added close position and trade session
This commit is contained in:
parent
20f150a6b7
commit
9c34d935bd
@ -21,6 +21,11 @@
|
|||||||
"funding_per_pair": 2000.0,
|
"funding_per_pair": 2000.0,
|
||||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||||
"exclude_instruments": ["CAN"]
|
"close_outstanding_positions": true,
|
||||||
|
"trading_hours": {
|
||||||
|
"begin_session": "15:30:00",
|
||||||
|
"end_session": "20:00:00",
|
||||||
|
"timezone": "UTC"
|
||||||
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -21,6 +21,7 @@
|
|||||||
"funding_per_pair": 2000.0,
|
"funding_per_pair": 2000.0,
|
||||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||||
"exclude_instruments": ["CAN"]
|
"exclude_instruments": ["CAN"],
|
||||||
|
"close_outstanding_positions": false
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -21,6 +21,7 @@
|
|||||||
"funding_per_pair": 2000.0,
|
"funding_per_pair": 2000.0,
|
||||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||||
"exclude_instruments": ["CAN"]
|
"exclude_instruments": ["CAN"],
|
||||||
|
"close_outstanding_positions": false
|
||||||
|
|
||||||
}
|
}
|
||||||
@ -1,8 +1,8 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
from enum import Enum
|
from enum import Enum
|
||||||
from typing import Dict, Optional, cast
|
from typing import Dict, Optional, cast
|
||||||
import pandas as pd # type: ignore[import]
|
|
||||||
|
|
||||||
|
import pandas as pd # type: ignore[import]
|
||||||
from pt_trading.results import BacktestResult
|
from pt_trading.results import BacktestResult
|
||||||
from pt_trading.trading_pair import TradingPair
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
@ -22,7 +22,7 @@ class PairsTradingFitMethod(ABC):
|
|||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def run_pair(
|
def run_pair(
|
||||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
self, pair: TradingPair, bt_result: BacktestResult
|
||||||
) -> Optional[pd.DataFrame]: ...
|
) -> Optional[pd.DataFrame]: ...
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
@ -33,3 +33,4 @@ class PairState(Enum):
|
|||||||
INITIAL = 1
|
INITIAL = 1
|
||||||
OPEN = 2
|
OPEN = 2
|
||||||
CLOSED = 3
|
CLOSED = 3
|
||||||
|
CLOSED_POSITIONS = 4
|
||||||
|
|||||||
@ -16,12 +16,15 @@ NanoPerMin = 1e9
|
|||||||
class SlidingFit(PairsTradingFitMethod):
|
class SlidingFit(PairsTradingFitMethod):
|
||||||
def __init__(self) -> None:
|
def __init__(self) -> None:
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.curr_training_start_idx_ = 0
|
|
||||||
|
|
||||||
def run_pair(
|
def run_pair(
|
||||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
self, pair: TradingPair, bt_result: BacktestResult
|
||||||
) -> Optional[pd.DataFrame]:
|
) -> Optional[pd.DataFrame]:
|
||||||
print(f"***{pair}*** STARTING....")
|
print(f"***{pair}*** STARTING....")
|
||||||
|
config = pair.config_
|
||||||
|
|
||||||
|
curr_training_start_idx = pair.get_begin_index()
|
||||||
|
end_index = pair.get_end_index()
|
||||||
|
|
||||||
pair.user_data_["state"] = PairState.INITIAL
|
pair.user_data_["state"] = PairState.INITIAL
|
||||||
# Initialize trades DataFrame with proper dtypes to avoid concatenation warnings
|
# Initialize trades DataFrame with proper dtypes to avoid concatenation warnings
|
||||||
@ -39,22 +42,23 @@ class SlidingFit(PairsTradingFitMethod):
|
|||||||
training_minutes = config["training_minutes"]
|
training_minutes = config["training_minutes"]
|
||||||
curr_predicted_row_idx = 0
|
curr_predicted_row_idx = 0
|
||||||
while True:
|
while True:
|
||||||
print(self.curr_training_start_idx_, end="\r")
|
print(curr_training_start_idx, end="\r")
|
||||||
pair.get_datasets(
|
pair.get_datasets(
|
||||||
training_minutes=training_minutes,
|
training_minutes=training_minutes,
|
||||||
training_start_index=self.curr_training_start_idx_,
|
training_start_index=curr_training_start_idx,
|
||||||
testing_size=1,
|
testing_size=1,
|
||||||
)
|
)
|
||||||
|
|
||||||
if len(pair.training_df_) < training_minutes:
|
if len(pair.training_df_) < training_minutes:
|
||||||
print(
|
print(
|
||||||
f"{pair}: current offset={self.curr_training_start_idx_}"
|
f"{pair}: current offset={curr_training_start_idx}"
|
||||||
f" * Training data length={len(pair.training_df_)} < {training_minutes}"
|
f" * Training data length={len(pair.training_df_)} < {training_minutes}"
|
||||||
" * Not enough training data. Completing the job."
