diff --git a/README.md b/README.md index 251d9d2..e4ac969 100644 --- a/README.md +++ b/README.md @@ -43,7 +43,7 @@ Each configuration dictionary specifies: - `db_table_name`: The name of the table within the SQLite database. - `instruments`: A list of symbols to consider for forming trading pairs. - `trading_hours`: Defines the session start and end times, crucial for equity markets. -- `price_column`: The column in the data to be used as the price (e.g., "close"). +- `stat_model_price`: The column in the data to be used as the price (e.g., "close"). - `dis-equilibrium_open_trshld`: The threshold (in standard deviations) of the dis-equilibrium for opening a trade. - `dis-equilibrium_close_trshld`: The threshold (in standard deviations) of the dis-equilibrium for closing an open trade. - `training_minutes`: The length of the rolling window (in minutes) used to train the model (e.g., calculate cointegration, mean, and standard deviation of the dis-equilibrium). diff --git a/configuration/vecm.cfg b/configuration/vecm.cfg index 0c077ce..babe6e4 100644 --- a/configuration/vecm.cfg +++ b/configuration/vecm.cfg @@ -16,8 +16,8 @@ "funding_per_pair": 2000.0, # ====== Trading Parameters ====== - # "price_column": "close", - "price_column": "vwap", + # "stat_model_price": "close", + "stat_model_price": "vwap", "execution_price": { "column": "vwap", diff --git a/configuration/zscore.cfg b/configuration/zscore.cfg index 402f60a..92b5187 100644 --- a/configuration/zscore.cfg +++ b/configuration/zscore.cfg @@ -15,7 +15,7 @@ # ====== Funding ====== "funding_per_pair": 2000.0, # ====== Trading Parameters ====== - "price_column": "close", + "stat_model_price": "close", "execution_price": { "column": "vwap", "shift": 1, diff --git a/lib/pt_trading/fit_method.py b/lib/pt_trading/fit_method.py index 36dc994..934da1b 100644 --- a/lib/pt_trading/fit_method.py +++ b/lib/pt_trading/fit_method.py @@ -43,6 +43,10 @@ class PairsTradingFitMethod(ABC): @abstractmethod def create_trading_pair( - self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str + self, + config: Dict, + market_data: pd.DataFrame, + symbol_a: str, + symbol_b: str, ) -> TradingPair: ... diff --git a/lib/pt_trading/results.py b/lib/pt_trading/results.py index 2c7076b..c30bfa7 100644 --- a/lib/pt_trading/results.py +++ b/lib/pt_trading/results.py @@ -431,7 +431,7 @@ class BacktestResult: f" Close Dis-eq: {trd['open_scaled_disequilibrium']:.2f}" print( - f" {trd['open_time'].time()} {trd['symbol']}: " + f" {trd['open_time'].time()}-{trd['close_time'].time()} {trd['symbol']}: " f" {trd['open_side']} @ ${trd['open_price']:.2f}," f" {trd["close_side"]} @ ${trd["close_price"]:.2f}," f" Return: {trd['symbol_return']:.2f}%{disequil_info}" @@ -552,7 +552,7 @@ class BacktestResult: last_row = pair_result_df.loc[last_row_index] last_tstamp = last_row["tstamp"] - colname_a, colname_b = pair.colnames() + colname_a, colname_b = pair.exec_prices_colnames() last_px_a = last_row[colname_a] last_px_b = last_row[colname_b] diff --git a/lib/pt_trading/rolling_window_fit.py b/lib/pt_trading/rolling_window_fit.py index ee3ca8b..debf63e 100644 --- a/lib/pt_trading/rolling_window_fit.py +++ b/lib/pt_trading/rolling_window_fit.py @@ -146,7 +146,7 @@ class RollingFit(PairsTradingFitMethod): print(f"{pair}: *** Position is NOT CLOSED. ***") # outstanding positions if config["close_outstanding_positions"]: - close_position_row = pair.market_data_.iloc[-1] + close_position_row = pd.Series(pair.market_data_.iloc[-2]) close_position_row["disequilibrium"] = 0.0 close_position_row["scaled_disequilibrium"] = 0.0 close_position_row["signed_scaled_disequilibrium"] = 0.0 @@ -176,9 +176,10 @@ class RollingFit(PairsTradingFitMethod): def _get_open_trades( self, pair: TradingPair, row: pd.Series, open_threshold: float ) -> Optional[pd.DataFrame]: - colname_a, colname_b = pair.colnames() + colname_a, colname_b = pair.exec_prices_colnames() open_row = row + open_tstamp = open_row["tstamp"] open_disequilibrium = open_row["disequilibrium"] open_scaled_disequilibrium = open_row["scaled_disequilibrium"] @@ -257,7 +258,7 @@ class RollingFit(PairsTradingFitMethod): def _get_close_trades( self, pair: TradingPair, row: pd.Series, close_threshold: float ) -> Optional[pd.DataFrame]: - colname_a, colname_b = pair.colnames() + colname_a, colname_b = pair.exec_prices_colnames() close_row = row close_tstamp = close_row["tstamp"] diff --git a/lib/pt_trading/trading_pair.py b/lib/pt_trading/trading_pair.py index 54d9b82..33d53ea 100644 --- a/lib/pt_trading/trading_pair.py +++ b/lib/pt_trading/trading_pair.py @@ -73,7 +73,7 @@ class TradingPair(ABC): market_data_: pd.DataFrame symbol_a_: str symbol_b_: str - price_column_: str + stat_model_price_: str training_mu_: float training_std_: float @@ -91,17 +91,17 @@ class TradingPair(ABC): market_data: pd.DataFrame, symbol_a: str, symbol_b: str, - price_column: str, ): self.symbol_a_ = symbol_a self.symbol_b_ = symbol_b - self.price_column_ = price_column - self.set_market_data(market_data) + self.stat_model_price_ = config["stat_model_price"] self.user_data_ = {} self.predicted_df_ = None self.config_ = config - def set_market_data(self, market_data: pd.DataFrame) -> None: + self._set_market_data(market_data) + + def _set_market_data(self, market_data: pd.DataFrame) -> None: self.market_data_ = pd.DataFrame( self._transform_dataframe(market_data)[["tstamp"] + self.colnames()] ) @@ -109,6 +109,22 @@ class TradingPair(ABC): self.market_data_ = self.market_data_.dropna().reset_index(drop=True) self.market_data_["tstamp"] = pd.to_datetime(self.market_data_["tstamp"]) self.market_data_ = self.market_data_.sort_values("tstamp") + self._set_execution_price_data() + pass + + def _set_execution_price_data(self) -> None: + if "execution_price" not in self.config_: + self.market_data_[f"exec_price_{self.symbol_a_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_a_}"] + self.market_data_[f"exec_price_{self.symbol_b_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_b_}"] + return + execution_price_column = self.config_["execution_price"]["column"] + execution_price_shift = self.config_["execution_price"]["shift"] + self.market_data_[f"exec_price_{self.symbol_a_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_a_}"].shift(-execution_price_shift) + self.market_data_[f"exec_price_{self.symbol_b_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_b_}"].shift(-execution_price_shift) + self.market_data_ = self.market_data_.dropna().reset_index(drop=True) + + + def get_begin_index(self) -> int: if "trading_hours" not in self.config_: @@ -139,7 +155,7 @@ class TradingPair(ABC): def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame: # Select only the columns we need df_selected: pd.DataFrame = pd.DataFrame( - df[["tstamp", "symbol", self.price_column_]] + df[["tstamp", "symbol", self.stat_model_price_]] ) # Start with unique timestamps @@ -157,13 +173,13 @@ class TradingPair(ABC): ) # Create column name like "close-COIN" - new_price_column = f"{self.price_column_}_{symbol}" + new_price_column = f"{self.stat_model_price_}_{symbol}" # Create temporary dataframe with timestamp and price temp_df = pd.DataFrame( { "tstamp": df_symbol["tstamp"], - new_price_column: df_symbol[self.price_column_], + new_price_column: df_symbol[self.stat_model_price_], } ) @@ -201,8 +217,14 @@ class TradingPair(ABC): def colnames(self) -> List[str]: return [ - f"{self.price_column_}_{self.symbol_a_}", - f"{self.price_column_}_{self.symbol_b_}", + f"{self.stat_model_price_}_{self.symbol_a_}", + f"{self.stat_model_price_}_{self.symbol_b_}", + ] + + def exec_prices_colnames(self) -> List[str]: + return [ + f"exec_price_{self.symbol_a_}", + f"exec_price_{self.symbol_b_}", ] def add_trades(self, trades: pd.DataFrame) -> None: @@ -331,7 +353,7 @@ class TradingPair(ABC): instrument_open_price = instrument_open_trades["price"].iloc[0] sign = -1 if instrument_open_trades["side"].iloc[0] == "SELL" else 1 - instrument_price = predicted_row[f"{self.price_column_}_{symbol}"] + instrument_price = predicted_row[f"{self.stat_model_price_}_{symbol}"] instrument_return = ( sign * (instrument_price - instrument_open_price) diff --git a/lib/pt_trading/vecm_rolling_fit.py b/lib/pt_trading/vecm_rolling_fit.py index 1145d7e..be97299 100644 --- a/lib/pt_trading/vecm_rolling_fit.py +++ b/lib/pt_trading/vecm_rolling_fit.py @@ -7,15 +7,23 @@ from pt_trading.trading_pair import TradingPair from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults NanoPerMin = 1e9 + + class VECMTradingPair(TradingPair): vecm_fit_: Optional[VECMResults] pair_predict_result_: Optional[pd.DataFrame] - - def __init__(self, config: Dict[str, Any], market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str): - super().__init__(config, market_data, symbol_a, symbol_b, price_column) + + def __init__( + self, + config: Dict[str, Any], + market_data: pd.DataFrame, + symbol_a: str, + symbol_b: str, + ): + super().__init__(config, market_data, symbol_a, symbol_b) self.vecm_fit_ = None self.pair_predict_result_ = None - + def _train_pair(self) -> None: self._fit_VECM() assert self.vecm_fit_ is not None @@ -51,7 +59,7 @@ class VECMTradingPair(TradingPair): def predict(self) -> pd.DataFrame: self._train_pair() - + assert self.testing_df_ is not None assert self.vecm_fit_ is not None predicted_prices = self.vecm_fit_.predict(steps=len(self.testing_df_)) @@ -79,31 +87,36 @@ class VECMTradingPair(TradingPair): predicted_df["disequilibrium"] - self.training_mu_ ) / self.training_std_ - predicted_df["scaled_disequilibrium"] = ( - abs(predicted_df["signed_scaled_disequilibrium"]) + predicted_df["scaled_disequilibrium"] = abs( + predicted_df["signed_scaled_disequilibrium"] ) - + predicted_df = predicted_df.reset_index(drop=True) if self.pair_predict_result_ is None: self.pair_predict_result_ = predicted_df else: - self.pair_predict_result_ = pd.concat([self.pair_predict_result_, predicted_df], ignore_index=True) - # Reset index to ensure proper indexing + self.pair_predict_result_ = pd.concat( + [self.pair_predict_result_, predicted_df], ignore_index=True + ) + # Reset index to ensure proper indexing self.pair_predict_result_ = self.pair_predict_result_.reset_index(drop=True) return self.pair_predict_result_ - + class VECMRollingFit(RollingFit): def __init__(self) -> None: super().__init__() def create_trading_pair( - self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str + self, + config: Dict, + market_data: pd.DataFrame, + symbol_a: str, + symbol_b: str, ) -> TradingPair: return VECMTradingPair( config=config, market_data=market_data, symbol_a=symbol_a, symbol_b=symbol_b, - price_column=price_column ) diff --git a/lib/pt_trading/z-score_rolling_fit.py b/lib/pt_trading/z-score_rolling_fit.py index 814ca0d..33011fc 100644 --- a/lib/pt_trading/z-score_rolling_fit.py +++ b/lib/pt_trading/z-score_rolling_fit.py @@ -7,24 +7,34 @@ from pt_trading.trading_pair import TradingPair import statsmodels.api as sm NanoPerMin = 1e9 + + class ZScoreTradingPair(TradingPair): zscore_model_: Optional[sm.regression.linear_model.RegressionResultsWrapper] pair_predict_result_: Optional[pd.DataFrame] zscore_df_: Optional[pd.DataFrame] - - def __init__(self, config: Dict[str, Any], market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str): - super().__init__(config, market_data, symbol_a, symbol_b, price_column) + + def __init__( + self, + config: Dict[str, Any], + market_data: pd.DataFrame, + symbol_a: str, + symbol_b: str, + ): + super().__init__(config, market_data, symbol_a, symbol_b) self.zscore_model_ = None self.pair_predict_result_ = None self.zscore_df_ = None - + def _fit_zscore(self) -> None: assert self.training_df_ is not None symbol_a_px_series = self.training_df_[self.colnames()].iloc[:, 0] symbol_b_px_series = self.training_df_[self.colnames()].iloc[:, 1] - - symbol_a_px_series,symbol_b_px_series = symbol_a_px_series.align(symbol_b_px_series, axis=0) - + + symbol_a_px_series, symbol_b_px_series = symbol_a_px_series.align( + symbol_b_px_series, axis=0 + ) + X = sm.add_constant(symbol_b_px_series) self.zscore_model_ = sm.OLS(symbol_a_px_series, X).fit() assert self.zscore_model_ is not None @@ -32,14 +42,14 @@ class ZScoreTradingPair(TradingPair): # Calculate spread and Z-score spread = symbol_a_px_series - hedge_ratio * symbol_b_px_series - self.zscore_df_ = (spread - spread.mean()) / spread.std() + self.zscore_df_ = (spread - spread.mean()) / spread.std() def predict(self) -> pd.DataFrame: self._fit_zscore() assert self.zscore_df_ is not None self.training_df_["dis-equilibrium"] = self.zscore_df_ self.training_df_["scaled_dis-equilibrium"] = abs(self.zscore_df_) - + assert self.testing_df_ is not None assert self.zscore_df_ is not None predicted_df = self.testing_df_ @@ -47,28 +57,29 @@ class ZScoreTradingPair(TradingPair): predicted_df["disequilibrium"] = self.zscore_df_ predicted_df["signed_scaled_disequilibrium"] = self.zscore_df_ predicted_df["scaled_disequilibrium"] = abs(self.zscore_df_) - + predicted_df = predicted_df.reset_index(drop=True) if self.pair_predict_result_ is None: self.pair_predict_result_ = predicted_df else: - self.pair_predict_result_ = pd.concat([self.pair_predict_result_, predicted_df], ignore_index=True) - # Reset index to ensure proper indexing + self.pair_predict_result_ = pd.concat( + [self.pair_predict_result_, predicted_df], ignore_index=True + ) + # Reset index to ensure proper indexing self.pair_predict_result_ = self.pair_predict_result_.reset_index(drop=True) return self.pair_predict_result_.dropna() - + class ZScoreRollingFit(RollingFit): def __init__(self) -> None: super().__init__() def create_trading_pair( - self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str + self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str ) -> TradingPair: return ZScoreTradingPair( config=config, market_data=market_data, symbol_a=symbol_a, symbol_b=symbol_b, - price_column=price_column ) diff --git a/lib/tools/data_loader.py b/lib/tools/data_loader.py index 8bd0a40..ff546ea 100644 --- a/lib/tools/data_loader.py +++ b/lib/tools/data_loader.py @@ -28,13 +28,14 @@ def load_sqlite_to_dataframe(db_path:str, query:str) -> pd.DataFrame: conn.close() -def convert_time_to_UTC(value: str, timezone: str) -> str: +def convert_time_to_UTC(value: str, timezone: str, extra_minutes: int = 0) -> str: from zoneinfo import ZoneInfo - from datetime import datetime + from datetime import datetime, timedelta # Parse it to naive datetime object local_dt = datetime.strptime(value, "%Y-%m-%d %H:%M:%S") + local_dt = local_dt + timedelta(minutes=extra_minutes) zinfo = ZoneInfo(timezone) result: datetime = local_dt.replace(tzinfo=zinfo).astimezone(ZoneInfo("UTC")) @@ -85,7 +86,7 @@ def load_market_data( f"{date_str} {trading_hours['begin_session']}", trading_hours["timezone"] ) end_time = convert_time_to_UTC( - f"{date_str} {trading_hours['end_session']}", trading_hours["timezone"] + f"{date_str} {trading_hours['end_session']}", trading_hours["timezone"], extra_minutes=2 # to get execution price ) # Perform boolean selection diff --git a/research/cointegration_test.py b/research/cointegration_test.py index 675fe61..262c736 100644 --- a/research/cointegration_test.py +++ b/research/cointegration_test.py @@ -85,7 +85,7 @@ def main() -> None: # ) # Process each data file - price_column = config["price_column"] + stat_model_price = config["stat_model_price"] print(f"\n====== Processing {os.path.basename(datafile)} ======") @@ -105,7 +105,7 @@ def main() -> None: # Process data for this file try: cointegration_data: pd.DataFrame = pd.DataFrame() - for pair in create_pairs(datafile, price_column, config, instruments): + for pair in create_pairs(datafile, stat_model_price, config, instruments): cointegration_data = pd.concat([cointegration_data, pair.cointegration_check()]) pd.set_option('display.width', 400) diff --git a/research/notebooks/single_pair_test.ipynb b/research/notebooks/single_pair_test.ipynb index 5446397..3117e45 100644 --- a/research/notebooks/single_pair_test.ipynb +++ b/research/notebooks/single_pair_test.ipynb @@ -14,7 +14,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -40,7 +40,7 @@ "ROOT_DIR = \"/home/oleg/develop/pairs_trading\"\n", "os.chdir(ROOT_DIR)\n", "\n", - "CONFIG_FILE = f\"{ROOT_DIR}/configuration/vecm.cfg\"\n", + "CONFIG_FILE = f\"{ROOT_DIR}/configuration/zscore.cfg\"\n", "\n", "# Date for data file selection (format: YYYYMMDD)\n", "TRADING_DATE = \"20250602\" # Change this to your desired date\n", @@ -65,20 +65,20 @@ "\n", "# ================================ C R Y P T O ================================\n", "\n", - "# INSTRUMENTS = {\n", - "# \"A\": {\n", - "# \"symbol\": \"ADA-USDT\",\n", - "# \"exchange_id\": \"BNBSPOT\",\n", - "# \"instrument_type\": \"CRYPTO\",\n", - "# \"instrument_id_pfx\": \"PAIR-\",\n", - "# },\n", - "# \"B\": {\n", - "# \"symbol\": \"SOL-USDT\",\n", - "# \"exchange_id\": \"BNBSPOT\",\n", - "# \"instrument_type\": \"CRYPTO\",\n", - "# \"instrument_id_pfx\": \"PAIR-\",\n", - "# },\n", - "# }\n", + "INSTRUMENTS = {\n", + " \"A\": {\n", + " \"symbol\": \"ADA-USDT\",\n", + " \"exchange_id\": \"BNBSPOT\",\n", + " \"instrument_type\": \"CRYPTO\",\n", + " \"instrument_id_pfx\": \"PAIR-\",\n", + " },\n", + " \"B\": {\n", + " \"symbol\": \"SOL-USDT\",\n", + " \"exchange_id\": \"BNBSPOT\",\n", + " \"instrument_type\": \"CRYPTO\",\n", + " \"instrument_id_pfx\": \"PAIR-\",\n", + " },\n", + "}\n", "# Trading pair symbols\n", "# ================================ C R Y P T O ================================\n", "\n", @@ -121,7 +121,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -165,7 +165,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -246,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -324,9 +324,212 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Setup complete!\n", + "Current working directory: /home/oleg\n", + "Trading Parameters:\n", + " Configuration: /home/oleg/develop/pairs_trading/configuration/zscore.cfg\n", + " Symbol A: ADA-USDT\n", + " Symbol B: SOL-USDT\n", + " Trading Date: 2025-06-02\n", + "\n", + "Loading /home/oleg/develop/pairs_trading/configuration/zscore.cfg configuration using HJSON...\n", + "✓ Successfully loaded configuration\n", + " Training window: 120 minutes\n", + " Open threshold: 2\n", + " Close threshold: 0.5\n", + "Fit Model: pt_trading.z-score_rolling_fit.ZScoreRollingFit\n", + "Load configuration SUCCESS\n", + " Fit Method: ZScoreRollingFit\n", + "\n", + "Data Configuration:\n", + " Data File: 20250602.mktdata.ohlcv.db\n", + " ✓ Data file found: ./data/crypto/20250602.mktdata.ohlcv.db\n", + "\n", + "Created trading pair: ADA-USDT & SOL-USDT\n", + "Market data shape: (540, 5)\n", + "Column names: ['close_ADA-USDT', 'close_SOL-USDT']\n", + "\n", + "Sample data:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tstampclose_ADA-USDTclose_SOL-USDTexec_price_ADA-USDTexec_price_SOL-USDT
02025-06-02 13:30:000.6709153.680.6716153.85
12025-06-02 13:31:000.6716153.850.6730153.87
22025-06-02 13:32:000.6730153.870.6729153.93
32025-06-02 13:33:000.6729153.930.6732154.04
42025-06-02 13:34:000.6732154.040.6735154.02
\n", + "
" + ], + "text/plain": [ + " tstamp close_ADA-USDT close_SOL-USDT exec_price_ADA-USDT exec_price_SOL-USDT\n", + "0 2025-06-02 13:30:00 0.6709 153.68 0.6716 153.85\n", + "1 2025-06-02 13:31:00 0.6716 153.85 0.6730 153.87\n", + "2 2025-06-02 13:32:00 0.6730 153.87 0.6729 153.93\n", + "3 2025-06-02 13:33:00 0.6729 153.93 0.6732 154.04\n", + "4 2025-06-02 13:34:00 0.6732 154.04 0.6735 154.02" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tstampclose_ADA-USDTclose_SOL-USDTexec_price_ADA-USDTexec_price_SOL-USDT
5352025-06-02 22:26:000.6917156.720.6909156.57
5362025-06-02 22:27:000.6909156.570.6908156.65
5372025-06-02 22:28:000.6908156.650.6910156.75
5382025-06-02 22:29:000.6910156.750.6908156.70
5392025-06-02 22:30:000.6908156.700.6902156.63
\n", + "
" + ], + "text/plain": [ + " tstamp close_ADA-USDT close_SOL-USDT exec_price_ADA-USDT exec_price_SOL-USDT\n", + "535 2025-06-02 22:26:00 0.6917 156.72 0.6909 156.57\n", + "536 2025-06-02 22:27:00 0.6909 156.57 0.6908 156.65\n", + "537 2025-06-02 22:28:00 0.6908 156.65 0.6910 156.75\n", + "538 2025-06-02 22:29:00 0.6910 156.75 0.6908 156.70\n", + "539 2025-06-02 22:30:00 0.6908 156.70 0.6902 156.63" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "\n", "def prepare_market_data() -> None: # Load market data\n", @@ -348,7 +551,6 @@ " pairs = create_pairs(\n", " datafiles=PT_BT_CONFIG[\"datafiles\"],\n", " fit_method=PairsTradingFitMethod.create(PT_BT_CONFIG),\n", - " price_column=PT_BT_CONFIG[\"price_column\"],\n", " config=PT_BT_CONFIG,\n", " instruments=list(INSTRUMENTS.values()),\n", " )\n", @@ -385,7 +587,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -430,7 +632,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -522,7 +724,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -593,7 +795,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -1104,7 +1306,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -1174,7 +1376,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -1214,7 +1416,34 @@ "\n", " # bt_result.print_grand_totals()\n", " # bt_result.print_outstanding_positions() \n", + " else:\n", + " print(f\"\\nNo trading signals generated\")\n", + " print(f\"Backtest completed with no trades\")\n", + " \n", + " # Still print any outstanding information\n", + " print(f\"\\nConfiguration Summary:\")\n", + " print(f\" Pair: {SYMBOL_A} & {SYMBOL_B}\")\n", + " print(f\" Strategy: {FIT_METHOD_TYPE}\")\n", + " print(f\" Open threshold: {PT_BT_CONFIG['dis-equilibrium_open_trshld']}\")\n", + " print(f\" Close threshold: {PT_BT_CONFIG['dis-equilibrium_close_trshld']}\")\n", + " print(f\" Training window: {PT_BT_CONFIG['training_minutes']} minutes\")\n", + " \n", + " print(\"\\n\" + \"=\"*80)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ "\n", + "def print_summary():\n", + " global pair_trades\n", + "\n", + " from pt_trading.results import BacktestResult\n", + "\n", + " if pair_trades is not None and len(pair_trades) > 0:\n", " all_results: Dict[str, Dict[str, Any]] = {}\n", " all_results[f\"{TRADING_DATE}-{pair.name()}\"] = {\n", " \"trades\": bt_result.trades.copy(), \n", @@ -1229,20 +1458,6 @@ "\n", "\n", " \n", - " else:\n", - " print(f\"\\nNo trading signals generated\")\n", - " print(f\"Backtest completed with no trades\")\n", - " \n", - " # Still print any outstanding information\n", - " print(f\"\\nConfiguration Summary:\")\n", - " print(f\" Pair: {SYMBOL_A} & {SYMBOL_B}\")\n", - " print(f\" Strategy: {FIT_METHOD_TYPE}\")\n", - " print(f\" Open threshold: {PT_BT_CONFIG['dis-equilibrium_open_trshld']}\")\n", - " print(f\" Close threshold: {PT_BT_CONFIG['dis-equilibrium_close_trshld']}\")\n", - " print(f\" Training window: {PT_BT_CONFIG['training_minutes']} minutes\")\n", - " \n", - " print(\"\\n\" + \"=\"*80)\n", - "\n", "# performance_results()" ] }, @@ -1255,9 +1470,5335 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Setup complete!\n", + "Current working directory: /home/oleg\n", + "Trading Parameters:\n", + " Configuration: /home/oleg/develop/pairs_trading/configuration/zscore.cfg\n", + " Symbol A: ADA-USDT\n", + " Symbol B: SOL-USDT\n", + " Trading Date: 2025-06-02\n", + "\n", + "Loading /home/oleg/develop/pairs_trading/configuration/zscore.cfg configuration using HJSON...\n", + "✓ Successfully loaded configuration\n", + " Training window: 120 minutes\n", + " Open threshold: 2\n", + " Close threshold: 0.5\n", + "Fit Model: pt_trading.z-score_rolling_fit.ZScoreRollingFit\n", + "Load configuration SUCCESS\n", + " Fit Method: ZScoreRollingFit\n", + "\n", + "Data Configuration:\n", + " Data File: 20250602.mktdata.ohlcv.db\n", + " ✓ Data file found: ./data/crypto/20250602.mktdata.ohlcv.db\n", + "\n", + "Created trading pair: ADA-USDT & SOL-USDT\n", + "Market data shape: (540, 5)\n", + "Column names: ['close_ADA-USDT', 'close_SOL-USDT']\n", + "\n", + "Sample data:\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tstampclose_ADA-USDTclose_SOL-USDTexec_price_ADA-USDTexec_price_SOL-USDT
02025-06-02 13:30:000.6709153.680.6716153.85
12025-06-02 13:31:000.6716153.850.6730153.87
22025-06-02 13:32:000.6730153.870.6729153.93
32025-06-02 13:33:000.6729153.930.6732154.04
42025-06-02 13:34:000.6732154.040.6735154.02
\n", + "
" + ], + "text/plain": [ + " tstamp close_ADA-USDT close_SOL-USDT exec_price_ADA-USDT exec_price_SOL-USDT\n", + "0 2025-06-02 13:30:00 0.6709 153.68 0.6716 153.85\n", + "1 2025-06-02 13:31:00 0.6716 153.85 0.6730 153.87\n", + "2 2025-06-02 13:32:00 0.6730 153.87 0.6729 153.93\n", + "3 2025-06-02 13:33:00 0.6729 153.93 0.6732 154.04\n", + "4 2025-06-02 13:34:00 0.6732 154.04 0.6735 154.02" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
tstampclose_ADA-USDTclose_SOL-USDTexec_price_ADA-USDTexec_price_SOL-USDT
5352025-06-02 22:26:000.6917156.720.6909156.57
5362025-06-02 22:27:000.6909156.570.6908156.65
5372025-06-02 22:28:000.6908156.650.6910156.75
5382025-06-02 22:29:000.6910156.750.6908156.70
5392025-06-02 22:30:000.6908156.700.6902156.63
\n", + "
" + ], + "text/plain": [ + " tstamp close_ADA-USDT close_SOL-USDT exec_price_ADA-USDT exec_price_SOL-USDT\n", + "535 2025-06-02 22:26:00 0.6917 156.72 0.6909 156.57\n", + "536 2025-06-02 22:27:00 0.6909 156.57 0.6908 156.65\n", + "537 2025-06-02 22:28:00 0.6908 156.65 0.6910 156.75\n", + "538 2025-06-02 22:29:00 0.6910 156.75 0.6908 156.70\n", + "539 2025-06-02 22:30:00 0.6908 156.70 0.6902 156.63" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Analysis for RollingFit ...\n", + "\n", + "=== SLIDING FIT FIT_MODEL ANALYSIS ===\n", + "This strategy:\n", + " - Re-fits cointegration model using sliding window\n", + " - Adapts to changing market conditions\n", + " - Dynamic parameter updates every minute\n", + "\n", + "Rolling window analysis parameters:\n", + " Training window size: 120 minutes\n", + " Maximum iterations: 420\n", + " Total analysis time: ~420 minutes\n", + "\n", + "Strategy Configuration:\n", + " Open threshold: 2\n", + " Close threshold: 0.5\n", + " Training minutes: 120\n", + " Funding per pair: $2000\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAAPeCAYAAADEZ225AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4FOX6xvF7ZksooYR0SEKR3gOKCCiiKIKIYj0qolj4WY96bHDEgo0jikcUj3rE3guKglhRUAQbRJHeSYAkpFESSDa7M78/9mRxTYANJCQbvp/r8tLMvDPzbPImyN553tewbdsWAAAAAAAAAAAAgLBm1nQBAAAAAAAAAAAAAA4fwR8AAAAAAAAAAABQBxD8AQAAAAAAAAAAAHUAwR8AAAAAAAAAAABQBxD8AQAAAAAAAAAAAHUAwR8AAAAAAAAAAABQBxD8AQAAAAAAAAAAAHUAwR8AAAAAAAAAAABQBxD8AQAAAAAAAAAAAHUAwR8AAAAA1HHjxo3TKaecUtNlhI37779fY8aMqeky8D8FBQXq2bOn5s+fX9OlAAAAALWes6YLAAAAABC+3nzzTT3wwAPq3r273n///QrHdOjQIfDfDodDkZGRSkpKUq9evfS3v/1Nbdu2Paz7V2TcuHH64osvlJaWVuH51NRUDRkyRP/6178Cx7Zs2aJnnnlGv/zyi7Kzs9W4cWO1atVKxx9/vP7+978Hxl122WX6+eefJUmGYahBgwaKjY1V9+7ddc4556h///6BsU8//bSmTZt20Hr79Omj119/vcJzH374ocaPHx/42O12q3nz5urfv7+uv/56xcTEHPT+NaGiups0aaIOHTpo4MCBOvfccxUZGXlI916yZIl++OEHXX755WrcuHFVlSxJysjI0AcffKDp06cHjmVmZmrGjBmaN2+eNm/eLNM01b59e1133XXq169fuXvs2rVLjz32mL766isVFxerW7duGjdunLp06RIYU1BQoBkzZujbb7/V+vXr5fV61aZNG11xxRUaNmxY0P1++uknjR49usJ63333XfXs2TOk1zZ37lxNmzZN69atU3R0tM4991xdf/31cjrLvzWwcOFCPffcc1q+fLksy1Lr1q119dVXl6ttf95//3299NJL2rJlixITE3XZZZfpsssuCxrz5Zdfas6cOfrjjz+Um5urhIQEDRo0SNdff33Q1zUqKkrnn3++pk6dqoEDB4b0fAAAAOBoRfAHAAAA4JDNmjVLLVq00NKlS7V582a1bNmywnH9+/fX2WefLdu2VVhYqFWrVmnmzJl6++23dfvtt++3uyrU+x+uzZs36/zzz1dERITOO+88JSUlafv27VqxYoVeeOGFoOBPkhISEvSPf/xDkrR3715t3rxZX331lT755BMNHTpUjz32mFwul0477TSlpKQErtuzZ4/uv/9+nXbaaTrttNMCx0MJ7/7+978rKSlJHo9Hixcv1ttvv6358+dr9uzZql+//gGvffDBB2XbdmU+JVWmrG6v16vc3Fz9/PPPeuSRR/TKK6/oP//5jzp27Fjpe6alpWnatGkaOXJklQd/r732mlq0aKG+ffsGjs2dO1cvvPCCBg8erJEjR8rr9erjjz/WmDFj9Mgjj+i8884LjLUsS2PHjtXq1at11VVXKSoqSm+99ZYuu+wyffjhh2rVqpUk6bffftOTTz6pk046Sdddd52cTqe++OIL3XrrrVq3bl25OSf5Q+du3boFHfvz/DqQ+fPn64YbblCfPn10zz33aM2aNXr22WeVl5eniRMnBo2dMWOG7r77bvXv31//+Mc/ZJqmNm7cqMzMzJCe9c477+i+++7TkCFDNGbMGP3666966KGHtHfvXo0dOzYw7p577lFcXJxGjBih5s2ba/Xq1XrjjTc0f/58ffTRR6pXr15g7MUXX6zXX39dixYt0gknnBBSHQAAAMBRyQYAAACAQ5Cenm63b9/e/vLLL+2+ffvaTz/9dIXj2rdvb0+cOLHc8fz8fPuiiy6y27dvb8+bN++Q71+Ru+66y+7Zs+d+z/fs2dO+6667Ah/ff//9dufOne0tW7aUG5ubmxv08ahRo+wzzzyz3Div12vff//9dvv27e3JkydX+Ny8vDy7ffv29lNPPRXqS7FnzJhht2/f3l66dGnQ8UmTJtnt27e3Z82atd9ri4qKQn5OVdtf3bZt2wsXLrS7d+9uDxo0yN67d2+l7z19+nS7ffv2dkZGRlWUGuDxeOzjjz/e/ve//x10fM2aNXZeXl7QsZKSEvuMM86wTzrppKDjn376qd2+fXv7s88+CxzLy8uzjz32WPsf//hH4Fh6enq5+WZZlj169Gi7a9euQV+7H3/8sdw9K2vYsGH2iBEj7NLS0sCxJ554wu7QoYO9bt26wLGMjAy7e/fu9oMPPnhIz9m7d6/dp08fe+zYsUHHb7vtNrtnz572jh07Asd+/PHHctd/9NFHdvv27e333nuv3Lnhw4fbd9xxxyHVBQAAABwt2OMPAAAAwCGZNWuWmjRpooEDB2rIkCGaNWtWpa6PiorSE088IafTqWeffbbK718Z6enpio+PV4sWLcqdi46ODukeDodDEyZMUNu2bfXmm29q9+7dVV1mkLKOtC1btkjyL2+ampqq9PR0XXPNNUpNTdXtt98eOPfXPf4sy9Krr76qs846S926dVPfvn111VVX6Y8//gga9/HHH+vcc89V9+7d1adPH916660hd37tzwknnKDrr79eW7du1SeffBI4vmrVKo0bN06nnnqqunXrpv79+2v8+PEqKCgIjHn66ac1efJkSdKpp56qDh06qEOHDoHPw4wZMzR69GidcMIJ6tq1q4YNG6a33norpLoWL16sgoKCcst3tmvXTs2aNQs65na7NXDgQGVlZamwsDBw/IsvvlBMTIxOP/30wLFmzZpp6NChmjt3rjwejyQpOTm53HwzDEODBw+Wx+NRRkZGhTUWFhbK6/WG9HrKrFu3TuvWrdOFF14YtKznJZdcItu29cUXXwSOvfPOO/L5fLr55pslSUVFRZXqFv3pp5+0Y8cOXXLJJUHHL730Uu3Zs0fz5s0LHDv++OPLXT948GBJ0vr168ud69evn7799tsa614FAAAAwgHBHwAAAIBDMmvWLJ122mlyu90aPny4Nm3apKVLl1bqHs2bN9dxxx2n33//PSg8qar7h6pFixbKysrSokWLDus+DodDZ555pvbu3avFixdXUXUVS09PlyQ1bdo0cMzr9eqqq65SdHS07rrrrqDw6a/uvvtuPfLII0pISNDtt9+usWPHKiIiQr///ntgzLPPPqu77rpLLVu21Lhx4zR69GgtWrRIl156qXbt2nVY9Z999tmSpAULFgSOLVy4UBkZGTr33HN1zz33aNiwYZozZ47Gjh0bCHtOO+00DR8+XJI0fvx4TZ48WZMnTw4Ec2+//bZatGih//u//9O4ceOUmJioiRMn6s033zxoTWlpaTIMQ507dw7pNeTk5Kh+/fpBS62uXLlSnTt3lmkG/3W7W7du2rt3rzZu3HjAe+bm5kryB+N/NX78ePXu3Vvdu3fXZZddVi6k3Z8VK1YEaviz+Ph4JSQkaOXKlYFjCxcuVJs2bTR//nyddNJJ6tWrl44//ng9+eSTsiwr5Gd17do16HiXLl1kmmbQsypyoNffpUsX7dq1S2vXrj1oHQAAAMDRij3+AAAAAFTasmXLtGHDBt1zzz2SpN69eyshIUGzZs1S9+7dK3Wvdu3aadGiRdqyZUtgv7eqvH8oLrvsMn388ce64oor1KlTJx133HE6/vjj1b9//4Pun/dX7du3l7QvmKsqhYWFys/Pl8fj0ZIlS/TMM8+oXr16GjRoUGCMx+PRGWecodtuu+2A9/rxxx/14Ycf6rLLLtOECRMCx6+88spAwLZ161Y9/fTTuuWWW3TttdcGxpx++ukaOXKk3nrrraDjlZWQkKBGjRoFdbZdcskluvLKK4PG9ezZU//4xz+0ePFiHXvsserYsaM6d+6s2bNna/DgwUpKSgoa/8YbbwTtDTdq1ChdddVVevnll3XppZcesKYNGzaoSZMmioyMPGj9Zfs6nnHGGXI4HIHjOTk5OvbYY8uNj4uLkyRt375dHTp0qPCeO3bs0Pvvv69jjz02MF6SXC6XhgwZopNOOklRUVFav369XnzxRV166aV65513DhpU5uTkSJJiY2PLnYuNjdX27duDXpfD4dD48eN19dVXq2PHjvryyy/17LPPyufzHXRu5eTkyOFwlOuUdbvdatq0adCzKvLCCy/I4XBoyJAh5c4lJydL8ncwln2fAQAAAAhGxx8AAACASps1a5ZiYmICS/UZhhHozvL5fJW6V4MGDST5lxSsjvuHol27dpo5c6ZGjBihrVu36rXXXtMNN9ygfv366b333qvUvSp6PVXhiiuu0AknnKCBAwfq1ltvVcOGDTVt2jTFx8cHjbv44osPeq8vv/xShmHoxhtvLHfOMAxJ0ldffSXLsjR06FDl5+cH/omJiVHLli31008/HfZratCgQdDn6c+BXUlJifLz89WjRw9J0vLly0O655/vsXv3buXn56tPnz7KyMg46PKrO3bsUJMmTQ76jL179+rmm29WvXr1ygVhxcXFcrvd5a4pO1ZSUlLhPS3L0u23365du3YFAu8yvXr10lNPPaXzzz9fp556qsaOHav33ntPhmFoypQpB623uLg4qIY/i4iICJyXpD179mjnzp266aabdPPNN2vIkCGaMmWKTjzxRL322mvlOnMrepbL5arw3F+f9VezZs3SBx98oDFjxqhVq1blzjdu3FiSgpZ+BQAAABCMjj8AAAAAleLz+fTpp5/q+OOPD+yrJkndu3fXSy+9pEWLFmnAgAEh32/Pnj2SpIYNG1bq/h6PRzt37gy6V7NmzYK6rw6kLOAq07p1az322GPy+Xxat26d5s2bp+nTp+uee+5RUlJSuX3fQn09VeXee+9V69at5XA4FBMTo9atW5dbTtLpdCohIeGg90pPT1dcXFzQMqF/tWnTJtm2vd/lQv+8V9yh2rNnT1Bn2I4dOzRt2jTNmTNHeXl5QWND3TNx8eLFevrpp/Xbb79p79695e7RqFGjA15/sP3jfD6fbr31Vq1bt04vvPBCueC1Xr16gX38/qzsWERERIX3ffDBB/X999/r0UcfDXS+HkjLli116qmn6ssvv5TP55PD4dCOHTtUWloaVEujRo0CYWhFdZWUlASFpfXq1dOePXsCy6mWGT58uL7//nutXLlSxx13nPLz84NC+AYNGqhhw4aqV69eUA0Hetaf/frrr7r77rs1YMAA3XrrrQd87X/93gUAAACwD8EfAAAAgEr58ccflZOTo08//VSffvppufOzZs2qVPC3du1aORyOwJKNod4/LS1No0ePDjo3d+5cJSUlye12y+PxyLbtciGBbdsqKSmpsPtJ8u/T16FDB3Xo0EE9e/bU6NGjNWvWrJCDvzVr1kjyBzNVqXv37uX2aPsrt9tdLgw8VJZlyTCMwNKLf1XW2XiosrKytHv3bqWkpASO3XLLLUpLS9NVV12lTp06qUGDBrIsS1dfffVBAznJH2heccUVatOmTWB/P5fLpfnz5+uVV1456B51TZs2PejehRMmTNC8efP0+OOP64QTTih3PjY2NrC05p+VLXH55yU8y0ybNk1vvfWWbrvtNp1zzjkHfP6fJSQkqLS0VHv37lVkZKRuuukm/fzzz4HzI0eO1L/+9a/AEp85OTlKTEwMukdOTk7Q8rlxcXHatGmTYmJigsaV7aFYFraff/752rp1a+D8jTfeqJtuukmxsbHy+XzKy8sLCnU9Ho927NhR4etftWqVrrvuOrVr105PPfXUfkPlsmdXtP8fAAAAAD+CPwAAAACVMmvWLEVHR+vee+8td+6rr77SV199pYkTJ+63s+fPtm3bpl9++UU9e/YM7KsW6v07duyol19+Oeh8WcDRokULeb1epaenlwvgNm/eLJ/PpxYtWhy0vq5du0rSQfclK+Pz+TR79mzVr19fvXv3DumampCSkqIFCxZox44d++36S0lJkW3bSkpKUuvWrau8ho8//liSAiHxzp07tWjRIt10001BS5Bu2rSp3LX76/j65ptv5PF49Oyzz6p58+aB46EuS9qmTRvNmjVrv52Bjz76qD788EP985//LNcRV6Zjx45avHixLMsKCmGXLl2q+vXrl/tcvvnmm3r66ad1+eWXa+zYsSHVWWbLli2KiIgIhLB33XVXUHBZFrJ16tRJkvTHH38EhXzZ2dnKysrShRdeGDjWpUsXbdq0SdnZ2YE99aR93wNlAeBjjz0WtGxp2diyZy1btkwDBw4MnF+2bJksyyrXzZienq6rr75azZo10wsvvHDATtmyDuBjjjnmwJ8YAAAA4CjGHn8AAAAAQlZcXKwvv/xSJ598ss4444xy/1x66aUqKirSN998c9B77dixQ//4xz/k8/l07bXXVvr+TZo0Ub9+/YL+KVtG8aSTTpIkvfHGG+We++abbwaNkfzLDFa0POH8+fMlKaTgy+fz6aGHHtL69et12WWXBYLM2uj000+XbduaNm1auXNlnXWnn366HA6Hpk2bVq7bzrbtw9pnbdGiRfrPf/6jpKQkjRgxQpL2u0Trq6++Wu5Y/fr1JZVf/rPsHn+ud/fu3ZoxY0ZIdfXs2VO2bWvZsmXlzk2fPl0vvfSSrr32Wl1++eX7vccZZ5yh3Nxcffnll4Fj+fn5+vzzzzVo0KCgTtM5c+booYce0llnnaXx48fv9575+fnljq1atUrffPON+vfvHwgYu3btGvT90LZtW0n+PSzbtGmj9957L2h5zrfffluGYeiMM84IHBs2bJgk6YMPPggcsyxLH374oZo2bRoIw3v37h30rLLgr2/fvmratKnefvvtoHrffvtt1a9fXyeffHLgWE5Ojq688koZhqEXX3wxECruz/Lly9WoUSO1a9fugOMAAACAoxkdfwAAAABC9s0336ioqEinnHJKhed79uypZs2a6ZNPPgkECJK/a+vjjz+WbdsqKirSqlWr9Pnnn2vPnj0aN25cIIQ71Pv/VadOnXTBBRfotdde0+bNmwPLdC5cuFDz58/XBRdcENR59MILL2j58uU67bTT1KFDB0nSihUrNHPmTDVt2rRc0LN79+5Ax1pxcbE2b96sr776Sunp6TrzzDN18803H+xTWaP69u2rs88+W6+//ro2b96sE088UZZlafHixTr++OM1atQopaSk6JZbbtGUKVO0detWDR48WA0bNtSWLVv09ddf68ILL9RVV1110Gd999132rBhg3w+n3Jzc/XTTz/phx9+UPPmzfXss88GwtrIyEgdd9xxmj59ukpLSxUfH68ffvghaJ/HMl26dJEk/fvf/9awYcPkcrk0aNAg9e/fXy6XS9dee63+9re/qaioSO+//76io6MrXH7zr3r37q2mTZtq0aJFQct4fvXVV3rsscfUqlUrtWnTJvC1L9O/f//A0phDhgxRz549NX78eK1bt05RUVF6++235fP5dNNNNwWuWbp0qe688041bdpUJ5xwgj755JOge/bq1SsQpt1yyy2qV6+eUlNTFR0drXXr1um9995TvXr1dPvttx/0dUnSnXfeqeuuu05XXnmlzjzzTK1Zs0ZvvvmmLrjggqAOulNPPVUnnHCCnn/+eRUUFKhDhw6aO3euFi9erAceeGC/S+SWqVevnv7+97/rgQce0N///nedeOKJ+vXXX/XJJ5/o1ltvDeowvfrqq5WRkaGrr75aixcv1uLFiwPnYmJi1L9//6B7L1y4UIMGDWKPPwAAAOAACP4AAAAAhOyTTz5RREREuTfky5imqZNPPlmzZs1SQUFBYC+uH374QT/88INM01RkZKSSkpJ0zjnn6KKLLgp0JR3O/SvywAMPqH379poxY4aeeOIJSf7OvQkTJujSSy8NGvt///d/mj17tn755RfNmjVLxcXFio2N1Zlnnqnrr78+aMlDyb8/3Z133inJv9ddXFycevbsqfvvv3+/tdc2kyZNUocOHfTBBx9o8uTJatSokbp27arU1NTAmLFjx6pVq1Z65ZVX9Mwzz0jy7yvXv3///Yazf/XUU09Jklwul5o2bar27dvrn//8p84999xyXZFTpkzRgw8+qLfeeku2bat///564YUXdOKJJwaN6969u26++Wa98847+v7772VZlubOnas2bdroqaee0pNPPqlHH31UMTExuvjii9WsWTP985//PGitbrdbZ511lj7//HP94x//CBxftWqVJH+AXfZ1/7PXXnstEPw5HA7997//1eTJk/X666+rpKRE3bp106RJk9SmTZvANevWrVNpaany8/MrrG3SpEmBeTd48GDNmjVLr7zyigoLCxUVFaXTTjtNN954Y8h7SQ4aNEjTpk3TtGnT9OCDD6pZs2b6v//7P91www1B4wzD0DPPPKMnn3xSn332mT788EO1bt1ajz32WKA782AuvfRSuVwuvfTSS/rmm2+UmJio8ePHlwvQyz6v06dPL3ePPn36BH0vrV+/XmvWrAnp6wgAAAAczQw7lB3SAQAAAAA4CmRkZGjo0KF64YUXgrr+ULMefvhh/frrr/rwww/p+AMAAAAOgD3+AAAAAAD4n+TkZJ133nn673//W9Ol4H8KCgr0wQcf6JZbbiH0AwAAAA6Cjj8AAAAAAAAAAACgDqDjDwAAAAAAAAAAAKgDCP4AAAAAAAAAAACAOoDgDwAAAAAAAAAAAKgDCP4AAAAAAAAAAACAOoDgDwAAAAAAAAAAAKgDnDVdQLjLydld0yUAMk1DzZo1VH5+kSzLrulygANiviJcMFcRTpivCCfMV4QT5ivCBXMV4YT5inDCfEVtEhvbKKRxdPwBdYBpGjIMQ6Zp1HQpwEExXxEumKsIJ8xXhBPmK8IJ8xXhgrmKcMJ8RThhviIcEfwBAAAAAAAAAAAAdQDBHwAAAAAAAAAAAFAHEPwBAAAAAAAAAAAAdQDBHwAAAAAAAAAAAFAHEPwBAAAAAAAAAAAAdQDBHwAAAAAAAAAAAFAHEPwBAAAAAAAAAAAAdQDBHwAAAAAAAAAAAFAHEPwBAAAAAAAAAAAAdQDBHwAAAAAAAAAAAFAHEPwBAAAAAAAAAAAAdQDBHwAAAAAAAAAAAFAHOGu6ANROy5Yt1fXXX63jjz9Bjz02NXA8M3ObLrhgRODj+vUbKD4+QampvXXhhRcrOTkl5Hvtz8MP36/Cwt2aNGlK0PElS37V3/9+rT777Fs1atRIPp9Pb731uj77bJaysrIUERGhpKRkjRgxUmeddU7gXp99NluS5HA41LhxEx1zTFsNHjxEw4adJdM0A/c9kKeeek69eh170NoBAAAAAAAAAABqCsEfKjR79sc677yLNHv2x8rNzVFMTGzQ+Sef/I9at26j4uJibdiwTu+//46uuOJiPfrov3XssX0qda9D9fLLL+jjjz/UrbfeqY4dO6moqEirV6/Qrl27g8Ydf3w//fOf98qyLOXn5+unnxZq6tQpmjdvrv71ryfUrVsPffzx54HxU6dOUVFRkf75z3sDxxo3blIlNQMAAAAAAAAAAFQXgj+Us2fPHs2d+5VefPE15efnas6cWRo9+sqgMU2aNFF0dIwkqUWLJPXvf5Juvvk6/etfD+rdd2fK4XCEfK9DtWDBdxo58nydcsrgwLF27dqXG+d2uwK1xsbGqUOHjurSpZtuvvk6ffbZbJ111jmB85IUERGh0lJP0DEAAAAAAAAAAIDajj3+UM4333ylli1bKSWllU4/fZg+/fQT2bZ9wGtM09QFF1ysrKxMrV698rDuFapmzaK1ZMmvKigoqPS1vXsfp7Zt22v+/G+qpBYAAAAAAAAAAICaRsffEZadbWjPniP3vAYNpPj4ygVtn376sU4/fagk6fjjT1BRUaHS0hYfdI+7li1bSZIyMzPVuXPXw7pXKG666Vbdc89dOvvsIWrduo26du2uAQMG6oQT+od0fcuWLbV+/brDrgMAAAAAAAAAgKPNrl1S48Y1XQX+iuDvCNq9W7r99nqqooa3kJimrWeeKVajRqGNT0/fpBUrluuRRx6XJDmdTp1yymn69NOPDxrWlXXyGYYR0r2ysrJ02WUXBK6/7LIxlVoGtHXrNnrttXe1evVK/fHH7/rttzSNG/cPDR06XOPG3XPQ6/3lGiE/DwAAAAAAAAAASMuXm5o0KUJjx3p00km+mi4Hf0LwdwQ1aiQ9/njxEe/4CzX0k6TZsz+Wz+fTOecMDRyzbVsul0u33nrXAa/dvHmjJKl58+Yh3SsmJkYvv/xW4Fzj//1qQMOGDZWVlVnu/oWFhXI4HKpfv37gmGma6tSpizp16qILL7xEX3wxRw8+eK9Gj75SzZu3OGi9ZbUCAAAAAAAAAIDQrFvn30lu+nSXGjWylZpq1XBFKEPwd4RVdtnNI8nr9erzz+foxhtvUZ8+fYPOjR9/u77++nMdf3y/Cq+1LEvvv/+OEhNbqF27DiHd65xzzldSUnK5eyUnt9TXX38pj8cjt9sdOL5mzSolJjaX07n/aduqVRtJUnHx3gO+1sWLf9H69et04YWXHHAcAAAAAAAAAAAItnmzqXbtLDVubOupp9y6++4StW1be/OPownBHwIWLlyg3bt3afjwcxQZGRl0buDAUzR79ieB4G/nzp3Ky8tVcXGxNm5cr/fee1srVy7XY49NlcPh0HffzTvovc455/wK6zj99KF65ZXpeuih+3TJJaMVGRmp335bovfee1vXX39TYNyECXeqW7ce6tq1h6Kjo7Vt21Y9//wzSk5OUUpKq8A4j6dUeXm5sixL+fn5+umnhXr99VfUr9+JOuOMM6voswcAAAAAAAAAwNEhPd1Q9+6W/va3Uj36qFtPPBGhadOKZZo1XRkI/hAwe/bHOvbYPuWCOkk6+eRT9NZbr6moqEiSdMst10uS6tWrp4SERKWmHqs777w70MEXyr3WrVurtm3blTvfqFEjPfPMC3ruuWkaN+4fKioqVIsWybrppls1fPjZgXF9+pygr7/+Qq+//oqKigrVrFm0evc+TldeOTaoK/Cnnxbq7LPPkMPhUKNGjdW2bTvdcsvtGjp0uEx+CgEAAAAAAAAAELKSEik721RKildut3T++V49/HCEtmwxlJJC119NM2zb5qtwGHJydtd0CYCcTlNRUQ1VUFAkr5e1lFG7MV8RLpirCCfMV4QT5ivCCfMV4YK5inDCfEU4Yb5WbMMGQ/feW08PPFCsNm1slZRI11xTT5dfXqpTT/XVdHl1Vmxso5DG0e4EAAAAAAAAAACAkKSnmzIMqUULf19ZRITUsqWtNWuInGoDvgoAAAAAAAAAAAAISXq6qfh4SxER+461a2dp3Toip9qArwIAAAAAAAAAAABCkpFRfi+/9u0tZWeb2rmzhopCAMEfAAAAAAAAAAAADsq2/R1/KSnBex62a+f/eO1aYqeaxlcAAAAAAAAAAAAAB5Wfb6ioyFBycnDwFx1tq1kzm+U+awG+AgAAAAAAAAAAADiojAxDksot9SlJbdtaWrOG2Kmm8RUAAAAAAAAAAADAQaWnm6pf31ZMTPngr107Sxs2mPJ6a6AwBBD8AQAAAAAAAAAA4KDS0/3LfBpG+XPt2/vk9RratKmCkzhiCP4AAAAAAAAAAABwUOnpZoXLfEpSy5a2XC5ba9c6go4XFUkTJ0botddcsiu+FFWI4A8AAAAAAAAAAAAH5PFImZmmUlKsCs87nVKbNpZWrjQDAZ/HIz3xhFvp6Ya+/NKpGTOcR7DioxPBHwAAAAAAAAAAAA5o2zZDti0lJe2/ba9XL0tLljg0aZJbGzYYeuYZtzZsMDVunEcXXVSqmTNd+vprx36vx+EjWgUAAAAAAAAAAMABZWX5e8maN6+440+Shg3zqnlzS2+/7dK999aTadq69VaP2rWz1LatpR07DL36qltt2hSrTRvW/awOBH8AAAAAAAAAAAA4oMxMQ5GRtiIj9z/GMKTUVEvdu5dowQKHGjWylZpqBc6NGlWqxERLUVGEftWF4A8AAAAAAAAAAAAHlJlpKDExtMDO4ZAGDvSVO24Y0uDB5Y+j6rDHHwAAAAAAAAAAAA4oM9NUYuL+l/lE7UDwBwAAAAAAAAAAcJSwbf8/lb0mKyv0jj/UHII/AAAAAAAAAACAo8TcuQ7dfntEpcK/XbukvXsNJSTQ8VfbEfwBAAAAAAAAAAAcJebOdSo721RWlhHyNdu2+eOk5s3p+KvtCP4AAAAAAAAAAACOAunphjIy/NHQ2rWhR0RZWYYMQ4qLI/ir7Qj+AAAAAAAAAAAAjgILFjgUGWkrIcGqVPCXmWkoNtaSy1WNxaFK1Irg780339Qpp5yibt266YILLtDSpUsPOH7Xrl2aOHGiBgwYoK5du2rIkCGaP39+4HxhYaEefvhhDRo0SN27d9ff/va3cve0bVtTp07VgAED1L17d11xxRXatGlTdbw8AAAAAAAAAACAGmVZ0sKFTvXt61OnTpbWrKlM8GcqIYFuv3BQ48HfnDlzNGnSJN1www366KOP1LFjR1111VXKy8urcLzH49GYMWO0detWTZ06VZ9//rkefPBBxcfHB8ZMmDBBCxcu1OTJkzVr1iz1799fY8aMUXZ2dmDMCy+8oNdff13333+/3nvvPdWvX19XXXWVSkpKqv01AwAAAAAAAAAAHEnLl5vascPQgAFetWtnads2U0VFoV2bmWkoMZHgLxzUePD38ssv68ILL9R5552ntm3bauLEiapXr55mzJhR4fgZM2Zo586deuaZZ9S7d28lJSWpT58+6tixoySpuLhYX375pe644w4dd9xxatmypW666Sa1bNlSb731liR/t99rr72m6667ToMHD1bHjh01efJkbd++XV9//fURe+0AAAAAAAAAAABHwg8/OBQfb+mYY2y1b2/JtqX16w8eE3m90vbthhITrSNQJQ5XjQZ/Ho9Hy5cvV79+/QLHTNNUv379lJaWVuE133zzjXr27KkHHnhA/fr10/Dhw/Xcc8/J5/NJkrxer3w+nyIiIoKui4iI0JIlSyRJW7ZsUU5OTtBzGzVqpB49euz3uQAAAAAAAAAAAFUt1K67w1FcLP3yi0MDBvhkGFJ8vK3ISDuk5T5zcw1ZlsFSn2HCWZMPLygokM/nU3R0dNDx6OhobdiwocJrMjIy9OOPP+qss87Sf//7X6Wnp2vixInyer268cYbFRkZqdTUVP3nP/9RmzZtFBMTo9mzZ+u3335TSkqKJCknJyfwnL8+Nzc3t1KvwTQNmaZRqWuAquZwmEH/Bmoz5ivCBXMV4YT5inDCfEU4Yb4iXDBXEU6YrwgnR2K+7tol3XRThO66y6MuXaovWFu+3JTHY+jEE205nf7X07GjrfXrHXI6D9zJt327KcOQkpMVuBa1V40Gf4fCtm1FR0frwQcflMPhUNeuXZWdna0XX3xRN954oyRp8uTJ+uc//6mTTjpJDodDnTt31plnnqnly5dXeT3NmjWUYRD8oXZo3Lh+TZcAhIz5inDBXEU4Yb4inDBfEU6YrwgXzFWEE+Yrwkl1zteyHqj8fKeiog7/frYtzZolDRwoNWmy7/iWLVKLFlKnTvtiodRU6d13pSZN3DIPkOft3i1FRkrHHOMUcUjtV6PBX1RUlBwOh/Ly8oKO5+XlKSYmpsJrYmNj5XQ65XA4AsfatGmjnJwceTweud1upaSk6I033tCePXtUWFiouLg43XLLLUpOTg7co+w5cXFxQc8t2yswVPn5RXT8ocY5HKYaN66vXbv2yudjnWXUbsxXhAvmKsIJ8xXhhPmKcMJ8RbhgriKcMF8RTo7EfE1Lc6i01KmNG30qKPAe9v02bTL0n/+4lZ/v1dln+wLHf/vNrZYtraBnJCYa2r3braVLPWrZcv/dhmvXOhUdbWrHDs9h14dDFxXVMKRxNRr8ud1udenSRYsWLdLgwYMlSZZladGiRRo1alSF1/Tq1UuzZ8+WZVky/xdBb9q0SbGxsXK73UFjGzRooAYNGmjnzp1asGCB7rjjDklSUlKSYmNjtWjRInXq1EmSVFhYqN9//10XX3xxpV6DZdmyLNa1Re3g81nyevkfJoQH5ivCBXMV4YT5inDCfEU4Yb4iXDBXEU6Yrwgn1Tlf1693yralnBwFPWP1alMvvujSQw+V6C/RxwH98ov/fn/8YejMM/3383j8nYX9+vmCntGypWQYtlaulFq02P/r27JFio/nezZc1PhirGPGjNF7772njz76SOvXr9f999+vvXv36txzz5Uk3XnnnZoyZUpg/MUXX6wdO3bo4Ycf1saNGzVv3jw9//zzuvTSSwNjvv/+e3333XfKyMjQDz/8oNGjR6tNmzaBexqGodGjR+vZZ5/V3LlztXr1at15552Ki4sLBJAAAAAAAAAAAADVaeNGf0yTmxu8suDq1aa2bTO1bVvlVhxcssQhh8PW6tWmSkv3PcPnM9SuXXBwFxEhtWxpa+3aA0dFWVmmEhMJ/cJFje/xN2zYMOXn5+upp55STk6OOnXqpOnTpweW+szMzAx09klSYmKiXnzxRU2aNEkjRoxQfHy8Ro8erWuuuSYwZvfu3XriiSeUlZWlpk2b6vTTT9ett94ql8sVGHPNNddo7969uvfee7Vr1y717t1b06dPV0RExJF78QAAAAAAAAAA4Ki0Y4dUUGAoJcVSTk5wwJed7f84Pd1Uq1a+Cq4ur6DAH/INHerVZ585tW6dqU6dLK1ZYyoiwlZycvnVCzt18mnBAqd8vlL9aYe1gOJiaccOQwkJrHwYLmo8+JOkUaNG7Xdpz9dff73csdTUVL333nv7vd+wYcM0bNiwAz7TMAzdfPPNuvnmmytXLAAAAAAAAAAAwGEq6/Y77jifZsxwqbhYqlfPf+7PwZ8UWvCXluaQYUhnnVWq775zaMUKf/C3dq2pY46xKgz2+vb1ac4cl5YtM9WjR/muvrw8fx0xMQR/4aLGl/oEAAAAAAAAAAA42mzaZCoy0lbHjv7ArSxkk6Tt2/3xTUZG6Et9LlniUPv2PjVuLHXubGnFClO2La1da5Zb5rNM69a2mje39MMPFaSC2rcEKcFf+CD4AwAAAAAAAAAAOMI2bjTVqpUVCNXKgj+PR8rPNxQTY2nzZn94dzAlJdLy5aZ69fIHfJ07+7RunamMDEO7dxtq377i4M8wpP79ffr1V4eKi8ufz8szZJq2oqII/sIFwR8AAAAAAAAAAMARtmGDqdatLUVF2TKMfd1127f7/33ssZYKCw3t2HHwey1fbqq01FCvXv5lQTt3tuTzGfr0U/+Ob8ccU3HwJ0n9+vnk8Rj69dfyXX85OYaiolThMqGonQj+AAAAAAAAAAAAjqCCAmnHDkOtW1tyOqWoKDsQ/JXt73fccf4QLyNjX5Rj26qwAzAtzaH4eEuJif6TzZvbatrU1sKFTjVvbikycv+1xMba6tjRpwULyqd7ubn+zkOED4I/AAAAAAAAAACAI2jTJn8807q1P6iLibH+FPyZcrtttW9vKSLCVnr6vijn1VdduvvuCBUW7rtXdrahn392qHdvX+CYYfiX+7Rt7Xd/vz/r39+n5csdKigIPp6ba7K/X5gh+AMAAAAAAAAAADiCNm40FRlpB0K1mJjgjr/4eP/yn8nJttLT/ceLi6Xvv3coPd3UlCkRKimRdu6UHn3UrUaNbJ11ljfoGZ07+wO/UIK/Pn18cjj8HYJ/lpdnKDqa4C+cEPwBAAAAAAAAAAAcQWX7+xn+TO9/wZ8/sikL/iQpOdkKLPW5eLFDJSWGbrzRo82bDT39tFuTJ0fI4zF0110eNWoU/IyePX1q29ZS9+4+HUzDhlLXrpb++GNfbOT1SgUFBh1/YYbgDwAAAAAAAAAA4AjatMkf/JWJibFVUGDI65W2bzcUH+8/17Klpa1b/ccXLHCofXuf+vb16eabPVq61FROjqE77yxRbGz5cK5pU+n++0vUrFloNbVsaQUtK1pQYMi2VeG9UXs5Dz4EAAAAAAAAAAAAVaGgQNqxwwgK/qKjbdm2f2nN3Nx9HX8pKbYsy9CKFaaWLXNozBiPJKlHD0vjx3vUsKGtlJSqCeZSUmzt2mVo506pSRMFlh5lqc/wQscfAAAAAAAAAADAEbJxoz+aad16X6BWtpzmypWmLMtQXJz/4xYt/OHge++5ZJq2+vTZt2xnp05WlYV+kpSS4n9WWdcfwV94IvgDAAAAAAAAAAA4QjZsMNWokR0UqJX994oV/timrOOvYUMpJsbSpk2mevWyFBlZfXXFx9tyueyg4K9RI1sREdX3TFQ9gj8AAAAAAAAAAIAjpGx/P8PYd6xePSky0tby5Q45HMGhYFlXX79+3mqtyzSl5GRbGRn+wnJzjUAnIsIHwR8AAAAAAAAAAMARYNv+pT7/vL9fmdhYWzt3GoqNtWX+Kb055hhLjRrZ6tmz/DVVLSXFUkaG/+F5eQR/4YjgDwAAAAAAAAAAoBqsXGnqt9/2RTEFBdLOnUaFwV9ZyFa2zGeZYcO8evTRYrlc1VurJCUnW9qyxZDXK+XkEPyFI4I/AAAAAAAAAACAavDRR05Nn+6W9b+cb+NGfyzTunX5QK1sec+/Bn8ul9S4cfXWWSYlxZbPZ2jbNuN/HX/V32WIqkXwBwAAAAAAAAAAUA22bjW1Y4eh5cv9cczGjaYaNbLVrFn54K8sZIuPr7mwLTnZ/+xlyxzyeo2gvQYRHgj+AAAAAAAAAAAAqlhhoX9ZT0lasMAhad/+foZRfvz+lvo8kiIjpWbNbKWlmUE1IXwQ/AEAAAAAAAAAAFSxbdv8Eczxx/v0yy8OFRdLGzaYatOm4o6+1q1tJSRYatWqZpfXTEmxtHo1wV+4IvgDAAAAAAAAAACoYlu2GDIM6fzzS+XxGPrqK6d27zbUunXFwV50tK3HHy9R06ZHts6/SkmxZFmGIiJsNWxYs7Wg8gj+AAAAAAAAAAAADoPPJ+XlBa/fuW2bqfh4S4mJtjp08Onjj52StN/gr7ZISfF3+cXE2BUuSYrajeAPAAAAAAAAAADgEFmW9PTTbt1+e4SKivYd37LFUIsW/hCtf3+fiosNNW5sKyqqhgoNUXKyP5hkmc/wRPAHAAAAAAAAAABwCGxbevlllxYvdqi01AjsjSdJW7eaatHCH6L16eOTw2GrTRur1nfRJSTYcrlsgr8wRfAHAAAAAAAAAABwCD780Klvv3Xq6qs9io62tWKFQ5JUVCQVFOzr+IuMlC65pFSnneatyXJD4nBI553nVf/+vpouBYfAWdMFAAAAAAAAAAAAhJsNGwx99JFLF1xQqoEDfVq1ytTy5f5+q8xMf1tfWcefJA0ZEj5B2vDhtT+gRMXo+AMAAAAAAAAAAKik9HRThiENHeoPybp0sZSRYWrXLmnLFv+55s1ZLhNHFsEfAAAAAAAAAABAJWVnG4qKsuV2+z/u3Nnf0bdihUPbthmKi7MC54AjhaU+AQAAAAAAAAAAKik721RCwr6lPJs1kxISLK1YYSo316DbDzWCjj8AAAAAAAAAAIBK2r7dUHx8cLjXpYul5ctNbdtmBO3vBxwpBH8AAAAAAAAAAACVYNv+pT7j4oKDv86dLWVnm8rNNdWiBR1/OPII/gAAAAAAAAAAACqhsFDau9dQfHxwV1/ZPn+S6PhDjSD4AwAAAAAAAAAAqITsbEOSyi312aiRlJLiD/zY4w81wVnTBQAAAAAAAAAAAISTrCx/X9Vfl/qUpB49fCotlerVO9JVAQR/AAAAAAAAAAAAlbJ9u6HGjW3Vr1/+3LnnenXmmd4jXxQggj8AAAAAAAAAAIBKyc42yi3zWcbl8v8D1AT2+AMAAAAAAAAAAKiErCxT8fFWTZcBlEPwBwAAAAAAAAAAUAnbt++/4w+oSQR/AAAAAAAAAAAAISoqknbvNpSQQPCH2ofgDwAAAAAAAAAAIETbtxuSpLg4lvpE7UPwBwAAAAAAAAAAcACZmYa8Xv9/Z2f7oxWW+kRtRPAHAAAAAAAAAACwHz6fNGFChN54wyXJ3/HXsKGtyMgaLgyoAMEfAAAAAAAAAADAfuTnSyUlhubOdWrjRkPZ2Ybi4uj2Q+3krOkCAAAAAAAAAAAAaquyPf0aN7b1yituOZ224uPZ3w+1Ex1/AAAAAAAAAAAA+1EW/F17rUfr15tavdpBxx9qLYI/AAAAAAAAAACA/cjJMdS0qa1u3Sz17++VJCUkEPyhdmKpTwAAAAAAAAAAgP3Yvt1QbKw/6LvkklLl5xvq0IGlPlE7EfwBAAAAAAAAAADsR06Oobg4f9DXpIl0992eGq4I2D+W+gQAAAAAAAAAANiPnJx9HX9AbUfwBwAAAAAAAAAAUAGPRyooIPhD+CD4AwAAAAAAAAAAqMD27f5/E/whXBD8AQAAAAAAAAAAVCA72/9vgj+EC4I/AAAAAAAAAACACmRnSw6HFB1N8IfwQPAHAAAAAAAAAABQgawsf+hnkqYgTDBVAQAAAAAAAAAAKpCdLcXF0e2H8EHwBwAAAAAAAAAAUIHsbPb3Q3gh+AMAAAAAAAAAAKgAHX8INwR/AAAAAAAAAAAAf1FUJBUWEvwhvBD8AQAAAAAAAAAA/EVOjiGJpT4RXgj+AAAAAAAAAAAA/iI72x/8xccT/CF8EPwBAAAAAAAAAAD8RU6OoYgIqVGjmq4ECB3BHwAAAAAAAAAAwF/k5BiKj5cMo6YrAUJH8AcAAAAAAAAACBu2LZWU1HQVOBps3+4P/oBwQvAHAAAAAAAAAAgbP/7o0I031lNuLm1YqF45OYYSEmq6CqByCP4AAAAAAAAAAGFjxQpTe/caevNNV9Dx1atNrVnDW96oGrZNxx/CEz8FAQAAAAAAAABhY9MmU82a2frlF4d+/93/Fvfy5aYeecStV191HeRqIDQ7d0qlpSL4Q9gh+AMAAAAAAAAAhAWvV0pPN3TmmaXq3Nmn115zad06Q//+t1v16kkZGYY8npquEnVBTo4/PiH4Q7gh+AMAAAAAAAAAhIWMDEM+n6E2bWxdfnmpcnIMPfBAhBITbf397x5ZlqGMDPb+w+HLyfHPI4I/hBuCPwAAAAAAAABAWNi40ZRhSCkpllq0sHXuuV4lJdm6444StWtnyTRtbdzI2944fDk5hiIjpQYNaroSoHKcNV0AAAAAAAAAAACh2LjRVFKSpYgI/8fnnOPV2Wd7ZfyvyS85uSz489VYjagbtm83FBdn13QZQKXVil99ePPNN3XKKaeoW7duuuCCC7R06dIDjt+1a5cmTpyoAQMGqGvXrhoyZIjmz58fOO/z+fTkk0/qlFNOUffu3TV48GA988wzsu1936Tjxo1Thw4dgv656qqrqu01AgAAAAAAAAAOz8aNplq1soKOGX9a2bN1a4uOP1SJnByCP4SnGu/4mzNnjiZNmqSJEyeqR48eevXVV3XVVVfp888/V3R0dLnxHo9HY8aMUXR0tKZOnar4+Hht27ZNjRs3Dox54YUX9Pbbb+vRRx9V27ZttWzZMo0fP16NGjXS6NGjA+NOPPFETZo0KfCx2+2u3hcLAAAAAAAAADgkpaX+Pf4GDrT2O6Z1a0vffeeQxyPxdi8OR06OobZtCf4Qfmo8+Hv55Zd14YUX6rzzzpMkTZw4UfPmzdOMGTM0duzYcuNnzJihnTt36p133pHL5ZIkJSUlBY1JS0vTqaeeqpNPPjlw/tNPPy3XSeh2uxUbG1sNrwoAAAAAAAAAUJUyMgz5fIZatz5w8GdZhtLTCW1w6Hw+KS/PUGzs/ucaUFvVaM+zx+PR8uXL1a9fv8Ax0zTVr18/paWlVXjNN998o549e+qBBx5Qv379NHz4cD333HPy+fat2Zyamqoff/xRGzdulCStWrVKixcv1kknnRR0r59//lknnHCChgwZovvuu08FBQXV8CoBAAAAAAAAAIdr0yZTpmkrJWX/gV5ysi2Hw9amTSz3iUOXn2/IsljqE+GpRjv+CgoK5PP5yi3pGR0drQ0bNlR4TUZGhn788UedddZZ+u9//6v09HRNnDhRXq9XN954oyRp7NixKiws1NChQ+VwOOTz+XTrrbdqxIgRgfuceOKJOu2005SUlKSMjAw98cQTuuaaa/Tuu+/K4XCE/BpM05BpGgcfCFQjh8MM+jdQmzFfES6YqwgnzFeEE+YrwgnzFeGCuYpwcjjzdfNmh5KTpQYN9n+t0ymlpEibNjnkdBLa4NDk5xsyDCkhwf8xP18RTmp8qc/Ksm1b0dHRevDBB+VwONS1a1dlZ2frxRdfDAR/n332mWbNmqUpU6aobdu2WrlypSZNmqS4uDiNHDlSknTmmWcG7tmhQwd16NBBgwcPDnQBhqpZs4YyDII/1A6NG9ev6RKAkDFfES6YqwgnzFeEE+YrwgnzFeGCuYpwcijzdetWqUsXKSrKdcBxXbtKq1dLUVERh1peOatXSw0bSn/ZdQp11N69/j0ijznGH6Hw8xXhpEaDv6ioKDkcDuXl5QUdz8vLU0xMTIXXxMbGyul0BnXltWnTRjk5OfJ4PHK73Zo8ebLGjh0bCPc6dOigbdu26fnnnw8Ef3+VnJysqKgobd68uVLBX35+ER1/qHEOh6nGjetr16698vlYdxq1G/MV4YK5inDCfEU4Yb4inDBfES6YqwgnhzpfPR5p/foI9e/vVUGB74Bj4+MdmjPHqezsErndh1ux38MPu9Wiha077yytmhuiVlu/3qnISFN793rlcvHzFbVDVFTDkMbVaPDndrvVpUsXLVq0SIMHD5YkWZalRYsWadSoURVe06tXL82ePVuWZck0/e21mzZtUmxsrNz/+yleXFxcrgvP4XDItvff2p2VlaUdO3YoNja2Uq/BsmxZFi3jqB18PkteL38AITwwXxEumKsIJ8xXhBPmK8IJ8xXhgrmKcFLZ+bp6tanSUik52Suv98Dvx6ak2PL5nNqwwVbbtof/3m1OjqHsbENFRVJpqSUWgKv7srJsRUdbgbCPn68IJzW+MO2YMWP03nvv6aOPPtL69et1//33a+/evTr33HMlSXfeeaemTJkSGH/xxRdrx44devjhh7Vx40bNmzdPzz//vC699NLAmEGDBum5557TvHnztGXLFn311Vd6+eWXA+FiUVGRHn30Uf3222/asmWLFi1apOuvv14tW7bUiSeeeGQ/AQAAAAAAAACA/bJt6Z13XEpKstS69cGDvORkWw6HrQ0bqubt7xUr/PcpLDSUlUXqdzTIyTEVG0vDD8JTje/xN2zYMOXn5+upp55STk6OOnXqpOnTpweW+szMzAx09klSYmKiXnzxRU2aNEkjRoxQfHy8Ro8erWuuuSYwZsKECZo6daomTpyovLw8xcXF6aKLLtINN9wgyd/9t2bNGs2cOVO7d+9WXFyc+vfvr5tvvjnQNQgAAAAAAAAAqHnz5jm0fr2pCRNK9KcdoPbL5fJ3/a1ZY+r00w+8LGgoli83lZBgKTvb1Jo1phITD/+eqN1ycgx17Urwh/Bk2Ada/xIHlZOzu6ZLAOR0moqKaqiCgiJazlHrMV8RLpirCCfMV4QT5ivCCfMV4YK5inBS2flaWCjdfns99ezp07XXhr6/3gcfOPXll0795z/Fch5G+4ttSzfdVE/9+3u1dKlDxxxj6eqr2eevLvN4pCuvrK+xYz065RSbn6+oNWJjG4U0rsaX+gQAAAAAAAAAoCLvvuuSZUkXX1y5sK1XL5/27DG0evXhvQWemWloxw5DnTtbatvW0tq1vKVe1+Xk+JdzZalPhCt+SgEAAAAAAAAAap3t2w3Nm+fUeeeVqkmTyl3burWtpk1tpaWFsDboAaxYYco0bXXoYKl9e0tbt5oqKjqsW6KWKwv+4uII/hCeCP4AAAAAAAAAALXOkiX+0G3gwMrvqWcYUmqqT2lppiqz2VV6uqF58xyBa5Yvd+iYY2zVqye1b+9f6nHdOt5Wr8tycgw5HLaiogj+EJ74CQUAAAAAAAAAqHXS0hzq3NlSvXqHdn2vXj5lZ5vKzDRCGp+ZaeiRRyI0fbpbs2c7ZdvSypWmunTxB49xcbYaNbJZ7rOOy8kxFBNjy+TLjDB1GNuaAgAAAAAAAABQ9YqK/KHbZZdVbm+/P+vSxZLLZWvJEoeaN/cecGxBgfToo241bmzrpJO8evddl3buNFRYaKhLF3+nn2FI7dqxz19dtmKFqV9/dSg+nm4/hC+CPwAAAAAAAABArfLHHw5ZlqGePa1DvofbLXXtaiktzdTw4cHnLEv68UeHSkr8H3/5pVM+n6G77ipRs2a29u419PnnTrlcttq23VdDu3aWZs50yrJER1gdkpdn6JVXXEpLc6hNG0sXX3zogTNQ0wj+AAAAAAAAAAC1ypIlppKTLcXGHl7nVWqqTy+/7FZhoRQZue/40qWm/vMfd+Djpk1tjRtXouho//OuuKJUHo/kcEgu177r2rWzVFJiKCPDUMuWdIXVFR984NS6daZuvNGj44/3yQhtdVigViL4AwAAAAAAAADUGj6f9PvvDp166oGX5wxFaqpPL70k/fabQwMG+ALHly93qFkzW1OnFlcY8jgc0nXXle/6atPGkmn69/lr2dJX/kKEpTVrTPXt61PfvnxNEf5oRgYAAAAAAAAA1Bpr1pgqKjLUq9fhhzBRUVLr1paWLHEEHV++3FSXLpXv7HK7pYQEW9u28dZ6XbFrl5Sdbap9+0NfVhaoTfjpBAAAAAAAAACoNdLSTDVubOuYY6pmKc1evXxautSU938NhLt3S+nppjp3PrSgJzbWVk4Oa0HWFevW+WOSP+/lCIQzgj8AAAAAAAAAQK2xZIlDqalVt89aaqpPxcWGVq70vx2+YoW/++9Qg7+4uKM3+Js1y6ktW+rWa1+zxlTTprZiYtizEXUDwR8AAAAAAAAAoFbYtUvKyjLVrVvVdV+1bGmrWTNbaWn+wG/FClPx8Zaiow8t6ImNtbV9uyH7KMuJMjMNvfuuS5995qyxGqrjc75unX+Zz6oKmoGaRvAHAAAAAAAAAKgVNm70v2XdunXVBX+G4e/6S0szZdv+/f0OtdtPkmJjLXk8hnbvrrISw8KCBf7gdMkSR42Ent9959Att9RTUVHV3dPrldavN9WuHct8ou4g+AMAAAAAAAAA1AobN5pq0MBWXFzVJku9evmUk2Nq2TJTWVmmunQ5nODPX9v27UdPi5htSz/84FBysqXduw2tX3/kX/vq1aby8gzNmOGqsnumpxsqLTXUrp2vyu4J1DSCPwAAAAAAAABArbBxo6nWrat+2cVOnSxFRNh66y1/aNS586EHPWXBX07O0fP2+po1pnJzTY0aVarISFtLljiOeA1bt5qqX9/WV185tWlT1UyQNWtMOZ22WrU6ytZtRZ129PxkAgAAAAAAAADUamXBX1Vzu6Vu3SxlZJhKTrbUuPGh36thQ6lhQ1s5OXW342/WLKeefdYl3//y0QULHIqOttW5s6UePXyB/RKPFNuWtm0zNGyYV82bW3r5ZbdsW9qwwdBjj7n15JNubd1a+a/HmjUOtW5ty1lz2xYCVe6wgj/btpWdnS2v11tV9QAAAAAAAAAAjkI7d0r5+Ua1dV+lpvpTrMNZ5rNMbGzdDv5+/dWhH35w6uWXXfJ4pJ9+cqh/f68MQ+rVyx+gHsnXv2OHtGePoZQUS1dcUar160098ECE7r23nnJyDKWnGxo3rp5efNGlwsLQ77tunan27VnmE3XLIeXY33//vZ5++mmtWLFClmXp/fffV5cuXXTPPffouOOO04gRI6q6TgAAAAAAAABAHbZxo79PpTo6/iR/8Negga1evQ4/6KnLwZ9tS5mZho45xtK8eU5lZxvas8dQ//7+z1u3bj45HLbS0kydfvqRCc22bPHPjaQkW/HxtgYO9Oq33xy68kqPBg70ybKkr7926qOPnMrLM3THHZ6DLhebl2coP99Qu3bVM9+AmlLpjr/Zs2dr7NixSkpK0n333SfL2vdNkZycrA8//LBKCwQAAAAAAAAA1H0bN5pq2NBWXFz1dPw1biw9/3yxOneuio4/q84Gf7t3+7vrzjyzVBddVKqVKx1q3dpSixb+r0uDBv49E4/kPn9btxpyOu3A/opXX12qadOKdcopPjkcksslDR3q1dixHi1d6tCSJQePPlat8o8h+ENdU+ng7z//+Y8uv/xyPfHEEzr33HODzrVr105r166tsuIAAAAAAAAAAEeHsv39DtapdTiq6t5xcbZycw1ZdTAzysz0xwYJCbaGD/fqiis8uuSS0qAxqak+rVxpas+eI1PT1q2mmje3Zf4v0TCMir+WvXtb6t7dp9dfd6mkZP/3Ky2VPvrIqU6dfGrSpHpqBmpKpYO/jIwMDRw4sMJz9evX1+7duw+7KAAAAAAAAADA0WXjRlOtWoVHkhYba8vn8y8VWddkZhoyDH/wZxjS4ME+deoU/HXp1cuSz2do2bJKRwyHZOtWQ82bH3xuGIZ0+eWl2rHD0Mcf73+ns88/d2r7dkOjR5fudwwQrir9XRkbG6sNGzZUeG716tVq3rz5YRcFAAAAAAAAADh67NghFRQYat26epb5rGplS05u3173gr+sLEPR0Zbc7v2PiY21FR9vacWK6l/u07b9HX/JyaHNjfh4W2ed5dWnnzq1cmX5CCQ319BHHzk1ZIgv5HsC4aTSwd/w4cP19NNPa9GiRYFjhmFozZo1mj59ukaMGFGlBQIAAAAAAAAA6raNG/1vVbdpEx4dfzEx/sCoLu7zt22bqYSEgwdinTtbWr68+jv+du2SiopC6/grc9ZZXrVqZevhhyP01FNuZWfv+zq9+aZLDRpI555Ltx/qpv33uu7HjTfeqLVr12rMmDFq2rSpJOmaa65Rfn6+Tj75ZI0dO7aqawQAAAAAAAAA1DFvveXU6tUOXXhhqTZuNBUZaQcCtdrO7ZaaNrXrZPCXlWWoa9eDh2xdulj69lunCgqkqKjqq2fLFn+4mJQU+txwu6X77y/RggUOvf++S7fdVi+wJ6BtSzfc4FH9+tVRLVDzKh38ud1uPfvss/rxxx+1cOFCFRQUqEmTJurXr5/69etXHTUCAAAAAAAAAOqYZcscysw0NGlShCIibLVrZwXCmXAQG1v3gj+fT8rONjR48MGDv86dfZKkFSsc6t/fV201bd1qyOGwFRdXuVDYMKQTT/Tp+ON9+uUXh0pK/MebNrWVmhoenaXAoah08Femb9++6tu3b1XWAgAAAAAAAAA4Cti2f5nMc8/1KjbW1syZTvXuXX3hUXWIjbW0fXv1L3V5JOXmGvL5DCUmHjxka9xYSk62tGKFWc3Bn6nERFuOQ9xO0O1WtdYH1DaVDv4WLVqkbdu26bzzzit37sMPP1Tz5s0JBAEAAAAAAAAA+1VYKO3dayg21lbfvj717Rt+wUxsrK0VK+pWx19mpv/1hBL8Sf59/hYvrt7wc+tWQ82bh8cSsEBtUOnvyCeffFJ5eXkVnsvPz9eTTz55uDUBAAAAAAAAOErt2iXt2VPTVaC6lS2RGRcXvksuxsba2rHDkMdTvc/x+fYFctUtM9OUy2UrOjrU4M+n3FxT27dXX31bt5pKSgrfeQIcaZUO/tauXauuXbtWeK5Lly5at27dYRcFAAAAAAAA4Oj0739H6Nln3TVdBqpZWVBU2X3bapPYWH/teXnVE3rZtvTbb6bGj4/QHXfU07ffHuJal5WQmWkoIcEOea/Fjh39+zIuX149XX+7dkm7d9PxB1RGpZf6NAxDu3fvrvDczp075fOFX0s2AAAAAAAAgJrn80mbNhkqLTW1dauhFi14s7+u2r7dUL16tho2rOlKDl1ZaLl1a2h74u3PZ5851aaNpQ4d9nW17d0rTZ3q1rJlDnXs6FOrVl699JJbjRuXqHfvA3e/ff21Q0lJtjp2rHyXXFZW5V5Lw4ZSq1aWli83NWjQ/rOBxYtNpaebGjLEqwYNyp/PzDQ0Z45TRUXBiWNZ9y8df0DoKh3D9+jRQ2+++aZsO/ib37ZtvfXWW+rRo0eVFQcAAAAAAADg6JGdbai01JBp2pozJ7SeBfoQwlNOjn9/v1A7y2qjmBhbrVpZevVVt3JzD+2FFBVJb7/t1LPPulRSsu/4Rx85tXq1qVtvLdHdd3t07bWlOu44n6ZNc+uPP0zt3i3t3i15vcH3W7nS1CuvuDVtmvuQlszNzDSVkFC5kK1LF59WrHDI3k9euHOn9Nxzbs2Y4dJtt9XT1187/tfJ558Hr77q0l13Rei33xzas0dB/0hS//7ewwpWgaNNpTv+brrpJo0ePVojRozQyJEjFRsbq+3bt2vmzJnatGmTXn/99eqoEwAAAAAAAEAdl57u71M44wyvvvjCqQsuKFXTpvsfv2yZqalT3XrooRLFxxMMhJPt243AUpnhyjCk224r0QMPROjRR926774SRUZW7h5LlzpkWYYKCqSPP3bqwgu9ysgw9PnnTp1/vjfQ3WcY0rXXevTYY249+mhE4Pr4eEsTJpQoKsofAr76qkvJyZaysw199JFLl15aGnItxcVSQUHll9Xs0sXS7NmGtm2ruEv37bddcjikRx4p1mefOfXqq2698sq+8/Xr27rgAq+GDPHKzSq/wGGrdPCXmpqqV155RY899pgef/xxWZYl0zTVs2dPvfLKK+rZs2c1lAkAAAAAAACgrktPN9S0qa2zz/Zq7lynvvrKqQsu8O53/IoVpvbu9XcM3XGHJ9A9lp5uaPduQ126sDxgbZWTY6h79/D/+kRFSXfd5dHEiRF67LEI3X13SaXCq8WLTbVsaSk11adZs5w68USfXn3Vpbg4W0OHBs99t1u6/XaPVqww5fNJXq+hN990BZ47f75TW7eaeuCBYi1b5tD77zt14olepaSEFuRlZfm/gSrb8de+vSWHw9by5aZatAhuwV21ytSCBU5ddZVHKSm2/u//SjV8uFeZmf5nGYb/+kaNKvVIAAdQ6eBPknr37q133nlHxcXF2rlzpxo3bqz69etXdW0AAAAAAAAAjiLp6aZSUiw1bCgNGuTT3LlOnXWWV/XqVTx+40ZTTZrYWrrUoV9/NXXccZbS0w099FCESkulRx8tCezDhtrDtsuW+gz/4E+SEhJs3XZbie6/v57S0hw6/vjQ1p/1ev0df6ef7tWIEV4tWODQpEkRys83dNddJXK5yl8TESGlpu77vLVoYenBByP0+OMRSk83dOqpXrVubSs52av58x169VWXJkzwhLSkamamv+O2sstqRkRI7dpZWr7codNP3/favV7plVdcOuYYSyefvO94ixY2+3cC1ajSe/z9Wb169RQfH0/oBwAAAAAAAOCwZWT4gz9JGjLEqz17pIULHRWOtW1/8HfKKV717OnT66+7tXWrocmTIxQba6tRI+mNNypITkK0dKmphx5ya8eOQ74F9iM/3x8K1aVQtm1bW8nJltLSQn/Lfc0aU3v2GOrVyye3Wxo9ulT5+Yb69PGpW7fQQtHkZFu33ebRpk2G3G7p/PP9S3s6ndLll5dq9WqHfvqp4u+hv8rKMtSoka2GDUN+CQGdO1taudKU9aey5893aOtWU1dcEVrwCKBqhNTx99BDD+nKK69U8+bN9dBDDx10/IQJEw67MAAAAAAAAABHj6IiKS/PUHKyPwyKjbV1zDG2li1z6JRTyndQ5eYaKiw01KaNpQEDfLrrrgjdfXeEoqNt3XlniVaudGjaNLfS0sygDqlQzZnj1KpVjsAyig0aHPZLxP9kZ/v/He57/P1VaqpP33zjlGWVygwh/0tLc6hpU1utW/s/D716WbrllhJ17Fi5+dqhg3+fP8NQ0B6D3bpZat/ep/nzHerb9+BdiNu3G4ccxnbubOnDDw1t2mSoTRv/PebNc6pXL1/g9QE4MkL69YNvvvlGu3btCvz3gf759ttvq7VgAAAAAAAAAHVPerr/rcqyjj9Jat/ep3XrKn4Lc+NGfwtRq1aW4uNtnXeeV40bS3fe6VGTJtLxx/vUtatPr73mksdTuVry86Xlyx064wyvcnIMTZ3qVmnpob0ulFcW/MXE1K1AqFcvnwoLjf3O2T+zbWnJElOpqb6gbrhjj7WCwrtQHXOMHQjc/mzAAJ+WLXOooODg98jLMxQdfWhfk7ZtLblctlas8HcXbt1qaONGU/3773+PTgDVI6SOv2+++abC/wYAAAAAAACAqpCRYcjhsIP2F2vXztKnnxoVBhIbN5pq2tRWVJT/47PO8mr4cG8gRDEM/1KH48ZFaM4cp845J/QAYuFCp5xOWyNHlqp3b58efdSt115z6aqrSP+qQna21Lix9rt3Y7g65hhbjRrZWrLEVPv2B+7ay8w0lJ1tatSo6p1Tffr49Oqrtn780amhQw/8PZCba6h169D2J/wrp9Pfebhihanhw6UFCxxq0MA+pG5bAIenUnv8lZSU6Nprr9Uvv/xSXfUAAAAAAAAAOAplZJhq0cKW80+tCu3a+UODtWvLv425caOp1q2DQ4W/7iOWmGhrwACfvv8+tD3Oyvzwg0OpqZYaNpQ6dbI0fLhXP//skF23GtRqTFZW3drfr4xh+Jf7XLKk4vlmWdKWLYa2bDH03XcOuVy2unSp3mAsMtK/hOiCBQf+HrBtf8ff4XRhduliadUqU6Wl/vD8+ON9ch36NpsADlGlgr+IiAj98ssv8vkOLfUHAAAAAAAAgIps3mwGLfMpSU2aSHFxVrngz7alTZvKB38V6d3bp+xsU5mZxkHHSlJ6uqGMDFMnnrivO6plS0tFRYb+txsSDlN2dt3b369MaqpP27aZys4uP9+mTnVr3Lh6GjeunmbPdqlHD0tud/XX1L+/V5s3m9qyZf/fAzt2SD7f4QZ/Pnk8hubMcSovz9CAAeQIQE2oVPAnSf3799cPP/xQHbUAAAAAAAAAOAqVdUIlJ5cPHdq1s7RmTfDbmLm5hgoLjZCCvy5d/HuP7a8L669++MGhyEhb3brtu3dSkr+uLVsq/XYqKpCdXTc7/iSpWzdLTmf5+bZkianFix0aPdqj++4r0X33leiaayq5+eQh6tHDUsOG9gG7/nJz/XP7UPf4k6RWrWw1aGBr5kynYmKsgy53CqB6hLTH35+dd955uvfee1VUVKSBAwcqOjpaxl966Lt06VJlBQIAAAAAAACo27ZvN+TxGOU6/iR/8LdokUMlJVJEhP/Yhg3+kCKU4C8iwh/+paWZOvPMA4+1LOmHH5w64QRf0JKjcXG2HA5b27YZ4q3Pw+P1Srm5dbfjr149qXNn/3wbOtR/zOORXnvNpW7dfDrtNF+5JWmrm8slHX+8TwsXOnXRRd4Kn5+b6z94OMGfaUodO1passSh/v0rfg6A6lfp4O///u//JElvvfWW3nrrraDQz7ZtGYahlStXVl2FAAAAAAAAAOq09HT/e4z7C/4sy9CGDaY6dfKf37jRUFSUraZNQ7t/r14+vfKKS4WF/j3P9ue77xzascNQ//7eoOMOh3+/QH/HH8sXHo7cXEO2XXc7/iT/8rKvvurSzJlODR3q1axZThUUGBo3zlNjYdiAAT59841Ta9eaFXbi5eYaatDAVsOGh/ecLl18/wv++D4Bakqlg7/XXnutOuoAAAAAAAAAcJTasMFU48a2mjQpfy452VZEhK116/YFf6Hu71cmNdWnl15y67ffHPvdd+z330299JJLAwd6dcwx5UOp5s39HX84PDk5/s9hXe34k6STTvIpM9PURx85NXeuU7t3S2ee6VVCQs295jZtLBmGf0nd9u3Ln8/NNQ6r26/MoEE+JSeXqHnzuvv1BWq7Sgd/7dq1U1RUVHXUAgAAAAAAAOAokp1t6N13Xfr5Z4dOPNFb4RjTDN7nz7aljRtNnXFGxeMrEhXlXxZ0yZKKg7916wxNnepWz56WrryytMKurKQkS199Vem3U/EX2dmGDEOKiam7wZDLJY0aVarTTvPq3XddyskxdPbZoc/X6uB0SjExlrZvrzi8zs01quRr4nb7lzoFUHNC+pPK6/Xq6aef1htvvKE9e/bI7Xbr9NNP14QJE9Skol/DAQAAAAAAAID9KCyUZs506auvHGrUSBo71rPfTjxJatvW0tdfO+XzSd9+61BRkaFWrSoXLvTq5dOcOU55vQravy8z09Djj0eoZUtbN9zgkcNR8fXNm9vavdvQ7t1So0aVejT+ZPt2QzEx/q+Bt2azsGoXH2/r73/31HQZAfHxtrKzzQrP5eYaBHZAHRFS8Pfqq6/q+eefV9++fdW1a1dlZGRozpw5sixLU6ZMqe4aAQAAAAAAANQBXq/05ZdOzZzpD/HOPderM87wKiLiwNe1a2dp5kxDd94ZoexsU337etWtW+VCitRUn2bMcGnVKlNdu/qvzc+X/vWvCDVubOu220oOWEdSkv+aLVv2LTmKyrFt6ddfTXXtWtOVHJ3i4vxL5v6VbVddxx+AmhdS8PfRRx/pkksu0b333hs49sEHH+jee+/VI488ooiD/ckMAAAAAAAA4Khm29Kzz7r1yy+mBg3y6dxzSyvc068ibdtaqlfPVpMmtq67rlht21Y+oGjZ0lZ8vKVp09waObJUJ5zg0+TJEbJt6a67PIqMPPD1CQm2TNO/z1+nTpV+PCRt3GgoM9PQTTfVdCVHp/h4Wz/8YMi2FbScbVGRVFJSNXv8Aah5Fff1/kVGRoZOO+20oGNnnHGGLMvSli1bqqUwAAAAAAAAAHWDbUtvvOHfy+/GGz0aMyb00E+SGjaUpk0r1j33eA4p9JP8QceECSXq3dunN95w66ab6qmgwNBdd5WEFHg4nf7wb+vWkN5SRQUWLHCqaVNbPXrUdCVHp/h4SyUlhnbtCj6em+tPAWNi6GQF6oKQOv5KSkrUsGHDoGP169eXJBUXF1d9VQAAAAAAAADqjNmznfriC6fGjPGoT59DCxfq1Tv8OqKipGuuKdWQIV59/rlTp5ziVYsWoQeJLVrY2rrVOPhAlOP1SosWOXTSSdZ+91FE9YqP98/17GxTTZrs+z7MyysL/uj4A+qCkII/Sfrpp5+UlZUV+NiyLBmGoZ9++klbt24NGnv66adXXYUAAAAAAAAAwtL27Ybefdeln35yaOTIUp16qq+mS5IkpaTYGju2tNLXtWhhad68kN9SxZ8sW2Zq925DJ55YO+bA0Sguriz4M9S+/b7jubmGnE67Ul24AGqvkP+UmjJlSoXHJ0+eHPSxYRhauXLl4VUFAAAAAAAAIGz5fNJ77zn1+edONWokXXONRyedFP6BT4sWtnbsMFRYqIPuCYhgCxY41KKFpZYt6SqrKRERUtOmtrKzg7tWc3NNRUfbQfv+AQhfIQV/c+fOre46AAAAAAAAANQBti299JJL33/v0MiRXg0d6q2SZTprgxYt/Msjbttmqn179kML1Z490uLFDp17rpdwqYYlJFjKyvpr8GcoNpZAFqgrQgr+WrRoUd11AAAAAAAAAKgD3n/fqfnznbr2Wo8GDAj/Lr8/S0jwd0Vt3Rq8VGJVef55l1q1sjRkyME/bwsXOjRnjlM33eQJ7N1WGxUUSG++6ZLXa6hfP58kkr+aFBdna8sWM+hYbq6hlBSCbKCuMA8+BAAAAAAAAAAO7ssvHfrkE5cuvri0zoV+kuR2S3FxlrZurfq3VQsLpQULnJo79+C9Gr//buq551zautXQ5Mlu7dpV5eUcNq9X+vBDp267rZ6WLXPoyis9io6uvQHl0SI+3tb27eU7/mJi+NoAdQXBHwAAAAAAAIDDVljo7+w67TSvzjzTW9PlVJuUFFvr11f926q//eaQbfuXEf3rHmx/tm6doalT3erZ09KkSSUqLjb02GMR2ru3yks6LHPnOvTRRy6dfrpXU6YUa9CguhcEh6P4eFuFhf59KiXJ45F27zYIZYE6hOAPAAAAAAAAwGH76Sd/cHXOOaU1XUq16t7dp3XrTO3eXbX3XbLEoRYtLDmdtpYscVQ4pqBAevzxCLVsaeuGGzxKSLB1xx0lysw09Mwz7qot6DD4fNLnnzt1/PFe/e1vXjVsWNMVoUxcnH9Jz7Kuv7w8/7/p+APqDoI/AAAAAAAAAIdtwQKnuna11KRJTVdSvVJTfbJtf4deVfF6paVLTfXt61PnzpbS0ip+23bBAqdKSqTbbitRRIT/WKtWtq65plS//ebQ2rW14+3eX35xKCfH1LBhdbfzM1yV7QeZne2fK7m5BH9AXRPSnwTTpk1TdnZ2ddcCAAAAAAAAIAxlZxtau9bUiSfW/eUcmzaV2rSxlJZWdcHfypWmiosNpab61KuXT6tWmSoqCh5j29L33zt07LE+RUYGn+vTx6eEBEtz5hx8f8DqZtvSnDlOde7sU5s2hEm1TcOGUmSkHVhOduVKU06nrWbN+FoBdUVIwd8zzzxD8AcAAAAAAACgQgsXOhQRYatXr7of/ElSr14+LV1qyltFDW1paQ41a2arZUtbqamWLMvQ0qXBweKmTYa2bTM1YED5z7FhSMOGefXrr44D7g94JKxZY2rDBlNDh9LtV1vFx/uDv+xsQ3PmODV0qFfOms+MAVSRkII/2ybtBwAAAAAAAFCebUsLFjjUp48vsPxkXZea6lNxsaGVKw9/aU3bltLSTKWm+mQYUnS0rZYtLS1ZEnzvH35wqnFjW127WhXeZ8AAnxo2tPX55zWb4Hz6qVPNm1vq2bPiOlHz4uMtZWWZeu01l5o0kc4+m5AWqEtqx6LPAAAAAAAAAMLGO+84NX58hBYvNrV+vaHsbFP9+x8d3X6SlJJiKzra1pIlh7/c59athnJyzKBuydRUn37/3RHoKPT5/F2V/fr55NjPI91u6bTTvJo/36HCworHlJRIM2c6dd119bRqVdW/NVxQ4O9ePOMMr4yabTzEAcTF2Vq/3tDvvzs0apRH9erVdEUAqlLIv/7x0ksvKSYmJqSxEyZMOOSCAAAAAAAAANRuq1c7lJVl6N//jlDDhraaNrXVufPR0+FlGP5wLi3N1OjROqyQa8kS/zKpnTrt+/z16uXTzJkuLV9uqkcPS8uWmdq1y1C/fgfuzDrtNK9mz3bq66+dOuec4LE//eTQ66+7tHu3v97ly0117Fi1X7Nt20zZto6quRCOEhJsWZah7t19OvZYvlZAXRNy8Pfrr7/K7XYfdJxhGAR/AAAAAAAAQB2Wl2do6FCvOnSw9MEHLvXt65N5lK0t1quXT19/7VRGhqGUlEPfKmnpUlNdulj681uvrVvbSk62NGWKW4MH+5Sba6h5c0utWx/4OY0bS/36+fT99w6dffa+rrviYunZZ13q3NnS5ZeX6uWXXUpPr/ovWG6u/4HNmrF1VG3Wtq2lhAT/XKAzE6h7Qg7+/vOf/6h79+7VWQsAAAAAAACAWs6ypB07/HvR9ehhqUePkpouqUZ06mQpIsJWWppDKSmHtkdaSYm0dq2pSy8tDTpuGNLEiSX64gunPvnEqb17DV14YWghzbHH+jR/vlPbthlq0cIfwP3xhymv19Dll5cqPt5WcrKtxYurJ/hr3NhWCP0jqEEJCbYef/zo/L4FjgZH2e/hAAAAAAAAADgcBQWGLMs46ru6XC6pSxdLy5cf+lusa9aY8vkMdelSfrlFt1s66yyvpkwp1qWXlurUU0MLF7t0seRyBe8/mJbmUPPmluLj/V+zlBRL27eb2rv3kEuvUG6uoZiYo3teAEBNI/gDAAAAAAAAELL8fJZzLNO5s09r1pjyeA7t+uXLTTVubKt58/1/Lhs3loYO9aphw9Du6XZL3bpZgeDPtv3BX69evsCY5GR/0JiRUbVvD+flEfwBQE0L6Sd78+bNQ9rfDwAAAAAAAEDdlpfnD/6iowl4One25PUaWrv20AK0FSsc6tzZV+X7rPXq5dO6daZ275bWrze0e7eh1NR9XYUtWtgyTVsZGVX7YH/wV757EQBw5IT0J9I333yjjh07Bj7OzMzU0qVL9ccffygrK+uwi3jzzTd1yimnqFu3brrgggu0dOnSA47ftWuXJk6cqAEDBqhr164aMmSI5s+fHzjv8/n05JNP6pRTTlH37t01ePBgPfPMM7Ltff8zYtu2pk6dqgEDBqh79+664oortGnTpsN+LQAAAAAAAEBdlpdnyO22Q+5Aq8uSk201amQf0nKfRUXSxo1mhct8Hq6ePX2ybem33xxassShyEhb7drte47LJTVvbis9veo6/mybpT4BoDZwhjrQsiy98MILevPNN5WTkxN0Lj4+XqNGjdJVV10lo5K/njJnzhxNmjRJEydOVI8ePfTqq6/qqquu0ueff67o6Ohy4z0ej8aMGaPo6GhNnTpV8fHx2rZtmxo3bhwY88ILL+jtt9/Wo48+qrZt22rZsmUaP368GjVqpNGjRwfGvP766/rXv/6lpKQkTZ06VVdddZXmzJmjiIiISr0GAAAAAAAA4GiRn+/f36+qu9TCkWFInTpZWrHCISm0PfjKrFplyrZVLcFf06ZSmzaW0tIc2rbNUM+ePpl/yfiSk60qDf527JB8PoI/AKhpIQd/N910k+bOnatu3brp3HPPVWJiomzbVlZWlr7//ns9/vjjWrp0qZ566qlKFfDyyy/rwgsv1HnnnSdJmjhxoubNm6cZM2Zo7Nix5cbPmDFDO3fu1DvvvCOXyyVJSkpKChqTlpamU089VSeffHLg/KeffhroJLRtW6+99pquu+46DR48WJI0efJk9evXT19//bXOPPPMSr0GAAAAAAAA4GiRn0+482ddu/r0yisu7d0r1a8f+nUrVjgUE2MpLq56Ppe9e/v00UdOeb2GRo4sH0qmpNhKSzNk26qSEDc31x8isgQsANSskH6l4/PPP9fcuXP14IMP6v3339ctt9yiiy66SH/72990yy23aMaMGZo4caK+/PJLffXVVyE/3OPxaPny5erXr9++gkxT/fr1U1paWoXXfPPNN+rZs6ceeOAB9evXT8OHD9dzzz0nn2/f5rSpqan68ccftXHjRknSqlWrtHjxYp100kmSpC1btignJyfouY0aNVKPHj32+1wAAAAAAAAA/uUcmzUj3CnTpYslyzK0enXluudWrKieZT7LpKb65PUacjhsdevmK3c+JcVScbGhnJyqad3MzfXfh1AYAGpWSB1/s2bN0pAhQ3TBBRfsd8xFF12khQsXaubMmTrttNNCenhBQYF8Pl+5JT2jo6O1YcOGCq/JyMjQjz/+qLPOOkv//e9/lZ6erokTJ8rr9erGG2+UJI0dO1aFhYUaOnSoHA6HfD6fbr31Vo0YMUKSAkuVVvTc3NzckGovY5qGTJN1DVCzHA4z6N9AbcZ8RbhgriKcMF8RTpivCCfMV4SLIz1Xd+ww1KuX5HTyvSFJzZv7u9xWrnTq2GO92rTJ0DPPuPS3v3nVu3fFwd6uXdKWLabOPttXbZ/H1q2l2FhbCQm2Gjcu/4w2bfydflu3OtS8+eEHkPn5pho0kJo0OfDr4WcrwgnzFeEopOBvxYoV+sc//nHQcYMHD9YTTzxx2EUdiG3bio6O1oMPPiiHw6GuXbsqOztbL774YiD4++yzzzRr1ixNmTJFbdu21cqVKzVp0iTFxcVp5MiRVVpPs2YNK72vIVBdGjeuxHoSQA1jviJcMFcRTpivCCfMV4QT5ivCxZGYq16vtGeP1KqVS1FR1f64sNGnj7R+vVRSEqEnnvB/jp591qWHHpI6dSo/fvlyyeWS+vd3Vuvn8b77pAYNpKgod7lzTZtKzZpJ+flVU8PevVJSkhQVFdruUvxsRThhviKchPRTOD8/X4mJiQcdl5iYqPz8/JAfHhUVJYfDoby8vKDjeXl5iomJqfCa2NhYOZ1OORyOwLE2bdooJydHHo9HbrdbkydP1tixYwN79XXo0EHbtm3T888/r5EjRyo2NjbwnLi4uKDnduzYMeT6JSk/v4iOP9Q4h8NU48b1tWvXXvl81bdEBFAVmK8IF8xVhBPmK8IJ8xXhhPmKcHEk52pOjuTxRMjtLlVBAd8XZVq3NvX55y7dcYcth0N69FGPnnnGpbvvNjVxokdJSfuWv7Rt6cMPXWre3JBheFRQUH11lb3Fur9nJCa6tGKFVFBQetjP2rzZpcjIg9+Ln60IJ8xX1CZRUQ1DGhdS8FdSUiK3u/xvhfyVy+WSx+MJ6cGS5Ha71aVLFy1atEiDBw+WJFmWpUWLFmnUqFEVXtOrVy/Nnj1blmXJNP3ttZs2bVJsbGygxuLi4nJdeA6HQ7bt/wM2KSlJsbGxWrRokTr971duCgsL9fvvv+viiy8OuX5/vbYsi3WrUTv4fJa8Xv4AQnhgviJcMFcRTpivCCfMV4QT5ivCxZGYq9nZpmxbatrUJ6+X98TKdOhgy7ZdKimR7ruvRE2a2Lr55hI99FCEHnnEpfvuK1F0tP/ztXChQ8uXm7rzzpIa/9mSlGQpLc2skjpycqSOHUOfg/xsRThhviKchNZ3Lemnn35SVlbWAcds2rSp0gWMGTNGd911l7p27aru3bvr1Vdf1d69e3XuuedKku68807Fx8frtttukyRdfPHFeuONN/Twww9r1KhR2rx5s55//nlddtllgXsOGjRIzz33nJo3bx5Y6vPll1/WeeedJ0kyDEOjR4/Ws88+q5YtWyopKUlTp05VXFxcIIAEAAAAAAAAECw/3//L9s2aEfr9WXS0rTFjPOrY0VJcnP9z07ChdOedJZo4MUKPPurWvfeWyDSlN9906bjjfOreveZDhORkS1984VRxsVSv3qHfx7al3FxDMTHMCwCoaSEHf1OmTAlpXGX3uxs2bJjy8/P11FNPKScnR506ddL06dMDS31mZmYGOvsk/3KiL774oiZNmqQRI0YoPj5eo0eP1jXXXBMYM2HCBE2dOlUTJ04MLOd50UUX6YYbbgiMueaaa7R3717de++92rVrl3r37q3p06crIiKiUvUDAAAAAAAAR4u8PEMNGtiqz3ZX5Zx6qq/csago6a67PJo4MUKPPx6hlBRLe/dKo0Yd/tKaVaFVK0u2La1aZapnz0MPIouKpOJigj8AqA0Mu2z9ywPYunVrpW7aokWLQy4o3OTk7K7pEgA5naaiohqqoKCIlnPUesxXhAvmKsIJ8xXhhPmKcMJ8Rbg4knP1lVdcWrXK1L/+VVKtz6lr1q839MgjESopMXTRRaU66yxvTZckyd+pd889EYqMtDVuXOhbOP3Vpk2GJkyop/vvL1bbtgd+u5mfrQgnzFfUJrGxjUIaF1LH39EU5AEAAAAAAACoWH6+wTKfh+CYY2zdeqtHCxc6NHRo7Qj9JMkwpDPP9OqZZ9xKTzeUkhL619a2/ddL/k5QSYF9DAEANcc8+JAD+/bbbzV9+nTNnDlTRUVFVVETAAAAAAAAgFooL88g3DlEXbtaGju2VM6QN186Mo47zqfoaFtz5oRemGVJ990XoZkz/dfk5hpyOGw1bVpNRQIAQhZS8Pfqq69qzJgxQcd8Pp9Gjx6t66+/Xo8//rjGjRunESNGKDc3t1oKBQAAAADgaOHxSIsXH/bv6gJAlSP4q3ucTumMM7xauNAR6NzbutXQH3/s/8+hX381tWGDqQ8/dGrrVkO5uaZiYuxAByAAoOaE9LeIL774Qsccc0zQsbfffls///yzRo4cqU8++URTp05VUVGRXnjhhWopFAAAAACAo8X33zv0739HKD+/pisBgH08HqmwkKU+66KTT/aqXj1p5kynXnzRpXHj6umxx9zatavi8Z9+6lK7dpZiY229+qpLubmGYmKYFwBQG4QU/G3atEm9evUKOvbZZ58pJiZGDz74oNq3b68hQ4Zo7Nix+u6776qlUAAAAAAAjhZr1vj/up6ZSdcfgNojP5993Oqq+vWlQYO8+vZbp37+2aHzzy+VJC1a5Cg3ds0aU+vXmzrrrFKNHl2qFSsc+u03k+APAGqJkBZuLiwsVGxsbOBjj8ej33//XUOHDpXDse+Hf+fOnZWVlVX1VQIAAAAAcBRZt64s+DPUpUsNFwMA/1O2DCTBX900YoRXzZrZ6t/fp8hIaf16UwsWODVkiC9o3Jw5TiUkWEpNtWQY/j0Cf/nFwbwAgFoipF8dTExM1MaNGwMfL1myRF6vV3369Aka5/V65Xa7q7ZCAAAAAACOIjt3StnZ/r+uZ2XR8Qeg9igL/ljqs25q2FAaMsQf+klS//4+bdxoKjNz38Z9WVmGFi92aNgwb2A/v0svLVWDBrZSUqwaqBoA8Fch/Q1i4MCBeu6557R48WKlp6frmWeekdvt1imnnBI0bunSpUpKSqqWQgEAAAAAOBqsXev/q3rLlpa2bTMOMhoAjpz8fEORkbb4vf+jQ2qqTw0a2Pr++30rvn3yiVORkbYGDNjXBRgTY+uZZ4p17LEEfwBQG4QU/F1//fWKjIzUqFGjNGTIEC1evFh33HGHoqOjA2N8Pp8++ugj9evXr9qKBQAAAACgrlu71lRUlK0uXXzKzib4A1B7bNliKDGRbr+jhdst9enj08KFDtm29NlnTn33nVPnn19aLvx1uWqmRgBAeSHt8de0aVN99NFH+umnn7Rr1y516tRJLVu2DBpTWFio22+/XT169KiWQgEAAAAAOBqsXWuqXTtLCQm2tm83VVrKG6oAaoeNG0316EFX19Gkf3+f5s1z6vXXXfryS6eGDy/Vqaf6Dn4hAKDGhBT8SZLD4ThgN1+TJk00ZMiQKikKAAAAAICjkdcrbdhg6qKLvEpMtGXb0vbthlq0oMMGQM0qKvLvP9q6tbemS8ER1LGjpZgYS19+6dSJJ3p10UV8/QGgtgsp+Pvll1/2fwOnU9HR0UpJSamyogAAAAAAOBpt2mTI6zXUvr1P0dH+sC8zk+APQM3btMm/Y1Dr1nT8HU0MQxo50qt160xdfnmpDFagBoBaL6Tg77LLLpNhGLLtiv+iYRiGYmNjdfPNN+u8886r0gIBAAAAAKgLXnzRpfh4W8OH779bYu1ah1wuWy1b2nI4pPr1bWVmmpJ4ox1Azdq0yZTbbat5c34R4WgzcKBPAweyvCcAhIuQgr+ZM2fu95zP59P27dv11VdfacKECapfv76GDRtWVfUBAAAAAFAn/PGHqU2bdJDgz1SbNpac//vbekKCraws2isA1LwNG0y1bGnLNGu6EgAAcCAhBX8dO3Y84PkuXbpo0KBBMk1TL7/8MsEfAAAAAAB/YttSQYGh/HypuFiqV6/iMWvWmBowYF8wmJhoads23mUHUPM2bTLUsyfdxwAA1HZV+reHwYMHa926dVV5SwAAAAAAwt6OHZLPZ8iyDG3YUP6v4rYt/fCDQzt2GGrXbt8b64mJdPwBqHlFRVJ2tsn+fgAAhIGQOv4AAAAAAMChy8/fF96tXWuqc+d9b56vWWPqjTdc2rDBVK9ePnXrFhz87d5tqLBQiow8oiUDQMCmTf5fWCD4AwCg9qvS4G/u3Llq165dVd4SAAAAAICwl5fnD/5atbK0dq0ZdPyhh9xq2dLWP/9ZEhQISlJCgv/jrCxDbdvaR65gAPiTjRtNRUTYSkzk5xAAALVdSMHf8uXL93vO5/MpNzdXc+fO1YcffqgpU6ZUWXEAAAAAANQFeXmmXC5bvXr59OWXTtm2ZBjSwoUOORzS+PElatCg/HUJCf432TMzTbVt6zvCVQOA34YNplq2tGSy5SgAALVeSMHfeeedJ8PY/54Ctm0rNjZWDzzwgIYNG1ZlxQEAAAAAUBfk5xtq1sxWu3aWPvzQUGamocREW99/71Dv3r4KQz9JqldPatbMVmYm+/wBqDmbNxtKTWWZTwAAwkFIwd9rr72233MOh0PNmjVTq1atDhgOAgAAAABwtMrLMxQdbeuYYywZhn9fP4/H0rZtpi65pPSA1yYkWMrKos0GQM0oLJSys021auWt6VIAAEAIQgr++vTpU911AAAAAABQZ+XlGUpMtNSggZSU5N/nb+tWU40a2erW7cBdNImJtlavJvgDcOR4PNLcuU55vVJurv8X/du0oeMPAIBwcFh/c7BtW+PHj9e2bduqqh4AAAAAAOqcsqU+JaldO0urV5tauNChE07wyeE48LUdO1rassXU3LkHGQgAVeTrr5166y2XPv3UqZ9+cqh1a0uJiXZNlwUAAEIQUsff/liWpZkzZ2rUqFFq3rx5VdUEAAAAAECd4fNJO3YYionxv2nevr2lb77x/3V8wICDL53Xt69P69Z59corbjVqVKI+fei6AVB9vF7p88+dGjDAq//7vwMvRQwAAGqfwwr+JH/XHwAAAAAAqNiOHYZsW0Edf5J/777WrQ/+d2rDkEaNKtXOndIzz7gVGelR584HD/8sS1q50lRJif/jRo32PRsA9ueXXxzKzzc0dCh7+gEAEI4OO/gDAAAAAAD7l5fn3x+rLPiLi7MVH2/p1FN9MozQ7mEY0rXXlmr3bkPTprn12GPFathw/+P/+MPUW2+5lJERvMPHqFEenXGG75BeB4C6z7alTz91qmtXn1JS+GV/AADC0WEFfw6HQ5MmTVJSUlLg2N69e1W/fv3DLgwAAAAAgLogP9+f7kVH+99ENwxp8uQSmeaBrirP6ZTGji3VnXdGaMYMl0aPLr8En2VJTz7p1pIlDrVv79M995QoIcHf5ffpp0698YZbTZp4dMIJhH/Vad48h376yb8no2FIQ4d61a0b3Zao/VasMLVpk6m77iqp6VIAAMAhOuyOv5EjR8rn82nevHmaNWuWvvnmG6WlpVVFbQAAAAAAhL28PEMREbYaNNh3zOE4tHtFR9s691yv3nnHpYEDvWrZMrgj59dfTS1Z4tB113nUr19wR+HFF3u1a5eh555zKTLSJoiqJrYtffCB/3OcmGhr1SpTCxY4+HwjLMyZ41RysqWuXZmvAACEq0r+fmGwxYsXa+LEiRowYICuu+46/fjjj7rwwgurqjYAAAAAAMJeXp6h6Gg75GU9D2bIEK8SEy298opb9p9yP/8SfS517OhT//7llxE1DOnqq0vVpYuladPcKi3fMIgqsHGjoR07DF12Waluvtmjnj19ysw8rLdfgCMiL8/Q7787NHSot8p+XgEAgCOv0v/nuXbtWv373//WKaecolGjRmnGjBnasWOHxo8fr++++07jx4+vjjoBAAAAAAhL+flGYH+/quB0SldcUaq1a03Nn7+vdXDtWlPr15s680zvAa/9299KVVRkaNUqwqjqkJbmUIMGtjp08HdMJSbaysoygkJaoKYtXmxqy5bgdG/NGv/PhNRUlgIGACCchfR/+VlZWZo+fbrOPvtsjRgxQi+++KLatGmjSZMm6YsvvpBt2+rUqZMch7pWCQAAAAAAdVRZx19V6tzZ0kknefXKKy6tXOn/q/2nnzqVkGCpZ88DL9GXnGwrOtrWkiX8Hb46pKU51L27T87/ba6SkGBpzx5Du3fXbF3An73+uksffugKOrZmjamEBEuNGtVQUQAAoEqEtMffoEGDJEldunTRhAkTNHToUDVr1kyStJv/cwUAAAAAYL/y8gylplZ9u9eYMaXKyzP073+7dfXVHi1Z4tCYMZ6DLtFnGP6OnrQ0U6NHKzD+xRddatjQ1t/+tv+OQRxYXp6hTZtMDRu273OYmOj/2mdmmmrcmH3TUDvs3m1oxQp/J2rZz4C1a021a8ccBQAg3IXU8de4cWPZtq2MjAytXr1a69evr+66AAAAAAAIe6Wl0q5dVbvUZxmXS7r5Zo9iY2099VSEIiNtDRgQ2hJ9vXr5lJtrKiPD/45/drahefOc+v13ugAro6Rk3/KIkvTbb6ZM01b37vu+DvHx/v0dMzPZNA21g8cjlZQYKiw0Aj8Dioul9HSD4A8AgDogpODvhx9+0HPPPacBAwZo1qxZGj16tE4++WRNnjxZK1asqO4aAQAAAAAIS/n5/jfVq3qpzzINGkh33lmili0tjRxZKrc7tOs6dbIUEWErLc0f9M2Z45Rt+8MpH9t7hWzOHKceeCBC8+b5P49LljjUvr2lyMh9Y9xuKTraUlYWwR9qh927983F5cv9c3f9elOWRfAHAEBdENJSn06nUyeffLJOPvlk7d27V1999ZVmz56t1157TS+//LIMw9Bnn32mxMREJSUlVXfNAAAAAACEheoO/iSpSRPp4YdLKnWNyyV1725pyRKHTjnFq+++c6hjR59WrXIoJ8dQQkL11VuXrF5tyuGw9dJLLtWrJy1fburCC8svlZqYaGvbtpB+9xqodmW79jRsaGvFClNDh0rr1pmqX99WUhLf+wAAhLtK/19n/fr1NWLECP33v//V999/rwkTJig1NVX/z96dh0dVnX8A/55778yEEEL2nZCEJGDCliAoixtYUVR+7kvFrba1i61tXbCLWrSbotZu2tZa91r3DcENN3bQhC0BEkhCQshG9oXMzL3n/P44nYQhk2SSzGSWvJ/n4QEms5zM3Hvn3vOe931ffvllnHfeebj++uu9MU5CCCGEEEIIISTgNDbKwJ83Sn2OVF6egbIyBW++aQIA3HCDHQBw5AhlprlDCJkldcklOvLzOf76VzN0nSE/v2/KZGKioFKfxG84Mv5OPdXA/v0KDEP298vM5IP2CCWEEEKI/xvRcrPIyEhcd911+M9//oP169fj9ttvR0tLi4eGRgghhBBCCCGEBLamJobx4wVCQnw9kr5mz5YBqo8/1nDGGQYmTRIIDRWorqbMNHccOcJw/DhDdjbHD35gw7RpBiZP5i6zJRMTOerrqYwq8Q8dHTK6d/rpBo4fZygrU3DwoILsbCrzSQghhAQDt0p9nqympgYNDQ1gjCE2NhYJCQlISkrCrbfeiltvvdXTYySEEEIIIYQQQgJSYyPzy2w/AAgPBzIzOQ4eVHDBBToYA5KTBaqrKeXHHaWlChRFYMoUDrMZ+OUvbbD2U3E1IUHAMBiOHWOIj/fP7YGMHW1tgKaJnl6f69er6OhgyMykwB8hhBASDNwO/HHO8dRTT+Gll15CQ0OD08/i4+OxYsUK3HLLLWBUE4AQQgghhBBCCIEQsudbVpb/TqZffLEdlZUKEhNlMColhaOsjDL+3FFaqiA1tTebkzH0m9npeH9raijwR3yvvZ1hwgRA04Bp0zg2b1bBGDBliv8eqwghhBDiPrcDfz/60Y+wfv16zJgxA5dddhkSExMhhEBtbS02bNiARx55BLt378af//xnb46XEEIIIYQQQggJCGVlDLW1Cm680e7rofQrP58jP793sj8pSWDjRgbOAYXifwMqKVEwc6Z7gZLoaAGTSaCmRsHs2RRcIb4lA38yAJ2Tw7Frl4pJkzhCQ308MEIIIYR4hFuBvw8++ADr16/Hgw8+iCuvvLLPz3/yk5/glVdewf3334+PP/4Y3/jGNzw+UEIIIYQQQgghJJBs2qQhIkIgNzdwAj0pKRx2O0NDA2WmDaStDairU5Cdrbt1f8Zkuc+jR6lKEvG9EwN/ubkGAJNfZyYTQgghZGjcWr/33nvvYenSpS6Dfg5XX301li5dirfffttTYyOEEEIIIYQQQgKSrgNbtqhYsEAPqMy5pCQZDKAA1cAOHpQf6lB6oiUmCtTV0ftKfK+jAz2Bv8mTBXJyDMybZ/h4VIQQQgjxFLcuP4qLi3HuuecOer9zzz0XxcXFIx4UIYQQQgghhBASyPbsUdDezrBwYWBNpkdFCYSECBw5EkDRSh8oKVEQESEQE+N+VmRiIsfRo/S+Et9z9PgDZDbqL35hw/TplPFHCCGEBAu3zjibmpqQmJg46P0SExPR1NQ04kERQgghhBBCCCGBbONGDSkpHKmpgVUukzEgOVmguro3M62yksFm6/8xdru8z1hy8KCC7GwONoRfOzFRoKWFobvbe+MixB0nlvokhBBCSPBxK/BntVphNpsHvZ/JZIJtoKsBQgghhBBCCCEkyHV2AgUFChYuNIYUGPIXyckc1dVyuqCiguGXvwzB+vVav/f/8EMN995rQWfnaI3Qt3QdOHRIGXJPtMREef+amgDcKEjQEAJobwcF/gghhJAg1v+Z+0m2bduG2traAe9TUVEx0vEQQgghhBBCCCEB7auvVOg6w4IFgVXm0yE5WWDbNgbOgWefNUMIWdryggtc3//rr1UYBsOBAwry84O/XGBlJYPdzpCVNbTPNyHB0T9RQXp6YG4bJPAdPw4YRm+pT0IIIYQEH7cDf48++qhb92OBuJyREEIIIYQQQgjxkL17FaSlcURHB2ZGTXIyh9XK8NZbGg4eVDBtmoGSEgVCoE8GY1ubLHsJAEVF6pgI/FVUKFAUMeQyruPHA5Mnc2zcqAZc70cSPNrb5U4cFhaYxydCCCGEDM6twN/69eu9PQ5CCCGEEEIIISQoHDyoYM6cwA2AJSfLgMDbb5uwYIGO+fMNPPqoBQ0NDHFxzsGCnTtVAMCsWQaKi93qJhLwDh9WkJgo4EZHlD6WLdPx5JNmVFUxTJpEgRcy+jo65N9U6pMQQggJXm4F/pKTk91+wqqqqmEPhhBCCCGEEEIICWTNzUBDg4LMTN3XQxm2mBgBs1lAVYFrr7VD+9/MQWmpgrg450y1wkIVGRkcCxYYePJJM9ragPBwHwx6FFVWKpg0aXiB3dNOM/DKKwJr12q49VY7AJk1uXWriiVLDKiqJ0dKSF+OjD8K/BFCCCHByyPL8ZqamvDSSy/hmmuuwXnnneeJpySEEEIIIYQQQgJOaam8zM7KCtyMP8aAxYsN3HijHZGRwIQJQEICR0mJ8xSC3Q7s3q0gP99ATo4MCBYXB3fkSgigqoph8uThBU00DVi6VMfmzSqam2W/tdWrLXj+efOYyZgkvtUb+PPxQAghhBDiNW73+DvZ8ePH8fHHH2PNmjXYvHkzdF1HTk4Ofv7zn3tyfIQQQgghhBBCSMA4eFBBdLQI2P5+DitW2J3+n53Ne3r5Oezbp8BqZcjLMxAZCSQmchQVKTj99ODtX3fsGEN3N0Nq6vADu2efreOttzSsW6ehslJBTQ3DhAkCBQUqZswI3IAxCQxtbQwhIQImk69HQgghhBBvGVLgzzAMbNiwAe+99x4+/fRTdHd3IyYmBoZh4LHHHsOyZcu8NU5CCCGEEEIIIcTvlZSoyMoKvsBXVhbHhg0auruBkBB5W0GBipgY3tOrLieHY+/e3uBgdTXD8eNAZmZgB0FPVFkps6WGW+oTAMaPBxYv1rF2rQmqKnD33TZ89ZWKggIVN9xgB2OeGi0hfbW3U5lPQgghJNi5Ffj7+uuvsWbNGnzwwQdobm5GREQEli9fjosvvhhZWVk47bTTEBsb6+2xEkIIIYQQQgghfstuB8rLGebPD76srexsDiGAQ4cU5ObKfxcWqsjPN3oCVbm5Btav13DsmAz4PfigBV1dDPn5Bq691o7ExMAPNlRWKggLE4iMHNnzLF1qoKBAxRVX6MjN5eAc+PhjDVVVDKmpgf8+Ef/V0cEQFubrURBCCCHEm9wK/F133XVgjOG0007DzTffjIULF0L7X3fv9vZ2rw6QEEIIIYQQQggJBBUVCgyDBXR/v/4kJQmEhgqUlsrA3/79ChobZVDPISeHgzFgwwYVn36qITZWYOlSO958U8PKlRZ85zt2nHFGYGdDVlUpSE3lI87Ki44WeOQRa8//p03jsFgECgtVpKbqIxwlIf1rb2eU8UcIIYQEObc6R2dnZ0MIgR07duD555/HmjVr0NHR4e2xEUIIIYQQQgghAaOkRIHZLIIyY4sxIDOTo6RE9qT705/MyMriOOWU3iBnWBiQmsrxxhsmaJrAXXdZceaZBh5+2Irp0zk+/HBI3Ub8UmUl6ylt6kkmEzBzJkdBgerx5ybkRFTqkxBCCAl+bgX+3n33XaxZswa33HILKioqcM8992DRokW4/fbbsX79ejAqQE8IIYQQQgghZIw7eFDBlCkcWuDHt1zKyuI4eFDBQw+ZER4ucMcd1j6/65w5BiZMEFi50oaICHmb2QwsXGigokJBU9OoD9tjuruBujplRP39BpKXZ+DQIQUtLV55ekIAODL+fD0KQgghhHiTW4E/AMjMzMTPfvYzrF+/Hi+99BIuvfRS7NixA/fccw8A4Pnnn8eOHTu8NlBCCCGEEEIIIcRfCSEz/oKxzKdDVhZHVxcD5wwrV9pc9gm75BIdf/5zNxISnDOKZs0yoCgCO3f2ZrTpOvDyy1rABLqqqxmEkFmN3jB7tuyXeOJ7RIinUalPQgghJPi5Hfg70Zw5c3D//fdjw4YN+Mc//oGLLroImzZtwg033IAlS5Z4eoyEDJkQ8g8hhBBCCCE8eOMwxI80NDC0tgZnfz+H7GyOb3xDx8qVVkRHu77gUhRZtvJkYWHy8SeWsty6VcX775vw5ZdDT5HkfPSv+SorFTAGpKR454XDw2U5VSr3SbyFc6CzkwJ/hBBCSLAbVuDPQVVVnHXWWVi9ejU2b96M1atXIysry1NjI2TYVq824+WXg7S+DiGEEEIIcZvdDtxxhwXr19NEOvGuggIZFArmwJ/ZDNx4ox3JycMLGuTlcezdq6C7Wwbt3n9fXrMNNdAlBPDQQ2Y89ZSLCKMXVVUpSEjgMJu99xr5+Qb27lVgGN57DTJ2dXbK/YcCf4QQQkhwG1Hg70QhISG46KKL8Pe//91TT0nIsNTXM+zeraK83GObNwkSug58+aVK2aCEEELIGLJpk4qGBgW7d1Pgj3hPWxvw1lsmnHmm7rL8JZHy8w3oOkNRkYK9exVUVSlYuFDHoUMK2trcf579+xUUFan48ksNe/eO3nVfZSVDaqp3LybS0zlsNoaGBubV1yFjU3u73K6oxx8hhBAS3CgyQoLO5s1yUqexkS6UiLOvvlLxz3+aUVxMhz5CCCFkLBACWLtWA2Oy9xot/iHe8sorMvPs6qvtPh6Jf0tMFEhIkKUs167VkJbGcd118j0rLHQ/OL92rYbkZI6pUw08+6wJuu6tEfcSQpb69FZ/P4fkZPn81dV0PUs8rzfwR1+IhBBCSDCj2W8SVIQANm5UYTIJNDYymtwhToqK5CFv3z469BFCCCFjwa5dCo4eVXDRRXa0tzPU19NEOvG8khIFX3yh4aqr7AgP9/Vo/F9+voFt21Ts2aNi2TId4eFARgZ3O/B39ChDYaF87I032lFfz7BunffbPBw7BnR1Ma8H/iIigNBQgepqumYhntfeLv+mwB8hhBAS3OhMkgSV8nKG2loF55xjwDAYmpt9PSLiTxyZfkVFni/1petAWRlNJhJCCCH+ZO1aDRkZHBdeKNOBSkvp8od4lmEAzz1nQno6xznnUFM2d+TlcXR3M0RFCcybJ9+z/HwDe/YosNkGf/y6dRomThRYsMBAaqrAeecZeOstzesVX/bvl8ePzEzvBv4YA5KTBY4coWsL4nnt7QyMAePH+3okhBBCCPEmuvIlQWXjRg0REQJnniknd44do02cSMeOMdTVKZg+3cChQwzd3Z59/i1bVNx3Xwhqa+kCnRBCCPEHZWUMxcUyKygsDEhK4igpoXND4lmffKKislLBzTfboNDm5ZbsbI6YGI7ly+3Q/peol59vwGplg1bmaGsDNmxQsXSpDpOsrorLLrPDbAY+/NC7fTz37pVlPkejN1pyMqeMP+IVHR0M48cLqNT2lhBCCAlqdCZJgoauy+DLggU64uJk2Qrq80cciosVMAZcdpkOzhkOHPDs4e/gQfl8GzfSFRQhhBDiD9at0xAbyzF3rswoys7mlPFHPKq1FXj9dRPOPltHRgaVzXOXqgJ//KMV557bmyGZkiIQEyN7//WnsxN44QUTFAVYvLi3qV9oKHDqqcaAjx0pIWTbgJwc72b7OSQnCxw9ysBH5+XIGNLeDoSF0fGKEEIICXZ05UuCxt69CtrbGRYsMBAaKvsiHDtGgT8iFRfLFbpZWRwREaKn35+nlJfL59u8WaXekmTYhJCTWoQQQkamsxPYsUPFkiVGT1ZDVhbHkSMKurp8OzYSPF5+2QRVBa6+2u7roQQcxvr+Pz9f9vk7+Vxa14EPPlBxxx0hKChQsWKFHWFhzvfJyzNQW6ugpsY713+1tXJRaW7u6JRzTU7msNsZGhroepZ4VlsbG5WsVUIIIYT4FgX+SNDYsUNFUhLH5MnySjE6WtCFEgEggynFxSpycw0wBuTmGigu9tyKYF0HKisZ5swxUF+vUDYBGbYdOxT85CchsFp9PRJCCAls27erMAyGhQt7s4KyszmEAA4dou9pMnL79yvYuFHD1Vf3DUKR4cnPN9DUxLB3r/M++txzJrz0khlz5xp45JFuLF7cN/g2fTqHySS8lvW3axegKMDUqaOX8QcAR4/S9SzxnPZ24MABBZGRtFKVEEIICXZ01UuCRmWlgsxM3rN6NCaGMv6IVFfH0NTEkJsrL9RzczkOH1bQ0eGZ5z9yhEHXGS64QEdUlKByn2TYKioUHD/OUF1Nxy5CCBmJTZvkgp/IyN7bEhIEwsJET3luQoarsZHhmWdMmDKF4+yzRycDbCzIzeWYOtXAc8+ZoP8vZn/oEMPnn2u4/nobbrnF7rRPn8hikY8vLPTO/r17N5CRIRAa6pWn7yMqSiAkRODIEd8dr5qbgXfe0dDW5rMhEA/q7gZWr7agu5tRljIhhBAyBvjNVe9LL72ExYsXY8aMGbjyyiuxe/fuAe/f1taGVatWYdGiRZg+fTqWLl2KL774oufnixcvxtSpU/v8WbVqVc99rr/++j4/v++++7z2OxLvEUKuhnSsjARk4I96/BFAlvlUFIHsbBn4O+UUueJ/3z7PHAIrKmT/wLQ0jgULdGzbpvZMVhAyFPX18phVWek3X8+EEBJwGhoY9u9XsXChc0CGMSAzk6OkhI6xZHi6uoBXX9Vw550WtLUxfOtbtj4lK8nwMQbceKMd9fUM69Zp4Bx49lkzUlO5Uz/A/uTnGygp8dziPgchZOBv+vTRa7jHWG+fv9HW3Q288YaGO+4IwWuvmfDFF9qoj4F4lq4Df/6zGdXVDHfdZUV8PGX8EUIIIcHOL87g1q5di9///vdYtWoVZs2aheeeew633HILPvjgA0RHR/e5v81mw80334zo6Gj86U9/Qnx8PI4ePYrw8PCe+7z++uswjN6Lg9LSUtx88804//zznZ7rqquuwo9//OOe/48bN84LvyHxtsZGBquVITm592LMkfEnRN8eEmRs2btXxZQpAo7dOzZWID6eo7hYxdy5I7+ALytTkJjIERICLFpkYM0aE3buVHDqqaM3OUCCQ12dnIyWgT/KICCEkBNVVDA8/rgZ3/mOvSeL35UtW1SYTAKnntr3OJqVxbFmjUbnh2TIGhoYHnzQgvZ24IILdFx0kT5q2V9jSWqqwHnnGXjrLQ3Hj8s+2vffb4XiRrw+L8/Av/9txq5dfQP/I3HkCENrKwY87nhDcjJHVdXoLlRoagIefNCC5maGpUt1HDyooLhYwcUXj+owiIe9/baGoiIFd95pQ0YGBf0IIYSQscAvlrs+88wzuOqqq3D55ZcjMzMTq1atQkhICN544w2X93/jjTfQ2tqKv/3tb5gzZw5SUlIwb948TJs2rec+UVFRiI2N7fnz2WefITU1FfPmzXN6rpCQEKf7hVGDhoDkKIt3YsZfdLSA1crQ2emrURF/IPv7KcjJcb74z8nhKCryzCGwvFxBRoacCEhJEZg8mWPTJr9YV0ECTF2dPJZVVdFsNCGEnOzdd004dkzBH/9oRkWF6+OkEMDGjSpOPdWAq/V8WVkcx48zHDlCx9lA1NDAUFw8+pew7e3AQw+ZoWkCDz9sxVVXUdDPmy67zI7QULnPn3WWjqws9wJukZFAejr3eJ+/oiIFmoae6iGjxZHxJ0YpTtPZCTz8sAWGwfDQQ1Zce62O2bM5DhxQqJpJAOMc+PxzDYsXG5gxgxamEkIIIWOFzwN/NpsNRUVFWLBgQc9tiqJgwYIFKCwsdPmYTz/9FLNnz8YDDzyABQsW4KKLLsLf//53pwy/k1/j3XffxeWXXw520tLe9957D6eddhouuugiPProozh+/LjnfjkyaqqrFZjNAjExvVdFsbHypJb6/I1tx44xdHSwPhfqubkcR48qI94+dF0GadLTe59/yRIdO3ao1OuPDElHB9DVxTBpEkdlpTJqkzyEEBII6usZduxQcc01diQmCqxebelZLHGi8nKGo0cVLFrk+rogI4NDUQQOHPD5ZRAZgo4O4D//kSU2f/97C1paRu+1HX2xOjsZVq60ITaWvqC9LTQUuOkmG1JT+ZB7keXnG9i927OBqr17FZxyCmA2e+453ZGczGG1slFpX2GzAY89ZkZLC8PKlb2lIHNzDdhsDIcO0TEzUBUVKWhpYVi0iKK3hBBCyFji85SU5uZmGIbRp6RndHQ0ysrKXD6mqqoKW7duxcUXX4x//vOfqKysxKpVq6DrOm677bY+9//kk0/Q3t6OSy+91On2iy66CElJSYiLi8OBAwfwyCOPoLy8HH/961/dHr+iMCgKBZZ8raZGQUoKYDL1XpAkJMgSTs3NKjIzg3tlm6oqTn+TXh0dDIwBsbEMmtb7/uTlCWgasGePhm98Y/ilgI4cYTAMhsxM9Dz/N74hUF5u4F//MiMiwo7Zs4N7+xsq2l5dO3ZMbqunn87x+usa2toUuKh2TUYRbaskkAT79vrRRxrCwoALLuBYvJjjvvvMePRRCx55xOZUAnD7dg0REcDs2a7fi7AwICtLYP9+DeefTwEcXxnK9nr0KMP995thtwPLlxtYs0bF9u0mLFvW9/xNCOCf/9RgsQCXXabjhE4Qw/bvf5tw9KiC+++3ITmZAaBrv9Fw+unA6afbMdS1ynPnCrz5JsM994RA0wCLBbjzThsiI4c3ju5uYP9+BVdeOfrH18mT5fVsba2KhATvXU9wDjz5pAnl5QruvdeGyZN7t/PMTGD8eGD/fhW5uV4bAvEQV8fWrVs1JCYKZGezPgvhCfGlYD93JcGFtlcSiHwe+BsOIQSio6Px4IMPQlVVTJ8+HXV1dXj66addBv7eeOMNnHnmmYiPj3e6/eqrr+7599SpUxEbG4ubbroJlZWVSE1NdWssUVHj6eTJDzQ2AllZQGSkqee2iAh5kdLdrQ37Qi/QhIdTj8qTCQGYTMDkyXIi0CEyUk4KFhdruOqq4T//jh1y9W9enpxkcrjrLrly9oknNPz2t0B29vBfI1jR9uqsq0tuq+eeq+Gdd4CWFg2Zmb4eFQFoWyWBJRi31/Z2YPNm4NJLgYQEefly223AAw8AhmFyWiRRUwPk5wMxMf1f5px2GvD++0BEhJn6/PmYO9vrRx8Bqgo89RQQGamhuRnYsUPDddf1ve8XXwCbNgEhIcCWLRZceaXcbrRhXvU2NQFffw384AdAfn5AXjqPORERwHe/Kz87QO7rRUWmYfeoe/55eT1x9tmjf3yNiJCLFVpaPHc9a7MBLS1AXJz8vxDAE08Ae/YA990HzJ3bdzufMwc4dGjwMbS3A4YBp2su4huObdVqBQoLgcsvB6KiTIM8ihDfCMZzVxK8aHslgcTnVy+RkZFQVRWNjY1Otzc2NiImJsblY2JjY6FpGlS1t4xeRkYGGhoaYLPZYD6hBkd1dTU2b96Mv/zlL4OOZdasWQCAw4cPux34a2rqpIw/HxMCOHTIgtxcHc3Nzit/w8PNKC/naG4O7rIWqqogPHwc2tqOwzAou+xEVVUqdF2DYVjR3Oz8s5wcFS+/rKGmxoqQkOE9/65dGuLiFHR12dDV5fyz734X+O1vTfj1rxkefdQ27NcINrS9ulZaqmLcOA3h4VZomgV79uiYMmX42ahk5GhbJYEkmLfXt99W0d2tYeHC3u/yCRMY7HYziovtMJl6f9/ycjPOOcfoc054orQ0hqYmM3butCEtjbL+fGEo2+u2bab/LYSxo7kZmDNHwWOPmbBnjw0pKb2fX1cX8OSTZuTnC3zrW3a8+aaGf/9bhRD6sKs7vP++CiE0TJ/e9zyS+K9zzun99/79JnzxBbBo0dBKhgIy2/TVV8249FKOhASzT46vsbFmHDjguevZF17QsHatikWLDFx9tY7PP1fx3nsavvc9OzIzucvtPCNDxUsvaaittTotdHSwWoG1a1W8+66GqCiBRx6x0aIKHzn52Lp5s4L2dhNmz7ahuZm+74h/CeZzVxJ8aHsl/iQycrxb9/N54M9sNiM3NxdbtmzBueeeCwDgnGPLli1YsWKFy8fk5+djzZo14JxD+V9tn4qKCsTGxjoF/QDgzTffRHR0NM4+++xBx7Jv3z4AMrDoLs4FOKcTKF9qapKNyBMTDei688E3KoqjoQF9bg9WhsHHzO/qruZmBePHC3DOwU96a2bNEnj+eQ0FBcC8ecN73w4dYkhL67vtAXJ1+q232nDPPRa8/rqCa64J7gD0UNH26qymRkVMDIdhcKSkGKioGDvHLn9H2yoJJMG2veo68MEHZixYoGP8eN7TtysyElBVgSNHBHJz5e/b1QU0NTHExg78HqSnA5omsHs3Q0oKLbDwpcG2V5sN2L+f4dpr7T33mzGDY/x4DZ9/znDNNb2f36uvmtDZCVx7rQ2hoQIrVthw6JAFe/YwnHPO8PaJL780YfZsAxYL92jPODJ6Zs/W8Z//mNDWxhEa6v7jhAD+/W8zIiI4LrrIDsDsk+NrYqKBykrFI6+r68CXXyrIzjawc6eCzZvNMAyGq6+2Y+FCvd9t/JRTBOx2DcXFcv+rrmZ4+20Nui6je4cOKWhtBWbNMlBQoOLAAYHMTJoj8SXHtvr55xoyMzmiow06hhG/FWznriS40fZKAolfFKa9+eab8eqrr+Ktt97CoUOH8Otf/xrHjx/HZZddBgC4++678eijj/bc/9prr0VLSwt++9vfory8HJ9//jn+8Y9/4LqT6r1wzvHmm2/ikksugXZSfZfKykr87W9/w969e3HkyBGsX78eK1euxNy5czFt2jTv/9LEY6qr5WacnNz34iImRuDYMVpuOJa1tjJERLi+8IyPF0hK4igsVF3+nHN50d8fXQcqKxnS0vr/0o+PF1i+XMe6dRqOHqVtkfSvrk7p6d+SmipQWekXX9F+RYiB98mT70sTHIR412Dfk56wa5eClhaG885z3qEVRX7H1tT0Hitra+X3bFLSwBfjJhMwdSpHcTEdZ/3BQNtRSYkCw2DIyen9TDUNmDfPwObNWs/jKisZPvpIxaWX6oiO7n2y7GwDBw8O73OurGSorFSwaBF9mQSyvDwOw2DYs6f3fN+dc4Rt21Ts3avihhvsOGlt8aiaNEmgqor1WcA4HHv3KmhvZ7j+ejsee6wb//d/Oq6+2o6LLhr4zUhKEggPFygqUtDYyPDQQxaUliro7pY9EKdPN/Dww1b85Cc2REQIbNrk8/XlBEBrq/zMzziDjmGEEELIWOQXZ2TLli1DU1MT/vznP6OhoQGnnHIK/vWvf/WU+qypqenJ7AOAxMREPP300/j973+P5cuXIz4+HjfccAO+853vOD3v5s2bcfToUVx++eV9XtNkMmHLli14/vnn0dXVhcTERJx33nn4wQ9+4N1flnhcdTWDySQQG9t3xiA6WuDrrynYMpa1tjJMnNj/rGR+voEvvtDAuR3KSfNCv/udGRkZHN/8puuLpcpKBsNgyMgYeNbzwgt1bNyo4rnnTLjnHip9Q1yrq2OYPl1uS6mpHJ9+qsJmg08nm/zNQw+Z0dTE8M1v2jFrFu93X6qoYHj5ZRPKyxX87ndWxMTQqnNCvOHXv7YgL8/ApZd6b1Jx40YNkydzpKb23Y8TE0VPsA8AamvlF3l8/OD7fE4OxzvvaND14fd/IyNXXw+sWhWC88/XccEFfbej4mIFEyYITJrk/JkuWmTg0081FBfLQMRrr5kQHy/6PEdWFsf77zM0NjKngKA7Nm1SERYmMHMmreoOZHFxAikpHAUFCk47TWaIvvWWhi+/VPHYY9Y+5/+ADAy+9pqGvDwDeXkcvlwvnZ7OYbMx1NQwlwtdh2LjRhXJyRyTJwswBlx2mXvHbsaAnBwDhYUqCgpUKIrA/fdbXfb8W7hQxxdfaLjuOjsdW31s2zYVjMmFEoQQQggZe/zmVGzFihX9lvZ84YUX+tyWl5eHV199dcDnXLRoEQ4cOODyZ4mJiXjxxReHPlDid6qrFSQlCZcXbTExAu3tDFYrXPYjIMGvtRUDTvTk53OsWcNw6JCCrKzeiZ3qaob9+1U0N7N+A3/FxSpMJoH09IEnhMxm4IYb7Fi92oJt21ScfjpdfBFnx48DbW2sZ7I6NZWDc4bqaob0dApaOchSV8Ajj1iQk2Pg2mvtTu+PnPzVsGmThoQEDk0DXnrJhNtvt/lw1IQEp64uoKxMwfHj8Frgr7MTKChQcNVVrp8/IYFjy5bey5maGobwcIHxbrQ8yMkx8OqrcoFAVhZHWxuwfbuK+fMNtx5PRq61VS6yamxk2LhRdRn4KypSkZPTd6FHVhZHXBzHI4+YYbczzJsnvxNODjQ4zu1KSxVER7t//sU5sHmzhtNPNyh4EQTy8gx89plc6FdXx/DOOxoMo+/5v0NVFUNdnYKbbrL6YLTOHJVFysoUJCcP/xqiqwv4+msVl12mD2sRYm4ux9atGsLC+g/6AcDChQbef9+E3bsV5OdT0NyXCgpUnHIKR1iYr0dCCCGEEF+g+jYk4FVXs35LOjmyPBobKcVqrBqo1CcAZGZyhIUJfP218+Fw0yZZDqiuTul3+ykuVjB1KndrQmjWLI6pUw1s3uy6rCgZ2+rq5DbmKPWZkiJXYldV0de0A+dAezvDNdfY8bOfWdHczHDvvSF48kkTjhxheOUVDXfeacGuXSpuusmGP/zBiuuvt2PHDhW7d9P7SIinHT4s96uaGsUp686Ttm1TwTnDggWuA39JSQKNjXKBlxxL/+eEJ0tPFwgJESguVtDVBTz0kAXPPmvGHXeE4MMPVSoV7GXd3cCqVUB3N8NVV9lx+HDf862uLqC8nCE3t2+wgzHgoot0TJ3Kcd99Vvz4xzaX1T8mTgTi4zlKS4f2PVBcrKC5mVGZzyCRn8/R0cFQWqrguedMiIoSLs//HQoKVFgsAtOm+T5wNX683IbLy0d2LvPVVyp0nWHBguEFD/PyDOTkGLj7bisSE/u/tkpNFZg0iWPjRoqY+1JXF7Bvn4L8fFpwSgghhIxVNBNGApoQMuMvJcX1xYcj8Ed9/sautjaG8PD+f64o8kJ2xw4Vxv+ui4QANm3SMHeuAcaAoqK+h0pdBw4cUJCb6/6EQFqaQE0NbYukr/p6uV3ExcljVkgIEBfHqc/fCTo65L4ZHi6Qn8/xhz9Y8a1v2bB7t4p77gnBBx9oWLZMx2OPdWPJEgOqCpx+upykeu45E+x2X/8GhAzf8ePAvfdaUFbm3nfIunUafvMbM/bt894xpKxMgckkoGkCBQXeWdSyaZOK3Fyj38yShAR5zHQEHmtqlJ7bBqOqwLRpHDt3qnj8cTMaGhhWrrRizhwDL75oxm9+Y/F6/8Kx7J//NOHIEeCee2xYskSHoggUFjpvrwcOKOCc9XuutXixgXvusSE7e+BzscxMjpKSoe0LW7aoiI/nmDKFNoJgMGUKx4QJAs8/b+rp2zd7ttFvn++CAhWzZnGYTKM80H6kp4888Ldxo4pTTjGGXPLWISIC+MUvbIO2OABk1l9BgYLOzmG9FPGA3btlf1RZqpYQQgghYxHNKJKA1tYGdHb2v7o7MlJmzQwn8NfWBgrSBDibDejqGrjHHwB84xs66usVfPyxvPjfv1+uOl+6VEdqKkdxcd9DZVmZAqvV9Sr0/iQmctTXs54AIyEOdXUKxo0TmDCh97bUVIHKSjoGObS0yPdi4kT5f1WVk76PPdaN733PhkceseLKK3WMG9f7GMaAG2+0o6GB4f33PbfyvKuLvh/I6PrqKxXl5Qq2bXMvwPbllyoOHVLw299a8Nhj5p6sYk8qL2dISxPIyeF9Ajae0NDAcOCAikWL+v/SdJz/1dQoEEIGAAfKRDlZbq7MBCspUfDTn9owYwbHd75jx2232XDwoIIjR2g/Hw5dBw4e7P+9q6lh2LpVwbe/LRdFjR8vg7AnB5CLilRERYmeRTHDlZXFcfhwb2aoO/bvVwbsJUsCi2Oh3+HDMgMqL48jL4+julrpWXzl0NIiz/Pz8vznhD09XeDwYQY+zBhOYyPDvn0qFi4cnd9p/nwDhsGwYwdVOvGVr79WMGkSd5kJTQghhJCxgQJ/JKAdOSI34f4y/jQNiI2VF3VDIQSwerUFf/mLecRjJL7T1uYIFAx8wZORIbB4sY433jChuVlmGMTEcEydypGba6C4WO2z6r+oSEFoqEBamvsXUwkJAobBKAOV9FFXJ/v7nTjBmJHBcfCggo4O343Ln7S2yjcnPNx5nxs3Dli0qP8V7MnJAuedZ2DtWs0jpfuOHwd+9zsLfv1rygYio8dRfrq4ePBJ1LY2WSb4llvs+OEPbaioUPDoo2aPl64sL1eQns4xZ46BAwc8f6zavFmF2Sxw6qn9T1SHhQFhYQK1tQzNzYDVypCY6P7MeF6egYkTBX74QxtOOYU73W6xiH6zgcjAvvxSxa9/HYLyctfnO2vXaggPB845p/e2vDy50Kq7u/e24mIFubnGiINvWVmyb25ZmXvXA21tckHOYJmEJLDMn28gLEzg+utlCYCZMw2oat9M0507VTAGzJ7tT4E/DpuN4ejR4e0MX3wh+5LPnTs6v1N0tMDMmQZee83UJ7BKvM8w5HbsT8FrQgghhIw+CvyRgGWzAVu3qlDVgVcCT53Kh1zq6rPP5Mr6ujpGE7sBrLVV/n1yoMCVK6+0Q1WBF14wY/t2uSKWMSAnh6OpifXJligqUjBtGocyhE3LkYUw3It2Erzq61mf49gZZ+gwDOCzz6hHCtAb+BsskO/KwoU6uroYDhwYfIc9cEDBn/9sdrmf2u3A44+bcfiwgs5ORpNZZFQ0NcnMp+xsAxUVgwfYHOWpc3MNzJ9v4Gc/s6KmRsGHH3ruWNLZKQMj6ekcs2fLoMqePZ4Nkm3apGLuXAMhIQPfLyFBltGuqZG/91Ay/hISBP76127Mnesc4DGbgenT+2agEfd89ZV839au7bvNtbXJkoNLl+pOZRTz8w3oOsPevfJzrKtjqKxUkJMz8uDbpEkCFovAwYPunbQ5+gFmZVHgL5jMmMHx5JPdPRlQ48YBp5zC+wT4CwpUZGZypyoMvpaWJrdFd4PXJ7LZgI8+0nDWWQZCQz09sv7deqsNISECDz1kRlvb6L0uAfbvlyXyqb8fIYQQMrZR4I8EHCHkhMGdd4bgiy9UXHKJDnWAeZncXNknq73dvefv6ABefVU2fbdaGfUmCGBDCRSEhQHXXGPH9u0qurpYT2mxqVM5FEU49fmzWuWk0FDKfAJAVJSA2Sx6JicJcaitVRAf7zzBGBEhM9k+/NAzmWqBrrWVwWIRgwYBXElLE4iMHDh7p7aW4fHHzXjwQQt27FDx5pvOE9ZCAH//uxkHDij4wQ9sAEClWMmo2LJFg6oK3HSTHUJg0MVMRUUKEhN5T1+8tDSBb3xDx5tvamhq8syYKirkGNLTOaKjBSZP5vj6a899t9ntwNGjilMWXn8SEzlqahTU1jIoihhyWbP+ssny8w0cOqTQhPUQdXfLTL3kZI5t29Q+VQ4+/lgDY8C55zqfQ8XHCyQlyWBrRwewerUZMTHcIxkriiKDeO72+SstVRAVJYbdC434r5P39/x8A8XFvb3obDZgzx7F7wImoaFAQgLvOfYOxcaNKjo7Gc4/f3RPJsPDgbvvtqGri2H1agsqKhgqKxmqq4dfspS4Z/t2WRqfepQSQgghYxvNPpOAs22bir//3YwpUzgeftiKSy8d+CLGMWlUVOTequ1XXjGBc+Dmm+XELpVlDFytrQyMyQtPd5x1loGsLI4pU3hPxsC4cbIU6InbT0mJbJY+1FXojPVmJhDiYLMBzc2y1OfJli3T0dLCsHkzZZ20tQEREcObwHCU7CosVFxmces68MADFpSXy6DeihU2bN+uoqGh9z4ffKBh+3YVP/iBDaefLsuFVVXRaRTxvo0bVeTnc6SmCsTH80HLfe7d2zdL6vLL7bBYgJde8kwJ84oKBWazQFKS3KHy8gzs3q16bJFCc7P8nnQn8JKYKEt91tQoiI0V0DyU2OgIOFG5z6HZu1eBrjP84Ac2hIQAH33U+/5ZrTLwd9ZZhstsqvx8A4WFKlavtqCzk+Gee2wIC/PMuDIzZT9Hdyp5lJQoyMykyMRYkJfnnLFcVKTAbmd+F/gD5EKLoWb8CSEzb0891XB5nult8fECK1daUVPD8KtfheAXvwjBypUh+OUvLdizh86hvGX7dvkdRj1KCSGEkLGNzrZIwNm1S0FqKsftt9uQkDD4BUx0tEBCguwbMpiyMobPP9dwxRV2ZGTIC/7GRjpjDlRtbQxhYWLAjNATMQbcfbcVd91ldbpd9vnrnSwqLlYwYYLot7fkQBIS5AQlIQ4NDbKksKsJmeRkgdmzDaxbpwVN2eHubuDttzW0tAztca2tzO0gviv5+Qbq6hSXJTxLShS0tTHcfrsVCxYYOOssA+PGAevWyQhCczPw+usazj1Xx7x5HIwBqamcAn/E6yorGaqqFCxaJCNqOTncKQP9ZA0NskTiyRnp48cD3/ymHdu2qX0eb7PJieGhVDgoK1MwebLoKXedn2+gq4u5nVE1GEfgLzJy8ANfQgLvKeU7lDKfgwkPl71WKfA3NIWFKhITOSZPFliyRMenn8pti3Pgvfe0ATOP8vI42tsZjhxhuOsuq1vn+e7Kzubo6GCDZszquty+s7P9L/BDPC82VmDSJI533tHw9NMmvPGGCfHxvGdRgz9JTxc4fJjBGMKmWVCgoLZWwYUX2r03sEGkpQk8+mg3Vq2Sf+66y4px4wQeeshCZUC9oLaW4cgRID+fFi8QQgghYx3NWJGAIgRQXKwOOdMqJ8e9wN9nn2mIieFYssRAeDigaYIy/gJYaysbcj+wcePQZ3V5To6cLDp8WJamKSpSkZs7vFWUSUmcSn0SJ47FBTExrrfVCy7QUVWl9PQ9CmS6DvzpT2a8/roJDz9sGVKgYTj784lyczlMJuGyZ1dhoYqICIH0dPn8ISH434S1is5O4IUXTDCbgSuu6J04S00VVOqTeN2mTSrCwgRmzpTnPTk5HEePKv0GznfvRk9/2pMtXGggI4PjrbecU+K+/FLFf/5jwquvmvo8pj8VFaxngRQgJ6RDQ0VPb7SRGkrgzxHsKy9XkJTk2YnO/HwDe/YosNk8+rRBSwjZH82RLXXeeTrsduDFF024914L3n7bhAsusPebeZSVxXHmmTp++lMbMjI8G3jJzuaYNInj97+34MknTf0u7KuoYNB1huxsmjQfKy68UIemyUxmxuT//TFTKj2dw26XpTLdtXathqwsjsxM3wYyHWUnp0wRmDWL4957bbj9disOH1awerUFx4/7dHhBZe9eBYoie1oSQgghZGwL/FlEMqbU1zM0NvZdyT6Y3FyO2lplwOw9IeTk75w5HKoqJ86iowWOHaPdJFC1tIwsUOCQlSUDBr/6VQhuuGEcysr6llFzV0KCQEsLowtc0qOlRR6X+itjmZPDkZbGe7LPApUQwFNPmVBcrOCmm2w4dkz21LO7uQi9rY0hPHz4+7PZLCdBTg78yYlqpU9JpG98Q4dhAH/8I7Bli4Jrr7Vj/Pjen6emctTVKejuHvaQCBnU1q0aTjvN6ClfmZMjz3/6K/e5a5cMSrsqj8gYcNFFduzfr6KsTG7snMvM1gkTBD79VOu5HQDeekvDvfda+mQbd3YCdXUK0tO503MnJ4shTUgPpKmJwWwWCA0d/L7x8aJn3/VkhhggA39W6+BZYkQ6dIihvZ0hL09uG5GRwIIFBjZs0GA2A/ffb8U3v9l/PVhFAb77XTumT/f8hHVICPCb31hx00027N6t4s47Lfjvf/tmupaWqjCZBFJT/S/ji3jHokUGHnzQ2vNn8WL/zPZMS5MVB9zt81dRwXDggIoLLvBdtl9/GAPmzuW4+25ZBvRPfzJTP2sPKS1lSE/HsHpiE0IIISS40FUsCShFRQoURWDq1KFm/MkLuIEmbsrLGVpanHs6xMZSxl8ga2vDiAIFDmYzcM89Nnz3u/LPD35gw6JFw5sUcGQjUJ8/4tDayjB+vICpn2QbxoDFi3Xs2aOiuXl0x+ZJL7+sYfNmDd//vh3nnmvgZz+zobRUwRNPmN0KnnkikJ+fb+DgQQXt7b231dQw1NUpffr5REbKycBt22SmyBlnOP980iS5Lx85Qvsy8Y7mZpkRPH1677Y3cSKQkuK63KcQMuNvoKDJqadyxMdzvP++POB8/bWCujoFP/uZDSkpHM8+a4YQsi/bG2+YUF6uoL7eeRt3TDqfGPgD5Liqqz2X8RcVJdzKujGbgZgYORZPlvoEgJQUgZiYvgsGiGsFBTJDNSurd9tYscKOX/zCivvuszrd7guqCixZYuCxx7qxbJmODz/UcMcdIfj0097Pt7RUQUYG91ivSEI8Zdw4WdrY3T5/X32lIjRU+HXJx7Q0gZ/+1IZ9+xT885+moClr70slJQpOOcXXoyCEEEKIP6DAHwkoRUXq/8pJDe1xEybI7IyB+uIUFMiLoxNL+8iMP5rUDVQyUOCZ55o6lePMMw2ceaaBBQsMmM3Dex5Heau6Ojr8EsmdgNa8eQYURWDLlsCciayqYli71oSrr7bj9NNlEGPaNI4f/ciGggIFd94Zgs8/V8H7mZsSAmhv7z8r0l2zZxsQAti5s3eSt6BAZnfk5vZ98YsvNpCRAdxyS9+yX8nJAooiUFlJ+zLxjvJyR4DNebvvr3x5TQ1DYyNcbssOigKcf76O7dtVNDTI/XLqVANZWRw33WRHWZmCv/7VjBdeMOOMM3SncZw4LotF9AmyJSUJHD3K+t2Ph6KxUQb+3OXI9EtI8OwEN2Oy79yuXbSfu6OwUMWsWYZTb+Xx4+U260+lE8eNA668Usejj3YjL8/Av/9txvvvy166JSWKzwOUhPTnlFM4tm1T0dEx+H0LC1XMnGn4fRA7N1d+/2zerKGuzo8OFAGorU32+KPAHyGEEEIACvyRACL7+yk92XtDlZPDUVSk9ruS0NXFUUwMBf4CWVubZ0p9etL48TIL8ehR2q6I1NzMBg1ohYUB+fkcmzYFZtbJ2rUaIiMFzj/fuY7TnDkcq1dbMW2agX/9y4z77rO4nMxqbwc4H1mpTwCIiAAyMjg2bOgNMhYWKpgxg7sM5iclCfzpT3BZ8s1slsGGw4fpVIp4R1mZggkTBKKjnbe/3FwDDQ2KU1lOANi6Vfb1mTZt4KDFGWcYGD9e4B//MKG0VMGyZXK/nDqV44wzdGzbpmL+fB3f/a4dUVECFRXOr1NWpmDyZA7lpE0/JUX2n2poGPn3W3Mzc6u/n0NiokBIiEBExIhfuo/cXAPHjvXNfCTOamoYqqqUnjKfgSAqCrj1VjsuvtiOl1824d13NbS0MAr8Eb916aV22O3A668P3JO1sZHh8GEFc+YExrY8e7a8vvdUueixytFnd9o0Hw+EEEIIIX6BZqtIwDhyRPYNGW5vtdxcA01NzOXETX8XRzExAu3tDFbrsF6S+JDdDnR1+V/gD5DlPqnUJ3Foa4Nb2+nChToOH1YCrrRkczOwebOK88/XXa46j4sTuO02O3796240NjKsXm3pU/qztVX+zp7I4L30Ujv27VPx/PMmdHQAJSUq8vKGt6AkNZWjqsr153HsGH13kJGpqJB99E7OlJoxgyM9nePRRy095zTbtyt4/XUNy5fLbKaBhIQAS5bo2L9fRUICdyoDd911dtx0kw3f/a4djMlynidm/AkB7N+vOFVHcEhKkscxTyxsaW7GkAJ/S5fquPVWm1eyyqZNk5+BqyzLsaS5GX364TkIAbz4ognR0WLYx1NfuuoqHWeeqeO112QwhQJ/xF9FRgKXX65j/XoN5eX9H/B27pTtMWbMCIz9MSICCA0VHisXPVaVliqIjBSIjfX1SAghhBDiD+jMigSM4mIFqjr0/n4OU6fKiRtX5T4LC11fHMXEyEmnxsbAmmgnMtsPcC+gMtoSEgRqa+nwS6SWFuZWlsrs2RxhYQIbNwZW1t9HH2kwmYCzz9YHvF9mpsBdd1lx5AjDX/5ihn7C3XsDfyPfn/PyOG6+2YZPPtHw2GOyn5ljpflQTZ4sUFWl9MkkNwzg3nsteP99P6+vRfyWEDKz7uQ+eoDMNr3rLitCQgQeesiMbdtUPPGEGaefzvGtb7n3/OedpyMkRODii53L2IaFAeee21v9ICNDBv4c2/jRowxtbcxlOdGoKJl1d+TIyL7fhOjt8eeu+HiBuXO9E6wJCwPS0lyXVx1LHnnEgieecF3nvKBAwa5dKq6/3gaLZZQH5gGMAbfcYkd+voH0dI7wcF+PiJD+nXee7tST1ZWCAhXTpnGEhY3u2IaLMVlCnTL+RubgQQXZ2e71xyWEEEJI8BvbV7AkoBQVqcjOdl2OzR2hoTI74+DBvpt9QYGKqVP7XhxR4M//bdmi4o9/NPf82bNHfr6trfLn/hj4S0wUqKlh1MCeAHAE/gbfGDRN9vrbvFlze9upq2N48UWTz7a17m5g/XoNixfrGD9+8PtnZAj85Cc27N2r4IUXestYeTqQv3ixgcsvt6OkREV6Okdk5PCeZ9IkjuPHWZ+S0CUlCtrbGZUBJcPW3Cy3e1eBPwAIDwfuvtuG48dloHzqVI7vf9/u9mTfxInAX//ajTPPHDjonZbG0dXVWy2hqEguwnKV8eepidv2dsAwhlbq09tycgwUFzuXi3/vPQ0HD46N88O2NuDwYRncOznL2WoFXnjBhJkzjYApK+iKqgI/+5kN999PqdrEv6kqcOONdhw6pOD3v5fXP3/6kxklJfKco7tbHqsDqewuACQn8xEvHBnLdB04dMh1Rj4hhBBCxiY6syIBgXNZWmq4ZT4dMjN5z0WRQ3e3zCY8sdSVQ2SkXDHniX41xDvef19DZSWDYQCHD7OeMk2ezBDytIQEDquVoaXF1yMhvtbdDXR3u1+SdtEiWbLYVeaJ3e78fyGAp54y4YMPNK/3lOQcThl6Dl98oaK7G1i61P2MuhkzOJYv17FxY28fvtZWBrNZICTEQwMGcMklOq691o4rrrAPfud+pKbKAVZWOr+/hYXy8wm0sqzEfzjKa6an939siI8XWLnSiiVLdNx+uw2mgVs+9RESgkEDhY7Ao2M8xcUqsrJ4v1ldycl8xKXamprkoIaS8edtubkcLS2sp0x3ZSXDK6+YsGnT2MjqLS6WmeZhYQLr1jn/zo6+eDfe6H7g2Z+5KklNiL+ZNo3juuvsMJtllYHqaobVq82oqGDYu1eBrjPk5wdGmU+H5GTZA51T3GpYKisZ7HbqUUoIIYSQXhT4IwFhzx4FXV2uS0sNRXY2R22tgvb23tsGujjSNBn8Ozmbg/gHux2oqmJYtkzHnXfacO21OsrKFNTUsJ7A34QJPh6kC719kOgQPNY5tlN3Mv4A2XcoPp7jrbc0p0BfUZGCW28NwTvv9M5Ybt6sYv9+OVlbVubdbe2FF0z44Q9DsG6dHJfNJrNhXnvNhNNPNxAdPbQJ/KlTZXDcMcne2ur5ID5jwIUX6pg1a/jfK5GRciK8stL5/S0oUDFunEB9vQKbbaQjJWNRebmCCRPEoMGvyZMFbr7ZjtBQ74wjPByIjhYoL5eTsfv2DbwIyzFxO5Is4+Zmud/7U8ZfdjaHooieRReO4NdYWRhWVKQgMZHjoot0bNqkorlZ3r5vn4I1azRcdJGO+Hj/+bwIGQsuuEBe/9x5pw2rVlmRkCCwerUF69drSEzkAbdPJidz2O1szBxXPa2kRIGmiQEXDBFCCCFkbKFZZ+L37HY5qTxtmjHiFWyOx59Y7rOwUB3w4ig6WlCpTz9VVcVgGL2l0PLyDISGyh5ora0MYWHCL1dux8YKKIpAXZ3zdmUYwEcfqejq8tHAyKgbauCPMeDb37bj4EEFTz4pe7tUVDD88Y9mTJgAvPaaCZ9+qqKzE/jPf0yYN89AfDzvydbxhpYW4NNPVcTGCvznPyasXGnBXXeF4LXXNJx5poEbbxx6Rl1amnOWUWsrw8SJnhy1ZzAmy32eGPirqWGorVWwZIkOIYDaWvr+IIMrK5NZGg7l5bK/nz9kUKWny2PI4cMMnZ1skMCfDNqPZMFUczODogi3ep+OlpAQWTWiqEhFU5NcWBEaKnpKoAa74mIZ8D3nHB2aBnz8sYbDhxkee8yMadM4/u//Bu7hSgjxrnHjenu/7tmjYs6cwMr2A+TCEQBer1IRrEpKVGRkcL+89iWEEEKIb1Dgj/i9des01Ncz3HTTyEsIxcYKTJwoUFoqN30hZGbGQKVQYmI4Zfz5qYoKBYoikJoqLxTNZtkDbdMmGfgLD/fPFY+aJrfFkzP+Dh1S8Pzzsk/HyWUbSXBylHt1N/AHAKecwvHDH9qwY4eKf/zDhNWrLUhMFPjDH7qxZImOZ54x4/HHzejuBq67zt4zae8tH3+sQdOAe+6x4g9/6EZamkBWloGHHrLihhvsbvX2O1lYGJwCljLw55/7c04Ox86dSk8AoKBAhckkcN55ciJ8pGUPydjw+usm/PGPZjQ2ymy5sjIFGRn+Ua4rPZ2jokLB3r0qzGaBzMyBM/6AkU3cNjXJQL/iZ7tOTg7Hvn0KPvxQg9kMnH++jmPHgr9f77FjDHV1CnJzDYwfD5xzjoFPPtGwerUF8fGyL+tQy8wSQjzP0ft1+nQDZ5wReIG/qCgBi0VQn79hOniQ+vsRQgghxBmdVRG/1tDA8NZbGs4/X0dKyshnVhiTWX+OwN+hQwzt7WzA5ucxMQLHjtGu4o/KyhSkpAiYzb23LVxo4NgxBQUFypCCKaMtMVH0yQRylDU8cKA3m4sEt9ZWBlUVQw6OzZ3LcfPNNmzcqCEkROCuu6wYNw648UY75s41sG+fiksu0REdLUv+HD7snZ4p3d3A+vUazj7bQFiYnPT/8Y9tuO02OxITR7YBp6XJ8oIA/DqQf8EFOiZMkJnpgOzvl5vLERUlA7rV1bRwhAyuslKB1crw0ksmNDXJcxNHNruvpadzdHUxfPGFiqlTB84miIkZ+cRtUxPzqzKfDrm5HB0dDB98oOGcc3SkpnLYbAxtbb4emXcVFytgDD2ZnkuX6ujuBiyW3u8eQoh/iI8XuOceW88ijEDCWG+5aDI4mw1YudKC7343BN/5Tgiamqi/HyGEEEKcUSEA4tdeesmE8eOBSy/1XAmhrCyON97QoOsyMyMsTAx4khwbK9DcLMswqqrHhkE8wFEK7UTTpnFER8tgbWam/5aeSkwUKChwnhitqWGIjha47job/vIXC154wYQbbqDUv2DW3CwzW4aTzbx4sYGoKCtSUznCw+VtigJ8//s2nH66gvx8uW+kp8vJ6aNHmUcWUJxowwYVnZ0M55/v+X0tPZ2jsFAD5/6d8RcSIjMr//IXMzZsUFFSouCmm+R+m5zMKeOPDKqtDWhpkb2Gt29Xe7Z1fwr8AUBtrYKzzhr4O4kx2cd2pBl/g/U29IXMTA6TScAwgKVLDXR0yNsbGvz3+OQJRUUKUlM5wsLk/2NjBVautCExkftlCWZCSOBKSeGoqqLzJncUFKiorlZw+eV2mM1yMYbsW03vHyGEEEIkOisgfmvXLgVffaVixQq7R1cTZ2XJSfDKSobCQhWzZhkDBvSiowU4Z2huptWH/sRmkz3+Tp4YZQxYuFAGIfypP9DJEhM5GhoY9BPiJbW1ChITOebN47jxRhs++kjrExwkwaW1lY0oM3X2bJlZdiKTCZg3rzcrx9Evr6zMs9sS58AHH2iYO9dAbKznJ70dAcvqaplR488ZvPPmGZg+3cBTT5nAOUNeniyxlZxMGX9kcI5JzmuusWPaNAMff6whPFwgMtLHA/ufCRNk2XMAyM0dvHxccjIfUcZfc7N/Bv5MJmDOHANnnWUgOlr0HPfq64P3e1oIoLhY7fO5O7KaCSHEkxwZf1T1ZHCbN6tIT+e49FIdF16o49xzDervRwghhBAnwXulSgKazQY8/7wJubkGTjvNsz0K0tI4VFVgyxYNVVXKgGU+AVm2CgD1+fMzR44wcO66FNrChXKb8ecV+ImJMqDs6AsGyJ5ICQlyzEuWyEDCCy+YYLP5apTe8dxzGvbt8/Uo/ENLy8gCf+4IDQUSEmSPLk8qLFRQV6fgoou8k5XqCFju3auCc/8t9QnIBQc33ij70Kan856ATXIyR22tc4CfkJNVViowmQQSEgRuvNEORRFIT+cj7mvsSenpAqGhAmlpg++HI524bW72z1KfAHDbbXbccos85oWGAmFhAg0NfvRBeUBhoYK//c2EI0cYamvlwjdHmU9CCPGm5GQOq5WhsTG4jque1t4O7NypYNEiOsEkhBBCSP8o8Ef8QlcXYLX2/v/99zUcO8Z6JlI9yWyWE1gff6xCVQVmzhw4sBgdTYE/f1RerkBRBCZN6js5mJwscP31Nsyb57+N7RMS5CSao68f50BdHUNiorydMeCmm+xoamJ4993gWb5ZV8fwwQcqNmzw9Uj8w2iVsExP5x7P+Nu1S0ViIkdGhnfGP348EB/PsXOnHLc/Z/ACMpj//e/bcdVVvYHQpCQZ4D+5n+fJDENO4pCxqbJSluFVFGDSJIFbb7Xjoov8azLvwgvtuOkmOxQ3DiPJyRzHjzM0Nw/9dbq7ga4u/w38nSw2Vjgt4Ak0nZ19///Pf5qxfbuKn/88BE88YYaiCEydSoE/Qoj3OXoTUrWEgW3dKssVzZ/vv9e6hBBCCPE9CvwRv/DYY2b85Cch+OQTFTU1MtBxwQU6kpK8M/GTnW1A1xlOOYUjNHTg+4aEyBXdtPLQv5SVKZg0ScBsdv3zpUsNxMf778RhRAQQEiJQUyMPww0NDIbBkJjYO+aEBIELL9SxZo2Gurrg2P4KC+XvW1np44H4idHI+APkYofDhxkMD84PlJYqyM727mRwejrH/v1ym/HnDF6H0083MGNG73uSkiL/PVjZw88/V3HXXSGUGThGVVXJHmoOCxcaOOUU/wq0ZGYKLFjg3gGkd+J26JcZjrLqgRT4C9SMv/Jyhu99bxzWr++td//667LKwOrVVnzzm3Y0NDBMm8Y9WnKfEEL6ExMjYDaLEZWLHgs2btQwc2Zvj29CCCGEEFeCJ42EBLSqKgVhYQLPPSdXFk+cCFxyifdmQDMz5YSaow/TYGJiBGX8+ZmKCqWnFGAgYkxmCDky/hwZQScG/gDg//5Px6ZNGl54wYQ77wz8mp8FBXKCsarKxwPxA5xj1HrXpadz2O2yX15q6shfr6tLBrOWLvVupCo9XWDrVrlv+HOpz/5MmABMmCDLHg6kokJBRwdDWZlzMPXrrxUoCgYtSe2uXbsUcN7/83EOvPuuhiVLdEyY4JGXJIMwDFm6+owzAvf77GSxsQKqKlBbyzBjxtAe29Qk9xVHtQV/FxfHUV4+QKNoP1ZaqkAI4NlnzZgwwYq4OIFPPtFw7bV2xMUJXHCBjnPO0cGDZ9MkhPg5xnrLRY91+/Yp2Lix9/tlyhSOM880cOwYw6FDCm67LfCvCwkhhBDiXRT4Iz7X2Ql0djLcdJMdiYkc775rwjnn6AgJ8d5r5uZyzJtn4PTT3V297vn+WGT4bDagqoph8eLAno1KSOA9Ab+aGgZNEz09JR0sFuDii+147jkz7HbAZPLFSD2jsxPYv1/B1KkcZWVARwe8up/7u44OgPPRyfibPFn2C6uoUJCaOvK0v0OH5ITxaGT8AYDJJAJ2W0lO5oOuXHcsACgq6g38CQG88IIJHR0Mq1d39/QNHC4hgGeeMYExYPZsq8sy2hUVDK+/boIQwKWXUvrhaJA9IJnLstWBSlGA+HhHRvvQjjeBmPHX2CizqdUAi/9VVSmYNIkjKUngiSfMiI0VSEriOO+83n0/UI+7hJDAlZQ0+HnTWPDaaxpqaxXExgpwDnz5pYa1azmSkwVCQgTy86nMJyGEEEIGRmdUxOccJZJiYznS0gR+/GObU6k0bxg/Hvjxj22YONG9++fk8P9lZHh1WMRNVVUMnLOeoECgSkwUOHpUHoZrahQkJAiXk/EpKQJCIKD7CAHAnj0qOGe4+GJ5oTrW+3e0tMjffzRKWIaGyn55nurzV1oqs7RPzlD1tMmT5T4+caLrfSMQuLNy3VHyt6io9/OpqmI4dkyBzQb85z8jj/gfOKDg2DEFDQ1Kv/teaal8/Y0bVYjAiLsEvMpK+Z6fWOozGMjvt6HvtM3NDKGhAhaLFwblBXJClvVkKgaSykoFkydzfO97NkydylFTo+Cmm+zQaFkoIcSHUlIEKisH748czDo6gNJSFVdeaceqVVY8+KAVDz7YjZgYga+/VjFvntFvuwtCCCGEEAcK/BGfcwT+4uL8d5YxJ4dDCPT0miK+VV6uQFVFwGdIJCYKtLczdHbKrI/+giiJiXJCONDL3hQUyD5WM2bI7LPh9H8KJr2Bv9F5vYwMjvJyz7znJSUKMjO514Nx48fLzNjReo+8ISWFo6am//6KXV1AaytDRgZHaakCq1XeXliowmIRuOkmO7Zs0VBcPLLPbtMmFVFRAhaLQGGh69SkkhIV48YJ1NUpOHQosI83geLwYYaoKIGwMF+PxLMSE/mwJm2bmuT7EShiY+VYA21hDudyccGkSQImE/Czn9nw6193+11vSULI2HPOOTqiowUeesiMlhZfj8Y3du6UC7Bmz+49eUxLE1i5Uh6rv/lNuw9HRwghhJBAMbZnXYlfaGhQYDYLv+4nFBsrEBfHUVwcYHWcgtRXX6nIyBABXfYS6A3o1dYy1NQoPf8/WXg4EBoqUFsbuIdswwB27VKRlydXqCYkyL5WY5kj8DcapT4B2du0ooLh+PGRPQ/nstRnVtboTBCffrqB3NzALWeUlCRgGAx1da63d0dwZMkSHYbBUFIi9/OCAhUzZ3Kcc46BrCyOZ581QR9m9U2bDdi2TcWiRTqmT+c9vTZPVlqq4OyzDURECGzaRGk/o8FRbjHYJCQINDbKjNWhaG5mAVPmE5A9oBnrXcQWKOrrGWw21pNparEAmZmB874TQoJXWBiwcqUNdjvD6tUWdHX5ekSjr6BARXo671PmnTF5rA62xUKEEEII8Y7AnUUmQaOhgSE21v/LuOXkcKcybMQ3Dh9m2LtXdepBE6gSEuQkW0WFgqYm1vP/kzHm6Jfk5zvJAEpKFHR2sp5+FKmpVOqztZVh/PjRC2DPmsVhGAx79rg+jgkB/PWvJmzbNvAChyNHGI4fZ6MW+LviCh1XXRW4+3tKinyfqqpcv++OgP6ppxqYMEGguFhBWxtQVqYgL88AY8BNN9lQU6Pg7beHF4zbuVNBVxfDokUG8vIMHDwoX+NEjY2yXGF2toGFC3Vs2aIOO9A4Fqxbpw378zhRVZUSdGU+ARnwFgL9Brxdsdvl8SWQMv5MJrl4I9ACf5WVcryOcsqEEOJPYmMF7r7bioYGhqeeGls1LXUd2L1boR5+hBBCCBkximIQn3ME/vxdbi5HdbWC1lZfj2TsEKJ3csph7VoN0dEC8+YF/sVQSAgQGdlbdi8pqf8JuKQk3tMHLBAVFiqYOFEgI0Pu66mplPHX0sJGpb+fQ3y8QFIS77fMY3Gxgq1bNaxZM3Aw4+BBBYoikJFBE8buCA8HoqNFT/+8kx09yhAeLjB+PJCba6C4WO35jBwlniZPFrjiCjveftuEzz4beub5xo0a0tM5kpIE8vLkc+7c6fw8jvFlZXEsXGigo4Nh9+7APeZ4244dCtat0/ot4eqOjg5Z2jI11f/PgYYqIUEeH9xdsCIE8OSTZhw7xnD22YH1/R4byz0S+KuvZ6OW2VJZqSA8XCA8fHRejxBChio1VWD5ch27dikj+q4NNPv2KejuZj3na4QQQgghw0UzOsTn6uuZX/f3c8jJkSffVO5z9BQVKfjFL0Kwbp0MRDQ2MmzZouL883WoQfIxJCb2ZpL2l/Hn+FkgZ/wVFamYOdPoyeydNElOeI/F8j0OLS1s1Mp8OuTnGygsVMFdxOzef1+D2SxQXq4MuK2VlipITRUICfHiQIMIY/L7o7+M8ZoapSfon5PDUVamYNMmFVOmcKdJ+eXLdSxZouPf/zbj66/dP33r6AB27VKwaJFM35s4UfZ7PDkAXFqqIC6OIyJCTrZNmsSxcSOV++xPUxNDZ2dvadbhqKyUjw3GjL8JE4Dx44VbC1aEAF54wYQdO1T84Ae2Ucsm9pTYWIGGhpFdUh08yHDPPRa8887o7HOVlcGZaUoICS4ZGRw2Gwv4PudDUVgoezJPnuz/8yOEEEII8W8U+CM+JQRw7FhgZPxNnAgkJ1O5z9HkWEH/0ksmbNmi4qOPVISEAGefHTz15xISBOx2hrCwgfs1JCYKdHQwdHSM3tg8RQjZxyw5uXc/T02Vf4+lC/mTtbZiVDP+ACA/n6Ojg+HgQefjWFUVw+7dKq6/3o5x4wQ2buwNCnV0AE8/beopEVpSMnr9/YJFbi5HVVXf8pqA3DcSE0XP/YSQC0xOLvHEGHDjjXaceqqBv/7V7HbA6csvNQgBzJ/f+3z5+QZ271Zgt/fe7+TPdeFCAwUFypgOzveHcxn4A2Q283BVVCjQNDHgoo9AxZj8fnP0sBzIRx+p+OgjDTfdZMO8eYF3bJGBv+F/lx09yvDIIxbYbAzV1aNzjllVxSjwRwjxe2lp8jhVXh5c198dHcBzz5nQ2Oj83SEEUFDQW+qdEEIIIWQkgusMigSctjbAZmOIjQ2MyYfcXI7iYtptRktTkyyFeMYZOp580oRPPtGweLGOceN8PTLPcUz4O/7u/36OsmmBt/21twNWK0NcXO9+npIiJ4ZHa5LTH7W0MERGju6Ef2YmR1iYQEGB8/u+bp2GyEiBM84wMG+egU2bVIj/De2110z47DMNDz1kwR/+YEZdnYLs7MA4ZvuL/jLGHUFxR+AnLk4gOlr+21VvF0UBvv99G6ZM4XjkEXOfcrkn9+Tbs0fBK69oOOsswyl7MC/PgNXKsG+f3A5sNtk/9cTA39y5BnR9ZBltwaq1FeBc7r8FBcNLP+/uBj74QMOsWTxoMthPlpjIcfTo4NvP+vUa5s/XsWRJYJY1i4sTaGlhsNnk/08MqA+mqQl46CELJk4UWLhQR32992d6u7qAhgYlKEvMEkKCS2ioLB0dbIG/l1824eOPNTz0kNlpUeeRIwzHjlF/P0IIIYR4RnCdQZGAU18vN8FAyPgD5ORtfb3ikV4uZHDNzQxRUQK33GLHjBkcug6cd17wZPsBvQE9x9/9iY+X+0gglvusre1bytRiAWJiBKqrA+/38ZTWVoaJE0f3NRVFBn1ODFY0NwObNqlYulSHpgGLFhk4dkxBSYmCsjKGTz/VcN11dvz4x1Y0NDAwBsr4G6KoKDlxdXLGeHOzDIo79n/GgBkzDMTHc6cM2ROZzcBPf2pDdLTAww9b0NjIcOQIw+rVZtx88zj8/e9yBXlZGcPjj5uRm8tx443OkYhJkwRiYznWrNGg60BZmQLOnQN/cXECEyb035twLHNk+y1erKO2duDSuP15+20N7e3AddcNIUoUYBITBerqBn5vWlqAo0cV5OcH7jHFcQ67b5+Cv/7VhFtuCenTn9gVIYA//9kCIYC777YhI4Ojro65LMXsSUeOyH160qTAfc8JIWNHenpwBf4OHmT44gsNy5bZ0dbG8OijFlitcrHWE0+YMW6cwCmn0PGZEEIIISNHzVuITzkCaIES+Js2jYMxeWK+eDGtxPO2piaZUaFpcqJbBgJ9PSrPcjfjLyQEiIoKzD5/jonfk3t5pqSIMZvxZ7UCx4+Pfo8/QAb+NmzQUFcnyyy/9ZYJJhNwzjkyqD5tGkd0tMCGDSoqKxWkpHCcd57sq5mfL4N/MTGBccz2J7m5HHv3Om/vjgzeE/f/b37Tju5uDFjiafx44O67rVi1yoJ777WgvV1mzi9fbsenn2rYtk2F2Sz3sR//2AbtpLM9xoBvf9uOhx824x//MGHSJAGLRWDSJOF0n+xsToE/Fxyluc4808C772ooKFBx4YXuL0qprmZYu1bDpZfqAdHjeLgSEmSJ6vZ22fPPlX375CIER1ZsIHKcw65ebUFEhIAQDIcOKUhNHfh3+uILFQcPKvjVr6yIjhaIjxcwDIamJu8eYysrGRRF9Lu4gBBC/El6usBXXzEYBgIyQ37rVhUREQLTpnFwDjzzjBlpaRzXXKPjtNMM/Pa3FtxxRwhaWhgyMznuuccKs9nXoyaEEEJIMKDAH/GphgbZ2yw01NcjcU9YGDBzpoFXXzVh6tT+MzKIZzQ3M0ydKlc8alrgBIiHIjZWIC/PwIwZg096Jibynuy5QFJXJ0u2hoQ4356SIrB5c+AFMj3BEUwZLNPTG2bO5FBVgTff1HD4sIIjRxRcfbUd48fLnzMGLFigY80aE4QA7r3X2jPRommDB6mJazk5HOvXa2hsZD3lPGtq5AT8ice20FC49Z0YGQmsXGnDU0+ZsHy5gXPPNaBpwIUX6lizRkNZmYIf/tDWZ79zyM3l+P737fjb38z4+muB7GwO5aTDS1YWx1tvaQE72eYtjY0KTCaBqCiB3FyOwkIFF17o3mOFAJ5/3oTYWDGkYGEgOrFE9YQJro91RUUKkpP5qGc/e1JUlMCcOQYmT+ZYtkzHL39p+d+ilv6/1zs6gP/+14SFC3VMmybfG0dmf12ddwN/hw8rSE4WfRYEEEKIP0pP57DbGaqrWcCVKO7oAJ54wgTOGfLzDSQlcRw+rODXv+6GogBTpgj89Kc2vPWWhhtu0DF3LqfefoQQQgjxmMCbQSZBpb6eBVww5/vft2HiRIGHHrKgqcnXowlujlKfwUxRgDvusCEtbfDfMyEhcDP+4uP7TvomJ3McO6agu9sHg/KCDz9U8Yc/mN0q07Zpk4r4eI709NHfvkNCZNBn0yYNYWECDzzQjYsvdg5ALFpkQAjgjDP0nuA7GZncXEefv95Tr9paBXFxw5+AT0wUuO8+G84/3+h5jtBQ4KqrdNxzj63fLCuH0083cOONNthscpX5ybKzOaxWhqqqwDvueFNTkwzeMiZ7MZaUKE49egZSWKigqEjFDTfYg35Ff0KCfI8G+t4qKlKQmxvYxxhFkVUJLrtMR0gIkJw8eBnrV181wTCAa6/tLfUaGyvfr8HKo45UVZVCZT4JIQEjLU0Gwyoq+k5dHTvGsHKlBbfcEoJbbgnB974XgooK/zln2bNHBecM119vQ2Ulw5o1Jpx9to7MzN7z/xkzOO67z4Z58yjoRwghhBDPosAf8amGhsAL/IWFyV4sAPDwwxa3J/vI0NhsQEeHLPVJJJnx5/3+P55WV6f0ZDKcKCVF3nb0aOBf5QoBfPihhr17VaxfP3BqlNUKbN+uYtEiw2cX+DfeaMc991jxy1/akJHR97NJThb46U+tWLEiePuPjbawMGDyZO4U+Dt6lDn1vvSFc881sHKl1WX2WVqazA6lcp/OTszanD3bAOcMu3a5lxL5+eca0tM5Zs0KsAP5MJjNQHQ07zfwV1/P0NCgBHSZT1eSk/mAZazLyhg++0zDFVfYERHRe7umyfervt57XwxCAFVVzKmsLyGE+LNx42Sf5LIy5+NqRwfw0ENmWK3AFVfouOIKeR6zdav/lCj4+msFaWkcS5caePhhK267zRbUvX0JIYQQ4l9oJof4VEMDQ1xc4E1+RUcLrFxpRUsLw2OPmWGz+XpEwae5WU58UeCvV2KigK6znv5SgaK+nrkM/CUnC6iqwIED/nOBPlylpQrq6xWkp3O89poJra393/frr1VYrQwLFvhusjs+XmD69IFXFs+Zw3vKfxLPyMnhKCpSIf63O9TWMiQl+f47cMYMjnHj+t5uNgNpaQIlJXS6eKLGxt5s9KgoGdA9uX+jKx0dwK5dChYtCu4SnydKSBD9lqguLlbAGHpKXQaL5GSBpiaGri7XP3/nHRMSEznOPbfvd0B8vEBdnff2t7fe0mC1MsrkJoQElPR0jvLy3mNjd7fsq9rRwXDPPTZccIGOCy7QkZdnoKDAP64rdB3YvVtFXp481pvNstKCq/MtQgghhBBvoJkc4jOGISfPAi3jzyE5WeDOO60oL1fwt7+ZYQTXgnWfa2qSEQlHVgXp7a0WSOU+Oztl5qarwF9ICDB7Nsfmzf5xgT4SGzeqiIoSuOsuKxRF9m4a6L5ZWdzle0KCW06OgaYmhi+/VGGzAQ0Nis8z/gaTlcUp4+8kjlKfDhkZ3GUJspNt3SqDvvPnj50ThsRE0W9Wd3GxzIQICxvlQXlZcrKjt2Hf37ujA9i5U8E55xgu+2bGxQmvlfr89FMVb75pwpVX2pGdTYE/QkjgSE8XqKxkMAwZUPvrX804coThrrusTudReXkGjh5VvF4y2R0lJQq6ulhP4I8QQgghZLTRTA7xmaYmBs4DN/AHAJmZAj/+sQ2FhQqefdbUk8VBRo4y/vqKiRHQtMDq8+e48HbV4w8AFi7UUV6uDNoPydu6ujDsXoO6DmzbpmLBAh3h4cBVV9mxYYOGAwf6fsW2tgJ79yo444yxk/FDek2fzjF3roGnnjLjF7+wQIjegL6/ysqSvTibm309kr5cZT/ruiyl6Pjj6XLchgG0tDj3n01P5zhyRIHVOvBjN27UMGMGR3i4Z8fkzxITOerq+paoFgIoLlZ7el8Gk6Qk2avvyJG+3wHbtsng74IFrr8DEhJk4M/T55M7dih45hkzvvENHcuX0/cPISSwpKdz2O0MR44wPP20Cbt3K/jJT/qWq585U5YoLyz0/TRXQYGKiAjhk37ehBBCCCEABf6IDzl6mARy4A8A8vI4vvUtOz77zPVEPxmepiaGceMEQkJ8PRL/oSiyDFhNTeBsZ/X1cqxxca7387w8jtBQgU2bfJv1949/mPH44+ZhPXbnTgWdnQyLFskJ7HPOMf5X8lPrc9/NmzUwBsybF3yT3WRwJhNw++02/OpXVowbB2ia6MkO8lfZ2XJb9besv5ISBbffHtJncu/ttzXcd19Iz5877wzx6GKJ5mYZlDkx4y89nUMIoLKy//eoro7h4EGl5zgxVqSlCRgGw+rVZlRW9n4OR48ytLQw5OT49/Y/HBYLEBPDXS5o2bhRw/TpHBMnun5sXByH1crQ1ua58ezbJytTzJ1r4Prr7T7rLUsIIcOVlibL0//972Zs2KDhe9+zY8aMvt8fISGyrLqvy30KARQWKsjL810/b0IIIYQQ/5rFIWNKQwMDYzKLKdAtXChP6gMpE8vfNTczyvZzITFRoLY2cLazujqGsDDRbyk3kwk47TQDmzZpPs2Yratj2LtXRVnZ0N/bTZs0TJ7MkZIifwHGgKVLdezfr6KhgZ10XxV5ecFX2o4MzbRpHA88YMVf/tLt99lfkZEyiFFaKjOVtmxR8f77vt1fAWDNGhlYf//93gB7dzfwyScazjpLx29/240HHuhGeLjAQw+ZXWYs6jrwzjvakEqCOcpQn5jxN2mS7Fc60PFj40YVISEC+fljK/CXnc1x++1W1Ncz/PKXIXjsMTP+8Q8TnnnGBEURQVtyMjlZoLra+TKrro6htHTg4K+jBLSn+vxVVjL88Y9mZGdzfP/7Nih05UcICUAhITKDvKpKwXXX2Qfskz1njoH9+xV0do7iAE9SU8NQV6eMue98QgghhPgXuvwjPtPQwBARIWDqvxVWwDCZZEnKkyf5yfA1NTmXUiNSSorsJeXrSfeBnDi2urrBy/kuWmSgsZFh/37ffSW1tMh9d+3avll6A+noAAoKFCxc6Hxhf+qpBsxm4dS/sKREQUWFgrPOojJrRAaIJ0zw9Sjck5nJUVCg4L77LPjb38x4+WUTXn99aPuKJ9XUMBQWqsjPN7B/f2/AfsMGFZ2dDJdcomPyZIGMDIGVK23gnOHhhy1Ok4BCAE8/bcJrr5nw5JNmt4+pjvKiJ34/aRqQmir67fMnBLB5s4q5cw1YLMP7nQPZ3LkcDz1kxYoVNnR2ArW1CgyDYdkyPWiz+lNS+mb8bd6swmIRmDOn/4lgR3a8J/pTNTTI7T42VuAnP7EFxfk2IWTsuvBCHdddZ8cFFwx8Hj17NgfnDHv2+C7rr6BAhckkkJsbnItbCCGEEBIYKPBHfKa2VkFsbPCcDMfF8Z7ypWTkmpoo48+V7GyOjg7mt1l/b72l4b77LD39nOrqWL/9/RyyszliYrjPyn3abEBHB0N6Osf27X2z9Aby9dcqOGeYP995EiIkRAb/Nm5UewIK69ZpSEjgmD07eI57ZGyYNo33ZCD98pdWXHONHe+8Y8JHH/lmn123TsOECQI//KEN8fEc779vAufABx9omDfPcFpsEB0tsHKlFU1NDPffb8HXX8uFE6+8omHDBg1Ll+o4eFDBl1+697s0NjKEhAiMH+98e1oaR1mZ69PqAwcU1NWNvTKfJ9I0YOlSA/fea8P991tx//1WXHNN8C6CSEoSOHZM6ekdK4TM+hws+BsSAkREiBEH/trbgYceMsNsFrjrLitCQ0f0dIQQ4nNnnWUMGvQDZDWh1FS5YMlXdu5UMGMGh3l4XQQIIYQQQjyCAn/EJ4SQE2FZWcEzAR4bK9DQ4L+71I4dCmw2X4/CfVTq07UpU2SPC3/rtwUA1dUMb72lobxcwY4dchK9rk5BQsLAnyNjslzu9u2qT7ZRR7bf8uV2jBsHfPih+5lMe/YoSE/niIzs+7NFiwzU1CgoL2eoq2P46isVy5bp1OuDBJyzzzbwq19Z8cADVpxyCseFF+o4/3wdL7xgxvbto3ssamuTmX1Ll+qwWIALLtCxfbuKDz7QUFen4MIL7X0ek5wscO+9VkRHC/zxjxbcc48Fa9aY8M1v2nH99XbMn6/j5ZdN6OgY/PX7y0bPyOA4erQ30HOides0JCbyoOxnR1xLSZGf9dGj8oB/6JAs+3Zydrgr8fF8SIG/Y8cYvvpK6Vlw090NrF5tQWcnw8qVNkREDHn4hBAS0PLyDOzapcLwwXqb7m55nTZjxthd7EMIIYQQ/+B/M8dkTKipYWhpYUE1CRYbK/w24+/YMYY//cnSE4zxd5wDLS2gUp8ujB8PJCdzvwv8CQE8+6wJsbEC2dkG1q7V0N0tg2qO0mUDOe00A11dzCe/lyPwl5AgsGSJjs8+U93qCyIEUFysIifH9YV9bi7HxIkCmzZpWLdOQ1iYGNMZPyRwaZrM+nMErRkDrrvOjpwcA+vWjW79wE8+0cAYsGSJXPV/xhkGxo8XePllE6ZNM5CR4fp4k5IicM89Ntx1lxVmM3DJJXYsWyaf45vftEPXgddeG/x3aWxkiI7u+xrp6RxCAJWVzsew2lqGggIK+o81iYlyGzl6VGaYvvGGCbGx3K2yb3FxYkg9/l57TcPjj1vwq19ZsGuXgj//2Yzqaoa77rL29AwkhJCx5LTTDHR2Mnz22ehf+5aWynLWwTTPQQghhJDA5F8zx2TMKC5WoCgCU6cGzwlxbKxAeztzudrf1xx9ZgKlB2FrK8A59fjrT1aW/wX+tm5VsW+fihtusOPii3UcOqT0lO4cLOMPkJPyFotAefno/17NzXK/iIwU+MY3dOg68K9/mdHUNPDjjh5laGtj/U7kqiowf76BTZtUfPGFivPO06nkDwkajMlgV2vr6L2mYQAff6zhrLMMhIXJ2ywWGQQUQvb/GQhjwKxZHA8+aMUVV/TeNzISuPxyHZ9+quHIkYG/J5uaXAf+UlIENE2gvNz58Y6gvzuZXiR4jBsny8weOSKz8fbsUbFihR2KG19xCQnuLyRzLEDJz5clRFevtqCoSMFPfmLrNwhOCCHBLjVV4KyzdLz6qgltbaP72kVFCiIiBJKS6BhMCCGEEN/yr5ljMmYUFamYMkUgJMTXI/EcR0+hY8f8L7h25Ijc1Rsb/W9srpwYiCF9ZWVxVFcrbmWljYauLuCll0yYO9fArFmyh11SEu/JnomLGzzAryjA5MncJ4G/lhZA02TPrshI4DvfsWPfPgV33BGC11/XYO9bORAAsHevAlUVyM7u//dbtEhHR4fcnh0ZSoQEi/BwoLV19L5XqqsZ2tsZ5s1zDqJdeKGOb33LNqL+md/4ho5x4wS2bRs4O+DYMdeBP00DJk0STn3+2tqAL7+UZUkp6D/2JCfL77QXXzRj9mwD+fnubZ/x8QIdHcyt0rO1tQzNzQyLF+u47z4rfvpTK+6+24YZM4JnYR0hhAzH1VfbwRjwyiujW5mgqEhWA6Esf0IIIYT4GgX+yKgTAti3T0FubnCtfncE/vwxq87RY8Yfx+aKI/BHGX+uZWfLknKHDvnHIfzDDzV0dsrSf4DMqlm2TAa8LBaBiRPde56MDIGKitHfRpubGSIiRM8F+qJFBh59tBtLl+p4912t3zJBxcUqsrI4LJb+n3vyZIH0dI7Fiw2Eh3th8IT40MSJAlbr6GW6V1QoYAxIS3MOaoSGAosXj2ySTdOAmTMNFBb2H/iz24H29v6z0TMynBcvrF8v+4Weey4F/cei5GSBoiIVra3A9dfb3d4+HYtl3Mn6O7GCBmPAnDnulRMlhJBgFx4OXHWVHV98oaGkZHSumTo65LkKlfkkhBBCiD/wj1ljMqYcPszQ0dF/ebxAFRUloKr+2efPkfHnj9mIrjQ3M6iqoEBJP+LjBcLCxKhdxA7EZgM++kjDmWcaiInpnQxfsMBAeLhAfLxwe7IzLY2jrk5xK8vBk1paGCIjnW8bPx645hodmZkc+/f3DQRw7ljAMPBxjDHg17+2YsWKftIGCQlg4eFynx+trL+yMgUJCRzjxnnn+fPzOSoqFKfs+KoqhhdeMMFmk2U+gf4XpaSnc9TUKOjuBg4dYvjoI+eypGRsSU6W3w/Ll+tD6rXn6It7cr9IVxwVNLy1TxBCSCA75xwD6ekczz1nghiF9aQHDsi+rsE2z0EIIYSQwOT7WWMy5hQXqzCZBDIzg+uEmDEgJkagocG/dishZMZfRIRAYyMblYuekWpsZIiMdD9gNNYwJrP+Dh70/ba2caOKjg6GCy5wzmgxm4Fvfcs2aM+tE2VkyGNCRcXo/l4y8Od6x+jvfa6oYOjqYm6t6FVV0LZMgtLEiXK/aWsbnQ28vFzpOU54w8yZBhRFYOfO3n3+v/814cMPNfz1r+aerPkTFzmcKD1dZmM//LAZ998fgogIgYsvpmy/sWr2bAPnn6/joouGtg2Ehclt8aWXTKisdN63jh/v/bfs76cgJye4KmgQQoinKAqwfLkdhw8rPYt3vKmoSEVsLO+pBEQIIYQQ4ku+nzUmY05RkYKpUzlMo1tuf1TExgq/K6fZ3AwcP84wc6YBu52hvd3XIxpcc3PfDCziLCuLo7RUAfdh/FwIYN06DXPmGEhI6HuBe+qpHAsXuj8hmZgoYLGIUe/z19QkA+OuZGZyNDWxPv0xi4tVmM0CU6YE1wIGQobCsd+0tnr/tQwDqKxkSEvz3mRaWJgM9hcUyCzf6mqGXbtUnHGGjp07FTzzjDxx6S/jLzlZYNw4gfp6Bd/+tg2//a3VZT9AMjZERAArVtiH1d/xtttsiIsTePhhCxoaGCorGR5+2Ixbbw3BwYPy+6iyUlbQoJJyhBDSP8e5enm596/R5WIMOiYTQgghxD9Q4I+MKl0H9u8P3hPiuDj/C/xVV8vdfOZM+Z4HQrlPGfijydKBZGVxWK0MVVUMNhvw6acqampG97PduVNBTY2CZcs8k9Hi6N012oG/1tb+t7esLLnflJY6j6m4WC5g0DSvD48QvxUWBiiKGJVSn9XVDHY782rGHyDLfRYVyXKda9dqiIgQuOUWO779bTvq6hSEhYl++3pqGvD731vxyCPdOPtsAwqdZZNhCg0F7r7bCotF4L77LPjlL0NQV8cQFyfw7LNmcC4XoGia6PmeIoQQ0ldkpKxQ4O3ri9ZW2V6DynwSQgghxF/QlAQZVeXlCqxWhtzc4CxL5Mj486dymtXVDCaT6CkF5W+lSF1pbGT9ZlQQKSODQ1EE3nnHhLvuCsG//23GBx+MbhTq/fc1TJnCkZ3tuQvc9HSBiorRC2DabEBnZ/8ZfxMnAvHx3KmfomMBA13Yk7FOUYAJE0anx19ZmQLGgMmTvR34M6DrDJs3q9i4UcXSpTo0DTjzTAM33GDD/PkDn7/ExAiEhHh1iGSMmDgRuPtuG1JSOFassOGhh6y49VY7KioUfPqpiqIiBdnZfFgZhYQQMlYwJktxezvwV1wsqwVQ+WVCCCGE+AvKVSCjqqyMYdw44dVSXb4UGytw/DhDZ6fMhPAH1dUKkpIEJkwAzGbRp2ShP6KMv8GZzTJItn27irlzDUREsFHNNq2sZNi/X8WPfmTz6POmp3N88IGGjo7R2Yeam+V71l/gD5DlPk/M+DtwQIHNxujCnhDIVfSjEfgrL1eQmMi9HlRLSBBISOB44QUTNA1YvLg3o/m88wwAtN+T0RMfL/DLX/Z+z2ZlcZx1lo5XXzXBMIDly6mHJCGEDCY9neOTTzQI4b2+23v3KkhK4oiI8M7zE0IIIYQMlf+n/pCgcvrpBn7+cytU1dcj8Y64OJmJUF/vP8G16mqG5GQOxmQmwkhKfZaWKl7vEdjVBVitlPHnju9+14ZVq7px++02ZGXxUd3udu+WPe7mzPHsJLijjN9olft0BCwGCjRnZ3McPszQ3S3//+GHGpKSONLTaRslJDxcoK1tdAJ/6emjk2Wbny974p5zjoHx40flJQlx29VX28GYPFcK1tL5hBDiSenpHO3tfXt2e4rNBuzYoeLUU2lxECGEEEL8BwX+yKiaOBHIyAjeyfK4OPm7+Us5TSFkxl9yshzXSAJ/27creOABi9fLSTY1yfFR4G9wyckCU6bI9yk2luPYsdErM+utHncJCQIhIQIVFaOzDzm2t4Ey/rKyODhnKC9XUFPDUFioYtky3WsrhgkJJBMnCrS0eHdn0HWZZezt/n4O8+cbiIwUWLqUsqmI/wkPB667zo74eD5qwXBCCAlkjmNlebl3zld27lTQ1cWwcCEF/gghhBDiP/wjOkFIkBg/HggJEaNacnEgbW2yf1lysrzYiY4eXqnPffsUPPGEGUJgRBmD7nC8d7GxNJk1FLGxArrO0NLi/ddy9LjzRqYBY0Bamvf7cDi0tAAmkxgwqyclRQYjDx5UsG6dhgkTBF3YE/I/ERECbW3efY0jRxh0nY1alm16usBf/tKN2FhagEL805lnGnj0UavHF98QQkgwioyU5yveur7YuFFDejrvWWxLCCGEEOIPKPBHiAcxJgMw/hL4O3JE7uKOi5DY2KFn/B0+zPDYY2ZMncoxd67h9R6B9fUMmiYQGenVlwk6jgnq0cg2PXRI9rjLzfVO8Cs9XXhtRe7JWlpkP8mBsvcURfb5+/prFRs2qFi6VIfJNCrDI8TvhYfD6z3+KioUMAakptKCEEIIIYQMnbcWFnZ0ALt2KVi4kKoEEEIIIcS/UOCPEA/zp8BfdTWDqoqeEqQxMQKdnQzHj7v/HM8+a0ZMjMDtt9sQF8d7SiN6S0ODgpiYgQMxpC9H4G80+vwVFysIDRVIS/POqtaMDI6GBgXNzV55eifNzQwTJw5+v8xMjoMHZfBhyRK6sCfEYeJEge5uBqvVe69RXq4gKYkjJMR7r0EIIYSQ4JWRIQN/nm6LsHWrCiFkmXBCCCGEEH9CgT9CPCwuToxK8MUd1dUKkpIEVFX+PyZGXum4m/VnswFlZQyLF+sIDZV99xobvdtHrqGBUXm1YQgJASZMGJ2gc1GRglNO4VC89A0yY4YBxoCdO1XvvMAJHBl/g8nOlplGZ51lICzM26MiJHBMnCj3H1dZf7oOvPKKhiefNOHJJ014+mnTkBaeOJSVKaPW348QQgghwSc9naOjg7m8Dv7ySxVFRcO7sNm4UcP06dythYSEEEIIIaOJAn+EeFhsLMexYwydnUBXl/MfY5QXAlZXMyQl9QY1oqPlv90t11lersAwGLKyensEGgYbsJ/TSIOCFPgbvtHINrVagdJSBTk53tuYw8KArCwDhYXOgT8hRr59nay52b3A39SpHAsX6rjoIsr2I+REjsCfq++Fjz/WsGaNCY2NDI2NDJ9/rmHLlqEF9Ds6ZMlpx/cQIYQQQshQpaXJ84iT2wkIAfznPyb87W9mdHaiz88GUlfHcPCggjPOoGw/QgghhPgfCvwR4mEJCQK6znDrrePw3e86//nNbyyjOpbqagXJyb2TpZGRAorifp+/0lIFFovApEnyqicqauDAYWmpgu9/PwQtLcMbrxCyVCUF/oZnNAJ/JSUyGJyb691J+Lw8jj17FNhsvbc9+6wJDz1k9ujrtLQwREQMvr1ZLMD3v2/vCZ4TQqT+Mv6am4E33tBw7rk6fvUrG371KxumTzewadPQAn+7d6vgnCEvjybVCCGEEDI8kZFARITo0+evtpaho4OhrY3hjTd6m3jv3y+va/vLBBQCePNNDRaLQH4+naMQQgghxP9Q4I8QD5s+neNnP7PitttsTn/OP1/HwYNKn5WErggBbN6sOgU9hqq7G2hvZ4iP7w1UKIoM3g0l8DdlCu9TKrS/Pn+lpQo6Ohi2bNGcbq+pYdi/f/DDTWcn0N1Ngb/hio3lXg/8FRUpCA8XSE727meUn2/Abmc9F9vNzcDnn6vYu1dFXZ1nfkerFejqci/jjxDi2oQJAGN9A38vvWSCyQRccYW957aFCw0cOKAO6Tj19dcq0tM5IiM9NmRCCCGEjEHp6bxP4K+kRPbwvuQSOz7+WENFBUNVFcNjj5nR0cGwfr3m8rlefVXDpk0abr7ZDsvoru0lhBBCCHGL3wT+XnrpJSxevBgzZszAlVdeid27dw94/7a2NqxatQqLFi3C9OnTsXTpUnzxxRc9P1+8eDGmTp3a58+qVat67mO1WrFq1SqcdtppyMvLw49+9CMcO3bMa78jGRtUFcjP5zj9dMPpz5IlOoQADh0afLc7dIjhiSfM2LBh+D3OHH0GTw6ixcS4F/gTQl4IZWb2ZnZNmACoqug346+mRt5+YkaHEMDf/27GU0+ZXD7G1Zjj4qik23DExQk0NirQvViNsrhYRU6O7MHnTUlJAvHxHAUFclv68EMNJhNgsQhs3uyZ3n8tLfKXcCfjjxDimqLI/qInBv6KihRs3arhm9+0Y/z43vueeqoxpH1Y14E9exTK9iOEEELIiGVlcZSWKrD3rklCaamClBSOSy7RkZjI8fTTZjz8sAWxsQL/9392FBT0Xbj74Ycq3nvPhGuvtWPRIjpHIYQQQoh/8ovA39q1a/H73/8eP/zhD/HWW29h2rRpuOWWW9DY2Ojy/jabDTfffDOqq6vxpz/9CR988AEefPBBxMfH99zn9ddfx8aNG3v+PPPMMwCA888/v+c+v/vd7/DZZ5/h8ccfxwsvvID6+nrcdttt3v1lyZiVkCAQFiZQUjL4bucIdjj+Hg5HRkVsrHMQTQb+Bh9DfT1DeztDdnbv4xmTff76y/irrWUICxOoqFBQXS3vU1qq4NAhBfX1gwek6uvluOLiKBAzHLGxAkK438PRHcePA7/7nRk/+lEIfvSjEJSXK8jJ8X5gljFZ7rOwUMXx48Cnn2pYvFjHvHkGNm5UPdLrr7lZvk+U8UfIyEyc6Bz4e/FFE7KzjT6TYSEhMvi3YYPrffjDD1U89ZSp52cHDijo6qIyn4QQQggZudmzDVitzpVoHAtdNQ246SY7yssVaJrAXXdZsWSJDsNg2LGj95p81y4FL75oxrJldlx4IfX+JoQQQoj/8ovA3zPPPIOrrroKl19+OTIzM7Fq1SqEhITgjTfecHn/N954A62trfjb3/6GOXPmICUlBfPmzcO0adN67hMVFYXY2NieP5999hlSU1Mxb948AEB7ezveeOMN3HPPPZg/fz6mT5+O3/3udygsLMTOnTtH49cmYwxjcpXhwYOD73aFhSpMJoGiIgXd3cN7vYYGBpNJICLC+XZ3M/5KS+U4T8z4A2Sp0P4z/hScfbaO8eMFNm6UF0hr12owmWRAarASjQ0NDCEhwilDhLjPETB1ZE72x25HT2B2MM8+a8KhQwrOOkvHOefouOoqO+bPH51J+Lw8Ay0tDM89Z0J3N7B0qYEFCwzU1Sk4dGjkwU3K+CPEM04M/NXXM1RVKVi2THeZGbxokYHaWgXl5X1/+NFHGr74QsNXX8nvn8JCFZGRAmlptI8SQgghZGQmTRKIjhY9i2s7OoCjR5Weha45ORy3327FL35hQ0QEEBUF5OQYPde1Npu8NsrNNXDttRT0I4QQQoh/83ngz2azoaioCAsWLOi5TVEULFiwAIWFhS4f8+mnn2L27Nl44IEHsGDBAlx00UX4+9//DsNwPRlts9nw7rvv4vLLLwf73yzU3r17YbfbnV53ypQpSEpKosAf8ZrsbFlehA+QMNXQICdNL71Uh64z7N07vN20oUFBTIzoM/EaEyMnaAfLvispUZCUxBEW5nx7dLQsJ3my48dlICUlRWDePAObN2uoqWH4+msVy5fLF6utHTzwFxfXd8zEPdHR8r0brH/Wp5+q+NWvLINuA5s2qT29K664Qsdll+m4+GId48Z5cNADmDqVIzRUYONGDaedZiA6WiA3lyMiQt42Us3NMjgeGuqBwRIyhsnAn/x3cbHslXPKKa6/6Prbh2tqGOrqFERFCbz4ohnd3UBBgYLZs71fWpgQQgghwU9WFDFQWKg4teA4scLN3LncqVXGwoUG9u9XcewYw3vvaWhqYrjxRjudmxBCCCHE74185nSEmpubYRgGoqOjnW6Pjo5GWVmZy8dUVVVh69atuPjii/HPf/4TlZWVWLVqFXRdd1mq85NPPkF7ezsuvfTSntuOHTsGk8mE8PDwPq/b0NDg9vgVhUFR6KyPuGfqVAGbjaGmRsXkya4zGHbtUmEyAeefz7Fxo8CuXRpOP33gCI2qKk5/A0Bjo4KEBEDTnIN08fFye21pUZGQ0H8WxaFDKqZO5X0eHxvLcOAA63N7QwMDY8CkSUBiIsfnn2t44gkLwsOB//s/jrVrgbo6FdoJR52331aRmSkwfTrvGXN8fN8xE/domszIbGpSoWkDfbYadJ2hsVFFcrLr+9XVMTz7rBmLFhk4+2wBT64TcbW9uqJpwOzZAlu2MCxf3rstLlrE8cUXGm66yXDanoaiuxsoKVERHQ2YTLS9Edfc3VbHushIhrIyBZqmYN8+FRkZAhMn9v+eLVrEsWGDhhtu6N2Hd+5UYTYDP/+5Hb/8pRlPPWVBQ4OCefMM+k5wE22vJJDQ9koCCW2vwWPePIH16xXU1KgoK1MwcSKQlMR6FoifbP58gWefBd5914SNG1UsX25g0iQGwD/ngGhbJYGEtlcSSGh7JYHI54G/4RBCIDo6Gg8++CBUVcX06dNRV1eHp59+2mXg74033sCZZ57p1APQU6Kixvd7kkjIyU49VfY4OnpUw+zZru9TXAzk5QHJyRrOOAP47DMgIsLi1qrC8PDeVKy2NiA3F4iMNDvdJzsbMJmA7m4NkZGun6erC6itBa68EoiMtDj9bPJk4IMPgIkTTVBO+L7r6JDPe8opGkJDgZQUoLoaWLECiI/XkJ4OtLb2vqauA2vWADk5wBln9I751FP7jpm4b/Jk+Vmc/Lmd6OhR+Vl1drreBnQd+M1vgNhY4I47NISG9v9cI3Hi9tqfFSvkdpyf3/t1dfHFwEcfAWVlGk47bWivyTmwfj3w4otye/vWt4DISNNQh07GGHe21bEsJQXYuBGIiDDh4EFg8eKB96tLLpH78N69Gs45R95WXAzMmwfMnKnh2muBl18GwsKARYs0mOkrYUhoeyWBhLZXEkhoew18CxYAEyYABw5oqKwEZs4EoqL6nxaLjATOPBP48ksNcXHAzTdrsFi8c23kSbStkkBC2ysJJLS9kkDi88BfZGQkVFVFY2Oj0+2NjY2IiYlx+ZjY2FhomgZV7W2ynJGRgYaGBthsNphPmCGqrq7G5s2b8Ze//MXpOWJiYmC329HW1uaU9dfY2IjY2Fi3x9/U1EkZf2RIkpLMKCjgmD+/bxZfVxdQWGjBddfpaG42MHUqw6uvmrFjhw1ZWf1ncKmqgvDwcWhrOw7D4BACqKy0YN48+TwnMpkAISzYv19HWprr8rh79iiw2UxITLShudn5dS0WBVarCeXlVkRF9d5eUqIiNFSDzWaFzQacfrqK997TMH++Fc3NQGSkhkOHGJqb7QCAw4cZOjvNKCwEqqutGDcOOHLEgrPO6jtm4r4JEzQcPqygudnm8uedncDhw/Ji9cABHdnZfd/r//5Xw/79Kn79axusVgGr1bNjPHl7HUhUFLBkCdDc3HvbxIlAYqIZH37IkZ09tP4aH3+s4t//1jB/Psc119gRF+f83IScaCjb6limqgpaW03YudOG+noz0tLsaG7u//0KCwNyc034738ZZs2yoaMD2LXLgm9/Wx7/lywBPvzQjMmTBTo77ejsHMVfJoDR9koCCW2vJJDQ9hpcTjnFhM8/Z6iuZrjsssGvPefNU7B+vQnXXGNHVxdHV9coDXQYaFslgYS2VxJIaHsl/iQycrxb9/N54M9sNiM3NxdbtmzBueeeCwDgnGPLli1YsWKFy8fk5+djzZo14JxD+V/KUUVFBWJjY52CfgDw5ptvIjo6GmeffbbT7dOnT4fJZMKWLVuwdOlSAEBZWRmOHj2K2f2lYrnAuQDn/QdkCDlZZqaBnTsV6HrfL4rCQhV2OzBrlg5dF5gyBRg/XmDHDob0dAMHDzKUlKg44wwdEyb0fW7D4NB1jvZ2WcowKspw+TqxsRzV1XD5MwDYv1/B+PECcXFGnz5wEycKCGFCfb1AeHjvtn/kiIqEhN7Xu/BCjoULdYwbJ6DrQHw8x+7dWs/PS0tVCAHY7UBhIUNWlgG7HYiOdj1m4p6YGI6CArl9Wa3A55+rOOssAyEh8ucHD8qeFqGhAkeO9N0GiooUvPOOiquusiMtre/n70mO7XU4ZszQ8eWXGux2PqQeG7t3a5g61cAPfiADo978/UjwGMm2OhaEhQFCABs2MDAmMGWKPui+df75dvz+9xbs3Am0tjJwDsyYYYeuA4oC3HdfN1SV9tHhoO2VBBLaXkkgoe01OMyapeOf/5TzRhkZg1975uRwPPKIgfh4ETDnJbStkkBC2ysJJLS9kkDi88AfANx8881YuXIlpk+fjpkzZ+K5557D8ePHcdlllwEA7r77bsTHx+OOO+4AAFx77bV48cUX8dvf/hYrVqzA4cOH8Y9//APXX3+90/NyzvHmm2/ikksugXZSI6gJEybg8ssvxx/+8AdMnDgRYWFh+M1vfoO8vLwhBf4IGaqsLI4PP9TQ2iozl05UWKggJaW3obiqArNmGdi+XUVtrYLt21UwBrz9tkkYahkAAQAASURBVIbly3Wcd57usgRaQ4OMhMTFuQ5KJyUJ1NT0Hy2prFQwebLrgEp0tHzOY8cUZGb2ro6srVWQltb75adpQExM7+snJgq0tzN0dMhJ4vJyBUlJHIoif++ICHnfE5upk6GLjZXvc2cn8OSTZuzcqcJksmHxYvlZVVQosFhkX8XaWucPuL1dPiYnx8BFF/n3VW1uLseaNQxHj7J++xSeTAigpETBmWf69+9GSKBxLALZskVDZibvWWgwkJwcjsmTOdau1TBuHJCezp1KD5/UgpkQQgghxCNmzzbAGMCYQEaGe5O38fF0jUoIIYSQwOIXgb9ly5ahqakJf/7zn9HQ0IBTTjkF//rXv3pKfdbU1PRk9gFAYmIinn76afz+97/H8uXLER8fjxtuuAHf+c53nJ538+bNOHr0KC6//HKXr/uLX/wCiqLgxz/+MWw2GxYtWoT777/fe78oIZCBPwAoLVVw6qm9Fxo2G7Bzp4pzznEOSuTlcWzapKG7W+C737Vh5kwDb79twquvatizR8HPf963pGN9vdxf+guiJSRwbN2quvwZIAOH6emuL4LGjwfMZoGmpt6gkRBATQ3D/Pn9XxAlJsrnq61lyMwUKC9XkJ7OERUl8NlnGnJy5M9PDBaSoXN85n/6kxn79yv/ywBUewJ/ZWUKUlMFkpM59u1z/gp45RUTdB343vdsQ8qi84WsLA5VFSgqUpCc7F5p2GPHGFpbGbKzaXUWIZ40caI87jQ1MZx1lnv7F2PAhRfqeOIJM0wmgeXLKSBPCCGEEO8LDwcyMzk4B/URJoQQQkjQ8ovAHwCsWLGi39KeL7zwQp/b8vLy8Oqrrw74nIsWLcKBAwf6/bnFYsH9999PwT4yqqKjBaKiRJ/A3+bNKjo7Gc480zmIMW+egZ/+1Irp0zkcfcRvusmO6GiBt992vQs3NDCEhgqM76fkb2KiQGOjApvN9cVOQwPDvHmuA3CMAVFRzoG/5mbAamVISOh/wjchQT5fTY2CtDQDlZUMCxZwTJki8N57DJs3q5gwQbiVKUL6FxsrP4PiYhXf+54Nra0Mr7+uwWoFLBagooJh9myOpKTezEDHdrJnj4ozz9Sdsm78VUiIvGAvLlZx3nnuBf5KS2VAPDOTAn+EeFJ4uPxuEAI9izjcMW+egf/+V36f5OVRb1dCCCGEjI5bb7XBoFMPQgghhAQxZfC7EEI8LTfXwKZNGo4fl/8XAli7VkNenoHEROeAm6IAc+b0Bv0cIiMFrFYGq7Xv89fXswFLZiYmCgiBPqUeAaCzE+jsHPjxMTECjY29j62pkYeSpKT+HxMSIsdcU8Nw5AiDrjNkZAhMmcIxYYLA3r1qv6VJifsiI4GkJI7rrrNj0SID+fkG7HaGvXsVdHYCdXUy09IRpHVsA42NDI2NrCcjNRDk5nIUFyvgbg65pERBQgJ32R+TEDJ8igKEhQmYTGJIgXVNAy65xI4pUzgmT6bjPyGEEEJGR0KCcLtdACGEEEJIIKLAHyE+cNllOjo7gbfekhl7O3cqOHpUwYUXul/qzFFarbW1b/CuoYENGERzlN10BOxOfizQmznmSlSUc+CvtpZBUcSg/fkSEzlqaxVUVChgDEhNlT3+Zs82Bn1N4h7GgIcftuKCC+S2lJgokJDAUViooqJCft4y8NebgQn0ZsMFUuAvJ4ejq4uhosK9uqSlpUpA/X6EBJKICIGpUzlMpqE9bvFiA6tWWf2+vDAhhBBCCCGEEEJIoKDAHyE+EBsrcOmlOj74QMORIwxr12qYMoUPqfeYI/DX1tb3Zw0NbMAg2oQJMjvDVcZffb28baDA4cmlPmtqFMTGCmiDFA9OSJAZf2VlCpKSeE9Zz/x8R+CPVl16Q36+gcJCFWVlCiwWgcREgXHj5ER9TY38HA8eVBAXxxER4duxDkVmJofJJFBc3H+/SofubqCykgJ/hHjL1VfbcdVVdl8PgxBCCCGEEEIIIWTMo8AfIT5ywQU64uIEHn/cjH37VCxbpg8p4yEiwnXGH+fAsWMDl+oEeoNwJ2toUGA2iwHLIUZFCbS2Muj/S1CsqWF9SpS6kpgog43l5bLcpMOMGRyhoYJKvXlJXh5HayvD55+rSEuTWZaAzMB0ZPyVlCgB1/tO04CpU2W5z8EcOqRACAwpuE4Icd/s2RwZGXQMJ4QQQgghhBBCCPE1CvwR4iMmE3DjjXbU1iqIjeWYO3do3cXDwmRZx5MDf83NDIYxeODvxKDPiRxlQgcKQkZHyx6Bzc3yTrW17gb+OOz2voG/kBDg8ce7cdpp1GHdG7KzOcaPF//r79f7OSUkyECszQZUVLCADIrl5nIcOKD0BKH7U1qqIDSUenkQQgghhBBCCCGEEEKCGwX+CPGhGTM4rrrKjptvtvdkYblLUYAJE0SfwJ+jVOfggT+Z8SdOupssEzrwY6Oj5c+rqxlaW4H6eqWnb+Bgr+lwYgAKAEJDQT2evERVgVmzZFA1La33c0pKktvAoUMKOGcBl/EHALm5BqxWWT52II6MRtrGCCGEEEIIIYQQQgghwYwCf4T42PLlOmbOHF7AZeJEgZYW50hGQ4N7gb+EBI6uLob2dufb3Q38KYrAI49Y8MMfjoMQcCuTKiZGQFVlNuHkyYEXZApkc+bI93vKlN73PSFBZmBu3arCYhGYNCnwsuHS0gRCQwW2bu2/z58Qsoch9fcjhBBCCCGEEEIIIYQEO83XAyCEDN/EiQJtbX0DfxMnCpjNAz/WkX1XU6MgPFwGRIRwL/A3bhxw333WnlKfFot7vdNUFYiPl0FDi2XQuxMPmjfPwAMPdDtlXSYlyX9v3aoiM5ND7T925rcUBbjwQh1vvKFh8WIdKSl9t93qaoauLkaBv/9n777Do6ryP45/7p3JpEJISEINHULvvQiCithAFLD3XXtbG1hWXV2xrq7iuqL8ZG1rFzso2JemgArSewIkJCQEkpBkZu79/REzEtNDkslM3q/n4YG599xzv3dyDJjPnHMAAAAAAAAABD1m/AEBLDraVnZ2yWNVCe6kogDOMKR9+34PDrOzJbfbUEJC5QFJly62hgyxNGSIpb59q76E4rBhXo0axV5+9c0wpE6dSo6L4hmYubmBHYqdcopH8fG2/vOfkFJL1+bnSy+84FKTJnZALmUKAAAAAAAAANVB8AcEsKLgr/SMv/j4ygMOl0tq3txSaurv16enF31LqEpwWFNnneXR6ad76qx/VJ3DISUkFH2tAzn4CwmRLr7YrQ0bHCWW/PR4pDlzXEpJMXTbbQUKC/NjkQAAAAAAAABQD1jqEwhg0dEqFfylpZnq0aNqwVqrVrb27v09/6/q/oAIHq1a2dq3r+Tef4Gob19LQ4Z49dprITJNyTBs/fCDQ7/8Yuq22wpLzXYEAAAAAAAAgGBE8AcEsOhoW/n5hgoLi17n50sHDxpq0aJqIUerVrbWrfs9+Nu/31BUlK3w8LqoFg1Rt26WDh82FBXl70qO3QUXuHX33aF65pmiDS4dDltXXeVWnz6BHWoCAAAAAAAAQFUR/AEBLDq6KODLzpZatCgK7iRVI/iztGSJQx6P5HRWfX9ABI/TTvPo1FODY+nV5s1tPf10vgoKil47nWJ5TwAAAAAAAACNCnv8AQGsadOikO7gwaLALy2tOPir2gynnj0teb2Gb180gr/GyTAqbxMoQkKkqKiiX4R+AAAAAAAAABobgj8ggDVrVjzj7/fgLzTUVtOmVbu+TRtbfft69cknTtl20YzBhASWRQQAAAAAAAAAIBAR/AEBrEmTotlaR8/4a9nSrtYMrlNP9Sg52dQvv5jKzGTGHwAAAAAAAAAAgYrgDwhgpilFRdnKzi56nZpqKCGhesFdz56W2re39NprIbIsgj8AAAAAAAAAAAIVwR8Q4Jo1s3XoUNEUv9RUo8r7+xUzDOmUUzzau7fo2wHBHwAAAAAAAAAAgYngDwhw0dG2srMNeTzSgQPVn/EnScOGeRUbW7REaFwcwR8AAAAAAAAAAIGI4A8IcE2bFi31mZYm2bbUokX1gzunU5o61a0ePbwKCamDIgEAAAAAAAAAQJ1z+rsAAMcmOlrascPQvn1Fr1u2rNmMvXHjvBo3zluLlQEAAAAAAAAAgPrEjD8gwBUv9blvnxQSIsXGslQnAAAAAAAAAACNEcEfEOCio20dOSLt3i0lJBTt0wcAAAAAAAAAABofgj8gwEVHF83w27ChZvv7AQAAAAAAAACA4EDwBwS4pk2Lwr7duwn+AAAAAAAAAABozAj+gABXPOPPtqWWLQn+AAAAAAAAAABorAj+gADXtKl8+/olJBD8AQAAAAAAAADQWBH8AQHO4ZCaNCn6MzP+AAAAAAAAAABovAj+gCAQHW3LNKW4OII/AAAAAAAAAAAaK6e/CwBw7Ir3+XM6JY/Hz8UAAAAAAAAAAAC/IPgDgkCHDrbcbn9XAQAAAAAAAAAA/IngDwgC55/vUUxMqLKy/F0JAAAAAAAAAADwF/b4AwAAAAAAAAAAAIIAwR8AAAAAAAAAAAAQBAj+AAAAAAAAAAAAgCBA8AcAAAAAAAAAAAAEAYI/AAAAAAAAAAAAIAgQ/AEAAAAAAAAAAABBgOAPAAAAAAAAAAAACAIEfwAAAAAAAAAAAEAQIPgDAAAAAAAAAAAAggDBHwAAAAAAAAAAABAECP4AAAAAAAAAAACAIEDwBwAAAAAAAAAAAAQBgj8AAAAAAAAAAAAgCBD8AQAAAAAAAAAAAEGA4A8AAAAAAAAAAAAIAgR/AAAAAAAAAAAAQBAg+AMAAAAAAAAAAACCAMEfAAAAAAAAAAAAEAQM27ZtfxcBAAAAAAAAAAAA4Ngw4w8AAAAAAAAAAAAIAgR/AAAAAAAAAAAAQBAg+AMAAAAAAAAAAACCAMEfAAAAAAAAAAAAEAQI/gAAAAAAAAAAAIAgQPAHAAAAAAAAAAAABAGCPwAAAAAAAAAAACAIEPwBAAAAAAAAAAAAQYDgDwAAAAAAAAAAAAgCBH9AHXjttdc0fvx49enTR9OmTdMvv/xSqs2aNWt00UUXqX///ho4cKDOP/985efnV9jv3r179ec//1n9+vXTiBEj9Mgjj8jj8fjOf/7557r00ks1fPhwDRw4UDNmzNB3331XYZ8FBQWaOXOmTj/9dPXs2VPXXHNNhe1XrVqlnj17avLkyRW2Q+AItvG6YsUKJSUllfqVnp5exXcEDVWwjVVJKiws1JNPPqnjjz9evXv31vjx4/XOO+9U4d1AQxds43XmzJllfm899dRTq/iOoCELtvEqSR9++KHOOOMM9evXT6NHj9asWbOUlZVVhXcDDV0wjtfXXntNkyZNUt++fTVx4kQtWLCg8jcCDV4gjdUVK1bo6quv1ujRo9W/f39NnjxZH374Yal2n332mU4++WT16dNHp59+ur755psqvhto6IJtvG7ZskXXX3+9xo8fr6SkJM2fP7/qbwYavGAbr2+99ZbOO+88DRkyREOGDNEll1xS5jMB1UHwB9SyTz/9VLNnz9a1116r999/X927d9fll1+uAwcO+NqsWbNGV1xxhUaPHq23335b77zzjs4//3yZZvn/SXq9Xl155ZVyu91644039PDDD+v999/X008/7Wvzww8/aOTIkZo7d67ee+89DRs2TFdffbXWr19fYb+hoaG68MILNWLEiAqf7dChQ7rjjjsqbYfAEczjdeHChfr+++99v5o3b16NdwYNTbCO1RtvvFHLli3T3//+dy1cuFBPPPGEOnbsWM13Bw1NMI7Xu+66q8T31G+++UbNmjXTySefXIN3CA1JMI7XVatW6Y477tDZZ5+tjz/+WE899ZTWrl2re+65pwbvEBqSYByvr7/+up544gldf/31+uSTT3TDDTfo/vvv15dfflmDdwgNRaCN1TVr1igpKUlPP/20PvzwQ02dOlV33HGHvvrqK1+b1atX65ZbbtHZZ5+tBQsWaMKECbr22mu1efPmY3y34G/BOF6PHDmitm3b6pZbblF8fPwxvkNoSIJxvK5YsUKnnnqqXn75Zb3xxhtq1aqVLrvsMqWlpR3ju4VGzQZQq84++2z7/vvv9732er326NGj7eeff953bNq0afaTTz5ZrX6//vpru3v37nZ6errv2Ouvv24PHDjQLigoKPe6U045xX7mmWeqdI877rjDvvrqq8s9f9NNN9lPPvmk/fTTT9tnnHFG1YtHgxWM43X58uV2t27d7Ozs7GrVjIYtGMfqN998Yw8aNMjOysqqVs1o+IJxvP7RF198YSclJdkpKSlV6hcNVzCO1xdffNGeMGFCiWMvv/yyPWbMmCpWj4YqGMfrjBkz7IcffrjEsdmzZ9vnnHNOFatHQxTIY7XYn/70J3vmzJm+1zfeeKP95z//uUSbadOm2ffcc0+1+kXDE4zj9WjHH3+8/dJLL1WrPzRcwT5ebdu2PR6PPWDAAPv999+vVr/A0ZjxB9SiwsJC/frrrxo5cqTvmGmaGjlypNasWSNJOnDggH7++Wc1b95c55xzjkaOHKkLLrhAP/74Y4V9//TTT+rWrZvi4uJ8x0aPHq2cnBxt3bq1zGssy1Jubq6aNWt2zM/27rvvKjk5Wdddd90x94WGIZjHqyRNmTJFo0eP1qWXXqpVq1bVSp/wj2Adq19++aV69+6tF198UWPGjNHEiRP1yCOPVLr8CBq2YB2vf/TOO+9o5MiRatOmTa32i/oVrOO1f//+Sk1N1TfffCPbtpWRkaFFixZp7Nixx9Qv/CtYx2thYaFCQ0NLHAsNDdXatWvldruPqW/4R7CM1cOHD5e45qeffio1c3X06NH66aefqtUvGpZgHa8ITo1lvB45ckQej0fR0dHV6hc4GsEfUIuysrLk9XpLLSnYvHlzZWRkSJKSk5MlSXPmzNG0adP04osvqmfPnrrkkku0c+fOcvvOyMgo8ZePJN/r8vYumzdvnvLy8jRp0qSaPpIkaefOnXriiSf02GOPyel0HlNfaDiCdbzGx8fr/vvv19NPP62nn35aLVu21EUXXaRff/31mPqF/wTrWE1OTtaqVau0ZcsWPfvss7rzzju1aNEi3X///cfUL/wrWMfr0dLS0vTtt9/q7LPPrrU+4R/BOl4HDRqkxx57TDfddJN69+6tUaNGKSoqSn/961+PqV/4V7CO19GjR+udd97RunXrZNu21q5dq3feeUdut5t9KQNUMIzVTz/9VGvXrtXUqVMrvPfRz4TAFKzjFcGpsYzXxx9/XAkJCSUCTqC6+Ak+UM8sy5IkzZgxQ2eddZYkqWfPnlq2bJneffdd3XLLLbriiit8M5Rat26tTz75pNr3+eijj/Tss8/qX//61zHtbeb1enXLLbfo+uuvZ9+pRijQxqskderUSZ06dfK9HjhwoJKTkzV//nw99thjx9Q3Gq5AHKu2bcswDD3++ONq0qSJJGnmzJm64YYbdO+99yosLOyY+kfDFYjj9WgLFixQkyZNdMIJJ9Ran2i4AnG8bt26VX//+9917bXXavTo0UpPT9ejjz6qe++9Vw899NAx9Y2GLRDH6zXXXKP09HTNmDFDtm2refPmmjJlil588cUK9yJCYGvIY3X58uW688479eCDD6pr167VvieCD+MVgSTQx+vcuXP16aef6uWXXy61IgBQHQR/QC2KiYmRw+EosaGsVDTNvPhTIsWbCnfu3LlEm86dO2vv3r2SpL///e++pd6KZ9jFxcXpl19+KXFN8adZ/rhR8SeffKK7775b//znP4/50yG5ublat26dNmzYoAceeEBS0V+itm2rZ8+emjdvXrkb1aNhC8bxWp4+ffpo9erVddI36l6wjtX4+Hi1aNHCF/oV12vbtlJTU9WhQ4djvgfqX7CO12K2bevdd9/V5MmT5XK5aq1f+Eewjtfnn39eAwcO1BVXXCFJ6t69u8LDw3X++efrpptuUkJCwjHfA/UvWMdrWFiYZs+erb/97W86cOCA4uPj9eabbyoyMlKxsbHH3D/qXyCP1ZUrV+rqq6/WrFmzNGXKlBLn4uLiSs3uO/qZEJiCdbwiOAX7eJ03b57mzp2rl156Sd27d69Sv0B5+PgYUItcLpd69eqlZcuW+Y5ZlqVly5ZpwIABkqS2bdsqISFBO3bsKHHtzp07ffvktGjRQu3bt1f79u19x/r376/NmzeX+Mtt6dKlioqKUpcuXXzHPv74Y82aNUtPPPGExo0bd8zPFBUVpY8++kgLFizw/TrnnHPUsWNHLViwQP369Tvme8A/gnG8lmfjxo2l/qGGwBGsY3XgwIHav3+/cnNzfcd27Ngh0zTVsmXLWrkH6l+wjtdiK1eu1K5du1jmM0gE63jNz88vNVPK4XBIKgqvEZiCdbwWCwkJUcuWLeVwOPTpp5/q+OOPZ8ZfgArUsbpixQpdeeWVuvXWWzVjxoxS5/v376/ly5eXOLZ06VL179+/Sv2jYQrW8YrgFMzj9YUXXtC//vUvvfjii+rTp0+V+gUqZAOoVZ988ondu3dv+7333rO3bt1q33PPPfbgwYPt9PR0X5uXXnrJHjhwoP3ZZ5/ZO3futJ988km7T58+9q5du8rt1+Px2Keddpp92WWX2Rs2bLC//fZbe/jw4fYTTzzha/Phhx/aPXv2tF999VV7//79vl+HDh2qsOYtW7bY69evt6+88kr7ggsusNevX2+vX7++3PZPP/20fcYZZ1TjXUFDFYzj9aWXXrK/+OILe+fOnfamTZvsBx980O7evbu9dOnSY3in4G/BOFZzcnLs4447zr7++uvtLVu22CtXrrRPOukk+6677jqGdwoNQTCO12K33nqrPW3atBq8K2iognG8vvvuu3bPnj3t1157zd69e7f9448/2lOnTrXPPvvsY3in0BAE43jdvn27vWDBAnvHjh32zz//bN9000320KFD7eTk5GN4p+BvgTZWly1bZvfr189+4oknSlyTlZXla7Nq1Sq7Z8+e9rx58+ytW7faTz/9tN2rVy9706ZNx/Zmwe+CcbwWFBT4vt+OGjXKfvjhh+3169fbO3fuPLY3C34XjOP1+eeft3v16mUvXLiwRJucnJxje7PQqBm2zUcegdr26quvat68eUpPT1ePHj109913l5oZN3fuXL322mvKzs5W9+7ddeutt2rw4MEV9rtnzx7dd999WrlypcLDw3XmmWfqlltu8U1Lv/DCC7Vy5cpS15155pl6+OGHy+13/Pjx2rNnT6njmzZtKrP9M888o8WLF+uDDz6osF4EhmAbry+88ILeeustpaWlKTw8XN26ddO1116r4cOHV/peoGELtrEqSdu2bdODDz6o1atXq1mzZpo0aZJuuukm9vcLAsE4Xg8fPqzRo0frrrvu0vTp0yusE4ElGMfrK6+8ojfeeEMpKSlq0qSJhg8frttuu00tWrSosGY0fME2Xrdt26ZbbrlFO3bskNPp1LBhw3TrrbeW2LMagSmQxurMmTP1/vvvlzo+dOhQvfLKK77Xn332mZ566int2bNHHTp00G233aaxY8dW+l6g4Qu28ZqSkqIJEyZU2AaBK9jGa3n/Vrjuuut0/fXXV1gzUB6CPwAAAAAAAAAAACAIsGA8AAAAAAAAAAAAEAQI/gAAAAAAAAAAAIAgQPAHAAAAAAAAAAAABAGCPwAAAAAAAAAAACAIEPwBAAAAAAAAAAAAQYDgDwAAAAAAAAAAAAgCBH8AAAAAAAAAAABAECD4AwAAAAAAAAAAAIIAwR8AAAAAAAAAAAAQBAj+AAAAAAAAAAAAgCBA8AcAAAAAAAAAAAAEAYI/AAAAAAAAAAAAIAgQ/AEAAAAAAAAAAABBgOAPAAAAAAAAAAAACAIEfwAAAAAAAAAAAEAQIPgDAAAAAAAAAAAAggDBHwAAAAAAAAAAABAECP4AAAAAIEilpKQoKSlJ7733nr9LCQj79u1Tnz59tGrVKn+Xgt88/vjjmjZtmr/LAAAAAAKG098FAAAAAAhMmzZt0rPPPqu1a9cqIyNDzZo1U5cuXTR+/HhdeOGFJdq63W7997//1QcffKDt27dLkjp16qTJkyfr3HPPVUhISIn248ePV9euXfX8889Xq6aUlBRNmDBBt99+uy6//PJS5+fNm6dHH31US5YsUdu2bSVJlmXpww8/1GuvvaZdu3bJ7XYrISFB/fr103nnnaf+/ftLklasWKGLLrrI11dISIiaNm2qzp07a9SoUZo+fbpiY2N955OSkqpU88svv6xhw4aVeW78+PHas2eP73VsbKw6duyoSy+9VCeeeGKV+veHo+s2DENRUVFq1aqV+vfvr7PPPlv9+vWrcd///ve/1aVLF51wwgm1Va7Ps88+q379+mnQoEG+Y59//rk+/fRT3zhv2bKljj/+eF1zzTVq2rRpqT6WLFmiOXPmaOvWrWrevLmmTp2qa665Rk7n7//7vWzZMn344YdavXq1UlNTFRcXp+HDh+vGG29UQkJCif4uvPBCrVy5stR9Ro8erXnz5lXpuQ4dOqTHHntMX3zxhfLz89WnTx/NnDlTvXr1KtU2JydH//rXv7Rw4ULt379fMTExGjBggB555BGFh4dXeq+0tDQ99NBD+t///ifLsjRs2DDdeeedSkxM9LXZt2+f3n33XX399dfatWuXTNNUt27ddPXVV2vkyJEl+rv44ov1n//8R0uWLNGECROq9LwAAABAY0bwBwAAAKDaVq9erYsuukitW7fWtGnTFB8fr3379unnn3/Wyy+/XCL4y8vL05VXXqmVK1fq+OOP19SpU2UYhr777jv9/e9/1xdffKHnn39eERERfnmWBx98UK+99pomTJig008/XQ6HQzt27NB3332nxMREX/BX7MILL1SfPn1kWZYyMzO1Zs0aPfPMM3rppZf01FNPacSIEZKkRx99tMR1H3zwgf73v/+VOt65c+cK6+vRo4cuvfRSSdL+/fv15ptv6rrrrtN9992nc889t8Jr27Rpo19++aVE6FRfjq47NzdX27dv18KFC/XWW2/pkksu0axZs2rU7/PPP6+JEyfWevCXmZmpBQsW6OGHHy5x/J577lFCQoLOOOMMtW7dWps2bdKrr76qb775Ru+//77CwsJ8bb/55htde+21Gjp0qO655x5t3rxZzz33nA4cOKD777/f1+6xxx5Tdna2Tj75ZHXo0EHJycl69dVX9fXXX2vBggWKj48vUUPLli31l7/8pcSxPwaE5bEsS3/+85+1adMmXX755YqJidHrr7+uCy+8UO+99546dOjga3v48GFdcMEFSk1N1YwZM9SuXTtlZmZq1apVKiwsrDT4y83N1UUXXaTDhw/ryiuvVEhIiObPn68LLrhACxYsUExMjKSicPSFF17QCSecoDPPPFMej0cffPCBLr30Uj300EM666yzfH3Gx8drwoQJ+r//+z+CPwAAAKAKCP4AAAAAVNu///1vNWnSRO+8806pWU8HDhwo8frhhx/WypUrdc899+iCCy7wHT/vvPP02muv6W9/+5seeeSREsFIfcnIyNDrr7+u6dOn64EHHihxzrZtZWZmlrpm8ODBOvnkk0sc27hxoy677DLdcMMN+uSTT5SQkKDJkyeXaPPzzz/rf//7X6njlWnRokWJa6ZMmaKTTjpJ8+fPLzf483g8sixLLpdLoaGh1bpfbflj3ZJ066236pZbbtH8+fPVvn17nXfeeX6prSwffvihHA6Hjj/++BLHn3766VIzMnv37q077rhDH330UYllKB999FElJSXp//7v/3xha2RkpJ5//nlddNFFvpB31qxZGjRokEzz9903xowZowsuuECvvvqqbr755hL3a9KkSbXHTbGFCxdqzZo1+uc//+kbt5MmTdLEiRP1zDPP6IknnvC1feKJJ7R371699957JWboVdXrr7+unTt36u2331bfvn19z3X66afrpZde8oWXw4YN01dffVVihuy5556ryZMn6+mnny4R/BXXe+ONNyo5OblGdQEAAACNCXv8AQAAAKi23bt3q0uXLmUuddi8eXPfn1NTU/XOO+9o+PDhJUK/Yueff76GDRumd955R6mpqXVac1lSUlJk27YGDhxY6pxhGCWepSLdu3fXnXfeqUOHDum1116r7TJLiI+PV6dOnXxLaRbv4zdv3jzNnz9fJ5xwgvr06aNt27aVu8fftm3bdOONN2r48OHq27evJk6cqCeffLJEm7S0NM2aNUsjR45U7969deqpp+qdd945ptrDwsL06KOPqlmzZvr3v/8t27Z95+bNm6dzzjlHw4YNU9++fTV16lQtXLiwxPVJSUnKy8vT+++/r6SkJCUlJWnmzJmSpD179ui+++7TxIkT1bdvXw0bNkw33HCDUlJSqlTb4sWL1bdvX0VGRpY4XtYyrMWzDbdt2+Y7tnXrVm3dulXTp08vMcPyvPPOk23bWrRoke/YkCFDSoR+xceaNWvmWwr3jzwej3Jzc6v0LEdbtGiR4uLidNJJJ/mOxcbGatKkSVqyZIkKCwslFS0H+t5772n69OlKTExUYWGh71x17tWnTx9f6CcVzWgdMWKEPvvsM9+xrl27lgj9JMnlcmns2LFKTU1VTk5OiXPFy38uWbKkWvUAAAAAjRHBHwAAAIBqa9OmjX799Vdt3ry5wnbffvutvF6vpkyZUm6bKVOmyOPx6LvvvqvlKivXunVrSUWzoo4cOXJMfU2cOFFhYWH6/vvva6O0crndbqWmpqpZs2Yljr/33nt69dVXNX36dN1xxx2Kjo4u8/qNGzdq+vTpWr58uaZPn6677rpLJ5xwgr788ktfm4yMDE2fPl3Lli3T+eefr7vuukvt2rXTXXfdpfnz5x9T/ZGRkTrhhBOUlpamrVu3+o6//PLL6tGjh2644Qb95S9/kcPh0I033qivv/7a1+bRRx+Vy+XS4MGD9eijj+rRRx/VjBkzJElr167VmjVrdOqpp+ruu+/WOeeco+XLl+uiiy6q9Gvrdru1du3aMve8K0tGRoYk+ZaulKT169dLkvr06VOibYsWLdSyZUtt2LChwj5zc3OVm5tbos9iO3fuVP/+/TVw4ECNGjVKTz31lNxud5Vq3bBhg3r27FkqaOzTp4+OHDmiHTt2SJJWrVqlgoICtW/fXjfccIP69++vvn376pxzzqm0dqloSdFNmzapd+/epc716dNHu3fvLhXo/VF6errCw8NLLSnapEkTtWvXTqtXr660DgAAAKCxY6lPAAAAANV22WWX6U9/+pOmTJmivn37atCgQRoxYoSGDRumkJAQX7viYKd79+7l9lV87ujZU/UlISFBU6ZM0YIFCzR27FgNHTpUAwcO1NixYyvde++PQkJCfPu11SaPx+NbcnT//v2aO3euMjIySuyjKBXNrvziiy9KzKQqa7bbgw8+KNu29f777/uCT6loGc5iTz75pLxerz766CNfEHXuuefqL3/5i+bMmaNzzjmnxN521dW1a1dJRTNHi/+8aNGiEn2ef/75mjp1ql566SWNGzdOkjR58mTdd999SkxMLLX05bhx40otwXr88cdrxowZWrRoUYXh8759+5Sfn6+2bdtWqf4XXnhBDodDEydO9B1LT0+XpFL78xUf279/f4V9/uc//5Hb7dakSZNKHE9MTNSwYcPUrVs35eXladGiRXruuee0c+dOPfXUU5XWmp6ersGDB5c6XrxH4P79+5WUlKRdu3ZJKlrus127dnrkkUd0+PBhPfvss7r44ov18ccfV7iv4MGDB1VYWFju8xffKyoqqszrd+3apS+++EInn3yyHA5HqfOJiYklgmIAAAAAZSP4AwAAAFBto0aN0htvvKG5c+fq+++/15o1a/Tiiy8qNjZWDz74oCZMmCBJvqUJ/7h84tGKz1U2G6iuzJ49W3379tW7776rL774Ql988YUeeeQRDR8+XI8++qhatGhR5b4iIiJqtBxjRb7//nuNGDHC99rhcGjy5MklgjpJOumkk0otn/hHmZmZ+uGHH3TRRReVCP2koqVNpaK9DT///HNNmjSp1D6Ho0eP1ieffKJff/1VgwYNqvEzFX/Nj36vjg79srOz5fV6NWjQIH3yySdV6vPo691ut3JyctSuXTs1bdpU69evrzD4O3jwoCSVuXTtH3300Ud65513dMUVV6hDhw6+4/n5+ZKKlqz8o9DQ0ArH9w8//KBnn31WkyZNKvG1lqSHHnqoxOspU6bonnvu0VtvvaVLLrlE/fv3r7De/Pz8MmsqPlZQUCDp96+FYRiaP3++72vUs2dPzZgxQ6+99lqpvQePVtxPec9/dJs/OnLkiG688UaFhYXplltuKbNN8dcRAAAAQMUI/gAAAADUSN++fTVnzhwVFhZq48aNWrx4sebPn68bb7xRCxYsUJcuXcoMeP6oKuHgHx08eLDEUodhYWFq0qRJla8vDrkkyTRNnX/++Tr//POVlZWl1atX64033tC3336rm2++Wa+//nqV+83Ly6vWc1RFv379dNNNN8kwDIWFhalz585lBlRVma1WPBuxW7du5bbJzMzUoUOH9Oabb+rNN98st82xKOtr/tVXX+m5557Thg0bSuwtd/TXqiL5+fl6/vnn9d577yktLa3E/oGHDx+uUh9HX1OWH3/8UXfddZdGjx5dKgQrDh7L2hevoKCg3BmS27Zt03XXXaeuXbvqwQcfrFKdl156qd566y0tXbpU/fv3V2FhobKzs0u0iY2NlcPhUFhYWJk1FR8rDuWK6zv++ONLfF369++vtm3bas2aNZKK3uc/vp/x8fG+fsp7/qPvdTSv16ubb75ZW7du1QsvvFBu0G7bdpXHAgAAANCYEfwBAAAAOCYul0t9+/ZV37591aFDB82aNUsLFy7Udddd51suc9OmTerRo0eZ12/atEmS1KVLlyrf8/rrr9fKlSt9r88880w9/PDDvmChePbVHxXv9VZWACEV7dk2YcIETZgwQRdeeKFWrlypPXv2qE2bNpXW5Ha7tXPnTt/SlbUlJiZGI0eOrLTdsSy9eTTLsiRJZ5xxhs4888wy2yQlJR3TPbZs2SJJat++vaSiQO3qq6/WkCFDdO+99yo+Pl4hISF699139fHHH1epzwceeEDvvfeeLr74YvXv319NmjSRYRi6+eabKw30ivdLPHToULltNm7cqKuvvlpdu3bV008/Laez5P9OFy9nmZ6erlatWpU4l56err59+5bqc9++fbr88ssVFRWluXPnlrsM5h8V918c9q1Zs0YXXXRRiTZLlixR27ZtFR8f71uG9GjFS48WL99Z/HtcXFypts2bN/e9N59++qlmzZpV4vymTZvUrFkzuVyuMu9VfKyspULvvvtuff3113r88cdLzXY82qFDh8rc/xAAAABASQR/AAAAAGpN7969Jf0eKhx33HFyOBz64IMPyl1qccGCBXI6nRozZkyV73PHHXeUCGmKA4XY2FiFh4drx44dZV63Y8cOhYeHVylA6N27t1auXKn09PQqBX+LFi1Sfn6+Ro8eXcWnqH+JiYmSpM2bN5fbJjY2VpGRkbIsq0qBY3Xl5uZq8eLFatWqlS8YXrRokUJDQzVv3rwSS0W+++67Ve63eB+/mTNn+o4VFBRUabZfq1atFBYWVuaeiFLRXoRXXHGFYmNj9cILL5Q5q7M42F67dm2JkC8tLU2pqamaPn16ifZZWVm67LLLVFhYqNdff73C/fP+qHjmZvHSrt27d9dLL71Uok1xENm9e3etWrVKlmXJNE3f+V9++UXh4eHq2LGjJKlXr16+ev9o//796tSpk6Si5V7/eC+paOZst27dtG7dulLnfvnlFyUmJpYKNh955BG99957uvPOO3XaaadV+MwpKSkV7hUKAAAAoIhZeRMAAAAAKGn58uVlzqL65ptvJMkXErRq1UpTp07V0qVLy1wy87///a+WL1+us846Sy1btqzy/Xv37q2RI0f6fhXPFnQ4HBo1apS++uor7d27t8Q1e/fu1VdffaVRo0bJ4XBIKpqJtHXr1lL9FxYWatmyZTJNU+3atau0no0bN+qhhx5SdHS0zj///Co/R32LjY3VkCFD9O6775Z6f4q/ng6HQxMnTtSiRYvKDAiPZZnP/Px83X777Tp48KCuuuoq39KNDodDhmHI6/X62qakpGjJkiWl+oiIiChzZl7x1/Ror7zySok+yxMSEqLevXuXGVqlp6frsssuk2EYmjdvXrn7KHbt2lWdOnXSW2+9VeKe//3vf2UYhk4++WTfsby8PP35z39WWlqa5s6dW2KvwKPl5OSUWjrTtm0999xzkuQLmaOjo0v89zBy5EjfrNaTTz5ZGRkZ+vzzz319ZGZmauHChTr++ON9QWunTp3UvXt3LVmypMTX+Pvvv9e+fft8IXBCQkKpexWbOHGi1q5dq7Vr1/qObd++XcuXLy/x/JL04osv6v/+7/901VVX6eKLLy7z+YsdPnxYu3fv1oABAypsBwAAAIAZfwAAAABq4MEHH9SRI0d04oknqlOnTnK73Vq9erU+++wztWnTRlOnTvW1nTVrlrZv3677779f3333nW9m3/fff68lS5Zo6NChJWZpFdu1a5f+9a9/lTres2dPjRs3rtza/vKXv2j69Ok688wzNWPGDLVp00Z79uzRm2++KcMw9Je//MXXNjU1VdOmTdPw4cM1YsQIxcXF6cCBA/rkk0+0ceNGXXzxxaWCnh9//FEFBQWyLEsHDx7U6tWr9eWXXyoqKkpz5szxzbRqqO6++26de+65vvenbdu22rNnj77++mt98MEHkqRbbrlFK1as0PTp0zVt2jR16dJF2dnZ+vXXX7Vs2bISy6yWJy0tzddfXl6etm3bpoULF/qCtHPOOcfXduzYsXrppZd0xRVX6LTTTtOBAwf0+uuvq127dr6lYIv16tVLy5Yt00svvaSEhAS1bdtW/fr107hx4/TBBx8oKipKXbp00U8//aSlS5f6lvGszIQJE/Tkk08qJyenxMy0K664QsnJybriiiu0atUqrVq1yncuLi5Oo0aN8r2+/fbbdfXVV+uyyy7Tqaeeqs2bN+u1117TtGnTfLMbJenWW2/VL7/8orPOOkvbtm3Ttm3bfOciIyN1wgknSJJ+/fVX3XLLLTr11FPVrl07FRQU6IsvvtDq1as1Y8YM3yy9ikycOFH9+/fXrFmztHXrVsXExOi///2vvF6vrr/++hJtZ82apcsuu0znnXeezjnnHB0+fFgvvfSSOnTooHPPPbfSe5133nl6++23deWVV+qyyy6T0+nU/Pnz1bx5c1122WW+dl988YUee+wxdejQQZ06dfKNk2KjRo0qseTo0qVLZdu2JkyYUGkNAAAAQGNn2JVtdgAAAAAAf/Dtt99q4cKFWrNmjVJTU+V2u9W6dWsdd9xxuvrqq9W8efMS7YuXM/zwww+1Y8cO2batTp06afLkyTrvvPMUEhJSov348eO1Z8+eMu999tln6+9//3uF9W3btk1z5szRihUrlJ2drejoaA0fPlzXXnttiQAmJydH7733nr755htt3bpVBw4ckMvlUrdu3XTWWWfp7LPP9s1KW7FiRYl91EJCQtSkSRN17txZo0eP1vTp08udDSZJf/vb3/Taa6+VCrIqMn78eHXt2lXPP/98uW1SUlI0YcIE3X777br88svLPDd79uwSYeyWLVv0z3/+UytWrFBBQYFat26tSZMm6cYbb/S1OXDggJ599ll9+eWXysjIULNmzdSlSxedcsoppZatLKvu4q+fYRiKjIxUq1atNGDAAE2bNq3M/e7eeecdvfDCC9q7d6/atm2rP/3pT9qzZ4/mzJlT4j3bvn27/vrXv2rt2rXKz8/37e946NAhzZ49W1999ZUKCgo0cOBA3XXXXbriiis0dOhQPfzwwxXWfODAAR133HF66KGHNHnyZN/xivYzHDp0qF555ZUSxxYvXqw5c+Zo27Ztio2N1Zlnnqlrr722xBivaHy3adNGX375paSiJT0ff/xxrV27VhkZGTJNU506ddL06dM1Y8YM39isTHZ2th599FEtXrxYBQUF6tOnj26//Xb16dOnVNulS5fqn//8pzZs2KDw8HCNHTtWt912W5UD7dTUVD300EP63//+J8uyNGzYMM2aNcu3n6MkPfPMM5ozZ065fbz88ssaNmyY7/XNN9+stLS0MmcNAwAAACiJ4A8AAAAAAEl33nmndu7cScDUgKSnp2vChAn6xz/+4ZsJCQAAAKB87PEHAAAAAICk6667TmvXri2xnCf86z//+Y+6detG6AcAAABUETP+AAAAAAAAAAAAgCDAjD8AAAAAAAAAAAAgCBD8AQAAAAAAAAAAAEGA4A8AAAAAAAAAAAAIAgR/AAAAAAAAAAAAQBAg+AMAAAAAAAAAAACCAMEfAAAAAAAAAAAAEASc/i4g0KWnH/Z3CYBM01BsbKQyM3NlWba/ywEqxHhFoGCsIpAwXhFIGK8IJIxXBArGKgIJ4xWBhPGKhiQ+vkmV2jHjDwgCpmnIMAyZpuHvUoBKMV4RKBirCCSMVwQSxisCCeMVgYKxikDCeEUgYbwiEBH8AQAAAAAAAAAAAEGA4A8AAAAAAAAAAAAIAgR/AAAAAAAAAAAAQBAg+AMAAAAAAAAAAACCAMEfAAAAAAAAAAAAEAQI/gAAAAAAAAAAAIAgQPAHAAAAAAAAAAAABAGCPwAAAAAAAAAAACAIEPwBAAAAAAAAAAAAQYDgDwAAAAAAAAAAAAgCBH8AAAAAAAAAAABAEHD6uwA0PFlZWZo3799auvR7ZWVlqkmTpurSpasuueQK9e3bX5K0du3P+s9/5mndurUqLCxQ27aJOuWU0zVt2rlyOBy+vkaPHqyHHnpcxx03rkr3vu66P6tr1yTdeOMtJY5/+ulHevrpJ7Rw4deSpPz8fM2f/6K+/PILZWSkKyIiQh06dNKMGedpzJhxvr5++mm1JCkkJETR0c3UrVt3nXrq6Ro7dryv34ceur/Cmt5++0O1atW6SvUDAAAAAAAAAAD4C8EfSrn77tvldrt19933q3XrNsrMPKBVq37QoUPZkqRvvvlKf/3rTJ1yyhl65plrFRXVRD/+uFL/+tfTWrdurR544GEZhlGnNT722ENav36dbr75NnXo0EnZ2dlat+5nZWdnl2h3+uln6oorrpTX69X+/fv17bdf6d5779SkSafrjjvu0oQJJ2rYsBG+9nfddbs6duysK6640nesWbOYOn0WAAAAAAAAAACA2kDwhxIOHz6sn39eo2eeeV4DBgySJLVs2Uo9e/aWJB05ckSPPvqgRo8+TnfccZfvutNPn6KYmFjNnPkXffnlF5ow4aQ6rfN///tWN954q0aMGC1JatWqtbp371GqXVhYmJo3j5MkJSS0UO/efdS+fQfNnv03jR9/goYMGabQ0DBfe6fTWeIaAAAAAAAAAACAQMEefyghPDxc4eER+u67r1VYWFjq/MqVy5Wdna1zz72w1LnRo49TYmI7LV68qM7rjI1trmXL/qe8vNxqXztp0mlq0qSpvvnmqzqoDAAAAAAAAAAAwD+Y8VfPjLQ0GTUIq2rKjoiU3aJFlds7nU7ddde9euSRv2vBgveUlJSk/v0HacKEk9SlS1clJ++SJLVv37HM69u376Dk5N21UntFbr/9Lv3tb/folFMmqEuXburbt5/GjZvg24OwIqZpKjGxnVJT99Z5nQAAAAAAAAAAAPWF4K8eGYcPqcmtN0i2XX83NU0dfnau7CZNq3zJuHETNGLEaP3yyxr9+us6LV++VK+//rLuuONuXxv7GJ/h55/X6NZbb/C9vu22O3XSSZOqfH3//gP11lsf6Ndf12rt2p+1atUPevvtN3T55VfqkkuuqPR627brfB9CAAAAAAAAAAAgRTz+sLyJ7VQw4zx/lxL0CP7qkd2kqQ4//nT9z/irRuhXLDQ0VEOGDNeQIcN1ySVX6OGHH9C8ec/rhhtukSTt2rVDffr0K3Xdzp071bFj2bMBj9a9ew+99NLrvtexsbGSpMjISOXm5pRqn5NzWJGRUSWOOZ1O9es3QP36DdAFF1yi+fNf1Pz5L+r88y9WSEhIuff2er1KSUlWjx49K60TAAAAAAAAAADUnLl7l5w/rZbzp9Xydu4iz+Ch/i4pqBH81TO7RQvV43y/WtOhQ0d9993XGjp0uJo2jdYbb7xaKvj7/vtvlJKyW3/601WV9hcaGqa2bRNLHW/XroNWrlxe6vimTRuVmNiuwj47duwkr9erwsKCCoO/zz77WIcPH9K4cRMqrRMAAAAAAAAAAJTDtuVcsVyOtH0qmDy1zCau77+VHdVE3m5JCn/hOeV06CQ7Lq6eC208CP5QQnb2Qd1zz0ydeuoZ6ty5qyIiIrRx4wa9/vorGj16rMLDw3XbbbN033136ZFH/q6zzpquyMhIrVq1Us8++7TGjZug8eNPLNHnvn17tGXLphLH2rZtp/Dw8FL3nzLlLL377lt66qnHdNppU+RyhWjp0u+1ePEiPfLIk7521133Z51wwkR1795T0dHR2rlzu55//lkNHDi4xMzA/Px8HTiQIa/Xq/379+vbb7/SW2+9rilTztbAgYNr+d0DAAAAAAAAAKBxcKz/VWH/fVWOHdskSYVjxsqObV6ykderkP99J/fI0cqfOk1Rd92uiGf/qdy775McjvovuhEg+EMJ4eER6tmzt95883Xt3Zsij8ejhIQWOv30KbrookslSccff4JiY5vrP//5P1177RUqLCxU27aJuuiiyzR9+rml9s575pknS93n2WdfVL9+/Usdb9OmrZ59dq7mzv2XbrrpGnk8brVr10EPPPCIhg8f6Ws3bNgILVz4iebO/Zfy8/MVFxenkSPH6NJLS+7v99FH7+ujj95XSEiImjaNVlJSD91//2yNHXt8LbxbAAAAAAAAAAA0Po5tWxT50P3yduysvBtuUcTTT8i5aaPcI0aVaOdc94uM7IMqHH2cFBWlI9feqMgH75Xzl5/kGTDIT9UHN8O27UBcebLBSE8/7O8SADmdpmJiIpWVlSuPx/J3OUCFGK8IFIxVBBLGKwIJ4xWBhPGKQMFYRSBhvCKQMF7LF/LlFwqfP0+H/u9VyelU1O03y5PUQ/mX/7lEu/A5/5Rj907lPPIP6bdJQ0ZaWtFSn8z4q5b4+CZVamfWcR0AAAAAAAAAAAAIImZ6uqyYWMlZtLCkJ6mHnBs3lGyUl6eQVT+ocMxYX+gnSXaLFoR+dYjgDwAAAAAAAAAAAFVmpqfLjk/wvfb27CVz3x4Zh7J9x0JWLpc8brlHjvFHiY0WwR8AAAAAAAAAAACqzDyQIat5nO+1J6m7JMmx4bdZf7Yt11dL5OnVW3bz5v4osdEi+AMAAAAAAAAAAECVmRnpsuJ+D/7s2OayWrSUc+N6SZJj00Y5tm1R4cRT/FVio0XwBwAAAAAAAAAAgKrxeGQczJJ11FKfkuTt3sMX/IV+/IGsNm3l6T/QHxU2agR/AAAAAAAAAAAAqBLzQIZk2yWW+pQkT/eeMpN3y7Fpo5w/rVbBqWdIhuGnKhsvgj8AAAAAAAAAAABUiZGeLkmyE0rO+PN07ylJCn/uGdkxsXKPHF3vtYHgDwAAAAAAAAAAAFVkZhQFf1Zs8xLH7fh4Wc3jZGakq+DkUyWn0x/lNXoEfwAAAAAAAAAAAKgSMyNddrMYKSSk1Dlvj56ywyNUePwEP1QGSSJuBQAAAAAAAAAAQJWYGemy4uLLPJc//VwZJ02SIiLquSoUI/gDAAAAAAAAAABAlZgZGeUGf3Zsc9l/WAIU9YulPgEAAAAAAAAAAFAlRka6rLg4f5eBchD8AQAAAAAAAAAAoHJer8zMA7Ljy57xB/8j+AMAAAAAAAAAAECljKwsybLKXeoT/kfwBwAAAAAAAAAAgEqZ6fslieCvASP4AwAAAAAAAAAAQKXMAxmSJKs5e/w1VAR/AAAAAAAAAAAAqJSZkS47qokUFubvUlAOgj8AAAAAAAAAAABUykzfLys+wd9loAIEfwAAAAAAAAAAAKiUcSBDVhzLfDZkBH8AAAAAAAAAAAColJmeLpsZfw0awR8AAAAAAAAAAAAqZtsyMzJkNWfGX0NG8AcAAAAAAAAAAIAKGQezJK+HpT4bOII/AAAAAAAAAAAAVMjct0+SZLVs5edKUBGCPwAAAAAAAAAAAFTIsSdZcjhltWjp71JQAYI/AAAAAAAAAAAAVMhMSZHVqpXkdPq7FFSA4A8AAAAAAAAAAAAVcuxJkbd1W3+XgUoQ/AEAAAAAAAAAAKB8ti0zZbesxER/V4JKEPwBAAAAAAAAAACgXMbhQzJycuRtQ/DX0BH8AQAAAAAAAAAAoFxmcrIkyWrLUp8NHcEfAAAAAAAAAAAAyuXYkyw5nLJatPR3KagEwR8AAAAAAAAAAADKZaakyGrVSnI4/F0KKkHwBwAAAAAAAAAA0EiYu3fJ9clH1brGsSeF/f0CBMEfAAAAAAAAAABAIxH22n8U9t9XZBzMqtoFti1zTzL7+wUIgj8AAAAAAAAAAIBGwNyxXc5f10mSnGt/qdI1xqFsGTk5zPgLEAR/AAAAAAAAAAAAjUDoJx/JSmghb/sOcv78U5WuMVNSJElWIsFfICD4AwAAAAAAAAAAqCYj+6DC/z1HKijwdylVYuzfr5AVS1U46VR5+g+Uc93PkmVVep0jJVlyOGUltKiHKnGsCP4AAAAAAAAAAACqybl6lUK+/1aOzZv8XUqVhC78RHZkpAqPO16efgNk5OTIsX1bpdeZKcmyWreWHI56qBLHiuAPAAAAAAAAAACgmhzbthT9vnO7nyupnJFzWK6vv1ThiSdLoaHydu4iOyJCzp/XVHqtY08K+/sFEII/AAAAAAAAAACAanJu/S34q8KsOX9z/vKzVFigwhNOKjrgcMjTu1/l+/zZtsy9KbLatq3zGlE7CP4AAAAAAAAAAACq48gRmXtSZDeNDojgz0zfLzsyUnZ0M98xT7/+cuzYJuPwoXKvM3IOy8jJkbdVm3qoErWB4A8AAAAAAAAAAKAaHNu3SbatwvEnyDyQIeNQtr9LqpCRkSErLr7EMU/ffpJty7n2l3KvM1NTJUlWy5Z1Wh9qD8EfAAAAAAAAAABANTi2bZEdFi73mLFFrxv4rD8zfb/sPwR/dkysvO3aV7jcp5n2W/DXguAvUBD8AQAAAAAAAAAAVINz6xZ5O3WWldBCdlSUHDu2+7ukCpkZGbLiE0od9wwZppCVy2VkZZZ9Xeq+ouVBw8LquELUFoI/AAAAAAAAAACAqrJtObZukbdLV8kw5O3QqWHP+LNtmQcyZDWPK3Wq4KRJsl0hCl3wXpmXmmlpslq2qusKUYsI/gAAAAAAAAAAAKrIyCja08/buYskydups2/Pv4bIOJQtuQtlxceXPhkZqYLTpsj11RIZaWmlTptpqbJatKiHKlFbCP4AAAAAAAAAAACqyLFtqyQVzfhTUfBnZB8sd7lMfzMz0iVJVlwZwZ+kwpNOlt20qcLee7v0tftT2d8vwBD8AQAAAAAAAAAAVJFz62ZZcfFFe99J8nbsLEkNdp8/Iz1DkmTHlV7qU5IUGqqCKVMVsvQ7mcm7f78u57CMnBx5W7DUZyAh+AMAAAAAAAAAAKgix7at8nbu6nttx8bKjm7mmwnY0JgZ6bLDwmVHRpXbpnDcBFlx8Qr95MPfr0tLlSRZLZnxF0gI/gAAAAAAAAAAACrjdsvx6zo5dmz3LfMpSTIMeTt2arAz/syM9KLZfoZRfiOnU+6hw+Vct9a3V6H5255/VgJ7/AWSgAz+fvjhB1111VUaPXq0kpKStHjx4hLnZ86cqaSkpBK/Lr/88lL9fP3115o2bZr69u2rIUOG6JprrqmvRwAAAAAAAAAAAAEi/Pln1fTKyxQ5+2+ymzSRe+DgEue9nTrLsWObLzRrSMyM9HL39zuat3sPGQezZO4vCvzMtFTZTZpKERF1XSJqkdPfBdREXl6ekpKSdNZZZ+m6664rs82YMWM0e/Zs32uXy1Xi/KJFi3TPPffo5ptv1vDhw+X1erV58+Y6rRsAAAAAAAAAAASY3FyFfPeNCo+foMIJJ8lq36HU7DmrdRsZOTnSkSMNLigzM9Ll6d6z0naebt0lw5Bjw3pZLVrKTE2V1ZL9/QJNQAZ/Y8eO1dixYyts43K5FB9fdoLt8Xj097//XbfddpumTZvmO96lS5darRMAAAAAAAAAAAS24r3u3MdPkNWhY5ltrKbRRW2zD8pqSMGfbcvIyKjSjD9FRsrbrr2cG9fLPW68zLRUWa0I/gJNQAZ/VbFy5UqNGDFCTZs21fDhw3XTTTcpJiZGkrR+/XqlpaXJNE1NmTJFGRkZ6t69u26//XZ169atWvcxTUOmWcG6uEA9cDjMEr8DDRnjFYGCsYpAwnhFIGG8IpAwXhEoGKsIJIxXBJLicepM3y/DMGS0aSOns+yxazSPlWEYcuYckuVsW59llmTbCnnvbXnGjZfdPE46fFhmQb6Mlgnl1l7i8l69FfLDSrmdphzpabIGDqzSdWg4gjL4GzNmjE488US1bdtWycnJ+sc//qE//elPevPNN+VwOJScnCxJmjNnjmbOnKk2bdropZde0oUXXqhFixapWbNmVb5XbGykjIo2xATqUdOm4f4uAagyxisCBWMVgYTxikDCeEUgYbwiUDBWEUgYrwgkkdkHpOYxcrVNKL9RSGspxCGXVSDFRNZfcX+0YYP0wXtSiCldfLGUlVZUV+f2Vatr2CBp8UKFZqdLR3IV2rWjf58H1RaUwd+pp57q+3NSUpKSkpJ0wgkn+GYBWpYlSbrqqqs0ceJESdLs2bN13HHHaeHChTrnnHOqfK/MzFxm/MHvHA5TTZuG69ChI/J6LX+XA1SI8YpAwVhFIGG8IpAwXhFIGK8IFIxVBBLGKwJJ8XjN37FbionTkazc8hvbUqQtFaakyl1Ruzrm+vxLhbi9spd8rbzTz5Jjy06Fub3KDY2SqlJX6w6KdHvlfv8jhbi9OhIRLcuPz4PfxVQxgA3K4O+PEhMTFRMTo127dmnEiBG+vf86d+7sa+NyuZSYmKh9+/ZVq2/LsmVZdq3WC9SU12vJ4+EfTAgMjFcECsYqAgnjFYGE8YpAwnhFoGCsIpAwXhFQ9u6VJ6FlpWPWahIt60Cm/8a2bSt82VJ52ybKTN4ta8tWmWn7ZTtD5AmPkqpSV3ikvG0T5fj+W9m2rcK4FlW7Dg1Go1iYNTU1VQcPHvQFfr1795bL5dKOHTt8bdxut/bs2aPWrVv7q0wAAAAAAAAAANDAGGmpslq2rLSdFd1MxqHsKvUZ+sZrcmzfeqylleDYsllGVqaOXHip7KgohaxcLvNAhqy4eKkaW5Z5knrIyMmRHdVEimSZz0ATkDP+cnNztXv3bt/rlJQUbdiwQdHR0YqOjtacOXM0ceJExcXFKTk5WY899pjat2+vMWPGSJKioqJ0zjnn6JlnnlGrVq3UunVrzZs3T5J08skn++WZAAAAAAAAAABAA3PkiIzsbFktKg/+7OhomQcPVtrOyD6o0I8/kCR5O3U51gp9QlYsk90sRt4ePeUeMlwhK5bJatdeVlxctfrxdO8p1+JFVXpmNDwBGfytW7dOF110ke/17NmzJUlnnnmm7rvvPm3evFkLFizQ4cOHlZCQoFGjRunGG2+Uy+XyXXP77bfL6XTq9ttvV35+vvr166f//Oc/io6OrvfnAQAAAAAAAAAADdBv24NZLVpU2tRq1kyOXbsqbefYvEmSZO7ff2y1Hc22FbJimdxDh0uGIffQ4XJ9tVjG4cNyjxhVra68PXpIkqyWrWqvPtSbgAz+hg0bpk2bNpV7vnj2XkVCQkJ0xx136I477qjN0gAAAAAAAAAAQLDYu1eSqjbjr2m0zOyDlbZzbtksSTLTay/4c2zeJONgltzDR0qSvD17yY5qIiPnsKzftkGrKju6mTx9+8vTo2et1Yf60yj2+AMAAAAAAAAAAKi2ffukyMii/e4qYTdrJiM7W7LtCts5Nm2UJJnpabVSovTbMp8xsfJ27fbbTRxyDxlWVFdc9YI/Scq7/U65x42vtfpQfwJyxh8AAAAAAAAAAECd27evykteWk2bSV6PlJsrRUWV3aiwUI6dO+Tt0k2OrZulvDwpIqJGpZlpqXKuWKaQtb/IsWmjCk86WTIM33n38JFyfbVYVkv26mtMmPEHAAAAAAAAAABQln37qrTMp1Q040+SzEPZ5bZx7NgueT1yjx5T1LaGy306ly9T1MxbFfbB+7LDwpR//kXKn3ZOiTbeXr2V+7eH5O3YuUb3QGBixh8AAAAAAAAAAEBZ9u6VPWpslZra0dGSJOPgQal1mzLbODZvlELD5B40RGHz58ncnyarfYeq12PbCn37DYV++L7cw0fpyJ+ukkJDy23u7dSl6n0jKBD8AQAAAAAAAAAA/FF+vpSZWeWlMq3oZpKKZvx5y2nj3LxJni5dZDeLkVyhMtPTq1VS6BuvKfTTj5Q/4zwVnja5xNKegMRSnwAAAAAAAAAAAKWY+9Mkqcp7/Ck8XApxFc34+42Rni5z396iF7Ytx5ZN8nZNkgxDVkKC7x5VcuSIQhd/roLTp6jw9CmEfigTM/4AAAAAAAAAAAD+wNi3T5KqvMefDENWdLSM7IO+Q+HzX5Rz4wblzrpHdkSEjJwceZO6F/Wb0KJawZ9r6XdSYYEKJ5xU5WvQ+DDjDwAAAAAAAAAA4A/MtFQpMlJq0qTK19jRzWQWB3+2Lcf2bZLHo4jHZ8v19ZeSYcjTuaskyYpPqHipT9su8eeQJV/IM2CQ7ObNa/A0aCwI/gAAAAAAAAAAAP7ATN0ntWpVrSU17eho31KfRlamjMOHdOTyP8uOiZXr049ktU2UIiIk/TbjL31/yYDvN451a9Xkmj/JsXVL0eutW+TYvUuFE0489gdDUCP4AwAAAAAAAAAA+AMjLU1q3bpa11jRzWQcypYkOXbtlCR5evZW7u13ymrRSu4Bg35vGx8vedwysjJL9eNc94uMw4cU8fhsmXtS5FryuayEFvL07V/j50HjwB5/AAAAAAAAAAAAf2Du3y/171Ota+zoaJm/zfhz7NwhOyqqaGlOw1DO40+VaGsltCi6T3q6vLEll+907Nwub49eMnIOK/LhB2UcPqz8s6ZXa/YhGidm/AEAAAAAAAAAABzNtmUczJSquZ+e3ayZjEOHivb327lD3g4dfw/rDKNEcGfFJ0iSzP1ppe7t2LlDnp69lHv7nbKdTsm25R477lieCI0EM/4AAAAAAAAAAACOYhw+JHm81Q7+rKbNJMsrI+ewzJ075B4+svzGoaGym0aXCv6MAwdk5OTI276D7JhY5f71bzL375fdNLoGT4LGhuAPAAAAAAAAAADgKEbmb/vu1WDGnySZKSkyD2TI6tCxwvZWQguZ6ftLHHPs3C5JRbMFJdkxsfLGxFarDjReLPUJAAAAAAAAAABwFDOrhsFfdNGsPOfPayT9Ht6Vx0poUbSX4FEcO3fIbtJUNmEfaoDgDwAAAAAAAAAA4ChGVqZkmtJvM/iqyoouau/85ScpNExWy1YVt4+PL2PG3x/2BgSqgeAPAAAAAAAAAADgKGZmZtGynWY1Y5SwMCk0TI7du+Rt36HS8M5KaFEUMhYW+o45du0suhaoAYI/AAAAAAAAAACAo5hZmbKbxdToWuu3WYKVLfMpSVZ8QtH9MtIlSUb2QRlZmfJ26FSjewMEfwAAAAAAAAAAAEcxsrJkx9Zsjz27adE+f1UK/lq0lFQ0y08qWuZTkqyOlV8LlIXgDwAAAAAAAAAA4ChmVqasGgZ/vhl/VViu046NladXb4W+/YZUWChz107Z4RGyElrU6N4AwR8AAAAAAAAAAMBRjKxM2THHMOPP4ZTVpm0VbmQo/5IrZB44oNAP35dj5w5ZVdgbECiP098FAAAAAAAAAAAANBiFhTJycmq81Kd78FDZTZpIzqpFMFar1io47QyFfvSB7PBwuUcfV6P7AhIz/gAAAAAAAAAAAHzMrExJkh3bvEbXe/v0VcHZM6p1TcHkqbKaN5eRc7hKS4QC5SH4AwAAAAAAAAAA+I2RWRT8WTVc6rNGXC7lX3yZ5HDK2y2p/u6LoMNSnwAAAAAAAAAAAL8xD2ZJUo2X+qwpT78BOvTCfMnlqtf7Irgw4w8AAAAAAAAAAOA3Rmam7LBwKTy8/m9O6IdjRPAHAAAAAAAAAADwGzMrU3azGH+XAdQIwR8AAAAAAAAAAMBvjMxMWfW8zCdQWwj+AAAAAAAAAAAAfmNmZcqOIfhDYCL4AwAAAAAAAAAA+I2RlSkrhqU+EZgI/gAAAAAAAAAAACTJtmVmZclmqU8EKII/AAAAAAAAAAAAScbhQ5LXI4ulPhGgCP4AAAAAAAAAAAAkGZmZksSMPwQsgj8AAAAAAAAAAABJZlZR8MeMPwQqgj8AAAAAAAAAAABJRlamZBiyo5v5uxSgRgj+AAAAAAAAAAAAJJmZmUWhn8Ph71KAGiH4AwAAAAAAAAAAUNFSnyzziUBG8AcAAAAAAAAAACDJTEuTFRfn7zKAGiP4AwAAAAAAAAAAKCiQY8tmebv39HclQI0R/AEAAAAAAAAAgEbPsXmT5PXI06u3v0sBaozgDwAAAAAAAAAANHrOX9fKjm4mq01bf5cC1BjBHwAAAAAAAAAAaPScv66Tp2dvyTD8XQpQYwR/AAAAAAAAAACgUTNyDsuxczvLfCLgEfwBAAAAAAAAAIBGzbF+vWTb8vTu6+9SgGNC8AcAAAAAAAAAABo1569rZbVoKTsuzt+lAMeE4A8AAAAAAAAAADRqvv39gABH8AcAAAAAAAAAABot48ABmal75enVx9+lAMeM4A8AAAAAAAAAADRazl/XSpK8vXr5uRLg2BH8AQAAAAAAAACARsv5y8/ytu8gu0lTf5cCHDOCPwAAAAAAAAAA0KA5fl2n8OeflWy7djv2eOT8ZY08AwfXbr+AnxD8AQAAAAAAAACABs215AuFfPeNzOTdtdqvY+MGGXl5cg8aUqv9Av5C8AcAAAAAAAAAABour1fOdT9LkkKWL63VrkNW/yg7trms9h1qtV/AXwj+AAAAAAAAAABAg+XYtlVGXp6sxHYKWbmi9pb7tG05V/8o98DBkmHUTp+AnxH8AQAAAAAAAACABsv58xrZUVHKn36uzNS9MnfvqpV+zeTdMjPS5RnE/n4IHgR/AAAAAAAAAACgYbBtOdb+IlmW75Dzl5/l6d1Pnj79ZEdGKmTFslq5VciqH2SHhcvTo1et9Ac0BAR/AAAAAAAAAACgQXBs2azIRx6Ua9FnkiTjULYcO7bJ06+/5HTKM2iIQlYsr5XlPp2rV8nTt6hfIFgQ/AEAAAAAAAAAgAbBsWWzJCnsnTdlZB6Q85efJUmevv0kSe5hI2Sm7ft9uc8aBoBG5oGiQHHwkGMvGmhAiLEBAAAAAAAAAECD4Ni6Wd72HWRmZSns1Zclp1PeDh1lRzeTJHl69ZEdGamwt9+Q7XLJuX6drDaJyrvuRtkxsVW+T+inH0umQ+6+/evmQQA/YcYfAAAAAAAAAABoEJzbtsrTu6/yz79IISuXKWTl8qLlOH0NnHIPHyXnz2tkZmaqcNwEmWmpivrrnXJs31qle7g++UiuhZ8o/9wLpKiounkQwE+Y8QcAAAAAAAAAAPzOyDwgI/OAvJ27yjNkqEK++UrO9evk6TegRLv8iy4tCu3CwiRJhRMnKeKpJxT5t3uVe8sd8vbpW+49Qr79WmH/fUUFZ5ypwkmn1unzAP7AjD8AAAAAAAAAACoQNu95uT7+0N9lBD3H1qIZe94uXSTD0JHLr1ThxFPk7dL1Dw0dvtBPkuyYWOXeda+8ie0UuvCTsjvPzVXoG68p/MV/q/D4E1Qw7Zy6egzAr5jxBwAAAAAAAACAJCPnsMz9afJ26uI75tiwXq6vlkiuULnHHS87qokfKwxuju1bZcc2lx3bXJJkt2ih/AsvqdrFLpfcI0cr7M3Xpfz834NB25br84UKff9tGYVuFZxxpgqmTpMMo24eAvAzZvwBAAAAAAAAACAp9IP3FXnfPXJs3VJ0wLYV9tZ/ZbVNLAqQFn/u3wKDnHPrFnk6d6m8YTk8AwdJHrecv/z8e5/rflHYKy/JPXioDj/xTxWcPUMyiUYQvBjdAAAAAAAAAABIcqxfJ1lehc95SsrNlfOn1XJs2aT88y9S4XHj5Fr0mVRY6O8yg5PXK8f2bfJ27lp523JYLVrKatNWIWt+9B1zLf5cVmI75V9+peyY2NqoFGjQCP4AAAAAAGhgHJs2qskNV0sFBf4uBQCAxiM3V47du1QweaqMvFyFz5ursLf+K2/3nvL07qvCU06TkXNYru++9nelQclM3i0VFpTez6+a3AMHy7lmleT1yjhwQM7VP6pwwoks7YlGg+APAAAAAIAGxrl+nYzMAzLT9/u7FAAAGg3n5o2Sbct93DgduexKhaxcJjN5t/KnnysZhqwWLeUeMkyuTz+WLMvf5QYdx/atkmnK27HTMfXjGTRERk6OHFs2y/V10d6MhaOOq6UqgYYvIIO/H374QVdddZVGjx6tpKQkLV68uMT5mTNnKikpqcSvyy+/vESb8ePHl2ozd+7c+nwMAAAAAADKZCYnF/2eke7nSgAAaHjMvXsU9vorkm3Xar+OjRtkN4uRldBCnuEjVHDGmSocf6K83ZJ8bQpPO0NmWqqcq36o1XujaH8/b2I7KTT0mPrxdu4iO7qZQn5YIddXS1Q4aowUHl5LVQINn7O+b7hv3z7t27dP3bt3V0RERI36yMvLU1JSks466yxdd911ZbYZM2aMZs+e7XvtcrlKtbnhhhs0ffp03+vIyMga1QMAAAAAQG1yJO+WRPAHAEBZXJ8vlGvxIhUeN05W28SKG9u2Ih55UIUnTZJn4OAKmzo3rJene0/fkpAF088t1cbbqYus+AQ5t2yWZ8iwGj9DYxY+91+SbevIJVeUCPkcW7cUvf/HyjDkHjhIrsWfS15P0TKfQCNSb8Hfm2++qTlz5igjI0OS9M4776hXr1669tprNXToUF188cVV7mvs2LEaO3ZshW1cLpfi4+MrbBMZGVlpGwAAAAAA6lVhocy0fZIk47f/hwYAAL+xbYWs/lGS5Pz5JxVWEvyZO7bLuW6t7IioioO/I0fk2LldheOOr7yE5nEyMjOrVTaKODasV8i3X0umQ+buXcq7+XbJMBT27psy9+6Rd8pZtXIfz8DBcn21RN4u3WS171ArfQKBol6W+pw/f74eeOABTZkyRfPmzZN91BTsoUOHauHChbV+z5UrV2rEiBGaOHGi7r33XmVlZZVq88ILL2jYsGGaMmWKXnzxRXk8nlqvAwAAAACA6jD37pEsS3ZYuMx0ZvwBAHA0c9dOGZkHZDdpKucvaypt7wsJ16+tcGlQ55ZNkmXJm9Sj0j6t2OYyswj+qs22FfbWf+Xt0FE5f3tIRm6uou6+XU1uvVHO1auUf+Glco8YVSu38vTqIysuXgWnnF4r/QGBpF5m/L366qu65pprdM0118jr9ZY417FjR+3YsaNW7zdmzBideOKJatu2rZKTk/WPf/xDf/rTn/Tmm2/K4XBIki688EL17NlT0dHRWrNmjf7xj38oPT1ds2bNqta9TNOQaRq1Wj9QXQ6HWeJ3oCFjvCJQMFYRSBivCCSM18o596XIMAxZ/frJmZkhp5P3yl8YrwgUjFUEkmMdryE/rZIRGSn35Clyvfm6nJ5CKSys3Paun1ZJCS1kpu+Xa89uWR06SpKMrEyFzv8/Fcw4T3br1nJt3ihFR8tslyjTqPjnvUZcczm2bm6cf0fbtm8p1OpyrF4l59bNyp95l8wunZX/0MMKfWme7FatVXjaGVJERO0FFs4w5c95ruiPx9AN318RiOol+EtLS9OAAQPKPBcSEqK8vLxavd+pp57q+3NSUpKSkpJ0wgkn+GYBStKll17qa9O9e3eFhITo3nvv1S233FLmfoDliY2NlFHDb3RAbWvalE1qETgYrwgUjFUEEsYrAgnjtQIH0qQ2raQe3aTPPlNYDPvR+xvjFYGCsYpAUuPxuu4nacQwuSaMld56Xa7kbdLQoWW33b9f2psi3Xyz9Oyzcu3cIg3oXXRu0UfSmh8VnrJLevRRaccWaWB/hcZGVV5Du9bS4myFNouocQgWsK67TjrllKJf1WHb0gfvSAP6yTV2ZNH7FhMp3XePJKmh/2uH768IJPUS/LVu3Vpr1671hW5H+/nnn9WhQ4c6vX9iYqJiYmK0a9euMmuQpH79+snj8SglJUWdOnWqct+ZmbnM+IPfORymmjYN16FDR+T1Wv4uB6gQ4xWBgrGKQMJ4RSBhvFYubOMWKaGVPOFNFLo/Q7lpWVI1PqCK2sN4RaBgrCKQHMt4NTLSFbFpiwpOOkWesKaKiImT57ulKuzaS5Jk7twhud2yunaTJIUs+UYuW8pN6qOwjl2k5T8of9xJkm0r4rNFsnr2kZmSIvuOWTLTUlV4wcVyZ+VW/gyuSIUdKVDu7n1S0+jqvwmBKjdXkVu3S/83X7l9B0uRVY/rnEu/V+jmrTpy3wOyDtbuRKC6xPdXNCQxVfxAYL0Ef9OnT9ecOXMUExOjk046SZLk8Xj09ddfa968ebrpppvq9P6pqak6ePCg4uPjy22zYcMGmaap5s2bV6tvy7JlWeWvDQ3UJ6/XksfDX0AIDIxXBArGKgIJ4xWBhPFaPmPXLhWOPk6eZs3lsm1ZaftltWrt77IaNcYrAgVjFYGkJuPV9cMPsg1T+b36SV5bhX36yblmjTxur4zMTIU/cJ8Mj1c5Dz4sq1VruX78Qe6knvK4wlTYs4/C3n9HnvxCObZvk1JTdeTSP8uOjVXk/ffIdntU0LW7rCrUZEc3k23bsvZnyIpoUtO3IOCYe/bKtm3p8GE5PvpQBWfPqPK1oZ9/LnfPXirs3E0KwO9TfH9FIKmXhWkvv/xynXXWWfrrX//qm3F37rnn6pprrtHkyZN1/vnnV6u/3NxcbdiwQRs2bJAkpaSkaMOGDdq7d69yc3P1yCOP6KefflJKSoqWLVuma665Ru3bt9eYMWMkSWvWrNH8+fO1ceNGJScn68MPP9Ts2bN1xhlnKDq6EX1CAwAAAADQsOTkyMjKlNWuvaz4BEmSkZHh56IAAGgYnKt+kKdnT99MM0+//jLT98vcu0cRz/5TCg2T1SxG4XOekpF9UM716+UZNLioba/eUmGBHFu3KOS7b2THNpe3Zy9ZrVord+bdKjjjTFmJ7apUhxVbNHnEzMqsmwdtoMz9+yVJ7rHHK/SzT2Qcyq7SdUbOYTk2b5R7WNmr8QGoXfUy40+S7r77bl188cVaunSpsrKyFB0drREjRtRomc9169bpoosu8r2ePXu2JOnMM8/Ufffdp82bN2vBggU6fPiwEhISNGrUKN14442+vftcLpc+/fRTzZkzR4WFhWrbtq0uueSSEvv+AQAAAABQ3xwpyZIkb9tE2bGxkmHITN8vr5/rAgDA73Jz5dywQfnnXeg75OnRS3I4FfHk4zL3pyr37vtlu1yKuvcuRc5+QLK8cg8cIkmyOnSUHRkp50+rFbJiqQpPmOjbn8/q0FEFHTpWuRQ7uplkmjIzD9TqIzZ05v5U2RERyj/nfDlXLFfohwuUf8HFlV7n/GmNZFnyDBhUD1UCqLfgTyraa2/GjKpP/y3PsGHDtGnTpnLPz5s3r8Lre/XqpbfeeuuY6wAAAAAAoDY5UnZLDmfR0p5Op+yYWJkZ6TXrrLBQroWfqPCkSVJYWO0WCgBAPXNu3ih5PfL0H/D7wbAweXr0kHPdWhVMO0febkmSpPzzL1TYyy/J276D7OKtnUxTnp69FbroM8ldKPeYsTUvxjRlN4uRcaBxBX+OtFRZLVrKbtJUhaeertAP3lfBpNN+f4/L4Vz9o7ydusiOia2nSoHGrV6W+vz000/14osvlnlu3rx5+uyzz+qjDAAAAAAAGjRz925ZrYtCP0my4uJl1vCHiq5vv1LYW/9VyOofa7NEAAD8wkzeLTs8QlZCixLHC085XYUnTFTB6VN+P3biySo49QwVnDG1RFtvr96Su1Dezl2Pef9cKya2US71acUXvf8FJ58qORxyff9NxRe53Qr5+SffkqsA6l69BH9z5871LbP5R2FhYXrhhRfqowwAAAAAABo0R/Juedsk+l5bcfEy0/dXvyPLkuuzT4r63LC+tsoDAMBvHMnJstom+pbnLObp21/5l1wumUf9qNswVHDuBfIMG16ybe++kiT3mOOOuR6reXMZjS34S0uV1eK34DU8XO4Bg+RcsazCa5zr10kF+XIPJPgD6ku9BH87d+5U165dyzzXuXNn7dixoz7KAAAAAACg4bJtmXuS5W3XznfIiour0VKfzh9WykxLlbdzVzk3bqjNKgEA8AtHym552yZW3rACVstWyr3rPhUef8Ix12PHNpd5oBEFf263jKxMWS1a/n5o6HA5du+SuW9vuZc5V6+SFZ9QFNoCqBf1ssdfaGioDpSzNEl6erqcznrdahAAAAAAgIbBshT20osysw9KHo+MvDxZiUcHf/FFswk8Ht/yn5WybYV+/IG8PXqpcPwJCn/2nzKyD8qOblYnjwAAQJ3zeGTu3Str/LEHdt4ePWuhoKKlPhvTjD8zI12y7RJLrXr6D5BCwxSycrkKJk8tfZFtK2T1j3IPG1FqpiaAulMvM/6GDBmiuXPnKi8vr8TxvLw8vfjiixo6dGh9lAEAAAAAQINi7twh11eLpfx8yeGQe/goeZJ6+M7b8fGSbcvIrPoPFh0bN8ixY5sKTjtDnqTuvx3bWOu1AwBQX8x9eyWvR9627SpvXE/s2FgZ+UekP/zMu1a43XJ99omiZt0qM3Vf7fdfA2ZaqiSV3GPR5ZJ7wCCFLF9a9jU7tsvIypR7wKD6KBHAb+plqt3NN9+sc845RyeeeKImTpyohIQE7d+/X4sWLZLb7dY//vGP+igDAAAAAIAGxblpoxTiUt5ts6SQkFLnrbh4SUWfsvcmJFSpz9BPPpTVNlGevv0lw5DVoqWcG9eX2ucIAIBA4UhJliRZiQ1nuUgrtrkkyczKlBURUWv9OpcvU9gbr8rMPCAZpkKW/U8FZ55da/3XlJmWJjmcsmNjSxx3DxuukH/+T+a+vbJatS5xzrV8qezISHl/+yASgPpRLzP+OnfurHfeeUfDhw/X559/rjlz5ujzzz/XyJEj9fbbb6tz5871UQYAAAAAAA2Kc8Ov8nbpWmboJ0lW8zhJqvI+f8ahbDl/Wq2Ck0/1Lanl7d5Dzo3ra6dgAAD8wNy9S3azGNlRTfxdio8VUxSAVWdWfmVcixcpYs6Tstq1V87DT8g9eKicq36otf6Phbk/TVZ8gmSWjBQ8/X5b7nPFspIX5OUp5KslRfspstUXUK/q7b+49u3b64knnqiv2wEAAAAA0LDZthybN6rwxJPLb+NyyY5uVuXgr3hJT0/ffr5jnu49FfLNVzJyDjeoH5gCAFBVjpRkeRMbzjKfkmTHxEiSzMwD8tZCfyHLlyrsP/+nwpNPVf75F0mGIc/gIUV79R44ILt581q4S82ZaamyWrQofaJ4uc8Vy1Qw5azfD3+1REZhoQonTqrHKgFI9TTjDwAAAACAxi58zj8V+t9Xfa/N5N0ycnLk6d6zwuusuHiZ6furdA/nxvWyWrSUHfv7DweL+3dsYp8/AEBgMpN3y2pgwZ9CQmQ3aVq0JOexsG05V/2g8OfmyD1yjC/0kyR33/6S6VDImh+Pvd5jZO5Pk9WiZZnn3MNHyEzeLeeaVUUHPB6Ffvax3KPHyI6JLfMaAHWnzmb8XXXVVZo5c6Y6dOigq666qsK2hmHoueeeq6tSAAAAAADwO8eObQpZs0oFk6dKERFyblgvOZzydu1W4XVW8zgZB6r2Q0Xnhl9L7aNjx8fLah4n54b18gwaUuP6AQDwiyNHiva6bWjBnySrefMaL/Xp2LJZri8Wybn2ZxmHD8nTf6CO/OkqX+gnSYqMlKdHDzlX/ajCEybWUtU1YNsy9++XlVDGjD9JnoGD5Rk4WBFPP6ncWffITN0n42CWCk45vZ4LBSDVYfCXm5srr9fr+zMAAAAAAI2ZefCgVJAv19LvVHjCRDk2rpe3cxfJ5arwOishQa7NG6X8fCksrNx2Rs5hmSnJKph0Wqlz3u495WCfPwBAAHKkJEtSgwz+7JhYmVk1CP6OHFHEE4/IjmqiwrHHy9Onn7zde0gOR6mmnoFDFPb6K1JenhQRUQtVV5+RlSl53GUv9SlJpqm8625S5KMPKeLx2bIjo+QZMEhWm7b1WygASXUY/L3yyitl/hkAAAAAgEYnP18qyJdCw+Ra/LkKJ5wk58YNKjx+QqWXegYPVegXixT5t3uUd/PtsuPjy2zn2LRRsm15evQq3UePngpf+p2UmytFRh7z4wAAUF/M5F2SYchq3cbfpZRixTaXY8umal8XuvATGfn5yvn7o5Xu3eceOFhhr7wk5y8/yzN8RE1LPSZmWpoklTvjT5Lkcin35tsU+dD9cuzaqSNXXVdP1QH4ozrf46+goEBnnHGGvv/++7q+FQAAAAAADZKRnS1JKjhxosyUZIV8/aWMw4fk7VHx/n6S5O3SVTn3PiDjyBFF3TOz3L36nBs3yGoeV2Yw6OnTT7Jthfzy0zE9BwAA9c2RnCyrRatKZ8j7gx0bK7OaS30ahw/J9clHKjxxYqWhn/Tbkt2J7RRSvH+eH5j7fwv+4hMqbhgZqbw77lLeDbfI2y2pHioDUJY6D/5CQ0OVlpYm06zzWwEAAAAA0CCZ2QclSe6Ro2W1aFm0ZJdpytO1aj8Us9q1V+4Ds2W1TVTEU48XzSD8A8fG9fJ2LztItJs3l7d9BzlX/VjjZwAAwB8cybvlbdfwlvmUJCsmVkbOYamwsMrXhH70gQzbVsEZU6p8jXvQEDl/WlWt+xwrx8YNCvn6S8njkZmWKjsmtkrhq900Wp6hw0ruVQigXtVLGnfSSSfps88+q49bAQAAAADQ4Bi/BX92TIwKx58o40ievB07V7hn3x/ZUU2Ud9V1MvLyFLrwk5Inc3Pl2LlDnu49yr3eM2iInL+skTyemjwCAAD1z7ZlpuyW1QD395OKlvqUVOV9/owDB+T6fKEKTjlNdpOmVb6Pe9QYGYVuRcx5SvJ6a1JqtYW9+brCX/y3ou74i5w/rZbVomW93BfAsauX4G/gwIH6+uuvdeWVV+q1117TokWL9Pnnn5f4BQAAAABAsDKzD0qmQ3ZUE7mPGys5Q+SpwjKff2THxanwhJPk+uSjohkGv3Fu2STZdoVLh7oHDpaRlyfHhvU1eQQAAOqdmbpPRk6OvG0T/V1KmYqX6jSquNxn6KJPZYeFqmDSadW6j9WqtfJu/IucP61R+LznJdsuum9WpowDB0q1N9NS5frsE0U8+pCa/OkSOX9cWa37yeORY+cOFU44SVbLVnLs3iVvS4I/IFA46+Mms2bNkiR98803+uabb0qdNwxDGzZsqI9SAAAAAACod0Z2tuymTSXDkN2kqXL++jdZCS1q1FfB5DPl+vpLuT7+UAXnnC+paDkuu1lMhZ/Gt9p3kB3bXCFrVsnbp2+N7g0AQH0Kff9d2c1i5Onb39+llMmKbS45nApZ9UOV9u11rv1ZnkFDpIiIat/L03+gjlx5jcKfe0bGwYMyMw/ITEmWTFOFY8erYOrZkqTQ996W6+sviz5klJQkOZ1yrv9VnsFDq3wvc/cuyV0o9+jj5O3aTY7tW32zGwE0fPUS/C1ZsqQ+bgMAAAAAQINkHDwoq1kz32urU+ca92U3jVbByaco9NOP5R4+Uo49KQpZuVye7j0r3k/HMOQeOFjOVT9IF17C3jsAgAbN3L1LIcu+V/4ll0uhof4up2yhocqfcZ7CXn9Znj595ek3oNymRs5hmcm7VXDK6TW+nXvUGBn5R+Ra9Jm8XbqqYPJUGVlZCv3gXbn+951k27JDXco/7yIVTjhRcrkU/vQ/igLCanBu3yo5nPK27yBJ8nbqUuOaAdS/Og/+Dh48qKysLCUkJCghIaGubwcAAAAAQINjZh+U3TS61vorOOV0uRYvUtTdd0iSrMR2Kpx0SqXXuQcNkWvxIpm7d8n67Yd5AAA0RGHvvCkrPkGFY8f7u5QKFU46Vc5f1yr8uTnKmf2Y7JjYMts5NhateOfpXv2lvkvcb8JJKpxwUsljY49X6GcfS4ahgpNPlSIjfeesxHZyLfqsaHnQKn7ox7Fli7zt2ksu1zHVCsA/6iz4O3LkiO6++259+umnvmMDBgzQ448/rtatW9fVbQEAAAAAaHCM7GxZbdrUXoeRkcq7+XaZBzLk6d1HdnSzKl3m7dFTdli4Qlb/qAKCPwBAA+XYukXO1T/qyNXXS856WbSu5gxDR668RlF33q7w5+Yob+bdkmmWaubcuEFWXLzs+PjaryEyUgVnzyjzlLdtooycwzKyD8puFlOl7hzbtsrDsuBAwCr9HaiW/Pvf/9bChQs1depU/fWvf9Wll16qjRs36q9//Wtd3RIAAAAAgAbJyD4oqxZn/EmSt3sPuUeNqXLoJ0lyOuXp279ouU8AABqo0Lf+K6ttotwjRvm7lCqxm0Yr76rr5Fy/Ts61P5fZxrFxvbzde9RzZUUz/iTJTK7acp9GzmGZqXvl7czynkCgqrOPSyxatEh//vOfdeONN/qODRw4UNdff73y8vIUUYMNTAEAAAAACDi2LTM7u8qfsq9rnv4DFD73X1JubomlwAAAaAjMlGQ5169T3nU3lzlzrqHy9uotK6GFnKt+LL3XX26uHLt2qvCEifVel5XQQgpxyZGSLG8VZvE5tm2VJHm7dK3r0gDUkTr7zpmSkqKRI0eWODZy5EjZtq09e/bU1W0BAAAAAGhYjhyR3IWyo2t3xl9Nebt2kyQ5t2/1cyUAAJQW8v23siMj5Rk02N+lVI9hyDNwsEJW/1i0n95RnJs3SrYtb49j29+vRkxT3raJciTvqlJzx7atsqOiZLVoWceFAagrdRb8eTwehYaGljhW/LqwsLCubgsAAAAAQINiHsqWJFnVWZKzDlktW8mOiJBj6xZ/lwIAQEmWJdf/vpN7+CgpJMTf1VSbe+BgGQez5NixrcRxx8YNspvFFM2+8wMrMbHKS306tm6Rt1MXyTDquCoAdaVOd0b9+OOPtWrVKt9ry7JkGIY++ugjrVy50nfcMAxdcskldVkKAAAAAAB+YRw8KEkNZsafDEPeTl18S3kBANBQOH5dJyMrU+4xY/1dSo14k7rLjoyUc9WPReHZb5wb1svTvaffwjRvYnuFLFsqWVbFy6fathzbt6rwpEn1VxyAWlenwd/LL79c5vH58+eXeE3wBwAAAAAIVkZ2w5rxJxXt2+NavKhoKTI+0Q8AaCBc338rq2VreTt3qbxxQ+RwyNN/kEJW/6iCaecUHcvPl2PndhWOO95vZXnbJkruQpn702S1bFVuOzMtVUZOTuC+/wAk1WHwt3HjxrrqGgAAAACAgGFmZ0kOpxQZ6e9SfLxduspY8G7RDwDZwwcA0BDk5yvkhxUqmHxmQH8oxT1wsEL+962M9HTZ8fFybtkkWZa8ST38VpOVmChJMnfvrjD4K14GnOAPCGx1tscfAAAAAAAomvFnR0c3qB9iert0lSSW+wQANBghP6yQCgtUOHKMv0s5Jp6+/SSHUyGrf5S5a6fC5s2VldBCVus2fqvJjm4mO6qJHHsq3ufPsWunrIQWsqOa1FNlAOoCwR8AAAAAAHXIyD7YoJb5lCQ7qomsFi19n+wHAMCfzD0pCv30I3l69pYdH+/vco5NeLg8PXvJtehTRd1/j+zISOXeea9/PwBkGPK2ay8zeXfFzTLSZSUk1FNRAOoKwR8AAAAAAHXILJ7x18B4O3cl+AMA+JWRfVBhL/5bUTNvkfLzVTD9XH+XVCs8g4fI3J8m94BByv3rA7Lj4vxdkqy2iXLsrjj4MzPSZcUFePAKoO72+AMAAAAAAJJx8KCsdu38XUYp3i5dFLJimeR2SyEhcmzbItsZIqt9B3+XBgBoJML//awcO7Yp//yLVTjhRCkkxN8l1YrCcRPkbdla3p69GsxS397EdnJ9sVAqLJRcrjLbmOnp8gwaUs+VAahtzPgDAAAAAKAOmQ1wqU/pt33+vB45du2UY+MGRT54v8L++6q/ywIANBZHjsi5/lcVTJ2mwpNPCZrQT5LkcMjbq3eDCf0kyUpsJ9m2zD0pZTfIz5eRc5gZf0AQqLPgb9asWUpOrnizUAAAAAAAgppty8jOlt0Qg792HSRniFxfLVbEPx6RLEtmWqq/ywIANBKOX9dJXo88/Qb4u5RGwdumrSTJUc4+f+aBDEki+AOCQJ0Ff++//76ysrLqqnsAAAAAABq+3FzJ62mQM/7kdMrboaNCvvlKVkIL5U8/V2ZGuuTx+LsyAEAj4PjlJ1ktWspq0dLfpTQO4eGy4hPkSCl7so6Zvl+SZMUn1GdVAOoAS30CAAAAAFBHzEPZkiS7WTP/FlIO96DB8rZrr7zb75S3Q8eiJcB++8EfAAB1xrblXLNGnr79/V1Jo2IltpNZ3oy/jHTJdMiOiannqgDUNqe/CwAAAAAAIFgZBw9KkuzoaP8WUo7C0yar8LTJkmHIalk0089MS5XVqrWfKwMABLW9e2VkpMvTr7+/K2lUvG0T5fr26zLPGRkZsmJjJZO5QkCgq9Pg75FHHlGTJk0qbWcYhp577rm6LAUAAAAAgHpXPOOvQS71KUmG4fujHRsrOUNkprLPH4CaMw4cKJrl7HD4uxQ0ZD/+KIU45enRy9+VNCpWu/YyDmbJyDksO6rkz+3N9HTZLPMJBIU6Df6OHDkik08IAAAAAAAaKePgQSnEJYWH+7uUyhmGrIQEmWkEfwBqyLIUdeetco8dr/zzLvR3NWjIVq+Wt3tPKTTU35U0Kt7EdpIkMzlZ3h49S5wzM9JltWbGPxAM6jT4u++++9S3b9+6vAUAAAAAAA2WkX1QVnR0iZl1DZnVshXBH4AaM9NSZeTmyvX5QhVMPEV28+b+LgkNUUGBtHatvGfN8HcljY7VoqXkcMqRvKvM4M/Tt5+fKgNQm5iOh6AU9up/5Pr8M3+XAQAAAKCRMw9myW6oy3yWwWrRkuAPQI2Zu3ZJkmxXiEIXvOPnatBQOTasl9xuefr293cpjY/TKat1a5nJySWPFxYWfVgpLt4/dQGoVQR/CDrGgQNyLfq06B8RAAAAAOBH5r59RZ+uDxBWy5Yy0/dLHo+/SwEQgBy7d8puFqOCM6fJ9c1XMvft9XdJaICcP66UEhJkt2nj71IaJW9iezlSSgZ/ZuYBSSL4A4JEnQV/Q4YMUWRkZF11D5TL9dViybZlHMnzdykAAAAAGjPblpmSLG9ior8rqTJvQkvJsmQeyPB3KQACkGP3LnnbtVfhhBNlN4tR6LtvSzk5cq5cIdeH7/OhAkhHjsj5/XfS+PEBswx2sPEmJspMSZZs23fMSE+XRPAHBIs62+PvlVde8f05Ly9P69evV3p6ugzDUFxcnHr37q2wsLC6uj0aK49Hrq+/lCQZR/L