progress
This commit is contained in:
parent
76547e1176
commit
9c91f37bcc
@ -19,5 +19,8 @@
|
||||
"dis-equilibrium_close_trshld": 0.5,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
"fit_method_class": "pt_trading.fit_methods.SlidingFit"
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||
"exclude_instruments": ["CAN"]
|
||||
|
||||
}
|
||||
@ -19,8 +19,8 @@
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
"fit_method_class": "pt_trading.fit_methods.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||
"exclude_instruments": ["CAN"]
|
||||
|
||||
}
|
||||
@ -19,8 +19,8 @@
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
"fit_method_class": "pt_trading.fit_methods.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||
"exclude_instruments": ["CAN"]
|
||||
|
||||
}
|
||||
35
lib/pt_trading/fit_method.py
Normal file
35
lib/pt_trading/fit_method.py
Normal file
@ -0,0 +1,35 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Dict, Optional, cast
|
||||
import pandas as pd # type: ignore[import]
|
||||
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
|
||||
class PairsTradingFitMethod(ABC):
|
||||
TRADES_COLUMNS = [
|
||||
"time",
|
||||
"action",
|
||||
"symbol",
|
||||
"price",
|
||||
"disequilibrium",
|
||||
"scaled_disequilibrium",
|
||||
"pair",
|
||||
]
|
||||
|
||||
@abstractmethod
|
||||
def run_pair(
|
||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
||||
) -> Optional[pd.DataFrame]: ...
|
||||
|
||||
@abstractmethod
|
||||
def reset(self) -> None: ...
|
||||
|
||||
|
||||
class PairState(Enum):
|
||||
INITIAL = 1
|
||||
OPEN = 2
|
||||
CLOSED = 3
|
||||
@ -3,242 +3,14 @@ from enum import Enum
|
||||
from typing import Dict, Optional, cast
|
||||
|
||||
import pandas as pd # type: ignore[import]
|
||||
from pt_trading.fit_method import PairState, PairsTradingFitMethod
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
|
||||
class PairsTradingFitMethod(ABC):
|
||||
TRADES_COLUMNS = [
|
||||
"time",
|
||||
"action",
|
||||
"symbol",
|
||||
"price",
|
||||
"disequilibrium",
|
||||
"scaled_disequilibrium",
|
||||
"pair",
|
||||
]
|
||||
|
||||
@abstractmethod
|
||||
def run_pair(
|
||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
||||
) -> Optional[pd.DataFrame]: ...
|
||||
|
||||
@abstractmethod
|
||||
def reset(self) -> None: ...
|
||||
|
||||
|
||||
class StaticFit(PairsTradingFitMethod):
|
||||
|
||||
def run_pair(
|
||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
||||
) -> Optional[pd.DataFrame]: # abstractmethod
|
||||
pair.get_datasets(training_minutes=config["training_minutes"])
|
||||
try:
|
||||
is_cointegrated = pair.train_pair()
|
||||
if not is_cointegrated:
|
||||
print(f"{pair} IS NOT COINTEGRATED")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"{pair}: Training failed: {str(e)}")
|
||||
return None
|
||||
|
||||
try:
|
||||
pair.predict()
|
||||
except Exception as e:
|
||||
print(f"{pair}: Prediction failed: {str(e)}")
|
||||
return None
|
||||
|
||||
pair_trades = self.create_trading_signals(
|
||||
pair=pair, config=config, result=bt_result
|
||||
)
|
||||
|
||||
return pair_trades
|
||||
|
||||
def create_trading_signals(
|
||||
self, pair: TradingPair, config: Dict, result: BacktestResult
|
||||
) -> pd.DataFrame:
|
||||
beta = pair.vecm_fit_.beta # type: ignore
|
||||
colname_a, colname_b = pair.colnames()
|
||||
|
||||
predicted_df = pair.predicted_df_
|
||||
if predicted_df is None:
|
||||
# Return empty DataFrame with correct columns and dtypes
|
||||
return pd.DataFrame(columns=self.TRADES_COLUMNS).astype({
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"pair": "object"
|
||||
})
|
||||
|
||||
open_threshold = config["dis-equilibrium_open_trshld"]
|
||||
close_threshold = config["dis-equilibrium_close_trshld"]
|
||||
|
||||
# Iterate through the testing dataset to find the first trading opportunity
|
||||
open_row_index = None
|
||||
for row_idx in range(len(predicted_df)):
|
||||
curr_disequilibrium = predicted_df["scaled_disequilibrium"][row_idx]
|
||||
|
||||
# Check if current row has sufficient disequilibrium (not near-zero)
|
||||
if curr_disequilibrium >= open_threshold:
|
||||
open_row_index = row_idx
|
||||
break
|
||||
|
||||
# If no row with sufficient disequilibrium found, skip this pair
|
||||
if open_row_index is None:
|
||||
print(f"{pair}: Insufficient disequilibrium in testing dataset. Skipping.")
