This commit is contained in:
Oleg Sheynin 2025-07-15 03:37:29 +00:00
parent 76547e1176
commit 9c91f37bcc
10 changed files with 677 additions and 707 deletions

View File

@ -19,5 +19,8 @@
"dis-equilibrium_close_trshld": 0.5,
"training_minutes": 120,
"funding_per_pair": 2000.0,
"fit_method_class": "pt_trading.fit_methods.SlidingFit"
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
# "fit_method_class": "pt_trading.static_fit.StaticFit",
"exclude_instruments": ["CAN"]
}

View File

@ -19,8 +19,8 @@
"dis-equilibrium_close_trshld": 1.0,
"training_minutes": 120,
"funding_per_pair": 2000.0,
"fit_method_class": "pt_trading.fit_methods.SlidingFit",
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
# "fit_method_class": "pt_trading.static_fit.StaticFit",
"exclude_instruments": ["CAN"]
}

View File

@ -19,8 +19,8 @@
"dis-equilibrium_close_trshld": 1.0,
"training_minutes": 120,
"funding_per_pair": 2000.0,
"fit_method_class": "pt_trading.fit_methods.SlidingFit",
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
# "fit_method_class": "pt_trading.static_fit.StaticFit",
"exclude_instruments": ["CAN"]
}

View File

@ -0,0 +1,35 @@
from abc import ABC, abstractmethod
from enum import Enum
from typing import Dict, Optional, cast
import pandas as pd # type: ignore[import]
from pt_trading.results import BacktestResult
from pt_trading.trading_pair import TradingPair
NanoPerMin = 1e9
class PairsTradingFitMethod(ABC):
TRADES_COLUMNS = [
"time",
"action",
"symbol",
"price",
"disequilibrium",
"scaled_disequilibrium",
"pair",
]
@abstractmethod
def run_pair(
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
) -> Optional[pd.DataFrame]: ...
@abstractmethod
def reset(self) -> None: ...
class PairState(Enum):
INITIAL = 1
OPEN = 2
CLOSED = 3

