCuaJPgqdiiJMwqeNxqqiQoL56PaCt2RAwdD6ybpyRI4Tq/jNCKiIYT14HAvPjYumoNmqHxO6BlHMeoamFY2LLA+3NFYi+dso5d+fRpJiZgrmDKdoGdKR1vjw+x2NT05/Z1mAW+FeM817wJt/nmA9PBvcPgA4bRdLjGChPKQ3K3uLpNfTPw15tjTTkCxjjlE0gyAD1B7p/zoOfHOWjb9aSLR+E3VS2WeJ9VxMMNERGuHvdHSVr3VhYuFSWue+lqJm4JmHy1H5N5jZ3/ywo+vW8XBe/9OxyFHIAc9o5CfIkjbQQyLGx9xuf78LYA1MTBzI4eNnrItjuFVgjNPxqY+TGGBvXNBEVWCswVnRXRlSReCNefBwiiOW2U1R0MjLQsyYxZ8fsezNpdr4skVyLmugnY2sJHMLNBJxLS9ZadYHQZjZ965BB3xtw92dIL+2vcQ0EJurRfXPvIpzVgG4evS0xh6SaZfi8uP5jcLdo9HUG89Y4Kcwzb9+tqlLd03BYNVOUmd/9/3tO/2vjZHiu00ID9MWTq+nfVM54ZGbL4nUdRhM89eDfGXCTBlzyNB1dAqfx9sjZ+JBXw21PxmPetbFHtA3QM4IG6uuGehSjsO8vsoGZGDFRdZOE2BvXuAjn9o0NYM4BYKHqxhiJMX1GF38fhV03UDcP7QAQt164SKHrAWuKJYMxStKw6keuFdSoKlzXiwX1ry98/ryxxsS8pg4XgHwDSa5kFOuy+2aTM1u9VjOnBahMUXjfzJn586YkkehURW9IuzTZ6rbriaJ0vdF6KNVt/a5CxvX9iw7QHSiuiZOB38WWK2w6FkApQJJX4GYAGhrzuMAlKN/EYvJq3FKHvTBQeM1EYOJGIMcLr2vimpPIoSwr5Xu6xkAhcNtJ7HPW/f4Swa3Y5XMerTWPKsxMsGHnm/EcKK73+8tsLQUGZg41WLckxG74ItmSo4HyJ08PGN1RQO+0AK7Mw4KegC8WAAAgAElEQVRJIOYk1TKnFgPXxroX80v/XnS8ld4TVPXA0jvlemUqfSM0FJoGPXANozDVNpXvlZnZBKpuliomywt7v5HB8SfzGoisR6RUFEk7DZFpcjarIJ3rQSHQc8jc32qENtItPd77/gNAIScZ3VWf2O8vzNLQrXQk0FSIQa2s09dGDEqCInmdmRsDXt5TqEqsFWAXn0kL505bTCzvwfZZXZ8VaZXg2WjodthmhEs8BWR9i7REptXyv4a/nQJoAzgSRalye5FUjpy6NxDhAqAKLPZGxmaeeyWyJNMLP5vSzCYNm5MCrD3LTgwcdRmfCw1uLQoQVhkBNK7nvUf0uSW7zp5VNpS4TPSrxqmG0q61VX3/78dr4MQBdBcKuzsOhAxwbKNXdJv0scGbZH6kLgiw7tQrUF3PE/NH+2VewNXw1dK2jmo1UBoXkpmsh4ZSpSSDPCy70zWQRXzkhwjUvqmomQM5DMkcNfXzhjB3BAoLFQsQzDJpBRXWDfFmDGTMDjFVPGkxApGFnz9/sutmDnzMgXXzWa/6AnUWniM0ERga35gkykppwOKc1+71HAuBhVwqiQxFxySBFua2+s4ekUnwEw8IyLwpH3DeX0ZMz/+ufibWoAZonNxlKo2uUiePJ404fZbIxOefPyUhDaU1gYTEABLAaHiLtqKTBV4VagjfwL4ZfGJwJw2SbWZySjNA1lpsd5itDj7zpWiZtTt9QVXr0ENBgoHHDLYINh3SXx5Tgm/vx2oMfmjmkELEYyJ2t3O58+CJp00E9b/X+f3OVcLeFC1GHNIusgtFEdFichXLyWKePkxkNFlAw6SnHDG0uYwH4aO7QlTm6YfHFyvnSqiWZxCZD+6uGyzq6z6Y/vOfawHxEGyrOXtt5lS1ufD1Axcqrke/YCFWIKVcGq+E1+eN5GR5ihgWFjhakpvHRAwpH7XzxC5gFGIV4OZ4eEC4ouMQ69hebTfHg5C2tB4HS8/JJTYjj62UwzpfQzcIGXU4d95vw3yUiaKgdZBykEozwpES/Ky13ugNA9sVhaQ0VJ+7btZIWTrjMuEb3DBdMSWA0FzaObF24N5MNzY0TyqBul27re6tdWgaUYzc7WRghfjRB28FL7Btzd0s/xGsdWgP3Ti7UwRl/IKWV8krr/FhDtXaJpqhswc2NK4+6fozectvTdn90qpfDKfkHdBkrSrzho0ssZZSo1QOcPeJO/slRHgWJNs0LBzwHb45btPMZW3ct0kbHsa1gUp7at7Lvd/MU2WYhcIt5VLtwpyJuz6B+0bljSEDRf+igf72+6vTgqxie1cUag3c+6biRd0ZlRsYq08KfVed7pcEahVzIWS3onmF0Q7BLBEXYRgLNFkCq5NaCkjiCmKyxax0Hyf7IjUIrdMhyHk7whXcUuNyWurTMD1n6mHsKEF3RuBLrYsozj96brbGhq6PTO4Eyy3QzKBd0dMqPJL2VoSuDdwFrATFfYLlAQBGY4Oh/gxD172lKxOMkuWSr1KeVpz9cuQ07g4O4yrDDbo+jDFJ9e+tlQoyHz3wvQsl9na7Y99hX1DA/YvPBw+kujooavd0NwvjhdkQm1GU/71wv9+o9QWsu0kgLHrfVF0KtTuC9thCsWu74a/yi+Bh28UaYhSn1HHejXNp7obEAKZYfEezvC7lHKxP3nXjvUkoXR8auYiFBXXoXxPjxVmpOacWN11yXAv7fvNoJagPXoVRF0qrKCCHgdwscXHWBl/lNZArgOVSkZXLQausQG4ZZA54qiAPPc9BGe4qsgKFnRKcAJyvhNFzf2go0ramezfx7X3uxRokWmigJ7vXN3GK+z9tpB+v5NkD5LCA93vhfn8pj77IF+w63S9klhg0BrmD+y4AGj6OUJUAzClDef44sss0itwLI9QbG0rVNpVMIx0d0ciz5PBSMdgi/f+IrfXmakM6r6Fzl7/hSC11rtvIIqSyeSup10EAFIFd39SAL9493F67Fe+vTD18fl6q32+vN35+fVEKVquh2szEnB/I2MB+Y0jJs3eg1gBGqkfRW8H4ct1u5MjAA7gV5Un8LN0XIvH13rjXF+71RiQwZ2LtFKzdFF37XvYiOTGA//v7/8O9jgFk/Eb2MYAY82zrnlfvfYTgbGbg/fkTe72x96J65SJUr1rdy2mRPBfwhMTgg4TJ4GHbalDwYCsmegdApFJnlhVNzvDfrV1180F2KkLTC4QONx1f6fPve+H9pW1x10uoJ8DZSeqaqeB7KwkuAg8iknCYKQdQdeN6kSjcMpx5MaVZu7D2FzBelOlpyS2Cm8AL2bOsltKXobLRKm5PF3WAOYLkeZL48hn3GNR1v1mSAktv7tL69qwetuJ/Wo45GoP+m8YZhjxPKr60QRgbMy593+N7fDFBre1bQ3stezr9hWho2lhdDIG3kvkbIwkd9v3my5WNj2ReUXvhx8cLPz5ebYz3+5NC53Wz+rWAqoGqKSJH8r+UYY447C+ADXr1wlJ0XgfK18KfP//A+35jXgMzEu99472BcSXF9q/En3/+weu8UlG4cNfGK4Dx8cKUcKGgqDMvIpDJtiPDrZia84qJWIW9DK84jqW7+NX+ZphaFXAje21DNeFd5f3mB7qbaLOe6e7tWkI95QDqegt0DdHTKWqx03GOgUuyU6IDCTIqub4wuBW7lItGenuZ4HfQwRHFKN3ocgfd9/vnT1xxYcwXZlByd+9bP2tgzMmmakHIlDznEU5I9KTRE5HcABCDZ5dacD//SaeuNjzyAENLonhOTTQSK9XDIM8ZDxgpKDD8auRsr8n/ePyetCXr9G4WHh5AIYkPN/sCG7baQHUzz3VoXvHG/JVi4VU0wL1ueBiFC+LXlRjxwsd14XUNEkjkhviAhPGHaH60YaYoek/TU3HU5YC9wDqlCJeuZbI/8r3euJ3brmAOloXX9cJdifX5J35+/YmMxJWvM3N2JA1wBHYCGZPrINhzBozBPkIWaOmhtf07MRldhFQ4MW8rnzwr7CJsYCCT2alwUXq5xLCWmxGUswJkfjzqczFyZ6rksCGHJba1db98nyPcYsiIseoGNpHJnMDIF9ZKooVanSINjZCISh7r2upZdYcKI8/awAqKTnJu3OsT9V64NLc4Us8FWhvJQiMdG5NprFIkFmqidFDDv5PKagcOnuoSUmT6s8pkWegccgg5Dy8futS+Pa6XCOK4hT7rBcwHEfnXr3/IOfk+S8LqkEWNGQCG9I7yHHioKxT22Td5Iqqpcb5IOW81ukYAXpPm6QBb2H6L0OBDGISJ7zdQVG/8eF0cR5Je+JqokajH5HaI5WUiHzpcJn+iHUKXaLIIffV9SwTT2htfayGuwKjErS6LQhEW328SNTc7Y14fF6JuICY+Pl64fnwgPwa2aq35SoS2WEFF0hizjTLMUgQQ42LZRc3Tey3ERVKHKDPOqVN+gwLqdk+jjDL1SABFSCKi2mbBlXsK0uXmDNlaG/XejEJytKyiFFhFqqOCAhVQxIc8H0mNOfWyNzXOLJXwq0BRRNTJ+90AEACJwM3e1N9+f+Hnz0+s+sKsxHwlkCxJrVVA3Mh4sfzlhVeKWks5csVmylSAp0bYGXiSIkIrFGVNI/VMAsyTRSqanUadlkeWXZzSKYDV+Xf2Df8yrJU3UiNyKeJQUB3Y9UbW0Pfq2jrEJ+6QhM45SUdMJegyzv5LivWH0UN/dqaar3tz8a3yCFuXxuB6gzmAWok9eJ2mxBk4TpQvLOwttnIAVdnMmYmgqGCXEgLvu7DvhfciQ5pzIJCougmtpWS6i9MZ1v3Gj99+0Ngycb0uvD4+MD+4EbmjdA4gNAPWp9EEAkT+pGEsnQjGABaf03z2B+rde76sISsWJ1psFPO4dDrBEg1RkNjVqG740inzaZKRJPkTnwlJKiMhiM7cfCjXC4QaC1QPTs6MZe1Sc40tq4SPQUhhpfAfxRauIhIaERiYuNeN93t1XXJMMrEWNDDv9Rly1Hr04xYh+N42WKdeMsQgmrFOHKBUswa/d++7mzv6COtnVD0kpSrtmURrJBr/QZ2zXCsLo2iVj5Wb7JLmklhGOQ2j0Taz2n+HxwuB7pZAaXL54+exq98n6EgHQ0Li9b7xfjOPvSZ3W3jsvtuf+LIEO6RK6EWnMLERqFiPnNpexcwy4Ts9C4Xv7683JwRkYN+Eguwe2dj7xrpvWHqXGZgxcMXEb68f+P3H74yidMXaBG2FDSQ/FBwFYfIGy0ep0or3vTg1KJQ2/Ro26TnaiYuF9Ll7bnTmxmhpXbVzpJRruoxykjSlEWV0oWihA2cnynmwNDYaqMfRkNzBSVXVLcOPt/yu06A4DRZrK5LHGRvDvyOh+6Sa9r0W7MIIDfTZsCIrBY+VFYZKSf53XQvheDUSGfM4dcBN8CzzfL01/VhQt1VscPq3AVdjQwbqH/Q3uaa//nGo9JmJqs8ssJcxzs4JJ7dO8CEYemS0rosq9wRE8sBuXKUYXvHegUUHzZsOaXXvhff7xl4bH9fEx8cPXNdo9UaYNPChYUjkixUkZnVFzkZw1vN2IDjN3nF52gWuzrs37nvz+64UWuMBDijPFRk25sA1Bj6uD/x4/cBvH7/ht9cHIjj3BglM9Q+GxmucpUToqXmM70BcE4EjB4T+LBO47zeATYGO33gdeVgtzmgKlA5PiYndasVa6nyphpQmeWysNEofMh5ar7WDz5rewRiDkbJYZgoOOOrva1FCs6+pIdbuSYUcifTWqx7GabRS+HrLmSXXMVDsL6eus8XVfSmROhVArfkKkTxLtKxTANgpoB1lhmWqhLNGYU6DdvczH6bWDvLbvlIxvP7z/8g4EdmepGV5gpwZYE6kPPL0C1odEvCM217bvqHSDI5SX5EtUwtv75uM8FLxed0iQ3Z72MzEdb3YsSLCaQO4JZwu1VfHGNhSEpWjfGnqwnZzNF/Y3mIGRUpsG7BCA4vIfIlVXLUeAaz11nhHYOTFDoaZeM2B33/8jt9/+w3XmHyBImXSUEmOD4lTFwPzbMP7++uLC1ZHYt9v3sumV55z4L6/eHEJKaPOQbMMjkV+HTTlSBvO55eIN6NYQk6WZ33CNEay8L3Y3ujIXAJhXPZg8YK7Q/feeN8qeUXi9hLkycW0BQoI7rW1yyXFCtdxHIOvgLs8eRW9UpHjE+iQtTku8hKDzaW3tc/wsYjAuBJrOS8kkoh9WGP2G7/x8fqNKErD0Pe+UeASrc41oeeVfMdtI3pm2bXP6BTPEtdfMs57n95N9v+F3YGiJMkepA2UL4QPJjnfZbsmxO+9sfSiGH1r8aXeBCDyYqMjqeunpqS4Om5gXszdPLh6GqE0TT0Q84WshShPLnCkFKyzc0CIhdXDVKGahrtV7wvmslXYdyCvyVaxIMM3kt0oGcBE4Pcf/wev8ULswH4v1FJ/6EhgFd6fX7he1199IWCM4fx4LdwRVBttb4Lmctmvz5+IlH5XqQWgEZ5MXAntlvOc0C/ej40MQfIHhpe1ga13plEkR5hv3TEe3l8euyNGtfNx87eFJmz122p490SNxNYzd/7WVxfmPmWIvpe+V9N7A5xIMaUiYK0XOTFShJvy0Fs1XvViIECx+y7lmMpzQ5BgZNKoE9jLYnYih3uhn42Bi5svdr8L4oKUQzHR5Cv/n77+vp+zTObpsIYvioa626tKbSMvWboIdhEcz4vgAVjY7HiXcZgQYOHXrWeCuZqMYKiMHBgzMcbFNYKLMG1t4nlvriZxdcHCd9dmNRVVdziEDuIvcNZQzVBYhXG2LyBiIvLFyX1rInMiRDxxADPw4+MH9irc7yVSqEjs7ARmIu5Aqe0pn68p9NpdbN837q9C1CQ5tLYW3S58vb8wZx1dcLrrhc8v9Z7uddNAJbqnk1Utb7FnMaSecYTfISWPcjbWl60YAyyytdMdYOmLjGdiw3q1aNxLBv/7kqEDMZlPttTxXo3AbNhMc2hO0LbpUh6K8Kr4Vzdcs7Zrg4t2YKGrC2m2PVt3YCB0bWgnr/NdRFIeAl7Ibl/rhimDZiGdHoRWhubRzsQpyJGJ/pvGyRaaLVLlhH6hDCojNHfVo0MKhlLoVhrDSXoqwkKmBzSSsDbS+UJEO4bIKdXIZo2uNqcc1ObnIJFilNdeelC+Xj+EQCRrgqw2DLUlAeXoojCgRncRVjRWElKT4ve9gbiQuODBFajiSM4ZrM/thc/PN/b9hY/Xhfx48eetGzkSP368cH0Q6qbYxRYmmejRryxgr5uedw7g1j2G1KeKUma4sw+7pgKAKGJndc8mnaDgVZIwLo+sfBie874ypozdel2nJ6hqwbx36xzCCP05jNSWPPK9bP1q/YwRWdE4Gb38WeQd+i5HthyP52+w1JQsQ5kvIWu7BcHTBxuWNbrHtwknJEX2ZXgb6AOvr27cvu9He104A6CgInVfQppb6M+N5coG/vbr73POVFNsR8dor+cWovINluFGIsYxYC7N4VNae5NcFFOnopLqm5B3ERN2Mxe65mj46xSIDats/2G3OQ+O80p3TpQ4fsIMjuBwS1nJE49dOhQhaVgg4mqIygtbyHFhbmpJ93jxe+QDCyKUqrCwsNcb9/sTr5l4zYn7XrjvL6z7C9d1ca17FHJOjteUqDq6nOOShqL4XirTkFm1IQwq2eV8Qq1Ps/Msw0GoXKL2iH43tTsMQjMI+pCiFKXdsqUa6nfjVKls67mZwBF8bXa5HbpyLaD/u4fD1ekjLdVGfXZ5yG3kciBbc340rT4Hc1fEQBXXSPS+nYfDc/O78DzOxoIHa++zKAO2ZK+NU6kec8vyb+q6xCNgt1N5btMmkWy4e2q8/7ZxbuWR8i3wVRtamA39tiXMoTvsTYewOUkHP+7KPPT5fDB6yei8sbArcMlYSRlK8TEGchLWxhbcxYQnJJRNpqj9ZCFfsEO1VwofSNV7YzK9+MAco0s4hULtRASX1NKpfADJfDGdE+03vu4b635jr0+s9yde//d3YAc+//jE59cf4Nya4ITAtTBeL+QuqoNGaLGuXmBZjM8UYMWi4EeF78yhUoSK9UF4PUR+QNC1NqH1ujd/LRuObLVJOsLQSK7Pqy2GfHEdBB+/2U+gtgy6qLApRM967WRU/9qG5eNo9r6A99o64CEk6Ug2jqDB5RsIcgZliUhoe8BEjktOVSNQ4SirzzYSaJKMZ9SSxwM5TYhFl/Y8S9lEmSsYzkc5Wd91X72jrci89Q5tE7oddFnnF43TLK0i83cK3SHfD3p72ZHsSAkvmVD7Ep48JsvR3mjYkxc0u4fYX+Of5GlSUZBecjRTq7+YIsrAU9cvEVzgMxCo2Kq57o4czyWsfGZDL1rHRJMMqkQYIBAxUZs7HlORadeN+12cVC6xOZD4+vnG1+cfeL8/8fExiQDuDeTG/Xm3AHuMQM1gc2/4eYPGrlyunFtuAFnIi6oYGquhLLtRrA32jtKGlcqztnJ1Gkl0pMvyMwS7S9YCoO3ROgMRwRa5JLnVzfLbkSSEHGnAZ8+lDw5r2Ht529wZEufUEIosz7/qKQwZiVVDXTsfHG8ZbDbvWnGoXik2twOLjkurzq4znMvMts8ubKhpAhT9f14oxUBj2O7r7G9EmbHJaB33aQj/D3LOLZz/TNwJuUhhOAXIHJobKm8rL2KNp1VderL9+YbEG6FmaSDNus0XUmMuCUOjjX9BAgh5n0iyixWF2rdqlicXxg5qMt1eFoG9o/PTQ2grOsdUTsqDfO/CfXMY9F1ABYmUmZqHW8C6QxMUEyNfuAZwvzf+/PwD76+fmCPwumictTbmvPD++oJXys+ZGIsC7ZHUlO4M3J9frGHKG8f0TNaNK2a36kUG5WuKEntv7JuyQ5T2jFoxUzLOKtilOQ9r+NYGoQiTyptSsvpmSRWbCvBEP7OcLPsYyeDb5zKHXHpXC9w/o8ZyhVwL7glPNQQkA4iJOSau1w98fPxAjsFh0Ko1lw7//V5NOqbgrqE1R664r1IwvYMRL9JHdSQF7ns97yQaLj+Vb40a/V2Cthb0uNrisT1/9/UPIgTj75M8Hy1qYN80gF45H0Bga7iXcHmTMtVJsvOA0MXvvdV2c5p0Ke+jdtU9fGsHsIH3vfF1E8IOJ/EAONWN123QQGbSax42pmAj9PcKid25XmJjYqvesovlpPsu/Pm1aJworP2JyIGVxfzRMBkkhWZwo9qf//3f+PPnf2EAuH77QMYAB9YMzGAuuqKQC93OBg3tpvidz1h6bEIwF+0jBDOnNLgqRei53/fuJmXm0uOhFEIX+KNhMVONVps8SmIj2Ap13zfe7y/uLYUP+m62HQB7bPU5njfrkZxOHACojW5xj2oBkZvzfTQ5nbB693tMiywEY22Yr48fvO97db2ZXyePTJe8Kklgok6ddKuk4wcDpylECmOydBe78N73N1ibIaWSf2LECQhOB0P1anXTEGCow6n+g5wTejkWH3RibOMKACXVzONChqR5d09I0C2L6rdnZ9Rl06znvK7aeL/fzT4OzYzdeumFiXsDf35xIDPmYPmEIxgES7Mn74Uka96F4vmklpbtlocNoYHAvRUNd+J9A59fhT8+1ZWCwrsWfv8/vwMIFtP3ZvfJNfCaL6z7C3/+8d/4f//rvzAC+Pj9A3NMRCVmXniND6ybw8Lu9QVupC6yyLdWzGUAc7DpXJ7+ul49RAtpyB8SiNFDv++l5cFuOsh2tO0kJfino/X2brCMYMfaZYLAdWkg1t74+vrCHgPXdQl5Vh9QiwESbGV7v7+a4Nk3CSmOBaHo3QYKsPi/RRDSiWTXo0t1UDZis2b58eN3XK8fyHHxzpYqB7KxiMJ1TUFkMu8NWaUHtoOilJLXPpIqss/1Ru3Cjx+XDL46HyUsRU+YPwohdPBi0wZ/PycrDk8Aa8f3d1//AGvd60iPXcXp6HtpjfkwjHJuo9qUfnwEa4TE96GuAvGCygXIvp78laFfWLg2PFowBxsEKzg39r0Kf3698V4b16B3HRKQTxjL64FEKT+Npv03gFoc658guTIGx/Gvr80lq+8b91p43wtlBjeBj0EioZalgaXoDLzfG/d74c/PN1ZxsPP7ixMAZyq/wkRtOaDwbBrFFKURsQPJJI+5pmptXl9egfPcsVCLbO77fmtCwG7SiFEhTNaKWBRZIg9/ae8Hyaq31uaBHTN8y4yVmmS4bzowkkGqWxbrihtnegSc9/Wvhf1ml4ynuBNFsTTkLo9FDNt1SuSk4Y8L43phq7YdnVPT/Wzrh8vQ2w4pTmrU0L0wp9DI49yyxZBGipL+eJ97ssjCZZKXtgTAhqtUb2/VgMeQFnW3AdtA/4M6JzTH9T7YuUp1soEHkcy8Ikw8oKHv+7FHhbUtfiORk25SHtdRegkqceaoyI4ouBGbkw02Pr9u7Eny5dJG4m7uAFC1gK2ZOvvoTx1DdhXbf5wHIBC7sOstCPduZVKMF4CFGIH5ulTTW6eksTWJT3XY+8ukUOFerA+uSxE6EsluQ62A22xFqjRXQgkbVJwXFN+1tSaA7+LeC2OQOS8TIIp2HKTCoRgmhvay0J3vibNshFAEVW5sPjdz18F8d93cQbPWrXezHwdXrV5GRxWctn9z2ZCXCRHGKSXaaqfujeVs84uHgKKg/lShnIyLM4fHZKBYG8CbzmIt1MJhSYGGpuEWgpJDE9BC1el/lYGTLEyJ+F0yuqmQDGUli9HXaVnKYW7JKnsE6MMQAWuUT4po9dQvGedW6Hfi2mxVsNjtmmfn/4KGTYc/tJ69Ii3kvdSTaJTPpaMinArSxApywSolsKY1k133m0MmVrGPc4dpcHAKXZEOJyW/Hqwf/y8nOnLsComsq+VxJbUNYf2NtbQPFFM5ET0kE6LoZxP5pqevxbm2wftLDKAIzUq5KmkO5sxRoQHG/J2Mgb0W77eAfdMpYYYavm/cjyZujNEQDeV1dqHlwkvpAQ9PIgXtVeWUMe31xhkFScexFTnu94293iRWIkUCne1dGYFUM/Nat7aJobXAtXHqkdiI2GwqFzHXM5Illq+KFlOMMZF5YcQUb8GS3vtd6MYBQBvQuRFtPTazuXLwMF2ZT30jv/gxJA+jIPhdj7Noo1Kg8JndB8aaLHPUZp8smqlFWer6H0x8X8uEjwiHcoJPL50prWlthW9Jx2CYQdIi0h7R3knsVVjkoHJGhURf8ZChOcpame1ImhTHg2KC93bZhD93JijxkoTQe1T0Iepj5IvoJnE7JRSqKH5Id8tUAMWm6rXpbOh3WDJpBBGMsvP1A59/3qj7zSHGrwsxLjqBHZjjUoRSrlTKY/Bg/aB8JsDRJcoJNQuB3no5t9Tej1A6AVD4sTbur9N54qETMejysFhe2ve7t4N3hEOQXS4yzFCPIlMVqYVc69iC3uYlhCRa60sM12eBMt9AjKnoNTrvS1UDzGBxveOL9ecYMibK9hyjhs4TVT5OjfwcmdL4m4VAu2mDDpUow5EVgNDRgaIkmM7KCh8YT3Q4dUw6D0/YKxmmCSLn1X8Haf/ROPnJOFIkRRx/ZI6JVbfYVBCPDR9w/l0Obuah2dA2sOAmYptKFLSvo3kvPoBhuWAJZLmnVOyq2oXeYgRrEIrcEXjN5HCwMBMbyo0IrzjZfHWO0vlfQgQCD2hpJR1F0RcjK6DP3SiIxi+yjbIkjPkDVX/gvazzfSHzYl66CmMOvnjpPqvAwzTtcVXKWsRTQ+wpDxh3hI7UwCkfLkeIcjmF5YX7ZsnCBjfGaVznJAeNgHFSqp9DzbHGdiQj+5G9+ZC7Bqi1EjJe7NU5ZJUX4PIsnFJYYuSFmJf0sCJlIvUseSGZiTleJNXAAV7YQK9m7Aum9a19lEomwTofBNq4dv/laMe2tsilpLE7GFnM7nKmf8/1YcP1FjLIwfbJ82N1hJeXONb0bxsnIcp9b933gx4eEhcLpro21d0UiqyW2lQzZpJPIeERi/Qi/l4Q8gb0dyvOLc4AAB/9SURBVLa8kCJekVAitOEwiHtHd8VwdGS0YH+qrQ1Qd/zmoee83dUtRKl8dQhaeTpgSgS+YMOlN4kxgVpYInI4SQGo4ISFjImqxH0Dr6npEbiwt9jnl55Bj/FgJIHyTqi8ZBEHMfRxlO4bHcqgK0G2F4JNOzRLKTrfosQv4PmyVTeHpi0OxgqfIL0U5/pDG8gRhZUpAYMK8YXu2MBeaPGutofTz6WA5ICZVw4lG8j54rPU+2e5aHBMJ04kYmRVaQQqYdihhi5Z1+IG8oqDaA5kVfVAgfSbOijQxjsG28+q3nw2cR5NC/eVo24Z8xDaKp9//eyundYB1E854C8ZZ7qRtRkwXvkQtFyGAA758n42OBdey1S/cH5PWEAgUgxYhOp2QvxV3exq9ov5i9uNPEaCvmdZ3VHQ+EfmjSY8zDbyCftlut8UcEcHJwsPQIyj1SWlA4Cgigl5YetUWI4JRcBdoRYoQd4KwJPGkeorZP2tis0FxQcOjoVkdN6awWTBQFzR/YFmd8dT5J383IVomdreYqOH59VKlbO5dAnwRjKZQh0igxvAtWEuQBi5yGx6cLib76lnJRvrifbWUNOxGxbKgWRqBOiHDBZKfTiBEPAOm+ip76jQgPBjuAWxtRLie8fMEcS7nPSMUcUzKwRCFEA0Z2mqx1yu+yZqC7/TPhG8ngKqlqYqGOnxZ+w+5w4mfL7e0hdCG79knEyCmePw83ZHpFpSeGyxW3l6MM3Cdg4QTuAln4JWGIATBET1dOTkFIXd2tsj3eO3eLiwBfOMWK7B0gG890Zo3AhZMk1712HjCEnXt+SdM4TfEhVLgn/+jPtN2Mdm7SHDdg2yALUv0fAD7wXK/likQYk55WcPtUeFNKqCrPWApAXcd2FOvty99jGwAeptlwdyUUBg54EFlP78/dbwbhSNsSg19KxfbtxOZFVLygwBZyZyatxagXl6MBpuoKWLAOEz4dvSdD0e3i1iDToHMbjRbcTEuD4QedGoVwlvDhGL0m/LmRsxedi0a4mhIXPu8zQVk0nYHDEkv9O7kVGFDJS1bi8ethjG6h/l+430zdDaxOns2lwaYn+PjFXVvb9MZXanfX/39Q9dKcw5CiXFSHbHx9rsWq82HhleCXZJhZM5Gp55Q/Z+LzZND07wYzcBh/lmnu+LhtKi3oMDrXLMLt4jB1jTSzF6hBtkczcMqPZ963rmgds4xfiqokFXYQztccwkcYPC1/3GHIlrTlQk3veWYwnJ5nYLEiImvu6FP/74xL5v/Ph4CdIFohhN1y6MGnDjMtF8cI1fWV4HTgZIIK6BfXOyfBrGufEYhk58aHQCwP1+4+fnJ1AaijUoQHLuFlCpKUJD4ilKcPpCtxJNdKzaPVSck97R0biC5Z+9xNYr1VvdZD6xihK6MSZicoB2+XwpoQ7hwojUhrnANUkG7doS8TMqU/vL9yuTlAGfDqZxTdUcJdDfaKMMHKhrRHarE+d9c/fpGBeHTFf19bFmvprJzTF6I98xUBsmgxoFDiz3Naz9T4zT41V4++cRGJ7mnMq1DSGEuf1yw72SYDsR37vY3xSUNOQCf4qICDjBFsbnKPzArbyC5RiAE+N1YHRgDwFwFBhe5QeVbDIK3HNjMoh50FaJgj+vTjRPzpPdlWcIF+yUSBz5mmptfP68Oep/sVZ83+rKCUYOFGWIAYjR5mduyX9JRAnC8SHwud80wm462IzaOd1JQXgVEZjXhR9gCQagYY5RGGLXlew3UzwUcQz7mdu6Jqw8rcJ0ARyoWXdNdu/ISWJwVtO6qTYa+WLDwvWB6+M3mr0GNe9gfm+pYCoIxChFPo3LUU21lLIo+DW8hDFIsFskrw/knDoHXoZlcqZaC2wDMoIZbj6geWHdbzV/8/yUz2Pyc6eMcyitO1ZHmFw7mE4I7T1XDP6dRugfJyF00RToUh5LHoWR0yjoe/TUXyC7Hp2wG1YUovMJxOl0NxTqLV9buzFF20OQtlQ+oMcDi9rFmpSV1owCys+UQ6j5CSaoKszeHnfnfj9qUbl1ijbHZPgNRo9T4yJ8DdUP9+Ya+5+fX3jfGwP4/9q72h1JctwYlJRVPbewjcPBL++H8rsY8Hm2q1Li/YgIKmt2Zhq3NuD50XnY656uryxJJINkkBQJgMpuk6/53K4SLRGYBHugtAMH+vLGti+PBXYe70nB7gMtRhHfyQcmIaJFoB0cx+CcZgOVJaKxZC1Y7tXky7FjgRScNjOkVH2c2H7S+wZFrjWctyxSRxsd/XbHcX9DH2/o/YYYx1ZmlyBe6w0j2Bg8FgWehHhDhSxjkJpm1+xPan34rwZ3wUcyejtPtbu58G8ZcZV4hK2iT0LT3xws3Cgle8fROsYYfG/7xFwx+JlGZOvCEfbeR/wvLWdasBAvVerWmSkowi+q11gjJQMIdDfkN8mPFHKBx6J5YTdvV4GWSHUoJzSK3P7B4SZSyY7mzp8VWVrUtQkrFmq1maTKlZXRnq/c/sM1peIsEeFz1gFYagRFt8OkfRSF73lyfD3fsJcyWStxnonWEn0oStg6POh3d+QLxRdiT4c1xQ0hyqE7vCuyqND/OTnUyTCbTbTooPTywZmoV6krhSSwc3NhJo272tlf73XgCH8daAuQ7TOw8CT1sx+4395wu39Bv30BMKqUbRNQoJEJhH2jc4wflvxxMXdo5ezX0awxqS+kAJ8biUiESEzzlYCfkHuxAzeVnyzSTJ1wVJG0ZUJGhHJA8fEZ98g/B6taNHgqX31Z00rTyuHHEvpzy+loSznIMLYRKyO2VOrPWV+ALTuYCVGkTIGiKOjk1AyEaOVzaANIUVMeaZGz6WbG3qBUpUhXjstr4fzhEsmgLWApfy2UqEMmU+TN1ZfpBeH5fqOJZrb25pTPIgmOZNT4/Xni8Zg4nxP9oI81jjs80/Sci/zf7IrsQmwma/GU1oa4pfKNEepBLcJH62CPo+3ruet6BSu0hS1sVSQIRheGkLaO8mNWLOBcqsFVrlH8VrNxdsc9WqDWB8a9YQUDYGPcMW53jOMNMIRdRirKoLYQG6ph9KjZJmgNMydOdWK3UTBLJ01u0f35i1aqVpB3GxSewx6bKZT1HbDPXUhHJxStN3zma8j6Y1ePLtqiLwYfJaAXQX0hJ8AA4AOziY+EE8JRdta36iL0tMBuiF34l+ad0bqQz+AFdqaNi93qRosBl1tbLjYMQmsqetZi+r2s3X0Pc3lsvBZa8Hr5vgLqRZOqiJDWa1HfjYrOeVltZXMASQwZc1gzZV14uJ/nxPv7A4+npk+1G47jjuO4oY8Dzrc51YEF9LWwpLV5H12HJTVOnbAxzB1WvpI0Nwr8UocDRwGpn6JyvKmFjcAWBglt1/PsZ+VKYEbN7K5C7qLGSTk1+oo5KPgN9NNvQTZUHzdAEJOkc1r/3tl/1jnGJkXXEoiY8FzQKeWfF8gYtbeG2C7R4n5pdDrPqM5dePu8txLcQOC5JqobfCnny9lKUTRBN6aDpA5b3AgUUQFCmSFt6J5byIRboehQldz8afqeHWdfxs1whNMqymoKwtIy6wFZibKERh1RGooLOKs6wWY0VUq05hQpvQn68fNO1XPy2Vtz9sbAgtM40QZ6rp0iIfCuRDVCnRcM3fTdUIED3vuchnAQvJ6cuiVrGcLHj+cTf//6jvfHiaMPvH35gtvbG5PtmofSBG+mhUABFqeUmudrIu36iGWECtAEgJyKHCYKJi7B660MoYPE17DiIjAAldW5okeadWU1AyscEWTQmHDOjnX6TMF8VQlSGRspjIMBIeZdRMRQVL1oegCm57RAlqdxGreNWez74JG8RFuh3LDM2pI/56Ci8aQDm/aRoSCY/iTkpzx87XuW5dsQOoBhSGoILESoc8M722NKHHD0/Tv7sfYHfff6IM/pSKTvOLGao5UbW5cME4fVoeBrJxKu1of6zNiipYI2siK54Kb66TEDa4mxw7kSTbDqPE8GU8bAaEyx0EJ3WgZ1nmsdQCrXBVk9wWu26m/y17jVC8AxOsPk4EInGBji4eZ3PRMY6S6Bgklz4f3xxNevX7HOieNfvuC3337D7fZWG0sid2Ap0GMssVJ+0HL1BhRJZTDCfgtHQOwTxPEEJi1I9ayFpYBQjJ2Wai0UgFJqJULldTp8mSQUnPNFuyMpUGMMZAYtBSZaRuW5aeQ45VtIvISFytwwtFWe0jWic05BcSCiA22J5xsVVTYtMPU9Hbjyga/KmwUYn1aplxPmaUhqYHuJlWYWPdVWNdBQgTjTJGPD5FyT75VCKfDrtc5N3RsslM6J2m9dLuf4E8LZ1NslFfHKVKF+Y7Fs9AuWtsXRhzv0ftze+Py1dpXLdJX+ntOxI28ejeBpzwea+LCZiff5BBI4joNfXiyeZ07keSqw0PH+eGf1/pNF2S0bG4m1zkLn2wHMCc9htK1vCDWdahobKIitWSIM0nZkH/jvr19xGx23o2GeT7y/f+WA27Vw3O/497/+DX/9t3/F260rwiv+ZqrEKhrQQgeKm9xVpRG5kHPhODrmPLFw8gDQQeUEsKNjzRNnsjg7Bguwn2vh778/ACS+4I72NvB2u+F+DBwNbO+5TuY8r8ygYO9Ws8HmuXDcbri//QW9cn6E9mMoRfT+wPP5jvczseKG421UOoVzZDjKIueTJXGx/W6kmmxLSKzk2kpEc0tOqDn55dCOLoUOmISfVgS1XxT0XB7UDDgOUVYwQgUAtq4SdOXwWb87cD/ueGpGT8b2jx/PE+NghHwHjkyAiApeppSBm8HZ9WuxG9v908JJnyxKGwPMXXECsPI3cEQrdiRNWqiJWVS1fMFFob+CujnyW08VdceOlgJ4f3+Q31mCr88orKOKGaU8EqjcXe9M9TB4Qi0218RpRRqxWUgXCF+1e0YG0shml7BrQSBbYAbwXIl5nnicJ96fLAS43d8wjht6v+1SoVDrznRQQnlTkNc6nS7oEGNm4YGEZ386/WQNDQRZWY4LOAKCDftaDIwh0rgZKuvCliro56AY3YJoIf60q4pEu0MD7DrliZks2VvyE3sfcNc6RsQBazkqYFnChFIKEswwDFUQ70JcJ/us2X1DIBgoEovIsLTofjoojlvooOByPMv6PR5PAIndbqeV4my9oTdOM5vi8qbWaCnSmivRBw1LRaB9PEPVVg2ykt4mKwf8efqefU6nEBL0t1MCYrSbdbD3IWHvFoZH02VPwUPDSn3m+M7zrLId+5wU3H1sQoTogOCFPnfqviIt4GQexRLNMMtLxE4e56YgFixvdbBNGqtytcTF/+Sqnym04HmQSf/xnEqOR+D29oZxu5PUTXRUlDdvU4p3m+GO9Y4EezSccmRN9YAD2JJhC7H2VKxQMbsgmX1GkriHj6xOTy9LztB+aG11uNtA9CWCxFAqKQo+z8W2llOvYZ1mZ4cIOOpuNk1KOGUtVN2SPsnfOZ+2Yg1GZK3Ww90cgS1o3B9hoIQsp3OV/H1X7VzqP6+lJrZq5aNZDmRY+m4SxoIICuQ5L95tOfcoJCl3mFmDixGL/RHfvT4cO++UgUg4+0te3zmu2lx4XX5FajGQgifpxk18r2uDJOiwueVlNLaA6I2wMJCiTNn3ICG/idqVZd3pxxRvMrDD/xbI3AsUgjmF/+1TxyWF5O8Z5g7jsgb7dFmZHLebhMJBqCxFlhad6xpm7uct0eMu1faFSvQh9FmCg3oTRAsVtGbu1O5FWTwAqPeEHPIdV1AGQSVoakx9qRhJsP/wOdlA7JycxRmt4xhUoEDsEkLdsnOndT4imE5b2xLVk33/tfapXdsprOlRHjADR35lvQdJCd1c5JCCb1KGl9I4xia2MPp+ykKS1gWP92OfsqyzMOfU6EcHjkTTs8DUvvMzXEohII2fXR/Xc8b1TS5fAKATX47YJXfE04UMw0RBphAV7+TQUYa9vfh8cehwplpXjD6Ka/siKHV/UWHqBbNYrASyKFsRpnbpdY5mGgZeIPfKWSma6m6ee1EdWLAWDqCCE4ZE4zjYO8YRPVvs1EGLi+XA5afXPJh/JNc4WdMNp0SkqVOHRSu4u80BfTDSvZK+4+yprgPkAWdLuCNfpowZosjtaMmnNnUjhJqfzRPPk50IVwKoTgU+/ITIuYxBogzT5ahwrZ1w1tcPCRUQl3VHtbE0qkhsNOa+QD7sXANFVW2dAhUd5hkkPaXYOxHeVGdhcD0qKEWQZRDQrKj1XYMBqjpX+tvezx2p9XdwUO9H1wetMffNWUBflb1NzP4C5hBG0GKFahZdVbDk88jpEIl7+wPViAsAcqEFu7xVhNUaUn4NOzAIsrW43Ov58j0MT33fy4tjK3RBMo4kA4yoeaxAFdK2qOqIsB9afgQ3iXlNdV8PDrFdcM3pBUnBFtjfZ8Gh+2aI34BojsnWq/bP1pSLHAonN4zBiPKabCPau+73Uszg7n18mwY0dYto0Mh5EiNmQl3N9Z5aA47q0R67y4HWkp7Kfn/nG42qjAq2vYti6PBsryqVc7+jsrJWclfDk1EIqNlH9lkp5XOFwdzbNZdet1FN+NxKk9hir4LDuR+HIP0F2VjgoyxuYxsZKCD6CtB+eH3ct1ZwdAvnxtHV2q96o0gIDNEWc5jGc2whKCoemLhoCqyEtEvvrT6jerJgax7+zqT49XF36dvw0Xk+R+FelyJge+3NVtNmf5ZrWBfBXm9dyX9byEXLuFgTaaFs0RBjbOHsalwpVIAqbbPC8HfX8yxAzWwYtxelVTN7aGddgRos2xyBZOeEORnxPc+JR5v0zTuj0EPWKAruqjOFhSACGZxtM5+739NKsnPsky9FdrdPjbIU/p9zghsp6JFwagFbqX7rSoB7OaXgFbjfMYENhbAW0JobbPlutiWzWNFvVe8j36v2oQj+ZclfEZvH//H7mKChrEZFZ1VpJMH0uI9t7GzXf3590OCLh4400wu4lfD03mtjIcu4I0RRCxPSRqk761250uV+LNuncq1lwaEAq1asHvT46BzB5hSPSdTcJAUO8nq/OsgNxXhBrJdgVC73Quoa4uMWFeJxGjLLgrdxgfFemxboMTYjpD7bJIq9+XunojarxXohQnh9m4TFlxPfS1+74XqwmgI0TFvNlXg8nqwOicDowO04GJzpe92XucTJINe5As/nRCbbmQBqsKwKHa9p+U+5oaiPnw/k9xCc9y1zk0vKfXlRrGZi7WqkftAX5ho4t25kZfSxLaXPoq0vFW/CpYulPHLff6b539yj1rmPgJTUucoXRXodHXnW31aywMIGU4qqGqz/5Pr58Fz5hiteAz61eHUTMvkKxBRlT6+rjvAlLWTY2Py35tFwC8gF9CELKh8qoqBUF/3rOA7MdiJ0j4aiFjL/7pxWwf/G1AqH0XJMgwNHFLKtbaf+dk3jZKqx8ppYgwpizROYJzzTpGh9ueBGYRXFUxSaEfu1LWdZMP1XQQpDafnVLPsngR5L1DhVABlKRkPvgWNwzGAuTpU+zxMNqUbVgd6OujdX48xlS8Uu5Y/zfJnheYy7KnwuqZfo1UjcjcedV8TCZd+Fri7oppqWuZ2ECrRPESFeZrXWEm70lmX11HequRhA7lELYLWXs1s2BCS78Iy17f5sabsIlN5TlLw12fw8veYieHAt+pYR/ZenBkAHsIOqP5XND0gIl84GoUMXwCssyB1BXReYWVp0rSJcQ1bS+aM5J57Ppxg9wRRahEja/MKP55Ok9yQRwMGHOU+c57MsX4jA7YE7X768AQp7z+kAFCqZ/Xw+0YU1lji2XemaeZ5oAEZvVQ6Ua7ErQGu43Q78/vupLDhLyCIbKVlrYdwOHLcbcvmzQasZps91DhZrA8yVLSws9LLqgcDCWifcqhNnIj08TBp9IYHRVUYH3I6OIf7u+TgBNNzvNyKJ8yzCx3MtxOOJANf1GB15JofySmjmnHgo8Y5ouL/9pXw5+3yAgyCM4rZIog6b39yFA/zRNlk9ErfbXYeUox7c1QEIHGNzUc9pAW4YjXsy52SlTevot45utLR4ToDEGDe0BizQf50wX1Zj4O1jWgnSbEtpJNySU4kqGp81S8CP46gJ3Ya2tLgX1PVy9tWQLHhWrojrnxbO3rcGmOdJ6p4gbCYpdIYhgDXwRUsCgh27qoKHi/ifrf4PaRwRoG1lDNvWRM5zh0Iy8cSqpC9AR2GmusdBFRJVy5f7HgzD5L84ZZN6LD2aAabqBdB9oLgGPrhY7D8z2sA6T5xrYapR1hiu97Qf7lSK2hunNHJVVchpK4vCe1qy/Fd4WNY0lI5RozUHZGDohqvSWvuzpICisefP43mq20IApXSzcsRN6SDIF62yKMNFCVQFx7DKRSmIq5tPLHCAVKu8tKO79jcdFJvK724lzyi0zxkbeC1V7WwTZOUSVmoLcGAmZWRI/xQzrXUiw7hUvBSk9pvq/+x+RAgVch/muSrQV65c2JdlHGLOs9BmkEh9cUK/f32YSrnm6KKiUAC0QJcn1hcLr5IgmjULmyaJ6bF4INwyoxx3fd61ANvUKKdU5jmxYqpPrr+lF+TioOe3CxU6Ivumd+BC/7YWlHJoEnRuAvmqvVHISM4XFE8eyqOzCLcJgr24FalIZgAe1l387NqrfScWwv34VUT9GGE+XFyuN20RO0Lodx2ovSF0TY5diFldCgtqglZw9OMFEjrwhuXCgcv6AuqqEEUBrDx5eJkmA1vpqGYTfA1a2oLAKORzwfq1U/YJUz7dWiaiXL7DeiJhl2YHvq6bsqPH+zOdMfDw3b0fvIoI4Z9p0vs37x07YATsfKrsGyqm8IPrA4aQErARxXgoEECA/4KtU35GJWN7YMZES230GBi9s//Q8ymBs3XxIthHyXKeR/MhbMBaVeNHBcCNrtECjqaCBzWgYt7utoWzkt+tXXk02gLf08oShhaqnwSw3O5/Nmjmn9Q1AznjGLh5yI8eYy7RP20ZHXAT5JVF1eJyrdMWWPdivxqLrShtDYBLOkA+VGcXAUAF582wDfvwqtSJ34uUPqdxCP06ej/IFV12K2QfSvFC+6Dpq9pPXM6qG43PcAR8IuQrH8cgqQChdqXcnN5M7WzY1thqGNrPV6v5csmolxXkIeF5aA0YgbXcwO0SnLlYvBKirG15URXRzAXnTFa7tlYjRjyFnJYQws/qxC7Xz1Mp6SS4tcs25RbQpVxRgmVE7sa+nw9gJarhrgUijM1lLfNV63kxbB1rgI+ya56ClV6k0kQKpRsSI9UF4WLRBW/KugN1yCkBskCLFY0Ziej0dQlvJ4YCAAyCTMznEzknjsYmYBcs9/I5O6juWtfYJbP1DLsA4rhipzHoa4rL0zjCrqGXpd4KBUUKSEUtQ8Goor+ltHv48DUMuTLs4rAZSk2dGOAq/gtXFEIZ7rJ4xWxVFAEK6VSVqFlD9FH3ebMP5/I030PCSpxGoItKZ4mJwFYcUoS9jR2x95kL6D5V4QTXFGNbiPrVJJbySrdgEltJgPVdLxznMhDYFUOQkHqeS/xIsej6uc853Ez4Yq59o+LFrjlto8uENzNtpGlTjJEJbnixSJDwoF0LanWjC1ksWzLYMqcCMNZYZmKk2pmwEmKzf7QoYpQwonot3dn0wgz5nrGqmCik8VI9ZJEsZyLiSax14nw+8Xy8Y60Tx+3Yo+d0ULzpPuh7S3aucmvZnWC/amAfdkfFeRi2K1ByUa/YFr3qLoME797Uo0d+qJ8/WsMxDn7WgzGFOU+UN5WGcqr0wEUxInHtC+RePWGhquOzW5OuZWHb//m6QtSC93vZLmvr42fEpseWhNX9eioFAq0Hq1nmXDWlIBM7PhJWFskpYogq/j8VAJ3nhHsuM1+v/W0bvfmuu7IDdv2+/b7fuz4MCF2jsPTHkguxmFIw9OwXeFCwKSdZKz5U5ymoDMEp3+yqkPqmnnNDDAu8K9bE/ZJzumovIuBWvhCAqrxwuiSM/SXw6SlZVO/IjDrEkB/qQTzI5GevxO9f/wfn84F5PoBcuA2WZo1eZRuEpOn8Wtu/Y8EdD7aOVRCoamKzHimb6AMkY7yju1qbEhQLJRWge+OYydRaK78wMtEDGL0zxQQOIqLeZSS4SPmXsX1NneD359KiTkVXN3hYezliEzlaY7qOrSeN1DQMyxYvgugVm5KXwBaMtBVyusVhGSjSLKMh8gYknO74b57ut10K7Ee7fnfpNadSS+wFdWKuiXHcNiFn69oLXNbeKOjGwNTy8vzw+pCEUNYJkPMesjBbS7iw1NxU32O0Vh3x3HqQRdRKyeDKodzBG3ZiU8vMCklveG0HvI0OBx0MlWhxLKhxWaC1hTy2j3qtRndOlcpmRz933pJwePSOcz7w/v47zucDR2+4v91xjI7bGJWYtmWz98qCXQ5boiLY9rmsYxl8xT5zP1pBhwy4r5AT6NCRjPqsLdj9YlbTfrrdE5kIQ1unxwJR+Tq9sBAA884b3ZhpZKVcqacmi7MuFhA7B+wUiqdYN3VJAKB+tLz6hSurt6EiW9v6OM5xXcO5Zr3GVo2caVwEw2e412v5XiqKb6BR0XcKAEPtNu9vbxRUnT8biRflqa3h91yCwqJnOvz8g+unwvn4z//6j2//Nr/zvPM7f8Plxho25PLf4pvH208e99GrCKh+/+Pj+fJ43cflnuIHf//jY3v7ru919RL+FgeA4w/P77HQI3G0rJ8j8vK3VT97JI6+0GNh9IXeFnrL+r31hTEWWk+0Y2laRKIdJKa3A4gRHIB029HFb9VyRUGv17dptu885w+puO+k5l6eI2vsIHb9hGR7hYPbZfVMyeNjjsJu67ny8nf9Xn83F7cKrV9/Fr0292u+/29/vQ8e978vJ+F7S/t/ccVHuPfz+rw+r/+f61vj8Xl9Xp/XL3J9Cufn9Xn9otencH5en9cven0K5+f1ef2i16dwfl6f1y96fQrn5/V5/aLXPwCAV20AHja3kQAAAABJRU5ErkJggg==\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["x_dec = TensorImage(dls.train.decode((x,))[0][0])\n","_,ax = plt.subplots()\n","x_dec.show(ctx=ax)\n","ax.imshow(cam_map[1].detach().cpu(), alpha=0.6, extent=(0,224,224,0),\n"," interpolation='bilinear', cmap='magma');"]},{"cell_type":"markdown","metadata":{"id":"DR1Ov30X2Rlm"},"source":["The areas in bright yellow correspond to high activations and the areas in purple to low activations. In this case, we can see the head and the front paw were the two main areas that made the model decide it was a picture of a cat.\n","\n","Once you're done with your hook, you should remove it as otherwise it might leak some memory:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"NTmNmo5I2Rlm"},"outputs":[],"source":["hook.remove()"]},{"cell_type":"markdown","metadata":{"id":"KVlDBmKe2Rln"},"source":["That's why it's usually a good idea to have the `Hook` class be a *context manager*, registering the hook when you enter it and removing it when you exit. A context manager is a Python construct that calls `__enter__` when the object is created in a `with` clause, and `__exit__` at the end of the `with` clause. For instance, this is how Python handles the `with open(...) as f:` construct that you'll often see for opening files without requiring an explicit `close(f)` at the end. If we define `Hook` as follows:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"W-IXpbEj2Rlo"},"outputs":[],"source":["class Hook():\n"," def __init__(self, m):\n"," self.hook = m.register_forward_hook(self.hook_func)\n"," def hook_func(self, m, i, o): self.stored = o.detach().clone()\n"," def __enter__(self, *args): return self\n"," def __exit__(self, *args): self.hook.remove()"]},{"cell_type":"markdown","metadata":{"id":"dhmeIkSg2Rly"},"source":["we can safely use it this way:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6BAGXCtC2Rlz"},"outputs":[],"source":["with Hook(learn.model[0]) as hook:\n"," with torch.no_grad(): output = learn.model.eval()(x.cuda())\n"," act = hook.stored"]},{"cell_type":"markdown","metadata":{"id":"bxiYXH4u2Rlz"},"source":["fastai provides this `Hook` class for you, as well as some other handy classes to make working with hooks easier."]},{"cell_type":"markdown","metadata":{"id":"-Bjy6s7n2Rlz"},"source":["This method is useful, but only works for the last layer. *Gradient CAM* is a variant that addresses this problem."]},{"cell_type":"markdown","metadata":{"id":"zoG2tBQq2Rl0"},"source":["## Gradient CAM"]},{"cell_type":"markdown","metadata":{"id":"Rc64x_YY2Rl0"},"source":["The method we just saw only lets us compute a heatmap with the last activations, since once we have our features, we have to multiply them by the last weight matrix. This won't work for inner layers in the network. A variant introduced in the paper [\"Grad-CAM: Why Did You Say That? Visual Explanations from Deep Networks via Gradient-based Localization\"](https://arxiv.org/abs/1611.07450) in 2016 uses the gradients of the final activation for the desired class. If you remember a little bit about the backward pass, the gradients of the output of the last layer with respect to the input of that layer are equal to the layer weights, since it is a linear layer.\n","\n","With deeper layers, we still want the gradients, but they won't just be equal to the weights anymore. We have to calculate them. The gradients of every layer are calculated for us by PyTorch during the backward pass, but they're not stored (except for tensors where `requires_grad` is `True`). We can, however, register a hook on the backward pass, which PyTorch will give the gradients to as a parameter, so we can store them there. For this we will use a `HookBwd` class that works like `Hook`, but intercepts and stores gradients instead of activations:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"zEva7XI72Rl0"},"outputs":[],"source":["class HookBwd():\n"," def __init__(self, m):\n"," self.hook = m.register_backward_hook(self.hook_func)\n"," def hook_func(self, m, gi, go): self.stored = go[0].detach().clone()\n"," def __enter__(self, *args): return self\n"," def __exit__(self, *args): self.hook.remove()"]},{"cell_type":"markdown","metadata":{"id":"FRmrbSSK2Rl9"},"source":["Then for the class index `1` (for `True`, which is \"cat\") we intercept the features of the last convolutional layer as before, and compute the gradients of the output activations of our class. We can't just call `output.backward()`, because gradients only make sense with respect to a scalar (which is normally our loss) and `output` is a rank-2 tensor. But if we pick a single image (we'll use `0`) and a single class (we'll use `1`), then we *can* calculate the gradients of any weight or activation we like, with respect to that single value, using `output[0,cls].backward()`. Our hook intercepts the gradients that we'll use as weights:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"eRQ8bjSk2Rl-"},"outputs":[],"source":["cls = 1\n","with HookBwd(learn.model[0]) as hookg:\n"," with Hook(learn.model[0]) as hook:\n"," output = learn.model.eval()(x.cuda())\n"," act = hook.stored\n"," output[0,cls].backward()\n"," grad = hookg.stored"]},{"cell_type":"markdown","metadata":{"id":"gLKGDlK_2Rl-"},"source":["The weights for our Grad-CAM are given by the average of our gradients across the feature map. Then it's exactly the same as before:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"5JHUaeX62Rl_"},"outputs":[],"source":["w = grad[0].mean(dim=[1,2], keepdim=True)\n","cam_map = (w * act[0]).sum(0)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1iUo-N-g2Rl_","outputId":"fb108f17-b6e2-491e-9ea8-3a4937fcbcbb"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9S5YkyY4ldgERVXP3yMxXr8hqfmbNVXBHPeYGeiFcGhfAc0g2q6pfZkS4mYoAHFwAIuaZEdH9esAapGbGz93NTFUEnwvgAiLujj+vP68/r397l/7/fQN/Xn9ef15/fP2pnH9ef17/Rq8/lfPP68/r3+j1p3L+ef15/Ru9/lTOP68/r3+jV//eN/+3//U/MJkrgNRXBaoCbQp3hwOAAw6Hm8Ei+ysiAAQCwNxhW1LYHJj1s1Lv4xC4IP7ND7U5YXNgjgtjXJhzwmxi2sScBvcZrzWYGRyGCYO4QEUgUIgKFAoV/sK6M4jxntzzawpFg0MxBvBP//Q/4b//p/8Rr6+/1Pe6nrBhGIOf3fqB4zjRjgMQgcNh0zDmHXMOmA24D8x5weYAYDSLApgb768JuGQOiOPxuOO3z3+DOZ/R3Pg9ABZrPW1CVGDg390cDudzi9S+iKQNVrgIoAoR/t3c+fDgz8I99g5cSeP7aWuI3V5X7pU73CcAQdOOhsZ1dwCuaFCINKgoWtwb1xsQQX1NhXfRFFBVqHNnFahfIoDGjsMN7g4VxNop+KgCgcfn8/4k1wSgnLjBzdE670ti39wcZhQKVUHTtj2whzdzqDgEFmsQz6IKyTXODRaFCCBwwAw2DTM+Hw7Y//nv/vf/+H/8x//wR/r3XeWENIiEdoIPyVvjDaXiQkJuRMoVh24CLpQ3hCIiFTEWTtYLygDEIpagm1Eh58QcA+YWQmt1T/hGSYhvJRCNG9qeQbbPlfjPIXAXqHacLwc+/fQTXl7e4FBICF0+vMPhYWhkDngIMZSCrqpwV5ihFIf3ANg0oNFwtX0t4ZB471j2UJpQZO40RBQaEqtOhU1LU4ZRUjnXmnoIcn5NSuVk7a97fE8hml9b+4ElEmVEAS0FEMk9pxFIo6hQ5C5zpZfRl/oVe2R8fg2ZkiV5cH7a2jvJvd/uLeUr98odXnvNz7FtfZfzydUImdiUGmG84CXBT/LEv1vIULxL6E/TeJ+1+LvH+8PrB8qZXiaXxMJK1q0BHouTglWvBSAOGohYJMln8xJWykFarnqblGH+nNn6MxXS1qKj7o+CqdgffluBXNtdMLafsfzs0JS31094ff0JrXVMU4g2iEtZXhWBayo+LbLBgbmUIp+L9yylODCn0sJojz0do9etL0EXOGxtS+476PmWXZK1MbJ+ZheIVO7cH4ldS7G1gDgqAFSf4p56jvoMPnuikFx/CrVCXAOxhHcqb7rf4tqL9W/fDESugS/ZgNea7zuc8lRyWPatBA+I+xUViH10OOFltxVBoDhJlGAG+ISLocXX8rnL8Tgop9jXXWuVdvX/3vVD5SQ8Cou1eSdZa/zhSoAqpQjLuW2vF8B9LT42GFbv5I45Zy1aWYXNci/DsT1qyd+6S/ftnl1KjtPoWn2Glm1/e/uE87yBKIfCBRGIzPBAgtYaRDtECbYsoT7WmqWwhtYCv/v3x3UnpKLntfpigRHklnhA+W1d8llDg3Wz1mU6HfBCRAijuYQoN0ggsVQUzjIEqfjlKRUfJWKhES0Flu1ZJZyKbM+1i+tHJ1CQe3MAT44gF0UAcd5vhjPAQi51z3C4rndJZ5h7L/V1B9yI8HK93aBiUJWAzPtN4MkJwBUQhznhbSrnQhzfvr6rnJJQMxS0QFDFDfExdSNAwr20OO4LkCS0oldQqKQUye9ldBO+hLVmhLO1fOltfakoY5dN2T3fPRSldnuDLLvipoCK4PX1Fb11jGloTQuuqCoklEJE0HsL5RRMoy8UAeYYcADaCIndB+bgvWhTmM2C9bsfoNNSNG2Y84p/AxaYgOu71gX19LvlIiSUps9C/mylctXia8sTikp82QNCK+DLe+da7wK2qTtWuIC1v2WoYs0V8WxS8WRKS8Wy0MhNOGNQiRfucor1fGlIEk53bSDCsGXgwxMbvBSMyvvhfXYFXUKZD8+1KkuZdyLLsG13mE7KPBXzg0P5g+v7yum2GdcIhuOD4b+PGZ7uc7tXj4ctF49tfVPJN2EJVWIiyYxJoMEE0FPCyQF4LK7otrTLkpeVcm4u7UHAJEHEQwIDoCbhVWNj+0GFmwZptNoqsrykOUQjBlJ+pohFgkMxbTD3o42eyhQmFJCE3rvwlheJBdKmwCWhwJEwCotjcJhP7HA314UGSpmgkEzceSG7VEiVZ8e9YtWE34b0vppJjtg3Ln2ikvBKqJuv/Zf9vvPLC4whY7LNIacoxKNa3MXKTziWkXmKB+sDItbVRDWCtqEwuMNVADOINmSsyBhsOZD9fpH3HPuv6hBpgOyIUssBAZl/yZveFNw99m3Ls/zB9V3lVMwP2SsNqOWwOZfCJYQCQkniHlXgk/FBoviyHLURwg0wi+89b8CMDBdDoYAoFWtKKCdf4eFJMzPslgsaOgcmaboq5jTMMSGNygOXeCFjVsJZx+PxgKMxMwrgOE7GmgCVVCPus4FpwISjNWU8AgdaJmYAaQI1fvb9euA4DrjPZ8iN5ZVUWwiFQyQVzMJ+CGwa432PrQ6jIKqAKMwFPmx7XxohNwfEuEmJYj8Yz/VV3rxNvk9mux2OWd4tfloi4eOykJKEEjuXWMP6+EylAyQwgTnjdpFIfDmNcWVy0yO5I0Mu3quVZ0iP2VoHoDBEzO6gF468CW2CrnAGzx6tZDj+kigxdUDFMc2fdKKqDgVGpOB57a4lKjCisD/UPF7fjzmR3oL/ypR1WtEMW9LSJnTJh7UIwNMKWtz4yuds2bRv3sJKe+/4LCF2vs4STrrD4p48PUBY/swaq1IFs4wwx4RDoa2jyQGRjqMfaK2HZaUXoyXWgLatFFSbRknD6eFt4jiYtVWRlV1GJDJcYGNtZMYsaa0zHssv1N5+EBzNjXlak3hZGqgwhnusBfGl/Jr3oKWI+5tKeT+JkCJu+MmgLA9KZMO8rMvz9wGnwTCDm0ErNmyBGJaBoJL6grsV/hQQL6/MXAANmETiKT81kzOIZI45P5v3bmha6cNAP/HcvqSLkNc2RAGYScF91cZ3y/JgyrQ7bEs6bYCChuZ7bhM/VE4pC8D3U2TWiSFIfmhCQT6bhWc1d2jrgEpkJvk9dQlj51Gz22KMzCC6wWzA5mBsVmWTNBYBrcOzJDQp/S2nkDHIBnZTgBpLIz49k79AU/TjhvP2gtaZ6LFJj8GNpOaIKr1pbIgi4aRgmOF6XFW/RAktlbm5MtaxjINyy6g8sr1XlhL2mD4lT1Ydaj0rBJHpqLWQ2kNZaxfvvQGyUKbNCO4ZnMwvhDdkzkGgeVugMy7vIdvbxMszSZiPsr15/S4B+TJrmt4ylaJ+xg3uup4vnyWWhGhmwjFrzfbYcYfiGaMu3BBqmZWGWqEwECWHGhCXnlMUUHNEzv7J0O35jufyzLevHyhnPG1mtbbNzFWIxOfyALLsKYU2rVIkyac9QyFIwJ4ozIZJdjfMcbGIP+cSjhSzgKpuaX0R1tp3tBawD9unLaVo2tC0Y4oD02AiQGu4vb7h9vqKfpxQaQHrI45DgAGRIEjQIPTzgLaG42jwy3BdA2JO5S/jQWFoqui9w21GiSCVEuuXRH4462MuyFJWCpt4lQPXC5FeN5QR65urzBT7lom0ikmXUElo0Cp3xX6qbrHpSv4tRVJmSytJ5wEtPdZwPY/6jsT+KP6S5+cK0cpkJCG+bj+dCkxFWJlsr+dfCAJww9O/S2F2zXIw8VOLvAwNAmlYxVGy3YfAxSp/IBVkf7zXb1/fV87MRiUydUIB8VACTXAZIMGlFDWCTgqvLgYGfGVggVycvPEFB9zJBErFlA0aVDYWCtUZ9UOlKAg9aIXCtdZeVpFWld4TEvUobdB24nx5w+unn/Dy9gn9PCHeYTajkLKEW5oSrhowRSCDrKnWFN0aDYsNzBFkAThhobE+erSOxxwl2JXfizVUEahSkVW2Uo9lMiHhWq51lA0kfoUiZKEdSuNissPCRD+x3qULKTgrluNHG6qkBJSHyPVV6axpelrOFeosxdR61mQEyS6qEvukz3A236YUy5/F+veOKEocnln8ZE6ll/Qy5Jv+L8MnzMbSIwYnact1pLJO+72spT4U8nQEe8hrPdzLP3/z+oHn1O2uA4ZG1kZ0ecP9MzxXKhgsw4zmXXmzHsrptrNdMjRdgse7t3rU7XHLU0h89zmlv3vXEDUP2FbBOX9qToPBoNrQjhO315/w9tPPuL19wvnyCm0dig6bhGzMvRiguakSigcakjGg7YCIozXBGHx/kYZF35pUFF0xZhqlBSXDQ0OY+a31CG9hthYE4a0iO1kwIr2YAM/0tT8QDPeq4y33tD6zDCYI/9X4c5mcWitKYyK2p3Rzs/KJZH0Nm1LtciobM+j37hSV+Kpt/2OYqEpjtwgNsTypuLuvTe8Dqb2VxQuEg8nJEqDw2GaOTGAlLRG+jGn+OxGQeFJZ/fmZ/+D6YZ0zV1AibrIQIvWtHJzxwLbQtDwh0HUvvJvIicTLlkejMoYlcoO4VTIq33r/s5R1RyP1t11B4zOMC9OixEAZU7TjBS9vn/D201/w9vYz+nEC2iobBwjmGMHVBaDMyELy+8AcFwCPGNPCCxqzYG0lHQB6bcOH5491JYiw8JzxDA4ihzR0kfLn8wVzqTFL6bpio5Re8e3fSKj3bO72WnAuIT1nKmd9MfaTsC3rxZClNKyJBupKqJdeMJVl30SkJwyElIqT71k7mwYs4SnqzxLFkt2QAFn6VMhs/8lNPvOi587nWhUChmAS8r3f9+7BMkTI2inXTn37qbR/T2Hi76/vKmeqDW9q82EBKy0saKFM5F7GK4Usl8zM1ruqoEEj6cOvu00SxAPuuCcTA7XAhdsjGVEJjP2ZN0+xme4FV8AFFzDB8/L2htdPv+Dl7We8vP2E1m6YJsAwjPEAjoY5JsZ9VJYPzXEcB+ac6CpwH7iuB6YP9IMWfY5BJRJAbAJglhiucBjcJjI3uBQjb3nFthIIwsNqixnjVAWM8IXKqctjpmfcwtPaHwvvW8sSgiRipYyLLWX14vTebklLCxZpwp7Eb+WlmbFNZZRa+4rWItbcDEAYNCl8vRnYTOqA99cjs7o3X2xQBGnkKbWZGfcSCcaR+hxLxm8JYNwB6EoyMmbXZdwCnTwz5wIZuGA3gpZoZ/PKe7Xhj64fJoSSppaaDlmwZLoxab5ZgEW78nogpBWJckJadNZQB4P3OSLVPQFRuE0WiWORNiO7WUKsRf2IanKzbG1eCkfYaJzHDZ9+/gt++ctf0W9vEO2YE7jGwIAz2eQKuybG4ypjoUHJGvOCMIuOOS84JsxO9N5g9oBE+j1JWxrsGzPgsommUhnv+M4S4nhQ90nFtPTGXpBXIPSUmiLItTFE+IHIDaRUOIopE3KLCiXCY2epwTcGVAqwRW0u5aK+r1lKGvDWeY8aXs0WwhIkeyugZbxRxWKlbA5Iq31ND1ixmhtJBPH9yrxGLgQA1CMilsVsc1tOozxvmkiRYrqtkhCW569E2Idr9wGS67kpXd26BVKTKrEJ9AOF5Pn6rnKaGVvD6oMiqYC8+WVx9tt2pOdzqGw1rA8aRKMrmONi5hIUOpsDIzOhi4xYi7rJGi8l9p9GxozDipCQYZRqo1IFOoQKjpcX/PTTL3h9+wmuHdflGNMwp+NxfwcMGPeB5oKbMruKrtAuGOMChMp6u50QMXz9+hVfP/+Gf/jHf8DLy1kkaQMqszpBI5UbRu+anjKeDY45DeN6VMtcGjYPb9xbg6tiqmACGDbD8CwDVN5HtdrMPATW3GHR4cP1AcxGtLhRWTWCvhTsGVRBKEtBlkqhUZbyC+qsBaOej3vWpK24t5JQFOaG8GSVbsOmiLnPye7KB1vyI1gKngkuC3SS4UfmSrQp+nGgNTKDxphxXw1JbLdEKRKlrNaXEdg+fxgZRxphUvmtis+XG04dWGScNHrfvn5AfK+VykdfluwJUqRFWkpHq7B5hUj7hgGsm8+OE8qMFVYXZ5G6icDK+j97z7JQmQ0MCN2Q6XEtDyHxfdUG1QP9uOHt7Sf084bWDzgarIWCB2NJTKBd0Bu7KjQ6UEQcx9EhE4AYptG42Lxwtwuff1O8vrxES5hCwGeUSY4OC9rB64z3RW6m+WLSwIM7GzxQAYUtd0SA6YbhLFd4LH56UQqGYth4YsIkdcp8IOuJc0RYMa2UUGYmOawU1H0GA0liD62U07pBXCFdKFpO/67ckUBLG0T2JI1kxtqLyRUgAdMCrUMiP/lcEUjHkBnSgqZhnfLPlGcHoifY+YkWySGx9Q6y3tsFpGFujqUYRRWSGWZkg3PZVRQSNe68YeoBfgenv3X9kCHE2uMf0JCe/lwbX7+H1ckHUGRa3+t9qZgTBfQdgHHDpCyuIvv1FlL18jCe2a8wCOJM8ac9zbUGoiYoDcfthpfbG24vLziPE6od5uRLNjipZdPQRNF6w3kceDkOtODvTjGcR4dOIQyHQdSh6riuC18+/4rXlwMQoCngTu8m4UKFC4LWNemrfPQg9/P7mdmO7C6YyIIos4agUNmcmG6YcIYDCUERENakBMoLNoOZ47D8Al8xf7krryaDxLLFcnJCvImJZAKqM1PcpEdhHoA0iLc0LfXe3L6EmeGlhUuxC3j+tpJ4IdxeroLJrkwOJxsnFJ/ePXUts6vsv4VYxMWxBfGsDt88mhRJ5ok4EHzaZUTzPsMB6cr4Jq8777dw7v5+37i+nxAqRarPD9u0RYAOoHzk+jI+WgZZpPPpWBBiBoSIz2FWUgiHnJ3osnlpd48FzQTKlv2re90gdFrY4FcqBNI69DjQ+gFRcjCp2F4xRlN2NDQBtAnOl4OcXJvw4ZCO4ugCQHfFcXZOO7ALYzzoqZsEXHdYFKVbeFRtCo9CPntBOfWAQsEJByaZGVZABU0VPoAxB7GJh6d3h2FUTW5mYie8EUIhYmOxkkzRnxgUSQGNG9KLJ3St2A6h5FKKYOrRn9ow/ELzjglOPfCKrYKfHXuY3RxSaGyXKu6BwRFvDYWjAnwJDq6zIvDsJlBwUqBBAwRa4yc4DDO8ZcH2MAIlshGC7XK3s5U85JfJ3AWqVy6kvEV4cd/uMfTgWTv+8PpBKcXXk8eiVRK0vGCt6IeslcYD500KMjhXsegXt6BiBWSy4CJG3JCJDHqfEGDhAqOUMCAQpDK1K7cetZyoA4o2tH5A+4F2nFGT1MjArY77Jop23gpuznkBcoMLh6BIC4/mXnVOaYLWFMfBLPS4HtCu6NJWDTdKRVBuUGuK4bPGq1Q7lyTsj7JSV/hMwaT6TJuwGWsXykWEkyyfWM+qG6dSpWcMzxmlGXcvxJExEzZ6IUNFvrdEmcEi6SLGtTe74H5gyoUDPcZ1EDnw/egFJbh9yXWOCDJFhLCwWmbSKG9wEuvPJL7EI1fzhDtpogYykczo0cxJPMlYHJmw3BQoQ4pMDDE/W9yq+pUgQ5vWfT+RIzbF3JV3RZ7/DZ5TM07ApuVpPfDkL/HkSSVgQjTsVbhetbW8ybhVY0bSZyim2fYgK5ZFweRl2VIBuZ4Si5j4XoP7wHizHSduLy+4vbziPG9U0tbRtMFNYJhQ0GNqMnNsYtrAsAvmQj6tCK4xAAdaEArMJ0SMXtEoqGINPh2z5X1PGMg5ppXO1q9dMQMWgZlTaRKGg5lt84mBSHyZh4LRC1q0pTF76+WZCp4CEU9Pesxa6xz7klu4mEH5mvIOuW+ylTLoDqFQTDzQvWFGIpCI5QK8sfek4lDeYwtJMziaM7+giXQ2uUo0kJ5XI5yDJIXxOd50SBT7I5oVGmsJYgJ5z62M1vKOGf5sSoUFX/d7evp3Oqudj/zk09PyhIHanMG3rh94TpTV3GtU5MLuer/dkGw3g2UBOQIkkgBIGjFnq9hI1lDwIW2HpyDGB4rhb/DqOMlZNZlIkLhx3Uj6EkvR+4Hb6ytur684bi84+0F2kCrMqAAqgh5DnVQyO+eYzhlBBiaKxhiEwa1RGeeqaxIuhXcCIMaa8PTJHsyIMxfsXFnAhEq0Zc4aprB0YJdEcoKeGgDcJuYcmMbGbleWf2g8g15nK9mRhhCRSZZELdhDhSVUKxEX3GcBqI0Bw+GRBTfMyNZOXDA/MGXE/kTPpDeuMdqm5KlWacC5LqJpWCjE0zhUy7f7ynCgJhs8iWEYtZCDPdOfyLUqoLKe1vP38Hr82Ug8bYpHdlzqZHrTfJ9t/bL8mHB4+/mcafSt6/sJoTKlQigWj53+PG+islAlAluw6wlJvdLUmQ31WoRlcMoIuMNznIhH4mVjXCS3iwkCqdtdSHzVrTJOABTSOvpx4AjFVOSkACZMFOzcGGPAzaFdyaO1GQvsQdQxxr6V0CJcVZPNM9LrIGYA5WbnymWChe1nAXnDcnlQiFpvy9KaYTpjYD0OTJtQc+hk7OgwwGRlbmNRckIh3OFzYtoFscwuUi3D3VY3BxAZR81NxMowChAtKPQEEZ40FzgGHOwGcacJpmALs/EIrwaJmHSJGCFvZGw/KJ3DMS1KJxJRb3lPLzkL7xHGOkKZljXKkIz4zAon4hFTCJkg8uU1Q5BXcom/pfd/RpAJr219VmZ+Qw5TPrJK8a3r+3XO+gBBtZ/Uh3skWNKzJg83I0UqmUUcaXMWp9YjzrKZxfV4j+h+cQPJ8p4PRMi1GoXTTFQ+rLxyuJxa2GXVFgTMBl56r4lpWnBawNkwZhxh2Y8bVIDreizidu5uCK6HoKs0lk9Cycwz60wbKxIGJ2CgJUkh+ks9pzqkLxGFtAafsT4+4C4Q6ehdoRMY1qAY6BeF12QimwCmZWnKCr7VuofZyiypuWOm0YwuHNHV9bJkaLGLOKki64Qau5F15gnEpIBK/Gh66fRR0UwegpX1YGSyBckyzgz9Ik9Asl7tDCFLM9IDUqiktRpvSUZTKGA6CuSH5g3EnnqaeMLp7B4i3VbK68dGlTxVXOweJu+5zJjoIJ3G967vx5xNnjwfH5vC2ZQQhQ9AdUTqRtwchWFuJOBJxZxBAA/F1BAm85jpaXxXGuYF9dQEaFIFZUd0GrQWJQi2EEnJUCyoUshVG1pjaeQ4D5g5rvmoZ5h24RoXVBRvrye+fv2C3379V9xuJ97eXmIzJxUmOlJaO6B9lUGgiqO9INvfmjYmTia/B6X3IjlDYsZuNGyHZyaMN3aldABQjPkAtOO4CaZfuGzAMIEWHkuUNMGI880BPKxm/qZBTbIGwGbrZH+Zj/iawkUZ2/qA+qrDAolgAGhQEyOnAp0w1/JeEh0wCmdnDQTV9uIGQSsP5u4YnkrMj2rQ4BdH1jfRCXz7D1Vy26fx0dCC5AsDRibF8jE8ZG06WVq7YQeKyZVlujTKaUgWglx/JiOSpRMpz8rnWyFIopJocPz7lTMzdR6YRoI0tia68XmelLNevP4pAJpgY6qkOc5OcUOmrQUr0eSy8Q/DWuZ0jXr3goqo2T1JLSOdMQxJO9ADylIYme1UKL2kATYv/l0oEPCZ2Z1iteQlYUG9WpEkCwxh0Pjk4ZBptdNwmWPqVj+GAb4Ja/6SmBwguRbcE9Y1J1wmTCagMbcIUmNExhywHp8dDCqL4dTZfkgus4SnDIe+j/9QAJLjYzzKYFfdpIQ3FgjElFMkmkQ8ZoCzrQ5yceWMsFuCX9ykA8EcasLSWdamfQJzEmJP4d5yTq/WRI5UR6/sfHxFHNrAEABeFOFFAebXIuLACsMyi4oFp52yTy+4Wtrjg0smngnwid6WAhBh5j0+USa+ef1wEgIXWaoIW6MTf/e+fAj3/ZsJQRMSyAZvFC5Rp6tY1AOPUyjr9b7ZSsHiUEacEMgCOYYR4YnJbVUcx4njdsP58kLaFgAfyds1mA/YdCZVfFKxcxElQdKidCWUzu95LUgYmLRVG8Rx8+iljNYjALDoB4w2Ha2Vczg4G/XKbCwmMrubcVrCXkVYeL4pv+cs7fgpQOv03FPgMoAx86fq+clMYlZThXuj1VRJ1JN7WoX+Iocwvtf4mZqo7gZ4KKZkp4qiojh3TBgaNIs4yAbzTEyZZ9gT2XesOA7hpctjIWPCqPXOWUEimUirxW81mK/8yOL9hpMOK1sdKSD48fjZZDjl5/5I2dbPbd73O9cP6HsCzt2sxy6Ym+n1hJ/xyOHlPtxkvF4gVUfOmiWQWcJwN55dEYs6syeeqtUsFDO0FZUej55GF46f7P3A28srbi+vON5e0M8zxqlYZXOzA0OwGoAdbP9qnkmR/LyA9uEJEcbLfRbLJJ+HLXb0ViMocw5yMgUMmqZPqCezKZ+VymkeDdvGLC9arIOmkKNGcu51YqR5UUGXjn4I5nTguiPnGUmgFzUPEnkal4GRS685qR3I8hRpTl7rUYSCeL2lcTOHyISEiBkMmjGmGwDCfVgm4uixFR7HNzx7qUQNFjLBohnqZ9JzeQI4R3RNWSmfwAmtS1aXt5V6r9x9PH0/1UGQTmo989PPAFWvTUhHNtFClhJvphsU/6Prh3XO5ZoXhs7YpcUkhPLymSuOO1gFWT4kjR09GzsZFK21aHou3US+5coHPy9OAEKkYgpp/k+0KbSGrh3n7YZPb5/w8vqK/vICHEEvQ3BtQ7CTDL+eEjh6qwRAJSNAj1nndURvZh23IOve08ukMUMoYEJcjfXKTLRIKhWRxLAHyeg2qMSSQ8M0jBbIacUEjHHi9Fn3qU0AsJ1M1DCn4hIqIJlWUYcm/w5JRqhsujPb6eklNtTgpWQ0FlrNz6FM4gUDPeJqeiorSGzBAqsyf7TymTi51cgabyR/fDU0CABXtnAxqbVigl3u0lkUnQ/p9SJBV/sVuxbbust9JnxSjRc4zcu37/DfWSZJOdidDEt9gVDw7esHpZTdInzU8gUp4PlQG8TLB5T18x6SK0p6nKnCtUFklHMWCa4sVi0rFTsL36yyScDKqGEpEwgcx9HQesd5nnh5ecXb6yWt97sAACAASURBVBteXl+h5wGPIcuCKBWkMU3F1EUtc+2Ehm4BZ0JIQZi7+Ma15gV/EhLlk7vjuf80dpiKStg4fQIygRke1x6RTb4w5kSTg5nHTOJEuYX9nBPwMCZxf8/35VsYER0/WY7K+wVi7o2Vt3Q3MpFoCuInk7CQvoXGK2PvZ561VWIPcE5JKM/XOVBaGpq0oEsGecE8uMxEJRaMKFVHl2zzSnIAIW923qQ+7OfjOICcaeXJcOKYxkrSuiEy6qu+yc6U1IBQzzRW9Yy5zukwVhnPZclTyoOkw/0BCv5BQgjrw3KX3QkH9cMP153u3o4bum8Yh3ApJIjHNaP0KTb1omEt6xOWSNjlIflfLLS2xhk+2tGOjuPgyV+38wXnecT39Mny5m3r5g1y1IQ7Oa1u7OpIr5x0tx0c5dal10yrlEmj+JCwvlEHVRqU3Chzg8mATyZ64BPDHmB7V3rOHntKReYpY/EQTdFkGR7Aonw1Yi0tuloE7JbKDCXjziqxigBNI8akQJkzHtfW1vMgSka5D7KMknvGewJ3Des3oOho0nh6lxzo0qHtwNkOHHrgaGzlUhfYdGRHjF1XnTK3aI6CsC4RxiDsUSbZsJQbGxTP/YkYNhLs8aUtRBNKY1Ivg5ob+7veS57+sslAfCOrNLsePuebv339gCG0anpPwpiZW5H1tS1BgFy7uFPfbzqXK6TYYqGZBJCoKaHoWWXVttdmTjdT6ITHitY7jvPE7faCI3r2WswUdTPMMSCtLRie3NEI/qXunT/QVIEG+LXigzz8IC1rqua+Adng7IJi7CgcmY3g1Hh2pZhrZE2ZQJmYgPPIQEM0oGNQuRWQhoBkNGw0NkQPdATs4sluFEv4DKD3htvLCRHgcT1wjSsaD/YmeKmY3m1RCx3MEyR7KVHTfsJXCrfNCUWDaa4T0FpH1xO9HejtRJMDKg2Hnjjaia6dPyONZabYB3GHzYH7/Y7xeERjwSxCg4VVlUJveHImgqVLnjuX+xbG1oxMNRQs93qeZ2ULTOKBIfLnM1ObeDdXJKEz4ibC6P+oGyWv78ecWQeLR/Mo2iaEzabadaVX8qVRW5r76ZbCypstHiwTMoIZrxXxYv+s6Pd5MWq2a8Svt/PE6+2Gfh5IK2o+wWSnMS8YxbkauelrEzPrC3h186eEiYDEmJhiz8cP6yyoJFBCKt1qcMwk83OZUKZRyfx+1pJZbyQH131GLyYVs3fOCkLARHb6T/h0jDgiUWCVFafCT0xnfqB3hUjn14PFc7mVl8tEh7tHz2MSxKUOVVoVAylj5ohnEX1SAHbRNPR24jzIZ+56QpwKyJM7ObEvzwod7rFHgiP2tPWO1g9cxx2P+zuuxx1j8AwZnnpIJFOzgZGQVJesFAbzUhDflMXBcs7S5g9eLWTjWdrlG99YMptw3iPzjBLdmI6Ib1/fZwjNZH+kZwh8xkgJ15h1L2S6bJ3syIRSJALMcBWn06tg34+Oe/YVRvG3gU221WsYi+sWGJ6hIXK8JgCcKridB1uDhJCOhwFl5s8BGxj3K+5ZaoGqTFT3Tw8xx1Vwh7Q2MD46+4of0tuAX8r+QAeYGW7kkc7g2UIyoTaYDHOO//RJ1DCuicvvgE+YD7TjgLoBgQ5tTlwXqe9NBZcZhk1yUFtD0wMCw+O6c5JFTC3onXVUna3a1LQrbi/hFadhXobH9cC4HtHln/2VGcefoSgMHc7z5KHBrUXD9QntLxA5Yu07RDo0zjV1Zy9lk0Z1SsOdtesY6ymIafyTM6YUPM3t9sKDpb6K1CQ8d9ToVa1MfySv4oBnSe+KRHQIeQZi/H8QRWicPuaJf2eQ8rWCOggppyc4UKFWCoUjjm2IEh8/9sfe88fEd2DLfi2BZEAdMcfmWT5eHvgnvST/Ei4+Pwcoi5af0qK9pwb2AmT6pLPWNfGgrGFk+BQSDdthTuK+rPoXn619KWg+tPC0MAAxokKjHplT3z/cf8Q8WgLHDU1BdtBrz2jhUjhcWvivyFTnHJ6mUBxQ6TB03K/3yqw2m7jmxLALgELbAQ8vo2R5RIgBDq1uUmikkjuY0C64tRPwA2NMXNeDJtEFzRumH2jKU876GTzk1itsaL2jd5I6cnwkAUijchX6CMHNmimSQhdrgPT+keTzFY+VkfM8W42tg5MaxY6SDcll+SoNiiP3cJVSqpoQ8iCJBkKOcl7VDJcSHQwcsRlymRMYK00CZtk15SvvI15QSHvTG0mdwfcV9LvK2YqmlnAAT5AyYVp+cDwyUmz5k0zgoBQa6wHS0sWrltXji5tqsVckoGu8moO2In40MxK65wS3hdvOfdciOVie9Zmf2BQchBwjSCo7yHu3hNvCzHJav1zXeobcNNHw/sFw0w7VToDpgERJIWuBY07MKP6rKhwHTgWgnK5wXXfc7xekKc7WirMrLaH0DEaOfoBNzHRqhAqkFsYEwBblEwfcZ9QVD2gDpDlLUDdC/94PnLcTR++c4ds6tB+1l9iEnrIRCCdUL0er8F6XQOaPsn9Ua70cHsc7rOw2SjkJ5fm+W+wYEFSySSJUO8+oyb0ig8sL3SD2yqfX83g8y8Zv4XqldwGCpCEVnhSkRmZzV4wOrJx5Rni65XF+B50/XN9XTs10M4pmV5fLOiogFi+zsh5xYbr4WJ2yHEnwXudLroepsSaVhZUoaD97chHlbJ+myLGDEunqZBtpYBhRYMYBQzm8SgSA9UhWMNPZGrOLNo2UP5GihvXW4xmeebDTZpwbuQRWRHC0Vmd6EhLH2Z0+MQOKXvOi526ASIN0ei6I4RoPvH/5gscw3FpHa0ckvqh4ZrMGTNF70nNzNhEzorARxybOgGCLd0wOM2PhLnzuY6tBt+Aj904DIzGC08LQ7EOTLXlwAUmxhyIZ8sBLQemdyAwCmByUSOogVDtBFkKeJGRpRjthHmy1vpuyIavDpTZ6KUISGVrcVxL2PL2ZRwN3IiFQ/tb4lKi9VsWCD1Qc42wsr/VJg5AJDSkecFZ9/i7lzKI0g4JtESRqgvJclshkyO5RWDdC3Bjn9OQMoOyYWKDZ1+/u5QEQh9HUSWNBCGCyoUEOvr41bjfiGIc8qUWdKfk5BufJwuAuaH0EbEL0HVKIzKmwJIBTQc9+LkU9D6gophtkxpERsU8CAVRw3k7kYb/TrDpEzBxjDiqnTbTeeA6osMVKonTy9X7Hl693HMcNL6+vOF4O5BgSbZQ++3rHqK4ej+MbWpSDwwBc90AdAcsiFoQZMEekxSVqqJ3DqQuhUMgNFuzFmKWQkUlORtgtJ3yTDc4OskxSySohhI9BJn/JEuqBADJbkXKV5A0UqslfCGVBKEYaZo9kXtvpepno8cxio6RXkBncKO/l03h+Rj4nwuCGZ92+xpS6LQ51IoBdprF/5n+D5xxzxrOEfdHdO+zx4DN2zjSOi8eoDF/eSllWMNtw966gBbmCt5jeNsdpJMQwBdxY1+wda3TkJOFdJOpp4T2dKfnruiO5kjaVShxtVHNa9FayfUv04KZ0xXHe+MxgLKm9x4Gsow5lrdgZguM4CVuvB5K8YLYUdRrDhbNpwFTQK6tgXoYxaMT+8stf8Pp2g3bH568XxAkFPbpGMlkFmxGzpTEaGIOjLlvrFZfBQSjcFGgHjYuRh9t7hwpFYqYxs8g4SsDJgPlUiFDiNNIF2RZaWvKQMDbJ+V7QNgkMcETTOzbZWDLnEdszsUYH4fE+GRblBENzoHetskfym5EGIbqKEPC5nEw4kYTPlNusWWddNcKUavBcod4ivPtSDV+s6adM8LPa/O768SljBUu2q6zB7jdl+3neZAvIop7YO8P8Lb4TVA+hAAUf8v3cjJsZvYBZwIcb5jUwm6I3JiHYN2poTuFrxK5UijGrTS2POdCAwj5nHLfQgJYJJh7hJ62ju5A90iQgY8JMgcwGGVGSSTTgDigzuuyCIYScnqM3AxUczPwyHkJ5rDEdwxy3lze8/fQz+iEssQgwbGBe9K4JpWQGmT4yrCJeRkc7rTlRDOuryzPGaBNBlDIA87F5zPASLDpWqSL3bQ9hEKpCbxhGNQcxJ9Miw5IV9K4zRKBYRxf6EvAYWAaV8lgMY/hp6UItnsfjc5aibbVySdldqCCTmbsPIzkkfJ+TxohAFMujWt1XJiWz/7jCNGHtQdtKTgLbB3/fcf6on7PV3z28mVVhmpsUT/cB2qDcOMdsMJNKcvayYjVZ3C2UcJUzMrvLoJzWds6JpBS6G8a4oBcV8fX1Fa01jBEDqcdAnp8IJCFc0I+jaqK8N8K84zjRjhOtHQAahjPIV2mYLvjtyzvnDZ0nXvsRnFtlwqftMU9C2PAYcbCPxzPNaPaGKl7fXnG+3mLuLddwzguP8cA1L/TbCWnCcotNGqXhEasSxs5I9ggM7dDIE1idckZWUIsmgB6T/DhmZRgTU60pDDPWSNcaS/xyII9hoGGJkSgumxLGnlNvCCtdWF6TFr8U4tEVVOT2bFGLNdTkOvONNJQtE0xcX+a4xVMlQxmd0FJjvEsa+lRU3RKTwIp/08dQTzcagiVh30veZX9RZPvZ6plem09HY+M06ABQx1iGTvoPNBM/grUjYWU+osT/hKxzWgXqS08lrJNFeLjI1B5jIQRM8DTl5rm2GLmztWVFSn5xWekR8la42fz+4/FAax3nLUojjebSzGAjphS0Vt0orSmgDb31qt2x3/MW2UgWyQnpFNIOfPlyxzXeISq4ffmMl0+v+OWXX6KRO6b3KetzMgbQG+lEDphMGITDn0UhveE4O46XGyYQmeADY97x/njHfTyYHOpA64IxJx7XO5DGcRr60XC/32E20TsN0ONxh80RNbSSNsaRWW9NKKYNrTOZ4wCtOeIY+4wrZ6ARW/FYEeEyIbJBRKIRDpN2b3BpcOuQxnpnHboUZRt4xm70pJmkAZLiSIMszgn3gHNWrvBgZQnkk67Qgci8N6IpBEQmrl1e3hGc3qyDLnljrE6HIYgBbgyCysDnkZUJmefMiRbBJDPG2cWYcqI/3Vrs6ob/XuUUbQEl8wtL4WtNfLlsSZNTH+w1FgShoElC2IFEKlmlsXVNJjMRmE1oUxwHx+KPMXBdFjVrlrjnnHi/3wsiGdZp2qyPHuyikTgJTBq0dfTjBmmcYdvPG87zFdpPQBqGORDHzv+n//wbPn/+DHND/03x6f6G+/2Ot0+fcLuxFQ2tcZaO5sAxiayq4zHZQ9kOFvD72YDewf5RLtwchsekxxPaD4x5YcyLsbRbDfhSYWGe1SzWKq+LytpiemDAjoVqImZLV5Fr5cYBZgLEOTAbZxUJwULha9OifNQWKshJB64NgDLznewJkSAj0Itm1jO9IstNtpoO4Bgx5Lorhd3nIOXQbRHK91uqtsG4f44xiM6XuBwVI7pjcbMjgeS+umAEQRbIKkUkB+nMWaKaQhkX4aQOh68OpU0Jk2CTupNr+L3rh/2ctWi5meG62Hu3fUhi0cT7kQXMqXRrzAkVEanQYId50zVoi19fVLgcG5HeWVXRewoIPeTjekBGtKJVMTyFkvFC65y0p52fKtqqftf6iePGvs9+3DBd0F0g2vB4DHz58hW/ffkSM3M43uRvv/6K17dP+Ie//hU///KXyuJq17UuQ0nGc4e0huPWcZwHpIGnhMkMJc5eSLKBOKKkYcwH5iT3lp8NevzWcJMThgvv73c8rgemjZgGQUOYbUl7zJdrkplk9hpmbdnhiFm2SMgZmdfAjpL5gmzR02yiF5g1sDMmlG4zBJm1SRQJj6MbklWyoSu+KqfuN7bF2cTjEXxgm2gfQrYcI5IUQkuL8TStID1zfGT9xWO6X8LgRUrxejNC9TyAF46N/km4bAF5rZyVFMMKXkuA5zv/9vXDMSX7TFVmbIO8jfR4yPB3N0qomqaFNcrhVljEX2buhGcWIE5c8tzMfICw8mDiRnvD7XYCoAedIWRqiOkIpLVlnJrT1zg/qOM4GGsC4UVC+FpjSaOfN7RGaNZEMc1xfzzw/v5O4rcozC68Py7MecfffvuCxzUwzPHzLz/j5eV1pQQS6jQybaTx0KN2CKZw5hH7GgkpM448Do6S7EeDzYtkb2eHydF7zD9iDGpj4nFx9lELOiTgda9MbnllqClwa1JBZr8lYkSP5udl3alYK0tP4odESCIIskMwrdwjcSKR8Y4k1H56eTXqS4QqspBU7iHjyxmkCRrDx+Md47oizxOG2wE2YQRSSdTmyToyIL4PLOO/y3iVOFSeFBQZa2YypyBCKFsY1Jpi6P7h/RaXOj9r//NH14+ztfUoH2BN3mQUdYolUnFDIinWNuEMkD2mg2fvZfbUUVGBHOiF6K1kTBB/KpXo5TxjnUIxJUoDUQSXpuidBxYlaZpdKp3es3WYZ/y1OEWqtNJoPdqvBO/XOz5//QJR4OXlBlHBl68zEiqO9/s7HmPiMSdcBMeNJRcYMIVx03l7gR6ROGgC6DrOgBnHIAp4TG84mOGl8ZucBxSDofpx4Dg6Pn95x5gXP/9BON+PxlGacyRgIBwOEgc/T4sWZzV6ZMuSh7uobhOh0lrGh4INKmuJhSP3uoW31uLMJvm/PiMUJnhUoFcnkUGCxyfO2UjaAPeBx/XAY7C/tUMwIVCLOUFxrxriOCLUYgVDsPN38pkYLy5lkbgtj/JbwlLfFLO43YgvxM9kxnm1RX7UnKXo/2VqyeuHMacm4yGuZIaYx2TufCiks+NUgcyylaLBC7tX3BoLOo3sHbeIOYKbkYkcCrBXpmzaxHF0vL294rouXNeghUo6oQp68D+pmCf6cTAZoQptncs1bDFYMp0e2UcXgQ/D+/s73t+/BjvGcL/f8Z//9muxe/px4G///C/4fH8P6tsNf2l/gbboDVRFvx1oaDGp4GI9UpNZw+TGnANA0BKVY0XGGHiMi+eiCGGuKKfNf31/xzXuuMYDolTo8zzodUbmNsMgRnGe6DLGjEbSIx4Z5FE4DVxTSJDW+VoBjFS3BLw51JuvCsEPOMtfXqWU7O55DrEiH4GYwiBMu7AHzADw+D6Jw6Ee1ztjcZCkwOkHESeGLGVuJNGIeJSB6p5LEjMaXCyyuCvm0qSGkEkgh/S4bsYEHhb8VV09y9WMsZIyaaG2539eiW9dPzxlLCcA1Numd9uUxXQ50szu7tg+t7BikMTpSaULS7cWKbWX255DgcnyYeNt++kTfv75Z0wz/Prbb7jGCIiGap5mGSF6PVuk8yNLy08wUrU0s3WxUW6ACUnhjwfmxal8v37+Db/+9hnXuPC4BkQU//M//iPe3x943C98+fwVv/76G37+6Sf046CREk4uMCgwmZpnTazxjBHDh/k/TJxMV1zXHXNYdH4ojuOAY+L+/hU2yd19fe1oXXD0xiTK9YCosS1LSU9kUg4pzWFc95gLAb+ITFo7IdIBNAxj4/Q0II9TMFfOPUKcuVlWuKGocNGCoKsVIWhwSaLYZNgsdDLDGYtjLngo8XV/EA2Upw2OapOg/eWOL/8okRBLgkEGRymQRfv7CDE9f1vymPTDUut4TZET6kG8FNZh1cnk8KLs/ddcPzg8N0dPrI1k3Mkbs3Dz+vEBY8Noka0871NJJDwEnYsGXc4ykt/wOxkzvXe8nCegrAVejzs+/ya43U788ukN1xi4P0YU8xt6NmBX9G70CLIUsYcaJ/H82VsD3RxHo7eac+Bxv+P96xdcI2bsiODLl3cmvUzx+csX/Ms//yteXl7wP9z+XVHHzBViwT+NWhzPhmF2VI2KmmMjVRqadvTG2Po4OJy5t45r3DEdeHn9hPPlQOtCTnBQ9dgapZHeZ/JojCt4zLWJyLMzMyDi2aMAtMPDa1rUMbU3NBW0yMB6PAOiFQxAQFIF9IAIJ+kzJg2Y6wLSQaXcVvVpY/uee+0D3PG4P/C4HqjuklCejHEl5hBlAsg3Q5MenB+RuY5lPhiPl6svLi2qXrlyJ6mAfPIVuyNqoUv0UznJYCuV9OWefVPu713fJ773PIwmFCVSxEXjw6LY/f6KwHiFLvw9YxDEAqpi5vt4ZA3j59zXwbWAY4w7Wu+4nRRawkHFeb6iHx3HudWi2hH1Sw1+bsYWVH6FVMBuvvo6q9wDre74OQauxx1ukzlMEWhnK9m//su/Yprh9nKEEDo+f/6KORzHKTU+g/tBUkMO1a5J7uGROLe1wRU4wFiPBAKhFw1IJ9Lx+vaKt5/e4JgAJq77HdeYUDXI0eB+MZsYCrKEMeKszcgyI0+BTArkTPJAO3A7jlLW+4NZVL6PxkqmR2KbmUjbPGfuH88o9SClSigYENsQ3pTixOTYHAPX9cAYF8/9lOUwkFnQMg6Uz3JyxTwq97fkNI2CI0gvObFfyijkLCltUmwhYH1s6gV8KWcp8gb5+XyZvf8vU8q8fghr840U4GRohGGZs6DBB/JTKS7DHF+66144XxqVogRU4iEKH0eB3EYsdOIgjls8Ds4FElHMOaLx94YxmaVsxw0CxRUb3FpnCcXC0CQEBycM9N5ZB/UoIjSFKcdXaDgYjTYsjbjt3/8v/x7XnPh//u//CxDWC9+/fsV5nri/v+N2vsJBRCDaYObRcE4vqZlkMR46SyY2GahTnBRBV4garAfpQzpeX3/Gy9trQGdmc10GgOQFA73fgO6cMo6GajhPWC0a0xMRnSbkUVt6HjDuVGWbmMjBuT7KESTZlbQLm0pDeiFOIQCSVSbg0fOuJFFQSY0OQMB9yTxFtAqOeTEWD/vPOVD0lESdjoQDWUmofkn4ImMAK/m2pDQcgD2hKT4PtvffXPwHndJgnz2VZzIzLquVD8DqzgodwDed2rp+0Gy9vziCX4lzGWcE2uXG0yr79npUmSkNmqx3Q1pTcmcp3EuPvbyUpGcFADPYvIDeYoxKxESDZ4RU7dUX+YF7bxTdlmNN1pjEFtldllwC4gl9wnl0dr6AyZreWUAfY+DopKK11iHaCIEdeNzv0cD8xjUC49oJxZxSgkpaY3oyeovki3pYiaaMM9lXxsHS/Wjox4l0/mwq7pHE4fiRFnzjcV1kRHmWSAJdbLVjJuoMedAtPJUssq6+Tsxu7dhLhxW+JGSsIc0BURlPz2XAHbXPDCWifBMCzTLXxDUGxjBYJRE9DEIijDTkcRcaBkUkdImyuDivvrx8CNlKBj0rSSLQj32X6YBTuGnwMqv+8Q0WHHZgERNKObEczjeu73NrI3lQ2h831SQaZINEnm47D4fhB8esHBHkkYEJ6Wkd+aeLlzVk9vJZuXvEDpWT8zz/4wFRxlQqwBwPwI2H46piXg/MSbJgzpLx3tEkKFmxohyBoTh7i4FgMenA2KHycjvx6e0VXRtuR4PZCbc7DMA//6f/t4rXry83/PTpDefJbhTMOHm5xAcAeF5oM8ClsX3OBCIxOsUVE1dlDBsOlpPEoG6Qxml7rZMry3NblMR7KIAOVZYhGJMlZAwOqieRIUl4C0pmMod1zAZgsXxmeHcEWeSJ/4pAFMWvTY9J72gkKSNTNayLCplS2pC19OW5CJvHRaZUJVTA3Ibv5RkI7UfWU2u9QzGLqZP5ZK+wajcuuUkOVLtXyj/FL4U2QjnEeyhQHSfbWMzS4AzRsHqMd116rrj+/vrBKWOosglCv/IMy9SwnBSQylRxuEh5vXTj2VXAm12MEIv+y5yYnnCTP+lo8OxOikfiDB6YMssnTIDMOXFTdvBDhbWxR5Q8+oneD9i8mLlFZJyVPX9NBV1jMwL2tqZ4e33BP/zyCz69vZZw2TAmZ+53uAjeXt/w808/4edPn3CeBz5/+cJ0icb278VnZ/cIebg5axeACSyaG9nsy2wjO0IMKo6zMRxonTxTdpBcMFfMiUjgRLlI6P1bO8lH3ZoGcnEXGYQzZKtorh1QnmOCrFmG4Kmw5zJ7aqNuFgaZsN/MMcbEvHgWqTiK6ZOcVkFk3+PwJZZGJmw4xhVjMEsxw/j786G5KSW6PcdO/0ujLuWlNi10gty+wVkemYGV+yjHkN5kUydZ5IJKHoWiLyZd3Geue1YkNqTxPfX8Qcy5At3FNMmZK3FYu+TT8tF7DEyiW7TIyOa4kQ0mJBG+hn4xjtun6ZUnbiiImxZAAawzROhxzYDr/s77OG44OrtU0hCYsdn6OCZEGpVHPHO2QHQ6tOhmEVWc54m//PIz/vqXXyDgLNSjn+jHyXBEFS+vr3h9e8VxnITPAvRQdrhgSnbnO3xM+FxDm7mRPDqQGVuA1bzJTHhYZVdAos5JWaW1tDExhuMazpgQGgpA6N4bGwNS6dVSYoL0AYcKs9NQR5abUJ0k9KAsCXWQixtJkGCPzTExMKLRO74fTREacLPHCeLJO2Zv6wwkJnBhP+39YumqwjyNTC8kvDylOwGWbFKFkNGaqBBdLwg53bOuDooNWkpv/G7JdJZFt9M0sLI+czMOPLFEnqDwmviOJwVfx0HyZ1cU/PvrhwcZZdDv0RzMZErCQtmwdOpNWE9fhHmJnsEAPYtIn0sngb/camiXyOoI0KC19ezSr+L2ggwcrWm4v3/F43Hh0yfHy+snvJw3XNOqG8N9AD7R2MZeQiqhmCpxZF3UDd0Fr7cT/91f/woY8Kt+was5brdXku6DeXTebjBnzbUJZ/4kxVFCMYcZxAwaBfKm6wRqZmsdgk5h1ThXRANlqvC0MFgxVVj3dczhPBDNG1rMFOotOjMcNBBKfuq0UXA0Oy+4Lmk8Wc6BtChtkDmFmKAg0BhwzX0b7rDB07WvMNqtdRztQD87unbkMQuABwndqjeUMJnJrsd1BY8YqPAp6phwYB2spB+UBEh8nsc9pA3zVMz6D+V9C92G4iXnO7lLGY2FEGM11OM5f5JK/yHBs957U9oMvSsu/vb1/YRQLYDwsJvIvHnU+PJhqvifnRDhicjfzGSA1wORyK5QU0xnssUnYJNNwnUeIhA0PEfTzKoGbAsWD8+btjhOvwAAIABJREFUTK+rkCCdX9cdx3nD208/41U7xpy4Px6Y48J1fwfg6O1AO6iYCkfXpIDFqdWT1LemDf/0j/+I8zjx6dff8OuvX+AgU+e63zGEdTg44GPgdjtx9BaxED2+jcF2LgBn50weHlnvuNjlzGeABosJQFPGXYJg7Qh48H1MfTBgTvJZRTs6WNvtTXH0zrlHEaRxYvoAhkAwYy4tpcS3GiDSp09Ce3XwnE0R1NzauFQUR+tBoaPwtcaSUm88OqLFOaRMDlmFSqpMLkGZXLsHqZ2Z9k4P5su4rF61/OykNoCxKIAMGAOdIznhqTeZA9GllaEo609ZX8U6tjFKbOmZ42dScTUs3GJM8TfHnsn1+sY+UfJ71w+6UlBwtp4wEimpRHt8WHbD1wLOxPtpqTKLpQprzAQ2NJ7ClYerIutg9GpdWWg/wnNqo2cQ1eDIGh7jAkw40TxGjSgcYjOOZrihN8X74w7zgetu8GMSdtvgrxlH0XnOI0qSBPDp0xvO84Zffv4FXz5/wZevd/z25TM+f/mC67rw9fOojTh7w9lbeGLC/MsMPqicvXV2MIgyISYKaEeDbycMkMQ9s3vDJFhOBhX2HAIGnnLX0NuNRqxxkPPZI1E2L3otaYj28disNJgMMaQGiGuxh/LskRZNBZZ7W32NNBpNTyDXTDuFzwCfhin8qJKSwHmk5jUMG0Hcf8S0iTBmyPwuvaZku1a5jCDUBfHA3QJ5LII/yfG+eTZsyvIH4h4JH0YMlMWc+MB7T8fDv+Z5PTkQrFQE6Vk3jxqvJZ0568TfTwn9YPpe4/QBoIjqAuCPxlXmwvPmIqNVtR3ukAAxiYKWMJMx5sLeZM9MsFS2kTAkhi16oBfSgOLz+UPNemV7e1P044Z23BgHgWSGl/PEy8sLPn/9isf1qHjXx8TEBRjQD0c7OGIFIsjSXROBnh2324HX1xt+vt/x85dX/Prrb3i/3/H1ncfrHeeJt9c33HpHoNEQ6gmfkW1tNADTggwhnSdYJ+kBzkONzKB6REyTHSCC6QIfE+ManD7vDUfXbMwnLNfMqA+40wgyR9IiZOikvbltzfLR5Bzx3TaAp5RLA3L7HClvxfCih0SYRV89jAErnXzGoObxZ67rgXFdC2qbYOSJai7JB3iSryyPwXNubaC5yoRmTJdJnDT6y2Muf7NR7rZAdlcalmO8SiyRdSnifJELwqDw8xacZSZ5zRRO7+m+f8rvrx+TEJAPQRjThFnFrENKWZK8QZS38HA7GllIcWPpwAxw5YlfCtgY8HZGjSHGWiJqqjbRWgh0tF9p64xVtpTY0Q+gJyTkoKoehfbqiXeWS15fGpoyvuEolFj8yYFWAsFoComB0gKszwsvfh4nbofi5QA+/6b4mxE2NwC3prgpDYdH6cfd0LrWrqvwsJ4W2cIcn4nGsY3TOddWO2cMabw2kCgwDOP9AXXCw9aEpVBdUIrnekYw4cI1j2cVKKADybApG5tdDBBIa5WN54ynBmkRe4kyoetECJIZWEMpCtvGOP0iFSsPnBrzwuPxwP0isb+aJ8AykIfMr06zqFI6O2bSy3E86aoo0CnEbw7k8YRPg8MDcpZXlU2U4rOYRE9D5chzT4DVv5qEDj5bkuO3mn/agjAWEN6P5JmvT8XR/1rlnEknTkPAldJUxgXQkR0n2VuH+JmmK6lEF2JRruCKWHA8xWIG7TQWrcMiu9CT9SYsyjcqYGtM9TsUzRfMUOXhRdJ6tC8FXLOYAqgHie9Hg/gjnk+jSTkSUXDAZiwura82dmgIDKoOxQR0wBowGzAOgUwmr25NcHTG39ccGMENPY8WWVsDnPxfrx2MfHHxREmfa+0gs0mifASBOuu/PEvk5CG/4TlTmvPIPPFoPEdgRqGSsRm7F7wKP8ufDUPs0iB6AJrTC8LjhMJz6DdjV59zxYUJi30GZJZo1Wsxh5hzee/jXhMeKxRCS+FBYnxxHqibaaWEq+k1q7APUKYCUJo71Bk+LA0MOOnLoz99C0v5ZWky8u5CyOMeA1ZLlHlQYHuLOynzXuVGhnRaMvvt64ellGUlclOSKBCuPbF2/IykJjtf/3R6dLyW1jtalrbRJQAhbKawm/A8D21pDVe6mvzWhpxNM+MteF4IFXd1mUQRO3ZhmlHAO0eXNCX/lvSwht4VRw9qYGYALRMCgHQBxgW77vDxgPrE2QVyMg4+G6CRVZ3jgtlFskPvcAHGoMVVZTLFhSGEi+Bylo+aNLzeOvTQEnQzIXVQFGc7gJc31oebxOiVYABVKEK6nZjDm6MHh9jNMOOZDHMJoaw6JCsuDaJ9U07ydE1GTTTMWcBSyiU0nADmuCAKHu93dPTeMG3ierDVbQ56TJL1JQw7u3LU8yukBYaahvGUGGoWshktXMvILUKpO4o3nEmhErCKR6XWy+tdKTvume2NX6nQ2AxCyLSFgUcpdnroeJ+Az2T90dj93crZdFPMdNWhHNi+l8+bSrrferp/gIwNJAvIvQQ+Lb3DeWiPs0bVmuJoDdDkgwLJJEmaVmaCz4OjRhJeWbx99vBpPANiU4/Mfsriz7aIYfPn65CaQADma06tzQmbV1DTJpuDjRML5vWO8f4bXDuFyCZHbAZlR+Le5pzh2Vn7m2CR/egc0SmNTQFEKYqjH4h56BA5Ge+fCLgbJ2HPCza95s2qdB6zAEC7YlpAVBvBPFrteEgPEl0kHgQEjYOJpHGe0uMxMQdplPMaVEIBj/E7jghjnNzkpjiOFlMBJ+7v7/j8+TMnWMyUkobqMgk2F0Q2T1kiWILOA5GWLGSg+FyqCDRiYA03UUqEhJKKLOvvqViZwzHPwebpsfOG9mQP8sY25f3geatJOxWYf5/fCTt/oJxBe4sHVdlv/pnaV2ZEpDJd6g157iY7+wmFtbwsF6Z11vTmuCjwM85enCSfny880k8b4SyPB0h3yhamOag0/bjhdpw4j5PW3hMuBuTQ5O/nqE0PKl1bddStBicQjMlSDiYwbGJcd8AM8/HAeDxw3R+Y968YjwvSGual+Pr5V7SXG9g+xeSBhAVvAf2HD/SDCnBNnjYtrXHUiHLOrYKd/fa0zOxuaZ0N3GwsBjBjqJkrECdIu9EIqUZ+RwQmzBpPifGhQtG0SHVYxFgOgXhDJtKPGDgtxvW2EZxmCHpTnHFocTglHKJonXHn/f0d7/d3vL+/43HF6W2IowCblHJyZyQIBKmUHrVOlmJyRk9lOcL7eQaq5TYDeSKTL2kM4hsioYDpb9MzanlWvudWkXjyonx9zlHOaSALFmfayPMxVuyJ72hlXN/n1sbb5ogJ1ZXo8Q8zavLOV4CtAXmtFiuzsBDjLNc2uUXCKQM2wrPCw6NlDWmLfSVhrdbnGRQ95taYURD0caEdJ47zxHlwLpBBw5sKHo8L7185sOvl5QWvLydutxuaKhMxQoEzADZH8Hkn5nUBkwr65fMXPN7v8ItDzG4Ha3THqVAfUG8xHC3uNVLNElzT23FAW8NEwK7wlk0VJqmQ2WvKjSZ9P4ZzwaJfFvSSeqBD4MpJ+I/rnd9PZXOpKMIiQVR1P2FWdBhru9x5ekpRZk5tRmzqFGAFk0aqwO0845jBFbZAwamAjwvv71/xuN8ZUjQaQ9WodwrHmzgkztvMsMmDL7smEeT3KsmTJJkPTsIRickwA+Xc5Fl/LYeZh+d9gqXCMKJxG7DMBXML6dOb5tpmgkiixq3Fk6Zippevl/79ygmPI/U0pxEw2zcmx2oc/SzMXB8ssv07rEXAWMEiIDiMc11lCb/FGIreFWfvVUjPehv3bWCqQWQE5AqaWT+gnfXPdjZoO9F7j1atieu6AGno/QT7Jw2Io9VZtG8BdYPdNC/M0SJjGTY66zhzYN7vGO/vkDlwOw9CUWF3PprAm8PnhTEdE4p+CNpxQrVhBOJQVVzzwvQ496WT3xrjr9DD28GZvb3ylLRQAIMFkgCmN463jHYrzt4V9HYEFGepiISCFjUeaiQ7QSIucgE3hvvd9GScKkmjA5NuIpgqIOEqTg0XK0gLGMY18PXrF3z5/JWH3QpfW8czOgCfsJnQMEo+AQkTRu6eqr4nkomI+LWSVYs6lyWgVIh0exESSXYr7XHiKof8f6S9a5ccy5EkZu4RmdXABWc4u0cr6Uj//39pP0pnZ2fJC3RXZoS7Pph5RDVnCHDIvgcXj35UVmb4y9zc3AxrLHEJBaxf9vJ3nXUFq/VyyOUAFb8/RfV/yDgX/Qx60xLUiviLJqrSRPfSME2JJeWLl9o5uetwzixu7UTGFFHcmXbmxLgmsg/2LLuI0+K9ctV6Ee+J5haLZY6UHtED/Ugc7cB5nNLleeqgTZwHxb6+fnljzSrie7rh43nhhuE4HwSNWicp4TbcCRzueDs60k0TLXzvMydiiMzvjfWOdXgPWAgJTMAiSfQW26q7ooec/Qyyn+4ZuK4Lv//4jv/5b/8TMEidnmnF0Zne9sNh3VZES3O0DoJOdmPAFzSY1pA5EZZITB00osveEi27PH1VfSJkFMVPLIWYVN0vYyRS3pFGw/z4+IH3Hz9wX0/iCK3B05FjIFuNYrJFkQ2sj+tASfALUFm0KjlskHIHL6WeG9BZdlBfpnp2xY9tpygE9fUjwajs5UQUcddxf0lRq+Z4BZdMWQpAZ7p/7t9glfr4qXG+nQdmcAX5PQZfWGlQO871da8gzd4VmTQ42zqipMZpdGkOzHsgxwVyXYF2nDyk2KT48zywRnySRtJPCneZGAIv3dh1LZFkx8yYMBvas8ioOAanQr59/YK3Nw4tH7WLUkacIKo6x0U1+JPRor09SGQ/Og4Ynu/fEWPgfg4SB8xgx4ERAT/fuJ3MHTYHnj9+IKXBE3D448Dj7Y01b3dMAM/nxPf3D/z5+wf+7U9/wr/9+c/48uUrZgT+x7/+K65x4fnxBAz40+9/gjXg229f8O2fvuGf/uUP+OO//DP+8O2b2lcNljWjmmjOlCudyG/aYKtF99DFWEIkRs19ZiLve0mkZgyM+8Z9f3CuNnP1oVszmE1cz3f8+P0Hfnz/jnFdypoMOW9M0wqL4PABrLNF5q61ibzmnJP9QBThHai9mzScLgLKHrAu1JTG8R/UdYqOq++u81hOnn6RvF+L+XKuX1hGMlZzZgEQSFilVmWLO4fGBqHsL67nHzHOnS58ril3vr49Bg3D9mRCsql/OCX050samQJimnOTc7OGQ/S8ZgAmI4pb4jxOwEXCFqmg6GkcLlbFIO9XzJiZwCzUstIOjWtZJlpr+Pr2wOPLA7VWz1IRF8DXL19w3wPXdSEwSJxAQkxg3pMZwOS/WetoaWQgOtcfhFU9xNfOvBGploST4I5IoqlB8vf77+/4059/x59/fMef/vSd6W3rmOPG+3fKdL7/+IHeG94/PtAOHswhEsR9DcwR+MNvX3EcHa07bCoSqas/M1kPS42g6r0ZzHjGmJhTYdbVElJ7hhvZBAL1A60RXe6du0MzLtzPJ66Pd8z7Rk62XTwN5g2tVyezlAax94kke9zIXO2kohvmCl27dKqWyT7ySrvLCCvNXMFK9acyTz4X/ZRXtAbsLITvFYX2+hKFBchRkFa52XJLItNrnDI1xZOfPv+rj58a54xi+O/iO8EmsikcWhX0TWNBrcO8xL8C3UDksHrN0nlpTikRz04xLsd+QGZwGbBLADrchKiSt1rLaWsZUdUGJVMYyziLbM2bMh0YNpVeTnQ3HOeBNC2kfbIQPo4Tj/PEUg6QU8k5NUnjONwwjJM51QYowljvB1spzkVI3OBNj8yHzaW71/MD/XxgJPDn7+/4/fs77ucT857o3vBPf/wjEsDvf/qB9x/vuJ8Xjtbx/vsPAIlbQtP29kDOxJ//9DufWRi+ffuqHm4D7EB4oKmdNZFMMQENQ7soahOe5ERvIeqXMT4EuMSFy4b7YTh6p2HmhY8fE/d1476uHVmzYjMHCrrbinZKqEmFC0ZmrkRQ73LR62gQRQmMLMJ7FtUX9hdnngFstzBqomqbdKGqe8yO38On2BaFVL3uytGUAVNLWbjHS2ComhVip63nnptimFmg299pnEtQd6Ws9HmFxnZRyyrVrQFfUx0BpZY5B8yEsDXWRR0g6ycnYlCMas6BKa7lHERFW2tUN2gNrXfEcVIXZw4JeHWBHrwhLu/sTgS3hn85wlbpjwAAUHV9UYAz2MZJIBuHtt/OA3Py5lKNgO2FMScsTbswCxSgDKY5Ba3DHaGpjDsBC3FXCnJH4n7/gZiBa078+NPvuK6byN8YiPtGNxOlMJEj8O3rb/hv/+1/w//z3/87fv/+O1O5ybr6cbxxZ8zvT3y8feBoDedx8DXDdNwdsL6AiwSHsBcynELkrYabRebwtsQDuVGcqoC9O0GlDIyLhIR58RlippQseEibObowB94AkfpBh5EYnHCBwdvJz6t9Q3W/QjvpKEppvsy8gBevFDT28V/FzxqNU09Sbaaaf9VBWPWoy+hLr7nacFXLuggQFTkrs7RqsOd2Gv8uYP4igP5CpqShmD1L2cApkVg0OQBr70YE6VqbDB84miPQxYaj3EbKXd93IMaNcV800DFklEPNe6yUyszRemdaauxVupF107tSnQTMODNJpZDEGIG75g1vrgdMGM7HG3p39Cdr2n48pBcEPK8L476QmRQO64brumjwvSNw4f7xg22V1JS/iS/pnDCpWchKlDz3CJKRUIyGwLg+8Hx+YKQDMXF2sn/GGPi35w/8/r/+Df18I381J87m+MNvv+Hb16/48ec/AQbMQcWBszPSzxh4vl9AJOVVzoMnYQIWnJHs1hCNdWmCLRQEHeisyACsa3bngmLrB7wZjqPBO53wnANj3LjuWwZKmRavMkcDzM3Yrglp/hpS4toA9ZE0ZWCdPIgUKQWuiFf9T3Ksa8fr/g8ryhOnmfw39TjrWcisZMibdwsZ5K5HN5gZQpjzhStO4zRl2xtpqtKytJEyQwuWRbp5ybR/VoX+UvEdyXqBEal4j9DioUortnr4ohik+qQpIej7QsYQSRprdnJNFEgNod5osw4YWSBco6BlRG7oxgWt3Zkinc0VRStFKTjeFyl6zsB9c6/ImBPH8cC3P3zD8XggInA9P+CzofcH3s4T1xhKYwe8dc5nCoKfMfH+4wee7+/oreMhZhKtkGjypcb5nucACvHOGESM44LnwMfHBT9OfHk7qXTXO87HgR8/vuPshsyBrvf7v/71f+D9x3f8+PEDyEQ/OBvajOmrOaPll/ONI2PXwDTRLMWa9yLAW/0jT8kUE6slly/dOVmOZHJJUm94e7yhdVkZyOy6B8e+Pt6feL5/YN5MjZuLEZus82v+kk6gGFiBGGqLOWR0lV6LBANG2coni2FTZIRdFFZautcvbDJA/RmrTVORkY8mlC6LLAKs7Gaxy14+XpVHKmLumpWpbKCMswDSl6HUv6Hs/OXy3JT0PWf1nBFyMHeOiHVfdrph21OMG+N6xxxPUDeHMibdDcfRWX8YgHGzdjN644au+mOi946vXx9kzWhwmBP+iTlvjNtgmOhx7GuU6woYFdxCkwtB4ajnNRBz4uvXr+AuWS3AiQnkQGtvePgp/ugAMvF4vPF9PS/M+6LiwvNGf6P0xtEP0d24bapn0FAFNpDeN9U2Yu2T40L3RPdA76BI9HHCzwe+/aFjzoH3jyee94TnxJdHx/N94uP7n2BJcn0/T5xvDzyOB+dQ3fHl7Qv+5Y9/1FGNNTgNKIpkRRMxZEBiBGtppaGNg9LDuc7eDOhHF0CXWto7cM8b95gY99T4Fw3zaCfpkJUayrSIom6hsFgtntSQO9s2EGaxDJK54r8nG+Tn6FN/Tg3MVytwRcwVstQLreCAopy+MIV0uLMMuiLshmQVoPSjlTKb6tsoQkcWy25fMzJ/aZ8/p++1tjxKU0TArEJW+f2nVyTLJzMx7oE5L2DeMCTTz+bo/pKSWmKMZA2TJ9BKtNnlmANvbw9E3BjPD2rOALh8o8KsRRvO88T5oG7QcR4UqTKiv9ZqbpQix6TtTcxxE7JvXWNaSs1j4jwORBgu9WGbg0oNmbp2afBMLejtFBGDO5UNjCn2yOQqgUygpjTq/uVAs4nHQf7peTr6g/s70U/8H//7f8X/+//9K/L7D/QGvJ0dv319w4wJt46P+0I7Or68veHRKQdyHie+/fYbvn75DYiJ5/OdI2uWIn3X4yqwgs8u9DuVGFg/Z2vocShycWzNNT5GXVmiuvMOXNeNcRHZbdaA1uBJdo17KRpsdhRBqB25imxBQlksAyh921diAaP7a8AURbFqSU0PVQ+m0swyUKa6/Pe1CiI/G+bqpRq7EpyVpafZvHGSGKhMWN0LW7a7NLDAe7/oftj3++82zt7pvcs7VOFeNR+g+jH36vgVxudAjJuTJVIuOHQ6UgfUJaAVbog2ENPXeu4ITjy4ceI/kmkmnHS/1g295jcr3RVI8Tg761Mj7zYE2lDflqp4ERP38weu48DxeOMMKMjxHfOW3EcHDi4QzuBy2d4deJz48vaG8aRxz/sCjhPHG1NSHxOORIOcAOogimSt/hynygJnJ4PoaI7zaLCDGcq3r1+R/zXQm2OOG3/+cmqUjYfx7X4gveHLly94PB54e3vDtz/8hn/553/Gl/PEuC9MMwpZI4S2q4bkmUaFhq7ai6kiyQdmFLcu4IMnkAdSS8BgQUX88ZQwV9gCvUzKFmamESkh3mJocdktr4HfA+QcYD9bc6LJBNFQ5GCSE0IGvMWyd/q6TPGlxrP1VTIthUWOlQmNzQ0Cwdti4bCtp7MmlpyrIK3P7SVGu34N0flW89H2dfy7kP+fNU6O4rSlfFA5s+VUP4qiWJC8JXVpatc6m97NTK0STerXo1drxEwT8hJMnhGIoS3NNyl053mgH47WD7Sj4/E48Xi8MTWWTm3rrDvP40A/CMjM2H3LqtndaWBjAmMOXPcTrR84+wFrRRCgDIsZ5yQBU4rFv9vR8eXxwHV8YMwBm4G8buC84eY4bCsWEIMsdQddAHgxCazh8N76Erauzx3N8M//9E3tg8T3799RYiOA4e0LLezx9Td8+fIFv/32FX/4wzd8++0LzBMeQDTDzMkdn0IkTUwoqBYCOJFTDoRaIUR2TSGuUjdLodYxgHkj7gtxPRHPC3nfipb6+WY6H0zrCEuIdaRIGYEXnKCiaiCTLZVsg10Cm9v4DBxMBznIm8W3AZmKetB1p71S+cRQY79oIbHIXMPZWfaj66sS4D+KdS8JyUptAbUe1zflp+hcE08/+/i5bi2qQDc1k1UzJQngvKEVNYfGlTT65Y6jUeipW0ljcO6w6bBFBCPPrJXqgcgb97yROWBeUvkT3hqOkyp3j8eJ4zjQe+f1tQ1Yed80OnJR6Q5YRzkebw+03nHd8ZKU57p57pS/DBD1bM59KyGHU0O1rTUq7LVESwPGxPj+Dh8Be5Bob2no4IbsBiq+r3EhZ/ui9QNwX8PIBvZNmzP5cRi+ffkK/y+OHz/e8eXtDdc1eKDM0I8Db1+/4utvv+Hrlzc8HqfQaxC46YYLA2NeTB17oyIeDGMSZTc3cKt2atM35zgDLLxm1sheatxtIqcmcd4/EB/vwHWhFdADk3SJIQfZYCFQkSsbNmK5BKFRrR5aBbnACc8D6ZVWyhAMdOb0FoxN9clyCmBUzSRKasl7/qqClxG6z2Vi9ftu2YSeNSpVXafGlDIXYvxiN5mL8L6S8czdZnSZaJLF/HcZJ0M3U7oZg/3KnOzXmSRFgnqwMQV4oCB0k4H2PR1ge+wMmh/05shswOJ60l2ZPuce6EfbbBfj4XheT1w3lddNLZXH48SYD1H+uDKP0w8kx885cV+DRjGTA9pzYIxL0fcUXK6d9kbDJWBQNYztxnSxhlTbIibmdQFzws5DIBfTl+a1ggGwo68Hjts0qMUTs0AcAQkwlgTfvr7h//6//k98PC88n7faQ1PjdCczBhk4nAjvdEN34GiOofuGIeK8t32Ws9ol6keCxplocEt4BGZyZvW6LlzXO8b9juv5gfv5gbxu9ADS2mrcN82pmlM6c9VXYcQOCkAxVx2KlZ0YFMlZi7AOVYsWrlS4DK2c/vZ5q9asqLUiVARbIcogNjak/rx+hnnxtgVoObe88T1UbrqJ9p92cr6Y+VpPotBa2dsCln6BCP28lRKDxjdu5OBg8UqqhHIRkSJzpg6qax+mexfia6uFgtVTqgNBjdiZzppTNYA3Rt6388BxMlXtWkNQ4NRafS6UNNcDp/asNcp8sBA3INnDk64da5cA7osTFz0SrZ+UpbQS7rj5sLya6EZpjsokhMqyrRm4YyByIOLCMGC4YQhMeBwN1jvayRQaIBFjzIQ1x9FUD1vNVE4sEbNm+OM/fduspyCAZVpHkcBiIeU6RIzAZ+uYreHSNJFZwA6VFll0REaxBqK0DVR95w6zgRHAfQ+8//kHnh/fMe8n5hTZIDhoTWWJVCpYY3007KzNZAWMeMLD172t6Fn4RpE7MiaW0kgr0Acw63x/tofjjWM3fD+Ra4Y2ZSgmZ1sOwJsvxtoixaOu3ZYRb8pqru/Hi6EV8vrKnS3QaIPLCRNQiDW58w8Y5xyXuJSDN0nAQgHP1Vilg5eUhKYr+KYks5hBdE5AiBsw0+mVjfWcGfVWcXZNswSORq3a+3ri4/mBfjBNPh8H+nESoT0OTd+XU1DtVhxfYM00Rqg+0cNiStSUAVAaM2X0VYdk7JQ4G3eIrJ6d8W5MbejK0GsaEdvnHHgi4WdHf3vD29uJdhLRTSRnPzu/Ns1W1GueGGlU1hPN0KTKbk6GDo9JWzS7kBcnKFeEECHLXep4RFz4LCIkjVI7sLMsfEUdB9CLXBeGewSu7++4Pt6B5Gr7w5wzqK0kayqrgkCetvp9Nb1xtIPX6ZDek6tNJw1irdbgkISt8saFcVg4mloZOvNoAAAgAElEQVTuJr50PdNcEalqP/3ftgN4RW+Z7fL5+oqKL0bqxc/d/U+Y8ZyjUN2XmhN1bqr/z38lS4hCBH+jbO0vas7xVF9KsJzQx3IARTxYVKpPUSyRtf8DBvMElGLCOCWBMvZJCp33jsMemM0Rg6yh788/r+hq4fDD1Fck+HMcjKxWDmFF7VolIM8nODzS0MfEMRtmUDDM9QsG1sAJHlcnTc1gbL9YwNvUhD8PfQyiu2NOtYtO+MHo3qbjtIQfHeeXE4+3c20Hy0y080AcDSMSQ0PgBetTxIur+bg9K9Hai6ZsghFXx6wpK5nJgYPaAJ6TM7K1+5kpMwCxZwBbosxruiPouFheKL2MgM2AxURLcp6P7rAUc8hALKLEnOpwQ2wkZ+q4UkkBX0TaSQ00lQ8BoNYfuKqgHR15HnvjJ8iSK7RJ86i2oZ9FQhBI5L7ZRMtGXgx3p55YPU0iK8A29s81ZsXSfP2hn/7BtmCBDLu+f/zE/n6O1sZQ0c43nzlX72Zdptkin5vv27fdT0HQGtUxGiqdq0lRYc+FJjiZEFqaSq2bDrem9kZTZPTVp5r3RDt9velXqiHgTJF4FlYvMzJhdykxUEwMCIwRGOPJw3ecsDwAqdQNTNgg/W/OwRSti08LRzs7jscDx5cHsnW8GTCbUS1gqc+Jf2l0JGENjoTP4FY0IwzUiGopA4k9YQEsFD6tgBUZl6LIuC9c1xOjDDTIbW6WVF1I6h+FCBiJ4nXtqEIYNdm6mBTEzjnIlXVHb9qLI7X9mBy1atgHr5TVm4jldZR3AHoBaIJOmvvtc22yY/3HiObQFnXjwRWPQgQLtlteDXGfUayIuf69jmgZIrYhruurn+DO14060nJzM6jDJHS30ttPWluon6X3uwjy9d7/OiT0c0Ao54KYUU30KOaFKzqVUdAQePsNaxbOtffSynPy4VCrR/KNejh5U8t0PD+AcSEzFB1PHKo9Hw/9/ejap6livkAAk/8rz4dqHfAQZmDNbI4xZagyEGM6zTXyiSliO/VZpQKRwZnK64mEdmW+vaEfTLWPxwPtcSKbA51KClk0tXiZsDDDiAEsZQD1ftchyrXx2xBrWgNZYIKBuGeJeaXU8C6McWEO9h2pUherfnIruiSAScexNXl9pWkmh2Upget5I+8bhxv60eGYq3c5I2BzrvZYHUa+iyp7ZKywT4f3E7XtRXmjwKla+1F4QuYQQUWvb4slC8PuKbq9SIPU9dCD7auzHQlz/7PODup/7P/yh9JfyYiHeqPpajVWeVFps34vlBdhyjDWC/zM/H4VORnFiliQonFwWQ2nRKxK8Srgcxtu6410TrmnqHk9Z493CUupXzbvJzm48waS42buJqnK2p1JkCDCiaaDBy7S5dkSmSruyw3KY9Uj7EfHERPP51MykhPuHPS2Q3IsQUuOOelM1vvkCvp73oAlzscDX7/+RiL9ecBaR3bNcnZfdW9EIIbq9gSpb9cH0EiUGKlWe+8aUA9YDmQY34/v2UZTkso+HFPOOSbFucfNCRoEwZk6bQ0sF5yvxdla7cr0XWtXox2VfUDk8zmQ88IhLAGz+NRKab30z7ceAe2Bf3dvq65LfQWgJVQzlHKy8V/XZEr/5yQbKSWhauaIecMy0HCwNWEvr5hADUivWvDVIaDaPeCfVrStCFeRdDOYlt1WqK2fq58G7H5pyoAT27HQiMvJVOrzU+v7lXEyUq5O0EpTtaa9seWQEtct2Ql3yn+0VlMkIixFIKR64PCFSN73jbwv9lKrRhJpgQfvxoWEzxtzOhXOj45+UBHBZ4PPiR5d4lFQDVpppO9D07iTcc4mxkwFjUTrjo4GHERQc2wGVMT+c60fSAP6eeB8O/F4e8APzjmG0zum0nRYDasY97HM6g1PSmmmqF/iBVedZ+r9uvbUeeNhR2oJkQwzZ2i1INF1blBzTRVp5UJNCDUXRTnRDThVb6eALGY7PDvNhDKqjWIxcchhJgyYkPq/IxqvdUYxd4pnbWp/1IjXrtcyA1PRjOh1jYLZyi1fa1BXr3A5i+TnuFsUQIF7whjM2n4tGRizNrWNmqtGrblVrOuuNDcROtf/foyssIwi6RSQliCQxZaWvvcla4gkQeQXgfNXaO29Q79y5R2SoAOvdFGepuT7K62l7CWRuqIyZRJgifuJ5/MDMS5YsjVRqLDwGXBLNcfKWnfEcaAfAXcIPeXjiTlxJ9cXVF1jbiQKVE9LfS9AQ+LN4J7YQ7CheoCZgXVlBJG4ngNjUAX+8TgRArKsGyYCIwdTYN0rRIhoYNiTPbw/6YYWgPkb7jlxjcCwqUvTktvkxE1MQvDmnB9NGXLRxSISKaDGFcnSksrqUv9DgpMovSFuvr5hTwZxxaLTOehpNmeaHzPgYgUdDqX8jMzmQEutvZ8vy2jd5CR915R1///iz1bGnr4OfxFUoMhZBrGWYBnvU85cg/RcKbrTxQxb9eqnmlNRubaY02D2ELTrc7UKhKIBWNzY6k8uul5SeG0ZtdLwKSpfOSSWcYqaGYAU9P9u4yyw4VWG8rWvKHus876BCqhtESG/xzWAzQXN5yRg8fED4/pA3pemNsaqa9MgceRQK6ChH0Vw50Ki88sXMn6OE1NpBftmbHF8fFAa8jwf6NJTnZkU4JqceIkzkQGQLkYF+S4vjjR46EGDquWRgTFvQIZW/dbqc840UCyAkRVqCwyhmJ4CPyLgx4mzOfrBAz7V7hlFhxy6F5gohXDmyLk8di1jMrU+Vs/ToHSRZAVDMnL2hjlMg+0UKiMxnU6hu0bQRKfLqZX3OYhBxETm2G45ayM4QZNaOlxC2chyyrZmNO8x5dpttTFqjT2zib9IMQ2s3TN3ZG8l8rbTT0ptCqVXG89Aoy4lh+ZFLqARMXq6CPY69qlxL53to1XKzn+JpEMsKK7ahtV2YWYioAxqI+o1gXqZX+S0vzLOJfuhHmLdeCxjFXUpXrxbWWp5v9WGiQWLxxy4n+yXxXgCkwT5VkPdovilpB1CaVjOxH3TkMa80K939PcHWj/x5dtXfP32G4W/GqlpYzAqhthIzZvqPxrX40HV9Ou6OIz9InNSynOVGbRGit2MwJ031e9IcGHqigCSaRXTG75Z9v/E2pmTCun3jTGCKeJx4Dw6AAp8zeBwOC4CDdfz1siWIwTAMVqISaP9p+swibYaASGzbMcgJjCHgJSNuOccjJgJrd9zzssi1fu91toJYgFDTjTEvVZrINmmekVBUmku5Ty2xk57qeM4TcL50ZmJe2gdhRxkBQJOFe3ImhHiCYNbwZ2lUtPkCHuse562Br9X3bucBlauuiCagmtTDqQcVQ12KFwvQbRUmlzGKfspUsiKXC+VuMZvUCDqf9o4WztEoZNhaicmsPs+dQhXphtYD8glDlpdJaYBA6H6EjnksTkqxudh8qi89qICsi1GquB1DeB+Am7wfqIfHRMD7Wj4cja8Pb7g4Y3kgwDMuzy0oXsT9zF2umGB+5pITIz5RCZHsprTaBICmCzh3fDwky2ZmmtVRHFr2kxmuOctUSvp0Oi9NTQ0ULxsjnsBIK7WBLmnEPjhGE6R65g37vtWBFLXzyC0WRKbMFTrqssxTOf+0+uuGdsBROBwqhlU2j9UW3oMWCjVI30KqdG/lgO2SChAwzaWOuOhmpOlZOzFtlDd6FSToA0oE0iRIJBIZ55VmkymMioy4Ev2nkudSNYXPdTYCy7ALZ20u1qz51UoRm6pyjLC9T6wTGfpJxUuITddgwKvkXBvCt+mSXs3FFjEL9X8c6rF/48YZ++nIuZ+6HWxyBfhq9cXsM9vtDR6WNLVjOdAd97AW6ksPZap5hK4JO+8vEzxWp1EZ+9OycrjQGbg+XzH8daRbw+cx4neD91s0vOg2qMfAkpC/bKkzk7JrSBurXpvaK4SQX7WjYJWnoFpU2hveUKCZ2aGDo5WzXusKNVU7xzngdYbnvdQXRV62/KuAnAsA2+PjjFooPdFEAQzF1F9zifGvJfyu3mnrq10l7oROXYkcjTM24DmSnMbHr3BjwMdtQQ2acDgULjnQAeR87lqP56+lQnl5gZ71Yk6C0U6qV2tlQIubWOBXmzRGc52IAnTr0MeEZywMZUEWcaya2YOYkPTJ2VhWAZEKxK8ZJvZM0MZHWrqZM9/ApUNxjZQq+f0cuTrzeKz0S/nArbDoPtS0Zdo9/HX7e+vfgaAq/4oM9PtUDGMPSC7feOLVeZKYU0r8zjVQu/b3DABRhwpHKDqqMwl8Mz3OiXjqOFp44gYVQBO9OMBP6htk6oJfTQ5l07UzjhChgD5vkHl+kygHZy+HHel4g4qoZPu5w1AFvCVjNgh7q2bbgSjOgY5m707RnKCJ4vo3RzIJiTaYH4ScE2lxmoTNEuCQeLzNgeOSTmWkITmHFPIaJFDBh94m6Q/NoMlAQkXehu9A+eBlkmFh8me9aM5wmoni/SgJg+zCf09mpE4kjwH+0Dy8UeWTr0hlOrVMLyLezxj5Vs8wFnrHsU0E7vLvC31dEpUzoIi2G7ajdP1s7iYl6VILXrGukQTEPnaxPEF3NHv77hZx3HVrUJrq1dYvf+QMbe1FXyf31xG+3oZvC8ZU9nQQMfXv9c4VdivTLq8w/71SSjXgRLzrSmBegDcC1lwdKpFwwdfX7+GY6FFrfLOzYz2IoPhoHXD8eic9XwcZOY8TqZyMXCNCwBw6oBUv5EdbK2QC3FXq85NA0Y1wRNmU8jmy/tUplLE7t6IqC4OctK4zQ8YGEko+5n7Z6ot0/sDkQKDpLC32E2dxIh7zMVwUpjHjMC4OaN5j0EGDoAxAViwds/BNkHQeTgmDgeJEbPhqoxlaguak9TAw676aobaKIGu6ZqJqIwaq+PhwBIzk68qhLOiK8nrLgwhdE5ARycl26ZnBa1DjKTmsWla3VR7EmjhB7MSDuEX08z0v9ComKnmKulLfrqYQrYNDjRCRrdKg3XtNTFVzkDpeL48s6if9xKj1tcrLc6gSv51kQH3Df/y9xlnAT+ZSl0S9fjUL2LtYy+Xwqyh+lypbLIKaKWkM6VpGlQbiIGFhxXq6CqfrTwqv7d11izH48DjUZFTvz8eQgglKuaGGY3XPdVYSl+7RmrSgav/GnqXoWUlMaTDpRPVc3OE6hsgN4vFJ+471WZoyOiizNEo6zC7hdKnSmuaDnUw7VS/2F0zqoqaoVSu0usZhsMIejnEWklgGCOAO9CMhzZCvOAZaEkU3LrBg+sJPQMYNysKASkepvEyjQLOAYubNalGp+qAw6hyMHUOV/Ndn6/nXw5YsuIrqnTnusM9SsizFmA6GVq3iNypGh+xhMrNteLQpAYZTM/nBNCQTmdf3O9aklydBabbm2BTGMpiG0KeZtlZrtNeeAJs5460kBdHnpW+BsiIE73y+Y77euLbT8zvF2jtDvV17+oyWLBrJnCNegB/UX4ydUiTB8PqE0HUzeac5TT1ml44Hagxngo/3tlO6eeJx9sbHo83nI8H2nFIdZteLFR4j3nDbkZ+fwF38kVrtvf+KTWPoP5qpe6U55dhuQjmzq8XnshUSwQMWMBabZsSBKA0J5UquRgtEbcQTv5MYmMUGeOUj6E/OqLaMUPpMZhrdQcGBloOcF07HUFridb4c+ck2HLnVM+SSGg7O6a0b5h68xCmibKIiYkBxE0HFUN4sgzEbXFMSSnk+1/CzOB1xqLH8AA1Axf95jZI0+lmC066wSzGJamyU+n6eVMc53TAPNBSKIuIGGnSGMaO6DxGvowmQn+HQCJFxJoTLX1h19frIlH4RQkRQMPoWUYgwMmg4LQYVqXr+8R8Pjn7+5OPn0+lWC6QhH0srLk8d2nrgAd4NWehN56coDdjfck2Qy6AjEtSDfO+FqpXHnmhfU7FN2ttyZO8fT1xnG84HhwNs8b+3wzWJSVCNXPifk6MMXDGA4/HFy3XZd+y2h3chN2YXs6b3IHexeKoRj9VETJ58C1dA748ZOak3YWK/BmTaerihxb5gtHAXOvXwdqvGZXsByiUNSfUl5UeroXGurYiAXufN3WKMNinDYJIvXU8mgHmuHNi6hph6tEpelowday6bAqE4ywkcHZggGylnOxZF8mipEqnDrmX8/UaieJh8MxPf+ecbZd4HCgEN3jfV0iqNpFz25wBulcTYw6MMdBbFy1U7ZIMDWo0YQVGsoTXCKMieNYGNSPol4EiJrBVU4YlCPBlyCNiU/Eqfa+vJebA/nQK4Hwt7eZ9YV5PjOvGuJ7AfaMXs+jvMU5TamlRKBtWaMcLAFBhvNgRaXpYelDMEhN4eXNVVKcMHjJkA5fi9OacPjka+vnAcZ7ojwPeOxvQub3oHvDeXNacQRkOTWi8v7/jOL/gfPuK3jjl4kXIV72V2XAcfC+ha4y5t6qxAtLejzTMyh7MFQ1Aww/TYC0PpCGQ6rnyOU5E6lpjctkSF9GhNe3cnEDrkrVMcAmRB8fEkmVAWKBZIG3CMWGp/uN05GxonnrANO6zcURpJtlLrbGtNDQJQg0nAIqktQEbMeDJIe2Qo+FQs2q6ZeC7JCBe0V7SVUVplIMutDURTIwqJgPA2u5lNROZRbbA2gIQIm7MTAJLqJ/bAQSNFBoqCF5Hmq/szFBErtq1RkfivuvG1TIpwryINZlYVEXu6tw1qelcMuO5ETc5z3nfGPeNuMV/fqkG//PGWS+80tmiOoW6HO0l3d25fCbWKrvKuUNK7NDAbBXhO+WwdSPKMPuhdQu9vyghtEUI8Ma9oa1RhOy6KURszYFmOCQ3YuIDl8wJEVg5G0uEkR1jjeJfBlIOsww0EvetdkUGMuVFAZhNRuuaNhSsT2Nl+hmaBSXgtb8GluhN/URw+NkNuDKRyT0jVCAsUvh88cyBZgNpVCh0TNWYgTkMwx3eUwaSOLqhBdcwOVuoJFXURm0jGcBtUonBUq0u0vy4/0bvCUrVUjVqZRFF1zMhpsUkkyNNDaN+kg/J/MxlzTpLHMXLoLMiDbHu4TZqRKGvykpUw3OMAFgIq850SniunAD5uRX7cpEp3Mh8KsX2FJL9Co2u9Lfspa4DtPo5hzafP9meumsPbewU+yciQr+g7yWKqEvHEdv4fmH1vMGbeZvxgtTyh6P6RqXh4tBynM5h6uPo6I8TraRKTv7bcdBYvRus0eC8NdgSxa15OfZBWAdx9Zz3LoKBmvipdMerxi6jZe0FoXrWbfUsoXZGqB9Zj4WqAqEal8gk2yMBeAjIS6bGSk372RSd52K5nACHAWpMrDk8OwE2n0ATKpwTzScXFPVED42ZqVbkdA77mTBbNdaQUBl5RZPRF/y8gfO17uo1O2BOR2JMA/DJ7kykCHc5FxmV7klAVE6lywai7yEKIhFdGbX4p+VQ55S4WIqeWK+HxHVdan/QqbeaG5ajIA9XgWOd1WU662+LL7uetzSJFD3djGqty/oqimLXoeBzrfZQTI7uzXFjXPw9b7auCIwWv9eA++80zgXerEIRL7OcNWHwitWWPyofIkQ3pXQQ+yuW+BG2V+ODz4XKtt5xPk708+QoleY3vSLnoROC0DC1XEEQxXPnjaakBBlOJFXowbiI6lU71qVDqN1iKpJZ5M3W2FJoTR5/Dp1ByolNRUy+Cg0TwTaQW7VpEmPc6O0LwiGCwSQry+nh5xwwkK2xpVxCh2AiMMg819JcQ4M29em1tGOmCRQzcl9bgPTGeWPmxNEM49YIWBocOzpBoEaa2liLTLDbU6nMpCJmHXqoXuVWD0e4eo1JkIqXWvxYnqQ04TqT3OIpHWNT+WGNz/e65Dl4NdX2hC3jrPNUmd06Yro+FmRki1XEr9aPsjjkrsnNmG4Ica8JK4I+cuhBVcr7emJcT3YM5iBOE6F22hYY++vcIH78Yj8ndNMUnYzpHvPyJlSNb3kb5evNkC5OcrICqtfCK7/nd/dWSglFDDGMCNi8ER+A3ZckQ6iM/ng78YgHzjzVwyTyOe+LCJ0RQDp0gFonmquGBRKcaoE3RcGJ6lc1Y1QuYCtRbRdDbw1Ip7ZNb6h1FMs9V+oTsYncg+lXei7DLgNiuuRa4T5FgJg4+omzd1xPYE5Kjs4h0TI09MZIFBbI1jA70MNxTijlBubcz82sFukkiQluaAIwGng4W3dEVFrperaBaIbhhtkM9yCKDeMS40yrPAHs7TYZ6Y5o9O1qSyVdcSSvp2nyhJM/U9KorIncTEPqm8ZnRmMaAL5+/bpG1LgPZ6rUshVBK3ndx7G44cVy0/0CE65PLUHUz+Us6WvELYPX2iWNOk7M8cT18YHr+UGh8RTnnACJDH6jv5H/ACC0dhLKIxVCVWT0PZRbRmxrEqHeRNGUTN6yIO1QBKQrHNuoBdGbia0ynkAcaIfBD2rXHmdX64R3OA1orXPzVRMa2LmGry2GymvEJqMFsxA2LpA9ekc/t6QG0fkXZkl5yCkPm/45vQ/TkiDN7U0aZUTUaCxyFiIWQggvcD6WbY9Marwe/cD5Znh+JGvMIF5rTs/du1o96SsFjcaDHZEYEwuYIP2swCUyYDw5koaWuO+LTCLXusRgFHWVI80mUoMJjMBaISw0OgQAUW1RG9ZEjk5AaoFSac/qeSodNvVohZWJz0AzcbGwqn0ip2f5sqgIKktURlVqmYKQq3TiAXs93Ord67VSej+77KroaSqb+Xmvb9YzRAaV9e+L9eX1QcAnaxXhS4ulsmEZ6mdn8J80zig1KeV7K5okH6C3fx+YmZZvHDfECPHc3qega2sG84Z53QjhZawd6AEpEJ1oZ8P5xnUDX74+cDyOPSeq14PRK6cZWjf9bDDS1400pqobnCAzx42vdb5RqHqpo0U9OD10rzpGjqhu/brvm0iASGQT82c4kcOZkEQvAKA1YNw3+3StIcDFSTM51MzUvgxL9W31fs3Ru5gyw5g9y1PENPis4XfV+zNhmLhTwJzYTZmcskEI0IpEjgKelAEk1wOWlAqNSKahKSUOt2ucsGhBpkXLMAwFCRpEPTc+68iU0n3hN1zdWKeOKnxCkHWzI0pC59PLrbqedybX91e03CRMW+d6lVM6s5vJxrPVa5/pMvxcRmkxcX18YFxPjOtCjAsIOt4mBxXFzS0nX6/pP09s/4a0liDFKpybthijbE2NW0CUrULelJqkJuCzsb2iVMZdacsIadE29MY2StWU53lQPqN1rqjPgeeVGHGTv3p2khLaCbTyUckHJ29XY1CMqFyvft2X9FtJgic0/5n/CWCVQ56b9kXLEDAiB1r9TZihtiQjgRi5mUmV+QbzIQMXAgVuBEgaaFZ6QFxE0g/HDHGnRLCYY2DOid4PPN4e+Lg+YAismf/Qew4ysXImpm0KZXP2KiM4Y2oJfDkb7nsWEIo0iogvZo4OVm+m+EE+Lw2hzgZBtSZLSd0zOk1G6SmuL4BPc2MzJfcpJxeZmKPmYOciJlRUn3PiPLp6rIEZBD3p9DXo3TvSqd+0It1KTRkxm9DhmGwtnZLCIahDcbvW+2rTVImTYJkzM3A9n3i+f6de0xwi8GP1hvfQRgWmF+DqF72UnwNCigzlraDUoXiJ3rU+4MVQS6yJEyvczuWtsW+lhq65UdxZOS6ZWZTrqMNlWgvgR0PACEFjgmsCT5zHieM8WW9CymutEcDRAHETq6jVqJuZdqBAOq6SqmilJ5MrGheCV4/2tZ42ufga0GV9ozotJ6ZSt9S+y+qceKX94Jn3brBpG+VVzzLNMEEhq+PhQOuwW5fXsFDVO6gOYV31brC3hkzS1tQyMUsyaNQeiWB0NQPGYFvsPAzV/4p54u6OGDdT0vmqCMCm/0yoth569NQ4yp1kLgfWZLhYvUbdX314kpIYyDUg7WD/ElFc5OqLgrpLBu5kEcNnteyEbWQG/HQG0BdebA2n2RrnczlL2/PHkTQyB3vS97W/PySQHRPX+zvT2EF1iNpcVqlwPWei+pVxlZPYJ+vvMk53MUj0s2iYBTLsebZSSVMMX2pkdbRr6VGlIaaHDIk0T60JXNPqTayOzvqzG3uXreh7vSsDm1Qnb/x8Ucr8Jfq23pe8ysy5iNtbX0gznW6Suag3b7vGLAekDxKY+dDt5Z1yQp61siuFdtMkhRGoyQC1iZTKesgFOtM26/w5I6kAeJ4nBb+sIeak9GQackyMuNHPg5zf1zGh1Fbwxr83TSRYFXTBLQdzQFEUmCMBm2vW1W0gQMoecVX2EJtzD6nl5sl6/WyjMfGeVXUmYMZIpMisEgQrjUX1vQsJn4FxD5Y0XmhzYQCMpmMMlAWsKLiekFLQECG+npoxxeUjTV27zqJKnxga14Pu1ayWVoF8XB0ZY+D5/h3juvg6yXf6yTDVhqxNZJBjX5Im/1DkVEpXCfhSKdOrVz2x27I6xi9Q8Yyhe5VqXAvNTCKTqRQRRjLBcXYcD4I+3ky7NWtJUem+sM1A/iSHlMtA0TVO1psWHfGQbBQ1VmQ1Nb/LQM2rFZDr5hVgEJ+cXAr4ev0XU0NcN15npDikaa66keVdAiR8d47gEQhj2oMMhE0McGUBw49QYznFMCPrSAYIovw7skc14uswMt1KyQkQ7Am0HvAJIdGGnIEbyZS2ERF2A1qoVWTUUap17SUBIsAW622jmD2f6/KaBa0TU9Gy5FZCEZBk9TrAfAjF1FrEgsxNPkc5AtRN4N+Sz9tEpil8YiNBpFMaVJ4Et93VrpYQtZQZ4eDmu5uyo3OJBpRcrOkqrE4J1moMXRdjkoJHpfZ/5eMXNadAFaUpm+hcJbXS3gRv819E6bRQDm+aBayCmjOOc8qFI5X+cg6yqRcJsM1S2jPkvrJZ3M4uAAJ8WGLlmGh89YsPle2SWsuwCPX13Fe0NZR4s/lnyuLSyHh558hikKgGd0iqwpYhIgkGhdlKCR0SDnNygQN1TQa03fYIJEZOpm5NbQ4ZA2sWaOpCTqQ5JJ+DmHUYGUkj5yJIbG+QAPsAACAASURBVCIJpw+s1bZwtlMqorkVwCWUvpBr1ddpMn2T8/UQ31aBK3Nxa7N+FgBrL0wy8HXqmFYG1Y5jtVzmVNqv1ollcE8qDKubXEAcsM4jxAm3TyDUi2Ean58rFYWRT77bHdIwFnE97hvzIio77xt7mmoXPux3Y3UFYMKz1wxvlVy2+sR/l3GulWUFBpXR6X97x2C+/F7fu0MLUzusCCqXSu9tubwIyQFMHcaYCHBmk98j/diWMDtI8TvaMkBT7bckD0X0rlQoQr1M3xS+/T5VD1T0Suw/r2duqPUTcKLC+HRgsSKfARgxVxpV389HJzQ6VX+2Jh4uX7+lIwfItzXHtETrED1QEiaKJq1x7KsyDyYVDu+GefOGh9XY1SAzOGJZRVSNUfM1aj30ruEGKJog4BGasQz1HqF7bCrR5CCllVvGmVkSqLYmcORj+Kx1HqjU+yKqzbBK0GfeTA+z9G0dcMao1YapqRJUnFJ6nw4D72UJAKR+Z7Kj81hZIaAAAgYQqebPe+C+Ltz3tVZdFn88i0H0ah/14QZD06zqSzqrNPdnH78EhOpOLYnDskxs72D7hC9mU9UdmWP1zap3VrL0aB1ogKNIwDVdEgJQAnOcaJ0G1w/WnK2zj9mcOjlULbdP2Uo1eSNSjWoS2/bNkfMwrPqDK8iLF4qVftG2tuclWFRvtE6aop/zz+mVejG9BEIsG11j8qC7O8LK6OUI4TxxlamwYNPMZ+7UzQ2hZRuN+92VxtZonChOCEQHbAZgSu917eWUIoaukwe9OWAHF8zGDBL+HSjle3NlKmaIdDLTwFLF8XJmMgn0QUasGiygFHsq9cRuX4TqzkptDwmrUW4mFSkZMzPJ/y6QXYke0fogPZETKnttJd/4S1App6v9s9wnyqg57wvXx4VxXxhaSQEUwMMoP/HSXhICXJbh1laW42oR8njKyf3E/n5OQlhzmi9T3qjawYSM1WHdxrxkGjAXevu64Zjn0ER7c2F8laAYzDj4XPQ87i05XozT18M3q/XzO1KnHn4hmFNQfCkeuLxkDYmUoXJ1QcL6622p1L1aJYz0xU01EdwX+FX1qIPv11i/sd5lvzDVQM1SaZhECpVBrjsBFwKsU+tHX6SJ1L2f2rBVkcD5P04Sdd5fhMPDEd2pvFeH87Whq6maaovAAJu8v9kMbZhIEssPg4uOcmVYkeAQAeMfgSqlm2uAXcBJlTm5zoUWzirDSNHk2Ot2tUxiEfVzzsWtTZg4D7kwMZSjyRQhoD7x8kufyzkUoQeGtg7MMRCDLbd51c4Z1pZdS5gKCFrhWjfGrUbxbJNq1EYGXvDa3On8f/Tx68iJaqVsKzeN3YwX+lH1r7bYMb0olfMa4WcjJG86qC71vUTAjbs2mjke54HH28mtXZpGoQR/4MqJngSOmnFOL0LLdp0eicAGjSCWD6uep+2Mwk01Cb14OHVlax3ebqRUlHw5mYZVj23h5E3fs1YkBf1slIbv5rC2Tuohz40cl9Xr4AXEoEGRFaV2h3761OZm2ESzvlg11hVp0dc99zYR02GtVuYB1pIzjskIC6WoU9MvUGperDxOHokwEIHEQCkFGnwjnwWslbEVgAOBLZ4v+yrZblo6PmYwPLR0isulIiZC5IgxY9f2eiPz1diTRZN1OVPjM3Wjs8z1TAOZm/s6xoVxPcWNvbnpLqaUXQOebMF173A33FMEEQF1lWgybef7LjwLoJMNBTHT33/28QuZElvbowC2H1pJZRoV4VZE8r1jMUf12yaKkECDNvXiBkwaqM0mH1QGMAL3pLr78wcFvB5f3tB65yKjR6esBRLX9cTz/kC7uJbBGiNLf5xoOMC4TQMiv7azraLBQarXMeqm+MINvlovr5pBfKDbzDNrbYLvB6203EVdm8UlRsBObg3LVASYQ/c1uNsE2OATlB6Dh4VN8HqQtuVEnD3mx+PAdb/jHjdmDjzONzwOqgkOGDIn+inmTipzA1gbHqYB+on7Jsk8o3jQrCFD4mQmxwszTtWAKxxCXN1Iq5FQVDwo0eeE0fEZuCW7RtREajDdr5T7qv0oEVw2NSTK7QBQdEzw/HEAm5lIax2nBuojgaHauPGRoLR4AxMx9EQlMD7uG/d9LcJ6KtuhKoSTCqpzkUFtpynOYbGj1ioJZXRb9R4YoYkmQER76uf+rJvyS7TWtRS3wvXKqTO4CyXFtK8LyWoGt9UA3sB5eRO9Af0L4f1ACQ+7O3pjZCz3EhG47pvSIxph4soBeq7j7dDPmphT12niuQrtqxR5BUS9L+goVe3IgfHdw1R1sr6FKUnB86UC8VL05EqGUWvny1siqPRX98EqqhTpW6/GLc4btSa4RRJ9GIEUR8A60ELjaZYiczQ0I4nDYIh7ktRxBMfKBkjWlvI6nDMAgDKOeu+zUjal7QmY2EEJUzrbUXpRBKzYUykRl0gnaSIrjaPqOgGiRPPAXeLfBVaB6wph6qGa1Aj1CrW9p7lzXK7ApsxF8QtAMiLELjwnHUca0+gaThgTY9y4hcLGuJEiDRwO9pSr/EmdgywCiskp1GKv9u/wCIqaa91FgZeo1t3PQ+fPa068eIFXtPalhijPmHiBx9Nevrf+ni8GIU8OqbHNicBkr83Ks9Ta+mNFsrUKLkCv676IBDEp0lyjYzTOXK/lAr3FcuT/XwCXlZjaTjdSdcmnf0sAk/3V8vrQEK7yY+w0GBVK6o3zsKj3amWySSQ0a/GsoqR3jWWt+oUXUG6i0qfW26pX09g9dgP7vgmgiUDQG8wOtBsYdz3h5GInoy5t1Phd1YEohpPBpMxA0rGGFdxeRq6UTWSlsmzNhJEBVDXWjFzAHYkGG7WFWkiu3mS1JaZSZAJJtggLJLMYWgJrDYSeG59XSFaTjpQZqiRPgiqGYwwqFIwbmbn2ifJ2b8ZTgVU1EFL7Zns/KNvS/MXvl0vn9e8RO+VfBRL85OPX3FqdyKgfZZuJsYEfiFOmaYzcNwf7nrMA1wOkZii9a+sH3ApuroVJRYSuw129Pc1D1przAEenZiKNi3UJ+zsCAySIn0J3HauwE2toiWSvgh37df+je1dMJ+usWXV4AAFfr4O4kauHlPKYq9xRZKf3YjFCOy521XIh24m4rUl/aFAZSRrl0Rwr8JjTwMBN2eVc0ovN1XFY8hYEFRhgTPUtbGc8S+ZDlaO7aqYC9oTaqoUCRZW6f4HYWIQnleQV9zKnoljRpgo5ZRo9ZZhrb6neA5UuqNDAEku41mtmVyAgyFUuWZFQX3rGXitYMjTc86LNAMtzCHhzW+93/bKKzOwR117SqmVR0dEMiSaHXODiKpB+ap6/GBnbPgDAgsZf/21B+xFI31A31BJYTBEwGppL30WYJNfBJ0nvRURoXCHIfiVnBL01tKNuBMhBVcqAOeDW+QD1kNl0ryiqaCwaWDGDKuqWh3sFe17uwktkrQjKB1A9TRVk+3eoj6YGb1ZQNSxLyUiEpVpBm3qY1besFEEOD6rRtvHJCCbRbYOtnuqnFlhTa2bOquholJ3yJSZxbJugMTY9l5fbUMQApHRjY6UWure5UvxMQwZH21Dkd6WSpRXE6AkCTrUcSaBMzBAQxJcogyr0lz/KtBOlDjwYV5XdhTE/Ck3gRHBJcySoAhHcIj5nocSqD1+R1lBvtp7vi0Oq27vbcnWCYtmFK0OqnS9VDq79KRm/MM2/wTjtL4rcldJWqrWP8H6YapOsvpy5vJLQUIEOqQMRcWMG34y3A03LffygUXpzCn11RzuoYD6TvTk2RDeSOSfTFbj6oVr1VlpAiyhg+JT3v2Se6/eKAqaIT1IBDUePTe8Xn5zWLh0/36NiVJXhVNulDgc0fI383C5ZaZrSR7ei0eq0YzvOkrgsmouDwwAZkyR7PT9XTRs5MIOGa+I5GADM4stiI9hmvAYv4TbeB0qbzJeqJZDZ5CSKoK5zYVKEB7nGNRNZ6yeAF/4rCjD5HGNsVZ1QZCpuNx2tmyRMEwL7VNOOPQifU69jRJmbDDNp1evr6pkuo6qIvn0DnYAcCKzIMDsLrBKP355rZO9XH78wTg2b1qwebFGqioZGZyK/UW9G/cwwI1pqTarnWMaJKZRAvStgoqlpTj2gY0VOeiY5CFoLuZ2u1FIN+MzEfU8Ekqsa2gOPB/eGiLcCa59pVFTy43VUnrj+241QrPmwlcJVemvLMxVnuKYbCsk1lMOSKsRMedxAOlMGnq0GS2dqN1n/VYlQ17M0ghXZihe6yQl8B1H1oiJnPzsMiXmbaiso2ppkPEklFKbJ6DwkmJU6SzpcSIPrAPNCCtGt6C+ir6rENCeKrVuYSJhxmdPeYm1C+7EmUwJSPlDUC6WkJUHJR5MI7BnXSn7STcZlO4MxxbYaJMdL+aDVgzOSUVyVpjens18pbSHrtiKo6BG7a6Hsz3tTNpMvDgSrLv553PwbiO9lEFUQF9LEc8D657WYzzooUV6mlN6558SJqACpOTlraMeJZsHD4dRCZRrG/loDb+4YACCvr2Htmrnkg+Mkw+Yvdspgdm6bSh2C+nxtvU7EJxLDIucrlXHsQ7UipIgNrv4vV++xD0cWzFxOqpwBwSMCHZbUJSq2Uoka89bS7TkaDcnqynRAFjAE6bfyRJvy55jBHZ9TEylzkmnzONC6YTwT8x6Kwk0/09bqCbY8CQzl0CFKkT4Sa1QODmUQDsqaBl53jlgmDTXrtNDCM0sXKNGbL7G1GXJpSt2n0v8xA7fe02KZoeIknRa/54UMwrm4RZ63XnI5NMaJKjM0CZPYqheh7KoZKt+Jlc7aziZLyQFY3NnWtkyrr90RcnZgSZBN96c87N9jnDBX/q21b0pL1sVBtYpVvMEChBKbm0niulob7O6gcJ6N8iZXpydriocnzkfD19/+oHpGhto5we+dtywwsFbgGRXc+3mgHep3adrBWxeaV+2aei8KitrH8SkCQrVHq9Q3dbgE10/1wZpqKkjZdmpVwCLLK7Ws1wzAoAFv4OX+KggbkdowgTF1s9zW5EcBUWTQsI9IjeTksPTz4p4VADkDZ+94HAead8w5OC8GOoh0Q05D3Cwz8gYQjrDBAywSv4N15xpQ1UF31/UpE6J9mCowRkluriYdj2KAyrycJUrq/U/xaeckmEebSGXvml2FCCdKQ9kHzXX2QiCToxTe2ZIKV38a0IQUa9WS3anoX067IjGc6XVF57US06S9KKNdpUrmZnUpiKTuXZSn13P+iTLmr0SlbRskbB3sVbeYL+XwolWVaFHvVC/I1lZd8trL4mPzNTDrqkvSgDEH8FRqph2hrXOuE5ORyUI5v0joXUtzq5XCEmyvl7OWmxSvmxMZyDu4ZBYEVCiPocJejCNNESmVVHQVaWDOgVtItUkL1w6n0mAQIJmKFp5ALdI1iIXDMo7EdnnyFHeznx3XuJQuMkWgNlLDiMB9X7inaj3jbk/vmm0sx6Dpn/ePd1zXB87WcR4HenfczyfmddPme0fvjhiO4YbxfDKCCKwqwEYXy/tVB92KM2qIaZyZDWigGXROhiWbUoYcqBS16kIsHGwzzWylukpa0Bv5yNcIjDkwk5GudKX4c4L9XQWOZeC9liaJBBKiJcr11tp5K0X6KcnStnv5hSMkjKsssR3+IrCY6K3COADfEzELi/h5YvtzDSEVuWvCO3cvM0IDwaseUpqAovHtX1tqUOirdaYg7rBsGPc7uPZdBGYhf66h2mYdFg1r8DuU47uttMU1z5mtUgzXlQgFVJqTk87FJc61+q/KTc01qWCpKLQKJeiJrPRmE+YTqnzYHkk+zPA6KVDaCEXDXJMlQNW6NPyMvXqBquq5Ul6ZMNMnb0g7RaBXWp9BjdUIpGusDh3eHeN5IefEiAEbamconQVA8kahwr2hJfd7miwjbajm5HvK1Z+p9FKRyPR+2PcQ3pMEuipj0tRHtSrWWo/cxBRbB8g22fjFgJ/Pp1JRKMlVtgKgVBOIlOY6N3XL0xkuZjhurYF0AyDD9EZ63ohYE0qomeHVHqmas0olGdrOt1V3Uxigln7pbayPv5shxL5cLpWDAhqymu4vhvnpFZVeIErOUbm7scfp2aD9xbAkZQ6h/p2mH8oLFUoMFAsEIjGDn3P2vagA74urZbVkpvpsUSp7c13bqvVQxlY9RoE9SBTB4BM2ZFVwJV5eQvY7SWivB6R6q5A+OKMpT7Wt+5WqI8MSGbMaTcsnBJQBpCB/HZZa8Rdj7voLWGyrZlyX2N1xXxdy3Bg5WbepFitZmYWC+iZAIMFyw0C6mt4PdaF0EmUgIUaRN6V4wTwjsMntDBz5cnOql1pnjK0dXwbA1NeD8a/0bs20r6Zt5LhoplDZ5QosASyEGA2UbEnVt8G6rDmjZW/tpa/Jp2oCDmvfaBlndTG8MRoXW62AQqs+Nuq9+LKDv+XjlwyhLdVRPIPqWyrVKti/LurlI6pewGsA3wcuddmHlvZUz8ssqfq+VjD0vQulFVKba6DaWqFkpvSSN7NSiRoLMuVGVoayCANQdNhMISu2T40WKQWlyyKIInynbHqRqjOGmv/1rgUeCDK06s/VwwRgmlDeJYMygF4SJBSUsiBQZiIkZCPA5HKkEUS+NduGsERvDd0OwIHxTG0yS0V6jdMVm8hTomRCFDNh3L8IC05mGOgAIX5oYXzIzfwxGK/5Bjdx14EAeb0EyqiJXYeFn9ZiIQ0kTNXoU4Y2U/3cg2JtmexdjqmfvRDThpgkSbQ0NC/WEc8DOwQcmODOJ9vOHdwnk+CkUJfjZ1qrsuTF+BaLK5gVANiBwWzVxq///g9LYy7IeB0k6dVqmmMbZB0qFfovaRqKKKBGtb8+PDd4ysCypv/j5ZJrQxTBk9ZYU3FdQFDu4cV5pHL8SiXLF9fnshXSV31KW/Vv/Rm2Q161D0gAj1UvZFQttWsuvQqqhVJk9XX/QqQF84XuWSg6ltevjASacnB5ZTkBDEbYmdWjawto89oDM0VIL92bmZhG1NJ7Q8eBeaWmdlIAXIiQRfWwshdTys6kgqXEnOOTIwvDypSYacmf6Vm0zhuUckxuuQS15qpZDZMWqHZc1RlyEesZ0zABrK1gI6ciVmEZehilzaRnRRIDFesn/TYQQD/aenLcJ5vCTYhWVw3alEkURbBS2lyZ3c5oX/+0uhYr7dIYH+wT0eM/+vi1TElZ/6y5SKYeveFFtlDG8EpYgNpLd3kgjmStjVSqQQvKpzfbSBtgLPbnVHHedEOwatji7FY/q26MB78mF3uDt5/kck03pK/XBRjlGCQr5cSOskljzihoIZHRoN0ASumViNZwNXPLXScZvarDkdZRqCDSMEdU0bD6rUswrcbagvOtVlufda9jptK4iuZESd2a6HyV7kkXqbZ8a00hkJ/uU9ouCbzodZMG1VuDDVcTn1Gl+oeSTCeKPIN0vVlRgs8tFlHBaLh6aqaDXs7JF83Pl5muUsZleJ4rjTaIkaV6eAoEq3Iq52sFwXvU2wapploxLHEK9NrCcr13Xp9AHxQzzFXeoLL9lzIq5WhUqng7tmEvZtPnTPM/Z5yvuXEhVJV6AS8jMHqg2DdgJj1Q08NY0QSBwMSaStc4lsv7EeGcGIPv4b5vpgUAqDkOoYOJxhIOsIQf6pfVw7eXpKFOh4Fpn9IdRjyeKFMaiCrkU1HX9sxeUREjEw0at1rjZBWJ+B4IAHDwOMG2C0tm1qreDP04OEEDEIWOF6M0LNDI0NSuMMAb0p3kBW80eKsVCHo2lXJW60UOr2qhFDgl04AdXdP/ovbB4O2kacxk7qk+ahr4jEQlNOgZ6ITm0AHnYmmtjNG+lGQGhqnq0dhWWekHHJiBaQaAkqj8HmN7pXgrxjS213vwtnapkpY3MANozuH0RAHMAiab4xRZ4p6JHBrnUkRphY14Q+/HMjzT77WLpcCgohqSM75Lk+pzp5yRq7wpDm9VA3/t45cMIaby9YK8UaHG8DICGe6SoBDA4Aj0o0vJDEAhshmfjJM0gEqJfdWIc3AxjHlTw5fX4E2pUb22lQeuWsjqrCDrD4qEEKBVEXJ9fnnBMjIZXdA4Q4PHSGi5jg6bVSKr/6/UVPcHoXUE+rlO2YrUYtesqzAe5Bp92ikU30uTt66FsWriwUKR1X2lsVn1EJj6ltMhJQ08IF0CuIOHbUpnKWDoRlkNyoJIkUBGadpYBhdRojImsN0SNuU8EjlNrQQ+I9eBn4OtFnERdIwqzlFyRgNxyKRgGAF8squm8T4F2EFgAiAHGkOiYID13V1IJxOptpCxjeNoGGhq13BREh1kW9iFyVfL4b2ceVdaizVe2OBQz1qngKtA/CXAiBShUcz5E/P8BSBUKaM+lEpTn7Xk8FMFL7821Nw1wf3Fz2QtwhrT0OHmaNbZbxoXvyA7wZ1UZgsW7j1jcR9rj6cZ1biPQ8wbyyUyZYXQ6N9SxVE/ugr6130o2xgtik9ac6JjI3DGCQt67cH7AKWDtiNWqcQRAKloXZQ+fX32nW67iOfN4aGaT4cVTbO0qpKr3mL62TaiIoKFZ+glG1FIuYw1elWddvV6IxPp5JxC6nsZUriY4sSW0+y+ligvDdc5ix/E42hEzhn4kgPNdxJtBR1Ia4ZoToWPKb3c6n+uA8ZeNw1Tvc4oyRn++vL2hjHIHHLNpTLVbLDDkR3cF2Nk7XCYom3nPycixzpLq59fGVYmW2+K6FaHGC+lVTHlLFdkTW1wr8DF9kvHCBPNkEaeqBT7r6e2f8N+TgEEekF6HagOqy9TPaZ/K/ICwO3S5vSDRQpoloSkm4oWF6Gh9mEU0igxauoPTQULqTGoxhkRK/+v9gHMtO1YQIcEpFs1kN2qPEENQ8MrgtWBFFgSlBcphXhTHjfiYlRCrpElNoPIEqr9GpUGR9W3KTJY3Udz7Qwtxwf1V+XQWpkIYNjIOOF9GuEdN+swvQ8/OmIC42b2ARRbRlzVIEPI5MWZfv7/pH1tmyTHjSPIiKwe2bf//3/e3VrqygjyPgCIrPGeNWtt+ZFHmu6urswMvoEgmIjrYiTUc+Q6AbNxWohlysiB2hO1lkgEOgsH7ggaKi8IBQpnkXBORMaSpNB9Ov30DAwMBoblTgDP3szAzERUU/YoCCwNG1Q/AWVOLVUyOKPMjtMvrEu5OQ2kUg6qYCxlbtgsn0wRRZoHzEi4XKtC5YjOgDvsQqJQwTYNI62GzzM0TvcXIycfTP703y2k0Lo9whoORc+oGnycamG1JPkV2Ete1rVoDqqWc8HPQubEUDO/u3Cvt6LTwKpE3AQExmvg9fXC68eLtVRr8gQGQQgqZDCN9cM7EagLnt4IP8OTgtliQylwPBC65p5y6DpqH8M+rE+Nz0E9W5TqlByUw4xgtEquMTBIkJEflHn67K2aNdRCsgdvNPKap0/ZaPZCAe2YoQGjXBVo1aLpgrAhDl82M5P6oB4apQ5GzDqtoIZJ+FGsTRtC44vviw3kFFpfQMfnlckJixk1hg52BZaAPjoUgT6mAGuLG+VO2Xu1qkPr2md+TKroKPpfWRqw/TRFCukmdzN1LpTLwPtbYaf8aRcRQowlSaNIeqRZDMWGHRG3G3zaxq+o77+oOfFRDyiLdjQpwv1OCfnr4tQ3XhMe1RieQ8VzqDMHEdwNXJqcYF7OkbAcrGH2vtHvt+DtF66cOAS81diXNGk8q9l9lN3i48H4MJd0YX6Sx1TTzekx00xJGvYWa0mEhwRyXvqT0bEWf5+3aEM7Q6G7RhBBh0v9Mqh3iBg0cD3I0z/Dk2phbaKf0ciYOIARJLtSDex10HRz3TpEMtj9XGsMznLqeAile6771O4CdexkZKdGOz1qlVAJMkGgZ7cEsRpIYQnNMans5HPcyraaz+S816ADyy2xNUATOyIaFBlGu6hWADQqSU6xIl622lCwAJdO5gF0CC9kDFhHF+/GbSS/mGFRgVFEj/TZDBuEnpXgziPsra3eziKUARJLoXE6iY1/+vPfNk6L+Ppgc8L84dDOMeElsQwWZI04fUA3vubEGMBUujKlLj4CLN6bTfBIiiRThAnacqW9ma8XxkVjXotyJl/XC9ePlwaQdcjcupAh5QzRsR5jPEoMITnKZj+LJAD2xDzChEiMa5Iu6CmDDLxyotD8WgRybtZ6mnRh3ZeUrexHzuJTyiONuqqeJVWPYMpPHkWHYV4vlQUSnspAXhffS9q9URtrvVE3JMfZx+h9TFsHHieLCOQVGgnpp8/YjzZriDETg5GGfVYAEDFDEeak/QXEFm+4SCYYrwAV4YvttWLPtonuEM12+WmwRT6LANpADy4IiOA2uIA0huzQg/e7qnDapcBxAq1/Bx4O7BjJZclrCz0eGpJgywqZKLDX7u3dLd+z1FpDXrB6RyDO0l1+lf+bOcC+dP9koAa6/23j9FsfTwA8h6EZAVzGA+AFKNcdwQrM69ePwQit5LdxmY/cKwN9JhAizaejLBSpSzl7n/EeszA8KYCEJBH5c+Yufn5O1zin7vQXm1fcql+Y0SZygjVygmDSUPTS78zkrCTTyAnvekSNhyzulFlPpbWO0MVmDyddTxT1MwCAMg1SWbZr6nlNAVWM+tiDUa8TcU1Jg1AI2Rumu9lkbDDFHxiANm/33sDecMsHjQ8SQAILqG2Hwvo4mrtbqFKHwx0OAJj5EbHO2ABr5GYPspbLHZx1i5AD6JP+gs5T99B9WqLMJeN+sI92dtR0MKWvKV+gOuR5Lo05h86oyAbakN7BWpG6qkOG2Vjd+l7JkTpqIpBZ6D1E7tAUlq4JPofxXMu/ev155Nylm+zoqZcay+bakOaHU5v4m8cYaBXeR0sG/rLS4hjURG2O/WA3rpFc74cLXZR8RDNSXdfkuFiwpRHJmcZM7uqE2R+66f3Yg4xZdamMkekq9FkAZ4VxLDZ0ybo2MZZYr9KzngMR1pUFQSfJUtGQ4ziITgqOHa8ZrnEE/rhJ6AX4awAAIABJREFUnfS4RoBzXpjQDpFFIeQ2ACauAAEpGpQ3W0HMrtCmo/54Tob4M8HmfzLyo0IrG2WgkPMF38ckhDK/+ESnj/GqfCaAmOCXiENB5DcSvRpbKXtloSsR+8nG6DwNpkmk+jyZFgtTc7A9MIbPJY4hsZOQqPH06A9Q90FHNJLv5+H7ZJpgra1+K3GT19cXcl4nQNjwAzzT1Cvmtcs6ccpEOTyfz3/fOJWD8w3skZ7zFGBhzjMui2jgyBMepMz90UAnG8i8sXz4pbvllMOpDUCZf+rNhhrZzTGeJqw/frzw9fpCTKei6jK2R5wgMbDx+I0u9A5NUDwjPiRIAFH7ILuePvC4J0Dep7OIRmK3xpaqRKDW4QhGJMiDH0chlkiZPaOUCOdP9ecikRflR7sK45r8DK3PrRS+AAJmqndZB4YiIOsyR+Xn2OIQ7CFHiUh0bsRFFfoUiyrksRp4gKtULVtqncHpaQvVDG09C2ETOqb+3i2jSzANttYRCPqM2ZQDRPN7ixE73LLb6wwjjJEyfsCsMffNS46ph52MZz45xbOW0DLfB589ZzTAEQnb5dnTJ8La0B98Rv1pxEmCvEXdTDp2NYwD/EXjTP0inA+g1opRLfFrzac9PSTdUz7vZ4rChb3miIBmW4Xi09CS20AEp/j3ZsS8/3ijY+O6uO369brw+nqJMB94v9+sbTShYn5kNSUsR0ygP1opwYekk45HHFqORTA3SQIiTbSBC7ZvKiBmDrAjsfbi/QreF9e+6XRV9wRKD2PmIRpA6ZS/1sCR2Vjmts6pg+LpGl7PNpl/XphZwJzovanLdN+aRWVJENF0tk0jLJHVu4rjYq31CkjkRSkS2Bm4zygBZ9fOUXHGwpCPkeJcF7RxLdC9Ec3ygMLOz1ki4V7oaYRU/gFLmezFz8HjxZ8Z2sEaOU+jn7s7twTPn72Z/B2K4CaEqNXAM+uBcNCJeOCwQaelP6n3NDHmhcgpw9XpCbCL0NDgRciBlm3/J/sBvJrqLxhn4dkOXie/tzGm5gfrpLRBLt2RfDDPI9NiFji1olcvIBsojpC1oP7Ih+8I0MDnHPj6QaMcg2DO9/c3xg6MaxBiR6CwqGp3aTkuPlTZbRvyag8Cy4dSJt83pRLTfE8/nO6H+9qBLRmISKrTxyDKZwAlZfjWjy3IkKwbdMS57DT8J8edMBx1IEYLr6F0v6koSISyVAO3WlyxNnJa8vLx2DtaBA8AOYDaJ/keQ3mW0tgaQWLGmQAoxDWdL9JQcogjnVKU2BRvk6L6XlsK8soQsp5yaaaTXTKbtPyp0Fi3KH79INcmcfVITHD2l2mr6k7EiUoZjdtrGGUZtfuseHAWmEOrctWL5GcUOwmqNfHRlw21v0SfNClGt1hlg/EBtYcyWMsrsp5+62Oj/75xOlw/UfOfvyM/IvNTn53vt886qY1uHku/U5OwNGKaC90UcVuEbPIcNUB17rvRwSn3eQ1cPcmuCbDlMHlzLKXy+blbuf+Zufvwqig7C332zxra/25wAEyC3Fw25J/e6+LRIWUMJNbbxz51JQkReTyv//QtHRIgI+OQ4beR0Molpcxuc/X5nAQaE4hb0ZGUweotHIFRoNXWKGkmRYS8OZ2aMluSNZwes/xjOionkTqQsUULnEDfW/exgLvogytQ7ru7DAml5eiDGfzUXpdDZzrKz1N7k8LXrfEuGgjRf7XMPp839J7W59R77pPouWwTMOZsJwgMWd3RVNJQC4wrKfrjbLl2et4X0NCBKaOCkkvkkH/1+gUJoQ+5/fQyTzH7IHjnIJzcDXCv6eTg8fBcnJi0vYtaMNzBKWTRXitslAv3vpligUTqg1QOeaEErh8X5nWx9dJ1GK52GA4bdVonYciG36i2nwkN/Hwy8lP4Py96RqWn4xEP9jgYf+7DwBvnPVrI9iEwKBU+BAD00QoigSHgKZDQ522Nbzl1dq0jDiCfy6AeEadekmVEfNx7qQI6O9jdz6E5zx3nufHK4owOGm9g5kck36SBagFjHWT7HN/GHnhl4wOaAFpi2TMBq1+ABsN5SWvenlDFyISABfNLhpyRh+EF4LS6IsBFyiVd2zajTJzY+HRy7ktfyCSDqFNZWvMMtyP451k7GSc/a6rce4Azf/5//foFIPQ8HP7Cx6U7CvKsEcjwt/OeMQ0QFvgcSFlR65CeDdIdKpzHubFuJ3j57S7usRjZuDBhGiPnizcjZie3jyG5N7E1cQIQwOg6nppKDHoOSNUoYA3mNMSbvZj38oCLBhcQlW08szeKp8cJNNSU/0iu+WACKb5tp7xp0ljNt0XkAdwQ8aSHwDGuB43wyahT15xxsYjTxggfDR16tFhBIhu06G2rSliWno/ennpIvJ7zTAUWWXUglB059bWThgea0UDQOLdkSHYDkft5bzzRjMbmO8j0tpTFJJx5KArDgxO8N1wduFUq8HlCT6l9H/t5coSEjAdMtsaSfU9iIhrZa1/3T2DCeQz6JfDllNhLT5T+M8vj68+N05Swj1co3avup97sPuvcHpnCUH5deLSBcLwz09zHA7HKItHA40JDOj6Uz9fn8I1spTEGFYIXs9ZGvjeyS5MrKuL1sHr3abVwH4ZQyRCRvZtEcNBQE/R2MZKpVwGQBCaKnFgukZ2wpXdYD2mrR0is91OVDdXHqKGBaY8SBhpknzwpqtG+Y5iAuMPpduQDNLT7eoVaSwPuH1MUkCohtIYAfSJemUut968A/x4PQEg/5fRMKKxbSLrOWlJxXwx11q19GEiBjEL0PAguJ020h/OMW+mVQnoN6AnwOwJqZG8L09DngB3vkwkFSjKmj4Hyd7iuHDLKi/+kVRstyOnozQzD7SOm5c5gPv6Uw7I10v/65/p/QkL48JI6FMdXmJkNERU+UzBHD738DEt5SYDnmLzqwhxPynvgdBjGXtjFoj0wEGqWr1VkGI2FHInrYoS7/7hRVRiLOzyvr/yIygDcGJ6KBs2HXptINEqdyZJc4uJExhGuQoNt10LjjYgL5TX3lQAWGng8dutg8Qby/iRrW5cFrOfooDiVkgKeOOgLHa697hNTTA5JG3vbOfJgZDMa2bgD0HD3QK+FDQIzRtK5i3KJayvQTyT3raW/MwdGzlO9uIfonZxpRxG+VoFRRQXDrkYaPS6OpgWIVKdmPz10vTZH6iBkeo7DSgTJLXymexeW08tjHMoGJHEZQbWEgiZxSncwErtupt7BtHeMCzFeiLxEMJjsBSvzsOSK1QLxcXI/DAcnU3KGEik208e3/U/SWnpEm+PzZoZ6qHxgTmr8F9BoV+MaXHD7WcOEohaE4q7tQXrd3GYzPCBWmZgdfCA4kH5lAc33H/nCpZWEvQo9Uv2wRkED1sCzE7KSTWVHoQTTWnx8jmqii7XlNHStEELYAHYglifk5Sm70aLZHZWIj7rQPUMjn6dHzBujSAqgOFXyM9G8z46XI5j1+cQ0ZRMjEW3t2wLFwfS75gB6Ar3Os6AwtWciT+HNryPBhUVPhOTCpn0iT4AgDTNWP2OiyWy1OEaonDj+JHTO4gBePieuxVOgV8xQh4YR8E4x0DY/iSZP+YyEmM8BcP9ncYyuNO4WePiyBn0md73meCHyhTL3GXJ0H2UCnImcY61SQbgBS6Hn7wBnPjLmiJ9Br//P67+hhBAnLTi1ig6bJUl+qk11vJ9/fz68P9QYQyNY+rmWujvYoggohUkp3vZ5pOwbHVpFYuTENSggvdWkzhAoIQkQ7Ca2pEa3k5nuwlYKivFkBT740GA5m/50SB56Rn2AZSNRWyTwofRHEegj2fFNpWcX8nRs9vRg5YT0rXsvRD1Axuk9s3ZQyVmyJSEivtfJCIqCRMJ0QBSRA1BaW+I1A3vdTCkV9Uck5hzcRKZ+5sEaIFQ44tyzVhuKyvZKYWfwQ5hjYWI8SdQwWuxIXPrs1AHC+R0YKdV+oOqt+dIUceQRMWcWBJiYnjHQw7Jsou6pHvUiXkbvyfswLyBIfG9F6CcVVakEUSbbd+JJn5VznoBEfKaexx8G0ujg/tXrz9Na1WuM0g9lC3o4bub+E4CJRxIQuDc3PAFE4YbBE91kemsapS/U6Gm3e0yq55Bo69A0U7hqykR8/06a35iJr99emFeLvMJVC3MM9g4bjExKsw23E2FkphC+kapzuWKQZIY2L7gKtblIae8B7PUTimpZyfDp8kH1E8rkSgQRJwJxJBYdsbrszLRw1kmt1tbt2hhjirCgSA5GwPOPjkr1I+idePp1XdKj1SdLAS0lhYoQvhCiuZWeOzM1tU8cTZXWRjbXp9hRtN6XwQTeb9mllLf69GIBzUxeE72BpfqZJ/9x+kNrKELpcO7WrGqdXSc0JF7P4EMBNtFjG+jJ9Po5Uz8HFZz+6YPHAl6GRWcnTGOzRvd32Xk1cJhbcbKDfgz2X7x+UXMyt35kAMG6JAJzTKq8N7VpzeM8Bgshc8cIQgw1FdcNEa3JFEqRAuBz1Y0VG92TN7OBah6kBHmejY3v7xvf33+AJPrAj7/9QMbEHC9kBxktALrMm5QPIL8L3WS5IDkZUZASezLtsb5ro1GLHjKnkM1urHujccM829OQrg2TCtKUPD5VWBqTK+rENErxPM2ugX5/DG2lckKku6unvvc6qnz20OFpG1MYGzi9402VdOytLAOYeh5RFNoICV31xzErPgA5mjx/f9DN0H9lwNIuTEtNicOTXZ1+rwktA+hEDzcxeVaiE2MUvG/z1JzpHjQdGzV9+MW0YXbJAT+EAKAROZEVGLkPxnBKlnMdoXNiaqnATd2PAyTplvSWjWTy3qtn3CFdrZaDBNjr7o8I++kJ/i3j7MczHOgeeTwcToIY+p4U6FOnFuF3xsd7ME8/axI+DhDkVGg8rnQDHazNOoDg3kA0yE7aa2Hdb0QCf/vtB675wnV9ITqx7tbPeKfnEzljMAJF6GBv3j6ilXywcWYEleZusYVSaWOTw7trI1cBWXqITCM5sHAUrHCQGbWJogveeBx4jM9gUHZTDgYDFc89Ct2kiGD0/kyeTw3qaM12jN6Z+k9rE8VF48okjrUd5RjRTiqX/nvvPvlIVw170pPo86l9lgl3+CP8UPtEcUfVlBM6aLHJCOdHnn76OVf6P96v1LF5yh9nKT6/S10FB5mUFA6LnGJtqfeBDac5ecKjOXRdfk+6rjN6qK1xjwIIhLwLuAsRb/xk/Iz+jPX+K+NExNO3OjeRXn2VN3PF8SBU4B4kuHcf3udwWieiMMXB6ux9rOL8BllCrhuZA9X+ICT4M/XWUtRGbbZkrjHw9fWFOb+QGHh/b+xeotYlehNyz5Fnlwih96KU5iSC6iVMcTRxzy09wy5HijO54g3hhasb3FoQotKRK3pU6FLpEJzGTjwr21WhhJyd3pe7Wpr6PuexiNJnqk3w+yt8mHm/U5+RQiU4eyHDbB7IABWwPDLm8Su0swCoZ+2ELE4q7PdyqQM9uyAwjG6pRPx0rvgHz4gO8qkv9bN7izLqiRqVCppYcRYCPOwo16xQqh0DqHsdrSNvTgdwKKbDCgXnnrZYDlvkBFvTOEblFJf6P6FMo/3Fcy88YhwIeOb1uYl16Jj/6vWLFYCpMNwHGfzsXXrSI8KpDW9WpqdVBJpkIHtockNPG5uHJ1ygm83YiODquqFDXyIODADl/ZUFRBOCn/PC6zUwxhfQie/vW41n4PUlfq2JAML6u+hgEBszLD1p3w5Nubi/ZZSNkaLUK/Wm5ROuCpKcJOLJlErAj+oxgKlWwkp29tQiJDj1073kWBxBrGMkB+ZzD7RkmDjRxc8qkvVZQODP2IiaLFe6MEL86QCqSRqn83lqqoqS7g9o/GAqmB/pLUCnxWzkoyd5UsrHwGIQPWV9Vs99P3Ob/uMDfIqUuJg5xtp8pkwmuzFYpFMdPuhOx+CAs7d+76U+qjSXx+tCg3ObMNlExvtZ5zpt4XRVicTi9BcfafBTP7fI9LSd571PZvOL1681hBQ9qRn0c7+O/0rEzFumnpfqtGbkXeZu+kYxHiKDLRdGy1bipEdTwLb0IwRRiyBfzXpszAuvmZjJkbR//H6zuT0CX19f7FtBSCOaNe3WCNBawGgyP5x0yAFGMc0SdAgcA4X0fMYH9S8Ot9SW4dQLHfz+Zpocm3VmCzPj2+fpETOQ9HnijZYqYOuQa6bSXM020UGfXQhiK+UOQEgmiQ4xhcrSy3CXSgY3xdVG5VbazmzJG7Y7lYIb/BHri/eoFWEF8gCiwn1EV0WXs8V7LyDJ7iow9eqtHuSGQ/THfWfaOAB0Dywr7gX7qwO69gpgP5zZ65q4XhefeW28733IG+N60lWI8H7Eo116RNgNwBq1TzbFO+Hh+p/jYJ8e72MNP7cbI+Offubn1y9JCAdcCmgixQCRAA2Mc2En5DvFAdO1rdSs6pG4jBg0Xic9Ak18UQe6jkAkl76mkNRaZBOhlz5nYu2N970Qmmr/7bcX5vUFykTyejhlQpDo3vf5PIEE2lFOfwogOEYGhpij5tZuy5ybhaePxXlGebLnQDuaNCPrDqY8A3jun8eZIMM2CwgQzdE8ZYImWo+r+tCRRewgI7YazwsTMeREapdaNANjTGBujLXx9DqbBI5Qy1fgVvvam/gtHcIjLYKl6aWmK2E69xzfz1ZC6Iw54pQ4tHCkhogMvbghTucqMyUgrcwOqeiaKgU23uvN1ogUOphJeC0G7/2SXtFBlZ2NfBhnOBUBBdYo9Elw86fhCOEAKezFwx88HrrnOid0Uon1V42TUg4HYTjhOlU77b0FLPJ7tg+GXAN7wSkvvo+RezD6kKdSg9B6gBySLmz5owaADcxMMT9eGKAXW1WoN9lCqI3X14U5vvB6/YYEBYxrt3aJJPYGamm/RtJJ+PP36YG6+Jf4cEMHH+cQcvIkAFj+g44LGocaOU9dBqeYji4BRbdCZKHHRJSBrg8Hd4CDPp8L+lmjv54hRYjFstkeYrbDw7FVRwX6UdZzXNO5ZNmpAx6JHYDVHkJRg54fJ4No27pAG0q0sFbr1tyMJzH0XKnMJ1RZB5wpN8GgCtZie9UxZratqGHcci4ur/a+WSLGQJ/akUYyMkRYuQGftqahrF24VwE5FBmZsxQ2HcMIINnrrIJmMvu8ByA8u/qUGYzAcj5lkojv1UdN3CSTeczzLxnnFuDgNolrkG5PAuB8WB8Gty7OqcxAV5z2CKK5Q2M4pQA6qepdSnmhAzAiDrunwx7H1NjBegWNVUxnODUwgZi4b8bkkcCYAWRhrWBfTQ3xEQMZ1DY9LZeMI7BcG6qLmFKVtGE5xeGDHbIZG7qNEIc5ddK7TEUx4EDrVWgsmFHCi2fG4bT56NqEnYhPSCvlfqIpJ1DIWy2wrZEC57oWoDIkxhS/RyQApRc5XI8uHXLr5rK5756sx9S6Vcsa2MKDyuf5sAD75CIIFNhCM7Cm+5sNVOQZKO/S1wJwwW4E9ig/noNfMpgUqBf4+vqBJaM+K+X1+XJMzGiUas3dKZophV6iExjijsspAYp8UCTcHFIfthH9WRC5wYBPOHB9JLFNJP7PKs8/T2t1QUh8UMZwbrgDtiPlZ9QEQqNHD5qLKtwR6CB6Ns+BE4OipF6AZh2UwF0QBTAOLU4ce6WjSllGYEhH9n1v3OuN15X48eMlLSNgN/uXCIssTzb31cCGkLXUVC9LBrZanPnYcTAFlS8NoqKHvXPq74CVzs9mtszTSnCGGTq8LgNYw3tuMJ5xPGcXclRolgWZRVcsRJUN/+RnRqAv1v273VN2BF50nM3dLxHUZxotuRGNlj3XK1DQ5YdOqsEr962PFEk4s+jTo6wq7Pc+7TPX9ilmmLMNpqHUBspp4Al01FbJQJ5nhU7NcW6swlMWyZiX+rtri+aXE9ecqExsqTl4PtTzlqQscoET8DDhHH3riA342eBESrdQnPCgfE0uCVXm/VXjBHhhW7KFOfLk74wYybaJuPUeB/Mr40mF8ZEWsY0XusAPrmU8iN0WospG8yU61yZQq1rotCF6Y4wLOYB7vfHeCyMbEReuXdjbn7eBiUcqswlIuIthv9KbInaNwqqNGJKmBHWRElaB2FRdGC+MHD8Z1Bn/Aj/nGNoKJgPfELEbAgog4kZwjUUOrY3Qgy9ZctoQnmoDFvgGgGcjNA5LyGDeGIPZwL5JkgAO2GYn+/njiGeKJYDT4q6txccftZuNt0sAlq6z/Rm4chu1Nta66USKZA6vl88WIBNC/GHk07s1ef2VjXv9LqzlQYxDDzEUpdZa2NuGqZ01HaDqgfZtDkrYAIGswO7AaiqzG62PMY76PaDPtTfGpNIigbxHRhZ6qq3PTVacB9qfsuVXr1+0UmTlp9cUShHjhOjq9niJPzs9SMcZLaNPVNuhLSfxpAipmsz5Oootj2qgw4tsfChDtZEOltTckdSJfb83at14XYlrF+7by3jjo1EMEt/9uXnvEKPPrGe9F9O+oQgNHgTrJnUDe1GvNi+nejieMhHSr5U3qmDKfEgXjcZ2rcAHmgKi+gNGUEnxpIhx3h+HjaO0TsRz577kuBaXQcFIOSc+anOUbKQ/99Ob5oC0QL6PGlMf/ziFYVGuBkfx9KuZBuq6T9r0nI8zqhfKWmoLtaVKY7ayh1CL6LyxSwjfbwGKrsmVZfCo8Dr3Wlhr460AQ6nToefMKZQZAyMGNnTWto704BROIM4Ym6Vgdm3MvFRb8jLdLQkFHT5WSqme/bP1GGbgURP8t43zs6HrgppLjPrDYHHy8lLRD9BwvIYH+voDwzNqLqXBU1uoeQQD1CJ6ZCnYLFdboJnGkCje+plNde+9sAQAAUvLdUWPw8C82MReaOAGLgx0b9S9WYNeA3NcCCTe7zc6gR9fv2FcE/f7Rl4TYwR7ga54FKFqb2FnTuX7RFDS/O6TkhqPud/3s39ETqmwOClThcRA1ULOifGhmcq1fAMjE3ftj3RfKVmbdC1kHC5RHn5tOOXU38PAGDjCFuFnIsfhqBD5ZEI6WCeNRSLZjIZH88DzKcOQOHdfsDL/VqrcoXS1WY17uiSS/RYCe1uZ15OdHaDFmYfkRStVIumZcICcxkwyP0n9KVnVznlGC1NgHLRjp3Yf/9K6dgOdOuwKQPoenYtTDx9Sx1OZfBjGv3z9YtjagpBx3tB1ZSlFMFdWn+pEVLZcjLhJnAk02vbzUw5f/mLjw6vgAAsC3HnT9d7WbVnqkbre4Y5G/t65Fq4RuCfTpG17FhiR0UAFdi3EBBlMq7kteeuAuEVQPOB+/xxMP/vUhL43Sl2xkFq6FEJ9PT1CoChRezNrcCp8bvyWLCQXFEc1VymeweqWojsbggEmD49kpPrFgyrjVhHs4nMwWgywF9r2si3U1s9A8iXn0KnYdxbzQF1QROun7nJGcA6wMjHYWOxI6lwD9DVKiCzKl6p+LEUu77z0oPURGEfrvgIesP96vdAdWA3EorFu1SzZjsQJSMndxaFnMNoZgYj3px3jqze4Zr1hXQGjph2hjBUfRnlAxP/BsPW692N8mkQ/Yz06AK4JHEJJSO9TWx6Cr9IRDwebAgc8tejenJ1slFKuxBzzgaNpvdjqr5VZP8V18kCirMJXZRtUsd8cHE2KLWUU7vdCJFBBvVk01eLWeyFfHJPaN1HLMZgGv/dGDyBykrwwx5kMqb2xwAfZGsOClPEhggVrMwBYvPIPkMAwu4ET98Rqv3G/35w39J6VLqyW4ns6vWzEGCiQ1O575tqWByeBMbAhgrZTdMuhlIgj8OfSYRArx1GTtuwjqf/m2X7S2e6PGpj/+Nq66jhJ24kR+b0L616AhhJooB8gmlSEI0J0/sfRswakE5zzwlWUF12XhrIL8OaBGOP8Tqu47zbLh+2/qo1pMNTuKAIY44mcdj54yCc+3aeFdKRn9LfnWv6icTp1U42u2gbHMxtJMT3J6/f8AEjJywc5g/Nw7biIZ3X61kVseRuttsROvlf6aDdTsbMI1YfIDy8TtQNbaTKBKPZs3QrIF1sh66aywLxIc6ulhb3ReE2yivbNdHF+TRToPHLMc53owt6LHlqpJZK9r6qN1aQksulsT+00RK2SAoB6omc1qqiocH190WGsG99//KGdpBd1UwdZPdlASMM1NbHBFgoQLgcicFYDaMyuzi4X0RvLAdW1SuDkZ8Hnzb/N5+uuoXQooTqXtaoyp/N2RNSjPsokplt09spK9qlRSX/jz+VJEdfemONCeYp/N6p0b4Mtkd2F+36yqJED1yVkeF645gtjXIIDChtko7GsGuRfN7nGXX428WQdEeq7CgSDUX7eCisypkcjj6F+9jv/3Dz/1DgtB+imO+3KhbVSFM2/GcR40D8eXkpX+IH18wFBL5djYKjXBj34FgtpN1D3zaiWj5eGUE8ivspVq1HxRM7Dcyym2rccwtQBJa2OEa4yULOBe5/9LPsmWDNeA4HGuhd6QIPi1KZdVdirediGfLiMIAWkbXCd/JgDCKo2hA5c+EnaG4nfS4yF/cA//vEPnBSyG/f9xl4bYy4tVgLy4hT/0MzqoVLK6HfVkR9htHxUGth10aHm3ZChKvKGa36nuhqt6ud7zjX4Ffy9z+Hzzzu987UGNXeD6XYpg8ggib9U+zQg1FPPDnK04UjG9zwr/wRukWyyT/YwEOhmGtqg01/K6rbOlFUMIoneRrqbquwGT3rrscDuVmYUP90Dp/dPDuOvhe7pT3ftv7z+XPFdufRPaZd+cWrM6dQoRe9DiQo1iA3DBwRhC9mCEbYPz/t5aXI1rksjPhs0Ti800SDPHlVn5TpbNFzlsIvrH0bXWU7j90ktn8kYVBtvP3DyYbGWIhEb45Epuh9EjxNNbYrmmP48XgOgmjB8QEmXQ4gStwp9FUZfAj507V69h8b7jzdyDsw5MedEbSKF93szAg8OFcwuXDU0VK6pk2gVkWxhMDX0n8+xcDvVL0wQAAAgAElEQVQE4ZbO8wzO/0uV/7PSbD37z3QOtdk2qSZ6XA02Hos9Sgl/hR+uyx4AiD6RH0r5jyassg9mHQPv7280GO2IMDtz0/kEcAuESSR6AFMPqQTmLA8nDKG8/UR0n0Z3D3B6w7wfB/WXKkWo/cNLeirJFsBlB+bSrhHo/DMdhP9On/P5LfZ7pxB2z67RBwV0enYM+pwAEA07j1z/Hh9kYM392eO4XVJdWJuHLZwWQ+TtbkTtp8fWAFSJeE15q78UQ62QTeOYg9HMDpf8dlHUlK7svTldkEAsEAVcC8g4Q9nZIaaPCnxtvoJ0dzAscVlYi2BGKUW7vi5cVz08TYD9Ta1Iz3x6gWMM5KS6PaOyHMS9sbu4ErChOUI5Ta0k4DMiiGRG87nl1U+bKfsZLWu3a4nmskbOx2BReuQiwMkJsB/N1k7f1u0RALBosNFK57tRS0DPljMBlSvYymrs5fNlDCEOj3p3ghz4ZmbiYKLzWQoSBMYGhqdpYmrdYmLMSV3aDiK6D1p5gtKZFhIpZWiEL47B/tfXKVM6jqN279qEnr9snN7Se1opVWSZ6F4QxNkHDifMXudngk4OJlLbJ5khE2gtVH1qSSgFsRfsbs3U1RkZCqVCQ1GudcD8gLtK/bzG/ZbuzxxKd3VNnUrpQBBBqTGGDF7XW5pwyEm+Za9FGp+kMi2xEUnvbL72WjcXDw0aOs/ljbUWugtzDtzrRhfnDed1SSM1YZ1dBCVXmEEqBR2JCTFtanP1ebC+Y7oKNHitRHZLKZcAPPD/AqlRsVBq5tYIifBE2550LhL6uyd186jbSdi6mZKbOaVnzUiq5uEuiD3Jz7ebsiLVZxolJE9D2nacAWyTFbhJOgXeFCInAG27bjazkInOwK7EI1DOrKLikb/c6jhAGRfHPZW+6nKtFXSeg5wlIO54uIPxWKlJE48thcpv3m9vI7j/snH+E6naABvQ6CAaWWsJJBnnF5ZDuRkRaLFKWpG2RAULSKZYxl4ngoWnC6oE//PwZIhh1P0MgjfrEw7WLm77YvWEhcZKUgVbDzZ7nFqhWj3B85kBK7wHPlpH8FRMojKRPdAJ9hnRiItRLSYj/a4C1yx5n2jhXjfWfbPOnuxh9r45PZWBa06yTrQoJ68L83rxDlYd4gCFuMlRTlbsvIfl/itIePjITiJBqlyql4yTuSo/jWM0LcKIv+zvLT0jHrSPOV81BCKDqTcYsfZadHqQwkRRT/izBdPqEVuBPwUg7rXkpIZ0rGzszLLmNfF+bwCsRRukba598/rmC88+TUmhyGmRX8uIWctBgZZILrOnX5TRDaerckPFdpt813Pm62MkzkHjuYO8S2Q/4Iyj/UnR+UsNoV31UUfiRDT3Ntvft4W4CTDi82v04lAMy4XQgachcITquUI3xBtEY0NRdFj+oYXkNXDvhX1/o9dCgIDHQGFk4rq+MGJi9EKDG7L3LgpOj4GIjUAhk2sdgMCY4r8OAGlkmV69siWrcgNrcPHtN3DXwupCzMT4mjS4JGDx47cf1F7tRvXG2tRe+vvf/46vrx8kSPz2Q0PHwd2bry/M64UxX8j5bFfm2FNgvb+x9xLJm4cgRUAvG6HQ2C4ZZ2vAKS7kYMpqhBRO5/0gs8WUgpxXnYyk9FwPiaG9JKhPZoRuqf0x+0hF+sbAKq7T2ItIq4cDiNAvAjwV/OUaBaPDIKC2tzs0SgdrY1wTAxziL6XmGQN7N+61gHGREZQDOaiox4HAPMMEZzrmTBqVUHfwGjJE8UyRFIREy+Hd9+I9CatKit5apHcy9XUNrRvdzfLiI7L+28bph/1oxpATWtKWmFpLB3kiGi2HgT1Xdy8qEjw8AxeqvLjqh6Dw+TvbCX0/B+W+PYNpgMhE5cJvrwu//XhhBmudvb5xr29Eb9ZOGRizkLsRyb2jAE7v2Ygf75frKcWk8r/jpDa///EH7loYXxdmTuzvAlZgvCa+vr6QEfj9H78DSaRWiRnyXnhdjXG9MLIwhkEJLcqB21P8Zf5Mbjs5g3AquZReQXzcoe8LOTsgddD93y4BbJi+eEVBp3AyTPckz45Jo7xtgjue77+lLgBui7OgGgCuMByLn6U4zRFL9ea5Tpu7f58Os58NnvbL9/stFQwZWRWqNzO7SIwxST5QiZXplQ2KXFCv/fxO53gSZANR3ESCNOfhjJzXb2WLbpYDp750zNU//9wuUYbma/6z1y9GxhQF8VyE0wrTyKqUXqIP4OPUiXqg9fG5P4rtYPoUIMtHqT5TGSOuOhjVJRSQjftSLdoNao1q4/WckyscIrD32yQwqNMogepClRvITld44C1lEQJrBLlwxhAkBZRQ6ff7jRuFmY3dW1pBiRe+MObA/s8bv//xOzIHXl+vZzJFZFGm7GTxeAcHDpOn1WpQCuiUP5PynDIG8mlZGxLaMIPFnjp+MjhgU3NJQwXODg4QZyLCOU+KqzJeOLUz+Bd0YvB9cyospHrfN2AWVAReXxRq3vdCyZDbBi4nVI7U8ECEMqtgPe8oDoBtpd3I+YLrbJLL68wch5xWDs570rGZo82zXWovQWcH4UTdt8HPTOXFyfgeQ7XhkUv+GOVPcaefn1Fl8KevX0ZON1nbYTk4wZ0RHw3jPhd6DnfEmZYwoHVIv6cwxhmdKTDaMimEUqg+DzAlR3GAgXuha+M1Ete8xPxXLp99JDW4Q+NRjt/VSLVYUqyn7uPwFB0IED34NEkMOzkE/K4mFzeCac19s6Vxsca51+LkRQDXi4Y5x8D8emFOgRLSAHbDGx4LkzF8trD0weApe9ag3KoVl9Y1HODuwDisAcFN4Ha07TpKEaQhQKYF2ghIOuluuM0Q6OCYloG9n6KCn23tIzvjG3uMuXHG2WIw/XTrxg7f9Lyj8q62EPvIkIMDXl9f+Mfvb7zXwhWDKe68UL1wb6H0LofCIGCoP29WWiNiHGf33H9FtebPl8+BUOAofmZqEajnaUS36nAAbEM+/8+/yKh/Mt1/0zhDB51AyRPyTemrvrV/g2CAi2aERnv6QQnPdL++16QGRpDWz7fWMMQZiSodtENCqHWmDeyRR3oGUjOdhxg/YJZK9WGLobuwKxHbQAalM2MrQNhOwNaC3VzdG3dtEhpe1/GQuxbQzxKe+oN7TX789oXX9UKgMcfE1/XCHJdt7fyOn+a/nCqpNZPhCQ9mJ64T/eMznwW5p07WSeDeEUZgAi+618CTPsNgkzdB831TRsrPpyfR8Xm+eBAVagnmqs1UHECek46kVh0U3WwpJGmE0Odyqn1EvlSn8T7kE8mS52fmxLg39l1EXOWMcgzNruIEARqi01ccWRUgtA+mnRjIcJTgaj43RL2Ezhp9oLaZH/Do5yhpFlAAbJ/gI2J246PJ+C9f/42aU3VYehbNUaZ1EYLZj4eIE2H9evqYvFmZnKgwj/Jc1U8RgzeFs8u8mF0b+1a6hCZ38uWU8VlZoJwGVgVkzscZPRPTKcfJnmwWUMWbnq1+YBC6DMGW+y7c6427N3oObC148ejTrsL+vtGDAFhmYMbAlQO/XV/429/+hut18f02lwI1ngjTa4MK0/rvIHCTTWEtpvpGrnXM6qONceyb5QbtOZ70SWgp9XmBlEZGrRLizhaPo2Y1pBGkt+/+qDFVv576U5FF0bPXokLAvOCNAaWfN00wHBUVUVnuKKrFM6Z4BuEbZH8pLV27gORcZgF4rw3uNWFAQaUA6KCkjdNzqK7/GWzwyYW1jDa8fV1BQzc5MzFCzuKm0BvlW5UVnJpdGYNncp0hHKP4hWXiv0FCCEV61yIdLbZMHO9AA9TvbCUqSlPoOcI/fAyUjJg+/dAxLLUoQkY/JTrANLTFMe1deF0TP76+8LomlyCFuSv93EzpymbGo0QQBKFK6fgQz5TgR5zfbzHlSL4fh4Q3NgrI+bSCnBpLaTwQGFfiGhM/rhd+XC/87fUDv80XApK6RGO+LmxFxF4lR54ncjJOSs/34rB57Q0HltbhWeuNE+5OMurDAZUEIhSggSgHU/Qml3jd748H+IBtrEMBc7LScUhRhgb6pLiBwFD/sUvqhgD7l9VHmoRRVKCU0nQ6D9d2RGbXao1rucad6KZywXttxms9z7beVSQKVEbsmPCKeOIgpHf6+zKG5FF115oO0L1rn6M4kRYHYTWbDMrEAJYo/KsnMCluqz2XcH3eur8/gaH/jnF2pFgy/dOHQXyAD0MP+uNibMneF8IopjEnPTjroHYoYuWFSA4wc6xH2qaaAkm9fzVrz9frxca9aVTwGJs8VmgCXYbmzNFR39ubPfm4SyktDJgw5DDVdoR4SA8jJ1lCex39oTES87ow58B1Tfztxw/8/bcfuMYQgZofIGLAkh8wKJIBEVZhlCQjsL/fuBDAHKj3WzajOdg5sBdXUcCOQoCQjbOq0Wcc6kHGuxqr2BfuvU7rwOhtysGSPKLZSkD9jDqLfA+A1VwDYUFwOzSdZBLW3zdQhAH3zVR3BNXxdkLprX0NB+nPqnmfSYRKFO/zlHHGAPWjNM9Z1OtFTg47G23VPckBrQuxzIgoiNKJQntM7caPr9/QzWjdVVg653POMzkExMefMtZjyEUijH5PfNrKn7x+Mc/5QVY/eWnLW9DFZlMO0YZxQKAYh9GTOY7awda84Voklns4exclmCHQI8fgGJaocKWUKwWgMGXKB7FMEABo1kbJvfRAp8l8sKOvDsxwCv7BRNo+AK2HFUq7gjZThM1r8LqvmFT1G1RhMEdzxsDff/yG17iYMt8LrX2TORKxN+4//sB8XTyISWSSSzXND33AmoXG3JMkgyK4s6rwxkbEwwCC6vWPZJSf16lPO7LKSdVjUFbJsy7QKTHkzJy6imEAr1eEsyODIYv/lPR5S3hFSay6V9GwbjfxC2hSKqs42OzS5pAlwCkj98F3hRwO01M6lHEMEUGangSIEBZ+yybbqHh91doYEXEAKLE1mM4yWSVVVZlShFJd/TyqDvnm3N0IpJhSNJmHl84r4u/4fFL/tnG6vuT75qkjT+EsNo1RxLMBTB9QZFURCYi4eLfIiRz2OM20MjPUVhhqShtwUt0DIZ9zyvM9RTZXAHL/yYgE5kU2UG9wzaDYLSEVd6e67UN0TJO/KwPdBC26Elwq0ggMjLz4GTCQPRFDezOT9eaP1xe97L0OiNDJ94g5WGPO8WFMJpzX4/wC6LWweiNKqe2ioffeeO835mgCFkqLXX9HDPU7GaW26iIhGxwAr2INv9fJctpIp50kmN1U6Z42DaRl1EzN2PxnYrWPYRtEYk+VKG9BbapuTeeoCRRMmTNaTDSnl5pOEojHmjCAmCpbHJEGIqaW306Q3gcZbT7yNlmHTulRNQ496YweVhsOLdOrQRDWXVJtWRqoxqddGFUnsR0NGJFWyqkn/k/zoP+ucdJjaFBUke/MoYV3llhOIsyGhIWMSvOcOvN4+Jvyivl4Z7I78hg7o3BrnwhTqdb26d2Ws4iD/HGfZJ3aqSIxNHrWB/IuRqmPNKY6jhjVFvCgDjqs29MBjBxko0SjMZExAWmnJZro4eCSHPTG9+/fqH3j6+uFH18vAFyHmIOKgNfrRfbU4IGncnrogD8RKUGUuJrK9NhcQDSDLRLIoIPT6affOWQwQFBRL1JGoUOiQquz0fUoPaAe50D1hieTQNSH6sR+DHRYaE21p536eU/zTkMRkhkIVO9ziicIgjWHBO61FRjypwkj99URT/QMEdlzXMC45HyVAruUSM6GnnrvGJQzQo2J4aHUfU5jNbynTT3+IsXQ28/O9Eqkpp9S2BCzknK+/smL/EVi++etFPeaIk6UOaluu5j/ud70FifXdl4Ky/y9uMzKLBb19jLyKCQYE7klK3ENCU5Lx+U4hxPR9bk0luOGMJ0DmHqPgYxBRo7WvbPwNyrZSoX5cyOoqpYBiX4VMibG1ZgNlFY8BOhpgUQt1ou7GrVurPuNaya+xkTlwr1u7PXG9bowSebVKkHauCM1r8cX16CtM+OIrY1heh4zAl1bjtPI8ZAe78d2MyHUXaHUcJ+IBuvIGnn1oWyc1kuDyOipl2orettphjSQnimU2pSNeUjtDxBkP8rAKmMvENuwAfYHQQQyUvWpaZzqACjTiryQ4yLlscmhjjEQ9SkQwOzMCaZLKISV9lz3y0kKBLJKhGLSoTT2caCAcQLoHBocRIv8LzaSpTyZNXoZ0l8wTvfOZAIHdfaHTC2JeWpTPICCekGhloFFdY9RZ+Aw9ceTMrslU4fixAupIMgDyUuMOUkwlnFljkepTRdeYL6PEWrJFCcIiHTAgSLOw+DvG2MiRqlObhQ2jbOBykbEC5kT0dzRsouEiPuPG4WFvd40zv/4O1CN73/8ju/v32lsAPYY2OvmivOk0YW3NqcvQUlSF7AXN4XFA8zlGMgSyptAdmCIOD6QT13YhbXIK977WYvRhK0P0aM0EsJUlkZsUS0e4I2YEzOUEgvxNmOmA6z3Nw0eboNsPMZZECKeJ7Ju90qLot3ttpaAL4V3ONvqdquln/ncY5hMZ/vDOBiv+hj5WTSEAErKeOm02meBDt84SW0HHtCJQyJx8dHPV61OB/CoWtg+YEKE3h/xBLe/ZJw/jcHoA9Ma/FdxjOmRe+RtbPgDKFOyg/gYpalT4z2RdghIyipspcQB36xEJ5UIxryYQm4AjnJKYY6Qlm5CqYXiWoJoJ7lI5PaGrqtVt3CTdiapYLRipeTNeq43pS9HDiQoWMzxuaVmOw/5/f2N7+/faazXRL/IbkIG1vf7aAH3EInCc5UKelutI293bjhVL4xpr89DyvqX98TPjsSAOqNaNhgKhB30QNGrgCimiwJxSOpuVA70KsQcp36qk7qqmu8GNlcqGnQB+rSqNPsMz8zuE2ET2lZM8ErpX9UzbF02TkW7AtHZeX0B4wUptOl7AKRq53bFpzMHE1F4bq4rzxTSZ2vQxuosxfpZpu0RGOLXW4Akzm+RTTTOwX+MPo7dfJjS//f1346cTMvpNbkJWkBOxJm/rPJkinMAarmcdDTcZMbxMrDBsDig7k0OzAkaR62TvtIOW94QMLLGl4xNfSpoQqURBzUMECyqcASXFyehjp8jEh0TGUz/HPHX4qa0XYnOQtWNXGTBRDwpWzTXPMw5sd43fv/+A+/7D8wRuEZSCeAqzHlhfb+J8GqtvBHq05fNwPrjmw6mtYBnGEADx8vyIy3TtbaGub3ujsuZUhMywX0uy2BGngPycFpdOrT6o+JGbNEsFVnZ+alTa/YuxCb3OFv15cZPfc3j6xSZ11J/Q9vTGkz1vdpjnzpcmVYQgU28cL1+4Hr9BoyJXRRcqI+acu2lc6vz2VzigSY/+xno0NQNHroobJgArjlo6Ls+jA2qyV3dfgar8I+fbJcZ8hO9XZr92euXJAT4l57oZs8u7ixwBkvpbXggvOXKDLLAU2sC0HAzb3y1iA0Adyz6PaEbLq/cQtnuXXivDcPaqdx+6zMWuF7AyhLwwC940vIwfwTHdzy0wSbLhEPlib0D9wL+eFP3dOdiT3QM5GzUTiKMIDQ+50UecBT+8Z//G7///p9IAK/ffnClewNZwERSy3Y1KgM9BvV7LWMiOmK9lwhPFPQOuxGl4IlxDBSqD7l/so6zDMFErchGgsATOUN+LhGHVCC0DNnkEA8E9lp4r8YUeEJgSGmcvh/Fg1qbfe29GLlrl7ZnM2LU2lj3wrpJPnBLKJCHaslNA2J4RYAbvgdGXLiuH7i+fsN8/UAjHwUGB4F8zilRdIpVb/WSSacDLP/6yd8JOSoEqBksxXZmI67J3ULSGQsIR3kyTBoubcOauY6m/IOYwl82zqOpGk/f0weef7YOPg3NQM/WhQdwDNIsoII86aARkklC8MijYTQsCk7vvahPG4Pbihv4477ZohgDZyeF0t85AjPBfStdCAlaQQ6h9cAyyTY5pzM467ddF6Fxb+D7vfGPP/bpk93rG3/7+9+I7C0OW+cg6+f1Sux6449//Cf+7//5P8gAfoiIkAhceeE1Xqh7Y16Bu9j3zZ58HE3QLCMQc2CKCOJBZqeKkVKsb+6mDDmley+83ze1eAHeM5MQOM6DKLKUukVmy89IqFRYgE9mAJPZ0dob9/sbNQZe16U0mfQ/P4IQgLjvG+/v+4BCdepXEv/X/czY0h8zC+pOeI3yKhP9mfayFTLReeH142+Yry+R3aGGJXvspbT4uqiQQGTefUumpts1eRXrVQ4Xi1YZ+N5vVBV+/PBYJE50PABcep9OnW84ipKuQwPKLD9KO72X9Y7/knE2IDL5gBWuvbGJmja8eE+u7I+wD5Ak7AKcdVKjsk694ZYJ60ND4vQ6ezMN9RKfMYaaufTYazV+jxt7FmYqNoTqNogWFa5Y03RbafW0rqXFHgq1Tzjp8cebzJC9buy6yQyJicg6W8u8MXmkx5oIhpCDe+P792/1gYF1L0Q1BgbiC1rewzJpKA1LPmX2QWFaI6NUyXlEB5CUF2lD/MXWUoGo4r1urHWTlZLcJ8mWj+QwhZrG7ofl00y5A41VG/tNdQtUc9luN8kKu4Qc4xDLay3UEmIsoCih4fv1DGvvXdxzUyRO7MV/ymQGhGp+3g+O0JtkMFRTDiBfNEgNYCNaAbufOrYbwH765ABOe8Ulls7p+FiS5SDmfTXm/XoL9qH0nSyO7/Ga8wPkYVqbqp9D9nPEzpzNhR3qXzROpyddS/9lCJke2Tm0/2F2qXw744yV8S/4qczHZ/rCA1IgEOL0uCRP0lWY6tHRNYeazrxZ73vxRs+B1/QEgWpjNELkA35AMXAMUsiPVimdE2DEB3Bj7TfBmBBcPl5AbMQAUdYI7F4nUjOpZouh3oX7e1P4q6l9G7vRlziqMU4th5hoVb3Z8spisT58H5UCeyHEG+Xujk3ZUEV5Cn6pPBA4FBWn6b+1go80OR4gkzusSdi1SYLf3Ho9ushp3oW1buz3zdGxJFK+1zq/0598F7DvxftXQC8uEurt9oIkbxQlt685BjomKZ0NAPzvQ8vLi6oQ44K3Rte6RVpoPBM3PGPUtqrj8Ftgx+eE1JxDP2F75dcsjUKQbx9glAQD19481zn4pMrKESeN0DvLQB5YioCZ51L/knECRjb978/fW5fVhsmoNNQi0UNIHoCD9ArdYslUh8vKrJde0khaMx9AI6hnqosl60VspNpoBCg6Eo9SAL0Db5ya3Whto2wcHR53yzs4YsR52xYbBbDO7BgB7EUwpRuIIeK4FQwY1dG+DxMZAwVxavXhaaz6TFKYz24gyDeNlqilGE6pvrLTpy0aIJLrFe+1sCBQI4PaQ2bqKCupTeX+vUj726tUeqfU6Hgwt/SX6n4jamO0dr7swl5vbBT2+0bdt1ondBqWB0VpFEy17X4votJFcIdprcGviwQGsWXo3KSEiCHEAGIQkRebeSHiYgsLHp5nHUuhBx5OUkVNrdsPXuIOQcep2U8UDQM4oeAmBQxFTQ+sUzXPrZKGN6KdXqZBtI8uBuDhcGdzz/m3qsdfMs7adehLnrf0mu+qPpxDIonPXKWL3UYQOFHKesYWRUx3y8Ox/iFCBSzMrPsmlhFrr1ShL8orCsCt/yhNs4fqWUQgDoVPaXeEDEboZBcn6pVnOLJnJlLaQrvBmk3khRg8iAGn9pKOBDDywmt+4Vsp5pWBcdFgadSgdEltWNDqgdoFhjWR130vYDI6VhU/91D20Y2iOhiiB0YUYigNZOjAXhv392KEa9ZZnH0safWywtv3jVr3aYk9dz3O8+61tcmspUiHh1X0uG0CRcvD2/mgksGYDnCb9AakODjRmDhUPvOcmvd15OA2c0XQEpgX7d05dMAmy7RiJ/m57qE7K9FXFSrPPCpTrhNRaegmsdswyRH67Ff+XJo9RvnzoDzgBdQ+7sY+/uz1S25tOCx+vPO51zmBWpIqJAI7lB8930MiAo2EF9syLMTD5C9QsJk/ywawJfjp3ViP6VZRwlDSlIuWI4BDBwccFZpKQywWBYj6V+qHCjAymJXDN5WN/JDWUPVQWOTvHAbKOtFLNMBgjRc9MMcLv+/Afm+M6+L0RUwuSnqrzdOfT+tB+gLqqykNdfePRWwTBBp0hrs/7rXKBIjcXXejVmPfG2tpcCBCaDWAXlw3UZuZwcEMHsp56xBye/XHM2uT5ZXltMnxmxC7FjAhnkNM/u3A0kTJ7sQYryO+1aovIxJeqNsdiBwUPUtugFtbqGmKMBF2i64nhVQ3Tllig+x+nKAFAjJwFPO2mrd27GvtY+iq7PR+bP94Cuqzh/n5T9uQ2uUg/slZ/UXjTHHpPMrzOd9m0WNkSG9UwE8bZNACncjTOGaNxwcTgIaf69wokpeZIoVAEMBSiin0hNF2y0gRGuERbzS7sVO1cIAylnp00c/Da9USXcXWR1KzdAaV+JzOt2rSPhxOedoc6J0MGtE6RKkmfxB9NWgxgARpdV3asbHnYUkZRbTSQAQOu6d3o6IQCw+2oZTK/VHX8R4mPxS53YyOC6dt5bgUUmbf982erVJsl0E+0DkSQ8r4ALGBghBkp7FZsAia57K4Ul19bQFybIVM1ZuTJcF4ofPSxSmFjSF8QaAKkjdROAePheRAJChX+uzO7vbeaBHeHz4r01I+Szo9b2x3lHMcou7QExw+Da1OqWdK4LOcGLK9bg8j/kxucCrtXvVfN84UPa9NLsBJHfIgsQ7h+Uzs85xBmDMNyx733CT2itKHUz+fARTIJc0+H+SkuOzdbaR+hoRjnGgYCAwR5Fc1RjSm0pljpK6KlR6RUSLSvTZKk9635RhadZCOSgZTsWImsLulCKj6o9wuTK7yK0YCztYBWECXa17ej6fODlHZCPgEgLrJ3IkZzBJlGGl1BzAiFMSdFQ62F9XSs9VfNoiiLdPYN1Ab6dqnAVunWwLT917ObifVC05ECtHuFHVqb44LUYoAAB7NSURBVMmSbHQPpE9YpZwvNYPzSkS8kPMLXHdB54y8eO4Wt8wBAo+UgqdaHZ4tNhGAHJZnUJqlksgXTllhx/NQTYfopVCNeTaUSV2fIuB6Ln6DNmjk321cQAaoNN9pq38XZLSW1/yVdf6C+C5Yv1OSpn5TchuXZi3pxYeW9UhloB/jcY5uxDaanFBG060mtGlUgUgesC1bzgzR/oARwNJDGGkqF34iblfwEFp1QC14TGkMjSQCnNNzpuICp8gIGeiizixJAUCtN6A2ATnFVkknCeEwWKqBnaTIlQxUoFRUsB5EojeNmSBTSQRan6EfBk1OT8+UasVg+0cP3OBPZ6JLhIoGN6bd3KkSMn4RV9G9mMoTsqKzdSvhpHo2TM1LtuJEMxayPcy/Pwr1TcrfFumANMACiR3cX4NM5JxMUccPIC/1HG02nPaJKFEFnjLK+AZORAZ6cRWF0VRV7ziD52ZQ2TBcnimCso0ipY3zPtSD8jjaM4tpwzAWIkdwjveT+j40QN4XTlfFmaphZhYfb/rvGqci4lGz1mB1A6JWmcPqyMhL+MzpMwc8ImSw6N4bJJhTJoJGzUWxQ5766AH5oTW5kmNIk3S/2QaZqkti4LqIrqKa0xqe2Gjq55ALS07u4a/qOs2sqS50DFRxJTsFkIvMmMFZUiAOs4X+ZCJAfaMI6sq8vzd+/7/f2PfCj+tFY65ketlsb2Qysh59nWDEQ7BWLFMCBW59sq6IWNfpgTZKtbbGzzqwvhf++IMSJCPomGZA/GXe2xByGRBCrAhBUoLolI7IApMQ4wHPGgBKShJC0vc60x+UrgxEXkxrd2BcFzB+YM4vlPjTFPdWS0JObC+WPPP6whik0K2bY1oZibWoFG8ar7Oc3Z5gIvd55sDu+ohYGgH8iKbdkmzRPb7XjTkvypzurV5uKNqSOLPEwvLm8UwFoE9ugcHTMM01TuRtNN5/Yn+/4NZ+egs8Cbmq4jknLzaFrqZzbqXA/pQN4qJGwUIDwZkPwcHfeDwlJyQwUr03XuAzVdECJB+Yuxqa+dRjVspCtHkcepXbLauIVJIxZ2S38Pv3zagyNI0RgId2q1M1cX7cGIAjTfRcvQvv3xfW4gGuVai7lHaTcoedWJoqiRhSSg9NydDDpzaimRrH1lUrtV3oGiofuErRG7NbDmDOiR+XGCxNZVen39YHjgpJPQaySS10mk22j+phM4jcMupQLeZoJUQcyX5kAHsPLBEz8sVS4PX6gXn9HVyVcJ1pDlY7XDYUSJLnExwHi1RqWycolIzwmf4I8YJd4yby9cKYYkg5OqutQQxxa0qmD488fD7p1RHg3hvOzjKSbqXOQ5jBzMScPP8/Rdpg2VNhnKNPFwKmp/5JavtLhtAphKFi9hxIhurzEjfVtuvX59/91Fcy7BwhY+Y3lAyND54e37zbELRNMScZhxDBapyFOaGUeYQ4uUEqX5+phThtnVBEjtTmslLKFAmKSR1XwdQHjWvYxw+4VpEIPrrYV/zj+411U21+q/6rBdWgcmAnu3iWrFJDVvcuBrycCDpXjT6lKveYUoEumiNs1SQ93PdGLbd2NIQdrJPI+HGkUenRlNsw8cG9WeVgvAOeTwvAingNH4pGVWLtoAxJJQqJiIl8/cD1+htyfgH5hZwXqklE74+oHZmMQAKgIhqWOD3EAdHsvAIhPOLme9aiI8Y4aGzVllHvs0zXZzntXISFmGbnKNkQONTP3xspH3PiKjmLqvP1xwDchhJWEdB5JN7y5xXnLwW+4oNN/9QVn7m7//TM6KE1+coDh7tZmhlyOvkscFVx3y1A6JxEbKGPctHnZ+bwAxNoI/6iN2OPOUhu1qBsCDXebZ15on6kCUJDua1IIXX2PLbPyGnwof3Y+PB3q+KUId7vwv1mmjtE5hZGylr9bnBPS8ISL4+SgOEK+TQ3fwOsW838AYncmarRpGZemxP6614SpOK9ynRk7EPksCHm+YzqDSutdV8UyoKYHVF50LNBz5oGGW5PgjcIRL5w/fiB6/V3zNdvKExUJ9ZydlUHDUeyn5mDgl9dgSyDa/xeH/gIaNHuONzvo2gh5xtQloWlUttlmA+qPgNChzc1g/wYOq/v2VgQx6j5uYbeK6XocZYWKyCZY2t7NSh0Ohr4H6jvPUZpCBrnEEV/0KF0sVA0sjQDBG+fQrncswz9Z58g2k63dIzNcCFqWhog7jO243m7tYHGZgxTbYz89PBbrB8ezrMx+eT+TkxDkwZWRFDrR0jsnCYZCDjo/ongTK/ItPR9L9zvxcg5OUUx54usoQ3soBJBmDi9FYMzcHYI2ljxtKcO3S44JRIxgWYa656elQTYRpHj0fMIHZDo0D4T1UL+Hni2FdjwZJHruYGBiURS0zW0H9UHvcVJnQNZZPGM6wtjanIkuOL9Xo1D99LvC2gX6fhAhjMP4LgdEE4a6zadDDEM3EDgGY7RGIH97Cp8nm5vTeM5dIrcsOM5Q/9+JlCgqQ2u9XiizVOUxfn+wPO+ziL702b+5PXnNSccZfjWCByjiM8IacP8SC3g9KjIMnrg6hZEDqAfGUUFhqeslSHX3ic13XgekvudUFrKeoeGN+QlOhzZFRXB1HErBT5TM6mUQywOxy3X3A0Isegnon980ct5E4H7Lnz/8cb7vehdx8T1+sJr/sDIC0RqxWypBjYg8uG510erCcQWQnWlVSGccpEkTwWI6j47ZLBwapDgg2TkkY+kQeZZCDXkfP3U/Nx3Q8qGanOl+o2mUaEO/jFSqWYC1wuIcSHHl8C1SWe7FaFiPlHPNzzsPDzhJENQ9HJgsEMkMBWPjhDo4b3jtQFG+irsUFT7iFK+j/d9n7/uYzHPOWuQjhnTBxNYW6iAyjLu1amDWrvN9dMY3YfIwBOa+/Mj/ZfXL4xTb3TC+ocnCKUdeKjsjqonDwDwSGWqwtG/H98Zic9V6EYcW7N5bGaDc6ECXALUt32YGPx0TCsE1qS5tizSz8wj1ERWvy8ycalAP84nA4CphXxcS/S+aB7mvZXp1sNSq2683wv/+Mcb7++FkROvr9/w9foNY16sv/SZUSSiH40ckGNBoEz3NBqeKAlnGUJ2OVTNdLA1t+md1bUbrW3R8qSw1wnxnUcAo0m88NgYO1BUmacEiR8/DYp84TjOIQzdBw2qmnOLkRNjfiHyBStgemnx0Dq+FHe45dzYwpBQdBZw1mDYqJ4zxcc14M51I/C5xuFAipqS0YMFzt/Xx/sRqZfOCk5RcSwW55w9TgPoHk9khkj38QBUz4fFc65OhG1Yg+jPXr9spZxaT0eo4IkB/mZfsjNXU7l8o7o3GubXst+YYYfSLkvVGy0xOjg5odNyiN8Qk6cb3LWZiWtOZLag7Dw1qKUaKVdqmPsxTNehZ0xNDqMQeI1xmtr8e+nlACcNZG9MDgCBLQ3X7/eNf/z+B/Yq/PYfv+F//f0/8Hr9UDrFyQtykrlTpJ0q8FLJdS17X91d1ULhgydg6pC5hfJaY+iMYx0aGh2JozPbxqwyR9BY008yCqtBwGYH2U4ZyJgY0k1ix3sjYqtlQUPeJe1fR8IpNf0YB3U9xYtmTFvPuraicEKOgYMGrJw8VcJzaEFwKMUnFVBpaLsXm2frereNzhGxTnTz68wpG4iKAPDoEXU9AcggVm2rSeDZIQsI2MozVljxdCCeFz/HX645h25ko48EIOVDeOGUgXQu7cMDWLEAAR7MtISJCvP1CFATSduHHA/00x7JwYgjcnZX473+X3vXsiM5khzNI8jMnhWwwALSz+uj9C867GxXMiJcBzPzYM701OxqL30oAt2VlcVMkhH+dnN3Duo+z5P1omuphGpirIFA4Ogd368PHL1jXBeOzqZXvTc2gE7OFuWYcuUHlTboYKeFrnSPzRynI2YAqzfEceDvv/6K59nxODvymnh9/47r4ztyLTwe3/Cff/sv/O2vf8XzVCNs9ZLdrTA0ImDQNmwtpTm3gDrOQ6D1WVKY1gEQR2dkdk0xIAvZryvx91+Z3/zl2xPRTzyOE9+OgwXocyJyMufZlFaBctHR0NrEWhfGtXA+Hvj2/A8CB/rJiHNbaGcAa+H1ceFjfODjNTBx4Hiy9rL1AwFO/2Y1zKUobGd+cL6QCOGnhd3KQM5AdAqJZT73ZOlF4EBXIUIszoudQq9ZJzAnboSby7jMeHZfZP11Ro3LogHhqmNORHAA1eN4YowL1zVkLgdaOzDGQD9PBqhSBB8KBMWu2DFyzd09SFI7Vfb/Ys453cIhS0JMoemZ1N3+nB/czmcGmZvu4JJ/SdFodd474125EiNHTQW2RIvgHExPpiLjYyd7fVKLwlWGrhEItOPAGQTQ90aY3pzjNooB8vb0VbYvpa2MNolc8pdALSbQ9WodE0Eg9pz4eF34uJgY/+XbE8fxJLBbz8NcaACYivgqbwqo3QcoIPo98KTCZyTiaHBTA203jMKidLc5riAJAoGTDbCD3e/Zz4cBIRj9A0dDo/YD6QLnA4kORmEFggzumxuaXbNhrga0johT5zehuqICWIh9zWyOBthqMexTZhUUCIKhm265qrDLmrjFXmWKyjrTHr63bLXWKw4GALwuCvv7PJ0F5SMbkW+jRm6EyHt/L9Yi0kx0XVZkkFhah3oD2wCPm5uF2xP8i8xZqvgHtrHDwvvkLTkgk6w3drU2YxslMQZbaHS9vjvI9B2ZpwSAK0HwtUDFMbcvOB0NBiqf1BvITGrJUWhageyNHCEfykSL5uCtytBYIePI4MqGiYUu320mGP1sBAEslZyNxQqZRMf5+AuO86HxAFHlbQ6WrWQqBCmzWd2vGhJrMb0BpEaXU1N2RaFDoOMUptijDcMwwtmAZHnamkAL1kIyPsEOAdk6AzNaO1Q9IpRLZOcHA86XQOdjRVUCsZcTrxnthEcfQGsbyqF6vqddCJaWOy1lwcWIuhkJIm6IqUMBo+mCAO1V1nsAIKgiIPxx20ojHNUVc5nWyuQUnfyAVzyLpvd7zn9tK2iirutr2eT2N6+yTG7vR3zCmn/aCUHucTg0bD/NQRPz1S0UrRO3mSAmSZsnWwu7SXWxeSp/lq38u/M8cHaNDEQWKB7Jzn5YSfMpdxcAmyW9BYnuJqEqP1uyJAo5FPKBtW92om8L4g1Mak9ttn3TOq1p0NJx4D6LJRMbk+pNvPkj9m8Yn0it9/u66lS2WllghwKvb7utfxUt6JkrhZAiHNgRlWS3aUbhgkZgBpmuw8DxobW91AuXpVsHjt7ImGH/fFs2RaJ1bw6khOIZ92Xm2U2wUWvAsPBcHAVJlyDrvd3C1Y9Jk7Utr+O2yNZyCgUqFbsfO1CzW8O62wF+VyI2J6t7zBs1egSAO0NWhgFwhWyR2GfHn8zn5KpVBCo2cXBR1y3PcyMcLKylcQZABWAyVFUyNJujpcs3yhYv5EQkUgGf3m7SFVvD+Z44wLcBmGXyesOMNAqZvEYGZT2HJagYzeZkpUoE4s4UQJ+XJRDdUvhuNnGTjger9knUKcEC7HK4P1hsvQz5u80Y4Mo+ZZ2aEGB7f4hE2IG+EjMJwJhzYczE2Rq122KwLaMxWFE1tuzTq2IdVpT0vpFVGbjmwBgLl0c7VJqFFSe8lwl3pwE2/eSNIlsL5mJFpgEKyCVhv5tdU+i0Cs5o/atgXwyjr25Rkucm1CxIm669aKLnLvcy8VpARtxsQ/uiOj+d/G1BaKb2VCETPudqqMhpWEuGMiCoEz/zOv8Js3YT3u0+tdg3eWctYNyrHPpAq/cWpDVXwi1CaE7GTUvsfBBzpGdda71JSIby2UCJ5pkhcDej/+05ylBPm3IprZ5vVjlNcWvxrBIga1NiNac2W/WmYbONRHae562vLEP1burSct9HYG+c4BdwPg/BihGD9NkRthbcN8PPtagWkOXrL1oRr2vi6JMAdHE6EwgCmoPXsu/HxGUondmqDchKN3OnSU+oWxThx1v1R8KRWaeLtsFgIbb3JETdTX9jw2nlpxeQnSKc/nDIR75paDGxtVeNgv89EYihlX5Sh8FKA2qjPUZECy+zVIURwLYMg0GtOzNXGxNYWwenGuBGd++39MPjc82ZmxGMHIGlUWy/0H+3HCRCiJuzcm4mWASfGuaUoN3ucqlWOFP7Dausy2K2IMO31kH2hz57Y2oxnIHQIUK/H2Wyw4TnTgG8lK/ve+/dkD6ZM7nYZzbBaLIDCK0Bx4HjJOi6dU0ScwUInFDfGq+QK8mgQeU6FeihVgFitTJ3t6HuoJDTQvL3e2K2VSb+SwnHtdS9r8WGq0FhoYgSlPSTmbZw/6GEWs+2XiAAV5+Ue6O9itjfXWtusH35gSazndAHfu/3JVDF9CsV8rppSJsSbiZu+WLT1+6SmjEqS+CevjJ5w10ZHQbU09ha83Mp4spuDXuCXthau6fqiq4rUcX/47ZWnxyfR2ul8pturEwEvehlr/PSxlk6EOO80na6uRBdRA0BFPz3JiZ3kW1yfdE7u7S5T1q0pn62UyanpSF0H+7e18ukIBNoPwUVc5SG0j0LzdQ7NeOUyd2wo3mArIOVNPvIxWVFRLAaxNKbgQxvaoWnFNSxudBg0RbYhErgxdwE3WzXOXUgn1LEuFLgdNXXtt7ZgX0mXteFOeiH9wY8jxOBA3mQAFk8T5/IGnIuD5Ri9z0Go4h9Re2RzfpWAs05wfpXfsjNvBWdrmUxk5XyKHw2tlVhzS3oNI6jwzMyoyqezKCJbKw2gq0khD2oSm8wgGiznBK5GnVhQ//SFkrbrXTM4Bv1s+l727ekcZXsauuyBOi/xZxjDri5Fy0f/jTTmeBLU6nA2QXYKVXfVFpTgaFoaje4k8Flz+dC4FC51g7FNzB35Mjt4zxxjYEZY4O1BWlxr9xEVhg+Nh8g0HD0A0jWeO4aO0rnDkV2PQ6rMfoJEd/rejGUfzyRcwD6t9T8ylU190CA/R8W8CYZz4XDEdLku8Vkba7+3lyzKcdrpgNBffs5+nSLQPQDx5HVCvO6Jq7k+MDeGvIZbPfZLJwMrOD+zkxcK/FS3eI1aMafB1Ma1Cq87n0ch7vVce8MDMB2G9L0YtNSCZG7X7YSY7oDgfbOwlX3a+0eMKzRtNSF0W21duWwFxdlCYipPHmNB7T5J0vLQsLWYShlslbiUhqG0Wo1uIuuvdXeWyCM+3NuevzMtP0chKDCYt+MuX2bBUrMe/r0WrdPb+c5xNihDWC39QNzTnZ3h8t8uPDNP1vgNS6EhqbOOQlMaOoCPy54pEBru9N2ROKXX56Feplz8JqAUi+J63opmqtn0/O2YC/WHmxV4UlaFBpsXfGIEx/fObAIkr7IPXHt+TjweDwYWZxTOHxew5sYDaookcawr2m/GUtRSTJXIneFkP3vXIh2YMiPP1vDcTwQCFzjAhB4PB+qgZ2c87nYyf11XYj4jpUPnO1EYhZjZQJzLFzXwOtib97nt7/AQ3mRqFI6B4E8K7QdB7VFbpO2TF0iLSDqxfPxROaF1juuSzn14J6d7QQ77SXGsJ/nLv0LcwxE56S5x6OjC+CSCuCtSJzHQ4gjjmZ058C067CjirCisXCfkzWyvR+KocS78MnEeZ4FoOm1bwFnDow6qtxm1YmG1ugz7vtnewitROYAR7PJhE2WJiFsNkjy+bVNmDvhSZO6mS5TJaemXkt7AW/X4FiAscsKkbiuhTk4cr78gjluKZqAW2+4aoSJZUlcOfWhvJMjzplggW+ZlqA5qvfmHMgrC3pX6YN5qVaQYyWOQ4Xd8g0BSVIItC1pWmMS5Iv6bJNMpu/5notDrV0DxwZ2e1jKA1lTFUA+qP3jCCA1JayxaPh1DYywtnfXOuFz0TSqYAcEtRjEVUvNOH/pSddOu8DIHWnZJTt2t1kVsyjaafM4Qn2OJGxL6BvrFiGY49qBm9KIu8hhLZco7jrNBINkZeE1dflbWfflYNX2ZvG++lxA9E6anpoCJ/H/5kPb6iFT7xrUN+PoD44/TaW4fMa2fRTbhSQ7dvFvbY7ITE/nqBWrxZvsfgaGjn6Uz8frJBDbJKzIX2zHes6JhfkGdUNpHpuxgXAeNO4+Y5ryNwNKWyPd01V9gVqAXfPExIsd5plzZYPniMXrKLVyHh2n2/MXyZS3RXMOUFVPLwLwSfY8vQGbgXFz1rQ52ujetm/NHLCep++aopYhwQOZ8Fzr12AvoaPtPJ7hha13+qby7VK+aQRLysJOXGDHJVYg1MJk5C5ATn45K4HEsGtNeNixgQrzJtzT6+LntQaSCU+XLoEwNHRH3nMtXHmhUMO3CFQpDkCBzqglLhpScBJ1vX3YX63RjGLm37YEitgm/50SwiRbQcEfH59XpSxzuqJXv3lNYHDC5V3JVS4kUGuBFZSOvXecJ3utrMVhRSh/D28bYW27u8yJ4VoDktFHM3PplNiAbnjpU6MJIjTdGsjc6YgW/BuJS+axr5f6fAAtOo6jAauzTWUAmE3BGi160uw/j4PMWdwmzQnnby3wNKVNhJ0WDF5nsAeumxFb+NmXXsiCQlLD2yxTAqurt29R1O3lNFY6xSipIgQjehh4oUA9haWm++IIpDUL9y3VjS+K2D0YyNYHEgJO0BpqGudwnIc6XYQmW0/sflPsk3SvwSzoZ2PnQfupb/rNQkzPZrVstwq94YiDheclzPGmGiuivJ1Q7Y5NVRJQy6ZZp2A1jZ9f3+N9K3pGbgvgjZV/f/z5lLFyhGPbztgaZy3WslHrbEnhIM7U5jkF4e9BmVE3jVkm9Kpb3ymMjU/tqU1cmlnxBijmCzakIvNk7G7sZqSsRUcRaCgoVBjVXHDpIpmFFTlrDkU9Gxpogo3rhTUnjt5wnoc28CZ17huvt9YSBOxN4pr4g6Ziu9XCImu9SXSJlZMdEdDfzOhWTCGT9dbtYMl/VRyS5phaghxNSKBrYhM8rdm72VbC0S7IMvZ0927Vg9R+e+BT6n0ABfEkyGFjWLv6U9nquG0tFhK9H+r9RsZrvMG3fW3tTt5RCtKT0GoQbjPb7QuW0LHQwjtD3bVp1X3mZupKC4GpmKq6AjhgyXv8yfG5z9n724V8c3yPHcjmomZ0iqM7AQwyEM0VBobmHNv0FYGtirCuMhe8Bi1Yd3j3pQLqto7EGOo/KV+Xvq1C/C5GNDOKkVNNXQOAy/gS9AP35qj/EJde9z9VvsQKi96CWbQ1MV4XR+PNgefzxON0jgXecuf4b5ucQO4gmN6piKGRTLidTyNFJpUBKGWO3RlcElopnl1onUoH0B1YLuBOugCHouC2hsbg/BRo4BCDf3uftltgZm0S1DYxf09TEbErfhQZLovg9gFGzsOuOO5PVxaWTdi0Emkq2Of7BQBAwvBFfmbWNdea8MSYnYWQmQ0K0H72+uyaDJyx2diozhsWDpBQrPSdbrkfHVj7Gv73GXt+ypzH0at5ESlMgGw57UwpUHoaJcHghSO1E4ek18pEjoFoq3ybVguyanyg565YS9ss2LuisDUC2Z0QRpkyjvJmdKUJhFNJGYO5VKKr7UgA6T5DKKsomiF9Yty1CADIVB504fs/fsUYL+T4ADLxOA88Hw9W1wBwtbIDTQzXb6KNtl0Fv+lUSci0tzYosk0HVqCGgDb7d6EvCVbRwKR2ZaQUVRkUoNkrOYkWbPvJCH1ijI7QaHq2CzVxboZ3KKpgkVonmqeWHJq+BaOCAu6AEAGMQTigG5SToW55QikCal+XljGYNG7QRT//XRuNMVAR8LuWz12LWbn8e8SoBJ6YTow018IYo4JJfL3weJw7W1M6bFuXsNJooSht/vsNvqZDx456FaRp2/e9b7Dvvb1GAHDdp2eSJFJ9bfgE7lButMY2R6LGPeyQdKgqQ6iZCJwH/ZadsEYVb+/Fta+wigG29BbT2Y/Q+S2wRxIK5GYNDDBKO+bE94/vWOOFRw88vz3xOBqe56Hu6VmMQrMPxK6+NSy7IyvvUhWVNrnnCEsSpYmR6R8H/zYkQAJNmqnblfD7JlT/A9jlAUA1RANNTkfWbfE0RN2bNWdvoVQDNHOT2NoudNRbF/bbc0Y0XBevZ6ys03fFNBWw0cQ53ZtpylhcB1+AbYHMyW4ZFrxVJ5t2FESnDqrpewHTn9JWGnNYhdXHgTMCz+c3phFL2vK6C6ka5Cj3coyxaU1xDXZz+OPjU+a8/ud///v+u4Ts2/Hb3+9HCRPdYEXC8f67ZWX7wXn99rvfi8++6/7ZIHa36R788xAh8m+p90g2Zu5DrUL25/P2uaxNbfENPVad02Loc6nrK1oczL8SBKDXfk+mWNzO720JwueAz+27uhBGbQOuDWwgqkj75Z/K5+3fvXl+P97f/8F7K398bt7eZ6tLAxr4ei7+vP++sN+bGuWw9Jmp8xY0v9PfBXZiXPrbmYEhX9Xn1L3r5130rduzdf37kVEZMETwnbbNyDXHNN+/648OX7Z98rc/OuJu538dX8fX8fMcP2Lor+Pr+Dp+guOLOb+Or+MnPb6Y8+v4On7S44s5v46v4yc9vpjz6/g6ftLjizm/jq/jJz3+D4GmjFKaxBXJAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["_,ax = plt.subplots()\n","x_dec.show(ctx=ax)\n","ax.imshow(cam_map.detach().cpu(), alpha=0.6, extent=(0,224,224,0),\n"," interpolation='bilinear', cmap='magma');"]},{"cell_type":"markdown","metadata":{"id":"tote95eB2RmA"},"source":["The novelty with Grad-CAM is that we can use it on any layer. For example, here we use it on the output of the second-to-last ResNet group:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jze97UPv2RmA"},"outputs":[],"source":["with HookBwd(learn.model[0][-2]) as hookg:\n"," with Hook(learn.model[0][-2]) as hook:\n"," output = learn.model.eval()(x.cuda())\n"," act = hook.stored\n"," output[0,cls].backward()\n"," grad = hookg.stored"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Mo4D3-iW2RmA"},"outputs":[],"source":["w = grad[0].mean(dim=[1,2], keepdim=True)\n","cam_map = (w * act[0]).sum(0)"]},{"cell_type":"markdown","metadata":{"id":"1f-WLdFC2RmB"},"source":["And we can now view the activation map for this layer:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"aBDzQv812RmB","outputId":"d81330e4-60a7-469c-8a5d-c8f5cd0fe1a7"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+AADFEAAAgAElEQVR4nOy9X5JkSW7u9wPgJyKzqrqHQxrNaJKume4KtAFpPdqLlqC1aCt6vWY0icOZ6e6qzDjugB4A+IlsDYea4oP40NGWnZWZ8eccdwfw4cPncIkIfnv89vjt8Z/vof9/X8Bvj98evz3+8uM34/zt8dvjP+njN+P87fHb4z/p4zfj/O3x2+M/6eM34/zt8dvjP+lj/LU//s//0/8SyeYKItfvVRVVxbhhcucWLxxxY7hxoByq3FW5mXEfwiHBkOCuwqFwaDBwVgSB4AEBBIoDERAIIcJajs/JnCdzLtZcrOUsd+Z0wpNt9gjcI79H/gxCICDUd8n3luCmyk0jvyS4GxwCLybcFG4KGs5//0//yH/3T//Ijz984rgHdsDtODjfg/e3hS8FORC7g9xwlLXgMeExJ49zstxZvnjMxVwTIhClrssRFUwFUUE1R+L98c7Xrz+x3InIL2oOVginB4/phCqnB+dypjvTcxxXgAdMh4WyQvAQEMVUEVVEpN4yMASRQAHNoUKiZ0U4hiHkPPH8Pahx914ciAgRgkewHESUQEHAQ3DAoe4NQoSIYAERgRP1HsF0JyKuD6xZjajP9CD6ekXJjxGCwEJyfUS9X42fe64fj8BU+8U5tu64572IgNTfY48FIFErK+ckIqdGRPNeRci4l++b4xyEO77y/XNO4b/9n7//3/+PP/5v/+vfbJxgiFyjEuSNxjam5wGrSUVQEVRBtS6aWgSy3wgkBzj2L6X+L9fzJJeDu+NrseZM44zAV0A49LXsklAOxIcLE9m/zed+fH4OYF7vfpkY95vy+fMPvLx8IkLr93X/4QR9Dw5rgighA0cJ0omZWk14jl3Ppi8Hy+uwdh71fsjz6EqPPLjnIJMTrqp4Xbv0fyIQ9b2ut8d/z8G1bnrE84ft1CgjVa4ru6bu+l4LXkFcr7GWvH8h10Eu2PpQT+cpcb2v1BwqabSy5zNQueatBr6MI58f8qurC9JYg22YET2uz0tC0F7IUu+9Hx2Q+kuJnpPYq6ieen1mzp9DPF2zKEI6X3ptCzVH/NXHXzVO2au1LiD8aaDYnqjmBGrA2hG1Yef116KW/Ld7L+zY3qVHL/a7Us/zGuD6/jTo/uzC41poSkaO56mDnLAgvW1Eu478VA/Z1ykifPr0hdfXz6gNgkjPWB6QyIWDyRUN3HEmy5W19iDkpXkQIQiajsnrd5K/j4hapFEv64WRf6ecgUQbXU5ur9c9E78uW8tltOK9mNmLRJ5/4HmeMso+L6BAcvFRRlTXgBiqNa49/pGIKNeDdszJMShDkbhcZhpmGp1EbCO9HEdctxbPjiW2w91WXuu1Zzb9Yd6X1jpTgVAtW4v9Mur+5FqI27B7DeILcEx/5eRxQK8xfJoWkUYeUqhwf8q/+fjrkVOeU1Iva4zrWv7iI8O9hO6bDi5Dbk8lIhkg2rJrEX94pwh8rYIBO0RSI79fGs+X9Bdvuie2F6C0l9h/TTgcuPQCFj59+sztdic8kGG1GAteShS8HwTGcuNcbYROoDtCt/cV1jW0Ihlxn2+6x6buS1WfIFZHTPY4JKR0/NdvUwtVRFDRMm74aGm9wnsScnyk4Oe+ZgFFEMu1vzyelkA9lzLicALvIFzv2vBZypF+xEqyrykdj7SBdSBo5/Yhaj29wQfP295Y6roSXVBz23PRRl3YZ0flNjR5+qICSP6pIKk7gmdULwTQnxt157EdTP2/htt7+q7l+G8+/h1Ye4XeKGDfAGlD1fIFFFSBjAouTrgQWhijffQTDFMVQrT95ZOhXRHXKwdorO7RXpG8nhrQa+3lxFSMywVRcNI/gDJ5moQLCl8LRnh9eWWMwVqLMUZFDjArP985mhpilveycm2YGOdcCddUMTNWOHGmgaop7msbzLN5NGQ1M+acT1GioGOjBi8E4r+OoD13iorifgWVvdDkchzXIsk51nIMVOSWylM/RJgap3Zke5FzLTx5upbgKarJ01r4cMWg7SD9aQ204UTFnSeU9eHF+77Z925qGbkj88yGfE6g7ogavv92rZt93R1gnpziXj89dpGpQzuERl7PqKTfxzuVkw+T9Rcffx3W4mUIDT2i5y8vSEBrJvbYxK++dyQSyXxJe8LbvHVDjo+5YC/AIoBWfs8oWq+NawCpPI9fLRZvT8YTfCSQSAiikvnAUMUITC/Ca4wBIUx3boCHV46VuZg7GUHrc8UUgcwv3Dgb/qphAuIL32MnZD7ie7j2ZAtIXcOODtLRtiAWQcR6ytt/nXsq9Fde7V5bTiAOYu3na/ak+AJJcioBWDmLJ9KkDW3P1FPUufL7a7FSTjckKqJfUHF7iufHU4AMnvP1a03tf27E9eRwyzBFBmqXcYasdO6dC6kiakg7+w8ergb+GWwUpMn3zzkSfgVtRZ9e+uxE4ild9afX/NuPv2qcWpPvRbz0oiWSoEFHegDpqCNPHksx0zRErYWrNbnyFE1DrghZudvzpC/3NMoAdt7SYyhX1KjoElE8WkeW+ltEmq9pLUACXxNXA7E9gJAL83bccQ/ezweHwfSFOdzMUJUkYjSZOSdYvjin81ggMgoR5L1HXZeYoKastXh/TG63kZC0Pvo5T0lkYdBMYRmk49vRObXY9wLXJwitydYuZ0aypJcDdIrYfMpBa0F3yGvvX/929wtl1GuW+44Gz4ijo0Q7mwaPIUHyasmi+hOWcdgRzN3L6NoZ13p8ev92ROkMfOeOfR+qAxHD0UQNITiaDrYgZ76X/yo//DXWlLqWVY623ptgRaBaCDAuMi0qZdBah7QDjXZkXtzHX3/8O5GzI2bOfQW+7Y21vLkiaYwMRiiqssN7U7YZBSFU9mDsPG9Drmt8Li8T6Wnae7aD/hWUau8aUsZAJEPYUboQgNSAmihW7+dr4QhjGGMMzJQxDnQMRA3EUVPUyiDJaJiQPb1vFFvpvljxyCFSkJCCn7kURdMh+fR93xuibyhYBlApfzOBzyx0T4OWMwqvvzYpBoUU9htchidSiyqdbTLsbZwbg9RcdDTlQ7Tc19DX31PVC/RXyDOnM6q8sup7R259mv8cX/d15YDleLejoqHhhb6kHVUPPBdKaK+0IvPFnR6Ra2GvKJXyS7WWGtKWQTdJB+nsMv2wXAvpwfL6CiJ7eAUPfxqx+r9+hPR/6fFXjdPkBSRqKHICxQQJYYljMRhyZ3DD5OAmg4ExlISNEZgahwlDYCgYMLTery0wYO1w2AMShM+Mbr6I7UE7p6hoKGxqvvF8ExlWHnZDxcjPVxFMhMMGh0rzaxktVDjud24vLww7nsoJipYXzvKWFqLwgqaKKQwjDW+9o2IJfcJxWRzq2IAhgnqgLALHkIS9BZeSBYQpwmjauaNMkU0CGOkY2+D6RjtKKlH33LBXdh1QtRDOnmtQudhSoZwxu/KSZI1Ifn7B/+XBRZIWBH3Ko59Q+f7Sp7nLvxWTXU6o/8tRLaOsW9wBMngKGg2d0+l0vhexkLKLiMDqPdvveQRW99Kr4AoMwXJBIjnkdF4N7TNJUFGGjkSTwIqVV67pkAVhFSHU6dSeh5o3/Ssm+leNc+j9w88qXesTVALzwYg7Qw6OMEyVIYJpYJ6xzQSGSn4JGF6+zuv6hBBHwje5Awmj5jrxNYm1coqjc4q8OaVKIpJ5nj7FlmbGekKhnlOYnxBsGMcYKPn5adHGy8sr95dXxnGgplTIz4H0RMEiwlozmTsVZICacWB4BI/HCTJBByrB0InEaiTPwFhr0qyvSYEMBSuofNdgGohnMT9rIQmLDDCCFWA7MuaXb2Sa2HWVEa9yXBAfDI+aj3TAOdQm7QLaaea/0/GlEwyJEgBEzZkgSjlInuBtOYrKZT3SEbh4lbtKiNJ5aDmbzfrKE10nV1Tr623k0WOQ6K6ddT6/OY6sN2pB5kq96r9GKGmYafSLKx1jo7VceyaGoTRLOyTJJS8izUtg4pGp4POj39E+VER+ZX//5l+AQ16u1JCEaF1rCwkO7hwyGIxNJAzNGqNpUfDh4JWvUpDJJzWFIIJJ5SPSuQPAAl/JaBb83OgGii1XQgtG0eofaHp7EyikPzbaY4LgWTivRaNq2HFwf/nE6+cvfPr8mXG7Y1oESgiEIe5EF9Y9WGshMTPiDeV2ZOnCV7B8IjExVdQWZ0zwQCyVUu+PBR6YBZleejKjorgEmHM3gSVIkz+xyqODbYgPUXnmzrMQNJRTBXVYIrmQ6AhYziAyDkhIvSrnTmopbnfXuZMoEvrk9KqUEJkqiNlOWXZWQkbvznK8iDmXzsla4QWiV3TxaIPYeIoWWbg7Le7Rzf7mpfbPUaivllneU4sBkB3ld+za5JJg5oSmoxW9ymKbOW6V1RP0jvpsiWt9VlHtIo8oJ1Tjc3yvcd54+VXekLmTVB3ppjcGl2RvSBISpjCQlISF70nWnvCIND4qz9H2sheEzqJ8RtOdl+0xlG2oTkbxnAyp2lVDhiejJQOPEkUIFQGxVkbQ48anT5/4/MMPvHz+zO3lFbWReWZbvUMsWFI134JRaOZIGieqwjDndgve3ycCjJ2TnHgk2WGisGYaugbWi7L+HSRum5qfF5JyRw1Po4xGCrnyDhGiDNMTrBUZokxPeZ5vYNXO64LzndNaoRntaFfesudB67k7NrftNvR7WsjLA5enEsuv4GkVh3rGdsQ0TbjZNINHFN7qqJgcR16nXNCWy0AFmvHaawb4MAIfau88EVsKgT2x47olf6vgWBt5EmU7fCexlZh6gwDI0tqFJjxRXQT2/yKgrse/Y5wFawuIe3hFsry4weAQ5VArOJsQ1qQgrAbiOeFWUCYZU/akkME/F8JePnWb4bsCI/FUFomrPic92zXKFjU4fd2bRCjGMQIzQcUSuqly3O58+vyZLz/+yOcvn7HbDdSYnhrcQJjnZKpBLGQ5UuFFJSd5rZN51nurY+qYdkSlnNRkyaJB+W000RClsGEvcFDEgmnBKa1dTU2mRhCRKYSIEWqEGIGyxFihlQL0Sk1t7R6lSMO8CKL+OcdQuIxwR4aGvRFV8/uYYlB5vFYpwQEVL8MqA61o6J65X8oWizkt5ywfauJ5vavqtL02MsXTq4T1l6Inl/xwk1RPTqgdOMEuZrX8VGrdKFKyQ1jFB2jBaqRqvPs9cx0YiTBXIcCnp7fvacxIIN9vnEf9OT847X3VxYsIFsXSFpwdlS+Z+CZdzIyhsb2wSTAK8iZjV54nFuHzShA9jXVoJuY7G42e6CQiLhJhj3XJw+SCZMVYZO6TEHYImBmfPn/mxy9f+OHLF758/sztduARnHMh7gxuyFzMxwPFWL7Q4dgxWGtiYxARzPlAdXJsXesDtblJIgnPPOsIYoGvk5t4aoQlUMn6LeIMNUS6KL4wJotFS/jy9hwYiCiuqV3dTLWXQYTWfcdWCkUhGaJlgpkOqaQjzPpv5XSRI9t5XceemoDmRkC1EMnAJIBcE17EyLOBaqL0ZJkjEk9FWt/WKZNRtuuEomz4m68oxEKL4a6F39eVuCGNKWr+faOEdiq6I94T3fHBmDJ3pegIZUkJP7YhP3PbbK1vdEDrfLnKQ9AEVn7m+F7jbJi661qxMneIKNo987hkYjNySlzwVaVYQCpyxEIsB8wKItN1Jl+w1q4RRbpYCt2l8O0J3/bztmHWYHXlTLj+Xq+oiF25rwr3253f/fAjf/f7v+P19ZVDk8/zuXgsZxEMAlsn/v5AUZYvRsAimPOsOmaw/CSYBAMzI+REzVEDG6nyaWZ0nc75ODMSTa9F9pz/UjntwuREY6Kx0oijd44MRGBpLnaXHKOtmNp5jbbH4nJfT4s6QGTtOYpYpR32/RIpHmFroeMZogqEEpIZvZhdqEYSHruzMVGTQS0K6frpWhB67TLakU2yOiBVa6dKE88RR5oJLflfRlkv9jmhYxAV9dPok9WFLt2003FvY85cNUJy3gpBKTnWabD5XnNDW9m1zk0JR91LOVat10ilc98dOU1IbF+L3DBcL5hoIhwqDMuoORqCAiZeZEdFKZEqGRTMhV0L8zlhOU2KzVYDrSSTypmjzQRujM/+dxes2xjlefLKGKUXag3s6+sLP/zwA58/f2GYZb1zBeHO+XhgEcT5zk3g1WTXrRBjno8ERwov9xtii69fv/L2Fvz+7/8OsYP0zBkVpMQa7uC6GJLOJ6Ryckk9cnrrRcQk1kTihJi52EIQJkMVHcIS5SSjYdYMW2CeEKy9uBZEX96QOhetzyTmrIJIfuYi+nlSBfYJKy5HmrXdi6gRVUQHHa/Mbrnoq/wlko4+JPPRVflooyMTUqAhhkveSzvZK9uE9tRClZ7qGqWiVD6lc2QnfDEso3oTVGaK2ZEONII5V9U3kxfodRcN+1UwG+VYUlq4qlQ110IiGKY7gmrkNj0vIpRoyeF1rVvcQZJv32WcN01I0W8Ude9RhJCSNUvbhsxmRDPvlKu2WYsgv2LnmGwvnZ6txQTivqn+qNddGemVPzTdIKSH7zlqIUTnUCJJW4saNgb3241Pnz5zv71w2JHF+B70mMkGRkG1cRE/bWhmR9qdeEbNmCAn53ny9Zvw+fNLQQZFtJhoATwyZ6pyU7i0/eJrFcQUIhQbC1iYekaVUGRYFcDTWS1f7X72WGWAkVR4iW4NrvjTWIUj5OJSAebCfeaOi1b+NLarfC+quN75Vi9YUSV0IUddhaRYYzPju1acRIhG1zFrzsOxXsC1WJNzK45Wrii3nctTZAY+GOiGpSJVv+16aSE6VgkFJOE8mmlCBKLPjqFrspMW1ZS8Ye8/Sc9REb+gqpXDamF859TPzqTz2u+OnEMzX+mdAl3XYifBcBS7NuQyUhXnKOM0cuA7Hx1lmBor636xticnav17kRJkTkstNqmVt50kF8xqpUcb4kUgXAohNFATbvcbn15f+fT6wv1+YKbF4GZO6R21K8+43Q5ebsoxAtMFsjhuVizwBFkJXw3O9c7be/D5xwMdgh5V2yMyCwoIc8SMQ5SYK53CcuKxiJm5ouKoOMrkqFnKeqAxV9Y6kyhbpaCsEYuUJvSGly0djKA3xWS65qhn/VhWZLSMtdnZdJC5+C5SqMgV6Q3VBZ2j86uCtyqoHtCRlyZ6GvA0tM7UwTYKukiZBTtX7RytSZ+OjknQXFGIdu4Ft0bpuBXZ2x+DSHQgCS1Hmdp1j6WN7keV9/K2c6Uur2hoJTt08KqrmpS0szCee0LhrefdETTLUYd+p3EeWkYjV+a2izj7RoJD/IqeXEY6NL2kEZlnPkHa5Mgd1kLqBjxBf+YQUbU8tZ1r7pQzuurV6yhJklScRLk82IxiREXSHJjjMG7HwTgGppYMaQK9jEpRBeZEaqimQY8RCJPlkeIENKOZZbF5ocQDQs78MkOGpQRZdbtiewR2CEOMeAixFn5GKaYK5rqivrDRuXMxuCgqzuOR4dbEUc9d/7OcXI5dJkZRhtsGLKTzS7RSyIUuW/keL57mSJ8W/84IW9O752plXhwTwUp4bte+xZ1nFuPpmYPZBsdsJhPJdGE97f3U0kT3pbhn9DS9uE+iA0m+xhrWc5VgvDS9XQbTykcLrydslsuFbMGDJXPbe4RXa1YQQqWgetfQo7htKpWpPPbDIyN3O6a/9Ph3YO0V3imP1gYSNYkNZTtyKm2gUrBXNmlkZaCDrH8pC6kCeCmf0xvXNigoeZrWrWwxauza5b7NuL43GuvJlPKwaspxGOM4GLeDMUapc0qk3NcvynE7uNXonOvE5UgoFqtKJyu9sgVmaTa33vE/IvW1cuSNH1k7ytyMNNapDJSpTjxKhh3sGizLkbUYB6ViKWYXWCsQWRAng0wZcuO4k5RdwXtvIYCU5FDKmCJFDeUIn/WguZ7LyLcGtbx9QzR1xPO9jIr0ISgLlZmOTWxHGohyerIXfLOzlJC/DTfo9ETQcFZsn1ZOIooQuiJn86WhoE+Eziik28apmq6vdbE2hN7VkoKEVhJVQIqC8pWebEVUO4I2BlV6m69Hqrak1qU3aoh2QVwLF77fOH8dcpuqbsDYNUytiJiSpniKoEUUwZVvUlvPnmDJ6g4HK8sMVdJLg6t9pArMwvqtHLmuq+DX04W2YFuioLYJ4zh4eX3Jr/uN2zE4TBlmBaXzyoYZh1qJASbnWpw+cxdFTA4NHufCdHGUgAJZiAbjUGRUjmiOqyNDCDNCIYxUwVjWKIlZzi8JK7Us7Md0ODPC5gZHzfvvjb7lKMQDdTDvleJZNtnRJL06FLT3dO9SuyykNhW0EHyPbEXFSziSxpnGW5K3hp2kG1U8DZSFFgPsUURJGYXuEBnbk16ojB2Z0tdI3VGLWDpYRDncEkrUraYkcAO7vTGjxQomQhiJdlRqX26+n5fht4G2s6BEIylGyFIiVZ6p+JH7ejXHaUVGiXZCtfV35+gt3KfguH0vrL0ZG0vu4iwNHaVgSXqkFJTH9V2zYdYhihUjqR8MM2rAYBYxFOWNw6Vypvy83bTLqYVU0ENaT9RJi1wRs8iCjkQmynEMPn165fX1hZeXO7dx5E6U2ikiOC6aYnhpmJx3PH2mR/a8l/ATt4WaZKKsJ4hnVByCDFJ5McBNYEAMhaHpfc0BAx9pKJoORE5HIxekHnDclFhlCCsZSLNgDMUjmCzUF+qpbVVdhIytt9024Enzh3vll149dBKplD+sdPC5dnipeCiH21CzlT2b3Pug4l1pFP3KaNNKMxZNp3IZZpbPdicEKLK7CvyNsApO9/zsGuxeArFTmqH1ab0DZweX/KZGsvxxiUCap4DiVzQjsJOknnqWulSKlYVUb9GRHUKj2j3lCEWriaDaXuX7N2H1XcZ5PEWkyslrwovRkquWObYxpAF23dOk2l1FLogorxqxdgQQ0tuoXMT5LkCXE9jbrmpCoxJ9lYR08utJam9fToBIYcQYyv1m3MdgWELaTRzV9WTXvzOh0aGoBnOtPXmxSmmkFcl8IZI1zYySIIeg2WoQOZQ4DBmDGJbebC5CLXM1AdZEzoXYRFZAKHoqx8tgPWLXC8OdMXJ725ypekrEkYtJC3omlE14uFaRExHJyK6MmlZQNWrcPXIXRe8PVUml1zNK6YUgcmlkqQi2SSxZmKxST+nuzZSwLwUtEbmIK9HMGShjhFz01h8Xl/Aig0Ts/ai9BnJhFgTNdK52HhmjxcJt85qQ2msXiVb0a7VWr3FI0seEeq5WzVfSSCWJq+XNNAvT01eH5ELtYJFzI1vaV/Dk+43Tit77QP9yqUyCzHeG5HapjoTJslK5XBomnrW7zItW5TyRsIGqYa4nKVaRNC6SbGI8fTVE21D2ydu2sedMFzSJ+oBZMKU3yUbW9qqqHMUcqwrnI6/5OA5EhPM8ya4iwtBkn1OEOUlRRu5ycQM3r/JClRzMUsN3DOQYjbdyjo5RpYzCYyHpyCywURvBfYEoa8KcnkIKOTBbuFuVOBa6ElUsrtpa4auCxsBT68eG/72IMs+MrWaR6pi3o5mQYbi+bSVzSM3jsUsX1pLEaOcYtZm+ILSQ2l+RbRgrrkhMxspKTeJJr3ppo1tksK+971d3KsgxKm1h94JIo/JEEZtFluey3EXgdMzrLhod+bvVJxUYvBGcsnPYrhi0/rdlgo3G2k6+yzg7Tq8rHlf+l0VX1c1J0QW2kKqReVayVDKJ1NbKshCfpFwvX9eDvUiYVeaVwxIZ/ocVOS2Xd9XyjpcE3LcCI0uS+bOqYSP7yZgqt3Fwuw/CnTkfiOVATX+w5omK8PJ64+3bL/zpT3/i5eXG5093picJhCnukjBWDzQ0a5RvE73nYvD3NJhhjscDZuaH4hCPE1lZ6Pf3E2aJ2d1K7qNEWJIsIoQuHo8TkcFxG9WzN1gFvXRYwlgNViiGcjqsx2RNZ87F6cJyqtVLRh7zzsnamQvDNLsVhOPhaHj1uM0o5n41KdOKXiKAsRncocKx+6K23lZYK31QRtzMAVetnbUjeC3e0HqdEiOdSkRrwHKNdIU3e+62sSRhFJFi8xUQ64qIaWq14dqjuhjURniaFLtq5O2VOmDktXbO3V/5tJ1OhuwqQxKVZSWRdWuEtJ/KVb/LOFf0zfJ00d00N31cGiY7sY9Q2J62WDfpSbQiFbL+E8UGpmTrin6p76woWhORHEp5NM0PTWa4oE8BYuvNtlVGMAEz4RiD47CrOVfVMymIki09JssnVmyh1+bhtWrXfkdrzU9fC6YLunK3SLOOEgE3CBY+FsyUBKoHrIU/zoxyIsTjgayEoTKBGTCBE/AeJ0EiCYCE+KnYSYiYC1+HFiNrrBBsFUmhq3LzVObMqE5wK6V/XbvUKIgVWnK37Ku0W8vshGPv++kgmksvck/q7TAO6/fInI4yNokSIHhVtqtrhkvtMmmOwdljnpXQCogiULs7RGN/fqY5lQa1skeCGclR7AgrPMHW/JwmORN+FrUleZ/0c7TeP4q0a8SxdoW+rKEY/wQKWxAiXKWcrg93tP9uWNt8AQGXUDi9Sv8+N/bmVVjlEgX568p6B0Ju0tVIk5KatO4B2/BLyoOnnC29bsRTTUh7UTQpEE+lE2rHSSo+PAQT4347uN/v3F9eGCMX+VozHYYLq/ZZrjWrC1tt/an8bUUwe40h1UDZcc3OdmsmhCV64GMzo6GTGBCWPXfknPjjrPzGWOdZrKSmUa40zliZS/p0fFa7i0qoPFpGU0jCLhWUhG51jagkYqjuFEtyZ0zDtNwzebWAaSeHyG4InoTLBR+7BNJ/6zxc6FIZF8NLO/ZrCffizfSoyL2e8zYM7fJG99qJEvbztPH5yhNNKscWnhcIa+W2RJdSoLXarYzao0QvPY79nXy/i7ipeFCR3chdJ2mE1W23jO4ytssypdOGjmlcnze+1zif5XIZxvO9u3lWK+p7cryMsS1XJfOR9qJ584n/L7zfDaNjowihjThv3mpgkCJG47rGbbkU7r4AACAASURBVJxSu2D0muDB4BiDTy+v3F9fePn8wriNVI7skeMJCqWmsul8VBDLJltZb5PrPsm85cxmBh8K5Iust+HO0kVYEBbIchjKOme+Rp14TFauOtQFZhq2T88O949kadfqWcjmadG5lSqt0Z0rC+HLJXfymKJkJGMFU/Kz3GfNWeV82mjlUthEbQo3zYbRUrmkdJuFnB06pxIpUpAmasps5apPZoqm25kvkshKR5j8bpaym0TqWN310UzcVDN/7RFZlJH1NVWOGwFzxXYwHmymNZ6dbb+TxPUeve7lel+lHBpZuy/N15VDNrkl/d77j6jILr0gVUXQ3HT/bz3+3b61/eZdsuhk1933ORIdJdvTRIPt9i41SdGTU3sW88soQrqvm5Y+NYUfnReRbJfC9sha3tQKGmkpPFSUYYOXlzufP33i5fWV4+WOHqN0jwljhKTww3Oh256qQMfISSjo1Q6kP/9cNXFeUfupQ37C5mSrQz1JotPhUHxOJATXwEu+lw4LuuuXn846E3rPmTmm6pHOTVrZUsYpC4+Vm8eD7Uionk9DLKPmhIi505UL6iWPoJ3PFZqJSkvkKTWp9rVNsu6Fl0dP9J7OLmdlp4DoRe5dP2xkUYvZO9u7ItYuu4pkH2SPHEeKT8BL952N2lw6eLSDYaODRjOZDck2um0pHdXjIqMug72iaetpVXIbo1XAaCMcksWkTGgopx474Ah+oTyljPMp0vwtxumuXF2wmwa+6o4pqbyKsRJV72kYUwVdqNdIDZAKuFZv1rgMPO8iIQiOoyV475yiIAVywbDyQPtwJU1vP4Zxv914eXnl82tGTrvdwKTRdupxXfCCgEruQWyYLTpAs5FXKmNSRN7j6cC5MspkntqNPvJ3umCZEJq5sh4pAPCZO0zCDD/jg541C7oJ6eY5iRWsuZinY8NQHVCit7UK6tbBNKG9xLkSnlwSyZRGIoDlGbEw332Vepa1xuJylJl7xcpIWgiuFni+yjTVV6O+cg5kR5XcoSF0r+Bc/9VcTBQt6B1SMoaQVEihZViOrwlN7NRaUBfMGu4X6+ttDBTsL47hCUJ3O1CpfL0R8d4SV6ORpLpmusYVIKBSuFoD9szsJjzYQaZTtVqyBY+vGu3xvbB2baurDyvVe6CFMMqoiqXLEvTWppR6RHcOWuvuqTSTuZuq0EeLWNWwlgfWWtdaKU1f9xYg66ipglpGzjEGxzG4HTeO4+B+u3O/D8bIRbP3IdadXCl9MZ88RWjVZE7Xyk4DkoXo6TXxke+H9KRd/cLVM//1h5ZxculbZ0Y1QmFmZEiIl4w2EWWUs+qUSUzZhnqSuW7loVl/0yyql0WEQ8zFathIkkeilu0+I8dQKopqqRW0dlO0FlrKaURMXHIMnw00jTPzue6CoWTHhIyutS80cleNSbLLtR0CT9UGYvk91JgO78vrNDVHHw/88WDOM9+vFDdd6im25Qnl5SNRWUXjiv5es5Q34BUta3IuMFtOQD9wGulo4sNzerdUubE0KqnUp1BDCxxSnPAs3Ijvj5y9++DZuC+YWQPTHkQoM4wnlkqfIK3QAsQoxrf71kJDUfau9W5h0Z8JimgLuWpJKqhFdmsfyhiWO0juL9xuuWcvG1t71llXXtNWOq0u7NdnxBMEd8qr18IqBnO2skaoHrayYfgq5tlJpjNwdFnddj+LRA2iCCMj2Kp8N4VSdA48KyonTMsUQKW3FrRuJvdAejmU7W6KiJuxyikKagfHPe/L50n42R94zWtBZpXegJButjWn1/J9nrfsIZUbCGodFKQcAliysshA9EZwsErgGTJAByGD0DyhbYbUhvY86nDcHsjbg8f5xpyP3JhfRMziOowo/Uh6p3ay+2prvWn9O1OxLKNEsbEJxS8mtfW4F/gtl15Iw8rG5QnFbffZNevSN/dalwrrJokCDvlO4xS1vZDT03aT3I6fVVaJLu92ZCoDlcoFaHyeDZpbL5JysSpnqDwpQfZyYcua5SqvtMm2/Mks5YK3IbzeB6+vGTUbS4TPKkAPkgpPOOOznEPIZqad9MitGQUtRJAT6GSHgobBqbPMHjNBboXzlWNhEZhrLdS1i+Ph2dktMHILZSqmfPnOayNSezBXLqLch3ogciAYutgNqoPF9DyjM8sPJe1zYYUwy2GIjWLNlVMgSepHkXsZfakaZ8okqzO8abaaaVJOKMfdDHk6RysjVMm6tKoV3DWO48DGHTg4l7Aiex15GCuMGbnjY0UKx520jDGE0AF2YzwG7+/fOB/vnPM959TjMsJieQQIlcsJV+SEIoVqkbUooJtjqjaxlzRTm7Y27vcu01DiigRAO2QKdIW0AvPek9r/i0r1Evrr9xNCc+ZBO7vVYPoToqj4x1x7a1iyftbY7UIZkjnX9JVbo9LX115Bya7q651uO2KqRPUzzbHu3iuxC+VZdyrjDUfcuN0HrzfjZmlOuSWom2Vl1I71wFfW+hory1Z7FIGRADwX8Jp1CG3KsnK3QW7WdrIpCXWPo4rowci0SoNxO9Cb5f2KbyeS7UFToBa84fFgLSq3jMyvKk86jqMEToaH4ct5eyxOH4QceYjuInej2IEOJRzOx8kZgavlRnK1dJS+QCVznWOgvORmhIiswc4Haz7AWx6ZxJkN5TDBjoGNwe04uN0PbrfUJ6sqYjd0HHQHxhYvtMF45bspzNd0TmHbeK59Tbn413ImxZSLcXv5hNoAlHMtuol41rYrBalxAyFsbINFBSFrpP5U99Q6Pm2FE+tqrq0VBQN2g+ioVIZeh3Kl9imjzJ8bcZpmkFmefaSeFQeZz+Y+6O8yzrLILbd6hn5Z1ym4J1XvFPbPQdSRBK3AYBMfW8P6lLxUvM38ldrzafLUeiTzyrSpqJdp5T+OxkLxapcSSO/YMHZtLJmzkvS5QG8MluaLy+uKslZ5PD1ys/TKHCREa3JzcFcvvXZS5TgmwdKDQ4+C/s6qnSBR1+ELHqewltX1lfTORsF653GeGfNNUA/WzAjpoUluRSGccjV9LIPaYIjt+VoRzFVw0waHWbaSWQtZZ1qO7GabWYIZxsvNeL0PbkO4HYPb/YYdmdcfx6i0oWfwSRSRa/Sar1pLvYa8oD4FpVu6mAi1uvQ9R9JiTVt4oTbo80uS6GlpZ4sBstQFXWfIz+72l2kc2QQ65zLTn+vovsi1oVmjD2RD9WjIKmm4ZuwQ6v3/vRunoiWtMurImld0PJN4f4txitkuUvfBK+2VEjfX6EsaQBM3W89UQ9NFZy/qfNVf8vwUfwL1scUJWrCpG3s19ZwfV+yqFQBxR+NE3FAGKqOXSk5MBL5in78RThW1m1TK2qFHsoUtPW0SJdBkqnunfxd8009voqubr7QofzI4I6NsulVDd1OzPAzqcSpwYDpADLVRBEtwPh58fXvPPjhq5cxAdRCRP4u1YoWC05H7GsWyDBRwzsVcK7WsKtvrp+CgyKSIvLbjwHAOhZfb4NPLwcvNuN2U25GoQbQZ8kpQYpfrcyL1mqM+US4ns1CKS4rAy0gylZAdQbOSk+M6PTW37fxX9HgnO053E9zQVur+dRti5/oXnQa7D1JJgLazfzpDFZIUzKmO/RFaeTZQzb4KLQKz05K9/pshKE2wyKW6iv8QIXR5M+9C/fXHYu4uBnR/BVxd8Eq8Hkr3ksmGVFLbl6oJFFdESYcqW9GRyovYyTniedjQUfIvl0roswQjMXPLTk2Ni7BmNpDe51qiiLWwP2Ff94tdiSORovUdQXSwKK1n7XJIOLMShsvH6ddhTFGkjqVobUb2nC2GdgXuB8coIYAsBsVezwdvjwePB+jrgdodkYEdcNiApbzPZMj3KdSN4GuxU4zv6ZH3UWxqCtmLqTRBzRhkY+qhwt2Emwn3m/FyKPdDGUZep/Qct1A9rjWhHRHKZ9fP/V2VZKejAk3ZQdZTtf1z1dLzz6tPSZM8STp3JV0GDNCbuDtH7IvcHTAaosbVHe9Cbf2qGheEJj6kxnL/vV733ANISmhTypSsWjTa7KhOo8FMazaNA99PCHntdfPul7oTiAQ+WYlqY+yBaSqnsH0eTlJMbIZ+KTjaqpyOsiINATofSLGAR/cg9W2cQwa3EXmGpiQUMtP0RDGJouKlIiPhxJrMOWviFXQyWoMbgtQeyeUCRdhkEzXFxj3hISDjljW/iMyjq23l0obZwnHcEtq6V0irfMVLyLHyc4/jTpjuXRBWqqlzTn75OtHjE/f7J47bndzQrYxxw09Yjwdz0oI80Ow/oaIsdx7r5Nv7Y++uDKRQguQ8RLU3FeFmxosN7sM4hnDrUop6XVtsOeOHed5OtEtjuWA71e9mZtJrPkiHFS1UaLnllgmk8UupHarW2TLRXQrOJ6VRCk+GnW1ItEonAfu7RJOMfTYLEPoU3Z8aiBXjfK3NREb7GEJasFAEWdfrgzzbhiyHWaU0Sjcc0N3vyv0/AGvPubYSh/Y08lSjpD1DGUFQO8pr8usCon7XqpEnxXFCgOgkvnLOSMjV9PRwaJq4G45lexRj2MjTp90rB0lp3BAS8mm+v4Tj6+R8vJMlkSQk5nJsOWM5Yo7LYIXVpmjlLP3ZkTWI9IFjZG8gQNbcrSTRRAwL8PGS9dF1ZilkpYeNMs4oUbvdstYXkbs5UMHXyfspzGX8/Y+/49PnO8dQ3t5/pk8Ac5LEQI1YBf+kWqgAj7V4zMW5gtBknGcEh9ZWPjvIZmC5OKzqwsM0t8PFIuJMMUSAHNX0TC2NW3Wzt53dtLHtFEeLzNOcs1hVfLday95GXeRdNcGmnLNERd1af21amR5rgazY6zCqlFXZZcmZiv/oSFrQWGtDdK/UdAsN+dvJdp2y1m8Rh/vokOi1ftVCqzyafbEkssbtu/BId85vo7bvjZydXj4BBoCdgOdFFdQprB87n+lICL1JloIvbO+Tvmf51VzKJPdZPt9ITmZW9YRAy9v4ehBLkZFwbK1sI5LzYpXrruzMsWYe+BvJxJp0GcVZM3vZWyxctVQ0J67gUvs5V+BiuGTxXOvotxC7aoWVDyeT2wcLW3pRkgAKj9Snotkk7HjBC5Ln0fXweD85l3Lcf+D104+M2yCbtOTJZL5OHq4VKY3wbjAVTEni6f10Ts8uf4v6O6WCEisYDr3fciLpiFalEXmFjNJCrxJAKJpbpqTXAOUwZBNDGYQkj4ssxVFHTyLnsnNWkzT0WJnzW2THxjyoKM9MWVQHhl2WqEhXITFRaMHVHezy7x+WfkVQKih7xHYqXR5MVjcjaCqb0ghUOy2rVKnFBJXDR1DOqjt1VE/aKOFMVKOxp3Ud/EfY2p30lS8qTW3DB5PcjeEhuxUD5blDskvHPqK7J7O+NslUCYZHXqhW/fASxTtmg+5msIWs5BGBMhUxzY7t94N5npzn5BETkZnGE612ImuFaqCDlVvFCR3IuMO4o3rgMVgLTtc8aWoKv/z8jutEjxt3HQWpBGQgeUJSuy4IZ7pAWJsl7rkHNGpwhhkvnz5h9xfEVxXDhemLb4/F+1zcbve8zr0QspTymMH0AB3MGZxeAoJiaDNPe+dcFcVF8GI47RiESZW2kt02G8wQ3uZiaYrmh8KhWrI/Z806Fdwtt2sVFBTNZuNmcuVXLrXIawlVK5dAckN9lXbMlEgPSFiRcTmCWXIh6+OjuYYaS8W3SCUPhqq/RXXcq1Rm6HMumnX5PoN0o8CKgFdN/oqmyX7neleohgLsKJ0ilD4Vob0EF0kleQ1AsuKJrWkXfuW532Gcj6JK92E1DSKEYim7A3qGbW8vJM3elUBeApVVtHWUl6m8XSQbvlZhMwXo3ZWsExUveFqe2uIS1MfiPN8xGxy3JGx0ZN+d5VkrA0PNkvGNQNSYDEwPGC+EHoTciXEn9AZ5RjdrBQ9XQg7+/Ms7b49vLIHb/caXL5/4u9/9yG2MmmThsJQ1xloMHQlhJan1FTNlf6HcTNH7gd0/MSPhvik8fPJ4e/A2J2EDHYoehq+TdT4AwZfgyxEbPN5OzkU5FOXtfPB+ekXK0tQiVG9OVsBjVW1QsgyCBGfAxxmuFGWCRRr40DxsuEvEZsqw3J2xqn2MKZim0GELO8gIrCWdzNBW8cM7JcoNB4fubK/qocI6Z1aiLZnwNXMDvzMrKscHA0J7J00JC/rGKigoLVRoNNhRWCsvds7q3KEadU2VnsWqiFcQumBy+CowmJA+meimIyE8m65JDveHaN62+zcbJ1hS/vVu+8Oi2dusZWqxUqsMq/OArEt5CeJzqURFlp1ow46k+8wLlT14WSJYhArHLRnVFZPzUYrRcqtzzvS6IRCj6lz5c8Kq8eRVjYhB6AF2x/UGdkPGK3p7ZeidE8UnCKle+ekPP/Onn37mXAsx4XdvX/jl7Y0ff/iB15cX7rcbvWPEhnFWLuU4jwVzBoRkd/nbDbsfhN6YsRiaRFl48FiL01PjihmP2RrDHLLpQYQhMkqNk/XRxzl5f5y8TSfEmCnFoPvme3XvS+fdUKZ3BMHDV3ED2trJOoav0xZaGJ15kso+VjAPQeoll7n8zhED+pAlSgNspaVWTSKOYl67TaqGMyR490x8DsvNCWudUNvdRvNFkH1jC0smUiuJppfh7dywZYV9rTUGEh800tfe0K5EJCeyNfdlnHOtOqXAuXYKNSJ8NpiE+R8dRX38R+D9/904czcDu4HvFUFzwPvAGqfUM12DkoscCD8rC/PalRJFlV8Xla04pNmkD1cAccFiaWcgHIcWJZ/1yzPeiTnZHL2k+gRs15fyvM08Cj7iSFhrqe0Uu6G3F+z+Stgdr89QjPNt8qefv/LHn3/hsbJB52Od/PHPf+aHLz/z93//e/7ud7/jfrtxmHIbg1auTJRH7eo3Gdj9xrgfyLA8NblQiBBbhYSUjtYGZ27QzObFns7CxgGaCp3w4P3bG+/nzAN11PCoE8VI1U2zzI1UvAy6FTZ5AHF2xnkEqTlWYSCMjdcrElXqkted+WWK3ptnyFRG6ugKyuCl5lfKmEyLANugszrWRcNWB89zYTDl4YtzZhuZJgtjr/0+sbqu8zkVi1q30SK/j+aQUTHX2pLeSaOA7Rp2c5VJxstmnt1XRdQKNBsmXz93c68up+xPLSiu3wtrl3vuiKgEXLXZs2sg0OtDO6XcF9raz2Dj++c6WCftakaU9+3ToXrYU2mULsjDMVHuLwcSwuMx6/ouVjliJAzuXFeLCbTcsWKjhNZuhCuz5Xtq6HGgxw3XozYVp1Lol7d3fv76lfc5mRJMP5G3N3D4489f+fY4OVfwu9/9yJdPrwnaPEhZbeatMm6pP73dkONIp1Y1MiHAi99uIYJYNgyLlfVZScmjjRvjeK2UA9acvJ0zmXUZqB3MlaKLBnGzrmXWuEpc5SkXOJzaE5vkS4v3HSG0csESDRxil0OmlM+1AFsorkUEob5/1laJe5JitcuNsc0zuZPQLEPMCAZOlN73PAvar0dKPSQqXQh6l0k8GXp4CxDiKe8sLoTOKdnKIo9kVk0atcmFBv1a333dEd3cuyN2PqFJRgA1pTd0NELMVR/bTr4b1rZXumLwU965w7awJPa5GiqU165HtSfZBvnkwbr8sg+qqZswvQrCCkm4lGGPYbzcb+nxqk6aMC29XdQqUc29j6IHNm7YuKF2lMJllGQu2eMWu4dY7owww9Vgwbe3N/789RemgN1vuC3Or2/EfIcQzrcH7+fkfSZwP2539IjMO6LyrdsLehwZKapEs6pkpGmV9PmTYobFDZU8zyPWYi7HcQ5VbscNGTfO93fe5+KXtzfeHpMlio0D1wN8kYmEMt2ZUmePVB05nOrn02OdSpjZqp0mFrSOVNglBCDqqD/yXK7d4Twyb94OvMooGfgEs2TzWVG7QGILyqNIn266fZAHNLkFMmCyiPWA+V5HIRb/ENB9cdv8sup2yfSoNdbW2ZvUnwNJQtZylNbHOGRtfPXv63ldznl+fYv9nyLTNqAs35T4pq0i9uV8P6xNDJkTlcZw6RfDPZsyaU7mKht2CZbkDS7JViZVIaLzzJZT5ZhJna7l1SQrlRxaMHqM+oza9xnk6drjGLx+emHY4vGY9J66wtTYMMY4ULtt44zuJKADrWZjlHESvcP+aok81+KXr9/46etXlsCDxS/vP/MvP/8LMWHIwf248cc//MLP729gxrjf+Qf7Pbcj2dkhih63vTfScR6eBItUPp86YC8UqCmbdOcxF3FOfAWHaUHywbkWX9/e+Xou3s8Jahx2Q8Yd9zwlrVJcZmSjqyyxTNRHbp3y7FIwqvs5K7edHUM41HAbYFk6IpqXixIH5JfW4tJyMt1aZMNbrb2elrmmeIA5sRzX3tbVM1dOQsBkMcSRIyH3PB/EfEdi7k3ODQtbvJdtSxrOlvWp0Lyo7qi6YwpOrtOoLgLd+aFz7wT73bOpyh8e+x67ZqhiGRuq8nBpibokGJsw6scVOb8b1paX2I7gCTZcqmZ6O1eFuZ0LbKOmB6I9Vlxf7VFaiCCVgTU5RG4/Sji6mOvB+vbgs33my5cfmC/OT3/6yvt7H+OTd27lnqRaoUjvUBEFHSg1oNWGkq7flbpj+uTbY/LL2zvf3t/5Nt/5wy//yh++/QvfzjfihEPv/Jff/xd+eX/np7dv/OvPP/H5T3/m9fMXdNwSPpInsWUtLNuIjPZMXl373BGfiGeLTG3ItCYxF7cxOG7GcTtw4Nv7mYYryu3lE6aDsIPThff3kzpQDyeF/R6TR5xMPzFZzBioGwdaCKzYxZEN0RgHageudZLaymTYnogdSjSgkYyuu+Odi1E7WmoBN1+w+8Za1rJ948W5Cac+NPmwpJUe7vjjHfEHozYtr4gUmMRF+rXhNQvjqrWWts3SZHFk6E1+a6dDstHE0zGvRNV000GVJN6j4KjuT2ySpztU0qq6DXN3PYgalg/f/2bjnBsa/OodtgSpRQZW6v3G5BdMjT0CtZeu3HAL6Fu+hSrdFKqTapeVLOPMfkUv94yELieP+cbPP8NxvPD5yyvHbfH2tiq5l62pzPzI94h3vyGR7K8jGISlB47SvUqSAbkDJU/veltv/PT+Z/71lz9wrhTZm77zr9/+yNf5FZODf/3lJ44//N8cL3f+h/s/cZSs7YzUoSbZ8QQF18LIU8JiBRYrxfiRY+KSNVy73TKP0zzq/jGD4+WV+/0Vt4MlxmMF/j7RCXYEEiuJJhmsdTJ9cfqDieZZqVfekUodTRlgHkhUsNVzAaooWPZIWmJMAXVhRJZnkr0vplI+mklvjaIdML63AqJ5gllok45RMDBR0umBPx74fMdw0MxFIddYE1IrgPVxvfb33rx/Ua2diebirJbm1+aMoqbjSVhh1RamX1u4ukTzeZxIBsYoEU2RoXU98jwG9ek18t8fOUW1TaXEByVnkiRZvEop3SWgPVROVg14eai9hbL+0Y2T6vysHUWtg7HkBJil1lN0cc53Dh3JUpIlljlP7i+vvNqBmXNOSoV0Q0cdRVfX1CWcajNDE0HhKW8TT6/oa3EuSTgYzi/zjZ8fP/Pm35jxxukPzO6IKv/8r/+MuPL55Qsnk/d18seff+IfHv8A96Q7tPrnGAnzVzhzzW2Mub8z739ECTEsp0ZNi7V9ACXcR7i/fuH4/AOPgIcD7ycrVooNxg0/3znPkziye8NiccaD3rxePozWlEYdN5Gig8kyYRgMG9xvBzc7UBSfixnZJcE8Hd3MIHWV3MT3RmQthl0qLEVFlCaLGGlYmc6AW7Xq1GCukzW/gZ8cZmgWQCmurqRyaZ1ObHJHKkfuoLKj5VNe2j5ELNmdduSUUbUBpnNvw/INkVNGuLawRqQUQbW26yjjvY5lI9ANisv4vxfWRguWG+dfN7fmKq+oJUTOTaVa+lAqQuhTMp6RvzxSUetRuCPHpjF8wYYIwk88ZJ/j6GQ/n+N2IJX7LJ8cZry83tEz64BqLxCWRfn5qHJWDqvXwTPPOk21kbtX3Is4STnI0mAyOXkweWfFyYwHsYL/8b/+V2IJ//J//YElk7d454/f/sy4Hfz09gvH/UtuY4tsG+mRmleNyOP1PAh1LHpzr9UOl4wCKpoCA8moOWt70/31M/ryGR03WLnb5nSYIcwFj+Vghonw5u9MnCUzBfrV/BrJDvhbC1ybjUsgmcoqHYgoU3IbHpWj5xHytX61IkEt6l4LnV54ZClI+3RwE8418bnoU7HzBLIU2aulWHzFIvwd4qyDsMj3sFHdHgpmFtttksyyIEhkRV0sNwAQpdOKFubVeiS7RKRNXQII6QgTUoctdXyVckDSnoFmd6Qg+tbcCskRVKU5d5j1emcbfovn/2bjbA/TPNOuXUYSG62WKAyx80ePK1J2n/C81w7rlHdTCPZWrW56lG93YXhavFA3vuJkhGFWutJzcTLrTIxK9n1dYgmSdDLxdAqVfOR+zZKTWR4w5MWyphYVwoQw5xFvTN5weRCcnHPlv1VxnbjNZHLjnZ/ef+KXx1d+8Nckp6LYYNLRyfKC1gmjJLbLSigbeR4KmgsyJ1phrdR4jhfcBmdkXrkid+B4CDOqZ61kDjlPx63kgV1yinSqS3KT9/SV0C24uu8LYAU2VuWRQR74K8m8OnVg7Fax1xbA1ploZIvQ6t9E1J5ar7NglGJWc1eP5n6DdDiPBxEPpIpdOWVXt/XsjlDwUsgUJVIZtSqf72DQqKw0FDtydbE0tjJJtqCmYh2zFrhW5Huu+mrtssrN9E95b8Te89ono/XGjt2GpixGag7+ZuOMNsQniZBUnpi7AtJ7SO8lpCR9QaksErRG41RKfXF9wuVJGhN3HluOqTmc3k4WZKSY6yQBTIrFz/OsutMNkWCuB+cJy5WIlJ2FOvcaxrw3ryjRXem0CvTBuRaLQG/KeFVC8nh5G4E/TpYH//zP/w2Rgbvw8vrC7VW53QbTH7ytb5xMss6bTPA+u063CgAAIABJREFUjNVLjkgaUU+Uh+ZOE+mzQXsAcqGrOaaDpck8r8i9stmlLk+CTjVOHw84U7zvKexvSOkIM04ktAoulk5MBtCNvbyVJQSZ+1uN09BMRWaTQZFih4aGEdmSZsaJxgRW7ewockQcO/J4hnl69WSq5lsOsU6mvxNxorp6c0l+SZ6N0gEhkWIZZEWmvevYV33mFZ0aAfYq7GMcqhKYIacQ4yZxOhJ2mKoNHb7Bq/O8qrc+vv4tUGmh73p8Yej/AFtbi6lPpZKoJkgVMffettoVfnXM5sopWwyQQ7BrndGt5mqrl/giyGJ723I6tpyW7HxQWkpJNhXV7QiWZyH+OIyj+tjMNXl/f8djoHbnpjNzPRkJHyMXcdSBK0HqPSeeW7CGMF6NTz++cntRjikcJ5gu9Db4+u0nTA8+f/6R108H99fB/a48vk1mvLPkLHie0DbbjMw87m/UrhWKnKpJ9loEixzrWZDfBMa4oSN7B0mM7O4QwbmC81w8ag/rQljiLAmwjEzLJ9PzGIjqtJMHMImjtYMme/7E1eqmiKqogr9J5ZiRayCFAlHTKAUx02lPnyDvqM8kc47ealZRTqieUhOxyFRoOmtNpr/j/k5QO1Nael1GpE9w8rKKjKIKtQMk94DSzGunVuT6S1icJFc/bTOutaZ2F//+vFrX3hlsVynKWfQRGFdCewW1K3rupz8RRd9hnN5d9So3xvM0Ji14EdIEkBccyzaVaoXhw8vzV8Jd8jyPEi14IL7wVXU+zef14UN5QwsKjmYTqZpcSw+dbGE2e54rcH/Dl2Ajz0V5f6wSRi/mmug8ET1yywyR+SUZ1ZanaNylIqhk5Pz05c7nH175dg4ep/HjD5857q8IgzFe+Pz5Rz5/fmUcwVzvOW46cTkzinVe58GceeKYURhJizWuA3oiso+Q0jW8EoybZpcoTeN0z15Gj/PB22Py9pg85qoDXUsTWm1cmuRKJVXeb6qBHigHosqqc1OXOqckzGwB4Fl4UGpfaMo1k30+1+K9oHqzzoeehCxGbVAwU46RJ73hQdhiPspZqNcCcxaTc71zng9CViKnFgX4xY5uVZVAbxPZETOgW3qaFZvcoKwJomjIS52lef2uo2ynbLtla+ejZUxZ/pcdPZE6fqQMLksqXmu/JajJHjf6RP4jbC2y88Go7WKdB6pobgmLqH3Q1S5SUga2q53F6G7Iuq9lVzjZ0sAK81I3IkUu9ZYcHZZw6FbOwbW2sU0QI3C+vX/l7e3k5TW437/wux/vnDOPTnCitL552K2pMUJY5MbllA7mNp9b5XLmxuv9E//w+3/kPL+lQ1gnr68/Ynbjfn/luL3w+vIFCePb1wequQm8HOZGC+tpT2k6vizhrGIhVmRkGpXjdCd7M2Op8SBzmMeCRwRvM/j2cN7Oxfv8f0h7uyZbkhtJzAFEZJ6q280hZ7VaySQz/f//JNPL2r7INKLY3bfqnIwIQA8ORFZzZsjhnSKr71dVnTyZgS+Hw+GcOUXeM2uUFcGBMx5wvACZmQUZTDoUDSadnF90aDQ0b2jaYEGgphQFTKmW0LX0ClO3YDHaDQx8jAVvDhyBfgqOfuDoQOtZX0YSEGYQEJpeNwfjmni9LryuiRlM8SMPsJRxREnD/X6XymaxpXHtCJUB2ROIuGtNnj7JmnT3SRN5jXxmpcAnX8x1p8Np7FpgngClmVQ/P7CTI35/2UHcr/8l9P9jxmm7gaw3VF2D0V8oTfD0CLXib18BD6Fn7Lh9BOl1xMbJehEPqC9O3qdXNAG6Ubu09UDvhnY0yMnplHBgXU4WzAyYCVpr8CUY44XWH3h7e8cpHdcIfD4HVcNfn/BJCh1ZJGsjxIUSmwh0Eek77IH/+b/8N6g5Ho8Dv/z6C0R6SlAu+LpguKDS4HPh7fGg6p7fjec1J9Yc8HAclvtO1JLF41jOVgvnMlNwTA0jHJTSSLYOgAuCC4oBx2ssXNNTS4gtBFVAusCbwqKh48TCA46JtRYkUhreNdPETK2F1AHxdLrqgCxItF2HEjOgiTDVVjTPTWYm6D1g6jkwn9GDSl10bIN8aN7jhgDwvC58fl54jQseCrVOqcrUhmKlzMjlmxqqG9Cp4gfIXmm2WZZ/ocyVw09DqShZaW59f9W2rLUTvMngUADjVi+Im1xTE0KSs8b70qRePH9WOQ//+yb4d4xTt4WXSt2Gmp39uCayF9js1tJXz5PeiHl2hXtNA02UlmTLfbPla/QUkqYJphqkKawRqYWXgoDDPwcQgsfbCUTDWkwMPRa6nXg8qFzw8RqsRecHlga5rtoRa6CGyz0E0jJyuEJbx8/f/gi1wPv7G3777S94vRY+Pl94Pi/4DHx+f8KU0ahbR2+NgFmu51u+MOYgA0h1T4eUV7ZqT6hwh4pQSgU5KxkL6Ok9phAAulbgY6wcvCYDKkUWOA0mkegrsm7aaAGKgidhxBLM0NGS9SP7efFQrTTMRXCyhq15+9Ct4VTFowveWsBkQGJgjUVebA2TC9cZUkWA29uueeH5HHhdA2OyfIngiFuAo2Ce4tgembJHdd9vCU1PPu1Go1Gl3iYU0p7i1hb61x+S6Tx/z95kZngFkkm2CNOIi/lUdxZApqyxzy93iRrJ+IK71xv/9lX8h4yzm2HlJmNNnm2sVDCL2ItrupKiVpGn9myo3GnR1ibNt41KvzLdoMchImgqaE1gCQDV+ng6Btk1hVa95uwprYTr1QSP4wGzMyl76eH7N7TD8dvHC69PAl0SjpiT/UsRTCFApOhoIjiU418TJ87zHdqBx9uJeS08nwOf3z/xek2MF1c4Pc43/PT+DT3T2spjljNqQcAWBXIeEAWUWLZ0eL0jAtT0tqypGTXUmdZ+viY+XxeuQR4ta1bdzX5k/9EXcqwJ2ecFVEj+Vxg0Gg450aWjwVIOhKkrpWMWLNodKZMJln0XRNCgzKgy4J77MjMVjZxKWnvlRDkLtrdezwvP54UxSG30HLoHFMuBuap0SYIEkRcEGBlrMZPXZxowJ3zSU6Xj35zuqjnjJh9Uy6OemCaok7EmDfvGlraSe0XXr+Ze2XNG0hL0KqYcIvGcfz+j/fvGWYUwH2gVsYpSzaOaWMnZe05ZIA0s8Y6s4ZqkLg2DCZoAGgJZAfVI1XGFokF1kp3SgJCJ3gR2ANqVCuqdy3gC+eBEYf3IOU2DoOVhrQOLfKAkG5yPjhELfiGHdHlDPbi2wZO25smRFLA+PfSEtAk1Bw7B++l4HQ88v7/wW3xgDscBw0MbjkSpwx1X9vokgbIVnNiY09FMIc4UPSyNKu/xnANH51YxiFH6RIDhFJv+fH6SmADKdapQLZ87RhemL7Zm2EdKY6mesqFJh6GjCeVNWhH3goitGdfHE5tbJMtbnQcCLm0DIHmAnfMwjBwOXQuBCcGEaPIEAVxj4Jm85TEWRq7G8J06EwEuw0x9NyCjGI0tqZArcHltwr771zTUTNfTCBmwfBsJI2XO1VbUjS/MHgE7Cl/S4i1LkkGDUbAA0qKesrzbEbbicWIpgn83fP/HjFPC9+bd3bopj5GpLinj9LIMUin+lBFjbwGrmxCecEcZY0rXC7VTCaB4TjPQ87RDYYdADoF1g/ZGxW8qPUMEmAJekBtrJLTsv/Jramg2YIkeBnQ6ye4oIIboHh/U4nt2h8yAtpysgKJp49csgVggbMJ7x7UWGhSHcj+IgpIiYwzWWI0HheCTQKUlOrtJVYiZ2QIKIDLUtqw5JwRkMU1nPQ8RaDOIGcTYV16YWDFTfpNpLCUzLZ9lB4VBDAqmsU1kL78VpWAaqZOs+QkEsS7eyxRUsu3A/aGysYWJsAn4wLKB1icOi7w+wZgLn68XPp4vRv4ZWCvryaQeUaWwfv1yKEO2kRZZpCgq1fMlnTTZQQJUj1127Ve1F/I51Hnnz63V9ZUW8+Xv3mjxWPYlAbuHWWQbybS1aljaTtb2ux35n0hrLX/gPRBa3MWorHR/3ktTgb0MLZkuzLN5mRzk5f9kT