dev progress

This commit is contained in:
Oleg Sheynin 2026-01-01 22:12:04 +00:00
parent 4bf1d46208
commit 002f797751
2 changed files with 75 additions and 70 deletions

View File

@ -34,6 +34,7 @@ class PairsTrader(NamedObject):
live_strategy_: PtLiveStrategy
pricer_client_: CvttRestMktDataClient
ti_sender_: TradingInstructionsSender
rest_service_: RestService
def __init__(self) -> None:
@ -100,8 +101,7 @@ class PairsTrader(NamedObject):
# ------- CREATE TRADER CLIENT -------
self.ti_sender_ = TradingInstructionsSender(config=self.config_, pairs_trader=self)
Log.info(f"{self.fname()} TI client created: {self.ti_sender_}")
Log.info(f"{self.fname()} TI sebder created: {self.ti_sender_}")
# # ------- CREATE REST SERVER -------
self.rest_service_ = RestService(

View File

@ -17,28 +17,29 @@ from cvttpy_tools.logger import Log
# ---
from cvttpy_trading.trading.instrument import ExchangeInstrument
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate
from cvttpy_trading.trading.trading_instructions import TradingInstructions
# ---
from pairs_trading.lib.pt_strategy.model_data_policy import ModelDataPolicy
from pairs_trading.lib.pt_strategy.pt_model import Prediction
from pairs_trading.lib.pt_strategy.trading_pair import PairState, TradingPair
from pairs_trading.apps.pairs_trader import PairsTrader
"""
--config=pair.cfg
--pair=PAIR-BTC-USDT:COINBASE_AT,PAIR-ETH-USDT:COINBASE_AT
"""
class TradingInstructionType(Enum):
TARGET_POSITION = "TARGET_POSITION"
# class TradingInstructionType(Enum):
# TARGET_POSITION = "TARGET_POSITION"
@dataclass
class TradingInstruction(NamedObject):
type_: TradingInstructionType
exch_instr_: ExchangeInstrument
specifics_: Dict[str, Any]
# @dataclass
# class TradingInstruction(NamedObject):
# type_: TradingInstructionType
# exch_instr_: ExchangeInstrument
# specifics_: Dict[str, Any]
class PtLiveStrategy(NamedObject):
@ -135,12 +136,12 @@ class PtLiveStrategy(NamedObject):
[self.predictions_df_, prediction.to_df()], ignore_index=True
)
trading_instructions: List[TradingInstruction] = (
trading_instructions: Optional[TradingInstructions] = (
self._create_trading_instructions(
prediction=prediction, last_row=market_data_df.iloc[-1]
)
)
if len(trading_instructions) > 0:
if trading_instructions is not None:
await self._send_trading_instructions(trading_instructions)
def _is_md_actual(self, hist_aggr: List[MdTradesAggregate]) -> bool:
@ -156,15 +157,16 @@ class PtLiveStrategy(NamedObject):
return self.history_depth_sec_
async def _send_trading_instructions(
self, trading_instructions: List[TradingInstruction]
self, trading_instructions: TradingInstructions
) -> None:
await self.pairs_trader_.ti_sender_.send_trading_instructions(trading_instructions)
pass # URGENT implement _send_trading_instructions
def _create_trading_instructions(
self, prediction: Prediction, last_row: pd.Series
) -> List[TradingInstruction]:
) -> Optional[TradingInstructions]:
pair = self.trading_pair_
trd_instructions: List[TradingInstruction] = []
res: Optional[TradingInstructions]
scaled_disequilibrium = prediction.scaled_disequilibrium_
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
@ -188,73 +190,76 @@ class PtLiveStrategy(NamedObject):
def _create_open_trade_instructions(
self, pair: TradingPair, row: pd.Series, prediction: Prediction
) -> List[TradingInstruction]:
) -> Optional[TradingInstructions]:
ti: Optional[TradingInstructions] = None
scaled_disequilibrium = prediction.scaled_disequilibrium_
if scaled_disequilibrium > 0:
