progress, sliding model - buggy

This commit is contained in:
Oleg Sheynin 2025-07-12 03:17:12 +00:00
parent 85c9d2ab93
commit 48f18f7b4f
4 changed files with 250 additions and 464 deletions

View File

@ -20,6 +20,7 @@
"training_minutes": 120,
"funding_per_pair": 2000.0,
"fit_method_class": "pt_trading.fit_methods.SlidingFit",
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
"exclude_instruments": ["CAN"]
}

View File

@ -31,6 +31,7 @@ class TradingPair:
self.user_data_ = {}
self.predicted_df_ = pd.DataFrame()
def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
# Select only the columns we need
@ -80,7 +81,7 @@ class TradingPair:
testing_start_index = training_start_index + training_minutes
self.training_df_ = self.market_data_.iloc[
training_start_index:testing_start_index, :
training_start_index:testing_start_index, : training_minutes
].copy()
assert self.training_df_ is not None
self.training_df_ = self.training_df_.dropna().reset_index(drop=True)
@ -101,7 +102,7 @@ class TradingPair:
f"{self.price_column_}_{self.symbol_b_}",
]
def fit_VECM(self):
def fit_VECM(self) -> None:
assert self.training_df_ is not None
vecm_df = self.training_df_[self.colnames()].reset_index(drop=True)
vecm_model = VECM(vecm_df, coint_rank=1)
@ -120,7 +121,7 @@ class TradingPair:
# print(f"{self}: {self.vecm_fit_.summary()}")
pass
def check_cointegration_johansen(self):
def check_cointegration_johansen(self) -> bool:
assert self.training_df_ is not None
from statsmodels.tsa.vector_ar.vecm import coint_johansen
@ -129,11 +130,11 @@ class TradingPair:
print(
f"{self}: lr1={result.lr1[0]} > cvt={result.cvt[0, 1]}? {result.lr1[0] > result.cvt[0, 1]}"
)
is_cointegrated = result.lr1[0] > result.cvt[0, 1]
is_cointegrated: bool = bool(result.lr1[0] > result.cvt[0, 1])
return is_cointegrated
def check_cointegration_engle_granger(self):
def check_cointegration_engle_granger(self) -> bool:
from statsmodels.tsa.stattools import coint
col1, col2 = self.colnames()
@ -144,7 +145,7 @@ class TradingPair:
# Run Engle-Granger cointegration test
pvalue = coint(series1, series2)[1]
# Define cointegration if p-value < 0.05 (i.e., reject null of no cointegration)
is_cointegrated = pvalue < 0.05
is_cointegrated: bool = bool(pvalue < 0.05)
print(f"{self}: is_cointegrated={is_cointegrated} pvalue={pvalue}")
return is_cointegrated
@ -179,9 +180,30 @@ class TradingPair:
predicted_prices = self.vecm_fit_.predict(steps=len(self.testing_df_))
# Convert prediction to a DataFrame for readability
# predicted_df =
predicted_df = pd.DataFrame(
predicted_prices, columns=pd.Index(self.colnames()), dtype=float
)
self.predicted_df_ = pd.merge(
# self.predicted_df_ = pd.merge(
# self.testing_df_.reset_index(drop=True),
# pd.DataFrame(
# predicted_prices, columns=pd.Index(self.colnames()), dtype=float
# ),
# left_index=True,
# right_index=True,
# suffixes=("", "_pred"),
# ).dropna()
# self.predicted_df_["disequilibrium"] = (
# self.predicted_df_[self.colnames()] @ self.vecm_fit_.beta
# )
# self.predicted_df_["scaled_disequilibrium"] = (
# abs(self.predicted_df_["disequilibrium"] - self.training_mu_)
# / self.training_std_
# )
predicted_df = pd.merge(
self.testing_df_.reset_index(drop=True),
pd.DataFrame(
predicted_prices, columns=pd.Index(self.colnames()), dtype=float
@ -191,16 +213,25 @@ class TradingPair:
suffixes=("", "_pred"),
).dropna()
self.predicted_df_["disequilibrium"] = (
self.predicted_df_[self.colnames()] @ self.vecm_fit_.beta
predicted_df["disequilibrium"] = (
predicted_df[self.colnames()] @ self.vecm_fit_.beta
)
self.predicted_df_["scaled_disequilibrium"] = (
abs(self.predicted_df_["disequilibrium"] - self.training_mu_)
predicted_df["scaled_disequilibrium"] = (
abs(predicted_df["disequilibrium"] - self.training_mu_)
/ self.training_std_
)
print("*** PREDICTED DF")
print(predicted_df)
print("*" * 80)
print("*** SELF.PREDICTED_DF")
print(self.predicted_df_)
print("*" * 80)
# Reset index to ensure proper indexing
predicted_df = predicted_df.reset_index(drop=True)
self.predicted_df_ = pd.concat([self.predicted_df_, predicted_df], ignore_index=True)
# Reset index to ensure proper indexing
self.predicted_df_ = self.predicted_df_.reset_index()
return self.predicted_df_

View File

@ -44,6 +44,7 @@ mypy>=0.942
mypy-extensions>=0.4.3
netaddr>=0.8.0
######### netifaces>=0.11.0
numpy>=1.26.4,<2.3.0
oauthlib>=3.2.0
packaging>=23.1
pathspec>=0.11.1

File diff suppressed because one or more lines are too long