View File

@ -3,242 +3,14 @@ from enum import Enum
from typing import Dict, Optional, cast
import pandas as pd # type: ignore[import]
from pt_trading.fit_method import PairState, PairsTradingFitMethod
from pt_trading.results import BacktestResult
from pt_trading.trading_pair import TradingPair
NanoPerMin = 1e9
class PairsTradingFitMethod(ABC):
TRADES_COLUMNS = [
"time",
"action",
"symbol",
"price",
"disequilibrium",
"scaled_disequilibrium",
"pair",
]
@abstractmethod
def run_pair(
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
) -> Optional[pd.DataFrame]: ...
@abstractmethod
def reset(self) -> None: ...
class StaticFit(PairsTradingFitMethod):
def run_pair(
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
) -> Optional[pd.DataFrame]: # abstractmethod
pair.get_datasets(training_minutes=config["training_minutes"])
try:
is_cointegrated = pair.train_pair()
if not is_cointegrated:
print(f"{pair} IS NOT COINTEGRATED")
return None
except Exception as e:
print(f"{pair}: Training failed: {str(e)}")
return None
try:
pair.predict()
except Exception as e:
print(f"{pair}: Prediction failed: {str(e)}")
return None
pair_trades = self.create_trading_signals(
pair=pair, config=config, result=bt_result
)
return pair_trades
def create_trading_signals(
self, pair: TradingPair, config: Dict, result: BacktestResult
) -> pd.DataFrame:
beta = pair.vecm_fit_.beta # type: ignore
colname_a, colname_b = pair.colnames()
predicted_df = pair.predicted_df_
if predicted_df is None:
# Return empty DataFrame with correct columns and dtypes
return pd.DataFrame(columns=self.TRADES_COLUMNS).astype({
"time": "datetime64[ns]",
"action": "string",
"symbol": "string",
"price": "float64",
"disequilibrium": "float64",
"scaled_disequilibrium": "float64",
"pair": "object"
})
open_threshold = config["dis-equilibrium_open_trshld"]
close_threshold = config["dis-equilibrium_close_trshld"]
# Iterate through the testing dataset to find the first trading opportunity
open_row_index = None
for row_idx in range(len(predicted_df)):
curr_disequilibrium = predicted_df["scaled_disequilibrium"][row_idx]
# Check if current row has sufficient disequilibrium (not near-zero)
if curr_disequilibrium >= open_threshold:
open_row_index = row_idx
break
# If no row with sufficient disequilibrium found, skip this pair
if open_row_index is None:
print(f"{pair}: Insufficient disequilibrium in testing dataset. Skipping.")
return pd.DataFrame()
# Look for close signal starting from the open position
trading_signals_df = (
predicted_df["scaled_disequilibrium"][open_row_index:] < close_threshold
)
# Adjust indices to account for the offset from open_row_index
close_row_index = None
for idx, value in trading_signals_df.items():
if value:
close_row_index = idx
break
open_row = predicted_df.loc[open_row_index]
open_px_a = predicted_df.at[open_row_index, f"{colname_a}"]
open_px_b = predicted_df.at[open_row_index, f"{colname_b}"]
open_tstamp = predicted_df.at[open_row_index, "tstamp"]
open_disequilibrium = open_row["disequilibrium"]
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
abs_beta = abs(beta[1])
pred_px_b = predicted_df.loc[open_row_index][f"{colname_b}_pred"]
pred_px_a = predicted_df.loc[open_row_index][f"{colname_a}_pred"]
if pred_px_b * abs_beta - pred_px_a > 0:
open_side_a = "BUY"
open_side_b = "SELL"
close_side_a = "SELL"
close_side_b = "BUY"
else:
open_side_b = "BUY"
open_side_a = "SELL"
close_side_b = "SELL"
close_side_a = "BUY"