|
" * Not enough training data. Completing the job."
|
||||||
)
|
)
|
||||||
break
|
break
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
# ================================ TRAINING ================================
|
||||||
is_cointegrated = pair.train_pair()
|
is_cointegrated = pair.train_pair()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise RuntimeError(f"{pair}: Training failed: {str(e)}") from e
|
raise RuntimeError(f"{pair}: Training failed: {str(e)}") from e
|
||||||
@ -64,30 +68,33 @@ class SlidingFit(PairsTradingFitMethod):
|
|||||||
if not is_cointegrated:
|
if not is_cointegrated:
|
||||||
if pair.user_data_["state"] == PairState.OPEN:
|
if pair.user_data_["state"] == PairState.OPEN:
|
||||||
print(
|
print(
|
||||||
f"{pair} {self.curr_training_start_idx_} LOST COINTEGRATION. Consider closing positions..."
|
f"{pair} {curr_training_start_idx} LOST COINTEGRATION. Consider closing positions..."
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
print(
|
print(
|
||||||
f"{pair} {self.curr_training_start_idx_} IS NOT COINTEGRATED. Moving on"
|
f"{pair} {curr_training_start_idx} IS NOT COINTEGRATED. Moving on"
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
print("*" * 80)
|
print("*" * 80)
|
||||||
print(
|
print(
|
||||||
f"Pair {pair} ({self.curr_training_start_idx_}) IS COINTEGRATED"
|
f"Pair {pair} ({curr_training_start_idx}) IS COINTEGRATED"
|
||||||
)
|
)
|
||||||
print("*" * 80)
|
print("*" * 80)
|
||||||
if not is_cointegrated:
|
if not is_cointegrated:
|
||||||
self.curr_training_start_idx_ += 1
|
curr_training_start_idx += 1
|
||||||
continue
|
continue
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
# ================================ PREDICTION ================================
|
||||||
pair.predict()
|
pair.predict()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise RuntimeError(f"{pair}: Prediction failed: {str(e)}") from e
|
raise RuntimeError(f"{pair}: Prediction failed: {str(e)}") from e
|
||||||
|
|
||||||
# break
|
# break
|
||||||
|
|
||||||
self.curr_training_start_idx_ += 1
|
curr_training_start_idx += 1
|
||||||
|
if curr_training_start_idx > end_index:
|
||||||
|
break
|
||||||
curr_predicted_row_idx += 1
|
curr_predicted_row_idx += 1
|
||||||
|
|
||||||
self._create_trading_signals(pair, config, bt_result)
|
self._create_trading_signals(pair, config, bt_result)
|
||||||
@ -105,7 +112,7 @@ class SlidingFit(PairsTradingFitMethod):
|
|||||||
close_threshold = config["dis-equilibrium_close_trshld"]
|
close_threshold = config["dis-equilibrium_close_trshld"]
|
||||||
for curr_predicted_row_idx in range(len(pair.predicted_df_)):
|
for curr_predicted_row_idx in range(len(pair.predicted_df_)):
|
||||||
pred_row = pair.predicted_df_.iloc[curr_predicted_row_idx]
|
pred_row = pair.predicted_df_.iloc[curr_predicted_row_idx]
|
||||||
if pair.user_data_["state"] in [PairState.INITIAL, PairState.CLOSED]:
|
if pair.user_data_["state"] in [PairState.INITIAL, PairState.CLOSED, PairState.CLOSED_POSITIONS]:
|
||||||
open_trades = self._get_open_trades(
|
open_trades = self._get_open_trades(
|
||||||
pair, row=pred_row, open_threshold=open_threshold
|
pair, row=pred_row, open_threshold=open_threshold
|
||||||
)
|
)
|
||||||
@ -130,7 +137,18 @@ class SlidingFit(PairsTradingFitMethod):
|
|||||||
f"{pair}: *** Position is NOT CLOSED. ***"
|
f"{pair}: *** Position is NOT CLOSED. ***"
|
||||||
)
|
)
|
||||||
# outstanding positions
|
# outstanding positions
|
||||||
# last_row_index = self.curr_training_start_idx_ + training_minutes
|