|
||||
return pd.DataFrame()
|
||||
|
||||
# Look for close signal starting from the open position
|
||||
trading_signals_df = (
|
||||
predicted_df["scaled_disequilibrium"][open_row_index:] < close_threshold
|
||||
)
|
||||
|
||||
# Adjust indices to account for the offset from open_row_index
|
||||
close_row_index = None
|
||||
for idx, value in trading_signals_df.items():
|
||||
if value:
|
||||
close_row_index = idx
|
||||
break
|
||||
|
||||
open_row = predicted_df.loc[open_row_index]
|
||||
open_px_a = predicted_df.at[open_row_index, f"{colname_a}"]
|
||||
open_px_b = predicted_df.at[open_row_index, f"{colname_b}"]
|
||||
open_tstamp = predicted_df.at[open_row_index, "tstamp"]
|
||||
open_disequilibrium = open_row["disequilibrium"]
|
||||
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
||||
|
||||
abs_beta = abs(beta[1])
|
||||
pred_px_b = predicted_df.loc[open_row_index][f"{colname_b}_pred"]
|
||||
pred_px_a = predicted_df.loc[open_row_index][f"{colname_a}_pred"]
|
||||
|
||||
if pred_px_b * abs_beta - pred_px_a > 0:
|
||||
open_side_a = "BUY"
|
||||
open_side_b = "SELL"
|
||||
close_side_a = "SELL"
|
||||
close_side_b = "BUY"
|
||||
else:
|
||||
open_side_b = "BUY"
|
||||
open_side_a = "SELL"
|
||||
close_side_b = "SELL"
|
||||
close_side_a = "BUY"
|
||||
|
||||
# If no close signal found, print position and unrealized PnL
|
||||
if close_row_index is None:
|
||||
|
||||
last_row_index = len(predicted_df) - 1
|
||||
|
||||
# Use the new method from BacktestResult to handle outstanding positions
|
||||
result.handle_outstanding_position(
|
||||
pair=pair,
|
||||
pair_result_df=predicted_df,
|
||||
last_row_index=last_row_index,
|
||||
open_side_a=open_side_a,
|
||||
open_side_b=open_side_b,
|
||||
open_px_a=float(open_px_a),
|
||||
open_px_b=float(open_px_b),
|
||||
open_tstamp=pd.Timestamp(open_tstamp),
|
||||
)
|
||||
|
||||
# Return only open trades (no close trades)
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_a,
|
||||
pair.symbol_a_,
|
||||
open_px_a,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_b,
|
||||
pair.symbol_b_,
|
||||
open_px_b,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
else:
|
||||
# Close signal found - create complete trade
|
||||
close_row = predicted_df.loc[close_row_index]
|
||||
close_tstamp = close_row["tstamp"]
|
||||
close_disequilibrium = close_row["disequilibrium"]
|
||||
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
|
||||
close_px_a = close_row[f"{colname_a}"]
|
||||
close_px_b = close_row[f"{colname_b}"]
|
||||
|
||||
print(f"{pair}: Close signal found at index {close_row_index}")
|
||||
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_a,
|
||||
pair.symbol_a_,
|
||||
open_px_a,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_b,
|
||||
pair.symbol_b_,
|
||||
open_px_b,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
close_tstamp,
|
||||
close_side_a,
|
||||
pair.symbol_a_,
|
||||
close_px_a,
|
||||
close_disequilibrium,
|
||||
close_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
close_tstamp,
|
||||
close_side_b,
|
||||
pair.symbol_b_,
|
||||
close_px_b,
|
||||
close_disequilibrium,
|
||||
close_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
|
||||
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||
df = pd.DataFrame(
|
||||
trd_signal_tuples,
|
||||
columns=self.TRADES_COLUMNS,
|
||||
)
|
||||
# Ensure consistent dtypes
|
||||
return df.astype({
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"pair": "object"
|
||||
})
|
||||
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
|
||||
|
||||
class PairState(Enum):
|
||||
INITIAL = 1
|
||||
OPEN = 2
|
||||
CLOSED = 3
|
||||
|
||||
|
||||
class SlidingFit(PairsTradingFitMethod):
|
||||
@ -280,23 +52,6 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
f" * Training data length={len(pair.training_df_)} < {training_minutes}"
|
||||
" * Not enough training data. Completing the job."