2Q4N2Wp52gV6xpVyT0cyBnBNPmc6tU6uI2T9z4FyMgJT9Djy8NEekMeJKA3A6LBNXVTVQBpWGqIZpBQjIik20kVGTTSFfCx4HPBgumvdiKrtTk71sQcC2tOmFqqsxP5Xs4lQSuoNiOiCFVMkDOsImjHAbfGbfQLiJXCygFAFXacHMFKgnxkHZhbClBLcwTMNFQPWAM0GiwabDGRNWHdKSJoajBrMCW9r5uim+X6hlzhlymtz4VrTahPPj/JiNHBmdIYsJhonYZuKrjmxOfnC6/rwnWtvY27yBqRkqXbMHcFmB9pFXOtvWEsoF+MJSMnKq2+z+5X5JTh5maMVTZQoeOvVQ2SNovaG1TOFLhBnjLOwljq30jqt+0nFMosKYC/Vpj/Dxtn03q79wvtfFrZzqB+bF14wc+8wO20Emu7oepk+1RhjBw5igWRxfQno24/GqIxTarGl2htN6uqLsi1PYiQktIHrFlFeqCmAtwXEDSiUxo0DAOa0at0XuiJmyqaBEYEOjpmcEMWt1stru9zSXRTcpXfwroGxscH1BpVCCI2mqflYKDsu4qxVJB7uROjoQJG3Z+Zb78Z1fxWOJYKpDdYL+oZG/9zLVxrYPi8D4U4Gg7eBxdoGHQZNAwN+VnlR6riadb+zGq40vBoDU0EmAsx+BpYE+aDKxCaondF0dkiSPcTYfmxroWPzyd+/fUDY06izIEN/uy+blRdqXtIAQX8BCPm2OQIem6mn9sOd33IaEwUXKXaF3ck2+zWAL8GssucUocs0kNWrDtY6dc/ZwZRom74YuD8f46N5YsL5HfR9x82ziMPwx19q+dYAE8CP0jDxNe8HEydRMBpCqD8YMmXQJgWtWZQD8An5hrwNchMygd2thO9H7DToGeHPjpE2DKJNMDrmoi1YHag64nz0YHoVOFbSGlKRv3W2C8by5n6CaCtoRkNZWTtLKboAczJ9zX8gK6Ga3ywlriA9ZqYr4n5fGEO0s1Wa/j8/ivaeUKsM5XJh+eefEsAwyfOoyEU7IF68Dp6hxtwZb1YTs0c28mJCGBZc2fLaq6JywdGLE6ogHUYUnPVpNPwI9NZUZgYunR0kQ0GIW58U5E1GBi1G1K+Zk7EGpCYuWZAs9WVqSMWFQ+NbaKP7y88Xx/4eH7i8zW2kQUsM5bqX+a+zR39kC2MfN2IPWfswDbo1HX8V99z/zlwC3dVfz0npxR7uzeDjCYKm0FQ755nkaeSE5eMOYXKynvG8MwMsqQ4k0kUFazqOv4Txtm+XHExdFBv1p3aPOmmSHaRPc/ZtAzWdyO+Uie+eafygErq0i4epFhAMoWqIC842/M6uB2ME/qSiG8/GTHnCDxfT8AnTBdaO9E7jcSXYS6Bh+EaCx8fTzwnYOc7zuOB83FgwODD4cp+Y4fgNanxGjPgQ2DRsK4XPj+eGE8Ki4kHTmvox4GzW+aWjlgDIZZ0PC2UDRGRGrKBBceQiVAw/dVI7ioHnAHkjEB2DjPrANiiqUGESMDFrEMWsMaCr9h0tBUBddnE9Kr5+dxsO9zNkilcIZ2o+IIIQTLAd6Z0mOI8W0bNBY8JEUppv64L379/4Lp+w+v6xJxkjbmwd1stHq4DTGQ3S8Vqi3BqBnc7JaMcEq9YUVEOu50SWSo4cEuUxpcSNOvOLWeSNkPDyewl2Uu1VJe4SyLZOzImppKGwTUOlehVp8J24SmVWf4HrPNvo7WeNYtJHhpSweZaWGui957HhWmbSS034otvAV/mF/TEWtNwpbGTDXqfgE8auSmOh+I4G/rDkh8a8MU6Z+oAsChIvFinqDSodJgJ66tEIgVGovznRIRB9QGA1EKyUHOJaWuccklw5LUmQolfmnIlhIXAlmItxXoG1seCLODRHzha2yNRZgkYzUEpS1E8DoH0E7X9KoIO4JqT99oM2hpggSnc/BlyC3Qzk175kJMQIkHgSeRuDbjkKgBDF+50oQ4Rkv4mTGRFCQcpl96a1J4Q7OdkSvCrmeKwYsN4qrSD4J5zYe+cgZH5nWICMTHmC6/nr/j8/BW+nmCT1DIcBVcViHOWVGuWlJ+aPW/P9JjBNK8u5xADX4Wo70gXsVEP/C5KqXwptWgoNVQN+UJQoNnTEVWgqPtSmAgqUyzRdElnl7hLVMYhWd1WeluF798Gg/6ucTbdToQcwPTQEkWiwk5TTYSr6iTfXjEhdlFd9WV+JFeSPdMFdd8Ftylr0DFfiKHoxwPWO9XxmgG9A2DvL1TBpdFGVkhEcnUDzUpcquPUhjG5Vi+CrYvWDO/9QH870TK91OBGre/XCxEvoJ0wVZymmBG4RoePBpUD0UgbPFtj2wc5ARKDDXvNaCAKb2ynLGHkYmrIwWWosk+swblLMHo42B+8xgufH5/481/+zEjVDxydpIqjNfRO0kMZquQJVCHdbsngvc/T26LTIXmRR3jcNFtgItwB3kw3Ik9uOplhhuTprkktWTiuUNarKgAmxrxwPb/j8/tvmOOTrZhSfl8cMnep9NRzPcBNDOSUjoDKCbL562sbbP5dAS/IqJ/GhcDNq60Ma9eTd+kVsXarZaO2dUaV5BCt1soX2yChJr82QzK3nd96WeF8j8xooy4UgS/R+keN8+3oWcuQdsWrYnTs1uv606Bk/1rGKVjJMkKGfB4Oj4U1F2RNLL/QMHC0wNFOnEdHUwd0QnQR6FFF9a7VGo21HUxXFri6fQYVyjsZRT6BMSfGcAgGGRpBosK4HB4dP337GdLfEfaAtAY5DkTjwPbLgc+xsOaASkNrHd4FWO84AUQ7cUbD8/M3xCAJYfkAFLDeMODUqG3cIuZz4vP7b3yswTUW7TzQHid3pBgwYuL5Gvh4PvH94xN/+fVX/OWXX/D+7R3ujj//+f/FGBfGa0BV8P2339DU8NNP3/BPf/gD/vTHP+Kf//Qn/PzTT+jasBNhNU7pK0sLC0VzuUG8iqCqRN0TH+CgAyd5IOxFD1+IeWGNCxLcb4amzFgsEJh4vj7w+fELPr//Ch9PGqYEZBINFbU92lZ7UqkrTKDOQ7DmyliYciX+1/WlUTYTCQ6yOGaGVlErOGUESZBJZfO/we/ciHbt4aylWiUH24RlWslkG8q+bw65r4GmsTsTKnfcriB1T6v8xz/+DgkhwYGokE63GnlxVBrj2I0WqmeGlqkrfKArEMKWg9RURLJFmvBQNDtw9sDZBUdbUJk85M1wnAfQDdENsEbJy2awznZJWHAguiXQ4kIQaATWxR0fd/qbLBWwwf54HLDjxETDlBs4UAS+vb9BXhO/PS+ET0pbgrqtHtzxIQuQJTBwULuJ5NpDS3Q468VARpqV43U0UAH5rZpjcmNN/Prxgf/v11/w2/cP/PLbbwgJcoPXC3/+9V/wfD7x/PjE2Ts+P184esPChWs98byeuK4Xxvyf8PP7NzyOA80ayR6ZiwmqN80DzGcmuxWGYGRDODmljQDNipXD0ZP3o0gIZji74ejKjGdNvF6feH5+civ3YIoryL5oLpiq9I6ztHwNbqRbcFfW0lv5L3adWQa6EmCpX37fNgFrbyFItOJm+kRllSiQqGrUu46MGpFMBCfxqY308o/ZUgOXLZX8Z0VUlUAz3ltUpwKVSX6JpD9qnAz5lHFEhv6A7P0nkTfcJGl8jevM1WST5Jtwic826qAOi6nhbNxidbbAowWaOkwH750GxHjQq9EpRuFna/wk6qnAUmQXmmTzJVgt4BZYw7EmiMquYmYQwkcsWNWI0birZCxMF1g/cR4HRpK26/vggQaFi6GLYaWCAG93DSsrWm9wEy5CgiRok44p76O54Xpe6OeBORZ+/f4dv3184PN64vP6wMLAH//4T4iY+P75C/7y67/gui40Nfzyl18QopiusA4cj45rvvDnX/7M9fb//F+hP/0B9rBEZTtQIF0entp3SlGtL0wvCSC441IC6Pk9PQWeHAJritYURzPO0JpA4sJrDLyuF54voteS7A8DZ1RNd7W2GTl1bt2JnpOix971PtKSqWsadC2mgt+15g0G1T/FlxTy/gf3L/Q8kR1cKqJK1sWa5BkOyq/dAqyvi+CsqUjLc0QmXI2IaU75AZ7A3b0oeqPwP2qcWn3NjdaSYUKBJYU2bv+i8l42qHfBTL4Vx6QmACKPah3NDCaBowW6LMh6YcwLMwbgT4Q/EbggtmAfhvbWud15HjhiYQnQj5qkY78uFgFS+ULmFmGqVuCFB9MXLcAxkckq+CM4yjRdoMpFR4+jA7lWz8ApGWsHlkdyUW0DW7HTJAJSfInk60bkNjGgel4SwOvzk3XluvD911/xeT0JbkzHvC4oOLXiizXq++OB/+W//a/4H//9f+Dz4xPhYL/UGno/sBZJ+N8fnzhax9kIQkkENCxhFPJfa3ZWdr2WCkJ5AE0CTUBASFN8TRUSPSeFDEejM9ZYmFdgjIHrdeG6Lra2BCC+mcrsZYQovR5uMUMSMkoWxKzzAGdJE6n6AMmoqYl6VCaCqiFvUGtNz4j51yBM7Khr1X/O7kChrpFIdbVQbjDnxmEABg92KrAFtRUUzC71h6pNy1HckzLVf/8B4+TejQDkXtQCzdpADU0NWmQCDyxfSeMrPmskM6Z9oTQVCMRxp7EuYD4BvyB+QeIFwQVRcjG7B0Ys6BywSe5rqCFWoNmBrgq1jOiRRfic8AWsEZjXwrgW5lgYr4VxOcIV2t7wiAPLTpgb0B7o/eBSnOfANS7AAs1OvCnw8by4B8UeGHjht49P+KD2TithKWGKrWLkhcottUgmVA41B9OtIzriFXi+vmMC0NXwsDdI49rBX1/f8f0vT7SjoYGsnrO94Z9++hN++fYbro9BZzkUcMPZ3jK1d4zPiV/9O0554HEcnC1fTj0j0CCb2lZk3w0NBTRILmmRYCByhA6eE0GK4+C6CBP2aMeaeI0Xnq8L1zUwp/O8iCQrjI7Tl7BHipsHDCM/msgrszT/YgCehhlFTBDlwDyPPioJrf+KJItKKlLJNs/9NZklaA657/58WnlN3dAYU6onYtetyKhMg749ArO+skbKwyAyctYeVwD4O1Hz7xqnmUFYUecAseUN4XS7FJ/Q0+t6AJatkvQ07o45Jta8kp1DpLclC94WJyc4fB9MCZPqFHDAC/pn41wckBQ5rhZOC6Xsh2Za23MSYWlGHGDNwHhNTpCMgNgDj7efof3EaznlTNSBduJxHPBBtg2ELJ6zGyVAPDDDcX0+MV8vmBjO40QJQIWyFrliUQbEk4MSbIMU6yRcoAvorhivgdYN5/kOdIN2w/v5Da/PC6edABRdDhx24Nc//4b/8/P/wuv55HB0P9C1o8tJIruR8fPW39DEMK+ZC5N47yrvE0gS1yOlOmqQQYgcZ6TXWHR0AbRD8Xic5AhnW2L6xDUHxnXh+fHCxweXKi0HF/dGoNSmSzTcPQAJuKZKxFpwce6UUQphr+U3LzrLgrKuEgdZUXXjHRU9/1NR6l4kdH+WwdW6CB5qnjXPvjydArMIzxp5c2q/ADsRyPnbjNxSLcTqodbaS8cm3H+xTf3ys/4h41S91c4soyUXqS7m+vli5SgkG+alO+Rr4Hp9Ys0XwlfKjxAAKK8rAmANpijR6cXVYLIgOtHU8P440N8aojGaiwtiUHYkriemLZi2e4g4clHtpICUL04uzMGJ++eTQl3t+BmPk+ileAIhumCt4yEHXitwzYmQwOM8Mabj9bwQc2K+npjXQD8NXRt6y50iKinDykW0IYlwJtBC3SxmIjYDR9at3U4c5xvs6NCjI35iHf35fOEaFwYufDu+YX5OvD4+oWEwbTj7Gx5vb3i0d6g3NGl4f3/Hn/74z0keCCLa2USvBj2ABPpYSxe/ppDLBiKwGo4G4DDg7A1HbykCvbDcMSazjHFdeF4vvMZAuMD069GiAd2bDBkdf7doCQXAZKKxHFvKNOl3ReO5R38LjcW2mFK38y+R6Z4Mif1nIAkuOe4SQkUMpEGWzUSwZrmja3b2Ja8lHFLKhexm7q1lkUQUlUqj4wsqVSnyD6a1rbV8cfa8JEnbu79T3qlQL/HETEjvmuOC+wACsFZk6kz/sg5hX7xlCskxpqMBTR2iC+/fOsIvvD4uLHPgBcjrRQ+bNaeEoVlS/KTBjEPPyFV4rHpYsLsBqtyetubgVL4UguiIxRZOswMQYK0LHs4tyUJdoa5cgHtVhFmB3huss+0zUs1h5uhWpMNaqK1aTPubBw4IpHUc/cDZT9hBBFl7R/+vDf/3//Mv+C2+4yU0znhjzda1Y8yJ3h74dv6M006YdJz9xM/vP+Pb208QD1yvzwShIskMv2/EAyQ0QEqxVvbz7kqiQhfgMMGRe2uqhBmTDvIaE8/Xhdc1uIcUAqhtlFWEm99m3MLkAA1oCaU8lwCR2VDsWceMQIi9kY3C1PEFOhUa8Y5ogkJev6702GTAL+Wn7Mh7E/+0EIEaF0sDFQGzBc3WTzAoeWIZfK+cpgr9vXGG+AbcIpPwciI/bJy9sS9YMLDgXjZkyoK75tci+Z2SEXUli4gYgu7PvXRXwBSucQ5TlwFrAJiYvuDLEZG7GPtC6ESYQ5xLitiXqo1Xt5iwakOzg1urc7LBXXjDhmOkfNZyx+fzidBPaBeIdPRmFGaeAy11gM7eMFemeACOZsDjwLe3B9brIpliDmiceLQOtI42JwY413ils3LhUqOl2SvTJNaHoPWO3joOa+j9ZA8Xgvb2B+ifBH+2AzEcz/MDtsiHVVPM4RAzvD++4f14x9v5hj/8/BP+yx/+hLd+wscAN40NHj39yg5lus2IEHuIYfc+CyRBbqxOxTxPKRlfbDDX3Onr9cJ1sXQRkGjhfgs2I6iVxJWNoJEpa01uQCtaIgfSqcRO0oMLoaqi03HHCkNm7QK1PAN7YDoNZm+4K8PE741hR864WfPFTqrZS18O2L2Ut9aEFQ54AAAgAElEQVQeZk2Xo4u+f8ZtgkVz9C/oMJ1bbUf7YYEvJHf2Zvok1Tg8i9u1KVyeKnobco67JtTSp9kVN1G2lZMQ7oHiG7HlcSHWE7EujCl4vBvagwyUdnacjxP9fINph6AByuip2mF6gHOSgjWTJJ0zgevLwDUcGGNBrguHntB+cOrDs+e2eMh6o+KfI+dLxSCr4ae3B+bHE/M1YeGQa0IPptfdDE0sD2ogfGEJ93RuoC7ZJM24j/NoHUfr6LkJzQMQbeg//5E1ZSiu7y+c6HkoBXiwRHh//4b3b+/46ds7/ukPP+Pnb++U1fSJaAK/nIi5sLUDa4wAyQNFQf8SWVYUr1l2HNp9ugA4yDCpxn9dGK8n0/xxZe/7boGM7Je4R2ZV2ULxnDLJOi2q1wkwyq8J5ExvZN2XnAMSF3zSMatDnSQOS5mZSkFpfNjXI+kodqRc+TD8Pq/xJa3YGWhOvdxmdPczAeyplJ2FZCqs9T27ZuW/iX51Hv+++f0d9T0SAcKZ7qXiLxATPid7VuGctvdJOpdPNvJTNa4ZVQl4ZzThZl71WIuT/JMRVzwQcyGSsMClP1QrsBR+OtqB3h9oRiMkV9PYsJaGABUD1vIULCbKJ1ASBQ6uPIAEppfubd72YDrUTTESYdOmybkljxagJEs3wyOjKjm3C/j4hK6AngesGZYoFuiEVs5rcgSGB0CUVDxRzchJWh2CvTdAECL4p7ef0MXw+njh++NbDm/TwHvveP/2jm/fvuGn9zc8Hie6ZTRpApjgiok1X/Tj1vfQs/vkukYtggayZ6c5f6kZkZz1ntAhu0/EvDCfTzyfT4zPJ/x6AmsiWaRsuagCa2GMieXBDEe5WGNlyuuREd2R75dp+3AqJFLT1tj31si53gR+xAE3mJUBRV5t5lKqqTgfCQAVf5iRzt1zHKxOe5qw7KqULZVm6ZjoYAgw8es1Wzm19xNgZvCvZqG/tO1YXdQ/fGET/SPGWZYOn3AfiEWjIbd25XRDpTlzCzmJ1KSDwqwBKPpdddkY+JkyKWC56WvXAIAEVc9Jo+podoBzgYJ5LczxgvuFtTiVoHJkSkjDFXB5rjaDCFURfDqua0IW1dsDZcQD7Ksyn+Mj4uRMpVZUcMBO/0wCFvS0HbqVAmK84LGA3uD5dzUP6cJBbO0UKBMBLmUkafkg+VAzS1l8iGaG9v6O/+N/+9/xzPRxTTqPx+OBfnacB9PyZoowAWKlCPTdKlk+sQKYqmipFKFFON9pIj2+FSEexShi+nclC+m6Xng9n3g+L8zXoGq7sNbkIUwlfaEkSmQ66wBXWQR1hkNYj0MFpaznebCJ7vNvIhX9KCzuCG0EB0spPk3LM1J6lOVHGiHgwm11jKyJOEcwQ0zqEMkImlpveT/U8qoq0lVbMEEhz5YQvRu+bmYvkCsP9Q0qZRL5wzUnYT5O8vvMBwDPNxJfUNmJ5UmLU8uHTslLkr81kd2aNkj5/OC0ixqAcPgy7vlwoKvBWsPjYTiOxt4qlI304GtAFNIMmjs21+KbDck61xpEOE+58wvwYKxIVbsYCBgjcwNZSRYIGMTB9C1X0nFuj6NXshZpbHBuAktuJ3nDjvALQ5K8pKzb3lqHNCOJv/FIHUMwFjV5uynpXpItBneSIXJ9+fGHn7D8G+91or7W2k6fYtPDKxWlh1e9B55HjJweAqRRvKxqLmoXZVRQPhsTwJIt5Gvi+2+/4PPjkxzfOTFyuS+A3BqeNDwmfkAoXCYWKJZNzSdhdlPHN9EcdnruNX8eJGNEGqe1BGIUef9StTANsAyH6WWtlYhEUJMUUL3KjSDlwEVS8W6Vd2znVenw3Q6iedxSm3Rcqne6W3eA5XWVhcFnJMRH/nM153oSnfUJDdaT1fJVBKavraZGdb7kG1LJCoBiOhkgXJDFv4OQMKCZ40fyOCE8uNBAw4Ia0+Pn54XP50I/Ff1hOGZHP06YnWj9gBwHXxMGkZ61pyHQEogI0sJSaYAPCyjcMCIBDlls4SShOZLGRqIvHY6FsU+r1NlZ4K6PhfSwOdg83EkHhEMPAj3n2wlLIn+ACO/VDZOhH2ps8IcC07MRnsO61P8RqFGKMq8ctRfTIyH8IKhS6Ryg97hfsAZfi4AbGh0mEXNGtkhtovDFiZ9MBSlLMvDx/Tc8n58E7BIwKllOCB0GjTDHuJzLgC737cAjSQaFjGkiURHIa1sYg/Ogq3qYyuOu4Ehc08Yt18ERRosbVaVB+F7WfBvSbjPk31WwS2JNvVRGO02jLcOSHf2QlMh0FELRga3sjmQmpV6Mawmn3HUr43SkXtQPGKePF71GFDqWLIfIDVxJEFYpSUcFldeTrRPlEQmV61bEY59oJborVbe1TjHipZD1wpwXfnl9wBrQusGaQFLAS9FhVp8HwJWwWXsYIB0qORYbwhpMAbjCzNFaQFYSsWstuiR4E4AjmSNJwYq14LJIxhDF0QRHV1xL4HNiLofBYe2AHopDDVgE1Oww9MeZRPuOwvP60dC7ZSTPtrlkTaMJmITvg9A6W0M1oTNTCvSm4elGusekgPacc/f8mOp5qi4YfJVSHXKVHzYpYKnBNUe7nBNEvgYiy5fCFELBFfchXNA7qdg+l6QTBjWQRDkuB5YtLpwmkRy8Zh3qVNFbFDBbTjCoysFwhy2H2trCcx5JGsh/J5qa9xGVOciNGle7JQEcRi+2jzbaW/ZSBp3WJIIdWbWgA9z2Xl9akjhkjd2jkDc4KjsS/3BaqzHTazIcs6dTNKTMm8E6Q74YZjE2Vgg0V5/z61JMOS+dMP/krGAacTgQ0xFjskUBRxcluBEEfRRJOFhUy3NxaEdON5REJA1PghG9Fq2JOvpBTdhKtau8l3DMNTDGE6IN1g60dkCk7RZQaEWYSYpbq7UBCusd/XGiP07ADEvYV5WmKdnBFJUP3SDN0CT7fb6wkvSd7TzMhbu9kb+6Z39tISMHjxiRRZYa13Xhup7bQJevLwaaw9FLsRalSTwPTZVRlJtc8CRRxFqINeCT0yhNqxbjMiNxCnXNlKas9Xz8fXAtIYrOSCPk1cjdhnPuXZlzYa6c4pDK01LpwVfeDJ5Jz2immdYiDeCe/MFfpan5pAOs63HDQEiDzq8mkJPWVikvM9J70dPePWrZPNlqf+kWajxtR+uswVNQ7u99/G36XrZFAHpcSX2L8hws0jRvRu6vCMlsm+lKKI222sCzfl5KlcTyXcnHHIjrgl8XZA1oBN6Og9MuPT/bgW5smQgaamU81u30xBgKwhN7F9k0LjgjdOtcAlTC0twYpYAv+KLsiIbAQ7PW4bLKWIHXGFjXEyILx9nQrOXPPNDOE3qeXCLUqLjnmVK636viRLkZTbTSxjtlEtWUbPEM3Z4oSfJyv3hel9yRmcPbY1wYI/mt68JaE8W/KWNYHhhz4jCufIjkl6IOckYVWv5C+MAaL6zxyn1KTPWcitVJkeTurVDbB38FjXd43MuKBTeZPZ3N9EW1ip36RiLKWS+CDmUJF3t0Aa410BB0/sLnE9mi2GEub+vXVPZrzViGm5wfovpfQmF9GzPbNDZkGizOIALfr+mRy7jC75Lkr177a5y8a9Z/++PvtFJKSj8L4awTi36nylRyRfYQUwOGdYQhtGMiCDSA6BtVzznnJkhNmMn18TH4icloamXY1qDaAZAQPkfeCAsaeKFtUoe5buA2BZLl89a01tG6A0Lj1NpuZgIRSpNQxyYAH/BZHElh2js+4X5BBTjPjrf3bzjOB7QT8Kl1CpFatyGko/li/xRgCjav5/735aSQqTWUqhsjXr3P8raSqa2krk8AGXG4o5RpJ42rgIw05gRCIlPbtRTRSNQvby41kFyZUQTCCQjO8YJKoDdhlPeaU+Q9dpQIFzBJf8ZwAjyrcnX5Mj4XwMRiGpyOxvNcSEXtCMw1MTChy3ZdKeNCBDnaAlDzKc8fl+Dme0X5mmIr3ZM4hdr+tYVsACijaZagGYFLvKtQ/djRNhCQYK3P6/o9m6kAq52qAz9ec8qaSXzPUZf0rhyQtiQ2sy8XKxU4K2XTBrSGmR7VI+gZV6JVhbKthXVdwLzY4lgU/tKsQ+YKvF5kCxEdVLwuRWsT2hbEDkB5gGt/p7sg0NAkubyS0tdxv7ZqT5nKrA+EzqCZAT0P38y6OWpHKb1ib4LVOJt4ng1vbweOx0nyvTFNHFF1XFIclQfBFdT0cc8RMqacnKL4Kp/JpnU4JVdMqdFbaWd4cHemB6PWrHqQiaAZERcPxfIJDef3qyaGgP2eNdOvbaCosbGsQp19bImxwRKKzxc9DmyFTCd1MQQLpe0juVIxv1p2g4EjYghMOKOiMKMIUPRsMWZi4MKIAYEi4iS3emqWWYGIzrlKZGqe8DWVHYh8K8rWCJKVYF05wnpOkFuuBWXU2SdtqHS3DDiTi2TNSTqcu5WDdPxRFS2yOEbl2T+M1o4x8zBjo5C1koEbgHnDCaAA1SGOBGUCQiVyAFhzh3Up0GG+MF8vyBzQTJGwJtOl3M+polhj4LloFL4azmCPDurQFOf1tSgWbY61gOWCB0jnU9NMt5HiUXlnxUC2S+yajP+WdUHLKLVImJ+TNcVxnlmXsd5wLEyf6VTYThBntEuCY1LlKB4GNbQFtG8PTF/cq5l7VHhnc+uZcvWCIFnECUWOzGJIGUt4HguSqGEzSUBHMvp2dAnI6hhrAXAcKjhM0BVowr033ZLS97VVlqQD95X3wgk6RTUtkp64YveyywFykFkyO6asZfWx1+bZZj7zNaUWikajDnke7ZIBEYDpdMxavp3Rk8JqCMmJEOH5ENkGhQShNEkSKuwmbNbQF/QY7iTVCGv/2KNgvOeRfdTpC7Bcn5o1Z7gjkjTBQZsMlWmYpaKg9oPGOeNGsaQ4rNlYrjEkT6Gllb3LCCJsNS5DQCBrVSW/NHxhXBfW6xO4SNNrsWAxAXe0jAwr6FUp92BozXAeHY9Hx3G+4Xi8ofU3WDswSDRCgVLLA5+fL8wVOI4HWu8EKdwxJrddmTX0g6yPtRZWTrc0K/FDym0KABxcLxhYVMzTG6Wu3RlSyKYqjp4TF6uojey7cf0b+6HH0dHR8OiNQE164eXcc4I1ycNUhcZC82TxBDVsa9qlJh+aASuJ4SsBpSXUUlIB5GiYaFjXhPgEJnJrm3I9vAu0CbrJzaXNenIuakmNObdxek3/IMngCpBykFTMApe8doogs6G5fy/CZ+suiTSv4hjRWYJLI8Q61Mkrrrq3hK9rlIsxRLnAeVMlK7WlQVTPuCiJLrpT1Mg0eDlYU1bKbpZ4gOe9vQXSa2GXaZI9kvTOXSrp5CKZTcJandlRBoMfNU6PRJcSiS1KVggRMcEX9FUKgS30K1OvPcfm+xAPnxivT6znB2JeUB/ceSj+O4YGin0kjF5LAuMKRExcY0CfL1j7hNiBx/tPON9/4gQ9DGMxhfaVzXwwzfE0AIfgOE6IKK5rwBdTZr7XO63moeLIHIwIM5zbwRC4HwbuJQDcpM33ejTq5EIFWAs+J8YcrD0VaL3BeoNKy75gGsFwDACf40WUEGRSWdWQOV1i4ugamKBBBtjcn4sRdkUdzWRvIcUkw6GrShdFDH6d2smRqTyAa14Y44Xx4qgcjdP3wt+tllcUvLiBjzk9t207JuTOJKKaGMBXwS0pcMkdqNX0FYUjiSUAQTEPrldMhFa0cAZgS+rkM0Q6ASm5m22Esb+vatCbYZSgMARdDZI5kG9yg+9SgMoHyDWVVZ1Kyuzcn6p3OYEUAdP+ozVnrtATu9MA0S8N4wQnaJiovKF+gyK+W83y+WTLYAwKRQV5I0itoq3iF3/N0ijvSHDAI+CvC6FPiB5Q67hm4A/a8HhveDwOnGqsdwOAWh4AqiaI51YzrdoX2Q90XHNwka1yXlKSbggg+2WC89ExnYtyC4WNjF6S9Nk1Zy5iIgVO9wYxQ5eFOR2+XoA6mqVihHJb2DLHgGCIQCejevigAaXzkiDrFTVhn6pzLgaVXGQrpOp1NbxeDoxrc6RbEzy64a1RlnMPNKyJpYAs1ug+BsY1MCbpm8tjf0KyPkzAx+vfChAqTaA01hDS9FozHvVs2HpEouM5EVKlkyR5PIGcCkZsvZDpJC1RVykQzUFXZTC1+zjmmSUYlU4EsdfO8+czqs3AnhoxSUaYZNoeqeKJpKeqQDArnO3wRN1zyQVYNSOaDqkMLP4TkVPtYP6tibQpJR15GY61YtdxN3Fslw07gkpeGOvMC/CZq+OynRDVTiH4suf5gghmocXuyJtBQ5EUYhY7ELHw/HzC2oHzJL/WrCdXI1HOjDrNOkLpCc0aemdU92LHLCa1llvO5HfOAjDpkOC+Ep/VwymyvmZ6l/27OfhrFKtIYWdDdMWYg3xRLAI2+QKmC9AJkYH+Jlhb0WHmKBa3aU0HfCZCmy0p0Y7WDmg7gMZt2HMCHQ5ZirYoB2ISeJji0RqOoxEQEZAzPSMdL6dDai1fZRGbXBLVHnPS8bLVV8MKPHx0TkhcQtIhsg3ESFljaICgWUPwcKTTrz7o5HNIg646s+CDOnjsfVbGA1SzpHjbmvPImudoVU2fwIxnL9ORAwHga64iFsRm2aLiv2ZrpS5DckRMG2CdkzOIMs5A9WgDAWk/aJzQnj3MMjSmsmxks4dVeXlxJNOh7nTC50Qo6yIkrQzhfOPCmkySLM+JB6ZcobdBcFCZxGp1AipmbPpbP2H9hNgBzfEzAlkD1g4SzJMkMZPepsn/XGsylTa7B8bDE/QimZlZ7m3gqDQqiuKHhNrJMZZM71vTrE1mcpIDCNZCTZnyHL3lAbpJ1Rup7U5hMKSTckW4JTobudPSccmAxQVdC8OBwIS5M1pLR4hhGdcP6tlwoWO+yAu2cDQEztxQVvURkrQQzt+jngPk/syItn43p5lO0OtcUGCtjBEFANW9zlHDSCk9K6ZZss1qX6cHt66VFKuGJKuLB439Y5La2QLip2ckrntIRYUsBcH6c06urlyZI5XZlYq+aa6XzHBXiXKluA5mIUS6146OqLNTkzRlnFmzegKfajuO/mPG6UjyQCJsQBqep7REFDhclyz7cFZ2wkjEmlODCm6e3lCRE+KSnquKvIq9uxYQ1Exd8SBba7B+oB+ds5j9AWsnWStzsqYMtnWKTF7EZ8ZFTy1bXrdqMmUyXaFGDpvMlXIzNUMVI2hifHru2dqYWZMoGUbCpnSJm5nUikMiosdxIqpVASeF18if9c4IWS0c1resc+flGJdgXIFrBF4t0F+Oa3C2RO3mxHqsVCwPSAMOV4xQzAsACMKZL4TddSBtkuwX9kSp5sB0lVGltkxXSbMTunyM1bQvUjvqrqdRRr6nSg83zc7Y7ok8aJFkkJUAXUnbaKa57kS9DELSieqO8Ng19834iTzD7Dbk3+WZq92sFRMTTsgRNWpfJdXi/l99T9a95BpnnYnqdNxRM3xRvmddWHNA3r/9qHHm3F8aEwJf2idSle02oMrJS5mgGC+RRTTypkJyENidOrd8mvuT9/GmPmmutzcLpkktha2OA+0400hPWDt5SNzhY0JgUKt2EI3SQxPqzoemRVpoefhZRxLBYzoFta2nRERC9pS/QnmAx8raU0HplGyWy90DM82J+GyDlLMToxNQBawl+JSNOQ+7JTuyB9mGor8CcwjaR8CUhP1uxVJZUM21DrljNEdw0NQzqhvCFywcWBcTG54sTuOshTm4uc0XM561yNTxSBJBDoVTMa98ahIZ8o9ebQd8NX7f6ahZdQGwgZpwRjiPYAsmnUQhGSKswwGHas2hCsQN6uyPBtZOd0te5KsmVl2fVlFLGBy1iWwjuOFbSSP5QEjCUE4+5XOGb1ykDFVqlXuSKYrUM+fAuJ4Y4wX5+acfM85S1a6CnrKLkY3wRNEywhVogrKz+lUV4klBSzCDZ7Oa8w1Y93gP4jbTSo9DEu00hXZD6x3HeaIdD/TjhNrJ4n/beEqlzIHXS9E8+DrCoVmPfZI4kqW8qUCipTOHhgNpoEBYLfE1MgLBOUKqs2UEXoCow4y+tSLkhtaDUHuRJaCDB8FuGQu34OKobhAFjqPDYfDgfhJAoGMhmqCNwMIFx4XAhCqv14R1TgRbICMCr8WvdAkcPRCmJM4jgBi7liXqKok4L0wfWHPtsUCywbCfechdH8KqHgXT4MjRNiQfuVBZ0e14t8EBmerWEACfI7zqyywj8myt6fe5k+w5pnyKeHDEzITbAOI+T19lWyOIymfUYV2YXoOXF3d/nAAy7vxWCJQaAIxMc1OvVuhoVZPOp+zfR2o4+3rB54uDJX/DAv92nzMPK3cYCiPcrIuwnOP7yh+Undv7rjH8TkkjsGJl2ktYcw1yaPnmsLmLAjbxrTX2EntDPzve3088zgMtV89Dubp9zJUey1g9+MJzOGws9OPE+XiDNfJwJa1esu6wWkq7JtwnzBpqI3ExeJZPAIakVqAUwtmzAqz13TaiVEuuqhChIUbwEIGe3DpJFAsTrVEhfuVeEldAukC7Qk7NlFqAlLbABQJaRoCjBX9OiAPL0JvlLpvAuByXgCNUYPRzCJgBEmTbqWfEl1X12TwPxZyLjJ0ITGeLotD7uSKnTjJSZlYR7DgR9PGkJ4I929ZyRhXANQbnhb3OUQEWHAuTQ7KKCMRcWw6Hhz8HCrRS4EmnqCmtKotnRy1LLNbQVkwoISBk2a5BRr49wQKiyLW6MpyYpUum/kGH4iqZ7jrgC6KDcVfuzMjnhTm4Y4Z7ZrhfRY4frTmlGswkhUcyL9yL7pSvvr3ldoU7bdglJHAzQtIjbpBgESU18Wzuc0BYjQPX/TxwnAfa0ShQXdu7PKH2elDsXRAxXIE5J65r4Pm68PH5idbfcT7ecjqk+KRJjAcQauitLvcGiDxrwkjAqninIQK3gtTv90tEE4nE0igzNDE1kiR1mCAwsVQhLTanNSSwekAegpnTNjCDeI6X2UWQrS0IGoXNwBQ6ZgB2EcmOewC5Vi7M6WkoHNXihIrfq+oTYKn+8FwLyzkSt7KGiwj2LeNuqyyk9EhGt8hB+AY6dYtKE2+WUKW5SIe1M37BXuOwOf852I+svVvrmWVFOhW+AQ7K465Z89OdztRVeS++ns3kVldY5oqRrNqQZU+m3vxY8JwTnkIBr9AsVSQ/QUKKjwkfa/PG5+ByaAlPYPAHjbM4sew3JxCQN0nBm8TmMO70Nm7D5D1lylBN7d+tnt+pxY2wcSEMvStnOBun/S0/s/4TbTngy76er8AYF1Q19YQErR354DVryi+keC3dl7h5sxIUCDbdaRCyDTLnxdonmO4WBJ+NHRq5JrPkC+GiDJMrAZ28fBOgB6SzTwYNoAN6MBotODm4p2JqQDt3xCB5uaFBKZLLQcZnB4TTJz4cSxamXugCiCtXOTagHcD18rv/a4YxSH1scqOfIcWdzWjNPIYtHKebQqGtADxHtGpWcd+ZxCG2kPZGaUGHn7+vHZdRvUxQyoVgJAGpav571fIowywjT8ZP1AgZ95iEAysHIjiKl9Vv/pBaFV+ZXaXZsNr0TTbXzJpU0vArMmp9gr82BmC2pGLmZNDIEchJBlSQ9tnUIK1IvP+gca4M3V69pXQuG/jJEZvydvnM8iMPJ4CSH0TE7wwXyH6TZ5MmCQdmlPrvvWXEPND7wYU5nQPKrXFcDUKGijVFlxR2zsNCHRu2UWg8LQe6c/70d8T3dBAMQfumQxsJzxpJBsgoiGy7IPasJR96gTsKrrFgC4ngRSrUH4B2AQ6gH52SkA1AV1jPFBuB2dhWsKMBZ6oMOplF8ZRUMjgQwl00ogJ5LZLdJXd9BNciNhes4dCumC/kVMmCq8N0ZdpIBs4emtiZkGx6ZrGQds1Zzikzl70OKeo8+C4RvOiHchsscJNByjmwbLBdUm0iL18JAmBcV9aGpRSYZ6muOWtHFwou8AgHSgz6Poj1HmTXmvVzmWHnBJBEKr8Xj/x+fwjKYxscmkt71hoIDEwMeHAzWxXQXGdC0e49Nf6PGidxm9hUre1JE4pKvJGGEGyH5FFH+bPSqgX8nqkEUK1cVPH/NUfPWsJaQztO9KOjtZZRMSlYmfZ6ZEN7H4rY9UtNHkiR9lmowDONLSPcAMCXTyS6W1MiXTtsKRDsZbkLPH+vTVLCMd+ZB8R8G2fsqCxkKB0K6YKlDn0YxIARjtmA/mjcULa4sEl7xzo6cByQzv0g0oxrEV8CyIA2avnG2eGvhZjUn4vgRTVwt4zMgF4KO4DxdFzP3EeT8plUUdSdEWxAJOpQCqdaoJkuVQ9cEDkBgzzMN40zecpaA90ZuTLqluP8uty2xsQ4o0oergnbLBVNx/gKQd7qAjXEfG+tLgOs6IrNECo49x7oyB+XjufGTfK9lyHnNbLGXQR83BGysGLA5ydcXog24RYojV4SE+zGKwDI8Z+KnDXJeBfNiWpk2XgPoFbf827EMgpKMNiwYGYKs2L/5b20NQ0BWaiPOeHPJ54X01UzxdENj7PjfDzIhFEjW9QHaydYEtI7+pHbzzIldtGbOyk8NtMjIxsjYGuG3jrDRx6xSqWsJxS/FRSSEK1CIDhrDUbv2+l4tZ2EKCKHhqkV5OrQo0OR4slNcLwdeDPDAGs5N8NlNEAOcHMF3zJhKvw6IW8PtLEQYyGuSQOdBDTCAb8mdXuEz6ohtXfcgaA6vkTS0VZFsqwhoVhiWNcE1SjoHD3PSJ0HysPQgCRSSVCFaDlWZlUECX2RFVX2UOUSDar6tNwBCtRyZqL+4YJvb29JhslyySmpEpAcRqhTXM8h3U1OVAX4eKt1AkHiwXw7q9Jo54Y5FxqZGmBBYgEDX+Qk1QtzfML9Ozw+EDIgZ8AemaVlZkOKKv/sCObBP2KccyWal9MphRZ6Ep81F6FWyNuSEJU2gLzEcPapNCoyMaJFzlqKs8ldLMGKZOGOMS7Ka6so2EoAACAASURBVGYN2npD6z2nC+rWB9QMj37wcGhLFK8nQ0i/1CZJgnDJeUo+XDPJ+lY3a6Ma2XvhbqVL6YwYQcijrIgf4uC4XCSLRiAcOd/9yhDWXNYaJhaaNBqdUvV8IdDOjqbKVFoE3hrQOEOr+xoCOhUrqYzSJtAd0Qb8GoyUTpQT2aHzmAidgDraIbnpe0DQYJpiX/mMS4zBU5irMBoin6hcHiVRo2YIaWkGPAbhZYxZYyIzMFDChsG0TGIfGzp8M9anWVt6zPyhwdQ+dvC7o15GZTK8nCV/OtCdocX9tfjyyhuwzHq7MJBSR5FqoUkmw0nZXPMFxCfgn4h4AjZgzXMLX0Vt7JqvlAJvB/Jvf/xN43yt2O9FIGD0Jjon4ujQpOHJl6/Lg5sPrybmpShWWWOYKWJxA3SsmVWW8CEng0sbPUzvivM88Xg78e39xHnQ+H6/HCdQYzqZve6bWP3KZDinSh2Tck8qoWrnCFfXOy0WUhXT4TMCOntjgqRlbc5lskXA91QjR56pocemc2BP86/Aer4AARo6IIK5BsrZyNkha/GNDB4ceCNNcJG8T6CEdbtEPYfycjVSFvtQ+yR6mEI/gCejagrmEswJXFdgLMe1gLEix8UIjLASEYh4vtesNdMpUl4zR5gFdAoZDfn9wnQfsh21ZI+RPQEa61p30cTXTDS2HOzyjbYSTLpLTdQ93r+/jb6MskgGe6gCsfdxmkRuXOMZ7mZoGmhwHLJSSm5RWFsGZHxgrE+If0LkCesLzYQ83vkF+EIlGbJLLlz+Y8Y56/ukmEI1mcIHPbNWV3e4KCjnr1nPlZDR3BFWQyCekopCwSc4eZ8tOafNOKtnObspmhHNgPCJ6xWIJRkZG9S45bpqBKbOZMfwrttus4g1AlzjwlyTPzvnRNVSt2fGfpAFdu0VNHHD/aFprNkigXCPCwdr2cNl6ZoaM3kvBex7qgu3lfmgQxHh6sLlJJ0/LrSDurG+CNzIUjawx0AD8GgNr7kQaxahKKOJbBL95rAuqvSzb0cwaF6UTumNUz3kuvI9rUnu7vAgwd5rYoQ4hK+kqFWtmPGSGEOp6W23DhWnx6y01e52RUQAre3IgkDKunCKKZuxADL1dUdvHZ5gTA3KixT90aCtaIBpoDketqX6JHvQAXJ2jUbYTXmG1oQi0K3BHegaaAh0eBopEFhY1yfW8zvEX1B5ka2lQcnnsXiWagUisKmKu6a/1o8Z56oMID3W7en4MFprX2DtzNXds54MACujkua+xxsVdSXKFiHAytRXQHaKIadFuD0bWVOsObGENeF5HGmUuZNEyAKqlg6ZOJIrB2UTyqvBbnbPqu61bsFzwAkF2T+rqIfbE2daJysfeAISCEqGVJM8NqpLFILEJKY0nukREIix4G0gQtPBBObr4rhZDokTlY7bAlMziLVd1kor2GpJ2B5jMqVdjHgK9q41f55UuuM3OYCzTgHXBYwFXQ5M5/RN4g6OVNFz59rEvKw6cgs5xYLIBIU/vxQ5dJ+jipRfJ5G+ZEFA8pYLXuIS30iWD9lmdIoF3qwEktQDemiWEElMSLDLin8H3VMzJgw/iBzEAIcCLBawXsz81IGYQCwszJxH/uRMbKwcDUtE2QFMvpdYRVcUQL22VPLzRyPnygkUZIrKdgdzCGF2wj0XIklop2O6dTtZJ+y6LtOrgr3JmzPWf5nqbR5tcSGV/FX2PqkwcJyar7F4TY03GlWDCpL5o7mOQdKTr62AJylHUf1OpDkCjIisFRS1UarKlGp6R+F3ntfilG+sHq7lnBQjrQKZHtNeFxvh2pgO64JfA+6GWtU3n08EAmfyQZmkYtf1sRauMSiU5jwA/FyIOVPOklGVgGGgVPuokCconaDimvLd+cYIora9eS2oEqj1XbZkNcPvzUJ4C0dn1rxLDvD1dRdJd2ZSfdONjjp5vZLPUUx3nV0MoTlJV0S2v3QPYVQpk+9Ba+sZo2M5JEkHwHUVXCIssbi3RwJNAh1ACyebBw6bCxIT7heWXxjP78D8hGFAde0eLS8kts6TL3YqzKpGz/sXkkPuP2CcJRbMF5NysqgCc4WjpSaPF9qaB0jTM/qqWoDsEoubLXOrB9BYm3GD9Hl2HEdjiqJMc3sz9KZojTVK+IWFBbNA054RTDY9z5qiNYJBBDZ8H+BKdStiog79lz8D1euq95+Ho1JnAAhyWJm+5kmEZM1VdVW2eoJTE5STZIi2lodxBrdqAwQ6ZGK+LpYMZojWECWd0hrJ3ZmqcgWkM0JWCugOZE82VvFOczQrUfKaiwQqHWybyF4q8wBTV4WiAfw5VS9qLh3OtkpNoGT8YV8zbkOojAAiWzxr3+lAUiVT/sOrtpSk2jGy1fBFGfsOEvmc7vPJEFwEA1gpbBT7rGpLlh1NjOSBFagFWk2FW79j0XCxoDE4JDCf3NQ+nlAfEF3ldbNGJuBYVMjYxXCgau0SF4vrB41z7e/LQ1quMm+QCottRs30DkiuaaYTHGrVTH+yB5njSFgO8Yli8jM62kZiRVhblBSIr4UBqsO3bqlWENhdKE0RLBW0xmHpSmU9JTBYk+kecisjq/Z2qQIWbas+ikdZVlrcS6yy3+LcEhBaK3YPlXlwRs8kZ4oAMZJ/mI12dQCafcJrAqoYny/IA0DY3Z+NpOMVSMOBSv6MBIRWBAkLuXrBx4RfC34t4Ar4xblQcirIT21iWA5O/2QpYJWRsP/FsSokWIYS8KYDJGmjCt+sbPJRl4+jE+TPZGPky7QJsLO04zgYsUu6JFNfZERstcLhi/PcSLCkM3DPYfkEr7I0K62flteqws1xoYCBUfNIAAg+YFiQGIh5wceL6ynnCxqTGkI5TibI8iWw98cgjXGjVtn54AC/wn80cg6vweO8kVmv0fkGulUaGHsTlUvKOCiBjwLO6w4GIm9W1HOgkVniBQhETKxFd3Oe7JttGD4iQZyO1vQeTtZk6iRIUaydSs18MoJU/2y/Ed6/243H5ouk/61atFDfOmhyX1fWRJZMFyBrH8Rt4nlQkwjMgz4c0gVJTIVYclDX/0/a125Hktw6gmRkSWOfff839bQqg+T+ABhZ3r135rgtH3m61ZIqKzP4BYIgjbjvxLabMqSq8weAgyiUlUrFujS3qXLKZlmUFCjeN/JNA+2fQjEIoDZFzBqJ1CZwA8QXllpBNSyldC6uK0sQ7qehrlJrjEq3VdxnkbWEw4yT173tT5T7Ocim6Fpt2FJBGMOcNhwVSEQ66Sk3oAjGZ9BCh7s4WkYHzIfh8x5kjIeGZzTKhaIiZL6B/EEnhbVr/wLqhtdGWDHiTpo8jzq5wp6tQQFl7QJE+TmRvt//u/39Tc3Jh+uYjE3oX0OFeMm7jmN4bj7/3KfmdKVSruaUh8MtEH0hkGToG1kXe5uW3BgyL6ao4bhegdfLES9GWCjd4QIjQfL6r2kWkyT4Ia9PZGPqdtTBoZrRtK/R2BetIqOJQ8+MMjg3XI6klMYKrZ20Zace2EdqR+MkSwhmqLvViipgk6BAjaZmj04rynpvrXNwzFZpQvTFtkgVQnw5myj8iWIOQCcA5whca3cpVeA3sjjvOhFGDETenx64WQyiaQUYlRghaQ9SGsfA7bQ7oHvXDYxuLo7T+2h9KCPJ5KrJMLLFzpS7vi/ZkNW9haZCcLyqAWdggW2t0s+q9XRSY6X5zdTVKoEece4bnj+o+xfq/hFhnStCXIPz7krDveWYZStN5xL1QYoYp5VsqjEwP6HrPzNOK2VuE4rPUebDqI2rXeiZAZrTG6bGiDiZDs6QjunY7SxnJSOzTpHOGtOxLqamawW+vgKvK3B9a2+KUm1Oz5vSCbY0ON+3T0/2cIMR6oHKOCZFU01a3VzXF36CKmqIF48uqx+gTCrwBqC5Pr01I1kyRPQgmk+d7UX5T2tDXAZsaqeS25toFMqbZPe70JHoxeVBaKA2tYmwN/J+0xNIf6MTFAJX66NUB7rZSSD5viCDVd0rhzvA2qyaD9WbBYIbGAMaPrGi4sh6zAnxifSyl5GQoVA2MMDZoLH2cS6mRiUYxDuOnjo7JW2S4kZPzMWZiEHXSXdHP/ZsCetHbEt7CBj1iyJqlT/A/kHXG54/8H7D9g8636xHDbgCBOI6MVyfqWC4Se8ziEkzWY6+8cxJmwH5u8a50XzgPUmc4VwFhBBa4wWmpt7ynpKhSCRe0lfhkCIPRXXBa6P6hnVyVAyJCO7l/OPr0sym4/ViSyUCqOaW5HZjWhsiMQghHEyTzpADyi3OGiN7HO2iOWOTUHWJBtFE/6C2z4AMeZy9AT2ymU1JEsNJ11PLhYHANJ9r0NSmyntoPd/lrlEtHo6a7CGaBf8lZtFtqPAjP9KVbG1kYv/8ADuP0wxo7rZlNO3qx/I+WDkNQtGsBzgRGlt1I4vaTpzCobFwKKHhFiQagKIdNc7rQxkDMjLGkQHE6tSU4rczLfenoiBYxOzGLU59WaVpjuQ6j6rSDC4kuDWZwczg0vf4ug4eMFccChJL6St6KwtJdP0A+xcj5f4Frx8EblxGQrsDuMJwqe++b3UiTvFGZzElyEFkS4MADt7Pfpzbb0fObWwCf0p6hD9IZ6rHFSBYYaFFrsk0iUZIlfNlVETgLkyukwtsphLeCCOwkfXGv/afeK/A19dC/uMb+xV4fQe+vtdRCLjzB+/3LzgumHF7NiwQksrsTmIkZTALeLxIcfPAiHs1DBEX07pu7ccMpUXDsyTLpyBd2FIGYaSfAY0YZNNwas5pkHeDPTY3GIKSHw1k3/B34kbBV3NLWhZsP9ut959/Iv54cWrFjaBMhCIly42vCNzvP3G/N7INX+vCtV4sCYrg1vKLKgVOVQKArQl/BWo7Ufmd2HfiLlN6y2A/6gfVRB89aDxwHnUKnfHAURR7QJqRFFW54RNNaHChWuw5tIN28rNSS5IqkZuZh0Potfi2mYU7t3aFAu4LrytUb5M8YYcpBrgVN+cJPCtreM1o1w3fv4D9A88fXHhjWeLlhcuahBDXaFuTadVqRcxQBSdz7JRbs2/VjMyv1MYAcmP4vdm/y62FlPNch9UZDVM0Ll9iwrhJvsOVXTnQEkBWTHvSj0fHhW0X5fotUrFTkOu1HJf6Wy7m/M4bdb+VhjLKuYZdQzzato1K1oFQ8kJE8gerDXH9/2+5hXDO7ksvdTGVNSQg7Zzx0oxIrXnNmYxRtie0jod7HJsZQQECSgunEEtgeKAzTW8w2CJd0rIAT2Bv9Nb69k1x6k46N29onUVrCFjkCvVpZ4u4W7Bl4tzYlTeHqnumOlRjnt0eclLTWHeb95MP/GEqF8xYL0Pkchmpj9HmSIiyBoOeTjcpnl0fc7VzH0ZBwkXCgto1autNadQqEU5vUWmxx/p4wEWmzr+53AbqRubN1HX/IOpHekyJVxReUVjepwWjYpaZgP4esRDrMUT7CIaZdEikjmldxMFmDHv/rnHafQ7W54tOszjsgsGxEVhdAhOeNMUwqc3D9ufvG3Fn1SWZ2EjMdmyyVeL5vLgSHroZDXD8ylizHvi8bgBLUY8rAAcJJHzPh3LaJP9DRtETJdSfaggQ6jn4LRoRf99M2JjqrZkXpHFOfaWaTK0o3hWlh64+ZBIxPXWX6ncSDLiaAVsOcHPqBLlhSRnMdj8khOwN80sH1piiN8kcay3q1mSibIPrEBaHk6uQzjbASUGVtAVEyu+5SWL0gHROn6mFszwZ+i9fv11sngGF8MhWmkOCcY8bjwh+f/P++oAtM46WdTIVZwLD6AXn89CJmxnS7Mbdaq0Y6/8GtZGiuEjL+w1H4RWNVxi+FnAtQzi55AZFTZdqvtLX65KyRgwg1Kf+bpVE4VwcDUxJwfZT/rZxgjiv9ZiaDE3GSU/v8HZE0UzoLUsgwTygPj04mNLjDhg2vFk/Xh64gjn9WozGEOI7Y1kR1NXhWlA7wjWUoeAR4vwm61CyVQrmX0J3uUKuj2Eq35HXqAb848/TOmFKa/LuQPdGO+vX4WqOQgKHwTTMrOhpMnQeTB6/sxvSyTDqmZe1giUYNQLiwvKCrNgesGq4NsD15oLj5dpPqW3XnUQla0+vUMBYGcIW0+QF8qVtqUR5iOXMBJ62EtXumSk1GISUvWrm/eCfPCXy5HMODkBUrZp8qJR1+sdnlwwGfBtwaX4pxxRlW3TMC/AezSAFkWoiovp91UnIJljgJkgumE9H4rLGlwe+wvC9Gl9r44pCRGJdg+wzYnrq3mhOeC0/2cCj+PDMEFOZVX3Z9mM/THd/0zjzownz2a2cj0Zjw+Fw7F6EjeXhSEIQvxL0quYOrowv9n1A+toKk2ESBVvLqHZwmSh4jvUKrC+q0vnXyF8WcrP9YhZSOJCx9mMINhQ1V9QXqmZTvJuMyM65PDdaYPxHJKDRkdDuBwnsfn6wwe8ZkBb11D1zN0tO7vTtumFYTPFn+n8DiJJ1ALb4HjELjMQA4nZnUytcYJKVUnu9bjUNdZPky+gcT7sDj5M5aU4zxRUVXDO3fB1W1h/GCHw4Kvm8yVrwOOrlhho1xtY+m6JkZM1qCZB0QN9H7ykQFAGuUQxnQen4cApCjBvk1k6Nm6oxsVmqrDmVXQgvRACvcHwtw7c7vmJLnR/w1YgXQUwUgGSt2sU2GGDqvPG+lXAJmAlrCGVKJ5arxUXPv3N2rv//H39rnJNiQV7pWY1QuDxQ879OpAWmmpp0ZzrRZgTlF0BCcUmyvhrVb6JsS/Ikr4XrFbhejnUFZe0jqFL3onJAItHGNehtrf6lIXcKZXSYXUwnwLlAdjd40k39URzVtSft/jiqOmAlIs/A75Mmzn8HMiqgEoYSTXFQyv7gXfY51rPwiKCJJnecr9dDw7vxtIjcYavg90YmkV9LUfGaB6f3pJwTRQAvP3V6ZaG3sX9alMfkBEoPUel8TorfsENs4H39jJKs57j2/fPdPd9jxoykdJbCoL6xCSDqE+W6n/t7XJmynNMt6Gm7nP9TAIAir3ERklLlnquS8v5QE93INgsb0FLPstg9KBPj6pz5ORMPtdNseq7jhoj4hDsBSBtgzFXSAO6TIfz1x99sGUuEffYGeV46dRgtmbd3UmK+Cyl60jAXGLkI7CwHlhmiG55q4hp7drsaS+vkzEOiXpIWmXTwMFha3MjFesOBLkfejfd7Y++G2wtfX4Hr+ob7hZ3ijUoUbAxiqGSK7zxwXc/p1OkwPUzeYVG2Jg02wMAw2b3182qio07kZiSQoTrO/kYT2GCiOs73d9VZlmQtFfRNMeihQLrYRZ3FNejJ1DVlOgaHFRH1yy/ccCKwaYAU5ffQ+DAKAqq3j4FCosp2jI8GzHtBYIw8xhYZ4WCBky+Y+DndT+Tg6WB2JHrRvMJUNXMRj4H06XVORIZNo0+AkbO+pqMk4aUtCbB1nzUUDkr4hMqG2okNrvKw2AIrjaSNuW6l9YdnpnrWoGeIketcBEnpu4a5d+7H/5SJ/kfGOQdx/sf70JoCmIdYyunpPRNiyNQAH32kK2cqwIrhvkVli/XFojsAmCMbeG+iaZNOwQHbbLswJLvQPNZZtRv73sjdQHMq3+zSTVqC/IOnbAS/JACmmEov/5EZVKkWnJM2HhsQzC9QwqFImMAsmlXBOQcoZtNZfxyoFVgLOEBVTzvGMLhVb7ayusnGsqBRtrYGLThr2y37SJEUkvtl3IL/1o6wCwhH2RbpwgAsjVQNLy+H9CpD0wrGAWIwfc3hMZAdwxPXJ5o+Q/BDDeI9rH5QWYCtEZfYN90Dz1yoJn/mUVP82pw4pONdx2A+CntYMXsJN+7gbJAHnXS8FxqXNRX2RJLJ3DAruKdkYRUUpIc70TGEhE/W5T2R+1mXOdv5uN+1MZGfd6P/X+r27xlnSsqj+hFRgjUNzfrfUofZnDQq2QD0MIxSjuCh/KxVWvVcVmEDeG/Gfg/HKy7845//hEfBohEXsC4/Wj65uXn4RnKOUuCS2wWPFw19NyzG16kVPaJS9iGBqRvIi1JTuif6MIWtZq3JJj4/qe42RRYXBE39dGhqwXWy4c/AMgxM0f2hl42sI9fSufiyIjHsZktFaLFtpqjmTqMsiGAAot8/N9X2wHtwXS98XV8wLIJlWwQDCynUa16x+HyHQtgmHeAxHftIffGUA4PCHpS7x92NwJudJ/5IvEw92U/GghIhhIurJjwx8/BHIT3YO+7GISYMFbCml6rXuUZUGA9tMHSvR5G/slBWQDRGh1jQl9KcCU6S1hGLoMbs1FdJDMI9UdQPk4l6W/3UT6Y+728Zp9VHC6IxKmX0KAVoxbq7ARtsGLdoeXFxcgTc/ms6gNngAdSxrzbtUWRhUg3cmbAfRhPqBqmVYg5YIkmU45BtNlCaZjHqqnbTY6G5Vdua+ecsT8UHHE9e6UyrcKP0oL9sz0yaprsoFNPFTKrap4cXDnjo39TwbH0/S4A4dYqHIi8KthgpphbJnL0pjvedZ2wLt+ZX4diZ2D8b7y6NjXHe1swFtsXYMfZO3L/+hV/2g4gXln/h9XXhz18b913gPhbW++xgbmRu7MSZt6hubNVWHzGO5nfqLxI0HuFxHVx/4tynJQ+SmtNvmnrTJvWtU6cJcUOD+AMqlZ5T1tON+IRN3dlNJNugFk6LYRVkOhUp+9T2bcyAtRs3AKwLMCNgRd0yP/tax2zVH9BbioPOAixBUhjFKOp/5F3nfv3Vx9/UnA/ncbibM1JVRTYJU0yCLiG3ZhhlvvqITPR8bo6wRaN1R/TNiREZrs1DtYRvw30n2oDLJCNSoKqcQUTzIWLrpoBoIHtKfvSCTOkRopC9EfZQ8J7iXDdLXM8u1pasrer5jtaEhivCUiPv/PtMxB/9HisZH3ACBprjbv7UpJMad5V+t6PfiXbCvRUCeGLB29iOUu+1d4k4pLZJgmg4JSHwNtbi+07cfqPB5n8WD9rWOFg2UFgsRWKyoGYtq2J5HPTUeHWeG1sW1dPnBICc5SrzE+hWqn4E1upp20wFITKBT20rc5hndf+8z9d441V3T52KxrX8lCkG1Zu6inD+G/KGoajzLdAxlmP0oRj7WRKdqDnvWdFT+7bZnZi32jx3PeNRHvq+B8r4i6AJ4O90a5WWMaqwz5caiK0quA1au9F4oTgoQ9wyE3dz6PlJh5WamOsNU47xHDZLea8R6VJdOt6q9eaVnTDtETWu2aCPgyau87NFwR/KGzZrqD7A3zxgpXO6bYaZZFB6+tHz40FymFHFvT8Gx4/euc33Kc6YMT1XWus2IaEOaFCD+PZTZ1amDEP9mDLV7s7NLQVYNmpzBG2mZ8gRdpgvyo/0wk9t7F3Yb25+rua4QbaEvGRQJATEB6gH1agf6LJIB5/IbSn1n+fcOjtVk0LT0KEUdKKngqbKIyiqPKN9pgGM7mnJPELUAxydXimAkZ4JhYkG4GoRhYZLXQ4lpT3Mfa+uLI1nYYj0YaGeZkjMTONfNvdCYnMHNGJ9enqb5+R8Moj+HhL6G1HpPL+kYVxBYI/ln9qkC7tuRAeql44YH0Rhvv9/8hP0TNf1Qmj9vIMomUunNSQmPcJiRMUEtCBYdCdrp9bMXBe9XNViDSZwo9Hko+uVeej0UK0nODLSQurd4JRIz4gShs42u0VJr5t3jImiLeM0/NunOw82+4UCoorAi8kgW56cjkhASs1gtcMv6vxSXNw5C5oG9Kjq4RAO0hphC2ZUGM/cMkKTgXIJ1Ii1bUgfqEfhXVHQTBzbYeawBSEJioPePqms0NPpAet5z1/mgELnZGrL+V4fMTBrOdkZ7ueVX2uxnJJnGwV5N8OS1A1KJBnTPCWkli9kG2qRLYemn+j42sRBVqOWbS4HtKnOp785Qm4eItqUzpWfaDocP/mgk+afttBEmv/UOMcTQXl7n5RzxLkS1RvAggnQaMGTM+9HZW8KJs/25PNgfCKn6bA1qDg+TmF0hLTJ2gKxIONke4GH10XSFm0OwMhmsuMgwIHl8zFOGwchRtOZBe55cIPici6VD1tpkbw2TKsMjlGmEEX2/eb7n+g8fWPyXnlf9Tv6aVZUGLzobEpGyg5PYVcx1a0QC8mAcnF3iUbOiFt3Iz2V5ktPyRI7+e7vbCLjNouNRBqXsTLNlVKiM8KfLN/GuX0o7dnc08kMlHV9tENcX+O/aaRKI3iTto7TZDT9vIP8GqlyyoRUCrBeVX+zlcYa0f5wiNCgaK76Pi47JQft6JFUYTZK1UbqBfthBUFg04ivnXbPpK568inEHzry02nAqTd/0zhHPoRviJMm3S2DWZzssMDCjbZLNSkBAo4YOWY7cmUjTTeFv1zfx1ZGKsT2UO6scG+OLnkEsjgDoh/WNenAJvt2TAOJlQ1iSI8+NZD0ZGFaaz+enCnM4WrIuCYt5dKd/URZPCkVutDQpD4SwEYhcVrPc1hP5vCkR25x5k3rAFGjSeTcLVlgKtvsV3YL9CKKj7zVA0UIrZTW7vQECwQ1qCEikIj1aXXizo8dKAZtEqMTaXdFdb5rikb7EfHi8LmMiakC3+UQ2KdlNd+hrw/COQMQUGsGNWnh8/vOcqFxdGqxuCk76GlN8VVCzqlbwm1FoNJcigcgwNMIrkiAA9gCbib4sF0YHhQZn9065/3QoUCG+WRi5FL1RMpBj0ESvq1Ry9fpeFKK/9w4+ySmQ8MT40XpTWXB4iJZPRTKe5A9yu1/2XNjUdM3S8pfGNPHVArZRXWFQe/cgPcPF8y2vM5qIp2AkUKXhtyAEWI6UZNmNUpBqgZbDBmAfOCDBspD+zBTBOmzoIPgUEb0JjjSekAkRGtJDZhJOEoyKXOw6tw/PtgFs8Z1BSy1JRyGWa3IgwwS4w/63ECztkn1aw3BVhEckKzmEAzOjhPT4HeyjtoF7HakkHWe7yAxPIkZ8OLXccwqJHllsoyJjA+WoDOj15zAeRg7qsHOIqhBd2V4Q2wfQGg27HbYhgAAIABJREFUwg3tUXccI9Zt1WcqhP6P5wHJZ1BJzEKLLxjV3NRztmfvSmkjueRVuVqDJVRcjutaVDvAOLepGyf6TVYwHGl7nl+r32sAAgdNtzH2bgD37xknwMWnODeZh7ZarlYz8iQGANkbu0a4mLn+9/dLm6O1EkBhvkzwkX8cW3l3nhgO1u77Vq/Iz0P3opiYtRgYk98fg3yEjTlRMowWyNDZpE6lsLO78rRMhi7XGy2dUvTNhzcgjSIbjGks204JcnOUW+vgcSu1bqT7AYNifc/J4yHbQ7MrpkwNGmGLkdL6hGMXM5Ms1t4t4773g8ACUsLT8+sSKlvkx9I4WXLce+OdrIJ5v3nQ2LM3obAz86/6QIYaw+QSUKguFCapB8TYkfrbI096Ah7/+9FymX6wH/j2AdtcwNSRaT2lLCdNrJjlcD8qT8Uyw+UcrAifhsgzk1zD0JplU87rMR+1ft53H4+AAcNcTlwg4SFzqO2zDK1JndY9sckq/5tWSvcQkc9XaJxKGwAgPJGV2PUG2uG1EG2Ah8K4nqVydLcmgugmlfdC31xBYFgnHafXrTMtQeTNNOXAgtr9IgOmHJmmg9dyAKQS3lk6YM6di8sYkfgCQgufWsdcSO3QborGaVaKw4nONzjNAUbOcTwDHiHZ41KqRrIzXaibUhsE02VA9bsmG7pOhJWvfaKgamimVOTGMrVkO4toqaF6C7xRTduUQUndHxqlI7twK8Wd1X67Gp0bCHbxtOIJXLWg2m/unZw3MxHoWqcWt0MKMNWiZ938kOvx3P/jo6YrkIkTXGRgbImx5PjnH1/8e21UOipvoLQKYvSAm0a5nAuwruW4XIQStXLCKHBuNVH14/xlcxPcoLITgUW4N9FAZ7QQpnJEtD/HOK4LdymImNQK6bX/G+Pcp4ifjwEs6JnI8yy7kXbBRePDSTe4XbrMUFJy25XcQeEhoSuyf/jYE8bJXKbHnM86PTFTujPQdhVwaytztqFGjchcUhupyD81gzaSwU+9SefPo1Eg79Kdrr83SQZAYoWUwqtRvomuNqH6mjaKq9fXG1eETuwpCJQ6G9QB5311g0MKEsooM5uUxJnycZdi2wAgDbE/cM9UR3PbMtRGqi5u9r5Th4VF6l2N950ElRQ9s1tUPg0vA9htqi2NA/dNEoVJR9YUSbsKuxo+B62FSGPIBy2yBjMRQOrqM0plKkMG6dXPQ1jErF9w01YvAYNK1lTX5hlM6MmEXO0R4+6TpR0nTIGJHHZuOgEULucKEFfKzi0CkJjSk5a7xyGz5BD2J0NQ5mdnGop94DbybUuGySVgwyr6TeMcKPuJvvLgTV1WOhRGU0aQlq93PTyqrO8UTcGZNkH1IxvYjYiLaU/JK/nCclLRsrlpjOm0I3P0hAyNC2tpLUPyTbfQWUrsTKXSHO0a1o8YPD7NaUV2t0NpZa3jT2EPzA0FSvOkS04oIR2ZqTMbpJkpgtAbkz/qy2HLyDpZIOWOTG22RY6jMD0CR2Zj70bXOCA6id3kBqe1Rq8e4ImykkZoKlvopjO6G3+/Roa1ysPmRgAwtZX4vCYCcnu2qbX17xnIgDyn96di0gS4jWB0o49qAU7PTyllS22B7wADn4/a4YCN3B+jq+8NJFla1mJWYWRCZJjeHLpQFCS4ZdrITR2kc5Qb5wyftHnKJpUVNiN3TkOks9T9AwXvlAbIWbIN4xO1/u3zd41zbrlu4vQrR3Lw7LhQCjU3EWrGHhikn8ri6Vk+rH7z8SCBxgZs9GgLud/46TcRSFznygjwTKtjxKmmfcJC/GQNuslDnmg3iS8PmDD3yk7a9QwXM5KMXIqFYcHh0VhLDeahkAVgzqFzvwSneov6JRsMatGwPuFDfLio0GEQ0AAiCdXJ3aODLNiMdynCWKOQ2J1ICvk8Ka5i+wFo7FMCmdhilu6n6ir+3NO5JcimkgFGXWLYUTGcZjsPuD31IkAl+5lvhAkjAKxZbsxS3YPc2hgmlFWMqUAjXaSCLpVJVjSGAEe0HI7lpIyiS+sWHl5znB6QAdK8yl3Ykk+Ncz4Xr8lnrJCOzqfeVJamYy2nFhjEugFSKuf3ibF2zq8ylcc2/kPjJBr5UI4eaJ5oOfVblH7Cjqfgmyd4s16aw1yOaxm+luGPi7k/JAKWlXxIsVjX1Rt3bnQWli+8XuTpwliDegTW9cJrfaE7MDsgmeLwEkKbyibHVueRM4VuWFJLQIloUGDYddLqwsDNU+bo4vTIWga3xFrfgBViEThYfaGR2nBNMMUMRKP1e2zJ04ZxOqKEgDfQxRV81JM1asoms4RMZgwRCzuBe8+8ofRcdXBiBQob2ZuHrZ5IWqWxJquHWICnhwm38z2ZlADL6tOKYg9UZwClYXOoDzyRbbbKKTJNW0IOxIdVUR/KBx/BI+thUz2HHSe6Cp+hS2kj8DOwlxhBdGzEC0pGTHYREfYhWppBax5cKn6LAnPGMxjBcS/TgG0LYQ2f+UyGrXvTMkc4jm0VCo+l7j1ZcBzX4+IlnOwGbXjv3xy2lrLzMU4efM3feSPWxXoJi0QBXyQKNOuCNWnLpOQ+y4NcyuBUvJtpdxUscLsQxlx/aeaR41n88+xcGbABLjqgHtJsL5vpmGoyeujtG7ASaKF0HFTQ8+mDmSmOEIk2n/UOLS9oqE4ie0ulIKjY4GE0TofiUuMse5zC6Xx8GOjHl7n4aO67erl4gKFnD0mSmoehz000lFHhiZwqsQ/FbCJvm1oH1iDIzBS05FyJ9LI+ZWtn2mmFLQ7k0OUqlrICGajjgEgzPsj/FEaF4YAsMlrWacDwYR9+sonB2DJmtbo0pmedYnSVWhp1yg5Xy27AMWDO05OhWCz+3QOturKFU0Ag3hkCKO2o9UXWkE/7ScJmPm1HpmTsUU9PFyAgSC/x/l0lhAm9T27cuqn8mxsJ746F8IXlC4GAqxd0rdAIVatG5MccHihtYA2SnMWsxhWO19eFwEVktG8YgOtaFPwKHtTcBY88kp1m2r+p9HamI8BSk+ndTLQMNK8UyE/KJEqePcedEyJyTuFHxJrO8oMVosa9eTMHa8OUBq1/H7VxgIALoPR0+oEqI0oRca0L9yZyaLGwzFBReN+bdMqiMd5Z3Ke5OTxNg+fvqx5pDEbLXcP+aaW3BJg4gFSgAPKHcUJly7ylxkMaQVM2xBzQst4wxyBcs9CKmZVyWqV7s3691fd8gMdG99ZW9IHTpqYHoDlMpup06i5U1t1x+Sjm1YPngGkmz/W8BjgSCSKvo1zAFHayRrblKlmCzKp7wPD6WnB/0WmBSDVAYA/Gerv1fO98avFPCt/P7xsnI+WsLRgnBuCkGlMI2/xPB21q1GcsxnQz2GtzK6CTynHy6ONYgelXFnY3VlyYDK66sTdTkAjHdX1x6Q1mRTnUs3y8MSblAj1qg01sty34fFTAeU0taN+jDyjWSrf4duWwDGhnWp/qqwGsuVrRdKiM88CmgW/+AE2YwysneFxhqVnu4ECwxXlt15KmrUh659D1DMNaoV+aVtJT25YcAzm2yQiBMcR5n04W0jiN1pykDNb8sdSDSjZJHgjAECc9HXeEQWQV0UpV9RBG7JCblaoC7BuqY3CiPjg3qy0tQnDZmgvVo+GFK9QeMbbphkrDJgBRZpJSQuN6z/Vyq7nKtm4pfQyOwTQ3bTHoCJ09NZWQ9PlZ4jTKDEsORpF71/+O2P6lcYa/RAwAZoh1vGU3GCVaUpZ+UTZEzVk+F02hxDA+GNYrC1tVIOuSVOEu/VPjmvOdCQC49xuGjWv5WQ+4rhciXjAA7/cNkgHEse3WIHbpgDsFr6kT8sGd7AMW0DDJCDIQ+ImYA8WYGwJACs02yaLnZzxWY1xGSAidaTviI71XKkdQdlK3BxwgImsYDd3ciSpH25IRllayMxXjBq6nrgsLWJGh1akxsuNcTAGMlto5QmhE1Z+lQH4kNWY8io61tD3ND9sGPc31PlvQDrilpjWfsTI6+xBhSwKLp5XV/DozFG4QQCkg9KFT8H41yRJfa+G1HK+Y57hhxZ0movFjaJgTtQg0qg3S6omXypFmxDdNNOVEziaTy6YuXdpxXY8qhKEJTinVMjMa9eQfkwl8ZAg/v2uchx8LSDRL7I/5+tDOckK5QvbUNkWRpGF+NKRBKjQ0BOCQlkZDZTTSke85INSv/fpe+P5iFK0q7HsEyBbH1wp4b646IB/StHi1NYY2UZDpmxmX3Eox8dRT3YkzHtT08GPU/FkXLU4PfDkuuwj8RJzJBsoVTU1nuhd2HIPPYXThUvoYehgpXiSj70xlHXZI5rytuni9LxqiiOxKV6t1PJSWkaxR53nslP7P1K49WdK0XJSNVj9ZAybVtYM3uND6QV6zC7n5d81h8PkOVUvRceqzWTY0yopzRkYRkOW6A3J65orkldigATtSOGoDleqhExyaQfaqKXfICCJxwUmcCdJAc8YNLdiOmpzaAvBATS8MwhIGF4ChOrTMV4QDTRpxQ7qQdPXw379rnJAcw1MNBWYTsqsfGViMmNpvMcx/KGWZwza/oapRJpDG2IN0j0eTSLQ1xVQQBWR91w3c983p/UqgiLZFFOvNml6mlOJDKaRxBVyYiADdICikWtM192fM/7qkAOHTzFDE8X4a0jpoiInMhllvz03bSg+142SI9nxm8rPnevjO2QIyZBpGDLkRamOob9lqfXSrpnmoicOVraHw67lTaoTp/C3DZL+ZpUP2wzluGQ1Uzkw6tzVdxEyJ0ctlLJzWIH7A5ELtt8YJo0rqKEamszGOcjKZCSinqY8nPUeVVkmA6W+lVh7KpahmCuPwQSNxhdpf9tAzY5gP4yT0o6dkS569w/pxR2MJJJIwdITS8AGJhB33c+1Zk3W06H8KRGDknPG734+cZ25c5ZI6xEdr1RcCFy5/YfnCU3k+3jP8s9cD0aoe7ifRWUXcMqA32GurJwVyMo32prKdWQkAuPRqJJ83DGstrGvBLFRv9VNXSnWAKwhSaa0oVnOODkmhGOVOjTk3AadHa96wZQhFy4eb6SDfVj/rk9YaZjUiP+1BUAWaUbeLjfEtim7K+EbtfP5sPVMkExXlva3FLZazkwpciveaqq2eAQGTc6jz51Gnf14PT2ROoK1Ou2F4o4fapvMx/NoWlxYFDRfICofH/PEaJyEOLeb9GO6fK81xolMmmOERwE4ZABH5g+hKGwjgNWcVatfZOrDlBZh1BB2RiBvwS2WRFPWUCX5SHscID3ZQdACz6ElJE+/pfBaoJvI7xglFsfnzI041aBO1aqhsIPbrpFzzgAQuHPHmdnBKA0wjzJSZKcEp9usICBDiZ2+VXNeuxPLCtdbp9NCxptJt47p50atm0sBjYHjR85BMm8LA9SkigUsx/az8EXvINK/WchaDMBpDq9JXvmd23+2k6PJoGLijHVwKNOmcvOnJ66FUy1y19ww6i1jw0QKYBz2bvp4omkRlZXClKDnGVuIf17QptKC3qtWQ13Wpxze144A66BmOkgPR75uQU1UnlTUo24ghnEMlUCsDskOTbKUS3fwbRCrpAp3m1MLjOBU0YlD3ttMtmNna8j2JDA6hRin8WVnfai0N/9UDsIuGOS2TWAPREyRSKpvNur/lNDFjYT1tL970EyN7ONL+X6S1Ovkz9jOEBBsETqfXp4DW95punose1SqESw+3moXzESye1xL7Ba1NXxaHuzmekyXPUP9YC3vd6OZCmS5Os0SwTUJ5ENZnLqh/ItcKw/UyrOWAF8kVYN1Zk7pCaetJH1iBlaQzjvTGMLwO6XMQY4jQjqeXWVwmXP3UW9XDpNJxtgfKnzRxJkROGgamrFMGtK49S6NhKd7rHMDhdqodML1QDKJuDqaEuvaelHPwAD4Xb/UiC7oPIl9MzSpCwQCUbn42dD0C5Uo53eD1KczGCZ6qOuepYWdkEEaHUbmxMYTEovP1h9M06fVp5QjYYzR7zjGASZZ5r32hfcH8AoLGWWoZTv+5Rdnb9bRKPqVDyYTiNVeDU0LFrNEmeiqi/vxu5HQJ15/a8RxXO9/hEvYaIAj9779jbsB4EYBykq0Uh9GNN4tg6tQ8/Pndt2biXH1VprGVhTvfR0V8Sbbizhv9TuQKLphZi0SBKden+ey693KK0/Gz1uFzRQLSUtAz6e1K+06Pkop4vOuaH5Wx5NDQSufextmVwItxfLxpjYmAQxIg8MGsBKid/5bCsiUzGYlSUEyEfFLWUTiCWjLmRSR3AC0L7Lyxc3+UG+zTodi64opESsoMkFOqz6enGfPQ7EFw0eRHEwvgiWGngVIifBYskbqS6/00kzm1/Tl/9pAM+Roc39vNOWBiNcVn63S6BKoIyIxmbk2GYsFVlUVnbx6k9MULZS/AL6LkU961aZaXv2vXE1xOFgP6fmXLp43FzHOe86yTxH9hnBZPpjUWNg+vgcu/cMVLanrzBk69DaAF2Dx1KzmlQsmU6tWQ6PW7mQap91ZPAxz9IL7Z5L7YCo6eXQuv63pSRIFAZqXB5ZnbxOk9zpNn+lbghIxoiZMHhT3153CHda0TVThx0wcsO5ziqYsk7gw0p1IUVYfHWVYkNiRnUaecqKK0ZxanR1qtCTie1XqQ554HDlBEmeXV8dRQPUhEsnHWcKv3WiOJOwf4PG7+u7ed+tKeWIpuHDCPlDW+16HHTd5rslXMGVCCy8eq2sTsSOGUjJn3m4azAlgmxfY2RG8MQZMkHdaV1xpdoMQVjlgLhcR9M6vg5nOCZq33b5AcyfWCxxfKXuAcCwfcW071kGlsevE6w9Wa7oEyqed9fC7+8g9jbiMh5LeMM/w6N3cmCqY2OotwoGimh3SQXJsoOz+r+x+OJQlCd+P0umYY+4AUc/H61IMtwwPJgynSioXXa3FjdRfaGhFca0e0dhSXccAdH9v3rTa20tboM/BdGqBtVfLVFGgONbahRnYZ2AU9AEwJqNBkPPrU3gg5HmedjVK9HQ6k0Gv3j3Eip1peF1L6P5Pmkgpc6r/V0Up6UmVgoP+sOnQ3soK0MgDTllfvDkDtrd/HYQLTQmHz9UR2Y0/XJv2WIZbKF2jCZOnro3Q/aeZDCNG9qyEZzFnQ/RuDxvPsIoALDtwUnXZFJPpcKlawzt4Q7UvtNGA1z8O9Hyc0UjntNE6PxZRqtvr0U18S8MIcnjNVVaCD3TNcIcdsmAzHUcXN2FOWlYzjp/536/xb4zx5+YHbB85WCqpPRWy9WTt16WYhdw65WwALB70FBoJ+0jVXrs4eF50An27qgYmnOSkzgPf7jaxEhOH19cLr6wJrw6HfObcpW586hOBO8dcpMnoPLUyRY/qbioqt6+7gPRmPmDLEs+BGUhemVBhDCnfXFjFgb6ZjUj87FcFhZOFxdoEgo0dDB3sn3rkRvrTctz5Qw5Y3x8k0dvWpMxktF6xHomP6mnwe43jn3mY3rFIR7jG0cFONRnTT1Uqa+jyVus/4lfvTXnhaJ9KYOlZIQ7peHGioJJF9nEirdl9rYcFxeeKyxELiMmnemWg4LgnN4JihYcgd7PVCjurc8waGk320FBtygK3BdjlUGVg2z0530DEA/5Z1PDif2lMqQYY//NuR06QjOZuhYFxaBAArFpAGKw6geiwNwT4VKj0kI5DZU2vMA+puWCZchfqktNxMvWnQ4NQA8DA6YqQKUfi53/j1/sWB3DD8449vbSjTIiSwpeHqN9rJmNX/CiKxdO5nZxrrQrVNeJP7IzKa8ihTPUUWxhrCNJrD4TMnpvH61s9MgVja+2FKDSjwhZkFRidruYmEwxo6LZN23JsAyrRbprVCytmTaqXAt12JvUu115AIpBLXQ34Aujf/vf2JxqUsABzRagsBZ0p3TUjnOBa5GAIxM+r21F1zTuwILmukb/7FwbMBRh72yFvGoIjtQmsVFALTuwbgiXKywOAOi4YvQ5RhBe8N03tXHT1YMh1M6n4OijvlISVYB6lt1aF8Uao41HHUBbaS6OfrySR1H97/jXGOB3CfFHOQNjHB2w8atz4m1J9KXu9IRmmucaVqSk4oV2/nSoLqPpElbXqtnOO0NpyFREhkbeR9Y99vhAN//OMLEV9Y8Q2KX0kTxw2dVEiYUpPT/axHYRDRm0uZWqjuDABTO5Wnnw8CB/yqamAnUincQ3ZueDdiUTv34bUp+ghu92mAGZ4JDnt6s1mcAPFOeD2zlMzjuLoCrbROdUzr6fXU6UW2TaYLzd6iRrJHizYpq5ekgXqqQYy8TM1zHad7rn/QVx3wz8ypJ42D6uxxQnOFdPw9P9+tFoTCuJzDXMcYfTXU+lf5A1Hr9PsCDoj3mnWj70JUA0XGFXedqFea8gI94uN8PNuAuwp3OmZx4KCvmMuTPezsYx/z/qrVdYHQ4MkOZVvTMqr5wn9qnMteSkH4CstCD5N/51gYvR6ZI6ozlHEe2QhxUs0JYlhK3KvVe9T8WwDkUzZ/dxiw841GCAcxeBNh8waFtnagmrNyHv+Axx/ouvDnn1xy5Ga4XgyNUQ2Ek3U1UQYNjweQmrSQqL09NyOBmdAe6pWVSQeMZOydzAzaAISYIwVFbPY/PQLYBduNQMDU1jkgdQBeZOEEGr5TkqDcJfmYDiOSO9Pq3dA+SaabpZqoMRMrrHlQjs7pRw++dCyPEb8EdYzhgbxn1klxaJ2UjPEzYTF26CZRZ9ChMSuRwZudlLZa0UQI4qTwzJKYEbTwCJ/sDXUAKwACFT9KK2PJNOD43hu2C9t01jqwN2cx7y3CQS8kghmbAkRa4W6n6NmUT/YYFdAwF/HAHiM75cH8wYRR6JoGw5l2kX8csf/IOIODOR8g0OTaLHgjFpj58yG5c0aP0jmqx5rDwiyq+UbeTXA/oAmOrBPyeSiAy6gKR+673iQUmctBEeWLnnJ9Ia6A+Rd2Ov71a4uU0Pj6ulAdiLTj9Uz1xBZTaI3wFz56k0vRQQteDzYO9lZhoHFOf1futF2AUDZqG5HRGHqbobxgmw7KR4e6Pz5Z6ZzQzNKJ1MKlFPLIM2qSIo1ObdfwH6gBaO7IAWHM+GdwkPze1IcatlcVO5wjdjbqBtLsZoqmmmBqxxnRmtaKvBtmJSB1i2oSRRxaH/y0YY4ivJ3H/Hz0A6y4mFx04HXqxSEVmDW6QoAMWxiMCfTE3YW92Z98b+B987+22C7hRG+cfuUesjvsGB5Rapw6PZbNW9brKy1X2jrq9H0yiEO1Ob/vL2zz7/uc7gOtjz7QhOoCYyZrraklz8spFawi02On+oI6xGacrAzR6aA2h7OO54xgAlkShhgB4Gb/rYuH9RUv6vK4470N+a+tmqPx9f2FL3vBelHzSJKTaUwX900j8BevvwHVuw9a2gVUU2/VwkWarnN4XTWhEXrElC3ceck0uPzj+6NA+idTXAr3PTVtNQguaTCYJYTSMOMQ+0TEQWhTDXFW2K3tVqyhMaiqG3I53DgTGkYQaRT10Y5bUdSQxKhA59iY0nkm/gnscQpm2j/AoO4kIYzUy6dRCjQyjocV7BxmzIF+knL+d2h5RrAx3OEdwKbe64AtZnhKFlB90MsQ1xde64Xuwg1O9OxKJBwIagBnB9IupHHbWmJh5FxY39JRs5c5HXFFyAEXlcscvwKoB4wTEJ4a/JOo85vGGTJRtweZpD+UfozGscJHFwdnRtGmChK5+dZDKBvdUObwTC1xyNNEughqhGDqiDjy+9aF2gvooPhXg6BFJvp9I0Cx5n/88ULENwDKe3hTuiTLUHcTSEkCBNyYPem6pmGKKuo8MNMqUXpTfGisg5RgFVAhOUwwlZ2UjhAiU2Xk1KkqbooMmf/XqeFjV6YbpZGva1BrAhR5SPJaoVBGZlABd3O3KlNH/pg3H7iZEgHQIV5KuymyPSwaZvJkUMi4gusa28bAYtrRx6HN8aSBmhB6/wiJ83e+V4IoOhvdfGG0DHvqNTrj1JmkE9de10zcBQ4giKQOANUbP+9frDGhdkk7siWmjUbC8b6Bbc1y1IyEBJUFiThMtDnPU4IAwFkpedoh9A5OtEjYxAm7MthB9Z+Jr//t46/pe2lqpQQc4+EgGD2k6vYAADNJQQbHiFo9KNy2FhNjYdbIkWg+HtAwWF93IY3gQCY4dO2uLdesMVLShrvqqK/98Vq44hux/kAh8OvdCC+pJzjPPFrpssN7kc+75zrVdM4QX5IRbMAVM0VIiKHy+Cw6IiFia7G+aufXJ6KWamymQE3jNMfsQiH5Qa0bB+thnx+faGJMwxKHBpntMk7DnY0o1ppeqq0GpFB9eanOO9kK+Luu4PjPbS262RTCNLCIAX/sRIQBhMyfczApqn98b4PrMg4abjRABLlFj1yJ6HtQltaaQtLeiHbgKxzdG3vnKUXgUkR0E/q7WDP+YjaV7bjLsQv49U782htlC2kjCtfoUI/XDeV0AHdOe6ZP6WGwo1Bo05O1ptCYzsLgNaPF2xAACTnf/igH/lPjNP2i0AMaEgKrv0Bii2hsrM3OSQXaOf7EsMsvj/KdUXYNZwJfuXjWeHl5FhhXtDXg1dimGgyAdfDwdJPuWk4JD+MQ7I9AmvDG5ZN2gFSuJmU71GzOqSubhx4IdFJSMrtp1D51HB1OpyZJtAVsQC+euSEB9Ik4GFAM0y7pZ2RJi5ugRjcm3QlDaFD2oUZy3rRK0FAzLYuetI+fq4DlTllSS4JCqamTAMf85LhdY1cRhqu1Y1VOzyHtIEU+Ri65CvmpqQmP+LL7Uz+a6b7KgEBSxXyETQCgKBiCbRPscfSTrcg5qQ4tl3MYY0mciaesxjLg+/UNa46QZXEvzJbGcYvvPPOau4Lzss11IR2Ocmr1pkopgrEPkLY14xxrPaQbN3g54HV6/wbD7lHl4FdaUf+309pZeW7RJA8YvdiktsAMywLPoGyrlcfUwYc1Ma2IJuCRIMVqZFA4/Pp4zKX+1Z0gPS+4QAcd4SunAAAgAElEQVRF7xPGg2u9EEhS7gLYFvjzLvzcv/C1HP/8XvDXOukkJ1LYr1uLJIvcRDt5UFlLlQw2dV3QADXptnzXM9oFhMj1os3pkIw4GNrhUurrNthkGEL9HkY8MKvzTrvi424Pk6aTCngbgxq36iIcllY4SRcZQKTBb+15UVbTwWiQQsmGKRPXsLvUUx7hKtgBnHxSNNW2QzKnESkiMnxgqsCH6DDPWFQ2saFORAadDDtOMkAh4AHjoL41MveJzGEDzNABOZ7Zz+UsNTKBn514byret1/w1yLDTRzZ3Ya7mN0ceqIRgXdlcQfOkS0QHKzH+bbSWfvgF9sEOtMY2mQJD2/9PzfOwTXF0iX1bjFsw3n4QLR14OZHf9SUkjDnO0mKjHQ5Dol7Utxh9/Pg6+ehjWbmaEljdrHztIzkwWrAF2uFP+83ftXG8gZwYSVgu7EK8GCaF0HCfpVj5wPtT7leZSht+LqTN/DLL6BIUPDRkr1ZbvgKgSqT8iqVHSpbGCz92dIsONE0ZTEHa9YmznarQTiPUQlW6A0pBTRatXOViyvGNDKbQE03aRyXZFWyipIkxa1bn8PH1QZToz/M2A4yw6wfGKUZw2jA8jWGuJDKnMZhQyVOCSQCGpUpw2KEpao97/+KkdeEEOStFJJ8Z5Y1VNLYPzf3m8gQqA/PvnSpisCdeHfCeiOzcGfjnp6VB8w4+dBOoghbYyaUNuTwjOdvsAi9scrG61qAadVGEV+ZhUyTZXJeeIGbABQBGh9R9DeN8zKyIkq0lDBoJbcinbk8BTmeDkMJnYpTp40B0rhom+Op6Eln23UZZOTqgyUjDQb0KqanfK15MvxaGKf9851A3vi+HGs14qYhVziimyp6raZ1fjaBTTUlwQjONOLUUkSNGSWz2E55v4lGvyCNH93w03iHatJSyupyQqLgmc8pkpdW6kQlRqF5PhHoA1i4ofFCw/5J4C7UbTBs1jHFz9nvadXwdlzO9KxyAy30XTzfUg3FBgXEiz3l9Yme1Q/87zGMIEYJBz5IEDjvaf4+Eedpw7DPOzXqRpNq7qxtIT9GAIU/PJkyDE96Wxo9g5+oBaS0jxOdSYS2tKFt+SGzmF8wo5rHyJDmVonllCTJpvA0IIfa1Pdd1wUJoqCaDu30c+WYRmKnAezcqA8HdoYvfsc4XYU+tV5FaAdvyiFuDkSuC0PO3CbHdlphvWehpCJp6iBUlVKaMdqnjqnm2octATCobukSrxN2UqvevKu1i/tWkHDfyunZQH+Zo7faMAWUsoCSYvsKx7UCWYb7nWgA39/fiOV4v2+mihF4v99MK5Otlr1pPK5rpLcFAEcIvs1RlmMhBZhh102haqW8aByCfXtRzyaaG77dUc5rhRcs7Yy6NQquthUaRJM7EPaCRciRJnYZMciR9jDI8+OhRJpohmhYOaaIGfiA4Jhh9HtHfpPk+Q+etICiUQFIsY8gxXueS54Pd0USscVsMVK6sg4uCOZqyAazLuicDHVpt7Ff7VLPAFUUWE8CewPvLKQZrAvLKerqzplNLu10JDhlBLAeNQ/sLUUNEImln/i0qkHux9bEXppsrGjYh4Rg56c+K5r/zDjZF5y0R9Mc0zQu9vYspvKcgyGouUsPt2XArYcI8Q1F0Nb30zgfbuWTATi6xeLvka3QNqymCLSD9DZLAgkmBs8oHfisfXO9RiYyA9fFp5x7029c08/iKj3WloHuxXRa4MN9DyhyqeEeamcQhTVtxA53pM+hVu8S2ucR5GC6x8z1sGAc9+QsG3bzdbEMcS22jWKjfpJDxl8SvjKyalxR2ZuIeJhx0CANI6A9lQpQh/g05420QZUtNiUJH9BpyMu5mE9d+BDFD7Ebz+epPCdFP9F0XPEcePa/KxndWUMrHa4SuNOnP2qA1O1MyntUa1sDMK0vXkM1cjfelbhLjmw1VhkWKOhVCGr1yZHcyvi4eZyOdYAxGqkyhmFLqd85qeLU1sQGnqyHkISd8uCvktu/NM7aeYAJV4RE46CkGHMzEQR0EObmH1Hn8dI6ANN6+DiKmLVvXCMgUGEa5DbMGCGkyaNA7m0REALpbfbxi1cBX8V+/10Abq6SX84eKjm0TNsjqOjwvgt7JzcRw/HrB4jYABbunXi/GWVDQrozLEw93ZtTFKKdRYTqqInyBrTDnQ9tWkLsF+v+kPugVhIBhPTCzhuxwPGtl1Kr2ogvUSaVHps17IfD1CQFJEzKeHdxqZI7SSHJOoH3QA7TIJ1XRZaJjAnjoZYnbRloj9ENnHDqBAJqdszvObgE/nRuPjI7k1Mn0LJJWFd2ZCfBHfL8NJYE1Ey6drIX4Ou6GImjGQ3F200LuFET6G4NRKNxV+MnC+9qIbeJrDpUUtkXOdre572SISQgSw4cjZNJtUgrrnt1WHf4y6z279Jafar+4Y1ukaOhNJcIFacD4qQyPYZ5ogZwgI2eByqe6NbY1ZZx6hlGkPdKEgB0IEWdMgCLZHsuz5koLIZPUxGtjDf/Lh6IMCBe7A3eb8mbaAfGvdVfzcTLLpgF8iaItCK43zKbM3+S83T0Gajdu1F7aqKpTTWy5gAJ13Qo3JIdpCI2DeOMW7n6odh4vb6R3rgr8bPfCCxcDfhlcCzU1gZNAy4LeDBly7d6awKAqJxoAyqygE/ORNoV0hvS4dN9A6ZO5jMerABwrnWcaKk6qwBOEvVHnag63nQULVRUM80iINbi18gx06j7hF0eFeEblahMzuuqTDo7ZEWQIH5Z4IZraim1r0Oj7HgBcaH9hXeS7bYxW78NbSGdp9H9zWMMbGmVHLIW71ah3FBqgbGeJMLL2lr3ciJqy9E0B/R/yzhfEsqyiOMVIKg5BOIMAKB6XayHPj0g92e/xpk1rCExOZRrYqQ5ZvQJ0D6MzFPfAKO8zbps6HI1tWezHkWzx3tX412GVY3ehcsavkYn3LEzeYBFm5n1CEDgvfn6azGy/YyQsy9YLBX4SiWZtHEJUVMi1EGp/71L1DcNavvDlvFRaZg3LMKJmUmBwfArb77m1wswtnxyJyJbg+o33Aii2ItAnKvm7d3IO7lntFMgCPueywptbEF5BFYTuR46IAeLDSNIXYBW5vkhm3dr4qpJ0fwEhKYseQbAPiKF4zHWxvkOpsofKRU+EE9jiQEx08hmVKQ6CCmZPdA52++tdhgrvnKpsFvgLi4c2g2kGbm0YDul3aQaYRos7xOEUJCDMWS2lnm1ppDUbsMTSW0iJabTzq/Xfxs5V0h6xHAKXtjDC5xbPtS+Ts4VHnBxin55UMi7Fvr016ADmqBxijTDB1OU6XBI+7VLu6ML0UVHUdzBmJ2InlEn3shdjbsKb5Hn3fmAZgSYCzJZ16aKpYZhhTMKeqGNKWFlsnaVyuAMyu6cJj4dA3u2PJ0D0CCZSkay3kxPLN9w3JhoYklj6jAuorWAheOdG3451vXC9bqIHP75J+6iojkoeYwwsn58cUJotQxDbRMkswUU1CssglXGrWqtQ8NNF+zTtk5PTmYCOo9R+dtojOKJw7CVsrbIFGyhHGIPhCCA7lSkI0yCKtHvxkFNyQuuUwbNOFpb4P3+4SAFGLlm+HuiRCnFpt/zg5QTvyDzBzux4VJxHDT6cTZ5suU+ICUN34XMKqIL4fchj6hcoM+op7STUcwMLfpRZPyPjfPfPvr8H0ble/ab8IKlkjDblDAI1nGDrCPHTsEUyEgMfKJpj9eVF9LvyNxaQ0fmj4GvnyiRG7jjZIGQtmHAn2LPsvX6gkW7nXXlmgsyTPO8htHSzfE2pXt8QoxGAMjPLWkB4amHGUWfdNOV6qeu88aNwIbjh/0xLK7V2w1PwL8cjotsHFfv8U7Ku0RoS/JmlNsbLYFbq8BSCwVtGlaX99Z0CFRi2KwnPFiAiA8CAXswBiH02QSJMJ8CD6i6MAe/tE1cg941a+77GKdhUE9lhyd0zL8R7V6x0HLALeUCVyS3Bu59q4yiE3cZSQzoIu6t8h3AgwuZ6eo5iRJEaG1RlzaK7LW7yBODAZc7FTYwSqyKzyrpphb1j3s5dMiZmAH6kGvmPAzj7q9C598ovqsRrnm9rtE5VUErfuvUeuQQEswZ5o8F5Sb2SE0UTo3G+nMQ2JnmL77uvOseAKDPATjF9OTr8kwmZK2KDJGNwu3NrVMIYC2Or8E04qaE9KTSH4W68bjcarOEA9Eu4gRvaonClzLEGbfqbux7Y0UoReI17r05GG6JPy7A662Z0Ruv5spEd+feT0WOr68XenFawhpa0RLoCNyuGgoE6Dob1aG0ylR2NCPzNgIwMooQ46s1JA2lqaMxbBM5NUs7jJdqljIUXhPYIzpka5C3RV9slSGcBBEraIZ9QbQ3p4ZrZiCkVbqqWMOMow05fve0gUioYPpIZ1GVeN8yHOeIW4n4PsOyEjJBO/WCZtdPf0Rdt0cQwN2Q7h+G2aKP0hGsmHURfdo6Zjgr74mVPd9jYkKdvbd/YX5/Lyp9UtMnVWj9Wg9HbYI0LvLyAEJTW5ppAY5kJvge+NBQBkNK26bPJ6cfNEGQOejT8UwsqjeqtCpBYMLeN7xuRCfCKfaVu7E1UznX1ZhFp/Ksxhufx7vNY2CkK6F37oyk3YLSy3DfvEYT3dBAgkJuyloCJki98H5v3HfiazX++X0xxcqN97sRl+GqCyu0TjEWIl641hdwOXrJ0BRdCPwyPSKbaVLKYTspujmIBl8cX+AslYmPO+pxga6nXz0GzNRWLCDMczUpAgwiTwJKDcJrweF57INcKsHFVKBqwfO4n2yD8i8rgo6sNttfJvkQwwkOBu6G3XvT4UgQe+dGvakouJa0jVTqmHEMjPpMfuibtbXDpCiCvYzkDhonZ5NTJj1BztGA5oUn8o+EjiurfLbriVjiQ+cbx+SnNv0t42wwn6e2rEp498eTnu/TRmTDh1HyUOa+P75vagSmwUzBn1R2Gs2AlvuAHkiJ/AGDGkkt1fsXfpKskssMLwM3kUXg5YWlCrWrcGfiysLKxPZp9iuVnT5VLDmYQWDprbmQJ2WuPKhVjfd9475vHpYIKhBUAZ34/v7WVIhRTmVvGAx//PP/4P98L7xW4du/EHjDI3EtQ1wXruvC9VqI66JnTyBeC74CGxwiL8rHide66ITAgeynZaPD4HbWsV+aqpEtoHooaqF6i/Vq6L5MQBiQbpdArqlmYEd9cOY+B1kf8yOjDKi7cL9vin69XuIkMwRXJSOjSaFhxshKGQA98rhhAMDOJOF8eM4tlpAFqgr33hqkfjSuXCR3wABfypySkU5AHYXQ8pRxtgx3j8IHHY1BnOM2sa1Y815BNlCYyVFKxNwH/nrspSrxcK1+xziF68+wLNNKKrZtFJZJ20cPc5CptRi6U7A3zqVN2viwLAbVg+Q6uOLSz9sge4WKae/7l9oCkEeV8+jGP75f+OcfX3g5EJ2wfOPeb1RvBBzLDXst7FpEOqE+qek5DNig6zTrE9GnfoIeTjXwr3/9iff95k7IcNx5AyiEO75eFF7+15//4k3WkDZP28Z9Xfh+XVRbgGEtKpZbO7CNu0h2o6OEZpPQ4bpZ48isDfcuYPMZuF90MuVAiaJYLXIEU9LnWehozEjXMYK58w/Yl9mYdfVTQ5IBNNFVdWGxbJmtaoPcD2m8c1NVf5r6NW+mP+qzKV2YKpvCy5QfU+D8ev/gdV24Xi9pRDVT5ybFLmJpxbyYbSbNIzmv1o2caRIokQ4xu6xnYJ3Rc8ViiZUkrKxwPPzUyTqU+upGHsHwj9LS0Nq1yq/ME/mfPv5mee4Hm+McjEHyWEtMenOeqFJgpvkEGOajVFM+BjlfH0AJJ31tpcOj0J2VyLpVk4I3xBzXclzuuF4X5RIdmqb5vB1MzUaMOtslPiVjNFML4Hmvs8E4c/7LqY5s9i5/vW/cO5HR8NSujwau64J54t4bv/78k72u63UmNyaVzHKODK2lOkUOoxy+DZZMob0cuAsdpbTRUB7iKfPBd+PsB2G7hCk7ARQhg+4nQzFAfctpccnwoLUCZ7BcLZNTQ04U1cFzVyulD8r5pJ/U70lFNDPD6+sLldx3Az1b0wF1kedP6dF96n7WmGrrlMAVA973jerGda0DQqYYWjPaZ77g0t6FhhNoG4pmul6ePVXZNpiD7pfLaA/qCmkf8XpddES3aW8ZGXSqYW08C8bBj1H/F2ktbzQ4X6d3YiZSssVB5maolABAixTw9A3NoLnIPoapy8PQnCYFG1M3/RtTDKZs3AlKZsx9FzodV7zwulirMZc3RM8ORccM/2TP/OUcSNMEgwnLsaN9M9+fQiKhejtLq93vJEHfHT87eeDkhXc1fu4b+/0GGni9Lly9uV/0uuDrpXvXeEP3UmBENWdTqwyRRmnMGTDexV2TS94fNIxXXGgEucVD39VNpzSoozuRro1aYoyYm7a6TYScDdhqKehJjDKeKYKTZMD6t1WW1HmufQ56qt40FLV2Byhx/SxwSOAnqxIaDgzxBXj0bsFUXc7g9fWNn1+/8HPfcDnnGR1LGbBN7fcBejEQ2zF6YhtCH/oBxHhyXPV5HfTWwoDWIuWTSrt+XudHZZ3NW9PrDkHjiap/ndj+PVoryYV54WmjsHZpQPNy5oaRgxwvNlSDs0GrB8anke9+/n3YV+PWn/+VorAuqRq7bomCLU3/8AFy0JgpiWlOkK0anH7bgE5cHUDPzfEoaB3c02/tD0Alm9Im773xzsKsgsudJFzIU947GW3vN76/v7js3Iy6vq8veFzUrBEpI8Fdjl5g28YViTcAT3QYo2YcbwbLMQYSvVFP7TeHd7yyBQeRgfpQnOAh1GZASohWPfcIcrQlmQ699Eh14d8i3PEJBM72VrShsn/DsHceo2WEccxWerZLtJQZvED7QF8KfI2TfiojW27Ye6H2xmxfc3d4sA8uduCYI+Z4wSgOcJyF6tyz8mNyexvH4Bw6N6avrbWUYYZ73xoYaBxT05Hh+5XCpE9Jh4OxfJAPf9M49WaouFd6APKIekAA/m2r9bzss8BoOp1Po5tbhB1ehb3HR/vha0L1B1fWO8ylpJ0b7/2Dvd/wBq7rC+viwDTX/H1EBHzUzG5oDewWhjTBFeoxHuzU1aIInvSd6dTOwvveeO9NUIHWy1QpFkqgz/Q5ObR9IdYLX9/f+Mcf/8Bal+4J4L5IEYPkQlWHWDXJ0nfBKhVBeNLsAlssVUfqBJnQrgA5P6WAInag/FxmnjZXUSUw2X4YiY4qkUSafGTKn0DMmckiJhtxoeZPjTL2MxS8NZKgsw4Dj9Ed5zDLavsZo6LouJYngWCL12AapqhLvir3oAB35VGNOHU0PsoWPK0ZuGF9jpfVHLtH7BzdfLSu3qq+1xQAACA3W2ycvBnBbX2orWdD35PowGQq8/H0ef9j47Qnkk3KbM06UpEyJ6Xt+dQhA5QuyOAmNMoAzV0ZlsE4ls9UWJEL3YcNRM+2sfPGfb+RuXFdX/j6euFaISrhpKdKa3QAYK0bxNRmPD1J3nOtBBMippf31D3j8XZxyv6uFq9yHACVzxOJ3QYzorbXCry+/8DX9x/4/v4HXl/fTO+leePrOnVUdnHm0oBMo6ZtF2wV9nsTaRyB6aD1tNDj/b7RqocnO5u6qjrRSQTTlmGBaW1tsrkAprJ7sw4vqbsztW0NZjf/zeKDwD6OF6e1MilhRGDU5HOnhNlwvh89bBv9JncpOUyb5UnUzv4UzAjZE1J35kOxa74fOiFRQhsMAO5Mb5XtjZGyDue18tv5JsiVVsCQesxIkkIGPJze0J9TypJDoAAeRlGf2pJBbhxof5jDbxknSeR9FuEc5g+UZqgQJhIozw2lKtPclbFCaXkWR7pC