if config["close_outstanding_positions"]:
|
||||||
|
close_position_trades = self._get_close_position_trades(
|
||||||
|
pair=pair,
|
||||||
|
row=pred_row,
|
||||||
|
close_threshold=close_threshold,
|
||||||
|
)
|
||||||
|
if close_position_trades is not None:
|
||||||
|
close_position_trades["status"] = "CLOSE_POSITION"
|
||||||
|
print(f"CLOSE_POSITION TRADES:\n{close_position_trades}")
|
||||||
|
pair.add_trades(close_position_trades)
|
||||||
|
pair.user_data_["state"] = PairState.CLOSED_POSITIONS
|
||||||
|
else:
|
||||||
if pair.predicted_df_ is not None:
|
if pair.predicted_df_ is not None:
|
||||||
bt_result.handle_outstanding_position(
|
bt_result.handle_outstanding_position(
|
||||||
pair=pair,
|
pair=pair,
|
||||||
@ -284,5 +302,61 @@ class SlidingFit(PairsTradingFitMethod):
|
|||||||
"pair": "object"
|
"pair": "object"
|
||||||
})
|
})
|
||||||
|
|
||||||
|
def _get_close_position_trades(
|
||||||
|
self, pair: TradingPair, row: pd.Series, close_threshold: float
|
||||||
|
) -> Optional[pd.DataFrame]:
|
||||||
|
colname_a, colname_b = pair.colnames()
|
||||||
|
|
||||||
|
assert pair.predicted_df_ is not None
|
||||||
|
if len(pair.predicted_df_) == 0:
|
||||||
|
return None
|
||||||
|
|
||||||
|
close_position_row = row
|
||||||
|
close_position_tstamp = close_position_row["tstamp"]
|
||||||
|
close_position_disequilibrium = close_position_row["disequilibrium"]
|
||||||
|
close_position_scaled_disequilibrium = close_position_row["scaled_disequilibrium"]
|
||||||
|
close_position_px_a = close_position_row[f"{colname_a}"]
|
||||||
|
close_position_px_b = close_position_row[f"{colname_b}"]
|
||||||
|
|
||||||
|
close_position_side_a = pair.user_data_["close_side_a"]
|
||||||
|
close_position_side_b = pair.user_data_["close_side_b"]
|
||||||
|
|
||||||
|
trd_signal_tuples = [
|
||||||
|
(
|
||||||
|
close_position_tstamp,
|
||||||
|
close_position_side_a,
|
||||||
|
pair.symbol_a_,
|
||||||
|
close_position_px_a,
|
||||||
|
close_position_disequilibrium,
|
||||||
|
close_position_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
(
|
||||||
|
close_position_tstamp,
|
||||||
|
close_position_side_b,
|
||||||
|
pair.symbol_b_,
|
||||||
|
close_position_px_b,
|
||||||
|
close_position_disequilibrium,
|
||||||
|
close_position_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||||
|
df = pd.DataFrame(
|
||||||
|
trd_signal_tuples,
|
||||||
|
columns=self.TRADES_COLUMNS,
|
||||||
|
)
|
||||||
|
# Ensure consistent dtypes
|
||||||
|
return df.astype({
|
||||||
|
"time": "datetime64[ns]",
|
||||||
|
"action": "string",
|
||||||
|
"symbol": "string",
|
||||||
|
"price": "float64",
|
||||||
|
"disequilibrium": "float64",
|
||||||
|
"scaled_disequilibrium": "float64",
|
||||||
|
"pair": "object"
|
||||||
|
})
|
||||||
|
|
||||||
def reset(self) -> None:
|
def reset(self) -> None:
|
||||||
self.curr_training_start_idx_ = 0
|
curr_training_start_idx = 0
|
||||||
|
|||||||
@ -14,8 +14,9 @@ NanoPerMin = 1e9
|
|||||||
class StaticFit(PairsTradingFitMethod):
|
class StaticFit(PairsTradingFitMethod):
|
||||||
|
|
||||||
def run_pair(
|
def run_pair(
|
||||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
self, pair: TradingPair, bt_result: BacktestResult
|
||||||
) -> Optional[pd.DataFrame]: # abstractmethod
|
) -> Optional[pd.DataFrame]: # abstractmethod
|
||||||
|
config = pair.config_
|
||||||
pair.get_datasets(training_minutes=config["training_minutes"])
|
pair.get_datasets(training_minutes=config["training_minutes"])