|
||||
)
|
||||
# if pair.user_data_["state"] == PairState.OPEN:
|
||||
# print(
|
||||
# f"{pair}: {self.curr_training_start_idx_} Position is not closed."
|
||||
# )
|
||||
# # outstanding positions
|
||||
# # last_row_index = self.curr_training_start_idx_ + training_minutes
|
||||
# if pair.predicted_df_ is not None:
|
||||
# bt_result.handle_outstanding_position(
|
||||
# pair=pair,
|
||||
# pair_result_df=pair.predicted_df_,
|
||||
# last_row_index=0,
|
||||
# open_side_a=pair.user_data_["open_side_a"],
|
||||
# open_side_b=pair.user_data_["open_side_b"],
|
||||
# open_px_a=pair.user_data_["open_px_a"],
|
||||
# open_px_b=pair.user_data_["open_px_b"],
|
||||
# open_tstamp=pair.user_data_["open_tstamp"],
|
||||
# )
|
||||
break
|
||||
|
||||
try:
|
||||
@ -406,16 +161,6 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
||||
open_px_a = open_row[f"{colname_a}"]
|
||||
open_px_b = open_row[f"{colname_b}"]
|
||||
# Ensure scalars for handle_outstanding_position
|
||||
# if isinstance(open_px_a, pd.Series):
|
||||
# open_px_a = open_px_a.iloc[0]
|
||||
# if isinstance(open_px_b, pd.Series):
|
||||
# open_px_b = open_px_b.iloc[0]
|
||||
# if isinstance(open_tstamp, pd.Series):
|
||||
# open_tstamp = open_tstamp.iloc[0]
|
||||
# open_px_a = float(open_px_a)
|
||||
# open_px_b = float(open_px_b)
|
||||
# open_tstamp = pd.Timestamp(open_tstamp)
|
||||
|
||||
if open_scaled_disequilibrium < open_threshold:
|
||||
return None
|
||||
219
lib/pt_trading/static_fit.py
Normal file
219
lib/pt_trading/static_fit.py
Normal file
@ -0,0 +1,219 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Dict, Optional, cast
|
||||
|
||||
import pandas as pd # type: ignore[import]
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
from pt_trading.fit_method import PairsTradingFitMethod
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
|
||||
|
||||
class StaticFit(PairsTradingFitMethod):
|
||||
|
||||
def run_pair(
|
||||
self, config: Dict, pair: TradingPair, bt_result: BacktestResult
|
||||
) -> Optional[pd.DataFrame]: # abstractmethod
|
||||
pair.get_datasets(training_minutes=config["training_minutes"])
|
||||
try:
|
||||
is_cointegrated = pair.train_pair()
|
||||
if not is_cointegrated:
|
||||
print(f"{pair} IS NOT COINTEGRATED")
|
||||
return None
|
||||
except Exception as e:
|
||||
print(f"{pair}: Training failed: {str(e)}")
|
||||
return None
|
||||
|
||||
try:
|
||||
pair.predict()
|
||||
except Exception as e:
|
||||
print(f"{pair}: Prediction failed: {str(e)}")
|
||||
return None
|
||||
|
||||
pair_trades = self.create_trading_signals(
|
||||
pair=pair, config=config, result=bt_result
|
||||
)
|
||||
|
||||
return pair_trades
|
||||
|
||||
def create_trading_signals(
|
||||
self, pair: TradingPair, config: Dict, result: BacktestResult
|
||||
) -> pd.DataFrame:
|
||||
beta = pair.vecm_fit_.beta # type: ignore
|
||||
colname_a, colname_b = pair.colnames()
|
||||
|
||||
predicted_df = pair.predicted_df_
|
||||
if predicted_df is None:
|
||||
# Return empty DataFrame with correct columns and dtypes
|
||||
return pd.DataFrame(columns=self.TRADES_COLUMNS).astype({
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"pair": "object"
|
||||
})
|
||||
|
||||
open_threshold = config["dis-equilibrium_open_trshld"]
|
||||
close_threshold = config["dis-equilibrium_close_trshld"]
|
||||
|
||||
# Iterate through the testing dataset to find the first trading opportunity
|
||||
open_row_index = None
|
||||
for row_idx in range(len(predicted_df)):
|
||||
curr_disequilibrium = predicted_df["scaled_disequilibrium"][row_idx]
|
||||
|
||||
# Check if current row has sufficient disequilibrium (not near-zero)
|
||||
if curr_disequilibrium >= open_threshold:
|
||||
open_row_index = row_idx
|
||||
break
|
||||
|
||||
# If no row with sufficient disequilibrium found, skip this pair
|
||||
if open_row_index is None:
|
||||
print(f"{pair}: Insufficient disequilibrium in testing dataset. Skipping.")
