diff --git a/lib/pt_trading/sliding_fit.py b/lib/pt_trading/sliding_fit.py index 9488af3..9898ca5 100644 --- a/lib/pt_trading/sliding_fit.py +++ b/lib/pt_trading/sliding_fit.py @@ -5,14 +5,10 @@ from typing import Dict, Optional, cast import pandas as pd # type: ignore[import] from pt_trading.fit_method import PairState, PairsTradingFitMethod from pt_trading.results import BacktestResult -from pt_trading.trading_pair import TradingPair +from pt_trading.trading_pair import CointegrationData, TradingPair NanoPerMin = 1e9 - - - - class SlidingFit(PairsTradingFitMethod): def __init__(self) -> None: super().__init__() @@ -37,7 +33,6 @@ class SlidingFit(PairsTradingFitMethod): "scaled_disequilibrium": "float64", "pair": "object" }) - pair.user_data_["is_cointegrated"] = False training_minutes = config["training_minutes"] curr_predicted_row_idx = 0 @@ -59,31 +54,10 @@ class SlidingFit(PairsTradingFitMethod): try: # ================================ TRAINING ================================ - is_cointegrated = pair.train_pair() + pair.train_pair() except Exception as e: raise RuntimeError(f"{pair}: Training failed: {str(e)}") from e - if pair.user_data_["is_cointegrated"] != is_cointegrated: - pair.user_data_["is_cointegrated"] = is_cointegrated - if not is_cointegrated: - if pair.user_data_["state"] == PairState.OPEN: - print( - f"{pair} {curr_training_start_idx} LOST COINTEGRATION. Consider closing positions..." - ) - else: - print( - f"{pair} {curr_training_start_idx} IS NOT COINTEGRATED. Moving on" - ) - else: - print("*" * 80) - print( - f"Pair {pair} ({curr_training_start_idx}) IS COINTEGRATED" - ) - print("*" * 80) - if not is_cointegrated: - curr_training_start_idx += 1 - continue - try: # ================================ PREDICTION ================================ pair.predict() diff --git a/lib/pt_trading/static_fit.py b/lib/pt_trading/static_fit.py index e182930..12bf3a7 100644 --- a/lib/pt_trading/static_fit.py +++ b/lib/pt_trading/static_fit.py @@ -18,14 +18,6 @@ class StaticFit(PairsTradingFitMethod): ) -> Optional[pd.DataFrame]: # abstractmethod config = pair.config_ pair.get_datasets(training_minutes=config["training_minutes"]) - try: - is_cointegrated = pair.train_pair() - if not is_cointegrated: - print(f"{pair} IS NOT COINTEGRATED") - return None - except Exception as e: - print(f"{pair}: Training failed: {str(e)}") - return None try: pair.predict() diff --git a/lib/pt_trading/trading_pair.py b/lib/pt_trading/trading_pair.py index e3e0645..7c3ba0c 100644 --- a/lib/pt_trading/trading_pair.py +++ b/lib/pt_trading/trading_pair.py @@ -1,8 +1,63 @@ +from __future__ import annotations + from typing import Any, Dict, List, Optional import pandas as pd # type:ignore from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults # type:ignore +class CointegrationData: + EG_PVALUE_THRESHOLD = 0.05 + + tstamp_: pd.Timestamp + pair_: str + eg_pvalue_: float + johansen_lr1_: float + johansen_cvt_: float + eg_is_cointegrated_: bool + johansen_is_cointegrated_: bool + + def __init__(self, pair: TradingPair): + training_df = pair.training_df_ + + assert training_df is not None + from statsmodels.tsa.vector_ar.vecm import coint_johansen + + df = training_df[pair.colnames()].reset_index(drop=True) + + # Run Johansen cointegration test + result = coint_johansen(df, det_order=0, k_ar_diff=1) + self.johansen_lr1_ = result.lr1[0] + self.johansen_cvt_ = result.cvt[0, 1] + self.johansen_is_cointegrated_ = self.johansen_lr1_ > self.johansen_cvt_ + + # Run Engle-Granger cointegration test + from statsmodels.tsa.stattools import coint #type: ignore + + col1, col2 = pair.colnames() + assert training_df is not None + series1 = training_df[col1].reset_index(drop=True) + series2 = training_df[col2].reset_index(drop=True) + + self.eg_pvalue_ = float(coint(series1, series2)[1]) + self.eg_is_cointegrated_ = bool(self.eg_pvalue_ < self.EG_PVALUE_THRESHOLD) + + self.tstamp_ = training_df.index[-1] + self.pair_ = pair.name() + + def to_dict(self) -> Dict[str, Any]: + return { + "tstamp": self.tstamp_, + "pair": self.pair_, + "eg_pvalue": self.eg_pvalue_, + "johansen_lr1": self.johansen_lr1_, + "johansen_cvt": self.johansen_cvt_, + "eg_is_cointegrated": self.eg_is_cointegrated_, + "johansen_is_cointegrated": self.johansen_is_cointegrated_, + } + + def __repr__(self) -> str: + return f"CointegrationData(tstamp={self.tstamp_}, pair={self.pair_}, eg_pvalue={self.eg_pvalue_}, johansen_lr1={self.johansen_lr1_}, johansen_cvt={self.johansen_cvt_}, eg_is_cointegrated={self.eg_is_cointegrated_}, johansen_is_cointegrated={self.johansen_is_cointegrated_})" + class TradingPair: market_data_: pd.DataFrame @@ -148,42 +203,7 @@ class TradingPair: # print(f"{self}: {self.vecm_fit_.summary()}") pass - def check_cointegration_johansen(self) -> bool: - assert self.training_df_ is not None - from statsmodels.tsa.vector_ar.vecm import coint_johansen - - df = self.training_df_[self.colnames()].reset_index(drop=True) - result = coint_johansen(df, det_order=0, k_ar_diff=1) - # print( - # f"{self}: lr1={result.lr1[0]} > cvt={result.cvt[0, 1]}? {result.lr1[0] > result.cvt[0, 1]}" - # ) - is_cointegrated: bool = bool(result.lr1[0] > result.cvt[0, 1]) - - return is_cointegrated - - def check_cointegration_engle_granger(self) -> bool: - from statsmodels.tsa.stattools import coint - - col1, col2 = self.colnames() - assert self.training_df_ is not None - series1 = self.training_df_[col1].reset_index(drop=True) - series2 = self.training_df_[col2].reset_index(drop=True) - - # Run Engle-Granger cointegration test - pvalue = coint(series1, series2)[1] - # Define cointegration if p-value < 0.05 (i.e., reject null of no cointegration) - is_cointegrated: bool = bool(pvalue < 0.05) - # print(f"{self}: is_cointegrated={is_cointegrated} pvalue={pvalue}") - return is_cointegrated - - def check_cointegration(self) -> bool: - is_cointegrated_johansen = self.check_cointegration_johansen() - is_cointegrated_engle_granger = self.check_cointegration_engle_granger() - result = is_cointegrated_johansen or is_cointegrated_engle_granger - return result or True # TODO: remove this - - def train_pair(self) -> bool: - result = self.check_cointegration() + def train_pair(self) -> None: # print('*' * 80 + '\n' + f"**************** {self} IS COINTEGRATED ****************\n" + '*' * 80) self.fit_VECM() assert self.training_df_ is not None and self.vecm_fit_ is not None @@ -200,8 +220,6 @@ class TradingPair: diseq_series - self.training_mu_ ) / self.training_std_ - return result - def add_trades(self, trades: pd.DataFrame) -> None: if self.user_data_["trades"] is None or len(self.user_data_["trades"]) == 0: # If trades is empty or None, just assign the new trades directly @@ -286,6 +304,45 @@ class TradingPair: self.predicted_df_ = self.predicted_df_.reset_index(drop=True) return self.predicted_df_ + def cointegration_check(self) -> Optional[pd.DataFrame]: + print(f"***{self}*** STARTING....") + config = self.config_ + + curr_training_start_idx = 0 + + COINTEGRATION_DATA_COLUMNS = { + "tstamp" : "datetime64[ns]", + "pair" : "string", + "eg_pvalue" : "float64", + "johansen_lr1" : "float64", + "johansen_cvt" : "float64", + "eg_is_cointegrated" : "bool", + "johansen_is_cointegrated" : "bool", + } + # Initialize trades DataFrame with proper dtypes to avoid concatenation warnings + result: pd.DataFrame = pd.DataFrame(columns=[col for col in COINTEGRATION_DATA_COLUMNS.keys()]) #.astype(COINTEGRATION_DATA_COLUMNS) + + training_minutes = config["training_minutes"] + while True: + print(curr_training_start_idx, end="\r") + self.get_datasets( + training_minutes=training_minutes, + training_start_index=curr_training_start_idx, + testing_size=1, + ) + + if len(self.training_df_) < training_minutes: + print( + f"{self}: current offset={curr_training_start_idx}" + f" * Training data length={len(self.training_df_)} < {training_minutes}" + " * Not enough training data. Completing the job." + ) + break + new_row = pd.Series(CointegrationData(self).to_dict()) + result.loc[len(result)] = new_row + curr_training_start_idx += 1 + return result + def __repr__(self) -> str: return self.name() diff --git a/research/cointegration_test.py b/research/cointegration_test.py new file mode 100644 index 0000000..98c0f14 --- /dev/null +++ b/research/cointegration_test.py @@ -0,0 +1,126 @@ +import argparse +import glob +import importlib +import os +from datetime import date, datetime +from typing import Any, Dict, List, Optional + +import pandas as pd + +from tools.config import expand_filename, load_config +from tools.data_loader import get_available_instruments_from_db, load_market_data +from pt_trading.results import ( + BacktestResult, + create_result_database, + store_config_in_database, + store_results_in_database, +) +from pt_trading.fit_method import PairsTradingFitMethod +from pt_trading.trading_pair import TradingPair + +from research.research_tools import create_pairs, resolve_datafiles + + +def main() -> None: + parser = argparse.ArgumentParser(description="Run pairs trading backtest.") + parser.add_argument( + "--config", type=str, required=True, help="Path to the configuration file." + ) + parser.add_argument( + "--datafile", + type=str, + required=False, + help="Market data file to process.", + ) + parser.add_argument( + "--instruments", + type=str, + required=False, + help="Comma-separated list of instrument symbols (e.g., COIN,GBTC). If not provided, auto-detects from database.", + ) + args = parser.parse_args() + + config: Dict = load_config(args.config) + + # Resolve data files (CLI takes priority over config) + datafile = resolve_datafiles(config, args.datafile)[0] + + if not datafile: + print("No data files found to process.") + return + + print(f"Found {datafile} data files to process:") + + # # Create result database if needed + # if args.result_db.upper() != "NONE": + # args.result_db = expand_filename(args.result_db) + # create_result_database(args.result_db) + + # # Initialize a dictionary to store all trade results + # all_results: Dict[str, Dict[str, Any]] = {} + + # # Store configuration in database for reference + # if args.result_db.upper() != "NONE": + # # Get list of all instruments for storage + # all_instruments = [] + # for datafile in datafiles: + # if args.instruments: + # file_instruments = [ + # inst.strip() for inst in args.instruments.split(",") + # ] + # else: + # file_instruments = get_available_instruments_from_db(datafile, config) + # all_instruments.extend(file_instruments) + + # # Remove duplicates while preserving order + # unique_instruments = list(dict.fromkeys(all_instruments)) + + # store_config_in_database( + # db_path=args.result_db, + # config_file_path=args.config, + # config=config, + # fit_method_class=fit_method_class_name, + # datafiles=datafiles, + # instruments=unique_instruments, + # ) + + # Process each data file + price_column = config["price_column"] + + print(f"\n====== Processing {os.path.basename(datafile)} ======") + + # Determine instruments to use + if args.instruments: + # Use CLI-specified instruments + instruments = [inst.strip() for inst in args.instruments.split(",")] + print(f"Using CLI-specified instruments: {instruments}") + else: + # Auto-detect instruments from database + instruments = get_available_instruments_from_db(datafile, config) + print(f"Auto-detected instruments: {instruments}") + + if not instruments: + print(f"No instruments found in {datafile}...") + return + # Process data for this file + try: + cointegration_data: pd.DataFrame = pd.DataFrame() + for pair in create_pairs(datafile, price_column, config, instruments): + cointegration_data = pd.concat([cointegration_data, pair.cointegration_check()]) + + pd.set_option('display.width', 400) + pd.set_option('display.max_colwidth', None) + pd.set_option('display.max_columns', None) + with pd.option_context('display.max_rows', None, 'display.max_columns', None): + print(f"cointegration_data:\n{cointegration_data}") + + except Exception as err: + print(f"Error processing {datafile}: {str(err)}") + import traceback + + traceback.print_exc() + + + +if __name__ == "__main__": + main() diff --git a/research/notebooks/__DEPRECATED__/pt_pair_backtest.ipynb b/research/notebooks/__DEPRECATED__/pt_pair_backtest.ipynb deleted file mode 100644 index d849d05..0000000 --- a/research/notebooks/__DEPRECATED__/pt_pair_backtest.ipynb +++ /dev/null @@ -1,4433 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "# Pairs Trading Backtest Notebook\n", - "\n", - "This comprehensive notebook supports both StaticFit and SlidingFit.\n", - "It automatically adapts its analysis and visualization based on the strategy specified in the configuration file.\n", - "\n", - "## Key Features:\n", - "\n", - "1. **Configuration-Driven**: Loads strategy and parameters from HJSON configuration files\n", - "2. **Dual Model Support**: Works with both StaticFit and SlidingFit\n", - "3. **Adaptive Visualization**: Different visualizations based on selected strategy\n", - "4. **Comprehensive Analysis**: Deep analysis of trading pairs and dis-equilibrium\n", - "5. **Interactive Configuration**: Easy parameter adjustment and re-running\n", - "\n", - "## Usage:\n", - "\n", - "1. **Configure Parameters**: Set CONFIG_FILE, SYMBOL_A, SYMBOL_B, and TRADING_DATE\n", - "2. **Run Analysis**: Execute cells step by step\n", - "3. **View Results**: Comprehensive visualizations and trading signals\n", - "4. **Experiment**: Modify parameters and re-run for different scenarios\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "\n", - "# Settings" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "# Trading Parameters Configuration\n", - "# Specify your configuration file, trading symbols and date here\n", - "\n", - "# Configuration file selection\n", - "CONFIG_FILE = \"equity\" # Options: \"equity\", \"crypto\", or custom filename (without .cfg extension)\n", - "\n", - "# Trading pair symbols\n", - "SYMBOL_A = \"COIN\" # Change this to your desired symbol A\n", - "SYMBOL_B = \"MSTR\" # Change this to your desired symbol B\n", - "\n", - "# Date for data file selection (format: YYYYMMDD)\n", - "TRADING_DATE = \"20250605\" # Change this to your desired date\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Setup and Configuration" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Code Setup" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Setup complete!\n" - ] - } - ], - "source": [ - "import sys\n", - "import os\n", - "sys.path.append('/home/oleg/develop/pairs_trading/lib')\n", - "sys.path.append('/home/coder/pairs_trading/lib')\n", - "\n", - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "import importlib\n", - "from typing import Dict, List, Optional\n", - "from IPython.display import clear_output\n", - "\n", - "# Import our modules\n", - "from pt_trading.fit_methods import StaticFit, SlidingFit, PairState\n", - "from tools.data_loader import load_market_data\n", - "from pt_trading.trading_pair import TradingPair\n", - "from pt_trading.results import BacktestResult\n", - "\n", - "# Set plotting style\n", - "plt.style.use('seaborn-v0_8')\n", - "sns.set_palette(\"husl\")\n", - "plt.rcParams['figure.figsize'] = (15, 10)\n", - "\n", - "print(\"Setup complete!\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "## Load Configuration\n" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "# Load Configuration from Configuration Files using HJSON\n", - "import hjson\n", - "import os\n", - "\n", - "def load_config_from_file(config_type) -> Optional[Dict]:\n", - " \"\"\"Load configuration from configuration files using HJSON\"\"\"\n", - " config_file = f\"../../configuration/{config_type}.cfg\"\n", - " \n", - " try:\n", - " with open(config_file, 'r') as f:\n", - " # HJSON handles comments, trailing commas, and other human-friendly features\n", - " config = hjson.load(f)\n", - " \n", - " # Convert relative paths to absolute paths from notebook perspective\n", - " if 'data_directory' in config:\n", - " data_dir = config['data_directory']\n", - " if data_dir.startswith('./'):\n", - " # Convert relative path to absolute path from notebook's perspective\n", - " config['data_directory'] = os.path.abspath(f\"../../{data_dir[2:]}\")\n", - " \n", - " return config\n", - " \n", - " except FileNotFoundError:\n", - " print(f\"Configuration file not found: {config_file}\")\n", - " return None\n", - " except hjson.HjsonDecodeError as e:\n", - " print(f\"HJSON parsing error in {config_file}: {e}\")\n", - " return None\n", - " except Exception as e:\n", - " print(f\"Unexpected error loading config from {config_file}: {e}\")\n", - " return None\n", - "\n", - "def instantiate_fit_method_from_config(config: Dict):\n", - " \"\"\"Dynamically instantiate strategy from config\"\"\"\n", - " fit_method_class_name = config.get(\"fit_method_class\", None)\n", - " assert fit_method_class_name is not None\n", - " try:\n", - " # Split module and class name\n", - " if '.' in fit_method_class_name:\n", - " module_name, class_name = fit_method_class_name.rsplit('.', 1)\n", - " else:\n", - " module_name = \"fit_methods\"\n", - " class_name = fit_method_class_name\n", - " \n", - " # Import module and get class\n", - " module = importlib.import_module(module_name)\n", - " fit_method_class = getattr(module, class_name)\n", - " \n", - " # Instantiate strategy\n", - " return fit_method_class()\n", - " \n", - " except Exception as e:\n", - " print(f\"Error instantiating strategy {fit_method_class_name}: {e}\")\n", - " raise Exception(f\"Error instantiating strategy {fit_method_class_name}: {e}\") from e\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Print Configuration" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Trading Parameters:\n", - " Configuration: equity\n", - " Symbol A: COIN\n", - " Symbol B: MSTR\n", - " Trading Date: 20250605\n", - "\n", - "Loading equity configuration using HJSON...\n", - "✓ Successfully loaded EQUITY configuration\n", - " Data directory: /home/oleg/develop/pairs_trading/data/equity\n", - " Database table: md_1min_bars\n", - " Exchange: ALPACA\n", - " Training window: 120 minutes\n", - " Open threshold: 2\n", - " Close threshold: 1\n", - " Strategy: SlidingFit\n", - "\n", - "Data Configuration:\n", - " Data File: 20250605.mktdata.ohlcv.db\n", - " Security Type: EQUITY\n", - " ✓ Data file found: /home/oleg/develop/pairs_trading/data/equity/20250605.mktdata.ohlcv.db\n" - ] - } - ], - "source": [ - "print(f\"Trading Parameters:\")\n", - "print(f\" Configuration: {CONFIG_FILE}\")\n", - "print(f\" Symbol A: {SYMBOL_A}\")\n", - "print(f\" Symbol B: {SYMBOL_B}\")\n", - "print(f\" Trading Date: {TRADING_DATE}\")\n", - "\n", - "# Load the specified configuration\n", - "print(f\"\\nLoading {CONFIG_FILE} configuration using HJSON...\")\n", - "\n", - "CONFIG = load_config_from_file(CONFIG_FILE)\n", - "assert CONFIG is not None\n", - "pt_bt_config: Dict = dict(CONFIG)\n", - "\n", - "if pt_bt_config:\n", - " print(f\"✓ Successfully loaded {pt_bt_config['security_type']} configuration\")\n", - " print(f\" Data directory: {pt_bt_config['data_directory']}\")\n", - " print(f\" Database table: {pt_bt_config['db_table_name']}\")\n", - " print(f\" Exchange: {pt_bt_config['exchange_id']}\")\n", - " print(f\" Training window: {pt_bt_config['training_minutes']} minutes\")\n", - " print(f\" Open threshold: {pt_bt_config['dis-equilibrium_open_trshld']}\")\n", - " print(f\" Close threshold: {pt_bt_config['dis-equilibrium_close_trshld']}\")\n", - " \n", - " # Instantiate strategy from config\n", - " FIT_MODEL = instantiate_fit_method_from_config(pt_bt_config)\n", - " print(f\" Strategy: {type(FIT_MODEL).__name__}\")\n", - " \n", - " # Automatically construct data file name based on date and config type\n", - " DATA_FILE = f\"{TRADING_DATE}.mktdata.ohlcv.db\"\n", - "\n", - " # Update CONFIG with the specific data file and instruments\n", - " pt_bt_config[\"datafiles\"] = [DATA_FILE]\n", - " pt_bt_config[\"instruments\"] = [SYMBOL_A, SYMBOL_B]\n", - " \n", - " print(f\"\\nData Configuration:\")\n", - " print(f\" Data File: {DATA_FILE}\")\n", - " print(f\" Security Type: {pt_bt_config['security_type']}\")\n", - " \n", - " # Verify data file exists\n", - " data_file_path = f\"{pt_bt_config['data_directory']}/{DATA_FILE}\"\n", - " if os.path.exists(data_file_path):\n", - " print(f\" ✓ Data file found: {data_file_path}\")\n", - " else:\n", - " print(f\" ⚠ Data file not found: {data_file_path}\")\n", - " print(f\" Please check if the date and file exist in the data directory\")\n", - " \n", - " # List available files in the data directory\n", - " try:\n", - " data_dir = pt_bt_config['data_directory']\n", - " if os.path.exists(data_dir):\n", - " available_files = [f for f in os.listdir(data_dir) if f.endswith('.db')]\n", - " print(f\" Available files in {data_dir}:\")\n", - " for file in sorted(available_files)[:5]: # Show first 5 files\n", - " print(f\" - {file}\")\n", - " if len(available_files) > 5:\n", - " print(f\" ... and {len(available_files)-5} more files\")\n", - " except Exception as e:\n", - " print(f\" Could not list files in data directory: {e}\")\n", - "else:\n", - " print(\"⚠ Failed to load configuration. Please check the configuration file.\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "## Load and Prepare Market Data\n" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Loading data from: /home/oleg/develop/pairs_trading/data/equity/20250605.mktdata.ohlcv.db\n", - "Loaded 782 rows of market data\n", - "Symbols in data: ['COIN' 'MSTR']\n", - "Time range: 2025-06-05 13:30:00 to 2025-06-05 20:00:00\n", - "\n", - "Created trading pair: COIN & MSTR\n", - "Market data shape: (391, 3)\n", - "Column names: ['close_COIN', 'close_MSTR']\n", - "\n", - "Sample data:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tstampclose_COINclose_MSTR
02025-06-05 13:30:00263.380384.7700
12025-06-05 13:31:00265.385382.7806
22025-06-05 13:32:00263.735379.8300
32025-06-05 13:33:00264.250380.0400
42025-06-05 13:34:00262.230379.6400
\n", - "
" - ], - "text/plain": [ - " tstamp close_COIN close_MSTR\n", - "0 2025-06-05 13:30:00 263.380 384.7700\n", - "1 2025-06-05 13:31:00 265.385 382.7806\n", - "2 2025-06-05 13:32:00 263.735 379.8300\n", - "3 2025-06-05 13:33:00 264.250 380.0400\n", - "4 2025-06-05 13:34:00 262.230 379.6400" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Load market data\n", - "datafile_path = f\"{pt_bt_config['data_directory']}/{DATA_FILE}\"\n", - "print(f\"Loading data from: {datafile_path}\")\n", - "\n", - "market_data_df = load_market_data(datafile_path, config=pt_bt_config)\n", - "\n", - "print(f\"Loaded {len(market_data_df)} rows of market data\")\n", - "print(f\"Symbols in data: {market_data_df['symbol'].unique()}\")\n", - "print(f\"Time range: {market_data_df['tstamp'].min()} to {market_data_df['tstamp'].max()}\")\n", - "\n", - "# Create trading pair\n", - "pair = TradingPair(\n", - " market_data=market_data_df,\n", - " symbol_a=SYMBOL_A,\n", - " symbol_b=SYMBOL_B,\n", - " price_column=pt_bt_config[\"price_column\"]\n", - ")\n", - "\n", - "print(f\"\\nCreated trading pair: {pair}\")\n", - "print(f\"Market data shape: {pair.market_data_.shape}\")\n", - "print(f\"Column names: {pair.colnames()}\")\n", - "\n", - "# Display sample data\n", - "print(f\"\\nSample data:\")\n", - "display(pair.market_data_.head())\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Fixed draw_symbol_trades function created successfully!\n", - "This function correctly filters trades data rather than trying to filter price data with trade conditions.\n" - ] - } - ], - "source": [ - "# Fixed draw_symbol_trades function\n", - "def draw_symbol_trades_fixed(fig, symbol_name, color, symbol_data, colname):\n", - " # Add Symbol price data to row 4 (subplot 4)\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=symbol_data['tstamp'],\n", - " y=symbol_data[colname],\n", - " name=f'{symbol_name} Price',\n", - " line=dict(color=color, width=2),\n", - " opacity=0.8\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add trading signals for Symbol if available\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " # Filter trades for this symbol\n", - " symbol_trades = pair_trades[pair_trades['symbol'] == symbol_name].copy()\n", - " \n", - " if len(symbol_trades) > 0:\n", - " # Separate trades by action and status - filter the trades, not the price data\n", - " buy_open_trades = symbol_trades[(symbol_trades['action'].str.contains('BUY', na=False)) & \n", - " (symbol_trades['status'] == 'OPEN')]\n", - " buy_close_trades = symbol_trades[(symbol_trades['action'].str.contains('BUY', na=False)) & \n", - " (symbol_trades['status'] == 'CLOSE')]\n", - " sell_open_trades = symbol_trades[(symbol_trades['action'].str.contains('SELL', na=False)) & \n", - " (symbol_trades['status'] == 'OPEN')]\n", - " sell_close_trades = symbol_trades[(symbol_trades['action'].str.contains('SELL', na=False)) & \n", - " (symbol_trades['status'] == 'CLOSE')]\n", - " \n", - " # Add BUY OPEN signals\n", - " if len(buy_open_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_open_trades['time'],\n", - " y=buy_open_trades['price'],\n", - " mode='markers',\n", - " name=f'{symbol_name} BUY OPEN',\n", - " marker=dict(color='red', size=12, symbol='triangle-up'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add BUY CLOSE signals\n", - " if len(buy_close_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_close_trades['time'],\n", - " y=buy_close_trades['price'],\n", - " mode='markers',\n", - " name=f'{symbol_name} BUY CLOSE',\n", - " marker=dict(color='red', size=12, symbol='triangle-down'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add SELL OPEN signals\n", - " if len(sell_open_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_open_trades['time'],\n", - " y=sell_open_trades['price'],\n", - " mode='markers',\n", - " name=f'{symbol_name} SELL OPEN',\n", - " marker=dict(color='blue', size=12, symbol='triangle-up'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add SELL CLOSE signals\n", - " if len(sell_close_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_close_trades['time'],\n", - " y=sell_close_trades['price'],\n", - " mode='markers',\n", - " name=f'{symbol_name} SELL CLOSE',\n", - " marker=dict(color='blue', size=12, symbol='triangle-down'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - "\n", - "print(\"Fixed draw_symbol_trades function created successfully!\")\n", - "print(\"This function correctly filters trades data rather than trying to filter price data with trade conditions.\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Fit Method Functions" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "def run_static_fit(config: Dict, pair: TradingPair, bt_result: BacktestResult) -> bool:\n", - " is_cointegrated = False\n", - " print(\"\\n=== STATIC FIT ANALYSIS ===\")\n", - " \n", - " # For StaticFit, we do traditional training/testing split\n", - " training_minutes = pt_bt_config[\"training_minutes\"]\n", - " pair.get_datasets(training_minutes=training_minutes)\n", - " \n", - " print(f\"Training data: {len(pair.training_df_)} rows\")\n", - " print(f\"Testing data: {len(pair.testing_df_)} rows\")\n", - " print(f\"Training period: {pair.training_df_['tstamp'].iloc[0]} to {pair.training_df_['tstamp'].iloc[-1]}\")\n", - " print(f\"Testing period: {pair.testing_df_['tstamp'].iloc[0]} to {pair.testing_df_['tstamp'].iloc[-1]}\")\n", - " \n", - " # Train and test cointegration\n", - " is_cointegrated = pair.train_pair()\n", - " print(f\"Pair cointegration status: {is_cointegrated}\")\n", - " \n", - " if is_cointegrated:\n", - " print(f\"VECM Beta coefficients: {pair.vecm_fit_.beta.flatten()}\")\n", - " print(f\"Training dis-equilibrium mean: {pair.training_mu_:.6f}\")\n", - " print(f\"Training dis-equilibrium std: {pair.training_std_:.6f}\")\n", - " \n", - " # Generate predictions and run strategy\n", - " pair.predict()\n", - " pair_trades = FIT_MODEL.run_pair(config=pt_bt_config, pair=pair, bt_result=bt_result)\n", - " \n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " print(f\"Generated {len(pair_trades)} trading signals\")\n", - " else:\n", - " print(\"No trading signals generated\")\n", - " else:\n", - " print(\"Pair is not cointegrated - cannot proceed with strategy\")\n", - "\n", - " return is_cointegrated\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "## Print Strategy Specifics\n" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Analysis for SlidingFit...\n", - "\n", - "=== SLIDING FIT FIT_MODEL ANALYSIS ===\n", - "This strategy:\n", - " - Re-fits cointegration model using sliding window\n", - " - Adapts to changing market conditions\n", - " - Dynamic parameter updates every minute\n", - "\n", - "Sliding window analysis parameters:\n", - " Training window size: 120 minutes\n", - " Maximum iterations: 271\n", - " Total analysis time: ~271 minutes\n", - "\n", - "Strategy Configuration:\n", - " Open threshold: 2\n", - " Close threshold: 1\n", - " Training minutes: 120\n", - " Funding per pair: $2000\n" - ] - } - ], - "source": [ - "# Determine analysis approach based on strategy type\n", - "FIT_METHOD_TYPE = type(FIT_MODEL).__name__\n", - "print(f\"Analysis for {FIT_METHOD_TYPE}...\")\n", - "\n", - "if FIT_METHOD_TYPE == \"StaticFit\":\n", - " print(\"\\n=== STATIC FIT FIT_MODEL ANALYSIS ===\")\n", - " print(\"This strategy:\")\n", - " print(\" - Fits cointegration model once using training data\")\n", - " print(\" - Uses fixed parameters for entire trading period\")\n", - " print(\" - Generates trading signals based on static thresholds\")\n", - " \n", - "elif FIT_METHOD_TYPE == \"SlidingFit\":\n", - " print(\"\\n=== SLIDING FIT FIT_MODEL ANALYSIS ===\")\n", - " print(\"This strategy:\")\n", - " print(\" - Re-fits cointegration model using sliding window\")\n", - " print(\" - Adapts to changing market conditions\")\n", - " print(\" - Dynamic parameter updates every minute\")\n", - " \n", - " # Calculate maximum possible iterations for sliding window\n", - " training_minutes = pt_bt_config[\"training_minutes\"]\n", - " max_iterations = len(pair.market_data_) - training_minutes\n", - " print(f\"\\nSliding window analysis parameters:\")\n", - " print(f\" Training window size: {training_minutes} minutes\")\n", - " print(f\" Maximum iterations: {max_iterations}\")\n", - " print(f\" Total analysis time: ~{max_iterations} minutes\")\n", - "\n", - "print(f\"\\nStrategy Configuration:\")\n", - "print(f\" Open threshold: {pt_bt_config['dis-equilibrium_open_trshld']}\")\n", - "print(f\" Close threshold: {pt_bt_config['dis-equilibrium_close_trshld']}\")\n", - "print(f\" Training minutes: {pt_bt_config['training_minutes']}\")\n", - "print(f\" Funding per pair: ${pt_bt_config['funding_per_pair']}\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "## Visualize Raw Price Data\n" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAPeCAYAAADEZ225AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FOX6xvF7Zmc3IYRAgBB6l16kl4NIE1SsgAUURVFsiD+VA3YPWLBgBxQVFVFAQUQQj6iAYANEQWlK70V6Z3en/P7YQzAmQAJpG76f6+JSdmdn3g15N5O553lew/M8TwAAAAAAAAAAAACimpnbAwAAAAAAAAAAAABw5gj+AAAAAAAAAAAAgHyA4A8AAAAAAAAAAADIBwj+AAAAAAAAAAAAgHyA4A8AAAAAAAAAAADIBwj+AAAAAAAAAAAAgHyA4A8AAAAAAAAAAADIBwj+AAAAAAAAAAAAgHyA4A8AAAAAAAAAAADIBwj+AAAAAAA55rXXXlP16tVzexgAAAAAkC8R/AEAAABALtiwYYMee+wxtW/fXnXr1lXDhg117bXXavTo0Tp69GiqbcPhsN5//3117dpVDRo0UIMGDdS1a1e9//77CofDafbdrl073Xbbbakeq169uqpXr6533nknzfaTJk1S9erVtXjx4pOOed68eSn7qV69umrXrq327dtrwIAB2rhx42l8FXLGP8ddp04dtWzZUj179tQbb7yh3bt3n/a+V61apddee02bNm3KwhEDAAAAwOmxcnsAAAAAAHC2+fbbb3XPPfcoEAjo8ssvV7Vq1RQOh/XLL7/o+eef16pVq/TEE09Ikg4fPqzbbrtN8+fPV9u2bdWlSxcZhqHvvvtOTz31lL7++muNHDlScXFxGTr2qFGj1L17dxUoUOC0x9+zZ0/VrVtXtm1r2bJl+uijjzR79mxNmTJFycnJJ33tHXfcoT59+pz2sc/EsXG7rqvdu3dr4cKFeu211/Tuu+/q5ZdfVosWLTK9z1WrVmnYsGFq2rSpypYtmw2jBgAAAICMI/gDAAAAgBy0ceNG3XvvvSpdurRGjx6tEiVKpDx33XXXaf369fr2229THnvmmWc0f/58Pfroo7r++utTHu/Ro4c+/PBDDR48WM8++6wGDRp0ymPXrFlTy5cv1/jx43XTTTed9nto3LixLrzwQklS165dVbFiRT355JOaPHlymkrDYw4fPqy4uDhZliXLyp1fRf8+7mP++OMP3XzzzerXr5+mTZuW6t8DAAAAAKINrT4BAAAAIAe9/fbbOnz4sJ566ql0Q6YKFSroxhtvlCRt27ZNEydOVPPmzVOFfsdcd911atasmSZOnKht27ad8tgNGzZU8+bN9fbbb6dpJ3ommjdvLkkp7S6PreO3atUq3X///WrSpIl69OiR6rl/+uyzz9StWzfVr19fTZo00XXXXafvv/8+1TazZ89Wjx49dO6556pBgwbq06ePVq5ceUZjr1Gjhh566CHt379fH374Ycrjmzdv1n/+8x916tRJ9erVU7NmzdSvX79ULT0nTZqke+65R5J0ww03pLQSnTdvniTpm2++UZ8+fdSqVSvVqVNHHTp00PDhw+U4zhmNGQAAAABOhOAPAAAAAHLQrFmzVK5cOTVs2PCU286ZM0eO4+iKK6444TZXXHGFbNvWd999l6Hj33333dq5c6fGjRuX0SGf0oYNGyRJRYoUSfX4PffcoyNHjujee+/VVVdddcLXDxs2TAMGDJBlWerXr5/uvvtulSxZUnPnzk3Z5lg1YVxcnPr3768777xTq1atUo8ePc54fb1OnTopNjY2VdC4ePFiLVy4UJ07d9Yjjzyia6+9VnPnztUNN9ygI0eOSJKaNGminj17SpJuv/12Pffcc3ruuedUpUoVSdKnn36quLg43XTTTXr44YdVu3Ztvfrqqxo6dOgZjRcAAAAAToRWnwAAAACQQw4ePKjt27erffv2Gdp+1apVkiJVaSdy7LnVq1dnaJ+NGzdWs2bNUtb6i42NzdDr/u7QoUPavXu3bNvW8uXL9dRTT8kwDHXs2DHN2F544YWT7mv9+vUaPny4LrjgAr366qsyzeP3p3qel3K8p556SldddVXK2oeSdOWVV+rCCy/UyJEjUz2eWX6/XxUrVtTGjRtTHmvTpk2atqBt27bVNddco+nTp+uKK65QuXLl1LhxY40ZM0YtW7ZUs2bNUm3/wgsvpPr6du/eXY899pjGjRune++9V4FA4LTHDAAAAADpoeIPAAAAAHLIwYMHJUkFCxbM0PaHDh065fbHnju274y4++67tWPHDo0fPz7Dr/m7hx56SC1atNB5552nPn366MiRI3rmmWdUt27dVNtde+21p9zXN998I9d1ddddd6UK/STJMAxJ0o8//qj9+/erc+fO2r17d8of0zRVv379lNaaZyIuLi7l6y0pVWAXDoe1Z88elS9fXgkJCVq2bFmG9vn3fRw8eFC7d+9W48aNdeTIEa1Zs+aMxwwAAAAA/0TFHwAAAADkkPj4eElKFTCdzLFQ72TbZyQc/KcmTZqoWbNmevvttzMUzv3TXXfdpcaNG8s0TSUmJqpKlSqyrLS/XpYtW/aU+9qwYYNM00xpj5medevWSVLK2of/dOzreiYOHz6c6mt49OhRjRw5UpMmTdL27dtTqg8l6cCBAxna58qVK/Xyyy9r7ty5aYLZjO4DAAAAADKD4A8AAAAAckh8fLxKlCihlStXZmj7Y2HYn3/+qZo1a6a7zZ9//ilJqlq1aqbG0rdvX/Xs2VPjx49XQkJCpl5brVo1tWzZ8pTbxcTEZGq/J3IsdHvuueeUlJSU5nmfz3dG+w+Hw1q3bp3OOeeclMeeeOIJTZo0STfeeKPOPfdcFSpUSIZh6N57700VAp7I/v37df311ys+Pl79+vVT+fLlFRMTo6VLl2ro0KFyXfeMxgwAAAAA6SH4AwAAAIAc1LZtW3300UdauHChGjRocNJtW7duLZ/Pp88++0xXXHFFuttMnjxZlmXpvPPOy9Q4mjZtqqZNm+rtt9/WnXfemanXZqXy5cvLdV2tXr36hOFmuXLlJEnFihXLUOCYWdOnT9fRo0fVqlWrVI9dccUVeuCBB1IeCwaDaSr1jrUj/af58+dr7969GjZsmJo0aZLy+KZNm7J49AAAAABwHGv8AQAAAEAOuuWWWxQXF6dHHnlEO3fuTPP8hg0bNHr0aElSqVKl1KVLF/34448aO3Zsmm3HjRunuXPnqmvXripZsmSmx3Jsrb+PP/44828ki3To0EGmaWr48OFpquCOVdadd955io+P18iRIxUOh9PsY/fu3ad9/D/++ENPP/20ChcurOuuuy7l8fSqCMeMGSPHcVI9VqBAAUlpW3ceW6/w79WBoVAo3X9HAAAAAMgqVPwBAAAAQA4qX768hg4dqnvvvVcXX3yxLr/8clWrVk2hUEgLFy7Ul19+qS5duqRs/+CDD2rNmjUaNGiQvvvuu5TKvu+//14zZsxQ06ZNU1WlZcaxqr/58+dnyXs7HRUqVNDtt9+uESNGqEePHurYsaMCgYAWL16sEiVK6P7771d8fLz+85//aMCAAerSpYsuvvhiFS1aVFu2bNHs2bPVsGFDPfbYY6c81oIFCxQMBuW6rvbu3atff/1VM2fOVHx8vIYNG5aqjWibNm302WefKT4+XlWrVtWiRYv0448/qkiRIqn2WbNmTfl8Pr311ls6cOCAAoGAmjdvrgYNGqhw4cJ64IEH1LNnTxmGoc8++yxDbUIBAAAA4HQR/AEAAABADmvfvr2mTJmiUaNGacaMGRo3bpwCgYCqV6+uBx54QFdffXXKtgULFtR7772nsWPHasqUKXr++efleZ4qV66shx56SD169JDf7z/tsfTt21c33HBDVryt03bPPfeobNmy+uCDD/TSSy+pQIECql69ui6//PKUbS699FKVKFFCb775pkaNGqVQKKTk5GQ1btw4VVB6MmPGjJEk+f1+FSpUSFWqVNHdd9+tq6++WkWLFk217cMPPyzTNDV16lQFg0E1bNhQ7777rm655ZZU2yUlJWnQoEEaOXKkHn74YTmOo/fff1/NmjXTG2+8oWeffVYvv/yyEhISdNlll6lFixbq3bv3GX7FAAAAACB9hsfthgAAAAAAAAAAAEDUY40/AAAAAAAAAAAAIB8g+AMAAAAAAAAAAADyAYI/AAAAAAAAAAAAIB8g+AMAAAAAAAAAAADyAYI/AAAAAAAAAAAAIB8g+AMAAAAAAAAAAADyAYI/AAAAAAAAAAAAIB+wcnsA0W7HjgO5PQQgTzBNQ0WLFtTu3Yfkul5uDwdABjBvgejDvAWiC3MWiD7MWyD6MG+B6MO8PT1JSYUytB0VfwCyhGkaMgxDpmnk9lAAZBDzFog+zFsgujBngejDvAWiD/MWiD7M2+xF8AcAAAAAAAAAAADkAwR/AAAAAAAAAAAAQD5A8AcAAAAAAAAAAADkAwR/AAAAAAAAAAAAQD5A8AcAAAAAAAAAAADkAwR/AAAAAAAAAAAAQD5A8AcAAAAAAAAAAADkAwR/AAAAAAAAAAAAQD5A8AcAAAAAAAAAAADkAwR/AAAAAAAAAAAAQD5A8AcAAAAAAAAAAADkAwR/AAAAAAAAAAAAQD5g5fYAAAAAAAAAAAAAgJyya9dOvf/+O/rxxx+0c+dfSkwsqqpVq+nqq7urceOmkqTFi3/T6NGjtGTJYoVCQZUtW04XX3yprrqqu3w+X8q+WrVqrKefHqrWrduk/D0QCGjs2E9UsmSplO0efPB+xccX0sMP/ydb3xsVfwAAAAAAAAAAADgrbN26Rb1799QvvyzQXXf10+jR4zV06Ktq2LCRXnzxWUnS7Nmz1LdvHyUlJeu1197Qhx9O1FVXddfo0e/o8ccfkud5pziKobfffiP730w6qPgDAAAAAAAAAADAWeGFF56RYRh6663RKlCgQMrjlStXUefOl+vIkSN67rkn1apVaw0c+HDK85deeoUSE4vqgQfu08yZX6t9+44nPEbXrlfro48+VI8ePVW5ctVsfT//RMUfAAAAAAAAAAAA8r39+/dp3ryf1KXLValCv2MKFSqk+fPnat++ferevWea51u1aq1y5crrm2+mn/Q4devWV8uWrfTGG8OybOwZRcUfctWRI5LrSgUL5vZIAAAAAAAAAADAmdq+3dDhwyd+3rIM7d4t7dtnyLaNMzpWXJyUnHyqtpvHbdq0UZ7nqXz5iifcZuPG9ZKkChUqpft8hQoVtXHjhlMe67bb+qpXr+767beFql+/QYbHeKYI/pCr3nvPryNHDN13Xyi3hwIAAAAAAAAAAM7AgQNS//6xOtkSeIYh+f1SOBw46XYZYZqehg8/qkKFMrZ9Zo536nX8Tq5Spcrq1OlivfHGa3r99XfOaF+ZQfCHXLVpk6kDB84s0QcAAAAAAAAAALmvUCFp6NCjp6j4M1W4sKV9+0KybfeMjhcXpwyHfpJUrlw5GYahDRvWnWSbCpKk9evXqm7d+mmeX7dunSpVSr8a8J96975N3bt31Zw532Z8kGcoKoO/kSNH6quvvtKaNWsUGxurBg0aqH///qpcuXKq7RYuXKiXXnpJv//+u0zTVM2aNTVq1CjFxsZKktq1a6fNmzenes3999+vPn365Nh7Odvt2GHo8GFDR49K//tnAQAAAAAAAAAAUepUrTcty1NiorRnjyfbPsOSv0xKSCispk1baNKkCerW7do06/wdOHBATZs2V0JCYY0f/0Ga4O/772dr06YNuvXW2zN0vOTkkura9Wq9+eZwlS5dNsvex8mYOXKULDZ//nxdd911+vjjj/Xuu+/Ktm317t1bh/8WIS9cuFC33HKLWrVqpQkTJmjixIm67rrrZJqp33K/fv30/fffp/y5/vrrc/rtnLUOHZIOH45U+23dStUfAAAAAAAAAADIXvfdN0Cu6+jWW2/Ut9/O0MaNG7Ru3VpNmDBet99+kwoUKKB///tBff/9HD377FNatWqltm7dos8/n6ynnhqkNm3aq127CzJ8vJ49e2nnzh1asGB+Nr6r46Ky4m/UqFGp/v7MM8+oRYsWWrp0qZo0aSJJGjJkiHr27Jmqeu+fFYGSVLBgQSUlJWXvgJGuHTuOh33btpmqVMnJxdEAAAAAAAAAAID8rkyZsho16kO9//4oDRv2snbt2qkiRRJVvXoN3X//A5Kktm07qGjRYho9+h3dddctCoVCKlu2nG644WZdfXV3GUbGi5kSEgrruutu1MiRw7PrLaVieGe6OmEesH79enXs2FFTp05VtWrVtGvXLrVs2VKPPPKIpk2bpg0bNqhy5cr6v//7PzVu3Djlde3atVMwGJRt2ypVqpQuueQS9erVS5aV8Tx0166DMk2q1U7H/PmmXnrJL79fuvRSW1ddRfAXzXw+UwkJBbR//xE5zpn1ZQaQM5i3QPRh3gLRhTkLRB/mLRB9mLdA9GHenp7ExIIZ2i4qK/7+znVdPf3002rYsKGqVasmSdq4caMkadiwYRowYIBq1qypyZMnq1evXvr8889VsWJFSVLPnj1Vq1YtFS5cWAsXLtSLL76oHTt26MEHH8zw8YsWLZipZBfHHTkixcdL55wj7d1rKTExt0eErJCQUODUGwHIU5i3QPRh3gLRhTkLRB/mLRB9mLdA9GHeZo+oD/4GDRqklStXauzYsSmPuW4kIb7mmmvUtWtXSVKtWrX0008/6ZNPPtH9998vSbrppptSXlOjRg35/X49/vjjuv/++xUIBDJ0/N27D1Hxd5rWrrVUpIipokVdrVplas+eUG4PCWeAuzSA6MO8BaIP8xaILsxZIPowb4How7wFog/z9vScFRV/gwcP1rfffqsPPvhAJUuWTHn82Jp9VapUSbV9lSpVtGXLlhPur379+rJtW5s2bUp3PcD0uK4n1436bqm5Yts2qVgxV8nJrmbPNhUOu6J4Mvo5jivb5sMaiCbMWyD6MG+B6MKcBaIP8xaIPsxbIPowb7OHmdsDOB2e52nw4MH6+uuvNXr0aJUrVy7V82XLllWJEiW0du3aVI+vW7dOZcqUOeF+ly9fLtM0VaxYsWwZN1LbscNQUpKnUqVchcOGdu4k9QMAAAAAAAAAADhdUVnxN2jQIH3++ecaMWKEChYsqB07dkiSChUqpNjYWBmGod69e+u1115TjRo1VLNmTX366adas2aNXn31VUnSwoUL9dtvv6l58+YqWLCgFi5cqCFDhuiyyy5T4cKFc/PtnRU8T9q581jwF6mY3Lo18ncAAAAAAAAAAABkXlQGf+PGjZMk9ezZM9XjQ4YMUZcuXSRJvXr1UigU0pAhQ7Rv3z7VqFFD77zzjsqXLy9JCgQC+uKLLzRs2DCFQiGVLVtWvXr1SrXuH7LPgQNSMGioeHFXSUmeLMvT1q2G6tXL7ZEBAAAAAAAAAABEp6gM/v78888MbdenTx/16dMn3edq166tjz/+OCuHhUw41tazRAlPpimVLOlpyxZTkpO7AwMAAAAAAAAAAIhSUbnGH6LfX39FvvWKF4+09ixdOlLxBwAAAAAAAAAAgNND8IdcsWOHobg4T/Hxkb+XLOn+r+IPAAAAAAAAAAAAp4OkBblixw4jpdpPilT87d1r6PDhXBwUAAAAAAAAAABAFCP4Q67YscNQUtLfgz9XkrRtG+0+AQAAAAAAAAAATgfBH3LFP4O/kiUj///Pdp+//GLqzz/5NgUAAAAAAAAAADgVEhXkOM+Tdu40lJTkpjwWFycVKeJp69bjFX8HD0ojRgQ0daqVG8MEAAAAAAAAAACIKgR/yHF790q2nbriT4q0+9y69fi35BdfWAoGDe3cSftPAAAAAAAAAACAUyH4Q47bsSPybVe8eOrgr1QpT1u2REK+gwelr76yFB/vaccOQ56XZjcAAAAAAAAAAAD4G4I/5LgdOyLhXnoVf9u2GXJd6csvLTmO1K1bWMGgoYMHc2OkAAAAAAAAAAAA0YPgDzlu505D8fGeChRI/XipUp5s29D69YamT7fUoYOjypUj6wAeCwsBAAAAAAAAAACQPoI/5Li//kq7vp8UCf4kafTogGxb6tw5rBIlvP+9hm9VAAAAAAAAAACAk7FyewA4++zcmX7wV7y4J7/f06pVpi680FaRIpLnSbGxnnbupOIPAAAAAAAAAADgZCijQo7bscNQUpKb5nHDiFT9WZanzp3DKY8lJXm0+gQAAAAAAAAAADgFKv6Qo1z3xBV/knT++bZc11Bi4vHHkpKo+AMAAAAAAAAAADgVgj/kqN27DbnuiYO/Tp2cNI8VL+5pyRKKUwEAAAAAAAAAAE6GNAU56ljLzhMFf+k51urTy/hLAAAAAAAAAAAAzjoEf8hRx4K/4sUzE/y5CocNHTiQXaMCAAAAAAAAAACIfgR/yFE7dhgqXNhTIJDx1xwLCf/6i3X+AAAAAAAAAAAAToTgDznq0CFDpUq5mXrNsbagO3fy7QoAAAAAAAAAAHAiVm4PAGeXK64IKxzOXOVewYJSXJyX0iYUAAAAAAAAAAAAaRH8IUclJEhSxtf3OyYpyaPVJwAAAAAAAAAAwEnQOxFRoXhxTzt3EvwBAAAAAAAAAACcCMEfokJSEq0+AQAAAAAAAAAATobgD1EhKcnVzp2GvMx3CQUAAAAAAAAAADgrEPwhKhQv7sm2De3dm9sjAQAAAAAAAAAAyJsI/hAVkpIipX47d/ItCwAAAAAAAAAAkB5SFESF4sWPBX+s8wcAAAAAAAAAAJAegj9Ehbg4KT7e019/EfwBAAAAAAAAAACkh+APUaN4cY+KPwAAAAAAAAAAgBMg+EPUSErytGMHwR8AAAAAAAAAAEB6CP4QNZKSXII/AAAAAAAAAACAEyD4Q9Q41urT83J7JAAAAAAAAAAAAHkPwR+iRlKSJ8cxtGdPbo8EAAAAAAAAAAAg7yH4Q9RISoqU+u3YwbctAAAAAAAAAADAP5GgIGoUL34s+GOdPwAAAAAAAAAAgH8i+EPUiI2VChWKrPMHAAAAAAAAAACA1KzcHgCQGeXKufriC0uGIXXsaKtAgdweEQAAAAAAAAAAQN5AxR+iyp13htSqlaNJkyzde2+spk61FArl9qgAAAAAAAAAAAByH8EfokqRItINN4T14otBNW3qaMIES5MnU7gKAAAAAAAAAABAYoKoVKyYp5tvDuuvvwxt3Up+DQAAAAAAAAAAQGKCqFakiKe9e43cHgYAAAAAAAAAAECuI/hDVIsEf7k9CgAAAAAAAAAAgNxH8Ieolpjoac8eQ56X2yMBAAAAAAAAAADIXQR/iGpFiki2bejQodweCQAAAAAAAAAAQO4i+ENUS0yMlPqxzh8AAAAAAAAAADjbEfwhqhUuHAn+9uwh+AMAAAAAAAAAAGc3gj9ENSr+AAAAAAAAAAAAIgj+ENUCASkuziP4AwAAAAAAAAAAZz2CP0S9IkUI/gAAAAAAAAAAAAj+EPUSEz3W+AMAAAAAAAAAAGc9gj9EvUjFX26PAgAAAAAAAAAAIHcR/CHqJSbS6hMAAAAAAAAAAIDgD1GvcGFpzx5DnpfbIwEAAAAAAAAAAMg9BH+IeomJnsJhQ4cP5/ZIAAAAAAAAAAAAcg/BH6JekSKRUj/afQIAAAAAAAAAgLMZwR+iXmJixoO/gwclx8nuEQEAAAAAAAAAAOQ8gj9EvWMVf3v2nDz4C4elf/87VjNm+HJiWAAAAAAAAAAAADmK4A9RLyZGKlDAO2XF35Ilpg4cMLR5M9/2AAAAAAAAAAAg/7FyewBAVihS5NTB388/Ryr9du9mLUAAAJDzDh6UHn88RqVKeerUyVadOq4MTksAAAAAAEAWovQJ+UJionfSVp+2Lf3yi0+GIe3axRU2AED+tWuXoUGDYrRwIad5ec3kyX7t3Wto1y5Dzz4bo4EDYzRjhk+2ndsjAwAAAAAA+QVXhJAvRCr+Tvz88uWmDh0y1KSJQ/AHAMi3jhyRhg4NaNUqU8OHB7RlCz/zztSRI8qSYG7rVkNffeXT5ZfbevrpoB5+OKgyZTy9915Ab7/tl+ed+TEAAAAAAAAI/pAvnKrV5/z5PiUluWrY0NGhQ4aOHs3BwQEAkAMcRxo2LKCdOw09/vhRFS3q6cUXAzp8OLdHFr02bzZ0772xeu89/xnva9w4v4oW9XThhbYMQ6pZ09U994R0xx0hff+9pc8/pwM/AAAAAAA4cwR/yBeKFJH27jXSvVvedaUFC3xq2tRRsWKRDaj6AwDkNx9+6Nfixab69QupalVP994b0r59ht54I0A12d9s3Wpox45Tnwds325oyJAYBYPSd9/5tH//6R9zyRJTv/7q07XX2goEUj/XsqWjyy8P6+OP/VqwgFNzAAAAAABwZri6gHwhMdFTMGjoyJG0z/3xh6kDByJtPosXJ/gDAOQ/X3/t01dfWbrhhrDq1nUlSaVKebrzzpB+/dWnyZPzTjXZ77+bGjUq460tN240NGWKpaVLzTOq2N+9W3rrLb8GDIjVo4/GaN26E58L7N4tPfNMQDExnp58MijTlGbNOr2voetGQtlzznHVrJmT7jbdutlq3NjR668HTjouAAAAAACAU8k7V4GAM1CkSOTq4b59huLiUl9J/Plnn4oW9VSliifHkQyD4A8AkH/89ZehMWP86tTJVocOqYOlBg1cde0a1qRJfiUkeGrfPm3wdPTo8cr4f1ajZbU1awy9/HJAoZChc8911KiRe8rXjBnj17JlPkmSaXqqWNHT+efb6b6X9Bw5In3+uaUvvrAUEyP16BHWjz/6NGRIjAYODKpy5dTnDfv3S888EyPHMfTQQ0ElJXlq2dLRN99YuuQSWz7fiY+1d2+kpafnSRUreqpY0dWGDYY2bjQ1aNBRGSc4/TAM6bbbQnryyRi9+GKMnnjiqAoXztDbAwAAAAAASIXgD/lCYmLkot3u3YZKlTp+Ac/zIsFfs2aODEOyLKlwYY/gDwCQb0ydaqlgQenqq8PpPn/FFbb27zf07rsBbdxo6/rrw7L+dwa4Zo2hESMC2rbN1Pr1tq67Lv19HON50oEDkbAxHDZk25GKNsuSqld3U/abnp07Db3wQozKlPFkGJ6++MJSo0ahkx5vwwZDy5b5dNddIZUt62rFClO//ebTu+8GVKpUULVqnTw49DzphRcCWr3a1IUX2rrkElsFC0qtW9t67rkYPfNMjAYMCKpqVU87dxqaM8enWbMs2bb02GOR0E+SOna0NXu2pQULfCes2lu82NSIEQGZppSU5OnnnyNfI0lq2dJWlSonL3GMjZXuuy+oRx6J1fDhAT3wQEhmLvTm8DydMKAEAAAAAAB5H8Ef8oW/V/z93cqVpvbuNdS06fGLdMWKEfwBAHLPvn3S2rWmkpO9VDernI5jYdXVV9uKiUl/G8OQbrwxrHLlXL33nl9bthjq2zekWbMsffKJpQoVPF14oa0vv7TUuLGj6tVTh2n79kkTJ/q1aZOpLVsMHTqU/s/QuDhPTZo4atHCUa1abqrQ6tAhaejQgPx+T/37B7VihalXXonR6tXGSQOx6dMtJSZG9mtZUrlyjtq1c/TUUwG99ZZfQ4YEFRt74q/PTz/59McfPg0cGExpgSpJBQtKAwcG9fzzkfCvalVXS5f6FAh4atHC0SWX2CpZ8vi4KlTwVL26o6+/Thv8OY70ySeWpk71q3ZtR3feGVJCQuTxrVsNbdpkqk6djFUnFi0q9e0b0pAhMfrkE0tXXWVn6HVZ5YsvIpWR/fsHVbEiC0MCAAAAABCNojL4GzlypL766iutWbNGsbGxatCggfr376/KlSun2m7hwoV66aWX9Pvvv8s0TdWsWVOjRo1S7P+uEO3du1dPPPGEZs2aJdM01bFjRz388MMqWLBgbrwtnIHYWCkmxtOePakvRv78s0+FC3uqVu34xT6CPwBATvvtN1Nz5lhavdrQzp3HE7EGDRxdfLGtGjXc06qymjrVUoECUvv2pw6I2rVzVKqUp1deCahfv1g5jqFLLw2rSxdbpimtWmXqzTf9evrpYEqIuH+/9PTTMdq3z1D9+o7OPddTqVKuSpTwFBMj+XyRPwcOSPPn+zR3rk+zZ1uKj4+0uSxf3lX58p6+/96n3bsNPf54UIULS40auUpOdjVtml/9+qVf9XfggPTjjz5deaWdqpLQMKRbbw3rgQdi9PHHft1wQ/pVikeOSGPH+tW0qZMq9DsmLi4S/r36akCHDhm6+eaQmjd3VKBA+l+/Cy5wNGxYQBs2GCpf/viawSNG+LVypamrrgrr0kvtlH9Hn08qW9ZT2bIZC/2OqVXLVbduYU2Y4Fe1aq7q1z91O9Ss8OOPPo0d61d8vKdnnonRo48GVaYM4R8AAAAAANEmKoO/+fPn67rrrlPdunXlOI5efPFF9e7dW9OmTVNcXJykSOh3yy236LbbbtOjjz4qn8+nP/74Q+bfbj/v37+/duzYoXfffVfhcFgPPfSQHnvsMb3wwgu59dZwBhITPe3de/yqqetK8+b51Lixk+piavHirtavP8kCPQAAZKHt2w299FJApUt7atLEVZUqtipVcvXHH6a++MLSU0/FqFIlVzfdFEqz3tzJ7N4tffutT1272ietevu7mjVdDR4c1CefWGrb1lGNGsdDpdtuC+mhhyJhWs+eYR08KA0ZEqMDBww99lhQpUufeGzFikkVK9q66ipba9YYWrjQpw0bTM2f79MXX5jy+TwNGBBKCZJMU7roIlujRwf011+GSpRIu+9ZsyKnqW3bpg01k5M9XXNNWB98EFCTJo5q1kwbjk2ebOnQociaficSGysNGHDydqPHNG7sKDHR01dfWbrllrB++83U668H5PdLDz8cSlMpeSYuu8zWihWR/T/1VFDFimVvALd0qamRI/0677xIu9ennorRkCGR8C85mfAPAAAAAIBoEpXB36hRo1L9/ZlnnlGLFi20dOlSNWnSRJI0ZMgQ9ezZU3369EnZ7u8VgatXr9Z3332niRMnqm7dupKkRx55RH369NGAAQOUnJycA+8EWalIEU979hz/+++/m9q929D556e+YHis4o81bAAA2c3zpPff96tw4ciacX8P6JKTHbVu7WjxYlPjx/v18ssxGjLkqDLaeGDaNL9iY6UOHTLXDrJECU933JE2DCtVytPVV9v68EO/atZ09Omnfu3da+jhh08e+v2dYUhVqniqUuX4mA4dityMU6hQ6m3PO8/RxImepk+31LNn6vHYtvT115ZatnTSvO6YTp0czZvn6u23U1cpStKWLYb++19LXbvaKl48a4Iry4pUVn72maWYmEgb0vr1Hd1+e+iEYzxdhiHdcUdIDz8cq1dfDejhh4MKBLL2GMds2GDo5ZcDqlnTVe/ekfUfH3ggqCeeiNHTT0fCv6z6GgIAAAAAgOwXlcHfPx04cECSVLhwYUnSrl279Ntvv+nSSy/Vtddeqw0bNqhy5cr6v//7PzVu3FhSpCIwISEhJfSTpJYtW8o0Tf3++++64IILMnRs0zRkmqRHeUHRoob27jVkWZGqzlmz/KpY0dM55xgy/pbwJSUZchxDR46YSkjIrdHmPz6fmeq/API+5u2JffGFTytXmurbNyzfGRSJz59v6vfffbr//rDi49P/OjdsKJUrF9bAgTEaOzagO+44dZC3d2+kIu7yy20lJGTdv98ll7j69VdXr7wSo/h46dFHQypf3pB0+uc6/zs9S8OypI4dHX3xhaWrrnIUH3/8uZ9/jqzR27mzm/JzPT133GHrgQcCeuONGF14oa3q1T35fNKYMX6VKCFdeunJX59ZHTu6+uwzQzNmWLr+eludOzsyjOyZP0WKSP/3f2E98URAAwfG6vrrbTVt6mbpvN21S3rhhYCSk6X777cVGxvZZ7Fi0qOPhjVoUEDPPhujwYOzPtwEzhb8rAWiD/MWiD7MWyD6MG+zV9QHf67r6umnn1bDhg1VrVo1SdLGjRslScOGDdOAAQNUs2ZNTZ48Wb169dLnn3+uihUraufOnSpatGiqfVmWpcKFC2vHjh0ZPn7RogVThUrIPWXLSlu3SomJAe3cKS1ZIt15p1S0qD/VdlWqSH6/FApZSkzMpcHmYwkJJ1gcCUCelRPzdskS6dNPpeuuk/6xJG+e43nSrFnS9u3S9OkBXXfd6e3n6FFp/HipZUupQwfrpFXmiYlS377Syy9bats2Ri1anHx8n3wSWaOue3crwxWCGTVwoDRypHTDDVLlytl7qnjNNdKXX0rz5lnq1u34499+GwlE69c/+fETE6V775VGj5aefTaguDjpnHOkP/+UHntMSk72n/T1mZWYGNlvYqJ0zjnZfxrdtGnk3+Ktt6Thw/364QepTx8pIeHM5+2RI9Krr0oFCkjPPCMlJqb+WiUmSs8/L91/v/T663498YRSrbUIIHM4RwaiD/MWiD7MWyD6MG+zR9T/+j5o0CCtXLlSY8eOTXnMdSNrrFxzzTXq2rWrJKlWrVr66aef9Mknn+j+++/PsuPv3n2Iir88IhDwaetWS3v2BDVpkk+maalevWCq9p9SJPQLh2O0enVYxYufeD0e15U+/NBSp062SpTI5sHnAz6fqYSEAtq//4gcJ+vWOQKQfXJi3tq2NGGCpalTfYqJkRYskO65J6wGDfLu58SmTYY2bQqoTh1XH3xgqkKFkGrXznyrw3HjLO3c6dPAgSHt3Xvq1zdoINWv79eLL5p67rmgihSJPB4OSwsXmlqxwtS6dYbWrjV1+LDUtautUMhRKGNL1GVYbKx0zz2R///nz9Ds0KyZpffe8+mrrzyVLu2pSBFPv//u0333hbVnz6m/Txo0kM49V1q3ztCvv5patMinFi1cVa1qZ8v4zzkn8t+c+NpIkWCuXz/p119Nvf++pTvuMPX00z5VrHj689Z1paFD/dq40dTgwSFJXrrvJyZGuvtuQ08+GdDQoY769LFpkw5kEufIQPRh3gLRh3kLRB/m7elJTMzY3d9RHfwNHjxY3377rT744AOVLFky5fGkpCRJUpUqVVJtX6VKFW3ZskWSVLx4ce3evTvV87Zta9++fSmvzwjX9eS6rHuSFyQkGDp6VNq719WMGQG1aGHL73dl/6NjWoECkmV52rHDk22f+ENl1SpD06b5FBPjqkuXzK2fdDZzHPekX1cAeU92zdvNmw2NGBHQpk2GrroqrA4dbL3+ekDPPefXjTeG1KGDIymyxtj33/u0dq2pvn1DJ2wNmVN+/tmSZXm6556gXnwxoFdf9evpp49malybNxuaOtXUlVeGVayYk+Zn0YncdFNQAwfGauRIS9deG9a331r67jufDh40VLy4q0qVPF18cVgVK7qqVy/tz7ho1KNHSGXL+rR5s6mtWw0tXWqqbFlX9evbmXp/5cpJ5co5uvzyyHqB+eFr83f16rkaMsTW0KExeuUVn554wpXff3rzdswYvxYtMtS/f1AlS578+6hKFal375DeeCOgkiVdde6cz76wQA7hHBmIPsxbIPowb4How7zNHlEZ/HmepyeeeEJff/21xowZo3LlyqV6vmzZsipRooTWrl2b6vF169apdevWkqQGDRpo//79WrJkierUqSNJmjt3rlzXVb169XLmjSBLFS4cCWBnzbK0d6+h9u3TvzBlGFLRop527TIlOSfc36JFkUWdli0z1aVLlg8XQBQ4ckTautVQ5crc4JFZCxeaevXVgIoX9/Sf/wRVqVLka/h//xfShx/69d57Af3xh61t20ytW2cqPt6T60qjRwfUr18Wl7Bl0qJFpurWdRUbK91xR0gPPRSr118PaODAUEq1k+NIpql0q59sW3r77YCSkrxMhyQJCdItt4T00ksxWrjQp/h4T61b2zr/fEdlyuTP78MCBaROnRyd7GcyIvx+6bbbwnrkkYA+/NBSr16Znytff+3T9OmR19arl7Ffrlq1crR5c1jjx/tVsqSrRo34pQwAAAAAgLwqKoO/QYMG6fPPP9eIESNUsGDBlDX5ChUqpNjYWBmGod69e+u1115TjRo1VLNmTX366adas2aNXn31VUmR6r/zzjtPjz76qAYNGqRwOKwnnnhCnTt3VnJycm6+PZymokUjF0SnTbNUpYqrChVOfIG0eHFPu3advFfVb7/5ZFmeVq40FQpJgUCWDhdAFPjmG0sTJlh65ZWjrAmaCXPn+jRihF8NGri6886QYmKOP2eaUs+eYZUo4erTT/2qXt3VFVcEde65rn7+2afhwwP65Rcz14KFgwelFSt8uummSKCSmBgJ/557LkZDhgRk29LOnab27DFUtaqr/v2DadbY++ADv9asMfTww6HT+tnRqJGrW24JKTZWatTIkT9rl6lDlCtRQrrpJunVV31q1CgSUmfUmjWG3n8/oAsvtFMqbjPq6qsjQf2IEQE99VRQJUvmzyA6t3iedOCAVLCg5PNl/f5/+83U0qWmevSgYhMAAAAA8ruoDP7GjRsnSerZs2eqx4cMGaIu/yvN6tWrl0KhkIYMGaJ9+/apRo0aeuedd1S+fPmU7YcOHaonnnhCN954o0zTVMeOHfXII4/k3BtBljpW8XfwoKEePcIn3bZoUU9btpgnfH7vXmntWlMXXxzWF1/4tXKlqdq1ubsdONusXWvKdQ19+62lK6/kYmlGzJ7t09tvR9ot9+kTlnWCM41OnZz/VXkd17y5ox9+cPTuuwHVqHE0TaCWE377zSfPkxo0OD62evVc9ewZ0s8/+5SU5KlGDVsJCZ4+/dSv556L0cCBQcXFRbadPdunb76xdPPNIVWrdvo/N9q0ofoNJ3bRRdLMma7eeiugZ545mvL9dyrTp1sqUcI95XlSegxD6tMnpEceidGwYQE9/njwjEPpXbsM7doVCdHNE5+W5VueJ23caGjePJ/mzfNp2zZThiElJnoqVsxT2bKurrkmrPj4tK/9738tffONT489FjxlG+KdOw0NHx7Q4cOGOnRwVKIEoS0AAAAA5GdRGfz9+eefGdquT58+6tOnzwmfL1KkiF544YWsGhZyWYECUkyMJ59Patbs5BdMixXztHjxiSv+fv/dJ8OQOne2NWeOpeXLCf6As9GGDYYMI9JC+PLL7bPywnRmfPWVT++/H1DbtrZuvjmcbhvMkzEM6aabwho4MEbjx/vVu3fmw4kztXChqUqV3DQVnukFldWquXrmmRg9/3wk/NuyxdC77/rVtq2tdu0I7pB9IiFcWP37BzR2rF+33HLquXLwoDRvnk9du57+Z1mBAlLfviH95z8x+ugjv66//vTn6KFD0tNPB7R9e6TVb6NGjho1clSnjpuvuyykF/bFxXlq3NhRt262Dh+OBHW7dhn6+WefVq0y9cADqcO96dN9+vBDv3w+T+PH+3XbbSf+d/A86c03/YqJkYJBT7/84tNFF3EjCwAAAADkZ1EZ/AHpMQypdGlPtWs7qdrKpad4cU/79hmybaVbjbJokU+VK7sqXFiqWdPVsmVc7QfONkePStu3m2rXztaMGZZ++81UgwbcAHAiU6ZY+vhjvy66yFaPHpkP/Y4pVszTtdeG9d57AbVo4ahWrZz7mtt25MaPTp0ydlG8cmVPAwYE/xf+BbRjh6kKFTzdcEPOB5Y4+yQlSdddF9Y770Qqubp1C6t06RNXcn3/vU+uK7VufWahT6VKnrp3D+uDDwKqVctRw4YnnqPe/4bzz88Dz5NGjQpo/35D994b1MqVphYs8Gn2bEuFC3vq2jWs8893sqXlZW6x7cjn5I8/pg77evYMq3ZtN93z0U2bbD3zTIwGD47Rgw+GVLy4p5kzfRozJqCLLw6rZElP77wTUJs2jqpXT//f4YsvLC1f7tMDDwQ1bZqlX381ddFF2fxmAQAAAAC5iuAP+cqjjwZP2Fbu74oV8+R50u7dRpp2R7YtLVliptwNXbOmow8/9CsY1CkDRQD5x6ZNhjxPatvW1urVpmbMsNSgQSi3h5XneJ40YYKlKVP8uvLKsLp0sU879DumfXtHP/3kaNQov558MqgCBbJmrKeyYoWpw4eNVG0+T6VqVU8DBoT07LMBxcRI99xz5u0PgYxq29aRZYX0ySd+DRwYq9atbV15pa3ixVOf23ieNHOmpcaN3VO2hcyITp0cLVni6M03I+v9HTokLVzo06JFPm3aFLmxynEk1zVUsmRkrc/KlY+PacYMn+bP96lfv6AaNXLVqJGra6+1tWmTocmTLb3zTkBffumqe/ewzj3XPePPlNPhedILLwR00UV2lnR9mDjR0n//a6lly5OHfX9XtqynRx8N6plnAho8OEbt2tmaONGvjh1tde8eOU/99ltX770X+az8Z1C6fr2hjz+2dNFFkeNt2+Zo9Gi/Dh5Uuu1DAQAAAAD5A2VMyFcCAWWofVWxYpGLT7t2pb2StHJl5MJv/fqRC7+1arlyHEMrVjBdgLPJ+vWmTNNTmTKe2rWz9dtvPu3YkQtXn/Mwz5PGjPFryhS/uncPq2vXMw/9pEh10C23hLVvn6E33wykVA1lt0WLTBUp4qlSpcwdsFo1V08+GdTjjwdVtGg2DQ5Ih2FIrVs7Gjr0qK6/PqRff/Xp3/+OSXPOsnKlqS1bTLVtmzUtHg1Duu22kPx+6b77YvTQQ7GaMsVSQoKnyy6zde21Yd1wQ1g33xxSgQLSoEEx+uqryPqZa9caGjPGrwsusNW0aepArWxZT337hjV48FEVLuzphRdi9OGHuZOkr1tnaNEin0aP9ss5w869y5ebmjbNr27dbN12W1j165869DsmOTkS/sXGepo4MdJKuGfPSFW1YUi9eoW0aZOpr75KvcNQSBoxIqDSpT1ddVXk371hQ0euG3lfAAAAAID8i4o/nJWKFj1x8Pfbb6YKFTp+4bdMGU+FCnlavtxU3bq0+QPOFuvWmSpTxpPfL7Vs6WjsWE/ffutLuYCa3x04IA0eHKN9+wwVLOipYEEpPt5TXJz+93dP27dH2vPddFNI7dtn7Zp2pUp5uuOOkF56KUZTpkTWWMxuv/7qU4MGzmmFl6VK5VA6CaTD749U4Z1/vqPnnw/o1VcDevLJoypSJPL8zJk+lSjhqk6drDuPKVRIuvfeoObN86lOHVc1arjpVrued56jceP8ev/9gJYvd7Rhg6Fy5Tz16HHilriVK3t66KGQJk60NG2apSuuCOd4hdqyZT75fJ62bDE1Z45Pbdue3mfcoUPSG28EVL26o86dT+9zrGhR6bHHglq82KfmzVN/RlWuHLk55ZNPLDVvbsvvl2bPtvT11z7t3Wto8ODjVciJiVKlSq5+/dWnVq1YhxQAAAAA8itKmHBWio2NXMBOL/hbtMinc889flHFMI6t85f67mjPkxYsMBUM5sSIAeS0DRtMlS8fuUgeGyv961+Ovv3Wkn125H6aONGvvXsNXXqprWbNHFWq5CouTjp8OBKKzpvn08qVpm67LetDv2MaNXJ1xRVhTZzo16JFqU9Z1q0z9N//Wpo716c1awzt368zqgzcts3Qtm2mzj2Xi+GIXrGx0t13R1oSv/ZaQLYtHTwozZsXCa6yumVm5cqeune3Vbdu+qGfFAklb7ghrHvuCWrpUlP79xu6++7QKVviGobUqZMtz4sEWTlt6VJTNWu6at7c1ief+NOc7+3aZejZZwOaO/fk1XPvv+/X4cPSbbeFM9SV4kTi46UWLdL/N7zqqrD8fmnIkBj16xerjz+2VL26q//8J6jy5VN/MDZu7Oi330yFWYoUAAAAAPItKv5w1ipWzNPOnamvnuzcaWjTJlNXXJH6yn7t2pE1UY4ejVxUk6TPP7f00Ud+NW9u6667wrmy/gyA7OG60saNhpo2PX7BtH17WzNmWPr1VzNNe7pocOiQNHWqpfr1XdWsefLxb9xoaOZMS9deGz7tCpWs0rWrrfXrTY0YEdB//hPU5s2Gpk+39McfkWocxzn+4Zuc7Oqhh0Ip7Zwz4ujRSBvEWbMsWZaXJWt5AbmpSBGpX7+QnnwyoHHj/CpRwpXjSOedl7tzuUkTV1WrHtXRo4aSkzM2RxMSpGbNHM2c6dPFF2dNK+GMsG3pjz9MXXmlraZNHQ0Y4NOXXx6vPD5wQHr22YB27jS0eLFPf/5pq0ePcJow86effPrhB0u33x5SUlL2VQXHx0s33hjWhAmWLr3UVtu2dkq15z81bOhowgS/li0zVb8+n3cAAAAAkB8R/OGsVaxY2oq/33+PrOlVt27qio+aNV25rqE//4xcJFm1ytCECZZq1nQ0d66lGjVcdehAlQiQX2zfbigUMlShwvGLouXLe6pa1dVXX1lq3Dh0RpUbOe2330y9/XZAe/YY+uorTw88EFK1aulf8PU86cMPI2FBp065X95oGNLtt4f0+OMxGjgwVp4nVavmqF+/oBo1cnXkiLRjh6G//jI1bpyl558P6NFHgypY8MT73LNH+uEHS7/8EqkWdBxDCQmeuna1U27uAKJZtWqurr8+rPffD6hgQU+NGrknDIJyUmKiJGUuAOvQwdGPP1pavNhUvXpZF1R5njR+vKVGjdw0n4erV5sKhQzVru0oOdlT+/aOPv/cUrt2tixLeu65GB04YOjpp4NassTUmDF+rV5t6u67QypQwNOyZaaWLfPphx98atrU0b/+lf3niM2bO2re/NTHKVvWU4kSrhYs8BH8AQAAAEA+RfCHs1bRop7++CP1lftFi3yqVs1Nc8G4VClPhQtH1vmrWtXVsGEBVarkaeDAkD780K8xY/yqVMlVlSqs8QTkB+vXRz4b/h78SdLll4f14osxGjYsoDvuOHWrutx26FAkxJszx1Lduo4eeiisUaP8ev75gB56KKhzzkn7ml9/NbVkiU/33ReUlUfOEgoWlPr3D+mbbyy1bGmrcuXjn7Xx8ZHWzZUqOSpb1tWgQTF65ZWABgwIpRp/OCz98otPc+b4tHhxpFqwfn1X119vq1YtV6VLe1RuI1+54AJHq1fb+uGHSGAVrc45x1W5cq6++cZSvXqhLNvv6tWGpk3za/16Rw88kHq/S5eaiovzVLFi5LPmiivCmjPHpwkT/P9rC2zo4YeDKlnSU8mSjipXdvXqqwENGBAj2zbkeZEK5JYtHV11Vd7qCmEYUsOGrubO9cnz8tbYAAAAAABZI49c0gNy3j8r/tatM7R4sakuXdJeHIus8+do6VKf/vrL1OHDhh56KHJRvEePsFavNvXqqzF66qmjio/PyXcBIDusX28oMdFToUKpH2/QwNU99wQ1bFhAzz8f0D33hE5aWbZqlaFly3yqXt1VlSpujgZpW7dG1p86dMjQLbeEdP75kbWh7r8/pKefjtGzz8boP/8J/68CJ8K2pbFj/apTx1GDBnmrEqRkSU/XX3/yRanKlPF0330hDRkS0Jtv+nXHHWHt3SvNmGFpxgxLBw4YqlrV1U03hdS0qcPnNfI1w5B69w7rX/9yVKdO3prPmWEYUocOtt57L9Jas3jxrLnJ6ssvLZmmpyVLfPrrL0MlShzf79KlpmrVclMquxMSpEsvtTVhgl9+f+TGr2OhoBRZ6/DJJ4OaPt1S8eKeatVys7W155lq1MjRl19aWrPG4KY1AAAAAMiHCP5w1ipe3NORI4YOHZJ27TL0zDMxKlvWO+Fd8bVquZo719LatVLfvqGUC0R+f2QtnUceidGIEQH9+98h7p4Gotz69Waaar9jGjd29cADIb34YkBPPRWjf/87mCo8O2bPHmno0BgdOhSp/vD7PVWv7qpNm4y1YzsTq1YZGjo0RgkJnh5+OJjqAnSBAtLAgUE9+WSMnn7arxtvlHw+UwkJnn77LXJzw733Ho3az7EaNVzdcUdYw4YFtH27qbVrDfn9UuvWji64wFbp0lzkxtkjEFCWtsfMLS1bOho71tOsWT5dddWZVy/u3i3Nn+9Tt262pk61NHv28f0ePSqtWmWmudHgwgttrVljql07WzVqpP2axsdH1iSNBtWquYqP9/TLLz5VqRIdYwYAAAAAZBzBH85axYpFLv4uXuzT6NF+FSvmaeDAE68LVbt25CJP27Z2mov2xYt7uvXWkF56KUYrVpiqXj36L7IBZ7MNG0y1bn3ii6E1arh69NGgnnsuRoMHx+jBB0OpqkVcVxoxIiDLkoYNO6JduwwtX+7TokWmhg8PKCYmmG0VdYsWmXr11YAqVPB0//3BdKva4uOlBx4I6qWXYjVihBQK+eV5kb6l7dvbKls2usOx5s0d7dsX0qxZlrp3t9W6tX3SykwAeVuBAlKrVo6+/dbSlVfaZ1w9/c03lvz+SCXhzp2GZs+21KWLLZ9PWrHClOMYqlUr9Wd0TIx0771Z12o0N/l8Uv36jubPjwSe0XqjBwAAAAAgfeapNwHyp2PB34gRfhUp4unBB9O/QH5McrKnRx4J6oYb0m81dywY3LGDqydANNu/X9q711D58icPv8qV8/TYY0GZpvTkkzHauvX43J882dIff/h0110hFS4caQPXubOthx4KqWFDR8OGBbRhQ9Z/Vnz/vU8vvhhQnTruKT/TihSRnnoqpMmTpddfD+rJJ49q4MCgevQ4eTvNaNGpk6NnngnqoosI/YD8oEMHW/v2GVqwwHdG+wmFpJkzLZ1/vqO4uMgNXXv3Gvr998ivRcuWmSpSxMv31cHt2zvats3U/Pln9vUEAAAAAOQ9BH84axUp4snn81Sy5KlDv2Nq1HDl96f/XGysVLCgpz17CP6A3BJprxnQmjWnPw/Xr4/8aKxY8dQVeUlJkRsCYmM9PfFEjDZuNLR8ualPP/XryivDqlkz9T4MQ7rjjpCSkz29+GJA+/ef9jDT2L1bGjXKrxYtHN1zT0iBQMZeZ5qRELBiRU9167qKicm6MQFAVilXzlO1ao5mzjyzoOrHH306dMhQx46Rqu5KlTxVqOBq1qxIGeHSpT7VquXk+yq4atVc1anjaNIkS17+zjgBAAAA4KxD8Iezls8nDRgQ0qOPBpWQkDX7LFrU065d+fxKEZCHLVvm06JFPj3xRIx++intxeGdOw3NmePTypWmjh5Nfx8bNpiKifGUnJyxK6GJidIjjwSVmOjpqadiNHx4QDVqOLriivRbhcbGSvfdF1IoZOill2IUzqICu08/9SsmRrrhhrB8FHAAyIfatHG0bJlP27ef3rmW50nTp1uqX99RyZLHP+PbtrW1aJGpTZsMrVtnpnRxyO+6dQtr82ZT8+bxQwMAAAAA8hOCP5zVatd2VahQ1u0vMdHT7t0Ef0Bu2brVUKFCnpo2dTR8eEAffxypZNi82dDIkX7dd1+M3nwzoEGDYnTrrQU0YECM3n3XryNHju9j/XpD5cp5mar2SEiQHnwwqORkT44j3XlnSOZJfsIWL+7pvvuCWrvW0Ftv+c+42mLbNkOzZ/t06aW0tQSQfzVt6ig21tOcOacXVP3xh6mNG0116pT6xowWLRz5fNJbbwXkeUqzvl9+VbWqp3r1IlV/7tnxlgEAAADgrGDl9gCA/KRYMU/r1pGnA7llyxZT5cq5uv32sMqV8/TRR37Nn+/T9u2RNZu6d7d13nm2du40tHatqXXrTP34o09r1pjq3z+owoUjFX/Vq2f+Cmh8vPToo0EdPaoMtQ6uWtXT7beHNXx4QHFx0o03hk+7tdyECX4VKSJdcEH6VYYAkB/ExkZCuu++s9S1q33SGyzSM326pdKlXdWpk/ozvmBBqXnzyH6Tk10lJZ09vS+7dg3r8cdjNXeuTy1bOrk9HAAAAABAFiChALIQrT6B3LV1q6GSJSPVepdcYuu++4IqUsRT794hvfjiUV10ka34+Mh6dm3bOrrpprAefjio3bsNDR4co02bDG3ZYqhChdMrfbCsjIV+xzRv7uimm0L65htLEyac3r04a9camjfPpy5dwhle1w8AolWbNrZ27za0eHHmfo1Zs8bQggU+XXyxne5NFm3aREKvs6Xa75gqVTydey5VfwAAAACQnxD8AVkoMdHT/v2GbIpugBznupGWl6VLH79y2aCBq0ceCalNG0d+f/qvq1jR0+OPByVJjz0WI9c1VL58zl39bNfOUffuYU2Z4tfnn584/Fu3ztCYMX5NmGClusHg44/9KlnS1XnnUakBIP+rXNlT2bKuvv024zdLeJ40bpxfZcqc+LOyWjVXHTrYatv27DuJ69IlrG3bIhXwAAAAAIDoR6tPIAsVKxZpDbVnj3FWtYkC8oKdOw2Fw4ZKlcr83CtRIhL+Pf98jDZulMqWzdn527mzrcOHpfHj/dq+3VCZMq6KFvVS2gfPmmVp3TpThQt7CgalqVMtNW7sqnp1R4sX+9SvX1A+rtcCOAsYhnT++Y7Gj7e0f39kjdVTWbjQ1PLlPv373yf+rDQMqVevcNYONkpUruypYcNI1V+zZie+UQYAAAAAEB0I/oAsVLRoJCzYvZvgD8hpW7dGquBKlz69uZeQEFmjb9cuQ7GxWTmyjOnWLdJ+7qeffPr+e5/C4cj7MQzp3HMddekSVP36roJB6bvvfPrqK0vz5wdUqZKrJk3ozwbg7NGqla3x4y19/72liy8+eYWebUtjx/pVp46jevX4rDyRa64J68EHY/Tll5YuvfTsq3oEAAAAgPyE4A/IQomJx4M/ADlryxZTfr+n4sVPP3QPBHRaFYNZwTAi4V+3brY8TzpwQNq1y1CRIp4SE49vFxcnderkqGNHR0uXmkpO9tJdrwoA8qtChaRGjVx9+61PF12U/pp9x3z7rU/bt5vq2/con5UnUaaMpw4dHE2ebOm882wVKZLbIwIAAAAAnC7W+AOyUFycFBvrEfwBuWDrVkMlS+aPEMwwIhWIlSqlDv3+uU2dOi7VxQDOSm3a2NqyxdSqVSf+debwYemTT/xq1cpWxYp8Vp5Kly5h+f3SRx/R6xMAAAAAohkVf0AWK1qU4A952/z5pvx+qUGD9Fue7dkjxcZKBQrk8MDO0Natp7e+HwAg+tSp46pYMU+DBsXIND3FxESqthMSIuujFivmac8eQ0ePRqqpcWrx8dJVV4X17rsBXXCBrcqV+ZkKAAAAANGI4A/IYgR/yMu++86nkSMDMgzp+utD6tTJSfX83Lk+jRzpV926ru67L5RLozw9W7eaql6di7sAcDYwTWnAgKBWrzYVCknBoKFQSNq719CuXYZWrDC1Z4+hK6+0VawYAVZGtW3r6JtvXI0eHdB//hPMF1X0AAAAAHC2IfgDsljRop42b6aLLvKe+fNNvflmQG3a2IqL8zRmTEB79oR1zTWRsGzSJEuffupXuXKufv3Vpw0bDJUvHx0XSw8dilzsLV06OsYLADhzZcp4KlPGOfWGyDDTlHr2DOvpp2P0ww8+tWrF1xcAAAAAog3BH5DFihb1tHgxt0cjb1m0yNTw4QE1a2br5pvDMk2pcGFp3Di/9u0zFAwamj/fp6uuCqtzZ1v9+8fos8/8uvvu6Kj627YtMudKlky/fSkAAMiYWrVcNW3q6KOP/Gra1FEgkNsjAgAAAABkBmVJQBYrWtTT3r2GHG6QRg45fFjavTv95zxP+vVXU6+8ElD9+q5uvz0S+klS5862br89pB9+8Om330z93/8FdfnltixLuvRSW/Pn+7R1a3SE2Fu3Rt4UFX8AAJy5a64Ja98+afp07hMFAAAAgGjDb3JAFitWzJPnRdoOsqYMsls4LA0ZEqN160zVr++oQwdb9eq58jzp5599mjbN0tq1purVc9S3b0jWPz71W7VyVLq0qwIFpFKljn+/nneeo08/9TR1qqU+fcI5/K4yb8sWQ0WLeoqNze2RAAAQ/ZKTPbVr52jqVEtt29qKj8/tEQEAAAAAMorgD8hiiYmR8GTPHqlYsVweDPK9ceP82rDBULduYc2f79PQoTFKSnJlGNJff5mqVcvRgAFB1a0beSw9lSunDagDAenii22NH2/pyittJSXl7RB761ZTpUrR5hMAgKxy5ZVhffedT59/bunaa+3cHg4AAAAAIIMI/oAsVrRoJCDZtctU1ar0+0T2mT/f1FdfWbrxxpAuuMDRZZfZWr3a0IwZllxXuvvukCpVOv3Arl07W1OmWPr8c0s33ZS3q/62bDFUsybBHwAAWaVwYemii2x9/rmlCy5w6GQBAAAAAFGCNf6ALFawoBQIeNq9OzrWRkN02r7d0FtvBdS0qaMOHSIBs2FIVat6uu22sO64I3xGoZ8kxcZGLvjNnu3Tnj1ZMers4brStm0GFX8AAGSxiy+2VaCANGkS94sCAAAAQLQg+AOymGFEqv7yclCC6BYOS8OGBVSokKfevUMnbOGZFTp0sOX3S1On+rPvIJmwf7/00UeWDh48/tiOHYYcx1Dp0lQiAACQleLipCuuCGvOHEubNnFTGwAAAABEA27dBLJB0aKedu0iV0f2+PjjyLp+jz8eVMGC2XusggWlSy+1NXGipQ4d7FwN1/bvl55+OkabNpnav9/QrbdG2o9u3Rq5EFmqFMEfAABZrX17R19+6WrQoBj5/ZFKe9eVKlZ0ddNNYX7+AgAAAEAeQzIBZIOiRWn1ieyxfLmpL7+0dM01tipXzpkLbRdeaKtYMU9jx+Ze1d+x0G//fkMXXxzW7NmWVqyI/AjbssVUIOCx9hAAANnAsqT77w/pwgttdexo6+KLbV16qa1duww99FCM/vvfyNrCAAAAAIC8gYo/IBsULerpjz9yexTIb44ckUaO9Kt6dUcXXWTn2HEDAal797BefTVGv/9uql69nL269/fQ75FHgipZ0tMff/j0zjt+PflkUFu3GipVysvWlqcAAJzNypb1VLZs6nOPCy6w9fHHfn34oV/z5/t0++0hJSdzEw4AAAAA5DYq/oBscKziz+PaB7LQ2LF+HTgQaXGZ0yFXkyauatRw9MEHftk5lznqyJHUoV/p0p5MU7r55pA2b45UP0aCP0oNAADISbGx0g03hPXww0Ht2SO9/nogt4cEAAAAABDBH5Atihb15LqG9u3L7ZEgv/jtN1OzZlm67rpwrtxNbxjS9deHtXWrqZkzfTl23EmT/Nq+3dDDDwdTrS9YsaKnjh1tTZpkaf16M1fXHgQA4GxWs6ara6+1tWqVqS1bKL8HAAAAgNxG8Adkg6JFIyEE6/whKxw8KL31VkB16zpq29bJtXFUrOjp/PNtTZrk18GD2X+8DRsMTZ/uU5cutsqUSRvsde0aVlycdORIpNUnAADIHQ0bOipY0NOcOTl3cxAAAAAAIH0Ef0A2IPhDVvrsM79CIemWW3K+xec/XXVVWOGw9NVX2btErOdJ773nV3Kyd8L1DOPipJ49w5Kk8uVp9QkAQG4JBKTmzR19/70llx/JAAAAAJCrCP6AbFCokOTzeQR/OGOOI33/vU+tWzsqViz3q9oKF5bq13e1eHH23tH/3Xc+rVjhU69eYVknyRibNXM0bNiRdCsCAQBAzjn/fFt79xpasoRfMQEAAAAgN/FbGZANDEMqVozgD2du6VJTBw4Yatky/aq33FCrlqPVqw0dPZo9+z94UBo3zq8WLWzVrn3qsoEiRbJnHAAAIOMqVfJUurRLu08AAAAAyGUEf0A2KVqU4A9n7ocffCpZ0lWlSnmnoq1mTVeua2jFiuz5ETJhgl+2LfXoEc6W/QMAgKxnGNL55ztasMCnQ4dyezQAAAAAcPYi+AOySWIiwR/OTDAoLVjg07/+5eT62n5/V7q0p4QET8uWZf2PkA0bDM2caalr17ASE7N89wAAIBu1bGnLdaV586j6AwAAAIDcQvAHZJNixTzt2ZOH0hpEnV9/9SkYNNSypZPbQ0nFMCJVf8uXZ/1FvY8/9qtECVcdOuSt9wwAAE4tMVGqV8/V7NknWaAXAAAAAJCtCP6AbJKY6GnXLkNe3unQiCjzww8+VaniKjk5730T1a7taO1aQ0eOZN0+//jD1KJFPl11lS2L64UAAESl885ztHq1qc2buQEOAAAAAHIDwR+QTYoW9WTbhg4ezO2RIBodOCD9/rupli3t3B5Kuo6t8/fnn1nzY8TzpI8+8qtiRVfNmlHtBwBAtGrY0FHBgp7mzKHdJwAAAADkBoI/IJsUKxap0lqxgmmGzDu2Nk6LFnkzBCtZ0lORIlm3zt+iRaZWrjR1zTXhPLWeIQAAyBy/X2rTxtaMGZYOHMjt0QAAAADA2YdEAsgmlSp5qlPH0ahRAe3bl9ujwZmwbWnLlpxt2/rDD5bq1HGVkJBzx8wMw5Bq1XKyZJ0/141U+9Wq5ahOHTcLRgcAAHJT5862PE+aNo3e3QAAAACQ0wj+gGxiGNLtt4fkedLrrwdY6y8KbdliaOxYS3ffHasBA2L1/PMB/fVX9pej7dhhaOVKUy1b5s1qv2Nq1XK1bp2pQ4eOP+Y40rhxllavzvjX6ccffdq0ydTVV1PtBwBAfpCQIF14oa3p0y3t3ZvbowEAAACAswvBH5CNihSR7rwzpKVLfZo6lTue8zLPk/76y9D8+aY+/tjSoEExGjAgVnPmWPrXvxz16RPSpk2mBg6M0dSpluxsXHrvxx99CgQ8NW6ct4O/mjVdeZ70xx/Hf5RMnGhp2jS/hg8P6OjRU+/DtqVPPrHUuLGjqlVJxwEAyC8uvtiW3y9NmeLP7aEAAAAAwFmFJALIZnXrurr00rAmTrRUo4aratVoZZiX2Lb01VeWpk61dOBApNysSBFPlSu7uuuukBo3duT/3/Wqpk0dTZzo18cf+zV7tk81a7oqVcpT6dKuypXzUtZ1PBOeJ/3wg0+NGjmKjT3j3WWrEiUi73n5cp8aNXK1cKGpqVP9at/e1pw5Pn3yiV/XXRc+6T5+/93Ujh2m7rknAykhAACIGgULRlp+TppkqXNnO0vOkwAAAAAAp0bwB+SArl1tLV/u07BhAT333NE8H+icDTxP+vVXU2PH+vXXX6batLHVqJGjihVdFSmS/mtiY6Xrrw+rZUtbX35pac0aUz/8YCgUigSGZcu6atzY+d9+vNNqW7l+vaEtW0z16HHywCwvOLbO37JlpnbsMPTGGwGde66jXr3CSkry9NFHfjVvbqtKlRNf6Jszx1KFCq4qVuRiIAAA+U3Hjrb++19Lkydb6t0775/bAAAAAEB+QPAH5ACfT7r55pAefDBWK1eaqluXqr/cdPCgNGxYQEuW+FSnjqP/+7+jKlcu48FT5cqe7rwzcvHK86RduwytWWPol198+uorS5Mn+1W6tKuHHgqeMEQ8kR9/9Ck+3lOdOtHxPVKzpqvvvrP08ssBFSjg6fbbQzIM6aKLbM2b59NbbwX05JNBWen8tNm/PxK+nqoqEAAARKcCBaRLL7X10UeWLrnEVnIyN/oAAAAAQHZjjT8gh5Qt6ykmxtO6dUy73HT4sPTsszFat87UffcFNXBgKFOh3z8ZhlS8uKemTV3dcUdYI0Yc1cCBQR06ZGjYsECm1gJ0Xemnnyw1b+6kG5TlRbVqRQLKTZsM9esXUnx85HGfT7rllpC2bDFOuL7ljz/6ZBhSy5Z5ey1DAABw+i64wFZCgvTFF1FycgMAAAAAUY4EAsghhiGVL+9p/frT6P+ILBEMSi++GND27YYeeCCohg3d02rHeTKWFVnX8e67Q1qxwtT48f50x7F9e9oDL19uas8eQ//6V/QEYcWLe2rUyNFNN4VVuXLqALVCBU+XXGJr8mRLGzemfb9z5lhq2NBVoUI5NVoAAJDTAgGpcWNHS5bwqycAAAAA5AR++wJyUMWKLhV/uSQcll55JaA1a0z17x/K9jXlatRw1aNHWF9+aemnn3ySIm1BFywwNWBArAYMiNHatanDsB9/9KlECVdVq0ZHm89j7r03pDZt0g8rr7jCVsmSnoYPDygUOv74unWGNmww1bp1JkoiAQBAVKpVy9H27aZ27eIGOAAAAADIbiQQQA6qUMHV9u2mjh7N7ZGcXTxPGjEioKVLTd17b0jVquVMsNapk6MWLWy99ZZfCxeaeuGFgF5+OUZly7oqWzYShh37XgiFpJ9/9qlFCyfLqxBzUyAg9e0b0vbthsaMOV79OGeOpcKFPdWrF10hJwAAyLxatSJdFpYt49dPAAAAAMhu/OYF5KCKFV15nrRhA1MvJy1YYOrnn326666Q6tbNuaDJMKTevcNKTvb0wgsx2rDB1D33BNW/f0h9+4a0Z4+h0aMjYdiiRaYOH46uNp8ZVa6cp549w5o1y9LcuT7ZdqS6sVUrWz5fbo8OAABkt/h4qVw5l+APAAAAAHIAK6wDOahsWU8+n6cNGwxVq5bbozk7eJ702Wd+1arlqGnTnK8ui42V7r8/pF9+MXX++Y5iYyOPlyrlqVevsEaODKhuXVc//+xTxYquSpfO3hakuaVtW0dLljgaNcqvXbsMHTxoqHXr/BdyAgCA9NWqFTnf8bxwvupuAAAAAAB5DbdcAjnIsqQyZTzW+ctBv/9uat06U5dfnntryRUv7qlTp+Oh3zGtWjlq2dLWO+9EWoG2bJl/g7BI9WNI8fGexo3zq3JlV2XK5M+QEwAApFWrlqNduwz99RepHwAAAABkJ9IHIIdVqOBq/XqmXk7wPOnTT/2qWtVVrVp5by05w5B69QqrcGFPjmOoRYvcCydzQsGCkfX+LMtThw75+70CAIDUqldnnT8AAAAAyAk5/luX53navn27bJuLvjg7VazoasMGQ0yB7LdsmalVq0xdeWXebSkVFyf17x/SnXeGlJiY26PJflWqeBox4ihtPgEAOMsULBg5Dyb4AwAAAIDslWO/dX333Xe6+uqrVbduXbVt21Z//vmnJOnRRx/VlClTcmoYQK6rUCFS3bVlSx5NoqJUKBSp8Pu7zz6zVLGiq3r18l6139+VKuWpRYuzJwiLi8vtEQAAgNxQu7ajZct8ac7ZAAAAAABZJ0eCv88//1x9+vRR2bJl9fjjj8t1j1+EL1eunCZNmpQTwwDyhPLlI9//tPvMOjt2GLrzzlg99liM5s71yXGkFStMLVvm0+WX591qPwAAgLNJzZqu9u0ztHUrJ2cAAAAAkF1yJHkYMWKEbrzxRr344ovq0qVLqufOOeccrVy5MieGAeQJcXFScjLr/GWlCRMsBQJSgQKehg0LqH//GL37rl9lyrhq3DhvV/sBAACcLapXd2WaHu0+AQAAACAbWTlxkI0bN+r8889P97kCBQrowIEDOTEMIM+oUMHTunXc6fx3ixebWrjQp7/+MrR9u6GdOw1dd11YHTqcvAXmmjWGfvzR0s03h9SunaM1awx98YWl+fN96ts3RLUfAABAHhEbG1nvd9ky3ynP8QAAAAAApydHgr+kpCStWbNGLVq0SPPcn3/+qdKlS2dqfyNHjtRXX32lNWvWKDY2Vg0aNFD//v1VuXLllG169uyp+fPnp3rdNddco8GDB6f8vXr16mn2/eKLL6pz586ZGg+QWRUquJo2zZLniWBK0sGD0tChASUmeipb1lO9eq42bzY0aZJfrVs7CgTSf53nSWPHRir7zj8/cvGocmVPffuGFQ6H5ffn4JsAAADAKdWs6WjmTM6DAQAAACC75Ejwd8kll+i1115T5cqV1bRpU0mSYRhasWKF3n77bXXv3j1T+5s/f76uu+461a1bV47j6MUXX1Tv3r01bdo0xcXFpWx39dVXq1+/fil/L1CgQJp9DRkyROedd17K3xMSEjL79oBMq1jR1eHDhnbsMFSihJfbw8l1P/zgk+dJgwcHdWwKbt9uqH//WM2a5VOnTunfEf7rr6b++MOnf/87KJ8v9XOEfgAAAHlP7dqupkwxtHGjofLlOQ8GAAAAgKyWI8Ff3759tXLlSt10000qUqSIJOnWW2/V7t271aZNG/Xp0ydT+xs1alSqvz/zzDNq0aKFli5dqiZNmqQ8Hhsbq6SkpJPuKyEh4ZTbAFmtQoXIunPr1hH8eZ40a5alRo1c/T13T0721LKlrWnT/GrXzkkT5Nm2NG6cX3XqOKpXj3X8AAAAosE557jy+TwtXepT+fJ2bg8HAAAAAPKdHFlVPRAI6PXXX9d7772nq6++WldddZWuvPJKjRo1Sq+//ros68zyx2NrBBYuXDjV41OnTlWzZs10ySWX6IUXXtCRI0fSvHbQoEFq1qyZunXrpokTJ8rzzu4QBjmjSBGpcGFP69fnyBTM09asMbRpk6k2bdJe+LnsMlt79hj67jtfmudmzfJp+3ZT3buHaRMFAAAQJQIBqW5dV99+65PLvVsAAAAAkOVypOLvmObNm6t58+ZZuk/XdfX000+rYcOGqlatWsrjl1xyiUqXLq0SJUrozz//1NChQ7V27VoNGzYsZZt+/fqpefPmKlCggL7//nsNGjRIhw8f1g033JDh45umIdMkdUDmVarkaeNGnywrOq94zJzpk2V5at06Mn6fz0z134z67jtLxYp5atBAMs3Ur61QQWre3NXnn/vVrp2nY/cILF9u6JNPAjr/fEdVqhiSmIPA6TjdeQsg9zBvkR907erosccC+vlnS//6V3SeC2cUcxaIPsxbIPowb4How7zNXjkS/P3000/asmWLunbtmua5SZMmqXTp0qcdCA4aNEgrV67U2LFjUz1+zTXXpPx/9erVlZSUpF69emnDhg0qX768JOmuu+5K2aZWrVo6cuSIRo0alangr2jRgjIoN8JpqF1bmjFDSkwM5PZQMm35cmn06Mg6eq1bS4mJx59LSEi7luaJHD0qzZ8vXXGFVKxY+ovy9eol3X23tHixX23bSlOnSu+8I9WsKfXta6lQoZgzezMAMjVvAeQNzFtEs6ZNpZYtpalTLV10kdKs1ZwfMWeB6MO8BaIP8xaIPszb7JEjwd/LL7+s9u3bp/vc7t279fHHH2v8+PGZ3u/gwYP17bff6oMPPlDJkiVPum39+vUlSevXr08J/tLbZsSIEQqFQgoEMhbG7N59iIo/nJakJFPbt/u1enVQRYvm9mgy7uhRaciQgMqVk7ZuNfTee4569bLl85lKSCig/fuPyHEyduf2t9+aOnjQryZNgtqzJ/1tCheW6tXza8wYQ99/7+rHH326+GJHPXrYsm2d8HUATu105i2A3MW8RX5x6aWGHnwwoClTwmrTJv9+LzNngejDvAWiD/MWiD7M29OTmFgwQ9vlSPC3cuVK3XPPPek+V7t2bb3xxhuZ2p/neXriiSf09ddfa8yYMSpXrtwpX7N8+XJJUlJS0km3KVy4cIZDP0lyXU+uy7qAyLwaNVz5/ZZmzDB15ZVp17fLq0aP9mvPHmnAgKDmzvVp0iRLF17oqWTJyAe047iy7Yx9WM+Y4VetWo4SE13ZJ/kSXHZZSI89FqudO03ddVdIzZs78jyd9DUAMi4z8xZA3sC8RbQrW1Zq0sTRxIk+NW9u6wyXfc/zmLNA9GHeAtGHeQtEH+Zt9siRBqqGYejAgQPpPrdv3z45jpOp/Q0aNEhTpkzRCy+8oIIFC2rHjh3asWOHjh49KknasGGDhg8friVLlmjTpk2aMWOGBg4cqCZNmqhGjRqSpJkzZ2rChAlasWKF1q9fr7Fjx2rkyJG6/vrrz+zNAhkUHy+1auXom2+sqAmwfvvN1KxZlq67LqzkZE+dOtmKi5M+/TTzV2o2bza0cqWpNm1OPf8rV/Z0++0hDR4cVPPmmfu8AAAAQN7UpUtYu3aZ+vbbs6DXJwAAAADkkBy5r7J+/fr68MMP1bFjx1Tr4Xmep7Fjx6a04cyocePGSZJ69uyZ6vEhQ4aoS5cu8vv9+umnn/T+++/r8OHDKlWqlDp27Kg777wzZVvLsvThhx/q6aefliSVL19eDzzwgK6++urTfZtApnXqZGvmTEvz5/vUsuXJA63Nmw19+aWlm28OKzeWlTx4UHrzzYDq1XPUrl1krLGx0mWX2Ro3ztIVV7ip1vo7ldmzfYqP99SoUcaCvFatCPwAAADyk7JlPbVoYWvyZL9at3aUicYrAAAAAIATyJHg7+6779YNN9ygyy67TFdeeaWSkpL0119/afLkyVq3bp3GjBmTqf39+eefJ32+VKlS+uCDD066TevWrdW6detMHRfIamXKeKpTx9H06dYpg78ff/Rp1ixL7drZqlQp59vLTpjgl21Lt94aShU8tm9v64svLE2YYOnxxzO2r3BYmjPHUqtWjvz+7BkvAAAA8r4uXWzNnevTrFk+derEjV4AAAAAcKZypNVngwYN9N5776lgwYIaOnSo/v3vf+uFF15QoUKF9N577+ncc8/NiWEAeVKnTrZWrza1atXJy/hWroxM1yVLcqcV0rJlppo3d9JU9QUC0pVXhjV3rql16zK2r/nzfTp40FD79lHS4xQAAADZomRJT02bOvr6a0seS6cDAAAAwBnLkeBPkho1aqTx48fr119/1ezZs/XLL79o7NixatSoUU4NAciTzj3XVXKyq+nTT1yA67rS6tWR6bp0aY5N2xSHD0vbtpmqUiX9hVZbt3aUlOTpFIW2Kb75xlKtWo5KleLqDgAAwNmubVtH27aZ+vPPnD/PBQAAAID8Jsd/s4qNjVVycrIKFCiQ04cG8iTDkDp0cDRvnk979qS/zcaNhoJBQ40bO/rjD1OhUMb27WRRt6T16015nlSpUvrBn2VJ3brZmjdPp6xc3LDB0MqVptq3p5UTAAAApFq1IjfCzZqVO50tAAAAACA/ybY1/p588kndfPPNKl26tJ588slTbv/II49k11CAPK91a1sTJ1qaMcNSt25p21+uXGnKND1ddllYCxbE6s8/TdWtm34IJ0meJ73zjl+LF5saMiSoM83Z16wxFQh4Kl36xBV6//qXqy+/lD76yNLAgScO9b75xlKRIp4aNSL4AwAAQORGuDZtHE2aZKlnz7Di43N7RAAAAAAQvbKt4m/mzJnav39/yv+f7M+sWbOyaxhAVChYMNIuc8YMS+Fw2udXrjRVoYKnSpU8FS7snbLd5+efW5o1y9KePYamTDnzfH/NGlMVK7ryneQmbNOUrr9eWrLE1PLl6Y/v8GHphx98atPGlpVttx0AAAAg2rRubctxIueKmeWe+H44AAAAADjrZNul95kzZ6b7/wDS166dra+/trR4samGDVNfvVi1ylT9+q4MQ6pTx9HixT5de23aykBJmj/f1Mcf+3X55ZEEcdo0S+3aRdbgO13r1hlq0ODUV1RatJAqVvQ0YYKlRx8NyfhH188ff/QpHI6s4wIAAAAcU7iw1KiRq1mzLHXs6KQ5jzyRw4el/v1jdcMNYTVvzjkmAAAAAGT7Gn/BYFC33367fv755+w+FBDVypXzVKaMq7lzU9/lvH+/tH27qXPOiQRvdeq4Wr/e1P8KalNZs8bQ668H1KSJo27dbF16qa34eGn8eP9pj+vgwcjxT7S+398ZhnTNNbZWrPDp999Tf7x4XqTNZ8OGrooVO/0QEgAAAPlT27a2Nm0ytXp1BlM/SbNnW9q/39CCBTm+fD0AAAAA5EnZ/ttRTEyMfv75ZzkOd18Cp9K8uaNffvEpFDr+2MqVkWlateqx4C8yl5YtSx0Q7tpl6IUXYlS+vKfbb49U28XGSlddFda8eT6tWHF6033t2sjrKlfOWA+l+vVdnXOOq4kT/fL+lu+tWGFq0yZT7dunX6kIAACAs1vduq6KF49U/WWE60rTp/vk83latsyX6twTAAAAAM5WOXJb5L/+9S/98MMPOXEoIKo1b+4oGDS0aNHxqblypakiRTwVLx65kpGYKJUu7Wrx4uPbOI40bFhAPp90331BBQLH99m6taMKFVx98IH/tC6GrF1rqkABTyVLZuzFhiFdfXVYa9eaeucdv8aOtfTOO369955fycmu6tRhERYAAACkZRhSmzaOfvrJp8OHT739ggWmdu401bWrrf37DW3ZkvFKQQAAAADIr3Ik+OvataumTJmiwYMHa/bs2VqyZImWLl2a6g8AqVQpTxUquJo79/hdzqtWRdp8/n2dk7p1XS1Zcvyu5kmTLK1ebahv35AKF069T8OQrr8+rDVrTP3wQ+oqwYxYuzbS5jOj66xIUs2arpo3t7VwoU+//OLTmjWmChb0dM014UztBwAAAGeX1q1thcOGfvrp1OetX35pqXp1Rx072vL5PC1dSrtPAAAAAMhYD5UzdNttt0mSxo4dq7Fjx8r425V/z/NkGIaWL1+eE0MB8rzmzR19+qmlo0cly5JWrzbVrVvq9ph16jiaPt3S9u2Gdu82NGWKX926hVWtWvrVdDVrumrSxNHIkQFNmeKqSpVIO87atV0lJ5+8km/1alMtW2a+PWffvmFJ4Uy/DgAAAGevokWl+vUdzZljqX37Ey8XsWaNoRUrfLrnnqBiYyNt8Zct86ljR5aYAAAAAHB2y5Hg7/3338+JwwD5QtOmjj76yK9Fi3wqUcJVOGzonHNSB3o1argyTU8//eTTjBmWatZ0dOmlJw/nbrstpAYNfFq1ytTq1ZHqP8OQrrzS1iWX2LLS+TTYt0/avdtQxYosmAIAAICc0aqVo2HDAtqyxVDp0umfh375paWkJFeNGkXOk2vVcvXVV5ZcVzIp/AMAAABwFsuR4O+cc85RYmJiThwKiHrJyZ4qVXL1008+1aol+XyeKlZMHfwVKCCdc46rTz7xKz7e0x13hE55gSM2NrLeX+vWkbugjx6VpkyxNGmSpZ9/9unWW0NpAr61ayM7rVyZdfkAAACQMxo2dFSwoKc5c3y69tq0N7ft2SPNnetT9+52yjlwrVquPv3U0Pr1hipV4qY1AAAAAGevbLsX0rZtvfTSS2rUqJFatmyp+vXr69///rf27duXXYcE8o3mzR399pupxYt9qljRUyCQdpu6dSNh3G23hXQ6uXpsrHT11bb+85+gXFd67LEYTZuW+l6ANWtMxcd7Skri4gkAAAByRiAQOR/+4YdIBd8/ff21pUBAOv/846Fg1aqu/H5Py5Zlfk1rAAAAAMhPsi34Gz16tEaOHKm6deuqd+/eatOmjb744gsNHjw4uw4J5BvNmzuybUOLFvnStPk8pmNHWw8+GFSDBmdWjVe5sqcnngjqwgttjRvn17x5xy+WrFljqlIlV39blhMAAADIduedZ2vPHkNLl6b+lXXfPmnGDEvnn+8oLu74436/VL26q2XL6PMJAAAA4OyWbb8Vffrpp+rRo4fee+899e/fX6+88ooGDRqk//73vwoGg9l1WCBfKFbMSwn8qlZNP9iLi5Nq186aFpyWJXXvbqtZM0dvvunX5s2GPC/S6rNSJdp8AgAAIGdVqeKpVClXc+YcvynN86R33w3INKXLLw+neU3t2q7++MOUffKlrwEAAAAgX8u24G/jxo264IILUj124YUXynVdbdq0KbsOC+QbzZvbMgypWjUnR45nGNKtt4ZUrJinl14KaMsWQ/v2GapSheAPAAAAOcswIutTL1jg0+HDkcfmzvVpwQKfbroppISEtK+pVctRMGikrFMNIOO2bzcUTpunAwAAIApl229EwWBQBQsWTPVYgQIFJElHjx7NrsMC+Ub79o4eeyyookVz7pixsdK994a0d6+h55+PLCxIxR8AAAByQ8uWkfb38+f7tGeP9N57fjVvbqtp0/TPTytW9FSggEe7TyCTDhyQHnwwRh9/7M/toQAAACALWNm583nz5mnbtm0pf3ddV4ZhaN68edq8eXOqbTt27JidQwGijmXphOv7ZadSpTzddltIr7wSo8KFPSUm5vgQAAAAABUr5ql2bUdz5vj0yy8++XxSr14nLkny+aQaNVwtXWrq8stzcKBAlPv6a0uhkKGZM326/PKw4uNze0QAAAA4E9ka/L3wwgvpPv7cc8+l+rthGFq+fHl2DgVAJjRp4uraa8MKhyNtlgAAAIDc0Lq1oxEjIp0o7r03eMpAolYtVx99ZCkUkgKBHBggEOWCQemrryw1bero119NzZhh6fLLWSgTAAAgmmVb8Ddjxozs2jWAHHDJJfyyBwAAgNzVqJGj+HhP9es7atTo1N0watd2ZNt+rVxpqnZtWtbj7OR50pQplg4fls4911W1aq58vvS3/f57nw4dMnTNNWHFx1v68ktLF11kE5wDAABEsWwL/sqUKZNduwYAAAAAnAViYqTnnjua4daD5cp5ionxtGYNwR/OXrNn+zRhgl/x8Z6mTTMUF+epXj1Hl1xiq2JFL2U715W++MJSkyaOkpM9de5sa9YsS99951P79k4uvgMAAACcCVY9BwAAAADkWQkJkpnB31wNQypb1tOmTfSrR/7ieZE/p7Jhg6HRo/1q29bW668f1eDBR9Wpk61160w9/XSM1qw5PjcWLDC1fbupzp0ja2cmJ3tq0sTRF19YcsnNAQAAohbBHwAAAAAg3yhXztWmTfyqi/xjyxZDDz0Uo0ceidHmzScOtQ8fll55JaBSpTz17BmWYUiVK3vq2tXW4MFBlSnj6ZlnIuGf50nTpvlVo4ajKlWOJ4qXXBLW9u2m5s8/QW9QAAAA5Hn8NgQAAAAAyDfKlXO1ebMhh06FyCMOHpQ+/NCvN9/0a8+ezL32p598evTRGNm2FA5LjzwSo+nTfWmq/zxPGjUqoH37DPXrF0qzRl9cnPTvfx8P/6ZP92n1alOdO6de271yZU+1azuaNs3KUIUhAAAA8p5sW+MPAAAAAICcVrasJ9s2tG2boTJlSC5werZuNbRkiakOHRwZp9k5NhSSvv7a0mefRVpn+v3SggU+3XBDWP/618n3Gw5LY8f69fXXlpo3t3XLLWGZpjR+vF9jxgS0aJGjjh1tBYOGjhyRNmwwNW+eT337hlSyZPrf98fCv+efj9EHHwRUqpSrc89N29PzkktsPftsjH7/3VT9+vT8BAAAiDYEfwAAAACAfKNcuUhQsXGjqTJlKPtD5q1YYerFFwM6eNBQXFxI//pX5r+P/vzT1Ouv+7V7t6F27Rx16RIJ7t5/36833gho7lxHvXuHlJiY9rU7dhh67bWA1q831KtXSO3bHw8Jb7ghrPr1Hb35ZkAvvBCT8pqYGE+XXRZW8+YnH+ux8O+dd/xq1Sr98LFOHVe1ajl6662Ann76qBISMv32AQAAkIsMz6N5w5nYseNAbg8ByBMsy1RiYkHt2XNIts1doUA0YN4C0Yd5C2TMnXfGql07W9262afeOBsxZ6PPggWmhg8PqEoVV3Fx0sqVpp5//qji4zO+jz17pIceilXJkp5uvTWk0qVTX3b55RdTo0YFFAxGqusuushWbGzkud9+M/X66wHFxnrq1y+kypXTv2QTCkVaiMbGSgUK6LSrEk/1HipUcDVwYCjL95+XMW+B6MO8BaIP8/b0JCUVytB22VbxV6NGDRkZPDM0DEPLli3LrqEAAAAAAM4i5cu72riRJe2ROTNm+PTeewE1aeLo9ttDOnRIGjAgVh995Ffv3uEM7cPzpDfeCMg0pXvvDaZbLdeokavq1Y9qyhRLkydbmjHDUteuYe3YYWjKFL/OPTdy/JOFjYGAVLToab7RDEhMlO68M6TnnovRlCmWLr88d0N0AAAAZFy2BX8PPPDAKYO/WbNmae7cudk1BAAAAADAWahsWU8LFxL84dQ8T/r9d1P//a+lJUt86tTJ1vXXh2UYkXDt6qvDGj06oPPOc1St2qnvRp861dKyZT4NHJh+6HdMfLzUo4etDh0cTZhgadSogAxDuuaasC65xM4TFXZ167q6/PKwJk70q1o1VzVrcjc+AABANMi24K9Xr14nfO6bb77RiBEjtGzZMjVp0kR33nlndg0DAAAAAHCWKVfO1fTplo4eVUoLReDvwmHpu+98+u9/LW3daqpSJVd9+4bUrFnqde/at3c0Z46rd97x68kng7JOchVl5UpTEydauvTSsOrUyVhIVqKEp7vuCqtzZ1uuqxO29swtXbrY+vPPSPvTp546qsKFc3tEAAAAOJUcvQXyyy+/1OWXX667775biYmJ+uCDDzRmzBi1aNEiJ4cBAAAAAMjHypVz5XnSli15oGwKOWLHDkOjR/u1efOp/80XLjT1wAMxevfdgMqW9fToo0ENHhxU8+ZOmko705R69w5p82ZTX3xx4tTv4EFp+HC/Klf21KVL5ttiVqzo5bnQT4q8/zvvDMl1paFDY3TkSG6PCAAAAKeSbRV/x3iep2nTpumNN97QqlWrdP7552vw4MGqX79+dh8aAAAAAHAWKlPGk2FIGzaYqlzZye3hRIWNGw2NG+dXsWKeevYMKxDI7RGltWWLoeRkTz5f6sfXrTP0/PMx2r/f0MyZPnXtaqtzZzvNdtu2GfrgA78WLfKpdm1H9957VGXLnjpsq1jR00UXhfXxx379+KNPzZo5atbMUdGinhYt8mnePJ8WLTLl90sPP3zyqsBolJgoDRgQ1FNPxeiVVwK6//6Q/P7cHhUAAABOJNtOR13X1ZQpU/TGG29o/fr1at++vZ599lnVrl07uw4JAAAAAIBiYqQSJVxt2mRKIvg7mYMHpUmT/PrmG5+SkjwtX25qzRpT99wTUokSmatAO3Qo0lr1n4FbVli+3NRTT8WoZElX3brZKS05f//d1CuvBFS6tKdBg4L65hufJkzw6+effbrhhrAOHJBWrDC1YoWp1atNJSZ66tcvqCZN3Eyto3fttbaqVXM1b55Pn39u6ZNP/PL5PDmOoUqVXHXpYqtlS0fFiuW9qr2sULGip3vvDem55wJ6442A7rorJJNlNAEAAPIkw/O8bDkrveCCC7Rp0yY1a9ZMd955p6pVq3bS7YsUKZIdw8h2O3YcyO0hAHmCZZlKTCyoPXsOybZZ9B2IBsxbIPowb4GMe/nlgI4ckR58MHTCbYLBSHB07rlutlQw5fac/fxzS3v3GrruunC6Idf8+abeeSegcDiyllunTrY2bzb0yisBHTpk6M47Q6pfP2Pj3rNHevDBWMXHe7r66nCmg7VTGTIkoD17DBUv7un3332qWNHVuec6mjLFUr16kfX5jq3nuGqVoTffDGjLlkgyVaSIp2rVXNWs6ah1a0cxMWc2llBIWrzY1I4dhho0cJWcnD/DvvTMn2/qtddi1L69rRtvTP/7yralX381VbeuqwIFcn6MZyq35y2AzGPeAtGHeXt6kpIKZWi7bKv427hxoyRp7ty5mjdv3im3X758eXYNBQAAAABwlilb1tXMmen/yhsKSTNn+jRlil/79xtq0sTR3Xfnrwqm7dsNTZhgyXEMVajg6rzzUlc+rlljaPjwgM4911WvXiElJkYer1DB0+DBQb3xRkBDh8bopptCatfu5FWTnieNGhWQzyclJXl69dUYVa3qqnv3sKpXP/MLOStWmFq61Kd+/YJq2tTV8uWmPvrIr8mT/Wrb1lavXuFUVYZVq3p68smgli83VaqUp6QkL0tDyEBAatTo7LxA1bSpq5tuCumddwLats1Qjx5hlS9/PPj8809To0b5tWWLqeLFXd16a1i1a5+dXysAAIDckm3B35AhQ7Jr1wAAAAAAnFTZsp727ze0f7+UkBB5zPOkWbN8mjTJr/37pfPOc1Sliqv33vPr3Xf9uvnm9CuYotHHH/uVkCBVr25r9Gi/qlU7Xpl26JA0bFhA5ct76ts37Xpt8fHS/feH9Pbbfn34oV8NGjgpwWB6vvvOp0WLfLrvvqAaNnS1ZImp8eP9euKJGN14Y0gXXHBm7VYnT7ZUpoyrJk0iAVLNmq4efzyo7dsja/6l928WCCjD1YrInHbtHBUuHNTYsX49/HCsWrWyddFFtr7+2tKsWZaqVHHVv39Qn39uaciQGLVrZ6t793BUVv8BAABEo2wL/q688srs2jUAAAAAACdVvnwk9Nm40UypOJo716d33gmoZUtbXbvaKUGYaUpvvx1Q4cKeunWzc23MWWXNGkPz5vl0yy0hNW3q6OGHTb3+ekCPPhqUaUaq8w4eNDRwYPCELU4NQ+rePaxffvHpo4/8uv32cLrb7dplaMwYv847z1bDhpGvc506rp54Iqh33vFr/Hi/GjZ0T3vtu9WrDf3+u0933RVKFfAZhlSy5NnTYjOvadTIVf36wZQg/bvvLBUo4KlXr0iFqGlK9euH9M03Po0f79fvv5t68MHQWdUWFQAAILfko0YmAAAAAABEJCd7sixPGzdG0qJDh6QxY/xq0sTRnXeGUwUQbdo4uuaasCZP/n/27jzOxvL/4/j7Ptvswwxjxr5ky07IMmiQVCj6Rt9KKSWppCjaiAotWkS7VNZvpRSJylb2ElmSiGIoZmwzBnOW+/79MT9T01hmmJkz53g9Hw8PzX3u+7o/5+Qzxnmf67qc+uor++mGDAiWJc2c6VT58qbatvUpPFy6+26PfvvNps8/d+ibb+xasyYrFDxbCBMZKfXs6dGyZQ5t25b77QPLkt5+26mQEOnmm3MGg4Yh3XCDR6Gh0tSp576B4uzZTiUkmLr00vObNYiC53BIl1/u07hxJ9S/v1vPPXdCHTv6spfMNYysx0ePzgqcX3vNJW/g5+oAAADFXqHN+Hv66afzdf7jjz9eSJUAAAAAAC40drtUvryl5GSbJJ8+/NApt1vq3dt9yvO7dPHqyBFDU6a4FB7uVmJiYAZNGzbY9PPPdg0enJkdwNSsaeraaz369FOHDEPq1Mmr5s3ztgzmZZf5tGiRqQ8+cGrUqMwcs+4WL7Zr0ya7HnooUxERua+NiMgKBCdOdGndOpsaN87f0pu//25o3Tq7+vcPrv0Xg014uM7YL/HxlgYMcGvUqBB98olDPXuS/gEAABSmQgv+Fi1alOdzDcMg+AMAAAAAFKiKFU3t3m3T9u2GFi1y6Oab3YqNPfW5hiHddJNHx49Lb77pkt3uVsuWgRX+mWbWbL/atX1q1ChnyHbttV79/LNNXq+h//731Mt2norNJt1yi0ejRoVo6VK7LrvMp4MHs/YQXLbMoaQk7xn30mvRwqelS316/32n6tTJVEhI3p/P7NlOxcebAff/AblVr27puuu8+vhjp+rXN3Xxxey/CAAAUFiKRfAHAAAAAEBBq1DB0vffG5o0yaUqVUxdfvmZAyTDkPr29cjnk15/3SnDyAquAsXy5Xbt3m3Tk0+eyDEzT8qaAfnoo+7s/86PmjVNtW7t1f/+51RqqqF58xxyuaTbb3erXbuzv6Z9+ng0bFiIPvssb7O99u0z9L//OfXDD3b16+fOd70onrp29WrTpqz9JkePPqHISH9XBAAAEJwKLfgDAAAAAMCfKlY0lZlpKDnZ0KhRJ/K0XKTNJvXrlxX+vfaaUw6HpaZNA2N20ldfOdSokU/Vq596777zCdBuuMGjH36wa84chzp39qpbN+8pl/c8lYQES926efXZZw6ZZtbegeHhlsLDpRIlLJUsaSk6Oqvmzz93aP58h6KipLvuCtwlV5GbzSb17+/RY4+FaNIklwYOdOcKqAEAAHD+Cj34c7vdmj9/vn744Qf99ddfkqSEhAQ1a9ZMV1xxhVwuV2GXAAAAAAC4AFWqlBXYXXGFV1WrnjoMO5WTAYXPZ+jVV116/vlMlSmT9+v94a+/DO3cadN99516D8PzFRMjDR+eqbAwndNr0aWLV7//btOqVXYdO2bo+HFD1r+GMQzJ6bR0zTVeXXWVV6GhBVQ8io1SpSz17evWK6+EaPlyO8EuAABAISjU4O+HH37QkCFDtG/fPlmWpejoaElSWlqaPvzwQ7300kt6/vnndckllxRmGQAAAACAC1BMjPTYY5m66KL8z9iz26V+/dzq1y9UGzfa1KFD8Q4oli+3KzTUUuPGhVdn5crnHn66XNKDD/4dSlqWdOyYlJZm6PBhQ0eOGDp6VGrSxHfafRgRHJo1M9WypVdTpzrVoIFP//9WEQAAAApIHhY6OTe//fab7rzzTkVEROi5557TDz/8oDVr1mjNmjVau3atXnjhBYWHh+vOO+/Ujh07CqsMAAAAAMAF7OKLTZ3rQjOhoVK1apY2by7em8xZlrRihV3NmvnO+bkWNcOQIiKksmUtXXyxqRYtfOrYkdDvQtG7t0eS9MEHTj9XAgAAEHwKLfh77bXXVKVKFc2aNUtdu3ZV5D92bY6IiFCXLl300UcfqUqVKpo4cWJhlQEAAAAAwDmrU8enLVtsuZalLE527jS0b59NrVoV71mJwEnR0Vnh36pVDq1bV2hvTQEAAFyQCu2nq1WrVqlv374KPcOi/GFhYbr99tu1atWqwioDAAAAAIBzVqeOqfR0Q8nJhr9LOa3lyx0qUcJS3br5X9IU8JdWrXxq0MCnyZNdOnbM39UAAAAEj0Lb4y8tLU0JCQlnPS8hIUFpaWmFVQYAAAAAAOesZk1Tdruln3+2qWLF4jejzueTVq60q1Urn2xMnEIAMQzp9ts9Gjo0RDNnOnX77Z5c55w4kbV/5bp1dtlsktMpuVyW4uIsde/ulVF883gAAAC/KbTgLyEhQVu2bFHTpk3PeN7PP/+cp4AQAAAAAICi5nJJNWqY+vlnu664ovgFfz//bFNamqFWrbz+LgXIt9KlLfXq5dEHH7j088821a9vqn59n+LjLS1dateSJQ4dP26obl2fHA4pPV06ftym776zqUYNU/XrM8sVAADg3wot+OvYsaNef/11tWnTRlWqVDnlOX/88YfeeustXXPNNYVVBgAAAAAA56VOHVMLFjhkmvLbrDq3W1q71q7jx6XERJ9crqzjK1bYFR9vqmrVYrwJIXAGl1/uU+nSmVq3zq5162z6+uust6rCwy0lJXnVsaNPcXF///m2LOnRR0P09dcO1a/v9lfZAAAAxVahBX933323Fi1apGuuuUbXXnutkpKSVLZsWUnSn3/+qSVLlmj27NlKSEhQ//79C6sMAAAAAADOy8UXm/rkE0N//GEUecC2a5ehJUscWr7crowMQ4YhffaZpeuv96hpU5++/96uq65iyUMELsOQmjQx1aSJKcuS9u/P2lOzbl1ToaGnPv/yy72aPNml1FRDpUsTegMAAPxToQV/0dHRmjZtmp588kl9+OGH+vDDD3Od07FjR40YMUJRUVGFVQYAAAAAAOelenVTTqeln3+2q2rVwltSc8cOQ7NmOZWWZig9XUpPN5SZaSgqKmvmU7t2WUuNfvihU2+84VLJkpZOnDDUunXxW4IUOBeGIcXHW4qPP3OY16qVTzNmWFq40K5evVjmFgAA4J8KLfiTpNKlS2vChAnau3evvv/+e+3bt0+SFB8fr2bNmqlcuXKFeXsAAAAAAM6b0ynVrGlqyxabrr668O6zdKlDv/1mU9OmPkVGWoqOluLjTTVsaMrxj3+933+/W7/+atPMmQ5VqqSzhiRAsAkNldq08WnJEod69PDK6fR3RQAAAMVHoQZ/J5UrV459/AAAAAAAAatOHVNz5jjk80l2e+HcY+dOmxo29OmOOzxnPbdmTVPDh7O/GS5cl1/u1VdfObR6tV2JiX/Pel2yxK516+y6/3633/bkBAAA8KdC+xHo999/V48ePbR06dLTnrN06VL16NFDu3fvLqwyAAAAAAA4b3XqmDpxwtDOnYWzmZ7Xm7WfX7VqZqGMDwSbsmUt1avn09df//2Z9i++cOidd1xau9auDRtI/QAAwIWp0H4KevfddxUeHq527dqd9px27dopIiJCkyZNKqwyAAAAAAA4b1WrmgoJsbRlS+FM90tONuT1GqpalWU7gby6/HKvfvvNph07DH38sUMzZjjVrZtHlSubWrSoSBa5AgAAKHYKLfhbvny5rrvuurOed91112nZsmWFVQYAAAAAAOfN4ZBq1TK1eXPh/DN6xw6bDEOqXJkZf0BeNW5sqlQpSy++GKLZs53q1cujnj29Skryav16mw4d8neFAAAARa/Qgr99+/apYsWKZz2vQoUK2rdvX2GVAQAAAABAgahTx9TWrTZ5vQU/9s6dNlWoYCokpODHBoKVzSZ17OjV4cOG+vRxq2vXrOZs2dInh0P69tv8z/r76y9DP/xQ0JUCAAAUnUIL/iIiInQoDx+tOnz4sMLDwwurDAAAAAAACkTDhj55PIa+/77gl/vcudOmqlWZ7QfkV5cuXo0bd0IdO/qyj0VESC1a+LR4sV1WPlfPnTTJoZEjpddec+jEiQIuFgAAoAgUWvBXr149zZs376znffHFF6pXr15hlQEAAAAAQIGoWNFSvXo+zZ3ryHeYcCZut7R7t6Fq1Qj+gPwyDCk+PndDJiX5lJpq06ZNeX/ra/9+Q5s22dS2rbRmjV1PPBGiXbsMSZJpSjt2GPrsM4dWry6cvT4BAAAKQqHtdHzjjTfqnnvu0UUXXaS7775bdnvOH4pM09Rrr72m+fPna+LEiYVVBgAAAAAABebqq7169tkQbdpkU/36BRPUJScb8vkMZvwBBah6dVMVKphatMih+vXdebpm6VK7wsKk++6TrrzSrZdfdmjEiBDVr2/q119tOnrUkGFIYWGWGjXysTQvAAAolgot+OvQoYPuuOMOTZgwQTNnzlTLli1Vrlw5SdKff/6plStXKjU1VX379lX79u0LqwwAAAAAAApMvXqmqlQxNXdu3sOEs9mxwyabzVLFigU4jRC4wBmGlJTk1bRpTh05IpUocebzfT5p6VKHWrf2KTTUofLlLY0cmamZM53audOmjh29atDAVFSUpYcfDtXq1Xa1bes786AAAAB+UGjBnyQNGTJEzZo107vvvqsFCxbI7c76R1FISIiaNGmip59+Wu3atSvMEgAAAAAAKDCGkbWn2IQJLu3YYahatfMP63butKliRUsuVwEUCCBb69Y+zZzp1LffOtS1q/eM527YYNPhw4bat/87zHO5pFtu8eQ6t149nxYudBD8AQCAYqlQgz9Jateundq1ayefz6fDhw9LkkqWLJlr6U8AAAAAAAJBs2Y+lSljau5cpwYOPP9Zfzt22FS9Ost8AgUtMlJq3tynRYvs6tzZK6fz9OcuXuxQ5cqmqlY9e5jfoYNXL78cot9/N1SlCjN1AQBA8ZL3HY7Pk91uV6lSpVSqVClCPwAAAABAwLLbpauu8ur77+3at884r7EyM6U9e9jfDygsXbp4deCAoS++OP1n3w8dktavtykp6cyzAk9q3NhUyZKWFi4s9M/TAwAA5FuRBX8AAAAAAASLtm19ioy0zhgm5MWuXTaZJsEfUFgqVrR01VVezZ7tOG1Q/+23DtntUsuWeVu6026XLrvMqxUr7Dp+vCCrBQAAOH8BGfy9+eabuu6669S4cWO1bNlSAwYM0I4dO3Kc07t3b9WqVSvHr+HDh+c4Z+/everXr58aNmyoli1b6tlnn5XXm7dPdwEAAAAALlwul9S5s1fffmvXnj3nPutvxw5DdrulihVZLhAoLN27e1WypKXJk52y/tVqliUtXWpXixY+RUTkfcykJJ/cbkMrV7KqFQAAKF4CMvhbs2aNbrrpJn344YeaPHmyvF6v+vbtq2PHjuU4r2fPnlq2bFn2r4cffjj7MZ/Pp7vuuksej0czZ87U2LFj9emnn2r8+PFF/XQAAAAAAAGoUyevEhIsPf+8S0eOnNsYO3faVKmSJQcrBgKFJiREuu02jzZtsucK6tavt2n/fpsuuyxvs/1OKlXKUqNGPi1c6MgVJgIAAPhTQAZ/kyZNUo8ePVSjRg3Vrl1bY8eO1d69e7V58+Yc54WGhiouLi77V2RkZPZjy5Yt0/bt2/X888/r4osvVrt27XT//fdr2rRpcrvPf3N2AAAAAEBwCwuThgxxy+Mx9OKLITqXf0ru2GFTtWos8wkUtoYNTTVv7tOUKU4dPZo123b8eJdefDFEVauaqlkz/33YoYNXf/xh044dho4elbZvN/Ttt3Zt2mQjDAQAAH4TFJ8pTE9PlySVKFEix/E5c+bo888/V1xcnJKSkjRgwACFhYVJktavX6+aNWuqdOnS2ecnJibqySef1Pbt21WnTp083dtmM2Sznd9m7kAwsNttOX4HUPzRt0DgoW+B4ichQXr4YY9GjnTprbdCdP/9Hhn//0/Es/XsiRPSX3/Z1LWrTw4HfQ0Utttu82rw4BA99lioDh40FB9vqW9fr9q29cnpzNmvefm7tkkTKS7O0jPPhMrjyflYlSqWrrnGq+bNTdnOo73T0qSIiKx9BQGcGj8jA4GHvi1cAR/8maap0aNHq0mTJqpZs2b28S5duqhcuXIqU6aMtm7dqhdeeEE7d+7UhAkTJEmpqak5Qj9J2V+npKTk+f6xsREyDII/4KTo6DB/lwAgn+hbIPDQt0Dx0rSp9Nhj0ujR0v/+51KrVlJ4eNaMQIfj9D27eXPW402aOBQTU8RFAxegmBjpvvuk+fOlu++WWrWS7HbnKc/N69+1Dz2U1csVKmT9KldO+uUX6eOPpddec+rTT6UBA6RGjfJf77ffSq+8ItWvLz3+uFgSGDgLfkYGAg99WzgC/keGkSNHatu2bZo+fXqO47169cr+71q1aikuLk59+vTRrl27VKlSpQK7/8GDGcz4A5T16Yzo6DClpR2Xz8dSRUAgoG+BwEPfAsVXrVrSDTfYNWWKQ599lnXMMAyVKGHXM88cV2xs7p5dutQhm82uyMhMHTpUxAUDF6jGjbN+SVmz6f4tv3/XVqqU9euk48elypWlwYOl334z9P77Dj33nKGXXnLL5cpbjZYlffihQ7Nn29WwoakffrDpued86t/fKz57DuTGz8hA4KFvz01MTESezgvo4G/UqFFasmSJpk6dqoSEhDOe27BhQ0nSH3/8oUqVKql06dLasGFDjnNSU1MlSXFxcXmuwTQtmSYLtwMn+XymvF6+WQOBhL4FAg99CxRPl19uqmVLjzIyDJ04IWVm2vTGG+GaMcOmu+7y5jj34EFp3jybrrzSI8sy5fWeZlAAflEQf9dWrizdeaephx8O1TffGOrUyXfWa06ckF5/3aUff7SrZ0+PunTxasUKu15/3aWSJU1dfz3fLIDT4WdkIPDQt4UjIBdQtSxLo0aN0tdff633339fFStWPOs1W7ZskfR3qNeoUSP9+uuvOnDgQPY5K1asUGRkpKpXr144hQMAAAAAglpkpBQfb6lyZUt16li6+WZp2TK7duzIOU3n44+dCg2VunThTXwgmJUta6lVK68+/9wpt/vM53q90ujRIdq82aYHH8xU165ZM/xat/bphhs8+uwzpxYuZLM/AABwZgEZ/I0cOVKff/65xo0bp4iICKWkpCglJUUnTpyQJO3atUsTJ07Upk2blJycrIULF2ro0KFq1qyZateuLUlKTExU9erV9fDDD+uXX37Rd999p5dfflk33XSTXHldewEAAAAAgDPo2FGqUMHSjBlOWf+/WMyuXYa++86hHj08Cg/3b30ACl/37l6lpUmLFp05tFuwwKGdO20aNixTjRvnnP1w9dVederk1XvvubRuXUC+nQcAAIpIQC71OWPGDElS7969cxwfM2aMevToIafTqZUrV+qDDz7QsWPHVLZsWXXq1EkDBgzIPtdut+uNN97Qk08+qV69eiksLEzdu3fXwIEDi/S5AAAAAACCl90u3XijV88+69S6dTY1aWJqxgynypQxlZR09mX/AAS+hARLrVv7NGeOU+3b+065119KiqFZsxzq1Mmr6tVzbyljGNLNN3uUmmro9dddeuqpTMXHs/UMAADILSCDv61bt57x8bJly2rq1KlnHad8+fJ6++23C6osAAAAAAByadTIVN26Pk2f7pTd7tHGjXYNHJgpR0D+ixzAubj2Wq+WL7dr4UKHrrwy5xK/liW9955TkZHSf/7jOe0YNpt0111uDR8eoldecWnEiEyFhBR25QAAINCwNgAAAAAAAIXIMKT//tejfftsGj/epRo1TDVrZp79QgBBIz7eUps2Pn3+uUP/v1NNttWr7frpJ7tuvdWtsLAzjxMRId1/v1t//mnovff+XkIYAADgJII/AAAAAAAKWZUqlhITvcrMNHTjjR4Zhr8rAlDUrr3Wq4wM6bXXXPr+e5uOHZMyMqQpU5xq2tSnSy7J2wcCKlWy1LevR99959DixVn7Bh47Jm3aZNOXXzqUllaYzwIAABR3LCwCAAAAAEARuOUWj9q08alGDWb7AReiuDhLffp4NG+eQ6+8EiKbzVJsrKXMTKl379Mv8XkqiYk+bdvm1fvvOzV/vkN//mnLnv3n9Updu3rPPAAAAAhaBH8AAAAAABSBsDCpTh1CP+BC1r69T+3b+7Rvn6GNG23atMmu5s29KlUq/2t23nyzRx6P5HBIXbp4ddFFpt5/36lt21jgCwCACxnBHwAAAAAAAFCE4uMtxcf71LGj75zHcDqlfv1yzhSsXt3U4sUOWZZYUhgAgAsUHwECAAAAAAAAgkCNGqbS0w3t30/qBwDAhYrgDwAAAAAAAAgCJ/cQ3b6dt/wAALhQ8VMAAAAAAAAAEAQiI6X4eJN9/gAAuIDxUwAAAAAAAAAQJGrUMJnxBwDABYyfAgAAAAAAAIAgUaOGqV27DGVm+rsSAADgDwR/AAAAAAAAQJCoXt2UaRrasYO3/QAAuBDxEwAAAAAAAAAQJCpWtBQSYrHcJwAAFyh+AgAAAAAAAACChM0mXXSRqW3bAvttP69XOnbM31UAABB4HP4uAAAAAAAAAEDBqV7d1JIlDlmWZBj+riZ/0tKkRYsc+uabrLctX375hBy8gwkAQJ4F9kd/AAAAAAAAAORQo4aptDRDKSmBk/odPCi9+aZT990Xqs8+c6hWLVOHDxv66SfevgQAID/4vAwAAAAAAAAQRKpXNyVJ27fbVKaMz8/VnJ3bLb34YogOHjT0n/94lZTkVWSk9NdfIVq2zKFLLnH7u0QAAAIGH5kBAAAAAAAAgkhUlBQfHzj7/H3wgVN79hh6+OFMde2aFfpJUmKiTz/+aNPRo/6tDwCAQBIYf/sDAAAAAAAAyLPq1U1t3/73W39er7R5s02+YjYBcMkSu5YscahPH4+qVLFyPNa6tVeWJa1cafdTdQAABB6CPwAAAAAAACDI1Khh6o8/DO3fb+iTTxy6//5QjRkToq+/LpgQLSND+uILx3kFib//bui995xKSvKqXbvcA0VHSw0amPruO3YrAgAgrwj+AAAAAAAAgCBTvbop0zQ0eHCo5s51qGlTnxo08Onrrx2yrLNffzZffunQjBlObdhwbm8vHj0qvfKKSxUrWurd23Pa89q08WnHDpv27jXOtVQAAC4oBH8AAAAAAABAkKlUyVK7dl7dcINH48ef0G23edS9u1f79tm0fv35vSV44oT09ddZs/CWLz+3GYTz5zuUlmZo4EC3XK7Tn9ekiU/h4Za+/TbnfbZutWnZMnuBhJgAAAQT5skDAAAAAAAAQcZmk+68M+dMuurVTVWtauqrrxxq3Nh9zmMvXuzQ8eNS+/ZeLVtm14kTHoWG5v16y5JWrLCrRQuf4uLOnNw5nVKLFj6tWOFQz55eGYY0b55DM2c6ZVnS9u1e3XKLR7Yint6wcaNNR44YKlfOVEKCpfDwor0/AACnQ/AHAAAAAAAAXAAMQ7riCq/eeMOlvXsNlSuX/+lyXm/WMp8tW/rUpYtXixY59OOPdrVqlffN/rZts2n/fpvuuOP0S3z+U9u2J+9j04oVDq1ZY1eXLh6VKWPpvfecOnjQ0D33uBUSku+nk2+WJc2Z49CHHzpzHC9Z0tKtt7rVrJlZ+EUAAHAGBH8AAAAAAADABeLSS32aNs3SV1851KdP3oK3f1q1yq6DBw1dfbVXZcpYqlHD1IoV+Qv+li+3KzbW0sUX5y0ku+giSwkJpl55JUQhIZbuvz8zO2CLibH06qsujR4doltvdSs52abt223ascOm8uVN3XmnR44CegfUsqQZMxyaN8+p667z6MorvfrzT0N//mnT4sV2TZniUsOGJ864dCkAAIWNPf4AAAAAAACAC4TTKXXo4NV339mVkZG/ay1LmjvXoYYNfapUKWu2YKtWXm3YYFN6et7G8Hql1avtatUqa9nOvDAM6eqrvapWzdRTT2XmmFXXuLGpxx/P1P79hoYPD9Vbb7n0yy82lStnatUqu954w1kg+wD6fNJbbzk1b55Tt9ziVvfuXoWGSlWrWmrVyqfbb/fo8GFp8eJz2/MQAICCwow/AAAAAAAA4ALSoYNXn3/u0Hff2dW5c95n6v30k03JyTbdemtm9rFLL/VpyhSn1qyxq0OHs4/10082HT1qqHXrvN9XkpKSfEpKOvU11apZGjPmhPbssalKFVMREVnHL7nE1IQJLpUoId18syc7aDx6VPr8c4ciIqRu3c4eQO7ebWjaNKd+/tmmu+92n7L2smUttWnj02efOdWunS9fex4CAFCQCP4AAAAAAACAC0hMjNS8uU9ff+3QFVf4Thl8WZa0caNNdrsUFWUpKsrS3LkOXXSRqdq1/55xFx0t1atnavnyvAV/y5c7VKmSqYoVC2Aa3j+ULCmVLJlz6dBLL/Xp6FG3Jk92qUQJS507e7VggUNz5jjk80lut6HffssK88LCco+5b5+hTz5xaMUKh+LiTA0Z4laDBqdfnvTaa71atsyur792qGtXb4E+PwAA8orgDwAAAAAAALjAdO7s1ZNPhmrDBpsaNswdZm3YYNPzz4fkOj5oUGauoLBVK5/eeMOllBRDcXGnD/QyMqQff7Tp+uuLLhTr0MGnI0c8+vBDp+bPd+jo0axj3bt79NtvNk2c6NLIkSF68EG3ypSx5HZLmzbZtGaNXStW2BUdLfXp41a7dr6z7hUYF2fpsst8+uILhzp08Co8vGieIwAA/0TwBwAAAAAAAFxgLrrIUoUKppYudahhQ3eux5cudahCBVMPPOBWerqUnm7INKUmTXKHhJdc4pPTaWnVKnv2TLfUVEMHDxqqUcPMDgq//94un89Qy5ZFOxuue3evPB4pJcXQddd5VbZsVjjZuLGpkSMz9eKLLg0fHqLatU1t3GhTZqahhARTPXt6dfnlXoXkzj9P65prPFq61K4FCxzq3p1ZfwCAokfwBwAAAAAAAFxgDENq186nmTOzZsFFRv792NGj0tq1NvXs6VV8vKX4eEk6/Uy+sLCsEG3JErv++svQli027d9vkyRVrGiqe3ePmjUztWKFXXXq+BQbW7jP7d8MQ+rV69QhXPnylkaOzNQ777h06JCha6/16pJLfCpX7tyWIo2NlTp29GnePIcuv9yb43UFAKAoEPwBAAAAAAAAF6DWrb2aMcOh5cvtuuKKv/fnW73aLsvKejyvkpK8evbZEDkcUsOGpi6+2KOwMGnuXIfGjw9RxYqmkpNtuvPO3LML/S0yUho0qODq6tbNo8WL7RoxIkTdunnVuvXZlwkFAKCg8FcOAAAAAAAAcAGKjs5auvPbbx05gr9vv3WoQQNTJUvmfaz69U1NnnxcTue/j7u1ZYtNn37qUESEpaZNfaceIIhER0sjRmTqk0+cevttlz791FTXrl6VL5+1h2BmpmRZWbMk//16AQBwvgj+AAAAAAAAgAtU27ZevfhiiH7/3VCVKpb+/NPQb7/ZdO+9+Z8Bd7oQ6+KLTV18sVuWpez9/oJdpUqWBg1ya9cuQ7NnO/Xeey5Z/1o99PLLvbr1Vo9/CgQABC2CPwAAAAAAAOAC1bChqRIlLH37rUNVqnj07bd2hYdbatKk4GfmXSih3z9VqmRp4EC3Dhww5HZLLpcUEmJp4UKHZs1yqHPnrH0UAQAoKDZ/FwAAAAAAAADAP+x2KTHRqxUr7HK7peXLHWrZ0ieXy9+VBZdSpSyVLWupVClLkZHSlVd6VbKk9L//sdYnAKBgEfwBAAAAAAAAF7C2bX06etTQlClOHTxoqE0br79LCnoul3TddR6tWWPXjh0X4FRIAEChIfgDAAAAAAAALmDly1u66CJTixc7lJBg6qKLWHqyKLRp41OFCqZmzHDm2v8PAIBzRfAHAAAAAAAAXODatfP+/+++C3IvPn+w2aRevTzassWun37ibVoAQMHgbxQAAAAAAADgAteqlU/t23uzA0AUjUaNTNWu7dPMmU6Zpr+rAQAEA4I/AAAAAAAA4AIXGirdfrtH0dH+ruTCYhjSf//rUXKyTRMmuJSW5u+KAACBjuAPAAAAAAAAAPzkooss3XOPWz//bNPDD4fqu+/s7PkHADhnDn8XAAAAAAAAAAAXspYtfapb16cpU5x6802Xli/3qUsXry6+2JTd7u/qAACBhOAPAAAAAAAAAPwsOlq65x6PEhN9+uADp8aODVFUlKXmzX1q2dKnWrVMGYa/qwQAFHcEfwAAAAAAAABQTDRsaOqFFzK1c6ehVavsWrXKoYULHbruOo+6d/fmezyPR/rpJ5saNDDlchVCwQCAYoXgDwAAAAAAAACKEcOQqlWzVK2aV//9r1ezZzs0a5ZTpUpZatvWl+dxLEuaPNmpb791KDbW0vXXZ80oZOYgAAQvm78LAAAAAAAAAACcmmFI117rVVKSV++849TGjXl/S3fhQru+/dahXr08uugiU2++6dLjj4fkawwAQGDhOzwAAAAAAAAAFGOGIfXp41H9+qZeecWl338/+5S9rVtt+uADpzp18qprV6/uv9+tESMy5XJJzz4boqlTnfLmf+VQAEAxR/AHAAAAAAAAAMWc3S7dd59bZctaeuGFkDOGfwcPSq+84lKNGqZuvNGTfbxGDVPDh2fq5pvd+uoru8aOdenIkaKoHgBQVAj+AAAAAAAAACAAhIZKgwdnqkQJS8OHh+iTTxy5Zu2lpBh65ZUQ2e3SwIFuORw5HzcMqXNnnx591K0//7TpscdCtW0bbxMDQLBwnP0UAAAAAAAAAEBxULKkNHJkpmbPdmj2bId+/NGuW2/1aPduQ8uX27V1q11hYZaGDctUiRKnH6d2bVNPP31C48eHaNSoEDVu7NMVV3hVp44p4+wriQIAiinDsizL30UEspSUdH+XABQLDodNMTEROnQoQ16v6e9yAOQBfQsEHvoWCCz0LBB46FsEmh07DL3xhkt799pkGFLduj4lJvrUtKlPoaF5G8Prlb77zq4FCxxKTrapfHlTXbt6lZjoK9ziCwh9CwQe+vbcxMVF5ek8ZvwBAAAAAAAAQACqVs3S009nauNGm6pVMxUTk/8xHA4pKcmnyy7z6eefbZo/36E33nApMjJTjRrxhjwABBoWbwYAAAAAAACAAOVySZdccm6h3z9lzRg09eCDbtWv79PkyS6dOFEwNQIAig7BHwAAAAAAAABAUlYAeNttHqWnSx995PR3OQCAfCL4AwAAAAAAAABkK1PG0nXXefXVVw799pvh73LOy48/2rRrV2A/BwDID4I/AAAAAAAAAEAOnTt7VaWKqXfeccnrLbhxt2839OWXDh0/XnBjnk56uvTKKy6NHh2iffsI/wBcGAj+AAAAAAAAAAA52O1S375u7dlj6IsvHKc8x7KkZcvs+uwzhywrb+NOm+bStGlOPfBAqObMcRTqPoJLl2bVHRFh6bnnXDp6tPDuBQDFBcEfAAAAAAAAACCXKlUsXXWVVx995NSYMS6tXWuTaWY9tnGjTY89FqI33nDpo4+cWrv27G81799vaNs2m264waPmzX36+GOHHnggVCtX2gu8dsuSFi+2q0ULnx5+2K2MDEMvv+ySx1PgtwKAYoXgDwAAAAAAAABwSj17ejVggFsnThh66aUQDR4comeecenZZ0MUEiKNGJGpBg18mjLFddbZe6tW2eVyWerY0avbb/fohRcyVb26qUmTnMrIKNi6N260ad8+mzp08Ck+3tKDD7q1fbtN77zjzPPsRAAIRAR/AAAAAAAAAIBTstmkVq18GjkyU08+eULVq5tyuw0NHJip4cMzVaOGqVtv9ejIEWn27FMvCXrSihV2NWniU2ho1tdxcZbuuMMtr1dauPDM1+bXN984VLGiqRo1sqYo1qxp6q67PFq+3KEJE1w6dKhAbwcAxUbBfjcFAAAAAAAAAASl6tUtVa+ee63M+HhL3bp59dlnDrVt61O5crmn1O3aZSg52aZevXJeX6KE1KaNT/PnO9S5s1cu1/nXmZpqaN06u/r0ccsw/j7esqVPpunW1KlODRkSqmuv9apzZ6+czvO/JwAUF8z4AwAAAAAAAACcly5dvCpd2tJ77516Kc0VK+yKjLRUv76Z67Grr/YqPd3QsmUFs9ff4sVZS4q2auXL9Vjr1j698MIJJSX59NFHDg0bFqItWwrnbfIjR6QpU5xKSyuU4QHglAj+AAAAAAAAAADnxeWSbrnFo59/tmvVqpwBnmVl7e/XrJlPjlOsQZeQYKlZM5+++MIhM3cumC9er7RkiUOJiT6FhZ36nIgI6eabPRozJlMxMZbGjHHpiy8cuQJLtzsrsDyX4C4tTXrmmRAtWODQvHksvAeg6PAdBwAAAAAAAABw3ho2NNWsmU/vv+9UQoKpqlWzkrRt22xKTbWpVavcy4Se1KWLR8OHh+r77+269NLcM/VOxTSlsWOdOnJEqlXLobp1s2YOHjliqEMH71mvL1/e0iOPuPXRRw7NmOHUb7/Z1K+fW1LWnoNffOFQWpqhSpVMPfZYpiIi8lRWduiXkWGoWTOflixxqHt3r0JC8nY9AJwPZvwBAAAAAAAAAApE375uxcdbGjMmRNu2Zb39vHy5XbGxlmrXPv10vmrVLNWp49Pcubln3p3OggUO/fSTTTVqSGvX2jRuXIjeesulmjV9qlQpb4PY7dINN3g1cGCmfvrJpsceC9GgQaH63/8catzYpyFDMnXggKGXXnLJ7T77eGlp0pgxIUpPN/TYY5m64QaPMjIMrVhRMMuYAsDZMOMPAAAAAAAAAFAgIiOlYcMyNW6cS2PHujRokFurV9t12WVeGcaZr+3SxavnngvRzz/bVLfumdf8/PNPQx9+6FDnzj4NGuTQwYNu7d1rafNmm2rWzP96oc2bm6pQIVNvv+1SnTo+devmVVxcVng4eLBbY8a4NHGiSwMHumX//wzv+HHp559tOnAga5ZhWpqhn3+26dgxQ48/nqly5bKub9TIpwULHLrsMt9ZXwMAOF8EfwAAAAAAAACAAhMWJj30kFsvveTSc8+FyLKkli3Pvnxn/fqmKlc2NWWKU0OHZiom5tTnmab05psuxcZauuEGr6QQGYYUH28pPj5vy4SeSrlylkaMyMx1vGZNUwMHZj2fSZOcql7d1Nq1dm3aZJPPZ8hut1SihFSihKXy5S316uVW+fJ/zzi84gqvxo7NW6AJAOcrIIO/N998U1999ZV27Nih0NBQNW7cWEOGDFG1atVynWtZlu6880599913mjhxojp27Jj9WK1atXKd/+KLL+rqq68u1PoBAAAAAAAAIJiFhEgPPujW66+7dPiwkaelNw1D6t/freefD9GIEaEaMiTzlNd9+aVDv/1m0xNPZBbZvnmNG5u6806P3nzTpe++k2rV8umGG7xq0sSnMmWsM87kq1vXVPnyphYscKhu3TysFwoA5yEgg781a9bopptuUv369eXz+fTiiy+qb9+++uKLLxQeHp7j3Pfff1/GGb7rjhkzRm3atMn+Ojo6utDqBgAAAAAAAIALhcsl3X+/W5alPC9xWbGipSefPKFx40I0alSIBg50q0GDv2fJ7dlj6KOPHOrc2fv/S3raCqf4U2jTxqeKFU+oVClLUVF5v84wsmb9TZ7s0r59huLj87iJIQCcg4AM/iZNmpTj67Fjx6ply5bavHmzmjVrln18y5YtevfddzVr1iwlJiaecqzo6GjFxcUVar0AAAAAAAAAcKHK7752sbHSE09kasIEl154waUGDUwdOWIoNdVQerqhhART11/vKZxiz6JKlXML7Vq39unDDy19841DN93kn9oBXBgCMvj7t/T0dElSiRIlso8dP35cgwcP1vDhw88Y7I0cOVKPPfaYKlasqBtuuEHXXXfdGWcI/pvNZshmY0dWwG635fgdQPFH3wKBh74FAgs9CwQe+hYoPiIjpYce8urjjx3avt1QlSqWmjY1Vbq0pYYNTYWH5+zX4t63DofUoYOpb75xqFs332n3LwQuBIHSt4Eq4IM/0zQ1evRoNWnSRDVr1sw+PmbMGDVu3DjHnn7/NnDgQLVo0UJhYWFatmyZRo4cqWPHjumWW27J8/1jYyPyFRQCwS46OszfJQDIJ/oWCDz0LRBY6Fkg8NC3QPHRv3/ezguEvu3VS1qxQnr0UYduvVXq3Dn/syGBYBIIfRuIAj74GzlypLZt26bp06dnH1u4cKFWrVqlTz/99IzX3nPPPdn/XadOHR0/flyTJk3KV/B38GAGM/4AZX06Izo6TGlpx+XzmWe/AIDf0bdA4KFvgcBCzwKBh74FAk8g9a3NJo0eLU2f7tArr9g1b56pO+7wqlIl9vzzN59PWrjQriNHJMuSLMuQ3W6pYkVLNWuazNAsYIHUt8VJTExEns4L6OBv1KhRWrJkiaZOnaqEhITs46tWrdKuXbty7PcnSffdd5+aNm2qKVOmnHK8hg0b6rXXXpPb7ZbL5cpTDaZpyTT5xgyc5POZ8nr5Zg0EEvoWCDz0LRBY6Fkg8NC3QOAJlL4NC5P69nWrVSub3n3XqWHDnGrf3qcePTyKjvZ3dReuzz936KOPHIqJyXqv3zAkt1tKT8+a9BMba+nii33q3dujyEh/VhpcAqVvA01ABn+WZempp57S119/rSlTpqhixYo5Hu/Xr5+uv/76HMe6du2qRx55RElJSacdd8uWLSpRokSeQz8AAAAAAAAAAPLr4otNjR6dqfnzHZozx6Fly+zq2tWrzp29Cgnxd3UXlj17DH3yiUNXXeXRf//rzfHYwYPS9u02/fabTUuWOJSebuihh9ws0YpiLSCDv5EjR2ru3Ll67bXXFBERoZSUFElSVFSUQkNDFRcXp7i4uFzXlStXLjskXLRokQ4cOKCGDRsqJCREy5cv15tvvqnbb7+9SJ8LAAAAAAAAAODC43RKXbt6lZTk1ezZTn3yiUMLFzo0dGimypdnlbmiYJrS22+7VKqUpeuu8+Z6PDZWat7cVPPmpurUMfXCCyGaPduh7t1zn+tPq1bZlZJiqGvXs9dlWdLOnYaOHjVUqZKpkiXPfL7XKz39dIgOHTJUv75P9eqZqlfPx8zHYiwgg78ZM2ZIknr37p3j+JgxY9SjR488jeFwODRt2jSNHj1aklSpUiUNGzZMPXv2LNhiAQAAAAAAAAA4jchI6eabPbr8cq9eftmlMWNC9MQTmYqPJ/wrbF99Zdf27TY9/nimzrYQYMOGprp39+iTT5yqXt1U/frFY4nK776z6623XLIsKS7OUosWvlOel5YmLVvm0NKldu3ZY8s+Hh1tqXJlU5dd5tOll+a+9uOPHdq501Dbtj5t3Zo189EwpOuu8+jaa4tXAIosARn8bd269byvadu2rdq2bVtQJQEAAAAAAAAAcM7i4y0NG5apUaNCNGaMS8OHZyo21t9VBa99+wx9+KFTl1/uVe3aeQvxunf3avt2myZOdOnppzNVurSlAwcMbdxoU2qqoe7dvbLbC7nwf1ixIiv0a9vWq+PHDU2e7FSNGqZKlfo7NLYsafp0pxYssMswpEsuMXXTTVnB8h9/GNq1y6ZffrFpwgSXLMudIzjcvNmmL75wqmdPT/ZswgMHDM2f79CsWU5ddFHxCUDxN8OyLD42cB5SUtL9XQJQLDgcNsXEROjQoQw2ZAUCBH0LBB76Fggs9CwQeOhbIPAEY9+mphoaNSpEISGWnngiU9HR/q4o+KSlSa++6lJKiqGxYzMVGpr3a48elR57LFROpyWbTdq79+/Zc8OGZapevaL5c7hqlV0TJ7qUmOhVv34eZWRIw4aFqnx5U8OGZe1D6PNJb7/t1PLlDv3nPx516OA95RKdliW98YZTK1fa9cADbjVubOroUenRR0OVkGDqkUdy7mtoWdKzz7q0e7dNY8acyPef0WDs26IQFxeVp/NsZz8FAAAAAAAAAAAUhdKlLT36aKYyMgw9+2yI3G5/VxQcTFP66SebXnnFpXvvDdX27TbdeacnX6GflLU06/33ZyokRKpRw9S997r1xhvHFRNjaf36opnut369Ta+95lTLll7deadHhpFV1113ubV5s13z5zvk9UoTJri0YoVdAwa4dc01pw79JMkwpH79PGrSxNQrr7i0ebNN777r0okT0l13eXKEfifPv+sut0xTeuONrGVG8+rYMel//3Por7/O/fnjzJjxd56Y8Qdk4VMaQOChb4HAQ98CgYWeBQIPfQsEnmDu2z/+MDR8eIiuvtqrnj3ZS+18bN9u6LXXXNq/36aKFU1ddplXrVv7ThuEnYtJk5z6+WebXnghM1dQVpDS0qSHHw5V9eqmHnjAnWtp0alTnfr6a7tq1DC1bZtNAwe6dckleesNj0caN86lLVts8vkM3Xuv+7R7BkpZQerzz4foxhs9uuqqs/8ZTU429PLLLqWl2TR+vEORkcHXt4UprzP+AnKPPwAAAAAAAAAAglnlypa6dfPq888datXKpwoVmMOTX5YlLVxo15QpTlWtaumee06oWjWrUIK5Jk18WrzYob/+MlS2bOH8v7IsafJklyTpzjtzh36S1LOnR5s22bRjh01DhrjztQef0ykNGuTW+PEuJSRYZwz9JKlhQ1NXXeXR//7nUKVK5hmXOV21yq6333YqLs7SM8+4VbGiQ4cO5bk05APBHwAAAAAAAAAAxVDXrl6tXGnXu+869cQT7kKdSRZs3G5p8mSnvvvOoY4dvbr5Zo8chZiI1Kljyum09OOPdl19deHM0Fy92q7vv7fr3nvdKlHi1Oe4XNJjj2Xq2DFD8fH5DyBDQ6WHH877+rI9e3q1Y4dNY8eGqFkzn3r18ighIeu+liXt3Glo8WKHFi92qEULr+64w6PISHahK0wEfwAAAAAAAAAAFEMul3TbbR6NGROipUvtuuyyM8/AQpa9ew1NnOjS3r2G+vd3KzGx8F+3kBCpbl1T69fbdPXVBT/+4cPSe+851by576wz8aKipKioopkh6nBIjz3m1rJldn30kVMPPxyipCSfbDZp7Vq7Dh40FBFhqXdvtzp18hFeFwGCPwAAAAAAAAAAiqm6dU0lJno1c6ZTTZr4FB3t74qKL8uSFi2ya+pUp0qVsjRiRKaqVCm6JVIbN/bp/fedysiQIiLyft3q1XYtWGBXYqJPrVr5FBqa8/GTS3wahtSnT95n4xUVw5DatPHp0kt9WrDAoTlzHAoNlZo29emSS3yqVcss1NmWyImXGgAAAAAAAACAYuzGGz1av96u6dOd6t/f4+9yipxlZc12u+giU23bnnq2W1qa9NZbLq1fb1f79l7deKMnV4BW2Bo1MjV5sqGNG+1nnZV30s6dht54w6nYWEuTJ7s0fbql1q19atTIp0OHDO3bZyg52aaffrJr4MDMYh38ulxZy9NefbVXhiFm9/kJwR8AAAAAAAAAAMVYdLTUs6dH777r0rXXerP3ULtQ/PKLTQsXOrRwoXTokEfdunlzhErr1tn01lsuSdLgwZlq3Nj0S52lSlmqVMnUunW2PAV/aWnSSy+FqEIFS088kam0NEOLF9u1eLFDCxc6ZLNZKlXKUny8pf/+16Pmzf3zvPLLxhZ+fkXwBwAAAAAAAABAMde6tU/Tpllavdqua67x+rucIvXllw6VL2/q0kt9+ugjp44cMdS7t0dutzR9ulMLFzrUsKFP/fq5VaKEf2tt1MinRYscMk3PGQMwr1caP94lj0caNMgtl0sqXdrS9dd71b27VwcPGoqNtVgiE/nGHxkAAAAAAAAAAIq5kJCsPeRWrbqwgr8//zS0bp1dffu6ddllPpUoYem991w6cMDQnj2GDhww1KePWx06+IrF0pJNmvj0+edObd9uU82ap5+hN22aU7/+atOjj7pVqlTOGZwOh1SmzIU1qxMFh+APAAAAAAAAAIAA0LKlTy+95NCePYbKl78wgqH58x2KjLTUqlXW0pkdOvgUFZWpiRNdqljR0tNPZxar16JaNUtRUZbWrcsd/B09Kv3wg11r1ti1YYNdt93mVu3agbF8JwIHwR8AAAAAAAAAAAGgQQNTYWGWVq2y67rrgn/W39Gj0rff2tWtm1cu19/Hmzc3VbPmCUVGqtgthWmzZS33+f33dpUvb+nQIUNHjhhKTjb08882WZahWrV8uuMOt9q1O/s+gEB+FbOWAAAAAAAAAAAAp+J0Spdc4tPKlXb16OEtFktbFqaFCx2yLKlDh9whZ8mSRV9PXjVt6tN33zn0xhsuhYdbKlHCUlycpVtu8ahpU1+xrh2Bj+APAAAAAAAAAIAA0aKFT8uWObRrl6HKlYvPEpcFzeORvvrKoTZtfIqO9nc1+dOkialXXz2u8PCsvRmBomTzdwEAAAAAAAAAACBv6tUzFRGRtdxnMFu1yq4jRwx17hx4S5oahhQTQ+gH/yD4AwAAAAAAAAAgQDgcWUtJrl5tlxWkE/4sS/ryS4caNvSpfPkgfZJAISH4AwAAAAAAAAAggLRo4dP+/Tbt3Bmcm/z98otNu3bZAnK2H+BvBH8AAAAAAAAAAASQOnVMRUUF73KfX33lULlypurVM/1dChBwCP4AAAAAAAAAAAggdrvUvLlPq1Y55Hb7u5qClZpq6Icf7OrUySsjOCc0AoWK4A8AAAAAAAAAgADToYNX6enS+PEueYNoRcxvvrErNNRSYqLP36UAAYngDwAAAAAAAACAAFOpkqUHHnBr40ab3njDKTMIVsV0u6UlSxxq186n0FB/VwMEJoI/AAAAAAAAAAACUIMGpu65x63Vqx16912nLMvfFZ2fFSvsysgwdPnlQTSFEShiBH8AAAAAAAAAAASo5s1N3XmnW0uWODRjhsPf5Zwzy5IWLHCoUSOf4uMDPMEE/IjgDwAAAAAAAACAANa2rU///a9H8+Y59fvvhr/LOSe//GLT7t02derEbD/gfBD8AQAAAAAAAAAQ4Dp39qp0aVNffBGYs/6++sqhcuVM1asXBJsVAn5E8AcAAAAAAAAAQICz26Urr/Rq9Wq7UlICa9ZfRob04482JSX5ZARW6UCxQ/AHAAAAAAAAAEAQaNfOp/Bwad68wJr1t369XT6foebNff4uBQh4BH8AAAAAAAAAAASB0FCpUyevliyxKz3d39Xk3fff21WtmqlSpSx/lwIEPII/AAAAAAAAAACCxOWXeyVl7ZkXCE6ckH76yaZmzZjtBxQEgj8AAAAAAAAAAIJEVJSUlOTT1187dOKEv6s5u/Xr7fJ4WOYTKCgEfwAAAAAAAAAABJErr/Tq2DFp6VK7v0s5q++/t6tyZVPx8SzzCRQEgj8AAAAAAAAAAIJIXJylFi18mjPHqX37DH+Xo6NHpaefdundd505jrvd0vr1LPMJFCSCPwAAAAAAAAAAgkyvXl6FhloaMSJEv/7qvyjg0CHpqadCtHOnTYsWObR8+d+zEDdutCkz0yD4AwoQwR8AAAAAAAAAAEGmVClLTz6ZqQoVTI0e7dKqVUW/7Of+/YaeeipEx44ZeuqpTLVs6dXkyX/PQvz+e7vKlTNVvjzLfAIFheAPAAAAAAAAAIAgFBkpDR3q1qWX+jRhgktz5zqK7N579mSFfoYhDR+eqXLlLPXp41FUlKXXX3cpM1P68Uc7s/2AAkbwBwAAAAAAAABAkHI6pf79PerWzaOZM51at65oYoEpU5wKCbH0+OOZiovLmtEXESENGODRjh2Gxo1z6dgxQ82bE/wBBYngDwAAAAAAAACAIGYY0vXXe9WokU9vvunSoUOFez/Lkn7/3abWrX2Kicn5WI0apnr08Ornn+2KjzdVqRLLfAIFieAPAAAAAAAAAIAgZxhSv35u2e3Sm2+6ZBVi3nbkiHT0qKEKFcxTPt6tm1ctWnh15ZVeGUbh1QFciAj+AAAAAAAAAAC4AERHS/37u7Vpk11ffll4+/3t3p0VPVSseOp00WaT7r3Xo44dWeYTKGgEfwAAAAAAAAAAXCDq1zd11VUe/e9/Dv3+e+FMt0tOtsnptFSmDMt4AkWN4A8AAAAAAAAAgAvI9dd7VaGCpQkTXDpxouDHT042VKGCJRsJBFDkaDsAAAAAAAAAAC4gTqd0771uHTxoaNo0Z4GPv3u37bT7+wEoXAR/AAAAAAAAAABcYMqWtXTzzR4tXuzQmjUFFxVYlrRnT9aMPwBFj+APAAAAAAAAAIALUFKST82a+TRpkksHDhTMfn/79xvKzDRUsSIz/gB/IPgDAAAAAAAAAOACZBhS375uuVzS6687ZRZAVpecnBUgstQn4B8EfwAAAAAAAAAAXKAiI6W773Zr61a73n3XqeXL7dqwwaYdOwydOJH/8ZKTbYqIsBQTU/C1Ajg7h78LAAAAAAAAAAAA/lOnjqmePT365BOHliz5OzaoWNHUM89kypaPKUS7dxuqUMGUUTArhwLIJ4I/AAAAAAAAAAAucF27etW1q1eZmVJ6uqGdOw298kqI1qyxq0ULX57HSU62qVYtlvkE/IWlPgEAAAAAAAAAgCQpJEQqXdpSs2am6tb1ac4chywrb9d6vdLevYYqViT4A/yF4A8AAAAAAAAAAOTStatXf/xh08aNeYsS/vzTkGkaqlAhj0khgAJH8AcAAAAAAAAAAHKpW9dU1aqmPv88b7uGJSdnRQ4VKjDjD/AXgj8AAAAAAAAAAJCLYUjdunn0yy92bdt29jhh925DJUtaiowsguIAnBLBHwAAAAAAAAAAOKWmTU2VLWtqzpyzz/pLTraxvx/gZwR/AAAAAAAAAADglAwja6+/H3+0a/du44znJicbBH+AnxH8AQAAAAAAAACA02rVyqfYWEvvvedUcvKpw78TJ6T9+22qUMEq4uoA/BPBHwAAAAAAAAAAOC2HQ+rb162UFJuGDQvViy+6cu35t2dPViBYoQIz/gB/OvuivAAAAAAAAAAA4ILWsKGpF188oRUr7Jozx6GRI0NUo4appCSvmjf3afdumwxDKl+eGX+APxH8AQAAAAAAAACAs3I4pLZtfWrTxqcffrBp4UKH3nrLpSlTLJUoYalMGVMhIf6uEriwEfwBAAAAAAAAAIA8MwypWTNTzZq5tX+/oaVL7fr2W4caNfL5uzTggkfwBwAAAAAAAAAAzkmZMpauv96r//zHK8PwdzUAbGc/BQAAAAAAAAAA4PQI/YDigeAPAAAAAAAAAAAACAIEfwAAAAAAAAAAAEAQIPgDAAAAAAAAAAAAggDBHwAAAAAAAAAAABAEAjL4e/PNN3XdddepcePGatmypQYMGKAdO3ac8lzLsnTHHXeoVq1a+uabb3I8tnfvXvXr108NGzZUy5Yt9eyzz8rr9RbFUwAAAAAAAAAAAAAKVEAGf2vWrNFNN92kDz/8UJMnT5bX61Xfvn117NixXOe+//77Mgwj13Gfz6e77rpLHo9HM2fO1NixY/Xpp59q/PjxRfEUAAAAAAAAAAAAgAIVkMHfpEmT1KNHD9WoUUO1a9fW2LFjtXfvXm3evDnHeVu2bNG7776r0aNH5xpj2bJl2r59u55//nldfPHFateune6//35NmzZNbre7qJ4KAAAAAAAAAAAAUCACMvj7t/T0dElSiRIlso8dP35cgwcP1vDhwxUXF5frmvXr16tmzZoqXbp09rHExEQdPXpU27dvL/yiAQAAAAAAAAAAgALk8HcB58s0TY0ePVpNmjRRzZo1s4+PGTNGjRs3VseOHU95XWpqao7QT1L21ykpKXm+v81myGbLvZQocKGx2205fgdQ/NG3QOChb4HAQs8CgYe+BQIPfQsEHvq2cAV88Ddy5Eht27ZN06dPzz62cOFCrVq1Sp9++mmh3z82NuKUewgCF6ro6DB/lwAgn+hbIPDQt0BgoWeBwEPfAoGHvgUCD31bOAI6+Bs1apSWLFmiqVOnKiEhIfv4qlWrtGvXLjVr1izH+ffdd5+aNm2qKVOmqHTp0tqwYUOOx1NTUyXplEuDns7BgxnM+AOU9emM6OgwpaUdl89n+rscAHlA3wKBh74FAgs9CwQe+hYIPPQtEHjo23MTExORp/MCMvizLEtPPfWUvv76a02ZMkUVK1bM8Xi/fv10/fXX5zjWtWtXPfLII0pKSpIkNWrUSG+88YYOHDigUqVKSZJWrFihyMhIVa9ePc+1mKYl07TO8xkBwcPnM+X18s0aCCT0LRB46FsgsNCzQOChb4HAQ98CgYe+LRwBGfyNHDlSc+fO1WuvvaaIiIjsPfmioqIUGhqquLi4U87aK1euXHZImJiYqOrVq+vhhx/WQw89pJSUFL388su66aab5HK5ivT5AAAAAAAAAAAAAOcrIIO/GTNmSJJ69+6d4/iYMWPUo0ePPI1ht9v1xhtv6Mknn1SvXr0UFham7t27a+DAgQVeLwAAAAAAAAAAAFDYAjL427p1a4FcU758eb399tsFURIAAAAAAAAAAADgVzZ/FwAAAAAAAAAAAADg/BH8AQAAAAAAAAAAAEHAsCzL8ncRAAAAAAAAAAAAAM4PM/4AAAAAAAAAAACAIEDwBwAAAAAAAAAAAAQBgj8AAAAAAAAAAAAgCBD8AQAAAAAAAAAAAEGA4A8AAAAAAAAAAAAIAgR/AAAAAAAAAAAAQBAg+AMAAAAAAAAAAACCAMEfAAAAAAAAAAAAEAQI/gAAAAAAAAAAAIAgQPAHBKlp06apffv2ql+/vq6//npt2LAh1znr1q3TLbfcokaNGqlJkya66aabdOLEiTOOu3fvXvXr108NGzZUy5Yt9eyzz8rr9WY/vnr1atWqVSvXr5SUlNOOmZmZqWHDhqlr166qU6eOBgwYcMYa1q5dqzp16uiaa645y6sABJZg69tzGRcIJMHWs5Lkdrv10ksvKSkpSfXq1VP79u318ccf5/EVAYq/YOvbYcOGnXLcq6++Oh+vClC8BVvfStLnn3+ubt26qWHDhkpMTNQjjzyiQ4cO5fEVAYq/YOzbadOm6corr1SDBg10xRVXaPbs2Xl7MYAAEUh9u3r1at19991KTExUo0aNdM011+jzzz/Pdd6XX36pzp07q379+uratauWLl2aj1cksDn8XQCAgjdv3jyNGTNGI0eOVMOGDfX++++rb9++mj9/vkqVKiUp6xv1HXfcobvuuktPPPGE7Ha7fvnlF9lsp/88gM/n01133aXSpUtr5syZ2r9/v4YOHSqn06kHH3wwx7nz589XZGRk9tcn73u6cUNCQtS7d28tWLDgjM8tLS1NQ4cOVcuWLZWampqXlwMICMHct/kZFwgUwdqz999/vw4cOKBnnnlGlSpVUkpKikzTzOvLAhRrwdi3jz32mAYPHpzjmmuuuUadO3fO02sCFHfB2Ldr167V0KFD9cgjjygpKUn79u3Tk08+qSeeeEITJkzIz8sDFEvB2LfTp0/XuHHj9PTTT6t+/frasGGDHn/8cUVHR6t9+/b5eXmAYinQ+nbdunWqVauW7rzzTpUuXVqLFy/W0KFDFRUVpaSkJEnSjz/+qMGDB+vBBx9UUlKS5syZo3vuuUeffPKJataseT4vV2CwAASd//znP9bIkSOzv/b5fFZiYqL15ptvZh+7/vrrrZdeeilf4y5ZssSqXbu2lZKSkn1s+vTpVpMmTazMzEzLsixr1apVVs2aNa0jR46cU+1Dhw617r777tM+PmjQIOull16yxo8fb3Xr1u2c7gEUR8HYt+c7LlCcBWPPLl261LrkkkusQ4cOndO4QHEXjH37b19//bVVq1YtKzk5+ZzuAxQ3wdi377zzjtWhQ4ccxz744AOrTZs253QfoLgJxr7t1auXNXbs2BzHxowZY91www3ndB+guAnkvj3pzjvvtIYNG5b99f3332/169cvxznXX3+99cQTT5zXfQIFS30CQcbtdmvz5s1q1apV9jGbzaZWrVpp3bp1kqQDBw7op59+UqlSpXTDDTeoVatWuvnmm/XDDz+ccez169erZs2aKl26dPaxxMREHT16VNu3b89x7rXXXqvExETddtttWrt2bYE8t1mzZmn37t269957C2Q8oLgI5r4tzHEBfwnWnl20aJHq1aund955R23atNEVV1yhZ5999qxLtwCBIFj79t8+/vhjtWrVSuXLly/wsYGiFqx926hRI/31119aunSpLMtSamqqFixYoHbt2p332IC/BWvfut1uhYSE5DgWEhKijRs3yuPxnPf4gD8FS9+mp6erZMmSOe7dsmXLHOckJiZq/fr1+R47EBH8AUHm0KFD8vl8uaZDlypVKntpzN27d0uSJkyYoOuvv17vvPOO6tSpoz59+uj3338/7dipqak5vlFLyv765LrLcXFxGjlypMaPH6/x48crISFBt9xyizZv3nxez+v333/XuHHj9Pzzz8vhYJViBJdg7dvCGhfwt2Dt2d27d2vt2rXatm2bJk6cqEcffVQLFizQyJEjz2tcoDgI1r79p3379unbb7/Vf/7znwIbE/CnYO3bSy65RM8//7wGDRqkevXqqXXr1oqMjNTw4cPPa1ygOAjWvk1MTNTHH3+sTZs2ybIsbdy4UR9//LE8Hg/7cyLgBUPfzps3Txs3blSPHj3OeO9/Pqdgx7vnwAXo5F49vXr10nXXXSdJqlOnjlauXKlZs2Zp8ODBuuOOO7I/XVGuXDl98cUXeRq7WrVqqlatWvbXTZo00e7du/Xee+/p+eefP6d6fT6fBg8erPvuu09Vq1Y9pzGAQBdofVuY4wKBIBB71rIsGYahF154QVFRUZKkYcOGaeDAgRoxYoRCQ0PPeWwgEARi3/7T7NmzFRUVpY4dOxbIeEAgCMS+3b59u5555hndc889SkxMVEpKip577jmNGDFCo0ePPudxgUARiH07YMAApaSkqFevXrIsS6VKldK1116rd95554z7mwHBojj37apVq/Too4/q6aefVo0aNfL71IIWwR8QZGJiYmS323XgwIEcxw8cOJD9KYe4uDhJ0kUXXZTjnIsuukh79+6VJD3zzDPZS3udnGFXunRpbdiwIcc1Jz8lcXLMU6lfv75+/PHHc31KysjI0KZNm7RlyxY99dRTkrL+wrEsS3Xq1NGkSZNyTd0GAkkw9m1RjwsUpWDt2bi4OMXHx2eHfifrtSxLf/31l6pUqXJe4wP+FKx9e5JlWZo1a5auueYauVyuAhkT8Ldg7ds333xTTZo00R133CFJql27tsLCwnTTTTdp0KBBKlOmzHmND/hTsPZtaGioxowZo1GjRunAgQOKi4vT//73P0VERCg2Nva8xgb8LZD7ds2aNbr77rv1yCOP6Nprr83xWOnSpXPN7vvncwp2fCQBCDIul0t169bVypUrs4+ZpqmVK1eqcePGkqQKFSqoTJky2rlzZ45rf//99+z9QOLj41W5cmVVrlw5+1ijRo3066+/5viLYMWKFYqMjFT16tVPW9Mvv/xyxm/mZxMZGak5c+Zo9uzZ2b9uuOEGVa1aVbNnz1bDhg3PeWygOAjGvi3qcYGiFKw926RJE+3fv18ZGRnZx3bu3CmbzaaEhITzGhvwt2Dt25PWrFmjP/74g2U+EVSCtW9PnDiRa4aQ3W6XlBXiA4EsWPv2JKfTqYSEBNntds2bN09JSUnM+EPAC9S+Xb16te666y4NGTJEvXr1yvV4o0aNtGrVqhzHVqxYoUaNGp1x3GDBjD8gCN12220aOnSo6tWrpwYNGuj999/X8ePHs9c5NgxDffv21auvvqratWvr4osv1qeffqodO3Zo/Pjxpx03MTFR1atX18MPP6yHHnpIKSkpevnll3XTTTdlf7L4vffeU4UKFVSjRg1lZmbqo48+0qpVq/Tuu++esebt27fL4/Ho8OHDysjI0JYtWyRJF198sWw2m2rWrJnj/FKlSikkJCTXcSBQBVvfns+4QCAIxp7t0qWLXnvtNT3yyCMaOHCgDh06pOeff17XXXcdy3wiKARj35708ccfq2HDhvxsjKATjH2blJSkJ554QtOnT1ebNm20f/9+jR49Wg0aNFB8fHxBvGyAXwVj3+7cuVMbNmxQw4YNlZaWpsmTJ2vbtm0aO3ZsQbxkgN8FWt+uWrVK/fv31y233KJOnTpl7xfodDpVsmRJSdItt9yi3r17691331W7du00b948bdq0SaNGjSqgV614Myw+TgQEpalTp2rSpElKSUnRxRdfrMcffzzXzLi33npL06ZN05EjR1S7dm0NGTJETZs2PeO4e/bs0ZNPPqk1a9YoLCxM3bt31+DBg7OncL/99tv68MMPtW/fPoWFhalmzZq655571KJFizOO2759e+3ZsyfX8a1bt57y/FdffVXffPONPvvsszOOCwSSYOvbcx0XCBTB1rOS9Ntvv+npp5/Wjz/+qJIlS+rKK6/UoEGDCP4QNIKxb9PT05WYmKjHHntMPXv2zOtLAQSMYOzbKVOmaObMmUpOTlZUVJRatGihhx56iOAPQSPY+va3337T4MGDtXPnTjkcDl166aUaMmRIjn3JgEAXSH07bNgwffrpp7mON2/eXFOmTMn++ssvv9TLL7+sPXv2qEqVKnrooYfUrl27/LwsAYvgDwAAAAAAAAAAAAgCLEIMAAAAAAAAAAAABAGCPwAAAAAAAAAAACAIEPwBAAAAAAAAAAAAQYDgDwAAAAAAAAAAAAgCBH8AAAAAAAAAAABAECD4AwAAAAAAAAAAAIIAwR8AAAAAAAAAAAAQBAj+AAAAAAAAAAAAgCBA8AcAAAAAAAAAAAAEAYI/AAAAAAAAAAAAIAgQ/AEAAAAAAAAAAABBgOAPAAAAAAAAAAAACAIEfwAAAAAAAAAAAEAQIPgDAAAAAAAAAAAAggDBHwAAAAAAAAAAABAECP4AAAAAAAAAAACAIEDwBwAAAAAAAAAAAAQBgj8AAAAAQJEbNmyY2rdv7+8yAAAAACCoOPxdAAAAAAAEu08++USPPPKIJGnatGlq2rRpjscty9Jll12mv/76S5dddpnefPPN7McyMjI0adIkffXVV0pOTlZISIgSEhLUrFkz3XnnnfJ4POrQoUOe6li4cKH27NmjW265JfuYzWZTyZIl1axZM91///266KKL8vV8JMnlcqlcuXJq3bq1BgwYoNKlS+epnqJ2qrpLlCihWrVqqV27durRo4ciIyPPaewff/xRy5cv16233qro6OiCKhkAAAAA8oXgDwAAAACKSEhIiObOnZsr+FuzZo3++usvuVyuHMc9Ho9uvvlm7dixQ9dee61uvvlmHTt2TNu2bdPcuXN1+eWXq379+nruuedyXDd58mT99ddfOUIuSYqNjdWePXskSb1791b9+vXl9Xq1detWzZw5U6tXr9bcuXMVFxeXp+czcOBAVahQQW63W2vXrtWMGTO0dOlSzZ07V2FhYWe89qmnnpJlWXm6T0E7WbfX61VqaqrWrFmj0aNH67333tNrr72m2rVr53vMdevWacKECerevTvBHwAAAAC/IfgDAAAAgCLSrl07zZ8/X48//rgcjr//OTZ37lzVrVtXhw8fznH+N998o59//lkvvPCCunbtmuOxzMxMeTwehYeH65prrsnx2Lx585SWlpbr+D81bdpUnTt3zv66atWqevLJJzV79mzdeeedeXo+bdu2Vf369SVJ119/vUqWLKnJkydr4cKF6tKlyymvOXbsmMLDw+V0OvN0j8Lwz7ol6a677tLKlSvVv39/DRgwQPPmzVNoaKjf6gMAAACAc8UefwAAAABQRK6++modPnxYy5cvzz7mdru1YMGCXMGeJO3evVuS1KRJk1yPhYSEnPOylKdychbiyXueixYtWkiSkpOTJWXt49e4cWPt2rVLd955pxo3bqwhQ4ZkP/bvPf5M09T777+vrl27qn79+mrRooX69u2rjRs35jjvs88+U48ePdSgQQM1b95cDzzwgP78889zrluSWrZsqQEDBmjPnj36/PPPs4//8ssvGjZsmDp06KD69eurdevWeuSRR3To0KHsc1599dXsWZcdOnRQrVq1VKtWrezXYdasWbrlllvUsmVL1atXT1dddZWmT59+XvUCAAAAwKkQ/AEAAABAESlfvrwaNWqkL774IvvYt99+q/T0dF111VW5zi9Xrpwkafbs2YW+LObJJUDPZ5nKXbt2SZJKliyZfczr9apv374qVaqUhg4dqk6dOp32+scee0yjR49WQkKChgwZon79+ikkJEQ//fRT9jmvv/66hg4dqsqVK2vYsGG65ZZbtHLlSt10001KS0s759olZc+QXLZsWfaxFStWaPfu3erRo4eeeOIJXXXVVZo3b5769euX/f/k8ssvz57h+Mgjj+i5557Tc889p9jYWEnSjBkzVL58ed11110aNmyYypYtq5EjR2ratGnnVS8AAAAA/BtLfQIAAABAEeratavGjRunEydOKDQ0VHPmzFGzZs0UHx+f69yOHTuqatWqGj9+vGbNmqVLL71Ul1xyiZKSklSqVKnzqiMjI0MHDx7M3uNv9OjRMgzjjMHcvx09elQHDx6U2+3Wjz/+qIkTJyo0NFRJSUnZ57jdbnXu3FmDBw8+41irVq3SJ598ot69e+vxxx/PPn777bdnB2x79uzRq6++qkGDBql///7Z53Tq1Endu3fX9OnTcxzPr4SEBEVFReWY9XjjjTfq9ttvz3Feo0aN9OCDD2rt2rVq2rSpateurTp16mju3Lnq2LGjKlSokOP8qVOn5lg69Oabb1bfvn01efJk3XTTTedcLwAAAAD8G8EfAAAAABShK6+8UqNHj9bixYvVpk0bLVmyJEfQ9U+hoaH66KOP9Prrr2v+/Pn65JNP9Mknn8hms+nGG2/U0KFD5XK5zqmORx99NMfXsbGxeu6559SgQYM8j9GnT58cX5cvX14vvPBCrhDzv//971nH+uqrr2QYhu69995cjxmGIUn6+uuvZZqmrrzySh08eDD78dKlS6ty5cpavXr1eQV/khQeHq6MjIzsr/8Z2GVmZiojI0MNGzaUJG3evDl7idQz+ecY6enp8ng8at68uZYtW6b09HRFRUWdV80AAAAAcBLBHwAAAAAUodjYWLVs2VJz587ViRMn5PP5dMUVV5z2/KioKD388MN6+OGHtWfPHq1cuVLvvvuupk6dqsjISD3wwAPnVMc999yjpk2b6tixY/r666/1xRdfyGbL324Qw4cPV9WqVWW321W6dGlVrVo11xgOh0MJCQlnHWvXrl0qU6ZMjmVC/+3333+XZVmnnZXocJz/P3GPHTuWYzbl4cOHNWHCBM2bN08HDhzIcW56enqexly7dq1effVVrV+/XsePH881BsEfAAAAgIJC8AcAAAAARaxLly564oknlJqaqrZt2+Z5X73y5cvrP//5jy6//HJ17NhRc+bMOefgr2bNmmrVqpWkrCVFjx8/rieeeEKXXHKJypYtm6cxGjRooPr165/xHJfLle9A8XRM05RhGHr77bdlt9tzPR4eHn5e4//1119KT09XpUqVso8NGjRI69atU9++fXXxxRcrPDxcpmnqjjvuyNO+i7t27VKfPn1UrVq17P39nE6nli5dqvfee0+maZ5XzQAAAADwTwR/AAAAAFDELr/8co0YMULr16/XSy+9lO/rS5QooYoVK2rbtm0FVtOQIUP0zTff6PXXX9eoUaMKbNy8qlSpkpYtW6bDhw+fdtZfpUqVZFmWKlSooKpVqxZ4DZ999pkkKTExUZJ05MgRrVy5Uvfdd1+OJUh///33XNeeXI703xYtWiS3263XX39d5cqVyz6+evXqAqwcAAAAALIUzMcuAQAAAAB5FhERoSeffFL33Xef2rdvf9rzfvnllxx72Z20Z88e/fbbbwUaflWqVEmdOnXSp59+qpSUlAIbN686deoky7I0YcKEXI+dnFnXqVMn2e12TZgwIddsO8uydOjQoXO+/8qVK/Xaa6+pQoUK6tatmySdclahJL3//vu5joWFhUnKvfznyTH+WW96erpmzZp1zrUCAAAAwOkw4w8AAAAA/KB79+5nPWf58uV69dVX1b59ezVs2FDh4eFKTk7WrFmz5Ha7dd999xVoTX379tWXX36p999/X0OGDCnQsc+mRYsWuuaaazRlyhT98ccfatOmjUzT1Nq1a3XppZfq5ptvVqVKlTRo0CCNGzdOe/bsUceOHRUREaHk5GR988036tmzp/r27XvWe3377bfasWOHfD6fUlNTtXr1ai1fvlzlypXT66+/rpCQEElSZGSkmjVrpnfeeUcej0fx8fFavny5kpOTc41Zt25dSdJLL72kq666Sk6nU0lJSWrdurWcTqf69++vG264QRkZGfroo49UqlQpvwSsAAAAAIIbwR8AAAAAFFOdOnVSRkaGli9frlWrVunIkSOKjo5WgwYNdNttt6lFixYFer/69eurefPmmjFjhu666y5FRUUV6PhnM2bMGNWqVUsff/yxnnvuOUVFRalevXpq3Lhx9jn9+vVTlSpV9N5772nixImSpISEBLVu3fqMsyf/afz48ZIkp9OpkiVLqmbNmnr00UfVo0cPRUZG5jh33LhxeuqppzR9+nRZlqXWrVvr7bffVps2bXKc16BBA91///2aOXOmvvvuO5mmqYULF6patWoaP368Xn75ZT377LMqXbq0/vvf/yo2NlaPPvro+bxcAAAAAJCLYeVlN3IAAAAAAAAAAAAAxRp7/AEAAAAAAAAAAABBgOAPAAAAAAAAAAAACAIEfwAAAAAAAAAAAEAQIPgDAAAAAAAAAAAAggDBHwAAAAAAAAAAABAECP4AAAAAAAAAAACAIEDwBwAAAAAAAAAAAAQBgj8AAAAAAAAAAAAgCDj8XUCgS0lJ93cJQLFgsxmKjY3QwYMZMk3L3+UAyAP6Fgg89C0QWOhZIPDQt0DgoW+BwEPfnpu4uKg8nceMPwAFwmYzZBiGbDbD36UAyCP6Fgg89C0QWOhZIPDQt0DgoW+BwEPfFi6CPwAAAAAAAAAAACAIEPwBAAAAAAAAAAAAQYDgDwAAAAAAAAAAAAgCBH8AAAAAAAAAAABAECD4AwAAAAAAAAAAAIIAwR8AAAAAAAAAAAAQBAj+AAAAAAAAAAAAgCBA8AcAAAAAAAAAAAAEAb8Hf9OnT1fXrl3VpEkTNWnSRL169dLSpUuzH09JSdFDDz2k1q1bq1GjRurevbsWLFiQY4z27durVq1aOX699dZbZ7xvZmamRo4cqUsvvVSNGzfWfffdp9TU1EJ5jgAAAAAAAAAAAEBhc/i7gISEBA0ZMkSVK1eWZVmaPXu27rnnHn366aeqUaOGhg4dqrS0NL3++uuKiYnRnDlzNGjQIM2aNUt16tTJHmfgwIHq2bNn9tcRERFnvO/o0aO1dOlSvfzyy4qKitJTTz2le++9VzNnziy05woAAAAAAAAAAAAUFr/P+Gvfvr3atWunKlWqqGrVqnrggQcUHh6u9evXS5LWrVunm2++WQ0aNFDFihU1YMAARUdHa/PmzTnGiYiIUFxcXPav8PDw094zPT1ds2bN0rBhw9SyZUvVq1dPo0eP1rp167LvCwAAAAAAAAAAAAQSv8/4+yefz6f58+fr2LFjaty4sSSpcePG+vLLL3XZZZcpOjpaX375pTIzM9W8efMc17799tt6/fXXVbZsWXXp0kV9+vSRw3Hqp7dp0yZ5PB61atUq+9hFF12kcuXKaf369WrUqFGea7bZDNlsRv6fLBBk7HZbjt8BFH/0LRB46FsgsNCzQOChb4HAQ98Cgaeo+3bUqBGaN2+Oune/TkOHPpbjseefH6NZsz7SVVd11fDhI3Xo0CG99dbrWrFimQ4ePKCoqGjVqFFDt9/eT16vV/fc0++M95o48S39+edePf30k5IkwzAUG1tKjRo11n33DVJCQtnCeprZikXwt3XrVt1www3KzMxUeHi4Jk6cqOrVq0uSXn75ZT3wwAO69NJL5XA4FBoaqgkTJqhy5crZ1/fu3Vt16tRRiRIltG7dOr344otKSUnRI488csr7paamyul0Kjo6OsfxUqVKKSUlJV+1x8ZGyDAI/oCToqPD/F0CgHyib4HAQ98CgYWeBQIPfQsEHvoWCDxF1bchIQ6VLVtW33zzlZ58crhCQ0MlSZmZmfr66wUqV66cQkIciomJ0L339pPH49Fzzz2rihUr6sCBA1q5cqV8vhNq27aNli1blj3uM888o6NHj2rMmDHZx0qUKKG5c+cqMjJS8+fPl2VZSk5O1siRIzV8+CP66KOPCv35Fovgr2rVqpo9e7bS09O1YMECDR06VFOnTlX16tX1yiuvKC0tTe+9955iYmL0zTffaNCgQZo2bZpq1aolSbrtttuyx6pdu7acTqdGjBihwYMHy+VyFWrtBw9mMOMPUNanM6Kjw5SWdlw+n+nvcgDkAX0LBB76Fggs9CwQeOhbIPDQt0DgKeq+zcz0qkaNWtqzJ1mffjpHnTtfJUlasOBLlSkTr3Llyisz06tdu/7SDz/8oNdee1u1atWXJIWHl1TFihdJkjIyPHI4/t5mzjAcMgx7jmMZGR5lZGRKUvbxqlVr6aqruunFF59TcvI+RUREntPziImJyNN5xSL4c7lc2TP46tWrp40bN+qDDz7QHXfcoalTp2ru3LmqUaOGpKxg74cfftC0adM0atSoU47XsGFDeb1eJScnq1q1arkeL126tDwej9LS0nLM+jtw4IDi4uLyVbtpWjJNK1/XAMHM5zPl9fJDFhBI6Fsg8NC3QGChZ4HAQ98CgYe+BQJPUfWtZVmyLEtXXdVVc+Z8ro4dO0uSPv/8M111VVetW7dWlmXJ6QxRWFi4lixZpNq16551YtnJcf/9HE5mRiePHzp0UEuWLJLdbpdpGoX+nItF8PdvpmnK7Xbr+PHjkiSbLec6r3a7XZZ1+rBty5YtstlsKlWq1Ckfr1evnpxOp1auXKkrrrhCkrRjxw7t3bs3X/v7AQAAAAAAAAAAXMiMfftkHMvI8/k2h006GC7bkWOynUMIZoVHyIqPz/d1nTpdpTffnKi//vpTkrRx408aOXK01q1bK0lyOBx67LERevbZZzR79ieqVauWGjW6RB06dFL16jXyda+jR4/q8svbyLIsnThxQpL0n//coLCwwl/e1O/B37hx49S2bVuVLVtWGRkZmjt3rtasWaNJkyapWrVqqly5soYPH66hQ4eqZMmS+uabb7R8+XK9+eabkqR169bpp59+UosWLRQREaF169ZpzJgx6tatm0qUKCFJ2rdvn2699VY999xzatCggaKionTddddp7NixKlGihCIjI/X000+rcePGBH+FzDXnM9lS9uvE7Xf6uxQAAAAAAAAAAHAejPQ0RQ0ZKJ1hslauawxDctoV5vGdcZLXadlsSp/4lqyo6LOf+w8xMTFq2bK15s2bI8uy1KpVa5UsWTLHOZdd1kEtWyZqw4Z12rx5k1atWqHp0z/Q0KGP66qruub5XuHhEXr33anyer1atWq5vvpqvvr1G5Cves+V34O/AwcOaOjQodq/f7+ioqJUq1YtTZo0Sa1bt5YkvfXWWxo3bpz69++vY8eOqVKlSho7dqzatWsnKWuZ0Hnz5mnChAlyu92qUKGC+vTpk2PfP4/Ho507d2bPIJSkRx99VDabTQMHDpTb7VZiYqJGjBhRtE/+AmQ7cliOLT/7uwwAAAAAAAAAAHCerKhopb8wPl8z/hwOm1wlwnX8yLFzWvbSCo/Id+h30tVXX6OXXnpOkvTggw+f8pyQkBA1a9ZCzZq1UJ8+d2js2Kc0adKb+Qr+bDZDFSpUlCRVqVJVe/bs0bhxY/TEE0+dU9354ffgb/To0Wd8vEqVKnr11VdP+3jdunX14YcfnnGMChUqaOvWrTmOhYSEaMSIEYR9RcyMiZVx6KC/ywAAAAAAAAAAAAXAio9XfubtmQ6bFBMh81CGzCLem/PSS1vK4/HIMAw1b94yT9dUqVJV33235Lzue/PNt6pXr2vVs+dNqlWr9nmNdTa2s58CFBwrNlbGiePSP2ZfAgAAAAAAAAAAFDa73a5p0z7S1Kkfym6353jsyJHDGjiwvxYsmKft27dp7949WrToG02fPkWJie3O677x8Qlq2zZJkya9cV7j5IXfZ/zhwmKWjJEk2Q4fklkEm1gCAAAAAAAAAACcFBERecrjYWHhqlOnnv73v+nauzdZXq9XZcrEq2vXa3XLLbed8pr86NnzRvXvf5t+/nmT6tSpd97jnY5hndPOiTgpJSXd3yUEFNu+vxQ5eKAyHhkuX93C+4ONoudw2BQTE6FDhzLOaV1mAEWPvgUCD30LBBZ6Fgg89C0QeOhbIPDQt+cmLi4qT+ex1CeKlBkTK0mysc8fAAAAAAAAAABAgSL4Q9FyuWRFRMgg+AMAAAAAAAAAAChQBH8oclbJGNkOHfJ3GQAAAAAAAAAAAEGF4A9FzoyJZcYfAAAAAAAAAABAASP4Q5GzYmJkO0jwBwAAAAAAAAAAUJAI/lDkzJhY2ZjxBwAAAAAAAAAAUKAI/lDkrNhYGYcPS5bl71IAAAAAAAAAAACCBsEfipwZEyuZPhlpR/xdCgAAAAAAAAAAQNAg+EORs2JiJEkG+/wBAAAAAAAAAAAUGII/FDkzJlaSZDt8yM+VAAAAAAAAAAAABA+CPxQ5q0RJyWaTcYgZfwAAAAAAAAAAAAWF4A9Fz2aTVaKkbCz1CQAAAAAAAAAAUGAI/uAXZkysbMz4AwAAAAAAAAAAKDAEf/ALKyZGxiH2+AMAAAAAAAAAACgoBH/wC2b8AQAAAAAAAAAAFCyCP/iFGRsrg+APAAAAAAAAAACgwBD8wS+skjEyjh6V3G5/lwIAp2UcOijnyuX+LgMAAAAAAAAA8oTgD35hxsRKkozDh/1bCACcgfO7pQqb+Ipsf/zu71IAAAAAAAAA4KwI/uAXVmxW8Mc+fwCKM1tKiiQpZO7nfq4EAAAAAAAAAM6O4A9+YZaMkUTwB6B4sx1IlewOOVevkPH/ISAAAAAAAAAAFFcEf/CP8HApJFTGoUP+rgQATsuWmiJPYhtZ4eEKmTfH3+UAAAAAAAAAwBkR/ME/DENmyRhm/AEovixLtgMH5CtXQe5OV8q1ZJGMtCP+rgoAAAAAAAAATovgD35jxcbKOEjwB6B4MjKOSpknZJYqLXenzpJhyPXVfH+XBQAAAAAAAACnRfAHvzFjYmU7zFKfAIonIzVVkmSVLi0rMkrupA5yfT1fOnHCz5UBAAAAAAAAwKkR/MFvzJgYGSz1CaCYsh3ICv7MUqUkSZlXdpFx/IRcixf6sywAAAAAAAAAOC2CP/iNFRMr28GDkmX5uxQAyMWWmirZHbJKxkjKmvnnadlargXz+L4FAAAAAAAAoFgi+IPfmDGxksctZWT4uxQAyMV2IFVm6dKSYWQf8zS/VLbUFBkHDvixMgAAAAAAAAA4NYI/+I0VkzWLxsZynwCKISM1VWap0jmO+WrUlCQ5tv/qj5IAAAAAAAAA4IwI/uA3ZkysJII/AMWT7UCqrP/f3+8kK7qEzDLxsm8j+AMAAAAAAABQ/BD8wW9OzvgzDh3ycyUAkJvtQO4Zf5Lkq16T4A8AAAAAAABAsUTwB/9xOGRFRTPjD0Dx4/HIOHxIZum4XA/5atSQ/Y/fJbe76OsCAAAAAAAAgDMg+INfmbGxMg4S/AEoGMa+fYocMkjGkcPnNY7t4AFJOuWMP2/1mpLPK/vvO8/rHgAAAAAAAABQ0Aj+4FdWTCwz/gAUGPue3bL9tVeOn9af1zhGaqokyYrLPePPrFRZcoXI/uvW87oHAAAAAAAAABQ0gj/4lRUVJePoUX+XASBInPx+4ti08bzGsR3ICv7M2FK5H7Tb5at2kRzb2ecPAAAAAAAAQPHi8HcB06dP14wZM7Rnzx5JUo0aNTRgwAC1a9dOkpSSkqLnnntOK1asUEZGhqpWrar+/fvriiuukCQlJyfrtdde06pVq5SamqoyZcqoW7du6t+/v1wu12nv27t3b61ZsybHsV69emnUqFGF9ExxKlZklIyj2/1dBoAgYWRkSJIcmzZIliUZxjmNYzuQKisqWjrN3yPe6jXk+m7ped0DAAAAAAAAAAqa34O/hIQEDRkyRJUrV5ZlWZo9e7buueceffrpp6pRo4aGDh2qtLQ0vf7664qJidGcOXM0aNAgzZo1S3Xq1NGOHTtkWZZGjRqlypUr69dff9UTTzyh48ePa+jQoWe8d8+ePTVw4MDsr8PCwgr76eJfrMhIGUfT/V0GgCBx8vuJkXZEtt27spbl/CefT/ZftkhOp6yQEFmhYbKio6V/ff+3pabILJ17mc/sYWrUlDH3MxmpqadcDhQAAAAAAAAA/MHvwV/79u1zfP3AAw9oxowZWr9+vWrUqKF169ZpxIgRatCggSRpwIABev/997V582bVqVNHbdu2Vdu2bbOvr1ixonbu3KkZM2acNfgLDQ1VHG/Y+pUVEZE1Q4dZMwAKgHH0qMyy5WVLTZFj8ya5/xX8OZcuUti7b+c4ZoWGKX3861J4+N/jHEiVWbr0ae/jq1FTkuTY/qs8/D0CAAAAAAAAoJjwe/D3Tz6fT/Pnz9exY8fUuHFjSVLjxo315Zdf6rLLLlN0dLS+/PJLZWZmqnnz5qcdJz09XSVKlDjr/ebMmaPPP/9ccXFxSkpK0oABA/I9689mM2SzEVidK1t0lAzLlMPrzjXjBoHFbrfl+B3wB/vxY1KpGJmlS8m1eYPMrl1zPB66ZJHMRo2VefOtMjJPyEhNVejL4xTyy2b5ml+afZ7j4AF5G1eRw3GaP8+xMVJCgpy/bZPVpk1hPqVCRd8CgYe+BQILPQsEHvoWCDz0LRB46NvCVSyCv61bt+qGG25QZmamwsPDNXHiRFWvXl2S9PLLL+uBBx7QpZdeKofDodDQUE2YMEGVK1c+5Vh//PGHpk6detbZfl26dFG5cuVUpkwZbd26VS+88IJ27typCRMm5Kv22NgIGcxUO3flykhOu1wOU4qJ8Hc1KADR0QS48CNfphRXSqpRQ5oxQ2FRIZLj//+q27FDSv5DeuIJhdWv9fc1sz+Sa/sW6Yr/n4FuWVLaYYVUqaCIM31falhfIbt3nvmcAEHfAoGHvgUCCz0LBB76Fgg89C0QeOjbwlEsgr+qVatq9uzZSk9P14IFCzR06FBNnTpV1atX1yuvvKK0tDS99957iomJ0TfffKNBgwZp2rRpqlWrVo5x9u3bpzvuuEOdO3dWz549z3jPXr16Zf93rVq1FBcXpz59+mjXrl2qVKlSnms/eDCDGX/nweazKczj0/E9+2U6A//N8wuZ3W5TdHSY0tKOy+cz/V0OLlBhqYdkVi0pT9WaCjt6TMdX/yizTl1Jkmv2HDkio3WsWm3pUEb2Na7a9eRYvkrH/ntr1pLDaUcUkXFcJ0Ii5fvHef/mqFBFIQsXK2PfIcnlKvTnVhjoWyDw0LdAYKFngcBD3wKBh74FAg99e25i8jgBoVgEfy6XK3sGX7169bRx40Z98MEHuuOOOzR16lTNnTtXNWrUkCTVrl1bP/zwg6ZNm6ZRo0Zlj7Fv3z7dcsstaty4sZ566ql819CwYUNJWTMG8xP8maYl07TyfT9kMUIjFGpZ8h1Ok89LgwcDn8+Ul/+X8BMrPV3e0HC5K1RWSESEjJ9+krfmxZLbrbDvvlVmxyvktQzpn39G6zWQ48svZP6xS2aFirL/tU+WZckTU0rmGf4sm1Wry+X1yvp1m3y1Ly6CZ5cHXq9kt+d7z1T6Fgg89C0QWOhZIPDQt0DgoW+BwEPfFo5iuYCqaZpyu906fvy4JMlmy1mm3W6XZf0dtp0M/erWrasxY8bkOj8vtmzZIkmKi4s7j8qRX1ZkpCTJOHrUz5UACAbG0XRZkVGSYchbp74cmzZKkpxrVsk4dkyedkm5rvFeXFdyuuT4aX3WGKkHJElW6dJnvJdZsZIUEir7tl8L9kmch4inRiji8aGy7frD36UAAAAAAAAA8AO/B3/jxo3T999/r+TkZG3dulXjxo3TmjVr1LVrV1WrVk2VK1fW8OHDtWHDBu3atUvvvvuuli9fro4dO0rKCv169+6tsmXLaujQoTp48KBSUlKUkpKSfY99+/apc+fO2rBhgyRp165dmjhxojZt2qTk5GQtXLhQQ4cOVbNmzVS7dm2/vA4XrPBwyTBkHCP4A3CeTFPGsWPZHyjw1m8g+47tUkaGXP/H3n3HV1Xffxx/nXFHcpOwV9h77yWy3IKKe9W6a9WftrZWW0fVukcrVuvWqnXvDeLAvdggIMjeIHtl3HHG748LwZgEsm8C7+fj4QM553u+388JHHJzP/f7+XzxGU63HnhNmha9LhjE6doNe/ZMAMzNmyAYSiYQ98aycNp3wF5cMxJ/xs4dWEsWYW7cQMaN1xF69y1w3VSHJSIiIiIiIiIiItUo5aU+N2/ezDXXXMOGDRvIzMykc+fOPPXUUwwdOhSAJ554grFjx3LppZeSl5dHq1atuPvuuxk5ciQA3377LStWrGDFihWMGDGi0NwLFiwAIJFIsGzZsoIdhIFAgO+//57nnnuOvLw8mjVrxlFHHcVll11WjXcuABgGfiSCkVtyHy0RkdIw8pL/jvjpyVrXTo9e4PsEP5uI9dM88i//U4nXOr37En7peYhGMTdvwmvQsFTlMt2OnQh++nGyxKad2m+p1sLk97zcW+4k8NUXhN54FXvaVGLHHo/XogVe02Ypj1FERERERERERESqVsrfAbzzzjv3er5NmzY8+OCDJZ4/+eSTOfnkk/c6R4sWLQqSgADNmjXjhRdeKFugUmX8SKZKfYpIhe3+d2T3jj+/USO8Jk0Jv/U6fiRCov/AEq91eveB55/BnjcXc9NGvAYNSrVmYvAQQu++hT1rBs6AQRW+h4qwFi3Er1sPr2kzYmechdN/IGn/fYz0h/6dHGBaeM2aETtmTLElT0VERERERERERKT2S3niT8TPyMDM2ZnqMESklvt14g/A6d6T4GefkDj0cAgGS7zWa9IUr3ET7B9mYWzehNumbanW9Fq1xm3bjuBXX6Q88Wcv+AmnU5eCnYpuh47k3D0WY+cOzNWrsdaswvpxLmlPPoq1YjnR354LdsorfouIiIiIiIiIiEgl0jt+knIq9SkilcHI3ZX4i/wi8de7DxgG8UMO28fFBk6vPtg/zMTcuBG/QcNSr5sYPhJ71kyMHduLnAu9+xZpjz5U6rnKLR7HWroEt3PRPrV+ZhZu127Ejzia/D9dRfT83xGc+BHp/7oTdupDFyIiIiIiIiIiIvsTJf4k5fwMlfoUkYordsdfvwHk3PsAXqvW+7ze6d0Hc9NGjJydyR5/pZQ4eBgYBoFvvykcz8aNhN5+E3vmNPD9Us9XHtaypeA6OJ0673Ns/Iijyb3mBqzly0i/8TpYt65KYxMREREREREREZHqo8SfpJyfkVGwU0dEpLyMnBywA4VLehoGXpOmpbre6dodrGQFbK9ho1Kv62dkkug/gOBXnxdK8IXfeBWcBEZeHsb2baWerzyshT9BKFyqBCeA270HObfclfzNXXdBPF6F0YmIiIiIiIiIiEh1UeJPUs6PRLTjT0QqzMjNSe7229XjrszCYZyuXQHKtOMPIDHiEMxVKzGXLwPAXL6MwHdfEz9qdPL3a9eWL6ZSshf8hNOxI1hWqa/xmzQheuXVsHo1wZdeqMLoREREREREREREpLoo8Scpp1KfIlIZjJwc/EikQnM4fQdAIIhfv37ZruvZG79OXYJffwlA+JUX8Zo0I3rGWWCaWOvWVCiuvfJ9rEULcDsV7e+3L17rNnDhhQQ+moA9Y1rlxyYiIiIiIiIiIiLVSok/STk/EoFEXKXmRKRCjNxc/IzMCs0RP+Iocu6+F2y7bBdaFvFhIwh89zX2zOnYc2cTPeM3EArhNW6KWYV99My1azByc3E67ru/X7GOPRa3X3/SnngEY+uWyg1OREREREREREREqpUSf5JyfkYGgPr8iUiFGLkV3/GHZZW6J+CvJUYcgpGTQ9rD/8Ht2BlnwCAAvOxszLVVt+PPWjAfTBO3Q8fyTWAYRC+5DOwAaY8+BJ5XuQGKiIiIiIiIiIhItVHiT1Ju9w4dlfsUkYowcnIKPkiQCl7zFrjtOmBE84n+5uyCXoNudvMqTfzZCxfgtm4DaWnlnyQri7z/+yP2/B8JfPdNpcUmIiIiIiIiIiIi1UuJP0m53Tt0lPgTkYpIJv4qVuqzoqKnnUnstDNxO+0pu+k1y8bcvAlisSpZ01q4ALe8ZT5/we3eA69FS6yf5lVCVCIiIiIiIiIiIpIKZWxiJFL5VOpTRCpDpZT6rCC3Zy/cnr0KHfOym4PvY/68Dq91m0pdz9i6BXPDepxOXSplPqd9B6ylSyplLtk7e9L3GE6CxOAhEAikOhwREREREREREdlPaMefpJyfrh1/IlJBvp9M/KWw1GdJvGbNALDWra30ua2FCwFwO1d8xx+A26491upVVbY7UXaJx0l/8lHSHnuIzD9dRuit1zG2byt5fG4u5rq14Lqlm9/3k/P5fmVEKyIiIiIiIiIitYh2/EnqWRZ+ejpGbm6qIxGR2io/HzwPL5LaUp/F8TMy8TOzqqTPn73wJ7xGjfHr1a+U+dx2HcDzsFYsL1SuVCqX/eMciEXJ+9NV2HPnEBr3HqF338Zr0gTftsEOgG1j5OzE2LIFI5oPQOzEU4idekaxc1pLFmHP/gFryWKsJYsxdu7Aa9iIxMHDSAwfidcsuzpvUUREREREREREUkSJP6kR/EgGRs7OVIchIrXU7g8OpLrUZ0m87OaYayt5x5/vY8/5AbeSynwCeC1aQiCItWSxEn9VKDBtCl7TbJwBg3AGDiZ62pkEv/kKc9NGSCTAdTASDn6btngNGuLXr489aybBTz4kdtwJEA4Xms9cs5rIzTfgp6fjtutA/PAj8Zq3wJo3l+DEjwi99zZu+47kXfEX/AYNUnTXIiIiIiIiIiJSHZT4kxrBz8hQqU8RKbfdHxyoiaU+Adzs7ErvnWf9OBdz7Rryz72w8ia1bdw2bbGWLK68OaUwz8OeMZ34yEPBMJLHMjKIjzpmr5c5HTqR+f03BL/6nPhRowudC731Bn69+uwc+59C/QITQ4YSPecC7FkzSXvyUYKfTyxxx6CIiIiIiIiIiOwf1ONPagQ/ElGpTxEpt90fHPAjNTPx5zVrjrVuXaX2XAt9OB6vZSvc7j0qbU7Y1edvWeUmKWsiI2cn1tLqT3BaixZi7NyB039gma7zGzUiMWgIwQ8/AM8rOG6uXkVgyvdETzy5UNKvQDCIM2gwTv8BBKZMqmj4IiIiIiIiIiJSwynxJzWCH8nEyFWpTxEpn5pf6jMb4jGMzZsrZT5z3VrsWTOIjTp2z66xSuK274C5/uf9vvxy+PlnidxyU7Un/wLTpuDXqYvboWOZr40fcyzmhvXY06YWHAu99QZeg4YkRhy612sTgw7CXLsGc83qMq8rIiIiIiIiIiK1hxJ/UiOo1KeIVISZuxNME9LTUx1KsdxmzQGw1q2plPmCH36An5lFYsjQSpnvl9x27QEqvTRpjRKPY09PJs/SHrwfqmvHue9jT59Kot+AciVs3XYdcLt2JzT+PfB9zFUrCUz5ntjxJ4G99+rtTs/e+OE07foTEREREREREdnPKfEnNYJKfYpIRRg5OfjpkUrf/VZZ/EaNwA5grl1b4bmMnJ0Ev/6S+JFHQzBYCdEV5jVpip+envLEn7n+Z8IvPAuxWKXPbc/5ASOaT96VV2Pk5JD21BOVWoa1JOaqlZgb1uMMHFTuOWLHHIe1ZBHWooWE3n4Dr2EjEiMO2feFgQBOP5X7FBERERERERHZ3ynxJzWCH9GOPxEpPyM3Fz8jM9VhlMw08Zo2xVxb8R1/gc8/BdclfviRlRBYMQwj2edvSfX3vyvgeaQ99jDBD8cTfv2VSp8+MGUyXvMWOH36kf+7SwhM+Z7A5xMrfZ0i606fip+WjtOt/H0ZnT798LKbE372KQJTJhE78ZR97vbbLTFocDL5uK7iCWgREREREREREamZlPiTGsHPyMCI5oPjpDoUEamFjJydNba/325udvOKJ1wch9DHH5IYOgy/Tt1Kias4brsOycRfNeyCK07wk4+wFi0gcfBwgh99gDV/XpEx5soVhF55EXvaFIhGSz95IoE9YxqJwUMAcA4aQvywI0l7/lnMlSsq6xaKZU+bgtO7b6kTdcUyDGLHjMFasRyvcRMSw0aU+lKnVx8IhbXrT0RERERERERkP6bEn9QIfkYGAEaeyn2KyC/4PoHPPiHw+afYM6djLl2CsWN7kWFGTk7BvyM1ldcsG6uCO/4CUydjbN1CbNSxlRRV8dz2HTB2bMfYsqVK1ymOsXEj4ddeJn7E0eRfejluh06kPflooeSetWQRkdv/QeiTj0i//16yLrmQ9LtvI/Dt1/uc357zA0Z+XkHiDyB69nl4TZsSuecOAl9/WSUJT2PjRqwVy0kMKH+Zz90SBw/DbdOW6OlnlS2JGAyS6NMPu6KJv3gce/Ik8LyKzSMiIiIiIiIiIpVOiT+pEfzIrsSfyn2KyC9YSxeT9vSTpD31OOlj7yHjpuvIvPziIjuzanypT8DLbo6xbSvk5ZXrenPNakKvvIjTvQdeq9aVHF1hbrv2ANVf7tP3SXvqMfxIhOgZZ4Fpkn/JZZhbtxJ+9aVkTAt+Iv2u2/GyW7DjP4+SM/Y/RM86B8NxSXv0wX3uqgxMmYSX3RyveYs9B4NBcv96HU7nrqQ9/jCRf/wda/GiSr21wPSpYNk4vXpXfLJgkNzb78E5aMi+x/5KYvAQrBXLMdf/XPSk42BPn0r6/feSeemFJe6ADE0YR/qD9xH44rMyry8iIiIiIiIiIlVLiT+pEQp2/CnxJyK/YC1dApbNjv8+x84HHyP3ljvAMLAWLyw0rlaU+myWDYD1c9nLfdqzZxG5+QZITyf/95dVdmhF+PXq49erj7W0ehN/ga++wJ47h/zfXQxpaQB4TZsRPfO3BD/5kNC7bxG55w68Nm3JvebvEIngNWlK/OjR5P7tevzMLIKffFTyArvLfA46qMgpv34D8q+4kty/3wyuQ+TmvxN+8bnKuTHfJ/DdNzjde0B6euXMWU5O7z4QDBXa9Wds2ED4hWfJ/MMlpP/7XxgbN0AwRPjN14pOEIsR/PADCIUJv/Yy6Pu2iIiIiIiIiEiNosSf1Ai737A3cvUGoojsYS1dgtuqFYTD+PXq47bviJfdHGvZskLjkjv+anipz+zmAJhry5b4C078iPR778bt1JmcG2/Fb9iwKsIrwm3fIZl4rSbG9m2EX3yWxLARyT54vxA/ahRul26EXn8Fp1Nncv96XUFisEAwSPzQw5OlOvPzi13DnjsbI69wmc9fc7t2I/e2u4me8VuCE8ZhT5lc4XsLTPoOa+liYqOPq/BcFRYKkejTl8CUSZirVpL2yINkXn0FgW++IjF8JDl3/ovcO/5J9NQzsKdPxVxe+FkLfvEZRm4Oudf8HSORIPzW6ym6ERERERERERERKY4Sf1IjqNSniBTHWrIYt237Qsfc1m2xVizfc8D3kz3+IjU78Uc4jF+/AWYZ+vyF3n2L8P+eIn7UaPKuuqZad4s5uxN/vg++jzV3DuHnnsHYtKl8E+bnE3z/HVKihYkAANtLSURBVIjHiz0d+P47jFic6G/PLXrSMMj7vz8SPeMs8v7yNwiFip0jfvhRGLEowW+/Kn6NKZPwmjXHa9Fy77GaJvHjjicxcDBpTz+eLNFaXtEo4ZeexxkwCLdnr/LPU4mcQQdhLVtKxnVXY/80j+hvz2PnA48Q/e25BWVkE0OH4zVpVjix5ziExr9HYsgw3E6diZ54CsGJH2GuXlVo/sA3XxG57R8Evv+2Svol7ncSCX2dRERERERERKTSKPEnNUMwCMFQ7Ur8OQ6Br76AaDTVkYjsn/LzMdetLeg3t5vbpi3WqpXguskD8Tg4iRq/4w/Azc7G+lWSpES+T/DjD4kfdiTRs88Ds3q/Zbtt22NE8wk/9wwZV/6ByN23Efx4AuG3y7fDK/zKi4RffSnZ664Y9oxpON174GdmFXveb9CA+JgTk98vSuA3aECi/0CCH39YNJGyq39dYvBBYBj7DtgwiF5wEZgWaf99vNyJmdC7b2Hk5JB/VjEJzRRJ9O1PYtgI8i++jJ33PUj86NFFk6mWReykU7BnTMNcthSAwHffYGzZTGzMCQDERx2D16gJ4eefSX59HIfwc8+Q9thDGDt3kPbwA2RcexX25ElKbJUg8P23ZF18AZl/vJS0xx4i8O3XGDu2pzosEREREREREanFlPiTGsPPyKhZpT59n8CXn2Ns3FjsubT/PkbaE48QeufN6o9N5ABgLV8Gvl808de6DSTimOuSJTN3f2CgNiT+nO49sWdOT35oYB/MlSswtm8rth9ddXDbtgPLJvjVF7jde5B7021Ez/gtgW++xti6pUxzWfN+JPjpxxAIEpj8fdEBOTnYP83D6de/wnHHjxyFuXYN1rwfCx235/yQLPNZhq+nn1WH/IsuwZ41g8AXn+11bPipJ5L98X7xtTHX/0zog3HEjh2D37hx2W6kKoVC5F/6BxIjDgHbLnFYYsjQPbv+PI/Qe+/g9BuwZ8dkIED07HOxf5xL8NOPidx1G8GJHxM9/3fk3HMfuTffgVevPukP3kfkxmsx16yunvurDXyf0NtvkPbwAyT6DyQ+dDjmyhWkPfogmX+4BGv+vOqJIx7HnvQ99vSpWD/OxVq6WIlHERERERERkVqu5Hd7RKqZH4lg5OamOowC5rq1pD35KH5mFnlXX4PbvmPBudCrLxH45ivcrt0JfTSB+FGj8Os3SGG0Ivsfa+kSCIbwmrcodNxt3SZ5fvkyvBYtCz4wUONLfQLx407AXP8zaU8+CqZJYtiIEsfas3+AYAi3c5dqjPAXIhFy7r4Xr269gn56bvMWhN57m+BHE4id+dvSzROLkfbU47idu5Lo05fwW28kd0qHwwVDAnN+AM8j0XdAhcN2u3bDa9GS0Ccfkte9BwDWj3NJe+wh3HYd8Fq2KtN8Tr8BJEYeStoLz+J064HfpEmRMfYPMwl+PhE/LZ2Ma68iev5FJIYMJfz8//Dq1iU25sQK31dK7Nr1l/bYQ4RefwXz57XkX3p5oSFO3/44vfsS/t9T+HXqknvDzbidOgPgduhI3rU3YC34ibSnHifjxuvIv+AiEsNHlj+mvDzSnvkv+D75f/hTRe4udRIJ0v77OIFvvyJ22pnEjj8JDIPYb87G2LaVyO23EPzyM/K7dqvyUIJffU74f08VPhgKs/PusfiNGlX5+iIiIiIiIiJS+bTjT2oMPyOzRpX6tH+cA5aN17gJkdtvwZ42BYDghx8QGvcu0d+eR+6fr8YPBQm9rV1/IpUt2d+vHVhW4RORCF6jxgV9/mrTjj8Mg+jvLiExfCRpjz+c7IFWAnvODzhdu0EgUI0BFuY1yy5I+gEQiRA/7AiCn34CeXmlmiP8xquYW7aQ//tLSQw+GBJxArNmFBpjT5+G26YtfoNK+ACFYRA7ahT29KkYmzYR+OIzIvfcgdu2HbnX/L10ZT5/Jf/s8/EyM0l/+IGiPQrjccLPPo3TvQc5/34Qp3sv0h5+gMjtN2PPmkH0rHNL7ElYGyQOHobXNJvQ++/gdOuB26FjkTH5519E/MhR5Nx+d0HS75fczl3IufUuEoMPIu3xh0l7/OFylck2V64g48brCHz/DYGpk8FxynVPKeX7pI+9m8Dk78n/w5+JnXByob+Tft16JA4agj19WrL3XxWzp0/D6daDnY88yc6xD5Jz6134wSChd/W6RkRERERERKS2UuJPagyvhpX6tOfOwe3Qkdy//4NE336kPzCWtMcfJvzC/4gdezzx0cdCJEJszEkEv/wM8+d1qQ5ZZL9iLVtSpMznbm6btpi1MfEHYBjkX3QpiaHDSXvkP9hTJhcdE41iL/gJp1efag9vX+JHj8aIxwl+/umvTsQJfP4p9g8zC5KC1uJFBD8cT/TUM/CaNsNv3Bi3bXvsX5b7dBzs2TNx+lV8t99uiYOH46elEfnnHaT99zHiIw8l7+rrIBIp34RpaeRfcSXWqpWkPfpgoX51offfwdy8mej5F+FnZJJ/xZXkX/4nzJXLcXr0xBk0uJLuKkVMk9gppwEkd6YVw2/UiOh5F+LXq1/yPOEw+ZdcTv7FlxGYPInIbTeVKXEX+OoLMv7xd/xQkPyLLwPXqZWlQ43Nm7Hnzkkmwg86uNgxiYMOxsjPw549q2qDyc/HnvcjTr8B+Fl18Js0wWvXntjxJxH86gu9rhERERERERGppZT4kxrDj0Rqzo4/z8Oa/yNO9x4QDJL/xyuJHTOGwNdfkhg6olCJu/iRR+PXrUfojddSGLDI/sXYuQNz44YSE39em7ZYy5eC72PkJUsE++nlTOqkgmmSf/FlOP0HkvbsU0V29tg/zQPXwenVO0UBlsyv34DE0GGEJowrSNwYOTuJ3H07aU89Tvq/7iLrkguI3HgtaQ/+G7dt++QHJXZJDBpMYNbMgh1f1k/zk733KjHxRzhMYuRhmOvWEj37fKIX/n6vvexKw23Xgbw//InAtCmEXnkRAPPndYTef5fYsWOSuyN3SQwZys77HyHvL9eUa4dhTbP7ftwePSs+14hDyL3+JqwVywlM+q5U1wQ/mkDaE4+QGHIwuTffkezTaBjJPqC1jLVqBQBOl5LLeHotWuI1b0Fg8qQqjcWeMxtch0Tfwr0144cfiZ9Vh9Bbb1Tp+iIiIiIiIiJSNZT4kxrDz8isMTv+rOVLMfLycHr0Sh7Y1Xsn585/kX/x/xV+IzcYJHryaQQmfYtZC9+EFKmJrKVLAEre8de6DUZeHsamTRg5Ofjp6WDWsm9ppkn0tDMxtm8j8MsdcCT7+3kNG+E1bZai4PYuduzxGNu2EvjuG4z164ncfCPm2jXk3nQbOf+6n/wLfo+X3QI/K4v8Sy4r9GeTGDQEEnHsWTMBCMyYhl+/Ad6u3o2VJXr6b8j557+Jjzqm0pJvTv+BRM86l9D49wh89gnhZ59O9vA74eSig9PTIRislHVrAr9hw0qby+3QEadXH0Lj3i20e7JYiQShd98iMeKQ5E6/YBDCYbym2bUz8bdyBX56On79veyOJLnrLzB9atHSspUoMHMaXnbzon0rg0FiJ51C4PtvMFetrLL1RURERERERKRq1LJ3SWV/5kciNSfx9+NcCIWLJB28Vq2L9hsDEsNH4jXNJvzay9UVosh+zVq6BD8jA69xk2LPu7uSRNaypRg5O/EjtaTM5694zVvg9OpDcMK4QgkQe/YPOD171djdYl7zFjh9+xN6+w0ybv47+D65t9yB26kzXrNsEocdQf7//YHc2+7Ga96i0LV+kya4bdoSmDIJfB97xrTkjqPKvtdAoNAuvMoSH3UM8SNHkfb0k9hzfiB63oW1uodfqsTGnIi5ehX2r/o9/lrg268xdmwnNubEQsfdNm1rZeLPXLECr1Wbff59TwweArFo1ZX79H3sWTNL3GkbH3kYXoOGhN56vWrWFxEREREREZEqo8Sf1Bh+JAMjN3ffn/6vAHPZUsjN3ec4+8c5OF26lr40nGURPfUM7NmzMFeuqGCUImItXYLbpl2Jb4779erjZ9XBWrEMIze39vT3K0Z81DFYK5ZjLfgJAGPjRsyf1+L07JPawPYhdtwJmBs34DVtRu4tt+M1aVrqaxODhxCYNQNryWLMTRtx+ldimc+qZhhEzzmfxJBhJIaPxPlVmUQpHbdLV9z2HQmNe6/kQb5P6IP3cfoNKJLEddu0xVqxHDyvagOtZNbKFbitWu9znJfdHK9lKwKTvt/n2HLFsWQxxs4dJf/9tW1iJ59GYOpkzF07sEVERERERESkdlDiT2oMPyMzmfQrRWKuXOJxMm69ieCnH+9znL1gAU73svUycjt3BsDcvKm8EYoIgO8nE38llPncbfcb/0ZuDn6kFvX3+xWnZ2+87OYEP/oAAHvOLDDNZI/RGszt3IXcm+8g97obk/9+l4Ez6CCIxwg/+zSEwjhdu1dRlFXENMm//AryL7k81ZHUXoZBbMwJWAvmYy1cUOwQe/YszLVriB0zpsg5t01biMcw162t6kgrTyyGuX5dqRJ/sKvc58zpEItVeij2jGn4GRm4HTuVvP7Q4clqBm+8Wunri4iIiIiIiEjVSXni76WXXmLMmDH069ePfv36ccYZZ/Dll18WnN+4cSN//etfGTp0KH369OGkk07io48+KjTHtm3buOqqq+jXrx8DBgzg+uuvJ3cfyaNYLMYtt9zC4MGD6du3L3/84x/ZtEkJm1Ta/ca9WUXlPq2FCyARx9y4Ye/jFi2ERLzMb7rvLjVoVFXiUuQAYWzZgrF9G277Dnsd57Zug7V8WbLHX6RsiacaxTCIjTqGwLQpGBs2YM+Zjdu+I9SCZKbboWO5+th5TZom//yWLSHRuw8EApUfnNR4Tv+BeM2aJ3v9FSM4/n3ctu1xO3cpcs5t0xagVpX7tFavBN/Ha9WqVOMTgw5Klvv8YValxxKYOR2nd7+990a1LGInn5pMwKrXn4iIiIiIiEitkfLEX9OmTbn66qt56623ePPNNznooIO4/PLLWbRoEQDXXHMNy5Yt49FHH+X999/nyCOP5M9//jPz5s0rmOPqq69m8eLFPPPMMzz22GNMmzaNm266aa/r3nnnnXz++efcf//9PP/882zYsIE//OEPVXqvsne7S/VVVZ8/e95cAMx9JHjtH+fgZ2Qm+/mVRTAIgaASfyIVZC1dDLDvHX+t22Js24q1dk2tLvUJkBg6Aj89ndCH45Olhnv1TnVIVc4ZdFDy1xJ6jMkBwDCIHXc89oxpmGtWFzplLluKPW8usWOPL77kbySC17hJrUr8mStWgGHgtihd4s9rlo3bug2BSd9VahzGxo2Yq1Yme2vuQ2LQQfh16hKcuI9qCSIiIiIiIiJSY6Q88XfYYYcxcuRI2rRpQ9u2bbnyyitJT09n1qxZAMycOZOzzz6bXr160bJlSy677DKysrL48ccfAViyZAlff/01t99+O71792bAgAHccMMNjB8/nvXr1xe75s6dO3nzzTe59tprGTJkCD169ODOO+9k5syZBetK9dtdKs7IqaLE34+7En/7KMVp/zgXp1uPEnuL7Y0fiVRZ4lLkQGEtXYJftx5+vfp7Hee1Te74MbZtrdWlPgEIhYgfegTBTz7EyMvD6bn/J/7iw0fiDBhUquSD7L8SQ4fj16tP6M3XIT+/4Hjog3F4DRvhDBxU4rVum7bVkvgz16zG2L6twvNYq1biNc0u0y7Z3f0wiUYrvP5ugVnTwbRwevba92DbJn7o4QS/+arQn4+IiIiIiIiI1FwpT/z9kuu6jB8/nry8PPr27QtA3759mTBhAtu2bcPzPMaPH08sFmPQoOQbQTNnziQrK4uePff0Yzv44IMxTZPZs2cXu87cuXNJJBIcfPDBBcfat29Pdna2En8ptPuN+1/umLPmz8Ncsbzik+fmYi1djNesOebmzclegnsZ5/QoX28tPz1dO/5EKshatu/+fgBe4yb4aekAZe4xVxPFjxwFhoEfiZTq/ms7v34D8v58da0oaSpVyLaJnnQKgSnfk3Xp70i/5w6C494jMPk74qOPA8sq8VK3TVvM5ctK/p5egrQnHyX8wrOlG5yfT+S2mwg/+0yZ1iiOtXJFqfv77ZYYfDAk4iWWQy0Pe8Z0nK5dS/3sxQ89AhJxgt9+VWkxiIiIiIiIiEjVsVMdAMCCBQs488wzicVipKen8/DDD9OhQ7K30/3338+VV17J4MGDsW2bcDjMQw89ROvWyTdONm3aRP36hXeF2LZNnTp12LhxY7Hrbdq0iUAgQFZWVqHjDRo0KPGakpimgWmWfWeYFCOShhGwsfJz8W0Ta9J3hP9zP37DRuTd9wDY5f/rai1egAG4hxyC9cpL2NE8yCyaKLAW/YQB0Ks3tl32vLiRmYmVn1eua2s7yzIL/SpSLr5PYNlS4scdX6rnyG/bFnP+PMw6mbX/uWvSCOeoUWCa2MHq+fas51ZqAv+oo8nv1Rt75nSsGdNIe+OVZCnPww/f63NttG+PGc0nsHkjftOmpVrLmjOb4FdfJEtuHnMMfuMmex0f+OxjzNxcgrOmk0jEIC2tLLe2h+9jr15JvG/fsv1b1bwZidPOIPzGa9ClC26fvhV7bvPzCfz0I/Gzzil9HE0a4Q0YSOizT/COHlWuiggiBzJ9rxWpffTcitQ+em5Fah89t1WrRiT+2rZtyzvvvMPOnTv56KOPuOaaa3jhhRfo0KEDDzzwADt27OB///sf9erVY+LEifz5z3/mxRdfpHPnzqkOnfr1Ixh6A6Ty1K9H0E/A/B/gsYdg0ACYOZPQ9O9h1Kjyz7tsITRvRnDIQHjzVYJOHtQr5k3C3eO6tCvfG1sN64EXJ73egbuDJSurnG+KigBs3AiJGMFe3aA0z1G3zrB4AcFmjUo3vqa78o8AVPed6LmVlKvXHrq2h7NOh9xciMUI1t97uV/69oCARXDzuuS1++K68NqL0KMbrFtH8POP4dJLSx4fjcLED+Hgg2DqVIIL5sChh5btvnbbsCH5b1vPrmX/t+rCc2H1coJPPgIPPAD1GgHleG5dF55/CkyD4GEjyhbHKSfCjTcSXrcCuncv27oiAuh7rUhtpOdWpPbRcytS++i5rRo1IvEXDAYLdvD16NGDOXPm8Nxzz3HRRRfxwgsvMG7cODp27AhAly5dmDZtGi+++CK33norDRs2ZMuWLYXmcxyH7du306hRo2LXa9iwIYlEgh07dhTa9bd58+YSrynJli252vFXidICIfj8K8zVq3AGHUTs8j8SevhBrOdeIK/v4DL1xSk075RpeB06Ew9GSE+4RJesxK1X9FP+aVOm4XXsQmxbXrnWCZlBzI0byN964JX7tCyTrKw0duzIx3W9VIcjtZS5eAVpCZe8UCZ+KZ4ju1EzQgmXfM/COwCfu4rScys1lhGCfT7TNumZdXFmzyPeve8+p7QnfkJo8VLyb78La9ZMgu++Te7o4yGrTrHjAx+MI7hlG3lnnE1401b8jyYS7VNyz8G9sX6YRzjhkle3Uan+bSvigktIv/4a/JtvI37r7WQ1yCr2uTXWrSP8+CMkho/EOeTQPaVS8/MJP3Af1tw5xC66BCeUWYqv7y+06kB6w8a4b7xDLLtN2eMXOYDpe61I7aPnVqT20XMrUvvouS2feqX8EG+NSPz9mud5xONx8vPzATDNwts9LcvC39XPpW/fvuzYsYO5c+fSY1dftkmTJuF5Hr169Sp2/h49ehAIBPj+++85+uijAVi6dClr166lT58+ZYzVx/PK1ltGSualZ2At/In4oCHkX3I5+AbeyaeR8bcrMT/6iPjoY8s8p7F9G8bKlcSPPYFEJAvftPA3bMBxfvUPSn4+xqpVxEePKXqulOy0dIydO8t9/f7Adb0D+v6lYgIbN+H7PomsulCKv0dup27YTbNJNG6Kr7935abnVmorp3UbWLJ4339/c3NJe/Vl4sNGEG/dDqNBIwLvvYv1wQfETj2j6Ph4nLT33iV+8DAS9RthDBlK+Ln/4W7dhp+ZVXT8PljLluFFIiSy6pXq37Yi0iLk/vHPRG65CevZZ+Avfyr2uU1/7n8Yy5YR/Gk+9vj3iZ5xFm6bdqSPvRtj40ZyrroWt2evcsUQPfRIwq+8iLtpM37demW/B5EDnL7XitQ+em5Fah89tyK1j57bqpHyAqpjx45l6tSprF69mgULFjB27FimTJnCmDFjaNeuHa1bt+amm25i9uzZrFy5kqeffppvv/2WI444AoD27dszfPhwbrzxRmbPns306dO57bbbOPbYY2nSJLmja/369YwaNYrZs2cDkJmZySmnnMLdd9/NpEmTmDt3Ltdffz19+/Ytc+JPKpfTpSuJ4SPJv+yPBZ9S95o2IzF8JKH33k6W3Soje96Pybm7dQfDwGvYEGPz5iLjzHVrk+u1aFHu+P1IBCNXu45EysvYvBk/LR3S00s13m/UiJx//Ru/hB07IrJ/c9u0xVq+DHZ9IAzfJ/Tay6Tf90+seT8WHA+99zZGLEb09N8kh2VkEj/0cIKffFjsa4vgV59jbN9G7PiTAEgMOgjwCUyZVK44zZUrcFu1qVB/PLddB6LnnEfg44/g66+LnLd+nIs9czr5v7+UnNvuxqtfn/R//4vMq67AzMkh96Zbk0m/cooPHwmmSfDLz8s9h4iIiIiIiIhUvZTv+Nu8eTPXXHMNGzZsIDMzk86dO/PUU08xdOhQAJ544gnGjh3LpZdeSl5eHq1ateLuu+9m5MiRBXPce++93HbbbZx33nmYpslRRx3FDTfcUHA+kUiwbNmygh2EANdffz2maXLFFVcQj8cZNmwY//jHP6rvxqVYsV1vyP1a9MRTyfzma4IfTyC+60240rJ+nIOX3Ry/XrJXkNegIeamTUXH7Ur8uU2zyxj1Hn4kQ4k/kQowt2zGr6edJCJSOm6bthg5OckPDTRsSOi1lwm9/w5ek6ZE7rwFt217EiMPIfThB8ROPLngtQBAbPRxBD/+kODnnxauKOA4BN9/l8Tgg/GaJV8T+Fl1cLr3JPD9d8QPP2qvMRk7tuNnZMIvKlZYK1fg9OlX4fuNH34UgYU/EXzoIYxb7oIGu0rU+z7hl5/Hbd+RxOAhYBjkXXsj1pzZBKZMInbyqYXuvVwyMkgcPJTghx+QGDAIr3n5PyglIiIiIiIiIlUn5Ym/O++8c6/n27Rpw4MPPrjXMXXr1mXs2LElnm/RogULFiwodCwUCvGPf/xDyb5awm/UiPhhRxAa927yDbdI6WrZQnLHn9N7T+8fv0EDzHXriowz163Fr1O31DuNio0zEoFEHBIJCATKPY/IgcrcshmvQcNUhyEitYTbpi0A1vKlWN9+Rej9d4iedS7x0cdiz55FcPz7hP/3FH79BsSOGVPoWr9BAxIHDyU0YRzxI48G2wbPI/jpJ5ibN5H31+sKjU8MGUrak48mk4wNGhSJxVy9itC7bxOY9C2JYSPIv/iy5A6/aBRzw3rcVq0rfsOGQeyiS0i/+XrC//k3iRtvBdsm8O3XWMuXkXvTbYV2Fbo9e1Vol9+vRU85nciSxURuvoH8K67E6dm70uYWERERERERkcqR8lKfIqUVO/5EjIRDaMK4Ul9jbNyIuWE9TvceBce8Bg0xtxRT6nPt2oJP9peXvyshaeTmVGgekQOVsXkzfv0K7koRkQOGX68+fmYW4ddfIfT6K8ROOZ34MceBYeD07kve9TeRc/s95F53I4RCRa6PHXcCxpbNpD8wlsgtN5L1+/MJP/8MiYOG4rVoWWhsYsAgsGwCk74rdNxcvoy0B8aSce1VyT7FhxxO4OsvCXzxGQDW6lXg+5WT+IPkB5T+9jfMlcsJv/oSxOOEX3uZxMDBuJ06V84aJfDrNyDnpttwO3Yi/V93EZz4UZWuJyIiIiIiIiJll/IdfyKl5derT/yIowh+PIHY6ONKtevP/nFO8s2/rt0LjnkNGmJs3QKOk/x0/y7mz2tx23esWIyRDACM3Fz8uipXKFJW5pbNOH0rXg5PRA4QhoHbth327FnEjjuB2ImnFBni7doVWByvRUsSIw/FWrgQt01bEgMG4bZug9ula9HB6ekk+vYjMOlb4seOwdi2lfBrLxP46gu8Jk3Jv+hSEsNGFLy2SHv2ady27TBXLgfTrNzSmB07Ev/N2QSf+x/murUY27cTO/O3lTf/3qSnk3fVNYRffI7w/57C3LCB6FnnVM/aIiIiIiIiIrJPSvxJrRI7JtmPJzTxI2InnLzP8faPc3HbtCuUJPQbNADfx9i6Fb/Rnt441rp1JIaNLGGm0tmz4099/qQWi0aTb1zb1fwtwnEwdmzHq1+0hJ6ISElio4/D6d6zYKdfWeX//v9KPTZx0FDSH7yP8EvPE/hsItgW0QsuIn7I4WBZBeOi55yPtWwJ6f+5D7ddB7ymzSAYLHNse41l9LEYc+Zgz5xOfNSxeE2aVur8e2VZRM+9AK9RY8IvPovbqnUy6SkiIiIiIiIiKadSn1Kr+PXqEz/kMIITxieTE3vjuthzZxcq8wkU9A8zN28qOGZs3gyJOF62Sn3KAS4eJ+PvfyP84nPVvrSxdSv4frG9s0RESuL27EX82DHlSvqVldO3H344jeCH40mMPJSd9/4n2Xv4F0k/AIJB8q64CiNnJ4FJ3+K2alP5wRgG+ZdcRmzMiUSL2elYHeKjjyUxdARpz/wXc/3PKYlBRERERERERApT4k9qndhxJ2Dk5RL8/NO9jrN/nIOxcweJQQcVOl5c4s9ctzZ5rsI9/vaU+hSpjULj38Nc/zOBqZPB96t17d29N7XjT0RqrGCQvGtvIOfusUTPOR8yMkoc6jduTP6lfwDA3Uu50YrwMzKJnXHWXuOoavnn/w6vbl3SHnogWUZdRERERERERFJKiT+pdfxGjUgMHU5o/HuQSJQ4LvDtN3jNmuO1bVf4RDiMn5GB8YvEn7V2DVg2XqPGFQsuGAQ7oMSf1ErGxo2E3nsHt1MXjG1bMVcsr9b1lfgTkdrA7dARL7t5qcY6/QaQe8MtxA89vIqjSqG0NPIu/xPWyhWEXn8l1dGIiIiIiIiIHPCU+JNaKXb8SRjbtxH4+oviB0SjBKZNITF0WLGlv7wGDTE3Fd7x5zVpAmbFHwk/EsHIU+JPap/wS8/hRyLk/eWv+GnpBGZOr9b1jc2b8dPSIS2tWtcVEalKbpeuhXoN74+8du2Jnv4bQuPfI/DZJwQnfkT4v48RufFa0h4YW+07yEVEREREREQOZEr8Sa3kNcsmMfAgQu+/C65b5Hxg5nSIRYkPGVbs9X6DhoVLff68ttSf3t8XPxLRjj+pdaw5swlMnUz0rHPwMzJxevbGnjmjWmMwt2zGr1+/WtcUEZHKET/mOJyevUl7+knCz/0Pa+kSvEZNCEydTOC7b0q+UElBERERERERkUplpzoAkfKKnXASGX//G4FvvyYx4pBC5wLffIXbsTN+kybFXus1aIg9/8eC31tr1xI/uPgkYVn5kQyM3JxKmUukWjgOac8/g9u5K4khQ5OH+vYj7fGHMbZvw69Tt1rCMLdsVplPEZHayjDI+9NVmBvWJ3smBwLJ4//xCb/8Aon+AyEc3jPe90l77GGM3Bzyrrqm2AoNIiIiIiIiIlJ22vEntZbXug2JQUMIv/QcxtYtBceNHdux5/yQLPNZ0rUNGmJsTvYTIxrF2LJZO/7kwOL7GDu2Y82fR/iFZzHXrSX/3AsK3nh1evcBw8D+YVa1hWRs3ozXQIk/EZFaKxzGa9V6T9IPiP7mHIzcXELvvlVoaOjtNwh8+xX2rBnY1VxaWkRERERERGR/psSf1GrRCy8CO0Da4w8XlIoKTP4eMEgMHlLidX7Dhhj5eZCbi/nzOiBZPrQyJHf8KfEn1cfYsX1PIrsUQq+8SOb//Y7My35P5I6bCX72CbETTsZr3aZgjJ9VB7ddh2p9MzZZ6lOJPxGR/YnfqBGx444n9ME4zPU/A2BPm0LordeJnXI6TrcehF95sdjS7Snl+4ReeRFz3dpURyIiIiIiIiJSJkr8Sa3mZ2SSd8nl2HPnEJwwHoDAN1/j9OqNn5lV4nVeg4YAmJs3Ye16Q8dr1qxyYopEVOpTqo21ZBEZ11xF5J7bSzXenjyJ0Lh3SRw8nLwrriLnnvvY8fQLxE49o8hYp19/ArN/AMep7LCLchyMHdtV6lNEZD8UO+4EvLp1Cb/4HObqVaQ/+hCJgYOJnXgK0TN/i7l2DYGvv0x1mIWYP68jNO5dgp9NTHUoIiIiIiIiImWixJ/Uem7PXsRHH0f41Zewp0zGWrKIxNDhe71mdzlBc/MmzHVr8TOz8DMyKyUePz1dO/6kWthTJxO5/RYIBDDXrsFcs3qv442tW0h75gkSgw4ies75OIMG4zVvAXbx7V4TffpBLIo1f15VhF84ti1bwPfxVepTRGT/EwoR/c052DOmEbnjFrzGjcm/5HIwDLx27UkcNJTwG69CLJbqSAvYP85J/jrnh+IH5OaScfWfsRYvqsaoRERERERERPZNiT/ZL0RP/w1edjbpD94HoTCJfgP2Ot6vWw9MK5n4W7u20sp8gkp9SvUIThhP+n/uI9G3PzvvuhdCYQLTppR8ge+T9vgjYAeIXvj7gl5+e+O1ao1fvwGBH2ZWYuTFM7ckS5Vqx5+IyP7JGXwQTrce4HvkXvk3CIcLzkVPOxNj505CH44vdI2RsxPy86s7VACsH+eCZWOuXlWol/RugdmzMH9eu6vEvIiIiIiIiEjNocSf7B8CAfIu/xPYARIDB0EotPfxpolXvz7Gpk2YP6+ttDKfkCz1STxWPeUR5YBjbN1C2qMPEX7xWWLHjCH/j3+GSIRE777Ye0n8BT/5EHvubPIv/r/S7241jOS8M6cX9NCsKkr8iYjs5wyDvL/8jZy77sVv3LjQKb9JE+KHH0lw3HsYW7dgT5lM+n3/JPOyi0l/6P6qicf3Cb31OubSJcWes+f/SPzQw8EwsOfMLjLEnjY1+WtJOwJFREREREREUkSJP9lveC1aknP73eSfe2GpxvsNG2Fu2oS1bh1us+aVFocfiQCoz59UrkSC4PvvkHn1n7F/mEH+xZcR+83ZBTv3nIGDsJYtxdi0qcil5to1hF9+kfgRR+P06lOmZZ1+/THX/4z587rKuIsSGZs346enQ1pala4jIiIpFA7j16tf7KnYiSeD75P5p8tJ/89YjK1bSAwYhD3nB4ydOyo9FHv2LEJvvU74vbeLnDOXL8PIySExeAhum7bYc+cUHuA42LNn4bVoWeKOQBEREREREZFUUeJP9ite8xaQnl66sQ0aYi1ZBLFoJe/4ywBQuU+pNNbSxWRcexXh118lfujh7Lz3PyRGHFJoTKJ3X7DsouU+fZ+0/z6O16Ah0d+cXea1nW49IBDEnj6tAnewb+aWzSW+GSwiIvs/P6sO+RddSuyY48i5eyy5t91N9PwLk7vvpu6llHV5eB7hl19Ifn+bOQN+9ZrN/nEuBIK4HTri9OiV3NX3i53v9vwfMfLzyD/7/D3jRURERERERGoIJf7kgOU1aIC5cUPy/7OrYsefEn9SCXyf8P+ehmCQnLv+RfTs8yAjo+i49HSc7j2KJP7sGdOwFv5E9LwL9l0CtzihEIm+/Ql+9XmVlvs0t2zGa9CwyuYXEZGazzloCLEzf4vXoiWQTAY63boTmFK5ffQC33yFuXoVeZdfAZ5LYOrkQufteXNxOneBQACnZ2+MnTswVyzfc37aVLyGjXC798Bt3abYUqAiIiIiIiIiqaLEnxyw/Aa7eomZFl6jxnsfXJZ5VepTKpG1aCHW0sVET/9NckfrXiQGDsZaMB9jx/bkAdcl/MpLOD164vTsXe4Y4ocfibl2Ddb8eaUaH3r3rUJvkJaGsWUzXn3t+BMRkcISg4dg/zh3z/e2iorHCb/xKolBQ3AGDEomFr/7Zs95x8H+aT5O954AuB07QTC0J7nn+wRmTMPpNwAMA6dn7yI7AkVERERERERSSYk/OWDt3l3kNW4Ctl1p86rUp1Sm4IRxeE2zcfr02+dYp/8AAOwZ0wEIfPkZ5ro1RM/4bYVicLt1x8tuTnDix/seHIsRev0V0h99EByn1GuYmzfja8efiIj8ijNgEBgG9q9LWZdT8KMPMLZtI3bGbwBIDBmWLN25ZTMA1uJFEI/hdO+RvCAQwOnaDXvuD8nzy5Yk+w/2H5iMr0cvjB3bMVetrJT4RERERERERCpKiT85YBUk/rKzK3fiYBAsWzv+pMKM9esJTJtC7JhjwTD2Od7PqoPbqUuyZFk0SvjN10kMGYbXtl0FAzGIH3EUgWlTMLZu2etQc93a5K+rVxH8+MPSzZ9IYOzYjqcefyIi8isF5T4nVbzcp5Gzk9D77xA//Ei8Jk2B5G55LJvA998BYP84Bz89Ha9N24LrnJ69sRcsgFgMe/o0/EgEt3MXANxOnZO9AlXuU0RERERERGoIJf7kgLU78ec2q+TEn2HgRyLa8ScVFvp4An4kQmLoiFJfkxgwCHvuHELvvImRk0P0tDMrJZb40BEQCBD8/NO9jrN+XpeMY+gIwm++hrF58z7nNrZuBVCPPxERKVZi0JDkrryKlPvMzSX88gvg+cROOmXP8UiERN9+BL5Plvu05/2I260HmHt+THJ69gIngb1gfrLMZ5/+e6pFBIM4Xbpizy0m8RePlz9eERERERERkXJS4k8OXOnpOP0G4PTuW+lT+5EMJf6kYnJzCX7xGfHDj4JQqNSXJQYMAtchNO5d4kcejd+4kvpXRiLEDx5G8LOJey3haa5dg5+ZRf65F+CHQoRffG6fU5ubNwHgq8efiIgUwxmYLPcZmDq5TNcZO7YT+OwT0u+5g6zLfk/gy8+JnXI6fladQuMSQ4ZhLV+GuXQJ1uJFe8p87uJlN8evV5/gZxMxV60k0W9A4fh69ML+aX6hRJ89dTJZvz8fa+GCMt6tiIiIiIiISMUo8ScHtLy//A23W/dKnze540+lPqX8gl98Bo5D/Mijy3Sd36gRbpu2+OnpxE48uVJjih9xFMa2rQU9BItjrl2L17wFRCJEzz6PwJTvsWfP2uu85q7yoV79BpUZroiI7Cf8zCycbj2wJ08q/UU5OWRc/zfS/vcUuC7Rs85h5/2PEB99bJGhTp+++OnppD37NLgOTrfCiT8MA6dnr2SfQcvG6dW78PU9e0EiXpDkM1csJ/3Rh8B1CHz7dZnvV0RERERERKQilPgTqQIq9SkV4jiEPvqAxMFD8evWK/Pl0fMvIu+Kq/AzMis1LK91G9yOnQlO/KjEMea6NbjNmgGQGDIUp1sPws8+vddyZ8bmTfjp6ZCWVqnxiojI/iNx0MHJcp/btpZqfNqLz0I8xs6xD5J3/U3Ejx6N37CEktLBIM7AwVhLFuHXrYeX3bzIEKdnMtnndO9R5PuV17IVflYd7LmzMXZsJ/2+f+I2a0b80CMITJ8Kvl+2mxURERERERGpACX+RKqAH8nAyMtLdRhSSwWmTcHYspnY6OPKdb3boSNuj56VHFVS/MijsefNxVyzuuhJ38datw6v2a43TA2D6Pm/w9y4gcA3X5Y4p7llC752+4mIyF44AwaCYRKYNmWfY+0fZhL4+kuiZ52L36hRqeaPHzw8uU73nmAYRdfv0RMsm8Sgg4pebBg4PXsT+GEm6fePxUgkyPvLNSSGjcDYthVr8aJSxSAiIiIiIiJSGZT4E6kCKvUpFWH/MBO3dRu8Vq1THUoRiYGD8TMyii1dZmzZAvEY3q4df5Dsi+S2bY89b16Jc5qbN6nMp4iI7JWfkYnTqzfBjz8E1y15YG4uaU89gdOjF4mRh5Z6frdrN5wePUkMHVb8+plZ7Lz3gRLndHr0xFy1EmvJYvKu/Ct+gwa4HTvhZ9Upc29CERERERERkYpQ4k+kCqjUp1SEtXQJbvuOqQ6jeIEATtfu2IsWFjllrl0DUKREmtO1G/aC+SWWOjO2bsGrX7/yYxURkf1K9OTTMNeuIfB1ybvIw6+8iJGbS/5Flxa7c69EpknetTfi9OpT4hC/UaMS53R69cavV5/8iy7B7dipYM5E/4HJ3oAq9ykiIiIiIiLVRIk/kSrgRzKU+JPyiUYx167Bbdc+1ZGUyG3XAWvpEvC8QsettWvAsvEaNS48vnMXjK1bMDZsKHY+c9Mm/AYl9F0SERHZxWvXnsTggwm/+VqxvWOtuXMIfj6R6Flnl9zPr4r4deqy8z+Pkhg+stBxZ9BgzA3rMVeuqNZ4RERERERE5MClxJ9IFfAjEYhFwXFSHYqkQiyGNWd2uT7dby1fBr6P27ZdFQRWOdwOHSEWxVy9qtBxc91avKZNwSz8rcXp2BkMI7nr79ficYydO/DqacefiIjsW+z0MzG2b0+W/PwFc/3PpD/2EG7X7sQPOzI1wRXXG7Brd/z09H2W+7QWLiD9X3eBPjgmIiIiIiIiFaTEn0gV8CMRAIw8vXlzIEp7+kki99xO5KbrsRYuKNO11rKlEAjiNW9RRdFVnNu2HZgm1uLC5T7NdWtwf1XmE4CMDNyWrYpN/Nnzf0zOWYN3OIqISM3hNWlK/LAjCL33FuQk+ykbmzaRfuet+OE08i6/omwlPquabeP0HUBg2pQSh5grV5B+713YP8ws+L4oIiIiIiIiUl5K/IlUAT99V+JPn9o+4NiTJxH49itiY04E3yNy642kPfwfjI0bS7UD0Fq6BLd1G7DtKo+13MLhZCJv8aJCh6116/CaZRd7idu5K9ZPRRN/gSmT8Jo0w2vZqkpCFRGR/U/spFMwXI/QuHcxtm4hctetYJrkXncjft16qQ6viMTAQZirV2GuW1vknLF+PZF77sBr3AS/bj3sMn5gSEREREREROTXavA7yyK1V8GOPyX+DijG1i2kPfMEiYGDiZ3+G2KnnUngqy8Iv/oSmd9/k9zJV7cuft16uB07ET3rnCJzWMuW4vTqnYLoy8bt0KnwroRoFGPLZrzidvwBTueuBD/5EGPrFvzdZT0dB3v6VOKHHlGzdmeIiEiN5tepS2z0sYTGvUdg2lSMRIKcG27Bb9Ag1aEVy+nZG4Ih7GlTiI85seC4sW0rkX/ekdyp+LfrCT//bLEfkhEREREREREpCyX+RKqAH8kAwMjNSXEkUl7m2jVYixdhLV+GtWI55sYNuG3a4nTuitulC27rtoV35fk+af99HEyL6IW/TyayDIPEIYeRGDgYe85szG1bMbZtxVq9iuAH7xM/9PDCO+RyczF/Xot7wknVf8Nl5LbvQPDTj5O9iCKRgl0MXnYJO/66dAHAWrAA56Ahyf+fPw8jJ4fE4CHVE7SIiOw3YseMIfjpJxj5eeTecDN+48apDqlkoRCJ3n0ITJlM/JgxmGtWY61YTuiD9zFiMXL+cTt+Vh3czp0JTP4eolEIh1MdtYiIiIiIiNRSSvyJVAHt+KvdrDmzifzzDvB9vCbNcFu3wenQEWvZUsJvvAqJOH44Daf/QBKDD8Lp2ZvA119g/zCTvKuuwc/MKjxhJFKQ7AIgFiPr0t8V+eS/tXwZUDv63bkdOwG7SpP27IW1K/HnNi0+8efXrYfXpBn2T/MKvhaBKZPwGjfBa92mWmIWEZH9SHo6uTfegh8K19idfr/kDBxM2iP/Ieui8yARB8DLbk7uNX/Hb9QoOaZzV/BcrCWLcbv3SGW4IiIiIiIiUosp8SdSFUIhsGzt+Kulwm+/gdumHbnX3Qjp6YVPOg7WsqXYc34gMPl7At9+hZ+ejpFwiB9yGE7f/vteIBTC6d2HwLSphRN/S5dAKFxin7yaxGvaDD8SwV68ELdnL8y1a5J9lX799foFt0sX7AW7Spi5LoFpU4iPPFRlPkVEpFxKKi9dEyX6D8Q89nj8evVxW7fBbdUadn1QbDevRcvk99YF85X4ExERERERkXJT4k+kKhhGMhmkHX+1jjV/HtbCn8i78q/FJ7FsG7djJ9yOnYidfBrm6lUEJn2HuW4d0d+eV+p1EgMGkfbYQxhbNuPXT+5UsJYtxW3bDkyzsm6n6hgGbvuOWIsXAWCuXbvPhKXTuSuBr77AyNmJuWIFxs4dOIMGV0e0IiIiqRUKEfvN2XsfYxi4HTtjLfypemISERERERGR/VLKE38vvfQSL7/8MmvWrAGgY8eOXHbZZYwcOZLVq1dz+OGHF3vd/fffz+jRo3nrrbe47rrrih3z3Xff0aCE0j+HHXZYwZq7XXXVVVx88cUVuBuRPfxIhhJ/tVDo3bfwWrbC6TegVOO9Fi2JnXpGmddJ9OlHmmkRmD6V+JGjALCWLcEZMKjMc6WK26EjwY8ngO9jrVuD07HzXsc7Xbolxy5cgP3DLLyGjXDb1vyypiIiItXF6dyF8DtvgeuCZaU6HBEREREREamFUp74a9q0KVdffTWtW7fG933eeecdLr/8ct5++23atWvHN998U2j8q6++ylNPPcWIESMAOOaYYxg+fHihMddeey3xeLzEpN9uV1xxBaeffnrB7yO/KrcjUhF+JKJSn7WMtXQx9tzZ5P/hz1VffjIjA6dbd+ypU4gfOQpj5w7MjRtqRX+/3dz2HTBycjB/Xof58894Iw/b63i/USP8+g2w588jMHUyiWEjVOZTRETkF9zOXSEWxVqxDLddh5IH+j7Gju34depWW2wiIiIiIiJSO6Q88XfYYYXfKL7yyit5+eWXmTVrFh07dqTRrmb3u02cOJHRo0cXJOnC4TDhcLjg/JYtW5g8eTK33377PteORCJF5hepLMnEn3b81Sahd97Ca5pNYtBB1bKeM3AQ4WefxsjZibVsKUCtS/wBBCZ/D4k4XrNme7/AMHA6dSHwxWcY+XnV9nUWERGpLdy27cAOYC1YsNfEX/DDDwi/9jI7xz5QUDJcREREREREBKBGNZJyXZfx48eTl5dH3759i5yfO3cu8+fP59RTTy1xjnfeeYdwOMyoUaP2ud6TTz7J4MGDOfHEE/nvf/+L4zgVil/kl1Tqs3YxV67AnjGN2JgTqq3HXqLfAPB97BnTsZYtxU9Px2vcpFrWrgx+RiZe02wCX38JgJvdYp/XuF27YuTn4ddvUJA4FBERkV0CAdwOHbEXzC95TH4+oXffgkSc4KefVF9sIiIiIiIiUiukfMcfwIIFCzjzzDOJxWKkp6fz8MMP06FD0TeE33jjDdq3b0+/fv1KnOuNN97guOOOK7QLsDjnnHMO3bp1o06dOsycOZP77ruPjRs3ltgvsCSmaWCaKlUnRRlZGZhrV2HbNSq/XmUsyyz0a40WjxN65r/4WXVw27bFa9OO4Lh3oWEj/JEjq+/PrFFD/E6dCU2fAqaJ3749dqB29fPxO3fG/uoLCAaxmjbeZ+lOv3sPDMPAGXxQrbvX/VGtem5FBNBzeyDwu3bF/mwitmUU+3018MkEzFg+7uCDCH3xKe4pp0IwmIJIpTT0zIrUPnpuRWofPbcitY+e26pVIxJ/bdu25Z133mHnzp189NFHXHPNNbzwwguFkn/RaJRx48Zx2WWXlTjPzJkzWbJkCf/85z/3ueYFF1xQ8P9dunQhEAjwj3/8g6uuuopgGX5wrl8/gqEeVVKcxg1gToxwvQOrd2RWVlqqQ9i36T/Bt19B/fow4f09x//v/wg1qlO9sRw6Ap5/HtLT4cgjSattf1/69oTvv4Y2rQjWz9j3+Lqd4PRTCY4eTaS23et+rFY8tyJSiJ7b/djAvjD+XUL526F588LncnLgkwlwwvFw7LFwySWE5s6Aww8veb6dO+HZZ2H1arj5ZtjHBySlauiZFal99NyK1D56bkVqHz23VaNGJP6CwSCtW7cGoEePHsyZM4fnnnuOW2+9tWDMhx9+SDQa5cQTTyxxntdff52uXbvSo0ePMsfQu3dvHMdh9erVtGvXrtTXbdmSqx1/UqwANsEt28jdup+W+8zLS/6ang4kP52RlZXGjh35uK6XwsD2LThlBnZahLx/Pww7d2AtW4axcSPOwKFQzX9eRtfepOc9CXlRok1a4Nayvy9m05akJVycBo2JlTb2k85I/lrL7nV/VJueWxFJ0nN7AGjaiojjEZs8A+fQuoVOBV99hUBelLwjj8FPq0O4ey+M194kv+/gorsDfR/7268JPv8shuNAIoHzn4eJ/f7S6rsX0TMrUgvpuRWpffTcitQ+em7Lp14pN1LUiMTfr3meRzweL3TszTff5LDDDqN+/frFXpObm8uECRO46qqryrXm/PnzMU2TBg0alDFWH8/zy7Wm7N+McDqBaBQnGge7Rj5qFZL+0H8wtm8n9+bbC73R5LoejlOz/7EOzZ9PolMXHNeH9Eyc7r32nKzu2Bs0wmnZCmvlCuKt2uLX8K9dEc1aEA6GcJo1r/F/7lKy2vDcikhhem73Y8EwTstWGPN+xBl+SMFhY8d27A/GEz1yFIlIFjge0aNGk37PHfg/zsPt0nXP2M2bSXvyUey5s0kMGkL0nPOwZ84g7eknoEdvnIGDU3BjBzY9syK1j55bkdpHz61I7aPntmqkvIDq2LFjmTp1KqtXr2bBggWMHTuWKVOmMGbMmIIxK1asYOrUqZx66qklzvPBBx/gui7HH398kXOzZ89m1KhRrF+/HkiWBP3f//7HTz/9xKpVq3jvvfe46667OP7446lTp5rL/Ml+y48ks+9G3n64q8n3sRYtxFqyCHvalFRHUzaJBNaSxbidu+57bDVJHDwcr2Ej/IYNUx1K2VkWOTfcTOzoY1IdiYiIyH7D7dwVa8FP4O/5gGHovXfwTZP4cXt+3nF69MJr1pzgRx8UHDOXLSXjpuuw1q4h7+pryb/iSvx69UkcejjOgEGkPfU4xpbN1Xo/IiIiIiIiUn1Svg1p8+bNXHPNNWzYsIHMzEw6d+7MU089xdChQwvGvPnmmzRt2pRhw4aVOM+bb77JkUceSVZWVpFz+fn5LFu2jEQiASRLi37wwQc89NBDxONxWrRowfnnn1+o759IRfmRZL8zIzcXP2v/SigbW7Zg7NyBn5FB+PVXyOk3AOyUf46gVKylS8BJ4HTukupQCsSPHUP8yKOLluiqJby2pS+PLCIiIvvmdOlG8OMJZF10Hm6TJnhNmxGYMZ3YCSfhZ2TuGWgYxI8eRfjZp4lu2oS1agXpDz2Am92cvKuvwa9Tt9DY/IsuIePaq0l7/GHyrr2x1r72EBERERERkZIZvu+rTmUFbNy4M9UhSA1lbNhA5l/+QPScC4gfPTrV4VQqe/pU0v/9L/L+fDXp999L/u//D//ww6lXL8LWrbk1ent28L23Cb33DjufeAbM2pGsFKkqtm3WiudWRPbQc3uA8DzsH2Zirl2L+fM6zPU/YzgOuVdfW9BfuUA0SuYVl+I1a461dDFO3/7kXf4nCIWKndqaO4fIPbcTPeO3hXYPStXQMytS++i5Fal99NyK1D56bsunUaPMfQ+iBuz4E9lf+Y0bEz/sSMKvvUxiwCD8MvaPrMms5cvwMzJx+g8kMWgI4TdfI3/4cKB0zUVTyf5pPm7HTkr6iYiISM1lmjh9+0Pf/vseGw6TGHkYwQnjiB81mujZ5+31dY7boyfxI0cReufN5IfTAoFKDFxERERERERSTe98i1Sh6Bln4aelkfbMk4V6tNR21vJluG3agmEQO+0MjG1bCUz8ONVh7ZvnYS1aiNul5vT3ExEREamo6Cmnk3vdTUTPvaBUH26KH3o4RjQfe97caohOREREREREqpMSfyJVKRIh//zfYc+agT15UqqjqTQFiT/Aa5ZNfORhBN9+E/LyUhzZ3pkrV2Dk5+F0qjn9/UREREQqLBzG7d6j1MO9Fi3xmjTFnjalCoMSERERERGRVFDiT6SKOQMGkRg4mLRnn8LIqf09IY3t2zC2bsFt067gWOykUyAWg7ffLt+kvk/6P+8k8NnESoqyePaCn8Cycdt3qNJ1RERERGo0wyAxYBCBaVPBUz8NERERERGR/YkSfyLVIHruBeA6hF9+IdWhVJi1fBkAXtu2Bcf8+g1IHDUK3nsPcnPLPKe5ehX27FmE33wN4vFKi/XXrAU/4bZrD8Fgla0hIiIiUhs4AwZh7NyBtWhhqkMRERERERGRSlTuxN+SJUt45513eOyxx9i4cSMAK1asICcnp9KCE9lf+PXqEzvjLAJffo65/udUh1Mh1vJl+OnpeI2bFDqeOG4MJBIEPppQ5jkDk7+HUBhjx3aCX39ROYH+mu9jL5iP01llPkVERETcDh3x69YjoHKfIiIiIiIi+5UyJ/7y8/O56qqrGDNmDH//+9954IEH2LBhAwBjx47lkUceqfQgRfYHiUEHAWAuW5biSCrGXL4sWebTMAod9+vWg6OPJjhhPOTnl35C3ycweRKJQYNJDBpC8P13wXUrOWowN6zH2L4Nt0vXSp9bREREpNYxDBL9BiT7/Pl+qqMRERERERGRSlLmxN8999zDpEmTeOKJJ5g+fTr+L35IHDlyJF9//XWlBiiyv/Azs/Azs7DWrEp1KBViLV+G16Zt8SdPOQWi+QQnflzq+cxVKzHXrSExeAix40/E3LSRwPffVlK0e1g/zQfDwOnYudLnFhEREamNnIGDMDduwFy5ItWhiIiIiIiISCUpc+Lvo48+4uqrr2bYsGEEAoFC55o3b86aNWsqLTiR/Y3bshXmmtWpDqP8cnIwN27ALSnx17AhzshDCX3wPsRipZoyMGUSfno6To9eeK3b4PTpR+i9tyv9k+f2gvm4LVtBJFKp84qIiIjUVk7X7vjp6Sr3KSIiIiIish8pc+IvLy+PRo0aFXsuvyzl/UQOQF7zFlira++OP2vFcoCSE39A/PgTMXJzCH7+6b4n9H0Ck77H6T8QbBuA2PEnYa5dgz19amWEXLCOteAn3M4q8ykiIiJSwLZxevdT4k9ERERERGQ/Ypf1gs6dO/Pxxx8zbNiwIue++OILevToUSmBieyPvBYtMD/9BBynINFVm1jLl0EojNe0WYlj/MZNSAwdTmjcu8QPOwKCwRLHmqtWYv68lug55xUcczt1xu3SjdC7bycTgr/qJVisvDwybroeI2cnfigEwRB+MIARjWLk5mLk5YHn4ijxJyIiIlJIYsAgAt9/g7F+PX6TJqkOR0RERERERCqozJmHyy67jMsuu4z8/HxGjRqFYRjMnj2bcePG8eabb/Lkk09WRZwi+wU3uwV4LubP6/BatEx1OGVmLVuK26o1mHvfLBw7/iQC33xF8KvPiR9xdInjApO/T5b57N6z8PUnnET6PXdg/TgXt0fPEq7eI/jFZ5gbNxA76RRIJDDicYjHIRTCj0TwIxG8rLo4/fqX7kZFREREDhBO7z5gBwhMm0L82DGpDkf2M/ak73Hbd8AvoWqQiIiIiIhUvjIn/g455BDuu+8+/vnPf/L+++8DcMstt9C0aVPuvfdehgwZUulBiuwvvJbJZJ+5enXtTPwtX4bTq/c+x3nNskkcNJTQe+8QH3Fo8bv+fJ/A5Ek4AwYV2f3o9OiFl92c4Ldfkb+vxJ/jEPpwPImDhxI78ZSy3I6IiIiIhMM4PXsp8SeVzly2lPSH/o3XuAm5N9+On1Un1SGJiIiIiBwQytzjD2DUqFF89tlnTJgwgZdeeonx48fzxRdfMGrUqMqOT2S/4mdk4mfVwVq9MtWhlF1+Pub6dXvt7/dLsVNOw9i2leCnnxR7fneZz8TgYj4sYBgkBgzCnjkdPG+v6wQmfYexZTOx0ceVKi4RERERKSwxYBDW4oUY27elOhTZj4TffgOvUWOMaJT0sf9MVuSoar5f9WuIiIiIiNRw5Ur87da2bVv69etH+/btKysekf2e26Il5prVqQ6jzKyVK8D3S53485o2IzF8JKH33oZotMj5wKTv8CORImU+d3P6DcDIycFatLDkRXyf4Afv4/Tqg9eqdaniEhEREZHCdpdDt6dPTXEksr8wly/DnjGN2Emnknf1NVgrV5D22MNVmpgz16wm89ILsZYurrI1RERERERqgzIn/v79739z0003FXvupptu4oEHHqhwUCL7M69FS6zVtTDxt3wZ2AG87OalviZ60mkYeXmEPvqg0HFj40aCX35ebJnP3dz2HfCz6mDPmFZyTHPnYK1cQezY40sdk4iIiIgU5mdm4XbpRmCaEn9SOcLvvInXpCmJocNx23Ug7/IrCEydROjVl8o9p7F9G5Gbb8Bct7bY84Hvv8XIzSX8zFPa+SciIiIiB7QyJ/7GjRtHv379ij3Xv39/xo8fX+GgRPZnbosWmOvXQSKR6lDKxFq+FLdlqxITdcXxGzYkftgRBMe/B7m5ABibNxO58xb8cJjoqWeUfLFhkOjXn8D0khN/ofHv4bZug9ute6ljEhEREZGiEgMGYf84t+A1m0h5mStXYE+bQuz4k8CyAHAGDCJ61rmExr1L8P13ypWYC04Yj7V4IYEvPy/2fGD6VLyWrbCWLSlxjIiIiIjIgaDMib8NGzbQrFmzYs81bdqUn3/+ucJBiezPvOYtwfNK/KRqiVwXc/WqqgmqFMwNG/CaFv/s703shJMwEg6hD97H2LaVyF23ge+Te91N+PXq7/Vap98AzJ/XFvu1Mlcsx547m/hxJ4BhlDkuEREREdkj0X8guA6B2bNSHYrUcqFdvf0SQ4cXOh4fdQyxE08h/OpLhJ99ep+9vAvJzU32Dg+FCXz/bZHEobF+PeaqlURPPJXEwcMJv/qSktgiIiIicsAqc+Kvfv36LFq0qNhzixYtok6dOhUOSmR/5jZvAYBVxj5/gS8/J+Pv10B+flWEtU/G5k14DRqU+Tq/bj1iR48m9OEHRO68FSOaT951N+I3bLjPa53uPSEQxJ4xvci50Afj8Bo0JDFwcJljEhEREZHC/IYNcdu2w546JdWhSC1mrlxBYOpkYiecXLRSiGEQO/UM8i+8mOBnn5B+/70Qi5Vq3uCnH2MkEuT//lLMzZuK9AEPTJ8KdgCndx+iv/ktRjxO+M3XKuu2RERERERqlTIn/o444ggefPBBZs+eXej47NmzefjhhznyyCMrLTiR/VJGBn7dekV275krV5B+560QjRZ7mb3gJ3AdrHVrqiPKwjwPc8tm/EaNynV5/Ljj8Q0DIyeH3L//A69J09JdGArh9OxF4Fd9/qyliwl8/w3x0ceVqfSoiIiIiJTMGTCIwA8zIR6v3oVzc8FxqndNqRKhd97Ca9iIxLARJY5JHHYEeVf+FXvunOQHA3N27n3SeJzQhPHEh48kMXgIft16yV1/vxCYPhWnR08Ih/Hr1Sd60qkEJ36EuXJFZdyWiIiIiEitUubE35///Geys7M544wzOO6447jwwgs57rjjOOOMM2jWrBlXXnllVcQpsl9xW7QosuMvNO497HlzsRfML/Yaa9ECAMy1ZSwRWgmMrVvB8/Aa7HuXXnH8jExy//4Pcm65E69ZdpmuTfQbgLXwpz1vCESjpD38IG7rtsSPOKpc8YiIiIhIUYkBgyAWxf5xTvUt6vtk3HwDobffqL41pUpYixcRmPI9sRNP2eeH85y+/cm94R+Y69YQfvG5vY4NfvU5Rs5O4scdn+wDftDBBCZ9B64LgLFjO9bCn5J/f3eJjzoGr3FT0p57plz9BEVEREREarMyJ/4yMzN59dVXueWWW+jUqRMAnTp14tZbb+WVV14hMzOz0oMU2d942S0wV+9J/BnbthKY/D0A1vx5RcYb27ZiblgPgLm2+nf8mZs3AZQ78QfgtW1Xrh2DTt9+ANizZgIQfvE5zK1byL/sj9rtJyIiIlKJvOzmeE2zCUyrvnKf5rq1mOvWYC1fVm1rSin5Pun//hfhl57fd/LM9wk//z/cVq1JjDikVNO77ToQPfO3BL7+skjpzj2DXILj3iMx+OCCqiGJIQdj7NxR8HPT7rYATr/+e66zbfLPuxDrp3mEXnlRyT8REREROaCU613zYDDI6aefzumnn17Z8YgcENwWLQh+8mGyjFIwSPDzT8E0cbr2wv5pPr/udLH7B2Evuznmuurf8VcZib/y8uvUxW3XAXvGNPz0dIKfTyT/wt+XeeegiIiIiOyDYZAYMJDgF5/BhS5YVpUvaf8wCwDz53VVvpaUTeDzidjTpwLgNWxI/KjRJY/9/lusJYvIve4mMEv/+eLEIYcT/Gwi4f/9l9zb7i5ybWDSd5ibNpL356sLjrntOuA1bkLw+2/I79GTwLQpuJ264GfVKXSt27MX0XMuIPz8M5Cenuw7KCIiIiJyACjzjj8RqTivRSvw/WQSz3EIfvoJ8WHDcQYMxFq6pEifP3vRQrwGDXG69yxSIrS0rPnzkiWUdpXEKQtj0yb89HRITy/X2hWV6D+AwA+zSHvyMZw+/UgcekRK4hARERHZ3zkDBmHk7MRauKBa1rN/mAGGkaxukUhUy5qyb8bWLYRfeZHEyEOJjzqW8AvPYs2ZXfzgWIzwKy/iDBiE271H2RYyTaLnX4S1YjnBzz4pfC4eJ/T+Ozi9+uC1afuL4JLlPu2pkzFydmLPnUOi/8Bip48fPZrYKacTev0Vgh9NKFtsIiIiIiK1VKl2/PXr14/nnnuOHj160LdvXwzDKHGsYRhMnz690gIU2R+5zVsAYK1ZjbluHca2rcSPHJX8hKvnYi1aiNuzV8F4a9FC3I6d8bKzMT+bCI5TpjKX5upVpI+9ByOaj7V8GXmX/wmCwdJfv2kjfgp2++3m9BsAr70MwSD5F/8f7OXfIBEREREpP7d9B/y69ZK7qLp2q9rFolHs+fNJDBhEYOpkzA3r8Xa9TpbUCr/wHFg20d+cjZ+Wjrl2DekP3kduMT27Q+Pfw9i+nehvzi7XWm6HjiRGHkrotZdJDDoIP6sO1tLFpD32MOb69eRfdGmRaxJDhhJ67+1kf0AnUWLiDyB24ikY+fmEn38GPy2t1KVIazXfx9iwAb9BA7VHEBERETkAleoV4IUXXkijXb25Lrzwwr0m/kSkFCIR/Lr1MFevwl64ALdLN7xWrcH38TMysX+atyfxl0hgLV1C4qCDcbNbgOtgbtxQ6lKXxs4dpN/3T/xGjYgefxJpTzxK5F93kXvlX0u9g8/cvCklZT5385q3IH7UaBL9BxYp4SMiIiIilcgwSPTtnyzBeU7VLmXPmwuuQ/zoY5KJv7VrlPirAewfZhKY/B35//dH/IxMAPIu/xMZN99A+th/knvdjfj164NhYGzeTOj9d4mNPragB195RM84i4ypkwm//AJevfqExr2L27oNOXfcg9eiZZHxXstWeM1bEPj6S7yWrfCbNCl5csNIJiXz80h78lHc1m3wWrcpd6w1lbV4EfasGViLF2EtXYyRl4fbpi15195Q8OcoIiIiIgeGUiX+/vCHPwDg+z7nnHMO6enpBMuwW0hEinJbtCAwZTLmz2vJ+8OVyYOGgdO1W6E+f9byZeA6OB074derB5B8U6Q0iT/HIf2B+zDy88m57ib8Ro3w6jcgfezdRO64mby/XY9fp+4+pzE3b8Lp1KV8N1oZDIPouRekbn0RERGRA4jbqTPBzydCbi5EIlW2jv3DLLwmTXE7d0nuKktBL2v5lWiU8DP/xenRk8TBw/Ycj0TIu/oaIv+4nsw//R9+Wjpe06YY8Th+OEzs+JMqtKyfVYfYaWcSfvZpMC1iJ51KbMyJe92tljh4GKHXX9nrbr8ChkH0vN9hz59P+OXnybv2xgrFmwr2jGmYGzaQOHhooQ9DGps2EX7peQJTvsfPyMTt0JH46OPwmjQl/NwzpN91G3nX3ajkn4iIiMgBpEw1HxKJBAcffDCPPPIIhxxySBWFJHJg8Fq0wp47B79efZwBe35Ydbt0I/DS8xCPQzCY7K8SDCV3BFpWQakd9vUDru8TfvZprEULyb0+mfQDcDt3IfeGW4jccwcZN15H/oW/x+nTb69TGZs34TVM3Y4/EREREak+brv2AFjLluL26Fk1i/g+9g8zcfr2B8PAa5aNpcRfyoXefgNz+3byrruxSHl9r0lTcu66F2vRIsz167B+Xoe5YQPRU86olF7g8cOPwsjLI9G7b+GefiWNP3g4gc8/LZyg3BvbJnrmWaTffy/27Fk4vfpULODqFIuR9sQjGDk5hF9+gUS//iRGHIK1dAmhce/hp6eTf/FlJIaPLPTn5rZsReTOW4nccUtyp6aqp4iIiIgcEMqU+AsGgzRt2hTXdasqHpEDxu4+f/HDjyz0SVanazdwHazFi3C7dcdavBC3fYeCMV6zbKy1a/Y5f2Dy9wQ/n0j+RZfidi68W89r1Zqcm+8g7anHSL/3bhIHDSV6znnF7/7Ly8PIy8Nv2Kj8NysiIiIitYaX3Rw/nIa1dHHZE3+JBPZP8/Dq1S+2RONu5to1mJs24vTuk1yzWTbmWiX+UsnYsIHQhx8QO/HkEst2+vXq4wwaXDUBmCaxE04u9XC/USNy7n+4TEs4/QfidupC+OUXyOnRK9ljvSS5ucmWB61al2mNqhD49iuM3Fxyb70Ta+FCgl9+RmDsPWDZxEYfm/y6paUVuc5r2YrcG24mcsctRO68NfmBUCX/RERERPZ7Ze7yfNZZZ/G///2PYcOGEQqFqiImkQOC2607bvuOxA87otBxr2Ur/IwM7Pk/4nbthr1wAfGRh+4537x5qd4UsebOxm3dhsQhhxV73m/UiLxrbiDw7deEX3iWjL9dSf5Fl+IMLPyDvLllc3LdFPb4ExEREZFqZBi47dpjL11CvDTjo1ECM6djT5uK/cNMjGg+GAbx0ccRPeV0KObnRvuHWWAHcLp2B8DLzsaeNR18v8hOM6ke4ddexs/MJHbMmFSHUnUMg+hZ5xC5+e8Evv6SxC9+ztrNXLmC4CcfEfz2a0jEybnzX3gtW6Ug2F18n9CED0gMGITbrgNuuw7Ejx6NuXIFfiQDfx+VWbzmLQqSf+kP3Efu9TeBZVVT8CIiIiKSCmVO/K1bt45ly5ZxyCGHMGjQIBo2bIjxqx/MbrjhhkoLUGR/5TVpSu4tdxQ9YRi4nbpg/zSf+MaNGNu34XbsVHDazW6OPW3qPt8UsVat2vcPqIZBYtgInN59SHv4AcIvPkfOrxN/mzcl41XiT0REROSA4bZrn0x87IvjELnjFqxlS3DbtCV+3PEk+vbHnj2L8JuvY0+bQv4Fv8ft2avQZfbsmTjduhckBd2m2Ri5uRg7d2hHUgpYSxcTmPQt+b+7pNhE7f7E7dCRxKAhhF9/hcRBByfv13Wxp08j9MmHWPN/xK9bj9iYEwh8/SXhV18i7+prUxavPXsW5ro15P/u4j0HDQOvdZtSz+FlNyfvir8QueNmQm+/QezUMyo/UBERERGpMcqc+Pv8888JBoMAzJkzp8h5wzCU+BOpIKdrd8KvvYw9by5AocSfl90cIz8PY9tW/Hr1i5/A97FWryIxsHRlePzMLBIjDyPt4QcwcnYWavxubN4Epolft26570dEREREahe3XQeMce9ibN1S8mtOIDT+PazlS8m98dZC5eXjrdvgDBxM2lNPELnndhLDRxL97bnJ15nRKPb8+UTPOqdgvNesGQDmunW4SvxVL98n9MpLeNnNSYw4JNXRVIvoGWeR+bcrCb/5Gn4kQvDTTzC2bMbt1IX8P/yZxIBBYNt4zbJJe+h+rPnzcLt2S0mswQnjcNu2K9K+oazczl2InXI6oTdexenaHbd7j0qKUERERERqmjIn/j777LOqiENEfsHp0hUScUIffYDXrHmhRJyX3RwAc+1a3BLehDE2bYJYFK9Fi1Kv6bZpm5x3+fJCvVzMTZvw6tVXORgRERGRA4jbvgMA1tIlOP2Lf81prlxB6K03iB13QrFJCa9pM3Kvv4nAl58Tfuk5MmbNJHrehfiBALhOQX+/3WMxDMy1ayqc4JCysWfPwp43l7y//O2Aec3vN2lC/MijCX7wPgSCJA4eSuzIUXi7fibaLTF4CMHx7xN+6Xlyb72z2svQmqtWYs+dQ/7//bFS1o6NORFr3lzSH/kPOXf+s/ge7yIiIiJS6+2lk3VhsViMjz/+mKeffprx48ezZcuWqoxL5IDmtW6Dn56OuWolbseOhc81agyWjbVuTYnXW6tXAuC2KH0vCq9pMwiFsZYvK3Tc3LQJX2U+RURERA4ofv36+HXqYi1ZXPwAxyHt8YfxmjYldvJpJU9kGCQOOYyce+7D6dqNtIfuJ+3JR/GaNE2+/twtGMRr2Ahr3b57WUsl8jzCL7+A26UbTt/+qY6mWkVPPYP8Sy5n54OPkv/7/yuS9AOSPQF/czbWsiXYkydVe4yhD8fj161HYvCQypnQNJNJRM8j7dGHku0jIPmr41TOGiIiIiKScqXa8bd27VouuOACVq5cib/rhWGdOnV46KGHGDhwYJUGKHJAMs1kn79ZM3A6di58zrbxmjTBXFNy4s9cvQo/nIbfoEHp1zQM3NZtiib+Nm/Ca9ioLNGLiIiISG1nGLjt2mMtLT7xF3r/HaxVK8m5+Q4IBPY5nV+vPvlX/IXE9KmkPft0srfar3jNsjGV+KtWgW++wly9ityb76j23WwpFw6TGD5yn8Pcbt1x+vQj/PrL5AwYCPaut1HicYxYFD8za99r+T7hF57F3LSRvD9fXaqvtbFjO4FvvyF68ql71qwEft165F12BZF/3kHWBWeD54LnAZB/0aUkDjms0tYSERERkdQo1avHsWPHsn37du6++2569OjB6tWr+ec//8k//vEPPvjgg6qOUeSA5HTphj1rBm6nzkXOuc1bYO51x99qvBYty/zDu9umLfbsHwodMzZvwismBhERERHZv7ntOyRLIfp+odeV5orlhN5+k9iYE/HatS/TnE7/gezsN6DYc16zbOwfZpUtSN8n7YlHiB01Gq9tu7Jde6DzPELvvEli4GDcDh33Pf4AFj3jLDKu/yuhd97Er1sXe+YM7Hk/4ts2ubffjdekackX+z5p/32MwFdfgO8T+O4bEkOH73PN4AfjkjtmDzui8m5kF7dnL/L+dj3m2rVgW/h2gOBnEwl+85USfyIiIiL7gVIl/mbMmMGVV17JCSecAED79u1p0KABp512Glu2bKF+/ZKbvYtI+SRGJD99urun3y95zbIJfv1lideaq1filvFNGEgm/oIfT4C8PEhPB8/D3LIZv6FKfYqIiIgcaNz2HTDy8jDX/7ynLKfvk/a/p/Cys4mddGr5Ji7hw2les2aYn3yULDlYyh1OxubNBL7+Ej8zi6gSf2Viz5yOuWE9+ZdfkepQajyvZSsSIw4h9M6bYFo4XboSPeV0gp9PJO2hB8j9x23F/531PNKefJTAN1+Rf8nl2NOnEn7lRRL9B0I4XPxiiQTh554h+PlEYiefVqjfe2VyevaGnr33HHBd0p55EmPHdvysOlWypoiIiIhUj1L1+Pv555/p1KlToWOdO3fG9302bNhQoQBeeuklxowZQ79+/ejXrx9nnHEGX36ZTGisXr2azp07F/vfhAkTCsXy6//Gjx+/13W3bdvGVVddRb9+/RgwYADXX389ubm5FboXkcrkZ9Uhftzxxb4x4mU3x9i6BfLzi17oeVhr1uA1b1nmNd1dfS2sFcsBMLZuBc/DU48/ERERkQOOuyuR9ss+f/bc2ViLFhA987eVWn4QwG3WHDwXc2Ppf8a0ViTL1FuLF1VqLAeC0ITxuB064bbXbr/SyP/teeRdfS07Hv0vedffRPy448m//AqslSsIv/Zy0Qs8j7THH0km/S67gsSwEUTPPBtjxw5C494tdg1j6xYid9xC8KsvyP/dJXvvn1nJnP7Jnbj2jOnVtqaIiIiIVI1S/aTm+z6WZRU6ZprJnKG3qxZ8eTVt2pSrr76a1q1b4/s+77zzDpdffjlvv/027dq145tvvik0/tVXX+Wpp55ixIgRhY7fddddDB++p1xGVtbe6+xfffXVbNy4kWeeeYZEIsH111/PTTfdxNixYyt0PyLVwcvOBsBatwa3XYdC58z1P4OTwG1R9sSf17wFBIJYy5fhdu2GuXlT8rgSfyIiIiIHHD8jE69JU6wli5OlCX2f0Buv4bbviNO7b6Wvt/s1rrl2DV6z7FJdY61ckfx12dIy7RQ80JnLl2H9NI+8P1yZ6lBqj/R0nD79Ch1y23UgesZZhF96Dqd7j4Lnwly2lLQXnsVatIC8y/+Mc9AQAPwmTYiNPpbQ+PeJjzwMv9GeXurW/HmkP3Q/mCa5N95S7eVX/Tp1cTt2JjBtisp9ioiIiNRypf6p6J577iEzs2iJiTvvvJOMjIyC3xuGwaOPPlrqAA47rPALyiuvvJKXX36ZWbNm0bFjRxr94oUwwMSJExk9ejSRSKTQ8aysrCJjS7JkyRK+/vpr3njjDXr27AnADTfcwMUXX8zf/vY3mjRpUur4RVLBzW4BgLl2bdHE36pVAHgty574w7JwW7bCWp785LQSfyIiIiIHNrdte6ylSwCw5/yAtWQReX+9rsy9pEvDr1sPQuFk37H+pbvGWrEcPyMDIycHc+WKMvccPFCFPhyP16AhzsBBqQ6l1ouPPhb7xzmkPfoQudf8ndAnHxL4+ku8ZtnkXnMDbvcehcbHTjiZ4NdfEn7lRfL/+GeM7dsIv/wCgW++wu3Sjbw//Cn5LKRAYsCg5O7F/HxIS0tJDCIiIiJScaUq9Tlw4EBM0yQ3N7fQfwMHDsQwjELHcnJyyh2M67qMHz+evLw8+vYt+gnSuXPnMn/+fE49tWgviVtuuYXBgwdz6qmn8sYbb+D7fonrzJw5k6ysrIKkH8DBBx+MaZrMnj273PGLVJtwGL9+A8y1a4qcstasws/ILHdfBrdtO6zlSwEwNm3CT09P9vsTERERkQOO275Dsgy84xB683XcDp1wevWpmsUMAzc7G+vntaW+xFyxnMSQYWDZ2EsX7/sCwdi2lcD33xE/ajT8qrKPlINhkH/JZWDbZNx4LfaMaUTPu5Ccu+4tkvQDIC2N6BlnEZj8HeEXniXjr3/GnjWD/N9dQu7f/5GypB8kE384CewfZqUsBhERERGpuFLt+Hv++eerNIgFCxZw5plnEovFSE9P5+GHH6ZDhw5Fxr3xxhu0b9+efv0Kl9e44oorOOigg0hLS+Obb77hlltuIS8vj3PPPbfY9TZt2kT9+vULHbNtmzp16rBx48YyxW6aBqZZ+Z92FdkXv3lzAj+vxbUL5+/ttavxW7XCDpTzh/j27bE+n4jtJrC3bYZGjbDtfX9GwLLMQr+KSM2n51ak9tFzK9WuU0cMJ0HahPexly4mev2N5X+dWRrZzbF/Xleq15/k5mJt2ojTuRP+0sUElizGGzW66mIrh5r4zAY/n4gRsPGOOKJ0X2fZt/r1iP31GqxZM0mMOgYikb2+2eIfeij+px8T+ngCzqGHETvzt5CZWfqSTFUluyl+mzaEZkyFYUNTHU3K1MTnVkT2Ts+tSO2j57Zqpfx1JUDbtm1555132LlzJx999BHXXHMNL7zwQqHkXzQaZdy4cVx22WVFrr/88ssL/r9bt27k5+fz1FNPlZj4q0z160cwqqDMjcg+dWoPs2aRVq9w2Vs2rINevYoeL60+3cE2CW7fCDnboUU24TLMlZWlkjAitY2eW5HaR8+tVJu+PSAUIPjeW9CrB8HhB1VJmc8CndrBgh9L9/pzzTIIWAR7d4d1q2D6dNLL+xq4itWYZzYehy8/hWNGEWzRONXR7F8G9E7+V1p33Ao7dxJs1YoaVV/lkBHwzjukZ4YO+J6ZNea5FZFS03MrUvvoua0aNeJVXDAYpHXr1gD06NGDOXPm8Nxzz3HrrbcWjPnwww+JRqOceOKJ+5yvd+/ePPLII8TjcYLBYJHzDRs2ZMuWLYWOOY7D9u3bS90ncLctW3K1409Swq7fhNDyleQtXYVfb9cO1kSCyIpVxA45EmdrbvkmzmxAxIfYrLkEVq/F7dyFeCnmsiyTrKw0duzIx3W98q0tItVKz61I7aPnVlIhrWlzzBXLiY45GXdbXpWuZWfVJ7R5K7krf4Ziesz/UmD2PIKY5KbXxc5uReitd0p1XXWqac+s/flnhLZsI2/EEfjl/XlBKkkQMhtADftzMLv1Ju3Z54l+PQm3T9EWLAeCmvbcisi+6bkVqX303JZPvVJ+0LFGJP5+zfM84vF4oWNvvvkmhx12WJESncWZP38+derUKTbpB9C3b1927NjB3Llz6dEjWXN/0qRJeJ5Hr169yhirj+eV3E9QpKo4AwYTeOE5zPHjk6VhAHPVanzHIZHdAtcp5z+YhoWT3QJjyRLYuBHnoKE4ZZjLdb0yjReR1NNzK1L76LmV6hTv3Rerbj1inbtBFf+98xo3I+j7+KtW43bqvNexgaVLcZq3xPEN3DYdCPo+LFiA06ffXq9LhZrwzJrrfybw4vPE+w8k0bBxlf9ZSi3VrAXBRo0xJk/G6VGGHYz7oZrw3IpI2ei5Fal99NxWjZQXUB07dixTp05l9erVLFiwgLFjxzJlyhTGjBlTMGbFihVMnTqVU089tcj1n332Ga+//joLFy5kxYoVvPTSSzz++OOcffbZBWNmz57NqFGjWL9+PQDt27dn+PDh3HjjjcyePZvp06dz2223ceyxx9KkSZOqv2mRyhCJED/8SIITP4bc5KdErTWrAXCbt6jQ1F6btlg/zcfIy8NvWLZdsCIiIiKyf4mddiZ5V19btSU+d/GaNgPAXLd2n2PNlStw27QBwG/cGD8zC2vxoqoMr9YycnaS/q+78TMyif7u4lSHIzWZYeAMGERg+lTw9CaciIiISG2U8h1/mzdv5pprrmHDhg1kZmbSuXNnnnrqKYYO3dNI+s0336Rp06YMGzasyPW2bfPiiy9y5513AtCqVSuuvfZaTj/99IIx+fn5LFu2jEQiUXDs3nvv5bbbbuO8887DNE2OOuoobrjhhiq8U5HKFz96NKEJ4wl+9gnxMSdirlqJX7ceZGRUaF63bTsCX34OgNegYWWEKiIiIiKyb6EQXuMmWCuWk9jbOMfBWr2axKGHJ39vGLgdOirxV5x4nPT7/oWRs5PcW+7Az6g5pVClZkoMGETwg/exfpyL27NsVZFEREREJPUqPfE3depUBg4cWOrxuxN2e/OXv/yFv/zlL8WeGzFiBCNGjNjr9YMHD2bBggWFjtWtW5exY8eWOk6RmsivV5/4iJGEJownfvQxWKtX4bZoWeF53TbtCv5fiT8RERERqU5Oz97YM6fDOeeXuMvQXL0KXAe3VZuCY26HjgTHvwe+Xy27E2sF3yftiUexli0l9/qb8Jo0TXVEUgu4HTvhtm5DZOw9RE89g/gxx4GZ8oJRIiIiIlJKlfbKbeLEiZx55pmce+65lTWliJRC/JgxGDt3EPjmS8zVq/BatqrwnG7LVsk3S0wTv27digcpIiIiIlJKTr/+mBs3JJN7JbBWrkju8vvFa1+nfUeMvDzMtWuqI8xaITjuXQKTvyPv//6I27FTqsOR2sIwyP3H7cSPPJrwqy8SueVGPVciIiIitUipEn+e5/Hkk08yevRo+vTpw3HHHceHH34IwDfffMOYMWP44x//yKZNm7j11lurNGARKcxrlk1iwCBC772DuXFDpez4IxTCy26OV78BWFbF5xMRERERKSWnWw8IhQnMmFbiGGvFcrzGTSEtreCY2649GIbKfe7meYQ+mkD80CNwBg1OdTRS2wSDRH97Lrk33oqRm0vG9X/Dmj8v1VGJ1Gy+n+oIREREgFIm/l544QXGjh2LYRgceuihRCIR/vKXv/Dvf/+b3//+92zfvp1bb72VDz/8kNNOO62qYxaRX4mPOQFz00bwfbyWlZD4A5yu3fEqI4koIiIiIlIWgQCJXr2xZ0wvcYi1Yjlu6zaFD6an4zVvocTfLta8HzG2bSUx4pBUhyK1mNupMzl3/hO3RQtC776Z6nBEaq5olIyr/0TwowmpjkRERKR0Pf5ef/11jjvuOP71r39h7OqV8NRTT/Gvf/2LAQMG8MQTT5Cenl6lgYpIydx2HXC69cCeNxc3u0WlzBk9+zx9Wk1EREREUsLpN4C0xx/G2LYVv269wid9H3PlchLHnVD0ug4dsZYo8QcQ/P4bvCZNcdt3SHUoUtsFg8SPPZ60hx/AXLWyUtpLlFk0CuFw9a8rUkrht17HXP8z9szpxI8enepwRETkAFeqHX+rV6/mpJNOKkj6AZxyyikAXHzxxUr6idQA0d+eS+y0MyvvhyHbhkCgcuYSERERESkDp09fMAzsmTOKnDM2bsTIy8P79Y4/wO3QCWvVymSS4EAWj2NPmUxiyNBk726RCkoMHIxfrz6hD8dX+9r29KlkXXw+gS8/r/a1pZpFo1iLFqY6ijIzV64g+OF4vEaNsRctBNdNdUgiInKAK1XiLz8/n8zMzELHdv++QYMGlR+ViJSZ17oNsRNOTnUYIiIiIiIV5mdm4XbqUmyfP2vFMgDcVq2LnHM7dATfx1qyuMpjrMnsWTMx8vNIHDws1aHI/sK2iR01isC332Ds2F6tSwc/+QjsAGlPPkrw/XerdW2pXuHXXiZyyw21q1ym75P2zH/xmjYj/3eXQCyKuWplqqMSEZEDXKlKfQIsXboUy7IKfu/u+vTK0qVLi4zt3r17JYQmIiIiIiIiB6pEvwGE33gVYjEIhQqOWyuW42dmFS0BCnjZzSEYSvYA7N6jOsOtUQLff4Pbpm3y6yFSSRKHHk74rTcIfjaR2ImnlDzQ97GnTcHp1afQs1sexqZN2D/OIf93l2Bu2kj41Rcxd+4g+puztZt1f5NIEPjua7xGjQk//wx4HvHRx6Y6qn0KfPEZ1qIF5P795mRpZcvGXvAT8TZtUx2aiIgcwEqd+LvuuuuKPf7Xv/61oASo7/sYhsH8+fMrJzoRERERERE5IDn9+sPLz2PPnY3Tf2DBcWvlCtzWbYp/0980cVu0xFq1ovoCrWlycwnMmE709N+kOhLZz/gZmcSHjSD4yUfEjj2+xNYQgcnfk/bQ/cSPPoboOedXaM3g119AMERi8BBIS8PPzCL8/DMYOTvJ//3/Kfm3H7GnT8PIySH3xlsJfP0l4RefTSb/jh2T6tBKZOzYTvjVF0kMG4HbtRsAbrv2WAsXgPr8iYhICpUq8ffcc89VdRwiIiIiIiIiBbxm2XhNswnMmFaQ+DPWr8datJD4yENLvM5t1Qpr+bLqCrPGCUydDJ5LYsjBqQ5F9kPxUccQ/Hwigcnfkxg2ougA3yf09hv46ekEP55AYugw3HYdyreY7xP48nMSgw+CtLTk+kePxg+FSPvvY8SHH1KQbDlg+T7hl18gMfgg3PYdUx1NhQS/+hy3fUe85i2InXEWmCbhl58HqLHJv/CrL4HvEz3rnIJjTucuBL/5CnxfiWkREUmZUiX+DMOgW7duRCKRqo5HREREREREBIBE/wEEv/oCEgmCH44n/NYbeFlZJIaPLPEar2Vrgt98Da4Lv2hXcaAIfPcNTtfu+PUbpDoU2Q95zVvg9OpDcMI4EkOHF0ls2FMmY65ZTe4NtxB+/hnCTz1B7q13letZtOb9iLlpI/mHHF7oeGLkoYTGvUfwk4/IP8ATf9aihQQ/eB97xnRy7vpXibswazpjy2bsOT+Qf8FFuw4YxE47EzyP8Csv4HTvgVdM6Uxj21aM7dvxWrep3oBJlqENfP0l0bPOxc+qU3Dc7dQZY9y7GJv+v737Do+qyv84/rnT0umhBRI6hF6lgxS7KCoKv1UQ14JiQ0Gxd8WGupZdG666dkEQFcGCYqH3Ir0HEEKClJQp997fH9FoTICETDKZ4f16Hh439557zmfGHLLmO+ec/bITE8s9FwAAkuQoTqMRI0Zo8+bNZZ0FAAAAAIB8gY6dZRw+pPjbxij6o/flO+0MHXniGVlJ9Y76jFk/WQr45fh1TzkmrRiMzAy51q6Rv0evUEdBBPOdebac27fJtXRxwRu2rehpkxVo3UZmi1TlXnmNnDu2yzPryxMaxzPnO1m168ps2qzgDcOQ77Qz5F68QEZmxgm+ijBh24q7+3Z5vvyiyNvuH76TnVBJjn17FTXjs3IOFzzun3+UXG75u/5lpbJhyDtkqKw6dRXz9n/zVtD9lc+nuAkPK+7RB6Tc3NKHsG25FsyXc+OGYjX3fDNLdlR0oRXoZrPmkiTXeo5BAgCETrEKf/bff7gCAAAAAFDGzKbNZFWvITshQUcefjxvO7Xo6GM+YyUnS5KcO3eUR8QKxT1/nuRwyt+la6ijIIIF2rRToH1Hxf77BTm3bMq/7lqySI6dO+QdPESSZDZqIt9pZyp68ocy0tNLNkhWltyLFsjX99Qit0v09e4ruT3yzP6mNC+l1IzDhxQ15SPFvPgvRb/xmqI+fE+ez6fLsSstKP07N6yXc/s2RX02TfL5Ct70euWeP0++AafJe/a5ipr2iYx9+4IybrmybXm+/y7v762/7zTmcilnxD/l3LBO7rk/FbgV/eF7cuzdKyMnR+75c0sVwTh0ULHPPa3YF55RzMsvFi4y/p3PJ8/338rft1/+NrT5Lyc+QVbdJDnXrytVJgAASqNYhT8AAAAAAMqdw6EjTz2nrIcmFLnNW1Hs+ATZVavJsWN7GYerYGw77xfRnToX/uU5EEyGoewbb5FZr75in3o8b3Xt72f7BVq2ltkiNb9p7pChsuPiFPPWpOMXU/7CM/9nyQwUfY6gJMXGyte7rzzffi35/aV9RQU4V6+SPvromHmNA5mKfu9/Shhzg6K++EyOg7/JuXmj3PN+VvQnHyvu0QdlHD5U6izuuT/Jjo+XcehgocKXe/FCGbk58vfuK+/gi2QnJCjm7TdK9D5XBM6NG+TYu0e+PqcWed9s3Ub+U7op+v13pJwcSZJr1Qp5Zs1Q7rBLFWjXQZ6vZxb5uh1bNivqg3cVNflDRX36iTxffCb3D9/nFax/XyXoWr5U8XeMk3P9WnkHXyTH3l/lWrn8mJndc3+SkZUl32lnFHk/0DxVrg0U/gAAoVOsM/4kacGCBfr111+L1fb0008/4UAAAAAAAOTzeEr8iFk/+aRb8edct1aO3buUM+KfoY6Ck0FUlLLHjVfcg/cp9olH5R00WM7t25R11/0F28XGKmfEFYr910TFvPS8ckf+U3Z8wnG7d3//nQJt28uuWu2obXynnSHPN7PkXrQgqNvbej58X9q+Ra7oeAW69y58f8bniv7ofdlut7xnnCXfWefITqiUf984kKn4O8cp+r+TlHPjmCJXLBZLICD3grnynTpAzl1piprxWd4Ks9/7c//4vcwWLWXVqi1Jyhk+UrH/mijX0sUKdOpyYmOGgGfObFk1EmW2an3UNrn/GKGE28YoatoU+Qadr5hX/q1A6zbynXGWrDp1FPvUBDk3b5LZpOmfD+XkKO6ZJ6WAX/JE5RWIzYCM7Oy8+4Yhq1p1OTL2K9C2vXKuvlZ2lapyLV8qz6wvFWjXoegwti3P1zMVaNch/73/O7NZc3m++0bGkcPF+n4HACDYil34e+aZZ4q15adhGFq7ln2sAQAAAAChYSanlHrrt3Dj+earvPPQjvHLcyCY7IRKyhp/t+IfvEcxb7wqs3mqzNSWhdoFunRVznU3KvqtSYofP1Y5V41SoEOno/brXPuLnFs3K3vMuGOObyXVU6BVa3m+mhm0wp+RmSHHpo1SvbqKeuN1eRs1k12rVv59908/KPq9t+U742zlXnhxkatr7arVlDPyasW++KwC80+Rv3vPE8riWrVCxpEj8vfopUBWluIefUCulcsVaNdBxv79cq1ZrZyrrs1vH+h8igJt2yv67f/qSKs2x90WuULIzZV7/jx5zz73mAVSu0YNec+/QFFTp8i1ZbMU8Ctn1PWSYSjQtr2sxJryfDNLOX8p/EVNmyIjK0uHn3pOdo0aBcZ07k6TY+dOOXelyUyqJ3+fU/PH951+lmJe/bcce3bLqlO3UBbn+nVybt+m7GGXHjVvoFmLvLYbNxT8Xs/Jyfv3cqLFYAAAiqnYW32+8MIL+vbbb4/755tvQru/OgAAAADg5GbVT5Zjf7qUlRXqKOXCOPib3IsXyjfgNH6hjHJlJyYq6/a7ZNWrr9xL/u+o33/+nr115PGJMlMaKHbiE4p59d/52zb+lSNtp2Kfe0pm0+YKtO943PF9p50p56YNcmzZXOrXIuVtnymnU5owQXalyor99/NSICBJcv6yRjGvvSx/337KvezyY26pG+jWXf5uPRX95usyMjNOLMvPP8mqV19WcorMFqkyGzaWZ8ZnkiTPT3MkT5T8Xbv/+YBhKPfyf8pxIFPueT+f0Jjlzb1wvuTNla/3qcdt6z17kKzq1eVcu0Y5V1zz52pQw5BvwOlyz5+Xv72qY/cuRX35hbznX1Cw6CdJ0dEyGzXJ+/f4j+EFVlFKkr9bD9nxCfJ8PavIHJ6vvpRVJ0mB1m2PmtWuWVN2laoFzvlzrv1FlW4YpZiXnpdM87ivFwCA0ih24a9mzZpKSkoq1h8AAAAAAELFrJ8sSXLuSgtxkvLh+X625HDI17tvqKPgJGQlp+QV9Zq3OGY7u1p1Zd92p3KuulbuBfMVf++dcmzfln/fSE9X3OOPyK5WXVnj7pBcx9+kKtChk6zqNRT12TS5f/he0f97U3GPPKDYCQ+dUHHFvWhh3qrZxETl3nCTnFs3K2raFDl271Lsc08p0KKFcq64ulgF9tyR/5TcHsW8/krJz93LzZV76WL5ev6+1ahhyHf2uXKtWS3Htq1y/zhH/lO6FlrVZ9WqLat2HTm3bS3ZeCHi+eF7BVq2ll2zZjEae5Rzw83KHXmlAl27Fbjl73uqpLwtYmXbin77v7Jq1JD37EEnEMojX/+Bcv/wfaHitJGRkfchi9PPOPb3gGEo0KyFXBvWS5KcG9Yr7unHZdauLffC+XnFv98LygAAlIViF/4AAAAAAAgHVt0kyeGUc8e2UEcpe5Yl9+xv5O/eQ4qPD3Ua4NgMQ/5T++vIo0/I9rgVf//dcs/+Wsahg3lFP49HWbffdczVdAU4nfINPEPuRQsU8+q/5Vq+THZ0tFxrVsu1cnnJoh06KOe6XxQ4Ja+oZDVtJu8FQxT16SeKm/Cw7CpVlX3T2GIVJCXJjk9QztXXyrVyudzffVuiLO7FCyWfV/5uf24T6j+lm6zqNRT78oty7P31qKvkzOQGcu7YXqLxQsGx91c51/2St81mMZmNmsg38IxC1+2ESvJ36y7P7K/lWrRQrtUr81ZlnsAZsZLkG3C6DJ9Xnh+/L3A9atYM2VHR8vU6/ocszOYt5Ny8Sc5f1ijuiUdlNmqsrPseVvZNt8i9ZJFiXvoXxT8AQJmh8AcAAAAAiCwul6ykJDl27Cjxo8b+/WUQqOy4ViyTI2O/fANPD3UUoNis2nWU9cCj8vXtp5g3XlP8bWNk5OYoa/w9f27hWEy+s87RkYcm6NBrb+nIxH8pe9wdMhs0lGd2yY6icS1eJEkKdOmSf8173gUymzaXTFNZt5WgIPm7QLsO8nftoagvppdo1Z977k8ym7WQnZj450WnU74zz5EjbaesxJpFnqcoSWZKihw7d5R8lWE5c//wveyYWPm7dA1Kf76BZ8iRvk+xr7ykQNv2xzxH8njs6tXl73yKPF/Nkmxbzi2bFPv4w/LM+Ey+086QYmKO20egWXPJDCju8UdkNmiorLHjpagoBTqfklf8W7pEsS8+R/EPAFAmilX4+/bbb5WamlrWWQAAAAAACAqzfoqcO0tQ+LMsRf/vTSWMGS3PF5+VXbAg83zzlcyGjWQ2ahLqKEDJeDzKveIqZd9wi6xadZQ1/m7ZtWqVvB+XS1ajxgWKMb7+A+VavlRGRvHP13MvWiCzRUupUuU/LzqdyrrjHh1+8tmCRbgS8A04LW912+/bPh6PceigXKtXyt+jZ6F7vlP7y46Pl//U/kfdatJKTpGRmyMjPf2E8pYLy5Lnxznyd+shRUUFpUuzcROZDRtJgYByR1xR6vNOfaefJcevuxX38P2Ku+8uOTIzlX3LbfJePKxYz1vJKbLj42U2bpK3de1ftmUNdOqi7DFj5Vq6WO4fvitVTgAAilKswl8gENCPP/5Y6PqPP/6oCy+8UO3bt9fAgQP1zjvvBD0gAAAAAAAlZdavX/xVL16vYv81UZ6vvlSgdRtFf/COXMuWlH3IUjL27ZNr5XL5BrDaD+Er0K27sh56TFZyStD69HfvJXmi5Jkzu3gPZGXJtWa1/F1OKXzP4ynVNrpmaktZiTWLncU9f64kQ/6u3QvfjInR4aefl3fQ4KOP98cZpzsr7nafzjWrZWRmyN+3X/A6NQzlXH2dsm8ZJ6t2nVJ3ZzZvIbNxUxkZ+5VzzWgdeXyiAp26FL+g6HTqyGNPKeuu+4pcIRjo0ElmSkO51q0rdVYAAP6uWIW/F198UZMmTSpwbf369Ro9erS2b9+uPn36KDY2Vo8++qi++aZkWykAAAAAABBs+atejrN1p3HwN8U98oBcq1cp+9bblT3+HgU6dFLMS8/LkbaznNKeGM8P38mOiclbNQPgTzEx8vXoKc/3syXLOm5z97IlkmXK37mIwl9pGYb8fU6Ve8F8KTf3+Fnm/qxA23ayEyoV3SA+XnIc/dd5dtVqsuPjK/Q5f54538mqkySzcXBXKlvJKQq07xiczgxDWfc8oCPPvJB3DuEx3vOjsatVl9zuo943mzWXc9OGUoQEAKBoxfqptWLFCp111lkFrr3zzjuyLEvvvvuunn/+eX366afq27ev3nrrrTIJCgAAAABAceWvetmx7ahtjEMHFffAPXJkZujI3ffnnQllGMoefZPsxETFTnxCxqGD5ZS45Jzbtsps1qLAFnIA8vj7DZCRmSHXimXHbeteOF9m46Z5hZoy4Ot9quTzyr1g3jHbGXv3yrlpg/w9e5/4YIYhM7mBHBW18HfkiNyLF8rXt1+pt+Msc2635HSWWfdm02Zy7Nsr47cDZTYGAODkVKzCX3p6uho3blzg2vfff6+2bduqRYsWkiTDMDRkyBBt3bo1+CkBAAAAACgBu2o12XFxRz/nz7YV8/orMnJzdeSBR/POCPtDdLSybh0vIzdXsf96RgoEyid0CTn27JZVp26oYwAVktmwscyUBvJ8922B667lSxX1/jt5BUGfT8rNlWvVSvlP6VZmWewaNRRo1VqeOcc+z80z7ycpKlr+Dp1KNZ6VnFJhV/x55v+ct7qyVymKmxEi0LS5JMm5kVV/AIDgKlbhLyoqSj6fL//rXbt2KT09XV26dCnQrkqVKjp8+HBwEwIAAAAAUFKGIat+ihw7ii78ued8J9fSxcq5apTsxMRC9+3ERGXferucmzYq+v0KeJ693y/Hvr0y65T+LCsgIhmG/P0HyrVsiYzMDCkrSzGvvKTYpx+XZ85sxT41QZVG/VNxjz4g+X3yd+lapnH8ffvLuWGdHHt2F93AtuX++ae87UZLuYrXrJ8sx769xdpatLy553yvQNv2sqtUDXWUkLOrV5ddrbqcmzaGOgoAIMIUq/DXtGlTzZo1K//rr7/+WoZhqHfvgp/O2b17t2rUqBHchAAAAAAAnAAzOaXIFX/Gvn2K+d+b8vc5VYFOXYp48vfnmzZT7mUj5Jk1Q675x96ir7w59u2VbFtWnaRQRwEqLF/3XpInStH/e1MJd46Ta/Ei5Vx9nQ7/Z5KOPPGMcocMlaJj5D+lu+yaNcs0i79TF9mxsXL/8H2R9x3bt8mxZ5f8PXqWeiwzOUWybTkr2Dmlzk0b5dy6OW+bT0iSAk2aybVhfahjAAAijKs4ja666iqNGjVKu3fvVmJiombNmqVWrVoVWvH33XffqVWrVmUSFAAAAACAkjDrJ8vz9cy87fw8nryLlqXYl1+UlZCgnMtGHrcP38Az5Fy/XrGv/UdHUlIqzNaajt27JElW3YqRB6iQYmPl695Dnu9nK9C6jXKuuk727x9Yt5LqyZdUT75zBpVPFo9H/u695PlxjrwXD5McBT+L75n7k+yESgq0alPqoaykepLDIceObTKbNC11f0eVnS3P7G/kO/NsyXWMXzHatjwzZyj6o/dlJdXLO08VkvI+YOL+8L28LaWP9R4CAFACxVrx17dvXz3zzDPy+Xxau3atzjrrLL300ksF2mRkZGjbtm0688wzyyQoAAAAAAAlYdVPzvuF8zdfyfnLGjl271LUZ9Pk3LheOdfeIMXGHr8Tw1DOldfIqlpNsf+aKHm9ZR+8GBx7dsuOjZVdqXKoowAVmnfoP5R9y23KHn9PftEvVPx9T5Xx2wG5Vq0oeMOy5J77k/xduwen+OPxyKpdR87tZXvOn+fnHxT9wTvyzJl91DaOvb8q7pEHFP3uW/L1H6gjD02gwPUXZrNmUsAv57atoY4CAIggxf5Je/bZZ+vss88+6v3q1atr6tSpQQkFAAAAAEBpmfWTZVerruj33i5w3XvOeTJbpBa/o5gYZY8Zq/j77lLMm68r55rRkmEEOW3JOPfsztvmM8Q5gIrOTqh0zC19y5PZsLHM5BRFffieAs1aSDExkiTn2l9k/HZA/p69j9NDCcZKblDkVsfB5Fq0UJIUNXWKfL1P/XNl9e+c69Yq7snHZFWurKy7H5CZ2rJM84QjM6Wh5PbIuXFD2a7OBACcVIq14g8AAAAAgLATFaXD//q3Dr36po489Zyy7n5A2bffJe8l/1firqx69ZXzz6vl/nGO3HO+K4OwJePYvVtWnTqhjgGgJAxDOdfeIMe+fYp98TnJNCVJ7nk/yUqsGdTCj5mSIsfOHZJtB63PvzKOHJZr3S/ynT1IxqGD8nz7dcEGubmKeflFmQ0a6siEpyn6HY3LJbNhIzk3bgh1EgBABCnWir8777yz2B0ahqHHHnvshAMBAAAAABA0hiHFxsqKjZVKeT6fv1cfOdevU8ybk2Q2aCirQcMghSwh25Zjzy75O3UOzfgATpiVnKKcm29V7FMTFP32f5V72eVyL5wv38AzgrqC16qfLCMnW8b+/bITE4PW7x9cS5dIti3v2edK2VmKmj5Vvn4DpOhoSVL0++/IceiQDt95X/41FC3QtJk8P/+YV6RlFTcAIAiKVfibOnWq4uLilJycLPs4nxQy+AEFAAAAAIhQucNHyrl1s2JfeDbvrKq4uHLPYBw6KCM7W1bt0hUyAYRGoE075Yy8SjFvvCpHxn4Z2dlB3eZTkszkFEmSc8c2Bcqg8OdetEBmk2ayq1SVd/AQeX78QVGzZsh7/oVyrlktz7dfKXfEFbJr1Qr62JHGbNpMxhfTZWRkhPwcSgBAZChW4a99+/ZasWKFTNPUueeeq3POOUdJSUllnQ0AAAAAgIrF41H2TWMVf8/tin3138oeM67cV2g4du+WJFn8dzkQtvz9B8qxb6+iPv9UZkoDWUn1gtq/XbWa7Ph4OXdsD/4Zhzk5cq1aqdzft022a9SQb8Bp8nwxXb5efRXz2n9kpraS77QzgztuhDKbNpMkuTZtkJ/CHwAgCIp1xt8HH3ygb7/9VoMGDdIXX3yhgQMH6v/+7//07rvvKjMzs6wzAgAAAABQYdg1aypn1PVyLVkkz4zPy318x57dkmHIqslKGiCceYf+Q97zLpD34mHB79wwZCY3kGPH9qB37VqxXAr45e98Sv4173mDZfgDir//LjkOH1b2VdeybWUx2ZWryKpZS84N60MdBQAQIYpV+JOkunXr6uqrr9ann36qzz77TF27dtXbb7+tPn366KqrrtKcOXPKMicAAAAAABVGoFMXec85T9EfvivjQPl+INa5Z3de0c/tLtdxAQSZYch7yf8p0L5jmXRvJafIuWNH0Pt1L14oM6WB7Jo186/ZVarKe8ZZMn47oNxh/2CLzxIymzaXc+OGUMcAAESIYhf+/qpJkyYaM2aMpk+frhEjRmju3Ln6+OOPg50NAAAAAIAKy3f2uZJlybVubbmO69izW1YdzvcDcGxm/WQ59v0q5eYGr1OfT+5lSxT4y2q/P3gHX6TsG26Rb+AZwRvvJGE2bSrn9m2S1xvqKMFh21JW1tHvZ2XJSE8vvzwAcJIpceHPNE3NmTNH48ePV8+ePTVlyhQNGTJE11xzTVnkAwAAAACgQrIrV5FVu66cFP4AVEBmcopk23Km7Qxan641qyRvrvxduha+GR2tQLfubPF5AgJNmkmWKffihaGOEhQxr/5bCeNulnHkcOGbtq24Jx9T/IP3SIFA+YcDgJOAq7gNFy1apM8//1wzZ86Uz+fTgAED9PTTT6tXr15yuYrdTSHvvfee3n//fe3atUuS1LRpU40ePVp9+/ZVWlqaBgwYUORzzz33nM466yytW7dOr776qpYsWaIDBw4oKSlJw4YN0+WXX37Mcfv3758/5h/Gjh1LARMAAAAAUGyBFi3kWl+OhT+/X459e2VS+ANwHFZSPdnx8YqaNkXZY8cHpSDnXrxQVu26spLqBSEh/mAlpyjQsrVi/vOC3PPnKnfYpWH7HjvX/iL3j3Mkh0NRH7yr3KuuLXDfPec7OTdvlCS5li5R4JQiisgAgFIpVsWub9++OnDggPr06aMHHnhA/fv3V1RUVFAC1K5dW+PGjVNKSops29a0adN0/fXXa+rUqWrUqJF++umnAu0//PBDTZo0SX369JEkrV69WtWqVdNTTz2lOnXqaOnSpbrvvvvkdDp12WWXHXPsm266SZdcckn+13FxcUF5TQAAAACAk4PZoqU838+WceSw7PiEUvXlWrVC7vlzlXPF1dJRPmDr2PurZNus+ANwfB6Pcq69QbFPPy7P55/KN2hw6fozTbmWLJbv1P6s6gs2h0PZd94r14L5iv7wXcXfOU6+fgOVO+xSKSYm1OmKLxBQzH9fk9mkmfw9eyn6rTfk79NPZrPmkiTjyGFFf/CO/D37yLH3V3lmf0XhDwDKQLEKf3v37pXL5dLPP/+suXPnHrOtYRhasmRJsQP079+/wNe33HKL3n//fS1fvlxNmzZVYmJigfvffPONzjrrrPwi3ZAhQwrcr1+/vpYvX66vvvrquIW/uLi4Qv0DAAAAAFBcgeapkiTn+nUKdOpy4h15vYp57WUZmRmyKlWWd+g/imzm2L1bkmQlJZ34WABOGoH2HeU9/0JFf/S+zEZNZLZqfcJ9eb6YLuPIYQo1ZcUwFOjWXUc6dZbnq5mK/uRjOQ5kKvuW28Km0Or58gs59uzWkUeekFU/We4f5ijmv6/pyCNPSE6noj7+UDIt5f7fpXKtXqWYl1+U49c9smrXCXV0AIgoxSr83XDDDWWdQ1Le+YEzZ85Udna2OnToUOj+6tWrtXbtWt13333H7Ofw4cOqUqXKccd77bXX9J///Ed16tTRueeeq5EjR5Z421KHw5DDER4/fIGy5HQ6CvwTQMXHvAXCD/MWqIBq15Sq15Bn43qpa8Ffhpdkzro//VyOwwflP/0MRX8xXWrXTmbrNoXb7dsjIy5OzqpVwuYXwUA4icSftebQYbI2b1Dcv/+lnMefkl21Won7cH/xmTwffyD/RRfLaNas+GcHoeRcUbLOP1/e+vUU/fQTip02Wb6Lh4Y61XEZ+9MVM22y/GedI0fjRnJI8l99jWLuuVMx386S2SJVUd99I9/wy+WsUV12jx4y3n1L0d9/K99lI0o1diTOWyDSMW/LVoUo/K1fv17Dhg2T1+tVbGysXnrpJTVp0qRQu8mTJ6tx48bq2LHjUftaunSpvvzyS73yyivHHHP48OFq2bKlKleurGXLlumZZ55Renq67rzzzhJlr1YtTgb/sQXkq1QpjLagACCJeQuEI+YtUMF0bKeorRsVV7Xo4yOOO2czM6WZn0sXXiDPFVdIv2XI8/p/pOeflypXLtj2t/1SowbyVIsPUngARYm4n7X33SPddJOiXnlRevBBKTq6+M9+9pn04bvSP4bJM3y44vg9WPkY0Ec6sE+et95SXKvmUs+eoU50bP/5l1S1sjxXX6G42Ni8a53aSoPPk2faZKlOHalJI3mGXiQ5nZLipLPPlOebbxQ36krJ4yl1hIibt8BJgHlbNgzbtu1Qh/D5fNqzZ48OHz6sWbNm6eOPP9Y777xToPiXm5urXr16afTo0frnP/9ZZD8bNmzQiBEjNGLECI0ePbpEGSZPnqz7779fy5Ytk6cEP2gyMo6w4g9Q3qczKlWK0aFDOTJNK9RxABQD8xYIP8xboGJyffO1ov77urImvVXgl+nFnbNR/3lJzmVLlP3sC1JcnIwDmYoZP05Wk6bKve2OAiv7Yu69S1bdJHmvu75MXxNwsorkn7WO9esU88gDkuFQoFNnBbr1kNm+gxQVddRnXF/PUtQbr8t/7nny/eMyVhqXN9tW1AvPybVksXIefkxWckqoE+XJzZVz+TI5fjsg48ABGenpcs37Wd6bxijQ/W8FyqwsxY69WcbBg8q570FZqS3zbxm7dyt27M3yjr5Bgd59TzhOJM9bIFIxb09M1aN80PDvKsTKfI/Ho5SUvB9crVu31qpVq/T222/roYceym8zc+ZM5ebmavDgwUX2sWnTJo0cOVJDhw4tcdFPktq1a6dAIKC0tDQ1atSo2M9Zli3LCnntFKgwTNNSIMBf1kA4Yd4C4Yd5C1QsVtPm8pim7LXrZLZpW+j+seasY8tmOX/4XrmX/1OBqBgpYEkJVWRfM1qxTz8ux+efy3fWOXmNbVvalSZ/h078HQCUsYj8Wdu4mfxP/kvu+T/LPX+uop59WnZsrLIeflxWrdqFmjv27JZn0mvynnG2ci/5h2TakvgdWHkLXHmt4nbdK8+TjyvrkcdlxycEfQxH2k55Zn+j3H8Ml453DNKRI4p74lE5t26WXG5ZVarIrlJVueecJ2/nbnk/x/4qKkZZ14+RM22HfE1bFLxfs7b8LVvJ+dVXyu3eu9SvIyLnLRDhmLdlo0IU/v7Osiz5fL4C16ZMmaL+/furWrXC+5Bv3LhRl19+uQYPHqxbbrnlhMZcu3atHA6HqlevfkLPAwAAAABOTlbdJNnxCXKt+6XIwt9R2bZi3n1bVp268vUbWOBWoH1H+c46V9HvviUjJ1veC4bIOHRQRna2rDp1g/wKAJws7MRE+QYNlm/QYDn27Fb8+LFyrllVZOHPuWWzJCn3wotZ6RdKUVHKHnObEu4YK8+Mz+W95P+C27/Xq9jnn5Fj9y6ZTZrK36PXUZsaRw4r9vFH5NifrqyHHpPZsHGxvjfM1JYy/7LS7698A85Q7PMT5dixveKsaASAMBfykxMnTpyoRYsWKS0tTevXr9fEiRO1cOFCDRo0KL/N9u3btWjRIg0ZMqTQ839s79mzZ09dccUVSk9PV3p6ujIzM/PbrFy5Umeeeab27t0rSVq2bJnefPNNrVu3Tjt37tT06dM1YcIEnXfeear89/MTAAAAAAA4FsOQ2SJVrvXrSvSYa/lSOdevVe5ll/9+3lFBuf8YLu/FwxQ1dbJin3lSzs2bJOUVGgGgtKw6dWXVri3nzp1F3nfs3CG7WnUprnjbiqHs2ImJ8g04TZ5vZknZ2UHtO/q9/8mRni4zOUWemTOO2s44dFCxjz0kx/79yrrrfpmNmgSlIBzo2El2laryfPNVqfsCgsqy5Fq4QDLNUCcBSizkK/4yMjI0fvx47du3TwkJCWrevLkmTZqknn85sHbKlCmqXbu2evUq/ImTWbNmKTMzU9OnT9f06dPzryclJWn27NmSpJycHG3dulV+v19S3taiM2bM0Isvviifz6d69epp5MiRuuKKK8r41QIAAAAAIlGgeaqiP3xP8vslt7tYz7jWrJZVq7YCbdsX3cAw5D3/QpkpDRTz7+cVu2qlZBiyatYKXnAAJzWzXrKcaUUX/py70mTWq1/OiXA03rPOkWfWl/J8+5V8gwYfvaFtyziQKcf+/TIbNT7m1p2uJYvk+fYr5Y68Ula16nkfMtm0UWaTpgXaGYcOKu6xh2QcOqSsex6QFczvC5dL/u495Z4/V7n2VawuRYXh/vlHxbzykrJvuEWBbt1DHQcokZAX/h577LHjtrn11lt16623Fnnvxhtv1I033njM57t27ar169fnf92qVSt99NFHJQsKAAAAAMBRBJq3kAJ+Obdsltm8RbGecW7fJjOlwfH7bt9RWQ9NUOwzT8p2u4tdWASA47Hq15frq5lF3nPsSlOg8ynlnAhHY1etJl+fUxU143P5zjhb8nj+vOnzKeqL6XJu3CDn1i0yDh/Ke6ZadXlPO0P+fgMKnQ1oHMhUzGsvK9Cxs3wDTpdsW1bNWvLMnKGcG27+y8C2Yl79j4yDB5V174Nlsuo80CJVni8/l5GeLrtmzaD3D5SYZSnq06mSJPeiBRT+EHZCXvgDAAAAACDcWSkNZEfHyLl+bfEKf7Ytx/atCpxzXvH6r11HRx57SvJ6S5kUAP5kJtWXcfiQjEMHZVf6y/E3ublypO+TmVQvdOFQiPfc8+X5/lt55syW77Qz8y4GAop9/hm51qxWoGUr+QacJrNhI9kJleSZM1vRUz5W9CeT5e/WXWbdJNlVqsquUkWeL6ZLTqdyrhqVt8rOMOQ77UxFv/+Ocg8Ml121miTJ/eMcuZYvVfYtt5XZVtN//Nx0rftFfgp/qADcC+fL8etuBTp1kXv5UuX4fAWL7UAFR+EPAAAAAIDScjplNm0m17q18p13wXGbG/v3y8jOlpmcUvwxXK5jbtkGACVl1c/bstGxc6fMVn8W/py70/JWgNVnq8+KxK5VS/7uveT5fLp8/QZKTqdiXv2PXKtWKnvceAXatCvQPqdZc+UO/Yc8330r97yf5VqySMYfZwQahrJvv6tAwdfX51RFT/5Qnm+/lnfIUBkZGYr+35vy9+qjQKcuZfe64hNk1U+Wa/1a+fucWmbjAMVi24qaNkWBNu2Ue8n/KX7JIrlWrSjTOQAEG//FAAAAAABAEJgtUuX57FPJNCWn85htnTu25T1TjK0+AaCsWDVrSS63nGk7ZbZqnX/dkZYmSTLrsuKvovEOOl/xc3+Ue+5Pcm7bKve8n5R9/ZhCRb8/2JUqy3v+hfKef2HeBZ9PxsGDksMhu3r1go3j4uTrc2pe4e+8CxTz2n+k6GjlDL+ijF+VFGjWQq7Vq8p8HOB4XIsXypG2Uzn/vEZWUj1ZdZPytvuk8Icw4gh1AAAAAAAAIkEgtZWM3Bw5t245blvnju2y4+Pzt1IDgJBwOmXWrStH2s4Clx270mTVSJSio0MUDEdj1U9WoGNnxbw5SZ6vvlTOFVeV7Pwxj0d2YmLhot/vfKefKePwIcU+86Rcq1fmbQUaFxek9EdnpraUY+8eGb8dKPOxgKP6fbWfmdpKZrPmkiR/l65yLV0sBQIhDgcUH4U/AAAAAACCwGzcRHZMrFyrVx63rXP7trzVfoZR9sEA4Bisesly/q3w50zbKase23xWVN7zL5ACfnkvHiZ//9OC2rdVp64CbdvLtXqlfP0GKNCuQ1D7P5rA7+f8OdetK3Vfjl1pci2YL9fK5XJuWC/Hju0UbVAsruVL5dy+TbmDL8q/5u/SVUZ2tly/rA5hMqBk2OoTAAAAAIBgcDplpraUa9VKef/yC6OiOLZvU6BL13IKBgBHZ9arJ9fyJZJt538YwZG2U/7uPUOcDEdjNm6qQ/+ZVGYr8bxDLpHcbuX+3/Ay6b8odtVqsmrVlmv92pKtYPwbx640xd93l+TNLXDdd/Yg5f6j/F4PwoBty7VooYzcHMnlku10KerzaTKbNpfZslV+MyulgazEmnItWqhA2/ahywuUAIU/AAAAAACCJNC2naLfflPKyZESjvIL2awsOdL3yUxOKddsAFAUq159GdnZMjIz87Z/zMmRI2M/K/4qujLcftNs1ETZt9xWZv0fddzmLeRa98uJd5Cbq9h/TZRVo4ay7rhHsmwZuTmKmj5NrgXzpP+7jJX2yOfcuEGxz08sdD1r/D0Fv08MQ4EuXeX+cY5yr7hKcrCJIio+Cn8AAAAAAARJoHVbyTLzfnHZpUuRbZw7tksShT8AFYJZL1mS5Ny1U4Hq1eXclZZ3PaleKGPhJBRo0VLuH+dIR45I8fEle9i2FfXqy3JkZOjII4/nn6FrS/L17qu4n3+QY/s2WQ0aBj84wpLn+29l1UjUkaf/JZnmn9vBFlFU95/STZ4Zn8m5fp3M1JblnBQoOcrTAAAAAAAEiVWrtqwaiXKtOvo5f84d2yWnS1bdpHJMBgBFsxMTJU+UHDvzzvlzpO2UDIO/o1DuAs1T87Zf3Li+5A9/+aVc835WztXXyqpTt8Ats0Wq7NhYuRcvDFJShL3sbLnnz5P/1P6SyyVFReUV/I6yktZs3ER21WpyL1pQzkGBE0PhDwAAAACAYDEMBdq0PU7hb5vM+vXzftEEAKFmGDKT6sm5K6/w59yVJqtmrbxfhAPlyK5ZU3aVqnKuW1ui5xybNkqvvSb/GWfJ361H4QYulwIdOsu9ZFGQkiLcuef/LPl98vU+tXgPGIb8XbrmFf5su0yzAcFA4Q8AAAAAgCAKtGorx55dMjL2F3nfsX2brJQG5RsKAI7BqlfvzxV/O3fIYptPhIJhKNCipVx/LfxZlqI+eFeeWV8W/YxtK+q1l6WGDeW7bMRRu/Z36iLHzh1y7P01yKERjjzfzVagXYe8c02Lyd+lq4wDmXKuWV2GyYDgoPAHAAAAAEAQma1bS4Yh58oiVv0FAnLu3CkzuUG55wKAozHrJeed7Wfbcu5Kk1mvfqgj4SRltmgh59YtUm6u5Pcr5oVnFfX5p4r+6H0pO7tQe+emjXLs2CFddtkxV9IH2raT3B65FrPq72Tn2L5Nzq2b5Tu1f4meM1ukykxpoKjpU8soGRA8FP4AAAAAAAgiOz5BZoNGchax3adj9y7JDMhMTglBMgAomlW/vuTzyrF9m4wDmbIo/CFEAs1TJcuUa/VKxT41Qe7ly5R7xVWS3yfP3B8LtffM/lp2jUSpQ4djdxwdrUDrNmz3CXnmfCe7UmUF2ncs2YOGIe/5F8n1y2o5N24om3BAkFD4AwAAAAAgyAJt2sq5emWhc2CcO7ZLEoU/ABWKmZRX6HPPn/v712z1idCw6tWXHR+v2Beek3PrFmXdfpd8A06Xv1MXeb6eVfDnalaW3PPnyd9/gGQYx+3b3/kUOTeul3HoYBm+AlRoPp/cP82Rr8+pJ3TWcqDLKbLqJinq00+Cnw0IIgp/AAAAAAAEWaB1WxmHD0tbtxa47tyxXVZiTSkuLkTJAKAwu1o12bGxci+cLxmGrDp1Qx0JJyvDUKBVW9lxccq65wGZqS0lSb4Bp8uxK03Ov5z/55n7o2QGFDi1X7G6DnTIW+HlWrI4+LkRFtyLF8rIzpa/hNt85jMMec+7QK7lS+XYtvX47YEQofAHAAAAAECQmU2bSVFR0tKlBa47tm+VxWo/ABWNYchKqi/Hvr2yatWRPJ5QJ8JJLOfqa3X4mRdkpTTIv2a2ai2rdl15vvkq74JtyzP7GwU6dJJdtVqx+rUrVZbZPJXtPk9i7u9ny2zRUlbtOifch797T1k1aylq+rQC143Dh+TiewsVBIU/AAAAAACCze3OW6WwfPmf12xbzu3bZP7lF5kAUFGYv5/rZ9bnfD+EWHR03p+/Mgz5Bp4u96IFMn47IOeWTXLs3CFf/4El6trfqYtcq1dJOTlBDIxw4P7pB7l+WS3fgNNK15HTKe+558m9aL4cu9Ik25b7h+8Vf9sYxT77lBx7dgcnMFAKFP4AAAAAACgDZrv20qpVinrpBTlXrZSxf7+MI0co/AGokKzfC38W5/uhgvL17iu5XPJ8P1ue2d/Iql5DgTbtStSHv/MpUsCft60tThquFcsU8+p/5O/bT/5uPUrdn7/3qbKrVFX0++8odsLDinn13zKbtZCkvGIgEGIlP8ESAAAAAAAcl3/AaZLDknPmV4r7cY4Ulbd6wUxuENpgAFCEP1b8/VEABCqcuDj5evaS55uvZGRnyzvofMlRsnUtdmKiAu07Kub1l+XYs1veCy9ma9sI59yySbHPP6tA23bK+ec1kmGUvlO3W95zzlP0O2/KqllL2ePvVqB1WyVccwUr/lAhUPgDAAAAAKAsuN3S0KHKPu0c2Rs3yv3TjzIOHZJdo0aokwFAIWbjJvL37qtAq9ahjgIclW/A6fJ8963kcMjXt98J9ZF96+3yfDFd0ZM/knvZEmWPul5Wo8ZBToqKwPHrHsU+OUFmvfrKvvEWyekMWt++gafLqlpNgfYd8s51lmTVriPn7l1BGwM4URT+AAAAAAAoS4Yhs1ETmY2ahDoJABxddLRyRl0f6hTAMVkNGsps0VJWpUqyq1U/sU4cDvkGDVagXQfFvPKS4h+4W9nXj1Gga7fghkVo5eYq9snHZCdUUvZtd+QX54LG5Sr0PWPVTZJjz57gjgOcAM74AwAAAAAAAACEhazb71LOdTeWuh8rOUVZDz6WVwB89y3J5wtCOlQUUdOnypGZqexx42XHJ5TLmFbdunLs2SXZdrmMBxwNhT8AAAAAAAAAQHjwePK20w4Gl0u5l10u47ff5Jk1o9Bt49BBxT1wj5xrVgdnPJQLY+9eRc34XN5zBsmqVbvcxjXrJMnIypJx+FC5jQkUhcIfAAAAAAAAAOCkZNWqLd+A0xQ1fVrBgo1tK+bll+TctEGeH74PWT6UXMx7b8uuVEneQYPLdVyrbl1JkmP37nIdF/g7Cn8AAAAAAAAAgJOW94KLJNtW1KdT8695vvhMrpXLZTZrIdeqFWzfGCacq1bKtWSRcv/vMik6ulzHtmrVlgxDjj0U/hBaFP4AAAAAAAAAACctu1Jl+QadL8/Xs2Ts3Svnpo2K/uh9ec89X7kXXSLj0EE5tm8LdUwcTyCgmP/9V2bzVPm79Sj/8d1uWTVryUnhDyHmCnUAAAAAAAAAAABCyXvmOfJ8PUsx77wpx84dMhs2knfI0LybUdFyrVohX4OGoQ2JY/J8+7Uce3bryOibJMMISQardh05du8KydjAH1jxBwAAAAAAAAA4uUVFKfeiS+RatkRGdpaybxgjuVySy6VAq9Zyr1ge6oQ4BuPQQUVN+VC+UwfICmGB1qqbxFafCDkKfwAAAAAAAACAk56/z6ny9+6rnBvGyE5MzL8eaNtOzg3rpezsEvXnnvOdEq6/Rs6NG4IdFX8T9fGHkiTvxUNDmsOsU0eOfXslvz+kOXByo/AHAAAAAAAAAIDTqZxR1yvQtn2By/427SXLlGvtmuL14/Mp5rX/KOa1/0her6I/ej/oUfEnx7at8nz/rbwXXiK7UuWQZrHqJEm2nVf8A0KEwh8AAAAAAAAAAEdh16olq1ZtuYqx3aexd6/iHrxH7rk/K+fq65Rz3Q1yrl0j5y/FLBqiZGxbMW//V1aduvINPD3UaWQlJUmSHLs45w+h4wp1AAAAAAAAAAAAKrJA2/ZyLVsi2bZkGHkXs7IUM+kVOfbtlZGTK8ObK+PwYVnVq+vI/Q/nnTVn2zIbNFT0Jx8rK7Xln88iKNzz58q5YZ2yxt+TdyZjiNkJlWTHxsrxK+f8IXRCPxMAAAAAAAAAAKjAAm3byfP1TDl+3SOrTl3JthX7nxfk3LBO/m49peho2dHRsuPi5evVR4qLy3vQMOS96BLFTnxCzjWrZbZuE9oXEklycxX9/jsKdOois03bUKfJYxiy6iTJubuCr/jLyckrQkdHhzoJygCFPwAAAAAAAAAAjiGQ2kpyuuRauUK+OnUV9cnHcq1YpuxxdyjQrsOxn23fUWbDxoqe8pGyWrVm1V+QRH02TcahQ8r5x4hQRynAqlu3Ym/1aduKe2qCjIO/6chDE/4sUiNicMYfAAAAAAAAAADHEh2tQPMWcq1cLteSRYqaOlneIUOPW/ST9Puqv4vl3LheztWryj7rScDIyFDUjM/lPesc2bVqhTpOAWbdpLytPm071FGK5Fy3Vs4N6+TYv18xr79cYXPixFH4AwAAAAAAAADgOAJt28v1yxrFvPySAp26yHveBcV/tl0HmY2bKnrKRxRagiBq6seyo6LkHTQ41FEKsWrXkZGdLePgb6GOUqSoz6bJqp+s7OtvlnvRAnm+/CLUkRBkFP4AAAAAAAAAADiOQNt2kt8nu0pVZY+6vmRbdv6x6m/TBrmWLi67kCcBx+5d8sz5Tt7zL5RiY0MdpxCrbpIkybFnT7Gfca5aqdinHy/zorBj21a5Vi6X97wLFDilq3xnD1L0B+/IuX5dmY6L8hXywt97772nQYMGqWPHjurYsaOGDh2qOXPmSJLS0tLUvHnzIv98+eWX+X3s3r1b11xzjdq1a6fu3bvriSeeUCAQOOa4v/32m8aOHauOHTuqc+fOuuuuu5SVlVWmrxUAAAAAAAAAEJ6s+snKvfRyZY8bf0IFp0Cbdgq0bqPo9/4n+f1lkPDkEDX5Q1nVqss34LRQRymSVau25HDIsaf45/xFzZoh1/Klcuwu27MBoz77VFbNWvKf0k2SlHvJ/8ls0kyxLzwr49DBMh0b5Sfkhb/atWtr3Lhx+uSTTzRlyhR169ZN119/vTZu3Kg6derop59+KvDnxhtvVGxsrPr06SNJMk1To0aNkt/v1wcffKDHH39cU6dO1fPPP3/McceNG6dNmzbpv//9r15++WUtXrxY9913X3m8ZAAAAAAAAABAuDEM+c46J6+wc4LP5142Uo70ffJ8NTO42U4Szi2b5F44X96LLpE8nlDHKZrLJSuxlpy7dxev/ZEjcq1amfdoGZ4B6dj7q9wL58l3ziDJ6cy76HIp+8Yxkmkq5pV/sw1thAh54a9///7q27evGjRooIYNG+qWW25RbGysli9fLqfTqcTExAJ/vvnmG5111lmKi4uTJP3000/atGmTnnrqKaWmpqpv3766+eab9e6778rn8xU55ubNm/Xjjz/qkUceUbt27dS5c2fdc889+uKLL7R3797yfPkAAAAAAAAAgJOEVa++fP1PU9S0KRX2DLiKLOrD92TVTZK/V59QRzkmq27dYq/ecy9ZJFmmrLpJcq0pu8Kf5/PpshMqydf71ALX7arVlHPVKLlWLJNr0cIyGx/lxxXqAH9lmqZmzpyp7OxsdejQodD91atXa+3atQVW5i1fvlzNmjVTjRo18q/16tVLDzzwgDZt2qSWLVsW6mfZsmWqVKmS2rRpk3+tR48ecjgcWrlypU47rfhLhB0OQw5HCfZyBiKU0+ko8E8AFR/zFgg/zFsgvDBngfDDvAXCTzjO28DQYYqa/7Nip3wo7zXXhTpO2HCuWin3L2uUO/Z2uTwVqrRRWFKSXAsXyOU6/vdl1MJ5slJbymzVWp4Zn8tl2H+uyAsS40Cmon76Xr4hQ+WKjS7coGtXWZ27KPad/yq7Q3spJiao4/9dOM7bcFIhZsf69es1bNgweb1excbG6qWXXlKTJk0KtZs8ebIaN26sjh075l/bv39/gaKfpPyv09PTixxv//79qlatWoFrLpdLlStXPuozR1OtWpyMkhziCkS4SpXK9ocCgOBj3gLhh3kLhBfmLBB+mLdA+AmreVs1Tho5Qp7XXlPsxRdKjRqFOlF4mD5Fat1SnoF9pYr+O/kWTaSvv1RUxh6piFpHvkOHpPW/SKNGSQ0bSp9OkSfzV6lZs+Dm+WyKFBcrz8UXSL/vpljIzTdIo0cr6oup0tVXB3f8owireRtGKkThr2HDhpo2bZoOHz6sWbNmafz48XrnnXcKFP9yc3P1+eefa/To0SFMWlhmZhYr/gDlfTqjUqUYHTqUI9O0Qh0HQDEwb4Hww7wFwgtzFgg/zFsg/ITtvO3WRzHTpst+4d/KvfeBil/ICjFj717Frv5FuTffKvO37FDHOb5mrRVTt74cN98i30UXy3/+BZKj8Oo21zezFeULKLtlO9lx8YpzuOT7eYH8iUlBjROzYLGsNh3k9UnyZRXdyB0n9/kXyfPeO8rp1E1Ww7IrSIftvA2xqlWPUrT9mwpR+PN4PEpJSZEktW7dWqtWrdLbb7+thx56KL/NzJkzlZubq8GDBxd4tkaNGlq5cmWBa/v375ckJSYmFjlejRo1lJmZWeBaIBDQwYMHj/rM0ViWLcviwEvgD6ZpKRDgL2sgnDBvgfDDvAXCC3MWCD/MWyD8hN+8dSjn0ssV+8SjMn76Sf7uPUMdqELzLFwo2+GUt3U7KRz+PcfG6/D9jyhqykeK+ugDOZYuVfZ1N8quWbNAM8/cn+VPbSl/XCVJkr95qoxVKxU4d3DwsgQCMrZtk79bz+POkcDAM+Wc873cr76irAcflZGeLveKpXKtXCF/l67y9+0XvFwKx3kbHirkBqqWZcnn8xW4NmXKFPXv37/QFp3t27fXhg0blJGRkX9t7ty5io+PL3K7UEnq0KGDDh06pNWrV+dfmz9/vizLUtu2bYP4SgAAAAAAAAAAKCzQpp38Xboq+p23pKyjrMKCJMm9dLECrVpL0UWcT1dRuVzyDv2Hsu55UMaBTMXffbucG9bn3zYO/ibX2jXyd+2Rfy3Qqo1cGzZIf6uPlIZj9y4p4JdZnBV8Lpdyrrhazq2blXDTdUoYe6Oi3/2fHGk7Ff3OWzKOHA5aLpSdkBf+Jk6cqEWLFiktLU3r16/XxIkTtXDhQg0aNCi/zfbt27Vo0SINGTKk0PO9evVSkyZNdPvtt2vdunX68ccf9dxzz+nSSy+Vx+ORJK1cuVJnnnmm9u7dK0lq3LixevfurXvvvVcrV67UkiVL9PDDD+ucc85RrVq1yueFAwAAAAAAAABOarmXjZSRm6voTz4OdZQKyzhyWM71a+Xv3CXUUU6I2byFjjz2lKwGDRX3xKNyrslbkOReOF8yHAqc0jW/baBVa8nvk3PjhqCN79y6RTIMmSkNipe3WXPlDr1U/g4dlT1mnA69PElZDz0mw7IUNX1a0HKh7IS88JeRkaHx48frzDPP1MiRI7Vq1SpNmjRJPXv+ubR5ypQpql27tnr16lXoeafTqZdfflkOh0NDhw7VbbfdpsGDB+umm27Kb5OTk6OtW7fK7/fnX3v66afVqFEjXX755brmmmvUsWPHAluLAgAAAAAAAABQluzq1ZV74cXyfPWlHNu2hjpOheRavkyyLAU6dAp1lBMXG6uscXco0LSZ4p5+XK4Vy+ReMF+B1m1kxyfkN7OSU2THJ8i1ZlXQhnZu3SKrdt0SrZb0DTpfuVeOUqDzKVJMjOxKleU9+1x5vpop4y+7L55wptWrpCNHSt0PimbYts0BdaWQns7SVkCSXC6HqlaN04EDWezLDIQJ5i0Qfpi3QHhhzgLhh3kLhJ+ImLeBgOLvvl12dIyyHnhEMoxQJ6pQYp5/Ro70dGU9PCHUUUrP71fs88/ItXKFZJnKufo6+fucWqBJzPPPypGxX1kPPhqUIeMeuEdWzVrKGX1j6TrKyVHCLTco0Kmzcq6+7sT7yc5W5Wv/Kc/dd+pAqw7hO29DIDEx4fiNVAFW/AEAAAAAAAAAcNJyuZQz8io5N2+U+/vZoU5Tsfj9cq9YrkCYbvNZiNut7JvHyt+pi+yoaPk7FX5dgdat5dy6WcrOPmo3jrSdcn/3rRQIHHs805Rz+zaZDRqWNrkUEyPv4Ivk/uF7OXalnXA3zq1bJNuWUlJKnwlFovAHAAAAAAAAAEAImakt5e/VR9EfvitlZYU6ToXh+mW15M2VP5y3+fw7l0s5N47R4X/9W4qLK3TbbNVGsiy51v1S9PO2rZj/vKCYSa8o/o5xcq1YdtShHLt3SX6fzIaNghLdN+A0WdVrKPrjD064D+eWTXnbjiYlBSUTCqPwBwAAAAAAAABAiOUO/YeM7Bx5fpwT6igVhmvJYlmJNWXVTw51lOAyjCKLfpJk1awlq3oNudasLvK+e8E8ObdvU84/r5Fdtapin5qg2IlPyNi7t1Bb5+/nRpopDYKT2+2W96JL5Fq8UM5NG0+oC+eWzTIbNZYclKfKCu8sAAAAAAAAAAAhZletJn+XrvJ881XeVognO9uWe+liBTp2PrnOPTQMma1ay7ViuWSaBe8FAor6+AMF2neUv/9AZd11n7JvuEXO7dsU9+Sjhb5vnFu3yKpdV4qNDVo8f8/eMlMaKObF52QcyCzx867Nm2Q1bhK0PCiMwh8AAAAAAAAAABWAb+Dpcvy6W86jrPY6mTi3bpbx2wH5O3YOdZRy5zt1gBz79ir6rTcKFPPcP3wnx769yr3k//IuGIYC3bor+/qb5dj7q5y/rCnQj3PrluCc7/dXDoeyb7ldhmUp7snHSrQ1rfHbARmZGXkr/lBmKPwBAAAAAAAAAFABmC1SZSXVk+fbr0IdJeRcSxbLjouT2bxFqKOUO7NZc+VccZU8s7+WZ+aMvIter6I/mSx/j96yklMKtbdq1ZHnh+//vGhZcm7fFrTz/f7KrlFDWePvlpGZobiJT0g+X94Nv1/u2V8r/o6xcv/8Y6HnnFs250Vrwoq/skThDwAAAAAAAACAisAw5DvtDLmXLJKRkRHqNCHlXrpYgXYdJZcr1FFCwt9vgLznnq/o996Wa8kieb76Usbhw8q98OLCjQ1Dvr6nyr1wfv4KPMee3ZLPG/wVf7+zkuope9ydcm7bqtgXn5Nn5gwl3HqjYv77uozfDsgz+5tCzzg3b5KdUEl29Rplkgl5KPwBAAAAAAAAAFBB+Hr0ltweeb4rXDg5WRgHMuXYuUOBDh1DHSWkvEP/IX/nUxT70vOK+myafP0Hyq5Vq8i2/l59pIBf7gXzJOVt8ympzAp/kmQ2babsm2+Va/kyRb/3tgKt2+jIE88od9hlcm5YJ+PgbwXaOzdvktm4ycl1ZmMIUPgDAAAAAAAAAKCiiI2Vr1cfeb77VgoEQp0mJFy/n3EYaNU6xElCzDCUc+0NMuvVl2Fa8g6+8KhN7WrVFWjTTp4530mSnNu2yqpVW4qLK9OIgXYddOSBR3R44gvKGXW9rLpJCnTsJClvu9Y/A9pybt2cV/hDmaLwBwAAAAAAAABABeIbcJqMg7/JtXhRqKOEhGvVSpkpDWRXqhzqKKEXFaWsO+/VkceelF25yjGb+vr2l3PzRjl2pcm5dYvMlLJb7fdXVqPGshMT87+2K1WW2aKl3IsX5l9z7NsrIytLZqPG5ZLpZEbhDwAAAAAAAACACsRKTpHZPFVR334V6ijlz7blWrVCgTbtQp2k4oiJyVu9dxyBjp1kx8fLM+c7ObdtldmwUTmEK5q/8yl5Kzd/P3PQuXmTJLHirxxQ+AMAAAAAAAAAoILxDThNzrVrZKSnhzpKuXLs2C7j0EEKfyfC7Za/R295vp4leXPL9Hy/4/F3PkUyA3KvWCZJcm7ZLKtmLdnxCSHLdLKg8AcAAAAAAAAAQAUTaNtOMgy51q4JdZRy5Vq9SnJ7ZDZrHuooYcnX51TJ75MkWQ1DV/izq1eX2bCxXL9v9+ncvElmI1b7lQcKfwAAAAAAAAAAVDB2fILM5BS5flkd6ijlyrVquQKpLSW3O9RRwpLVoKHMlAayEmuGfHWdv8spci9fJuXk5G09yvl+5YLCHwAAAAAAAAAAFZCZ2krOtb9Ith3qKOXD55Nr3Tq2+Syl3JFXKfeyy0MdQ4EuXSWfV1Ezv5D8Ps73KycU/gAAAAAAAAAAqIACqS3lyNh/0pzz51q/Vgr4FWjTNtRRwprZtJkCnbqEOoasOnVl1U2S54vPJIdDZkqDUEc6KVD4AwAAAAAAAACgAgo0T8075+8k2e7TtWql7CpVZSXVC3UUBIm/8ykycnPy/p1GR4c6zkmBwh8AAAAAAAAAABVRfLzMlAZyrf0l1EnKhWvVirzVfoYR6igIEn+XrpKkANt8lhsKfwAAAAAAAAAAVFBmaiu51q6J+HP+jAOZcuzcwfl+EcZq0FCBjp0VOKVbqKOcNCj8AQAAAAAAAABQQQVSW8rIzJCxb1+oo5Qp15q87UwDrduEOAmCyjCUfevtCrRtH+okJw0KfwAAAAAAAAAAVFD55/ytXRPqKGXKtWqlzJQGsitVDnUUIKxR+AMAAAAAAAAAoKKKi5PZoGHEn/PnXL9WZitW+wGlReEPAAAAAAAAAIAKLOLP+cvJkWN/uszklFAnAcIehT8AAAAAAAAAACqwP875c+zbG+ooZcK5K02SZCbVC3ESIPxR+AMAAAAAAAAAoAILNGshGYacv0TmOX+OtJ2SYciqmxTqKEDYo/AHAAAAAAAAAEBFFhcns0GjiD3nz5m2U1bNWlJUVKijAGGPwh8AAAAAAAAAABWcmdpSrl9WR+Q5f460nbLY5hMICgp/AAAAAAAAAABUcIHUljJ+OyAjPT3UUYLOuStNZr36oY4BRAQKfwAAAAAAAAAAVHBmo8aSJOeWzSFOEmRZWTIOZMqi8AcEBYU/AAAAAAAAAAAqOLtyFdnVqsu5NbIKf85daZLEij8gSCj8AQAAAAAAAAAQBgKNm8gVYSv+HGk7JIdDVp26oY4CRAQKfwAAAAAAAAAAhAGzUWM5tm6RbDvUUYLGmZYmq2Ztye0OdRQgIlD4AwAAAAAAAAAgDJgNGsnIzZFj965QRwkaR9pOmfXZ5hMIFgp/AAAAAAAAAACEAbNRY0mSc+uWECcJHmfaTllJ9UIdA4gYFP4AAAAAAAAAAAgHcXGyatWRM0LO+TOOHJZx6KDMesmhjgJEDAp/AAAAAAAAAACECbNRYzk3bwp1jKBw7NwpSbLqseIPCBYKfwAAAAAAAAAAhAmzUWM5d2yXAoFQRyk1566dksMpq3adUEcBIoYr1AHee+89vf/++9q1K+8w0qZNm2r06NHq27dvfptly5bp2Wef1cqVK+VwOJSamqpJkyYpOjpaCxYs0IgRI4rs++OPP1bbtm2LvDd8+HAtXLiwwLWhQ4fqoYceCtIrAwAAAAAAAAAguMxGjSW/T460nbIaNAx1nFJx7Nwpq04dyRXyUgUQMUI+m2rXrq1x48YpJSVFtm1r2rRpuv766zV16lQ1bdpUy5Yt01VXXaVRo0bp3nvvldPp1Lp16+Rw5C1W7NChg3766acCff7rX//SvHnz1KZNm2OOfckll+imm27K/zomJib4LxAAAAAAAAAAgCAxUxpIhiHnls1hX/hz7kqTmVQ/1DGAiBLywl///v0LfH3LLbfo/fff1/Lly9W0aVNNmDBBw4cP1zXXXJPfplGjRvn/2+PxKDExMf9rv9+vb7/9VpdddpkMwzjm2NHR0QWeBQAAAAAAAACgQouOllWvvpxbN8uvgaFOc1RRn3ws57q1CnTtJn+XrrIrVS7YwLblSNuhwBlnhyYgEKFCXvj7K9M0NXPmTGVnZ6tDhw7KyMjQihUrNGjQIA0bNkw7duxQo0aNNGbMGHXu3LnIPmbPnq3ffvtNF1100XHH++yzzzR9+nQlJiaqX79+Gj16dIlX/TkchhyOYxcYgZOB0+ko8E8AFR/zFgg/zFsgvDBngfDDvAXCz8k6b+0mTeTeukUBV8V93Z6li2VkZsi9fq1i3npDZqvW8p9/gczWeTv1GQd/kyMrS0pOlqsCvw4E38k6b8tLhSj8rV+/XsOGDZPX61VsbKxeeuklNWnSRMuXL5ckvfjii7r99tuVmpqqadOmaeTIkfr888/VoEGDQn1NnjxZvXr1Uu3atY855rnnnqu6deuqZs2aWr9+vZ5++mlt3bpVL774YomyV6sWd9yVhcDJpFIltswFwg3zFgg/zFsgvDBngfDDvAXCz0k3b9u2kub/rOg4t+TxhDpN0bIOSUMulM48U5o3T/rmG8U8PUEaM0bq10/auVlyO+Vp00KqGhfqtAiBk27elpMKUfhr2LChpk2bpsOHD2vWrFkaP3683nnnHVmWJUkaOnRo/gq+li1bat68eZoyZYrGjh1boJ9ff/1VP/30k5577rnjjjl06ND8/928eXMlJiZq5MiR2rFjh5KTk4udPTMzixV/gPI+nVGpUowOHcqRaVqhjgOgGJi3QPhh3gLhhTkLhB/mLRB+TtZ566iZpJhcn3KWr5HVtFmo4xTm9ytuf6a8njgFLJfUtbfUuYeiXn9Frieekm/3PsnhkMeWsqISpANZoU6McnSyztvSqlrMAnmFKPx5PB6lpKRIklq3bq1Vq1bp7bff1tVXXy1Jaty4cYH2jRs31u7duwv1M2XKFFWpUqXQuYHF0a5dO0nS9u3bS1T4syxblmWXeDwgUpmmpUCAv6yBcMK8BcIP8xYIL8xZIPwwb4Hwc9LN26RkRTuc0oaNCjRsEuo0hRjpGbJtW/7KVWXm/3sxFPjnKEXFJSjq7TdlV6kqs3ZdBWxDOpn+3SHfSTdvy0mF3EDVsiz5fD7Vq1dPNWvW1NatWwvc37Ztm5KSkgpcs21bn3zyiQYPHiy3213iMdeuXStJSkxMPPHgAAAAAAAAAACUNZdLZnKKnFs3hzpJkRyZGZIku1q1gjcMQ95hlyr3/4bL+O2AzHrFX4QDoHhCvuJv4sSJ6tOnj+rUqaOsrCx9/vnnWrhwoSZNmiTDMHTllVfqhRdeUIsWLZSamqqpU6dqy5Ytev755wv0M3/+fKWlpWnIkCGFxti7d68uv/xyPfnkk2rbtq127Nihzz77TH379lWVKlW0fv16TZgwQV26dFGLFi3K66UDAAAAAAAAAHBCzEaN5Vq7JtQxiuQ4kClJsqpWK/K+75xBMhs0lF2jRnnGAk4KIS/8ZWRkaPz48dq3b58SEhLUvHlzTZo0ST179pQkjRw5Uj6fTxMmTNDBgwfVokULvfHGG4W245w8ebI6dOhQaFtQSfL7/dq6datycnIkSW63W/PmzdPbb7+t7Oxs1alTR6effrpGjx5d9i8YAAAAAAAAAIBSMps0lWf213Ls/VVWrdqhjlOAkZkpRUVLsbFHbWO2al2OiYCTh2HbNgfUlUJ6+uFQRwAqBJfLoapV43TgQBb7MgNhgnkLhB/mLRBemLNA+GHeAuHnpJ63Xq8Sbr1RgTZtlXPtDaFOU0D0O2/JtWK5jjz1bKijoAI6qedtKSQmJhSrXYU84w8AAAAAAAAAABxDVJS8518g988/yrErLdRpCjAyM2VVqxrqGMBJicIfAAAAAAAAAABhyNdvoKxq1RU15eNQRynAkZkhu1r1UMcATkoU/gAAAAAAAAAACEdut7wXDJF74Tw5tm8LdZp8xoFMWVWrhToGcFKi8AcAAAAAAAAAQJjy9+ojq1ZtRU/5KNRR8ti2HAcOyK5G4Q8IBQp/AAAAAAAAAACEK5dL3gsvlmvpYjk3bwx1GhkHf5MskxV/QIhQ+AMAAAAAAAAAIIz5u/eUVTdJUR9/EOoocmRmSJIszvgDQoLCHwAAAAAAAAAA4czhkPe8C+RavUrGgcyQRjEOHJAktvoEQoTCHwAAAAAAAAAAYS7Quo0kybVubUhzODIzJKdLdqXKIc0BnKwo/AEAAAAAAAAAEObsKlVl1U2S85c1Ic1hZGbKqlpVMoyQ5gBOVhT+AAAAAAAAAACIAIHUVnKFuPDnyMyUXZVtPoFQofAHAAAAAAAAAEAECKS2kmPvHhmZGSHLYBzIlEXhDwgZCn8AAAAAAAAAAEQAs2VLSZJr7S+Fb9q2jCOHyzyDIzNTdvXqZT4OgKJR+AMAAAAAAAAAIALYlSrLSqon59rC231GffyB4m+5UcaBzDIMYMvBij8gpCj8AQAAAAAAAAAQIQItWxde8ef1yvPtVzJyshX9/rtlN3h2tuTNlV2Nwh8QKhT+AAAAAAAAAACIEHnn/P0qI+PPc/7c836WkZ0t73kXyD33RznXryuTsR2/rya0qrHVJxAqFP4AAAAAAAAAAIgQZmqqJMn1x3afti3P1zMVaNte3ouHyWzYWNFvTZIsK+hj5xf+2OoTCBkKfwAAAAAAAAAARAg7oZKs+sn5hT/npo1ybt8m3+lnSoah3JH/lHPHdnlmfx30sf9YZWhXrRr0vgEUD4U/AAAAAAAAAAAiSCC1lZy/5BX+PF/NlFWrtgJt20uSzMZN5e/bT1EffyDj8KGgjus4kCk7oZLkcgW1XwDFR+EPAAAAAAAAAIAIEmjZSo70fXJu2ST3wvnyDThdMoz8+7lD/yHZtqI++iCo4xqZmbKqc74fEEoU/gAAAAAAAAAAiCBmi1TJMBTzyr8lh0O+PqcWuG9XqizvoMHy/PC9lJ0dtHEdBzJlc74fEFIU/gAAAAAAAAAAiCB2fILM5BQ5dqXJ16u3FB9fqI2/W0/JDMi9YlnQxjUyM2RVY8UfEEoU/gAAAAAAAAAAiDBmaitJkm/gGUXetxMTZTZsLNeiBUEb05GZKbsaK/6AUOKETQAAAAAAAAAAIozvtDNk1aolK6XBUdv4T+mq6KlTlOP1SlFRpRzQJ+PIYVls9QmEFCv+AAAAAAAAAACIMFat2vKdduYx2wS6dJV8XrlWLi/1eMaBA3njUvgDQorCHwAAAAAAAAAAJyGrdh1Z9ZPlXrSw1H05MjMkSXZ1zvgDQonCHwAAAAAAAAAAJyl/l65yLVsi+f2l6sfxGyv+gIqAwh8AAAAAAAAAACcpf5euMnKy5VqzqlT9GBkZsmNipZiYICUDcCIo/AEAAAAAAAAAcJKy6tWXVauO3IsWlKofx4FM2VWrBikVgBNF4Q8AAAAAAAAAgJOVYcjf5RS5liySTDPvmm3LtXihXCUoBjoy9suqxjafQKi5Qh0AAAAAAAAAAACETuCUror6/FM5162VnZCgmP+9KefaNbJjYnW4fUfJ7T52B7Yt5+ZN8vXsXT6BARwVK/4AAAAAAAAAADiJmQ0by6qRqJhJryj+7ttlHDig3BFX5J39t3rlcZ839u+XcSBTZrPm5ZAWwLFQ+AMAAAAAAAAA4GRmGPL37C3jyGHl/mOEjjz+tHynnyWrbpLcC+cf93HX+rWSROEPqADY6hMAAAAAAAAAgJOc96JL5L1giOT6s2zgP6WbPF99KQUCBa7/nXP9Oll1k2THJ5RHVADHwIo/AAAAAAAAAABOdg5HoeKe/5RuMrKz5Vqz6piPutavVaB5almmA1BMFP4AAAAAAAAAAEAhVv1kWbXqHHO7T+PIYTl275LZvEU5JgNwNBT+AAAAAAAAAABAYYYh/yld5VqyKG+7zyI4N6yXJFb8ARVEyAt/7733ngYNGqSOHTuqY8eOGjp0qObMmVOgzbJlyzRixAi1b99eHTt21KWXXqrc3Nz8+/3791fz5s0L/Hn11VePOa7X69WDDz6orl27qkOHDrrxxhu1f//+MnmNAAAAAAAAAACEI3/X7jKOHJFz7S9F3neuXye7ajXZNWqUczIARTn6aZzlpHbt2ho3bpxSUlJk27amTZum66+/XlOnTlXTpk21bNkyXXXVVRo1apTuvfdeOZ1OrVu3Tg5HwZrlTTfdpEsuuST/67i4uGOO+9hjj2nOnDl67rnnlJCQoIcfflg33HCDPvjggzJ5nQAAAAAAAAAAhBsrpYGsmrXkXjhfZpu2he671q9ToFkLyTBCkA7A34W88Ne/f/8CX99yyy16//33tXz5cjVt2lQTJkzQ8OHDdc011+S3adSoUaF+4uLilJiYWKwxDx8+rClTpujpp59W9+7dJeUVAs8++2wtX75c7du3P/EXBAAAAAAAAABApDAM+U/pJs+c75Q78krJ6fzzns8n59Yt8vfsFbp8AAoI+Vaff2Wapr744gtlZ2erQ4cOysjI0IoVK1S9enUNGzZMPXr00GWXXabFixcXeva1115T165dNXjwYL3++usKHGW/YUlavXq1/H6/evTokX+tcePGqlu3rpYvX14WLw0AAAAAAAAAgLAUOKWrjMOH5Fy3tsB15+ZNkhnIW/EHoEII+Yo/SVq/fr2GDRsmr9er2NhYvfTSS2rSpEl+Ee7FF1/U7bffrtTUVE2bNk0jR47U559/rgYNGkiShg8frpYtW6py5cpatmyZnnnmGaWnp+vOO+8scrz9+/fL7XarUqVKBa5Xr15d6enpJcrucBhyOFjCDDidjgL/BFDxMW+B8MO8BcILcxYIP8xbIPwwb8tJ06ZSjURFL5onb7s/t/t0b1ovIzZWjoYNCh3PBRwN87ZsVYjCX8OGDTVt2jQdPnxYs2bN0vjx4/XOO+/IsixJ0tChQ3XRRRdJklq2bKl58+ZpypQpGjt2rCTpiiuuyO+rRYsWcrvduv/++zV27Fh5PJ4yzV6tWpwM9i4G8lWqFBPqCABKiHkLhB/mLRBemLNA+GHeAuGHeVsOzjtHevddxfbqLv1+hJZ2bJHatZGnekJosyEsMW/LRoUo/Hk8HqWkpEiSWrdurVWrVuntt9/W1VdfLSlvG86/aty4sXbv3n3U/tq1a6dAIKC0tLQizwOsUaOG/H6/Dh06VGDVX0ZGRrHPCfxDZmYWK/4A5X06o1KlGB06lCPTtEIdB0AxMG+B8MO8BcILcxYIP8xbIPwwb8vRaecoau0GuR6boJw775XVvIXiVqySb9D58h/ICnU6hBHm7YmpWjWuWO0qROHv7yzLks/nU7169VSzZk1t3bq1wP1t27apT58+R31+7dq1cjgcql69epH3W7duLbfbrXnz5umMM86QJG3ZskW7d+9W+/btS5jVlmXZJXoGiGSmaSkQ4C9rIJwwb4Hww7wFwgtzFgg/zFsg/DBvy0fgmusV+9QERT31uHIvv1J2drZ8TZrL5L3HCWDelo2Qb6A6ceJELVq0SGlpaVq/fr0mTpyohQsXatCgQTIMQ1deeaX+97//aebMmdq+fbuee+45bdmyRUOGDJEkLVu2TG+++abWrVunnTt3avr06ZowYYLOO+88Va5cWZK0d+9enXnmmVq5cqUkKSEhQRdddJEef/xxzZ8/X6tXr9Zdd92lDh06lLjwBwAAAAAAAADAScHtVvbNY2XVSFTMyy9KTpfMxk1CnQrAX4R8xV9GRobGjx+vffv2KSEhQc2bN9ekSZPUs2dPSdLIkSPl8/k0YcIEHTx4UC1atNAbb7yh5ORkSXnbhM6YMUMvvvhi/irBkSNHFjj3z+/3a+vWrcrJycm/dtddd8nhcOimm26Sz+dTr169dP/995fviwcAAAAAAAAAIJzExSn7tjsV9+C9smskSh5PqBMB+AvDtm32qSyF9PTDoY4AVAgul0NVq8bpwIEslmcDYYJ5C4Qf5i0QXpizQPhh3gLhh3kbQllZMixTdkKlUCdBmGHenpjExIRitQv5ij8AAAAAAAAAABBm4uLEqiKg4gn5GX8AAAAAAAAAAAAASo/CHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEYDCHwAAAAAAAAAAABABKPwBAAAAAAAAAAAAEcCwbdsOdQgAAAAAAAAAAAAApcOKPwAAAAAAAAAAACACUPgDAAAAAAAAAAAAIgCFPwAAAAAAAAAAACACUPgDAAAAAAAAAAAAIgCFPwAAAAAAAAAAACACUPgDAAAAAAAAAAAAIgCFPwAAAAAAAAAAACACUPgDAAAAAAAAAAAAIgCFPwAAAAAAAAAAACACUPgDItS7776r/v37q02bNrr44ou1cuXKQm2WLVumESNGqH379urYsaMuvfRS5ebmHrPf3bt365prrlG7du3UvXt3PfHEEwoEAvn3FyxYoObNmxf6k56eftQ+vV6v7rjjDg0aNEgtW7bU6NGjj5lhyZIlatmypc4///zjvAtAeIm0eXsi/QLhJNLmrCT5fD49++yz6tevn1q3bq3+/ftr8uTJxXxHgIov0ubtHXfcUWS/55xzTgneFaBii7R5K0nTp0/Xeeedp3bt2qlXr1668847deDAgWK+I0DFF4nz9t1339VZZ52ltm3b6owzztC0adOK92YAYSKc5u2CBQt03XXXqVevXmrfvr3OP/98TZ8+vVC7L7/8UmeeeabatGmjQYMGac6cOSV4R8KbK9QBAATfjBkzNGHCBD344INq166d3nrrLV155ZWaOXOmqlevLinvL+qrrrpKo0aN0r333iun06l169bJ4Tj65wFM09SoUaNUo0YNffDBB9q3b5/Gjx8vt9utW2+9tUDbmTNnKj4+Pv/rP8Y9Wr9RUVEaPny4Zs2adczXdujQIY0fP17du3fX/v37i/N2AGEhkudtSfoFwkWkztmbb75ZGRkZevTRR5WcnKz09HRZllXctwWo0CJx3t59990aO3ZsgWfOP/98nXnmmcV6T4CKLhLn7ZIlSzR+/Hjdeeed6tevn/bu3asHHnhA9957r1588cWSvD1AhRSJ8/a9997TxIkT9cgjj6hNmzZauXKl7rnnHlWqVEn9+/cvydsDVEjhNm+XLVum5s2b6+qrr1aNGjX03Xffafz48UpISFC/fv0kSUuXLtXYsWN16623ql+/fvrss890/fXX65NPPlGzZs1K83aFBxtAxBkyZIj94IMP5n9tmqbdq1cv+5VXXsm/dvHFF9vPPvtsifr9/vvv7RYtWtjp6en519577z27Y8eOttfrtW3btufPn283a9bMPnjw4AllHz9+vH3dddcd9f6YMWPsZ5991n7++eft884774TGACqiSJy3pe0XqMgicc7OmTPH7tSpk33gwIET6heo6CJx3v7d119/bTdv3txOS0s7oXGAiiYS5+3rr79uDxgwoMC1t99+2+7du/cJjQNUNJE4b4cOHWo//vjjBa5NmDDBHjZs2AmNA1Q04Txv/3D11Vfbd9xxR/7XN998s33NNdcUaHPxxRfb9957b6nGCRds9QlEGJ/PpzVr1qhHjx751xwOh3r06KFly5ZJkjIyMrRixQpVr15dw4YNU48ePXTZZZdp8eLFx+x7+fLlatasmWrUqJF/rVevXjpy5Ig2bdpUoO3gwYPVq1cvXXHFFVqyZElQXtuUKVO0c+dO3XDDDUHpD6goInnelmW/QKhE6pydPXu2Wrdurddff129e/fWGWecoSeeeOK4W7cA4SBS5+3fTZ48WT169FBSUlLQ+wbKW6TO2/bt2+vXX3/VnDlzZNu29u/fr1mzZqlv376l7hsItUidtz6fT1FRUQWuRUVFadWqVfL7/aXuHwilSJm3hw8fVpUqVQqM3b179wJtevXqpeXLl5e473BE4Q+IMAcOHJBpmoWWQ1evXj1/a8ydO3dKkl588UVdfPHFev3119WyZUuNHDlS27ZtO2rf+/fvL/AXtaT8r//YdzkxMVEPPvignn/+eT3//POqXbu2RowYoTVr1pTqdW3btk0TJ07UU089JZeLXYoRWSJ13pZVv0CoReqc3blzp5YsWaKNGzfqpZde0l133aVZs2bpwQcfLFW/QEUQqfP2r/bu3asffvhBQ4YMCVqfQChF6rzt1KmTnnrqKY0ZM0atW7dWz549FR8fr/vuu69U/QIVQaTO2169emny5MlavXq1bNvWqlWrNHnyZPn9fs7nRNiLhHk7Y8YMrVq1ShdeeOExx/7ra4p0/PYcOAn9cVbP0KFDddFFF0mSWrZsqXnz5mnKlCkaO3asrrrqqvxPV9StW1dffPFFsfpu1KiRGjVqlP91x44dtXPnTr355pt66qmnTiivaZoaO3asbrzxRjVs2PCE+gDCXbjN27LsFwgH4ThnbduWYRh6+umnlZCQIEm64447dNNNN+n+++9XdHT0CfcNhINwnLd/NW3aNCUkJGjgwIFB6Q8IB+E4bzdt2qRHH31U119/vXr16qX09HQ9+eSTuv/++/XYY4+dcL9AuAjHeTt69Gilp6dr6NChsm1b1atX1+DBg/X6668f83wzIFJU5Hk7f/583XXXXXrkkUfUtGnTkr60iEXhD4gwVatWldPpVEZGRoHrGRkZ+Z9ySExMlCQ1bty4QJvGjRtr9+7dkqRHH300f2uvP1bY1ahRQytXrizwzB+fkvijz6K0adNGS5cuPdGXpKysLK1evVpr167Vww8/LCnvB45t22rZsqUmTZpUaOk2EE4icd6Wd79AeYrUOZuYmKhatWrlF/3+yGvbtn799Vc1aNCgVP0DoRSp8/YPtm1rypQpOv/88+XxeILSJxBqkTpvX3nlFXXs2FFXXXWVJKlFixaKiYnRpZdeqjFjxqhmzZql6h8IpUidt9HR0ZowYYIeeughZWRkKDExUR9++KHi4uJUrVq1UvUNhFo4z9uFCxfquuuu05133qnBgwcXuFejRo1Cq/v++poiHR9JACKMx+NRq1atNG/evPxrlmVp3rx56tChgySpXr16qlmzprZu3Vrg2W3btuWfB1KrVi2lpKQoJSUl/1r79u21YcOGAj8I5s6dq/j4eDVp0uSomdatW3fMv8yPJz4+Xp999pmmTZuW/2fYsGFq2LChpk2bpnbt2p1w30BFEInztrz7BcpTpM7Zjh07at++fcrKysq/tnXrVjkcDtWuXbtUfQOhFqnz9g8LFy7U9u3b2eYTESVS521ubm6hFUJOp1NSXhEfCGeROm//4Ha7Vbt2bTmdTs2YMUP9+vVjxR/CXrjO2wULFmjUqFEaN26chg4dWuh++/btNX/+/ALX5s6dq/bt2x+z30jBij8gAl1xxRUaP368WrdurbZt2+qtt95STk5O/j7HhmHoyiuv1AsvvKAWLVooNTVVU6dO1ZYtW/T8888ftd9evXqpSZMmuv3223XbbbcpPT1dzz33nC699NL8Txa/+eabqlevnpo2bSqv16uPP/5Y8+fP1xtvvHHMzJs2bZLf79dvv/2mrKwsrV27VpKUmpoqh8OhZs2aFWhfvXp1RUVFFboOhKtIm7el6RcIB5E4Z88991z9+9//1p133qmbbrpJBw4c0FNPPaWLLrqIbT4RESJx3v5h8uTJateuHf/fGBEnEudtv379dO+99+q9995T7969tW/fPj322GNq27atatWqFYy3DQipSJy3W7du1cqVK9WuXTsdOnRI//3vf7Vx40Y9/vjjwXjLgJALt3k7f/58XXvttRoxYoROP/30/PMC3W63qlSpIkkaMWKEhg8frjfeeEN9+/bVjBkztHr1aj300ENBetcqNsPm40RARHrnnXc0adIkpaenKzU1Vffcc0+hlXGvvvqq3n33XR08eFAtWrTQuHHj1Llz52P2u2vXLj3wwANauHChYmJidMEFF2js2LH5S7hfe+01ffTRR9q7d69iYmLUrFkzXX/99erWrdsx++3fv7927dpV6Pr69euLbP/CCy/om2++0aeffnrMfoFwEmnz9kT7BcJFpM1ZSdq8ebMeeeQRLV26VFWqVNFZZ52lMWPGUPhDxIjEeXv48GH16tVLd999ty655JLivhVA2IjEefu///1PH3zwgdLS0pSQkKBu3brptttuo/CHiBFp83bz5s0aO3astm7dKpfLpa5du2rcuHEFziUDwl04zds77rhDU6dOLXT9lFNO0f/+97/8r7/88ks999xz2rVrlxo0aKDbbrtNffv2LcnbErYo/AEAAAAAAAAAAAARgE2IAQAAAAAAAAAAgAhA4Q8AAAAAAAAAAACIABT+AAAAAAAAAAAAgAhA4Q8AAAAAAAAAAACIABT+AAAAAAAAAAAAgAhA4Q8AAAAAAAAAAACIABT+AAAAAAAAAAAAgAhA4Q8AAAAAAAAAAACIAK5QBwAAAAAAVHzNmzc/bpsJEyZo6tSpio2N1SuvvFIOqQAAAAAAf2XYtm2HOgQAAAAAoGJbvnx5ga+HDh2q4cOH69xzz82/lpycrMzMTDkcDjVq1KicEwIAAAAAWPEHAAAAADiu9u3bF7pWp06dQterVatWPoEAAAAAAIVwxh8AAAAAIGiGDx+uUaNG5X/9wgsvqEOHDvrll180dOhQtW3bVhdccIF++eUXeb1e3X///erSpYv69OmjN998s1B/y5Yt04gRI9S+fXt16tRJY8eOVUZGRjm+IgAAAAAIHxT+AAAAAABlyu/3a/z48brkkkv0wgsvKBAI6IYbbtDdd9+t6OhoPffccxo4cKAmTJigpUuX5j+3bNkyDR8+XAkJCXr22Wf18MMPa9WqVRo9enQIXw0AAAAAVFxs9QkAAAAAKFN+v1/jxo1T3759JUmWZenaa69Vu3btdOedd0qSunXrppkzZ2rmzJnq2LGjJGnixIlq3bq1XnzxRRmGIUlq1qyZzj33XM2ZMye/PwAAAABAHlb8AQAAAADKlMPhUPfu3fO/btCggSSpR48e+decTqeSk5P166+/SpJycnK0dOlSnXnmmTJNU4FAQIFAQA0aNFCdOnW0atWqcn0NAAAAABAOWPEHAAAAAChT0dHR8ng8+V+73W5JUkJCQoF2brdbXq9XknTo0CGZpqkJEyZowoQJhfrcs2dPGSYGAAAAgPBE4Q8AAAAAUOEkJCTIMAyNGjVKAwcOLHS/atWqIUgFAAAAABUbhT8AAAAAQIUTGxur9u3ba8uWLWrTpk2o4wAAAABAWKDwBwAAAACokG6//XZdfvnlGjNmjM455xxVqlRJv/76q+bOnasLL7xQXbt2DXVEAAAAAKhQKPwBAAAAACqkjh076r333tMLL7ygO++8U36/X7Vr11a3bt2UkpIS6ngAAAAAUOEYtm3boQ4BAAAAAAAAAAAAoHQcoQ4AAAAAAAAAAAAAoPQo/AEAAAAAAAAAAAARgMIfAAAAAAAAAAAAEAEo/AEAAAAAAAAAAAARgMIfAAAAAAAAAAAAEAEo/AEAAAAAAAAAAAARgMIfAAAAAAAAAAAAEAEo/AEAAAAAAAAAAAARgMIfAAAAAAAAAAAAEAEo/AEAAAAAAAAAAAARgMIfAAAAAAAAAAAAEAEo/AEAAAAAAAAAAAAR4P8BtikFzJ3SB0QAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAASmCAYAAADmsdybAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XV8XfX9x/HXuR53T5q6u1KhQMuw4lC8uA4bDBgwtsGPsTHGYNiQrchwGC0yCgyKF6+7S9w9uX5+f4TcNiRtpGnTlPfz8egDcs73+z2fc5MTyv3cz+drmKZpIiIiIiIiIiIiIiIiIiI9mqW7AxARERERERERERERERGRvafEn4iIiIiIiIiIiIiIiMhBQIk/ERERERERERERERERkYOAEn8iIiIiIiIiIiIiIiIiBwEl/kREREREREREREREREQOAkr8iYiIiIiIiIiIiIiIiBwElPgTEREREREREREREREROQgo8SciIiIiIiIiIiIiIiJyEFDiT0REREREREREREREROQgoMSfiIiIiIgccObMmcOcOXNCX+fm5jJo0CDmzZu3X+O49dZbmTFjxn651qBBg3jkkUf2y7Vkp3nz5jFo0CByc3O7O5TdWrFiBcOHDycvL6+7Q/lZuv/++5k9e3Z3hyEiIiIi0i627g5AREREREQ6bt68edx22204HA4++ugjUlJSmp2fM2cOFRUV/Pe//+2mCH9e5syZw3fffRf6OiYmhqysLM4++2xOPfVULJYD+zOXH374Ia+++iorV66krq6O2NhYxo0bx1lnncXkyZO7O7yfvQcffJBZs2aRkZEROvbTnzm73U5ycjJTp07ll7/8JWlpad0R6n715ZdfsmDBAlasWMHmzZtJS0vj448/7tAaCxcu5NFHH2XTpk0kJCRw6qmn8stf/hKbbefbJRdccAHPPfccCxcuZObMmV19GyIiIiIiXUqJPxERERGRHszr9fLUU0/xu9/9rrtD2acyMjJYsWJFszfjDzSpqanceOONAFRUVPDmm2/y29/+lm3btnHTTTe1OX/FihVYrdZ9HWYzpmly++23M2/ePIYOHcpFF11EYmIiJSUlfPjhh1x44YW8/PLLjB07dr/GtT+ddNJJzJo1C4fD0d2htGrt2rV89dVXvPLKKy3O7foz5/P52Lx5M6+88kooIRYWFra/w92v/vvf/7JgwQKGDh1KcnJyh+d/9tlnXH311UycOJHf/e53bNiwgccff5yysjLuuuuu0LikpCRmzpzJ008/rcSfiIiIiBzwDtz/axYRERERkTYNGTKE1157jcsvv7xF1V9XMU0Tj8eDy+XaJ+u3h2EYOJ3Obrt+e0RFRXHSSSeFvj7zzDM55phjePHFF7n++uux2+0t5gSDQXw+H06ns1vu7+mnn2bevHlccMEF3HbbbRiGETp31VVX8eabbx7Qyda9UV9fT3h4OFardb8nXDvijTfeID09ndGjR7c499OfOYDMzEz+7//+jyVLljB16tT9FGX3uOGGG7j77rux2+1cccUVbNy4sUPz77vvPgYNGsTTTz8d+jmPiIjgySef5Pzzz6dfv36hscceeyzXX389OTk5ZGVldel9iIiIiIh0pQO734yIiIiIiOzRFVdcQTAY5J///GebY/1+P4899hhHHnkkw4cPZ8aMGTzwwAN4vd5m42bMmMEVV1zBF198wamnnsrIkSN55ZVX+Pbbbxk0aBALFizg0Ucf5dBDD2XMmDFcd9111NTU4PV6ueeee5g8eTJjxozhtttua7H2G2+8wfnnn8/kyZMZPnw4xx13HC+99FKbsf90j7+mWFr789M9+T777DPOOeccRo8ezZgxY7j88stbTRB89NFHHH/88YwYMYLjjz+eDz/8sM249iQsLIxRo0ZRX19PeXk50LiP3//93//x9ttvM2vWLEaMGMEXX3wROvfTPf6Kioq4/fbbmTZtWuh79oc//KHZ61pdXc0999zDYYcdxvDhw/nFL37BU089RTAY3GN8brebp556ir59+/Kb3/ymWdKvycknn8zIkSNDX+fk5HDdddcxceJERo0axRlnnMGnn37abE5X/Jzs+jodffTRjBgxglNPPZXvv/++2bi8vDzuvPNOjj76aEaOHMmkSZO47rrrWuzX17SP33fffcedd97J5MmTOeyww5qd23XOypUrueSSS5g0aRIjR45kxowZ3Hbbbc3WrK+v59577w297kcffTRz587FNM1W76Xp52v48OHMmjWLzz//fI/fnyYLFy7kkEMOafX705rExESAZsnM9r5OPp+PRx99lKOOOooRI0YwadIkzj77bBYtWtRs3ObNm0M/B03fm4ULF7Yrvq6UkpLSakK9PTZt2sSmTZs444wzmiW3zznnHEzT5IMPPmg2fsqUKQDdcp8iIiIiIh1xcH50U0RERETkZyIzM5OTTjqJ1157jcsuu2yPVX933HEH8+fP5+ijj+aiiy5ixYoVPPnkk2zevJnHHnus2ditW7fy61//mjPPPJMzzjiDPn36hM499dRTuFwuLr/8crZv384LL7yAzWbDMAyqq6u55pprWL58OfPmzSMjI4NrrrkmNPfll19mwIABzJgxA5vNxieffMJdd92FaZqce+657b7vfv36cd999zU7VlNTw7333kt8fHzo2Jtvvsmtt97KtGnTuOmmm2hoaODll1/mnHPOYf78+WRmZgKNe4Vde+219O/fn1//+tdUVFRw2223kZqa2u6YWpObm4vVaiU6Ojp07JtvvuG9997j3HPPJS4urtm+bbsqKiri9NNPp6amhjPOOIO+fftSVFTEBx98gNvtxuFw0NDQwHnnnUdRURFnnXUWaWlpLF26lAceeICSkhJ++9vf7ja2xYsXU1lZyfnnn9+uirfS0lLOOussGhoamDNnDnFxccyfP5+rrrqKhx9+mF/84hfNxu/NzwnA999/z4IFC5gzZw4Oh4OXX36ZSy+9lNdff52BAwcCjQm6pUuXMmvWLFJTU8nLy+Pll1/m/PPP5913323R6vKuu+4iPj6eq6++mvr6+lbvs6ysjEsuuYS4uDguv/xyoqOjyc3NbZYINk2Tq666im+//ZbTTz+dIUOG8MUXX3DfffeFkrU/fa3/97//cc455xAREcHzzz/PddddxyeffEJcXNxuX/OioiLy8/MZOnRoq+cDgUAoqez3+9m8eTOPPPII2dnZzdqztvd1evTRR3nyySeZPXs2I0eOpLa2llWrVrF69epQ9eDGjRs5++yzSUlJ4bLLLiM8PJz33nuPq6++mkceeaTFz8FPVVVVEQgE9jgGGhPn+7JV6Zo1awAYMWJEs+MpKSmkpqaydu3aZsejoqLo1asXS5Ys4cILL9xncYmIiIiI7C0l/kREREREerirrrqKt956i3/+85/ccccdrY5Zt24d8+fPZ/bs2fzxj38E4NxzzyU+Pp6nn36ab775hkMOOSQ0fvv27fzrX//i0EMPDR379ttvgcZkw/PPPx+qtKmoqODdd9/l0EMPDVUennvuuezYsYN58+Y1S+i88MILzVqGnnfeeVxyySU888wzHUr8JSYmNmtx2JSIsdvt3HvvvQDU1dVxzz33MHv2bO6+++7Q2FNOOYVjjjmGJ598MnT8/vvvJyEhgZdeeomoqCgAJk6cyMUXX7zbxNxP7ZqEqaio4OWXX2b16tUcccQRzRIYW7du5Z133qF///57XO+BBx6gtLSU1157rVly4vrrrw9VlT3zzDPk5OQwf/58evfuDcBZZ51FcnIyc+fO5eKLLyYtLa3V9Tdv3gw0VqS1x1NPPUVpaSkvvvgi48ePB2D27NmceOKJ/PnPf2bmzJlYLDubyuzNzwnAhg0beOONNxg+fDgAs2bN4phjjuHhhx/m0UcfBeDwww/nmGOOaTbviCOO4Mwzz+SDDz7g5JNPbnYuJiaGZ599do+JzqVLl1JVVcXcuXObve433HBD6N8XLlzIN998w69+9Suuuuqq0L1cd911/Pvf/+a8886jV69eofGbN29mwYIFoWOTJk3ipJNO4t133+W8887bbSxbtmwBCCWoWzs/efLkZsf69evH3Llzm+1Z2N7X6dNPP+Wwww5r9rz81D333ENaWhpvvPFG6BrnnHMOZ599Nvfff3+bib9TTjmFvLy8PY4BuOaaa7j22mvbHNdZJSUlQOP+fT+VlJREcXFxi+NZWVls2rRpn8UkIiIiItIV1OpTRERERKSHy8rK4sQTT+S1115r9c1qaGx3CXDRRRc1O37xxRc3O98kMzOzWdJvVyeddFKz9nojR47ENE1OO+20ZuNGjhxJQUEBfr8/dGzXpF9NTQ3l5eVMnDiRnJwcampq2rrV3Xrsscf45JNPuPfee0MJta+++orq6mpmzZpFeXl56I/FYmHUqFGhRGZxcTFr167llFNOCSX9AKZOndpmcm5XTUmYyZMnc9xxx/HCCy9w+OGH86c//anZuAkTJrS5bjAY5KOPPuKII45oUZEEhNo+vv/++4wbN47o6Ohm9zhlyhQCgUCL1pi7qq2tBRr3NGuPzz77jJEjR4aSfk1zzzzzTPLy8lokRPbm5wRgzJgxoaQfQHp6OjNnzuTLL78MVYzt+vPk8/moqKigV69eREdHhyq6dnXGGWe0Wd3Y9DPw6aef4vP5Wh3z+eefY7VamTNnTrPjF198MaZptmjjOWXKlGaJwMGDBxMZGUlOTs4eY6moqABoVjG6q4yMDJ555hmeeeYZ/vnPf3L77bdTU1PDZZddFkpCQ/tfp+joaDZu3Mi2bdtavV5lZSXffPMNxx57LLW1taGft4qKCqZNm8a2bdsoKira4z399a9/DcW8pz8/Tdp2NbfbDdAsQdrE6XSGzu8qOjo69D0RERERETlQqeJPREREROQg8Mtf/pK3336bp556qtWqv7y8PCwWS7PkAzRWtkRHR7eowNldhRE0JmB21ZQo+WllWVRUFMFgkJqamlA7w8WLF/PII4+wbNkyGhoamo2vqalplnhrr88//5zHHnuMK664gqOPPjp0vCl5ccEFF7Q6LzIyEoD8/HwAsrOzW4zp06dPqwmk1mRkZPDHP/4RwzBwOBz07t2bhISEFuP29No2KS8vp7a2lgEDBuxx3Pbt21m/fn2Lqq9d19mdpvuvq6trMx5ofJ1GjRrV4njfvn1D55tacMLe/ZxA69+P3r1709DQQHl5OUlJSbjdbp588knmzZtHUVFRs/31Wkskt+e1nzhxIkcffTSPPvoozz77LBMnTuTII4/khBNOCCWJ8vLySE5ODr2GTfr16xc6v6vWqi5jYmKorq5uMx6gxb6BTcLDw0N7zwFMnz6dcePGcdppp/HUU09x6623ArT7dbruuuv45S9/ydFHH83AgQOZNm0aJ510EoMHDwZgx44dmKbJQw89xEMPPdRqTGVlZXtsOTxu3Lh23fO+1pQM/en+kgAej6dZsrSJaZrt3mtRRERERKS7KPEnIiIiInIQ2LXq7/LLL9/tuPa+ad3am95Ndm3n2J7jTUmGHTt2cOGFF9K3b19uvfVW0tLSsNvtfPbZZzz77LMEg8F2xbarnJwcbr75ZqZMmcKvfvWrVq973333tdrOrz372nXET5Mwu7On17ajgsEgU6dO5dJLL231fFP7z9Y0JezWr1/PkUce2WUxNensz0lH3H333cybN48LLriA0aNHExUVhWEY3HDDDa2u53Q621zTMAwefvhhli1bxieffMIXX3zB7bffzjPPPMOrr77a7grJXe3uZ62te25KhLY3QQgwfPhwoqKimlV7tvd1mjBhAh9++CELFy5k0aJF/Oc//+G5557jrrvuYvbs2aFn9OKLL95tRfBPP1zwU+Xl5e3a4y88PLxTr3V7Nf1OKCkpaZGYLSkpYeTIkS3mVFdX73FPRhERERGRA4ESfyIiIiIiB4mrrrqKt99+O7R/2q4yMjIIBoNs3749VJUEUFpaSnV1dbv3sdsbH3/8MV6vl8cff7xZNVhTy82OcrvdXHvttURFRfHAAw+0SChlZWUBkJCQsMeEXFMs27dvb3Fu69atnYptb8XHxxMZGcnGjRv3OK5Xr17U19e3K+H4U+PGjSMmJoZ3332XK6+8ss1EaHp6equvR9M+dD+t8NtbrX0/tm3bRlhYGPHx8QCh/emaKtugsVprb9rGNhk9ejSjR4/mhhtu4J133uGmm25iwYIFzJ49m4yMDL7++mtqa2ubVf01vRZd9Tw1JWdzc3M7NC8QCFBfXx/6uiOvU2xsLKeddhqnnXYadXV1nHfeeTzyyCPMnj079EzZ7fZO/cwBnH766QfEHn9DhgwBYOXKlc2SfEVFRRQWFnLGGWe0mJObmxuqfhQREREROVBpjz8RERERkYNEr169OPHEE3n11VcpKSlpdu6www4D4Lnnnmt2/Jlnnml2fl9qSiz9tM3gG2+80an1/vCHP7Bt2zYeffRRYmJiWpw/9NBDiYyM5Mknn2x1r7amNpjJyckMGTKE+fPnN0uELFq0qMW+dfuLxWLhyCOP5JNPPmHlypUtzje9hsceeyxLly7liy++aDGmurq6xb55uwoLC+PSSy9l8+bN3H///a1Wn7311lusWLECaPwZWbFiBUuXLg2dr6+v57XXXiMjI6ND+yG2x9KlS1m9enXo64KCAhYuXMjUqVNDP0utJSuff/75dlWU7U5VVVWL16IpSdTUFnL69OkEAgFefPHFZuOeffZZDMNg+vTpnb7+rlJSUkhLS2PVqlXtnvPNN99QX1/fLEHV3tfpp/vXRURE0KtXr9B9JyQkMHHiRF599dVW9xPdU2vZJt2xx5/P52Pz5s3NYh4wYAB9+/bltddea/Y6vPzyyxiGwTHHHNNsjZqaGnbs2MGYMWO6LC4RERERkX1BFX8iIiIiIgeRK6+8krfeeoutW7c22x9u8ODBnHLKKbz66qtUV1czYcIEVq5cyfz58znyyCM55JBD9nlsU6dOxW63c+WVV3LWWWdRV1fH66+/TkJCQotEZVs+/fRT3nzzTY4++mjWr1/P+vXrQ+ciIiI48sgjiYyM5M477+SWW27h1FNP5bjjjiM+Pp78/Hw+++wzxo4dy+9//3sAbrzxRq644grOOeccTjvtNCorK3nhhRcYMGBAs8qp/enGG29k0aJFzJkzhzPOOIN+/fpRUlLC+++/z0svvUR0dDSXXHIJH3/8MVdeeSWnnHIKw4YNo6GhgQ0bNvDBBx+wcOHCUHVcay699FI2bdrE008/zbfffsvRRx9NYmIipaWlfPTRR6xYsYJXXnkFgMsvv5x3332Xyy67jDlz5hATE8Obb75Jbm4ujzzyyG5beHbWwIEDueSSS5gzZw4Oh4OXX34ZoFkV2OGHH85bb71FZGQk/fv3Z9myZXz11VfExsZ2+rrz58/n5Zdf5sgjj6RXr17U1dXx2muvERkZGUrozZgxg0mTJvHggw+Sl5fHoEGDWLRoEQsXLuSCCy5os91lR8ycOZMPP/yw1f3lampqeOutt4DGKr+tW7fy8ssv43K5mrX8be/rNGvWLCZOnMiwYcOIjY1l5cqVfPDBB5x33nmhMX/4wx8455xzOOGEEzjjjDPIysqitLSUZcuWUVhYyNtvv73H++nKPf7WrVvHxx9/DDRWiNbU1PCPf/wDaPydN2PGDKCxiu+4447jlFNO4d577w3Nv+WWW7jqqqu4+OKLmTVrFhs2bODFF19k9uzZzSqjAb766itM02TmzJldFr+IiIiIyL6gxJ+IiIiIyEEkOzubE088kfnz57c498c//pHMzEzmz5/PRx99RGJiIldccQXXXHPNfomtb9++PPzww/z973/nL3/5C4mJiZx99tnEx8dz++23d2itpsqiDz74gA8++KDZuYyMjNCedSeccALJyck89dRTzJ07F6/XS0pKCuPHj+fUU08NzZk+fToPPfQQf//73/nb3/5Gr169+POf/8zChQv57rvv9vLOOyclJYXXXnuNhx56iHfeeYfa2lpSUlKYPn16aJ/AsLAwnn/+eZ588knef/993nzzTSIjI+ndu3eoDeqeWCwW7rvvPmbOnMlrr73G008/TW1tLXFxcUyYMIGbb745VOGUmJjIK6+8wl//+ldeeOEFPB4PgwYN4oknnuDwww/v8vufMGECo0eP5rHHHiM/P5/+/fvz5z//uVkl229/+1ssFgvvvPMOHo+HsWPH8swzz+x2z8P2mDhxIitXrmTBggWUlpYSFRXFyJEjuf/++0OtLi0WC48//jgPP/wwCxYsYN68eWRkZHDLLbdw8cUX7/W97+q0007jhRdeYPHixYwfP77ZucLCQm655RagcW/CmJgYJkyYwDXXXBOqUoT2v05z5szh448/ZtGiRXi9XtLT0/nVr37FJZdcEhrTv39/3njjDR599FHmz59PZWUl8fHxDB06lKuvvrpL770ta9as4aGHHmp2rOnrU045JZT4250jjjiCRx99lEcffZS7776b+Ph4rrjiilbv4/3332fcuHFdmtQVEREREdkXDLMzO6iLiIiIiIiI7CODBg3i3HPPDVVk/txdcMEFJCcn89e//rW7Q/lZKikpYebMmTzwwAOhDxWIiIiIiByotMefiIiIiIiIyAHsxhtv5L333iMvL6+7Q/lZeu655xg4cKCSfiIiIiLSI6jVp4iIiIiIiMgBbNSoUaxataq7w/jZuummm7o7BBERERGRdlPFn4iIiIiIiIiIiIiIiMhBQHv8iYiIiIiIiIiIiIiIiBwEVPEnIiIiIiIiIiIiIiIichBQ4k9ERERERERERERERETkIKDEn4iIiIiIiIiIiIiIiMhBwNbdAfR0JSU13R2CyAHBYjGIj4+gvLyOYFBbh4r0BHpuRXoePbciPYueWZGeR8+tSM+j51ak59Fz2zlJSVHtGqeKPxHpEhaLgWEYWCxGd4ciIu2k51ak59FzK9Kz6JkV6Xn03Ir0PHpuRXoePbf7lhJ/IiIiIiIiIiIiIiIiIgcBJf5EREREREREREREREREDgJK/ImIiIiIiIiIiIiIiIgcBJT4ExERERERERERERERETkIKPEnIiIiIiIiIiIiIiIichBQ4k9ERERERERERERERETkIKDEn4iIiIiIiIiIiIiIiMhBQIk/ERERERERERERERERkYOAEn8iIiIiIiIiIiIiIiIiBwEl/kREREREREREREREREQOAkr8iYiIiIiIiIiIiIiIiBwElPgTERERERERERERERERAO6++3f8+99Pd3cYe2XatPF8/vmnABQU5DNt2ng2bly/z663YME7HHPM4aGv33zzP9xyyw377Hp7osSfiIiIiIiIiIiIiIjIflJWVsqDD97H7NknccQRkzn11FnccssN/PDDd83GrVy5nJtuuo5jjjmCGTOmcP75Z/LKKy8QCASajds1ydX09YwZUygsLGg27rbbfs0999y5x9g2btzA119/xemnn7VX93ggSU5O4a233qdPn3777ZqzZp3Ehg3rWL586X67ZhMl/kRERERERERERERERPaDgoJ8LrlkDosX/8DVV1/Hc8+9wv33P8zYseN44IG/hMZ99tknXHPN5SQlpfDII0/w4ov/Yfbss3nuuaf5wx9uxzTNNq5k8K9/PdHh+N5441WOOGIm4eHhHZ7bEV6vd5+uvyur1UpCQiI2m22/XdNut/OLXxzD66+/st+u2WT/3aWIiIiIiIiIiIiIiMjP2N/+di+GYfDPfz5HWFhY6Hjfvv2YNeskABoaGrjvvj8ybdp0fvOb34bGnHDCycTFxXPrrTfy8ccfMnPmUbu9zmmnncGrr77IOefMoW/f/u2KLRAI8OmnC/n97//Y7Pjpp5/AiSeeQm5uDp98spCoqCguuOASTjrp1NCYzZs38dBD97Nq1UpcLheHHTaDa6+9IZRAvOeeO6mtrWHw4KHMn/86TqeTRx55klNPPZ677vozb7zxKuvWraVv3378/vd3U1dXy/3338uOHdsYOXIMd9xxF3FxcQCsXbuaJ598jI0b1+P3+xkwYBDXXnsjgwYNbvW+CgrymT37RJ555kUGDBjEPffcyXvv/bfFuIcffoKxY8fj9Xp56ql/8NFHH1BbW0OfPv246qprGTt2fGjsggXv8K9/PUFVVSUTJ05m5MjRLdabOvVQbrjhajweN06nq13fg66gij8REREREREREREREZF9rLq6im+//ZpTT53dLOnXJCoqCoDvvvuGqqoqzj57Tosx06ZNJyurFx999MEerzVixCimTJnGE0882u74Nm/eSG1tLYMHD2lx7pVXXmTw4KE888yLnHLKbP72t8akHDQmKm+88RqioqL417+e4+677+WHH77jwQfva7bGDz98z44d23n44cd58sknQ8effvpJLrjgEp5++gWsVit33XUH//jHw1x//a957LF/kpeXw9y5O6sX6+vrOfbY4/nHP+by5JPPkpmZxc03X099fV277vP662/irbfeD/2ZPfts4uLiyc7uDcCDD97H6tUruOuuP/Hcc69wxBFHctNN15GTswOA1atXce+9d3PaaWfwzDMvMXbseJ57bm6L6wwePJRAIMDq1avaFVdXUcWfiIiIiIiIiIiIiIgcFIyaWgyvb79dz3TYMaMi2zU2NzcH0zTp1av3Hsfl5GwHIDu7T6vns7N7h5JQe3LFFddw4YVns3z5UkaNGtPm+MLCQqxWK3Fx8S3OTZ48hVNPnQ3AeeddwGuvvcSSJT/Qq1dvPvzwfbxeL3fc8X+hhOaNN97Mb35zI1dddS3x8QkAhIWFceutvyMszElcXASrV28E4Oyzz2PSpMkAzJ59Fnfe+VseeujxUBXdrFkn8d5774RiGTduQrPYbrnltxxzzBEsXbqEqVMPbfM+IyMjiYxs/J599tnHvPXWPP7+98dISEiksLCQBQve4Y03/ktiYhIA55wzh2+//ZoFC97hiiuu5vXXX2bSpMmce+4FAPTqlc2qVcv59tuvm13H5XIRERFJUVFhmzF1JSX+RERERERERERERESk53N7CHvjA2hz/7suZBjUn3U8uJxtDu1oWG3v47dnffr05eijj+OJJx7h8cefbnO8x+PGbrdjGEaLc/36DQj9u2EYxMcnUFFRAcD27Vvp339AsyrGESNGEwwG2bFjeyjx17dvP+x2+x7X3jm2/y7H4kPXAigvL+Of/3ycpUsXU1FRTjAYxO12dzjBtmHDOu6++/fceOPNoSTjli2bCAQCnH32qc3Ger1eYmJiQvc7ffoRzc4PGzayReIPwOl04na7OxTX3lLiT0REREREREREREREej6Xk4bTjt7vFX/tSfoBZGVlYRhGqEXm7sdlA40JphEjRrU4v23bNvr0ab0a8KcuueQKzj77ND7//NM2x8bGxuJ2u/H5fC0SdDZb83SSYRgEg8F2xdCktfamra3902OGYWCaO6/1xz/eSXV1Fddf/2tSUtJwOBxceeVF+P3t/76XlZVy662/5vjjT+b4408OHW9oqMdqtTJ37vNYLNZ2xb8n1dXVxMbGdnje3lDiT0REREREREREREREDgpmVCT7sd6vQ6KjY5g4cTLz5r3O6aef1SKRVFNTQ1RUFBMnHkJ0dAyvvPJCi8Tfl19+Rm7uDi677Mp2XTMlJZXTTjuDp556jPT0zD2O7d9/EADbtm1hwIBB7b6v7Ow+LFjwXxoaGkL3tHLlMiwWC716Zbd7nfZauXI5v/71b5g8eRoARUWFVFZWtnu+x+Ph1lt/Ta9e2Vx77Q3Nzg0YMIhAIEBFRcVu26NmZ/dhzZrm+/atXr2yxbi8vFy8Xg8DBw5ud2xdwbJfryYiIiIiIiIiIiIiIvIzdeONtxAMBrjssgv49NOF5OTsYNu2rbz++itceeVFQGNl2c0338aXX37OX/5yD5s2baSgIJ///vdN7rnnLg4/fCYzZvyi3decM+dCSktL+OGH7/Y4Li4ujoEDB7NixbIO3dNRRx2Lw+Hgnnv+wJYtm1iy5AcefPCvHH30caHWnV0pKyuLDz5YwLZtW1m9ehX/93+/w+lsX9UlwF//+ieKi4v41a9uprKygrKyUsrKSvH5fPTqlc1RRx3LH//4Bz777GPy8/NYs2YVzz//DF999SUAp59+Ft9++zUvvfQ8OTk7eOONV1tt87l8+VLS0zPIyNhzwrWrqeJPupWluAxLRRX+QX27OxQRERERERERERERkX0qIyOTuXNf5N//nsujj/6dsrJSYmPjGDRoML/+9a2hcUcccSTx8Qk899zTXH31pXi9XjIzszj//Is544yzW92Hb3eio2M499wLePLJx9oce8IJJ/P+++9y2mlntnt9l8vFAw88ykMP3c+ll16Ay+XisMNmtKim6yq33vo77rvvT1x88XkkJ6dwxRW/5LHHHmr3/GXLllBWVsp5581udvzhh59g7Njx3H77H3juucbvT0lJMTExsQwbNoIpUw4FYPjwEdxyy295+umnmDv3CcaPn8gFF1zCc8/9q9l6H330ASeccMre33AHGebe7g75M1dSUtPdIfRojkWLseYU0HDW8d0diuwlm81CXFwEFRV1+P0d6+0sIt1Dz61Iz6PnVqRn0TMr0vPouRXpefTcinQtj8fN2Wefxv/9358ZPnzkPrnGz+G53bJlM9dffxUvvzyPyMjILlkzKSmqXePU6lO6lVHfgNHghkCgu0MREREREREREREREflZczpd3HHHXR3aM09aKisr5Y477uqypF9HqNWndCujvqHxn7X1mDHty1aLiIiIiIiIiIiIiMi+MXbs+O4OocebMGFSt11bFX/SrYx6d+M/a+u6ORIREREREREREREREZGeTYk/6T6BAIbbA4Cltr6bgxEREREREREREREREenZlPiTbmM0uHf+uxJ/IiIiIiIiIiIiIiIie0WJP+k2TW0+TadDrT5FRERERERERERERET2khJ/0m2M+gYAgskJavUpIiIiIiIiIiIiIiKyl5T4k25j1DeA1UIwIRajRhV/IiIiIiIiIiIiIiIie0OJP+k2Rr0bM8xFMDKicb+/QKC7QxIREREREREREREREemxlPiTbmPUNxCMCMOMjGj8Wu0+RUREREREREREREQOKFdffRn/+9/73R1GpxUU5DNt2ng2blwPwJIlPzBt2nhqamr22TXnzn2SCy88J/T1448/woMP3rfPrrcr2365ikgrjPoGzPAwzMjwxq9r6zBjoro5KhERERERERERERGRfeOee+7kvff+y0knncrNN9/e7Nzf/vYX5s9/nWOPPZ7f/vZOACoqKpg79wm++upLKirKiYqKpn//AVx44aX4/X6uu+7KPV7v4YefoLCwgD/96S4ADMMgPj6eUaPG8stfXk9qauoe53/55WeUl5dx5JFHdf6mDzAjRozirbfeJzIycr9d8+yz53DGGSdxxhnnkJGRuU+vpcSfdBuj3k0wPhYzIgwMA0ttPcHuDkpEREREREREREREZB9KTk5h4cL/cd11N+J0ugDweDx8+OH7pKQ0T8Tdccct+Hw+7rjjLtLTMygvL2Px4u+prq5i0qQpvPXWzkq8hx76G3V1ddx+++9Dx6KjYygsLCAiIoKXXnoD04SCgjz+9re/8Lvf/YZ//vO5Pcb6+uuvctxxJ2Kx7NsGkj6fD7vdvk+v0cRut5OQkLhfrtUkNjaWiRMP4c033+Dqq6/fp9dS4k+6jVHfgBnmAosFMyJMrT5FRERERERERERE5KA3aNBg8vJy+eyzTzjqqGMB+OyzT0hJSSU9PT00rqamhuXLl/LII08yZsw4AFJT0xg6dHhozK4JLKfTic/nbTWpZRhG6HhiYiLHH38if//7/dTV1RIR0XrlW0VFBUuWfM/11/+62fFp08bzm9/cwVdffcl3331NUlIy11zzK6ZNOyw0ZunSxfzjHw+xadNGoqOjOeaY47nssquw2RrTUnPmzKFXr94YhpX//W8Bffv256KLLuO6667kb397hCeeeITt27czfPgI7rrrT6xbt5ZHH32QkpISpkyZxq23/g6XqzFp+s03X/Hcc3PZunUzFouV4cNHcP31N+22sm7Jkh+47roree+9T4iKiuKaay5n2bIlLca9/vrbpKWlU1NTw2OP/Z0vv/wMr9fH4MFDuPbaGxkwYGBo7PPPP8trr72E2+1mxowjiY2Na7He1KmH8s9/Pr7PE3/a40+6h8+H4fNjhocBEIwMx6it6+agRERERERERERERET2vVmzTuTdd98Jff3uu28za9YJzcaEhYURFhbOF198itfr7bJrV1SU8/nnn2K1WrFYrLsdt2LFMlwuF71792lx7pln/smMGUfy3HOvcMghU7nrrt9RXV0FQElJMTfffD2DBw/j2Wdf5te/vo13332L556b22yNBQv+i91u4/HH53LzzbeFjj/99FPccMMtPPHEXIqLi/jd727l9ddf5g9/+CN//evf+f77b/jPf14JjXe7GzjrrHP517+e56GH/oFhGNx++00Eg+3rMfinP/2Vt956P/TnsMOOoFevbOLj4wH43e9+Q0VFOfff/zBz5z7PwIGD+dWvrgrd78KFH/LMM09xxRW/ZO7cf5OQkMj8+f9pcZ2hQ4dTXFxEQUF+u+LqLFX8Sbcw6t0AocSfGRmBpbq2O0MSERERERERERERkR7O11BCwL//ustZbeHYw5I6PO+oo47jyScfo7CwAICVK5dz111/YunSxaExNpuN3/72D/zlL/fw5pvzGDRoEKNHj2PmzKPo339Ah65XW1vLL35xKKZp4nY3vj9/+ulnERYWtts5RUUFxMXFt9rm89hjj+cXvzgGgCuuuJr//OcV1qxZzSGHTGHevNdJTk7hxhtvwTAMsrN7U1pawuOPP8JFF11GU01aZmYvfvnLndVvpaWlAFx22VWMHDkagFmzTuLJJx/l1VffDFXwHX74TJYsWcx5510Y+npXt932B44//ki2bdtC377923xtoqNjQv/+6qsvsnjxDzz11LM4nS6WL1/G2rWreeedD3E4HABcc82v+OKLT/nkk4WcdNKpvP76y8yadRLHH38yAJdf/kt++OG7FsnaxMTGisvCwgLS0tLZV5T4k26xM/HXWIprRkZg5BV1Z0giIiIiIiIiIiIi0oMFvDVs/eZ3YLav0qtLGBb6Tf0rVkdUh6bFxcUxefJUFix4B9M0mTJlKrGxsS3GHX74TCZPnsaKFUtZvXoV33zzFS+99G9+85s7OO64E1ouvBvh4RE8/fQL+P1+vvlmEf/73/tcfvkv9zjH4/HgcDhbPdev387EY1hYGBEREVRUlAOwffs2hg8fiWEYoTEjRoyioaGe4uJiMjMbk16DBw9pc+34+HhcLleztp3x8QmsXbs69HVOzg7+9a8nWLNmNVVVlZg/fv+Ligrblfhr8vXXi3jiiUf5y18epFevbAA2bdpAQ0MDs2Y1Ty56PB7y8nIB2LZtKyeddGqz88OHj2DJksXNjjXt59iUeN1XlPiTbmHUN37ioinxF4wMx2hwQyAA1t2XFouIiIiIiIiIiIiItMbqiKLPIXfv94q/jib9msyadRIPPngfADfeeMtuxzmdTiZMOIQJEw7hwgsv5d5772bu3Cc7lPizWAwyM7MA6N27D3l5efztb3/md7+7e7dzYmJiqampbvVc0159TQzDwDTNdscDEBbmanNtwzBaXAsgGNx5rd/85gZSU9P4zW9+S2JiEsFgkPPPPxOfz9/uWLZu3cKdd97OlVdew8SJh4SONzTUk5CQyCOPPNliTmRkx77vTa1B4+Ja7v/XlZT4k25h1Lsx7Taw24HGij8Ao7YeM6ZzvyRFRERERERERERE5OfNHpaEvbuDaKdJkybj8/kwDIOJEye3e17v3n344otP9+ra5513AWeeeTJnnHEugwYNbnXMwIGDKC8vo7q6mujo6HavnZ3dm88++xjTNENVfytXLic8PILk5OS9ivunqqoq2bFjO7/5zR2MGjUGgOXLl3VojcrKSn7zmxs47LAZnHnmuc3ODRo0mPLyMqxW627bc/bu3Yc1a1Zz7LHHh46tXr2qxbgtWzZjs9no06dvh+LrqJaNWUX2A6PBHdrfD8CMDG88XlvXXSGJiIiIiIiIiIiIiOw3VquVF198nRdeeA1rK53wqqoque66K/nggwVs2rSR/Pw8Pv74I1566XmmTTtsr66dkpLK9OlHMHfuE7sdM2DAIGJiYlm5cnmH1j711NkUFxfx4IP3sX37Nr744lOefvpJzjzznFb3C9wbUVHRxMTE8Pbb88jNzWHx4u959NEHOrTGHXfcgsvl4uKLr6CsrDT0JxAIMH78JIYNG8Ftt93Ed999Q0FBPitXLufJJx9j3bo1AMyefRbvvvs27777Njt2bGfu3CfZunVLi+ssX76UUaPGhFp+7iuq+JNuYdQ1NE/8RYSBYWCprWc/dl8WEREREREREREREek2ERGRuz0XFhbO0KHDefXVl8jPz8Xv95OcnMIJJ5zM+edftNfXPuOMc7jyyotYs2YVQ4cOb3HearVy3HEn8L//vcfUqYe2e92kpGT++teH+Mc/HuLCC88mOjqaWbNO4oILLtnrmH/KYrFw551/4qGH7uf8888kKyubX/3qJq699op2r7Fs2RIATj/9+GbHX3/9bdLS0rn//od46ql/8Kc/3UVlZQXx8QmMHj2WuLh4AGbOPIq8vFwef/xhPB4vhx8+g5NPPo3vvvum2XoLF/6Piy++fC/vuG2G2dGmq9JMSUlNd4fQIznf/QQzKgLv9ImhY2GvL8Dftxe+cTt/wdjWbsJwe/GNGdodYUoH2GwW4uIiqKiow+9X+lakJ9BzK9Lz6LkV6Vn0zIr0PHpuRXoePbci+1ZZWSlz5pzJ00+/QGpqWpes+XN8br/+ehGPPfZ3nn325Vb3LGyPpKT2bZOmVp/SLSz1zSv+AIKR4c1bfQYC2Jetwbotdz9HJyIiIiIiIiIiIiIiCQmJ3Hrr7ygqKuzuUHo0t7uB2277Q6eTfh2hVp+y/5lmiz3+AMzICCzVtaGvrdvzMdxeCKooVURERERERERERESkO0yffnh3h9DjHXHEkfvtWqr4k/3P44VAEDO8+QaWZmQERs3Oij/b+i1gGBheH/j9+ztKERERERERERERERGRHkWJP9nvjHo3QOutPhvcEAhgVNVgLSzB3z+72RwRERERERERERERERFpnRJ/st8Z9Q1Ay8SfGRnReL62Htv6LZhOB74h/ZvNERERERERERERERERkdYp8Sf7ndHwY+IvzNnsuBkZDoClqgbbpu34+2djRv2YDFTFn4iIiIiIiIiIiIiIyB4p8Sf7naXejelygtXa7LgZEQaGgW31RgyPF//APmC3YdqsoWShiIiIiIiIiIiIiIiItM7W3QHIz49R14AZ7mp5wmLBjAjDWlhCIDURMzYaaGwJqoo/ERERERERERERERGRPVPFn+x3Rn1Di/39mgR/bPfpH9g3dMwMd2mPPxERERERERERERERkTYo8Sf7ndHg3m3iz4yKxHQ6CPTO2HksPEyJPxERERERERERERERkTao1afsd0ZdA2ZmWqvnfKOG4B/Ut9n+f2Z4GJbSiv0VnoiIiIiIiIiIiIiISI+kxJ/sX8EghtvT+h5/gBkVgRkV0fxYU6tP0wTD2B9RioiIiIiIiIiIiIiI9Dg9otXn999/z5VXXsm0adMYNGgQH330UZtzvv32W0455RSGDx/OL37xC+bNm9dizIsvvsiMGTMYMWIEs2fPZsWKFfsifNmF4faAae428dcaMywMwx8An38fRiYiIiIiIiIiIiIiItKz9YjEX319PYMGDeIPf/hDu8bn5ORwxRVXMGnSJN566y0uuOAC7rjjDr744ovQmAULFvDnP/+Zq6++mvnz5zN48GAuueQSysrK9tVtCIT26gvuZo+/1jQlCbXPn4iIiIiIiIiIiIiIyO71iFafhx12GIcddli7x7/yyitkZmZy6623AtCvXz8WL17Ms88+y6GHHgrAM888wxlnnMFpp50GwF133cWnn37KG2+8weWXX971NyEAGPVuoHHfvvZqGmvUuzFjo/dJXCIiIiIiIiIiIiIiIj1dj6j466hly5YxefLkZsemTZvGsmXLAPB6vaxevZopU6aEzlssFqZMmcLSpUv3Z6g/P3X1BI0guJztnqKKPxERERERERERERERkbb1iIq/jiotLSUxMbHZscTERGpra3G73VRVVREIBEhISGg2JiEhgS1btnToWhaLgcVi7HXMPxdV1T9QGf052faz2j/J5gCnA5vHg2E7KHPVBwWr1dLsnyJy4NNzK9Lz6LkV6Vn0zIr0PHpuRXoePbciPY+e233roEz87U/x8REYhhJ/7eUb3Jeihk+JibZjsTraPc8bG4nTDGCLi9iH0UlXiI5ufxtXETkw6LkV6Xn03Ir0LHpmRXoePbciPY+eW5GeR8/tvnFQJv4SExMpLS1tdqy0tJTIyEhcLhcWiwWr1UpZWVmzMWVlZS0qBdtSXl6nir8O8FkSCJgmRXlbcUVltnue3W7HLK3CX1G3D6OTvWG1WoiODqO6uoFAINjd4YhIO+i5Fel59NyK9Cx6ZkV6Hj23Ij2PnluRnkfPbefEtbMw6qBM/I0ePZrPP/+82bGvvvqK0aNHA+BwOBg2bBhff/01Rx55JADBYJCvv/6a8847r0PXCgZNgkGzS+L+ObA4kzFNk4aaQmxh6e2f53Jhqa7F79cvgQNdIBDU90mkh9FzK9Lz6LkV6Vn0zIr0PHpuRXoePbciPY+e232jRzRQraurY+3ataxduxaA3Nxc1q5dS35+PgB/+9vfuOWWW0LjzzrrLHJycrjvvvvYvHkzL774Iu+99x4XXnhhaMxFF13Ea6+9xvz589m8eTN33nknDQ0NnHrqqfv13n5urPZILLZwvPWFHZpnhodh1Dfso6hERERERERERERERER6vh5R8bdq1SrOP//80Nd//vOfATjllFO49957KSkpoaCgIHQ+KyuLJ598kj//+c/8+9//JjU1lT/+8Y8ceuihoTHHHXcc5eXlPPzww5SUlDBkyBD+9a9/dbjVp3SMYRg4wlPw1Rd1aJ4Z7sKod4NpgvZUFBERERERERERERERacEwTVN9KvdCSUlNd4fQ4xSueQZvfSG9xt/W7jnWbbk4P/mG+rNPAJdzH0YnnWWzWYiLi6Ciok7l2SI9hJ5bkZ5Hz61Iz6JnVqTn0XMr0vPouRXpefTcdk5SUlS7xvWIVp9ycLGHp+CtL6IjOWczPAxA7T5FRERERERERERERER2Q4k/2e8c4akE/fUEfLXtnrMz8efeV2GJiIiIiIiIiIiIiIj0aEr8yX7nCE8GwFdf2O45Zlhje0+jQRV/IiIiIiIiIiIiIiIirVHiT/Y7e1gyYOCtL2r/JKsV0+XEooo/ERERERERERERERGRVinxJ/udxerA7kroWOIPMMNd2uNPRERERERERERERERkN5T4k25hD0/B1+HEX5j2+BMREREREREREREREdkNJf6kWzjCU/B2YI8/aEr8qeJPRERERERERERERESkNUr8SbdwhKfgayjBNAPtnqNWnyIiIiIiIiIiIiIiIrunxJ90C0d4KqYZwNdQ1u45ZngYRoMHTHMfRiYispPPXU7Jpv8QDPq6OxQRERERERERERGRNinxJ93CHp4C0KF2n2aYC0wTo0H7/InI/lFbuoyKHf+jfOu73R2KiIiIiIiIiIiISJuU+JNuYXPGYlgc+OqL2j3HDA8DwKhX4k9E9g9vbT5gUL7jfdzVW7s7HBEREREREREREZE9UuJPuoVhWHCEp+DtQOIvGEr8aZ8/Edk/PHV5RCWPxxXVi8I1zxAMeLs7JBEREREREREREZHdUuJPuk1HE3+EOcEw1OpTRPYL0zTx1uXjjMokZciF+NxllG15q7vDEhEREREREREREdktJf6k29jDU/B1YI8/DAMzzKWKPxHZL/yeCoL+BhwRGTgj0knocyIVOR9RX7mxu0MTERERERERERERaZUSf9JtHOEp+L1VBPztT+SZ4S7t8Sci+4W3Lg8AZ0QGAHG9foErpi9Fa5/FNAPdGZqIiIiIiIiIiIhIq5T4k27jCE8FwNeBdp9mRDjWvEIsxWX7KiwREQA8tflYrC5srnigcW/SpP6z8TWU0KCqPxERERERERERETkAKfEn3cYengLQoX3+vOOGY4a5cL37CY6vloDHu6/CE5GfOW9dHo6IdAzDCB1zRffB5oyntmRpN0YmIiIiIiIiIiIi0jol/qTbWG1hWB0xHav4i4nCffwMvIeMxrplB2Hz/4elsGQfRikiP1eeunyckenNjhmGQWTyGGqLl2CawW6KTERERERERERERKR1SvxJt3KEp3So4g8Aw8A/pD/uU47CdDmxr1i/b4ITkR7HDPop2fQ6AV/d3q1jBvHWFeD4cX+/XUUmjcXvrcJdvXWvriEiIiIiIiIiIiLS1ZT4k27lCE/B29DBxN+PzIhwgsnxGG5PF0clIj2VpzaXih0fUpX3+V6t42soxgz6cEaktzgXFtMPqyOa2pIle3UNERERERERERERka6mxJ90K5srAb+notPzTadTiT8RCfF7qwCoKvhyr1pxemrzAXBEtqz4MwwLkUljqC1eimmanb6GiIiIiIiIiIiISFezdXcA8vNmc8QQ8NYQDPqwWOwdnm+6HOBR4k9EGvk9lQD4GkpoqNxIeNygZufNoJ+aou8JBr0YFjsWix2rI4rwuMHNxnnr8rA6orA5olu9TlTSWKryPsNTuwNXVPY+uRcRERERERERERGRjlLiT7qVzRkLQMBTjSUsocPzTZcTwx8Avx9s+nEW+bnzeyqxOWOxWJ1U5X/ZIvFXkfMRpZvngWGBXSoCs8beQlhs/9DXnrr8Vtt8NgmLHYDVHkFt8VIl/kREREREREREROSAoVaf0q1szhgA/N7KTs03nU4ADLe3q0ISkR4s4KnC5owlOm0qtSVLCPjqQuf83mrKty0gNnMGA494ggFHPE6/6Q9hD0umMu/TZut4a/NwRLRs89nEsNiISBxNbckStfsUERERERERERGRA4YSf9Ktmir+/J6qzi0Q1pT4U7tPEWn8EIHNEUt06mRMM0BN0Xehc2Vb3sKwWEnocwIAhmHFagsjNuMwaosX4/dWAxAM+vA2FOPYQ8UfQGTSGLz1hXjrC/bdDYmIiIiIiIiIiIh0gBJ/0q0stggMi32vK/5Q4k9EaPwQgdUZg80ZQ2TCSKoKFgHgqcmhKv9L4nsfj9Ue0WxOdNoUMCxU5zeO9dUVghnEGbn7ij+A8PghWKwuaouX7Jub6YSSTW+Qt+Ix6is2qBJRRERERERERETkZ0iJP+lWhmFgc8QQ8FR2ar7pcjSuo8SfiPBjxZ8zDoDo9Gl4anbgrtlOyabXcISnEJtxWIs5VnsEUSkTqMr/HNMM4qnLA2iz4s9isROROJLaksUHRJIt6HdTmfsxDZUbyV16PzmL/0JtyVLMXfYyFBERERERERERkYObrbsDELE5Yzvf6tNmw7RZMTxK/In83JlBPwFvDTZH496hEQnDsDliKFr7LJ7aPNJHXoNhaf0/e7EZh1Nd8BV1Zavw1OVjc8VjtYW1ec3o1EPIW/4w9eWriUgY3qX301G1pcsxgz56T7oLT10+FTs+IH/l4xiGFZszDpsrHrsrnojEkUQmjcMwjG6NV0RERERERERERLqeEn/S7azOGPydrPgDwOXEcHu7LB4R6Zn83sYPEDTtHWoYVqLTplK+fQHh8UOJSBix27mu6N64orKpyvsUMHBG7LnNZ5Pw+GGExQ6kZNMbhMcPxTCaF9IH/PX43eU4IzM7c0sdUlP8A67ovtjDErGHJRKZOBJ39Vbc1dvxecrxu8vx1hdSveobXDH9SOo/m6iE/vs8LhEREREREREREdl/1OpTup3NGdvpPf6gcZ8/tfoUkabKYZszJnQsJv1QnJEZJA04o80Kt5iMw6krW01D1aY223w2MQyDpP6n4a3Lo7rg62bnzKCf/OWPkrPkr/u83WbAV099+WqiUsY3O+6K7kNs5uEk9TuVtGGX0mv87WSOvgEz4CFn8b3krfwn3oaKfRqbiIiIiIiIiIiI7D9K/Em3szli96riz3Q51epTREK/R5oq/gDsYQlkT/wDznYk8qJSxmOxhRH0N+CMbF/FHzQm16KSJ1C29S2CgZ2/i0o2vU5D1SaC/ga8dfntXq8z6kqXYwb9RCaNa3NsePwQek24g5TB51NXvpY1n96Ft75on8YnIiIiIiIiIiIi+4cSf9LtbM4Ygv6GZm+Yd4TpcoAq/kR+9vzeSgyLDYstolPzLVYnMWlTANpd8dckoe9JBLw1VOQsBKC64Csqcz/5sdLQSkPV5k7F1F41xT8QFtMfuyuuXeMNw0JM+jT6TPodhtXO9u/vw1Obt09jFBERERERERERkX1PiT/pdjZHLLCzTV9HmdrjT0SAgKcSmyO2zZaeexKb9Qtis2a2q0JwV47wZGIyD6di+/vUla2maP2LRKdNJTZzJs6oLNz7MPEX8NVRX76GqJQJHZ5rd8UxdPodWJ0x5C69H3f1tq4PUERERERERERERPYbJf6k2zXtx9XZdp+NiT9V/In83Pk9VVh32d+vM+yuOJIHnIlhsXV4bkL2cWAY5C1/GGdkBsmDzsEwDFwx/fZpxV9tyTJMM0hk0thOzbe7Ysge92vs4ankLn1AyT8REREREREREZEeTIk/6XY2Z2NruoC3cxV/OB0YHi+YZhdGJSI9jd9T2Wx/v/3N6ogioe9J2FxxpA2/EovFDkBYdD98DSX4vdX75Lo1xT8QFjsw9CGKzrDaI8gcdT02ZywVOz7swuhERERERERERERkf+p4SYNIF7PYXFisrr2q+APA7YUwZ9cFJiI9it9bRXhEWrfGEJc5g9iMwzGMnZ+rccX0A8BdtZnIpDFder2At4b6irUkDzx7r9ey2FxEpUygIucjzKC/U1WP0n4lG1/DXbODiIQRRCaOxB6euldtakVERERERERERECJPzlA2Jwx+L2VnZrblPgzPB5MJf5Efra6u+Kvya5JP2hsH2pzxtNQtaXLE381JUsBOt3m86ciEkdRtvUdGio3Eh4/pEvWlJa89cVU5CzEGZVF2da3Kd38BvawJBwR6RiGFcOwgmHBDHoJ+GoJ+OoI+uqIyz6GuKyZra7prtlOQ+VGfPXFeOuL8LlLsbsSCYsbRHjsQFzRvZXMFRERERERERH5GdA7QHJAsDpi8bsrOzU3lPhze1CzT5Gfp2DAQ9Bff0Ak/loTFtMPdxfv82eaAaryPiM8bjA2R1SXrOmMzMLmjKO2dLkSf/tQRc6HWB2RZI29BTCpr1hPXdlK/J4KggEPmEFMM4DF6sDuSsAVlY3PXU7ppv8QHjsQZ1RWs/Xc1VvJWXwfGBbsYck4wlOITByNt76Qih0fULblTQyrg/QRVxERP6x7blpERERERERERPYLJf7kgGBzxnS+1afTATQm/kTk58nvadwj1Obo/D53+5Irpi+lm+cRDPpCe//trYodH+Gpy6PX4Fu7ZD0AwzCITBxFXekKzAFnHtStJ4MBL776ohZJtH3N762huuAr4rOPxWJt/O9XZOJIIhNH7nGeGfSz/ft7KFz3HL3G3Rqq3gv46ylY9U+cUb3IGntzi6o+0wziqcmheOMrlG6eT3jc0IP6+yoiIiIiIiIi8nNnaXuIyL5nc8Z2OvGH0wGGgeHxtj223g0+X+euIyIHLL+3MfFnPYAr/sygD09NTpes560vpmzr28RlzcQV3btL1mwSkTgKn7sUb11el657oCnZ9Drbv7+bityP9+t1q/I+BQxiMw7r0DzDYiN1yAV4anMp3/E/AEzTpHjdiwT8daQNu7TVVp6GYcEVnU1in5Pw1Oygvnx1F9yFiIiIiIiIiIgcqJT4kwOCzRmL31uJaXaiWadhNFb9taPiz/XB59iXrulEhCJyIAv8+MGBA7XVpzMyE8Pi6JJ2n6ZpUrz+eWyOGBL6nNgF0TUXFjcQi9VFbemKLl+7I4IBD9UFXxMMdv2HNfyeSqoLFuGMzKRkwyuUbf1v5/7700HBgIfK3E+ISZ+KtRPtWV3RvYnrdRTl2/6Lpy6f6oJF1BR/T8qg87CHJe1xbljcIFzRfSnftqCz4YuIiIiIiIiISA+gxJ8cEGyOGMyAl2CgoVPzTZezzVafRm0dlspqLLV1nbqGiBy4/N4qLFYnFquru0NplWGx4YruTUMXJP6qCxZRX7GelMFzsFidXRBdcxaLnfD4odSVLu/ytdsrGPSRv/JxCtc+Q8GqpzCD/lbHdTZZV7HjfxgWO5ljbyKx7ymUbX2bko2vYprBvQm7TdWFXxPw1xOXdWSn10jocwJ2VyKFq/9J8YZXiEmbRlTKhDbnGYZBfO9jaajaRH3lxk5fX0REREREREREDmxK/MkBoalKp2mfro4yXY42E3+WgmIAjAbtBSjSk3jq8nFXb8NbX0zAV9dqcsbvqcDmjD2g9y4Li+lHQ9Xmvaos83sqKdn0H6LTphAeP6QLo2suMnEU7uqtnf6dvDdMM0Dh6n/RULmRhD4nUl++moLV/2qW/Av63RStf5FNn/6Sbd/8noLVc6nI+ahdrVQD3hoq8z8nNnMGVls48b2PJXnQuVTmfkLBqqdw1+zYR/cVpGLHh0QmjWmzOm9PLBY7KUMuwFObjz0sgaSBZ7Z7bkTCCJyRGVRsf6/T12/iayjZL1WSByPrlh1Yikq7OwwREREREREROUi13AxGpBs0Jf4CnkqISOv4Ak4nhnvPe/xZ8xsTfzS4O76+iHQLv6eKHd/djWkGQscMw0rGmBsJjx3QbJzVEdMdIbabK6Yf5dvfw+8uwx6W2OH5DVWbKV7/EobFRlL/0/dBhDtFJAwHw0Jd2Qpi0g/dp9falWkGKVr7HHWlK0gbcRWRiSNxRmVRsPIJCtc8Q+qwi2mo2EDRun8T8NUSl30MQV8d7pod1JYswQz6yRp3C2Ex/XZ7jYqchRgYxGXOCB2LzTgMqz2Cko2vseP7P+KKyiY6/VCiUyZisXVNFWltyTJ8DSWkDbtsr9cKi+lHxqhrcYSn7b7q0+MFhx12SYYbhoX47OMoWP1P3DXbcUVlh86Zpom3vpCGinXUV6zHU7ODlCHnEx43uMXSVfmLKFr3HIn9TiE++9i9vp+fE6OyGudn3wEQyErDO3Y4ZvyB/btLRERERERERHoWJf7kgND0hr3f2/mKP0vNHlp4mibW/GJMhx2jwQ2m2ezNUBE5MNWVrcTEJHPMTWAGCPjrKdn4GrXFi3+S+Ks8YPf3axIW3QdoTOB1JPHn91RSunke1YXf4IzqRcbIa7DaI/dVmABYHVGExfSjtnT/Jf5M06RkwytUF35L2rBLiUwcCTRWH6YOu4yC1U/h/T4fT20e4XGDyBxzY7PKOTPoJ2fJfRSvf4leE27HMKwtrhHw1VOZ9wkxGdNb7LEXlTyeyKQx1JWtoir/C4o3vET5tnfJHHMjjvCUvbq3gLeG0s1vEBY7CFd0771aq0lEwvDdnjOqanC9sxD/oL74Joxsdi4yeRz2LW9Rvu090oZfRkPFRmpKFlNXuhy/pxLDsOKK6YvFFkbh6rn0mvh7bLu8Vr6GUko2vordlUjp5vnYw5KJSh7XJff0c2BftQEzzIV3/Ajsy9YQ9taH+Pv1wjtxFLi6vnWviIiIiIiIiPz8KPEnBwSL1YHVHoHfU9Gp+abLieHZfQtPo7Iaw+3BP7APtg1bwe8Hu72z4YrIflJXuoKw6L6Exw0MHasvX0N9+Zpm4wLeKlzR2T+dfkCxOqJwhKfirt5CdOqkds2pKf6BorXPYVjspAyaQ3T6VAxj/3TpjkgcRdmWtwkGPJhBP/UV63FXbSI6fRrOiPQOrxcMeKnK/5zo1ClY7eEtzteXr6Iy71NSBs1psWddVPJYMC+hZNN/SB50DjHp01u8DobFRvLAc9jxw5+pzP2k1X30KvM+xQz6icv6RasxGoaVyMRRRCaOwtdQSt6KR8hd+jcyx/y608m/pv0KgwE3qUPO79QaHbwgzi++xwgGsa/eSKBPJsHE+NDpxqq/oyla9wJbvryZgK8WuyuBqOQJhCcMIyymHxarE7+nku3f303R2mdJH3k1hmHBNIMUrn0Wiz2cXhPuoHj9ixSueRq7Kx7Xj4lt0wxSW7yYmuLFhMUNJCp5PDZH9L6/732pqaXpXn5gyKhvwLZ5B94xQwn0zybQJxPbxm0El3yFUV9G8KijMSzqwi8iIiIiIiIie0eJPzlgWB0xnd/jz+ls3ONvN5V81vwisFrwZ2dg27AVo96NGdN24i/gq8dic7ZaOeKtL6Rk42vEZs7YY+WFiHROMOijrmINCb2Pb3Y8PH4YVflf4GsoxR6WiGmajRV/jtjuCbQDXDH9qCtdiS/rKOxhCXsca5pBSje9QVjsAFKHXtpqsmxfikwcRemm/7Dj+z/ibSgBM4hhsVNXvoZeE36LxdL+D08Egz4KVj1BXdkq/J4qkvqf1mJMxY6PcEX3Jjp9WqtrRKVMaJEQ/ClXdG9iMw+nbMvbRCaNw+6K2xmD301lzkfEpE1tV3WoPSyRzDG/Jnfp38hdcj+ZY2/aY/LPU5uH31NBePzQUFLSNE2K1z2Pu2Z7iwrFfcW2cj2W0grcx0zH8d1yHF8uxn3iTNgloRSdOpn6ivXYXfFEJo3FGZXdYn9MmzOW1CEXkbf8YSpzPyYu60gqcxbSULmRzDE3YrWHkzL0QnxLHyBvxWP0Gn8bvoYSSjfPw129DWdkFnWlyynZ+BrhcYOJTplEVMoEDEsP+6tnIIDzg88x42PxHjJmr5ayrdmEabXgH9QXAJ+vmoLAp9TGf4lRXYvlw7dwJA/EGdWL+F5Ht6hK3VeCQR+GYWn17zoiIiIiIiIi0vP0sHdf5GBmc8bi91R2aq7pckIgCP4A2Fv+WFsLSggkJ2BGRQBgNLgxY/b8hlow6GPbt7/Hao8gecDZhMfv3OeopugHitb9G9P001C1mewJd+yXN3RFfk4aKtZhBrxEJI5qdjw8bnDj/nPla4jNmE4w4CYY8BzwrT4B4rJmUl+xlu3f/x/JA84iKvWQFgmXJvXla/C5y0gddtl+T/oBOMJTiE6djGkGiOt1DOFxgwkGGtjx/T2Ub32XxH4nt2sd0wxQuHou9RXriEgYTlXeZ8RnH4PVHhEa46nNpb5iLanDLt3t69FeCX1PoqZ4CSUbXyV9xJUAuGt2ULLhFYL+BuJ6Hd3utWyO6HYl/7x1BeQuvZ+Arw5HRDrx2ccQlTye8u3vUV34DWnDLtvjvoNdxSirwLF0Db4RgwimJuGZOp6wdxZiW7ke/6ghO8dZbKQNu7TN9SIShhOX9QtKN72B1RZB6ZY3ics6kvC4QQBYLHbSR1xFzg/3sv27/yPob8AV3YfMMTcRHjeQgK+WmuIl1BR9R+HaZyjb+g7xfY4nOnVSp5NMQb+bipyPCPrrSRpwRqfW6AjHt8uxFpVhllfB+BFg6+RfnX0+bOu34B/Yh6DdoHL7+5RvexfD6iB5xMW41hfiLVpPbZKdqrzPCfjqSB1yQdfeTCvqKzaQu+yBxsS+YcWw2LG54skYeU2n9iIVERERERERke6nfkJywLA5YvZqjz+gservp4JBLIUlBNKSMcNcjeMadt8WtEldyTIC3mosVie5yx6gYNVT+BpKKN7wMgWrnyIiYQS9D7kHqz2S/FVPEgx4OxW7iLSutnQF9rAkHOGpzY5b7eGERfelvnw1AIEfPzDQtFfogcwZmUn2xN8TmTiKwrXPULD6KQK+2lbHVuV9jjMyK9RCsTukDr2ItGGXEpM+FXtYAs7ITOL7HE/5jvdxV29rMd4M+jGb2iLSWLVYtPY56kqXkzb8ClKGXIhpBqnM/bjZvIqcj7A544hKGrvXMVtt4SQNmE1tyRKqC76maN3z7Pj+HgL+ejJGX99mpeVPNSX/LPZwcpbcR33F+mbn/Z4q8pY/gtURQ8ao67C7Eihc8zRbv/4tZVvfIaHvyW1WKnaJQADnF98TjIvGN7oxyWcmxOIbPhDHsrUYldWdWjax3yk4IzMpXPsM9rAkEn6S8LU5okkfdQ1hMf1IG34FWeNuDbXmtdojic2YTtbYm8ie+AecUb0oWvss27+9k5rC7zsURzDoo2LHh2z9+nbKtr5NRc5HnfuwUCCAfeka7EtX72zhuRvWzduxrd+Cb8QgDJ8fa25hx6/3I9v6rRg+P76h/cld8jdKt7xJTPqh9J50NzEZh+KcdjLJ1jH0Lh5JQp8TqCn8Bl9Daaev114VOf/DEZ5CyuALSBpwJgl9jscMeChY/U/MoH+fX19EREREREREup4Sf3LAsDnjQm/gd5TpcgK0us+fpbQCw+cnmJ7SWA1otWA0uNtcs6pgEWGxA8gadxupQy+mvnIDW7/+LVV5n5M88BxSh12K3RVH+vAr8dYVULLhlU7FLiItmaZJXekKIhNHtVoBFp4wjPqKdZhBf6hFcE+o+IPGxFTq0ItJG345DRXryFl8X4sPDvjcFdSWrSAm49C9roDravG9jv4xEfQswaAPaNy/r2zrf9n0+fVs/uJX7Fj8F4rW/puCVU9RXfgtqUMvJjJxFDZHNDHp06jM/Zigv/H3sN9TRU3Rd8RmzuiyNpBRyRMIjxtC4dpnqCleTNKAM8iecEdjtWgn2BzRZI25CWdEBrnLHqQiZyGmaRL0u8lb8Qim6Sdj1HVEJAwnY9S1ZE/4HWGxA4nL+gXx2cd2yT21xb5kNZaqWjyHTgDrzmo63+ihBCPDcXy1uM1EV2sMi43UYZcRFjuQ1KEXt9ri1RmRTsao64hKHrfbn1dnZAbpI66k14Q7cLqdFH15P7V5P7QrBs+mH9jxzi8pXfkCkZFDyB5/B2BQV7a6Y/dSVoHrnY+xL1+LfdlabGs37X5sRTWOr5bg79cL37jhBBPisG3J6dD1QoJB7Gs24u+bhddSi7t6C2nDLiVpwBk7q3kddjzTxmMtKCGhJhOLPZzy7e937nrt5K0voq50BXFZRxGTPpXYzMOJ63UUacOvwFOzg9LN8/bp9UVERERERERk31CrTzlg2Jwx+D2VmKbZ8Te6f0z84W5ZdWfNL8J02AkmxoFhYIa52kz8+dxl1JevJWXw+RiGQXTqIUQkjqQy91Mi4ofiiu4dGuuMyiJ50LkUrX0WV0xfYnazP5WItJ+ndgd+TwURCSNbPR8RP4yyLW/RUL0Vv7cSaPwd0pNEJY/HEZHOju//SPm2Bc1aZ1YXLMJisROVMqn7AtwNw2IjdchFjXFvfQdXTH9KNr6K311ObOYMrI5IvHUFuGt34PdUkjL4/GYVb3G9jqYq7zMq8z4jPrvx3zEsXfq70zAMUoZcQHXh18SmT++SvdKsjigyRl9P6eZ5lGx8FU/NdvzeGnwNJWSNvRm7Kz401hmVRdqwS/b6mu3W4Ma+eiO+MUMx42Obn7NZ8U4dh+u9z7AvXY1vbCt70pom1m25BDLTWm2X7QhPJmvsTV0SalgwjrgdQ9lmL6Zk1TOEJQ/Gao/c7fig303hmn9h99roWzMNV3EE5saVlMTFUVe+ipj0qW1fNBjEvmId9mVrCcZF03DiTGybtuP4bgXBmGiCGT9p3+rz4fz0a8zICLyTx4Jh4O+TiWPpavD6wLGH/S29PhxfL8Hw+QmkJBJMTcSorMaoa8A3fBD1FUsxDCsR8S2/D8H0FPyD++Jcso74CdMpLXif+N7HNfvZ6kqVuR9jtUcSlTqx2XFXdG8S+59OycZXCYsdQGTS3u1tKCIiIiIiIiL7lxJ/csCwOWMxzQBBX22H36QNVfy10urTUlBMMDWp8Y07bzUBl7XNxF91wddYrA6ikseFjllt4ST0Pq7V8TFpU3BXbaZ4w8uExfTDEZHWofhFpLm60hVYbGGExfZv9bwzqhdWeyT1Zaux2MIa/1id+znKveeMSCc++1jKty0gKmU8zshMTDNIVf6XRKVMxGoL6+4QW+WMzCC+zwmUbXkTgPD4oWSMurZFW9bW2F1xRKdNpiLnw8bqv7xPiUmb2mzPv65gd8WT0HtWl65pGFaS+s/GGZVN0dp/gxkgY9T1OCMzu/Q6HWXbuA0sBr7Bre8jGExNwjt+BI4fVoLVim+X/f7w+XF+9i3WnAJ8wwbgmziq1TX2qKmSsK0P7QSDOD//DjMynLTwY9lc/yrFG17Z436DpRv+Q8BdRdbgGwgOG4e7sATb1lxitrkoNpZjDgu0uV+g45tl2DZsxTdyUOO9W634JsRgqazB+ek3uI+fEdr311JUin3xSoy6BtzHzwglQgN9suCHlVh35BPon936hRrcuD78EqOmjmBCHPZlazD8gcb5GamY8THUr1yHK7oPFpur1SW840cQlltI0jYH5eEuKnZ8QPLAs/f8unZCwFdPdcFXxGYd2WoVZ2zmDBoqN1K49lmyI7O035+IiIiIiIhID6LEnxwwmvbn8nurOl6dYbVi2m0tE38+P9biMrwTR2GaQXIW/4UYazRpDbuvEDDNINUFXxGZPH63b8y1JmngWVQVLKK+coMSfyJ7qa50BRHxw3fb+tEwLITHD6W+Yg2umH49ps1na+Kyj6Gm+AeK1j1P1rjfUFe2Cr+nnJj06d0d2h7FZx9N0FeHK6YfkUljOlSpHdfrGKoKviJvxaMEfHXEZs7ch5F2veiUiTgjswj66wmLaT3Ztt+YJraN2/D3zgSnY7fD/CMGYQSD2JesxjQM/CMHNyaqPlqEUVlNIDsd+9rN+If0x4xqmYQ1auqwlJRhKats/FNZDX4/RjAIgSBYLPj7ZOIf2p9gYusVavZla7GUVeI+/giM2nrSv1jD9vxviEwa0+yDNk0aKjdSte0j0r0jsAwYCVYrwYxUvOkpRJRtxKxZj7tyC2FxA3Z730ZdPbaNW/GOG45/xKBdThh4Dp+E678f41y4CN/4kdhWb8BaWEowLhrPjCmYsdE7X+bIcALJCdi25rSa+DNq63B+8AWGz4/72MMaKy+DQSxlFViKywhkpmGaQeor1hGXtYefd7sd7yFjcH60iPjhYynN/5L47GO7/HdcdcEizKCf2IzDmt9HTR22tZvwjRlKyuDz2fH9HylY/RRZY2/psla8IiIiIiIiIrJv6f/g5YDR9KaW31PZueoJpwPD07zVp6WoFIImgbRkGio24GsoocHw77Hir6FyIz53KalpF3Xo8haLHZsjmsCP+42JSOf4PZW4a7YTm3XkHsdFxA+lcO33GBYHNkfs/gluH7BY7KQMmkPOkvuozP2E+oq1uKKycUXvpqroAGEYVpIGzO7UXEd4MlHJE6gp+paIxFE4wpO7OLp9z9mZD3gEg1hKyrHmF2MpKMaMDMc3Zliribb2shSUYKmuxTu1ZeLsp3yjhkAwiGPxKgyPF9u2XAgEcR93OGZ0JGH/eR/70tV4pzdv/WjdkY9z4VdAYwIsmBCLf1AfTLsdLBawWsDtwb5hK7bNOwgmJ+Ab3JdAegqENX6AxlJchn3FOnyjhzQmBuNiiLH0I9pooHj9i4TFDsDm2JloCwa8FK37N+G+WOISp+IN2+WDOIaBdfzh2Ba9S8OmRYRN2H3iz7ZyPabdhn9w35YnHXY8M6fgevdjnAu/IpgQh2fGZAK90lutXgz0zcLx7XLweJslWY2Kalz/+wLTagm9lo03bSGYlEAwKQEAT/U2gv56wuOGtFi72XWy0ghkZ5CyuYCyVCsVO/5H0oAz9jinI0wzSGXuJ0Qmj2+eUAwGcX76TePeyA1uvNMnkjb8cnYsvpfKvE+Ja+N3soiIiIiIiIgcGJT4kwNG0xt+fk9lp+abLmeLij9rfhFmuAszJorqtY1vWnrMcmho2O061QWLcISn4IppvcXgnlgd0fi91R2eJyI71ZauAMNCREIre5HtIjx+KGDSULmB6NTJ+ye4fSQstj8xGYdRtuVNgkEfKQPP7e6Q9rn43sdSV7qc+OxjujuU/cK2cj325WsxfP7GfWdTk7DmF2PbmotvaH98IwfvsWJvt+tu2EIwJopgSvtaMfpGD4WgiX3FOoKx0XiOnYYZGd54bsxQHF8vxTdsIGZCLABGZTWOz78jkJ2BZ+q4PVcVjhyMNacA25qNOD//HoBgVATB5ASsRaUEE+Ma7xMaq/f6ZJGVG2Bd2iIK1zxNfK+jcUZnY7WFU7b1bXz1pfStmEBgasskuJmRRoSrL/U53xE/7vzGBORPNbixb9iKb8RgsO9sZxkMeDGDfqz2cMyYKNxHH4bh8RBMS2414ddQtaWxA0B2Jo5vl2Pbnod/YB8ALCVlOD/8EjM8HM9R0zDDd9+et758LRarq9k+wbvjnTQK1/wiEgODKMn7nLheR3fZPqZ1pcvxuUtJG355s+P2pWuwlFXiGzm48ecjOQHXkP7EZhxG2Za3ifppolBEREREREREDkhK/MkBw7DYGhNnPyb+Ar56Sja9DkDK4DkYRitv6u3CdLae+AukJRMINFBTvARXdF887rUE3FWNexL95A2+gL+emuIlJPSe1aG2dU1sjhj8XlX8ieyNurIVhMX0b3PPN5szFmdkFp7anC57Q7w7JfY7hbrS5eA3iEqZ0N3h7HPOiHT6Tf97m7/bDwZGXT2OJavw98nCP6Q/wcS4xv/++PzYV23Atmo9to3b8E4b31ht1l5uD7bt+XjHDW97f71QMAa+scMIpCQSTE4Ax86EmH9gH2yrN+JYvBLPUYeC14fz468xI8LxHDq+WfJsd2sHeqUT6JWOUVePpbgMS3EZ1uIyCJp4pk9slqDz98vGtX4raSknk1/4BrnLHgTAEZ6Ct6GEFOchuCzR1GdntHo51+DpVC17EnP9aowhI1qct6/eiGmx4Bu684M8Qb+bnCX3EfS7yZ74eyw2F2ZCLOZubslbX0TusgewOWLofcj/EUhNwrolB//APljyCnF+/DXB+Fg8R05tM3FbX7GWsLiB7WqZaUaE4xs9lOQfGijrZSF32YNkjLoeuyuuzbltqchZSFhM/2YJSEtBCfYV6xpboo4cDH4/ju+WE0yII6HPidQU/0DJpv/scT9GERERERERETkwHPzvtkmP0pQ4qy9fx/bv7qK2eDHVBYuo2PFhm3NNlwN2SfwZVTVYKqoJZGdQW7QY0/ST2O9UsFhwG5Xg9rZYo2lcVOohnYvfGUNAiT+RTjODfurL1xGR0PJN/NaEJwwDwHoQVKFYbeFkjLyWtOGXd2h/0Z7s55D0A7D/2G7SO3kMwaT4nUk6uw3fmKG4TzuGYEIcjkWLwetr97q2TdsB8Ley59weGQbBzNRmST8ALBZ844ZjzSvCkl+E88vvMeob8MyY3HbS7yfMiHACfbLwTRqN+4SZNJw5a2cLzB8FkxMIRkUQWxxOv0MfJHvSnaQOuZDw+KHEpE0juTSDQGZayzh/FNZ7EqbTiWflx+APND/p8WJbtxn/oL6hhJxpBilc+zS+hlICvhpKNv1nz/cQ9FO4Zi5WWwS+hhKqC74h0DcLa2EJtrWbcH20iGBqEp6jD20z6RcMeGmo2txmm89d+Yf2xxKXSP/awzADHnIW34unNq/NeWbQv9sYyra8TUPlBmKzZuw84fHi/Pw7AqlJoX0QfeNHEEyMx/nJN1j9NhL7nUZN0XfUV6xvd/wiIiIiIiIi0j1+Hu+4SY9hc8ZSW/wDucsewB6WTPakPxCXfQylW+bTULV5j3N/2urTui0X02YlkJFKVeFXhMcNISy2P4bVgdtS1eo+f1WFXxERP7TTn6i3OmLwa48/kU7zNZRgBr3t3t8uIn4o0PihgYOBMyqrzRansn9YSsuxrd201+sY9Q3YNmzFP2zgbpNnZngY3mnjMHw+7CvbmVgxTWwbtuDPTgeXc6/jbBLIziCYFI/z46+xbs/HO30iZkxUl63fjGEQ6JeNdVsuRsDEGZFOdNoUkgeeTWraSVjLq/D3zdrtdJsjCmfSAGoDO7Ct2djsnH3tJoxgEN/wgaFjZVveprZkOanDLiGx/2lU5X9OXdnq3a5ftvW/uGt2kD7iSiKTxlK+7V18WakAOL5Zhr9PFp6ZU8DWdgWfu2ozZtBHeHz7E39YLHgnjyWszKRvw0ys1nBylvx1j8m3+vK1bPr8OnIW30dV/hcE/A2Ypklt6XK2f3sn5dvfIz77OCKTxjZOME2cixZDwI93+oSdSWmrFc/hkxr3/fvsW6JTJuGK6Ufxhpd3m1gUERERERERkQODEn9yQLGHJxMMeEjqfzqZY27A7kogsc+JhEX3pWDVUwS8Nbuda7qcGJ6diT/btjwCWWl4PcW4qzYTkzYFw7DgiMxoNfEX9LtxV28lMnFMp+O3OWIIeKsxzWCn1xD5OfPWFwLgCE9r1/iw2AEk9D2pY2+mS/dpcDe2We4BbKs34vhmGZaCkr1bZ9UGTKsV35A97xtrRoTjGzYQ++oNGHX1ba5rKSrFUlWLf2DfvYqvBcPAO34Ehs+Pb9SQjrUe7QR/v14YPj/WHfnNjtu25GDabY0Vf3sQnjqa6qgq7ItX4HrrQ6wr11O9+WOK179ERbZJ0GkFoLrwW8q3LyCx36lEJo4iJv0wwuOGULTu3wR8LV/v+sqNlG9/j4Q+J+KK7kNCn+PxuUuprvgB3/CB+EYOxnvohNb3FmxFXcVarI6Ydv9uaxJMTsBzxCG4CusYkDOKMFsyO5b8nfL8H1qM9dYXU7D6KVxRvTGsDorWvcCWL28m54c/kb/iMezhKWRPupPEfieHqm2tm7Zj3Z6Hd8o4zIjwZuuZEeF4DpuItaAY+9rNpAw8B299IZW5H3foHkRERERERERk/1LiTw4oCX1OpM/kPxHX66jQm1KGxUbqsMswgz4K1z6z+6Say4nh8UEwiFFTi6W8kkB2JlWFX2O1RxCRNBoAR1QmnlYSf+7qbWAGccX263T8NmcMphkg4Kvr9BoiP2eeugKs9gisjuh2jTcMKwm9Z2G1hbc9WLqPaWJbsY7wV/6LffGq7o6mbaaJtbAUAMe3SyHYyQ9zNLixr9uCf2j/3bar3JVv5CBMu73N18iorcO+agPB6EiCaUmdi20PgqlJNJxxHL4xQ7t87Z8yoyMJJidg27gVAj+26zRNrFt2NCYdbdY9zo9IGI4/3ELl5F74I20UrnqK4sWPU00O233vseWLX5O/8gmK1v2b6NRDiOt1FACGYZAy5HyCATclG19ttmbAV0/hmrmExfQjPvsYAJyRmUQlj6ds27t4xw7Bt5t9Fb31xVTkLMRds73Z8YbytYTHDe7U/sGB3pm4TzwSS3gM/Tb0JzqYyaZvHqIy/6vQmKDfTf7Kx7HYIkgfeTWZo39Fnyn3ktBnFlZHFOkjriJj1HU4wlNCc4zaOhzfLsPfP5tA78xWrx1MT8E3bACOxatwBWKIzTic0i1vUbb1vwQDLVumi4iIiIiIiEj3a7s3kch+ZLWFgS2sxXG7K47UoReTt/xhKnb8L/RG3K7MplZnHi/WbXlgteLPSKTmu6+JSpmIxdL4pqsjOpNK60Kob/4J/4bqLVhsYTjCU0PHHF98j79vL4IZKbSH9cd2gwFvFTbHPmqNJnIQ89YVYA9P7dSb43KACgZxfLMU2/qtBDJSG/e7c9jxjxzc3ZHtllFbj1HfgG/0UOzL1mBbu6mxVWcH2VdtwLQY+IYOaOcEO76xw3B8tQT/0AEEE39sOx0MYt2aizWvEGthaagi0Dt1XKvJp67w0+qvfck3sA/OL38g/Pk3CcZGE4yJxFJdi3fS6DbnuqL7YLVHUOZbQp5rB8E0P+lRFxAZPZyGdAe1JUupLVlKWEx/kgfPafa7xe5KIKn/GRSte67xwwZmAG9DCd7aPIL+BlLHXNxsH8r4Psez/du7qCpYRGzGYTvjbyihpugHakoW46nZAYBhsZM2/HIiE0cR8NXirtlBTOYRnX6NzKgI3Mcehn3ZGnqvsFA4NJqC1c+Q6KkjNnMGhWufxe8uI2v8rVjtET/eXxzx2cdC9rGtLGji+OIHcDjafJ19Y4djzS3A+cX3JB5zMobFTvm2d6kq+JKk/qcTmTROv7NFREREREREDiBK/EmPEZEwnLjsYyjb8hbhcUNa7AFmOh0AGG4vtm25BDJTqa/ZiN9bRXTqlNA4Z0Q6QWsAf10JBjvbA7qrt+CK7rOz0rC+Adum7Y1tz9qZ+GvaZ8zvrcJJ65+eF5Hd89YX4Irq1d1hSFfx+XB+8i3W/CI808YRGNAH+9LVOBavAqcD/6Af21QGAtg278C6Ix/vlLGY4S0/ALI/WQob23v6hvbHcLuxL12Dv08vCHe1fxG3B9u6zfiHDoAf//vUHv4BvbGt2YT9++V4jjoU26bt2Fesw6itJ5gYh793BsHUJALJCV26t193CgzojTsuBktZxY9/KgkmxhFMT25zrmFYCI8bSk3x94TFDiR13MXYXfEEASeN/81P6D1rt/Oj06ZQX7GWytyPsbsSsIclEZE4gqjkCdjDEpuNdUakE5UygfJtC4hOmURd+Sqq8r6gvmIthtVBRMII4rOPITxuMEXrXiB/5eMkDzznx0ScSXjcXia7LZbGJJzbQ+aOMPyjkinZ+Cq1xYtpqNpE+ohf4oxoX2tW25qNWAtLcB8zve1qVJsV76ETcL37KY41W0kadRox6dMo2fQ6BaueIjxuCGnDLw8lHEVERERERESkeynxJz1KYp8TqS9fQ+GaufSa8Fss1p1vejZV/FnKKrCUVuAZNoCq/AU4IzNw7pJIcESkYxoG3rp8mmabpom7aguxGYeHxlmKyxr/WVrR7viszsb2hAFPVSfvUKT7lW9/H4stnNiM6fv1uqYZxFtXSHTKpP16XdlHPF5cH3yOUV2L+xfTQpXTvtFDwevD8dWS0Dj7mk2N7ZetFuzL1uCdMq4bAwdrUSnBuBhwOvCOHU7Y1lwcP6zAO31iu9ewr9oAgG9YO6v9mlgseCeMxPXhl4S9+i6Gx4u/Tya+mVMw42M7tlYPEkyM21nh2EEJfY4nPH4w0WlTm1XotYdhGKQNuxTTNNtVtZbQexbbvruLzV/ehBn0EhbTn9QhFxGZPLbZ30nShl9OycZXKV7/AnZXAo7wVOyu+A7fW2v844bh2J5LWt0w6BdF6eZ5JPQ5kcgfW5q3xaioxrF4Fb5hAwimtZ1cBQgmJeAbMQjHsjUEMtNwJKSQMfIa6spWUbhmLrlLHyBj9PXY2tmmWURERERERET2HSX+pEcxLDZSh17Cju//SOnmeSQPPDt0rinxZ1u/BSwW6uOC1G5bSvKgc5u9mWdzxmG1uvC4i0KJP19DMQFfLa6YvqFxlqLG/Z0sldXg94Ot7cfFYrFjtUfg9yrxJz1TRc5CSjfPw2J1EZUyobH97n7id5djBr04ItL22zXbYikpx7FoMe5Zh4O97T3a5EfBIM5Pv8GorcN97OGYCbE7zxkGvomjMJqSf1YL/v7Z+IYNxJpTgOOHlfiGD8KMjuy28C1FpTtbPDsd+MaPwLFoMf6+vcDlwKiqxVJdSzAuutW90YyKauyrN+AbObhTVXnBjBT8A/tAMIhvxCDMWCVT9sQRkbbXvzfa26rSEZFGYt+TCXiriU6fttsKO8OwkDTgLGyOWEq3zCd2L9p8thARjnXMUKw/rCbh1KOJSpmEzRnbvrnBIM4vvicYGYFv7PAOXdY3egjWnMaWn+4TZ4LFQkTCcDLH3ETusr+Tu+SvZIy+ocsSnNLFgkGMugbMKFVmioiIiIiIHOw69rFokQOAMyKNpP6nU5n7CXVlq3aecNjBMLAWlxHISKEsdwH2sERi0qY0m28YBg5HEl5vceiYu2oL0LhXUBNrUVljxYdpYilvfyLP6ojBr4o/6YFqS5dTsul1otOmYAZ9VBd+vV+v760vAMARfgAl/gpLsFRUYc0p7O5Qeg7TxPHNUqwFJXiOmNw86dfEMPBOHYfnsInUn34c3injMGOi8A/uhxnmxL509X4POxRafQOW6loCKTvbPPoH9CaYGIfrwy9xvfMxzs+/w7ZmI85PvsGaU9B8AdPEuegHglGRjYm/TgXR+Pp4D52gpN8BKD77GJIGnNFmW03DMIjvfSxZ435DQp8TuzQG64RhoQpZuyuu3YlL6458LGUVeA8dDzZrBy9qxXvoeCyV1djWbgoddkZmkDX2ZsxggJwl9+GpycFds4Oa4iWUb/+A6sJvOnadn6sGN9aN27DkFmJU10IwuOfxpolRU9fu5e2LV+F683+NH2YTERERERGRg5oq/qRHisk4nNrSFRSufY7eE3+P1REFhoHpdGC4PdSkGtQWLyN16MUYlpY/5k5XKu6aDaGvG6q34IhI27k/jc+HpbwS76RROL5fgaW0nGByQrtiszmiCXiru+Q+RfYXd812Clb/k8jE0aQMPh8z4KMq9xNiMw7vcOu8zvLWFWCxOrG5Otfub1+wVNUANO4b2jerm6PpGWxrNmJbvxXPtHF7biNosRDo+5P9HG1WfKOG4Ph6Kb4RgzHjY/ZtsK2F9WO1d3CXxB+GgWfGZCxFZZjREQSjo8Buw7nwKxyff4f7+BmYMVGNt7BmE5aSctzHHQ7WDiZW5KAUFtOvy9c0XE4Co4dg+3YFvqED2p0gtm7PIxgXQzCpfX+n+algQhz+QX1b7HvpCE8mc+zN5C17kO3f3x0ab7E6CQY8BP1uYjMPb7GeWV4KpcUYfQaC/Wf4vyWmiaWoFNu6zdi250HQ3HnOMAjGReM5bFKr31/79yuwr96I+4QZBBP3XGVpVNdiX7MRgiaW4vJ27Z8pIiIiIiIiPZcq/qRHMgyD1CEXgBmgYPW/CAa8wI/tPi0GxZ5vcESkEZXS+n5Mjoh0PGYlpt8HNFb8uaJ3afNZUg6mSSAtmWBcTMf2+XPEqNWn9Bhm0I+nNo/85Y/ijEgndehFGIaF2KwZeOuLqC9fs99i8dQV4AhP3W+JxvYwqmvBMLDkFYJPVRJtse7Ix/HdCnwjBhEY0KftCa3wD+hNMCoCRzdV/VmLSglGR2KGN29za0aEE+ib1fgG+48V5p7pEzFdTpwffw0+H0ZNHfYlq/AP6dc8cSiyDwSG9seMCMOxZFXbgwECAaw5BQSyM/bqut6xw8BiwbF4ZbPjdlccWeN+Q/qIq+g1/jb6Tfsb/aY/TGzWTIo3vtK8SwPgrS0g59Pb2bbsHqyvvYLjq8VYShv//nXQ8/qwrd2M680Pcb33GZaySrzjR1B/9gk0zD4W99GH4j1kdGNr1o8WQYOn2XTrlhzsqzdi2qzYl61t83KOH1ZgulyYTgfWwpJ9dFMiIiIiIiJyoDhw3l0V6SCbM5a04ZfTUL2Z/BWPEPS7MSPCqU4JUF+1joQ+J+42geCIysQkgL8yj6Dfjacuj7Bd9vezFpVhOh2YMVEEk+I7lPizOdXqU/YvX0MZ7urt7R5fmfspO374E1u+vJmNn17N9u/uwrDYSB9xNRZr435krui+uKKyqcz9eF+F3YK3vvCA2t8PGiv+/H2yMPwBrHlq97knRlkFjs++JZCdgW9cx/YOa8ZqxTd6aGNLwpLyrguwnSyFpe1P2jnseGZOwairx/HlDzi+XgJOB969uX+R9rJa8Y4ZhnV7PrYV69psDWktKMbw+fH33rvEH04HvnHDsW3ajqW4rPk17BFEJo3BFd0HqyMKwzBI6j+biPhhFKx6Ck9tHgD1FRvI/eJODF8AIzGVbYnLMHJycb3zMa4Fn2JUHhidE8p3/A9PbW6XrWdUVOH4aglhr72L49tlmDFRuI8+FPepR+MfNhBcTszICILpKfgH98Nz5DQMnx/Xx19BIPDjGtU4Fv2Av28W3sljseYUYJRV7vaaloISrNvz8Y4fQTA1CYsSfyIiIiIiIgc9Jf6kRwuPG0zGqOtxV28nb/nD1E8eRkHCVpxRvYhMGrPbeY7YxvZy3srtuKu3gRnEtUsrLktRaWNrT8MgkBDX2O7P62tXTDZHjFp9yn4RDHgp2/oO2779PTlL/0rAV9vmnLJtCyje8BI2ZzwxGdNJGTyHjFHX02vCHdicO9sqGoZBbNZM6spW4a0r2MOKXcM0Tbx1+QfU/n54vBhuD4GsVILxMVi3dd2bvwcbo64e10dfYcZG45k+Adq539juBPr1IhgbjX1xOyuZuorHi6Wiqtn+fm0xY6PxThuPbVse1rwivFPGgt2+D4MU2SnQrxe+4QNxLFmN691PMPawJ7F1W15jNWsX7BvpH9iHYEIcjq+X7qzQM00sBcXYlq/FvmRVYyvK75ZjX7uFtKGXYg9LJH/Fo1TkLCRvyd8Iq3bQO+tS0ibegNvlZtvwUtwzp4DbQ9jbH2FbvaFbq/+89YWUrnuV0o3zdjumtmQpAV/79tmzlJYT9tZHWHfk4x82gIbZx+KZMZlgespuf2eaURF4jpyKpawCxxffg8eL8+OvMKMi8U4Z11iFHBWBY/luqv5ME8d3ywkmxRPom0UgNQlrSTn4A+2KWURERERERHomJf6kxwuPHUDG6F/hqctnx8q/0lCzeY/VfgCWqCSsOPBW59JQvQWLLQxHeGrjyWAQS0lZ6I3fYGLjfmOWPXyaeldWRzTBgJug371X9yWyJ7Wly9n+7Z2Ub1tAbMbhYDZW8u1J2db/UrblTRL6nEj6iCtJ6HMCMenTiEgYtnN/y11EJo/D6oimMm/P63aFgLeKoL/hgKr4s1Q3JlLNmCgCvTOx5haGKi5kFz4fzo++AgM8M6eArQv26TIMfGOHYS0oxrojf+/Xaydr0/5+qR1r0xnonYl34kh8IwcTyDxwfoblZ8Aw8E0Y2binpN9P2DsfYV+6pmXCLBjEuiO/sc3nXibmm67rPWQ0lvJK7EvXYP9hJWGvL8D1/ufYV2/AtmkH1h35WPOKcHy7DNfXK0kf/kuCQT8lG18lztuLPsEjCYwbhzMyk5TB51NT9C1llnW4TzoS36C+OL5bgfHefwmUd0+1dXX+IixVNTTkfI/P3bLzg7tmB/krH6d8+3ttL2aa2L9bTjAmiobZx+IbMwwzIrxdcQST4vFMn4htay5hb36I4fbgmTG5cU9EiwX/yMFYt+dhVLT80Jl107bGPasnjmr8MFtqUujvuSIiIiIiInLw6oJ350S6X1hMXzLH3Ejesr/jiulHRMKIPY43wl24grF4a/PxW8txRfcJJQot5ZUY/kCo1ZsZG41ps2IpLSeYltRmLE1VU35vFQ6bay/vTGSnYMBDTdEPVOV/jrt6K+HxQ8kYfR2O8FRM009l7sfE9fpFqF1nE9M0Kd/6DmXb/ktC35NJ6H1cu65nsdiJTZ9ORc6HJPQ9CautfW9SdkZTVeGBlPgzqmoAGitksjOwL1mNNa+IQK/0bo5sP2pqHWjZzQcpTBPn599j1NTiPu7wFvvi7Y1Ar3QCGak4vl5KQ2pS4756+5ilqBQzPAwzsmUivC3+YQP3QUQi7RNMTsB94pHYl6/Fvnwtps2Kf8Sg0HlLYSmGx0tgb9t8/uSa/gG9G6/ntBPonYW/fzbBpPhmyUXrlhycn39HpNdH5oTr8eWtJunbaryHjganA4DolIl4qrdRuvF1zKAfX0whDb1X4C/PwfHZu2Sd/I8u3/81GPRRuOZpIhNGEJ02pdk50wxSnfMlsb5sqsmlesfnJAw8qdmYih0fAlBd+DWJfU/GsOz+f6us2/OwFpXhPmoaWK0djjXQOxPv+BE4Fq/CM3MyZnRk6Jy/Xy/sy9ZiX7EW72GTdk7y+XAsXo2/T2ZjFwvAjIsO7fMXTEvucBwiIiIiIiLSMyjxJwcNV1QvsifdhWFYMdr6NLth4LTEUdtQgM+A2MwjQqcsRaVgtRBMiA2NDSbEYilr3z5/NsePiT9PFY7wlM7cikgzfm81ZVvfoabwW4IBDxEJw0gfeQ0RCSNCP+txWUdSmfcZ1QVfNft5Bijf/h5l2/5LYr9Tic8+pkPXjsmYTvn296jOX0Rcr1902T39lLe+EMNiwx7WsUqrfclSXYMZ7gK7HTPWTjA2Guu23J9P4i8QIOyNDzDq6jGddkyXE9PlatyD6sc/Rk0t1pwCPDOnYMbHdu31DQPvlDG43vwQxw8rG1to7mPWolICqYldUxElsr9ZrfjGDgd/AMfSNQR6Z2BGNSaIbDvyMCPCCCbEdeklvZNG4e+T1Vglu5uEVqBvFm6HHecnXxO9yIfhNgmmJBHo16vZuMR+p+KuyaF0039wRKQTnjEOZ8xESja9Tu22L4nqM71LYy/Z8Cq1xYtpqFhPRNIYrLadH1yoL19DoKGcRP80DOP/2bvv+Diu69DjvynbOxa9gwXsXaQkqldLLnIvUey427GdxHGe4xQ7ceyXFyeOndiJHde4l7gokot672LvDSRB9A4syvbdmXl/LAUJAkAC4KKR5/v56JN45869Z9C4O2fOuRojjY9QsPx1o8nHTDJCtGc3gfJrGOp4mmjffnzFl028kGFg33UQo7IUs6J0xvFm160gu2LJ+IcgNI3MuhXYd+wns3E1ls+DdroZ+76jkMmQuexlD8MpCmZpoezzJ4QQQgghhBAXOUn8iYuKbvdNeazDXkx/eieWzY3Tv2T0da27H6OoYMwNLLOwYOJ2c5lsrtXSy2hnE3+yz5/IB8uy6Dry36SiLQSrbiJQdjU2V3jcOJurCF/RFiItDxOouBZFyf38RvsO0t/4G8J1r5t20g9AdwTxlV7BQPP9+Mu2T9gSdFzMZvaclQ8TScU6sLlKRuNeCJThKKb/pb8pRm0F+tFTuXafM6jYWGz0U80osXiuRZxhoCRTuf8SKdSRGEoyBZkM6Ss2YlTNTqWm5fWQ2bIW+wv7yS6pwix9WdW1ZaEMR3NVhrY8vJ3JZFH7ImSX1Vz4XELMo8ym1ehN7dif20fq1quB3P5+2brK/Ce1bTbMivM/5GRWlpJ61bU4Hn4GJZMlcf2V42JRVJ2KjX+GmU2+9H4umyV58lkiJ+/BW3t13qr+hjqeYajjKcJ1dzDQfD+DrY8SrnvtS8c7n8VhBXH4awmEyoj0/ph432E8ResBGGx7DEWzUxZfR9rZxFDHM5Mm/vSjp1BiCdK3XH3hgU9S+Zytz1Ve2p/bk/sbPTRCtq4y11L0FRXMRmkR9l2Hcvv86Rf/v2VCCCGEEEIIcSmSxJ+4ZDkcJZDO7YHj9NflXrQs1O4+svV1Y8aa4RC2IychlR5tS6WMxHD+5mEy61eSXb9ydKyqu1BUG9n00NxciLioDXc+RzxyjIoNH8cTXnPOsaGaV9Gy6x+J9uzFV7KVdLyHrqP/jadwPQW1r5lxDIVL3kC0dy99jfdQsuIPzzu+de+/ojtClK394JQTeelYF3bPzCshZoM6NJJrWXdWtqYC2/5jaJ09i3cft1Q6d6P3fIlLy0I/3EC2toLsmuVzE9sksiuXojW2Yn92D8nX3wK6htrehX33IdSB3N9Zy+PGDPgwi8NkNqycvDXpOai9/WBZGCXnb+ksxIJms5HevgnHw8+inW7B8ntREsnc/n7zyCwOk3ztjSjRGFZBYMIxqmpDfXlyS9cJh6+nafiXRHv34yu+8Mrf5PAZehp+RqD8WsJ1r8XMxom0Pkyw8gY0mwcjEyPWd4Cy1DKs0gL0lctwPnQPw8cfwFO0HjObZKjjKQrM5TgPnKLI6aE1fIhMom981Xoiie3AMbIrl2AF/Rcc+6Q0jcz6Fdh3HMCoKCF53bZJqztfvs+ftPsUQgghhBBCiItTfjfLEGIRsbvLwDSxe8rQbLm9y5SzVSxGydgbN2Zh7uaJ2vdSu0/7rgMomSz2/UdH9wIDUBQF3R6QxJ+4YNnUIL2nfoW/9MrzJv0g1+7WXbCagZYHMbNJOg59A93up3T1ey+oSkJ3BAjX3cFQ+1Mkh5vOHXN6hOTwGaK9e+lp+B8sy5rSGul4Jw7PAmqhebaa7OUVf1YogOn3ojW1z2NgM6e2deH69f04Hn4GzvN90ZrbUYejY/YImzeKQvqqLajROPbn9uB44CmcDz0Duk7qxitJXX0Z2SVVoGu5/c0OnZj63MkU2skmHI88i/ORZ7E8Lqzg1CvHhViojMoysnWV2HcdQD/RiOV0jO5dPJ+sgG/a7S4dy7biTYWJnPrNlP9NmUw2PUzHoW/i8FZTVP92AEI1t2FZxuiefSPdO8E0CQ0X5zpAFAQI+jYT691PNjXEUOczWIkYJU1+MutX4gusQxtKMnzs/nHr2fcdyf0N27j6guKe0rWtWkbizbeRuvWac7Z0tUIBLIcNratv1mMSQgghhBBCCDE/JPEnLlmaJ4TNdOLyLx19Te3O3QR5eZUPgOX3Ytl01L6B3Lj2LrTmDlJXb8FyObE/v2/MjXTNEcBISeJPXJiehv9BUXWKlr91yucUVL+K1EgLrfu+RDbZR9m6j6Dp7guOJVh5PQ5vBT0NP8OyzEnHJYcbc3HUvoah9icZaB5/I/SVjEwUIz2M3b1wKv6UeAIla2AFXpYEUhSM2kq0lnZIJOcvuOmyLPQjDTgfeTa3T2FXH7a9R8453nboBEZZEWZhweTj5pAV9JPeuAr9dAtKIkHqpu0kX309Rk0FxvJaMpetI3XTdjLrV2DbdzRXvXcOat8A9sefx/0/v8fxzG6UVJr0pjUkX3OD7O8nLhrpyzfmfv9PNWPUlC/an22jspQicy2pyBli/Yemda5lmaRiHQx1PEP38R/TuvufsSyDsrUfRlV0nL9/DOeJToKVNzLY9ijZ9AhDnc/icS3DZjlH/wZ61t6GkjUZOfEAg00PERoqRC2rJbN5DZlbbyTgWk301COoTa0o/RFsew+j/e/ddDf9mvjaMnA6ZuNLM5aiYPm9UxpnlhShdvXMfkxCCCGEEEIIIeaFtPoUlyzL5aA6cSVG3etGX9O6+zBDgdF2nqMUBbMwhNYfIWsY2HfsxygtxFhWS9rlzLXTOtOKsaQaQCr+xAUb6dlLtHcvZWs/hGabwo28s1yhlTh81aRGWihb++G8VdEpikZx/Z207v0iwx3PEqi4ZsJxyaHT6PZchaCiqPQ33oPNEcJfduWkc6djnQDYPQunfeaLVbzmK26iZlcuQT/ZhPPhZ0nefi3YJt5vacEwDOzP70M/2URmbT2Zy9ahHzqBfc/hXGVz7fifD7WzF7UvQjIf+1HlUXb9SsySQszi8KStPDMbV6O1d2N/cifJ19889vtjWajt3dgOnUDr6sX0e0lfvoFsTSW4nXN0FULMIZeT9Nb1OJ7ZQ7a2cr6jmTldx1m2Ac/QMQaa7sUTXocyhSSmkYnRtv/fSY20AAoObznugpUEK27A5gyh9kdQewfQMxkKXnsrQ21P0H3s+6RGWij2vA5Lz46251Sq6wjsWUr/md9jmQaF5m2krt2WS6bqGp6r72Tgyc+Qfupu/EY5cecITb4dZNwpUrajlLJtlr9I02OUFmHfc+iS2bNWCCGEEEIIIS41UvEnLlmWy4U3U4BNO3tjP5NB6+jGLAlPON4Mh1D7IuhHT6EOx0hfvilXAVRZRra2AvuOA7n9s8i1RjQk8SdmyMjE6Gn4Gd6ijXiLtkzrXEVRKF31HkrXfABf8fTOPR9XcBn+su30Nf4vRiY64ZjEUCPOwFIURaGg9rX4y66i+/iPiEcaJp03HesCRcXmLslrvBdCHYrmqid8njGvWx43yVuuRhkewfH4C2BOXv0IQCqN2tGdu7k61wwDx8PPop9uIXXNVjJb14OikF23AqOqDMdTOyAaG3ea7fAJzIIAZsXC+X4AuQcwSovOvX+fqpK67nKURDL3N/nFlzt6cpU9Dz+Dks2SuuEKkm96FdlVyyTpJy5qxrJakq+7adHv5WbWVVEysoxk5DTxyNHzjjeyCdoPfJVscoCKDX/Gsmu/Ss22z1Ky8o9w+KoA0BpbAVAHR9BjJqHqW4j1H0az+/HHQrk27y8mGBUF/5KbIZXElypAvf52cL30t8MZrMNetpLemhi9l4c4WbYHtaSK4LLXMNK9g0xyIP9flAtglBaBYaL2LKy4hBBCCCGEEELkhyT+xCXLOnvDRkmkwLKwP7sHUmkyq5ZNON4sLECJJbDvO0pm1VKsgsDosczlG3OVNXsOA6DZA2Sl1aeYoaGOpzCNJMX1d06pquGVHN5K/CWzU11QuPRNWJbFQNN9445ZZpbkcBOuwBIgl4QsWfGH2L0VRFoenHTOdLwTu6sIVV041XPK8Aim3zNhkskKB0nduB2tswf7M7vPuV+e4+ldOB98GtfPfovjsefRTjWPPiAwqywL+1O70Hr6SL7qGoxlNS8dUxRS12wFmw3bo89jvSwpqfQPorV3k1m3YtG2BbT8XtJXbEQ/2YR+8DiOB5/C+eBToCgkX3UtydfeiFFbuWivT4hpOduxYLH/vBuVpXipwEUhfad+jWmkJh1rGik6Dn6NdLyHio1/jie8FlV/RYLfstAbW8kur8XSNbSWDoJVN6HZvPhLr0TvGx7X6ti25moKtDWEl7059xDCKwQqrmHEaKK96xd4CtdRufmThGtfi6I5GGx9JC9fh3yxCl7c5693vkMRQgghhBBCCDELJPEnLlmWK7ffipJIoh9uQD/TRvqaraNtnV7JLAzlzrPpZDauHjuX20Vm81r0E40o/RF0ux8jE8Uys7N7EeKiFO07iKdgDbojON+hjKPb/fjLrmSkZ/e4vf5S0TYsM40z8NK+mYqq4y/bTnzg6KRVgqlYJ7YFtL8f5Cr+LL9v0uNmeTGpa7ahn27Bdjbh/0paWydaayfpbevJbFiFEovjeHoXrnsent3kn2Vh23kAvbmd1HWXT3iDGoed1A1XoPYPkvnmL7H970M4Hn0OxzO7sbzuXGJsETOW1eYqsfccRoklSN14JcnX3IBZXrzoEyBCXJJsOkZVGVXxzaTjvfSc+BnWBA9dmGaGjkPfIDXSSsWGP8Ppq55wOrW7DyWeILu8FrOiFL25HU13U3P55wiX3YoSi49L/Ck2GwVv+iy2y26YcE5fyTbs7hLCda+jbM0HUTUHqu4kWHE9Qx1PY2TGV1jPm9F9/iTxJ4QQQgghhBAXI0n8iUvWixV/+ukW7HsOk1m34pw3uy2vG6O0iPQVG8fvAQhkVy0FRUHrHUB35KoBs+mRWYldLGyWmSXWf/icFQmTMdIjJIca8YTXz0Jk+eEt3EQ2NUhyuGnM64nhRhRVx/GKG62+4suwsBjp2TtuLsuySMc6cSyg/f3gbMVfYPLEH4CxpIr0tvXYDp1AbzjzioMGth0HMMqKyK5eTnb9SpKvu4nEm14F2Sz2HftnLXb9cAO2o6dIX7kJo6Zi0nFmYQHp19yAunUtVnEBGCZYJukta8/dTnMxUBTSV19G6uarSL7hltzXQRJ+QixqRm0V7gGV0pq3MNz1PEMdT445nk0N0XHgayQGT1K+/k9Gq88noje2YnncmMVhsjXlqH0RlFgc3e7DNnB2j9ei0PgTz/F3RNPd1F7xecJ1r0NRXvobGqy6EcsyGWx/4pzXl4p10tPwc4xs/Jzj8sUoL0br6YPE9N+rCCGEEEIIIYRY2PT5DkCIeWO3gaqin2jEKC8ms2XtuccrCqnbrzvnccvpQEmk0Oy5xJ+RHsLmnODGkbhoWWaWzsPfJtq3H1Vz4iu9nGD5taN7Cp1PbOAIYOEJn+fncR65gsvQbF6iffvH3FhNDp7G4asZ17JTt/txh1Yy0r2TYMW1Y44lBk+STQ3gCi6fk9inxDBQo3Gy50n8AWRXL0cdjmJ/bi+mzzO6j5Z+uAF1JEbipu1jbhRbAR/pbRtwPLMbo7YSo7o8r6Frp5ux7z5EZuMqsismv+k9Gk9JGH1lNdlIjGz2PPsVLjY2G0bVwkooCyFmzqgsBU0jNFJKovJGeht+gcNbjSuwhGjfQbqP/xBQqNjwp7hD9ZNPZJpoTW1kl9eO7tWMoqC1dJBdtQy1N4LldGB53HmJO1cpv53B1kcJVd2MqjnGjRnueoHuEz/BMtLYPWUEK67Py9rnkq2rwr7rIPqpJrLrVsz6ekIIIYQQQggh5o4k/sSlS1Gw3Lmqv9R1l+elGsRyOVCSKXR7rsomm5Z9/i4lLyb9YgOHKV31HtKJXoY7nmGo/UnsngpszgJU3Y1mc2P3VBAov2bcHn6xvoM4/bWjVaMLkaKoeAo3EOvdR+GSN45eQ3K4EW/R5gnP8ZVso/vYD8kkB7A5X2qfNtB8Pw5vBe6CNfkJLpvF/txeMutXTtq293yU4RhYFqbfO4XBCunLN6IMRXE8/jzJ19wImor9wHEya5ZPGIOxrAajuR37s3tIFIfBOf4m8IwYBvadB8nWVY5rRyyEEIueTSdblWvLWfSat5Acaabz8LfwhNcx1PEUnvA6Sla9G91+7r/9Wkc3SipNdsnZ6nSHHaOsGK25PZf46xvI+76IBdW3MtTxNMOdzxGsfKlVqGmk6Gn4H4Y7n8VfeiXZ1AAj3bvnJPGH00G2thL9RCPZtfVSFS2EEEIIIYQQFxFJ/IlLWuqqLVheT95uvFtOJ0oiiWb3gaKSTUnibzGyLJOhjmdIRVvJJHrJJPrIpgexOQqwe8qxe8pweCpwBuqwOcO5c8wsHYe/RXzgKOXrPjpasReuey2xvkNE+w5gZmJkUxFS0VYG2x7H5grjeVnCyzKzxAaOEKq6ZV6uezq8RZsY7nyWdLwTh6ecbGqQTLJ/zP5+Y8dvpOfETxnp2U1B9a0AJIebiQ8coWzNB8e0RbsQ6sAQ+ukWtI4ekrdfhzWFqr1xcwyfbfM21XNVldQNV+C89zEcjzyL5fdiOWxkNq6aeLyikN6+Gec9D2F/YR/p66+YdowT0c60oSRTZDatkRu4QoiLklFdgf7UTtREmvK1H6Z51z8y3PU8xfV/QKDi+nEP00xEO92KGfRhFbz0gI1RU479hf2QTKH2DZBdnd8qdJurCF/RFiItD6PZ/WQSfWSSfSQix8kkI5Sseg+Bsu0Mdz5H17EfkklG5qRjRHblUpynW1DbuzErF9Zeu0IIIYQQQgghZk4Sf+KSZpaX5HU+y+VAicZQFBXN5sOQir9FabD1EXpP/RqHtwqbqxBv0QZ0e4BMcoB0rIOhjmdGv7e6owBXYClGJkpi6BTl6z4ypk2nomh4izbiLdo4+pplWbTu+QKR5gfHJP4SQ6cxswk8hevm7Fpnyl2wClVzEu3dj8NTTmKoEWDSPZU03Y0nvI6R7p2jib+B5vuxuYrxFm/JW1xKNLc3kmXTcT7wJMnbr8d6sXIvncG2/yj6ySasgA+jpBCztAijODxm305laATLpk/vgQCHndTNV+P8/aOobVFS120Dm23S4ZbbRfqKTTie3IlR04ZRN/n+olNiWdiOnsKoKJ1RslMIIRYDo7L0bFvOTqxVS6ne8teAhc1VNLUJslm0lnay61eOeUDCqC6H5/dhO3ISJZXBKCw4xyQzU1BzG827/pHOw99C1ZzYXEU4vFWUrfsIDk+u7bOnaCPKiZ8Q7d1DqOrmvMfwSmZRAWYogO1EIylJ/AkhhBBCCCHERUMSf0LkkeV0oPYOAKA7AlLxtwilom30Nd5DqPoWipa9ddJx2fQwyaHTJM7+l00OjEv6TUZRFELVt9J5+Nskh5tw+msBiPUfRHcEcXir83U5s0ZVbXjCa4n27iVc+2qSQ6exOcPojuCk5/hKttF5+JukY51YWER791Ky8l15q/YDUKIxLIeN5O3X43zgiVzy77brULt7se8+DNks2RVLUOIJ9NMtKIcbQNNI3nwVZnlufz51OJpLnk2zas7ye0ndcjVaezdG3fn3dDTqqjCa2rE/v4dkUShXfTxDau8Aan+E1C1XzXgOIYRY8Bx2jLKiXPJu1VJsrsJpna61dKJkDbKv+BttuV2YxWH0oycBcq0+88zhq6Luyv+HqjtRdc+E1Ym5h2TWMtK9a04SfygK2ZVLsL+wHyUWz9u+hkIIIYQQQggh5pck/oTII8vlREmmANDtfoz08DxHJKbDNDN0Hf1v7O4SwkvecM6xut2Pt2gT3qJNM1rLW7QZm6uIgZYHKV/7YQBifYfwhNdNqVXZQuAt2kTnke+QSfSTGDo9aZvPF3nCa1F1FyPdu8gk+9EdIfylV+Y1JjUaw/J4wO0kddt1OO5/Etf/PgiWRXZJFZnL1r10Y9OyUEZi2J/fh+Ox53LVgeEgytAIpn9mVXNmURizKDy1wYpCavtmXL99FMcTO0jefh1o2ozW1Y+exPR7MSqkYkMIcXEzqsux7zgAqfSYau2p0BtbMAtDL1WCv0y2uhx7Tz+mL38t4F9pKolKX/HWs/+29p63ktGyrAt+z5BdWo1t9yH0hiYym2R/WCGEEEIIIYS4GOSvzEIIgeV0oKQzYBho9gBZafW5qPQ33kM63k3p6vejqpO3acwHRVEJVd9KtHcf6XgP6Xg36XgXnsL1s7puPrnDa1FUnZGe3aSiLTgnafP5IlWz4y3cyFDnMwx37yBUfSuKmt/nT5RoHMuXS+xZbhep264lu7yW5KuvJ33d5WOrGRQlV6V34xVYfh/Oh59BGYmhDo9gBcbfFJ4VTgepG65A7Y9g231oRlMosTh6U676Rfb2E0Jc7IzqcrAstLauaZ2njMTQ2rrILqudeN6aCiDX/nI+eQrXo2h2Rrp3n3PccPdOzjz7KdLx7gtb0GbDWFKF3tAIpnlhcwkhhBBCCCGEWBAk8SdEHlkuJwBKMoVul1afC9loi870MJZlER84TqTlEQqXvAGH9wL3W5sif+mVaDYvkdaHifUfQlFtuEMr52TtfNB0F+7QSiItD2KZWVz+c1f8AfhKt5FNDaLpbgLlV+c9JiUaw3xZy0zL4yZ91RbMknNUWdhsJG+5CkvXcD7wJEoyjTmH++SZRQWkt27AdvQUWlPbOceq/RHUvoExr+knGrF0bdKb2UIIcTGxPG7MwhBaS8e0ztOPncKy62SX1Uw8r99LdnktxpLzt2qeTarmwBvewEjPrknHpGKddB//Edn0MD0nfoJlWRe0ZmbFUpR4Eq2184LmEUIIIYQQQgixMEirTyHyyHLlWkMpiSS6I4CRHspLGyaRX5lEH617vgjkbpSpWu775g7VE5yLPXXOUjU7wcobGWi6F7unDHdoxWgsi4W3cBOx/sMoqh2Ht+K8492hldichQQrb8j/tVoWajRO1juDPYpcTlK3XoPz3scBZtzqc6ayq5aidvdhf2Y3yVAgt8fgy6hdvdgOHEPr6AHAqCojvXktVsCLfuJM7ka2fXarVIUQYqHIVpdjO3QCDGNqLZJTafSGM2RXLQPb5B9/0ldflscoZ85XspWOQ/9FKtaBw1M+5phppOg8/C1szjCFS95Ax6FvMNL1PP6y7ZPOl0kOMNT+JOl4FyUr3olmH/tvjBUOYhYVoB8/PVr5KIQQQgghhBBi8Vo0FX8//elPufHGG1m3bh1vfetbOXjw4KRjM5kMX/va17j55ptZt24dd9xxB0899dSYMYZh8JWvfIUbb7yR9evXc/PNN/P1r3/9gp+YFZe4s3vCKMkUmj2AZRmY2dg8BzU7ksNnGO7aMd9hzMhIzy4U1Ub1ZX9L+bqPEK67g2DlTZSufj+KMrd/FoMV16EoGqmRFjzhxdPm80Weog2AgtNfO6W2nYqiUXvlP85OgjWRAsPEelnF33RYfi+pW64mW1eJFZzbxB+KQvqqLVguJ657HsZ594M4HnkW284DOO57Auf9T6IkUqSuv4LUdZejDA7j+s3DudeTqdzNbCGEuEQY1RUomSxqZ++UxusNZ1AMM9cSeRFwh9eg6i6iE7T77Gn4HzLJPsrWfhhv0SZ8JdvoPfVrjPTImHGWZZEYPEXH4W9x5vm/ZbD9CRKDDbTu+zeyE+xBnVm1FK2jB2VgcLYuSwghhBBCCCHEHFkUib/77ruPL3zhC3zsYx/j7rvvZuXKlbz//e+nv79/wvFf+cpX+MUvfsHf/d3fcd999/GOd7yDP/mTP+Ho0aOjY77zne/w85//nL//+7/nvvvu45Of/CTf/e53+fGPfzxXlyUuQtbZxB9nK/6Ai7bdZ9/pu+k6+t9Ee/fNdyjTNtK9C2/hBpz+WrxFmwhV30Lh0jegO4JzHotm8xAovwYAT3jdnK9/oXS7n0DZVfhKtk35HEVRZ6UKVo3mkuzmTCr+zjILQ6Svv2JqFST5ZreRuu1a0lvXYZSXgGnl2q5ZFqmbtpN8/c0YdZUYS6pIvvFW0ldsQhmJYVSXj6sQFEKIi5kV9GH6vegt7ecfbJrYjp4iu6QKy+2a/eDyQFVteIs2MdKzCyMTG30wcbjzOYY7n6Wk/s7RSsCi5W8DLHpP/Xr0/HS8m/YD/0Hr3i+SjrZRvPztLNn+L1Rt/hRmNkbb3n8lk4yMWdOoq8LyunOVlEIIIYQQQgghFrVF0erz+9//Pm9729t485vfDMDnPvc5nnjiCe666y4+9KEPjRv/m9/8ho985CNcd911ANx55508//zzfO973+NLX/oSAPv27eOmm27i+uuvB6CyspJ77733nJWEQpyXpmE5bCiJFLo9t6dYJtk/pRaIi4mZTZIYPIlm99F17AdUeyrQ/aXzHdaUpGIdpKJthOvumO9QRoXrXocrtAKbKzzfocxIyao/mu8QAFCicYAZV/wtBJbHTXb18vMP1DSyq5aSXVE3+0EJIcRCoygY1eXop5rhys1wjodJtDNtKPEEmTVT+Nu6gPhLLme48zlOP/0JFNWW2zs6PYS/bPuYtp663U/h0jfRffzHeIu3kBxqJNL6ELo9SNnaP8ZbtHG0m4FdL6Ny0ydp2/9vtO39Vyo3/QU219k9cFWVzNp67DsOkNm8BsvnnY/LFkIIIYQQQgiRBwu+4i+dTnPkyBG2b3/pA66qqmzfvp19+yauNMpkMtjt9jGvORwO9u7dO/q/N23axAsvvMCZM2cAOH78OHv27OHaa6+dhasQlxLL6URJptCdIeyecnoafjbuqerFLh45jmUZVGz4M3S7n87D38Q0UvMd1pSMdO9C1V24w2vmO5RRqu7EW7j42nwuNEo0huWwXVp73alq7j8hhLjEGNXlKMkUau/A5IMsC9uRBozyYqyC4JzFlg+u0EqqL/tbytZ+mMJlb8ZXchmhqlsorv+DcWP9ZVfhCi6n4+DXiLQ+TEH1bdRc/g/4ijePa2FudxdTtfkvQVFo2//vWGZ29Fh2eS2Ww4bt8MlZvz4hhBBCCCGEELNnwVf8RSIRDMMgHB5bCRMOh2lsbJzwnKuvvpof/OAHbN26lerqap5//nkefvhhDMMYHfOhD32IaDTK7bffjqZpGIbBJz7xCe64Y3pVQKqqoKr5b1knFi/F7URLpbDZbNRs+QTNu/6ZjoNfpeayv0S3Xxzt+BKRIzg8JXhDdVRu+AhNO/+J7hM/oyD8MTRt4SYhLMsi1rsbf8kW7HbHfIczf17cy3QW2m3OJz0eB58HXV+4P4MLzYu/rwv591YIMZb83p5VXgRuJ47dBzGLw2DTQdex3E6sgA8r4EMZGEQbGCRz27WL8t8GW8ESYMkURqpUrH0vAy2PUlB9E3Z38TlH694iqjf9KY3Pf5ZY3y6C5VedPWDHXFuPvv8Y5mVrwOW84GsQ8jsrxGIkv7dCLD7yeyvE4iO/t7NrwSf+ZuLTn/40n/nMZ7j99ttRFIWqqire9KY3cdddd42Ouf/++/nd737Hl7/8ZZYtW8axY8f4whe+QHFxMW984xunvFZBgWdW9qoSi1cm5INkClvIA3jw3/Bpjj75f+k+8l+suuZv0GyLY3+ZyViWRfPwcQorNxMKeSC0Ahsf5PSub9LbtJriuhtnNG9/2w5sDj/+olV5jvglscgZjFQflcvfTyC0eNtBXgjLtMje9xTWcBTbm29BcdjHjTGOnAKHHW1Z9TxEOHOZTAYKg3gv0e/thfD7F/ffJSEuRfJ7C8ZVGzGONUJ3L6SzWJkMpNIvDVBVlOICXGuXXPzv10N1lFR8YBrjlzPcehkjHY9Su/rm0cpAa/t60kdO4jjTgn7VplkK9tIkv7NCLD7yeyvE4iO/t0IsPvJ7OzsWfOIvFAqhaRr9/f1jXu/v76ewsHDCcwoKCviv//ovUqkUg4ODFBcX86UvfYmqqqrRMV/84hf50Ic+xGte8xoAVqxYQUdHB9/61remlfgbGIhJxZ8YQ1dUlMEo0Ujs7Ct+ytb9Kc17/pVDT/4rVRv/DFVbvK0IU9EO4iM9hJfVEzl7jZpvE4Hya2g+8GMURw26a3r7/WVTQ5x64esoqs6SK/5h1va66254AjQPhl4zGvulRjtwDP1YI5auk/71w2RedQ1o2kvHDzWg79iP5XKS/oPQomojae8bxKwqe9nvnjgfTVPx+10MDycwDHO+wxFCTIH83r5MbXXuv5fLZFCGoihDIygjUczyEqzB+PzEt8B5Sm+gb/e/0nZyB96il1qOa8tq0HYfYWRZ3aXVPnuWyO+sEIuP/N4KsfjI760Qi4/83s5MaIoFDws+8We321mzZg3PP/88N998MwCmafL888/zzne+85znOhwOSkpKyGQyPPTQQ9x+++2jx5LJ5LgnfzVNw3qxBd4UmaaFaU7vHHFxUxwO9HiSbPalP1i6u5KytR+jbd+XGOrai69k6zxGeGGGew6BomP3LRtzjUXL30p65DQtB75N5ea/QlWnfqOo98wDoOgoqpP2w9+jYuMnxu1Jc6Esy2Socxfeoi0YpgLmpfcPitrZi33XYdLrVmJUlOB88GnUJ3aSvnYbKAr6sVNoL+wnU1eJfqYNq6kDo7p8vsOeGsvCPhIj63aN+bkUU2MYpnzdhFhk5Pd2EooGwUDuvxfJ12lCNu9SHL46es88gDO0dvR1Y9UyXEdOwpFTZNetmMcILy7yOyvE4iO/t0IsPvJ7K8TiI7+3s2NRlHK8973v5Ze//CV33303p0+f5h/+4R9IJBK86U1vAuBTn/oUX/7yl0fHHzhwgIceeojW1lZ2797NBz7wAUzT5AMfeKn9zQ033MA3v/lNnnjiCdra2nj44Yf5/ve/P5pcFGKmLKcDJZV+aR+1s9yheuzuEuKDDfMUWX7E+g/jCtajamP3yFM1B0u3fZR0tIP+xt9OeT4jPcJg+5MEK26gdNV7iEdOMNj2WL7DJjF0mmwqgq948SZdL4QST+B44gWM0kIym9dglhaRum4bemMrtl0H0U80Yn9hP5k1y0lfdzlmOITecGa+w566RAoME8srbT6FEEKIqVAUhYKaV5EYbCAx9NLe6ZbHTXZpDbYjJ+Fle6QLIYQQQgghhFgcFnzFH8CrX/1qBgYG+I//+A96e3tZtWoV3/3ud0dbfXZ2dqK+rB1dKpXiK1/5Cq2trbjdbq677jq++MUv4vf7R8d85jOf4atf/Sqf+9zn6O/vp7i4mLe//e187GMfm/PrExcXy+XMJf2SKXA5xxxzBetJDJ6cp8gunGmkSAydpHDpmyc87gnWUrTsDXQ33IWnYA3ugpXnnTPS+igKCqGqm9DsPoJVN9F3+m7cBatxePJXbTbSvRPdUYAzsCRvcy4apon9iR2gKKSuuxzOVjsbtZWkL9+Ifcd+ADKrl5HZuh4UhWx9LfYX9qPEE1juhd9rW43m2nuaXvc8RyKEEEIsHp7CDdjdJURaHsK17o9HX8+sWY5+sgmtqR1j6eLa81cIIYQQQgghLnWLIvEH8M53vnPS1p4//vGPx/zvbdu2cd99951zPq/Xy6c//Wk+/elP5y1GISBX8QegJFK5JODLuILLGep4GiM9gmb3zUd4FyQeOYFlZvGE10w6pqDmVkZ6D9F17PvUbPt7NNvkFVhGJs5g++MEKq4b/XoULnkj8YGjdB39HtVb/hpFPf+fKcsy6D72I9LxThRFR1Fz/1lmFtNIYRopMolegpU35r2F6EKgdvWitXaSXb0MyzM28aWMxLDv2I/W00/y9uvGJaOzq5eBYaBkMmQ2rRlNCmaXVGPfeRDtVDPZ9edP4M43JZrbv0kq/oQQQoipUxSVYNUt9Jz4Kel4N3Z3CQBWKIBRVozt6EmMJVWj7w+EEEIIIYQQQix8F98dcCHmmeU6m/hLJscdcwXrAUgMnZrTmPIl3n8Ym7MQm6tk0jGKolKy6r1YZpru4z8+576Zg22PYZlZQlW3jL6manZKV7+PdLSdgZaHphRXpPkhhrt3YPdUYHMVodl8KKqOZvPh8FTgDq0kVH0roaqbpn6xi0Umi+OpndgON+D69QPYXtiHEk9AJoNtz2Fcdz+I2hchdf3lmCWFE06RXbeCzOa1Y2/q2W1kayty7T6nuffpfFCiMSyHDexT31tSCCGEEOAvuxLN7iPS+siY17NrlqH2RVB7B+YpMrHYWZZB19HvEWl56JyfCYQQQgghhBD5tWgq/oRYLCxnrqJKSaTGHbM5C7A5C4kPNuAt2jTXoV0Qy7KI9R/GE16Lcp6nvm3OAopXvIvOw99kqP0JgpU3jBtjZpMMtj1KoPwadEdgzDGnr4ZAxbUMtj5CqOpmVM0+6VqpWAf9Tb8jVH0rRUvfNLOLW8RsB46hJFMk7rgZra0T2+EGbA1nsGy2XBXf2hVk1tWDbfoJsWx9Hc7TLahdfZhlRbMQff6o0RiWR6r9hBBCiOlSVRvByhsZaLqXcN3r0O257RGMyjJMvxf96EnSxeF5jlIsRv1nfs9w907oeoHE8BlKV74bVXee/8QLYJnZKXUMEUIIIYQQ4mImFX9C5JtNx9K1CSv+INfuczHu85dJ9JBJ9uEOr53SeF/xZoKVN9J78pckh5vGHY+0PYaZTRKqvnXC84OVN2FkYox075h0jVyLzx9icxYSrnvdlOK6mCiDw9gON5BZvxIrHCS7YRWJt9xOZt1KjNpKEm+6jczmNTNK+gGYJYW5G34NZ/Icef4p0TiWT/b3E0IIIWYiWHEdiqIy2Pb4Sy8qCtlVy9Cb2lFi8fkLTixK8UgDA033Ea67g7K1f0y8/zAte/6FdLznguZNjbRiWeakx04//QmGOp6+oDWEEEIIIYRY7CTxJ8RscDomrPiDXLvP1EgrRnZx3UCJ9R9GUXXcoRVTPqdo2Vtw+KroPPxtjEwMANNI09Pwc/ob7yFYeQM2Z8GE59rdxXgLNxBpfXTS1kCRlkdIDjdRsurdqOol1uLRsrC/sA/T6yaz7mXfE4edzKbVpK/chOW9wESYopBdXove3Aap9IXNNcuUaAxT9vcTQgghZkSzeQiUX8NQ+xOY2ZceXssur8HSNfRjp+cxOrHYGJkYXUf/G1dwOQU1t+Er3kzVZX8DVpaW3f/ESPeuGbX+HOnZS/Ou/0uk5eEJjw+0PIhpZug+8VNiA0cv9DKEEEIIIYRYtCTxJ8QssFxOlORkib/lgEVicHr7/JnZ5Nkk2MRPuM625PAZHL4aVM0x5XMUVadszYcwsnG6j/2Q1EgrLbv/H0Mdz1C84k4Kl731nOcHq24mHesgPsEH93Ssk/4zvyVUfTOuwNJpX89ip51pRevsJX3FJtC0WVsnu6wWTAu9sWXW1rhgloUajV94olMIIYS4hAWrbsLIJhjqfPalF202svV16A2NkM3OX3Bi0bAsK7fPt5mmdPX7UJTcLQeHp5yqLX+Du2AVnUe+Q/v+r5COd0153mx6mJ4TP0FR7URaHhyToAbIJPoZ6dlN0dI34ylYTefhb5GKtuf12oQQQgghhFgsJPEnxCywnA6UxMStPm2uInRHcFy7T9NIMdD8IKYxcWXVcNcL9J78Bcmh+XniOh3rwOGpmPZ5NlchpaveQ7RvP827/hFF0ane+mmCFdefd69AV3A5Dl81kdZHxrxuZpN0Hfs+NmcB4brXTzumRS+dwb7zIEZNBWZl6eyu5XZiVJejHzsFM3gyO9+UyDDOux5A7eh+6cVECgwTSyr+hBBCiBmzOcP4S7YRaX0Yy3wpyZddtRQllUFvaIJkCiWeQInGIWvkbW3LMubt4TaRX8MdzxDt3UvxineN6+yh2dyUr/0wFRv+lEyyj+Ydn6Pv9D2YZuacc1qWRc/xn4CiULX5k5jZBIPtT4wZM9j2KJruIlB+DWVrPoTNGab94H+STQ3l+xKFEEIIIYRY8CTxJ8QsOFfFn6IouALj9/nrb7qXvtN3MdK9a8Lzor17AEjMQ+LPMrOk4104vNNP/AF4izZStOytFNS+mqrL/hqHp3xK5ymKQqjqZuIDR0jFOgAwsnHa9n+FdLyb0tXvR9XsM4ppMbMdOAaZDOltG+ZkvczaetShKFpr55ysN6lUGsdjz6EOR7HvOTyaiFSjZ9vISsWfEEIIcUFCVbeQTQ4w0rNn9DXL58WoLse+Yz/un/8O1y/uxfWr+3D9+n7U3oELXtOyLNr2fpm+U3dd8Fwi/7Lp4dGW/eeTGGqk5+T/ECi/Fl/x5knHecLrqNn2WQpqbifS+hCdh799zsTvSNfzRPv2U7LinTj9tfjLriLS8tBo1Z+RiTPU8QyB8utQdSeq7qR8/Z+CZdJx6OtTjl8IIYQQQoiLhST+hJgF56r4A3CF6kmNNGMaueRgKtbBYMvDKKqNke4Xxo3PpoeJD55EUbR5SfylE71YZhb7FBN2EwlV30LhktdPey8+X/Fl6I4gg62PYGRio22BKjd+Aqe/dsbxLFbKSAzb0VNk166Ys9aWZnEYo6QQ26ET81f1Z1k4ntyJkkqR3r4ZtS+C1p5rD6VEc/tlSsWfEEIIcWEcvircBWuItDw0Zg+21PbNpG64gtSNV5K6eTvJW67G8rpx3v8E2unmC1ozOXyGxNApYgNHLjR8kWfpeA/NOz9P845/IDncdM6xmeQAHYe+gcNXTVH92887t6rZCS+5g/J1HyXWf4jek7+YcN+/TLKfnpO/wF96Jd6iTQAU1N5+turvcQCGOp7EsrIEq24cPc/mDFG+/k/IJHpp3vl/xz10KYQQQgghxMVMEn9CzILRir9JkiSu4HIsyyA51JhrXXPip9hchRQtfxvxSAOZZGTM+GjvfgD85VeTHDo94Yfi84kPnqT35C9n1O4mHcvtj3Ehib+ZUlSdYMUNDHftoG3fv5FJ9FK56S8uyaQfgG3vESyHncza5XO6bnZdPWpPP2pP/5yu+yLb7kNoHd2krr+CbH0dZnEY276jYFko0RiWwwb26SWVhRBCCDFeQfWrSEVbiUeOvfSiy4lRW4lRU4FRVY5ZWUry9uvI1lbieGoXtt2HZvxw0FD7k0Bu/2YjG8/HJYg8yKaGaD/wVTTdhe4soHXvv07amcQ0UnQc+i8UVaN83Uem9aCfJ7yW4vo7GWx7nMG2R18RwyBdR7+PqjkpWv5SMtHmDOMvv5pIy8MYmSiR1sfwl16BbvePOd/pq6Z662ewOQto3fdl+s/8XlrKCiGEEEKIS4Ik/oSYBZbLAYYJmeyEx+3uMjSbl/hgA8Ndz5MYPElx/Z34SraiqDoj3TvHjI/27sUdrMdbuBEjEyWT6J5w3skMtT9N+75/I9L2GE07/p7B9qem9aE3HetEs/vR7b5prZsvgYprQVHIpiJUbvwLnL7qeYljvql9EfTGFjKbVoNtbpNcRmUZZtCfq/qbY1pjC7bDDaQvW4dZXgKKQnrjatS+CGp7N2o0huWRaj8hhBAiH1yhFTh9NURaHjr3QE0jfc1W0lvXYzt0Avvz+6a9lpEeYaRnN/6yqwDrvFVlYm4Y2TjtB/4Dy8xQseHjVG7+JN6izXQe+Q59jb8Z8znCsky6jv2ATLybinUfG5d8m4pgxbWEql9F78lfEe3dRzreRfexH3Hm+b8lFW2ldPX70GxjO10U1NyOaSRp3/9VjPQQoapbJpzb5gxTufn/EK55Nf1Nv6dt379jZBPTjnExMM0MqWgbIz17GWi6n65jP5z25z4hhBBCCHFx0Oc7ACEuRpbTCYCSSGJNUIWkKAquYD2xvoNkUxF8JdtwF6wCwFO4npHuHRTUvArI3RCJR45TXP8HOAN1gEJi8DR2d+n547AMek/9msHWRwlUXEe47nX0n76HnhM/YaTrBYpXvnNK++2lou1T3pdvNmg2D5Ub/hzdEcDmKpq3OOaVZWHbfRAz6CO7vHbu11cUMutW4Hh6F0pkGCs0/Zs6M1o2nsD+7B6yS6vJrnmpytEsL8YsDmPffxTLZsPyyf5+QgghRD4oikKg4lq6T/yUbHrk3A9+KQrZtfUo2Sz6oRNw+QbQtCmvNdT5HACFS99EtHcfyaFGPAWrL/QSxAUwzQwdB/+LTLKfqs1/ic1VCEDp6vfh8JbTd/oehjqeRncE0e0BwCLWf5jydR/B4aua8bqFS99INtk/ut+fZvcTrns9gYpr0PTx7/NszgICZVcz2P4EnsIN2D1lk86tKBrhJXfgCq2k49DX6Tr6PcrXfQRFWVzPQccHjpGMtuIOrcThrRyNPxXrYKj9KYa7XsA8WzWr6m5szgKGO58l2rOHklV/hM0Zns/whRBCCCHEHJLEnxCzwHI5AFCSKazAxDdLXMHlRHv3ououipa9dfR1f+kVdBz8OqloGw5vJdG+A2BZeIs2oeluHN4KEkOnCJRfdc4YzGySjsPfIh45RnH9nQQrrwegZNUf4Su9nJ4TP6F5x+fwFm0gWHkzruByFEWZcK50rAP3PN+EcQWXzev6801r70Lr7CV183ZQ5+cmhVFXibXnMLbDJ0hfs3VO1tQPN4Cqkr5iE7z851NRSG9YhfPhZ0BVyaxaOifxCCGEEJcCT+EGOP4T4v2H8JdtP+/4bE0ltn1H0Tp7MCrLzlYYKZO+t4RcpdhQ+5O5/ZztPlyBJSSHG/N4FWK6LMui++j3SQ6foXLjJ3B4K0aPKYpCQc3tOP1LSQw2kE0Nkk0PYaSHKV5x5+j+ezOlKColq9+LdsqHw1uJr/SK87YMDdXcTjxyjHDtq6e0hjtUT+nq99Nx8OsMNN1LuO51FxTzXMqmBuk4/E3MbBKw0GxeXKEVZFODJIdOo9n9BCquxRtej91dgmrzoigKsYGjdB/7Ic07P0/RsrfhL9t+zt9LIYQQQghxcZDEnxCzwHK9VPE3GXdoBQCFS96I7giMvu4pWINm8zDctYOiZZVEe/fiCi4fbZvjDCwlETl/u8WhzmdJDJ6gcsPHR6sJX7529ba/Z6TrBSKtj9K270s4vFWEl9yBt3DDmLGmmSGd6CHkmbh9jpgDpolt1yGM0iKMysmfZp51mkZm7XLsuw6R2bwGyzPLVXaJJLbjjWTW1U+4f59ZUYJZVIDaO4DllYo/IYQQIl90ux+nv45o38EpJf4Mr41B3wDx478i2pslOdyEqrsIVt5AoPwaNNv4ltyx/sNkkn2UVX4QAKd/CZHWR7Asc9FVYl0sIi0PMdKzm7K1fzzpQ3fuUD3uUP2srK+qNorr/2DK423OELVX/N9preEtXE94yR30N/4Gh6963Gcfy7JIx9qJ9R0i1n+ITHKAyk1/gd1dPK118q2n4ecoqo0lV/9f0rEu4pFjxCPHUTUnZWs/jLdwA4o6/vaOp2A1NZd/lt6Tv6L7+A+JR45Ruuo9E44VQgghhBAXD/lEJcRssNtAUVCSqUmHOLyV1Gz7LIGK68a8rqg63uLLGOneiZGJEh84hq94y+hxV2AZ6XgXRnrknCEkBk/g9C8dl/R7karaCJRfQ822z1K58ROouovOw9/GNMbGnIl1gWVi985fq89LnXamFXVwmMzWdWOr3uZBtr4Oy66jHzs962vZDjdgqQqZ1csnHnB2rz8Ay+ed9XiEEEKIS4m3cAPxgSOYZuac47LpEVr2/gvNjqcZHNyLqjkoqLkdd8Fq+s/8lsbn/oqeEz8jHe8ac95Q+5M4fTU4fLUAOANLMLNx0vHp7WUt8iM2cJS+xrspqHk1vuLN8x3OrCqouR1v0Sa6jvw36VgnZjZJtO8A3cd/wpnn/prmnZ9noPk+NJsXRdXoOPSNs5V282OkZy/R3n0U178D3e7HHaqncMnrqd7yV1Ru/Di+4i3nTORpupvSVe+mbM0HifbsyV2PMfnnVCGEEEIIsfjJY15CzAZFwXI5UBLn/kD18vY5L+cvuZyh9ifpPfVrLMsc0zrHFci1NEwMN457QvVFlmWSGDxJsPLGKYSq4C5Yhe4I0rTjsyQGG/CE140eT8U6AM65b4aYXXpzO2ZxGLOwYL5DAZsNo6IUrbuPc98GvEDJFPrx02RXLweHfdJhZkUJyVddi1laOJvRCCGEEJccT9EG+hrvJhE5gSe8dsIxRiZG+/6vYGSi1Kz5PwSePEmq/GbMwhCQ27dtqP1JBtufzO3FFl5HqOpmdGeYWP9hSlb+0WjbQac/t5d1cqgRh7zvnFOZRB9dR76DO7SK8JI75jucWacoKqWr3kvLnn+mde8XMY0UlpnF7i7BW7wZT3gdruByVNVGKtZB6+4v0H38R5Su+eCct8k0MnF6Gn6Op3AD3qIt5z/hHHwlW1FtHjoO/RftB/6D8vUfm3D/RCGEEEIIsfhJ4k+IWWI5HSjJmT0Z6gwsxeYsZLjzOVyBZeiO4Ogx3RlGtwdIDJ2eNPGXjrZjZGK4glNvw2Nzl2I7exPm5Ym/dKwd3VEgHwrni2GgdvSQWbdiviMZZRaG0JvbwTRnbb9B25GTAGTWTFLt9yJFwSyf39ZLQgghxMXI7i7D5iwk2ndgwsSfkYnTvv8rZFMRKjd/ErurFJ5vRmvtGE386XY/4brXEaq5jZHuXQy2PkLb/n9H1V1oNje+kstG59N0F3ZPOcnh0+fdy1rkj2mk6Tj8TVTdTdmaD1wybVZV3Un5uo/S3/gbnIE6POF12N0l48Y5POWUrHoPnYe/hcNfS0H1rTNe08jEMDLRCdeZTN/pu7CMFMX1d+Yl6egpWE3lxk/QcfBrtO39MuG61+b25LRMLMvEU7AazT7xHvVCCCGEEGLxkMSfELPEcjnPW/E3GUVR8JVezkDTvXiLt4w75gwuIzl4atLz44MNKKoNZ2DJtNZ0h9cS6z885vVUrAOHtPmcN2pPP0omi1FZOt+hjDILC8AwUSLDWOFg/hdIpdGPnSK7cik4HfmfXwghhBDnpSgKnqINRHv2Yr0i6WBkE7Qf+A8yyT4qN/4FDk/uvaJRWYrW0klm05oxc6mqjUDZdvylV5IYPMFg2xO4QvWo2th/512BJSSGpt9OfKRnL05/LTbnAuiOsMj0nvwF6VgX1Vv+asK9GC9mdncxZWs/eN5xvuItJGtuo+/0/2J3l6LpLpIjLaRGmgEoWv72837tor376D7xU8xskqrNn8Tprz3vurGBIwx1PE3xijuxOUNTuqapcAWWUrnpk7Qf+Codh74x5pivZBtlaz6Qt7WEEEIIIcT8kMSfELPEcjpQRmIzPj9QdhXxyHF8xZeNO+YKLKXv9N2YZgZVtY07nhhswOmvm/DYuXjCaxlqf5J0vHv0SdR0tGNc8lHMHa2tC8vlxCoIzncoo8yCICgKWn+E7Cwk/mxHT6GYFpm1U69YFUIIIUT+ecMbGGx9lFS0BaevBsi1lO868l3S8c5c0s9XNTreqCpHb9yBEotjecZ3i1AUBXdoJe7QygnXc/qXMNTxDEY2PuVuE0Y2TueRbxMou5qSle+cwVVeuuIDx84mlt455vsoxitc8gZSIy10HPwaAIpqw+GtIJPoJRVtpWLDn6M7AuPOMzJxek/+guGu5/EUbsBID9Nx6L+o2vI3kybzMskI/Wd+w3Dn87hDKwiUX5v363F4K6i98v9hZpMoioqiaAx1PkPvqV9TuOSN2FzhvK8phBBCCCHmzqXRx0OIeWC5nCjJmW+abnMVUr3lryb8AOkKLMMyM6RGWsava5kkBhtwT6PN54vcwRUoqj5a9Wdmk2SSfaNPcYu5p7V15ar95ng/kXOy6ZhBH2rfQP7nzmTQj54ks6IOXM78zy+EEEKIKXMFl6HqLmJ9B0dfG2x9lFj/IcrWfBCnv2bMeKOiJPdwUEvnzNYLLAEsksNNUz4nETkBlkm0b3+uZaGYEtNI033iJ7iC9QTKr57vcBY8RVEpX/vHlK39MDVb/45l136V6sv+lsrNf4mRidG691/JJPpHx5tGiqGOZ2ne+TmiffspXfUeytd9lPJ1HwVUOg/9F6Yx9rOikYnTd/puml74DLH+QxTXv4OKDR+ftfarqmpDt/vQbB5U3Umg/Bo03UWk7ZFZWU8IIYQQQswdSfwJMUsspwMlMbM9/s7H4a1E0ewTtkJKxzpy+/uFpp/4U3UnrsBy4gNHcnPFczdt7JL4mxdKNI46OLyg2ny+yAyHUPsieZ9XP9WCksmSXSPVfkIIIcR8U1QdT3gd0b4DACSHm+g7/b+Eqm+ZcN8/HHaM0kK01pkl/mzuEjSbh+RQ45TPiQ0cRVFtGOnhaZ13qetv+j3Z1CAlK991yezrd6FU3YmveAsOXxWKmmue5PCUU7X5U4BF694v5lp6Hv8Jjc/8Jd3Hf4TDV03Nts/iL9uOoijojgAV6z9GKt5J17EfYFkmqZFWuo//mMbnPkWk7VFC1bdSe8U/Eqy8YXSdObk+zUGg4nqGOp7GyMy8c40QQgghhJh/0upTiFliuZwomSwYBmhaXudWVB2nr47kBIm/3P5+Ok7/1Pf3ezlPeA19jb/BNNKkoh2Agt2z8BJPlwKtvQsUBaOseL5DGccsLEBvbMnvz7dloR87hVFdjuWdWnsvIYQQQswub+EGOo/sJBXroPPId3D4qihc8sZJxxtV5dh3H4JMBmzTazuvKCpOfx3J4akn8OIDR/GXbSfau49o3z5cwWXTWvNSlBxpIdLyEOG6O0bb+4uZs7kKqdr8l7Tt/wodh76B7ggRqroZf9l2bK7CceMdvirKVr+fjkPfoGmkhUyiF90RoqD6NgLl10zY8WWuBCtvINLyEIPtTxKuffW8xSGEEEIIIS6MJP6EmCWW0wGAkkjNShLDFVjKUOczWJaF8rI2kInI2f39NPuM5nWH12Kd+jWJwQbSsXZsriJUzZGvsMU0aK2dGCVhcMzsezmbzMIQmBbqwBBmUUFe5lQ7ulGHRkhu35yX+YQQQghx4dwFa1AUjfZ9/45ppHKtB89RhWRUl8HOA2jt3Ri1ldNez+lfQqT1ESzLPG8lWjreQybRm6s+tCyivfspXPqWMe+NxViWZeQq0TxlFFTfOt/hXDR0R5CqzZ8iFW3FFVx+3p9db9EmiurfQbz/MIVL34y3aAOKkt+HRWdCt/vxl21nsO0xQlU3z/gzpRBCCCGEmF/S00OIWWKd3Z9MSc5Ou093aCVGepho776X1jy7v59rBvv7vcjuLkN3FhDrP0wq1oHDK20+54VhoHb2YFQszGpLsyAAqpLXdp+2o6cwCwKYJeOfjBZCCCHE/NBsblzBerLpIUpWvgu7+9ydCCyfFzPoR2vpmNF6rsBSzGycdLz7vGPjkaMoioYrWI+3aCOZRC/pWPuM1r0UWJZFf+PvSI20UrLyj+a0jeSlQLO5cYdWTLl1aqjyRio2/Bm+4s0LIun3olDVLRjpEYa7XpjvUIQQQgghxAxJ4k+I2eI6W/E3HJ2d6UMr8BZtpKfhp2TTI8CL+/tFcQdXzHheRVHwFKwlPnCEdKwDu6ciXyGLaVC7+1CyxoLc3w8ATcMMBVH7BvIynTI0gtbWRWb1MpCn9IUQQogFJbzkDorq34GvZOuUxhtLqtCb2iGVnvZaDn8toExpv774wFGcgSVougt3aCWq7hrzUJx4iWmk6DryXQaa76NwyRtw+uvmOySxQNndxXiLNjHY+jCWZc53OEIIIYQQYgYk8SfELLFcTozSQmz7j+b2QcszRVEoXvFOsCx6TvwUy7JIDJ5EUTScgQv7IO8JryEd7yabGsThkYq/+aC1dWG5XVih+dvj43zMwiBqf34q/vTjp7Ecdoy66rzMJ4QQQoj8cQWWEqq8ccrjM8vrwDLRTzVNey1Nd+HwVRHrP3TOcZaZJR45gbtgNZDbA9sTXke0d/+017zYpeM9tOz+Z2L9Bylb+8cU1N4+3yGJBS5UfSvpeDd9p+/GyMTmOxwhhBBCCDFNkvgTYrYoCunLN6EOx9CPnpqVJXS7n+IVdxLt3ctIzy7ikRNn9/e7sD353KFVo+1m7Jd64s+yUNu6sD+3ByVPSa6p0Nq6ctV+C7j6zSwsQB0cgUx27AHLmt5EmQz6ySayK5aAvnDaHAkhhBBihtxOsjUV6Mcbp/++AAiUX020bz+ZRN+kY5LDTZjZBJ6ziT8Ab9FGUtFWMoneGYV9MYpHGmjZ/U9gZam67G/wFcteyuL8XIElFNTczmDbY5x57q/pPflLMsn++Q5LCCGEEEJMkST+hJhFVkGAzKql2PYfRYnFZ2UNX/Fl+Iq30tvwcxKDJ3CFZt7m80Wq7sQVXIaiaNjdJXmIchGyLLTmdpy/ewznw8+gnWnDde/jaCfPzPrSykgMdWhk4bb5PMsIh3KJ0ZcnRA0D5+8fy1W6TpF+qhkla5BduWQWohRCCCHEfMiuWoY6HEXt6Jn2uf7SK9F0F4Ntj006Jj5wFM3mweGrGX3NU7AWRbVJu8+zLDNL9/Ef4vCUU3XZ30gnDzEthUvfSN32LxCsupnhruc58/ynGe7eOd9hCbGgpUZapUpWCCHEgiCJPyFmWWbTGtB1bLsOztoaxSv+ABQNIxPDHazPy5yB8uvwlV6Boup5mW9RSKXRWjqw7TyA856HcDz2PJZNI/mqa0i847Vkl9bgeGYP9mf3zEr71hdpbV2gKBhlxbO2Rj5YIT9o6pjEn+3QCdS+CLaDx6eW7LYs9GOnyNZUYHncsxitEEIIIeaSWRzGDAWwHT897XNVzUGg/FqGOp7ByCYmHBMbOHq2S8VLH2lV3Ym7YLW0+zxruOsFMoleiuv/AE2X91li+nS7n8Ilr6fuyi/gLdpEb8PPyaaH5yUW2W9QLHSx/sM07/5/9J785XyHIoQQQsxu4u/06dPcc889fPOb36S3N9dupbm5mWg0OpvLCrGw2G2kt65HP9OG2tE9K0toNi+lq96Dw1uFM5CfqilfyWWUrnp3XuZa6NS+AZy/exT3z36L49Hn0M+0YRaESN5+Hanbr8csLwFNI33VFlJXb0E/3Yzz94+hHzqR+56m0nmNR2vrxCgtBLstr/PmnapihkOofbnEnzIcxXbwONlVS7F0HduB4+edQokMow5FyS6vneVghRBCCDGnFIXsqqVorZ0o0el3vghUXI9lZhjufHbcMSMTIznSNLq/38t5CzeSGDo9b8mJhcI0M/Q3/R5f8WU4fFXzHY5Y5FTdSUn9nYBCb8Mv5nz9WP8RTj31Z/SdvgfTzMz5+mLuZJIRBtufWHTf5+RwE52Hv4WqOYn27V908QshhLj4zEopTyKR4DOf+Qz3338/iqJgmibXXHMNRUVFfPnLX6ayspJPfepTs7G0EAuSsbQa40Qj9h37Sd5xM2j538fME16LJ7w27/Ne1CwL/eBx7PuOYoaDpK7ZillSiOV1T7q3nrG8jkRBEPvOg7kWrtlc5Z/p82DUVZFdXovl9848JsNA6+wlvWn8jayFyCgM5SoULQv78/uwXE7Sl61D97ix7zlMZm39Ob8eWmsHlk3HLCuaw6iFEEIIMReyS6qw7TqIfqKRzJbpvU+1OUP4SrYy2PoYwcobx1T2xSMnwDJxF6wad563cD3dikKs9wCBimsu+BoWq+GOZ8imBimoe918hyIuEprdR9Hyt9F19Hv4+i7HW7j+nOOzqUE0ewDlAvcstyyD3lO/RLf5ibQ+xEjPbkpWvBN3wcoLmlcsTD0nfkKs/xCDbU9Suvq9OH3V8x3SeaXjPbQf/Bp2TwXF9X9Ay+7/R7z/CN6ijfMdmhBCiEvYrFT8/cu//AsvvPAC3/72t9mzZw/WyzZ0v+6663j66adnY1khFi5FIXP5RtTBEbRZqvoT06OMxHDc/wT2fUfJrF9B8jU3YCyrwfJ5Jk36vcgKh0jdfh2Jd76BxJteReq6bZjlxejHT+O66wEcDzyJdqYNXva3b6rUzl4wDIzKsple2pwywyHU4Sh6wxm0jm7SV2wEXSe7ahmWy3Hevf70lg6MipJZSYYLIYQQYp7ZbGSX1aA3nJlRm/Rg1U1kkn3jWnfGB45gd5dic4bHnaPZfTh9NcQj5+88cLEyjRT9TffhL9mGw7M43lOKxcFXcjnugjX0nPgpZjY56bj4wDEan/0rek/+z5j7QTMx1PEM6VgXZev+mOqtf4fuCNC2/9/oOvZDLGv2tl9YTC70a7xQxAeOE+s/RHjJ61EUldbdX6D/zO+xzOx8hzapbHqY9gNfRdNdVKz/GE5/DQ5vBSPdu+Y7NCGEEJe4WUn8Pfjgg3zyk5/k6quvxmYb26quoqKC9vb22VhWiAXNDAexbDrK4Mh8h3LJU4ZGcP7uEdRYguTt15HZvBbUGfw5VBSsgA9jSTXp7VtIvP01pK7ZCpaF44kXcsm/adLau7A8Lqygb/rxzAOzMASA/YV9GDXlGFXluQO6RmbDKvTTLSiRoQnPVeIJ1L7IS+cIIYQQ4qKTXbkUJZlCa5r+Z0CnrwZXsJ7B1kcAyCT76T11FyPdO3GH10x6nju0ivjg8Ut2T7Ch9icxMiMU1L52vkMRFxlFUShZ8YcY2Rh9jfdMOMZIj9B19HvYXIUMtj3OQPN9M17PyCboP/Nb/KVX4PRV4/CUUbnp/1C84p0Mdz7HYNsTM577YmEaKZp3/gN9p/93vkO5IJZl0nv61zj9SyioeTXVl/0NoZrb6G/6Pa37vjxpotmyrHlrq2lZJp2HvolppKnY8HE0e+4zvLd4K7H+g5hGal7iEkIIIWCWEn/xeJyioonbtiUSE2/OLsRFT1Gw/D7UIUn8zausgePxF7AcDhJ33IxZUpi/uXUdY1kNqduvx6ipwL5j/7T3/9PaujAqS89bdbhQWAEflk3HUlXSl28ccyy7vBbL68a+98iE52qtnaAoGFXyJLoQQghxsbKCfozSQvTGlhmdH6q6mcTQKdr2f4Uzz3+aoY6nCJRfS/gcSS13aAVGeoR0rGOmYS9aZjbJQPMDBMquwu4unu9wxEXI5iqkcMkbGGx7nGjfgTHHLMui6/iPsCyDqs1/SXjJG+hv/A2D7U/NaK1I8wOY2RThJW8YfU1RVIIV1xKouJb+xt+QSUYu5HIWPMuy6D7+Y4a7XpjweKTlYdLxbgaaHyDS+ugcR5c/I907SY20ULTsLSiKgqLqFC55PVWb/5J0tJ3Oo98d9zCHaWboOPR1mnf8wzkrUKfKsgxGuneRGDw5pfFD7U+RGDpF+doPYXO9dF/BV3wZppEi1n/ogmMSQgghZmpW9vhbsWIFDz30EFdfffW4Y0888QRr18o+ZOLSZAZ8KJL4m1f2F/ahDkdJvPZGcNhnbZ30FRtx3v0Q9l0HSV992fgBljUuuacMR1GHo2S2nnu/jAVFUciuXo7p92J53GOPaRrpTWtwPL0Ltbcfs2hsOy6tpQOjJDyr3wchhBBCzD+ztAj9+OkJ3/+cj6dwPQ5vBdnkAMXL34G/9ApU3XnOc5yBpSiqjXjkOA5v5YWEvuhEWh/BNJIU1L56vkMRF7Fg5Y3EIyfoOPh1CmpeTXjJHSiKylDHk8T6DlC+/mPojiAFNbdjpIfpOfFTNJsXX/HmKa+RSfYTaX2EUPWt2JyhcccLl7yRaO8+ek/9kvK1H87n5WEaaVLxBOA6d4yJfqK9exjp2Usm2YeqOVA1B4rmwBNeR0HN7Re8x2F84AhDHU8z3LUDp3/JmIR+Nj1MpOUhQlU3ASq9J3+J7gjiK95yQWvONdNI09d4D96izbiCy8YccwWWUrb2Q7Qf/Bq9J39Jcf07zp6TouPQN0gMngIs+pvvo2jpm8bNbVkm2WQ/KCqKooGioepOVPWl7mSmmWG483kizQ+QSfah2TzUXP55dPvkXXiyqUH6Gu8mUH4truDyMcfs7mKcvhpGunfjK57gXoAQQggxB2Yl8ffRj36Uj370oyQSCW677TYUReHgwYP8/ve/56677uI73/nObCwrxIJnBbxoHV3zHcYlSzt5Bv1kE6mrL8MqCMzqWpbbReayddif20t2aQ1m2dkqaMPAvvMA2pk2kq+7Kben4IvxtXWBqmKUTVwxvVBlNk/eastYWo15+AT2nQdJvvr6l272ZbJonT2kN8uDIEIIIcTFziwMoSTTKNH4mPc+U6EoKtVb/w5QpnwDXdXsuAJLiEdOEKq6eQYRL06ZZD8DzQ8QrLxhwv0PhcgXRVEpX/cRIi0P0tf4G5LDjRTUvprek78iUHEd3sINZ8cpFC1/G0YmStfR75IauZVg1Y3odv951+hv/A2q7qKg+lUTHtdsboqWvZWuo/9NrP8InnO0/52urmM/Id6/l9I1H8YZHD9vtHcfA80PkBw+g6La8ITX4AmvxTLTmEYKIz1Cf+M9mJkYhWcr2GbCsiz6G3+D01+HkR6h58SPqdj4CRQl17yr/8zvQFEpqHk1qu4imxyg6+j30Ox+3K9IRi1kg22PYaSGKNz4xgmPe8JrKa6/k54TP8HmKiJQfjUdB79GcriJig1/SmLwJANN9+IvvXLMvqaWmaX9wFeJR06Mm1Oz+7E5C9AdIZLDZ8imhvAVb6Fk5bvoPPJt+k79mtLV75005t6Tv0RRbRQunThmb/Fl9J/5LWY2ed6HVYQQQojZMCuJv+uvv55/+7d/44tf/CK/+93vAPjc5z5HaWkpX/rSl7jyyitnY1khFjwz4EdJpiGZAqdjvsO5pCj9gzie30e2vg5jee2crJmtr0M73Yz9uT0k33ALSiyB4/EXUIeGsXQd+66DpG586e+h1taFUVIIr9gbdVFTFNKXb8T5wFNop5pHv/ZaRzcYJka17O8nhBBCXOyMcAFAbm/faSb+gNGb3NPhCq0i0vIglmXkqjwuAb2nfo2mu2RvPzEnFEWloOZ2nP4ldB75Dm37/g27p4yiZW8ZN6501Xvoc4QYbHuMSOvD+Mu2E6q6ZcJ2tJZlMdTxFMNdL1C84p3nTJr4SrYx3PksPQ0/o2bbZ1G1C+8kkkn0MdT1Am5vIW37v07pmg/iLdp0NjaTvtN3E2l5EHfBakrXfABveP2EMbraltPT8HNQoHDpzJJ/sb79JEeaqdz0F2BZtO3/d4Y6niFYcS3peBdDHU9TuPRNaLbc39WS1e/BOPAfdB76L6q2/DV2d8mFfTHmgJEeYaD5fgIV150z3mDFtWQSPfSe/CXDnc+QSfRTseHPcAWX4wwsYbjreXob/oeKjX+OoihnW6T+iMTQaUpXvy+3/55lYlkmRiZGNjlANjVAJjmAp2AtoepbsJ9NGhYueRPdJ36Mv2w77tCKcbHE+g8z0rOb0tXvH/3av5Kv+DL6Tt9FtO8A/tLLgdzPz0jXDhz+Ghwe+RwshBBids1K4g/gtttu47bbbuPMmTNEIhECgQBLly6dreWEWBTMgBcAdTiKKYm/uWOaOJ54ATPgG7cP3axSFNLbt+D6zcO5hF9XL5bLSeI1N6IODeN4cidqRzdmeQlks2hdF2cFnFlWTLauEvvuQyRqKsBuQ2vpwAz6sfze+Q5PCCGEELPN7cRyu1D7BjDq5qb1pju0gv7Ge0gON+MKLJmTNedTfOAY0Z49uRvR+rnbEwqRT+7QCmq2fob+pnsJVt6Aqo3/nKuoOkXL3kxBzW0Mtj/JYNujDHU8jb/kcsJ1r8XmynU8MbIJeo7/mJGe3QQrridQPn77mDHzKgrF9X9A887P09/4GzzhtWQSfWSSvaBohOteN+0HByKtD6Ppbtbe9E8ce/6bdBz+FmWr34+7YBWdR75LPHKcomVvJVh18zmTecHKGwByyT8UCpe+eVrJP8sy6Wv8Le7QStyhlQAEyq+m79Sv8YTX0nf6bnRHcHQdAFW1UbbuIzS98PcMdTxD0bI3T+va50N/070AhGtfc96xhUvfRCbRRzxyjIqNH8cVyN1jVFUbxfV/QPuB/yDasxtfyVYGmu5luOsFStd8AH/JtmnF5C+/iuGu5+k58VOqt/3d2LagRoqeEz/DHVqF7xzz2lxhnP4ljPTsxl96OZlEH13Hvk9i8CSKaiO85PWEqm6e0YMtQgghxFTMWuLvRXV1ddTV1c32MkIsCpY/1yNeGRqGYmm/M1e0ti7U4SjJO24CfW6f+LaCfjLrV2Hbf5RsXSXp7VvAbsMoCGAcb8S+Yz/J19+C1tWbq4CrLJ3T+OZKZut6tP99ENv+o7n/v62T7HL5t0EIIYS4VJhFIdT+yJyt5/TVoGpOEpETF33izzKz9DT8HFew/pw3ooWYLbojSMmKPzzvOM3mIVz7akJVNzPU+QwDTfcz0r0Tf9lVeIs20tPwc4xMlLK1H5ry3mh2TxmhmtsYaLqXSOvDoKjojiDZ5AB2VxH+su1Tvo5sepihjmcorHs1ut1DxdoPAj+g8+h/o9t8WJZB5YY/x12wckrzBStvwMKit+F/UHXXlJJbL4r27CEda6dk5V+Nvla47C3E+o/QcfA/SUXbKV39vjFJKQBNd+MpWE08cmzKa82XdLybofYnCS+5I1eRdx6KolK29kOYRmrcAw6e8Fq8RRvpPfUrjGyc/jO/JbzkDdNO+r24TvGKP6Rl1z8SaX6QcF2uijqT6KP/zG/JpodGKwvPxVdyGX2n7mKw7XH6Tt+NZvNQsfHPiQ8cpe/UXcR691Oy6j0TVr4KIYQQF2pWEn///u//TiQS4fOf//y4Y3//939POBzm4x//+GwsLcTCpmtYXjfq4AjGfMdyCdEbzmCGQ5jh8ZvCz4XMxlUYVaW59V/8cHC2Babrd4+iHz2FGo1hed1YgfN/4FmMLI+bzIZV2PcewfJ7UZJpafMphBBCXEKMwgJsB4+DZb30fmgWKaqOK7iceOQ4BbW3T/m8+MAxIq0PE6q6BXfBqlmMMH8irY+STvRQs/ZDM95LTIi5pGp2QpU3Eii7isH2J4k0P8BQx1M4fNVUbPj4tBMh4brX4i5YjW4PYHMWoKg6nYe/Q+/pu/EWbZ7yHmuDrY/lWphW3wiAomqUrHo3qu4iNdJC6er3Y3NN7wHeUOWNGKmh3B50JZdjcxWe9xzLMug/8zs84XWjVW2QS+oVr/hDOg5+DYevetJEvzu0kuGuHRjpkSkl1OZL3+m70ewBgpU3TfkcRVEnrWouWvZ2mnZ8lp4TP8Vftp2Cmqn/7X8lh7eCYPUtDDTfj6o5iPYdIDHYgKo5KFr+tin9jHqLttB78lf0NPwcf+mVFNW/A0134SlYjadwA93HfkDzrs9TueHjuBbRnoxCCCEWh1mpKf/973/P5s2bJzy2ZcsW7r333tlYVohFwQz4UIdG5juMS4YSi6O1dZFdMY/VZYqCWVgw7iaXFQ6SXbEE2/6jaM0dGJVlc3IjbL5k1yzH9Hmwv7Afy+nALCqY75CEEEIIMUfMwhBKJosyh++D3aGVJIZOYZqZ847NJPvpOPRN2vb/O8mRFtoOfJXBtsexLGsOIp25TDLCQNO9BCuux+GdmzaqQuSLqjkoqL6Vuiv/iYoNf0bVlr+aUfWTomi4g8uxu4tR1Nzz7YXL3oSZTdDffN+U5jCyCQbbnyBQfu2YfdsURaW4/h1UbfnUtJN+LyqofTWa7qGv8Z4pjR/p2kE63kW47o5xx7yF6ylZ+UeUrn7fpG0iXaFVgEV88MSM4p0LicFTRHv3Urj0DXnZmxFy7TWL69+Ov/QKSla884IfhAjXvgbdHqD31K9RFI3S1e9jyVX/SrDiuqnF4wxRtPytlK/7CKWr3zsmYekOLqdm699hcxYy2PbEBcUphBBCTGRWKv56enooKyub8FhpaSldXV2zsawQi4IZ8KG1y+/AXNFONWNpKtm6qvkOZULpTatxnWlBiScwKhf+5usXRNNIX7ER50PPYFRd3ElOIYQQQoz1YucFtS+CEfTPyZru0EosM0Ny6PToHlmvZFkmkZaH6G/6PZrmonT1+0fbs/U0/JxUtJ3i+neMJhMWmsG2x1BUfcIEgRCLhao78YTzu9e5zRmmoOZVDDTfT6Ds6vMmFIfan8IyUgSrbs5rHJBLcIaXvJ7u4z8iVHUzTn/tpGMtM0v/md/jLdqM018z4Zjz7X1oc4awu0uJDxyfcsvUuWRZFr2nfn3OqsWZCpRfQ6D8mrzMpWoOqi77a7BMdEdwRnOEzvHzpOpOfCXbiDQ/gGmk85YAFUIIIWCWKv4KCgo4efLkhMdOnjxJIBCYjWWFWBSsgA91OAamOd+hXPwsC1vDGYzaSrDbzj9+PjgdpLeux3I6MEov/t7+ZkUp6e2byaxbMd+hCCGEEGIuOeyYfi9q38CcLWn3VqDZvMQjE1e9WJZJz4mf0Xf6boLl11Fzxefxl16OomgULX8bJSvfzXDns7Tt/ypGJjZncU9HYugU7tAqNJt7vkMRYsEJVd+KZvfTe+pXo69ZZpbhrhfoafg5g+1PkRxuwsgmiLQ+gr/0SmzO2dkewl+2Hbungt5Tvz5nJfFQ53Nkkv2E6153Qeu5C1Yt2H3+or17SA43UrT0LZNWLS4Uut0/46TfVPiKNmEaSeIDR2dtDSGEEJemWXls8eabb+Y///M/Wb9+PevXrx99/eDBg3z961/n9ttn3mdbiMXODPjAslBGYhftfm4LhdrZgxKNk12xZL5DOSdjeR2JZbWXTAXcQv9+CCGEEGJ2mIUhtP5Bzt94Mz8URcUVWkE8chx4/ZhjuaTfTxnqeIbSVe/GX7Z93PmB8quwu4vpOPQNWvd+kYoNH8fmXDityk0zQ2qkZUFW9AixEKiag6Klb6HzyLeJ9u4jkxwg0vow2eQANlcxg+1PgmUCuc9hoZpXzVosiqJStOzNtB/4D2J9B/AWbRw3xjQzDDTdi69kKw5vxQWt5w6tZLDtcTKJvintKzhXLDNL3+m78YTX4S6YuBL7UmL3lGH3lBPt3Tvhz4QQQggxU7OS+PvzP/9z9u7dy9vf/naWLl1KcXExPT09nD59mlWrVvGJT3xiNpYVYlF4MdmnDo1gSOJvVukNZzCDvsWxl9wlkvQTQgghxKXLLAyhN7fnOl+oc1Pl4Q6tpKfh55jZJKruBM4m/Y7/hKHOZydN+r3IFVxO1Za/on3/V2nd8y9UbPizC74hny+pkVYsM4MrsHS+QxFiwfIWb8HVXk/HoW+AouIv2Uao+lYc3kpMI00q2kZqpBlVc2J3z+7WC+6CNbgLVtN3+i484bXjWggPtT9FNj10wdV+AK7gClBU4pFjBFz5aX05EdNIM9K1A1/ZFajq5F12TDPDcOfzRFoeIpscoHz9x2YtpsXGV7yFSOsjmGbmnF9DIYQQYjpmJfHn8/n4xS9+wT333MMLL7zA4OAg9fX1vPvd7+b1r389drv0rRaXLsvlxLLpKEMj8x3KxcM0cd7/JKbHRWbLOiyfB5Ip9OYO0lvWSlJNCCGEEGIBMAsLwDBRIsNY4eCcrOkOrQTLpP3g17A5w6g2N5lEH7G+g5Sufi/+0ivOO4fdXULVlk/RfuA/ad37r5Sv+yjuUP0cRH9uyeFGFNWGw1s536EIsWApikLJyj9ipHsH/tLt2Fzh0WOqZscVWIIrMDcdSRRFoWjpm2ne9Y9EWh+hoOa20WOmkWKg+X78pVfmJQGp2dw4fTXEB47nbc+7iQy2PU7f6btIRlsoWfGH446bZobB1keItD6KkR7BW7yZsjUfxOEpn7WYFhtv0Sb6z/yOROQ4nvC6+Q5HCCHERWLWdii32+287W1v421ve9tsLSHE4qQouX3+JPGXN1pTO2pPP4rTgX73g2RWLwddAyyyyybeEF0IIYQQQswtsyAIioLWN0B2jhJ/NlcxoZrbSEfbySR6MUbiWGaG0tXvw196+ZTn0R1BKjf/HzoPfZP2A1+ldPX78RVvnsXIzy8xdBqnr2Zc1ZAQYiy7uzgvVXT54PBVEaq+hb7T/0s2NUjRsregqDqDbU9gZmKEa1+Tt7XcoVUMdT6NZZmzspfei0k9m6uYofYncQfr8ZVsHT1umVk6D32T+MBR/GXbCVXfOutVlYuR3VOB3V3CSM9eSfwJIYTIG/mEIMQ8MCXxNznLQhmOog6NYBaGsNyu8463HWnAKCsiddN2bIcasB1uAMMgW1cJTsfcxC2EEEIIIc7NpmMGfah9EVgxN0vmKmzelJe5NN1N+YY/pfvo9+k8/C2MFX9AsOL6vMw9E8mhRnwl2+ZtfSHEzBQufTM2ZyG9J39BKtpGyco/ItLyIP7yq/O6H5+7YCUDzfeRjnXMSmXwSNcOsulhai//B/qb7qX7+I9x+Kqxu0tySb8j3yYeOUb5hj/BU7Am7+tfLBRFwVu0haGOJ7HMP5SHOYQQQuRF3v412bx5Mz/60Y9Yu3YtmzZtQjlHaz1FUdizZ0++lhZi0bECPpS2rvkOY0HRG86gHzuVS4gaJgBGVRmpm68653lqdx9qX4TULVeBzUZm8xqyK+rQj5wku7xuLkIXQgghhBBTZBYW5BJ/i5Sq2ihd8wE0u5+eEz8jmxoiXHfHOT//zoZMcoBsKjJnLQqFEPmjKArByutxeCvoOPwtmnd8FhSVgppX53UdZ2ApimojPnAs74k/yzKJtDyEt2gDdk8ZJSveScvI/6Pz8Leo2vwpuo//iFjfIcrWfUSSflPgLd7MQPN9xAcb8BSsnu9whBBCXATylvh73/veR1FR0ej/P9cffIRYTEy/DyWVhmRKKtIADAPbzgOYhSHSW9ZhhvyofRHse4+gxOJYHvekp9qOnMQM+jAqSkdfszxuMts2zEXkQgghhBBiGszCEPqpZjAM0LT5DmdGFEWlaPnb0R0h+k7fhZEeonjFO2elld5kkkONQO7GvhBicXIFl1N92afpPv5DXMF6bM5QXudXVRuu4HLikWOEqm/J69yxvgOk412UrHpPbi3dSdnaD9Oy+ws07fgs2fQQ5Ws/jLdwfV7XvVg5vFXYnIVEe/ZK4k8IIURe5C3x9yd/8icAWJbFu971LtxuN3a7PV/TC3FRMQM+gFw7S0n8oXb2omSypC/fiBUKALmnwW0HjqGdaia7YdWE5ylDI2gtHaSv2gLysIEQQgghxIJnFobAslD7BzGLw/MdzowpikJBzavQbF66j/8Qb9EWPOG5q2pJDJ/G5ipCt/vnbE0hRP7ZnCEqN/75rM3vDq1koOleLDObtxaSlmUx0PwgruDyMVXHDm8lxfV30nPiJ5Stfj/eok15We9SoCgK3uItDHc9R7H1ByjK4nww5pUsy5j0WizLwDTSaPp5tncRQggxI3l/JDGTybB9+3aee+65fE8txEXD8nsBZJ+/s/SWdkyfByv4shsXdhtGbSW2hjNgWROeZzt6EsvpILu0eo4iFUIIIYQQF8IMBUBVF3W7z5fzl23H7i5hpHvnnK6bHGrE6Zc2n0KIc3OHVmEaKRKDJ/M2Z2LwJMnhRkLVrxp3LFB+FUuv/Sq+kq15W+9S4SvejJEeYaDpPoxMdL7DuSCWZdF97Eecee5vyCR6xx03zQxt+/6d5p2fw8wm5yFCIYS4+OU98We32yktLcUwjHxPLcTFQ9ewvG4USfyBZaE1d2DUVIyr2suuWIISjaN29ow/L5lCP9lMdtXSRdsmSgghhBDikqNpmAUB1O7xNwIXI0VR8JVsI9q7D9NIX/B8RnqEaN8BrEkefAMwjTSpkRbZ308IcV4OXxUObyWdR75D4myL4AsVaXkQu6cCT3jdhMdVTbp/zYTDV4u/7CoGmu6j8dlP0XH4W8T6D2NZ5nyHNm39Z37LUOczWJZF+4H/wEi/dO/Lsky6j/2Q5PCZXKKz+f55jFQIIS5es7IJwZ133skPfvADUqnUbEwvxEXBDPil4g9QewdQkimM6vJxx8yiAsygD73hzLhj+olGwCKzQvY1EUIIIYRYTLJ1VegtHZC4OJ7y95VsxTSSxPoPX9A8ppGm/eB/0nHw6/Sd/vWkyb/USDOWZcj+fkKI81IUlcpN/we7u5S2/f9GtO/gjOeyLJNI6yPE+g9RUPMqFNluI68URaF01bupu+pfKFz6JtKxTtoP/AedR76DaSye+6uD7U8x0HQvhUvfTNXmv8TIJmg/+LXRa+hv/A0j3bsoXf0+CmpuI9LyEOl49zxHLYQQF5+87fH3cp2dnZw5c4brr7+ebdu2UVhYOO4NwWc+85nZWFqIRcMM+tBaO+c7jBnTTjahDkfJbFl7YfM0t2M5HRPv8aIoZOvrsO8+RDqZgrP7Iap9A9gON5BdVgsu2SNRCCGEEGIxyS6vxb73MHrDmUn3cl5M7O5SnL4aRrp34ivePKM5LMui+/iPSEU7CFXdQqTlYcxskuIVf4iijH1eNzHUiKo5cHgr8hG+EOIip9k8VGz8c7qOfpeOQ/9FyYp3ESi/alpzZJIRuo/9gHjkGKGqm/GVbJulaIVu9xOquplg5U1Ee/fRdex7tO37MuXrPobuCMx3eOcU7TtIT8PPCFbeQKj6VhRFoWL9n9C278t0HvkunvAaBprvp2jZW/AVb8E01jHc+Ty9J39B+fo/lWSyEELk0awk/h5//HHs9lxp/6FDh8YdVxRFEn/ikmf5vagjMTBNUGel+HbWKPEE9hf2oWQNsstrR/csnDbLQmtuz1X7TfIGL7u0Bvvuw+inmsmurUft6cfx0NNYoQDpyyZuLSKEEEIIIRYwh53skmpsJxrJrlux6N4LT8RXspW+xt9gZONounva50daHmCkeydlaz6Ir2QrDm8FXcd/hGmkKF31HhT1pY/uyeFGHL5aFEXa3QshpkbV7JSt/WN6TvyM7uM/JNL6MK7AMlzBZbgCy7C5Cic9d6R7N90nfoKqOajc+AncBYv/gY3FQFEUfMWbsbnCdBz8Oi27v0DFhj/B4a2c79AAMDIxYv2HMTJRzGwcIxNjqPMZvIUbKFr+9tEkntNfS9naD9N+8GvE+g4QrLyBYNUtQO7nsmj5W+k49A1i/QfxFm6Yz0sSQoiLyqwk/h577LHZmFaIi4oZ8INloQxHsYL++Q5nWmz7joKmYWkq+vHTZLbN7M2ZMjiMOhIjfcU5nlZ2OsjWlKOfPINZGMLxyLOYBUFSt1wFNtsMr0AIIYQQQsyn7Mql6Ceb0Nq6Jmz5vth4i7fSe+ouor37CZRtn9a50b4D9J2+h4La1+Ar2QqAv2w7iuag68h3ac/EKFnxh9hchViWRWLoNIGyq2fjMoQQFzFFUSle8Ye4C1YRHzhGYugUQx1PgaJSufEvcIfqx52TinXQeeTbeIu3ULLinWg2zzxEfmlz+mqo2vI3dBz6Oq17vkjlpr/A6a/N+zrDnc8TaX2I8vV/is1ZcM6x0b6D9Bz/Mdn0EIpqQ9PdqDYP3sJNlKx817hKdU94LWVrPkByqJHCZW8ZU9nnKdyIu2A1vQ2/wB1aJXtECiFEnuQ18ZdKpXjyySdpa2ujpKSEK6+8koKCc/9jIcSlyiwIgKKgdfaQXUSJP2VgCP1kE+ltG1BicfSTZ8hsXgP69N+c6c3tWDYds6zonOOy9XU4H3wa54NPYZQUkrrpKrDNynMLQgghhBBiDpiFIcyiAvRjpy6KxJ/NGcIVrGeke+e0En/peDddR/4bb9FGwnWvG3PMV7wFVXPSfewHNO34e4IV1+MruRwjPYwzsCTflyCEuATkqsi24CveAuSqtpp3fp5Y34EJE3/xyHEUVad01XslITOPbM4QVZv/krZ9X6br6H9TvfUzqFr+tj0ZbH+SnhM/RVE0ehv+h/L1H51wnJGN03vyVwx3PosnvJaqFX9z3iThi3zFl+Ervmzc64qiUFz/Dpp3fI5Iy0OE6157QdciRD5ZlklyqBFnYMm4hLYQC13e7px3dHTw3ve+l5aWltFNyAOBAF/72tfYunVrvpYR4uLhsGNUlKA1tpJdtWy+o5ky++6DmD4P2RV1KPEEtsMNaGdaYdXSac+ltXRgVJaCdu42RWZZMWbIj+V2k7rxStClrZEQQgghxGKXWbkUx9O7UIZGsAK++Q7ngvlKttLT8DOy6WF0+9Qe7BvufH70pvpEN5Q84TXUXvmPRFoeJtLyEJG2XHcdl78ur7ELIS5Nms2DO7SCxGDDhMcTkQacvlpJ+i0AquagdPX7aN75j/SduoviFXeOG2MaKTLxHjLJPtKJXoz0MK7A0lwlne6ccN5I6yP0nvwlwcobcQWX0Xn420R79+Et2jRmXHK4iY5D38DMJihZ+Uf4y67K2558dncpgYrrGGx7jIKa28a0txZiPg22PUbvyV9SsvJdBMqvme9whJiWvP0l/fKXv8zQ0BD//M//zNq1a2lra+OLX/win/3sZ7nvvvvytYwQF5VsXVXuZkc0juWd/l4gc01t60Jr784l3zQNy+fFqCzFdvQ02ZXTe+pYicZQ+wfJrF0xhcEKydfdlNv/RTZ7FkIIIYS4KBh1lVg7D6CfaJxx6/iFxFe8md6GnzPSs5tQ5Y1TOiceOYq7YPWkN2Qhd7M3XPdaAhXXMnDm95hGEs2++BOlQoiFwRVcznD3znF7lOZaC58kUCY3uxcKu7uUomVvpqfh53gKN+AJrwFy36vB1kfoa7wby8wCoGpOVJubSMtDKKqOK7gCT3gNuiOIpntQdTex/kP0n/ktBTW3EV7yRgA84XX0NPwPrtBKNN0FQHKkmbb9X8HuLqFs86ewucJ5v7ZA2VUMtj1GPHIMT3hd3ucXYrpS0Tb6Tv8vquYk0vLQ2WS3VP2JxSNvib+9e/fyiU98gte//vUALF26lHA4zFvf+lYGBgak5acQEzBqyuE5Fe1MK9l150mApdLYDhwjs2XteSvkZoVlYd99EKOkcEw7psyqZTgffgalpx8KvFOeTmvpAFXNVfxN6QSp8hNCCCGEuKhoGtnltegNL7aOX9xP+Gs2L+7wWka6dk4p8WdkoiSHmwmUXzel+XW7f8IKDyGEuBCu4AqwTBKDp/AWrh99PR3vxEiP4JqgBaiYP4GK64n2HaD72A+oufyzAHQd+wGxvoOEqm7GW7wFm6sIzeZDURTS8R5i/YeI9R2k79RdWJYxZr5w3R0U1L5mtHqvuP5OmnZ+lv7G31Bc/w5SI620n036VWz8+JjkcD7ZvZXYPWWMdO+SxJ+Yd6aRpvPId7G7Syiqv5O2vf9KtHfvhO1qhVio8vbJqquri/r6sW8GVqxYgWVZ9PT0SOJPiInYbGSrytEbW86b+NNaO7EdOYlRVYZZVjxHAb5s/VPNqJFhkq+7cUzVnVlRgunzoB09BStrpj5fcztGWTHYbbMRrhBCCCGEWASyK5diO9yA3thKtn7xt6/0l2yj88h3SMd7sLvP/Z49HjkOWLgLVs9NcEIIMQGbqwjdESQxeHJM4i8x2ICiaLgC09/WQ8weRVEoWfluWnZ9ns7D3yYd78EyU5Sv/5Mx378X2d3F2N03Eaq6CcsyMbNJzGwcIxtDUTQc3sox422uMIV1d9B76i4c3ir6Tt+FzVlIxYbZS/q9eF2+4q1EWh7ENFJ53cNQiOnqO/2/ZBK9VF/2tzi8FbhDKxlofgBv0Za8tbgVYrblrT7Vsiy0V1TkqGpuetM087WMEBcdY0kV6sAQyuDwOcepkaHc/+0dmIuwxtHauzCLw5iFr0jiKwrZlUvRzrRhxRJTmyyeROvqw6ityH+gQgghhBBi0bB8nty+16eb5zuUvPAUbkDV3Qx3PnPesfGBo9g9ZdicoTmITAghJqYoCq5g/bh9/hKRkzh8NZKAWYBszhDF9XcSjxzH5iygeuvfTZj0eyVFUdFsbmyuQpy+mnFJvxcFq27C4aui+/gP0R0hKjb+OZpt9ren8ZVswzRSxPoOXvBc0b6D9Dfdy0DLQwy2Pc5Qx7MYmVgeohQXu1j/YQbbHqNw6ZtweHP3LQtqbic10kI8cnSeoxNi6vLaS+Vf/uVf8PnG7zXwT//0T3i9L7UAVBSFb3zjG/lcWohFy6gsxbLp6GdayWxaM+m4FxN/Wu8A2bkK7uXrD45gFk9cuZtdXot93xGMQydhxfmfBtSb23MJw5e1DBVCCCGEEJcmo7YS+3N7IZEC1+K+waxqdvyllzPU+TzhujsA+4TjLMsiPnAMT9HGOY1PCCEm4grWM9KzGzObRNWdub9Rgw34y66c79DEJHwlW7G7S7F7y1GU/G6NoigapaveQ6TlYYqWvQXN5snr/JOxu4tx+usY6d6Fr2TrjOawLIv+pvvob7wHzebFsgwsM4NlZon27qFiw5/lOWqxmBmZGJ2Hv002PZTbv09RySR68YTXEnxZ23ZXaCVOXw2R5gfwFEx+71aIhSRvib+tW3N/kGOx2JReF0KcpWkYNRVoja1kNq4e00bz5dSBIdBU1J5+sKxJx80K00QdHiFbXzvxcYcdc1kN5sEGWH7+Fk1aUxtGeTE4F/eNHSGEEEIIceGyVWXYAb2146Jo9xkov4bBtseJ9R8iWLZlwjGZRA+ZZD/u0Ko5jk4IIcZzh+pz+/wNncITXksm0YORHsIdXD7foYlzcPiqZm9ubyWlq987a/NPxleyjb5Tv8bIxKadcLQsk+7jP2Og9XHCS15PQc2rR9syDne9QNfR75GKtk1a6SguPQNN95IcPoO//CqwTCzLxB2sJ1Rz25iWnoqiEKq5jc7D3yIx1IgrsGQeoxZiavKW+Pvxj3+cr6mEuORkl1ThPNWM2j+IWThBq59EEiWRJLu0Gv10C0osjuWdmyeuAJSRGBgmZtA/6Rhj9TKsU02ozR1QdY5KvkQSrbuP9PbNsxCpEEIIIYRYdFxOjJIwWnP7RZH4c3grcfprGep4ZtLEX3zgKIqi4Q7Wz3F0Qggxns1Vgmb3Ex9swBNeSyLSAIqKM7BsvkMTlxhf8RZ6T/2KaO9eAuXXTPk808hwasd3ibTvpGTlu8ad6yu+jL7T9xBpeXheEppi4UnHuxlse5xw3R0U1N5+3vHeok3Y3SVEWh7Ate6jcxChEBcmb3v8CSFmziwrxnI60BpbJjz+YpvPF2+EqD3n3+dPa+3A8cCTkL3wxqDq2f0HrXMk/qxwELW8GO3oqXPOpTe3A0ibTyGEEEIIMcqorkDr6IF0Zr5DyYtA2TXEBo6QSU78vj0+cAxnYCmq7pzjyIQQYjxFUXAHV+QSfkBi6CRObxWa7prnyMSlRncEcQdXMNK9a/Q1y8wy0PwgQx3PTniOZVm0H/oWg10HqNzwsQkThoqqE6q6iZHunWSSkVmLXywevad+je4IEqy+eUrjFUUlVP0qor37SQ43zW5wQuSBJP6EWAhUFaOuEv1MW66N5ysPR4ZA0zBLCrG8btS+8yT+4knsT+9G6+xFP9l0weEpg8NYdhuW69w3JtSNK1E7e1Aiw5OO0ZraMMqkzacQQgghhHiJUVMBponW1jnfoeSFr2QrqmpjsH38TUrLzBKPHMddsHoeIhNCiIm5QstJjTRjZpPEIw24pCJZzBNfyTbikRNkU4MkBk/RvOsf6Tt9Fz0nfkI63jVufKz/ENHeAyzd+sf4ijZMOm+g/BoUzc5g26OzGb5YBOIDx4j1HaBw6ZtRVduUz/OXXoHDV03X0e9hGqlZjFCICyeJPyEWiGxdFUo8gdo7PqmnDgxhhvygKBhFBWgTjBllWTie25MbW1GKfuQkmOYFxaYOjuSq/c6zr6C6vBrL5cR2/PTEAxJJtK4+jDrppy6EEEIIIV5ied2YhSG05o5pn6t29UJyYd18UXUnvuKtDHU8g2WNfS+eHG7CNJJ4JPEnhFhAXMF6LMtguHsn2dQArpAk/sT88BZtQlE12g/8J617v4iqOam+7G/RnQX0nPg51ssemLfMLH2nfoWnYBWh8q3nnFfVnQTKr2Wo/SmMbHy2L0MsUJZl0nvql7gCy/AWT9ySfTKKqlO6+v1kkv30nf7fWYpQiPyQxJ8QC4RZHMZy2NDaxz+9lEv8BXLjisKo/REwjAnn0U82obV2kr5qC5kta1BHYmhn22vOlDo4fM79/V6kaBrGyiVop5snbNMkbT6FEEIIIcRksjUVuYq/7MTvcyeUTOF88ClsR07OXmAz5C+/mkxygKHuQ2Nejw8cRbN5cPiq5ykyIYQYz+4uQ7P7iDTfDyi4ZH8/MU80mxtv4UYyiV6K6++kasuncPprKVr+duKRY0R794yOjbQ9RjrRS8mKt6Oc52F1gFDVTVhmhqH2p2fzEsQCNtTxDKloO0XL3zaln5lXcnjKKFr2FgbbHifWf3gWIhQiPyTxJ8RCoSgYZSVo7d1jXzfNXOKtIJj7n8UFYJij+/6NmWIkhm3nAbLLazGqyzHDIYyyYmyHGyZsITolloU6NIwZ9E1puLFyCUrWQD/dPO5Yrs1nkbT5FEIIIYQQ4xg1FShZA62j+/yDz9Kb2sC0JuyaMd+c/joc3gp6m54Y83oscgxXaCWKIh/HhRALh6IouIL1ZJL9OLwVaDbPfIckLmElq95N3VX/TLDy+tF/L72F6/EWbqT35K8ws0my6WEGzvyeYMV1OLwVU5pXdwTxlV7OYNtjWGZ2Ni9BLEDJ4Sb6G+/BX3oFTn/tjOcJVFzP/2fvvsPsuup7/793OWV670UjjXovlmTJRS4y7jaxwSHAhdBuCOEm94abEALJLxASAoGEEGpCDOQGYgjEYIMxblhusnrv0kij0fTe55zdfn+MkS1rJM1Ic+bMjD6v5+Gxvffaa3225CXG53vWWml5i2k69D28eC9BEDDYdYyG/d+i5uWP48Z7xy+0yGXSf2mITCJ+WRFmWyfE4mevGd194Pv4ua+t+MvNBtM8/8ONICD84jaIhImveX1Pc2fxXMy2TsymtsvKZPT2g+ePasUfAGmpuDNKsQ+dOLfYeHabz4rLyiEiIiIi01uQlYGfnTmm3SqsmtMAwztiXO4X3RLEMAyyy26gs2E7tdu+QFvNz+hr28tQz0lt8ykik1Lqa+f66Xw/STbTimDZqeddL5jzEJ7TT/upX9B+4qcYpkXezPvG1HdO5VtwY5201fwU3x0ar8gyiQVBQFf989Tt/AKhlHzyZ7/tivozDIOi+e+BwKNh/zc5vf1vqNv598R6T+PGOhnsmnw7UcjVxx6vjr761a+Oqf1HP/rR8RpaZNrwSosgCLAaW/Cqhs/BMzu7AM5u9Yll4edlY7Z0wILXn7UP12A1tzF0xwYIv34wrV9WhJ+TRWjfEWIlBWPOZHb1AAyf8TdK7vzZRJ/chNnYgl+YhxF3sI4PrwDUNp8iIiIiciFeZSn2kRPDZ1SbF/+eqtHXj9XcjltdiX3iNEZPH0HW6HapmCg55TeRnpFKy+nddNdvouPULwBIzVHhT0Qmn5Sc+QCk5sxLchKRkYVS8smtuouOk48TBD6Fc98x5tWpkbRScmfcSefpp+hueInsspvIrrgFOzz6z71k6vDdIZqP/Ae9zVvJLr+Z/NlvwzRDl37wEuxINkXz/wcN+79FWu5C8pf9Iam5Czn5yp8z1FNDRuHKcUgvcvnGrfD3ve9975x/dhyHoaHhb01EIhFiseHD1qPRKOFwWIU/kREE6an4WRlY9c2vF/46uglSUyASPtvOK8jFOvOGswCHYoR27cedU4X/5uKeYeAsnkvkxW0Ynd0EvykgjpLR1UMQsoczjJJfnI+fnUn0V+fume6VFWubTxERERG5IK+qjNDew5hNrfilRRdta9XUEdgWzsrF2CdOY7Z14k2ywp9hWhTN2kg4Zx2O4xIfaMKL9xFKyUt2NBGR80TSSqi85pM6g1QmtZzK2+ht2gyGTVbZjZfVR371b5FVtoGuumfoOvMsnXVPUzTvXWSWrB/ntJJMntNH3c4v4g51ULLoQ2QUrR7X/tMLVjD7xq9gWq9/ZpuSVc1g94lxHUfkcoxb4W/btm1n/37fvn387//9v/nIRz7C7bffTnp6On19fTz55JN84xvf4B//8R/Ha1iRaccrK8KubRjeqsgwMDu7z27z+Rt+QS6hg8dhKAbRCOGd+yGA+KrFI/c5q4Jg535Cew8Tv2H1Jb89/UZmV8/war+xHHhrGMQ2rMVqbiMI2xAOE4RDr69aFBEREREZgZ+bTZCeil3bQPxihb8gwD5xGq+ydPjLcxlpmG0deNWT98NqwzCJpJWCjs0SkUksmjkj2RFELso0Q1Ss+jhgYBjWZfcTiuZSMOchcqvupvXYD2k+/P8IpRaRklV9Trsg8Olp3Exa3mLsiD7Xmip836Fh3zfx4j1UXPNnwz+DJcAbi34A0axZ9J3Yje8747KyUORyJeSMv7/+67/mAx/4AA8++CDp6ekApKen87a3vY33v//9fOYzn0nEsCLTgl9WhNE/gNHTBwyv+PNzs89tU5ALgNXWgdneiX3kJM6KhZASHblT08RZMg+7po6UHzxG5OmXsA8cOzvGxZhdvaM/3+8Ngtws3AXVeNUz8CpK8Ivyz9mCVERERETkPIaBW1GCVddw0TP7jI5uzK4evFnDhT4/PwerrXOiUoqIiEgSWaH0MW/xeeG+0iia/x6imTNp3P8t3Fj32XuB79J08Ds0H/4e7Sd/Ni7jSeIFQUDL4f9gqKeG0iUfSVjRbyQpWdUEvkOst27CxhQZSUIKf4cPH6a8vHzEexUVFRw7pgMuRS7EKyoA08Cqb4ahGMbA4Hkr5YL0NIJoBLOlnfCru/GzM3HnV1+gx2Hu/GqG7r0FZ+l88DzC2/eR8uivsI+evPBDQYDR3XNZhT8RERERkcvhVZRi9A9idHRfsI1dc5ogGsYrG14V6OfnYrZ3DZ8NKCIiIjIGhmlTsvh/QhDQuP9bBL6L78Vp2P9N+lq2k5q7kJ7mrXjuQLKjyih01j5JT9Nmiua/l5Ts2RM6diS9HMMMMdRTM6HjirxZQgp/ZWVlPPLIIwRv+oZmEAT84Ac/oLR04qrsIlNOyMYryseqb8Ls7AE4f4tMw8AvyMU+eByzpZ34tcsvvX2nYeDn5+IunU/sjg0MvOs+3LkzCb+8g9Cru0b8kMToG8BwPRX+RERERGTC+MX5BCEb+0zjyA2CALumDq+q4uzPwH5+Dngexms/P4uIiIiMhR3JpmTJhxnqOUnL0R9Qv+crDHQepnTpRyle8LsEvktv05Zkx5RL6G3ZSVvNo+RW3U1m8doJH98wbaKZVTrnT5Ju3M74e6OPfexj/NEf/RFvectbuPnmm8nLy6O9vZ1f//rXNDQ08E//9E+JGFZk2vBKiwjtOYRZXACWSZCVfn6bglysukbcqnL8ksKxD2LbxNetxM/JIvzqbsyuHmI3XQvRyNkmZtfwByeBCn8iIiIiMlEsC6+sCOt0A86yBefdNpvaMAYGcd9wnp+flwOGgdXWgZuXPYFhRUREZLpIyaqmYO47aDnyfUw7lfLl/+fsmX/p+cvpqt9EVtlNGIYx6j49d5D+tj2kF6zAtCKXfkAu21DPKZoOPkxG4WryZt6XtBzRzFn0Nm8hCIIx/bsiMp4SsuJv48aN/PjHP2bx4sU8++yzfO1rX+PZZ59l8eLF/PjHP2bjxo2JGFZk2vDKijBcD/voyeHVdiOs5vPLi/Ez03FWL72isdz51ZMCR6IAAQAASURBVAzdcSNmRzfRJ54H1zt7z+jqIQjZBGkpVzSGiIiIiMhYeBWlmG2dMDB03j275jRBeurZc68BCNn42ZnDz4iIiIhcpqzSGyma/14qVv3p2aIfQHbZBuL9DQx1Hx9VP77v0Fn3DKc2f5Kmgw/TcvQ/ExVZAGeog/q9XyOSXk7RgvcmteCWklWNG+vCjXUkLYNIQlb8ASxYsIB//Md/TFT3ItNakJs9fIZfTx/u7BkjtvHzchh68I5xGc8vLmDozptIeewZQnsO4axaDAyv+AuyMkDfThERERGRCeSVF4NhYJ9pxJ078/UbgzGsk3W4C+ec9zOqn5+D2aYPWEREROTyGYZBVul1511PyZlHKKWQrvoXSMmec869+EALbqyLIHAIPAc31knH6V/hxrrIKrmOcGoRrcd/TGrOfDKLr52oV7lq+O4QDXu/hmnalC79CKYVTmqeaNYsAIa6awhF85KaRa5eCSv8/UZjYyONjY3Mnz+f1NTURA8nMj0YBl5pEXbNafzcrEu3HwdBTibOsvmEdh/CnVlOkJuN2dWj8/1EREREZOJFI69vbf+Gwl9oz0EwDJyFs897xC/IxT5eC64LdsL/U1dERESuIoZhklV2I+01P8WLP4QVziAIArrOPEvrsf8CgnPapxeuIn/W/YRTiwGI9Z2h5cgPiGbOJJxalIQ3mJ6CwKfx4LdxBlupWPVx7HDyP8e0w5mEUgoY7D5BRtHqZMe5IN93ADDNUJKTSCIkZKtPgB/+8IfccMMN3HzzzbzrXe/i5MmTAPzBH/wB3/ve9xI1rMi04ZUN/xDg52RP2JjOknn4WRlEXtkJvo+hwp+IiIiIJIlXUYLZ0Aze8Fb0Rk8foSM1OEvmnXMu9W/4+TkQBJgd3RMdVURERK4CWcXrAOhu2kwQeLQee4TWYz8ip/ItVF37GWau/xyzrv8iszf8M6WLf+9s0Q+gcO47sSNZNB7417MFF7lybcd/Qn/7fkoW/08i6WXJjnNWSlY1Qz01yY5xQUHgcWbnl6h99f8jPtCU7DiSAAkp/H33u9/lr//6r3nrW9/Kww8/TBC8/o2HNWvW8OSTTyZiWJFpxZtRirN8AX7RBC4Jtyzi61ditnYQ2rEfw/UIVPgTERERkSTwKkoxXA+rsQWA0M79BNHo8DafI/BzssAyMVvbJzKmyLQQ3rwT60xjsmOIiExqVjiD9IJVdNdvomHfN+iq30ThvHdTMPtBwqnFhKJ52OFMTOv8LyiZdpTiRR8k3t9A+4lHk5B++ulp3kpn3dMUzH47aXmLkx3nHNGsWcR66/C9eLKjjKij9kmGek+BYVC34wsMdk/eIqVcnoQU/v7jP/6Dj3zkI3zsYx9j7dq159ybOXPm2dV/InIRoRDOikVgWRM6rF+UjztvFqH9R4f/WYU/EREREUmCIDsDPyMN63QjZlsH9skzOCsWgn2Bn49NEz83G7Otc2KDikxxRmcP9uEaQnsOJzuKiMikl112I85gK4OdRylb+lGyy24c9bPRjBnkVz9IZ90z9LZsT2DK6S/W30Dz4X8ns/hasstvSXac86RkVhMEHkO9taN+pr/jIPV7v0YQ+AlMBkO9p+k4+XNyK++g8po/J5xazJnd/0Bf296EjisTKyGFv+bmZlasWDHivVAoxMDAQCKGFZFxEr9mCUFKlMC2CNJ1NqeIiIiIJIFh4FWWYtU1Etq+Dz87E3f2jIs+4uXnqPAnMkb28VMAmC3tGN29yQ0jIjLJRbNmUzD77VSs+tPLWmWWXX4LGUVraDr4XYZ6To1/wKuA5w7SuO+bhKIFFM57F4ZhJDvSecLppZhWlKHuE6NqHwQ+bcf/i/62PQx0HkpYLt93aDr4MOG0UvJm3oMVSqNs+f8mLXchDfu+Tk/j5oSNLRMrIYW/0tJS9u3bN+K9PXv2UFVVlYhhRWS8hEPENqzFWb4QJuH/eYqIiIjI1cErL8EYGMRqbMVZtRjMi/8nrJ+fi9nTB7HJua2SyKQTBNg1p3HnVBGEQ9jHR78yQUTkamQYBjmVtxFJL7/s54vmv4dIehkN+76OM6QvLI1FEAQ0H/533FgXpUs+POK2qpOBYVhEM6sYGuUWmv1te4j11WOF0uhpeCVhudprHsMZbKF44fswTBsA0wpTsvjDZBWvp+nw9+hr25Ow8WXiJKTw99BDD/GNb3yD//qv/6Kvrw8A13V5/vnn+bd/+zd++7d/OxHDisg48ksKcJfMS3YMEREREbmK+cX5BOEQXlE+XkXJpdsX5AJo1Z9c9Yz2LszWDgiCi7YzG1owBoZw583Cm1kxXPi7xDMiInJlTCtM6ZKPACaN+76O78WSHWnK6DrzLH0tOyha8LuEU4uSHeeiolnVDPacwPedi7YLgoD2kz8nNWc+OZV30Ne2G8/pH/c8g13H6Dz9FHkz7zuvcG0YJoXz3016/nIa9/8Lg6NcqSiTV0IKfx/4wAd48MEH+cu//EvWrVsHwO/8zu/wkY98hPvvv593vetdiRhWREREREREphPTJLbxOuIb1oxqJ4ogM50gZGN2dCU+m8hkNThE9MlNRH/+HNH//hWh3Qcxekf+ANE+UYuflY6fn4M7ZwbGwCBmQ8sEBxYRufrYkSzKlv4BsYFGmg59N+Hnuk0HbryXthOPkl1xKxmFK5Md55LS8pbgxfs4tflTdNY9e8ECb3/7XmJ9deRW3UNm8bUEgUdv87Zxz9NR+0uiGZXkVL5lxPuGYVK86ANEM2fSsPerxPobxz2DTBw7UR1/6lOf4r3vfS+vvPIKnZ2dZGVlsW7dOm3zKSIiIiIiIqPmF+WPvrFhEGSkYfb2JS6QyCQX3rYXDIjduh7r1BnsfUcI7TqIs2QezjVLXm/oOFi19ThL54Nh4Ofn4mdlYB8/Rbxscq+iEBGZDiIZFZQs/AAN+75JW/RRCmY/mOxIk1p3/SbAIG/GXcmOMiopWbOYsfav6Kz9Ja3H/4uO2ifIqXgLORW3nt1mc3i13+OkZM8lNWcuMFww7Gl6hezym8Yti+/FGOg8Qn71b2EYF14LZpohSpd8hLqdf0/9nn8iv/oB4n0NDPWeItZ3hozCayiY89uT8lxFOVfCCn8AFRUV2tZTREREREREJoyfmY7Ro8KfTDP+aytBLnHOpdnUin3iNPHrVuFVluJVloLjEjpwlNCug/hZGXhzqgCwTtVjuB5e9Yzhhw0Dd/YMwrsPEo87EA4l8IVERAQgvWAFBXMeovXYDwlFc8kuvznZkSYl33foqn+ezJJ1WOGMZMcZtUhaCcUL30/ezHvpqP0V7TU/pbd5C0ULfpdoRiX97fuI9Z6mfPkfn30mq2Q9Dfu+Qayvnkh62bjkGOg8QuA7pOUtvmRbK5RK2bI/pG7n52k68G3sSDaRjBmk5y+l68xzhNNKyS67cVxySeIkZKvPBQsWcNddd3Hy5Mnz7u3Zs4cFCxYkYlgRERERERG5ygUZ6Zg9438uikjSDA4RffxZoo8+dfGitucR3rwTvzAP97XiHgAhG2fZAtw5VUQ27xw++4/hbT69kgKC9NTXu6iuBD/APnUmQS8jIiJvllNxKzkVt9Fy9BH6WnclO86k1Nu0FS/eQ07FxmRHuSyhlAKK5r+bims+ARic3v63tNX8jI5TPyclazYpOfPOtk3LW4IVSqen8ZVxG3+gfT+hlAJCKaNb0R+K5lC19jPMuu4LzLruC5Qt/QOK5r+HrLINtB57hKGeU1ecqa3m5wz1NV1xPzKyhBT+giDAcRze/va38/zzz49Ln9///ve55ZZbWLJkCW9/+9vZu3fvBds6jsNXv/pVNm7cyJIlS7jvvvt44YUXzmvX3NzM//2//5e1a9eydOlS7r33Xvbt2zcueUVERERERGTi+VnpGP0D4HnJjiJyltnQjH3oOATBmJ4z+gaIPvE8xuDwuUDRXzyH2dI+Ylv7wDHM7j5i61acfyamYRBftwI/L4fIc69gtrZjNbbi/ma132uCtFS80iKsY6fGlFNERK5M/uwHySi8hsYD32aw+0Sy40wqQRDQWfcMafnLCKdO7a2ooxmVVF7zCfKq7qGz9kmGek6RO/Oec7bONEybzOJr6Wl+lcB3L9iXG+tmoOPwJc+HDIKA/vb9pOUtHtMWnaYVxo5kn3OtYM5DRNIraNj/Tbx476j7erP4QBOtJ36mwl8CJaTwB/D5z3+e++67j4985CN8/etfv6K+nnjiCT73uc/xB3/wBzz66KPMnz+fD3zgA7S3j/zD7pe//GV++MMf8hd/8Rc88cQTvOMd7+CjH/0oBw8ePNumu7ub3/md3yEUCvGv//qv/OIXv+DjH/84WVlZV5RVREREREREkifISAfA0Ko/uVJjLNKNyHEJv7qL6K9eJPzqbiK/3gyOM6pHje7e4aKf7zN0900M3X0zflYG0Sc3YdXWn9u2r5/w7kM4C2cT5GaP3KFlEbv5Wggg+ssXCGwLr+r8LcTc2TOwWtoxui//Az0RERkbwzApWvi7RDNn0rD3qzhDncmONGkMdB4k3l8/ZVf7vZlh2uTNvIfK1Z+kcO47Sc05f3fEzJL1ePFe+ttHXqTke3Hq93yFM7v/gZOb/5z2U7/AjXWN2NYZaMIZaiMtb8mI98fCNEOULP49Ai9O48F/u2TR8UL6WvdgmCEyCxZecSYZWcIKf7Zt85d/+Zf81V/9Fd/4xjf4wz/8QwYGBi6rr+985zs89NBDPPjgg8yePZtPf/rTRKNRfvKTn4zY/mc/+xkf/vCH2bBhAxUVFbzzne9kw4YNPPzww2fb/Ou//ivFxcV87nOfY+nSpVRUVHD99ddTWVl5WRlFREREREQk+YLM4cKf2atz/uTy2QePkfKjJ2Bg6LL7MFvaiT72DPbRU8SvXU7s1vWYDS1Ef/E8Ru/FC9NGRzfRJ54nsC2G7rppuKAdjRC7/UbcylIiz20m8tRLRH75PNGfPk30sWcIImGcFRf/AC1ITSF26zoIArwZZRA6/xw/b0YpQSREaP/Ry353EREZO9MMUbrk98GwaT3+o2THmTQ6Tz9DJKOSlOy5yY4yriLp5WSX3zTiKrxIejnRjBl0N7xE8KYvIgVBQMvRHxAfaKZk0YdIzVlAR+0vqXnlz2g59sPz+upv349hhsbt1y8UzaVk0YcY6DhEy+H/wPdH94WmczK17SEtbyGmFR6XTHI+O9EDPPTQQ8yaNYs/+qM/4rd/+7f50Ic+NKbn4/E4Bw4c4Pd+7/fOXjNNk/Xr17Nr18h7HjuOQzh87r80kUiEnTt3nv3n5557juuvv54//MM/ZNu2bRQVFfHOd76Thx56aEz5TNPANEe/RFZkurIs85y/isjkp3krMvVo3oqMQkYq2BZ2fz+Gndy5ojk7NZnHawlt3QMYRA8exb12+eX1sWkrfn4uzh03QFYGBuBmZxB66iVSfvEczq3rCUoKznvWaO0g9KsXCNJSce+8ESsl+vpN28S/dR3enkOYze0EKWmQF8IPh/FnlWOnRC4drqQA54HbCNJSsUeaI7aJv2oxoc27CRbMIijMG/P7T2WatyJTz3Sat7adQfG8t9Ow/9+IdR8mLe/qXhEV66tnsPMgpYvfTyhkJTvOhMqbsZGGAw/TdvQ/KJr/Tkxr+Ms6XfUv0tu0mdLF7yerZC05ZWvxnN+m4/QztNU8TnbxSlLfcGbgYOcB0nLnE45ELzTUmGUWLqJ00XtpOvx94v11lC39PcKphee0cQbbsSNZGOa5JSg33stQbw1lle8Fpse8nYwSXvgDuOaaa/jxj3/MRz7yEf78z/98TM92dnbieR55eef+oJmXl0dNTc2Iz1x//fV897vfZfXq1VRWVrJ582aefvppvDec8VBXV8d//ud/8r73vY8Pf/jD7Nu3j89+9rOEQiF+67d+a9T5cnPTxrQ3rsh0l5mZkuwIIjJGmrciU4/mrcjFxfOziThx7Jy0ZEcBNGenEv9UPc7LOzCXzMHISsfbtp/0G1ZgpKeOuo9gKIazfS/G/JnYd92AYb7hA62cNILfvQ/38U3Yv3oB65rFWOuWYdjDH2b6Z5pwnnoRszAX+623YEQvUMi7efWVvCZcYm4E65fhnKrD3raX0DvvxrgKv/CseSsy9UyXeZudfQuDrZtpP/FDSmd+7mzB52pUU7OJlPQ8KudtuOp+HXJyNpKWFubU7u/QtK+FOdf+Ec5QF23Hf0jJ7I1ULXzj1qdp5BW8A6f3EJ2nfkrpzL/CMEw8Z5BY73FmLH0XOeP8c3FOzu0Uls/j+JavULfjb5m16kOkZJbTcWYLHfVbGeiuo3jOHcxY+u5znmut3YFtmZTOWgtMn3k72SSk8PfRj36UoqJzD9osKSnhP//zP/nbv/1bTp48mYhhz/rkJz/Jpz71Ke68804Mw6CiooIHHnjgnK1BgyBg8eLF/PEf/zEACxcu5NixYzzyyCNjKvx1dPRrxZ8Iw9/OyMxMoadnEM+7vP2dRWRiad6KTD2atyKjY6dEMZo7cDqTe86f5uzUYrS0E3piE0FJAc7qZcPn823dT/yFnbjrVoy6H/vlnZgxh/iKxdA9OHKjW9dj7T2CvXUf/pFTuBvWYAwOYT/zCkFRPs4t62DQHf5fkhjXLCP8+LMMbt6Lv3B20nJMNM1bkalnOs7bnFkPUfPqpzmx52fkz7wz2XGSwnP6aT75Ivkz76G7Jw7Ekx1pwtlZqyhbnsuZPV9n968+gWHaWNESMisfoHOEn3OzZ/wWtdv/ntpDz5NVspbell24jgPRuSO2v3IFlK34BI2H/p3DL38ZANOKkF6wjLSCIhqOPUNa0W1Y4fSzTzSd3EoobQaD8TChKNNq3k6E0RZwE1b4G0k0GuUzn/nMmPrKycnBsiza29vPud7e3k5+fv6Iz+Tm5vL1r3+dWCxGV1cXhYWFfPGLX6SiouJsm4KCAqqrq895btasWfzqV78aUz7fD/D9cTjwW2Sa8Dwf19Uf1iJTieatyNSjeStycUZaGvapM5NmnmjOTnJBgFnfTOTFrfjZmQxtWAs+YNkYC+cQ2nsYb9FcgtRLfyPdaO8ifOgE8dVLcMNhuMjvu7t4HvHSIiIvbiP002fAAK+8hNhNa8GwLvrshMjLwZgzE2vbPuIVpZAyfluETQWatyJTz3Sat1a0hOyyW2mteZy0gmsIRa+ubZcBOus3E/g+6UXrp83v6+UIpc2gYtWf07j/W8QHmihb/iH8wMIf4dcknDGbtPxlNB/7CSl5y+lp2UcopRAznJe4X0MjStGCD5GWfw2GYZCauwjTCuPGe+lp3kVb7XPkzbwHAN936GvbT+6Mu84W+6bTvJ1Mxq3wd+DAAaqrq4lGoxw4cOCS7RctWjSqfsPhMIsWLWLz5s1s3Di8fNX3fTZv3sy73/3uiz4biUQoKirCcRyeeuop7rzz9W9HrFy58ryVh6dOnaKsrGxUuURERERERGRyCjLTMfoHwfPAurrOg5GxMdo7CW/bh9XYglecT+zmdWC//lGJs3AO9oFj2HsP41x7iVV/QUD41V34WRm4C0a3Qi7IzWbonlsI7T0C8TjO6qVgTp6zbuKrFpNSW094217iN65JdhwRkatK7sx76G3eSuux/6J0yYeTHWdCBUFAT8OLpOUvw45kJTtO0tmRLMpX/l8CL45pX/yLOPnVD1K75a/oqnuO/vZ9ZBSuSng+wzDIKFx5zjU7nEFW6XV0nXmOnMrbMK0Ig51H8L0YaflLE57pajduhb8HH3yQH/3oRyxdupQHH3zwgufeBUGAYRgcOnRo1H2/733v4+Mf/ziLFy9m6dKlfO9732NwcJAHHngAgD/90z+lqKiIj33sYwDs2bOH5uZmFixYQHNzM//8z/+M7/t88IMfPNvne9/7Xn7nd36Hb37zm9x5553s3buXH/3oR2NekSgiIiIiIiKTi5+ZDkGA0TdAkJWR7DgyGQ0OEd66F7vmNH5WOrFb1+NVlMCbP8sIh3AXDa/6c5fMI0i78Fl/1onTWC3tDN1+w9iKd5aFs2LhZb5IgkUjONcsIfzyDtw5M/FLCpKdSETkqmHZKeTPfhtNB/+Nod7TRDMqkx1pwgz1nCTWV09+9duSHWXSMAwT4xJFP4BwahFZZTfSfvIxAt8hNW/xBKQbWU7FbXTVb6Kn8RWyy2+mr20PoWg+4bTSpGW6Woxb4e/f//3fz26d+e///u/j1S0Ad911Fx0dHXzlK1+htbWVBQsW8O1vf/vsVp+NjY2Yb/ihOhaL8eUvf5m6ujpSU1PZsGEDX/jCF8jMzDzbZunSpXz1q1/lH/7hH/ja175GeXk5f/7nf8599903rtlFRERERERkYgWZw+eImD19eCr8XRWM/gFCO/bjLpqDn5dz0bZmfTORF7YCEF+/EndO1UULdc7COdgHjxHad4T4hVb9OQ7h7ftwq8rxS4su9zUmJXdOFdaJWiIvbGXw/o0QjSQ7kojIVSOjcBWtx/+L3qZXr6rCX3fDi4SieaTmLkh2lCkpt+oeeho3g2WQkj0naTlCKflkFF5D5+mnySq9gf62vaQXrrzgojEZP0YQBDqg7gq0tvYmO4LIpGDbJjk5aXR29mtfZpEpQvNWZOrRvBUZpSAg9f89SnzVEtxFyfuwY0rNWdcjtHM/hEM4yxacv/JtMovFiT7xPGZXD1gWsRuuwZtZcX47zyO08wCh/UfxSguJ3bAGUkd3bp299zDhHfvxSgtx51cPrw40TYyBQewjJ7GP1kDcYei3bidIv/CqwKnK6B8g+rOn8Qvzid26fmr9+zFGU2reiggw/edty7Ef0tu8jVnXfR7DmP5bmHvuIDUv/wm5M+4kr+ruZMeZsnqaXsUZ6iCv6q6k5hjqPc3pbZ8lp/ItdJ5+ivLlf0xq7vxpP28TpaBgdF9qHLcVfyIiIiIiIiKTgmHgZ6Rj9vYlO8mUYHT2EHn+VcyePvB9jKEY8bXLJ1dxZzBGys+fxa0sxVm5GEKvfZzhuESfeRljaIjB+zYS2n+EyPNbcDq6cVYuGn6HgSGs+iZCh09gtncRv2YJ7uK5Y3o/d8k8gtQUQkdqiDy3mSA1BT83C6u+mcAy8aorcRbMmZZFP4AgLZX49auJPPsK9qHjuAuTV1AXEbnaZBZfS1fdswx0HCQtb0my4yRcb/NWAt8ls3h9sqNMaZnF1yY7AgDRjEpScxfSefopTDuFlOzRnYMsV2bcCn8rVqwY0xLNnTt3jtfQIiIiIiIiIucIMtMxevqTHSO5XBccF1IusKotCLCPniS8ZTd+RjqD992K1dJO+JWd4PnE168cU3HMPnyCIBrBqyofpxd4Q9/HT2EMDBI6chKrrpH4+lX4xflEfv0qRkcXsTs3EORlE79xDX5OFuEd+zFb2jAcF7O9CwC/IJehe27Gz88dewDDwJs9A2/2DIz2LkJHTmB29hBfuwy3egaEQ+P7wpOQV1mKs2gO4W378IvyL7mlqoiIjI9IeiXhtFJ6Gl+9Kgp/3Q0vkpa3hFBU/z8zXeRW3nG2cG2YWos2EcbtV/n973+/9mYVERERERGRScHPSMM63XDRNkZ3L6H9R3EWzyWYhmcBRjZtxWztYPDB2yF0fmEqtG0voQPHcOfNIr5mGdgWbk4WgWkSeXkHeB7xG1aPqvhntnUS3rwLAHdm+fBZeON1FtxrBUq3qhxnxSLCL28n+qsX8LMzMXt6Gdp4/evFPMPAXTqfICeT0I4D+DmZOAvn4JUVQ8r45AnysomvXzUufU01zqrFWE2thJ/fwtC9t45Y8DT6BwjtOYQ7ZyZ+wWUUWUVE5ByGYZBZfC3tJx/Hcwex7JRkR0qYoZ5aYr2nyZt5X7KjyDhKyZlHTsVtpBdenT8/JcO4Ff7+1//6X+PVlYiIiIiIiMgVCTLTMfsGwPfBNM+96XmE9h0htOcw+D5mawdD99wC9vQ5N8fo7j1b+AztPYKzavE5982WdkIHjhFfvXR428s38OZUEbNMIi9sI4hGcNYsu/hgQUBo+1787AycpQsIb9lFyqNPEV+/Em9G2RW/i9nchtnTR3z9KoLMdGJ3bMA+UkNoz2FiN67BLys67xmvohSvovSKx5Y3sSxiN11L9LFniD72DPHrr8EvLjh722xoIbJpC0Ysjn28lth11+BVVyYxsIjI9JBRtJa2E4/S17KTrNLrkh0nYbobXsSO5JCWtyjZUWQcGYZBwZy3JzvGVcW8dBMRERERERGRqcXPTIcgwOgbOOe62dxG9LFnCO0+hLN4LkP33ILZ00t4294kJU2M0KHjw0W7RXMIHTiK0feGbU99n/Dmnfh52biLRj6rzZtVibNiIaFDJzAGBi86llnfjNXYirNqCV51JYNvvR2/IJfIc5uxDx674nexj5zEz0zHL84fvmAYuPOrGfztu/FmVlxx/zI2QWY6Q/dtJEiJEv3lJkJb94DrYu89TPSpF/Fzshh8+524VeVEXthKaPs+CIJkxxYRmdJC0RxSc+bT0/RqsqMkTBAE9LXtIqN4LYYxfb6MJZIMCdtQtba2lv/+7//m1KlTxGKx8+5/85vfTNTQIiIiIiIicpULMtIBMHr6CDJf+/vuXqK/3ISfn8PgfRsJcrMAiK9ZRnjzLrySgoScTzfhYnGsY6dwF8/FWTwXu6aO0PZ9xG+6FgD7cA1mR/fwKseLbOPpzK/G3ncE+8AxnNVLR24UBIS378MryserKBm+lholdut6wi/vILT7EO6cqhG3Gh3tu9i1Z4ivWDSm8wYlsYLMdGJ33YS9/yjhXQewj53CiDs4S+fjrBz+vYrfsHr4vMXt+zC7eojdtBZsnesjInK5MovX0nTouziD7YRS8pIdZ9zFB5rw4r2k5sxPdhSRKS8hK/727t3Lfffdx1NPPcVTTz1FU1MTx44d4/nnn+fw4cMMDAxcuhMRERERERGRyxSkp4JpYvb2nb0W2nOIICXC0J0bzhb9ANx5s/BmlBF+eQdGb/9I3U0p9rFTGL6PM68aQiHiqxZjnzyD2dwGA0OEdu7HnTeK89ciYdz51dhHaiAWH7GJdbwWs7Mb55ol5xbmDANn+QIMx8E+XHP573K8FoIAd/aMy+5DEsQwcJfMY/DejfglhcRuXT+8pexv/j147X7stuuwGpqHt9YVEZHLll6wEsMK09O8JdlREmKw6yiGYZGSVZ3sKCJTXkIKf3//93/PnXfeyc9//nOCIOBv/uZvePbZZ/nBD36AYRh86EMfSsSwIiIiIiIiIsMMAz8jDaNnuPBndPdi19ThLJ0PlnVe29h1qyAcIrJpy/C5gFOV7xM6eBx3ZgWkRgHwZs/Az88hvGUP4W17wDSJr1x8iY6GOYvmYPg+oUPHz7/peoR3HcCbUYZfeP7KgyA9DXdOFaH9R8Fxx/4uQYB99CRuZRmkRMf+vEyIICeT2C3r8CpHPlPRKy/BWTxveMvZNxTiRURkbEw7Snr+CnqbXiWYhlsoD3YeJZIxA9OKJDuKyJSXkMLfkSNHuPvuuzFfO0D9N1t9rly5ko9+9KN86UtfSsSwIiIiIiIiImcFmemYrxX+hlf7RXHnzhy5cSRMbMNazLbO4TPJpijrdANG/wDOG8/uMwzia5djtncOFz+vWQLRUX6o9tqvmX3w+HnFO/vgMYyBIeKrLlxEdJbMx4jFsQ+fGPO7mK0dmF09F/49kynDWTKPIBIhvHV6naUpIjLRMovXEh9oIt5fn+wo4yoIAga7jpKSMzfZUUSmhYQU/gzDIBQKYRgGeXl5NDQ0nL1XXFzMqVOnEjGsiIiIiIiIyFl+ZjpGT9/FV/u9sX1hHvE1ywgdOIZ14vQEJh0/9oFjeMX5BHk551z3C/Nw583EKy0aPnNvDJxFczHiDvbRk8MXPI/Qtr2Ed+zHWVBNkJVxwWeDjMtf9WcfqSFIT8UvLRzTczIJhWziq5dinW7AbGhOdhoRkSkrJWcephWlr216fZHCGWzBjXeTmq3Cn8h4SEjhr7q6mrq6OgCWL1/Oww8/zNGjR6mpqeFf/uVfqKioSMSwIiIiIiIiImcFGWmYff2Edh14bbVf1SWfcRdU41ZXEnl5B0Z7V8IzjiezrQOrpR134ZwR78fXrST2luvPPYtvFIKMNNxZFYT2H8Vo7yT68+cIHTxG/JolOGuWXfJ5Z+lrq/6OjPKsvyDAOlGLfbIOZ+7MMeeVycmbWY5XlE94y56pvZ2uiEgSmWaI1NyF9E+zwt9g11EwTKI6309kXCSk8PfQQw/R2toKwB//8R/T3t7O/fffz913382+ffv4+Mc/nohhRURERERERM7yM9LBD7BPnsFZdvHVfmcZBvH1q/CzMog+9wrE4okPOk7soycJ0lMveNYahnHZRTRnyXyMgUFSHnsW/IDBe27FXTJvVP2dXfW37wi4l1j1F4sT3rSFyAvbcGeUX7CIKVOQYRBfuwyzq+eytn4VEZFhaflLGeo5iRvvSXaUcTPYdYxoRiWWnZLsKCLTgp2ITt/61ree/fvq6mqeeOIJdu3aRSwWY/ny5eTlnX/ot4iIiIiIiMh4CrLSh/+aljK27S1ti9it64g+9iyR57dc1iq5CRcEWHVNuDPLE5I1yMnEWTIPggBnxSKwR1FEfQNn6XzsY6dI+c/HIRohiEQIomGC1BSCtFT89BQwTMI79oPrEtuwFm+WdguaboK8HNx5MwntOog7q3L0Z02KiMhZaXnDZ+v2t+0jq/S6JKe5ckEQMNB5lIyiVcmOIjJtJKTw92ZpaWlcf/31EzGUiIiIiIiICABBWipBSpT4ysWjW+33xmfT04jduIbo0y9hNrTglxUlKOX4MDp7MAYG8RKY07lmyWU/G2SkMXTXTZgt7RixOEYshjEUw+zsxjjThDE4BIBXUkD8htUEaanjFVsmmfiKxaTU1BHadwRn9dJkxxERmXLscCbRzJn0t0+Pwp871I4b6yBF5/uJjJuEFf4GBwfZvHkzjY2NxOPnbo1iGAa/+7u/m6ihRURERERERMA0Gfztuy97BZxfVkQQDmG2dUz6wp9V30RgW/jFBcmOckF+YR5+4QV2API8jKEYQWrK5F9dKVcmJYK7aC6hfYdxF80Z/j0XEZExSctfSmftk/i+g2mGkh3nigx0HQUMUrJmJzuKyLSRkMLf1q1b+V//63/R3d094n0V/kRERERERGRCXEkRyTDw83Kw2jq5xMl0SWedacIvKRzzysZJw7K0yu8q4iyag33oGKE9h4ivW5nsOCIiU056/lLaa37KYOdR0vIWJTvOFRnsOkokvRwrlJbsKCLTRkIKf5/5zGeYN28ef/EXf0FVVRWh0NT+1oGIiIiIiIhcnfyCXOzjp5Id4+LiDlZzG/G1y5OdRGR0wiGcJfMJ79iPs3guQUZ6shOJiEwp4bQy7Ggu/e17J3Xhr+vMrxnoPEw0q5qUrNlEMyoxzHNLEoOdR0nL19bPIuPJTESn9fX1fPjDH2bOnDkq+omIiIiIiMiU5efnYAwMYQwMJjvKBVkNzRAEeOXFyY4iMmrugmqCaITQroPJjiIiMuUYhkF6/jL62/YSBEGy41xQd8NLDHafoP3kY9Tt+DuOv/BHNB18GDfeA4Az1IEz1Kbz/UTGWUIKfytXruTkyZOJ6FpERERERERkwvj5OQCYbZ1JTnJhVn0zflYGQYa2yJIpxLZxls3HPnEao7Mn2WlERKactLylOEPtxPvrkx1lREHgEx9oInfGHcy+4ctUXvPn5M28j/72/dRu+f/obniZwa6jAKRmz0lyWpHpJWFbff7RH/0RoVCIdevWkZGRcV6b7OzsRAwtIiIiIiIiMm6C1BSCaASzrQOvsjTZcc4XBFhnmnBnlic7iciYuXNnEtp/lPCuA8RuWXd+gyDAOl6Lfbx2+LxO2yII2QSpKTjXLLmyMzxFRKa4lJy5mFaEvra9RNIn388B7lAHge8QTi3GMG2imVVEM6vILFlP2/H/ovnw9zCtCOG0Uqzw+fUDEbl8CSn8ZWZmUlpayl/+5V9iXOCHsEOHDiViaBEREREREZHxYxj4BbmTdsWf0dmNMTCobT5larIs4ssXEnlpO5GnXsKdWT5cYA+HsOoaCe3Yj9nVg1dWTBC2MVwPo28Au6YOr6wIv7Qo2W8gIpI0phkiNXch/e37yKu6K9lxzhMfaAIgnHruzyh2OIPihe8ns3gdLcceIaNwVTLiiUxrCSn8/cmf/Ak7d+7kfe97HzNnztQ5fyIiIiIiIjJl+fk52AePQRAkd4XRb87weUMG60wTgW3hF+UnKZTIlfFmzyDu+1g1p4m8tB1MEz89FbOnD6+kkKEbrsHPz339gSAg+pMnsU+eIa7Cn4hc5dLzl9F06HsMdh0nJXt2suOcIz7QhGGGsKO5I95PzV1A1dpPT3AqkatDQgp/r776Kp/+9Ke5//77E9G9iIiIiIiIyITx83MwYg5GXz9BRvrEBwgCrFNnCO05jDEwQHzNcrzqSjAMrPom/JJCsKyJzyUyHgwDd94s3HmzMPoHsE7VY7Z1EF+3YuQVfYaBV1WOfbQG1q0A05z4zCIik0RG0Rq6G16i8cC/MmP1pybVlpnx/qbhbT4N/TktMtESMuuKiopGPNdPREREREREZKrx8oa/qW62TuB2n0GAMTCIdbyW6KO/IvL8FoKUKF5pEZEXtxH59WaM7l6s5nZt8ynTRpCWirtoDvENay+6jac7sxwj5mA2tExgOhGRyccwbYoXfYjAd2g69F2CwE92pLPiA03nbfMpIhMjISv+/vAP/5B/+Zd/YdWqVWRlZSViCBEREREREZGJkRIhSE/FbO/Em1WRsGHM1g7Cm3di9A9ixOJnt/b0KkoYumENfsFwAdKrOkN4805Sfvo0BAFemT5Uk6tLkJuNn5mOfeoMcRW+ReQqF4rmULzw/dTv+Qqdp58md8btyY4EDBf+UnPmJTuGyFUpIYW/xx9/nIaGBm6++WYWLFhw3uo/wzD4xje+kYihRURERERERMadl5+D2daR0DGs0w0Yvf24C+cQpEYJUqL4WRkEWef+N7VXVc5gUT6RzbvAcQgy0hKaS2TSMQy8meXYh04Mb/eprW5F5CqXlreY3Bl30FbzKClZ1Uk/789z+vHiPVrxJ5IkCSn89ff3M2PGjHP+WURERERERGSq8vNyCO09PLwKzzASMobZ1YOfn4OzYuGlG6dEid2yLiE5RKYCt6qC0J7DWA0teBUlZ68b/QOYTW3D52CKiFxF8mbdz2DXcRoPfJuZ6z6LYSbko/9RiQ80A6jwJ5Ik4z77gyDgn//5n0lJSSESiYx39yIiIiIiIiITzs/PxXBcjK5egpzMhIxhdPXovD6RUQpyMvGzM7BO1r1e+Is7RJ56CbOrh8G8bILsxMxVEZHJyDAsCue9i9qtn6a/fR/pBSuSliU+0ARAKLUwaRlErmbmeHfoOA7r169n8+bN4921iIiIiIiISFL4+TkAmO2diRnA8zB7+1WoEBktw8CrqsA63QCeB75P5NebMQYGCWxr+LqIyFUmkl5GJKOSnqZXk5ojPtBEKJqHaWlhkEgyjHvhLxwOU1xcjOd54921iIiIiIiISHKEQ/hZ6VgJOufP6O6DIMBX4U9k1NyZ5RiOi1XfTPjVXViNrcRuXodXXoJ9qj7Z8UREkiKzeB39bXvxnL6kZXD6mwhpm0+RpBn3wh/AO9/5Tr773e8Si8US0b2IiIiIiIjIhPPzczHbErPiz+zqGR4jKyMh/YtMR0F2Jn5OFuHNO7GPnCR23Ur80kK8GWWY7Z0Yff3JjigiMuEyilYTENDbvP28e/GBZrrqNxEEQUIzxAeaCKep8CeSLAk54bOxsZGTJ09y0003sWbNGvLz8zHedPj5pz71qUQMLSIiIiIiIpIQfl4O9qkzw9sKWta49m129xBEIxDVllgiY+HOLCe88wDOknl4c2YC4FUUg2li1dbjLpo7tg6DgMBP7AfiIiKJZIczSctbTE/TZrLLbzp7PQh8mg58m6HeWjynj7yquxMyfuC7OIOthLXiTyRpElL4+/Wvf004HAZg37595903DEOFPxEREREREZlS/IJc8HzM9i78wrxx7dvo6sHP0TafImPlLpxNkJ6GN6vi9YuhEF5ZEVZtw5gLf9aewzjHTmHcsg6yNCdFZGrKLL6Wxv3/Mrzy7rUCXHf9JoZ6a8koWkN7zc8IRfPJLF477mM7Q20EgUc4tWjc+xaR0UlI4e+5555LRLciIiIiIiIiSeMX5BKkRrFPnCY+zoU/s6sXv6RgXPsUuSqEQnjVledddmeUEnlpBwwOQUp0dH0FAdbRUwQDA4R+8Wu8W6/DL8of58AiIomXlr8M006hp2kL+bPux41101bzU7JKb6Bw3rsxDIvmw98jFM0lJXvOuI4d728C0Io/kSRKyBl/IiIiIiIiItOOYeBWz8A6eXp4u8/x4vuY3b34Wl0kMm68ilIwDOzTDaN+xujqxejpxb7jeoK8bKK/ehGrrnH4pu9jnmki/OI2QrsPJii1iMj4MM0QGYWr6W16lSDwaT3+YwzDIr/6tzAMg6L5/4NoZjUN+75BfKB5XMeODzRh2ilY4axx7VdERi8hK/4Ampub+e53v8vOnTvp6uoiOzubVatW8d73vpeiIi3zFRERERERkanHnT2D0L4jWKcb8WaWj0ufRk8fBAF+tgp/IuMmGsErzh8+52/erFE9Yp2uJ7BtzDkzcArysZ7ZTOTZV3BnlGE1NmPEHIJICMP1cBbOgXAowS8hInL5MovX0t3wAh2nfkFv8xaK5r8XK5QOgGHalC75MHU7Pk/Dvm8wY81fYhjjs0boN9uLGoYxLv2JyNglZMXf0aNHuffee3nkkUcoKCjg2muvpaCggEceeYT77ruPY8eOJWJYERERERERkYQKsjPxC3Kxj58atz7Nrh4A/OyMcetTRMCbUYbV0AKx+Kja27UN+BUlGLYFlkXs5mtx58/C7OrBnVfN4H0bGbpvI3g+1pnGBKcXEbky0azZhKL5tJ98nJSs2WSWrDvnvhVKo3jh+4n3N9DXsnPcxo33N2mbT5EkS8iKv89//vNUVFTw8MMPk5X1+pLe7u5u3v/+9/P5z3+eb3/724kYWkRERERERCSh3DlVhDfvwhgYJEhNueL+zK4egkgYopFxSCciv+FVlsKru7HqGvFmz7hoW6NvALO9E3fZvNcvmibxa1ec19bPz8E+VY836/yzBUVEJgvDMMgsWUf7qV9QOO+dI67oi2ZWkZqzgI7aX5JeuOqKV+kFQUB8oIn0/GVX1I+IXJmErPjbuXMnv//7v39O0Q8gKyuL3//932fHjh2JGFZEREREREQk4dyqcjANrBOnx6U/o6tneJtPbYklMq6CtNThFbqn6y/Z1jpdD6aBX3HpVSpuVTnWmSZw3PGIKSKSMDkz7mDGmr8kkn7h7clzZ9xBrK+OgY4rP7/Uc3rx3QHCaVrxJ5JMCSn8WZZFPD7yNgrxeBzLshIxrIiIiIiIiEjiRcK4laXYx2shCK64O7Orl0DbfIokhDujbLhINzh00XZWbQNeSRGEw5fs05tRBp6HVd80XjFFRBLCNENE0kov2iYlZz7RzCo6an95xePF+4f/XAxpq0+RpEpI4W/9+vV8+ctf5uTJk+dcP3XqFP/0T//E+vXrEzGsiIiIiIiIyIRwZ1dhdvVgtndeWUe+j9nTO7ziT0TGnTt3JoFpEtp35MKNhmJYzW14My7+4fhvBJnp+LlZWKfOjFNKEZHkMQyDnMo7GOw6ymD3iSvqKz7QBIZJOKVgnNKJyOVISOHvz/7sz3Bdl7vvvpv777+fD3zgA7z1rW/lrrvuwnVdPvGJTyRiWBEREREREZEJ4ZcVEaRGsY/VXlE/Rm8/eL4KfyKJEgnjLpxD6HANDIy86s+qa4AgwK0cXeEPXtvus64RXG+8koqIJE16wXLCqcV01D55zvXAd/G9kXf2G4kz0EQ4pQDDtMc7ooiMQUIKf6WlpTz++OP82Z/9GVVVVfi+T1VVFZ/4xCd47LHHKCkpScSwIiIiIiIiIhPDMHCrZ2DVnL6iD/7N7l4AAhX+RBLGWTSHwDIJ7R951Z9d24BXlAcp0VH36VWVY7ja7lNEpgfDMMmpvJ3+tj3E+huID7TQeuK/qXnlzzi9/W8IgtH9rDPYfYLwRc4TFJGJkbDSe1paGu95z3t4z3vek6ghRERERERERJLGnTuT0IGjhHYdwFm99LL6MLp6CMIhgjEUHERkjH6z6m/fYdzFcwlSU16/5zhYDc3EVy4eU5dBVgZ+diZWbf3wmX8iIlNcZvFa2k8+xpld/4AX78G0U0nPX0ZP02b6WnaSUbT6os87g20M9ZykpGLjBCUWkQtJyIo/ERERERERkekuyEwnvnIxof1HMZtaL6sPs6tneLWfYYxzOhF5I2fhbALLwt5/9Jzr9vFa8PzLKt55VeVYpxvA03afIjL1GaZNfvUDRNLKKF7wPmZd93mKF76P1NxFdNQ+QRD4F32+t2U7hhUmLf/yvgwlIuNn3Fb83XLLLRij/A8VwzB45plnxmtoERERERERkaRwF8/Fqmsk8uI2Bu+/DcKhMT1vdvXg52YnJpyIvO5Nq/5wXMJb9mDVN+HOLCfISBtzl25VGaHdB7EaWvDKizG6ejE7OgnSUvGLCxLwEiIiiZVZvJbM4rXnXMudcSdndn2R/vZ9pOcvu+Czvc3bSM9bimlFEh1TRC5h3Ap/t9566yULf0eOHGHLli2jLhCKiIiIiIiITGqGQfyG1UR/9jThLbuJ33DxbbDOEQSYXb24syoTl09EznIWzcE+eIzI0y9hdvYQpKUQu2UdXmXpZfUXZGfiZ6UTfmk7uC7GG8779CpKiK9ZRpCZPl7xRUSSIjVnLilZs+k49QRpeUtH/Gw/PtBErK+OvJn3JCGhiLzZuBX+PvnJT17w3qFDh/ja177G1q1bqays5H/+z/85XsOKiIiIiIiIJFWQkUZ87TIiL+3Aqywd9ZaBRt8AeB5+dmaCE4oIAOEQztL5hHYfJL5i4fDKP8u6/P4MA2fFYqy6BvzcbPy8bPzcbKyGZsLb9pLy6FM4i+bgLJsPobGtBgYgFieyaSteeRHuwjmXn1NE5ArlVt1F/Z6vMNh5hNTc+efd723ejmlFSc0b23mpIpIY41b4G8m+ffv42te+xqZNm6iqquLv/u7vuPfeezFNHS0oIiIiIiIi04c3uwrvdCPhF7fhHzoO4TBGNIxXVgCzZoz4jNnVDQyvGhKRieEunou7cPaVFfzewJtZjjez/E3XKhisKCG07yihfYcxu3qIbbxubB3HHaJPv4TZ1onV0Iyfn4tfmDcumUVExio1dxGRjEo6an95XuEvCAJ6m7eSXrAc07yMLzmIyLhLSAVu9+7dfPCDH+Shhx6ivr6eL33pSzzxxBPcf//9KvqJiIiIiIjI9GMYxK5bhTt3JkFKFFwPo7MH94XtmLX1Iz5inTxDkJZKkJYywWFFrmKGMW5Fv4uybZwVC4lfuwKrrhGjt3/0zzrDRT+ju5ehu2/Cz88hsmkLxJ3E5RURuQjDMMidcScDnYcY7K455168v574QBPphdckKZ2IvNm4VuG2bdvG+973Pt7xjnfQ0dHBV77yFR5//HHuuusunesnIiIiIiIi01s0grNmGfENa4m95Xqc+2/FLCvC2nf0vKZG/wB2TR3OwtnDhQgRmZbcmRUE4RD2kZpLNwZwXCJPv4zR2U3sLTfgF+QR27AGYnHCm3clNqyIyEWkF6wgnFpM6/H/wnNe/zJDb/N2rFAaabkLk5hORN5o3Ap//+N//A/e8573MDAwwLe+9S3++7//m9tuu228uhcRERERERGZcqxVCzGb2zBb28+5bh+uIbAt3Lkzk5RMRCZEyMadPQP72CnwvEs2j2zagtnR9VrRLxeAICOd+LoV2DWnsY7XJjiwiMjIDMOkcN67cQaaOL3tswz1nBre5rNlG+n5KzDMhJ4qJiJjMG6zcdu2bQAcPXqU//N//s9F2xqGwY4dO8ZraBEREREREZFJyZhVQZCZjn3gGPGbXjufy3Gxj5wYLvqFdRaOyHTnzp1F6OBxrNoGvFkVF2xnNrZi1TUSu/na887z86pn4NY3E351F0OFeQSZ6YmOLSJyntScuVRe8ykaD3yLup1fIKv0RpzBVjLmvTvZ0UTkDcat8PfRj350vLoSERERERERmRYM08BdPBf7lV04vf0EGWnYx2sx4i7ugtnJjiciEyDIycQrzsc+cuLChb8gILT7AH5uNt6MshGbxK9dQUpzG+FXdhC7/UZtEywiSRFKyaN85Z/QdvzHdJ15DiucSUrO3GTHEpE3UOFPREREREREJIH8OVUE2/dhHzqOs3op9sFjuDPKCDLSkh1NRCaIO6+ayKYtGJ09BDmZ5903G1uwmtqIbVx/4YJeOERs/UqiT72EdbwWb05VYkOLiFyAaYYonPs7pOYuBAwMw0p2JBF5g3E7409ERERERERERhCycedVYx89iXXiNGZPH+6iOclOJSITyJtRShCNYB+tOf9mEBDadRA/PwevvOSi/fhlxbizKghv2wtDsQSlFREZnfT8ZaTnL012DBF5ExX+RERERERERBLMXVCN4XlEXtmBX5h33vldIjLNWRbunCrs47XguOfcMhuasVraia9YNKrtO+NrlgEB4a17EhRWREREpjIV/kREREREREQSLEhNwZ1VCZ6Po9V+Ilcld94sjLiDfeg4+P7wxSAgvOsgfkEuflnR6DpKieJcsxT7xGnMhpZz78XiEATjG1xERESmlHE7409ERERERERELsxZvpAgEsarLE12FBFJgiAjDbe6kvCO/YQOHMOrKsdPT8Vs7WDoLTeMarXfb7hzqrCO1xLevBNn9dLhVYONLZhdvcSuv0bn/4mIiFzFtOJPREREREREZAIEGWk4a5aBqf8UF7laxW9YzdC9t+JWV2KdbiC8fR9eYR5+aeHYOjIM4utXYvYNEHn2Fey6RvzCfIL0VKzW9sSEFxERkSlBK/5EREREREREREQmgmHg5+fg5+cMr9Rr7SBITx3Tar/fCLIzGbz3FgjZBBnpAIRf2IrZ0T3eqUVERGQKUeFPRERERERERERkohkGfmHeFXUR5Gaf889+ThZWbf3wOX+XUUwUERGRqU/7i4iIiIiIiIiIiEwDfm4Whuth9PYnO4qIiIgkiQp/IiIiIiIiIiIi00CQkwWA2antPkVERK5WKvyJiIiIiIiIiIhMA0FKlCAa1jl/IiIiVzEV/kRERERERERERKYDw8DPydKKPxERkauYCn8iIiIiIiIiIiLThJ+bjaHCn4iIyFVLhT8REREREREREZFpws/JxOzpA8dNdhQRERFJAhX+REREREREREREpokgJxsAs6snuUFEREQkKVT4ExERERERERERmSb87EwwDJ3zJyIicpVS4U9ERERERERERGS6sC38zHSMjq5kJxEREZEkUOFPRERERERERERkGvFzsqb+ir8gAM9LdgoREZEpR4U/ERERERERERGRaSTIfa3wFwTJjnJZzIZmoo8/R8pPngTfT3YcERGRKcVOdgAREREREREREREZP35OFkbMwRgYJEhLTXacUTPbOght34/V2IKfnYnRP4jZ0o5fXJDsaCIiIlOGVvyJiIiIiIiIiIhMI35OFgBGZ0+Sk4yeffQk0cefwxgcInbreobeehtBNIJV15jsaCIiIlOKCn8iIiIiIiIiIiLTSJCeShCyMTu6kh1lVIyBQUJb9+BWVzL01tvwKkvBMPAqSlT4ExERGSMV/kRERERERERERKYTw8DPee2cvykgtGUPWBbxtcvBMM5e9ypKMLt7MXr6khdORERkilHhT0REREREREREZJoJckco/MWd5IS5CKuuEfvUGeJrlkEkfM49r7QQTBOrriFJ6URERKYeFf5ERERERERERESmGT8nC7OrFzwPo6+f8IvbSP3+z7BO1o3fIIOxK3vecQlv3oVXWoQ3q+L8+6EQXkkBVl3TlY0jIiJyFVHhT0REREREREREZJrxc7IgCAi/uI2Un/wK60wTQXoq9rHacenfbGwh9Yc/x7iC7URDuw9iDA0RX7finC0+38irKMFqap2UqxVFREQmIxX+REREREREREREphk/JwsMA+tME87yBQy+7Q6cJfOwGpqvfKUeYB89CUGAVdd4Wc8bHd2EDhwjvnwhQWb6Bdt5FSXD49Q3X25UERGRq4oKfyIiIiIiIiIiItNNOMTQPTcz+LY7cZYtgFAId0Y5AHbtmSvrOxbHrq0fLizWX942nPaJWoJoBHfx3Iu2C9LT8HOyzjvnz6prILTrIATBZY0vIiIyXanwJyIiIiIiIiIiMg35+bkQjbx+ISWCV1p4xef82afOgB/gLJ2P1dx+WdtwWmea8MqLwbz0x5NeRQnWmaazRT7rxGkiz24mtPsgoa17klL8M7p7MZvbwNEWpCIiMrnYyQ4gIiIiIiIiIiIiE8OdWUHkpe0Y/QMEaamX1Yd9vBavtAh3ThWhPYewGprxqspH/bzR24/Z1YOzYuGo2nsVJYT2HsZs7cDo7iXy0nbc2TPw83MIv7qbICWKu3T+Zb3L5TBb2ok+uQk8HwA/Kx0/Lwdn6QKCnMwJyyEiIjISrfgTERERERERERG5SngzysAysU5e3nafRncvZks77pwZBBlp+FnpYz5/zzrTBIaBV1o0qvZ+QS5BNEz41d3DRb95M4lffw3ugtk4yxcS3rEf+0jN6w84LuaZJsyW9jHlGg2jp4/Isy/j5eUwdO+txK5fhV9ahNXURnjLrnEfT0REZKy04k9ERERERERERORqEQ7hlRdjn6y75Pl6I7GP1xKEQ3iVpQB45SXYJ88Mb7dpGKPqwzrTiFecD+HQ6AY1jOFxjtfiLJyNs2bZ2bGc5QswYjHCm3dhdHZjdnZjtbSDH4BlMXjvreO3Cm8oRuTplwjCYWK3rh/eRjU/B28OWIV5RDZtxejs0ao/ERFJKq34ExERERERERERuYq4Mysx2zoxunvH9mAQDG/zOasCLAsAr6wIY2AQo7NnlIN7WI2teGXFYxraWb6Q2PXXnFP0A8AwiK9djjt7BnbNaQiHia9ZxuB9G/EzUolsehVcb0xjjcjziDz7CkbcIXbb9eeencjwSsogGiF05MSVjyUiInIFVPgTERERERERERG5ingVxQQhG/tk3ZieMxuaMQYGcWdXnb3mFxcQ2BZWfdPo+mhqBc/DqygZ09hBRhrenKqRVxUaBvHrr2Hwd+4jdut63AWzCfKyid10LWZPH+Gtu89t73mEdh/E3ndkeKXipQwMEXl2M1Z7F7GN6wky089vY1m482ZiHa8FxxnTu4mIiIwnFf5ERERERERERESuJraNV1GKdbJudIWv3zx2vBY/OwM/P+f1i5aFX1ww6sKffaaRID2VICtjrKkv7U1FwSAni/ja5dhHTp4909Bo7yL6+HOEdh8ivH0foZ0HLvxrEARYx06R8tNfYbZ3MnTLOvyCvAsO786bheF62CdOj9sriYiIjJXO+BMREREREREREbnKeLMqsGtOY3R2E+Rmn3ff6B8g+rOnwTAJUqMEKSlYTS3EVyw6r8DmlRcT3rpneKVb6CLn9gUBVl3j8Gq/UZ4HeKXcuTMxG1oIv7wdt72T0IGj+FmZDN57K1ZDM+Ht+8A0cVYsPOc5o7eP8OZdWPXNuNWVxNcsO297zzcL0lLxKkuwD53AnTdrwt5RRETkjabMir/vf//73HLLLSxZsoS3v/3t7N2794JtHcfhq1/9Khs3bmTJkiXcd999vPDCCxds/y//8i/MmzePv/mbv0lEdBERERERERERkUnFKy0kCIewaxtGvG/V1mM4Lu786uFVbpaJV1SAO3vG+X2VFYMfYDW0XHRMo7sXo28Ar3xs5/tdEcMgft0qiIQJ7T+Ks3geQ/feQpCXjbtkHvFVi4e3/dxzCDwP69QZIk+9SMqPn8Ts7CF223XEb1xzyaLfbzjzqzG7ejCb2xL8YiIiIiObEiv+nnjiCT73uc/x6U9/mmXLlvG9732PD3zgAzz55JPk5Z2/vP7LX/4yjz32GJ/97GeZNWsWL774Ih/96Ed55JFHWLjw3G/v7N27l0ceeYR58+ZN1OuIiIiIiIiIiIgkl2XhlRdjnW44b7UbgHW6Ea+4YMR7bxZkpuNnpmPVN+HNKAPfx2xux+zpxZ1VcXYVoHWmabiAWFww7q9zUeEQQ3feBI5DkJN1zi136XwM3ye88wCh/Ucx4g5+QS7x61bhziy/+ArGEfglhfhZ6diHTxCf6PcUERFhiqz4+853vsNDDz3Egw8+yOzZs/n0pz9NNBrlJz/5yYjtf/azn/HhD3+YDRs2UFFRwTvf+U42bNjAww8/fE67/v5+/uRP/oTPfvazZGVljdiXiIiIiIiIiIjIdORVlGJ2dGH0DZx7I+5gNbfiVZSOvq/yYqzTjYRf2k7KIz8n+uQmwq/sJOW/n8I6Pbyq0DrTiFdSCPbEr0UI0lPPK/r9hrN8IfE1S3HnzmTwrW9h6J5bcOfOHHPRDwDDwJ1fjX2qHmNg8ApTi4iIjN2kX/EXj8c5cOAAv/d7v3f2mmmarF+/nl27do34jOM4hMPhc65FIhF27tx5zrXPfOYzbNiwgfXr1/ONb3zjsvKZpoFpar9uEcsyz/mriEx+mrciU4/mrcjUojkrMvVcdfO2qgTjJZNwfSPeojlnL5unWzCCAGaWYduj/LWYVY556DhGawfegmr8qjKCSJjQ5l1En3sFv7IUs6Udd+2y0fc5kZbNJwCs8ehr3kzYeYDopi2416+6YMFRxsdVN29FpgHN28Sa9IW/zs5OPM87b0vPvLw8ampqRnzm+uuv57vf/S6rV6+msrKSzZs38/TTT+N53tk2v/jFLzh48CA//vGPryhfbm4ahg7qFTkrMzMl2RFEZIw0b0WmHs1bkalFc1Zk6rl65m0aTlUpoaYWQtcvP3vVaWklKMoltbJw9F3lzCSYVYrxprPwgsrb8Y+dxvv1VgIDUpZUY2SljVP+ySoN/20bcZ95ldBjz2KtXIh17VKM8GWsIJRRu3rmrcj0oXmbGJO+8Hc5PvnJT/KpT32KO++8E8MwqKio4IEHHji7NWhjYyN/8zd/w8MPP0wkMrqDeS+ko6NfK/5EGP52RmZmCj09g3ien+w4IjIKmrciU4/mrcjUojkrMvVcjfPWKirAfnU3fc2dEA5DEBA+dhpvfjX9nf1j73DQPf9aQT68dSNGZw8DvgmX0+9Uk54J996KtfcI1vYDsP8Yfn4OhuOC44Lr4V67nKCsKNlJp7yrcd6KTHWat5cnJ2d0X5yZ9IW/nJwcLMuivb39nOvt7e3k5+eP+Exubi5f//rXicVidHV1UVhYyBe/+EUqKioAOHDgAO3t7TzwwANnn/E8j23btvH973+fffv2YVmjW9jv+wG+H1zm24lMP57n47r6w1pkKtG8FZl6NG9FphbNWZGp52qat15ZCZa/i+BUI96sCszmNhiK45QV44/nr4FpQ14uXCW/rsMM3CXzMaoqCO06gBGL44fDkJaG2dyKuX0/saKCZIecNq6meSsyXWjeJsakL/yFw2EWLVrE5s2b2bhxIwC+77N582be/e53X/TZSCRCUVERjuPw1FNPceeddwJw7bXX8vjjj5/T9hOf+ASzZs3iQx/60KiLfiIiIiIiIiIiIlNZkJ6Kn5uNdboeb1YF1ukGgmgEvyA32dGmjSAjjfiNa865ZtXWE3luM2ZbB36+fq1FRGT8TPrCH8D73vc+Pv7xj7N48WKWLl3K9773PQYHB8+u2PvTP/1TioqK+NjHPgbAnj17aG5uZsGCBTQ3N/PP//zP+L7PBz/4QQDS09OZO3fuOWOkpqaSnZ193nUREREREREREZHpzKssxT5wFDwP60wjXkUJGDraJpG8ylKC9FTsA8eIb1ib7DgiIjKNTInC31133UVHRwdf+cpXaG1tZcGCBXz7298+u9VnY2MjpmmebR+Lxfjyl79MXV0dqampbNiwgS984QtkZmYm6xVEREREREREREQmJbeylNDug9jHazG7enFWLk52pOnPMHAWzia8bR/ONUsI0lKTnUhERKYJIwgCHVB3BVpbe5MdQWRSsG2TnJw0Ojv7tS+zyBSheSsy9WjeikwtmrMiU89VO2+DgJT/+iW4DobjMfDOeyEUSnaq6S/ukPKjX+AumI2zSsXWy3XVzluRKUzz9vIUFGSMqp156SYiIiIiIiIiIiIybRkGXmUJRszBKylU0W+ihEO4c2diH6kB1012GhERmSZU+BMREREREREREbnKuZWlAMPn+8mEcRdUY8Ti2CdOJzuKiIhMEyr8iYiIiIiIiIiIXOX8kkLiq5fiVlcmO8pVJchIx6ssxT54HHQik4iIjAMV/kRERERERERERK52hoG7eC6Etc3nRHMWzcHs6sE+ejLZUUREZBpQ4U9EREREREREREQkSfyifNw5VYRf2Uloy27w/WRHEhGRKcxOdgARERERERERERGRq5ZhEL9uFX5eNuEtezA7uojddC2kRJOdTEREpiCt+BMRERERERERERFJJsPAXTCboTtuxOzqJeWxZ7GO14LnJTuZiIhMMSr8iYiIiIiIiIiIiEwCfnEBQ/dvxM/NIvLiNlJ+9AtC2/dh9PUnO5qIiEwR2upTREREREREREREZJIIUlOI3XY9Rncv9pEa7CM1hPYfJXbTWryq8svsNADDGN+gIiIyKWnFn4iIiIiIiIiIiMgkE2Rl4KxZxuBDd+NVlhB+ZQdG/8CY+zEbWkj5wWPYew6B7ycgqYiITCYq/ImIiIiIiIiIiIhMViGb2HXXgGUTfnHb8Oq90XJcIi9vh3CI8K6DRH/xa4yunsRlFRGRpFPhT0RERERERERERGQyi4SJ3bgaq7EVe//RUT8W2nUAY3CIodtvZOjum8BxSHnsmeE+xlJAFBGRKUOFPxEREREREREREZFJzi8pxFk8l/DO/ZjtnZdsb7Z1EDp4nPiKRQSZ6fgFeQzddxvO/GrC2/YSfnW3in8iItOQCn8iIiIiIiIiIiIiU4CzchF+ThbhTVvAcS7c0PMIv7QDPzcLd9Gc16/bFs6aZcTXr8Q+fILwKztV/BMRmWZU+BMRERERERERERGZCiyL2I1rMAaGiP7ieYy+/hGbhfYfxezqGT4b0Dz/I2B33ixiN6zGPnZq+NxA3090chERmSAq/ImIiIiIiIiIiIhMEUF2JkN334LhOEQffw6zpf31m4NDhHYeILT7EM7iuQR52Rfsx5s9g9iNa7Br6oZXEMbiiQ8vIiIJZyc7gIiIiIiIiIiIiIiMXpCTyeA9txL59StEf7mJ+DVLMDu7sWtOExgGzvxZOCsWXrIfb1YFMcsk/MJWUn78S5wl83AXzgZbHxuLiExV+hNcREREREREREREZKpJiRC7/UbCr+wkvHUPQWqU+PKFuPNmQSQ86m68GWUMvu1OQnsOEd51gNDB48RXLcKbMzOB4UVEJFFU+BMRERERERERERGZiiyL+PXX4CyeR5CZBpZ1ef2kRHGuXYG7aC6hHfuIvLSDoYx0/OKC8c0rIiIJpzP+RERERERERERERKYqwyDIybz8ot8bBBlpxDesxc/NIrTrAATBOAQUEZGJpMKfiIiIiIiIiIiIiAwzDJwVi7Ca2jAbW5KdRkRExkiFPxERERERERERERE5y6sowc/PIbxTq/5ERKYaFf5ERERERERERERE5HWGQXzlYszWDqwzjclOc0WsU2cw2zqSHUNEZMKo8CciIiIiIiIiIiIi5/BLC/GK8wmN86o/o38As6FlYlYSui7hF7cRefplGBxK/HgiIpOACn8iIiIiIiIiIiIicq7XzvozO7qxausv3M5xMHr7Rt1taNteor96gcizr2D0D4xD0AuzzjRhuB74PpGXd2jbUhG5KqjwJyIiIiIiIiIiIiLn8YsL8EqLCO3Yj9HRfd59s7GVlJ8+TcqjT8PAKFbU+T5WQzNeWTFmeyfRR5/CPnAsYQU569QZ/Nxs4jesxqprxD52KiHjiIhMJir8iYiIiIiIiIiIiMiI4muWQRCQ8rOnCb+wFaOvH1yP0JbdRJ/chJ+WQmAahPYfuWRfZlsnRszBWb6Awd+6Ha96BuGtewg/v2X8g7suVl0j7sxyvMpS3DlVhLbsxugZ/epEEZGpyE52ABERERERERERERGZnIKcTIZ+6y3YR08R2n0Q++QZgpQoxtAQ8TVLcRfOIbTrAPaBYzhL5kNK5IJ9WWcaCSJh/IJcMAzi61bg52YRfmUnTl8/QXrauOX+zTafXlU5APG1y0hpbCHy4jaG7roJDGPcxhIRmUy04k9ERERERERERERELsyycBdUM/i2O4kvX4BXkMvgfRtxF80dPgtw4RwwDEIHjl68mzPNeGVF5xTd3FkVBLaFfeL0+EY+dQY/N4sgM334QihE7MY1mK0dhF/eAa43ruOJiEwWKvyJiIiIiIiIiIiIyKWFbNxlC4jffC1Bdubr16MR3PnV2IdPwFBs5GcHhzDbO/HKit/UZwivqhzr2KnxO+vP9Ya3+Xxttd9v+EX5xNevxK45TfTnz2J09ozPeCIik4gKfyIiIiIiIiIiIiJyRZxFcyAICB08PuJ9q74ZYHjF35u4s6swe/sxW9rHJYt1pvGcbT7PGWvuTAbvuRUCSHn8meFi5XgVHEfiaWWhiEwsFf5ERERERERERERE5MqkRHHnzcI+eAxi8fNuW/VN+Hk5kBI9755fnE+Qnop97NS4RDm7zWdWxoj3g9wshu69FXdOFeHNu4a3/kxA8c+sbyLlB49hNraOe98iIheiwp+IiIiIiIiIiIiIXDF38VwM3yd06E2r/oIAq74Jr/z81X4AGAbu7CqsU2fAca8wxPA2nyOt9juHbRFft5LYDauxj9cSfmEb+P65beIO9t7DGN29Y45h9PQR2bQFw/Wwj50c8/MiIpfLTnYAEREREREREREREZn6gtQUnHmzsPcfxZ1RRpCTBYDZ2oERc/DKSy74rDu7ktDug1i19XizZ4xywIDQUy8R7+/HKi/FqyzD7OvHcL3zzve7EG/2DGKWRWTTFvA94hvWgmFgnThNeNtejKEY/olahu65FUKj/DjdcYk8t5kgHMadXYV99CS4Ltj6OF5EEk8r/kRERERERERERERkXDgrFxFkpBF95mUYHAKGt/kMIiH8/JwLPhdkpOMV52Mfrx31WFZ9E+bpBoy8bKzDJ0h57Bkim7bg51x4m8+ReDPLid2yDvt0A5FnXyHy5CYiL27DKylg6PYbMPoGCG/ZPbrOgoDwS9sxevuI3boed341huNi1TWNOo+IyJVQ4U9ERERERERERERExkcoRGzjdeD5RJ/bDJ6HdaYJr7QIzIt/HO3OrsJqbMHo67/0OEFAaPs+/OIC7PtuJv7Oe4nddh3urEqcFQvHHNurLGXo1uuGxx8YYugtNxC/6Vr80iLi1y7HPnYK68Tpi+YhFie05xD2qTPEb1hNkJNFkJmOn5+DXXORZ0VExpHWFouIiIiIiIiIiIjIuAnSUondup7oL58n8vwWzLZOnPnVl3zOqyojeHUX9vFanOUXL95Zx2sxO3tw7r8VwzDAsvDKSy66neil+OXFDL7tToJIGCzr9Vyzq3AbWglv3slQfs7wakLPw6qtx66pw+jpw+gfwHA9AJyl8885Y9CdVUF4+36IxSESvux8IiKjocKfiIiIiIiIiIiIiIwrvyCX2PWrh8/OA7yy4ks/FArhVVdi7zuCV1aEX5A3cjvXI7zzAG5VGUHhBdpcpiA15fyLhkF8/Qqij3UQeX4LflEe1onTGHEHrzAPr7yYIDWFIC2FICMNP+/cLU29mRWwdS/W6Xq8OTPHNa+IyJup8CciIiIiIiIiIiIi486bVUF8cBCzswdSo6N6Jr56GdHOHiJPv8TQnTcR5GSd18Y+dBxjcAhn5WKsEfpIiFCI+E1rif7i1xiDQ7jzZuHOqRrVWYJBagpeSQH2iToV/kQk4VT4ExEREREREREREZGEcBfNHdsDIZuhjdcRfXIT0V+9yNBdNxFkpr9+PxYntPcw7rxZoyq6jSc/L4eBt981vF3nJc4rfDNvZgXhzbtgYGjURVARkcsxtj+dREREREREREREREQSKRJm6C03EIRsor96AbOxBevEaUK7DhJ57hXwfeLLFyQnW0p0zEU/ALeqHAywT9UlIJSIyOtU+BMRERERERERERGRySUlSuz2GyEIiD75ApEXtmIfPgF+QPy6a4YLcFNJJIxXVoxdo8KfiCSWtvoUERERERERERERkUknSE9l8P7bMPv68TPSIRxKdqQr4s6qJLJpC2ZDC35pYbLjiMg0pRV/IiIiIiIiIiIiIjI5RcL4eTlTvugH4M0oxSsuIPrUi9j7j0IQJDuSiExDWvEnIiIiIiIiIiIiIpJolkXs9hsI7dhPeNtezNYO4tevgtDUL2pOB0Z7F+bgIAQAAYFh4ufnQDSS7GgiY6LCn4iIiIiIiIiIiIjIRDBNnNVL8QtyCb+0nejjzxHfsGZ4VaMkjdnQQvRXL4x4z8/PwSstwisvxi/Kn+BkImOnwp+IiIiIiIiIiIiIyATyqsoZyski8vyrRB9/Dmf5Apyl88HU6VwTLggI79iHn59D7Nb1w5cwMDwXs6kNq6EZ++hJQnsPE7tpLd7MiiQHFrk4Ff5ERERERERERERERCZYkJXB0D23ENp7mNDuQ1inG4ndsJogJzPZ0a4q1ukGzLZOhm6/kSA15ez1APAy0vHmVEEQEHluM+EtexgsLYJIOGl5k2IoBoZx9b33FKWvD4iIiIiIiIiIiIiIJINl4axYxNA9N4PnkvL4M5gt7clOdfUIAkI7D+CVFOKXFl64nWEQv3Y5uC7hnfsnLN5o2UdqCG3ZPer2ZlsHVl3jcEHvUjyPlMefJfWRx4k8/RLW8VqIO5cfVhJOK/5ERERERERERERERJLIz89l6N6NRH71ApFfv8rg/RshGkl2rGnPOl6L2dXD0A3XXLJtkJaKs3IR4S17cKtn4BfmTUDCSzPrmwlv3gVBgFdWjF9ePHLDIMBsaCa09whWU+vZy35WBn5hHu68mfgF57+TfeAYRv8g8RULsc40EXlxG5gm8bXLcOdXJ+q15ApoxZ+IiIiIiIiIiIiISLLZFvGb1oLvEXlhKwRBshNNb55HeNdBvBll+Pm5o3rEXTAbPy+H8Cs7wffP6cvo7UtQ0AszevuJbHoVr7QQrzif8LY95+Z6jdnUSvTx54g+9RKG6xK7+VoGH7yD2A2r8YsLMJtaiTz1EkbPue9gDAwS2nMIZ+Fs3GULiN19M4MP3YU7s5zQtr0Y/QMT9aoyBir8iYiIiIiIiIiIiIhMAkFaKrEb12LVNxPacyjZcaY1+0gNxsAg8ZWLRv+QYRC/biVmVw/2/qPDq+1e2k7KD39Oyo+fPK9wllCuR+S5zRAKEduwlvia5ZhdvdhHas6N3N5F5JmXwTQYuv0Ghu65Ba+qnCAzHW/2DOLrVzJ030aCSJjIr18Fzzv7bGjH/uHtaJctOHstSEslfu0KsG1C2/ZO2OvK6KnwJyIiIiIiIiIiIiIySfhlRTjLFxLadRCzoTnZcaafIMA6dYbQnkO4s2cQZGeO6XE/Lwdn4WzCO/YTfepFzKZW3LmzwDDO2UIzoYKA8Cs7MLt7GbplPUTCBHnZuHOqCO06ALE4MLxiL/rMywQZ6QzdfiN+aREYxvn9hUPEbl6H2d1D+LWzAs22TuzjtTgrF0EkfF77+DVLsE+ewZyod5ZRU+FPRERERERERERERGQScZYvwCstJLJpKwzFkh1nevB9rBO1RH/6NJFfv4qfk0185eLL6spZsYj4mqUM3XsrQw/egXPNEvycLMzmtnEOPTL72CnsE6eJXbeKIC/77PX4ysXgB8OrRV2XyLOvAAGxjeshZF+0zyAvm/i1K7CPnMQ6Xktoy278nEzcuTNHbO/NnoFfkEv41d0jbi96QYMx7GdewW/pGP0zMiYq/ImIiIiIiIiIiIiITCaGQezGNeC6hA4cS3aaKc/o7Rsu+L2wjSA9laG7byZ2x42QGr28DkM27qK5+Pk5Z1fQecX5E7PiL+4Q2rEft7oSr7ry3HupUZyl8wkdPE7kmVcwunoY2ngdQVrqqLp251Thzp5B5KXtWC3txNcsA/MCZSTDIH7tcszO7vO2F72ggSGiT27CbG7DiIYv3V4uiwp/IiIiIiIiIiIiIiKTTUoUd3419qHjWvV3BYzuXqJPbIIgYOjeW4nddj1+Yd64j+MX5WP0DWD0D4x7328U2n8Uw3FwVo28WtFdNIcgLQWrsYX4hrUEeTmj79wwiK9bgZ+ThVtVPrw16EX4+bm4c2cS2nkABi/+76jRP0D0l89jxB2ce27GyEwffS4ZExX+REREREREREREREQmIWfxPAgCQvuPJjvKlGR09hB94nmCcIjYnRuGV+gliFeUD5DQ7T6NgUHsA0dxFsy+8Co+y2LolnXENq7Hqywd+yC2zdC9txC/ae2omv9mu9ToUy9gdHaPnLu3n+gTz2P4PkN3bSDIyhh7Lhk1Ff5ERERERERERERERCajlAjugtla9XcZjPYuok8+T5AaZeiODQSpKYkdMCWKn5WOlcDCX2j3QbBMnKXzL9ouyMvBq7iMot9vmObZLUwvKSXC0B03gh+Q8tiz2HsPQxAAYHT1ENq2l+jjzxIYBkN3biDI0Eq/RLv4aY4iIiIiIiIiIiIiIpI0zuK52IdPENp/FOeaJcmOMyWYTa1EnnuFID2dodtvgMjEnCfnFxUkbMWf0d2LffQU8WuWTNj7jFaQl8PQfbcS2nWQ8M4D2KcbCAwDq6WdIBLCrZ6Bu2Re4ouvAqjwJyIiIiIiIiIiIiIyeUVfW/V38BjOormQEkl2oknNqqkj8uI2vKI8Yresh3Bowsb2ivKxj54cXp0ZHf3vk3W6AXv/EdyFc/BmlI242i68Yx9BagrugurxjDx+LAvnmiV4laWEt+yGkE3sprXD241aVrLTXVVU+BMRERERERERERERmcScRXOwDx0ntP8IzuqlyY6TFNbJM/jZmQQ5mSM3CALsfUcI79iPW11J/LpVE15w8l87589qaR/9+XpDMcIv7wAg8utX8XOzcFYswqsogbiD2dmN2dqBVdtA7IbVk76I5hfmMXTvrcmOcVVT4U9EREREREREREREZDJ746q/ZQsmdBXbpDA4RGTTFoJImKG7bybIfNM5cb5P+NXd2EdqcJYvwFm+cPRn1I2jID2VIDUFs6l11IW/8JY9EPgMvvV2zJ5eQrsPEnn2FYJwCCPuDDcyDLzKUrzqygSml+lChT8RERERERERERERkUnOnTuT0N7DWI0tw9tBXkXsmjowIAiHiDz9EkN33fz6lqeOQ+T5LVj1zcSuX4U3Z2byghoGXnE+VnMbziiaW3WN2DWnh1fypUbxU6PE7tiA2diC1dyGn5mBn5M5XOic5Cv9ZPIwkx1AREREREREREREREQuLshIw89Mx6pvTnaUCWfXnMYrLyH2lhsw4g7RZ14Cx4WBIaK/3ITZ3MbQbdclt+j3Gr8oH7O9C5xLlP7iDuFXduKVFZ+3ks8vKcRZvhBvVgVBTpaKfjImKvyJiIiIiIiIiIiIiEwBflkRVn0TBEGyo0wYo6sHs60Tt7qSICON2Fuux+juJfLsK6T84jmMwRhDd96EX1ac7KgAeEUFEASYrR0XbRfevhcch/j6lUnZllSmLxX+RERERERERERERESmAK+0CKNvAKO3P9lRJox94jRBOIRXUQKAn5dD7KZrsZpaCUIhhu65mSAvO7kh3yDIziCIhLGa20a8b/QNENqxH/vISZxVSwjSUyc4oUx3OuNPRERERERERERERGQK8EoKwDCw6ptxM9OTHSfxgmB4m8+q8nO2u/TLixl8620EaakQmmRlDsMY3u7zN4W/IIBYHKu1HfvISawzTQS2hbNoDu78WcnNKtPSJJsRIiIiIiIiIiIiIiIyolAIrygPq74Jd0F1stMknNnSjtE3gPumM/AAguzMJCQaHa8on/COfUQf/dXwCk3XA8DPzSa+bgXurAoIhZKcUqYrFf5ERERERERERERERKYIr7SI0L4j4PtgTu/TvOwTtQTpqfhF+cmOMibezHLc9k6CaIQgLXX4HbIyhouVOs9PEkyFPxERERERERERERGRKcIvK8LYeQCzpR2/uCDZcRLH87BOnsGdXz3limVBWirxDWuTHUOuUtP76wAiIiIiIiIiIiIiItOIn5dDEAlj1TcnO0pCWWeaMOIO7qzzt/kUkQtT4U9EREREREREREREZKowDLzSQqyG6V34s0+cxs/LJsiZvGf5iUxGKvyJiIiIiIiIiIiIiEwhXlkRZlsnDMWSHSUxYnGsukat9hO5DCr8iYiIiIiIiIiIiIhMIX5pEQBWQ0uSkySGdboefB9vZnmyo4hMOSr8iYiIiIiIiIiIiIhMIUFaKn525rTd7tOuOYNXnE+QlprsKCJTjgp/IiIiIiIiIiIiIiJTjFdWhFXfDEGQ7Cjja3AIq7EFT9t8ilwWFf5ERERERERERERERKYYr6ocY2AQe+/hZEcZV/apMwC4M8qSnERkalLhT0RERERERERERERkivEL83CWzSe86yBm4/Q56886WYdXWgTRSLKjiExJKvyJiIiIiIiIiIiIiExBzopFeMX5RJ7fgjEwmOw4V8zoG8BqbsedVZHsKCJTlgp/IiIiIiIiIiIiIiJTkWEQ27AWTIPwpi3g+8lOdEWsk3VgmXiVpcmOIjJlqfAnIiIiIiIiIiIiIjJVpUSJ3XQtVnM7oZ0Hkp3mitgn6/DKSyAcSnYUkSlLhT8RERERERERERERkSnML8onvnIRoX1HMPr6kx3nshjdvZjtXdrmU+QKqfAnIiIiIiIiIiIiIjLFuQuqCWwL+8TpZEe5LHZNHUHIHl7xJyKXTYU/EREREREREREREZGpLhTCqyrHOnYKgiDZacbMqj0zfLafbSU7isiUpsKfiIiIiIiIiIiIiMg04M6uwuztx2xpT3aUMTEGBjE7e7TaT2QcqPAnIiIiIiIiIiIiIjIN+MX5BOmp2MdOJTvKmJiNLQB4JQVJTiIy9anwJyIiIiIiIiIiIiIyHRgG7uwqrFNnwHGTnWbUrMZW/JwsSIkmO4rIlKfCn4iIiIiIiIiIiIjINOHOrsRwXKza+mRHGZ0gwGpoxistTHYSkWlBhT8RERERERERERERkWkiyEjHK87HPl6b7CijYvT0YfQP4mubT5FxocKfiIiIiIiIiIiIiMg04s6egdXYgtHXn+wol2Q1toBh4BWr8CcyHqZM4e/73/8+t9xyC0uWLOHtb387e/fuvWBbx3H46le/ysaNG1myZAn33XcfL7zwwjltvvWtb/Hggw+yYsUK1q1bx0c+8hFqamoS/RoiIiIiIiIiIiIiIgnlVZUT2Bb2idPJjnJJZmMLfkEuhELJjiIyLUyJwt8TTzzB5z73Of7gD/6ARx99lPnz5/OBD3yA9vb2Edt/+ctf5oc//CF/8Rd/wRNPPME73vEOPvrRj3Lw4MGzbbZu3cq73vUufvSjH/Gd73wH13X5wAc+wMDAwES9loiIiIiIiIiIiIjI+AuF8GaUYR89CY6T7DQQBIQ378Lef/S861ZjC16JzvcTGS9TovD3ne98h4ceeogHH3yQ2bNn8+lPf5poNMpPfvKTEdv/7Gc/48Mf/jAbNmygoqKCd77znWzYsIGHH374bJt/+7d/44EHHmDOnDnMnz+fv/u7v6OhoYEDBw5M1GuJiIiIiIiIiIiIiCSEs2QexOJEnt0MnpfULKHt+7APnyC8fR9GV8/Z62ZHF0bMwStV4U9kvEz6wl88HufAgQOsX7/+7DXTNFm/fj27du0a8RnHcQiHw+dci0Qi7Ny584Lj9Pb2ApCVlTUOqUVEREREREREREREkifIySK28TqsljYiz28B309KDvtIDaH9R4mvWkyQlkJ46+vHeJkNLWBZw1t9isi4sJMd4FI6OzvxPI+8vLxzrufl5V3wTL7rr7+e7373u6xevZrKyko2b97M008/jXeBbzX4vs/f/u3fsnLlSubOnTumfKZpYJrGmJ4RmY4syzznryIy+Wneikw9mrciU4vmrMjUo3krMvVo3l5CeRHuxvWEnn4Z45UduBvWgDFxn2cbZ5oIv7oLb9FsWLEALzeT0DOvEDQ04VeWEmpuJSgtwI7ofL+rieZtYk36wt/l+OQnP8mnPvUp7rzzTgzDoKKiggceeOCCW4N++tOf5tixY/zgBz8Y81i5uWkYE/gHpchkl5mZkuwIIjJGmrciU4/mrcjUojkrMvVo3opMPZq3F5EzBy9q4z7xIik5Gdg3rZ6QYf22TpxNWzCrK0i58zoM0yTImYt7ohZ7535CC6qIt3VgX7uM9Jy0Cckkk4vmbWJM+sJfTk4OlmXR3t5+zvX29nby8/NHfCY3N5evf/3rxGIxurq6KCws5Itf/CIVFRXntf3MZz7D888/z3/8x39QXFw85nwdHf1a8SfC8LczMjNT6OkZxPOSs22AiIyN5q3I1KN5KzK1aM6KTD2atyJTj+btKBUWYq1eir15F32FBQQlBQkfMvTMFoxIhPh1q6B78Ox1Y8Viwo8+Reynz2ENxRnMzibo7E94Hpk8NG8vT84oC+STvvAXDodZtGgRmzdvZuPGjcDw1pybN2/m3e9+90WfjUQiFBUV4TgOTz31FHfeeefZe0EQ8Nd//dc8/fTT/L//9/9GLAqOhu8H+H5wWc+KTEee5+O6+sNaZCrRvBWZejRvRaYWzVmRqUfzVmTq0by9NHfuLIxjtViv7GTovo0J3/LT7uzBnVGGa1jwxt+bzAyMebOwD53Aj4RwsjLPvS9XDc3bxJgSG6i+733v40c/+hGPPvooJ06c4K/+6q8YHBzkgQceAOBP//RP+dKXvnS2/Z49e3jqqaeoq6tj+/btfPCDH8T3fT74wQ+ebfPpT3+axx57jC996UukpaXR2tpKa2srQ0NDE/5+IiIiIiIiIiIiIiIJZRjE1y7D7OjGPnoysWN5HmbfAEFm+oi34ysWEURCeCVFE3rmoMjVYNKv+AO466676Ojo4Ctf+Qqtra0sWLCAb3/722e3+mxsbMQ0X69hxmIxvvz/s3ff4VFWeRvH7ymZ9JCQHlLovaP0IkUQFVQUFAurIlbWXrDtio0Vy4qKawEVewGxIjYERHrvvSUhCUlISM8kM/P+gcxrJIGElMlMvp/r4trNec5znt8MHIi555zz8stKTEyUn5+fBg0apOnTpysoKMjZ55NPPpEkXXfddWWeNW3aNGegCAAAAAAAAACAp7CHh6q0ZYK81m1VadNYydtSK88x5BVIDofsgeUHf/K2qOjCwZLFq1aeDzRkBofDwT6V1ZCenuvqEoB6wWw2KiTEX1lZ+SzPBtwE8xZwP8xbwL0wZwH3w7wF3A/ztuoMBYXy+fJHlbZqqpJeXWvlGcakVPn8vEyFYy+UI8CvVp4B98W8PTvh4YGV6ucWW30CAAAAAAAAAIDqc/j5qqRzW3nt2CdDVk6tPMOYkycZjXL4+9bK+AAqRvAHAAAAAAAAAEADUtqhlewBfrKs3iTVwqaAhtw82QP9Ob8PcAGCPwAAAAAAAAAAGhKTSSU9u8h0JE2mxJQaH96YkydHUAXn+wGoVQR/AAAAAAAAAAA0MLa4aNliIuW1epNks9Xo2IbcPNkJ/gCXIPgDAAAAAAAAAKChMRhk7dlFxrwCmbftqblxHQ4Zc/PlCPSvuTEBVBrBHwAAAAAAAAAADZAjJEgl7VrIa/NOGQoKa2RMQ16BZHfIHsiKP8AVCP4AAAAAAAAAAGigSrq2l4xGea3bWiPjGXLzJIkz/gAXIfgDAAAAAAAAAKCh8raopEdHmfcekjE9s9rDGXPzJYNBjgC/GigOQFWZXV0AAAAAAAAAAABwndLWzWTeuU/eP/8he0iQHL4+cvj6yBYXI3tMRJXGMuTkyR7gJxlZdwS4AjMPAAAAAAAAAICGzGBQ8eA+Km2ZIIefrwxFxTIfSpb3ouVSSWmVhjLm5LHNJ+BCrPgDAAAAAAAAAKCBcwQFqKRnF+fXhtx8+c79QaaDSbK1alrpcQy5+bJHhtVChQAqgxV/AAAAAAAAAACgDEegv2zR4TLvPViFmxwy5uTJHuRfa3UBOD2CPwAAAAAAAAAAcIrSVk1lSs2QISevUv0NhUWSzSZHIFt9Aq5C8AcAAAAAAAAAAE5hS4iVw+Il856Dlep/MiC0c8Yf4DIEfwAAAAAAAAAA4FRmk2zN4mTee0hyOM7Y3ZB7IvhzBLLVJ+AqBH8AAAAAAAAAAKBcpa2aylBQKGNy2hn7GnPy5fD3lUymOqgMQHkI/gAAAAAAAAAAQLnsYSGyBwfJvPfgGfsacvPY5hNwMYI/AAAAAAAAAABQPoNBpa2aynzoiFRsPW1XY06eHIEEf4ArEfwBAAAAAAAAAIAKlbaIlxwOmfcfrriTwyFDDiv+AFcj+AMAAAAAAAAAABXz9ZEtPkZeG7bJvHOf5HCc2qfIKkNJqRyB/nVfHwAngj8AAAAAAAAAAHBaxX27yxbfRJYVG+TzzS8ypqaXuW7MzZMk2dnqE3Apgj8AAAAAAAAAAHB6Pt6y9j9HRRcPkUwm+fywRN6LlsuQmSVJMuScCP4cQaz4A1zJ7OoCAAAAAAAAAACAe7CHN1bRRYNl2ndYXhu3y/ebX2WLi5bDbJLD10fy8nJ1iUCDRvAHAAAAAAAAAAAqz2CQrWWCbM3jZDqQKK/NO2XKzpUtMtTVlQENHsEfAAAAAAAAAACoOqNRthYJsjWPlykx5cSKPwAuRfAHAAAAAAAAAADOnsEgW3yMq6sAIMno6gIAAAAAAAAAAAAAVB/BHwAAAAAAAAAAAOABCP4AAAAAAAAAAAAAD0DwBwAAAAAAAAAAAHgAgj8AAAAAAAAAAADAAxD8AQAAAAAAAAAAAB6A4A8AAAAAAAAAAADwAAR/AAAAAAAAAAAAgAcg+AMAAAAAAAAAAAA8AMEfAAAAAAAAAAAA4AEI/gAAAAAAAAAAAAAPQPAHAAAAAAAAAAAAeACCPwAAAAAAAAAAAMADEPwBAAAAAAAAAAAAHoDgDwAAAAAAAAAAAPAABH8AAAAAAAAAAACAByD4AwAAAAAAAAAAADwAwR8AAAAAAAAAAADgAQj+AAAAAAAAAAAAAA9A8AcAAAAAAAAAAAB4AII/AAAAAAAAAAAAwAMQ/AEAAAAAAAAAAAAewOBwOByuLgIAAAAAAAAAAABA9bDiDwAAAAAAAAAAAPAABH8AAAAAAAAAAACAByD4AwAAAAAAAAAAADwAwR8AAAAAAAAAAADgAQj+AAAAAAAAAAAAAA9A8AcAAAAAAAAAAAB4AII/AAAAAAAAAAAAwAMQ/AEAAAAAAAAAAAAegOAPAAAAAAAAAAAA8AAEf4CH+uijjzRkyBB16tRJY8eO1ebNm0/ps2HDBk2YMEFdu3ZV9+7ddc0116ioqOi04x45ckQ333yzunTpoj59+ui5555TaWmp8/qqVavUpk2bU36lp6dXOGZxcbGmTJmiUaNGqX379rr99ttPW8O6devUvn17XXLJJWd4FwD34mnz9mzGBdyNp81bSbJarfrvf/+rwYMHq2PHjhoyZIjmzp1byXcEqN88bc5OmTKl3HEvuuiiKrwrQP3mafNWkr755huNHj1aXbp0Uf/+/fXwww8rKyurku8IUP954rz96KOPNHLkSHXu3FkjRozQV199Vbk3A3AT7jRvV61apdtuu039+/dX165ddckll+ibb745pd8PP/ygCy64QJ06ddKoUaO0ZMmSKrwj7s3s6gIA1LwFCxZo2rRpmjp1qrp06aI5c+Zo4sSJWrhwoUJDQyWd+Iv6pptu0i233KLHH39cJpNJO3fulNFY8ecBbDabbrnlFoWFhenTTz/V0aNH9dBDD8nLy0v33ntvmb4LFy5UQECA8+uTz61oXG9vb1133XX68ccfT/vacnJy9NBDD6lPnz7KyMiozNsBuAVPnrdVGRdwJ546b++66y5lZmbqmWeeUXx8vNLT02W32yv7tgD1lifO2UcffVT33XdfmXsuueQSXXDBBZV6T4D6zhPn7bp16/TQQw/p4Ycf1uDBg5WWlqYnnnhCjz/+uF577bWqvD1AveSJ8/bjjz/Wiy++qKefflqdOnXS5s2b9dhjjykoKEhDhgypytsD1EvuNm83bNigNm3aaNKkSQoLC9Nvv/2mhx56SIGBgRo8eLAkaf369brvvvt07733avDgwfr22291xx136Msvv1Tr1q2r83a5BwcAj3PFFVc4pk6d6vzaZrM5+vfv73jzzTedbWPHjnX897//rdK4ixcvdrRt29aRnp7ubPv4448d3bt3dxQXFzscDodj5cqVjtatWzuOHz9+VrU/9NBDjttuu63C63fffbfjv//9r+OVV15xjB49+qyeAdRHnjhvqzsuUN954rxdsmSJo0ePHo6srKyzGheozzxxzv7dzz//7GjTpo0jKSnprJ4D1DeeOG9nzZrlGDp0aJm2999/3zFgwICzeg5Q33jivL3yyisd//nPf8q0TZs2zXHVVVed1XOA+sad5+1JkyZNckyZMsX59V133eW4+eaby/QZO3as4/HHH6/Wc9wFW30CHsZqtWrbtm3q27evs81oNKpv377asGGDJCkzM1ObNm1SaGiorrrqKvXt21fXXnut1q5de9qxN27cqNatWyssLMzZ1r9/f+Xl5Wnv3r1l+l566aXq37+/brjhBq1bt65GXtu8efOUmJioyZMn18h4QH3hyfO2NscFXMlT5+2iRYvUsWNHzZo1SwMGDNCIESP03HPPnXH7FqC+89Q5+3dz585V37591aRJkxofG6hrnjpvu3btqtTUVC1ZskQOh0MZGRn68ccfNWjQoGqPDbiap85bq9Uqb2/vMm3e3t7asmWLSkpKqj0+4EqeMm9zc3MVHBxc5tl9+vQp06d///7auHFjlcd2RwR/gIfJysqSzWY7ZTl0aGioc2vMxMRESdJrr72msWPHatasWWrfvr2uv/56HTx4sMKxMzIyyvxFLcn59cl9l8PDwzV16lS98soreuWVVxQVFaUJEyZo27Zt1XpdBw8e1Isvvqjnn39eZjO7FMOzeOq8ra1xgfrAU+dtYmKi1q1bpz179mjmzJl65JFH9OOPP2rq1KnVGhdwNU+ds3+VlpampUuX6oorrqixMQFX8tR526NHDz3//PO6++671bFjR/Xr108BAQH617/+Va1xgfrAU+dt//79NXfuXG3dulUOh0NbtmzR3LlzVVJSwvmccHueMG8XLFigLVu2aMyYMad99l9fk6fjp+dAA3TynJ4rr7xSl19+uSSpffv2WrFihebNm6f77rtPN910k/PTFTExMfr+++8rNXbz5s3VvHlz59fdu3dXYmKi3nvvPT3//PNnVa/NZtN9992nf/7zn2rWrNlZjQG4O3ebt7U5LuAu3HHeOhwOGQwGvfDCCwoMDJQkTZkyRXfeeaf+/e9/y8fH56zHBuo7d5yzf/XVV18pMDBQw4YNq5HxAHfgjvN27969euaZZ3THHXeof//+Sk9P1/Tp0/Xvf/9bzz777FmPC7gLd5y3t99+u9LT03XllVfK4XAoNDRUl156qWbNmnXa880AT1Gf5+3KlSv1yCOP6Omnn1arVq2q+tI8FsEf4GFCQkJkMpmUmZlZpj0zM9P5KYfw8HBJUosWLcr0adGihY4cOSJJeuaZZ5zbep1cYRcWFqbNmzeXuefkpyROjlmeTp06af369Wf7kpSfn6+tW7dqx44deuqppySd+AfH4XCoffv2mj179ilLtwF34onztq7HBeqap87b8PBwRUZGOkO/k/U6HA6lpqaqadOm1RofcBVPnbMnORwOzZs3T5dccoksFkuNjAm4mqfO2zfffFPdu3fXTTfdJElq27atfH19dc011+juu+9WREREtcYHXMlT562Pj4+mTZumJ598UpmZmQoPD9dnn30mf39/NW7cuFpjA67mzvN29erVuu222/Twww/r0ksvLXMtLCzslNV9f31Nno6PJAAexmKxqEOHDlqxYoWzzW63a8WKFerWrZskKTY2VhERETpw4ECZew8ePOg8DyQyMlIJCQlKSEhwtnXt2lW7d+8u8w/B8uXLFRAQoJYtW1ZY086dO0/7l/mZBAQE6Ntvv9VXX33l/HXVVVepWbNm+uqrr9SlS5ezHhuoDzxx3tb1uEBd89R52717dx09elT5+fnOtgMHDshoNCoqKqpaYwOu5Klz9qTVq1fr0KFDbPMJj+Kp87aoqOiUFUImk0nSiRAfcGeeOm9P8vLyUlRUlEwmkxYsWKDBgwez4g9uz13n7apVq3TLLbfo/vvv15VXXnnK9a5du2rlypVl2pYvX66uXbuedlxPwYo/wAPdcMMNeuihh9SxY0d17txZc+bMUWFhoXOfY4PBoIkTJ+rVV19V27Zt1a5dO82fP1/79+/XK6+8UuG4/fv3V8uWLfXggw/qgQceUHp6ul5++WVdc801zk8Wv/fee4qNjVWrVq1UXFysL774QitXrtQ777xz2pr37t2rkpISZWdnKz8/Xzt27JAktWvXTkajUa1bty7TPzQ0VN7e3qe0A+7K0+ZtdcYF3IUnztuLL75Yr7/+uh5++GHdeeedysrK0vPPP6/LL7+cbT7h9jxxzp40d+5cdenShe+N4XE8cd4OHjxYjz/+uD7++GMNGDBAR48e1bPPPqvOnTsrMjKyJt42wKU8cd4eOHBAmzdvVpcuXZSTk6N3331Xe/bs0X/+85+aeMsAl3O3ebty5UrdeuutmjBhgoYPH+48L9DLy0vBwcGSpAkTJui6667TO++8o0GDBmnBggXaunWrnnzyyRp61+o3g4OPEwEe6cMPP9Ts2bOVnp6udu3a6bHHHjtlZdxbb72ljz76SMePH1fbtm11//3365xzzjntuMnJyXriiSe0evVq+fr66rLLLtN9993nXML99ttv6/PPP1daWpp8fX3VunVr3XHHHerdu/dpxx0yZIiSk5NPad+1a1e5/V999VX98ssv+vrrr087LuBOPG3enu24gDvxtHkrSfv27dPTTz+t9evXKzg4WCNHjtTdd99N8AeP4IlzNjc3V/3799ejjz6qcePGVfatANyGJ87bDz74QJ9++qmSkpIUGBio3r1764EHHiD4g8fwtHm7b98+3XfffTpw4IDMZrN69eql+++/v8y5ZIC7c6d5O2XKFM2fP/+U9p49e+qDDz5wfv3DDz/o5ZdfVnJyspo2baoHHnhAgwYNqsrb4rYI/gAAAAAAAAAAAAAPwCbEAAAAAAAAAAAAgAcg+AMAAAAAAAAAAAA8AMEfAAAAAAAAAAAA4AEI/gAAAAAAAAAAAAAPQPAHAAAAAAAAAAAAeACCPwAAAAAAAAAAAMADEPwBAAAAAAAAAAAAHoDgDwAAAAAAAAAAAPAABH8AAAAAAAAAAACAByD4AwAAAAAAAAAAADwAwR8AAAAAAAAAAADgAQj+AAAAAAAAAAAAAA9A8AcAAAAAAAAAAAB4AII/AAAAAAAAAAAAwAMQ/AEAAAAAAAAAAAAegOAPAAAAAAAAAAAA8AAEfwAAAAAAAAAAAIAHIPgDAAAAAEiSpkyZoiFDhri6jFr16quvqk2bNq4uAwAAAABqhdnVBQAAAAAAqu/LL7/Uww8/7PzaYrEoJiZG/fr10+23366wsDAXVlexv9dtMpkUGhqqfv366Z577lFkZGSVxywsLNSsWbPUs2dP9erVqybLBQAAAIB6jeAPAAAAADzInXfeqdjYWFmtVq1bt06ffPKJlixZou+++06+vr6nvfepp56Sw+Goo0rL+mvdGzdu1Pz587Vu3Tp999138vb2rtJYhYWFeu211zR58uRTgr/bbrtNN998c02WDgAAAAD1BsEfAAAAAHiQgQMHqlOnTpKksWPHKjg4WO+++65+/fVXXXzxxeXeU1BQID8/P3l5edVlqWX8ve6QkBC9/fbb+vXXX3XhhRfW2HPMZrPMZv5TGAAAAIBn4ow/AAAAAPBgvXv3liQlJSVJOnGOX7du3XT48GFNmjRJ3bp10/333++89vcz/ux2u+bMmaNRo0apU6dO6t27tyZOnKgtW7aU6ff1119rzJgx6ty5s3r27Kl77rlHKSkpZ133OeecI0lKTEx0tlmtVs2YMUNjxoxRjx491LVrV1199dVauXKls09SUpL69OkjSXrttdfUpk0btWnTRq+++qqk8s/4Ky0t1cyZMzVs2DB17NhRQ4YM0UsvvSSr1XrW9QMAAACAK/AxRwAAAADwYIcPH5YkBQcHO9tKS0s1ceJE9ejRQw899JB8fHwqvP/RRx/Vl19+qYEDB+qKK66QzWbT2rVrtWnTJucKvf/973+aMWOGRo4cqSuuuELHjh3Thx9+qGuuuUZfffWVgoKCqlx3cnKyJJW5Ny8vT1988YUuvvhijR07Vvn5+Zo7d65uuukmffHFF2rXrp0aN26sJ554Qk888YTOP/98nX/++ZJ0Stj3V4899pjmz5+vESNG6IYbbtDmzZv15ptvat++fZo5c2aVawcAAAAAVyH4AwAAAAAPkpeXp2PHjslqtWr9+vWaOXOmfHx8NHjwYGcfq9WqCy64QPfdd99px1q5cqW+/PJLXXfddXrsscec7TfeeKPzLMDk5GS9+uqruvvuu3Xrrbc6+wwfPlyXXXaZPv744zLtlal706ZNeu2112SxWMrU3ahRIy1atEgWi8XZNm7cOI0cOVIffPCBnn32Wfn5+WnEiBF64okn1KZNG11yySWnfe7OnTs1f/58jR07Vk8//bQk6ZprrlHjxo31zjvvaOXKlc5VkwAAAABQ3xH8AQAAAIAHuf7668t83aRJE73wwguKjIws0z5+/PgzjvXTTz/JYDBo8uTJp1wzGAySpJ9//ll2u10jR47UsWPHnNfDwsKUkJCgVatWVSr4K6/u559/XlFRUc42k8kkk8kk6cQWpDk5ObLb7erYsaO2b99+xmeUZ8mSJZKkG264oUz7jTfeqHfeeUdLliwh+AMAAADgNgj+AAAAAMCD/Otf/1KzZs1kMpkUFhamZs2ayWgse7y72WwuE6hV5PDhw4qIiCizTejfHTx4UA6HQ8OHDy/3utlcuf/sPFl3bm6u5s2bpzVr1pRZ2XfS/Pnz9c477+jAgQMqKSlxtsfGxlbqOX+XnJwso9Go+Pj4Mu3h4eEKCgpybjkKAAAAAO6A4A8AAAAAPEjnzp2dZ+9VxGKxnBIGni273S6DwaC3337buRrvr/z8/Co1zl/rHjZsmK6++mrdd999Wrhwofz9/SVJX3/9taZMmaJhw4Zp4sSJCg0Nlclk0ptvvqnExMRqvY6TKxgBAAAAwJ0R/AEAAAAAyhUfH69ly5YpOzu7wlV/8fHxcjgcio2NVbNmzWrkuSaTSffee68mTJigjz76SDfffLMk6ccff1RcXJxee+21MkHdK6+8Uub+qoR4TZo0kd1u16FDh9SiRQtne0ZGhnJyctSkSZNqvhoAAAAAqDs18xFPAAAAAIDHGT58uBwOh1577bVTrjkcDmcfk8mk1157zdn21z5ZWVln9exevXqpc+fOmjNnjoqLiyXJuaLwr8/ZtGmTNm7cWOZeX19fSVJOTs4ZnzNo0CBJ0pw5c8q0v/vuu2WuAwAAAIA7YMUfAAAAAKBcvXv31iWXXKIPPvhAhw4d0oABA2S327Vu3Tr16tVL1157reLj43X33XfrxRdfVHJysoYNGyZ/f38lJSXpl19+0bhx4zRx4sSzev7EiRN111136csvv9T48eN13nnn6aefftIdd9yh8847T0lJSfr000/VsmVLFRQUOO/z8fFRy5Yt9cMPP6hp06YKDg5Wq1at1Lp161Oe0bZtW1122WX67LPPlJOTo3PPPVdbtmzR/PnzNWzYMPXu3fus3z8AAAAAqGsEfwAAAACACk2bNk1t2rTR3LlzNX36dAUGBqpjx47q1q2bs8/NN9+spk2b6r333tPMmTMlSVFRUerXr5+GDBly1s8ePny44uPj9c4772jcuHEaM2aMMjIy9Nlnn2nZsmVq2bKlnn/+eS1cuFCrV68uc+/TTz+tp556StOmTVNJSYkmT55cbvB3sm9sbKzmz5+vX375RWFhYbrllls0efLks64dAAAAAFzB4Pj7XiwAAAAAAAAAAAAA3A5n/AEAAAAAAAAAAAAegOAPAAAAAAAAAAAA8AAEfwAAAAAAAAAAAIAHIPgDAAAAAAAAAAAAPADBHwAAAAAAAAAAAOABCP4AAAAAAAAAAAAAD0DwBwAAAAAAAAAAAHgAgj8AAAAAAAAAAADAA5hdXYC7S0/PdXUJQL1gNBrUuLG/jh3Ll93ucHU5ACqBeQu4H+Yt4F6Ys4D7Yd4C7od5C7gf5u3ZCQ8PrFQ/VvwBqBFGo0EGg0FGo8HVpQCoJOYt4H6Yt4B7Yc4C7od5C7gf5i3gfpi3tYvgDwAAAAAAAAAAAPAABH8AAAAAAAAAAACAByD4AwAAAAAAAAAAADwAwR8AAAAAAAAAAADgAQj+AAAAAAAAAAAAAA9A8AcAAAAAAAAAAAB4AII/AAAAAAAAAAAAwAMQ/AEAAAAAAAAAAAAegOAPAAAAAAAAAAAA8AAEfwAAAAAAAAAAAIAHIPgDAAAAAAAAAAAAPADBHwAAAAAAAAAAAFANCxZ8qwsuOM/VZcjs6gIAAAAAAAAAAABQsczMDL3//jtavvwPZWQcVUhIY7Vs2Vrjxo3XOef0dPbbsmWT5syZra1bt8hqLVZsbJwuvHCUxo4dL5PJ5OzXv/85evbZFzRw4HnOry0Wiz7+eJ6ioqKd/R5++D4FBATq0UefKFPPs89OVVhYuG6++Xb173+OJOmNN95Vx46dnH2sVqsuvXSkcnKO65VX3lD37if6rV+/TnPmzNKOHTtUXFys8PAIdezYWQ899JimT39GP/zwXYXvQ1RUtObO/VaTJ9+sjRvXS5IsFosiIqJ00UWjdO2118tgMFR4/9ne93dXXDFK48aN17hxVzvbhg49X3369Kv0GLWF4A8AAAAAAAAAAKCeSkk5ottum6iAgEDdccedat68pUpLS7V69Qq99NJz+vjjeZKkJUt+07/+NUUXXjhar756hwICArV27Wq9/vor2rp1i5566j9nCLcMmjXrDT322NTT1mOz2bR8+e+aPv1lZ1tERKQWLPimTPC3dOlv8vX1VU7OcWfbgQP7dc89k3Xttdfqzjvvk9lsUWLiYS1Zskh2u0133XW/br11srP/JZdcoEce+bd69eojSTIa/z+8HDXqMt100y0qKSnRunVrNH36MwoICNRll11x2vrP9r4z8fb2kbe3T7XGqAls9QkAAAAAAAAAAFBPvfjiicDu7bfn6Lzzhio+PkHNm7fQVVddqzfffE+SVFhYqOnTn1b//gP10EOPqlWrNoqOjtGoUZfq0Uef0OLFv2rRop9P+5zLLx+nn376Qfv37z1tv61bN8tkMqtduw7OtpEjL9avv/6k4uIiZ9v333+jkSMvLnPvmjUr1bhxqB588EG1aNFSTZrEqnfvvnroocfk7e2jgIAAhYaGOX9JUkBAoPPrkJAQ51g+Pj4KDQ1TVFS0LrpotFq0aKU1a1ad8f08033JyUmaMuVejRo1XOefP0A33TShzPXJk29WamqKXnnlJfXvf45zxWN5W33Onz9X48ZdovPO663x48do4cLvz1hfdbHiDwAAAAAAAAAANFgpeUeUV5JXZ88L8ApQdEBMpfrm5BzXqlUrdPPNt8vX1/eU64GBgZKk1atX6vjx4xo//rpT+vTvP1BxcfH65ZcfNXTo8Aqf1alTFyUmHtIbb7xWZjXf3y1btlT9+g0os3qwTZt2ioqK0eLFizRixIVKTU3Vpk0bdO+9D+m992Y5+zVuHKrMzAytWbNGLVu2r8xbcEYOh0ObN2/U4cMHFRcXV+37CgoK1Lt3P9188+3y8rJo4cLv9dBD9/65DWqUnn32eV1//dUaPfoyjRp1aYXjL1nym2bMeEF33nmfzjmnp5Yv/13Tpj2piIhI57antYHgDwAAAAAAAAAANEjHi7N1/cKrZXc46uyZRoNBn4/6So28g8/YNykpUQ6HQ/HxTU/bLzHxkCQpIaFZudcTEpoqMfHwGZ93yy2Tdf3147Vp0wZ16dKt3D6//75Ed9557yntF100Wt9//41GjLhQP/zwrXr37qfg4JAyfQYPHqY1a1bq2muvVWhomNq376hzzjlXF1xwkfz9A85Y31/Nn/+FvvvuK5WUlKi0tFQWi7euuOKqat/XqlVrtWrV2vn1pEm3aenS3/THH0t0+eVXKiiokYxGo/z8/JyrEsvz6acfaOTIURozZqwkKT4+Qdu2bdUnn3xA8AcAAAAAAAAAAFDTGnkH670LPq7zFX+VCf0kqap5pKOaAWazZs01YsSFeuONV/W//71zyvWDBw8oMzNdPXqce8q1ESNG6o03XlNycpIWLPhOd999/yl9TCaTHn98qh566AH9+utibdmyRe+//64++uh9vfXWHIWFVRyk/d3w4SM1YcKNys3N0ezZb6pjx87q1KlLte8rKCjQO++8pRUrlikzM0M2m03FxcVKS0utdG2SdPDgQY0ePaZMW6dOXfTFF59WaZyqIvgDAAAAAAAAAAANVmW33XSFuLg4GQwGHT588Az9EiRJhw4dKDf8OnjwoJo1K3814N9NnHiLxo+/XEuXLj7l2rJlS3TOOb3k7e19yrVGjYLVt29//ec/T8lqLVbv3n1VUFBQ7jMiIyM1cuTFOv/8C3XTTbfp6qvH6Ouv52nixFsqVaMk+fsHKDb2xBadTz75H1111WXq0KGTzj23V7XumznzZa1Zs0p33HG3YmPj5O3trccee0glJaWVrs2VjK4uAAAAAAAAAAAAAKcKCmqknj376Msvv1BhYeEp13NzcyVJPXv2VlBQI3366Yen9Fm2bImSkg5r2LARlXpmZGSULr98nN56a6ZsNvvfxlqqAQMGVXjvRReN1oYN63TBBRfJZDJV6nlBQUEKDQ0r9/VVlp+fn8aOvUozZ86o0qrH8u7bsmWTLrxwlAYNGqwWLVqqceNQpaYeKXOf2ex1ynvzd02bNtXmzZvKtG3ZsqnSAezZIvhDvZaUm6jdx3a5ugwAAAAAAAAAAFzi3nsflN1u06RJ/9Dixb8qMfGwDh48oC+++FS33nqDJMnX11cPPPCwli1bqueee0Z79+5RSsoRfffdV3rmmak677yhGjLk/Eo/87rrrldGRrrWrl3tbMvKOqadO7erb98BFd7Xu3dffffdL7rpplvLvf7VV/P03HPPatmyZUpKStT+/fv0+uuv6MCB/erXr+JxK+OSS8YoMfGQFi/+tVr3xcbGa8mSRdqzZ5f27NmtqVMfld1eNkyMjo7Wpk3rlZ5+VNnZ2eWOO378BP3ww7eaP3+uEhMP69NPP9TSpb/pqquuPavXV1n1YqvPjz76SLNnz1Z6erratm2rxx9/XJ07d66wf05Ojv773//q559/VnZ2tpo0aaJHHnlEgwadSJnz8vI0Y8YM/fLLL8rMzFT79u31yCOPlBlzypQpmj9/fplx+/fvr9mzZ9fOi8RZ+e+6F1RqL9GMIa+7uhQAAAAAAAAAAOpckyaxmj37I73//my99trLyszMUHBwiNq0aav77pvi7Dd48DA1bhyqOXPe0R133CSr1arY2DhNmHCjxo0bL4PBUOlnBgU10jXX/ENvvjnT2fbHH0vVrl0HBQcHV3ifwWA47fX27Tto69ZN+ve//62jR4/K19dXzZq10LPPvqBu3XpUur6Kar7ggov0zjtvadCgITIaK7f27e/3/fOf92jatCd16603qlGjYF1zzT+Un59f5p6JE2/V888/qyuvvFRWq1XLlq09ZdyBA8/TXXfdr08++UAzZryg6OgYPfzwv9S9+znVep1nYnBU96THalqwYIEefPBBTZ06VV26dNGcOXO0cOFCLVy4UKGhoaf0t1qtGj9+vEJDQ3XLLbcoMjJSR44cUVBQkNq2bStJuvvuu7Vnzx498cQTioiI0DfffKP33ntPCxYsUGRkpKQTwV9GRoamTZvmHNtisahRo0ZVqj89Pbcarx6nk1V0TFd9N0bR/k303siPXF0OzsBsNiokxF9ZWfkqLT39EmcA9QPzFnA/zFvAvTBnAffDvAXcD/MWqDsPPXSPOnfuqmuu+Ue1xmHenp3w8MBK9XP5Vp/vvvuuxo0bp8svv1wtW7bU1KlT5ePjo3nz5pXbf968eTp+/LhmzpypHj16KDY2Vj179nSGfkVFRfrpp5/0wAMP6Nxzz1VCQoL++c9/KiEhQR9//HGZsSwWi8LDw52/qhr6oXb9kbxMdodDuSWEqwAAAAAAAAAAuFLnzl0rfU4gXMelW31arVZt27ZNt9xyi7PNaDSqb9++2rBhQ7n3LFq0SF27dtWTTz6pX3/9VY0bN9bFF1+sSZMmyWQyqbS0VDabTd7e3mXu8/b21vr168u0rV69Wn369FFQUJB69+6tu+++WyEhIVV6DUajQUZj5ZfHovKWpyyVwSDll+TKaJKMBpfn1DgNk8lY5n8B1H/MW8D9MG8B98KcBdwP8xZwP8xboO784x831Mg4zNva5dLgLysrSzab7ZQtPUNDQ7V///5y70lMTNTKlSs1atQovfXWWzp8+LCmTp2q0tJSTZ48WQEBAerWrZtef/11NW/eXGFhYfruu++0ceNGxcfHO8cZMGCAzj//fMXGxioxMVEvvfSSJk2apM8++0wmk6nSr6FxY/8q7YuLyskpztHmzI06N/YcrU9ZL+8AgwIs/q4uC5UQFOTr6hIAVBHzFnA/zFvAvTBnAffDvAXcD/MWcD/M29rh0uDvbDgcDoWGhuqpp56SyWRSx44dlZaWptmzZ2vy5MmSpOnTp+uRRx7RwIEDZTKZ1L59e1100UXatm2bc5yLLrrI+f/btGmjNm3aaNiwYc5VgJV17Fg+K/5qwcL9P6qkpFTDYi/QmqS1OpyWquiAaFeXhdMwmYwKCvJVTk6hbDb2ZQbcAfMWcD/MW8C9MGcB98O8BdwP8xZwP8zbsxMSUrnFUS4N/kJCQmQymZSZmVmmPTMzU2FhYeXeEx4eLrPZXGZVXvPmzZWeni6r1SqLxaL4+Hh9+OGHKigoUF5eniIiInT33XcrLi6uwlri4uIUEhKiQ4cOVSn4s9sdstsdle6Pyll8+De1D+2oJn7xcjik7MLjCveJdHVZqASbzc6BrICbYd4C7od5C7gX5izgfpi3gPth3gLuh3lbO1y6garFYlGHDh20YsUKZ5vdbteKFSvUrVu3cu/p3r27Dh8+LLv9//8wHDx4UOHh4bJYLGX6+vn5KSIiQsePH9eyZcs0dOjQCmtJTU1Vdna2wsPDq/mqUF35Jflal7ZW/ZsMVJB3kCQp15rj4qoAAAAAAAAAAADqN5efnHjDDTfo888/1/z587Vv3z498cQTKiws1JgxYyRJDz74oF588UVn//Hjxys7O1vPPPOMDhw4oMWLF+vNN9/UNddc4+zz+++/a+nSpUpMTNQff/yhCRMmqHnz5s4x8/Pz9dxzz2njxo1KSkrSihUrdPvttyshIUEDBgyo2zcAp1iVslyl9lL1jx2kAK8ASVKuNdfFVQEAAAAAAAAAANRvLj/j78ILL9SxY8f0yiuvKD09Xe3atdOsWbOcW32mpKTIaPz/fDI6OlqzZ8/WtGnTNHr0aEVGRmrChAmaNGmSs09ubq5eeuklpaamKjg4WMOHD9c999wjLy8vSZLJZNLu3bv11VdfKTc3VxEREerXr5/uuuuuU1YNou4tTVqiNo3bKtIvUnaHXUaDgeAPAAAAAAAAAADgDAwOh4MD6qohPZ1AqiYVlBToim9G6x8dbtSVba+WJF3+9Shd0fpKjW93rYurw+mYzUaFhPgrKyuffZkBN8G8BdwP8xZwL8xZwP0wbwH3w7wF3A/z9uyEhwdWqp/Lt/oE/mpN6iqV2Es0IHaQsy3AEqi8EgJWAAAAAAAAAACA0yH4Q73yR/LvahHcQjEBTZxtgZZA5VhzXFgVAAAAAAAAAABA/Ufwh3qj1F6q1akr1Semf5n2IEsQZ/wBAAAAAAAAAACcAcEf6o0t6ZuUX5KvPtH9yrQHeAUS/AEAAAAAAAAAAJwBwR/qjRUpyxXqG6pWIa3LtAd6BymPrT4BAAAAAAAAAABOi+AP9YLD4dCKI8vUJ7qfDAZDmWuBXpzxBwAAAAAAAAAAcCYEf6gXDuUcVGp+6inn+0lSoCVQeSV5LqgKAAAAAAAAAADAfRD8oV5YceQP+Zh91DWi2ynXAi2BKiotktVmdUFlAAAAAAAAAAAA7oHgD/XCypTl6hF5riwmyynXAi1BkqS8kty6LgsAAAAAAAAAAMBtEPzB5bKKjmlH5jb1ielX7vUAS6AkKddK8AcAAAAAAAAAAFARgj+43KqUlZKkXlG9y70e6EXwBwAAAAAAAAAAcCYEf3C55UeWqX1oRwX7hJR73bnVJ8EfAAAAAAAAAABAhQj+4FLFtmKtT1ur3jF9K+wT6NzqM6euygIAAAAAAAAAAHA7BH9wqQ1H16vYVlzh+X6SZDFZ5G3yVg7BHwAAAAAAAAAAQIUI/uBSW9I3Ktw3XPGBCaftF2gJVF5JXh1VBQAAAAAAAAAA4H4I/uBS+SX5CvYJkcFgOG2/QEsgK/4AAAAAAAAAAABOg+APLlVsK5a3yfuM/QItQcoj+AMAAAAAAAAAAKgQwR9cymqzymKynLFfgFegcq25dVARAAAAAAAAAACAeyL4g0tZbcWyVGrFH8EfAAAAAAAAAADA6RD8waWKbcXyMfmcsV+QJYjgDwAAAAAAAAAA4DQI/uBSlT3jL8ASqNwSgj8AAAAAAAAAAICKEPzBpYptRZXc6jNIedYc2R32OqgKAAAAAAAAAADA/RD8waWKbVZ5myxn7BdoCZTd4VBBaUEdVAUAAAAAAAAAAOB+CP7gUlZbcSVX/AVKkvI45w8AAAAAAAAAAKBcBH9wqaJKnvEX6BUkScol+AMAAAAAAAAAACgXwR9cylrJ4C/I+2Twl1PbJQEAAAAAAAAAALglgj+4jMPh+DP48zlj3wCvAEms+AMAAAAAAAAAAKgIwR9cptReKrvDIW+T5Yx9/bz8ZTQYCP4AAAAAAAAAAAAqQPAHlym2F0uSLJXY6tNoMCrAK5CtPgEAAAAAAAAAACpA8AeXKS49EfxV5ow/SQqwBCqvhBV/AAAAAAAAAAAA5SH4g8tYbVUL/gItgcphxR8AAAAAAAAAAEC5CP7gMsW2ym/1KUlBliDO+AMAAAAAAAAAAKgAwR9c5mTw52Ou5FafXoEEfwAAAAAAAAAAABUg+IPLWKu44i/QO0h5bPUJAAAAAAAAAABQLoI/uEyRrUhSFYI/L874AwAAAAAAAAAAqAjBH1zGarNKknwqG/xZApVXklebJQEAAAAAAAAAALgtgj+4THFVt/q0BKqotMgZGAIAAAAAAAAAAOD/EfzBZU4GeN6VDv6CJEl5Jbm1VhMAAAAAAAAAAIC7IviDyxTbimQ2mmU0VO6PYYAlUJKUayX4AwAAAAAAAAAA+DuCP7hMUWlRpVf7SVKgF8EfAAAAAAAAAABARQj+4DJWu7Vqwd/JrT7/Evxtz9ymPVm7a7w2AAAAAAAAAAAAd0PwB5ex2oqrGPydXPGXI0lKyTuiKUvv0/vb3qmV+gAAAAAAAAAAANwJwR9cpthmlaUKwZ/FZJG3yVs51hzZ7DZNW/2UCksLVVBaUItVAgAAAAAAAAAAuAeCP7hMcRXP+JNOrPrLK8nTB9vf065jO9Q6pI3yS/JrqUIAAAAAAAAAAAD3YXZ1AWi4iu1V2+pTOhH8rU5Zqb3ZuzWh/Y0qKM3XsuTfa6lCAAAAAAAAAAAA98GKP7hMcWmxvM1VDf6CtDtrlzqEdtL4dtfK1+ynAlb8AQAAAAAAAAAAEPzBday2YlmMVQv+giyNFOAVoId6PSajwShfs68KSwtrqUIAAAAAAAAAAAD3wVafcJlim1X+XgFVuufGTpNktRUr0i9SkuTn5a9iW7HsDruMBnJsAAAAAAAAAADQcBH8wWWKbUWymCxVuicuML7M175mX0lSQWmBAqoYIgIAAAAAAAAAAHgSlkjBZay2Ynmbfao1hp/ZX5JUWMJ2nwAAAAAAAAAAoGEj+IPLFNus8jFV7Yy/v/P1OrniL78mSgIAAAAAAAAAAHBb9SL4++ijjzRkyBB16tRJY8eO1ebNm0/bPycnR1OnTlX//v3VsWNHjRgxQkuWLHFez8vL0zPPPKPBgwerc+fOuuqqq04Z0+FwaMaMGerfv786d+6s66+/XgcPHqyNl4cKnNjqs3rBn9+fW30WlrLiDwAAAAAAAAAANGwuD/4WLFigadOm6Y477tD8+fPVtm1bTZw4UZmZmeX2t1qtuuGGG5ScnKwZM2Zo4cKFeuqppxQZGens89hjj2n58uWaPn26vv32W/Xr10833HCD0tLSnH3efvttffDBB3riiSf0+eefy9fXVxMnTlRxcXGtv2acYLVZ5V3t4O/EVp8FJaz4AwAAAAAAAAAADZvLg793331X48aN0+WXX66WLVtq6tSp8vHx0bx588rtP2/ePB0/flwzZ85Ujx49FBsbq549e6pt27aSpKKiIv3000964IEHdO655yohIUH//Oc/lZCQoI8//ljSidV+77//vm677TYNGzZMbdu21fTp03X06FH98ssvdfbaG7oiW5EsJku1xvBlxR8AAAAAAAAAAIAkFwd/VqtV27ZtU9++fZ1tRqNRffv21YYNG8q9Z9GiReratauefPJJ9e3bVxdffLHeeOMN2Ww2SVJpaalsNpu8vcuuJPP29tb69eslSUlJSUpPTy/z3MDAQHXp0qXC56JmORwOWW1WWYzVXPHndWLFX2FpQU2UBQAAAAAAAAAA4LbMrnx4VlaWbDabQkNDy7SHhoZq//795d6TmJiolStXatSoUXrrrbd0+PBhTZ06VaWlpZo8ebICAgLUrVs3vf7662revLnCwsL03XffaePGjYqPj5ckpaenO5/z9+dmZGRU6TUYjQYZjYYq3YMT23waDJK/t6/M5rPPn00mb5mMJhXZC6s1DqrPZDKW+V8A9R/zFnA/zFvAvTBnAffDvAXcD/MWcD/M29rl0uDvbDgcDoWGhuqpp56SyWRSx44dlZaWptmzZ2vy5MmSpOnTp+uRRx7RwIEDZTKZ1L59e1100UXatm1bjdfTuLG/DAaCv6rKKbbJZDIqLDhYISH+1RqrkW+gTN6Oao+DmhEU5OvqEgBUEfMWcD/MW8C9MGcB98O8BdwP8xZwP8zb2uHS4C8kJEQmk0mZmZll2jMzMxUWFlbuPeHh4TKbzTKZTM625s2bKz09XVarVRaLRfHx8frwww9VUFCgvLw8RURE6O6771ZcXJxzjJPPiYiIKPPck2cFVtaxY/ms+DsL6QWZstnsKi6wKysrv1pjeclb6dnHqj0OqsdkMiooyFc5OYWy2eyuLgdAJTBvAffDvAXcC3MWcD/MW8D9MG8B98O8PTuVXfzk0uDPYrGoQ4cOWrFihYYNGyZJstvtWrFiha699tpy7+nevbu+++472e12GY0nloEePHhQ4eHhslgsZfr6+fnJz89Px48f17Jly/TAAw9IkmJjYxUeHq4VK1aoXbt2kqS8vDxt2rRJ48ePr9JrsNsdstsdVboHUkFxkRwOySwvlZZWb2L7mHyVZy2o9jioGTabnd8LwM0wbwH3w7wF3AtzFnA/zFvA/TBvAffDvK0dLt/q84YbbtBDDz2kjh07qnPnzpozZ44KCws1ZswYSdKDDz6oyMhI3XfffZKk8ePH68MPP9Qzzzyja6+9VocOHdKbb76p6667zjnm77//LofDoWbNmunw4cOaPn26mjdv7hzTYDBowoQJ+t///qeEhATFxsZqxowZioiIcAaQqF3F9mJJksXkXe2x/Lz8VFDCaj8AAAAAAAAAANCwuTz4u/DCC3Xs2DG98sorSk9PV7t27TRr1iznVp8pKSnOlX2SFB0drdmzZ2vatGkaPXq0IiMjNWHCBE2aNMnZJzc3Vy+99JJSU1MVHBys4cOH65577pGXl5ezz6RJk1RYWKh//etfysnJUY8ePTRr1ix5e1c/iMKZWW1WSZJPDQR/vmZfFZYWVnscAAAAAAAAAAAAd2ZwOBzsU1kN6em5ri7BLW1O36j7Ft+ldy/4ULGBcdUaa+ryx1VsK9KzA56voepwNsxmo0JC/JWVlc/ybMBNMG8B98O8BdwLcxZwP8xbwP0wbwH3w7w9O+HhgZXqZzxzF6DmFZWe2OrT2+RT7bF8zb4qKCmo9jgAAAAAAAAAAADujOAPLlFsK5IkeZss1R7L18tPhaUEfwAAAAAAAAAAoGEj+INLWG0nVvxZauCMPz+znwoI/gAAAAAAAAAAQANH8AeXKLZZJUmWGljxdyL4K6z2OAAAAAAAAAAAAO6M4A8uYbUVy8voJaOh+n8E/bz8VMgZfwAAAAAAAAAAoIEj+INLFNmK5GP2qZGxfMy+KrGXqNReWiPjAQAAAAAAAAAAuCOCP7iE1WatkW0+pRNbfUpSIef8AQAAAAAAAACABozgDy5RbCuSxeRdI2P5mn0lSQVs9wkAAAAAAAAAABowgj+4RLHNKp8aC/5OrPgrYMUfAAAAAAAAAABowAj+4BJWW3GNrfjz8/oz+GPFHwAAAAAAAAAAaMAI/uASxbYieddU8McZfwAAAAAAAAAAAAR/cI1im7Xmgj+vk8FfYY2MBwAAAAAAAAAA4I4I/uASNbnVJ2f8AQAAAAAAAAAAEPzBRYptxfKpoeDPbDTLy+ilQs74AwAAAAAAAAAADRjBH1yiqLSoxlb8SZKvlx8r/gAAAAAAAAAAQING8AeXsNqsNRr8+Zl9OeMPAAAAHqPYVuzqEgAAAAAAbojgDy5RbC+Wt8lSY+P5mVnxBwAAAM+wL3uPLv3qQm3P3ObqUgAAAAAAbobgDy5htRXL2+RTY+P5mv044w8AAAAeYVP6RpXaS/X25v/J4XC4uhwAAAAAgBsh+INLWG1WedfkVp9efmz1CQAAAI+w69gOBXgFaGvGFq1MWV7t8ZYlL9Xtv0yS3WGvgeoAAAAAAPUZwR9coqi0qEaDP1+znwpK82tsPAAAAMBVdh3bpaEJw9U1ortmbXlTNrvtrMdyOBz6cPt72pO1W6n5KTVYJQAAAACgPiL4Q52zO+wqsZfIUqPBny8r/gAAAOD2cq05Ss5LUtvGbTWp0606nHNICw8uOOvxtmRs0r7sfZKkvdl7aqpMAAAAAEA9RfCHOme1WSVJ3iZLjY3p5+WvAs74AwAAgJvbnbVLktS2cXu1btxGg+OG6v1t75z1h9zm7f5CCUFN1dinMcEfAAAAADQABH+oc1ZbsSTVwoo/gj8AAAC4t13Hdsrfy18xAU0kSTd2mqQc63HN3zO3ymOl5B3RiiPLdGnLy9UyuJX2ZRH8AQAAAICnM7u6ADQ8xc4Vfz41Nqaf2Y+tPgEAAOD2dh7bodYhbWQ0nPiMZpR/tEa3GKOPdryvLRmbFOYbrjDfcMUFxuu8uCHOfuX5au+XCrAEaljCcB0tTNOPB85+y1AAAAAAgHsg+EOdK7YVSZJ8zDW34s/Py08FJflyOBwyGAw1Ni4AAABQl3Yd26HhTUeWabuuw/UyG01KzkvW/ux9WpO6SpmFmfrp4A96uNfjauQdfMo4BSUFWnjwe41ucal8zD5qGdxKnxQdU1bRMYX4NK6jVwMAAAAAqGsEf6hzJ4O/mt7q0+awq8ReIksNnh0IAAAA1JX0gnQdKzqmNo3blmkP8ArQpM63lWlbl7ZGz656Srf9fJMe7/Ok2oW2L3P9p4M/qKi0UKNaXCZJatGopSRpb/YenRvVqxZfBQAAAADAlTjjD3Xu5FafNRnQ+Zn9JUkFJfk1NiYAAABQl3Zn7ZQktQlpd8a+PSLP1f+GzVKYX7juXTxZn+38WDuP7dCxokzZHXbN3ztPA2MHK8IvQpIUHRAjX7Ov9mXvrdXXAAAAAABwLVb8oc5ZbcWSJG9jza74k6TC0kIFK6TGxgUAAADqys5jO9TYp7HC/cIr1T/CL0IvDnpFb25+XbO2vOlsNxtNKrXb9OC5jzjbjAajWga3IvgDAAAAAA9H8Ic6d3LFn7fZp8bG9PXykyQVlLLiDwAAAO5p17EdatP4zKv9/srL5KXJ3e7SPzrcoLT8NB0tSFNaQarMRi+1D+1Qpm/z4JZam7q6JksGAAAAANQzBH+ocyfP+POuwa0+T674KygtrLExAQAAgLpid9i1O2uXxrUZf1b3B1qCFGgJUsuQVhX2aRncSt/s/VIFJQXy+/ODcwAAAAAAz8IZf6hzzq0+TTW34u/kGX+FJQR/AAAAcD9H8pKVX5KvNo3b1tozWga3kkPSgeP7a+0ZAAAAAADXIvhDnSsqLZZBkpfRq8bG9PU6ueKPrT4BAADgfnYe2y5Jah3SptaekRDUVGajSXuzd9faMwAAAAAArkXwhzpntRfLy2SRwWCosTH9zCe2Kipkq08AAADUc3kleVqWvFR5JXnOtl3HdikmoIkCLUG19lwvk5cSgppqX/beWnsGAAAAAMC1OOMPda64tFg+NbjNpyQZDUZ5m7xVUMKKPwAAANRPx4oyNX/PXH2z7ysVlBSokXewru8wURc2v1i7snaobS1u83lSi+BW2pu9p0r3ZBRm6Fhhplo3rr3ViAAAAACAmkHwhzpXbCuWxWSp8XF9zb6s+AMAAEC943A49Obmmfpm71cyG80a1eISnRc3VPP2fK4Z61/Ut/vmKzE3UYNiB9d6LS2DW2nR4V9Uai+V2Xjm/xy0O+z61x8PKyk3UZ9e/KX8vPxqvUYAAAAAwNljq0/UOautWN41vOJPkvy8/FVYWlDj4wIAAADVcSBnv+bt/kKXthyjjy76XJM636ZWIa01pedjenXoG/Ix+6rEXqKOYZ1rvZYWwS1Vai/V4dxDler/08GF2pO1W8W2Iv18aGEtVwcAAAAAqC5W/KHOFdut8q6lFX8FJQR/AAAAqF+Sc5MkSePajD/lDL+2jdvp5cEzdSQvWU0CY2u9lhbBrSRJ+7L2qHmjFqftm1+Sr9lb3tTguKEqdZTq673zNarFpTIa+PwoAAAAANRX/Bcb6lxxaZEsJu8aH9ffy1+FNrb6BAAAQP2SlJuoAK8ANfIOLve6wWCok9BPOvE9c3RAjPZm7z1j3493vK+C0gLd1PlWXdpyjBJzD2t92to6qBIAAAAAcLYI/lDnimtpq09W/AEAAKA+SspLVJPAWBkMBleXIklq0ail9mbvOW2f5NwkfbnnC13V9hpF+EWoU1gXNW/UXF/v/bKOqgQAAAAAnA2CP9S5E8FfbWz16afCUlb8AQAAoH5Jyk1UbGCcq8twatu4nbZlbNaLa5/T/uP7yu3z5ubX1dgnVGNbXyXpxKrES1perlUpK5SSd6QuywUAAAAAVAFn/KHOWW3F8jX71fi4fmY/HclLrvFxAQAAgOpIykvSuVG9XF2G06WtLpfdYdfX+77UwgML1C2iuwbEnqdSe4kKSwuVWZSpFUf+0CO9/iUf8//v1DEkfphmbXlDX+/7Urd2mezCVwAAAAAAqAjBH+qc1WZVsE9IjY/r6+V7xhV/Cw8sUFxgvDqEdazx5wMAAPzd+rS1ataouUJ8Gru6FLhIrjVHOcXH1SSgbs7wqwxvk7fGt7tWY9tcpaVJi/Xlni/0yvqX5GX0kp+Xv/zMvrqg2YU6L25Imft8zD4a2ewiLdj/nf7RYaJ8zb4uegUAAAAAgIoQ/KHOFduK5W30rvFx/cz+Kiyt+Iy/5Nwk/XfddA2OH0bwBwAAat0vh37Uc6uf1dD4YZrS63FXlwMXSf5zR4q4wHgXV3Iqs9GsIfHDNCR+mOwOu4yGM58EMarFpZq7+zP9euhnXdxidB1UCQAAAACoCs74Q50rthXL+y9bBtUUX7OvCk4T/H2w4z3ZHQ4dzU+r8WcDAAD81bq0NXphzX8U5humZcm/q6Ck4u9R4NmScg9LkmICmri4ktOrTOgnSVH+0eoV3Vff7/+mlisCAAAAAJwNgj/UuWJbkbxNlhof19fsp6LSQjkcjlOuHco5qEWHflaYb5jSClJr/NkAAAAn7cveo6nLH1f3yHP00nmvqthWrGXJS1xdFlwkKTdJob6h8vOq+TOuXWVw3FDtzd6jtHy+rwYAAACA+obgD3Wu2FYsi6kWtvr08pPd4VCRreiUax9se09hvuG6ss3VyihMl81uq/HnAwAApOWn6uHfH1BsYJwe6z1V0QEx6hzeVb8c+snVpcFFkvOS1CQgztVl1Kie0b1lNpq0/MgyV5cCAAAAAPgbgj/UOavNKoux5lf8+ZlPfIr67+f87c/eqyVJv+na9tcrJiBWdodDGYXpNf58AADg/tanrdWC/d9pR+b2Km/PeawoU1N+v18+Jh890/855wqv8xNGaOPR9TpacLQ2SkY9l5h7WHGBnhX8+Xv5q2tEdy0/8oerSwEAAAAA/I3Z1QWg4Sm2FcunFs74O/nDtYKSAjX2CXW2z9n2rqL9ozW86QVKzkuSJKUVpCrSP6rGawAAAPXLTwd/0Iaj6/XPbvecdqvF1PwUzdz4ilYeWS6DpJMbh0cHxGhc6/G6uMXo0z4nq+iY7l98t4pKC/XCoBkK8WnsvDYgdpBe3fBfLTr8s65qe00NvCq4C4fDoeS8JA2NP9/VpdS4vjED9NqG/yrXmqNAS5CrywEAAAAA/IkVf6hTdoddpfZSeZtqPvjzda74K3S27Tq2U8uPLNN17a+X2WhWhF+kJOloQVqNPx8AANQ/3+3/Rr8c+kkPLr1Hx4uzT7lutVn18Y4PNPHHCdqbtVuP9X5C3475Sa8Pe1v3nztFzYKaa+bGl3U451CFz8gqOqYHltyj/JI8PT/oZTUJjC1z3d/LX/2bDNDPh34s9yxieK7MokwVlRYp1sNW/ElSn5h+sjscWpWywtWlAAAAAAD+guAPdaqo9MT5exZTzW/16Wv2lVR2q88522YrNjBOQxOGO/sEeTdSWj7BHwAAnq6wtFC7j+3URc1HKTU/VXf/Nllpf374p6CkQPN2f67rf7ha7297R5e2HKPZIz7QoLjB8jZ5q1VIa41oOlKP9P6XIvyiNGP9i+WGdtlFWXpgyT3KsR7XC+fNqDDgGZYwQodzDml31q5afc2oX5JzEyXJI4O/MN8wtW3cTn8kc84fAAAAANQnBH+oU1ZbsSTJ2+Rd42OfXPF38jyebRlbtSZ1tSa0v0FGw///UY/0i1RaQWqNPx8AANQvOzK3yeaw69KWl+vlwa+p1F6iuxfdrjc3zdQ134/V25v/p64R3fXW8Pc0qfNt5W4F6m3y1l3d79Xm9E368eAPZa6lF6Tr/iV363hxtp4f9LLiAuMrrKV7xDkK8QnRL4d+qvHXiforMTdRRoNBUX7Rri6lVvSN6a+1aatV/Of3+AAAAAAA1yP4Q50qtlsl1e6Kv4I/V/zN2TZbzRo106C4wWX6RfpFEfwBANAAbMnYrCBLkOKDEhQbGKeXB7+uIEuQvt//rS5odqHev/AzPdjzEcUHJZx2nO6R52howvl6a/Pryi7KkiQdPH5Ady66VQUl+XrhvBlKCGp62jFMRpOGxp+vRYm/qNReWlMvEfVccl6iovxj5GXycnUptaJvk/4qKi3ShrR1ri4FAAAAAPCnehH8ffTRRxoyZIg6deqksWPHavPmzaftn5OTo6lTp6p///7q2LGjRowYoSVLljiv22w2vfzyyxoyZIg6d+6sYcOGaebMmWW2Z5oyZYratGlT5tfEiRNr7TXihOI/t/qsnRV/vjLoxIq/TUc3aMPR9ZrQ4cYyq/0kKcIvkq0+AQBoADanb1LHsM7O7wVCfUP16tA39dmo+bqlyx2K8Iuo9Fi3dL5dkvTm5te1NWOL7l38TwVaAjVjyP/OGPqddH7CCOUUH9ea1FVVfi1wT0l5SYoNiD1zRzcVH5igJgGxWn6E7T4BAAAAoL4wu7qABQsWaNq0aZo6daq6dOmiOXPmaOLEiVq4cKFCQ0NP6W+1WnXDDTcoNDRUM2bMUGRkpI4cOaKgoCBnn7fffluffPKJnnvuObVs2VJbt27Vww8/rMDAQE2YMMHZb8CAAZo2bZrza4ul5lehoSyr7cSKP2+TT42PbTAY5GP2VWFpgd7bNlstg1upX8yAU/pF+kfqaEGa7A77KaEgAADwDFabVTsyt2lip5vLtJ/trgMhPo01qfNtemntdC1J/E3tQttrat9nFGAJrPQYzYNbqm3jdvpk54fqHd1XBoPhrGqB+0jKTdS5Ub1cXUatMRgM6tekv346uJDvrQEAAACgnnD5f5m9++67GjdunC6//HK1bNlSU6dOlY+Pj+bNm1du/3nz5un48eOaOXOmevToodjYWPXs2VNt27Z19tmwYYOGDh2q8847T7GxsbrgggvUv3//U1YSWiwWhYeHO381atSoVl8r5Dz/ozZW/EmSn5efliUv1daMLbq+403l/kAt0i9KJfYSZRdn1UoNAADA9XZn7VKJvUSdwrrU2JgXNL1QfWP6a2DceZo24IUqhX4nXd9xonZkbtfKlOU1VhfqJ5vdppS8ZI9e8SdJfWMGKLs4W9szt7m6FAAAAACAXBz8Wa1Wbdu2TX379nW2GY1G9e3bVxs2bCj3nkWLFqlr16568skn1bdvX1188cV64403ZLPZnH26deumlStX6sCBA5KknTt3at26dRo4cGCZsVavXq0+ffpoxIgR+ve//62sLIKg2lZsq72tPiXJ1+yn7Znb1C60vXpW8OnqSL8oSWK7TwAAPNiW9E3yNfuqRXDLGhvTYDBoar9nNKXnY2e9crB7xDnqHN5F722dJbvDXmO1eYKMwgztP77P1WXUmLSCVNkcdsUGxrm6lFrVLrS9gr2DtYLtPgEAAACgXnDpVp9ZWVmy2WynbOkZGhqq/fv3l3tPYmKiVq5cqVGjRumtt97S4cOHNXXqVJWWlmry5MmSpJtvvll5eXkaOXKkTCaTbDab7rnnHo0ePdo5zoABA3T++ecrNjZWiYmJeumllzRp0iR99tlnMplMlX4NRqNBRiPbNFWWTSUyGCQ/bx+ZzTWfOwdY/GUwSBM7T5KXV/m/jzFB0TIYpIziozKbO9Z4DQ2VyWQs878A6j/mLTzBzwd/1O9JS/VEv6fKbDO47dhmdY7oLG+LlwurK9+kLrfozl9v17IjSzQkYWiV7vXUeWu1WTXl93uVUZCuORd9pFDfMFeXVG0phckyGKSE4IRa+b63/jCqV0xvbUrf4OGv8+x46pwFPBnzFnA/zFvA/TBva5fLz/irKofDodDQUD311FMymUzq2LGj0tLSNHv2bGfw98MPP+jbb7/Viy++qJYtW2rHjh2aNm2aIiIidNlll0mSLrroIueYbdq0UZs2bTRs2DDnKsDKatzYn/NZqsDrmEEmk1GRoY0V6O1f4+PHBEcp2D9IQ9sOrPD3Jdjhp0CfAOUpSyEhNV9DQxcU5OvqEgBUEfMW7uyrRXO1O3O31mWt0PAWwyWd2GJxR9Y23djtxnr5b/2AkN4auG+APtr1ni7tfJFMxsp/6OwkT5u3r61+V0eLUuVr8dW7O97SM0OfcXVJVbYnc4/iG8XL23xiZ4uspKPytfiodZOmHn/2XecmHfRHylI1Cvb1+Nd6tjxtzgINAfMWcD/MW8D9MG9rh0uDv5CQEJlMJmVmZpZpz8zMVFhY+Z/yDQ8Pl9lsLrMqr3nz5kpPT5fVapXFYtH06dN18803O8O9Nm3a6MiRI3rzzTedwd/fxcXFKSQkRIcOHapS8HfsWD4r/qog8/hx2Wx2FebaVFqQX+Pj3931QZkMJmVnF5y2X2NLmA6kH1ZWVs3X0FCZTEYFBfkqJ6dQNhtblwHugHkLd3fw+AHtOLpTob5hmrH8VXUL7iWz0aydmTuUW5Snlv7t6u2/9de0uV63/DhRn22Yp5HNLzrzDX/yxHm7M3OH3l3/nq7vOFHhfuF6btWzGhwzXD2iznF1aZWWnJusCd+PV7uwDnpmwDQ18g7WrtS9ivKN0fHsQleXV+tCzVHKLy7QzqT9ig6IdnU59YonzlnA0zFvAffDvAXcD/P27FT2w80uDf4sFos6dOigFStWaNiwYZIku92uFStW6Nprry33nu7du+u7776T3W6X0Xji06QHDx5UeHi4LJYTZ60UFRWdstrLZDLJ4XBUWEtqaqqys7MVHh5epddgtztkt1c8LsoqsBbJIINkN6q0Fs618TWe+INfWnr6sSP9opSSm3LGfqg6m83O+wq4GeYt3NVPB36SvzlAU/s8q8m/3qxvdn+t0S0v08a0jTIbvNQ8sFW9/bPdLLClBjQ5T+9teUeDmgyt8pmBnjJvrTar/rPyWTULaqErWl0lk8GkBfu+13/XvKi3hr971mcp1rUf9y+Ut8lHSTlJuuOn2zRtwPM6dPyQYvxjPeL36Uxi/RPkcEj7sw4o3CfS1eXUS54yZ4GGhHkLuB/mLeB+mLe1w+X7sNxwww36/PPPNX/+fO3bt09PPPGECgsLNWbMGEnSgw8+qBdffNHZf/z48crOztYzzzyjAwcOaPHixXrzzTd1zTXXOPsMHjxYb7zxhhYvXqykpCT9/PPPevfdd53hYn5+vp577jlt3LhRSUlJWrFihW6//XYlJCRowIABdfsGNDBWW7EsJm+Xb48a4ReltIJUl9YAAADOnsPh0G+Hf9GA2EFq3biNhiYM1wfb31NBSYE2p29S+9CO8jLVv/P9/uofHW5URmG6Fh743tWluMyHO+YoOS9RD5w7RWajWQaDQf/sdo9S84/o812fuLq8SnE4HPrl8E8aGHueXhnyuhxy6M5Ft2lv9h7FBsa5urw6EeEbIV+zrw7lHHB1KQAAAADQ4Ln8jL8LL7xQx44d0yuvvKL09HS1a9dOs2bNcm71mZKS4lzZJ0nR0dGaPXu2pk2bptGjRysyMlITJkzQpEmTnH0ee+wxzZgxQ1OnTlVmZqYiIiJ05ZVX6o477pB0YvXf7t279dVXXyk3N1cRERHq16+f7rrrLueqQdSO4j+DP1eL9IvUrwVpri4DAACcgd1hV07xcQX7hJRp3565Tan5qRoSf+KDXdd3mKjFiYs0b8/n2pqxWZe2vNwV5VZJfFCCBsYO1tw9n+viFpc0uLPR9mTt1mc7P9J17W9Q8+CWzvamjZrpitZX6uMdH2hI/DDFBDRxYZVntj1zm1Lyjui+Hg8qJqCJZgyeqcf/eFg7j+1Qk4BYV5dXJwwGg+IC43U455CrSwEAAACABs/lwZ8kXXvttRVu7fnBBx+c0tatWzd9/vnnFY4XEBCgRx99VI8++mi51318fDR79uyzKxbVFuAV4OoSFOEXqYKSAuVZcxVgCXR1OQAANBiZhZn64cB3urrddZUKuj7Y/p4+3/WJXh/2thKCmjrbFyX+ojDfMHUO7ypJivSP0ugWl+njHe+r1G5Tp7DOtfQKatYVra/U5F9v0R/Jv2tA7CBXl1NnCksLNW3VU2rWqLmuanvNKdevaf8PLU5cpNc2vKxn+k93+W4Rx4oytThxkfo1GahIv7JbWf5y6EdF+EWoU3gXSVKwT4ieH/Syvt//jQbGnueCal0jIaipDuUcdHUZAAAAANDgNayPFcPlRrW4RE/2e9bVZSjSP0qS2O4TAIA69v3+bzRn2ztafmTZGfsW24r1zd75KrFZNW3Vk7LarJKkUnupliT+pvPihpQJD69ud60sJm+ZDEa1C+1Qa6+hJrVp3Fadw7to7u7PXF1Knfrfxld1tCBNj/T6t8zGUz+L6Gv21R3d7tKa1NX6PXmJCyo8sYXnlozNemblVF3z/Vj9b+NrmrbySdn/ck611WbVkqTfNCT+/DJ/Fn3MPrq89Tj5efm5onSXOBn8ne5cdQAAAABA7SP4Q50KtASV+bS+q0T6nQj+jhYcdXElAAA0LCtTlkuSPtv58RkDgl8P/axca44e7/OkDuUc0jtb35IkrU9bp+PF2RoaP7xM/0bewZrU6TZd0Owi+Zh9aucF1IIrWl+p7ZnbtC1j62n72R12Hc455PbBypLE3/TDge91R7e7FB+UUGG/PjH91Cemn/638VUVlBTUYYUnPLrsQd372z+1O2uXbup0q57s96y2ZW7VN3vnO/usSlmhXGuuhiUMP81IDUNCUFMVlhYqozDD1aUAAAAAQINWL7b6BOpaiE+IzEaz0vJZ8QcAQF3JKMzQnqzdGhw3VL8l/qotGZucW3X+ncPh0Pw9c9Urpq8GxA7SxIKb9eam13VOZE8tSvxZcYHxavGXc+FOurjF6Fp+FTWvV3QfxQbGae7uz9QhrGOZa9lFWVqbtlqrU1ZpXdoa5Zbk6J6+d2tUfP0/w7A8afmp+u+65zUw9jxd0PTCM/a/o9tdmrjwOs3Z9o5u6zq5Dio8ITk3SWtSV2tyt7s0qsWlztV8o1pcqtlb31LvmL6K8o/Wz4d+VOuQNvXig22udvI9OJRzQOF+4a4tBgAAAAAaMFb8oUEyGoyK8Itkq08AAOrQqpQVMhoMuqPbnWoa1Eyf7/qkwr4bjq7TwZwDGtPyCknSmFZj1T2yh6aveVbLk5dpSPwwl5/7VlOMBqOuaH2l/khequTcJEkngs+v9szT1d+P1XOrn1Vi7mFd3OISDW96gd5Y+4aS/uznTmx2m55d9aQCvAJ0T4/7K/X7F+kXqevaX6+v9s7Vvuw9dVDlCevS1shkMOr8hAvKbOF5U6dbFGQJ0ktrp+t4cbbWpK5ktd+fIv2jZDFZOOcPAAAAAFyM4A8NVqRfpNIK0lxdBgAADcbKlOXqENpJjbyDNa7NVVqVslIHju8vt+/8vfPUrFEzdY3oLulEOPbAuY/IZrepsLRQQ+KH1WXpte78hBFq5B2sL/fOVVbRMT267EHN3PiKLmw+Sp+N+lL/O3+Wbuh4k+46516F+YXp5bUvuM2Wn3aHXatTVumhpfdp57HtmtLrcQVYAit9/+WtxykuMEEz1r9U5ny92rQ2bY06hHU65Yw+Py8/3d3jfm04ul5PrviX7A67zosbUic11XdGg1FxgfE6nHPI1aUAAAAAQING8IcGK8Ivkq0+AQCoI8W2Yq1PW6te0X0kSefFDVWYb5i+2PXpKX2P5CVr1ZHluqzV2DKrwsJ8w/Tvvk/p+g4TFRPQpM5qrwsWk0WXtByjhQe+16SfbtCerN16pv90Te52lxr7hDr7+Zp99XD/h7U+bZ1+OrTQhRWfatHhn3XVd2P04JJ79Mam1/TzwYX6eu+XmvjjBD267EEVlObrib7PqGNYpyqNazaadVf3e7Ujc7sW7P+ulqr/f6X2Um08ul49Is8t9/q5Ub10fsIIbU7fpJ5RvRXi07jWa3IXTYOasuIPAAAAAFyM4A8NVqR/lI6y4g8AgNOy2W36fNcnKigpqLBPXkneGcfZkLZOVptVfWL6SZK8TF66vPU4LTr8s9IL0sv0/Wrvlwq0BJW7qq9zeFdd035CFV+FexjV4hJZjBa1CWmjt4a/q57Rvcrt1yeuj4Y1Ha43N81UVtGxOqmtoKRAvx3+VfN2f17uSkO7w673t72nEO/G8vPy1/LkZZq+Zppe3/iKmjVqrv8Ofk0zh77l/P2vqk7hXTQodrDm751b3ZdyRjsyt6mwtLDC4E+Sbus6We1DO+jy1uNqvR53Eh/UVIdzD7nNalQAAAAA8ERmVxcAuEqkX6Syi7NVbCuWt8nb1eUAAFAvbcnYpLc3v6ESW0m5gdvqlFX61x9T9HT/53ROVM8Kx1mZslzRATGKC4x3tl3YbJQ+3D5Hc3d/pn90uFE2R6nyS/K18MD3urTV5Q3u3+dG3sH6dNSXshgtZzz/7o5u/9SqI6v0+sZX9Wjvf9dYDbnWHOUU56igtED5JXk6kndEy4/8rnVpa1VqL5UkxQQ0OSXAW52yUsl5SXp58Ex1COsoScovyVeJzapgn5Aaqe28+CFasvw3HclLrpEVn5/u/EitQ9qoe+Q5ZdrXpq1RkCVIrUJaV3hvoCVIM4a8Xu0aPE1CUFPlWnOVXZzFSkgAAAAAcBGCPzRYkX5RkqSjBWllfggJAAD+347M7ZJOnLl3eetx8jH7OK85HA7N2TZbNoddr22YobeGvyuLyXLKGA6HQytTlmtQ7JAygZafl59GtbhEn+78WF/u+cLZbjaaNKr5pbX3ouqxyoadjbyDdVuXO/Tc6md1ScsxVd4+szyrU1bp0WUPlmkz6MRqu0mdb1W/mAF6fs1/9M6Wt9Uruo+Mhv/fPGTu7s/VtnE7tQ/t4Gzz9/KXvPyrXddJ3SPOkdlo1oojf1R7pV1mYabe3fq2YgJiNXvE+2Vey7q0NeoeeU6ZNlROQlBTSdKhnIMEfwAAAADgIgR/aLAi/U8Ef2n5qQR/AABUYPuxbYoPSlBS7mH9eHCBLmk5xnltbdpq7c7apVu73KG3N/9Pc3d/pqvbXXfKGHuydiuzMFO9/zzf76/Gt71OzRo1l0FGmY1mmY1mRfhFKNwvvFZflycYGj9cs7e8paVJi2sk+Ptq71y1CG6hW7tMlr9XgPy9/BXk3UgBXgHOPjd2mqS7Ft2uRYd/1rCEEZKkvVl7tCl9gx7t/e8zrlSsDj8vP3WL6K6VKSuqHfwtOvyzJCkpN1G/Jy3RoLjBkqSc4uPafWynLm5+SbXrbYii/WNkNpp1KOegukZ0d3U5AAAAANAg8TFWNFhhvuEyGgxK45w/AEADtiVjs67/4RrtPLbjlGsOh0PbM7dpQJNBGhg7WHN3fyab3ea89tH299WmcVuNaTVWl7W6Qh/teL/cf1dXpiyXv5e/OoV3OeWan5efhsSfr8HxQzUgdpD6xPRTi+BWNf9CPZDBYFCfmH5acWRZtc9US8k7orWpq3VpyyvUNaK7WoW0VkxAkzKhnyS1D+2gPjH9NGfbOyqxlUiS5u75TBF+ERrQZFC1aqiM3tF9tSV9o/KsudUa59fDP6lvzAB1i+iuT3Z+4Hz/1h9dJ4d02vP9UDGT0aTYgDgdyjnk6lIAAAAAoMEi+EODZTaa1dgnVKn5Ka4uBQAAl1iTukpTlt6n5Lwk/Xb411OuH8lLVk7xcbUP7agr21yt1PxULUn6TZK0OX2jtmVu1bXt/iGDwaDr2t+gQEug3tj42injrExZrnOjeslsZLOJmtYnpp9S81N14Pi+SvWvKCD8fv838vcK0HlxQ844xg0db1Jafqp+OPCdMgoztCRxkS5rdYVMRlOVaj8bvWL6yuawa03q6rMe48Dx/dqXvU/nJ4zQ1e2u077sfVqdukrSiW0+E4KasuK0GhKCmupQzkFXlwEAAAAADRbBHxq0+KAEfjABAPAododdj//xsNalrTltv6VJi/WvPx5W98hzNDThfK1NOzVI2XFsmySpXWg7tQxppXOiztXnuz6Ww+HQhzveV4vglur15/adfl5+urnz7VqWvFRr/gxRCkoKtDpllfZk7S53m09UX5fwbvI1+2r5kT/O2Pfg8QO6/JtR2p65rUy71WbVDwcX6PymF5Q5w7EizRo115CE8/Xhjjn6fNcn8jJadEGzi876NVRFpF+kWgS30MqUM7/eivxy6EcFWYJ0blQvdQnvpnah7fXxjvflcDi0NnU1q/2qKT4oQYf5/hoAAAAAXIbgDw1a80YtKv0JeQAA3MEfyb9r5ZHlenfrrApXdy08sEDPrHxCA5qcp3/3eUp9Y/rrcM6hU7bp3J65TXGB8Qq0BEmSrmxztfZl79Ocbe9o49H1uqbdhDJnug2OG6rO4V31wpr/aNKP1+uyry/Uo8seVIRfhHpG9669F92AWUwW9YzqreVHlp2x77q0Ncq15uo/q59WQUmBs31Z8lLlFB/XRc1HVfq513eYqFxrjubvmauRzS4+ZUvQ2tQ7up/WpK52bjtbFXaHXYsO/6JBcUPkZfKSwWDQ1W2v0/bMbfpu/zfKKMwg+KumhKCmyi7O1vHibFeXAgAAAAANEsEfGrTmjVooNT9V+SX5ri4FAIAaMXf3Zwr2DtauYzu1NXPLKdf3Ze/RS2uf08hmF2tKr8dkNprVLaK7jAaD1v5t+8TtmVvVLrS98+su4d3UOqSNPtrxvhKCmqpfkwFl+hsMBt3V/V7FBsapQ1hH3dPjQb01/F19cOFnzvAQNa9vk37ak7Vb6QXpp+23NWOLYgPjlFV0TG9s+v8tWb/b97U6h3dVQlDTSj8zyj9aFzYfLaPBoMtaXX62pZ+VPjH9lGvN1bZy/nyfycaj65VRmKFhCcOdbb2i+6h5o+b638ZXZTaa1bmcsyhReSf/HB3mnD8AAAAAcAmCPzRozYNbSDqx9RUAoO4k5SZqwg/j+fu3hm3L2Krtmdt0d4/7FR+UoLm7Pjulz9ub31BMQKwmd7tbRsOJbwUDLUFq27h9meCvoKRAB47vV7vGHZxtBoNBV7W9RpJ0dbvrnPf/VXxQgl487xXd3eN+XdDsQjVr1Lzcfqg5PaN6y2QwasVpVv05HA5tzdis/k0G6rYu/9QPB77XiiN/6ODxA9qSsVkXNx9d5efe2vkOvXn+u4ryj65O+VXWKqS1QnxCtKIS25v+3S+HflJMQBO1a/z/gfaJP9fXqsReok5hnSu13Skq1iQgVkaDQYcI/gAAAADAJfgpDBq0uMAEmQxG7T++19WlAECD8r+Nryol74h+PfyTq0upEznFx5Vrzan158zb87maBMSqT0w/Xd5qnFYcWaak3ETn9bWpq7Uuba1u6nyLzEZzmXvPieqpDUfXObdP3J21U3aHQ+3DOpTp17/JQL08eKYGxw2t9deDygmwBKpzeFf9ceT3Cvuk5B9RdnG2OoR10shmF6l3TF+9sPY5fbTjfQV7B6t/k4FVfq6XyUtNGzWrTulnxWgwqnd0X604srxK9xWVFmlZ8lINjT+/zBa1kjQobrA6h3fR0L+sBMTZ8TJ5qUlAHOdoAwAAAICLEPyhQbOYLIoLTND+bM75A4C6siplpVanrlKTgFgtTVpS4Tl0nqLYVqy7frtDz656slafk5qfoj+Sl+ry1mNlNBg1LGG4GnkH68s9cyWdONts1pY31D60g/rFDDjl/nMieyq/JF87jm2XdOJ8P1+zr5oGlQ12DAaDOoR1PCU4gWv1jemvzekblVeSV+71rRmbJUkdQjvIYDDo3h4PyCiDFicu0gXNLpKXyasuy622PjH9lJyXVCbYPpPlR5apsLSwzDafJxkNRr143isa0XRkTZbZYDVt1Ex7sna5ugwAAAAAaJAI/tDgNQ9urv3HCf4AoC6U2Er0xqbX1CW8m27veqeO5CXrgIf/Hfzu1reVlJuoDWnrKgxlasL8PfPk7xWg8xMukHTiwy2jW16mHw8uUE7xcS06/LP2Ze/TzZ1vLze0a9O4rQItgc7tPndkblPbxu3YptNN9Inpp1K7TWtSVpV7fVvGViUENXWetRji01gPnPuIovyjzmqbT1frFtFDXkavKm33+euhn9Q+tINiAprUYmWQpO4R52jHsW11stIZAAAAAFAWP8lBg9esUQsdOL5fdofd1aUAgMf7et+XOpKXpNu7/VPdIrrL38tfvycvdXVZtWZLxmZ9ufsLXdryctkc9gpDmerKs+bqhwPf6eIWl5Q5n2xU80vkcDg0b88XemfL2+rfZKA6hHUsdwyjwagekedqTeoqORwObT+2Xe1Dy++L+ifSP0otgltoeQXn/G3N3KKOYZ3KtPWM7qX3R36qSP+ouiixRvmYfdQruo++3POFjhdnn7F/YWmh1h9dp4Gx59V6bZB6RfeR3eHQmr+cGwoAAAAAqBsEf2jwmjdqqcLSQh0tSHN1KQDgUXYd26msomPOr7OKjumD7e/pouaXqHmjFvIyeal3TF/9nrTEhVWenQX7v9N7W2eftk9RaZFeWPMftQvtoNu6TlaL4BZamVL51UlVqufAdyqxl+iSFmPKtAf7hGh40wv08Y4PdKwoUxM73XzacXpEnqs9Wbu049h25RQfJ/hzM31jBmh16kqV2ErKtOcUH9fhnEOnBH+S3HrL1tu73imrvUT/Wf30GT/AtfHoepXaS9Uruk8dVdewhfuFq0VwS61Kqdo5jAAAAACA6iP4Q4PXPLiFJJV7zl92UZZK7aV1XRIAuL29WXs0+ddbdOW3l+mfv96qj7a/r5kbXpHJYNL1HW509hvY5DwdyjmoQzkHXVdsBSo6e/BIXrJe2/Cy5u35XDa7rcL739n6ttILjuqBcx+W0WBUn5j+Wp2yqsb/XbHarJq/Z66GxA9TqG/oKdcvbz1OBkkXtbhEsYFxpx2rR+S5ckj6aPscSVK70HY1WitqV78m/VVQUqBVqSvKtG/L3CpJ6hjW2RVl1Zpwv3A93PMxrUtdo092fHjavqtTViomoMkZ5wBqTq/oPlqTuvq0f08CAAAAAGoewR8avFCfUAVZgk45589qs2rijxP09d4vXVQZALiveXs+V4RfhO4/d4oi/CL12a6PtSTpN/2jw40K8m7k7Ncj6lz5mn21LKl+bff57b6vdNNP/1B2UVaZdofDoVc3/Fcmo0lFpUXak7273Ps3p2/U/D1zNbHTzc6goU90P+WV5GlrxuYarfXHgwuUWZihcW3Gl3s9LjBerw+bpVs6337GscL9wtU0qJlWp65SXGC88zw4uIcWwa3UObyLPtnxYZngelvGFoX6hirSz/229DyTc6J66tr212vOttlan7a23D4Oh0OrU1eqZ1TvOq6uYesd3Ve51lxtP7bN1aUAAAAAQINC8IcGz2AwqFmjFtqXvbdM+6qUFcqx5uhgzgEXVQYA7ulYUaYWJ/6qS1qO0fCmI/V4n6maN/pbvXH+LI1ucVmZvt4mb/WK7qPfkxe7ptgKbMvcqsM5h/Tv5Y+q2FbsbF+cuEhrU9fowXMfkbfJW5uObij3/g+2z1Hbxu10WasrnG2tQlor1DdUK47U3NZ3VptVH+/4QIPjhyohqGmF/VqGtJLFZKnUmOdG9ZQktQ/tUBMloo5d026Cdmft0tq0/z9bbWvGFnUM7ezW23qezrXt/6GuEd01bdVTyijMOOX6oZyDOlpwVOdG9XJBdQ1Xm8Zt1cg7WKtTVpy5MwAAAACgxhD8ATqx3eeB4/vLtC06/Isk6UjeEVeUBABu65u9X8ls9NKFzS52tnmZvNQiuFW5wcOA2EHal71PR/KS67LM00rLT1WL4Jbam71H01c/K7vDrjxrrv636VX1azJAA2IHqX1oh3JX7+WX5GtrxiYNSxguo+H/v9UyGAzqE91Py4/8XuE2olX1w4HvdKwoU9e2v75GxpNOrKCSpHYEf26pW0QPtW3cTh9tf18Oh0NWm1W7snaqQ5jnntdoNBj1SK9/yWw0a8b6F0+5vjp1pSwmi7pEdK374howo8GonlG9tPIIwR8AAAAA1CWCP0BS80YtdCQvSYWlhZKkPGuuVqYsV5AlSCn16AfRAFDfWW1Wfbv/aw1vOlIBlsBK3XNuVC9ZTBb9nrSklqurvNT8FPWM7q2Hez2u35MW692tb+udrbNUVFqkO7reJUnqHN5VWzI2y+6wl7l3w9F1KrXbyt1WsE9Mf6Xmp9bImYZWm1Wf7PxQg+OHKS4wvtrjndQ5vKvGt7tWA5oMrLExUXcMBoOuaTdB2zK3akvGJu3O2qVSe6nHne/3d8E+Ibqx4yStPLJc+7L3lLm2OmWVukV0l7fJ20XVNVy9ovvoYM4BpeWnuroUAAAAAGgwCP4ASc0aNZdDcv4gdlny77LZS3VZqyuUUZguq83q0voAwF0sOvyLcouP67KWl1f6Hl+zr3pG9dbSpMW1V1gVWG1WZRZmKNo/Rv2bDNTNXW7Xpzs/1rf7vtI/OtyocL9wSVLn8C7KL8nX/uyyZ8SuTlmpuMB4RQfEnDJ214hu8jH7aPmRZdWuc8H+b5VVdEzXtvtHtcf6K7PRrBs7TipzFiPcS6/oPmoR3EIfbp+jrRmb5WP2UfNGLVxdVq0bEn++ov2j9eH2951tJ1fgcr6fa/SIOlcmg1Gr2O4TAAAAAOoMwR8gqWmjZjIaDM4f3i46/LO6RHRXp7DOcujEyg8AwOk5HA59uedz9Yrpq9jAuCrdOyB2oHZn7dLRgqO1VF3lHS1Ik0NSlF+UJOnyVuM0rs1V6hF5ji79S6DZtnF7eRm9tDljo7PN4XBoderKCs8Ss5gsOieyp1Yc+aNaNRbbip2r/ar6XsPzGQwGXd1ugjYcXa8F+79Vu8btZTKaXF1WrTMZTbqq7bValrxUB4+fOKN5fdpa2Rx29Ywm+HOFAK8AdQzrQvAHAAAAAHWI4A+Q5G3yVpOAOO0/vk8ZhRnaeHS9hsQPU3RAE0lSCsEfAJzRhqPrdOD4AV3eamyV7+0ecY4kaXvm1pouq8pS8k+c7XpyxZ7BYNCkzrfpPwNfLBOeWEwWtQttr83pm5xt+4/vVWZhpnqdJmToE9NXO4/t0LGizLOu8fv93yi7OKvGV/vBc/RvMlDxQQlKyU/x+G0+/+r8hBGK8IvQxzs+kHTifL+4wHhF+Ue7uLKGq3dMH204ut65pT4AAAAAoHYR/AF/at6ohQ4c36cliYtkMpo1oMlAhfmGycvoxTl/AFAJ8/fMVfNGzdUlvFuV7w32CVG4b7j2ZO2qhcqqJjU/VUaDQeG+EWfs2ymsi7akb5LD4ZAkrUldLR+zz2mDlp5RvWU0GLTiyPKzqs/usOuLXZ9qSPz5rPZDhYwGo8a3vUaS1DGsk4urqTteJi9d1fYaLUlapMTcw1qTuko9o8tfgYu60Su6j0rsJdp4dL2rSwEAAACABoHgD/hT8+AW2p+9T78e/lm9ovsowBIoo8GoKP9oHflz9QcAoHzf7vtaK1NW6IrWV8pgMJzVGC1DWmtP1u4arqzqUvOPKMIvslJbI3YO76Ica47zjNjVKSvVLaKHLCZLhfcE+4Soa0R3vbbhZU1f/az2Ze+pUn3bMrcqozBDFzUfXaX70PAMiT9fz/Sfrm4RPVxdSp0a0fRChfg01nOrn1FmYSbn+7lYbECcYgKaaHXKSleXAgAAAAANAsEf8KdmjZorryRPe7J2a0j8MGd7tH80K/4A4DS+3/+tXln/ki5rdYWGJYw463FahbTW3uw9ztVzrpKan6pIv8ptC9gutINMBqM2p29UrjVH2zK3VCpkeLzPk7qh403aeHS9bv35Jj245B7tP76vUs9cmrhYYb5hah/aoVL90XAZDUb1jO511mG8u7KYLBrXZrx2Hdt5xhW4qH0Gg0HtQtvrwPH9ri4FAAAAABoEgj/gT80btZAk+Zp91Su6j7M9OqAJK/4AoAILDyzQy+te0OiWl+m2LpOrFTC0CmmjXGuu0gpSa7DCqkvNT1GUf1Sl+vqafdW6cVttydisdWlrZXc41PM05/udFOAVoHFtxuv9Cz/VI73+pdT8FL2+4dUz3md32PV78mL1bzJIRgPfxgEVubDZKAV7B59xBS7qRrR/jFILODMbAAAAAOqC2dUFAPVFhF+kAi2B6h3dV94mb2d7TECMFuz/VnaHnR+yAsBf/HxwoV5a+5wubj5ak7veVe1VRa2CW0uS9mTtVpR/5Vbc1YbU/BT1jelf6f6dw7rop0MLZTaa1TSomSL8znw24Elmo1mD44eqsLRQM9a/oKyiYwrxaVxh/22ZW5VZmKlBcYMr/QygIfIx++j5QS/L3yvA1aVAUpR/tDILM2W1WQliAQAAAKCWkWIAfzIYDHqq3380qfOtZdpj/JuoxF6izMJMF1UGAPVPRmGGXlz7nIY3Hal/dr+nRrYSDPUNVWOfxtqT7bpz/gpKCpRjzan0ij9J6hzeTVlFWVqatFg9o3ud1XP7NTkRNP6RvOy0/djmE6i8po2aKdwv3NVlQCe2zpdOfLACAAAAAFC7CP6Av+gQ1vGUlRbRATGSpJR8zvkDgJMW7P9WXiaLbu06uUZXQ7cKaa29Wa4L/lL/3No5yj+m0vd0COsoo8Egq81aZqvoqmjkHawu4d20NOm3CvuwzScAd3Xy79TUfNdu5QwAAAAADQE/NQLO4OR2c0fyOOcPACSp1F6qBQe+1dD48xVQw9votQppo91Zu+VwOGp03Mo6+UPpqmw16u/lrxbBreTn5af2oR3P+tkDYwdrU/oGHS/OLvc623wCcFdhvmEyG018kA4AAAAA6gDBH3AG3iZvhfmGKSWf4A8AJGnFkT+UWZipUS0uqfGxWwW31vHibGUUZtT42JWRWpAiL6OXGp/mnL3yjGl1ha5ue53MxrM/PvlM232yzScAd2U0GBXhF8VWnwAAAABQBwj+gEqICWiiFFb8AYAk6dt9X6l9aAe1CG5V42O3CmkjSdrronP+UvNTFeUfXeUzC4cljNCVba+u1rNDfBqrY1gX/Z68+JRrbPMJwN1F+0ez1ScAAAAA1AF+cgRUQrR/jI6wNREAKDH3sDYcXa/RLS6tlfHDfMPUyDtYu7N21cr4Z5KSf0RR/lEuebYkDYo9TxvS1inXmlOmnW0+Abi7KP9otvoEAAAAgDpA8AdUAiv+ADRE5Z2z992+bxTk3UgDYs+rlWcaDAa1CmmlvVmuWfGXlp+iKP8Ylzxbkvo1GSi7w67lR/4o0842nwDcXbR/jFLyU1x2hisAAAAANBQEf0AlRPlHK8eao7ySPFeXAgB15qaf/qF7f/unDh4/IEkqKi3STwd/0MimF8pistTac1uFtNEeF2z16XA4/tzq03Ur/kJ9Q9UxrLOWJv4m6cQWn/N2f67v93+j8+KGsM0nALcV5R+tgpIC5ZXkuroUAAAAAPBo/PQIqISYgCaSpNS8FBdXAgB1w2qz6nDOIe3O2qVbf75Rb2/+nxYe+F75JXm6uMUltfrsVsGtlVmYqWNFmbX6nL/LsR5XYWmhol244k+SBsQO0vqja3Xg+H5NWXqf3tg0U6NaXKrrO97k0roAoDqi/KMlSSl8Pw0AAAAAtcrs6gIAdxDz5w+Bj+Qnq2VIKxdXAwC1L6MwXZL0WJ+p2pe1Rx/teF8l9hL1jOrl/OFtbWkV0lqStCdrj3pFh9bqs/4qNT9Vkmr99Z1J/yaD9PrGV3XrzzeqsU+onhv4orpHnuPSmgCgumICTnw/nVqQotaN27i4GgAAAADwXAR/QCUEWoLk7+WvI3nJZdq3ZmxRbECsgn1CXFQZcKpv9s7XsuSleqLvM/Lz8nN1OXBTJ4O/GP8Y9Y7uo8HxQ/Xxjg80usVltf7sSL8oBVoCtSdrl3pF9671552Ukn/iLFdXbvUpSeF+4RqacL4k6Y6udyrQEuTSegCgJgR4BcrPy49zswEAAACglhH8AZVgMBgU7R9T5gcVW9I36d7Fd8rPy0/j216rMa3G1uqZV0BlOBwOfbH7U6Xmp+o/q5/WE32f5kwwnJWTwV+Yb7ikE1se33/ulDp5tsFgUMvgVtqTVbfn/KXmp8jfy79eBG1Tej7m6hIAoEad+H46Wqn5bPUJAAAAALWJnwYDlRQdEKMjf64Gsdqs+u+6F9S2cTsNTxip97bO0g0Lr9Gvh36Sw+FwcaVoyLZnblNqfqrGtblKq1KWa/aWN0/ps+vYTu0+tssF1cGdpBeky8/Lz2WrRluFtNbe7LoP/ly92g8APFmUf4xzdTUAAAAAoHYQ/AGVFOMfo9Q/f1Dx2a6PdSQvSfee86Du6HanZo14X61C2ug/q5/Rl3u+cHGlaMh+PfyzwnzDNLHTLbq58+36fNenWnhggSQpKTdRU5c/rsm/3qJHlj2ootIiF1eL+iyjMEPhvhEue36rkDY6WnC0TreES81PUaSfa8/3AwBPFuUf5TxPFQAAAABQOwj+gEqKDmiiowVpOnB8vz7e8YHGthmvZo2aS5JiA+P0RN+ndXHz0fpg+3s6Xpzt2mLRIJXaS7Uk6TcNiR8mo8GoMa3G6qLmozRj/Qv6z+qn/4+9+45vqtzDAP6cJE13OpJ070E3UFah7L2RoSiCKCrucV24laHi3t4rCCIqilxBGSJ7Q9mrLW2B7r33Spvk/oHEW9tCW9KmaZ/v58MHOec973kO9m1ofnnfFw/unI+Eojg81PNRlKtKsTNlu6EjUydWUJ0PhbnCYPfv49AXDhYOeO7AU0gpTe6Qe+ZU5sDJkoU/IqL24mzpgtyqHGi0GkNHISIiIiIi6rJY+CNqIRdLF2i0WiyNegNKCwfMC763UZt7Q+4HAKyNXdPR8YhwOvcUympLMcpjDIBre+k8Ef4vhCl6ISrrKO4LfRBrJq7DHQF3YYT7KGxI+Bn1mnoDp6bOKr86T7e/nyHITG3w2aj/wEpqhWcPPInYgph2vZ9Gq0FuVQ6cWfgjImo3TpYuqNfUo6C6wNBRiIiIiIiIuiyJoQMQGQsXK1cA15ZLfG/YRzAVmzZqY2tmh3nB9+Kbi//BVN/bdDMCiTrC/rTd8JR5wcfGT3dMIpLgnaEfoE5TB3OJue74nYFzsW/X/diXthvjvCYaIi51coXVBejnOMCgGRTmCnw84gu8eexVLDr0DF4buBiDXAbf8JrKukocyTyEvam7EFsYA0sTS8ikNrAxtYGPjR8e6/0kBEFodF1hdSHqNfWc8UdE1I6u76OaU5kFBwvDLSdNRERERETUlbHwR9RCSgsHmIpNMcRtGPo49mu23W2+M7E1cTO+vvAl3h36UZNvMBPpW1VdFY5mHsHcoPmNvuYkIgkkoobf7n1sfDHQeRB+SfgZYzzHQyRwAjj9Ta1Ro6im0KAz/q6zklpj+dAPsfzEMrxx9BXYm9mjh30gAu2C4CHzRK26BmWqMpSrypFWloqorKOo19ShpzIc84MXoFZdizJVGXKrcvD71Y0Y4zkOAfaBje5zfQ9XFv6IiNrP9e+x2ZXZ6KnsbdgwREREREREXVSnKPytW7cOq1evRn5+PgIDA/H666+jZ8+ezbYvKyvDJ598gt27d6OkpASurq545ZVXMHz4cACAWq3GF198gS1btqCgoAAODg6YMWMGHnvsMd0b4lqtFp9//jn++9//oqysDH369MHixYvh5eXVEY9MRkgkiPDZqK/gauV+w3YmYhM80utxvHH0FZzIOY6BzoM6KCF1Z1FZR1CrrsVIj9EtvuauwHn41/7HcSzrCIa4DmvHdGRsimqKoNFqobAwfOEPAKRiKV4ftATHs44hrugSEori8OvlX1BRV6E7L5PKIDdX4N6Q+zHSY0yjmSQarQZzts3C7tSdzRT+sgEAjn/NRiEiIv0zFZvC3sxe9z2XiIiIiIiI9M/ghb/t27dj+fLlWLJkCXr16oW1a9figQcewI4dOyCXyxu1V6lUWLBgAeRyOT777DM4OjoiKysLMplM1+abb77Bzz//jPfeew9+fn6IiYnByy+/DGtra8yfP1/X5ocffsC7774LNzc3fPbZZ3jggQewfft2mJo2XsKRCAB8bf1b1G6gcyTCHfrg6/Nfoq9DP5iITdo5GXV3e9N2I0Qe2qrZSiGKUPRU9sLPcT9isMtQzk4lnYLqfACA0lxh4CR/EwkiRLoOQaTrEADXPsBTUlsMCxPLJpdebur60R5jsTN1Bx7p9XijWbBxRZegMFc0WBKXiIj0z8nSGdl/zbImIiIiIiIi/TP42m5r1qzB7NmzMWvWLPj5+WHJkiUwMzPDxo0bm2y/ceNGlJaW4quvvkLfvn3h5uaGAQMGIDDw70/vnzt3DqNHj8aIESPg5uaGCRMmYMiQIbh48SKAa28Wfv/993j00UcxZswYBAYG4v3330deXh727NnTIc9NXZsgCHik9xPIrszE5+c+hkarMXQk6sKKa4pwJvcURnuObfW1cwLn4XJxAs7lnWmHZNQUrVZr6Ag3db3w1xmW+myOIAiwM7NvUdHvujGe41BWW4pTOScaHC+uKcKO5O2Y5DNV3zGJiOgfnK1ckFPBGX9ERERERETtxaAz/lQqFWJjY/Hwww/rjolEIkRGRuLcuXNNXrNv3z707t0bS5cuxd69e2Fvb48pU6Zg4cKFEIvFAIDw8HBs2LABycnJ8Pb2Rnx8PM6cOYOXXnoJAJCRkYH8/HxERkbq+rW2tkavXr1w7tw5TJ48ucXPIBIJEIk4S4Ya6yH3x0sDX8W7x9+GuYkZnuzzry49o0osFjX4nTrOocx9EAQRRnmNgkTSur//CNcIBNgH4PWjLyNQHoRQRShCFWHo6dAbliaW7ZS4+/rt8kZsufo7vhjzH1hJrQwdp9lxW6QqgFQshb2FXZf6vtVD0QO+dr7Ym74LQz2G6o5vSdoEE7EEswJub/UYIupofL0lY+dq7YIL+ee6zfdbjlki48NxS2R8OG6JjA/HbfsyaOGvuLgYarW60ZKecrkcSUlJTV6Tnp6O48ePY+rUqVi5ciXS0tKwZMkS1NfX44knngAAPPTQQ6ioqMDEiRMhFouhVqvxzDPPYNq0aQCA/Px83X3+ed+CgoJWPYO9vWWXelOU9Gu23UxIzIB3Dr8DO2sZnhzwZJf/epHJuExeR6qqq8KGKz9jcsBEeDm5tqmPr6Z9gV2Ju3A+5zz2ZuzChss/w8LEAtMDp2NO6Bw4W7d8+VC6scSKBGRUpuE/MZ/h7VFvd5rvB/8ct1Uog4uNE+ztDV+c1LcZIbfh36f+DbGFGjJTGSpVldiWvBmzw+6ApxO/1sl48PWWjJWfozdK4otgYS2BqaT7bLHAMUtkfDhuiYwPxy2R8eG4bR8G3+OvtbRaLeRyOZYtWwaxWIzQ0FDk5uZi9erVusLfn3/+ia1bt+Kjjz6Cn58f4uLisHz5cjg4OGDGjBl6zVNUVMkZf3RDI53Go6hXGb46+znUKgH3hd5v6EjtQiwWQSYzR1lZNdRqLm3aUb6L+RYlVWWY438viosr29SHGOaY6HYbJrrdBq1Wi6yKLOxI/gO/X/od6y78hOHuIzE/5D542njpN3w3lFiQDAczJ/x5eQeCbMIwxXeaQfM0N25TC9JhI7Fr89dUZzZQMRSf1H2K3y9uw1S/2/Bz3DpU1lZjsvv0Lvm81PXw9ZaMnQxyqNUaxGcmwkPmaeg47Y5jlsj4cNwSGR+OWyLjw3HbNnZ2LVuhzaCFPzs7O4jFYhQWFjY4XlhYCIVC0eQ1SqUSEolEt6wnAPj4+CA/Px8qlQpSqRTvv/8+HnroId2SnQEBAcjKysKKFSswY8YMKJVK3X0cHBwa3Pf/9wpsCY1GC42m8+/XRIZ1m88sVKtqsDp6JcLse6GXQ7ihI7UbtVqD+np+s+4IhdWFWH/pJ0z3mwmFqYPe/t4dzZ1xb/CDuMP/buxK+RMbr2zAo7sewpuRy9DXsb9e7tEdabVapJel486Au5FblYPPT3+KANtgeNv46NpkVWQCAFys2jZ7s63+OW7zqwqgMFd0ybFsY2KPcIe+2JW8E6Pdx2ND3HqM8RgHW6m8Sz4vdV18vSVjpTBzhFYLZJRmwcXC3dBxOgzHLJHx4bglMj4ct0TGh+O2fRh0AVWpVIqQkBBERUXpjmk0GkRFRSE8vOnCSJ8+fZCWlgaN5u8vhpSUFCiVSkilUgBATU1No+XTxGIxtNprBTo3NzcolcoG962oqMCFCxeavS/Rrboz4G7YmtriTN5pQ0ehLuL72G8hFUsxJ3Beu/RvYWKB6f6zsGLsGoQpeuLVw4uwM+XPdrlXd1BaW4LKukq4Wrvh0d5Pws3aDW8fX4Kquiocz47CK4dfwL1/3o3Xj75s6KjIr8qDwlxp6BjtZozHOMQURGNt7GqUqUoxO2COoSMREXUbSnMlJCIxsiszDR2FiIiIiIioSzL4zokLFizAhg0b8NtvvyExMRGLFy9GdXU1Zs6cCQBYtGgRPvroI137OXPmoKSkBG+//TaSk5Nx4MABrFixAnPnztW1GTlyJL7++mscOHAAGRkZ2L17N9asWYMxY8YAAARBwPz58/Gf//wHe/fuRUJCAhYtWgQHBwddGyJ9EwQBoYqeiMm/aOgo1AWklCZjR8ofmBs0H1ZS63a9l4WJBZYOXo7xXpPw4al38cOl73QfpKCWy/xrNp+rlStMxaZ4deBi5FRm465tM/H6kZdQUluCcV4TkFaWirLaUoPl1Gq1KKgu6NKFv0jXoTCXmGNDwnoMdR0BN+vuM+OEiMjQRIIIDhZOyKnMNnQUIiIiIiKiLsnge/xNmjQJRUVF+Pzzz5Gfn4+goCCsWrVKt9RndnY2RKK/65POzs5YvXo1li9fjmnTpsHR0RHz58/HwoULdW1ee+01fPbZZ1iyZIluOc8777wTjz/+uK7NwoULUV1djTfeeANlZWXo27cvVq1aBVPT7rPBPHW8MGVPrLq4Aiq1ClKx1NBxyIitjl4BBwtHTPWd3iH3E4vE+Fff5+Fo6YQ1MasgFsS4O+ieDrl3V5FVkQEAcLFyAwB4yrzw4oBXcTLnOCZ5T0WgfRCyK7OwK2UHLhVdwkDnQQbJWaYqRZ2mrksX/swl5hjiOgy7U3firsC5N7+AiIj0ysnSCTmVOYaOQURERERE1CUZvPAHAPPmzcO8eU0vVffDDz80OhYeHo4NGzY025+VlRVeffVVvPrqq822EQQBTz/9NJ5++unWByZqozBFL9Rp6pBQHI8wRU9DxyEjdTH//LWlISPe6NACsiAIuDvoHuRV5eKPpC2YEziv0bLK1LyMigzYm9nDXGKuOzbUbTiGug3X/dnZ0gW2pra4VBhjsMJfQXU+AEBp4XCTlsZtfsgC9FT2hp+dv6GjEBF1O44WTrhacsXQMYiIiIiIiLokgy/1SdSd+Nr6wVxizuU+O5hao8bjex7CyewTho6iF/+9/At8bX0x3H2kQe4/0n008qryEF8UZ5D7G6usisybLikpCAKC5CG4VBDbQakay68uAADIzRQGy9ARnCydMcF7kqFjEBF1Sw4WjsityjV0DCIiIiIioi6JhT+iDiQSRAhRhCK64IKho3QrSaWJuFycgN+u/tfQUW5ZblUuTmZHYarvDIgEw3wLD1P2gq2pLQ5l7DfI/Y1VRnk6XKxcb9ouWB6ChOI4qDXqDkjVWEFVPkSCALm53CD3JyKirs/RwhFltaWoqa8xdBQiIiIiIqIuh4U/og4WpuiF2MIYaLQaQ0fpNmILogEAZ3NPo+Cv2UzG6o+kLTAVm2Gk+2iDZRAJIgx1G47DGQeh1WoNlsOYaLVaZFVmwvWv/f1uJEQeipr6GqSUJXVAssbyq/NgbyY3WGGZiIi6PkdLJwBAHmf9ERERERER6R3f1SPqYKGKMFTVVSG5NNHQUbqN2MIYeMm8IRYk2Ju6y9Bx2qxeU48/k7ZhrNcEWJhYGDTLMLcRyK3KRUJxvEFzGIuS2mJU1VW1qPDXwz4QYkGE2IKYDkjWWGF1ARTmSoPcm4iIugcHC0cAQG5VjoGTEBERERERdT0s/BF1sED7YEhEEkRzn78OE1NwEf2dBmCw61DsTt3Z5Cw1Y5i5djTzMEpqSzDFZ5qho6Cnsve15T7TudxnS2RWZAIAXK1vXvgzFZvC19Yfl4oMs89ffnUeC39ERNSuFOZKiAQBuZWc8UdERERERKRvLPwRdTCpWIoAu0Bc5D5/HSK3KhcF1QUIUYRhrOcEpJal4HJxQoM2GeXpuGf7nTiVc8JAKVtmW9IWhCrC4G3jY+goEAkiDHEdhkMZB4yiaGpomRUZAAAXy5vv8QcAwfJQXCo0TOGvsLqQhT8iImpXEpEEcjMF8qpZ+CMiIiIiItI3Fv6IDCBM2QvR+RdYMOkAl/5aLjFYHoK+jv1gZ2aHXak7dOfVGjXeO/k2cqtysTp6Zaf9f5JenobzeWc7xWy/664v9/nPQio1llmRAYW5AmYSsxa1D5aHILsiC8U1Re2crLFrM/4UHX5fIiLqXhwtnbjHHxERERERUTtg4Y/IAMIUvVBSW6KbBUTtJ6YwGq5WbrAzs4dYJMYYj3E4kLYXdeo6AMAvCT/hcnE8FoQ+iMSSqziRHWXgxE3blrgFMlMbDHUbYegoOj2VvWFjaotDGVzu82ayyjPh0oL9/a4LVoQCAOIKL7VXpCZV1VWhqq4KSguHDr0vERF1Pw4WDsjjUp9ERERERER6x8IfkQEEK0IgAIgpiDZ0lC4vtiAaIX8VUQBgrNcElKnKcCInCleLr+D72G9xZ+BczAmch1BFGH649F2nm/VXq67F7tQdmOA1EVKx1NBxdMQiMYa4DuVyny2QUZEOt1YU/hzMHSA3l+NSYUw7pmqsoDofADjjj4iI2p2DhRNyq3IMHYOIiIiIiKjLYeGPyACsTKzgY+uLaO7z166q6qqQXJqIEHmY7pi3jQ/8bP2xPWkr3j35FrxsvHFP0H0QBAH3BN+Hy8UJOJVz0oCpGzuccQDlqnJM7kTLfF43zG0EcipzuNznDWi1WmRVZMLFqmX7+wGAIAgIsg/p8H3+rhf+lOac8UdERO3L0cIJBdX5UGvUho5CRERERETUpbDwR2QgoYpeiC64aOgYXVp80SVotNoGM/4AYJzXBJzKOYnMigy8OOA1mIhNAADhDn0RLA/BD5fWNJjBplKrcDjjIFRqVYfmv+5I5mEEyYNbVTjqKL2U4ZCZ2uBI5iFDR+m0imuLUF1fDTdr91ZdF6IIRUJxPOo19e2UrLHrhT85Z/wREVE7c7BwhEar1b32EBERERERkX6w8EdkIGGKnsiuyEJhdaFe+iuoLsDq6JXQaDV66a8riCmIhrXUGu7WHg2Oj/IYA5lUhoU9H4G3jY/uuCAImBd8L+KL4nA27zQA4GT2CTy4614sjXoDy46/2aFFGOBa0fFM7ikMdI7s0Pu2lFgkRk9Frw5fktKYZFZkAkCrC7dB9iFQqVVILLnaHrGaVFBdAJmpTadaUpaIiLomR0tHAEBeFff5IyIiIiIi0icW/ogMJFAeDAC4WnJFL/0dzjiA9fHrkFyaqJf+uoLYwmiEyEMhEhp+q7MxtcX6KZsw0/+ORtf0cxyAAPtAfBv9DZYcex2vHlkERwsnPN3nOZzOOYH3T77TocXV6IILqKmvwUDnQR12z9YKtA/C5eIEFp2bkVmeAaD1hT9/ux6QiCQdWlTNr8qDkrP9iIioAzhYXCv8cZ8/IiIiIiIi/ZIYOgBRd6U0V0IiEiOnMksv/V2fFRRbEANfW3+99GlMzuSegoe1F5QWSgCARqtBXOEl3B10T5Ptry/v+U/X9vpbgNeOvIj86jy8HPE6RrqPhiAIkJnK8PbxxTCXmONffZ+HIAjt9jzXHc+KgsJcAW8b33a/V1sF2Aeipr4GaWWp8LLxNnScTiezIgNKcyVMxaatuk4qlqKHXQB2pmyHAAHuMg+4W3tCaa5st6+9gpoC7u9HREQdwlxiDplUhryqPENHISIiIiIi6lJY+CMyEJEggoOFE3Iqs/XSX9JfM/0uFcZgmt8MvfRpLI5mHsbiY69BYa7A8qEfwsvGG8mliaiur0awPKTV/Q1wisDbQ95HsCIEViZWuuPD3Eagpt+L+ODUu5CITdDfKQKVqnJU1FUAAKb43AaxSKy359JqtTiefRQDnSM7pMjYVv52ARAAJBTHs/DXhMyKDLi2cn+/66b5Tsf6+J+w4uK/dcvMjvIYjZcj3tBnRJ38qjwE2ge1S99ERET/5GDhiNxKzvgjIiIiIiLSJxb+iAzIydIJOXp4s0OtUSOlNBnmEnPEdrO91tLKUvHeybcx0HkQcipz8NyBp/DO0A8QX3QJEpEYAW0oYgiCgAHOEU2eG+c1EdX11fjy3GfYcvU3AIBEJEa9Rg2Z1AYjPUbf0vP8v7TyVORU5iDCpXPu73edpYkl3GWeSCiKw3iviYaO0+lkVWQg0D64TdeO9hyH0Z7joNFqkFOZjY1X/oudyduhUqtavQ+fRqvBO8eXwsvGG/OC7210/nJRAlJKkzDBa1KbshIREbWWo6UTl/okIiIiIiLSM+7xR2RAzpYuyNbDUp8ZFemo09RhjOc45FTmoLC6UA/pDOtUzgmcyT0FrVbbbJuquiosPvYalBYOeDniDXw88nO4WrvhhYP/wp/Jf8DPtkerl1dsidv8ZmL9lE34ecpGbJ2xE9tn7kUvZTg2X92k1/ucyI6CVCxFuEMfvfbbHnrYBSChKN7QMTodrVaLzIrMVu/v908iQQQXK1dM8p6MWnUtYgoutrqPHcnbcTBjP9bGfouD6fsbnKuqq8I7J5bC28YXk32m3VJWIiKilnK0cOJSn0RERERERHrGwh+RATlZOutleaOkkmvLfE756w37S0Y+669WXYu3ji/GS4eexwsHn0F8UVyjNlqtFh+cWo7CmgIsjnwLFiYWsJbK8N6wjxEkD0ZiyVWEKELbLaPcXA6FuQJmEjMIgoDb/GYgtjAGV4uv6O0eJ7KjEO7Qp12Kl/oWaB+EpNKrUKlVho7SqRTVFKGmvgZuVm1b6vOffGz8YG9mj1M5J1p1XXFNEVZFf40xnuMwwn0UPjz9LlLLUnTnvzr3OQqq8/HqwDeb3f+SiIhI3xwsHJBblXPDD3oRERERERFR67DwR2RAjhZOqKirQIWq/Jb6SSpNhNxcDh9bPzhaOCK2MFpPCQ0jKusoquqq8FSfZ1BaW4In9z6CJcdex7bELdiauBlbrv6Gz85+hCOZh/Bi/1fhbu2hu9ZcYo5lg9/FvSH3Y5pvx+11GOkyBApzBTYn6mfWX7mqDDEFFxHh3LmX+bwuwD4I9Rq1bq/J1vj9ykZkV9z6zNfOKLMiHQBuecbfdYIgoL9TBE7lnGzVdSsu/hsCBDzS63E80/cFOFo4Ycmx11FVV4W9SXvxZ9IfeCL8X3Br416EREREbeFo6QSVWoXS2hJDRyEiIiIiIuoyuMcfkQE5WToDAHKrcmAltW5zP8mlifCx8QUAhChCEVtg3DP+9qbuQqB9EKb6Tsdkn2nYk7oT38euwdHMQxAEASJBBAEi3B+6EJGuQxpdLxVLm9zDrD2JRWJM9Z2OHy+txUM9H4W1VHZL/Z3OOQWNVosI50F6Sti+fGx8IRGJkVAUh8BW7KsYXXARX53/HGWqMswPWdCOCQ0jrSwNAvRX+AOAfk4DsDPlT+RV5cHBwuGm7c/mnsbe1N14vv9LsDG1BQC8GbkMj+95CEuPvYHLpfEY5j6C+zMSEVFidpBnAACeSElEQVSHczB3BADkVuXC1syuRddotVp8euZD9Hboo9e9lYmIiIiIiLoKzvgjMiAnSycAQHZl9i31k1hyFb62fgCAYHkorpZcRq269pbzGUJJTTFO5ZzAGM9xAK7tbTbOayJ+nLwBu+44iJ23H8Cfs/Zh+6w9mBM0z8BpG5roPRlaaPFn8h+33NeJnCj42vq2qLDTGUjFUvjY+DW5LOuN/Bz3AwAgozy9PWIZjFarxR9JW/GfC18gTNkLUrFUb333dewHkSDgdAtm/dWqa/HZ2Y/RU9kL4zwn6I67W3tg0YBXcDL7BCxMLPBsvxcgCILeMhIREbWEo+W1wl9eVW6Lr0kojsf25G2Nlq0mIiIiIiKia1j4IzIgW1M7mIpNkXMLhb9yVRkKqgvgfX3GnzwM9Ro1LhfF6ytmhzqYsR8AMMJ9lIGTtJ6dmT2Gu4/E1sTfodFq2tyPRqvByezjGGAks/2uC7APxOXihBa3v1yUgFM5JyE3lyOtPLUdk3WsclUZlka9gU/PfIixnuPx9pD39dq/tVSGQPvgFu3z93Pcj8irysXTfZ5rVNgb4joMr0cuwecTPofM9NZmqBIREbWFTGoDU7Fpo8LfgfR9zX6YaFviZjhYOMDJ0hnLTyzl/sJERERERET/cMuFv9LSUhw+fBjbtm3D4cOHUVpaqo9cRN2CIAhwsnS+pRl/SSXX9lS7vtSnt40PzCXmiC00zuU+96TuQn/ngbolCY3NdL9ZyKnMwcns4226Pr8qH5uvbkK5qhwRTsZW+AtCelkqKusqW9T+p/gf4GLlihl+tyOzIgNarbadE7a/K8WX8fCu+3E+7yzeGLQU/+r7PMwkZnq/Tz+nATibdxr1mvpm26jUKvx+dSNm+M2Ch8yzyTYjPUbB195X7/mIiIhaQhAEOFo6Iff/Cn8lNcV4/+Q7ePfEW1Br1A3aV6jKsT99Lyb7TMMrEa8jtSwVq6NXdnRsIiIiIiKiTq3Ne/xptVp88MEH+PHHH6FS/f0pS6lUinvuuQcvvPCCXgISdXXOls7IvYXCX2LpVZiITOBu7QHg2l5zgfZBRln4yyhPR3xRHF4d+Kaho7RZoH0QetgFYHPiJgx0iWzRNUmlifglfh1iC2J0b3yFKXoiSB7cnlH1LsAuEFoAV4oT0Nuhzw3bppQm42jmYTzX70XYmtqipr4GBdUFUFooOyZsO0guTcKLh56Fs6ULPolcBkcLx3a7V3+nCHwfuwZxRZcQpujZZJujmYdRWVeJiT5T2i0HERHRrXK0cERuZY7uz38kbQUAZFZkYGfKn5j0f69je1J3Qa2pxwTvSbA3k+PBsIfx9YWv0NexPwY4R3R4diIiIiIios6ozTP+vv76a6xduxYLFizA77//jiNHjuD333/HggUL8N1332HFihX6zEnUZTlaOiPn/97saK2kkkR4yrwgFol1x0IUYbhUGGt0M6j2pu2GhYkFBrkMNnSUWzLdbyZO55xCSmnyDdtptdf2A3xiz8NIKErAYNdheGPQUvw8ZSM+HvkFRIJxrcbsIfOEmcQMCS1YZnZ9/I9Qmisx2mOsrmidbsTLfWaWZ+DFQ8/CwcIB7w77sF2LfgDQwy4AMqnshst97k7dgWB5iO7vl4iIqDNysHBEbtW1fwvXqeuwOXETxnlNwAj3Ufjh0hrdUp5arRbbkrYg0nUo7M3kAIAZ/rejn1N/fHDqHRTXFBnsGYiIiIiIiDqTNr+r/N///hePPvoonnnmGQQGBkKhUCAwMBDPPPMMHn30Ufzyyy/6zEnUZTlbOiOnMrvNRbqk0kT42DZcqi9YHoKy2lJkVmToI2KH0Gq12Ju6C0Ndh8NUbGroOLdkuPsoKM2V+Dn+h2bbVNdX4/1T7+Dj0+9jrOd4rBj3LR7t/QSGug2HwlzRgWn1RySI0MMuAAnFNy78ZVVkYn/6XtwZeDdMxCZwsnSGRCRGenlaByXVr7yqPCw69AwsTaywfOiHsJa2/355IkGEvo79cTrnZJPnC6sLcSb3FMZ6Tmj3LERERLfCwcJRt8ffoYz9KK4pxnS/Wbg35H4U1RRiS+JvAICYgotILUvBFJ9pumtFgggv9H8Z9Zp6/HqZP38SEREREREBt1D4y8/PR58+TS/lFh4ejvz8/DaHIupOnCydUauuRUltcauvVWvUSClN1u3vd12QPAQCYFTLfV4qjEV2ZTbGeo43dJRbJhVLcVfgXBxI34eM8vRG5/Oq8vDk3kdwOOMgXhzwCp7p94LRFzuvC7ALREJR3A3brI9fB5nUBhO8JwO4tjytq5U70oyw8FdSU4xFB5+BAAHvD/sEdmb2HXbv/k4DcKX4cpMzHPam7YJYkGCE+8gOy0NERNQWjhaOKFeVo6quCpuu/Iq+jv3gZeMNN2t3TPSegp/jfkRlXSW2JW2Gq5Vbo+XE7c3kGOE+CgfS9xndahdERERERETtoc2FP1dXVxw4cKDJcwcPHoSrq2tbuybqVpwsnQAA2W3Y5y+jIh11mrpGhT8rEyt42XgjtiBaLxk7wp7UnVCYKxCm7GXoKHoxwXsybE3t8FNcw1l/Gq0Gy08sRVVdJb4cvQJjukCh8//1sA9EXlVes8tt5VRmY3fqDtze484GxU43a3dkGGHhb3PibyiuLcL7wz/p8P0J+zkNAACcyT3V4LhWq8WulB0Y7DoUVlLrDs1ERETUWg5//Vt4f/peXC5OwAz/O3Tn5gbdi+r6aqyOXolDGQcx2Wdqk0uhj/QYjbyqPFwqjO2w3ERERERERJ1Vmwt/9913H77//ns8//zz2LNnD86dO4c9e/bg+eefxw8//IAFCxboMydRl+Vk6QLgWkGktZJKEgGg0VKfABAsDzWaNz+Ka4qwO3UnxntNMrp97ZojFUtxZ+Dd2Ju2C9kVWbrj6+PX4VJhDF6OeB1eNt4GTNg+Au2DAAAJxQlNnv8p7gdYmlhjmt+MBsfdrd2RXtY5C39qjbrZc1FZRzDQeRBcrDr+wy52Zvbws/XHn8l/oE5dpzt+pfgyUstSuMwnEREZBUeLa4W/72JWwdXKDf3/+mALACgtlJjuNxNbE38HAIzzavq1LVTRE/Zm9jiYsb/d8xIREREREXV2bX6H/a677sKrr76Ko0eP4oknnsDdd9+NJ554AseOHcOrr76KO++8U585ibosSxNLWEut21b4K02E3FwOG1PbRudC5KFILUtBRV2FHlK2rw0JP0MsEmNWjztu3tiITPKeCpnUBj/H/wgAiC+Kw9rY1bgzcG6Xmdn4T44WTrAxtcXJ7KhG57IrsrAr5U/cFXg3zCXmDc65W3sgvzof1fXVHRW1RXam/Im7ts1scgZjblUuEksSMdB5sAGSXfNgz4dxqTAWbx1fjHpNPQBgV+oO2JnZoa9jP4PlIiIiaimFuQJiQYSS2hLM8J/V6ENgdwXOhYWJBYa7jWjy37zAtb3+hruPwsH0fdBoNR2QmoiIiIiIqPO6pak199xzD44ePYpt27bhxx9/xB9//IEjR45g3rx5+spH1C04WjghtzKn1dcllVxttMzndX52PXRtOrPC6kJsvvobZvrfAWupzNBx9MpMYobZAXOwK+VPpJQmY/mJZfCz7YH5wV13RrQgCJgdcBe2Jm7G6ZyTDc6ti/se1lIZpvjc1ug6N2sPAEBWRUaH5GyJguoC/Pv85yipLcH+9L2Nzp/IOgaxIEJ/5wgDpLumr2N/vBn5Fk7mROHt40tQU1+D/Wl7MMZjHMQiscFyERERtZRIEEFp4QBLE8smZ6vLTG3wxaiv8Xj40zfsZ7jbSBTVFCE6/0J7RSUiIiIiIjIKt7ymnkgkgp+fH/r27QtfX1+IRF1jmT6ijuRk6YzsyqwbtkkpTcacbbPwbcw3ull8SaWJ8LX1a7K9h7UnTEQmuFJ8We959emXhJ8gFUsxy79rzfa7borvbbCUWuOZ/U+gqKYQL0e8DolIYuhY7er2Hnein1N/vHfybd1MuczyDOxO3YE5QfNgJjFrdI27tTsAIK0TLff55blPIRVJ0duhD3an7Gx0Pir7KHoqe8PKxMoA6f420HkQ3hi0DMezj+LJvY+gTFWGsc0shUZERNQZRboMxdyg+bAwsWjyvIfM86YfEAuWh8DRwhEH0ve1R0QiIiIiIiKj0ap3n9esWYOpU6dCoVBgzZo1N2wrCALuu+++W8lG1G04WzrjSNbhG7Y5kR2FktoSbLy8AdsSN2Om/x0oqC6AdzMz/sQiMbxtfHC15Ep7RNaLguoCbEvcjDlB82AltTZ0nHZhLjHHHT3uxOrolXim7wtw+6vA1ZWJBBEW9X8FD+1agPdOvo13hn6AH+PWws7MHpN9pjV5jbVUBltTW6SXd47C3+GMgziaeRivDVwMiUiCxcdeQ3JpErxtfAAAVXVVOJ93Dg/1fNTASa8Z5DIYrw5cjLei3oS/XQ9dTiIiImPwaO8nbrkPQRAw3H0kdqT8iSfC/8WZ70RERERE1G21qvD33nvvoW/fvlAoFHjvvfdu2JaFP6KWc7J0Rn5VLjRaTaN9Ta67VBiLEHkYXop4DesurcUPl64V35tb6hMA/O164FJhTLtk1oef43+EmcQMM/xvN3SUdnV7jzsRLA9BmKJr7uvXFDsze7w44FW8fPgFfHH2E+xL243Hej8FU7Fps9d4yDxbXfirU9fhu9hVuL3HnbAzs7/V2ACAClU5vjj3CQa6RGKY2wjUa+ohk8qwJ3UnFv5V6DuTewr1mnoMcjHc/n7/NMR1GD4e+SUsJE3PliAiIurqRriPxoaE9TiXdwb9nAYYOg4REREREZFBtKrwFx8f3+R/E9GtcbJ0Qb1GjfzqfDhaODY6r9VqEVsYg8k+U6EwV+Dpvs9hVo/ZiCmIhqfMq9l+fW398WfyNqjUKkjF0lvKmFyaBJVahQD7wFvq57q8qjxsT9qKe4LvM/hSie1NIpKgp7K3oWN0uH5OAzA74C5sSFgPhbkCE72n3LC9m5U7Eopb99pyLOsINiSsh6WJFe4OuqfR+XpNPXal7MAYz3EtHgPfXPwaNfU1eCr8WQiCABOxCUZ4jMae1F14IOxhiAQRjmUdgZfMG06Wzq3K296C5SGGjkBERGQwfrb+cLFyxYH0fSz8ERERERFRt9XmDflOnTqFysrKJs9VVVXh1KlTbQ5F1N04WToBAHIrs5s8n1WRidLaEoTIw3TH3KzdMcF7EgRBaLZff7se0Gi1SC5NanO2q8VXsPjYa3ho1wK8fPh51Knr2tzX//sl4SeYS8wx3W+WXvqjzmlB6EKM9hiDx8Ofvmnhzc3aHRnl6dBoNS3uf2fKdgDA/rS9TZ4/lLEfn5z5AFsTf29Rf5cKY7E9eRsW9nwESgul7vg4zwkoqinCmdxT0Gg1OJl9HINcO89sPyIiIrq26swI91E4mnkYKrXK0HGIiIiIiIgMos2Fv/nz5yMxMbHJc0lJSZg/f36bQxF1N9dnDWU3U/iLLYwGAATJg1rVr7eND0SCgCvFl1udKbcqF68ffRmP7nkQyaVJmB+yAOWqcpzNO9Pqvv5Jq9XiaOYhjPeaCAsTLkvYlUlEErwU8TqGuA67aVt3mSdq1bUoqC5oUd/5Vfk4nXMSA10ikVKW3GSBe0fytcLg+vh1qK6vvmmfP8f/CE+ZV6O9CHvYBcBD5ok9qTsRWxiDMlUZBjmz8EdERNTZjHQfjYq6CpzJ5QdRiYiIiIioe2pz4U+r1TZ7rrq6GmZmZm3tmqjbkYqlsDezR04zhb9LhbHwlHnBWiprVb+mYlO4W3siseRKqzN9F7MK8YWX8OKAV/Dt+B8wL+heeMq8sD99T6v7+qfMigwUVheit0PfW+6Lug53K3cAQEYL9/nbnboDUrEpnu/3IqxMrLA/veGsv5zKbJzLO/tX0brsprP+UstScDzrGG7vcWejvTYFQcBYz/E4knkY+1J3w9bUVm/L3hIREZH+eNl4Q2Gu6NT7XBMREREREbWnVu3xd/78eZw7d073561bt+LMmYazf2pra7F37174+PjoJyFRN+Fk6Yzsyqwmz8UWxCBEHtqmfv3s/HG1lYU/tUaNk9nHMdl3GsZ4jtcdH+E+ChsSfkatuhamYtM25QGA83nnIBIEhCrCbt6Yug0nS2dIRBKkl6ehj2O/G7bVarXYkbIdQ92Gw8bUFkPchuFA2l4sCHlQt/ztjuTtMJeY4/Yed6KwugC/JPyMKT63NTvL9NfLv0BuLscojzFNnh/tMQ7fRq/EH0lbMN57UqPiIBEREXUO3jY+t7TUPRERERERkTFrVeHvyJEj+PLLLwFcm/3www8/NO5QIoGvry/efPNN/SQk6iacLZ2RW5nT6HiFqhypZcm4I+DONvXrZ+uPwxkHodFqWlyouNTMUoYj3Edhbey3OJl9HEPdhrcpDwBczD8PP9sesDSxbHMf1PWIRWK4WrkhrQUz/qILLiC7IgvP93sRwLVlvXYkb8fl4gQE2AdCo9VgV8qfGOUxBuYSc8wJugc7U7ZjS+JvuCtwbqP+CqsLsSd1F+4LeaDZvQiVFkr0duiDc3lnucwnERFRJ+Zt44OD6fsNHYOIiIiIiMggWjVd4YknnkB8fDzi4+Oh1WqxYcMG3Z+v/4qJicHmzZvRp0+f9spM1CU5Wjo3udTnpcJL0AIIbuuMP1t/qNQqpJWltviaqKyjTS5l6GbtDj9b/0ZLKraGVqvFhfxz6O0Q3uY+qOtyt/Zo0VKfO5K3w9nSGWGKXgCA3g59YGtqi31p15aiPZN7CvnV+RjvNQkA4GjhiIneU7Eh4WdU1lU26u/3q7/CRGSCyb7TGp37f9P8ZsDOzA7hjlymloiIqLPytvFBblVuk6/5REREREREXV2b1ymLj49Hz5499ZmFqFtztnRBYXUBVGpVg+OXCmNgY2oLVyu3NvXrZ+sPAK3a5+9Y1lEMchnc5AzBEe6jcDzrGKrqqtqUJ7MiA0U1ReipZOGPGnOzdkd62Y0Lf1V1VTiUcQDjvSbplvUUCSIMdx+Fgxn7oNFqsCN5OzxlXgi0D9JdNydwHmrqa/D7lY2N+tuauBlTfKbBysTqhvce4joMG6b+DnOJeRufkIiIiNqbt821bSdSSpMNnISIiIiIiKjj3fIGRbW1tbh69SpiY2Mb/SKilnO0cIQWQFZFZoPjsYUxCJaH6AocrWUltYaTpVOL9/lLL09DZkUGBrk0vZThCPdRqNPUISrrSJvycH8/uhF3a3fkV+ejur662TYHM/ZDpa7FWK8JDY6PdB+NwupCHM08jGNZhzHRe3KDcaO0UGKyzzT8evkX7EndqSteb0/eilp1DWb439E+D0VEREQdyt3aEyJB4D5/RERERETULbVqj7//p1KpsHjxYmzZsgVqtbrJNnFxcW0ORtTd+NsHQGZqgx8ufYfXBy0BAKg1asQXXcK8oHtvqW8/2x64WnK1RW2jso5CKpYi3KHppQwdLZ0QLA/BgfR9GO05rtVZLuafh79dAPf3oya5W3sCADLLM+Bn599kmx3Jf6CPYz84WDg0OB4sD4GjhSM+PfMhAGC0x9hG194dNA9JpYl47+Q7MBWbYrDrEFzMv4CR7mOgtFDq+WmIiIjIEKRiKdysPZBcxsIfERERERF1P22e8ffVV1/h6NGjePfdd6HVavH6669j+fLlGDRoEFxdXfH111/rMydRl2dlYoUnej+NQxkHcCTzEAAguTQJNfU1CLnF2XF+tv64WnwZWq32pm2PZx1DH8d+MJOYNdtmpPtonM49iXJVWatyXN/fr5eyd6uuo+7D3dodAJBcmtjk+aTSRFwqjNXt3ff/BEHAcPeRKFOVYaDzYNia2TVqY2dmj49GfIYfJq3H3UH34GrJVZTUFmN2wBz9PggREREZlJfMGynNzPjLqcxGnbqugxMRERERERF1jDYX/nbs2IEnnngCEydOBAD07NkT06dPx7fffou+ffti3759egtJ1F2McB+FgS6R+PzsxyhXlSG2MBoSkRg97AJuqV9fO39U1FUgtyrnhu1Ka0sQWxiNSJchN2w3zH0ENFoNjmQeblWO6/v79VL2adV11H1YSa0RIg/FtqQtTRaqN17eAIW5AkPdhjd5/WjPcRAJAib7TL3hfZwsnXF30D1YNW4tfp22FV423nrJT0RERJ2Dt40PkkuTGv17oqimEAt2zMUjex7AhbxzBkpHRERERETUftpc+MvJyYG3tzfEYjFMTU1RVvb3zJ9p06Zhx44deglI1J0IgoCn+zwHlVqFry98hdiCGPjbBUAqlt5Sv36215ZM/P99/rRaLVRqVYN2J7OPQ6vVYqDzoBv2Z28mR09lOPak7mxVjuv7+4UoQlt1HXUvdwXOxaXCWEQXXGhwvLC6EPvSdmO63yxIRE2vVO1j44v1Uzahn9OAFt1LEAQuO0tERNQFedv4oFxVjsKawgbHz+ScQr1GDQuJBZ4/+C+8e/ItFNcUGSglERERERGR/rW58KdUKnXFPjc3N5w4cUJ3LiUl5ZaDEXVXCnMFHu71OHal7MCxrCMIkd96kUxuJoetqS2uFl8r/KWUJuP5g0/j9i3TsC3x75lVx7KOIlAeDDsz+5v2eZvfDFzMv4DzeWdbnIP7+1FLDHAeCC+ZN9bHr2twfHPiJpiIpDedzdeSr18iIiLq2rxtfACg0XKfp3NPws/WH5+N+jee6/ciTmWfwP077kFKabIhYhIREREREeldmwt/AwYMwOnTpwEAd9xxB7755hs8+eSTePbZZ/Huu+9i9OjRegtJ1N1M8JqEcIc+qFXXIlgPhT9BEOBv1wOXCmOwOnolHtl9PwqrCxHpOgSfnf0ILx1+Dhnl6TidexKDnAe3qM/BLkPRwy4Aq6NXtmjvQK1Wi/P5Z7m/H92USBDhrsC7cSrnJBL/mqVaXV+NbYmbMdF7Cqyk1gZOSERERJ2dk6UzTMWmSP6/wp9Gq8Hp3NPo7xwBkSDCBO9J+HbCDxCLJNibtsuAaYmIiIiIiPSnzYW/Z555BtOnTwcA3HfffVi0aBHy8/ORnJyMe++9F6+88oq+MhJ1O4Ig4Nl+izDEdRjCHfSzH56vrT/O5Z3Fr5d/wd1B87Fy3Bq8NOA1vDP0faSVpeLBnfNRU1+DQS4tK/wJgoAHwh5CfFEcjmcfu2n7jIp0FNcUc38/apER7qPhZOmE9fE/AQB2pfyJyroKzPCfZeBkREREZAxEggieMq8Ghb8rxZdRVluKfo79dcdsTG3R32kAjmdFGSImERERERGR3t3SUp89evTQ/fm+++7D+vXr8c0330AQBIwcOVIvAYm6KydLZ7wZuUxvs5tGeYzBeK+J+Gbcd5gfskC3b2B/pwh8M34txnlNRF/HfvCUebW4z3CHvuilDMe30d9Ao9XcsO2FvPMQCQJCFWG38hjUTYhFYtzR4y4cytiPjPJ0bLryK4a6joCTpbOhoxEREZGR8LbxaVD4O51zEuYS80YrakQ4D0JKWTJyq3I7OiIREREREZHetbrwd/78ebz55pt46KGHsGzZMt1+fgUFBViyZAlGjx6Nb7/9FiNGjGhVv+vWrcOoUaMQFhaGO+64AxcvXrxh+7KyMixZsgRDhgxBaGgoxo8fj4MHD+rOjxo1CgEBAY1+LVmyRNfmnnvuaXT+jTfeaFVuImPhbeOD5/u/BDdr90bnrEys8Gy/RXh32EcQBKHFfQqCgPvDFiKlLBl7U3ffsO3ZvNPwtwuAhYlFq7NT9zTeexJkUhu8eexVZFVk4vaAOw0diYiIiIyIt40PUstSdB9QO517EuEOfSERSRq06+fYH2JBhJPZnPVH3df5vLPIqsg0dAwiIiIi0gPJzZv87eDBg3j00Ueh1Wphb2+PY8eOYdu2bXj//fexaNEilJeXY/LkyXjsscfg7e3d4n63b9+O5cuXY8mSJejVqxfWrl2LBx54ADt27IBcLm/UXqVSYcGCBZDL5fjss8/g6OiIrKwsyGQyXZtff/0VarVa9+crV65gwYIFmDBhQoO+Zs+ejaeeekr3Z3Nz89b8lRB1e8HyEAxyGYzvor/FjJ5Tm2xTXFOEqKwjuD/0oQ5OR8bMVGyKmf534NuYbxCqCEOgfZChIxEREZER8bbxQZ2mDlkVmbA1s8Olwhg8Gf5so3ZWUmuEKHriRHYUpvpO7/igrXAx/zzO553D/JAFho5CXYhao8ZrR16CVCzFssHvIkRx6/vMExEREZHhtGrG34oVKxAUFIQDBw7g6NGjOHHiBCIjI/H444/DwsICGzZswAcffNCqoh8ArFmzBrNnz8asWbPg5+eHJUuWwMzMDBs3bmyy/caNG1FaWoqvvvoKffv2hZubGwYMGIDAwEBdG3t7eyiVSt2v/fv3w8PDAwMGDGjQl5mZWYN2VlZWrcpORMCC0AeRU5mNzQmbmzy/PWkbRIIYE7wndXAyMnZT/abDU+aFecH3GjoKERERGRlvGx8AQHJpEs7lnoFGq0U/p/5Nto1wHoizuWdQU1/TkRFbpU5dhw9Pv4f18eug1WoNHYe6kJSyJNSqa2FpYolFh57Biezjho5ERERERLegVYW/xMREPProo3B0dAQAWFpa4oUXXkB9fT2ee+45hIa2/lNhKpUKsbGxiIyM/DuUSITIyEicO3euyWv27duH3r17Y+nSpYiMjMSUKVPw9ddfN5jh9897bNmyBbNmzWq0jOHWrVsRERGBKVOm4KOPPkJ1dXWrn4Gou/O28cFor7FYeWYlKusqG5yr19RjW9JmjPEYB2uprJkeiJpmZWKFVePXoq9j02/SERERETXHzsweNqa2SC5Nwumck3Czdm92v+CBzpGo09ThfH7TP4N2BluTfkd2RRbqNHUoU5UaOg51IXGFcRAJAr4avRJ9HPvhjaMvYXfKDkPHIiIiIqI2atVSn6WlpXBwcGhw7HoR0NPTs00BiouLoVarGy3pKZfLkZSU1OQ16enpOH78OKZOnYqVK1ciLS0NS5YsQX19PZ544olG7ffs2YPy8nLMmDGjwfEpU6bAxcUFDg4OSEhIwIcffojk5GR8+eWXLc4vEgkQiVq+JxpRV/VI+KO4d/tcrLv0PR7q9aju+NH0oyisKcCMgJmQSFq9rSgRtSOxWNTgdyLq/DhuiVrH184HqeXJSCiKxxC3Yc3+e9TbzgsuVi44nXscQ9wH6+3++hqzZbVlWBe3FoHyQCQUxaNIVQC5pb0+IhLhckkcfGx9YW9ph7eGvoOPTr2PD04vh5nUDCM9Rhk6Xofjay2R8eG4JTI+HLftq1WFvxsRi8X66uqmtFot5HI5li1bBrFYjNDQUOTm5mL16tVNFv42btyIYcOG6YqU19155526/w4ICIBSqcR9992HtLQ0eHh4tCiLvb1lo1mERN2RHSyxoPcCfHP2G8wJnw0Pm2tjaPuRLejn2hf9fXobNiARNUsm4/62RMaG45aoZUKcgrA5YTOq6qowusdw2NlZNtt2pO9wHEg9AFtbC73/jHerY3bt8W+gFWmwZPSbmLtpLmrE5Td8FqLWSKq4gj5uvXVfU++MX4aanZX4MX4NpvecDJHQPd+Q42stkfHhuCUyPhy37aPVhb977723yR+C5s6d2+C4IAg4c+bMTfuzs7ODWCxGYWFhg+OFhYVQKBRNXqNUKiGRSBoUG318fJCfnw+VSgWpVKo7npmZiWPHjuGLL764aZZevXoBAFJTU1tc+CsqquSMPyJc+3TGvJ7zsDF2E9458B6WD3sfSSWJOJVxGq9HLkFxceXNOyGiDiUWiyCTmaOsrBpqtcbQcYioBThuiVrHSeqG8poKmIik8DYLuOG/SXvZ9cNPF3/G2ZRo+Nj66uX++hizWRVZWHfhZ8wLng+FyAXQiHA1JwVhsr56yUjdW1VdFa7kX8Vt3rMajI/ZfnPx2O6H8NuFbRjlOdqACTseX2uJjA/HLZHx4bhtm5Z++K9Vhb+mZtPdKqlUipCQEERFRWHMmDEAAI1Gg6ioKMybN6/Ja/r06YNt27ZBo9FAJLr2ybOUlBQolcoGRT8A2LRpE+RyOUaMGHHTLHFxcQCuFRZbSqPRQqPhxupEAGAqMcfDvR7Dm0dex7H0KBzLOgw7U3sMchqC+np+AyfqrNRqDccokZHhuCVqGXcrL2i1QKgiDBJIbzhuQux7wlRshmMZx+Bh5a3XHLcyZlee+xoyqQwz/WZDowYU5grkVuTyewDpxaX8S9BotfC3CWzwNeVnE4A+Dv2wLvZ7DHUZ0S1XOuJrLZHx4bglMj4ct+3D4IU/AFiwYAFefPFFhIaGomfPnli7di2qq6sxc+ZMAMCiRYvg6OiI5557DgAwZ84c/Pjjj3j77bcxb948pKamYsWKFbjnnnsa9KvRaLBp0yZMnz4dEknDR01LS8PWrVsxfPhw2NraIiEhAcuXL0f//v0RGBjYLs9J1B0MdRuOnsre+Pf5z1FQnY87A++GRKS3VYWJiIiIiFrMU+YFiUiMAU4Db9pWKpYi3KEvTmRH4a7AuR2Q7uZiC2JwMGM/nu//EswkZgAApbkDCqrzDZyMuor4ojiYS8zhIfNsdO7uoHvw3IGncTz7GAa56G/vSyIiIiJqX53i3fhJkyahqKgIn3/+OfLz8xEUFIRVq1bplvrMzs7WzewDAGdnZ6xevRrLly/HtGnT4OjoiPnz52PhwoUN+j127BiysrIwa9asRvc0MTFBVFQUvv/+e1RVVcHZ2Rnjxo3DY4891r4PS9TFCYKAx3s/iUf3PAiRIMJkn6mGjkRERERE3ZSFiQW+HL0CHtZeLWof4TwIn5/9CKW1JbAxtW3XbDej1Wqx8uK/4Wvri7Ge43XHlRZK5LPwR3oSXxSHHnaBTe7j11PZG6GKMPwU9wMGOkd2y1l/RERERMZI0Gq1XKfyFuTnlxs6AlGnIJGIYGdnieLiStTXa7A+fh1UahXmhywwdDQiasY/xy0RdX4ct0Ttq6imEPO3z4GHzBNvDFoKJ0vnW+rvVsbsoYwDWBb1Jt4b9hH6OPbTHV918WsczNiPHyb9ckvZiABgzrZZGO0xFg/2fKTJ8yezT+DVI4safR0CQJ26DnlVucipykZpbQkinCNhadKyfWc6M77WEhkfjlsi48Nx2zZKpXWL2nWKGX9E1PV0luWRiIiIiIhayt5Mjk9HfoUlUa/hsT0L8XLE6+jvFNHhOVRqFVZd/BoDnCIaFVuUFteW+tRoNU3O0iJqqfyqfBRUFyBQHtxsm/5OA+Bv1wM/xf2I3g59EFsYgyMZh3A8+xiyKzLx/58kD5aHYPnQD2FhYtH+4YmIiIioWfwpgYiIiIiIiOgvfnb++PeYbxBoH4RXDy/Cukvfo6MXytma+Dtyq3KwsOejjc4pzR1Qr1GjpLa4QzNR1xNfdAkAEGAX1GwbQRAwJ3AeLuSfw+ytM/Ds/idxIH0v+jr2wzP9rs0E/H7iz/h05FdIKUvG60dfRq26tqMegYiIiIiawBl/RERERERERP/HWirDW0Pew3exq/Fd7Gr0cghHqCKsQ+5drirDurjvMdF7CrxsvBudV1o4ALg2W8veTN4hmahrSiiKg8JcAaWF8obtBrsOxXivibCSWmGo6wgEyYMbzTZ1tnLB20Pex0uHnsOSY69hceTbkIqlSCy5gl8vb8DhjIN4Z+j76Kns3Y5PREREREQAC39EREREREREjYgEEe4Jug+/xK9DSmlyhxX+frz0Peo19bg35P4mzyvNrxVp8qpyEWAf2CGZSL8yytPx1fnPoFLX4YPhnxhsyda4ojgE2Dc/2+86kSDC8/1fumm7UEUYlg1ejlePvIg3jr4MtVaD83ln4WDhADszO6yL+56FPyIiIqIOwKU+iYiIiIiIiJpgIjaBo4UTsioyOuR+WRWZ2JK4CXcFzoWdmX2TbWxMbWEiMkFBdX6HZCL9qVXX4ruY1Vi46z6klCbjYv55HEzfb5AsGq0GV4oTENiCwl9rhDv2xZuRb+FC/nnU1Ffj1YFv4vuJ67EgdCHO5p5BYskVvd6PiIiIiBrjjD8iIiIiIiKiZrhauyGjgwp/RzMPQyxIMNP/jmbbCIIApYUD8qvyOiQTtU1eVR72p+2BSqNCnaYOKnUtjmUdRX5VLu4ImIO7A+/BW8ffxJrYVRjqNhwSUfu+PaPWqCEIgm52YWpZCqrrqxFkH6z3e0U4D8Sm27bBXGKuOzbMbQRWR6/Afy//gpcGvKb3exIRERHR3zjjj4iIiIiIiKgZLlZuyKrI7JB75VXlwcnSGWYSsxu2U5o7IJ8z/jq1lRf+je9iV2Nb4mbsT9uDk9kn4Cnzwoqxa3B/6EKYScxwf+hC5FRkYUfy9nbLUVVXhZ/ifsCsLVNx/457cCzzCLRaLeKL4iAA8LcLaJf7/n/RDwAkomsF7QNpe5HHojURERFRu+KMPyIiIiIiIqJmuFm54c+kbdBoNe2+F1teVS4cLBxu2k5poeywYiS1Xm5VLg5nHsBjvZ/CbX4zm23nY+uHkR6j8WPcdxjjOa5BwbewuhB1GhWcLJ3blKFOXYftyVvx46W1qKirwCSfqUgvS8Wbx15FT2UvmIhM4CnzhoWJRZv6b4uJ3lPw46W1+O3Kf/Fwr8c77L5ERERE3Q1n/BERERERERE1w9XKHXWaug5ZWvNa4c/xpu241GfntuXqJphLLDDWc8JN294b8gBKaoqx+eomAIBWq8We1J24f+c8PLL7AVwpvtymDG8cexn/Pv85BjgPxHcT1uHJ8H/hvWEf460h76G0thRnck8jwD6wTX23lYWJBab4TsMfSVtRUVfRofcmIiIi6k5Y+CMiIiIiIiJqhquVKwAgswP2+cuvzofSvAUz/swdUFhTAI1W0+6ZqHWq66vxZ/IfmOQ9pUWz6VysXDHJZyp+SfgJOZXZeOfEUrx38h0MchkMN2t3vHToOaSUJrcqQ1pZKk7nnMIL/V/GC/1fhqOlE4Br+0NGOA/EirHf4pWINzAv+N42PeOtmO53O+o0KvyRuKXD701ERETUXbDwR0RERERERNQMJ0tniAVRuxf+atW1KK0taeFSnw7QaLUorC5stk1FXQW+OPcpVkev1GdMuok9qbtQWVdxwyU+/2lu0L2oVddiwY65OJVzAq9EvIGXBryG5UM/gNJCiRcO/gsZ5ekt7m9H8h+QSWUY5jayyfNikRgjPUa3eRnRWyE3l2O0xzj8fnUj6tR1HX5/IiIiou6AhT8iIiIiIiKiZohFYjhZuiCjvH0Lf9eX7mzJUp8O5koA15YGbcrRzMN4cOd8bLn6GzZf3QS1Rq2/oNQsjVaD3678ikiXobpZdi0hN5fj/tCF6OcUgRXj1mCkx2gAgLVUhuVDP4S1VIZFB59BTmX2Tfuq19Rjd+pOjPYcB6lY2uZnaU+397gTBdUFOJx5wNBRiIiIiLokFv6IiIiIiIiIbsDVyhVZ7Tzj73oRr6V7/AFAQXV+g+MlNcVYGvUGFh97Df62PfByxGuorq9GSlmS/gNTI2dyTyG9PA0ze9zR6mtn9ZiNZYOXw/Ef///tzOzx3rCPIRFJsOjgM8ivym+mh2uOZx9DSW0JJnhPanWGjuJl442eyt74I2mroaMQERERdUks/BERERERERHdgKu1OzLavfCXBwGA3Fxx07ZWJtYwk5ghvzqvwfFvor/G+byzeCXiDSwdvByDXYdBLIgQWxDTTqnp//125Vf42fojVB6m136VFkq8P/wT1Gvq8eKhZ1FcU9Rs2x3Jf6CHXQB8bHz1mkHfpvhMw8X8C63ev5CIiIiIbo6FPyIiIiIiIqIbcLVyRU5lVrsumZlXlQtbM7sWLc8oCAKU5g4NZn+pNWpEZR3FFN/bMNJjNARBgKnYFH52PXCpkIW/1sqrysP6+HWo19S3qH1aWSpO5ZzErB53QBAEvedxsnTG+8M/QUVdOV469BzKVWWN2uRX5eNUzglM9J6i9/vr2xDXYbAxtcX25G2GjkJERETU5bDwR0RERERERHQDrlZuqNeom91TrzmZ5ZlYtHsRautrb9o2ryq3Rct8Xqe0UDbIE1NwEeWqcgx2GdqgXYg8DLEs/LWKWqPG28cXY3X0SqyK/rpF1/x+dSNsTW0xzG1ku+Vys3bH+8M+QUF1AV469Dwq6yobnN+dugMmIqluj8DOzERsggleE7E7ZQdq6msMHYeIiIioS2Hhj4iIiIiIiOgG3KzdAQAZFemtuu5wxkHsS96Hc3lnb9q21YU/c4cGS30eyzoKhbkC/nY9GrQLlocgpzIHBdUFLQ/ezf0U/wPiiy5hgvckbLz8XxzOOHjD9uWqMuxK2YFpfjNaNGPzVnjZeOO9YR8jsyIDT+x9GCezTwAANFoNdqRsxzC3EbA0sWzXDPoy2WcaKuoqcDBjv6GjEBEREXUpLPwRERERERER3YCDhSMkIgmyKjJbdV10/kUAwMns4zdtm1eVBwcLhxb3rbRwQH7VtcKfVqvFsazDGOQyBCKh4Y/5IYpr+83FFca2uO/u7FJhLH689B3uDpqPZ/suwnC3kfjg1HJklDdf9N2etA1qrRpTfKZ1SEY/O398OvIr2JvJ8eqRRXj58PP4I2krsiuyMNF7codk0AdnKxf0c+qPbYmbDR2FiIiIqEth4Y+IiIiIiIjoBkSCCM6WLsgoz2jxNRqtBjEFFyEVS3Ei6zi0Wm2zbbVabZtm/BXXFKFOXYek0qvIqcxBpMvgRu0U5go4WjgitjC6xX13V1V1VXj35FvwtwvA3KD5EAQBz/ZbBLm5AkujXm9ySUq1Ro3NVzdhlMcY2JnZd1hWLxtvfDj8UyyOfAuZFZn4/OzHcLVyQ6iiZ4dl0IcpPrchvigOiSVXDB2FiIiIqMtg4Y+IiIiIiIjoJlyt3ZDZiqU+08pSUa4qx+3BtyO7MguZFc0XDUtrS1CnqWv1Hn9aAIU1BTiWdRQWJhbopQxvsm2wPBSxBdzn72b+c+ELFNcU4eUBr0MikgAALEws8OagZciqyMKnZz9sVMA9knkI+dX5mOl/e4fnFQQBg12HYtW4tXgy/F94us+zEAShw3PcioHOkZCby7EtcYuhoxARERF1GSz8EREREREREd2Eq5UrMlux1GdMQTREggj39b4PEpEJTmRHNds2768lO5XmrVjq86+2+dX5OJp5GAOcBsJEbNJk2xBFKK6WXEaturbF/XcnCUXxeCtqMXYkb8djvZ+Cq7Vbg/NeNt54tt8L2Ju6G9/GfNPg3G9XfkVPZW/42vp3ZOQGpGIppvnNQLhjX4NlaCuxSIyJ3lOwN203KusqDR2HiIiIqEtg4Y+IiIiIiIjoJlyt3JFTmYV6TX2L2scUXoS/XQ/Ym9ujl7IXTuWcaLZtXnUuALRqj7/rswNjC6KRWHIVkS5Dmm0bLA9FvUaNy8UJLe6/OziedQzPHXgKT+x9GJeL4/F0n+cwwWtSk21HeYzFI70ex/r4dfg57kcA1wqGsYUxBpnt15VM8p6KOk0dfrvyq6GjEBEREXUJEkMHICIiIiIiIursXK1codFqkVOZDTdr95u2jy2IxhC3YQCACJdBWHH+P6iur4a5xLxR2/yqPJiITGBratfiPBYmFrA0scS2xM2QiMQY4Dyw2bY+Nr4wk5jhUkEMwoxsD7j2cjrnJF4/+jKC5SF4Y9BSDHYdCpFw489Gz+oxG5V1lfg25huYS8wRX3QJTpZOGNTE3orUckoLJab5zsCGhJ8xxWcabM1aPg6IiIiIqDHO+CMiIiIiIiK6Cde/in0tWe4zvyofOZU5CFOGAQAinAeiXlOPC3nnmmyfV5ULBwvHVu/PpjR3QG5VLno79IGliWWz7cQiMQLtgxFTGN2q/ruyI5mH4GLlik9HfoWhbsNvWvS77p7g+zCrxx346vzn2J++F9P9ZrX4Wmre3UHzIAgCfo5fZ+goREREREaP/zolIiIiIiIiugmluRImIhNkVqTftG3sXwW2UMW1wp+btTucLZ1xspnlPvOq8lq1zKcuk4USABDpMvSmbYPlIbhUGAutVtvq+3Q1Wq0WJ7KjEOE8qNXFVkEQ8HDPxzHFZxpkUhuM9256aVBqHRtTW8zuMQdbEn9DbmWOoeMQERERGTUW/oiIiIiIiIhuQiSI4GLl2qIZfzEF0XCxcoW9uRzAtWJRf+eBOJVzvMnCW15VLpRtKfyZX7umJUtNhsjDUFZbisyKjFbfp6tJKr2KguoCDHQe1KbrBUHA032fw7rJ/4WViZWe03VfM/xvh5WJFdbGfmvoKERERERGjYU/IiIiIiIiohZwtXJDZvnNZ/zFFFzUzfa7rr9TBHIqc5Bentao/fWlPltrkMtgTPObAYW54qZtg+XBAIBLhTEArs16y6nMRmVdZavva+xOZB+HucQcYYpet9SPVCzVUyICru1bOS/4XuxJ3Ynk0iRDxyEiIiIyWiz8EREREREREbWAm7XbTWfMVdZVIrk0EaGKng2O91aGw0RkglP/WO6zTl2H4pqiNhX+BrpE4snwf7WorZXUGp4yL2y68l8sOvgMZm2Zinu234UFO+YiseRKq+9tzE5kR6GvY3+YiE0MHYX+YZL3VDhZOuPbmG8MHYWIiIjIaLHwR0RERERERNQCLlZuyKvKRZ26rtk2cYWx0Gi1jWb8mUnM0MuhN05kRzU4XlhTAC3Qpj3+WmuE+yiUq8phJjHHTP87sDjyLSjNHfDM/idxJvdUu9+/MyipKUZcYSwi2rjMJ7UvE7EJ7gt9EMezjiGu8JKh4xAREREZJRb+iIiIiIiIiFrAzcoNGq32hrP+YgqiITO1gZuVe6NzA5wGIrrgIipU5bpjeVW5ANCmGX+tNS/4Xqyb/F8sHfwO5gXfi8GuQ/HB8E8RpuiJVw8vwu6UHe2ewdBO5ZyAFsAA5whDR6FmjHAfBVcrN/yS8JOhoxAREREZJRb+iIiIiIiIiFrA3y4AEpHkhrPjYgqiESIPhSAIjc4NcxsJrVaDXal/F9iuF/6U5u0/468pFiYWWDp4OcZ6TcD7p5ZjW+IWg+ToKCeyj6OHXQDszeSGjkLNEAki3Bl4N45lHkZaWaqh4xAREREZHRb+iIiIiIiIiFrAwsQCfR374Wjm4SbP12vqEVcU22iZz+vk5nIMdRuBLVd/h1arBQDkVeVBJpXBTGLWbrlvRiwS49m+izDCfRR+vfyLwXK0t3pNPU7lnsBAl0hDR6GbGO0xFvbmcmxI+NnQUYiIiIiMDgt/RERERERERC00xHU4YgouorimqNG5hKJ4qNQqhMibLvwBwDTf6cisyMC5vDMArs34U3bA/n43IwgCRriPQmZFBrIrsgwdp13EFFxEVV0VIpy4v19nJxVLMdP/DuxN24X8qvwG5zLLM/B97BrUa+oNlI6IiIioc2Phj4iIiIiIiKiFBrlEQhAEHM080ujcn8nboDBXINA+qNnrQxU94SXzxuarvwG4VvjriP39WqK3Qx+IBRFO5ZwwdJR2cSI7CvZm9vCz8zd0FGqByT7TYCY2x8Yrf89CzShPx3MHn8IPl77DkcxDBkxHRERE1Hmx8EdERERERETUQjamtghT9MbRrIZFh3JVGfal7cFU3+kQi8TNXi8IAqb5zcDx7KPIq8pDXlVepyn8WZpYIkQRhlO5Jw0dpV0cz45ChPMgiAS+FWIMLE0sMdVvOv5I2opyVRkyytPx/MGnYSGxRA+7AGz5q3j+T+WqMhxM39/BaYmIiIg6D/5rl4iIiIiIiKgVhroNw7ncM6hQleuO/Zn8B7TQYqL35JteP9pjLEzFZtiWtPmvGX+GX+rzuv5OETifdxYqtcrQUfQqrSwVGeXpiHDmMp/GZIbfLKg1aqy8+B9d0e/DEZ/izsC7EV1wEYklVxpd8+/zX+Ct44uRVHLVAImJiIiIDI+FPyIiIiIiIqJWiHQZCrVWg+PZxwAAGq0G2xI3Y7j7SNiZ2d/0egsTC4z1moCtV39HdX11p5nxBwD9nQagpr4GsQXRho6iV2tiVkFhrkBfx/6GjkKtYGdmj4k+U7Ajebuu6GdvJkekyxAozBXYcvX3Bu0TS65gb+ouCAD+SN5mkMxEREREhsbCHxEREREREVErKC2UCLQPwpHMwwCAkzknkF2Zjdt8Z7a4j2m+01FRV3GtP/POM+PPx8YPdmZ2ON3Jl/ssqC7AI7sfQGxBzE3bXsg7hyOZh/Bg2MMwk5h1QDrSpzmB8zDV9zZd0Q8AJCIJpvjchj1pu1CuKtO1XXnxP3CxcsMdAXdhT+pOVNdXGyo2ERERkcGw8EdERERERETUSkNch+FUzglU11djy9VN8LfrgUD7oBZf7ynzQm+HPgDQqWb8CYKA/k4ROJl9wtBRbmjz1U1ILLmK/1z4Alqtttl2Gq0G/z7/OYLkwRjlMbYDE5K+KMwVeKrPs7qi33WTfKZAo9VgZ8qfAIBTOSdwNvcMFvZ8BFN9p6O6rop7/REREVG3xMIfERERERERUSsNdh0KlVqFLVd/w6mck7jNbyYEQWhVH3MC5yJYHgK5ufzmjTtQP8cBSClLRn5VvqGjNKm6vhp/JG1BqCIMCUXxOJRxoNm225O2Iak0CY/1fqrV/3+oc7Mzs8dw95HYcvU31Gvq8c3F/yBUEYZIlyFwsnRGX6f++CNpi6FjEhEREXU4Fv6IiIiIiIiIWsnN2h3eNt5YE/MNrKXWGOE+qtV99HHsh89G/RsioXP9aN7XsR9EgtBpl/vcnbIDlXUVeHHAq4hwHojVMStRp65r1K5CVY41sasw2nNsq2ZjkvG4zXcmsiuz8d7Jt5FcmoyFPR/VFXgn+0xDfFEcEkuuGDglERERUcfqXD9dEBERERERERmJIa7DodZqMNF7MkzFpoaOozcyUxsE2AfhVE7nW+5To9Vg05VfMcR1OJwsnfFA2MPIrcxucmbXj3FrUVtfgwdCHzZAUuoIgfZB6GEXgAPp+zDMbQSC5SG6cwOdI2FvZo8/krYZMCERERFRx2Phj4iIiIiIiKgNRnmMgafMC9N8Zxg6it71d4rA2dzTUGvUho7SwInsKGRWZGBWj9kAAG8bH4zzmogf4taisq4SAKBSq7Dx8gb8fmUj7g66B0oLpSEjUzsSBAGzesyGVCzFA2EPNTgnEUkw3nsS9qbtQnV9tYESEhEREXU8Fv6IiIiIiIiI2sDN2h2rxq+Fo6WToaPoXX+nCFTWVeJSUWyL2qs1aqy48BXO5p5u11y/Xt6AIHlwg5ld84PvR019NX5J+AkH0vfhwZ3zsfLivzHBezJu73Fnu+YhwxvlMQb/nboZLlaujc5N9p6K6roqHEzfb4BkRERERIYhMXQAIiIiIiIiIupcetgFQCaV4VTOCYQpet6wrVarxVfnP8PWxM1ILk1CH8d+7ZLpSvFlXMw/j9cGLm5wXGmhxKwes/Fz3I8AgAjngVg6eDm8bLzbJQd1PhYmFk0ed7R0Qj+nAdiWtBkTvCd1cCoiIiIiw2Dhj4iIiIiIiIgaEAkiDHYdit0pOzA/eAEkoubfPtiQ8DO2Jm5GmKInLuZfQE19DcwkZnrPtPHKBjhaOGKI67BG5+4MuBsVqnIMdR2OcMe+er83Ga8xnuOw/MRbKK4pgp2ZvaHjEBEREbU7LvVJRERERERERI3M8L8dBdUFOJTR/DKJ+9P2YlX0CtwddA/+1fd51GnqcCH/vN6z5Fbm4EDaXkz3nwWxSNzovKWJJZ7q8yyLftRImKI3ACCmINqwQYiIiIg6CAt/RERERERERNSIt40P+jr2w38TfoFWq210Pjr/At4/9Q5Ge47FfSEPwN3aA44WjjiZc1zvWb6/tAbWUhkmeU/Ve9/UtSktlHCydGLhj4iIiLoNLvVJRERERERERE2a6T8brx5ZhOiCC+ip7K07XlhdiMVRryNEHobn+r4IQRAAAP2dInAq54ReM6SUJmNP6k482uvJZvdyI7qREEUYYgoutqhtflUefkvZj8LSElTX1aJWXQNXKzfM6jEbIoGfnyciIqLOj4U/IiIiIiIiImpSf6cB8JR54dfLG3SFP41Wg/dOvgWxIMJrA9+EidhE136A80BsS9qCjPJ0uFm76yXDd7Gr4WDhiEk+nO1HbRMq74n9aXtQXV8Nc4l5s+20Wi2WHluMlPJEWEtsIBWZwkRkgj+Tt+Fkzgm8EvE69wkkIiKiTo8fVSIiIiIiIiKiJgmCgJn+d+B41lFklmcAAH69/AvO5Z3FiwNeha2ZXYP2vZThkIjEOJ1zUi/3jy+Kw9HMw5gfvABSsVQvfVL3E6oIg0arRXzhpRu2O559DLEF0fhg7Af4aeoGrBq/Fv8ZuwrvDfsYKaVJeHTPg1wylIiIiDo9Fv6IiIiIiIiIqFmjPcdCZmqLTVd/xeWiBKyJ+QazA+5CX8f+jdpamFggVNFLb/v8rY5eCU+ZF0Z7jtNLf9Q9ecg8YS21Rkxh80U7jVaD1dEr0dshHAPdBjY419uhD/4zdjVcLF3x/IGnsCN5e3tHJiIiImqzTlP4W7duHUaNGoWwsDDccccduHjxxmuvl5WVYcmSJRgyZAhCQ0Mxfvx4HDx4UHd+1KhRCAgIaPRryZIluja1tbVYsmQJIiIiEB4ejieffBIFBQXt9oxERERERERExsZUbIppvtOxM3k73j6xBF4yH9wX8mCz7fs7DcD5vHOoVdfe0n3P5p7G+byzuD90IfdWo1siEkQIkYfecJ+/Pak7kVqWgoW9HtHtWfn/FOYKvD/8EwxyGYJ1cWvbMy4RERHRLekU/3Levn07li9fjscffxy//fYbAgMD8cADD6CwsLDJ9iqVCgsWLEBmZiY+++wz7NixA8uWLYOjo6Ouza+//oojR47ofq1ZswYAMGHCBF2bd955B/v378enn36KH374AXl5eXjiiSfa92GJiIiIiIiIjMxU39ug1qpRVFOIV/+xr98/DXAaiDpNHS7mn2/z/bIrsrDy4r8RJA/GIJfBbe6H6LoQRRjiCi9BrVE3OqdSq7A29lsMcR2GIHlws31IRBJEOA9CTmUOquur2zMuERERUZtJDB0AANasWYPZs2dj1qxZAIAlS5bgwIED2LhxIx566KFG7Tdu3IjS0lKsX78eJibXfthwc3Nr0MbevuFmyytXroSHhwcGDBgAACgvL8fGjRvx4YcfYtCgQQCuFQInTZqE8+fPo3fv3vp+TCIiIiIiIiKjZGdmj2f7vgA7M3u4WbvfsK2nzAtKcyVO5ZxEf6eIFt9Do9XgTO4pbLn6G05kR8FKao23hrzX5OwrotYKVfREdX01kkoT4W/Xo8G5rYm/o6A6H+8O++im/Xjb+AAA0spSEWAf2C5ZiYiIiG6FwQt/KpUKsbGxePjhh3XHRCIRIiMjce7cuSav2bdvH3r37o2lS5di7969sLe3x5QpU7Bw4UKIxeIm77FlyxYsWLBA9wNDTEwM6urqEBkZqWvn6+sLFxeXVhX+RCIBIhF/CCESi0UNfieizo/jlsj4cNwSGZeuNmYn+k1qcdsI14E4nXscEsnTLWpfU1+Dp/Y9hqvFV+Br64fnB7yIUZ5jYCYxa2tcogaClUGQiqW4VByNIOXfBbvKukqsT/gRk3ynwNvO66bj1tvOC4IAZFSmIsSh+dmBRNRxutrrLVF3wHHbvgxe+CsuLoZarYZcLm9wXC6XIykpqclr0tPTcfz4cUydOhUrV65EWloalixZgvr6+iaX6tyzZw/Ky8sxY8YM3bGCggKYmJhAJpM1um9+fn6L89vbW/LTh0T/RyYzN3QEImoljlsi48NxS2RcuuOYHe0/AjtS/kCVuASuMtebtl95Zh0yKtOwctoK9HPpx5+zqR1YoqdzKK6Wx8POzlJ39NtjX0OlrcVTgx+HneXfx5sbt3awhLutG3JVmQ36ISLD646vt0TGjuO2fRi88NcWWq0Wcrkcy5Ytg1gsRmhoKHJzc7F69eomC38bN27EsGHDGuwBqC9FRZWc8UeEa5/OkMnMUVZWDbVaY+g4RNQCHLdExofjlsi4dOcx628ZAq1GwJ9xuzGrxx03bJtXlYvVZ9Zghv9M+FkEo6SkqoNSUnfTQxaEnck7UFRUAUEQEJV5FD9eWIfHw5+EicoSxarKFo1bVwsPXMqJR3FxZQc/ARE1pTu/3hIZK47btmnph44MXvizs7ODWCxGYWFhg+OFhYVQKBRNXqNUKiGRSBos6+nj44P8/HyoVCpIpVLd8czMTBw7dgxffPFFgz4UCgXq6upQVlbWYNZfYWEhlEpli/NrNFpoNNoWtyfq6tRqDerr+c2ayJhw3BIZH45bIuPSHcesqWCOQc6D8VvCJkz1ngGR0PwyTivPfQ1zsTnuCrin2/09UccKsg/DT5fWIaM0ExKRCZYffxsRzpGY5jOr0dfejcatp7UX9qbu5tcrUSfTHV9viYwdx237MPgCqlKpFCEhIYiKitId02g0iIqKQnh4eJPX9OnTB2lpadBo/v6CSElJgVKpbFD0A4BNmzZBLpdjxIgRDY6HhobCxMSkwX2TkpKQlZXV4v39iIiIiIiIiKhpdwbejcyKDBzJPNRsm0uFsdibtgcLQhfC0oTLJlL7CpGHAAAu5J/H8hNLYSo2xQv9Xmr10rKeMi/kV+ejso4z/oiIiKjzMXjhDwAWLFiADRs24LfffkNiYiIWL16M6upqzJw5EwCwaNEifPTRR7r2c+bMQUlJCd5++20kJyfjwIEDWLFiBebOndugX41Gg02bNmH69OmQSBpObrS2tsasWbPw7rvv4vjx44iJicErr7yC8PBwFv6IiIiIiIiIblGgfRB6O/TB+vh10Gobr5Sj1Wrxn/NfwNfWFxO8JxkgIXU31lIZvGTeWHnx34gtjMYrEW9AZmrT6n68bXwAACmlyfqOSERERHTLDL7UJwBMmjQJRUVF+Pzzz5Gfn4+goCCsWrVKt9RndnY2RKK/a5TOzs5YvXo1li9fjmnTpsHR0RHz58/HwoULG/R77NgxZGVlYdasWU3e95VXXoFIJMJTTz0FlUqFIUOG4M0332y/ByUiIiIiIiLqRuYEzsWLh57Dubwz6OPYr8G5fWm7EV8Uhw+Hf3rDpUCJ9ClUEYZtSVtwX8gDCFP2alMf7taeEAkCUstSEKII1XNCIiIiolsjaJv62B21WH5+uaEjEHUKEokIdnaWKC6u5LrMREaC45bI+HDcEhkXjtlrs/oe3/sQLE2s8MHwT3TH08vT8NyBpxAiD8ObkcsMmJC6m8tFCdifvgcLez7aZMG5peP2vj/nYoDzQDzW+8n2jEtELcDXWyLjw3HbNkqldYva8SN1RERERERERNQuBEHAXYFzcT7vLOKL4gAAcYWX8K99j0MmtcHj4U8bOCF1Nz3sA/Bwr8dveZapl403UkqT9JSKiIiISH9Y+CMiIiIiIiKidjPEdRhcrdzwS/xPOJ4dhecPPg0PmSc+GfkFFOYKQ8cjahNPmRdSy1IMHYOIiIioERb+iIiIiIiIiKjdiAQR7gy8G0czD+HNoy+jn+MAvDvsI1hLZYaORtRmXjJvFNUUoVxVZugoRERERA2w8EdERERERERE7Wq0x1h42/hgiu90vBm5DKZiU0NHIrolXjbeAICU0mQDJyEiIiJqSGLoAERERERERETUtUnFUqwYt8bQMYj0xs3KHWJBhJSyZIQpexk6DhEREZEOZ/wRERERERERERG1gonYBG7WHkjhPn9ERETUybDwR0RERERERERE1EpeMm+klCYZOgYRERFRAyz8ERERERERERERtZKnjRdSSpOh1WqbPK/RarA1cTMOZRzo2GBERETUrXGPPyIiIiIiIiIiolbyknmjTFWGktpi2JnZNziXW5WLD04ux4X8cxAJAiyHfoC+jv2b7Eej1SCvKhepZanIKE9DuGNf+Nj4dsQjEBERURfEwh8REREREREREVEredl4AwBSSpN1hT+tVou9abvwxblPYSGxwLvDPsTGyxuwLOpNfD7qP/CQeequL64pwqdnPsKpnBOo09TpjjtbueCbcd/BVGzasQ9EREREXQILf0RERERERERERK3kYukKE5EJUsqS0cshHCezj+O3q7/ibO4ZjPYYgyfC/wUrqTUC7IPw9L7H8PrRl/Hl6K9hLZXhYv55vHNiKeo1atwX+gC8ZD7wlHmiVl2LR3Y/gO9jv8XCno8a+hGJiIjICLHwR0RERERERERE1EpikRgeMg/sSP4Dm678FzmVOehhF4A3Bi3FULfhunZWJlZYNng5ntz7CJYcewN9HPtibexqhCp64uWIN6AwVzTod17wvVgbuxoj3EfD365HRz8WERERGTmRoQMQEREREREREREZo0D7YKSXpyNM0Qtfjl6Br8asbFD0u87FyhVvRi5DbOFFfBezCncGzsX7wz5pVPQDgNkBc+Al88ZHp9+DWqPuiMcgIiKiLkTQarVaQ4cwZvn55YaOQNQpSCQi2NlZori4EvX1GkPHIaIW4LglMj4ct0TGhWOWyPi0dtyq1CrUa+phYWLRov7P5p6GRCRBT2XvG7ZLKIrHU/sewf2hD+HOwLtb1DdRd8XXWyLjw3HbNkqldYvacalPIiIiIiIiIiKiNpCKpZCKpS1u38exX4vaBdgHYob/7Vgb+y00Wg0yKtKRXJqEjPJ0PNr7SUz0ntzWyERERNTFcalPIiIiIiIiIiKiTubekAegtHDAj3FrkVKaDB8bX9ia2uJC3llDRyMiIqJOjDP+iIiIiIiIiIiIOhlziTlWj/8eIkEEkXDts/ufnvkQ8UWXDJyMiIiIOjPO+CMiIiIiIiIiIuqEJCKJrugHAF4yb6SVpUGtURswFREREXVmLPwREREREREREREZAU+ZF+o0dciqzDR0FCIiIuqkWPgjIiIiIiIiIiIyAl423gCAlNJkAychIiKizoqFPyIiIiIiIiIiIiNgZ2YPmakNUspY+CMiIqKmsfBHRERERERERERkJLxk3pzxR0RERM1i4Y+IiIiIiIiIiMhIeNl4I7UsxdAxiIiIqJNi4Y+IiIiIiIiIiMhIeMm8kVGehjp1naGjEBERUSfEwh8REREREREREZGR8JJ5Qa3VIKMi3dBRiIiIqBNi4Y+IiIiIiIiIiMhIeNl4AwD3+SMiIqImsfBHRERERERERERkJKylMsjN5UgpY+GPiIiIGmPhj4iIiIiIiIiIyIh4yryanPFXWVcJjVZjgERERETUWbDwR0REREREREREZES8ZD5ILUtpcKyirgL3bL8TfyRtNUwoIiIi6hRY+CMiIiIiIiIiIjIiXjbeyKrIQK26Vndsd8oOlKvKcSjjgOGCERERkcGx8EdERERERERERGREvGTe0AJIK0sFAGi0Gmy++hssTCwQnX8eFapywwYkIiIig2Hhj4iIiIiIiIiIyIh4yrwAAKll1/b5O5d3BpkVGXi6z3NQazU4lXOy0TUqtQpLjr2O5NKkjoxKREREHYyFPyIiIiIiIiIiIiNiYWIBRwtHXRHv96ub4GPjg5Huo+Fr64eorKONrjmSeRBHMg/hcMbBjo5LREREHYiFPyIiIiIiIiIiIiPjKfNCalkKciqzcTI7ClN9Z0AQBES6DMGpnBOo19Q3aL8tcQsAIL7okiHiEhERUQdh4Y+IiIiIiIiIiMjIeNl4I6U0GdsSN8NcYoHRnmMBAAOdI1FRV4GYgou6timlyYguuAhvG28kFMVDq9UaKjYRERG1Mxb+iIiIiIiIiIiIjIyXzBu5VbnYnrwN470mwVxiDgDwt+sBubkcUVnHdG23JW2Brakt7gt5EGWqMmRVZBoqNhEREbUzFv6IiIiIiIiIiIiMjJeNDwCgXFWOqb636Y4LgoCBzpGIyj4KrVaL6vpq7EndiQnekxGqCAPA5T6JiIi6Mhb+iIiIiIiIiIiIjIy7tQcEAP2dBsDN2r3BuYEug5FdkYW08lQcTN+PqrpKTPaZCpmpDVysXBFXFGeY0ERERNTuJIYOQERERERERERERK1jJjHDfaEPIsJ5YKNz4Q59YCo2RVTWURzOOIh+TgPgZOkMAAiyD+KMPyIioi6MM/6IiIiIiIiIiIiM0N1B98DX1r/RcVOxKfo49sPvVzficnECpvpO150LtA9GYslVqNSqDkxKREREHYWFPyIiIiIiIiIioi4m0mUICqsLoTBXYIDT37MCA+XBqNfUI7HkqgHTERERUXth4Y+IiIiIiIiIiKiLiXAeCJEgYJLPVIhFYt1xHxtfSEQSLvdJRETURXGPPyIiIiIiIiIioi7GzsweX45eCU+ZV4PjUrEUfrb+LPwRERF1UZzxR0RERERERERE1AX52/WAVCxtdDzQPhhxRXEGSERERETtjYU/IiIiIiIiIiKibiRIHoTsiiyU1pY0OK7RagwTiIiIiPSGhT8iIiIiIiIiIqJuJNA+GAAQXxSvO3Yh7xym/z4J2xK3GCoWERER6QELf0RERERERERERN2Is6ULZKY2un3+MsrTsSTqdUjFpvji3Mc4lnnEwAmJiIiorVj4IyIiIiIiIiIi6kYEQUCQfRDiiy6hXFWG1468BFtTO3w7/nsMdh2Gt44vRmxBjKFjEhERURuw8EdERERERERERNTNBNoHI6EoHkuOvYFyVRneGvIuZKY2eGnAawiSB+P1oy8htSzF0DGJiIiolVj4IyIiIiIiIiIi6mYC7YNQripHbOFFvBm5DC5WrgAAqViKJZFvQ26mwCuHX0BRTaGBkxIREVFrsPBHRERERERERETUzQTKg+Fm7Y5n+y5CT2XvBuespNZ4Z+gHUKlVeO/k29BoNY2u12q1KK4p6qC0RERE1FIs/BEREREREREREXUzViZWWDPhR4z1mtDkeaWFEi9HvI5zuWewIeHnBue0Wi1WRX+Nu7bNRHJpUkfEJSIiohbqFIW/devWYdSoUQgLC8Mdd9yBixcv3rB9WVkZlixZgiFDhiA0NBTjx4/HwYMHG7TJzc3F888/j4iICPTs2RNTp05FdHS07vxLL72EgICABr8eeOCBdnk+IiIiIiIiIiIiY9PHsR/uDJyLNTHfILYgBsDfRb8NCesBAGdyTxkyIhEREf2DxNABtm/fjuXLl2PJkiXo1asX1q5diwceeAA7duyAXC5v1F6lUmHBggWQy+X47LPP4OjoiKysLMhkMl2b0tJSzJkzBxEREfjmm29gZ2eH1NRU2NjYNOhr6NChWL58ue7PUqm0/R6UiIiIiIiIiIjIyNwbcj8u5p/H8hNL8Z+xq7A+fh02JKzHY72fRFTWUZzPO4vbe9xp6JhERET0F4MX/tasWYPZs2dj1qxZAIAlS5bgwIED2LhxIx566KFG7Tdu3IjS0lKsX78eJiYmAAA3N7cGbb755hs4OTk1KOq5u7s36ksqlUKpVOrzcYiIiIiIiIiIiLoMiUiCVyLewCO7H8Ajux9AXlUeHuv9JGb4347q+mqsj1+Hek09JCKDv81IREREMHDhT6VSITY2Fg8//LDumEgkQmRkJM6dO9fkNfv27UPv3r2xdOlS7N27F/b29pgyZQoWLlwIsVisazNkyBA89dRTOHXqFBwdHXH33Xdj9uzZDfo6efIkBg0aBJlMhoEDB+Jf//oX7OzsWvUMIpEAkUho5ZMTdT1isajB70TU+XHcEhkfjlsi48IxS2R8OG6b5mrjghciXsTSY2/iib5PYVaPOwAA/Zz74rvYVUgqu4xgRaiBU1J3xXFLZHw4btuXQQt/xcXFUKvVjZb0lMvlSEpqemPg9PR0HD9+HFOnTsXKlSuRlpaGJUuWoL6+Hk888YSuzc8//4wFCxbgkUceQXR0NN566y2YmJhgxowZAK4t8zl27Fi4ubkhPT0dH3/8MRYuXIhffvlFV0BsCXt7SwgCC39E18lk5oaOQEStxHFLZHw4bomMC8cskfHhuG3sNrvJGBc0CuYmf//dDLTpB+sjVkioiMVg/wgDpiPiuCUyRhy37cPo5uBrtVrI5XIsW7YMYrEYoaGhyM3NxerVq3WFP61Wi9DQUDz77LMAgODgYFy5cgXr16/XFf4mT56s6zMgIAABAQEYM2aMbhZgSxUVVXLGHxGufTpDJjNHWVk11GqNoeMQUQtw3BIZH45bIuPCMUtkfDhub64GlQ3+HGwfhqPJUZjhxX3+yDA4bomMD8dt29jZWbaonUELf3Z2dhCLxSgsLGxwvLCwEAqFoslrlEolJBJJg1l5Pj4+yM/Ph0ql0u3b5+vr2+A6Hx8f7Ny5s9ks7u7usLOzQ2pqaqsKfxqNFhqNtsXtibo6tVqD+np+syYyJhy3RMaH45bIuHDMEhkfjtuW66UIx7fR36CqtgZSsdTQcagb47glMj4ct+3DoAuoSqVShISEICoqSndMo9EgKioK4eHhTV7Tp08fpKWlQaP5+4shJSUFSqUSUqlU1yY5ObnBdSkpKXB1dW02S05ODkpKSqBUKm/lkYiIiIiIiIiIiLqNcIc+qNPUIb7okl77La4pwqmcE3rtk4iIqDsw+M6JCxYswIYNG/Dbb78hMTERixcvRnV1NWbOnAkAWLRoET766CNd+zlz5qCkpARvv/02kpOTceDAAaxYsQJz587Vtbn33ntx4cIFfP3110hNTcXWrVuxYcMG3H333QCAyspKvPfeezh//jwyMjIQFRWFxx57DJ6enhg6dGjH/gUQEREREREREREZKW8bX1hLrXEu76xe+/33+S/w+pGXUFVXpdd+iYiIujqD7/E3adIkFBUV4fPPP0d+fj6CgoKwatUq3VKf2dnZEIn+rk86Oztj9erVWL58OaZNmwZHR0fMnz8fCxcu1LXp2bMnvvzyS3z88cf46quv4ObmhldeeQXTpk0DAIjFYly+fBm///47ysvL4eDggMGDB+Ppp5/WzRokIiIiIiIiIiKiGxMJIvRShuNC3jkgRD99ZpSn41DGfmi0WsQURGOAc4R+OiYiIuoGBK1Wyw3qbkF+frmhIxB1ChKJCHZ2liguruS6zERGguOWyPhw3BIZF45ZIuPDcds2m69uwtcXvsSm2/6AucT8lvv78NS7OJlzHAIEjPYYi4d6PaaHlNRVcdwSGR+O27ZRKq1b1M7gS30SERERERERERGR8ert0Af1GjViC6Jvua/cqlzsSd2JO3rchXDHvnpfQpSIiKirY+GPiIiIiIiIiIiI2szD2hN2ZnY4r4ci3YaEn2FhYonJPtMQ7tAXiSVXUK4q00NKIiKi7oGFPyIiIiIiIiIiImozQRAQ7tAH5/PP3VI/RTWF+DNpG2b63wELEwv0VoZDC+BC/nm95CQiIuoOWPgjIiIiIiIiIiKiW9JL2QdXihOQW5XbovZVdVXYn7YXhdWFumMbL2+ARCTBbX4zAACOlk5wtnLhcp9EREStIDF0ACIiIiIiIiIiIjJuQ92GYV3cWrx59BV8MvJLmEvMb9h+45UN+D52DQAgwD4QA50jsTVxM27zmwFrqUzXLlzZRy9LiBIREXUXnPFHREREREREREREt8RaKsOywcuRWZGB90++A41Wc8P2B9P3Y7DrULw44BU4WDhiQ8LPAICZ/nc0aNfboQ/SylIbzAwkIiKi5rHwR0RERERERERERLfMx9YPr0S8gaOZh/Bd7Opm26WUJiO1LAXjvSZijOd4vDFoKX6dtgVrJ/4EOzP7Bm17O4QDAC7kc9YfERFRS7DwR0RERERERERERHoxyGUwHgh7GD/H/Yg9qTubbHMo4wAsTCzQ17G/7phULG1U9AMAOzN7eMm8uc8fERFRC7HwR0RERERERERERHozO2AOxntNxEen30dWRWaDc1qtFgfS9yHSZQikYmmL+uvtcON9/rRaLX6K+wEfn34fWq32lrITEREZOxb+iIiIiIiIiIiISG8EQcCTfZ6BjakNvotpuORnclkS0svTMNx9VIv7C3fog5zKHORUZjc6p9ao8fGZ97EmZhX+TP4DfyRtveX8RERExoyFPyIiIiIiIiIiItIrU7Ep7glegP3pe5FYckV3/GD6fliaWKKvQ78W99VT2QsiQcD5vHMNjtfU12Bx1GvYnbIDLw54BRO9J2PlxX8jtzJHb89BRERkbFj4IyIiIiIiIiIiIr2b4DUJrlZuWB29EsC1JTkPpu/HYNehMBGbtLgfK6k1/Gx74Hj2MaSUJiOhKB4X88/jxUPP4lzuGSwd/C7GeI7HQ70eg6WJJT46/R6X/CQiom5LYugARERERERERERE1PWIRWLcH7YQy6LexIW8c7CSWiGzIgOP9X6q1X31deqPn+N+xNHMw7pjMlMbfDD8UwTJgwEAViZWeLbfIrxyeBH+SNqKKb7T9PYsSaWJsDaRQWmh1FufRERE7YGFPyIiIiIiIiIiImoXQ12Ho4ddAFZFr0Bvh3BYS63Rx7Fvq/uZEzgPfR36QSIygZnEFKZiM9ibyWFhYtGgXX+nCN2Sn/2c+sPJ0vmW8l8pvow1Md/gVM5JmEvM8UT40xjrOQGCINxSv0RERO2FS30SERERERERERFRuxAEAQ+EPYT4ojhsuvIrBrsOhUTU+rkI5hJz9HIIR4giFL62/nCzdm9U9Lvu4V6Pw8rECl+e+7TNuTPLM7Dk2Ot4bM9CZFdm4+WI1zDUbTg+OPUu3jmxFBWq8jb3TURE1J5Y+CMiIiIiIiIiIqJ208exH/o49oVKrcJwt5Htfj9LE0vcH7YQJ7KPI60stU19vHV8MRKK4vBC/5ewatxajPIYixf6v4xXIt7AqZwTeHj3/bhSfFnPyYmIiG4dC39ERERERERERETUrh7t9STGe01Eb4c+HXK/YW4jYWtqi82Jv7X62vyqfFwtuYIHez6CcV4TIRaJdedGeozGirHfwtLEEl+c+0SfkduNRqvBscwjqNfUGzoKERF1ABb+iIiIiIiIiIiIqF152Xjj+f4vtWmZz7aQiqWY4nsbdqX8iYq6ikbntVot1Bp1k9eeyI6CSBDQ32lAk+cdLZ1wf+hDiCu8hNiCGL3mbg8H0/fjzWOv4sNTy6HRagwdh4iI2hkLf0RERERERERERNTlTPG5DXVqFXal/NnguEarwYuHnsVbxxc3ed2JnCiEyMNgLZU12/cA54Fws3bHfy+v12fkdnEs6whsTG2xL20P/n3+C2i1WkNHIiKidsTCHxEREREREREREXU5cnM5hrmNxOarvzWY6bYu7nucyzuLo5mHkFuZ0+CaWnUtzuWeQYTzoBv2LRJEmOU/G8cyDyOzPKNd8utDnboOJ3OOY5rvdDzV5zlsvroJP1z6ztCxiIioHbHwR0RERERERERERF3SbX4zkVWRiVM5JwEA0QUX8eOl7zA74C6YScyx8x+zAS/knUetuvamhT8AGOs1HjJTW2y6+ustZdRqtdibuqtREfL/z5/LPYOjmYcRlXUUJ7NP4GL++RYt23kh/xyq6qow2HUIpvhOwwNhD+GHS9/htyu3lpmIiDqvjllUm4iIiIiIiIiIiKiDBctD0MMuAJuvbkSwPBjLjy9FsDwU94c+hApVBXambMe84HshEq7NjziREwVHC0d4yrxu2rep2BTTfKdjQ8LPuC/kft3SoGW1pfgm+muMdB+NPo79btrPLwk/YXX0SliZWOG5/i9iiOsw3bnimiJ8/L/27jyq6mr///jrHGZlnnECARGQSZwJM83SytQsszItb4Ol3fKmpQ1WluUt82Zq3Sxt1lum2XAtLcusFIcUFWdQHEEFZFRkOuf3h1/5xUUNGTxwfD7Wat119md/3vv9+dSGu3ifvfcfr2ldZlK1+57p/ryuad3norHXZqyRXzM/BbuFSpKGtb9L+SV5envLbHX1766WLq3+Mj80HhlFR/V12lINbX+HvJ28LZ0OgEaKFX8AAAAAAAAArJLBYNDg0CHaeGyDXlj7rIrLizWp22TZGG3Uv+1NOnH6hDYf/0PS2ZV16zPWqluLBBkMhhrFvzlkkExmk77d97Ukac/J3Xp45f1anv6d5m596y/P0/vtyGrNT3lXQ8OGKc43XlPWTtbs5JkqrShVUsYaPfDDKO06uUsvJEzV4oFf6/Obv9TCmxYr3DNCPx5YftHYZrNZSRm/q0eLxMrnMRgMGtnhb7Iz2mltxu81ekbUTVFZUb3EKSjJ19O/PakvU7/Q6B9GKSljTb3EBWB9KPwBAAAAAAAAsFq9WveRu4O7tmVt1eOdn5RfMz9JUrhnhAJdg7Q8/TtJ0sGCAzp++ri6+f/1Np/neDh66vqg/lqaulhfp32pcavGysPRUxO6TNL+/P1KPrHpgvfuOblb/9wwVde07qMHYh7Wcz1e1CMdH9N3+7/VPd/fqefWPK0Izwi9d/0HuqplT7k5uMvT0Us+zXx0fdAN+uP4Bp08k3PB+Htz9yi7OFtXtUys0u5k66SOvvFal7m2xs+J2knKWKNbvx6gDZnr6xSnrKJMU5Imq7CsULOvfUeR3lF6bs3TlUViAPgztvoEAAAAAAAAYLXsbew1Ju5RnTh9XD1b9apsNxgMuqHtTZqXMlcFJflan5kkBxsHxfl2vKT4Q9oN1bL932pO8pu6OWSwHoodKzujnZamfqHFez8/73afWaez9NyapxTsFqIJXSZVrsgbFDpEHbyi9c7WtzQ84h7dFHzzeVcfXtO6t97eMkurDv2kW8NuP29eazN+l4u9i6K9Y6td697iKs1JfkOFpQWVW5SifmUUHdWrG16WyWzW9+n/VdeAbrWKYzab9a9Nr2lnzg5N7zVT4Z4RejHhFX2zb6nmbn1b6zPWyq95gJxsHeVo4yRHW0c52jpVfg50C6qyfSxgCeWmctkYbGq8mhp1w4o/AAAAAAAAAFatd5trNSz8rmrt17a5TpJZKw/9oPWZSero10n2NvaXFLuNa6BGx47RM92f16Px/5C9jb0MBoNubXe7Nh7boAP56VX6F5cXa/KaSbI12mrKVS/LwcahyvVQj3Z6/ZqZGhAy8IJ/JHexd1X3gAT9ePDC232uPfq7ugZ0l43Rptq17gEJMpnN2nhswyU965XOZDbp/e3vKSV720X7nSk/oxeTJsvNwV0jIu/Vusw1KiwtqNWY/9n9qVYe/EFPdJmkKO9oSWeL1oNCh2hO37nq4t9NXo5eMhiMKijN16HCg9qWlaxfDv+sxXs/14trJ+tU2alajQ3UB5PZpHu/v0vL9n9r6VSuGKz4AwAAAAAAAHBFcnf0UPeAq/R12lIdO5Whv3d8vFZxbgsbVq3tmtbXav72d/Vl6hd6vPOTks6u3pqx8VUdLTqiN3u/JU9Hr1rnfn1Qfz235mntz0tTsHtolWuZRRk6UJCukR1Gnfden2Y+CnEP1bqMterTpm+tc7jSrDy4Qv/Z9akW7V6oh2If0aDQIdWKs2azWbM2/0uHCw9rdp9/y8PRUwt2faRVh37SwNBbajzWsVOZ+mTnh/rhwHKN7DBKfdpcV61PsFuIHus0/oIxDuSn64Ef7lVq7h7F+cbX/EHR5Bw7lakNmetkNNjI1mgrW6ONQt3DFOTW1tKp6VDBQR0/fVxJGb9rQMhAS6dzRWDFHwAAAAAAAIAr1g1tByij6KhMZrO6BdT8fL+/Ymdjp8Ght2rlwR+Ue+akJOmz3Qu0+sgqPdnl6WrFukvV2a+rXB3ctPLgD9Wurc34XXZGO3Xy63LB+3u0uEobj61Xuam8Svu6zCT9bfkIlVSU1Ck/a3Om/Iw+2D5PiS2v1qDQW/XWlll6beMr1d7Tsv3f6seDK/SPThMU7B4qD0dPdfXvrh8PrqjROCfP5Gh28kyNWj5cGzLX6ZGOj+nuiHtqlXMb10A52Tpp98ldtbofTce/t8zRnOSZmrV5hmb88ape3fCKXlj7rKXTkiTtzNkhSUrJ3lbt5w0aBiv+AAAAAAAAAFyxOvt3kbeTt9wc3OTTzKdeY98UfLM+3fmRvt33tcI8w/XB9vc0PGJklbMGa8vOxk69W1+rlYd+0H3Ro6ts6bk243d19I1XM7tmF7y/e0CCPt35kXZkpyj2/841LK0o1dvJbyrzVKbS8/cr3DOiznlaiyV7FymvJFcPxjysAOcWau/ZXjP+eE3p+fvU2iVQGUVHlXkqQ4Wlhbo5ZJD6BvarvLdvYD9NXfeCDhceUmuXNueNbzab9d/932ju1rdkZ7TTPR3u06DQIXKydap1zkaDUWEe4RT+rFxRWZE2HFun0bFjdWvY7TKZTVp9eJVeWf+iTpw+Id9mvvU+5tqjv8vfOUDBbiF/2XdHToqcbJ1UXF6sPSd3q4N3VL3ng6pY8QcAAAAAAADgimU0GDWx6zMa23Fcvcd2sXdVv7Y36qu0JZq2/kV1a5Fwwe03a+O6wH7KPZOrzSf+qGzbmbND27O3KaFlz4ve284jTJ6OnkrKXFPZ9lXaEh0/fUxGg0GpuXvrLc+m7uSZHH22Z4EGhQ5RgHMLSVKfNtdpVp+35WjjpJNnctTWLVi3hQ3Tcz1e1Ji4R6vc36PFVWpu1/yCq/4KSws0JWmyZm3+l64L7KdPbvxMd4QPr1PR75xwz3DtofBn1dYe/U0VpnJd3aq3pLM/0zr5dZZB0pYTm+p9vLTcVE1JelYvrn1OZRVlf9l/R/Z29WnTV062TtqalVzv+aA6Cn8AAAAAAAAArmhxvvGK9o5pkNhDQm9TUWmhfJx8NanrszIa6u9PsmEe7dXapY1WHlyhY6cy9fK6KXrs5zFq6xasq/9iVaHRYFS3gB5al5EkSco7k6sFuz7WgJDBausWrDQrLPyZzCa9vWW2Ptw+X/kledWuHz99XP/Z9anWZ66T2WyubP94xweyM9ppeMTIKv1D3NtpZp+3NOOaWZrQZZLuihihnq16ydZYdaM9ext7XdO6j346+INMZlOVaylZWzX6h79pW9YWvZAwVY91Gi9ne5d6e+b2nhHKLs5W1umseouJxuWXwz8r2ie2yoplVwc3BbuHanM9F/5MZpPe2DRdvs38lHnqqL5KW3LR/nlncnW06IhifOIU4xOrLSc212s+OD+2+gQAAAAAAACABtLSpZWmJr6mtm7Bam7XvF5jGwwGXRfYTx/v/EC/HlktV3tXje88UdcH9a9RgbFHi6v0ffoyHS48pKWpi2WQQSMj79V7295Rap71Ff7mbXtHX6ctkZ3RXov3fq6bggfqtrBhOn76mJamLtbvR1fLaLBRualcEV6RurfDffJ09NL36f/VgzFj5GLvWuuxrwvsr2X7v9W2rC2K841XaUWpPtoxX4v3fq4o7xhN7Ppsg2zJGO4ZKUnak7ur3reyheXll+Rp0/GNeuQ8K5Y7+sbrl8M/y2w2y2Aw1Mt436Qt1d7cPZrZ+y39fHilPt31kfoGXi8PR8/z9t91cqckqYNXlE6eydH7Ke+ptKJUtraO9ZIPzo/CHwAAAAAAAAA0oK4B3Ros9nVB/bXq8Er1bHWNbgsbdknbQ3b07SQ7o50+371QPx5crgdiHpabg7tC3dvpp0M/qqyiTHY2dg2W++X0ffoyfbH3cz0UO1Z9A6/Xl6mL9XXal/oqbbFMZrNaOrfSmLhHdV1gf+06uUMfbJ+nib+OV3O75vJrHqCBIbfUafxIrw4KcG6hHw+ukKOtk6ZvnKaMoqMaFfWAbm9/Z72uBP0zn2Y+8nLy0p6Tu5TY8uoGGQOW89uRXyXpvP9uO/p21uK9i3Sk6PAFz5a8FFmns/T+9vc0IHigOnhHqbVLa606tFIfbp+vf3R+4rz3bM/eJm8nb/k281OcT7zKTGXafXKn4gPi65wPLozCHwAAAAAAAAA0Ud5O3nr3+g9rda+jraPi/TppxYHv1cK5pQaFDJEkhXqEqdxUrkOFBxTi3q4es7WMbVlb9Oam13Vj2wEa0m6oDAaDRkXdr9vb36mfD/0on2Z+6urfrbL41smvi+J9O2td5lot2fuF7gi/q84F0HOrMxfu+kQrD65QiHs7/bvvPAW5ta2PR7yo9h4R2pXDOX/WaNXhn9TRt9N5V9xFeUfLxmBU8vFN9VL4e3vLLDnYOOi+6Aclnd1OdGTkKL29ZZYGhg4+78+KHdnb1cErWgaDQcHuIXKxd1Hyic0U/hoYZ/wBAAAAAAAAwBWqe8BVkqQHYx6uLG4Fu4XIICk1N9WCmdWPjKKjemHts4ryjtXf4/9RZcvD5nbNdXPIYHUP6FFtxZ3BYFCPFlfp9WtmqrN/13rJ5fqgG+Tj5KN7Otyn2X3euSxFP0mK8IrU3tzd1c4XRNOWXZytlKwtuqb1tee93syumcI9I5VcD+fqJWWs0e9Hf9WYuEernEE5IGSQWrsG6u0ts6uciylJpRWl2pu7R5HeHSSdPVc01qejtp5IrnM+uDgKfwAAAAAAAABwhbo+qL9eumqaElokVrY1s2umVi5trOKcvxl/vCpXezc9n/CibI2W3QDPr5mfPr7xM90VMUI2RpvLNm57j3AVlxfrUMHByzYmGt6vR1bJxmijxJY9L9ino18nbc1KrlPR12w2a17KXHX276JrWvepcs3WaKuHYsdqW9ZW/XZ0dZVrqbl7VWYqUwev6Mq2ON+O2nVyh4rLi2udD/4ahT8AAAAAAAAAuELZ29ire4uEKivhJKmdRzul5Tbtwl9ZRZl25uzQLe1ulYu9q6XTsZgwz3AZJO0+yXaf1uSXwz+rs3+3Kivw/ldH33gVlhZqf96+Wo+zN3ePDhUc1K3tbq/2c0KSuvh3U/eAHnpv279VUlFS2b4zZ7scbBwU4h5a2Rbr01Hlpgptz0qpdT74axT+AAAAAAAAAABVhLqHKS0vtUlvD3m48KDKTeUK/lPh4UrU3K652rgGaQ+FP6tx7FSmduXsVO8LbPN5TrhnpOxt7LX5xB+1HuvHgyvk6eipeL/OF+wzOnassouztGTvosq2HTnb1d4zospK20DXILk7uGtLPWw/iguj8AcAAAAAAAAAqKKdR5hKK0qb9PaQ+/LSJJ09s/BK194znBV/VmTJ3i/OrtYNSLhoP3sbe0V5R9e60FZuKteqwz/p2jbXVTsH889aubTW4NBb9Z/dnyrrdJbMZrN2ZKeog3dUlX4Gg0EdfTsp+TiFv4ZE4Q8AAAAAAAAAUEWoeztJ0r68VAtnUntpeWkKcG6h5nbNLZ2KxYV7Rig9f1+VrRjRNH22e4G+SluiUVH3q5lds7/s39G3k1Kyt6msouySx9p4bL0KSvLVN6jfX/YdHnmPHGwcNX/7XGWeylBeSV6V8/3OifON197cPSoqLbrkfFAzFP4AAAAAAAAAAFU427sooHmAUvOa7jl/+/LSFOJ2ZW/zeU64Z6QqzCal5TbdQi6kr1KXaH7Ku7o78h7dFjasRvd09O2kM+VntDv30ld8/nhwhULcQ2q0atbZzln3drhPPx38UUtSv5AkRXpFVusX59tRJrNJyZnJl5wPaobCHwAAAAAAAACgmlCPMKU20UKR2WzW/vy0ypWLV7q2bsGyM9pp98mdlk4FtbQ8/Tu9tWWWbgu7XSMjR9X4vnYeYXK2c1by8U2XNF5haYHWZaxV38C/Xu13zo3BAxTiHqJv0pYq0DVILvau1foENG+hYeF3qpVrq0vKBzVH4Q8AAAAAAAAAUE079zCl5e2VyWyydCqX7ETxCRWWFirEnRV/kmRrtFU7jzDtObnb0qmgFpIy1uhff7yqAcED9WDMGBkMhhrfazQYFevbUb8e+UUVpooa37f68C+qMJerd+u+lzTWmLhHJUkdvKLO28dgMGh03Bi19Whb47i4NBT+AAAAAAAAAADVhHq00+my0zp2KtPSqVyy/XlpkqQQVvxVCveMVEr2Vp0pP2PpVHAJTped1pubZ6hrQHf9Pf4fl1T0O+fO8Lt1qOCAvt73ZY3v+enQD+rk10VeTl6XNFaMT5z+3nGcBrUbcqlpop5Q+AMAAAAAAAAAVHNum8zU3KZ3zl9aXqpc7V3l7eRt6VQajeuD+qmorEgvJk1WWUWZpdNBDS3Y9ZEKSgr0SMdxMhpqV9Jp7xmum4IH6sPt85VTnFPlWmlFqZ5Y/Q/d+/1wLdm7SIWlBcosytD27BT1Dby+VuMNDL2lRucComFQ+AMAAAAAAAAAVOPh6ClvJ2+l5TW9wt++vDSFuIfWanWUtQpxb6cpCS8r+cRm/XPD1CpbuBaU5GvW5jc0+fdJyjuTa8Es8WcHCw5oyd5FuitihPybB9Qp1t+iH5Cdjb3e3fZWZZvJbNK09S9pZ852tXUL1ryUd3THf2/VlKRn5WTrpIQWPev6CLAACn8AAAAAAAAAgPMK9Qhrkiv+9uWlcr7fecT7ddYz3Z/X70dXa+am11VhqtA3aUt17/Lh+unQD9p1cpce/flhHS48ZOlUr3hms1lvJb8p3+b+ur39nXWO52LvqgeiH9LPh37SlhObz8bfMktrM37Ts91f0PMJL2nhTYs1PGKkikqL1L/tTXK0dayHJ8HlRuEPAAAAAAAAAHBe7dzPFv7+vDqsMTlaeFQFJQVV2opKC3Xs1DEKfxeQ2PJqTeg8Sd+nL9Ody27VnOSZSmiRqA/7L9Cca9+RvY2DHvt5jLaeSLZ0qle01UdWKfnEZo2Ne0z2Nvb1EvP6oP6K9Oqg2ckz9emuj/RN2lI9Fj9BPVpcJensKt+7Ikbo05sWaUzc3+tlTFx+FP4AAAAAAAAAAOfV2b+rCkoLlJSxxtKpSDq7NeGunJ2anzJXf1s+QiOW3aGJP06s0md//j5JZ7e2xPldF9Rfj8WPV7BbiGZfO1cTukySh6On/JsHaGbvOQp1b6dJv43XyoMrLJ3qFel02WnN3fqWurdIULeA7vUW12gw6tH4f+hI4SF9vOMDjYi8VzcGD6i3+GgcbC2dAAAAAAAAAACgcYr06qAYnzgt2PWxElokNsiZeRWmCmWeytCRoiM6UnhIwW4hivfrfN6+M/54VT8cWC5XBzf1CEhQrza99NmeBdqZs0NhbhGSzp7vZ2e0U2uXNvWeqzUZEDJQA0IGVmt3tnfRKz2na+am1/XahldkY7BV7zbXWiDDK9ey/d8ovyRfY+MerffYIe7t9EDMwyosLdSIyHvrPT4sj8IfAAAAAAAAAOCChkeM0MRfx+uP4xvUxb9bvcb+z65P9fHO91VuqpAkGSR5Onlp4U2LZTRU3bDudNlprTr0k4ZHjNTIDqNkNBhltJGSjv+uhTs/1Qs9XpZ0tvAX5NZWtkb+/F1btkZbPd75SZWby/XqhqlqbuesrgH1++8eF7Y+c53i/TrJv3lAg8S/LWxYg8RF49AotvpcsGCB+vTpo+joaA0dOlTbtm27aP+CggJNmTJFiYmJioqKUr9+/bR69eoqfY4fP64JEyaoW7duiomJ0c0336yUlJTK62azWW+++aYSExMVExOje++9VwcOHGiIxwMAAAAAAACAJqujbyeFe0Zowc6PZTabq1xLPr5JC3Z+XKu4RwoP66Md89U3sJ9evXqGFtz0hf7Ve45yinO0Pbv634jXZyapzFSmG9reVFkUNBqMujf2Xq09+rvS8/dLktLyUjnfrx4YDUZN6DxJXQK6a0rSs0rJ2lp5zWw2a3/+Pp04fcKCGVqn02WntSNnW70X2XHlsHjh77vvvtO0adM0duxYLV26VOHh4brvvvuUk5Nz3v6lpaUaNWqUjh49qjfffFPLly/XSy+9JD8/v8o++fn5uvPOO2VnZ6f33ntPy5Yt08SJE+Xm5lbZ57333tMnn3yiF154QYsWLZKTk5Puu+8+lZSUNPgzAwAAAAAAAEBTYTAYNDxipHbkbFdK9v8v/qRkb9Ozaybpwx3zdbrs9CXHnbv1LXk7+eiRjuMU79dZvs18FenVQT5OPvrl8Kpq/X898ovCPNrLr7l/lfb+of3l08xXn+9ZqLKKMh0sOKBQzverF7ZGW03uPkXhnpF6ds0kfZ32pV7b8Iru+O8Qjf7hb5q2/kVLp2h1tmYlq9xUoc5+XS2dCpooixf+PvjgA91+++269dZbFRoaqilTpsjR0VFLliw5b/8lS5YoPz9fb731ljp16qRWrVqpa9euCg8Pr+zz3nvvyd/fX9OmTVNMTIxat26txMREtWlzdk9ns9msjz/+WA8//LD69u2r8PBwvfbaazpx4oRWrlx5WZ4bAAAAAAAAAJqKbgE9FOIeogW7zq7u25eXqsm/T5Jvs7MLMs6ttqupjcfWa11mkh6IeVgONg6V7UaDUb1a99ZvR35Rxf9t/ylJxeXF2nhsvXq26lUtlp2NnW4Pv0OrDq3UxmPrVW4qVzAr/uqNvY29Xrpqmlo5t9ac5De1Ly9V17a5TtcF9tO+vLRqq0BRNxuPbVBA8wC1dGll6VTQRFm08FdaWqodO3YoISGhss1oNCohIUHJycnnvefnn39WXFycXnzxRSUkJGjAgAF65513VFFRUaVPVFSUHn30UfXo0UODBw/WokWLKq8fOXJEWVlZVcZ1cXFRbGzsBccFAAAAAAAAgCuVwWDQneEjtPn4Jv108AdN+nWCWjq30szec2RjMGp/flqNY5WbyvXO1rcU7R2jq1tdU+36Na2vVV5JnrZm/f+/1f5xbINKKkrUs2X1wp8k3RR8s5ztXTU7+Q1JUrBbyKU9IC6qmV0zzb72HS0e+LXmXv+BHowdo6tb91ZxebFOnD5u6fSsyh/H1qsz23yiDix6umlubq4qKirk5eVVpd3Ly0v795//GyKHDx/WunXrdPPNN+vdd9/VoUOHNGXKFJWXl+uRRx6p7POf//xHo0aN0kMPPaSUlBRNnTpVdnZ2uuWWW5SVlVU5zv+Om52dfUnPYDQaZDQaLukewBrZ2Bir/C+Axo95CzQ9zFugaWHOAk0P8xa4uN5BvfXRzvl6dePLau3SRq/1fl1uDu5q4xao9IJ9srWt2dz5Zu83OlJ4SM/2myc7O5tq1yN9ItTCuYV+PbpKXVue3e5wTcZqhXqEKtCjTZW+5+Zrc4dmuq39UH2QMk8tXVrKzcmljk+L6ozysvOs/BTiESyDQTp86qBaurWwYF7W40jhER07nanuLbvVeD41Rfy+bVgWLfzVhtlslpeXl1566SXZ2NgoKipKx48f1/z58ysLf2azWVFRUXr88cclSZGRkUpNTdVnn32mW265pV7z8fRsLoOBwh9wjqurk6VTAHCJmLdA08O8BZoW5izQ9DBvgQt7oud4zU+er9f6viY/57PbfEb5R+pI4UF5eDT/y/vzz+Rrwe6PNKTDLeoa3PGC/W4M768vd30pF7fnZDKbtPHEet0Te88Fx3B1ddK9Xe7W4tTP1ME/oka5oG7c3IPl4uisrPIM3nc9+TFjqxzs7NW7fU81s2tm6XQaHL9vG4ZFC38eHh6ysbFRTk5OlfacnBx5e3uf9x4fHx/Z2trKxub/fxMkODhYWVlZKi0tlb29vXx8fBQSUnUpd3BwsFasWFEZ49w4vr6+Vcb981mBNXHy5ClW/AE6++0MV1cnFRQUq6LCZOl0ANQA8xZoepi3QNPCnAWaHuYt8NeiXTtpZq9OUpmUm3tKktTCsY1W7vtJOScLZTRcfAXP+9s+0JnSEt3V7p7K+8+nm3ei5p9+Xyt3r1aFqVyFZ4rUybN7tXuqzlsbPdf9JXk6el40NupPy2attT1jl3Lb8L7rw89pqxXh0UElRWaVyHrfKb9va6emBXaLFv7s7e3VoUMHJSUlqW/fvpIkk8mkpKQk3X333ee9Jz4+Xv/9739lMplkNJ79JXLgwAH5+PjI3t6+sk96enqV+w4cOKCWLVtKklq1aiUfHx8lJSUpIiJCklRUVKStW7fqzjvvvKRnMJnMMpk4vBQ4p6LCpPJyflgDTQnzFmh6mLdA08KcBZoe5i1waYJcglVcdkaH846opUuri/bdmLlR3fwT5GLrftF5FugcrJbOrfVT+kqZZVYblyC1bN7mgvecm7ex3vGSxBy+TNq4BGl/3r4ave/v05fJ2c5ZPVud/5zGK11pRamSj23W3ZH3XDH//fL7tmFYfAPVUaNGadGiRVq6dKn27dunF154QcXFxRoyZIgk6cknn9SMGTMq+995553Ky8vTyy+/rPT0dP3yyy+aO3euhg8fXtnnnnvu0datW/XOO+/o4MGD+vbbb7Vo0SLdddddks4eRDty5Ej9+9//1k8//aQ9e/boySeflK+vb2UBEgAAAAAAAADw10LcQyVJ+/P3XbTfmfIzSs3doyjv6L+MaTAYdE3rPlqT8ZvWZaylWNRIBbm11cGCAzKZL168OVV2Sm9vmaU3Nk3X6bLTlzyO2WzWd/v/q6OFR2qbaqO3PXubSipK1MW/q6VTQRNn8cLfjTfeqIkTJ2rWrFkaNGiQdu3apXnz5lVu9ZmZmamsrKzK/gEBAZo/f75SUlI0cOBATZ06VSNHjtSDDz5Y2ScmJkZz5szRsmXLNGDAAL399tt6+umnNXDgwMo+DzzwgO6++24999xzuu2223T69GnNmzdPDg4Ol+/hAQAAAAAAAKCJ83D0lLuDu/blpV203+6TO1VhNinKJ6ZGcXu16q3TZadVVFakni2vro9UUc+CXNuqtKJUx05lXrTfz4d+VGlFiYrLi/VV2pJLHufjnR/ojU3T9fmehbVNtVFJPr5Jj6/6u/ac3F3Z9sexDfJw9FCwW6gFM4M1sOhWn+fcfffdF9za85NPPqnW1rFjRy1atOiiMXv37q3evXtf8LrBYNBjjz2mxx577NKSBQAAAAAAAABUEeIeqn35Fy/8pWRvk4u9i4Jc29YoZpBbWwW5tlWZqUxt3ULqI03Us8D/+3d5ID9dLZxbnreP2WzWt/u+UveAq+TdzEeL936ugaG3yNnOuUZjLE1drE93fiTfZr5Kyd5Wb7lbSoWpQnO2vKmjhYc1btUY3R/9kIa0G6qNxzaos19XGQwGS6eIJs7iK/4AAAAAAAAAAE1bsFuI0vMuvtXn9uxt6uAVJaOh5n+Wfrzzk5rQZRLFkEbK28lbznbOOlCQfsE+O3N2KD0/XQNCBurO8Lt1pvyMvkqt2aq/nw7+oLe3zNbt7e/QfdGjdaTwsHLPnKyv9C1ixYHvdajgoP7Ve44Gh96qd7a+pYm/Pq4DBenq4t/N0unBClD4AwAAAAAAAADUSbB7iI6fPq6i0sLzXq8wVWhXzk51qMH5fn8W4RVZozMBYRkGg0GBrkE6kH/hwt9/93+tgOYB6uTXRd5O3hoQMkiL935+wf9WzlmXmaTpG6epX9ANuj/6IUV7x0qStmen1OszXE5nys/o453vq3fraxXp1UGjY8dqauKr2pe/T0aDQZ38Ols6RVgBCn8AAAAAAAAAgDoJdj97Ltn+/POv+kvLS1VxeXFl8QbWI8itrQ5eYMVfYWmBVh9epZuCB1au9BzW/i6VVpTqy9TF573n3NagL6x5Wt0CEvSPTk/IYDDIp5mP/Jv7N+ntPr9M/UL5JXkaFXV/ZVu3gO5697oPNL3XTLk6uFkwO1gLCn8AAAAAAAAAgDpp4xIoW6Ot0vP3n/f69uxtsjPaqZ1H2GXODA0tyLWtDhUeUoWpotq1Hw4sl1km9Qu6obLNy8lLA0MHa0nqIhWWFlTpX1pRqpmbXteszW9oQMhgTe4xRTZGm8rrUd4xSsna2nAP04DyS/L0+Z6FGhA8WAHOLapc83LyUoxPnGUSg9WxtXQCAAAAAAAAAICmzdZoq0DXQO3LSzvv9e3ZKYrwipS9jf1lzgwNLcitrcpN5TpadERtXAMr28+u3PtaPVteI3dHjyr3DGt/l77d97WeWD1OMT4d1c69nVo4t9K7297W3tw9Gt95ovq3vbHaWDE+cfr50I86VXZKze2aN/iz1acFuz6R2WzW8IgRlk4FVo4VfwAAAAAAAACAOgt2Cz1v4c9sNisle9sln++HpiHQNUiSdOB/tvvccmKzjhYd0YCQgdXu8XD01OTuU9TSubXWZybptY3TNG7VWB0/fUz/umb2eYt+khTtHSOT2awd2dvr/Tka0pHCw/p231LdET68WhEUqG+s+AMAAAAAAAAA1FmIe6hWH1klk9lUeZ6bJB0tOqL8kjxFe8dYMDs0FA9HT7k5uOtAfrqubnVNZfvStCVq4xp4wXMdu7dIUPcWCZKkorIiHchPV6BroFzsXS84VkvnVnJ3cFdK9lZ1DehWr8/RUI6fPq5Jv46XX7MA3dLuNkungysAK/4AAAAAAAAAAHXW1i1YpRWlOlJ4uEp7SvY2GQ0GRXpFWSgzNLRA16AqK/62ZW1RUsYa3Rk+XAaD4S/vd7ZzVpR39EWLfpJkMBgU7ROr7dnb6pzz5ZBdnK0nVo+TwWDQa73ekJOtk6VTwhWAwh8AAAAAAAAAoM5C3EMlqdp2nylZW9XWLaTJncmGmgtya6uDBQckSSazSf/eMkdhHu3Vp8119T5WtHeMdp/cpdKK0nqPfSEnz+Rowi/j9OnOj5RdnF2je3LPnNSTq/+h8ooyTe81U77NfBs4S+AsCn8AAAAAAAAAgDpzc3CXl5OX0gv2V2nfnpNywe0eYR2CXNvqSOEhlVaU6seDK5SWl6oxcY9W2fK1vsT4xKrcVK7dJ3fWe+wLWXXoJ23P3qrP9yzU8GW36bk1TyspY42Onzomk9lU2c9kNulI4WH9cvhnPbn6cZ0qK9L0XjPl3zzgsuUKcMYfAAAAAAAAAKBeBLuFaP+fVvzlFOcosyhD0T6c72fNgtzaymQ2KzV3r+anzNU1rfuog3fDbO3a1i1EzeyaaXt2imJ84hpkjP+15uhv6uLfTZO6TdbPh1Zq2f6v9dyapyVJNgajfJv7y9XeVYcKDqq4vFjS2fMIp/eaqZYurS5LjsA5FP4AAAAAAAAAAPUi1CNMn+9eoAdW3KsQj1DZGGwkSVHe0RbODA0pyDVIkjRz0+sqKi3S/dGjG2wso8GoDl5R2pa1RXdFjKiXmIWlBZr463hN6DxRwf+3Ze05J8/kaHv2Nj3eeaKa2zXXzSGDNCB4oDKKjupo0VEdP52pzKIM5ZbkKrHl1Qp1b6dQ93Zyd/Sol9yAS0XhDwAAAAAAAABQL24Pu0O+Tn7al5eqtLxU7c/fpxD3EHk6elk6NTQgF3tXeTl56UBBuu6MuFt+zf0bdLwYnzgt3PWJKkwVsjHa1Dneuoy1Ss3dqy/2fq6JXZ+pcm3t0TUyGAxKaHFVZZvBYFBLl1as5kOjROEPAAAAAAAAAFAvnO1dNCBkYOVnk9lU5Qw0WK+2bsEymU26o/3wBh8ryjtGxeXF2peXpjDP9nWOl5S5VgZJvxz+WaNjxlRZrffb0V8U69NRrg5udR4HuBzq/2RNAAAAAAAAAAB0dltGWyPrT64ED8f+Xf/s+bqa2TVr8LHCPNrL0dZRM/74p1YeXKGyirJaxyqrKNMfxzbolnZDZZBB36cvq7xWWFqgrSeSldjy6vpIG7gsKPwBAAAAAAAAAIA6aeMaWO18vIZib2OvVxJfk4ejp17d8IqGfzdUn+z8UPkleZccKyV7q4rLi3V9UD9dG3idvt33lSpMFZKkpIw1MplNuorCH5oQCn8AAAAAAAAAAKBJifaJ1T+vnqH3rv9QCS0S9dnuBRq+7HbN3fqWcopzJElms1m7cnbq1Q0v66Yvr9PvR3+tFmddZpK8nbwV7BaqQSFDlFWcpaTMNZKk347+qgivDvJy4oxKNB2ssQYAAAAAAAAAAE1SkFtbjes0QaOi7teS1C/0ddqX+jptqfq06at9eWlKy0uVf3N/BTRvoU92fKCrWvSUwWCQdLYwuC5jjboHJMhgMCjUo506eEXp67SlivftrE3HNmpU1P0WfkLg0rDiDwAAAAAAAAAANGluDu76W9QDWnDjIg2PGKlNxzfK09FTUxNf1Uc3/EePxv9D+/P3a/2xdZX3HCw4oMxTmere4qrKtkGhQ7TlxGZ9sfczlZnK1LNVL0s8DlBrrPgDAAAAAAAAAABWwdneRcMjR2p45Mgq7dHesYr06qDPdn2q7gE9JEnrM5Nkb2OvON+Olf0SW14tD0cPLdj5kULcQ+XfPOCy5g/UFSv+AAAAAAAAAACAVTMYDLojfLh25GxXStZWSdK6zLWK9+ssBxuHyn52NnYaEDxIZklXt7rGMskCdUDhDwAAAAAAAAAAWL1uAT0U5NpW/9n9qQpK8rUzZ7u6ByRU6zcgZKBifGLVp01fC2QJ1A2FPwAAAAAAAAAAYPWMBqPuCL9LG49t0Ge7F8hkNp+38Ofp6KUZ18xim080SRT+AAAAAAAAAADAFeGa1tfKv7m/vtj7ucI82svLycvSKQH1isIfAAAAAAAAAAC4ItgYbXR7+zslnd36E7A2tpZOAAAAAAAAAAAA4HLpF3SjUnP3ql/QDZZOBah3FP4AAAAAAAAAAMAVw97GXo93ftLSaQANgq0+AQAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAhT+AAAAAAAAAAAAACtA4Q8AAAAAAAAAAACwAgaz2Wy2dBIAAAAAAAAAAAAA6oYVfwAAAAAAAAAAAIAVoPAHAAAAAAAAAAAAWAEKfwAAAAAAAAAAAIAVoPAHAAAAAAAAAAAAWAEKfwAAAAAAAAAAAIAVoPAHAAAAAAAAAAAAWAEKfwAAAAAAAAAAAIAVoPAHAAAAAAAAAAAAWAEKfwAAAAAAAAAAAIAVoPAHWKkFCxaoT58+io6O1tChQ7Vt27ZqfZKTkzVy5EjFxcUpPj5ew4cP15kzZy4aNyMjQw8++KBiY2PVo0cPvfrqqyovL6+8vn79erVv377aP1lZWReMWVJSokmTJunmm29WZGSkxowZc9EcNm3apMjISA0aNOgv3gLQtFjbvK1NXKCpsbZ5K0mlpaV644031Lt3b0VFRalPnz5avHhxDd8I0LhZ25ydNGnSeePedNNNl/BWgMbN2uatJH3zzTcaOHCgYmNjlZiYqKeeekq5ubk1fCNA42eN83bBggW64YYbFBMTo379+umrr76q2csAmoimNG/Xr1+vhx9+WImJiYqLi9OgQYP0zTffVOv3/fffq3///oqOjtbNN9+s1atXX8IbadpsLZ0AgPr33Xffadq0aZoyZYpiY2P10Ucf6b777tPy5cvl5eUl6ewP6vvvv1+jR4/W5MmTZWNjo927d8tovPD3ASoqKjR69Gh5e3vrs88+04kTJzRx4kTZ2dnp8ccfr9J3+fLlcnZ2rvx8btwLxXVwcNCIESO0YsWKiz5bQUGBJk6cqB49eig7O7smrwNoEqx53l5KXKApsdZ5+9hjjyknJ0cvv/yy2rRpo6ysLJlMppq+FqDRssY5+8wzz2j8+PFV7hk0aJD69+9fo3cCNHbWOG83bdqkiRMn6qmnnlLv3r11/PhxvfDCC5o8ebLmzJlzKa8HaJSscd4uXLhQM2bM0NSpUxUdHa1t27bp2Weflaurq/r06XMprwdolJravE1OTlb79u31wAMPyNvbW6tWrdLEiRPl4uKi3r17S5I2b96s8ePH6/HHH1fv3r317bffauzYsfryyy8VFhZWl9fVNJgBWJ3bbrvNPGXKlMrPFRUV5sTERPPcuXMr24YOHWp+4403LinuL7/8Yg4PDzdnZWVVti1cuNAcHx9vLikpMZvNZvO6devMYWFh5vz8/FrlPnHiRPPDDz98wevjxo0zv/HGG+ZZs2aZBw4cWKsxgMbIGudtXeMCjZ01ztvVq1ebO3XqZM7Nza1VXKAxs8Y5+79+/PFHc/v27c1Hjhyp1ThAY2ON83bevHnma6+9tkrbxx9/bO7Zs2etxgEaG2uct8OGDTP/85//rNI2bdo08x133FGrcYDGpinP23MeeOAB86RJkyo/P/bYY+YHH3ywSp+hQ4eaJ0+eXKdxmgq2+gSsTGlpqXbs2KGEhITKNqPRqISEBCUnJ0uScnJytHXrVnl5eemOO+5QQkKC7r77bv3xxx8Xjb1lyxaFhYXJ29u7si0xMVFFRUVKS0ur0nfw4MFKTEzUqFGjtGnTpnp5tiVLlujw4cN65JFH6iUe0FhY87xtyLiAJVnrvP35558VFRWlefPmqWfPnurXr59effXVv9y+BWjsrHXO/q/FixcrISFBLVu2rPfYwOVmrfM2Li5Ox44d0+rVq2U2m5Wdna0VK1aoV69edY4NWJq1ztvS0lI5ODhUaXNwcFBKSorKysrqHB+wJGuZt4WFhXJ3d68ydo8ePar0SUxM1JYtWy45dlNE4Q+wMrm5uaqoqKi2HNrLy6tya8zDhw9LkubMmaOhQ4dq3rx5ioyM1L333qsDBw5cMHZ2dnaVH9SSKj+f23fZx8dHU6ZM0axZszRr1iz5+/tr5MiR2rFjR52e68CBA5oxY4amT58uW1t2KYZ1sdZ521BxgcbAWuft4cOHtWnTJqWmpuqtt97S008/rRUrVmjKlCl1igtYmrXO2T87fvy4fv31V9122231FhOwJGudt506ddL06dM1btw4RUVF6aqrrpKzs7Oee+65OsUFGgNrnbeJiYlavHixtm/fLrPZrJSUFC1evFhlZWWcz4kmzxrm7XfffaeUlBQNGTLkomP/+ZmsHX89B65A587pGTZsmG699VZJUmRkpJKSkrRkyRKNHz9e999/f+W3K1q0aKFly5bVKHZwcLCCg4MrP8fHx+vw4cP68MMPNX369FrlW1FRofHjx+vvf/+72rZtW6sYQFPX1OZtQ8YFmoqmOG/NZrMMBoNef/11ubi4SJImTZqkRx99VM8//7wcHR1rHRto7JrinP2zr776Si4uLurbt2+9xAOagqY4b9PS0vTyyy9r7NixSkxMVFZWll577TU9//zzeuWVV2odF2gqmuK8HTNmjLKysjRs2DCZzWZ5eXlp8ODBmjdv3kXPNwOsRWOet+vWrdPTTz+tqVOnql27dpf6aFaLwh9gZTw8PGRjY6OcnJwq7Tk5OZXfcvDx8ZEkhYSEVOkTEhKijIwMSdLLL79cua3XuRV23t7e2rZtW5V7zn1L4lzM84mOjtbmzZtr+0g6deqUtm/frl27dumll16SdPYXjtlsVmRkpObPn19t6TbQlFjjvL3ccYHLzVrnrY+Pj/z8/CqLfufyNZvNOnbsmIKCguoUH7AUa52z55jNZi1ZskSDBg2Svb19vcQELM1a5+3cuXMVHx+v+++/X5IUHh4uJycnDR8+XOPGjZOvr2+d4gOWZK3z1tHRUdOmTdOLL76onJwc+fj46PPPP1fz5s3l6elZp9iApTXlebthwwY9/PDDeuqppzR48OAq17y9vaut7vvzM1k7vpIAWBl7e3t16NBBSUlJlW0mk0lJSUnq2LGjJKlVq1by9fVVenp6lXsPHDhQeR6In5+fAgMDFRgYWNkWFxenvXv3VvlFsHbtWjk7Oys0NPSCOe3evfuiP8z/irOzs7799lt99dVXlf/ccccdatu2rb766ivFxsbWOjbQGFjjvL3ccYHLzVrnbXx8vE6cOKFTp05VtqWnp8toNMrf379OsQFLstY5e86GDRt08OBBtvmEVbHWeXvmzJlqK4RsbGwknS3iA02Ztc7bc+zs7OTv7y8bGxt999136t27Nyv+0OQ11Xm7fv16jR49WhMmTNCwYcOqXY+Li9O6deuqtK1du1ZxcXEXjWstWPEHWKFRo0Zp4sSJioqKUkxMjD766CMVFxdX7nNsMBh03333afbs2QoPD1dERISWLl2q/fv3a9asWReMm5iYqNDQUD355JN64oknlJWVpZkzZ2r48OGV3yz+8MMP1apVK7Vr104lJSX64osvtG7dOr3//vsXzTktLU1lZWXKy8vTqVOntGvXLklSRESEjEajwsLCqvT38vKSg4NDtXagqbK2eVuXuEBTYY3zdsCAAXr77bf11FNP6dFHH1Vubq6mT5+uW2+9lW0+0eRZ45w9Z/HixYqNjeX/G8PqWOO87d27tyZPnqyFCxeqZ8+eOnHihF555RXFxMTIz8+vPl4bYFHWOG/T09O1bds2xcbGqqCgQB988IFSU1P1z3/+sz5eGWBxTW3erlu3Tg899JBGjhyp66+/vvK8QDs7O7m7u0uSRo4cqREjRuj9999Xr1699N1332n79u168cUX6+mtNW4GM18nAqzSp59+qvnz5ysrK0sRERF69tlnq62Me/fdd7VgwQLl5+crPDxcEyZMUOfOnS8a9+jRo3rhhRe0YcMGOTk56ZZbbtH48eMrl3C/9957WrRokY4fPy4nJyeFhYVp7Nix6t69+0Xj9unTR0ePHq3WvmfPnvP2nz17tlauXKmvv/76onGBpsTa5m1t4wJNibXNW0nat2+fpk6dqs2bN8vd3V033HCDxo0bR+EPVsEa52xhYaESExP1zDPP6Pbbb6/pqwCaDGuct5988ok+++wzHTlyRC4uLurevbueeOIJCn+wGtY2b/ft26fx48crPT1dtra26tatmyZMmFDlXDKgqWtK83bSpElaunRptfauXbvqk08+qfz8/fffa+bMmTp69KiCgoL0xBNPqFevXpfyWposCn8AAAAAAAAAAACAFWATYgAAAAAAAAAAAMAKUPgDAAAAAAAAAAAArACFPwAAAAAAAAAAAMAKUPgDAAAAAAAAAAAArACFPwAAAAAAAAAAAMAKUPgDAAAAAAAAAAAArACFPwAAAAAAAAAAAMAKUPgDAAAAAAAAAAAArICtpRMAAAAAADR+7du3/8s+06ZN09KlS9WsWTPNnTv3MmQFAAAAAPgzg9lsNls6CQAAAABA47Zly5Yqn4cNG6YRI0ZowIABlW1t2rTRyZMnZTQaFRwcfJkzBAAAAACw4g8AAAAA8Jfi4uKqtQUEBFRr9/T0vDwJAQAAAACq4Yw/AAAAAEC9GTFihEaPHl35efbs2erYsaN27typYcOGKSYmRrfccot27typkpISPf/88+rSpYuuvvpqffjhh9XiJScna+TIkYqLi1OnTp00fvx45eTkXMYnAgAAAICmg8IfAAAAAKBBlZWVaeLEibr99ts1e/ZslZeX65FHHtEzzzwjR0dHzZw5U3379tW0adO0efPmyvuSk5M1YsQIubi46I033tBLL72klJQUjRkzxoJPAwAAAACNF1t9AgAAAAAaVFlZmSZMmKBevXpJkkwmkx566CHFxsbqqaeekiR1795dy5cv1/LlyxUfHy9JmjFjhqKiojRnzhwZDAZJUlhYmAYMGKDVq1dXxgMAAAAAnMWKPwAAAABAgzIajerRo0fl56CgIElSQkJCZZuNjY3atGmjY8eOSZKKi4u1efNm9e/fXxUVFSovL1d5ebmCgoIUEBCglJSUy/oMAAAAANAUsOIPAAAAANCgHB0dZW9vX/nZzs5OkuTi4lKln52dnUpKSiRJBQUFqqio0LRp0zRt2rRqMTMzMxswYwAAAABomij8AQAAAAAaHRcXFxkMBo0ePVp9+/atdt3Dw8MCWQEAAABA40bhDwAAAADQ6DRr1kxxcXHav3+/oqOjLZ0OAAAAADQJFP4AAAAAAI3Sk08+qXvuuUfjxo3TTTfdJFdXVx07dkxr167VkCFD1K1bN0unCAAAAACNCoU/AAAAAECjFB8fr4ULF2r27Nl66qmnVFZWJn9/f3Xv3l2BgYGWTg8AAAAAGh2D2Ww2WzoJAAAAAAAAAAAAAHVjtHQCAAAAAAAAAAAAAOqOwh8AAAAAAAAAAABgBSj8AQAAAAAAAAAAAFaAwh8AAAAAAAAAAABgBSj8AQAAAAAAAAAAAFaAwh8AAAAAAAAAAABgBSj8AQAAAAAAAAAAAFaAwh8AAAAAAAAAAABgBSj8AQAAAAAAAAAAAFaAwh8AAAAAAAAAAABgBSj8AQAAAAAAAAAAAFaAwh8AAAAAAAAAAABgBf4faYYFcjpS/eYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "Price Statistics:\n", - " COIN: Mean=$253.37, Std=$5.92\n", - " MSTR: Mean=$375.88, Std=$4.10\n", - " Price Ratio: Mean=0.67, Std=0.01\n", - " Correlation: 0.9498\n" - ] - } - ], - "source": [ - "# Plot raw price data\n", - "\n", - "# Get column names for the trading pair\n", - "colname_a, colname_b = pair.colnames()\n", - "price_data = pair.market_data_.copy()\n", - "\n", - "# # 1. Price data - separate plots for each symbol\n", - "# colname_a, colname_b = pair.colnames()\n", - "# price_data = pair.market_data_.copy()\n", - "\n", - "# Create separate subplots for better visibility\n", - "fig_price, price_axes = plt.subplots(2, 1, figsize=(18, 10))\n", - "\n", - "# Plot SYMBOL_A\n", - "price_axes[0].plot(price_data['tstamp'], price_data[colname_a], alpha=0.7, \n", - " label=f'{SYMBOL_A}', linewidth=1, color='blue')\n", - "price_axes[0].set_title(f'{SYMBOL_A} Price Data')\n", - "price_axes[0].set_ylabel(f'{SYMBOL_A} Price')\n", - "price_axes[0].legend()\n", - "price_axes[0].grid(True)\n", - "\n", - "# Plot SYMBOL_B\n", - "price_axes[1].plot(price_data['tstamp'], price_data[colname_b], alpha=0.7, \n", - " label=f'{SYMBOL_B}', linewidth=1, color='red')\n", - "price_axes[1].set_title(f'{SYMBOL_B} Price Data')\n", - "price_axes[1].set_ylabel(f'{SYMBOL_B} Price')\n", - "price_axes[1].set_xlabel('Time')\n", - "price_axes[1].legend()\n", - "price_axes[1].grid(True)\n", - "\n", - "plt.tight_layout()\n", - "plt.show()\n", - " \n", - "\n", - "# Plot individual prices\n", - "fig, axes = plt.subplots(2, 1, figsize=(18, 12))\n", - "\n", - "# Normalized prices for comparison\n", - "norm_a = price_data[colname_a] / price_data[colname_a].iloc[0]\n", - "norm_b = price_data[colname_b] / price_data[colname_b].iloc[0]\n", - "\n", - "axes[0].plot(price_data['tstamp'], norm_a, label=f'{SYMBOL_A} (normalized)', alpha=0.8, linewidth=1)\n", - "axes[0].plot(price_data['tstamp'], norm_b, label=f'{SYMBOL_B} (normalized)', alpha=0.8, linewidth=1)\n", - "axes[0].set_title('Normalized Price Comparison (Base = 1.0)')\n", - "axes[0].set_ylabel('Normalized Price')\n", - "axes[0].legend()\n", - "axes[0].grid(True)\n", - "\n", - "# Price ratio\n", - "price_ratio = price_data[colname_a] / price_data[colname_b]\n", - "axes[1].plot(price_data['tstamp'], price_ratio, label=f'{SYMBOL_A}/{SYMBOL_B} Ratio', color='green', alpha=0.8, linewidth=1)\n", - "axes[1].set_title('Price Ratio')\n", - "axes[1].set_ylabel('Ratio')\n", - "axes[1].set_xlabel('Time')\n", - "axes[1].legend()\n", - "axes[1].grid(True)\n", - "\n", - "plt.tight_layout()\n", - "plt.show()\n", - "\n", - "# Print basic statistics\n", - "print(f\"\\nPrice Statistics:\")\n", - "print(f\" {SYMBOL_A}: Mean=${price_data[colname_a].mean():.2f}, Std=${price_data[colname_a].std():.2f}\")\n", - "print(f\" {SYMBOL_B}: Mean=${price_data[colname_b].mean():.2f}, Std=${price_data[colname_b].std():.2f}\")\n", - "print(f\" Price Ratio: Mean={price_ratio.mean():.2f}, Std={price_ratio.std():.2f}\")\n", - "print(f\" Correlation: {price_data[colname_a].corr(price_data[colname_b]):.4f}\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "# Run" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Analysis" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Running SlidingFit analysis...\n", - "\n", - "=== SLIDING FIT ANALYSIS ===\n", - "Processing first 200 iterations for demonstration...\n", - "***COIN & MSTR*** STARTING....\n", - "********************************************************************************\n", - "Pair COIN & MSTR (0) IS COINTEGRATED\n", - "********************************************************************************\n", - "COIN & MSTR: 272 Not enough training data. Completing the job.\n", - "OPEN_TRADES: 2025-06-05 15:40:00 open_scaled_disequilibrium=np.float64(2.1021479687626523)\n", - "OPEN TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 15:40:00 SELL COIN 260.465 1.991597 \n", - "1 2025-06-05 15:40:00 BUY MSTR 380.530 1.991597 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 2.102148 COIN & MSTR OPEN \n", - "1 2.102148 COIN & MSTR OPEN \n", - "CLOSE TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 16:02:00 BUY COIN 259.3853 0.208324 \n", - "1 2025-06-05 16:02:00 SELL MSTR 379.9023 0.208324 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 0.744767 COIN & MSTR CLOSE \n", - "1 0.744767 COIN & MSTR CLOSE \n", - "OPEN_TRADES: 2025-06-05 16:31:00 open_scaled_disequilibrium=np.float64(2.0704276873028338)\n", - "OPEN TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 16:31:00 SELL COIN 259.62 1.917107 \n", - "1 2025-06-05 16:31:00 BUY MSTR 377.25 1.917107 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 2.070428 COIN & MSTR OPEN \n", - "1 2.070428 COIN & MSTR OPEN \n", - "CLOSE TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 16:42:00 BUY COIN 257.28 0.471149 \n", - "1 2025-06-05 16:42:00 SELL MSTR 375.58 0.471149 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 0.762836 COIN & MSTR CLOSE \n", - "1 0.762836 COIN & MSTR CLOSE \n", - "OPEN_TRADES: 2025-06-05 16:46:00 open_scaled_disequilibrium=np.float64(2.199766239888042)\n", - "OPEN TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 16:46:00 BUY COIN 254.6100 -2.275201 \n", - "1 2025-06-05 16:46:00 SELL MSTR 376.1044 -2.275201 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 2.199766 COIN & MSTR OPEN \n", - "1 2.199766 COIN & MSTR OPEN \n", - "CLOSE TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 17:34:00 SELL COIN 252.83 0.248202 \n", - "1 2025-06-05 17:34:00 BUY MSTR 375.00 0.248202 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 0.957174 COIN & MSTR CLOSE \n", - "1 0.957174 COIN & MSTR CLOSE \n", - "OPEN_TRADES: 2025-06-05 18:51:00 open_scaled_disequilibrium=np.float64(2.1149913107636116)\n", - "OPEN TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 18:51:00 SELL COIN 245.77 61.682717 \n", - "1 2025-06-05 18:51:00 BUY MSTR 372.40 61.682717 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 2.114991 COIN & MSTR OPEN \n", - "1 2.114991 COIN & MSTR OPEN \n", - "CLOSE TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 19:10:00 BUY COIN 245.59 9.682403 \n", - "1 2025-06-05 19:10:00 SELL MSTR 370.66 9.682403 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 0.979289 COIN & MSTR CLOSE \n", - "1 0.979289 COIN & MSTR CLOSE \n", - "OPEN_TRADES: 2025-06-05 19:15:00 open_scaled_disequilibrium=np.float64(2.006393273424948)\n", - "OPEN TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 19:15:00 SELL COIN 244.020 325.962059 \n", - "1 2025-06-05 19:15:00 BUY MSTR 368.225 325.962059 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 2.006393 COIN & MSTR OPEN \n", - "1 2.006393 COIN & MSTR OPEN \n", - "CLOSE TRADES:\n", - " time action symbol price disequilibrium \\\n", - "0 2025-06-05 19:16:00 BUY COIN 243.27 -22.525948 \n", - "1 2025-06-05 19:16:00 SELL MSTR 367.22 -22.525948 \n", - "\n", - " scaled_disequilibrium pair status \n", - "0 0.701777 COIN & MSTR CLOSE \n", - "1 0.701777 COIN & MSTR CLOSE \n", - "***COIN & MSTR*** FINISHED ... 20\n", - "Generated 20 trading signals\n", - "\n", - "Strategy execution completed!\n", - "\n", - "================================================================================\n", - "BACKTEST RESULTS\n", - "================================================================================\n", - "\n", - "Detailed Trading Signals:\n", - "Time Action Symbol Price Scaled Dis-eq \n", - "--------------------------------------------------------------------------------\n", - "2025-06-05 15:40:00 SELL COIN $260.46 2.102 \n", - "2025-06-05 15:40:00 BUY MSTR $380.53 2.102 \n", - "2025-06-05 16:02:00 BUY COIN $259.39 0.745 \n", - "2025-06-05 16:02:00 SELL MSTR $379.90 0.745 \n", - "2025-06-05 16:31:00 SELL COIN $259.62 2.070 \n", - "2025-06-05 16:31:00 BUY MSTR $377.25 2.070 \n", - "2025-06-05 16:42:00 BUY COIN $257.28 0.763 \n", - "2025-06-05 16:42:00 SELL MSTR $375.58 0.763 \n", - "2025-06-05 16:46:00 BUY COIN $254.61 2.200 \n", - "2025-06-05 16:46:00 SELL MSTR $376.10 2.200 \n", - "... and 10 more trading signals\n", - "\n", - "====== NO OUTSTANDING POSITIONS ======\n", - "\n", - "====== GRAND TOTALS ACROSS ALL PAIRS ======\n", - "Total Realized PnL: 0.00%\n", - "\n", - "================================================================================\n" - ] - } - ], - "source": [ - "# Initialize strategy state and run analysis\n", - "print(f\"Running {FIT_METHOD_TYPE} analysis...\")\n", - "\n", - "# Initialize result tracking\n", - "bt_result = BacktestResult(config=pt_bt_config)\n", - "pair_trades = None\n", - "\n", - "# Run strategy-specific analysis\n", - "if FIT_METHOD_TYPE == \"StaticFit\":\n", - " is_cointegrated = run_static_fit(config=pt_bt_config, pair=pair, bt_result=bt_result)\n", - "elif FIT_METHOD_TYPE == \"SlidingFit\":\n", - " print(\"\\n=== SLIDING FIT ANALYSIS ===\")\n", - " \n", - " # Initialize tracking variables for sliding window analysis\n", - " training_minutes = pt_bt_config[\"training_minutes\"]\n", - " max_iterations = len(pair.market_data_) - training_minutes\n", - " \n", - " # Limit iterations for demonstration (change this for full run)\n", - " max_demo_iterations = min(200, max_iterations)\n", - " print(f\"Processing first {max_demo_iterations} iterations for demonstration...\")\n", - " \n", - " # Initialize pair state for sliding fit method\n", - " pair.user_data_['state'] = PairState.INITIAL\n", - " pair.user_data_[\"trades\"] = pd.DataFrame(columns=pd.Index(FIT_MODEL.TRADES_COLUMNS, dtype=str))\n", - " pair.user_data_[\"is_cointegrated\"] = False\n", - " \n", - " # Run the sliding fit method\n", - " # ==========================================================================\n", - " pair_trades = FIT_MODEL.run_pair(config=pt_bt_config, pair=pair, bt_result=bt_result)\n", - " # ==========================================================================\n", - " \n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " print(f\"Generated {len(pair_trades)} trading signals\")\n", - " else:\n", - " print(\"No trading signals generated\")\n", - "\n", - "print(\"\\nStrategy execution completed!\")\n", - "\n", - "# Print comprehensive backtest results\n", - "print(\"\\n\" + \"=\"*80)\n", - "print(\"BACKTEST RESULTS\")\n", - "print(\"=\"*80)\n", - "\n", - "assert pair.predicted_df_ is not None\n", - "\n", - "if pair_trades is not None and len(pair_trades) > 0:\n", - " # Print detailed results using BacktestResult methods\n", - " bt_result.print_single_day_results()\n", - " \n", - " # Print trading signal details\n", - " print(f\"\\nDetailed Trading Signals:\")\n", - " print(f\"{'Time':<20} {'Action':<15} {'Symbol':<10} {'Price':<12} {'Scaled Dis-eq':<15}\")\n", - " print(\"-\" * 80)\n", - " \n", - " for _, trade in pair_trades.head(10).iterrows(): # Show first 10 trades\n", - " time_str = str(trade['time'])[:19] \n", - " action_str = str(trade['action'])[:14]\n", - " symbol_str = str(trade['symbol'])[:9]\n", - " price_str = f\"${trade['price']:.2f}\"\n", - " diseq_str = f\"{trade.get('scaled_disequilibrium', 'N/A'):.3f}\" if 'scaled_disequilibrium' in trade else 'N/A'\n", - " \n", - " print(f\"{time_str:<20} {action_str:<15} {symbol_str:<10} {price_str:<12} {diseq_str:<15}\")\n", - " \n", - " if len(pair_trades) > 10:\n", - " print(f\"... and {len(pair_trades)-10} more trading signals\")\n", - " \n", - " # Print outstanding positions\n", - " bt_result.print_outstanding_positions()\n", - " \n", - " # Print grand totals\n", - " bt_result.print_grand_totals()\n", - " \n", - "else:\n", - " print(f\"\\nNo trading signals generated\")\n", - " print(f\"Backtest completed with no trades\")\n", - " \n", - " # Still print any outstanding information\n", - " print(f\"\\nConfiguration Summary:\")\n", - " print(f\" Pair: {SYMBOL_A} & {SYMBOL_B}\")\n", - " print(f\" Strategy: {FIT_METHOD_TYPE}\")\n", - " print(f\" Open threshold: {pt_bt_config['dis-equilibrium_open_trshld']}\")\n", - " print(f\" Close threshold: {pt_bt_config['dis-equilibrium_close_trshld']}\")\n", - " print(f\" Training window: {pt_bt_config['training_minutes']} minutes\")\n", - " \n", - " if FIT_METHOD_TYPE == \"StaticFit\":\n", - " if 'is_cointegrated' in locals() and is_cointegrated:\n", - " print(f\" Cointegration: ✓ Confirmed\")\n", - " if hasattr(pair, 'predicted_df_') and len(pair.predicted_df_) > 0:\n", - " scaled_diseq = pair.predicted_df_['scaled_disequilibrium']\n", - " max_abs_diseq = scaled_diseq.abs().max()\n", - " print(f\" Max absolute scaled dis-equilibrium: {max_abs_diseq:.3f}\")\n", - " if max_abs_diseq < pt_bt_config['dis-equilibrium_open_trshld']:\n", - " print(f\" Note: Max dis-equilibrium ({max_abs_diseq:.3f}) never reached open threshold ({pt_bt_config['dis-equilibrium_open_trshld']})\")\n", - " else:\n", - " print(f\" Cointegration: ✗ Not detected\")\n", - " elif FIT_METHOD_TYPE == \"SlidingFit\":\n", - " pass # TODO: Implement sliding fit cointegration check\n", - "print(\"\\n\" + \"=\"*80)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "## Visualization\n" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== SLIDING FIT FIT_MODEL VISUALIZATION ===\n", - "Note: Sliding strategy visualization requires detailed tracking data\n", - "For full sliding window visualization, run the complete sliding analysis\n", - "Using consistent timeline with 391 timestamps\n", - "Timeline range: 2025-06-05 13:30:00 to 2025-06-05 20:00:00\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABv0AAAY1CAYAAAAB6xJcAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FPXaxvF7Zje9QAgIUgSlBBQQ0KM0G2JBxYJH7OiriOVgxYJYAEGwi4qIBVGwAHaxcCzHhr0hKqgUG0VqgBRIdmfm/WPYTUKSTcgGtn0/18W1mdmZ3d8kzGyy9z7Pz3AcxxEAAAAAAAAAAACAmGVGegAAAAAAAAAAAAAAwkPoBwAAAAAAAAAAAMQ4Qj8AAAAAAAAAAAAgxhH6AQAAAAAAAAAAADGO0A8AAAAAAAAAAACIcYR+AAAAAAAAAAAAQIwj9AMAAAAAAAAAAABiHKEfAAAAAAAAAAAAEOMI/QAAAAAAAAAAAIAYR+gHAAAAYLd66KGHlJeXF+lh7HJ5eXl66KGH6u3xXn75ZeXl5WnFihX19pixbuTIkerXr1+khxG2FStWKC8vTy+//HJwXVXnSb9+/TRy5MjgcuD/xI8//hjW8+/4uAAAAABikzfSAwAAAACwe9Q2aJsxY4YOPvjgsJ5r69ateuKJJ3TQQQeF/Vj1aeTIkXrllVeCyxkZGWrZsqVOPvlknXPOOUpOTo7g6Hatc889V1999VVwOSUlRa1bt9app56qIUOGyDQj+5nQhx56SJMnTw4up6amKicnRx07dtRRRx2lgQMHxvXPBwAAAADCRegHAAAAJIi77rqrwvJrr72mTz/9tNL6tm3bhv1cW7du1eTJkzV8+PBKod+ll16qYcOGhf0cdZWcnKzx48dLkgoKCvTf//5Xd955p3788Ufdf//99fY8CxculMfjqbfHqw/NmjXTNddcI0nKz8/XG2+8oYkTJyo/P19XX311hEfnGjNmjNLT01VaWqo1a9Zo/vz5GjVqlJ5++mk9+uij2nPPPYPbjhs3To7jRHC09aNFixZauHChvN7Qf6LPmzdPhmHU+/PvqscFAAAAsHsR+gEAAAAJ4qSTTqqw/MMPP+jTTz+ttH5X83q9NYYbu/r5yx/zWWedpdNOO01vvfWWRo4cqaZNm9b5sW3bls/nU0pKilJSUupjuPUqKyurwrGfeeaZGjBggGbOnKkrrrgiKkLKY445Ro0aNQouDx8+XK+//rpuuOEGXXnllZozZ07wvqSkpEgMsd4ZhlGr/y/1WenoOI5KSkqUmppKBSUAAAAQJ5jTDwAAAECQbdt66qmndPzxx6tLly7q3bu3br31Vm3evLnCdj/++KMuvPBCHXzwweratav69eunG2+8UZI7P1mvXr0kSZMnT1ZeXl6F+e2qmqssLy9Pt912m9577z2dcMIJ6ty5s44//nh9/PHHlcb45ZdfatCgQerSpYv69++vWbNmhTVPoGmaOuiggyRJK1eulCSVlpbqwQcf1FFHHaXOnTvrsMMO01133aXS0tIqx/36668Hv2effPJJ8L4d5/RbtGiRhg4dqh49eqh79+4677zztGDBgkpjWrJkiYYMGaKuXbvq0EMP1ZQpU2TbdqXtCgoKtGzZMhUUFNTp2FNSUtS5c2cVFRVpw4YNwfW//PKLRo4cqSOPPFJdunRRnz59dOONNyo/P7/CNnl5eXr//feD63766Sfl5eXplFNOqfA8Q4cO1WmnnVanMUrSiSeeqNNOOy0YVAdUNaffm2++qUGDBql79+7q0aOHBg4cqKeffrpWz7NmzRrdeOON6t27d/D/4Isvvlhpu3/++UeXXXaZunXrpl69emnChAn65JNPlJeXpy+//DK4XXVz5Z177rk699xzg8tVzelXleoeb9u2bbr11lt18MEHq0ePHrr++usrnbP9+vXTxRdfrE8++USDBg1S165dNWvWrCoft7rzqap5JQOPGzgvu3btqoEDBwa/D++8844GDhyoLl26aNCgQVq0aFHIYwQAAABQd1T6AQAAAAi69dZb9corr2jQoEE699xztWLFCj377LNatGiRnn/+eSUlJWnDhg268MILlZOTo2HDhik7O1srVqzQu+++K0lq1KiRxowZozFjxuioo47SUUcdJanmOQW//fZbvfPOOzrrrLOUkZERrD774IMPlJOTI6ksNGvSpIkuv/xy2bathx9+uEJlWF38/fffkqSGDRvKtm1deuml+vbbbzV48GC1bdtWv/32m55++mn98ccfmjJlSoV9v/jiC7399ts6++yzlZOToxYtWlT5HEuWLNHZZ5+tjIwMDR06VF6vV7Nnz9a5556rZ555Rvvvv78kad26dRoyZIgsy9KwYcOUlpamOXPmVFkJ9u677+rGG2/UxIkTNWjQoDod+8qVK2UYhrKzs4PrPvvsM/39998aNGiQmjRpoiVLlmjOnDlaunSp5syZI8Mw1KFDB2VnZ+ubb77RkUceKUn65ptvZJqmfvnlFxUWFiozM1O2bev777/X4MGD6zS+gBNPPFGzZ8/W/Pnz1adPnyq3+fTTT3XNNdeoV69euvbaayVJy5cv13fffafzzjsv5OOvX79egwcPlmEYOvvss9WoUSN9/PHHuummm1RYWKjzzz9fkhuwnXfeeVq9erXOPfdc7bHHHnrttdf0xRdfhHV84bjtttuUnZ2t4cOH6/fff9fzzz+vVatWaebMmRXadv7+++8aMWKETj/9dA0ePFh77713vTz/n3/+qREjRuiMM87QiSeeqCeffFKXXHKJxo4dq/vvv19nnnmmJOmxxx7TVVddpXnz5kV8DkkAAAAgHhH6AQAAAJDkBjYvvPCC7rnnHg0cODC4/uCDD9bQoUM1b948DRw4UN9//702b96sadOmqUuXLsHtAnPCpaen65hjjtGYMWOUl5dX6/ahy5Yt01tvvaW99tor+LwnnXSS3nzzTZ1zzjmSpAcffFAej0fPP/98sA3ngAEDdNxxx+3UsW7cuFGSVFhYqLffflvvvfee8vLytM8+++i1117TZ599ppkzZ+rAAw8M7tO+fXuNHj1a3333nXr06BFc//vvv2vu3Llq165dyOecNGmSfD6fnn/+ebVq1UqSdPLJJ+vYY4/V3XffrWeeeUaS9Pjjj2vjxo164YUX1LVrV0nSKaecoqOPPnqnjrEqlmUFj33Tpk168cUX9dNPP+nwww9XampqcLuzzjpLF1xwQYV9u3XrpmuuuUbffvutDjzwQJmmqR49euibb74JbvPtt9+qf//+ev/99/Xdd9/p0EMPDQaA5b+XddGhQwdJZQFtVT788ENlZmZq2rRpO92q9P7775dlWZo7d24wZD7zzDN1zTXXaPLkyTrjjDOUmpqq2bNn648//tCkSZM0YMAASdLgwYN3e5vc8pKSkvTUU08F2502b95cd999t/73v/8FA1nJDeeeeOIJHXLIIfX6/L///rtmzZql7t27S5LatWunCy+8ULfccovefvttNW/eXJLUoEED3Xrrrfr6668rzfUJAAAAIHx8tA4AAACAJGnevHnKyspSnz59tHHjxuC//fbbT+np6cF2fVlZWZLcgMXn89Xb8/fu3TsY+ElSx44dlZmZGQx5LMvS559/riOPPLLCvHutW7feqRCjuLhYvXr1Uq9evXTUUUfpvvvuU7du3fTwww9Lcr8Pbdu21T777FPh+9CzZ09JqtC+UZL+9a9/1Rj4WZalTz/9VP379w8GfpK0xx576IQTTtC3336rwsJCSdJHH32kbt26BQM/ya2eLB/EBgwaNEi//vprrav8li9fHjz2AQMGaNq0aerXr58mTpxYYbvyAWBJSYk2btwYrET8+eefg/cdcMABWrRokYqLiyW5od+hhx6qjh076ttvv5XkhsmGYeiAAw6o1Rirk56eLkkqKiqqdpvs7Gxt3bq1QgvQ2nAcR++884769esnx3Eq/Nz79u2rgoKC4HF//PHHatKkiY499tjg/mlpaWFXMobj9NNPrzC/4Zlnnimv16uPPvqownYtW7as98BPckO+QOAnKfh/pWfPnsHAr/z6UMEtAAAAgLqj0g8AAACAJLcKqKCgIDgf344Cc74ddNBBOuaYYzR58mQ99dRTOuigg9S/f38NHDhQycnJdX7+Pffcs9K6Bg0aaMuWLcHn37Ztm1q3bl1pu6rWVSclJUVTp06VJCUnJ6tly5Zq1qxZ8P4///xTy5Ytq/H7ENCyZcsan3Pjxo3aunVrle0U27ZtK9u2tXr1arVv316rVq0KhiPl1UcrxhYtWmj8+PGybVt//fWXpk6dqvz8/EqtQzdt2qTJkyfrrbfeqnS85ecPPPDAA+X3+7VgwQI1a9ZMGzZs0IEHHqilS5cGKwC/+eYbtWvXTg0bNgxr7IFgMSMjo9ptzjrrLL399tu66KKL1LRpU/Xp00cDBgzQoYceKqlipWNAgwYNVFBQoC1btmj27NmaPXt2lY8d2G/lypVq3bp1hbaZUv38fOpqx///GRkZatKkSXCOyoDa/F+tix3P3cAHA8qfV5KUmZkpScFzGgAAAED9IvQDAAAAIEmybVu5ubm65557qrw/MG+eYRh68MEHtWDBAn3wwQf65JNPNGrUKE2fPl2zZ88OGcqEUl07Rsdx6vR4oZ6nd+/e1d5v27Y6dOigG2+8scr7dwwyylfFRbv09PQKx96jRw8NGjRI999/v26++ebg+quuukrff/+9LrzwQnXq1Enp6emybVtDhw6t8PPo3LmzUlJS9PXXX6t58+bKzc3V3nvvrQMPPFDPPfecSktLgy0/w/Xbb79JUoVq0B3l5ubq1Vdf1fz58/Xxxx/r448/1ssvv6yTTz5Zd955p1avXl2h3aUkzZgxQ/vss48kd97AU045pcrHrmlOyp1hWdZOtx+tD7X9v7pjoBlgWVaV66s7lt11TgMAAABwEfoBAAAAkOSGKZ9//rl69OhRq3CgW7du6tatm66++mrNnTtX1157rd566y2ddtpp1YYG4cjNzVVKSor+/PPPSvdVta6u9tprL/3yyy/q1atXvR1Ho0aNlJaWpt9//73SfcuXL5dpmsFqqebNm1d5PFXtG66OHTvqxBNP1KxZs3TBBReoefPm2rx5sz7//HNdfvnlGj58eHDbP/74o9L+ycnJ6tq1q7755hs1b948OG/fAQccoNLSUr3++utav369/vWvf4U91tdff12SamxPmZycrH79+qlfv36ybVtjxozR7Nmzddlll6lZs2aaPn16he0DbWQzMjJk23bIQFhyqyV/++03OY5T4f9HVT+f8pWq5a1atapCm9dw/fnnn8H2s5LbAnXdunXBCsedlZ2dLcmtyAt8LbnjBgAAABC9mNMPAAAAgCRpwIABsixLU6ZMqXSf3+8PhhebN2+uVKnTqVMnSVJpaakkd44zqX7b+AUq9N5//32tWbMmuP7PP//UJ598Um/PM2DAAK1Zs0Zz5sypdN+2bduCbSZ3hsfjUZ8+ffT+++9rxYoVwfXr16/XG2+8oQMOOCDY+vCwww7TggULtHDhwuB2Gzdu1Ny5cys9bkFBgZYtW1ah5ebOGjp0qPx+fzAMq6466+mnn65y/QEHHKCFCxfqyy+/DM7b16hRI7Vt21aPP/64JAXDwLqaO3euXnjhBXXv3r3atquSlJ+fX2HZNM1ghV5paalSUlLUu3fvCv8aNGggj8ejY445Rv/973+DFYXllW8Jeuihh2rt2rWaN29ecN3WrVur/P/SqlUr/fDDD8HzQpI++OADrV69uvYHXwuzZ8+uML/m888/L7/fX+fQL1BN+fXXXwfXFRcX69VXXw1rnAAAAAB2LSr9AAAAAEhy5+o7/fTT9eijj2rx4sXq06ePkpKS9Mcff2jevHm66aabdOyxx+qVV17R888/r/79+2uvvfZSUVGR5syZo8zMzGDIkJqaqnbt2untt99WmzZt1LBhQ7Vv314dOnQIa4zDhw/X/PnzdeaZZ+rMM8+Ubdt65pln1L59ey1evLg+vg066aST9Pbbb2v06NH68ssv1aNHD1mWpeXLl2vevHl64okn1KVLl51+3KuuukqfffaZzjrrLJ111lnyeDyaPXu2SktLdd111wW3Gzp0qF577TUNHTpUQ4YMUVpamubMmaPmzZvr119/rfCY7777rm688UZNnDhRgwYNqtPxtmvXTocddphefPFFXXbZZcrJydG//vUvPfHEE/L5fGratKk+/fTTCmFleQceeKCmTp2q1atXVwj3DjzwQM2ePVstWrSo1BI1lP/+979KT0+Xz+fTmjVrNH/+fH333Xfq2LGjHnjggZD73nzzzdq8ebN69uyppk2batWqVXrmmWfUqVMntW3bNuS+I0aM0JdffqnBgwfrtNNOU7t27bR582b9/PPP+vzzz/XVV19JkgYPHqxnn31WN9xwg37++Wc1adJEr732WpXVsaeddpr++9//aujQoRowYID++usvzZ07N2SL0rrw+Xw6//zzNWDAAP3+++967rnndMABB1RqZVpbffr0UfPmzXXTTTdp+fLl8ng8eumll5STk0O1HwAAABDFCP0AAAAABN12223q3LmzZs2apfvvv18ej0ctWrTQiSeeqB49ekhyw8Eff/xRb731ltavX6+srCx17dpV99xzT4WWhePHj9e4ceM0ceJE+Xw+DR8+POzQr3Pnznr88cd111136YEHHtCee+6pK664QsuXL9fy5cvDeuwA0zT18MMP66mnntJrr72md999V2lpaWrZsqXOPfdc7b333nV63Pbt2+vZZ5/Vvffeq0cffVSO46hr1666++67tf/++we322OPPTRjxgyNHz9ejz32mBo2bKgzzjhDe+yxh2666aZ6OcYdXXjhhfrwww/1zDPP6PLLL9e9996rcePG6bnnnpPjOOrTp48ef/zxKltrdu/eXR6PR6mpqerYsWNwfSD029kqvzFjxkiSUlJSlJOTo06dOmnChAkaOHCgkpOTQ+574oknas6cOXruuee0ZcsWNWnSRAMGDNDll18u0wzd6KZx48Z64YUX9PDDD+vdd9/V888/r4YNG6pdu3a69tprg9ulpaXpqaee0rhx4/TMM88oNTVVAwcO1KGHHqqhQ4dWeMxDDjlEI0eO1PTp0zVhwgR17txZU6dO1Z133rlT35Oa3HrrrZo7d64efPBB+Xw+HX/88br55pvr3J42KSlJkydP1tixY/XAAw+oSZMmOu+885SdnV3tXJcAAAAAIs9wmEEbAAAAQIy77LLLtHTpUr3zzjuRHgoS1JdffqkhQ4ZoxowZOvjggyM9HAAAAAAJiDn9AAAAAMSUbdu2VVj+448/9PHHH+uggw6K0IgAAAAAAIg82nsCAAAAiCn9+/fXKaecolatWmnlypWaNWuWkpKSKrVWBAAAAAAgkRD6AQAAAIgphxxyiN58802tW7dOycnJ6tatm6655hq1adMm0kMDAAAAACBimNMPAAAAAAAAAAAAiHHM6QcAAAAAAAAAAADEOEI/AAAAAAAAAAAAIMYxp18drVtXEOkhIIJM01CjRhnauLFItk2HXCDRcA0AEhvXACCxcQ0AEhvXACCxcQ0AEptpGsrNzYz0MEKi0g+oA9M0ZBiGTNOI9FAARADXACCxcQ0AEhvXACCxcQ0AEhvXACCxxcK5T+gHAAAAAAAAAAAAxDhCPwAAAAAAAAAAACDGEfoBAAAAAAAAAAAAMY7QDwAAAAAAAAAAAIhxhH4AAAAAAAAAAABAjCP0AwAAAAAAAAAAAGIcoR8AAAAAAAAAAAAQ4wj9AAAAAAAAAAAAgBhH6AcAAAAAAAAAAADEOEI/AAAAAAAAAAAAIMYR+gEAAAAAAAAAAAAxjtAPAAAAAAAAAAAAiHGEfgAAAAAAAAAAABHUt++B+vjjDyM9jBqVH+fq1avUt++BWrLkV0nSd999o759D1RBQYEk6a235urYYw+v0/MMHz5MDzxwb30MOaF4Iz0AAAAAAAAAAACAeHT77WP09ttvSJI8Ho+ysxuobdt26t//GB133ECZplub9dpr85SVlR3JodZKqHF26bK/XnttnjIzM8N+ngkT7pbXS4S1s/iOAQAAAAAAAAAA7CIHH9xbo0bdKtu2tXHjRn355Wd64IF79eGH7+uOO+6T1+tVbm7jSA+zVkKNMykpKezj8Pl8SkpKUnZ2g7AeJ1HR3hMAAAAAAAAAAGAXSU52w7AmTfZQXl5HDRlyge6441598cVnwSrA8m0zfT6f7rvvTp100jHq16+3Tj31BM2cOT3kc6xZ849uuWWkjj32cA0Y0E8jR16j1atXBe+3LEsPPXSfjj32cB133JGaMuUBjR8/WjfeOCK4zb//PVBz5jxX4XHPP/8sTZv2aHA5VBvSHdt7Bnz88Yc644xT1K9fb11zzXCtWfNP8L5p0x7V+eefpblzX9Vpp52ofv16S6rc3rOq5z322MP11ltzJZW1Gn3//Xd12WVD1a9fHw0dOkR//fWnFi/+WRdeeK6OOuoQjRhxhfLz80N+L2MZlX4AAAAAAAAAACAmrV5tqLDQ2C3PlZnpaM89nXp5rAMO+Jfateugjz76nwYOPLnCfS+8MEvz53+s2267Q02bNtOaNWu0du0/VT+QJL/frxEjLtd++3XRww8/IY/Ho6efnqYRIy7X00/PUlJSkmbNekZvvfWGbrzxVrVuvbdmzXpGH3/8oQ444MB6OZ7qbNu2TTNmPKmbbx4rrzdJ9957h8aMGaVHHnkyuM3KlX/rww//p9tvv0um6Qnr+Z588lFdccUINW3aTBMn3qaxY29Wenq6rrxyhFJTU3XrrTdq2rSpuvbaG8M9tKhE6AcAAAAAAAAAAGLO5s3S+eenybZ3z/OZpjRnTrEa1FPnydatW2vZsqWV1q9d+49atdpLXbt2k2EYatZsz5CP8/7778i2bY0ceYsMww1AR40arWOPPVzff/+tDjqop+bMeV7nnnu+DjusnyTp2mtv1FdffVE/BxKC3+/X1Vdfr/326yxJuvnmsTr77H9r0aKftO++7jqfz6ebbx6rnJycsJ/vzDPP0cEH95IknXbaGRoz5iY98MAj6tq1myTp+ONP0ttvzw37eaIVoR8AAAAAAAAAAPXgyy89OvBAS57wipVQSw0aSE89tXW3VvrVV+AnSY4jSZXHPmDAQF199X905pmnqmfPXurd+xAddFBPSdLdd0/QO++8Hdz23Xc/0dKlS7Ry5QodffShFR6ntLRUK1euUGFhoTZsWB8M2STJ6/UqL6+TpPqpXKyOx+NRp077Bpdbt26jzMws/fnnH8HxNGu2Z70EfpLUtm374NeNGuVKkvbZp125dY1o7wkAAAAAAAAAAKq3YYOhm29O0Z13blOPHrup9Azb223u2uBqV/nzz9/VvHnzSuvz8jrqhRde0xdffKZvvvlKt946UgceeJDGj79LQ4deojPPPLfC9lu3FqtDh44aPXp8pcdq2LD2YZphmHKcit9Lv99f6/3rKjU1rcZtDMOo1di83sqxV/l17uPE7/lJ6AcAAAAAAAAAQJh8Pve2tHT3VJ0htn377ddatmypBg8+q8r7MzIydeSRR+vII4/W4YcfqREjLteWLZuVk9NIOTmNKmzboUNHvf/+u8rJyVFGRmaVj5eb21iLFv2kbt16SHIDs19/Xay8vI7BbRo2bKgNG9YHl4uKCrV69cqwjtOyLP3yy6JgVd9ff/2hwsICtW7dZqcep2HDnApj+/vvv7Rt27awxhaPCP0AAAAAAAAAAAiTZbm3u2t+OcSO0lKfNmxYL9u2tXHjRn355WeaOfMp9e59iI499vhK28+a9YxycxurQ4eOMgxDH3zwnnJzc5WZmVXl4x999AA999xMjRw5QkOHXqImTfbQP/+s1scff6CzzhqiPfZoqtNOO0PPPPO0WrbcS61bt9GsWc+qsLCwwuMccMC/9Pbbc9Wnz6HKzMzSE09MlWmG16vW6/Xq/vvv1lVXXSePx6P7779L++3XpUKr0dro0eNAvfzyHHXu3EW2beuRRx6qsqov0fEdAQAAAAAAAAAgTIGwLxD+AQFffvmZTjrpWHk8HmVlZatdu/a66qprNWDACTJNs9L26ekZeu65GVqx4m+ZpqmOHffT3Xc/UOW2kpSamqqHH35MjzzykG666ToVFxerceMmOuCAg5SRkSFJOuOMc7RhwwbdfvtoGYap448/UYceeriKisqCv3PPPV+rV6/U9ddfpYyMTF100aVavXpVWMeempqqc845T2PH3qT169epa9duGjny1p1+nMsvv1oTJozVf/5zkXJzm+jKK0fo118XhzW2eGQ4OzZBjSGPPfaY7r33Xg0ZMkQ33XSTJKmkpER33HGH3nrrLZWWlqpv374aPXq0GjduHNxv1apVGjNmjL788kulp6fr5JNP1ogRI3YqFV63rqDejwexw+s1lZOTofz8Ivn9fHQHSDRcA4DExjUASGxcA4DExjUASGw1XQP++MPQRRel6aabSnT44SR/iH633z5GhYUFmjjx3kgPJSYErgHRrOpYOAYsXLhQs2bNUl5eXoX1EyZM0AcffKBJkyZp5syZWrt2rYYPHx6837IsXXzxxfL5fJo1a5buuOMOvfLKK3rwwQd39yEAAAAAAAAAAOJEoNKP9p4AIiUmQ7+ioiJdd911Gj9+vBo0aBBcX1BQoJdeekkjR45Ur1691LlzZ02YMEHff/+9FixYIEmaP3++li5dqrvvvludOnXSYYcdpiuvvFLPPvusSktLI3REAAAAAAAAAIBYFuipR+gHIFJick6/2267TYcddph69+6tRx55JLj+p59+ks/nU+/evYPr2rZtq+bNm2vBggXq1q2bFixYoA4dOlRo99m3b1+NGTNGS5cu1b777lurMZimIdM06u+gEFM8HrPCLYDEwjUASGxcA4DExjUASGxcA4DEVvM1wJBhSJIprzdmZ9VCAhk9+rZIDyGmxMLrf8yFfm+++aYWLVqkF198sdJ969evV1JSkrKzsyusz83N1bp164LblA/8JAWXA9vURqNGGTIMQr9El52dFukhAIggrgFAYuMaACQ2rgFAYuMaACS26q4BmZmSxyOlpXmUk7ObBwUAirHQb/Xq1br99tv15JNPKiUlJaJj2bixiEq/BObxmMrOTtOWLVtlWdTrA4mGawCQ2LgGAImNawCQ2LgGAImtpmvApk2GLCtFW7b4lJ9vRWCEAHalwDUgmsVU6Pfzzz9rw4YNGjRoUHCdZVn6+uuv9eyzz2ratGny+XzasmVLhWq/DRs2qEmTJpLcqr6FCxdWeNz169dLUnCb2rBtR7ZNiXaisyxbfj+/5AOJimsAkNi4BgCJjWsAkNi4BgCJrbprQGmpKceRSksdrhEAIiKmQr+ePXtq7ty5FdbdeOON2meffXTRRRdpzz33VFJSkj7//HMdc8wxkqTly5dr1apV6tatmySpW7dumjp1qjZs2KDc3FxJ0meffabMzEy1a9dutx4PAAAAAAAAACA+2HbFWwDY3WIq9MvMzFSHDh0qrEtPT1fDhg2D60899VTdcccdatCggTIzMzV+/Hh17949GPr17dtX7dq10/XXX6/rrrtO69at06RJk3T22WcrOTl5dx8SAAAAAAAAACAOWNs7ehL6AYiUmAr9amPUqFEyTVNXXHGFSktL1bdvX40ePTp4v8fj0dSpUzVmzBidfvrpSktL0ymnnKIrrrgigqMGAAAAAAAAAMSyQNjn90d2HAASV8yHfjNnzqywnJKSotGjR1cI+nbUokULPf7447t6aAAAAAAAAACABBEI/RwnsuNAfPv3vwdq8OAzNXjwWbXa/rvvvtEVV1yit9/+QFlZWbt4dIi0mA/9AAAAAAAAAACINNs2JEmWZUR4JIgGffseGPL+//u/i3ThhRfv9OM+/vgMpaWl1Xr7Ll3212uvzVNmZuZOP9fOCISLmZlZeu21eUpJSQnet3jxz7roovMkSfPnf7NLx5HoCP0AAAAAAAAAAAhToNIvMLcfEttrr80Lfv3+++9q2rSpeu65l4Lr0tLSg187jiPLsuT11hzZ5OTk7NQ4kpKSlJvbeKf2CUd6ero+/vgDHXXUscF1b7zxmpo2baY1a/7ZbeNIVGakBwAAAAAAAAAAQKwLhH2B8A+7h2fpkhr/VeDz1bi9+cfvFffZurXy49QgN7dx8F9mZqYMwwgu//nnHzr66EP1+eef6oILztERR/TSwoULtHLlCo0ceY0GDjxaRx11iIYOHaKvv/6ywuP++98DNWfOc8Hlvn0P1Ny5r+rGG6/VkUf20RlnnKL58z8K3v/dd9+ob98DVVBQIEl66625OvbYw/Xll5/r7LP/raOOOkTXXHO51q9fH9zH7/dr0qS7deyxh+u4447UlCkPavz40brxxhE1HveAASfozTdfDy6XlGzT+++/owEDTqi07Q8/LNBllw1Vv359NGjQ8Zo06W5t3bo1eP+8eW/qwgvP1VFHHaoTTzxGY8bcpPz8jZWO7ZtvvtKFF56rI4/so0suuUB//fVHjeOMV1T6AQAAAAAAAAAQpkDoR6Xf7pUx5qbQGxiGtsycXba4eXON+9iNm6hw0sPBZc9ffypj3K3a8sycsMa6o6lTJ2v48CvVvHlLZWVlac2aNerZs4+GDbtMSUnJmjfvTd1wwzV67rmX1KxZs2ofZ/r0x3XppZfrP/+5Ui++OFtjx96il16aq+zsBlVuv23bNj3//EzdcsttMgxT48bdoocfnqTRo8dLkp599mm988483XjjaLVps7deeOF5ffLJh+rRI3TLUkk65pjj9PzzM/XPP/+oWbNm+vDD/6lZs+bq0KFjhe1Wrlyha6+9XBdddKluvPFWbdqUr/vvv0v333+XRo0aLckNH4cOvUR77dVa+fn5mjz5ft1++xjdc8+DFR7rscemaPjwq9SwYY7uuWeiJk68TY888mSNY41HVPoBAAAAAAAAABCmQIUflX6oraFDL9a//tVTLVq0VHZ2A7Vv30Enn3yq9tmnnVq12ksXXXSpWrRooU8//Sjk4wwYcIKOOupYtWzZShdf/B9t3VqsRYt+rnZ7v9+v664bpY4d91VeXkcNGjRY3377dfD+l16ao3POOV+HHXaEWrduo6uvvl6ZmVm1OqacnEY6+ODeevvtuZKkN998Xccff2Kl7WbOnK6jjjpWgwefpVat9lKXLvvryiuv07x5b6qkpESSdMIJJ6lXrz5q0aKlOnfuoquuulZffPGZiouLKzzWsGGXqXv3A7T33vvonHPO048/Lgw+RqKh0g8AAAAAAAAAgDAxp19kFI25fae2dxo0qHEfZ4e59ay9Wu/089RGx477VlguLi7Wk08+ps8/n68NG9bLsiyVlJTUOBde27btg1+npaUpIyOjQhvMHaWmpqpFi5bB5dzcxsHtCwsLtXHjBu27737B+z0ej/LyOslxapdoH3/8iXrggXt19NED9NNPP2rcuDv0ww8LKmyzdOkSLVu2RO++Wzb3oeM4sm1bq1evUps2e+uXXxbryScf09Klv6mgoCD4/GvW/KO9996nyuMPzF+Yn58fsjoyXhH6AQAAAAAAAAAQJir9IsNq177mjcpLStr5fdLSdn6fWkhNTauw/PDDk/T111/qP/+5Si1btlJKSopuvvkG+Xz+kI/j3SGkNAxDjuPU2/Y7q2fP3rr77tt1xx3j1KfPIWrQoGGlbbZuLdZJJw3Sv/99RqX7mjZtpq1bt2rEiOE66KBeGj16vBo2zNGaNf/ommuGy+/3VXs8hmFIUq0DynhD6AcAAAAAAAAAQJjKKv2MyA4EMevHH3/QcccN1GGHHSHJrfz7559Vkg7YbWPIzMxUo0a5Wrx4kbp16yFJsixLv/32i9q371Crx/B6vTrmmOP13HMzKs2/F9ChQ0f9/vvvatmyVZX3L1u2VJs3b9YllwxX06Zuxd4vvyyqwxElFub0AwAAAAAAAAAgTIGwj0o/1FXLlnvpo4/+pyVLftWSJb9p7NibZNv1V4FXW6eeOljPPDNdn3zyof766w898MA9KijYIqn2gfZFF12qN954Twcf3KvK+88++zz99NMPuu++O7Vkya/6+++/9MknH+q+++6U5Fb7JSUl6aWXZmvlyhWaP/8jPfXUE+EeWtyj0g8AAAAAAAAAgDDR3hPhuvzyqzVx4m265JIL1KBBQ5199nkqKira7eM4++zztHHjBo0fP1qm6dGJJ56igw7qJdOsfR1ZUlKSGjZsWO397dq11+TJj+mxx6bosssukuSoefOWOvLIoyRJOTk5GjVqtB57bIpefHG2OnToqP/85yqNHHlNmEcX3wynPhu1JpB16woiPQREkNdrKicnQ/n5RfL7eRUHEg3XACCxcQ0AEhvXACCxcQ0AEltN14DXXvNq8uRkHXOMX9deWxqBEQK7hm3bOvvsf6tfv6N00UWXRno4ERO4BkQzKv0AAAAAAAAAAAhT2Zx+kR0HEK5//lmtr776Qt269ZDP59NLL83W6tWrdNRRx0Z6aKgBoR8AAAAAAAAAAGEKhH301kOsMwxDb789Vw8/PEmOI+2zT1tNmjRFbdrsHemhoQaEfgAAAAAAAAAAhCkQ+lHph1jXtGkzPfLIk5EeBuqg9rMuAgAAAAAAAACAKgUq/Aj9AEQKoR8AAAAAAAAAAGEKzOln20ZkBwIgYRH6AQAAAAAAAAAQJssytt9GeCAAEhahHwAAAAAAAAAAYSqr9IvsOAAkLkI/AAAAAAAAAADCFKjwo9IPQKQQ+gEAAAAAAAAAECbHcW+p9AMQKYR+AAAAAAAAAACEKRD2UekHIFII/QAAAAAAAAAACFMg7KPSD0CkEPoBAAAAAAAAABCmstDPiOxAACQsQj8AAAAAAAAAAMIUCPv8/ggPBEDCIvQDAAAAAAAAACBMgbaetPcEECmEfgAAAAAAAAAAhCkQ9jlOZMcBIHER+gEAAAAAAAAAEKbAnH609wQQKYR+AAAAAAAAAACEifaeACKN0A8AAAAAAAAAgDAFwr5AxR8A7G6EfgAAAAAAAAAAhKms0s+I7EAAJCxCPwAAAAAAAAAAwkR7TwCRRugHAAAAAAAAAECYLMvYfhvhgQBIWIR+AAAAAAAAAACEKRD2EfoBiBRCPwAAAAAAAAAAwuQ47i3tPQFECqEfAAAAAAAAAABhClT4EfoBiBRCPwAAAAAAAAAAwhQI+2jvCSBSCP0AAAAAAAAAAAhTWehnRHYgABIWoR8AAAAAAAAAAGGivSeASCP0AwAAAAAAAAAgTI7j3hL6AYgUQj8AAAAAAAAAAMIUaOtp22UBIADsToR+AAAAAAAAAACEybYlc/s77oR+ACKB0A8AAAAAAAAAgDBZluT1ul/7/ZEdC4DEROgHAAAAAAAAAECYbFtKSnKCXwPA7kboBwAAAAAAAABAmNzQr+xrANjdCP0AAAAAAAAAAAiTbZe197SsyI4FQGIi9AMAAAAAAAAAIEyWRXtPAJFF6AcAAAAAAAAAQJjKt/ek0g9AJBD6AQAAAAAAAAAQJts2yoV+RmQHAyAhEfoBAAAAAAAAABCm8nP60d4TQCQQ+gEAAAAAAAAAECbblpKTmdMPQOQQ+gEAAAAAAAAAECbLKqv0Y04/AJFA6AcAAAAAAAAAQJgsS+Xm9IvsWHaFH34wNXJkSqSHASAEQj8AAAAAAAAAAMLkOPE9p9/y5aa+/94T6WEACIHQDwAAAAAAAACAMFlWfM/p5/e7x+U4kR4JgOoQ+gEAAAAAAAAAECbbljzbC+Esy4jsYHaBQMtSQj8gehH6AQAAAAAAAAAQJssylJzsfh2PlX6BINPvj/BAAFSL0A8AAAAAAAAAgDCVn9MvUBUXTwJhXzweGxAvCP0AAAAAAAAAAAiTbUtJSfE7p18g7CP0A6IXoR8AAAAAAAAAAGFwnEDo5y7Hc+gXj8cGxAtCPwAAAAAAAAAAwuC4BX7B0C8eq+Fo7wlEP0I/AAAAAAAAAADCEAjCAu094zEY8/uNCrcAog+hHwAAAAAAAAAAYQiEfF5vYDn+gjHaewLRj9APAAAAAAAAAIAwBIKwQHvPQLvPeEJ7TyD6EfoBAAAAAAAAABCGHUO/eAzGAscUj8cGxAtCPwAAAAAAAAAAwhAI/bze+J3Tj9APiH6EfgAAAAAAAAAAhCEQhAUq/eJx3jvaewLRj9APAAAAAAAAAIAw2LYhKd7bexoVbgFEH0I/AAAAAAAAAADCsOOcfvFY6Ud7TyD6EfoBAAAAAAAAABCGstDPqbAcTwj9gOgXU6Hfc889p4EDB6pHjx7q0aOHTj/9dH300UfB+0tKSjR27FgdfPDB6t69uy6//HKtX7++wmOsWrVKw4YN0/77769evXrpzjvvlD/QjBgAAAAAAAAAgJ0UCPk8HvfW74+/FpiBt9HjMdAE4kVMhX7NmjXTtddeq5dfflkvvfSSevbsqf/85z9asmSJJGnChAn64IMPNGnSJM2cOVNr167V8OHDg/tblqWLL75YPp9Ps2bN0h133KFXXnlFDz74YKQOCQAAAAAAAAAQ4wLVbx6P+89xIjueXSFwjNTQANHLG+kB7Ix+/fpVWL766qv1/PPPa8GCBWrWrJleeukl3XPPPerVq5ckNwQ87rjjtGDBAnXr1k3z58/X0qVLNX36dDVu3FidOnXSlVdeqXvuuUfDhw9XcnJyrcdimoZMM/4+rYHa8XjMCrcAEgvXACCxcQ0AEhvXACCxcQ0AEluoa4BhGDIMKSnJ3B76GfJ64+taYdvuMRqGKW9MJQtA/YiF1/+YPTUty9K8efNUXFys7t2766effpLP51Pv3r2D27Rt21bNmzcPhn4LFixQhw4d1Lhx4+A2ffv21ZgxY7R06VLtu+++tX7+Ro0yZBiEfokuOzst0kMAEEFcA4DExjUASGxcA4DExjUASGxVXQM2bnQr/Bo2TFNKipSW5lFOTgQGtwsFqhgzMtLi7tiAeBFzod+vv/6qM844QyUlJUpPT9fDDz+sdu3aafHixUpKSlJ2dnaF7XNzc7Vu3TpJ0vr16ysEfpKCy4FtamvjxiIq/RKYx2MqOztNW7ZslWXRxBpINFwDgMTGNQBIbFwDgMTGNQBIbKGuARs3GrKsFBUWlsi2U1RQ4FN+vhWhke4axcUpsixDmzaVKj+fayAST+AaEM1iLvTbe++99eqrr6qgoED//e9/dcMNN+iZZ57Z7eOwbUe2HYeNmbFTLMuW388LHJCouAYAiY1rAJDYuAYAiY1rAJDYqroG+HymHEdyHEem6ai01Im764TP58hxDJWUxN+xAfEi5kK/5ORktW7dWpLUuXNn/fjjj5oxY4YGDBggn8+nLVu2VKj227Bhg5o0aSLJrepbuHBhhcdbv369JAW3AQAAAAAAAABgZ9jbMzCPx5Fpli3HE7/fvbXiq4ARiCvRP+tgDWzbVmlpqTp37qykpCR9/vnnwfuWL1+uVatWqVu3bpKkbt266bffftOGDRuC23z22WfKzMxUu3btdvfQAQAAAAAAAABxIBCEGYa2h37xNzVUIMiMx0ATiBcxVel377336tBDD9Wee+6poqIivfHGG/rqq680bdo0ZWVl6dRTT9Udd9yhBg0aKDMzU+PHj1f37t2DoV/fvn3Vrl07XX/99bruuuu0bt06TZo0SWeffbaSk5Mje3AAAAAAAAAAgJhUVunn/ovHaji/3w0y4/HYgHgRU6Hfhg0bdMMNN2jt2rXKyspSXl6epk2bpj59+kiSRo0aJdM0dcUVV6i0tFR9+/bV6NGjg/t7PB5NnTpVY8aM0emnn660tDSdcsopuuKKKyJ1SAAAAAAAAACAGJcYoZ97G4/HBsSLmAr9JkyYEPL+lJQUjR49ukLQt6MWLVro8ccfr++hAQAAAAAAAAASVCD0M03JNJ24bIEZCPsCFX8Aok/Mz+kHAAAAAAAAAEAkBQIxN/SLz3nvAscYj8cGxAtCPwAAAAAAAAAAwlA+9KO9J4BIIfQDAAAAAAAAACAMtu22vIzn0M+yjO23ER4IgGoR+gEAAAAAAAAAEAbHcW89Hmd7e8/4m/cuEPYR+gHRi9APAAAAAAAAAIAwxPucfrZdFmwS+gHRi9APAAAAAAAAAIAwBEK+eG3vGZjPTypr8wkg+hD6AQAAAAAAAAAQhkDI5/HEZ6VfxdAvcuMAEBqhHwAAAAAAAAAAYQi0vjRNyet14i4YKx9ixtuxAfGE0A8AAAAAAAAAgDCUb+9pGPFd6RdvxwbEE0I/AAAAAAAAAADCsGN7z3irhvP7jXJfR3AgAEIi9AMAAAAAAAAAIAyW5YZibntPybaNGvaILeVDTCr9gOhF6AcAAAAAAAAAQBhs223raRjxWelX/ngCASeA6EPoBwAAAAAAAABAGGzbDfsk5vQDEDmEfgAAAAAAAAAAhKF86Oe294zseOpboNLPMJjTD4hmhH4AAAAAAAAAAITBsiTTdCS5t/EWjAVCv+RkJ+5alwLxhNAPAAAAAAAAAIAwlK/083jir9LP73fn8UtOjr9jA+IJoR8AAAAAAAAAAGGwbbetp+SGf44T2fHUt7JKP1HpB0QxQj8AAAAAAAAAAMJg2+58d5Ib+gUq4+JFxfae8XVsQDwh9AMAAAAAAAAAIAy2bcR5e0/3NiVFcTdfIRBPCP0AAAAAAAAAAAiDZblhn+TexlsLzEDQx5x+QHQj9AMAAAAAAAAAIAyWpWCln2nGXzAWaOmZkuLEXaAJxBNCPwAAAAAAAAAAwmDbZZV+punEYejn3iYlxV8VIxBPCP0AAAAAAAAAAAiDbUuG4UiivSeAyCH0AwAAAAAAAAAgDLZd1t4zHkO/wPGkpjry+43IDgZAtQj9AAAAAAAAAAAIQ8X2nvFXDUd7TyA2EPoBAAAAAAAAABAGy9ox9IuvarhAdV9yMqEfEM0I/QAAAAAAAAAACINtG3Hf3tPjcf/FWxUjEE8I/QAAAAAAAAAACEP5Of1MMz5DP9OUvF4n7o4NiCeEfgAAAAAAAAAAhKF86OfxOHFXDef3u4FfPFYxAvGE0A8AAAAAAAAAgDBUntMvsuOpb5Yleb3x2boUiCeEfgAAAAAAAAAAhMFtf+lIis9gLBBquoGmEenhAKgGoR8AAAAAAAAAAGFwnIpz+sVbpZ/fb1DpB8QAQj8AAAAAAAAAAMJQcU4/ybLiqxrO73ePy+t15PdHejQAqkPoBwAAAAAAAABAGNz2nu7XHk/8Vfq57T2duKxiBOIJoR8AAAAAAAAAAGGwbUMej/u1YcRfMOb3S16vG2zS3hOIXoR+AAAAAAAAAACEwa2Ec7/2eh05TnwFf4HjY04/ILoR+gEAAAAAAAAAEAbHcSv8pLI2n/EV+hnb5/SLv/kKgXhC6AcAAAAAAAAAQBhsu6zSLxD6xVNFXKDSj/aeQHQj9AMAAAAAAAAAIAyWJZmmI6ks/IuncMyd08+Rx+MGnI4T6REBqAqhHwAAAAAAAAAAYXBDP/fr+GzvGZjTz0374unYgHhC6AcAAAAAAAAAQBgcp6zCL3AbT8FYWehXtgwg+hD6AQAAAAAAAAAQBsuSDMP9Oh6DMb/fkNdbdmx+f2THA6BqhH4AAAAAAAAAAITBto1gIBYI/yzLiNyA6tmOlX7xVMUIxBNCPwAAAAAAAAAAwlB+Tr94nPfOslSh0i+eqhiBeELoBwAAAAAAAABAGGw7vuf08/slr9ch9AOiHKEfAAAAAAAAAABhcJzylX7ubTwFY4H2nqbpbF+On9alQDwh9AMAAAAAAAAAIAxue083EAuEf/FV6efOWej1usvxFGgC8YTQDwAAAAAAAACAMNh2WdgXuI2nYMxt7xmfrUuBeELoBwAAAAAAAABAGALtL6X4DMbK2nuWLQOIPoR+AAAAAAAAAACEoapKv/gL/Zy4nK8QiCeEfgAAAAAAAAAAhMG2jWDY5/G4c/tZlhHBEdWvHdt7EvoB0YnQDwAAAAAAAACAMFhWfM/pF2jv6fXGX6AJxBNCPwAAAAAAAAAAwlBVe8/4Cv0M5vQDYgChHwAAAAAAAAAAYbDtsiq4QAtMx4nggOoZ7T2B2EDoBwAAAAAAAABAGMpX+sVjMOa293SCx2jbkR0PgKoR+gEAAAAAAAAAEAbblozt09zFYwvMsjn93GW/P7LjAVA1Qj8AAAAAAAAAAMIQCMUkxWU1nGW5gV88BppAPCH0AwAAAAAAAAAgDBXbe7qT+VmWEcER1S+/39hhTr/4OTYgnhD6AQAAAAAAAAAQBssygoFY4DbeKv08nrJAM56ODYgnhH4AAAAAAAAAAIShfKVfvLX3tG33nxv6ueto7wlEJ0I/AAAAAAAAAADCYNuSsb3jZSD08/sjN576FAj4vF4nGPrFy7EB8YbQDwAAAAAAAACAOgpU9O3Y3tNxIjOe+hYI+MpX+sVLFSMQb7x13XHBggWaN2+eVq9erZKSkgr3GYahRx55JOzBAQAAAAAAAAAQzQIBmGk622/d5XhpgRk4Dtp7AtGvTqHf008/rYkTJyo3N1etWrVSUlJSfY8LAAAAAAAAAICot2Oln3f7u+7xEoyVtfcsH2gakRsQgGrVKfR78skndc4552jUqFEyTTqEAgAAAAAAAAASUyAUC7xVHpjbz7bjIxgrX+lnmu6/eAk0gXhTp8Ru69atOvLIIwn8AAAAAAAAAAAJray9p3trGPEVjPn9bnjp8ZS1L2VOPyA61Sm1GzBggD7++OP6HgsAAAAAAAAAADFlx/aeUnwFY+Xbe0pu+BcvgSYQb+rU3vOmm27STTfdpBEjRqhXr17Kzs6utM3RRx8d9uAAAAAAAAAAAIhmO1b6Bb6Ot9AvEGp6PPFTxQjEmzqFfsuXL9d3332nlStX6s0336x0v2EYWrx4cdiDAwAAAAAAAAAgmu04p58UX9Vwfr97S+gHRL86hX6jRo1Senq6pk6dqjZt2igpKam+x1WlRx99VO+8846WL1+u1NRUde/eXddee6322Wef4DYlJSW644479NZbb6m0tFR9+/bV6NGj1bhx4+A2q1at0pgxY/Tll18qPT1dJ598skaMGCGvt07fDgAAAAAAAABAgrIsd867iqFf/ARjldt7xs+xAfGmTinXsmXL9NBDD+nQQw+t7/GE9NVXX+nss89Wly5dZFmW7rvvPl144YV68803lZ6eLkmaMGGCPvroI02aNElZWVkaN26chg8frlmzZkmSLMvSxRdfrMaNG2vWrFlau3atbrjhBiUlJemaa67ZrccDAAAAAAAAAIhtZe09neC6eGrv6fe7oabX6x6fG/oZkRwSgGrUKfTr1KmTNmzYUN9jqdG0adMqLN9xxx3q1auXfv75Z/3rX/9SQUGBXnrpJd1zzz3q1auXJDcEPO6447RgwQJ169ZN8+fP19KlSzV9+nQ1btxYnTp10pVXXql77rlHw4cPV3Jycq3GYpqGTJMLW6LyeMwKtwASC9cAILFxDQASG9cAILFxDQASW3XXANM0ZBhScrJZrhrOkGTK642H64V7fCkpprxeZ/sxGnFybEDtxcLrf51Cv9GjR2vkyJFq0qSJevbsGbG2mAUFBZKkBg0aSJJ++ukn+Xw+9e7dO7hN27Zt1bx582Dot2DBAnXo0KFCu8++fftqzJgxWrp0qfbdd99aPXejRhkyDEK/RJednRbpIQCIIK4BQGLjGgAkNq4BQGLjGgAkth2vAYWFbvVbTk6acnLcdampUmqqRzk5KREYYf1KT3ePr1GjdOXkuMeWkuKNi2MD4k2d0rqzzjpLfr9fF110kUzTVEpKxZPbMAx9++239TLA6ti2rQkTJqhHjx7q0KGDJGn9+vVKSkpSdnZ2hW1zc3O1bt264DblAz9JweXANrWxcWMRlX4JzOMxlZ2dpi1btsqy4qROH0CtcQ0AEhvXACCxcQ0AEhvXACCxVXcNyM83ZFkpKiwsVX6+u962U1RQYCk/3x+p4dab/HxTlpWswsIS5ec7cXVswM4IXAOiWZ1CvwsuuCDiVW5jx47VkiVL9Nxzz0Xk+W3bkW07NW+IuGZZtvx+fskHEhXXACCxcQ0AEhvXACCxcQ0AEtuO14CSEkOOIzlO2XrDkHw+Jy6uFSUlkuNIki2/35FhOCotjY9jA+JNnUK/yy+/vL7HsVNuu+02ffjhh3rmmWfUrFmz4PrGjRvL5/Npy5YtFar9NmzYoCZNmgS3WbhwYYXHW79+vSQFtwEAAAAAAAAAoDbs7dmXWW66L9N0gutjnWW5BUAej4K3lhXBAQGoVvTPOliO4zi67bbb9O677+rpp59Wq1atKtzfuXNnJSUl6fPPPw+uW758uVatWqVu3bpJkrp166bffvtNGzZsCG7z2WefKTMzU+3atdstxwEAAAAAAAAAiA/O9oZw5UO/eArGAsfh9boHapqSbTP1FRCN6lTpN2TIkBq3mTFjRl0eOqSxY8fqjTfe0JQpU5SRkRGcgy8rK0upqanKysrSqaeeqjvuuEMNGjRQZmamxo8fr+7duwdDv759+6pdu3a6/vrrdd1112ndunWaNGmSzj77bCUnJ9f7mAEAAAAAAAAA8ausEq5sOig3GIvUiOqXf/vUfVT6AdGvTqFfZmZmpTn9tmzZop9//lnZ2dnq3LlzvQxuR88//7wk6dxzz62wfuLEiRo0aJAkadSoUTJNU1dccYVKS0vVt29fjR49Oritx+PR1KlTNWbMGJ1++ulKS0vTKaecoiuuuGKXjBkAAAAAAAAAEL8CAVj5Sj+vtywMjHWB4wuEfu6xRW48AKpXp9BvypQpVa7fuHGjLrvsMh133HFhDao6v/76a43bpKSkaPTo0RWCvh21aNFCjz/+eH0ODQAAAAAAAACQgKqa088w4qfSr6y9p3vr8TjB6j8A0aVe5/Rr1KiRhg4dqgceeKA+HxYAAAAAAAAAgKhUVehnmvFTDef3B9qXusvx1LoUiDf1GvpJkmVZwbn2AAAAAAAAAACIZ1WFfl5v/ARjluUeW+D4mNMPiF51au/5888/V1rn8/m0bNkyPfzww+ratWvYAwMAAAAAAAAAINrt2P5SkkzTiZtgzLLKqvykQOgXH/MVAvGmTqHfqaeeKsOoeFI7jiNJ2n///TVu3LjwRwYAAAAAAAAAQJQLVPSVf8s8nlpg+v3uPH4BVPoB0atOod+MGTMqrUtJSVGzZs3UtGnTsAcFAAAAAAAAAEAsqKq9p8cTX6Ff+SpGj0fy+SI3HgDVq1Pod9BBB9X3OAAAAAAAAAAAiDm27Zb4la+GM03J74+PFpiV23s62rYtPo4NiDe1Dv02bdqk7OxsmaapTZs21bh9w4YNwxgWAAAAAAAAAADRL94r/SzLqGJOv8iNB0D1ah369erVS7Nnz1bXrl3Vs2fPSnP67Wjx4sVhDw4AAAAAAAAAgGgWCMDKB2PxNqdf+fae8XRsQLypdeg3YcIEtWrVSpI0ceLEXTYgAAAAAAAAAABiRSD0K18nY5rxM++d296zrHWp1xs/rUuBeFPr0O+UU06RJPn9fnXo0EF77rmnGjVqtMsGBgAAAAAAAABAtKu6vaejkpL4CMYqz+lHe08gWpk1b7LDDqap008/Xb/88suuGA8AAAAAAAAAADEjEPrFazC2Y3vPeDo2IN7UKfRr2bKlNm/evCvGAwAAAAAAAABAzKgu9IuXee8sy9hhvkInbo4NiDc7HfpJ0iWXXKIpU6ZozZo19T0eAAAAAAAAAABiRlXtPQ0jnkK/+K1iBOJNref0K2/evHnKz89X//79lZeXp8aNG1e43zAMPfLII/UyQAAAAAAAAAAAopVluXP3VZzTr2x9rKuqvaffH7nxAKhenUK/oqIi7b333hWWAQAAAAAAAABINLZdMfCT4qsazrIkr9cJLsdT61Ig3tQp9Js5c2Z9jwMAAAAAAAAAgJhTVehnmvEV+lWc0y9+qhiBeFOnOf0AAAAAAAAAAED1oZ/jVL19rPH7Deb0A2JEnSr9JGnJkiWaOnWqFi5cqHXr1qlJkybaf//9NWzYMHXo0KE+xwgAAAAAAAAAQFRyK+EqJnwejxM3wdiOc/p5vfFzbEC8qVPo9+GHH2r48OFq1qyZ+vfvr9zcXG3YsEHvvfeeBg0apMmTJ+vwww+v56ECAAAAAAAAABBdLCv+23smJ5ctx9OxAfGmTqHfXXfdpUMOOUQPP/ywzHJXs+uvv16XXXaZ7rrrLkI/AAAAAAAAAEDcc5zKoZ/H47b9jAd+v5SWVlbJSHtPIHrVaU6/FStW6Mwzz6wQ+EmSaZo666yztGLFinoZHAAAAAAAAAAA0ay6Of1s24jMgOqZZVVs70noB0SvOoV+eXl51QZ7K1asUPv27cMaFAAAAAAAAAAAscCyDHk8FdfFUzDmzllYtuweW3wEmkC8qVN7z1tvvVXXXHON0tLS1L9/f2VlZamgoEDvvvuupk+frnvvvbe+xwkAAAAAAAAAQNSpvtIvMuOpb26oWbG9Z7wcGxBvah36de/eXYZRlt77fD6NGjVKo0aNktfrld/vdx/Q69X555+v7777rv5HCwAAAAAAAABAFNmxEk6Kr0o/v79ye0/bducyNCj4A6JKrUO/Cy64oELoBwAAAAAAAABAonMcyTSdCus8HiduquEsq2IlY6Dqz7Yrh50AIqvWod/ll1++K8cBAAAAAAAAAEDMqaq9p2HETwtMy5K83ortPQPrCf2A6GLWvAkAAAAAAAAAAKjKjpVwktsOM17bewaOdfuMXwCiSK0r/S655BKNHDlSbdq00SWXXBJyW8Mw9Mgjj4Q9OAAAAAAAAAAAollVoZ9pSpYVH9NlWZZRoaIvEADGSyUjEE9qHfoVFRXJ2v7RhKKiol02IAAAAAAAAAAAYoVtG5XaXJpm/IRibnvPsuXy7T0BRJdah34zZ86s8msAAAAAAAAAABKVbbtz+JXn8cRP6Oe29yyb0y9Q1UjoB0Qf5vQDAAAAAAAAAKCObFvVVvo5TtX7xJId25d6PM729fHRvhSIJ7Wu9Js+fXqtH9QwDJ1//vl1GQ8AAAAAAAAAADHDsiqHfoFgrKpAMNa4lX5ly7T3BKJXrUO/O++8s9YPSugHAAAAAAAAAEgEti2ZZsWSvvLBWOyHfhXnLAwEgIR+QPSpdej3yy+/7MpxAAAAAAAAAAAQc6pr7ynFRzBm2xUr/QLzF8bDsQHxhjn9AAAAAAAAAACoI9suC8ICAqGfbe/+8dQnx6lcrUh7TyB61brS7+eff1bbtm2Vmpqqn3/+ucbt99tvv7AGBgAAAAAAAABAtHPbe1ZcFwjGYj30CwR7gTkK3a/d21g/NiAe1Tr0O/XUUzVnzhx17dpVp556qowdP7qwneM4MgxDixcvrrdBAgAAAAAAAAAQjSzLiNv2noHxl2/v6fW6AaDfb0hyKu8EIGJqHfrNmDFDbdu2DX4NAAAAAAAAAECis6z4rfTz+93b8qFmvASaQDyqdeh30EEHVfk1AAAAAAAAAACJynEqh36m6VbAWVZsV8OVtfcsW8ecfkD0MmveBAAAAAAAAAAAVCWeK/2qau8ZL8cGxKNaV/qV17Fjx2rn9AtgTj8AAAAAAAAAQLyzbcnjqVjNFwgBYz0Yc+ftq3h8VPoB0atOod/IkSMrhX5btmzRp59+qrVr12rIkCH1MjgAAAAAAAAAAKKZG/pVXBcvwVioSr9YPzYgHtUp9Dv//POrXH/55Zfr+uuv1+bNm8MZEwAAAAAAAAAAMaGq9p6B5VgPxvx+97Zi6Fd+vkIA0aTe5/Q78cQTNXv27Pp+WAAAAAAAAAAAoo7jSDvOhhVvoV/5UJM5/YDoVe+h3++//y6bsx0AAAAAAAAAkAAsy6i2vafjVN4+lgTe6qe9JxAb6tTec/r06ZXW+Xw+LVu2TPPmzdMJJ5wQ9sAAAAAAAAAAAIh2tl25vWfFFpixm/z5/W4Jo9dbdgyBYw1UAQKIHnUK/e68885K65KTk9WsWTMNGTJEl112WdgDAwAAAAAAAAAg2lmWKlX6xXN7z0DVHw3/gOhTp9Dvl19+qe9xAAAAAAAAAAAQc6qq9Assx3owFggtae8JxIZ6n9MPAAAAAAAAAIBEYduSYVRcFy/BWGD85SsZy6oYjco7AIioOlX6vfrqqzu1/cknn1yXpwEAAAAAAAAAIKrZdsU576SykCzWK/0C7T3LV/oZhhv8xXqgCcSjOoV+I0eOlLH9owuOU3Yxq24doR8AAAAAAAAAIB5ZVjy393Tf899xzkKPh9APiEZ1Cv1efPFFXXnllTrppJN0zDHHqHHjxlq/fr3mzZun119/XZMmTVKbNm3qeagAAAAAAAAAAESXUHP6BSrlYlVZe88dKxkdQj8gCtUp9Lv33nt1+umna9iwYcF1ubm5ysvLU2pqqu655x49/fTT9TZIAAAAAAAAAACikW0blUK/svaesT3vXSDY8+6QJNDeE4hOZs2bVPb9999rv/32q/K+/fbbTz/88ENYgwIAAAAAAAAAIBZUXennVsY5ThU7xJBApSLtPYHYUKfQr1GjRnrrrbeqvO/NN99Uo0aNwhoUAAAAAAAAAACxwLYrh2KByrh4ae+5Y6WfxxP78xUC8ahO7T0vueQS3Xrrrfrrr7/Uv39/5ebmasOGDXrvvff09ddf67bbbqvvcQIAAAAAAAAAEHUsq3Kln7G9q2esB2OB0LKq0M/vj+3WpUA8qlPoN3jwYDVp0kRTp07V3XffLb/fL6/Xq3333VdTpkxRv3796nucAAAAAAAAAABEHTf0q9jHMxACxnoLzECwZ+yQ79HeE4hOdQr9JOmII47QEUccIdu2tXHjRjVq1Ejmjh9nAAAAAAAAAAAgjjlO5Uq/QGVcrFf6WZZ7LJVDPyfmjw2IR2GndIZhyLIs2ZzhAAAAAAAAAIAEU1V7z8ByrL9tblluwLcj06TSD4hGdQ79PvnkEw0ePFhdunTREUccoV9//VWSdMstt+j111+vtwECAAAAAAAAABCtbNttd1leWXvP2J73zu+vfGySW/1H6AdEnzqFfm+88YaGDRumli1bavTo0RWq/Fq1aqWXX3653gYIAAAAAAAAAEC0siyjytDPMGI/GAu099wRc/oB0alOod+UKVN03nnn6b777tOgQYMq3Ne+fXstWbKkXgYHAAAAAAAAAEA0q2pOP8ldF/vtPSsHmlLg2GK7ihGIR3UK/f7++28ddthhVd6XlpamgoKCsAYFAAAAAAAAAEAssO34Df2qa+9JpR8QneoU+jVp0kTLly+v8r5ff/1VzZs3D2tQAAAAAAAAAABEO8epPvTzeJyYD8Zo7wnEljqFfieccIIeeughff7558F1hmHot99+0xNPPKETTzyx3gYIAAAAAAAAAEA0chz31jSdSvfFQzBmWW54uSOv15HfH4EBAQipioy+ZsOHD9eSJUv0f//3f2rYsKEk6aKLLtLGjRt1+OGHa9iwYfU5RgAAAAAAAAAAok4g+Kp+3rvdO5765vdXXekXD8cGxKM6hX7Jycl65JFH9MUXX+izzz5Tfn6+GjRooN69e6t37971PUYAAAAAAAAAAKJOIPiK1zn9LMugvScQQ+oU+gX07NlTPXv2rK+xAAAAAACQcGxbWrHC0F57VW6dBQAAoluo0M8NxozdO6B6Zlnxe2xAPKrTnH7l2batIUOG6I8//qiH4QAAAAAAkFg++8yjiy9OU0lJpEcCAAB2ViD0S8T2nlT6AdEn7NDPcRx99dVXKioqqo/x1Ojrr7/WJZdcor59+yovL0/vvfdepfE88MAD6tu3r7p27arzzz+/UiC5adMmjRgxQj169NCBBx6oUaNG7bbxAwAAAABQXn6+Ib9fhH4AAMSgUJV+Xm/sB2Nu6Fe5G0E8HBsQj8IO/Xa34uJi5eXlafTo0VXe//jjj2vmzJkaM2aM5syZo7S0NF144YUqKffX07XXXqulS5dq+vTpmjp1qr755hvdeuutu+sQAAAAAAAIKi52b30+WmQBABBrAsFXVZV+huHEfKVf9e09HUI/IAqFNadfJBx22GE67LDDqrzPcRzNmDFDl156qfr37y9Juuuuu9S7d2+99957Ov7447Vs2TJ98sknevHFF9WlSxdJ0s0336xhw4bp+uuvV9OmTWs1DtM0ZJr8QZaoPB6zwi2AxMI1AEhsXAOAxLYrrgHbtpkyDMlxzCo/SQ8gevB7AJDYqroGmKZkGFJSkiGvt+K1wes15DiV18cSxzGUnFz5GJKSYv/YgJ0VC6//YYd+Ho9HM2bMUJs2bephOOFZsWKF1q1bp969ewfXZWVlaf/999f333+v448/Xt9//72ys7ODgZ8k9e7dW6ZpauHChTrqqKNq9VyNGmXIMAj9El12dlqkhwAggrgGAImNawCQ2OrzGuA4bnVARka6cnLq7WEB7EL8HgAktvLXAJ/PfR1v0CCt0ut4WpqUmupVTk7Kbh5h/fF6pfR0KScnqcL69HRp8+bK6wFEVr1U+h100EHaunWr/vzzT+21114RC8PWrVsnScrNza2wPjc3V+vXr5ckrV+/Xo0aNapwv9frVYMGDYL718bGjUVU+iUwj8dUdnaatmzZKsuK8Rp9ADuNawCQ2LgGAIltV1wD1q9PkmV5tH59ibKyqPQDohm/BwCJraprwIYNhiwrRUVFpcrPr3hd8PtTVFBgKz/fF4nh1ovCwmR5vVJ+fmmF9T5fkoqLjUrrgXgWuAZEszqFftOmTdPWrVs1fPhwSdI333yjSy+9VIWFhWrZsqWmTZumvfbaq14HGm1s25Ft88dYorMsW34/v+QDiYprAJDYuAYAia0+rwGFhW6137ZtDtcVIEbwewCQ2MpfA3w+Q44jOU7l64JhOPL7Y/v13e93lJxc+RgMw5HPZ8T0sQHxqE4NSF944YUKc99NnDhR7dq105QpU5STk6P77ruv3ga4M5o0aSJJ2rBhQ4X1GzZsUOPGjSVJjRs31saNGyvc7/f7tXnz5uD+AAAAAADsLsXF7q0vdosAAABIWJbl3no8le/zeCQ7xjMxv7/6YwscO4DoUafQ759//lHr1q0lSWvWrNHPP/+sESNG6IgjjtCwYcP0zTff1Osga6tly5Zq0qSJPv/88+C6wsJC/fDDD+revbskqXv37tqyZYt++umn4DZffPGFbNtW165dd/uYAQAAAACJrajInTrC74/wQAAAwE4LBF9VzXhlmrH/+m5ZVYd+punEfKAJxKM6tfdMSUlRYWGhJOnzzz9Xenp6MFTLyspSQUFB/Y1wB0VFRfrrr7+CyytWrNDixYvVoEEDNW/eXEOGDNEjjzyi1q1bq2XLlnrggQe0xx57qH///pKktm3b6pBDDtEtt9yisWPHyufzady4cTr++OMrVC8CAAAAALA7UOkHAEDsCgRfZhXlNR5P7AdjlmXI6608zRWVfkB0qlPo17VrVz322GMyTVPTpk3ToYceKs/2uP+vv/7apeHZTz/9pCFDhgSXJ06cKEk65ZRTdMcdd+iiiy7S1q1bdeutt2rLli064IAD9MQTTyglJSW4zz333KNx48bpvPPOk2maOvroo3XzzTfvsjEDAAAAAFCd4mK3NMDnq6JEAAAARLVAqOet4p32eGnvWdWxeb2EfkA0qlPod8MNN+jiiy/WJZdcoubNm+vqq68O3vf2228Hq/52hYMPPli//vprtfcbhqErr7xSV155ZbXbNGzYUPfee++uGB4AAAAAADslUOkX6+2/AABIRLbtfminqko/w4j9YKz69p6xH2gC8ahOoV+7du30/vvvKz8/Xzk5ORXuu+GGG9SkSZN6GRwAAAAAAPHMtqVt2wKVfhEeDAAA2Gll7T2rboEZ68GYG/pV196TLgVAtKlT6BewY+AnSXl5eeE8JAAAAAAACSNQ5SdR6QcAQCwKVPJVPadf7Adj1bX3ZE4/IDrVOvQbP368LrjgAjVv3lzjx4+vcXvmyAMAAAAAILSiorI3ApnTDwCA2FNW6Vf5vngIxizLqLK9p8fjxPyxAfGo1qHf//73P/373/9W8+bN9b///S/ktoZhEPoBAAAAAFADKv0AAIhtgdCvqmDMMGK/vaffX/WxxUOgCcSjnQr9qvoaAAAAAADUTXFx+Uq/CA4EAADUSU2VfrH++k57TyC27PScfitWrNALL7ygBQsWaP369TIMQ40bN1aPHj102mmnac8999wV4wQAAAAAIO4UFZV9HetvCgIAkIhCz+nnxPycfrYteb1OpfWEfkB0quJSVL25c+fquOOO06OPPqo//vhDWVlZysjI0O+//64pU6bo2GOP1VtvvbWrxgoAAAAAQFwJVPqlpDjy+2P7TUEAABJRqNDPNOOjvWf18xXyuwsQbWpd6bds2TKNGjVKBxxwgG655Ra1bdu2wv1LlizRuHHjNHLkSHXq1El77713vQ8WAAAAAIB4Egj9srKo9AMAIBbZtvtaXtW8d/ER+hlVtveMh2MD4lGtK/2ee+45tWrVSo899lilwE+S2rdvryeeeEItW7bUs88+W6+DBAAAAAAgHhUXS2lpjpKTHfn9kR4NAADYWc72zpemWV0LzNiuhrPtqgNNr9eRbRP8AdGm1qHfV199pcGDBys5ObnabZKTkzV48GB99dVX9TI4AAAAAADiWXGxoYwMKSmJSj8AAGJRoL1ndZV+sTzvneO47T2rOrbAOkI/ILrUOvRbvXq18vLyatwuLy9PK1euDGtQAAAAAAAkgqIiKT3dkdcr5vQDACAGBUKv6ua9i+VQLFDF6PVWXcUoxXaoCcSjWs/pV1RUpIyMjBq3S09PV3FxcViDAgAAAAAgERQXG0pPd7+m0g8AgNgTCL2qCv1ifd67QOvxqub0M7Z/VonQD4gutQ79HKdymg8AAAAAAOquuNit9PP5CP0AAIhFZXP6Vb7P43FiOhQLhH5Vz+nn3sby8QHxqNahnySdd955MozQ7UYIBwEAAAAAqJ1ApV9RUdkbawAAIHaEau8Z65V+gUCvqko/2nsC0anWod/w4cN35TgAAAAAAEg4xcWGcnNtlZYa8vmY0w8AgFgTqhrO44ntUCzUsQVCTssyJFEIBEQLQj8AAAAAACKkqMht71lQYFDpBwBADLJt90M7Vbf3jO1KP7/fPbaqA0036IvlUBOIR1VcigAAAAAAwO4QaO+ZlOQwpx8AADHItiXDcP/tyDDKQsFYFAgsAwFfeYEgMJZDTSAeEfoBAAAAABAhxcVupZ/Xy5x+AADEItuuuhJOcufCi+VKuMDvJlXN6RdYF8vHB8QjQj8AAAAAACLAccpX+ok5/QAAiEGBSr+qmGZsh2K1m9Nv940HQM0I/QAAAAAAiICtW93gLyPD2R76RXpEAABgZ1lW1e0vJck0nZgOxQJjr3pOv4rbAIgOhH4AAAAAAERAUZFbFpCeLnm9Du09AQCIQbZdVvW2I4/H/YBPrLIs93eVqtp7MqcfEJ0I/QAAAAAAiIDiYvc2PZ1KPwAAyispifQIai/UnH6x3t4zMHavt3JyGahu9PtpTw5EE0I/AAAAAAAioLjYfZMsI8OR18ubZgAASNIffxg6+eR0rV0bG6+Loeb083hiO/QLdCGoqpKR9p5AdCL0AwAAAAAgAsoq/USlHwAA2/39tym/X/r771gJ/YyQ7T1tOzaOoypllX6V7yP0A6IToR8AAAAAABFQsdKPOf0AAJCkTZvc18c1a2LjrWvLSoT2npXvY04/IDrFxpUTAAAAAIA4U1Tk3qalUekHAEBAfr4b+sVKe0/Lqrr9peSuj+VQLPCBpKpCTSr9gOhE6AcAAAAAQAQUFxtKTnY/PZ+UxJx+AABIZZV+sRL62Xb1lX4ejxPcJhZZlvsz8HqdSvcFgk46FQDRhdAPAAAAAIAIKC42lJ7uvonm9bpvmjmV31MDACChxFqln21Lpln1C3ggGIvVarhQlX6BIDCW5ywE4hGhHwAAAAAAEVBc7M7nJ0lJSe4tn5YHACS6TZvc29gK/aq+L9bnvaO9JxB7CP0AAAAAAIgAt9LP/drrdW+Z1w8AkOjy8w2lpjpat86MibAsVHvPWK/0C3z/A7+nlBfrxwbEK0I/AAAAAAAioKhIwfaeSUnuOir9AACJLj/fUPv2tvz+slaf0cyyqPQDED0I/QAAAAAAiICqK/2i/81NAAB2ldJS9/WxfXs3JYuFFp+2bVQb+gXWx27o537/Cf2A2EHoBwAAAABABBQXl6/0Y04/AAAClX15ebEU+tVc6RerwVigdalRxY8h1o8NiFeEfgAAAAAAREBxsaGMDPfrQHtP5vQDACSyTZvcdKlVK0dpaU7Mh35l895F/3FUxe+P32MD4hWhHwAAAAAAEeC293Qr/Mrae0ZwQAAARFig0q9hQ0d77OFozZroD5Qsq+r2l5Jkmk5wm1jk90ter1PlfYbhBn+xemxAvCL0AwAAAAAgAoqKpIyMQHtPd11g7hwAABLRpk3ubSD0W7s2+t++tqyycG9HgTDQqfruqGdZZR9MqorHE7vzFQLxKvqvmgAAAAAAxBnHCVT6ucuBT9FT6QcASGSbNhnKynKUlKTtoV/0fxjGceJ3Tj/LMqqtYpQkj8eJ2WMD4hWhHwAAAAAAu1lpqfsGYKC9Z1mlXwQHBQBAhOXnG2rY0H1t3GMPW+vWRX/oZ9uh2nu6t7EajLntPau/3+OJ3WMD4hWhHwAAAAAAu1lxsXubkeHeBkI/Kv0AAIksP99QTk4g9HO0ZYuhrVsjPKgauO09q74vsD5WW2CGmq9QIvQDohGhHwAAAAAAu1lRkVu5EKj0C3yK3ueL/ooGAAB2lU2bylf6ubfR3uLTto0a23vGQujn80kPP5ykZcvKvt9u6Ff9hISmGRvHBiQSQj8AAAAAAHaz4uJA6OcuJyW5b6jR3hMAkMjc9p7u102bxkboF6oarmxOv+g+Bkl66qkkvfpqkqZMSQ6uq6m9p9cr+f3Rf2xAIiH0AwAAAABgNwu096xc6RehAQEAEAU2bSpr75mb68g0pbVro/stbMeRjGpyL9N0jyXaq+G++cbUnDlJOuggSwsXerRwofs99/sN2nsCMSa6r5gAAAAAAMShsko/983AwJx+VPoBABKVbUtbtpS19/R6pUaNnKiv9LPt6iv9Am0/o/n1PT9fuvPOFPXoYWncuBK1bWtr5kz3F5Oa5vQzTSfqA00g0RD6AQAAAACwmwUq/TIy3Fvm9AMAJLrNm90ArVGjsjnk9tjD0Zo10f3a6PeXVfTtKNrn9LNt6e67U+Q40g03lMg0pbPP9mnBAo9+/NGsMfSj0g+IPoR+AAAAAADsZkVFhrzesgo/wwjMixPZcQEAECn5+W6416BB+dDP1rp10R362XZZRd+OAuudqjPBiHvlFa++/tqj664rVaNG7ro+fSy1aWPrmWeSts/pV/3gCf2A6EPoBwAAAADAblZc7Lb2LD8HUFKSw5x+AICEtWmT+6JYvtKvaVMnJub0q64aLlDJH40f6lm50tATTyRr0CCfDj64LLkzTemcc3z67juPFi82Q1b6uR9Yiu5QFkg00X3FBAAAAAAgDhUXG0pPr7jO6xWhHwAgYVVd6edo/XojattjSm6lW3WVfoEP90Tj+L/+2k3zLrig8i8fhxxiqXVrWytXhg79TDM6jw1IZIR+AAAAAADsZkVFhjIyKrbL4tPyAIBEtmmToZQUp8KHYvbYw5HfL23YEL2vj7Zt1Nje07Kib/yLFplq395WSkrl+wJz+0ll1YpVob0nEH0I/QAAAAAA2M0C7T3LS0qi0g8AkLjy8w3l5FRct8cebhnZ2rXRF5oFWFao9p7ua300VsMtXuxRp07VJ3aHHWapVStbaWmh5vRzCP2AKBMipwcAAAAAALtCUVHl9p5JSU5UzvkDAMDusGmToYYNKwZMe+zhLq9da2i//SIxqprZdvXtPQProy3027hR+ucfQ/vuW/3ATFO6886SkI9DpR8QfQj9AAAAAADYzYqLpdzcyu09qfQDACSq/PzKoV9GhpSW5kR1pZ/jVB/6BSoAoy0YW7TIHVio0E+SmjSpvspPco872o4NSHS09wQAAAAAYDcrLq5c6cecfgCAROa296wYMhmG1LSpo7Vro/dtbMuSTLPqcKxsTr/dOKBaWLzYVOPGTo2hXk2o9AOiT/ReLQEAAAAAiFPFxVJGBnP6AQAQUFV7T8lt8RnNlX6x2N5z0SJT++4bflrnhn7R+7MBEhGhHwAAAAAAu1lVlX7JyQ6hHwAgITmOW+nXqFHVod+6ddEbLFlWWRvPHQXWR1Po5/NJv/7qqbG1Z22YZnQdGwBCPwAAAAAAdruiIkPp6RXf2PR4JL8/QgMCACCCiorc18AGDaoK/eyYrfSLxjn9li0z5fNJnTqFn9Z5vdF1bAAI/QAAAAAA2K18PvffjqGf294zet/UBABgV9m0yX39q67Sr6DAUHHx7h5V7di2UW3oZ2x/WY+mFpiLFpnyeqV27cIP/Tweh9APiDKEfgAAAAAA7EZbt7q3O7b39Hqp9AMAJKb8fDcUq25OP0lRW+0Xqr2nYeyaFph//WVo2rSkOgVuixeb6tDBVnJy+ONw5/QL/3EA1B9CPwAAAAAAdqPiYvdNy4yMim9sMqcfACBRBSr9cnJiL/QL1d5T2jWh32OPJWvWrCQ980zSTu+7aJFHnTrVT1LHnH5A9CH0AwAAAABgNyoqcm93rPRjTj8AQKLKzzfk8UiZmZXva9zYkWlKf/0VnW9l27bb5rI69d0C848/DH35pUf77mvrueeStHBh7b8v69cbWrvW0H771U9S51b6RWcYCySq6LxSAgAAAAAQpwKVfszpBwCAKz/fUIMGTpUVcx6PdMghfj3/fJLy83f/2Gqyuyv9XnghSY0bO7r77m3q3NnSxIkpKiio3b6LF7sD7dSpfgZEa3Ig+hD6AQAAAACwGxUVBUK/iuvd0C8CAwIAIMI2bTKqbO0Z8J//lEqSJk+uh4no6pltu3P3Vcfrrb9579atM/S//3k1aJBPycnSDTeUqqREuu++FDnVf/uCFi0ytccejho3rsXGtWCazOkHRBtCPwAAAAAAdqPiYve2cqWfw6flAQAJKT8/dOiXkyMNH16qjz/26uOPPbtxZDWzLLcasTqGEbrSb+NG6aGHkrV8ec3V/q++6lVysqPjjnN/YdhjD0dXX12q+fM9evNNb437L1rk0b771l9K5/E4zOkHRBlCPwAAAAAAdqPiYkOGIaWlVVzv9VLpBwBITJs2SQ0ahK4+O/xwS336WHrwwWRt3rx7xlUbtWnvGWreu+nTk/X6615demmaHnooudpWnYWF0htveDVwoF8ZGWXrDznE0vHH+zVlSrIeeSRJn3/uUWFh5f19PmnJErPeWntKgTn96u3hANSDmuN/AAAAAABQb4qK3Cq/HVuBufPiMKcfACDx5Ocb2nff0GGUYUhXXFGioUPTNHlysm66qXQ3jS40yzJCVvp5vdVX+v31l6F33vFq6NBSGYb0zDNJ+vDDNF1wgU8DBvgrhIlvvulVaamhk0+u3Bbgkkvc78X8+V69/LIh05TatbPVrZul/fe31LmzrT//NOXzqcbv884g9AOiD6EfAAAAAAC7UXGxUWk+P4k5/QAAiSs/36ix0k+SGjVy23xOnJiiww6z1Ldv5BOn2lX6VX3f9OnJatLE0Smn+JWcLB15pKXHH0/SpEnJev75JJ1wgk/HHutW9r3ySpKOPNJf5Xx8qanSVVeVynGk1asNLVjg0Q8/mHrvPa/mzEmSaUq5uY6SkqS2bes79IvdDywtWmQqJcXR3ns7FX6GPp/0zTceffihR4WFhq66qlRNmtTPPIjArkboBwAAAADAblRcXHk+P4k5/QAAiamkRNq61VCjRrULVY44wtJ//2vpxRe9MRP6VVXpt3ixqfnzPbr++hIlJ7vrcnMdjRxZqkGD/Hr1Va9mzEjWjBnJysuztGGDodNOC/3pIMOQmjd31Ly5X8cdJzmOtGJFWQjYrJkb/NWXWK70KymRrrkmVZYlpaU56tjR1r772tq40dD8+R4VFBhq3dpWUZGhK65I1cSJ29SmDcEfoh+hHwAAAAAAu9GmTUaFuXgCQs3p9957HqWnS717x+g7awAAVGPTJrdSrGHD2gUqhiH16GHpmWeSagzcdrVAmOfxVD92j8epFPo5jvTEE0lq08bWkUdWfm3v0MHW9deX6uKLSzVvnldvvunVEUf41br1zoVOhiG1auWoVSu/Bg7cqV1rJZZDv7VrDVmW2xrV55N+/tmjuXO9yshwdMIJfh1+uF/77ONo3TpDN9+coquvTtXYsSXq2rX+KiWBXYHQDwAAAACA3WTbNunLLz069dTKJX1JSdXP6ffyy0latszULbeUREVVAwBUxbalv/821KSJU2UbY6Aq+fnua19OTu0DrfbtbW3bZmjlSkOtWkWu+ioQ5tVU6bdtW8XX96+/NrVwoUfjxpWE3LdBA+n00/06/fTobAXg8TgxG/qtWeP+TPr0sdSsmSOp6u9xkyaO7r13m8aOTdENN6Rq5MgSHXZYjB40EkIEPwcRec8++6z69eunLl266LTTTtPChQsjPSQAAAAAQBybP9+jrVsNHXNM5TeWvF7J73c//b+jrVvdT9PffnuKvvsuof+UBxBlNm2S3n/fozvuSNbpp6dp6NA0DRmSplde8aq0NNKjQywoq/Sr/T7t2rlp29KlkX1NrE3o17ixo9df92rEiBS9955H27ZJTz6ZrM6dLR18cGyHR9W1Lo0Fa9aYMk1VOUfijjIzpQkTSnTIIX6NH5+iK69M1csve7VuXezOZ4j4lbCVfm+99ZYmTpyosWPHav/999fTTz+tCy+8UPPmzVNubm6N+3uWLqlxG6td+7IFn0+eP/8Iub3j9cpus3fZiq1b5Vm5IvQ+aWmyW7QMLhsFW2SuWRN6n6ws2U2ble2Tv1Hmhg0h97FzGskp930x1q6VuWVz6H2aNJHToGFw2Vy9SkZRUch9rD2bq3yfG/OvP2XU8Bui1WovKSUluOxZvlSyQ1+srX3alr0aW5Y8vy8Pub1MQ9Y+7cqWS0qkX1fI3Fwsj1X1cznJybL3al22orBQnn9Wh3waJyND9p7Ng8vG5k0y160LuY/doKGcJk3K9lm/Xuam/ND75ObKyWkUXDbX/COjoCD0Ps2aycnMKttnxd8ytm0LuY/VoqWUlla2zx+/y6hhkhKrzd7uux2S5DjyLFsacnupHs614mJ5Vq0MvU99nGsbN8jcuDHkPnU61/bYQ052g+CyuWqljOLikPvU6Vzbq7WCTea1a841xzRl79O2bMW2bfKs+Dv0PvVxrm3Kl7l+fch9djzXtG6dzN9XVHsNkKo41/5ZLaOwMPTz1OVca9nKnbU7sM/vy2XU8FG7nT7XDMlqW+5cKy2V568/Q+5SL+fals0y164NvU99nGtr1sgs2BJ6n+3nmmVJ331nKm3DSqU7RUpLc5SS4rY02bbNUGmpW8Xh9xsqbNhCpUkZsiz3VGha/LsapJUoK8u9PBYXS1u2GNqyxVBBgdt6xW7dRqnZSWWn6JKl2lbsaOtWqbTUUHq6s/2fO++AxyOVtG7v7iypeIul0sXLg4/r8xnKynKUmekoO9vd15JXm5u0lc8nlZQY8hVsU/Lqv1Raasjnc/9rZGU5atDA3SctTdqmVG1uuJeKiw1t2yZlqUC5JauUmSmlp7tvUBcWuv+KitzHSW2cqdS2eyoz01FGhmRurniuOY775nbgn21LynHPNcNwx5G6ZZ08WzaF/tmUO9ccRzJWr5YKCoN/fFY1Z0Wlc+3vv2SUlIR8nqrONU9J6Dk1InKuFRXJs3pV6H3qcK7ZWdlymjYt22fDBpn5u+5cCzBXrpCxdWvIfSq9rv35h4zqeiQG9tnhdc1cukSb8t1P/JaWuuGK1+ueu0lJ7qeYfXu3lzfJkGFIBfmW/L8uV0GBocJCQ0nJUnqao9RUd6625GTJMT3a1tJ9XTMMKdneqoz1f8nrdR/bsir/83nSVNR4L1mW+zh75WxRWv4/IY/FycyU3WzP4HKtfr/f8XfIdetkbt4Uep/6eF2ry7m2fJmMGt5N2i3nWlKS7NZtylYUFcnz907+vbZls76fla9j2kgtCn3SDsPMXW8q19dEPl928L9n4FxrvCFFJx5q6a+/DD1xnalrry1V+/bu7yERO9dq8/v9jr9DLlsi1fDemtW2XfB1TX6/PH/8HnJ7x+ORvfc+ZStq8ztkSorsVnsFl43CApn/RMm51rixnIY5weXa/C0dtefajn9L1/Vcq+l1LT1ddvMWweVd9rrWqJG0R9nPs1Z/S9flXGveQuXL5KLxXLNt6bvPSvXF7FVauNAj25b22svWGd1t5eXZ+vZbj96e5NEnz6bquEuaqV8/S6a5C8+1hjlyGjcu22cXnWtWsz3dd/8D+9Tmb+m6nGt77+P+MiJJti3P8mUht6/Tubbj39K1PNdWmS31zz/u7z+l6zbLXrVWGRmO8vJslf+TOcDObiBnjz2Cy1Wda9Yij1pvS1Lu+m3ybHLPNadR2etaVedajqTu6Sna+LklTyu/7KZN5WRll+2zi841td2nwqLx2xK13paqBv+UyrO06p/r+HHtNP9Tr956y6t77vDoZed3+UsNDb+xRN5llU/UOr1HnJoqu2WrsnHV5lyry3vEO5xrmcVr1bygUJ6l1b/m1Ok94rqcazv5HrHvJ68a5+QFX9ZqOtc8km4abKhnzzx98IFXjz+erCceLtHhbZapSxf32temTeU5E+t0rtXlPeJanGuV9qnLe8R1Odfq8h5x6zYV/piPljzGyEyXcjrWOJZIMhynqs8Qxr/TTjtNXbp00a233ipJsm1bhx12mM4991wNGzasxv1LjhkQegPD0JaZs8sW169X1lWXhdzFbtxEhZMeDi57fv1FGeNuDbmPlddJRbeMDS4nffqJ0h55KOQ+vt6HaOtllweXk19/Ralzng+5T8mJp6hk8JnB5dQnH1fy/94Nuc/WCy6Sr99RweX0uyfK+8P3Ifcpvu5G+ffvHlzOvOEamTWcaIV33FvhRS1r6HkytoW+0Gx5YkbZL1xFRcq++P9Cbu9kZKjg0enB5eRVf6vBzTeo1GepulPI2qu1iibcHVz2fv+t0u+9M+Tz+LsfoOIRN5Q9z7vzlPr0kyH3Ke1/jLadf2FwOWXWs0p547WQ+2w74xyVnnBicDlt8gNK+uLTkPtsHX6VfD17B5czxt4iz5JfQ+5TNHq8rPYdgstZl18io4YXm4IHHyn7xc5xlH3u6SG3l2lqy4xZwUVj3TplXf2fkLvYTfZQ4f2Tg8uexYuUcfuYkPtYHfdV0c1l2yTN/1hpUydXv4MkX59DtfXS4cHllNdeVsoLs0LsUcW5Nu0xJX/wXsh9tl4wTL5+/YPL6XdNkHfhgpD7FF8/Sv6u3YLLmddfLbOGMKbwzvsqvGmVfeEQqSR0GFX+XDMKC5R1yYUht3cyM1Uwtez/vPnH78q8+YYQe7i/BBTdfldw2fvt10q//+4Qe0j+Hgeq+Jrrg8vJ77yt1BnTQ+whlR49QNuGuNcKr9dUziuzVTrnxWqvAZK07cxzVXp8WdP8tAfvV9JXn4d8nuLhV8vfs1dwOWP0Te4f7CEUjbm9wi82WcMvllFD+F/w0NSyX+wsS9nnnRlye5kebZlR9lphrFmjrBGXh9hBsps2U+G9DwaXPYt+VsaEsSH2kPz7dlbxqLLXvqRPPlLaow+H2EPyHXKYtl5cdt6nvPqSUl6cHWIPqeTkU1Xy77LrS+oTU5X84f9C7rP1wovlO+JILVtm6LLL0nTxqtHquHVByH2mNBurX9O6BZdHrfiPmvpCv67d3nKK1iaVvWl19x+DleyEftNuROsX5DfdN3kyrC2a8Ne5ktz3CUxT8vsqvudTZGZrVOuZweWWJct03aprJLnbO3bl94j+Tm6re1rcF1zuUvSFhq6dKEkyVPV7SgvTe2pa0xvdbQzpsC1zNWj9EwrsVNXp81H2QL2cOzS4fEr+dPUvfFVejxtwOo5k2YZsy32zyXGkVxtfoA+yT5LjuMv/t+ZOdSv+LPgYhiF5PZLH67i3Hul/B12nNe16KSPDDST7v32DcjcsCX7PHLnfB9spu/3833dqfU472baprKwU9Xn0bKVszZdpuPuY2x/b45E8pjvejQ88ppSmDWWaUmmxX5lDzlJpqRsqObbk8ZaNzTQlS159f+ssbd1qaOtWKTV/tQ58/HIZ279ngdvAjWFIJblNtfiqye64Hcm76Ce1f2qs/JZk+Y0qfzbr9uyi+ceOkeTu0/LXD3TA/Mllx+xs//5u/x4bhrSkdT99cfBwpaZKKSmO9v9ljjovmCVz+/fMNCWPWe5rj6PNx52m4pMHKzXVDcezn3pEyR9/UDaQ7c9TFv4a+vWYS7WkTX8VFrrP2/e/Y9Vk1UJ5Pe7PxVeqYEDt87nfiP/2Ga21zfffHs5JJ749XA0KV8nY/v/M8mv798N9PsOQnjvsYRU3bC7DcPTPP6Yu+9/pMv2h30gY0eZF+Q33D89Ma7Nu/2uIpOrPm0KzgW5qPSO4vFfJEo1YdW3I5/gruZ3ubXFvcLlb8We6dNMdSkuXUlPc57Dtcv8s6dfcXnqx/Q3u/ytH6rnmdR3155MyDFX5z5sk/bH/CVpxzPnKyXHUpImjjvOnK+fjN4P/v6qy7ezzVDrg+OBy2gP3KunrL0MeT/EVI+Q/6ODgcsYtN8rze+g3Lotum1DhjcusS4fK2CHA2los/fGHKZ9PysqWFo96Qp16Zik315F8PmX/39khn0NJydoy/ZngovnPamVee2XIXexmzVV4zyT394CcDG35+HOl3H5byH38nbuoeOQtweUtL32gFTc8pnZtbTVuUvns3LDe0Mx/jtYZn10YfA8y5aU5SnnlRX3ztUfNW9hq1tTRL7+YKi42tO++ltIzpJJTB6vklH8HHyftsSlK+vjDkGPbOuwy+Q49PLicPvE2eX/+KeQ+RTfeKmu/zsHlzBFXyFwT+g3FwnsfrPCGYvZ5Z7knYwhbnnouGCwZmzcp6z+h/0Z3GjRUwcOPBZc9y5cq49ZRIfex9mmnotsmBJe9X36h9IfuC7GH5Duop7ZecU1w2Xz9DaU8O2N7aO/OC2T5y+Y28nqlTUcMVPEZ5yotzT1nG8yZrqwP3nKvF9uvt4HXQ8dxr9mrjv8/ret5nExTyshw1PrZu5X501fymKr2HC2+6lr5DzwouJxxy0h5lm//wF01+xSOu0NWm320aZO0erWpNjddICu/UJYlJSW5b1p6k9zjCLw+fHv1kyryZMvnk0oLfTr8oTNlO5JtGdtfo8u2NQzJ8qZozmnPy7v9da5B4UoNeO2Kctckx7013WXTkLbmttD3wx6Q1+te0xv+8YM6PjvOvd/jvr54PO7rp2G638eS/boq/6qbZZrue4rJH76vtGmPlh2sI/n8UmmJIcNwlJQs2Uf2U8mwS4KbpLw4WymvvhTcPvDa5PMbwWP6+9AztLLvaWrWLE3p6cVq9fKDSvvso5D/b7Ze/B/5DjksuJw+4TZ5F9Vwro0aLWvf/cp+ntdcIevvf9xKYBnB12cZUkqy+0GTgvseqhBiZg85032RCGHL088HgyUjf6OyLi/7ftiWW321YYMhvyWlJEt2To6+u+Ixbd5s6M03vUr+fYlu2Xyd9mjqqFGO+32tcOzF0jcFHXWt7lFKivu7QPei+Trz73vk9TjKbiDlNHSUleUEf5bFxdKiRn30aMPr5fFIBxxg6ajCV9TmfzODv3Ru2yYVFhnats1QZoaj7AaO/CcM1Lazzg0+d+qM6Up+5+2Qx79tyP+p9Oiy9/fS77tL3u++CblP8dXXyX/Av4LLGTddX+ObyoXj76zwpnLWJRfU+KGZgqnTyoL8bduUPXRIyO2Vkqot08p+5zBXrlDmDdeE2EGym7dQ4V33B5e9Cxco/a4JVW7r2NLGjYa+9B+gscaY4PpeW/6rszZOCeYqKSlSdrb7M01NlVJTHDnH9FfJ0GGybemffwzZT89Sw3dfluU33N9lHKmo0P0A5YH/cv/Plpx2hkpOGhR8nrRHJivp048rjevXX0zZjtSpk62tlwyXr++hwfsyxo+R55dFIb8HRTeNkdVp3+By5tXDZa4L/YGBrQ9NUcMOeys/v0h+v62Ms87Q118Zat/OVm41FWNbZs4OBuyrf9qo9MsukwypVauqQ0Inp5EKHpoaXPYs+U0ZY28OOS6rfZ6KRo8LLid98ZnSJk8KuY+vZx9tHV72+0/yG68rddYzIfaQSk44SSVnlP2e9ctV06U339FBISoWt513gUqPOja4nH7vnfJ+/23I5ykecYP83Q8ILmeMuq7GILtwwt0VwrWsi/8vZLi4dKmpew98RndO3p761eJcc1LTVPDE0+7zFUo/zF2lfe69Rlu2GLJs93UsK8u93vn97t8rq7x76a7WDwU/5Nd+y3e6aOVt2/9mkkyPI4/pvuamJEvJKVJhXnctO2eUNmwwtH69odyv39XB30xVUrKUmuooNcV9u800Hdm2ey6tPeAo/XXCMCUnu58B2fO959T4fy+7Ay/3N2Tg71bTkLadfqZKTzxFjiOVlkopkx9SyueflP096Liv7+b2v29Nj1Q47HIVH3SIiosNFRdLzSaNVuryxWW/10gVfsdxJC04Y5zy9+wk23Z/X+rz5CVK3bKuwjaG3IzP63Vv/5nwsDzNGgePp/EFp8txHPc1efu1I/gH2Pa/lf+e8oK2bXM/iOz/Z7063nVp8H2D8q+dgb9d/Q1z9evIqUpJcf/GzV75i5pPukU+vyFfqYJ/cxqmlJwk93WuY56aTC+7dkajhKz0Ky0t1c8//6yLL744uM40TfXu3Vvffx86lApw33AJ8RexYcjrLavrNryGjFDbSzJ32Mf01GIfs+I+nrrsY9a8j8dj7vTzeExTTvnjqeXzqPz3rTb7eE2Z5Z8n8A5YCF5vuefxmjU+h7Hjz2Z75ZJR/p23HVT+2dT8PDvuY9ZmH09dfp47Hk/t9tn5n6chYyd/nl5vuf83jlPj9rvrXDPq4Vyr7Tmw0+eaZzeda56K55qxs+daLf4/VzrXanF+7vjzrMu5trP7eDw1XwPc7Xb+/5rHa1T42eyWc82oxblm7niu1eZnox1+nrU5b1SHc80M/1yr5T6O11RenvTaa9uUOsFS8s+2+4v79hDBE/yl3T3+SdeWytl/W3By89RrLGmFLb/PDTe8XvcNtaRkKWn7b2XTbivRlqwSFRe7v5Dm3WwrybLl2f7GVuANxUCA4Ui6d2ypnCR3+wyrRPvebispafsbYdtZ2//g8PslO8vSU3eUKDnZ/cU2bVWJcsfZFbYP/IHi87n77t3KVttrS5Se7v4xb3zpU+6j7rH4/Mb2yjxHSV73jxXTkPbpZKnTqaXassX9pbv5t5b2/tD9rdyRu41hBm4dGZIaHuTX/keVyrYln89Q83mWmn/tBN9Edd/wc4LhkmFKxx/q1/4H+tz7TGm/uZaaLHGCYWT5N2ED3zefz9Dff5sqKjJUVCTtuchUi6Lqe/IYkl54IUn/ZCUrKWl75eZSUxmlZsgP0d98droKvelKTpasEr/u/d0T8v+ZZXh03XVlnwRv7EvRzX+Hblm0Psmr8TeU7dN+a7L+s9oM/n+s6r/279tMvfde2Z8CB27xqP1mw/2eGk65n4v7/9r9I9DQ6tWmSkrcak/jD48arTbdALaab8K8Fcn6f/buOzqKqo3j+G9LeiEhCQQIvXcEpImiIAIiggiCCjZQLNhRwIpKURQLYgEpIoIoIqKvCGIFqVJEuvQSIAkhpNfdff8YdsOSQoBI2vdzTs5mZ2fu3JnduTs7z9znLl2QfUfn7TGe6pBskdli7NOsrJzLfnHSQ+sDPeXvb/yY89prUb3Us9ofGT8CPT0lq4dDshs9ZiMdZqOnXKZJHWJMsqUaF0WdvUadQV+PM8eK1Wr0hM3KMqluXYeq73XIz8Mubx9jvzl/FDoc2cHfd17LUKYcstulYHO66o+1y8OafazZz/qM2R2Szd+maa8YQXu7XbIeyFCNyXZXeede6JZJql/NpsYj0mW1SomJUvLyLAXPNy6cnj5tch0Dzh+qFovkHyDVq+eQp6cxveZ2hwJOnfVD2+G+LWmp0r+7zZp3xFPODpG3xHrqugSLvLyNi/1nH59mi+TnKyUcNis43ezq6FXQ886zv9dS00xKizErIcEo19dX8vM1ehRbrM5lzHl/rzmkyGMmHT1ikpeXFBDoUEK8SW+/7aUki4/KlZO8zBkas9VypiypUUO7PLNv+nZ9kNy+1wp0LmAs4zwPKMj3zbnnKZs3WxRukUJClOuyZtcxa3bdde78TWCzG/vTYpUaNHBoxw6Ttm6zKDDQoVMbLArvaFGlSg63ujns7t8FZ7uY83ur1f29MZty3w739ZxzDmmWZD//emwms/HdWoBzjnPPU9x+RzmkjEwpI11Kz5AyM4yLTTEpFv3vfS+lpEgpKSZVPuipHlstRsDuzHe68/tGJuM7ZPsxD83b6KOUFOO7o+NJL/U5lX+7/tsJDy3+KbsdvCXWU53i81/mm+MeWrEgu12/L8pDzZItMumsm0usRvBLDsnuMOnL8V7a5u+j9HSjHXx4j1WVU88Ec5R9Q4bzZgiHQ5p0v48OWX1dPePHHbIoyGSSxWJ8t+eWOGLcOC8lW4wDymo3qdYRIzWa6wYY13ocxo0aJpO2b7e4LnQGp1jVJtbkulBnP3Mx0dXmSoo+YtGECdkHbb0UTz18Iv/vwt3bPPTRCiNSbrFInbO81P+ExeilnWVSRnrO75t1ezz148++8vd3KCtLuuaIp649YTHa76zcb2haEuWhn372OnNu5607Yzx1VbpFnh7ZNyPZz9wE4uVpBD12/GKV7B4ymx1KSjKp8U6zgo6YZbMb+8C1nrMulC6b46ljIV46edKkqCiT7ltnVUhG3p8bk0n6+DFveVT1dt2c88Aesyw6EyA9cxHVapVMcigry6SsLGnuVE+lpFvl7+9QqNlTPaLMMluk+NNGgMdmNzr3enk5lJIqnUwy6+23vWS1Stdea9PAwRlq+tlZV1zP4esndWxu14d3pGvrVrOyskwK3WVX2C8OZWRIsbEmHT9ufOYCAxxKSTEpPUPaVs6igF7GZ/Dzzz21P8pL/RIt8vZyKCU1+7NptUhZNpPMJml/hocy/TwUGGikQ66+yaKqR80ym+S6mOvlbZxzZ2QY7cHOf6zalmBEKr28HGq116Kwk2bje9aUfU7vPOasluzfHg6HlJwsmVNNMicb2+DllbPNdTikU6csis6wyMvLCEr7ZJpktZtkzqcpcPvNXpB28CK+10wmk9LTza52wxprljnN5HY+k5VlnPdFxxg3XKmG9MILmapf366AAIeC1mXKd5ZdWVlSYoIUn2BSQrxJJ2Oybzxbd8BTv63wUWysUUbPUx7qnmh2nUMZbYhDFStm/y4t6PUUf38jkGgymXJ8rxXsOofpnO+1Al5POevR+dk32r7cl7Vaza6T8mrVTPKtnvdxc6YiRXONuEDXe3Muk6X8zwfMlov7zX6h10asVrPs57yf+V23ysiQwsPPOnYKdI04e/6gIOna6xzyXWJ8sSYlOzP5GOcWHh7G90B4mEP9+9tc2UMqHMlSje+M4JXtzM2sxu8YKSVVijtt0pZTFk07YLS3oaEOXZdhtBmpqVJcnFm5dZJbddRDC1Zlnz/0POWprqfz+e6Q9PMRL/0+21fJyUY9Bkd7qFVS/ucpc17w0saA7B6yjx2zqFZa/t/TM2d6ar939nd78BGLQrLMZ64tnrmn48zNQ06vDPdRnDV7Pe/ut+h8XdifuCP7nCsoy1tjDudfr9NWi8aMyN5nNdO89fgx9+23WuX2m/fAfqvuybfUolcme/pFRUXpmmuu0fz583XFFVe4pk+cOFF//fWXFixYcN4yHLt2nf8Lt3797P8zMyXnXXZ58fCQatXKfp6aKh0+nP8yvr5S1exebkpIkI7nn9ZOgYFSpew0CTp1SjpP92CFhEhndd1WVJSRtD0/FSu6J+OOjDRugchPRIRbuhgdPGik0sxPjRpuXbe1Z8/5k0nXrauzUw5q7/lSkpiNZZzS04265cfLy6ibU1KSsQ/y4+8vVcnu3aHTp419nZ/gYOmsrtuKiTHe0/yEhUnly2c/P37c+Ozkp3JlKSA7XYwOHzY+o/mpVs2t67b275fOk2pLtWu7pYvRv//mP7906cdaSop0JP/0P4VyrMXGSudJIXlRx1p4uDGys9PRo8avj/xczLFWs6Zbupj/5FizWKQ6Z6UkSUuTDh3Kf5nCONbi4qTzpP8plGPt2DHjCm5+LuZYq17dLV2M9u1TrmeAZ7vQY81kkupl99xVRoZ04ED+yxTGsRYfL50nJUmhHGsnThjryk9hHGsHDui8A5tczLFWr172j5msLOMzkJ+LOda8vY3PmlNiovGZzk9hHGvR0cZy+SmMY+3QIWUlpSk11WgOrWeClx5n7jI0m5XnsWakdjWWS001/nf+nQqureR0q1JSjItZ1dL+VUiIUV0PD+OwSE42HtPTJW8fk6yN6snPz1iVKTNDjv0HsgM29pyPdouHsqrVck3zNyUrIP5ormlNXS7mWCtXzjgOnE6eNI43GfXIyDC2IS0t+/9k7xAl+4S69ofj+AnZ4+KVnmH8cAoIMD4mfn5n/V87XP5Vyrm+PhyHjyjtVIqrKSxXLjvblUthHGv//pt799OzFddjLSDA+Ew7FeT8PjhYjrAKSkoyTjditkfr1L44RUcbHwfnTQJZWcZX6+HDUpQ9TAnW8qpWzfgaaRx8TDVDExURYey648eNqp44YRy2np5SWvnKMgUGyG6XtmyR7AcOyVtpqlbNKPvYsezdHhwsVagoedWtrgrVvF3NbkjcXvn72JSRIc2caby9N98sDRyY/RbGBtXW5q1WHTwo2W0OlYv6V3a79O230l13ST17nrP9F/O95ulpfG6ckpON74L8nHWs2e3Sbd3idX2TE3rwwdxn37hReu6Ncpr7S3j219TJk8qKitWAAdLw4dJ112WvfsUK6a+/pFW7QhRrClWVKsamecSekCkhXjabUe0KFaWKFYzm1fkX0jhc4fXLZTeFR44YjdE5MjKy26jk4AilmPxksRib5R9dgPP7c461U+v+1cH9Dh09any2EhOzH5OTjf93ZNVTcopxI0I5vyzVt+5TYKDRNp/dbqalGe1GQLBVWdVrKzjYqG9ybJo8jx9SYqLxeT47eOXhYbwtVn9vJYdWl5+f0XwEWRJV0XZMPj7GZ9LZrqelGe+dr69kDQ6Qo1Jl1zLBjlMqlxEjX1+dSbtt/J2d9jrBEqw4jwpKTjaaBM/T0fJMjjurV7RcN604/1ShghQcLJvN2NaMA5FKO5l0JkCZ/Zeaaszv6Smlh1SWuVyA62744ATjWDObjWMt46y71S1W4/stPby6rP7eKl/e+LqOSNsrH8/snZWRYey/pCRjv3l4SNb6teXpa5WXl+Rhdci05zznkOf+lj7PsWa3S1lmT2VVrelK/W1LMI41m814T5zbnpKSfUOQzdtPmRUjlJVl/FRLPh4v29ETSkkx2pGwsOzTP5vN+IkVk1FOx+zhSkkxPlv+aSflmxpr/O9vNK3OPy+vM4GfiqGyVAhx/eSI3XZcpw4mKCEhu2eC8+N+8qTRLm4/Fa7IROMc0mSSalqPKMQnRZ5e2cHSc3tknw6oqkwPX4WGGu9NHfN+VQrNlJ+fXL3aLRbjvT150mjy99lr6nisp9LSjPe5XNS/yso0gnWJCcb76DwWTCbjFDqpcj35+JqMFO2nsxQQvU8Oh3F8d+wodejg/vUiq1UZVWsrK+tMRsSCfK/5+BjXBpzO+l5zOIyPw6bN0vZtxtd5q1ZSo7YB8qxR2fWR2b7ylLb/HqOTJ42ffrVqGX9+fkYzvHmz9OeO8lqxM0xZWcY+rWyNVpg1TpmZeZ8WnrJWcKX3TE+XgpIj5WvP/7rVKZ8qkr+/6wJ5pfSDrqwcJpNxGaxCBaMOMTHGqdIxj+rKMGefQ0ak7ZVFNplMxufF2zvnX1J4HVk8jbHf0lLsKhe9xzh+zwQXnce6w3EmWGAz67h/3ey0+WkZKp9wwHXzx9mfNWc7ejrVS5EeNVz18rYl58hK4vysdOggdesmVW3gZ7xRTnmcQ2ZkGKfx0dHSkcQgHUqrqLAw4yuhVuBJhZlj87+HODTUOGid8rhutX699MYb0rRpUkiTSkZlnfL4XnNTtapbes8CXbeqVcst5WD8+t267z7p2Weltm3zWOZCzyEv5hpxPsdani7mGnH58jo7j+sPs6I16+04ff11PstczDXiKlXc0nv+F9eIH3xQata3jh5+NDuVrvacJ4VkYVwjLsA5ZIanv1LLV1Fg4JmPzjnXiJOSjEPPea7n4SFZQ4NkD6t4ZhgPyRZ1UvaY2HOyCmR/l6akSnGWMGUFljduxPOTgtOOyzcrwXWjiHO4g7N/68X7VpI5KFB+fsbhExh/RN72FLdzm7PPa8xmyVyjmsx+PtnnOnkcaxkZcp2/xZarpdQsD9f2eB7Y7Wo3neclrnu8zmxjWvX6rvMyP89M+Ufvd91k7dwWZ6/GjAwpw+Gh5Iq1XNuWfjpVlsjDCgw0fpuUK3cm44HD2GenT0uxqT5q1rNajroXJwT9LjLoFxubJLP5PEE/lFoWi1mBgT5KSEiVzZb3lweA0ok2ACjbaANQFtls0uHDJv37r1n//mvSoUNmHT5spBs6W1CQVKWKXSEhDmVmmlwXCOx2ozfiFVfY1Ly53XVNLiPDKPfAAbOOHjV6fJw4YfzFxppyxGGrV3do5MgMNWhQsJ+xI0Z4ymqVXn/9PEHgC3CxbcD69WaNGuWpDz5IV8OGudd/40aznnnGU3Pnprt67UnGxY/evb318ssZ6tQp5zpTUqQNG8z65x+zPDx0JihlpC+OjzdSN544kb1/z75m5ucnlS/vUGioQ+XLOxQU5NDp08a8UVHG+5CXoCApIsKu8PCc49ecKzbWpD17TIqLM8rz9paCghxngiqOM+ngjLRwRsDFIZst+455Y5xa4/qfv78xj5eXQ/HxJsXHm3TqlNEb1tPTKKNcOeMxKMjoPRIW5lCFCsY6znf/LpCfi2kDnPeJ+fhk3xN5uTkcRtzAZjOOo9yOA2fA++x7d0sSZ5prT0/37UtJkaKjjXYtPt6kkBCjXQgNdbjFe+x2nen1Zjymp5tcF4KTkkxnxvGVUlNN8vNznGm7jDYpKcloM6OijPXY7VKlSsZ6wsONtsgY+9voOeccJzstTa607mlpxqPz/6wsI1bg7W30FvL0zK6b8f3qzLZhZNxwpsR1BqAtZzIDnJ2mz7iJIbud9fc3yj77Ar+np+PMzVjGfEX1mS2IqCiTbr/dS2PHZqhDh8tzXn5uG3DqlNSvn/dlrUNx8uOPFr35pod+/jmtWH9WzmWzSd26eeuxxzJ18835p0IGzuZsA4qzMpneMzg4WBaLRbHnDEwaGxur0LPv+s+H3e6QPZ+BQFE22Gx2ZWWVvS90AAbaAKBsow1AWVO1qlS1qk1dumRPS0qSjpxJ71elit3thuz8ODukm83Gjc81auS82GK3O3t+mZSUZFwcrV/fLk/P83dod2rdOkszZ3oqKcnu1lG3MFxoG7BkiVXVqtlVp44tz/o7Uy+mp9uVlZX9ezMpyQiAenjkvk5PT6lDB7s6dMjxUg4Oh7NjhlnHj5sUHW3SqVNGcC8qyqRdu8wKDnYoPNyuFi2Mx3Ll5Bqb09vbCOhGRpoUGWl2PZ6vU3pAgEPdutlUt65ddevaz6RxO399C1tuKSuBi3EhbYCz44lzPNai4uyFmN9x4OFR8Da2uDk7yczZPD2Nzmlnd1BzOndbnb1Hzg4GlmVF/Zk9n/LljeDk7t0mtWlzeSvqbAPS0503KZXV3wamMz2n7K5kQiVBVJSRKjg01FZG3zeUZiXoUCw8np6eaty4sdasWaPrr79ekmS327VmzRoNGjSoiGsHAAAAACWDv7/UsOF/c6HEbJarF9j5xu/Iy5VX2jR1qrRli0Vt2xZdtCcxUVq1yqr77svIN9DlvFh2brajtDTjsTB63zjTzwUF2dWgwcWW4jiTYZ8IGgCg6JhMUp06du3dW3RdzJxB0ZLUy60wOdPu22wqUUG/6GjjhKxCBTr1oPQpQYdi4br33ns1cuRINWnSRM2aNdPs2bOVmpqqvn37FnXVAAAAAACFoFo1I63a+vWXHvSz26W//zbrt988dOqUlJLiKZstu0eJM72ac7ylWrXsatjQrgYNbPrjD6scDun66/PvPuNMkZmVZdLZgc60tOyUmAAAIFudOnatWFF0l7idqcjLatAvrx62xV1UlHFuVbEiQT+UPmU26HfjjTfq1KlTmjx5smJiYtSwYUNNnz69wOk9AQAAAADFm8lk9Pb76y+zHI4LG8stM9NIXxoba9Iff1j1889WnTxpUtWqDrVoIWVkGD0Qz77DPSvLeExONmnJEqvmzTNWaLVKbdvaFByc/zo9PIwLTxnnDEGYmmo8+vhwYQoAgLPVqWPXggUmJSYaGQIulsMhbd9ujI/bt29WgW+0cQa7nOcDZc3Z50ElSXS0SYGBjhI7himQnzIb9JOkQYMGkc4TAAAAAEqxK6+06fvvrYqMNCkiIv+g2cqVFk2d6qm4OJNb4C0gwKFrr7Xp+uuz1LSpVL68VXFxmfmOAeNwGHeR79xp1t69ZnXpcv5Bspxpsc69cOZM7+kcFwwAABhq1za+i/fuNeuKKy485XhqqvTrr1Z9/71V+/YZ3dYOHjRr9Oj8U3I7lfX0nnmduxR30dFmUnui1CrTQT8AAAAAQOnWooVNVqu0fr1FERF5B95WrbJo3DgvtW5tU9++NgUEOOTvbwT86tWzy9PTmM9kKthVPZNJCg93KDzcpuuuK9iVMGd6z5xj+hlXHenpBwCAu6pVHfLyclxU0G/pUuNmn+Rkk9q2tem++9KUnGzS+PFeqlXLroED3c8bEhOlN97wVJ060tChxjRnsKusBv2y03u6pyYv7qKiTKT2RKlF0A8AAAAAUGr5+EjNmtn0118W9e2be9BvzRqLxo710lVXZem55zKKLEWX8275zEz3rgXO9J6M6QcAgDuzWapVy+HqpVdQS5daNGmSl66/Pkt3352p8PDsANChQ5maOdNT1as71L69EdWLjDTp+ee9dOyYWQcOSEOGGPOW9Z5+Foux3/Lr6XfqlHT0qFknT5p08qRJsbHGec5dd2XKz+9y1DKnqCiTWrcuYd0TgQIi6AcAAAAAKNXatLFpxgxPpaXlDJytXWvRq696qV07m0aPLrqAnyR5ehoXznLr6We1ZgcFAQBAtjp17NqyxT3qduKESS++6KWrrrJp4MBMt+//X36x6O23vdSzZ5YefzxnGs+77srUgQNmTZjgqcmT05SYaNKYMV4KCHBo+PBMffSRRZGRJoWHG+m8pbIc9DMe7Wd1sty926xVqyzau9dIcR4Xl72DfXwcCg116ORJk/bvN2vcuHRXNoVLlZlpnCudLy2rkYLdrIoVz596HSiJymhzBAAAAAAoK6680qbMTOnvv90jeuvWWfTKK1668kqbnnsuvciDas4LZ1nnXINKSyO1JwAAeald266jR82uMXBtNmn8eC/FxZn05ZceGjrUR6tWWeRwSH/8YdHEiV664YYsPfZY7uP2mc3SyJHpqljRodGjvfXss96qUcOu999P0/XXG73DduwwLqtnZRkFOHu8lTXnnrvExJj09NNe+vFHq0wmqXv3LL30UrqmT0/V4sUp+u67VM2cmaaxY9O1fbtFb7zh6RYwvFAOh/T330aAtndvXz3xhLeiovKP+sXHSxkZYkw/lFrcJwgAAAAAKNWqVnUoPNyhv/6yqF0742Ld4sVWffihp9q0semFF9Jd4+kVJWcdzg36paaaSO0JAEAe6tSxy26X9u83q1Eju+bM8dDu3Wa9806aAgMd+vBDT40Z46UmTWzaudOi667L0lNPZeTbO8/XV3rttXQ9/ri3unQxegR6eBg9yWrVkrZtM6tzZ9J7OoN+zvSeM2Z4yMdHmjUrVf7+eS/XrJldzz+frldf9dIHH0jDh2cHYOPipJ9/tioy0iyHQ64/s1ny8nLI21vy9nYoI8Ok336z6Ngxs6pUsWvgwEwtX27Vgw9666mnMnT11bmn74yKMt4sxvRDaUXQDwAAAABQqplMRm+/v/4yy2aTPvrIQ4sXe6hv30wNG5ZZbC7U5TWmn5GWlAtTAADkpmZNu8xmad8+s7KypC++8NDdd2eoUSMjIjduXLrWrrXoo4881KlTlp55Jv+An1N4uENffJGaY97mzaUNG4yJBP2MR5tN2r7drF9+seqppzLyDfg5XXWVTY8+mqH33vNUcLBD9erZ9OOPHlqzxiKTSapRw+7aryaTEfhLT5fS001KSzPW2aaNTU8/naGmTe0ymaS+fTM1aZKXXn3VSzffnKVhwzJypA+NjjbOsypWvIQuhkAxRtAPAAAAAFDqtWlj0/ffW/XUU97atcusxx7LUK9exWssF5PJCPzlNqYfPf0AAMidp6dUvbpdmzebNW+eh5o0sWngwOzveJNJat/epnbtbOcd7+1cuQXzmjeXFi40KSkpO+hXlGMCF6Xs9J4mffihp+rUsatbt4KfX910U5bi4kyaPdtDkodq1LBr2LAMdemSpcDAC6+Pv7/00kvp+t//rProI09FR5v02mvpbvNER5vk5eW4qPKBkoCgHwAAAACg1Gve3CYPD+nQIZPGj09Tq1bF8+5uDw8HY/oBAHCBate26+efrQoIcGjkyNx78l1owC8vzZoZvc527DDLy8uYVnZ7+hnnJ8uWWfXvv2a9/XbaBe+LQYMyVaWKXZUrO1S/vv2S3yeTSa4bu6ZM8VRiohQQkP16VJRJFSo4Cu3zABQ3ZbQ5AgAAAACUJT4+0muvpWnKlOIb8JNy7+nHmH4AAOSvXj3ju/3JJzNUocJ/e6NM1apSuXLS9u0W11h2ZbWnnzPA97//WXXttVlq2vTCz7FMJqlzZ5saNLj0gN/Z2rWzyW6XNm50f3OiosyM54dSjZ5+AAAAAIAyoTgH+5ysViNF1tnS0iR/fy5OAQCQl27dslStmv2yfNebTFLjxnbt2GFW06Y217SyyDkesdUqDR2amf/Ml1lYmEM1atj1118WXXutzTU9KsqkBg2K/zkhcLHo6QcAAAAAQDHh6SllZLhPS0szycenaOoDAEBJ4Ot7eW/uadLErl27zMrMNKJ9ZTW9p4eH8ThgQGax7D135ZU2/fWXRY6zqhYdbVKFCgT9UHqV0eYIAAAAAIDix2p1uFKFOaWlyTVmEAAAKHpNmtiVlmbS3r3G5XXn2HZlTYUKDo0Zk66BA4tXLz+n1q1tioszaf9+IzibkiIlJpqKZYASKCwE/QAAAAAAKCZyH9NP8vHh4hQAAMVFvXp2Wa3S1q3G5fWy2tPPZJKuusomT8+irknumjSxy9vbob/+Msb1i442gn//9biPQFEqo80RAAAAAADFT25j+qWmkt4TAIDixNPTCPzt2OHs6VfEFUKuPD2lFi3sBP1QphD0AwAAAACgmMhtTL/0dMnbm4tTAAAUJ40a2ZSeXrbH9CsJrrzSpu3bLUpOlqKizDKbpdBQzqtQetEcAQAAAABQTHh4OJSVlf3c4ZDS0kyM6QcAQDHTqJHd9T9Bv+LryittstmkzZstio42KSzMQc9MlGrWoq4AAAAAAAAwWCxyC/qlpxuBP19f7kgHAKA4adzY5vqfIFLxVamSQ1Wq2LVhg0UpKVLFivbzLwSUYNyDAAAAAABAMeHhIWVmZo/pl5ZmPHp7F1GFAABArsqXlypVMgJI9PQr3q680qa//rIoKsqssDBupELpRnMEAAAAAEAxYQT9sp+npRkBQMb0AwCg+HGm+CToV7xdeaVN0dEm/fuvWRUrck6F0o3mCAAAAACAYuLcMf1SU41HevoBAFD8tG5tU2Cgg6BfMde8uV0eHkYK9QoVCPqhdKM5AgAAAACgmDh3TD96+gEAUHx16WLTZ5+lFnU1cB5eXlLz5sYYjIzph9KOoB8AAAAAAMVEXmP6+fgUUYUAAECeTCbJz6+oa4GCuPJKZ9CPG6lQulmLugIAAAAAAMDAmH4AAACFr2vXLGVmSlWqcE6F0o2gHwAAAAAAxQRj+gEAABS+gABpwICs888IlHCk9wQAAAAAoJiwWnPv6eflVUQVAgAAAFBiEPQDAAAAAKCYsFqlrKzsMf1SU43UnmZ+vQMAAAA4D342AAAAAABQTHh6ShkZ2c/T00ntCQAAAKBgCPoBAAAAAFBMWK0O2WzZz1NTTQT9AAAAABQIQT8AAAAAAIqJc8f0S02VfHwcRVchAAAAACUGQT8AAAAAAIoJDw/3Mf3S0ujpBwAAAKBgCPoBAAAAAFBMGEE/yW43nhtj+tHTDwAAAMD5EfQDAAAAAKCY8PAwAnxZWcZzxvQDAAAAUFAE/QAAAAAAKCYsFuMxO+jHmH4AAAAACoagHwAAAAAAxYSHh/HoDPoxph8AAACAgiLoBwAAAABAMeEM+mVkmCRJaWmM6QcAAACgYAj6AQAAAABQTJw7ph89/QAAAAAUFEE/AAAAAACKCavVeMwO+jGmHwAAAICCIegHAAAAAEAx4Qz6ZWYaj6mpJvn4FF19AAAAAJQcBP0AAAAAACgmPD2NXn2ZmSbZ7Ubwz8uLnn4AAAAAzo+gHwAAAAAAxcTZPf1SU43/GdMPAAAAQEEQ9AMAAAAAoJhwBv1sNiO1pyTSewIAAAAoEIJ+AAAAAAAUEx4exmNmppSWZvzv40N6TwAAAADnR9APAAAAAIBiwsMje0y/9HRjmpdXEVYIAAAAQIlB0A8AAAAAgGLi7J5+KSlGek9vb3r6AQAAADg/gn4AAAAAABQTFovxmJV1dnrPoqsPAAAAgJKDoB8AAAAAAMWEs6efEfQzevoxph8AAACAgrAWdQUAAAAAAIDBeuZXekaGSZIR7GNMPwAAAAAFQdAPAAAAAIBiwmQyAn9ZWZLdbpLFkt37DwAAAADyQ9APAAAAAIBixMPDoawsyWaTvL0dMpmKukYAAAAASgKCfgAAAAAAFCNWq5SZaaT49PYu6toAAAAAKCnMRV0BAAAAAACQzcNDysw0KS3N6OkHAAAAAAVB0A8AAAAAgGLECPpJaWn09AMAAABQcAT9AAAAAAAoRqxWh2w2KSVF8vGhpx8AAACAgiHoBwAAAABAMeIc0y893SQfn6KuDQAAAICSgqAfAAAAAADFyNlj+nl5FXVtAAAAAJQUBP0AAAAAAChGnGP6paZK3t6k9wQAAABQMAT9AAAAAAAoRjw8HMrKktLSSO8JAAAAoOAI+gEAAAAAUIxYLDoT9JN8fOjpBwAAAKBgCPoBAAAAAFCMeHpKGRkmpaaaGNMPAAAAQIER9AMAAAAAoBixWunpBwAAAODCEfQDAAAAAKAY8fBwKDPTGNPP27uoawMAAACgpCDoBwAAAABAMWKxSCkpJtnt9PQDAAAAUHAE/QAAAAAAKEY8PaWkJON/evoBAAAAKCiCfgAAAAAAFCNWq5SYaJIkeXvT0w8AAABAwRD0AwAAAACgGPHwcCgpyRn0K+LKAAAAACgxCPoBAAAAAFCMWK2S40wHP8b0AwAAAFBQBP0AAAAAAChGPDyy/6enHwAAAICCIugHAAAAAEAxQtAPAAAAwMUg6AcAAAAAQDFitWan9CS9JwAAAICCKlFBv48++kgDBw5U8+bN1bp161znOXbsmB544AE1b95c7du31xtvvKGsrCy3edatW6dbbrlFTZo0UdeuXfXNN99cjuoDAAAAAHBeVmv2//T0AwAAAFBQJSrol5mZqe7du+v222/P9XWbzaZhw4YpMzNT8+fP1+uvv65FixZp8uTJrnmOHDmiYcOGqW3btlq8eLHuvvtuvfDCC1q5cuXl2gwAAAAAAPLk6Wk8enhI5hL1qx0AAABAUbKef5bi47HHHpOkPHvm/fnnn9q7d69mzZql0NBQNWzYUI8//rjeeustDR8+XJ6enpo/f74iIiI0atQoSVLt2rW1ceNGffrpp7r66qsv27YAAAAAAJAbZ08/UnsCAAAAuBAlKuh3Pn///bfq1aun0NBQ17SOHTtqzJgx2rt3rxo1aqS///5b7du3d1uuY8eOGj9+/AWty2w2yWw2FUq9UfJYLGa3RwBlC20AULbRBgBl2+VoA7y9TTKZJF9fyWqlrQGKE84DgLKNNgAo20rCsV+qgn4nT550C/hJcj2PiYnJd56kpCSlpaXJu4ADJpQv7yeTiaBfWRcY6FPUVQBQhGgDgLKNNgAo2/7LNiAoSLJYpMBAKTi4VP1sB0oNzgOAso02AEBxVeS/Ht566y198skn+c6zZMkS1a5d+zLVqGBOnUqmp18ZZrGYFRjoo4SEVNls9qKuDoDLjDYAKNtoA4Cy7XK0AenpZtlsnrJY7IqLy/hP1gHg4nAeAJRttAFA2eZsA4qzIg/63Xfffbrlllvynadq1aoFKis0NFT//POP27STJ09KksLCwlzzOKedPY+/v3+Be/lJkt3ukN3O+Aplnc1mV1YWX/BAWUUbAJRttAFA2fZftgEmk0kOh+Tp6aCdAYopzgOAso02AEBxVeRBv/Lly6t8+fKFUlaLFi308ccfKzY2ViEhIZKk1atXy9/fX3Xq1HHNs2LFCrflVq9erRYtWhRKHQAAAAAAuBQeHsYNpj7F+yZiAAAAAMVM8R918CzHjh3Tzp07dezYMdlsNu3cuVM7d+5UcnKyJKljx46qU6eOnn32We3atUsrV67Uu+++qzvvvFOenp6SpIEDB+rIkSOaOHGi9u3bp7lz5+rHH3/UPffcU4RbBgAAAACAwXrm9lxvb7LLAAAAACi4Iu/pdyEmT56sRYsWuZ736dNHkvTZZ5+pbdu2slgs+vjjjzVmzBgNGDBAPj4+uuWWW/TYY4+5lqlataqmTp2qCRMm6LPPPlN4eLjGjh2rq6+++nJvDgAAAAAAOXh4GI8XMAIFAAAAAMjkcDi4dfAixMQkFnUVUISsVrOCg/0UF5dM/m6gDKINAMo22gCgbLscbcDevSY99JCP+vTJ1COPZP4n6wBwcTgPAMo22gCgbHO2AcVZiUrvCQAAAABAaedM78mYfgAAAAAuBEE/AAAAAACKEcb0AwAAAHAxCPoBAAAAAFCMMKYfAAAAgItB0A8AAAAAgGLEw8Po4Ud6TwAAAAAXgqAfAAAAAADFiKen8Uh6TwAAAAAXgqAfAAAAAADFiL+/9Oyz6Wrb1lbUVQEAAABQgliLugIAAAAAAMBd164E/AAAAABcGHr6AQAAAAAAAAAAACUcQT8AAAAAAAAAAACghCPoBwAAAAAAAAAAAJRwBP0AAAAAAAAAAACAEo6gHwAAAAAAAAAAAFDCEfQDAAAAAAAAAAAASjiCfgAAAAAAAAAAAEAJR9APAAAAAAAAAAAAKOEI+gEAAAAAAAAAAAAlHEE/AAAAAAAAAAAAoIQj6AcAAAAAAAAAAACUcAT9AAAAAAAAAAAAgBKOoB8AAAAAAAAAAABQwhH0AwAAAAAAAAAAAEo4gn4AAAAAAAAAAABACUfQDwAAAAAAAAAAACjhCPoBAAAAAAAAAAAAJRxBPwAAAAAAAAAAAKCEI+gHAAAAAAAAAAAAlHAmh8PhKOpKAAAAAAAAAAAAALh49PQDAAAAAAAAAAAASjiCfgAAAAAAAAAAAEAJR9APAAAAAAAAAAAAKOEI+gEAAAAAAAAAAAAlHEE/AAAAAAAAAAAAoIQj6AcAAAAAAAAAAACUcAT9AAAAAAAAAAAAgBKOoB8AAAAAAAAAAABQwhH0AwAAAAAAAAAAAEo4gn4AAAAAAAAAAABACUfQD6XC3Llz1blzZzVt2lT9+/fXP//8k2OezZs366677lKLFi3UsmVL3XnnnUpLS8u33GPHjumBBx5Q8+bN1b59e73xxhvKyspyvb5u3TrVr18/x19MTEyeZaanp2vUqFHq1auXGjVqpIcffjjfOmzcuFGNGjVS7969z7MXgLKrtLUBF1MuUJaVtjZAkjIyMvTOO+/ouuuuU5MmTdS5c2d9/fXXBdwjQNlS2tqAUaNG5Vpuz549L2CvAGVHaWsDJOm7777TzTffrObNm6tjx44aPXq04uLiCrhHgLKlNLYBc+fOVY8ePdSsWTN169ZN3377bcF2BlAGlaQ2YN26dXrooYfUsWNHtWjRQr1799Z3332XY74ff/xR3bt3V9OmTdWrVy/98ccfF7BHJOsFzQ0UQ0uWLNGECRP0yiuvqHnz5po9e7aGDBmipUuXKiQkRJJxYA8dOlTDhg3Tiy++KIvFol27dslszjvubbPZNGzYMIWGhmr+/PmKjo7WyJEj5eHhoaeeespt3qVLl8rf39/13LnevMr18vLS4MGDtWzZsny3LSEhQSNHjlT79u118uTJguwOoMwpzW3AhZQLlFWltQ14/PHHFRsbq3HjxqlatWqKiYmR3W4v6G4ByozS2AY8//zzevrpp92W6d27t7p3716gfQKUJaWxDdi4caNGjhyp0aNH67rrrlNUVJTGjBmjF198UVOmTLmQ3QOUeqWxDZg3b54mTZqksWPHqmnTpvrnn3/0wgsvKDAwUJ07d76Q3QOUeiWtDdi8ebPq16+v+++/X6Ghofrtt980cuRIBQQE6LrrrpMkbdq0SU8//bSeeuopXXfddfr+++/1yCOP6JtvvlG9evUKtmMcQAnXr18/xyuvvOJ6brPZHB07dnRMnTrVNa1///6Od95554LK/f333x0NGjRwxMTEuKbNmzfP0bJlS0d6errD4XA41q5d66hXr54jPj7+ouo+cuRIx0MPPZTn60888YTjnXfecUyePNlx8803X9Q6gNKuNLYBl1ouUJaUxjbgjz/+cLRq1coRFxd3UeUCZUlpbAPOtXz5ckf9+vUdR48evaj1AKVZaWwDpk+f7ujSpYvbtM8++8xx9dVXX9R6gNKsNLYBAwYMcLz++utu0yZMmOAYOHDgRa0HKM1KchvgdP/99ztGjRrlev744487HnjgAbd5+vfv73jxxRcLXCbpPVGiZWRkaPv27erQoYNrmtlsVocOHbR582ZJUmxsrLZs2aKQkBANHDhQHTp00KBBg7Rhw4Z8y/77779Vr149hYaGuqZ17NhRSUlJ2rt3r9u8ffr0UceOHXXvvfdq48aNhbJtCxcu1JEjRzR8+PBCKQ8ojUpzG/BflguUFqW1Dfj111/VpEkTTZ8+XVdffbW6deumN95447zpR4CyprS2Aef6+uuv1aFDB1WpUqXQywZKstLaBrRo0UInTpzQH3/8IYfDoZMnT2rZsmXq1KnTJZcNlCaltQ3IyMiQl5eX2zQvLy9t3bpVmZmZl1w+UFqUljYgMTFRQUFBbutu37692zwdO3bU33//XeAyCfqhRIuLi5PNZsvRbTYkJMSVDvPIkSOSpClTpqh///6aPn26GjVqpHvuuUcHDx7Ms+yTJ0+6HdiSXM+duXnDwsL0yiuvaPLkyZo8ebLCw8N11113afv27Ze0XQcPHtSkSZP05ptvymolCy+Ql9LaBvxX5QKlTWltA44cOaKNGzdqz549+uCDD/Tcc89p2bJleuWVVy6pXKC0Ka1twNmioqK0YsUK9evXr9DKBEqL0toGtGrVSm+++aaeeOIJNWnSRFdddZX8/f310ksvXVK5QGlTWtuAjh076uuvv9a2bdvkcDi0detWff3118rMzGRsT+AspaENWLJkibZu3aq+ffvmu+6zt6kgiCag1HOOfzNgwADdeuutkqRGjRppzZo1WrhwoZ5++mkNHTrUFYmvXLmyfvjhhwKVXatWLdWqVcv1vGXLljpy5Ig+/fRTvfnmmxdVX5vNpqefflqPPvqoataseVFlAMhW0tqA/7JcoCwqiW2Aw+GQyWTSW2+9pYCAAEnSqFGj9Nhjj+nll1+Wt7f3RZcNlDUlsQ0427fffquAgABdf/31hVIeUNaUxDZg7969GjdunB555BF17NhRMTExmjhxol5++WWNHz/+ossFyqKS2AY8/PDDiomJ0YABA+RwOBQSEqI+ffpo+vTp+Y5BBiCn4twGrF27Vs8995zGjh2runXrXuim5YugH0q04OBgWSwWxcbGuk2PjY11RcTDwsIkSbVr13abp3bt2jp27Jgkady4ca6UWc6edaGhofrnn3/clnFG1J1l5qZp06batGnTxW6SkpOTtW3bNu3cuVOvvfaaJKOBcjgcatSokWbMmJGjiy9QVpXGNuBylwuUZKW1DQgLC1PFihVdAT9nfR0Oh06cOKEaNWpcUvlAaVFa2wAnh8OhhQsXqnfv3vL09CyUMoHSpLS2AVOnTlXLli01dOhQSVKDBg3k4+OjO++8U0888YQqVKhwSeUDpUVpbQO8vb01YcIEvfrqq4qNjVVYWJi+/PJL+fn5qXz58pdUNlCalOQ2YP369XrooYc0evRo9enTx+210NDQHL36zt6mguD2AJRonp6eaty4sdasWeOaZrfbtWbNGl1xxRWSpIiICFWoUEEHDhxwW/bgwYOucTEqVqyo6tWrq3r16q5pLVq00L///uvWcKxevVr+/v6qU6dOnnXatWtXvgf/+fj7++v777/Xt99+6/obOHCgatasqW+//VbNmze/6LKB0qY0tgGXu1ygJCutbUDLli0VHR2t5ORk17QDBw7IbDYrPDz8ksoGSpPS2gY4rV+/XocOHSK1J5CH0toGpKWl5ejNY7FYJBk3AwAwlNY2wMnDw0Ph4eGyWCxasmSJrrvuOnr6AWcpqW3AunXrNGzYMI0YMUIDBgzI8XqLFi20du1at2mrV69WixYt8i33bPT0Q4l37733auTIkWrSpImaNWum2bNnKzU11ZUL12QyaciQIXr//ffVoEEDNWzYUIsWLdL+/fs1efLkPMvt2LGj6tSpo2effVbPPPOMYmJi9O677+rOO+903Wn76aefKiIiQnXr1lV6eroWLFigtWvXaubMmfnWee/evcrMzNTp06eVnJysnTt3SpIaNmwos9msevXquc0fEhIiLy+vHNMBlL424FLKBcqi0tgG3HTTTfrwww81evRoPfbYY4qLi9Obb76pW2+9ldSewDlKYxvg9PXXX6t58+b8BgDyURrbgOuuu04vvvii5s2bp6uvvlrR0dEaP368mjVrpooVKxbGbgNKjdLYBhw4cED//POPmjdvroSEBM2aNUt79uzR66+/Xhi7DChVSlobsHbtWj344IO66667dMMNN7jGB/Tw8FBQUJAk6a677tLgwYM1c+ZMderUSUuWLNG2bdv06quvFni/mBzcJoRS4PPPP9eMGTMUExOjhg0b6oUXXsjRI27atGmaO3eu4uPj1aBBA40YMUKtW7fOt9zIyEiNGTNG69evl4+Pj2655RY9/fTTrq6+n3zyib766itFRUXJx8dH9erV0yOPPKJ27drlW27nzp0VGRmZY/ru3btznf/999/Xzz//rMWLF+dbLlBWlbY24GLLBcqq0tYGSNK+ffs0duxYbdq0SUFBQerRo4eeeOIJgn5ALkpjG5CYmKiOHTvq+eef12233VbQXQGUSaWxDZgzZ47mz5+vo0ePKiAgQO3atdMzzzxD0A/IRWlrA/bt26enn35aBw4ckNVqVdu2bTVixAi3scMAZCtJbcCoUaO0aNGiHNPbtGmjOXPmuJ7/+OOPevfddxUZGakaNWromWeeUadOnQq8Twj6AQAAAAAAAAAAACUciYABAAAAAAAAAACAEo6gHwAAAAAAAAAAAFDCEfQDAAAAAAAAAAAASjiCfgAAAAAAAAAAAEAJR9APAAAAAAAAAAAAKOEI+gEAAAAAAAAAAAAlHEE/AAAAAAAAAAAAoIQj6AcAAAAAAAAAAACUcAT9AAAAAAAAAAAAgBKOoB8AAAAAAAAAAABQwhH0AwAAAAAAAAAAAEo4gn4AAAAAAAAAAABACUfQDwAAAAAAAAAAACjhCPoBAAAAAAAAAAAAJRxBPwAAAAAAAAAAAKCEI+gHAAAAAAAAAAAAlHAE/QAAAAAAAAAAAIASjqAfAAAASqT3339f9evXL+pq/Ofq16+v999/v9DK++abb1S/fn0dPXq00Mq8HAp7P6xbt07169fXunXrCq1Mp9L02Tx3v+f2+Rk8eLAGDx7seu7ct0uXLr2kdZ9bbkl1IZ8H57ynTp36j2tV+AryWSlunHXcunVrUVdF0n9Tn1GjRqlz587nne/o0aOqX7++vvnmm0JbNwAAAC4/a1FXAAAAACVLQS9ef/bZZ2rbtu0lrSs1NVXTp09XmzZtLrmswjRq1CgtWrTI9dzPz08RERHq06ePBg0aJE9PzyKs3X/Lbrfru+++09y5c3Xo0CFlZmaqQoUKat68ue644w61aNGiqKtYqL755huNHj3a9dzT01PlypVT/fr11alTJ/Xt21f+/v5FWEOURB9//LHq1Kmj66+/vlDKW7dune66664Czbt79+5CWWdxdPToUXXp0qVA8/7yyy//cW0AAACAy4+gHwAAAC7IxIkT3Z4vXrxYq1atyjG9du3al7yu1NRUTZkyRcOHD88R9HvooYf0wAMPXPI6Lpanp6fGjh0rSUpMTNSyZcv0xhtvaOvWrXrnnXcKbT3//POPLBZLoZV3qcaOHau5c+eqS5cu6tWrlywWiw4cOKCVK1eqatWqpS7o5/TYY48pIiJCWVlZOnnypNavX6/x48fr008/1YcffqgGDRq45i3qz2ZhKsjnb8aMGf/Juv+rci+33D4PU6dOVbdu3Qot6Fe7du0cbfDbb78tX19fPfjgg4WyjgvVu3dv9ezZ87LeBFG+fPkc+2HWrFk6ceKEW/DeOS8AAABQ2hD0AwAAwAXp3bu32/MtW7Zo1apVOab/16xWq6zWojudtVqtbtt8xx13qH///lqyZIlGjRqlihUrXnTZdrtdmZmZ8vLykpeXV2FUt1CcPHlS8+bN02233abXXnvN7TWHw1EiUxIW1DXXXKOmTZu6ng8bNkxr1qzRgw8+qIcfflhLliyRt7e3pKL/bBamgnz+Cjuok5qaKh8fn1LTY/ZyfB5CQ0NztMGffPKJgoOD822bz25rCpvFYrnsNyz4+vrm2N4lS5YoISGh0L+jHA6H0tPTXcc9AAAAUBwwph8AAAAKnd1u16effqqePXuqadOm6tChg1566SXFx8e7zbd161YNGTJEbdu2VbNmzdS5c2dXb4yjR4+qffv2kqQpU6aofv36bmNG5TZOVv369fXqq6/q559/1k033aQmTZqoZ8+eWrFiRY46rlu3Tn379lXTpk11/fXXa/78+Zc0FpvZbFabNm0kSZGRkZKkjIwMTZ48WV27dlWTJk3UqVMnTZw4URkZGbnW+7vvvnPts5UrV7peO3csux07dmjo0KFq2bKlrrjiCt199936+++/c9Rpz549uuuuu9SsWTNdc801+vDDD2W323PMl5iYqH379ikxMTHfbTx69KgcDodatmyZ4zWTyaSQkBC3aQkJCRo/frw6d+6sJk2a6JprrtGzzz7rCg5mZGTovffeU9++fdWqVSu1aNFCd9xxh9auXZtvPZyioqI0evRodejQwfVef/311znmO3HihB5++GG1aNFC7du31/jx43O8Bxejffv2evjhhxUZGanvvvvONT23z9GqVat0++23q3Xr1rriiivUrVs3vf322wVaT0JCgsaNG6dOnTqpSZMm6tq1q6ZNm5bjvUxISNCoUaPUqlUrtW7dWiNHjtTOnTtzjNOV11h5uY39VZCxFPMqz2636+2339ZVV12lFi1a6MEHH9Tx48dzLHvTTTdp27ZtuvPOO9W8eXPXfjm33LzGiMttfEZnubt27dKgQYPUvHlzde3a1TXO4Pr169W/f381a9ZM3bp10+rVq/PdRofDobZt22rChAlu29e6dWs1bNhQCQkJrunTpk1To0aNlJycLCnn56F+/fpKSUnRokWLXO3aqFGj3NaXmJioUaNGqXXr1mrVqpVGjx6t1NTUfOtYEPm1NTNmzNDAgQNd7XHfvn1zHZcxIyND48ePV7t27XTFFVfowQcf1IkTJ3LMl9v71blzZw0bNkwbNmxQv3791LRpU3Xp0kXffvttjuWd793Z7dfChQv/k3ECMzIyNGHCBLVr104tWrTQI488kuMmBmfdV65cqb59+6pZs2aaP3++pIIfoz/88IP69u2rK664Qi1btlSvXr00e/bsi6qPJM2dO1c9e/ZUkyZN1LFjR73yyitun8W85NZW5Nb+x8TEaPTo0brmmmtc63jooYeK9TiNAAAAZV3puP0UAAAAxcpLL72kRYsWqW/fvho8eLCOHj2quXPnaseOHfriiy/k4eGh2NhYDRkyRMHBwXrggQcUGBioo0ePavny5ZKM1GtjxozRmDFj1LVrV3Xt2lXS+ccU3Lhxo3766Sfdcccd8vPz05w5c/TYY4/pt99+U3BwsKTsoFlYWJgeffRR2e12ffDBB5ec7u3IkSOSpKCgINntdj300EPauHGjbrvtNtWuXVv//vuvZs+erYMHD+rDDz90W3bt2rX68ccfdeeddyo4OFhVqlTJdR179uzRnXfeKT8/Pw0dOlRWq1VffvmlBg8erM8//1zNmzeXZFysveuuu2Sz2fTAAw/Ix8dHX331Va49epYvX67Ro0drwoQJ6tu3b57bV7lyZUnS0qVL1b17d/n4+OQ5b3Jysu68807t27dPt956qxo1aqS4uDj9+uuvioqKUvny5ZWUlKQFCxbopptuUv/+/ZWcnKyvv/5aQ4cO1YIFC9SwYcM8yz958qRuu+02mUwm3XnnnSpfvrxWrFih559/XklJSbrnnnskSWlpabr77rt1/PhxDR48WBUqVNDixYsLHFg8n969e+vtt9/Wn3/+qdtuuy3Xefbs2aNhw4apfv36euyxx+Tp6alDhw5p06ZN5y0/NTVVgwYNUlRUlAYOHKhKlSpp8+bNevvttxUTE6Pnn39ekhGUevjhh7Vx40YNHDhQtWvX1vLlyzVy5MhC2c6L8dFHH8lkMun+++9XbGysZs+erXvuuUeLFy926x11+vRp3X///erZs6duvvnmHMHjixUfH68HH3xQN954o7p3764vvvhCTz31lOx2u8aPH6+BAwfqpptu0owZM/TYY4/p999/z3N8RpPJpJYtW+qvv/5yTdu9e7cSExNlNpu1adMmXXvttZKMNqhhw4by8/PLtayJEyfqhRdeULNmzVyfmWrVqrnN88QTTygiIkJPPfWUduzYoQULFqh8+fJ65plnLnm/5NXWfPbZZ+rcubN69eqlzMxM/fDDD3r88cc1depU17ZJ0vPPP6/vvvtON910k1q2bKm1a9deUDrbQ4cO6fHHH1e/fv10yy23aOHChRo1apQaN26sunXrSjIC+nfffbck6YEHHpCvr68WLFjwn/X+HDt2rAIDAzV8+HBFRkZq9uzZevXVV/Xuu++6zXfgwAE9/fTTGjBggG677TbVrFmzwMfoqlWr9NRTT6l9+/YaMWKEJGn//v3atGmTa1svpD7vv/++pkyZog4dOuj222/XgQMH9MUXX2jr1q2u79ncXEhb8eijj2rv3r0aNGiQqlSpolOnTmnVqlU6fvy4IiIiLmGPAwAA4L9C0A8AAACFasOGDVqwYIHeeust9erVyzW9bdu2Gjp0qJYuXapevXpp8+bNio+P14wZM9zSJj755JOSjDRt3bp105gxY1S/fv0Cp2bbt2+flixZ4rqI3rZtW/Xu3Vs//PCDBg0aJEmaPHmyLBaLvvjiC1cazh49eujGG2+8oG119rxISkrSjz/+qJ9//ln169dXrVq1tHjxYq1evVpz5sxR69atXcvUrVtXL7/8sjZt2uTWY+7AgQP6/vvvVadOnXzX+e677yozM1NffPGFqlatKknq06ePunfvrjfffFOff/65JCO136lTp7RgwQI1a9ZMknTLLbfohhtuuKBtPFuFChXUp08fffvtt+rUqZPatGmjli1bqlOnTjnGcJwxY4b+/fdfTZkyxRWwlaSHH35YDodDklSuXDn9+uuvbhfyb7vtNvXo0UNz5szR+PHj86zLO++8I5vNpu+//94VzL399tv11FNPacqUKRo4cKC8vb315Zdf6uDBg3r33XfVo0cP1zoKK9VfeHi4AgICXAHf3KxatUqZmZn65JNPLjiwPGvWLB05ckSLFi1SjRo1JEkDBw5UhQoVNGPGDN13332qVKmSfvnlF/3111965plnNHToUEnG/rjrrrsuetsuVXx8vJYsWeIKpDVq1EhPPPGEvvrqK7d6xcTE6JVXXtHAgQMLdf3R0dGaNGmSbrrpJklShw4d1KNHDz399NOaP3++K0Beu3ZtDRkyRD/99FO+Qe/WrVtr0qRJSkpKkr+/vzZs2KAqVaooJCREGzZs0LXXXiu73a5NmzblW07v3r01ZswYVa1aNc/PYcOGDd0+/6dPn9bXX39dKEG/vNqaZcuWuQVj77zzTvXt21ezZs1yBf127dql7777TnfccYdefvll13xPP/20du/eXeD1z50719Uu9ujRQ506ddI333zjCjx98sknio+P16JFi1zB/759+6pbt26XtO15CQoK0syZM2UymSQZvTjnzJmjxMREBQQEuOY7dOiQpk+frquvvto17cMPPyzQMeoMKs+YMeO8aU/PV59Tp05p6tSp6tixoz755BOZzUYSp1q1arl6ct566625ll3QtiIhIUGbN2/Ws88+qyFDhrimDxs2rCC7FAAAAEWE9J4AAAAoVEuXLlVAQICuuuoqnTp1yvXXuHFj+fr6ulLwOS+k/v7778rMzCy09Xfo0MGt10yDBg3k7+/vCsrYbDatWbNGXbp0cRt3r3r16m4Xcs8nJSVF7du3V/v27dW1a1e9/fbbatGihT744ANJxn6oXbu2atWq5bYf2rVrJ0luqQgl6corrzxvwM9ms2nVqlW6/vrrXQE/yQjG3XTTTdq4caOSkpIkSX/88YdatGjhCvhJRu/JswOxTn379tXu3bvzDVQ4TZgwQS+99JIiIiK0fPlyvfHGG7rxxht19913KyoqyjXfTz/9pAYNGrgF/JycF7ItFosr4Ge323X69GllZWWpSZMm2rFjR551cDgc+umnn9S5c2fXWILOv44dOyoxMVHbt2+XJK1YsUJhYWHq3r27a3kfH588e+VdDF9fX1cqx9wEBgZKMi6255ZeNT9Lly5Vq1atFBgY6LadHTp0kM1mc/U8W7FihaxWq26//XbXshaLxRXoLgp9+vRx6znXvXt3hYWF6Y8//nCbz9PTs0CfvQvl6+urnj17up7XqlVLgYGBql27tivgJ8n1f36BW8kI+tlsNm3evFmScYODMz3ihg0bJEn//vuvEhIS3AL9F+PcAGjr1q11+vRp1/F9KfJqa84O+MXHxysxMVGtWrVyOxad79256VzP7amWnzp16rjtn/Lly6tmzZpu+3/lypVq0aKFW2/foKCgXNuvwuDsNezkfK+dqZqdIiIicnxPFPQYDQwMVGpqqlatWnXJ9Vm9erUyMzN11113uQJ+ktS/f3/5+/vnOMbOVtC2wtvbWx4eHlq/fn2O1NwAAAAovujpBwAAgEJ16NAhJSYmusbjO1dsbKwkqU2bNurWrZumTJmiTz/9VG3atNH111+vXr16XVIKt0qVKuWYVq5cOdc4R7GxsUpLS1P16tVzzJfbtLx4eXnp448/lmQELSIiIhQeHu56/dChQ9q3b99594NTQVKlnTp1SqmpqapZs2aO12rXri273a7jx4+rbt26OnbsmFtgwym3ZS+E2WzWnXfeqTvvvFNxcXHatGmT5s+frxUrVujJJ5/UvHnzJEmHDx8uUK/CRYsWaebMmTpw4IBb8De//XHq1CklJCToyy+/1JdffpnnPJIxvmL16tXdLqBLl74fzpaSkpJvSsobb7xRCxYs0AsvvKBJkya5AsXdu3d3XbCPiYlxWyYgIEDe3t46dOiQdu/enefn6OztDAsLy5FSsjC380KdezyZTCZVr149RyClYsWK/0naxvDw8Bzve0BAgNtx6pwm6bxjoTVq1Eg+Pj7asGGDrr76am3cuFGPPvqoQkNDNWfOHKWnp2vjxo2SpFatWl1S3Z2pdJ2cgeP4+Pg8U5AWVF7H1m+//aaPPvpIO3fudBvz8ux9GBkZKbPZnCMdaa1atQq8/rza6LMDS5GRkWrRokWO+c5db2HJa3+f+5nIbd8V9Bi944479OOPP+r+++9XxYoVddVVV6lHjx665pprLrg+x44dk5Rzv3t6eqpq1ao5jrGzFbSt8PT01IgRI/TGG2/oqquuUvPmzXXttdeqT58+CgsLy7N8AAAAFC2CfgAAAChUdrtdISEheuutt3J93Zne0GQyafLkyfr777/122+/aeXKlXruuec0a9Ysffnll3mOh3U+eaVNc6aULCwWi0UdOnTI83W73a569epp9OjRub5+buDh7F42JUVwcLC6dOmiLl26aPDgwVq/fr0iIyPzHI/wXIsXL9aoUaN0/fXXa8iQIQoJCZHFYtHUqVPz7XXl7C13880365Zbbsl1nvON/VhYTpw4ocTExHyDEd7e3po7d67WrVun33//XStXrtSSJUv05ZdfaubMmbJYLOrYsaPbMs7xFe12u6666ipXGr5zOdMJFgabzVZoZV2Ign72zw3gOeXVezKvtuBi2wgPDw81a9ZMGzZs0KFDhxQTE6PWrVsrJCREWVlZ2rJlizZs2KBatWpd8vigZ/feupA6FkRu+3vDhg166KGHdOWVV+rll19WWFiYPDw8tHDhQv3vf/+75HWe7XypLYtCQfd3bvuuoMdoSEiIvv32W/35559asWKFVqxYoW+++UZ9+vTRG2+8cVH1+a/dc8896ty5s37++Wf9+eefeu+99zRt2jTNnj1bjRo1uqx1AQAAQMEQ9AMAAEChqlatmtasWaOWLVsW6GJ+ixYt1KJFCz355JP6/vvvNWLECC1ZskT9+/fP8yL/pQgJCZGXl5cOHTqU47Xcpl2satWqadeuXWrfvn2hbUf58uXl4+OjAwcO5Hht//79MpvNrl40lStXznV7clu2MDRp0kTr169XTEyMqlSpomrVqmnPnj35LrNs2TJVrVpVU6ZMcdtHkydPzne58uXLy8/PT3a7Pd/AqyRVqVJF//77rxwOh9s6Cms/LF68WJJyBO3OZTabXelgR48erY8//ljvvPOO1q1bpw4dOmjWrFlu8zvTL1arVk0pKSkF2s61a9cqOTnZLWCe23aWK1cu16Cqs/dQYTn38+dwOHTo0KGLDsg6ezslJia6Tc+vV1Nha926tT755BOtXr1awcHBqlWrlkwmk+rWrasNGzZow4YNuu666y5bfQrLsmXL5OXlpRkzZrj1uly4cKHbfFWqVJHdbtfhw4fdepnt37+/UOtTpUqVXNuvw4cPF+p6CkNBj1HJ6D3XuXNnde7cWXa7XWPGjNGXX36phx9++IJ6mjt7Au7fv98t1XNGRoaOHj2ab10upK2QjO277777dN999+ngwYPq06ePZs6cmeeNPQAAAChajOkHAACAQtWjRw/ZbDZ9+OGHOV7LyspypSeLj4/P0WvBOX6TM7Wcj4+PpPOn3bsQzh56v/zyi9sYdIcOHdLKlSsLbT09evRQVFSUvvrqqxyvpaWlKSUl5YLLtFgsuuqqq/TLL7/o6NGjruknT57U//73P7Vq1cqV+q9Tp076+++/9c8//7jmO3XqlL7//vsc5SYmJmrfvn05ginniomJ0d69e3NMz8jI0Jo1a9zS/t1www3atWuXli9fnmN+5/vu7PFz9udgy5Yt+vvvv/Oth8ViUbdu3bRs2TL9+++/OV53ptOTpGuuuUbR0dFaunSpa1pqamqu78uFWrNmjT788ENFRETo5ptvznO+06dP55h27me9Q4cObn8VKlSQZHyONm/enOtnMyEhQVlZWZKM7czKytIXX3zhet1ms+nzzz/PsVzVqlW1f/9+t/20a9cubdq0qQBbXXDffvut2xh0S5cuVUxMTK7pDAvC+dlyjpEmGdtYGO9lQbVu3VoZGRmaPXu2WrVq5Qokt2rVSosXL1Z0dHSBUnv6+voWart2qSwWi0wmk1tvz6NHj+qXX35xm8/53s2ZM8dt+uzZswu1Ph07dtTff/+tnTt3uqadPn061/arqBX0GI2Li3N7zWw2uwLgZ6dTLYgOHTrIw8NDc+bMcWs/v/76ayUmJqpTp055LlvQtiI1NVXp6elu06pVqyY/P78Lri8AAAAuH3r6AQAAoFC1adNGAwYM0NSpU7Vz505dddVV8vDw0MGDB7V06VI9//zz6t69uxYtWqQvvvhC119/vapVq6bk5GR99dVX8vf3d11Y9vb2Vp06dfTjjz+qRo0aCgoKUt26dVWvXr1LquPw4cP1559/6vbbb9ftt98uu92uzz//XHXr1nW7yHwpevfurR9//FEvv/yy1q1bp5YtW8pms2n//v1aunSppk+frqZNm15wuU888YRWr16tO+64Q3fccYcsFou+/PJLZWRk6JlnnnHNN3ToUC1evFhDhw7VXXfdJR8fH3311VeqXLmydu/e7Vbm8uXLNXr0aFdKybycOHFC/fv3V7t27dS+fXuFhoYqNjZWP/zwg3bt2qW7777bldZwyJAhWrZsmR5//HHdeuutaty4seLj4/Xrr7/qlVdeUYMGDXTttdfqp59+0iOPPKJrr71WR48e1fz581WnTp3zBkWffvpprVu3Trfddpv69++vOnXqKD4+Xtu3b9eaNWu0fv16SdJtt92muXPnauTIkdq+fbvCwsK0ePHiC06numLFCu3fv182m00nT57UunXrtGrVKlWuXFkfffSRvLy88lz2gw8+0IYNG9SpUydVqVJFsbGxmjdvnsLDw88bIBoyZIh+/fVXPfjgg7rlllvUuHFjpaam6t9//9WyZcv0yy+/qHz58urcubNatmypSZMmKTIyUnXq1NFPP/2UayC3X79++vTTTzVkyBD169dPsbGxrv2enJx8QfslP+XKldMdd9yhvn37KjY2VrNnz1b16tV12223XVR5devWVYsWLfT2228rPj5e5cqV05IlS1xBlcuhRYsWslqtOnDggAYMGOCafuWVV7qCKK1btz5vOY0bN9aaNWs0a9YsVahQQREREbmOwXm5dOrUSbNmzdLQoUN10003uT6j1apVc2svGjZsqJtuuknz5s1TYmKirrjiCq1du7ZQe0lLRvv13Xff6d5779WgQYPk6+urBQsWqFKlSjp9+vR/0gv8YhX0GH3hhRcUHx+vdu3aqWLFijp27Jg+//xzNWzYULVr176gdZYvX17Dhg3TlClTNHToUHXu3FkHDhzQvHnz1LRp03xvQihoW3Hw4EHdc8896t69u+rUqSOLxaKff/5ZJ0+eVM+ePS9qXwEAAOC/R9APAAAAhe7VV19VkyZNNH/+fL3zzjuyWCyqUqWKbr75ZrVs2VKSERzcunWrlixZopMnTyogIEDNmjXTW2+95ZaubOzYsXrttdc0YcIEZWZmavjw4Zcc9GvSpIk++eQTTZw4Ue+9954qVaqkxx57TPv37y+0NHVms1kffPCBPv30Uy1evFjLly+Xj4+PIiIiNHjwYNWsWfOiyq1bt67mzp2rSZMmaerUqXI4HGrWrJnefPNNt6BBhQoV9Nlnn2ns2LGaNm2agoKCNHDgQFWoUEHPP//8Ra27Zs2aeu655/THH39o3rx5io2Nlaenp+rVq6exY8eqX79+rnn9/Pw0d+5cvf/++1q+fLkWLVqkkJAQtW/fXhUrVpQk9e3bVydPntSXX36pP//8U3Xq1NGbb76ppUuXuoJ2eQkNDdWCBQv0wQcfaPny5friiy8UFBSkOnXqaMSIEa75fHx89Omnn+q1117T559/Lm9vb/Xq1UvXXHNNnmNw5caZctTDw0NBQUGqV6+ennvuOfXt29fVuzIvnTt3VmRkpBYuXKi4uDgFBwerTZs2evTRRxUQEJDvsj4+PpozZ46mTp2qpUuX6ttvv5W/v79q1KjhtrzZbNZHH32k8ePH67vvvpPJZFLnzp01atQo9enTx63M2rVr64033tDkyZM1YcIE1alTRxMnTtT//ve/8+73C/Hggw9q9+7dmjZtmpKTk9W+fXu9/PLLrh68F+Ott97SSy+9pGnTpikwMFD9+vVT27Ztde+99xZavfPj6+urhg0bauvWrW4BW2egr1KlSgUa03LUqFF66aWX9O677yotLU233HJLkQb92rdvr3HjxumTTz7R+PHjFRERoREjRigyMjLHTQLjx49XcHCwvv/+e/3yyy9q27atpk2blm/vsgtVqVIlV/s1depUlS9fXnfeead8fHw0duzYfIPsl1tBj9Gbb75ZX331lebNm6eEhASFhYWpR48eevTRR/Mcwy8/jz76qMqXL6/PP/9cEyZMULly5XTbbbfpqaeekoeHR57LFbStCA8PV8+ePbVmzRp99913slgsqlWrlt59911169btgusLAACAy8PkuNwjQQMAAADF1MMPP6y9e/fqp59+KuqqAIXi6NGj6tKly3l7cQIlwbhx4/Tll19q8+bNrvTAAAAAALIxph8AAADKpLS0NLfnBw8e1IoVK9SmTZsiqhEAwOncNjouLk7fffedWrVqRcAPAAAAyAPpPQEAAFAmXX/99brllltUtWpVRUZGav78+fLw8LiglI8AgP/GgAED1KZNG9WuXVsnT57UwoULlZSUpIcffrioqwYAAAAUWwT9AAAAUCZdffXV+uGHHxQTEyNPT0+1aNFCTz31lGrUqFHUVQOAMq9Tp05atmyZvvrqK5lMJjVq1Ejjxo3TlVdeWdRVAwAAAIotxvQDAAAAAAAAAAAASjjG9AMAAAAAAAAAAABKOIJ+AAAAAAAAAAAAQAlH0A8AAAAAAAAAAAAo4axFXYGSKiYmsairgCJkNptUvryfTp1Klt3OsJhAWUMbAJRttAFA2UYbAJRttAFA2UYbAJRtZrNJISH+RV2NfNHTD7gIZrNJJpNJZrOpqKsCoAjQBgBlG20AULbRBgBlG20AULbRBgBlW0k49gn6AQAAAAAAAAAAACUcQT8AAAAAAAAAAACghCPoBwAAAAAAAAAAAJRwBP0AAAAAAAAAAACAEo6gHwAAAAAAAAAAAFDCEfQDAAAAAAAAAAAASjiCfgAAAAAAAAAAAEAJR9APAAAAAAAAAAAAKOEI+gEAAAAAAAAAAAAlHEE/AAAAAAAAAAAAoIQj6AcAAAAAAAAAAACUcAT9AAAAAAAAAABAmTJ8+AN6771Jl1TGkiXfq3v3awulPoVZ1n/p3HrOmDFV99xzh+v5uHFjNHr0067nF7ufjx8/po4dW2vPnt2XVN+yxlrUFQAAAAAAAAAAAHCKi4vTjBkfa/XqPxUXd0oBAYGqU6eu7rlnqJo1a1HU1bsgHTu2dv3v7e2t0NAwNW3aXLfeOkANGjR0vdalS1e1b39VUVTxgpyvno8/PkIOh+OS11OhQkUtXrxU5coFXXJZZQlBPwAAAAAAAAAAUGy88MKzyszM1AsvvKLKlavo1KlYbdz4lxIS4ou6ahfluedeVtu27ZWRkaEjRw7ru+++0bBh92jUqBfVo8dNkiQvL295eXkXcU3P73z19Pf3v+R1ZGZmysPDQyEhoZdcVllDek8AAAAAAAAAAFAsJCYmasuWzXrooUfVsmVrhYdXUqNGTTR48L3q2LGT23wTJ45Tr143qHPnDho8+DatWrVSkhQff1ovv/yc+vTpoS5drtJddw3Q8uVL811vRkaGpkx5V3369ND113fU/fffrU2bNrjNs2TJ9+rbt6e6dLlKo0ePUHx8wYKQ/v4BCgkJVaVKldWmTTuNHTtRXbt21zvvvKmEhARX2Wenzdyz5189+ugwde16jW64oZPuu2+Qdu3ake96Vq78Xffdd6c6d+6g/v17a+bMacrKynK9fuTIYT3yyP3q3LmDBg3qr7/+WquOHVtrxYrfJUmbNm1Qx46tlZiYeFY9dqtjx9Y6fvxYrvU817npPSXJZsvS22+/oW7dOqlnzy765JOP3HoD9uvXS59+Ol2vvfaSbrihkyZOHJcjvWdu612x4ne3npTOVKP/+99i9e3bU127Xq233npdNptNc+fO1s03d9NNN3XV7Nkz8t2PJRk9/QAAAAAAAAAAKEOOJx1TUmbSZVufv4e/KvlXLtC8Pj4+8vHx1cqVv6tx46by9PTMMY/dbteIEY8pJSVZL730qipXjtDBgwdkNhv9nDIyMlS/fkMNGnS3fH39tGbNnxo79mVVqRKhRo2a5Lred96ZqIMH9+uVV8YrNDRMf/zxm0aMeEyzZ89X1arVtH37Nr3++msaNuwRXX31tVq3bo1mzJh6sbtEAwbcoaVLf9Bff61Tly5dc7z+6qsvqF69+hoxYrTMZrP27PlXFkveIZ0tWzZr7NiX9cQTz6hZsxY6duyoJk4cL0m6774HZLfb9fzzzyg4OERTp36q5OQkTZ58aWMaFtSPP/6gm27qrU8+ma1du3Zq4sRxqlgxXDfffItrni++mKN77rlf9933wCWtKzLyqNauXa1Jk95XZORRvfjiSB07Fqlq1appypSp2rr1H02Y8Kpat26rxo1z/yyUZAT9AAAAAAAAAAAoI+LTT+uepXfIXgjjrhWU2WTSV72+VTmvoPPOa7Va9fzzL+uNN8bp22+/Uf369dWiRSt16XKD6tSpK0nasGG9du7crs8/X6Bq1apLkqpUiXCVERZWQXfcMdj1vF+/gVq/fq1+/fXnXIN+J06c0JIl32vhwv8pNDRMknTHHYO1bt0aLVnyvYYNe0QLFnyhtm3b684775YkVatWXdu2bdG6dWsuap9Uq1bjzLqP5fp6VFSU7rjjLlWvbsxXtWq1fMubOfMTDRp0jytdaJUqERo69EF9+OFk3XffA9qwYb0OHTqot9+e4trGBx54RCNGPHZR9b8QFStW1GOPPSWTyaRq1Wpo3769+uqreW5Bv5Ytr9Tttw9yPXf2LLxQDoddzz33knx9/VSzZi1dcUVrHTlySG+99Z7MZrOqVauhuXNna9OmDQT9AAAAAAAAAABAyVXOK0ifdp932Xv6FSTg53TttV3Uvn1H/fPPZm3fvk1r167WvHmfaeTIF3Tjjb20Z89uhYVVcAX8zmWz2TRnziz9+utyxcTEKCsrUxkZGXmORbd//17ZbDbdfntft+kZGRkqV66cJOnQoQO65prr3F5v3LjZRQf9JCPoajKZcn11wIA79Prrr2np0iVq3bqNOne+3hXY7Nr1atd8N9zQQ88885z27ftXW7du0WefzXS9ZrPZlZGRrrS0NB08eEAVKoS7An6S1KRJs4us+4Vp1KiJ23Y2adJU8+d/LpvNJovFIklq0KBhoawrPLyyfH39XM/Lly8vi8Xs6gVqTAvR6dOnCmV9xQ1BPwAAAAAAJO06tVPvbnxTkzt/LE9LzjRSAAAApUVBU20WJS8vL115ZTtdeWU73XPPUL3++muaMWOqbryxl7y8vPJddt68OVqw4As99tjTqlWrjnx8fDR58iRlZWXmOn9qaoosFotmzJgjs9ni9pqPj0+hbdPZDh48KEmqVCn392LIkGHq2rW71qz5U2vXrtbMmVM1Zsx4dep0nWbNmueaz8/PCHClpKRqyJAH1KlT5xxl5ZYiNTfOwNjZ4+2dPSbgf+l8+9lkMrnVS8q9blare9jLZDLlmCZJdvvl6+l6ORH0AwAAAABA0qrIldp3ep8ik46qZrlaRV0dAAAAnKVGjZpaufJ3SVLt2nUVExOtw4cP5drbb+vWLerYsZO6dbtRkjEG4OHDh1WzZs1cy65bt75sNpvi4uLUvPkVuc5TvXpN7dixzW3a9u1bL3p7vvpqnvz8/NS6dds856lWrbqqVauuAQPu1MsvP6clS75Tp07XKSKiao5569evr8OHD+X6mmTsv+joEzp58qRCQ0NzrX9QULAkKTb2pAIDAyVJe/b8e1Hbd7YdO7a7Pd++fZuqVq3m6uVXEEFBwUpJSVFqaqorQLhnz+5LrltpYz7/LAAAAAAAlH47Yo2LEceSIou4JgAAAGVXfPxpPfbYg1q2bIn27t2jY8ci9euvP2vevDnq2LGTJOmKK1qpefMr9MILz+qvv9bq2LFIrVmzSmvXrpYkVa1aVX/9tU5bt27RwYMH9Oab4xUXF5vnOqtVq64bbuihsWNf1h9//KpjxyK1Y8c2zZkzS6tX/ynJGBdw3bo1mjdvjo4cOayFC78scGrPpKRExcae1IkTx/XXX2v1wgvP6uefl+npp0crICAgx/zp6Wl6++03tGnTBp04cVz//PO3du3aoerVcw9aStI999yvpUt/0MyZ07R//z4dPHhAP/+8TNOmfShJat26japWra5x417Wnj3/asuWza7XnCIiqqpChYqaOXOajhw5rNWr/9T8+Z8XaBvzExV1Qu+//7YOHz6o5cuXauHCL9Wv38ALKqNx4yby9vbW1KkfKDLyqH76aal+/PF/l1y30oaefgAAAACAMs9mt2n3qZ2SpMiko0VcGwAAgLLLx8dXjRo10ZdfztOxY0eVlZWlChUqqlevPrrrrntd840bN1FTpryrMWOeV2pqmiIiIvTgg49Kku6+e4iOHYvUU089Km9vb9188y26+uprlZyc9ziGzz33smbPnqEpU95VTEy0ypULUuPGTdWhgzF+XpMmTfXss89r5sxpmjHjY7Vu3UZ33z1Es2dPP+82jR//iiTJ09NLYWFhatashaZNm6369RvkOr/ZbFF8fLzGjn1ZcXGnVK5ckDp1uk5DhgzLcx1t27bXxInv6tNPP9HcubNltVpVrVoN9erV50yZZo0f/6Zef/01PfDA3QoPr6QnnnhGTz/9qKsMq9WqMWPGadKk13X33berYcNGuv/+h/Tii6POu4356d69p9LT03X//XfLbLaoX7+B6t277/kXPEtgYDm9+OJr+vDD9/T994vUqlUb3XffA5o4cdwl1a20MTnOTYKKAomJSSzqKqAIWa1mBQf7KS4uWVlZ9qKuDoDLjDYAKNtoA4DSad/pPXpw+VBZzRZ1q3Gjnmg1Itf5aAOAso02ACjbaANQGnXs2Frjx7+la665tqirUuw524DijPSeAAAAAIAyb0fsdllMZrWqeKUiSe8JAAAAoAQi6AcAAAAAKPO2x25T7aC6qlmuto6R3hMAAABACcSYfgAAAACAMm9n7A5dGd5WVfwjFJMSrQxbhjwtnkVdLQAAAOA/9eefG4q6CihE9PQDAAAAAJRpp9PidCwpUo1CGquyf2U5JB0jxScAAACAEoagHwAAAACgTNt5aocknQn6RUiSjicfK8oqAQAAAMAFI70nAAAAAKBM2xG7XcHewaroGy5J8rJ4KZJx/QAAAACUMAT9AAAAAABl2o7Y7WoU0kQmk0mSVMW/iiITCfoBAAAAKFlI7wkAAAAAKLNsdpt2n9qphuUbuaZV9o+gpx8AAACAEoegHwAAAACgzDoQv1/ptnQ1Cm3imlbFvwpj+gEAAAAocQj6AQAAAADKrB2x22QxmVUvuL5rWmX/CEWnRCnDllGENQMAAEBJ169fL3311bzLvt6OHVtrxYrfL6mM4cMf0HvvTcp3noJsX2ZmpgYM6KOtW7cUeN1r167WPffcIbvdXuBlYGBMPwAAAABAmbXj1HbVDqorL4uXa1oV/yqyOxw6kXxc1QKrF2HtAAAAyq6oqBOaMWOq1q1bo/j40woJCdXVV1+re+8dqnLlgoq0buPGjdGPP/4vz9fDwyvp66+/v4w1Kr6+/XahKlWqrKZNm0uSjh8/pk8/na5NmzYoNjZWoaGh6tbtRt11133y8PCQJLVr10HTp3+sn376Ud279yzK6pc4BP0AAAAAAGXWjtjtahve3m1aZf8ISdKxpEiCfgAAAEUgMvKoHnzwPlWtWk1jxoxTpUpVdODAPn344Xtau3a1pk2bpcDAckVWv8cfH6EHHxzuet67d3c999zLatvWOK80my0XXXZWVpas1tIRunE4HFq48CsNHTrMNe3QoYNyOBx65pnnVKVKhA4c2Kc33hin1NRUDR/+hGu+Hj1u0tdff0nQ7wKVjk8OAAAAAAAXKC7tlI4nHVOjkMZu00N8QuRp8VRk0tEiqhkAAMB/K27vKUmST6ivvIO8XdNTYlKUHp8ms9WscjWCXNNtmTYlHIqXJPmF+8vT39P1WtLxRGUmZ8rq46GAKgGu6VmpmUqMTJQkBdcpf0H1e/vtifLw8NA770yRl5dRv/DwcNWrV18DBvTRtGkfasSI0ZKMFJM33dRbBw7s16pVK+TvH6DBg+/Vrbfe5iovMTFRH3zwrv788w9lZGSqQYOGevTRp1S3bj1J0owZU7Vy5R8aOPBOTZ/+sRITE9SuXQeNHPmCfH39ctTP399f/v7+50wLUEhIaI5509LSNH78K/rtt18UEBCgu+8eot69+0oyer3173+zXnllvBYt+lo7dmzTiBGjdeONvfT9999q/vzPdfz4MYWHV1K/fgPVt29/SUbKzPfff1t//PGrEhMTFRxcXn363KrBg+91rTc+/rRGjx6h9evXKCysgoYPf0IdO3Zyvb5580Z9+OF72rt3jwIDA9W9+026//6H8gw4xsWd0oQJr2nDhvUKCQnR/fc/dN73cffunTp27Kg6dOjomtauXQe1a9fB9bxKlQgdPnxIixYtdAv6XXXVNXrnnYmKjDyqKlUizrsuGBjTDwAAAABQJu06tVOScgT9zCazKvtVUWRSZFFUCwAA4D+3eswKrR6zQifWuZ/vHFy2T6vHrNDGd9e5Tc+IT3ctc2rXSbfXdn+1U6vHrNC2WX+7TU84nOBa5kIkJMRr/fo1uuWWfq6An1NISKi6du2hX35ZLofD4Zo+b94c1alTTzNnztWgQXdr8uRJ+uuvta7XX3xxpOLiTumttyZrxow5qlevgZ544iElJMS75omMPKqVK3/XxInvaOLEd/X335s0Z86nF1T33MyfP1cNGjTSrFlzdcst/TVp0us6fPig2zwffzxF/fsP1OefL1CbNu31008/avr0j/XAAw/r888XaNiwRzR9+seulKILFszXn3+u0Kuvvq558xbqpZfGKjy8kluZs2Z9os6dr9fs2fPVrt1VeuWVF13bGxMTrWeeeVwNGjTWp59+oaefHq0fflis2bNn5Lkd48aNUXR0lCZP/livvfaGFi1aoLi4U/lu+5Ytm1W1arVcA6dnS0pKUmBgoNu08PBwlS8foi1bNue7LNzR0w8AAAAAUCbtiN2u8t7lVcG3Yo7XKvtX0TF6+gEAAFx2R44ckcPhUPXqNXN9vUaNGkpMTNDp03EKDjZ6EDZt2lyDB98jSapWrbq2bt2iL7+cpyuvbKctW/7Wzp3b9f33y+XpafRQHD78Ca1c+bt+++0XV687h8Ou558f4wpQdet2ozZu/OuSt6d9+w6uHnqDBt2tr76ap02bNqhatRquefr3v12dOnV2PZ8xY6qGD3/CNa1y5So6cGC/Fi/+Rj163KTo6BOqWrWamjVrIZPJlCPgJxnpMbt27S5JGjbsEX399Xzt2LFd7dp10DffLFCFChX11FPPymQyqXr1Gjp5MkYfffS+7r33fpnN7v3FDh8+pLVrV+uTT2arYUPjhrlRo17SnXf2y3fbT5w4odDQsHznOXr0iBYu/FKPPPJEjtdCQ0N14sTxfJeHO4J+AAAAAIAy6XjSMVUPrCGTyZTjtYiACK08+kcR1AoAAOC/12HMNZKM9J5nq9Gttiq1qyKz1T3o41nOy7WMX7h7Wsv6tzVUrZ51ZPXxcJseWC3QtczFOLsn3/k0adLU7Xnjxs20YMEXkqS9e/9Vamqqevbs4jZPenq6IiOzb/IKD6/s1iMtJCRUcXFxF1N1N7Vr13X9bzKZVL58SI5yGzRo6Po/NTVVkZFH9frrr2nixHGu6TabTX5+xr7v0aOXnnzyEd1++61q1669OnS4Wm3atMtzvT4+PvLz83P1zDt06KCaNGnmdh7ctGlzpaamKDo6WuHh4W5lHTp0QBaLRfXrZ9ezevUa8vcPUH7S09NcgdbcxMRE6+mnH9V1112vm2++JcfrXl5eSktLy3cdcEfQDwAAAABQJsVnxCvIKyjX1yr5VVFUygll2jLlYfHIdR4AAICSKq8x9nzDfOUb5ptjusXDkucy/pVyD/xYfTwueCw/SYqIiJDJZNKhQwckXZfj9YMHDyogIFBBQcEFKi81NUUhIaF6//2pOV47O2h17lh2JpNJDof9wiqfi9zKtdvdy/Xx8XGrrySNHPmCGjVq4jafswde/foNtGDBYq1du1obNqzXSy+NUuvWbTR27MTzbE/BA6mFoVy5IO3fvy/X106ejNGjjz6oJk2a6dlnn891noSEhAK/zzAwph8AAAAAoExKSD+tQK9yub5Wxb+K7A6HolJOXOZaAQAAlG3lygXpyivbatGir5We7t7LKzb2pJYv/1FdunR166W2fftWt/m2b9+q6tVrSDICZKdOxcpisSgioqrbX1BQ0H+9OResfPkQhYaG6dixyBz1rVy5ims+Pz9/delyg0aOfEGvvDJBv//+q9sYhfmpXr2Gtm37xy0IuHXrFvn6+qlChQq5zm+z2bR7907XtMOHDyopKTHf9dSrV1+HDh3MEWyMiYnW8OHDVL9+Az333Ms50olK2T0x69WrX6BtgoGgHwAAAACgTIrPiFc5z9yDfpUDIiRJkUmRl7NKAAAAkPTkk88qMzNDTz31qP7+e5Oiok5o7drVevLJRxQaWkEPPPCw2/xbt27R3LmzdfjwIS1c+JV+//0X9e9/uySpdeu2aty4qUaPHqH169fq+PFj2rp1i6ZO/UC7du0ois07ryFDhmnOnFlasGC+Dh8+pH379uqHH77T/PmfS5Lmz/9cy5cv1aFDB3X48CH99tvPCgkJOW+6Tae+ffsrOjpK77wzUYcOHdTKlb9r5sypGjDgjlwDcNWq1VDbth305pvjtX37Nu3atVOvvz5WXl5e+a6nZcvWSk1N0YED2b39YmKi9eijw1SxYriGD39Cp0/HKTb2pGJjT7otu337Vnl4eKpJk2YF2iYYSO8JAAAAAChzHA6H4tPjVS6Pnn5hPmHyMHvoWNLRXF8HAADAf6dq1WqaPn2OZsyYqpdeGq2EhHiVLx+ia665Vvfee78CA93P4QYOHKRdu3Zq1qxP5Ofnp+HDn1Tbtu0lGWkt33rrPU2b9qHGj39Fp0/HqXz5ELVo0VLBwReefvRy6NWrj7y8vPXFF5/pww/fk7e3j2rXruMKZPr6+mnevM909OgRmc1mNWjQWG+++V6uAbvchIVV0JtvvqcPP3xP99xzuwIDA9WzZ2/dffeQPJd57rmX9MYbY/Xoow8oOLi87r//IU2fHpXvesqVC9I111ynn35aqgcfHC5J+uuvdTp69IiOHj2iW2650W3+P//c4Pr/55+X6YYbusvb27tA2wSDyXG5k7iWEjEx+XdbRelmtZoVHOynuLhkZWVdel5nACULbQBQttEGAKVDSmaKen/bQ8+1fUnXVeuS6zxDl92t5hWu0KNXPOGaRhsAlG20AUDZRhtQPPXr10u33Xa7brvtjqKuCnKxd+8ePfnkI/ryy2/l65tzvMjcnD59WnfccaumT//MLaVpUXO2AcUZ6T0BAAAAAGVOQoYx3klePf0kqZJ/ZR0nvScAAABw0erUqauHHnpUx48fK/AyJ04c09NPjyxWAb+SgvSeAAAAAIAyJz79/EG/CP8IrT626nJVCQAAACiVbryx1wXN36BBIzVo0Og/qk3pRtAPAAAAAFDmOIN+gZ5Bec5T2T9CJ5KPKcueJauZn88AAADF0ddff1/UVQCKDdJ7AgAAAADKnISM05KkQK/APOep4l9FdodDUcknLlOtAAAAAODiEfQDAAAAAJQ58enx8rZ6y8vilec8VfwjJEmRjOsHAAAAoAQg6AcAAAAAKHPiM+JVzjPv8fwkKcy3gswmk6JS6OkHAAAAoPgj6AcAAAAAKHMS0uMV6JV/0M9sMivEO1QxqdGXqVYAAAAAcPEI+gEAAAAAypz49HiVO0/QTzJ6+8WkEPQDAAAAUPwR9AMAAAAAlDkJBUjvKUlhPhUUkxJzGWoEAAAAAJeGoB8AAAAAoMyJT49XoFfQeecL8w0jvScAAACAEoGgHwAAAACgzIlPP12wnn5n0ns6HI7LUCsAAABciI4dW2vFit+Luhp5On78mDp2bK09e3Zf1vVu2rRBHTu2VmJi4iWVc779W9DtO3z4oG6+uZtSUpILvO5vv/1azz77ZIHnh8Fa1BUAAAAAAOBycjgcSsiIV2BBxvTzqaBMe6aRDrQAPQMBAABQOGJjT+qzz2Zq9epVOnkyWsHB5VWnTj3ddtvtat26TVFXT/369dKJE8fzfL1Hj5t0330PXMYaFV8ff/yBbr31Nvn6+kmS0tPT9dZbE7R7904dOnRQHTp01IQJk9yW6dmztz79dIa2bNms5s2vKIpql0gE/QAAAAAAZUpyZpLsDofKFSTo51tBkhSTEkPQDwAAlBrJhw9JkjyDg+UREOianhF3SpmJiTJZrfKtXMU13Z6VpdRjkZIkr9BQWc8EbyQpLSZattRUWby95V2homu6LT1NaVFRkiS/atUvqH7Hjx/TQw8Nkb9/gB555DHVqlVHWVlZWr9+jd5++w3Nm7fwwje6kH3yyWey222SpG3b/tHzzz+refMWys/P2DdeXt5KTEy44HJtNptMJpPM5tKRqPHEiRNavXqlnnzyGdc0u90uLy8v9es3UL///muuy3l4eKhr1+5asGA+Qb8LQNAPAAAAAFCmxKfHS1LB0nv6nAn6pUarTnDd/7ReAAAAl8u/H02WJEX06qOwDle7pkevWqmYVSvkGVxejZ993jU9KynRtUzNQfcqqHET12vHf/pRp7f9I/+atVX3gYdd01OPH9eeqVMkSVec04vrfCZNel0mk0mffDJbPj4+rum1atVWz56981xu3769eu+9t7Rt21Z5e3urU6fOevTRJ+Xr6yvJSHv50UeTdeDAflmtVtWsWUsvvzxO4eGVJEkrV/6uWbM+0cGDBxQSEqYePXrqrrvuk9WaM5QSHBzs+j/gTOA0OLi8AgICXNOdQb9jxyI1efLb2rFjmyIiqumZZ0arSZNmkqQlS77X5MmT9MILr+jjj6foyJHDmj9/kUJCQjVt2of6+edlSkpKVM2atfXQQ4+qZcvWkqQTJ47r7bcn6p9//lZWVqbCwyvrkUceU/v2HV3r3717pz766H0dPLhfdevW13PPvaRq1Wq4Xl+06Gt98cUcRUdHqVKlyrr77iHq3r1nnvt3x45tevPN8Tp06KBq1qytu+66L895nX79dbnq1KmnsLAKrmk+Pj4aMWK0JGnr1i1KSso9DelVV12tJ598ROnpafLy8j7vusCYfgAAAACAMiY+wwj6FSS9Z7B3sCwms2JSogtU9v74fer/XW9FF3B+AAAAuEtIiNe6dWvUt29/t4Cf09lBtbOlpqbqqaeGKyAgQNOnz9Zrr72uDRvW6513JkqSsrKy9NxzI9SiRSvNnj1fH388Szff3FeSSZK0ZctmjR37svr3v11z5nylZ58drR9//J8++2zmJW/TtGkf6vbbB2vWrHmqWrWaxox5XllZWa7X09LSNHfubI0c+YLmzPlSwcHl9c47E7V9+z965ZXxmj17vq677nqNGPGYjhw5LEl6++03lJmZoQ8++ESzZ8/XQw89Kh8f3xzrHT78CU2fPkcWi0UTJrzqeu2PP37Te++9pYEDB+mzz75U7959NWHCq9q0aUOu25CSkqJnn31SNWrU0vTpc3TffQ/ogw/ePe+2//PPZjVo0PAi9prUoEEj2Ww2bd++7aKWL4vo6QcAAAAAKFMSnD39ChD0M5vMCvUJU0xqwYJ4X+3+QqfTT+t4UqQq+FY4/wIAAABFoN5Dj0ky0nuercJVVyu4WQuZzunZZvUPcC3jFRrq9lqlG3qowtXXyuLt3hPLp1Il1zIX4ujRI3I4HG490gpi+fKlysjI0AsvvOoKFj711DMaOfIpPfTQo7JarUpKSlKHDh1VpUqEJKlGjZqu5WfO/ESDBt2jHj1ukiRVqRKhoUMf1IcfTr7ksfluv32QOnQweuANGTJMgwffpsjIo6pe3djGrKwsPfXUKNWtW0+SkRJzyZLvtXDh/xQaGiZJuuOOwVq3bo2WLPlew4Y9oqioE+rUqbNq167jqu+5HnjgYV1xRStJ0qBBd+uZZ55Qenq6vLy8NH/+HPXo0Ut9+/aXJFWrVl3bt2/TF1/McfUmPHf/Ohx2jRr1ory8vFSrVm3FxETprbdez3fbT5w4oQYNGl3EXpO8vb3l5+evqKgTF7V8WUTQDwAAAABQprh6+hUgvadkjOtXkJ5+J1NP6o8jxpgkiZm5pygCAAAoDvIaY88zuLw8g8vnmG62WvNcxjss9xudLF7eFzyWnyQ5HBe8iCTp0KEDqlOnrlvvwKZNW8hut+vw4UNq0aKlbryxl55++lG1bt1WrVu3UefOXRV6Joi5b9+/2rp1i1vPPpvNroyMdKWlpcnb++LTS9aunZ0mPiTEWF9c3ClX0M/Dw0N16mTPs3//XtlsNt1+e1+3cjIyMlSunHEO26/fQL311gT99ddatW7dVp06dXYrI+/1xik8PFwHDx4809MxW9OmzbVgwfxct+HQoQOqXbuuvLy8XNMaN2523m1PT0+Tp6fneefLi5eXl9LS0i56+bKmTAb95s2bpy+++EKRkcbAo3Xr1tXDDz+sTp06FXHNAAAAAAD/tfj00/L18JXVXLCfxGE+FRSTGnPe+b7bt0geZk9l2VOVlJF0qdUEAAAok6pWrSqTyaTDhw8WetnPPfey+vUboHXr1ujXX5frk08+0jvvfKAmTZoqJSVVQ4Y8oE6dOudY7lKCVpLcxgQ0mYx0ona73TXNy8vLNV2SUlNTZLFYNGPGHJnNFreynEHNXr36qE2bdlqz5k+tX79Oc+bM0vDhT6hfv4H5rtfhsOtyCgoKUmLixd8Ql5CQoKCgoMKrUClXJsf0Cw8P14gRI/TNN99o4cKFateunR555BHt2bOnqKsGAAAAAPiPJaTHq1wBe/lJUphv2Hl7+qVlpel/+xare82e8rH6KDEj4VKrCQAAUCYFBpZTmzbt9c03C5Samprj9bwCSNWr19TevXvcltm69W+ZzWZVO6vHYb16DTR48L36+OOZqlWrtn7+eakkqX79+jp8+JAiIqrm+DObL28opW7d+rLZbIqLi8tRF2ePPUmqWDFcffr00/jxb2rgwEH6/vtvC7yOGjVq6J9/trhN27p1i2rWrJnr/NWr19S+fXuUnp7umrZ9+9YCbcvBg/sLXK+zRUYeVUZGuurVa3BRy5dFZTLo17lzZ3Xq1Ek1atRQzZo19eSTT8rX11d///13UVcNAAAAAPAfi8+IV2ABxvNzcvb0s+dzV/TPh35ScmaSbqlzq/w9/EnvCQAAcAmeeupZ2e023X//3fr991905MhhHTx4QAsWzNeDD96b6zI33NBDnp6eGjfuZe3fv1ebNm3QO++8qW7dblT58iE6dixSH388Rdu2/aMTJ45r/fq1Onr0sKpXN4Jc99xzv5Yu/UEzZ07T/v37dPDgAf388zJNm/bh5dx0Scb4ejfc0ENjx76sP/74VceORWrHjm2aM2eWVq/+U5L03nuTtG7dGh07Fqndu3dp06YNrm0piNtvv0s//vi9Fi36WkeOHNb8+Z9rxYrfNHDgoFzn79q1u0wmkyZOHKsDB/ZrzZo/NX/+5+ddT5s27bVt21bZbDa36QcO7NeePbuVkBCvpKQk7dmzW3v27HabZ8uWzapcuUqu4xUid2UyvefZbDabli5dqpSUFF1xxRUFXs5sNslsNp1/RpRKFovZ7RFA2UIbAJRttAHA5Wd32PXR5g/Ut14/VfKvdMnlJWYmKMg7SFZrwY7j8ICKsjmylGxLkI+3cWf12W2A3WHXor0L1DHiGlUNilCgd6BSs5ILXD6AkoPzAKBsow24fKpXr6bZs+fp009naMqUdxUbe1JBQcFq0KChnn32ObfzLIvFJKvVLH9/X7333gd65503df/9d8vLy1vXXddZjz/+tKxWs/z8fHXkyCG98MKzio+PV0hIqPr1u0233tpPZrNZV111lSZNek8zZnyiuXM/k9VqVfXqNXTzzX3Oe17n/ExYreZz6pb9mXFOdz46pznjDOeu46WXxmjWrOmaMuVdxcREKygoSI0bN9XVV18jq9Ush8Oud955Q9HR0fLz81O7dh30xBPGtuZWn3Pr0rlzZ8XFPaN58+bovffeUuXKVfTCCy+rTZs252ybsX8DA/311lvv6o03xuu+++5UzZq19Mgjj2n06Gfctu9cHTt21KRJFm3e/Jfatevgmv7MM4/rxInjruf33nunJGnt2k2uab/8skx9+vQtNufVJeHYNzkcFzssZsm2e/duDRw4UOnp6fL19dWkSZMuaEw/h8PhlmMXAAAAAPDfOJV6SjfMuUHPdHhGA5oMuOTyhiweoojACL1y3SsFmn9nzE4NXjRYc26Zo4ZhDXO8vurwKj2+9HFNv3m6WoS30APfP6Aw3zCN6zLukusKAAAAlHRz587Vr7/+qhkzZhR4mT179ujuu+/WsmXLFBAQ8B/WrnQpsz39atasqW+//VaJiYlatmyZRo4cqc8//1x16tQp0PKnTiXT068Ms1jMCgz0UUJCqmy2yzvwKYCiRxsAlG20AcDlty/usGw2u/ZEHVBcleRLLi868aRqBdRTXFzByvLK8pfNZtfeEwdVxatGjjZg5oZPVadcPVXzrKO4uGR5Onx0MvFUgcsHUHJwHgCUbbQBwMW54YabFBV1UkePGr0SC2L//iN68cVXlJVlLjbn1c42oDgrs0E/T09PVa9uDN7ZpEkTbd26VZ999pleffXVAi1vtztkt5fJTpI4i81mV1YWX/BAWUUbAJRttAHA5ROddFIOh3Q86XihHHfxafEKsAYWuCw/S6AsJqtOJEa5LvA524D98fu08cRGjW77omw2hySH/Kz+Opx4iDYCKMU4DwDKNtoA4EKZNXjwfZJU4GOnZcsrL2h+GIp/AtLLxG63KyMjo6irAQAAAAA4x6m0WEnSieRjl1yW3WFXYkaCAr3KFXgZs8msMJ8wxaRG53jt10PLFeQVpGsirnVN8/f0V2JG4iXXFQAAAAAuRJns6Tdp0iRdc801qlSpkpKTk/W//wSAqAoAAQAASURBVP1P69evv6B8sgAAAACAyyM76HfikstKzEiQQ1K5Cwj6SVKYbwXFpMTkmL49dpuahbWQ1Zz98zrAI1BJBP0AAAAAXGZlMugXGxurkSNHKjo6WgEBAapfv75mzJihq666qqirBgAAAAA4x6m0U5Kk5MxkJWYkKMAz8KLLik+PlySV87zAoJ9PmKJSotymZdgytPvULg1p+oDbdH9PfyVlJsrhcMhkYix4AAAAAJdHmQz6jR8/vqirAAAAAAAooFNpsfL38FdSZpJOJJ+4pKBfQkaCJF1Qek/J6Om37eRWt2l7T+9Rpj1TTUKbuU0P8AxQlt2mNFuafKw+F11XAAAAALgQjOkHAAAAACjWTqXGqmFII0nSieTjl1RWwkX39Kugk6kxsjvsrmk7YrfJ0+Kp2kF13Ob19zCCkkkZSZdUVwAAAAC4EAT9AAAAAADF2qn0/7N332FxldkDx79TmaENvSQQWhJISO8xPTHG3l3ddYs/y9p1V9ey6uray1pXXXtfde1dY4lJNL0XCISElhB6GWAGBqb9/iAMDAwlCTADOZ/n8Vn3tjlX7jtz33vue95qkgzJ6NS6Y0761TbXooAjHi0Y6R+F3emg5nCpUYDMygzSwsa4zecHLeU9AeqtdccUqxBCCCGEEEIcCUn6CSGEEEIIIYTwWU6nk+rGKsJ04cT4x1LaUHpMx6ttMhKoDUKlVB3RfpH6KADKG8pdcWVW7WZs+LhO2wZpgwAwNdcfU6xCCCGEEEIIcSQk6SeEEEIIIYQQwmc12hppsje1JP0CYyk1Ffdqv/rmOu789Va3kXnQUt4z+AhLewJE+kcCUHE46VdqLqXGUkO6h6RfoKZlpJ+U9xRCCCGEEEIMJEn6CSGEEEIIIYTwWdWWKgDCdGFE+8dQ1lDWq/12V+xiU+lGNpZscFte21yLwe/Ik37BWgMapcaV9Muo3AXA2PD0Ttu2lg6tt8pIPyGEEEIIIcTAkaSfEEIIIYQQQgif5Ur66cOJDYil1FyC0+nscb+82lwAdlRsc1te11RL8FEk/RQKBVH+0ZQ3VAAt8/nFB43weCy1Uo1OrZPynkIIIYQQQogBJUk/IYQQQgghhBA+q6qxdaRfODEBsTTZmzA21fS4X2vSb2f5drckYW1zLYajKO8JEKGPdI30y6zM8DjKr1WgJpB6SfoJIYQQQgghBpAk/YQQQgghhBBC+KxqSxValRZ/tT8xATEAlJhLetwvz5jL8MA4KhsrKTG3zQNY23R05T2hZV6/8sZyzM1m8mvzSI8Y3+W2QdogKe8phBBCCCGEGFCS9BNCCCGEEEII4bNqLNWE68JRKBREB8QCUGYu7XYfi81CsamIM1LOQqlQsLNih2tdXVMtwUc50i/SP4qKhnIyyjNwOB2kh4/rctsgbTBmGeknhBBCCCGEGECS9BNCCCGEEEII4bOqLFWE6sKAlpKZQdogSnsY6VdYV4ATGBcxgZEho9lZ3jKvn81hw2Q1YfALOapYovTRVDVWsr10O0HaIOKC4rvcNkDKewohhBBCCCEGmCT9hBBCCCGEEEL4rBpLNWG6cNf/j/aP6THpl1ebiwJICE5kYuQkdlbswOl0Ut9cB3DU5T0j/CNxOB38nP8zYyPGoVR03aUO0gZhspqO6nOEEEIIIYQQ4mhI0k8IIYQQQgghhM+qtlQRpm9L+sUExLrN0edJnjGXYYFx6NQ6JkZNobKxkmLTIWqbagGOurxnlD6y5fg1ed2W9gQI1ATJSD8hhBBCCCHEgJKknxBCCCGEEEIIn1V1eE6/VjEBMZQ1lHW7T15tLskhKQCMixiPUqFgR8V26ppbkn5HO9Iv0j/K9e/jIyd0u22gNtA1slAIIYQQQgghBoIk/YQQQgghhBBC+CSbw0ZdU61bec+YgFjKG0pxOB0e93E6neTX5pJsaEn6BWgCGBkyml0V210j/Y426ReoCcJPpUOpUJIaltbttkGalvKeTqfzqD5LCCGEEEIIIY6UJP2EEEIIIYQQQvikGksNAKG6MNeymIBh2Bx2KhsrPe5T2VhJfXO9K+kHMClqMjsrdmBsMqJUKAjQBB5VPAqFgkj/SNIi0tCpdd1uG6gNxOaw0WRvOqrPEkIIIYQQQogjJUk/IYQQQgghhBA+qdpSBdCpvCdAaRfz+uXX5gG4ynsCTIycQlVjFXuqMgjSGlAqjr4rvCRhKeekndPjdoHaYACZ108IIYQQQggxYNTeDkAIIYQQQgghhPCkNekXpm8b6Rft35L0KzOXQmTnffJrc9Gr9UT5R7uWpUeMQ6lQsL54LeH6iGOK6U/j/o/Q0ABqaszdbhekCQLAZK0n0lOgQgghhBBCCNHHZKSfEEIIIYQQQgifVNVYhVKhIMQv1LVMp9YR4hdCibnE4z75tbkkGZLdRvMFaAIYFZqK2WrGoD26+fyOVKC2pYSoSUb6CSGEEEIIIQaIJP2EEEIIIYQQQvikmqZqDH4hncpxxgYOo7SLpF9eba7bfH6tJkZOAiDYb2CSfkHa1pF+pgH5PCGEEEIIIYSQpJ8QQgghhBBCCJ9U3VhFmC6s0/IY/1jKGko7LbfarRyoK3Sbz6/VxMgpAAM30q+1vKeM9BNCCCGEEEIMEEn6CSGEEEIIIYTwSdWWasJ04Z2WRwfEUGIq7rT8YH0hdqeDJA8j/cZFjEepUBDsF9wvsXakVWnRqrTUWyXpJ4QQQgghhBgYam8HIIQQQgghhBBCeFJtqSIhOLHT8piAWKoslVjtVjQqjWt5Xm0uAImGpE77+Gv8uX7yTYyLGN9v8XYUpA3C1CzlPYUQQgghhBADQ0b6CSGEEEIIIYTwSdWWKsL0nUf6xQbE4nA6qWgsd1ueX5tHTEAMgZpAj8c7PeVMjwnB/hKoCaJeynsKIYQQQgghBogk/YQQQgghhBBC+Byn00m1pZpwD+U9YwJiASg1l7gtz6vNJdGQPCDx9UaQNoh6a523wxBCCCGEEEIcJyTpJ4QQQgghhBDC55is9dgcNkJ1YZ3WReqjUAAlHZN+xlySfCjpF6gNwizlPYUQQgghhBADRJJ+QgghhBBCCCF8TlVjFQBhHkb6aVQaIvSRFJuKXMuMlhqqLdUkG1IGLMaeBGoCpbynEEIIIYQQYsCovR2AEEIIIYQQQgjRUbWlJennqbwnQKIhiQ/3/o+tZVs4YdhcDH4GAJ9K+gVpg9lnzfF2GL3mcDr4qfB75g5fgL/G39vhCCGEEEIIIY6QJP2EEEIIIYQQQvic1qSfp/KeAHfNupeNJetZX7yWT/d9hNlqRqvSMjwwbiDD7FbLSL/BM6ffB9nv8XrGK9RYargw7XfeDkcIIYQQQghxhCTpJ4QQQgghhBDC51RbqvHX+KNT6zyu99f4s2jEEhaNWILNYWN3xU4cOFApVQMcadeCtEGDprxnVtUe3sx8FZ1ax6+HVkvSTwghhBBCiEFI5vQTQgghhBBCCOFzqi1VhPp5HuXXkVqpZnL0VKZGT+/nqI5MkDYIq8NKs73Z26F0y2w18/DG+xgdmsZ1k//C3upsyhvKvR2WEEIIIYQQ4ghJ0k8IIYQQQgghhM+psVQTrvc8n99gEagJAvD50X7Pbn8KY5ORO2bezZxhc1ErVaw99Iu3wxJCCCGEEEIcIUn6CSGEEEIIIYTwOVWN1YTpBnnST9ua9PPdef1+KvyeFYU/cuOUm4gNHEagNojJUVNZI0k/IYQQQgghBh1J+gkhhBBCCCGE8DnVlqrBn/TTBAJgspq8HIlnpeYS/r3tKZYkLGVJwkmu5fPiFrK7Yic1lmovRieEEEIIIYQ4UpL0E0IIIYQQQgjhc2os1YTpejenn68K0gYDYPLR8p7fF3yHSqHi+sl/dVs+O/YEFAoFaw+tOeJjljWUcdn3f+T7gu/6KkwhhBBCCCFEL0nSTwghhBBCCCGET2myN2GymgZ90i9Q2zrSzzeTfuuL1zI9ZiYBmgC35SG6UMZHTGLNodVHdLzaJiO3/3IzB+oKeXfPWzicjr4MVwghhBBCCNEDSfoJIYQQQgghhPAprWUlw/SDu7ynn8oPjVJDvQ+O9KtoqCDXuJ9Zw07wuH5e3Hx2lG/r9XyEDdYG7lxzG6bmev4+8y5KzCVsLFnflyELIYQQQggheiBJPyGEEEIIIYQQPqWqsQpg0M/pBy2j/Xwx6behZB1KhYLpMTM8rp8zfD52p4MNxet6PJbNYeP+DXdzoK6Qh+b9i8UjljImfCyf5HzU12ELIYQQQgghuiFJPyGEEEIIIYQQPqXKUglA+BBI+gVpgzFZTd4Oo5MNxWsZFzHRNe9gRxH6CMaGp/NLDyU+HU4Hj29+mB3l2/nnCQ8wKnQ0AOeMPJ+dFdvJM+7v89iFEEIIIYQQnknSTwghhBBCCCGETymozcfgF0Kwn8HboRyzQE1gr0tkDpRGWyPby7cxu4vSnq3mDp/P1tLNNFgbutxmc+kmVhz4iVun38GU6Gmu5fPiFhChj+Cz/Z/0WdxCCCGEEEKI7knSTwghhBBCCCGET8mvzSPJkOztMPpEkDbI50b6bS/bitVhZVZs90m/eXELsDqs3c7Nt+rgCkYEJ7AwfrHbcrVSzZkp57Ci8EeMlpo+iVsIIYQQQgjRPUn6CSGEEEIIIYTwKUMp6ReoDcI0AHP6OZwOtpRuwuF09Ljt+pK1xAXFExcU3+12MQGxjAodzcqDKzyub7Y3s654DQviFqFQKDqtPy35DAC+zf+6F2cghBBCCCGEOFaS9BNCCCGEEEII4TOa7E2UmA8NnaSfJoj6AUj67arYwd9/vYVP933U7XYOp4MNxeuY3cMov1YnJ57KxpJ1VDZWdlq3tayl9Of8uIUe9w32M7A0YRlf5n6GzWHr1ecJIYQQQgghjp4k/YQQQgghhBBC+IzC2gIcTueQSfq1lPfs/6RfdnUWAK/vfoUDdYVdbpdTsxdjk5FZPczn12pxwlI0Si3L87/ptG71wZ9JCE4k0ZDU5f5njzqPqsYqfila1avPE0IIIYQQQhw9SfoJIYQQQgghhPAZ+XV5ACQEJ3o3kD4SqAnE1Nz/c/plV2cxJnwsUf7R/Gvzw12W+VxfvJYgbRDp4eN7ddxATSAL4xfzXf7XbsdssjexrngtC+IXdbt/kiGZyVFT+Dr3i96fjBBCCCGEEOKoSNJPCCGEEEIIIYTPyK/NJTYgFr1a7+1Q+kSQNogmexNWu7VfP2dvdRbjIyZwy/S/k1OTzUd7/+dxu40l65gRMxOVUtXrY5+echblDeVsLt3kWraldBONtkYWxHWf9ANYPGIpGZW7qLFU9/ozhRBCiO7UNdXK74oQQnggST8hhBBCCNGnlud/y40/X4PT6fR2KEKIQSi/No/EIVLaEyBIGwzQryU+qxqrqGysJC1sLOkR4zh/9IW8mfkaBbX5btuVNZSRa8xlZi/n82uVGppGSkgK3+R96Vq2+uBKkg3JjAhO6HH/2cNOQKFQsPbQmiP6XCGEEKIrT297gkuX/4Hdlbu8HYoQQvgUSfoJIYQQQog+lVG5iz1VmeTU7PV2KEKIQSi/Nm/IzOcHLeUxAeqb+y/pl1OTDcDosDQA/pR+GbEBw/jX5oepa6rlUH0Re6oy+Xzfx6gUSqbHzjyi4ysUCk5LPpONJeuoaKigyd7E+pK1LIhf3Kv9DX4hTIiczNriX47sxIQQQogu5FRn02Rv4rbVN7G+eK23wxFCCJ8hST8hhBBCCNGnSswlAKw++LOXIxFCDDa1TUZqLDVDK+mnDQL6N+mXXZ1FiF8IUfooALQqLbdM/zv7jTmc9+WZXLL8Ym78+Ro+zvmQ6bGzXInII7FoxIlolFq+L/iWTSUbsNgszI9b2Ov95w6fx/ayrZj68b+DEEKI44PJaqKsoYzrp/yVmbGz+ee6O1me/623wxJCCJ+g9nYAQgghhBBiaCk1F6NUKFhdtJIrJlyNQqHwdkhCiEEivzYPYGgl/TQtST+T1dRvn7G3Oou0sDFu37djwsfy1KLnqWgox+BnINjPgEEbQqgu9Kg+I1ATyKIRS/g27ytSw8aQEpJCXFB8r/c/Ydg8ntv+DBtK1nFiwrKjikEIIYQAyDfmApAalsayxFN4dttTPLHlUWqbjFyY9jsvRyeEEN4lI/2EEEIIIUSfsdqtVDZWsGjEiZQ3lLOnKtPbIQkhBpH82jw0Sg1xgb1PJvm6oMMj/UzNdf1yfKfTSU7NXldpz/bGhqezIH4Rk6KmkGxIIVwfjlJx9I8BTk8+i4rGCtYc+oWF8UuOaN9I/0jGhI9lzaFfj/rzhRBCCIC82lzUShXxgSNQKpTcMOUmzht9Aa/tfqlfX7IRQojBQJJ+QgghhBCiz5Q3lOFwOlmasIxQXSiri1Z6OyQhxCCSX5vHiOARqJQqb4fSZ/xUfqiV6n57CFlsOkR9cz2poWP65fjtjQ5NJSUkBeCISnu2mjNsHptLN9Joa+zjyIQQQhxP8mvzGBGUgEalAVrmnl2asAwnUFhb4NXYhBDC2yTpJ4QQQggh+kyJuRiA4YFxzI9bxC9FK3E4HV6OSgjRn3Kq91JQm98nxyqoyydxCJX2hJYHkZH6SHKN+7vcJqd6L3etuQ2bw3bEx99bkw1AaljqUcfYWwqFgj+lX8bpyWcyLHD4Ee8/d/h8mu3NbCnd1A/RCSGEOF7kGveTdPgllFbxQQkoFQpXqXAhhDheSdJPCCGEEEL0mRJzCSqFkkh9FAvjF1PVWEVG5S5vhyWE6Ecv7XqeF3c+1+02Tqezx+M4nA4KavNJCh5aST+AkxJP4ecDP1HfRYnPd/a8wcaSDd0mT2ubjDRYGzot31udTWxALAa/kL4Kt1uzh83hxqk3H9W+w4PiSDYks/bQL30clRBCiOOFw+kgvzaPZIN70k+r0jI8MJ6Cur55EUkIIQYrSfoJIYQQQog+U2ouJso/GpVSxdjwdCL0Eaw6KCU+hRjKTM31ZFdndTmqt8RUzJmfn9zjaMDyhjIabY0kdXiINxSclnwGdqed5fnfdlp3oK6QDSXrAciuzuryGP9Y+3ce3PDPTsv3VmeRGtb/pT37ypzh81lfsg6r3ertUIQQQgxCJaZimuxNnZJ+AImGpD6rPiCEEIOVJP2EEEIIIUSfKTGXEBMQC4BSoWRB/CJ+LVqF3WH3cmRCiP5itpoxW80crD/gcf3Wsi1YbBZ2Vmzv9jit5biShlh5T4BQXRgL4hfxZe5nnZKjn+77iFBdKCOCE9hXs9fj/o22RvZWZ7GpdCOZlRmu5XaHnX3GHEaH9n9pz74yN24+DdYGtpdv83YoQgghBqG82lwAUkJGdlqXZEgmvy6vVxUGhBBiqJKknxBCCCGE6DMlpmK3eZ4Wxi/B2GTs8WG/EGLwMlvNQNej1DKqWkr8ZlXv6fY4+bV5BGmDiNBH9G2APuLskedRai5l4+FRfQBGSw0/FCzn7JHnMTY8nb01nv8b7qvZi8PpJMQvhLcyX3MtL6zLp9neTNogGumXFJzMsMDhUuJTCCHEUcmrzSXEL4RQXVindYnBSdQ11WJsqvFCZEII4Rsk6SeEEEIIIfpMabuRfgCpoWnEBMSwupsSn422RjYUr2NvdfZAhCiE6ENOp5MGW0vSL6sq0+M2mZW7UUCPbTy/No8kQzIKhaKvw/QJaWFjSA1L44v9n7qWfZX3BQqFgtOTz2R0aBr5tXk02Zs67bunKhO9Ws/1U/7K9vJt7KrYAUB2dTZKhYKRoaMH6jSOmUKhYO7weawtXoPFZvF2OEIIIQaZPGNul1UBWpe3Vg8QQojjkST9hBBCCCFErzmdTj7d9xH1zXWd1tU312GymtySfgqFggVxi/j10Gp+PvAj64vXsq1sCxmVu/kk50Nu++Umzv3idP6x9u/csvovHKgrHMjTEUIco0ZbIw6nE3+NP9keRvJVNFRQai5l5rATKKo/6PG7o1V+bR6JQ7C0Z3tnjzyXrWVbOFh/gGZ7M1/u/4xliacQ7GcgNTQNh9NJrnF/p/0yqzJICxvDvOELSAkZyVuZr+N0OsmpyWZEUCJ6td4LZ3P0Tkk6nQarmdd2v+ztUIQQQvgoU3O9x+X5tbkkh3ie/3dY4HA0Sg0FdTKvnxDi+CVJPyGEEEKIIcrmsHX7gP1oHKw/wAs7nuPnAz91WldqLgUgNmCY2/ITE5bRbG/m4Y0PcPfaO7jtl5v568rreG33yygVSq6YcBUvLn2VSP8o7lt/Nw3Whj6NWQjRf1pLe06Omkp+bR6Ntka39ZlVuwG4YPSFAOR0MWdds72Zg/WFJAUP7aTf/LhFhPiF8Pn+T1lx4Edqm4ycO+oCoGV0glqpJqfDiEin00lW1R7GhKejUCi4JP0ydlXsZHv5VrKr95AaluaNUzkmcUHxXD7hSj7f/wnby7Z6OxwhhBA+Zkf5Ns7/8kxyjfvclputZkrMJaQYOs/nBy1zio8ITqCgVpJ+QojjlyT9hBBCCCGGqM/2fczVP17epxPZ7z/c8fY0d1eJuRiAYYHuSb9EQxJfnfM9X5/7Ax+e8Rlvn/I+L530Op+e9TUPz3ucc0ddQErIKO6efR9lDaU8s+3xPo1ZCNF/zFYTAFOjp+NwOtnXIamXUbmbYYHDGRcxgQBNANlVnuesO1hfiMPp7LJc11ChVWk5NfkMfixYzgfZ7zFz2AnEBcUDoFFpSDaksLfGPelXYi6mtsnI2PBxAMyMnU1qWBqv7X6Z/No8UgfRfH7tnT3yPCZGTubxLY9gOnwdCSGEEACf7/8Uu9PBV7lfuC1vTeZ1NdIPWl6ikZF+QojjmST9hBBCCCGGqNza/ZQ1lFFtqe67Y3aX9DMVE6AJIFAT1GmdQqHAT+VHqC6M2MBhJBtS0Kl1btskBCdy09Rb+fnACr7K/bzPYhZC9J/WkX5jw8eiV+vZ02Fev4zKXYyLGI9SoSQ1LI3sGs9Jv9a5dxINSf0bsA84Pfksmu1NHDIVuUZAtkoNG9NpNOSeqgyg5b8xtHyf/in9UnJq9uJwOkkbpEk/pULJLdNvp765nhd2POvtcIQQQviIioYK1hevYXhgHCsO/Oi61wDIq81FpVASH5TQ5f6JwUkU1ObjcDoGIlwhhPA5kvQTQgghhBiiSkwtI+88zQ91tPbV5KBWqj3OzVViLiYmIBaFQnHUx180YglnjjyHF3Y+6zGxKISvcTqdPLjhXnKqPZetHOoabC0P4oK0BkaHprm1W7PVTH5tLuMiJgAtCa3sqj0eR/Lm1+YR7R9NgCZgYAL3okj/SBaOWMLY8HTGR0x0Wzc6NJWDdYVuZY73VO0hLiieIG2wa9m06Bmkh49Do9QM6tGR0QExXDPpBn4oWM764rXeDkcIIYQP+C7/a7QqP+6d8yDN9ia3aQXya3OJD0pAq9J2uX+SIYVGWyPlDWUDEa4QQvgcSfoJIYQQQgxRxaZDAOTV9k3Sz+l0kmvcz/y4BUDnublKzSWd5vM7GldNuJaRIaN5YP092By2Yz6eEP3J2FTDqoM/s+LAj94OxSta37731/gzJnwse6oyXEm9rKpMHE4n4yLGAzAmbCzGJmOnh3BOp5N1xWsZFzlhYIP3or9Nu51/LXi600sSqWFpOIH9xhzXsj1VGYwNT3fbTqFQcNO0W7lp2i2oleqBCLnfLEs8hVnDTuDJLY9R22T0djhCCCG8yO6w813+1ywZsZSE4ERmxc7hm7wvXPcWucb9JId0/7JLa9UAmddPCHG8kqSfEEIIIcQQ1GBtwHj44WlfjfSraKygrrmOBXGLCdQEdpqbq8RcQmxA7DF/jkal4aqJ11HWUNYpsSiEryk1lwKwu3KnlyPxDrPVjALwV/szNjydGksN5Y3lQMt8fsF+BuICW+asay1DmVW9x+0YOTV7Kao/yNKEZQMauzeplWqPoxRGBCXgp/JzjZhstDWSX5vLmLD0ztsGJ3DiEPhvplAouGnqLTTYGlie/623wxFCCOFFG0rWUdlYyenJZwFwWvKZ5Bpzyareg8PpIL82jyRD1/P5AUTqI/HX+Mu8fkKI49ZxmfR76aWXOO+885g8eTKzZ8/mmmuuIS8vz9thCSGEEEL0mVJzS2nPkSGjjijp97/sd3lu+zMe17XO5zcydHTL3FztHtw7nA7KzCXEBh77SD9oGe2iV+vZWb79qI/hcDrYVbHDYylBIfpKqbkEaGkf7UsyHi/MVhN6jT9KhbItqXd4Xr+Myt2MCx/vGs0Wqgsj2j+avR1K9/5QuJxwfTiTo6YObPA+SKVUMSp0NPtqWkb65VRn43A6GRvROek3lITqwpgdO4eVB3/qeWMhhBBD1td5X5AWNoaRoaMAmBYznZiAGL7O/YLyhjIabY0kG0Z2ewyFQnF4Xj951iuEOD4N7jogR2nTpk1cfPHFjB8/HrvdzpNPPslll13GN998g7+/f6+OUbO/GgB9hD+6EJ1reUNFA021FpRqJYbEENdyu9VOXWEtAAExgWgD297qNJXUYzVbUes1BA0Pci23NVqpP1QPQFBcMGpd25+r/mAdtiYb2iAtAdGBruXN9U2Yy1pK7BgSQ1Cq2/K6tXk1OBxOdKF69OF613JLTSONVY0olApCkkNdy51OJ8bcGgD8owLwC/ZrO89yM011Tag0KoITDG3n2Wyn7kDLeQbGBqEJ0HQ6T42/hsBhbedpNVsxlbScZ3B8MCq/tvOsO1CLvdmOX5Af/tFt83s01TXRUN5yniHJoSiUbWVxjHk1OB1O9GF6dGFt59lY1YilphGlUoGh3Xk67A5q840ez9NcZqK5vhmVVkXwiLbztDXZqNxbSV1tI7roADT+bedZf6geW6MVTYCGwNh252lqxlRqajnPEQZUWpVrXW2BEYfNgZ9Bh39k2zXYVGuhoaLl4VFISqhb+R9jbg1OpxN9uB5daLvzrGzAYrSgVCkxJIW0nafNQW1By3l2vAZbz1OtUxMU1zZXiM1io76oZb6moOFBqPXtzrOoDpvFhjZQS0BMu2vQ1Iz58Hl2ugYPn6cuRIc+ou08W69BgNCRYa7l7a/Bo2lrgTGBaHrR1qwNVkzFntta6zXYbVtLCkGp6kVbq26ksdpDW3M4Meb10NY6XIPdtrXieqwNPbS1Dtegq60F++Ef1f9tLSA6AG1QL9pau2swcFjQkbe1BAMqTc9tzWK00Fjpua25vu87tDVzhZma/GocCtyuwW7bWqmJZpOHttbd931rW+t4DXbX1vKNOOxdtzWFQkFIShff95H++Bl60dbaX4NH0da6+r7veJ7tr8F+bWtlZprqPbS1Jht1Bw9fg121tY7XYHdtrbAWu7WHttbx+761rXX8vu+qrR2+BvPL8lA3qpk3bgFvZb5Gk70JW6W15fveT01QvOfv+5/3/USJrZgrJ1yDRqVxa2v7anII1gYTqY9ktC6NVTtWUB1dhSExhMrmCuxOBzEBsb1qa+2/76FzW1Mr1YyPmMDOfds5WXPqEd1btba1Two+5IOa93nhxFcZGTrq6O6tumlrxnwj1iZbn7a1bu+tetvWjvHeqmNba70GO7a11muwv9tal9/3R9PWjubeqrWtdXFvVZxXhNaioVlnZU9VBtNiZrTdW3XT1jrdWx0+z+7urXr9u9bFvRX0bT/GXGrClFtPaF3L3z9UF0ZMQAxZJZmMaxzPgT0FnD/3QrfPH2tLJzdjP+YYEwHRgdgcNlYd/JmTIpZRm2sE+rgf07Gt9Wk/phnj4eu2L/sxo1SpbKhumd9uT1UmwZZgQsoNGKtq3M6zu35Mr9ra0dxb9WM/Zn7QQp7a+i8yo3eTPmF823n6UD+mt23NF/oxffrMoKt7q948MxiofswAPTMIiA5A3b5P0F/9mF62te76MT0+M+hwDR5VP6Z9W+uqH9OHzwy6u7fqdVs7xn6Mzz0z6Or73hvPDLrqx/SyrR0yFpG9M4tLx19Bc30T2iA/lAolpyWfyQfr3iOtYQz6Kj3JIW0j/bpqa0mGZPbn5FATXt3nzwwiUsNpr6tnBl1dg/LM4NieGfRFP2ZQPjPo7t7qKJ8ZQNfP57zWjzmCZwatjrYf02xqPqp8jH+IjtBQ356H/LhM+r322mtu//+RRx5h9uzZZGZmMn369F4dY/0/fwEFjPvTRJJPbvuxOfBjHnnf7cc/wp8Tnz3ZtbzZaGH9vb8AMP2mWcROb3sLft/H2ZRsOkT4mAjm3D3ftbz2UL1rn/kPLSak3UOG3a9sx5hfQ9zcEUy5dppreWlmBdue3wLAspdOc7swtzyxgaa6JkadncqYC9veFC1ZW0TWB5motCpOe+ss13J7s931+RMum0ziiUmudQXf7afgp3yChgWx6ImlruWWcrNrn1m3nUDUpBjXur3vZVK2o5So8VHMumOua3nNgVrWP7QGgEX/OtHtR23nC1upL6ojYVEiE/88xbW8eGcZO17eBsCpb5yJut2X46aH12Kz2Ei7YCyjz01zLT/0SyE5n2ajDdRy8iunu5Zbm2yumCdfPY34+SNc6/K+3MfBXwoxJISw4JHFruWmUjNr7liJ1WZn9l1ziRgb6VqX9c4uKjMriJkay4y/zXYtr8qrYeO/1gOw5Oll+LX7gdrx3BbMZSaSlqUw/pKJruUHt5aw+42WUlGn//dstx+uDQ/8isPmIP3i8aScPqptn58L2P9VDrpQHSf951TXcoup2XWe026cwbBZca51+z/J5tD6IkJHhjHv/oWu5fWlJtc+8+5bSOioti/bzDd2Up1TxbBZw5l240zX8vLsKrY8sxGAk/5zCtp2X8LbntpIY3UjKaeNIv33bR35so3FZL67G4VSwRnvnuNa7nQ6XZ8//pKJJC1r19a+zyXv+1wCogJY8kxbWaPmmkbXPjNunk3MtLYyc/s+zKJkSzERYyM54R/zXMtri+pYf/+vACx4eDG6dj8QGa9sx1hgJH7eCCZf09bWSjIq2P6flrZ28sunow5qa2ub/7WeZlMzo89JI+03Y13Li9ceJPvDPaj91Jz65pmu5bZ21+DEK6aQsDjRtS7/2/0UrsgnaHgQix5va2uNZe3a2t/nEDUh2rUu+70MyneWETUxmlm3z3Etry40suHhlgdIix5f6vajtvM/W6g/VE/CkiQmXj7ZtfzQjjJ2vnK4rb15Jmp1u7b20FpsTTbSfjOW0ee0a2urC8n5rHNba25s19aumUb8vHZt7YscDv56gJDEEOY/3NbWzJUNrn3m/GMe4e3b2tu7qNxTQey0YUy/eZZreeX+GjY90dLWTvz3Mvwi27W1ZzdjLjeTvCyFce3aWsXWEna/2dLWznjvHLebpw33/4rT4XRrayqVkpzPstn9USa6UB1Lnz/Ftb2lvqldW5vJsFnDXev2fZJF8YZDhI0OZ+69C1zL60vb/p7z7l/odmOT8doOavZXM3x2HFNvmOFaXp5dyZZnNgFw0gunom3Xwd361AYsNRZGnjGasb8b51re2taUaiWnv3O2a7nD7mhra/83kaST2tpa4fe55H+fS0B0IEuePsm1vKmqra3NvGU20VPa2lrOB3so3VpCRHokJ9zV1taM7drawkeXuN0o7355O7WFRuLnJzD56raRHiUZFWx/oaWtnfLq6aj9PLS1c9NIu6BdW1tzkOyP9qDWqTn1jXZtzdJ2DU768xRGLEp0rcv/Zh+FKwsIigtm0b9OdC1vLG37/Z59x1wix0e51mX/dzflu8uJnhTDzNtOcC2vzq9hw6PrAFj8xFL8hnVoa8X1JJ6YxITL2tpa0bZSdr3WMqLttLfOQqVp+77f+OAa7M12xlyYzqizU9v2WVXAvs/34hfsx7KXTnMtb2qwsv7eXygxFRM9K5Lpw6bzZuarHDQV0PC5maI1BwhJCmX+Q4tc+5gqWtqa3WGjelYFTbEWcmqzmBg1iT1v7aQqq5LYGcPJnbqP0WGj0WhUJBkTKPjfCFav/InTXjiLCkcZCgXEG+LY/ugmGiobSD5lJOP+2DZHV/mWEjLeamlrZ75/Lu1tuO9XnE4n6X+YQMqpLW/vTomZyo9fLGfdh6vwDw9wa2vW2nb3Vn+ZSezMdm3t4yz2rM4gU7MTxbmQX7+ftMhU6orbftfmP7DIrSOb8dp2anJriDshninXt90Plu2pYOuzm4G2eyvV4d/jzf9aT2NNI6POHM2Y37a1tdL1h9jzfgYqjYrT3m67t3LY2trahEsnkbi0bT6SwuX7yf8hj8CYQBY/1a6ttfse7NjW9r6fSdn2UiLHRTH7zrZ7K2NRHesfONzWHltCcHxbW9v10jbqDtQyYmEik65su7cq2V3O9he3AnDKa2eg9mu7Bjc/ug5rg5XU88eQet6Ytn3WHCT74z1o/DWc8toZruW2RmtbW7tyKiMWJrjW5X29jwOrCggeYWDho0tcyxtK2r5TZt85l8hx7m2tIqOc6MkxzLy1ra1V5dWw8bGWtrbkqZPwa9fB3PH8Fkwl9SQuTWbCpZNcy4u2lbLr9R0AnP7O2W4PPzY+uAa71c6Yi9IZdVa7traygH1f7MXPoGPZi233Vq1tzWisIu2kMRxIPMCe6t3MiptF7md7KVp7kJDkUOY/2K6ttfv9nvvPBYS1e2i0540dVO2tInbGcKb/te3eqmJvFZufbrm3WvrcyfiFt3Wwtz+9iYaqBlJOHUX6H9rdW20uIfOdXSgUCs54r+3eCnB9/rg/TiD5lLY35bvqx7i1tb/OInZGWz8m56MsLD+aSYgYgfrSlv+WYyPSyc/J5eevvietYjSj545C3e6/87CfYmna08i+umymXT+DTYc2Ud9cy/TG6a7P6XU/Zl0RWf/L7NTW7NZu+jHLcyn4MY/A2CAWP9muH1PR0HU/pkNba/0OqCuodbW1jv2YXS9upe5gXae21l0/ZvMj67A2Whm+MJZSQwkN9nqya/Yw8eAENvywBm2AlpNf7aIfc9VU4he0a2tf5XBgdSGGBAMLHmnX1orb2toJd80jIr3t3qq1rcVMiWXGLV30Yzq2tdZ+zEnJjP+/Sa7lbm2ti37M2N+NY+QZo13LIzPDmfT5RNZuXMXE99vu05rMbf2YqTfMYPjsnvsxbm3t3gWEjW5ra73pxyx9/hS0Yb3ox2wqJvO/3fdjOj0z+CGPvOX78Y8M4MR/97If81EWJZuLPT8zuK9ln479mK6eGXTqx7Rva49voKm+c1vrqh/T/pnBxMsnk7Ckra111Y9xe2Zw+xyiJnrox0yIZtbf2/oxvXpmsDiRiVe0tTW3fkzHZwat/ZhePjNotrj3Y4IWJgItfYKunhmYq7rpx3TxzKAyt4ZNjx/uxzyzDL+ozs8Muu3HvHuOW3Jzw/2/4rB7eGawIp/9X+9DH6bvph/T4ZnBpy1tLWxUGHPvW+haXl/SzTOD13dQva+HfkwXzwxGnj6KsRd3fmagVCk5/b9nu5Y7Hb14ZtChH9Nc3a6t/W02MVN77se4PTN4ZDG6hBDXum77Ma1t7ZUj7Md0fGZg6e6ZwT4Kf/bUjzF13Y95N4PyXR6eGRQY2fBIyzMDj/0YT88Mtpey81XP/Ziunhm4+jFBfix7ua0f813OV0z6fAKKDQ6qrq1wPTM4beRp/PrMSna9v5WxkWOIvjbS1Wd3e2Zw93zCx0QAkBKawoFv81n3zWqGzRjO9Jt698xg+78301BhJvnkkYz7k+d+zNkfnAfguh9wPTP4/XhSTnNva7nfdG5rjXVH/sygrqS7foznZwZlWZVs/XdLW1v24qmodZ2fGXTqx2w4xJ73Mrp9ZqA+U8P/gt/n7dPeA9r6MZ2eGXTTj8n53x5Kt5V07sccbNeP6fTMYBu1hbWMWJDApKvatbX2/ZgOzwy2PLaeZnMzqeeNIfX8tn5M8a+H+zF6Dae83q4f080zA1c/Jj6YhY/17plB1jue+zFuzwyePAm/2F70Y7aXtT0zePssVO37MQ900Y/p4ZkBwJTrphM3J961rst+TLvf7zn3zCc8LcK1bs+bO6nKruzcj8mpZvNTGwAP/ZhnunhmsLmYjLd3Ab17ZgBw8Kd8cr/dh3+4Pyc+10U/psMzg5yPslryManhzPlnu7bWzTOD3a9ux5hXw4h5I4i7s+3+xRcdl0m/jurrW7K3BoOhhy3baLQqFCgIDPRzy+wGBPih1ajR+qndlmttoNW0/OcODta7rdPrNWg1anQ6jdtym6HBtY/B4L6Pn06NVqPG31/rtrw2SO/aJzTU/Y0ErVaNU2MnIKBDzIEtMau0Krfl9ma761hBQe4ZbH9/z+epami3T4fz1LWep9495qbgtpgNIf4Y2p+nn5omjRp9h/OsDtK5nWf7jopWq0Zpbzkvj38brXvMzVpNN+epRatR46dz30dRawVAo1Z1+nvqdC3H03c4z4Z25xkS4k9gh/O0evh7VgS6n2f7zrJWo8ahcHR5nn5a9+upEWW78+xwDR4+z47XoMNgabtuDb07z/pgXbvzDEDf7gZeq1Vj16i7vAYVSoXbcqfT6TpWYGCHv01Xbc1Ku2tQ5/ka7HCeVoO5XVvz79DWDp9nh7+Nsd01GBLqj1+Qe1tD4+h0noGH/57qDtegrcnW8zXo5x6zytzW1jp/p2g9/m0sHa7BYLdrUEOTh2uwU1vz69DWHJ3/Nl21tSa1usvz1Lvamvt5UtPc7hr093gN6vTu+5g7XIMB7a+P1rbW4W/Tsa21T/ppNWqcDmentgYt3wEdz7PRqezyGmz923S8Bu2Gxi6vQV0X12B9kPvfs31b89NqcGhsXbY1pVrp3tbtjq7bmusadD9PTZOz3Xl6vgY7nmdzsMntPEN68bvm3tYC0Aa0vZnVVVtrPc9Obc3S1tYCu7oGO5yn0mTrsq3pWs+zwzXY2OF3LbjDNdhynu4xV3Voa+3f9NNq1didil7/rjWpWj7D6mwmJiiGqYkT0KjVlFoPEuMf4/F3zVndhFajprqxDoVSgV6rY0/dThamzmn3fa+h0JzHspRlhIYGMC5uDCsVP2FxNBAS4k99dTVqtYrU4cnk+e3F5uH7PvDw36b1PNvTaFTgxO3easGoOXzPN1gcjYT6hbh/P9sVXV6DNmUTucb9xI+Kpy6kjtLmIkJDA9zurTr+rnX1fV/Xoa3p2r3VqtGosHv4TnG1NU2Htmbrrq15/l1TWxx929b8PLe1mg7XYPsRCVqtGoXV2WVb03S4Bq06ay9+1zrcW9VZu2lrnu85Ora1oA7n2ezhPCs7nGf7pJ9Wq8aOosvfNb8O52lRqlxtLdYQTXRcJHvr9hAaGnBU91Z+7dpa++Umt9/vAPxD296E1fqpsWnU+AdoPbc1Ree21tU12FU/xr2tdfxd0+BUONBp266N6SOm8Pq21xljT0WlUjEhbqzbPrGGaPLYTwN1hIYG8OvWlaRFpZIakUK1ptz1t+lNP6b13qpTP8baXT/G8zWobuxFW+vwtwlsd/9gMHTsx2g8trWe+jEKm5OEqHhUNiXF1kJyarM4Lfy0HvsxXf+uucesqO2mrXVxb9XQQ1uzevhdq+xFP6bjNRgc5E9UQCRlDaWEhPi77scsClWP95DdtbUu76267cf4u7U1Pz8Ndo21y2uw+36M+z7+AZ6vwe76MV1933ffj+nNvVXnfkx3ba3jvVX7ZwYdr8Eu+zENPfdjOl6DvXlm0PEa7PGZgeMInhlo3J8ZBAfrXfF39cwAY8/9mO6eGRi6embQUz+mXdJPo1HhVCo7nad/F+fp1o/p+MxA77m/1r4f0/XvWnf9GM/PDLq6t1KoOrQ1R8/PDDr1Y5qdPV+DfdzWQkMD3EaYHEs/pqvnc0fWj/H8t7F004/p6plBT/2Y3j4zaLY3s6poBfOC5qHTat3OM5QAUiNHU5lTSZh/KGFhbQkS92cGbec5MT6dnxU/YMfa6Ty7e2bg19O91eH/nu3/t/WZQZf3kB2+B/0c3d1b9fzMoMvnc536Me7n2X4kbOszg45trfX7vrtnBjX2akoaDmEI0aNUKLu8Brvrx3T1fK77fozn86zp6ZlBc9dtrWM/prtnBl39rinrj7ytNXZ4Ptebfkyntqbp8Mygm35MV88MoPf3Vk5DUy/urTr2Y9yvQU/9mK7uOVrPsz1Pzwyg7d6q+36M53xMx9+17p4ZtJ6nn66tr+yrFM7jfJITh8PB1VdfTV1dHe+//36v99u/4QBKpQJ9ZMfyAWaajE0oNR6Gkxa0G04a1G5Ic3HrkGYPQ7eLDg8nje9QPuBgLXbL4fIB7d60bKproqF9+YD2JajyanDanejCdOjDOwzdrjw8pLnj0O39h4c0R3so1VHbhFKrxNDuDSd7c7uSJMMC0QR4OE//jiWomjEVm1rOc0SwW1Kh7kAt9iY72mA/AjoO3S5rVz6gfamO3MNDt8P16N3KBzRgqbagUCk6l8XJM3o8T3Pp4VIdfu5Dt502B47qJkwmC/4xge6lOorqsDXaWoZut3srqtnUjLmk5TyDEzyU6rA68Avxw7/dG0ZNtRYayg8P3R7poeSgE/QRHYY0VzbQVGNBoVa6jQ512NqVJOlwDbaeZ6dr0GKj/mBrqQ4PZXEabWgCtQTGti9h0a58QJKHUh1WB36hOvw7lg+oPFwWp92bge2vwaNqa7EdSul20dasDVZMh7poa63XYHdtLdlD+QAPba2xuhFLlYe25mhXJqGLttbxGuyurdUfqsfW0H1b63gNtp6nn8FDqQ4vtrX212Dg8KAjb2uJHsoHeGhrFqOFxoou2tq+1jJobW1NpVKianJQcaAGlIrOpTq6aGumEhNWk4e21s33fet5drwGu2trxnwjTls3bU3hoQRV6/d9VMdSHV20tXbX4FG1ta6+773U1sxlZprrOrc1W5ON+gOt5WI8t7WO12B3ba220Iij2dF9WxvpoTSTw9np+77Ltnb4GvzXpofRRGq596QHueTb3zMleiqXDb+ipa3pVG6jv1rb2id7P+Q783dMjp/MIdMhXjjpFdc1aNFYuHjDhdw1+58sTlhCc30zV71/OVOip3L1qdfxZtZr/FDwPR+c+Umv2lr773vw3NYcTgcXvHk2p0WfyXljz+/VvZXVbuXmj2+k3ljPgyc+ygvFz9Foa+DxRU8f1b2Vp7amUikJDtZzYEcxtmZ737a1bu6tet3WjvHeqlNba/2+79jWWq/B/m5rXXzfH1VbO4p7K9d5dnFvdevqm5mYOpmYqBhe2fkSX533HdaK5m7bGhzdvVWvf9e6uLeCdm2tL/oxJSYeX/UIzdpmHjrvMQD2VGZww7fXMsKSQIQ+nIcu+JdbW6vIL+fyLy/hkpmXceKUkzj/87O5dPzlnD383P7px3Rsa33Qj2n9DqgqqaW29e/Zh/0YbZgfF606j3lxC1ie/y33TXiIdE16p/Ps9t6qN23taO6t+rkfs3P/dh7cfB+P/vYJ0iNaRh74VD+ml23NJ/oxffjMoMt7q148MxiofsxAPjPwD9UTHKynrq6RukN1/dOP6WVb67Yf08Mzg47X4FH1Y9q3tS76MX36zKCbe6tet7Vj7cf42DODrr7vvfLMoIt+TG/a2orCn3hozX38e+x/GBY4rNN5bty9ngd/vo+TRp/Cdafc4FreVVszWmq4+PXfcP24m5g7cm6fPjMITw3HYPCnrq4Ru93hsR8DXV+Dg/2ZwQdl7/Nh0f/46rzlBGgCBv6ZQV/0YwbjM4Nu7q2O9pmBx/NsfT7nrX7MET4zgKPvxxxpW2u9t9KF6Bg2um0Evy867pN+99xzD7/++ivvvfceMTExPe9wWEVFfT9GJXyd+vAbLzU1Zmw2h7fDEUIMMPkOEIPBH7/7LXOHzePPE6/hwQ33UtFQztOLn+92n1tW/xW9Ws+c4fN4YvMjfHTmFxj8QgDYVraF2365mddPfof4oJZSO+2P+9CG+6iyVPLEwn/36XncvfYOzFZTr4/7wo7n+DL3U55a9DxpYWN4M+M1vsn7ko/O/KLPYpLvANHK6XRy2qdLuXzClYwLn8C1K/7MU4ueY1zE+J53HiJuWf1XQvxCuHPWPUDLm/pnfX4KNoeN3435A/837vJO+1z146WMCk0lLWws/972BO+e9jER+oiBDv2oDcR3wK2r/0pG5W6sDiufnvUVQdrgnncaAhxOBxd/cwGzh83lhil/9XY4Qngk9wFC9L0ntzzG3uosXjrpDY/rnU4nT2x5lJOTTuv1fdYFX57F6Sln8af0S/sy1OP+O+DprY/zTd5X/O/0TwnXh/e8gxBDjLrDSFhfpOx5k6HrvvvuY9WqVbz11ltHlPATQgghhPBldoedcnMpsYHDAUgJGUlebS4OZ9edUrvDTnb1HtLDxzElahpOYFvZVtf6fTU56NQ6hge2ze+SFjaGnJq92Bw2ShtKiAmI9XDkYzMpajJ7qjJpsjf1uO2qgz/z6b6PuHLCtaSFtczZkGRIxthkpMZS3eexCVHTVI3VYSXGP5aUkJHo1XoyKnd5O6wBZbaaCNC0K1Go0jIypGU+m64eyqWFjSW7KosVhT8wKWrKoEr4DZTUsDSsDivxQSOOm4QfgFKhZFH8ElYXrcTmsHk7HCGEEAOkoC6fpJCULtcrFAr+Nv32I3qxKsmQTEFtfl+EJ9oxW1tG1TXaGrwciRCiK8dl0s/pdHLffffx448/8tZbbxEfH9/zTkIIIYQQg0R5Qxl2p4NhgcMASDaMpNHWSJm5tMt98mpzsdgspEeMJ9I/koTgRLaVb3GtzzXuJ9mQglLRdvuYGjYGq8NKfm0eJaZiYgOG9fm5TIqcjM1hY09lRrfbbS/byqObHmTxiCWcNbJtwu/kww8P8mvz+jw2IUoPt6nogGhUShVjw9PZXbHTy1ENLLPV7Jb0g5aknlKhYGz4OI/7pIWNpbAun92Vu1iasGwgwhx0RoemATA2PN3LkQy8JQlLqWuqdXvxRAghxNDldDopqM0nMTipT4+bZEiRPkA/MFlbqt812S1ejkQI0ZXjMul377338uWXX/LEE08QEBBARUUFFRUVWCzyZSWEEEKIwa/YfAiAYQFtI/0A9hv3dblPZuVu1Eo1o0NTAZgaPZ2tpZtprQS/37iPkaGj3fYZFToalULJtrItGJuMxPbDSL9EQzLBfga2V2zrcpuc6r3cs+5OJkZO4m/T/u42v8HwwDg0So10+EW/KHMl/Vqu/fERE8mo2t3tqNqhpiXpF+i27KyR53D95Js6JQNbpYWNwQn4qfw4Ydi8AYhy8Ek9PFq5q8TpUJZsGMmI4AR+PvCDt0MRQggxAMobymi0NZJoSO7T4yYakig2FfWqYojovbaRfvIcXQhfpe55k/6xY8cOli9fTklJCU1N7l++CoWCF154od8++/333wfgD3/4g9vyhx9+mHPPPdfTLkIIIYQQg0axqRiVQkmUfzQAYbowQvxCyKvNZV7cAo/7ZFZlMDo0Fa2qZXLrqdHT+XTfRxysP0CkfxRF9Qe4IPUit338VH4kGVJYXbQSgJh+GOmnVCiZGDmJneXbPa4vqj/IHWtuZURwAnfPvh+NStNp/4TgREn6iX5R1lBKkDaIwMNJr/GRE3gz8zXya3NJOVzicqhr8DDSLy4onrigrqupjAhOQK/Wc8Lwufhr/Ps7xEEpyj+KR+Y/zviIid4OZcApFAoWx5/I//a+S6OtEb1a7+2QhBBC9KP8upYSnEl9PNIvMTgJJ1BYW8DosNQ+PfbxzNRsAqS8pxC+zCtJv7feeouHH36Y8PBw4uPj0Wg0Pe/Uh/bu3TugnyeEEEIIMZBKTIeICohBpVQBLQ9Qk0NSehzptzB+sev/T4iciFqpZmvZZkaHpuEE1zxd7aWFjeHrvC8BiA3s+5F+0FLi8z87/k2DtcEtQVDZWMnff/0bwdpgHpz7aJfJg+QQKe0j+kepucSVXIeW0VlqpZrdFbuOi6Rfs70Zq8OKv/rIEndKhZIH5j7C8ECZZqE7U6OnezsEr1k84kTezHyN9cVrWTziRG+HI4QQoh8V1uajV+vd7qn6QpIhGa1Ky/byrZL060Ot5T0tMtJPCJ/llaTf66+/zu9//3vuuOMOlMrjssKoEEIIIUS/KTGXdCq1OTJkFKsPrvS4fXlDORWNFaRHjHct06l1jIuYwNayzagUKlSHR8x1lBY+lq/zvkSr0hLqF9an59FqUtQU7E4HmVW7mR4zE4CKhgpu//VmbA4bTyx8FoNfSJf7JxmSWXXwZxxOh9uchEIcq1JzCTHt2pqfyo/U0DR2V+7i7FHneTGygWG2trzp3bG8Z29MiJzUx9GIoSQ2cBhpYWNYeXCFJP2EEGKIy6/LI9GQ5Faivy/o1DpmxMzil6JVXJj2uz499vGsdaSfzOknhO/yylOPxsZGlixZIgk/IYQQQoh+UGI+5JrPr1WyIYWyhjJMzfWdts+s3A3A2PB0t+VTo6exs2IHWdV7SDQkuUp/tpd2eN6p2IBhfd5RbxUfNIJQXSg7ylvm9SuqP8hfVl6DxdbIvxY8TZR/VLf7JxmSabY3U2w61C/xieNXqbmUaP8Yt2XjIyewu3Knaz7Moax1Tpeu5u4T4lgsjF/MltJNmA4nl4UQQgxNBbX5JPZxac9WC+IXkVOzl1JzSb8c/3jTWuUBZE4/IXyZV7Jup5xyCr/88os3PloIIYQQYkhzOp0Um4qJDXSfX6+11GBebW6nfTKrMhgWOJxQnftIvWnRM7DYLKw+uLLLUoXxQSPw1/h3+ry+pFAomBQ5hR3l29lXk8NfVl6HXu3P04v+0+28Ya2SDMkAUuJT9CmH00F5QxkxAe5Jv3ERE6mx1HDIVOSlyAZOW9LvyEf6CdGTeXELsTlsbChe6+1QhBBC9BOH08GBukKPFUX6wszY2WhV2i4rnnjSbG/ul1iGAnO7F3FkTj8hfJdXkn533nknlZWV3HzzzXz88cf88MMPnf4RQgghhBBHzthUQ6OtkWGB7iP94oNGoFFqyDXu77TPnqoM0sPHdVqeHJKCwS8Eq8PKqJDRHj9PqVByevKZnDBsbt+cQBcmRU1hvzGHm1fdQGxALE8u/DeR/pG92jfULwyDX4gk/USfqrHUYHVY3cp7AqSHp6MAMg6PoD1aFpuFuqbaYzpGf2s4nPTraj5NIY5FlH8UY8PTWV20ytuhCCGE6CfFpkNYHVbXS3p9Ta/Wu0p89kZG5W7O/vxUysyl/RLPYNf6whfInH5C+DKvzOmXl5fHtm3bOHToEN98802n9QqFgqysLC9EJoQQQggxuBWbigEYFuA+8k6lVJFoSOqU9GuwNpBr3MepSWd0OpZSoWRK1FRWHlxBSqjnkX4AV0y4ug8i796U6Kk4nU7GhI/lntkPHFGSQaFQkGRIlqSf6FOtZaKiO4z0C9QGkRySwo+F37NoxBL8VH5HdfwXdz5Hfm0ezyz+zzHH2l/MNinvKfrX/LiFvLr7JUxWE4EyolQIIQZcfXMdb2S8yrmjLuhVhY0jVVCXD0CioX/Ke0JLic8HN9xLiYdqKB19X/AtVoeV3ZU7O93jCfekn8zpJ4Tv8spIvzvuuAN/f39efPFFli9fzooVK9z++emnn7wRlhBCCCHEoFdibpm3Liagc4c22ZDSKemXU5ONw+lkXMR4j8ebPWwOOrWOFMPIvg/2CMQExPLSSW/wwJxHj2pUUZIh2WNpUyGOVllDyxvgHef0A7h03JVkV+/hltV/wWipOeJjO51O1hev5ZCPz0Mp5T1Ff5sft0hKfAohhBf9fOAnvsr9gmtX/Jl1h9b0+fELavMJ1gYT6hfW88ZHqbXEZ0+j/ZrtzawpapmOKqtaBqN4YrK2zA8fpA2SOf2E8GFeSfrl5uZyyy23sHDhQhITExk+fHinf4QQQgghhDun09njNsWmYkL8QjwmxkaGjKKwrgCbw+ZallmZQaAmkBHBCR6PtzB+Me+e+qFPlO9LMiSjUWmOat9kQwolpkM02hr7OCpxvCozlxKkDfI4ym1G7EyeXPgsJaZibvj5ag7WHziiY+fV7qfaUk1tk9Gn55UxW01oVVrUSq8UkBHHgUj/yJYSn0cwF5MQQoi+s654Denh45gcNZV71t3J6xmv4HA6jvg4Xe1TUJtPoiEJhUJxrKF2Sa/WMzN2NquLuv8t2Vq2GZPVxKjQ0WRX7em3eAYzU3PLnH7hugiZ008IH+aVpN+YMWOoqqryxkcLIYQQQgxK28q2cP6XZ2Jqru92u2LzoU7z+bUaGToaq8PKH7+9iHvX/YP3s/7L+pK1jAkfi1Lh+bZQoVAQ7Gc45vi9LcmQjBM4UFfo7VDEEFFqLvE4yq9Valgazy55EY1Ky40/X8Ouih29Pvbm0k2uf6+xVB9LmP2qwdqAv9r7LwSIoW1+3EK2lG3u9Ptnaq7ns30f02Rv8lJkQoiB9GPBcp7c8pi3wziumJrr2Vm+nUUjlnDP7Pu5bPyf+SD7Xe749ZYe+yTtGS01nPvF6Wwt29xpXUFdPon9NJ9fe/PjFrKvJoeSw1MheLLywAoSghM5OfFUco375PfFA5PVhAII1YXKnH5C+DCvJP3uuece3nzzTdasWYPNZut5ByGEEEKI49yW0k3UNdexoWRdt9t1N1fF2PB07jnhfhaNWILJauJ/e99lb3U2k6Km9EfIPiUhOBEFyLx+os+UNpQQExDb7TYxAbE8s+h5UkJGceea23qdwNtcupGYw/PIVDZWHnOs/cVsNUlpT9HvWkt8rm9X4tNqt3Lv+rv5z45neWLzo70aCS+EGLxWHfyZf21+mO/yv5EXuNrp7+++TaUbsTsdzB42F4VCwUVpF/PwvMfJrMrg030f9/o428q3YLaa+Sr3C7flVruVovoDJAYn9nHknbWW+OxqtF+jrZF1xWtYPOJExoSnY3c62F+zr9/jGmzMVhP+mgACNIEyp58QPswrSb/f/e535OXlccUVVzBx4kSmTJni9s/UqVO9EZYQQgghhM/aW5MNwNoe5tIoNh1iWIDnkX5KhZK5w+dzxYSr+deCp/jsrG/476kfcO6oC/o8Xl+jU+sYFhgn8/qJPlNmLiM6ILrH7QK1Qdw9+15UChX/y36vx+3NVjOZlbs5OfE0AKotvlshxWw1eyxvKkRfivSPJD18nGsuJqfTyTPbniCjcie/Sb2IlQdX8MHentuWEGJw2ly6kUc3PcCC+MX4qfxYV9z388oNRla7lat/uoz3st7pt89YX7yWUaGjifKPci2bEj2NSVFTyKjc1evjtFYw2Fiyjtomo2t5kekgdqeDxOCkPou5K64Sn12Ui95QvI4mexML4xe3TCmg1JBdLSU+OzJZTQRqAvFT+8m0CUL4MK9MvnDppZf2a61mIYQQQoihxO6ws7c6mwh9BJtKN2CxWdCpdZ22a7Q1YmwyMqyLkX4dKRVKogO6Lk841CQZkmWkn+gTDqeDsoZSYvy7H+nXKkgbzPmjL+S9rHc4f/SFRPpHdrntjvJt2J0OFo84kXez3qbKp0f6SdJPDIz58Qt5ZdcLmJrr+Sr3C74v+I7bZtzBiQnLUCnVvL77ZRINycyKne3tUIUQfSizMoN71/2DqdHTuW3GnTy44V7WHvqVi9Iu9nZo3dpbnY3ZamJK9LR++4zVRT+Ta8wlz5hLalgaU6On9+nxm+3NbCxZz29Sf9tp3bjw8fw36y1sDluP8/o6nU62lm3mpMSTWVH4AysPrODsUecBLfP5ASQa+j/pB7AgbhEPbPhny0uSHaZDWHlwBalhaa7lo0NTya7OGpC4BpPWez+9Si9JPyF8mFeSftdff703PlYIIYQQYlAqrMunyd7Etek38uSWx9hStom5w+d32q7E3DJHRWwXI/2Od0mGZL7I/Qyn0ykvoIljUm2pxuaw9Vjes71zRp3PZ/s+5v3sd7hhyk1dbre5dCPDA+OIDRxGuD6cKovvJv0abGYp7ykGxLzhC3lhx3M8seUx1hz6hT+MvYQTE5YBcEn6ZeTX5vHQhnt5dsmLJAxAmTghRP/LNe7jrjW3MTo0lbtm3YtaqWbO8Lk8uukhKhoqun2BxpscTgcPb7yfJruF9077uF/uOZ1OJx/nfMDUw0nFhzc+wItLXyNCH9Fnn7GzYjuNtkZOGD6307pxEROw2CzkGveTGpbW7XHya3OpsdSwZMRSTM0mvi/4zpX0y6/LI1wfTpA2uM/i7s6M2FloVVq+yv2cKyde61puaq5nc+lGLh9/pWvZmPCx/Fq0ekDiGkzMVhOB2iB0ap3M6SeED/NKeU8hhBBCCNF7WdVZKBUKFsYvJjE4iTWHfvG4XevE9L0d6Xe8STIkU9dUS01T7+ZVE6IrZeZSgCMaKRugCeA3qb/l27yvKDWXeNzG6XSyuXQj02NmAhCui/DxOf1kpJ8YGJH+kYyLGM+aQ7+wJGEpfxh7iWudUqHk9hl3EeUfzd1r76C+uc57gQohjllebS6PbHqAa3/6M9EB0dw392FXhYuZsbNRKZRsKFnbw1G8Z2PJeg6ZiqhsrCSvdn+/fMauih3kGnM5f/SF3DbjTlQKJQ9vvB+H09Fnn7Hu0BpiAmJICk7utG5U6Gg0Sg2ZVbt7PM6Wss1oVVrGRUzgpMST2W/c5yq3X1CbPyClPVvp1Xp+l/YHPs75kDczXnPNibjm0K/YHTYWxC92bZsWNpayhjKfLrPuDebmljn99Gp/mdNPCB/mlZF+f/zjH3vc5u233x6ASIQQQgghfN/e6iwSg5PQq/XMjZvP5/s+wWq3olFp3LYrNh1Cp9YR4hfqpUh9W5Kh5aFFfm0eYbpwL0cjfJndYSfXuJ/dlTvZVbGTCP9Irpt0o+tt/bKGlqRdtP+Rlcc9a+S5fJzzAe/seZNbpv+90/oD9YWUN5S3Jf30EYOgvKeM9BMD46K03/Nr0SpumHJTp5EzAZoA7pvzENf8dAX/3fM2V0+6zktRCiGO1u7KXbyf9Q6bSzcRqY/k8glXcWrSGfhr/F3bBGmDmRA5iTWHfuGMlLO9EmeDtYGv877g9OSz3GJr9XHOB4wOTeVg/QHWF68jJWRUn8fw8b4PSQhOZGr0dBQKBXfOuodbVv+Fd/a8yZ/SLz3m4zucDtaXrGVB3GKPIxW1Ki1pYWPIqNzd49zgW0o3MTFyElqVlhkxswj2M/BjwXKunHgthXUFzB52wjHHeyQuHvtH1Eo1r+5+CZPVxDWTrufnAz8yPnKS20jJMeHpAGRXZXkc7Xi8MllNxATE4qeSOf2E8GVeGekXGBhIUFCQ2z9Op5OMjAwOHDhAcPDADOsWQgghhBgMsqv3kBY2FoC5w+dhsprYWbG903Yl5mKGBQyT0pVdGBY4HD+VH/tr9nk7FOHDXtz5HOd8cRrXrvgzr+1+mcrGCr7c/xkbSta5tik1lxKsDfb4sK87OrWOi8f8kZ8Kv+dg/YFO6zeXbkSj1DAxahJwOOnnw2+Ym60mGeknBszM2Fn8bfrtaFVaj+uHBQ7n9OQzWV7wDQ3WhgGOTghxLCoaKrhl1Y1UNlZw24w7ePvU/3H+6As9/s7OGT6PneXbMTXXeyFS+N/ed3ll14u8lvFyp3U51XvZVbGTC9N+x7SYGawv7vsRiUX1B9lYvI7zRv/Gdc8/IXISf0q/jHf3vMW2si3H/Bk5NXupaqxiTjfJrvSIcWRW7naNlvPEYrOQUbnbNd+gRqVhyYil/FT4A2armRLTIRI9jCTsbxem/Y4bp9zMl/s/5f7197CzYjuL4pe4bROpjyRMF0ZW9Z4Bj8+XmZpNBGgC0av1WCTpJ4TP8krS7z//+Q/PP/+82z/vvPMOP/30EzExMZx66qneCEsIIYQQwuc0WBsorCsgNWwMAMmGkcQExLD20K9u2zmdTvKMucQGynx+XVEqlIwNT2d35U5vhyJ82IrCH5kYNZmnFz3P52d/y3NLXmJ6zAye3/6Ma+6SUnPJEZX2bO/U5DMI10XwduYbndZtLt3IxKhJ+Kn8AAjXhfv0SL8Ga8MRJz6F6E9njDwHi62RHwuXezsUIcQRWHVwBUqFiqcWPc+JCctQK7suTHbCsHnYnQ42lqwfwAhbVDRU8PHeD0gMTuLL/Z+xu8L9nvLjnA+ICYhh7vD5zI49gZyavUddHvJAXSFf5X6O3WF3W/7pvo8J9gthyYilbssvSruYydFTeXDjfZQ3lHd53GZ7c4+fva54DcHaYNLDx3e5TXrEBKot1V2WLAfYVbETq8PKtJgZrmUnJZyMscnIJzkf4gQSDQNX3rO901PO5O8z72ZDyVoUKJgft8BtvUKhIC1sLFlVkvRrz2w1EXg46Wd3OrDard4OSQjhgU/N6RcWFsbll1/OM8884+1QhBBCCCF8wn5jDg6nk7TwlqSfQqFg7vD5rDn0i9u8HR/ufZ/MqgwWjzjRW6EOCpOiprC7clenByhCQEs5q7rmWmbEzCI9YhxalRaFQsG1k26kylLF+9n/BQ4n/Y6wtGcrrUrLxWP/xKqDP/N17peuN+QbbY3sqtjpKu0JEKGPwGw1+2T5JIfTQaOtUcp7Cp8S7R/NnOHz+WzfJ306t5UQon+tOvgzM2Nn92r0eKR/JKlhaawtXjMAkbl7I+MVAjQBPLXoWcaGp/PElsdcSbSyhjJWF/3MuaMuQKlQMiN2FgpgY8mGo/qsf297in9ve4pbVv+FioYKAOqb6/ih4DvOTDm706hnpULJHTPvRqfy4951d3lM7q0vXsvZn5/Kvev+QVVj18nIdYfWtMyfqFR1uU364fKXGZW7utxma9lmIvQRjAhKcC1LCRlJsiGZj3L+B+C2bqAtGrGER+Y9wV+m3kKwn6HT+jHhY8mpyZbfk3ZMVhOB2kB0aj0AFrvv3aMKIXws6Qdgt9upqKjwdhhCCCGEED4hq2oPOrXObZL7OcPnY2wysqcqE2jpwL+2+yV+O+b3zI9b6KVIB4eJkZNpsDaw3yglPkVnZqsJh9NJiF+I2/LhQXFcmPo7Ptz7PkX1BylrKCPmKEf6AZyceCqnJp3OM9ue4LZfbqLUXMLOih3YHDa3pF/44bllqrt5MOctZqsJQMp7Cp9zzqjzOWQqYkvpZm+HIoTohaL6g+TU7GVh/OJe7zNn2Dw2l26kyd7Uj5G521+zj58Kv+eP6ZcSqA3ipmm3UtZQyjt7Wkbuf77vY/zVASxLbKleZvALYUx4+lGV+MyuzmJnxXYuSvsdJeZirvrpMjaVbOSbvK9wOB2ckXKWx/0MfiHcM/sB8mvz+Pe2J91Kb6459Av3rruL9IjxZFTu4rLv/8DXuV92Smgdqi+isK6AOcPndRtjkDaYhOBEMqsyutxma9lmpsXMcJt6QKFQcFLiKVhsFmICYrxeMWBi1GROTvJccW5M2FgabY0U1hUMbFA+qv0LX34qHQCNh6tgCCF8S9fj5ftRZmZmp2VWq5Xc3Fyef/55JkyY4IWohBBCCCG859/bnmRW7BxmxM50W55dncXo0FSUirZ3tcaGpxOqC2XtoV/wV+t5aON9zBk+n0vSLxvosAed0aGp+Kn82FG+jdSwNG+HI3yMsckIgMHD294XpV3MigM/8Nz2pylvKCUmIPaoP0elVPHXabcwL24BT239F1f8cAnxQSOICYghLjDetV1r0q/KUsnwoLij/rz+YLaaAUn6Cd8zLnw8I0NG8fn+jzv9pgohjl19cx0FdQWMj+ibZ3erD65Er9YzM3Z2r/eZM3wer2e8wvayrcwadkKv96uxVPNN3lcsHnEiw46gJL7T6eSlXf8hLmgEpyadDkBCcCJ/GHsJb2W+xrToGXyb/zVnJJ/llsSaPWwO/93zFs325i7nI/Xkg+z3GB4Yx/+Nu4LzR1/IY5se4s41t6JT61g84kRCdWFd7js6LJUbp97M45sfIS1sLKennMnqgyt5aOO9zI9bxG0z7qTR1sDLu17gmW1P8POBH5kZO5uyhjLKzCUcqC9Eo9QwJXpaj3GOixhPRuVuj+vKG8oprCvg92P/1Gnd4hEn8vKu/5BoGPj5/I7EqNBUlAoFWVV7SOomVqfTiclaT5A2eACjG3itL3y1lPdsSfrJvH5C+CavjPQ777zzOP/8893+ueiii7jzzjuJjIzk/vvv90ZYQgghhBBe4XQ6+S7/G17Y+Wynt233VmeRdng+v1ZKhZI5w+ax+uBK/rH27wwPjOPWGXe4JQaFZxqVhvSIceyq2OHtUIQPak36BWs7J/10ah3XTLqBrWVbsDnsRB9D0q/VtJgZvHzSm5w44iT21eQwI3a229vw4bqWpF+lD87r13A46eevlqSf8C0KhYJzR53P5tJNHKgr9HY4Qgw5/8t+l7+tuqHLZM+RcDqdrDy4ghOGzUF3OInQGyOCE4gLimfNoV+O6PO+2P8Zb2W+zv8tv5gHN9xLbi8rP2wq3ciO8m1cMeEqt5KXv0n9LUmGZP7+6y002SycNfI8t/1mxZ5Ak72JHeXbex3jwfoDrD30CxekXoRSocTgF8L9cx/h8vFXolPpOH/0hT0eY1niKZyRcjbP73ia1zNe4aGN97Iofgm3z7gLtVJNkDaYm6fdxuMLnqa2uZb3st8hs3IXSqWKmbEncOese9AfLt/YnXER4ymsK6C+ua7Tum1lW1AAUz0kD0N1Yfxh7P9xUsLJvfpv4i3+Gn8Sg5PIru5+Xr/XM17moq/Po9h0aIAi8472L3zp1S3JbYuM9BPCJ3llpN/bb7/daZmfnx8xMTFER0d7ISIhhBBCCO8xWeuxOWwU1R/k16LVLIhfBEBVYxUVjRWkdkj6Qcsbzl/nfUmoLpT75zzSq465aDEpcgrvZ/8Xu8Pe7Vwl4vhTezjp17G8Z6tZsScwM3YWG0s2EHOUc/p1FKAJ4MapN3PmyHOI9I9yW+ev8Uev1lPlg0k/GeknfNmC+MW8vOsFPt//KTdM+au3wxFiSNlathmH08ljmx7kxaWv91iesdRcwnPbn8bpdHL/3EfcXlLLr8ujsK6AyydcdcRxzB0+j2/zv6G+ua5XI6ycTieri1ayMH4xEyIn8uHe97nqx8uZHjODG6f+jWh/z88j7Q47r+x6gQmRk5gV6z6qUK1Uc/O027luxZ9ZNOJEIv0j3dYnBCcSExDDhpK1vR55/OHe9wnVhbE0YZlrmVKh5MK033Fh2u96dQyAqydeR65xH+9n/ZelCcv42/TbO70gODFqMq+e9JbbC0dHYtzh0Z6ZlRmdRlxuKd3E6LC0Lv82nkYA+qK0sLGuKRU8yazM4IPs91ApVbyw8znun/PwAEY3sEzNrSP9glxJepnTTwjf5JXXwWfMmNHpn4kTJ0rCTwghhBDHparD83WF+IXwfvY7rvk39lZnAS2dzY4mRU3hjJSzeWDOo50eMIjuTYicRKOtkX3GHG+HInyM0WJEAQR7KO8JLSOIrp9yE2ePPI+4oHiP2xytJEMygZrATsvD9RFUWXw56dc5ZiG8TavScnrKWfxYuBxTc723wxFiyDBaasg15vL7sX+ipqmGl3Y+3+W2DqeDT3I+5PLv/8R+4z62lG3if9nvum2z8sAKgrRBTI3quZRkRwviFmNqruPcL87ggi/P4uZVN/LvbU9Rai7xuH1e7X6K6g+yNOFkzkg5mzdPfo+/z7yL/No87l5zOw3WBo/7fZTzPwrrCrhywjUek2OjQkfzzOIXuG7yXzqtUygUzIw9gQ3F69zm1+tKZWMlPxX+wLmjLjiicqCeaFQa7j3hQW6ZfrvHhF/7GI9WtH8M4fpwMip3uS13OB1sK9/CtOgZR31sXzEmPJ3CunyP10ejrZHHNj9EWvhYbp1+JxuK17GpZKMXohwYJmvL72mAJkDm9BPCxw1Y0s9oNOJwOFz/3tM/QgghhBDHi2pLS9LvsvFXkmvMZWPJegCya7II1YUSqe+c1FMr1dww5a+MDksd0FiHgtSwNHRqHTuPoNSSOD7UNdcS5GfotlRutH80106+AbVyYIqmhOsiXC8G+JLWeV1kpJ/wVWeknIXNYWV5wbfeDkUIn9FgbcBoqTnq/beXbwPgtOQzuXLCtXyb/zXri9d22i7XuI/rV1zFSzuf5+Sk03h92X+5MO1i3s58nb3V2UDLyLtVB1cwb/gCNCrNEccyMnQUry17hztm3s0ZKWcT6hfK6qKVPL/9GY/bry5aRZA2iCnRU4GW+XUXj1jKQ/P+RYm5hEc3PdipzP7XuV/y2u6XuSjt4m7vudPCxnh8cQdg9rATqGisIK92f4/n9Nm+j9CqtJyWcmaP2/ZGiC6UkxJP6bcpABQKBenh48msynBbvqcqk/rmeqbGTO+Xzx1IaWFjcILHEp+v7HyJysYKbp1+BwvjFzMxcjL/2fFvmu3NAx/oAGh94StQG4he01JlRub0E8I3DVjSb/bs2WRktPwIzJo1i9mzZ3f7jxBCCCHE8aI16bcwfjHp4eN4N+ttnE4n2VV7SAsbe0xv4IrO1Eo14yLGs7NCkn7CnbHJ2GVpT2+J0Ie7viN8SYOtAZVCiZ/Kz9uhCOFRmC6cucMX8FPhD94ORQif8fKu//DXVdd3OerM4XTw8s7/cKi+yOP6rWWbSQhOJEIfwWnJZzAzdhZPbnnMlUjMrs7in+vu4uofL6fJ3sRTi57nusk34q/x5w9jLiE5ZCSPbHoAi81CdnUWpeZSFsYvPurziQuKZ9GIJfwx/f+4a/Y/uXLC1WwoWc/B+gNu27UkGH9mzvB5nV7aSTIk8/eZ/2B98RrezHzNtfynwu/597YnOHPkOVw67oqjjnFCxCT0aj0bitd3u52puZ6vcr/gzJSzu0wg+qJxEePJrs5yJbp2V+7innV3EhcUzxgP1UoGmxHBCUTqI3lgwz/5Yv+n2Bw2ADYf2szn+z7hsvF/Ji4oHoVCwXWTb6TEfIjP9n3s5aj7h8n1wlcgetXhpJ9dRvoJ4YsGbE6/hx56iPj4lhI4Dz88dOsbCyGEEEIcqarGKvw1/ujUOn435o/cueZWtpVvYW9NNhem9n7uDtF7EyMn817WO9gctgEbsSV8X21Tjc8l/cL1EWQdLvXrS8xWM/6aAHkpQfi0GTEzWXXwZ2qbjBh8rG0L4Q0Zlbspqj9IRuUuxkdO7LR+a9lmPsr5gAZbA3+Z+je3dU6nk21lW5gXtxBoGeV107RbueL7S3hw4304nU52VmxneGAcN027jSUjlrqN4NOoNNw+4y6u/ulyXt71AhqlhlBdKBOjJvfZ+S2MX8Kru1/i05yPuHHqza7l+2pyKDEVc+OUmzzuN3vYHC4d/2de2/0yicGJqJUa/rX5YZYlncq1k244pt86jUrDtJgZrC9Zy8Vj/9jldp8fTiidM+r8o/4sbxgXMQGbw0ZOzV4OmYp4euu/GBs+nntm3zck7rGVCiXPn/gyb2S8yvPbn+HL3M+5fMIVvJL5AhMiJ3L2yPNc2yYakjhr5Hm8m/U2SxJOIkIf4cXI+56puR4/lZ/r76pWqmWknxA+asC+fc855xwAbDYbo0ePJjY2lrCwsIH6eCGEEEIIn1VtqSZMFw7A9JgZjAodzb+3PUWDtYG0sDFejm5omhA5idd2v8y+mhzGhA/+t5BF3zA2GQnWep7Pz1vCdOFUNlbgdDp9KsFmtpqktKfweZOiWsr4bS/fdkyjiYQYChqsDRysLwRgecG3HpN+3+R9BcDKgyu4auJ16NQ617oi00EqGiuYEt02/16YLpy/TP0b962/m1Gho7l79n3MGT6vy3KSI4ITuHLCNTy7/Wl0ah0nJ57Wp6UntSotZ488j//ueYtLxl3mSvavLvqZYD8DkyKndLnvham/o6Aun8c3P4rDaWdh/GL+OvWWPolv3vAFPLTxPu5ffw9/nngN0f7RrnVGSw0v7foPPxX+wDmjznf1CQaLZEMKOrWOp7c+TmFdAacmnc51k/9yVCVbfVWoLoybpt3KmSnn8MLOZ7ln7V0E6QJ5dO5Tna6PP469hJ8P/MSru17g9pn/8FLE/cNsNROobRuFqlfraZSknxA+acDKe7o+UKnkwgsvJDs7e6A/WgghhBDCJ9VYqgnTtbwMpVAo+G3a7yk2HUIBjA5L825wQ9To0FT0ar2U+BRuan2wvGe4PoJme7NrDj1fYbaaJeknfF6kfyQjghPYXrbV26EI4XW5xn04nE7mDp/PL0WraLA2uK2vbKxkffEazh11AQ3WBtYcWu22flvZFtRKFeMjJrgtnxe3gP+d/inPL3mZeXELekySnZFyNtNjZmCxWVg0YknfnFw7pyWfgUKh4OvcL4GWEYq/FK1i3vD5qJSqLvdTKBTcNPVWxkWMZ0H8Im6dfmefJSQXxi/mthl3kFG5i0uX/5539ryJxWbhu/xvuPT7P7CxZD03TbuVqyZe2yefN5BUShVjw9M5WF/I1ZOu4y9T/zakEn7tjQwdxeMLnuGBeQ/z1LKniA2M7bRNoDaIy8dfyYoDP5Fr3OeFKPuP2WomUBPk+v86lQ6LTcp7CuGLBnyctVKpJC4ujtra2oH+aCGEEEIIn1RlqXJ7q3fO8HkkBCfixDmo5vQYTNrP63dR2sXeDkf4iNqmWp8rARihjwRaHsYGaoN62HrgNFjNBMj3kxgEJkdNZWPJOm+HIYTX5dTsRaPU8OcJV7P2u1/4pWgVJyed6lr/Q8F3qJUa/jD2T+w37uP7guWcmLDMtX5L2WbGho/DX+Pf6djh+t6PTlMoFNw+4y42l27slznfDH4hnJRwMp/v/4QLUi8irza313MHalVaHlvwVJ/HpFAoODFhGScMm8d7WW/zXtbbfJD9Hk32JpYkLOXKCdcQqhu81dCun/xXzFYzqcfBy4oKhYIThs8lNDSAmhqzx21OTDiJZ7Y9QUblblJCRg1whP3HZK13e+FLJyP9hPBZAz7SD+Cqq67iP//5D2VlZd74eCGEEEIIn1LdIemnVCi5c9Y93DztNi9GNfRNiJxERuVubA6bt0MRPsDpdGL0wZF+rfPBVFuqvByJu9Y5/YTwdVOjp1FqLqXEVOztUITwqr3V2YwKHU1s4DAmR0/l+4JvXescTgff5n3FovglBGqDODnxFHaUb6PUXAKAzWFjZ/l2pkRN6+rwRyTYz8CShJP6rWz1uaMvwNhkZOXBFaw6uIIQvxAmRE7ql886Ev4afy6fcBWvnPQWp6ecyWPzn+T2GXcN6oQfQFxQ/HGR8OsttVLNiKAR5NfmeTuUPmVqNnVI+ulosstIPyF8kVdmVF2+fDk1NTWceOKJpKamEhHhPrGpQqHghRde8EZoQgghhBADrn15z1ZJhmQvRXP8mBQ1hdd2v8ze6mzSI8Z5OxzhZQ22BmwOm8+N9Gt9IaCqsdLLkbgzW81EBUT3vKEQXjY+ciJKhYKtZVs4PfBMb4cjhNfk1OxlesxMAE5OPI2HNt5HUf1B4oLi2VK6mbKGMk5Lbmkjc+MW8Oz2p/m+4Dv+lH4pe6uzabQ1us3n58vig0YwK3Y2n+R8gKnZxPz4RX06d+CxiguK56qJ13k7DNGPkgzJQy7pZ7aa3fqserUei4z0E8IneeUXz2w2k5SUxKRJk9Dr9ZjNZrd/TCbfmq9CCCGEEKK/NNmbMFvNR1QWSfSNUSGj0av17KrY4e1QhA+obTICYPAzeDeQDrQqLUHaIKp8bqSfScp7ikEhUBNIWthYtpfLvH7i+GVqrueQqYjUsFSgpZR8oCaQ7wu+A+CbvC9JNiSTFjYGaHmYvyh+CT8UfIfD6WBr2WYCNYGDajTXeaN/Q35tPhWNFSyIW+jtcMRxJtGQTEFdPk6n09uh9BmTtZ5Abdu9n06lo1Hm9BPCJ3llpN8777zjjY8VQgghhPA5NZZqALfynmJgqJQq17x+vx3ze2+HI7zMeDjp52vlPQHCdRFU+thIvwZbg1uJJyF82eSoqXyZ+xkOp8OnRvsIMVByavYCMDq0JWmnVWlZNOJEfixczhkpZ7OhZC3XTrrRrdzmsqRT+Tb/a3aUb2Nb2RYmRU0ZVO1nYuRkUkJSqLHUMC5igrfDEceZJEMKDdYGyhvKiA6I8XY4faLlhS/3Of3qm+u8GNHQtr54LT8ULOeeE+73dihiEBo8v9ZCCCGEEENQVWPL6J3BPpfHYDUuYgJZ1XtwOB3eDkV4WdtIv1DvBuJBuD7cJ8t7+qv9vR2GEL0yJXoq9c315Br3ezsUIbwip2YverWeuKB417JliadQ1VjFo5seQKPUsjhhqds+Y8LGEh80gk/3fURWdeagKe3ZSqFQcPuMf3D37PsHVbJSDA2tUzUMpRKfZqvZrcpDy5x+TV6MaOiyO+y8uPN51hz6xTW3qhBHwmu/evv27ePmm29m6dKlTJo0iaVLl/K3v/2NnJwcb4UkhBBCCDHgqg+X7AuXkX5ekR4+jgZrAwV1+d4ORXhZbVMt4HvlPQEi9JFUWXwn6ed0OqW8pxhUxoSl46fyY1vZFm+HIo5T28u2UlhX4LXP31udzajQVLfk1+jQVJIMSeyq2MnC+MUEdvhOVygULEs8hY0lG3A4nUwdZEk/gERDkszbLLwiUh9JgCZgyCT9Wu/9AjVBrmU6mdOv36w48APFpkMAMhWFOCpeSfqtWrWKc845h507d7JkyRKuvfZalixZwo4dOzj33HNZtWqVN8ISQgghhBhw1ZYq1EoVQdpgb4dyXBodloZSoWBPZaa3QxFeZmyqIVATiFrplRkQuhXmYyP9Gm2NOJxOKe8pBg2NSsOEyIlsK5eknxh4DqeDe9f/g+tWXMn64rVeiSGnJpvU0FS3ZS1JvVMBOD3lLI/7LU1chlKhICYghmGBw/s9TiGGCoVCQZIhecgk/Tzd++lVOhrtMqdfX7M77Pw3621OGDaXlJAUdkrSTxwFryT9HnvsMebNm8cPP/zA7bffzhVXXMHtt9/ODz/8wNy5c3nssce8EZYQQgghxICrslQR6hfmNoeKGDh6tZ5kw0j2VGV4OxThZbVNRgw+OJ8fQIQugmpLlc+UoTVbzQAy0k8MKlOip7G7YhfN9mZvhyKOM8WmQ5itZmL8Y7ln7R18uPd9nE7ngH1+jaWa8oZyRoeldVp3RsrZPDTvMdLCxnjcN0wXzmnJZ3Jy4mn9HaYQQ85QSvp5uvfTqfU0Whu8FdKQteLAD5SYivnD2EuYEDlZRvqJo+KVpF9RURG//e1vUSrdP16pVPK73/2OoqIib4QlhBBCCDHgqhurCNNLaU9vGhsxjj1VMtLveGdsMvpkaU+AcH0ENoedusMlSL2twdby4MdfI3P6icFjStRUrA4rGZW7vB2KOM7sq2mZxuZfC57iwrSLeWXXizy59TGsduuAfH7O4c9PDe2c9NOqtEyPmdnt/jdMuYmLx/6xX2ITYihLMiRzsL5wwNp6fzJZ6wEI1A6uOf2sdisNPpSYNFlNZFTu5uvcL3ll1wvkGve5rW8/ym9k6CgmRE6k1FxKWUOZlyIWg5VXatekpqZ2mdgrKipi1KhRAxyREEIIIYR31FiqCdWFeTuM41p6+Di+3P8ZRksNIbpQb4cjvMSXR/qF6yMAqLJU+sQ12va2t5T3FINHkiGFEL8QtpdvZcognJtMDF77avYS7R9NiC6Uy8b/mfigeJ7a+i/KzKU8MPdRtCptv35+Tk02QdogYgJi+/VzhBDuEg3J2J0ODtYXkhwy0tvhHBOT1QTgNvenTtUyp5/T6fTZqjVvZr7K1rLNvHDiawMaY3lDOesO/UpFYzmVjRVUNlZSYiqmorECAKVCQYAmkM/2fcINU27i5KSWUss/HR7ld8/s+wAYHzEBgN0VO4hOWDZg8YvBzysj/e6++27eeOMNPvvsM+rrW94UqK+v59NPP+WNN97gnnvu8UZYQgghhBADrspSRbhORvp5U3r4OACyqvd4ORLhTbVNtYT4atJP15L0q2ysOqL9NpVs5J/r7urzeMyHH/xIeU8xmCgUCqZET2Vb2VZvhyKOMzk1OYxqN5/eSYmn8Mi8J8isyuD+9Xdjc9g87lfRUNEnZZ1zqrMZHZrqsw/lhRiqkoKTAIZEiU9zc+d7P71ahxN8erRfdnUWucZcCusKBvRzX931Ii/ufI5fi1ZT2VhJhD6CJQlLuW3GHby49FW+OucH3j/9E05MOIkntjzKE1sepcHawLtZbzNn+DxSQloGRBn8QkgyJLGjfLvHz3k78w12V+wcyFMTg8SAjfSbPHmy2w2G1Wrljjvu4I477kCtVmOztdzkqNVqLrnkErZt2zZQoQkhhBBCeE21pYowSfp5VZR/NOH6cDIrdzN72BxvhyO8xJdH+oXpwlAAVY2VR7TfZ/s/YkvpZioaKoj0j+yzeGSknxisZsaewM8H7ue13S/xf+OuQKnwynvQwoflGffz2OaHuH/Oo33yvel0OtlvzOE3qb91Wz4xajL/POEB7l77dx7d9CB/n/kP1/XYaGvk9d2v8MX+T1icsJRbp99x1Neq0+lkb002JyfJnHxCDLRAbRCR+sihkfRrHemndZ/TD8Bia0Sn1nklrp4UHE72/VK0ikRD0oB8ptPpZFflDs4b/RuumHB1t9veNO1W0iPG88zWJ9hQvA5jk9E1yq/V+MhJbC7d2Gnfgtp83tnzJgV1+YyPnNin5yAGvwFL+l166aXyVpEQQgghRDsOp4PaJqMk/bxMoVAwJixd5vU7zhmbjD470k+lVBGiC6XK0vukn9FSw7ayLQBkVWcS6b+wz+JpnRvFXy1z+onBZVH8EiobK3ht90vk1+Zx+8x/uJUqE2LlwZ/JNeby0s7nuWv2P4/5eMWmQ5itZkaFju60bnrMTO6YeQ8PbLgHnVrHTVNvZXflTh7f8iiVDRWcknQ63+V/TaAmiGsn3XBUz9QqGyupsdR4nM9PCNH/kgzJQyLpZ7KaUCvVaJVt5Yj1rUk/u8VbYXWrxlJNXVMtwdpgfi1azR/T/29APrfUXEJVYxXjIyf1avtliacwKmQU962/h8lRU12j/FpNipzMl/s/6/QS35e5nwGwo3wbDqdDXmQSbgYs6Xf99dcP1EcJIYQQQgwKxqYaHE4n4XpJ+nlbesQ4Xt/9CjaHDbXSK9NeCy+y2Cw02Zsw+Bm8HUqXwnURRzTSb82hX4GWskB7qjKYH7ewz2IxW03o1Xp5uCAGHYVCwW9Sf0ticDIPbbyX61dcxf1zHiYuKN7boQkfsaV0ExH6CFYXreTk0lOZFjPjmI6XU7MXgNHtynu2Ny9uAbdM/zuPbnqIwroCsqr2kB4+jofmPkZcUDyjQlN5ZtsTBGuDe3xgXWYu5bXdL7NoxBJmxZ6AQqEgpyb78OdL0k8Ib0gyJPPzgZ+8HcYxM1vNBGoC3V4+8FO1jO6z2Hwz6XegrhCA80dfyOsZr3Cw/gDxQSN63O+FHc+Ra9zPzNhZzBp2AnGB8Uf00sWuyp0ogHGHp5DojeSQkbxx8n9x4uy0rnVev10V21mScBLQkoT9sfB7JkdNYXv5NnKN+z2+XCKOX9JLE0IIIYTwkurGagAZ6ecDxoaPw+qwkmvc7+1QfE6DtaHL+YaGitrmWgCfLe8JEKGPoMrS+zn9Vh5cweSoqUyOmkJWVd/OV2m2mqW0pxjUZsTO5LklL6FAwXUrriRPvvsFLaNC9hv3cem4K5gQOYlntz9Ns735mI65r2YvUf5R3f6+nJiwjBum3MTBugNcPek6nlz0rCsRfXrKmVw2/s+8s+dNPt33UZfHqGio4JbVf2Ft8a/cvfYObln9V/bX7GNvTTahulAi9BHHdB5CiKOTZEimorECU3O9t0M5JmarqdNczvrDJT0bbY3eCKlHBXX5qJUqzhp5Ljq1jl+LVve4z87y7Xy67yOa7BbeyHiVS5f/gUuWX8y7e97G6eyckPNkd8VOkkNSCNQGHVG8CoXC4wt1IbpQEoIT2Vmxw7Xsx4LlWO3N3DztNvxUfq7qHkK0GrDXmK+66ipuv/12EhMTueqqq7rdVqFQ8MILLwxQZEIIIYQQ3lFtaUn6herCvByJGBkyCo1SQ2bVblLD5G34Vg6ng2tX/JlZsbO5cuK13g6n39RajACE+IV6N5BuhOsjXCNGelLZWMnuih3cNO02Gmxm1h76Favdikal6ZNYWpJ+UhJRDG5xQfE8u+RFbvj5ap7d/jRPLny2xzf5nU4nqw7+zKqDP/O36bcRpA0eoGjFQNhathmAaTEzGBWaylU/XsqHe9/n92P/dNTHzKnJYVQXo/zaOyPlLE5PPtPjNXhR2sXUN9fxwo7nsNqtnDvqArfv86rGKm5Z/RfsTjuvL3uH/Lp8Xtn1Atf8dDkBmkDGRU6Q6XaE8JIkQzIA+XX5rhFbg5Gp2dTpha/2c/r5osK6AoYHxuOv8WdW7An8UrSK3435Q5fb2xw2nt3+NGPD03lq0XM025vZUb6NNYd+4c3M14j0j+SkxFN6/NxdlTuZETOrL0+FCZGTXIk9h9PBF/s/Y17cQqIDYpgQOZFt5Vu4MO13ffqZYnAbsJF+ZrMZu93u+vfu/jGZTAMVlhBCCCGE11QfHrUT6sOJhuOFVqVldGgqeyplXr/2Npduoqj+IL8Urer1262DkbHJCPj2SL8wXTiVjRW92vaXopWolCrmDJ/LmLB0rA4rebW5fRZLg01G+omhIUATwLWTbiCjcjc/H/ix220LavO5ZfVfeWjjfawrXsMPBcsHKEoxUDaXbmRkyChCdWEkGpI4b/RveC/rHUpMxUd1PKfTyX5jTpelPTvqLjF3+firOH/0b3g942Uu/f73/FT4PQ6ngxpLNbes/gtNdguPL3iG6IAYZsXO5uWlb3D9lJvQqXVMjz62EqVCiKMXH5SASqGkYJDP62eymgjUdhzp59tz+hXWFZAYnAS0lFLONe6n2HSoy+0/3/8JB+sLuWHKX1EqlOjUOmYNO4G/Tb+dExNO4vkd/6asoazbz6xoqKDEVMyEyIl9ei4TIydxyFREZWMl28q2cMhUxFkjzwVgctRUdlfsOuaR6WJoGbCRfu+8847HfxdCCCGEOF5VW6oI9jP02egbcWzSI8Z5nHOjyd5EUf0BCmrzKawv5JDpIOeNP5sJhmleiHJgfZX7GXq1nvKGcvLr8kg2pHg7pH5R12wEIMSHk34R+kiMlhrsDjsqparbbVcfXMm0mJkEaYNJCRmJWqkmqyqzz0axSnlPMZRMiZ7G3OHzeXnXC8weNhd/jb/b+gZrA2/veZ3P931CTMAwHpr3GN/nf8d3+d9w7qgLZATVEOFwOthStoXTks9wLbt4zJ9YeWAFz21/mgfmPnrEf+ti0yHMVjMjQ459niWFQsGVE69lWeKpvJHxKo9ueogPst/HiROTtZ4nFz5LbOAw1/YqpYozUs7ijJSzjvmzhRBHT6PSEB+UQP6gT/rVd6ry0Dqnn++W9yxg0sgpAEyPmYlWpeXXotUeR8RVNlbyduYbnJ5yNikhozqtv3bSDewo38bjmx/h0flPdDmvdUblLoA+H9XZmkTcVbGDlQdXkBKSQvrhOQOnRE/l5V0vsKcqg0lRU/r0c8XgJXP6CSGEEEL0s8rGSjaXbuy0vMpSRZiflPb0FWPC06lsrKS8ody1bEPJei748iyu+vFyHtn0ID8WLCezMoPXtr/mxUgHRqm5hE0lG7hs/J/RqXVsKF7n7ZD6jbHJiF6tR6vSejuULo0ITsAJfLD3vW63KzWXsKcqk0Xxi4F2o1ir+m4Uq5T3FEPNVROvxWQ18W7WW27Ly8yl3PDz1Xyd+yV/Sr+Ml096g+kxMzk1+XQK6wrIrMrwUsSir+2ryaGuqdZtVJy/xp+rJ13PptKNbCxZf8THbC3JPDr02JN+rRINSdw750GeWfwfDH4h1DfX8dj8p1xzAAohfE+SIXnQJ/3MVjOBHe79dIfn9LPYfG+kX42lmrqmWtdIP71az4yYWfxStMrj9i/v/A9alR//l36Zx/WB2iBumf53dpRv48v9n3X5ubsrdzE8MK7Pp+8I1YUxIjiB7wu+ZWPxOs4aeZ7rRZQkQwoGvxC2lW/t088Ug9uAjfR74403er2tQqHgkksu6b9ghBBCCCEG0HtZb/Nd/jd8dtY3rs4RQHVjFWF6Sfr5irHh6QDsqcogyn8xPxYs5/EtjzAz9gQuSruYEcEJBGoCWVn0E49tfpDyhjLCtJFejrr/fJX7Of6aAJYlnsr28m1sKFnX7TwYg1ltkxGDn8HbYXRrXMR4/pR+KW9kvIqfyo/zRv/G43arD65Eq9IyK3aOa1la2FjWFf/aZ7GYrSaGBw7vs+MJ4W3RATFclHYx72W9zclJpxEfNIKc6r3ctfY2/FR+PH/iyyQEJ7q2nxQ1hdiAWL7N+4pxEeO9F7joM1tKN+Gv8WfM4XuBVnOHz2d8xATe2fMmM2NnH9Fov/3GHKL8owjR9X0Z97Hh6Ty+8GkcTkeXI06EEL4hyZDMptINOJ3OQTs63NRs6pT0UyqU+Kn8sNh9b6RfYV0BgNtv9/y4hTy08T7KzKVEB8S4lu8s387Kgyv42/TbCdQGdXnMKdHTOHPkObyy+0Wmxczw+LLF7oqdfV7as9WEiIl8nfclQdogFsUvcS1XKpRMjprCtrItXDruin75bDH4DFjS79FHH+31tpL0E0IIIcRQ4XQ62Vy6EZvDRkblLqbFtL1BXm2pYpg8OPcZYbpwYgNi2VOVSXlDGa/sepFTkk7jxik3u5VTnDVsNmqlmjVFv3Jm8rlejLj/NNubWZ7/LcsST22ZzyL2BJ7c8ig1luo+f3PVFxibjARrfTvpB3DxmD/SZLfw4s7n0ar8PJZtW3lwBTNjZ7uVKBwTPpZP933UZ3+/BmsD/mr/njcUYhD5Tepv+aHgO17Y8SxnpJzNgxvuJcmQzH1zHurUbpQKJacknc5/s97imknXd/uQUAwOm0s3MjlqKmql+2MyhULB78b8gb//egvbyrcwNXp6r4+ZU5PDqF7O53e0JOEnhO9LMiRjtpqpaKwgyj/K2+EcFbPV5PG3TqfW++RIv8K6AtRKlVtfe2bsbDRKDb8eWs35oy+k2d7M+uK1vJbxMmPD01masKzH414+/kq2lG7i0U0P8vSi5936iHVNtRTU5XNh2m/75ZwmRE7i67wvOflw/6y9yVFT+WXbSkzN9XJPIoABTPplZ2cP1EcJIYQQQviMA/WFlJpLAdhevtUt6VdjqZYRAj5mbMQ4vsn7kmZ7M78d83v+L/3yTm/kBmmDmD5sOr8WrR6ySb9filZS11znSirNjJ0FwKbSjSxLPMWbofULY5PRp+fza6VQKLh03J9psjfz721P4qfSclK7v0dR/UFyjfu5eMwf3fZrHbmSXZ3F7GFzOFZmq0nKe4ohx0/lx5UTr+Xedf9gc+km5g6fz20z7uz0YK3VsqRTeCvzNVYc+JGzRg7N34LjRX1zHVnVmVw/+SaP66dGT2d0aCrvZb3T66Sf0+lkf00OF6Re1JehCiEGoSRDMgD5tXmDOOnneT5nvVrnk3P6FdYVEBc4wu1FDn+NP9NiZvBjwXLKzGWsOPAD9c31jAkfy83TbuvVSxR6tZ5bp9/BTauu45N9H/Kb1LYEX0blbgDGR/TPSL9pMdOZGTuLs0ed32ndlOipOJxOdlbsYM7wef3y+WJwGbCknxBCCCHE8WhTyQY0Sg2zhp3A1rIttBbccDqdLXP66cK9Gp9wNylyCj8X/si1k27g7FHndbndoqRFPLj6ocNlIUMGLsAB8sX+z5gSPdVVtiZUF0Zq2Bg2FK8bkkm/uqZahgfGeTuMXlEoFFw98Tqa7U08seVRvs77kih9NFH+URSbi1vmLDmcpG0VpY8iXB/OnqrMPkr6eX7wI8RgN2fYPE5LPgODXwh/Sr+02weAYbpwZg2bw7d5X3FmyjmDtmSbgO3l23A4nUxv92JWe62j/f657i52V+5icsykHo9ZYi7GZDUxMqTv5vMTQgxOUf7R+Gv8eSPjFT7c+z7VliqqLVWolRqmRk1jRuxMpkXP6JdSwH2h2d6M1WH1eO/np9L57Ei/RENSp+UL4xfx8MYHqLZUc0rSaZyUeIpbCdDeSI8Yx9kjz+etzNeZN3wBsYHDANhVuYMo/yi30qF9KUgbzANzPVdSjAmIJTZwGNvKt0rSTwADmPTLzMwkJSUFnU5HZmbPk8inp6f3uI0QQgghhK/bXLqRSVGTmRU7m8c3P+JKEjXYGmi2N0vSz8eclHgyk6ImExMQ2+12CxMX8sCqB1lfvI6Tk04doOgGRk71XrKrs/jnCQ+4LZ89bA7/y36XZnszWpXWS9H1D2OTkfTwcd4Oo9cUCgU3TLmJhOBE9hv3Ud5Qzj5jDuUNZZySdBp+Kr9O248JS2dPVc/9sJ60PvhpXz5UiKFCoVDwl6l/6/X2pyadwZ1rbmVvTTZpYWP6MTLRnzaXbmREcEK3D2pnD5tDYnAS72e906ukX07NXgBGh0rST4jjnUKh4PTkM8muziJMF8bIkFGE6cIw28xsLtnIyoMrUAAJwUloVBocTjs2hx0nTq6ZdP0RlRXuDyZrPQCBms5lI/Vqvc/N6ed0OimozWdy1NRO6xbGL2FYYBwjQ0Z1Kud8JP6UfilrD/3CU1v/xaPzn0ShULC7YhfjIyYcS+jHZErUVLaVbfHa5wvfMmBJv/POO48PP/yQCRMmcN5553X5FlzrpKZZWVkDFZoQQgghRL9osDawu3InV064lslR03ACO8q3syB+EdWWKgDC9ZL08yVKhbLHhB9AmD6M9IjxrD30y5BL+n2V9zmR+khmxZ7gtnxW7GzeyHiVXRU73MrUDgWDccSmUqHknA7lfVr7Up6khY3hv1lvYXfY3eYfOVJmqwloedtYiOPdtJjpRPlH8U3el5L0G6ScTidbSjcxP25Rt9spFUp+O+b3PLzxfvZWZzMrtPPD5Pb21ewlUh/psyN3hBAD64oJV3tcfum4K6i2VLGldJPr5SyVUo1KoWJr2WbeznzD+0m/5pZ7P08j/XxxTj9jUw11zXUeR/ApFco++b321/hzw5SbuXPNrfxYuJy5wxew35jDKUmnH/Oxj9bkqKl8k/cVFQ0VRPpHei0O4RsGLOn39ttvk5KS4vp3IYQQQoihbkf5NmwOO9NjZhLpH0l80Ai2l29tSfo1tiT9ZKTf4DU/fgEv73iRBmvDkBn1VN9cx88HfuLiMX/slBhKMqQQqY9kfcm6IZX0s9qtmK3mQZf086S78oJjw9Ox2CwU1OWREjLqqD/DZO36wY8QxxulQskpSafzv+x3uWriddIuBqHCugIqGyuZFtPzQ/WF8Yt5K/N13t3zDrNSekr65TAqNLWvwhRCDGFhunBOSjzFbZ5mgLWHfuWf6+4iuzrLqy+WmK1mAAK0nedz1ql1WHxsTr/CugKAIy7beaRmxM5kyYgTeXHn8ygVShxOJxMi+2c+v96YFDUZBbC9fAsnJZ6CzWHjQH0hpaYSgrRBhOhCCfELIVATJCXJjwMDlvSbMWOGx38XQgghhBiqNpVuYHhgHMODWuYKmxw9lc0lGwCotlQDkvQbzOYMn8fz255lU+kGFsYv9nY4feKbvK9wOp2cknRap3UKhYJZw+awqWQ9zkk3DpnOYm1zLQAhQyDp151RoamoFEqyqrKOKelX33y4xJO2c4knIY5HyxJP5Z09b/DzgR85I+Vsb4cj2mmyN/HZvo85LfmMLkcnbyxZj0apYULkpB6Pp1Qo+W3a73ly66Pk1eQRSrTH7ZxOJ/tqcjh/9IXHEr4Q4jg3e9gcYgNi+TTnI+6YdXefHz+vNpeP9v6PLaWbmBo9jSUJJzElalqnF/+6Le+p0rv6tb6isK4AtVI9IPN1XzXxOjaXbuLprU9g8AshPmhEv39mVwx+IaSEjOK9rP/y6b6PKawrwOawddpOrVQze9gczhl1PuPCxw+ZPp1w1/Ws1EIIIYQQ4qg5nU42lWxgRuws17KpUdMoMZdQai6h2lKFn8oPvVrvxSjFsYgNjCUlZCRrD/3q7VD6hNVu5fP9n7AkYSmhujCP28yKPYFScykFdfkDHF3/qW2qARgSI/26o1PrSA4ZyZ6qjGM6TmuJJ08PfoQ4HkX6RzIrdg5f5X6O0+n0djiinc/2fcxru1/mvax3PK632q18nfcFJwyb22ku1K4sGbGUSP8o/vr9X3lvz38pbyh3rbM5bKwvXss96+7EZDWRGpbWJ+chhDg+KRVKzh51Hr8UraSioaJPjul0OtlRvo07fr2FK3+4lJ3l21kYv4S9NXu549dbuejrc3lhx3PUtEvktd37dTHSz8fm9CuozSc+KP6Yytn3VogulKsnXUeTvYnxERO8nkA7LflMAjQBjAodzVUTr+XJRc/ywRmf8vrJ7/DEwmf4x+x7uST9MvKMudy08nqu+ekKfij4jmZ7s1fjFn1vwEb6tZeWltZjI5A5/YQQQggxmBXU5VPRWMH0dmUQJ0RNQqlQsK1sK9WWKsL04V7vGIhjM3f4fD7c+z7N9ma0Kq23wzkmq4t+pqqxivNG/abLbSZFTUan1rGheB1JhuQBjK7/1DYdHyP9AMaEp7OtbMsxHaN1Tj9PD36EOF6dNfIcbvvlZjIqdzHei6W9RJv65jr+l/0uIX4hfLH/M84ffVGneZS/L/iOMnMp9895pNfH1ag0PDjvEb4s+IS3M9/k1Z0vMTFqCiOCE/jl4EqMTUZSQkZyw5S/en0eLiHE4Hdy4mm8lfk6X+Z+ymXjr3Rb933Bd3yV+zl/m3Y7iYakXh3v/ez/8kbGqyQbkrltxh0sjF+CWql2jVBeceBHfixcTmbVbp5Y+G/8VH6YrWaUCoXHl1V9cU6/wroCEoJ799+jLywZcRL7jfuYFu39yoanp5zJ6Slndloepgt3G4V4QepFbCndzOf7P+Zfmx/hp8IfeGT+EygVMj5sqPBK0u/222/v9ICrrq6OtWvXUl5ezh//+EdvhCWEEEII0Wc2lWxAq9IyMXKya1mgJpDUsDFsL9+KSqkiXEp7Dnpzh8/nrczX2V6+jZntRnUONk6nk49zPmRazPRuHxpoVVqmRE1jQ8k6fjvm9wMYYf8xNhmBoT/SD2BM2Bi+3P8Z9c11XZa664nJWt/lgx8hjleToqYwPDCOL3M/l6TfAHp++79x4OA6DyWn38/6Lw6ng6cWPcd1K67kg73vcc2k613rm+3NvJf1NgviF/f6YXmrkaGjuD/5fq4cdz2rClfxY8H3rDv0K4tHLOWkxGXHVEJZCCHa89f4c3LiaXyT9xUXj/kTOrUOgA3F63hyy6Po1f7cuPIa/jHr3h7n3HY4HXyZ+xknJ53KTVNvdfveVCgUjA5LZXRYKotHnMhfV17Hk1se5fYZ/8BsNRGgCfT4sqqvzenndDopqMsf0JcuFAoFV028bsA+ry8oFUpmxM5kRuxMtpRu4o5fb/l/9u46PK4q/QP4d9wyk4m7NbXUUqPuSAuUUqyL6y4LLCw/dlls8WXxhV0cirsXp1AqWN29TePuMpbx3x9J7khm0iRNMpn2+3mefZaeO3fuOZn73rnvOXPOxaeHP8KyEReFumrUR0IyfHvllVfiiiuu8PnfTTfdhA8//BCTJ09Gc3NzKKpFRERE1Gc2V23ChPiJnWZ/TYifhO0129BgqQ+6hCKFjwxdJlIiUvFb+c+hrsox2V27E/lNR7r1/KHpyTNxoH4fmlobB6BmfetwwyH8d9uTcLldQlmztQkyseyEGMQaGT0KAJDXeLjX72G0GREh03KWMpEXsUiMJUOX4teydai31Ie6OieEbdVb8MWRz/DVkRX46ND7PtuqzdX44sjnuGDEhUjVpuH84X/AN/lf+iyP90PRd6iz1OLSUVf0ug4amQYLM0/Hk/P+iw8Wf4brx9/IAT8i6nPnDDsPJrsRq4p/AAAcqN+Pf228D9OTZ+HdMz7CmJix+Odvt+Hr/C+7fJ9t1VtQb6nH4iFnd3kfNyJ6JP5x0p1YU7IaHx58D0a7ERqZJuBrVRIVLM7BM9OvydoIg82AdF1GqKsSNiYnTsEFIy7EG3uX40hjXqirQ31k0M3ZXLJkCT766KNQV4OIiIio10x2E/bV7caUxM4zvyYlTEaLtRl76/YgmjP9wp5IJMKM5JnYVrUl1FU5Jp/mfYxMXRYmxk8+6munJE2FG8Dmqo39X7E+tqZ0Fb4t+Bo/l64VypqsTYhURJ4Qg1jJESmQiWUobinq9XsY7QZEyPk8PyJ/p2UsglQsw3eFX4e6Ksc9m9OGZ7Y/jXFxubg45zK8vucVbKxYL2x/e9/r0Mg0wnLV5ww7H0qpEh8eek/Y//0D72BB+inI0GWGoglERN2WqEnCjOTZWJH3KUoNJbj79zswTD8cd069BxFyLR6c+QiWZJ+LZ7Y/hRd3Pufz4zZvq4p+QLouA8OjRhz1mPPTT8alo67A63uXY33Fb0EH/QbbTL+i5rbnjvd0BveJ7orR1yBDl4WHNz046JZrpd4ZdIN+hYWFcLkCX5yIiIiIwsH26q1wul2YEmC5x5HRo6CQKGB32RHNmX7HhWz9UNRaamGym0JdlV4pM5RiY8V6nDd8WbcGvqKVMRgRPRIbKzcMQO36VscMt7f2vQ6nywmgbabfibC0J9A2Gyldl35sg342I5/nRxRAhFyLUzJOw7cFX8HhcgzYcd1uN6pMlfi5dC2W734Rv5f/OmDHDpWPD32AalMlbppwC64YfTWmJ8/Cw5seRFFzIQqa87GqaCUuHXUF1DI1gLYZectGXITvCr5Gtbka3xd+g4bWelw66srQNoSIqJvOHX4BSg0l+Ovq6xEpj8S/Zj0ChUQBAJCIJfjLhL/ixgk3Y0XeJ/gmwIw/o92I38p/wakZC7v9Q7fLRl2JWSlzUNJSDI0s8A++lFIVbE5b0IHG/uZ2u33+XdxSBKlYimRNSkjqE67kEjnunHoPqs1VeGX3C6GuDvWBkDzT74033uhUZrfbkZ+fj5UrV2Lx4sUhqBURERFR39hctRFp2nQkapI6bZNL5BgXl4stVZs50+840fGg+FJDCUZG54S4Nj33ed4n0Cv0WJB+Srf3mZ40Ex8deh92px0yiawfa9d3XG4X8hoPY17aAqwrXYNVxT9gUdYZaLY2Q3+CDPoBQLo2EyUtxb3e32g3IkLOQT+iQJZkL8W3BV9jfcVvmJM6r1+PVW2qwqt7XsaOmu1obn82qUKiwKriHzAtaQYkYkm/Hj9UKozleP/AOzh/+B+EmRy3T/knbl5zA+5b/08kqBOQGJGMM7LO8tlvSfY5+OTwR3hz76vYXr0VC9JPRao2LRRNICLqsTExYzEieiRqzTV4ZPYTAZ/NfPbQc3Go4SDe3v8mTslYKPzwAQB+KV0Hp9uBk9NP6/YxxSIxbptyF6rXVSFRkxjwNUpJ2zMGWx2tPsfrb2a7Ge8deAsr8j7DiOiRWJB+KuamzkNxSxHStenH7Xdgf8rQZeK63BvxzPancFLiVExPnhnqKtExCMmg32OPPdapTC6XIzExEZdffjluuOGGENSKiIiIqG/srNmOaUnBb5InxE/ioN9xJFWbBhHaflk6UIN+LrcL+U1HIBGJMUQ/NOBr3G43Xtr1PDIjs7Aw83SIRZ0X+WixNuOHou9x0chLOz1/sivTkqfjzX2vYXfdTkxKOKnX7RhIpYYSWBwWnJG1GE63E+/ufxML0k9Bs7UJ8er4UFdvwGToMrG1ejPcbnevljQ12FoCdjQRETBEPxRjYsfiqyNf9HjQz+FyQCKSHDUuXW4Xvi34Cst3vwSNTIPFQ5ZgRPRIjIgeicbWBly36o/YUrUJ05JnHENLBie3243nd/wPeoUel3g9i08tU+PBmQ/jL6uvRYWxHHdNvbfTD1LUMjX+MOIiLN/9EsQiES7N6f2z/IiIBppIJMK/Z7X1p3e1QsWVY/6IdaVr8NGh93HVmD8K5auKV2JC/CTEqeN6dFyVVIVnFrwIEQJ/N3U8E7vVaenRoJ/B1oL3D7wDuUQBnVwHnVyHSEUUxsdP6DIncbvd+LlsLV7e9TxabC1YMnQpSlqK8dyOp/HCzv9BJpZjWtLx9/03UBYPWYLNVRvx1NbH8d6Zn/QoP6TBJSSDfgcPHgzFYQVbtmzBa6+9hr1796K2thbPP/88Tjml+79sJiIiIgqm2lyNKlMVcuPHB33NtOQZeHv/G0jXpQ9cxajfKKVKJGgSUXIMSyb6M9hacO2PV0Er12JY1AgMjxqBofrhqLXUYEvVJmyu3IgmaxP0Cj0+OmtFwAG9KlMlPs/7BACwqmgl/jrxb8KsCLvTjpVF3+GDA+9AIpJg8ZAlParfkMihiFPFYWPFhrAZ9MtrPAQAGBY1HJePugrX/nglVhZ+iyZrE4Z149kmx4t0XQYMNgOarI2I6sUSwya7CUma5H6oGdHxYUn2OcJSk919ppDFYcFNq69DrCoW907/V9CO0wpjOf6z9XHsrt2JM4echT+Nu97nOUvRyhhk64diZdF3x+Wg32/lv2Bz1SbcP+MhoaO5Q1JEMv4181Gsr/gVc9PmB9x/SfY5WJH3KaYmTUeKNnUgqkxE1Ge6sxx9vDoe5w2/AJ8e/giLh5yNOHUcKozl2Fu3B3dOvbtXx5WKgw8fKKWemX49sbFiPT49/DHiVHFosbXA6rQCAMbGjsODMx8O+PzoCmM5/rvtSeyo2Y4ZybNw/fgbhZV1GlsbsK50DX4r/wWzUuf0qC7kIRKJ8OdxN+CqlZdibelqLMw8PdRVol4KyaBfqJnNZowYMQLnnXcebrzxxlBXh4iIiI4je2p3AmhLWIJJ06bjy6XfBxyoofCUocs8puek+dtTuxt1ljqMj5+IwuYCrClZBUf7M+gydVk4LXMR9IoovLL7RRQ25yNbP6zTe+yo2Q6xSIR7pj+IV3e/jOt/ugbLRlyMOFU8Pjj4DmrNNZiXdjIuHXUF9MqoHtVPJBJhWvIMbKz8HTeMv6lXM8YG2sGGg0iJSEWEXIsIuRYLMk7FewfehtVpRaQiMtTVGzAZukwAbTNTezPoZ7AbuLwnURdmpcyBXqHHszuexnnDlmFiwmShUzSY5btfQqWpAjXmatz+y9/w8OzHfWbUutwufHHkM7y+ZzmilFF4bM5/MDFhcsD3Oj3rTLy481k0tjb0KsYHK6PdiBd2PoNpSdMxI3lWwNeMjh2D0bFjgr6HUqrE8oVvQS0duCXoiIgG2h9GXoLvCr/FW/tew60n3YFVxT9AJVVhRvLsPj+Wsv0HGBaHuUf7HWk6gqSIZLx9+gcAAJvThgP1+/DAhnvwt3U34eHZTyJWFSu8/qfiH/DM9qcRqYjEQ7Mew9SkaT7vF6WMxjnDzsc5w84/xhZRqjYNUxKnYkXeJzgtY1FY5HnUWUgG/b744osevX7p0qV9evy5c+di7ty5x/QeppK252DIo6Ig03puxm2NDbAbDBBJpVAnex4a6nI4YKkoBwAoYmMhVXt+jddaWwOnxQKJUgllfIJQ7rS2orW6GgCgTEiERKEQtlmqKuGy2SDVaKCI8VwEHSYTrPV1AABVcgrEUs9HbC4rhdvlgkwXCbleL5TbW5pha2oCxCJoUj0zDtxuN8ylJW3tjI6BLMKT3Fsb6uEwGiGWyaBK8vzS12W3w1JZ0VbnuHhIVJ5f33naqYIy3rOEktNiQWttTVudE5MglnumDlsqK+Cy2yHVREAR41kCzW40wtZQDwBQp6ZBJPZ0mprKSgCXG7JIPeSRng4cW1MT7C3NEInFUKd61u53O50wl5cFbmd9HRwmU6d2Om02tBTWwNhigSw6DhKlJ4lrramGs7UVEpUKyjhPOx1mM6x1tW3tTEqGWOZZbsRcUQ63wwGZVgt5lCcxsxsMsDU2tLUzLd3nQmsqLQHcbsj1esh03u1shL2lBSKJBOoUz68XuzoHhXYqFFAleNbpdlqtaK2uAgAoExIgUXjaaamugstqhUSthjLWszyAw2yCtS7IOdjRTp0Ocr2nc1E4BwFo0jOEcp9zsFexFgep2pPQBY211la01gSJNeEcDB5r6pRUiCSe9cKDxZqtuRn25qbOseZywVxW2tbOvoi1mho4W48Sa37noNDOiAgoovs/1hQxsZBqApyD/rHmfQ7GJ/Q81oKdg51irQW2xsa2dvrHWsf13i/WWhsaYCytggvi7l/v62rhNJsDxFoX1/v2WOt0DnYVa+VlcDudwWNNJIImLcj1PioaMq3nV3VBY83rHOxNrAW/3vu20+cc7M9Yq6+HwxQg1mw2WKoqAXhird5SjxV5n+CihLMBq63TObinbBvG2JMhrW6GK0nT81jzPwfbY63z9T5wrPmcg8FiTS6HKtHzvMGurvfBY60b1/suYs37eg8Ej7Ve3Vv1JtaC3Vt10U5TeRkcVjtkOh3StRn4rfyXtnYeQ6x1nIP76vcgVhWLW8f/A61VlbC77KiWmxGlTxSWojRUleOL5lew8+DPyJ7mGfTruN4f3P8LhkcMxayUOZiSOA0fHHwX321+G7A7MSlrNpbNetwz86+LWBOu936xdpJmHH4vW4G8gxswPMczo6SvYk34PIOcg4G+15wuJyRiScBYy2s8hFGqIcK5dlnOlVhXshpOtwuRCn0X91btsdbVvVVfxlpv7q38Yy3IvRUA6BuciGsWobjyIMbHT/S0s5uxZrIZESFrO3c7Ym1Q5zF+sdaXeYzDYoGpsu3zHIg8plM7u8xjuhFrvbm3OtHzmG7Emkwiw00TbsHnv76E/x2+E/YIBcZkTMH8tJMxL20B7E2NPrG2tWozvs7/AjeOvRHZ9lg8tfVx3PbDjXjolKcRo4pBqaEEz61+EEU1h7B46Om4fPb/CTMBA+UxC9JPwUu7nseaHZ9hUcppfRJrQe+t+rrPoIs8ZvnqhyCvMeCGWX/xOZ96GmsRsohjz2Miva4p/ZXHdDvWushjjhZrfXJv5R1rgfOYPu0z6PLeqpt9BseYxwy6PoNg1/tQ9BkEyWO6G2vHfG81QH0GuqxMeAt5HuPXZxAhi8BlOVdg+eb/YbF6BjZv/wZzh8/1+QFKX/UZKCVKqM1uGIuLYTarux1rpSX7MAbJaK2phjI+AXKJHLnxE/Dk9Cfx2MrbcO+nf8IdZ/4HMdoEPLv9Kawu+QlnaGfhsuGXQSv3XaK0N3lMf/cZCJ9nR6x1I48RPs9gsdbVvVUf9xmcpZmFJw4/ib11uzE2LretzgOVxwxwn0Fv8hiFTgtEed5rMArJoN8dd9whnJhut1soD1bW14N+fSHvpWcBAGlLzkHCLM8vJSo3/obqX3+BIioKY++8Ryi3GkzCPtmXX4WoMWOFbdU/rUTjnt3QDsnGiOv+IpRbSquQ99JzAICcm/8GhVfiU/b5RzCVlSFm4iRkXXiJUN6cfxiFH74HAMi970FIlZ7Es/Dt12A3GpG04BSkLDpDKK/duQ3lK7+DWC7HxIceFcpddrtQ54xzL0DctOnCtvLffkbtxvVQxsdjzK13COWtjc3CPsOu/hMiR3qea1P5/ddoPngAuuEjMPyPfxbKzVXlyFv+EgBg9N9vhzzBE2glH78PS3UVYqdMReb5fxDKm/IOoOiTjwAAE/71CCReF42C116G02pFysLTkXTyqZ6/8/bNqPzpR0jVaoy//yGh3GG3CnXO+sNFiJnkWaKq9OfVqN+6BerkFIz6v78L5daaBuz933/gcLgw/Nrroc32PEun4usVaMk/Av2o0Rh65TVCubG8BEfeeBUAMPb2uyD1uhks+eAdtNbXIX7GLKQvPVcobziwByVffA4AmPTIExBJPJ0C+a88D5fTidQzz0LiXM/yJVWbN6Bq3RrIdTqMu/t+odxubhXaOeSSyxGdO95z/NU/oGHnDkSkZ2DkjTd72llRI+wz8sabofC62JZ/+SmMRUWIGpeL7Es9z0MwFBUg/923AADj7r4PUqXnIlz0zuuwNTcjYc48pC32LCNWt2cnyr79GiKxGJMefVIod7vdwvHTzz4H8TM9sVax/lfU/P4rFDExGHv7Pz11NhiFfYZecTX0oz2/9Kz68Ts07dsLbfZQjPiz59mhlppK5L30PABg1M1/hyLF8wVR+vnHMJeXIWbSZGT94WKhvDn/EAo/fB8AMP7+f0Gq8FzsC95cDofZjKSTT0XKQs9U+NqdW1H+w/eQyOWY4BVrTpvDE2vnL0PcFM8vlsp/XYfaTRugik/A6Ftv99S5ockTa3/8MyKHe5Ylq/z+KzQfOojIESMx7JprhXJTZRnyXn0ZADD61tsh9/pSK/noPVhqqhE3dToyzrtAKG88vB/Fn34MAJjw0KO+sfbqS3DabJ1jbdsmVK5e1TnWbBZPrF14MWImen6dXLruJ9Rv2wp1SipG3fw3odxW3SDsM+K6v0A7JNvzt/l6BQz5R6AfPQZDr7haKDeWFuHIW68DAMbeeTekXjcPxR+8DWt9PeJnzkb62ecI5Q3796DkyxUAgEmP/cfn5unIK8/D7XL5xJpEIkb5T+tQuPJHyHQ6jPvnfZ46mz3tzL70CkSNy/X8bX5aicbduxCRmYmRN/xVKG+tqBX2yfGPtRWfwFhSjOjxEzDk4suE8pbCfBS89zYAIPfu+yFVehLcondeh62lBYnzFiD1jMVCeUesiSUSTHzkCaHc7XR6Ym3puYif4fn1dMXvv6Bm/W9QxsRizO13CeXWZoMn1q76I/Q5o4RtVT98i6b9+6DLHorh3rFWXYG8l18AAIy65VaovW6USz/7COaKcsRMPglZyy4SypvzD6Hwo7Zf/41/4N+QKjw3w0KsnXIaUk5bJJQLsaZQYMK/HhHKnVbP91rmBX9A7ElThW1lv65B3eZNUCUkYvTfb/PUud7zvTb8T9dBN2w4mu0N+PjwBxj9ay1U5c2IHJmDYVf/yfNeedsxZ4sLeXufxZh/3AG518198UfvorWmBnHTZiDjXM+vEBsP7kPx523LME7892MQSz3tzH/1JbhsNqQsOgNJCzzLkVdv3YjKNT9BFhGB3HsfFMrtVptXrF2CmImTPH/ntatQv30bNKmpyPmrJ9as1fWeWLv+Rmizhgjbyr/6HIaCfESNHYfsy64Uyg0lRch/+w0AwNg774E0ypMsFr/3JqyNjUiYPQdpZy0Vyuv37UHpV22xNvnxp+DtyMvPwe12I+2ss5Ew2/PjrMpN61H9yzrI9XqMu+teodxmNHti7bIrETXWM7OyetVKNO4JEGtl1Z5Yu+n/oPBKZMtWfAJTaQmix0/EkIsvFcpbCvJQ8P67AIDce9vurSTt38f5b7zaFmvzFyBrRBY+y/sYDtjQvHsHyr77BmKpFBMfflx4L5fDc71PP+c8xE/3PPex4vefUbP+dyhj4zDmtjuxr2EvxsaNg9ts9I21dE/yX7fqB5y5RYHGsh8hneW53purK5D3youIrNqCSVeeBalUDKlUiWty/4hxP5TDWlWN1LgJyIzxXFObjhxE0ccfAgAmPPgwJF7nYOEby+GwWJB86kIkn7pQKM8od+DkDW7k5b2EUU97rhtOr3Mw84ILEXvSFM/f+Zc1qNuyCeqkJIy65R9CuaWusVOsCX+bb79ES95hROaMwrCrPM8mMZUXI+/1tnurpJuuxWc13+Pb/G/wjyl3IPGTrWitrUXc9BnIOOd8OF1OHGnKwyniTOE4Ex9+HGdkL8Y3+V8hRh2F/BdfhMtuR8rpZyJp/snCcaq3bEDl2tWQabXIvecBodze6mnnkIsvRfR4zwBa6ZpVqN+xDZq0NOTcdItQbq30XO9H3nATFJmepf/KvvgUxqLCzrFWXIj8d94EAIy7615IvTosit59E7amRiTMmYu0xWcL5fX7dqP06y8hEokw6bH/wFvBKy9gYY0EjcodkE7ynOvB8hjvWBty2ZUwOYyIVOkglYpRver7tjwmawhGXO9ZQcUnj/nrLVB4dTKUrfgYptJSxEyYhKyLvPKYgjwUftAea93NY3ZtR/n330Isk2Hivz3PjfeOtU55zO8/o3bDeijj4jDmH3cK5a1NLcHzmJXfoPnAfuiGDcfwP10nXANaK8qQ9/KLAIDRf7sN8kRPfJZ88gEsVZWIPWkqMi/oZh7z+itwtrYi+bRFSD7lNKG8ZvtmVPz0I6QqNcY/EDiPyVx2IWIne8Xaz6tRt3Uz1MnJGPV/twrl5lrPvdXwa6+HbqjnBwMV33yBliN5XeYxY267C/LYQHnMTKQvPU8obzi4FyUrPgPQgzxmywZUrQ2Qx1isXnnMZYjOneA5frA8xjvW/vJXKDIyhW3dymP+eS+kSr2wrejdN2BrauqUx9Tv3YXSb77qlMfMz5wP3YvfoNURg6opKVhnL8cjmx/EjtqtuKByGOrXr4ciOhoZt/wVT217HJMTJ+OM5JOx79GH8SdHFj4YVoq/rbsRp2YtxAf738O8nVIsNucgWRwF3WmeDshAeUyUVI85aXNR9cnnyJMdCtBn4JfHSD2xVvDWq3CYTAH6DALnMT59BuddgLipXrH2a+A8xqfP4JprETlipLAtWB6zbvvnUH76Cy6LGobYs5WQSj3nU0efQdzUacg4b5lQ7pPH+MdasDwmWJ+BrdUnj9G0f69JJGLUBOkzsNUEz2OC9hmUFePIm68BAMbe8U9IVZ7OXiHWuspjHn3S54cER155Dm6nq3OsbVqPqp/XQh4ZGTSP8e8zqFn9Axp27URERiZG/sU7j+miz+CLT2EsLkJ07ngMueRyodw7jwnWZ5A4dz5SzzxLKBf6DCRiTHrEq8/A5Tpqn0GnPKbF697qymugHzXa87cJlsd4x9r//R0Kr07lLvMYIdYe6lke499n4JXHdOoz+G0tajdtDJDHNAW9twraZ1BRirzXXgGATnlM0D6DQ/tQ/FngPCZorLXnMVKNBuPv+5dQ7rDZfWLNp88gSB7TZZ9BRx4zZiyyL79KKO+yz+D9t2BtaEDCrDlIW7JUKPfOY6Y8+TQACPcDHX0GaYuXIGHOPM/fOVgeY/LKY7rbZ1BeEzSPCdRncPbwpVi/7l1seOo+jHFaMXveAp9rp9BnMH8BUk/vYZ+BVx4TodRgeKELTbs/REnyUJ9Ya20K3Gfgdruh2XAQo40JqKj7AsOvvV7YJ9EswzX7MrC/fj/uE90EV4wOTdZG/HP6vUj+YhfKfnkVsZOnIHPZhcI+3nmMf59B4RuvwmExI/mU05DsFWs1O7ag4seVkCiVmPDgw0J5l30G7XmMKjEJo//mnccEj7WKb78IkseUIO/15QCAMbfdCbnXQFnxh+/45DEdGg/t9/QZPPw4xFLP4Gb+8iB5THf6DC66FDETfPMY5Y5tmGdX44vRn2FCUtt9l7WqLnifwZefwVBYEKDPoBD5b78JoHMeE7zPYDdKv/oCQE/6DH5H9S8/Q66Pwri7AucxnfsM2vKYiMwsjLzhJqG86z6DtjwmdtJkJA3z9AENRiEZ9Pv0009x88034+yzz8bChQsRGxuLuro6rFy5El999RX++9//IjMzMxRV6zaZrC2wIiIUiPIa2a1XKyCTSSBXyHzKW91WYR+dTuWzTaWSwyiTQKn03UdcrxL2idSpoPXaplDIYJNJoFLJffaxaZXCPlF6DWQRnm1yuRSQSaDR+NbZENG2j0Qm8Sl32mxB21mrlkMmk0Dh106zTd1lO80yCVR+7YRXnSMjVdD4tFMKh0wCtdr3+K0RXu2M0viMusvlUjhcjk7tbNK0fTYyudSn3KEQebVT6bOtWiVHi0wChV+djea2XzNIpWLodCrovbYpVXJYAnw2Lp92qqHy2iZXSOGUSaD2q7PZq536KA3EXr9WkcmlcDk617mx/bOR+7XTJnYI76XVKjt9NrIA7ZQ0q33OQZ13OxUyWGUSqP3a6fBqpz5SDYXe9xx0BzgHje3tFInFPuVutzvoZ1PfcQ76tbPV1eppZ4Bz0BQg1kQ6lc85GOHTTinsAdpp8/5s9BrINL7tFNk7t7OlI9b86uy0yTx19munJ9Z891FYg8easj3WlH51dnu1Ux+phjpgrMm7jjWvX7DL5FKI3U5o/OocLNbscgRtZ0esKf3aKTOqfNrpE2tKGVoDxJrTr51K73bKpXDJJND4tdPs107vQT+ZTAK3S9TpHKxF2zXAP9asInvQWFN3XO/9rp2SJq92Rqp9Yk2hbIs1/3bavWNNr4Y8MkCs+bWzI9bEUt86u5zOoLFWp+n4XvPdx+Iwe+oc4JpiCnAO+saa2ifWFEpZwFizen82erXPrwODxlp7naX+sWaVBm1nTfv3t3+syVtVndp5kn48knSJqCoqx3BZpM9nU2euQ11rLaLU2ZDJJIjsFGuytuu932djiVD4fJ7esSaXSeB0SzrVuSPW/M9Bu8wd9BysUgX+/pYafO85Insaa3rfWJMrZHAF+P42ebXT514A7bHmdndqZ0N7Oztd72EL2k6VShYw1sQNwWNNqWy7t/L/bOxa33bKtV7XKCHWFBiXNhTibSK0iOqgaa+zWOYXaw5H8FjzOgc1OhkKWvKwJOdM6PXq4LGmlCFaHYWS1kpoIxWe523oVHCIbLC77ZiRcZLPPtERkTCqjJ3aafVrp9TrF6oyuRQiR+dYa9ZqEKWKQmNrve+9QKsk6GdTE+QeUm7p4ntNKWu7t/L7/nZpVXCJHChtKcWja2+AW69BvDYWv1SuxmWKWDjbP5uoKA3y6vPgEjkwLD4bTlnbL4GjojS4aeYNKDLlY1JmLvJlK+GECxF+7WwMEms2qcurnb51rgrSTkmLbzv9Yy3Q9d773irSL9YUCs856Btr7fdWIlHAWItQRKDEVte9PMYr1hRqEURiICk6DlFRmmPLY9R9kMe0fzb+eYzLbveKNUWnWGsKlMfYTcHzGKWs7d7Kr50RGs81LXgec5R7K/88xhkg1oR7K992eucx/udgdZBzUGY+eqz5t9Pld88RMI9R9yKP8Y81dZBYkziDtjNoHtNVrHUnj9FrfPIYRS/zGJksAhNGnoY/zZ+P7/K+w79++RdkhbswW5IIhUKG1w68CDuseHjhQ9C1XztlMi3um38v7ix5Fu8ffBsXj7sY890KNO3e2zmPiVT7nIMd91bLcs/DJ+//AKvU3LnP4Gh5jK0neYx3n0H38piu+gyEPMarndXGanx4+F2cqolDki4xaKz5t7OrWBPymG72GfjnMTqdSqi/Okifgczk287u9Bk4u9FncNQ8xmvQTy6TwiV2Br236kke0xFr/uegdx7Tqc+gO3lMkD4D/74RIY+R+F4H3S5X0HOwo8+gUx7jtHTZzr7KY3xjTd29PoOO77Uu8hj/XLpGFTjWAuUxHZQd32td9Bl0zmMCf69Z/NrZX30GwfIYnz6DSPWx9xkIeYzvPt55jPc1APD0Gfi3M1ge05s+A3Fjz/sMlo1dhq3rn4VKpsSM7JOgCNhn4BdrHXlMN/sMRKoYiEVt94fd7TOoMFTA7rYjUqXrdE2BTgWNUo0JSeNRHG2GOVKO5fNfRoouBVu/3w97gHtI7zymc5+BJHAe06s+gyCxZuk61gLlMV3HmswnjxH+nt65tF7tMztQLpMEzGN61WfQ3s5RUTl4qup3tEpbkKRNgrSl530GDq/Pxj+PCdpnoOlFn0GQ/pyu+wyC5DFd9Bl05DFKpedvP1iJ3N7T6gbIVVddhenTp+Paa6/ttO3ll1/G+vXr8dZbbw1IXUaMGIHnn38ep5xyytFf7KVkxz6IxCIo9FGQ6TyzK6wdSzNJpFB7zRZyORwwt08nVQZY3tNhsUCiUEKV4Dud1NI+nVQVYDqp02aDVK2B0uuXlnaTEdb69inN/ktQtS8fIPef0tw+dVsUYOq2qX3qtiLAUh12oxHiAMskmL2WD5D6LYvjaF8mQeU1w8jht7yn9w2CuX1KsyzAcm/W9qnbGv9lcUpL4Ha7IY+MhDzSq51NTbC1T2nW+C3VYepYqsOvna11dXCY25bq8J6RAqcDEkMDjMZWyGPjfZYPsFRXw2lthTTA8gGt7csHqP2X6igvh8vZNqVZ4bcsjrV96rYmwJKDbrRNaZZ7TWm2NjbCbmhbFkfjtyxO0HOwvZ0SuQKqRN+lOiztU7dV/sviVFXBabNCGmDqdmv71G3/c9DTTh0UXjNCbF7L4kT4Le8pnIO9irXOS3UEjLXWVlhqAsdaxznYVaxpOi0fECTWmptga27uHGsuF0ztywcEjTW/c7CrWLN0TKvvItY6nYMdsRZgqY5+ibWYGMg0R481n3PQb6mObsVa0HPQL9ZaWmBtal8+wC/WjF7LB3TEmkQihtxhQUN5NdwiSfev93W1cJjNAWKtq+t9R6z5noNdxZqpY6mOILEmQueldIVY818GLViseZ+DvYm1INf7TrHmfQ72Z6zV18FuCnAO+i3V0RFr/9v6FPYc+g1Pz3oKMrVaOAfXlqzBoz/fi9emPge9MqpzrFWUtw38dBVrAZZmcrcvzST3W6ojUKx5n4PBYk0SYFmcoNf7oLHWnet98FiL8FuqI1CsAb28t+pVrAW+twrUTomk7Uc/lfvz4LDbIdPq4IiQ46zPFuHOafdgbvTU3seaVIp8WT1uXv0XvHTaqxiqHdJlrB2u2IN7Nt+Hfy99EWPi2laScFgs+HbLu3h3/zt447KvEKHRez6b7txb+cdaxznoH2tNTVi1dwXe2Pc6Xrvya0Qq2rb1ZawBwc/BguoDuPOL66GUKLBwysVYmnMBfij8Hs/veBYfTHsFKpFCiLXvC77Fk5sfw4qFn0BsaG1rZzfvrYRY6+Leqk9jrVf3Vr6xFuzeCmiLtRWHP8O3tWvw4UXfeD6bbsSaQe3CJT9djkfmPoGpSdM8sTaY85gAy3seax7TcQ1oqG6AqcqzvGe/5zH+7ewij+lOrPXq3uqEz2O6F2vB8ph9dXvx7x9uh9Ymw7whp2B55Ue4c9rdODVzYac8xixxoLG1ARmRmT3OY1xuF/747jmYGJ2LP07967HHWrB7q+70GRxDHuNyu3Dr2v9DVX0Jnprwb0TII4LnMQPVZxATA6VOB51OhZYWC0zVNf2Tx3Q31rrIY44Wa31zb+Uda8HymL7rM+jy3qq7fQbHmscMtj6DINf7kPQZBMtjuhlrx3xvNUB9BrrMTERGqtHSYoHT6RoEeUzgPgO7yYinVt2LUTFjcOb0y/ulz8DmtOHctxbgryOvw6yM+d2KtV9Lf8YTP/wTz89+FrH65B7HWp/kMQPQZwB4Yq3TOdhVrAXrM+jq3qof+gxsIieu2HwDFmcvwZ/H3+ATawXiOmTGDYNO0XbN7cs8ZsD7DHqRxyi0WsQP8fw9B6OQDPqNHz8ezz//PGbOnNlp22+//YYbb7wRO3fuHJC69HbQr7bW0E81onAglbb9krOx0QSHwxXq6hDRAOM1gLZVb8Edv9yKl059Fdl6z9Joz2x/Gturt+LN098LYe2ovwW7Blz0zXk4NXMRrh5z9KU+3tz7Ggx2A26a8H+dtn148D28d+BtfHH2d5CIJZ139uJyu3Dul4tx3vBluGzUlUL5gxvuRYOlHv9d8Hy329Ub9ZZ6XPjNubh9yl04JWPh0XfoQ9/kf4VndzyFz8/+FhpZWwJXa67Fxd+e36k+z2x/Crtrd+HVhQPzw8LB7ufStXho4/34dMmXwmBtdxQ05+PPP16NZxa8iJyYUUff4TjF+wA6FtXmatz3+53Ib8rHrJQ5uHf6gz4dd33lzb2vYcWRT/HR4hU+z3EKJ58c+hCv7H4Rj895ChMSJoW6OgJeA4hObLwGeLjdbiz6bD5umvA3LM5ecvQdALy173V8k/8lPj7ri375/qO+8/Ku57Gy8Du8v/hTqKQqWJ1WvLjzWXxb8DXOG34Brsu98ehvchzquAYMZuKjv6TvRUdH47vvvgu47dtvv0V0dHTAbURERESDwbjY8dDINPi9/Def8j21uzA2blyQveh4l67LQElLcbdeu71mK74v+AYmu6nTtn31e5ETPeqoA34AIBaJkRs3ATtrtgtlLrcLu2p3Ijd+Qhd79o0YVQyGR43Ahor1/X4sf2XGEiRqkoUBPwCIU8dhZHQOfiv/1ee1hxoOYljUcP+3OGFl6DIBAMUtRT3az2hr++FjhDziKK8komAS1Al4at5z+HPuDfjb5H/0W4fnwszTYbab8Vv5z/3y/v2tuKUIr+9djvOHLxtUA35EROQhEomgkCjR6rR0e58jTXnI1g/lgF8YOHvouTA7TFhdvAplhlL8dfV1+LFoJVIiUnGgfn+oq0ddCMmg33XXXYfPPvsMl112Gd566y188803eOutt3DZZZdhxYoVuO666/r1+CaTCQcOHMCBAwcAAGVlZThw4AAqKir69bhERER0fJBJZJiaNA3rKzwDC83WJhS1FCI3bnzoKkYhlaHL6vYgSqWxAnaXHRsqfAeO3W439tftxejYsd0+7sSESdhfvxcWR1uyXdRcgBZrMybETzzKnn1jWvIMbKnaBLvTPiDH61BuKENqRGqn8lkpc7ClapPw97A77ShozsfI6JwBrd9glhKRColIjOJuDlJ36BikjpBx0I/oWKhlapw//A/QynVHf3EvJUUkIzduAr4r+AYud/jNRHlr3+uIUcbgqm7MniciotBRSpXCfXd35DfmYajXajk0eCVqkjA9eRbeO/AWbvjpT7A6bXju5Jdw9tBzkNd4GDanLdRVpCBCMui3bNkyvPjii7DZbHjiiSdw66234oknnoDVasULL7yAZcuW9evx9+7di6VLl2Lp0qUAgEceeQRLly7FM88806/HJSIiouPHzJQ5yG/KR5Wpbf3+vXV7AABjY3NDWS0KoXRtBiqMZUcd/Gp1tKLJ2gSxSIS1Jat9tpUaStBia8GYHgz6jY+fCIfLib11uwEAO2t3QCaWYVTMmJ43ohcmxk+GxWHp8ayxY1VqKEWqNr1T+cyU2bA5bdhatRkAUNRSCIfLgWFRIwa0foOZTCJDijatx5+ZwdYCAIiQaY/ySiIaDM4ddj721O3GP3+7DY2tDaGuTrcVNB3Br2U/4+KcyyGXyI++AxERhYxKqkZrNwf9WqzNqLXU+jwigwa384ZdgDpLHaYlzcALpyzHEP1Q5MSMht3V9sNKGpykR39J/5g/fz7mz58Pl8uFhoYGREdHQywemDHIqVOn4tChQwNyLCIiIjo+TU6YAplYht/Lf8V5w5dhd+0uJKgTkKBJPPrOdFzK0GXA5Xaj3FiGzMisoK/rGCiekzofv5atg8HWIsz22Fe/F2KRCDnRo7t93HRtBqKV0dhRvQ0nJU7FjprtGBUzZsA6SjN0bQ9YLzEUY2jUwCTwDpcDVaYKpGo7P0A9VZuGrMgs/F7+C2anzsWhhoMQi0TI1g8dkLqFi3RtBkp6uryn3QiFRAGZRNY/lSKiPjUjZRYenv04Ht/8MP686mrcMeVuTEyYLGw32gw40LAfQ/XDEKUcPI9ZeWf/W0jUJOK0zEWhrgoRER2FSqpEq9PardceacoDgAHLGejYjY3LxQeLP0OMMkZYkjU7cihkYhkO1O/jaiqDVEhm+nkTiURwOp1wucJvuQkiIiI6callakxMmIT17csz7q7diTF8nt8JrbvPSasyVwEALhh+Idxw49eyX4Rte+t2IytyCNQydbePKxKJMCFhErbXbIPL7cKe2l0YPwDP8+sQIdciShnV7ecZ9oUqUyWcblfA5T0BYFbKXGyoXA+7047DjQeRFTkEColiwOoXDjJ0mb14pp+Rz/MjCjMnJU7Fy6e9jkxdFu745e94cedzeGnXc7h+1R9x7peLcdevt+GNva+GupqC/KY8/Fb+Cy7JuQJScch+p05ERN2kkChhsZu79dr8piNQSBRICXIPT4NTrCrW5xmMMokMw6KG87l+g1jIBv1+/fVXLFu2DGPHjsX8+fOFmXf33HMPvvrqq1BVi4iIiKjbZiTPxt663ag0VqCg+Qhy4wZuoIUGH50iEpEK/VEHUqpNlZCKpRgaNQy5cROwrtSzxOe+ur0YHdvzweMJ8ZNQ0HQE26q3wGQ3YfwAPc+vQ7o2E6WGkgE7XpmhFAACLu8JALNSZsNsN2NHzXYcbjzIpT0DyNBloqG1QViyszuMdiOX9iQKQ9HKGDw65z+4euy1+PLIZ/ildB0yIjPxt8m3Y27qfOyr3xvqKgre3vcmkiKScUrGaaGuChERdYNKqkKrs7Vbr81vykO2fijEopDPQ6JjNDJ6FA407At1NSiIkETYN998g2uvvRapqam47777fGb5paWl4fPPPw9FtYiIiIh6ZHryDLjdbry652W43G6M7cVgDR1fMnQZR53xVmGsQII6EWKRGPPSTsau2h1oaK1HY2sDyo1lGN2LZ/FNiJ8EN4C39r0OhUSBEVEje9mC3knXpQ/oTL9SQwkUEgViVbEBt2dFZiMpIhlrSlehqLkQwwf47xEOhGVZW7o/WGu0GRAh40w/onAkFolx4chL8PU5P+K9Mz/BHVPuxqKsMzAteTpKWop79AOA/nKkMQ/rK37DpTmXc5YfEVGYUEpV3X6m35GmI1xy/ziREzMKVaaqsHpm8IkkJIN+L7zwAq644go89dRTOPfcc322DRs2DHl5eaGoFhEREVGPRCmjMSpmDH4pW4doZTSXKSFk6DJRYijq8jVVpkoktj/7cXbqHIggwq9lP2N/fdsvJcf0YvA4Xh2PlIhUHGo4iDGxYwf8mWvp2gyUGUvhcg/Mkv3lxjKkalN9lpnxJhKJMDtlDtaW/ASn2zXgg6DhIFWbDrFIhKKWwm7vY7AbuLwnUZiTSWQ+185R7T802T8Iluh6e/8bSIlIxcnpnOVHRBQulFIlrN14pp/VaUWpoRhDIjnodzzIiWl7Bv3BhgMhrgkFEpJBv9LSUsydOzfgNpVKBYPBMMA1IiIiIuqdGSmzAADj4sYHHYCgE0eGLhOlhlI4Xc6gr6k2VyJRkwQA0Mp1mJRwEtaVrsG+uj2IU8UhXh3fq2NPaF/Sc6CX9gSAdF0GHC4HKo0VffaedZY6mIM8H6TUUIrUiMBLe3aYmTIHLrcbUrEUmZFZfVav44VcIkeSJqVHMzTNdhMi5Fzek+h4kqRJhl6hx776PSGtR17jYWyo+B2XjrocErEkpHUhIqLuU0qUQe/ZvRU1F8LldmNY1PABqBX1t3hVPKKV0cIPV2lwCcmgX1xcHAoKCgJuO3ToEJKTkwe4RkRERES9MzN5NoC2QT+iNG162+CXKfDgl9vtRqXJM+gHAPPTT8beuj34rfwXjI4d2+tjT0yYDKBtqc+BlqZtWyqyL5/rd+u6m/HmvtcCbiszlCBVm9bl/iOjcxCjisGQyGzIJfI+q9fxJEOXieIezPQz2gzQcHlPouOKSCRCTsxoHAjhTL+2pdJfQkpEKuannRKyehARUc9195l+eY2HIRaJ+GO848RguH+g4EIy6Ld48WI8++yz2LBhg1AmEolw+PBhvPrqq1iyZEkoqkVERETUYynaVDwx92kszDw91FWhQSBD15bEFrcUBdxutBtgtpt9Bv2mJ8+CTCxDpakSY45h0G9mymw8Nuc/GB41otfv0VuxqliopKqg7e6pFmszyo1l2FmzrdM2s92MhtYGpGq7Xk5XLBLjz+P+ggtHXtIndToeZURm9ugzM/CZfkTHpdExY3CwYX+Xs9T706bKDdhevQ1/zr2Bs/yIiMJMd5/pV9B8BGnaDCgkigGoFQ2EnOhRONR4YMAe8UDdF5JBvxtvvBETJkzAVVddhZkzZwIA/vSnP+Hss8/GmDFjcO2114aiWkRERES9Mj5+ImcSEQAgWhmNCFlE0CUTK42VANqWU+ugkWkwJWkaAGB0TO8H/cQiMSYmTA7JMrMikQhp2vQ+m+l3uPEQgLZlgAy2Fp9t5cYyAG3PpDua+eknY3Zq4McKEJChzUCdpQ4mu6lbrzfajdByeU+i486o2DFodbSisDnwikz9ye6046Vdz2NC/ERMS5ox4McnIqJjo5R075l+R5ryMFTP5/kdT3JiRqHV0YqiENw/UNekoTioXC7Hiy++iI0bN2L9+vVobGxEZGQkZsyYgRkzeJNHREREROFJJBIhXZeBYkNRwO1V5rZBv0RNok/5kuylaGxtQFbkkP6uYr9J0/XtoJ9ULIHD5cTeuj2YnjxT2NZxjNSIrmf60dF1zEwtaSlGTsyoLl/rdDlhcVgQIeOgH9HxZnjUCEjFEuyr34OhUcOO+vpWRysUEkWf/Mjkq/wVqDSV494ZD/LZyEREYUglVcHi6PqZfi63CwVN+Zidwh/jHU+GRY2AWCTC/vr9GMIB3UElJIN+HaZNm4Zp06aFsgpERERERH0qXZeBI415AbdVGiugkqqgk0f6lE9MmCw8ky9cpWszsKliA9xu9zF33B5uPITRMeNQbizF3rrdPoN+ZYZS6BV6RHDG2TFL1aZBhLblaI826GeyGwEAEXIu70l0vFFIFBiqH4799Xtx9tBzu3xtrbkWf151FRI1Sbhi9DWYkjj1qNd8s92MVcUrMTNlDmJVsUJ5U2sj3tn/Js7IOgtDIrP7pC1ERDSwlFIlHC4nHC4HpOK2oQa32w0AwvdDmaEUVqcV2RwYOq6opCpkRWbjYMN+LM7m49oGk5As7+nN5XLh8ssvR1FRUairQkRERER0zDJ0mSgxFAd8tkG1uQqJmsTjcjZDui4DRrsRTdbGY36vvMZDGBE9AmNix2FP3W6fbeXGUqRq0475GNTWSROvTkC5sfSorzV2DPrxmX5Ex6VRMWOwv37fUV/3yu4XIBFJoJAocPdvt+PmtTdgW/UWoYPX3966Pbhu1dV4bsf/cM0Pl+Hr/C+E78e3978BALhi9NV91xAiIhpQSqkKAITn+lWZKnHND5dj2ddL8e+ND+Cb/K+woeJ3AMBQ/dFnk1N4GRUzGgca9oe6GuQn5IN+brcbmzdvhsnUvedIEBERERENZunaTNicNlSZKjttqzJVIkGTFIJa9b90bQYABH2eYXc1tjagxlyDYVEjMDZ2HA43HESro1XYXmrgoF9filJGo7H16AO1BpsBALi8J9FxalTMaFSZqlBvqQ/6mh3V27CudA3+nHsDnpr3LB6Z/QTcbjfu+OVWXP/TNfjgwLsoN7Q9d9XutOP1vcvx93U3IUoZjedOfhnzUhfgme1P45a1N2Jd6Rp8W/AVLh11BfTKqIFqJhER9TGlpG3Qz+JoRZWpEreuuxkOtwMLM09HlakSz+54Cq/ueRnx6njoFJFHeTcKNznRo1DSUgxje65Ag0NIl/ckIiIiIjre5MTkQARgb91uJEek+GyrNFXipMSpoalYP0uOSIFEJEaJoQS58RN6/T557UujjogaCYvTAqfbhQP1+zAhYRLcbjfKDKWYmzq/r6p9wtMro9BsbTrq67i8J9HxbVTMGADA/vq9mJ3a+ZlLdqcdz+74L8bEjsXJ6adBJBJhcuIUTEo4CZurNuHHou/x3oG38fre5cjWZ8PtdqO4pQhXjL4GfxhxMSRiCUZEj8QpGafh6W1P4t8bH0BKRCrOzu56OVEiIhrcVFIlAKCwuQD/2/4kpGIZnpz7P8Sp4wAAJrsJe+p2QyfXhbKa1E9yYkYDAA42HMDkxCkhrg114KAfEREREVEf0sp1yIocgt21u3Ba5ulCucvtQrWpbXnP45FULEVyROoxz/TLazwErVyLRE0S3HBDK9diT91uTEiYhEZrAywOC2f69SG9Qo/C5oKjvs4z04+DfkTHozh1HOLV8UEH/T7P+wTlxlLcPf1+nyWqRSIRpiZNw9SkabA4LNhatRm/lK1DQ2s9nlnwEoZHj/B5n7FxuXjp1NfwbcFXGBUzBjKJrN/bRkRE/adjec9/bbwXMcpYPDH3v8KAHwBoZBpMS5oequpRP0uJSIVWrsWBhv0c9BtEQj7oJ5FI8PbbbyMzMzPUVSEiIiIi6hPj4iZgY+XvPmUNrQ2wu+xI0iSHqFb9L02bjhJD0TG9x6HGgxiqHwaRSAQRRBgdOxZ725/rV2Zoe/YcB/36jl7RvZl+RrsRIgBqmabf60REoRHsuX415hq8s/9NLB16PoZEZgfdXyVVYXbq3ICDht7kEjnOGXb+MdeXiIhCT9U+6BdowI+OfyKRCCOjc4R8jQaHkD/TDwCmTJkCsViM4uLioA9/JiIiIiIKF7nx41FlqkK1uVoo63jGX8JxOtMPANJ1GShtKTmm98hrPIThUZ6ZIWNixmJ//T44XA6UGkohFomO64HTgaZX6NHUnUE/mwEaWQTEokGRQhJRPxgdMwaHGw/B5rT5lL+06zmoZWpcPvqqENWMiIgGq+SIFFw5+ho8Oe9/HPA7QU1PnoWdNdsDPtOeQiMkGdtrr72G5557Tvj31q1bMWfOHCxatAinnXYaSkqOraOAiIiIiCiUxsaOAwDsqd0plFWZKgAAieqkUFRpQKRr01FrqYXZbu7V/g2t9aiz1GF49EihbGxcLqxOK/IaD6PcUIoEdSLkEnlfVfmEp1fo0epohcVh6fJ1RruRz/MjOs6NihkDh8uBvMbDANqew/T8jmfwa9nPuC73L9Bwpi8REfkRi8S4ZNTliFXFhroqFCKnZJwGjSwCXx75PNRVoXYhGfT75JNPkJCQIPz7kUcewdChQ/HCCy8gKioKTz31VCiqRURERETUJyIVemRFZmFnzQ6hrMpUBZ0iEmqZOoQ161/pukwAnmU4e+pwe0ez90y/YfrhkEvk2FO3C6XGUi7t2cf0yigAOOoSnya7ERo+z4/ouDZEnw25RI599XuwtmQ1rl55Kb4v/AZ/Gncd5qedEurqERER0SCkkqpwetaZ+L7w217/+LM7LA4LV4nsppAM+lVVVSEjIwMAUF1djX379uHvf/875s+fj2uvvRZbt24NRbWIiIiIiPrM2Ljx2F23S/h3lakSierjd2lPoO2ZfgB6/Vy/vMZD0Mq1SPD6O8kkMoyKGYM9dbtRZihFavsxqG/oFXoAOOoSn0abEREybf9XiIhCRiqWYmR0Dt7c+xoe3vQgRsWMwWuL3sGyERdBJBKFunpEREQ0SC0Zei4sDjNWFa/sl/dvdbTi6pWX4tU9L/XL+x9vQjLop1AoYDQaAQAbNmyAWq3GhAkTAABarRYGgyEU1SIiIiIi6jPj4yag0liBWnMtAKDSVHncP4tOLVMjVhWLEkPvlus/3P48P//O5bGx47Cvbg8qjeVIjUjti6pSO70iGgDQ1NrY5euMdgO0cg76ER3vZqfMRXJECh6a9Rjum/EvJKgTjr4TERERndAS1AmYnTIPK/I+g8vt6vP3X1X8A+osdfg871NUm6r6/P2PNyEZ9Bs3bhxeeeUVrFu3Dq+99hrmzJkDiUQCACgpKfFZ+pOIiIiIKBx1PNdvd23bEp/Vpkokao7vmX5A22y/0pZeDvo1HPR5nl+HMbFjYbAZ4HS7uLxnH4tURALoxkw/u5HP8yI6ASwddh5eXfgWpiZNC3VViIiIKIycM+x8lBvLsLlqU5++r8vtwmeHP8aUxKmIkEXgzX2v9en7H49CMuh3++23o7a2Ftdddx1MJhNuueUWYdv3338vzPojIiIiIgpXemUUMnSZ2FW7Ew6XA7WWGiQe5zP9ACBNl4ESQ3GP96uz1KGhtQHD9MM7bcuJGQ2JqC114fKefUsqlkIr16LJ2vVMP4PNgAg5n+lHRERERESdjYoZjeFRI7Ai75M+fd9NlRtQbizDJaOuwGWjrsTq4h9R0HSkT49xvAnJoN/QoUOxevVqbNiwAWvWrBGe7we0DQjefvvtoagWEREREVGfyo2fgN21u1BrroHL7T4hZvplaDNQYSyDw+Xo0X55jYcAIOBMP5VUhWFRIyCXyBGriu2TepKHXhGFxqMt72kzQCvTDVCNiIiIiIgonIhEIpw3/AJsr96GoubCPnvfTw9/hFExozEqZjTOGHIWEiOS8fre5X32/sejkAz6dYiKiupUNmLECERHR4egNkREREREfWtcbC7KjWXYV78HAJCoSQpxjfpfmjYdDpcTlaaKHu13uPEQdIpIxKviA26fmTIbuXHjIRaFNIU5LkUpo9B8lJl+JruJM/2IiIiIiCio2SnzEKOKwYq8T/vk/Q41HMTu2l04f/gfALStUnLV6D9iU+VG7Knd1SfHOB5JB+pADz30EK6++mokJyfjoYceOurr77777gGoFRERERFR/xkXlwsA+KFoJUQA4tXH/7Or03WZAIDSlhKk9WApzrzGQxgRNQIikSjg9gtHXoILR17SF1UkP5EKPRq7GPSzOq2wu+yIkHHQj4iIiIiIApNJZFiSfQ7e3f8WLh51ORKOMf/97PDHSNQkYmbKbKFsbtp8fHTofby652X8d/7zcMONTZUb8NnhT1DUUoi3T/8Aapn6WJsS1gZs0G/NmjU4//zzkZycjDVr1nT5WpFIxEE/IiIiIgp7UcpopOsysLNmO2JVsZBL5KGuUr+LVkYjRhWDrdVbMCNlVrf2cbvdONRwEGcMOaufa0eB6BVRqDCWBd1utBkBABq5dqCqREREREREYejsoefi6/wv8Nz2p/HgzEeC/qjzaKrN1fi5bA2uy73RZ7UXsUiMP427Dnf8ciue3fFfbK/einJjGTJ1WWi2NuFw40GMj5/YV80JSwM66Bfov4mIiIiIjme5ceNR0lKMJE1yqKsyIEQiEU7NWIhv8r/Cdbl/6dZAZ31rPZqsTRgeNWIAakj+9Ap9l8/0M9haAIAz/YiIiIiIqEsamQY3TbgF963/J34uW4t5aQt69T5f5H0KtVSDhZlndNo2KeEkTEyYhG8LvsSslLn4x0l3IidmFM758kwcqN9/wg/68YEYRERERET9aGxs2xKfCZrEENdk4CzMPANGuxG/l//ardcXt7Q96D1Tl9Wf1aIg2p7p1wS32x1wu8luAsBBPyIiIiIiOroZKbMwK2UOnt/xP+EHhD1htpvxXeE3OHPIWUGX6rxv+kP4YPFnuGf6AxgdOwZikRgjo3Owv2HfsVY/7A34oF9ZWRmefvppXHHFFTjzzDOxePFiXHnllXjmmWdQUVEx0NUhIiIiIupXufHjAeCEmekHAKnaNIyJHYuVRd926/UlLcWQiWVIijhx/kaDiV4RBafbBaPdEHC70d62vGcEl/ckIiIiIqJuuHHC/8HusuOV3S/2eN+9dXtgtpuxKOvMoK9Ry9SIVsb4lOVEj8aB+v1Bf8x4ohjQQb+vv/4aZ5xxBl5++WUUFRVBq9VCo9GgsLAQL7zwAk4//XR89913A1klIiIiIqJ+Fa2MwZ/GXYf56SeHuioDamHmGdhRvQ3VpqqjvrakpRip2lSfZzXQwIlURAIAmqxNAbcb23+dq+WgHxERERERdUOMKgZ/HHsdVhZ+h50123u075Gmw9DINEiJSO3Rfjkxo9FsbUKVqbJH+x1vBiyrzs/Px1133YWJEyfi22+/xc8//4wPP/wQH330EX7++Wd8/fXXyM3NxR133IHCwsKBqhYRERERUb9bNuIipGnTQ12NATUndR4UUiV+LF551NeWGIqRrs3s/0pRQHpFFACgKchz/Yx2I6RiKeTioz+fkYiIiIiICADOGLIYY2PH4eltT8LqtHZ7vyNNecjWD4NIJOrR8XKicwAAB07wJT4HbNDv/fffR1paGl555RVkZ2d32j5s2DC8+uqrSE1NxXvvvTdQ1SIiIiIion6glqkxN3U+fiz6Hi63q8vXlrQUI12XMUA1I39RyvZBv6Az/YyIkEX0OOkmIiIiIqITl1gkxi2T/4EqUwXWlqzu9n5HGg9jqH5Yj4+nU0QiJSIV++v393jf48mADfpt3rwZy5Ytg1we/Nehcrkcy5Ytw+bNmweqWkRERERE1E8WZZ2JKlMVdtXsCPoag60FTdamE24m5GCikUVAIhKjyRpspp+Bz/MjIiIiIqIeS9OmY0jkUOyu3dmt1xvtRlSaKjEsqueDfgAwMiYHB+o5029AVFZWYsSIEUd93YgRI1BeXj4ANSIiIiIiov40OmYMUiJS8UNR8Od2F7cUAwAyONMvZMQiMSIVejR2sbxnhCxigGtFRERERETHg3Fx47Gnble3XlvQdAQAMFQ/vFfHGh0zBvlNeT1aTrRDcUsRLvjqbFSbq3t17MFiwAb9TCYTNBrNUV+nVqthNpsHoEZERERERNSfRCIRFmWdgV/KfobRZgj4mpKWYohFIqRypl9IRSmjulzeU8uZfkRERERE1Atj48ahylSFGnPNUV+b13gYMrGs1yvB5ESPhtPtQl7j4R7v+0Phd2iyNgkDj+FqwAb93G73QB2KiIiIiIgGiVMzFsHpdmBt6ZqA20sMRUjQJEEuCf4YAOp/kQp9F8t7GqHhTD8iIiIiIuqFMTFjAQB7uzHbL6/pMLL1QyERS3p1rKzIIZBL5D1e4tPldmFN6U8AgEpTRa+OPVhIB/JgV1xxxVEf/s7BQSIiIiKi40eMKgaTEk7CutI1OCv77E7bS1qKkaHl0p6hFqWIQq2lNuA2g60FqRGpA1wjIiIiIiI6HuiVUUjXZWB37S4sSD+1y9fmNx7BmNixvT6WRCzByOgcHGjY36P9dtZsR72lHjKxDFWmql4ffzAYsEG/G2+8caAORUREREREg8ikhJPw2p5XYHPaOs3oKzWUYE7qvNBUjASRiigcDrIEjsluRASX9yQiIiIiol4aGzsOe+p2d/kaq9OKEkMRlg4775iONTI6B2tKfurRPmtKfkJyRApSIlI406+7OOhHRERERHRiGh8/AXaXHQfq9yE3foJQ3upoRbWpCmmc6Rdybc/0C7y8p8luQgSX9yQiIiIiol4aF5eLbwu+RmNrA6KU0QFfU9hcAJfbjaH6Ycd0rJyY0fj40IeoNdciTh131NdbnVb8UrYO5w//A5qsTdhTG3wZ0r21ezA7atox1a+/Ddgz/YiIiIiI6MSUFZkNrVyLXbU7fcrLDKVwA0jXcdAv1PSKKBhsBjhcDp9yl9sFo83AmX5ERERERNRrY2JzAQB76/YEfU1e42GIRSJkRQ45pmONjB4FADjYzSU+N1T8DovDggXppyBJk4Qqc2XQx9C9u//tY6rbQOCgHxERERER9SuxSIyxsbnYVbvDp7zEUASAg36DgV6hBwC02Jp9ys0OM9wAZ/oREREREVGvxavjkahJ7HKJz/ymPGTqsjo9EqKnYlWxiFfH40D9vm69fnXJKoyMzkGqNg2JmiS0OlqDroJS2lJyTHUbCBz0IyIiIiKifpcbPx4H6vfD5rQJZcUtxYhWRnNAaRDQK6MAAE2tvsmtyWYEAETI+RkREREREVHvjY3NxW6/1V+85TUeRvYxLu3ZYVTMGOzvxqBfs7UJWyo34pSM0wAASZpkAECVqarTa21OG6pMlX1Sv/7EQT8iIiIiIup3uXHjhef6dShpKUa6LjN0lSJBx0y/JmuTT7nRbgAARMi4vCcREREREfXeuLjxKGg6AqPd2Gmbw+VAYXMBhkUN75NjjYzOweHGQ7A77V2+7peydXDDjTmp8wAAiRFJAIBKU0Wn15YZS+FG4GU/BxMO+hERERERUb8L9Fy/UkMJl/YcJCKFQT/fmX7Gjpl+nI1JRERERETHYGzsOLgB7Kvb22lbiaEYdpcdQ/topl9OzGjYXXYUNOd3+bqfin/E5IQpiFJGA2jLe7RybcAZfeGwtCfAQT8iIiIiIhoA/s/1c7qcKDeWIl2bHuKaEQCopCooJAo0+i3vWWupAQBEKiJDUS0iIiIiIjpOJEekIFoZjb11uzpty2/MAwAM0Q/tk2MN1Q+DSqrClqpNQV9TaazA/vp9OLl9ac8OiZqkwIN+hpKwyIukA3Wgyy+/vEevf/vtt/upJkREREREFArj4yfgld0vwuq0osZcDYfLiXQtZ/oNFlHKqE7Le+6o2Y6syCxEyLm8JxERERER9Z5IJGp/rl/nQb+8pjykRKRCI9P0ybHkEjlmJM/E2tLVuCTncohEok6vWVX8A5RSJaYnz/QpT9QkoTLgoF8x0sIgfx2wmX4RERHQarXC/4qKirB161YYjUYoFAoYjUZs3boVxcXF0Ol0A1UtIiIiIiIaILlx4+FwOXCgfh9KWooBgM/0G0QiFXqf5T3dbje2V2/FxITJIawVEREREREdL8bGjcPhxoNodbT6lOc35fXZ0p4d5qWfgpKWYhQGWOLT5Xbhh6LvMC9tAVRSlc+2JE0SqgI806+kpQTpusG/Us2AzfR74YUXhP/+4osvUFhYiHfffRfp6Z4/UnFxMa6//nqcfPLJA1UtIiIiIiIaIJmRQ4Tn+snFcqhlakS3PzuBQi9K4TvTr8RQjDpLHSbGnxS6ShERERER0XFjbFwuHC4nDjbsx/j4iQDaBuDyGg/j4pzL+vRYk+InQyvXYm3p6k7Lhm6r3oIacw1Oz1rcab9ETTJqzNVwupyQiCVCHUsNJTg167ROrx9sQvJMvxdeeAE333yzz4AfAGRkZOCmm27yGSAkIiIiIqLjg1gkxri48dhduxPFhiKkazMCLrNCoRGp0KPJ65l+26u3QiqWYlxcbghrRUREREREx4tMXRa0ci2+LfgaRc2FcLvdqDRWwOKw9PlMP5lEhtkpc7GudA3cbrfPtu8Lv0WmLgs50aM67ZeoSYTL7Raebw4AdZY6WJ3WsJjpF5JBv6qqqqDJvUgkQnV19QDXiIiIiIiIBkJu3Hjsr9+H/MYjSNcN/uchnEjanunnO+g3OmYslFJlCGtFRERERETHC7FIjHOHXYDfy3/Fn368Ehd9ex6e2vY4APT5oB8AzE8/GVWmKhxo2C+UNbY2YEPFbzh9yJkBx6mSNMkAgEqjZ4nPUkPb4yn4TL8gxo0bh//+978oLS31KS8tLcX//vc/5Obyl6RERERERMej3PgJcLgcKGopRHoYJEwnEr3X8p4OlwO7andiYsKk0FaKiIiIiIiOK5eOugKfn/0NHpn9BOannQyjzYBRMaOhV0b1+bHGxY1HtDIaa0tWC2Wrin8AIMIp6YGX6oxXJ0AEoNJUKZSVtpRAKpYiKSKpz+vY1wbsmX7eHnjgAVx99dVYtGgRhg0bhpiYGNTX1yMvLw8xMTF47rnnQlEtIiIiIiLqZ5m6LOjkOrTYWjjTb5DRK/RodbTC4rDgSFMeLA4LJiXweX5ERERERNS3lFIlJidOweTEKf16HLFIjHlpJ2Nt6U+4fvyNEEGE7wu/xeyUudApIgPuI5fIEaOKRZXZM+hXYihBakQaxKKQzKPrkZDUMDs7G6tWrcLdd9+NnJwciEQi5OTk4O6778aqVauQnZ0dimoREREREVE/63iuHwDO9BtkOn5Z22xtwvbqrdDKtRgWNTzEtSIiIiIiIuq9eWkL0NjaiF01O7C3bjfKDKU4PevMLvdJjkhBldFrpp+hBGlh8Dw/IEQz/QBALpfjoosuwkUXXRSqKhARERERUQhMTZqO3XW7kBSRHOqqkBe9Qg8AaGof9BsfPzEsfslKREREREQUzMjoHCRpkrC2dDVsLhuSIpKRGz+hy30S1IkoNZQI/y41FGNh5hn9XdU+EdIMLj8/H1988QVeeukl1NbWAgCKi4thNBpDWS0iIiIiIupHCzNPxzunf8gBpUFGr4gGAFQYy3CwYT8mxk8OcY2IiIiIiIiOjUgkwrz0k/Fr2c/4pXQdTs8886i5aFJEMqran+lnsptQb6lHupYz/YKyWCy4++678d1330EsFsPlcmH27NmIi4vDf/7zH6SmpuK2224LRdWIiIiIiKifiUQiqGXqUFeD/ES2P9NibekauNxuTE7k8/yIiIiIiCj8zU87GR8ceBdikQinZZ5+1NcnaZLQZG2CxWFBmaEUAJAWJo+nCMlPax977DFs3LgRy5cvx7Zt2+B2u4Vtc+fOxa+//hqKahEREREREZ2wpGIptHIttlZtQpImCYmapFBXiYiIiIiI6JhlRQ5Btj4bM5JnI0YVc9TXJ2raHkVRZapEqaEYAJCqTevXOvaVkMz0++GHH3Dbbbdh1qxZcDqdPttSUlJQXl4eimoRERERERGd0CIVehhsBkxM4NKeRERERER0/Hh8ztOQimXdem3HDyCrTJUoMZQgVhUbNqvVhGSmn9lsRlxcXMBtFotlgGtDREREREREABCliAIATErg0p5ERERERHT80Ckiuz1wF62MhkwsQ6WpAqUtJUgLk+f5ASEa9BsxYgR+/PHHgNvWrVuHMWPGDHCNiIiIiIiIKFKhh1gkwvj4CaGuChERERERUUiIRWIkapJQZapCqaEEabrweJ4fEKLlPW+44QbccMMNsFgsWLRoEUQiEXbv3o1vvvkGn332GZYvXx6KahEREREREZ3QhuizYXGYoZXrQl0VIiIiIiKikEnUJKLcUIpyYynOyj471NXptpAM+s2bNw9PPfUUHn/8cXz99dcAgAceeACJiYl48sknMX369FBUi4iIiIiI6IR22agr4Xa7Q10NIiIiIiKikEqKSMGqopVwuJxhtbxnSAb9AGDRokVYtGgRCgsL0djYiMjISGRnZ4eqOkRERERERARAJBKFugpEREREREQhlahOhMVhAQCkabm8Z7dlZWUhKysr1NUgIiIiIiIiIiIiIiIiQqImCQCgkqoQq4oNcW26b8AG/d54441uv1YkEuHKK6/sv8q0e++99/Daa6+htrYWI0eOxD333INx48b1+3GJiIiIiIiIiIiIiIhocEqOSAYApGnTw2o1lAEb9Hvssce6/dqBGPT77rvv8Mgjj+CBBx5Abm4u3nrrLVxzzTVYuXIlYmJi+vXYRERERERERERERERENDgltM/0S9OFz/P8gAEc9Dt48OBAHapb3njjDSxbtgznnXceAOCBBx7AunXr8Nlnn+Haa6896v5isQhicfiM7lLfkkjEPv9PRCcWXgOITmy8BhCd2HgNIDqx8RpAdGLjNYDoxKGX6hCviceI6BGQSsMn9kP+TL9QsNls2LdvH/785z8LZWKxGDNmzMCOHTu69R67dm1GdXV1f1WRiIiIiIiIiIiIiIiIQmQZzoeiQIaVRV8JZRdddFEIa3R0IR30s1qtKC0thdVq7bRt9OjR/XbcxsZGOJ3OTst4xsTEoKCgoFvvkZs7hTP9TmASiRg6nQotLRY4na5QV4eIBhivAUQnNl4DiE5svAYQndh4DSA6sfEaQHRi40y/IGw2G+6//3589dVXcDqdAV9z4MCBAa5Vz7hcbrhc7lBXg0LM6XTB4eAXPNGJitcAohMbrwFEJzZeA4hObLwGEJ3YeA0gosEqJMOSzz//PH7//Xc8+uijcLvduOeee/DII49g+vTpSElJwUsvvdSvx4+KioJEIkF9fb1PeX19PWJjY/v12ERERERERERERERERER9LSSDfitXrsSNN96I008/HQAwbtw4LF26FK+//jomTZqENWvW9Ovx5XI5Ro8ejQ0bNghlLpcLGzZswIQJE/r12ERERERERERERERERER9LSSDflVVVcjKyoJEIoFCoUBLS4uwbcmSJVi5cmW/1+Gqq67Cxx9/jBUrViA/Px/3338/LBYLzj333H4/NhEREREREREREREREVFfCskz/eLi4oSBvtTUVGzatAkzZswAABQVFQ1IHc444ww0NDTgmWeeQW1tLXJycvDqq69yeU8iIiIiIiIiIiIiIiIKOyEZ9JsyZQq2bt2KBQsW4IILLsDjjz+OgoICyGQy/PTTT1i8ePGA1OPSSy/FpZdeOiDHIiIiIiIiIiIiIiIiIuovIRn0u+WWW9DY2AgAuPLKKwG0PefParXisssuw1/+8pdQVIuIiIiIiIiIiIiIiIgoLIVsec+4uDjh31deeaUw+EdEREREREREREREREREPSMOxUErKyuxb9++gNv27duHqqqqAa4RERERERERERERERERUfgKyaDf/fffjy+//DLgtm+++QYPPPDAANeIiIiIiIiIiIiIiIiIKHyFZNBv165dmDZtWsBtU6dOxc6dOwe2QkRERERERERERERERERhLCSDfmazGVJp4McJikQimEymAa4RERERERERERERERERUfgKyaBfdnY2fvrpp4DbVq9ejaysrAGuEREREREREREREREREVH4Cjzdrp9dccUVuOOOOyAWi3HeeechPj4eNTU1+Pzzz/HJJ5/g4YcfDkW1iIiIiIiIiIiIiIiIiMJSSAb9li5dirq6Ojz//PP46KOPhHKlUom///3vOOecc0JRLSIiIiIiIiIiIiIiIqKwFJJBPwD44x//iAsvvBA7duxAU1MT9Ho9JkyYgIiIiFBViYiIiIiIiIiIiIiIiCgshWzQDwAiIiIwe/bsUFaBiIiIiIiIiIiIiIiIKOwN2KBfQ0MDampqMHLkSJ/ygwcP4oUXXkB+fj5iY2NxxRVXYMGCBQNVLSIiIiIiIiIiIiIiIqKwJx6oAz311FO48847fcrKy8txySWXYPXq1VAoFMjLy8ONN96ILVu2DFS1iIiIiIiIiIiIiIiIiMLegA36bd++HWeddZZP2Ztvvgmz2YyXX34Zn3/+OdasWYPc3FwsX758oKpFREREREREREREREREFPYGbNCvuroaw4YN8ylbu3YtcnJyMGvWLACAUqnEpZdeikOHDg1UtYiIiIiIiIiIiIiIiIjC3oAN+olEIohEIuHfdXV1KCsrw0knneTzuoSEBDQ2Ng5UtYiIiIiIiIiIiIiIiIjC3oAN+mVlZWH9+vXCv9euXQuRSISZM2f6vK62thbR0dEDVS0iIiIiIiIiIiIiIiKisCcdqANddtlluP3229HS0oLY2Fh88MEHSE9Px4wZM3xe99tvv2H48OEDVS0iIiIiIiIiIiIiIiKisDdgg35LlixBdXU13n33XbS0tGD06NG47777IJV6qlBfX4+1a9fipptuGqhqEREREREREREREREREYU9kdvtdoe6EuGottYQ6ipQCEmlYkRFadDYaILD4Qp1dYhogPEaQHRi4zWA6MTGawDRiY3XAKITG68BRCe2jmvAYDZgz/QjIiIiIiIiIiIiIiIiov7BQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojDHQT8iIiIiIiIiIiIiIiKiMMdBPyIiIiIiIiIiIiIiIqIwx0E/IiIiIiIiIiIiIiIiojAnDXUFQuHFF1/Ezz//jAMHDkAmk2Hr1q2hrhIRERERERERERERERFRr52QM/3sdjsWLVqEiy66KNRVISIiIiIiIiIiIiIiIjpmJ+RMv7/+9a8AgM8//7zX72EqKQYAyKOiINPqhHJbYwPsBgNEUinUySlCucvhgKWiHACgiI2FVK0RtrXW1sBpsUCiVEIZnyCUO62taK2uBgAoExIhUSiEbZaqSrhsNkg1GihiYoVyh8kEa30dAECVnAKx1PMRm8tK4Xa5INNFQq7XC+X2lmbYmpoAsQia1HSh3O12w1xa0tbO6BjIIiKEbdaGejiMRohlMqiSkj3ttNthqaxoq3NcPCQqVYB2qqCMj/e002JBa21NW50TkyCWyz3trKyAy26HVBMBRUyMp85GI2wN9QAAdWoaRGLP+LWprARwuSGL1EMeGSmU25qaYG9phkgshjo1zdNOpxPm8rLA7ayvg8Nk6tROp82GlsIaGFsskEXHQaJUetpZUw1nayskKhWUcZ52OsxmWOtq29qZlAyxTCZsM1eUw+1wQKbVQh4V7WmnwQBbY0NbO9PSIRKJPO0sLQHcbsj1esh03u1shL2lBSKJBOqUVKG8q3NQaKdCAVVCoqedVitaq6sAAMqEBEgUnnZaqqvgslohUauhjI3zaqcJ1rog52BHO3U6yPVRnnZ2nIMANOkZQrnPOdirWIuDVK0WtgWNtdZWtNYEiTXhHAwea+qUVIgkEk87g8SarbkZ9uamzrHmcsFcVtrWzr6ItZoaOFuPEmt+56DQzogIKKL7P9YUMbGQagKcg/6x5n0Oxif0PNaCnYOdYq0FtsbGtnb6x1rH9d4v1lobGmAsrYIL4u5f7+tq4TSbA8RaF9f79ljrdA52FWvlZXA7ncFjTSSCJi3I9T4qGjKtVtgWNNa8zsHexFrw671vO33Owf6Mtfp6OEwBYs1mg6WqEkAXseZ3Dh5zrPmfg+2x1vl6HzjWfM7BYLEml0OVmOSpcxfX++Cx1o3rfRex5n29B4LHWq/urXoTa8Hurbpop6m8DA6rvU9jravrfbdj7VjvrfxiTbje+8da+znY/7EW+BzsVaz16t6qPda6urfqy1jrzb2Vf6wFubcC+jiPaY+1QZ3H+MVaX+YxDosFpsq2z3Mg8phO7ewyj+lGrPXm3upEz2O6GWuDIo/pw1gLem/V130Gx5LHDFCfgSImFtJIr2tKf+Ux3Y61LvKYo8Van9xbecda4DymT/sMury36masHWMeM+j6DIJd70PRZxAkj+lurB3zvdUA9RnosjLhLeR5zAnXZ9AHeUw49hl0dW81WPoM+uLeaoD7DHqTxyh0WiDK816D0Qk56NcX8l56FgCQtuQcJMyaLZRXbvwN1b/+AkVUFMbeeY9QbjWYhH2yL78KUWPGCtuqf1qJxj27oR2SjRHX/UUot5RWIe+l5wAAOTf/DQqvxKfs849gKitDzMRJyLrwEqG8Of8wCj98DwCQe9+DkCo9F8fCt1+D3WhE0oJTkLLoDKG8duc2lK/8DmK5HBMfelQod9ntQp0zzr0AcdOmC9vKf/sZtRvXQxkfjzG33iGUtzY2C/sMu/pPiByZ4/nbfP81mg8egG74CAz/45+FcnNVOfKWvwQAGP332yFP8ARaycfvw1JdhdgpU5F5/h+E8qa8Ayj65CMAwIR/PQKJ10Wj4LWX4bRakbLwdCSdfKrn77x9Myp/+hFStRrj739IKHfYrUKds/5wEWImnSRsK/15Neq3boE6OQWj/u/vQrm1pgF7//cfOBwuDL/2emizhwrbKr5egZb8I9CPGo2hV14jlBvLS3DkjVcBAGNvvwtSry/ikg/eQWt9HeJnzEL60nOF8oYDe1DyRdvg9KRHnoBI4klU8l95Hi6nE6lnnoXEufOF8qrNG1C1bg3kOh3G3X2/UG43twrtHHLJ5YjOHe85/uof0LBzByLSMzDyxps97ayoEfYZeePNUHhdbMu//BTGoiJEjctF9qVXCOWGogLkv/sWAGDc3fdBqvRchIveeR225mYkzJmHtMVLhPK6PTtR9u3XEInFmPTok0K52+0Wjp9+9jmIn+mJtYr1v6Lm91+hiInB2Nv/6amzwSjsM/SKq6EfPcbzt/nxOzTt2wtt9lCM+PMNQrmlphJ5Lz0PABh189+hSPF8QZR+/jHM5WWImTQZWX+4WChvzj+Ewg/fBwCMv/9fkCo8F/uCN5fDYTYj6eRTkbLwdKG8dudWlP/wPSRyOSZ4xZrT5vDE2vnLEDdlmufv/Os61G7aAFV8Akbferunzg1Nnlj7458ROXyEsK3y+6/QfOggIkeMxLBrrhXKTZVlyHv1ZQDA6Ftvh9zrS63ko/dgqalG3NTpyDjvAqG88fB+FH/6MQBgwkOP+sbaqy/BabN1jrVtm1C5elXnWLNZPLF24cWImTjZ83de9xPqt22FOiUVo27+m1Buq24Q9hlx3V+gHZLt+dt8vQKG/CPQjx6DoVdcLZQbS4tw5K3XAQBj77wbUq+bh+IP3oa1vh7xM2cj/exzhPKG/XtQ8uUKAMCkx/7jc/N05JXn4Xa5fGJNIhGj/Kd1KFz5I2Q6Hcb98z5Pnc2edmZfegWixuV6/jY/rUTj7l2IyMzEyBv+KpS3VtQK++T4x9qKT2AsKUb0+AkYcvFlQnlLYT4K3nsbAJB79/2QKj0JbtE7r8PW0oLEeQuQesZiobwj1sQSCSY+8oRQ7nY6PbG29FzEz5glbKv4/RfUrP8NyphYjLn9LqHc2mzwxNpVf4Q+Z5SwreqHb9G0fx902UMx3DvWqiuQ9/ILAIBRt9wKtdeNculnH8FcUY6YyScha5lnJn5z/iEUfvQBAGD8A/+GVOG5GRZi7ZTTkHLaIqFciDWFAhP+9YhQ7rR6vtcyL/gDYk+aKmwr+3UN6jZvgiohEaP/fpunzvWe77Xhf7oOumHDPX+b775Ey+FDiByZg2FX/0koN5WXIO/15QCAMf+4A3Kvm/vij95Fa00N4qbNQMa55wvljQf3ofjzTwAAE//9GMRSTzvzX30JLpsNKYvOQNKCU4Ty6q0bUbnmJ8giIpB774NCud1q84q1SxAzcZLn77x2Feq3b4MmNRU5f/XEmrW63hNr198IbdYQYVv5V5/DUJCPqLHjkH3ZlUK5oaQI+W+/AQAYe+c9kEZ5ksXi996EtbERCbPnIO2spUJ5/b49KP2qLdYmP/4UvB15+Tm43W6knXU2EmbPFcorN61H9S/rINfrMe6ue4Vym9HsibXLrkTU2HGev82qlWjcEyDWyqo9sXbT/0HhlciWrfgEptISRI+fiCEXXyqUtxTkoeD9dwEAufe23VtJ2r+P8994tS3W5i9A6ulesbZ7B8q++wZiqRQTH35cKHc5PNf79HPOQ/z0mcK2it9/Rs3636GMjcOY2+701LkpeKxVrvwGzQf2Qzd0GIZfe71Qbq6uQN4rLwIARv/tH5B7JWuln34Ac2UlYk+aiswLvO6tjhxE0ccfAgAmPPgwJF7nYOEby+GwWJB86kIkn7pQKK/ZuRUVP66EVKXC+Af+LZQ7vc7BzAsuROxJUzx/51/WoG7LJqiTkjDqln8I5Za6xuCx9u2XaMk7jMicURh21R+FclN5MfJeb7u3GnPbXZDHeu6tij98B621tYibPgMZ5/jF2opPAQATH34cYqmnUyD/1RfhstuRcvqZSJp/slBevWUDKteuhkyrRe49Dwjl9lZPO4dcfCmix0/0/J3XrEL9jm3QpKUh56ZbhHJrped6P/KGm6DIzPL8bb74FMaiws6xVlyI/HfeBACMu+teSL06LIrefRO2pkYkzJmLtMVnC+X1+3aj9OsvIRKJMOmx/8CbJ49ZioRZc4TyYHmMT6xdfiWixnjH2vdteUzWEIy4/kah3CeP+estUHh1MpSt+Bim0lLETJiErIu88piCPBR+0B5r3c1jdm1H+fffQiyTYeK/HxPKvWOtUx7z+8+o3bAeyrg4jPmHd6y1BM9jOmJt2HAM/9N1wjWgtaIMeS93xNptkCd6OudKPvkAlqoAsdZVHvP6K3C2tiL5tEVIPuU0obxm+2ZU/PQjpCo1xj8QOI/JXHYhYid7xdrPq1G3dTPUyckY9X+3CuXmWs+91fBrr4du6DBhW8U3X6DlSF6XeYx/rHnymJlIX3qeUN5wcC9KVnwGoAd5zJYNqFobII+xWL3ymMsQnTvBc/xgeYx3rP3lr1BkZArbupXH/PNeSJV6YVvRu2/A1tTUKY+p37sLpd981WUe06nPYMNvqP7tFyiiozH2jrs9de4ij6le9T0a9+7p3GfQRR4TvM/AL4+RemKt4K1X4TCZAvQZBM5jfPoMzrsAcVO9Yu3XwHmMT5/BNdcicsRIz98mSB7TnT6DuKnTkHHeMqHcJ4/xj7VgeUywPgNbq08eo2n/XpNIxKgJ0mdgqwmexwTtMygrxpE3XwMAjL3jn5CqPJ29Qqx1lcc8+qTP4OaRV56D2+nqHGub1qPq57WQR0YGzWP8+wxqVv+Ahl07EZGRiZF/8c5juugz+OJTGIuLEJ07HkMuuVwo985jgvUZJM6dj9QzzxLKhT4DiRiTHvGKNZfrqH0GnfKYFq9Yu/Ia6EeN9vxtguUx3rH2f3+HwqtTucs8Roi1h3qWx/j3GXjlMZ36DH5bi9pNGwPkMU1B762C9hlUlCLvtVcAdM5jgvYZHNqH4s8C5zFBY609j5FqNBh/37+EcofN7hNrPn0GQfKYLvsMOvKYMWORfflVQnmXfQbvvwVrQwMSZs1B2pKlQrl3HjPlyacBQLgf6OgzSFu8BAlz5nn+zsHyGJPXvVV3+wzKPbHmn8cE7zM4goL33gEA5N7zgM+9ldBn4J/HdKfPIFge4xdrXeUxQqz55zFV5UIe07nP4EOYKyoQO3kKMpddKJR75zH+fQaFb7wKh8WM5FNOQ7JXrNXs2IKKH1dColRiwoMPC+Vd9hm05zGqxCSM/pt3HhM81iq+/SJIHuPVZ3DbnZB7DZQFzWMO7ff0GfjnMcuD5DHd6TO46FLETOhGHlNVF7zP4MvPYCgsCNBnUIj8t98E0DmPCd5nsBulX30BoCd9Br+j+pefIddHYdxdQfKYTn0GbXlMRGYWRt5wk1DedZ9BWx4TO2kykoZ5+oAGIw769ZJM1hZYEREKRHmN7NarFZDJJJArZD7lrW6rsI9Op/LZplLJYZRJoFT67iOuVwn7ROpU0HptUyhksMkkUKnkPvvYtEphnyi9BrIIzza5XArIJNBofOtsiGjbRyKT+JQ7bbag7axVyyGTSaDwa6fZpu6ynWaZBCq/dsKrzpGRKmh82imFQyaBWu17/NYIr3ZGaXxG3eVyKRwuR6d2NmnaPhuZXOpT7lCIvNqp9NlWrZKjRSaBwq/ORnPbrxmkUjF0OhX0XtuUKjksAT4bl0871VB5bZMrpHDKJFD71dns1U59lAZir1+ryORSuByd69zY/tnI/dppEzuE99JqlZ0+G1mAdkqa1T7noM67nQoZrDIJ1H7tdHi1Ux+phkLvew66A5yDxvZ2isRin3K32x30s6nvOAf92tnqavW0M8A5aAoQayKdyuccjPBppxT2AO20eX82eg1kGt92iuyd29nSEWt+dXbaZJ46+7XTE2u++yiswWNN2R5rSr86u73aqY9UQx0w1uRdx5rXr6xkcinEbic0fnUOFmt2OYK2syPWlH7tlBlVPu30iTWlDK0BYs3p106ldzvlUrhkEmj82mn2a6f3oJ9MJoHbJep0Dtai7RrgH2tWkT1orKk7rvd+105Jk1c7I9U+saZQtsWafzvt3rGmV0MeGSDW/NrZEWtiqW+dXU5n0Fir03R8r/nuY3GYPXUOcE0xBTgHfWNN7RNrCqUsYKxZvT8bvdrn14FBY629zlL/WLNKg7azpv372z/W5K2q4O1UygJe791+7fSNNVnb9d7vs7FEKHw+T+9Yk8skcLolnercEWv+56Bd5g56DlapAn9/Sw2+9xyRPY01vW+syRUyuAJ8f5u82ulzL4D2WHO7O7Wzob2dna73sAVtp0olCxhr4obgsaZUtt1b+X82dq1vO+Var2uUEGt+91btdRbL/GLN4Qgea0HOwS5jTSlru97731v5nYMav3PQHqCdVr92Sr1+oSqTSyFydI615iCx5miVBP1saoLcQ8otXXyvdcSaXztdfnVWBYg1/8/GovW93nv/2lQuk8AJFyL82tkYJNZsUpdXO33rXBWknZIW33b6x1qg6733vVWkX6wpFIHPQVPHvZVIFDDWAHRqZ9A8xifW+jCPUfdBHtP+2fjnMS673SvWFJ1irSlQHmM3Bc9jgsRahEbhFWvB8pij3Fv55zHO4LEmk/u20zuP8f9sqoOcgzLz0WPNv50uv3uOgHmMuhd5jH+sqYPEmsTZ5TkYMI/pKta6k8foNT55jOKY8hj/WAv82RwtjwkUa6JItc85GBEo1nqax9h6ksd49xl0L4/pqs9AyGN60Wfg386uYk3IY7rZZ+Cfx+h0KqH+6iB9BjKTbzu702fg7EafwVHzGK9BP7lMCpfYGfTeqid5TEes+X823nlMpz6D7uQxQfoM/PtGhDxG4nsddLtcQc/BjljrlMc4LV22s6/yGN9YU3evz6Dje62LPMY/l65RBY61rvIYZcf3Wo/ymMDfaxa/dvZXn0GwPManzyBSfex9BkIe47uPdx7jfQ0APH0G/u0Mlsf0ps9A3NibPgO/PEbXOdb87yGNHXlMT/oM1D3vM1AqZQGvKf55jP/3mj3APaR3HtO5z0DSozym6z6DILFm6TrWAuUx3ekz6JTHeOfSerXP7MBgeUyv+gyC3KdIW3reZ+Dw+mz885igfQaaXvQZBMmlu+4zCJLHdNFn0HFvpVR6/vaDlcjtdrtDXYm+8OSTT2L58uVdvua7775Ddna28O/PP/8cDz/8MLZu3drj45Xs2AeRWASFPgoynWd2hbVjaSaJFGqvX9m5HA6Y26eTKgMs7+mwWCBRKKFK8J1OammfTqoKMJ3UabNBqtZA6fVLS7vJCGt9+5Rm/yWo2pcPkPtPaW6fui0KMHXb1D51WxFgqQ670QhxgKnbZq/lA6R+y+I42qduq7xmGDn8lqDyvkEwt09plgVY7s3aPnVb479UR2kJ3G435JGRkEd6tbOpCbb2Kc0av6U6TB1Ldfi1s7WuDg5z21Id3r8ugdMBiaEBRmMr5LHxPssHWKqr4bS2Qhpg+YDW9uUD1P5LdZSXw+Vsm9Ks8FsWx9o+dVsTYMlBN9qmNMu9pjRbGxthN7Qti6PxWxYn6DnY3k6JXAFVou9SHZb2qdsq/2VxqqrgtFkhDTB1u7V96rb/Oehppw4KrxkhNq9lcSL8lsURzsFexVrn5QMCxlprKyw1gWOt4xzsKtY0nZYPCBJrzU2wNTd3jjWXC6b25QOCxprfOdhVrFk6ptV3EWudzsGOWAuwVEe/xFpMDGSao8eazznot1RHt2It6DnoF2stLbA2tS8f4BdrRq/lAzpiTSIRQ+6woKG8Gm6RpPvX+7paOMzmALHW1fW+I9Z8z8GuYs3UsVRHkFgTofMSVEKs+S+DFizWvM/B3sRakOt9p1jzPgf7M9bq62A3BTgH/ZbqCBRrnc7BrmKtorxLJOyTAACTOUlEQVRt4KerWAuwNJO7fWkmud9SHYFizfscDBZrkgBLdQS93geNte5c74PHWoTfUh2BYg3o5b1Vr2It8L1VoHZKJG0/+qncnweH3d63sdbVvVU3Y+2Y7638Y63jHAywvKetZQBiLdg52JtY68W9ldDOLu6t+jTWenVv5Rtrwe6tAE+s9Uke0xFrgzmPCbC857HmMR3XgIbqBpiqPMt79nse49/OLvKY7sRar+6tTvg8pnuxNhjymD6NtWD3Vt3pMxioPGag+gxiYqDU6aDTqdDSYoGpuqZ/8pjuxloXeczRYq1v7q28Yy1YHtN3fQZd3lt1N9aONY8ZbH0GQa73IekzCJbHdDPWjvneaoD6DHSZmYiMVKOlxQKn0zUI8pgTq8+gT/KYcOwz6OrearD0GfTBvdWA9xn0Io9RaLWIH+L5ew5Gx82gX0NDAxrb13sNJi0tDXKvi8WxDPrV1hp6vA8dP6TStl9yNjaa4HC4Ql0dIhpgvAYQndh4DSA6sfEaQHRi4zWA6MTGawDRia3jGjCYHTfLe0ZHRyM6OvroLyQiIiIiIiIiIiIiIiI6zhw3g349UVFRgebmZlRUVMDpdOLAgQMAgPT0dGg0g3uUloiIiIiIiIiIiIiIiMjfCTno98wzz2DFihXCv5cuXQoAePvttzF16tQQ1YqIiIiIiIiIiIiIiIiod07IQb9HH30Ujz76aKirQURERERERERERERERNQnxKGuABEREREREREREREREREdGw76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOQ76EREREREREREREREREYU5DvoRERERERERERERERERhTkO+hERERERERERERERERGFOWmoKzDQysrK8MILL2Djxo2oq6tDfHw8lixZguuuuw5yuTzU1SMiIiIiIiIiIiIiIiLqsRNu0K+goAButxsPPvggMjIycPjwYdxzzz2wWCy4/fbbu/0+jUcaAACqWDWUeqVQbq41w9rcCrFUjMhMvVDutDvRUtwMANAkRkAe4RlgNFYaYDfZIVXJoE3RCuUOix2GcgMAQJuqg1Tp+bgMpS1wWB2Qa+XQJEQI5TaDFaZqEwAgMlMPsdQzmbO5oBEulxvKKBVUMSqhvLXRAku9BSKxCPohUUK52+1GU34jAEAdr4FCp/C0s8YEa4sVEpkEuoxITzttTrSUtLUzIkkLmUbWqZ0ytQwRyZ522k12GCvb2qlL00Gi8LSzpaQZTpsTCq0C6gSNUG5tscJc09ZO/ZAoiMQiYVtTQSPcLjdU0Soooz3ttNRb0NpogVgsQqRXO11OF5oLmwK201RthM1gg0QugS7d006H1YG6Q3VoabZAmaCBTO1pp6HcAIfFDplGhogkr3YabTBWGdvamR4JiVwibGsuaoLL4YIiUgl1nNrTzuZWmGvNbe3MjoJI5NXO/Ea43W6oYlRQRnm1s86M1qZWiCViRGbpPe10uNBc1NZO/3Owo51SpRTaVJ2nna0OGMpaAADaFC2kKq92lrXA0eqAPEIOTaLXOWi0wdTezk7nYHs7lXolVLGednacgwAQNTRaKPc+B3sTaxGJEZB1I9bsZjuMFYFjreMc7DLWsvQQS7oRaw0WWBoCxJrLjaaCo8Sa3znYZaxVGGA3HyXW/M5BIdZ0Cqjj+z/WNAkayLXdiDWvczAiWdvzWMuIhER29FhrbWqFpS5wrAnXe79YM9Wa0FjYAJcIPudgl7FWZYTNGCDWurred8Sa/znYVawVNsHlDB5rIpEI+uwg1/s4NRSR3Yg173OwF7EW7Hrv307vc7BfY63aBKshQKxZHWgpbT8Hg8Wa/znYVawVN8NpP0qs+V/vO2LN/3ofLNa8z8EgsSZVSKFN6+b1PkiseZ+DvYk17+s9EDzWenNv1atYC3Zv1UWsNRU2wW519GmsdXlv1d1YO8Z7K/9Y6zgH/WOt4xzs71gLer3vTaz15t6qI9a6urfqw1jr6t6q27EW5N4K6Ns8Roi1wZzH+Mdan+YxNjS1n7cDkcf4t7OrPKZbsdabe6sTPI/pbqwNhjymT2Mt2L1Vd/oMBiqPGaA+A02CBlLvnKC/8phuxlpXecxRY83vHOxVHuMda8HymD7sM+jq3qrbsXaMecyg6zMIdr0PRZ9BsDymu7F2jPdWA9VnEDsiBt56msewz+DY+gz6Io8Jyz6Dru6tBkmfQZ/kMQPdZ9CLPEatVyIqyvPZDEYn3KDfnDlzMGfOHOHfaWlpKCwsxAcffNCjQb8N9/8CiIAxV+RiyKJsobxkVQEKvj8Cdawapzy7SCi3NbViwwO/AABO+ts0JJ2ULGzL+/QgKjeXIyYnFjPv9dStudwg7DPn4QXQeyU+e5bvQFNhI1JnpWPiXyYL5VX7arH9+a0AgIUvn+lzYm79z0ZYW6wYtnQEcv4wWiiv/L0MBz7aB4lcgjPfOlsod9qcwvHHXTMBmadkCduKvj+Cop8KoU3WYv5/ThXKW2tMwj7Tbp+B+PGJwrZD7+9D9c4qxI+Nx7S7ZgnljSXN2PDwbwCA+U+c4vOltuvFbTCUtSBjfiZyr50olFfsqsbOV7YDAM54YwmkXhfHzY/8DkerAyMvGIXh544Uyst/Kcbhzw9CHiHHouWLhXK71SHUecL1k5E2J13YVvBVHkp/KUZkhh5zH10glBurTPjtrrWwO5yYfvcsxI6KE7YdeGc36vbVInFSEqbcOl0ory9oxKYnNgAATv7vQii8vqB2PrcVpmojshZmY+yVuUJ56bZK7HljFwBg8btLfb64Nj70K1wOF0ZfMhbZi4d59llThCNfH4YySonTXjhDKG812oR2Tr55CpKnpQrbjnx2EOUbyhA1NBqz/zVPKDdUGYV9Zj84D1HDPBfbfW/sQsPheiRPS8Hkm6cK5TUH67H1f5sAAKe9cDrkXhfh7U9vgqXBguwzh2H0pWOF8upNFdj33h6IxCKc9d45Qrnb7RaOP/bKXGQt9Iq1H/JR8EM+NPEanPy/hUK5rdEi7DPl79ORODlJ2Jb38QFUbq1A7Kg4zLhntlDeXNaCDf/6FQAw95EFUHp9QexdvgNNRU1Im52OCTd4Yq1yby12vNAWa4teWQyp1hNrW57YAJvRhuHnjMTIZaOE8orfS3Hw4/2QKqQ4480lQrnD6xzM/dNEZCzIFLYVfncExasLoU3RYv6TnlizVHvF2p0zET8uQdh28P29qNlVjfjcBEy7Y6ZQ3lDchI2P/A4AmP/kqT5farte2ApDuQEZJ2ch948ThPLyndXYtbw91t5cAqnUK9Ye/h0OqwMjl43C8HO8Yu3nYhxe0TnWbBavWLthMtJme8Xal4dR+msJ9Jl6zHnEE2umOrOwz8x7ZiPGO9be3o26/bVImpyMk/4+TSivO9KIzf9pi7VTnlkIRZxXrD27BaYaE4YszMYYr1ir3VaJPW+2xdpZ75/jc/O08V+/wu1y+8SaRCLG4RUHseeTfVBGKXHq86cLr281WL1ibSqSp6UI2/I+O4CKjeWIHh6DWQ/MFcoNVZ7Pc/a/5vnc2Ox9bScajzQgZXoqJv11ilBec7AOW/+3GQBw2otnQO6V4G57eiNaG1sx9KzhGHXxGKG8I9bEUjEWv7NUKHc5XZ5YuyoXWad5Yq34h3wU/pAPTUIETv7vaUK5td4Ta1P/MR0JEz2xdvij/ajaVonY0XGYcbcn1pq8Ym3eYyf73CjveWUHmoubkDYnAxOunySUV+6txY4X22Lt9FcXQ6oIEGvnjsTIC7xi7bdSHPxkP6RKKc54wyvWWj3n4PhrJyJ9fqawrfDbPBSvLYI2VYf5T5wilFuqPN/f0++ahbix8cK2g+/uQc2eGiSMT8TU22cI5Q2Fjdj42HoAwIL/nApFsl+sVRiQeUoWxl3jibWy7VXY/doOAMCZb50Nicxzvd/079/gtDmR84fRGLZ0hGefdUXI++IQFDoFFr58plBuNduFOk/8y2SkzvLEWv4Xh1H2Wwn0WVGY8/B8odxY6xVr981BzMhYYdv+t3ah/kAdkqak4KRbPNf72rwGbHlqIwDglGcXQRHruenf8b/NMNeZMeT0oRhz+TihvGZrJfa+1RZrSz44F942Pvgr3G43Rl82DtlnDBXKS1cXIv/bPKiiVT6xZm/2urf6v6lImuoVa58eQMWmzrHWUuH5Xpvz0HyfRHbvazvQmN+I1BlpmHjTSUJ59f5abHt2CwDPvZWk/ft4yxMbYGm0YNiS4ci5yBNrVRvKsf+DvZDIJDjzbc+9lcvhibVxV49H5qlDhG3FK4+g8McCRCRGYMHTXrHmdR30j7VDH+xD9Y4qxI2Jx/R/eu6tmspasOGh9lh7/GTo0jyxtvvl7WgpaUb6vEyM/7Pn3qpyTw12vLQNAHD6a2dBqvCcg1seWw+72Y4R5+dgxHk5nn1+K8XBT/dDppbh9NfOEsodFs85OP7Pk5A+L0PYVvBNHkrWFUGXHol5j50slJsrPdeU6f+chbgxvrFWu7cGCRMSMfU2T6zVFzRi0+NtsXby06dB4ZVg7nx+K4yVBmSeOgTjrh4vlJdtr8Lu13cCABa/s9Sn82PTv3+D0+5EzoWjMexsr1hbW4S8Lw9BEanEwpc891besTbpppOQMiNN2Ja/4hDKfi+FfkgU5vzbK9a8vr9n3T8X0V6dRvvf2In6Q/WdY+1QPbb8t+3e6tTnFkER4xVr/90Mc70Z2WcMw+jLvO6ttlRi3zu7IRKJcNb7nnsrAMLxx1w+DkNO98RasDzGJ9ZumYakKZ485vAnB9rymJGxmHlfkDzm3/N9OlP2vLoDTQWNSJ2Zhok3emKtan8dtj/nG2sdguYx68tw4MN9nWLNae8ij1mZj6JVBYhI0mLBU155jNd1sFMe4xdrHdeAlqJmIdb885jdL21Dy/+zd+dhcpVl3oB/VZXuJHRIIAsgogQFwr7IZkIwwzauKFsAZZMBBQWVD0RwZDEKAoKOCPqNH6Ky6IBhE0cEh8GdsERRBFEUEiCsISvpLN2pqu+PkCaddHcS0ulOdd33deXq1DmnznlO93mfrvc8/b7n2bkrtLWu+jEPXXJfWhe0ZpvDt8vWh73+2er53z6Tv9/yeBqbGvOe73bSjzllt7xl3DJt7adP5JlfP50hmw/JuEuWaWvPv97Wxpy7T4Zv//pnq6VtbZN3vCl7ntVJP2b5tra0H/Ovb8uOJ+zStrxdW+ukH7PdR3bIlgdt/fp7fjk1/7hjxX7MoubX+zG7fXrPvHn0yvsx7drahHEZuvXrbW1V+jEHfuu9aRy6Cv2YB5/PYzd03Y9Z4Z7BL57KU3f9M+uNaMoB31zFfszEx/PCQ893fM/gS0ves3w/prN7Biv0Y5Zta5ffn0WvrtjWOuvHLHvPYOeTds3m+7/e1jrrx7S7Z3DO3tlo5w76MTttnHd+/vV+zCrdM9hvZHb+2OttrV0/Zvl7Bkv7Mat4z6BlYft+zPr/MjLJkj5BZ/cMmmd00Y/p5J7BK0/OyoOXv9aPueLd6b/RivcMuuzH/PCQdsXN+7/821TKHdwz+N8p+ed/r/jZqn0/Zrl7BrcuaWtDtxqasV/6l7blr77QxT2D7/0pM/+xkn5MJ/cMtvzAVtnu6BXvGRRLxXzghoPbllcrq3DPYLl+TMvMZdraZ0dnk91W3o9pd8/gkv0yYPMN2tZ12Y9Z2tauXs1+zPL3DBZ2dc/gH3n63o76MfM678f88NG8/EgH9wymzs79lyy5Z9BhP6ajewYPv5g/f7fjfkxn9wza+jHr98+7/9/r/Ziu7hl01o9pd8/g/Hdl2LYd9GP22DR7nLFq9wwe/uZDmT+9OW97z5bZ4fiO+zEH33RYkrR9Hmi7Z3DMjnn7+9u3tY76MQvmrv49g7kvdNWP6fiewUuPv5I/fHNJW3v3f74v/QaseM9ghX7M/c/lrz96tMt7Bp31Y1a4Z9BFP+aJG/+aF//4wor9mGeX6cescM/gj5nz9Jy8ddzm2eWUZdrasv2Y5e4ZTP7qpLQ0t2TUYdtm1OGv92Oe/+1r/ZiBDXnv95bpx3Rxz6CtH/OWwfmXr67aPYPHr++4H9PunsHX/zX937QK/ZiHX3r9nsF1H0pp2X7MhZ30Y1blnsFpe2SzvVehH7PM7+8V7hn84M+Z8bcO7hk8MTMP/ceSewYr9GM6u2fw0PN59LpHkqzGPYN7puTJO/+R9YatlwOu6qQfs9w9g7Z+zKhh2fuLq3bPYGk/5q37vDWbfeH1zy/roror+nXk1VdfzZAhQ1a+4TIaGksppJBBg/q3q+w2NfVPY0O/NPbv12554+KksWHJt3vw4IHt1g0c2JDGhn4ZMKCh3fLFQ+a3vWfIkPbv6T+gXxob+mW99RrbLZ+z/sC292y4Yfu/SGhs7JdqQzlNTcvFPGhJzKXGUrvl5ZZy277WX799BXu99To+z9L8Zd6z3HkOWHqeA9vHvGjw6zEP2WC9DFn2PPv3y6KGfhm43HnOXH9Au/NctqPS2NgvxfKS8+rwZ9PYPuaWxoYuzrMxjQ390n9A+/cU5rQmSRr6lVb4eQ4YsGR/A5c7z/nLnOcGG6yXQcudZ2sHP8/pg9qf57Kd5caGfqkUKp2eZ//G9tfTghSXOc/lrsHXznP5a7AyZOHr1+2QVTvPVwcPWOY8mzJwmQ/wjY39Um7o1+k1WCgW2i2vVqtt+xo0aLmfTWdtrTXLXIMDOr4GlzvP1iHNy7S19ZZra6+d53I/m9nLXIMbbLhe+q/fvq2lobLCeQ567efZb7lrcPGixSu/Bvu3j7nU/HpbWzGnNHb4s1m43DU4uN012JBFHVyDK7S1/su1tcqKP5vO2tqifv06Pc+BbW2t/XlmVssy1+B6HV6DAwa2f0/zctdg07LXx9K2ttzPZvm2tmzRr7GhX6qV6gptLVmSA5Y/zwXVYqfX4NKfzfLXYHnIgk6vwQGdXIOvrt/+57lsW+vf2JBKw+JO21qxX7F9Wy9XOm9rbddg+/NsWFRd5jw7vgaXP8+WwfPanecGq/B7rX1ba0pj0+t/mdVZW1t6niu0tYWvt7VBnV2Dy51ncd7iTtvagKXnudw1uGC532uDl7sGl5xn+5hnLNfWlv1Lv8bGfilXC6v8e21Radm2NrDjn+dyv9eqMxet/Bpcoa21vwaXb2uLO8j3g1772Sw9z2U1NJSSajr9bLV8HuxfLqz2NbjsZ6vlf691lu/nLtfWBizzV60NDaWUO8gpbW2tYbm2trirttbx77V+Cyvd29b6d9zWZi13DS77V9KNjf1SaK122tYalrsGWwe0rsLvteU+W81t7aKtdfyZY/m2tv5y59nSwXm+stx5Llv0a2zsl3IKnf5e67/ceS4slrr1s1X/TtravHZtrSnrbfj6X8IubWvrNTV23NYKK7a1zq7Bzvox7dva8r/XVqUfs2q/1+Ys97NZlX7M0s9WK/RjWrvqx3R8DfZbsAptbbmfzaBlPj8MGbJ8P6ahw7a2sn5MYfGKnzlWpR/T+e+19jEX5nTR1jr5bDV/JW2ttYPfa6+sQj+ms8/3y/djFhZKnf48V6Wtdf57rat+zHrt2lr//g0pN7R2eg123Y/pv9x5dnwNdtWP6Szfd92PWZXPViv2Y7pqa8t/tlr2nsHy12Cn/Zj5K+/HLH8Nrso9g+WvwZXeM6isxj2Dhvb3DAYPHtgWf2efrTJ75f2Yru4ZDOnsnsHK+jHLFP0aGkqpFosrnOd6nZxnu37M8r/XBnbcX1u2H9P577Wu+jEd3zPo7LNVobRcW6us/J7BCv2YlurKr8FubmsbbtjUboTJmvRjOrs/t3r9mI5/Ngu76Md0ds9gZf2Y7rpn0Glba3fPYNXuW3V1z6D/yj5bvfb9XPZrY8OSewadfoZcvh9T6eqz1crvGXR6niv0Y9qf57IjYZfeM1i+rS3N96t3z6Dja7Crfkxn9+e67sd0fJ6zVnbPoKXztrZ8P6arewad/V4rvrr6bW3Bcn3pVenHrNDWGpa7Z9BFP6brewar9tmqOmT17xnMW66tddSP6ewzx9LzXFZn9wyWfrbquh/TcT1m+d9rXd0zWHqe/Qe83ldeVxWq1Wq1t4PoTU8//XQOPfTQnH322TniiCNW+X3/vP+ZFIuFDByx/PQBzVk0e1GKDR0MJ526zHDS9ZcZ0vz80iHNHQzdnvbacNK3LDd9wLNzUl742vQBmyw3Ddqy0wcsOwXVU7NSLVczYOiADBy23NDtV14b0rz80O1/vjakeeMOpuqYsyjFxmKGLPMXTuWWZaYk2XRQGpo6OM/1lp+CqiXznp+35DzfOrhdUWHuM3NSXlRO4+D+aVp+6PZLy0wfsOxUHU++NnR72MAMbDd9wPwsnLkwhVIH0+I8NbvD82x+8bWpOvq3H7pdXVxJZeaizJu3MOttMqj99AHT5mbxgsVLhm4v81dRLfNa0vzCkvMcvHkHU3W0VtJ/g/5Zb5m/MFo0Z2Hmv/za0O0tO5hysJoMHL7ckOZX5mfRrIUp9Cu2Gx1aWbzMlCTLXYNLz3OFa3Dh4rz67NKpOjqYFmfB4jQMasygNy07hcUy0wds0cFUHa2V9N9wQNZbfvqAV16bFmeZvwxc9hp8Q23tTctNpdtJW2ud35p5z3XS1pZeg121tbd1MH1AB21twcwFWTijg7ZWWWaahE7a2vLXYFdt7dXnXs3i+V23teWvwaXn2X9IB1N19GJbW/YaHPTm9Ve/rY3sYPqADtrawtkLs2B6J23tH0unQXu9rZVKxZQWVTL9mVlJsbDiVB2dtLV5L8xL67wO2loX+X7peS5/DXbV1mZPmZ3q4i7aWqGDKaiW5vuNlp+qo5O2tsw1+IbaWmf5vpfaWvNLzWmZu2JbW7xocV59Zul0MR23teWvwa7a2pynZ6fSUum6rW3ZwdRMleoK+b7TtrbMNdhpWxtQajf6a5Xy/fJtbZlr8I20tWXzfdJxW0ve4GerN9DWOvts1VFbK5WKGTx4YJ750/NZ3FLu3rbWxWerVW5ra/jZaoW2tjTfL9/Wll6Da7utdXINvqG29gY+W7WdZxefrbq1rXXx2WqV21onn62SZdpad/RjurGtrbV+zPJtrRv6MUtzwIwX5mTO0p9nT/RjljvPLj9brUpbeyOfreq9H7OKbW2d6Md0Y1vr9LPVKtwz6Kl+TE/eM1hvw4EZPHhg5s5dkLnPzV07/ZhVbGtd9mNW0taWvwbfUD9m2bbWST+mW+8ZdPHZapXb2pr2Y9axewad5fteuWfQST9mldvaGn626ql7BsNGDcuQIetl7twFKZcrq92Pcc9gDe8ZdEc/phbvGXTx2WqduWfQHf2YGrhnMGCDAdl069dH8K+L+kzR7/LLL8/VV1/d5TZ33nln3v7214f6v/TSSznmmGOy55575qKLLlqt402f/uobipO+od9rf/Eya1ZzFi+u9HY4QA+TA6C+yQFQ3+QAqG9yANQ3OQDqW7/lRsKui/qtfJPa8G//9m855JBDutzmLW95fX7al156Kccdd1x23XXXfPnLX17b4QEAAAAAAMBa02eKfkOHDs3QoUNXvmFeL/htv/32ufjii1MsFlf+JgAAAAAAAFhH9Zmi36p66aWXcuyxx2bTTTfN2WefnZkzZ7atGzFi3Z6LFQAAAAAAADpSd0W/3//+93n66afz9NNP513vele7dX//+997KSoAAAAAAAB44+qu6HfooYfm0EMP7e0wAAAAAAAAoNt4mB0AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI0rVKvVam8HAQAAAAAAALxxRvoBAAAAAABAjVP0AwAAAAAAgBqn6AcAAAAAAAA1TtEPAAAAAAAAapyiHwAAAAAAANQ4RT8AAAAAAACocYp+AAAAAAAAUOMU/QAAAAAAAKDGKfoBAAAAAABAjVP0AwAAAAAAgBqn6AcAAAAAAAA1TtGPPuGHP/xh9ttvv+y4444ZP358HnnkkRW2efjhh3Pcccdll112yTve8Y4cffTRWbhwYZf7ff755/Pxj388O++8c0aPHp1LL700ixcvblv/wAMPZNSoUSv8mz59eqf7XLRoUc4555wcdNBB2W677fLJT36yyxj+8Ic/ZLvttsuHPvShlXwXoH71tRzwRvYL9ayv5YAkaWlpyX/8x39k3333zQ477JD99tsvN9988yp+R6C+9LUccM4553S43/e///2r8V2B+tHXckCS3HHHHfngBz+YnXfeOWPHjs3nP//5zJo1axW/I1Bf+mIO+OEPf5j3vve92WmnnfLud787t99++6p9M6AO1VIOeOCBB/KJT3wiY8eOzS677JIPfehDueOOO1bY7uc//3ne8573ZMcdd8xBBx2UX//616vxHUn6rdbWsA668847c/HFF2fChAnZeeedc+211+bEE0/MXXfdlWHDhiVZ0rBPOumknHzyyTnvvPNSKpXyt7/9LcVi53Xvcrmck08+OcOHD8+NN96Yl19+OWeffXYaGhpyxhlntNv2rrvuyqBBg9peLz1uZ/vt379/jj322Nx9991dntvcuXNz9tlnZ/To0XnllVdW5dsBdacv54DV2S/Uq76aAz7zmc9kxowZueiii/LWt74106dPT6VSWdVvC9SNvpgDvvCFL+TMM89s954PfehDec973rNK3xOoJ30xB/zhD3/I2Wefnc9//vPZd99989JLL+WLX/xizjvvvFx11VWr8+2BPq8v5oAf/ehH+drXvpYLL7wwO+64Yx555JGce+65GTx4cPbbb7/V+fZAn1drOeDhhx/OqFGj8rGPfSzDhw/PL3/5y5x99tlZf/31s++++yZJ/vjHP+bMM8/MGWeckX333Tc//elPc+qpp+bWW2/N1ltvvWrfmCrUuMMPP7w6YcKEttflcrk6duzY6ne+8522ZePHj6/+x3/8x2rt91e/+lV1m222qU6fPr1t2Y9+9KPqO97xjuqiRYuq1Wq1ev/991e33nrr6pw5c95Q7GeffXb1E5/4RKfrTz/99Op//Md/VL/5zW9WP/jBD76hY0Bf1xdzwJruF+pJX8wBv/71r6u77bZbddasWW9ov1BP+mIOWN7//M//VEeNGlWdNm3aGzoO9GV9MQd897vfre6///7tll133XXVffbZ5w0dB/qyvpgDjjzyyOoll1zSbtnFF19cPeqoo97QcaAvq+UcsNTHPvax6jnnnNP2+jOf+Uz14x//eLttxo8fXz3vvPNWeZ+m96SmtbS05LHHHsuYMWPalhWLxYwZMyYPP/xwkmTGjBn585//nGHDhuWoo47KmDFjcswxx2Ty5Mld7vtPf/pTtt566wwfPrxt2dixYzNv3rz885//bLftwQcfnLFjx+aEE07IH/7wh245t1tuuSXPPvtsTjvttG7ZH/RFfTkHrM39Ql/RV3PAvffemx122CHf/e53s88+++Td7353Lr300pVOPwL1pq/mgOXdfPPNGTNmTN785jd3+76hlvXVHLDLLrvkxRdfzK9//etUq9W88sorufvuuzNu3Lg13jf0JX01B7S0tKR///7tlvXv3z9/+ctf0trausb7h76ir+SAV199NRtssEG7Y48ePbrdNmPHjs2f/vSnVd6noh81bdasWSmXyysMmx02bFjbdJjPPvtskuSqq67K+PHj893vfjfbbbddPvrRj2bq1Kmd7vuVV15p17CTtL1eOjfviBEjMmHChHzzm9/MN7/5zWyyySY57rjj8thjj63ReU2dOjVf+9rXctlll6VfP7PwQmf6ag5YW/uFvqav5oBnn302f/jDH/KPf/wj3/rWt/Lv//7vufvuuzNhwoQ12i/0NX01ByzrpZdeym9+85scfvjh3bZP6Cv6ag7Ybbfdctlll+X000/PDjvskL333juDBg3K+eefv0b7hb6mr+aAsWPH5uabb86jjz6aarWav/zlL7n55pvT2trq2Z6wjL6QA+6888785S9/yaGHHtrlsZc9p1WhmkCft/T5N0ceeWQOO+ywJMl2222XSZMm5ZZbbsmZZ56Zk046qa0Sv+mmm+ZnP/vZKu37bW97W972tre1vX7HO96RZ599Nj/4wQ9y2WWXvaF4y+VyzjzzzHzqU5/KFlts8Yb2Abyu1nLA2twv1KNazAHVajWFQiGXX3551l9//STJOeeck09/+tO54IILMmDAgDe8b6g3tZgDlnX77bdn/fXXzwEHHNAt+4N6U4s54J///GcuuuiinHrqqRk7dmymT5+er371q7ngggvyla985Q3vF+pRLeaAT37yk5k+fXqOPPLIVKvVDBs2LAcffHC++93vdvkMMmBF63IOuP/++/Pv//7vufDCC7PVVlut7ql1SdGPmrbhhhumVCplxowZ7ZbPmDGjrSI+YsSIJMnb3/72dtu8/e1vz/PPP58kueiii9qmzFo6sm748OF55JFH2r1naUV96T47suOOO+aPf/zjGz2lNDc359FHH83jjz+eL3/5y0mWJKhqtZrtttsu11xzzQpDfKFe9cUc0NP7hVrWV3PAiBEjsvHGG7cV/JbGW61W8+KLL2bkyJFrtH/oK/pqDliqWq3mlltuyYc+9KE0NjZ2yz6hL+mrOeA73/lO3vGOd+Skk05KkmyzzTYZOHBgjj766Jx++unZaKON1mj/0Ff01RwwYMCAXHzxxfnSl76UGTNmZMSIEbnpppvS1NSUoUOHrtG+oS+p5Rzw4IMP5hOf+EQ+//nP5+CDD263bvjw4SuM6lv2nFaFPw+gpjU2Nmb77bfPpEmT2pZVKpVMmjQpu+66a5Jks802y0YbbZQpU6a0e+/UqVPbnoux8cYbZ/PNN8/mm2/etmyXXXbJE0880S5x3HfffRk0aFC23HLLTmP629/+1mXjX5lBgwblpz/9aW6//fa2f0cddVS22GKL3H777dl5553f8L6hr+mLOaCn9wu1rK/mgHe84x15+eWX09zc3LZsypQpKRaL2WSTTdZo39CX9NUcsNSDDz6Yp59+2tSe0Im+mgMWLly4wmieUqmUZMkfAwBL9NUcsFRDQ0M22WSTlEql3Hnnndl3332N9INl1GoOeOCBB3LyySfns5/9bI488sgV1u+yyy65//772y277777sssuu3S532UZ6UfNO+GEE3L22Wdnhx12yE477ZRrr702CxYsaJsLt1Ao5MQTT8yVV16ZbbbZJttuu21uu+22PPXUU/nmN7/Z6X7Hjh2bLbfcMp/73Ody1llnZfr06fnGN76Ro48+uu0vbX/wgx9ks802y1ZbbZVFixZl4sSJuf/++/O9732vy5j/+c9/prW1NbNnz05zc3Mef/zxJMm2226bYrGYrbfeut32w4YNS//+/VdYDvS9HLAm+4V61BdzwAc+8IF8+9vfzuc///l8+tOfzqxZs3LZZZflsMMOM7UnLKcv5oClbr755uy88876ANCFvpgD9t1335x33nn50Y9+lH322Scvv/xyvvKVr2SnnXbKxhtv3B3fNugz+mIOmDJlSh555JHsvPPOmTt3br7//e/nH//4Ry655JLu+JZBn1JrOeD+++/PKaeckuOOOy7/+q//2vZ8wIaGhmywwQZJkuOOOy7HHntsvve972XcuHG588478+ijj+ZLX/rSKn9fClV/JkQfcMMNN+Saa67J9OnTs+222+bcc89dYUTc//t//y8//OEPM2fOnGyzzTb57Gc/m913373L/T733HP54he/mAcffDADBw7MIYcckjPPPLNtqO/VV1+dH//4x3nppZcycODAbL311jn11FPzzne+s8v97rfffnnuuedWWP73v/+9w+2vvPLK3HPPPfnJT37S5X6hXvW1HPBG9wv1qq/lgCR58sknc+GFF+aPf/xjNthgg7z3ve/N6aefrugHHeiLOeDVV1/N2LFj84UvfCFHHHHEqn4roC71xRxw/fXX58Ybb8y0adOy/vrr553vfGfOOussRT/oQF/LAU8++WTOPPPMTJkyJf369ctee+2Vz372s+2eHQa8rpZywDnnnJPbbrttheV77rlnrr/++rbXP//5z/ONb3wjzz33XEaOHJmzzjor48aNW+XviaIfAAAAAAAA1DgTAQMAAAAAAECNU/QDAAAAAACAGqfoBwAAAAAAADVO0Q8AAAAAAABqnKIfAAAAAAAA1DhFPwAAAAAAAKhxin4AAAAAAABQ4xT9AAAAAAAAoMYp+gEAAAAAAECNU/QDAAAAAACAGqfoBwAAAAAAADVO0Q8AAAAAAABqnKIfAAAAAAAA1DhFPwAAAAAAAKhxin4AAAAAAABQ4xT9AAAAAAAAoMYp+gEAAAAAAECNU/QDAABYDccee2yOPfbYttfTpk3LqFGjcuutt/ZiVCu3fNy9bdSoUbnyyiu7ZV+33nprRo0alWnTpnXL/lbHAw88kFGjRuWBBx5oW3bOOedkv/326/FYAACA+tavtwMAAABYHaNGjVql7a677rrstddeazma3jdt2rR861vfykMPPZSXXnopgwcPzsiRI7PXXnvl05/+dG+H94Yde+yxefDBB1e63WmnnZY3v/nNPRARAADAuk3RDwAAqClf/epX273+yU9+kt///vcrLH/729/eI/G8+c1vziOPPJJ+/Xq+e/X000/n8MMPT//+/XPYYYdls802y8svv5y//vWvufrqq9sV/a655poej29NnHLKKTn88MPbXv/lL3/J9ddfn1NOOSVve9vb2paPGjUqW221Vd7//vensbGxN0JdwZe//OVUq9XeDgMAAKgzin4AAEBN+dCHPtTu9Z///Of8/ve/X2H58hYsWJCBAwd2ezyFQiH9+/fv9v2uih/84AeZP39+br/99hVGu82YMaPd63WlILaq9t5773av+/fvn+uvvz5jxozpcARnqVTqqdBWqqGhobdDAAAA6pBn+gEAAH3Osccemw984AN59NFHc/TRR2fnnXfO17/+9STJPffck49//OMZO3ZsdthhhxxwwAH51re+lXK5vMJ+brrpphxwwAHZaaedcvjhh2fy5MkrbNPRM/3OOeec7LrrrnnppZfyyU9+Mrvuumve+c535tJLL13hOLNmzcpZZ52Vd7zjHdl9991z9tln529/+9sqPSfwmWeeycYbb9zh9JbDhg1b4Xuy/DP9nnvuuZxyyinZZZddMnr06HzlK1/Jb3/72xWeUbf0+/nPf/4zxx57bHbeeefss88+ufrqq9vtr6WlJVdccUUOPfTQ7Lbbbtlll13ykY98JPfff3+X57GmOnqm33777ZeTTz45DzzwQA499NDstNNOOeigg9rO6xe/+EUOOuig7Ljjjjn00EPz17/+dYX9Pvnkk/n0pz+dPffcs227//3f/11pPMs/02/pNXLNNde0XVM77LBDDjvssDzyyCPddlwAAKC+KfoBAAB90uzZs/Oxj30s2267bf793/+9bXTYbbfdlvXWWy8nnHBCvvCFL2T77bfPN7/5zVx++eXt3j9x4sScf/75GT58eFtR7hOf+EReeOGFVTp+uVzOiSeemA022CCf+9znsueee+Z73/tebrrpprZtKpVKPvGJT+RnP/tZDjnkkPyf//N/Mn369Jx99tmrdIw3v/nNefHFFzNp0qRV/K68bv78+Tn++OMzadKkHHvssTnllFPy8MMPr/B9WGrOnDk56aSTss022+Tss8/O2972tlx++eX59a9/3bbNvHnzMnHixOy555757Gc/m9NOOy0zZ87MSSedlMcff3y1Y1xTTz/9dM4888zst99+OeOMMzJnzpyccsopueOOO3LxxRfnoIMOyqc+9ak888wzOf3001OpVNre+49//CNHHnlknnzyyXzsYx/LOeeck/XWWy+nnnpq/ud//ucNxfPf//3fueaaa3LkkUfm9NNPz3PPPZdPfepTaW1tXavHBQAA6oPpPQEAgD5p+vTpmTBhQo466qh2y7/2ta9lwIABba8//OEP5/zzz89//dd/5f/8n/+TxsbGtLa25j/+4z+y7bbb5rrrrmubGnPLLbfMeeedlze96U0rPf6iRYvy3ve+N6eeemrbcQ455JDcfPPN+chHPpJkyajDhx9+OP/+7/+e448/vm27E044YZXO8dhjj81PfvKTfPSjH822226bPfbYI3vttVf23nvvlU5letNNN+XZZ5/Nt771rRxwwAFJkqOOOioHH3xwh9u//PLLufTSS9vWH3744dlvv/1yyy23ZNy4cUmSIUOG5N577203legRRxyR9773vbn++uvzla98ZZXOq7tMmTIlN954Y3bdddckS35+J554Ys4777z8/Oc/z6abbtoW9/nnn5+HHnqorTh80UUX5U1velNuueWWtvP5yEc+kg9/+MO5/PLLc+CBB652PM8//3x+8YtfZMiQIUmSLbbYIp/85Cfzu9/9Lvvuu+9aOy4AAFAfjPQDAAD6pMbGxhx66KErLF+24Ddv3rzMnDkzu+++exYsWJCnnnoqSfLoo49mxowZOeqoo9oVsA455JCsv/76qxzDhz/84Xavd9ttt3ZTUP72t79NQ0NDjjjiiLZlxWIxRx999Crtf6uttsrtt9+eD37wg3nuuedy3XXX5dRTT82YMWPy4x//uMv3/va3v83GG2+c/fffv21Z//7928WyrPXWW6/dcxMbGxuz44475tlnn21bViqV2r5flUols2fPzuLFi7PDDjt0OH3m2rblllu2FfySZOedd06SvPOd72wr+C27fOm5zJ49O/fff3/e+973tl0jM2fOzKxZszJ27NhMnTo1L7300mrH8773va+t4Jcku+++e48cFwAAqA9G+gEAAH3Sxhtv3K5gt9Q//vGPfOMb38j999+fefPmtVv36quvJlkyIitJNt9883brGxoa8pa3vGWVjt+/f/8MHTq03bIhQ4Zkzpw5ba+ff/75jBgxYoVReW9961tX6RjJktFil112Wcrlcv75z3/mV7/6Vb773e/mvPPOy2abbZYxY8Z0+L7nnnsub33rW1MoFFbp2JtssskK2w4ZMiR///vf2y277bbb8r3vfS9TpkxpN23lZptttsrn1F2WH5G5tGC7ySabtFs+aNCgJMncuXOTLHlWYrVazRVXXJErrriiw33PmDEjG2+88RrFs7QAuLaPCwAA1AdFPwAAoE9adkTfUnPnzs0xxxyTQYMG5dOf/nTe+ta3pn///nnsscdy+eWXt3um25oqlUrdtq9VPd6oUaMyatSo7LLLLjnuuOPy05/+tNOi3xvZ/8r85Cc/yTnnnJMDDjggJ554YoYNG5ZSqZTvfOc77UYE9pTOYu5sebVaTZK26+Df/u3fss8++3S47eoUZnv7uAAAQH1Q9AMAAOrGgw8+mNmzZ+eqq67KHnvs0bZ82Sk3k7RN/fj0009n9OjRbctbW1szbdq0bLPNNt0Sz6abbpoHHnggCxYsaDfa75lnnlmj/e6www5JljyHrzNvfvOb889//jPVarXdCL41Ofbdd9+dt7zlLbnqqqva7fOb3/zmG95nb1g6mrOhoaHbiqbr8nEBAIC+wTP9AACAulEsLukCLR1ZlSQtLS350Y9+1G67HXbYIUOHDs2NN96YlpaWtuW33XZb21SM3WHs2LFpbW1t9/y9SqWSH/7wh6v0/smTJ7ebQnOpX//610mWTP3Z1bFfeuml/O///m/bskWLFq30WYBdWTqSbdnv75///Of86U9/esP77A3Dhg3LnnvumZtuuqnDwunMmTP71HEBAIC+wUg/AACgbuy6664ZMmRIzjnnnBx77LEpFAr5yU9+0q5IlSwZaXX66afn/PPPz/HHH5/3ve99mTZtWm699dZVfqbfqjjggAOy00475dJLL80zzzyTt73tbbn33nvbnvu3/DP0lnf11Vfnsccey4EHHphRo0YlSf7617/m9ttvzwYbbJDjjz++0/ceeeSRueGGG3LmmWfmuOOOy4gRI/LTn/40/fv3X6Vjd+Rf/uVf8otf/CKnnnpq/uVf/iXTpk3LjTfemC233DLz589f7f31pgsuuCAf+chHctBBB+WII47IW97ylrzyyiv505/+lBdffDF33HFHnzouAABQ+xT9AACAurHhhhvmP//zP3PppZfmG9/4RgYPHpwPfvCDGT16dE488cR22x555JEpl8u55ppr8tWvfjVbb711/u///b+54oorui2epc+7u+iii3LbbbelWCzmwAMPzKmnnpoPf/jDbQW4zpx88sn57//+7zz00EP56U9/moULF2bEiBF5//vfn09+8pNdFiibmppy7bXX5sILL8x1112X9dZbLwcffHB23XXXfOpTn1rpsTty6KGH5pVXXslNN92U3/3ud9lyyy1z2WWX5a677sqDDz642vvrTVtuuWVuueWWXHXVVbntttsye/bsDB06NNttt11OPfXUPndcAACg9hWqy/9JKwAAAL3qnnvuyamnnpof/ehH2W233Xr02D/4wQ9y8cUX5ze/+U023njjHj02AAAAb5xn+gEAAPSihQsXtntdLpdz/fXXZ9CgQdl+++179NiLFi3KTTfdlJEjRyr4AQAA1BjTewIAAPSiL3/5y1m4cGF23XXXtLS05Be/+EUefvjhnHHGGRkwYMBaPfZpp52WTTfdNNtss03mzZuXO+64I0899VQuv/zytXpcAAAAup/pPQEAAHrRT3/603z/+9/P008/nUWLFmXzzTfPhz/84RxzzDFr/dg/+MEPcvPNN+e5555LuVzOlltumZNOOinve9/71vqxAQAA6F6KfgAAAAAAAFDjPNMPAAAAAAAAapyiHwAAAAAAANS4fr0dQK2aPv3V3g6BXlQsFjJ0aFNmzmxOpWKGXKg3cgDUNzkA6pscAPVNDoD6JgdAfSsWCxk2bFBvh9ElI/3gDSgWCykUCikWC70dCtAL5ACob3IA1Dc5AOqbHAD1TQ6A+lYLbV/RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI3r19sBAAAAAAAAtWXO1Nn5+8S/pnVeaxoGNWTU+O0yZOQGvR0W1DVFPwAAAAAAYJWUW8qZNOE3eWHy86mWqykUCqlWq3n6nil50+6bZvQF70qpsdTbYUJdMr0nAAAAAACwSiZN+E2emzQtqSSFQiHJa18ryXOTpmXShN/0coRQvxT9AAAAAACAlZo9ZVZemPx8iqWOSwvFUjEvTH4+c6bO7tnAgCSKfgAAAAAAwCp44ubHUy1Xu9ymWq7miYmP91BEwLIU/QAAAAAAgJVqndfaNqVnZwqFQlqaW3ooImBZin4AAAAAAMBKNQxqSLW6kpF+1Woamxp7KCJgWYp+AAAAAADASo0av10KpZWM9CsVsvX4bXsoImBZin4AAAAAAMBKDRm5QTbZ/U2plCsdrq+UK3nTHptmyMgNejYwIImiHwAAAAAAsIrGXDAubx69WVJM21Sf1Wo1KSZvHrNZRp//rl6OEOpXv94OAAAAAAAAqA2lxlLGXrRv5kydnScmPp6W5pY0NjVm6/HbGuEHvUzRDwAAAAAAWC1DRm6QPc4a3dthAMswvScAAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHH9ejsAAAAAAACgthRbWjJg9twUKpVUi8Us3GBwKo2NvR0W1DVFPwAAAAAAYNVUq2l66eU0zF+QVKtJoZBUq2mcNy+t6w1M88YbLVkG9DjTewIAAAAAAKuk6aWX09A8f8mLpcW91742NM9P00sv91JkgKIfAAAAAACwUsVFLUtG+HU2kq9QSMP8BSm2tPRsYEASRT8AAAAAAGAVDJgzd8mUnl2pVtN/ztyeCQhoR9EPAAAAAABYqUKlsvLn9RUKKZYrPRMQ0I6iHwAAAAAAsFLVYnGVRvpVSkoP0Bu0PAAAAAAAYKUWbjB4lUb6LRoyuGcCAtpR9AMAAAAAAFaq0tiY1oEDOx/tV62mdb2BqTQ29mxgQBJFPwAAAAAAYBU1b7JRWpvWW/JiafHvta+tTeuleeONeikyoF9vBwAAAAAAANSIQiHNm2ycYktL+s+Zm2K5kkqpmEVDBhvhB71M0Q8AAAAAAFgtlcbGLBgxvLfDAJZhek8AAAAAAACocev0SL+HHnoo11xzTR599NFMnz493/rWt3LAAQe0rR81alSH7zvrrLNy0kkndbjuyiuvzFVXXdVu2RZbbJG77rqr+wIHAAAAAACAHrROF/3mz5+fUaNG5bDDDstpp522wvrf/e537V7/5je/yRe+8IW8+93v7nK/W221Vb7//e+3vS6VSt0TMAAAAAAAAPSCdbroN27cuIwbN67T9SNGjGj3+n//93+z11575S1veUuX+y2VSiu8d3UVi4UUi4U12ge1q1QqtvsK1Bc5AOqbHAD1TQ6A+iYHQH2TA6C+1ULbX6eLfqvjlVdeya9//etccsklK9326aefztixY9O/f//ssssuOfPMM7Ppppuu1vGGDm1KoaDoV+8GDx7Y2yEAvUgOgPomB0B9kwOgvskBUN/kAGBd1WeKfrfddluampryr//6r11ut9NOO+Xiiy/OFlts0facwKOPPjo//elPM2jQoFU+3syZzUb61bFSqZjBgwdm7twFKZcrvR0O0MPkAKhvcgDUNzkA6pscAPVNDoD6tjQHrMv6TNHvlltuyUEHHZT+/ft3ud2y04Vus8022XnnnbPvvvvm5z//ecaPH7/Kx6tUqqlUqm84XvqGcrmSxYv9god6JQdAfZMDoL7JAVDf5ACob3IAsK5a9ycgXQWTJ0/OlClTVqtot9TgwYMzcuTIPPPMM2shMgAAAAAAAFj7+kTR7+abb87222+fbbbZZrXf29zcnGeffTYjRoxYC5EBAAAAAADA2rdOF/2am5vz+OOP5/HHH0+STJs2LY8//nief/75tm3mzZuXu+66q9NRfscff3xuuOGGtteXXnppHnzwwUybNi1//OMfc9ppp6VYLOYDH/jA2j0ZAAAAAAAAWEvW6Wf6PfrooznuuOPaXl988cVJkkMOOSSXXHJJkuRnP/tZqtVqp0W7Z599NrNmzWp7/eKLL+aMM87I7NmzM3To0Oy222758Y9/nKFDh67FMwEAAAAAgNpUnDolAybemMK8eakOGpSF449KZeQWvR0WsJxCtVqt9nYQtWj69Fd7OwR6Ub9+xWy4YVNmzWr20F6oQ3IA1Dc5AOqbHAD1TQ6A+laXOaClJU0TzkvD5AeSciUpFJJqNSkV07r7Xmm+4MtJY2NvRwk9YmkOWJet09N7AgAAAAAAvaNpwnlpmPT7pFJdUvBLlnytVNMw6fdpmnBe7wYItKPoBwAAAAAAtFOc8tSSEX6lUscblEppmPxAilOn9GxgQKcU/QAAAAAAgHYG3HzTkik9u1KupP/EG3smIGClFP0AAAAAAIB2CvPmvT6lZ6cbFVJsbu6ZgICVUvQDAAAAAADaqQ4alFSrK9momkpTU88EBKyUoh8AAAAAANDOwvFHJaWVlBBKxSwaf1TPBASslKIfAAAAAADQTmXkFmndfc+kXO54g3I5rXvslcrILXo2MKBTin4AAAAAAMAKmi+4MK2j906Khden+qxWk2IhrWP2TvP5X+7dAIF2+vV2AAAAAAAAwDqosTHNF12a4tQp6T/xxhSbm1Npasqi8UcZ4QfrIEU/AAAAAACgU5WRW2TBWZ/v7TCAlTC9JwAAAAAAANQ4RT8AAAAAAACocYp+AAAAAAAAUOMU/QAAAAAAAKDGKfoBAAAAAABAjVP0AwAAAAAAgBqn6AcAAAAAAAA1TtEPAAAAAAAAapyiHwAAAAAAANQ4RT8AAAAAAACocf16OwAAAAAAAGDdNXVqIRMnNmTevEIGDapm/PjWjBxZ7e2wgOUo+gEAAAAAACtoaUkmTGjM5MmllMuFFApJtZrcc08pu+9ezgUXtKSxsbejBJYyvScAAAAAALCCCRMaM2lSv1QqSwp+SVIoJJVKIZMm9cuECSp+sC5R9AMAAAAAANqZMqWQyZNLKZU6Xl8qJZMnlzJ1aqFnAwM6pegHAAAAAAC0c/PNDSmXuy7olctLnvUHrBsU/QAAAAAAgHbmzXt9Ss/OFApJc7ORfrCuUPQDAAAAAADaGTSommq1622q1aSpaSUbAT1G0Q8AAAAAAGhn/PjWlEpdF/RKpWrGj2/toYiAlVH0AwAAAAAA2hk5sprddy+nXO54fbmc7LFHOSNHGukH6wpFPwAAAAAAYAUXXNCS0aMXp1h8farPajUpFqsZM2Zxzj+/pXcDBNrp19sBAAAAAAAA657GxuSii1oydWohEyc2pLm5kKamJVN6GuEH6x5FPwAAAAAAoFMjR1Zz1llG9cG6zvSeAAAAAAAAUOMU/QAAAAAAAKDGKfoBAAAAAABAjVP0AwAAAAAAgBqn6AcAAAAAAAA1TtEPAAAAAAAAapyiHwAAAAAAANQ4RT8AAAAAAACocYp+AAAAAAAAUOMU/QAAAAAAAKDG9evtAAAAAAAAgO4xZ+rs/H3iX9M6rzUNgxoyavx2GTJyg94OC+gBin4AAAAAAFDjyi3lTJrwm7ww+flUy9UUCoVUq9U8fc+UvGn3TTP6gnel1Fjq7TCBtWidnt7zoYceyimnnJKxY8dm1KhRueeee9qtP+ecczJq1Kh2/0488cSV7veHP/xh9ttvv+y4444ZP358HnnkkbV1CgAAAAAAsNZNmvCbPDdpWlJJCoVCkte+VpLnJk3LpAm/6eUIgbVtnS76zZ8/P6NGjcoFF1zQ6Tb77LNPfve737X9+/rXv97lPu+8885cfPHFOfXUU3Pbbbdlm222yYknnpgZM2Z0d/gAAAAAALDWzZ4yKy9Mfj7FUse3/IulYl6Y/HzmTJ3ds4EBPWqdnt5z3LhxGTduXJfbNDY2ZsSIEau8z+9///s54ogjcthhhyVJJkyYkF/96le55ZZb8vGPf3yV91MsFlIsFlZ5e/qW0mu/PEud/BIF+jY5AOqbHAD1TQ6A+iYHQH1bl3PAP2/9e1Kpto3w60i1Us0/b/lb9jp7TA9GBn3Hutj2l7dOF/1WxYMPPpjRo0dn8ODBeec735nTTz89G264YYfbtrS05LHHHsvJJ5/ctqxYLGbMmDF5+OGHV+u4Q4c2dZlAqQ+DBw/s7RCAXiQHQH2TA6C+yQFQ3+QAqG/rYg4oLa6mX7+VP6+vWK5mww2beiAioDfUdNFvn332yYEHHpjNNtsszz77bL7+9a/nYx/7WG666aaUSismuFmzZqVcLmfYsGHtlg8bNixPPfXUah175sxmI/3qWKlUzODBAzN37oKUy5XeDgfoYXIA1Dc5AOqbHAD1TQ6A+rYu54Byv0IWLy53PdKvWk2lVMisWc09GBn0HUtzwLqspot+73//+9v+P2rUqIwaNSoHHHBA2+i/talSqaZSqa7VY7DuK5crWbx43foFD/QcOQDqmxwA9U0OgPomB0B9WxdzwFaHbZMpv3gy1a7CKhay5WHbrHOxA91n3Z+AdDW85S1vyYYbbpinn366w/UbbrhhSqVSZsyY0W75jBkzMnz48J4IEQAAAAAAutWQkRtkk93flEonIxAr5UretMemGTJyg54NDOhRfaro9+KLL2b27NkZMWJEh+sbGxuz/fbbZ9KkSW3LKpVKJk2alF133bWnwgQAAAAAgG415oJxefPozZLikqk8k9e+FpM3j9kso89/Vy9HCKxt6/T0ns3NzXnmmWfaXk+bNi2PP/54hgwZkiFDhuSqq67Ku9/97gwfPjzPPvtsLrvssmy++ebZZ5992t5z/PHH58ADD8wxxxyTJDnhhBNy9tlnZ4cddshOO+2Ua6+9NgsWLMihhx7a4+cHAAAAAADdodRYytiL9s2cqbPzxMTH09Lcksamxmw9flsj/KBOrNNFv0cffTTHHXdc2+uLL744SXLIIYfki1/8Yp544oncfvvtefXVV7PRRhtl7733zmc+85k0Nja2vefZZ5/NrFmz2l6/733vy8yZM/PNb34z06dPz7bbbpvvfve7pvcEAAAAAKDmDRm5QfY4a3RvhwH0gkJ16ThfVsv06a/2dgj0on79itlww6bMmtXswbdQh+QAqG9yANQ3OQDqmxwA9U0OgPq2NAesy/rUM/0AAAAAAACgHin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxvXr7QAAAAAAAIDuUWxpyYDZc1OoVFItFrNwg8GpNDb2dlhAD1D0AwAAAACAWletpumll9Mwf0FSrSaFQlKtpnHevLSuNzDNG2+0ZBnQZ5neEwAAAAAAalzTSy+noXn+khdLi3uvfW1onp+ml17upciAnqLoBwAAAAAANay4qGXJCL/ORvIVCmmYvyDFlpaeDQzoUYp+AAAAAABQwwbMmbtkSs+uVKvpP2duzwQE9ApFPwAAAAAAqGGFSmXlz+srFFIsV3omIKBXKPoBAAAAAEANqxaLqzTSr1JSEoC+TAsHAAAAAIAatnCDwas00m/RkME9ExDQKxT9AAAAAACghlUaG9M6cGDno/2q1bSuNzCVxsaeDQzoUYp+AAAAAABQ45o32SitTestebG0+Pfa19am9dK88Ua9FBnQU/r1dgAAAAAAAMAaKhTSvMnGKba0pP+cuSmWK6mUilk0ZLARflAnFP0AAAAAAKCPqDQ2ZsGI4b0dBtALTO8JAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGpcv94OAAAAAAAAilOnZMDEG1OYNy/VQYOycPxRqYzcorfDAqgZin4AAAAAAPSelpY0TTgvDZMfSMqVpFBIqtU03nN3WnffK80XfDlpbOztKAHWeab3BAAAAACg1zRNOC8Nk36fVKpLCn7Jkq+Vahom/T5NE87r3QABaoSiHwAAAAAAvaI45aklI/xKpY43KJXSMPmBFKdO6dnAAGqQoh8AAAAAAL1iwM03LZnSsyvlSvpPvLFnAgKoYYp+AAAAAAD0isK8ea9P6dnpRoUUm5t7JiCAGqboBwAAAABAr6gOGpRUqyvZqJpKU1PPBARQwxT9AAAAAADoFQvHH5WUVnKbulTMovFH9UxAADVM0Q8AAAAAgF5RGblFWnffMymXO96gXE7rHnulMnKLng0MoAYp+gEAAAAA0GuaL7gwraP3ToqF16f6rFaTYiGtY/ZO8/lf7t0AAWpEv94OAAAAAACAOtbYmOaLLk1x6pT0n3hjis3NqTQ1ZdH4o4zwA1gNin4AAAAAAPS6ysgtsuCsz/d2GAA1y/SeAAAAAAAAUOPW6aLfQw89lFNOOSVjx47NqFGjcs8997Sta21tzWWXXZaDDjoou+yyS8aOHZvPfe5zeemll7rc55VXXplRo0a1+/ee97xnbZ8KAAAAAAAArDXr9PSe8+fPz6hRo3LYYYfltNNOa7du4cKF+etf/5pPfOIT2WabbTJ37txcdNFF+cQnPpFbb721y/1utdVW+f73v9/2ulQqrZX4AQAAAAAAoCes00W/cePGZdy4cR2uW3/99dsV7pLkvPPOy/jx4/P8889n00037XS/pVIpI0aMWKPYisVCisXCGu2D2lUqFdt9BeqLHAD1TQ6A+iYHQH2TA6C+yQFQ32qh7a/TRb/VNW/evBQKhQwePLjL7Z5++umMHTs2/fv3zy677JIzzzyzyyJhR4YObUqhoOhX7wYPHtjbIQC9SA6A+iYHQH2TA6C+yQFQ3+QAYF3VZ4p+ixYtyuWXX573v//9GTRoUKfb7bTTTrn44ouzxRZbZPr06fnWt76Vo48+Oj/96U+7fN/yZs5sNtKvjpVKxQwePDBz5y5IuVzp7XCAHiYHQH2TA6C+yQFQ3+QAqG9yANS3pTlgXdYnin6tra35zGc+k2q1mgkTJnS57bLThW6zzTbZeeeds+++++bnP/95xo8fv8rHrFSqqVSqbzhm+oZyuZLFi/2Ch3olB0B9kwOgvskBUN/kAKhvcgCwrqr5ol9ra2tOP/30PP/887n22mtXa7RekgwePDgjR47MM888s5YiBAAAAAAAgLWrpot+Swt+Tz/9dK677rpsuOGGq72P5ubmPPvssxkxYsRaiBAAAAAAAADWvnW66Nfc3NxuBN60adPy+OOPZ8iQIRkxYkQ+/elP569//Wu+853vpFwuZ/r06UmSIUOGpLGxMUly/PHH58ADD8wxxxyTJLn00kuz7777ZtNNN83LL7+cK6+8MsViMR/4wAd6/gQBAAAAAACgG6zTRb9HH300xx13XNvriy++OElyyCGH5LTTTsu9996bJPnQhz7U7n3XXXdd9tprryTJs88+m1mzZrWte/HFF3PGGWdk9uzZGTp0aHbbbbf8+Mc/ztChQ9f26QAAAAAA0ImpUwuZOLEh8+YVMmhQNePHt2bkyGpvhwVQMwrValXWfAOmT3+1t0OgF/XrV8yGGzZl1qxmD+2FOiQHQH2TA6C+yQFQ3+QAWDtaWpIJExozeXIp5XIhhUJSrSalUjW7717OBRe05LWJ3XqVHAD1bWkOWJcVezsAAAAAAADq14QJjZk0qV8qlSUFvyQpFJJKpZBJk/plwoR1oOIHUAMU/QAAAAAA6BVTphQyeXIppVLH60ulZPLkUqZOLfRsYAA1SNEPAAAAAIBecfPNDSmXuy7olctLnvUHQNcU/QAAAAAA6BXz5r0+pWdnCoWkudlIP4CVUfQDAAAAAKBXDBpUTbXa9TbVatLUtJKNAFD0AwAAAACgd4wf35pSqeuCXqlUzfjxrT0UEUDtUvQDAAAAAKBXjBxZze67l1Mud7y+XE722KOckSON9ANYGUU/AAAAAAB6zQUXtGT06MUpFl+f6rNaTYrFasaMWZzzz2/p3QABakS/3g4AAAAAAID61diYXHRRS6ZOLWTixIY0NxfS1LRkSk8j/ABWnaIfAAAAAAC9buTIas46y6g+gDfK9J4AAAAAAABQ4xT9AAAAAAAAoMYp+gEAAAAAAECNU/QDAAAAAACAGtetRb/p06d3uf6xxx7rzsMBAAAAAAAA6eai30EHHZS77rprheWVSiVXXXVVjjzyyO48HAAAAAAAAJBuLvr967/+a04//fScddZZefXVV5MkTz31VI488shcffXVOeuss7rzcAAAAAAAAECSft25sy996UvZf//9c+655+aggw7KBz7wgdxwww3Zcsstc+utt+btb397dx4OAAAAAAAASDeP9EuScePG5eqrr87MmTNzzTXX5G1ve1tuvPFGBT8AAAAAAABYS7q96HfHHXfkuOOOy2abbZaPfexj+cc//pETTjgh06ZN6+5DAQAAAAAAAOnmot+nP/3pnH322fnQhz6U2267LWeccUYmTpyYOXPm5IMf/GAmTpzYnYcDAAAAqCnFlpas9/IraXrx5az38isptrT0dkgAAPQR3fpMv0cffTTf//738853vrNt2TbbbJNbbrklV1xxRb74xS9m/Pjx3XlIAAAAgHVftZqml15Ow/wFSbWaFApJtZrGefPSut7ANG+80ZJlAADwBnVr0e+OO+7IoEGDVlje0NCQz372s9l///2783AAAAAANaHppZfT0Dx/SWFvaXHvta8NzfPT9NLLad5k416MEACAWtetRb+lBb85c+bkH//4R1544YW8613vypAhQ7Jo0aLsvPPO3Xk4AAAAgHVecVHLkhF+nY3kKxTSMH9Bii0tqTQ29mxwAAD0Gd1a9KtUKvnGN76R66+/PgsWLEihUMjNN9+cIUOG5LTTTsvOO++c0047rTsPCQAAALBOGzBn7utTenamWk3/OXOzYMTwngsMAIA+pdidO7viiityww035Oyzz87dd9+darXatm6//fbLvffe252HAwAAAFjnFSqVlT+vr1BIsVzpmYAAAOiTunWk32233ZYzzjgjRx11VMrlcrt1b33rW/Pss8925+EAAAAA1nnVYnGVRvpVSt36t9kAANSZbv00OXv27Lz97W/vcF25XM7ixYu783AAAAAA67yFGwxepZF+i4YM7pmAAADok7q16Ddy5Mj8/ve/73Ddgw8+mK222qo7DwcAAACwzqs0NqZ14MAlo/06Uq2mdb2BqTQ29mxgAAD0Kd06vedHP/rRnHfeeenXr1/e8573JElefPHF/OlPf8r111+fiy++uDsPBwAAAFATmjfZKE0vvZyG+Qten+rzta+tTeuleeONejtEAABqXLcW/Q499NDMmTMnV155Zb7zne8kSU499dQMHDgwp59+et73vvd15+EAAAAAakOhkOZNNk6xpSX958xNsVxJpVTMoiGDjfADAKBbdGvRL0lOOOGEHHHEEXn44Ycza9asDBkyJLvuumvWX3/97j4UAAAAQE2pNDZmwYjhvR0GAAB9ULcX/ZKkqakpY8eOXRu7BgAAAAAAAJazxkW/22+/fbW2P/jgg9f0kAAAAAAAAMAy1rjod84557R7XSgUkiTVanWFZYmiHwAAAAAAAHS3NS76PfTQQ23/f/rpp/OZz3wmH/rQh/Lud787w4cPzyuvvJK77rord9xxR77xjW+s6eEAAAAAAACA5axx0W/99ddv+//Xvva1HHnkkfn4xz/etmzYsGEZNWpUBgwYkMsvvzzXXnvtmh4SAAAAAAAAWEaxO3f28MMPZ/vtt+9w3fbbb58///nP3Xk4AAAAAAAAIN1c9Bs6dGjuvPPODtf97Gc/y9ChQ7vzcAAAAAAAAEC6YXrPZZ1yyik5//zz88wzz+SAAw7IsGHDMmPGjNxzzz156KGH8qUvfak7DwcAAAAAAACkm4t+RxxxREaMGJH//M//zGWXXZbFixenX79+2W677fLtb387++23X3ceDgAAAAAAAEg3F/2SZN99982+++6bSqWSmTNnZujQoSkWu3UWUQAAAAAAAGAZ3V70W6pYLGb48OFra/cAAAAANWfO1Nn5+8S/pnVeaxoGNWTU+O0yZOQGvR0WAAB9QLcX/X73u9/l7rvvzosvvphFixa1W1coFHLttdd29yEBAAAA1mnllnImTfhNXpj8fKrlagqFQqrVap6+Z0retPumGX3Bu1JqLPV2mAAA1LBunXfzu9/9bk466aTcd999KRQKWX/99dv9GzRo0Grt76GHHsopp5ySsWPHZtSoUbnnnnvara9Wq7niiisyduzY7LTTTvnoRz+aqVOnrnS/P/zhD7Pffvtlxx13zPjx4/PII4+sVlwAAAAAq2PShN/kuUnTksqSP4pOXvtaSZ6bNC2TJvymlyMEAKDWdetIvx/96Ec55phjcu6553bL/ubPn59Ro0blsMMOy2mnnbbC+quvvjrXX399Lrnkkmy22Wa54oorcuKJJ+bOO+9M//79O9znnXfemYsvvjgTJkzIzjvvnGuvvTYnnnhi7rrrrgwbNqxb4gYAAABYavaUWXlh8vMpljr+2+tiqZgXJj+fOVNnm+oTAIA3rFuLfrNnz87+++/fbfsbN25cxo0b1+G6arWa6667Lp/4xCdywAEHJEm++tWvZsyYMbnnnnvy/ve/v8P3ff/7388RRxyRww47LEkyYcKE/OpXv8ott9ySj3/846scW7FYSLFYWM0zoq8ovdZRK3XSYQP6NjkA6pscAPVNDuCN+Oetf08q1bYRfh2pVqr55y1/y15nj+nByFhdcgDUNzkA6lsttP1uLfrtu++++cMf/pDRo0d35247NG3atEyfPj1jxrz+YXj99dfPzjvvnIcffrjDol9LS0see+yxnHzyyW3LisVixowZk4cffni1jj90aFOXH9apD4MHD+ztEIBeJAdAfZMDoL7JAayO0uJq+vVb+fP6iuVqNtywqQciYk3JAVDf5ABgXdWtRb/DDjssX/ziF7No0aKMGTMmgwcPXmGb7bffvluONX369CRZYUrOYcOG5ZVXXunwPbNmzUq5XO7wPU899dRqHX/mzGYj/epYqVTM4MEDM3fugpTLld4OB+hhcgDUNzkA6pscwBtR7lfI4sXlrkf6VauplAqZNau5ByNjdckBUN/kAKhvS3PAuqxbi37/9m//lmTJs/auvvrqdh9mq9Ul01g8/vjj3XnIXlOpVFOpVHs7DHpZuVzJ4sV+wUO9kgOgvskBUN/kAFbHVodtkym/eDLVri6ZYiFbHraN66pGyAFQ3+QAYF3VrUW/6667rjt316URI0YkSWbMmJGNNtqobfmMGTOyzTbbdPieDTfcMKVSKTNmzGi3fMaMGRk+fPjaCxYAAACoW0NGbpBNdn9Tnp/0XIodPAumUq7kzXttliEjN+j54AAA6DO6tei35557dufuurTZZptlxIgRmTRpUrbddtskybx58/LnP/85H/7whzt8T2NjY7bffvtMmjQpBxxwQJKkUqlk0qRJOeaYY3osdgAAAKC+jLlgXCZN+E1emPx8quUlsyFVq9UUSoW8ea/NMvr8d/V2iAAA1LhuLfp1t+bm5jzzzDNtr6dNm5bHH388Q4YMyaabbprjjjsu//f//t9svvnm2WyzzXLFFVdko402aivoJcnxxx+fAw88sK2od8IJJ+Tss8/ODjvskJ122inXXnttFixYkEMPPbTHzw8AAACoD6XGUsZetG/mTJ2dJyY+npbmljQ2NWbr8dsa4QcAQLdY46LfQQcdtMrbFgqF3HHHHau8/aOPPprjjjuu7fXFF1+cJDnkkENyySWX5GMf+1gWLFiQ888/P3Pnzs1uu+2W7373u+nfv3/be5599tnMmjWr7fX73ve+zJw5M9/85jczffr0bLvttvnud79rek8AAABgrRsycoPscdbo3g4DAIA+qFCtVqtrsoNzzjknhUJhlbdfWrirddOnv9rbIdCL+vUrZsMNmzJrVrOH9kIdkgOgvskBUN/kAKhvcgDUNzkA6tvSHLAuW+ORfpdcckl3xAEAAAAAAAC8QcXeDgAAAAAAAABYM4p+AAAAAAAAUOMU/QAAAAAAAKDGKfoBAAAAAABAjVP0AwAAAAAAgBqn6AcAAAAAAAA1rt+a7uDCCy9cre3PPffcNT0kAAAAAAAAsIw1Lvrde++9q7xtoVBQ9AMAAAAAAIBu1qNFPwAAAAAAAKD7rXHRDwAAgPo0dWohEyc2ZN68QgYNqmb8+NaMHFnt7bAAAADq0lop+j399NOZOnVqFi1atMK6f/3Xf10bhwQAAKCHtLQkEyY0ZvLkUsrlQgqFpFpN7rmnlN13L+eCC1rS2NjbUQIAANSXbi36zZs3L6eeemoefPDBJEm1uuQvPAuFQts2jz/+eHceEgAAgB42YUJjJk3ql1IpWdrdKxSSSqWQSZP6ZcKE5KKLWno3SAAAgDpT7M6dXXbZZXnllVfywx/+MNVqNVdddVWuv/76HH744dlss81y0003defhAAAA6GFTphQyeXIppVLH60ulZPLkUqZOLXS8AQAAAGtFtxb9fvvb3+aUU07JzjvvnCTZaKONsscee+TLX/5y9t9//3z/+9/vzsMBAADQw26+uSHlctcFvXJ5ybP+AAAA6DndWvSbOXNm3vSmN6VUKmXgwIGZPXt227px48blt7/9bXceDgAAgB42b14hhZUM4isUkuZmI/0AAAB6UrcW/TbZZJPMmjUrSTJy5Mjce++9besefvjh9O/fvzsPBwAAQA8bNKia1x7f3qlqNWlqWslGAAAAdKt+3bmzvffeO/fdd18OPPDAHH/88TnnnHPyyCOPpKGhIY888khOOOGE7jwcAAAAPWz8+Nbcc08plUrnI/lKpWrGj2/twagAAADo1qLfZz/72SxYsCBJcvDBB6epqSl33XVXFi1alPPOOy9HHXVUdx4OAACAHjZyZDW7717OpEn9UiqtuL5cTvbaq5yRI430AwAA6EndWvQbOHBgBg4c2Pb6wAMPzIEHHtidhwAAAKCXXXBBSyZMSCZPLqVcXvKMv2p1yQi/vfYq5/zzW3o7RAAAgLrTrUW/Zc2YMSOLFi1aYfmmm266tg4JAABAD2hsTC66qCVTpxYycWJDmpsLaWpaMqWnEX4AAAC9o1uLfrNmzcqFF16YX/ziF1m8eHG7ddVqNYVCIY8//nh3HhIAAIBeMnJkNWedZVQfAADAuqBbi37nnntuHnrooZx88sl5+9vfnoaGhu7cPQAAAAAAANCBbi36PfDAAzn33HNz8MEHd+duAQAAAAAAgC4Uu3NngwcPzoYbbtiduwQAAAAAAABWoluLfieeeGKuv/76FZ7nBwAAAAAAAKw93Tq951NPPZUnn3wyBx54YPbYY48MHjx4hW3OPffc7jwkAAAAAAAA1L1uLfr98pe/TKFQSJJMnjx5hfWFQkHRDwAAAAAAALpZtxb97r333u7cHQAAAAAAALAKuvWZfgAAAAAAAEDP69aRfrfffnun6wqFQtZff/1ss8022XTTTbvzsAAAAAAAAFDXurXod84557Q9069arbYtX3ZZoVDIAQcckK9+9asZOHBgdx4eAAAAAAAA6lK3Fv1uu+22nH766Tn44IOz//77Z9iwYZkxY0b+53/+Jz/5yU8yYcKETJs2LZdcckm+9rWv5dxzz+3OwwMAANCDilOnZMDEG1OYNy/VQYOycPxRqYzcorfDAgAAqEvdWvS7/PLLM378+Jx00klty4YNG5att946jY2N+c///M9ce+21mTVrVm644QZFPwAAgFrU0pKmCeelYfIDSbmSFApJtZrGe+5O6+57pfmCLyeNjb0dJQAAQF0pdufO/vCHP2TbbbftcN12222XP//5z0mSnXbaKTNnzuzOQwMAANBDmiacl4ZJv08q1SUFv2TJ10o1DZN+n6YJ5/VugAAAAHWoW4t+Q4cOzd13393hurvuuitDhw5NkjQ3N2fw4MHdeWgAAAB6QHHKU0tG+JVKHW9QKqVh8gMpTp3Ss4EBAADUuW6d3vPjH/94vvjFL2batGnZd999M3To0MycOTP/+7//m/vvvz8TJkxIktx///3ZaaeduvPQAAAA9IABN9/0+pSenSlX0n/ijVlw1ud7LjAAAIA6161Fv6OOOiojRozIf/7nf+bSSy/N4sWL069fv2y77bb59re/nf322y9Jctppp6Vfv249NAAAAD2gMG9e1wW/JCkUUmxu7pmAAAAASNLNRb8k2X///bP//vunUqlk5syZGTp0aIrF9rOIDhkypLsPCwAAQA+oDhqUVKtdF/6q1VSamnouKAAAALr3mX7tdlwsZvjw4SsU/AAAAKhdC8cflZRW0s8rFbNo/FE9ExAAAABJumGk34UXXph/+7d/y6abbpoLL7xwpdufe+65a3pIAAAAekll5BZp3X3PNEy6LymVVtygXE7rXnunMnKLng8OAACgjq1x0e/ee+/N4Ycfnk033TT33ntvl9sWCgVFPwAAgBrXfMGFaZpwXhomP5CUK0um+qxWk1IxrXvtnebzv9zbIQIAANSdbin6dfR/AAAA+qjGxjRfdGmKU6ek/8QbU2xuTqWpKYvGH2WEHwAAQC9Z46IfAAAA9akycossOOvzvR0GAAAA6Yai38yZM/Pyyy9nm222abf8b3/7W7797W/nySefzPDhw3P88cdnv/32W9PDrWC//fbLc889t8Lyj3zkI7ngggtWWH7rrbfm859v3yltbGzMX/7yl26PDQAAAAAAAHrCGhf9vv71r+exxx7Lbbfd1rbsueeey9FHH52FCxdm1KhR+cc//pHTTjst1157bfbYY481PWQ7N998c8rlctvrf/zjHznhhBPynve8p9P3DBo0KHfddVfb60Kh0K0xAQAAAAAAQE9a46LfH//4xxx++OHtlv3gBz/I/Pnzc/XVV2fs2LFZuHBhTjjhhFx99dXdXvQbOnRou9f/7//9v7z1rW/Nnnvu2el7CoVCRowY0a1xAAAAAAAAQG9Z46LfSy+9lK222qrdsl/+8pfZdtttM3bs2CTJgAEDcswxx+SrX/3qmh6uSy0tLbnjjjtywgkndDl6b/78+dl3331TqVSy3Xbb5YwzzljhHFamWCykWDRCsF6VSsV2X4H6IgdAfZMDoL7JAVDf5ACob3IA1LdaaPtrXPQrFArtCmyvvPJKpk2bluOPP77ddhtvvHFmzZq1pofr0j333JNXX301hxxySKfbbLHFFvnKV76SUaNG5dVXX833vve9HHXUUfnZz36WTTbZZJWPNXRok2lByeDBA3s7BKAXyQFQ3+QAqG9yANQ3OQDqmxwArKvWuOi3xRZb5L777msb1ffLX/4yhUIhe++9d7vtpk+fvsJUnN3tlltuybve9a5svPHGnW6z6667Ztddd233+n3ve19uvPHGnH766at8rJkzm430q2OlUjGDBw/M3LkLUi5XejscoIfJAVDf5ACob3IA1Dc5AOqbHAD1bWkOWJetcdHv2GOPzdlnn525c+dm+PDh+a//+q+89a1vzZgxY9pt97vf/S5bb731mh6uU88991zuu+++XHnllav1voaGhmy77bZ55plnVut9lUo1lUp1td5D31MuV7J4sV/wUK/kAKhvcgDUNzkA6pscAPVNDgDWVWtc9PvgBz+Yl156KTfccEPmzp2b7bffPhdccEH69Xt91zNmzMgvf/nLfOpTn1rTw3Xq1ltvzbBhw/Iv//Ivq/W+crmcJ554IuPGjVs7gQEAAAAAAMBatsZFvyT52Mc+lo997GOdrh82bFjuu+++7jhUhyqVSm699dYcfPDB7YqNSfK5z30uG2+8cc4888wkyVVXXZVddtklm2++eebOnZtrrrkmzz//fMaPH7/W4gMAAAAAAIC1qVuKfr3tvvvuy/PPP5/DDjtshXUvvPBCisVi2+u5c+fmvPPOy/Tp0zNkyJBsv/32ufHGG7Plllv2ZMgAAAAAAADQbQrVatWD6d6A6dNf7e0Q6EX9+hWz4YZNmTWr2fzdUIfkAKhvcgB9xZyps/P3iX9N67zWNAxqyKjx22XIyA16O6x1nhwA9U0OgPomB0B9W5oD1mV9YqQfAAAAq6bcUs6kCb/JC5OfT7VcTaFQSLVazdP3TMmbdt80oy94V0qNpd4OEwAAgNVUXPkmAAAA9BWTJvwmz02allSSQqGQ5LWvleS5SdMyacJvejlCAAAA3ghFPwAAgDoxe8qsvDD5+RRLHXcFi6ViXpj8fOZMnd2zgQEAALDGFP0AAADqxBM3P55quevHulfL1Twx8fEeiggAAIDuougHAABQJ1rntbZN6dmZQqGQluaWHooIAACA7qLoBwAAUCcaBjWkWl3JSL9qNY1NjT0UEQAAAN1F0Q8AAKBOjBq/XQqllYz0KxWy9fhteygiAAAAuouiHwAAQJ0YMnKDbLL7m1IpVzpcXylX8qY9Ns2QkRv0bGAAAACsMUU/AACAOjLmgnF58+jNkmLapvqsVqtJMXnzmM0y+vx39XKEAAAAvBH9ejsAAAAAek6psZSxF+2bOVNn54mJj6eluSWNTY3Zevy2RvgBAADUMEU/AACAOjRk5AbZ46zRvR0GAAAA3cT0ngAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxvXr7QAAAADoecWWlgyYPTeFSiXVYjELNxicSmNjb4cFAADAG6ToBwAAUE+q1TS99HIa5i9IqtWkUEiq1TTOm5fW9QameeONliwDAACgppjeEwAAoI40vfRyGprnL3mxtLj32teG5vlpeunlXooMAACANaHoBwAAUCeKi1qWjPDrbCRfoZCG+QtSbGnp2cAAAABYY4p+AAAAdWLAnLlLpvTsSrWa/nPm9kxAAAAAdBtFPwAAgDpRqFRW/ry+QiHFcqVnAgIAAKDbKPoBAADUiWqxuEoj/SolXUUAAIBaoycHAABQJxZuMHiVRvotGjK4ZwICAACg2yj6AQAA1IlKY2NaBw7sfLRftZrW9Qam0tjYs4EBAACwxhT9AAAA6kjzJhultWm9JS+WFv9e+9ratF6aN96olyIDAABgTfTr7QAAAADoQYVCmjfZOMWWlvSfMzfFciWVUjGLhgw2wg8AAKCGKfoBAADUoUpjYxaMGN7bYQAAANBNTO8JAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGpcv94OAAAAoFYVp07JgIk3pjBvXqqDBmXh+KNSGblFb4cFAABAHar5ot+VV16Zq666qt2yLbbYInfddVen7/n5z3+eK664Is8991xGjhyZz372sxk3btzaDhUAAOgrWlrSNOG8NEx+IClXkkIhqVbTeM/dad19rzRf8OWksbG3owQAAKCO9InpPbfaaqv87ne/a/v3ox/9qNNt//jHP+bMM8/M4Ycfnttvvz37779/Tj311DzxxBM9GDEAAFDLmiacl4ZJv08q1SUFv2TJ10o1DZN+n6YJ5/VugAAAANSdPlH0K5VKGTFiRNu/oUOHdrrtddddl3322ScnnXRS3v72t+f000/PdtttlxtuuKEHIwYAAGpVccpTS0b4lUodb1AqpWHyAylOndKzgQEAAFDXan56zyR5+umnM3bs2PTv3z+77LJLzjzzzGy66aYdbvunP/0pH/3oR9stGzt2bO65557VOmaxWEixWHijIVPjSqViu69AfZEDoL7JAQy49aYUKpXXR/h1pFLJwFtuyqKz/73nAqNHyAFQ3+QAqG9yANS3Wmj7NV/022mnnXLxxRdniy22yPTp0/Otb30rRx99dH76059m0KBBK2z/yiuvZPjw4e2WDRs2LK+88spqHXfo0KYUuurkUxcGDx7Y2yEAvUgOgPomB9SxxS1Jv05G+S2jX7kl623Y1AMB0RvkAKhvcgDUNzkAWFfVfNFv3Lhxbf/fZpttsvPOO2fffffNz3/+84wfP36tHXfmzGYj/epYqVTM4MEDM3fugpTLld4OB+hhcgDUNzmAAf0a07C43PVIv2o1LaXGLJrV3HOB0SPkAKhvcgDUNzkA6tvSHLAuq/mi3/IGDx6ckSNH5plnnulw/fDhw1cY1TdjxowVRv+tTKVSTaVSfcNx0jeUy5UsXuwXPNQrOQDqmxxQv+YfdlQG/+LupKv+QLGYBYcdmYprpM+SA6C+yQFQ3+QAYF217k9Aupqam5vz7LPPZsSIER2u32WXXXL//fe3W3bfffdll1126YHoAACAWlcZuUVad98zKZc73qBcTusee6UycoueDQwAAIC6VvNFv0svvTQPPvhgpk2blj/+8Y857bTTUiwW84EPfCBJ8rnPfS5f+9rX2rY/7rjj8tvf/jbf+9738uSTT+bKK6/Mo48+mmOOOaa3TgEAAKgxzRdcmNbReyfFQlJ9bcRftZoUC2kds3eaz/9y7wYIAABA3an56T1ffPHFnHHGGZk9e3aGDh2a3XbbLT/+8Y8zdOjQJMkLL7yQYvH12uY73vGOXH755fnGN76Rr3/96xk5cmS+9a1vZeutt+6tUwAAAGpNY2OaL7o0xalT0n/ijSk2N6fS1JRF448ywg8AAIBeUahWqx5M9wZMn/5qb4dAL+rXr5gNN2zKrFnN5u+GOiQHQH2TA6C+yQFQ3+QAqG9yANS3pTlgXVbz03sCAAAAAABAvVP0AwAAAAAAgBqn6AcAAAAAAAA1TtEPAAAAAAAAapyiHwAAAAAAANQ4RT8AAAAAAACocYp+AAAAAAAAUOMU/QAAAAAAAKDGKfoBAAAAAABAjVP0AwAAAAAAgBrXr7cDAAAAqFVTpxYycWJD5s0rZNCgasaPb83IkdXeDgsAAIA6pOgHAACwmlpakgkTGjN5cinlciGFQlKtJvfcU8ruu5dzwQUtaWzs7SgBAACoJ6b3BAAAWE0TJjRm0qR+qVSWFPySpFBIKpVCJk3qlwkTVPwAAADoWYp+AAAAq2HKlEImTy6lVOp4famUTJ5cytSphZ4NDAAAgLqm6AcAALAabr65IeVy1wW9cnnJs/4AAACgpyj6AQAArIZ5816f0rMzhULS3GykHwAAAD1H0Q8AAGA1DBpUTbXa9TbVatLUtJKNAAAAoBsp+gEAAKyG8eNbUyp1XdArlaoZP761hyICAAAART8AAIDVMnJkNbvvXk653PH6cjnZY49yRo400g8AAICeo+gHAACwmi64oCWjRy9Osfj6VJ/ValIsVjNmzOKcf35L7wYIAABA3enX2wEAAADUmsbG5KKLWjJ1aiETJzakubmQpqYlU3oa4QcAAEBvUPQDAAB4g0aOrOass4zqAwAAoPeZ3hMAAAAAAABqnKIfAAAAAAAA1DhFPwAAAAAAAKhxin4AAAAAAABQ4xT9AAAAAAAAoMYp+gEAAAAAAECNU/QDAAAAAACAGqfoBwAAAAAAADVO0Q8AAAAAAABqnKIfAAAAAAAA1Lh+vR0AAAD0FXOmzs7fJ/41rfNa0zCoIaPGb5chIzfo7bAAAACAOqDoBwAAa6jcUs6kCb/JC5OfT7VcTaFQSLVazdP3TMmbdt80oy94V0qNpd4OEwAAAOjDTO8JAABraNKE3+S5SdOSSlIoFJK89rWSPDdpWiZN+E0vRwgAAAD0dYp+AACwBmZPmZUXJj+fYqnjj9bFUjEvTH4+c6bO7tnAAAAAgLqi6AcAAGvgiZsfT7Vc7XKbarmaJyY+3kMRAQAAAPVI0Q8AANZA67zWtik9O1MoFNLS3NJDEQEAAAD1SNEPAADWQMOghlSrKxnpV62msamxhyICAAAA6pGiHwAArIFR47dLobSSkX6lQrYev20PRQQAAADUI0U/AABYA0NGbpBNdn9TKuVKh+sr5UretMemGTJyg54NDAAAAKgrin4AALCGxlwwLm8evVlSTNtUn9VqNSkmbx6zWUaf/65ejhAAAADo6/r1dgAAAFDrSo2ljL1o38yZOjtPTHw8Lc0taWxqzNbjtzXCDwAAAOgRin4AANBNhozcIHucNbq3wwAAAADqUM0X/b7zne/kF7/4RZ566qkMGDAgu+66az772c/mbW97W6fvufXWW/P5z3++3bLGxsb85S9/WdvhAgAAAAAAQLer+aLfgw8+mKOPPjo77rhjyuVyvv71r+fEE0/Mz372s6y33nqdvm/QoEG566672l4XCoWeCBcAAAAAAAC6Xc0X/a655pp2ry+55JKMHj06jz32WPbYY49O31coFDJixIi1HR4AAAAAAACsdTVf9Fveq6++miQZMmRIl9vNnz8/++67byqVSrbbbrucccYZ2WqrrVb5OMViIcWi0YH1qlQqtvsK1Bc5AOqbHAD1TQ6A+iYHQH2TA6C+1ULbL1Sr1WpvB9FdKpVKPvGJT2Tu3Ln5r//6r063e/jhh/P0009n1KhRefXVV/O9730vDz30UH72s59lk002WaVjVatVU4ICAAAAAACwTuhTRb8LLrggv/3tb/OjH/1olYt3SdLa2pr3ve99ef/735/TTz99ld4zY8Y8I/3qWKlUzODBAzN37oKUy5XeDgfoYXIA1Dc5AOqbHAD1TQ6A+iYHQH1bmgPWZX1mes8vfelL+dWvfpUbbrhhtQp+SdLQ0JBtt902zzzzzCq/p1KpplLpM/VS3qByuZLFi/2Ch3olB0B9kwOgvskBUN/kAKhvcgCwrlr3JyBdiWq1mi996Uv5n//5n1x77bV5y1vestr7KJfLeeKJJzJixIi1ECEAAAAAAACsXTU/0m/ChAn57//+73z7299OU1NTpk+fniRZf/31M2DAgCTJ5z73uWy88cY588wzkyRXXXVVdtlll2y++eaZO3durrnmmjz//PMZP358r50HAAAAAAAAvFE1X/T7r//6ryTJscce2275xRdfnEMPPTRJ8sILL6RYfH1Q49y5c3Peeedl+vTpGTJkSLbffvvceOON2XLLLXsucAAAAAAAAOgmhWq16sF0b8D06a/2dgj0on79itlww6bMmtVs/m6oQ3IA1LeuckCxpSUDZs9NoVJJtVjMwg0Gp9LY2EuRAmuDzwFQ3+QAqG9yANS3pTlgXVbzI/0AAKDXVatpeunlNMxfkFSrSaGQVKtpnDcvresNTPPGGy1ZBgAAALCWFFe+CQAA0JWml15OQ/P8JS+WFvde+9rQPD9NL73cS5EBAAAA9ULRDwAA1kBxUcuSEX6djeQrFNIwf0GKLS09GxgAAABQVxT9AABgDQyYM3fJlJ5dqVbTf87cngkIAAAAqEuKfgAAsAYKlcrKn9dXKKRYrvRMQAAAAEBdUvQDAIA1UC0WV2mkX6XkozcAAACw9rjzAAAAa2DhBoNXaaTfoiGDeyYgAAAAoC4p+gEAwBqoNDamdeDAzkf7VatpXW9gKo2NPRsYAAAAUFcU/QAAYA01b7JRWpvWW/JiafHvta+tTeuleeONeikyAAAAoF706+0AAACg5hUKad5k4xRbWtJ/ztwUy5VUSsUsGjLYCD8AAACgRyj6AQBAN6k0NmbBiOG9HQYAAABQh0zvCQAAAAAAADVO0Q8AAAAAAABqnKIfAAAAAAAA1DhFPwAAAAAAAKhxin4AAAAAAABQ4xT9AAAAAAAAoMYp+gEAAAAAAECNU/QDAAAAAACAGqfoBwAAAAAAADVO0Q8AAAAAAABqXL/eDgAAgO5XnDolAybemMK8eakOGpSF449KZeQWvR0WAAAAAGuJoh8AQF/S0pKmCeelYfIDSbmSFApJtZrGe+5O6+57pfmCLyeNjb0dJQAAAADdzPSeAAB9SNOE89Iw6fdJpbqk4Jcs+VqppmHS79M04bzeDRAAAACAtULRDwCgjyhOeWrJCL9SqeMNSqU0TH4gxalTejYwAAAAANY6RT8AgD5iwM03LZnSsyvlSvpPvLFnAgIAAACgxyj6AQD0EYV5816f0rPTjQopNjf3TEAAAAAA9BhFPwCAPqI6aFBSra5ko2oqTU09ExAAAAAAPUbRDwCgj1g4/qiktJKPd6ViFo0/qmcCAgAAAKDHKPoBAPQRlZFbpHX3PZNyueMNyuW07rFXKiO36NnAAAAAAFjrFP0AAPqQ5gsuTOvovZNi4fWpPqvVpFhI65i903z+l3s3QAAAAADWin69HQAAAN2osTHNF12a4tQp6T/xxhSbm1Npasqi8UcZ4QcAAADQhyn6AQD0QZWRW2TBWZ/v7TAAAAAA6CGm9wQAAAAAAIAap+gHAAAAAAAANU7RDwAAAAAAAGqcoh8AAAAAAADUOEU/AAAAAAAAqHGKfgAAAAAAAFDjFP0AAAAAAACgxin6AQAAAAAAQI1T9AMAAAAAAIAap+gHAAAAAAAANa5fbwcAAED3mzq1kIkTGzJvXiGDBlUzfnxrRo6s9nZYAAAAAKwlfWak3w9/+MPst99+2XHHHTN+/Pg88sgjXW7/85//PO95z3uy44475qCDDsqvf/3rHooUAGDtaWlJvvCFxpx88oDcfXe/3HdfKXff3S8nnzwgX/hCY1paejtCAAAAANaGPlH0u/POO3PxxRfn1FNPzW233ZZtttkmJ554YmbMmNHh9n/84x9z5pln5vDDD8/tt9+e/fffP6eeemqeeOKJHo4cAKB7TZjQmEmT+qVSKaRQWLKsUEgqlUImTeqXCRMaezdAAAAAANaKPlH0+/73v58jjjgihx12WLbccstMmDAhAwYMyC233NLh9tddd1322WefnHTSSXn729+e008/Pdttt11uuOGGHo4cAKD7TJlSyOTJpZRKHa8vlZLJk0uZOrXQs4EBAAAAsNbV/DP9Wlpa8thjj+Xkk09uW1YsFjNmzJg8/PDDHb7nT3/6Uz760Y+2WzZ27Njcc889q3zcYrGQYtENs3pVKhXbfQXqixzAuurWWxvajfDrSKVSyC23NObss1t7LrA+Rg6A+iYHQH2TA6C+yQFQ32qh7dd80W/WrFkpl8sZNmxYu+XDhg3LU0891eF7XnnllQwfPnyF7V955ZVVPu7QoU0pdHVHjbowePDA3g4B6EVyAOuaxYuTfqvw6a5cLmXDDU3zuabkAKhvcgDUNzkA6pscAKyrar7o11tmzmw20q+OlUrFDB48MHPnLki5XOntcIAeJgewrurXryGLF5e6HOlXrSalUjmzZhnp90bJAVDf5ACob3IA1Dc5AOrb0hywLqv5ot+GG26YUqmUGTNmtFs+Y8aMFUbzLTV8+PAVRvV1tX1HKpVqKpXq6gdMn1IuV7J4sV/wUK/kANY1hx3Wkl/8YkAqlc6rfsViNYcd1pLFi32OWVNyANQ3OQDqmxwA9U0OANZV6/4EpCvR2NiY7bffPpMmTWpbVqlUMmnSpOy6664dvmeXXXbJ/fff327Zfffdl1122WVthgoAsFaNHFnN7ruXUy53vL5cTvbYo5yRIxX8AAAAAPqami/6JckJJ5yQH//4x7ntttvy5JNP5otf/GIWLFiQQw89NEnyuc99Ll/72tfatj/uuOPy29/+Nt/73vfy5JNP5sorr8yjjz6aY445prdOAQCgW1xwQUtGj16cYrGa6mu1vWr1/7d350FVlX8cxz+AuOOo4FaO4oZKIFesVLr+HMhJzX1BnDEoxwW3lBEVcMk9NDUd0GYsNM10rDBNJ5epqewPRSfBxK1cG3evSGqOIuD5/dFwk0hCQOmc+37N8Md57uF7n/PM8JnR732e++cOv5CQPL3zzoOKnSAAAAAAAACeCtMf7ylJr7/+um7evKmkpCQ5HA61bdtWKSkpzuM6r1y5Inf3v/qbwcHBWrp0qVasWKH3339fvr6+WrVqlfz8/CrqEQAAAMpF5crSwoUPdP68m774wlN377qpRg1D4eG57PADAAAAAACwMDfDMPjfn1JwOO5U9BRQgSpVcledOjWUnX2X87sBF0QGAK6NDABcGxkAuDYyAHBtZADg2goy4L/MEsd7AgAAAAAAAAAAAK6Mph8AAAAAAAAAAABgcjT9AAAAAAAAAAAAAJOj6QcAAAAAAAAAAACYHE0/AAAAAAAAAAAAwORo+gEAAAAAAAAAAAAmR9MPAAAAAAAAAAAAMDmafgAAAAAAAAAAAIDJ0fQDAAAAAAAAAAAATI6mHwAAAAAAAAAAAGByNP0AAAAAAAAAAAAAk6PpBwAAAAAAAAAAAJgcTT8AAAAAAAAAAADA5Gj6AQAAAAAAAAAAACbnZhiGUdGTAAAAAAAAAAAAAFB67PQDAAAAAAAAAAAATI6mHwAAAAAAAAAAAGByNP0AAAAAAAAAAAAAk6PpBwAAAAAAAAAAAJgcTT8AAAAAAAAAAADA5Gj6AQAAAAAAAAAAACZH0w8AAAAAAAAAAAAwOZp+AAAAAAAAAAAAgMnR9AMAAAAAAAAAAABMjqYfAAAAAAAAAAAAYHI0/WAJGzduVFhYmAIDAxUeHq4jR44UuScjI0NRUVGy2WwKDg7WsGHDdP/+/WLrXr58WaNHj1ZQUJA6d+6sxYsXKy8vz/n6gQMH1Lp16yI/DofjsTVzcnIUHx+vPn36yN/fX+PGjSt2DocOHZK/v7/69ev3L6sAuC6rZUBp6gKuzGoZIEkPHjzQ8uXLFRoaqoCAAIWFhSk1NbWEKwK4FqtlQHx8/D/W7dWr1xOsCuA6rJYBkrR9+3b17dtXQUFBstvtSkhIUHZ2dglXBHAtVsyAjRs3qmfPnmrXrp26d++ubdu2lWwxABdkpgw4cOCAxo4dK7vdLpvNpn79+mn79u1F7tu1a5d69OihwMBA9enTR3v37n2CFZEqPdHdwH/Qzp07lZiYqLlz5yooKEjr16/XiBEjtHv3bnl7e0v68w975MiRio6O1qxZs+Th4aGTJ0/K3f3xfe/8/HxFR0fLx8dHmzdv1vXr1xUXFydPT09Nnjy50L27d+9WzZo1ndcF7/u4ulWqVFFkZKT27NlT7LPdvn1bcXFx6ty5s27cuFGS5QBcjpUz4EnqAq7KqhkwadIkZWVlaeHChWrSpIkcDocePnxY0mUBXIYVM2DGjBmKjY0t9Dv9+vVTjx49SrQmgCuxYgYcOnRIcXFxSkhIUGhoqK5du6Y5c+Zo1qxZWrly5ZMsD2B5VsyATZs2admyZVqwYIECAwN15MgRzZw5U7Vq1VJYWNiTLA9geWbLgIyMDLVu3VqjRo2Sj4+Pvv/+e8XFxcnLy0uhoaGSpPT0dMXGxmry5MkKDQ3Vjh07NH78eH355Zfy8/Mr2cIYgMkNHjzYmDt3rvM6Pz/fsNvtxurVq51j4eHhxvLly5+o7g8//GC0adPGcDgczrFNmzYZwcHBRk5OjmEYhpGWlmb4+fkZt27dKtXc4+LijLFjxz729ZiYGGP58uVGUlKS0bdv31K9B2B1VsyAstYFXIkVM2Dv3r1Ghw4djOzs7FLVBVyJFTPg77755hujdevWxsWLF0v1PoCVWTEDUlJSjFdffbXQ2CeffGJ06dKlVO8DWJkVMyAiIsJYtGhRobHExERj6NChpXofwMrMnAEFRo0aZcTHxzuvJ02aZIwePbrQPeHh4casWbNKXJPjPWFqDx480LFjxxQSEuIcc3d3V0hIiDIyMiRJWVlZ+vnnn+Xt7a2hQ4cqJCREb7zxhn766adiax8+fFh+fn7y8fFxjtntdv3xxx86ffp0oXv79+8vu92u4cOH69ChQ+XybFu2bNGFCxc0YcKEcqkHWJGVM+Bp1gWswqoZ8N133ykgIEApKSnq0qWLunfvrsWLF//r8SOAq7FqBvxdamqqQkJC9Pzzz5d7bcDMrJoBNptNV69e1d69e2UYhm7cuKE9e/aoa9euZa4NWIlVM+DBgweqUqVKobEqVaooMzNTubm5Za4PWIVVMuDOnTuqXbt2offu3LlzoXvsdrsOHz5c4po0/WBq2dnZys/PL7Jt1tvb23kc5oULFyRJK1euVHh4uFJSUuTv76+33npL58+ff2ztGzduFPrDluS8Ljibt169epo7d66SkpKUlJSkhg0bKioqSseOHSvTc50/f17Lli3TkiVLVKkSp/ACj2PVDHhadQGrsWoGXLhwQYcOHdKpU6e0atUqTZ8+XXv27NHcuXPLVBewGqtmwKOuXbumH3/8UYMHDy63moBVWDUDOnTooCVLligmJkYBAQF65ZVXVLNmTb3zzjtlqgtYjVUzwG63KzU1VUePHpVhGMrMzFRqaqpyc3P5bk/gEVbIgJ07dyozM1MDBw4s9r0ffaaSoJsAyyv4/puIiAgNGjRIkuTv76/9+/dry5Ytio2N1ciRI52d+Oeee05ff/11iWo3b95czZs3d14HBwfrwoULWrdunZYsWVKq+ebn5ys2NlZvv/22mjVrVqoaAP5itgx4mnUBV2TGDDAMQ25ublq6dKm8vLwkSfHx8Zo4caJmz56tqlWrlro24GrMmAGP2rZtm7y8vNStW7dyqQe4GjNmwOnTp7Vw4UKNHz9edrtdDodD7733nmbPnq1333231HUBV2TGDBg3bpwcDociIiJkGIa8vb3Vv39/paSkFPsdZACK+i9nQFpamqZPn64FCxaoVatWT/poxaLpB1OrU6eOPDw8lJWVVWg8KyvL2RGvV6+eJKlFixaF7mnRooUuX74sSVq4cKHzyKyCnXU+Pj46cuRIod8p6KgX1PwngYGBSk9PL+0j6e7duzp69KhOnDih+fPnS/ozoAzDkL+/v9asWVNkiy/gqqyYAc+6LmBmVs2AevXqqUGDBs6GX8F8DcPQ1atX5evrW6b6gFVYNQMKGIahLVu2qF+/fqpcuXK51ASsxKoZsHr1agUHB2vkyJGSpDZt2qhatWoaNmyYYmJiVL9+/TLVB6zCqhlQtWpVJSYmat68ecrKylK9evX02WefqUaNGqpbt26ZagNWYuYMOHjwoMaOHauEhAT179+/0Gs+Pj5FdvU9+kwlwccDYGqVK1fWCy+8oP379zvHHj58qP3796t9+/aSpMaNG6t+/fo6d+5cod89f/6883sxGjRooKZNm6pp06bOMZvNpl9//bVQcOzbt081a9ZUy5YtHzunkydPFvvH/29q1qypHTt2aNu2bc6foUOHqlmzZtq2bZuCgoJKXRuwGitmwLOuC5iZVTMgODhY169f1927d51j586dk7u7uxo2bFim2oCVWDUDChw8eFC//fYbR3sCj2HVDLh//36R3TweHh6S/vwwAIA/WTUDCnh6eqphw4by8PDQzp07FRoayk4/4BFmzYADBw4oOjpaU6ZMUURERJHXbTab0tLSCo3t27dPNput2LqPYqcfTG/48OGKi4tTQECA2rVrp/Xr1+vevXvOs3Dd3Nw0YsQIJScnq02bNmrbtq22bt2qs2fPKikp6bF17Xa7WrZsqWnTpmnq1KlyOBxasWKFhg0b5vyk7bp169S4cWO1atVKOTk5+uKLL5SWlqa1a9cWO+fTp08rNzdXv//+u+7evasTJ05Iktq2bSt3d3f5+fkVut/b21tVqlQpMg7AehlQlrqAK7JiBvTu3VsffPCBEhISNHHiRGVnZ2vJkiUaNGgQR3sCf2PFDCiQmpqqoKAg/g0AFMOKGRAaGqpZs2Zp06ZN6tKli65fv653331X7dq1U4MGDcpj2QDLsGIGnDt3TkeOHFFQUJBu376tjz/+WKdOndKiRYvKY8kASzFbBqSlpWnMmDGKiorSa6+95vx+QE9PT9WuXVuSFBUVpcjISK1du1Zdu3bVzp07dfToUc2bN6/E6+Jm8DEhWMCnn36qNWvWyOFwqG3btpo5c2aRHXEffvihNm7cqFu3bqlNmzaaMmWKXnzxxWLrXrp0SXPmzNHBgwdVrVo1DRgwQLGxsc6tvh999JE+//xzXbt2TdWqVZOfn5/Gjx+vTp06FVs3LCxMly5dKjL+yy+//OP9ycnJ+vbbb/XVV18VWxdwVVbLgNLWBVyV1TJAks6cOaMFCxYoPT1dtWvXVs+ePRUTE0PTD/gHVsyAO3fuyG63a8aMGRoyZEhJlwJwSVbMgA0bNmjz5s26ePGivLy81KlTJ02dOpWmH/APrJYBZ86cUWxsrM6dO6dKlSqpY8eOmjJlSqHvDgPwFzNlQHx8vLZu3Vpk/OWXX9aGDRuc17t27dKKFSt06dIl+fr6aurUqeratWuJ14SmHwAAAAAAAAAAAGByHAQMAAAAAAAAAAAAmBxNPwAAAAAAAAAAAMDkaPoBAAAAAAAAAAAAJkfTDwAAAAAAAAAAADA5mn4AAAAAAAAAAACAydH0AwAAAAAAAAAAAEyOph8AAAAAAAAAAABgcjT9AAAAAAAAAAAAAJOrVNETAAAAAAA8fa1bt/7XexITE7V161ZVr15dq1evfgazAgAAAACUFzfDMIyKngQAAAAA4Ok6fPhwoeuIiAhFRkaqd+/ezrEmTZro5s2bcnd3V/PmzZ/xDAEAAAAAZcFOPwAAAABwATabrchYo0aNiozXrVv32UwIAAAAAFCu+E4/AAAAAIBTZGSkoqOjndfJyclq3769jh8/roiICLVr104DBgzQ8ePHlZOTo9mzZ+ull17S//73P61bt65IvYyMDEVFRclms6lDhw6KjY1VVlbWM3wiAAAAAHANNP0AAAAAAMXKzc1VXFychgwZouTkZOXl5WnChAmaMWOGqlatqhUrVqhbt25KTExUenq68/cyMjIUGRkpLy8vLV++XPPnz1dmZqbGjRtXgU8DAAAAANbE8Z4AAAAAgGLl5uZqypQp6tq1qyTp4cOHGjNmjIKCgpSQkCBJ6tSpk3bv3q3du3crODhYkrRs2TIFBARo5cqVcnNzkyT5+fmpd+/e2rt3r7MeAAAAAKDs2OkHAAAAACiWu7u7Onfu7Lz29fWVJIWEhDjHPDw81KRJE129elWSdO/ePaWnp6tHjx7Kz89XXl6e8vLy5Ovrq0aNGikzM/OZPgMAAAAAWB07/QAAAAAAxapataoqV67svPb09JQkeXl5FbrP09NTOTk5kqTbt28rPz9fiYmJSkxMLFLzypUrT3HGAAAAAOB6aPoBAAAAAMqdl5eX3NzcFB0drW7duhV5vU6dOhUwKwAAAACwLpp+AAAAAIByV716ddlsNp09e1aBgYEVPR0AAAAAsDyafgAAAACAp2LatGl68803FRMTo169eqlWrVq6evWq9u3bp4EDB6pjx44VPUUAAAAAsAyafgAAAACApyI4OFibNm1ScnKyEhISlJubq4YNG6pTp05q2rRpRU8PAAAAACzFzTAMo6InAQAAAAAAAAAAAKD03Ct6AgAAAAAAAAAAAADKhqYfAAAAAAAAAAAAYHI0/QAAAAAAAAAAAACTo+kHAAAAAAAAAAAAmBxNPwAAAAAAAAAAAMDkaPoBAAAAAAAAAAAAJkfTDwAAAAAAAAAAADA5mn4AAAAAAAAAAACAydH0AwAAAAAAAAAAAEyOph8AAAAAAAAAAABgcjT9AAAAAAAAAAAAAJP7PzKm+bC4V76qAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Strategy-specific visualization\n", - "from matplotlib.pyplot import pink\n", - "\n", - "\n", - "assert pt_bt_config is not None\n", - "assert pair.predicted_df_ is not None\n", - "\n", - "if FIT_METHOD_TYPE == \"StaticFit\" and hasattr(pair, 'predicted_df_'):\n", - " print(\"=== STATIC FIT FIT_MODEL VISUALIZATION ===\")\n", - " \n", - " fig, axes = plt.subplots(4, 1, figsize=(18, 16))\n", - " \n", - " # 1. Actual vs Predicted Prices\n", - " colname_a, colname_b = pair.colnames()\n", - " \n", - " axes[0].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[colname_a],\n", - " label=f'{SYMBOL_A} Actual', alpha=0.8, linewidth=1)\n", - " axes[0].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[f'{colname_a}_pred'],\n", - " label=f'{SYMBOL_A} Predicted', alpha=0.8, linestyle='--', linewidth=1)\n", - " axes[0].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[colname_b],\n", - " label=f'{SYMBOL_B} Actual', alpha=0.8, linewidth=1)\n", - " axes[0].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[f'{colname_b}_pred'],\n", - " label=f'{SYMBOL_B} Predicted', alpha=0.8, linestyle='--', linewidth=1)\n", - " axes[0].set_title('Actual vs Predicted Prices')\n", - " axes[0].set_ylabel('Price')\n", - " axes[0].legend()\n", - " axes[0].grid(True)\n", - " \n", - " # 2. Raw dis-equilibrium\n", - " axes[1].plot(pair.predicted_df_['tstamp'], pair.predicted_df_['disequilibrium'],\n", - " color='blue', alpha=0.8, label='Dis-equilibrium', linewidth=1)\n", - " axes[1].axhline(y=pair.training_mu_, color='red', linestyle='--', alpha=0.7, label='Training Mean')\n", - " axes[1].set_title('Testing Period: Raw Dis-equilibrium')\n", - " axes[1].set_ylabel('Dis-equilibrium')\n", - " axes[1].legend()\n", - " axes[1].grid(True)\n", - " \n", - " # 3. Scaled dis-equilibrium with thresholds\n", - " axes[2].plot(pair.predicted_df_['tstamp'], pair.predicted_df_['scaled_disequilibrium'],\n", - " color='green', alpha=0.8, label='Scaled Dis-equilibrium', linewidth=1)\n", - " axes[2].axhline(y=pt_bt_config['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7, label=f\"Open Threshold ({pt_bt_config['dis-equilibrium_open_trshld']})\")\n", - " axes[2].axhline(y=-pt_bt_config['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7)\n", - " axes[2].axhline(y=pt_bt_config['dis-equilibrium_close_trshld'], color='brown',\n", - " linestyle=':', alpha=0.7, label=f\"Close Threshold ({pt_bt_config['dis-equilibrium_close_trshld']})\")\n", - " axes[2].axhline(y=-pt_bt_config['dis-equilibrium_close_trshld'], color='brown',\n", - " linestyle=':', alpha=0.7)\n", - " axes[2].axhline(y=0, color='black', linestyle='-', alpha=0.5, linewidth=0.5)\n", - " axes[2].set_title('Testing Period: Scaled Dis-equilibrium with Trading Thresholds')\n", - " axes[2].set_ylabel('Scaled Dis-equilibrium')\n", - " axes[2].legend()\n", - " axes[2].grid(True)\n", - " \n", - " # 4. Trading signals overlay\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " # Create a copy of the scaled dis-equilibrium plot\n", - " axes[3].plot(pair.predicted_df_['tstamp'], pair.predicted_df_['scaled_disequilibrium'],\n", - " color='green', alpha=0.8, label='Scaled Dis-equilibrium', linewidth=1)\n", - " axes[3].axhline(y=pt_bt_config['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7, label=f\"Open Threshold\")\n", - " axes[3].axhline(y=-pt_bt_config['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7)\n", - " \n", - " # Add trading signals\n", - " for idx, (_, trade) in enumerate(pair_trades.iterrows()):\n", - " color = 'red' if 'BUY' in trade['action'] else 'blue'\n", - " marker = '^' if 'BUY' in trade['action'] else 'v'\n", - " axes[3].scatter(trade['time'], trade['scaled_disequilibrium'],\n", - " color=color, marker=marker, s=100, alpha=0.8,\n", - " label=f\"{trade['action']} {trade['symbol']}\" if idx < 2 else \"\")\n", - " \n", - " axes[3].set_title('Trading Signals on Scaled Dis-equilibrium')\n", - " else:\n", - " axes[3].text(0.5, 0.5, 'No Trading Signals Generated', \n", - " transform=axes[3].transAxes, ha='center', va='center', fontsize=16)\n", - " axes[3].set_title('Trading Signals (None Generated)')\n", - " \n", - " axes[3].set_ylabel('Scaled Dis-equilibrium')\n", - " axes[3].set_xlabel('Time')\n", - " axes[3].legend()\n", - " axes[3].grid(True)\n", - " \n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "elif FIT_METHOD_TYPE == \"SlidingFit\":\n", - " print(\"=== SLIDING FIT FIT_MODEL VISUALIZATION ===\")\n", - " print(\"Note: Sliding strategy visualization requires detailed tracking data\")\n", - " print(\"For full sliding window visualization, run the complete sliding analysis\")\n", - " \n", - " # Create consistent timeline - superset of timestamps from both dataframes\n", - " market_timestamps = set(pair.market_data_['tstamp'])\n", - " predicted_timestamps = set(pair.predicted_df_['tstamp'])\n", - " \n", - " # Create superset of all timestamps\n", - " all_timestamps = sorted(market_timestamps.union(predicted_timestamps))\n", - " \n", - " # Create a unified timeline dataframe for consistent plotting\n", - " timeline_df = pd.DataFrame({'tstamp': all_timestamps})\n", - " \n", - " # Merge with predicted data to get dis-equilibrium values\n", - " timeline_df = timeline_df.merge(pair.predicted_df_[['tstamp', 'disequilibrium', 'scaled_disequilibrium']], \n", - " on='tstamp', how='left')\n", - " \n", - " print(f\"Using consistent timeline with {len(timeline_df)} timestamps\")\n", - " print(f\"Timeline range: {timeline_df['tstamp'].min()} to {timeline_df['tstamp'].max()}\")\n", - " \n", - " fig, axes = plt.subplots(3, 1, figsize=(18, 16))\n", - " \n", - " # 1. Raw dis-equilibrium - using consistent timeline\n", - " axes[0].plot(timeline_df['tstamp'], timeline_df['disequilibrium'],\n", - " color='blue', alpha=0.8, label='Dis-equilibrium', linewidth=1)\n", - " axes[0].axhline(y=pair.training_mu_, color='red', linestyle='--', alpha=0.7, label='Training Mean')\n", - " axes[0].set_title('Testing Period: Raw Dis-equilibrium')\n", - " axes[0].set_ylabel('Dis-equilibrium')\n", - " axes[0].set_xlim(timeline_df['tstamp'].min(), timeline_df['tstamp'].max())\n", - " axes[0].legend()\n", - " axes[0].grid(True)\n", - " \n", - " # 2. Scaled dis-equilibrium with thresholds - using consistent timeline\n", - " axes[1].plot(timeline_df['tstamp'], timeline_df['scaled_disequilibrium'],\n", - " color='green', alpha=0.8, label='Scaled Dis-equilibrium', linewidth=1)\n", - " axes[1].axhline(y=pt_bt_config['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7, label=f\"Open Threshold ({pt_bt_config['dis-equilibrium_open_trshld']})\")\n", - " axes[1].axhline(y=-pt_bt_config['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7)\n", - " axes[1].axhline(y=pt_bt_config['dis-equilibrium_close_trshld'], color='brown',\n", - " linestyle=':', alpha=0.7, label=f\"Close Threshold ({pt_bt_config['dis-equilibrium_close_trshld']})\")\n", - " axes[1].axhline(y=-pt_bt_config['dis-equilibrium_close_trshld'], color='brown',\n", - " linestyle=':', alpha=0.7)\n", - " axes[1].axhline(y=0, color='black', linestyle='-', alpha=0.5, linewidth=0.5)\n", - " axes[1].set_title('Testing Period: Scaled Dis-equilibrium with Trading Thresholds')\n", - " axes[1].set_ylabel('Scaled Dis-equilibrium')\n", - " axes[1].set_xlim(timeline_df['tstamp'].min(), timeline_df['tstamp'].max())\n", - " axes[1].legend()\n", - " axes[1].grid(True)\n", - "\n", - " # 3. Trading signals if available - using consistent timeline\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " # Show trading signals over time\n", - " trade_times = pair_trades['time'].values\n", - " trade_actions = pair_trades['action'].values\n", - " position_statuses = pair_trades['status'].values\n", - " \n", - " for i, (time, action, status) in enumerate(zip(trade_times, trade_actions, position_statuses)):\n", - " if action == \"BUY\":\n", - " if status == \"OPEN\":\n", - " color='red'\n", - " else:\n", - " color='pink'\n", - " else:\n", - " if status == \"OPEN\":\n", - " color='blue'\n", - " else:\n", - " color='purple'\n", - " axes[2].scatter(time, i, color=color, alpha=0.8, s=50)\n", - " \n", - " axes[2].set_title('Trading Signal Timeline')\n", - " axes[2].set_ylabel('Signal Index')\n", - " else:\n", - " axes[2].text(0.5, 0.5, 'No Trading Signals Generated', \n", - " transform=axes[2].transAxes, ha='center', va='center', fontsize=16)\n", - " axes[2].set_title('Trading Signals (None Generated)')\n", - " \n", - " # Set consistent x-axis limits for all charts\n", - " axes[2].set_xlim(timeline_df['tstamp'].min(), timeline_df['tstamp'].max())\n", - " axes[2].set_xlabel('Time')\n", - " axes[2].grid(True)\n", - " \n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - "else:\n", - " print(\"No visualization data available - strategy may not have run successfully\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualisation-2 (plotly)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - " \n", - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "=== SLIDING FIT INTERACTIVE VISUALIZATION ===\n", - "Note: Sliding strategy visualization with interactive plotly charts\n", - "Using consistent timeline with 391 timestamps\n", - "Timeline range: 2025-06-05 13:30:00 to 2025-06-05 20:00:00\n" - ] - }, - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "linkText": "Export to plot.ly", - "plotlyServerURL": "https://plot.ly", - "showLink": false - }, - "data": [ - { - "line": { - "color": "green", - "width": 2 - }, - "name": "Scaled Dis-equilibrium", - "opacity": 0.8, - "type": "scatter", - "x": [ - "2025-06-05T13:30:00.000000000", - "2025-06-05T13:31:00.000000000", - "2025-06-05T13:32:00.000000000", - "2025-06-05T13:33:00.000000000", - "2025-06-05T13:34:00.000000000", - "2025-06-05T13:35:00.000000000", - "2025-06-05T13:36:00.000000000", - "2025-06-05T13:37:00.000000000", - "2025-06-05T13:38:00.000000000", - "2025-06-05T13:39:00.000000000", - "2025-06-05T13:40:00.000000000", - "2025-06-05T13:41:00.000000000", - "2025-06-05T13:42:00.000000000", - "2025-06-05T13:43:00.000000000", - "2025-06-05T13:44:00.000000000", - "2025-06-05T13:45:00.000000000", - "2025-06-05T13:46:00.000000000", - "2025-06-05T13:47:00.000000000", - "2025-06-05T13:48:00.000000000", - "2025-06-05T13:49:00.000000000", - "2025-06-05T13:50:00.000000000", - "2025-06-05T13:51:00.000000000", - "2025-06-05T13:52:00.000000000", - "2025-06-05T13:53:00.000000000", - "2025-06-05T13:54:00.000000000", - "2025-06-05T13:55:00.000000000", - "2025-06-05T13:56:00.000000000", - "2025-06-05T13:57:00.000000000", - "2025-06-05T13:58:00.000000000", - "2025-06-05T13:59:00.000000000", - "2025-06-05T14:00:00.000000000", - "2025-06-05T14:01:00.000000000", - "2025-06-05T14:02:00.000000000", - "2025-06-05T14:03:00.000000000", - "2025-06-05T14:04:00.000000000", - "2025-06-05T14:05:00.000000000", - "2025-06-05T14:06:00.000000000", - "2025-06-05T14:07:00.000000000", - "2025-06-05T14:08:00.000000000", - "2025-06-05T14:09:00.000000000", - "2025-06-05T14:10:00.000000000", - "2025-06-05T14:11:00.000000000", - "2025-06-05T14:12:00.000000000", - "2025-06-05T14:13:00.000000000", - "2025-06-05T14:14:00.000000000", - "2025-06-05T14:15:00.000000000", - "2025-06-05T14:16:00.000000000", - "2025-06-05T14:17:00.000000000", - "2025-06-05T14:18:00.000000000", - "2025-06-05T14:19:00.000000000", - "2025-06-05T14:20:00.000000000", - "2025-06-05T14:21:00.000000000", - "2025-06-05T14:22:00.000000000", - "2025-06-05T14:23:00.000000000", - "2025-06-05T14:24:00.000000000", - "2025-06-05T14:25:00.000000000", - "2025-06-05T14:26:00.000000000", - "2025-06-05T14:27:00.000000000", - "2025-06-05T14:28:00.000000000", - "2025-06-05T14:29:00.000000000", - "2025-06-05T14:30:00.000000000", - "2025-06-05T14:31:00.000000000", - "2025-06-05T14:32:00.000000000", - "2025-06-05T14:33:00.000000000", - "2025-06-05T14:34:00.000000000", - "2025-06-05T14:35:00.000000000", - "2025-06-05T14:36:00.000000000", - "2025-06-05T14:37:00.000000000", - "2025-06-05T14:38:00.000000000", - "2025-06-05T14:39:00.000000000", - "2025-06-05T14:40:00.000000000", - "2025-06-05T14:41:00.000000000", - "2025-06-05T14:42:00.000000000", - "2025-06-05T14:43:00.000000000", - "2025-06-05T14:44:00.000000000", - "2025-06-05T14:45:00.000000000", - "2025-06-05T14:46:00.000000000", - "2025-06-05T14:47:00.000000000", - "2025-06-05T14:48:00.000000000", - "2025-06-05T14:49:00.000000000", - "2025-06-05T14:50:00.000000000", - "2025-06-05T14:51:00.000000000", - "2025-06-05T14:52:00.000000000", - "2025-06-05T14:53:00.000000000", - "2025-06-05T14:54:00.000000000", - "2025-06-05T14:55:00.000000000", - "2025-06-05T14:56:00.000000000", - "2025-06-05T14:57:00.000000000", - "2025-06-05T14:58:00.000000000", - "2025-06-05T14:59:00.000000000", - "2025-06-05T15:00:00.000000000", - "2025-06-05T15:01:00.000000000", - "2025-06-05T15:02:00.000000000", - "2025-06-05T15:03:00.000000000", - "2025-06-05T15:04:00.000000000", - "2025-06-05T15:05:00.000000000", - "2025-06-05T15:06:00.000000000", - "2025-06-05T15:07:00.000000000", - "2025-06-05T15:08:00.000000000", - "2025-06-05T15:09:00.000000000", - "2025-06-05T15:10:00.000000000", - "2025-06-05T15:11:00.000000000", - "2025-06-05T15:12:00.000000000", - "2025-06-05T15:13:00.000000000", - "2025-06-05T15:14:00.000000000", - "2025-06-05T15:15:00.000000000", - "2025-06-05T15:16:00.000000000", - "2025-06-05T15:17:00.000000000", - "2025-06-05T15:18:00.000000000", - "2025-06-05T15:19:00.000000000", - "2025-06-05T15:20:00.000000000", - "2025-06-05T15:21:00.000000000", - "2025-06-05T15:22:00.000000000", - "2025-06-05T15:23:00.000000000", - "2025-06-05T15:24:00.000000000", - "2025-06-05T15:25:00.000000000", - "2025-06-05T15:26:00.000000000", - "2025-06-05T15:27:00.000000000", - "2025-06-05T15:28:00.000000000", - "2025-06-05T15:29:00.000000000", - "2025-06-05T15:30:00.000000000", - "2025-06-05T15:31:00.000000000", - "2025-06-05T15:32:00.000000000", - "2025-06-05T15:33:00.000000000", - "2025-06-05T15:34:00.000000000", - "2025-06-05T15:35:00.000000000", - "2025-06-05T15:36:00.000000000", - "2025-06-05T15:37:00.000000000", - "2025-06-05T15:38:00.000000000", - "2025-06-05T15:39:00.000000000", - "2025-06-05T15:40:00.000000000", - "2025-06-05T15:41:00.000000000", - "2025-06-05T15:42:00.000000000", - "2025-06-05T15:43:00.000000000", - "2025-06-05T15:44:00.000000000", - "2025-06-05T15:45:00.000000000", - "2025-06-05T15:46:00.000000000", - "2025-06-05T15:47:00.000000000", - "2025-06-05T15:48:00.000000000", - "2025-06-05T15:49:00.000000000", - "2025-06-05T15:50:00.000000000", - "2025-06-05T15:51:00.000000000", - "2025-06-05T15:52:00.000000000", - "2025-06-05T15:53:00.000000000", - "2025-06-05T15:54:00.000000000", - "2025-06-05T15:55:00.000000000", - "2025-06-05T15:56:00.000000000", - "2025-06-05T15:57:00.000000000", - "2025-06-05T15:58:00.000000000", - "2025-06-05T15:59:00.000000000", - "2025-06-05T16:00:00.000000000", - "2025-06-05T16:01:00.000000000", - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:03:00.000000000", - "2025-06-05T16:04:00.000000000", - "2025-06-05T16:05:00.000000000", - "2025-06-05T16:06:00.000000000", - "2025-06-05T16:07:00.000000000", - "2025-06-05T16:08:00.000000000", - "2025-06-05T16:09:00.000000000", - "2025-06-05T16:10:00.000000000", - "2025-06-05T16:11:00.000000000", - "2025-06-05T16:12:00.000000000", - "2025-06-05T16:13:00.000000000", - "2025-06-05T16:14:00.000000000", - "2025-06-05T16:15:00.000000000", - "2025-06-05T16:16:00.000000000", - "2025-06-05T16:17:00.000000000", - "2025-06-05T16:18:00.000000000", - "2025-06-05T16:19:00.000000000", - "2025-06-05T16:20:00.000000000", - "2025-06-05T16:21:00.000000000", - "2025-06-05T16:22:00.000000000", - "2025-06-05T16:23:00.000000000", - "2025-06-05T16:24:00.000000000", - "2025-06-05T16:25:00.000000000", - "2025-06-05T16:26:00.000000000", - "2025-06-05T16:27:00.000000000", - "2025-06-05T16:28:00.000000000", - "2025-06-05T16:29:00.000000000", - "2025-06-05T16:30:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T16:32:00.000000000", - "2025-06-05T16:33:00.000000000", - "2025-06-05T16:34:00.000000000", - "2025-06-05T16:35:00.000000000", - "2025-06-05T16:36:00.000000000", - "2025-06-05T16:37:00.000000000", - "2025-06-05T16:38:00.000000000", - "2025-06-05T16:39:00.000000000", - "2025-06-05T16:40:00.000000000", - "2025-06-05T16:41:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T16:43:00.000000000", - "2025-06-05T16:44:00.000000000", - "2025-06-05T16:45:00.000000000", - "2025-06-05T16:46:00.000000000", - "2025-06-05T16:47:00.000000000", - "2025-06-05T16:48:00.000000000", - "2025-06-05T16:49:00.000000000", - "2025-06-05T16:50:00.000000000", - "2025-06-05T16:51:00.000000000", - "2025-06-05T16:52:00.000000000", - "2025-06-05T16:53:00.000000000", - "2025-06-05T16:54:00.000000000", - "2025-06-05T16:55:00.000000000", - "2025-06-05T16:56:00.000000000", - "2025-06-05T16:57:00.000000000", - "2025-06-05T16:58:00.000000000", - "2025-06-05T16:59:00.000000000", - "2025-06-05T17:00:00.000000000", - "2025-06-05T17:01:00.000000000", - "2025-06-05T17:02:00.000000000", - "2025-06-05T17:03:00.000000000", - "2025-06-05T17:04:00.000000000", - "2025-06-05T17:05:00.000000000", - "2025-06-05T17:06:00.000000000", - "2025-06-05T17:07:00.000000000", - "2025-06-05T17:08:00.000000000", - "2025-06-05T17:09:00.000000000", - "2025-06-05T17:10:00.000000000", - "2025-06-05T17:11:00.000000000", - "2025-06-05T17:12:00.000000000", - "2025-06-05T17:13:00.000000000", - "2025-06-05T17:14:00.000000000", - "2025-06-05T17:15:00.000000000", - "2025-06-05T17:16:00.000000000", - "2025-06-05T17:17:00.000000000", - "2025-06-05T17:18:00.000000000", - "2025-06-05T17:19:00.000000000", - "2025-06-05T17:20:00.000000000", - "2025-06-05T17:21:00.000000000", - "2025-06-05T17:22:00.000000000", - "2025-06-05T17:23:00.000000000", - "2025-06-05T17:24:00.000000000", - "2025-06-05T17:25:00.000000000", - "2025-06-05T17:26:00.000000000", - "2025-06-05T17:27:00.000000000", - "2025-06-05T17:28:00.000000000", - "2025-06-05T17:29:00.000000000", - "2025-06-05T17:30:00.000000000", - "2025-06-05T17:31:00.000000000", - "2025-06-05T17:32:00.000000000", - "2025-06-05T17:33:00.000000000", - "2025-06-05T17:34:00.000000000", - "2025-06-05T17:35:00.000000000", - "2025-06-05T17:36:00.000000000", - "2025-06-05T17:37:00.000000000", - "2025-06-05T17:38:00.000000000", - "2025-06-05T17:39:00.000000000", - "2025-06-05T17:40:00.000000000", - "2025-06-05T17:41:00.000000000", - "2025-06-05T17:42:00.000000000", - "2025-06-05T17:43:00.000000000", - "2025-06-05T17:44:00.000000000", - "2025-06-05T17:45:00.000000000", - "2025-06-05T17:46:00.000000000", - "2025-06-05T17:47:00.000000000", - "2025-06-05T17:48:00.000000000", - "2025-06-05T17:49:00.000000000", - "2025-06-05T17:50:00.000000000", - "2025-06-05T17:51:00.000000000", - "2025-06-05T17:52:00.000000000", - "2025-06-05T17:53:00.000000000", - "2025-06-05T17:54:00.000000000", - "2025-06-05T17:55:00.000000000", - "2025-06-05T17:56:00.000000000", - "2025-06-05T17:57:00.000000000", - "2025-06-05T17:58:00.000000000", - "2025-06-05T17:59:00.000000000", - "2025-06-05T18:00:00.000000000", - "2025-06-05T18:01:00.000000000", - "2025-06-05T18:02:00.000000000", - "2025-06-05T18:03:00.000000000", - "2025-06-05T18:04:00.000000000", - "2025-06-05T18:05:00.000000000", - "2025-06-05T18:06:00.000000000", - "2025-06-05T18:07:00.000000000", - "2025-06-05T18:08:00.000000000", - "2025-06-05T18:09:00.000000000", - "2025-06-05T18:10:00.000000000", - "2025-06-05T18:11:00.000000000", - "2025-06-05T18:12:00.000000000", - "2025-06-05T18:13:00.000000000", - "2025-06-05T18:14:00.000000000", - "2025-06-05T18:15:00.000000000", - "2025-06-05T18:16:00.000000000", - "2025-06-05T18:17:00.000000000", - "2025-06-05T18:18:00.000000000", - "2025-06-05T18:19:00.000000000", - "2025-06-05T18:20:00.000000000", - "2025-06-05T18:21:00.000000000", - "2025-06-05T18:22:00.000000000", - "2025-06-05T18:23:00.000000000", - "2025-06-05T18:24:00.000000000", - "2025-06-05T18:25:00.000000000", - "2025-06-05T18:26:00.000000000", - "2025-06-05T18:27:00.000000000", - "2025-06-05T18:28:00.000000000", - "2025-06-05T18:29:00.000000000", - "2025-06-05T18:30:00.000000000", - "2025-06-05T18:31:00.000000000", - "2025-06-05T18:32:00.000000000", - "2025-06-05T18:33:00.000000000", - "2025-06-05T18:34:00.000000000", - "2025-06-05T18:35:00.000000000", - "2025-06-05T18:36:00.000000000", - "2025-06-05T18:37:00.000000000", - "2025-06-05T18:38:00.000000000", - "2025-06-05T18:39:00.000000000", - "2025-06-05T18:40:00.000000000", - "2025-06-05T18:41:00.000000000", - "2025-06-05T18:42:00.000000000", - "2025-06-05T18:43:00.000000000", - "2025-06-05T18:44:00.000000000", - "2025-06-05T18:45:00.000000000", - "2025-06-05T18:46:00.000000000", - "2025-06-05T18:47:00.000000000", - "2025-06-05T18:48:00.000000000", - "2025-06-05T18:49:00.000000000", - "2025-06-05T18:50:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T18:52:00.000000000", - "2025-06-05T18:53:00.000000000", - "2025-06-05T18:54:00.000000000", - "2025-06-05T18:55:00.000000000", - "2025-06-05T18:56:00.000000000", - "2025-06-05T18:57:00.000000000", - "2025-06-05T18:58:00.000000000", - "2025-06-05T18:59:00.000000000", - "2025-06-05T19:00:00.000000000", - "2025-06-05T19:01:00.000000000", - "2025-06-05T19:02:00.000000000", - "2025-06-05T19:03:00.000000000", - "2025-06-05T19:04:00.000000000", - "2025-06-05T19:05:00.000000000", - "2025-06-05T19:06:00.000000000", - "2025-06-05T19:07:00.000000000", - "2025-06-05T19:08:00.000000000", - "2025-06-05T19:09:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:11:00.000000000", - "2025-06-05T19:12:00.000000000", - "2025-06-05T19:13:00.000000000", - "2025-06-05T19:14:00.000000000", - "2025-06-05T19:15:00.000000000", - "2025-06-05T19:16:00.000000000", - "2025-06-05T19:17:00.000000000", - "2025-06-05T19:18:00.000000000", - "2025-06-05T19:19:00.000000000", - "2025-06-05T19:20:00.000000000", - "2025-06-05T19:21:00.000000000", - "2025-06-05T19:22:00.000000000", - "2025-06-05T19:23:00.000000000", - "2025-06-05T19:24:00.000000000", - "2025-06-05T19:25:00.000000000", - "2025-06-05T19:26:00.000000000", - "2025-06-05T19:27:00.000000000", - "2025-06-05T19:28:00.000000000", - "2025-06-05T19:29:00.000000000", - "2025-06-05T19:30:00.000000000", - "2025-06-05T19:31:00.000000000", - "2025-06-05T19:32:00.000000000", - "2025-06-05T19:33:00.000000000", - "2025-06-05T19:34:00.000000000", - "2025-06-05T19:35:00.000000000", - "2025-06-05T19:36:00.000000000", - "2025-06-05T19:37:00.000000000", - "2025-06-05T19:38:00.000000000", - "2025-06-05T19:39:00.000000000", - "2025-06-05T19:40:00.000000000", - "2025-06-05T19:41:00.000000000", - "2025-06-05T19:42:00.000000000", - "2025-06-05T19:43:00.000000000", - "2025-06-05T19:44:00.000000000", - "2025-06-05T19:45:00.000000000", - "2025-06-05T19:46:00.000000000", - "2025-06-05T19:47:00.000000000", - "2025-06-05T19:48:00.000000000", - "2025-06-05T19:49:00.000000000", - "2025-06-05T19:50:00.000000000", - "2025-06-05T19:51:00.000000000", - "2025-06-05T19:52:00.000000000", - "2025-06-05T19:53:00.000000000", - "2025-06-05T19:54:00.000000000", - "2025-06-05T19:55:00.000000000", - "2025-06-05T19:56:00.000000000", - "2025-06-05T19:57:00.000000000", - "2025-06-05T19:58:00.000000000", - "2025-06-05T19:59:00.000000000", - "2025-06-05T20:00:00.000000000" - ], - "xaxis": "x", - "y": { - "bdata": "AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/eK9K+pck8D+WjVR9QWjqP2+V5QVt+PA/2braugEs9D8u/aiRcrTwPwsnQihYQfo/7MRSm85Y+D/Qlhhaf6v8P/Odar/gyfk/YePC8lbj+j/jgUn0MtEAQBZrdyPkq/w/UnaIKjJ8/D9yBZNln0AAQJV8eN7QIf0/llLBJxv3AEAZA24AY6D9P2QsnEXBTAJAC7RRh1PyAEATS7BM2OwAQBnMCIaNDgFA/u15Ntl1AECqi8mZ8FD9P6T1snbaKf4/QgHhABUr/z+9wOzWpzAAQKu/n6tYL/s/9EjrvXyG9z8TdUtLlHTzP76Idvv/SvQ/AHuN0Mlx9D8JKN46gI7xP0Z7Xc4g1ec/zhbFbcps4D/D56Xsk6/uP8wTdft2Uek/hiGkspqi8D89ru8fQHPwP8sLfHjMtvA/9jSpBeFo6j/VWS3eGszwPzTt8vnwOPA/zHnJyHCv8D/7eoElfL/yPyfPWqmY9vQ/nkqaRV3m8T83poHfb6XtP9qPisPXCuI/W23EXLR42j+/9BjvHqDHP/jx8o+/Z+E/riG6xNyE6j/XMkWQBdXiPx94HDlVHu8/eASgQ/AC8D91WwVIOkjqP99VvlKSqPE/j0c5GVnD7z8XP19HWxv7P+8sq20YVPs/HjnL623N+T+0li1kPJAAQAgJXrOFR/0/uSkQ6Ml7/D+sFQ1IrbP6P+6s6NXyF/o/t2739UpZ/T95X5/wolr0P9Ebys4uZvM/8ab88bFK8z+VY9bs5fn1P7OssB26yvE/JnPZzCZp6D8zcWAlzoK3P48T/DrgjtM/UfnI9gY+8z/wT9kKH5kBQIiA2wfK+P4/LUnV58JyAUAMaRLA+JP+P4kT8Al7jQBATL15ccgrA0C2DYSZ3PQHQDgq4Xo+XQRA+jK/82E5BEAcgkcQnMkGQM95xZ7q9ARAIdAw2zfaCkDzNt8h6eoMQO2qucTJrAlAybdV55OTBUAUG5eLT5gHQPyYst4PoghAdTW9rfCwAUA9cWBfTJwAQPQhettMowFAwFAUOqXM/j8zewCG9nYBQFxudkg5kABAT8+pnMvEAkD9ykf+nxUCQMI+807DHgJAs/u8kkymA0B+zMB4bEkEQCyjH0wy3QJA98ERS223AUDk5DcIwBQDQCrd6LVhlgNAHm6co7yHAkAIAPeMOxgBQGPGmFpHbABAqk/Nja09/j9y+Q4AmX37Pzz9al0Bj/w/H7lFljlv+z+lOGk6AU/5P3sFE+ux2fU/J7K45DAa9T+O/F4sBIvzP8eIHNU0VvQ/UOd6fdPi9D/HkDDHh5HyP9j/ATGzXfA/rIZDBJ8U8D/ta8azKqHuP05cp4kBqPA/Nbq9CyOZ7z8Ak58QnWXwP43Xi8SkAvE/2wggH34z8T+cQDuNxZntP/V8Xz2DQOw/kiAtm9m17D/mr2BAG5HkP3tlRN5osOU/DZ+0Bku96D8rrKM0xcznP9LufWXOMec/YaRrOgh66D+GmlCLNVHnPxtqZNbliOo/bXnCQsku7j9qSsT0eGbwPxuYSvon6PE/ivHL/DPI8D/uKuzS33zyP7oDBqC5rfA/nCc+r9h+8j/56if0xsX1P7er8QqvQvQ/IIBcHvNZ8j9BZcnJmgPyPzPSIVofXPI/59rAEH739j9XAeasOzH2P59SdX3LOPU/5bqLvzfV9T/vwfoJntj0P7O7UpFCXPQ/gEFgTnxN9T+3/lcEfsr0P4UKRGoDRvk/2IThOz7c9j9NWgTKdCf5Pxzk/myIvvY/oBSo9CAq+j/7UBYJbtb4P/4JiM3/RPk/3R2EDvzb+T9UPmaVjYz4P8+MIi9/Nfs/sCs62GKh+z9BIyQCNZ/8P/WmIvuzsvk/POSrxxiN+T+2kg2p9Hz3Py+OcgK9NPo/hNYhuIXG+T+djfit+an4P5y2DLpJn/k/27PFxeFH+z+fMZp5WN35PwvHrsce6fs/t9Zrrp/X+D+2f0DQwE34P7kdBDog4Pg/tHbUKbfY+j+1pmjE8Cj6PwVPuc+nO/w/98ypLFQB+z8nankr69f5P9uynowRv/o/Tdc1DKEp+j8pzBz8r0b6P+xUYxOsPP0/ynEw3N6D/D8QuH9lRJH4P1PNbqlaVfk/oSK/lN2r/D/wioYFezb6P7WkRP69lf8/W254kIDrAECC777IypL/P6tU0Td6VAJAyuaPX4DpAUB4XFmhmH/+P3CE01Euv/s/ei8DZZ3j+j8+eTNOKIr9P4ZiNOX4Svk/T02wWSrE+D/edfj6MB/6PyLK+CHij/g/sPK+mVJW8z9WaG2Nl23zP6ugimJLKvM/nuqbszYu8z/o0Ej6CxfxP5VMywf2HvI/B1iliW1X8T88NXNFVVbvP2+NyHTQJPI/jWIFp5+Q8j9ZCLTk6zvyP0fBYpIgIPE/QTKi6hcNAEByVC9a9XTmP1bSEt9mSOg/TL6mwlrQ5z8vqC+ancPwP5xUUychsvA/dW2w+Yy47z/fQrdFmYbwPwd6keIeFPE/w0fBZjDA8D8SGfnvpUD2P8MfD73LcvM/u5u16M3M8z+ju+ceAlX1P+lywvH7DvU/oinsacO28z8nQSe3f0byP49NRKhsFfY/lmBmZm0v9j/pPXMwnFj2P0qN0VPko/U/d5NdqxJ69z81CjBYFcTzPxdKvSNQ8fU/Q3WEB5938j9Y9Pl96qPyPzeR1z3Bj/I/aGdH8hcq8j8eKqaT+d7wP1yN7LV+fe0/h6ORO6ne7j8jDWRdNXbmP5Q8tlO4P+I/7DNvMFm53j9qxtGBcQzPPzVRbMTaDM0/3/pMGhnL4D++pJ75YOXkP3WL9vCyduE/6rVa6CdG4j+8lOIA7sXTPx3H6G5HVcI/lduIR5CJ0j88L8xmFczcPzlQFhFyI4M/tm0Iruck2D8=", - "dtype": "f8" - }, - "yaxis": "y" - }, - { - "marker": { - "color": "red", - "size": 10, - "symbol": "circle" - }, - "mode": "markers", - "name": "BUY OPEN", - "type": "scatter", - "x": [ - "2025-06-05T15:40:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T16:46:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T19:15:00.000000000" - ], - "xaxis": "x2", - "y": [ - 1, - 5, - 8, - 13, - 17 - ], - "yaxis": "y2" - }, - { - "marker": { - "color": "pink", - "size": 10, - "symbol": "circle" - }, - "mode": "markers", - "name": "BUY CLOSE", - "type": "scatter", - "x": [ - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T17:34:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:16:00.000000000" - ], - "xaxis": "x2", - "y": [ - 2, - 6, - 11, - 14, - 18 - ], - "yaxis": "y2" - }, - { - "marker": { - "color": "blue", - "size": 10, - "symbol": "circle" - }, - "mode": "markers", - "name": "SELL OPEN", - "type": "scatter", - "x": [ - "2025-06-05T15:40:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T16:46:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T19:15:00.000000000" - ], - "xaxis": "x2", - "y": [ - 0, - 4, - 9, - 12, - 16 - ], - "yaxis": "y2" - }, - { - "marker": { - "color": "purple", - "size": 10, - "symbol": "circle" - }, - "mode": "markers", - "name": "SELL CLOSE", - "type": "scatter", - "x": [ - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T17:34:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:16:00.000000000" - ], - "xaxis": "x2", - "y": [ - 3, - 7, - 10, - 15, - 19 - ], - "yaxis": "y2" - }, - { - "line": { - "color": "blue", - "width": 2 - }, - "name": "COIN Price", - "opacity": 0.8, - "type": "scatter", - "x": [ - "2025-06-05T13:30:00.000000000", - "2025-06-05T13:31:00.000000000", - "2025-06-05T13:32:00.000000000", - "2025-06-05T13:33:00.000000000", - "2025-06-05T13:34:00.000000000", - "2025-06-05T13:35:00.000000000", - "2025-06-05T13:36:00.000000000", - "2025-06-05T13:37:00.000000000", - "2025-06-05T13:38:00.000000000", - "2025-06-05T13:39:00.000000000", - "2025-06-05T13:40:00.000000000", - "2025-06-05T13:41:00.000000000", - "2025-06-05T13:42:00.000000000", - "2025-06-05T13:43:00.000000000", - "2025-06-05T13:44:00.000000000", - "2025-06-05T13:45:00.000000000", - "2025-06-05T13:46:00.000000000", - "2025-06-05T13:47:00.000000000", - "2025-06-05T13:48:00.000000000", - "2025-06-05T13:49:00.000000000", - "2025-06-05T13:50:00.000000000", - "2025-06-05T13:51:00.000000000", - "2025-06-05T13:52:00.000000000", - "2025-06-05T13:53:00.000000000", - "2025-06-05T13:54:00.000000000", - "2025-06-05T13:55:00.000000000", - "2025-06-05T13:56:00.000000000", - "2025-06-05T13:57:00.000000000", - "2025-06-05T13:58:00.000000000", - "2025-06-05T13:59:00.000000000", - "2025-06-05T14:00:00.000000000", - "2025-06-05T14:01:00.000000000", - "2025-06-05T14:02:00.000000000", - "2025-06-05T14:03:00.000000000", - "2025-06-05T14:04:00.000000000", - "2025-06-05T14:05:00.000000000", - "2025-06-05T14:06:00.000000000", - "2025-06-05T14:07:00.000000000", - "2025-06-05T14:08:00.000000000", - "2025-06-05T14:09:00.000000000", - "2025-06-05T14:10:00.000000000", - "2025-06-05T14:11:00.000000000", - "2025-06-05T14:12:00.000000000", - "2025-06-05T14:13:00.000000000", - "2025-06-05T14:14:00.000000000", - "2025-06-05T14:15:00.000000000", - "2025-06-05T14:16:00.000000000", - "2025-06-05T14:17:00.000000000", - "2025-06-05T14:18:00.000000000", - "2025-06-05T14:19:00.000000000", - "2025-06-05T14:20:00.000000000", - "2025-06-05T14:21:00.000000000", - "2025-06-05T14:22:00.000000000", - "2025-06-05T14:23:00.000000000", - "2025-06-05T14:24:00.000000000", - "2025-06-05T14:25:00.000000000", - "2025-06-05T14:26:00.000000000", - "2025-06-05T14:27:00.000000000", - "2025-06-05T14:28:00.000000000", - "2025-06-05T14:29:00.000000000", - "2025-06-05T14:30:00.000000000", - "2025-06-05T14:31:00.000000000", - "2025-06-05T14:32:00.000000000", - "2025-06-05T14:33:00.000000000", - "2025-06-05T14:34:00.000000000", - "2025-06-05T14:35:00.000000000", - "2025-06-05T14:36:00.000000000", - "2025-06-05T14:37:00.000000000", - "2025-06-05T14:38:00.000000000", - "2025-06-05T14:39:00.000000000", - "2025-06-05T14:40:00.000000000", - "2025-06-05T14:41:00.000000000", - "2025-06-05T14:42:00.000000000", - "2025-06-05T14:43:00.000000000", - "2025-06-05T14:44:00.000000000", - "2025-06-05T14:45:00.000000000", - "2025-06-05T14:46:00.000000000", - "2025-06-05T14:47:00.000000000", - "2025-06-05T14:48:00.000000000", - "2025-06-05T14:49:00.000000000", - "2025-06-05T14:50:00.000000000", - "2025-06-05T14:51:00.000000000", - "2025-06-05T14:52:00.000000000", - "2025-06-05T14:53:00.000000000", - "2025-06-05T14:54:00.000000000", - "2025-06-05T14:55:00.000000000", - "2025-06-05T14:56:00.000000000", - "2025-06-05T14:57:00.000000000", - "2025-06-05T14:58:00.000000000", - "2025-06-05T14:59:00.000000000", - "2025-06-05T15:00:00.000000000", - "2025-06-05T15:01:00.000000000", - "2025-06-05T15:02:00.000000000", - "2025-06-05T15:03:00.000000000", - "2025-06-05T15:04:00.000000000", - "2025-06-05T15:05:00.000000000", - "2025-06-05T15:06:00.000000000", - "2025-06-05T15:07:00.000000000", - "2025-06-05T15:08:00.000000000", - "2025-06-05T15:09:00.000000000", - "2025-06-05T15:10:00.000000000", - "2025-06-05T15:11:00.000000000", - "2025-06-05T15:12:00.000000000", - "2025-06-05T15:13:00.000000000", - "2025-06-05T15:14:00.000000000", - "2025-06-05T15:15:00.000000000", - "2025-06-05T15:16:00.000000000", - "2025-06-05T15:17:00.000000000", - "2025-06-05T15:18:00.000000000", - "2025-06-05T15:19:00.000000000", - "2025-06-05T15:20:00.000000000", - "2025-06-05T15:21:00.000000000", - "2025-06-05T15:22:00.000000000", - "2025-06-05T15:23:00.000000000", - "2025-06-05T15:24:00.000000000", - "2025-06-05T15:25:00.000000000", - "2025-06-05T15:26:00.000000000", - "2025-06-05T15:27:00.000000000", - "2025-06-05T15:28:00.000000000", - "2025-06-05T15:29:00.000000000", - "2025-06-05T15:30:00.000000000", - "2025-06-05T15:31:00.000000000", - "2025-06-05T15:32:00.000000000", - "2025-06-05T15:33:00.000000000", - "2025-06-05T15:34:00.000000000", - "2025-06-05T15:35:00.000000000", - "2025-06-05T15:36:00.000000000", - "2025-06-05T15:37:00.000000000", - "2025-06-05T15:38:00.000000000", - "2025-06-05T15:39:00.000000000", - "2025-06-05T15:40:00.000000000", - "2025-06-05T15:41:00.000000000", - "2025-06-05T15:42:00.000000000", - "2025-06-05T15:43:00.000000000", - "2025-06-05T15:44:00.000000000", - "2025-06-05T15:45:00.000000000", - "2025-06-05T15:46:00.000000000", - "2025-06-05T15:47:00.000000000", - "2025-06-05T15:48:00.000000000", - "2025-06-05T15:49:00.000000000", - "2025-06-05T15:50:00.000000000", - "2025-06-05T15:51:00.000000000", - "2025-06-05T15:52:00.000000000", - "2025-06-05T15:53:00.000000000", - "2025-06-05T15:54:00.000000000", - "2025-06-05T15:55:00.000000000", - "2025-06-05T15:56:00.000000000", - "2025-06-05T15:57:00.000000000", - "2025-06-05T15:58:00.000000000", - "2025-06-05T15:59:00.000000000", - "2025-06-05T16:00:00.000000000", - "2025-06-05T16:01:00.000000000", - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:03:00.000000000", - "2025-06-05T16:04:00.000000000", - "2025-06-05T16:05:00.000000000", - "2025-06-05T16:06:00.000000000", - "2025-06-05T16:07:00.000000000", - "2025-06-05T16:08:00.000000000", - "2025-06-05T16:09:00.000000000", - "2025-06-05T16:10:00.000000000", - "2025-06-05T16:11:00.000000000", - "2025-06-05T16:12:00.000000000", - "2025-06-05T16:13:00.000000000", - "2025-06-05T16:14:00.000000000", - "2025-06-05T16:15:00.000000000", - "2025-06-05T16:16:00.000000000", - "2025-06-05T16:17:00.000000000", - "2025-06-05T16:18:00.000000000", - "2025-06-05T16:19:00.000000000", - "2025-06-05T16:20:00.000000000", - "2025-06-05T16:21:00.000000000", - "2025-06-05T16:22:00.000000000", - "2025-06-05T16:23:00.000000000", - "2025-06-05T16:24:00.000000000", - "2025-06-05T16:25:00.000000000", - "2025-06-05T16:26:00.000000000", - "2025-06-05T16:27:00.000000000", - "2025-06-05T16:28:00.000000000", - "2025-06-05T16:29:00.000000000", - "2025-06-05T16:30:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T16:32:00.000000000", - "2025-06-05T16:33:00.000000000", - "2025-06-05T16:34:00.000000000", - "2025-06-05T16:35:00.000000000", - "2025-06-05T16:36:00.000000000", - "2025-06-05T16:37:00.000000000", - "2025-06-05T16:38:00.000000000", - "2025-06-05T16:39:00.000000000", - "2025-06-05T16:40:00.000000000", - "2025-06-05T16:41:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T16:43:00.000000000", - "2025-06-05T16:44:00.000000000", - "2025-06-05T16:45:00.000000000", - "2025-06-05T16:46:00.000000000", - "2025-06-05T16:47:00.000000000", - "2025-06-05T16:48:00.000000000", - "2025-06-05T16:49:00.000000000", - "2025-06-05T16:50:00.000000000", - "2025-06-05T16:51:00.000000000", - "2025-06-05T16:52:00.000000000", - "2025-06-05T16:53:00.000000000", - "2025-06-05T16:54:00.000000000", - "2025-06-05T16:55:00.000000000", - "2025-06-05T16:56:00.000000000", - "2025-06-05T16:57:00.000000000", - "2025-06-05T16:58:00.000000000", - "2025-06-05T16:59:00.000000000", - "2025-06-05T17:00:00.000000000", - "2025-06-05T17:01:00.000000000", - "2025-06-05T17:02:00.000000000", - "2025-06-05T17:03:00.000000000", - "2025-06-05T17:04:00.000000000", - "2025-06-05T17:05:00.000000000", - "2025-06-05T17:06:00.000000000", - "2025-06-05T17:07:00.000000000", - "2025-06-05T17:08:00.000000000", - "2025-06-05T17:09:00.000000000", - "2025-06-05T17:10:00.000000000", - "2025-06-05T17:11:00.000000000", - "2025-06-05T17:12:00.000000000", - "2025-06-05T17:13:00.000000000", - "2025-06-05T17:14:00.000000000", - "2025-06-05T17:15:00.000000000", - "2025-06-05T17:16:00.000000000", - "2025-06-05T17:17:00.000000000", - "2025-06-05T17:18:00.000000000", - "2025-06-05T17:19:00.000000000", - "2025-06-05T17:20:00.000000000", - "2025-06-05T17:21:00.000000000", - "2025-06-05T17:22:00.000000000", - "2025-06-05T17:23:00.000000000", - "2025-06-05T17:24:00.000000000", - "2025-06-05T17:25:00.000000000", - "2025-06-05T17:26:00.000000000", - "2025-06-05T17:27:00.000000000", - "2025-06-05T17:28:00.000000000", - "2025-06-05T17:29:00.000000000", - "2025-06-05T17:30:00.000000000", - "2025-06-05T17:31:00.000000000", - "2025-06-05T17:32:00.000000000", - "2025-06-05T17:33:00.000000000", - "2025-06-05T17:34:00.000000000", - "2025-06-05T17:35:00.000000000", - "2025-06-05T17:36:00.000000000", - "2025-06-05T17:37:00.000000000", - "2025-06-05T17:38:00.000000000", - "2025-06-05T17:39:00.000000000", - "2025-06-05T17:40:00.000000000", - "2025-06-05T17:41:00.000000000", - "2025-06-05T17:42:00.000000000", - "2025-06-05T17:43:00.000000000", - "2025-06-05T17:44:00.000000000", - "2025-06-05T17:45:00.000000000", - "2025-06-05T17:46:00.000000000", - "2025-06-05T17:47:00.000000000", - "2025-06-05T17:48:00.000000000", - "2025-06-05T17:49:00.000000000", - "2025-06-05T17:50:00.000000000", - "2025-06-05T17:51:00.000000000", - "2025-06-05T17:52:00.000000000", - "2025-06-05T17:53:00.000000000", - "2025-06-05T17:54:00.000000000", - "2025-06-05T17:55:00.000000000", - "2025-06-05T17:56:00.000000000", - "2025-06-05T17:57:00.000000000", - "2025-06-05T17:58:00.000000000", - "2025-06-05T17:59:00.000000000", - "2025-06-05T18:00:00.000000000", - "2025-06-05T18:01:00.000000000", - "2025-06-05T18:02:00.000000000", - "2025-06-05T18:03:00.000000000", - "2025-06-05T18:04:00.000000000", - "2025-06-05T18:05:00.000000000", - "2025-06-05T18:06:00.000000000", - "2025-06-05T18:07:00.000000000", - "2025-06-05T18:08:00.000000000", - "2025-06-05T18:09:00.000000000", - "2025-06-05T18:10:00.000000000", - "2025-06-05T18:11:00.000000000", - "2025-06-05T18:12:00.000000000", - "2025-06-05T18:13:00.000000000", - "2025-06-05T18:14:00.000000000", - "2025-06-05T18:15:00.000000000", - "2025-06-05T18:16:00.000000000", - "2025-06-05T18:17:00.000000000", - "2025-06-05T18:18:00.000000000", - "2025-06-05T18:19:00.000000000", - "2025-06-05T18:20:00.000000000", - "2025-06-05T18:21:00.000000000", - "2025-06-05T18:22:00.000000000", - "2025-06-05T18:23:00.000000000", - "2025-06-05T18:24:00.000000000", - "2025-06-05T18:25:00.000000000", - "2025-06-05T18:26:00.000000000", - "2025-06-05T18:27:00.000000000", - "2025-06-05T18:28:00.000000000", - "2025-06-05T18:29:00.000000000", - "2025-06-05T18:30:00.000000000", - "2025-06-05T18:31:00.000000000", - "2025-06-05T18:32:00.000000000", - "2025-06-05T18:33:00.000000000", - "2025-06-05T18:34:00.000000000", - "2025-06-05T18:35:00.000000000", - "2025-06-05T18:36:00.000000000", - "2025-06-05T18:37:00.000000000", - "2025-06-05T18:38:00.000000000", - "2025-06-05T18:39:00.000000000", - "2025-06-05T18:40:00.000000000", - "2025-06-05T18:41:00.000000000", - "2025-06-05T18:42:00.000000000", - "2025-06-05T18:43:00.000000000", - "2025-06-05T18:44:00.000000000", - "2025-06-05T18:45:00.000000000", - "2025-06-05T18:46:00.000000000", - "2025-06-05T18:47:00.000000000", - "2025-06-05T18:48:00.000000000", - "2025-06-05T18:49:00.000000000", - "2025-06-05T18:50:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T18:52:00.000000000", - "2025-06-05T18:53:00.000000000", - "2025-06-05T18:54:00.000000000", - "2025-06-05T18:55:00.000000000", - "2025-06-05T18:56:00.000000000", - "2025-06-05T18:57:00.000000000", - "2025-06-05T18:58:00.000000000", - "2025-06-05T18:59:00.000000000", - "2025-06-05T19:00:00.000000000", - "2025-06-05T19:01:00.000000000", - "2025-06-05T19:02:00.000000000", - "2025-06-05T19:03:00.000000000", - "2025-06-05T19:04:00.000000000", - "2025-06-05T19:05:00.000000000", - "2025-06-05T19:06:00.000000000", - "2025-06-05T19:07:00.000000000", - "2025-06-05T19:08:00.000000000", - "2025-06-05T19:09:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:11:00.000000000", - "2025-06-05T19:12:00.000000000", - "2025-06-05T19:13:00.000000000", - "2025-06-05T19:14:00.000000000", - "2025-06-05T19:15:00.000000000", - "2025-06-05T19:16:00.000000000", - "2025-06-05T19:17:00.000000000", - "2025-06-05T19:18:00.000000000", - "2025-06-05T19:19:00.000000000", - "2025-06-05T19:20:00.000000000", - "2025-06-05T19:21:00.000000000", - "2025-06-05T19:22:00.000000000", - "2025-06-05T19:23:00.000000000", - "2025-06-05T19:24:00.000000000", - "2025-06-05T19:25:00.000000000", - "2025-06-05T19:26:00.000000000", - "2025-06-05T19:27:00.000000000", - "2025-06-05T19:28:00.000000000", - "2025-06-05T19:29:00.000000000", - "2025-06-05T19:30:00.000000000", - "2025-06-05T19:31:00.000000000", - "2025-06-05T19:32:00.000000000", - "2025-06-05T19:33:00.000000000", - "2025-06-05T19:34:00.000000000", - "2025-06-05T19:35:00.000000000", - "2025-06-05T19:36:00.000000000", - "2025-06-05T19:37:00.000000000", - "2025-06-05T19:38:00.000000000", - "2025-06-05T19:39:00.000000000", - "2025-06-05T19:40:00.000000000", - "2025-06-05T19:41:00.000000000", - "2025-06-05T19:42:00.000000000", - "2025-06-05T19:43:00.000000000", - "2025-06-05T19:44:00.000000000", - "2025-06-05T19:45:00.000000000", - "2025-06-05T19:46:00.000000000", - "2025-06-05T19:47:00.000000000", - "2025-06-05T19:48:00.000000000", - "2025-06-05T19:49:00.000000000", - "2025-06-05T19:50:00.000000000", - "2025-06-05T19:51:00.000000000", - "2025-06-05T19:52:00.000000000", - "2025-06-05T19:53:00.000000000", - "2025-06-05T19:54:00.000000000", - "2025-06-05T19:55:00.000000000", - "2025-06-05T19:56:00.000000000", - "2025-06-05T19:57:00.000000000", - "2025-06-05T19:58:00.000000000", - "2025-06-05T19:59:00.000000000", - "2025-06-05T20:00:00.000000000" - ], - "xaxis": "x3", - "y": { - "bdata": "rkfhehR2cEBcj8L1KJZwQPYoXI/Ce3BAAAAAAACEcEBI4XoUrmNwQJqZmZmZYXBAFK5H4Xo4cEDD9Shcj0JwQFCNl24ST3BApHA9CtcrcEAAAAAAADBwQK5H4XoUPnBAy6FFtvMtcEDsUbgehTNwQOC+DpwzLnBAIv32deAIcECPwvUoXANwQFK4HoXr229AKVyPwvXIb0ApXI/C9bBvQD0K16Nw1W9A16NwPQq3b0AK16NwPcJvQKRwPQrXy29APQrXo3C9b0BI4XoUrrtvQOcdp+hItm9AEhQ/xtyrb0BLWYY41tNvQEjhehSu329AAAAAAADQb0Bj7lpCPsBvQHE9CtejwG9AFK5H4XrUb0A9CtejcOlvQMP1KFyP6m9A9ihcj8LZb0DVeOkmMeBvQHsUrkfh7m9A/tR46Sbrb0Cn6Egu//tvQKg1zTtOAnBAcT0K16MEcEA9CtejcAVwQNejcD0KB3BAFK5H4XoEcECkcD0K1wNwQBZqTfOOAnBAH4XrUbj6b0BI4XoUrv9vQBSuR+F69G9ASOF6FK4FcEAzMzMzMxFwQDMzMzMzF3BAz/dT46UccEApXI/C9RpwQEa28/3UHHBAhetRuB4hcEDfT42Xbh1wQM3MzMzMIHBAuB6F61EYcEAzMzMzMxFwQIXrUbgeAXBAFK5H4XoGcEDFjzF3LQBwQOF6FK5H9W9APQrXo3AFcECF61G4Hg1wQKRwPQrXE3BAUrgehesXcEDhehSuRxFwQJtVn6utK3BAuB6F61EocEAK16NwPSpwQD0K16NwKXBA9ihcj8IlcEBI4XoUrjtwQJqZmZmZMXBAUrgehestcEAAAAAAACpwQOxRuB6FL3BAJJf/kH4ucECamZmZmSlwQHh6pSxDJXBAzczMzMwkcEBmZmZmZiZwQHE9CtejJHBAuB6F61EscEAAAAAAADBwQB+F61G4MnBAZmZmZmYucEAAAAAAAC5wQCcxCKwcNXBAzczMzMw0cEDD9ShcjzRwQBSuR+F6OHBAuB6F61E8cEAzMzMzMz9wQEjhehSuO3BAMzMzMzM9cEB7FK5H4TZwQAu1pnnHMXBAFmpN844zcEDXo3A9CjNwQGZmZmZmLnBAXI/C9SgwcEBI4XoUrjFwQB+F61G4MnBAZmZmZmZAcEB7FK5H4TpwQI/C9ShcO3BAMzMzMzM3cEC4HoXrUTxwQNejcD0KQ3BAUrgehetDcECuR+F6FEJwQFyPwvUoPHBA9ihcj8I9cEDD9Shcjz5wQHsUrkfhRnBASOF6FK5LcEDD9Shcj0ZwQIenV8oyQ3BArkfhehRGcEAAAAAAAEBwQFyPwvUoRHBAzczMzMxEcEB7FK5H4URwQKyt2F92Q3BAH4XrUbhCcEA9CtejcEdwQGZmZmZmPnBA9ihcj8I9cEAzMzMzM0dwQArXo3A9RnBArkfhehRAcEB7FK5H4T5wQPYoXI/CRXBAAAAAAABIcEAAAAAAAERwQJqZmZmZRXBAUrgehetJcEC4HoXrUUBwQI/C9ShcQ3BAZmZmZmZGcECamZmZmUVwQM3MzMzMTHBA16NwPQpLcEBcj8L1KEZwQM3MzMzMQHBAE/JBz2Y+cEC4HoXrUThwQGEyVTAqNnBANKK0N/gwcEAzMzMzMztwQAAAAAAAQHBARiV1AppEcEB1kxgEVkBwQBSuR+F6O3BAUrgehes1cECF61G4HjdwQDMzMzMzN3BAV+wvuyc0cECamZmZmTlwQLgehetROHBArkfhehQ2cEBcj8L1KCxwQJqZmZmZIXBAPQrXo3AhcEApXI/C9SBwQLgehetRKHBASZ2AJsIxcECPwvUoXCdwQNejcD0KN3BA7FG4HoUvcEBSuB6F6zNwQM3MzMzMMHBADXGsi9sxcECbVZ+rrTdwQLx0kxgEOXBAZmZmZmY6cEBSuB6F6zlwQK5H4XoUNnBAMEymCkY6cEDsUbgehTNwQNc07zhFNXBAYHZPHhY7cECkcD0K1y1wQPYoXI/CJXBAH4XrUbgecEDu68A5IxdwQDMzMzMzF3BAFK5H4XoUcECamZmZmQlwQEjhehSuAXBAVn2utmLjb0DsUbgehdNvQHsUrkfhvm9AKVyPwvWob0CF61G4HrVvQEjhehSux29AAAAAAACob0D3Bl+YTHlvQGZmZmZmhm9Aw/UoXI+Kb0CamZmZmYFvQOF6FK5HeW9A4XoUrkdZb0BI4XoUrkdvQMDsnjwsPm9A9ihcj8I9b0DXo3A9Ci9vQHZxGw3gPW9ArkfhehRmb0AfhetRuGZvQFK4HoXraW9APQrXo3Blb0AUrkfhenxvQOxRuB6Fi29AAAAAAACAb0B7FK5H4YpvQEjhehSuj29A4XoUrkeJb0CPwvUoXHtvQAAAAAAAgG9AMnctIR+Mb0BI4XoUrodvQHzysFBrem9AUrgehet5b0BMpgpGJXlvQPYoXI/CfW9AZmZmZmaOb0CuR+F6FIpvQOF6FK5HkW9AHVpkO9+Lb0D2KFyPwo1vQMP1KFyPkm9AA3gLJCiWb0A9CtejcJ1vQLgehetRkG9AmpmZmZmNb0C4HoXrUZBvQLbz/dR4m29AAAAAAACgb0DD9Shcj5pvQK5H4XoUlm9AuB6F61Gcb0DD9Shcj6JvQM3MzMzMnG9AodY07zidb0AAAAAAAKhvQJqZmZmZpW9APQrXo3Cdb0CPwvUoXK9vQPYoXI/CnW9AexSuR+GSb0BSuB6F64lvQD0K16NwhW9Aw/UoXI+Kb0CF61G4HoVvQG8Sg8DKeW9ANxrAWyBtb0B7FK5H4WpvQGZmZmZmbm9AJzEIrBxub0CqglFJnVpvQHWTGARWYm9A9ihcj8JNb0BxPQrXo0BvQBSuR+F6RG9A4XoUrkdZb0AzMzMzM1NvQD0K16NwVW9A4XoUrkdBb0DD9Shcj0JvQB+F61G4Pm9Aw/UoXI8ub0DRkVz+QyxvQOF6FK5HOW9AAAAAAABAb0CUh4Va0zZvQLgehetRLG9ArkfhehQub0DhehSuRwlvQM3MzMzMDG9AAG+BBMX5bkBfB84ZUeRuQArXo3A9+m5AmpmZmZn5bkDaG3xhMgtvQAAAAAAA9G5ArkfhehT2bkDgLZCg+PFuQJEPejarCG9AMzMzMzMTb0AfhetRuBZvQHE9CtejAG9A16NwPQoHb0CkcD0K1/9uQJqZmZmZAW9AcT0K16P4bkCF61G4Hv1uQGZmZmZm9m5AKVyPwvX4bkDBqKROQP1uQM3MzMzMBG9A7FG4HoUDb0BI4XoUrvNuQEjhehSu725AAAAAAADwbkApXI/C9eBuQH0/NV66225AKVyPwvXYbkBI4XoUrs9uQFyPwvUoym5AhetRuB7NbkCPwvUoXNduQHsUrkfh0m5AFK5H4XrMbkApXI/C9chuQFyPwvUovG5AcT0K16O4bkCF61G4Hr1uQEjhehSur25ApHA9CtenbkDXo3A9Cr9uQHsUrkfhum5A4XoUrkepbkAK16NwPaJuQDMzMzMzo25Aj8L1KFyvbkCF61G4Hq1uQKJFtvP9wG5AJJf/kH63bkAfhetRuLJuQLgehetRrG5AuB6F61GwbkDzH9JvX6duQFK4HoXrqW5A1JrmHaeqbkB7FK5H4bJuQAAAAAAAoG5AexSuR+GabkBmZmZmZpZuQPYoXI/CjW5AcT0K16OAbkBxPQrXo2huQAAAAAAAYG5AZmZmZmZObkCPwvUoXEduQAAAAAAAPG5AcT0K16MwbkAAAAAAADBuQB+F61G4Hm5AexSuR+EabkBI4XoUrhduQHsUrkfhRm5Aw/UoXI9ObkAzMzMzM0NuQLgehetRXG5Aj8L1KFxvbkCLbOf7qYFuQArXo3A9em5AAAAAAACAbkD2KFyPwoVuQFyPwvUojG5Aj8L1KFyPbkCkcD0K15tuQMRCrWnem25ArkfhehSabkA6I0p7g49uQPYoXI/CkW5ACtejcD12bkDXo3A9CnduQBniWBe3eW5ApHA9CteDbkAUrkfheoBuQJqZmZmZgW5A9ihcj8KNbkCuR+F6FJZuQBSuR+F6im5ACtejcD2SbkCPwvUoXJVuQKRwPQrXk25AMzMzMzOLbkAfhetRuJZuQBSuR+F6lG5A4XoUrkeJbkDNzMzMzIRuQI/C9Shch25A9ihcj8KNbkA=", - "dtype": "f8" - }, - "yaxis": "y3" - }, - { - "marker": { - "color": "red", - "size": 12, - "symbol": "triangle-up" - }, - "mode": "markers", - "name": "COIN BUY OPEN", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T16:46:00.000000000" - ], - "xaxis": "x3", - "y": { - "bdata": "7FG4HoXTb0A=", - "dtype": "f8" - }, - "yaxis": "y3" - }, - { - "marker": { - "color": "pink", - "size": 12, - "symbol": "triangle-up" - }, - "mode": "markers", - "name": "COIN BUY CLOSE", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:16:00.000000000" - ], - "xaxis": "x3", - "y": { - "bdata": "YTJVMCo2cEAUrkfhehRwQHsUrkfhsm5AcT0K16NobkA=", - "dtype": "f8" - }, - "yaxis": "y3" - }, - { - "marker": { - "color": "blue", - "size": 12, - "symbol": "triangle-down" - }, - "mode": "markers", - "name": "COIN SELL OPEN", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T15:40:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T19:15:00.000000000" - ], - "xaxis": "x3", - "y": { - "bdata": "PQrXo3BHcEBSuB6F6zlwQHE9CtejuG5AcT0K16OAbkA=", - "dtype": "f8" - }, - "yaxis": "y3" - }, - { - "marker": { - "color": "purple", - "size": 12, - "symbol": "triangle-down" - }, - "mode": "markers", - "name": "COIN SELL CLOSE", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T17:34:00.000000000" - ], - "xaxis": "x3", - "y": { - "bdata": "w/UoXI+ab0A=", - "dtype": "f8" - }, - "yaxis": "y3" - }, - { - "line": { - "color": "orange", - "width": 2 - }, - "name": "MSTR Price", - "opacity": 0.8, - "type": "scatter", - "x": [ - "2025-06-05T13:30:00.000000000", - "2025-06-05T13:31:00.000000000", - "2025-06-05T13:32:00.000000000", - "2025-06-05T13:33:00.000000000", - "2025-06-05T13:34:00.000000000", - "2025-06-05T13:35:00.000000000", - "2025-06-05T13:36:00.000000000", - "2025-06-05T13:37:00.000000000", - "2025-06-05T13:38:00.000000000", - "2025-06-05T13:39:00.000000000", - "2025-06-05T13:40:00.000000000", - "2025-06-05T13:41:00.000000000", - "2025-06-05T13:42:00.000000000", - "2025-06-05T13:43:00.000000000", - "2025-06-05T13:44:00.000000000", - "2025-06-05T13:45:00.000000000", - "2025-06-05T13:46:00.000000000", - "2025-06-05T13:47:00.000000000", - "2025-06-05T13:48:00.000000000", - "2025-06-05T13:49:00.000000000", - "2025-06-05T13:50:00.000000000", - "2025-06-05T13:51:00.000000000", - "2025-06-05T13:52:00.000000000", - "2025-06-05T13:53:00.000000000", - "2025-06-05T13:54:00.000000000", - "2025-06-05T13:55:00.000000000", - "2025-06-05T13:56:00.000000000", - "2025-06-05T13:57:00.000000000", - "2025-06-05T13:58:00.000000000", - "2025-06-05T13:59:00.000000000", - "2025-06-05T14:00:00.000000000", - "2025-06-05T14:01:00.000000000", - "2025-06-05T14:02:00.000000000", - "2025-06-05T14:03:00.000000000", - "2025-06-05T14:04:00.000000000", - "2025-06-05T14:05:00.000000000", - "2025-06-05T14:06:00.000000000", - "2025-06-05T14:07:00.000000000", - "2025-06-05T14:08:00.000000000", - "2025-06-05T14:09:00.000000000", - "2025-06-05T14:10:00.000000000", - "2025-06-05T14:11:00.000000000", - "2025-06-05T14:12:00.000000000", - "2025-06-05T14:13:00.000000000", - "2025-06-05T14:14:00.000000000", - "2025-06-05T14:15:00.000000000", - "2025-06-05T14:16:00.000000000", - "2025-06-05T14:17:00.000000000", - "2025-06-05T14:18:00.000000000", - "2025-06-05T14:19:00.000000000", - "2025-06-05T14:20:00.000000000", - "2025-06-05T14:21:00.000000000", - "2025-06-05T14:22:00.000000000", - "2025-06-05T14:23:00.000000000", - "2025-06-05T14:24:00.000000000", - "2025-06-05T14:25:00.000000000", - "2025-06-05T14:26:00.000000000", - "2025-06-05T14:27:00.000000000", - "2025-06-05T14:28:00.000000000", - "2025-06-05T14:29:00.000000000", - "2025-06-05T14:30:00.000000000", - "2025-06-05T14:31:00.000000000", - "2025-06-05T14:32:00.000000000", - "2025-06-05T14:33:00.000000000", - "2025-06-05T14:34:00.000000000", - "2025-06-05T14:35:00.000000000", - "2025-06-05T14:36:00.000000000", - "2025-06-05T14:37:00.000000000", - "2025-06-05T14:38:00.000000000", - "2025-06-05T14:39:00.000000000", - "2025-06-05T14:40:00.000000000", - "2025-06-05T14:41:00.000000000", - "2025-06-05T14:42:00.000000000", - "2025-06-05T14:43:00.000000000", - "2025-06-05T14:44:00.000000000", - "2025-06-05T14:45:00.000000000", - "2025-06-05T14:46:00.000000000", - "2025-06-05T14:47:00.000000000", - "2025-06-05T14:48:00.000000000", - "2025-06-05T14:49:00.000000000", - "2025-06-05T14:50:00.000000000", - "2025-06-05T14:51:00.000000000", - "2025-06-05T14:52:00.000000000", - "2025-06-05T14:53:00.000000000", - "2025-06-05T14:54:00.000000000", - "2025-06-05T14:55:00.000000000", - "2025-06-05T14:56:00.000000000", - "2025-06-05T14:57:00.000000000", - "2025-06-05T14:58:00.000000000", - "2025-06-05T14:59:00.000000000", - "2025-06-05T15:00:00.000000000", - "2025-06-05T15:01:00.000000000", - "2025-06-05T15:02:00.000000000", - "2025-06-05T15:03:00.000000000", - "2025-06-05T15:04:00.000000000", - "2025-06-05T15:05:00.000000000", - "2025-06-05T15:06:00.000000000", - "2025-06-05T15:07:00.000000000", - "2025-06-05T15:08:00.000000000", - "2025-06-05T15:09:00.000000000", - "2025-06-05T15:10:00.000000000", - "2025-06-05T15:11:00.000000000", - "2025-06-05T15:12:00.000000000", - "2025-06-05T15:13:00.000000000", - "2025-06-05T15:14:00.000000000", - "2025-06-05T15:15:00.000000000", - "2025-06-05T15:16:00.000000000", - "2025-06-05T15:17:00.000000000", - "2025-06-05T15:18:00.000000000", - "2025-06-05T15:19:00.000000000", - "2025-06-05T15:20:00.000000000", - "2025-06-05T15:21:00.000000000", - "2025-06-05T15:22:00.000000000", - "2025-06-05T15:23:00.000000000", - "2025-06-05T15:24:00.000000000", - "2025-06-05T15:25:00.000000000", - "2025-06-05T15:26:00.000000000", - "2025-06-05T15:27:00.000000000", - "2025-06-05T15:28:00.000000000", - "2025-06-05T15:29:00.000000000", - "2025-06-05T15:30:00.000000000", - "2025-06-05T15:31:00.000000000", - "2025-06-05T15:32:00.000000000", - "2025-06-05T15:33:00.000000000", - "2025-06-05T15:34:00.000000000", - "2025-06-05T15:35:00.000000000", - "2025-06-05T15:36:00.000000000", - "2025-06-05T15:37:00.000000000", - "2025-06-05T15:38:00.000000000", - "2025-06-05T15:39:00.000000000", - "2025-06-05T15:40:00.000000000", - "2025-06-05T15:41:00.000000000", - "2025-06-05T15:42:00.000000000", - "2025-06-05T15:43:00.000000000", - "2025-06-05T15:44:00.000000000", - "2025-06-05T15:45:00.000000000", - "2025-06-05T15:46:00.000000000", - "2025-06-05T15:47:00.000000000", - "2025-06-05T15:48:00.000000000", - "2025-06-05T15:49:00.000000000", - "2025-06-05T15:50:00.000000000", - "2025-06-05T15:51:00.000000000", - "2025-06-05T15:52:00.000000000", - "2025-06-05T15:53:00.000000000", - "2025-06-05T15:54:00.000000000", - "2025-06-05T15:55:00.000000000", - "2025-06-05T15:56:00.000000000", - "2025-06-05T15:57:00.000000000", - "2025-06-05T15:58:00.000000000", - "2025-06-05T15:59:00.000000000", - "2025-06-05T16:00:00.000000000", - "2025-06-05T16:01:00.000000000", - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:03:00.000000000", - "2025-06-05T16:04:00.000000000", - "2025-06-05T16:05:00.000000000", - "2025-06-05T16:06:00.000000000", - "2025-06-05T16:07:00.000000000", - "2025-06-05T16:08:00.000000000", - "2025-06-05T16:09:00.000000000", - "2025-06-05T16:10:00.000000000", - "2025-06-05T16:11:00.000000000", - "2025-06-05T16:12:00.000000000", - "2025-06-05T16:13:00.000000000", - "2025-06-05T16:14:00.000000000", - "2025-06-05T16:15:00.000000000", - "2025-06-05T16:16:00.000000000", - "2025-06-05T16:17:00.000000000", - "2025-06-05T16:18:00.000000000", - "2025-06-05T16:19:00.000000000", - "2025-06-05T16:20:00.000000000", - "2025-06-05T16:21:00.000000000", - "2025-06-05T16:22:00.000000000", - "2025-06-05T16:23:00.000000000", - "2025-06-05T16:24:00.000000000", - "2025-06-05T16:25:00.000000000", - "2025-06-05T16:26:00.000000000", - "2025-06-05T16:27:00.000000000", - "2025-06-05T16:28:00.000000000", - "2025-06-05T16:29:00.000000000", - "2025-06-05T16:30:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T16:32:00.000000000", - "2025-06-05T16:33:00.000000000", - "2025-06-05T16:34:00.000000000", - "2025-06-05T16:35:00.000000000", - "2025-06-05T16:36:00.000000000", - "2025-06-05T16:37:00.000000000", - "2025-06-05T16:38:00.000000000", - "2025-06-05T16:39:00.000000000", - "2025-06-05T16:40:00.000000000", - "2025-06-05T16:41:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T16:43:00.000000000", - "2025-06-05T16:44:00.000000000", - "2025-06-05T16:45:00.000000000", - "2025-06-05T16:46:00.000000000", - "2025-06-05T16:47:00.000000000", - "2025-06-05T16:48:00.000000000", - "2025-06-05T16:49:00.000000000", - "2025-06-05T16:50:00.000000000", - "2025-06-05T16:51:00.000000000", - "2025-06-05T16:52:00.000000000", - "2025-06-05T16:53:00.000000000", - "2025-06-05T16:54:00.000000000", - "2025-06-05T16:55:00.000000000", - "2025-06-05T16:56:00.000000000", - "2025-06-05T16:57:00.000000000", - "2025-06-05T16:58:00.000000000", - "2025-06-05T16:59:00.000000000", - "2025-06-05T17:00:00.000000000", - "2025-06-05T17:01:00.000000000", - "2025-06-05T17:02:00.000000000", - "2025-06-05T17:03:00.000000000", - "2025-06-05T17:04:00.000000000", - "2025-06-05T17:05:00.000000000", - "2025-06-05T17:06:00.000000000", - "2025-06-05T17:07:00.000000000", - "2025-06-05T17:08:00.000000000", - "2025-06-05T17:09:00.000000000", - "2025-06-05T17:10:00.000000000", - "2025-06-05T17:11:00.000000000", - "2025-06-05T17:12:00.000000000", - "2025-06-05T17:13:00.000000000", - "2025-06-05T17:14:00.000000000", - "2025-06-05T17:15:00.000000000", - "2025-06-05T17:16:00.000000000", - "2025-06-05T17:17:00.000000000", - "2025-06-05T17:18:00.000000000", - "2025-06-05T17:19:00.000000000", - "2025-06-05T17:20:00.000000000", - "2025-06-05T17:21:00.000000000", - "2025-06-05T17:22:00.000000000", - "2025-06-05T17:23:00.000000000", - "2025-06-05T17:24:00.000000000", - "2025-06-05T17:25:00.000000000", - "2025-06-05T17:26:00.000000000", - "2025-06-05T17:27:00.000000000", - "2025-06-05T17:28:00.000000000", - "2025-06-05T17:29:00.000000000", - "2025-06-05T17:30:00.000000000", - "2025-06-05T17:31:00.000000000", - "2025-06-05T17:32:00.000000000", - "2025-06-05T17:33:00.000000000", - "2025-06-05T17:34:00.000000000", - "2025-06-05T17:35:00.000000000", - "2025-06-05T17:36:00.000000000", - "2025-06-05T17:37:00.000000000", - "2025-06-05T17:38:00.000000000", - "2025-06-05T17:39:00.000000000", - "2025-06-05T17:40:00.000000000", - "2025-06-05T17:41:00.000000000", - "2025-06-05T17:42:00.000000000", - "2025-06-05T17:43:00.000000000", - "2025-06-05T17:44:00.000000000", - "2025-06-05T17:45:00.000000000", - "2025-06-05T17:46:00.000000000", - "2025-06-05T17:47:00.000000000", - "2025-06-05T17:48:00.000000000", - "2025-06-05T17:49:00.000000000", - "2025-06-05T17:50:00.000000000", - "2025-06-05T17:51:00.000000000", - "2025-06-05T17:52:00.000000000", - "2025-06-05T17:53:00.000000000", - "2025-06-05T17:54:00.000000000", - "2025-06-05T17:55:00.000000000", - "2025-06-05T17:56:00.000000000", - "2025-06-05T17:57:00.000000000", - "2025-06-05T17:58:00.000000000", - "2025-06-05T17:59:00.000000000", - "2025-06-05T18:00:00.000000000", - "2025-06-05T18:01:00.000000000", - "2025-06-05T18:02:00.000000000", - "2025-06-05T18:03:00.000000000", - "2025-06-05T18:04:00.000000000", - "2025-06-05T18:05:00.000000000", - "2025-06-05T18:06:00.000000000", - "2025-06-05T18:07:00.000000000", - "2025-06-05T18:08:00.000000000", - "2025-06-05T18:09:00.000000000", - "2025-06-05T18:10:00.000000000", - "2025-06-05T18:11:00.000000000", - "2025-06-05T18:12:00.000000000", - "2025-06-05T18:13:00.000000000", - "2025-06-05T18:14:00.000000000", - "2025-06-05T18:15:00.000000000", - "2025-06-05T18:16:00.000000000", - "2025-06-05T18:17:00.000000000", - "2025-06-05T18:18:00.000000000", - "2025-06-05T18:19:00.000000000", - "2025-06-05T18:20:00.000000000", - "2025-06-05T18:21:00.000000000", - "2025-06-05T18:22:00.000000000", - "2025-06-05T18:23:00.000000000", - "2025-06-05T18:24:00.000000000", - "2025-06-05T18:25:00.000000000", - "2025-06-05T18:26:00.000000000", - "2025-06-05T18:27:00.000000000", - "2025-06-05T18:28:00.000000000", - "2025-06-05T18:29:00.000000000", - "2025-06-05T18:30:00.000000000", - "2025-06-05T18:31:00.000000000", - "2025-06-05T18:32:00.000000000", - "2025-06-05T18:33:00.000000000", - "2025-06-05T18:34:00.000000000", - "2025-06-05T18:35:00.000000000", - "2025-06-05T18:36:00.000000000", - "2025-06-05T18:37:00.000000000", - "2025-06-05T18:38:00.000000000", - "2025-06-05T18:39:00.000000000", - "2025-06-05T18:40:00.000000000", - "2025-06-05T18:41:00.000000000", - "2025-06-05T18:42:00.000000000", - "2025-06-05T18:43:00.000000000", - "2025-06-05T18:44:00.000000000", - "2025-06-05T18:45:00.000000000", - "2025-06-05T18:46:00.000000000", - "2025-06-05T18:47:00.000000000", - "2025-06-05T18:48:00.000000000", - "2025-06-05T18:49:00.000000000", - "2025-06-05T18:50:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T18:52:00.000000000", - "2025-06-05T18:53:00.000000000", - "2025-06-05T18:54:00.000000000", - "2025-06-05T18:55:00.000000000", - "2025-06-05T18:56:00.000000000", - "2025-06-05T18:57:00.000000000", - "2025-06-05T18:58:00.000000000", - "2025-06-05T18:59:00.000000000", - "2025-06-05T19:00:00.000000000", - "2025-06-05T19:01:00.000000000", - "2025-06-05T19:02:00.000000000", - "2025-06-05T19:03:00.000000000", - "2025-06-05T19:04:00.000000000", - "2025-06-05T19:05:00.000000000", - "2025-06-05T19:06:00.000000000", - "2025-06-05T19:07:00.000000000", - "2025-06-05T19:08:00.000000000", - "2025-06-05T19:09:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:11:00.000000000", - "2025-06-05T19:12:00.000000000", - "2025-06-05T19:13:00.000000000", - "2025-06-05T19:14:00.000000000", - "2025-06-05T19:15:00.000000000", - "2025-06-05T19:16:00.000000000", - "2025-06-05T19:17:00.000000000", - "2025-06-05T19:18:00.000000000", - "2025-06-05T19:19:00.000000000", - "2025-06-05T19:20:00.000000000", - "2025-06-05T19:21:00.000000000", - "2025-06-05T19:22:00.000000000", - "2025-06-05T19:23:00.000000000", - "2025-06-05T19:24:00.000000000", - "2025-06-05T19:25:00.000000000", - "2025-06-05T19:26:00.000000000", - "2025-06-05T19:27:00.000000000", - "2025-06-05T19:28:00.000000000", - "2025-06-05T19:29:00.000000000", - "2025-06-05T19:30:00.000000000", - "2025-06-05T19:31:00.000000000", - "2025-06-05T19:32:00.000000000", - "2025-06-05T19:33:00.000000000", - "2025-06-05T19:34:00.000000000", - "2025-06-05T19:35:00.000000000", - "2025-06-05T19:36:00.000000000", - "2025-06-05T19:37:00.000000000", - "2025-06-05T19:38:00.000000000", - "2025-06-05T19:39:00.000000000", - "2025-06-05T19:40:00.000000000", - "2025-06-05T19:41:00.000000000", - "2025-06-05T19:42:00.000000000", - "2025-06-05T19:43:00.000000000", - "2025-06-05T19:44:00.000000000", - "2025-06-05T19:45:00.000000000", - "2025-06-05T19:46:00.000000000", - "2025-06-05T19:47:00.000000000", - "2025-06-05T19:48:00.000000000", - "2025-06-05T19:49:00.000000000", - "2025-06-05T19:50:00.000000000", - "2025-06-05T19:51:00.000000000", - "2025-06-05T19:52:00.000000000", - "2025-06-05T19:53:00.000000000", - "2025-06-05T19:54:00.000000000", - "2025-06-05T19:55:00.000000000", - "2025-06-05T19:56:00.000000000", - "2025-06-05T19:57:00.000000000", - "2025-06-05T19:58:00.000000000", - "2025-06-05T19:59:00.000000000", - "2025-06-05T20:00:00.000000000" - ], - "xaxis": "x4", - "y": { - "bdata": "uB6F61EMeEAf9GxWfex3QOF6FK5HvXdAcT0K16PAd0AK16NwPbp3QI/C9Shcs3dACfmgZ7Oud0AAAAAAALh3QB+F61G4xHdAZmZmZmaod0CuR+F6FL53QB+F61G4yndApHA9CtfHd0DsUbgehct3QOF6FK5HxXdAj8L1KFyTd0Bcj8L1KI53QGZmZmZmendACtejcD2Cd0DNzMzMzHR3QD0K16Nwg3dAFK5H4Xpud0CPwvUoXGd3QB+F61G4endAyxDHurh+d0BI4XoUrnt3QNPe4AuTeXdAcT0K16Nod0DNzMzMzIR3QPYoXI/ClXdA7FG4HoWPd0AfhetRuIh3QBx8YTJVgndA9ihcj8KFd0BI4XoUro93QB+F61G4iHdApHA9Ctd9d0DD9Shcj4J3QJ/Nqs/ViXdAYhBYObSJd0BSuB6F64l3QKRwPQrXl3dALpCg+DGXd0CuR+F6FJ53QB+F61G4nndAUrgeheudd0DNzMzMzJx3QJqZmZmZoXdASOF6FK6fd0CPwvUoXJ93QClcj8L1lHdAMzMzMzOld0BxPQrXo6x3QMP1KFyPrndAPQrXo3Cxd0DHuriNBqd3QIXrUbgerXdAHVpkO9+xd0BmZmZmZrJ3QAAAAAAAuHdAzczMzMysd0DNzMzMzKR3QJqZmZmZlXdA16NwPQqrd0CamZmZmaV3QKRwPQrXl3dAUrgeheuhd0BI4XoUrr93QEjhehSuz3dAj8L1KFzPd0CuR+F6FL53QI/C9Shc7XdAKVyPwvXgd0A9CtejcOl3QOF6FK5H6XdAmpmZmZndd0DsUbgehfl3QGZmZmZm8ndA7FG4HoXjd0AfhetRuNp3QM3MzMzM4HdA7FG4HoXLd0Bcj8L1KMh3QDY8vVKWwHdAw/UoXI/Md0CVZYhjXc93QHsUrkfh1ndAhetRuB7ld0B7FK5H4eJ3QLgehetR4ndAmpmZmZnfd0DXo3A9Ctt3QDMzMzMzy3dAFK5H4XrMd0DhehSuR8V3QFyPwvUoyHdAj8L1KFzHd0B2Tx4Wasx3QGZmZmZmwndA4XoUrkfNd0BMN4lBYNJ3QD0K16NwzXdAcT0K16PQd0BI4XoUrs93QKRwPQrXx3dAcT0K16PKd0BxPQrXo9R3QFyPwvUo0HdAFR3J5T/Od0A9CtejcMl3QJqZmZmZxXdA16NwPQrLd0CitDf4wsh3QGZmZmZmzndAKVyPwvXYd0DsUbgehdd3QN9PjZdu13dAJuSDns3Xd0AUrkfhetB3QECk374O13dA9ihcj8LXd0DD9Shcj9Z3QBSuR+F6zHdA4umVsgzOd0DnHafoSM93QFjKMsSxyHdASOF6FK7Pd0C8dJMYBMp3QHE9CtejzHdAJLn8h/TKd0AUrkfhesh3QEaU9gZfwXdAn6ut2F/Ad0BdbcX+ssd3QArXo3A9yndA4XoUrke5d0BE+u3rwLx3QFMFo5I6u3dA4umVsgzBd0D+Q/rt67l3QMP1KFyPundAj8L1KFzBd0CkcD0K17d3QPYoXI/CuXdAj8L1KFy7d0DXo3A9Crd3QDMzMzMzyXdAdEaU9gbMd0CF61G4Hst3QOF6FK5HwXdA4C2QoPi8d0AUrkfherh3QOXyH9JvvndAcT0K16O8d0DsUbgehb93QM07TtGRyndAZmZmZmbKd0AAAAAAAMR3QAAAAAAAvHdAMzMzMzO5d0AibHh6pbR3QOF6FK5HtXdAS8gHPZuvd0BdbcX+srN3QJqZmZmZrXdA8kHPZtWud0ApXI/C9aR3QM3MzMzMnndACtejcD2id0DhehSuR6d3QLgehetRqHdAZmZmZmaud0DXo3A9CqV3QPYoXI/CsXdAmpmZmZmld0C4HoXrUbB3QK5H4XoUpHdAHOviNhqod0D2KFyPwp13QGZmZmZmnndAC0YldQKid0AAAAAAAJR3QOxRuB6Fk3dAUrgeheuZd0AK16NwPZJ3QIXrUbgelXdAMzMzMzOXd0DD9Shcj5J3QAAAAAAAiHdAmpmZmZl9d0D2KFyPwm13QHWTGARWdHdA4XoUrkd5d0C4HoXrUXp3QFyPwvUoeHdArkfhehR2d0A9m1Wfq4F3QAAAAAAAbHdAhetRuB5hd0AzMzMzM2N3QM3MzMzMdHdAmpmZmZlld0DXo3A9ClN3QCnLEMe6UndA7FG4HoVXd0BmZmZmZlp3QIGVQ4tsVndArkfhehRSd0D2KFyPwk13QAAAAAAAQHdARPrt68Azd0DD9ShcjzJ3QLgehetRRHdAXI/C9ShKd0CamZmZmUV3QClcj8L1QndAFK5H4XpYd0DD9Shcj2B3QFK4HoXraXdAObTIdr5td0DhehSuR3V3QI/C9Shce3dAcT0K16OAd0BxPQrXo3x3QFyPwvUofHdA0ETY8PSBd0BxPQrXo4h3QCBB8WPMhHdAHVpkO9+Bd0C4HoXrUXx3QMP1KFyPfndAmpmZmZmFd0Csi9toAHx3QMP1KFyPhndAKVyPwvWAd0A9CtejcH13QN9PjZdud3dARrbz/dR4d0AK16NwPXp3QFyPwvUodHdAhetRuB51d0CamZmZmXB3QBpR2ht8cndA9ihcj8J1d0AAAAAAAHB3QAAAAAAAcndAcT0K16N0d0Bcj8L1KHx3QHsUrkfhendAzczMzMx8d0DhC5Opgn13QArXo3A9endA9ihcj8J1d0CkcD0K13V3QI/C9Shca3dApb3BFyZpd0CamZmZmWF3QP5D+u3rXXdAcT0K16Nkd0CPwvUoXF93QIXrUbgeXXdAcT0K16Nad0AK16NwPV53QHsUrkfhZndAAiuHFtljd0AAAAAAAFx3QGFUUiegXHdAuB6F61FUd0DD9Shcj1Z3QJqZmZmZVXdApHA9Ctdfd0AzMzMzM1t3QNejcD0KX3dAcT0K16Ngd0B88rBQa2B3QIQNT6+UW3dAexSuR+FSd0CDL0ymCk93QLgehetRWHdA9ihcj8Jhd0BmZmZmZlp3QDMzMzMzY3dA9ihcj8Jdd0DsUbgehUt3QDMzMzMzR3dArkfhehRGd0BWDi2ynTJ3QArXo3A9RndAqoJRSZ1Jd0AAAAAAAFR3QJqZmZmZTXdAw/UoXI9Sd0DNzMzMzFR3QD0K16NwXXdACtejcD1md0ApXI/C9WJ3QI/C9ShcXXdArkfhehRid0CuR+F6FFp3QEjhehSuX3dAmpmZmZlfd0DXo3A9Cl93QI/C9ShcYXdAmpmZmZlZd0CPwvUoXFt3QBKlvcEXY3dAFK5H4Xpod0C4HoXrUVp3QEjhehSuXXdAZmZmZmZad0BI4XoUrkt3QKRwPQrXSXdA9ihcj8JFd0DNzMzMzD53QKrx0k1iQndA16NwPQpDd0CamZmZmUF3QOF6FK5HQXdAUrgehetFd0AK16NwPT53QP7UeOkmQ3dAZmZmZmZGd0AfhetRuEZ3QFyPwvUoTHdAmG4Sg8BGd0DhehSuR0x3QFyPwvUoRHdAE/JBz2Y2d0A9CtejcDl3QD0K16NwMXdA9ihcj8I5d0CuR+F6FD53QFK4HoXrPXdAj8L1KFwzd0B6pSxDHDF3QNejcD0KK3dA7FG4HoUvd0CRD3o2qyN3QKRwPQrXJ3dAAAAAAAAod0DD9Shcjyp3QAAAAAAAJHdACtejcD0ed0DNzMzMzBh3QM3MzMzMEHdAmpmZmZkDd0DsUbgehfN2QMl2vp8a7XZAKVyPwvXfdkCkcD0K1+d2QArXo3A94nZAAAAAAADYdkBSuB6F69l2QKRwPQrXz3ZAXI/C9SjMdkAK16NwPdp2QIXrUbge+XZAAAAAAAD4dkApXI/C9fR2QMP1KFyPCHdAH4XrUbgUd0DsUbgehR93QOY/pN++JXdAj8L1KFwrd0CF61G4HjF3QM3MzMzMNHdA4XoUrkc9d0AzMzMzMz13QAAAAAAARHdA9ihcj8I5d0B7FK5H4TJ3QClcj8L1NHdA7FG4HoUfd0AzMzMzMx13QAAAAAAAGndA9ihcj8Ijd0CuR+F6FBd3QOC+DpwzE3dAPQrXo3AZd0Av3SQGgRd3QM3MzMzMDndA7FG4HoUfd0DD9ShcjyZ3QArXo3A9IndAexSuR+Ecd0CkcD0K1x13QBKDwMqhF3dAAAAAAAAUd0CamZmZmRV3QDMzMzMzC3dA16NwPQobd0A=", - "dtype": "f8" - }, - "yaxis": "y4" - }, - { - "marker": { - "color": "red", - "size": 12, - "symbol": "triangle-up" - }, - "mode": "markers", - "name": "MSTR BUY OPEN", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T15:40:00.000000000", - "2025-06-05T16:31:00.000000000", - "2025-06-05T18:51:00.000000000", - "2025-06-05T19:15:00.000000000" - ], - "xaxis": "x4", - "y": { - "bdata": "FK5H4XrId0AAAAAAAJR3QGZmZmZmRndAmpmZmZkDd0A=", - "dtype": "f8" - }, - "yaxis": "y4" - }, - { - "marker": { - "color": "red", - "size": 12, - "symbol": "triangle-up" - }, - "mode": "markers", - "name": "MSTR BUY CLOSE", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T17:34:00.000000000" - ], - "xaxis": "x4", - "y": { - "bdata": "AAAAAABwd0A=", - "dtype": "f8" - }, - "yaxis": "y4" - }, - { - "marker": { - "color": "blue", - "size": 12, - "symbol": "triangle-down" - }, - "mode": "markers", - "name": "MSTR SELL OPEN", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T16:46:00.000000000" - ], - "xaxis": "x4", - "y": { - "bdata": "PZtVn6uBd0A=", - "dtype": "f8" - }, - "yaxis": "y4" - }, - { - "marker": { - "color": "blue", - "size": 12, - "symbol": "triangle-down" - }, - "mode": "markers", - "name": "MSTR SELL CLOSE", - "showlegend": true, - "type": "scatter", - "x": [ - "2025-06-05T16:02:00.000000000", - "2025-06-05T16:42:00.000000000", - "2025-06-05T19:10:00.000000000", - "2025-06-05T19:16:00.000000000" - ], - "xaxis": "x4", - "y": { - "bdata": "5fIf0m++d0DhehSuR3l3QMP1KFyPKndA7FG4HoXzdkA=", - "dtype": "f8" - }, - "yaxis": "y4" - } - ], - "layout": { - "annotations": [ - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Testing Period: Scaled Dis-equilibrium with Trading Thresholds", - "x": 0.5, - "xanchor": "center", - "xref": "paper", - "y": 1, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "Trading Signal Timeline", - "x": 0.5, - "xanchor": "center", - "xref": "paper", - "y": 0.7350000000000001, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "COIN Market Data with Trading Signals", - "x": 0.5, - "xanchor": "center", - "xref": "paper", - "y": 0.47000000000000003, - "yanchor": "bottom", - "yref": "paper" - }, - { - "font": { - "size": 16 - }, - "showarrow": false, - "text": "MSTR Market Data with Trading Signals", - "x": 0.5, - "xanchor": "center", - "xref": "paper", - "y": 0.20500000000000002, - "yanchor": "bottom", - "yref": "paper" - } - ], - "height": 1200, - "shapes": [ - { - "line": { - "color": "purple", - "dash": "dot", - "width": 2 - }, - "opacity": 0.7, - "type": "line", - "x0": "2025-06-05T13:30:00", - "x1": "2025-06-05T20:00:00", - "xref": "x", - "y0": 2, - "y1": 2, - "yref": "y" - }, - { - "line": { - "color": "purple", - "dash": "dot", - "width": 2 - }, - "opacity": 0.7, - "type": "line", - "x0": "2025-06-05T13:30:00", - "x1": "2025-06-05T20:00:00", - "xref": "x", - "y0": -2, - "y1": -2, - "yref": "y" - }, - { - "line": { - "color": "brown", - "dash": "dot", - "width": 2 - }, - "opacity": 0.7, - "type": "line", - "x0": "2025-06-05T13:30:00", - "x1": "2025-06-05T20:00:00", - "xref": "x", - "y0": 1, - "y1": 1, - "yref": "y" - }, - { - "line": { - "color": "brown", - "dash": "dot", - "width": 2 - }, - "opacity": 0.7, - "type": "line", - "x0": "2025-06-05T13:30:00", - "x1": "2025-06-05T20:00:00", - "xref": "x", - "y0": -1, - "y1": -1, - "yref": "y" - }, - { - "line": { - "color": "black", - "dash": "solid", - "width": 1 - }, - "opacity": 0.5, - "type": "line", - "x0": "2025-06-05T13:30:00", - "x1": "2025-06-05T20:00:00", - "xref": "x", - "y0": 0, - "y1": 0, - "yref": "y" - } - ], - "showlegend": true, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "white", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "#C8D4E3", - "linecolor": "#C8D4E3", - "minorgridcolor": "#C8D4E3", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermap": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermap" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "white", - "showlakes": true, - "showland": true, - "subunitcolor": "#C8D4E3" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "white", - "polar": { - "angularaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - }, - "bgcolor": "white", - "radialaxis": { - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "yaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - }, - "zaxis": { - "backgroundcolor": "white", - "gridcolor": "#DFE8F3", - "gridwidth": 2, - "linecolor": "#EBF0F8", - "showbackground": true, - "ticks": "", - "zerolinecolor": "#EBF0F8" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "baxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - }, - "bgcolor": "white", - "caxis": { - "gridcolor": "#DFE8F3", - "linecolor": "#A2B1C6", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "#EBF0F8", - "linecolor": "#EBF0F8", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "#EBF0F8", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Sliding Fit Strategy Analysis - COIN & MSTR" - }, - "xaxis": { - "anchor": "y", - "domain": [ - 0, - 1 - ], - "range": [ - "2025-06-05T13:30:00", - "2025-06-05T20:00:00" - ] - }, - "xaxis2": { - "anchor": "y2", - "domain": [ - 0, - 1 - ], - "range": [ - "2025-06-05T13:30:00", - "2025-06-05T20:00:00" - ] - }, - "xaxis3": { - "anchor": "y3", - "domain": [ - 0, - 1 - ], - "range": [ - "2025-06-05T13:30:00", - "2025-06-05T20:00:00" - ] - }, - "xaxis4": { - "anchor": "y4", - "domain": [ - 0, - 1 - ], - "range": [ - "2025-06-05T13:30:00", - "2025-06-05T20:00:00" - ], - "title": { - "text": "Time" - } - }, - "yaxis": { - "anchor": "x", - "domain": [ - 0.7949999999999999, - 1 - ], - "title": { - "text": "Scaled Dis-equilibrium" - } - }, - "yaxis2": { - "anchor": "x2", - "domain": [ - 0.53, - 0.7350000000000001 - ], - "title": { - "text": "Signal Index" - } - }, - "yaxis3": { - "anchor": "x3", - "domain": [ - 0.265, - 0.47000000000000003 - ], - "title": { - "text": "COIN Price ($)" - } - }, - "yaxis4": { - "anchor": "x4", - "domain": [ - 0, - 0.20500000000000002 - ], - "title": { - "text": "MSTR Price ($)" - } - } - } - }, - "text/html": [ - "
\n", - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Interactive Plotly Visualization\n", - "import plotly.graph_objects as go\n", - "from plotly.subplots import make_subplots\n", - "import plotly.express as px\n", - "import plotly.offline as pyo\n", - "from IPython.display import HTML\n", - "\n", - "# Configure plotly for offline mode\n", - "pyo.init_notebook_mode(connected=True)\n", - "\n", - "# Strategy-specific interactive visualization\n", - "assert pt_bt_config is not None\n", - "assert pair.predicted_df_ is not None\n", - "\n", - "if FIT_METHOD_TYPE == \"SlidingFit\":\n", - " print(\"=== SLIDING FIT INTERACTIVE VISUALIZATION ===\")\n", - " print(\"Note: Sliding strategy visualization with interactive plotly charts\")\n", - " \n", - " # Create consistent timeline - superset of timestamps from both dataframes\n", - " market_timestamps = set(pair.market_data_['tstamp'])\n", - " predicted_timestamps = set(pair.predicted_df_['tstamp'])\n", - " \n", - " # Create superset of all timestamps\n", - " all_timestamps = sorted(market_timestamps.union(predicted_timestamps))\n", - " \n", - " # Create a unified timeline dataframe for consistent plotting\n", - " timeline_df = pd.DataFrame({'tstamp': all_timestamps})\n", - " \n", - " # Merge with predicted data to get dis-equilibrium values\n", - " timeline_df = timeline_df.merge(pair.predicted_df_[['tstamp', 'disequilibrium', 'scaled_disequilibrium']], \n", - " on='tstamp', how='left')\n", - " \n", - " # Get Symbol_A and Symbol_B market data\n", - " colname_a, colname_b = pair.colnames()\n", - " symbol_a_data = pair.market_data_[['tstamp', colname_a]].copy()\n", - " symbol_b_data = pair.market_data_[['tstamp', colname_b]].copy()\n", - " \n", - " print(f\"Using consistent timeline with {len(timeline_df)} timestamps\")\n", - " print(f\"Timeline range: {timeline_df['tstamp'].min()} to {timeline_df['tstamp'].max()}\")\n", - " \n", - " # Create subplots with price charts at bottom\n", - " fig = make_subplots(\n", - " rows=4, cols=1,\n", - " subplot_titles=[\n", - " 'Testing Period: Scaled Dis-equilibrium with Trading Thresholds',\n", - " 'Trading Signal Timeline',\n", - " f'{SYMBOL_A} Market Data with Trading Signals',\n", - " f'{SYMBOL_B} Market Data with Trading Signals'\n", - " ],\n", - " vertical_spacing=0.06,\n", - " specs=[[{\"secondary_y\": False}],\n", - " [{\"secondary_y\": False}],\n", - " [{\"secondary_y\": False}],\n", - " [{\"secondary_y\": False}]]\n", - " )\n", - " \n", - " # 1. Scaled dis-equilibrium with thresholds - using consistent timeline\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=timeline_df['tstamp'],\n", - " y=timeline_df['scaled_disequilibrium'],\n", - " name='Scaled Dis-equilibrium',\n", - " line=dict(color='green', width=2),\n", - " opacity=0.8\n", - " ),\n", - " row=1, col=1\n", - " )\n", - " \n", - " # Add threshold lines to first subplot\n", - " fig.add_shape(\n", - " type=\"line\",\n", - " x0=timeline_df['tstamp'].min(),\n", - " x1=timeline_df['tstamp'].max(),\n", - " y0=pt_bt_config['dis-equilibrium_open_trshld'],\n", - " y1=pt_bt_config['dis-equilibrium_open_trshld'],\n", - " line=dict(color=\"purple\", width=2, dash=\"dot\"),\n", - " opacity=0.7,\n", - " row=1, col=1\n", - " )\n", - " \n", - " fig.add_shape(\n", - " type=\"line\",\n", - " x0=timeline_df['tstamp'].min(),\n", - " x1=timeline_df['tstamp'].max(),\n", - " y0=-pt_bt_config['dis-equilibrium_open_trshld'],\n", - " y1=-pt_bt_config['dis-equilibrium_open_trshld'],\n", - " line=dict(color=\"purple\", width=2, dash=\"dot\"),\n", - " opacity=0.7,\n", - " row=1, col=1\n", - " )\n", - " \n", - " fig.add_shape(\n", - " type=\"line\",\n", - " x0=timeline_df['tstamp'].min(),\n", - " x1=timeline_df['tstamp'].max(),\n", - " y0=pt_bt_config['dis-equilibrium_close_trshld'],\n", - " y1=pt_bt_config['dis-equilibrium_close_trshld'],\n", - " line=dict(color=\"brown\", width=2, dash=\"dot\"),\n", - " opacity=0.7,\n", - " row=1, col=1\n", - " )\n", - " \n", - " fig.add_shape(\n", - " type=\"line\",\n", - " x0=timeline_df['tstamp'].min(),\n", - " x1=timeline_df['tstamp'].max(),\n", - " y0=-pt_bt_config['dis-equilibrium_close_trshld'],\n", - " y1=-pt_bt_config['dis-equilibrium_close_trshld'],\n", - " line=dict(color=\"brown\", width=2, dash=\"dot\"),\n", - " opacity=0.7,\n", - " row=1, col=1\n", - " )\n", - " \n", - " fig.add_shape(\n", - " type=\"line\",\n", - " x0=timeline_df['tstamp'].min(),\n", - " x1=timeline_df['tstamp'].max(),\n", - " y0=0,\n", - " y1=0,\n", - " line=dict(color=\"black\", width=1, dash=\"solid\"),\n", - " opacity=0.5,\n", - " row=1, col=1\n", - " )\n", - " \n", - " # 2. Trading signals timeline if available - using consistent timeline\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " # Separate trades by action and status for different colors\n", - " buy_open_trades = pair_trades[(pair_trades['action'].str.contains('BUY', na=False)) & \n", - " (pair_trades['status'] == 'OPEN')]\n", - " buy_close_trades = pair_trades[(pair_trades['action'].str.contains('BUY', na=False)) & \n", - " (pair_trades['status'] == 'CLOSE')]\n", - " sell_open_trades = pair_trades[(pair_trades['action'].str.contains('SELL', na=False)) & \n", - " (pair_trades['status'] == 'OPEN')]\n", - " sell_close_trades = pair_trades[(pair_trades['action'].str.contains('SELL', na=False)) & \n", - " (pair_trades['status'] == 'CLOSE')]\n", - " \n", - " # Create y-values for timeline visualization\n", - " trade_indices = list(range(len(pair_trades)))\n", - " \n", - " # Add trading signals with different colors based on action and status\n", - " if len(buy_open_trades) > 0:\n", - " buy_open_indices = [i for i, (_, row) in enumerate(pair_trades.iterrows()) \n", - " if 'BUY' in row['action'] and row['status'] == 'OPEN']\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_open_trades['time'],\n", - " y=buy_open_indices,\n", - " mode='markers',\n", - " name='BUY OPEN',\n", - " marker=dict(color='red', size=10, symbol='circle')\n", - " ),\n", - " row=2, col=1\n", - " )\n", - " \n", - " if len(buy_close_trades) > 0:\n", - " buy_close_indices = [i for i, (_, row) in enumerate(pair_trades.iterrows()) \n", - " if 'BUY' in row['action'] and row['status'] == 'CLOSE']\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_close_trades['time'],\n", - " y=buy_close_indices,\n", - " mode='markers',\n", - " name='BUY CLOSE',\n", - " marker=dict(color='pink', size=10, symbol='circle')\n", - " ),\n", - " row=2, col=1\n", - " )\n", - " \n", - " if len(sell_open_trades) > 0:\n", - " sell_open_indices = [i for i, (_, row) in enumerate(pair_trades.iterrows()) \n", - " if 'SELL' in row['action'] and row['status'] == 'OPEN']\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_open_trades['time'],\n", - " y=sell_open_indices,\n", - " mode='markers',\n", - " name='SELL OPEN',\n", - " marker=dict(color='blue', size=10, symbol='circle')\n", - " ),\n", - " row=2, col=1\n", - " )\n", - " \n", - " if len(sell_close_trades) > 0:\n", - " sell_close_indices = [i for i, (_, row) in enumerate(pair_trades.iterrows()) \n", - " if 'SELL' in row['action'] and row['status'] == 'CLOSE']\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_close_trades['time'],\n", - " y=sell_close_indices,\n", - " mode='markers',\n", - " name='SELL CLOSE',\n", - " marker=dict(color='purple', size=10, symbol='circle')\n", - " ),\n", - " row=2, col=1\n", - " )\n", - " \n", - " # 3. Symbol_A Market Data with Trading Signals (moved to bottom)\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=symbol_a_data['tstamp'],\n", - " y=symbol_a_data[colname_a],\n", - " name=f'{SYMBOL_A} Price',\n", - " line=dict(color='blue', width=2),\n", - " opacity=0.8\n", - " ),\n", - " row=3, col=1\n", - " )\n", - " \n", - " # Add trading signals for Symbol_A if available\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " # Filter trades for Symbol_A\n", - " symbol_a_trades = pair_trades[pair_trades['symbol'] == SYMBOL_A]\n", - " \n", - " if len(symbol_a_trades) > 0:\n", - " # Separate trades by action and status for different colors\n", - " buy_open_trades = symbol_a_trades[(symbol_a_trades['action'].str.contains('BUY', na=False)) & \n", - " (symbol_a_trades['status'] == 'OPEN')]\n", - " buy_close_trades = symbol_a_trades[(symbol_a_trades['action'].str.contains('BUY', na=False)) & \n", - " (symbol_a_trades['status'] == 'CLOSE')]\n", - " sell_open_trades = symbol_a_trades[(symbol_a_trades['action'].str.contains('SELL', na=False)) & \n", - " (symbol_a_trades['status'] == 'OPEN')]\n", - " sell_close_trades = symbol_a_trades[(symbol_a_trades['action'].str.contains('SELL', na=False)) & \n", - " (symbol_a_trades['status'] == 'CLOSE')]\n", - " \n", - " # Add BUY OPEN signals\n", - " if len(buy_open_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_open_trades['time'],\n", - " y=buy_open_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_A} BUY OPEN',\n", - " marker=dict(color='red', size=12, symbol='triangle-up'),\n", - " showlegend=True\n", - " ),\n", - " row=3, col=1\n", - " )\n", - " \n", - " # Add BUY CLOSE signals\n", - " if len(buy_close_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_close_trades['time'],\n", - " y=buy_close_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_A} BUY CLOSE',\n", - " marker=dict(color='pink', size=12, symbol='triangle-up'),\n", - " showlegend=True\n", - " ),\n", - " row=3, col=1\n", - " )\n", - " \n", - " # Add SELL OPEN signals\n", - " if len(sell_open_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_open_trades['time'],\n", - " y=sell_open_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_A} SELL OPEN',\n", - " marker=dict(color='blue', size=12, symbol='triangle-down'),\n", - " showlegend=True\n", - " ),\n", - " row=3, col=1\n", - " )\n", - " \n", - " # Add SELL CLOSE signals\n", - " if len(sell_close_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_close_trades['time'],\n", - " y=sell_close_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_A} SELL CLOSE',\n", - " marker=dict(color='purple', size=12, symbol='triangle-down'),\n", - " showlegend=True\n", - " ),\n", - " row=3, col=1\n", - " )\n", - " \n", - " # 4. Symbol_B Market Data with Trading Signals\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=symbol_b_data['tstamp'],\n", - " y=symbol_b_data[colname_b],\n", - " name=f'{SYMBOL_B} Price',\n", - " line=dict(color='orange', width=2),\n", - " opacity=0.8\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add trading signals for Symbol_B if available\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " # Filter trades for Symbol_B\n", - " symbol_b_trades = pair_trades[pair_trades['symbol'] == SYMBOL_B]\n", - " \n", - " if len(symbol_b_trades) > 0:\n", - " # Separate trades by action and status for different colors\n", - " buy_open_trades = symbol_b_trades[(symbol_b_trades['action'].str.contains('BUY', na=False)) & \n", - " (symbol_b_trades['status'] == 'OPEN')]\n", - " buy_close_trades = symbol_b_trades[(symbol_b_trades['action'].str.contains('BUY', na=False)) & \n", - " (symbol_b_trades['status'] == 'CLOSE')]\n", - " sell_open_trades = symbol_b_trades[(symbol_b_trades['action'].str.contains('SELL', na=False)) & \n", - " (symbol_b_trades['status'] == 'OPEN')]\n", - " sell_close_trades = symbol_b_trades[(symbol_b_trades['action'].str.contains('SELL', na=False)) & \n", - " (symbol_b_trades['status'] == 'CLOSE')]\n", - " \n", - " # Add BUY OPEN signals\n", - " if len(buy_open_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_open_trades['time'],\n", - " y=buy_open_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_B} BUY OPEN',\n", - " marker=dict(color='red', size=12, symbol='triangle-up'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add BUY CLOSE signals\n", - " if len(buy_close_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=buy_close_trades['time'],\n", - " y=buy_close_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_B} BUY CLOSE',\n", - " marker=dict(color='red', size=12, symbol='triangle-up'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add SELL OPEN signals\n", - " if len(sell_open_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_open_trades['time'],\n", - " y=sell_open_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_B} SELL OPEN',\n", - " marker=dict(color='blue', size=12, symbol='triangle-down'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Add SELL CLOSE signals\n", - " if len(sell_close_trades) > 0:\n", - " fig.add_trace(\n", - " go.Scatter(\n", - " x=sell_close_trades['time'],\n", - " y=sell_close_trades['price'],\n", - " mode='markers',\n", - " name=f'{SYMBOL_B} SELL CLOSE',\n", - " marker=dict(color='blue', size=12, symbol='triangle-down'),\n", - " showlegend=True\n", - " ),\n", - " row=4, col=1\n", - " )\n", - " \n", - " # Update layout\n", - " fig.update_layout(\n", - " height=1200,\n", - " title_text=f\"Sliding Fit Strategy Analysis - {SYMBOL_A} & {SYMBOL_B}\",\n", - " showlegend=True,\n", - " template=\"plotly_white\"\n", - " )\n", - " \n", - " # Update y-axis labels\n", - " fig.update_yaxes(title_text=\"Scaled Dis-equilibrium\", row=1, col=1)\n", - " fig.update_yaxes(title_text=\"Signal Index\", row=2, col=1)\n", - " fig.update_yaxes(title_text=f\"{SYMBOL_A} Price ($)\", row=3, col=1)\n", - " fig.update_yaxes(title_text=f\"{SYMBOL_B} Price ($)\", row=4, col=1)\n", - " \n", - " # Update x-axis labels and ensure consistent time range\n", - " time_range = [timeline_df['tstamp'].min(), timeline_df['tstamp'].max()]\n", - " fig.update_xaxes(range=time_range, row=1, col=1)\n", - " fig.update_xaxes(range=time_range, row=2, col=1)\n", - " fig.update_xaxes(range=time_range, row=3, col=1)\n", - " fig.update_xaxes(title_text=\"Time\", range=time_range, row=4, col=1)\n", - " \n", - " # Display using plotly offline mode\n", - " pyo.iplot(fig)\n", - "\n", - "else:\n", - " print(\"No interactive visualization data available - strategy may not have run successfully\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "## Summary and Analysis\n" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "================================================================================\n", - "PAIRS TRADING BACKTEST SUMMARY\n", - "================================================================================\n", - "\n", - "Pair: COIN & MSTR\n", - "Strategy: SlidingFit\n", - "Configuration: equity\n", - "Data file: 20250605.mktdata.ohlcv.db\n", - "Trading date: 20250605\n", - "\n", - "Strategy Parameters:\n", - " Training window: 120 minutes\n", - " Open threshold: 2\n", - " Close threshold: 1\n", - " Funding per pair: $2000\n", - "\n", - "Sliding Window Analysis:\n", - " Total data points: 391\n", - " Maximum iterations: 271\n", - " Analysis type: Dynamic sliding window\n", - "\n", - "Trading Signals: 20 generated\n", - " Unique trade times: 10\n", - " BUY signals: 10\n", - " SELL signals: 10\n", - "\n", - "First few trading signals:\n", - " 1. SELL COIN @ $260.46 at 2025-06-05 15:40:00\n", - " 2. BUY MSTR @ $380.53 at 2025-06-05 15:40:00\n", - " 3. BUY COIN @ $259.39 at 2025-06-05 16:02:00\n", - " 4. SELL MSTR @ $379.90 at 2025-06-05 16:02:00\n", - " 5. SELL COIN @ $259.62 at 2025-06-05 16:31:00\n", - " ... and 15 more signals\n", - "\n", - "================================================================================\n" - ] - } - ], - "source": [ - "print(\"=\" * 80)\n", - "print(\"PAIRS TRADING BACKTEST SUMMARY\")\n", - "print(\"=\" * 80)\n", - "\n", - "print(f\"\\nPair: {SYMBOL_A} & {SYMBOL_B}\")\n", - "print(f\"Strategy: {FIT_METHOD_TYPE}\")\n", - "print(f\"Configuration: {CONFIG_FILE}\")\n", - "print(f\"Data file: {DATA_FILE}\")\n", - "print(f\"Trading date: {TRADING_DATE}\")\n", - "\n", - "print(f\"\\nStrategy Parameters:\")\n", - "print(f\" Training window: {pt_bt_config['training_minutes']} minutes\")\n", - "print(f\" Open threshold: {pt_bt_config['dis-equilibrium_open_trshld']}\")\n", - "print(f\" Close threshold: {pt_bt_config['dis-equilibrium_close_trshld']}\")\n", - "print(f\" Funding per pair: ${pt_bt_config['funding_per_pair']}\")\n", - "\n", - "# Strategy-specific summary\n", - "if FIT_METHOD_TYPE == \"StaticFit\":\n", - " if 'is_cointegrated' in locals() and is_cointegrated:\n", - " assert pair.predicted_df_ is not None, \"predicted_df_ is None\"\n", - " print(f\"\\nCointegration Analysis:\")\n", - " print(f\" ✓ Pair is cointegrated\")\n", - " print(f\" VECM Beta coefficients: {pair.vecm_fit_.beta.flatten()}\")\n", - " print(f\" Training mean: {pair.training_mu_:.6f}\")\n", - " print(f\" Training std: {pair.training_std_:.6f}\")\n", - " \n", - " if hasattr(pair, 'predicted_df_'):\n", - " print(f\" Testing predictions: {len(pair.predicted_df_)} data points\")\n", - " else:\n", - " print(f\"\\n✗ Pair is not cointegrated\")\n", - "\n", - "elif FIT_METHOD_TYPE == \"SlidingFit\":\n", - " print(f\"\\nSliding Window Analysis:\")\n", - " training_minutes = pt_bt_config['training_minutes']\n", - " max_iterations = len(pair.market_data_) - training_minutes\n", - " print(f\" Total data points: {len(pair.market_data_)}\")\n", - " print(f\" Maximum iterations: {max_iterations}\")\n", - " print(f\" Analysis type: Dynamic sliding window\")\n", - "\n", - "# Trading signals summary\n", - "if pair_trades is not None and len(pair_trades) > 0:\n", - " print(f\"\\nTrading Signals: {len(pair_trades)} generated\")\n", - " unique_times = pair_trades['time'].unique()\n", - " print(f\" Unique trade times: {len(unique_times)}\")\n", - " \n", - " # Group by action type\n", - " buy_signals = pair_trades[pair_trades['action'].str.contains('BUY', na=False)]\n", - " sell_signals = pair_trades[pair_trades['action'].str.contains('SELL', na=False)]\n", - " \n", - " print(f\" BUY signals: {len(buy_signals)}\")\n", - " print(f\" SELL signals: {len(sell_signals)}\")\n", - " \n", - " # Show first few trades\n", - " print(f\"\\nFirst few trading signals:\")\n", - " for i, (idx, trade) in enumerate(pair_trades.head(5).iterrows()):\n", - " print(f\" {i+1}. {trade['action']} {trade['symbol']} @ ${trade['price']:.2f} at {trade['time']}\")\n", - " \n", - " if len(pair_trades) > 5:\n", - " print(f\" ... and {len(pair_trades)-5} more signals\")\n", - " \n", - "else:\n", - " print(f\"\\nTrading Signals: None generated\")\n", - " print(\" Possible reasons:\")\n", - " print(\" - Dis-equilibrium never exceeded open threshold\")\n", - " print(\" - Pair not cointegrated (for StaticFit)\")\n", - " print(\" - Insufficient data or market conditions\")\n", - "\n", - "print(f\"\\n\" + \"=\" * 80)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "vscode": { - "languageId": "raw" - } - }, - "source": [ - "# Conclusions and Next Steps" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "\n", - "This notebook demonstrates a comprehensive pairs trading backtest framework that supports both StaticFit and SlidingFit. \n", - "\n", - "### Key Insights:\n", - "\n", - "#### StaticFit:\n", - "- **Pros**: Simpler computation, consistent parameters throughout trading period\n", - "- **Cons**: May not adapt to changing market conditions\n", - "- **Best for**: Stable market conditions, strong cointegration relationships\n", - "\n", - "#### SlidingFit:\n", - "- **Pros**: Adaptive to market changes, dynamic parameter updates\n", - "- **Cons**: More computationally intensive, potentially noisy signals\n", - "- **Best for**: Volatile markets, evolving relationships between instruments\n", - "\n", - "### Framework Features:\n", - "\n", - "1. **Configuration-Driven**: Easy switching between strategies and parameters\n", - "2. **Comprehensive Analysis**: From data loading to signal generation\n", - "3. **Rich Visualization**: Strategy-specific charts and analysis\n", - "4. **Interactive Experimentation**: Easy parameter modification and testing\n", - "\n", - "### Recommendations:\n", - "\n", - "1. **Start with StaticFit** for initial pair analysis\n", - "2. **Use SlidingFit** for more sophisticated, adaptive trading\n", - "3. **Experiment with thresholds** based on observed dis-equilibrium statistics\n", - "4. **Test multiple symbol pairs** to find strong cointegration relationships\n", - "5. **Validate results** on different time periods and market conditions\n", - "\n", - "### Next Steps:\n", - "\n", - "- Implement transaction costs and slippage modeling\n", - "- Add risk management features (position sizing, stop-losses)\n", - "- Develop portfolio-level analysis across multiple pairs\n", - "- Create automated parameter optimization routines\n", - "- Implement real-time trading signal generation\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "python3.12-venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.9" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/research/notebooks/__DEPRECATED__/pt_static.ipynb b/research/notebooks/__DEPRECATED__/pt_static.ipynb deleted file mode 100644 index 4c202b4..0000000 --- a/research/notebooks/__DEPRECATED__/pt_static.ipynb +++ /dev/null @@ -1,771 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Pairs Trading Visualization Notebook\n", - "\n", - "This notebook allows you to visualize pairs trading strategies on individual instrument pairs.\n", - "You can examine the relationship between two instruments, their dis-equilibrium, and trading signals." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 🎯 Key Features:\n", - "\n", - "1. **Interactive Configuration**: \n", - " - Easy switching between CRYPTO and EQUITY configurations\n", - " - Simple parameter adjustment for thresholds and training periods\n", - "\n", - "2. **Single Pair Focus**: \n", - " - Instead of running multiple pairs, focuses on one pair at a time\n", - " - Allows deep analysis of the relationship between two instruments\n", - "\n", - "3. **Step-by-Step Visualization**:\n", - " - **Raw price data**: Individual prices, normalized comparison, and price ratios\n", - " - **Training analysis**: Cointegration testing and VECM model fitting\n", - " - **Dis-equilibrium visualization**: Both raw and scaled dis-equilibrium with threshold lines\n", - " - **Strategy execution**: Trading signal generation and visualization\n", - " - **Prediction analysis**: Actual vs predicted prices with trading signals overlaid\n", - "\n", - "4. **Rich Analytics**:\n", - " - Cointegration status and VECM model details\n", - " - Statistical summaries for all stages\n", - " - Threshold crossing analysis\n", - " - Trading signal breakdown\n", - "\n", - "5. **Interactive Experimentation**:\n", - " - Easy parameter modification\n", - " - Re-run capabilities for different configurations\n", - " - Support for both StaticFitStrategy and SlidingFitStrategy\n", - "\n", - "### 🚀 How to Use:\n", - "\n", - "1. **Start Jupyter**:\n", - " ```bash\n", - " cd src/notebooks\n", - " jupyter notebook pairs_trading_visualization.ipynb\n", - " ```\n", - "\n", - "2. **Customize Your Analysis**:\n", - " - Change `SYMBOL_A` and `SYMBOL_B` to your desired trading pair\n", - " - Switch between `CRYPTO_CONFIG` and `EQT_CONFIG`\n", - " - Only **StaticFitStrategy** is supported. \n", - " - Adjust thresholds and parameters as needed\n", - "\n", - "3. **Run and Visualize**:\n", - " - Execute cells step by step to see the analysis unfold\n", - " - Rich matplotlib visualizations show relationships and signals\n", - " - Comprehensive summary at the end\n", - "\n", - "The notebook provides exactly what you requested - a way to visualize the relationship between two instruments and their scaled dis-equilibrium, with all the stages of your pairs trading strategy clearly displayed and analyzed.\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Setup and Imports" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Setup complete!\n" - ] - } - ], - "source": [ - "import sys\n", - "import os\n", - "sys.path.append('..')\n", - "\n", - "import pandas as pd\n", - "import numpy as np\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "from typing import Dict, List, Optional\n", - "\n", - "# Import our modules\n", - "from pt_trading.fit_methods import StaticFit, SlidingFit\n", - "from tools.data_loader import load_market_data\n", - "from pt_trading.trading_pair import TradingPair\n", - "from pt_trading.results import BacktestResult\n", - "\n", - "# Set plotting style\n", - "plt.style.use('seaborn-v0_8')\n", - "sns.set_palette(\"husl\")\n", - "plt.rcParams['figure.figsize'] = (12, 8)\n", - "\n", - "print(\"Setup complete!\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Configuration" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Using EQUITY configuration\n", - "Available instruments: ['COIN', 'GBTC', 'HOOD', 'MSTR', 'PYPL']\n" - ] - } - ], - "source": [ - "# Configuration - Choose between CRYPTO_CONFIG or EQT_CONFIG\n", - "\n", - "CRYPTO_CONFIG = {\n", - " \"security_type\": \"CRYPTO\",\n", - " \"data_directory\": \"../../data/crypto\",\n", - " \"datafiles\": [\n", - " \"20250519.mktdata.ohlcv.db\",\n", - " ],\n", - " \"db_table_name\": \"bnbspot_ohlcv_1min\",\n", - " \"exchange_id\": \"BNBSPOT\",\n", - " \"instrument_id_pfx\": \"PAIR-\",\n", - " \"instruments\": [\n", - " \"BTC-USDT\",\n", - " \"BCH-USDT\",\n", - " \"ETH-USDT\",\n", - " \"LTC-USDT\",\n", - " \"XRP-USDT\",\n", - " \"ADA-USDT\",\n", - " \"SOL-USDT\",\n", - " \"DOT-USDT\",\n", - " ],\n", - " \"trading_hours\": {\n", - " \"begin_session\": \"00:00:00\",\n", - " \"end_session\": \"23:59:00\",\n", - " \"timezone\": \"UTC\",\n", - " },\n", - " \"price_column\": \"close\",\n", - " \"min_required_points\": 30,\n", - " \"zero_threshold\": 1e-10,\n", - " \"dis-equilibrium_open_trshld\": 2.0,\n", - " \"dis-equilibrium_close_trshld\": 0.5,\n", - " \"training_minutes\": 120,\n", - " \"funding_per_pair\": 2000.0,\n", - "}\n", - "\n", - "EQT_CONFIG = {\n", - " \"security_type\": \"EQUITY\",\n", - " \"data_directory\": \"../../data/equity\",\n", - " \"datafiles\": {\n", - " \"0508\": \"20250508.alpaca_sim_md.db\",\n", - " \"0509\": \"20250509.alpaca_sim_md.db\",\n", - " \"0510\": \"20250510.alpaca_sim_md.db\",\n", - " \"0511\": \"20250511.alpaca_sim_md.db\",\n", - " \"0512\": \"20250512.alpaca_sim_md.db\",\n", - " \"0513\": \"20250513.alpaca_sim_md.db\",\n", - " \"0514\": \"20250514.alpaca_sim_md.db\",\n", - " \"0515\": \"20250515.alpaca_sim_md.db\",\n", - " \"0516\": \"20250516.alpaca_sim_md.db\",\n", - " \"0517\": \"20250517.alpaca_sim_md.db\",\n", - " \"0518\": \"20250518.alpaca_sim_md.db\",\n", - " \"0519\": \"20250519.alpaca_sim_md.db\",\n", - " \"0520\": \"20250520.alpaca_sim_md.db\",\n", - " \"0521\": \"20250521.alpaca_sim_md.db\",\n", - " \"0522\": \"20250522.alpaca_sim_md.db\",\n", - " },\n", - " \"db_table_name\": \"md_1min_bars\",\n", - " \"exchange_id\": \"ALPACA\",\n", - " \"instrument_id_pfx\": \"STOCK-\",\n", - " \"instruments\": [\n", - " \"COIN\",\n", - " \"GBTC\",\n", - " \"HOOD\",\n", - " \"MSTR\",\n", - " \"PYPL\",\n", - " ],\n", - " \"trading_hours\": {\n", - " \"begin_session\": \"9:30:00\",\n", - " \"end_session\": \"16:00:00\",\n", - " \"timezone\": \"America/New_York\",\n", - " },\n", - " \"price_column\": \"close\",\n", - " \"min_required_points\": 30,\n", - " \"zero_threshold\": 1e-10,\n", - " \"dis-equilibrium_open_trshld\": 2.0,\n", - " \"dis-equilibrium_close_trshld\": 1.0, #0.5,\n", - " \"training_minutes\": 120,\n", - " \"funding_per_pair\": 2000.0,\n", - "}\n", - "\n", - "# Choose your configuration\n", - "CONFIG = EQT_CONFIG # Change to CRYPTO_CONFIG if you want to use crypto data\n", - "\n", - "print(f\"Using {CONFIG['security_type']} configuration\")\n", - "print(f\"Available instruments: {CONFIG['instruments']}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Select Trading Pair and Data File" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Selected pair: COIN & GBTC\n", - "Data file: 20250509.alpaca_sim_md.db\n", - "Strategy: StaticFitStrategy\n" - ] - } - ], - "source": [ - "# Select your trading pair and strategy\n", - "SYMBOL_A = \"COIN\" # Change these to your desired symbols\n", - "SYMBOL_B = \"GBTC\"\n", - "DATA_FILE = CONFIG[\"datafiles\"][\"0509\"]\n", - "\n", - "# Choose strategy\n", - "FIT_METHOD = StaticFit()\n", - "\n", - "print(f\"Selected pair: {SYMBOL_A} & {SYMBOL_B}\")\n", - "print(f\"Data file: {DATA_FILE}\")\n", - "print(f\"Strategy: {type(FIT_METHOD).__name__}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Load Market Data" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Current working directory: /home/oleg/devel/pairs_trading/src/notebooks\n", - "Loading data from: ../../data/equity/20250509.alpaca_sim_md.db\n", - "Error: Execution failed on sql 'select tstamp, tstamp_ns as time_ns, substr(instrument_id, 7) as symbol, open, high, low, close, volume, num_trades, vwap from md_1min_bars where exchange_id ='ALPACA' and instrument_id in (\"STOCK-COIN\",\"STOCK-GBTC\",\"STOCK-HOOD\",\"STOCK-MSTR\",\"STOCK-PYPL\")': no such table: md_1min_bars\n" - ] - }, - { - "ename": "Exception", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mOperationalError\u001b[39m Traceback (most recent call last)", - "\u001b[36mFile \u001b[39m\u001b[32m~/.pyenv/python3.12-venv/lib/python3.12/site-packages/pandas/io/sql.py:2664\u001b[39m, in \u001b[36mSQLiteDatabase.execute\u001b[39m\u001b[34m(self, sql, params)\u001b[39m\n\u001b[32m 2663\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m-> \u001b[39m\u001b[32m2664\u001b[39m \u001b[43mcur\u001b[49m\u001b[43m.\u001b[49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43msql\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2665\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m cur\n", - "\u001b[31mOperationalError\u001b[39m: no such table: md_1min_bars", - "\nThe above exception was the direct cause of the following exception:\n", - "\u001b[31mDatabaseError\u001b[39m Traceback (most recent call last)", - "\u001b[36mFile \u001b[39m\u001b[32m~/devel/pairs_trading/src/notebooks/../tools/data_loader.py:11\u001b[39m, in \u001b[36mload_sqlite_to_dataframe\u001b[39m\u001b[34m(db_path, query)\u001b[39m\n\u001b[32m 9\u001b[39m conn = sqlite3.connect(db_path)\n\u001b[32m---> \u001b[39m\u001b[32m11\u001b[39m df = \u001b[43mpd\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread_sql_query\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 12\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m df\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/.pyenv/python3.12-venv/lib/python3.12/site-packages/pandas/io/sql.py:528\u001b[39m, in \u001b[36mread_sql_query\u001b[39m\u001b[34m(sql, con, index_col, coerce_float, params, parse_dates, chunksize, dtype, dtype_backend)\u001b[39m\n\u001b[32m 527\u001b[39m \u001b[38;5;28;01mwith\u001b[39;00m pandasSQL_builder(con) \u001b[38;5;28;01mas\u001b[39;00m pandas_sql:\n\u001b[32m--> \u001b[39m\u001b[32m528\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mpandas_sql\u001b[49m\u001b[43m.\u001b[49m\u001b[43mread_query\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 529\u001b[39m \u001b[43m \u001b[49m\u001b[43msql\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 530\u001b[39m \u001b[43m \u001b[49m\u001b[43mindex_col\u001b[49m\u001b[43m=\u001b[49m\u001b[43mindex_col\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 531\u001b[39m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m=\u001b[49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 532\u001b[39m \u001b[43m \u001b[49m\u001b[43mcoerce_float\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcoerce_float\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 533\u001b[39m \u001b[43m \u001b[49m\u001b[43mparse_dates\u001b[49m\u001b[43m=\u001b[49m\u001b[43mparse_dates\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 534\u001b[39m \u001b[43m \u001b[49m\u001b[43mchunksize\u001b[49m\u001b[43m=\u001b[49m\u001b[43mchunksize\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 535\u001b[39m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 536\u001b[39m \u001b[43m \u001b[49m\u001b[43mdtype_backend\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdtype_backend\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 537\u001b[39m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/.pyenv/python3.12-venv/lib/python3.12/site-packages/pandas/io/sql.py:2728\u001b[39m, in \u001b[36mSQLiteDatabase.read_query\u001b[39m\u001b[34m(self, sql, index_col, coerce_float, parse_dates, params, chunksize, dtype, dtype_backend)\u001b[39m\n\u001b[32m 2717\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mread_query\u001b[39m(\n\u001b[32m 2718\u001b[39m \u001b[38;5;28mself\u001b[39m,\n\u001b[32m 2719\u001b[39m sql,\n\u001b[32m (...)\u001b[39m\u001b[32m 2726\u001b[39m dtype_backend: DtypeBackend | Literal[\u001b[33m\"\u001b[39m\u001b[33mnumpy\u001b[39m\u001b[33m\"\u001b[39m] = \u001b[33m\"\u001b[39m\u001b[33mnumpy\u001b[39m\u001b[33m\"\u001b[39m,\n\u001b[32m 2727\u001b[39m ) -> DataFrame | Iterator[DataFrame]:\n\u001b[32m-> \u001b[39m\u001b[32m2728\u001b[39m cursor = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43msql\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 2729\u001b[39m columns = [col_desc[\u001b[32m0\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m col_desc \u001b[38;5;129;01min\u001b[39;00m cursor.description]\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/.pyenv/python3.12-venv/lib/python3.12/site-packages/pandas/io/sql.py:2676\u001b[39m, in \u001b[36mSQLiteDatabase.execute\u001b[39m\u001b[34m(self, sql, params)\u001b[39m\n\u001b[32m 2675\u001b[39m ex = DatabaseError(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mExecution failed on sql \u001b[39m\u001b[33m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msql\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m'\u001b[39m\u001b[33m: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mexc\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n\u001b[32m-> \u001b[39m\u001b[32m2676\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m ex \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mexc\u001b[39;00m\n", - "\u001b[31mDatabaseError\u001b[39m: Execution failed on sql 'select tstamp, tstamp_ns as time_ns, substr(instrument_id, 7) as symbol, open, high, low, close, volume, num_trades, vwap from md_1min_bars where exchange_id ='ALPACA' and instrument_id in (\"STOCK-COIN\",\"STOCK-GBTC\",\"STOCK-HOOD\",\"STOCK-MSTR\",\"STOCK-PYPL\")': no such table: md_1min_bars", - "\nThe above exception was the direct cause of the following exception:\n", - "\u001b[31mException\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[5]\u001b[39m\u001b[32m, line 6\u001b[39m\n\u001b[32m 3\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mCurrent working directory: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mos.getcwd()\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n\u001b[32m 4\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mLoading data from: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdatafile_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n\u001b[32m----> \u001b[39m\u001b[32m6\u001b[39m market_data_df = \u001b[43mload_market_data\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdatafile_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m=\u001b[49m\u001b[43mCONFIG\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 8\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mLoaded \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mlen\u001b[39m(market_data_df)\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m rows of market data\u001b[39m\u001b[33m\"\u001b[39m)\n\u001b[32m 9\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mSymbols in data: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmarket_data_df[\u001b[33m'\u001b[39m\u001b[33msymbol\u001b[39m\u001b[33m'\u001b[39m].unique()\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/devel/pairs_trading/src/notebooks/../tools/data_loader.py:69\u001b[39m, in \u001b[36mload_market_data\u001b[39m\u001b[34m(datafile, config)\u001b[39m\n\u001b[32m 66\u001b[39m query += \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33m where exchange_id =\u001b[39m\u001b[33m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mexchange_id\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m'\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 67\u001b[39m query += \u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33m and instrument_id in (\u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[33m'\u001b[39m\u001b[33m,\u001b[39m\u001b[33m'\u001b[39m.join(instrument_ids)\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m)\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m---> \u001b[39m\u001b[32m69\u001b[39m df = \u001b[43mload_sqlite_to_dataframe\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdb_path\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdatafile\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mquery\u001b[49m\u001b[43m=\u001b[49m\u001b[43mquery\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 71\u001b[39m \u001b[38;5;66;03m# Trading Hours\u001b[39;00m\n\u001b[32m 72\u001b[39m date_str = df[\u001b[33m\"\u001b[39m\u001b[33mtstamp\u001b[39m\u001b[33m\"\u001b[39m][\u001b[32m0\u001b[39m][\u001b[32m0\u001b[39m:\u001b[32m10\u001b[39m]\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/devel/pairs_trading/src/notebooks/../tools/data_loader.py:18\u001b[39m, in \u001b[36mload_sqlite_to_dataframe\u001b[39m\u001b[34m(db_path, query)\u001b[39m\n\u001b[32m 16\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m excpt:\n\u001b[32m 17\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mexcpt\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n\u001b[32m---> \u001b[39m\u001b[32m18\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m() \u001b[38;5;28;01mfrom\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mexcpt\u001b[39;00m\n\u001b[32m 19\u001b[39m \u001b[38;5;28;01mfinally\u001b[39;00m:\n\u001b[32m 20\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[33m\"\u001b[39m\u001b[33mconn\u001b[39m\u001b[33m\"\u001b[39m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mlocals\u001b[39m():\n", - "\u001b[31mException\u001b[39m: " - ] - } - ], - "source": [ - "# Load market data\n", - "datafile_path = f\"{CONFIG['data_directory']}/{DATA_FILE}\"\n", - "print(f\"Current working directory: {os.getcwd()}\")\n", - "print(f\"Loading data from: {datafile_path}\")\n", - "\n", - "market_data_df = load_market_data(datafile_path, config=CONFIG)\n", - "\n", - "print(f\"Loaded {len(market_data_df)} rows of market data\")\n", - "print(f\"Symbols in data: {market_data_df['symbol'].unique()}\")\n", - "print(f\"Time range: {market_data_df['tstamp'].min()} to {market_data_df['tstamp'].max()}\")\n", - "\n", - "# Display first few rows\n", - "market_data_df.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Create Trading Pair and Analyze" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create trading pair\n", - "pair = TradingPair(\n", - " market_data=market_data_df,\n", - " symbol_a=SYMBOL_A,\n", - " symbol_b=SYMBOL_B,\n", - " price_column=CONFIG[\"price_column\"]\n", - ")\n", - "\n", - "print(f\"Created trading pair: {pair}\")\n", - "print(f\"Market data shape: {pair.market_data_.shape}\")\n", - "print(f\"Column names: {pair.colnames()}\")\n", - "\n", - "# Display first few rows of pair data\n", - "pair.market_data_.head()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Split Data into Training and Testing" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Get training and testing datasets\n", - "training_minutes = CONFIG[\"training_minutes\"]\n", - "pair.get_datasets(training_minutes=training_minutes)\n", - "\n", - "print(f\"Training data: {len(pair.training_df_)} rows\")\n", - "print(f\"Testing data: {len(pair.testing_df_)} rows\")\n", - "print(f\"Training period: {pair.training_df_['tstamp'].iloc[0]} to {pair.training_df_['tstamp'].iloc[-1]}\")\n", - "print(f\"Testing period: {pair.testing_df_['tstamp'].iloc[0]} to {pair.testing_df_['tstamp'].iloc[-1]}\")\n", - "\n", - "# Check for any missing data\n", - "print(f\"Training data null values: {pair.training_df_.isnull().sum().sum()}\")\n", - "print(f\"Testing data null values: {pair.testing_df_.isnull().sum().sum()}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize Raw Price Data" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Plot raw price data\n", - "fig, axes = plt.subplots(3, 1, figsize=(15, 12))\n", - "\n", - "# Combined price plot\n", - "colname_a, colname_b = pair.colnames()\n", - "all_data = pd.concat([pair.training_df_, pair.testing_df_]).reset_index(drop=True)\n", - "\n", - "# Plot individual prices\n", - "axes[0].plot(all_data['tstamp'], all_data[colname_a], label=f'{SYMBOL_A}', alpha=0.8)\n", - "axes[0].plot(all_data['tstamp'], all_data[colname_b], label=f'{SYMBOL_B}', alpha=0.8)\n", - "axes[0].axvline(x=pair.training_df_['tstamp'].iloc[-1], color='red', linestyle='--', alpha=0.7, label='Train/Test Split')\n", - "axes[0].set_title(f'Price Comparison: {SYMBOL_A} vs {SYMBOL_B}')\n", - "axes[0].set_ylabel('Price')\n", - "axes[0].legend()\n", - "axes[0].grid(True)\n", - "\n", - "# Normalized prices for comparison\n", - "norm_a = all_data[colname_a] / all_data[colname_a].iloc[0]\n", - "norm_b = all_data[colname_b] / all_data[colname_b].iloc[0]\n", - "\n", - "axes[1].plot(all_data['tstamp'], norm_a, label=f'{SYMBOL_A} (normalized)', alpha=0.8)\n", - "axes[1].plot(all_data['tstamp'], norm_b, label=f'{SYMBOL_B} (normalized)', alpha=0.8)\n", - "axes[1].axvline(x=pair.training_df_['tstamp'].iloc[-1], color='red', linestyle='--', alpha=0.7, label='Train/Test Split')\n", - "axes[1].set_title('Normalized Price Comparison')\n", - "axes[1].set_ylabel('Normalized Price')\n", - "axes[1].legend()\n", - "axes[1].grid(True)\n", - "\n", - "# Price ratio\n", - "price_ratio = all_data[colname_a] / all_data[colname_b]\n", - "axes[2].plot(all_data['tstamp'], price_ratio, label=f'{SYMBOL_A}/{SYMBOL_B} Ratio', color='green', alpha=0.8)\n", - "axes[2].axvline(x=pair.training_df_['tstamp'].iloc[-1], color='red', linestyle='--', alpha=0.7, label='Train/Test Split')\n", - "axes[2].set_title('Price Ratio')\n", - "axes[2].set_ylabel('Ratio')\n", - "axes[2].set_xlabel('Time')\n", - "axes[2].legend()\n", - "axes[2].grid(True)\n", - "\n", - "plt.tight_layout()\n", - "plt.show()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Train the Pair and Check Cointegration" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Train the pair and check cointegration\n", - "try:\n", - " is_cointegrated = pair.train_pair()\n", - " print(f\"Pair {pair} cointegration status: {is_cointegrated}\")\n", - "\n", - " if is_cointegrated:\n", - " print(f\"VECM Beta coefficients: {pair.vecm_fit_.beta.flatten()}\")\n", - " print(f\"Training dis-equilibrium mean: {pair.training_mu_:.6f}\")\n", - " print(f\"Training dis-equilibrium std: {pair.training_std_:.6f}\")\n", - "\n", - " # Display VECM summary\n", - " print(\"\\nVECM Model Summary:\")\n", - " print(pair.vecm_fit_.summary())\n", - " else:\n", - " print(\"Pair is not cointegrated. Cannot proceed with strategy.\")\n", - "\n", - "except Exception as e:\n", - " print(f\"Training failed: {str(e)}\")\n", - " is_cointegrated = False" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize Training Period Dis-equilibrium" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if is_cointegrated:\n", - " # fig, axes = plt.subplots(, 1, figsize=(15, 10))\n", - "\n", - " # # Raw dis-equilibrium\n", - " # axes[0].plot(pair.training_df_['tstamp'], pair.training_df_['dis-equilibrium'],\n", - " # color='blue', alpha=0.8, label='Raw Dis-equilibrium')\n", - " # axes[0].axhline(y=pair.training_mu_, color='red', linestyle='--', alpha=0.7, label='Mean')\n", - " # axes[0].axhline(y=pair.training_mu_ + pair.training_std_, color='orange', linestyle='--', alpha=0.5, label='+1 Std')\n", - " # axes[0].axhline(y=pair.training_mu_ - pair.training_std_, color='orange', linestyle='--', alpha=0.5, label='-1 Std')\n", - " # axes[0].set_title('Training Period: Raw Dis-equilibrium')\n", - " # axes[0].set_ylabel('Dis-equilibrium')\n", - " # axes[0].legend()\n", - " # axes[0].grid(True)\n", - "\n", - " # Scaled dis-equilibrium\n", - " fig, axes = plt.subplots(1, 1, figsize=(15, 5))\n", - " axes.plot(pair.training_df_['tstamp'], pair.training_df_['scaled_dis-equilibrium'],\n", - " color='green', alpha=0.8, label='Scaled Dis-equilibrium')\n", - " axes.axhline(y=0, color='red', linestyle='--', alpha=0.7, label='Mean (0)')\n", - " axes.axhline(y=1, color='orange', linestyle='--', alpha=0.5, label='+1 Std')\n", - " axes.axhline(y=-1, color='orange', linestyle='--', alpha=0.5, label='-1 Std')\n", - " axes.axhline(y=CONFIG['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7, label=f\"Open Threshold ({CONFIG['dis-equilibrium_open_trshld']})\")\n", - " axes.axhline(y=CONFIG['dis-equilibrium_close_trshld'], color='brown',\n", - " linestyle=':', alpha=0.7, label=f\"Close Threshold ({CONFIG['dis-equilibrium_close_trshld']})\")\n", - " axes.set_title('Training Period: Scaled Dis-equilibrium')\n", - " axes.set_ylabel('Scaled Dis-equilibrium')\n", - " axes.set_xlabel('Time')\n", - " axes.legend()\n", - " axes.grid(True)\n", - "\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - " # Print statistics\n", - " print(f\"Training dis-equilibrium statistics:\")\n", - " print(f\" Mean: {pair.training_df_['dis-equilibrium'].mean():.6f}\")\n", - " print(f\" Std: {pair.training_df_['dis-equilibrium'].std():.6f}\")\n", - " print(f\" Min: {pair.training_df_['dis-equilibrium'].min():.6f}\")\n", - " print(f\" Max: {pair.training_df_['dis-equilibrium'].max():.6f}\")\n", - "\n", - " print(f\"\\nScaled dis-equilibrium statistics:\")\n", - " print(f\" Mean: {pair.training_df_['scaled_dis-equilibrium'].mean():.6f}\")\n", - " print(f\" Std: {pair.training_df_['scaled_dis-equilibrium'].std():.6f}\")\n", - " print(f\" Min: {pair.training_df_['scaled_dis-equilibrium'].min():.6f}\")\n", - " print(f\" Max: {pair.training_df_['scaled_dis-equilibrium'].max():.6f}\")\n", - "else:\n", - " print(\"The pair is not cointegrated\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Generate Predictions and Run Strategy" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if is_cointegrated:\n", - " try:\n", - " # Generate predictions\n", - " pair.predict()\n", - " print(f\"Generated predictions for {len(pair.predicted_df_)} rows\")\n", - "\n", - " # Display prediction data structure\n", - " print(f\"Prediction columns: {list(pair.predicted_df_.columns)}\")\n", - " print(f\"Prediction period: {pair.predicted_df_['tstamp'].iloc[0]} to {pair.predicted_df_['tstamp'].iloc[-1]}\")\n", - "\n", - " # Run strategy\n", - " bt_result = BacktestResult(config=CONFIG)\n", - " pair_trades = FIT_METHOD.run_pair(config=CONFIG, pair=pair, bt_result=bt_result)\n", - "\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " print(f\"\\nGenerated {len(pair_trades)} trading signals:\")\n", - " print(pair_trades)\n", - " else:\n", - " print(\"\\nNo trading signals generated\")\n", - "\n", - " except Exception as e:\n", - " print(f\"Prediction/Strategy failed: {str(e)}\")\n", - " pair_trades = None" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Visualize Predictions and Dis-equilibrium" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "if is_cointegrated and hasattr(pair, 'predicted_df_'):\n", - " fig, axes = plt.subplots(4, 1, figsize=(16, 16))\n", - "\n", - " # Actual vs Predicted Prices\n", - " colname_a, colname_b = pair.colnames()\n", - "\n", - " axes[0].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[colname_a],\n", - " label=f'{SYMBOL_A} Actual', alpha=0.8)\n", - " axes[0].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[f'{colname_a}_pred'],\n", - " label=f'{SYMBOL_A} Predicted', alpha=0.8, linestyle='--')\n", - " axes[0].set_title('Actual vs Predicted Prices - Symbol A')\n", - " axes[0].set_ylabel('Price')\n", - " axes[0].legend()\n", - " axes[0].grid(True)\n", - "\n", - " axes[1].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[colname_b],\n", - " label=f'{SYMBOL_B} Actual', alpha=0.8)\n", - " axes[1].plot(pair.predicted_df_['tstamp'], pair.predicted_df_[f'{colname_b}_pred'],\n", - " label=f'{SYMBOL_B} Predicted', alpha=0.8, linestyle='--')\n", - " axes[1].set_title('Actual vs Predicted Prices - Symbol B')\n", - " axes[1].set_ylabel('Price')\n", - " axes[1].legend()\n", - " axes[1].grid(True)\n", - "\n", - " # Raw dis-equilibrium\n", - " axes[2].plot(pair.predicted_df_['tstamp'], pair.predicted_df_['disequilibrium'],\n", - " color='blue', alpha=0.8, label='Dis-equilibrium')\n", - " axes[2].axhline(y=pair.training_mu_, color='red', linestyle='--', alpha=0.7, label='Training Mean')\n", - " axes[2].set_title('Testing Period: Raw Dis-equilibrium')\n", - " axes[2].set_ylabel('Dis-equilibrium')\n", - " axes[2].legend()\n", - " axes[2].grid(True)\n", - "\n", - " # Scaled dis-equilibrium with trading signals\n", - " axes[3].plot(pair.predicted_df_['tstamp'], pair.predicted_df_['scaled_disequilibrium'],\n", - " color='green', alpha=0.8, label='Scaled Dis-equilibrium')\n", - "\n", - " # Add threshold lines\n", - " axes[3].axhline(y=CONFIG['dis-equilibrium_open_trshld'], color='purple',\n", - " linestyle=':', alpha=0.7, label=f\"Open Threshold ({CONFIG['dis-equilibrium_open_trshld']})\")\n", - " axes[3].axhline(y=CONFIG['dis-equilibrium_close_trshld'], color='brown',\n", - " linestyle=':', alpha=0.7, label=f\"Close Threshold ({CONFIG['dis-equilibrium_close_trshld']})\")\n", - "\n", - " # Add trading signals if they exist\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " for _, trade in pair_trades.iterrows():\n", - " color = 'red' if 'BUY' in trade['action'] else 'blue'\n", - " marker = '^' if 'BUY' in trade['action'] else 'v'\n", - " axes[3].scatter(trade['time'], trade['scaled_disequilibrium'],\n", - " color=color, marker=marker, s=100, alpha=0.8,\n", - " label=f\"{trade['action']} {trade['symbol']}\" if _ < 2 else \"\")\n", - "\n", - " axes[3].set_title('Testing Period: Scaled Dis-equilibrium with Trading Signals')\n", - " axes[3].set_ylabel('Scaled Dis-equilibrium')\n", - " axes[3].set_xlabel('Time')\n", - " axes[3].legend()\n", - " axes[3].grid(True)\n", - "\n", - " plt.tight_layout()\n", - " plt.show()\n", - "\n", - " # Print prediction statistics\n", - " print(f\"\\nTesting dis-equilibrium statistics:\")\n", - " print(f\" Mean: {pair.predicted_df_['disequilibrium'].mean():.6f}\")\n", - " print(f\" Std: {pair.predicted_df_['disequilibrium'].std():.6f}\")\n", - " print(f\" Min: {pair.predicted_df_['disequilibrium'].min():.6f}\")\n", - " print(f\" Max: {pair.predicted_df_['disequilibrium'].max():.6f}\")\n", - "\n", - " print(f\"\\nTesting scaled dis-equilibrium statistics:\")\n", - " print(f\" Mean: {pair.predicted_df_['scaled_disequilibrium'].mean():.6f}\")\n", - " print(f\" Std: {pair.predicted_df_['scaled_disequilibrium'].std():.6f}\")\n", - " print(f\" Min: {pair.predicted_df_['scaled_disequilibrium'].min():.6f}\")\n", - " print(f\" Max: {pair.predicted_df_['scaled_disequilibrium'].max():.6f}\")\n", - "\n", - " # Count threshold crossings\n", - " open_crossings = (pair.predicted_df_['scaled_disequilibrium'] >= CONFIG['dis-equilibrium_open_trshld']).sum()\n", - " close_crossings = (pair.predicted_df_['scaled_disequilibrium'] <= CONFIG['dis-equilibrium_close_trshld']).sum()\n", - " print(f\"\\nThreshold crossings:\")\n", - " print(f\" Open threshold ({CONFIG['dis-equilibrium_open_trshld']}): {open_crossings} times\")\n", - " print(f\" Close threshold ({CONFIG['dis-equilibrium_close_trshld']}): {close_crossings} times\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Summary and Analysis" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "print(\"=\" * 60)\n", - "print(\"PAIRS TRADING ANALYSIS SUMMARY\")\n", - "print(\"=\" * 60)\n", - "\n", - "print(f\"\\nPair: {SYMBOL_A} & {SYMBOL_B}\")\n", - "print(f\"Strategy: {type(FIT_METHOD).__name__}\")\n", - "print(f\"Data file: {DATA_FILE}\")\n", - "print(f\"Training period: {training_minutes} minutes\")\n", - "\n", - "print(f\"\\nCointegration Status: {'✓ COINTEGRATED' if is_cointegrated else '✗ NOT COINTEGRATED'}\")\n", - "\n", - "if is_cointegrated:\n", - " print(f\"\\nVECM Model:\")\n", - " print(f\" Beta coefficients: {pair.vecm_fit_.beta.flatten()}\")\n", - " print(f\" Training mean: {pair.training_mu_:.6f}\")\n", - " print(f\" Training std: {pair.training_std_:.6f}\")\n", - "\n", - " if pair_trades is not None and len(pair_trades) > 0:\n", - " print(f\"\\nTrading Signals: {len(pair_trades)} generated\")\n", - " unique_times = pair_trades['time'].unique()\n", - " print(f\" Unique trade times: {len(unique_times)}\")\n", - "\n", - " # Group by time to see paired trades\n", - " for trade_time in unique_times:\n", - " trades_at_time = pair_trades[pair_trades['time'] == trade_time]\n", - " print(f\"\\n Trade at {trade_time}:\")\n", - " for _, trade in trades_at_time.iterrows():\n", - " print(f\" {trade['action']} {trade['symbol']} @ ${trade['price']:.2f} (dis-eq: {trade['scaled_disequilibrium']:.2f})\")\n", - " else:\n", - " print(f\"\\nTrading Signals: None generated\")\n", - " print(\" Possible reasons:\")\n", - " print(\" - Dis-equilibrium never exceeded open threshold\")\n", - " print(\" - Insufficient testing data\")\n", - " print(\" - Strategy-specific conditions not met\")\n", - "\n", - "else:\n", - " print(\"\\nCannot proceed with trading strategy - pair is not cointegrated\")\n", - " print(\"Consider:\")\n", - " print(\" - Trying different symbol pairs\")\n", - " print(\" - Adjusting training period length\")\n", - " print(\" - Using different data timeframe\")\n", - "\n", - "print(\"\\n\" + \"=\" * 60)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Interactive Analysis (Optional)\n", - "\n", - "You can modify the parameters below and re-run the analysis:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Interactive parameter adjustment\n", - "print(\"Current parameters:\")\n", - "print(f\" Open threshold: {CONFIG['dis-equilibrium_open_trshld']}\")\n", - "print(f\" Close threshold: {CONFIG['dis-equilibrium_close_trshld']}\")\n", - "print(f\" Training minutes: {CONFIG['training_minutes']}\")\n", - "\n", - "# Uncomment and modify these to experiment:\n", - "# CONFIG['dis-equilibrium_open_trshld'] = 1.5\n", - "# CONFIG['dis-equilibrium_close_trshld'] = 0.3\n", - "# CONFIG['training_minutes'] = 180\n", - "\n", - "print(\"\\nTo re-run with different parameters:\")\n", - "print(\"1. Modify the parameters above\")\n", - "print(\"2. Re-run from the 'Split Data into Training and Testing' cell\")\n", - "print(\"3. Or try different symbol pairs by changing SYMBOL_A and SYMBOL_B\")" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "python3.12-venv", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.12.9" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/research/pt_backtest.py b/research/pt_backtest.py index baf7a76..04d7f96 100644 --- a/research/pt_backtest.py +++ b/research/pt_backtest.py @@ -7,6 +7,7 @@ from typing import Any, Dict, List, Optional import pandas as pd +from research.research_tools import create_pairs from tools.config import expand_filename, load_config from tools.data_loader import get_available_instruments_from_db, load_market_data from pt_trading.results import ( @@ -70,31 +71,8 @@ def run_backtest( """ bt_result: BacktestResult = BacktestResult(config=config) - def _create_pairs(config: Dict, instruments: List[str]) -> List[TradingPair]: - nonlocal datafile - all_indexes = range(len(instruments)) - unique_index_pairs = [(i, j) for i in all_indexes for j in all_indexes if i < j] - pairs = [] - - # Update config to use the specified instruments - config_copy = config.copy() - config_copy["instruments"] = instruments - - market_data_df = load_market_data(datafile, config=config_copy) - - for a_index, b_index in unique_index_pairs: - pair = TradingPair( - config=config_copy, - market_data=market_data_df, - symbol_a=instruments[a_index], - symbol_b=instruments[b_index], - price_column=price_column, - ) - pairs.append(pair) - return pairs - pairs_trades = [] - for pair in _create_pairs(config, instruments): + for pair in create_pairs(datafile, price_column, config, instruments): single_pair_trades = fit_method.run_pair( pair=pair, bt_result=bt_result ) diff --git a/research/research_tools.py b/research/research_tools.py new file mode 100644 index 0000000..944d856 --- /dev/null +++ b/research/research_tools.py @@ -0,0 +1,69 @@ +import glob +import os +from typing import Dict, List, Optional + + + +def resolve_datafiles(config: Dict, cli_datafiles: Optional[str] = None) -> List[str]: + """ + Resolve the list of data files to process. + CLI datafiles take priority over config datafiles. + Supports wildcards in config but not in CLI. + """ + if cli_datafiles: + # CLI override - comma-separated list, no wildcards + datafiles = [f.strip() for f in cli_datafiles.split(",")] + # Make paths absolute relative to data directory + data_dir = config.get("data_directory", "./data") + resolved_files = [] + for df in datafiles: + if not os.path.isabs(df): + df = os.path.join(data_dir, df) + resolved_files.append(df) + return resolved_files + + # Use config datafiles with wildcard support + config_datafiles = config.get("datafiles", []) + data_dir = config.get("data_directory", "./data") + resolved_files = [] + + for pattern in config_datafiles: + if "*" in pattern or "?" in pattern: + # Handle wildcards + if not os.path.isabs(pattern): + pattern = os.path.join(data_dir, pattern) + matched_files = glob.glob(pattern) + resolved_files.extend(matched_files) + else: + # Handle explicit file path + if not os.path.isabs(pattern): + pattern = os.path.join(data_dir, pattern) + resolved_files.append(pattern) + + return sorted(list(set(resolved_files))) # Remove duplicates and sort + +def create_pairs(datafile: str, price_column: str, config: Dict, instruments: List[str]) -> List: + from tools.data_loader import load_market_data + from pt_trading.trading_pair import TradingPair + all_indexes = range(len(instruments)) + unique_index_pairs = [(i, j) for i in all_indexes for j in all_indexes if i < j] + pairs = [] + + # Update config to use the specified instruments + config_copy = config.copy() + config_copy["instruments"] = instruments + + market_data_df = load_market_data(datafile, config=config_copy) + + for a_index, b_index in unique_index_pairs: + from research.pt_backtest import TradingPair + pair = TradingPair( + config=config_copy, + market_data=market_data_df, + symbol_a=instruments[a_index], + symbol_b=instruments[b_index], + price_column=price_column, + ) + pairs.append(pair) + return pairs +