|
||||||
try:
|
try:
|
||||||
is_cointegrated = pair.train_pair()
|
is_cointegrated = pair.train_pair()
|
||||||
|
|||||||
@ -23,11 +23,17 @@ class TradingPair:
|
|||||||
predicted_df_: Optional[pd.DataFrame]
|
predicted_df_: Optional[pd.DataFrame]
|
||||||
|
|
||||||
def __init__(
|
def __init__(
|
||||||
self, market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str
|
self, config: Dict[str, Any], market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str
|
||||||
):
|
):
|
||||||
self.symbol_a_ = symbol_a
|
self.symbol_a_ = symbol_a
|
||||||
self.symbol_b_ = symbol_b
|
self.symbol_b_ = symbol_b
|
||||||
self.price_column_ = price_column
|
self.price_column_ = price_column
|
||||||
|
self.set_market_data(market_data)
|
||||||
|
self.user_data_ = {}
|
||||||
|
self.predicted_df_ = None
|
||||||
|
self.config_ = config
|
||||||
|
|
||||||
|
def set_market_data(self, market_data: pd.DataFrame) -> None:
|
||||||
self.market_data_ = pd.DataFrame(
|
self.market_data_ = pd.DataFrame(
|
||||||
self._transform_dataframe(market_data)[["tstamp"] + self.colnames()]
|
self._transform_dataframe(market_data)[["tstamp"] + self.colnames()]
|
||||||
)
|
)
|
||||||
@ -36,9 +42,19 @@ class TradingPair:
|
|||||||
self.market_data_['tstamp'] = pd.to_datetime(self.market_data_['tstamp'])
|
self.market_data_['tstamp'] = pd.to_datetime(self.market_data_['tstamp'])
|
||||||
self.market_data_ = self.market_data_.sort_values('tstamp')
|
self.market_data_ = self.market_data_.sort_values('tstamp')
|
||||||
|
|
||||||
|
def get_begin_index(self) -> int:
|
||||||
|
if "trading_hours" not in self.config_:
|
||||||
|
return 0
|
||||||
|
start_time = pd.to_datetime(self.config_["trading_hours"]["begin_session"]).time()
|
||||||
|
mask = self.market_data_['tstamp'].dt.time >= start_time
|
||||||
|
return int(self.market_data_.index[mask].min())
|
||||||
|
|
||||||
self.user_data_ = {}
|
def get_end_index(self) -> int:
|
||||||
self.predicted_df_ = None
|
if "trading_hours" not in self.config_:
|
||||||
|
return 0
|
||||||
|
end_time = pd.to_datetime(self.config_["trading_hours"]["end_session"]).time()
|
||||||
|
mask = self.market_data_['tstamp'].dt.time <= end_time
|
||||||
|
return int(self.market_data_.index[mask].max())
|
||||||
|
|
||||||
def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||||
# Select only the columns we need
|
# Select only the columns we need
|
||||||
|
|||||||
File diff suppressed because one or more lines are too long
@ -84,6 +84,7 @@ def run_backtest(
|
|||||||
|
|
||||||
for a_index, b_index in unique_index_pairs:
|
for a_index, b_index in unique_index_pairs:
|
||||||
pair = TradingPair(
|
pair = TradingPair(
|
||||||
|
config=config_copy,
|
||||||
market_data=market_data_df,
|
market_data=market_data_df,
|
||||||
symbol_a=instruments[a_index],
|
symbol_a=instruments[a_index],
|
||||||
symbol_b=instruments[b_index],
|
symbol_b=instruments[b_index],
|
||||||
@ -95,7 +96,7 @@ def run_backtest(
|
|||||||
pairs_trades = []
|
pairs_trades = []
|
||||||
for pair in _create_pairs(config, instruments):
|
for pair in _create_pairs(config, instruments):
|
||||||
single_pair_trades = fit_method.run_pair(
|
single_pair_trades = fit_method.run_pair(
|
||||||
pair=pair, config=config, bt_result=bt_result
|
pair=pair, bt_result=bt_result
|
||||||
)
|
)
|
||||||
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
||||||
pairs_trades.append(single_pair_trades)
|
pairs_trades.append(single_pair_trades)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user