side_a = "SELL"
trd_inst_a = TradingInstruction(
type_=TradingInstructionType.TARGET_POSITION,
exch_instr_=pair.get_instrument_a(),
specifics_={"side": "SELL", "strength": -1},
)
side_b = "BUY"
else:
side_a = "BUY"
side_b = "SELL"
# if scaled_disequilibrium > 0:
# side_a = "SELL"
# trd_inst_a = TradingInstruction(
# type_=TradingInstructionType.TARGET_POSITION,
# exch_instr_=pair.get_instrument_a(),
# specifics_={"side": "SELL", "strength": -1},
# )
# side_b = "BUY"
# else:
# side_a = "BUY"
# side_b = "SELL"
colname_a, colname_b = pair.exec_prices_colnames()
px_a = row[f"{colname_a}"]
px_b = row[f"{colname_b}"]
# colname_a, colname_b = pair.exec_prices_colnames()
# px_a = row[f"{colname_a}"]
# px_b = row[f"{colname_b}"]
tstamp = row["tstamp"]
diseqlbrm = prediction.disequilibrium_
scaled_disequilibrium = prediction.scaled_disequilibrium_
# tstamp = row["tstamp"]
# diseqlbrm = prediction.disequilibrium_
# scaled_disequilibrium = prediction.scaled_disequilibrium_
df = self._trades_df()
# df = self._trades_df()
# save closing sides
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
pair.user_data_["open_side_b"] = side_b
pair.user_data_["open_px_a"] = px_a
pair.user_data_["open_px_b"] = px_b
pair.user_data_["open_tstamp"] = tstamp
# # save closing sides
# pair.user_data_["open_side_a"] = side_a # used in oustanding positions
# pair.user_data_["open_side_b"] = side_b
# pair.user_data_["open_px_a"] = px_a
# pair.user_data_["open_px_b"] = px_b
# pair.user_data_["open_tstamp"] = tstamp
pair.user_data_["close_side_a"] = side_b # used for closing trades
pair.user_data_["close_side_b"] = side_a
# pair.user_data_["close_side_a"] = side_b # used for closing trades
# pair.user_data_["close_side_b"] = side_a
# create opening trades
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_a_,
"side": side_a,
"action": "OPEN",
"price": px_a,
"disequilibrium": diseqlbrm,
"signed_scaled_disequilibrium": scaled_disequilibrium,
"scaled_disequilibrium": abs(scaled_disequilibrium),
# "pair": pair,
}
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_b_,
"side": side_b,
"action": "OPEN",
"price": px_b,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": abs(scaled_disequilibrium),
"signed_scaled_disequilibrium": scaled_disequilibrium,
# "pair": pair,
}
ti: List[TradingInstruction] = self._create_trading_instructions(
prediction=prediction, last_row=row
)
# # create opening trades
# df.loc[len(df)] = {
# "time": tstamp,
# "symbol": pair.symbol_a_,
# "side": side_a,
# "action": "OPEN",
# "price": px_a,
# "disequilibrium": diseqlbrm,
# "signed_scaled_disequilibrium": scaled_disequilibrium,
# "scaled_disequilibrium": abs(scaled_disequilibrium),
# # "pair": pair,
# }
# df.loc[len(df)] = {
# "time": tstamp,
# "symbol": pair.symbol_b_,
# "side": side_b,
# "action": "OPEN",
# "price": px_b,
# "disequilibrium": diseqlbrm,
# "scaled_disequilibrium": abs(scaled_disequilibrium),
# "signed_scaled_disequilibrium": scaled_disequilibrium,
# # "pair": pair,
# }
# ti: List[TradingInstruction] = self._create_trading_instructions(
# prediction=prediction, last_row=row
# )
return ti
def _create_close_trade_instructions(
self, pair: TradingPair, row: pd.Series # , prediction: Prediction
) -> List[TradingInstruction]:
return [] # URGENT implement _create_close_trade_instructions
) -> Optional[TradingInstructions]:
ti: Optional[TradingInstructions] = None
# URGENT implement _create_close_trade_instructions
return ti
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
trades = None