3C3WM+yTtjE6ZnIR7i4OzJo3GskJfnDv5uu6qFUr8KlBqh+S9DSYq/f6f9v7ul45kh25IJlVfaSxYWCxD/7t/l3+IQa8M9KpyiT3IYJZrYF3Zq0L2PdBfaErjXTO6eqq5FcwGGzKoHiVfajQ0hw9LKvo5U3j6hr5uZmUpOS/e/DWrZyE32HwcWAonRsR+PjyFa8vX+GDtDvsPq9z/hD8jA5eB+UcEzk1HeKG+/uN43BUGBITCEj9YFEj6L62cfKJP4BQdXquzMS6Me4GXJBcqYqHYl/v6UbiIRtYR0yJuHXJYk+6tuUtYXyWi5Fj6aBmctrHwLlZThYBxyBgw6+hqkOARITGM9DlT/uFatIIlCI2F3agJU5RQATbUR5UqmDCxJ9kxYHyErqrn0awSfUksJBz4cvrCwymscGntnwdIWfyps2LJ6PU0URWPgHETGOX+xP9nHEuXUjuH6QfLPCCzkTjSu1lhaR1+tpoFmCoNNYIWcjJYea1BNmI2V8wTg8E6Vgkhi+Q85O7l+WHiefJyYHhm1gGppWE0zmWxAPy7BNpRJhAR8F25IfquUITEfDD9241gBgYHuhFKzbW03t0w9ffvmIcL0BOJitF2+K86Od1Iz5CvvqtftNBrzTUBKf4v10AAuUisd8Tay7ctVB1yzu2r+6ZVCK3cFNJ0tFJouAiDTR5gtu69DyyuEUaoMYPekqF188ecEfnp9+Njab2mZFDAh6ZEvGlK5cAtNwO8r2T2Yb44BcmsLHNyJ5IWlC9yU1hQ0AYy5xAjEG1SGENzcXtNJOCDkqZ3cR+Mpixq30wdyVrapdBem6ZBIfaGFXeMUi+NUq2vewvEnD6k8ZZ2YcFaG2a9sihFBKqEbpOfNi09gZX85A4wPpR6GaqhbEpcUKh4fz6ZoYIp9nFOjV2Qjst+W4zc+9pGQ0MBYUrTAwV/v+PvNGtLCcUyOw5XH0o6Jp8G1J5wONEDKLC5QNDs4vdHzteXynAtRaG0DySs8X9Xa1KbhLXBhKUpcykE2zXcH2/YZ6Iw+ik7oU1J+77E8OJrWbXrGq6mw8BK6bhcmGny1CL+kkrrctXPdfBA1yLw+M6gEvlDAEle5DaXWdyHrVagdG6DfIY2kMnzN2+AUh4YKoYitD8rrWeJBqQk+4AYabP1+VMYw4DMQ6MoSkqMG3umpNnsA8ZdlYE2J584bwnHVlnL6f0pNiiwz7raxGdHqradgPK6SQ3JtNg08Y2+OeqfwAQ8obPNyvId/oCFe3cMelvqgHYIEGrHCx5iU4fO76ZjNMUydLkcfTwZ6V2K1INoRZv3qy5U9zo+iJloN32gFoOG892EBJ9J1TwerqFtcEU1Qh86FBhzwNPz8SV5Gm+1xW4kVhtKNRa+HZdyPvC6zzwOl+soddknfJx4ngFeaKpusWkfp+252NtkiK55sK6oPtAuY8w19rzB0yB0nQyYsiKYXrP6ZHMwgog726xGIn2Cekc1Xb/vKXksq5KobY0PNIZU4g3Iy9doD1D2LqPjR1UgzEgFbIlTn78PpEVciGz1fX087qmhrKy4M/rVslmAcVAL+3dRzVLH9J2/QfwvjOXwEb60QPiqdLCDNG5hwaZS3Uwe7ZdbyoQbUfEiy+l+q042IBWvxpE+782zmo+YNcpijAN2PRDpLeXXzNuzuq0xvzhl95Lg9S844qOJGEnGLVKecu1JmZO2OiUWL24WojETnMTycK+QAZN7/NTROIhcEltVveh0RuULbGb7O0wzMUT9gYBChYHfPQ6uQPlQUHn7DYQU7paiTUn5vWJwx3jOHCvhXlfWPfFZb/D8OmFcQQNU/XeMohPyhKgoP7inFjXghXp/F3LRLlmQYlIuwciBnzwlykzMK8d0Z6elb5PBjAFfu3dKUW9pSmt2yWUFhBjatUGfsw1t1vkEDd5pHvbDRxuMKSwz81czHggR4POGIScZ2FHwdKQ8gLH6qzBvmAJEzFgzvYNV0L6fr9URmMykea5t1EOexY+l+5JZzpWS2APtaAoYt1Icpf7vH8c9N+mR4WPHtaQI39M+R+oOdtVWf84I9PfZJgeWhyTP0LqsJZNhAynL5D/3mkwbziJy6UEkoEwUWsiAaWELb9Iw/Hg8lSLZzzKpdtKWumbxGbx4SFMD1O1T3tIeba+tti1an9yXo8FWyNuQI0XzA/ACVygbtS6SYKfN9Z90Th/+wozw3V94vPbN6AS8cFJnutz4svH0XtzH4chhcI2wCa0z4sAS3mqG6D7IZKZeyA84H6w99nTF0nF9z3CdRfmxd/XXbhuw5yGuUigSB2wTM6rLs3oJhuUezyu12yUDNU7Rdx4CWNEM4uekyRHr7+fK2loz6GTYYh93+kgiBE033ZlAj60p+egM/KxwR1mRCwnGgBqFY82FHMS7UMtuK7/hpn0dFkiQUwm2//H+9TbB35ovVGuYTug1TzyjqZ4DB/l/xh9L5+QosK9+szyv/sQ9wX2N/cFsPhA8w9bj2hHG/ox1oVVhOPNEbEeyN0Cbgm3wdUKw3GMF4YfBDJEWfPkG1cHCHvqjQKZKVOAVTOxmva2D4EHbAx9/ucaN9JrBBkan6OYdWCuKZofp+8jnLtZ7gvX9z9wXxeOIxB2wGrSuy4u43mqq06/ErCE20KuG2YLtSbQ/c5VKOPP39HPnUCZOXubqX0gxb4pbZzkhpzAbCNdrvqzqIYOkujv5ZirMFdpPyUziF5Sy0CsgygQqCMjb73AAnpA9N5SyKEU3qZRyoT8q8eJZ9qIx49Rvgqa8eXnjhg4xolxHGwXufCDYkRtQLNbKDrVPNdghDu8NZ7ea9BnV4ur1OrzUJv/bdDQJnpdRwOJPPy0zn5ngm8tBuad//4DgFD7PJUL7rwQr/YC/OB9EDPZ2H/qUjAS5JOLtxK4F9MUjQDvGU8rwxhMc+GOtT7R7YH2vNiHhTQTU/rXKtqzWGOZh2h69NBkDhHW6bqnPWxHq4QDNnYaNdWkv7coMQ0o16RfDlOfrtNCxxgDhx9ATvz+7Rvm9R3DDYeFtN4oSFzzehY2VcNWRWUyYyM/5wUbCTMeNC7w4f2NiJ1RbM8s0sFOPav2/aPMRi48QCYAACAASURBVCKXIugEpUm0orFJB01drO3g2LLqDWsQD/b9XO1nvjt8/etpGTzm0UbCcUGU1k5ohSTA6aRU/zDiOcwshzhWx173F2VwMq7smhJs17hYQB6buQPXHdkRjM7F0XWhskWlt8xECFLtT2e1WyJdS9q2NO94tI2zg1gpgvMLmlv1E8a5i1vFNl4wa0o3arC0SnnXdg4e6C3WZLJvg3au8AOslPfXzakOZdU9Pmp4ZzK9yZKHSsNaTNVOJBwH0ugw9jEobOdl0IGERt9cYIKSdWrOdPq6hTZ3ujsTuGfh+72YHiIx8zsfthmGFOMJzzte59iq5N9+/zd8//Zv2nz2gXM4DgfOMHyMAEDJ+OaacuC32M4Bo2RVwkWyZi1JAwSga4htnBQOqLe6j5GHsH7s6LlW4Z7Ucl2aXtngyr7PQG8OI93OMefC55VSHhRZQwSCx0ABONPxHhwgXZIZQbcdiCBz9M8BzdsmgT+jI11qDw0Nie8hZQ+M8wPnxxcc5wvmjjnn1h+2Nrp0GReDR0cwzq4yfeYe1waHcpPen3M4cCjwcNVIYpNydNbaBfUEDOyRO+HMbRNjmCX091bX1z9lnGZSjTM9jPbeOsrNGcwle6BsA8nEwKVe1oaR/blwcqbYCP68r228VYW8lx4Q8IqBz8noG34IJJi4roWXq6Etjw85jwjWCiM0JFskz3d9l0nwBO4keytVMhgWHHeTBdJwJTdS/f7J1QCkin3i69evythIAHCQ5H4OR81PfP7+O/7443/jMOC3jxc+jsAZhi/nga+vE5aJ8zRUTmruMkFnet+qEc4ZQTjgUTjOk09spdI/RcTOKipxr4nrujkwAGOtXJ2dsHVSrb0D9mkNB/++6jHelbhnIdW26vnceV2IEZy+0aHsCKfTDwMHn6/rVknQazSSyvs67JULlRMLEDd27WK7Fye5G6buDZc0D5gfeH2wjxzHoRqSNMFu5TmAcQzKluhn7ZyLhacMLjkZpMywF/TO+xNphXMMtBBbdDgtIf9QFtDjn3hKOatnesZswHSen68D7eEvXn/LrXXxF1t9b2FRWT2TwAlsp5OcIHmAoeFCYfUQacEPGwPo4pwaqYTglQhJ2Q5KSxADs8hZbRj/+3UD4ZSxRFAmU14wnCSGTjkc/oxOOcejsIg0WoHqC0H0c90L91y474m5Ju450cKybobXaYgj+P28cmnvMG0iB/jakpioqQXBgcNU5yBxCLdhoxvqgdLJuReG+MK0IbZVLEzp+oNCckSLDJzrvjEXyecuimSxhqBU52SvM5PtqaXaNGIAaZg5peTQ6yjGfl6kUS7YAqYyqhLBoo9/d4R7XfyfmuWccNJM8AOk1AaJup5kgqmUWsUALGDjgI9D/VnWxF1HQtHW5EQ5cslSKnS2TJ+jN6+fIzA0afKksgSKTOhWD9A3X/b9/QDT3tQ3/KUDkkoNj2Bf+w1gLTONLf6kcQZYZ6x7btCiyHxHSC+2+s3274/Hc3PccwkIemvHlGo7PUCDatFgrr5q7rSYqQxbDl4c8DZjjTrvhSsnYtB4yc8dlIncGLfcgzESpd6fUc+ApXq61eWKk/n3nLjuW7UnYHHwU7phnCfTo1oIo8K4lVTnQUCo1sIRjmHYkdAqcQzD63AgDedwTtbYwnDQQHU4Yjh8OCKKaXgQyd1kkEysmxHXUvdjLdQqMoNgQFGWat3qcU4q2d93YC1+jamH7Kqrtup+JXo5bmYi7xtz3Zw68dZeBdZaMgiebFfWlHOiGvBKqR00OCNHT0LDM/BQmweryaImVEQTK2K3TPo67/umsaQmg57jTw0gaRa1qDPaYQjQ8oidCbYDMp1fVlkLyFu1LPZgtyl97pq0dCYfTvbTowW2b9r18Db6v3j9PSBUD/m4P1t7hJak2ODViB0nIYMka4cRazf/DQhta2Yfy3dqmYKkmQaTG1viX7SRqlgAJuvGzVoRy6RFqzhuZtjrCEE2DLyphTJSqBYr5ri7J6t6i8uEVEsD+tlAlcN6kDcXPAsBTqmMQcPwmnBwv8cZjiM4HG4jcIxUTAeGZxOjlJLTQAFKciKwWTMlo7iuKSGwPgQBExmi5StzGe6b0z/8RTlP3pNmSwFr3rgma8CC6jCIHpk3ZUZvDh/YMoSMO4uAWR/ocrGo1kRpmxgvRGCLhLVIZ+RkChqvaCTTu0HUvdtAxKFW0QCUZbVSBXo8S4bSe3uqJJq9jaRDCLYBoQotTmcSriuwPjZI+aBKRAtRSoWBhNJ4QDOraqE0kr9toYfK+1pKmMvqjOMnjBOZG6I3sR3W6lQk5SVr943cHfG2ZLdgpLhtY1ExLKDIrdX8FDlhygpMNzkElnQUtI3o9UBs34SZ0EDs48WPYCpq8pYt9tTrChkp5IayhNZ241ycYR8CEaYydn5PL33t1ePsoVK2346B1/nCnRdqLlLAjoHX6RjOTdvH4FoGZg0ySDcMJ+spBmABaRe5DgdTTYCAizmBFQIcWg7kNFArevg5C9cn68e1SpQ9ZjClNHNV4vOeuOYjNdLjclQYfDtMOryMlkYwqNqRm5QACpUTNH/fQyI9cxnu/BxeRF6DURFv99T2sfVtnMfgmYCeagN5G7S098Fs8WNlKKavY2vM4dbTTmyNRJgkVZ+a1ZsxZLWBnqZcuqWMtRlxPZFCo63OStDEq+ca6EhsR9WfMk4DUVDXzWp+ZcPlEQey5j64ZjxQMgc0CPSsabA9U0hq4Jsx6cNb5e5ZmZsW+Yg6xpihmkw3ukhjc3DRTY9FYdiTElUJNFENUdhtgcyW2mTa3SvVC6UNxbajjLnEtDqt768H9ud1TcN8vE7kp2Emd5W8jsDrCIQlgIVQOmW7xgQitIcyAA9Gmqaqd63eBy+0g2WWgft91POEoYp7L9fqOVRgTt6rjq4FSktek1uv16I2LHWCHkrdnrcwqTa0g+1rgZGAkMphxIaxSgRyDxbABHiFshultBEUM6OIkqP74KEsqof7x6AMjSulb1539yj7XkKBY9ezIUxEWVvv/Omeu8x8Lxs24Sau54BMCKpgRdb5aakUqn5PMbua/SbjY6uu69O2KwYzEh9+Eq3tRaC52jRKRtiUKaKdkIqJ2vW6gsJm9RCa2kd4G747+52q5eCOKGNq2RMootmFDXry4pFNMI2ypBeeWSAYTpnGUm1zFAGbvcBLUZLthrUBCXehgQ7R10QdU8qWYCTdNX8MuOCuUkTmzCgNPYKRDEVF9XM4zsE2lNWkbq7UDbqf5kYP7loPUcjNNU4ddGsKng57vAJJjI4gT7K3uya9fC5HiuiuVAAclGZNNufkOvquAbvIBssCM2YqQymdwZ971s+1yFzSCBEdLBZav+hpzFM6hsuQGC19cG+JGul8v/A9xIDGI3Tt6J9JTRMZs65Z15VrafSL9Mqn/0in+z76GBqG3nOaTN5wHIEjDGsmeuCbh1w1q0otKJuE+Z5swRsdlN/SoFUbMpQ6/5X1/R0gFIHWCm32T0et0N7HKuwQHdIP7cK/2fnmnYMrVQCUGqq/p2ac+ZB5zz2W1LVnCIm9E1h5K90Y2+azDLduQBlQ98JchbC5VcDfycnN+mG51qmpRKA81BvlITVFEMo2MoIQqX7Qaab09Ka1SnUkPenhwIj+VRjBVQi8FYXWP+VbGyx0yHLBBg/UWrkHl5noC5BorZFQNFLaupZhTuCeBmCg8bEs6SmtFvpuFo3vXraZmvTuUpCIzVM2I6K9nzE/PTORVcicLFuarIBCj7AxUorcHA4bVIqAuZwugT3TPGiYb6CFIExiqEZve+dwRckp1D78fNA8f1361A//xRqT/U8ZT2ILd40InMNx5Y0WH2N6yvfo7wGgwQgIrJNMqHCADSiq3uQl5nYmP43WsvlMUOepxZi/plonhMFVF4y3LWMJ7KaxdT+OiGMzhQakcYwCXHUtyJPle3ZNJuuyIPpZa48cmcIPUUqGnwIj6VpTR4e/QoPQ4Z1iMZ3sms5Mh9G1S8OBHkvKW+2JAoYJ+KrHExOMEPPJ6BkNhTCKQRGNLZxHYQQQnntHCUBDdffN2y/lB8MEdu3avv+c6Cmhyt7PooHyZN/3vgvXleD+ScqLZip9zecexnABmLZVARrEQ3C4nFiZViIwYOz+Ydc03TpppcI+jaZ2UQkwGjZE0H/BYjDCy5jJRtICXOu6UgqBzRgydRLURipFbFfUcwE1LYfZ0ie9maRkmH22GHjpjK0NjSIv6GToHeIx66hOb2dv79uUUzr/Z+jdBVT1esvHtH/WOIkw8FBoaoAP76nX2oh3qrCjHTaXsHcxtvbKnU1ACNwrYSNUByY2QgclHor+q+saTSDk4hIg1oQ82Ecc20BSO+1cB4QHhorkjAZNlGe8SI1CebG1Tyl+RzhbKPf83O8NI1vGU9u9XJM4a4ELghyfa+L6/AbMSwrujJpHAMcA3CdihPRwdSACsGD7ooTMLuhwe7AC3b0yYwRLSptkKrVVXVkFzLnw7fuNrIVCbAfkQcNjpFmQcAXFqsK5eUvkDODx+gamik9Lgr8TkKKxllBPlVXIXPDgjOWsYG02Bvw4EeOUQmIJSKQLZzrDUTkzwzhORdxEzqk63pFzcRwMtUEYGI249aIOqSCQxaWvdZ6D3pDdtWrLdiYW/lgX1jnwOpxECTHa2AOlrGlOtpTCD2Y11ms+urUrSuaq7bzDB7YKwo7AP2GcG+SBHo49P8o8cYixg4bBNfdJb1FPvakLKaViPNDBUa7g77OJ02jGjmHI6GdS4dwAkrjz/WA0esaHPFc96Zm3iJNvmluJtG7gFEYvpemCIyuR173R6E1r817h0Ib73BMXymemFL0W8rqAXAhLOCasJtwWjnHgPJrTcCNctXW05KjukzvipJIDHV2P4YmrrPRNErBAqsVQvXIH8HHifAWZPhsEaTzSdt1jeziaJ9UhdbpOB9/AjCfSqAzEEz0rmQqPMaSLKz7uWjAZqB0fOF5fAB8oC4J5yhQaKAwj7gBlEy13w1qSZIA7haKCj27XcbsOZT96DPa9q3vmjSZDJIYi+cPR7Y5eqfAkw3NduG/FRGslCJYZucREi7GJKllPK2gJC+lOh/ubgkPfu58xTpnhLpL3I6oGPWL/fMLfygHeDNP0wHfLAk89airue/8FVOSjQDK5Y0c+KzxAQHI/qEOFgDtQpn2bPIb73wXWRKenfZ7M1JNSupjy9E+RgIJzpMm6F8qQ0tzc3nfRzodVUyLXjev6VDuhYLUQNhlVRyIi4WFM8R2IQVEwH0AjyuT0BwrcFVOSKK3NBum3dBgGzGjxKw33LFyTjKAyh41HzJqXS0CDDsyUtglRsFDKCs2Uok8+D70+8+aFFhUtevJjVSsrPEj98aICoY0XLE7YOFFmmMl2GMEw318fzjQ7nc/BNCv6fiRLUiPU5rX9HBoT6aytHXYl52FbSIwjb7lBOVZwkrexN4QWJbrhvg18T3Pua1m90Fkia7t+5tUw4+6RsyaHNChVf9lN+etWivRgoUMru1MZUM+oDaAivSsofWCjQXGHSO2B156VW6gt8dBT5hLh52iOvLYl2CLRcHEka1wr5vBRrp7oPmLcfAxKdKCMzeu2ZUUQbJkTHkC5hu2t+7Pz5wVbBT02BXDpjbEO7WkTg2RY1g2sm5umwzAG01oS09ge8jD4MIyhmtdFjLZivfv4Cex2hLMOs7IdJTMHkIM1TlFEba6lg2PwOKDKXtko21h7WKBo/ARt+CnuTKy0Hdk4NeKITR3MPazA2U9DBdHitVLp84Hj/MDry1eM8wOwYOsnc49sWXGvaBumiw1UIoOQkKZhbR1m1q/PoHRHc2PioXNJI+hFRSUUuSVUyEAq9Fb07pEG9HNNtWPXm322m4Osm9nnoR1UtmPT82p72MPWVRov48/4KwP8G0Co01IW4LUzmKcIfv/VzZIdHVULQDez9za2sBSqcDg7l0BPdarkKJ7OuQoD+rBlGAmgAiHO56wCVsG9NhjCPlk0BMXrEYCxIRhON795XH1mYEf0/dD/RGgIKxkjY5vlgjl3OFpxeRPWBcuJGMDH6fg4DxyH0wDBpUYcDgYPTOApAXQ32QPnQzUrhORcYBDJIFAVm2lFYaofxcL64XR108+pUXPo8xIQ6VYL4IvoNwXdjBFM9RuBJex+44LDgvO2LUUJc4zzhXF84Dw/YDG4/j0bFBT7yrCBQx9NImDtOgtIUJGvKnllpgoEJDOYnlM/qw4KgLi1CX6vjChcm8S2k03+vRztI8Cv9LfocKnxxH9cUhZktOzMUo7ceA6fMb7axtplRaegrTf1U8a5U1az5z/1Z68WMKo3NKsNVDdLNDu2ACicZFYqnsGWQzgNLBU50KkUawKrtT9EldgcMIwt0sRwWEp9SaXUrIa1B22H8oxFrWIK7IAAHXv2KerPTXQIkwKbjNgL8EqEJdTOR+i/KyfW/Yk1bxgWXseBL68DXz4OvE6Hj6fGg+iFvMRHW7ddivVB0al7UiBT9uvIZCslVyvnGXaSavubdR5Mh5ufq2urbjJ1KtbrNXjvoWY/CR0sB1ySl47yQizAESTDO9k8FgNxcPWE2dM/dX2NCZ3HdqG66tL2LRvSnir1TWtfKwfv+SyH0tofjFOlCgHI3O8RzkyNjCxSKjFTkVP1Jp65TnKkk5vS9LmznggZymLmSnYQ9qdgIHOh2s/Ze3r973X8zxnnfsz9XJ8BVebT3e/qdoLtPKwP1WoD0MHvdETIP0P/WkgNEyeIzFoSbcVaJCbI4RxKFTB5sA9zpNeuWdJIRm+d0CMGyh8a4r7pPbLkrlTGVWeIHKEnvQ9wz1SicOjQaBYBUQmuTE+seeHz+x/A/MRxOH77+sLXryeOMzAOxzG6qQ6QGNsA/VOP408ZS6e4ZpAjIjWPHjq28ynVe6x5pG3UT7AdrWpGRokn6jQilCDNz4LtKVjBgwPwBPFUolgr49uzrW0SmYwxMM4P+BiY66GvhZ4BtX78cRzJ9gtveXsk38SMRl43CAcSYMamcTbnB20NgLFVRwE2U6+bkdJ3jtBvl/pugkyGkgNQN0IsMWyoEQ97iZ9gB6qeCW4tbVfE3X3/YpbyqC78pHH2dEfn111d1tu/91+3l1dizQhjBmDhsCAP13TI1Xwn8sDfkmP6gBC+FlWK/uH9VsZ6ac4pBQaqFpAUzTlBh2lxrVLmkpfuA9VxxHwP4j6yFI5jhFIW9S6dKTq3SjcWWjsd8gSYXE7kvLA+v8Fy4uvHC//tv37F148XjkF63hiOEY5ZkxmRCxl0AAIpWtKlP/dGy50R4FlgzENTOiw9k7lWbU7sG0dwAzptmGEmNfOur6n15LVQyShjTlGzYxjGwXp0SRWCmyBK2Ynhfou/PXhNRyBQp3vezoPq0Ca5RbCGLEWX43wooR0ArdNs1DbIsKdP2TVwZ02lAe82Rt0p9DibiRPNNJZR02SMww2uPSimPitx0Od899ibVYOfvTX9qaEtsd3kHkrv/4m3+1PGeZjvi5kaFfPBKDPXUh/0qU27Gf8+MnO+PkR0bl5rwZKr27jvY5EcXjSSmSU5EScIdJz0rJmYK/E5b1QWXq8hZLEFghfmnIygEbjui3sz77mpeSbIe86J4xxPA1tRHeiDkFJka0/NvFG+BRiO4YHvn3/g6wh8fDh83Vh/fEPdfyAwcX6c+O//+i/413/5L/jtg9qnRzByplR5fLgUjfmgUOLmihlTSIw4qCqvOof9OLGnLHDlIjJbQMZAFvm8v3+/sQo4jqH2DfuKw401ci0MI4up4zYABBzTOF5mdePjfOFDqvUjBhlaXoiDafTndeP+/ol7sp/55QzAHvW/cErE1LqVtgdKKvkFGaPMQpkvD6wGp81qZxqmzGK0OmLVbq30bOSOZMkz5GhtKv77dkzb6TJCDyuKhVHciS05L7yG4+N8cU/OxQF2F9Ppuhc3aEND+8IEymikt+aOV7bDaKQbdMCbxP8TxllLk+lKMwvQGjkjzakfq9oVAJjSymUOdzhKtR3ToxJ0T1Qr2PBWj6AQGGZAPI3c79f11EAgQmoau2L9w6iYYpnstDQSQ7svGwUsgIPISEBrrp6RImV+RabKBob62Lyn7yBSfYRx3rIWsG5UXsh1w7Hw9ePEx3ngdQxGnVFqldZmEUFpGllNjDTdy+yJiRsiERRgg9SMbu5VGhfwjnYg/CAtQkaPPhDjRIyDhqGD3G0IyobkjnJMkgwjuCX8PAynoj6VC/k9K7k86ILQXGuCwxCnlu+xipG/0UtuozNY87/Ui+72C7OBQmEpQ2CUDYjxo1Kj1tQ5FNbhnabLQDUhQ5W8BoNYVxInoJWs+cmMKgxdZZHWp7G9IzDzJkHFS3I5HUZLmIoGcXWuq9PdvidOh/rYB/h8tjP5CeNsIKLBCJ0j1QEiCu+StPbIjas/OZRalvZ7DieAkyt5w8Jhc5EFY0AaJ1JYNpOpMm/eeXN6J4OrN2ZP6rThbWrQAI9GadeejzBW12BMi9oI4+3Bh+qjISQQuZD7AIoKaIDFwBEp75xATUYkB75+OfHl48B5xDZMFwuIfVveyE5OKtVGWmsTtQsFTKW6/vSMTQcAANPXAmbao7JXndyJDukD8BM6j0JLOSdJepr6x5CGrNMwM5mCn8MxRsM2i+9VhdLnDSscg3OsPlzrLhoUMSwh60R9mcXAOM2SXa/oeSlD3lnYk97bk9Zm7udgxvofWRra1vcXcYg+K0MUSgJHjMrDC+miXipCs7KsHaXdaIAmVhGrL5Z6bBGqNaZTx4wmlcLbD/a0JTl50f2Jf844QyltHwgASrt4sHwHS/WKxKFsqtJw3tyZ9NaDyAruojBymGNW4nDAk2juqsV0VQ/m49Rgo7mWKXHECWZvYr0iL1fupm8uTkpkEiqn+FMfgre+GMTwaGDI5F31GWzfUGagvCdSXfeu3UiY4KHitrLX68BxBHwYI07015g4o6w34a3vS6v6ESPQvUc/6LeHWeovzoV7AivJVmEECnDthWnVxa6m5JjkteW9wfOk96NZj0GFhONw1cu8sLXoAXJS7cGRe7s4fCDRk0bYsh0WFBJrI+vWQkrsqltdz8dTzWiNc3REhyiLnJHdOaK4td2D7xR2iGQfSt8jSDDg9m8Ki/lo9FeO1xaNVxfUDLQxDJXss+/9rwlkcRdrwvY57XlUBgt7oqx1YNAN0ln7KeNsvKcBCeAtbQDQkwCd1rC533C0qzw2rrMrgTu1sNbk9IU5BocRadjF4dxVaxvdx8EH3gCIv9W47Zk9QgSHfvgOYO5pml5ckx3+9+Om82lgIQT8vKcseEvLAzREgCLKYQ/tKxxiNBUsDK/XwBgUG1MOJZKEqjs11Pq+7n0ttCHlBwQtFEJ2Tfb+azV6myQQwJzrF0ISlwmOhC3dNx3Y8kKaIzQGpl4VAK7AIIUj+BkGWw+8nnsjk27AGIZhpK6ZB1axxpzi69Y+hdhDyTCCUmx/1a4XSzEN0LRJUtDalG9u92TYw/GmcoBZkmlPTkdDCI0uEkHeGGcNMFWpyy6GDdUz+rTp75VldUehWyNstYk6BHlnByoVPYV2dqaGt7oa+5z9x6//lHH6m9e2RhbBG+T7BpgeND2Z5cOeQAMgGiUKLC2wCRxiAHrp54BSjQvaW+lcn9fc206tzXsBquEYRGyX5+aEzunyvpDHqnZe+7V3jOjpGh7H80DdPZ/41qR2h9dU2ost3VidTQTweh1ctxAOGwQn4GKH9DXoczBBed69N7Tx0r1DvHiaT4ip3QDndi1LKgV4MiLYYgP/814oXywj1KIgWmj7Z++DriNELvJCRMFNaojGwzrioc5xy5jvjKCT6TbL7DS8HkonjKQUr0bp1YmUAaYMPFt3twdW1Hc2EUiqtt/a5yKcwNvOetQjd0g8TeNlhcXB8LWA6AKg2ygix4eeD3Ij4dlnxRg5SfsLOtNGzve4obI6/dpY7X+ix/m3xrkvtj0OeNB3KhS+jXNEB4jUDWGksUxEsyyKBWKEGsq2+JBgbb5YAr5nyePvbIgpW+h9zYMSQvKsrhtQkFarPFPTsjpre391FmA86WjrjQa1enjYimJdLpDAAUvDazgChUGODDIIEpkHZTJfjjgICPibUJdO424pNL+198TsnrEua/c+Pbvb9HyYkrcszaMKIItgNFw1gZkoW4gh0rYXIMBjgb1UV6priojVfUhTc11sKhsC+soRxVR6vvVWAaXvZdITBiawWx7tCABGbxc9r+zhPsufbpwDUPZTTyOvZV14FHOnFVYNbj0DCY6kEHppeminwUvzte891J40UgeimOrTEh8GE2BIL7GUgsSMpGo+Z6BtU1I3DbSzBQUQ9Nn7GeOsWtsY7R2QAA8I91RAEROb8c+qB3CQQQN/Ih4zFIbkVQuHMw2dIM01lOIRndNKgeZk6v1LhhiL7Iymn8OehTmZCZchuCm9cD7DEEc0rJSWmwAFkhUiOE5lO50lencIIHIsGBYOD0RSjoOjYiktmsA4xJ3dA9RCVcdjWGWKtq4L20MDvu97LYFB7hwGkJepAlo0Wk2Hh7qH0PfwcHClwgQm5TZnFOpki2VoIMD9OSht/Jwjpaxn2pQjGXAfMPiuUzlMQ0Cut3O1YbSBpoERrx/V/rgtOdIiqnhydnRENWWBSikdlDdRVKtlAHrY2jZoQ/71Ew35nhpOwELVEiqrPre1a+jZ0EJfVWcKHiwhVtMC/WE/Pf1oYijPvp43p/qWQdhfWebfGWc2cpiivdlOx99qzU5LE5BIMIkGUhs1vEVV3iQ2iNmfg4gAzQhiKjtwKMtLRTIrLr09ByfzYxy454TfE2aSY9yjA31ceUj4EJ+JlILjOAZrXN1gtnxKD8bhtTQHyRQuoCiMiXVd8Jqw40TlRNYF1AUkx8LGAMyIfjJEgnqzQ78rQmeVam+lIp26d/qnC+4ol2sYEwAAC5lJREFUkOYgaR6SwkxUDVRHLsGVbq60jJMu9yzMi3OKgUIOotSvI5Sad8yjsXFuc6FyYdaNqomF9dTlbWSay+XyJGoWrbkU4aRisM8LMQa+SxekpV5z3yqe1rWowUuBjIeepw6SakcZDGwzb8KYDRyDn2t0vltdkhRMW8K6h9rBpIe8gO6JVqdUaOYW3zO40nAtrHkh0zhDK33dEY4IIuc9F8vP+QZIunN7GeznAaERzUV9GuQsxlN/tyQutbg+vZbqTOyohGZuqC4LI4jgIDvj+zVZN2rGLboOMcDg+H5Prl1bmjCwYPM+J3Leu04KjY1JWgG/fflA4pknhNKR9uzzunC2Z8kFM7YPhpmMjDItlkyVolKpFFHJ+XnBayGwMDSSlcZU6RiB1+sArEg4MEUOpxohzyjTMgBCIFXHudYrJJFrynRQM+mh42nYfbH+7CkUM8p+WAU+Jwui83yRinfTcKac4nFf+P6d2kyOQNVE2E202ReAiYkbiRt2Gr58/YpxOGo5agJL0x7cGL2Qk4ftPIE1fa81pBwNox/bIlo2ZECcJ9jHdFxz0WRMfdDDAAusIiJdRdLGwWkA5JqABcYgaOUY4gInkDxTfhxacsVeNEGkp+feka4pmippATADCHOMg2tBClK8n9ceHzuOA/fdQKRWXcIwezv4ho9d6L49jnfldlw/aZyB5gGuNVH5DFM3U2Xn6duTNeOfhohcgKKPQ+AJmPsfYcA5NtvR03BL+S1RcEXiStpcAwucQPftNAyFlfNRZoChesGQKdXTxqvqVMqAKs18NtyXXWsQROA6cjKV3FK7N/nwvRLnMAwEH/ycyOTw9HmMns2Gwgi64EpL9vm84N4MkY3hQp0b1c5vaO1+df1i25hjOKpGFzV74p91GyOCOYcMYgSGsdRYWbjuCcPCGYnyBbeJrAWPxfTxGPDD4IehBoXdqtHn4mHnTCngCyTeC7FsmRk+IwqGNbOpwGjSJHU3AoEGtjvWKsBzqyTyzNmOcU9DN98isqK+3teSwcJ33VdKj3OrHowhZUWDHljyM3U5p7bHM4ggh26+8YM5W9tZWsnC7PiciQmstbRYSZnUX9vl3xvnPsz6UImOoDpoS/0ghX8uXyj17PwtDzdNyHOucT8QN5xxYCYJBtIvZ22RD0JGJW+malWU31i19jRJJ2VblcCkF9oHHNjeeqcpAOzte7oTaCYSPARqueNww6D2CVCs27god5FUXyQhOOjQjmPsmqvvoSnibdFiNGe5nd1+pvuYQZ+lv7e/RsU3P385hg9gcNCaOk/s20U4a74kBlBORH1YwYx6tfcU6HVAvdhOa7nFbJwH/DQKjXlxGsnBPaFW6keXhuYN1g5uE7zlINTTXLn2XPBUCl+A1A7wtt3M+kbgOcod7WhE3eLMrrr7WRf7j3dN9Thri1c3hPTDIccbWAU6PHfgkYRlWl7oVLy0soI7TFMTQnw0T9sPQt1h7KF7dwfscRQ/bZwdiR5Ynx9qq+2hpR5zv3EY3hYJsW5yUETqOALHMKCUrxf2wPa+0BLIUbWRSiqfizidFKdam4ksjwYjaKkbv+Qh6eQMjXiQVP1Q8Lon1vWM42GRyDM9bCcHPKcU1W8xn1I3miBCc1mtTa06IhaavdTtTN7fjpOiQHbaAxE+/BGJel9U3Iadu+6zrcMEELwY7qjknspMA4p9TfaTlarpelZxbnavQNDPPM4BPxwYkucsV4/0ufIGa6D6z+GbItjO2ZwlR8uNcMV4YRwHZrInuFZuGdZwdcmb+9zHQ796WGFb1Z9PegNI+94/daqFw2xQbGzo+Tc4bWJzWZ/3BjlVldpzJb3iIVtovf9Xtr+uryoFDJT1T/r76Pk36xjkPXZE0i/g+btasATRSuO6gRGcdgildY6Gqu0Zv7EnQpZqkyxprRbnEgsm6ULyKrv/GaF6rD1zDw5ve6B3y8U2gGsVKwD0EptNNtgD1/wBZHSADyVZ89UqSn040y7krWY3nVOthXXTWEc4zmPsyPzu/fc12OPdtyh14Q296wONHVn4o5jmcT8JAGigoKtR03WjWVzElbumquL9J4jrUg0QmmwE/w6lrugpof65JsxhJXqX6nPA6kFd8fYs9M09sWFevKd40sOIwXaPMqa1qHdLssSfsolSfW6l5Vr1XJswDMfjaIerjWXkxW6gR9GQ91lsH42H/XD+S1vIurHP47xjbcfgUkBpXI8tmIYka6PMHSy2I/sb6/xb3doO9e9m3ka61oQlR7t4FiQ1oVCYuQjV60POLPikN+oqq+TVCdy8GacUzF03P98iYQjtIlCQuzldrScE2xMcm5OjQ5GLEHqzqipdjXBGA8aU3Cia7YPHnixnNifrUZSGq2/c1ydyLXycTGv7dLbX3qqE7w+/7+f+74fOtp+cdW39Hj1r/xlKnfuguGGPVXVLomlkbCloTM4GySAe1NE1AoDn6fBYlM4EP6sFJ3rKS3s1GeF4LkLvlehZRY6S7aThhw/bm8s3GUL35z0bAGSEnRz9OcZ0OfBmrAT8nqH5DggEIZOEAgM2kCmDWbWAQcex7yf65wFAIg4OEXRHYM2FOYv7WlehVyl2Or6zBfj+TB4kVzeGA7W9/ur1t8b5LoFpwDOtb4XruuGgtmqrG5juGvdWLvFpefPnXGJVdOHOD7Qq9xR/7ekEftBOS/pTNqwebmyU1/Oe/JZu4BO8YnO8EU4eVCiF3Hxczdkpb9kRZrhvcItT8YwmEWxOf377A7U+gfyEV+F1DHycB0ZP2m7jYEr7PmBLEMSfGqQPKhiv7O1r0QYL7IOcfcnNzYVaA7ueWVu6hKR8puVm2IPKIfDF1Tck3ZD9WVig1q00lIyvwqOmzumW0beMQDl0eDXr2XXYBnVUxjTb34xzud024eRH/NiCAZQqP2NeDiLPhaS6v2pcAab7NeVEfdgukfreP5vPlkgs7/kT9vVBFLwUn7gXQq3F8zxnIg7/0X8ooLXqRkHgUKn3qVUR9men86fXXxrn0gfInuXceXQjgVw4NJzTC9sTijzt7lqsurq6wcyUFk5K/Jizg/S2TAW4AoCSmWsx9QU0WaI6zo3Dv73+jgf1x4ezObgwLd7pGcFH+cA6Z8Rj+M0q8nCBQkALEnOaIYA58f3zO7A+8TGAj48XPk7Dx6vT/ULXkrsmyyZCy2HshOSJnU/KYz9GlHo/MG2DrIW5fuGJnl3P8vuez7T6isQffOovpX0QEKf9NZxaSb1n7XvXmENfixM94d7TBSGTTKtNI1atSbzLmWJb7FabhFusSQCpznzQmITtKajG9drRZWkFh76m+cuJAhanoXz12SSW8Ah0dbbB94Vcozs2MaEF23qA3QCMQQH186TS4Ur24At6XvpfavwQAO6W9ezA4L51nP+j118a52//83/9j7/69zDgkC7LsMLhiWHQ7xzJOSwxPKXZkjh8cUmsJ64ZuDNwLcedjisDn8txl+FKx52GT7VXrjTcBY7rCCFzPL9HQcAGNsBRf/rv/vfqtEXqgoeD6+D163Dg5YXT6+3PicMLL0+cnvw9gDMOnLFwfk6cY+E4+GuciTgT8Sr4B+Avg6fD6u2BvJU51aHivflV/4d/n4X8XshPYH4zrMsxL8f1OXg/Z+D75J+vDHxfvKff0/G5uOXswxMfsfDyxMdYOGPhNXj9r2NinAvnayHOxPhS8BfgXx12GOoz9/uvT8O6eQ33Fbhvvv81A9cKzOX4XIEr+fssLl5a+nWnwUuKdaVVG0ofZ0Ffw2e2Cvs5DSu8nHqzh9X+u8MTL+fvx9vZOzxxROvcUkuILZbnz+EPdzj0tcwy+PcrtXR4OVY65uLi4ZX679R/l2OmYab/8Fl/5mX/WRLur9ev16/X/9vXX8fVX69fr1+v/2+vX8b56/Xr9U/6+mWcv16/Xv+kr1/G+ev16/VP+vplnL9ev17/pK9fxvnr9ev1T/r6d3OuRAVxGqeiAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["_,ax = plt.subplots()\n","x_dec.show(ctx=ax)\n","ax.imshow(cam_map.detach().cpu(), alpha=0.6, extent=(0,224,224,0),\n"," interpolation='bilinear', cmap='magma');"]},{"cell_type":"markdown","metadata":{"id":"UTARVjSA2RmC"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"wcPnLicY2RmC"},"source":["Model interpretation is an area of active research, and we just scraped the surface of what is possible in this brief chapter. Class activation maps give us insight into why a model predicted a certain result by showing the areas of the images that were most responsible for a given prediction. This can help us analyze false positives and figure out what kind of data is missing in our training to avoid them."]},{"cell_type":"markdown","metadata":{"id":"8cPWfV0n2RmC"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"NbwqrNfE2RmD"},"source":["1. What is a \"hook\" in PyTorch?\n","1. Which layer does CAM use the outputs of?\n","1. Why does CAM require a hook?\n","1. Look at the source code of the `ActivationStats` class and see how it uses hooks.\n","1. Write a hook that stores the activations of a given layer in a model (without peeking, if possible).\n","1. Why do we call `eval` before getting the activations? Why do we use `no_grad`?\n","1. Use `torch.einsum` to compute the \"dog\" or \"cat\" score of each of the locations in the last activation of the body of the model.\n","1. How do you check which order the categories are in (i.e., the correspondence of index->category)?\n","1. Why are we using `decode` when displaying the input image?\n","1. What is a \"context manager\"? What special methods need to be defined to create one?\n","1. Why can't we use plain CAM for the inner layers of a network?\n","1. Why do we need to register a hook on the backward pass in order to do Grad-CAM?\n","1. Why can't we call `output.backward()` when `output` is a rank-2 tensor of output activations per image per class?"]},{"cell_type":"markdown","metadata":{"id":"1qDUEiEh2RmD"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"QsYGzMZS2RmE"},"source":["1. Try removing `keepdim` and see what happens. Look up this parameter in the PyTorch docs. Why do we need it in this notebook?\n","1. Create a notebook like this one, but for NLP, and use it to find which words in a movie review are most significant in assessing the sentiment of a particular movie review."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kXvzkBpd2RmE"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/18_CAM.ipynb","timestamp":1712447990868}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/19_learner.ipynb b/notebooks/oleg/Education/fastai/19_learner.ipynb new file mode 100644 index 0000000..78d9053 --- /dev/null +++ b/notebooks/oleg/Education/fastai/19_learner.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"ggEGtOrt2SMy"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"S0zh-Ot42SM4"},"outputs":[],"source":["#hide\n","from fastbook import *"]},{"cell_type":"markdown","metadata":{"id":"Go1-KVd32SM5"},"source":["# A fastai Learner from Scratch"]},{"cell_type":"markdown","metadata":{"id":"nrDsf7gO2SM7"},"source":["This final chapter (other than the conclusion and the online chapters) is going to look a bit different. It contains far more code and far less prose than the previous chapters. We will introduce new Python keywords and libraries without discussing them. This chapter is meant to be the start of a significant research project for you. You see, we are going to implement many of the key pieces of the fastai and PyTorch APIs from scratch, building on nothing other than the components that we developed in <>! The key goal here is to end up with your own `Learner` class, and some callbacks—enough to be able to train a model on Imagenette, including examples of each of the key techniques we've studied. On the way to building `Learner`, we will create our own version of `Module`, `Parameter`, and parallel `DataLoader` so you have a very good idea of what those PyTorch classes do.\n","\n","The end-of-chapter questionnaire is particularly important for this chapter. This is where we will be pointing you in the many interesting directions that you could take, using this chapter as your starting point. We suggest that you follow along with this chapter on your computer, and do lots of experiments, web searches, and whatever else you need to understand what's going on. You've built up the skills and expertise to do this in the rest of this book, so we think you are going to do great!"]},{"cell_type":"markdown","metadata":{"id":"CcRZf1Z_2SM9"},"source":["Let's begin by gathering (manually) some data."]},{"cell_type":"markdown","metadata":{"id":"RvDgOI162SM9"},"source":["## Data"]},{"cell_type":"markdown","metadata":{"id":"Hbio39uC2SM-"},"source":["Have a look at the source to `untar_data` to see how it works. We'll use it here to access the 160-pixel version of Imagenette for use in this chapter:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YaLZ-bVe2SM_"},"outputs":[],"source":["path = untar_data(URLs.IMAGENETTE_160)"]},{"cell_type":"markdown","metadata":{"id":"2e8lT4Rl2SM_"},"source":["To access the image files, we can use `get_image_files`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"sDGi4YYj2SNA","outputId":"8a7f6745-4e1b-44a3-f77e-45859698885f"},"outputs":[{"data":{"text/plain":["Path('/home/jhoward/.fastai/data/imagenette2-160/val/n03417042/n03417042_3752.JPEG')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = get_image_files(path)\n","t[0]"]},{"cell_type":"markdown","metadata":{"id":"HAx2k_ny2SNC"},"source":["Or we could do the same thing using just Python's standard library, with `glob`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Kd0IkBZr2SNC","outputId":"9d84b17b-68bd-42ab-895a-daf5873fd58b"},"outputs":[{"data":{"text/plain":["Path('/home/jhoward/.fastai/data/imagenette2-160/val/n03417042/n03417042_3752.JPEG')"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["from glob import glob\n","files = L(glob(f'{path}/**/*.JPEG', recursive=True)).map(Path)\n","files[0]"]},{"cell_type":"markdown","metadata":{"id":"k5SH4j-T2SND"},"source":["If you look at the source for `get_image_files`, you'll see it uses Python's `os.walk`; this is a faster and more flexible function than `glob`, so be sure to try it out.\n","\n","We can open an image with the Python Imaging Library's `Image` class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"M9lINy9m2SND","outputId":"cf01903a-8120-4912-b0d3-bbefad3aebe3"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAANUAAACgCAIAAAAUzb6mAADk7ElEQVR4nHT9WbAt6XUeiK31jznu8cznnjsPNQMoACQAkiAlkiJFSe6W2WyJVsshdfSDw9H2ix1uvyjC4SfbHR1+aClshUMd0WoP3W2FJtKkmrMAkAWABApAoepW3aHueOaz5xz/afkhzzl1ScsZO87dO+/euXNnfv+a17fw//R//i+FEEIIxhgAIKIQgnPOOUfE7i8ihhCIKITgnBNCEJExBgDiOE6ShHPeti0AMMa693vvjTHOubquGGPIiDHGGEMkRAQAAEYBERkRNrWp69b7wJks2znnnL2ydefTnQARIWL3LQAQQmhdGcdpFMU+gLPgfXAuGBdca6SUOpJKcGRA3hF5IkIBUkrGeQjgvQc4P2EA0FprqQC6N1P3yx16zjkRNU1T13UIQWsdx7ExhnMuhOiuiXOuOzERfPcyBIeIDAAgAIQQAgKVZZmm8U//1E/9F//Ff76zs3P//v22Cd57a6211ntHRIQAEACDkDJOdJqmaZomeZqmaRRFm7FujbPWAhdKayaVD8E511rjnHG29d4CBQaByEMgNRo45wBASimlVkJqHUVRJFAQUbGqptPp9as3rLUAAADOUVGthmsDAhvISnRtsdwcDtvlMpWxFJoYbwO0CAa4o9BySUQAgTHWoQUwEJGUEgAQ4bP9AESei34Ivq3rqlhZ0whEJCLvfQgBAIQQHYwukde9oQNfCKHDBBFd4rX7q7UGACLq/l6+v7sxHf4QESB0H6mqBogxxhG5d+ScZ4wLyYbJsDtC99kQgjGGMaaU6i7QJS47LOZxLoTqPoIMMCARedsqpYU8f1vwAUIgCgCAgCF053B+HM5ld26CcYAAgUIIHAmRcc5coBB8CCEED0AAFIK31rRtc3kyHYCJgnMeyRvTlmVZlmVVF6ZumqZyzk2mZ/PpDJF+7dd+raqq999//9vf/jbnPE36QgilVJpFURTpKJKKc85v3LjGxPlKDBi6i4yITbGy1rbWegNFUxKh9c45Nxj1leRJnEVaRUoIwRgSQMA4MsZ47xE4AEBAIYTkvGnq4MmZypvWu4YCdV+RRLEQGAm+LFZC+HyQq2BNU5FzjtrgvA/QEjgheJyqSDOuu5vOGGMMOlSEEIQ8hwdj2O0EACJRVCulVJrqLJWcobj8wKX06sDXHfQSTN12ecWJqJOCF8LsM8x1aDbGtG1rrS3qqrtwjMOl/ENEFUchBApIAT0ED0REnohdXOhL6Hdn1R25O9XuZfelnsCZ1rvgPTEmGAqAAABFuRRCKCWk4JyjYCiEYBw8hUtZTgGJCLFhjMVxbNExDkjgvbPOd5ePOHW/yDnnnSMiB4GCy9K0bduyLOu6bpqmLMvValVVVTGfGGPqum6aqmkaY4wzrXMuiiKkoLWOomhtff0LX/iCMWZnZ6fTPJwj55wQvHfe+0BusZoJIYRkKDiRv/y94ziOVJzwjEkhhGScI2eIyDkD8iE4hMAgkHfkrfdWC5DBSwQhGAIHQMZACIrTmAgVElk77KXBnyso17pBnulYx4rSTG2sD08P4PDp075OyBqOuLm5MdrahUifLVYn04nlsrvgHWwYY93ZIiAyuriJgIjd+o8i0etlg16uJOcIohN43bXmnEspuyvS/eDLZdfhoLsT3vtXRZQxhojqur7E3+V+a20Hmksxeala0zQOAYIH7wOivfy6c3l5sV2IKF5VVXdwROze030RegAAZ71zAZELrkKgENxw2Oecc9apaeeddd50eqH7LZxzFOc45hzqagUAQjKlFEe0YJ1zROTBW2vbtj0H07luDc+ePbPWdsvMGNNp57ZtR4OcMRYpPRj0+4MreZ6nUSyEcM4xxrx1aZoioo4j5AwAymrOOeeyM4HgXBeBX1sfCcGFVt2yuRS0YIzgqgNrCMEH6G4zY0CBBKFgTCulJReMISOFvFO+UZRwLkIIARhjwhofAq1WcSzF9vqo28sYWy0KKTnyEA3S8bg/7Gd2OZsAmGpF1omYlBBZogKXFKxpK573iboF0NlsFAICBCICIkQGBAT+Upz5YKxr6gaq0lnTCCnl5Z2+NPuIiHP+F+Rf97xpmktEdnLOWiulbJrmVah1QOGcZ3F+gWNijHFxbr2VdQXEGBMACAyRMwCGAgU7V6Yd0Dt8dKdHhCFQpwQvsa4jxRgTjHuw3tgQAgJHhLoqhRBScs45BE/giQIReWO994iglELEDpScc6VEXdfLeem9b01dVVXTNCGEqiov5FnToa1tW+dcv9+PoijLsq2NcZqmSZLEcayUCtSEELz3EAiAdecJPqxWZdu229vbgVyWJ1LoPOv3+31gmjEmpVRKKaWEOle6VV0Q666zD0CeAhFDQCkFl7KTGjZ4CAGRJONRrKTATOs8i3pZmsRSSc4Bpe/MKsWl8I7quq0bEwI1xjkX0PumlLEUzjmGDDgb97Omqaq6ivNIcVYXK980nIFvXCSkFGJydnI0OTXIeJKMh/0pyUvhxTlHBp3d5b29VKTnEhGRMZb1Yx1JDlQbU9Wrz+RfB4tX7bwOdh0ILs3/S0B0TkZnO3f38hIoHXY72zxw7G48ke+0ZwdNrXUIgQKEQD5Y5wwAAwgoZIe/S0nTHTaKokvcw8VGRNY7xZUQPITAATszDpGXZYnkkASJ7kd5wAAAWdIry7Ku6tVyXtdluVq1bY1I0+l0OpvMFgsfbHdkJrhSKo61lDJJkvWN4XA47Pf7cRxfClFEtNZ2kq9pi9Zg064u3DglpZRccMGA+HhtyBi7d/f17oevr6+PRqPFYrG5tUVEBOfX9/xXs6DjCM+tJ7pUTZzzYLE7sBACETlHIYQUDMknWg56yaiXJbHmGLxprLUREXlAREBmwLHgwTsi0JyBBwDw9lxTITjGGKcQghOSb61v5L346OBguVwuF0UihHUBGgOOmuAt5/041klMxbn4QuSICARAeOEockSOGLynS2CU1bxpOTlblUVTl4Ix1sHo0qXoQPbq80v5BwCdK3ppBV6aZZ05eGkgXkKksaa7vudWAgHnHDFsbe+1bVvXbVU1oW6sNyFAABmc7X5QCAGAOqnJGPPeXqKfMdaZnd3t735rcB5CYMBa0zrnBnnunGvbej5brlarqiqstY4CtmE2m62KhbfG2KauKyCvlHr9zde0gkGu43SY9/tpmmZZlmRpv5dfSvROsDnbWFMvl519qZRScSTzLO7sFmKjEALQpXPGOuNtsVgI5EkaJWk6XywGw954PG7bdrFavqp/gDPGGGciilMpZScXubp4wjkQf/VkQnAIEDxAcJ6HzpMLznME9MgIXGOdcy4QIvoAIYBSETJe1o0H8i5YHxrjrA2EgTHGjVWxioRMsp5QMhBDpgGlDax1ThHPkjyLohbRAJ4tVsD1K3ZapzMDECKc+xIADIAR+S6UIeUAkYIzDHiktOhk0rmLdP4BICKtdXddXo2GdPe7w9+lsu7Ux+VN6kQmAHSCs3sOSIwh51wIJiTjnGd5whiz1gKE0EVGEDjnHM7FML4S9HnVDLj0fM/dII0YyJrWNq23zllbrZZVUU6nU29t01Srqqzr2jlDCIyxO1fvtE3BwfcG+bC/k2XJYNgbDgebm+tnZ2fz1RIYEkDVNsbYVbFcLqZKqTiOoyjSWsdxorUWQly/fvXSPOjM5S6GomIdQujcHCIKPngKwXshxPPnz9fX19/+hbeV1NPZbLlaSalTlaLgl/pXSskER8ThcMjkZ3ExOlciQHT+EhlqyTlnnIFAAGc5hOCoWLRm1TAMEFxwVlBojXPOAbAADJAJpQUXxjMTfOuhcWQ8GBcIkTHMdSIiXdbV8dlcSl62Phusr+94DKSZSLJUxvHSmrquUWqd9cFHF8oXO73nPffehhCklFKJDgmdwyqEaF2JgEAA4ICkmM/n3Tru5PmlAdcd69Lsu0SAlLKLFYWL7VJrv+IBUfeVRCQ4j6JoOp1kWYZAq+Wy38/LVfHxR/eTJKnrtq5ryRlQaNu2l+fOWMZ42zTOuTRNOedN0wRyABC6gCFnRL6q6rquvfdn5VnTNFWxqoqiXpV1uWqq2hu7Nh5tbW1ZRhujHlGeZCljbPfq3jgbaimrqihWC+9tcG1bLuahPj16ppMYEImY0nqgMxQ8z/pcsi7OJ6W8hAIRtba5tHsQgTHkwAh5ZzV67531EAJDIYRQkQ4hbG1tIeff/e53f+5n//Jrr72W5zkRoTi3ZKSUQsm6bp1zcZYKlQIAEEM8twjP7SKuLwMCIQQgjwAIIIRqmwI9AIba1JyR5NjWdaev6toGIKnjEHyoqzjjgWmhdDZkWe3ibNiPozzve+8jCAQwEhggBISro3XfGKl6zaoMzgWA0vPWC8sj5LIBrqTsFl53npfKMIqii/14ecLGGAKJHBAAyCKQSJKku7iXQcJuu3RI/4IW7oB86X90aHPOcc47W/DSC+nuTVnVVVVpHRER56zX6zVNzTkfDvv7+4eMMefC4eFhmuQbGxuTySTWEeeR1ooxrKpytVoZY+I4ruu6ruuqquq6LsuyqqrOoyzDkiEqLuJIb6z3873tSEvFcHNzM0vS5XJZ1uWiWCGw2WLu2+r52SRNIsZQCTbsZVLkAEFrqbVurXHB6zSTOi7qunVeSGYvbNBuTbKL0Heappf2bndxrbXe+2E2CJ4uTRGB3apmjLHFbLm2tjY5m/7ogx9sbm5aa6uqIhBCcEIMwBEll4xLSJNccEEIiIjACRgBYxwZB+MCA0REBhyRAQpEQABPlqEm8tYbZ1FAQMk4S2pn0zTvJdwDcSatD4FQRrGtmoCQ9qOrOtvY2KzqFhEDuLIsvPdtMAFovLY23titinL/5YkBHogRAoFwnHlC4MoLHZxDJM7P0wRE1AWOiUgqEXF9gZZzG88FjoguNIJ7JCa01t36fjUQ2K3IV53ZS0dkuVxqraWUndXYgaxzIS+VZicAunuQp9l0diYTsVouCXyaxovFfLw2XC2X49Ggqc3KrNZG46ZpXr545pzbX87btl0sFnVdI2LTNE3TKKVCCEKIztPMe3HeizuxPd4ZOefIGnCWU+AAGDyncHrwvIi1UipWPBoP8jw/POa3ru8KJjlgXRXONlpwCsZ7iyFIIZFxAkkI3lstVZQqrTV24eCLyNSl1dHv9y/tnk7FWGudc55cCAECdeYOIgcfvPdta1dlsbOzs7m5+fEnn9y8eZMjXru+N1s2XXTGUQDGhWAAgIwDdiIVAbELZTDGGWMagBgyxgSe29kIASGQ4SQhmNY7BOKEHIgzDoyr3nBbRbqu67Y1bdNUbVubqrHOeZ8kqY7SOMmKpjXGEtFsMkHOGmtaZ5GJjY0tY6loLHnuyRMiIPcYAleMqyA0etf9UiFEpwgZY1KJEEKHqws4YifCFU8BwDHOEIPTolOgly7I5Vq/NAcv1WuHv/X19c77K4riVUXc6XF5ERpwFxurGgyohVSDYdNW3lrJOAcc9Qenp6fvvffe0yfPtdbLZTGfz/v9fpzFWZaF4Im81tFgsNH9vDt37kgpoyjqcn1FUXR5kZPJPhExCppzKUUsWCQ0QxpmEeeYJAmTwgXiQgTTmLZiUgkh44iLJI6URNJAPk3Tk7PT/nCcD0c2QOMozntJb0BEJHRn+3bg6/7iK/Hwc2vMuUBIwDAwYtTtDf7c90dCrTURcSnW1gZPnn5qbJvE6Xy5lFGqtTbGhMYAAFyEAJngjLPzWCwA4rkVHkXsXLJeigznvTNt03pPVVWRtbFiAahqDCIZoSwhC9gY35rQtH61LKvWSCmDp7Y1bduGENq27fBRl6WKIi44te3p6amUiiPzPiAhdQ8gQk4sEENgyDkC4EXUjpCBkFxrnabxpeTqTMMuKuy8CiFAEKRUYEy8irnLOMsl8i7xBxchvS7W0J3xqy5Lp8Evb8+lT1euqqIovvvt9ybTs8ViFsf6Z3/uZ67sbj/85MFv/dZvPX/+vN/vx3G6trZ29/adqqqCcF/60pfG4/HLly9PT08RMY5jrXXdFHUDRcm61dJ5SEmSDDfuUPCd8BPBCyDuPZDtbg5y0pF0wTuiPFPDPGrbVmupuBIcOFJVtNa0nNHVvR1jQ6zlWn/YBg5c6ThxARwX+EoY/NIPC+RejY36QD6Q80FJ3UlE55wPjog4F0KINIqvXLnSWTtf+tKXtre3h8PhH/3RH6ngAsXW+sa0nRUeAjoyzDPGEIWQ6hW7MwCCJcIQuqSCoBCsa03T1m1pq2o2mUCwm+MRQypXS2tbyyNELqU0xiilulwhOUvIOtPt7PRESZGmaRynTdOkkQQWmOA8iRtrVvN5rHQWRU3ZAAIgC8g4OE4ESAyJC9bBDhkwZIgURSqONee8C6cTkZBMSumc88FyxGAdgQPwgYy4tGk6eF1undq+tAgvcdbdfkTMsoyImqbpgNiFwWaz2dnZ2enp6Ww260w3MmEwGNRNub6+1s/yXj+7fePm7Rs3nz359LW7d65e2c2zHufcuRBF0dUrO/Ewvn37ZgjhxQtvTMMYAwhtW9+4ceMyQtQlJDqjoCxWDFEiCI5KcoVBALAAXW5nOp1GWgZjyqqOFVeSpUmPiGxdeAiRVmmiexvDzc3NazdufeuPv310cLirYybTqq4BpYoTUupyLQEiIXoAINBJeom+EAIKC1ygsMyfXzHOOEqOAJ0O2j86PNg/rOs6juPxcPT+++9vbW28ePFs79YNGbgL1vlGIedC2Na0ZduKkisdhzilXGsNDH0g55ynNoSAyEJQFKIQQl1XdVVh8JZM2axY8MBHnEHrWmMb8LxYLLtlo4XkjEkEzRkDn6jIYtAQNLpcs1QzMJ4iUTU1Ga+V1CrSWinOjZNMO2cZMQyCOULlATgIRhi6nD4xBt3y7FwD5yjN4vMoLxEiEgXOmeAYCJzxXX2DeNXJoFdCu51QvHRyL7MRIYQuFaaUWi6Xjx49evz48WKx6PIfdJH2UEp16QFbtt45wfhyvgjkilX83W9/p6nLpqrv3bl7fHw8mUzyvCeFyLP8nXfeOSmPZ/PJZDKpm3J7ZzPP887FqeqCcx51W6xkw40xIYQ0iRiBAOIQGDlvjW3bYI2WfGN9TTDY3dlAJk4nZ0nWu3J178btG8cHhw8ffDw5PVotC3K2KSMgf/PmTSF5HOskinmUZlLHad8RFISXku9Va9h5egV/5Pz5QwE/NzwuVKRzpmnc5uZmW9XrG2vOOevd/fsffvLJ/V6vV1ZzZL5LV+qIB2DGlsvVSsURa2tj6hAcsVxK6Vyw1krhEAICZ5wLSSEQ44QYuACpEJj3wTFOjCMTpLniPOlCGUpyJbn3HiFIwSQXHANwyBKZxVoy4BASwQMjpkVgnICAQS/WnAlqGhlpJ5wncgKdR4NAnBQjxjAEvBBVwRhTVQ4Rd69sJ0kSRdFqtVytll3kREpZNVXTVG1bOduathYdqi792Usp2OUeurx7t11qvS7hluf5uYYty/l8flmf0rnD1tqiKIholA2KotjYWPPeEfA0TQ8PDze31t95553lchlF0dramrVua2srjtJnz54t/az79n4/T5KkOw7nvHte12Xb1pfmVwdNQGLIFGOSJCBRcIHYT33tq7u7uw8fPrxx8+bR6enDh5/MZrOzs5O1tdFiOauqEgIpJSzZslwdH/vf/M1/DUxdv/P65uamZzobjAjloydPIe135vN5fB+AKBAFzsUl/hADEXYXj3n0zpjWCsmljAGobWxRLk9PT5uqIqKjo6M8T3d2dp4/fy6E2D940e/3iQiIqUjpWPtgjWl0ogm888YFB0CcM0QgYFqLLlcbxTpJNBESeCDblBUiAZD31gULiISglMDAGRJjrItfmqZWQiopFBfOGQBKI51FGskJ8DJR9ZTyQV9qNVsVdWMEghas7cwPhABkOEhkgpAQOIPzWwABIDgXyrIsyqUxRiruveec7e/vv3z5kohGo1G/nxPjVVXYpg3eemdE2VTdCgYfQjgP9SFBHMeI6KzHAKmOHHdEIUmSk2W9e+32alnMV40SqZB961Te22jruktXIDhAQgYABACzYiakMM40damUaqq6l8TNqvzv/5//r//kP/mPf+f3f+fn/vJfQiRCePTk8cvTF7mIWmPyrB+cExJM7TaG61GSAmOnk7Ner8ek8BSYEG3bCiGmjRumUrQL3c4iM4/dKua2tjP3nJVme/nk0Qf7P1iVZdQsvffSqPd+q75y9dpY6imqyWy1WJkoTkqnQIgkzxrMlg3xKJRnJ1VV9Qe55dp7r6QQQlhrOedSR93iRDwPO0PwEDx5Z5p6cfLcOFvXdZylx4fVzTu3iRUnZ0/7vcFkcUQv3c7mzu2bt9771nuSyd2NndVJK5Ne5/AxESOPODOMCR4EAPSjXBLXDvdGmx9++OHVq1eRQRzHzjnyIRM9BGqprtqQqmRSlBylZ9Q6bCwtmnB14wq2zXmAQpKKmNDaQmNbwxULlvey/MXR8w3YEFyQYFVd87W0sKYfR8V0VbVNebjc3t5eurOqqqSUiNTWJopUn9rVpLg2uvOHf/qtpjHXr167d+/ewcHhi4ePiWi5XN7dWGuO2vv37wuh+lF0uH8YAmytb7d27lYzW5ZpHEuhRdua84Az4KWWYXCRXRCCnO8qXEIIZ2cTmfbLsmxNI6XkjAvBlBJl2V4Kv65q6fJJvzdo2rqu67Y2ACAYvnjxoqoK5+1yWfzyL/+KjhWR/86fftcGZ4wZb+5SwNH6GhM8TdPZfB5nudTKBB/XjYojJrhxjjGGnANj/d4wkUEwFzMTccvK1lujZPTo4afzVT05W3DdtM4jiBBcFMUO0HtCJrJeX8W9Xt9wpa1HHkUyipTUjsi3lhA4F3GcBC+FuAzBXOaE5IU1Yrt0IOdI1FrrW2uICDgDhkxIBMa4UDpywbtAQoi0l/cGw6s3rgNAa22vl0nJ27px1gK4SLGQRG0TBzKjwRiRIFhAX9Xlxua64MyT89YggFSCwNdtBcENR/3j48M0jfM8PT2tuGDr6+sU/HIx70USEAEIMCAj8BCCc8FGTDlnmoYBBhXJKIo4Q+9t0xrv/Y8/uh/raDQaHR4eff/779+7d69YVau6bG1TlEvO+Z17t5kQjx9/2u8PXzz9sUCxvrbhbFcYhbu7e2dnZ0mSbW5uF0WhlLp1525bN0+fPpURLFfValWcns2a2ojP4iyX5Y6McRSc86oqer3exngtjuNeP+sMvqP5cn9/3zkTRVFwnnOepmlVVUTnlSmIQAGQMYBAhHVdG2NQySRJ8l66tbEenNNaai2/+c1vykgW1eprX/va7u5ulCRAWFSNirTUSioVxTGvauQsAGitZaSlVoyxAIicCe+Z4Fxq8g0C50ILHzWtL5dVooTzvKl9HPVMIO8aIWS5XPZSXlu3WBZ13ViPyERtHFqojDXTOZOKkEezXCgptZBS6iRlKlZdtQFBoqPO+xFSeuadc+Q8MA4AHlAgYwQ2UHcxAzAVxcCQcal0nOf5/sHRYlm83D9UMkqydO/ade/9bHHG0DFOGpiWDMCbtqqqlVaKi+BaW1qbpGo+O97c3PSeekkm4NxqDxBW89lyuUiSRAq+XM4D2V4/ZUDHhwcHh8/TNL11/Y22bWezWTOvupoUYxpEcMECIx9s27aHh4edWVuW5fr2tiewJsxnp3/2vR/s7V3L8uF0tugPxh9//HFrm9F4uFqtmtrVra1b20tHn/vcF3Z2dmaz5WKxuHXrnjGmqqqsPzh4ceC9Pzo6yrLszp07ZV0dHh+tVivv/WKx2H95uL+/L1iXAIKLFLsHCkTougW/u7t34+re6enpclHs7u7eub29x1zzzaKqCsagtS0ySNN0sViYprkQgYjIKARkrFMrQggpFWesKhshlFAqjnUc66IoqCIdRYeHh1/76a9OZrN+v8+Iaa37gwGTQupIlKWItFDSegKGhEjIkDMmzmvmDKG1XiHnTHOhWxOmZ8uNtWGWj+Jk2IuTsmrCcsU5NvWxaX3hWzZbzuZLYxyhaB2pKCHglkBqalovooCMhEQErpjiKkqSpLM1sygjoFa0SqhVuQIGnnlCCiFAAAaMIxdSIqJHCEBpnAByD0QMq9YwqfrDwWAw8BQGw5GS+vDwEMlyVFoScUJw3jWIRilKU22aQghRTOdS4JIxLkBKWddFFEWMMXJ+VSxevnw5mUwkZ3fu3OEce3kKEJD5sloAhH4/f/HiWYc/Y0yWZUIIb2yn5ZBBr9cTSkgtvfdnZ2eTyeTBkxfj4QiRP31+8Mknj+J0ePv2xslkAiKO88F6lu3t7T57/uTkbHb//keNaXU0ms/nd+/Wi8Xi9PQ0z19Ya69cufLjDz5+/vx5r9djBGVZfvjj+/P5/OTkZDDaNMZUVRNCyPsbggi76AoQo4CARESBqGkaIcT6+vru7t7jx0++//3vv/vuu7/0S9cMQr/fO1JHQgIicY5KS8YvE3ess4IROVAAAKV058RIHTGGe3t7vSyRUsaxNqbpjwa9QY6MruxerZpme3tbCAUMk37eWONC8BQIAbnkLCDnTHDGOENCzs8fHhkTkWY6QCQ9E7po7BrI+bxiPM8kAtNaec55JGMtEm8BkDOpOEog5hlkeU/FSSAEIfM8l0rR+SrijAkK3jsrpZRSEHgCEpwBhEgr7z1QCN5554N3QIEz1JFERLDggleRvEyRe++7mABhODk5EYwjkQ8ujnSWJsH5uq5NWzEMHGjU781ms8cHxxsbG0+fPo2iKI3SZ58+Xltb857SNO1ydwBgbVuuCuecUgohENFkMtFaro1GMOg1VRHrSGvd7/e7cMHp6enR0VFVVe+++y4EaK2LklTHSVVVRyenT548SdP1YnW4v7//+PGTQX/0jW98++HDZ6+99lrbHg9H/bPJ8gc//PFkcqYj+eTJY84xSV1VVZE+3N9/sVgs1tbWjDHWhKOjI0RBgcV5UhszXFv7G//+v88Ye/zw6N1337179+5ivvr444+Fc6GrluqyOogIGJAgSaIuzRrHsLe39/jx48uqKsYAMRAFLrDLGwPARekCIp3/C3Bex9A0TWtdL8vX19d+6qd+Zn00dN4Q+fv3P8zz3Bhz7949rfV4vC6Emq4WtrXEsG4aLlXdNjKOFEOt4iiJtdaE6C0wxpjgTHAeAuOklPJNDYwD8rp1AcS8KOOed8tK6RiZQoQk6ykZCaAoT1GqQKx1Hiuj4ihOk6a1nqBt29q0PoQ4jRgDIh9JRLJZlDJgHiwDlMgIghTCsGBbj2Q5euAkOUlOCF4KyblcVU5ybk3DIORJGsdxsAYhNHV5enwSCYy0jiNRL0OiNI85ElVVNT07q8oaARaLxfNnL5umOT0+llJe3bteVRUiCh5VZTOdTufzeZZlw0FPqUiIcHJ8fHx83NVsj/o9b3xRFM656dksjmMiCkDdvahqCygfPHzShbtfvHjRJTlnsxljbGc3e/z48XJZ1I0drsVVvTw8WUwXP7h77/bByXQ2m7zcf7a9vRkl+duf++KtW7dsyweDQZ7nXXXPz/3czzGOVVWdnZ1tbGx05YmHh4fI2fb25o9+9KPpGc1m5UcfPeKcD0frXdEev2wDYxwAGBIMBgNr7Wq18B42NjbG4/WqaqoKMLWAwQdb14HCeWJAa11cAhAAUQAGAA4QlFLW2s4qMsa8EtxxUsq1tbVlsUjT9OHDh9PFvGkalSXgXCBCzpQSUZIkWRql0fl3CQ4APPDLnCMF4oxxEdq2lGgshMYZi5D0+tlguCoaFXFkZGwbRYkHEpEEwR0a49rW2FVVeQQTXABGCMYnjDECQqa5IKnQu7axdtzrA/iimAshsihrXWOMWS6X8/m8yytIKYM3pq3achn1+3GkmzoICk3bqijOxgOG3A76SRSNBsNcq16azqbTEEJTNdWqYYzNzhaTyWQ6nZZl3S31WMVNaZRMEHFraweILZfLZVkWRXF4eFgURb/fX84LIZiUUnD+9MlLrfV4PG7q8LI4qeoiy7Km9cZWq9VqPp83Tdu2LSImeTYeh65xcTZvqqrK8/z6ja1r164JmVy/cfvGjVubWztxnOo4efny4Dd+4zcm8xqRvvwTP/3XN/+9e6/dWcwnUvK1tbVhvjubzRaLxfXrt3u9XtO4qqoYg+WqOjz6oCiKoiiqqhwMBh99qJ48eSLEcL5cdR0L3vtzn4NzzlgHPuiK91++fN4l+DmHLqurlEoSqMBLyb33TV1zFASec0ySaPoK/i6z8gC8bVspZaREHMdt2zZN5UPGGCgVAcD+/r5QnHFI03RZLuNYx72UVai1gha5ksjIOdO2nDHmg/VeMsYAiQsmiUspBHcicCmoptaSJQEeAQSP0jju909XpWYYGLTeCa2AIQmoXTUv521rW+PLphGRkKTKqpFSBrLIBBBZV5UVLpbTly8Oq6oq70zyPH/w4IGUcnt7ezKZZFk2mUzOzs4AYDwe53leluVyPm2LOcvjRCQrCOhNaJokzYa9HmNsNTmdHR9R25TLuXCmmE+SWJPXy0Uzn89fPnu+WCyIIMuy0WD04Ycfbm5uHx9NQwimddOzMoqiD3/8YDGvJpPJyckJEfV6PcDAAPM8N6bVSu3u9s5OF4f2bJD3EHHWVtZir5dvb413rvA0TdMkGwwGGxsbm9tbzp3n9Mdra/28b5zjnDd1mSU9R0QBGI8I4PGnLze2ry2Ws43x2i/98l9DCINemud5L8lmy8nx8dnm1laSpKvVSqs4SZIkzg6ODn/vd/9oPp/u7Oy44ItieXo2Q8Tt7e3WiNC2XMpeFAkhRFmWeZ4jUtO0jEMUKedssVqlaVo31XI573K7VVUopZwDLnkc6/l8mqa5QME572pXuxIsAAACZARw3oQihPDeCyERgXHoomjOWe9tFGsP/uat63Ec7x++rKpqMBjUVRnFkXMujrUxhjGQgjEKURQN+73pfLG5udkaI4RYmlYyBBF8XRvrs1w30xUTWNi6sM20qgtL65tbV2/efPn8GQbTFJUWUqfRbDGPssgGn6fZbLW8eefmYlkMxwMudSB3dnZ27dq1xtbG4ouXT5bL6oMPPjg8ehlFUVVV1trJ9Or+/n4URV0HdJ7nquBNW9Z1vVqtelox76rlIlNqkCSJ1AeHB8E4IQRZ//D+xz/9ta8agB99/3u9PD1YrY6X0DVrNk2TZdnrr78xHo+n0+li3hy8/Ihzvrm5ubGxc/+Tp2dnZ7PZrN9bi5Lh7bube3t7rjXj8XAwGKyvrw8H/SzLujxHFEVd8P/KlSuj0bppWynl2dnZ+sYGABIQAgY4dzo9IHbaSpAxplhVx0eTumnXN3eldpPZUke9JO0ZG6rGEpOxFgBCCg2ASZwN4j4QkyIWoiVCZEJITJOe1tF4bbNpnTGGUGa90fr6OiLqhEfR+re//e0ukyWyLKuqKgSnJQfrV8VUSpllcVkuEbnzLSAohVEUAUAIYINlTGittdYYut5BLoSIY31e7YyAyIRgiLxLThTlynAxGvaUUMY0jOXj8bAoV4xBIDo7O7l+/aqUIoq1dUbHEik403IEgsCAGBBnNDk+ynr51trQmtY2jUySRCtrWpX4wShHU7nAnRYyjmSaHk9nr7/5uVVRHy/m6uz0eDF3bTXoZbdeu/tgVQSGRLC3tm5al/V6gSEK/PH9jzY2N7XWranni6lQvG3r+TwcHpxqLYn8j370g+l0urm5mefpdHp2cnICAEqpXq/X6/UQsSiK1Wq1GfHPvfuFYlmWVXt6Mq0ak+f9BS6ISEnZzweSyePDkz/43d/b2dnCQA+P3Ouvv75amqYxb75xF0G/eHZy887t//Gv/p0uJ76xsbG+vq5V3F3e8dr2cNirqma5XK6Wy9fu3QaAcF4hCAQUnBdCdIpPyrRctYwxpbSQibXMe++851wabxFYCMFcZBJba41xLx5/3LatD9hayvJh1VgXiJBxqQRDBO49BUldyUoIRNj1y4dz/5UYUQBgjGtvSts16DEZiJVV27at8a7f71dt4yjUphVt24bglBJZGhO4snSIHtBlecS5BAjek5CYJBEAKAVt6AruNWcyhPMqy8vaVUQUHC9bCQmIc7a1teGNXa0WUvJADpEm0zPOMYpUkg+iJEqSeD6fNqbd2Ngo64IYUnBapYrINmVwXYLBBmOiKLJtNcgSzkWi5HK5nE5O0+2NarWYHh2Eqhhl2U99/Wez/mi+KN780luB2PHxkRXy2rV7LLj7T57RaE2oGJGvbe0+f/YiH45evjgQQgDyPO/HcTwcDpVS/VGvLMu2rQ/2T3q9njXTs9O51vFwsG7aMJ0s68p67wGasmhXy7orbEmT/uHhs96nL3/844+cp+2dq1yq4RCefOeDKIqG/cG91+6cnS62t67+L/7T/1Xb1ozBzu2vdWXeURRtbW51lUirosyz9LNkPECgc3lVGwgAhCrNRy5gAAgBVqs61kpKXtemNY0Wsm3tfFEeHU+Kxbw/GN24cWM6Wc6mq4vQvWxayxgLyEIIQIicdUUkCEEIgQEZE4xxqTHNeoP+qKkNF+iJQsBO8BMQAoXgGLHPStG6qmwA76huvfdeKKl0LGXsPZaNretV5w8RkTFGNE3V62VRrChYIt8fpADkjN3c3KrrummLuimzNLOuNa0DAMm1EAqIWWuDo4t8MXnvkZGSQgkOSM65ruVkPp+ORiNEj8iTNHKu9cHU9aqqqidPH7fOvP25twBdFKsnLx4vV9Mo0l2Rn4DgvLdtTd4CwPbWblFX4I2tymoxf/rs2XkBnHKDWPvGpkkvG4y0kE3dzhdllI1P5lVrfUA92NhpgXlnZdaviDMZx3FqDJycLhCKTz55tLm5ubV9NUkH3lsp9HyxJGRNVXPOx+s73vv5cqnj3nA4bAw9ePTs+HQupezSlWSIt0FFPNZZFEU3Nrdee+2N7b27nOvx2mbWG21t7swWC6XU9ubWwcH+ydHBld3NPM+yQQ+CM74vJQeAALAsm4ODA8bYlb2rrSUissGb1nWd/MgZ57yubeeu5nm+WMyqpmWAUvKni0UaxyEE54zWWjBeNe1sNjd1oSLdBSLqtjHGcqnJt95TQAZIgIxJLoTiITAhg9IugCcSgnnvnANE1EkSEBhR27Y6USEELRgCCQSg0NW/cCRk5yUsjEsAcC44H4TkLmDVWIRQlw4ERy6YkMgF5yDiWAOGuq6cqQBdQnEUqziRG5ujs7MpZzKOJQBIKbpqUwaMMxkCWOuDC0AXVXEcuholgmBNa0wjhFBaX9nbKsvSO7d7dY+I/vVv/EtyVkg2GPR7vYwr2bb1D37wfeMsY5imCXongFzbzM9Oy7paLBZZ2pNSlouZC0EAVctZURSr6WQ4HKZ5rnp5cGhNaIrGEEGgvDdMe+s/uv+QqVhFcb/f31obnZ4evnz2uCoWb3/lZ8uyChSOT47LKiyXy6L0/RZ72fpsWpydnTGGz58/RyQKYTjsX7nxOud8MDRpmq6treV5LoQYDAa9Xq+L53XV4JxxBgwBfVswJggYAVcyCQAEkA62Dw/PvvntD7c2118cLi1F/Z49+8HHt27d3N4bPXn+Ynd3T3D4wQ9+UFbV22+/PV3MF4sFAAS6ID85b3kGHcdcC9+G49Ojo6Oj7e3NOI6xgrIsA3otlQeqTRPHsYgVq8Qw6isllGZxpjw5Gzxy8s4LrZEjEfoAjnzwpuvm9s4QIWNCch5CaJqGcd3v9zjnzrZVVQ3zWDJQggF4IZh3AEjIAucIjAGG8+I9ITkTBBiANbVrmxUT3HuKpAzEjSUCEkIIqXhRrKTi6+OhVKwo58ZUcS9fFfOqWmodV3WZp9La1jl7ejaXvcQYR+et7eeFwV3/WwiOMd4Zf4yrONa9Xm8yOdNax1m6tbURRdFselYVy7ZtDg5WX/6Jv7F9ZZsL8e3vvLe7tzMY9rZ3NuvFTCk1m81m02VZlt57kWcc6MXTJ8iZtX4+n49Goy9/4XNa69lsVjT0+OBZosQwza9f2S2K4vGnzz968Knx7NqdjcHalpRiuHWVqfjodHL49EA+fHFycsKIta1dG2+0LRsNt9NkrTG4WrgsGe/t7b315hfXRsO9vb29vb3aiVjrum2llJwxBAgADP7iFgACEQBwPX724kXdWsaV1m1Z2o8+ebCYLxkTcaz/6I//zXw6yfLo6PBlXa4OD/e/+pUv//qv//rh4f6DRw/TNN0ebD55/kxKGSVxCOQuOseAC2Nt0zQmWGOMsU0SxSjoZHKCiFkSDwYD5MgUkoW6rgN4IjKujRUuV+WqnAM44j5QI1hMPAR0DBgheiREDEABPKHnHMkFoXgUqVVt5tNZlGVa616vN5scV0XBtsecIwCRMygQKQB5gMA4ElIgAjgvtfcUGBNax54AALSKhBCODGcRQ00BgLjo7vEgzXavbOe9ZDablNVSCf7pp4/quo2j7Ic/fF/J+OX+c4bqgw8+6G+tTSZTIhBcOX/ee9uVPUvJe718a3O9108QSQihtcqybPfKNjkfKZ2kkWlqb83+/ov+IF9fHwNAa5o8T9fW1hrbvP/+9zbzbDAYkHWMQqIVYwyDP5scLZdL7/3Z2TSEYKpSczafz589e8YHm9vr61/+wpc+uf/Bb/+b359N5uPNnS9/+We++4MfP356+PxgNhoNpE72n3/aOv7Fr/x01t9eG+/OposkyW7fvmsqMx6Px+O16dlkNpqtjYbj8TCKIs5gPFqzBmwQXEAgzRgsVlZK2eWyurhmx8vR9cp0drAlT8i1jiKVvzie7x+ccNEbbIwQMVIa9MF773+TgXvt3u15veTR4J/+N/+ViuTf/tt/++bN6/P5vD/q717dOz07a5rGBbLOeiLgGEslVMwl00lk50ah3NrZEop1pSGj4bCrvUMkrgBtAO4ZopAgFa7KKlCrI11bcsEI4owxZBaYCIAQKAAgdI3phpq6bk1M6Gy7mC2ev3ia9obDwXhrfaNYTpumYYgQCDC0bR2JhMACddwugQgCOaDPejaYUFrHgIyIVBQrpVbVSsdZnPa6ggFhTJukkda6C6BcubJj7Lgui9PT0zQVnPHJZOIdAECWJca0T58+6xofOecO7GX5YBRFUaSuXtt9+8039q7uco5t24QQRuOB1noxnfV72WDQK1dFP8/eeeetKFaHh/soWJon4/FQRXK+WjZN8+NnT69du3bRb5uGAPP5/PGjB1XZRFHkvc/z/OjoaDabVVWltZ4eTSdHZ3mUPHn0KYK8c/eNtD9M88FXv/b1tZ3d1oenT5/mvdGNm8LUK2cqHedJMmzb56PBmAJrjAfgkc6krNI0bKxvCyGE4MVyeegmJ6dHcX+bc97lFd57773ZbMY539vb+8IXvtD5W0rGJC4ob1rvpVA6OTqdjtciG3htaZT1j45PhBBvvnFTxb29a7c//PEP/+23viMl72XJzVu3/tE/+i8fPPj4H/yDf/DOO+84CgFoS25Y59rWLorVarVywbfWAIC1xqxaIdjZfHrwvYOiWL71xht5njvXkg+r1bKRMlLCOdMlHpCDEOiDdd5wgUWxPD45FEIQ8jhJCZlxoW1bY70N1K2lOxlYa2IIXb9p19CYpikXqF6ojsqNwDvr2raO0ogIKbhzUxgohAAEXWSAsc+qm41xxlaMNUwKwaNIJ526FwCzL777M2maJ3Hv+bN9IVTb+E8/fcp5AsCyLEE+ALJJrz9YG/KIRU1qQwAvy1WDnEVJbkIAwWbF/Cff/IntrbXGlg8e3L+ys8GQtNaPH3zwxhtvSOmfPX9UFOtE9MnDT6SUSZKenJxcuXLl7be/cnJy4px7/9t/hqgfP8cnL1/GaXL1+s2XB4+t8xvbW9nuV7bzXDKexLFp2ptCSMbffP0Nxti/+sNvvP76686569G1LMseP36c51s8HSVEdeEYY9uj7dlZHUW5TgaOSinXOOeMN0Utrt283tiTT56c5uNr04p+53e/9Xf/7t8d5kPHuYv0o6Ojf/kvf/+dd979+te/Ppke/vN//s9Xq9WV3avOuUff/MFw/fZwOByPx1Kotm1t2zKJUapQ2rKud7avOY9lMU10VNel4MAZnZzuX7u69Z0/KaeTwyzRWdpztkrS19fH6W/8qx986xv/8V/9lV/6D//D/+CLX3gzjaWIgGLYyNbrgVkul01Z1XXdFkYN+WpZ5iL2IUwX5cMPTuKoev78pXOOK75YTs/Ojq5e2/7LP//1lwf7jIFalbmOl4tmfXd7Vs//5P1nRDDIe8NBXzCQXJVVfTJdGOIq7gcWXR0fjNY3mhrKFglGwa6DG3sbl+Wsqcs051wYb61SsZR9b3QITRf3DcER4wwUMEbk4ziOY23aYIyRSmdZBgzrqrV+6cKqtUtjTJ6nommaw8PDEA4R5Hi00ZXWIKKUcrFYIHaEUeHk5KSqiq2tLfJRt7w4F8jZZWng7u4u59wYh0lclMtPPnm4XMyiSO3vvzzYP+qa1vL8wDk/mUy6VuQbN260rU2SLM/zR48e/cmf/Mmv/uqv/rW/8euHx0cvXrzY2NqJsoQz0R8N+/1+l5vmBG3d2KZxzkVJbJo2TlJkfDDsHR4dZ3lPKh3FCQH6EIpixTmP41jpyAfigmV57/d/7w9+4id+4s69u0Q0mU0fPHpIRI1ppVYbW5tM8ADUNnUA4lJcubqX5bmxVir11ttva603NjZCAOdcY+qzaZgvF977rivZGkdEjVsdHR2VZV03rjX26tXr73z+3du3bwOA0iLWAhn91V/5pS994Qu9fhKct0bsbm33er3VarFczitTP9s/Xl8fp5mIIyAC4Gq8sbZctvXhUdrTf/Ct31osVpsbW+PxZl3X+y+P0yQTQgkhTo4O66ZKkqRpmm9+85tPnz65e+/23utXrQdvXVfiDyEoobI8ZRAkVx2znFJKoELJA3AptZJR8EoIwYVjHCAEZ1oGxBG9MXVdg3MSRUdKA2QBgIILIbCOGYVxqYADCcYdD9a258wQSjEMnHd+AgAE770wxmgdr61tzGdLKeUnn/zAe1obb162E5+3DTtX16211rSuM/ikFAGIsfNW8+BhMpmenR4fJzGQvbZ3ZXtrN8uynZ0rw+FwOBxmWdYlHLtq/iRJPve5z5VlCRd93W+//fbXvva13Wu3gOH+0aGKdFVVOo5DCL1BHwJxzm3Tcs6nTdO2rYx0XdenkwXyg+vXrx8eT3qDtSjpxWlfa3337t2qqrrG4Y8//vjTTz9N03R3d/fWnXsuwPHpRAiRJMnWzpX5fH7/k4e7u7tJ1nv4+Ilzbrlcrq2tMcauXr/pvX/28lnTNGkvHQ6HXEhvTNpLpTznXeScD8fjy558HWFZlgEwEG/qNkqz7a31vA9tDYyDGeZpmt65c+dv/gd/U3IAoNZj17nQEZAKAcFB3djZWbG5ls1mZj6fDwdjBJGMtjc31Buf+58//PR5XbdtY+ezcj5b6kitra0tFoskjQmNtW2xbJF8tSyK2SpPs+myKMtyEyiNdD/Pyrqpy0KlSTbInQ3L5dLZ2gYbrJMqKRaNZMa20OYNeJACpAwInmHIU60kl5wTAEf0jAEBA0IC6IpNACAEH4xpjHVtIEvBem9DAAAXR1IKXhvv21YASEQBIDY3N6fTqfeUpb040VtbW8tlwTkLIfT7fURsmkYIPh6P4zhO07yuZlJKqZAzpBDYBflLr9dbXx+bpuFI25tX/86v/60333iNMVRKdU1fnPFAAZEQkICapomjeDxcP5uenJycvPHGG3meD4fDEELVNsvlcu8qKqWyLOsK7Nq21fK8C50xFgiEVMB4WTfHp2e9wZCQtdaleS8ARkn69PkL51yWZd7749Ozs+nMEwzq5ubtO12HslJqMBi8+XbWZbelhNfeeDPLmNawWMBwCPM5aA1aAyI0DQgBsYLGQl1DHENZgnPgnEPgQqAQgAhE4ANkvT4BEPGiqp0nTxACeIIkgiSBm7duffLgAefgnBVCUAINQdtaaxxjTDHNOJCSgslJBasmLBpYHs3jOJVSlodw7xpcu3nVe1jOW0Kxub29nM+Pjw+VUoJ7pEDOxVGyMVpbTufgz3kcu/adqiydaTiFPI7e/cLndjc3m6Z5+Ojx05fHp/PCeCcFjAbbvXxUYBDIBQ9aMiRTV7Oqnjlb26Z2xgjOrfG29WQqT5WUEggRSUkutOzi0Ff3tvM0qZq2tdZar+MoiVMi2kr6/X6frOk6jsW1azcODg6McUpGH330UfCsY0Ro21YpDQBC8CzL4igVgsVxrPRSCsk5C8EF8oyB1lII8eTxI8654Bgrxbns94dp0re25UxGmnEmAMC0lnFQUoXg4iidzqZ5nnZ5m+3N7e3N7da2KHtZlkml0jzb2FjLeoO6bc5JpDkTTJHzUisRxcYFEPJv/tqvee/X19ffeffdjiChruudnYExUFWGc64U37txAxG1RiKwBqIIOIe6hqpyABAQy7axhY3j+Gxus0zX1mkjpssijmPRArzSjW+tdTYUjZRSEgMQ3IdgXQjm3NBm4Lwj44N3ZJxzNggd9QWvDUgDDODdL37+N3/znx8fn/WyyAd35pzWWsYKhTCNLavGOyLPKLDpdJmleRDZw4ePB/3RlSu7p4cT8Li9PcpiWBvrtfFdF+6+fHn68OOPTVs/XM3qaqWFzOKEbKiWZaPz5XLJhOJcOGNPjo6auhyPx6+/dudzb9zjANbauljVdet8mJVNMPVs4jHEReE0X/nAJDrBJUI7yKNYr2Vp3FEkITGuBCJj8bn0tkXZlEUIjnMZvM/SyLtWR6KrqsqyTEa6bdvJyayYh2BaWxdt24o4juM47fTjj3/8YaQTzmUIgTNZVSUiJkmS53nHdjAerXetxcjIGetCuAi+YJJkxjiUIhmkguu6sh0TTVOHoqjiOE5SDSA44wAciABQ66izpXq93mK5mi+mGxsbk+nEWNvr9ay1J5OzyXyW93rj8VgpJQSHAMdnZ6Y21rv9wyOl1PaNW91K2toYLBYNCGmpXlYQAgXGCbCtrXMujuNgYbUqEfm8pI5BNU3TJEHnwJR+MMilhNNTs6ha730KIu5laQpV5RljXPCub5IJrpQOIczLVWd1AevYxroGdWhLJ5SWnrggsr6sl2a2UHqUJGAcmCbcvH2XIX/w6OHXvvplch51vGpbKo2SOk6VCLCY02KxtCbMl5VQg/sPH/7X//X/Y+/Ktb/39/7eeHtc1pOzqXd9LiUgAAPY2Bhvrn+lbaoru5sf/uiDJ4+fNkU56g1TlbIAdd2qhIdgGIcsiXa2trSQrqmr1aJczL33DFyayPEgi7N0UTQQXBL3Jac8S8uqFSJoEQSn1Wpq2vLRwwenh4feetcGIM5RHB4+EqrLdrg0Tbd3d7a3dpI8u3pla5qoyWy2WKyms/nBQVtV1WQymZ4uO0Oli14J50LbtlXZBH925cqVPOvPZovFYrWx0eM177g+uy6vLtCldccP6Z03zhPnHYMgXfQu8bbxq1XpnEcAKbgUoPWgq8aSQiGA91SWdZYljDHvQ1FUaRqHEJwNkY6OP31alqWKdFmWtmkNo62trX4/v2C6tY8fPxFCCK4ePX12/fr1HIgraYxpHTApWmezfq+oa2ttHMdZKp1jzdI01iSJSvI0BEpTdA6KwtSmLmovpewPotPTZa/Xk9F5vscDGG9Wp22WJ8ae0/06HzAQY2iMSbL8wuDptJsliwAguXLEiqpobaCArQtJIvI+QADfAmMs0vG911/75je/+RNf/qK1BpNca2ERitIcHs3axguuI5n0+lKIXhTzujGroprMprPFsj+M65ULVLqQrI1EP+0gyDiwPO6vDz93dXf3T7717cOXh3ma52lPCdW0RsZp3dTL2fL4+Hg5m1vT2Grxw+9+azE529hYi9P+Rw8fny2qbLDWehq9dduvo7fu4ODgo48++uM//iZAYDxIDj60EEgI4dpQlY1gCoFvbMZdKHS2mDdNE8dx3u9pLSfzWdu24aIZV2jFGCuKQoSkC+ggkjFGWOPXxhvj8fiTTz4BwNOTCRFlWS/Lsl6PTSfzoiiklFpHUirOBTBL4ZLO6Dw71PHrbGxsJVHs2sYYF+kMAIrCxpFEBB/AeWKss7UxSTLGmDWewE+ns8VicevWjX6/P5ster3e8fHxfDoDCBsba0mSjMfDqlwJodq6KarqxcuX/f6w3x/O5otbQjoKUkoOVNSN1tqYdrSu5y/awWDgnGsdcA5xljIGAaF1ztqWydQYS4z6o8QYquu6dZD1MxVBQN46j4iMWJIrJhmXvG49IkRaMiG7PDsLzPqOshQQkXEhhQAAImgLozWXUc5k8I7mRTNfVmfTnmTAGeQZtDW8du+t3/6tf13VLUJwDdQ1VKVtGuucwCCBhANeV9Zbp2X8zjuf/8/+N//r0Wi0sZGdnq5ynTtip6er1Qr2doeDPjQNmXrhTDvuD7c2137lV37lx+9/cP/+g4ODgyu7V4u6GW/GrWuePn36b37rt09PT3e3N7/4+bdffvqwKlZrw9zb+vGD+09eHl25eTftDeezbeeClLptl8v52eH+M4CgpCDySgvJeJrmCJwjl1Ii8LOzs8FgEEVRGicdC4JtG+8tBq84Q8GNgeBbiUEqAYlSEDnn+nkMAFUF4qtf/eoHH3ywWCw4F6vVSmvtHQnBptOzsqwB4Iq4kiQp53y5XCIiF8I5VxSF90QgrG2EEAAsy7LFYhHriAi1iquqAoI0kYgQAiCCVkgAxgBREIIZ45Ikm0xOu8pWAJYk2XQ6FSLuyBhn06nWGsjPJqdS6CRJpJK0CoyxN99889rVm9/5zp/2hiOhJAF0KiAARUk8X4a83/MUkDPrg+1YZj2AB+RMi8h2jXMoWkvIMMmSDjqNIWDILlqXjSMmeF0D54oImvMWU0AExhkBIMMu/x4CXDJHcKFqA0TgPSvqFlByzibTdn2sIwWzOWyO4fU3P/eP//E/fvH84Nr1q5MjcA4oyNCiaRqtYxlxW1OSSNQSPcQSb17fC8FVRZ1EHEMUKKBMHNnD09WqwCxVaZx/9OmnSqgkUnHM3v3S57a3r9RV+6//5W/sXft6Ol0Y6+N8sFwu7969G0y9Nhr+xDv/Hnhz7dq1B48+fe3erb3rt1ClR5MzF2CxWIbgravzPM3S+OnTJ700k1JWqyrPexy9kkzJxFkXRcoH6ALXXT1LR/C/Khad35PGuq3LnZ2doiict1pJMpAkUV2XzjkppRiP19rWnJ6eleX5rtY0k4nt9/vOma7RtWmaqqqaxljrhUKEjteXEBkRMCY4o7quh4PRaDienJ4gYtOY7lZVFQgBXYgBsXvCAIBx0bYNEWZpDzDM5wtEMMY8eP6ptXZ9beScW60WxXIlpRR9fnVvb7EsFtPF+tparzeIomh7d2/QH63OmW4/e3Qv6ZyD6i8maqnbSQD05/5X68+SukRABARIBEJdvKSLz3c445/tDwHoAoJcAQbwDjwAgfLBhRCw9lkObQOmhYMjGI4279178w9+/1tf+vK7Pn6bMRbHTAshVAYEYAA9hgYAwWNg4BgnzoIUgIimZZ4YOWcp+OA511HEXOC3br+RRnpZuraoIhWvrY9/4a/84pUrV+bLJ8b6OOn1eoNf/5/8Rzvbm4vJyfog21gfVstZpPnVK1tf+fKX0uEGj7KXR6cJKR3HranWBqPRMFeSTU/PENlqWXoLxrjlcnl8cpL3FDA+W8zHa7GOol6v17ZtVekoUgCAwBFJKYXAvfe2bZ0xAMAYM956f87uxzgK7/1qtZrNZgBAREmSrK+vA0ASZ21rEflwOEzTVOtYiFpwxdAx5i6ILzgQF0Ig0Hi01oUZnfNxHL948eKHP8yKogCAOI455x2vN2PgnKvramNzbT6fV1UBEDrCP+tapZTqjUb9wfr6OIqiolgW5TKO49FotCwqORwgsUinWZIul8VgMOJcdjXXl8SZl08YA6J/BxCT9DPcnEOHAACs+3Pg6/YTgW3+4js7FLbt+c5ujtIldZhtXQjBB7LWF0XVkTAxwH/7jTNTFxy8bYtbN/YA9X/zf//viqKGuOqKDsfDUZpmScJlAoMUCAAZIDACFcj5YKzzgZyQMWeAEEHQFNpV2dRlJbi7eW0LBUgmQpwGAhKwfXVzMB6cHG8+ePDg+MVLeHmwtrZWVVXwnrw1TRUpkWi9X+x/59vvFY7i3sgSw9oPR/1BL79+dUdpubGxcfPajUhnWqSIMk1665vrT548jhO5qpfHx4e/97v/gjE2HI1Xq5WK9O7uLhFxzj/55P5oNHLOlWXJmZRCdxyKaSyFEM7bDhjixx98tFwUXbS5rmuikCSxtc5508mntm2TJO38g6Zpkizu6nMoEDCGgF0DXJZlh4eHbdsyhlLKTz65v5zPjDGMQ5qeD8DQWo9Gw47uLo73GGNbWxtdvae1bUfvV7nAkXU9jgy2rbMEQQi9u8kIWMdi3gY4mzRVY+q6OZqez116laGViLoCdHiFV6n7u1gs6N+1XXb3XX6ke39bycuDhxC66VhwTvKAF+xMcMkFrbWmLhDoqGnM+RwH55VELZnQsqxmxcpc3bvz0Qf3J5MiHdWmaRezxYE6yLJeFEVppPNetrExUhKiGHQESgoKqXW197gsSTLkAjhDBoJhFNAHcvuHq/W1fL0PUnJroagMETEFWzt7ljA5nRwcHLgAi+lscvRieoSv/bVfqleztmmEEGkaK1A1QVvVLPiqYWkmG1cX5WI+XdSRcXYpWbz/8lTp5Ktf/cmXh6dSgYqBS/bFL34REV9//fXT09O6rnd3d6fTqRDi5Yv93d29xWKxWpWMMQDBGFNK1a0JCL67I4jiyZMnIQStYmRkrbHWrlar09PTfn+wmK+IcGtzNRgMu169jviQMWAoAl5MKwKOSIvFQkqZ5alpasCgVLy5td7v93d2NtM0vcTfeG0oBAsB2J+vYWLnPL5BC8EArLMcATkqIXzwwRkhVABmjeeKawaDfnR6Mv3d3//Dpbj6KowuaSE7ftxL2F0W6Aou/6JK7vZfDB677Bw9PzGMAIghBQKEcK6AiSEgEDFARGKc+Pm0CqrO+UxYCBRAIksA0fnKe4qiBAGUyE/OFkqmG+tXfvTD+3/pr/+kEGq1LKfzompqwTgAS5Lo5cs4ikTeiwfDtN9L00zqKJaKYdR53OAcBA8CmZKChC7KCqEmivs9EBJ0rhCAMyhn4c23Xrta0Xe/+90XL55xZPDKxLUQXBxHnHPjfF3XbWuBrJnX1lV5Lxr2B5ubW5rl81kjMWesti0rqtA2YbacqQQn08Mfvf/twWDQH427+Sin09mjR4+Lomisi9PebFEE4M4F78BDoOA8BCJwIXDOhJIiTXNr7eHhoVR8Y2Oj3+/neR5FUV3XXWCFcegKLbs8B0OBQABIAQnx0gVmjOV53tXCbG5ufukLn3/zjTeiSCl9Tov+6uacCQGklIyh9wERL+mzqtoiBMYAOFLoyA6QMwkADEAr3onAWEEIsFisxLgPCMg+E0vnTwj/3FdeKmjCy1aByw0AOqZsuGDd/EwWoryENgTAcx5O3tTNBbw/wysRaaUAIAB6RwCetHMWHYayWCpunKAozsm3aabuvf7OH/zu7zx+8cnu7h7TDJ2XkRBCudYGwsligUuQU6YPeZLKvBdneRorOdjckRKUBKYBgwgeyENrvBTJvCjKpl5vs61NJRgggAfoDeIAwDjeuHnr6OjoeP/w7ORsdGNbKZWMRqONtaSsAKAoikVRo4xGwyxJIqRQVQX5YOsQSwsuniznsR5qHZeFkSoRUOW96Pn+wyt71zY2NrZ3rnQXbTwej9c2zs7O/off/h2t0rbxpg3OuQ4n1ntSgRF4BKlUlKUiiqI4Tr33w6y/t7fXUYqvra09ePCgNTUFfl7lVpu2tcYYRAZw3mZCQCF0j5CmaTcb6O7d21/72le+9IW3OkgEct3kj0uBAgCX8xq6zXtv7TnFYC/PAAEIoKuJ7NxLBB+IC3ExXwJaC23brg1Hp0b8BTB1R75ky7z83+6Jd+fMSJcOS/dS8r94hE5kGtMAdAzMjIguB3soeSFfw2fgA4DK1QDovXcuUMAQmPPY2hAnOSJHBpxjCNTUZZ4NpYwfPflobXMw6I9b1xIzLmBtjUeWp5n33jpjS1tU9WS6EJIzxtiD51mWrY3WRqNRL1VRDEKCYNw5ANTON4tVyXXo5xHj3vkm4unJ1AyH6urVtTj++e999z1TLoqiqqpqOT2Zzyb5cLSxsTHevfp0/3he1C8Pn966cV1y0ZiGMeEMDLJ4d+/exx+9SKKhIzg6mo7WoiTJvvzlL9y4vbM+HvT7/TTNiIJzTsro9r3Xjw8O/s1v/66OYuu8s+Rcx1kPAFBWK7jIJznnRdfBGkVRxwj7/e9///BoXwothGjbVoq4a2+LoqjX643HY0TsGtuIKFwaQCFUVVVV1bWre1//+te/+MW3EKBYtVmmGYPW1G1ju/qLtm2JsMvvGWMQedft0ZHHcyYRuBRMCCY4AiMA6lQ156KtG64iG4BJkAw6GkzB4s+wTQB0XoccLsQhXrAIIyIBMOSfiUk6F4xEEC5mKV6C71xxw/k0H4BzilggBoDnlXCEl+ZiN22LOq7cwAMAci4YSKmFUFWx8oLpYWKNF4yFAIPB8J23P//7P/y3d167k2SZpZZ7qaTSsU7TvG0sY0yomCMAeiLvyVnrMDR1XZ+enkmu0jQdD4Zr42E/T/o9HqcxBV41Z+Xz6XKoNrdGuUwDgNaKI7QWer3sl37pF+9c3fret78RRZEYjQb9XERxWZaLdnF6eupRxHHEpayqAryLVGItHR+f+jptasvRSR0LodJe78mLp2V9XmuTZVnT1AAQPEhBAFCVNWNMCOU9GWeDIynPO9S6uU7OORXpKInFaJjVbbO20T+bH99//EFRrHavX+n1ssFgdLh/YFov45BkGMWuqk6QVt5lUjAtuWkqjjzRcYlstlwkSvm2/ZmvffXdL36eAJ7tHzOGi5oLuCBD9kHwKE17ROicU4o1VQ0AZVlqLUOQzoXx5vjJg/vvvPsuIHiCpvVSSckAISzmU8nkYlUkvTWScLiAko32qyjPCgBGXSKABAGHVxCGSAwDMoNICIRIFMSf08dwqbg/092XWCYiF/wlvBgKQgzkfSDqUu6s+xR5IABPRPx8HhMJ5ruiVImmFxPzMJ9PEdrxeOQCgRotTMi27mbf/p1n3/nTL125LUhAYCzwojSlbxAZcmIsBBYYJwTPgRgCBG6tJQLHwrwuTg9nQsgoitI0WVsbbW1v9Ps7UkHZwsExaA1XRpCk4AG8a5MINfrX3trtD37aCywdM20YpInj2Wo1y6JxsaoUhO0oPZgufNl4VoeKSPAQzbY3eqvV0WJejtf7Tx59+OjxBxvrNoq5HG3XIbx2+5azdRKpupnrKOO95KCoTJwVGJdBRgJda1LBnKl5xtqqllLwts2QxOHhYeeBGtP0817Hmdo05sMPP3TWJ1F6PsYSwDk3W6yu9sddGp5z3rZ2MV95H+I4ns1mP/MzP/Orv/orAPD02X6e510jTzckcrFYzGbz1WpVVU2xXJVlfXR01DEiLJfLK1d21tbWoih666231jPdVo1OI0SQknduQ13XnPO2aaMoEQL++NuPfvsPv+N4MhqNrQHq9DWwiyefaUMACkiMsGvlYeeS7Bx2iHgZUsGLMaEXwq97D12MHgJAFi5qjT7zaS7I2RmAv/zu/z9bN1Kqu3Tdx+M4XttYX8xXjx49unrz3mReRzLoSAKycHEanVPFOpYtICm7kVUA1BHPn3cJFcVqNps8f/FUSkzSeLzW39nZGo9VmwBo0AKE0sZaYkFztbd307l2Nn2Y5clotNm2VnD10Ucfta0V7PQnf+KrX/qJq03ZmtK/XB5UxWlTldeu3NjZ2P700/nBs08fPPqBx8XZy9F0drrz2hexrca5XhvkABAJbMp5vZxe3V6bnx4OUu3Xh7mWCcPJ0f6N61ceL44YSYEAZIGc2Nnc3trefPzkybPDZ61rmcCqqpq2jaIoipIkyULohlG5oiiOjo62tna01sG7bhCXlJLzYK3d3Nz8O3/n1xcL84ff+MOP7v/Ye7dcLheLRTc/t6N6YIwJLoHItM54U62aEMLN127fun3j6adPjqcnP//Lv5CFbqYNIAPOIXT5Lg5aJaADU/FsFR48eHBwcLCxd5sxAefcW9i9EzCcY5EIkQgCEHgKDAOeD9y7ULpwznJ1KQYRkeC8lu1c+gF1UxUCBTznNoRLVQsQ4BXIfoblDpqvvOy0fxzHwbm6rjvfnIjSNL19++77P/jR/Qef3Lz7JnSTm4W23hMhBiSgAMAoBBYYEUBXOcE7AmIAlFKGQM65jmeiKFrnDJz5oyP59OnTJIk+GeAbb9597U4/UhBIMi4RwVODyN56892jw+MPfvThteu33//+j4b90e/83u/fe23NhJD3e94VwRBnuiwOj1dn5fLF9trtYm6zXCfY9EfRRg67o51PT/ft8rQ6e3nv1vVEq9H6mg9soOE/+1/+z6I4C38ZivmiH2vh3f/nX/y/N8aj1f1Say0QppNTX8/F6cmJVmp6dtaU7ebOxubO5tr6ehRFy2LVttbbMByM+r1h1p/n/UF/OPDeGoNpmpZFJaRaXxvv7+/Xdf1rv/ZrSZ79o//r/+Xly+d1U56envT7/TjRIkkRUQJ0xVG93kBr3YHl5OTk9PT02t3rO1f3nu2/YE6++fYbfrKQkfIXAZpOxmilAahjeuxoAAaDwXAwrhqDvIuEM4TORAMACBgIujEcl1IQIZzPP+9AeK6gL6DIkL2aDrnAD3ryIWA3+xTDuZi8mFiBGIg+E7l/QfRekBkj4sU8gVVdt23TBeSJSAhx7frNg8PT1ao8nUzjuGeDYyitdVyqTsaGQICAFzZt29Zax4jovQ/BX0wl4dZazlEKqbUMwfngFvPVbDYrz+Dho4NP7l3/S1//3NY6eA+TwiZKTM8mV/d2t7avrq9dmc3qN/7O5/6P/4f//N6du8Cb6WK5ZVrriGHsnDft0pgXO5vrwyR8/d2fPdh/3sxTrqdHj36Qpf29a18oV8v9T34s6tlqdra5vWVciPOBJ9FaYoyXi4UkGma6mrzMt9K/8vWvbGysS8Huf/hBU5XCtq5cFba1sdYC5dnx2enJhEuR9fLjo9O6bvZ2ryZJb7FYLcvCuJBl2Ww2Gw6HZVE1xhL4oiiuXNn5ya/95D/5J//kj/7oD27dutVac/X6tWvX9qSUTQRdp0mX3MMIgQcfwv3799dG46u3rt1+/c7a2trt+d1nz55VZPtRxzHqMDChmPeeI1BwHLGtmijrCyFCgNPTiUyncT4khhTY5d2nznE+x1yHkc/+o2PruYQLIr4iwM4FFXym+AAAAvFAgQjOvWUkArpUxB3NzZ9D2/+P/MOLEY3hfEahsdZ24cYQQpoPrt+883L/8PHjx+9+8SehDY48soDkujg2EnaRrvM68wBdtCuEUNc1EXY8YFEUEXnvrXPn3ZBSakTlHFrb/tn3Hx3sn33tK5//8hfGWSoPDuZ7O7vHx4s40VqqPO9/499+6+///b//4Yf3v/GdP7KB0jxTTDZTLIvW+uVw7D/++Bu3d8Nbf+s/ffij9yXVt6+OJ9NDX83sYurKZTs7pWE0efmEqllR1r3ROnHJdTLoj964sX388tnhp483+/Lt21f01et8YwMg6FA60wjFhWud5GI8HGdJtmrKQOQ9VaumKEprPecyy7K818vSXpIkjLFu9lqWZe1sOp/PB4PBz/+VX/z4449/7/d+bzAa2mB6vd7du3cfffpwb2/vdLbsrnsIQUtuXMs5D87LSM6Ked1WJ2eHB0cvptOzJFEKeV2XMtbYDZSHLlrhm7oC8gJkVTWTSckY29jY7PcHNnCibhYr6ww1jhdcEBcwC+f4YAAB6DP4vertviq0/oIAc4TUSR8KDBm/TLQE6kI3cNkOHJCIgH92EHoFgl08gXPuHLZt2w1T9d4T4xub2z6w/cOjsix1lAbntURPHeMAdTQX5zEvCOdzSYF3M7/LsiIipRQREXkiAgyMAScUQjDOGwNbG9eMWX369Nlq+Sd19cXbN3asYR8/OL51c7NYVhT8W2+/cWX36j/8h//w9u3bP/UzPw8wbdu2rYNgA8aEkD7JPAtNWU0hTZvGEFFZLWbzs0SNzGru65L7VnibCRrGohf31rZGs0U1L6ZO0N23fna7r/6HT3+8WM4f/Pj7b2+OYR7AtNCuNkd9xpE1TWMbW5bl0dHRfDq3jVktVk1jJFdaxURkzXkLyHK5bJpmMBgsl0uC8xnBb739xvXr1//ZP/tnXLLbt28D4u7ebm/Q71qT8HwciFBKCMFCcG1TltVSae5MnaR6a3ONgkvSaGN9DOC7uIZU50FrxlgIrq7Luq5b05ycnEwm09Fw7c7te+PROgAC48BejW8HQAfokHlk/lJsAAAhI2SvRvg+M/5emfH06pO/sBO7GwyhG7hL5wOpulgUQrgUin8Oza9CvBuT3g3tEUIQkSXgMhqtrQupP336BBEIPGOBo+fokfnLuckA0E2odTaEEPI8X1tby/O0mzx1cPByMpmUZWmt7RKkQigl47y3cXI6t16+8eYXddL/17/5u//iN357Vdl7b2yezdq8n2Q9WbVeRfJ/97//3wZyr999TTCxWq1mswUR6jjRsUJh+2uZjCOYzvPRRj5axzjtb1zZvHb7ys7O+mjci1PftuAdOhdzpsjv7W4kktWreX38oljOenk8Gvacbx5+/MODjz84ffpoevxieXYgQghKiCzLPFBjTSxFludns2mSZEmShRAinTDGkjju0miCwZUbN9577z3viQFGaXL9+vXT0+M//d53oygq6woAHj958nz/eZpn3/vB94xinHPGASkwxhhQ01RNXfZ6PQhURvLHP3j/4cOHP/nlr9y7c0cA+ou7ZYxjklnXets2TcOQTiYn85XJBju9Xu/Dxw9qv0x76/Z87hggEANPQEif2XmEgUHHzXyZIfHw55F3AZNAr74EugzBsG7CESPAC8WKnog4IBFDxK7xHy6SIf9OCHYojeMYEebzeecFExEy6byNk6zX67148ezevXvOtZxzxkSgwAgJEIlfyFkMnrp67zRNh8Mh53yxWDDGkiTq7Jy6ahbzFePQEZylkYzTPjB3cHzC0W/s7DWm/Y3f/r3tnb8FXC7L0BjUkquYF7X/j/6nf/u//e9+M9iwNlqTRBI1MAQpSUQ8Su9c/4KPMtYbmao/uLLVB392UrKiXRVVa11V1gDMe4/OFUVhylrH0c5ofbaYf/Tx/eWqNHXpvClPDre2tnpZenz48mT/CbOuzXrpYjFbrVYhhNFolKb5G2+81c97q2V57eqNz3/uc1maaiGDM6apOOfONJubm6vVKo7jfj9//c03/+k//achhLuv3ZvNJl3h66oojk+PkixlAV3TLiezYGxbloM8a8qCU+Dep1pFiLevXr2yseWaul6szj3UAIwBY4whYwzqug7kuhFLh4eHDx8+BGDdHO+uAgAAvDVIPtKKM3K2BrIMvTUVZ5SliZYc6XzGDgtWc3BN6dtKgCfboDcSAyenGKE34FrNIY+VYuTbSjGSAoQIbVNqxRWn2eRQS1QCnG0pGM4gBI+MtFKiU6l0PrP9Usp2FLFaawDQWnfcst3ERusw740A5elkiogff/zjPNVJJAhs8Ma7lsgjI8YEETjnu2mgiPjDH/5Qa725udlpjM7ETJJkMBisra2NhhtapdbQ6dnJ0cnhYrUELoCLZdUsytoD/+affH+4zvojZjzICIADIRCDX/7FX75357VHD58656pqleapigci2d679cWXZ5XVqhQyZOufHNUvV2wK2XzVqLiX9sYgdCDe2FAbVxkPKIqqWVb1R588LlobpHaMFybcvXt3MBjMZrPJZOKcE7/wV37h6dOnNvjZbHL7zr1nz57dun335s2b/+pf/Ya1tiyKs+OTfr/PESIlIyUBwBgjkMWxbk3z7t0vfu9733ux/3I0GmmtA+aT+bRuSwBw5DY3N1Odai2LYulMszYaZjq+c/XqvdfucmQPP3mQR9H+s6f9OD7dP/y5n/yaAqQoepVexXtfVcViMbOtOTk5WyyWIEimLkmyeekaU7aMEfm2qRhRGksMHiFoHtu6sq1ZzWfEOJcxCoFMCKGsmUdRpJRomqZtG0RcLouuPCJJko6k27moG2o3HA7n83kURbapGLnZ2YpzPhpms+mx5Mp7L7j21rWNJwIhFBERd+fCjzxdzuH2jjHmvQc67+VrmqYLozKmrAeu1Obm5unpcd7L6qZI05Rj4AJdOB9xE7z3DjxQpDgiVlXVUZPfvHlzOOpPJhOt4gtxzhgDxs7ziVXZAAai4L0lToDckzDB/uj+w7uv3bt3N40y9AAIYIl5gPFQfPHdr/R6vaZ0SubD9c9PFsmqemFRbd+8w3qw99brW7SZjbAslyen8/XZydnp0fzkCH3TVlU26COTq7otFxUI3eMq7aUmMKVTF5Ah/fDH9xEojXVrQ9lY8cff/mMASPO0Px70hr3v/NmfLlflzt4VY0wvzSTjVbFaHw4EAxZ8U6wAgnOuY9qKIn3jxo3/23/1TyaTyd61q7Wpq6oihM3tbUSaLebWm7fuvaG1CsGVxfzW7euL2WQxl2uDkTNNMK1gffQhi+KnD58M8h45f5n7R0YE3lpTlqvVanXn1u0s7l29Eb08Ws7Ldj5bHs+afLC5bGeMA3ivJCoudawiJQb9fLlcUh4fHp8uV8s4ZwygtrVWMZVnYKIuDnxOm9Q0JCUHsGXrrEVEF5q6KIgoxNzVbW2KslylWVwsFy743d3d1fxUCiWlJkUIwgeggCF0ou4iNP2K+QgAHXsYZ8x719HFdpH5KIqsc1KIrZ0r8/kZ51gWSyWRgiMQHAWhYICEKARnyBgL1noiiqLo7Oxsc2t9d3f37OyMcQBiRMQYAiA7d4tV160SgjMOJCIgD0wET9PZ4v0PHwa4tz6O+zlIDkyhBygrGA4Hb77+pVWxAPAnp0d/9qPpN771/Z//hV+5fef1MgAmGGzcgq6RKPJn5dOz5SrKh3s745P9Z6umNqsCpWI6QRC1Z+P+ejtdtaZ98OyYgpucPjWm+dzbbwYHB2dLsXNlWyo1/+EHe9eu9Xr9N9966+HDh88+fXJ8sL9KEmfa8XB48+qeQNCcoXfeeyk557yqqnfe+XxRrH74wx/qSGotOeezxUxG+tatW8ih18sAYJRt7R+8GAxGSaw3N7eK5bxrCCdv27ZNo/i1u/eOj085YwxFCKGuW6U1KoaInnxnqjtn/+x7f/rJh4+4ystGr+++vrGxUdq5tV7pSHHhXYvelMVi0ZbBmyyOrl+/HqWZaWtrbR5HJmDTBGS0sz1ijD158qTf70cRTiaT8XjcgX65XOZporVeLpf9XEVRtFyeDtKxtZYUSTBrw8QYUy5PEw1JpgWPrPPWBCEUgupKwYldFrJ2lTLIut6TC+uwU5Sd0jTGcKmQMetdr9fLB/3p9GxzY7xYTjfWt7wP1jFwEJBx0EAiAAOqnXNRFJdlGcfxy5cvP//5z4/H47ZtvTunJaUAnnwIQMTjSADZpvHOUcdVhsQ88Xyw9fjTo+Wy3dkcb6wPtzbGgx4whIEAYJD1VDZcB7DZSL88+HJV7dy8+qXt7Ru1r9swH27stCbkuWxMfTRbOuD37r7+k++++f6ffuuH7/9ZWTfbexug9LK282W9y6JlYQ/3T+8/ej4c9KJk0NBytH0jOHt8+FJ89/3vXr92I2BwZA+ODh58+mAym2mtb9y4MZ/OZpNTTkEiCIA8SyE425o0TbMs01q/9dYb//Yb3zo9Pd27dhUABoPBi/0XnGMAMnXzS3/1r+zs7HzjD/7s06fPr1zZ8bb55MGDydnp5vr6arlAEKO18Wh9Le/3iqLKe70kSQCwaZrMewGMIWtMVVarpu2GK8H6+ni0fvX5fnFycnI0J2uj3rC/ag1DCBCCN861TV2Aaw0LxWrOGQRvBHoKlgJTUgzy3q/9j17zHn73d+mtt95KkuT73//+66+/bow5Ozubz5Nu5w9/+MOdnZ2rV7f+7M9+NB5dyfM0hPDJo0+uXbs6Xh9958++F8XJ5uZ2WdpHnz5/uX/CgQEXzpEQjM6jj4DwWdUqEkkpOzXahUs606KuaxnnqVZVbYTEjY2NRw8+3N4eL+ez1+/drWpbFqYNBMQCoXPeOCd46MiiiHyWJ/P5fD6fX7ly5cmTJ45cCNRp3hDIuQDkYu05ICKSD8GzIBQyRLBKy9lsulieTs7KPDvd2hitj8fI6OooETz1zow27OZGmC2PBR99/o0vNiv7/vc/hujx2ezgF3/x18Ewj/7Fpw+Cdca6Fwf7kpmHDx+vyppLxoSI0nxezRxwGaceeOvh6s07v/CXf37vxvrJyckXPvfO6fHhH/7B74ski/eP9p31rWtfe/P1Dz++L6Ws6/KnfuqnHt7/6OjgECEE7yC4zfGorssQAmOs1+vduHENEd977z0pZa/X66YXRmkCELy3x6cnZ2dneZ433nvAtc0t7+vZ7JQEu37nlmka9O7Z06dCyUeffhpFyWhtHGdZXVX4Svmdc64rq3G24ZzPZrPDk9VkTiq7onXGdD6dTnkUBQjgHYOghEj7WZ6ubayP67q2bYXeSM7JW/IsUnEvz3oZEMFoEO/tDvIcDl72tzb6dV0fvHysZbiyk2sNH8sw6Okb1+DkaD2YcPeGBg4PPq7yRLz1Gnz6OCNkP/1Tg5NTKIrq4OA4BAdgnSMmPhvEc+n24kXWji5GfXeV6J27aqxPU8659M4Mh0MhWdvWzpumrazxgboxFp1m55wH75ssS4+Pj8fjYdu2URQ9f/70jTfeiOPY2dJayxjnXCJC8ITInWkYoha6td57QMe4VIiqaRwXAy2ZcXB0XE7OmjybSSln20rhWEsBEUSD1ZP9xw8fiRzuShH7dnXnc0orOYoh8nmWDz6O6AQ85/jxxx8//PD7sYY3X7srtUKpV40vy1olZrFYLVZ1VZubt+7+0q/8dUj5zmTS39rob187W9RivDFWKmobu1jM/uTb733yySe7u1f6/f5selaWJZBvynYxnQH5na3NxWwWxXFdVoyxe/fuvffee8+fP9/Z2V5bW5suF87Ze/funU5OkLP5fP57f/gHrx+9/uL5UsbJ2vYmBduYsm6K08mEIxSrRdU2h6cnWupRn+6+8SYBeoQuT3UZwuhIiZ21q8WSc06GjDHHL17ManXt9uejKEGBXKDzZK1p2rbxTbBCS1JKLRcrZzGJIkdofeACg7OruUPE8SC1TV1j3M90Wy2QKNEMkZu6cS2LFYJvigVI5mtjfLtGDLSgppwvFr0slWVtjg5gVUHdFM5ZKSNgDMAzxggu4jv0Wd0hXAzt5pyHAOFiYi4A1HUTR0oqGUyjtdjbu3JycjQeDY6ODgSPuIg5F+SRCDjnXEambdvWRFHU+SVpmhbF8vj4eDgcWuPb1gYPnJ1XJxCRM1bqSCnhyRlL4f/b138HWZad94Hgd9z1z6U3lZXlu7q6uqsd2sARBEB4R0A0MhQpUprYkRnKrMDhrFarGY1idyOkkWY4VGi0IjkzDBpRIkiCAg1I2G4AbdC+u7q6fFZ68/z1x+0f591TN7PAuVFR8fLlzXuP+X3eHK2YRpg6ZQmBFzLGpCg0wlmZ8wFnRI9GGwHLRVFu9rr3jYvefj9LVwLsFgW0l9zTq9M3btx+5blvzU89MnNuqenIF27f7jTC/f1d4PHq4qxRrF3HXViY2+uPKWHxODU9Dlw/TJIsiDqKuL3dvuR8f5jS7e3t4ydWd/d38pxvb+0uLC3OzMwgZMo+gsB14sGAi4ICBJ6zX+bTYRjHMefFytLSr/7q/14UxdLS0vTMjADdbDYff/KJ7z3/3XE82t/fjbP45MmTL7/+GqNkc3sXQbnf665vru8fbDsMd/d25+fmHOJcevBSlheXLl2SoDw/lCOhlCKATYITxhhAm9TUNE03t/r9EcpVsxSAMU6SBFEU+i5CwByCJFGAQEspxdbWfr8/cLzm9NwywgRAg1RJkrz60veVUnEc37p+TWudpqmUMggCU+a3vbGutR6Pxxtrt9941d/d3Q296Y3121KrjY07G1vrV65dGY5GudCbWzte0F5f30mSpN0JTb91I1Ur+Xu3HgWUVEqZTEopxaSTMcaU0jzPxzGenW1Jrbkol5eX37ny+sL8TJaljYbjeR6AFye6LEvQQBh2HKfb7S4vL+3v74aRL6VkjG1sbDz66OPjUTIcjqWUGEslkQE6wdpDmFCv4LlSXGuNCUKYYOQozcbjTJRF4Dm+52khNKiMy1ajKVU6TjcmvSGdIB8AQSCKMov7O5vXX3/h1R/5oYViMczH3XPnzh5fmj99fMFBZeQi18Fa60uPv2vmzPnm9CtAvOnZxTNnzuxsbRGEOedxzgGxXKRLi8eefOo9NJpaUDjcH6QUs7n5Y2u3bp870zp95mQax99buz7o73supYFSiu8lWwO+52Zpu92ei0KB9NT8dPfl57nKP/bxH/md3/3PUsq123d4CUWGXW9mqjN/YvWh9zwlXn/99SwZa6kOtpPlzn0uYy5zkh0n3oWZdgslwQff/cRCZx5AxcPBgTwIvUiDliC55N1ud2tnP2qGidD7ed4vcuH42Wi8v7N/auX0nBsd6PsBUyWTQvaRyniZDkdi0POhbPFCzcwuki6mKPNpqbNkuRHd7sRlLqPpTm836W4MkWjKXHqlxwuhIcQp0YgpPL8zdPSAKbTsC7y+p5VSHKJyWMqe1NoFgDv7GqEhIVHYbAqFtNSY0izLXO+u/NVaTZzYCLDpFMOFSVwBSjEAozRJRoVUpaDMd8q8FJw8dPHpN19/7b777p+bnsfgj8Y5Ii6jOE5LojQg6YeN/nDEPL8UiiBuClCu33j71KlTu3vrzHEoFWUhyrJoNptS6HGROLJwGIAu8zyHosew77tuPE4pYWEjFLIsuMaYcqmYXLwt8gK6n2qfXLyyF0413ig29NKLzUI30XDn9YKKc3MLMWW4MTfzrg//jeNT0yLPqetBUQIX4HmQlRAEgOCR95wBrQUo4pATD4EE4ACRhhzzqWkGANML03Tj1o5aIFCQOM2USo7NnXz4wrsip3P52pUiVj5pqEIUY0kJdgMvZJ3A9TzmEEL8KAyCYG5mVkp548aNVqtVclkURavVanemkzwjhF2/fn00HPie5zBSlCL0A9/3+93u8KDXakanTqw++tCDF86fXVyYA9BScHk3IUpJKfM0G4/HvV4vTsdra+ujOBdCKqQwZp7nmYiq1+whArwcSj1mLnaoQI4kSGgFAXK20/WGF2koyny8tDzdY2Xc1WWuM8hU5rh4Ji1LUXAsGQBBSKu7CTEKkERaKkX1JOarbFAEIWTOnzapgZWzRWutpdRwT0DvaBzvcAxQCSFKSV1CCDH1hGHYKMuyLAtCPYxBSCmkwKAYo2ryOomU1loJEFpLAIghzrPi7Nmzb7zxFiEsCpsAWAhBbRwTY0LkJO8BdNW4jEgplVSUOowxVGqs5cL87N5BvLa2dryNSUpPnTrxxmbqCuy1fMeRq/Oru/tXZ2Zn80zNz8z29/d6vV6R5aP+YGF+/sS5+yGiIARgAhQBQgQRDsA1lEoCwPXbm0aaxXFcFAU9f/xCp9PZurat03JhdnFrY/s//h//+fixYwd7u5IX0522w1xXB7Lk/WG8dnOjuXym2Qh9z3cI3li7MxgMrlx+Wwo9isfN9pTr+44XTM/OeMw5duzYyRMn3nn7pfvPnH3w/P2vvvzq5sadrDWan124dP/9K8tLp04cP3P6pElv5qIQZWlCogoUBmz9tFmWZVmyu7urEQNwsQZCSBR57XazLPQA7YBSCjLClOu7UkEBvAClEVM4lx4kQSZBFlxzOaZp1k40AT/JdOBGEYu4jgEJpbQGDojjCbykQhqAaw2COwY6SgqthMmqQYCQ9akohUyZsdagtRIaDsd8dZUPMUlkMBmNproXYQAwha0O8wlmCCSlztTUVBzHw+EQEwcAacFFqQAwxcC5rKXFCq0NYUCSJNvb2/efP+8ypyxFkee8lFLKIHS0lkIIRohSwqRkc84JYcwhjLpCKCm1wzClUBYcFE9GQ12KKGicPbt8+cbbjWNLYViMN3bDkwtzc8FutocQdl13e3sbtUAOk+E4mZmZOXXuPsdxxtlYKWi2GgqgFLpQohS8Oxxs7e4MhiMp5fHOAmOs2+2ORqNGo0Epxv1u98GLFxtR6/q1axTjRqNxsLd/5uQpXuauQ+N4zLlECC0sLM7Nza8fdGc6U62ooTEaDfutqNFutxmlP/1Tf5067veef0Fq9cTj75qZmSkLkY/HTOsyTW68c6W7u3t6deWhBx48sbq6unL8+NI8GLe74GWZItNLH5uzdErA3qRcwPHDsMF5cePGjayQnBOEwqJ0s9xbmDvp+U0VEswcFzNMXIq9kueF4Bojv8FGyXBqbjYpSk2x15ne2T+ISDMaZFGrJXKhOdIeYzrEDHFeSJ0jDEoLpIWucpkxgJioc6CU1Foa5ocQmB7wpobJIMD8r6roc2V5gEGcLXg3vwMNmCBAiGEqBM/z0vccx2WgNaWsMzVz8/qNg4MDhFkQRAhjhBUoKWRWpRtqhDTBxLQDAYCiUDvb23Ozs2fPno2H8WAwcghQSjXmWlMAYIRg7DJWmlw4pQTGNEnHe3t741EyOzs7NzdHMfguPRiNKMPzs7MznRktZJ7GU1OzC3MLD16YaS3L737pBc8Pm522Ymo32+m02qfOnDOiIZXCaTQ0wAhAgr61eXttfT3JM4QQc5ypmanZ2dljncVer3d7Z3tvNOQE03A6bIbRm29eXtu5/eDFh85dOP3WW29t3Fkf8VFepDrl25sbyikH3e7qiZWTJ1fDziwBLXixv7+/sXZHY5Sn7sHu3v/8b/7N0+9+71tvX+4PR47jvH35Ha31U+9597B74AAw0OfPnnzowYfP33cfwcw3J64oXZa5lpxS4jAqRFkUnACSUgIG01jV87x2u52m8dLS0vZudxwXDnOlokqUhKLZuZntfspwRMHRylUZEbnjITdoOVzHoUviwZZQ0vFCSvBCsw2atHBvyuUN4vQHcTIoFPIRogXPiYsBU8AKG8akFdISACQoNCmoA5PfagK7VQoqaK0QMq7mKgXhUB2J1QUPpWNBVaFHMQOsRSnLrPQZJQgTzKKoQRgdxWPmuq7rOm6okBBcSZESGpjnAQIMCICYDMfZqek4jtdu3rp48aF0lBR5ihHN04Q4ygyJY0wI01qbMsVm1BBC9A72r71zpdvtnjx5shF5rVYrQix3MWW0SIpbN24z5vb7fWd+/vHHVloh5P3NrZ39Zvt4oxGgADAsNCFSAKWUCiNEaAGwOTi4evPmzv4eV9LzvM7MtDk33g1D5geYwc2NjdtbW4PBgAYB3Y0Prm/f8ju+F8LXX/ym7/tnz5w5dn7lxRdfzNOEUdJYmXr3R98HAMvLi6vHjjPtGQ1pLU4Yxa4XaK339/f9KNzZ2r5ze+2g23vkoUuh6wzj8cHO9oUzZx544IEHH3xwcWHZY25elEoUiAVxOqKUUqwVIKVlKaSUUoHEGJRSpqqMc44BGCZSSs9xkdJKSOxihHRZFnmeSV5i5BHwNbiqpFIiwst2Kzq2EFGXTs20Nrauz85OtxpTZYFmplburG2TvUTjjcbcMdDjO5uxG87lkmkkMPMAKYQAECZaIUAIKChNKEx4njKJrchUCQtxJM5WSVatqzRsdAR25jPGGEDZdBzGGMWoKPMsLQLPRRRphF3mTE/P9Pv9LMuk4oAEI4C0KgtBCNKTqjsEoDVIJDWA7vd7DmODXr/I0kYYLD/6yMzMTBynhUyrUlSTFIGFEEXBr199h1LaarWWlxZdh7RbkUs1yFxq3h9nlCG2OJUMh3mabw32l+bP7e8rcjDY2Xn77LmLUgfYgSTNWYCQhiQrBGgv8LpZ8qff/mbCi+mFuamVZUOl4zjZ3j/wmHP29JnZRqsAuHz1+tbewfb2dn+c0BMPPLS5udntdiVFjaWltbW1teeeO3fm7PlHH9nf39/e3NjsdzcGozAMIq4OinKOlwoQImTj9m3JhWYKY62lioejTbx54vhqs9ks8mxxYf6xpUceeOCB8ycXW62Wy1wjxAiSWotBfy+KIkyQUpqXpRDmXGCrwk9knhLCKCvpODWH3iilyiLjnCCsAak8TyVCEgEBRYmDpcI6jpCcYmlZXC+3t0+GuZPJDuk0vZm9d57zd0edFffazc2Fhac6TbG+vY+ozguNvYbUpQYw4QutFNEYS1PrwVHF2UzHNYQxgDk7cVIdZESroRk86a5Ztz201poQYu7BGswp3+YfI5Q4TJRlnuech4xQrRAAnpmeM71j8jwzOCeEABKCFxPzCACDMpIdAYRBgDREYXDt7bfLsvR9nzEWx7HfYIQ6GJueE5TQSRq2FIIxNjXdaUR+nh5zHOowliYjz/N5mXUPxuV0W1Oyu3cwLEt2sH1daneGdabnL55/qjdQgAAzqqBUEpq+20/yP/nzr73w+islgQuPPsqCMBfcDXyH+KAxQbQZRjOdGQSwdnvvyttXm80mL2USZ/S571/Z29kNw7DZbLpeeOZ0u9vtXr2xhXE0O3didvr4tWvvKBWMx4pz13WnieoR5gFGDsW+4xrt2/f92fm5JM4eeeSRMAxXT6xcvHjx+LEVAkB0hhAqitT0Z3A9r9loYqQEz7UAYwqZls5c8aIolZBKcAAgCCmpldRCKHPiWdUGc1QWDCGfYcRFziF1tHCYZixAWGayj/hYpWJ5dvTGq1/90HsvvPbCMypoX3zywy8990eLc6ugFzc3Xjh2fAZjT6l9qZwkkY0pUogMEEMaEYW1BqUwlggpJBA34tJ2GDLyl1JalcYp2/SjUvgOoW/yV6T6FaqKnbBGoCkGh7EUoUIIIYTWTCktFYRhiDEWghdFIUSptfYDFyGU5ylCCGFNEQaMCUbInEQFOomHx44d29/dazZdLXiZpc3Qy3lKkABNpQRpKlMBA4BGUBSF0pJi5Hmew7DWUoiyGbXvW1p6+ZXXr75zoxmo0ShtzE9dvXVt3gno0sKpcxcgILMOZAk4TZpCiQGSYfbHf/yV777y/Qyp1fP3eczZXF9nvgeDES9KVfKm31hoz3rMIQDj/mDY7c12pka9/v72Dp1rLC1ESwBgTtOiGFZnjuP70OL87GjQHw+HD518wC1oZ6qNxurWa9dTZzQcDh944gnP83hZ+I2GKPn88rGl5eXHHn3XQ5cuLi4uBkEgJS+zlDlE81xrXeQ5YTQIPM55t7vX6rTH47HjuoQgSlma5kKrKIqKggvJCSEaZJ7njDEAMCedLszO3b51h3PeaLSFkEWa5EXsl6ETEM91qIYyz2RRiqIocJbG5YlHj+/cnvn+Cy9CVoZNL2Lh4tRyMeIvPfOdKJw6e/bs65f30jTFvpBKcF5wgTRIpDFRpu4WE4WxBi44VDksFoJ30VavxZygy6krefb/LMus2lf3v2iJyzxnjHnaS9McIRT6rlJaIL16/OSt2zeyLGlEQasV9Qe9VquV8sI8YX84mJ2ZubN2B2lohH4cj6Y67We+8bUg9BxKHMdJ0rHrumFEe/1hqzXteGG3N5qeXej1x54fAOBJRjBSGExLIIm07PXBm5phTnDl8tuBL2WQDXxGGrPrO1trrjj/8LEsh7KEVgj9JJFh2dBQJplHHapR3B/cuHL1oN/Dvuv6nuN4oDRwydqgZ0rKFXVhrj316Y9+fGVl5dUXvu96Ad1567I5TokicBhxGWUEU4Ku3bg86veTeBR5PltenBbLOIo0Qgd+3u/3V/Z2u/t7YRiurK7ed+HBRx9/4tHHH/NdVwCIslRKIFBKlzwHIQrf98Mw5EoCKIRoUcjxeOh53nA0NlF5zJzADYaDsed55qQhrWQzau7qXSXluTPn1tbXfL/vuq4eJUVRIESEKPM8CwJHsCbVoSiZKBEoVyKZcnUQ571srrX0Xp88xpMxKG8vv4/N+C2n9UNT/axUjJ6gmHluArLJiJKCIk0mzMsUPSIFCFd1llBH2A+8ag4/iaqCJlTVFFcdGWxbj7u1xkiZHkYSpDKVlEK5DsagNXXchYWFNBm5rhv6Xru5opSanp53XXdzc7PVbACodz3+aDwcRVEQBq7kxX1njlOKhoPepz/9SQLomWe/tbF548J9lz744Y/t7Pa++/zLo3Fx9vSpre09RKiZK2jBpVSiVFJIyV9ce1tt7YXhUtNrjpNd1yc376wlzbi5cnprD333W99/8kOPa4D9A+gshBmkm1dvzS8tfv7zn/nUZz59e3/7zs7W+v7+wbA/ThNc8jLneZzk+/3h5vYrzz6nuAj9xtbW1u2rV+NeL01T+tTZaYQQxQgjibQsi7RMRyLPZ+ZaeCZE0hUlB33gD+MI2o1G46VbB1lROIS+733vWTl5amZhaXpukTAn5WXKyyRJFC8bjdBhhGKktVYIuJJKqX6/CwDMdRijZVlkWRZEoeDKcbwwDJOsmNQ7So60klJSDACQZVmr1cqupHGcmp3mZc5oA2GdZ4kfuGPJCq7zvBACY+KWxBXKLVL06195jdIydIjmzXwkvnejlw6C0G80mqPRWNxcW+uNVDqacXSn4Uea0DTPFBZYC1RZEhpJNSn1qOSq1khXjQEt8mqVbwZbYEvp7tbIAbauv+qvJ/XKEoyebpxzuMCu6zLmGvt6ampq0D9IxkOC1PLSXLfbTfuAMX7nyuXRaMTL/PjysTSNMVK8yKLQEzwDVTaagUs/1mgGn/70hwf7983MzWFM2mcXvvKV7WZnodluYMowcRAQhIwjU4ISSpWgdSs6rRfOPvjgme437/zJv/7nJ6YXn3zPez/1X/347Ze2vvef/mMjcre3IQpgZhpefeutxqrsbY4QJYvOshOQk8tLq8eWBIAEMFpqWZRZkqpCKiHSUTwcDve296ZbjSzLvvDZT+/t7dEnLs4QhAjRLsWMaKRKUWSySFWZh65DCfAkGw/7SmTNkDhNtKFn+6NhyXPmhWfvOycAl7JM44Qr6Zpze6lHKOK85EVGEEaIFLwMgqDRamKMy7KgDisFJ5i0otbN27cBcLfbv3Hr9tLSsSCIKLLJL5wQMh4la2trb7311vbujjn1L83LINAuJXmeaq0K3NWIpFQqQojr54KXMhc+yQvmeTNdLh3i68jNoEnbUY+jaHucZmKrK91girCpIsM+aWRpjBnFWgOSeNLlCrQGXWvEdi/Ds0zRMr+K1R26jjDOI/KaaAUYY6QQ1lpqIcyRl0gqAKUZIZ4bjMdDjFSaRqLM260lIcTKysrz33sOE7hz53a7FSXj4fRUQ4q0LEZpPNzaGn/9a384Nz/98Y9/7NTiiXFSfO+FF+cWVstssD6K3f3+wvKpfm+oEAYAAggjSTAgpAhCaba9tjU86OOPrZ668PC7nv7Iw5e97LW3tp58YGl05aHN3b3LV25Pd47zpLtwarqQ20988L1Go9UKsAZEQWngXDQcCgDgOtp1MAAB0DBf5trzEAAUBbgucA50calRZnmejaUssZIuQ04gwddQKJ0d8DjHSk41CGgNxUGxu/nQoz+Xc96cn1VccgWj0ShqTTm+52IMAFmeKM4JYkoIXhSUIIXJrVu3tJbj8dihmPPy9OnTQRC0Wq3f/8Pf/8Mvf+XWrfUiL9M0f/LJp7/4xS9WoS20s7NDKY3H42987et3NtY5Lx3PDXy/N+gilCFEOC+kKNV0H1HKuOSgNGWaC60UChtiJArqpGNJpKDUHRVx6DlpmjQaK36gi1w7YQe7ajhOhFC8KH2KAYQGXZUPY40waGSqK6tMKlOPN3H4AcAP/GCRdgSvFeZ0HYIIS6QBYWBVC0EhhBCKEGJ8A4uLi1sbBWOM50W72eqOx4yxRhg1muGw102LPHCxVnxne3N/d2N5edpzAHS2tNR+9LGLzSaMdjZbndmPf+ipTMIvfPEf/K//7v/k2nEcJwyRUFhKJaXQGgmlCMYadNSOVqLjo7RwArh280789UF2YT6izo2X3yIb29PNaHNjb9CFa2+9+JEfvf++5XmRFxohQggmhCDQAAQBoVQJTQgCBFKC0kAoYADPQ1IBwVCUqesGjAGFqRNOkTt5ArIAVUCZ8nwoM+7RALDWGGFQQCiABu06uugXqeuH4+4eoj72AlPEmnE+TuKiKJJk7HvOwsw0ApmmsRRl0JrZ2dvlnPd6B67LpOCLx5b9KOz2B7/xW781GMRCiCCIEGLPP/di96AfNhXnXCsVx7Hn+b1eb21tXWrh+z4iGFNHKVXyQmuXi7IsczmtGVNUS6VLjQoocqawF3qaIpc6zShKuiUqRSZyBzD2+H5SUsy41qKQCBHsCMJoy6VCpoA4gNIINGAAqoACwghyqCK2BjHGnWZt3jrzs//XOdwRhldDM9JaE6S0Uhhh5lCNsFBgGt41GiEoynnaarZc1xWF2Nnenpub0Zp5nldC8cADDzz3nWd9302SceA7rVZrdsZL08FguPf+9z/1sY99oN0Me8Peyy986z3v+0Czs+ATeuIYfs+7n3z2uTe73X3Mmsr0D9bGFYlBKYR0fzzgztzmTtof3T+3eHxj+1r7gcWdg33SS/BB16Pu7mDj0oMrnc7slStXzz/8JPIYAiy1KnmhhMQYO9R1CJqckqyBEpAASsPkNRiUBtdl5htaJNOgBCaS+QgYAihYmbA8Hq3dwDJCqBCS64IzBI7joiabmpqCRmNnbR1RgYTSmJVSmGYNxGGBDnzPAYLKrEySRMjSa8+0p2bm52fzInVdNhr0F5eXiqI4ODjo94dbWzuq1GHYiML20tI0ADYquCnOGA2Gd+7cmZ6e9jwHMOzu7zFCplptoEGaKs6LssyH2mMAEimNgFCptNZSA9YEUVSiKbetZY9I7Qjp5zHDZNAUgIWjUJqMHXAdnwrBfUqVSgEpBRhpqhFWQDUw0JSg4m48A6GJWAYQWpkEO/OLu/IU2wL4yiI5KoXRRE2ccMtJ4xpKmQYkS2XqpsMwRAhR6mRZFoXh/u5Wlo6k5IsnFqWUlOHFufm5ublB/4AXCWd62Munp8Nhbz8M6Sc/8WHm4Ju3rozHI4LKbNzf3tlbXLlfE/9Tn7h/fXu4u58VCghm1GEYY6S0koUQXEuJGS2liJpTW7vjk2fPP/dH32TZub6Sn376h59eWv23/+rf5DrIzwpG3dXVVQw0B0kBEALqMOIwraDqB4DMSd1IT1ydAkADMFAIgeMQocq85LRE7ihx4kFXlkng4FZII9dlmDTnLox2tnf31uLeSJUFCJGnWZakUxl+9Kl3O47TaE8NM14IYU5eppS6rqsdBlpmWVYkieux2eZ0rhWXYjgebW2um7NrTivFOZ+Zm/0H/+AfXL16fao5LaVO4uKBBx6cn18YJteNn8/3/c31za2trZWVFddlw/Fwbf2O60czMzPYiXZ2BiY1tZsEpFBKK8K072NQFASWJSljmSdpuwFqICLieuA4mcRIJOGIIcdzfJ6kDvM9v5GOx4AdhEoAwEDVRAHFoKkCQg9ztSNXTare/cayvbv5z39BRToAaCWNookmLR+UlFJJ4Jw7FPlBkKWD6anZYf9AKw9pcBxnf3dvbn5GFOXqiePDQbfVbEiRIopu3Lh2fGX2x3/8Mx/4wA9dv3F5a2NtOOpHxejNt15tTx/rHuzOLJ1ACGamOuubQ00YQoCAaAW8LNI0SZNxURTXNr+dd848eOGj27v77z9/H/+yQoRIrV5/440ffXT1iaef/vb33nzrzcv3nZx+7dU3Hnx6zgFSgACtGCKm67viUglJPU8LxblEBAMlk97FGkoQBBGpJRe82+vSO43ShT65cT145ar71q1O2AaewZSfOOX3Du58a+PWm3s72G813E7azZhCH1458egPzxdE8UQlcRkE0bA79n0/pJQhNE6yIHRd1x+Wuev6gefJePjgmRUEZLnTLgouBTrY6EupAODUyulTK6elKpQSCAEmEKe3b7x568IFXyXqxKnTf/ilP/A8rzM1d9AdjGK0vycbzYbU5M6VO1zKxx5+VzOkzcKFsswLFLajwKMkJLkS+3Gc+NoJw5hvwIIeJJnHsCeASt0sTrgOm5+ev7b7zvUbt0+cYHPTS47j7Kb7FDNCGNZEC4Q1wiAwBuXaTBNt4l1aa6QVxkhKKaUGBBQIAiylllLOz6L3vve9X/nKV7Is++mf/ukbN651Op0//dM/vfjQxbm5meFwaCpO5uZnn3322UajcX72USfwv//mK2sHm26rxQOdpAIkoWPvzMrp0UHPxVNFrGanTm5u3Z5eWBr3VeDNDvtFM/LmZxan2rcG/Z1HH33gqScvzc81T6wuzs404jhutVqBd1ZKIbKYUGfl2Kmo0U4LUCU8fOHY3ubNnf0tx28LQbOcU+a3Wn6Wx1s7W3gU4INbJ86tb4wu9578ROPRh1579vLTTz8dcXZ5Q1/6wJN/9uJ3x+rWPuc7m7kcrThNicApRMEYy3JOKU2ytNkMx4UCjQEwkmCqug3RFchRyhRx+NOzx2k4HrOY95O4dGAQaaqHqEjK9a2c4lmGP3LigfdeevpAyq0449ilrnfs2LE4iX3f/8M//C/PPvNdrVGSZAsLC6dOnfrc5z6zuLjYHxxwzjudjhDl1tZWZ6o1HiV5nmPMGHWrOgZqukYwRl2XMYdoLYqiyIv00UcfnZqaElxlWba7u+u67mAw0FofHBycOHFidXV1OM7KQhDG5uZnsiwrRqXrER98lMpCcky5ophx5kvkaB8pB6SmSjkamMZE65znGU/jEcMgWqHvM8bLjJeFkqXSCmlASGFEAGGMMcEoKxFCGABjhAAUmM5aoDQgBBIjc9YFwoAJgARJWTkc7WnIES6lSv2AIizaHX/52EwYhuO4l+WjJOs57qzrod299Z/65F/mWu0Md3pFzBFSQhIgCLlFykf9kVZII00p5hoRF/UGB42o6QeRVKQockDywYcffOTST/zEjz+oFDAM4zHcuH5tPOq2281WM0RYhyEbp9newaAQzPFDz4UoCv2wwbcHWAiFMEJIgiYAzWZ0/Pjxbb3TIYRzQRjb2zt48smnf+/3fs91XYzx9vZ2eHLp/H337e/smPblt9cGD15sEAQmvup7rNsbeV4wHKYY0Tqztyw/EYUNI1FK6eJQaIX2Zdk+OU9mPZ2mamu/+9bVeac5S4NRphNKA0ZPPHT+ic9/CqKGzkdCCMact95664UXXuh0pvv94a1bt9588/X777/v4sULZVlqTYoyE6JkjPW6AwAURY1Wq+M6odbAGDPF0lyYFrzAHISQppRRSpEDYdDArhMPx1dvXC8LcWf9+uLSSlmW49Gw4Pz8hYud9vTN27eyLFtYaEUq5KMcQJUipa4SwLlWpdTEaShSEomhQKhABAiVBCvpU1WWJU8HPgXcDhwiyiwviiIMQgwIgekKz7UmWpYSIUxchBAGhLBpn6pNmx8lJZIEKWUiukIhpbRSMD211G7Nv+vx925tbfW6ybWrd4qi6B6kvKS9PCkLND211AjnGuHcqRMPDNqDOOsVUuRFrCRXUgMHB7kYHKJJOkrbzQgjgRnWUrKA7RxsU2faVaadpvBdirBza239d7+EX3/tpTBkZZb2e/uuR+47c/rEyVXf9RAeDYcjhPth0I+imc7Mcm+QaqBcIig5YgwwUUpxITzPW1heWJp70pyrSIvi6rUbjz766Pb27ptvXu7u7/KiXJiZHo1GSEM6Hi3MzwaeTxA56A7H4/HJE8e6vdh1fc+j3YN+FEU/AH9ImT5gumoMRJ20kFjvd7sjD5dpvyXEyaXOvFhde/bV1c5C/2C4r/V2SE8vL3ue34sHU1E4Go/SNDU9nBljjkO73f1mM3IcigkopYTQ43gIoKamppaXjzPGKHZM+5KqWRRWSmFEA99BSAPoLE+Gw3GWZadWz5ieixvrm7dv3zlz+lyaFxcvXvzkJz6NiPvOtWth0PDCaHV1tdFqbm1tH4xllo7aTVeLBAVI8MyLgtn2zGBYEiIJCCyZr1lIHM+hVOoM9TAuoRQhww3PYUxzpBwAgjiA1AohQBhhDQhhAgBljiYZL0iDyTlWQmsdeL5CoBQoCVojpbXSSgN97tlrd24mzWZzb6/Ixuvb27FSqtlcee2lrfF4zBgrivb1K+ObV1/udruBH32T/xlx3e2dbS0FczyPIqRdLYgoZFKMpqNIqrIUmGvht0Lek0DKUsZlXghZamhoLXdvb12+fLndjLpdDgBI+2kv//o3X1Nff4UR6oYjpcBhvgaqgLXac5RGB71x1OiUAghIwghoKHlOJKOu47iRlDIvBAAZDAbt9vS5++7f2Nh65KEHD/b2vvGNb3zv2e988P3vH496oef29vauami328eWj43HYnoqSlM42I+bzXaaxofwhyfqL/Y8XdUBCiHo11558cyZU6256abHbr2x/caVy2uZUNt7FxaODwG/09u+edA7IAiW5i+8+s7uoPeiGt5//wUhxLmz58Pwz7XW8/PzURR1u900TZMk6ff7rVZjbm6OEEIp9t0QAGd5lqYZwczzAs75aDTyfd9khWBsGGFBiDsz3cjTbDQaTU1NXX7nyt7e3vTMXK/Xu3Hjxtrt9ajVvvLO9YX5peXjq4RiRmjo+/03b77+2ktY56oY33d2FYEcjkdpKajbQDRE2MeaecSLHM9FBCntNXPTCsNxHC/wMMaEUUJIo9FU5nQTwhhzKPEooQgR7LoIASbSJC8B0gAOAMTxCAHGgE1eM8ZgkpkXF5cHg2GalN1uX3Ag2OVlqSTd3enned5stBwnLPOyLAuCIs9tXb3+kh814pRjFmKtoNBK5fmYO4iWpSjzhsKlLkGC8hqNxtT01t76scWlRrPBOS5FgTFutjut5hSlVJQSAzDqKikdLxFcMsaG6TuMOZr5gkNeSj0ug0D5UVshKhWAVgRjSoxQyEtVIorG49T3fUyAMn9nd/8DH/jh/+PXfq3ZbIMoji0t//W/9lPpaLB559ZUM+q02rs7Nz23cSCSX/qlX/rHX/xHnseSJKWURlFz4jAwKKzwJ2ppaVprOlho3VbpaDgmMZ3F0fkHnlzpdCijQEleFOVDZ+bj/Pba9vBg9Kf/4bf3dg+CH3386aff3e12T506de7cufF4TAjCGGZmpgaDQa/Xazabi4sLlGGEkEOdre3dZrPpMI9RVZaiLIXvB2HYMA1QMMZS8jRN06RwXOr7gcPcqc40dd1+fzgaxi+//Cqj7hV95crbV4HQLE6PnTjpMK83HJhji/d6Bc53l+emtu8ckNhtRl7gypEstrd2FfElMNDUoV7CHIZACTmOd6NmFMcxxthxXc4581zCqFYgAWmFMGWUOIQxjDEC4odTCGmMsfGwUjbJoltaPIYxxpSa0/AwphhRQkjpyLjoTwXTrRlBWOE4HnZLJxQCcr/hKLU7ynKEkBcGSqlhsut6LqGO5xHieEpS7QiGqa8Ew7jIFMjYcR0OUhMqgXrh1P7Gm81m1Ow0QydMkrTIOSiEEOFSMRrwUvaHCUE0DKdcn+Z53ppeRQhJjRwX+9jBxMWYIOyUhVAIKcCATYM8x2S++a2OUMhxHCklc9E7V26cO3uaczEYDBq+s729+9jF83/08vcfuP++uZmZg72d3/39LwNAp9N5880rP//f/KN/8S/+xamTcwfd3HGItTkA3XXLmxOLTMGCUkD54mw/KUpEunvj4tp2P01fHfdzqvdRthYP9tLEpWHAXXckdq/vBIJAlhWlAEROnj71C7/43wohMMZ5nh8cHNx//31hGHam2g6l42QsROl5cmnxeLfbvfzW6++8c+2NN9545513xqPEcZxGo7G0tHTxwQvnzp1rNpsI6UAGrsPTOOOce5732qtvMNcBgPe9732lEFfevrq6uqoklIL3B91jSyta62Q8Clz+8PseePrRi3/wOwcy2wLkM631cNhhWBFVApVAGCsdx8GgJRFsnHb8JuRSaO6ALnnCFUulCIJQCFEIY5pjjbBSCrTGpl7HuKAJmH63GOMXnhthwghmiFDQCGNKCCOElFGa5/ns7CxCaDSMKWUIEdd1PTdot6cElwDYNBnTWhdF0WBThJQll65fSqm10J1mixFeJGmRlfuqP79yHIPnOH6Sa0w7iwvLZVnu7Ow1wwYC4rq+6/oUOaNRDIgiRr2AEMIcL1RKAwfmzwAACIERcV1fSl0KRQBLAIoZIti0BiWEMEYAVK8/dl13HGeMMYycNOeNZvvxx5+4cvmdj//IB5PR+Pnnn3/9tddEFrP79cMXH3jfez+0u7v72OOP/M2/+V99/OMf/c3f/O2/83f+1mg0ktL0IVEIobuJuwBAJ0e/mCY4lHrNtsf8c40kv3Jl67l4c3sw7jZX594+2OwRicKo7brTy8dbGVl78XJvbeeD8CPj8TjP816vt7CwMBwO8zz1POfUqROrq6tJGm9sbDBG2u12FDUPDg5ev3X9t3/rd7785S8Ph0OT3mIOqxkMBhhjz/NMVzJCyNzc3NLywrDfk1IeP37869/81vT0rMO8uYX5r371z1qt1vb2JqVOpz1NCOaimDTyRsne7jsvvbi3s7H2M3/545//zGfefPPN//WX/53KpNCCYQKIElpSY+Pgkui04QMvCMYsbERRygAgzjLmolIQUmppOrUhUMqcf5krLarj3ZRWSCOiAXuuQlRiLEBjpTRojIBpwJo3oD/eL4cLS8vnTp985OHHTpw45bq+74WE0O3t3V6vt7d78Morr62trWmlsHQRQlKrMPSlKgiohdm25nnoOpxLQgO/yfypZZ/OjAvhOb7GG1mRYUUCP9IaFQUv8lIQRJmbjBMA3Gi0GHXzvJRS+qGfFoXruoQCAHCJszyXUkZRBAhhShBCZVkCgDlfjRCSFGp6ttPvjzCmpeQOI+NxfPbMfa9+/8WyLLGW80sL/8u//jff+PpX+93uwmL7nZvRiy/+8c2bt0+fPhkE0a/8h1/9/Oc/t7Q0J6T4AeCr5K/JZOOcU9qVgqCpmeVHfvT+bpb9u3/zr9N0RK4PY83B86goxnF/fzftOM25sydOXLp4/PiJLCvG49HCwoJprMQYa7VaU9OdXr8bRdHMzIwQIk1zjPHzzz//T/7b/3ee50JMarxNbFcI4fu+cc/mee66bhhGjDnjUfrUu98zGo2yLMuyrNOePnf+vmef/c6tW7cwosRhhJAkHYeBp6X0HKfMcy9S+3s7PD6Ym/POn79vNOyeOL6yurry4mu3kVdSGgJBGsq85AhrAC1kHgase5DMLC4SQihx84L3B7FUjgaMkCYITEUjwaC1LtIhQtrzvFyWvu/+/M///K/92q/FWc4oStJUaPC9BkKAKCEEBrt7Tue+z37+5z796c+eOHECNCoKnmVZmuRSasac2dOPBg9GMzOYUrhxI3nj9bf++E9+653r72TDbiJjUCkwfnDQRSpPKGLUabeXXnnp2x/77M/0B2PKpoqEzc8s3b59e29n36H+1NQUQUprHQV+WQqMIimlRqKUQmPNGGEORGhKqYp+NDDmEiKM4ShEKaVEAJRSrURZcKWU47TSNA/DUErpuv541Lty5eoHPvCBr3z5S9evXz9z8lie51tbW77vHV964PLl60rBFz7/Y+N4+KUv/a7r+mVZ/s7v/M4Xf+HvUEUneUJIIYS0mhxV5Drme00xcSijD06djtM4TsWb2f5otvPQT/woQ4qAXpqb8x0v9CM/iJwgcqNW0Gw5QRDp3sLCwsGBv9/r+r7fnp7yPNd1XcoY4XwYD/OsjKKoMz39n/7Tf/qlX/qlJMnKMldKOY7jeY5p/W5Kd02qAecizwvOD/I8j6Lm2u31O3fuUEoff9eTzWYzzwtzapLrYCi5KEqFwHV9aIDv+8xxpGSURUVZ4gKt3dnNxmVZljdu70TNcJjx8SBDzIk6rSgKhOBpFk91ouGoi7C+c+fW7MIiaCQk933f8T1jxkrQUk+STJXWkT/HOacME+wRTG5cXe/3Uq21UOA7LULYOM48NygS3upE//df/Hsf+NDfF0KMR8nl168LIV3XxxiXhShL0Wi0CNZb67ffep03Go2FhaUf/qEnPvThJy5ffuu3fuc3Xn3t+ajZHI22hvs323NhwfM80yXPTp19Ihn3fH81E6Ttt2V+O3QDEDodjUPX88OwLMuD/d1Op0OoRFhhbCpANcYKYaAoVIAwEI2lsd+lNAeKmOQK0xudEkIMO0gTznFhYoAUY621OZJyZWVlZ2fnXY8++Prrr8/NdNI0fXnt1sqxpdXTD+3sbM3PL/ziL/7i//gv/tn2zp033ngNIUjT3PjqqzgPngSBBLfNOQkhFDKhOZDQG4r41KWHn/zoh0OXEl4SrjyNCaKAcY5RjiFDwBG0x5Blxc7ODsL62LGlTqejtRKyjJMRpZQo4nqsLMu1tbUvfen3Xn75lfnOqtaIUsdUchFCDEG4HtNag8ZCiDTNhFCUOmEYvvjSS+12e3llZXp6+jvf+Y7ptd/pdDjnjLr2VDfFy4SXQghwfZ9NyzzOCv7d5y+3olAp2OsJcBzFQi9yJALBaRyDlLoscMshg2Toh2F3OJgnBCHsEdqanlFKKY0AQBrjrOKCSIZ5ngOA0kIDXHtnq8yZ43iglBJOWeh249goSR999H1/+2//7TBs7O69oLWO43hzY+vGjRt37mwMBgMhFCVOWZae5588efLixYf88NjG1jtXr+VRsBQ2gn/8j/7h62+9/H/+xr8fxbtzJ08Pu7cdyhGB0Xif8/GVt16++PAMUz4u83bTz8cwyEajfBy6OAycRuC4DGmZg5YYAcHEzAMhpLUoczMfabr3Ky2k5Eop4jhIS1BSa6TxpGRKSQiDkDEG2gPQjkuV8DDo8Xj8wQ996N/+0v/0+ltvLk61irL8zOc++6d/8kenT58aJen3v//9p55+fHPrdhB4cRxfu/7OW29dXz42b89mq1IoMQDkPCeEGB0aAGi3zPMycx2v1+0HEWu7TANQ5iotCtNrGyMgCBBgASCl4zi3bt362te+9unPfHJuZi4vs6LMhBBZlgVBwDlvNBoH+73f//0/ePXVV+fn5xFHvu97nud5DiEYkDKKFCGEc6lBUUoZY5znZVmmaTo3u+C67vzcou/7e7sHRm8ghAghMDHt8BWAloqbUupRrE+urOgS5WX80us3As+JoiY47XEhGXER8XIuoFDMAQczgsj+cC0MQ5mnmDlJWQiuCGHY8cfjRKGqMwG52zrIp6HnekIIIQRlrLufuayjNGaEFIXwvGAcqy98/q//9M/83GgYZ2lx9fofX37r7TfeeGN3d9e0AgcAjDHnkjFGiXP95p/86X/J/PbUY4899thjj3n0Q91ubzDcWVlZ+YVf+O++/cyfffNbf+gGY1UOAg9rKXY2bqXF/plTl2YXOqPhgXSG48F2OtptRC3J43FvK4gaUaPBOScEI4wJwUCozYGgQAAAY8esnmmmYzRaLrQQAIAIRtjEq0GBkqJUSnCtZSGLvEiLXN2+ffvhS/ebvm8PPfLwC999dmd7/fVXXxqNBmfPXhqNBl/60u9GDW80Gly69MDLr7y4t7ejgStlUkkkL6WpVkUIU4psMpGUkuq2kxyM83Ef0qwdBS0JZamYj0cgOSiBNEHgIRwiiBAoTZrNRqfTWVtbD8MwK7I7d9aYQ6TkpqR5OBybcwG+9rWvjUYj1/UJop7nhaGPJ60/J2qpGQPGhFGXUqa1zrI8z8oHHp5P03Rp5ZgpiRqNRoP+aHl5+VOf+lSaptvb27dv397a2hqPR6aOuiyw1MCFwpQVRSayMtOxoiyMWoXAcZ4roRrNaG6q7WCdZ6kIpufmFt6+/E6j0RSAgLpAWHc4qbGvRlWVHyOti5JSzEsZp2mj0eBSUccbjxPmEDcIi0L+9M/8zc9+7ke3dw6uX7v5/e9//+0bv7W/v5+OE8d3G1EIk7MecXO+GcexObcC42YSZ9/9zje+8+zXz6w+95nPfuHE2Qe2tze9qPHk0z/ih43nv/PVjdtvZOWIMTrsH3CRbK2/PttpQllefv2F4XCIlMKA87EeD5QCRB3PDyOCKWEOIowQhgkxxQMBbSKEMAHGmGIYIY20Bi1dxghCEmGFMMEEY6I1UhI4lwokAokQgFYEgQI9jocLCwsXL1544cUX19eupaNBPO5/5Ec+ePrMuTSNb6/dpBQxp8NFmWZxFAXd3u4Pf/C9WmspFeeyLIRSkwLQOB4a+2NC0i9deS3pD52yWGlNLbdONwkIjLnQc6GbApRaKqGpEk6JSKlRKQuPLi4dWz15gjne3sH+nY1112PDYV9Kefr0aURQKfjG1ubtO2t+EGVZ1mxOLNyyLEqeAyhCEELIKIXGZ+H7vuM443EyHo/ffvudqakpQtjm5vYwHpeCU0rbralXXnlFSjkej7vdgyLLkAaXOQ5lJSCt0rwYYxcWpufKMh+lSZwnIu67ramoHWmtHVB5PkjzNBmPPvSZ90dh89rtO8RxMfXCsEGJu7/fDcJgckYIwCTOa1iIKjSmQIRUuQTH8R1IudA5Akji+Od//h99+Ec+ur59+7VX3/r617+xub01PjhgzGmFbcdxZCm11p1mc3p6ejweE6+BqpOOXcgip0QI7e6+9q/+v987e+l9P/6X/2+NqaWSw4mT7/JZ+9lveTfe+T6CnJKMYvHWK9/QxRCwu9u9HoYhaLSxvqUU+EETEE0y3mh2CPMJdRF2KHUIcxHCSqmAOgghjBFlmFBqjqpQWkdRxJVWEiFMHSeghCmEtdYUhyY4hhBSIJlDMRAAsb6+9olPf+o73/lGmvbPnTqRZqOr124w11lZWEEI/vJf+YmyTL/17T9f9mf+6f/rF1dXj125cqUq1EeCKwBMCKXE8fxJY2qjcdJOO1qcaojBeHVuYXkxAgBKQXEOJXYxOBhRSlxAQAAYgE8PslhKubKysr293ZlqmMPvkiQxvSJnZ2cB4PXXX8+yzHU9xpjJY1NKAECr1ep0Wo1GyBwyHA7zrBwOx3GcFDn3/cB1Xc75OMvLsnzuuecODg46nWmENEi1ubnpeowxprVCeiKOS54LIRzXVToFnADwzmx7FJeSEemqj33ys6fO3r+ysqqlSocDMR7xNC6yZPni/VpDbxRffuNyKTQUnBIkEcbmeF9TxWEO2NYKa/ACoVROmHZDCThxfZyLAfV0kez//D/+hQsPnLpy/bWrV6//2Z9/c2NjCyG0OLtkfKLNqNlsNgnFWZYNe0PGGGEEIY0ASSkdQplHEEIapY125+att/79f/jfPvKJn1o5foEg74GLP5QluSp4f+9qibUs4r2dq5L3qeMFTQdpP8n43t6BkNCZXowabSUJgiYGBVpJIZCmGClASEnIsv5E+SKAKcIYKwRK637vQEgtNBDsOCygjouAaq0ROOZYP4VASsEYYQ4Rorx69er73vvU+3/ohyTPMMiFhZlmFD762GPpIP7EJz62tLRw+syJ/+3/9798+tOfoBT/5m/+5p3125RSShwAoiQAEEocSh3KpNG4Jvhr+d50u32Ql3ker23tOUrNTLcdRnheMAKEMIw0aAIaQCDQutWKXn31DSHE22+//dTTjzcaDeaQVqshJTcKnNbo+vXrCKE0TcMwJNWRBGEYrp5YPn/+3LGVJVMRt7u7+9qrb7z22huDfqy1Nqes51wTzOI4XlhYmJube/bZb3vM6XQ6eZECgBA8TdM8z5UWjDHHceIyBpwxR5VlpnHBZew3nHCm+U/+2T+enjvWdFsYtAtAQQBIFcfbAjjnJ06e/be//O827myNhjGXPAyj6rQuNTlRFZm2G0qJcZZnhFHKFNepBJqkvaDRfOLp93ZmwtZ08MLLz/3Wb/9OOs5ZEPAkUS5utqMgCAAgK/pQKEppq+0IWZpiZ6kEoYS5xDjAHKckruy0o/3bt/7jb//u53608cjDj9+6vXvm1EOj/fW3896Aj6QWjQaRcljGg0Ky/X3FhQJNMHbSuIcxDsNOZUxIqUDJEjRBBARXHvBJcZPRK4gGAKkRJlRKLRXWSHAmSclBI60RBqa0Nm2ycl46DnU9VpbZG2+8sXb72vT0dBIP5mc6eTqem5ne2dl5/pnvlDzf299aWv6Jz3zmM0888diFCxe+9e2vP/PMM4wxRl0AJAXSGhv8CZm4ruv7vsmpoUGvHO9tBYQmeXa73A0j79ruttKC88LkR1FKMSYmZqyUakVsPNifaTe+9a1vPXj/eRe7FGhe5hSxVhSWSTnuHgCHyA0llQiQ7zvD4RCQeviRC08+9fj8/Ox73vv03/pbP3f9+vW/9/d+/q/+tR9fOb70O//xdwFJc6wjolzodL+73e3vDodDLgupOUqQlNLzPI1AYBAYtCYKIa21H8xQ2s64bLYXNnaLLPcULx977PTGW3d0n6tmg1EsGSMYgVQOY8tT3gvPvdzUYrx1O0CgGJIS0jQNgtDwP6QVaIWrg3BigYLWTBhGWVbwUkuOoQxmW6uf+/hPTE9Pf+fPv/21//JHKhmEDBHFZ2cjIA2v1Sl53oy87sFupxUiEFkyQAgJzo3joSxLhwVA3IKLhvOEw0hSbszM83H27T/+8vcd8pOPPfa+NNYrp+/b6472+hqF01gOkvEOIqUjQkppUSRS6jCksiyT/l7oOiCcpWPzd7b2pmcWhCZZnhDHIwy0chEoAi7RUilzNBwwDIqXlILWSOtCiUQXk0RaTkuttZaUMeYSLEtUKub7YVmWGxsHfhh6btDNHMaWNkf4xNTqhQdvXb169fyFY/ML7X/6T//hK69c+Vf/8n/+8pe/PB6WACVAcqQOgVY2nvmS/sqv/MqP/dgX3vvep8IIJtWDGpTWUnKttVJSCFmWZdWHXiDgy8sreV42m+21tfVz585xzh3H45xnWSGl9P0wDBsHBz3P82ZmZkx7g9UTyw8//PDFixfvv/++0bj3d//u3/3ud7/7rnc9tjB/TEq9ubHzyiuv8VJ5nueIUilVlqU5UNScWsgYm5ub45wb0VaW5f7+vta60WgomBwD+9BDDx0/vpKk4/GgPzs7vd/rOozm8ViKkmoNWhFAruMIxl999dW93d729jZ1/LzQlAYI4aIojGeHIEBIIzzRgZrNZlEUaZpKqbOsBECNTuvd73730tLS7bWbr7322u7uLiHE+BfLspyajbQUlOJ+v99uN7N0NBr2Z6bb5rBjrXXJpeBKg3SJowMvHY4BBdPTnf3ufqvR3O8Pf/M3f7PVWlxePHPy5Koqi8H+5tqtfaXLMAx9P9reHTQaDdd1pdQIIc455yKO40azc+fOnSBs53mukGMOpU6y3DrbtMagiVLCTA27GCk9KdLQCCr1g3peURhWbfzEYEqiHEZZM+y0pwljruMhRBBCLsNf/H/84tra+sLCQhSxX/kPv/Erv/IrN2/eLIoiiiKbeVVPwVK8Oh8AACFEb968OT093WoD5xDHkot8ejrEgITQCCHGHNfFjUYDVSFkiqHkYnN7d++g9ydf/fPnX3zJ9/1jx45JKZvNpuu6URTlpRgnWaPVabQ6PC3zIr106dLVa1cefOjC9196YWPjzlNPPfnRj36k1Wo1W9G73vWuLMv397uXL18Jg4brugbrxjttAGeaJTqOM0mc9X1z9FQYhoNRwhijlJ48efLJJ5846O7Fw4FSgnPOOU8xiDzDUmKECIDgXLtAqbO7uxtFESIeIOE4AVfaHKJZ4U8SDKZPQcrNiTQCIaK1RIgAwHA4/NVf/dW1O7fW1m6XZe4HLuc8CPwgCIo8ybWcn51ev32NwPSlhy489uilY4sLU9NtIQTBbGt37+vf+NZLL72c5WJmZq6kZHd/pz3dmJ7pjNLEd1jaH/3B733pJ3/ib3Si9lS70WqHURRgkHmR7+4euG5kbGqT+kUp1RrKsux2u4XAFx+cTwqZ80QDFQqSJAndAE9UCqW0NK0B6gUAJksZ24ZJBEmppQJCECUUY0oIoQT7gau11rIQkjsYmOMVRdHr7vzLf/k/LS8vz8/P7+3t/fIv/3KWZaurq4PBwJwuppSS1WXS/kLPt7JUa01nZ6enpqayDACg2SRJ6gHAaJQwRmyelrFXDJDHRZrn+cUHL+0f9JIk+fKXv7y1teW6bhAEQoher2d43szsfKs9tX/Qi1yn1WqcPLl6/UYxOzv9xpuvxfF4fX3d87zLl98ihGFEjx079vDDD7311ltKC0ZpppQCwAgxSkFrXpa8LAPfb7fbeZ4P+n1els1GQ2s96PfHcdZqNOLRIMsyACjLstFocF6YGRrfoe/6lCDFhVJKCjE3NyelCoIgyYTWGpAqS44RNTaHBAWgECizR6WWvu9LocqiQACtRnPQG3z/xefTNC2KwvPcTrtZlrmWilHquW6zGQyH/e7B7v33nf7kJz5y37nToMrd7e1XXnn+q1/9ahJnn/v853/qr/3kZz79yd/90u9/5St/dOH0o+1WmMZx1GmkRe573vS55fW33/7mn3+18ang9OqJBy/e39u72d3fdyibm57KBOZcSqkdxwmDkBCGEMbUu3PnzvETZw4ODrDjS0WElBgTz/PKoqwaO0mpjPNLTw5jMj7hCRdEJhwAmahaoxqcSyEIx1zw0vd96rtCFHlalDnhnEcB3utv7W5tfvazn/3Ihz64MDtjeIQQoigKCz7OuYXgaDQyn00mAP2Jn/iJkyenxzEoJfyAUkqQOWWREOMhrDqeTNhm2Iy4Uo1286FHHhFC3F5fH4zH29vb+ebm3NycF4aFEHt7e4PxmLru7Oyso/jJkyfjOH7ve9/T7e2/9dYbe3u7L7384oULF6KwefLkqW996xle6tOnTzcaDdtdxeZnm0Oq0jSN4xgAsiwzqa9BECil0jT1PG1uS8dxmqbDXh8h3esdnDl9OklSUBorSX0sOfQH3fFgCC5qdaallEXBkyQl1COEAPCKJSBzjjVG2LRdcwihhBV5wjk3u95ut8qybLWa4/HYWP2MkVarHYWRlJJg7XuszIu/9IXPPvrIQ2++/tJbb77uUHBd98f/0ucopd3+8Fvf+PMzZ85+7rOffPyxS//+l39jdXVlfStJxsNW1MizXjaOW/Mzb7/1WjtsHJw/193fRppTgikmSmPqeFJmjDGt0N7eHgCenZ2bnZr7r//rzz7y2JO//hu/TVioCStKVXIZBV6GCq21lFwIAIQwwoQgc96YkbzmBE9jfACA1JoSxzjMyzLTUhBCCEUUYaTDjKjBsN/v94uicCnTxZl8tF6W5fKxxeVjM3PzH5RSHhwcmAPe4XDVlZW5Fpdaa/qe97+POJDzPMsSof0sT4PAY4xkSQyTYycwwQwTTAhDCPX6Q9d1s1ycOnmcS/jpn/lZqeC5554ryzJJktAL3v3udy8uLmZZ9pWvfGU4HObpaDweljxvtVrDYXd9/c4nP/XxTqfza7/2ax/+8IcRgm9/+9u7O92f/dmf833XNtnQVRc2k64thLhy5UpRFObkZsdx8jyfjA1hKaXrukVROIRGURTHcRynumpUpUBzLiUv+73hwd4eixwvaGBMjR3NHExoISW3Td8IIGy64yIAAClUrnLjNx6Px+N4iLBuNBr7+/tKiyxPtBLTMzNBEDDGOIdhf1dK+fGP/ci7n378v3z59zY3bp89fSIMvN3d3X5vf3l5+dyZk6+++tpv/sb3Hnzo4U996lPvefcTL73yMnMQoYxhNDc9vb6514imxjz/zne+/sL3vuU7yHNxsxlKDjvbeyXhZVm2oobruUqplZXVv/pX/9rn/9JPzkzPRW36h//lj/vj1Hc9Sp2iP+S8ZIxprbGpLZAIYU0pJoRgSibKnzInNaCJLEaKUqqUkEIhhBzXdVzKMCry7M7N63mRgpJz8zMnj81NT0+fP3/u7dd2fd9vhOHBXt/3/Sjypjsdz3PyvLSAq+NPTnrFTiqm6TPPfHt+fr7ZihqN0CQkx3FMKWbO5FBdwZXWfEIlAFG7KYTo7h8YHrm8NPvTf+Nnf/QLf4lznud5p9M5c2Y1y0Qcx9/89jMHvf789LQQotVq3blzO83ibrc7HA4xBs6LTqdjztHr94Ym4G0RzzlPkkRrbRxFxlafGFCUGke0EMJxHAS4zDOXOXt7e7u7u+Y8gtnpmaIojAySUgqlMCK+HzZanVLlWVaAxnEcF6UcjlKle5g6pm84ABDQGGOr/wGljuOUZUmIOTRLmRwcynAz6Lgu45w3m02lVJIknueFgcsY++hHPpglo9u3rs1Otx2Gdnc39/d2wrBx9erlra2dksuHLj5w/PjCq6+8+JnPfuL6jSvjOA6DIM2KRrNzbIHs7nUxaKI5RlpwMcpz32m3WhFaXE4U6fV6mFGl1HAwAliP4zj03H6/X/LWYNDf3T3oTIug2aIEEax4WSKEALQ5m0RrJcSk/gxAaUQQxghhPDnlhoAp3cXguhCEvkMJ0pyX2bC/3+/vtJvNxx55+Ec+8qEH7r+/0QxPnjwWDz67vr7OGJud7QBAmpZCCIydIHAs5lStZ47JiK4sEqCvvPKK5zsLC3PNZtTutNrtptbSdd0g9BBCJqcXYzoJiwL0uoOiKMz5qxjRaze2GGNLi8cqJR3t7gy63e6ZM6cZdR3mJckYY+h2uzMzZ6TiH/vYx77xjW/cvHn94YcfppQOBoMPfOADy0srnucZF6AqJAFUcJFzQQhhmFDHdRznwoULlFIjc82LTGoG58IPwyzLet3eCy+8kOUJxthltCiKZhghAODSYdR3XD+IGGMCBGDaaLR8L3A8VHaHeVaErouqKl2sESCTewoAIDnHAP1ud9jvO8w7tXoCY3zz5k2kZJ7E3f09hPDC3AwjRGjdCMNBv/v0U+9fXVn+j7/9G77L9vd2Xnj+mb/2V/8yRmo8Hs/Pzdx//vzNW2vvvHO53+9dunSp0Qg+9rGP/uff/VK/3w+j9qg/DPyoEYZpmiouQUsFwnFJGPkIcK/XB79VFHx6evbY4lIQREaT63a7cVrSfv/kieNCSOoxDApACl4IaTrfI0wQAsQlKCWk1BhjjQlGgDEiposgwQgRyZVEGgFQh7kOQyCG/dHB/nY2HhxfWfrExz78qU9+7NLF80LK3sEBAYUJPPzIxcuXrwShZzIIm2FQFNyavUYK4UqeoMMtdejSsUXGmBe41GEKdJKljBGZK6E5ANSOUZwcQ0BcFxDa2d+/y1E5z7tdADBUpZTCjO11e2fPn79y7ZpDgBCyvb0NoB+6dGFlZen46rGXX3751KlT3W53OLj95JPvRsBeffW1OI4dxzP+GkJIlmUYY8N7RqPRN7/5zSiKpqamWq2WOb8vSZKiKFqttpayGUVRI0ziGBMSBEHoewihW7dubW9u+Z4Tup5LGcUYY5yVabc/XF/fIIRtbW5LDYwxc5afUqrRaOVpnCTZD73v/T/903/9/vvv/4f/6IsPP/LQuXPn/uzP/mw4HG5vb7daLaWF49Ktzc2V48d/7Md+7Lvf/a45UmbQH3me89BDFweDPmOk1Wq+9uqLZZE0mw2CliilXhD5ftDudLTWt9fW19fXCG09/vij33rm23c2tl3maIV5WVIMSEvQHCHNyyLwGxjjPC+np2a7KQeNFuYXm81mr9f7whf+0he/+MXAdwFAAfziF/+xGzb/2X//P75x+e1mqxPHMaGRkoVWCBFQWilZaq0xJVIKrLWmyJQtA+KUOpRO2jm4rpvnKWhx//kzv/29b68szj39wR/+zKc/urw4V2Tjd66+k2fjYX/Q682kGTd2XpJMHBEGCWYTTZ6LwaLxY1DPNV8aONFjK0vmODLGCJ0ERSaF+6CxxlqpibWvFWitBRRHJPoEyJSasucsy4zcPH36tOd5DFCSZC88//0f+sB7X33l9QsPnIvj8crKytTUFAIS+I0b12/FcVrkfG5uYX19syjF5MwtIcyZzbo6RddMknNuMtezLCuK4vrV66aASCnJlcQYuy5zXdfzHIdSl1Hf8zzmOIwwTBBCy8vLiJIwDC9evHjm3HlMmdI6K/nnf/QLL7744rVr13hRLC8vf/qTn3rqqacwxn//7/99AGi2otOnT7/wwgtf/vIfrK3dbjabnPOf/bmf/bEf+7GZmdlXX311bW0tDBrNZjQe9xuNhjmNnFLcaIRL506N4+Gg1zt//rzGyHUcx/WXl5dvr63HcfztZ7/1riee8DzPdXzOpRCKYNaIgjwbc4oQBimUcaBowBpo1Az6/b6U8rOf/dz73//+xcVFDGh7+8D3Q8C0M9VCBF984Py1a9c8l4H2MWaEeFyUaZoKxQnGXMhknCjQhDCCKRCKwBwZhxBCgRfmedobjqZaralOo91ufeYzn/obP/VXzpw+4boIg1BlDloiNKsk57woODHGrK76PQghNAAXSkitNTdhHruD2Jm8yFghNAgCjDGl2IAPm0JDYwSA8b9IrRGaHHWhKGJHTBrz3DTL49HIIXQ8HGqtZcmPLx+bbnfKwc5oFE9NtTc2Ns+ePbW+vhlFQZ7nruM/88yzZSkIZp3OzPXrN4VQjuPwUiJMMCAlpKaKESqllFxQSkXJJRcpJAaRUkqtVBAECCGtlUQAZHLkuJRSCIU0RxqQLrWQvCAUYYTQM9/+DnEYAHCpECFho0kZk4D+5E//2HGchx+5FHp+lmU3blzf39+L4/jYsVWM8drtm81m887t2+1mK+2MFxcXP/GJT5w8eTIKwhvXro0Gw8DzXcdJ4hghNDU15Tje1NRUmSeXLj1y+sxqkZdAcNCI8qw0VhNznTAMG40WRyUQOHHq1OZWT0mkFUIEKSUxRpgohPQkYwCw0CAU2tjY+Lv/zc9/4Uc/f/z48cBzdnd3iyw/efL0aDzmXDZaU2mSnzp1gmA96h90B8NmYyoMQ6VFkccFzzHG4yTp9Xr33X8BAQFMTOHV5IQTXhwkY0JI5PuA1K3bNx577MEnn/isE7jT0+TgIPVd0uw0x4NhGHiuy0bjwVxjqkLLRLKaE3JI7RBx0+jIKHxpllv8GTZJzWH3FVdTRu8x/hdjFplc4EqL1PoHnewDACZUYLQ0c3zcpUuXvvtnWwSzIIh2tvdMUabneXt7+1/72tefeeY7Z8/c99hjT1Dir62tp0leecuRtX8n4t9xrMfSminm9Og0SaT5HgHGGChRShszGSmMNNdSKUGNpYw1zM7OC63SNM3LRAoBeOx6gcbozTdfl1JTSmXJ4zgO/aDdbptC6dnZ2fF4zBjZ2Fg/eWp1ZmbG990XXnju+eefp5RiRLvdLsZUa0QpxcQpuECUHFtZ3dndfODBi1Pt1tbmnZ3tvXeuXJudnQ0iLAuZxNn5By7Oz8+nXO8d7M/MzXGhXIcYX1I8HhmPHSCtkdJIKY2UxkrDpz75mS98/sdOnji+trY21Wo3Go0yL27evN7pTOd5UYqDUoiVY0tPPPH47v6Bu7GVp4XmOYCkSGFKvchfmJ+B0yclmGNdiQKkTE8RRBAiQeC3Wo2drQ3mhCdOrPb7/TffTBYXZt95+w3XIQ9dfADjmcE4zspidrpTlGq817NWoxW1RgTbJBejBRqxGwQequmAtD3VqriYaW4izcypw5RSUmrQeGK0YKSVFiWHqn6kjgkp5dTU1NbGZhiGRjnLsmx5cSkMG47j3Lq5Nj3T+s6z33v63U+kaYoJnDp1ZmH+WLPZzjP+4osvxeNUCJnnpTkjryxLMwELvn6/f8R1ZCbAKMVKSaUwxpgSRE0euRwOh6aJBsGYICCmhwFCoecDwWbAQqlyPB6MhqVQURRJybWWDnWmpqYoJkmSDIcjjJyDgwOEUBj6hJCNjQ1KcZI0dnZ2yrJ0XX9udsGsvtbadfxcxlfevvrEE49Pzc61O1MFl6WQfhguHTuW5rlG6OattbXbm1u7ex/76Mc556+8+uq5+y5s7+wQQhEiMGEeDJBCeHK+DZ7UGRMNqCj4N7/5zcuzs2WZN8MoDDyEUBiG29u7jusKoRwv6EzNfvCHf7jX749G8euvvjYYDA4ODiTPB8Oh7sPi4uLiseW84ABII2LytTChRgRnZdFo+jNTF4oyHw8Hly49+MilB/70T//knStvvvupJ1zfK7jEhJZc7nWHoCXzAisGxeSUMsPqEEJgKhnMVhqA8qKo3YCo6fENoBHWAKyqNdTmNHlzvMqkW7vWoDHGYhIUBKW0FFIYCMZxjAnaP9hL0kAIMRwONzc3Z2Zmji0fv3nrupQqSTKE9EsvvTw11Wm1GoQQrdGNG7cP9gc7O3vzc0sAGEGWpAPzQEKIcWqUZWmOqteWD9e7y1sPuaEQbBi29H0fJs09JycdmBkPBiNEiVE1NEYKlAaNkO529x3Hwxgn5ZhzCUq7rut5vsOCvEiNf9Hz2WDQcxwnScZzc3Npmvd6vY3NO2HQbDZDhFBRFIjiNy+/7XlBu9W5ePGhl196odNshVFzPEo4581WBxDb3O62Wx0/jL7/zDPPfu+7v/CL/+TWrbV2Z7rIVZokGIPjOHlJMMYYa0QwYASApMZCwbVr127evBmFfrPZjHwvDDyTUOj7/szMnJDa9UNESHtqRgjluO5jD1/s9nq9Xq/f769vre/u7yEQWvI8S5RGAAgRl1CHEIYxAQDHc5LxaHPQa7VajWb4la/84de/8dWpVmt1dXX11ElCneE4ZoxiQGmROY5TpJkVWeaaAIvSyqMwwR8BRBAw11e11okmUVtbC4UQalTAPC+10fsQqs4MAIwRQVhppU0fHmlKq6RSynPcfrfnUJaMYyllmRdlXnT3DzzP0wrNzs72+72p6eadtQ3O+c7OThAEQshBfxSGjZVjq1Kq9TvbaZo2W76U0ohXw/bMWE1EuDbOiXuSaHMQGyitFWiAyY8mnwBr0/KjyqgH8JnPNS/LUgNojDBFmBLGGJ7U2giHsXZ7SkuVpmmWZXkmmEPKsux294PQY4w4Do3j+LXXXp+bm/U8ryg452Wv12OMNRttTfDW5vYLL750/r7TrXa0u7vthUGRJb/ya/+7UurSpUuf+sznjh8/PhjGd9Y2Xnn5tU9+8pPb27uD8chlbUodpVNCSFnGCCHAYMpQSikKLouCF7nMeRxFEYA6ODjI4rHnulEUmAJyx/EQpoS5SZZGUUNqFIZhw3EUAuNG9RzWabeUUsl4NOwPhAKpAIAgwjCmRswLVSKEFhfnsyzRqrx06cHlpaXu3t7C0lKelXc2N2VZep7nOlQpRSlXoE1BmRG1GGNCCSHEBAisqUoIwQgAoyK/GxrFGKM3b+6YpjpG+FqV0ZjlUmolwTSAAgCtkBKZqs6wM5cQwiDm+vXr7XZ7Y2MDIWQi4vv7+z6Q8Xi4tb2htegPusvL85RhrdV4PG63O2Uh4jhXEtK0kEJPTc3sH2yYilTDmE0Y0Zar3BvPASGBYIyx0nriW8cTVq+1tPjDGhBCGCFZSIUAE8CEaIyE4gomMsNxHCm14gIhwotSax0EIQKmwaTmK0BKSi5EqZQyebVpmisFM9NzZSkBYHpqVpDY85wn3/X4P/8f/ilocfP6lc2Nte2N9bU7t773ve9tb+3+d//Pf2oS5TGimzu7P/W3fuaf/w//n2997fkkVjPtxfEoaTTDre01QFmS9QBEmuau3+y0lobDosiVF0xar4aB1wh8XpacF57n+b7f7w893/fCyDC2UihCCBGCUoooRghRh7muiygRSgZhJBRoTTChhPmUOqCxAo2IMsZsv3dw8uTJRx992PdcAJhqN5USnstc1wUpTVAAkPJ93+joZoNM1NT+qKvjT4wuSAhhiKha/yv01vWtozsKAJMMiwlOjcJnFC9rHJg2sTYvK8syc2RjlmUmEXUwGIzH46LIiqJIkiRJEnOGjLUeDHCh1tFWKaXzUX0YdRPnCJO3XNCMDSaHjGJ7s/HJGUPKeG0opbqc6CKVC34C1qKml9T/JwjbFTQDmDgOaue0m+mYWnqv4Q8Gg9XV1b/yV37y05/+tB+4N25cu3NnbW1tTSrueU6zGWmtpRKzs7MnTpx49aXbv/7rv37nzp1Wq9Xr9QAgDMP9/f2yrPJVq6nZTbXDRrWL2sKeSkRMpkAJqvnLzJ2Gnk0esnHa2Q9OI0IIua7reR5jDCPKGHNdNwgi84Ex1zA8U7Ju/3ccx4gRs0omiQFP2mUjw4ABoKjqL8020R8IPqjUQxv1Mh901c3Tbr/jOAZGJtu51WqZ4+3yPDcZIvv7u3mej0ajwWBgEJllmSmTMxUoxpiw+GZqkrJGqsu80e53fYlNLqBNprAKolLKcRwzSSupzWdZNdOwCiRIhRTC7OhSGOBrcx5JhT+oOj8bUkSVcVd7NTQajd3d3d/+7d8py/Kv/NWffOjSI8ePH5+bm2MOKYosjmPfd2dmZhCGwWDwB3/wB5ubmwBQlmVZliZdHGNsmJBVlXTlBLWLoKsA9xF4HcGlVnfHiSbnyYMhRSmlfZ39bOSmYRNSSoyoeW9ZCsdxfN933Unm+b2sSghhJZVZE4M/s2iGEQhz6I1lE5dvbB9ZdPu5zv+0dbnZfauMX/O/cTubQRiLwQwLYxBCmBqROI7jODb4297ellKaO0V1SSmbHr27/bW3mDg6VCzdfm94qrWIzdoZC7rOXO1nUvVqPrK7ltLsBM1nlzLzo101+3xUKdiGqRgWUkoxOzsbRZEQZRiGjz768Mc+/pHHH3+80Yy0kr3+QVEUrVYjTdPf+73f/fVf//V4RLTWjuNwzuM4NvED42HWNd9WHevonstO897vFTr0J4YtGcI2Yz7yP/JchJCphXAcByPqOKZ22zcfKHXqvNPzPPujlbxmQcxn60ebePTuakdaa03tut9L/X8Rbdm9r6+OYTNaaxNNsffE8cgw52azWceTTW+u409rXaZjgyeDY1NkaXmk0ThNRwQj942npu6ROUIY5kc5aeACsijq9hccFvH3/mhGBfZAEACNQGnt+J6lEK21BG0qZ6emZ3r9QZJmMzPTaVZ8/Zvfunr92sWLFxcW5lZPrMzPz+/v7z3//POvvPLSYDBgTuAHBCEUx3GSJMYqH41GcZJ4nmfQhOvNorVG1lOL0N1/xv1rIweH91EpVdc36gL6Xn555LKyyIhXAyP72LrsQnVTA+P64utKdwKAKuNam526q1LUF91SOaqpOOZXtlFXPakVqrQUA3ZUxWE451NTU/XHWkyPx+O62LXPcdmCxZAVrEopw88Mv7Sqp0WntYQMOqvkNl1nsRP+7VCrL6LD+twPXAct5L3y1+g0kw8WrwAaoCwFQiRJMs53pqen2+2p8Sj72te+sbS0MBwOOS8cx5GKj8djKYXneZwrzvlgMOCch2HIOc+yzEi3I5ysTjPoCCire458b8imzqftb0ntwrXr7hEl1bzMw7MsM2hznKp0ktK6ULLUeO8q6cprBlVQzUoSatWj+iuPzMGCz36wZGFfjxAyPAwq2W+0GdOxwCCjzqVsf1ZdM5EwxsZosJOxl8GijTNaXmgAauBlbjBfxnFshmRgan8LqjT32HWx6Kwvgl0KRmhdD7GslHOOkEJI2S01t61vbC0sLHSmGmma7uzuZ0Xebrcd19/d62EMCDEuFULUD6LxeLy339PKMU+njlMKEcdxKYTx4R/hcBMfWF0oIWTZnrZMsfb9ZMPtiV/67j/jmMeYIITtP4CJHKsjskpGRlYDgRr/qwvTukCw7NMsrMGi1lrIif5nfrzLTo/IHVQzPiyfUFWSlb3qf2hEvh2E67qO4zgVv6kzOQBI09Q8wbJxMyzH8+0TLJet4xtVUR0zmCNkU3+XkQJ5npslMGwyTfqGR1r8GQZp9Vf75+YGnhcWc4ahTgr3K35vvzc49p3Q6AaO4xDCBv3RaBh7vuM4TqMRIYTG43FZ5o7jIIQQMC6EruodTYGS+ZX5v84Fj7C3Iz/ae478StVURhNLMf+EUoaOQSmNECiFlNIIOXD0Mn/LmGMUR2s6GJlrRm7BanltXQWqP0qrQz9O9L8jSLKY0zW/Q30VLB3YrTIizAR/DQ8zPxZFBpVOUKeSKIqsZWB42IT/SWXHV7+fMWbUQV3ZfWb7TZhE1Yxfw2iNfq21to1+tdaccz9YNoCzs7Y/1rms4YhKKV6Ulr/WGfmk+0dZWqFvXFE8UZgWWZbFWQqVxaPycjCKu/2+WUNCSCGkgazD3KJGDF4QMMayLPM9r75PFkP1DboHKj8Al6TiQ1Cp6eYyC26teMPJoPLbW3alKFR+BmECoY4z8fUY+Wt5pNnuI7Le4sRKS6wn90+wdGtrYCdW55x2DnbC5gPn3ELTgoYQYvV0O9sKl/xefV8pRQgxYhFXTb6QcQrqu7z2yF/VnWEW+tok/GhtoG8Ym3ElWEXEGh8IIYRFnUDtRQgxAt3y18mP+qjtP9lXQowaamZh9YR8XBh/52g0Go+Ho9EojmNTOTA5XXWyyNq8xSQ9WM8ZqvxzdiXrF0KoHhk3uDGDybLMpt/Jqs8iNqddVQiwD7T81eydNSwwxsDuOv8QQgQzY3kQwjDGvu/7fmi2zHGcIAja7bYhToyx9QKa1TPPt7Mzy07duxwWIUStMngEbXVSq3+wPNbuaJ3x3ntZk9liWtve+5Sa+VtqI4QYRcus471ArFOVeSyuvNAT8qrcTpayjzxByAwO68vmV8anZe0SmIRDpMFfncWa33LOq9QvLWsOSAe5Na31rj5qWpSUZZkXqVVbASBJEqsMWTrBGBtZrGtKsPmx2WwaJXviThPCzNfkz9YXSleaut2II1LSbgGq+WU01tYXjTEm2Pw0wZ91XCOETNDF6k424bSOE/N2M2BU+cPri0/hsDy1aKvTev1D3Z1r0WAuq6TXH2XYkkVMHX92XSrkKUOvdf3U7KGqcg6UIvY5Sk3+RDFqn0DJUfwd4euluKtp2Atq+kZ9+trU4teYpZ1amqZG4kDFYs3zi6yskyVUcoAxVrfTLVbKMjevs0hVVebSvfqAERT2HvNAu7xWkTDQMYDGh326loatCxBVruzJjxSZOEcdf5TSIIjQxKvn2NlprW0hmPnRQM3Qs1UWLTM2GpEVsBjju/C/F39wj/C1c9C1w81QTSms76WdrYWmHY2FrL0ZV4aSqTOu4w8fVhzr45wscY2grUludRHLPyaDod4heFVTs/Ja19KtEUJa3tUs68NoNBr2+zojaYTNI5aWqvmrbZzeztGcJqIrEW9pWB4OC1kWiPGkY7i5xyrEdZ3VMn7zXH2Yf+uK38MPEl9e6B3KJ0DUIrX6f6LzGTmrK8cFOqz5HQGckc6u6+a8tPdjU9WhK/eMGSX8X15H2cNhTlmnMPvBfl+H75EbLDSdCYC0VgqZw2QJrvCBj7wOIVQUCiFsnwnVKbr2RUohKUGC+QYc5h8hMPvhXnlt9Sd1+NJam17qxtIyszDbTxjWSEmupJLVPlGEkGf6B+hDVh0A5Hk+AXFN2TXf/8DVNl3C7H5ZWZxlGal66FpmiRBC4hD91LfS8FFSlRca3hy1A8ufAADBpICDczlJIGBWIhOEkIlzWj+i/aBqWSNQCUkr91Rlb1FdM5WtSmeZ2RFQ1/f+CP84Aosa2o56Po8g1apcR95Yv6fOa+1mmB8NUdo/wZVpYh9lWcjkaeQH+9ut/6/ORLXWlN71T6maIwYqdlsXMQDQ7jSMOWxNJYzuGgp27HYRrB+nDkqttemgdS+RG3hZjdk6QXzfN4JSVZ5R83Z5uN+KvaxiY+0DM+wwcuvLAhpX90PFFO+qgFJKz/OsBxtVBo3BnxViliq01phRXbOO7/r/6qOsK3n/F5flc/c+ofaru91G7Mzr6qABvZmPUgppaegOYWuAK9CAtMQIY4Q1mJOuTCARSQwUA0JISmMVYq010hOvFkJII0QQ1pVY5xrqo7UfjAKgqpYdZnHVYYeA1XK01nmeW0eGQUOj0XAcR2NuNuCuB0cUSinfC+9hZhgATN8SAwW7YfoecW/xZyLFqhZmMPgzxhAcNu0BAKrc3CNbZl3HuJYoBQDMQfZvEUKGeADAqH1KKc4nfQHsQ+oWrtXUrUS2rzC/tf4gVAloav/Mgo9SauxnOMz8LJyhJingsLFssVWpfUf1P/vndq3tQzDGSk48IHY+dml+4GUhUn8OmNyNaub2f4yxEqYSpgJfNQnCHOPYQ1VlidH9ZckRHHX9AwBFEx6Q5zmXynPd+fn5mZkZ5N7V5KRU1qrIskzJibPTRlyMXWKXt45vCws4zPxs3hqq6cdmE+tsD1cFjr7rHdEczKPMsRdVa9pSCGFsDkLvYp0QQvBkeKY/MQAQApTSKIpMaeJgMKjyEmhdPkz4fAUyO9p6vENKiW7e2be5CXXttSgKSx91rKhaMPuIln0vO7RkhGoqqrlkLXRTfw6qWawWlHfRULm7jrBtXdMfrHZsR1hHuRUQRiLYgJ5xYVp3xpH1stO3poBpxm3Uf9d1m81mq9UKAsdhfxGd3P2g1F2MclFau7huGtt4jCU/MwXmOJPDESjVlb3JGDPxpB9AJ3SShGc5pZoED+/6d+ubhV1W3zi7+5zzupPZLoWWk7wErbUhYKiyFWXVQQVXhmk9DGGmdoj53Ysey13qS2l/W9daLN6PzMrg4MgiHsGZfYtdu7rItrixOYx1wOHaVefi+vBVw4Gyr5a1eLRdbqh8lpYJ1S9ccz0SQkz1qpHC4/E4SbBWpRmMjTSYp3mea6JflAIAAqAAJuPBn8wIwI4FISiKScLEoeQJrVUttcym/1ibuj53s6pGLzQAsr4C022iPi+7zhzuZtzVV8nYGRaOdrkc17OowgTZMISQ3MCdUAM4RSl1XUcIgQBpDZgQAKC6svzt082LyT1xYSvOoZafYsdxZD71XdeHNZI6m7RyAWoZi3WYQs1MqXM1I4DqhHUv44S/4DoyqbpiZ2H3AxFsb4YqodLmJCul0jRVSiEQ9s76ZHXlY7OXuccPPItXjBHGE43Acy1ADw8eQCqoXCvSOPxw5a82K2NT2oz+Y1L0TMaQnZ3N8zi6WaCtiECVN8BKxfq8LBeUVesmu6fWLjHTtBlJlina+yfhGgM4u6PGLKrj5sjr792V+geo8dG6QgC1KFCd+anK7q6P7MiHSUlvTe5bNR/XNOj6aO99moUCHPbRoyr6Ysd5hFqOEAOupXVYpjsB8eHyPPsc66A+spLQv7vfddFZj48ZqTdxcFCMEBCCMELAsO9N5H0j8u0gDUDVJD+3MNlcJivC4swIcXX4AgCqJKr07zoR3s2DtJoMwoCAUGYFkdWbOecIASipQQNCGDRBAEoqwWnNSQyG/0FNnKGaIl+/dE1u3rsflivUAXpks+sf7v0R7mGZR96IKquizndRLe/VAt0Sbv2xR6jWDs9qpfVf1WnG5gVakNn5HhmkuaQyEvxQPTZCqL5/hzYSTXCsK33GfE7T9AjiJ3pwpX9baJoVcF0XWYuSEkYRAIEJHwUACHwGUOW8TQww0BN9FPQkL0vneaprniZ5OLH8iIUBAIQwzrmUgBBihqdrUEgrJQ2LrbyFTGuNQDmVs2yyvHX01PUnm8J5ZJV1zdjENXsW/gL+ZxReVOPkqnK41LetDrsjL9WVHllfF6jcp/WMr7qKeSRdoD7Ouoy2+23Zv6oxsCN/e2Sclk/oWvTCcw8ZIEeeU/8R31OeAkb8mVQdZfMgQYPJ9dAIobwscK2igFSpaMaStaqwUQwwxiZd3jycMWbsIyGk503O5yW43isD+W5YrZKdu3HigtYgJdSVUV1LSrfrwzEiCHzfN4UW9awoKYUota6JPmoXwpK+GXedxxzhw38RYuDwVf/eorzOlurQt1+qeyxWVVnW9V2HyvuvKn6AasaapZP6eOrDhpq1UVdA60oI1Ph3na+rmpfefm//xNJJ/dJVGtiRiSOEDL+xK2CvOt+t6wmYTpyOvDq3FypS1FWZX/1Rxm9stVv72c60fiGEHHo3jEEIJgTMmqEqe5DSiWJqXmKwbdCJqlOlpVSE4DwvbLaUwahlqHaj7+LPrlRdJNnPdt2NX6bu/tA1rV8fDmDoykFQ360jdx758i8CtJVfuHJ32WznuhiqY72+rxYo9nVW39K1CgZdM8PNB1P3XseiGZvBmeEEqIpvIoSKIocav6zr4HUSsmtreIO6xz6zOLYrP7F5lYTDpIiq2Hf9e4unJMlc1yWE2GIaw7ONfK/fOVkZXhpNzka09cSPQ238rVJGEUKATHK1qbNGMKkUpxgAnMgFcCtmNMGxMT8sk0E31vZQzWyBKm/UNiS1oWiz38YCtanIxrsjpTSFmDZXxW5zvVAParJPVa4TSxNmelJK63y2zrY624Ba6lcd65YJmT8x77Wbau+x4sBUtpsBmNoLVIVxjTQx2WyoSnS1j7KYsHzCDNWMNvD9OpVbkjAPRFUCn11Sxu6W81gCM7eZdTCOTzNyxlheFnV6rlOR4TGGEsxKCiHMwQqolvpg3R12U+oE71LIskxUx17YgaGa0kVr5eVB4Fv7g1Jqq4BxzZVmfjIcVKnJh8l21NlDnc/X2cmRQdib7bTNcC2512clq7wSVLNsdC3XzYLDokpWHdPNuwzB2frw+p+gmq8LKkld5xn1m81lnWdWwbARICuSrCF8r5FrQV83xs2vDFyyLDvCa81mGNhZTmOfZvze1m2Lqshsnf2gmu5v/RJ1y8CuWx2aE46oDi27qnK6vFp+9aElJdrxPGYdYRWbmHQsMeRd9Z/VWhdVJQ2urHjztCNaip14q9Wqv47aX1h4WeKu80XL7XVNA0M1MVfvH2D5kGFm9W2zl2FCR4QI1OwGcx0Z3hEwmT2rmx32XXX8HXl1XdKhKvXS0In1g6jKIMU1u97eX0e8fRSu/Gr1THT7KwOg+nPMjGR12f2zsuUIiFHFRFUtKQtqosawAMt7DGnxUh6ZeJ2Z1denWt67RCKrMhpCiG2BV19PK7WgFue1Wi+qcSv7YTQa1UdyN9Vb17SNuhBUtSQfcjjHGNUcRXVytPPBtZSWIzgwAqLuwTaDNgqKVZN1ZWHBX3AZl6ZdVkt/db2zPgYjU46A2FKafaOq8g7vfXidudYfZb5k1LV5qROzQCmtkFZISeP1wAiQNvsIUJa5lWt2MJRSUR28A5VuZ3BQl+zmBrMFRvLiKq5oF1ZJ240AmZU2VoUQUh/eGnMJfTeGBgBSSaQVYMMjrC2CAEArhRAuq+dgrAkxQDJHihBt7kQITIUeAGhQ4i49AMBRf7QdkPXrylpQGFXSyobA7d+6rlunSMvS6n2rLAOzcLdbjqpCuLqEqjPCe5+ADnO1I2D6i676Ay2YrKSzqp59vqj13zBPMNO0/rYjQ7WOYkuocDjoZ6m6ojqgVd9jISYtoDAmZpaHHf9Ia1QUE73cPN8o/qBBSQANWpmSZy6qQliTtwI1i9A8yvJvqLFYAJCgSymklEb/MxmiXEmuDtVBI4QmBfmYGr4lpVZQ5RxB5ZirwGeXiLG7yXIAQK1dZvXKIzuha5qWqsVFzMZY+/9IvATu6RRht9+uAq55Xixq6/jWleJsmNy9EMRV0pRdGsuc6vp1HZH1BHdUE9N1koC7wmgSFKnfo2sRv3tJBdTd0mszeHt/nZzsGGwup82zx1UtRZ1s6tZJfdH04QiYvccYAYQQCxhdqbMVLundMdc2izmOUFIjwJRQZxLPMH9reBjClUEBoLV2nYaqnLJHVsM+1s5ZgwZMtNamCl0pRS3jObJtxslk8W4Zu655d+scxejXVhWzv62vV33C9i11iBvtpw4aa2Oqw/mM9qoPso7y+v7V32igjKtQsnFKWRQe0fb0PXlsulZcAvekbhiKt15JCyNjN1hWauU7qlTquioCh72MR1CIK1lcx6Wu/EHmIrVUZHsOjF3/+nt/gGlV+TQMQI+o/rryW1ntKE1TS/x1Gq7vkblBVpVKdiRKKWrzGVVVW25+YfpT1VFsYGr8AqgW/9GHjfMjhguupSbU8Wf9C1BLokQImZMvj1h/dieO/G9pw6Knvrv2jaimbpuSLVQ53kTVZso+qj5+rbXVH+qjVZVDrk63E49tVfFl90lWp3je5QTVG+GeyKHVW4xcshqeXYq8yourI1VVjiTLh6w7sK5H2nHWM8br3AEAVBVW0VVlNKoSInXtsqaC4BMwUELrtGT+5AgolVJS3KVYjAi6fHVdVQEoWjUsss5YuMffUxSFaWwAtQgYpXQ0Gt0LPrM3pkUc59zUNIRhGIbhwcGBIQjz53bcnk+PIAAqlbwO37v8T9ythNWVHmn8CzZCoLW2sUhSy3S0zENXJTyoKoy13s0jK17ndnZfLRC11l7l/1NVKrXl30a81lmpUsq5Z2vN9OM4JlXmQV2KSVvYe9i1bhNaLd+tLxccrvYwB5jZG1DN8Ld5CRbKNq3fWD8micF1XbM41jQ8Qp/2HillnudGQ3McRwKySyGlnCjLqoqo2nna/a5P1W6n1QmswGXsUNwTVZaK+UPDZmyub1EUFu6Wk2OMHcdRuqy7DC31yFrcxr4CAAhy6vhAlassSZIf6D2p21tHkKRrSoJ9SxRFE8KtgcwsLtSUhB8YxrBPxjU/QF2wYowNg5nIvprAtUf4QSUfLM6OsHxcCxtaq9/ShqF5jLE9w0wpZYIfdSJBlYJoNFGLPFxL/tU1BdQ+yiq4dS4LAOY4UnXYOYoQUnIS/Td/SGktH6EuSmxLCl0JC13lA9vR6EoXhJpfQx/WZ1Gtb4v1qhiCsJmxNusYYwxVvXddfumauVrnFgBg8GaZpYWRzUS3u2VhhA8brZZF4VoCIqqCWnWlrf7BChRUM/Z1vbKoEo7osBZhEWY+F+XdfNX6wGyHJKjsCcOH8qo/hn2FfablCIbZ1EdVt95M1moQBHZ4Vo+yFKurBqZ197g+bDWa7w0d1vFjlsXmYln2Yd4r4W6NEsaYGlZkCQiqsniDvzqngcoAlFVEqC4o4bCab/Ubg9e6Qiaq9lOq6qtiUSWEwATZfa3LKfs0izxzST4J3VomYVQfq0QfYcPqB1nHuJY7bZfevD1JkvoK1GWuzSg2+zTRwyq72IzziEJmvbX1JYUas7SEdMT5YOFuCdvSgKksNn3xLOgt4Ky/WtSak9YVqjqdq0ohttO0NGCjRLpym9sdrI+zjj+LSCuXpJRAqIUpQoimaWpoyy6ZFQpWalj+rA+LP1IL1No/sRO7a7dX62J4klUO7K7TqpNcvZmklZX1b46wEEt59sc6C7GbrWuyr8757JKZV9c5CqklYFpw1F9tTStSZT+oqieBHUkdZ2b7LZe1fNQulx2bockoinRN8VBKTRJIa5oWqsIndmoGhaqmqtqONnblDU3atH5dc6KVFTO2I6kTiXX62qU4YkTbRdZaG/mLKh+TZRyoylc11yRSVJdoNvhj4ahqTQhscMlyUV2LiNQ5lsWchfJkBPfodlZD11rLWm8KqCWc2lEdwYE5mN1yuPof1snXCuL68Or0Smqx+TqyLafUhyWvWQQLBYtmWatrrKtEph/hEfDZ5a1zO6ubWxyrelz7BwWZoPIn1G1w89vxeGzq3FCtotSysSN8ztKPBZbd1on0lNI21kC1PHB7WVDaH63MNKvEDsfoqOd56nD/eDOguv5XX3pa9d6qb56u2RZ1nKEfpH+gyr9gTBYrnS3iLcjq7NNOuP5YrTU93O3VgkDZhoeVVWvWxdQvilqd28Tu9jxccxWZdbC7YmFnzUybH2+ncIQT15mBha/hKPV9PQJfu3+GH9dxNuFSVfLEkXW222S5kXl4fV7mTlUpwRZGR16ha1meuHK92UFaGpZVxLw+ZQv9usw0K2w+C32IkqllvABgGs9Y72Wdr9qpysN9fexl9dkjiotVLHDNL2BuM0RptChZHbuK9F1N1G4/qlxQdfCZ3xJ0SDfQlUlk6rXqQLRLLGtxQotRowcrpUwg1RIYORyHqDPyugSoz7eOPKsn1YleVdal+R9qQt8q5qa6to4ncxkJa4MlUOmUnufZuchaT6ooikxvQou5Okew5GrhZUSzrPqpkaoNko0rmv9NNqFSKgxDO/06+dXj0XUOYvypuPKBo5deu2qGYrrrY4xNWztj/1usqEo78TzPOgjr4sxCzbzAFiTzWj9dqEw5SqkxgU1jPNNJDgCKonA9YpUVs4JCiDzPTb8VWctQnJCaIrLmv7XcyOyTQZis+vTcq2xYBiCrUn77RlXV1OjD0sRcompMrbU2HjUz9yRNG40GrlwhRv2IoihJEjNmVXVcNY8lNSW73kXAeFhl1dmNUmrE6HA0MqVlZuksnzb6lkWYQarneRsbG+ZgEnMnqvlHLY4JISYMYZoIWtPVTNl8P6lOr2VC6CrdGn7QhWolOJZfSikn53lW16SLPlQBN/MhCAJ12M6gtUZxdTXoiNzUNUdJ3ew1N8uqg5ihb0O4supVam7u9/vWd2BzSO1yWJehUsr0v2fEqxOAFb6MMet/NrATtd7U9WWq/1+XRGaV6+dI1aWYtazNstp0XSvo7fN15dfQlYZgmRAAOLVsTbuMlNI0TXHNANJVL3WozoSyBo3ZadPHw87FCoTJMTLV261NZkwNO05Vc73VR2Jo0myWiSNYJeTIYh75YNr506qtClR+lXGa1fkltSM2bhHDdWmVnAc1Z6aVg5bNoJpCZrgx1AK+FnCW2eJaXrvpn2JfLao29lEU2TutX0pXGonVme7iRk183VZqo6rFjF1xyyzrtkVdY9OVv70uIi1GLbnXBXed3VoHp+GFhBDblg9V+hY6nOtQn5flyvavrDVtoQm2vxYhRp5qrU0OqQFEFEWGxuz6mA+mQl5XFoBdJXNnXQU0CLN2mF0ZA0Fzsq7h6/UuH6KqUzvyf73FgpVOlFIrr82X1O6BBZzVKuqgVocdOXUE2AtqOqz9W3XYk2c3wARn8OF8Nc/zlL5bJ6GrXk9WntZFvyEGVbVDx4cVeXHPiUhQC1RYpbPOC63pZ4dt+ZxlafV31TU8VOlejuuqqqe+tcms9mJfYRUjK0ZRrb7E8K36pKyO4dTiLhay5nVGrFt/B9SsQ0sDULPPVGX161rfSKip3VCLoxplySr3pBbptnsKtctA2f5KV35f5vm6phZTK09xLc5dL6OyPNlsWJ7ndbqp03Qdf6qKKZOaP9bwCfOrRqNhMW3XgjGWVOd5Woib73Utca3uDqTYtd/XoWY+2OlYosKVvmWHamijroPXB6AOh/4sksyQRNV62miNdoIG35TeFS91NziqGUwmH0JV3jtcy3/Wh6u+LV51rapGVKUh9mQUVeVGmHmZejHzt7gK7hudW9Yi5nVtT9dMKysNrAfHkL3R2YwQR1Ussc6GbJ8kiyujP1D3UOuPSZwD1TLpZXVBrcWd3WDOeb04qi6mVc2pZqEjq3iXrvyc5rY6xM0GEEJc1w3D0PIeVaXkYIzH4zGr+sKimitLy6N1ApbEoRamtM4C09fHkpZdaEt71hkJNWv3SPRTV+1+UZW+Xy/9r+t/9QtXSU1Qkza+71sWaKdmTJk627bbbOx0w+GM6Df62WQ7a/tSlzyWl5MqsmryhXWtmsK8yORTWQtP1/xEqpYJryt9FB0uCbfUZbcP39MKB2pqADXrdYQJ13UCG5wwtEWrOrw6I7HyDlVxMItpCyZ0uPusMbjqAzVfSlXYdTGWOKryUOx4DlFLlZlvdTszvHoFk9UllFKmT2h9fe0uQi1SApXUs/4IqPTROnMllZdKVH20ZK10yNInqvqJoUoKW1XSWFGWtqFWaWo5Mal5uev2gSU2QsgRc0TVHEyWnRvgmhtMZopVN3EVyzF+hiNKNqqsN7ssdr72yyMkh2uedlHl0hNC4jiuc3RqyddIDcPbTTGl5bRGuKjK5rIcS9X8qPoe486M20b26i4rqPxY6nCZhVLKcSczp9WpnpRSz/OMPQgAxnFj2Zvn3M0TsSg3CLAnzxhuYc1hNjlHdJJ/as5QULVG56RWmxIEgSV0S+WqVqJm7Q+oiVdadX2wYzP2Fq2aptl1SGtmgVlzw8ZMXKBOP7KqW+O1/rv2Go/HlvbMnbiKi1hA1HVBY8QYQVyvkW00GkbPwzXHhXmmTVqxcsMyEXtZvl5nQPUcnyN5Uv9/PkmYPuNLYVYAAAAASUVORK5CYII=\n","text/plain":[""]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im = Image.open(files[0])\n","im"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KlSqrA0h2SND","outputId":"bdfbcda9-ada4-4719-a582-b347b79bc2e5"},"outputs":[{"data":{"text/plain":["torch.Size([160, 213, 3])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["im_t = tensor(im)\n","im_t.shape"]},{"cell_type":"markdown","metadata":{"id":"0zS4k__12SNE"},"source":["That's going to be the basis of our independent variable. For our dependent variable, we can use `Path.parent` from `pathlib`. First we'll need our vocab:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yaE4pSIN2SNE","outputId":"a3e0f002-8cd3-494e-b326-01ccd5d04e3b"},"outputs":[{"data":{"text/plain":["(#10) ['n03417042','n03445777','n03888257','n03394916','n02979186','n03000684','n03425413','n01440764','n03028079','n02102040']"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["lbls = files.map(Self.parent.name()).unique(); lbls"]},{"cell_type":"markdown","metadata":{"id":"lzY7bapM2SNF"},"source":["...and the reverse mapping, thanks to `L.val2idx`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"iWDdO_kq2SNF","outputId":"97ebb8f1-a8c1-4470-ed98-e330cb7257b0"},"outputs":[{"data":{"text/plain":["{'n03417042': 0,\n"," 'n03445777': 1,\n"," 'n03888257': 2,\n"," 'n03394916': 3,\n"," 'n02979186': 4,\n"," 'n03000684': 5,\n"," 'n03425413': 6,\n"," 'n01440764': 7,\n"," 'n03028079': 8,\n"," 'n02102040': 9}"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["v2i = lbls.val2idx(); v2i"]},{"cell_type":"markdown","metadata":{"id":"fB0KY6g12SNF"},"source":["That's all the pieces we need to put together our `Dataset`."]},{"cell_type":"markdown","metadata":{"id":"hPeWLjVj2SNG"},"source":["### Dataset"]},{"cell_type":"markdown","metadata":{"id":"-XWMQh282SNG"},"source":["A `Dataset` in PyTorch can be anything that supports indexing (`__getitem__`) and `len`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"65Dc-fik2SNG"},"outputs":[],"source":["class Dataset:\n"," def __init__(self, fns): self.fns=fns\n"," def __len__(self): return len(self.fns)\n"," def __getitem__(self, i):\n"," im = Image.open(self.fns[i]).resize((64,64)).convert('RGB')\n"," y = v2i[self.fns[i].parent.name]\n"," return tensor(im).float()/255, tensor(y)"]},{"cell_type":"markdown","metadata":{"id":"g2v8DDUB2SNG"},"source":["We need a list of training and validation filenames to pass to `Dataset.__init__`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cVWD99G12SNH","outputId":"cd950b1e-7310-4b6e-dfd6-7ac2a6cbdb0d"},"outputs":[{"data":{"text/plain":["(9469, 3925)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["train_filt = L(o.parent.parent.name=='train' for o in files)\n","train,valid = files[train_filt],files[~train_filt]\n","len(train),len(valid)"]},{"cell_type":"markdown","metadata":{"id":"i0vV0QxA2SNH"},"source":["Now we can try it out:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"lWWYTi3w2SNH","outputId":"f21d43ee-8e53-47e2-b139-1de91259b99c"},"outputs":[{"data":{"text/plain":["(torch.Size([64, 64, 3]), tensor(0))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["train_ds,valid_ds = Dataset(train),Dataset(valid)\n","x,y = train_ds[0]\n","x.shape,y"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"ZyRoKH7A2SNI","outputId":"84e7b97b-8632-4430-ab8a-ff138dcee981"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAHsAAACMCAYAAABcUNbeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO19eayc13Xf737r7MvbV27iIlGkSGuxZclK5CS2ZDuJjNhN6sQx7NRJ6hRokKBIWycp0hZtDBQBCnRH2zRwkzRI09rZvMixK3mRtVk7xU0kH/keH9++zD7zbf3j/O6d4ZM4VOyoBvrmAOSQ33zzfXc7557zO8tVSZJgQLuDrO93Awb0/44Gk72LaDDZu4gGk72LaDDZu4gGk72LaDDZu4i+r5OtlHqHUuoJpVRLKXVNKfXbSim75/tZpdSjSqlFpVSbn59VSs3c4HmWUuqrSqlEKfXRHd/9ulLqG0qpCr+f2fH9Pl5/oz//bse9H1dKnWWbziilfqZPH48qpepKqXDH9UeUUl9QSi0ppRpKqVNKqV9WSqm/zhj+dej7NtlKqVkAXwFwFsBdAD4F4BcB/Iue20IA/wvAjwE4BOAnARwG8Oc3eOw/AdC4wXc+gD/b8fxemgcwuePP3+J3f9TT7g8C+K8A/iOAEwD+M4DPKqXe9wZ9zAD4YwBfe4P3PQjg2wB+AsAxAL8D4DMAfu0G7fveKUmSt+QPgMcA/BcAvwlgCcAGgN8DkOX3/xLAAgCr5zd/D0Bd33OD5z4CIAFQ3HH93QCuABjm9x+9we8f5Pczb6IPfwDg1I5rTwD4wx3X/ieAx97g9/8Nsig+DiB8E+/7NwC+81bNyVvN2R8GMMQB/mkAH0R35d4P4NEkSeKe+78EIAPgbW/0MKXUCICfBfBckiTbPdfHAfx3AB9LkmT9b6LhfNeHAPynnmsegHvYzl76EoB7d2xBH+O9v/LXeG0RwNp32+ab0Vs92VeSJPmVJEnOJEnyJYg4fC+/m4RwfC8t9XxnSCn1P5RSDQCrAKYAPNzznQXhwN9NkuSxv8G2fxxADFlEmkYAODdotw9Z2FBK3QYRy387SZLmm3mZUupBAB8B8G+/l0b3o7d6sl/Y8f+rAMb73J/s+NT0KxBu1/viH/Vw0acBpAD80++hndcRlaRfAPDHSZJs/jV+miilfIhY/40kSV55k++7F8DnAfxWkiQ30ke+d3qr9+wd134DwBz//TiEG3u/PwCZ6Hf1ee4k73m45z0RRJnTfxJeO/Pd7NkAfpj33LvjugcggGwXvdd/DkALgA1gH3/b256o59qn36A91Z3X34o/zt/Mkvmu6FsAflYpZfXs2w9DtOnn+/xOSyOfn58AkN1xz8sAfh2iyX839IsAXkqS5Mnei0mSdJRSzwB4CMBne756GMCTSZJESqmrAI7veN4jEMlzEsCyvqiU+gBECvxmkiS/81229c3T95GzZwFUIGbM7QB+HMA6gM/03P8hAB+DmCZ7AfwIZJHMA8j3effrtHEAeyCD/Ul+/17+f2jHfWMAOgB+6QbP/iCEQ38ZwBEAv8r/v69Pez6OHdo4xKzrAPhnACZ6/oy+ZXPy/Zps/v9eiCnTgig5vw3A7vn+RwE8CWCL91wA8B8AzN7k3W802b/H6zv/fHzHff8IQA1A4SaTd46TdXbnu97kZD92g/bM9XvW9/JH8cUD2gU0wMZ3EQ0mexfRYLJ3EQ0mexfRYLJ3EfUFVVKTo2LHpMfgFicAANmcfNdpbAAA3PQwKtvik3DtAgDA3n8UrdFhAICnBPtwkzSipAIAsDxPXp4pshEKCZddYnXk3dubiGy56I4fkN8BcFtb8puUvMvx+dmpYOn8aQDAxB65P1soIe5UAQDp4ggAoL22gKBRBwAMT+4HAKgtgbrPPfY52FXxQ/gpaRsyaZQyGbnPTcm1chkAMD48gUxe/p2ypJ/loWFsBgKH11YFad2sNrCnZHHcpD3raysAgCunn8TRh/8+AKB6+Kfk3ck8MlV5Z8WVZ1mdBtrXTgEAXv2GIKrzZwV7+sAjH8LKhnh2H/vDf31Df/iAs3cR9eVsNyUopMrmEDvid2h12gAEMgKAyG4jOyar0IZwbJRLoPyY1/iiJIYiKqo8se0d1+J3FmDJgkxsuce1begl6lhyn63kOgA45Hr+F77roDRUNv/Wz0gc+bdny2fiOIAlP/L4nUpJ+4vD40jlRXTlCiIJ3FIJDn0ue2b3yrtH5D1JK0Q7kPaW0iJhvv30U1isCEdHNRmrfKGAw6MibQKOwVB5CACw6PiobgqX5zkuKvLhp2Qssxx31y3Cn5Y+7/mA/PbFMXnm4pqDk3f9KG5GfSfby+UBAHEqhciRF7WDSAaD33WsDoJIRK/jSGMtVYFlcaEgx09AEb9RHGzFSVSx0nNtqFWtwsvKM1xG6jhKwVEU7ZxlS3+HBLm0iFKfA5RyLESR3O/pVWHZSPgyn5OduPK7qf2HMTss4ltPdttNw7ddAMC1hXkAwKXnRZx2tqsol0oAgHuOnwQArG9uImBfUmlpfyblYXxY7ktaspWtbYo4L5fHUVm6Iu/nNhe5GfgWtzqOkRUoZFISSZUbGZPfjsk2FAZruDz3MkfuR3AjGojxXUR9ObvREOXA9gLky7LSbYuKw+pVAEDYrsC1hNsjtAAAXrGIdGFU7nco4pMESUKOTnx+2nxmDJscalF4N2p1eFTkPKuHs7nSXX46tnznxt2tIE3O9pRCTI5OaUlg21DkaF8/Iy1tnDx0O7ZWRVm7dEG4uB53uXZxWZTSelskWSaVRRJQVKelrb5jo0POtmN5Zy7j48H73w4AOHdKuP3Rx58CAIyP78G5OeFsr74IAIhLh6Es2SjTHA+lQiSJjHPsyXPLJYnxCNZW8b+/xhiL3/oUbkQDzt5F1JezHXKIQoA4Ei5PItl4XUf2sXSUR9imSRXLyutsbsMabvMZAQAg5SRIuGlHXKE2OdFWCs4Ozk45Dlx+72kFDcr8eydne3HXfPP46TsWwlA/g893bKPVZbRpRx2i02xifklMLyctukY5n0LOld/mfOlzJaD+0mxjfFjMsff84DsAAE898yQurIuC5lFy5TM+sr4M9UhRnht0ZFyGciX4oZiMqIg08YdOIFDbpl8AEFshLN3XrMuxpY4Uu1BbNw9NGHD2LqK+yyFsi6GuXAvNhqwmn/uo1oaRKiCOZZUGbeHmVivAaIaathJOScIOXF++tyH3gxq7bXmmIbbqcq7mYo+cZ8Eye7aj9/EeDtfXXHKs59iw2E6tjduOA8tP8RqlSCKfLddFOkfOU9LfoFHF/ScPAQBW5y8BAC5ekz3Wt3yMU3sfzcu+PzFcRMA9tZAWE2l0KANeQiGTNn2R8cygnJZ/V1fm5BkHHYSUdHZHj6NvrJgkjPkM2ddfPfUKllfmcTPqz/tUrsJmCy5ENCkqM86YdAQJENRk8OKUKC7+5ChiRQUtqAEAGuESfCWvS8k4wlNjbLQHZWsxnmLnbFgOO+zKc11E8NhRT8lC8TlonuoqaDZtdduxjbjPQraOwPXh0fr3OaBF2uUnb7kFLz8vqNRmS55RcDuYGhMbemJY3jkzJYrR1MwMbpkUpNB1pVM538cwzb3hnDBG3gPWFmUyFhdECXNc+W6z3UE6L8pvsHBW+m5vIxPSdNUWY6KM6RoSz7hw8QwA4Et/9Xl4Q9K/fjQQ47uI+oMqeeHeqFNBVBUQIEnkJ7WmKGXFbAo2laBUXla3PVyCa4t4S6pirpRSCSxKbwSCTbtZiiPbASxyI8WnYyu4XMEpinsXLXi2PMShaaI5xAEQ1AlU5AXASMdAQs7OkC0algNLK3JkmzSRvCPTIyhpqUMF9MSth5BLi7QpZ+TaZFn6dmBmFBlKjEtnXpK2Jk2UqNjmIEptWuXwygvPAQC2tuVaIS/SYqVSw8joFABgde48ACAOVpF3DgIAWhCppiIFW8kYdbjt6I5MjM9iM67gZjTg7F1EfTnbAnHqXA4O97VOWzgqqMkKrbc7SHuidGhzwm+2kCnJXt2KhLOd9VWojnBh4FPJmyIbOR58Km0WzbLA6iBPrsmG5F47AzsRJc+1ZCXHNpW8OEKD3rfU8DQAoJgoNDW27GjY1EJEc0b3SSP9Wc/FREHaFEXy7smcj2sXRTFLKDnysbQhXltALRAg6dTGHADgvjtvR4HetOGcgEcd20c5kfG4dk1w8Meek2euv/wqMkYppKK4uoTirHC2FVNBQ2L2bC2Zokja7XoOmq0Wbkb9FbRYHlZrBihQXAZ037kRHRdhiHZLJirqyAvba6sojqyyZTIBnfoW1q7J98O3SEd82q12HCPLd2UoPksjeRzeL//uZGSQN7d8lKjN7j8oLteI77bjHK6y2ZZWfT0Fty0jpO3syFKIOKg+nSMqkXdfOncWOVvub3e41URtnHpRRPTRAzKJ97xTMOp8zjHOmvEhEe3PvngKjz/5HQDA4uXXAADNTge/9glJCPW4+IbLIsbL2TRaROTyQ6Ls1ebPYebAOzjeeopiKL5NT3JMxhgeGcOVSztD519PAzG+i6gvZ9MaQq5UQqsiK92mDBnJyUqubK4j7NDBTo6qX1vCmiPcMH1IzCs/twelCVnNQ3tuAQDElEtDTogZeohG6PqbOj6B2uo3AADtnIjAI3v24vYD4mbMpEREvvrVrwMAZg/sw9fZ3oi7Q+QBXoeczfSxABEScrLL98fcfhr1Jh56WNLJXjsvytKdd9+NvZOiQL36oqSuffmr/wcAsLBwAV5GRPCn/+E/AAA88dI5PHtuAQBQ2xTpNjuSNzh/ZXPLjBsATI0O4/zliwCALIMiGosXASXjbdmibFrKgk6Bs6ioLV4Vc64dBoh8nSBzYxpw9i6ivpydcB/Nl0rYbMrqdwlwVNdE8WrXa7AUse5EVrmngGhJVt1WIihcemwUY9P75BmQ1TpGxeRAxoe1LvuytSHvPHnPOzB6TKSCKu8BAFytRyinhW2vXhbv1EhBOObi2VOwuZdluYYzcQJtpWh0DXGEqC26g8M9L8tAgTtOHMPvf+4LAICzl6T9jz/7Cv75P/5VAMB3XhXQ42tPi9RK5zzszWgwSLhu7769WO7IsK4SpC/kXMzPC+qW8YQDk1DGc2Z8HJeXr0l7UuS91TU0W4I8ehn6wSMLiIWjfQI4J04cAwB87vmvojB8BDej/nBpIBMbdTpIpUUxamxSu07kOyQRqOdA0RGigtjYte1FEVd2ZhhJLB11Qro4txhPBhejWUHmjp08AQA4OD2FDGO+Njvy3FZ1AZmciPmYyNye26j5Nmfw4oXLAIB0RwYlGwIN42ARcpVCmxOj4VKX+lw7CHD5mojetZr0b+/UEOjPwOSMKGZ7bhFLwPFtTJSo7dNKcOI2HMLHYyXZtgpZF0o7Yrjm8oRX4zhALiuBINuM6zt58jgUt8TImNQKCXEBl+1ucSUfu/PdOHLHO3AzGojxXUR9OTtuiuLVWV5FQts4PSSiN023X9hoolXTNWuEo5IoRJtuwIjhNZPpGUwxAOL2I+JYuGNalLyjM6MYHxYsXZtDSPTTgOUaIz5ViDRRNf3ODZoj48PD+NAjUtTh/LxIk81GDIe2ukafLAXoekQJv4MiKpf2MD4t7WjT7s+mgDgSrs2mhbOKGbK6HSO2pL0hHTjbm1WEbXlumqG4hXLKmJlBS8Y0R87erjcwwdi5zS3h7Onbb0eYEm5fohRSFkU5AHYFRUbdvm38AMLrajG9MQ04exdRf1CFLJDEMeKO7GEdgg05ggi5qRlsrwlw0uAe7MYBSmUBPX7wfR+Wz3e/G8cO7gMAjApzIiYIMzYy0X2nTipVMGBNo0aAw3HN6swQXGk0hMPXVYyLF0SBOvE22b+W1rZw8YLsry5RMkvFSCgNYnq/Qq3FKRtBQKWU2HXUbiNuM+jPE25zhqVSiJV1UGQ7OtRHRqf3YF9G+qW4j8dbq3AY9BGRK7WXLJ3JwHfkGfPXRClMO0AzFgngM0AhTpRRNnXpgjjp/t+2egbuBjTg7F1EfTk7zUwI33ER0KzRoTFRQhdWJosDx2TvmD8r4EBOhfj5n/sEAOCnPyrF/9KOArEOtNYE2NSARJIkUGRpvWqVUghCrfHLh2/bJrhhaFigxemMaOxzF89jjl6jalV873ff83bM3ivBgt984hl5d6NjAgcMp3T/ge0NkU5VZo3kPRuhNtH4rvGS7LHZcgZ5E1wo95QyPoYDGZtOUzh7eXMTvhKrIbL5LOLmCAI0N0X6TDGLJu/bsJkZU+VnG54ZG+P00pxtAd08+xtzdt/JVozuqFeqpqO2ez2e3G7WkRRl8PYfvBUAcP/xI/jUx2SSXSpBcWwjpNwJXRGH2RRjym9QECCKtNuTUaO2i4QOijbx5DLdjduVOuotuTZE1e7lF76D48elpNq994hJ97VvPGV+62ilje+z4hhZ2sZ2LHvNbcf2I1OgsnlZFMUSzb6D6TI8X8Yoy0k5NFXC/n0S3JBJS7/m9x9C2hax3CR2UaYJGW5vocJrxZL0Jev7SOXl/WsN2RJCxzUxdoqzrYctjhPEb6KowkCM7yLqy9llemEqa5vIMNa6E8oKTdmy8uywiQyRguERuf/HP/AwXC1jyG1KWYi4NG1ftgctPi3cgLPj6znbsxxEVKCef16CAe68Q8T0dqWFjQpjrXMiPkdKLhavCk49OSOY+oP334tTp0WRW1+TEKEMTR8PET74vvcAAIpMA8oUfJQI+Nx1Ut519A4RwUGriTbNMtdz+MxVnJ0XdG99lShiw8KH7r9D+qRRPj6zFQaoF6gMMtjBthyUy/L+SwSUQlcZjUwzseHsCEbp7EcDzt5F1Jez1zcEnFBBhJVN2a8yBWZTpBn4Z9WxtSQK1yPveT8A4MjBvWjSk5QwgNBOItgMsUkTSrV1cGHPmuvl8TDS8eU6gtSGTT1i/wFRCl899SoAYHl5C0fvuBsAMM/gvtbKNrKEeQt12WeTqII7jx0GAFSb0ofNNelnygbKGeHapQUJLqhuVvHAfT8AAHiGoUVffEHivGtRE6WMSLhP/+LPAwD+6okXcG5BINccsW4748PJSl9bLVH8nvnWtwAA9z/4blQo/TQQ5acyyPH+HEO3OpEykKuWiAk5Pe7xiPWjm2jjojBsVa7B93R4rnag80WlIuqhdODIXroz49hosHqiLMtCFOpsTG3Xanu3S5bSWggQcLIVO2VBIeBztUjLjYijYE+5gB+69wEAwOULYhV845knsFWVto1yQJMwwvKqLNyhEUH0jh6VYIrl7Toepct0+ZrUplOOj5N33QcA2G5Le5epscewoZgiVSWWXhybhtNgcIHDlCA3gMUwYMcSm6Rel9+dPXsWM5MSWdNpSt8SB4hiBjR4cn+rGSHmbIWU30nUxQcGYnxA11Ffzp6dEdciWk00tyV2qk40q5QV08HL5pB3Rdko0WVpo8dbgy7MoxUKRTz5DVdjz6VIe9F40XZsBDRTWnVBzg4Pi5mzXN1CipLg5CHh1Ftmp/DSOYmt1tUhWu2ORLP2XJuZEARvdGQU73nvQwCALdq+z7z4LJiHiExROHVsXPqZcjIYz9H0ItI1UkxhqEjuZZzeyrU1YzJqoTY5JQERC/PzmBiWscwXJIDD8x3Ua7LtOKDyqCyTCmxIV6uAQvwmzh8YcPYuov6JfVwttx4+jLnzwlFr6zRXiH6FjSbSeVGCRoaYJYLEcGMv1h3TlNLHYGjUp/dYDH0tSRJjeinVs++z0kEqJQpMkpN3x+0q6q4ohTodqZzN4tB+UeROnzvL72Kj6Djk8KtXpU+VShXr6+J5OnxIACLHC5HwJIo0vV57945z8CxErLKgA1VrW2tYmhedodlgPEAzQEzO1ghkhiDVlDeOs2zb4eN3ApCYdZ0W3GgJh9tuGvGOMdW6TIKk+10f6p8kwMHIea4pMVGr09nhSGNrlRqOHREbssBqDGEnAOgCTQwMmpjJ3llCUymFneegxHGMOL4+pcWyLASEIrO0gys5JhXUbGRCQZvqZ0STXrywjNy9dwEAUowQCdIRCtxuwFSiDi2HkZERDBOGLZWkL/NXruD3P/sHAIBbDhwFALS35T2W66LJQIkOh3Kr1sTKhiyAgNE9Odgm4CCidzShWprNZlCrypYxd1mCLw7O3gOXERNXdOyfHwFMn2JUNCzDGJGpJtFvSgdifBdRfzFOBnQtB9M0D2wuq7nFOQBA4ijMTkzxYTrjsIvV9iuEu1Oc77xmxH7PmtR4eZqZmC7NlatfeALntsWkWn5SkvPKuVEU3y6crfPJHd9DzGdokO/b3/42AGBmZgaTkyKiJyYkiGFmcgznXxS7eqq8DwBQXRPpNr9yDcOTYr7FHdnmSrkcpkfltyxIga2ry3jtrIjq2f2i9Ga5/YSdEOUhMR/XKwzIWF/DyJiM97UFiV2bODIEz6XjiNqYpV8QNpEYIVjAjWjA2buIbqKgdSsT7d0je/ZWTfaXgGlAnu2iyQACnbuddF5/Bkocx2/IyTtJ3xNHEWIqIDrfWimFkPE3DkEKvyHY9JnP/jFOjMk+69fEpMoMDZncbq0wJkliov4sIlFVJi3+6Z9+HgcOiitydo9Iq0O3TGMyI8M0PSHctv/WWWkX2qamSnVOTLx7D87g1ltk39eM96VHn8LlOdEjCsPCeW5GuD+bSmObZlaZVRw8zzWRpGCqkeMGcLWoNdk48l27vm5cxAPOHhCAm3B2hjix7zmYHJW9aea94hV64D4J/bEchbfddQ8AICLgoVQX9tQcFcexwbU1XWd67djjgyRGrIvkaUVTAQk1dK3dbrUF1x56+zFgmwUD6G+ulDzokgcahUUcGf+5TvvN0YystTuo0gfwzW9+m/1bRY0lLtfWBBsfnhaub1RX4VD6vLYsx4nESNBwdEoKPVahQoOa+dPPSFZJ2xEo+vjthzEyReCkpiWOBZuwqkMAyrMs+LYO4uS48d3FYtoEdfSjvpPts9yTBSDLcgkaoJ9keQkoB7NlEVvavlWWgpV0RS8gk2hZO67pSdQHJsiXMhhxaKrkURIjRmwWRYei96V//1kAQOn4bVieuwAAKDCBQXk5tFmFwWN0p1tNEHMrUK6OhGFhnE6E5QVxiX698QQAYHxvgKIlonFtQ7YnJyf9XVrdhs04thIL41UaTaxua3tYR7jY2LdfUp78jEzs6SuCSD777HPYf2QfAODWvRJg4aeyqLdERGvzN+vY8Lj4W9qMi2gCdpqmf/1oIMZ3EfVP7NP1PnuCkrVJFWhFybHhuNevqiRJDJiCHrBEc7QBUHo+VM9vAQm10Y+wepQsfSpUmrVdhvYx0U+5UKw2Z9M0cVMp836HwReFYtHkMiuH5TptkVZZL411RspeXZZ021xxDNMz4s1LpXWpSzGVls++igLj6X/43fcCAJ5/8SU8+YSkB8VM8TnxtmOYnhHlLpsVzj63IF61MEiw8Jq0Z+mibB0Pvf/tmNkrsfVVbk3nXn4GJ26Twnk+27uyKW217Q4ohPvSgLN3EfWvvGB191sNZnQ5LzL/1+movdi3sq43s5RSr9uz35Cz+VmpbJv7tE8c6Pq4a6uimA0vClcEoz42GeAXCl6BiUzavF9XUvB934QGKVaDcjwqRmEdKWZiHD0miXIH9+ZNdScnxWrEbNfYxCxyNIe0+TY6NoYjtwmuHkfC2cPj46aDYZtRq8TGXXvI6EOvzUkgxuWrGUzuEROwtiXK5qlXn8Q4a6yXGGIVtsTkvbhwBTH934du2Y8b0Zs+sU8Plhbj2kZVSiHNaBC/J0dYa+PaAeA4zuvs7F5z25R94v3NZstEt5ogh6SroDF2AltTIlrrG1soNWRwt5p0QKRSZpB121zHETsWQEzfZbPCMhrbl1AcuR0A8JGfkUoJpZzCmXMilscmxKly5twcAAlwyM4K4tZgWo+ybTNGIRf/6uY2bFtH28h3ZWLvUWIhkxZlbWVbJvbilTM4cYLVhTXaF8cIWZg+aAiC16aTJE5sDLO0SD8aiPFdRP3FOLkziGJTHCek10nnxA0Pjxl3o+b+JElMHfB6VVcQsN5AjPcobPx3aCRIDIdmjeaKJEkQMro0INeUjovIPP9nX0CGpl+FilHJc7vVZkhxHMOmspZl4Z/9E3SJPnAAr61JAMHQiHxXzA2jTVx7ZEy4+OF9ojyNlEfw6ukXAQAdjovtp9BmAX6NCZRHxxFpzICfRSb2wbGhoitsnLS1XotRrYliNjXNZIiZB1AuFDnOIrnWtkQidBpNWH5vcNcb04CzdxH152yDSUtIEIAuCsZNNp/PG67XCppt21D05n/py3KI/P3vfCdyOeEaIx3IzVEQwE569mUAiBKwvp6RMFEYGaWxyFjvRSpj9nAO0WXZy1TAZPtsRnzr8mD5QGy8aLWa3H+UWPbTc0/j/HmpgvDs8wKqePYYVjdlbzzPElnHjog0qWyuY2VZYsRPHhbv2ka1ijb712TK88bGBsJohGPqcIzYJ9hIOxIWlSLyNr+2jj/8o98FANx7n+zdnjNikhhfPS8nGbx4RvB4KwyQxCJBf/InPoAbUf8yG4rngag2ImVOBQEA4yb0Uj50cBTTnOGlFKpKOvrKouRf3Z/c3fUMuKzK0JYfXLx6GdstarOjElMWOx4sIlsWxbkKQ8TM/1oirPnkV74i71xewTp1+VYk3WoVbFMqxGGmWRAnCKhBh2zO3GVp61efm0PsiaYbMFJkbf0iGtR0PV8UtA4X9aOPP4bxkmxhpy9dNp8NOonWaDEc2zuNNIM9tBWTIdNU2jaqsThFCK5hr11HxBJkV68IvNpsthC05RmWJxFBgY5TsxzUqkQD+9BAjO8iukkJaqbuJF0nhybFIIatuIEX1+m+Y83QmUwZwbqsujHarW4ug2RBEJ+EwfNxnoHz568ixcD6Zkm4IXP37Qhp3ybEgjvtCGvr8v3amty/+KSYRTMh4DAsKtFbTjaFdYZR2aF0NeNnYdFE02Xiajwq4kCpiKs15k3z5KOFrU1TigotGYOQpt1QaQi3HhB0rUJnSXX5MqaneHBLSd45MZrC6uocAMCijT8xK1h5ZAO1NWnPOJG5zUI7MNcAABcESURBVPoKmA6P82ckAaNuJThx/J0AgNFhcbE22Z75+Us4evQW3IwGnL2LqC9nB8wvRhyb6gd1XXeUZ1bF559EmwDB8Xe9CwBw4fOPo3JVuOU2mg6Xv/k8nvvqswCAwl5xEY5+8AcBAAtzlzF0TsyI3H7ZM9tWT+uozDTDAKsM5tMlmlYyNMEiFx2yQ5AlF6c8JKwG0eb+n3J9tKjo2L5IjD17pI3RUg5b56RfHSp09z34IC6eEoVIe/JqrOcSWzbGGK61yiTBfdPTeOfdkiacoYSZ2DeL2pZIIo9KaUB0TSUWQppSi6virUslHlJMftSZN4nr48qC9N1WIgGmJ0SCOFaCXImmXB8acPYuor6c3WEeUzaTwRWGuS4viWniUxtv54dMjPP5p/9KHrq1jbUG9+BlCWPyl+bgzohUWF8Xj1L292U/KmZyeG2IuU2OcOK7wggOC+2GLFL3nReeN8c0nTh2HADwFaYOF+Gg3CC06LCw3OkraL4mEsalxOgUiliPhDN1HbGaqb4MJLZIsGtLwqkPvf/DOHP6FekrwZqmliAqxuI2w5IipiGnLXg50a5LWbELW00bK3pfZjBi2pdPL2MjpMkVMoMklS3ilr2SfHi+JsGTpVzRYOhpglj6CIp0OosiQ6D7Uf+DV/VRCJkMdPqdxrpBrPlMdQ31lihe9QUZhFySmMQ+p8aMzXaEFovP+64+PUcGdgNtc47jZkNE1Ua9ihkdQbIiyk/QauPEnWLPZlLS0Rm6DtdeOYNHDkv0zLUlmeDgG6/gGisizFJ5w/5Zk0utS4dsbtMUs2Pk8tK2dJ3x2s0mEsaBWSwC6HDx2a0mLlwQ9KtSlXv8lINUUZA2RTFebzawVpHxKI5In/xEJixsB4jpkLn1pPTND5uosrzW8ROyJaTdNMJQlN5UStof8/TElJ8B+Lx+NBDju4huEl1KEwaWOZNLBw90CA40lULUYviNy1hoO0Jarzq+oplzMFJjCgyjNVuMD+sEHSieo6nBjGR5G96QrMUVHj2xf2YWHiWKdrlOCxaD880WtmhL5T8gMXH5uoX9FERLRN4unj6DiMqdxt6XL4lYH0nZmC4Kh7RfEnTqlS9+GRvcwoaq9A9QeUqvVbCHxzefpgJWTJeRpkRsN+W5jaCJkRnhdrcov12rU9EMI2i8qm1pd2wVTz8pymwrFklwx22HceWqbH+Hjx7muBEVtFPYN6NTr25MA87eRdQfG9dx4LZlsvy1PzlkBoQf21Da56qD+2wbMaHLOpP4A89CzAhLDVKE3Hucho1SnUAL8Yul1ha2LsvqP3VGMjJ+9hc+iYReryxjp6fLouhsj01j+ZwofOlX5XM9iRDn5L454tUX2m00mSTP7uG+Q9KO4ckUilm5ePaygDdPPvccFOHVrWUxDwMqgFanjQ7ztO6juRUlAba3WLGCCqDt2iizbkqDR09EOtQrTgxur/RxVGGMPE/vHdUFEaqrGB3X56ESV2fA4bnzF7CyLnrNHQc/ghtR/8nmURHXZQiaOmXdDMIOqwcaR0igTPxahy7OlJ8y+cVBVRSNdIeZmLaNZYo87XzZ2FzHAcZhjeyX6IvYtqBo+7/4lIT1xqy88P4f+xTyLfnt6mnJopy9+wg2l6XkRn5bBjm3uYVTSxL/NcxokVFfFEzHWsXomFxbmBFRmdp7GJ2GDOTV83MAgMMHBK1SuTQmZgXNmt0jaT315raJZHHoQk35DjaYHaonSsdthGEIxYCGmGJ5a7OCJpVHT+nS3y5atAKaLY1/8ByT8VE0O4NzvQbUQ/2L3ulwoDjuFqbTIUW8x7YstBmtWR4fNffrqsFDrAaoev7WbkpdJ3S7so3RkVE+kZ6rWgPTPK5h/0HhpHq1hrM8nGXxgnjT3BrNoGrVHFqzOUTFz4tQW5d2OFSqykM+pomNj42JVHj+Mo+XnLuC24+J+9Kbkhi0kdEcFpeIFQxLX4r7hZvHvARH7xTxPVSWZ3WCmgl72qJrNI5D5JhiXKOnqk7TLoxCg/wVGJzge2lcuCD+hvkrYto1m03cdtttAIDJSfEMtmgGu66NCDcvSzzg7F1E/euNcw+OVWLCabpRoDpbo1uyTjvr06mUCUJMaIIp2+qGkGu3NuPBc6mMSWXR0qRVr6PG+qE5R9crLUNxzzszJ/uyIjdffullHJgWgEUfqfzoX/wFbMZYz84Kjry4cAUZnsD37HOSsuP5wiknxifQYNXll68KUvjR+0/i0qJkiRy+S4reDe2RZ4WbSyiOiMnzJ3/yJwCAAwemceyocGCtvs0OK7Qo/TRHa25utVvwiYzpa5ZycPfdUuZrY2PDjG0+zyBFHcSpKxvbNjrhwJ89oB7q7/WiuaLgmNP7bBMr2K3voUOVdNiM67pIE/wIqSU6sEz9M51NosN7s/kc2m1dFpKHxUURWryWg+x3jm1jhX7sazxGyWUdlyMzM3jHPZIx8cozAkhMOQXkS4IZn9wvJTJqQ1PmYPaX2M8Xrom2jcJerLSFGzfrorFfWb6MddY9m6Lmrf3loxMTaDPc5VtPPs3hOIHJcfFx6yiZKFYmfFqPlf4cHxuHy4PU9Ri0W4EpppvNClKUz+eRY3kQHbipw7ualQp85+a5Xn0nW4se2+rGX2vlCj1Zg1pkr1dlUFrNJiIOgjbBms2OmVzd2BoxZtdxEOsT9ehscJIYDQbBWxZPAUoUNjbF9rZ4rtdeiu6f+tEfR0RR9uGP/JTcH8WIaV6dp0JXW4xwlfay4qRUX3gZAPBnpxeQ6LPAA5n0v/xyglKaJ/Bwv9KZlX5sY21N2pOmiHV9D7W6KHQd5o5XG23DCHprNDH2SYIseDgMxXMQdBBoZwsn1LIsU5BeL4BpZpMuLa8geRNCeiDGdxH1D0uiuA2iCJajz3Mi0sVVHsQRPAY0+K1udpkWU8rWJSy7Sp0+GF2v5E4Um6oNWslrtWOsbYh43btvH9/dTRjM8bCVn/yxRwAAG0tL6BDoGWYRO1cl2KqItPlXn/kMAGDuyjw81mPJEKU6Snz7q1dWELJm5GxROLVcHkOnQgBel9UMNaK2hr0EftL0wi3MX0WZMeFBkym1TgouqzW5jLpNMTHRsi1UWVO8xgCRRqONIOjG4AOSQNmJ6V1kaU6XoVPZQhmrK+u4GQ04exdRf9OLXNzqRLDp0bJp6vjcCx0HKJFDdCrs+vo6MhnZr0x+FxIT/60TAVP0Kzu2hYT+26w+vCxSaDK3KeGJgHNXLqFBUMKnpLnMakJLi4t4/0MPAwAqy6K8FQolPP+chBRduSR4uWu78Hkge57HUCXMd80XPdQrwj1tW9rfrK4apXRiQkCVNpPzXN9BlTrE9IgGlKrm9NsUgxdcx4NNPN4h4DK/IDDulauLWGNdtfUNnkgcxEhY80x79zzPM2Op4+91Jk51ewsx66v80t/9BG5E/cW4Obo3Rpsn9Wkx5FaY71zIGIVLi+477rijq9zx2tramlFKtJKii7bV6w2zZej74zhGhXHXNVZSePX0aWwzpkxHmX7+c58DAHz0p38GswxkCBiPbtkWHnv8cbZbBnlsbMxsFavU7DtUyjKZnNFqh3gcxa233oaAfSky+lPHoO3ZM4sqRe/WNisjHp5BhiLaFPnxU8a/0Amut0RmZ2aQyYhCp7itbdcaaDS03Sxj2+m0UaAzRSttGt/odNrYpCOkHw3E+C6ivpzdpN0XRVE3R5pVrzT+C0TGJgxpbp0+fcZUOhgfF2XJcVxMMhJTKx1lnlWZTacNZjwzI7ZsJp3GmZclX/n5J+Xknn0HD+A5SoUDtwhevndKnvn2u+8xSp7+nLs8jwsXpM7KHnqlhCuIv1OBatILNjJcRo2VinNE3A4fOYpnnnoKANBh/zRHjYyOYHFJkv4qNDtdb5+Rfp7TlWT6t1qx1eZTKh2jSLNtlJjB8uo6Vldle6jTlVzvRGg0auZ5Mgc829RxjGTsRwPO3kXUl7N7U3CjnUVmuaVsblYMJ+mQoXarjQQiFWrVi+Z3V64IxmyZYyAY3Od7cLhXnj4t4UCFYhGJDnbg3nf+0gWjC/ydT34SAHD3cYkyVVYXo9cQ/Ne/+U2DLU+xvne5XDbIk0vp5PP8slq1YSoV17kvNxoteL6uAy4Kl/YnV2o1fP0bjwEAVpZFAXScO03CYr2ugZTIlHxqUQq2ybFhFJraKwH92aViAZm0mJYN7vGR42HpmgRSmsJ/1EM828Y2dap+1B8ujbtHP+iyGboctHbQJ3FixHiTgQW+7xnkzCBub0CxOaMrQIu249aWiFG1sGhqqHX00c5RhHvukfiyWUKXeuHEcWIGuUIHyqnTr6LMbE+9SPbs2YODdJl+6VFJCixQ8Wo26lhjVub8vEze5z7355ieFpF+dVG+W6AF8Jdf+HOjhN16q9jb2WwGDTo79LEOCkCjLRPfZlZppMtHK4VOS2+Dcq3WqGGFCQNXaVmEPRUuMlycY3QpT46NY3119YbjrGkgxncR3aSAjj6cRZkjHswBL/oUPd83B6ln+Lm1tYVtKjra5NEKG9A1rxxTFcEy5zJ6brcuS4exagFjuQqFIkbGZDVv8FCXMlEkZSk4RPJefkWC+s++dh4zk8KVWpw7jmOc/xr1WiH32HZ3y8jlMvzdJq4tsUDdc+Jg8em4eOih9+AHHpCUp5Ul2aJWV64i1ik7oa4rE6JN0atNL52n3QlChCzl1eJ3W5UatriNaAkaxSG2WCZrm6hgg3H3m+vr8NybO0IGnL2LqL+Cxtog2Wy2i3qldJ1suuB8z5Rt1EcklwtZNFgZOGRSeaeTIIyvd7p7ROMsZV13JBRAScDt3tTljBNcYZjOudfEi6UPXSkPDRlk6WtfEyCl0+qgydWvD3E9e+40XFe419Ox6uQYCwq3HhGc/ARrtShlGRBGBx6Mj0sM+AMPvAtzF0UB3SBAE8Wx8fjpsKtObBmTK2ZyYKfdBaw03p/NSnty+QlMTYlrdo5K7cLKpolI1VK2QkAHSCGXLeFmNODsXUR9OVsXZiuXCqbCkF7dKW22+I7ZL0pl0XxHhkdw4IAk0tWZHLhdreDiZQmia5BTuPBhwQIrdJj9PIxCgyNrrg/CEAssJPvFL35ROkBzKJ/Lo8z3n2KtkVQmbWq0GG9TKoWxCfFju4xHnxgTLsr6Lt75Dsm3ypPLojBCeb+uQS4WgLYYXnzu+Z76cLQcekJ6NQcmsEw4VUQMO+wxa21HWzrSVse2UeBh9Pp8072bNaxR71i8JjrEOv8fxwHS6a6ucyPqO9kH2LkoilBi9KTvi8Kj8V+oxBSD0eZWHEdI8eUNmmNr6xtYoqKjzTiPzoFMOmMUOYObW5YZEFMYXsVmO9GLosPi7strDaysE+tmvrPtdgvt6d/dd999OHqrxIid5aK45YCga45SyDBxwWUb84Ui9u3ZBwCYn5ctZJ24vGPZBjXUh8qI+ddVqjTpWiq6f5osqxubp5VD13VNwSK91R2YGcOeKVmk48MyF5fmpD3tIMLw0M0neyDGdxH15ewR5vwqpUxko+aUgEBHJ+iYa5E5lU5hm6UZl+lUbzXbKJWG+BsWiFM6jtwyWLEGDhzHMYEPesWHQYAUV7q5vyBI0/DICLIEG6rMOLk8N4c2USztZdq3bx8Wr0nkqI4ydagg5bNppFi32xzK3mrj5ZdfMe+XvmtgJDbF7BITY5+YsemNztWRozuPu5KfdccBEKml+xxrz2McGnRv/6yggWM86S9RCncyGrUfDTh7F1Ffzl5dF0VkYX6hG2akYVOuRj/lGjDFT+kDTTyNkWCSh6gcLOTN0tKnxOqKCtVKpRvJqjSAUkCO/lt9sFq71cIWc6Z87vHDY5Lsls/nMcJTczWAc/jAfpw9cw5AV7F8+umnu5xJU2bxmlRZyOVypqpBhoeZI7FMX0zBXK1ExjEiU/VYf8bdM0aZ8hyGWv18/amFwOurNUsVaB45Qc6GbZmo2E5TH6quJR8wOVLEzai/nc385eLwKOqMjtxiZMYSRWGjUjEN0yI4n8+jUBQlQit2hXIRLkVpmuUhsozkGB8fN4vJhNO226gwakR3OApCbPP9ka5hqhdMJoPFOcmj1spYgu5JgFqMR2Fo3mUxFi3kSX8bWxXEiQQSZLLdsF2d2qMdPRovSGzLKF69TiOteXfYlzju+hRsLZ6TrqK2c7KjKDK2d4p9UUoZB4zt8txxc2ylQoNbF0ZwQxqI8V1ENzn9R8RoPj+EDtG0CZ4kd/yYJLTZSYwqc5S1SbKwcNUcZnrxkiBMfjqFEZ4gNDQkYlnbhrbdjYnWHp2Un4JHO1/XGvVcD4qcsc0DT9vMd86k0kjzt/oZjusi7FGcAPF+6WjYlAkykE/lp9AJ9LEUzKdu1NFoMQzIiGXh4qmpKWO+ae+e7/kGQVO837J7Ey6ojNm9nH791mhZtjG5NPdGSdJ9v07oc7r4uk6o6EcDzt5F1D8sqdENGtT7ig6F0cpBynNRZFruLI86OPm2uwzYoSv/rq6umn1+fUXAFe05y+ZyZk9tMQXX8zzErKBka65Pp41eMMtY8oh+4ma9jk3u8VX6syenp42eoCsnZ/O5nlMBGUjQ7Fbk98nRMTk8aEdogEl51SZ/R+73ckilxQQ0YEmirjMpASBQEdye9Gc9pgCP0zA8p7nd6TkHS+5LEBvwSpNFadWJAlN/vR/1nexCQVfZC43o0Jpl3FM+WitV5kwP20arLQPTpgI1MjKKmRlB33SwS5PVFq5dW8LKisSBrQXiusxkMiho1I73VzoBKtuyZWglzOGgeZ6HDE+Wt0yCgm8CAzZYGTGOI4P0IWHECgvXeH7GRM9UWsy2DDvI8bkVnSxAurIwL2eN9bQn5Tjd8631p/v6AA5zdEYcmwzMpKUXggPf16VAunFmO5FK9ASGVKrbuBkNxPguov5hSWFXjOt46oSB/ToOKmpHJpymN+ZbKw+ep5PiYhO2pBEmTXv27MXBgwcBdDNBFxcXsbomXK4lWqFQQDbDYAUTaSbvqVQbxvzRK39zs4JSUUyoXjOlTW5vUHzrQjS5QgltuiB1zFja903qkza5tNlkJbZRXHW4UcdxTEE+vU3FQdxjVzMDM+yxt3VKlRbLrTaqxAUsEyximaSALF256RQlb5KgWq/hZjTg7F1EfTm7Qfek4zgGldq5b7gp+zpAQZPWFwxOpCxzyp6uHaLvbzab2OTpc3ol79t3AIcOSV0TfWbW3KVLmL8saTP6nUXiwyMjI/B9Xa2fZ1a2Wri8pTNZWKUgnTY4/1heYtoTloKo1evY3GQVY+omQ6WSCZ5oUyJ1ce3Q4PyKIE8rSRAwclSjccpSZtxMwCZDkcI40gWoDGcnyoJPrjXXkhg1KsyV2o7035TTPSGxDw04exdRX85u68r5dgLHuX5f1vGDnq169qM3ILPglOH2TrubYA4A2WzO5FFp8KFarRrN26W+cOKOk+Y3i4sC2ly6LKDN2VdPmT1tilWWCsUiPPd6IKTT6WCZyfjaLMgRvvXTXa9Xmh4x27Iwf3Xhui5piySTyUAxAU9LPseyDF7epqfLcWx0OjtNLss8K9pZzQIwJmOLOHgM8c8DgG0OvGO2SKODc+ev4GbUP7FP18aM4p7EO5op2npx4utsxp1kIlTx+iMYtYhqtzoI7e7JfgBRtkREtE4NWltbN67CYYrvQwd/CIA4OjRad/GCfIZxjNm9ElOWSmuR6iDNgjUaX29zu6psV2Gb+DS5P1fImbJWOvZcK2hhFBn8W8ebOZaNESKEdpoIVyfoFsd5Axxcec513yVJYkxFrwcb12K7q4hqu9w1ymA/GojxXUSqV6ka0P/fNODsXUSDyd5FNJjsXUSDyd5FNJjsXUSDyd5F9H8BhhjvR2xHxL4AAAAASUVORK5CYII=\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["show_image(x, title=lbls[y]);"]},{"cell_type":"markdown","metadata":{"id":"ho18DBk-2SNI"},"source":["As you see, our dataset is returning the independent and dependent variables as a tuple, which is just what we need. We'll need to be able to collate these into a mini-batch. Generally this is done with `torch.stack`, which is what we'll use here:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WneDlFjA2SNI"},"outputs":[],"source":["def collate(idxs, ds):\n"," xb,yb = zip(*[ds[i] for i in idxs])\n"," return torch.stack(xb),torch.stack(yb)"]},{"cell_type":"markdown","metadata":{"id":"qvF7Yl4M2SNJ"},"source":["Here's a mini-batch with two items, for testing our `collate`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Wv6U7DRk2SNJ","outputId":"d9db3291-365e-442c-a7f2-d6ac04858234"},"outputs":[{"data":{"text/plain":["(torch.Size([2, 64, 64, 3]), tensor([0, 0]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x,y = collate([1,2], train_ds)\n","x.shape,y"]},{"cell_type":"markdown","metadata":{"id":"oB47gdga2SNJ"},"source":["Now that we have a dataset and a collation function, we're ready to create `DataLoader`. We'll add two more things here: an optional `shuffle` for the training set, and a `ProcessPoolExecutor` to do our preprocessing in parallel. A parallel data loader is very important, because opening and decoding a JPEG image is a slow process. One CPU core is not enough to decode images fast enough to keep a modern GPU busy. Here's our `DataLoader` class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"oO_H519d2SNK"},"outputs":[],"source":["class DataLoader:\n"," def __init__(self, ds, bs=128, shuffle=False, n_workers=1):\n"," self.ds,self.bs,self.shuffle,self.n_workers = ds,bs,shuffle,n_workers\n","\n"," def __len__(self): return (len(self.ds)-1)//self.bs+1\n","\n"," def __iter__(self):\n"," idxs = L.range(self.ds)\n"," if self.shuffle: idxs = idxs.shuffle()\n"," chunks = [idxs[n:n+self.bs] for n in range(0, len(self.ds), self.bs)]\n"," with ProcessPoolExecutor(self.n_workers) as ex:\n"," yield from ex.map(collate, chunks, ds=self.ds)"]},{"cell_type":"markdown","metadata":{"id":"FgpoT0QU2SNK"},"source":["Let's try it out with our training and validation datasets:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"O6Gqziiv2SNK","outputId":"46b37bc0-92c1-4c9b-807b-c6cab30b58ba"},"outputs":[{"data":{"text/plain":["(torch.Size([128, 64, 64, 3]), torch.Size([128]), 74)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["n_workers = min(16, defaults.cpus)\n","train_dl = DataLoader(train_ds, bs=128, shuffle=True, n_workers=n_workers)\n","valid_dl = DataLoader(valid_ds, bs=256, shuffle=False, n_workers=n_workers)\n","xb,yb = first(train_dl)\n","xb.shape,yb.shape,len(train_dl)"]},{"cell_type":"markdown","metadata":{"id":"oDbQYBQM2SNL"},"source":["This data loader is not much slower than PyTorch's, but it's far simpler. So if you're debugging a complex data loading process, don't be afraid to try doing things manually to help you see exactly what's going on.\n","\n","For normalization, we'll need image statistics. Generally it's fine to calculate these on a single training mini-batch, since precision isn't needed here:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"hBXynFro2SNL","outputId":"4af0d750-1fac-4ce0-a30f-d65154c9078e"},"outputs":[{"data":{"text/plain":["[tensor([0.4544, 0.4453, 0.4141]), tensor([0.2812, 0.2766, 0.2981])]"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["stats = [xb.mean((0,1,2)),xb.std((0,1,2))]\n","stats"]},{"cell_type":"markdown","metadata":{"id":"-F_eVDk52SNL"},"source":["Our `Normalize` class just needs to store these stats and apply them (to see why the `to_device` is needed, try commenting it out, and see what happens later in this notebook):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"e7iqr33V2SNR"},"outputs":[],"source":["class Normalize:\n"," def __init__(self, stats): self.stats=stats\n"," def __call__(self, x):\n"," if x.device != self.stats[0].device:\n"," self.stats = to_device(self.stats, x.device)\n"," return (x-self.stats[0])/self.stats[1]"]},{"cell_type":"markdown","metadata":{"id":"-_AUtJ_P2SNR"},"source":["We always like to test everything we build in a notebook, as soon as we build it:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"I2wA75C82SNS"},"outputs":[],"source":["norm = Normalize(stats)\n","def tfm_x(x): return norm(x).permute((0,3,1,2))"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"tiMcEqrE2SNS","outputId":"71075a98-4ee5-4224-dec8-c98dd55765fc"},"outputs":[{"data":{"text/plain":["(tensor([0.3732, 0.4907, 0.5633]), tensor([1.0212, 1.0311, 1.0131]))"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = tfm_x(x)\n","t.mean((0,2,3)),t.std((0,2,3))"]},{"cell_type":"markdown","metadata":{"id":"N907wVdZ2SNS"},"source":["Here `tfm_x` isn't just applying `Normalize`, but is also permuting the axis order from `NHWC` to `NCHW` (see <> if you need a reminder of what these acronyms refer to). PIL uses `HWC` axis order, which we can't use with PyTorch, hence the need for this `permute`."]},{"cell_type":"markdown","metadata":{"id":"aQbaCetP2SNT"},"source":["That's all we need for the data for our model. So now we need the model itself!"]},{"cell_type":"markdown","metadata":{"id":"6xEKMIiG2SNT"},"source":["## Module and Parameter"]},{"cell_type":"markdown","metadata":{"id":"niWF-HTF2SNT"},"source":["To create a model, we'll need `Module`. To create `Module`, we'll need `Parameter`, so let's start there. Recall that in <> we said that the `Parameter` class \"doesn't actually add any functionality (other than automatically calling `requires_grad_` for us). It's only used as a \"marker\" to show what to include in `parameters`.\" Here's a definition which does exactly that:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"YYgGhe6E2SNT"},"outputs":[],"source":["class Parameter(Tensor):\n"," def __new__(self, x): return Tensor._make_subclass(Parameter, x, True)\n"," def __init__(self, *args, **kwargs): self.requires_grad_()"]},{"cell_type":"markdown","metadata":{"id":"zEXD5oWf2SNU"},"source":["The implementation here is a bit awkward: we have to define the special `__new__` Python method and use the internal PyTorch method `_make_subclass` because, as at the time of writing, PyTorch doesn't otherwise work correctly with this kind of subclassing or provide an officially supported API to do this. This may have been fixed by the time you read this, so look on the book's website to see if there are updated details.\n","\n","Our `Parameter` now behaves just like a tensor, as we wanted:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3D5IySCE2SNU","outputId":"805225bc-68cf-4e9c-f2c5-0b98c424ab71"},"outputs":[{"data":{"text/plain":["tensor(3., requires_grad=True)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["Parameter(tensor(3.))"]},{"cell_type":"markdown","metadata":{"id":"y5Av-_KE2SNU"},"source":["Now that we have this, we can define `Module`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"FjIGLqop2SNU"},"outputs":[],"source":["class Module:\n"," def __init__(self):\n"," self.hook,self.params,self.children,self._training = None,[],[],False\n","\n"," def register_parameters(self, *ps): self.params += ps\n"," def register_modules (self, *ms): self.children += ms\n","\n"," @property\n"," def training(self): return self._training\n"," @training.setter\n"," def training(self,v):\n"," self._training = v\n"," for m in self.children: m.training=v\n","\n"," def parameters(self):\n"," return self.params + sum([m.parameters() for m in self.children], [])\n","\n"," def __setattr__(self,k,v):\n"," super().__setattr__(k,v)\n"," if isinstance(v,Parameter): self.register_parameters(v)\n"," if isinstance(v,Module): self.register_modules(v)\n","\n"," def __call__(self, *args, **kwargs):\n"," res = self.forward(*args, **kwargs)\n"," if self.hook is not None: self.hook(res, args)\n"," return res\n","\n"," def cuda(self):\n"," for p in self.parameters(): p.data = p.data.cuda()"]},{"cell_type":"markdown","metadata":{"id":"Ayw0PeUy2SNV"},"source":["The key functionality is in the definition of `parameters`:\n","\n","```python\n","self.params + sum([m.parameters() for m in self.children], [])\n","```\n","\n","This means that we can ask any `Module` for its parameters, and it will return them, including all its child modules (recursively). But how does it know what its parameters are? It's thanks to implementing Python's special `__setattr__` method, which is called for us any time Python sets an attribute on a class. Our implementation includes this line:\n","\n","```python\n","if isinstance(v,Parameter): self.register_parameters(v)\n","```\n","\n","As you see, this is where we use our new `Parameter` class as a \"marker\"—anything of this class is added to our `params`.\n","\n","Python's `__call__` allows us to define what happens when our object is treated as a function; we just call `forward` (which doesn't exist here, so it'll need to be added by subclasses). Before we do, we'll call a hook, if it's defined. Now you can see that PyTorch hooks aren't doing anything fancy at all—they're just calling any hooks that have been registered.\n","\n","Other than these pieces of functionality, our `Module` also provides `cuda` and `training` attributes, which we'll use shortly.\n","\n","Now we can create our first `Module`, which is `ConvLayer`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"_9GskQZp2SNV"},"outputs":[],"source":["class ConvLayer(Module):\n"," def __init__(self, ni, nf, stride=1, bias=True, act=True):\n"," super().__init__()\n"," self.w = Parameter(torch.zeros(nf,ni,3,3))\n"," self.b = Parameter(torch.zeros(nf)) if bias else None\n"," self.act,self.stride = act,stride\n"," init = nn.init.kaiming_normal_ if act else nn.init.xavier_normal_\n"," init(self.w)\n","\n"," def forward(self, x):\n"," x = F.conv2d(x, self.w, self.b, stride=self.stride, padding=1)\n"," if self.act: x = F.relu(x)\n"," return x"]},{"cell_type":"markdown","metadata":{"id":"1jNZVdL-2SNW"},"source":["We're not implementing `F.conv2d` from scratch, since you should have already done that (using `unfold`) in the questionnaire in <>. Instead, we're just creating a small class that wraps it up along with bias and weight initialization. Let's check that it works correctly with `Module.parameters`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"KtH4LFwg2SNW","outputId":"6651121d-a2db-4c57-8410-8e75fd46e83b"},"outputs":[{"data":{"text/plain":["2"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l = ConvLayer(3, 4)\n","len(l.parameters())"]},{"cell_type":"markdown","metadata":{"id":"2zAG4MiB2SNW"},"source":["And that we can call it (which will result in `forward` being called):"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"vfb23j4u2SNX","outputId":"e8f2f664-5caf-43b7-cd18-9f90f86ac0e7"},"outputs":[{"data":{"text/plain":["torch.Size([128, 4, 64, 64])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["xbt = tfm_x(xb)\n","r = l(xbt)\n","r.shape"]},{"cell_type":"markdown","metadata":{"id":"7n8QMcWM2SNX"},"source":["In the same way, we can implement `Linear`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pcLzS9ZH2SNX"},"outputs":[],"source":["class Linear(Module):\n"," def __init__(self, ni, nf):\n"," super().__init__()\n"," self.w = Parameter(torch.zeros(nf,ni))\n"," self.b = Parameter(torch.zeros(nf))\n"," nn.init.xavier_normal_(self.w)\n","\n"," def forward(self, x): return x@self.w.t() + self.b"]},{"cell_type":"markdown","metadata":{"id":"9259Hr3h2SNY"},"source":["and test if it works:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"xlh5tssP2SNY","outputId":"a60f20e2-9320-4ad7-c489-1ff9590027e1"},"outputs":[{"data":{"text/plain":["torch.Size([3, 2])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["l = Linear(4,2)\n","r = l(torch.ones(3,4))\n","r.shape"]},{"cell_type":"markdown","metadata":{"id":"BI9RoxUc2SNZ"},"source":["Let's also create a testing module to check that if we include multiple parameters as attributes, they are all correctly registered:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"cY9psHzU2SNZ"},"outputs":[],"source":["class T(Module):\n"," def __init__(self):\n"," super().__init__()\n"," self.c,self.l = ConvLayer(3,4),Linear(4,2)"]},{"cell_type":"markdown","metadata":{"id":"cb-z_yE92SNZ"},"source":["Since we have a conv layer and a linear layer, each of which has weights and biases, we'd expect four parameters in total:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"b5PXlg_X2SNa","outputId":"5105baf5-4742-40b4-e91e-bab1685c078e"},"outputs":[{"data":{"text/plain":["4"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t = T()\n","len(t.parameters())"]},{"cell_type":"markdown","metadata":{"id":"xOtlD5y72SNa"},"source":["We should also find that calling `cuda` on this class puts all these parameters on the GPU:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"7XF4opl82SNa","outputId":"3d5e04c9-ceec-4823-e9bf-b7a792843a39"},"outputs":[{"data":{"text/plain":["device(type='cuda', index=5)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["t.cuda()\n","t.l.w.device"]},{"cell_type":"markdown","metadata":{"id":"-NLjuRdV2SNa"},"source":["We can now use those pieces to create a CNN."]},{"cell_type":"markdown","metadata":{"id":"yqt1SaFf2SNb"},"source":["### Simple CNN"]},{"cell_type":"markdown","metadata":{"id":"kQNXJ3Q22SNb"},"source":["As we've seen, a `Sequential` class makes many architectures easier to implement, so let's make one:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"u4IsqOLB2SNb"},"outputs":[],"source":["class Sequential(Module):\n"," def __init__(self, *layers):\n"," super().__init__()\n"," self.layers = layers\n"," self.register_modules(*layers)\n","\n"," def forward(self, x):\n"," for l in self.layers: x = l(x)\n"," return x"]},{"cell_type":"markdown","metadata":{"id":"BAHQXwwf2SNc"},"source":["The `forward` method here just calls each layer in turn. Note that we have to use the `register_modules` method we defined in `Module`, since otherwise the contents of `layers` won't appear in `parameters`."]},{"cell_type":"markdown","metadata":{"id":"UNAvcKqJ2SNc"},"source":["> important: All The Code is Here: Remember that we're not using any PyTorch functionality for modules here; we're defining everything ourselves. So if you're not sure what `register_modules` does, or why it's needed, have another look at our code for `Module` to see what we wrote!"]},{"cell_type":"markdown","metadata":{"id":"tT3niOz_2SNc"},"source":["We can create a simplified `AdaptivePool` that only handles pooling to a 1×1 output, and flattens it as well, by just using `mean`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"EtXN30df2SNc"},"outputs":[],"source":["class AdaptivePool(Module):\n"," def forward(self, x): return x.mean((2,3))"]},{"cell_type":"markdown","metadata":{"id":"7p5PMeCd2SNd"},"source":["That's enough for us to create a CNN!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bzn0Stxo2SNd"},"outputs":[],"source":["def simple_cnn():\n"," return Sequential(\n"," ConvLayer(3 ,16 ,stride=2), #32\n"," ConvLayer(16,32 ,stride=2), #16\n"," ConvLayer(32,64 ,stride=2), # 8\n"," ConvLayer(64,128,stride=2), # 4\n"," AdaptivePool(),\n"," Linear(128, 10)\n"," )"]},{"cell_type":"markdown","metadata":{"id":"BUNSPwpx2SNd"},"source":["Let's see if our parameters are all being registered correctly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"jdHpwoDV2SNe","outputId":"7083b8bf-24d3-4e95-a385-93b37634bdc5"},"outputs":[{"data":{"text/plain":["10"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["m = simple_cnn()\n","len(m.parameters())"]},{"cell_type":"markdown","metadata":{"id":"Thttxatc2SNg"},"source":["Now we can try adding a hook. Note that we've only left room for one hook in `Module`; you could make it a list, or use something like `Pipeline` to run a few as a single function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"R3E0JuwG2SNg","outputId":"394da56e-5e35-4208-99f8-fb4d71795b76"},"outputs":[{"name":"stdout","output_type":"stream","text":["0.5239089727401733 0.8776043057441711\n","0.43470510840415955 0.8347987532615662\n","0.4357188045978546 0.7621666193008423\n","0.46562111377716064 0.7416611313819885\n"]},{"data":{"text/plain":["torch.Size([128, 10])"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def print_stats(outp, inp): print (outp.mean().item(),outp.std().item())\n","for i in range(4): m.layers[i].hook = print_stats\n","\n","r = m(xbt)\n","r.shape"]},{"cell_type":"markdown","metadata":{"id":"SG1TdZCg2SNh"},"source":["We have data and model. Now we need a loss function."]