# If no close signal found, print position and unrealized PnL
if close_row_index is None:
last_row_index = len(predicted_df) - 1
# Use the new method from BacktestResult to handle outstanding positions
result.handle_outstanding_position(
pair=pair,
pair_result_df=predicted_df,
last_row_index=last_row_index,
open_side_a=open_side_a,
open_side_b=open_side_b,
open_px_a=float(open_px_a),
open_px_b=float(open_px_b),
open_tstamp=pd.Timestamp(open_tstamp),
)
# Return only open trades (no close trades)
trd_signal_tuples = [
(
open_tstamp,
open_side_a,
pair.symbol_a_,
open_px_a,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
open_tstamp,
open_side_b,
pair.symbol_b_,
open_px_b,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
]
else:
# Close signal found - create complete trade
close_row = predicted_df.loc[close_row_index]
close_tstamp = close_row["tstamp"]
close_disequilibrium = close_row["disequilibrium"]
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
close_px_a = close_row[f"{colname_a}"]
close_px_b = close_row[f"{colname_b}"]
print(f"{pair}: Close signal found at index {close_row_index}")
trd_signal_tuples = [
(
open_tstamp,
open_side_a,
pair.symbol_a_,
open_px_a,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
open_tstamp,
open_side_b,
pair.symbol_b_,
open_px_b,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
close_tstamp,
close_side_a,
pair.symbol_a_,
close_px_a,
close_disequilibrium,
close_scaled_disequilibrium,
pair,
),
(
close_tstamp,
close_side_b,
pair.symbol_b_,
close_px_b,
close_disequilibrium,
close_scaled_disequilibrium,
pair,
),
]
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
df = pd.DataFrame(
trd_signal_tuples,
columns=self.TRADES_COLUMNS,
)
# Ensure consistent dtypes
return df.astype({
"time": "datetime64[ns]",
"action": "string",
"symbol": "string",
"price": "float64",
"disequilibrium": "float64",
"scaled_disequilibrium": "float64",
"pair": "object"
})
def reset(self) -> None:
pass
class PairState(Enum):
INITIAL = 1
OPEN = 2
CLOSED = 3
class SlidingFit(PairsTradingFitMethod):
@ -280,23 +52,6 @@ class SlidingFit(PairsTradingFitMethod):
f" * Training data length={len(pair.training_df_)} < {training_minutes}"
" * Not enough training data. Completing the job."
)
# if pair.user_data_["state"] == PairState.OPEN:
# print(
# f"{pair}: {self.curr_training_start_idx_} Position is not closed."
# )
# # outstanding positions
# # last_row_index = self.curr_training_start_idx_ + training_minutes
# if pair.predicted_df_ is not None:
# bt_result.handle_outstanding_position(
# pair=pair,
# pair_result_df=pair.predicted_df_,
# last_row_index=0,
# open_side_a=pair.user_data_["open_side_a"],
# open_side_b=pair.user_data_["open_side_b"],
# open_px_a=pair.user_data_["open_px_a"],
# open_px_b=pair.user_data_["open_px_b"],
# open_tstamp=pair.user_data_["open_tstamp"],
# )
break
try:
@ -406,16 +161,6 @@ class SlidingFit(PairsTradingFitMethod):
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
open_px_a = open_row[f"{colname_a}"]
open_px_b = open_row[f"{colname_b}"]
# Ensure scalars for handle_outstanding_position
# if isinstance(open_px_a, pd.Series):
# open_px_a = open_px_a.iloc[0]
# if isinstance(open_px_b, pd.Series):
# open_px_b = open_px_b.iloc[0]
# if isinstance(open_tstamp, pd.Series):
# open_tstamp = open_tstamp.iloc[0]
# open_px_a = float(open_px_a)
# open_px_b = float(open_px_b)
# open_tstamp = pd.Timestamp(open_tstamp)
if open_scaled_disequilibrium < open_threshold:
return None