|
||||
return pd.DataFrame()
|
||||
|
||||
# Look for close signal starting from the open position
|
||||
trading_signals_df = (
|
||||
predicted_df["scaled_disequilibrium"][open_row_index:] < close_threshold
|
||||
)
|
||||
|
||||
# Adjust indices to account for the offset from open_row_index
|
||||
close_row_index = None
|
||||
for idx, value in trading_signals_df.items():
|
||||
if value:
|
||||
close_row_index = idx
|
||||
break
|
||||
|
||||
open_row = predicted_df.loc[open_row_index]
|
||||
open_px_a = predicted_df.at[open_row_index, f"{colname_a}"]
|
||||
open_px_b = predicted_df.at[open_row_index, f"{colname_b}"]
|
||||
open_tstamp = predicted_df.at[open_row_index, "tstamp"]
|
||||
open_disequilibrium = open_row["disequilibrium"]
|
||||
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
||||
|
||||
abs_beta = abs(beta[1])
|
||||
pred_px_b = predicted_df.loc[open_row_index][f"{colname_b}_pred"]
|
||||
pred_px_a = predicted_df.loc[open_row_index][f"{colname_a}_pred"]
|
||||
|
||||
if pred_px_b * abs_beta - pred_px_a > 0:
|
||||
open_side_a = "BUY"
|
||||
open_side_b = "SELL"
|
||||
close_side_a = "SELL"
|
||||
close_side_b = "BUY"
|
||||
else:
|
||||
open_side_b = "BUY"
|
||||
open_side_a = "SELL"
|
||||
close_side_b = "SELL"
|
||||
close_side_a = "BUY"
|
||||
|
||||
# If no close signal found, print position and unrealized PnL
|
||||
if close_row_index is None:
|
||||
|
||||
last_row_index = len(predicted_df) - 1
|
||||
|
||||
# Use the new method from BacktestResult to handle outstanding positions
|
||||
result.handle_outstanding_position(
|
||||
pair=pair,
|
||||
pair_result_df=predicted_df,
|
||||
last_row_index=last_row_index,
|
||||
open_side_a=open_side_a,
|
||||
open_side_b=open_side_b,
|
||||
open_px_a=float(open_px_a),
|
||||
open_px_b=float(open_px_b),
|
||||
open_tstamp=pd.Timestamp(open_tstamp),
|
||||
)
|
||||
|
||||
# Return only open trades (no close trades)
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_a,
|
||||
pair.symbol_a_,
|
||||
open_px_a,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_b,
|
||||
pair.symbol_b_,
|
||||
open_px_b,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
else:
|
||||
# Close signal found - create complete trade
|
||||
close_row = predicted_df.loc[close_row_index]
|
||||
close_tstamp = close_row["tstamp"]
|
||||
close_disequilibrium = close_row["disequilibrium"]
|
||||
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
|
||||
close_px_a = close_row[f"{colname_a}"]
|
||||
close_px_b = close_row[f"{colname_b}"]
|
||||
|
||||
print(f"{pair}: Close signal found at index {close_row_index}")
|
||||
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_a,
|
||||
pair.symbol_a_,
|
||||
open_px_a,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
open_tstamp,
|
||||
open_side_b,
|
||||
pair.symbol_b_,
|
||||
open_px_b,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
close_tstamp,
|
||||
close_side_a,
|
||||
pair.symbol_a_,
|
||||
close_px_a,
|
||||
close_disequilibrium,
|
||||
close_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
close_tstamp,
|
||||
close_side_b,
|
||||
pair.symbol_b_,
|
||||
close_px_b,
|
||||
close_disequilibrium,
|
||||
close_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
|
||||
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||
df = pd.DataFrame(
|
||||
trd_signal_tuples,
|
||||
columns=self.TRADES_COLUMNS,
|
||||
)
|
||||
# Ensure consistent dtypes
|
||||
return df.astype({
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"pair": "object"
|
||||
})
|
||||
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
@ -15,7 +15,7 @@ from pt_trading.results import (
|
||||
store_config_in_database,
|
||||
store_results_in_database,
|
||||
)
|
||||
from pt_trading.fit_methods import PairsTradingFitMethod
|
||||
from pt_trading.fit_method import PairsTradingFitMethod
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user