},{"cell_type":"markdown","metadata":{"id":"HiOqDHd22SNh"},"source":["## Loss"]},{"cell_type":"markdown","metadata":{"id":"5NrWswk52SNi"},"source":["We've already seen how to define \"negative log likelihood\":"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gQhRYK7N2SNi"},"outputs":[],"source":["def nll(input, target): return -input[range(target.shape[0]), target].mean()"]},{"cell_type":"markdown","metadata":{"id":"30EIBOlv2SNi"},"source":["Well actually, there's no log here, since we're using the same definition as PyTorch. That means we need to put the log together with softmax:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SEJdcf8B2SNi","outputId":"c11f7a62-8b9f-4e09-ed72-2ce0c6db66ce"},"outputs":[{"data":{"text/plain":["tensor(-1.2790, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def log_softmax(x): return (x.exp()/(x.exp().sum(-1,keepdim=True))).log()\n","\n","sm = log_softmax(r); sm[0][0]"]},{"cell_type":"markdown","metadata":{"id":"LjGiXcud2SNj"},"source":["Combining these gives us our cross-entropy loss:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1xxBGSnY2SNj","outputId":"da431e60-ca76-4b53-9136-9fa84ce553ed"},"outputs":[{"data":{"text/plain":["tensor(2.5666, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["loss = nll(sm, yb)\n","loss"]},{"cell_type":"markdown","metadata":{"id":"NMwJ-32X2SNj"},"source":["Note that the formula:\n","\n","$$\\log \\left ( \\frac{a}{b} \\right ) = \\log(a) - \\log(b)$$\n","\n","gives a simplification when we compute the log softmax, which was previously defined as `(x.exp()/(x.exp().sum(-1))).log()`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wJopz9s22SNk","outputId":"46132154-704d-4683-9dd8-778fd2607178"},"outputs":[{"data":{"text/plain":["tensor(-1.2790, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def log_softmax(x): return x - x.exp().sum(-1,keepdim=True).log()\n","sm = log_softmax(r); sm[0][0]"]},{"cell_type":"markdown","metadata":{"id":"ykac98xA2SNk"},"source":["Then, there is a more stable way to compute the log of the sum of exponentials, called the [LogSumExp](https://en.wikipedia.org/wiki/LogSumExp) trick. The idea is to use the following formula:\n","\n","$$\\log \\left ( \\sum_{j=1}^{n} e^{x_{j}} \\right ) = \\log \\left ( e^{a} \\sum_{j=1}^{n} e^{x_{j}-a} \\right ) = a + \\log \\left ( \\sum_{j=1}^{n} e^{x_{j}-a} \\right )$$\n","\n","where $a$ is the maximum of $x_{j}$.\n","\n","\n","Here's the same thing in code:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"x5yLyfnK2SNk","outputId":"7e5158f2-76fb-486d-dc5e-2f8338bc5cb2"},"outputs":[{"data":{"text/plain":["tensor(True)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["x = torch.rand(5)\n","a = x.max()\n","x.exp().sum().log() == a + (x-a).exp().sum().log()"]},{"cell_type":"markdown","metadata":{"id":"ErB74SdY2SNk"},"source":["We'll put that into a function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"kGn4GeLZ2SNl","outputId":"dc381f31-dee7-4798-8f9d-7215c59e7b10"},"outputs":[{"data":{"text/plain":["tensor(3.9784, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["def logsumexp(x):\n"," m = x.max(-1)[0]\n"," return m + (x-m[:,None]).exp().sum(-1).log()\n","\n","logsumexp(r)[0]"]},{"cell_type":"markdown","metadata":{"id":"v6pxuk5p2SNl"},"source":["so we can use it for our `log_softmax` function:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"BHxz-m8L2SNl"},"outputs":[],"source":["def log_softmax(x): return x - x.logsumexp(-1,keepdim=True)"]},{"cell_type":"markdown","metadata":{"id":"uzeD65Dx2SNl"},"source":["Which gives the same result as before:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"WmfLX1Hz2SNm","outputId":"b52d6b51-6768-4598-ab6a-9c14475dc658"},"outputs":[{"data":{"text/plain":["tensor(-1.2790, grad_fn=)"]},"execution_count":null,"metadata":{},"output_type":"execute_result"}],"source":["sm = log_softmax(r); sm[0][0]"]},{"cell_type":"markdown","metadata":{"id":"0u1ztGo-2SNm"},"source":["We can use these to create `cross_entropy`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rxPWmxBW2SNn"},"outputs":[],"source":["def cross_entropy(preds, yb): return nll(log_softmax(preds), yb).mean()"]},{"cell_type":"markdown","metadata":{"id":"bzhg3IwM2SNn"},"source":["Let's now combine all those pieces together to create a `Learner`."]},{"cell_type":"markdown","metadata":{"id":"UT3mBX222SNn"},"source":["## Learner"]},{"cell_type":"markdown","metadata":{"id":"P8bv3E0k2SNo"},"source":["We have data, a model, and a loss function; we only need one more thing before we can fit a model, and that's an optimizer! Here's SGD:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"dU-Srq5j2SNo"},"outputs":[],"source":["class SGD:\n"," def __init__(self, params, lr, wd=0.): store_attr()\n"," def step(self):\n"," for p in self.params:\n"," p.data -= (p.grad.data + p.data*self.wd) * self.lr\n"," p.grad.data.zero_()"]},{"cell_type":"markdown","metadata":{"id":"L_8TjZtt2SNo"},"source":["As we've seen in this book, life is easier with a `Learner`. The `Learner` class needs to know our training and validation sets, which means we need `DataLoaders` to store them. We don't need any other functionality, just a place to store them and access them:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"H0zwXwY12SNp"},"outputs":[],"source":["class DataLoaders:\n"," def __init__(self, *dls): self.train,self.valid = dls\n","\n","dls = DataLoaders(train_dl,valid_dl)"]},{"cell_type":"markdown","metadata":{"id":"kKFrpb4A2SNp"},"source":["Now we're ready to create our `Learner` class:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"HJ_h00IX2SNp"},"outputs":[],"source":["class Learner:\n"," def __init__(self, model, dls, loss_func, lr, cbs, opt_func=SGD):\n"," store_attr()\n"," for cb in cbs: cb.learner = self\n","\n"," def one_batch(self):\n"," self('before_batch')\n"," xb,yb = self.batch\n"," self.preds = self.model(xb)\n"," self.loss = self.loss_func(self.preds, yb)\n"," if self.model.training:\n"," self.loss.backward()\n"," self.opt.step()\n"," self('after_batch')\n","\n"," def one_epoch(self, train):\n"," self.model.training = train\n"," self('before_epoch')\n"," dl = self.dls.train if train else self.dls.valid\n"," for self.num,self.batch in enumerate(progress_bar(dl, leave=False)):\n"," self.one_batch()\n"," self('after_epoch')\n","\n"," def fit(self, n_epochs):\n"," self('before_fit')\n"," self.opt = self.opt_func(self.model.parameters(), self.lr)\n"," self.n_epochs = n_epochs\n"," try:\n"," for self.epoch in range(n_epochs):\n"," self.one_epoch(True)\n"," self.one_epoch(False)\n"," except CancelFitException: pass\n"," self('after_fit')\n","\n"," def __call__(self,name):\n"," for cb in self.cbs: getattr(cb,name,noop)()"]},{"cell_type":"markdown","metadata":{"id":"o5a7w1V-2SNp"},"source":["This is the largest class we've created in the book, but each method is quite small, so by looking at each in turn you should be able to follow what's going on.\n","\n","The main method we'll be calling is `fit`. This loops with:\n","\n","```python\n","for self.epoch in range(n_epochs)\n","```\n","\n","and at each epoch calls `self.one_epoch` for each of `train=True` and then `train=False`. Then `self.one_epoch` calls `self.one_batch` for each batch in `dls.train` or `dls.valid`, as appropriate (after wrapping the `DataLoader` in `fastprogress.progress_bar`. Finally, `self.one_batch` follows the usual set of steps to fit one mini-batch that we've seen throughout this book.\n","\n","Before and after each step, `Learner` calls `self`, which calls `__call__` (which is standard Python functionality). `__call__` uses `getattr(cb,name)` on each callback in `self.cbs`, which is a Python built-in function that returns the attribute (a method, in this case) with the requested name. So, for instance, `self('before_fit')` will call `cb.before_fit()` for each callback where that method is defined.\n","\n","As you can see, `Learner` is really just using our standard training loop, except that it's also calling callbacks at appropriate times. So let's define some callbacks!"]},{"cell_type":"markdown","metadata":{"id":"3ZsTdNOM2SNq"},"source":["### Callbacks"]},{"cell_type":"markdown","metadata":{"id":"bIZJQAvX2SNq"},"source":["In `Learner.__init__` we have:\n","\n","```python\n","for cb in cbs: cb.learner = self\n","```\n","\n","In other words, every callback knows what learner it is used in. This is critical, since otherwise a callback can't get information from the learner, or change things in the learner. Because getting information from the learner is so common, we make that easier by defining `Callback` as a subclass of `GetAttr`, with a default attribute of `learner`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nuUZj3jf2SNq"},"outputs":[],"source":["class Callback(GetAttr): _default='learner'"]},{"cell_type":"markdown","metadata":{"id":"0t4l7Yh-2SNr"},"source":["`GetAttr` is a fastai class that implements Python's standard `__getattr__` and `__dir__` methods for you, such that any time you try to access an attribute that doesn't exist, it passes the request along to whatever you have defined as `_default`."]},{"cell_type":"markdown","metadata":{"id":"2eNsV4g82SNr"},"source":["For instance, we want to move all model parameters to the GPU automatically at the start of `fit`. We could do this by defining `before_fit` as `self.learner.model.cuda()`; however, because `learner` is the default attribute, and we have `SetupLearnerCB` inherit from `Callback` (which inherits from `GetAttr`), we can remove the `.learner` and just call `self.model.cuda()`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"bf72gcET2SNr"},"outputs":[],"source":["class SetupLearnerCB(Callback):\n"," def before_batch(self):\n"," xb,yb = to_device(self.batch)\n"," self.learner.batch = tfm_x(xb),yb\n","\n"," def before_fit(self): self.model.cuda()"]},{"cell_type":"markdown","metadata":{"id":"4zIdj-mT2SNr"},"source":["In `SetupLearnerCB` we also move each mini-batch to the GPU, by calling `to_device(self.batch)` (we could also have used the longer `to_device(self.learner.batch)`. Note however that in the line `self.learner.batch = tfm_x(xb),yb` we can't remove `.learner`, because here we're *setting* the attribute, not getting it.\n","\n","Before we try our `Learner` out, let's create a callback to track and print progress. Otherwise we won't really know if it's working properly:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"pwRj7lid2SNs"},"outputs":[],"source":["class TrackResults(Callback):\n"," def before_epoch(self): self.accs,self.losses,self.ns = [],[],[]\n","\n"," def after_epoch(self):\n"," n = sum(self.ns)\n"," print(self.epoch, self.model.training,\n"," sum(self.losses).item()/n, sum(self.accs).item()/n)\n","\n"," def after_batch(self):\n"," xb,yb = self.batch\n"," acc = (self.preds.argmax(dim=1)==yb).float().sum()\n"," self.accs.append(acc)\n"," n = len(xb)\n"," self.losses.append(self.loss*n)\n"," self.ns.append(n)"]},{"cell_type":"markdown","metadata":{"id":"ybr8UJFi2SNs"},"source":["Now we're ready to use our `Learner` for the first time!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"v-9iAM1a2SNs","outputId":"e4de8e53-0488-4158-a592-fd3d0a0b36bc"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["0 True 2.1275552130636814 0.2314922378287042\n"]},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["0 False 1.9942575636942674 0.2991082802547771\n"]}],"source":["cbs = [SetupLearnerCB(),TrackResults()]\n","learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs)\n","learn.fit(1)"]},{"cell_type":"markdown","metadata":{"id":"5l6iRO_a2SNs"},"source":["It's quite amazing to realize that we can implement all the key ideas from fastai's `Learner` in so little code! Let's now add some learning rate scheduling."]},{"cell_type":"markdown","metadata":{"id":"5ABMa21W2SNt"},"source":["### Scheduling the Learning Rate"]},{"cell_type":"markdown","metadata":{"id":"sTlGKs3L2SNt"},"source":["If we're going to get good results, we'll want an LR finder and 1cycle training. These are both *annealing* callbacks—that is, they are gradually changing hyperparameters as we train. Here's `LRFinder`:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"rI9cBB5S2SNt"},"outputs":[],"source":["class LRFinder(Callback):\n"," def before_fit(self):\n"," self.losses,self.lrs = [],[]\n"," self.learner.lr = 1e-6\n","\n"," def before_batch(self):\n"," if not self.model.training: return\n"," self.opt.lr *= 1.2\n","\n"," def after_batch(self):\n"," if not self.model.training: return\n"," if self.opt.lr>10 or torch.isnan(self.loss): raise CancelFitException\n"," self.losses.append(self.loss.item())\n"," self.lrs.append(self.opt.lr)"]},{"cell_type":"markdown","metadata":{"id":"Qq3xzuTg2SNu"},"source":["This shows how we're using `CancelFitException`, which is itself an empty class, only used to signify the type of exception. You can see in `Learner` that this exception is caught. (You should add and test `CancelBatchException`, `CancelEpochException`, etc. yourself.) Let's try it out, by adding it to our list of callbacks:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"3M9AEh792SNu","outputId":"52783c5e-6447-4e56-8fdf-1fb1f78f817f"},"outputs":[{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["0 True 2.6336045582954903 0.11014890695955222\n"]},{"data":{"text/html":[],"text/plain":[""]},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["0 False 2.230653363853503 0.18318471337579617\n"]},{"data":{"text/html":["\n","
\n"," \n"," \n"," 16.22% [12/74 00:02<00:12]\n","
\n"," "],"text/plain":[""]},"metadata":{},"output_type":"display_data"}],"source":["lrfind = LRFinder()\n","learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[lrfind])\n","learn.fit(2)"]},{"cell_type":"markdown","metadata":{"id":"xaoPrSkF2SNv"},"source":["And take a look at the results:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"1rLNizwl2SNv","outputId":"c2bdae9a-f732-44cf-d8d4-174e682ede83"},"outputs":[{"data":{"image/png":"iVBORw0KGgoAAAANSUhEUgAAAX4AAAD/CAYAAAD2Qb01AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3ic1ZX48e8ZjXqvtixbkiu2McGN4tBMC21TCCSB1N0UErIkm+wmYTdZFnaXDWx+yW42jQSWJCQhbAiQAAmQhGIMGAw2tsG9SnJX79LU8/tjikbSjDTqI8/5PM88jN736tUdWZy5c95z7xVVxRhjTPJwTHUHjDHGTC4L/MYYk2Qs8BtjTJKxwG+MMUnGAr8xxiQZC/zGGJNknFPdgXiUlJRodXX1VHfDGGOmlc2bNzeqaunA49Mi8FdXV7Np06ap7oYxxkwrIlIb7bileowxJslY4DfGmCRjgd8YY5KMBX5jjEkyFviNMSbJWOA3xpgkY4HfGGMSUEevhxNtvfj94790vgV+Y4xJQL96rY5z73oOt88/7te2wG+MMQnIEwz4qSnjH6Yt8BtjTALy+PykOIQUh4z7tS3wG2NMAnL7/DgnIOiDBX5jjElIHq+SNgFpHrDAb4wxCcnr95PqtMBvjDFJw+Pzk5piqR5jjEkabq9OSEUPWOA3xpiE5PH5pzbHLyK/EpHjItIuIntF5NMx2v1YRDojHi4R6Yg4v05EeiPO7xmvF2KMMacSj8+Pc4pTPXcB1aqaB7wHuFNEVg1spKqfU9Wc0AN4CPjtgGa3RLQ5bUy9N8aYU1Qgxz+FI35V3aGqrtCXwcf8ob5HRLKB64AHxtRDY4xJQh5fAuT4ReRHItIN7AaOA08N8y3XAQ3A+gHH7xKRRhF5RUTWjqSzxhiTLKY8xw+gqp8HcoELgMcA19DfwSeAX6hq5NJytwLzgArgXuBJEYn6yUFEbhKRTSKyqaGhId5uGmPMKcHj85PqTIByTlX1qerLwGzg5ljtRGQOcBHwiwHfv1FVO1TVpaoPAK8AV8f4Wfeq6mpVXV1aWjqSbhpjzLTnToRUzwBOhs7xfxzYoKoHh7mOAhPzlmaMMdOYx+vH6ZiiwC8iZSJyg4jkiEiKiFwB3Ag8P8S3fRz4+YDrFIjIFSKSISJOEfkIcCHwpzH03xhjTkken5+0CUr1OONoowTSOj8m8EZRC3xJVR8XkUpgJ7BUVesARGQNgVTQwDLOVOBOYDHgI3CT+H2qarX8xhgzgNc/cameYQO/qjYQyNdHO1cH5Aw49iqQHeM6Z42um8YYk1zc3imu4zfGGDO5pnwClzHGmMkVqONPgHJOY4wxk8PjU5w24jfGmOThtlSPMcYkF6+leowxJnn4/IpfsRG/McYkC4/PD2B77hpjTLJwhwK/jfiNMSY5eLyhwG85fmOMSQoeX2A1exvxG2NMkvBYqscYY5JLX+C3VI8xxiSFUKpnyrdeNMYYMzks1WOMMUkmVM7ptFSPMcYkh1A5p6V6jDEmSXj9wXJOm7lrjDHJwWbuGmNMkkmImbsi8isROS4i7SKyV0Q+HaPdX4uIT0Q6Ix5rI85Xi8gLItItIrtF5LJxeh3GGHPKSJSZu3cB1aqaB7wHuFNEVsVo+6qq5kQ81kWcewjYAhQD3wAeEZHSUfbdGGNOSQlRzqmqO1TVFfoy+Jg/kh8kIouAlcDtqtqjqo8CbwPXjeQ6xhhzqnMnysxdEfmRiHQDu4HjwFMxmq4QkcZgSug2EXEGj58OHFTVjoi224LHjTHGBIVG/FNezqmqnwdygQuAxwBXlGbrgWVAGYGR/I3AV4PncoC2Ae3bgtccRERuEpFNIrKpoaEh3m4aY8y0502QHD8AqupT1ZeB2cDNUc4fVNVDqupX1beBfwOuD57uBPIGfEse0EEUqnqvqq5W1dWlpXYbwBiTPBJ1By4n8eX4FQglqXYA80QkcoR/ZvC4McaYoPCSDY4pyvGLSJmI3CAiOSKSIiJXEEjhPB+l7VUiMiP4fDFwG/A4gKruBbYCt4tIhohcC7wDeHT8Xo4xxkx/Hu/Up3qUQFrnCNACfBv4kqo+LiKVwVr9ymDbS4G3RKSLwM3fx4BvRlzrBmB18Dp3A9erqiXwjTEmgsfnJ8UhpEzQiN85XINgYL4oxrk6AjdtQ19/BfjKENeqAdaOtJPGGJNMPD7/hJVygi3ZYIwxCcfj0wlL84AFfmOMSTgen3/CavjBAr8xxiQcj88/YZuwgAV+Y4xJOG6f31I9xhiTTDw+tVSPMcYkE4/XRvzGGJNUvH4/qU7L8RtjTNJwWzmnMcYkF4/XT6rDAr8xxiQNj89SPcYYk1Q8Vs5pjDHJxXL8xhiTZLy2ZIMxxiQXW53TGGOSjMenOG3Eb4wxycPW6jHGmCQTWJbZUj3GGJM0bK0eY4xJMh6/kuq0wG+MMUlBVRNjApeI/EpEjotIu4jsFZFPx2j3CRHZHGx3RES+JSLOiPPrRKRXRDqDjz3j9UKMMeZU4PMrqpDqmPoc/11AtarmAe8B7hSRVVHaZQFfAkqAc4BLga8MaHOLquYEH6eNst/GGHNK8vgUYEJTPc7hm4Cq7oj8MviYD2we0O6eiC+PisiDwMVj7aQxxiQLt88PMPWpHgAR+ZGIdAO7gePAU3F824XAjgHH7hKRRhF5RUTWDvHzbhKRTSKyqaGhId5uGmPMtOYJBv6EKOdU1c8DucAFwGOAa6j2IvI3wGrg2xGHbwXmARXAvcCTIjI/xs+7V1VXq+rq0tLSeLtpjDHTmjeU6kmEET+AqvpU9WVgNnBzrHYi8j7gbuAqVW2M+P6Nqtqhqi5VfQB4Bbh6dF03xphTj2cSUj1x5fhjfF/UkbqIXAncB1yjqm8Pcx0FJu7zjDHGTDOhHL9zKlM9IlImIjeISI6IpIjIFcCNwPNR2l4CPAhcp6qvDzhXICJXiEiGiDhF5CME7gH8aXxeijHGTH99Of6pTfUogbTOEaCFQM7+S6r6uIhUBuvxK4NtbwPygaciavWfDp5LBe4EGoBG4AvA+1TVavmNMSbI4534HP+wqR5VbQAuinGuDsiJ+Dpm6WbwOmeNoo/GGJM0wuWctmSDMcYkB2/45m4ClHMaY4yZeKGZu1Od4zfGGDNJPOGqHgv8xhiTFNyW6jHGmOSSKOWcxhhjJslkzNy1wD/O9pzo4J51B6a6G8aYaWoylmW2wD/OHttyhP98Zjfdbu9Ud8UYMw15LMc//TR1ugFo6fZMcU+MMdORxxsM/A4b8U8bTZ2B1aqbg28AxhgzEpbqmYaaugIBv7nbAr8xZuSsnHMaCqd6uizwG2NGLpzjt1TP9KCqNHUFUz0W+I0xo+D1KU6H4HDYiH9a6Hb76PUE3q1bkjzVs7m2hdt+vx1VnequGDOteHz+Ca3hBwv846op4oZuso/4n9x2jF++Vhu+52GMiY/b55/Q3bfAAv+4auzq238+2Uf8h5u7Aaht6p7inhgzvXh8/gldrgEs8I+r0Ig/MzVl2oz43V4/9e29437d2mDgr2vuGvdrG3Mq83jVUj3TSaiGf0FZzrQJ/A9sqOGCb71AbdP4BWi/X8Mj/rqmnnG7rjHJwOPzk+q0VM+0EcpnLyzLoblreszcPdjYhcvr5+6nd4/bNRs6XbiCsw9rbcRvzIh4/Aky4heRX4nIcRFpF5G9IvLpIdp+WUROiEibiPxURNIjzlWLyAsi0i0iu0XksvF4EYmiqdNNTrqTmfkZtHS7p0VFSyjN8/T2E2w82DQu1wzl9Z0Ooc5y/MaMiMebODn+u4BqVc0D3gPcKSKrBjYSkSuAfwQuBaqBecC/RjR5CNgCFAPfAB4RkdJR9z7BNHW5KM5Joyg7DZ9fae9N/IXaTnb0smZeMbPyM/j3P+7E7x/7m1VdMM2zsrIw/NwYEx9PolT1qOoOVQ2VrGjwMT9K008A9wfbtwD/Dvw1gIgsAlYCt6tqj6o+CrwNXDe2l5A4mjrdFGenUZiVBkyP2bsn211UFWdx61WL2X60nUffPDLma9Y1d+MQWDO/mPoOFz1u3zj01Jjk4E6kOn4R+ZGIdAO7gePAU1GanQ5si/h6GzBDRIqD5w6qaseA86fH+Hk3icgmEdnU0NAQbzenVGOni+KcdIqyA4E/0dfr8fr8NHa6KMvL4D1nzmJFZQH/70976HKN7ZNKXVMX5fmZzC/LCXxto35j4pZQE7hU9fNALnAB8BjgitIsB2iL+Dr0PDfKudD53Bg/715VXa2qq0tLp0c2qKkrOOLPnh4j/oZOF6owIy8dEeG2v1pKfYeLe9cfHNN165q7qSzKorIoK/y1MSY+Hp8mTI4fAFX1qerLwGzg5ihNOoG8iK9DzzuinAud7+AU4PcrzV3uQI4/mOpJ9FmrJ9sD790zcjOAQE7+wkWlPL71aNT2T2w7xnt/8HJ4EalY6pp7qCrOoioY+MezVNSYU11gxJ8AOf4onETP8e8Azoz4+kzgpKo2Bc/NE5HcAed3jLIPCaW914PPrxRnp1OUMz1G/CeDFT0z8zPCxy45rZSapm5qGgcH64c21rHtSBuvDVH90+320tjpYk5RFgVZqeSmO8M1/caY4Xl8CVDOKSJlInKDiOSISEqwcudG4PkozX8BfEpElopIIfDPwM8BVHUvsBW4XUQyRORa4B3Ao+P0WqZUY3DWbnFOGtlpKaSlOBI+xx8q5SzLC1fcsva0MgDW7anv17at28PrNc0APLP9RMxrhtI6lUVZiAiVxVnhWbzGmOElSo5fCaR1jgAtwLeBL6nq4yJSKSKdIlIJoKrPAN8CXgBqg4/bI651A7A6eJ27getVdXrcuR1GaNZuSU4gX16YnToNRvwuUhxCcXZf4K8uyWZuSTbr9vb/Z1m3tx6fX5lbks2fdpzEF6PsM1S3X1WcFf6v1fIbE7+ESPWoaoOqXqSqBaqap6pnqOp9wXN1qpqjqnUR7f9LVWcE2/5NRBkoqlqjqmtVNVNVT1PVZyfmZU2+UD6/OJjmKcxKS/jZuyfbeynNSSdlwLrfFy0q5dUDTfR6+sow/7LzJCU56XzpsoU0drrYUtcS9ZqRI36AOUVZHGnpiflGYYzpz+NNjBG/iUNoxB8q5SzKTkv4FTpPdriYEZHmCVl7Wikurz+cy3d7/by4p4HLlpRxyeIy0lIcMdM9dc3d5GY4yc9MBaCqKBu3z8+JCVgIbix6PT6++tttHGmxTyMmsbh9OqH77YIF/rBvPbObh984POrvD+X4QxU9hdlpg1I99R29rL7zWf7l8e0JMampvr2XsryMQcfPnVdMutPBuj2BdM/rh5rpcHm5bMkMcjNSOW9BMX/aeSLqkhR1zd1UFQfy+9A38k+0yp49Jzr47eYjPP127PsVxkwFW5Z5khxv6+GeFw/wyBhmrTZ3uSnMSsUZ/AcrykobdHP3rcNtNHa6+MWrtVzzvZfYdrh11D+vtqmL+o6xjaJPtvdGHfFnpKawZn5x+Abvs7tOkpHq4LwFJQBcuWwmh5t72Hm8fdD3hmr4Q0K5/kSr7KnvCHxC23Vi8GswZip5EyHHnwx+t+UoqmMLToF1evqCaGF2Gq3dHrwRNe/7GzoB+PFHV9Lr8fH+ezbwkxcPjPhnqSofvX8j//rEzlH31+X10dLtCdfwD7R2UV9Z5192nuT8BaVkpqUAcNmSGTgE/jQg3ePzK0eae5gTEfjL8zNwOiThNmRpCAb+3cdPiWkk5hTi8Wl4ADlRkj7wqyqPbg6M9E+09/a7oTkSjcF1ekJCz1t7+m7w7q/vpDQ3nSuXlfP0ly7kgoUl3P3Mbrrd0ZdIiDWiP9DQyeHmHg5FqbWPV31o8laUVA/0lXX++MUDHG3t4fKlZeFzxTnpnFVdxDM7+gf+k+29uH1+qoqyw8ecKQ4qCjMTrqQz9LvdX9857IQ0YyaLqibWWj2nqreOtHGgoYuz5xahCkdaRrdxSFOni5IBI37oP4lrf30nC0oD69fkZ6byvuUVqMLxtsEB/khLN+d+8zn++NbxQedCufejraPf5ORklBr+SNUl2VQXZ/GbTYcRgUsWz+h3/splM9l7spODwU8xMLiiJ6SyKGvUn6Zau9184qevs7++c/jGIxBK9bh9fg42JNb9B5O8vMHqtzRL9UysR988QrrTwefXBiYij3arwKYud7iiB/pu8oZ24lJVDjR0siC4cBkE0iAAx6IE8H31nfgVfrdl8H2H9fsaAWjr8dA5ygXVTg4z4ofAqF8Vls8poDS3/xvEFafPBOg36o8V+KuKs0ad6nnszaO8uLeB1w81j+r7Y2nocJGRGvjz3215fpMgQp8+bcQ/gVxeH09sO8a7Tp/J6bPygdFtDu7x+Wnt9oRr+AEKswPljKGSzoYOFx293n6Bf1ZBJgDHWweP+ENvBuv3NtLe25cu6vX42HiwiZnBgH10lJ9QQiP+oQN/YHG8y5bMGHRuVkEmZ1cXcd/6g+Fr1TV1k+IQZhX0v2ZlURZtPR7aukc2r0FVeXhToNKqsTPamoCjV9/hYsWcQlJThF2W5zcJwuMNjPgt8E+gF3bX09rt4bqVFZTkpJGVljKqlSRbwpO3+kbF4aWZg5O4QqmKyMA/Mz8Dkegpm1BAd/v8PLfrZPj4xkPNuLx+PnTWnEC71uH7+82ndvHQ63X9jp3s6CUtxUFhVmrM7zt/QQlfv3oxHzmnMvp1338GvR4/f//wVvx+pa65m4qCzEE3piqDOf+R/m53HGtn94lAUG4a58Df0N5LeUEGC8py2RWlOsmYqeDxB0f8Vsc/cR7ZfJSy3HQuWFgaWFemaHTLC4Rm7ZZEpHrCm7EER/yhip7IwJ+a4qAsN53jbVECf2sPFQWZlOdn9Mvzv7ingTSng/evrAi0G2bEv25PPfeuP8jPXjnU73h9u4uy4HLMsThTHNx04XwKstKinl9QlsPt717KK/ub+Mn6g4NKOUPCtfwjTKP9dtNh0pwOZuSlh+dJjERDh4s/7xhcp6+qNHS6KMvNYEl5rqV6TMIIp3ocluOfEE2dLtbtqefaFRXhJQsqi7JGNeJv6hw84s9ITSErLSV8bn99JznpTsoG5MrL8zM5FiXVc7Slh9mFmVx9Rnm/dM/6fQ2cM7eIOYVZpKU4ODLEDV6318+/PRko+dx7spPWiHkFgRr+2GmeeH3orDlcfcZMvvPnPew+0U5lcZTAXzzydfl7PT5+v/UYV5w+k6ribBpGMeL/3nP7+OyvNg+6D9La7cHjU8py01kyM4+T7a7wvRhjppKleibYH946jtevXLdqdvhYVXEg8A+37+wDG2r6LVnQ1NV/uYaQyGUbDjR0Mr8sZ9AIe1ZBBseijPiPtfZQEQz8oXTP0dYe9td3ctGiUhwOobwgY8gR/09fOcTBxi5uDt643lzbt75OrMlbIyUi3HXtOyjLTafX44864s9Jd1KSk8bTb5/gwY21bK5tGfam9LO7TtLW4+EDq2ZTkpM24lSPqvLCnvpgpVb/N5xQRU9pbjqLywOrhO+2dI9JAG6fpXom1Cv7G6ksymLRjL7tASqLsnB5/UOOLg80dPKvT+7gjid2hCdnhdIQJTmDA39oJBlZyhlpVn4mx1p7+i1/4AmubTO7IJMVcwqYFUz3rA+umHnhosBN14qCzKgVQQAn2nr53nP7uGzJDP7u0oWkpkh4WWUIpnpiTN4aqfysVL57wwrSnQ7eUZEftc21Kyo41NjFN363nevu2cCZ//pnNg6xrv/Dm45Qnp/BeQtKKMkZearnQENnuDT3cHP/31Fo8lZZbjpLygN7A+06YTd4zdQLpXqsnHMCqCqbals4q7qo3/HK4sBNyKEqe37w/H78Gpjs9dzuwJIGTZ0unA4hL6P/jdLCrMCIv73Xw8l2V7/8fkh5QSa9nkBVUMiJtl78ChWFmTgcwlXBdM8f3zpOeX4GC4PXqSjIjFnLf9fTu/D6lX/5q6VkpKZwRkU+m2oCI/4ul5cOl3dcUj0hZ88t4u07ruCdwWUdBvrGNUt5+4538dLXLubej63Cr8prB6OXaB5v6+GlfQ1cv2p2eNnoth4Pbm/8E61Ccx0g2og/NIchg5KcdEpy0m3EbxKClXNOoAMNXTR3uTl7bmG/48PtEXuwoZPHtx7lk+fNpTw/g1+9VgsEcvxF2Wk4BtyQCY34D0Sp6AmpCJY+Rgbw0PNQuWco3fPy/kYuDN6IhsAbQ32Ha1BA3FTTzONbj/G5C+eF8+tnVRfx1pFWej2+iFLOsad6IqUN8/FURJhTlMW7Tp9JdXF2zGqax94MLKFxfTANV5Lbf05EPF7YU8/CshwyU1MGjfgjUz1A8AavjfjN1PP4LMc/YTYFUx6rB4z4KwoycQjUxVhJ8gfP7yfN6eDzF8/nhrMqeWlfI7VNXYFN1nMGB9HCrMAKndFKOUPK84O1/BGzd0Ppm4pg4A+le6AvzRM6H5j52z+wPbHtGNlpKdy8dkH42FnVRXh8yrbDrXFN3ppoS8pzYy6Q9uS2Y5xdXURV8BNYaKOYeGv5u1xe3jjUwsWLy5hTlMnhASP+hg4XWWkp5KQ7g33JY8/Jjn7rKhkzFUIjfqelesbf6zXNFGenMa8ku9/xNKeD8vzMqCP+gw2d/H7rUT52bhUlOenccPYcUhzCrzfW0dTlGpTfByjKTqXL7WPn8XbSUhzMKcwc1CY0qo/M1Ydu2IbOORzCu8+cRVqKg/MjUikVwesNvMG7/Wgbp1fkhxdVA1hVFfh0s6m2JZzqGO8R/0gsnplHbVM3XQNu8na6vOw52cE7FxSHj5UGR/zxBv4NB5pw+/ysPa2UOYVZg5bhqO9w9auuWjwzF7fXT02CLR1tkk9fjt9G/OPujZpmVlcXRq1hr4qxR+wPXgiM9m+6MFAhMyMvg8uXzODhTYc53to7qKIH+tbreaOmmeqSrKgr7hVnp5GW4uhX2XO0tYeSnHQyUvsC95cuW8RTf3c++RETrkKfCCJLOn1+ZefxdpbN6n+TtTA7jUUzcnijpjlinZ6pHPEHbqoOTLG8daQVVThzTkH4WGjE3xTnDd4X9tSTnZbC6qoiZhdmcqS5u9/N8/r23n5LUCyeGbzBazN4zRSzHP8EOdHWy+HmnkE3dkOi7RF7qLGL328JjPYjA8ZHz62ipdvDifbefvvWhoRW6Nx5rD1qmgcIl2VG1vIHJm/1D8qZaSksKMvtd6w8PzMw8zdiRHuwoZNej59lFXmDftbq6iI217RwrLWXzNQUcoOpjqmwJFRGOSDds+1wGwDLZ/cF/pLc+FM9qsqLexo4f2EJaU4Hc4qy6HB5aYtYJTU0eStkQVkOTofYDF4z5dyJUscvIukicr+I1IpIh4hsEZGrYrT9cXDz9dDDJSIdEefXiUhvxPk94/li4vFGML8fK/DPKcqiqcvdr878py8fIjWlb7Qf8s75xVQHb54WR0n1hGbv+pWopZwh5fkZHB9wc7ciSlpooDRnYOZv5I3ht48GAucZUcoqz64uosPlZf2+huByERObRxxKRUEmuRnOQcF22+FWqoqzwp+WALLTUkh3OsIzpIeyr76To6094WWlZwd/j5HpnoZ2V7838DSngwVlOXaD10y5cKrHOfU5fidwGLgIyAduAx4WkeqBDVX1c8HN13NUNQd4CPjtgGa3RLQ5bUy9H4VNNc1kpaVw+qzBI2IgvJZ8aNTf6/Hx+NajXLls5qAVKh0O4SPnVAGDa/ih/4Su+TFG/BDI5Ydy/KoamLxVMHzgh8G1/NuPtpOR6mBelDea1dWBPP/Bhq5BM4gnm4iwZGbeoPTKtiOtnBkx2g+1LclJp7Fj+BF/aNew0AJzswv77wDW4/bR4fIO+rdcPDPXSjrNlPP6EyTVo6pdqnqHqtaoql9V/wAcAlYN9X0ikg1cBzwwPl0dH6/XtLCysjDmDjcDSzr/vPMk7b1ePrBqTtT2H1w9hytOn8G584oHnYsctcZK9UBgEtfJDhden5+mLje9Hn/4xu5wKgqz+o34tx9rY2l5XngZin5tg2v/wNRW9IQsLs9lz4mO8Ezpk+29HG/r7ZffDynJSaMxyoj/Cw9t4dLvrON/nt1HTWMXL+xuYPHM3HC1VGg3sNCIP3LyVqSls/I41tY77ovBGTMSoSUbEm4HLhGZASwCdgzT9DqgAVg/4PhdItIoIq+IyNqR/vyxaO/1sPtEe3jkG03fujKBCo/fbjpMRUEm75w/OLBDYNbqTz62Olx6GKkgM3AjVgTmlQw94vf5lfoOVzhfP5IR//HWXvx+xe9Xdh5rZ1mM2bMiEk5xTWVFT8iS8jw6Xd5wUA7tQbx8zuD+Rxvxqyrr9tTT1OXmu8/tZe231/HqwaZwmgcCG97kZjjDJZ2Rk7ciragM/E1sHcM+yMaMVXjJhkQq5xSRVOBB4AFV3T1M808Av9DIcgq4FZgHVAD3Ak+KyPxo3ywiN4nIJhHZ1NDQEK3JkFSVO57YwQMbasLHNte2oBrIdceSn5lKfmYqdc3dHGvt4eX9jVy3smLQ5Kx4OFMc5GemUlGQ2a+0cqDy4I3c4209fTX8ceT4Q+3cvsAyEzVNXXS6vIMqeiKdFXzTS4QRf99yCYEUy9bDraQ4JLw3QqTinLTwmkghLd0eOnq9fOGShWz4x0v4+tWLuWhRKR9YPbtfuzmFfTuAhSdvDZh3sWxWPk6HsKXOAr+ZOglXzikiDuCXgBu4ZZi2cwjcE/hF5HFV3aiqHarqUtUHgFeAq6NdQ1XvVdXVqrq6tLQ0WpMhef3KkZYebn9iB3c/vRu/X9lU04zTISyvHJxKiBTaMSq0CXvkQm4jVZqb3m89oGhCo/ujrb3htM3sgsGLnUX/3kAAP9LSw/ZjgQAaa8QP8M4FJTgE5pUO/oQy2RbNyEGE8A3ebUdaWTwzt18Za0hJTjpNne5+C+iF6u6ri7Moz8/kpgvn88Anz2b+gPsbc4oyB6d6BnziyUxLYUl5Hm/WtWDMVJmscs646vkkUP5xPzADuFpVh9tK6ePABlU9OEw7BSbkM01qioMff3Qltz+xgx+/eIATbT3UNndzekU+WWlDv+w5RVlsP9rG4eZuzp5bFDWNE6///uBycjOG/nmhvPvx1h6OtyRVve0AACAASURBVPWSnZZCXmZ8pZYVwTeIo6097DjaRlqKg4UzYqeV5pfmsP5rF8edSppIWWlO5gaXbvD7lbcOt/Ge5bOiti3OScfrV9p7PeH9AWqCm81Xlwz97zO7MIv1extRVeo7eklxSHhrzEgrKgt4dPMRfH6Neo/EmImWaEs23AMsAd6tqvHs9fdx4OeRB0SkQESuEJEMEXGKyEeAC4E/jaTDI+FMcXDn+5bx1StO4/dbj7GlrpWzqmLn90OqigIj/pqmbj4whtE+wBmz84cNTLkZqeSmOznW2hMu5Yy31DJy9u72Y20sLs8d9o9mdmHWlJZyRlocXCfnYGMXHS5v1Bu70Fc1FVnLX9PUjUP6SjZjmVOYSY/HR2Onm/r2wCzraKm7FZUFdLl97Ku3sk4zNTyJkuMXkSrgs8By4EREDf5HRKQy+Lwyov0aYDaDyzhTgTsJ3PBtBL4AvE9VJ7SWX0T424sX8F8fPJPcDCfvCm4SPpSq4A3erLQUrj6jfCK7FzarIJNjbb0jKuWEwFr3+ZmpHGnpZvvR9qj58US2JLh0w4YDgQ3kl8cM/KFJXH2VPbVNXcwqyCTdGfv+CURW9nQPmrwVacWcwKDA8vxmqnh8fpwOmfCB2bD5BFWtZeh0TL+8gqq+Cgwa4qpqA3DWSDs4Xt6/cjbXrqiI6xcaChTXnFFO9iTNbg3M3g2M+FcMcw9ioIqCTDYeaqatxxN14lYiWxy8wfvwpsNkp6UMys+H9AX+iBF/Yxdzh/k0BRG1/C091Le7wqm1gaqKsyjKTmNLXQs3nh19n2FjJpLHpxOe5oEkW7Ih3nfRMyryOX9BCZ++YN4E96jPrIJMDjV20drtibuGP6SiMDO8Ami0pRoSWWjphu1H2zljdn7M3HpoZnTkej01Td3hT2dDCaWCDjd3U9/hGjR5K0REWDGngDdtxG+miNvrn/A0DyRZ4I9XbkYqv/r0OZw2c+hqnPE0Kz+DbrcPiL+GPyTU3umQYSuIEk1o6QYgZn4fAstfOKRvxN/a7aatx0N1HDfes9OdFGWnUdfUTXOXa8hZyysqC9hf39lvbR9jJovH5x92X4vxYIE/QUSO8oe7WTlQKPAvnBG9FDKRhZZugMC+A7GkOISi7L4tGA+FKnrirLiaU5jJtiOt+BVKh5jDEJrItc0mcpkp4PH5LdWTTEJLDACjSvUALIux/lCiC6V7hhrxQ3DZhuCIP7Q9ZnVJfPMdZhdlsedkoFpn4OStSO+YnY+I3eA1U8M7STn+qVuX1/QTma4Z6SbooU8IQ03cSmQfW1PFrIJMZg4zmzgwiSsQ+GuauhDpu3E7nNmFgd3KYPDkrUi5GaksKstly2GbyGUmn9vnn/Ddt8ACf8KYkR8IRuUFGSOePLRsVj5fv3ox71tRMRFdm3ALynIH7TUQTXFOGnV1gZF+TWMXs/Iz405tzYl4gxhqxA+BPP/T20/g9+uoluowZrQ8Pv+EL9cAlupJGOnOFEpz00c1o9bhEG66cD75manDN57G+o/4u+NO80BfiS4Qs6onZEVlAW09Hg7ZVoxmklk5ZxL68NmVXDtNR+2ToTgnjS63jx63j9qmrhEtpRFKh+Vnpg77KWFlZd9ELlWlrdtDbVMX/dcbNGb8BW7uWqonqXz58kVT3YWEFprEdaChk5ZuD3NHEPhDn6SGG+1DYD2j3HQn//bkDm5/fDtdwTLb+z6+msuXzhhFz42JT6CO30b8xoSF1uvZXBu48RrP5K2QjNQUZuSlx7XzmMMhfPHShayZX8yHzqrk61cvBrA9eUegrdvDeXc/z8fu38gjm4/028rUxOb166TU8duI30wboRF/KPAPt/jdQH9z3ty4t5z8zIXz+Ax9M7fvf/lQuIR0KA0dLj7w4w3894eWh+cEJKP9DYG9jzt6Pby0r5F//v3bXLtiNt+8dlnCLBCYiAJr9Ux8WLYRv5k2iiMCv0jfNpnx+txF83n/ytGttlpVnB3elW0of9l5kpqmbl7cO/LNg04lDcGdzn79mXN59OY1nDuvmIder6O910b+Q7FUjzEDFAf3MD7a2kN5XsakzlKuKsqiJo4R/3O7TgKw81hyp4XqIza8WVVVxPuWB4oWGm1P4yF5fH5SbckGY/pkpKaQG1wtdSyb44xGVXEWDR0uut2xR6w9bh8v7w8sL70zye8H1Le7cAgUZwc+pYVXV+2wwD8Uj0+tjt+YgUqCOfqR5vfHKvRGU9cce9T/6sFGXF4/a+YVc6SlJ6kXeqvv6KUkJz08GbEkN7i6apd7qG9LepNVzmmB30wroXRP9QgqesZDqIKopjF24H9uVz3ZaSn8zXnVQHJXAQ1c/jrafgpmMJvAZUwUoQAy6ameotCIP/oNXlXl+d31XLCwlOXBjXSSOc9f395/+evwstqW6hmSrc5pTBShDVni2XlrPOVnpVKQlRqzpHPX8Q6Ot/VyyZIyynIzKMlJT+o8f31H/y0uA8tqp9HQaameoViqx5goKgozSXM6RlzKOR6qirJiBv5QNc/Fp5UBsHRWXtKO+L0+P01drkGroEautWSiS5gRv4iki8j9IlIrIh0iskVErorR9q9FxBexIXuniKyNOF8tIi+ISLeI7BaRy8bxtZgk8Ik11Tz+t+eRmTb5G85UFWdTGyPV89zues6cUxDOay8tz2NffQdur38yu5gQmrvcqDJoslxxxH4KZjBVTagcvxM4DFwE5AO3AQ+LSHWM9q+qak7EY13EuYeALUAx8A3gEREpHWXfTRLKTneypHxqNpypKs7iaEvPoGDe0OFi25FWLl1cFj62dFYeHp+G90JOJqEa/tIB+0qU5PTtoGYG8/gCiwAmxNaLqtqlqneoao2q+lX1D8AhYNVIfpCILAJWArerao+qPgq8DVw3mo4bM9kqi7Lwa2ACWaR1e+pRhUsiA3/wzSkZ8/z1wVm7luoZGa8/MKBIyBy/iMwAFgE7YjRZISKNIrJXRG4TkdDCE6cDB1W1I6LttuBxYxJeaO5A7YB1+p/bVc+MvHROj9j6cm5JNhmpjqTM89e3B2ftRkn1hJbVNoN5vIERv9ORACP+SCKSCjwIPKCqu6M0WQ8sA8oIjORvBL4aPJcDtA1o3wZE3XpJRG4SkU0isqmhIbnXPTGJoSp4QzlyElevx8f6fQ1csnhGv8XHUhzC4pl57Dw+8E/+1NeX6hk84ger5Y/F7QuO+BMh1RMiIg7gl4AbuCVaG1U9qKqHgimht4F/A64Pnu4EBiZn84AOolDVe1V1taquLi212wBm6pXmppOZmtJvEtdrB5vodvt4V5R1+kOVPcm2gUt9Ry8FWamkO/vfgA9tedlggT8qTzDwpyVKqkcCQ5n7gRnAdaoa71x0BUKvYgcwT0QiR/hnEjtlZExCERGqirP6TeJ6dtdJMlNTWDO/eFD7peV5tPd6B90TONUNnLwVEhrxN9kN3qjaewNhdTIWH4x3xH8PsAR4t6rG/CsWkauC9wAQkcUEKoAeB1DVvcBW4HYRyRCRa4F3AI+Oof/GTKrKiFp+VeXZnfVcuKgk6v+sS4M5/2TL8w+cvBUSmnxnqZ7oNuxvAvq2/pxI8dTxVwGfBZYDJyLq8z8iIpXB55XB5pcCb4lIF/AU8BjwzYjL3QCsBlqAu4HrVdUS+GbaqCrOora5G79f2XGsnRPtvVy2JPp2jItn5iISu7Kno9fDx+7fyO4Tp9YbQ8OAdXpCwoHflm2Iat3eBuaVZjNnEiYnDrvVi6rW0peuiSYnou1XgK8Mca0aYG383TMmsVQVZ+P2+jnZ0ctfdp7EIf3LOCNlpTmZW5Idc8T/2sFmXtrXyP0vHeL/feDMiez2pFFVGjqip3rSnSnkZThthc4oetw+XjvYxEfPqZqUn2dLNhgzAqFVOmubunl210lWVRWGdwaLZml5XswR/6baZgCeevv4KVPi2Nbjwe3zx9zUviQn3W7uRvHawSbcXj9rT5ucQhYL/MaMQGiVzlcPNLHjWHvMNE/Isop8jrT0hCc1RXqztoXcDCddbh9/3nliQvo72fp23hqc44fg7F1L9Qzy4t4GMlNTOHtu0aT8PAv8xozArIIMnA7hwY21AFwWpYwz0juD1T6hG3chLq+PbUfa+ODqOVQUZPLI5iMT0+FJFmvyVkhJrq3XE826PfWsmV88aduJWuA3ZgScKQ5mF2bS2OlmXkk280tzhmx/+qx8CrJSeWlfY7/jO4614/b6Oau6kPevrOCV/Y2caBv8qWC6CS/XECPwF2enW45/gJrGLmqaurlo0eTNV7LAb8wIVQY3gRlutA+BGbznzS/h5f0N/SZyba5pAWBlVSHvXzkbv8LjW49OTIcnUTypntZuT3iykgmM9oFJy++DBX5jRiy07eNw+f2Q8xeWcLLd1W+lzs21LVQWZVGWm8HckmxWVhbw6JtHpv0s3/p2F1lpKeSkRy8YDO+9a5O4wtbtbWBuSfak7ipngd+YEbp86QwuWzKDlcEtFodz/oISgHC6R1XZVNvC6qq+iTrvXzmbvSc72THNJ3vVd/TGTPOArdczUK/Hx6sHmiY1zQMW+I0ZsQsWlvK/n1iNM84NM+YUZVFdnMXL+wOB/3BzD42dLlZGBP53v2MWaSkOHn1zet/kjTVrN6TkFJ696/crf9pxgg/95FU+/cAmdhwbfoG+1w424ZrEMs4QC/zGTILzF5aEa7VD9furq/sCf35WKpctLeOJrcemdf67ocNFaV48I/5TJ9Xj8yuPbD7Cu767ns/+cjNHW3t4o6aZa773Ml/6vy0cbo6+XSfAuj0NpDsdnDtv8FpPE8kCvzGT4PwFpXS7fWypa2FzbQu56U4WlvVfkfy6lbNp6nLzwu76Kerl2NW394ZX4YzmVEz1/M+ze/nKb7fhdAj/c8Ny1n1lLeu/djE3r53PMztOcMl31rF+7+CVaXrcPp56+zjnLYi+1tNEssBvzCRYM78Yh8DL+xvZXNvCiqpCUhz9V0K5cFEpJTnp07amv8vlpcvtG7TzVqSstBQyUh2nzE5cbT0efvZKDVctm8nTf3cB711egTPFQX5mKrdeuZgXv3oxcwqzuOPJHYM+yf1swyHqO1zcvHb+pPfbAr8xkyA/M5Uz5xTwzPYT7DnZwaooKzCmpji4dsUsnt9dPy0DY0OolHOIHL+InFJ77/5iQw0dLi9fuGRhv414QmbkZfCNa5ZwsKGLB1+rDR9v7XZzz7oDXLq4jLOqJ2e2biQL/MZMkgsWlLCvvhPV/vn9SNevmoPXrzy+9dgk927swjX8Q1T1QGjT9cR+Y3ty2zGu+p+XcHljr6HU5fLy01cOcenisvAS3NFcsriM8xeU8N3n9tHWHVhz/551B+h0efnqlaeNe9/jYYHfmEly/sJA5YZD4Mw50UtBT5uZyztm50/LdE+sTdYHKslJS/gR/6831rHreDuvH2qO2eah1+to6fbw+YsXDHktEeEb1yyhvcfD957fx/G2Hn6+oYZrl1eweGbsN4yJZIHfmEmyorKA7LQUlpTnxZzgBHD9qtnsPN4eVzlgIulbpyd2qgcSf8Tf3OVm46HA2krr9kTfLqTX4+Pe9QdZM6+YVVXDb5yypDyPD501hwc21HDro2+jCl++fNG49nskLPAbM0lSUxz809VL+MIlQ48QwzX9m6fXEg71HS5SU4TCrNQh25XkpNPc5cbvH/9Zyi/va+TNupYxXePZnSfxK1QUZPLCnugVVo9sPkJ9h4tbhvm3jPTlyxeR7nSwfm8DHzm3clI2XInFAr8xk+ij51Zx5bLyIdsUZqdx2dIyfr/1KG7v9Knpr+8IlHJGu8kZqSQnDZ9faeke33SPqvIPv93KF369ZUxzIf604wQVBZl86vy5HGzoorapq995j8/Pj188wPI5BeHVV+NRlpvB165czOzCTG4ZJj000SzwG5OArl81m+Yud8wRZyIKTN4aOs0DhDeuGe9VOg8393Cy3cXR1h6eevv4qK7R6fLy0r5Grjh9ZnhntYHpnqe3n+BISw9/e/GCYd/kBvrEO6tZ/9WLh9y8ZzJY4DcmAV24sJSy3HS++NAWPnb/Rn7y4gF2HmtP6EXcapu6KY8j8IcncY3zhixv1ARuxBZmpfKTFw8O+l3VNHZx3/qDdLu9Ma+xbk89bp+fK5fNpLokm7kl2f3efFWV+186yNySbC6NseXmcByOkb1ZTAQL/MYkIGeKg1986mw+fE4lJ9t7uevp3Vz9vZf4h4e3JeQ2jYebu6lr7uacecPXpJcGV+gc7y0Y36hpJi/Dya1XLmbn8XZeidj8ptvt5VMPvMF/PLWLK7/7Eq8eaIp6jWe2n6A4Oy18w3btaaW8eqCJXk/gd765toVtR9r45HnVCRHAR2vYwC8i6SJyv4jUikiHiGwRkatitP2EiGwWkXYROSIi3xIRZ8T5dSLSKyKdwcee8XwxxpxKFs/M4/Z3n86fv3wRG79+KV+8dCG/23qUa3/0yqC883h5YtsxPv3AG3S5Yo+KowmtPHrBwuEXGyvODqZ6xrmk842aZlZXF3HtygrKctP5yfoD4XP//oedHGzs4utXL0YEbrzvNW77/XY6I15nr8fHC7vredfpM8Kzqi8+rQyX18+rBwNvFPe/fIj8zFSuWzV7XPs+2WLXlPVvcxi4CKgDrgYeFpEzVLVmQNss4EvARqAUeAL4CnB3RJtbVPV/x9hvY5LKjLwM/v7yRayqKuTv/m8Lf/X9l/mnq5aQmeagtdtDW4+Hc+YWsybKzUafX9lS18LO4+3sPNbO7hMdrK4q5B+vWtxvhdFXDzTx97/Zitev/MdTu/jmtWfE3b+X9jVQnp/B/NLh15TPz0zF6ZBxLels6nRxoKGL61fNId2Zwl+fV823ntnDzmPtHGrs4qHXD3Pz2vncdOF8PnZuNd/+8x5++soh1u9r4Hs3rODMOQVsONBIl9vHu06fGb7u2XOLyExNYd3uehaU5vCnHSf47EXzyUqLJ3QmrmF7r6pdwB0Rh/4gIoeAVUDNgLb3RHx5VEQeBC4eezeNMQAXLSrlyVvO5+YHN/P1373d75xD9vH1q5fwqfPnhm86Hm3t4YsPbWFzbaDEsTArlcribP735UPUNHXzgw+vICM1hUONXdz84GaqirNYM7+YX71Wx+VLZ3DxacPnsX1+5ZX9jVy5bGZcNzsdDqE4J41NtS38/JVDtPd6cXl9vHd5BYtm5A77/dFsCr6+s4Izoj9yThU/fH4/dz29i62HWzlzTgF/H6ybz0xL4ba/WsqVy2bypf/bynX3bOCrV5zG/vpOctOd/Sp1MlJTeOf8Yl7Y00CKw4FDhE+sqR5VHxPJiN+2RGQGsAjYEUfzC6O0u0tE7gb2AN9Q1XUxfs5NwE0AlZWVI+2mMaesOUVZPHbzeew92UF2upP8zFRSU4Sv/vYt7vzjLg40dPKv71nGi3sb+Mpvt+HzK3e//wwuOq2UmXkZiAgPbKjhjid38LH7N/KdDyznkz9/A4cIP/vrsynLS+eNQy3c+shb/PnLF1KQlTZkf9460kp7rzc8Mzke1cXZbDzUHJ4Z6xD48YsH+eg5lXz58kXD/syB3jjUTJrTwRmz84HAp4obzq7k/pcPkZPu5Ps3rCB1wP4JZ1UX8dQXL+AfH3uLu57eDcB7l88i3dl/pcy1i8t4bnc9v9pYyzXvKGdm/vA3sBOdjKRKQERSgaeBA6r62WHa/g3w78ByVW0MHjsH2Am4gRuAHwTPH4h5IWD16tW6adOmuPtpTDLy+5Xv/GUPP3zhAHNLsjnU2MUZFfl8/8YVVJcMTsH84a1jfPk3W1EFhwi//sw5rA4uGLb9aBvv++ErXHVGOd+/ccWQP/f7z+3jv57dy+Z/vpyi7PgCdpfLS2Oni7yMVHIynHT0evmvv+zh1xvryM9M5Z+uXsIHV8+J+7W/94evkJ7i4OHPrQkfO9baw8d/+jpfvmwR17wj9twJVeWh1w/z7T/v4fs3ruC84I5pIYebu7ngWy8A8MQt5/GO2fHtvJYIRGSzqq4edEJV43oQuBH8f8BTQOowbd8HnATOGKbdM8AXhvvZq1atUmNMfB5787Auve1pvf3x7drr8Q7Z9qW9DXr+fz6nv99yZNC57z+3V6tu/YP+5o26Ia/xgXs26DXfWz+mPofsPNamH7hng1bd+gfdcbQtru/pcnl0/j/9Ub/1zK5x6UM0V313vX7oJxsm7PoTBdikUWJqXKkeCSTu7gdmAFerqmeItlcC9wHXqOrbsdqF3neA6VsTZUwCunbFbN57ZkVc5YbnLyzhpa9dEvXc5y6az/q9jXztkbd47WAT//JXSwelYDpdXt6sa+EzF84bl74vKc/jvo+vZs3dz3HfSwf57w8tH/Z7ttS14vVr+NPKRHjw0+eQknLqhKp46/jvAZYA71bVnliNROQS4EHgOlV9fcC5AhG5QkQyRMQpIh8hcA/gT6PsuzEmhvGoMXemOPjlp8/mC5cs4PGtx7j8v9fz5x0n+rV57UATXr9ywYD0yFjkZ6Vy49mVPLHtGEdb+4ebbreXbz2zm/31neFjb9Q0I0Jci6WNVmF2GnkZQ69BNJ3EU8dfBXwWWA6ciKjB/4iIVAafh+6+3gbkA09FtHs6eC4VuBNoABqBLwDvU1Wr5TcmQaU7U/iHd53G4397HqU56dz0y838xx93hhdYe3l/IxmpDlbF2F9gtD55/lwAfvryoX7H/+OPu/jRugPccO+r7DnRAQQC/+KZeadUYJ5owwZ+Va1VVVHVDFXNiXg8qKp1wed1wbYXq6pzQLurgucaVPUsVc1V1QJVPVdV/zLRL9AYM3bLKvJ5/Jbz+MSaKu576RBffngrbq+f9fsaOGdu8aBKmLGqKMjkPWfO4qHX68Kblzy36yQPbqzj/SsqcIhw432vsf1oG1vqWjl7nN94TnW2ZIMxJi6pKQ7ueM/p3HrlYh7feowb73uNgw1dXLBw/NI8kT5zwTy63T5+tbGWhg4XX3vkLZaU53HXdWfwm8+uIS3FwfU/3kC328dZcyd/+8LpzAK/MSZuIsLNa+fznQ+cybbDrUB8yzSMxtJZeVy4qJSfvVLDVx/ZRofLy//csJx0ZwpzS7L5v5vOpTB4s3l1lQX+kZje846NMVPiulWzmZmfwcaDTSyakTNhP+dzF87jw/+7kXV7Grj93Uv7zeytLsnmsc+/k90nOk6JSVWTyQK/MWZUzltQMmiy03hbM7+Y8xYUk5ueGnWphPL8TMrzMye0D6ciC/zGmIQlIvzyk+dM6yWQE5Hl+I0xCc2C/vizwG+MMUnGAr8xxiQZC/zGGJNkLPAbY0ySscBvjDFJxgK/McYkGQv8xhiTZEa09eJUEZEGoBVoCx7Kj/I89N8SAss+j1TkNUdyPtrxaP2L9Tzy2GT2PZ5jw/U3UX7n8fQ78nmi9DuevkY+n+h+x9PHWMfsb2Vk/Rru/Hj1u0pVBy+mFG1brkR8APcO9Tziv1G3GhvJ9UdyPtrx4foard+T3fd4jsXR34T4ncfT71Ppb2Wi+m1/K4n7tzLafsd6TKdUz5PDPI88Ntbrj+R8tOPD9TXy+Vj7Hc81hutjrGPD9TdRfufx9DvyeaL0e+Cxqe53rDb2tzJ6CdnvaZHqGQkR2aTRdpWfBqZr363fk2u69humb9+na79jmU4j/njdO9UdGIPp2nfr9+Sarv2G6dv36drvqE65Eb8xxpihnYojfmOMMUOwwG+MMUkmaQO/iKwVkedE5AURuXaq+xMPEakWkQYRWRd8TMxmpxNERG4MzsmYNkRkhohsEJEXReR5ESmf6j7FQ0TWiMirwX4/JCKpU92neIhIvoi8LiKdIrJsqvszHBH5DxF5SUQeEZGsqe5PvJIy8ItIBvAPwFWqerGq/m6q+zQCL6rq2uBj2gRREXEA1wOHp7ovI9QInK+qFwG/AD41xf2JVy1wSbDfB4H3TnF/4tUNXAM8MtUdGU7wjWm+ql4APAt8coq7FLekDPzAO4Ee4EkR+Z2IzJzqDo3AecERxjdFZDptTfRhAv8z+6e6IyOhqj5VDfU5F9gxlf2Jl6oeU9We4JdepsnvXVU902hAcwHwdPD508D5U9iXEUn4wC8it4jIJhFxicjPB5wrCgbuLhGpFZEPx3nZGcAC4N3AfcAd49ppJqzfxwn0+0KgDHj/+PZ6YvotIinAB4HfjHd/B/ycifidIyLLRWQjcAvw5jh3e8L6Hfz+ucBVwB/Gscuha09YvyfTGF5HIX1LJbQBRZPU5TGbDputHwPuBK4AMgec+yHgJhDIlwN/FJFtqrojOIqP9nHxegLr/ryiqm4ReQ74x+nQb1U9AbgAROQx4Fzg0UTvd/BaD6uqf4I/pEzI71xVtwLniMgHgX8CPjcd+i0iecADwMdU1T3OfZ6wfk9AP4czqtcBtBBYE4fgf5snp7vjYDTrT0zFg8A/zM8jvs4m8A+yKOLYL4G747hWMYGcnADnAD+bJv3Oi3h+F/DxadLv/wT+DDxDYGT0vWn0t5Ie8fwK4L+mSb+dwB8J5Pkn7Hc93v2OaP9zYNlE930srwM4A/h18PlNwBcms79jeUyHEX8siwCfqu6NOLYNuGi4b1TVJhH5HfAigdznZN6UGXW/gYtE5A4CN8AOAbeNf/diGsvv+9bQcwlMff/iBPRvKGP5na8Ukf8EfEAv0+dv5UYCg5p/EZF/Ae5R1QlNtUUYS78RkacIjK5PE5GfqOrPx7+LcRnydajq28H0z0tAPfDxKejjqEznwJ/D4OVM2wjcgBuWqv6QwMe4yTbqfqvqk4zPom6jMabfd4hOzXonY/mdv0rgnspUGEu/f0lgdDoVxvr/5tXj3qPRGfZ1qOo/TWqPxknC39wdQieQN+BYHtAxBX0ZCev35Juufbd+T61T5XUMMp0D/17AKSILI46dSeKX21m/J9907bv1e2qdKq9j0cWqrAAAAKpJREFUkIQP/CLiDE64SgFSRCRDRJyq2gU8BvybiGSLyHkEJqlM1cfbfqzfk2+69t36PbVOldcxIlN9dzmOO+13ADrgcUfwXBHwe6ALqAM+PNX9tX5b363fid3vU/V1jORhyzIbY0ySSfhUjzHGmPFlgd8YY5KMBX5jjEkyFviNMSbJWOA3xpgkY4HfGGOSjAV+Y4xJMhb4jTEmyVjgN8aYJGOB3xhjksz/B16or5tZf/HHAAAAAElFTkSuQmCC\n","text/plain":["
"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plt.plot(lrfind.lrs[:-2],lrfind.losses[:-2])\n","plt.xscale('log')"]},{"cell_type":"markdown","metadata":{"id":"T5DfiBud2SNw"},"source":["Now we can define our `OneCycle` training callback:"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"gcFhmoU02SNw"},"outputs":[],"source":["class OneCycle(Callback):\n"," def __init__(self, base_lr): self.base_lr = base_lr\n"," def before_fit(self): self.lrs = []\n","\n"," def before_batch(self):\n"," if not self.model.training: return\n"," n = len(self.dls.train)\n"," bn = self.epoch*n + self.num\n"," mn = self.n_epochs*n\n"," pct = bn/mn\n"," pct_start,div_start = 0.25,10\n"," if pct"]},"metadata":{"needs_background":"light"},"output_type":"display_data"}],"source":["plt.plot(onecyc.lrs);"]},{"cell_type":"markdown","metadata":{"id":"esEOuqOi2SNy"},"source":["## Conclusion"]},{"cell_type":"markdown","metadata":{"id":"jIuf0GL72SNz"},"source":["We have explored how the key concepts of the fastai library are implemented by re-implementing them in this chapter. Since it's mostly full of code, you should definitely try to experiment with it by looking at the corresponding notebook on the book's website. Now that you know how it's built, as a next step be sure to check out the intermediate and advanced tutorials in the fastai documentation to learn how to customize every bit of the library."]},{"cell_type":"markdown","metadata":{"id":"1gseViCB2SNz"},"source":["## Questionnaire"]},{"cell_type":"markdown","metadata":{"id":"vBDJ9pg92SNz"},"source":["> tip: Experiments: For the questions here that ask you to explain what some function or class is, you should also complete your own code experiments."]},{"cell_type":"markdown","metadata":{"id":"DVWln0Zo2SN0"},"source":["1. What is `glob`?\n","1. How do you open an image with the Python imaging library?\n","1. What does `L.map` do?\n","1. What does `Self` do?\n","1. What is `L.val2idx`?\n","1. What methods do you need to implement to create your own `Dataset`?\n","1. Why do we call `convert` when we open an image from Imagenette?\n","1. What does `~` do? How is it useful for splitting training and validation sets?\n","1. Does `~` work with the `L` or `Tensor` classes? What about NumPy arrays, Python lists, or pandas DataFrames?\n","1. What is `ProcessPoolExecutor`?\n","1. How does `L.range(self.ds)` work?\n","1. What is `__iter__`?\n","1. What is `first`?\n","1. What is `permute`? Why is it needed?\n","1. What is a recursive function? How does it help us define the `parameters` method?\n","1. Write a recursive function that returns the first 20 items of the Fibonacci sequence.\n","1. What is `super`?\n","1. Why do subclasses of `Module` need to override `forward` instead of defining `__call__`?\n","1. In `ConvLayer`, why does `init` depend on `act`?\n","1. Why does `Sequential` need to call `register_modules`?\n","1. Write a hook that prints the shape of every layer's activations.\n","1. What is \"LogSumExp\"?\n","1. Why is `log_softmax` useful?\n","1. What is `GetAttr`? How is it helpful for callbacks?\n","1. Reimplement one of the callbacks in this chapter without inheriting from `Callback` or `GetAttr`.\n","1. What does `Learner.__call__` do?\n","1. What is `getattr`? (Note the case difference to `GetAttr`!)\n","1. Why is there a `try` block in `fit`?\n","1. Why do we check for `model.training` in `one_batch`?\n","1. What is `store_attr`?\n","1. What is the purpose of `TrackResults.before_epoch`?\n","1. What does `model.cuda` do? How does it work?\n","1. Why do we need to check `model.training` in `LRFinder` and `OneCycle`?\n","1. Use cosine annealing in `OneCycle`."]},{"cell_type":"markdown","metadata":{"id":"3PJFqKnt2SN0"},"source":["### Further Research"]},{"cell_type":"markdown","metadata":{"id":"e2evihHR2SN0"},"source":["1. Write `resnet18` from scratch (refer to <> as needed), and train it with the `Learner` in this chapter.\n","1. Implement a batchnorm layer from scratch and use it in your `resnet18`.\n","1. Write a Mixup callback for use in this chapter.\n","1. Add momentum to SGD.\n","1. Pick a few features that you're interested in from fastai (or any other library) and implement them in this chapter.\n","1. Pick a research paper that's not yet implemented in fastai or PyTorch and implement it in this chapter.\n"," - Port it over to fastai.\n"," - Submit a pull request to fastai, or create your own extension module and release it.\n"," - Hint: you may find it helpful to use [`nbdev`](https://nbdev.fast.ai/) to create and deploy your package."]},{"cell_type":"code","execution_count":null,"metadata":{"id":"QXng2Pt72SN4"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/19_learner.ipynb","timestamp":1712448007522}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Education/fastai/20_conclusion.ipynb b/notebooks/oleg/Education/fastai/20_conclusion.ipynb new file mode 100644 index 0000000..6fa3967 --- /dev/null +++ b/notebooks/oleg/Education/fastai/20_conclusion.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"code","execution_count":null,"metadata":{"id":"6g-FTaiU2S5b"},"outputs":[],"source":["#hide\n","! [ -e /content ] && pip install -Uqq fastbook\n","import fastbook\n","fastbook.setup_book()"]},{"cell_type":"raw","metadata":{"id":"XPNwcOc_2S5j"},"source":["[[chapter_conclusion]]"]},{"cell_type":"markdown","metadata":{"id":"lPYWcNdb2S5k"},"source":["# Concluding Thoughts"]},{"cell_type":"markdown","metadata":{"id":"V3NZ3wTA2S5n"},"source":["Congratulations! You've made it! If you have worked through all of the notebooks to this point, then you have joined the small, but growing group of people that are able to harness the power of deep learning to solve real problems. You may not feel that way yet—in fact you probably don't. We have seen again and again that students that complete the fast.ai courses dramatically underestimate how effective they are as deep learning practitioners. We've also seen that these people are often underestimated by others with a classic academic background. So if you are to rise above your own expectations and the expectations of others, what you do next, after closing this book, is even more important than what you've done to get to this point.\n","\n","The most important thing is to keep the momentum going. In fact, as you know from your study of optimizers, momentum is something that can build upon itself! So think about what you can do now to maintain and accelerate your deep learning journey. <> can give you a few ideas."]},{"cell_type":"markdown","metadata":{"id":"VKtG8Xyx2S5o"},"source":["\"What"]},{"cell_type":"markdown","metadata":{"id":"TEY2kaSa2S5p"},"source":["We've talked a lot in this book about the value of writing, whether it be code or prose. But perhaps you haven't quite written as much as you had hoped so far. That's okay! Now is a great chance to turn that around. You have a lot to say, at this point. Perhaps you have tried some experiments on a dataset that other people don't seem to have looked at in quite the same way. Tell the world about it! Or perhaps thinking about trying out some ideas that occurred to you while you were reading—now is a great time to turn those ideas into code.\n","\n","If you'd like to share your ideas, one fairly low-key place to do so is the [fast.ai forums](https://forums.fast.ai/). You will find that the community there is very supportive and helpful, so please do drop by and let us know what you've been up to. Or see if you can answer a few questions for those folks who are earlier in their journey than you.\n","\n","And if you do have some successes, big or small, in your deep learning journey, be sure to let us know! It's especially helpful if you post about them on the forums, because learning about the successes of other students can be extremely motivating.\n","\n","Perhaps the most important approach for many people to stay connected with their learning journey is to build a community around it. For instance, you could try to set up a small deep learning meetup in your local neighborhood, or a study group, or even offer to do a talk at a local meetup about what you've learned so far or some particular aspect that interested you. It's okay that you are not the world's leading expert just yet—the important thing to remember is that you now know about plenty of stuff that other people don't, so they are very likely to appreciate your perspective.\n","\n","Another community event which many people find useful is a regular book club or paper reading club. You might find that there are some in your neighbourhood already, and if not you could try to get one started yourself. Even if there is just one other person doing it with you, it will help give you the support and encouragement to get going.\n","\n","If you are not in a geography where it's easy to get together with like-minded folks in person, drop by the forums, because there are always people starting up virtual study groups. These generally involve a bunch of folks getting together over video chat once a week or so to discuss some deep learning topic.\n","\n","Hopefully, by this point, you have a few little projects that you've put together and experiments that you've run. Our recommendation for the next step is to pick one of these and make it as good as you can. Really polish it up into the best piece of work that you can—something you are really proud of. This will force you to go much deeper into a topic, which will really test your understanding and give you the opportunity to see what you can do when you really put your mind to it.\n","\n","Also, you may want to take a look at the fast.ai free online course that covers the same material as this book. Sometimes, seeing the same material in two different ways can really help to crystallize the ideas. In fact, human learning researchers have found that one of the best ways to learn material is to see the same thing from different angles, described in different ways.\n","\n","Your final mission, should you choose to accept it, is to take this book and give it to somebody that you know—and get somebody else started on their own deep learning journey!"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6okkJ4Aa2S5q"},"outputs":[],"source":[]}],"metadata":{"jupytext":{"split_at_heading":true},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"colab":{"provenance":[{"file_id":"https://github.com/fastai/fastbook/blob/master/20_conclusion.ipynb","timestamp":1712448021883}]}},"nbformat":4,"nbformat_minor":0} \ No newline at end of file diff --git a/notebooks/oleg/Testing GPU.ipynb b/notebooks/oleg/Testing GPU.ipynb index ca1be5f..cbe50d0 100644 --- a/notebooks/oleg/Testing GPU.ipynb +++ b/notebooks/oleg/Testing GPU.ipynb @@ -10,8 +10,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "CUDA is available. GPU is ready for use.\n", - "Number of GPUs: 1\n", + "CUDA is available. Number of GPUs: 1\n", "GPU Name: NVIDIA GeForce RTX 3060\n" ] } @@ -21,8 +20,7 @@ "\n", "# Check if CUDA is available\n", "if torch.cuda.is_available():\n", - " print(\"CUDA is available. GPU is ready for use.\")\n", - " print(f\"Number of GPUs: {torch.cuda.device_count()}\")\n", + " print(f\"CUDA is available. Number of GPUs: {torch.cuda.device_count()}\")\n", " print(f\"GPU Name: {torch.cuda.get_device_name(0)}\")\n", "else:\n", " print(\"CUDA is not available. No GPU detected.\")\n" @@ -41,7 +39,7 @@ { "cell_type": "code", "execution_count": null, - "id": "53cd2a47-ef77-401a-8497-8fc920919f22", + "id": "7313a620-a0eb-4207-a12a-90aeee3cd980", "metadata": {}, "outputs": [], "source": [] diff --git a/orig.docker-compose.yml b/orig.docker-compose.yml deleted file mode 100644 index 49d5052..0000000 --- a/orig.docker-compose.yml +++ /dev/null @@ -1,20 +0,0 @@ -version: '3.8' - -services: - jupyter: - image: pytorch/pytorch:latest - container_name: pytorch_jupyter - runtime: nvidia - deploy: - resources: - reservations: - devices: - - capabilities: [gpu] - environment: - - JUPYTER_ENABLE_LAB=yes - volumes: - - /opt/jupyter_pytorch/notebooks:/workspace # Map local notebook directory to container - ports: - - "8888:8888" # Expose port 8888 to the host - command: > - bash -c "pip install jupyterlab && jupyter-lab --ip=0.0.0.0 --port=8888 --no-browser --allow-root --NotebookApp.token='' --NotebookApp.password=''"