9XAwAAACAxszIyJCRf0RWYjt/l1JlVstWkiQzNbBmKgJoGBy7d6lw5GjJ5VL+mWcrfN7zClmx1BcweLsmldpXDI2La+l3UmGhNHGiv0tptKzEdjKO5MnIyJAdXxT0mRnpkmGwLycQJOos+JOKAr+HH35YCxYskNvtlv3bX/KGYcjlcmnq1Km6/fbbFR4eXpdloBFxrl4l42CWPD17yzyY5e9yAAAAADRijuSiva68ie39XEnV2c2bSw4n+/wBqDYj57CMzAOy2neQJLmPGyfzQIas5nHy9uylqNv/IkfKboK/RsBIT5cdF1d6Rp9tK2TJF/IOHCTFxUlZuf4psJEr/neJI2W3PMXBX/p+2TGxkrNO4wIA9aTO/kv2eDy69NJLtXbtWp100kkaNWqUWrVqJdu2lZqaqu+++05vvvmmNm3apFdffVWmyXaDOHauJYuKPj3WLUmOb7/2dzkAAAAAGjFH8m7ZERGyY2P9XUrVmaas+ASZqQR/AKrH3PXbhx3a/fZhB4dDBWfP8J23WreWuXu3P0pDPTL271eTv1yn/AsvVeHESSXOObZukWP3LhWcf6GYBuI/dmys7IgImcm7pQGDJEnmgQOymsf5uTIAtaXOgr8FCxbo119/1dy5czV69OhS56dNm6Zvv/1W11xzjT744AOdeeaZdVUKGglz3145f12nI1ddJyM7WzpyxN8lAQAAAGjEzORkWW3bBdweRlbLlsz4A1Btjt27JGeIb8ngP/K2bSdHSnI9V4X6Vvz3R9jrr8jTLUlWx06+c64ln8tKaCFv337+Kg+SZBiy2iTKcVQQb2aks78fEETqbJrdwoULNXny5DJDv2LHHXecJk+erE8//bSuykAjEvLNV7KjouQeOlx2eLiM/CMlNqkFAAAAgPrkSNktb9tEf5dRbVbLVjLT0n4/UFjI/1sBqJRj9055E9tJDkeZ573t2slMSQ6s7ye2LXk8/q4ioJhZmZIkb5s2ipjzT98H842cwwpZvkyFx58QcB+ICUbexHZy7Pk9iDfT98uKJ/gDgkWdBX+bNm3SmDFjKm03ZswYbdy4sa7KQCPi3LBent79JJdLiogo+sdZfr6/ywIAAADQGHk8MvfuldWunb8rqTarRQuZ6fslr1dm6j41ue7PCvn+W3+XBaCBM3fvqvB7ntU2UcaRPBkZGfVY1bEJ+d93anrlZXL+sMLfpZTN65W5Y7u/qyjBOJglOypKR274i8yDWYp4+h8Kf+YpRd16o2QYco8d5+8SIclq107m3r1FwbbHIyMrU1YcS30CwaLOgr+DBw8qISGh0nbx8fE6ePBgXZWBxsLjkWP3Lnk7d5Ek2eFFK4UbR/L8WRUAAACARsrcu0eyvPK2DcTgr6Xk9chMS1X4nKdk5OXJ+fNP/i4LQEPm8ciRkiJvuw7lNin+fuhICZx9/pzrfpHchYr45xMKfe/tBjdb0bXwU0XdM1OuxYv8XYqPmZkpOyZWVstWOnLFlXL+uk5mRroKJ5yknPv/LrtptL9LhCRPl26S16PwZ/8pc99eybZlx1f+s3wAgaHO9vhzu91yOivv3ul0ysOUeRwjMyVZchfK26mzJMkO+y34y89Xw/onGQAAAIDGoHgfq4Bc6rNFS0lS+HNz5EhOlqdvfzk3ri/6gTfLswEog7lvr+T1yNuufblt7Lg42eERRT/DGTCoHqurOcf2bSocN0F2bKxC33lTZvp+HbnyWn+XVcS25frua9mRkQr7z//Jimoqz/AR/q5KZlamrJhYSZJ7xCi5h42QzDqbe4Iasjp0VN5NtyriuTlybtxQdIw9/oCgUWfBnyR9/PHHWrVqVYVt9u7dW5cloJFw7NguGYa87TtIYsYfAAAAAP8yd++SHdtciorydynVZsXFS6ZDjh3blH/hpbISEhTxxCMy96f5QkEAOJpj9y5JqjD4k2HIapsox+4AmfF35IjMfXvlPfUMucceLyu2ucLn/kvuwUPlGTSkbu6Zm6vIRx+SY9uWoteGocLxJyr/wkukP0ywMHftlJmSrLxb7lDI8mWKeO4Z5UVGyNOnX93UVkVGZmbJJV8J/Rosz+ChyrnvQUX841EZubmymrPUJxAs6jT4e/nll6vUzuATgzhGju3bZLVpK4WFSZLs8IiiE3lH/FgVAAAAgMbKkZIckLP9JEkOh7xt28qOi1fhSSdLeXmSYcjx/+zdd3xkddX48c8t09I2Pdn0rdne6Sy9Cggq9kb9iQ8qigVsj737ICqKqIiIioAiSu9tKdt73+yml02y6Zl2y++Pm2Q3pCczmZTzfr32xe7ce7/3JEwmM/fcc87ePZL4E0L0Sy0vc24aiI8fdD8zLx/90IFximpstNIjYNuYs2YDEF57Nq6338T7l/toX7y05xpUxASDxP/fT1Brqwlccz22pqM2N+F57FG0ygo6b7m1V5tM97rXsBOTMJatwFi6HKWtFd9vf03bXfeApkU2thFQm45hLF8Rs/OLkbHyC2j/3o/RamvA7Y51OEKICIla4m/fvn3RWlqIPrQjJT1vxADwOW++FL8k/oQQQgghhBDjT62scNqbTVIdX/+2c1FbUSA+HrOwCH3vHsLnnBfr0IQQE5BWdgRrsGq/LlZBAeprr4Bh9Klgm2i0I4fB5XZuNAdQFAKfvI6E27+E57F/EfzQRyN3MsMg7te/QCs9QsfX/hdz7rzjmxYvJe4XPyP+m1+l8/ZvYM3MAcPA9cbrhM9Y25PkC773/cR/++toBw9gLlgYudhGwjRRWpqxUlNjc34xOgkJvZ5zQojJT2qtxeQXCqFVVPTM94MTZ/xJ4k8IIYQQQggxzjo7URvqsfILht53ooqP71UxYi5YhLZvz8D7h0LjEJQQYiJSWlvQ9+7FWLh4yH3NvAIwDdTamsF3NAxnruhYWJbzZ5S0wyWYRbN6vRZaWdkE330VnqeecGYVRojnnw+h79xB5+e/2CcBY84vpv37PwGPh/gffQ+lsRF953aUtlZCZ551fL85c7FnJOPasilicY2U0tIMto2dIok/IYSIpXFP/AUCAf7617/yne98h9/85jfU1Azxi16IIWiV5c4A6RMSf+g6uNxS8SeEEEIIIYQYd1rXxeBJ2+qzH8aChaiNDSj19X22uV56nsTP3eRcqBdCTDuuV18GRSG89qwh97XynddFrWLwOX9xP/8R3r8Nb4TQQLx/f4DEz9+MdvjQqI7XjpT0vtbUJXj5lViZWfju/jV0dIwpxm6u7VsJn7kWY9mKfrfbaWl03P4NbFUl/iffx/3cM1j5BViFRcd3UhTCq1ajb9449qTpKKlNxwCwJPEnhBAxFbXE3y9+8QuuuOKKXo/5/X7e97738YMf/IAHH3yQX//611x11VVUVETuDhkx/WiHS0DVMPN7t5SwvV6p+BNCCCGEEEKMO7WyHFT1eHu4KaC7bZz+zqo/08Tz38dQ2ttRh7iQL4SYgmwb90svED71NOyExKF3T0jETk4Z/PWisxN9z260g2OYBWjbuN5ch9LWRvz3vo3rzXUjO769HbWutvdYmW4uF52f+wJq/VHif/GzsVc8h0KoVVX9JhlPZKem0Xnb11Ha2tB3bid05tlOO+YTGKvWoNbVolZXjS2mUVKOOYk/W1p9CiFETEUt8ffGG29w7rnn9nrs/vvvp6SkhE9/+tNs3ryZf/7zn8THx/O73/0uWmGIaUA7XIKZn99nAK0dFwdS8SeEEEIIIYQYZ1ptLVZGJrhcsQ4lYuyERKz8gj6JP9eGt1Eb6kFR0I6UxCg6IUSs6Du2odYfJXTBxcM+xswvGLTiT9+3BywLtapy1JVrWskhlNYWOm79CuGTT8X321/hfuHZ4R9fesSJdc7cfrdbBYV0fvF2tJJDxP3ml2Cao4oTujpZWabTVnQI1swcOr78VYwVq/qtsDQWLwW3Bz1G7T7VpmOg6diJSTE5vxBCCEfUEn8VFRUsXbq012PPPfccOTk5fO5znyM+Pp4lS5Zwww03sHHjxmiFIaYB7chhzNl934jZPh9KZ2cMIhJCCCGEEEJMZ0pjI1ZaeqzDiDhjwSK0fXuPP2DbuJ/4D8aSZVh5+WhHDscuOCFETLhffB6zsGjABFl/rPyCQSv+9F07AVAC/p4KspHSN2/ETkjEXLwE/003Y6xag+uN4Vf9aUdKsL0+rOyZA+5jFi+g83NfQN+6GfdTT4wqTgC1tBRUtU8nq4FYs+fQ+aXbsZNm9N3odmMsXYZrc2wSf8qxY1gpKX0qEYUQQoyvqCX+gsEgSUnH7+7o7Oxk//79nHbaab32mzdvHnV1ddEKQ0x1gQBqZUX/rRd8cTLjTwghhBBCCDHu1GONU7LNmVG80GkhV1cLgLZrJ1pZKcHLr8ScPccZwyCEmDaUhgb0rZsJnX/hiBI95uw5qA316BvX97td370TY9ESoKsabhRcmzdirFwFqgqKgjGvGK28bNgVhNrhEqxZs4f8uoyVqzEWL0U/uH9UcYJTXWjl5PbpZDVa4dUnoZUcRGlpjsh6I6E2N2HLfD8hhIi5qCX+cnNz2bv3+J2AGzZswDRNTjnllF77dXZ2Eh8fH60wxBTX/aatvz7ots+H4peKPyGEEEIIIcT4Uo41YqWmxTqMiDOXLMFOTCLha1/B8+9/4nn8McyiWZiLl2DOmo1WUTH2WVdCiEnD/cqL2B4v4dPXjui48MmnEj75NOJ+8yu03bt6bVOam1CrKgmffS64PaiVlUOupxxrxPv3B3pef7pn3IVXrenZxyoshGAA9ejwig+0I4cxhpi517N2Xr7TlnSUtLJSzMKh23wOl7FiJQD61i0RW3O4lKZjWJL4E0KImIta4u/SSy/ld7/7Hf/973956623uOOOO0hISOgz92/z5s0UFg6vlF2IEylNx/A89TjoLqy8/D7bbV8cSiAQg8iEEEIIIYQQ05ZloTYdw06beok/OyGR9p/9gtB5F+B57FH0PbsIXX4lKIpzM6ZlOjdnCiGmBe1wCeaixeD1juxAVcX/6c9gLFhA3C9+hnpCm2B9z24AjMVLMHPz0KoqhlzOtXED7qcex/vgX501Nm8C3YWxdHnPPmaBc+1RLRv6NUppbUFtqMecNbzEn5mb5yQUg8Fh7d/7YOd1czjz/YbLTpqBOa8Y16YNEVtzuNRjTdgpKeN+XiGEEL1FLfF3ww03sHTpUr7yla9w7bXXUllZyfe+9z0SExN79gkGgzz66KOcccYZ0QpDTEWGgeefD5H4xVvQ9u7Gf+0NoOt9drO9XpCKPyGEEEIIIcQ4UpqbwLKmZMUfOMm/wEc/QdvPf4n/uhsJn3wqgDObStPRjki7TyGmC6WlefTVXS4XnZ//MlZOLvE/+1FPW0p91w6svHzs5BSs3FzUqqohl9LKS0F34X7+GfSN63Ft2YSxZGmvhKSdnIKdmOTsOwT3yy8CDHtuoZWXD7aNWj10rO+kVldBOBTRxB9A+PQz0LdvRWlsHPjcpUfANCN6Xqn4E0KIiSFqiT+v18sf/vAHnnvuOR555BFee+01Lr300l77GIbB7373Oz75yU9GKwwxBblfeA7Pf/9N8KJLaPu/XzvtH/ph+3xS8SeEEEIIIYQYV+qxYwBTNvHXzc7IIHzehc78LACXC7OgQOb8CTGNqC0t2DNmjH4Br5fOL34FAN/dd4Fto+3ehbF4KQBmblcLzSHm8qnl5YRPO53wSafg+8PdaAf29Wrz2c0sLByyKtn16st4HvkHwSvfi52RMawvw8zJBUAbRbtPrazUWaMgst3QQqevBbcH98sv9Lvd/dzTJHzjNtxP/jdyJ/X7UQL+KTnjVgghJpuoJf66FRQUsHTpUhISEvpsi4+PZ8mSJb2qAIUYiuv1VwivPonghz4K/Tyvevh8KJ1S8SeEEEIIIYQYP93VFVOx1edQzFlzeiX+XC89j/uZp2IYkRAiamwbpbUFKzl5bMvMSKbz059F37UD75/+gNrYgLF4CQBWXh5KwD9o1RqmiVZZgVlQhP/6T2H74sCyMFau6rOrVVCEOkjiT9+8Ed8ff0fo3AsIXv3B4X8RcXHYqWmolUO3JX0nrfQIVlY2xMeP+NihYgqdfibuV14Cw+i1yfXWG3j/ch92cgqeZ56K2GxWtanrxhep+BNCiJjr2x8xQh577LGBT6rrpKWlDZgQFGIgankZWlkpwfe+f8h9bZ8Pxe8fh6iEGIBl4fvD3RAK4//s52MdjRBCCCGEGAfqsUZwubHjp99nXXP2HKe6JBBArT+K789/AtvCmF+MNXt4s7KEEJOD0tYKloWdNIaKvy7m0mUEL78SzxP/AVXFWLDIeTyvAACtqgIjPb3fY9XaGqdVZkEhJCTQ+aXb0Q4ewO4n+WQWFOJ+6nHo6OiTaFMaG4n79Z2ETzqFwLU3gKKM7GvIyx9dxV/pEczCyLb57Ba64CLcL7+AvmUzxsmnAKBv34rv7rsIn3kWwSvfS8JXvoDrjdcJn3v+mM+ndFW8S8WfEELEXtQSf7fffvuQ+3i9Xq677jo+97nPRSsMMcW4172GnZCIsXzlkPvavjgwwhAOg8s1DtEJcQLbxnvfH3G9/ioAwfdejZWbF+OghBBCCCFEtKnHGp02nyO8aDwVmLNmO636So/gfeQfWJlZ2G4Xvvv+SMd3fnC8LagQYtJTmpsBZ3ZeJASv/iD6/n2gaRAX56ydng4eL2plJQxwHai7dadV6LTKtPILsPIL+t23u52mVl6GuXBRr22uTRvAtvHfcNOoXqus3Dz0zRtHdpBto5aVEr7iyhGfb1gxFRZhzpmH+6XnME4+Bddrr+C79/cYy1c4X6euY6w+Cc+TjxM+57wx/96Sij8hhJg4opb427hx4F92pmly9OhRnn/+eX7729+SlpbGRz/60WiFIqYK03TuQjr9TNCHfuraPh+A019cEn9inHke+Qful1/Af92NeB95CPdLLxD4+DWxDksIIYQQQkSZ0tiINQ3bfIJz4RuXG+/fH0A7fIiO278JHg/x3/kG7peeJ3TBxbEOUQgRIUpLCwBWBCr+ANB1Or76TTDNE06iYObkolUN3EJTLSvFTknFThh6jJCVkwua3m/iT9+yEWPhop6k40iZuXm4n3kSgkHweIZ1jHq0DsXfiVUUnYo/cKr+fPf8Bt/v7sK17jXCZ5+L/5obeq6rBS+/kvhvfx1980aMNSeP6VxK0zHs+HhwuyMRuhBCiDGI2u12iYmJA/5JTk5m/vz53HzzzXzyk5/kH//4x4jW3rhxIzfddBNnnnkmxcXFvPBC70G1t99+O8XFxb3+XH/99f2uFQqFuPLKKykuLmbv3r2j/npFlJzQh1zfvROlpZnwmWuHdajt63qz5g9EIzIh+lCrKnE//SRxP/4+nv/+m8CHP074vAsJnX0urtdfcT4ACCGEEEKIKU091jh925zpOmZhEdrhQ4RPPQNzyVLMefMJnXMenocfRGluinWEQogIUVuaAbBnRCjxB07CqOsm7m5WXp5T8TcArbwMs7BoeOvrOmZeHlp5ae/HOzrQ9+7FWHPSyOLtFWe+U8F3YrvPd8zW66a0tqA0HUPbsxsAM4qJv/App2EnJOB6cx2Bj1/rVPqdcHO8OXce5vwFeJ58vO/Btj3g1wCgHGsk7qc/xPXS8wCox47122JVCCHE+It5n43TTjuNsrKBB+v2p7Ozk+LiYr71rW8NuM/atWtZt25dz5877rij3/1++tOfkpmZOaLzi/GhtDSTeNP1xP34e6ilR3C9/hpWTi7mrGHOhvB5nXX8nVGMUgiHvmMbCbfdivehvwNOe5DQZVcAEDrvQhS/H9dbb8Q2SCGEEEIIEXU9rT6nKXPuPGxfHIGPfrznseCHPgqqiuepJ2IYmRAikpSWFmyvb9jVbaNl5nbNzrPtfrdr5WU9LTyHwyooRC0v7/WYa8c2sEzCK9eMIU5ntEf3nD+1pprEm29E37C+137uZ58m8X9uJPGzN+G79x6s9IyIzEkckNtN5+e+SMc3v0vo4kv7becZvOwKtIP70Q4f6n3o88+Q9P+uxfPPh8Dv77VNO3SQhG9+FX3Pbnx//hPa4UOoTcekzacQQkwQUWv1OVzBYBB9GG0bT3T22Wdz9tlnD7qP2+0mIyNj0H1effVV3njjDX7961/z2muvjSgGEX2ujetRQkHUhkYSvnEbqCqB939o2D3Huyv+lHe8OREiGtSaGtB0Wn9/X5+2FnZmJsbS5bhffN7pmy+EEEIIIaYmy0JpbsKepq0+AQLvfT/Biy7tVfVhJyRiLFqKdrgkhpEJISJJbWnGnpEc9fNYeXkQDKA0NGC/4zqf0taK0tyEWVA07PXMgiJcb7/ltBTVNAD0zZswi2aN7bXb58NKS++p+HM/9ThKRwe+v/yJtiVLIS4OpaEB70N/J3zmWYRPPd35+rKyR3/OYTIXLR50u7FiFXZiEq6338KcPbfncddrr2AlJ+N58nHnesZpZzgtQkMh3C+/iDl7Dp2f+Txxv/w/fL++E1wuzHnzo/zVCCGEGI6YV/z95z//YfHiwX8BjcaGDRs47bTTuPjii/nWt75FU1PvliINDQ1885vf5Kc//Slerzfi5xdj51r/NsaiJbT/+Of4r7sRY8EiwmsHT/ieyPZKxZ8YP0pLs9PiZIBe9qHzL0Q7UoIqFzuEEEIIIaYspbkJLGtaV/wRF4fdT1cdKz8ftbJ8wKodIcTkorS0RLbN5wDM3HwAtOq+7T7Vrg5iVuHwK/7MgkIIh1Bra5wHDAN9+1aMVaOv9utm5eahVVagNDfhfu1VQudfhNLZifdfDwPge+A+7Lg4/J+4DmPFKowVq7Bm5oz5vGOmaYRPPhV9/Vs9r9FqXS1a6RECH/gIbT//Jcaq1eg7tqNv2Yy+ayeh8y+k42v/i52WRudnPo/S3o5aXSUVf0IIMUFEreLvueeeG3CbaZo0NDTw4osvsnHjRv74xz9G9Nxr167lwgsvJC8vj4qKCu644w5uvPFGHnroITRNw7Ztbr/9dj70oQ+xdOlSKgfpFT4UVVVQ1eFVoInhU5qb0PfvJXjjTeheN/ZFFxO66GK0kSySmICiKOjhIOgxz3FHlaapvf4rxp/e3gopKegDPddOOgnS0vG+8Sqh+fPGN7gJRp6vYrKQ56qYTOT5KiaTqfx8VVuaUBQFNTNj4PeF01VhIWpHB672lkk1A2oqP1/F1DLez1WttRk7dZDPwJGSnYkSF4f3yf8SzMrEzsvv2eSqKkdxu1Fzc1DVYcYxexaKouCuKscoLEDbuw814Mc++eSxfy0FBegb1uN74VkUl47xkY+iZGfhefBvKDOScG3ZROCWL6AnJYztPFFgn3462kvP4y4twZo3H9em9SgeD6xZjeb1Ev70zYTfcUzPReWcbEKfugnvL3+BkjG833/y2iomE3m+iskoaom/z33uc4NuV1WVpUuXcs8993DaaadF9NyXXXZZz9+Li4spLi7mggsu6KkCfOCBB+jo6OBTn/rUmM+VmhqPMszWk2IE3noV3DruC8+BxPjRrWHHOWtoNqSMco1JJinJN/ROIjpCfsjOwDvYc235EjyNR4mfJs/HocjzVUwW8lwVk4k8X8VkMiWfr6EOcGm45xSM/nPMVLVsofO9aWmA2flD7z/BTMnnq5iSxu25GuyEubOIG4/Pt1+7He65B9/XvwIXXADXXguJiVBfA/Pn4k5LHP5aKfFQVID74b87V0UPH4acbNwrFg97tMyAFs6D557C8+qLcOUVuPMy4SMfgPVv4H7sn3DyGtyXXDD280TD6SdBeiruXVvh5JWwdSOccRrumcOsYL/0QpiZgbu4GHzDfw7Ka6uYTOT5KiaTqCX+XnzxxYFPquskJyfjifIA4G75+fmkpKRQVlbGaaedxttvv822bdtYunRpr/3e9773ccUVV/CTn/xk2GsfO9YhFX9R4H3hZSheRMBQoalj1OvE625C9U2Ex7DGZKBpKklJPlpb/ZimFetwpiVfbT1Wfj7BQZ5r7vgZ6Lv30TnFn49DkeermCzkuSomE3m+islkKj9fXWVVuBWNjrAyps8xU5InkXhFI7RrH+GiyTMDaio/X8XUMt7P1bi6esIrfONzvWXuIvjR/+F64Tnc/3wYe9NWAl/6Cp69+7Hmzhv0c3h/lFtvw/2PB9F/8UsAwhdfQqh57GNi1Bnp+MImtHXQedb52F1xqZ+4Hs+9vyfwoU9gR+A80eJeuQb9hZfxn3oWcfsPErjkCsyRfG8L50HAgsDQx8hrq5hM5PkqJpKUYd5wE7XEX25ubrSWHrHa2lqam5vJ6BoC/I1vfIPPf/7zPduPHj3K9ddfzy9+8QuWL18+orUty8ayZEZBJCnNTah7duO//lMYxtheTC2PF6u9Y8zrTBamaU2br3WisZubMRYuHvT7r6amoTc0YITNiXmH3ziT56uYLOS5KiYTeb6KyWQqPl/1o/WYKWkYpg3I58R3MnLyoKxsUv5/n4rPVzE1jctz1TShtRUjccY4/lyoGBdcQmD5auLv+Aneb3wNwmHC55w/8hhS0gl/+rOoF78Lz3NPEzz3QqxIfB3ZuXhtm/BpZxCekQrda86eR+gHP3P+PoFfR+w1p6I/9yyuB+7HdrkJLl0R9XjltVVMJvJ8FZNJ1BJ/A7Esi2uuuYbvfve7FBUVjWqNjo4OysvLe/5dWVnJ3r17mTFjBjNmzOCuu+7i4osvJj09nYqKCn72s59RWFjI2rVrAcjJ6T04Ny4uDoCCggKys7NH94WJiHFt2gCKirHmpDGvZft8KH5/BKISYhC2jdrSgj0jedDdrPQMMA2UpmPYqcNslyGEEEIIISYN5dgxrLTJM79uvFkFBahlpbEOQwgxRkpbK9g29owZ435uOyOD9m99H9/vf4trw9uYs+eMei1r9hz8N30mcsF5vfhvvgVj4aLIrTmOzAULsZNmoG/ZRPiU02GcOrUJIYSIvHFP/Nm2zYYNG+joGH0rgF27dvGJT3yi598/+tGPAHjPe97Dt7/9bQ4cOMBjjz1GW1sbmZmZnHHGGdxyyy243e4xxy+iz/X2WxiLl2AnjKBH+wBsXxyKf+K2URBThN8P4dCQH3qsdKfqWG1owJTEnxBCCCHElKM2NmC940ZTcZyZV4DrzTfAskBVYx2OEGKUlOZmAOzk5NgE4PXi/+wXCFZVYuVNrJmh4dPOiHUIo6eqhE86BfeLzxE+5bRYRyOEEGIMxj3xFwmnnHIK+/fvH3D7vffeO6L18vLyBl1PjB9t5w60fXvw33xLRNazfT4nKSNEFKmtLQBYScNN/NVjzi+OelxCCCGEEGJ8qU3HMJYsHXrHacrMy4dwCLWuFmumJEiFmKyOfwZOjl0QijLhkn5TQej8C1GP1mEsXxHrUIQQQoyB3GInJo5wGN+f78VcsIjwqadHZEmp+BPjQWlxPvQMebejz4edkIBafzT6QQkhhBBCTENKexuEQrE5uWmiNB3DSpPODgOxCgoAUCsqYhyJEGIseir+YtDqU0SXVVBI521flzafQggxyY174k/TNP7yl78wa9YsAEKhEHV1deMdhpiAPE/8B7X+KP5rrgdFicyiPi+KPxCZtYQYQE/ibxgfeqy0dJSGhmiHJIQQQggx/bS3k/CVW0n45u2odbXjfnqludmZeSUt3Qdkz0jGTkxCqyiLdShCiDFQWlqw4+LA5Yp1KEIIIYToR0wq/k4++WTi4uIAePnllznnnHNiEYaYQNS6Wjz/+TfBd10e0VYNUvEnxoPa2gyqhh2fMOS+dkYmakN99IMSQgghhJhi1PIyPI/9a8Dt3ocfdKr9DIP4//0q2q6d4xgdqMcaAbAk8TcoM78AtVIq/oSYzNSWZuwZKbEOQwghhBADmJQz/sTUopUcxPunP2AlJxO86n0RXdv2elECUvEn+mHbYFmgaWNeSmluxk5KGlalqpWegb5t65jPKYQQQggxJRiG835sqPdRto3vz/eiHdhHeNkKrNlzem3WSg7ifvkFAh+7htAZa4m7607if/oDOm7/JuaixaMOz/eHu9F273L+oaoEPn4NxsrV/e7bXWUoib/BWfkF8n5YiElOaWmRNp9CCCHEBCYz/kTMKI2N+H71C+K/9XUU08T/2c+D1xvRc9i+OPD7I7qmmPy0w4eI/+F3Sbz5/0VkBozS0oI1zA89Vlo6amODk3gUQgghhJjOWltI+OLncD/z1JC76tu3oh3YB24P7pee773RNPH+6Q+YBYWELrgIEhLo/PJXsWcko+/YNurw1JpqXK++jDl/AeHTzwSPB89/H+t/Z9vG/fQTmMULIWHoLhDTmZlfgHq0NnazGIUQY6a0NGPNSI51GEIIIYQYgCT+RMz4/vIn9L278f+//6H9hz/DnDMv4uewfT6UgF+SLMIRDOL79Z3E/+/XUOtqUdrb0CrLx7ys2tqCPcwPPVZGBoRDKG2tYz6vEEIIIcSkZdt4f3sXamMDWumRIff1PPwg5oJFBK+4Evebb0BHR89m9wvPoZWXEbjuxuPdHDQNs6AQrXz0s+TcLz6PnZCI/8abCH7gwwTe8360g/tR+1lTX/82Wlkpgfd/aNTnmy6svHywbWn3KcQk5rT6lIo/IYQQYqKSxJ+IDdtGO7Cf0PkXEj7rHFCj9FSMi3OSftLuUwDuda/i2vg2/htuou2nvwBVRS0tHfO6I2lzYqVnAKDWHx3zeYUQQgghJq3HHkPbvg0rOwf1aN2gu7rWv+Uk9j7wYULnnAdGGPcbrwGgVlbg/cffCJ1/UZ8bCc38ArTRJpdCIVyvv0Lo7HPB5QLAWLUaOzkF94v9VBz+8yGMZSswFywc3fmmEbNrpvtYkrJCiNhSWpqxkpNjHYYQQgghBhC1GX833XTTsPZraGiIVghiAlPq61HaWjHnzI3qeWyfzzmfv7Pn72L6cr32KsayFYTPOQ8Aa2YOWukRwmNcV2ltwRrmRR47Pd05pr4BolDlKoQQQggRS9ruXfj+9Hvav/PDAVteqiWH4P77CV92Babbg/uF5wZe0DDwPPIQxopVmPOLAQivPgn3C88ROvs84n51B1ZWFoGPfLzPoVZ+AcqxRqc6MD5+RF+H6+03UTo6CJ93wfEHdZ3QOefhefpJAh/6KHR9vnC9/ipqbTWdn7llROeYtrxezLnzcb39Rs/7ciHEJGIYKO3t2ElS8SeEEEJMVFGr+Ovo6BjWH5/Px5o1a6IVhpig9JKDANFP/Hm7En9S8TftqTXVaCUHCZ15ds9jZtFstLLSsa/d0jLsDz12fAK214faUD/m8wohhBBCTDSepx5HravFve61gff5619g1ixCH/oIVmYWSmvLgB069O1bUetqCFz9wZ7HQudfhFpdRfyPv49aX0/nZz4PbnefY838AoBRVf25X3weY8kyrKzsXo+Hzr0AQkHcb77uPNDejvfRRwiffBpW0awRn2e6Cp1/Ifqunai1NbEORQgxQkprCwC2VPwJIYQQE1bUKv4eeOCBaC0tpgDt0EGsrOyo3yF2YsWfmN5c617DjovDWLW65zGzaBauDW+DaR6fBzNSgQAEA8Ofb6Ao2OnpkvgTQgghxJSjHD2KvmMbdkIi7hefJ3TxpaAovXfq7EQ9sB8+ezPoOlZmFgDq0TqsgsI+a2oHD2CnpPZKqpmLl2BlzUQ7uB//9Z9yZsb1w8rJBVVDqyjDLF4w7K9DLT2CVnKQzs9/qc82Oy0NY+Vqp0oxEMTz30fBtAi+/4P9rCQGEj7lNLx/ux/3Sy/0W60phJi4lOZmACyp+BNCCCEmLJnxJ2JCO3QQc3Z0q/0AbF+c85dOf9TPJSYw28b1xuuETzmt193gZtEsCIdQa6pHvbTS4tztOJIPPVZ6hiT+hBBCCDHluF96Htvnw/+p/0GtqULbs7vPPvr+vWBZsGIFAFZWV+KvrrbfNfWSQxhz39EeXVEIfOIagu/7wOCtInUda+ZM1IqRVfy5X34ROyUVY+XqfreHzr8QtaIc70N/I3zqGbT//E6smTkjOse053YTXnsOrtdehlAo1tEIIUZAlYo/IYQQYsKLWsVft4aGBh555BE2bdpEba3zYS47O5uTTjqJq6++mvSueVdiGgmHnblqp58Z/XP5vAAofkn8TWfavr2oDfWE157T63Gz665yrfTIgHeKD0VtawUYfsUfTuJP37dnVOcTQgghhJiQDAP3qy8TPvNsjBWrsGbm4n7xefyLl/TaTd+9CzstHbKzobnT6QDi8aIePdp3TctCO1xC+D1X9z3d8pUYy1cOGZaZV4BWUT6iL0U7dIDw8hUDdoQwlq3Af92NmAsXS8JvDELnXYD76SdwbXib8JlnxTocIcQwdVf8yYw/IYQQYuKKasXfM888w8UXX8wvf/lLdu3ahdvtxu12s2vXLu68804uvvhinnnmmWiGICYgrbwUTANz7jhU/PXM+JPE33Tmfv0VrMwszHnze2+Ij8fKykYrPTLqtZWWZmBkdzta6RkoDQ1g26M+rxBCCCHEROLauB6lrZXQ+ReCohA6/0JcmzagNDf12k/fvRNzyZLjLUAVBSszs9+KP7WyAoKBMc0FtwoKUCvLh/++yzDQKiuxCosG3kdRCJ93oST9xsiamYOxeAnuF5+PdShCiBFQWluwExJAj3otgRBCCCFGKWqJv+3bt/PFL36RpUuX8ve//53169fz73//m3//+9+sX7+eBx98kGXLlvGlL32JHTt2RCsMMQFphw6BpmMWFEX/ZLoOLrdU/E1noRCu9V13Eb9zxgxgFhaNPfGnKNgJicM+xkrPcJLRHR2jPq8QQgghxETifvF5zAWLsHLzAAitPRs0DferL/fso7Q0o1aUYy5Z2utYKysb9WjfxJ926CCoKuas2aOOy8zLR+nsRDl2bFj7q9VVzk2K4/FZRRA6/2K0g/tRR1iVKYSIHbW+HjslNdZhCCGEEGIQUUv83X333axZs4b77ruPVatW9dm+cuVK/vSnP7F69WruvvvuaIUhJiDt0EFntprLNS7ns30+lE5JsExXamMDBAMYxQv73W4WzUItKx119Z3a0oKdmATq8F9O7QynxfFgc/70LZtI+MoXnMpAIYQQQoiJqqMDzz/+hrZvD6ELLjr+eHw84dPPcKq5gkEA9K6Zf30Sf5lZ/bb61EsOYuYXgNc76vDM/K7W7pXDSyxp5WVdxxWM+pxi+IxVq0HVnNmPQohJQautwZyZG+swhBBCCDGIqCX+tm7dysc+9jGUfipsuimKwkc/+lG2bNkSrTDEBKSVHMScO2/czmelpAz7Dl8x9Sjt7QDYif1X5FmFRSj+TtSjdaNbv6VlRPP9wKn4g4ETf0p9Pb7f3YVaXYXvgftGFZcQQgghRLS5n3+GxC9+Fs9zzxC86n2ETz611/bgu9+D0tqK5z+PAqDv2oGVm4ednNJrPysry3lfZBi9HtcOHcScPbbxAHZGhjNDsHz4iT8rIxPi4sZ0XjFMuo41cyZqRUWsIxFCDJNaU42VI62OhRBCiIksaok/v99P8jBmXqWkpBAIBKIVhphglNYW1KN145r4s9MzBq2sElOb0t4GDJz4M4tmAaCWlvbZ5lr3GlrXnekDrt/agjXCxJ+dNANcbtT6fp6XhkHcb3+FHReP/7ob0TdvRN+6eUTrCyGEEKI397NPo3ZVconI0A4fwnv/nzBWrqbt/35J8OoP9umAYGVlE7ziSjxPPo5aVYm2exfG4qV91jIzs8GyUBobjz/Y2YlaXdV3RvNIKQpmXj5apZNYUhoa8P79AVyvvtz7fF3U8lKsgsKxnVOMiJlfiCatPoWYHDo7UZqbZMapEEIIMcFFLfGXn5/P5s1DX6zetGkT+fn50QpDTDBaySEAjDnjWPGXnoEq7RKnLaWtK/E3wAw+e0YydnIKWunh3htCIXz3/RHPU48Pur7a0oI9I2XQffoGpWBlZPRbZeh59BG0koP4b76F8LkXYCxZhvf+P/W0yBJCCCHEyCjtbXj/+mfcr7wU61CmFPeLz2OlpeO/8dODznoKXnEVVno6cb/+BWpDPcbiJX32sTKzAHq9N9IOl4BtY84ZW8UfgJmfj1pRhtLaQvyPv4/7xefx/fF3JN7yaeJ/8B2wLGdH20YrK8OUxN+4svLzUSvLR916XwgxfrTaagCsmTNjHIkQQgghBhO1xN9ll13G73//ezZu3DjgPps2beKPf/wjl19+ebTCEBOMWleHnZzitNwZJ1Z3xZ98kJyWlLY28HgHnSlpFs1CKyvt9Zi+YxsEA2ilRwZffxStPgGsnFzUmqrea9XV4Xn8MYLv+4Bzd7uiELj2BtTmZjyP/WvE5xCTkGGgVkqrKyGEiCRtzx4noXPk8NA7i+Fpb8f15huEz7tg6DnHbjeBa653fr+pKsaCRX12sdPTQVXRjtb2PKaXHMSOi8PKGfscKSu/EK2qirif/Rilo532H/6Utrv/SOCa69H27kbbuwcApbkJpa1VEn/jzMwvQOnslPEMQkwCarWT+DOzpeJPCCGEmMj0aC18/fXX88orr/CJT3yCM844g3PPPZeZXXcE1dTU8Morr7Bu3TqWL1/OddddF60wxAQTOuc8wqtPgkFmP0aalZ4O4RBKW6vTYlFMK0p7G9YAbT67mXPn4Xn8P9DRAfHxALjWvw2K4lwAamnGnpHc//qtzVijeF6Z2TNxv7mu12Na6RGwbULnnt/zmJWVTfDSy/A8+zTB939o6ItrYlJzvf4qvj/fS+vv7wOPJ9bhCCHElKDv3gk4s9uw7XF9HzpVaDt3QHxcz7w99xuvg2kSOvvcYR1vLF1O+IyzUFqaet5r9T6B5tysV3dCxd+hg5iz50Tk/5eZlw+mgVpbQ8fXv4WVlQ1A6PyLcD/xX1wb3sZcvMR5jgBmQdGYzymGz8x3Eq1aRRlGWlqMoxFCDEatqXbmtMocVCGEEGJCi1riz+PxcP/993PnnXfy8MMPs27dOpSuD222bePz+fjkJz/JLbfcgtvtjlYYYqLxerG93nE9pZWRCYDaUI8pib9pR2lvx05IGHSf0Nnn4vn3v3C//CKhy98NoRCuLZsIn3kWrtdfRSs9grF8ZT8HhlA6O0dd8acca4RAALp+JrSqCuyExD4JanPRYnj8MZT6euysrBGfS0we+qEDzoXJhnqs3LxYhyOEEFOCvmsnVnYOam01am2NzCUaqY4O4n75fyiWRcfX/hdzzlzcLz5HeM3JzsXfYfLfdPOgHTiszMzjrT5tG+3QQULnXTDW6AEw58zFWLGK4GXvxuqa7wyAomCcfCqu118l8IlrUcvLsL0+7MzMiJxXDI+dng4eL2pFBaxYFetwhBCDUGtqMCNQiS2EEEKI6Ipa4g/A5/Px1a9+lVtvvZWdO3dy9OhRADIzM1m6dCkeqWYQ48BOTwdAOVoPs8c+I0RMLkp724Dz/brZKamEz1yL55knCV3yLvTtWyEYIHjFVeibNqKWlUI/iT+ltdU5fpSJP8C5ANl1AUqtrMTK6zvz1Jzp7KtVV2JI4m9K0w6XAKDWH5XEnxBCRIDS2IhaV4P/uhvx/ekPaKVHJPE3Qu6XnkcJhzELi4j7+Y8IXv1B1Ooq/J+8fmQLKcqg1XtWZjb6wf0AaIcPOS0350ZoLrjXS+eXbu93U/iUU3E/9Tjavr1oZWVY+QVSFTreFAUzLx9N2p0LMeFpNVUY84pjHYYQQgghhjAuPeM8Hg9r1qzhXe96F+9617tYs2aNJP3EuLHjE5w7SBsbYh2KiAG1vX3IxB9A8F1XoDQ34XpzHa71b2PlF2Dl5GIVFg0456/74pSVlj7iuMxsp/WxVlvT85hWVYHZT7LHTktznsNd8xTEFBUMolZVAk7iTwghxNjpu3f2VHVZaemoQ8zuFe8QDuN55ilCa8+i4ytfw05Jxfvne7Gyc5yOBBFkZWWjHj0Kfj++396FWTQLY+nyiJ6jP+bsuVjpGbjWv4VWXirz/WLELChArSiLdRhCiMHYNmptrdxAI4QQQkwCUUv8HTt2jH379vV5fN++fXzuc5/jsssu45Of/CQvvfRStEIQwqEoWBkZqA31sY5ExIDS1oo9xIw/ACs3D2PlajyP/wfX1s2ETz0dALNoFlpZad8D/H68f38AY+Xq0VVmJSRgJyah1nQl8wzD+RCV37fiD0XBzMlBq64c+XnEpKGVlYJlgaqh1svrlRBCRIK+exdmYRF2QiJW0Sy00sOxDmlScb3xOkpLM6F3XQEJCXR85WuYs2YTvOq9Ea+KszIzIRgg7q47UZub8H/m86BHtUGNo7vd54a3UWtrMAsl8RcLVl4BWlUVGEasQxkxtaoS9xP/jXUYQkSd0tAA4RBWjiT+hBBCiIkuaom/O+64g69+9au9HquqquKjH/0oL774Ih6Ph4MHD/KZz3yGjRs3RisMIQCw0jOkgmaaGs6Mv27By69EramCYIDwyacCTuJPrauFjo5e+3offQSlvR3/J64bdWzWzBzUqioA5xymgZnTfxLRysnr2VdMTdqRw6C7MOcXo8jrlRBCjJ1to+/agbF4KXDCzTyDzJmb9mz7eOLFtvE8+TjGqjU9LcrtlFQ6vvdjwmeeFfFTW1nZAOjbt+K/7kasru4I4yF86mko7W1gWVgFReN2XnGcmV/gzDmuq411KCPm/fsDeP/xV/D7Yx2KEFGl1TifR7tHUQghhBBi4opa4m/Lli1cccUVvR7785//TGdnJ/fccw+PPvooL730EsuXL+cPf/hDtMIQAnBaMUqrz2nItlHahp7x182cX4w5rxizsKinfYnZNX9PKz/eekgtL8P97FME3ns1dkbGqMMzc3JQa52KP7XCmWli5Q2U+MtBra6Ui5VTmHa4BLOwCHPmTKlQFkKICFCrq1BamjGXHE/8Ke3tTsWC6Jf7madIuv4TxH//2/j++DvUmiqCl185Lue2MrNA1QifdQ7hM9aOyzm7mbPmYKVn9MyaE+Ovu+uFVlE+7GOU+nqU1pZohTQsakW5Mx8cZEahmPLU6mrQXdjpIx91IYQQQojxFbXEX11dHfPm9R7G/vLLL7Nw4ULOPPNMALxeLx/72MfYv39/tMIQAgArI9O5yCNJk+klGATTwE5KGt7+ikLn579I56239TxkzcwBl/v4nD/bxvenP2BlzyR06eVjCs+amYtWUwO2jVZVgZ2YhJ00o999zZxclM5OlJbmMZ1TTFza4RLMWbOxpUJZCCEiQt+1EzQdY/4C4ISbecqGP+dPLStF27UzKvFNRPrO7VhZWdhxcejr38ZYtARzfvH4nNzrpf17P8J/3f8bn/OdSFEIn30u5qw54PWO//mF8z54RjJq+fDn/MX//EfE/ezHTqv0GPE89Th2Siqoap8ZhdqB/WiHDsYoMiEiT62pxsrOBjVqlxKFEEIIESFR+22tKArKCXMfGhoaqKys5KSTTuq1X1ZWFk1NTdEKQwjAafWp+Dv7tGsUU5vS1gYw7FafAPaMZOy0tOMPaBpmQWFP4s/1yktohw7gv/bGMc+dsWbOhGAApekYalUV1iB3mHfPEZR2n1NUZydqbTXm7DnOjQrt7dDZGeuohBBiUtN378ScNx88HgDs5BTsxKTjN/MMg/fBB/Dd98dohRgzSnsbvnt+07s1oW2jlRwkfNoZdN76Fdru+ROdt319XOOyCovGZ65fP4JXvY+O7/wgJucWDjM/f9hVc0p9PWpVJdqREtwvPR/lyAaIobER1xvrCF56OVbWTLSK3rF7H7gP75+n3uuHmL7UmmrMHGnzKYQQQkwGUUv8zZo1izfffLPn3y+//DKKonDGGWf02q++vp7U1NRohSEEAHaG04pC2udNL0pbKwBW/PATf/0xC4vQSg+jtLXifehvhM88C3PhojHH191OVK2uRqssx8ztv80nHG9/1T1XQUwtWukRsO2exB/I65UQQoxJKIS+exfhZcuPP6YomLNmDz/xFwig792LerTW6SIwhWi7duF6/VX07dt6HlNra1A6OjDnzO3aSXP+TBeK4vwRMWPlF6IOM/Gn79wGqkr45NPwPPwgSvP430zsefYpbK+H0Lnn901ahkJoZWVopUdiEpsQ0aDVVI/r/FUhhBBCjF7UEn8f//jHue+++/jGN77BnXfeyc9//nMKCgo4/fTTe+23bt065s+fH60whACcij+QC+nTjdrRDjitg8bCLJqFWl2F9/77wLYJfOTjkQjPSfBoOlplBWpt7YDz/QDQdazsbGeugphytCOHwe3BysnF6pqZIe0+hRBi9PQ9uyAYwFjdu9uIczPP8BJ/+t7dYBo9Lbmnku6vR999vI2pVnIIAGP23JjEJISZX4B6tA4CgSH3dW3fhjl3PoHrbgBVw/v3v45DhCfo6MD10guEzrsQfD6s/AKn1WfXaAmt9AhYJgD6zh3jG5sQ0eD3ozQdw5KKPyGEEGJSiFri793vfje33norr7/+Ovfffz/z5s3jrrvuQj+hdUtjYyMvv/wy5557brTCEALAmZvmcqM2NMQ6FDGOlPauxN8IWn32xyoqAtvG9fYbBD74kQHn8I2YrmNlZqFv2wyWiZk7cKtPADM3D7W6MjLnFhOKdrjEmT2lqtjJKc7rVb3cqCCEEKOlb96ElZXd5wKlWTQbpblpWDNz9W1bnddkRUGtmFqJP7XKeT+h79nV85h26CBWdg6M8X2TEKPVXW3q2vD24DsaBvqunRjLV2AnJBL48Mdwvfk62t494xClw/3S8yjhMKGLLwXAzMtHaW/vqe7TDh0ElxuzoLBXZa0Qk5Va49yAas2Uij8hhBBiMojqRN4bb7yRV199la1bt/LXv/6VefPm9dqelpbGm2++yYc//OFohiEEKApWWrpU/E0zSlsraDp4vWNax8wrAFXDnDOP8LkXRCg6hzVzJvqe3c7fB6v4w2kNqsmMvylJO1KCOXuO8w95vRJCiLGxbVxbN2OsWtOndaNVVAQwdNWfbaPv2EZ49UlYmVnDnjs2WWiVFdipaah1tShdN5poJQcx50q1n4gdKzeP8Emn4Hn0ETCMnsdd617D95tfgWUBoB3YD8EA4WUrAAifdQ5Wdg6uN14bn0DDYTzPPEVo7VnYKc7YEqug0Imt67VCO3QQc9ZsjJWr0Xdt74ldiMnKtWUTAGZ2TowjEUIIIcRwRDXxJ8REYqXLhfTpRmlvx05MHPu8Frcb/0030/k/n4v47BczJxcsCzsxaciWpFZuHkrTMejsjGgMIraU9jbUo3XHE3+AlZnptLoSQggxYtqREpTmJsKr1vTZZmVmYSckoB08MOgaal0tav1RjOUrsHLznBZ+U4VhoNbWEjr/QlAUp91n1zwyc+68oY8XIoqCV38QtbEB98svAKCWHsH3h9/hemsd7peeB0DfsQ07MQmraJZzkKJgLF6CvnfvuMToeuN1lJZmQu+6oucxKzML3B7U8nKgO5E+D2P5SpT2drTDJeMSmxARZxh47/09nsf+5Tzn4+NjHZEQQgghhkESf2LasDIyUCTxN60obW1jbvPZLXz6mdhZWRFZ60Tdw9HN/IIh9zW72pVpNVL1N5WoXVWcZted4uDMJZXXKyGEGB1900bshATM+cV9NyoK5rxitIP7B19j+zbQdIxFSzDzC9CmUKtPtbYGLBNj/gLMotnou3f1zCMz5kjiT8SWlZtH+Myz8Pz7XyitLcTd9UvMvDzCa8/G8/CDKM1NuLZvxVi+otcNeebCRah1Nc5NctFk23iefBxj1ZrerYQVBTM3D62yHKW5CbWxAWPOPMw5c7Hj4tC3b41uXEJEQyBA/I+/j/u1V/Bf/6mIzboXQgghRPRJ4k9MG3Z6xpAVf9rhQ3j/cl/PUHYxuTmJv8RYhzGo7gsGVu7gbT7BafUJxxNFYmpQOvrOorQyMqVCWQghRsm1dTPG8lWgaf1uN+YXox86BKY54Br69q0YCxaA14uZX4jS0uy0EJ8C1Epnvp+Vl+dUSe3e6VRAutxYw7gRSYhoC7z3AygdHSR843bUpmP4P/N5Ah/9BKgavt/9BrWiHGP5yl7HGAsWAqDv3xfV2PStm1FrqghefmWfbVZ+PmplBVrJIQCnglbTMJYslzl/YlJybdmEtm8PHV/9JuFzz491OEIIIYQYAUn8iWnDSs9AaW+HQGDAffRNG3E/9zT6xg3jGJmIFqW9DStxoif+nGSemZ8/9M5erzP7rVoSf1OJ0tW61Y473jbHysh0Hm9vj1VYQggxKSlHj6JWlPfb5rObOX8BBAOo5QO07wyF0PfuwVjmJBasrt/R3S38JjutsrynxbixeClKawvu11/BnDUbdD3W4QmBnZFB6LwLUI414r/2BqyZOdgJiQQ+/DH0XTuc1p5Ll/U+JjkFKzsHbe+eqMbmeeK/mPOK+60oNvML0Sor0Q7sx05OwU515v8Zy1c4LYinyM0DYvrQ9u/Dys7B7EqsCyGEEGLykMSfmDasjEyAQato1KNHAfD+8x8ygH0KUDraJ3zFn52QSOdtXyd8xlnD2t/KyUWTxN+Uovg7QdPB5ep5zM5IBwZ/vRJCCNGXa8smp0XnsuUD7mPOmg2ajn6g/3af+t7dEA45rQTpasut6WiVU6Pdp1pV2dNi3CxeALoLtbJC5vuJCSXwwY8475HPPP4eOXzWOZgLFmHOK+73Pb6xYAH6vugl/pTKSrQD+wheenm/2828fAiHcL39pvPz1NWK1Fi2HGwbfdfOqMUmRDRoB/djzp8f6zCEEEIIMQqS+BPThpXWdSG9/uiA+6gN9ZiFRajVVbjWvTZeoYkoieSMv2gyli4Hj2dY+5rz5qPv3IFaMTWqDoRT8Wf7fL3m1PTcqHB04NcrIYQQfel7djktOn2+gXdyuzFnzXbaW76D0taK94H7sWbmHm/DrWmYubmolVPjd69WWXl8NpnbjdFVuSTz/cSE4vU675FPpCh0fOl2Or54W7+HmAsWoVZVRq2yTtu3F1R1wBsLrAInoe7M95vb87idkoo1M7ff1xwhJqzOTrSKcoz5C2IdiRBCCCFGQRJ/YtqwU1JAVVGPNQ64j1p/FGP1SYRPOgXPo49AODyOEYpIUyfBjL+RCl5+JVZWFnG//gUEg7EOR0SC348dH9/rITsxCdweqfgTQogRUstKMYtmD7mfOb8Y/cA7ZoH5/cT99EcoHe10fvErvW/IyC9EO7HV5yDzASc0w0Ctq8HKOz5b2Fy8xPmvVPyJycDrhXe8b+pmLFwMgLZ3b1ROre3fh1lY5MTQD3tGsvMeDjDn9q6SstLTB/0cKsREo5UcAtvut62tEEIIISY+SfyJ6UNVsZNTUBoH+MAVCqG0NGOlZxC8+oOojQ24X35hfGMUkWMYEAxgT/AZfyPmdtP52S+g1tfjfeC+WEcjIkDp6HAq/no9qGBlZAxaoSyEEOId2ttRGxuwCgqH3NWYNx/lWOPx94XhMHF3/gy1toaO277utPc8gZmX77T6tG2U9jYSvnQL7qefjMZXEVVqTTVYFmbu8dnCofMuwH/DTdhpaTGMTIixs9PSsDIy0fd3Jf5sG7WqMmLrawf2Y84bPAli5heAojgthU+MLTV14M+hQkxA+oF92AkJWDNzYh2KEEIIIUZBEn9iWrFS01CbjvW7rbuyxsrIxMrNI3zK6bhffH48wxMR1N3iZ8ol/gArNw//J6/D/cpLuN5+M9bhiDFS/H7suL53rlsZmZL4E0KIEdC62mCbhUVD7ttdwdBd9ef9+wPo+/bReetXsIpm9dnfKiiAYADl6FF89/wWtf4o+s7tkQt+nGhdSRAr/3jiz05MInzOebEKSYiIMhcsRNu3BwIBfL+6g4TbbkUtPTL2hZuaUI7WDdn20CxegDl/QZ+qwME+hwoxEWkH9zuVqydUvwshhBBi8pDEn5hWrNRUlIESf10X2Ltna5kLFzp3RUu7z0lJaW8HmHKtPruFzz6X8Mmn4f3zH1Ha22IdjhgDpbOj31lUVkYmam1tDCISQojJSSsvA901rOoEe0YyVlY22oH96Js24H7+GQIf/yTmwkX97m/mObO7fPffi751M+aCRWiHnTZok4laWYGdNGPKvj8SwliwCK28jIRvfQ3XDic5r1VWjH3hrvah5rz5g+4WfO/76fj6t/o8bqWkorQ0O11JhJjoTBP94EGMYpnvJ4QQQkxWkvgT04qdmobaOEjiT9WwU1MBMPMLwbJQq6vGM0QxUp2duN56A98f7ibh8zf3tN1S2pxkmJ2QEMvookdRCHziGjAtPA/9PdbRiDFwKv7i+jxuLFmKWluNtntXDKISQoiJSa2pRi0rRS0r7dM2TysvxczLA00b1lrm/GL07Vvx/eFujDUnEzr/ogH3tVNTsePi0HdsI3TJZQTffRVKeztq3eS6QUOtqsTMyx96RyEmKWPhYichbxi0f+cH2Mkpkfk53bsXOy196Ja4igJq38ssdlqa0yq4pWXssQgRZWpFOQQDQ7a2FUIIIcTEpcc6ACHGk5WSOuBQdaWhASs9veeDmpmbBzhto6xhtIwSseH7w924Nq7Hys0Djwf3yy8QuvSy4xV/U7DVZzc7OYXg+z+I9y/3ET7r3CHvQBYTk9LZge3rJ/G3ag3mrDl4H36Qjm9/X9rsCCGmPW3fXuK/f0IljctN26/v7qleU8vLhjXfr5sxbz6u11/FSkun84abBn+dVRTM2XNQOjoJfPAjEAw6MR062Gce4ESmVVZiLFka6zCEiBo7M5OO276BNWsWdkIiVlZ2ZDoo7N3b0yJ4NKwU5+ZS9VgjpszTFBOcfmAfaDrm7DmxDkUIIYQQoyQVf2JasVNTIRiAzs4+29SjR7HSM44/EB+PlZaOGonWMCJqtMMlhN51Be0/uYPA1R9Era5CratFaW8FRel3dtpUErrgYsxZs/He9wcwzViHI0ZhoIo/FIXABz6MVnIQfcum8Q9MCCEmGNfG9dgpqXR894d03PYNCIfQt29zNpomWkUFZkHRsNczlq7ATk3Df/MtMIwOAZ2fvdVp4edyQUICVnYO2qGDo/tiYiEcRq2rwcrLi3UkQkSVuXRZzw0BVlbW2Cv+QiEoKcFcMPq2h91dZZRjMudPTHzagQOYRbPA7Y51KEIIIYQYJUn8iWnFSnXuruxvsLpafxQ7I6P3/vkFzrwYMTG1t6M2NjgfSgBj6XLQXeibN6G0t2PHx/fbamdKUVUC196AVlGO69WXYh2NGA2/v9+KP3AuXBmLluB95B9gWeMcmBBCTCC2jb55I+FVazBnz8Vcugxz1hz0zc6NEWptDRhhzBFU/NkZGbT96u7hV/HEx4PX2/NPc+5ctJLJk/hTKyvAspx29kJME1ZWNurRsSX+1EMHwTCwxlDxZ8cngMs9YPcZIWLB+5f70N9+q8/j2sH9Y6pwFUIIIUTsTfEr4kL01pP46+cDl1p/FCsjs9djZl5+ZIbBi6joTsqa3a1YvV6MJUtxbdmE2t6OnZAUu+DGkTl7LsbCxbi2bY11KGKkbBslMEDFX5fgBz6MWlmB6603xjEwIYSYWNSKctSGeozVa3oeM1avQd+xDcJhtLJSgBEl/sbKnDsPrazMqQaaBLQjJaCqx983CTENmFkzUdrbUdrbRr2GdmA/+HwjaiXch6Jgpab1ewOqEDERCuF+4Tncb/f+jKEca0RtbMCQ+X5CCCHEpCaJPzGt2CkpQD8tVgIBlPa23q0+cSr+lGON0DUvTkwsWnkZ6K5es3XCq9ag7d+LWlONPYy2XVOFOXee027MtmMdihiJzk6w7QEr/sD5f2usWIX76SfGMTAhhJhYXFs2YXt9GAsX9zwWXrUGJeBH37sbtbwMOzVtWC07I8WYMw8sE630yJjX0rduRq2pjkBUA9OOHO6ZiSzEdGFlZwOgHq0b9Rragf1QXDzmTiJ2aipKo1T8iYlBKzkElon6jg5H3b/TZL6fEEIIMblJ4k9ML7qOnZjUp+JPrT8KgJWZ1etxM78AQKr+JiitvBQzPx80recxY+Uqpx3Y9m3TLvGntLagNDTEOhQxAorf7/wlzjfofuEz1qKVHpGLRUKIaUvfvAlj2Qpnvl4XK78AKz0DffMmtLLSca326z4/LveY5/wpTceIu/P/cD/zVIQi6592uEQu5Ippp/vznVo7ynafpol28AAsWjT2WKTiT0wg2sH9QFdSvLPz+OOlR7ATErDT0mIVmhBCCCEiQBJ/Ytqx0tL6VPypDfXOtvT03vvm5IKqoVWWj1t8YvjU8rI+LXfslFTM2XPBMrETE2MU2fgz584Duu7cFJOG0tkBgB0XP+h+4WUrQNVwbd00DlEJISYipa112lZ1K03H0I6U9Grz6WxQMFatwbVlE1p52bgn/tB1zFmzx5z4cz/7NJhGz/vRqAiF0CoqMGfNjt45hJiI4uKcGz/rRpf4c732itP95bTTxhyKlZLidJMRYgLQD+zHTnY6Ip14o7NWegSzaBYoSqxCE0IIIUQESOJPTDt2alrfir+jR0HTsVNSe++s61gzZ6JWSMXfhGOaaJWVmAVFfTZ1Xxi0E6fHjD8AO2kGVkYm+qEDsQ5FjEB3xZ/tG7zij/h4jIUL0TdtHIeohBATjVpdReJnbkLfMj2T/64tm0BVMZav6LMtvPoklKZjKC3N/b4niDZz7jy0w2O46cbvx/3S86DpUU38aeVlYJlS8SemJSt75ugq/kIhvP/+J8ZpZ0BR0ZjjsNPSUJuapu1NHGICsW20g/sJnXUOaDpaeWnPJifxJzeJCCGEEJOdJP7EtGOlpKI09a34s9Iz+r2rzcwvRKuQir+JRq2pBiPc79394VVO4s+aRq0+Acw586Tib5I5XvE38Iy/bsaqk9D37unVikcIMT14/vkQmAb6/n2xDiUm9M2bMBYswk7oW8lvFi/oeQ21InBhfqSM2XNRG+pRS4/gev1VvH9/ALrbOA+D++UXUQJBQhdejNrQELWEgHakBDQdM3+cqyKFmACsrKxRVfy5X3wepbmJ0Ps/GJk4UlLBNJwKbiFiSK2uQunowFi4GCsnB7XMmfOntLWiHGvEKpoV4wiFEEIIMVaS+BPTjp2a2qfiT2mox8rI6Hd/Kz8ftbJc7sycYLSuIeTdcxhPZOXlE7rgYowly8Y7rJgy585DO3IYDCPWoYhhOl7xN3TiL7xqjXPhf8f2Ya+vHi4h7mc/kueEEJOYergE14a3sePi0A6XxDqc8RcIoO/ehbFydf/bdR1j+Spwe7Cyssc3NsCcNx+AhG/chu+e3+B+6nH03TuHd7Bh4HnmScJnnIkxfwEEAygd7VGJUztcgllQ0GtGohDThVPxVzOyg/x+PP95lNDZ52LPnBmROOxUp7uMzGwWsaYd2A+Kgjl3HmZBUc9na7W0FACzsCh2wQkhhBAiIiTxJ6YdKzUNpb0dQqGex9SjdVgZmf3ub+blo3R29pkLKGJLLS/DSkuH/qr6FIXANddjTbN2VubceWCEe7VqEROb0tkBqgoez5D72hkZmAWFTsu7YfL+62H07VujOzdqIrFt1LLSWEchRER5H/kH1sxcQpe927m5w7JiHdK40g/uB9PAWLZ8wH2C772azk/dHJN5RHZqKoFrb8B/8y20/fYPToK2qnJYx7refhPlWCPBd12BnZ4GgFIfnddr7XAJ5qzp9b5IiG5WVjZKext0dAz7GM8zT6IEAgSvujpycaQ6P+fvvAlViPGmH9jndM7x+TALujocWRZa6RHweLGyI5PsFkIIIUTsSOJPTDs9H7hOaPepDlLx190SSasoi35wYti0slKsftp8TmdmQaEzo+HQwViHIobL73da1A3zYrWxag36ts3DquBTK8rRt291/l5/dExhThb6xg0kfP0raDt3xDoUISJC27sHfed2Ald/EGPufAgGnFbXQ1DLy9B27xqHCKNP27sHOzEJKyd3wH2smTkYp5w6jlGdQFEInX8R4dPOcObt5uYPeza0+9mnMZatwMovcFrOA2o0En+BAGp1lcz3E9OWlZUFMPx2n4EA7qefIHTBRdhpaRGLw56RDKrW63OoELGgHTiAOa8Y6PoMGQqi1tU68/0Ki2JyI40QQgghIksSf2La6Wmx0l3B19GB0tGBPUDFn52RAR7vsC/iiPGhlZf1O99vWnO7MQuL0EqmYSu4SUrp6BhWm89u4VVrUDo70YYx58vz1OPYqWmgqqhH68YS5qThfuFZADxP/ifGkQgRGd5/PYxZNAvj5FMwu+btaEcOD33cX+8n7p7fTIk25frePRgLF02ai5BmXj5a1dDvGdWqSrQjJYTOOR8AOzEJ3B7UxoaIx6SVHgHbxpw1O+JrCzEZmJlOG2Ct6/2QtncPnn/8bcD9XW+/ieL3E7z4XZENRFGwUlKkk4yIKaW1BbWuBrN4AQBWofOZWi0rQysr7Xm/IYQQQojJTRJ/YtqxUpzEX3eLle4WeAO1+kRRMPML0A8MfaFdjA+ltQWlpRmzoCjWoUw45tx5UvE3iSjdFX/DZM2ajZ2SimvD24Ov29iI6411BC+5DCs9I2qt4yYStaYafc8upypy107U0iOxDkmIsQmF0PbvJXTehU7SKz4eK2vm0HP+2tvR9+1BOdY48plWE00o5LSoXLAw1pEMm5Wbh1pTA6Y56H6u11/Fjo/HWLnKeUBRsNLTo1KhrR05DC43Vm5exNcWYlJISMBOSHBeEwMBfL+7C88T/0Fpbel3d/eLz2MsW+HcABphdmqatPoUMaUdPACA0VXxZyfNwE5OQT+wD7W2WhJ/QgghxBQhiT8x/Xi92HFxKF0fuLSueVBW5gCJPyB03gXoWzdPmbZZk51a5rRd7b47URxnzp2HWlfjzDERE57S2QkjqPhDUQidfS7uda8N+v/Y8+xT2F4PoXPPx8rImBYVf+4Xn8dOSKDzfz6HlZ6B54n/xjokIcZErawA2+71u86cPWfIxJ++faszB1BV0XfvjHaYUaUdPODM91uwKNahDJuZmwdGePDXXcvC/eY6wqeeAS7X8YfTM6Iyk1U7XOK0btP1iK8txGRhZc1EravF89i/UJubAdD29b2xUzt8yKnGPf/C6MSRkooirT5FDGkH9mOnpmGnp/c8ZhYU4npznfN3SfwJIYQQU4Ik/sS0ZKekojY1AeB++UWMRUuwk2YMuH947dmY8xfgu++PEA6PV5iiowPPv//Z5655rbzMGTqelR2jwCYuc85cAKn6myQUf+eIKv4AQhdd4lw0fvH5frerZaW4XnrBqRLy+bAys6Z+4i8UwvX6K4TOPg+8XkLvuhzXhrdGV+loGHj+9fCYL8q5XnkJtVxmw4rR0yqddpFmbn7PY+bsOc4NS4NUk2mbNmLOmo05Z96kv2FJ37cHOyEBK78g1qEMm5XnVNWplQO3+9T27EY51kh47dm9j03PQIlGq8/DJTLfT0x7VvZMtD278Tz1BMGr3ouVkYm+b0+f/dwvPo+dmoaxYlVU4rBTU1EbJfEnYkM51oj71Zcxli7r9bhZUOjcVKi7Bp2pK4QQQojJQxJ/YlqyulqsqOVlaAf3Ezr/osEPUBT8196AerQOz1OPj0+QAtfO7Xj+9XCfJJZWckiGjg/AyszCysjEtf6tWIcihkHp7BzRjD9w2vGE1p6N+5mnIBQ6vlZ9Pb677yLhG7dhJ6cQuvQywGljHI3WcROJ6+03UTo6CJ93AQChs87FjovD8/QTI17L+/CDeP79T1xvvjH6gGwb3/1/wv38s6NfQ0x7WkU5VmYWeL09j5mzZkM4hFpV2f9BhoG+bSvGqjUYS5ai79nlVP9NUvq+vZjzF0yq3/d2cgp2fDzaQP+PAPe6V7GyZvbcrNPNysiI+Ou10tCAWleDMX9BRNcVYrKxsrJQGxuwMjIJXn4l5oKFaO9M/HV04HrzDULnXQBqdC6VWKlpqE3HpsQMVjHJWBZxd98Fuk7gQx/tvamwCAAzv0Cqw4UQQogpQhJ/YlqyU1NRGhudOzpnJGOsXjPkMVZ+AcFLL8Pz2KModVO8emaCUOtqAdBOnK9o2+gH9mHML45RVBOcohA67wJcb78l7T4ngdFU/AGELrsCpb0N17pXAXC99QaJX/kC+s7tBK65nvYf/xx7RjIAdmYWSkcHdHREMvSYU2tr0LdvRd++FfezT2EsWXa8CtjrJXTBxbhfeWlEPwf69q24n3ocPF70vbtHH9vROgiH0GTOoBgDtaIMKy+/12Nm0SxQlIHbfe7cCYEA4VVrMBYvRenoiOq8S+XoUfD7o7N4OIx26CDGwsXRWT9aFAUrNx+1coDEXyCAa+MGwmvP6pPQtNMznBbQEXy9dm3ZCJrep7pDiOmmu4rJf8314HJhLFyMVlEO7e09+7jXvQamSeic86IWh52aCsEAdHZG7RxC9Mfzn0fR9u2h8+ZbsBOTem0zC5y24tLmUwghhJg6JPEnpiUrNQ21vg7XG687H+yGeVdb8D1XY3u9uF/qv8WeiKzu9oR61wBycO5cV5qbMOfNj1VYE1747HPBsnC9/lqsQxFD6ezE9vlGfJiVlU14zcl4nnwCzz/+hu83vyR88qm03fFrp4L5hNe07vmlU6nqT6mvJ+H2LxH3sx8R97MfoZWVErr40l77hC66BGwb9wvPDW/NpmP47r4LY9kKgpe/27nhYJSVUt0t/rSKcjCMUa0hhFZR4dx5fyKvFysnd+DE3/r12OkZWAWFmHPngdsTvTl/tk3C9/4X3+9/G5XltcMlEA5hFE++SjUzNw+tqv9Wn66N6yEYIHTGWX22WekZAKgRbPepb9mEsXAhxMdHbE0hJqPwmpPp+O4PMbuS4MaCRc4Nhfv3OjvYNu7nnyW85mTs5JSoxWGlpgE4VX9CjBNt7x48jz5C8Kr3YS7sOzfXyp6JPSMZc9Eku9lGCCGEEAOSxJ+YlqyUVJT2dpRgwJmDNVxeL2bRLLTamugFJ3qoXZWV2oH9Pe1w9K7qP1Mq/gZkJ80gfNIpzgw4aSM0oTkVf6O7GBu67N2odTV4nvwvgQ9/HP9NN/dqCdjNyuhK/B2dOok/76MPY8fF0XbHXbT96m7afvsHjJWre+1jJ80gdNY5uJ99uldL1IH47vkt6Dr+m27GWLAIpbNz1DP6etowGmHU6qpRrSGmN6WtFaWlGTO/sM82c/YctCOH+x5k27B+vdPFQFFA1zEWLIxa4k8tK0VpOoZr43q0w4civr6+bw+2Lw5rElYfWHn5qNXV/c5idG1cjzmvGDsjo+9x6ekAqA2jmE/an44O9L17MVafFJn1hJjMdB1z9vH2unZGBnZqGvp+57OFvnkjam01oXddHtUwrJRUANRjjVE9jxDdlLZW4n77K8zihQTfc3X/O2kabb/8LeFTTx/f4IQQQggRNZL4E9OSnebcaWmsXN3z9+GyMrN6KtFEdKlH6zBnzUFpb0PtSrZqB/ZjZef0aU8iegudfyFqbTXantG3KxRRZtsofj923Mgr/gDMufMIfPCjdHzl64Quu2LAGVh2QiK21zcur1va3j3Ef/d/SfjKF/A+8Gf0bVsgHO53X6W9De/fHyDhtltH1I5TrarEte41gle9FzszEzs1DTtpRr/7ht51OUp7G+7XXxl8zcoK9F078H/sGuykGc7cLd2FtnfPoMcNRKuq6mnRqJWVjmoNMb2pFU61mJWf32ebOWs2WnlZn58ttawUGhow1xxP8hiLl6Lv3z/gz+FY6Du2gceLNTMXz8MPRnx9be9u5yafKM3ZiiYzNw9Mo+/rrmGg795FeOWqfo+zk1NA0yOW+HPt3A6mQXjl0C3thZh2FAVjwSLnd71t43n8P5gLFjnV0lFkp6SAosjnSTE+bNu5uS0covPTnx38d6quT6qZukIIIYQY3OT7JC1EBFjZMwEIXXjxyI/NynYqZ6SSKrrCYZSmY4RPP9OZZ9R9N+6BfZjFUu03FHPBQqycXNwvDq/N4XhSD+yHNpk/SCDgvI6MsuIPIHTFlT0tqwakKNgZGVFt9anW1RL38x8T/4NvQziMOW8++qYNxP38xyR86RZcr7/a0zZTqavD/fhjJNz6WdwvPo9aVYm2e/gJas8/H8JKSyd07gVD7mtlZTvVr089MWjbTte617ATEo7Pe3W7MefOG3XiT60sx5g7Dytrpsz5E6OiVZSD7up5v3IiY+58MA1c69/q9bjryScgIQFzwcLj+y5e4sybPKFldqS4dmzHWLyEwPs/hL5rJ9ruXZFb3LbRDh2alG0+Aay8POB4Arebtn8fBAMYy1b0f6CiYKWnozb00+rTspxk6yDvP9Wa6uMVx4C+eRNmYRF2VyWhEKI3Y8FCtNLD6Du2oZUcJHjZFdE/qa5jLF6Ca93r0T+XmPbczz6Nvm0L/k/dPOIbnoUQQggxuUniT0xLVlY2bb+8G2Pp8pEfm5kJwQBKS3PkAxM91HonuWoWFmHl5aMf3A+dnaiVFRjzJPE3JEUhdP5FuDZtRJlAM0TUulp83/0WPP10rEOJOaWzE2BUM/5GKpqVykp9PfHf/zZqZQWdn/kCHd/9If4bP037nb+h/Yc/w5w9B989vyHh9i+S8MXPkfjFz+J95CHCp51J2x2/wsrKPj5fZwja4UO4Nq4n+N73g8s1rGNCl78bta4WfdPG/newLNzrXiN86hm91jQWLOypAhgRy0KrrsbKzXdaQ0viT4yCWlmOmZsLmtZnmzVrNuHTzsT753tR62oBJ3mtr3sNbryx94zPwiLshERcmwd4/o9WRwfagX0Yy5ZjnHQy5qw5eB9+MGI3RSkd7SgBP1Z2TkTWG2/2jGTshAS06spej+s7tmHPSMYqLBrwWCs9HaWfij9980bifvrDAZO4ankZ8d/6Ggn/+zXUwyVOdeH2LRirpNpPiIGYC505f74//A4rJxdjRf/VuJEWOu8itEMHnEptIaLBttE3bcD74F8JXXJZn5b4QgghhJj6JPEnpq3R3vFmZWYBU2te1kTUfTHTysrGmL8A7cAB9JKDTjJwklYAjLfQGWvBttC3bY11KD08/3zYmXlUH6H5RZOY4u9O/MVF/VxWRiZqFL7nSmsL8T/5AbbLRce3vodx6mnHWwQpClZBIf5bvkjHt76PmZuHsWQZnV/4Mq13/5HAtTdgz0jGXLAQfe/wKv48jz2KlZNL+Myzhh2jOXsu5sLFeJ78b7/btd27UJqbCK/tvaaxYBG0t0N5+bDPBV03LYRDWHl5mEVFzkU9qRAXI6SVl2PlFfS/UVHwX3sD9owZ+O76JWplBb77/ohx5llw3nl99g2ddwHuZ5/C+9f7+505Nxr67l1gWYSXrQRFIfCBD6OVHHQq0iJA6ap4s9MnaXWComDl5qNW9k78uXZsw1i2fNBWanZ6Rr+v19qhg84ab7/Z93R1dcT/9IdYGZmYefnE//SHuF95EaWzk7Ak/oQYkJU9EztpBkpzE8HLrxy3NofGqtXYySnOPO4TyfsFEQn79+P93reJu/PnTmX+Bz8S64iEEEIIEQOTMvG3ceNGbrrpJs4880yKi4t54YUXem2//fbbKS4u7vXn+uuv77XPTTfdxDnnnMPSpUs588wz+fKXv0xdnfTZF0PrSfx1JaZEdKhHj4Luwk5NxZxfjFpThb55E3ZCYr+tz0Q/EhIwZ81xLtBOAGp5Ga6333CqqvprYzbN9FT8xY1D4i8z00lIDdLucsQ6O4n76Q9ROjvovO3r2CmpA+5qzpuP/5YvErj2BozVJ0H88famRvFC1MqKYc35U8tKCa85ecQzv4IXXoJWcrBXC7xu7nWvYWXnYM6e2ydmdA1G0IYUnHmB4Mz4MotmowT88vtCjIxto1VWYOb1ne/XIy4O/82fQysvI+F/v4aVnELwuhv63TX4/g8R+Pi1uJ97mrif/RA6OsYcor5zmzNvNzMTAHPJUuyUVLR9w6veHUr3jDsrPSMi68WCmZuHVnW81afS2IhaUT5wm88uVnpGvzP+9O7E34a3eyUHlOYm4n/6A2yPh86vfI3OL9+OnZSE98/3YqemYRXNiswXJMRUpCgYi5ZgJ6c44wXGi64TOuc83G+8Dn4/AK5XXiLx0zeg1lSPXxxiytF274IvfQmlvY3OL3+Vzi9/ddhdMoQQQggxtUzKxF9nZyfFxcV861vfGnCftWvXsm7dup4/d9xxR6/tp556KnfeeSfPPPMMv/rVr6ioqOCWW26JduhiKvB6sWcky4XcKFPrarEyMp0P5POdCj/3qy9jzi+WoeMjYCxegr5754S4g9j78INYmVkYZ66FxsZYhxNz41rxl5kFpoHS1BSxNd2vvIRWWUnHbV/Hysoe9TrGwsVOoqNrjueAbBu1pQV7RvLIz7FyFXZ8vDNr8ER+P66N651qv3e+rng8WLPnws6dIzqXWlWJHReHnZKKVVTkPFZaOuKYxfSl1NdDMIBVMEDFXxdz9lwCH/k4KAqdn/08DNQ2WFEIXXwpHV/5OtqhQ3gef2x4cTQdQ9+wvu8G28a1fRvG8hW9zmHmFzizCSNAbWwElxs7MSki68WClZuHWl0NhgGAvnO7855miLmsVkYmSlsrBIPHHzRNtCOHMVafhNLchHZgf88m7/1/QgkE6Lj9m10tRhPpuO0bWJlZhLrmJAshBhb4xDV0fPM7vdokj4fQuRdAKIj7zdfRN6zHd+89KB3tzlxiIUZJf/EFyM/H/+OfYyxfKb8DhBBCiGlsUib+zj77bL7whS9w4YUXDriP2+0mIyOj58+MGTN6bb/mmmtYsWIFubm5rFq1ihtvvJFt27YRDoejHb6YAqzMrKi0zRPHqUfrsLKc6ko7PR07OQXCIYx582Mc2eRiLF6K0taKGqGLsaOlHdiPvm0Lwas/6CR0peJvfCv+MpyqnEjO+VNrqjBzcwedVTUcdkYGVlo6+lCVQn4/GGHsd/w+HxaXi/CpZ+B+c12vqkfXxvUQChI6o//WoeaChbBr14gS51plJVZuPigKdmISdmoaWunhkccspi2t0nm9Ngdq9XmC0MWX0vq7e4dV1WUuWYqxas2wq8A9Tz5O3K/v6DPTWK2qRDnW2DvxB5j5BT0Vr2OlNtRjpaVP6guWRvfssHvvcWYtbd+KOXsudkLioMdZaekAvar+1IpyCAUJXnIZdkoqrvVvAcfnngY++BHsjOPVkXZaGu0//yVBae8mxJDspBljuoFp1OdNS8NYuRrPf/5N3G9+Sfjk0wi+7wO4X39VZsmL0enoQN+0Ac4/f8TdMYQQQggx9UzZdwMbNmzgtNNO4+KLL+Zb3/oWTYNUOTQ3N/P444+zcuVKXNIGQQyDlZUlFX9Rph6t62mr6lT9FQNgzpf5fiNhzi8Glzvm7T49j/0LK7+A8KmnY6emQlsbhEIxjSnm/J3ORW2vN+qn6kn81UduNqlWW4uVFZm2u+aCRWj79gy6j9raAoA1ygqg8NqzUY41ou3pat1pmriff9Zp8ZWe3n9cixZDczPx136cxBs+ScIXb4FAYPA4qyow8/KOr1E0C630yKhiFtOTVlHuVI2mDtw+t5cRvHc1FixEKzvS01puMPqObU7CauuW3o9v3wYutzMH8wRWfoGTrOq6qWEslMYGrMk636+LVVCI/1P/g+v1V/H+7S/ou3dirFg59HFd7U1PTPzpJQdBVTFnzyF88qk97T49Dz848NxTVZ3UiVMhpoPQBRc5N1IsXIT/058heMHFoGm4n3061qGJSci14W2nyvycc2IdihBCCCEmgPHtZzFO1q5dy4UXXkheXh4VFRXccccd3HjjjTz00ENomtaz389+9jP+9re/4ff7WbFiBb/73e9GfC5VVVBV+VA97cycibZzO7o+MXLnmqb2+u+kZ9toDUcxc2b2fI/tpctQdm5HmTd3wnzfJwXdi7WgGPfeXVhXXOE81tmJWnoEa9Hi8YnBsnAd2EfoPe9Dd2koXVUJeksTZGSNTwwTkB7wo8TFobu0oXce88m8kJqKq7EeO0I/P9rROuwFCyLy82gvWYL+1jr0oL/X/L8TqR1tKIqCmpaKMppzFs+HnBy8b7xGcMVy3P9+BL28FP//fmfgr2HFCrj5ZoxjLViBIO6H/4F3xxaMgeYAWRZ6TTXWOecef+2aMxvXs8+ga4pchBfDoldVQmHRiF8bhvVeYMkSFNvGU3IAc5AklFJ/FK2mGtxuPNs2Y19wQc82z5aNWIsXo8f1vmlBKSpEURTctVVYXTfrjJZ+rBErP3/S/763zz6bsL8Dz/33Of9euXLorykzHcXtwlVZDqtXA+A6XIJdUIge78M6/XTU557G999Hce3eReDzX0R3T76PdFPuvauY0qL2fF25kuCXb8dcvATd6wavG+P8C/C+9Dzme983LjeHianD++br2MuWQVoaWuvQN/gIEWvyXkBMJvJ8FZPR5PuUOAyXXXZZz9+Li4spLi7mggsu6KkC7Hb99ddz9dVXU11dzV133cVtt93GPffcgzKCC3OpqfEj2l9MEXOL4D8deLzqwDN1YiApaeLEMiYNDYCNe24RpHQlAd73brjgbNypKbGMbHI65SR4+GF8iR5nfskffwtvvgn//Cdo45B0qqgAy8C9apnz/7PIqYZKDHUe//87HakWpMzAPV7fg/xcPO3NxEfifKEQtDXjmVsUmfVOXQ33qbhry2HNmv73sUPg0nAXzoSkUZ7z0ovh4YeJO7gbnngMrvkE7lNXD37MJZfQ04x11zbcO7bAZRf3v291NWDhXjT/+HN76SL4z6N4rAAMUFkoRI9du2D7ZrjqKryj/Nka9L1A8lzISMNdXgLnDpDABli/HzwuuPpqeOwxfHE6eDxQVgZHDsFtt+F7Z3wJxeBx4W46CimrRhV7j9YmKDqduKnwO+LD73de79evx7162fDar519Fu63XodPftS5YaCyFFYsdZ4Tp6yC7Ezc//kXLFqA++LzJvVNBVPmvauYFqLyfL3g7N7//sgH4OXncW98A9797sifT0xNtbVQcgC++EVAXlvF5CLPVzGZyPNVTCZTMvH3Tvn5+aSkpFBWVtYr8ZeamkpqaiqzZs1izpw5nH322Wzbto2VK4duw9Pt2LEOqfibhlRfEr6wiX//4THPt4oETVNJSvLR2urHNK2hD5jg1P2H8YVNOr1J2E0dxzcoHjjx32JY1KJ5+No68G/ajhIK4X3xZQA6y2uc2YmR1D0L7YSLkPqWHXjCJh2p2dDUgeaKIwnoKKsilDv0XKqpyl1/DE1z4R+n57QnKRW1tCIi51MqK4gLm/jjZmBFIn5vEnEJSRjrNxOas7DfXfSKWjymTYehjvp1QFlxEnF/+jN8+7uYCxcSOP/SQdd652ura8Ua3I88REdNY7934Wu79uMNm3QmpfW8dilp2cSFTQJbd2GuOWlUcYvpQS09gu87/4s5dy6BS9494uf5cN8LeObMR928Df+7rx5wH++6t1CK5hBYdSpxf3uQwGtvYa45Cfe/HkOPS6CzeGm/8fnSMzH3HiB0ytoRxd5LKER8fSNBbwLGVPmdf9Hlzp+W4VVgqKefje+Flwi8/jbm7DnEHy4leNG7er4f7hVrcD3zFIGr3o/ZPPbWqrEw1d67iqltXJ+vehyeNaeiPfwvOs+c3Il9MX5cTzyDW9UJLFpOEshrq5gU5L2AmEzk+SomkpRh3iA7LRJ/tbW1NDc3k3HC0Pt3siznhzY0wplTlmVjWfaY4hOTj5Keide2sapqMHILYh1OD9O0MIzJ/wvIVV2DDYRT02EKfD0xVzALj8+Hsnkzrg3rsWYkozQ3YTYcw0qYEdFTuR9/DNfbb9Lx/Z/0XKjQD5VgZmZjeHzO/0+XG+Ljsevrp8TzdbRc7Z1Y3rhx+x5o6Rm4t2+LyPn0yips2yacnokdofjD8xei7t49YHxaczNWQiKGaQOj/L2bkk544WK0inI6PvUZbAuwho6/+7XVXHMqrr89gLJxI+HTzugbY3k5ls9HOGHG8deupBSs5BTYuxdjxRDVhWLaUutq8f3gexjZOXR87kugaKP+/TfUewG1eCHeB+7H6PA7VXyAWluDlZXtvG4bBsrOnYSuuJJwZjZm1kzUjRsILliM79VXCV50CQZqv/EZOfmopWVjep1Rj9Y7ry/JaZjT9XfE3GLcObmozz2Lcd6F2LZNaPY8rK7vh3nJ5RjZMwktWDzp3ydNlfeuYnoYt+fr8lXEvf4qRmv7gC3Qhehh23hfe5XQSadgutyAvLaKyUWer2IykeermEwmZWPajo4O9u7dy969ewGorKxk7969VFdX09HRwU9+8hO2bdtGZWUlb731Fv/zP/9DYWEha9c6dx9v376dv/71r+zdu5eqqireeustbr31VgoKCkZU7SemLzsxCTxe1KN1sQ5lSlKP1mGnpILbHetQpgZVxVy4GM8T/0U9Wof/xpuch1tbInsew8DzzFNoZaWotTU9D2uHSzBnz+m9b1oaSlNTZM8/ySidHdjj2CrYmpmD0toCHWOvoFHr6sDjjWjFqLlwIdqRwxAI9LtdaW7GTkoa83n8n7mF9u//xHmNGSE7IwNz1hxc69/qd7taWYmVm9/77nxFwViwCH3vntGGLKYBzyMPYXs8dH7lq1FvIW4sWASmgXbwAAD622+R8KVbcD/5OADagf0oAT/hZSsACK9eg75lM643X0cJBgide8FAS2Pl56NWlh+v/h4FpaEBAHs6t8ZVFEIXXIRr80ZcmzZgx8VhZc/s2WynpRE6/yKpBBJiirJTnfcoatOxGEciJgPtSAlqXS2hM86KdShCCCGEmEAmZeJv165dXHXVVVx11VUA/OhHP+Kqq67iV7/6FZqmceDAAT796U9zySWX8PWvf53Fixfzt7/9DXdXEsHr9fLcc89xzTXX9OxTXFzMX//61559hBiUomBmZaHW1cY6kilJravDysyKdRhTirF4CVgmwXddjrFwMeAkUiJJ37wJpaUZVBV9x/auExtoZaV9E3/p6ajHGiN6/slG8fux48bvLm4zJxcAraZ6zGuptTWYWVkRvehsLFgEltmTjHgnpa0Va8bYK1TtpBnYaWmjPj586uno27aCv2/LPq2iDDMvv8/jxsKFaKWH+z1GCHCeO8bylc6NRVFm5eZhJySg79sDnZ34/vpn7IQEvA8/iHboIPqObdiJSVhFTitmY/VJKG2teB9+0IlxkA4aZn4BSns7SvPob+xQG53En5U6+p/TqSB0+lrQXbhfeh5z9lxJ8gkxjVgpkvgTw6dv2oidkIC5cFGsQxFCCCHEBDIpW32ecsop7N+/f8Dt995776DHFxcX85e//CXSYYlpxsrKRq2Xir9oUI/WYRVMnBaqU0H41NNR6+oIXvU+cLux4+JQWiJb8ed+8TnMecXYHjf69q2ELr4UtaoSwiHMWbN775yWhrLvYETPP+l0dmDn5o3b6ayZOaAoqFWVmHPnjWkt9Wit0xYwgqycXOzEJPS9uzGXLut7ztbWCZEICJ98Kt4HH8C1bUvvdp+hEGp1FeZFl/Q5xlywCCwL/dABjKXLxzFaMSmYJmptLdb5F47P+RQFc8Ei9H17Ufx+lM5O2n/0M3y//TW+u+4E3YWxfEVPosmcOw87MQmlrZXQEDFa+c7vbq2iHGMUVbUAakM99oxkcLlGdfyUER9P6Iwzcb/84phfs4UQk4ud4nRUUI5J4k8MzbVlE8byVaBpsQ5FCCGEEBPIpKz4E2IisDKznHZ3IuLUeqn4izQ7aQaBj18DXm/Xv5NRW5ojtr5aU42+Zxeh8y/EWLbSaWsYCjmtGxUFs6typEdaGso0v4tZ6ezEjosbvxN6PFhp6ajVVWNeSq2ri3jiz2mJuRB9397+Nzc3Y0eg4m+s7IwMzNlzcb39Zq/HtYoysKyeKqkTWTNzsJNmoEm7T9EP9WgdmAZmzvjdCGAsWIR28ADu554m8J6rsbKy6bz5FpSODtTaaozlJ7S+V1XCa07Gyszq/Xg/rMwspxV6RcWoY1MbG7DSB64qnE6623kaC6SKQ4hpRdexE5Ok4k8MSamrQ62sILz6pFiHIoQQQogJRhJ/QoySlZXltKMyjFiHMrV0dKC0t0c+qSB6sZOTI9rq0/3i89gJCYRPPtWpFAmH0PfuRjtcgpWT25Nw7JGe7px/Gv/8KP5xTvzhVNVpVZVjWyQUci7MnzBvKlLMBYvQSg5BKNRnm9LWghWBGX+RED7pFKed7QnPX7Ws1JmnmddPtbLM+ROD6E7GW7m543ZOY8FCMA2snFxCl14GgJ2Zif/GT2Pl5GK8o+o28NFP0PHt74M6xEcHRcHMzUOrLB91bEpDA1baNJ7vdwKraBZtd9yFuXhJrEMRQowzKzVVKv7EkFxbNoGm9/m9LYQQQgghiT8hRsnKyALL6plFIyKjZ7aPXPSLKitpBkrr6Ft9Kk3HiP/+t/He/yf0TRtwvf4KobPPA7fbadmYmoa+YzvakZK+8/0A0tLAtiPebnTSsG0Uvx/GO/GXm4c6xhl/av1RsO2oJOe7kxHaoXe0gTUMlI4O7KTYV/wBmIsXQziEdrik5zHtyBGs3DwYYFawuXChs38wOF5hiklCra7C9sVhJ6eM2zmtgkLCp6/F/6n/Af1453/j5FNo/+kvsBMSex/g9Q7758/Kz0etGH3iT21swE6X9wDd7IwMme8nxDRkp6SijmFeqpge9K2bnVnuPl+sQxFCCCHEBCOJPyFGqbsVpXpU2n1GUnciyBrHC6DTkZ2cPKaLCfq+vWj79qBv3UzcnT9H6ewkfN4FzkZFIbx8JfrWzWjl5f0n/rou6k7bFkbBIFgWdlz8uJ7WzMl1XrP6qagbLrWuFnCqniPNKijEjo9H39e7Mq47ST0RWn0CmIWzsL0+tBPi1EqP9G1pewKjeICkJoBh9HxfxfSjVVc5ldHjmdxRVfz/81nM2XMjvrSZX4hWVQWWNfKDbRu1sVFu/hFCTHtWSsq0b4svhtDejr5vD8bqNbGORAghhBATkCT+hBglOz0dVE0u1g6DWlONNsDcrj77ds2dmygX+Kcqe8bYKv7UqkrsGcm0/+Iu2v/vV3R86/u9KsCMZcuPz62aNUDFH6A0No46hsms53mekDCu57Vy85wL67U1o15DrasDlxs7JTWCkXVRFMzihX1eL5TWVgDsCdLqE03DnF98vHWnYaBVlGMWDpz4s/ILsBMS+iQ1ATyP/Yv4b9w+ukSJmPTUqiqsnJxYhxExZl4+hEOjen+ktDSDEcaSij8hxDRnp6SiSqtPMQjX9q1gWYRXro51KEIIIYSYgCTxJ8RoaRpWZhZq9dja5k0H7if/i++P9wxrX6WlBdsXN2C7PBEZ1oxklPb2Uc/YU6urMHPzQFGwsrIx587rtd1YvBRUDVQNs6Cw7wIJCeByoR6bpom/I0cA+v/eRFF3ckHrmik2GmptjVPtF6XqJGPBIvSDByAcPn7OrkSpNWPiVAIbCxehH9gPpunMaDPCg1b8dSc19XfeBGHbuNa9huLvdNqoiunFtp3X05y8WEcSMVaBM+dSragY8bHS7lsIIRxWSqpzk940noctBqdv3oQ5aw52alqsQxFCCCHEBCSJPyHGwMrJGfO8rOlAbWlxEjy2PYx9myfMHK+prLuicrRVf1pVJdbMQSpU4uIw5xdj5uf3n8RVFOzU1Gnb6lMrPYydmoY9I3lcz2snJGInJqFWVY56DbWuBit7ZgSj6s1csMCZn3fkcM9jPRV/iYkDHTbuzAWLIBhAKzuCVtqVyC0sGvQYY8Eip9XnCUlNbe8e1IZ6ANTKkSdKxOSmNB1DCfixcnNjHUrE2EkzsBMS0apG/nxW6p3En8z4E0JMd3Zq6vSehy0GZxjoO7ZhrJJqPyGEEEL0TxJ/QoyBmZMrib9hUFpbIRRE6Wgfet+WFuzk5OgHNc31JP6am0d+sGmi1tYOeaHaf+0N+G/89IDbrbR0lGnawkg7XNL/7MNxYOXmoVaNoeKvrg7zhLaukdY9P0/fu7vnsYlYCWzOmg1uD9revWilR7CyZoLPN+gxxqLFEA6hb97U85h73atYmVnYcXFjSshGirZrZ6/EpIiu7p9FK3fqVPwBWHn5qJUjfz6rjQ3g8WLHj28bZCGEmGisrpbq0/UmOTE4bf8+lIBf2nwKIYQQYkCS+BNiDKzsmc5FqlAo1qFMaEqbU60znCSP0tKEJfP9oq67ZaI6ioq/ntl9Q7Sms3LzsAZpfWinpk3PVp+2jXbksJM4igEzJxetZgSJv3AYz6OPoJaVgmGgNtQ7rT6jpWt+nrb3+Cw8tbVl4lUC6zrGvHnoe3ejlZUO3uazi1VYhLFyNb6/3Q9+PwSDuNa/TfjMs7By89FGkSiJJKWujvgffw/Pvx6OaRzTiVZdBboLKyMz1qFElJmbN6qKP7WxASstLWqthIUQYrKwU53E33S9SU4MTt+5HTtpBtYQ3SaEEEIIMX1J4k+IMbBycp35PLU1sQ5lQutu09c9u2cwakvLuLc/nI7GUvGnVndXqIytNZ2dmooyDRN/am0Nir8TY/bcmJzfys1DrakByxrW/vrWLXgefYSEb9xG3J0/B9t2qtuiyFjYNeevK0altQU7KSmq5xwNc8EitAP7UMtKMYuKhnWM/xPXobS34330EVybN0IwQOiMszDz8lAHSpTYNt57f4++cX3kgu+HVlEGgOepJ6Tt6DhRq6uwZs4EdWq9Jbfyul5nRjibSm2ox0rPiFJUQggxedjxCaC7pOJP9Mu1fSvG8hVyo4wQQgghBjS1rjIIMc6sHGfGmVot7T4HFAqhBPyAM8toKEpzc09SSkSRrmMnJIxqxp9aXYXti8NOThlTCM6Mv6ZhzX6cSrTDJQBYs4auEIsGMycXjDBq/dFh7e/ashErJ5fAJ687HvvM6Cb+zLnzIRhALXcSUUpLC9YEbAFsLFiE0tmJEvBjFg2vgtPOyCDw3qtxP/sUnv88ijl/AXZWllPxV13db0JW37kd98sv4HrrjUh/Cb1oFeXY8fFYGZn4/nzvtPvZHAnvX+7Dd89vxryOVl2FOXPqzPfrZubmg2mg1tUO/6BAwGmbK4k/IYQARcFKTR3W5ycxvSjHGlEryjGWrYh1KEIIIYSYwCTxJ8QY2AmJ2AkJaLWS+BuI0tbW83e1YYiKP9NEaW/Dkoq/cWEnzUAdRcWfVlXpVLuO8Q5TKzUNTKOnFWwsaYcPoZYeGZ9zHTnszHRLSByX872TleMkGborN3sYBq51r6HU1x9/zDTRt20hvOZkQhdcTNsdv6bjOz/ATk2LaozmnLmg6egH9wNdFX+JE7Dib85c0F0AWMOs+AMIXXq50yq6qpLQmWc5a+XmQTjktNI9kW3jefhBALQoP0fVigqs/EL811yPtm8PrnWvRfV8k5l28AD6po1gmmNaR62q7LmJaCqx8pxW0COZ8+d74D6U9nZCF18arbCEEGJSsZNTUKXVp3gHfcd2UBSMpctiHYoQQgghJjBJ/AkxRtbMXKn4G0RPRZnLPWSrGqW1BWxbKv7GiZWcgtIyioq/qqqIXKjumV3SGPt2n55//B3f/X8a0xra7l14H/jzkF+PdrgEc9acMZ1rLOzUVGyvD7WqK/Fn2+hvv0XCbbfi+91d+P78x559tQP7UdrbMVavcR7wejHnzIt+kG43ZtEstP1O4k9tmZitPnG7MefOw05NG1liUtfx33AT5uy5hE85DTghUVLVO1Gib1iPVnqE0LnnO0nBjo6Ihf9OWkU5Zn4B5tJlhE89A+/fH3BmEYo+1IZ6FH8n2pHDo1+kvR2ltQUrd/B5qZORnTQDOyFx2HP+XG+uw/Xqy/g/ed2U/H4IIcRoWCmp0upT9KHv2IY5e27MbiIUQgghxOQgiT8hxsiaORO1RhJ/A1G7En9mQeGQCZHuJJQ9AVv6TUV20gzUluYRHmSj1lQ77SLHev40p2rMd/+fcD/5eJ+Ex3hSm5qcNpbB4KjXcL/wLO5nnyLxS7fg+cff+k/QmCZa6RHM2bFL/KEoWDNzcG3fivcv95Hwpc8Td9cvsGbmELzqfejbt6JWlAPg2rIJOzkFMwbzCM35xWgH94Nto7S2TtjXheC7ryJw9QdHfJw5v5iO7/4Q4uMB565+Oy4O7cTZeqaJ958PYSxdTujidwGglZWOOlbPPx/C++d7+98YCqHW1WDm5wMQvOq9KG2tPe1dxQmCwZ5KZX3XjlEvo3VV3Ubi9XQisvLyh1Xxp9bV4v3THwifdibhs86JfmBCCDFJ2KmpKE1NsQ5DTCSmib5rhzPfTwghhBBiEJL4E2KMzJm5TuJPZiH1q7vVp1k0a8hWNd1JKCspOcpRCXASrCdW/Kl1tegb16OWlQ5Y5aMcO4YS8Pe0ixzb+VPwX3cjdlwc3n8+RMJtt8Ys+ae0NoNpoB06OOo19EMHCZ1/EcHLrsDz3DPE//j7fea1qdVVEApizhrePLhoMYtmoe3djb5lE8aixXR8/dt0ful2gle9Dzs1Dc9TjzuVgFs2EV65esxtXUfDmFeM2tjgJCEtEytxYlYCG8tWRCZZoShYub0TJa51r6HWVBF4/4ewZuaAyz2mdp+uDW/jfuFZ1H6q1NTqKrAsrPxCAKzsmaDpw67Ymk7URqdttZ2YhL571+jXqa7qScRPRWZu3rCeP96//QU7KQn/tTfE5LVGCCEmqp6KP/mcKbpohw6idHZK4k8IIYQQQ9JjHYAQk52Vk4MS8KM0N2GnpMY6nAlHaWnB9vqceVavveJ8cB3gwl5PxZ+0+hwX1owZKC3H7yL23fNbtAP7ev5tJyZhZWZhZc8k+J73Of8PuypUItWKLXzehYTPuxClpZnEm/+fM2NsvNu8GQZKV3Wevm8P5uIlI15CaWxEaTqGsWQpxkmnYCxfSfx3voH7xecIXXhJz37a4RJQFMyiWRELfzQCH/k4wcuvxM7M7P3zqOsEL7kM7z/+Ruj0tah1tRgf+2RMYjTnzwfAtXkjMD1eF8y8fLSSruSzZeH5z6OETzoFq6tC1CwoHH3FXyiEWlsDgPeRf9D5la/12qx1VXmaeU7FH7ruVLSPYEbbdKHWHwUgvPZs3M8+7VQKezwjWkM7sB/vQ3/HLJoNbnc0wow5Kz8f9ZWXwDBAH+AjRyCAvnOHUzUbFze+AQohxARnp6ZCMACdnT0dAsT0pm/fip2QENOxAUIIIYSYHKTiT4gx6r5Tf6rO+fP851HnwuYoKW2t2ElJWKlpEA6hdLQPvG9LM3ZcHLhcoz6fGD57RjJKZyeEQtDejnZwP4EPf5yOb/8A/6c/S+iiS7ByctD37ML3m1+BZTmt6TQdKyMzsrEkzcCOi0M9WhvRdYejJ+Hs9aHv2zuqNbSSQwCYc535d+a8+YTOPR/Pw/9AaT6eXNUOl2Bl58T+ArfPh52V1W8SPnTu+dheD3G//RW4PRiLl8YgQKci1MrMQt+43vn3NEj8Wbl5aNXVYFnoG9ajHq0jdMWVPdvNolloR0bXelOtrADLInTp5eg7tqG947muVlZgpWeAz3f8fLn5Pe0oxXFKYwOoKqEz1jqVwgf2j+h418svEv+D72Dl5NL55dujFGXsmTl5YBqodQO/ruu7dkA4dHyOqBBCiB5W102larO0+xSAaeLatAFj6QpQ5VKeEEIIIQYn7xaEGCMrMwtUFa12aib+XG+uw/v3B0bdglFta8VOTOqZ53binL/4730L9zNPHd+3pQV7RsrYAhbD1p1IUVpbnXZ1tk34lNMw584jfMZagu+5Gv+nbqbzs19AO1KC+6XnUasqsWbOBE2LbDCKgpU1E22QC8TRonS1mDVWrXFafYbDI15DKzmInZrWq+o3+MGPgKbh/ftfnQdME63kYGzn+w2Hz0fo/ItQ2loxli2PaTW9QLn9AABMmElEQVSSOa8YrbwMACsxKWZxjBczNw+MMOrROjxP/hdj0ZJe8xXNollOa+lRzKLUystAUQi89/2YhUV4H36wV+swraIcK7+g1zFWXh5qZbm0GHsH9ehRrNQ0rIJC7BnJ6Lt3DvtYfdsWfPfeQ+isc+j46jexk6ZuQtvKc6q31YqB2326tmzCysl1WssKIYTopTvxpwwxLkFMD55//xO1pprQhRfHOhQhhBBCTAKS+BNirHQdKzMbtaYm1pFEhdJ0DEwD35/vHdXFX6Wlpavir+uO1WNdib/2drT9e527/bv3bW7GTk6ORNhiGKwZyQCoLU24dmzFysnFTk/vs585v5jw2efiefhB9IP7nSqOaMSTlY1aVxeVtQejtjoVf+FTToVwqKd6byT0kkMYc+f3esxOSCTw4Y/hevN14n7yAxJvuh6t9AjG0mURiTuaQhdfiu31ETr1jJjGYRQXO3/R9GnR4qo7UeJ+/lm0IyWELrui13azsAhsu6ct50ho5WVYmdng8xH8wIfRDuxD3771+PaK8uNtPrvPl5uP0t6O0tryzuWmNbWhATs9AxQFY9GSESX+tEMHsWckE7j+/w3c/nKKsJNmYCcmDTznz7LQt24hvEqq/YQQoj92inNDpNokib/pTtu9C89/HiX4vg9gzi+OdThCCCGEmAQk8SdEBFgzj88+m1ICAZTOTsJrz0bbuxvXG6+PeAmlrQ07KQk7OQVUtSfxp3e1q+uu5gFQWluwpnD1w0TTU/HX3Iy+fRvGilUD7hv48Mec/38V5Vg5OVGJx8rO7plBNp66W30aS5dj++LQ94+w3adpoh0uwZwzt8+m8FnnED75VJRQiNBlV9DxnR8QPmNtJMKOKjs5hba77sE45dSYxmHOcy5s2ElJA84GnUrs5BTs+Hjczz2NlV+AsWxFr+1WfgGoGlrp4RGvrZWXYRYWAmAsW4FZvBDPI/9wbuhob0dpOoZVUNj7fN0VWzLnrxe1sQGr6yYJY8lStNIjKO1twzu2uhorJzea4U0oVl4+alX/74+0QwedyuLVJ41zVEIIMUm4XNgJiZL4m+aU1hbi7v41xsLFBN/9nliHI4QQQohJQhJ/QkSANTMnJgmLaOv+kBk661zCp5yO929/gfaBZ/T1R2ltcVr0qSp2ckpPq0/t0EFn+7HGngumanOTVPyNIztpBigK+u5dKM1NhJcuH3jfhEQCH/oY4FzIjQYrK9uZhxcIRGX9gSitLdjx8eB2Y84vRtu7+/jGYHDISle1ohxCwZ75fr0XV/B/7lY6vvkdgle9D3POvMmTwPJ6Yx6rlZePHReHNQ3m+wFOy9vcfLBtgpe9u+/33+XCzM9HLT0ysnVtG7W89HhiT1EIfODDaGWluNa/1VNB+M6KPysrGzQdrXLgVo3TkVp/1JmHCM4MTNtG27NnWMdqNVWY06itpZmTi1bZf4WqvmUTdmJSvzdNCCGEcNgpKROz1ec4v1+fzrz33wemif/Tn5HZfkIIIYQYNnnXIEQEmDNzUOuPQigU61AiqjtJZ6emEvjYJ1CCQdwvvzCiNdTW1p4ZRlZqWk/Fn3boYM+FU7XcuSiotLZMnwv8E4GmYSck4nrzdXB7MBcsHHT38Nnn4r/5lqi1ZbOysgFQj45vu0+1pQU7KRkAY8Ei9IMHwTBwvfoySf/vWlzr3xr0eO3wIVA1zKJZ4xDtNKMomAsWYWVkxjqScWMWzcJKzyB86un9brcKi9DKSke0ptLYiNLZ6bQK7T5P8QKM5SvxPPKQs56mY818RzWvpmHl5KBK4u+4cBilpbnn95edno6VlY2+bxiJP9tGra2dXhV/+fmotbVgGH22uTZtxFi1Wi5iCiHEIKyU1AlX8ed67RWSPn0D6gmdW0R0KI2NuDa8RfDqD/SaJS6EEEIIMRT5pC1EBFg5uV0X9KZW1V/3h0wrJRU7JRUzNw9tJF9jKATBgNOmDyfxpxw75lRHlBx0Wh7qLqfdp2GgtLdjd82dE+PDTk5GaW/HWLQYXK7Bd1YUwqed8f/bu/P4qOrr/+Pve+8sSUgCWSAJa1jDKosKiCCKuO8rXdS2akvdWlu1brXWVr9oLdWi7a9a+eq3VqutCy6IW22xVhZlUfY9YYdAIIRsM3Pv/f0xZCBkJ8tkhtfz8fBR5s69n/uZ6SeZzD33nCP5fK0yFyf7UOBv585WGb8uxv79kbKn9qDBUmWFkp78rRL//P8k15G1dk29x3vWrZXds6fk97fFdI87ZVNvUfkNU6M9jTZTcfU3Vfqr/6mz/5ud21vW5s21BlLqYm3ODx/bM7f6ua76hsxdO+R/Z1a4hG8t57S79ZAVj6WsjxYMyj/rdam0tN7dzKK9kutGAn+S5HTr3qjPf2PPHikYaLVyye2RndtHcmxZa1ZX227u2C5z53b6+wFAA5z09HDP9fYiEFDCP16RggElPv9ctcoY1rKv5Zlf/w1zaBrfvz6WfH4FxrX/VgEAAKB9IfAHtAC7Zy+5HTrIP+fdaE+ldqGQEn8/vcl9CM2ivXKTUyKBHiczU8bePY0+3jhwQJIigT83I0Pm3r0yd++ScfCg7AF5snv0kLU5P9JnzSXjr01VZViGho+I7kQkuSmpchOTZO5q48DfEb0l7dzekj9Bnq+XquI71ys06iSZ2+vvb2ZtWB8u4YnW0aGDlJwc7Vm0nYSESJZ0bezcPpIdalIWnrW5QG6HDnLTq98p7uT2VnDMOBnF+2V371nrsU737jK3bWmw5G2bcBwl/n66rFWNK6spqdHz9n3ysfyvvSrvlwvr3c8oLAwP2/mIwF9WdqN+b1k7t0uS7OzjKPDXt5+cnG7y/fOjats9XyyQvD6Fhp4QpZkBQGxwO6XJ3L+/DU/oKuG5P8n/97/VejOM76MPZBTvV/n1P5C1bo28c/8lSbJWLFeH3z6qhH/8re3mGu9CIfn+/YkC40+TEhOjPRsAABBjCPwBLSExURVTviXvf+bKWr0q2rOpwdy7R94vFsj7+WdNOs4oKpJzxIViNyNT5t7G33FqHAgH85yUwxl/ZtFeWevWSjp0QbBnL5mbC2QU7w/vQ8Zfm3I7pkmSgieMjPJMFO5vlpUlc1fbZs6axYcz/uTxqGzqLSr9+UMKnHVuOMt1az2Bv9JSmdu31d7fD2gFds9ekmnK14Tf5+bmAjk9c2vt2Vh55dWSaVYrA1rtfF27yzh4MPI7OprMHdvl/WKBkp5+ssH5GAdLlPT4NCU99nDDA1dUhLP9pAZLdpp7CsO/q9IzItuc7GyZhYUNZmGa27dLHm+1oGHcMwwFzjxL3i8Xhnu4SuH3e85sBcedSqY0ADTATUkN30zZRjfgmAX58v37E/nffUspd9wm35zZUjAYfrKsTP533lRg4iQFJ01W8NTTlPDKX2Ut+1pJTzwu1+8Lt79oQlUC1M2zeJGM/fsUOPOsaE8FAADEIAJ/QAsJnjFZdt/+Snz+z7V+2TF37ZS1YnkUZna4V59n+bImHWfuK5J75MXNqh59jfziaZZUZfwd7vGnYECer5bKye4qNzlFds9cWVu3RsqKkvHXtpyuXWX3ypWblRXtqUiSnC7Zsna1bY8/48CBausuNHqM7AF54fl07xG+WH3wYK3HWhs3SBKBP7SdhARVXPVN+d57R74P5jTqEKugIBwwrIWT01UHf/lInReVnB49JElmfQHwNmLlbwr/w7aV+P+ervOzyNy2VR0evF+eZV/Ls3yZjAZ+p/g/eE9GWZlCJ41uMJvQ3FMYLkl9RGlku0u25NgyG8iIN7dvk5OVddz1tAtMmChZlnyHskL878+WUVamisuuivLMAKD9c1NTJTsklZe3yfl8n30qNyVVJb97WsGTxyjh5b8o+Wc/kffzz+R/7x0ZFZWqvPQKSVLFt66RHEcdHntYTrfuKp96i+Q44eAfms33yYey++fJqeNvOAAAgPocX1cegNZkGCr/3o0yt28L3xl5FP+rL4d7hkVBVVDN2rheKitr9HFG0V45RzQRd9IzpMoKGaW1B0FqHF9LqU9J8ixZJLtvP0mHsldCQXkOZUrWV+IOLa/y4stU+mAjMmLaiJPduJJ5Lca2ZRwsiZT6rPF0t+6SJGtb7UEPa9MGuYlJcrJzWm2KwNECF16swPkXKeHF52vN5DbzNynhhZnhgHVFhczdO+sM/EmS06dvnSWknC5ZkuWp82egLVkF+XIyO6v8lh/Js/xr+d59u+Y+K5arw4P3S16vDj7ymOTzy7uw7n5DxsES+Wa/rcCZZylw6gSZewrDvfjqYO4prNbfT1Lk57+hPn/mzu2yu3ard5+41KGDguNOlfeTj2UcKJZv9jsKTD5bbmZmtGcGAO1eVeWUqhsqW5Vty/vf/yh46gS5mZmquGGqDj46XU6Pnkr84wz5Z72uwNnnRr7TuR07qeK7Nyo0eKjK7ronXI5cDX8eomHmzh3yLF9Gth8AADhmBP6AFuTk9lbg7POU8OZrkTKXkqRgUN6vlsrcty8qfZKMor3hDAPHkWdN40uRmnv3VusJVXWRriqDsFZHBBaNAwfkJiRGMiOcQ18SjYpy2f3DGVJ2j3BfKc+yr+QmJ0seT6PnhxZgGJEeju2Bk50TXq+BQJuczygJl06qK9PUyekqmWa4x1ktrIKC8F24tZRQBFqNYajim9coOGGiEv/0h+pZaqGQkv70tHwff6DkB++Td8E8yXXrDfzVy7LkdO16uKegbcvcuUPmju0yd2yXKiub/3oayczfJLt3H4WGDVflhZco4R+vyDvvv4enumGdOvzuN7L79dfBBx+W06OngiNGhd+DOvjefVuG7ajykstkDxwkqf5yn+aePTUCf25GhmR5GrxpwdqxI/w75TgUOPMsmXv3KGn6b2Q44fcbANCwqhsojZKSVj+X5+ulMkoOhHvKHeJ0666yn/4sXAZ/0lmqvPjSascEx41X2X2/kJucEv7e6PXJ3Nm2/brjTiCghJdflJucrODosdGeDQAAiFEE/oAWVnnp5eG7Jed9HtnmWblcqqyQ7FA40NDGzKIiOTld5WRkNr7cZyg812p9jA4F7uoqZ2atWK7UW34Q6eNjlFQvoeh27CSZVnj4PuGMPyUny8nIlLl1S/h5HNecrGxJkrm7bcp9GsXhAH2da8/rDZcfraPMobW57hKKQKsyDJXf+EPZA/KU9McZMg6GLwj6Ppgjc9tWlf3oDsnrDWeam6acQ9mrx8Lu1kPW1i3yzJ+n5J/9RMl3/ljJd92u5LtuV9LTT7bQC2qA68rK3yjnUC/CyiunKDh2nBL/8Hv5X3lJ5tYtSnp8muwePVV2+52RDMbgmFNk5W+qPShXWir/B3NUec55cjt2kpuSKqd7D1n1BP6MPYVyjs5UM005XbJk1ldStKIinEV/nAb+7D79ZPfuI2vDOlWeez7Z/QDQSG5KiiS1yXdI738+ldOjZ+Sz9kj2wEGquP77cpNT6h7AMMLVO3Zsb71Jxjlj7151+PUv5Fn2tcpvmNqubtAEAACxhcAf0MLclFSFRoyU97O5kW2eRV9GAl5GUVGbz8ncVyQnPUP2kKHyrGhc4M/YFw7eVcv465QWzmooqj3jz8rfFO7hd6iXoXmguPqXQ9OUk5YmeX3VehVU/dsh8Hfccw71GmyrEkHmoczc+tae3aNH7Rl/gUC4dB+BP0SLZans5tukYFCJf/qDjD17lPDGPxQ461yFRo/RwQcfVnD0KQoNG96sC0dO9+6y1q1R0tNPyMnKVtld96r0/l8qOPqUtgvSFxbKKCuTnds7vMHjUflNt6rim9fKP/ttJd9/t9yOnVR2591SQkLkuNCIkZLPL8/C+TXG9H6xQAoFFZh89uH9Bw6WZ1UdmfG2LbNor9zOnWs85WRl1ZvxV3UR9HgN/ElS4IKL5WR2VuX5F0V7KgAQM9xDpT6rWii0mtJSeRd/qcD4ic2qZGFn58jcRanPJnFdmTu2y/fhHCU/cI/M4mIdfPDXCp08JtozAwAAMYyaekArCIw/TUm/ny5z6xY53brLu/hLBU8aLe/CeeEgXNWFyzZi7N0rp2dPhYYMk/fTf8so3t9gdl1VcO/IjD8Zhpy0tDr7H5k7wxc2PSuWKXjqhHCpz6NKKLrpGbLTM6qV9LR79pJnySIy/hBeA/6E+jNnWtDhjL+6s0+cbt3l+9c/a2y3tm6WXFdOLwJ/iB43PUPlU29W0vTHlPyrB+QmJqriyinhJxMTVf6jnzT7HMETT5a1cYMqzzlf9pChke3O2tXhjPY2YOVvkqTDgT9JMgwFLrhITvfu8v3zI5V/94aamQh+f7jc5/zPFbjo0mpP+T77VKEhQ+Ue8TkXGjhYvo8/kLGvSG5Vj1vXlQwjfOOO49Qo9SmFyxR7li6pe/6Hbmawj+PAX3DsOAXHjov2NAAgtng8cpOSWj3w510wT7JDCo47tVnjONk58v33Py00q/hnbi5Q0hOPyyzcLVkehYaPUPmNU8mMBwAAzUbGH9AKQiNGyU1OlvezT2Vt2iBj/z4FzjgzfOFwX/Qy/kKDh0iSPCtXNOoYSXLS0qttdzM7y6yjx5+1I3xh07N8meS64cBfSvWLsBVXXK2KKd+qts3umRseu57gC44ThiE7K6vNMv6M4uJwH8p6sqGc7j1kFO+PlFKsYhYUhOfbvWdrTxOoV2jkiQqcd6GMor2quOY7UlJSi47v9Oipsp/+rFrQT5Kc1I4ySg9Ktt2i56uNlb8xXI6zU1qN50LDR6rspz+rFsA7UnDsOFkF+dUy8ozdu2WtXqng+InV9rUHDpQkeVaHs/78b76mlJu/L2vZ1zL3FEpS7YG/rKzwRbs63gtz+7bwRbwOHRrxagEAOMxN6SizlUt9+j7/TKEhww7f9HKMnJyu4X7dbdgDOJYlvP53yTBUdsfdOvDM/4b/niHoBwAAWgCBP6A1eL0Kjhkn33//I8+XX8jt0EH2oMFyO3aS2dalPkMhGcX75aSly+2UJqd7D3mWf93gYcbevZI/ocYFZCc9o85Sn+bOHbJze8so2itz104ZB4rlHCpPU8UeOkz2wEHVx+xFqU8c5mTnyNxdd8m8lmQW728w4Gwf6o1mHtXnz9pcEC7bR+8NtAMV3/i2Sn/5iIJjTmmzc7qpqeGbPNqg75BVkF89268JQsNHSD6/vPMP9971/fdTyZ+g4Emjq+3rdkqTk91V1qqV8n0wR/7X/y43OUUdfvOI/G+9IamOwF92TriPbx03xpg7dsjp2u2Y5g8AOL65KSmt+llrHCiWtWZVi2RlO9k5klRv+WuEmTu2y7P4S1VedKlCI0+sVqocAACguQj8Aa0keNpEGfuK5P9gjkLDR0kej5y09EgmXVsxiosl15WbEc6ECA0ZJmvF8nDpsnpUZQkezcnIkLG3llKfFRUy9u9T8PRJkmnJs2KZzJKSRpXvdLKyFRoyVHbewEa9JsQ3p0tWraU+PV8ulP+Vl2Qc6svXEozi4gbvqnWycyTTlLn9qMBfQX4kWxWIOsuS3a9/s/ryNFXV7/dW7zukcKlPu1fusR3s9ytw6nj5Z70ha+0ayXXl/exTBUePqfUiW2jQYHnn/1cJLz6vwPkX6eBj0xU470J5ln8d7rXk99c4xu6SLanuC53mjm2yc3KObf4AgOOam5raqp+1VaWqQyNHNXssJ/vQ5+FOAn8N8b33jtyUVAVPnRDtqQAAgDhE4A9oJXaffnKyu0qVFQqOOkmS5Kany9i3r03nEenVd6hsS2jIUJl7CmXs3l3vcUZRkZyMmqVe3IyMcNai41Q/T1X/otw+svv2k2fxIqmyokapz9pPZqjs3l/IHpDXmJeEOOdk58jcu0c6ePDwxmBQiS/MlP/dt5T80x/JP+v1FikhZBTvl9OpU/07eb1ysnJkHZnx57oyt2yWTX8/HMecQ0Hzql6ZrcXYVySjeL/s3D7HPEbFtd+T3befkn47Td5/fSxz104FjirzWcUeNFhGWZmCEyaq4pvXSKapim9dq7Jbf6LKK6+u9Rg3M1MyLVm7ailT7LqyduwI/00AAEATuSkprRr48y7+Unbf/i3Sb91NSZWblBTp/Y7aGfv3yffpXFWeez7VQwAAQKsg8Ae0FsNQYOLpks+v0AnDJSk6GX+HSou66eEgnt07fOHU2rq53uPMor219nhwMjIlx5axv3oAs+quTic7nL3nWRYuJ0rfPjRVaMRIyeuTf/bbkW3ezz+TsX+fSh/4lYKnT5L/zdeV8OLzzT6XcaDhjD9Jsrt3l7l1y+HjCgtllJfJ6UngD8cvNzVcytlswSzc2lgF+ZJ0zKU+JUk+n0p/cpeczl2U+L9/lpueIftQ39ujBUePVdmtP1H5jT+slkEZGnuKAmeeXcckLTmdu9Sa4WAUFUmBSjldCfwBAJrOSUltvVKfgYA8X3+l4Ikntcx4hhEumd1G/bpjle/D9yWPR4FJZ0V7KgAAIE4R+ANaUeD8i1Ty2O8iffLctDQZbRz4M4v2Sl6f3A7J4Tl0SpP8CTK3138Xplm0N5IleCQnI/PQ89Vfh7Vzu9zkZLnJKQoNGSY5dnj/o3r8AQ1xO6Wp8pzz5P9gTjjA7Lryz35boZEnys4bqIprvqPAWefIs3xZs89lFhc3KjjtdOsu64jAn7U5X5JkE/jD8SwhQfIntHqpT6sgX25SktzONXvrNUmHDir72X1yevRU5Tnn110W1eNRaOwpkmU1aXgnO7vWUp+etaslSXYPfl8AAJrOTe0os6SkVcb2rFwuBSoVGtVCgT8dqt6xg8BfnQ4elO/jDxSYNFlKTo72bAAAQJwi8Ae0JsuqdqHSSUuXcfCgFAi02RQivfqqLnAahuyuXWXVV37FcWTs3xfpC1jtqUN9/4w91fv8mUeUMbP7D5B84R5ILoE/HIPKCy6W67Hkf3uWPEsXy9y+TZUXXhJ5PjRgYLhk7aFStsfEdWWUHGhc4K97DxkHimUcDF90sTYXyE1OCQfSgeOYk5oqo3h/q57DzN8ULvPZAv0L3Y6ddPB/HlfggotaYGbVOVm1B/68n30qu9+AcDlQAACayE1NlSorWuU7pGfRl3KysuV07dZiYzo5OZE2EDhKZaU6TH9MMk1VnntBtGcDAADiGIE/oA1VZdC1ZblPo6goUuYzMo+cbvVm/BnF+yXHqTXjTx06hDMG9x4V+Nu5Q05OTviBx6NQ3kBJh0vBAU2SnKzKCy+R758fKeHvf5Pdb0C1HpB2//6SJGvt2mM+hVFyILzOG1Pqs0dPSZJn4fzweTcXhPv7tUAgAohlbmrH1i316brybFgvpzllPo/WSj+34cDfrmo9cI39++RZ9pWCE05rlXMCAOJfVc/0Fs+wd115lywKZ/u14Gejk50T/ju7tLTFxowLoZCSnnpCVkG+yu68t9abbAEAAFoKgT+gDVUF4Iyitgv8mUV7I1l6VZycHJk76g78VQUmjz5OUrhvQ0ZGuITokcfs2iEnOyfyOHTiSXIyO0tebzNmj+NZ4Ozz5HboIHPLZlVecFG1CxJuWrqczl3kWbfmmMc3isPBCrdjpwb3dbp2U3DiGUp8YaY8SxbJ3Fwgp2fuMZ8biBdux46tWurT2rRBRtFeBU8Y0WrnaClOdrZkh6p9xnvnfS4ZpoJjTonizAAAsayqdYLRwjfaWBvXy9i/T8EWLPMpSXZWdnj8XWT9RbiuEp/7kzzLvlbZ7XfI7tc/2jMCAABxzhPtCQDHk0jG3/59stvonMa+IjlHZEpJkp3TTcbBEhkHS+Qmp9Q8Zm84qHd0pmAVJyOzWsZfeKyDsrMOB/4CZ56twITTW+AV4LiVkKCK674n7+efKXTiyTWetgcMlLW2JQJ/DWf8yTBUfv0PZJSWKmnGE1IwQH8/QOFSn1ZBQYuM5flqiczC3QpMPufwtgXz5aakyh40uEXO0Zqqbn4xd+6Qfaisp/ezuQqeeFKtn7UAADSGe6g6hVlyQE4D+zbEWrVS/jnvSq4rc0+h3OTkalU1WsLhz8Odsvv0a9GxY5W1fp28n32q8h/crFAM3MwEAABiHxl/QFtKSpL8CbVn/DmOOjz8S3kWLmi587muzKKiGmVEqkpy1lXu09xXJFmeOvvzORkZkeCgpEjz9kipTymcneX3N2f2gIJjx6nspz+TzJofV/aAAbIKNkkVFcc0dlV5QqcRGX+SJMtS2c0/Uqj/gPD5e+Ue03mBeOKmdmyxDATfJx8r4cX/O9y703XlXTBPwZNGS5bVIudoTU5GpmRa8i6cH/783VwgqyBfwfGU+QQAHLuq1glGSUkzB3KV8NL/ydyyOVzFpXMXVVz9zZb/jE1KktuxU70VZo43vn9+KKdzFwUnTIz2VAAAwHGCjD+gjTlp6bX2+LPWrJa1eqUS9hTq4MhRLVIi0yg5INmhGr36Indh7the6x2eRlGRnPT0Ons9uBmZMhd9GXlc1bzdOVTWBWgLof55kuPI2rBe9pChTT7eKC6WfH4pIaHxB/l8KvvJXfKsWCbnUN8/4Hjmduwks7hYct1m9wcy9hRKdki+D+ao8pvXyNq0QeaeQgXHjmuh2bYyj0cVU76lhL+9KLN4v5yOneQmp3BnPwCgeXy+8M2jzSytba1YLit/k0rv/rnsYSe00ORqZ3frLs/KFaq8vPl/H8Q642CJvPPnqeKKq4779wIAALQdMv6ANuakp9ea8eddME9ucrLMvXvk+9fHLXKuqvPUKNnp98vJ7FznXZjm3r1ya+vvd4iTkRkOKgaD4f13bJeblt60AArQTE6PnnKTkuRZv/aYjjeK98tpTJnPoyUmKnTSaL64AzpUKjcUlMrLmz2WWbhbbnKyfJ98LJWWyjt/XrjM58BBLTDTthG44CKV/eQuWSuWy/fJRwqOGy95uM8OANA8TkpK+PtXM/hnvy27V67socNaaFZ1C1xwkaw1q+Sd/3mrn6u98346V3JdBSeeEe2pAACA4wiBP6CNubVl/DmOvAvnKzh+ooLjT5N/1hvHXL7wSOahcmlOLUE8JztHVl2Bv9275HTpUue4TkZmtfHNnTtl53Rt7nSBpjEM2f0GyFqz+pgOt7ZukZOV1cKTAo4vzqGS0GZzy32WlsooK1PlJVfICATk++RjeRbOV/DkMTFR5vNIoRNPVulDjyg06iQFzj432tMBAMQBNyW1WYE/syBfnmVfKXDhJW1y81po+EgFTx6jhL/+n1Ra2urna7dcV75/fqTg6LGRXo0AAABtgcAf0MactDQZRwX+rDWrZRwoVnDsOFVcfrWM0lL5PpzT7HOZRXsl05JbSw8zp2u3unv8Fe6W07nuwF9Vz0Bjz57w/rt2UOYTUWEPyJO1fm24zGBTOI6statl58VOJhHQHrmdOklSw+XHXFfGrl11Pm0W7pYk2f0HKDh+ghLefC1c5nPMKS011TbldOuusp/+LFJaGwCA5nBTU2U2o9Snf/Y7cjI7Kzh6bAvOqn4V13xXRkWFEl57tc3O2d5YK5bL3LVDgTPPivZUAADAcYbAH9DGwhl/+6oFKrzzP5ebniG7bz+5nTsrcOZZ8r/7lnTwYLPOZRQVyUlLq/WuTicnR+buXZJtV3+iokLGgWI5XerOhHLSM+QmJSnxuT/J+/lnsnbu5OImoiLUP09GWZnMrVuadJy5uUBGWZlCAwe30syA44ObGs74M4r3171TIKDE//e0Uu64TdbyZbXuUhX4c7p0UeX5F0mBynCZz0H8jAIA4KamyigpOaZjzV075Z3/XwXOu7BNs+jdjAxVXHG1fB9/IO9nnx7O/HMcWevXyffhHFmrV0mhUJvNqa35/vmhnG7dZecNjPZUAADAcYamI0Abc9LSJTsko+RAuNyH48j7xQIFT50QCdBVXnKZfP/+RP7Zb6tyyreO+VzmvqI6e/XZOd0kOxTO7jsiaHf44ms9JRB9PpU++LASXn1ZiX+cEd4/h8Af2p7dt59kmvKsWaVAj56NPs6zepXk8YaPB3DM3OQUyTTrLPVpFO1V0hO/lbV1i9xOafJ//IHKauktZO7ZI/n8clNS5aZ2VGDSWeHscpN71AAAcFNSZaxtel9ra/06JT35Wzlp6QpEocdc4Jzz5Fm6WIl/elqJpim7V67MXTtllJWFv/u6rtyERIVOHq3yG6bGVV9ca8M6eb9cqPLv3UhvcAAA0Obi568qIEa46emSwtl4bmpHWatXhct8HlHOzO3YSZXnni//++8pcM55cjulHdO5jKK94UBjLZxDPfnMHdtrD/x17lzv2FVlzKzVq+T9/DOFKJmIaEhIUGjwEHnn/kuBM89u9Jdqz+qVsvv1l3y+Vp4gEOcMI3wxspbyY8aBYiX/4j7JNHXwF7+SZ8M6JfzleRlFe2vclGIW7paTmRn5Ga64/vttMn0AAGKBk5Iio6Rp/XS9/5mrxJnPys7trbIf/1RKSGil2dXDslR23y9k7N4tz/Kv5FmzRqERoxQaNlx27z6ythTIs2C+/LPfVuCsc2T3iZOb8mxbCf/7Z9k9eyk4cVK0ZwMAAI5D3EYNtLGqQJx5qM+fd8E8ORmZNTKPKs+/SK7Hkv+tN4/5XGbRvkig8WhuerrkT6jR58/cvVvy+hodbLQHDgpfoO3Q4ZjnCTRH4IKLZW3aKGvlisYd4LqyVq9UaCDBaqAluKmpMvbvr7E94W9/lYIBHXzoETm9+ygwboLk9cn3709q7NtQb1kAAI5nbkpqOEuukWUxzfxNSnzmDwqOO1Wl9z8ot46bQduK26WLgpPOUvlNt6ryiqtlD8iTvF7Zffqp8oqrw9UD8jdFdY4tyffxh7I2F4S/J7dheVUAAIAqBP6ANuZ26iQZhox9RbJWLJfv359UK/MZkZysyosule+Tj2UUFjb9RBUVMnfvktOljguphiE7O1vmjm3VNpu7d4Wz/ShHghgRGnqC7J695J/9dqP2N7dtlXHwIFmqQAtxOnaUUVI9489atVLe/8xVxZRvHb7YmJSkwLjx8v3rnzX6yxL4AwCgbpGeuiU1M+xr41mzWvJ4VX79DySvtzWn1nw+n5yu3WRtio/An7GvSP5/vKLAGZNl9+0f7ekAAIDjFIE/oK1ZltyOneRdukQdfvcbhQYNVuXlV9W6a+Csc+V26KCEV1+WZ/48JTz3JyX9z6/kf+3VBhuhe5Z9JdkhhYaPrHMfJ6ebrB07qm3j4itijmEocMHF8ny9VObmggZ396xeKZmW7P4D2mByQPxzUzvJPLLUZyikxBeek923v4JnTK62b+DMs2TsK5JnyaIjBnBlFhby2QMAQB3c1I6SJKOkpFH7Wxs3yO6VGzM98+zc3rIK8qM9jRaR8OrLkteriqu/Ge2pAACA4xiBPyAKnLR0eRZ/Kbt7D5XdfmfdX8gSElR52RXyzv+vkp5+Qp61a6SEBPk+/kAdHn5QHX79YJ3n8C7+Uk637nKysuueR9euMrfXkvHXJeuYXhcQLcExp8jJyJR/9jsN7mutXCm7T9/o9DkB4tDRpT59c2bL3L5N5d+7sUb2uJPbW3bf/vJ9/GFkm1F6UKqsIPAHAEAd3JQUSaq1p25trI0bZPfu05pTalF2bh9ZmwsaXcq03bJteb78QoFzzpOSk6M9GwAAcByLjdu/gDjj5HSVUVmhsrvuaTD4EDjzbDmZnWX3zJWbkXFoAEf+N/4RDnK4bi0ncORZskiBozItjmZ37S6j5ICMA8Xhu0hdV+bu3XImcvEVMcbjUeC8C5Xw8ouquOobcjMza9/PdeVZvVKB005v0+kB8Sxc6rM4/KCiQv633lDgrHPl5Paudf/ApMlK/PP/k7GvSG5auszdu8Lj1PVzCwDAcc5JCZf6NEsOyG5gX5WVydy5XfZFl7T6vFqK3StXCgVlbt8mp2evaE/nmFkbN8ioKFdo6AnRngoAADjOkfEHREH593+ogw8/Jjc5peGdTVOhkSceDvod2mb36CUFA+FMiaNYa9eEe5ideHK9Q1eVOrRWr5YkGcX7pWCg7r6AQDsWOH2SXL9fvn//s859zJ07ZBwolj1ocBvODIhvbmpHGaWlUigk76IvZFSUq/Kc8+vcPzTqRMkw5Pn6K0mSUbgnPA6fPQAA1C4xUbI8jcr4swryJdcNV7iIEXavXEmK+XKfnhXL5CYmxVS2JQAAiE8E/oBo8Holn69ZQ7hpaZIko6io5vCLv5Sb2lF23371j5GRIadLVrjnmSSzsFCSKPWJ2JSQoNDoMfJ+9mmtmbDGviL5//GqZBgK9c+LwgSB+OR2PNR36ECxvP+ZKztvkNysuj9H3JRU2b37yvPVUknh3rJuQqLcDpTEAgCgVoYRLq1d0ojA38YNks8vp2u3NphYC0lKkpOVLSt/U7Rn0iyeFcvDNxhaVrSnAgAAjnME/oAY5aSlS5LMfTUDf57FixQ8lFHREHvgIHlWrQiPVVVujT5LiFGBCafL3FMoa/WqwxuDQfn/8YpSfvojeVYuU/kNU6WkpOhNEogzbmq4/JhVkC/PimUKjD+twWNCw0fIs/wrybbDgb/OnRv1mQUAwPHKSU1tXMbfxg2yc3tLZmxd7rF79T72jD/XlbV+neQ4LTqnJqmslLV2jUJDhkVvDgAAAIfE1l+CACIiGX/79lXbbm7fJnPn9gbLfFYJDRwsc+sWGQdLZO7eFS4/mpjY4vMF2oKdN1BO5y7yfTY3ss3/xj/kf/dtVZ5znkqmP6Xg6ZOiOEMg/jipnSRJvjmzJcuj4OixDR4TGj5SRlmZrA3rZRbu5oYTAAAa4KakNC7jL39jTJX5rGL37i0zf1PtPewb4PvkI3X45f3yvf9eK8yscTxrV0t2SKGhBP4AAED0EfgDYpXHIzcltUbGn2fRl5LP3+g7DUODhoTvkFyzOnzxlTKfiGWGoeCpE+RZMF8KBGRu2yr/e++q8pLLVPmNb0sdOkR7hkDcqcr486xcruCJJzfq58zu01ducrI8Xy2RuaeQwB8AAA2w+/ST96ulMvbsqXMf42CJzF07YzLw5+T2llFRHqlC01jm5gIlvPh/cpOT5X/7Tam8vJVmWJ3nqyVKmPmsZNuSJGvFcrmd0mKrxCoAAIhbBP6AGOakp9fo8ef9akn4LsNG9hB0O3eWk5Epz+pVMneTdYHYF5wwUUZFubyLvlDiCzPlZGaq8sJLoj0tIH75fHITw+Vzg6dNbNwxpqnQ0OHyfL1UZmGhnMzOrThBAABiX+VFl8pNSlLii8/XuY+5Kdwjz+7dp62m1WLsXrmSDr+GRqmoUNLTT8rJyVHpLx+RUVEh/5x3W2eCRwoGlTjzWfn+9bH8b74mSfKsWKbQ4KGULgcAAO0CgT8ghrlp6TUy/sxtW5v8Rc8eOFjW6pUyd++S04XAH2Kbk5Utu3+eEv7yvKxVK1T+3RsbHQgHcGzc1I5yUzsqNPSERh8TGj5C1qaNUjDAZw8AAA1JTFT5Nd+VZ9EX8ixZVOsu1qYNcpOS5GTntPHkms9N7Sg3PUNW/sZGH5Pw1xdk7tmjstt+Iic7R4HJZ8v33ruNKonaHL5PPpaxr0jBiWfI/9Yb8ixcICt/k0JDhrbqeQEAABqLwB8Qw5y0dBlHBv5KS2WUHGjyF73QwEGy8jfJ2FdExh/iQmDCaTJKDig4ZpzsYY0PRAA4NqEThqvygosly2r8MUf8bJLxBwBAw0Jjxio09AQl/N//SpWVNZ73bNwgO7dPzGad2b1yZeU3LuPPOFAs378/UcWUb0XKa1ZefKkM15X/nbdab5IVFfLPel3B005X+Q1TFRo0RElPPym5bqPbbQAAALQ2An9ADHPT02UeUerT3LVTkuRkNa1Pnz1ocLiJuuvS4w9xIXjKeAXOOFMV134n2lMBjgsV37legQsuatIxbqe0SFkvAn8AADSCYajiezfK3L9fCS+/GP4OdwRr44aY7O9Xxc7tHQ78HfW6auNZuUKSFBw9JrLNTe2oyvMvlO/D92UcKG6VOfo/eE9GWZkqLrtKMk2V33RrOMsyK0duZmarnBMAAKCpCPwBMcxJSw+XMQmFJB0O/Nldsps2Tla23E5p4X8T+EM8SExUxQ1TI+saQPsUGnVS+Oe0Q4doTwUAgJjgZGWr/LrvyvfPD+V/643wRteV74M5Mor2yu7bL7oTbIbQwMEyDpbILMhvcF9rxTI5XbvJTUuvtj1w9rmSY8u7cH6Lz884WCLf7LcVmHx2JMjnpqWr9O77VT715hY/HwAAwLHyRHsCAI6dmx7+kmPsK5I6d5Sxc6fc5GQpOblpAxmGQgMHy7twntyMjFaYKQAANVVedKkCEydFexoAAMSU4KSzZB44IP9rr8pNTJK1OV/euf9S4LwLFTrx5GhP75jZeQMlf4I8y75SILd3vft6VixXaPjIGtvdlFSFBg+RZ+ECBSaf06Lz8yycL6OiQpUXX1ptu9O7T4ueBwAAoLkI/AExzDmUzWQUFUnqLXPnTjlZx9bIPTDxDLkdOjSpPxMAAM3i81EWCwCAY1B5yeUyDhxQwovPSx6vyqfeouCEidGeVvN4PAoNGSrvV0sVuOjSOnczdu+WuXuXQkNr76kXHDNOif/7rIzi/XI7dmqx6VkFBXJyurbomAAAAK2BwB8Qw6pl/Clc6jOU1bQyn1XsYSfIHnZCi80NAAAAANBKDEMV135XTmZn2QMHyu4TuyU+jxQ6YbgS/vKCVFpaZylwz4plkao1tY5x0snS83+W94uWzfqzNhfI7pnbYuMBAAC0lpjs8ffFF1/ohz/8ocaPH6+8vDx9/PHH1Z6/5557lJeXV+2/G264IfL81q1bdd9992nSpEk64YQTNHnyZM2YMUOBQKCtXwrQLG6HZMnrk1kUDvwZO3fIyaJHHwAAAADEPcNQ4PwL4yboJ0nBE0ZKji3PiuV17uNZsVx27751BgbD5T6HyrugBfv8ue6hwF+vlhsTAACglcRkxl9ZWZny8vJ0xRVX6NZbb611nwkTJmjatGmRxz6fL/LvjRs3ynVd/epXv1KvXr20du1aPfDAAyovL9fdd9/d6vMHWoxhyElPD5f6LC+XUVwsJ/vYSn0CAAAAABBNbpcucrK7yrNsqUKjx9SygyvPimUKnF5/j+Dg2HFKnPmMjP375B5qkdEc5u5dUmWFnF4E/gAAQPsXk4G/iRMnauLE+mvX+3w+de7cudbnTjvtNJ122mmRxz169NCmTZv0t7/9jcAfYo6bdijwt2OHJMk5xlKfAAAAAABEW2jESHkXzleF60qGUe05c8tmGSUHFBpSe3+/yBgnnSz977PyfrlQweGjlPDaq5JpqHzqLbUfEAgoafqjsrZulSS5Ho/KfnKXnNze4fMWFEgSGX8AACAmxGTgrzEWLlyoU045RampqRo7dqxuv/12paXVfZdXSUmJOnbs2OTzmKYh0zQa3hFoLenpsor3Szt2yDAko1tXeTwxWcUXxwnLMqv9L9BesVYRS1iviCWsV8QS1mvbc0eOlPnBe/Lu2i63e49qz3lXr5Dh88kYPKj+772dOsoZdoIS3npDiS/9X3ib7Sh4/Y1SYmKN3X1vviXv2tUKXnyZXNOU7/33lLBwngL9+oaf37ZZ6thRVmZGi73OlsZaRSxhvSKWsF4Ri+Iy8DdhwgSdddZZ6t69u7Zs2aLf/e53+v73v69XX31VlmXV2L+goEB//etfjynbLz29gwyDwB+iqEeOtK1A2r5d3o6pSuuRVeOuSKA9Sk2t+YUbaI9Yq4glrFfEEtYrYgnrtQ2NO1nqkCjf+lXSsIHVn9uwRho+TL6sRpTvvORC6amnpGuvkUaNkn76U/l2b5VGjKi+37Zt0px3pClXy3ftteFtJfvkW71cHdIO9RHcvV3K6y9/Wu19BdsT1ipiCesVsYT1ilgSl4G/Cy64IPLvvLw85eXlafLkyZEswCPt2rVLN954o84991xdffXVTT5XUVEpGX+IKq+/g/w7d8u7fbsqM7uobH9ZtKcE1MuyTKWmJurAgXLZthPt6QB1Yq0ilrBeEUtYr4glrNfoSOiXJ332uSpOP/vwRsdRhyVfKXDRJQruK214kMEjpP83M/xv11UHf6ICXy5RsFf/w/u4rhKemCEzuaPKzr5QOjSuZ8Bg+T/4SGUbt8hNS1fS6nUKjRmrQGPOGyWsVcQS1itiCesV7UlaI29CisvA39F69OihtLQ0FRQUVAv87dq1S9ddd51GjhypX//618c0tuO4chy3paYKNF1qmnyBgLR+vezO2QqF+ABCbLBth/WKmMBaRSxhvSKWsF4RS1ivbSsweJgS/vGKQuWVktcrSTI3F8gtK1Og7wDZx/D/RbBvfxmrVlX7/9E7/3OZy75W2Z33KGR6pEPP2YOGyidJi5codNJoqXC3gt17xsQaYK0ilrBeEUtYr4glx0Vh2p07d2r//v3q3LlzZFtV0G/IkCGaNm2aTPO4eCsQh9z09PA/8vPl5uREdzIAAAAAADRTaOAgKRiQtXFDZJtn3RrJtGT37XdsYw7Ik7V+veQcumjruvL//W8KjTpJoRGjqu3rpqTK7tNPnq+WytpcIEmye/Y6thcDAADQxmIy46+0tFSbN2+OPN66datWrVqljh07qmPHjnr66ad1zjnnKDMzU1u2bNHjjz+uXr16acKECZLCQb9rr71WXbt21d13362ioqLIWEcGB4FY4KSlH/53VlYUZwIAAAAAQPM5ub3lJibJs3ql7Lxwnz9r7VrZvXIlv/+YxrT758moKJe5uUBObm9Za1bL3L1L5d+/qdb9QycMl++D92T3HyBZHjldux3rywEAAGhTMRn4W758ua677rrI42nTpkmSLrvsMv3yl7/U2rVrNWvWLJWUlKhLly469dRT9eMf/1g+n0+S9N///lcFBQUqKCjQaaedVm3sNWvWtN0LAVqAm3a4qbmTlR3FmQAAAAAA0AJMU/aAPFmrVkiXXC5JstauVujEk495SLtvP8nyyLNujQK5veX9bK6czM6yBw6qdf/Q8JHyv/mafP/6WHb37pInJi+hAQCA41BM/tUyZsyYegN0M2fOrPf4yy+/XJdffnlLTwuIDo9HbmqqVF4qh1KfAAAAAIA4EBo4SAmz3pBCIRklB2QW7lao34BjH9Dnk53bW9aaNdLESfIumK/AOedJhlHr7nafvnKTk2Vu36bghInHfl4AAIA2RmM7IA64aelSUpKUkhrtqQAAAAAA0Gz2oCFSZYWs/E2y1q4Nb8vLa96YA/JkrVsj7+IvZZSXKTj+tLp3Nk2Fhg4PH9czt1nnBQAAaEsE/oA44KanSzk5dd6pCAAAAABALLFze0v+BFmrVsqzbo2czM7hm16bIdQ/T+bePfK9M0t2vwFysuuvmhMaPiI8l569mnVeAACAthSTpT4BVBe48GIl+onjAwAAAADihMejUP/+8qxZJaO4WPaAgc0e0h4QLhVqFeSr/PrvN7h/8OQxMvfukZ3X/HMDAAC0FSIFQBxwBg+RTjop2tMAAAAAAKDF2IOGyFq9SlZBfiRo1xxupzQ5XbIky6Pg6FMaPiAhQZWXXiF5uG8eAADEDgJ/AAAAAAAAaHdCeYNkVJRLjq1QC2T8SVLw1AkKTD5bSk5ukfEAAADaG25ZAgAAAAAAQLtj9+0neX1yPR453Xu0yJiVV1zdIuMAAAC0VwT+AAAAAAAA0P54vQrl5Uker2RStAoAAKAxCPwBAAAAAACgXSq/+UeSYUR7GgAAADGDwB8AAAAAAADaJTe1Y7SnAAAAEFOokwAAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAQJ/AAAAAAAAAAAAQBwg8AcAAAAAAAAAAADEAcN1XTfakwAAAAAAAAAAAADQPGT8AQAAAAAAAAAAAHGAwB8AAAAAAAAAAAAQBwj8AQAAAAAAAAAAAHGAwB8AAAAAAAAAAAAQBwj8AQAAAAAAAAAAAHGAwB8AAAAAAAAAAAAQBwj8AQAAAAAAAAAAAHGAwB8AAAAAAAAAAAAQBwj8AQAAAAAAAAAAAHGAwB/QCl566SVNmjRJw4YN01VXXaWvv/66xj5LlizRddddpxEjRmjUqFH69re/rYqKinrH3b59u37wgx9o+PDhOuWUU/TYY48pFApFnv/www/1ve99T2PHjtWoUaM0ZcoU/ec//6l3zMrKSt1zzz266KKLNHjwYN1888317r9o0SINHjxYl1xySb37IXbE23pdsGCB8vLyavxXWFjYyHcE7VW8rVVJCgQCeuKJJ3TGGWdo6NChmjRpkl577bVGvBto7+Jtvd5zzz21/m694IILGvmOoD2Lt/UqSW+//bYuvvhiDR8+XOPHj9e9996rffv2NeLdQHsXj+v1pZde0nnnnacTTjhB55xzjmbNmtXwG4F2L5bW6oIFC3TTTTdp/PjxGjFihC655BK9/fbbNfabM2eOzj33XA0bNkwXXXSR5s6d28h3A+1dvK3XdevW6bbbbtOkSZOUl5enF154ofFvBtq9eFuvf//73/Wtb31LJ598sk4++WR997vfrfU1AU1B4A9oYe+9956mTZumW265RW+++aYGDhyoG264QXv37o3ss2TJEt14440aP368/vGPf+i1117Tt7/9bZlm3T+Stm1r6tSpCgaDeuWVV/Too4/qzTff1IwZMyL7fPHFFxo3bpyeffZZvfHGGxozZoxuuukmrVy5st5x/X6/rr32Wp1yyin1vrYDBw7o7rvvbnA/xI54Xq/vv/++Pvvss8h/GRkZTXhn0N7E61r98Y9/rHnz5umRRx7R+++/r+nTp6t3795NfHfQ3sTjer3//vur/U6dO3euOnXqpHPPPfcY3iG0J/G4XhctWqS7775bV155pd599109+eSTWrZsmR544IFjeIfQnsTjen355Zc1ffp03XbbbZo9e7Z+9KMf6aGHHtInn3xyDO8Q2otYW6tLlixRXl6eZsyYobfffluXX3657r77bv3rX/+K7LN48WLdcccduvLKKzVr1iydeeaZuuWWW7R27dpmvluItnhcr+Xl5erevbvuuOMOde7cuZnvENqTeFyvCxYs0AUXXKC//OUveuWVV5STk6Prr79eu3btaua7heOaC6BFXXnlle5DDz0UeWzbtjt+/Hj3mWeeiWy76qqr3CeeeKJJ4/773/92Bw4c6BYWFka2vfzyy+6oUaPcysrKOo87//zz3aeeeqpR57j77rvdm266qc7nb7/9dveJJ55wZ8yY4V588cWNnzzarXhcr/Pnz3cHDBjgFhcXN2nOaN/ica3OnTvXPfHEE919+/Y1ac5o/+JxvR7to48+cvPy8tytW7c2aly0X/G4Xp977jn3zDPPrLbtL3/5izthwoRGzh7tVTyu1ylTpriPPvpotW3Tpk1zv/GNbzRy9miPYnmtVvn+97/v3nPPPZHHP/7xj90f/OAH1fa56qqr3AceeKBJ46L9icf1eqQzzjjDff7555s0HtqveF+vruu6oVDIHTlypPvmm282aVzgSGT8AS0oEAhoxYoVGjduXGSbaZoaN26clixZIknau3evvvrqK2VkZOgb3/iGxo0bp2uuuUZffvllvWMvXbpUAwYMUGZmZmTb+PHjdfDgQa1fv77WYxzHUWlpqTp16tTs1/b6669ry5YtuvXWW5s9FtqHeF6vknTppZdq/Pjx+t73vqdFixa1yJiIjnhdq5988omGDh2q5557ThMmTNA555yjxx57rMHyI2jf4nW9Hu21117TuHHj1K1btxYdF20rXtfriBEjtHPnTs2dO1eu62rPnj364IMPNHHixGaNi+iK1/UaCATk9/urbfP7/Vq2bJmCwWCzxkZ0xMtaLSkpqXbM0qVLa2Sujh8/XkuXLm3SuGhf4nW9Ij4dL+u1vLxcoVBIHTt2bNK4wJEI/AEtaN++fbJtu0ZJwYyMDO3Zs0eStGXLFknS008/rauuukrPPfecBg8erO9+97vKz8+vc+w9e/ZU+/CRFHlcV++ymTNnqqysTOedd96xviRJUn5+vqZPn67HH39cHo+nWWOh/YjX9dq5c2c99NBDmjFjhmbMmKHs7Gxdd911WrFiRbPGRfTE61rdsmWLFi1apHXr1ukPf/iD7rvvPn3wwQd66KGHmjUuoite1+uRdu3apU8//VRXXnlli42J6IjX9XriiSfq8ccf1+23366hQ4fq1FNPVXJysn7xi180a1xEV7yu1/Hjx+u1117T8uXL5bquli1bptdee03BYJC+lDEqHtbqe++9p2XLlunyyy+v99xHvibEpnhdr4hPx8t6/e1vf6suXbpUC3ACTcUVfKCNOY4jSZoyZYquuOIKSdLgwYM1b948vf7667rjjjt04403RjKUunbtqtmzZzf5PO+8847+8Ic/6I9//GOzepvZtq077rhDt912G32njkOxtl4lqU+fPurTp0/k8ahRo7Rlyxa98MILevzxx5s1NtqvWFyrruvKMAz99re/VUpKiiTpnnvu0Y9+9CM9+OCDSkhIaNb4aL9icb0eadasWUpJSdHkyZNbbEy0X7G4XtevX69HHnlEt9xyi8aPH6/CwkL95je/0YMPPqj/+Z//adbYaN9icb3efPPNKiws1JQpU+S6rjIyMnTppZfqueeeq7cXEWJbe16r8+fP13333aeHH35Y/fv3b/I5EX9Yr4glsb5en332Wb333nv6y1/+UqMiANAUBP6AFpSWlibLsqo1lJXCaeZVd4lUNRXu27dvtX369u2r7du3S5IeeeSRSKm3qgy7zMxMff3119WOqbqb5ehGxbNnz9bPf/5z/f73v2/23SGlpaVavny5Vq1apV//+teSwh+irutq8ODBmjlzZp2N6tG+xeN6rcuwYcO0ePHiVhkbrS9e12rnzp2VlZUVCfpVzdd1Xe3cuVO5ubnNPgfaXryu1yqu6+r111/XJZdcIp/P12LjIjridb0+88wzGjVqlG688UZJ0sCBA5WYmKhvf/vbuv3229WlS5dmnwNtL17Xa0JCgqZNm6Zf/epX2rt3rzp37qxXX31VHTp0UHp6erPHR9uL5bW6cOFC3XTTTbr33nt16aWXVnsuMzOzRnbfka8JsSle1yviU7yv15kzZ+rZZ5/V888/r4EDBzZqXKAu3D4GtCCfz6chQ4Zo3rx5kW2O42jevHkaOXKkJKl79+7q0qWLNm3aVO3Y/Pz8SJ+crKws9erVS7169YpsGzFihNauXVvtw+3zzz9XcnKy+vXrF9n27rvv6t5779X06dN1+umnN/s1JScn65133tGsWbMi/33jG99Q7969NWvWLA0fPrzZ50B0xON6rcvq1atr/KGG2BGva3XUqFHavXu3SktLI9s2bdok0zSVnZ3dIudA24vX9Vpl4cKFKigooMxnnIjX9VpRUVEjU8qyLEnh4DViU7yu1yper1fZ2dmyLEvvvfeezjjjDDL+YlSsrtUFCxZo6tSpuvPOOzVlypQaz48YMULz58+vtu3zzz/XiBEjGjU+2qd4Xa+IT/G8Xv/85z/rj3/8o5577jkNGzasUeMC9XIBtKjZs2e7Q4cOdd944w13/fr17gMPPOCedNJJbmFhYWSf559/3h01apQ7Z84cNz8/333iiSfcYcOGuQUFBXWOGwqF3AsvvNC9/vrr3VWrVrmffvqpO3bsWHf69OmRfd5++2138ODB7l//+ld39+7dkf8OHDhQ75zXrVvnrly50p06dap7zTXXuCtXrnRXrlxZ5/4zZsxwL7744ia8K2iv4nG9Pv/88+5HH33k5ufnu2vWrHEffvhhd+DAge7nn3/ejHcK0RaPa/XgwYPuaaed5t52223uunXr3IULF7pnn322e//99zfjnUJ7EI/rtcqdd97pXnXVVcfwrqC9isf1+vrrr7uDBw92X3rpJXfz5s3ul19+6V5++eXulVde2Yx3Cu1BPK7XjRs3urNmzXI3bdrkfvXVV+7tt9/ujh492t2yZUsz3ilEW6yt1Xnz5rnDhw93p0+fXu2Yffv2RfZZtGiRO3jwYHfmzJnu+vXr3RkzZrhDhgxx16xZ07w3C1EXj+u1srIy8vv21FNPdR999FF35cqVbn5+fvPeLERdPK7XZ555xh0yZIj7/vvvV9vn4MGDzXuzcFwzXJdbHoGW9te//lUzZ85UYWGhBg0apJ///Oc1MuOeffZZvfTSSyouLtbAgQN155136qSTTqp33G3btumXv/ylFi5cqMTERF122WW64447Imnp1157rRYuXFjjuMsuu0yPPvponeNOmjRJ27Ztq7F9zZo1te7/1FNP6eOPP9Zbb71V73wRG+Jtvf75z3/W3//+d+3atUuJiYkaMGCAbrnlFo0dO7bB9wLtW7ytVUnasGGDHn74YS1evFidOnXSeeedp9tvv53+fnEgHtdrSUmJxo8fr/vvv19XX311vfNEbInH9friiy/qlVde0datW5WSkqKxY8fqrrvuUlZWVr1zRvsXb+t1w4YNuuOOO7Rp0yZ5PB6NGTNGd955Z7We1YhNsbRW77nnHr355ps1to8ePVovvvhi5PGcOXP05JNPatu2bcrNzdVdd92liRMnNvheoP2Lt/W6detWnXnmmfXug9gVb+u1rr8Vbr31Vt122231zhmoC4E/AAAAAAAAAAAAIA5QMB4AAAAAAAAAAACIAwT+AAAAAAAAAAAAgDhA4A8AAAAAAAAAAACIAwT+AAAAAAAAAAAAgDhA4A8AAAAAAAAAAACIAwT+AAAAAAAAAAAAgDhA4A8AAAAAAAAAAACIAwT+AAAAAAAAAAAAgDjgifYEAAAAAADtX15eXoP7TJs2TW+++aaSkpL0zDPPtMGsAAAAAABHMlzXdaM9CQAAAABA+7Z06dJqj6dMmaJrr71WF154YWRbz549VVRUJNM01adPnzaeIQAAAACAjD8AAAAAQINGjBhRY1tOTk6N7enp6W0zIQAAAABADfT4AwAAAAC0mGuvvVZTp06NPH7qqac0cuRIrVy5UlOmTNEJJ5ygyy67TCtXrlRlZaUefPBBnXzyyTrttNP0wgsv1BhvyZIluu666zRixAideOKJuuOOO7R37942fEUAAAAAEDsI/AEAAAAAWlUwGNTdd9+tq6++Wk899ZRCoZBuvfVW3X///UpISNCTTz6pyZMna9q0aVq8eHHkuCVLlujaa69VSkqKnnjiCf3617/WsmXLdPPNN0fx1QAAAABA+0WpTwAAAABAqwoGg7rzzjs1ceJESZLjOPrhD3+o4cOH695775UkjR07Vu+//77ef/99jRo1SpI0ffp0DR06VE8//bQMw5AkDRgwQBdeeKHmzp0bGQ8AAAAAEEbGHwAAAACgVZmmqVNOOSXyODc3V5I0bty4yDbLstSzZ0/t3LlTklReXq7Fixfr3HPPlW3bCoVCCoVCys3NVU5OjpYtW9amrwEAAAAAYgEZfwAAAACAVpWQkCCfzxd57PV6JUkpKSnV9vN6vaqsrJQkHThwQLZta9q0aZo2bVqNMXfs2NGKMwYAAACA2ETgDwAAAADQ7qSkpMgwDE2dOlWTJ0+u8XxaWloUZgUAAAAA7RuBPwAAAABAu5OUlKQRI0Zo48aNGjZsWLSnAwAAAAAxgcAfAAAAAKBd+tnPfqbvfOc7uv3223XBBRcoNTVVO3fu1Oeff67LL79cY8aMifYUAQAAAKBdIfAHAAAAAGiXRo0apZdffllPPfWU7r33XgWDQWVnZ2vs2LHq1atXtKcHAAAAAO2O4bquG+1JAAAAAAAAAAAAAGgeM9oTAAAAAAAAAAAAANB8BP4AAAAAAAAAAACAOEDgDwAAAAAAAAAAAIgDBP4AAAAAAAAAAACAOEDgDwAAAAAAAAAAAIgDBP4AAAAAAAAAAACAOEDgDwAAAAAAAAAAAIgDBP4AAAAAAAAAAACAOEDgDwAAAAAAAAAAAIgDBP4AAAAAAAAAAACAOEDgDwAAAAAAAAAAAIgDBP4AAAAAAAAAAACAOPD/AQ2N0oqlVZ4eAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABv4AAASmCAYAAADmsdybAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XeYFFXWx/FvVXdPzgEGmCFHyUgQATHgYs6yJoyYs2sOr2vOrnGNqCsqhhV0MaFiFkVFkCCiZAYYmDzTkzpUvX+009JMBoaeht/neXjYuXWr6lTNHdynz5xzDdu2bUREREREREREREREREQkopnhDkBEREREREREREREREREdpwSfyIiIiIiIiIiIiIiIiK7ASX+RERERERERERERERERHYDSvyJiIiIiIiIiIiIiIiI7AaU+BMRERERERERERERERHZDSjxJyIiIiIiIiIiIiIiIrIbUOJPREREREREREREREREZDegxJ+IiIiIiIiIiIiIiIjIbkCJPxEREREREREREREREZHdgBJ/IiIiIiK7icmTJzN58uTg17m5ufTp04cZM2bs0jiuv/56DjzwwF1yrz59+vD444/vknvJX2bMmEGfPn3Izc0NdygNWrRoEQMGDGDDhg3hDmWP9OCDD3LiiSfulGv985//5Kyzztop15IdV1xczJAhQ/jyyy/DHYqIiIiI1MMZ7gBERERERHaVGTNmcMMNNxAVFcWnn35K+/btQ45PnjyZ4uJi3nvvvTBFuGeZPHkyP/zwQ/Dr5ORkcnJyOPnkkznuuOMwzbb9e4qffPIJb7zxBosXL6aiooKUlBT23ntvTjrpJEaPHh3u8PZ4//rXvzj88MPp1KlTcGzbNedyuWjXrh1jxozhoosuokOHDuEIdZf65ptv+OCDD1i0aBErV66kQ4cOfPbZZy26xpw5c3jiiSdYsWIF6enpHHfccVx00UU4nX99xHDGGWfwn//8hzlz5nDQQQdtd7zr16/nv//9L88//3xwbNOmTbz99tt88cUXrF27FtM06d27NxdeeCH77rtvnWuUlZXxwAMP8Mknn1BdXc3AgQO5/vrr6d+/f3BOcXExb7/9Np9//jkrV67E5/PRvXt3zjzzTA477LCQ682bN4/TTz+93njfeOMNhgwZ0qxna857rDV37lyefvppli5dimVZdOvWjSlTptSJrSFvvfUWL7zwArm5uXTo0KHOL4oAfPzxx3zwwQcsXryYgoICsrKyOOCAA7joootISkoKzktNTeWEE07g0UcfZfz48c26v4iIiIjsOkr8iYiIiMgex+Px8Oyzz3LLLbeEO5RW1alTJxYtWlTvh8htRVZWFldddRUQ+OD9nXfe4aabbmLNmjVcffXVTZ6/aNEiHA5Ha4cZwrZtbrzxRmbMmMFee+3FWWedRUZGBvn5+XzyySeceeaZTJ8+nWHDhu3SuHalo48+msMPP5yoqKhwh1KvZcuWMXfuXF5//fU6x7Zec16vl5UrV/L6668HE2KxsbG7Otxd6r333uODDz5gr732ol27di0+/8svv+Tiiy9m5MiR3HLLLfz+++889dRTFBYWcttttwXnZWZmctBBB/HCCy/sUOLv5ZdfplOnTuyzzz7BsTlz5vDcc88xYcIEjj32WHw+H++++y5nnXUWd999N8cff3xwrmVZnHfeeSxfvpxzzjmH1NRUXnvtNSZPnsyMGTPo2rUrAAsXLuSRRx5hv/3248ILL8TpdDJ79myuvPJKVqxYwWWXXVYntsmTJzNw4MCQsc6dOzfruZr7HgHefvttbrrpJsaMGcNVV12FaZqsXr2aTZs2Neter7/+OrfeeisTJ07krLPO4qeffuLOO++kqqqK8847LzjvlltuoV27dhx11FF07NiR5cuX88orr/Dll18yc+ZMYmJignNPPvlkpk2bxnfffadfdBARERFpY9ruJwAiIiIiIq2kX79+vPnmm5x33nl1qv52Ftu2qampCfmgdFczDIPo6Oiw3b85EhMTOfroo4Nf//3vf+eQQw7h1Vdf5fLLL8flctU5x7IsvF4v0dHRYXm+F154gRkzZnDGGWdwww03YBhG8NiFF17IO++806aTrTuisrKSuLg4HA7HLk+4tsTbb79Nx44d66282nbNAWRnZ3P77bfz888/M2bMmF0UZXhceeWV3HHHHbhcLs4//3z++OOPFp1///3306dPH1544YXgOo+Pj+eZZ57h9NNPp0ePHsG5hx56KJdffjnr168nJyenxbF6vV5mzZrFSSedFDI+atQoPv/8c9LS0oJjJ598MkcffTSPPfZYSOLvo48+YsGCBTz66KMccsghwbgmTpzI448/zkMPPQRAz549mT17dkiF6CmnnMKZZ57Jc889x5QpU4iLiwuJY/jw4cFrtlRz32Nubi633347p512GjfffHOL71NdXc2//vUv9t9/fx577DEAJk2ahGVZPPXUU/z9738nOTkZgMcee4xRo0aFnD9gwACuu+46Zs2aFdK6tUePHvTu3ZuZM2cq8SciIiLSxrTt3jkiIiIiIq3g/PPPx7IsnnvuuSbn+nw+nnzySSZMmMCAAQM48MADefjhh/F4PCHzDjzwQM4//3y+/vprjjvuOAYNGsTrr7/OvHnz6NOnDx988AFPPPEE48aNY+jQoVx22WWUl5fj8Xi46667GD16NEOHDuWGG26oc+23336b008/ndGjRzNgwAAOO+wwXnvttSZj33aPv9pY6vuz7Z58X375JaeccgpDhgxh6NChnHfeefUmCD799FOOOOIIBg4cyBFHHMEnn3zSZFyNiY2NZfDgwVRWVlJUVAQE9vG7/fbb+d///sfhhx/OwIED+frrr4PHtt3jb/Pmzdx4442MHTs2+D279dZbQ95rWVkZd911F+PHj2fAgAEcfPDBPPvss1iW1Wh81dXVPPvss3Tv3p3rrrsuJOlX65hjjmHQoEHBr9evX89ll13GyJEjGTx4MJMmTeKLL74IOWdnrJOt39PEiRMZOHAgxx13HD/++GPIvA0bNvDPf/6TiRMnMmjQIEaNGsVll11WZ7++2n38fvjhB/75z38yevToYFu/+vb4W7x4Meeccw6jRo1i0KBBHHjggdxwww0h16ysrOTee+8NvveJEycydepUbNuu91lq19eAAQM4/PDD+eqrrxr9/tSaM2cO++yzT73fn/pkZGQAhCQzm/uevF4vTzzxBH/7298YOHAgo0aN4uSTT+bbb78Nmbdy5crgOqj93syZM6dZ8e1M7du3rzeh3hwrVqxgxYoVTJo0KSS5fcopp2DbNrNnzw6ZX9t2c3ufc/78+RQXF9dp39mrV6+QpB9AVFQU48ePJy8vD7fbHRyfPXs2GRkZ/O1vfwuOpaWlceihhzJnzpzgz1FOTk5I0g8CvzwxYcIEPB4P69evrzdGt9uNz+dr0XO15D2+/vrr+P1+Lr/8cgAqKirq/Lw0Zt68eZSUlHDKKaeEjJ966qlUVlaG/Fu0bdIPYMKECUBg/W5r33335fPPP29RPCIiIiLS+nbPX0MVEREREWlEdnY2Rx99NG+++Sbnnntuo1V/N998MzNnzgy2SFu0aBHPPPMMK1eu5MknnwyZu3r1av7xj3/w97//nUmTJtGtW7fgsWeffZaYmBjOO+881q5dyyuvvILT6cQwDMrKyrjkkkv45ZdfmDFjBp06deKSSy4Jnjt9+nR69erFgQceiNPp5PPPP+e2227Dtm1OPfXUZj93jx49uP/++0PGysvLuffee0M+RH/nnXe4/vrrGTt2LFdffTVVVVVMnz6dU045hZkzZ5KdnQ0E9gq79NJL6dmzJ//4xz8oLi7mhhtuICsrq9kx1Sc3NxeHwxGyp9T333/Phx9+yKmnnkpqamqdD+hrbd68mRNOOIHy8nImTZpE9+7d2bx5M7Nnz6a6upqoqCiqqqo47bTT2Lx5MyeddBIdOnRgwYIFPPzww+Tn53PTTTc1GNv8+fMpKSnh9NNPb1bFW0FBASeddBJVVVVMnjyZ1NRUZs6cyYUXXshjjz3GwQcfHDJ/R9YJwI8//sgHH3zA5MmTiYqKYvr06UyZMoW33nqL3r17A4EE3YIFCzj88MPJyspiw4YNTJ8+ndNPP53333+/TqvL2267jbS0NC6++GIqKyvrfc7CwsJgG8XzzjuPpKQkcnNzQxLBtm1z4YUXMm/ePE444QT69evH119/zf333x9M1m77rj/++GNOOeUU4uPjmTZtGpdddhmff/45qampDb7zzZs3s3HjRvbaa696j/v9/mBS2efzsXLlSh5//HG6dOkS0p61ue/piSee4JlnnuHEE09k0KBBuN1ulixZwtKlS4PVg3/88Qcnn3wy7du359xzzyUuLo4PP/yQiy++mMcff7zOOthWaWkpfr+/0TkQSJy3ZqvSX3/9FaBOe8v27duTlZXFsmXLQsYTExPp3LkzP//8M2eeeWaL77dgwQIMw2jwe7mt/Pz8Ou9g2bJl7LXXXnX2DB04cCBvvPEGq1evpk+fPg1es6CgAKDeNXfDDTdQWVmJw+Fg77335tprr63zburTkvc4d+5cunfvzpdffhn8WUlOTuaUU07hsssua3Iv1Np7DRgwIGS8f//+mKbJsmXL6lTAbq2x5+/fvz8vvfQSf/zxR/DfFxEREREJPyX+RERERGSPdOGFF/Luu+/y3HPPNdg+7bfffmPmzJmceOKJ3HnnnUCgSiItLY0XXniB77//PmTfqbVr1/L8888zbty44Ni8efOAQLJh2rRpwUqb4uJi3n//fcaNGxesPDz11FNZt24dM2bMCEnovPLKKyEtQ0877TTOOeccXnzxxRYl/jIyMkI+4K1NxLhcLu69914gUE1y1113ceKJJ3LHHXcE5x577LEccsghPPPMM8HxBx98kPT0dF577TUSExMBGDlyJGeffXaDibltbZ2EKS4uZvr06SxdupQDDjgg5MP71atXM2vWLHr27Nno9R5++GEKCgp48803Qz5Uv/zyy4NVKS+++CLr169n5syZwf29TjrpJNq1a8fUqVM5++yz6dChQ73Xr616aSxRsLVnn32WgoICXn31VYYPHw7AiSeeyFFHHcU999zDQQcdFPLB/Y6sE4Dff/+dt99+O/gh/+GHH84hhxzCY489xhNPPAHA/vvvX6c94QEHHMDf//53Zs+ezTHHHBNyLDk5mZdeeqnRROeCBQsoLS1l6tSpIe/9yiuvDP7vOXPm8P3333PFFVdw4YUXBp/lsssu4+WXX+a0004L2R9t5cqVfPDBB8GxUaNGcfTRR/P+++9z2mmnNRjLqlWrAIIJ6vqOb9uasEePHkydOjVkz8LmvqcvvviC8ePHh/y8bOuuu+6iQ4cOvP3228F7nHLKKZx88sk8+OCDTSb+jj32WDZs2NDoHIBLLrmESy+9tMl52ys/Px8I7N+3rczMTLZs2VJnPCcnhxUrVmzX/VatWkVycjIJCQlNzl27di2ffPIJhxxySMhazc/PD/7sba12f8MtW7Y0+PNcUlLCW2+9xfDhw0P2Q3S5XEycOJH99tuP1NRUVq5cydSpUzn11FN5/fXXm0xUtuQ9rl27FofDwQ033MCUKVPo27cvH3/8MU899RR+v59//OMfTd7L4XCQnp4eMh4VFUVKSkq937OtPffcczgcDiZOnFjnWG371hUrVijxJyIiItKGKPEnIiIiInuknJwcjjrqqOBef1t/qFvryy+/BOCss84KGT/77LN54YUX+PLLL0MSf9nZ2SFJv60dffTRIe31Bg0axHvvvReyF1Xt+LRp0/D5fMEWcFsn/crLy/F6vYwcOZJvvvmG8vLyYNKtpZ588kk+//xzHnvssWBCbe7cuZSVlXH44YcHE3IApmkyePDgYCJzy5YtLFu2jPPOOy/k/mPGjKFnz55UVVU1K4ZtkzCGYbD//vtz9913h8wbMWJEk0k/y7L49NNPOeCAA+qtuqlt+/jRRx+x9957k5SUFPKM++67L88++yw//vgjRx11VL33qG0hGB8f36zn+/LLLxk0aFBI4iE+Pp6///3vPPTQQ3U+MN+RdQIwdOjQkMqejh07ctBBB/H555/j9/txOBwh68nr9eJ2u+ncuTNJSUn8+uuvdRJ/kyZNarK6sXYNfPHFF/Tt27feVpJfffUVDoeDyZMnh4yfffbZzJ49m6+++iokobfvvvuGJAL79u1LQkJCgy0XaxUXFwOEVIxurVOnTsFEvs/nY/Xq1Tz//POce+65vPbaa8Hq1+a+p6SkJP744w/WrFkTTCRvraSkhO+//57LLrsspAUlwNixY3n88cfZvHlzo5XHDzzwADU1NY0+N7Bd++i1RHV1NUBIgrRWdHR0necDgu9re5SUlAT3n2tMVVUVl19+OTExMXUSYbWVvtuqHWvovVqWxdVXX01ZWRm33HJLyLFhw4aFVIcedNBBTJw4kaOOOoqHHnqIqVOnNhpvS95jZWUllmXxj3/8g/POOw+AiRMnUlpayssvv8z555/faGK0urq6wdau0dHRwVjqM2vWLP773/8yZcqUetd27c9Y7c+ciIiIiLQNSvyJiIiIyB7roosu4n//+x/PPvtsvVV/GzZswDTNkOQDBCoykpKS6lTgNFRhBIEEzNZqEyXbVpYlJiZiWRbl5eXB1mrz58/n8ccfZ+HChXUSatub+Pvqq6948sknOf/880MqOdasWQPAGWecUe95tR8wb9y4EYAuXbrUmdOtW7dmf9Bfm4QxDIOoqCi6du1apzIFGn+3tYqKinC73fTq1avReWvXrmX58uV1qr62vk5Dap+/oqKiyXgg8J4GDx5cZ7x79+7B41sn/nZknUD934+uXbtSVVVFUVERmZmZVFdX88wzzzBjxgw2b94csj9XeXl5nfOb8+5HjhzJxIkTeeKJJ3jppZcYOXIkEyZM4MgjjwwmNzZs2EC7du3qJCl69OgRPL61+qouk5OTKSsrazIeoMF9x+Li4kL2jNtvv/3Ye++9Of7443n22We5/vrrAZr9ni677DIuuugiJk6cSO/evRk7dixHH300ffv2BWDdunXYts2jjz7Ko48+Wm9MhYWFjSb+9t5772Y9c2urTYZuu78kBBJoWydLa9m23ey9FuvT1P5xfr+fK6+8khUrVvDcc8/VeY8xMTH1xls7Fh0dXe9177jjDr7++mvuu+++4PeyMV26dOGggw7i448/DibZS0pK8Hq9IbEkJia26D3GxMRQWVnJEUccETLviCOO4Ouvv2bZsmWMGDGCoqKikHawcXFxxMfHExMTExJDY/fa2k8//cRNN93E2LFjQyp367Mj318RERER2fmU+BMRERGRPda2VX8Nae6Hmg19gAo0uA9TQ+O1H3avW7eOM888k+7du3P99dfToUMHXC4XX375JS+99BKWZTUrtq2tX7+ea665hn333Zcrrrii3vvef//99baha86+di2xbRKmIY2925ayLIsxY8YwZcqUeo/XV9lSqzZht3z5ciZMmLDTYqq1veukJe644w5mzJjBGWecwZAhQ0hMTMQwDK688sp6r9dQYmRrhmHw2GOPsXDhQj7//HO+/vprbrzxRl588UXeeOONZldIbq2htdbUM9cmQpubIITA/meJiYn8+OOPwbHmvqcRI0bwySefMGfOHL799lv++9//8p///IfbbruNE088MfgzevbZZzdYEbztLxdsa9ukTkNqkz2tpfbfhPz8/DqJ2fz8fAYNGlTnnLKyskb3ZGxMSkpKk9/Hm2++mS+++IIHH3yw3mR+ZmZmsLXm1mpbXNZX7f3EE0/w2muv8Y9//KNOBWxjsrKy8Hq9VFVVkZCQwKWXXsoPP/wQPH7sscdy7733tug9tmvXjjVr1pCRkREyr7YytbS0FIATTjghJHle2/Y1MzMTv99PYWFhyC9VeDweSkpK6n3+3377jQsvvJBevXrx2GOPhVQVb6323tv7/RURERGR1qHEn4iIiIjs0S688EL+97//BfdP21qnTp2wLIu1a9cGq5IACgoKKCsra/Y+djvis88+w+Px8NRTT4VUg9W23Gyp6upqLr30UhITE3n44YfrJJRqWwWmp6c3mpCrjWXt2rV1jq1evXq7YttRaWlpJCQk8McffzQ6r3PnzlRWVjYr4bitvffem+TkZN5//30uuOCCJhOhHTt2rPd91O5Dt22F346q7/uxZs0aYmNjg4mC2v3paivbIFD5U1+1X0sNGTKEIUOGcOWVVzJr1iyuvvpqPvjgA0488UQ6derEd999h9vtDqn6q30XO+vnqTY5m5ub26Lz/H4/lZWVwa9b8p5SUlI4/vjjOf7446moqOC0007j8ccf58QTTwz+TLlcru1ac1A3qdOQ1t7jr1+/fgAsXrw4JDm1efNm8vLymDRpUp1zcnNzm1UxV5/u3bsza9asBiub77vvPmbMmMGNN95YpyKuVt++fZk/fz6WZYX8e7do0SJiY2Pp1q1byPxXX32Vxx9/nDPOOKPRXwipT25uLtHR0cTFxQFw3XXXhSQua5NsLXmP/fv3Z82aNWzevDmklWtt4rL253rbdrC1c2vvtWTJEsaPHx88vmTJEizLqvO9WbduHVOmTCEtLY3nnnuu0URy7c/Y1v99FBEREZHwq//XRkVERERE9hCdO3fmqKOO4o033qhTFVL7Iel//vOfkPEXX3wx5Hhrqk0sbdtm8O23396u6916662sWbOGJ554ot69s8aNG0dCQgLPPPNMve3hattgtmvXjn79+jFz5syQRMi3337LihUrtiu2HWWaJhMmTODzzz9n8eLFdY7XvsNDDz2UBQsW8PXXX9eZU1ZWhs/na/AesbGxTJkyhZUrV/Lggw/WW3327rvvsmjRIiCwRhYtWsSCBQuCxysrK3nzzTfp1KlTk/sWttSCBQtYunRp8OtNmzYxZ84cxowZE1xL9SUrp02b1qyKsoaUlpbWeRe1CYfadob77bcffr+fV199NWTeSy+9hGEY7Lffftt9/621b9+eDh06sGTJkmaf8/3331NZWRmSBGnue9p2f7P4+Hg6d+4cfO709HRGjhzJG2+8EUzWbK2x1rK1HnjgAV588cUm/7SkOq0pXq+XlStXhsTcq1cvunfvzptvvhnyHqZPn45hGBxyyCEh1ygvL2fdunUMHTp0u2IYMmQItm3X+718/vnneeGFF7jgggsabE0McMghh1BQUMDHH38cHCsqKuKjjz7igAMOCNln74MPPuDOO+/kyCOP5IYbbmjwmvV9z3777Tc+++wzxowZE0wwDhgwgH333Tf4p/bnvSXv8bDDDgPgv//9b3DMsixmzJhBSkpKcE/PvffeO+RetYm/ffbZh5SUFKZPnx4S7/Tp04mNjWX//fcPjuXn53P22WdjGAZTp04NJhUbsnTpUhITE5tsrywiIiIiu5Yq/kRERERkj3fBBRfw7rvvsnr16pAPMPv27cuxxx7LG2+8QVlZGSNGjGDx4sXMnDmTCRMmsM8++7R6bGPGjMHlcnHBBRdw0kknUVFRwVtvvUV6enq97esa88UXX/DOO+8wceJEli9fzvLly4PH4uPjmTBhAgkJCfzzn//k2muv5bjjjuOwww4jLS2NjRs38uWXXzJs2DD+7//+D4CrrrqK888/n1NOOYXjjz+ekpISXnnlFXr16hVSObUrXXXVVXz77bdMnjyZSZMm0aNHD/Lz8/noo4947bXXSEpK4pxzzuGzzz7jggsu4Nhjj6V///5UVVXx+++/M3v2bObMmdPoB95TpkxhxYoVvPDCC8ybN4+JEyeSkZFBQUEBn376KYsWLeL1118H4LzzzuP999/n3HPPZfLkySQnJ/POO++Qm5vL448/3mALz+3Vu3dvzjnnHCZPnkxUVFTww/6tq8D2339/3n33XRISEujZsycLFy5k7ty5pKSkbPd9Z86cyfTp05kwYQKdO3emoqKCN998k4SEhGBC78ADD2TUqFH861//YsOGDfTp04dvv/2WOXPmcMYZZzTZ7rIlDjroID755JN695crLy/n3XffBQJVfqtXr2b69OnExMSEVHg19z0dfvjhjBw5kv79+5OSksLixYuZPXs2p512WnDOrbfeyimnnMKRRx7JpEmTyMnJoaCggIULF5KXl8f//ve/Rp9nZ+7xV5uggkCFaHl5Of/+97+BwL95Bx54IBCoPjvssMOC7SlrXXvttVx44YWcffbZHH744fz++++8+uqrnHjiiXUqv+bOnYtt2xx00EHbFevee+9NSkoK3333XUgbz08++YQHHniArl270r179+D3s9aYMWOCrTEnTpzIkCFDuOGGG1ixYgWpqalMnz4dv98f8nOxaNEirr32WlJSUhg9enSd78mwYcOCybQrrriCmJgYhg4dSnp6OitWrODNN98kJiaGq6++ulnP1tz3eNBBBzF69GieeeYZiouL6dOnD3PmzGH+/PncfvvtIYnL+sTExHDZZZdx++23c9lllzFu3Dh++ukn/ve//3HllVeGrOcpU6awfv16pkyZwvz585k/f37wWEZGBmPGjAm59ty5cznggAO0x5+IiIhIG6PEn4iIiIjs8bp06cJRRx3FzJkz6xy78847yc7OZubMmXz66adkZGRw/vnnc8kll+yS2Lp3785jjz3GI488wn333UdGRgYnn3wyaWlp3HjjjS26Vm2VyuzZs5k9e3bIsU6dOgX3rDvyyCNp164dzz77LFOnTsXj8dC+fXuGDx/OcccdFzxnv/3249FHH+WRRx7hoYceonPnztxzzz3MmTMnZF+rXal9+/a8+eabPProo8yaNQu320379u3Zb7/9gvsExsbGMm3aNJ555hk++ugj3nnnHRISEujatWuwDWpjTNPk/vvv56CDDuLNN9/khRdewO12k5qayogRI7jmmmuCFU4ZGRm8/vrrPPDAA7zyyivU1NTQp08fnn766ZBKm51lxIgRDBkyhCeffJKNGzfSs2dP7rnnnpBKtptuugnTNJk1axY1NTUMGzaMF198scE9D5tj5MiRLF68mA8++ICCggISExMZNGgQDz74YDBZYpomTz31FI899hgffPABM2bMoFOnTlx77bWcffbZO/zsWzv++ON55ZVXmD9/PsOHDw85lpeXx7XXXgsE9iZMTk5mxIgRXHLJJcEqRWj+e5o8eTKfffYZ3377LR6Ph44dO3LFFVdwzjnnBOf07NmTt99+myeeeIKZM2dSUlJCWloae+21FxdffPFOffam/Prrrzz66KMhY7VfH3vsscHEX0MOOOAAnnjiCZ544gnuuOMO0tLSOP/88+t9jo8++oi99957u5O6UVFRHHnkkXz00UdcddVVwfHffvsNCLSxrf1ebu3ll18OJv4cDgfPPvss999/P9OmTaOmpoaBAwdyzz33BNvCAqxYsQKv10tRUVG9/7bec889wbU8YcIEZs2axUsvvRT82T/44IO55JJL6NKlS7Oerbnv0TAMnnzySR555BE+/PBDZsyYQbdu3XjggQc46qijmnWvU089FZfLxQsvvMBnn31Ghw4duOGGG+pUSta+1+eff77ONUaOHBmS+Fu5ciW///57i/87JCIiIiKtz7C3Zzd4ERERERERaVP69OnDqaeeGqzI3NOdccYZtGvXjgceeCDcoeyR8vPzOeigg3j44YeDv1SwPdavX8+hhx7Kc889F1L1J+F111138dNPPzFjxgxV/ImIiIi0MdrjT0RERERERHY7V111FR9++CEbNmwIdyh7pP/85z/07t17h5J+ADk5ORx//PE8++yzOyky2VHFxcX897//5YorrlDST0RERKQNUsWfiIiIiIjIbkAVfyIiIiIiIqKKPxEREREREREREREREZHdgCr+RERERERERERERERERHYDqvgTERERERERERERERER2Q0o8SciIiIiIiIiIiIiIiKyG1DiT0RERERERERERERERGQ34Ax3AAL5+eXhDkH2cKZpkJYWT1FRBZalbT+lbdI6lUigdSqRQOtUIoHWqUQCrVOJBFqnEgm0TiUSaJ1KW5CZmdisear4ExFM08AwDEzTCHcoIg3SOpVIoHUqkUDrVCKB1qlEAq1TiQRapxIJtE4lEmidSiRR4k9ERERERERERERERERkN6DEn4iIiIiIiIiIiIiIiMhuQIk/ERERERERERERERERkd2AEn8iIiIiIiIiIiIiIiIiuwEl/kRERERERERERERERER2A0r8iYiIiIiIiIiIiIiIiOwGlPgTERERERERERERERER2Q0o8SciIiIiIiIiIiIiIiKyG1DiT0RERERERERERERERGQ3oMSfiIiIiIiIiIiIiIiIyG5AiT8RERERERERERERERGR3YASfyJtyHvvvcOVV14c7jB2yCWXnMejjz4U/PqEE47kzTdfa7X7bdq0kbFjh/PHH8sBWL16FcceexhVVVWtdk8RERERERERERERkbbIGe4AZPe2ZMkiLrpoCqNGjeaBBx4NObZp00ZOPPGo4NexsXG0b5/F0KF7M2nSyeTkdG7R9epz113/xO0u5557HgoZ//nnn7jssgv48MPPSUxMxO/389pr0/jww1nk5eURHR1NdnYORx11LEceeUzwWh9++B4ADoeDpKRkevToyYQJEznssCMxTTN43cY89tjTDBs2vM54TU0Nzz33NHfccW+TzxVJnnvuZWJjY3fZ/bp1607//gN4441XOfPMKbvsviIiIiIiIiIiIiIi4abEn7Sq9957l+OP/zvvvfcuBQX5ZGRk1pnzyCP/plu37lRXV7Nq1Qreeut1zjzzZO67718MHz6yxdfbHi+++BzvvjuDK6+8lr59+1FRUcHy5b9SVlYeMm/UqH258cb/w7IsioqKmDdvLo8++hBffDGHe+99mIEDB/Puux8F5z/66ENUVFRw443/FxxLSkquN4YvvphDfHw8gwYN2SnP1BC/349hGJjmrin4TU1N3SX32dphhx3FfffdyWmnnYnTqX/mRERERERERERERGTPoE/EpdVUVlYyZ84nTJ36MkVFBXzwwSxOP/3sOvOSk5NJT88AoFOnbMaM2Y/LL7+Qe++9gzfeeAeHw9Gi622Pb775imOPPYEDD5wQHOvVq3edeVFRrmCsmZnt6NOnL/37D+Tyyy/kww/f48gjjwkeB4iOjsbr9YSMNWTOnI8ZM2a/kLHaisWBA4fwxhuv4PX6OOigv3H55f8IJrTKysp49NEH+fbbr/F6PQwZsjdXXHF1sGLygw9m8dhjD3Hzzbfx9NNPsH79Ol5/fSaXXno+RxxxNOvXr+Orrz4nNTWVK664hn79BnDffXcwf/6PdOzYiRtu+D/69t0LgNLSEh5++H5++WUB5eVldOqUzeTJZ3HwwYc0+FwnnHAkkyadzKRJp/DBB7O4++7b6sw566xzOeec8wGYNesdXn/9FTZt2khWVgdOOOEkjjvuxODcX39dwgMP3M3atWvo1q1HvWtgxIhRlJeXsXDhz3WSxyIiIiIiIiIiIiIiuyvt8Set5rPPPqFLl6507tyVv/3tMN5//3/Ytt3keaZpcuKJJ5OXt4nly5ft8PWaIy0tnZ9//oni4uIWn7v33iPo2bM3X3752Q7FsGjRQvr27Vdn/Oeff2Ljxlwee+wZbrrpn3z44Sw++GBW8Pjdd/+T5cuXcd99D/P00y9i2zbXXHM5Pp8vOKe6uppXX/0P1113M9OmvUFqahoAb745nYEDB/Of/0xn/Pjx3HbbLdx556387W+HMXXqK3TsmM2dd94afM8ej4c+ffrxwAOP8PLLb3DUUcdy55238uuvS5r1jAcddDDvvvtR8M8//3kXDoeDQYMGA/Dxxx/y/PNPc955F/HKK29x/vkX8/zzTwdbrFZWVnLttVfStWt3nn9+GmeffR5PPvlInfu4XC569uzNL78saN7LFxERERERERERERHZDajiL0IZ5W4Mj3eX3c+OcmEnJrTonPfff5e//e1QAEaNGk1FhZsFC+bXu7/dtrp06QrApk2b2GuvATt8vaZceumV3HLLdRx99ES6devOgAGDGDt2PKNHj2nW+V26dGHlyhXbff/y8nLcbne9rUsTE5O48sprcTgcdOnSldGjxzJ//g8cddSxrF+/jm+++YqnnprKwIGB5Nmtt97BcccdzldffRGsYPT5fFx11fV1qhhHj96XY445HqfT5OKLL2b69On067dX8LxTTz2DCy44i6KiQtLTM8jMbMcpp0wOnn/CCSfxww/f89lnnwa/T42Jjo4hOjoGgA0bcnn44fs5//yLGTFiHwCmTn2GSy65gvHjDwSgY8dOrF69inffncGhhx7BJ598hG1bXH/9LURHR9O9ew/y8zfz4IN190XMyMhk8+a8JmMSEREREREREREREdldKPEXiapriH17NuykardmMQwqTzoCYqKbNX3dujX8+utS7r77QQCcTicHHngw77//brMSdbUVZoZhNOt6eXl5TJ78VzvIyZPPalEb0G7duvPyy2+wfPkyFi/+hYULF3D99Vdx6KFHcP31tzQjXgCj2ffbVk1NDQBRUVH1xlbb7hQgPT2DVasCSca1a1fjcDhCkm7JySl07tyFtWtXB8cCFXC96ly7R4+/xjIyAu1Iu3fvGRxLSwtUBhYXF5OenoHf72fatBf57LNPyM/Px+fz4vF4gsm85nK73Vx77RWMHj2GU045HYCqqio2bMjl3nvv4P777wrO9fv9xMcnBJ+3R49eREf/tQ779x9U7z2io6Oprq5uUVwiIiIiIiIiIiIiIpFMib9IFBNN1fETd3nFX3OTfgDvvfcufr+fY4459K9r2DYul4srr7yOhITGqwdrk1YdO3Zs1vUyMjJ48cXXgseSkpIAiI+PJy9vU53ru91uHA4HsbGxwTHTNOnXrz/9+vVn0qRTmD37A+644/84/fSz6dixU5Px1sa6PZKTkzEMg/Ly8jrHavfyq2UYBpZltej60dHRwSRqQ9euPV7fmG0H7vfaa9N4663pXHbZP+jevSexsbE89thD+HzNX4t+v5//+78biIuL59prbwqOV1VVAnDddTfXqR40zZZ3JS4rK6NTp8a/byIiIiIiIiIiIiIiuxMl/iKUnZjALqz3axGfz8dHH33AJZdcwciR+4Qcu+GGq/n004845pgTGjzfsizeeut1OnToRK9efZp9vezsnDrXysnpwqeffozH4wmppvv999/o0KFjnaTa1rp27Q5AdXVVo887f/6PrFy5gkmTTml0XmNcLhddu3ZjzZpVdZ6xMV26dMPv9/Prr0uCrT5LS0tYt24tXbt22+54GrJ48S+MHTueiRMPAwLfq3Xr1tGtW/Pv9fjjD7Nq1Qqef35aSOVeWlo6GRmZbNy4IdjSdVtdunRj9uwPqKmpCZ67dOnieueuXr2SAw44sNlxiYiIiIiIiIiIiIhEOiX+ZKebO/cbysvLOOKIY+pU9o0ffyDvvfe/kMRfaWkphYUFVFdXs3r1St58czrLli3lgQcexeFw8NVXX7Toelv7298O5aWXnufOO2/llFNOJyEhgYULf+bNN6dz0UWXBufdfPO1DBw4mAEDBpOens7GjRt45pknycnpTOfOXYPzPB4vhYUFWJZFUVER8+bNZdq0l9h333EccsjhO/TeRo4czaJFC1uUQMzJ6cy4ceO57767uOaaG4mLi+Ppp58gM7Md48btv0Px1H+/HD7/fA6LF/9CYmISb7zxKsXFhc1O/L3//v+YOfO/3HXXAxgGFBYWABAbG0dcXBznnHM+jzzyAPHxCYwaNRqv18tvv/1KeXkZJ510GgcffAjPPfdv7r//Tk477Szy8jby+uuv1LnPpk0byc/fwvDho3bq84uIiIiIiIiIiIiItGVK/MlO99577zJ8+Mh623nuv/+BvPbay6xY8Qfx8fEAXHHFRQDExMSQldWBoUOHc+21NwUr+Jp7vfr2sEtMTOTJJ5/j6aef4Prrr6Kiwk2nTjlceumVHHHE0cF5I0eO5tNPZzNt2ktUVLhJS0tn771HcPbZ54VUBc6bN5ejjz4Eh8NBYmISPXv24oorrubQQ4/YrnaUWzviiKOZMmUybre7yVaoW7vhhlt59NEHue66K/B6vQwePIwHHni00WrG7XXGGeewceMGrrrqUmJiYjjqqGMZN25/KirczTp/4cKf8fv9XH/9VSHjZ511Lueccz5HHnkM0dExTJ/+Mv/+96PExMTSo0dPTjzxZADi4uK4995/8eCD93D22afStWs3LrzwUm666dqQ63366WxGjNiHrKwOO+fBRURERERERERERCSEUV6Bc9kKvMMGgNMR7nDkT4Zt2221Y+QeIz+/7r5usme6+ebr6NOnL5Mnn7VL7+t0mqSmxlNcXIHP17L9A9sar9fLSScdy6233smgQUPCHY7sRLvTOpXdl9apRAKtU4kEWqcSCbROJRJonUok0DqVSKB1Wj/n0t+J+mER/i6dqDlgHzCMcIe0W8vMTGzWvB0rURKRneriiy8nNjY23GFEtM2b85g8+Swl/URERERERERERERakVlchh0dhWPdRlw/Lgp3OPIntfoUaUM6dOjICSecFO4wIlp2dk6wTayIiIiIiIiIiIiItA6zuBR/TgesjFSivl+InRiPr1/PcIe1x1PFn4iIiIiIiIiIiIiIiDSfbWOUlGGlJuPr1xNf7264fl4K2l0u7JT4ExERERERERERERERkWYzyiswfH6s1CQAfF2zMTxejNLyMEcmSvyJiIiIiIiIiIiIiIhIs5nFpQDYqckAWJlpgfH8orDFJAFK/ImIiIiIiIiIiIiIiEizmcWl2NEu7NiYwECUCyslCYcSf2GnxJ+IiIiIiIiIiIiIiIg0W+3+fhhGcMzKTMPMLwxjVAJK/ImIiIiIiIiIiIiIiEgLmMWlwTaftazMNMziMvD6whSVgBJ/IiIiIiIiIiIiIiIi0lx+P2apGyslKXQ4Mw1sG7OwOEyBCexBib8ff/yRCy64gLFjx9KnTx8+/fTTJs+ZN28exx57LAMGDODggw9mxowZIcdfe+01jjzySIYNG8awYcP4+9//zpdfftlajyC7seeee4r77rsr3GHskBNOOJI333wt+PXYscP56qsvWu1+P//8E2PHDqe8vByA77+fy5lnnoJlWa12TxEREREREREREZE9nVFSDrYdaPW5FTs1GdvpwNQ+f2HlDHcAu0plZSV9+vTh+OOP55JLLmly/vr16zn//PM56aSTePDBB/nuu++4+eabyczMZNy4cQBkZWVx9dVX06VLF2zb5p133uHiiy9m5syZ9OrVq7UfqU0rLi5m6tSnmTv3G4qLi0hMTKJnz16ceeYUBg0aEpy3ePEv/Oc/U1myZDEeTw3Z2TkcdtiRnHjiyTgcjuC8sWOHc/fdD7Lffvs36/6XXHIevXr14fLL/xEy/sEHs3jssYf46KMvAKiuruall57ns88+oaAgn7i4OLp27c7f/34K48btH7zWwoU/A+ByuUhOTqF3774cfviRjB9/YPC6d999W6MxvfXW/+jQoWOd8cLCAt5663Vefvn1Zj1bpHj33Y9ITExqeuJOss8++/L880/z8ccfcsghh++y+4qIiIiIiIiIiIjsScySUoA6FX8YBlZGGo78QtTsM3z2mMTf+PHjGT9+fLPnv/7662RnZ3P99dcD0KNHD+bPn89LL70UTPwdeOCBIedceeWVTJ8+nYULF+7xib+bb74Wr9fLzTffRseOnSgqKmT+/B8pKysNzvnyy8/5v/+7nsMOO4rHH7+YhIREfvrpB/7978dYsmQxd9xxL8ZWG4O2hgceuJtff13ClVdeQ9eu3SktLWXJkl8oLS0NmXfkkccyZcr5+P1+tmzZwldffc6tt97IoYceyXXX3cRBBx3MqFGjg/NvuulaunXrwZQp5wfHUlJS641h1qx3GDBgEFlZHVrnIf/k9XpxuVyteo+tpadn7LJ71Tr00CP473/fUOJPREREREREREREpJWYxWXY8bEQHVXnmJWZhnPFWrBtaOXP96V+e0zir6UWLlzI6NGjQ8bGjh3L3XffXe98v9/PRx99RGVlJUOHDm3RvUzTwDR3nx+A8vJyfvllAf/+93MMG7Y3ANnZnRg0aFBwTlVVFffffxfjxo3npptuCY7n5GSTkZHONddcyRdffMrBB08MHnM4DJzO5nWnNQwD06TO/Nr3XDv+7bdfceWV1zBu3H7B+w8Y0L/OteLiYmjfvh0AHTt2YMiQwXTv3o0777yNgw/+GyNHjiI+Pi54jsvlCjmnMZ999gnHHXdCSKwXXnguPXv2Iioqilmz3sHpdHHsscdz7rkXBOfk5W3ioYfu56effsAwTEaP3perrrqW9PR0AJ577mm++uoLTjjh77z00lTy8jbx3Xfz2WefYVx33Y18881X/PTTT2RlZfF//3cbOTkduP76G/j116X06tWbW2+9g+zsHAByc9fz6KMPs2TJYqqrq+jatRsXXngpI0eOqvN+a59jn32Gcd99DzF+/AE899zTTJ36bJ1nv/nmf3LEEUdhWRbTpr3EO+/MoKiokJyczpx99rkceOCE4Ny5c7/hX/96kC1bNtO//0AOO+yI4Pey9p7jx4/nX/+6n7y8DcHYZffhcJghf4u0RVqnEgm0TiUSaJ1KJNA6lUigdSqRQOtUIoHWaShnaRmkJdf7eb2RlYG5ZDnOmhpIiAs9qGTgLqHEXwMKCgrIyAitWMrIyMDtdlNdXU1MTAwAy5cv56STTqKmpoa4uDiefPJJevbs2aJ7paXFt3pl266UmBhNXFwc8+Z9w7hx+xAVVTfr/9NPcyktLeGCC84jNTU+5NhRRx3Gk08+yhdffMqkSccFxxMSYurMbYjL5SA62lVnfnx8NIZhBMczMzP56afvOeaYI0hISGjRtU499SQef/wRvvvuKyZOPLBZ52yrpKSE1atXMXLk3iFzXS4HH374HmeddRZvvfUWCxcu5Prrr2fMmH0YM2YMlmVx1llXExcXxyuvvILf7+e2227jtttuYtq0aQDExkaxYUMu33zzBf/+95OYphm8x0svTeX666/nlltu5sEHH+T//u9GcnJyuOiiC+nYsSM33ngjjz76IM8//zwAmzfDhAkHcu21VxMVFcU777zDNddcwUcffUTHjoH2pQ6HSWxsVMhz1H7PLr74As466/Tg+KxZs3jssccYNSrw3E899RSzZ3/AHXfcTteuXfnxxx+59dabycnpwMiRI9m0aRPXX381p556KpMmTWLJkiXcd999AKSkxJGUFLhnampPMjIy+OOPXxk4sG+j714iV1JSbLhDEGmS1qlEAq1TiQRapxIJtE4lEmidSiTQOpVIoHUa4HG7MXt3I6Gez79tVzaez02Sqipw5GQGx62iUnwzPsWx9144hvbbleHucZT420HdunXjnXfeoby8nNmzZ3PdddfxyiuvtCj5V1RU0eKKP09lPpavsqXhbjfTGUdUXGbTE/908823ce+9d/D666/Tu3dfhg0bxoQJE+nVqzcAv/76OwDp6R0oLq6oc35OThdWrlwVcsztrq53bn28Xj81Nd468ysqarBtOzh+7bU3cuutNzNq1Ch69erN4MFDOOCACQwePKTJawFkZ+ewZs26OscaO2drv/++Ctu2iY5OCJnr9frp0aMnp556FgDjxx9Mv34v8/nnX7HXXkOYN+97fv/9d2bMmEX79llA4J2ffPIJfPvtD+y1V3+qqjx4PB5uvPGfpKYG2ozW3uOww45k9OhA69uTTjqNKVPO5KKLLmLw4OH4/RbHH/937rzzn8H57dvnMHHiXxV0Z5xxLrNnf8x7733IiSeeBIDfb1FV5Wnwe+Z0Bn67Y8mSRTzyyCPccsttZGZ2YvPmYp5++mkef/wpBgwYDMABB0xk7tx5TJv2Kr169efFF/9Dp07ZnH/+pQCMG9eeRYuWMm3aS5SUVOL3/7UfZFpaBitXrmn2WpHI4XCYJCXFUlZWhd9vhTsckXppnUok0DqVSKB1KpFA61QigdapRAKtU4kEWqdb8XiJLi7HGxOD1cBnsFGxsXhW5OLL/DOnUFVN1LtzoKYG36fz8GJidc3ehUHvHppbGKXEXwMyMjIoKCgIGSsoKCAhISFY7QcQFRVFly5dABgwYACLFy/m5Zdf5vbbb2/2vSzLxrLsZs/3e8pZ+e1NYO/Cf2AMkx5jHsARldis6fvtdwCjRu3LokULWLp0Cd9/P5dXXnmZ6667mcMOOxLLCsTu9frx+eo+h20H3sfWx/x+u87cX35ZwNVXXxb8+pprbuRvfzsU27axLOrMr33PteMDBw7lzTffZenSxSxe/Avz5//IG29M55xzzufMM6cEY6nvWvVdb+v4Gzpna5WVVQCYpitkrm3bdO/eK2QsLS2dwsJCfD6LVatW0a5de9LT2wXn5OR0JSEhkZUrV9K7dz8syyYrqwOJicl14ujWrWdwLCkpkBTs3bs3fr+Fz2eRnJxKTU0NpaVlxMcnUFlZyQsvPMt3331DYWEBfr+fmpoaNm3aFHJty7Ib/Z7l5eVx7bX/4KSTTmP//Sfg81msWbOW6upqLrvsopAYvV4vvXr1+fN5V9OvX/+Qa+2114Dgu996PDo6isrKqibfvUSu2nUq0pZpnUok0DqVSKB1KpFA61QigdapRAKtU4kEWqdgFpZg2+BLSsRq4F2YnbJwLvkDs6oG75C9iP7qB2yfn+qjDsb102Kcn82j+tBorMz0XRz9nkGJvwYMGTKEr776KmRs7ty5DBkypNHzLMvC4/G0YmTgiEqk2z534N+FFX8OZ1yzk361oqOjGTFiH0aM2Iczz5zCvffewdSpz3DYYUeSkxNIlq5du5qBAwfXOXfNmjV069atyXv07duPF198Lfh1WloaAPHx8VRUuOvMd7vLiY8PbenpdDoZPHgogwcP5bTTzuSll57npZee59RTz8DlcjV4b7/fT27uevr126vJOBuSnJwCQHl5WbAqb+u4tmYYRjAh2lwxMfWXnm997do2s/U9a21i88knH+HHH+dx8cVXkJ2dQ3R0NDfffB1er6/ZsVRVVXH99VfRv/9Apky5IGQc4P77HyEzM3RPxMbef0PKyspISUlteqKIiIiIiIiIiIiItIhRGvjc3Uqqf+ssAM8+Q7DSknH9vBTnynXYTgc1h47HTozHs98IzI++IvrTuVSdcAhsx2fA0rg9JvFXUVHBunXrgl/n5uaybNkykpOT6dixIw899BCbN2/m/vvvB+Ckk07i1Vdf5f777+f444/n+++/58MPP+SZZ54JXuOhhx5iv/32o0OHDlRUVPDee+/xww8/MHXq1FZ/HldsJpH249C1aze+/voLAEaO3IekpGRef/2VOom/b775ktzcdZx77gV1rrGt6OgYsrNz6ox37tyVH374vs748uW/kZPTudFrduvWHb/fj8dT02ji6cMP36O8vIz99z+oyTgb0qlTNvHx8axZs5rOnbs0+7yuXbuyZctmNm/OC7b6XL16FW53Od26dd/ueBqyePEvHHbYkYwffwAAlZWV5OVtBPZu1vm2bXP77bdg2xa33HJ7yJ6W3bp1Iyoqis2b8xg6tP7rde3ajW+++TJkbOnSJXXm1dTUsGFDLr1792nmk4mIiIiIiIiIiIhIc5llbuzYmMYTdoaBr093fN1ycC39A3/7DKyMQNEODgfVB+2La9kKMFq2BZo0zx6T+FuyZAmnn3568Ot77rkHgGOPPZZ7772X/Px8Nm3aFDyek5PDM888wz333MPLL79MVlYWd955J+PGjQvOKSws5LrrrmPLli0kJibSp08fpk6dypgxY3bdg7VBpaUl3HLL9Rx++FH06NGLuLg4fvttGa+9No2xYwP7ysXGxnLNNTfwz3/exH333cXxx08iPj6e+fN/4MknH2P//Q/iwAMPDrnupk0b+OOP5SFj2dmdiY2tW9V2zDHH8/bbb/LIIw9wxBHHEBXlYu7cb/j009ncd9+/gvMuueQ8JkyYSN++e5GcnMyaNat45pknGTZseEhlYHV1dbDF5ZYtW/jqq895883XOOaYExg2bPh2vyvTNBk+fCSLFi1kv/32b/Z5w4ePonv3Htx++y1cdtk/8Pt9PPTQfQwZMoy+fbe/ArEh2dmd+fLLzxgzZhxg8PzzT7WoPe0LLzzLTz/9wL/+9QRVVZVUVQWqVRMSEoiLi+ekk07j8ccfxrZtBg0agtvtZvHihcTHJ3DooUdw9NHH8/rrr/Dkk49y5JFH89tvv/Hhh7Pq3Gfp0sW4XFEMGDBoZz26iIiIiIiIiIiIiPzJKCtvtNovRJQL79B6Pq+OicY7tP/ODUyC9pjE36hRo1i+fHmDx++99956z3nnnXcaPOfuu+/eGaHtdmJj49hrrwG88cZrbNyYi8/no1279hx55DGcfvpZwXkHHDCBtLR0/vOfF7j44il4PB6ys3M4/fSzmTTp5JCqMIDHH//XtrfiySefZ/DgIXXGO3XK5sknn+XZZ//NFVdchM/npXPnrtxxx33ss8++wXmjRo3mo4/e59ln/011dTUZGRnsu+84zjprSsj1Zs2ayaxZM3G5XCQlJdOnTz9uu+2eYAXcjjjiiGO4//67uOiiyzBNs1nnGIbBPfc8zCOP3M8ll5yLYZiMGjWaK6+8Zofjqc+ll17JPffczgUXnE1ycgqnnnoGFRX1b9xanwUL5lNVVckFF5wdMn7jjbdy2GFHcu65F5KSksq0aS+yceMGEhIS6d27b3C9BBLv9/P44w/z9ttv0K9ff84772LuuSd0L81PP53N3/52SMg+nCIiIiIiIiIiIiKyc5hlFVhpyeEOQxph2C3dNEx2uvz88nCHIGFk2zbnnXcGkyadwsEHHxKWGJxOk9TUeIqLKyJ2c9qSkhJOOeV4nn/+ZTp27BTucKQV7A7rVHZ/WqcSCbROJRJonUok0DqVSKB1KpFA61Qigdbpn2yb2FffxTuoL75BfcMdzR4nMzOxWfOaV14kIq3GMAyuvfYm/H5/uEOJaHl5G/nHP65T0k9ERERERERERESkCWZBMdEffw0t+Vy6ugbD68NubqtPCYs9ptWnSFvWq1cfevXqE+4wIlrfvnu1yv6GIiIiIiIiIiIiIrsb57IVODZsxiwuxcpIa9Y5ZpkbACupeZVnEh6q+BMREREREREREREREdlT+P041m4AwNxS1OzTjLLAtmV2UnyrhCU7hxJ/IiIiIiIiIiIiIiIiewhHbl6gZWdsDGZ+8xN/ZlkFdlwsONVMsi3Td0dERERERERERERERGQP4Vi9HistGX9WJo71m5p9nlFWjpWs/f3aOlX8iYiIiIiIiIiIiIiI7Am8XpzrNuHrloOVkYZZXgHVNc061SxzYycp8dfWKfEnIiIiIiIiIiIiIiKyB3Cs2wh+P/7uOVjt0gJjzWn3adsYZW6sRCX+2jol/kRERERERERERERERPYAzlXrsdqlYyfEB/7ERGPmFzZ5nlFVjeHzYycn7oIoZUco8SciIiIiIiIiIiIiIhJGjtW5OFasbd2b1HhwbNiMr3tO4GvDwMpMw2xGxZ9R5gZQxV8EUOJPREREREREREREREQkjFxLluP6beXOu6BtB/5sxbG5AGwbf07H4Ji/NvG3zdxtmX8m/uyk+J0Xo7QKJf5ERERERERERERERETCxbIwi0sxKip32iVj3vsM16LfQsbM/CLs2Bjs+Ni/bp2ZhuH1YZSUN3o9o7QcOyEOHI6dFqO0DiX+REREREREREREREREwsQoKQe/hVFZDX5/yDHH+k3g8bbsemVuzIJiHOs2hoyb+YVY7dLAMIJjVkZa4FhB4/v8meVurCS1+YwESvyJiIiIiIiIiIiIiIiEiVlUEvzfRmX1Xwe8XqI//RbnH2tadD3HhrzAdQtL/koa2jZmQTH+zPTQyVEurJQkHE3s82eUubGTElsUh4SHEn8iIiIiIiIiIiIiIiJhYhYWgyOQrtm63adRVhE4Xlzaous51udhJcYHkn1bApV8RnEZhteHlZlWZ76VmRacVy/bxixzY2l/v4igxJ+IiIiIiIiIiIiIiEiYmEUl+Du0A8Bw/5X4M93bkfjz+XDkbcHXtwd2bAyOvHwAHPmFYBhY6al1TvF3ao9ZXIZR2sA+f1U14LewE9XqMxIo8SciIiIiIiIiIiIiIhIOto1ZWIK/fQZ2dFRoxV95IPFnlJSBbTfrco68fPBb+LOz8GdlBBN/Zn4RVmoSuJx1zvHndMB2OXGuXl/vNc0/Y7LiY1v0aBIeSvyJiIiIiIiIiIiIiIiEgVFeEWjBmZaCHR+LWVEVPGbWJv58fow/q/+a4lifh50Qh52ciNWhHWZBMXi9gcRfPW0+AXA68ed0xLF6fb0JxtpkpB0f18Knk3BQ4k9ERERERERERERERCQMzMISAKz0FOz4uG0q/txYGYHWnGZxWdMXs20cuZvw53QAw8DfPuPPsc2YJWX4M9MbPNXfPQezpByjnraiRkUlOBwQHdWyh5OwUOJPREREREREREREREQkDMzCYuy4WIiNwU7YNvFXEWgBGuWqNyG3LaO0HMNdiT87CwA7ORE7JhrXkuUADVf8Af6O7bCjXThX1W33aVRUYSXEgmG09PEkDJT4ExERERERERERERERCQOzqAQrPQUAKz4Ow/1n4s+2Md0V2InxWKnJmFsn/mwbo54KQEduHjhM/FmZgQHDwN8hE7OgGDvKhZ2c2HAgDgf+rtmBff62afdpuivV5jOCKPEnIiIiIiIiIiIiIiKyq9k2ZuFfiT87Pg7D6wOPF6OiCiwbKzEBOzUppNWnc/kqYt/5GMcfa4JjRkUlrqW/4++UBU5ncNz6MwloZaQ1WbHn69YZw12JmV8UMm5UKPEXSZT4ExERERERERERERER2cWMyiqM6hqstBQA7IRAcs2oqMQodwfGaiv+SsvB7wfAuXIdOEyiv52PuXEzeLxEf/ItGCae0UND7lFb/ddYm89aVlYGdlwMjlXrQuNUxV9EcTY9RURERERERERERERERHYms7AEACs9FQA7PjYwXlGJUVkdGEuIw0pJCrT3LHVDlBNzSyE1Y4fjXL2e6M++w0pLxqiopPqwAwL7BW7FTk7E278Xvh6dmw7IMPB3ysKxuRBv7ZjfH0hOJsQ2dqa0Iar4ExERERERERERERER2cXMohLsaFcw4WfHxoBhYFRUYZRXBMYdDqzU5MD84lIcq9b/uR9fJ2oO2Ac7MR5HfhE1B4zGTk2qexPDwDtycOP7+20lUF1YFtznz6ioCsSmir+IoYo/ERERERERERERERGRXcwsLMFKS/1r7z3TxI6LwXAHWn1aiQmB8ego7LhYzJIyHOs34evcAVwuAKoPGR/Yg+/PdqE7ykpNBr+FUebGTk7EqKgElPiLJKr4ExERERERERERERER2cXMwhKs9JSQMSs+DqOiErO8Ajsx/q/x1GQca3Ixi0vxd8v564ToqJ2W9AvcJ1A1aBaXAqr4i0RK/ImIiIiIiIiIiIiIiOxK1TUYFZXB/f1q2QmBxJ9RXoEVkvhLwixzY0e58GdntV5csTHYMdGYxWVAYL9BOyYKnI7Wu6fsVEr8iYiIiIiIiIiIiIiI7EJmUQlAnYq/2paeRo2nTsUfgL9LJ3C0bhLOSk36q+LPXalqvwijxJ+IiIiIiIiIiIiIiMguZBaWYDsd2EkJIeN2QhxGtSfwvxP/OlZbGejr0bnVY7NSkzG2avWpxF9kUeJPRERERERERERERESktdg2zmUrwe8PDpmFxVhpKWAYoVO3SrJt3erTTk2i6sRDsTq0a/1wU5MxyyvA5w+0I42PbfV7ys6jxJ+IiIiIiIiIiIiIiEgrMbcUEvX9Ahyr1v81VlSCvU2bTwDrz8Sf7XJCdFTIMTshvs781mClJoFtY5aWYVSo1WekUeJPRERERERERERERESklZil5QA4axN/Xi9mqRt/PYk/O+HPxF9ifJ1qwF3FSkkCwNxcgOH1BWOSyOAMdwAiIiIiIiIiIiIiIiK7K6OkDADHpi1QVY1Z5gbASkutOznKFdj7LzGh7rFdxeXCTojDsT4PQBV/EUYVfyIiIiIiIiIiIiIiIq3ELC3HapcOgHNNLmZhCZgmdkpi3cmGgZ2WUm814K5kpSbjyMsHwNYefxFFFX8iIiIiIiIiIiIiIiKtxCwpw9c1GzvKhWPVeuzkxMA+eg5HvfOrDx0ftjaftazUZBzrNwUSkXFK/EUSVfyJiIiIiIiIiIiIiIi0Bp8fw12JlZKIr1sOji2FODbkYaXX0+azlmm2gcRfYJ8/Oz427LFIyyjxJyIiIiIiIiIiIiIisqNqPMS89xnOX1cEh4zScgDs5CT8XTqCw8SorMZKSwlTkM1jpSQH/tb+fhFHiT8REREREREREREREZEd4fcT/dlczPwinKvXB4fNPxN/VnIiuFz4cjoGvg7zHn5NsZMTAm0+lfiLOEr8iYiIiIiIiIiIiIiIbC/bJuqb+Tjyi/D16IyZXwReLxBI/Nkx0RAdBYCvTzfshDistORwRtw0hwN/p/ZY7dLDHYm0kDPcAYiIiIiIiIiIiIiIiEQq55Lfca5aR834UVhpyThXrsPcUojVKQujtAwrJTE41+rYnqoTDwtjtM1Xc/DYcIcg20EVfyIiIiIiIiIiIiIiItvJkbsJf5dO+LvnYCcnYsdE48grAMAsKcdOTgpzhLInUeJPRERERERERERERERkO5llFYE9/AAMA39WJo68fLBtzLLyv46J7AJK/ImIiIiIiIiIiIiIiGwPvx+jsgorKT44ZGVlYhYUYZSUgd8KafUp0tqU+BMREREREREREREREdkOhrsSADshITjmz8oEy8b5x5rAMbX6lF1IiT8REREREREREREREZHtYJa7AbAT/6r4s1MSsWOicK5Yg+10YMfHhis82QMp8SciIiIiIiIiIiIiIrIdjPIKMM3Q5J5hYLXPxKjxYicngmGEL0DZ4yjxJyIiIiIiIiIiIiIish2M8gqshLg6yT1/h0wArGTt7ye7lhJ/IiIiIiIiIiIiIiIi28Esr8BOTKgz7m8fSPzZKdrfT3YtJf5ERERERERERERERES2g1HuDtnfr5admoSvZxd8OR3CEJXsyZT4ExERERERERERERERaSnbDrT6rCfxh2HgGTcCOy1ll4clezYl/kRERERERERERERERFqqugbD56+34k8kXJT4ExERERERERERERERaSGzvAKg/oo/kTBR4k9ERERERERERERERKSFjHI3gCr+pE1R4k9ERERERERERERERKSFzPIK7JhocLnCHYpIkBJ/IiIiIiIiIiIiIiIiLWSUV6jaT9ocJf5ERERERERERERERESa4vXiWJMLtg0EEn/a30/aGiX+REREREREREREREREmmCu2UD059/jWLcx8HV5BXZiQpijEgmlxJ+IiIiIiIiIiIiIiEgTjPIKAFw/LoIaD0ZllSr+pM1R4k9ERERERERERERERKQJRnkFdnwspruSqHkLAbTHn7Q5znAHICIiIiIiIiIiIiIi0tYZ7gr87dKx42JxLf0DUOJP2h5V/ImIiIiIiIiIiIiIiDTBKK/ETojHO7gfdkwUOEzsuNhwhyUSQhV/IiIiIiIiIiIiIiIijbAtC6OiMlDhFx2FZ/QwHJvywTDCHZpICCX+REREREREREREREREGuOuBNvGio8DwN81G3/X7DAHJVKXWn2KiIiIiIiIiIiIiIg0wi5zB/5OiAtzJCKNU+JPRERERERERERERESkEXZZReDvhPgwRyLSOCX+REREREREREREREREGmGXurFjY8DpCHcoIo1S4k9ERERERERERERERKQxZW5V+0lEUOJPRERERERERERERESkEXZ5BXai9veTtk+JPxERERERERERERERkUbYpW7sBCX+pO1T4k9ERERERERERERERKQhth2o+FOrT4kASvyJiIiIiIiIiIiIiIg0pKIKLAsSlfiTtk+JPxERERERERERERERkQYY5RUAqviTiKDEn4iIiIiIiIiIiIiISAMMd23iT3v8SdunxJ+IiIiIiIiIiIiIiEgDDHclRlwMuJzhDkWkSUr8iYiIiIiIiIiIiIiINMAor4CkhHCHIdIsSvyJiIiIiIiIiIiIiIg0wHBXYijxJxFCiT8REREREREREREREZEGGOUVSvxJxFDiT0REREREREREREREpD62jVFRiZEUH+5IRJpFiT8RERERERERERERiUx+P64fF0FVTbgjkd2UUVkFlqWKP4kYSvyJiIiIiIiIiIiISEQy84twLfmdqPmLwx2K7KYMd2XgfyQr8SeRQYk/EREREREREREREYlIZmExAM4/1mAWFAXHXfOXEP3hF2GKSnYnhrsi8HeiWn1KZFDiT0REREREREREREQikllYgpWegpWaTNS8X8C2cS5bgWvRbzjyCtQCVHaY4a7Ejo7CiHKFOxSRZlHiT0REREREREREREQikllUgpWRimfUYMwthUR9O5+oeb/g79Lpz+PFYY5QIp3prsRWtZ9EECX+RERERERERERERCTy+PyYJeVY6alYHdrh79IJ5x9r8HfuSM3+o7BdTszCknBHKRHOcFdgJyjxJ5HDGe4ARERERERERERERERayiwuBdvGSk8BwLPPEJypSXgH9gHTxEpLwSwqCWuMEvkMdyV2Rmq4wxBpNlX8iYiIiIiIiIiIiEjEMYtKwDCwUpMBsONi8Q7tD85AvYuVnqKKP9kxto3proSEuHBHItJsSvyJiIiIiIiIiIiISMQxC4uxUpLA4aj3uJWWglnmBo93F0cmuwujqhosS60+JaIo8SciIiIiIiIiIiIiEccsLMFKS27wuJUeaM+odp+yvQx3JQB2oir+JHIo8SciIiIiIiIiIiIikcWyMItLg8m9+tgpieAw1e5TtpvhrgBQxZ9EFCX+RERERERERERERCSiGCXl4Lew0lManmSaWKnJmIXFuywu2b0Y7krsaBdEucIdikizKfEnIiIiIiIiIiIiIhGlNplnpaU0Os9KT8EsKt0FEcnuyHRXqNpPIo4SfyIiIiIiIiIiIiISUcyiEqykhCYrsaz0VMySMvD5d9q9HavWYeYX7rTrSdtllFdiJ2h/P4ksSvyJiIiIiIiIiIiISEQxC0sab/P5JystBWwbs2QnVf3ZNlHfLcC1ePnOuZ60aUZFBZYq/iTCKPEnIiIiIiIiIiIiIpHD4w1U/DXR5hPASk0Gw8AsLNkptzaKSjE8XswtRWDbO+Wa0kbZNqZbFX8SeZT4ExEREREREREREZGI4fplGdg2/h6dm57sdGClJAb3BNxRjrwtABhV1RiVVTvlmtJGVdWA39IefxJxlPgTERERERERERERkYhglJbj+vUPfAP7YMc3rxLLykgLVOjtBI68AqyUJICddk1pm0x3BQBWM9eZSFuhxJ+IiIiIiIiIiIiIRISoHxdhx8XiHdCn2ef4O7bHLC7FqKjcsZvbNubmfPxds7ET4jDzC3fsetKmGe7AelGrT4k0e0zi78cff+SCCy5g7Nix9OnTh08//bTJc+bNm8exxx7LgAEDOPjgg5kxY0bI8WeeeYbjjz+eoUOHMnr0aC666CJWrVrVWo8gIiIiIiIiIiIisscyc/NwrN+EZ8QgcDqafZ6/U3swDBy5eTt0f6OoFKPGiz8rE39mGma+Kv52Z4a7AjvKBdFR4Q5FpEX2mMRfZWUlffr04dZbb23W/PXr13P++eczatQo3n33Xc444wxuvvlmvv766+CcH374gVNPPZU333yTF198EZ/PxznnnENl5Q7+5oiIiIiIiIiIiIiIhIhasBR/Vgb+Lp1admJ0FP52aTuc+HNszgfTxMpMw8pMw1FYDJa1Q9eUtst0V6raTyKSM9wB7Crjx49n/PjxzZ7/+uuvk52dzfXXXw9Ajx49mD9/Pi+99BLjxo0DYOrUqSHn3HvvvYwePZqlS5cyYsSInRe8iIiIiIiIiIiIyB7MqKjELCimZr+RYBgtPt+f3QHXL8vA7wdH86oFjYpKzOJS/NkdAHDk5eNvlwZOB1ZmOvgtzKJSrIzUFscjbZ/hrsROiA93GCIttsdU/LXUwoULGT16dMjY2LFjWbhwYYPnlJeXA5CcnNyaoYmIiIiIiIiIiIjsURwbNoNhBNp2bgd/dhaGz4+5uaB5J1TVEP3hl0R/8i2OP9YE9vfLy8dqnwmAlZ4CpqF9/nZjhrsCSxV/EoH2mIq/liooKCAjIyNkLCMjA7fbTXV1NTExMSHHLMvi7rvvZtiwYfTu3btF9zJNA9Ns+W+piOwsDocZ8rdIW6R1KpFA61QigdapRAKtU4kEWqcSCbROJRI0d506N+Zht0vDmRC7fTfKTIWEWKI2bsbXuUPjc31+XJ/PxfD7sbrnEDN3Pj6fD9Pjhex2OJ0mOE3s9FSchcXg1M/Y7sbYuBmzohI7KQGn09S/pzuB5feyYdHTpGTvR2Lm4HCHs1tT4m8nue222/jjjz947bXXWnxuWlo8xnaUp4vsbElJ2/l/nER2Ia1TiQRapxIJtE4lEmidSiTQOpVIoHUqkaCxdWr7/Xg2F+AYMYCE1O1vvejr1QUrdzOJ9VzDLi7DrvEA4P9xCVZZOa4TJ2JkpuF79zMcPy2CKBfJvTtjuAIfq/u6ZGGt3Vjv9SQy2aXl+L78CWvFOsyO7XDu3Rcj/q+1qX9Pt1/h+u+oKl6Cp3wFmVm3EZvUwr06pdmU+GtARkYGBQWhZd8FBQUkJCTUqfa7/fbb+eKLL3jllVfIyspq8b2KiipU8Sdh5XCYJCXFUlZWhd+vDYmlbdI6lUigdSqRQOtUIoHWqUQCrVOJBFqnEgmas06NjZuJqqqhKi0Nu7hiu+9lZqTjWvgbFWs3Q1LCX9cvKSPqvx9tdUMD74QxVEbHQlkVjBmOq7gc4mKodNcANYHrJSbiKiihYlMRxERvd1zSdrje/gTD48G330is7jngscBToX9Pm+D3VVG8/nNsy09mjyPrnbN++Se44jtj+z0s/epBuo68EYdLrVRbIrWZv2SgxF8DhgwZwldffRUyNnfuXIYMGRL82rZt7rjjDj755BOmTZtGTk7Odt3Lsmwsy96RcEV2Cr/fwufTf7ikbdM6lUigdSqRQOtUIoHWqUQCrVOJBFqnEgkaW6euNRuxYmLwJifBjqzl9hk4DQPWbMS3V8/gsHN9HrZhUH34AdiGCTFR2PFxf93LdOA74kDwWyH3N9JScdpg5xXgz26ifai0fdU1RBWVUrPfSPxdssFvA6Gf2+vf01C27ado7WxK1n+C31sBhklSpwNwOEMTep7KzVQULiNrr7OJSerGup/uJnfxVDoOvBDDUPvUnW2PeaMVFRUsW7aMZcuWAZCbm8uyZcvYuHEjAA899BDXXnttcP5JJ53E+vXruf/++1m5ciWvvvoqH374IWeeeWZwzm233cb//vc/HnroIeLj48nPzyc/P5/q6upd+mwiIiIiIiIiIiIiuyvHhjz82Vmwo9sluVz422fiyM0LGTbz8vFnpGFlpGGnpwSSftsyTXCF1tHYifHYLidGcdmOxSVtgqOgCACrXVqYI4kc5VvmU7jqHRLbjyR72DVgW1SV/FFnXunGb3C44knIHEZUXHs69J9CdemKQLJQdro9puJvyZIlnH766cGv77nnHgCOPfZY7r33XvLz89m0aVPweE5ODs888wz33HMPL7/8MllZWdx5552MGzcuOGf69OkATJ48OeRe99xzD8cdd1xrPo6IiIiIiIiIiIjIbs8or8AsKcc7tP9OuZ4/J4uo+UvA5wOnE2wbR14Bvt7dtiM4AzshHtNduVNik/Ay84uwY6KxE7RnY3N5K/JwRiXTrvfJALhiM6ksWkZCxuDgHNvyUZY3l8SsfTAdUQDEpw+k+9iHVO3XSvaYxN+oUaNYvnx5g8fvvffees955513GjynseuJiIiIiIiIiIiIyI5x5G4Cw8Dfsf1OuZ4/uwP8sAjHpnz8OR0wSsoxqmvwZ2Vu1/XshDgM9x5YtVRZjWFb9VdHRihzSxFWZtqOV5buQbzVBbhi//rZiUvtR2XxspA57oKF+D3lJHccFzKupF/r0ZsVERERERERERERkTbJsWkL/vbpEOXaKdezkxKwEuOD7T4deflgGFjt0rfrelZCHMYeWPEX/dU8oj/7Ltxh7Dy2jVlQhD9TbT5bwlOVjys2I/h1XFpfPBWb8FYXB8dKN3xNbHJPouM7hiPEPZISfyIiIiIiIiIiIiLSJpmFJVgZOzEZYxj4s7MClYS2jZmXH6jycm1fczw7IT5Q8WfbOy/GNs6oqMSxKR+zoBiqqnf5/c38Qly/LGt6YgsYpeUYHm9gLUizeau2qfhL6QMYVBX/BkBV6Soqi5eRkn1AmCLcMynxJyIiIiIiIiIiIiJtT40Hw12JlZayUy/rz+6A4a7EKCnHkZe/3W0+4c9Wnz4/1Hh2YoRtm2NNLpiBdpi1lZO7knPFWlw/Lw0kb3cSM78IYOcmmXdzlr8Gv6cUV8xfFX+OqESiE3OC7T6L1rxHVHwHEtrtHa4w90hK/ImIiIiIiIiIiIhIm2MWBtoFWukpO/W6VlYmOBy4lv4e2N+vfUbTJzXATogHwNyD9vlzrlqPP7sDVkYqjg27PvFnlJYD4PrhF/D7d8o1HfmFWClJO62l7J7AW10IENLqE/7c569oGdVlq6koXEJa18O1n98uprctIiIiIiIiIiIiIm2OWViC7XRgJyfu3As7Hfg7ZOJcsTawv1/77dvfDwJ7/AG77z5/Xh+OtRuCrUyNMjdmQTG+bjn4szvg2LAZLGuXhmSWlOPv3BGzrALnspWBQdvG3LgFo7hs+66ZX6Q2ny3krcoHCGn1CRCX1g+fp5S8Zf8hKi6LxHbDwxHeHk2JPxERERERERERERFpc8yiEuy0FDCMnX5tf3YHsG2sjFRw7UCVV3QUtsuJUb57Vvw51m4g+rPvgnvqOVevx3Y68HfugD8nC8PjxdxSuOsCqvFgVFXj65aNr083XAt/xdywmeiPviRm9lfEvvsJUXPnQ1VN86/p9WEWlynx10LeqgIM04UjKilkPDa5J4bpwlOxUdV+YaI3LiIiIiIiIiIiIiJtjllYstPbfNbyZ2cF/t6B/f0AMAzshDjMit2z4s8s+7Ot5oJfcaxYi2PVevydO4LTiZWeih0TvUv3+TP/bPNpJSfiGdofTIOYj7/GqKqhZsIYPCMG4lidS+yMjzDz8pt3zcJisG38Svy1iLcqH1dsRp3EnumIIja5Z6Dar/2IMEW3Z3OGOwARERERERERERERkRBeH2ZpOb4BvVvl8nZiPJ59huDP6bDj10qI320r/owyN/6sDOzEBKK/+QlsG+/wAX8eNPBnZ+HIzcM7fOCuiefPxJ+dnAhOJzXjR2G6K/H16gqmCXTA16MLMZ9+S9R3C6g+esKf4w0ztxQGWsqmJrf+A+xGvNUFuGLq3x+zfb8zAVvVfmGity4iIiIiIiIiIiIibYpZXAqAv5Uq/gB8/XpiJ8Tv8HXshDiM3bXir9SNnZSIZ99h+Du0w46Nwd+xffC4PzsLs7h0lz2/WVKGnRAHzkBNk9UpC1+f7qHJvZhoakYPxSwpw/nbqsYvaNs412/CykxvlZayuzNvVUGd/f1quWJSccWogjJclPgTERERERERERERkTbFLCwG08BOSWp6cphZ8XEY7kqw7XCHsnPZNka5GyspAUyTmoPHUHXMweBwBKf4O7YHw9hl7T7N0nKs5KbXhJ2eiq93N1wLlkJ1w/v9OVbnYm4pxDuoz84Mc7dn23aw1ae0PUr8iYiIiIiIiIiIiEibYhaWYKUkhySZ2io7MR7D64MaT7hD2bmqajC8PuykhMDXpgkx0aFzoqPwZ6Zhbty8S0IySsuxUhKbNdczLNCSNGrBr/VP8PmI+mkR/s4dsbaqYpSm+T2l2Ja3wYo/CS8l/kRERERERERERESkTTELS7Basc3nzmQnxAFgunevdp9mWWA/PSup8USblZWJI6+g9Sse/X7M8orA/n7NERuNd0g/nMtX4Vy8HPz+kMOuxb9jVNXgGTGoFYLdvXmrCgAa3ONPwkuJPxEREREREREREREJL9vGKC4NJI/8fsyS0ohJ/FnxgX0CDXdFmCPZuYxyNwB2UuP7IPo7ZGJU12CUlLduPGUVYNtYzU38EdjH0duvB1HzlxAz82McK9Zi5ubhWLsB1+LlePv3+quiUZrNW/1n4k+tPtskZ7gDEBEREREREREREZE9m7l+E1Gzv8GflYGvZ1ewbKz01HCH1TwxUdhOR2Cfv92IWerGjo9rst2qlZke2OcvLx9fauvtyWiWlgXu14w9/v46ycQ7agi+3t2J+vEXor/+MXjITojDO7jvzg5zj+CtyscRlYTpiG56suxySvyJiIiIiIiIiIiISFgZJeXgMDGqaoj+5icArNTkMEfVTIaBnRC/21X8mWVurOZUw7mcWJlpmJvzoV+PVovHKC3HjnZBTFSLz7VTk6g5eGxg30LbCoxFR4Oz7e8h2RZ5qwrU5rMNU+JPRERERERERERERMLKcFdgJSZQffQEnL+txKiuAVfkfHxtJ8Ttdnv8GWVurHbpzZrrz8rE+fvqQKtWw2iVeMyScuzkpO2/vmFAXAytvBPhHsFbla82n22Y9vgTERERERERERERkbAy3JXYCXFgmvj26oV32IBwh9QigYq/3SjxZ9sY5c2s+AP8WRmBff5KW2+fP7O0vEX7+0nr8VYX4IrNDHcY0gAl/kRERERERERERKRNMzfkgWWFOwxpTeUV2Inx4Y5iu1kJcYFWn3br1pMZRSUYRSWteg8Ao7IKw+fHbmbiz2r31z5/rcK2MUrLlPhrAyy/B19NiVp9tmFK/ImIiIiIiIiIiEibZZSUEfPxNziXrwp3KNJKbNsOtPqMjwt3KNvNTojD8PrA422dG1RWE/XNT8S++ykxH3yBUVjSOvf5k1HmBmh2xR8uF1ZGKmYrJf6CiciUpFa5vjSft7oAQBV/bVjkNEkWERERERERERGRPY5ZVAqA89cV+Pr2aLX9wySMajwYXh92QuRW/NXGbhaXYmVtZ0LE4yVq7ny8wweGvAszN4/oL74H08AzajDOFeuI+fQbqo84ELuRZKlRUoZrye949hkCzpalAswyNxhGi6ow/VmZOFesbXSfPzM3D+eqdXgH98Oup3rPKCwm6pdlUF0TOu71Aajirw3wuDcCEBXfIcyRSEOU+BMREREREREREZE2yywuBdPALHNjbtiMlZ3V+Al+fyDpYKrZWaSwSwPVZXZi5Fb8WWnJWClJRH/9I1VHHAixMS2+hiN3E87VuRiWTc2BowODXh/R387Hykij5oB9IDoKf9dsYt77nOhPvqVm/1HgMME0Q5OAtk3U3Pk4Nhdix8fiHdq/RbEYZW6shDhwOJp9jj8rE9fi5Rhl7nqTerXPYlRV41y9Hm+/nvj6dAfTAJ+Fa+nvOP9Yg5WciJWRGnKqDfg7ZUV0O9jdRY07F2dUMs4oJWHbKiX+REREREREREREpM0yS8rwZ2Vi1Hhx/foHNU0k/qI//ho7NgbP/vvsoghlR9m1bSXjIzip43BQc/BYYt77jJhPv6X60PEtrrJz5OaBw4Fj7QbMTVuwOrTDtWQ5RnUNnsPGQ3QUAHZcLNUHjyXmg8+Jnflx8HzvXj3xjhwc2GtvdS6OzYX4O7TDtXg5vl5dW1RRaZa5m72/Xy2r/V/7/PnqSfy5Fv+GUVND1TEH41y7Aeei33At/SN43I524dlnyJ/JQCXu26qaig1EJWSHOwxphBJ/IiIiIiIiIiIi0mYZxaX4O3fESksh+usfMUrKGt7ny7JwbCkCy8LXJ5A4CY6vXIu/aza4XLsueGmesgpspxNiosIdyQ6xE+KoOXgM0R98QfSXPwSq9prbmta2cWzIw9u/F468fKLm/ULNgaNxLV6Od0Bv7MTQJJydmkT1MQdj/FktaRYUETV/CXZCHL4+3Yn6aRH+nA7UjB9J7Nuzcf24GM8BzU+GG2VurA4tbFnqcmGlpwT2+evTPfR65RW4lvweeJaUJLwpSXh7d8MsLgvOsdJTgslNabtq3OtJbDci3GFII5Q2FxERERERERERkbbJ68Msr8BKTcbfLRs7JhrXshUNTjdKysCysGOiiZr3C1jWny0Pfyb6m/m4Fvy6C4OX5rLL3NgJcbvF/o1WeiqeMcNxrNuIUVTS7PPM/CKMag/+7Cw8owZjFpcS8+GX2FFReAf1qfccOz4Oq2M7rI7t8A3qi3dgH6J+WET0nO8wqmrwjBwMLhee4QNxrskNJOSaw7Yxy91YLaz4g0C7T0defmCfv61E/bgIOzoa78C+fw3GxgTjtzq2U9IvAvi9lfiqi4hWxV+bpsSfiIiIiIiIiIiItElmSaAayE5NAocDX78eOFasBa+3/vmFJQDUjB+FWVyK8/fVuH5ZhvOPNYGWh7+uwCgt375gajxEz/4Kc3PB9p0vDbLL3JAQufv7bcvfpSO2yxlo3dlMjtw87GgXVmYaVkYavl5dMSqr8Awf2OwqVe/eA/B1y8axcTPe/r2CrTr9PTpjZaYR9cMvdRJy9TEqKsFvYSW1fA83q0MmRmU1xp/tWwHMLYU41m7AM3wAuNSEMJLVVGwAIDqhU5gjkcYo8SciIiIiIiIiIiJtklFSCoD1Z2tPX9dsDJ8fM7+o3vlmUQlWUkKgAqpXV1w/LsK14Fe8w/pTc/AY7PjYQPJjOzhXr8excQvRc77d/uSh1Msuc2MnRvD+fttyOLA6tsfZwsSfv2P74N52nhGDqBk3An+Pzs2/r2HgGTcCz5i98Q7pFzLuHdwXs7AEo7i06cu4K4FA69KW8rfLCO7zV8v5+2rshDj83VvwLNImedy5GIaDqLjG91qV8FLiT0RERERERERERNoks7gs0G7QGagSspMTsaNcDSf+CksC+4QBnmEDwGHi690N76C+4HDgGTkYR24ejtxNLY7FsXo9/nbp2LGxRH/yDVRVb/dzSSi7rAI7YTdK/AH+7KzAOq2uaXpyZTVmYTH+7A5/jUVH4e/ZpeXtTx0OfL27BX9mgvF0bI8d7cK5an2Tlwgm/uK3owozqnafvz8rY/1+HGs34Oveebdo5bqnq3HnEhXfEcNU5WZbpsSfiIiIiIiIiIiItElmUWmgzWctw8DKSMNRX+LPtgMVf2kpga/jYqg68XA8+w4LJhz8nTvi75CJq3b/v2YyKipx5BXg692NmgljMLw+YubMbVbbRGlCjQdqPLtXxR+BxB+2jWPj5ibnOjYEKgP9ndq3XkAOB/4u2ThXr29y3RoVldjRru1uy7n1Pn+ODZsxPF583XO261rSejwVm9j82yvYtr/Z59S4c9XmMwIo8SciIiIiIiIiIiJtkllcipWSHDJmZaZh5hfWSV4YZW4Mrw8rPfWvQZcztMrIMPAOG4BZ5sbcUtjsOByrc8Fh4u/SCTsxHs/Y4Zj5RRglavm5o3akrWRbZsfFYqUlN2ufP0duHlZGKsTGtGpMvu45GO7KBitma5kVVdtX7fcnKysTo7IKo7wCx6p1WKlJ2KnJTZ8ou1T+yhmUbvyKqtJVzZpv2xY1FRuITshu5chkR6keU0RERERERERERNqeqhqM6hqsbRIGVrs0jF+WYbgrsBMTguNmUUng+J+tPhtiZaZhx0TjWL8JKyuzWaE4V60PtGGMcgHgz0gL3LO0DP/WFYnSYkZ5BcBuV/EH4M/ugHP5qkCSeusEtG0T/ck3ODZuCX7tHbpXq8djZWVix8YEknHt0hucZ1RU7lDiz9/+z33+cjfhWL8p0GpX2pTq8nVUFPwCGFQULCQupVeT53ir8rH9HqKU+GvzVPEnIiIiIiIiIiIibY5ZUgqAtU1iLZh02xJatWQWlmDHx0JMdOMXNgz82VnNqsQCMErLMQuLQ1sVxkZjR0dhlqrib0cZ5RWB/eia+r5FIH9OB4waT50KO8eKNTg2bMYzrD+efYbg2XcY3n49Wz8gw8DXPQfn6txG230aFZU7VoEZ5cJKS8H1yzIMnx//HtDm0/J7sPzN2M+xjSha/R5Rce1J6rAv7vxfsJvRtrjGnQugir8IoMSfiIiIiIiIiIiItDlmcRmYJnZSQuiBmGispIRAu8+t5xdutb9fE/w5HTBLyjDcFU3Oda5ej+1yBir+tmIlJ2KUlDXrftIwo6ISIyk+tCJuN2FlpmFHu0KTzB4vUT8twde9M75BffH17YGvT3eIjtolMfm75WBU12Bu2tLgHKOiCmsHKv4A/FkZGNWewDtITGj6hAi3+beX2bT0+XCH0Sw15etxFywkrcthJGQOxVu1BW9l078IUePOxRGVhDNKVc5tnRJ/IiIiIiIiIiIi0uYE9vdLBLPuR5hWZhqOrauobBuzqDh0f79G+Du2/7MVYRMfdvv9OFauw9+5IzgdIYfslCRV/O0M5RUY2yZ3dxeGgb9TFo7V64MtTV2/LAOfD+/wAWEJycpIxUqMD1T91cfjxfB4d6jVJxBso+vrtvtX+9m2TWXRr1QVL8e2rXCH06TCNe/him1HYtZI4lL7YjiicBf80uR5Hrf294sUSvyJiIiIiIiIiIhIm2OWlNXZ36+WlZkW2NPP7wfAqKwKVBc1sb9fUJQLf/v0xhN/tk3UNz9hVlTi26vu/ldWciJGaXmjLROlacbunPgDfP17Yfh8xM6cjev7Bbh+/QPvoL47nFjbboaB1bEdZkFR/YcrKgECbXN3gL9je7z9e+Hr2WWHrhMJvFWb8XvdWP5qPBWbwh1Oo7xVBbjzF5DW5VAMw4HpiCI+ba9mJf5q3LlK/EUIJf5ERERERERERESk7fD5cC38FbOgqMHWnVZmGlg2ZmEJQPDvZif+AH92h0C7wz+Th9ty/bwU56r11IwbiZVRt5LQTknE8PkxKqqafU+py3BXYiTvvok/KyONquMOwTugD67fV2PHxeLr3zu8MSUmBCoQ60la167nHdrjD8DpwDty8C5rYRpOVSUrwDDBMKkuXRXucBpVU7ERgLi0vYJj8emDqS5dhc/TcOtiy1eNt7qA6PhOrR6j7Dgl/kRERERERERERCT8bBvHqvXEzpiN65dlePfqha9vj3qnWqnJ4DCD+/yZWwqxY6Kw45pfpeTPzsLw+TE35dc55vx9Na5Fv+EZPhB/t/orXKzkRADt87cjPF4MjweS4sMdSetyOfEO60/VCYdSfdj+ddrG7mp2YjyG1wc1njrHzIpKMAzs2JgwRBaZqkpXEB3fiej4TlSVte3En7cqH8N04Yz+q5o6PmMQABUFixs8z1O5GYCo+KzWDVB2Cme4AxAREREREREREZE9m1lQjGveQhxbCvF37ohnxCDsxto/Ohz401NxrN+EY3MhjrUb8PXuBobR7HvaKUnY8bE4NuRhZf/1Yba5IY+ouT/j69sd34CGK7PshPhA8rG0POR8aT5zSyBxa6TV39J1d9OSxHRrshIDiVazvAIrJjrkmOGuxI6LqXdvTalfVckK4tP7Y9sWVSW/hzucRnmrC3DFpGMYf31/nVGJxCb3wF2wkOSOY+o9z1MZaIvsimu/S+KUHaOfXhEREREREREREQkb14JfiZk1B8PrpXriOGoO2rfxpN+frMw0HJvyMfOLqNlvBJ59h7XsxoaBP7sDztW5fyWgCkuI/vx7/J3a4xk1pPFEomFgJSVilqrib3s5V6/HTkrEqKeVqrQeOzHw82WUV9Q5ZlRUYoVr/8EI5KspxVu1hdjknsQmdcdTsQm/t+57bSu8VQW4YjPrjCe0H05F4WJqGtij0Fu5GUdUEg6n1kYkUMWfiIiIiIiIiIiIhIXzt5W4Fv6Kd8heeAf3bVGVkW+vntiJ8fh6dgXX9n3M6R3QGzO/iJj3P8fXPQdHXgF2UgI1+49qVixWSiJGafl23XuP5/fjWLsB/6A+GC2o1JSdIMqFHe3CKHfXOWRUVO74/n57kKrSlQDEJPfEtgKtU6vL1hCf3j+cYTXIW5VPXGqfOuPJHcdRsn4OBSveotPgy+oc91RuJipOlc2RQhV/IiIiIiIiIiIisss5cjcR9f1CvHv1xDt0rxa3FrQT4vH167ndST8AOymB6qMOwjNmbxwbt4BhUDNhDLhczTs/OQmzRIm/7eFYvwnD68PqnhPuUPZIdmICZj0Vf6a7ss20JI0E1aUrcMVk4IpJxRXbDocrgeo2us+fbdsNVvyZpouMHsdTUbiEisIldY57KvOU+IsgqvgTERERERERERGRXcrcsJmoz7/Hn9MB78jB4Q3GMPD17oavew5YNkQ1L+kHYCUnYlTXQI0HoqNaMcjdj2P1eqy0FOyUpHCHskeyEuMx3Nsk/mwbo7JKFX8tUFW6gtiUngAYhkFMUjeqSttm4s/vKcO2PLhiMuo9npA5lNiU3uSveIu41L4YZiB9ZNsWnqrNJGXtsyvDlR2gij8RERERERERERHZJYwyN9Fz5hLz8ddYmWnU7Dey8X30diWns0VJPwgk/gBMtftsGY8X5/pNgWSrhIWdmIBZFpr4M6qqwbKxtcdfs1i+aqrL1xGT3DM4FpPcg+qyVdi2FcbI6uetLgDAFVt/4s8wDDJ7TcJTkUfpxq+D476aYmy/B1dc+10Sp+w4Jf5ERERERERERESk1TnWbSR25seYhcXUjB9FzcT9dqhNZ1tg/5n4M0rLwhxJZHGs2wh+C383Jf7CxU6Mx6ioBL8/OGZUVAJgKfHXLNVlq8G2ghV/ALFJ3bB8VXgq88IYWf28VfkADVb8AcQkdiax3fCQxJ+ncjOAWn1GkMj+L6uIiIiIiIiIiIi0eWZ+EdFfzMOf04Ga/UYEqut2B04HdkIcZkk5/qZnt5hR7sZ2uSAmuunJXi+GuxI7NbkVItmJbBvnqnX426erpWQYWQnxAIE1U5vArqgC0PelEZbfQ0nu11QWL6eq5HccUUkhCbGYpG5gmFSXriY6vmMYI63LW1WAIyoJ0xnT6Lz4jIGU//ojPk8ZzqgkvJWbMUwnrtj0XRSp7Kg2X/G3cuVK3nnnHZ5++mny8wMZ6bVr1+J2u8McmYiIiIiIiIiIiDTFKK8g+tNvsdJTAq09d5ek35+s5KTWafVp20R//A1R8xY2PdfnJ+bjb4h991PM3LZXaVTLKC4j+uOvcWzYjK9Xt3CHs0ezk/5M/JX/1e7TcFdiOx0tbnm7JynfMp8tv0/H7y0nudN4sodehWH8lWYxnTFExbWnxr0+jFHWz1uV32i1X6241L4AVBUvB8BTmYcrth2G4WjV+GTnabP/la2qquLmm2/mww8/xDAMLMti3LhxZGZm8tBDD5Gdnc21114b7jBFRERERERERESkIT4/0Z98gx3lovqgfcG5+31wbKUkBlpX7mRGmRuzzI1RUwOWBWYDNRy2TdTXP2AWluBvl0b0F99Tfej+2OkpOz2mHeH8ZRlRC37FSoyn5qB98ed0CHdIezQ7Pg4MA7O8gtrd6IyKyuC41K/GvRFndBo5w65pcI4zOhVfTcmuC6qZvNUFDe7vtzVndApR8R2pLFpGYvsReCo3E6X9/SJKm634u++++/j+++959tlnmT9/PrZtB4+NHz+er7/+upGzRUREREREREREJNwc6zdhlpZTc8Do5rWrjEBWRipmeUVwf7SdxZG7CQCjxouZX9TgPNdPi3Gu2UDN+JHUHDwWOymBmE+/3enx7AijopKoBb/i7deD6mMOxt+5o5JL4WYYWInxGOV/ddYzK6oCiT9pUHOSYM6oZHye0l0UUcPcBYuoqdgU/NpbVYArNrNZ58al9aOi+Fds28ZTmafEX4Rps4m/2bNnc/XVVzN27FhcrtDS4k6dOrFhw4YwRSYiIiIiIiIiIiLN4Vy9DisjFTutje87twP8HduDYeDYsHmnXtexPg9/x/bYMdE4GmjfaW7Iw7XkdzwjB+Pv0glcLmomjAHDIOqrH3dqPDvC+dsqbKcD79D+4Nj9qj4jlZ0Qj+neqtVnRaX292uCp2IzUfFZjc5xRifjrwlv4s/yVbNpybMUrPhv4GvLi6+muFmtPgHiUvvhqy7C487FV12EK67xZ5a2pc0m/iorK8nMrD/7XFVVtYujERERERERERERkRbxeHHk5uHrnhPuSFpXTDRWZlqwQm+n8HpxbM7Hn9MBf6f2DV7buWItVkoSvv69gmN2XCyekYNw5OVjFhbvvJi2l8+Pc/kqfL27ae+4NsZOiq+7x198bBgjatts28JTtYWoJpJgjugUfJ6SkC6Gu5o7fwG25aGiaCk+Txm+6kKA5lf8pfQGw6Rkw5cATT6ztC1tNvHXp08fPv7443qPffHFFwwYMGAXRyQiIiIiIiIiIiLN5Vi7AfwW/m67eeIP8GVnYW7cAn7/TrmeY+MWsGz8OVn4sztgFpXWbd3p8+FYt7HexKq/SyfshDicS//YKfHsCOeqdRg1Hnz9eoQ7FNmGlfBn4s+2MfPyMaprsFJ33+rcHVVTkY9t+XA1o9WnbfmwfOFrt1uW9z3RiZ0xMCjf/CPeqgIAXLHpzTrfdMYQm9Sd8s3z/p+9Pw+v7KwOfP/vu/c+o47muUpSlWqeXS7b5RnbYGOGEAiEIeSSdJJOdyCkO+ncPCHd/OgL6ZtAuulMEBrurxOSdBOSSyAJECAYbIzncpVrnqtUpXmeztGZ9vDeP7akKlmzdKRzJK3P8/hx6Zw9LFWdca93rQUgrT7XmIJN/H3kIx/ha1/7Gr/1W7/FM888g1KK06dP85nPfIa///u/58Mf/nC+QxRCCCGEEEIIIYQQQszCut6KW1eNjq7/CiK3oR5lOxg9Azk5ntnejVcaQxfHcDePtxJ9XbtPs7UL5bgzJ1aVwt6zHaulHZLpnMS0JFpjnb+C21iPLo7lLw4xI11chLIdSGUIvnwSr6rcn78oZpSOdwLzJ8GsUBkATmZ43mOOdr1Ax+nPLze0Kez0EMmhi5RtfpSiyoPEe17GTvWhlIkVKl/wcaIVe/HcDGawGDNQlNMYxcoq2MTfo48+yn//7/+d48eP86u/+qtorfnkJz/Jd77zHf7bf/tv3H///fkOUQghhBBCCCGEEEIIMcF2blW8pdKYXX24673N5zhdUYqOhHPT7lNrzPZu3IZ6/+dQELemYlriz2pp8+cnlsycUHN2NaMNReDS9XnPRya7/LhnYHT1YgyNYu/bOf/GYtV548nY4ImzGIMjZO87DErlN6gClkp0oYzAvMkzK+hXTTrZ+ef8jfYcY2zgDNpzchIjQLz3GMqwiNUcobjuPtKjNxgbOEsgUoVSC08JRcv3ABCMSLXfWmPlO4C5vOUtb+Etb3kLLS0tDA0NUVpayvbtUhIuhBBCCCGEEEIIIUShCf3wBYzhUbJ3HURlbQCcLZvzHNUqUQq3oQ6zvRv76B3LO9TQCCqZwm24NVPLbagncPqin1g1TchkMdu7yd49xzikUBB3xxasi9ewD+3293sdo3+IwMsnMQeGSL737RAJLSv217OuteKVFePVL2yumFhdutiv4rKu3MDZ3oRXvbA2kBtVOt5NsKhu3uSZGfITf+48FX/ac0iPXAXtYacHCUZrchJnvPslYlV3YFpRiqoOYlhRxgbOEK3Yv6jjhEuaMcywzPdbgwq24u92zc3NHDlyRJJ+QgghhBBCCCGEEEIUKGN4FIDQj48RfOWU36IynNtEUiFzG+sxRuKoeGJZxzHbu9EBC6+26taxN9ehbH+mH4DZ2gHe/PMT7b07UOkMZkv71Ds8j+Dzxwl/8weoVBpcD2NweFlxz0TFx/AqyqWKrFAFA+hwEG2Z2HcfzHc0BS8d7yS0gCSYYQQwA0XzVvyl4614bgYAO9WbkxgziXYyiXaK6+6djKW45i4AApGquXadRhkWtXv/FWVNj+ckNrF6Cjbx94d/+Id84hOfmPG+T3ziE/zxH//xKkckhBBCCCGEEEIIIYSYkeehkmnsw/tIv/UR3Ppq7P278h3VqnLra8CYPotvsczOHry66ikVerqiFLe2itAzLxN89hUCl2/g1s8/P1GXleDWV2Ndb51yu9Hdh3W5hezRQ6R/6s1gmhjD87clXCxjLImORXN+XJE7zvYt2Efv2BCzOJcrlegiWLSwtpdmsBQnM/dzKjV8GcMMoYwA2WUm/pzsKPGeV+m78v9iBmIU3VbdV1x3HwCByOIrb4trjhAqkrmPa03BJv6+9a1vceTIkRnvu+uuu/j2t7+9yhEJIYQQQgghhBBCCCFmolJpALyiKF5dNZkn34C3KTdt69aMYAC3tmp5iT/XxewdwK173QV6pci89RGyDxzB7OjB6B2Yt9pv8pCN9Zjdff4MxnFmezc6GsHZtxNME6+sBGNodOlxz0Rr1FgKXSQJpUJmH70DZ/e2fIdR8Fw7iZ0eWXDbSytYOm/FX2r4MuHSHQQiVdjJpSX+PCdN9/k/5/pz/ydd576Ekxmkeuf7UMatKW+R0u2UNz1JrGp5bYjF2lGwM/56e3upr6+f8b66ujq6u5e3ckYIIYQQQgghhBBCCJEbaiwFsOGrhtxNtf4sPs8DY/E1F0b/ELjezDPxlMLZvQ2nuRHzZgfutgUm/hrq4ZXTmN29uI1+5Y7Z3uXPEBxvwemVl2AM5bbiTyVToDW6SCr+xNqXTfYALLjizwqVkk31zXq/1i6p4atUbH0rqZHrS2r1