View File

@ -0,0 +1,219 @@
from abc import ABC, abstractmethod
from enum import Enum
from typing import Dict, Optional, cast
import pandas as pd # type: ignore[import]
from pt_trading.results import BacktestResult
from pt_trading.trading_pair import TradingPair
from pt_trading.fit_method import PairsTradingFitMethod
NanoPerMin = 1e9
class StaticFit(PairsTradingFitMethod):
def run_pair(
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
) -> Optional[pd.DataFrame]: # abstractmethod
pair.get_datasets(training_minutes=config["training_minutes"])
try:
is_cointegrated = pair.train_pair()
if not is_cointegrated:
print(f"{pair} IS NOT COINTEGRATED")
return None
except Exception as e:
print(f"{pair}: Training failed: {str(e)}")
return None
try:
pair.predict()
except Exception as e:
print(f"{pair}: Prediction failed: {str(e)}")
return None
pair_trades = self.create_trading_signals(
pair=pair, config=config, result=bt_result
)
return pair_trades
def create_trading_signals(
self, pair: TradingPair, config: Dict, result: BacktestResult
) -> pd.DataFrame:
beta = pair.vecm_fit_.beta # type: ignore
colname_a, colname_b = pair.colnames()
predicted_df = pair.predicted_df_
if predicted_df is None:
# Return empty DataFrame with correct columns and dtypes
return pd.DataFrame(columns=self.TRADES_COLUMNS).astype({
"time": "datetime64[ns]",
"action": "string",
"symbol": "string",
"price": "float64",
"disequilibrium": "float64",
"scaled_disequilibrium": "float64",
"pair": "object"
})
open_threshold = config["dis-equilibrium_open_trshld"]
close_threshold = config["dis-equilibrium_close_trshld"]
# Iterate through the testing dataset to find the first trading opportunity
open_row_index = None
for row_idx in range(len(predicted_df)):
curr_disequilibrium = predicted_df["scaled_disequilibrium"][row_idx]
# Check if current row has sufficient disequilibrium (not near-zero)
if curr_disequilibrium >= open_threshold:
open_row_index = row_idx
break
# If no row with sufficient disequilibrium found, skip this pair
if open_row_index is None:
print(f"{pair}: Insufficient disequilibrium in testing dataset. Skipping.")
return pd.DataFrame()
# Look for close signal starting from the open position
trading_signals_df = (
predicted_df["scaled_disequilibrium"][open_row_index:] < close_threshold
)
# Adjust indices to account for the offset from open_row_index
close_row_index = None
for idx, value in trading_signals_df.items():
if value:
close_row_index = idx
break
open_row = predicted_df.loc[open_row_index]
open_px_a = predicted_df.at[open_row_index, f"{colname_a}"]
open_px_b = predicted_df.at[open_row_index, f"{colname_b}"]
open_tstamp = predicted_df.at[open_row_index, "tstamp"]
open_disequilibrium = open_row["disequilibrium"]
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
abs_beta = abs(beta[1])
pred_px_b = predicted_df.loc[open_row_index][f"{colname_b}_pred"]
pred_px_a = predicted_df.loc[open_row_index][f"{colname_a}_pred"]
if pred_px_b * abs_beta - pred_px_a > 0:
open_side_a = "BUY"
open_side_b = "SELL"
close_side_a = "SELL"
close_side_b = "BUY"
else:
open_side_b = "BUY"
open_side_a = "SELL"
close_side_b = "SELL"
close_side_a = "BUY"
# If no close signal found, print position and unrealized PnL
if close_row_index is None:
last_row_index = len(predicted_df) - 1
# Use the new method from BacktestResult to handle outstanding positions
result.handle_outstanding_position(
pair=pair,
pair_result_df=predicted_df,
last_row_index=last_row_index,
open_side_a=open_side_a,
open_side_b=open_side_b,
open_px_a=float(open_px_a),
open_px_b=float(open_px_b),
open_tstamp=pd.Timestamp(open_tstamp),
)
# Return only open trades (no close trades)
trd_signal_tuples = [
(
open_tstamp,
open_side_a,
pair.symbol_a_,
open_px_a,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
open_tstamp,
open_side_b,
pair.symbol_b_,
open_px_b,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
]
else:
# Close signal found - create complete trade
close_row = predicted_df.loc[close_row_index]
close_tstamp = close_row["tstamp"]
close_disequilibrium = close_row["disequilibrium"]
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
close_px_a = close_row[f"{colname_a}"]
close_px_b = close_row[f"{colname_b}"]
print(f"{pair}: Close signal found at index {close_row_index}")
trd_signal_tuples = [
(
open_tstamp,
open_side_a,
pair.symbol_a_,
open_px_a,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
open_tstamp,
open_side_b,
pair.symbol_b_,
open_px_b,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
close_tstamp,
close_side_a,
pair.symbol_a_,
close_px_a,
close_disequilibrium,
close_scaled_disequilibrium,
pair,
),
(
close_tstamp,
close_side_b,
pair.symbol_b_,
close_px_b,
close_disequilibrium,
close_scaled_disequilibrium,
pair,
),
]
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
df = pd.DataFrame(
trd_signal_tuples,
columns=self.TRADES_COLUMNS,
)
# Ensure consistent dtypes
return df.astype({
"time": "datetime64[ns]",
"action": "string",
"symbol": "string",
"price": "float64",
"disequilibrium": "float64",
"scaled_disequilibrium": "float64",
"pair": "object"
})
def reset(self) -> None:
pass

File diff suppressed because one or more lines are too long

View File

@ -15,7 +15,7 @@ from pt_trading.results import (
store_config_in_database,
store_results_in_database,
)
from pt_trading.fit_methods import PairsTradingFitMethod
from pt_trading.fit_method import PairsTradingFitMethod
from pt_trading.trading_pair import TradingPair