mUm003X2SziZYWp2f5BY1WGsUNm07ZQyqN7xnkUfX6xdBVvxV1FRwZUrV2a878qVK5SWlq5yREIIIYQQQgghhBBCiJmo5Hjib4NXd3l11SjbWfK8PLO7Dx0M4FWUzb5RMIC7c+uUVqBz0SUxvOKiyUpENZrAGEn4ib+JuMtLUcOjoPWS4p7JRDLYk8SfWAeySf/5s5AZfwBmqAx3jlafmXgrnpsmUrabYKQGe44k4UxSI9dpffXTKMOi6Z7/SNnmR2dM+omNqWATf48//jh/+qd/yunTp6fcfvr0aT7/+c/zxBNP5CkyIYQQQgghhBBCCCHE7dRY0k9EBQP5DiWvvKpytGVidC3uIv4Eo6sPr7ZqshIvJ5TCa6jzE39a+/83FO5trVi9shKU46LiY7k7bSIJSDJYrA+ZsW6CkQoMK7yg7SdaferxZLrWmrGBs3ieDUByyJ/vFy5uIhCtxk71o7W74HgGb/4zgUgVjXd9bMHtR8XGUbCtPn/913+dEydO8P73v5/t27dTU1NDb28v165dY+/evfzGb/xGvkMUQgghhBBCCCGEEELgV3d5RZHcJqzWIsPAq6nE7O7DObh7cfuOz/fLHtmf87CchnqsC9dQw3HM9m7c2moI3ErS6gq/u5oxPIpbEsvJOdVYEh2wNnwyWKwP2bFuwsULT7BZoVK0Z+M5ScxAEemRa3Sc+hOKKg9Sf/BXSA1fIly6HWVYBCO1aO1ipwYIRuefjZpN9jDWf5raPT+PYQaX82uJdapgK/6Ki4v527/9Wz75yU+ya9cuAHbt2sWnPvUpvvrVr1JcXJznCIUQQgghhBBCCCGEEOC3+pTKLp9bV43R0+/P+VsEf76fi1dXlfOYvLpqME2sm+3js/6mJjB0JIwOBXI650+NJf35fhs9GSzWhWyyh0isfsHbW0E/me5k/edUerQFZVgkhy7SdeZ/kBq+SrTMXxwQiPgzPWeb82en+tCeM/nzcNsPMIMlFNcdXdLvIta/gq34AwgGg7zvfe/jfe97X75DEUIIIYQQQgghhBBCzEKNpdDFRfkOoyB4ddWoE+cwBofxqioWvJ/R3YcOWHPP91sqy8Str8Y6exlcD7fhdQkMpfw5fzlM/BljKT/xJ8Qap7VHNtlDuPhNC95nYt6emxmBok2kR28QLt5KRfPb6Tz9Z2jPJlLuFzxZ4QqUYc045891Utx4+f8iUrqDTYd+Fe3ZjHS/QEXTkxiGVNOKmRVsxZ8QQgghhBBCCCGEEGJtMJKS5JngVZWDufg5f2b3+Hw/Y2Uu2boN9SjbwSsuQs/QzlOXl2IMjebsfGosiY5JFahY+5z0INpzCC+i4s+cqPjLDAN+xV+4ZCtFFfvZdOhXKa69l3DxFgCUMgiEq8jOUPGXid9Eezap4ct0nvkzhtt+AFpTuvmR5f9iYt0qqIq/I0eO8Fd/9VccOHCAO++8EzVHGbhSiuPHj69idEIIIYQQQgghhBBCiGm09lt9RsP5jqQwmCZuTSVmT78/589xCL50Eqe5AW/zLDPCPA+jdwD78L4VC8tt8M/tNdTN2H7TKyvBungdXBdMc9nnU2NJvC2bl30cIfLNTg8AEC6qIeXMs/E4wwxiWFGc7AhuNo6d7idUshWAoop9FFVMfa4HojXYyemJv/ToDQwzzKaDH6HjzOdIDp6npP5BrGDJsn4nsb4VVOLvF3/xF6murp7881yJPyGEEEIIIYQQQgghRAFIZ8DTUvF3G6++GuvMJfA8Qs++gnmzE7OljcxbH/UrAl/H6B9COa4/i2+F6OIisvccwm3aNHPM5aV+Enckjl5uu1HHQaWz8pgQ64KTGQIgEKkgFV9g5g+wQqU4mWHS8ZsAhIu3zrptMFLD2MCZabenR28QKm4iWrGHzYd+jb4rf0tF05sX9wuIDaegEn8f/ehHAdBa86EPfYhoNEowGMxzVEIIIYQQQgghhBBCiNkYYykAdFTaOk5wa6sInDhH6KkXMDt7yDxyL4Fzlwk99Tzpn3gMHZs6D9G80e7P96ssW9G4nAO7Zr3PK/MriIyhUdxlJv7UxGNCEn9iHbDTg5iBIkwrBCwi8Rcsw8mOkB69gRkoIhCZPbEfiNRgp/rR2kWpWxW36dEbFNfeA0C0fDdbjn5iyb+H2DgKcsafbds88MADvPDCC/kORQghhBBCCCGEEEIIMQeV9JM8XpEk/iZ41RVgGpgd3WTvvQN3WyPpxx8E0yD0/echk53cVo3ECVy46iflVmi+34KEguiiCMbQyLIPpcaSADLjT6wLTnoQK1yx6P2sUCluZoT0aAuh4q1zdjgMRGvQ2sVJD946b2YEJzNIeLxFqBALVZCJv2AwSF1dHa7r5jsUIYQQQgghhBBCCCHEHNRYEgwF4VC+Qykcpom9dwf2kf04e3f4t0XCpJ94CJVKEXr6RX+WHhA8dhodjWAf2J3HgH1eWSnG8OiyjzOZ+JMqULEOOJkhAktI/JnBW60+50veBSM1AGRTt+b8peM3gLlbhAoxk4JM/AF88IMf5Mtf/jKZTCbfoQghhBBCCCGEEEIIIWahkmk/wTNHNctGZN9zCPuOvVNu02UlZN74AGbPAMEXTmC0d2O2dZG95xBY5ixHWj1eeQnGwDBovazjGIkUOhIGM/+/kxDL5WQGl5T4s0Kl2OkB3Owo4ZLmubcNl6OUiZ28LfE3egMzWLKkakOxsRXUjL/bdXV10dLSwqOPPsrRo0epqqqaVgr78Y9/PE/RCSGEEEIIIYQQQgghwK/u8qSya8G8umoyD91N6NlXMG+049ZV4W7ZnO+wAHAb6wmcvYzR0YPXULfk46ixJFpav4p1wk4PEQiXL3o/K1gG+En0+Sr+lDIJRKqxU32Tt6VHWwiXzN0iVIiZFGzi7+mnnyYYDAJw5syZafcrpSTxJ4QQQgghhBBCCCFEnqlkSpI8i+RubyI7liR48jzZo4cLplrSq63CqygjcP4qmeUk/hJJdFE0h5EJkR+ek8ZzklihJbT6DJUCYIUrsIIl824fiNaSGrmK1h6gyMRvUtbwpkWfV4iCTfz98Ic/zHcIQgghhBBCCCGEEEKIeaixFF5FWb7DWHOcQ3tw9u0Aq4Au0SqFvX8noR8fQw2PosvmT1YAkMpgXWnBObALDAM1lsStqF/ZWIVYBXZmCGCJFX9+4m++Np8TyhvfRPtr/52Rjh8RrdiPa4/NWykoxEwK6F3Fl8lk+NGPfkR7ezu1tbXcf//9VFRID1shhBBCCCGEEEIIIQqO1hhjKRyp+FuaQkr6jXObG9DHThO4cI3s/XcuaJ/AmYsEzl0B08DZt1MeE2LdcDKDAEuas2eNV/yFi7cuaPto+R5KNz9C/7WvU+6k/H0l8SeWoKDeWTo7O/mFX/gFWltb0eMDZEtLS/nc5z7HPffck+fohBBCCCGEEEKIwmC0dxM8fob0Tz5eMO3hhBAbVNYG15W2juuJaeLs2Y519hIc2Y/Z20/g+Dmc5gacO/ZO3962sS63oEMBAicv4G6uk8eEWDec9CCgCITKFr2vYYbYdPDDRMp2L3if6u3vITlwloHr/0ggUo0ZiC36vEIY+Q7gdp/97GcZGRnh05/+NN/+9rf54he/SFVVFf/5P//nfIcmhBBCCCGEEEIUDKu1A2NwBJVM5TsUIcQGp8b81yEdlequ9cTevQ3leUT+6SlCT72ASiYJXLwG48Uat7Ou3kQ5LuknHwEg9NyrAOiYJP7E2uekh7BCpShjaTVUseo7MQMLfy4YVpjaPT8H6AVXCgrxegVV8XfixAl+4zd+g3e+850AbN++ncrKSt773vcyODgoLT+FEEIIIYQQQgjA6PPbTqnRhFRUCCHyamIBgpa2jutLNIyzextGZw/ZNz2ADocIf/tpjO5+vPrqW9tpjXX+Ks7WzejKMuw79xF8+RQAnrw/iXXAzgxhhRY/3285ohV7qd39IULFDat6XrF+FFTir7u7m127dk25bffu3Wit6e3tlcSfEEIIIYQQQghhOxhDowAYowm8+po8BySE2MiMsSQohY6E8x2KyLHsfbfN99MaHYtitbSSvS3xZ7Z3Y4wmyD7sj2ly9mzHunQdY3QMwqHVDlmInHPSg0ua77dcpZsfXvVzivWjoFp9aq0xTXPKbYbhh+h5Xj5CEkIIIYQQQgghCooxMOS3WjMM1Ggi3+EIITY4lUyhIyEwCuoyo8g1pXCaGzFvtIPrTt5snb+CV1WOVz2eGDEMsg8fJXtkv8ygFeuCkxkisMoVf0IsV0FV/AF85jOfobi4eNrtv/d7v0csdmuQpVKKL3zhC6sZmhBCCCGEEEIIkXdG3yDaMvGqKzFG4vkORwixwalEUub7bRDOtkYCZy5hdvbiNtZjtnVidvaSecM9U5J8XlU5XpUkSsTap7XGzuSn4k+I5SioxN899/gl4WNjYwu6XQghhBBCCCGE2GjMvgG86gp0WTFGV2++wxFCbHDG4DBepSR5NgJdXopXVoJ5vRUdCRN85mXcpk2425ryHZoQK8Jzkmg3u+oz/oRYroJK/P31X/91vkMQQgghhBBCCCEKl9YYvYM4O7ago2GsSy1+209ppyaEyAfXxRgexdnVnO9IxGpQCndbI9bpi5hdfeiyEjKPHJX3ILFuOelBAEn8iTVHmm8LIYQQQgghhBBrhEqmUKk0Xk0lXkkxeB4qkcx3WEKIDcoYHgVPS8XfBuI0N6IcF0yD9OMPglVQdSVC5JSd8RN/AWn1KdYYeWUWQgghhBBCCCEKQdYGBQQCs25i9PoXoNyqCpTjAKBGE+jiotWIUAghpjAGhgHwykvzG4hYNbokRuYN9+DVVEEknO9whFhRTnoIpUzMYEm+QxFiUaTiTwghhBBCCCGEKAChZ18h+MKJObcx+gbQsShEw/7/lcIYTaxShEIIMZUxOIxXVgwBqS3YSNztW2TBidgQnMwgVqgcpSSNItYWeVcWQgghhBBCCCEKgBqJYzjunNsYfYO41ePtpgwDr7gIFZfEnxAiP4yBYbyKsnyHIYQQK8JOD2GFpZWxWHskVS2EEEIIIYQQQuSb1v78vmQKNTbLzD7PwxwYwqu+NWdGl8QwRuKrFKQQQtxGa9TgsMz3E0KsW05mCCskr3Fi7ZHEnxBCCCGEEEIIkW9ZGzVe7Wf0DU6/33YIHD8LrodXXTl5s1dajJJWn0KIPFAjcZTjSsWfEGLdctKDWOGK+TcUosAUVKvPz33uc4va/qMf/egKRSKEEEIIIYQQQqweNZaa/LPRN4i7tWHyZ/N6G8Fjp1GZDPYde6dW/BXHMOJj4HlgyNpeIcTqMQaGAfAqy/IahxBCrATtOTiZIQJS8SfWoIJK/P3lX/7llJ9t2yadTgMQCoXIZDIAhMNhgsGgJP6EEEIIIYQQQqwLKukn/ryaSoy+gVu3D48S+tHLuE2byB69A11cNGU/ryTmt9tLJNElsVWNWQixsRkDQ+hYFELBfIcihBA5lxq5htYu4dJt+Q5FiEUrqMTfsWPHJv985swZfv3Xf52PfOQjPPnkk8RiMRKJBN/97nf5whe+wB/+4R/mMVIhhBBCCCGEECJ3jGQKlMJp2kTwtXOTFXxWSxs6YJF59F4wzWn7TST71GhCEn9CiFVlyHw/IcQ6NjZwFjNYQijWmO9QhFi0gu0D8ru/+7v80i/9Eu95z3uIxfwvL7FYjJ/+6Z/mF3/xF/nUpz6V5wiFEEIIIYQQQojcUGMpdDiEV1sFrocxNAJaY15vw92yecakH+BX2xgGxmh8lSMWQmxoWmMMDEubTyHEupUcPEtRxX6UKtgUihCzKthH7cWLF2loaJjxvsbGRq5cubLKEQkhhBBCCCGEECtDjSXRRRG8ijIwFEbvIMbAMMZoAmfbHCvNlcIrKcIYTaxarEIIoRJJVNaWxJ8QYl2y00NkEh0UVR7IdyhCLElBtfq83ebNm/nqV7/Kww8/jFJq8natNV/5ylfYtGlTHqMTQgghhBBCCCFyRyVT6KIIWCZeRRlG3wAqnvCrAOtr5txXF8dQkvgTQqw0x8W6esOvSh7xq4y9irK8hiSEECshOXgWlEG0Yl++QxFiSQo28febv/mb/Pt//+9585vfzGOPPUZlZSUDAwM8/fTTdHZ28sd//Mf5DlEIIYQQQgghhMgJNZbCra8GwKuuwOjoQTkubnMDGHM363FrKgmeOIfR3o3XULca4QohNiDr4jWCx06jLb/1sFddgY5G8hyVEELk3tjAOcIlzZiBonyHIsSSFGzi7/HHH+drX/saX/rSl/jBD35AX18f1dXVHDp0iD/5kz9h7969+Q5RCCGEEEIIIYTICb/iLwqAW12BdeEaAE7zHG0+xzkHdmH29BN65iXSb30ULa33hBC55nkELlzF2d5E9g1H8x2NEEKsGO05JIcuUN74RL5DEWLJCjbxB7B3717+8A//MN9hCCGEEEIIIYQQK8e2UVkbHQ0D4FVXAqCLong1lfPvbxhkHr2X8D//iPBTz5P+iccmk4hz0ho1HAet/R9jUQgGlvxrCCHWL7O1E5VI4rxxZ75DEUKIFZUauY7npGS+n1jTCjrxN6Grq4uuri727NlDNLqALy9CCCGEEEIIIcQaoZJpgMlknS4uQkcjONub4LaZ93MKBMg88SDhb/2Q4LPHyLzlDXPua3T2EnzlFMbQyORtOhwi/RNvRBdLWyshxFTW+au4tVV4leX5DkUIIVbU2OBZzGAJoeKmfIcixJLNPSggz/72b/+Whx9+mMcee4yf/dmfpaWlBYBf/dVf5S//8i/zHJ0QQgghhBBCCLF8aiwJcGtWllKkfvJN2IcXN+JCRyNkHrgLs7sP82bHzBvZNqEfvkj4e89CwCL9xEOkf+KNpN/2KDpgEXrqOchkl/PriHmYV1oIvHLK/+/4Wfn7FgVPDQxh9vTj7NuR71CEEGLFJQfOUFSxD6UKOnUixJwK9tH75S9/md/93d/lXe96F3/+53+OHm89AnD06FG++93vLup4x44d41d+5Vd46KGH2L17N0899dS8+7z88sv81E/9FAcOHOCJJ57g61//+rKPKYQQQgghhBBC3E6NpQDQRZFbN0bCYJqLPpbXUIfbWE/w2Glw3Gn3WxevY7Z1kXnDUdJvexSvoQ6vugKvtorMEw+hUmlCP3wR3On7ihzIZAk9fwKrpR2zvYvA6YuYbV35jkqIOQXOX0UXRXGbNuU7FCGEACAz1slI5/M5P2422UMm0UFR1eGcH1uI1VSwib//9b/+Fx/5yEf4zd/8Te69994p9zU3N09W/y1UMplk9+7d/Of//J8XtH1bWxv/9t/+W+69917+8R//kZ//+Z/n4x//OD/+8Y+XfEwhhBBCCCGEEOL1VDKFDgeXlOibSfaeQ6hkisDZS1Pv8DwCF67hNDfgztBGVJcWk3njA5i9AwROnMtJLGIqs6MHtCb9E4+Rfvdb0JEwxmgi32EJMbtMFut6G/be7WAU7GVEIcQGM9jybXou/TVOZmT+jRch3nscwwzJfD+x5hXsjL+enh7uvPPOGe8LBAIkk8lFHe+RRx7hkUceWfD2X/3qV2loaOBjH/sYANu3b+f48eN8+ctf5uGHH17SMYUQQgghhBBCiNczxlK32nzmgC4txt63k8DpSzg7t07ODjRbO1FjSZz9O2fd16urxt6zzb/Qf/fBhc8YFAtitnfhlZdO/pt4JTHUaDzPUQnhU2NJtGVBKDh5m9k3AJ6Hu7Uhj5EJIcQt2nMYGzwL2iPee4zyxsdzduxE73GKKg9hmMH5NxaigBXsUp1NmzZx5syZGe87deoUW7duXdHznzx5kvvvv3/KbQ899BAnT55c0fMKIYQQQgghhNhYVDK3iT8A+4696GCA4DMvT7bttM5fwa2twqssn3Nft6EelUyhhnK7in7D0xqzoxu3oe7WTSUxjNGxPAYlxC3BH71C8OWTU24zegfR4RA6Fs1PUEII8Tqp4St4TopgUT2j3S/l7LjZZC+ZRBuxmrtydkwh8qVgK/7e97738bnPfY7y8nLe/OY3A+A4Ds888wz/83/+T3791399Rc/f399PVVXVlNuqqqpIJBKk02nC4XDOzmUYCsOQVZQif0zTmPJ/IQqRPE7FWiCPU7EWyONUrAUb7XFqpFLo6gosK4e/rxXCeeJBAv/8DOHnX8U9uBurdwD7TQ/Mf56GGghYBLt6cGsq/Ns8D/PVs7gHdkKOk5Rr1WIfp6p3ACOTha2bJv8NVHkJxs0OLFNJdaVYEYt5nJrJFMQTeLc9Hq2BIaitxArkphWxEDPZaO/7YnmSg6cJRCqo3flTtJ/6Am66m1Bs+TNIhwdOYFghSmsPYszwWJTHqVhLCjbx90u/9Et0dXXxiU98YnKG3s/8zM8A8MEPfpCf/dmfzWd4OVVRUYSSD/iiAJSUyBd4UfjkcSrWAnmcirVAHqdiLdgoj9NsNotRXY5VXpTbA5cX4ZqP4HzrR6i+QSgvIXJ4J2oBc7rsbZuhp5/AeEzupRacc5ex6isxN+/KbZxr3GyPU631lO/6zsUreNEwkd1Nk/8G7uYqnBMu0ZCJKtoYj3eRHwt5Pc24DmRtospDlZegPU12aBjz7v3Ecv36JMQMNsr7vlg4z7XpvPRP1O14EisYQ2vNzeGz1DQdpWHHffRd/l/YIyeoa5y9jflCdZw4SXXDXVRWVcy5nTxOxVpQsIk/gI9//OP8/M//PC+88AJDQ0OUlpZy//33r3ibT/Cr+/r7+6fc1t/fTywWy2m1H8Dg4JhU/Im8Mk2DkpIIo6MpXNfLdzhCzEgep2ItkMepWAvkcSrWgg31OHVdQvEktjLwhlag5WNVFeZdB7FePolz9A7GRlIL2s2oriLwwgkS3UMQChJ46QyG65Ht6MNp3Jz7ONeg+R6n5qkLGDc7sd/yMASDBC7eRNdVT/k3UIZF0PUYae1F11VNO4YQy7Xg11PXJZTKADB64Qbe3u2ooVGCyTSpohh6JV6fhBi3od73xaIk+s/QdvbvGe5vZ/PBf0063kYy3kvVzn2MjGaJVB6h6/qzFG16G0otvRIvm+xldKCF4s1PMjTL6508TkUhKF/gQpyCTvwBNDY28v73v3/Vz3v48GGeffbZKbe98MILHD58OOfn8jyN5+mcH1eIxXJdD8eRNy5R2ORxKtYCeZyKtUAep2It2AiPUxUfQ2twwmG8FfpdnT3bsSvL8arKYYHnUJtqsTyNbu1Cx4pQPQN4oQB6cHTd/5ss1myPU+t6O6p/CPNfXiD78N0E+wbJ7tmOe/u20SgBDd7QKO48FQZCLMe8r6fJDMGJS1OdvTg7mzG7+9Ea7PKyBb92CLEcG+F9XyxOYuAKGsVI10sUVR0hk2hHmWGCxTtwHI9Yzb0MtT1DvP8SVrCE1Mg1wiVbCcUaFnWeoc5XQAUIl+2b9zEoj1OxFhRs4m/v3r00Nzfz+c9/nubm5in3nTp1ig984ANcuHBhwccbGxujtbV18uf29nYuXLhAaWkpmzZt4rOf/Sw9PT38wR/8AQAf+MAH+N//+3/zB3/wB7znPe/hpZde4jvf+Q5f/OIXF3xMIYQQQgghhBBiLmrMr/7SKzk3Tym8mspF7aKLonjlpZhtXaA1OhbF2bIZ62bHCgW5zrguxuAwTnMD1s0OQt/1Fxa7m2unbmdZ6GgEYzSBm4cwhZigMlkA3JpKzO4+0BqzbwCvrASCgTxHJ4TYqFIjV4lVHUJrj55L/xszUERRxQGU4ac1wiXbCESq6Tj5R2jtv5Mqw6J6x3sp3fzogsZrjQ2eY/DGtympuxfDDK3o7yPEainYSZRaa2zb5r3vfS/PPPPMso939uxZ3vWud/Gud70LgN///d/nXe96F3/yJ38CQF9fH11dXZPbNzY28sUvfpEXXniBd77znfzFX/wF/+W//BcefvjhBR9TCCGEEEIIIYSYy2TirwDnu7kNdZjtXVgt7dj7duCVl6ASSXCcfIdW8IyBYfA0zoFdZB66G2M04VdcRqaPDvFKY6jRxOoHKcRtVMZv8+lu3YxKplGjCYy+QbxqqUQVQuSH9hzSoy1ESndSs+tn0V6W7FgnRVWHJrdRSlGz6wOUNz3J5sP/nu0P/yGlm95A7+W/oevcl/DczJznGBs8T+fpPyNavofqXT+z0r+SEKumYCv+AD7zmc/wrW99i4985CN89KMf5SMf+ciSj3Xvvfdy6dKlWe//9Kc/PeM+//AP/7DkYwohhBBCCCGEEHNRyRQ6YEGg8Cpq3IY6AmcuoQMWzs5mjOFRANRIAl1Zlt/gCpzRNwCmgVdeClUVZJSBjk5P+gHokhhG3+AqRyjEVCo9nvhr2gzHzmC2d2MMjeLs2Z7nyIQoTKNdLxKI1hAplefISknHW9GeTaRsB4FwOTW7foa+K39HUeXBKdsVVR6cclvNrg8QKdtF9/n/yXDbD6nY+tZpx9baZbTrJXovf4Vo+R7qD/4KhlF4n8WEWKqCTvxZlsUnPvEJ9uzZw+/+7u9y8eLFGRN0QgghhBBCCCHEWmSMxNGxaL7DmJFXU4kOB3G2NUEwgFdaDIAxMoorib85GX2DuJXlYJoAuNsaZ93WK45hXmsFrWEBLcmEWAkTrT51LIpXWUbg/BXQGrd6cW2ChVhvtPbwnBRmoGjytky8je6Lf0kgXMnW+z6FUmYeI1y/UiNXUUaQUMx/Dy2pu4/i2nsX1L6zuOYIid5Xife+OiXxp7Um3vMygze+TTbZQ3HtUWr3/rwk/cS6U7CtPm/3vve9j7/4i7/g+PHjvP/97+fmzZv5DkkIIYQQQgghhFgez8Ns7cTdXJfvSGZmGKR/8nHsu8dX0YeC6EgYYySe37jWAHMRLRJ1aTHKcVGp9ApHJcQcMll0KAhK4dZVoxJJdMBCl5fkOzIh8mro5vdoeeF3yIx1An7iqO/q/4sVLMFO9RHvfjnPEa5f6eGrREqbJ+f5AQtK+k2I1dxFJtFGNtk7edto53N0n/9zAtE6mu75OPX7/7Uk/cS6tCYSfwB33303X/va17Asi//4H/9jvsMRQgghhBBCCCGWxezsQWWyfkXdImmt0VqvQFSvO09RdLJqDcArLUYNS+JvTsk0KpHEW2CllFccA5A5fyKvVDrjJ/4Ar67K/39VuVShig0v0X8Kz03TdeYLuE6SsYHTJIcuUrP7/yBWfZiBG99GazffYa47WmtSI1cJl+5Y8jGKKg+gzCCJ3uPjx/QYavs+seojbD70q4SLF//5S4i1omATfx/96Eepra2dclt9fT1/8zd/w7vf/W7uvvvuPEUmhBBCCCGEEEIsn3m9Da+0GF1Ruuh9E32v0fLCx9DaW4HIZqfLiqXibx5mvz+vz6tZYMVfid8+zpDEn8gjlclCOASAW1MFSuFVLewxLMR65TpJ0vEblDc9iZON033uf9J35f8lWrGPosqDVGz9ifGqv1fyHeq6Yye7ce0EkbKlJ/4MM0RR5UHifX7ib2zgLNlkN+WNj+cqTCEKVsHO+PvoRz864+3hcJhPfepTqxyNEEIIIYQQQgiRQ46D2dqJc2DXkipqkkMXcDJDOJkRAuHyFQhwZl5pMdaVGzKPbg5G3yA6EkZHIwvbwTTRsahU/Im8UhOtPgFCQTKP3otXI/P9xMaWGroM2qNs8xuIlu+i49TnQCk2HfwwSinCxU3Eqg4zePOfKa47KrP+cig1cg2UQbhk27KOU1xzF11nv0Q22ctw2w8Il2wlXLo9R1EKUbgKKvF37tw5tm/fTjgc5ty5c/Nuv3///lWISgghhBBCCCGEyC2zrRtlOzjNjUvaP5NoB8BO96964g/XQ8XH0CWxVTvvWmL0DfjVfotIjHolMYxRqaQU+aMyWbzbntPu1oY8RiPE4jiZEdpP/hGbDvwbgkX182+fjWOYQQwzNOd2yaELBMJVBCLVBCLV1O75OTwvQyi2eXKbiuafoPXYfyHRd4rimiPL/l02GtdJgfYwA0VTbk+NXCUUa8C0FriIZhZFlQdRRpCBln8iOXSB+v2/vKg5gUKsVQWV+HvPe97D3/3d33Ho0CHe8573zPok1FqjlOLChQurHKEQQgghhBBCCLF8VksbXmU5urR40ftq7ZFJtAHgpPqgbGeuw5v93GUlABgjcdySGGok7lcuHtw96z7WxWu4tVXo8sW3NF1ztMboH8I+tGdxu5UUY/T0rVBQQixAOoOWCj+xRsV7XyU71kG85xiV235yzm211rSf+K9EynZRu+f/mHPb5OAFohV7J38u3fTgtG3CxU1YwVKyYx2AJP4WQ2uPjpN/TDbZTd3ef0Ws+jAArp0kNXSJoqo7ln0OwwxRVHWQeM8rWKFyYtV3LvuYQqwFBZX4+6u/+iu2b98++WchhBBCCCGEEGLdydqY7V1kjxxY0u52qhftZsf/3J/LyOaloxG0ZaKGR6GhjuBzr2L2DuDs2AKR8PQd0hmCL53E2bmV7IN3rWqs+aCGRlG2s+gWiV5JEdaVFmmhKvJGZTK3Wn0KscYkev0Zbon+U/Mm/jKJVrLJbjw3PVlcMhM7PUQ22U1l89zHA7DCFdjpwcUHvsHFe46RHr1OpHQHnWf+jPLGJzCsMENtT6E9l+Kau3NynuLqu0j0Hqes4Y0oo6DSIUKsmIJ6pB89enTGPwshhBBCCCGEEOuF2dYJrofbvLRWepm4X+0XLKonm1rlKjGl0KUlGCNxzJZ2zN4BAMy+QdymTdM2Nzt6/Cq47o1RzWb2D4JSeJVli9pPT7RQHU0sqQpUiGXRGpWxQRJ/Yg1yMsOkRq5RVHmQsYEz2KkBApHZF1/4SUKFkxkmm2gnVOy33NZakxq+TLh0G4YRIDXkd5qLls9e0T7BClfgSOJvUTw3Q/+1rxOrPkL9gX/LcPsP6L/696AMyjY/QnnTk1ih3HQKKKq+g6ptP0XZ5kdycjwh1gIj3wEIIYQQQgghhBAbidkzgFdWgi6KLmn/dKINK1RBuHgrdnp1K/7An/NnDAwTPHYat2kTOhLG6Jv5gqfZ3g1KYYwmUGPJVY509anBYX9OWiCwqP3c2mp0MIB1uWWFIhNiDhm/gliH5553JkQhivedQCmDmt0fRCmTxMCpWbfVWhPvPU5J3b0YZoixwXOT9yUHz9P+2mfpOvslPM8mOXSRUHETZnD+xRiBcAVOZuMl/hL9pxjtemFJ+w61/guuHadq+7tRSlHe+Dhb7/8vND/w+1TvfF/Okn4AhhGgYutbMawZOhMIsU4VVMXfnXfeuajhmidOnFjBaIQQQgghhBBCiNwz+gbwqiuWvH8m3kqouJFApGrKRcvV4pUVY11vBcMge/QQwVdOY/QNTN9Qa8yObpydW7Eut2B09+Nub1r1eFeTMTSKV16y+B0DFs6uZqzLLdiH9y46cSjEcqiJxJ9U/Ik1KNF7nGjFXgLhSiLluxnrO0V5wxsB0J6Dk40TCJcDkEm0Yaf6qNn1QVwnxdjAWSq2vAWAkc4fY4XKSA6ep+vsl0iP3qCk7r4FxWCF/Fafc7UOXY+G235AauQq4dIdBKM1C97PTg8x2Po9yhreNGW/QFjmjAqRKwWV+PvFX/zFDfXiKIQQQgghhBBig7EdjKFRnD3bl7S71ppMoo2yTY8QiFTjZkfx3AyGuXqVOhOtKO0Du9DFMdzqCgKnL06bT2f0DaIyWZydWzF6BzC7+9Z34k9rjKERnH07lrS7s3cHgXNXsK624uz1Hx/m9VZUOoOzb2cuIxViiluJP6n4E2uLkxkmNXyV2j0/B0Cs6jB9V/4W105iWGE6z3yB5NBFGu/6bcLFTSR6j2MGioiW78ZO99F3+W9xnRTazTDWf4qqne8lGKmh88yfoT2HaMWeBcURCFegPRvXTmAtoEJwvcgme9CeQ/+1r7Pp4K8seL/h9qcmq/CEECujoBJ/v/Zrv5bvEIQQQgghhBBCiBVjDAyB1rhLrPhzsyO42Tih4kbMwHgCLtVPKLY5l2HOHcOmWuwDu7AP+XOPvJpKlO2ghkbRFbdac5ntXehQAK+6Aq+uCqOzd9VizItUBpXJ4pUtoeIP0LEozpZNWBeu4OzZhtnWRejZY2jTwNm9DUwzxwEL4VPpDAA6LBV/Ym1J9L2GUgax6sMAFFUdovfyV0gOniMz1snYwFkCkSq6znyBprv/I/He4xRVHUYZFkUVB+jVXyE5eAE72QPKoKT2XsxAEZsOfoThjh8RKV3Yogsr5L+nO+nBDZP489wMTmaIaMU+En0nSA5dJlq+a979JtqtxmruxrSW1vJcCDE/mfEnhBBCCCGEEEKsEqNvEG2Z6PKlza7JJNoACMX8Vp/A6s/5Cwaw7zk02Y7SqywDpTBf1+7TbO/G3VwHSuHWVftz/pKp1Y11FRnDIwB4S/y3BXD27cQYSWCdvkjwRy/jVZWjHBejuy9XYQoxXcZP/CGtPsUaEx9v82kGigC/8i5U3MRAyz8xeOPbVG1/Fw2H/wOem6H95H/HTvVSXHOXv22kimC0jrGBM4x0/pjimrsnj1NUeYDNh34Vw1zYc8IKjyf+NtCcPzvpL+ap3PoThEua6bv6d2jtzbtferQFJz04+e8ghFgZBVXx93o3b97k61//Ojdu3CAz8SHkNv/jf/yPPEQlhBBCCCGEEEIsjdk3iFdVMaUl5mKk420YVhRrfA6OMgLYqaUlhTKJdkZ7XqFq208tb+xGIIBXXoLRNwi7t/lxJVMYA8PY+/1qCbeuGgCjuw93WxPYDlZLG86Wzesm2WAMjYBpoktiSz6GV1OJV1lG8MQ5vOoK0m95A5Gvfw+zvRtvc10OoxXiFpXOogMWGFIfINYOz82QGrlKza6fmXJ7rOoOBlq+SazmLsqb3oJSivoD/4b2k3803ubzVvvOosoDDLc/jdYudZt+ccmxmIGY/36c3jiJv2zKT/wFo7VU73w/bcc/zWj3S5TWPzDnfom+45jBEiJl81cHCiGWrmATf6dPn+ZDH/oQmzZt4saNG+zevZt4PE5HRwd1dXU0Na3juQBCCCGEEEIIIdYfrTF6B3B2bFnyITKJNkKxxslEXSBSjZ1aWsVf35W/Izl0kdL6hwhGa5YcE4BXXYHRc6viz+joBvAr/gAiYbzSYn/O39YGQs+8hNneTeD4Gew79+Psal7zSQdjaNRv87mcJKpSZI8cIHDmIplH7wPLwm2ow2zvxr43d7EKcTuVyaLDMt9PrC2ZRDtoj3Dx1im3l256GM9JU9n8jsn3ymj5Hur3/Wu0Z6OMW5fDo5X7GWp7imDRJsKlS5u9C6CUIhCuwNlIib9kD2agCCMQIxIspqjqECMdz8yZ+Jts81l9J0qt7fd8IQpdwT7D/ut//a+89a1v5Vvf+hZaa/7v//v/5gc/+AFf+cpXUErxy7/8y/kOUQghhBBCCCGEWDCVTKFSabyayiUfIxNvJVzcOPlzIFK1pIq/5PAVkkMX/T+P/3853OoKjOFRyNqgNda1VrzqCrgtmeDVVWN09RF8+SRmRw+Zh+/Bbagn+OJrhL/zI9B62XHkkzE0gle+tPl+t/Ma6si89VGIhAFwG+r9Nqkj8WUfW4iZqEx23VTeio0jk2hDKZNgbNOU261QGdU734thhafcXlx7NyX190+5LVK2CzMQo6zhseVVvuPP+bM3VKvPHgKRmsm/t5K6+0mP3iCb7J51H2nzKcTqKdjE36VLl3j729+OMb7ib6LV55EjR/joRz/KZz/72XyGJ4QQQgghhBBCLIrR518QdKsqFrWfk42TTfaSSXRgp/oIxW5L/IWrljTjb7DlW4RimwmXbic5dGHR+7+eV+0nM43+QQKvnsHs6sM+tGfKNhNz/qyL18k+cAR3xxayD99D5rH7MHoHMAaHlx1H3miNGh5d1ny/2bj11WAYmO2zX0wVYjlUOoMOScWfWFsy8TaCRfUYRmDJxzCMAM0P/D6lm96w7HisjVbxl+olGK2d/Lmo6hCGFWG0++VZ95E2n0KsnoJN/CmlCAQCKKWorKyks7Nz8r66ujpu3LiRv+CEEEIIIYQQQohFMnoH0LEoRMPzbzzOycZpeeFj3Hjp49x85ZMAhEputQqdaPWptbfgY6aGr5IcukDF1ndQVLGP1NDFRe0/E11ajA4GCB47Q+DsZbJHD+E2Ta3CcOur0ZaJfWiP39pz4vbGenTAWtOJLZUYQzmu3+oz1wIB3LrqNf33IwpcJosOS8WfWFsmWl8vl2GGll3tBxAIV6zojL/MWBfJ4SsrdvzFmqj4m2AYAYpr7iLe/fKMnym01iR6T0ibTyFWScE+y7Zv305bWxsAhw8f5s///M+5fPky169f50tf+hKNjct/YRdCCCGEEEIIIVaL0T+IW724ar/U0EW0Z7Pp0K/ScOd/oOnu/0So6FZCLRCpQns2bnZ0wcccuPEtgkWbiVUfJlq+B9ceIxNvW1Rc0yiFV1WOMTiMvW8Hzv4ZVvNHwqQ+8BPYdx2Yertp4m2qxWzrmnpzaydG9+LbmOaDMeT//esctPqcidtQh9ndB7azIscXG5vKZNHS6lOsIVq7ZBIdhIoL5/qwFarAzY7geXZOj5sZ66Lr7P/DzZf/LzpO/hGek87p8ZfCtcdw7cSUij+A4tr7sNP9pEauTdsnPdqCnR6guFrafAqxGgo28fe+972Pvj7/A/5/+A//gYGBAd75znfy9re/nTNnzvDbv/3beY5QCCGEEEIIIYRYIM/D7B/y594tQnLwAsGiTcSq7iBavofwbdV+4Ff8AQue85eOt5IcPE9l89tRyiBc0oxhhnPS7tPZsx17/07so3fMvlFg5pZsTmOd3wo17Y/5wLYJ/vgYwWOnlx3XalBDI+hQAB2NrMjx3YY6/zHU1bsixxcbm0pnpszjFKLQZZM9aM/OScVfrgTC/vu7kx7K2TGH25/m5iufJDVyjapt70J7NomB/L8vZpM9AARel/iLlO0gEK4k3v3StH2GWv+FQLiKSPnOVYlRiI3OyncAs3nXu941+eft27fzz//8z7z22mtkMhkOHz5MZeXSh6ELMR/zZgfWuStk3vZovkMRQgghhBCrQA2PEvrBC2Te8gZ0UTTf4Yh1yOgdANebnIW3EFprxobOE6u+c9ZtAmH/eHaqn0jZ/BfTxgbOYphhYlWHAVCGRaRsJ8nBC1RsecuCY5uJu2Uz7pbNS9rX21wHgNnRjbt9C9bVVlTWRvUPQSoNkYW3R7XOXsbsHSDz2H2Qg/ZtC2EMjeCVla7Y+XRpMV5JDLOjZ1oLVSGWRWup+BNrTibeClBQiT9rIvGXGSQYrZln6/kNtz9N7+W/oazxTVRtfzeGESDRf5JE73FKao8u+/jLYaf8RSjByNTfUymD4tp7Ge54mupdH5icv5hJtJPoO0Htnp9DKXPV4xViIyrYir/XKyoq4qGHHuJNb3qTJP3EirMuXMXs6Qc7t+X5Yg3TGqN/4wxpFkIIITaawLkrGKMJjK610VZQrDFaE3z1DF5F6ZwVfwMt32Lw5vcmf7ZTfTjpQaLle2fdxzBDmMFS7HT/gkJJDV0gUr4bZdxaBxyt2Etq5Cqem13QMVaCjkbwKsr8OXZaY124gltXBYDZ0bPwA9k2gVMXMG92YF5vXaFopzOGRtHlpSt6Dq+qHDU0vKLnEBuQ7YDWkvgTa0om0UYgXIUZKJzFWlaoHABnmXP+tNaTSb/yxsep3vG+yQRarOYuxgbO5r3dZzbZgxUsxbCmL8opqbsXz0kx2vnc5G0DN75NIFxFSd19qxmmEBtawVb8AaRSKV588UW6urrIZqd+AVFK8a/+1b/KT2BiXVPJFOb4BR81lkKXzdyKRmws5o12Qs+8TOrdT6JLi/MdjhBCCCFyKZ3BunYTALNvEHfHlnl2EGJxzGutGH2DpN/6yJwVYYm+18imeijd9BBmoMhvv6kMomUzzMu7TSBStaBWn56b8duFbX/PlNuj5XvQnk165BrRitmTjCvNbajDunQNs70LYyRB+sG7Ua+cwmzvWvDz0rrairId3Loqgq+eIdW0adb2orkL3MUYiePs3b6ip9FlJZidi0iCCrEAary9rg5Jq0+xdmTibQU13w/AMIOYwRLsJSb+4j2vEu87TmroEq6doLzxcap2vBd12+eG4uoj9F/9GmMDZyiuvSdXoS+aneyd1uZzQrContLNj9B7+asYVoRQrJFE73Fq93xoyqIjIcTKKthn2yuvvMKv/dqvMTIyMuP9kvgTK8VsuTXUXiWS6LKVGc4u1paJWRpmdx+OJP6EEEKIdcW63AL4SQejTyr8RY7ZNsFXz+BsbcCrq55zUyc7gnazjHQ+R8WWJ0kOXiBSsm3GFfW3C0aqScdb8dwMhjn7xfvUyFW050xL7gWLNmMGS0gOXchv4q+xnsDpiwRfPIlXWY5XU4nbUI91/gp4HhjzNC0arxR0tmzCvvsQkW98j8DpS9h3HVjRuNVIHLTGW+mKv9JiVDrrz0GUeWwiR1TGX2gvFX9irdBak0m0UdbwpnyHMk0gXLGkir/k8BW6zn2JcEkzpZveQLRiL5GyXVOSfuAv9AmXbCXeezyvib9sqodw8ewLcmp2/Qx4Lt3n/4JgUf14td/9qxihEKJgW31+6lOfYvfu3Xzzm9/kzJkzXLx4ccp/Fy4sf/C4EDOxrrf5g9OVwhhL5jscUSCM7r4p/88prf3/hBBCCLH6PI/AhWs425pwG+sxBofBcfIdlVhHAqcvobJZ7HsOzrmd1i5uNo5hRRhu/yGeZ5MavrSgRFxJ3f3Y6X5aX/09MmOds26XHLyIFSwlGK2fcrtSimj5HsYGzy/sl1ohXnUFOhRAjSWx9+0ApXAb6lBZe0FJeaOjB2MkgbNvJ7q4CPvAbgLnLqPiYysat+oZAKXwKlY+8QdgjMRX9DxigxlP/BGWxJ9YG5zMIK49VnAVfwBWqAI7s7jEn9Ye/Vf+jnDJVhrv+m2qtr+LaPnuaUm/CbHquxgbOJO3dp9aa+xkz6wVf+DP+qvZ839QUv8A2bFOKra8Var9hFhlBZv46+jo4Fd+5VfYuXMngZVuyyHEODWawOgfwtm+BR0Jo8ZS+Q5JFACVTGGMJPCKi/w2sDlO0gWOnSb0/edzekwhhBBCLIx5owOVTGHv24lbXeHP9R0YzndYYp1Q8QSBs5exD+5Gx4rm3NbJjAKaiqa34GSGGLj+D7j2GNHyPfOeJ1qxl6a7/xOgaH3190j0vTbjdhMVfTNdTIxV3UEm3rqglqErRinchnp0JIzb3AD4c+10OOTP/ptH4PxVvMoyvJpKAP/vPRQicGplFw4bXX14lWUr3lJUl8T8BarDoyt6HrGxSKtPsdZkEu0AhGKFl/hbSsVfvPsl0vGbVO94L0rNf6m+uOYutGczNnBmqWEui5sdwXMzBCM1c26nlEHtng/RcOf/ScmmB1cpOiHEhIJN/B05coSWlpZ8hyE2GLOlDW2ZuE316FgUJRV/AjC6+wGw79iDSqVRo4mcHt/s6sXs6JbHmxBCCJEHgfNXcOur0RWl6PJSME1p9ylyJvjKaXQ4hH1g97zbull/zEW0cj/R8r0MtX4fwwwTLmle0LlCRfU03f07RMv30nPxr3HtqVVubjZOJt5KtHzmCsKiyoMoI0i898SCzrdSskfvIP22R8E0/RuUwt1ci9neNed+amAIs6Mbe9/OW3MUAxbOji2YbZ0r1mFDa43R3Yc7TxvXnDBNvOIiv7WoEDmiMhm0ZYJl5jsUIRYkE2/FDMSwQuX5DmUaK1yBnR5EL/A9x3PS9F/7BsU1dxMp27mgfQKRKsLFWxjueAbtrU6XikyindZXf4/hjh9NdhaYq+JvglIG0fJdC0poCiFyq2CfdZ/61Kf4xje+wd/93d/R1tbG8PDwtP+EyDXrehtu0yawLLyiiCRiBODP9fNKYrhbGkApzFy2+3RdjCF/xa55vW2ejYUQQgiRS2poFKNvEGfPdv8Gw8CtKsfoG8hvYGJdMDp7MFs7yd5zCALzt7dyxhN/VrCUskZ/blGkbOeiWmMZZoja3T+L9hwGb3x7yn3JoUv+MWepIDSsMEWVB0j0HV/w+VZEOORXtt3GbajHGByZ+fuZbRN49QyRbz3tf2YfrxS8tW8dKp3F6B9amXiH46hkCq9+FRJ/gC4txhiWxJ/IHZXJgsz3E2tIJtFGKNY4ayvMfLJCFWgvi2cvbMH4YOv3cJ0kVdvfvajzVG1/N+nRG3Se/eKCk3+uPUai7zXGBs4t6lwA8d7jZOJt9F76Cp2nPw/KIBCpWvRxhBCrp2Cb65aUlLBp0yY+8YlPzPpCLnP+RC6poVGM4VHsu/3B77ooKm2eBABGT5//RT4YwKss8+f87d6Wm2MPj4LW6FgUq6UN5+D8q8GFmMK2CT17jMz9RyAaznc0QgixpljXW9HBAG7jrXlnXnUFVossxhHL5HkEXz6FW1M5LRE1GyczAsrADBZTVHmAosoDlNTdt+hTW6Eyyre8hcGWb1K6+RGC4yvyk0MXCBbVEwjPXiFRXHMXXef+H+xUf0Fd0HM31/oL8Fo7cfbumLxdjcQJf+dH/gzFQ7v9ykpzatXSxNxAs70br7oi57F57T1+VWLN6vx9eaXFWDfaV+VcYmNQowm0JP7EGmGnhxgbOE/FlrfkO5QZBcL++0w22U0kWDzntlp7jHT+mNJNDy/6PTdasZdNBz9M55k/o+vslyjf8iTJoUtkRm8QKd9F6aY3YJhBtOcw0vUCIx0/Gm+RqlFmkB1v+JNFVeGlR65SVHmQyu3vYrDl22g8DENGcwlRyAo28fdbv/VbnDhxgl/4hV+gublZ5vyJFWf0+y2d3Dq/R7UuimKMJf2WMAW4ikisklQaYziOfYffEsmtq8a63pazx4UxMAxKkb1zP6EfH0ONxNGlc384FOJ2xsAwZmsn5tbNuNu35DscIYRYO7TGbGnD3bJ5SqLAq65Anb2MSqbQ0UgeAxRrmXXpOsbwKOl3vGnBnxndzDBWsGTyQtzmO/7dks9f3vg4o50/pu/q19h86Fdxs3GSg+cpqrpjzv38dp8B4r3Hqdjy5JLPn3OhIM7WzQROXcTZscWfpac1wZdPgWmQeveTs89QNAzcTX6rUPvOfTkPzWvvxqssh+DqXLPwyopRiSQ4bv5aM9o2KENaQ64D5pUWrJZ2skcP5TsUIRZk4Po3MKzwZGV8oQnGNhOM1tFz6X/TdNfHMKzZF+dmxzpxs6PEqg4v6VxFlQfYdPAjdJ75MxL9JzHMMKFYA31Xv8bgze9RUncv8d5XcdJDxKrvpKzxTSig+8KXsZM9BIvq5z0HgPYcUqMtVDb/JKGiTdQf+OUlxSuEWF0Fm/h76aWX+OQnP8k73/nOfIciNghjJI6ORSfb8OhYFFwP0hmISBXNRmWOz/fzxmd2eHXV/sXA+Ni0FkRLYQwM45XGcLc2oF96Det624pckBDrl4r783uMoVHcPMcihBBridE/hBEfI/vAkSm3T1QEGX2DflJQiMXI2gROnidw4SrOrma8qoXPH3KyI1ihspyEYZhBqra/h65zX+LGS58gm+wGZRCrPjL3flaYosqDJPoKLPEH2HcdxPrG9wicvoR91wHM9m7Mjm4yb7x/9qTfOLehHuvHxyCVzu13O63RbT14TZtyd8z5TllaAvjVjrqybNXOC4DrYp27QuD0RdytDWQfunt1zy9yyujoIfT8CZzdzTj7FjZbTIh8So+2MNr9ErV7PoRpFebiLMMIsOngh2l99ffpvvBl6g/821k72SUHL6CMAOGy7Us+X1HlAbYc/QSekyJU3IRSJnaqj4Eb/8xw+9PEqg5TccfbCRX571PueAvSTKJ9wYm/TKId7WaJlO6Yf2MhRMEo2Bl/tbW1FBdL1YtYPcbwKN5tlVZekf8hwpA5fxvaxHy/iRX/bm1VTuf8GQNDeBXlYJm4TZswW1r9akIhFsiYTPyN5DkSIYQoEKk01sVr876fmi1t6EgYr75myu26KIqORjB6Zc6fWBzzRjuRv/8u1qXr2HfsJXvf4UXt72SGMYOlOYsnVnMXpZsfIVy6nbp9v0jz/b9PtHzXvPsV19xFevQGdqo/Z7Hkgi4uwj6wm8DZy6jhUQKvnMKtr/FntM/D3ey3OzXbu3MbVHwMnRhDr9J8P2DyO6sxsrpz/ozuPsLf+BeCJ86hoxHMjm753rKGqeFRQk+/iLuplux9d0qXI1HwtNb0Xvk7QrFGSuofzHc4cwoW1VO37xdI9J1gqPW7s26XHLpApGznsltmBqN1hEuaUcqvwg5Eqqnb+/PsfPTz1B/45cmkH4AZiGGFKkjHWxd8/NTIVT9BWdy0rDiFEKurYBN//+7f/Tu+9KUvMTIiFzLF6lAjcbyyksmfdVHUvz0hib+NzOjum6z2A/w5fxXjc/6WS2uMwRG88ZW6zrYmjJEEanB4+ccWG8btFX9CCCEg+Np5gi++RuDY6dk30hrrehtOc8OMFzvdmorJNvBCLITR3k3omZfxaqtIv/tJ7MP7ps2am4+THcHKYeJPKUXt7p+lbu/PU1J335yz/W432e6z70TOYskV++BudDhE+Ds/8it2771jYQmLSBivqtxPVuWQ0dULSuHVruI8xFAQHQ6tauJPDQwTeup5dDRC6l1PYN9zCJVMT34OFWtP4OxlCAXJPHYvGAV7aVCISYneV0mPXKN653sXNZsuX2LVd1Kx5W30X/9H7PT0xWTac0gOXyZavnfVYwsVN5JJLHyedWr4qp9YNAq2caAQYgYF+4z95je/SWdnJ4899hh79+6dVv2nlOILX/hCnqIT647rYsTHcG6frRYKgmmipOJv40pnMIZHsQ/unnKzW1eF1dK+7Dl/ajgOrjuZ+PM21aDDIQLnrpB9+B5ZdSkWxIgn0Nb4a1XWXrX5MkIIUZAyWayrN/Gqygmcu4KOFeHsm96WyOjuQ6XSuM2NMx7Gq6ogcPI8eJ5cEF1DjPZugifPY+/dvqpzb9XAkF8501BH5rH7lvwZzsmMYFXlLvG3VIYVJlqxj+TAWSqa3pzvcKYKWGTvOUjoR6/g7N2OLl/435fbUI91/kpOn9dGVx+qpsL/7uh4OTnmQnhlJaiR1Vn0pcaShJ96Dl1STOaJhyBg4UYjk11QnByMPxCrzHUxb3bg7N3uz8sUosBprRm8+R2KKg8SLd+T73AWrHzLkwy1fZ9E7wnKm56Ycl9q5DrazRKtWP3fJxxrZLjzR2itZ21DOkFrTWrkKqX1D61SdEKIXCnYb7FjY2Ns2bKF/fv3YxgGY2NjU/5LJBL5DlGsI2p0DLSe0uoTpfCKIqixVP4CE3k18W+vy6YuPHA31aKSKdTw8r5sG4NDAHgVZeM3GGTvPoB1rRXr7OVlHVtsHCo+hjfevspY5mNSCCHWOutyC2hN+vEHsffvJPjKKczWzunbXW9Dx6KT8/xez6urQjkuxsDQSocsckDFE4S+/xzh7z+HGhohcP7q7Bu7LmpgOHfnHksSfup5dFkJmUfuXXLST2sX145jBctyFttyREp3kB5tQXtOvkOZxm1uJPPG+8nedWBx+zXWobI21oVrmG1dGB09fhJwqbTG6OrDaKhd+jGWeurSYozhVaj4y9qEvv88KIPM4w9AYHzteDCAV5mjLihi1ZkdPaisjdMsbfvE2pCJ3yCTaKes4bF8h7IophUhWrGPeO/xafclhy5gBooIxWZehLaSQsWNuNk4bnb+Lnt2qhc3O0qkTOb7CbHWFGTFn9aaP/3TPyUSiRAKhfIdjtgAjPHVklMSf/jtPqXib+NS6TQAOjz1dcirr0ZbJmZ7N84iVhm/njEwjI5F/RXC49ydzdijYwRfPYOOFeE2Nyz5+GIDsG1UOoPbUI/Z2oUxNIJXU5nvqIQQIj88j8CFqzjbGiESxr7nEMZI3J8D9roZYGZ7t7/dLEkar7IcbZkYXX141fK6WuiCP34VIz7mV9tpTeiZl1EjcXTp9JnxgVfPEDh/FXdzHdmjh9C3tfpfisDxs4Ai/aYHbyVFlsDNxkF7mKH8V/wBRMp24LkZMol2wiVb8x3OVErhbtm86N28ynJ0LErwlVOTt2Uevgd3x9KqQ43uPtRYEmMBMwZzzSsrxrp6Y9kdSOY+iUfo6RdRY0nSb3tscub5BLc2N11QxOozr7filZeiy5f3+ifEahnp+DFWuIJoxb58h7JoxTV30X3+z7HTgwTCtxacJYcuEinfk5e2pRPJxnS8lViobM5tU8NXAUW4dNvKByaEyKmCrPizbZsHHniAF198Md+hiA1CjcTRoQC8LsGjY1EMmfG3YalUBgAdDk+9wzTx6msw27uWdXxjcBivcvqsFfvIfpxtjYR+/IrMFxJzUnH/9ckrK8EriWEMyVxcIcTGZbZ2osZS2BOtPceTA0YiCa57a0PbRiVTeHMt3jEMvNoqzO7+lQ1aLJ/tYPYOYB/ag7u1AbexHh2wsFqmz65RQ6MELlzD2daIMTJK5B++j3Xm0tLP7Th+u7w92yAann/7uQ6V8d/DrQJJ/IWKm1BGgNTIHNWTa41SpH7qzaTe/3ZS7387XmXZ0j/Pex7Bl0/h1VSituYh8VdaDK6HSuRoxp7nETh2GqOz1/9Za4IvnMDs7iPz2P0zJoi8+mq/C8pcMWiN2dKOdepCbuIUy2fbWK1d/uIXIdYA10kx2vsKpfUPrYnZfq9XVHUIZVgkbpub6zpJ0qMteZnvB2CFKzGsKJlE+7zbpkauEoo1YFrRVYhMCJFLBfmKGQwGqaurw739C7oQK8gYjqNLS6atVPQr/qTV50al0hl0wALLnHaf21CH2TPgz1RbCq0xBoZxx+f7TT2xIvvQ3XhlJQRfOOGvohViBsb4hRavuAivvBQ1JK0+hRAbl3XuCm5dFfq2RTVeSQy0RsVvXZhWo/6f9Txzqdy6aoze/uW1AhQrzugdAK1x66r9GywLt3ETZkvb1M9QWhN85RReLEr2obtJvftJnO1NBE5dWPJnLbOtC+W4OLPMilwMJzvshx8sjMSfYQQIlzSPr/RfRywLHY2goxHcxnrMzqW1+7Qut2AMjeDcf+e885FWgi71E3G5avdptncTOHuZ8PeeJfTDFwgcO4115QaZB+/G21Qz4z5uTZUfw+3tPj0PHBccF6N/kNB3fkTomZcInjgnn1MLhNnaBa4764xbIQpNvOcVtOdQUv9gvkNZEtOKEq3YP6XdZ2r4CmiPoor8JP6UUoRijWTirfNumx65Km0+hVijCjLxB/DBD36QL3/5y2QymXyHIjYAYyQ+rc0ngBeLoFLpqavExYahUulpbT4nuA11/grWjp6lHTuRRGVt9EyJPwDTJHvfnRgDw1hXbizpHGL9U6MJtGVCOIQuL/Er/iRRLITYgNTAMGbvAM7eqRcmJpJ7xuit+eATf/bmSfx5ddUo28HI4Tw4kXtmdx86HJoyk9nd1ogxHEcN3qqEN9u6MDt7sI/eAaYJpomzvQllO6glJk+s6214VeXzJpEXwsmMgDIwg4XTei9SuoPUyFX0Ov1s4TbUozI2Rt8iO2xksgROnMXZuRU9y5zQlaaLImjLXPbM8QlmSxteWQmZR45i9A0ROHcF+/C+udughoJ+1WSXn/gzegeI/M03if71N4j+9TcIf/OHqEyWzOMPoIMBrJb5LzCLlWe1tOHVVKKLi/IdihDz0loz0vEsRZUHCYSnd0taK4pr7iI9cg07PYT2HEY7nycQriIQqc5bTOHiRjKJ6d0Rbudk42STPURKJfEnxFpUkDP+ALq6umhpaeHRRx/l6NGjVFVVTVtJ9/GPfzxP0Yl1RWvUyCjeDLPUdJFfyq6SKXTx8r/Qi7VFpTMQmbltk44V4ZWVYLZ3zTiHz+ju81uI3Ta/b8r9A0MAuBWzf3j1aipxtjUROH4WZ2sDBANL+C3EemYkxvwv7Ur5FX+ZLKQyy243tm64LmZnL+7mWjDmWeukNWZbl18xIs81IXJKjfhJlZnmreWKdb0VHQpOm+WnI2F0wJqMAUCNztzi/fW8qvE5f919eHm6uC8A18Xo7MOrr55xjpjR3YdbVzXlPndTDToUwGppw64sg6xN4Nhp3Poa3Mb6ye28Kv/f1egfwF3srKtMFrO9m+zdB5b0a72emx3BChQXVBuzSNkOBm/+M3aqj2B05qqvtcyrKkeHQ5jt3Xi1fvUamazfjr9+9t838No58DTZIwfyd0FFKXRFGcZgDtq82w5ma6ffLndbE6mmTRi9A3P+HUxw66qxbnSgRhOEfvA8uqyE7J7xOVCBgL9Y0jBwt2zGvN6Gfed+mQeYT+mM/7p19I58RyLEgqRHrpFJtFG57Z35DmVZJtp9Drc/RWr4Kpl4K7V7fz6vMYVijQy1PYXrJGdt45kd89thB2PTr3kJIQpf4XyreJ2nn36aYDBIJBLhzJkzPP300/zwhz+c/O/pp5/Od4hinVDJFMpx0WXTv+xPJv4S0u5zI1KpzKwVfzDe7rO9e3qFVSpN+LvPEjg/e2sko28QHQ3Pm6Cx7z4AjkPg5PlFxS42BjU6ho75q3W98dcwmfN3i9naSeip5wn/w/cx2rtn3c7o6iP8T08R+sELBF8+uXoBCrFBBF84TujHx1buBFpjtbThbm2YnuRXCl1chBGfWvG3oAVdhoFXU4l5exs7saq01lg/fpXw956d2k5wguNg9g/i1b1uxbxp4m5twGppw7zSQuTvv4tKpsjee3hq0iEY8BdyLbbiCzBbO8DzctYuz8mMYIXKcnKsXAmXbAPU+przdzulcDfXTpnzF3zpNcLf+zGkZ+k8ZDsELrfgHNiV94VWXkUZxuDQso8z0bJ28rFsWXibaheUoPPqqlFjScLf+RE6GCT9pgdwt2/x/2vaNPma7GxrxIiPTS5+FPlhtHaB1v6iUiEKmJ0eoOfi/6L9tc8SjNZRVJmbRTb54rf73MdQ6/dxs3Ea7/ptSuruy2tMoWL/NT+T6Jh1Gzvlf/YKRKpWJSYhRG4VbMXfD3/4w3yHIDaIifYoM7X61EURf5ux5KrGJAqDSmfwqspmvd9trCdw9jLGwDBe1a3KPetGuz/Dr7sX2DfjvmZP/61ZNHPQRVHsQ3sIvnYeZ+8OackiplCJBG6DX7mgS2JgmhjDI3iba/McWWFQyRSYBjoaJvz953A315E9emhyoYeKJwgeO4N5swOvugJ7/04C567g7N0+WQUihFim8Zm2ynb8iuTI3FV2S2H0DqDGUjjbZk7AeCXFqNtafarRBF7JwqoP3bpqAmcu+XOrlPLnwWWy2HfsnbdiUCyf++IpzKs38SwTs61rWgWS0TsAnp7xM5XT3IR1qYXQc8dxtjVi331wclHf7bzqCozexSf+rOttuHXV6Ghk0fvOxMkOY4YKY77fBDMQJRTbTHr4KqX1DwBgp4ewQmV5mWu3EtyGeqxrraixJCqRxLrutz0zO3pwtzdN297s6gXXy8lcx+XyKsuwLl0H24HA0i/tWNdbl9yy1p2olPQ8Mk88Muvroldf41dXXm+Tz1h5ZLR1+d9bpTuIKGCpkRvcOPZpDDNM5bZ3UdbwaEFVwy9VxZa3EghXUtn8k5iB/F/XCUbrUEaATLyVaNnOGbex0/1YoXIMQzriCLEWrf1XTiGWyRiJ+xeGZ0qoWBY6HJTE3wal0rPP+AO/FacOWFNWCYN/IQil/NXjM82HtG2M/qHpq9Nn4ezd4V847R1YVPxindMaI5689dqlFF55CcZQbma9rAcqnUVHwmSefAOZx+7DGBkl8g/fJ/DKKQLHzxL5xr9g9A2SecM9pN/+GPY9h/DKSwm+dFJmJYq1y/P8i8ALZdsrFwug4mN+0g8wO2avvF0O63obOhq51arvdXRJDGPkdRV/C7zAPTnnb3AY6/wVAq+dx7rsV5BZ5y77f99iRRiXWnBfOoVzz0Hc5sYZHz/+fL/gjJ07vLoqskf2k37bo2QfuXfGpB/4n+eM4dHFPRdSacyuPtxZks1L4WZGsIKFlfiDW3P+AIY7nqHlhd8mOXg2z1HljrvZr2wz27sJvnwSr7Icr6LU7+oxA7O9G6+4KCdzHZfLqyzzPw8up9tDJovZ0T3rwol5hYJkH7yL9JsfnvvvRCmcZr8KVz5j5Yf2PIyO7slFg0IUqpGuFzADJTTf/3tUbHkSw1wfC60ipdup2fUzBZH0A1CGRahoE5lE+6zb2Kk+qfYTYg0r6MRfT08Pn/nMZ3j/+9/Pk08+yfvf/37+4A/+gJ6ennyHJtYRYzjur/qeZdWqjkYxJPG38Wg93upzjtWQhoG7uQ7zeuvkhT+VGMPoHcDevxNcD2OG1lFGzwDomVenzygYQIdDGLdVKwihkinwvCmLFryyEmn1eRuVGk/eK4W7tYHUu58ke2Q/1uUWAucuYx/cTerdT+Ju3+K/ByhF9t7DGH2DmNda8x2+EEsSeO084W/9YEHbqsFhov/7nwj98EVUfGXeYybauulYdGUSf56HeaPdv2g9y2c5ryTmv2Y6DmRtv6J/oYm/qnIwTQLHzxJ85TT2gV2kfvptuM0NBI+dIXDqYi5/GzFOjSUJPH8c8+BO3EN7cBvqMIbjqPjYlO2M7n682pln/6EUzh17Z00IT3CrKvzkSf/wguOzWjsBcLZsXvA+83EywwXX6hMgXLaDbLKbgRvfpvfSVwBIx9fRe2QoiFtTQeD4WYyBYbL3HcZtqPdfr16foNIas73bn1tXABWPXlkJKIUxMLzkY1g3O/yq2WVUMDq7mtGVZfNu525rQiXTGN39Sz6XWDrd2YfK2riNdfkORYhZaa1J9J0iVn0HhiWVqSstVNxIZo73dDvVTyAsiT8h1qqCTfxdvnyZd7zjHXz1q1+lurqa++67j+rqar761a/ykz/5k1y5ciXfIYp1Qo3EZ2zzOUHHokua8afGkpjjrWLEGmQ7flJlnpZkzqHdGCMJv80O+P/mpol9x150KIDZNX0ejb86PbSolcJeSWxKmzIhJi5+erHbEn/lpX77YllJDfjtenXkti+MpolzaA+p976N5Pvejn3n/mmtsbz6apytmwkeP5O7SqhUGutyi/y7iJWnNdbVG36CJDE27+ZGWzcYCqNvkMjX/4XAa+dy/jg1BobR0QjO9qaZL6Qv9/idvah0Zs7Kq4n3WzU6hjEa928rXeB7sGni1lRidvbiNDdg330QIiGyD9yFs60R8+bsc1HE7NTwKGZb16z3WxeuoS0T85F7/MUbm25VZU1yXMy+wYUvpJqFLi9BByyMvoV3VjB6B/AqSnPW7lVrD8eOYxZoxR/AwPV/pKzhjYRLt2Mn19dCXLehHpXJ4mxrwqupxG30f379Aj41HEeNJQunYso0/W4Pg8NLP8T1Ntz63LWsnYtXXYGORbGur6PE8RritXSgwyG8yvL5NxYiT5IjrdjpQYqq7sh3KBtCKNZIdqwT7c3cLcRO9xOILO9zlhAifwo28feZz3yGxsZGnnnmGT73uc/xyU9+ks997nM8/fTTNDQ08JnPfCbfIYp1whiJo8tmT/x5JTG/gmYxF6q0JvjjVwk9+4pc6F2jVCoNMHfFH+BVluPsavYvlqYzWC1tOE31EAzg1VZjdM+c+HPrZ1mdPgtdEpu8WCkEMFmdM6Xir6YS5bgYnevrgtxSTVb8vV4oOOfFWvuug6hkes6L0gtm24S//xzB549L22ix4ozuflQyPfnn+bfvw62pIvXuJ7EP7CJw8kLOE1nGwDBeZdn4hXV7xkr45bBa2vBKYngVZbNuM1HdZ4zGJxfReMULX3zj7N6Gs62R7MP3THnvdhvqMYZG5Lm9BMETZwk9/SKkM9PvtB2sy9dxd29DBcdnygQDuHVVU9qrG30D4Hm4dctcia4UXlW536J9gYz+Qbzq3M0pc7Nx0B5Wgc34AwiEK4iW76a86Qmqd76fYLSObHJl2vbmi9vcgFtTiX33AWA8QRUKTGv3abZ3+cm2ZSabc8mrLJ+srF4sNZrA7OrFmWGW4YpQCnv3NqzLLZjjVbNi9Xgt7XgFUq0qxGyGu45jWGGiZbvyHcqGECpuQmuX7Nj0772ek8bNjkqrTyHWsIJN/J04cYIPf/jDlJZO/fJTWlrKhz/8YY4fP56nyMS6oTXmlRuoVHrOij+vrgqVTE1rLTQXs7XTH/yutd9aSqw5avxC1Fwz/iZkj+wHTxN69hWMwZHJVjluXRVm38DUOX+LnO83YbLiTxLJYpwRH/NXZ5vm5G1edQVeRSmB81fzGFnhmFbxt0C6JDbnfJ/bGb0DhL777GTV7xSeR+iZl/3ZUSDzF8WKs1pa0bEoXnkp5gwLT26nPY3q7vcXogQs7LsO4DbUETx2eub5tEuhNcbgsD8zq7oCHQrmJqE+wfMwb3bgbmua+0JmOIQOWKjRhD/fLxzyFwAskNvcQPaRe6e83sLU2WBiEVwXo7MXXM+vhn4d63orKuvg7tsxdbfNdX4nBcd/fFo32tGhALp8+ckyr7rST0ov5HNWJosxHMetrlz2eSc42WGAgpzxB9Bw529SveO9KKUIRmvJjnWj19FnUl0cI/P2x27NgVTKf7y9bo632d7lv2Za5gxHyQ+vssz/fLGE123rwlV0KIjbvEqJP8A5uBt3y2b/81F/bheCiDkkkuj+IbzGAqlWFWIWQ12vEas8iDKs+TcWyxYq2gyoGVt422l/EaFU/AmxdhVs4s80TbLZ7Iz3ZbNZTLNwPmyLtcfoHyT8rR8Seu5VnK0NuE2bZt3WrfFXtxg9c19Au7WDS/CVU5Ory9WYJP7WosmKv3lafQIQCWMf3ofZ0YMOBvy5H+C3nnrdnD+jd5Hz/cbpkmJU1obMzK+LYuNR8TG8ktcNBlcKe99OzPZu1IhUiJLOoMMLv7h/u1nn+0xIpgk++wrhbz+N0TdA4LXzUy+6aU3w5VOYHT2k3/iAn3SQ+YtiJbmuP+uuuRG3vtpfgDQH3TeIsu0pC1GyR+9AjaWwzl7OSUgqmfLn6VWW3XYhPXdJMpVKo2wHd77KK6XQJcUYownUaGJRrbbnND4bTBJ/i2P0DKBsB6+qnMCFa5NzkgG/Xe35K7hN9VA89T3Obaj3k4bdfViXW7AuXsc+tDcn1StedYX/eFpA9eZEsiKXFX9Oxn9/KMQZf68XjNbiuWnc7Pp+T3Mb6jAGhm8t4szamD0DuAWWOPEqysDzUMOL/NyXtbGu3MDZvW11E5lKkXnDUbzKMkLffx6zrQujsxejqzd3LdbFNEZbl1/d3JC/+X5aewy1/QDXkSp5MTM7PcTYUAuxamnzuVoMK0wwWkMmMX1MkZ0aT/yFc7fQSQixugo28ffAAw/wR3/0R7S0TF0FeuPGDf74j/+YBx54IE+RiTXP8wh978fgeaTf+gjZx+4Da47VRKEgXmXZjLPaZmKdu4IaS/ntoACVkA+2a5FKZ/wLSQusCHD2bscrK/Gr/cYXJuiKMnQwMKXqwuzu9+f7zVFlOpNbbcpkzp/wGfExdKxo2u3utkZ0OETgwgav+rNtlOMuqeIP/At+Kp2ddTV66IXjmB3dZB+8i/Tb34hKpTFvtE/eb9zsxLp4jez9d+I11KHLS6XiT6wos7MXlbFxmhvxaqtQieScn0F0WzfaNPGqbs360aXF2Pt2EDh9MSftK42BYcCvSIHxC+mDwznrhjBxHB2d/3nulRSh4n7Fn5erxB/j7T47e3JXJbkBmO1d6EiYzAN3oZIpzBu32ssanT0Yw3HsfTun7afLitGxKMGT5wm+cAJnzzac/dO3W4qJ5PFCWtGafYN+pWEuH0eZEUBhBhf3+TAfglE/cZBdZ3P+Xs/d7P+eRoef2Dc7e/zFe5vzlziZiVfhV4kag4tr92lduYFyXJw921YirHlObvqLooIBQk89T/h7zxL+7rNE/v57mFdvSoeTFWC0d2FsqllUtXuuZeKt9F35Wwau/2PeYhCFLdF3CmUYxKoO5DuUDSUUa5w58ZfuRxmBgpw/LIRYmIJN/H3sYx/DcRze/va38853vpNf+qVf4l3vehdve9vbcByH3/md38l3iGKNMvqHUFmb7AN3zdpu0bWTJIdurXZ366oxu/vn/xKSTBM4dQF73w68mkq/wkPmvqxJKp3xW4EtdBW5aZJ+x5vI3nf4toMovNqqKXP+zO4+v9pvkavTJy4uKUn8iXEqPjZlvt8k08TZsw3zyo11UyFq9A34FUiLuBC0mHa9M5ltvg8AjoPZ2YN9aA/OrmZ0RSnuphq/xarWaMfFevkk7uY6fyU94JWXYAyv7+oIkV/m9Ta8smL/8Tj++WamObMTvI4edG3ltPaV9uF9YFkEjp+dfo4rLYuaJWUMDKNDQb8tMeOtMSFnFXIT8wwnjj8XXVKMMZJAjcZzm/jbXOfPVu2Zf6ai8Jkd3bgNdejKMtz6agLnr/h3ZLIETl3EqyjFq51hnoxSfvK4bxB3cy3Zew/nblZVJIyORf0Zl7dXIM7A6BvEq6rM6ZwsJzuCGSxBqcLvahOIVIMy1n3ij3AIr7qCwJlLBJ99hcDJ83hlJTN/9sqnQACvNIY5vtBiQbTGunAVp7nhVnvT1RYJkX7XE6R++i3+fz/5OG5tFaEfHyP8rR+iEgsfsyHm4boYHb2o5s15DSMdvwnAcMePyIzJjEcxXbzvJMVVezADBfY6u86FihvJxNvQeurnHzvVRyBSjZK5oEKsWQWb+Nu0aRPf/OY3+djHPsbWrVvxPI+tW7fyO7/zO/zTP/0T9fWF1WJDrB1Gdx86YE2uPp9J/7Wv03H6TyZ/9uqqUWNzr5wHf9aI8jzsO/YCoIuiGJL4W5NUKrP4hIFlgjH1ZdWtq8bsHZ/zZzv+xaJFtvkEIGCho2GMUWnfKADX9dvnzXKxxt69HeV5WFdurG5cK0ANjRL6l+cIHjtN4OSFhe+Xmkj8La3iD8PA3VQ7Y4LC7OoD1/Pbzo1z9u30F5b0DuCeOI9KJMkePTR5v1deijEcn/eCshBL4jiYrR1+1blS/gXr8pLZ5/xpjdfeg1dfM/2+YAD78F6s621T5hur+Bih544TfPqlBVe3+fP9ym4lSMIhvIrSBVVVLYRKpsBYWHW+VxLzWzlm7JxWaumKUnQ0Iu0+F0jFx/z5eOPtEp19OzH6BgkcO03k77+LMThM9q6DsybV7D07cHY1k3n03mmfuZbL3rsDq6Wd8D98H2O2f0+t/c9yOWzzCf6q+kC4fP4NC4AyLIKRauzk+n/M2wd2ocMhVGIMHQxgH9iV75Bm5FWUoRaR+DPbujDiYzgzVNauKtNEF8f8/yrLyD52H+m3PoJKZwh9//l1s4At34yBYZTjYDTl9xpaJn6TYFE9gXAl/Ve/ltdYROFxnRTJoUuU19+V71A2nFCsCc9NT7b2nGCn+glEZliIJYRYMwp6WmpRURE/93M/x8/93M/lOxSxjpjd/Xg1VbNeLHCzcUa7X0R7Np5nYxgB3PFVx0Z3H+4cqzzN9m7c2urJC1C6KCqtPteqdHrJlUK38+r9OX/Rv/rG5G2Lne83eaySmFT8CeC2pNZsbSyjYZzmRgIXrvpt0NbqKr1kmvBTz6GLojh76v3V9rEo7s6t8+46WfG3kDmds3Ab6rF+fAySabitlaDZ3o1XXDQleeA21OGVxLCOn8UdHMHdvxNdVjJ5v1dW6s/gGU1MuV2IXDA7evyWbc2Nk7d5ddWzJi/UwDBksrMuRHF2bCVw4hzWxWvY9/gJbOvCVXTAwkgksc5dwTm0B/Db4AVfOknmLW+YVjliDAzjNDdMuc0rLc7ZDFKVTPvVfgt4jbv9+ZrLir+JKjSzrQv7qMykmY/Z3gWGwh1POruN9XjFRQTOXsbZuRX7yP45Kzh1eQnZB1fmoqBzYBdufQ3BV04S/v5zuA11ZI/eMaU9u4qPoTLZ+edKLlIm3ka4ZGtOj7mSAtFashsg8edubcDd2jD/hnnmVZYTaOvyOyMs4PXQungdr7oi5wnsXPDqqkm/+WHC3/4hoadfJPPEQ9Mq08XiGH0DaNNEVVfAaG5abS9FOt5KuGQbsapDdJ75AmMDZymqPICdHkB7DsFobd5iE/k32vUCWntUbL6HsXS+o9lYQsX+94dMop1g9NaiQDvVR7RiX77CEkLkQMFW/AmxIjwPo7cft272VSvDnc+iPX+wuOeMfzAOBfEqSmdfOQ/+avvuXtzbBmbrWAQ1lr8P12LpVDqz5Nlgt/Mqysg8dh/ZB+8i++BdZN54P7p8aRf9dUmxzPgTAKjUeHu7OR6jzs5mVCKZs8qaVWc7hH/wPLgemScexD6yH2dXM6Hnj89eiXGbib8jlpHAn2xL2HHb+bTGbO/Ca6ibenFNKZx9OzA6e1GWiXPn1C9J3vjz3hiSdp8i94y+QXQ0MiVB4dZVY8THZmw5bnT1gWWia2a56BuwcHY1Y11uAdsG28a6cgNnz3bsvdv9GYDJFGpgmNDTL2GMJvxj3i6dQY0l8SqnVjHpshKMkdzMu1TJ1ILafMLUZF8uK/5gfHbhaEIW5yyAv0iuCoIB/walyDz+IKl3Pk72obsX/O+5UnRlGZm3PELmsfswhkeJfONfCLxyChwHAKN3ACCnCRPtOWTHOgnFGuffuEAEo7Xrv9XnGuJVlqEcd2GvQbaN2dWDs61p5QNbIl1aTOaND2D2DBB8/rjM/Fsmo28QXVWOMvN3+c/zbLKJDsLFTRRVHSZStoueC39Jywv/kZYXfofWV39vWptBsXFo7THc9gNKau8mGCm8BQnrnRUswQqWkom3Tt6mtYedHvDbewsh1qyCqvh74xvfuODewUopnnrqqRWOSKw3xsAQynZmXeHueTbD7c8QLKonO9blJ/6C/sVat74G62bHrMeebP3WeKuFhlcUxbwx+z6icKlUetrFyqUdSOVspbBXEsNsaVvwal6xfi0k8efVVaGjYazrrWRrKlcrtJyxLlzFGBwh9ROPTVYRZe+/EzWWIvz953C2N2HfdWD22TSLndM5k0gYr6rcv1A9XmWohuOoRBKnYXq7JGfHFoKXrmM+eNiv/HZuu4ARDqEjYYyhUdzmpYckxEyMgeFpLcyndCvYvmXKfaq7F6O+2q+icGa+0Obs3U7g3BWsq62ARtkOzt7taMvCutZK8IUT/gy/4hhkMhiDw7jcOo8xOAwwLS6vtBiVzkI6s6zEPPiJPy+6wEU64RA6FADDhEBgWed9PXdTDSiF2dGDk+Ok4rriuJhdvWSPHJhyc8FVQY9/dks11mOdvUzw1EWM0QSZNz2A2T/oJ5EX0F52oTJjnWjtTq64XwuC0Trs9MBkdxSRX15lOZgG1rWb2K97fr2e2dkLnsZtrJtzu3zz6qrJ3neY4AsnsA/tKbzXiTXE7BvE25bf15dsomP8dW4LSilqdv0MvZe/QijWiBkoYqDlm9jJHoJFMtJnvdKeg9Yehjn9/XOs/xR2up+Kpl/JQ2QCxuf8Jdomf3YyI2jPllafQqxxBZX4e9Ob3jRv4u/SpUu8/PLLMlxULInR3Y+2TLyqmRM6iZ5XcbMjVO98L93n/v+3Kv4Yn/N37goqPjbjUHezvWta6zddFEVlsv4qYaugnm5iHiq9hBl/K0yXxFC2418szUE1oli7blWzzXHhUSmc5kasa61w9I6cz0JaUZ5H4MI1nO1N6NsT8IZB5okHsS63EDhxDvNmB9n7j+Du2DLtELl6DrsN9Vjnr/hzZkJBv02dac68gCQQIPueJymqiMHQ2LS7vfISqfgTuac1xuAQzp4dU2+PhPHKSjDbuqYm/mwbo6sfdXTui8M6VoSzZZP/+AecLZsnE+32kf0EX3wNXRQh88SDBF86ifG6+VLGwDA6YE2rrvNKx6tfR+J4y078pfEWcTFYF8fQK9EyLhDAqyrH6OmDvdtzf/x1wuzsGZ+PWtgJh0mmiXPHXrzKcsJPPU/w5ZMYvbmf75eJtwGKUNHmnB53JQWidaA97FQfoaJN+Q5HhILY+3eNt8xtnvG76gSzvRuv1J+rV+icxk0EOYExPIorib+lSaZRiSQ6z21d0/FWUAahmL8gNhTbTOOR3wLAtRMMtHzTbzMoib91q/fK35IaukTj3R/DtKYu3Bxq/T6R0h1ESrfmJzhBKNbEaPcLkz/baX/en1T8CbG2FVQm4j/9p/80630XLlzg85//PK+88gpNTU38m3/zb1YxMrFemF19s87301oz1PYURZUHiJT45Ri3J/7mnPOntV8R0lg/pbpEx/wPNGosNaX9lihwrovK2MuaDbYSJtqUGSNxPEn8bWiTSa15knnutkYC565gdPXhbV47czPMmx2oZAp7747pdyqFs3sbTnMjwZdeI/Tcq6TDIb/15u2bpdI5eQ47O7ZgXbgyOWfG7OjGra8Ga5bkwRwLk7zyUszWzpnvdF3/31MWNolFUskUKp2dVlkH4OzZRvClk3j113F2bwPPI/T0y/7nlj3zl546+3YS/udnAMg+dPet23dvQ6UyOM0N6GgEt7KMwNnLUyrSzZ5+f6HV6x7TujQGSvnvZbXLW0WsUqlFteW279i7Ys8xt64a68qNjV2VP9frmNYEXjuPV1W+5j4Tew11ZO+/k+ALJwBwdm3N6fEziTaC0VoMa+18tpuYxZUd65bEX4GwD+3GunKDwKunyT52/8wbjX9nff3s1YIVCaGDgZzNhd2IzH6/5b+X5+4fmXgroaL6Gau9zEAMK1RBOt5Kce09eYhOrIbsWBfZZDfd5/+CTQc/jFL+99j06A1SI1epPyDVfvkUKm7AuTmMkx3FCpbgpPwW/oHw2uscJIS4peCX/585c4Zf+ZVf4d3vfjfXrl3j05/+NN/97nf56Z/+6XyHJtaaifl+9TOvWEmPXieTaKOs8XEMy58v4t6W+CMU9C/a9vRP23e21m+6yD+OSkyfryMKl8pk/T+EC+sCzMTKXBWXGUIbnZ/Umv/x6VWW4xUXYbW0zbttIQmcv4pbV42eIZExKRgg+9DduA11hJ55CfW6aqNcVfzp4qJbc2Z+fAyzux93hjafC+GVl2DEx8B2pt0X/vYzBE5dWG64YgOaqLSbOfG3HWfvdoIvvobR3k3wpdcwO3uwH38AtYB5s15NJV5Vuf/f7RcNlcK+c99k6zWvshyVtVGJ8UpXrTF6+2eujDVNvFgUNbzMOX/O+CKdRcyEc5s2TWnJnktuXTUqndm4F6i1JvyPTxE4OfPrmHW5BWNwmOy9h9dkYtTZvQ374G4A3Jrctr3KxFvX1Hw/ADNQjGFFySb9Gbjac7BTc8xCFysvECB790GsGx3TZ66OU0MjqGRq7VTdKoUuLcbYqK+rOWD0DqCjYSjK7/zUTPwmoeLpHTomvL7N4FqQGW9fKhbGSQ8SLmlmrP80gzf+GQDPzTB487sEwlXEqg/nN8ANLhTz575OPA/tVD9msBTDLKzF8EKIxSmoir/bnTx5ks997nM8//zz7Nixg89+9rO89a1vlRafYsmMweE55/ulhq9gmGGi5XtgfLD07RV/AF5tJUb39MTfbK3fJi5GGWNJZFR14VGDI5htt6pv3KZN6PJSmJyfVmAfciwTXRTBGEkgXzE2uIVWsymFu60R68I1uP9Of57XfLL2eGvApuXHuQRG/yBG7wCZN86yWn3KxgaZR44S/s6PCD/1HOl3vGnydVelMnjlpTmJyaurJvPQ3YSefQVgyRfM9Hg8xsgoXtWtlktqNIExMFR4rzliTTAGhtGh4MwJMKXIHr0DlUgSfup50JrMQ3ehFloBrBTpxx+c/PNsvIqyyVjc4hhqcASVsXFn+cyViwu5Kul/RtMLnfG3wrzaSn/OX08/zkRLukwWs6s3Z7N+C5mKj2GMxFEXrmAf3DW1xX0mS+DEOZztTXmvOlkO+64DOLubc9oiUWuPTKKdoqpDOTvmalBK+XP+kj1o7dF17kuMDZxj20P/DdPKb4JhI3O3N+FdvEbwxRM445/jdHERbnOj//rU3u2PvVhmtfVq8sqkTfpyGH3j7YnzeB1New6ZsQ5K6h+YdZtwcRPDHc+gtV4T1/yyY13cfOWTREp3ULf/lwmEZx4lky/ZZA/JwfOUbn5ksrIun7T2cDJDlDc9QVHVHQxc/wfGBs6QibeitUvt7g8VRJwbWSBShWGGSQ1fpahiP3a6X+b7CbEOFNwr67Fjx/iFX/gFPvCBDzA4OMif/Mmf8M1vfpO3ve1ta+IDgChcRlffnPP90iPXCZc0o5SBMiyUGcRzpyb+3KoKjOFRf9bTbWZt/Waa6EgYNTb1OKIwBE+cJXjqAoHzVwmeukDw5ZOAnzAACm7GH4BXUowxKhV/G51KZRbc3s5pbkJlbcz27gVtH3z1NKFnX0Hl6XFmnbuKjkVxmxbYOiwQIPP4g37C8urNyZtzPafT3d5E9ughv7XhHLNz5jIx20y97gKW2eH/2xjLrYASG5IxMORX+832OXk8Qe5uqiV71wHcnfO3+JwiEp5/rmw0jI6EJ6sPze5eMI1ZZ6F5ZSXLroy7lfgrkCTDxJy/rt5bN508T+jplyBr5zGw1WH0+BVGKmP7s2VvEzh1ARwH+66550oWPKVyPhfNTvXjuek1V/EHfrvPbLKbwZvfJdF3Eu3ZpIav5DusjU0psvff6bfWPX+VwPmrhH70yuSsVrO9G29T7cIWghUIr7TYf7/QOt+hrD1aY/QP4lbnuc3nWAfacwgVz76oMBRrwM3GcbNrI8mbGrkKysBOD9B67HcZGziX75Cm6L/2dXov/w29l76C1vlfgu5m42jtYoXKqdjyFsoaHsMKlVO9831suff/onTzw/kOccNTyqC49iiDN75N39W/J5vsISjz/YRY8wqq4u9DH/oQr776KocOHeKLX/wijzzySL5DEuuI2dHjrzKeZb5favQ6pfUP3drejEyv+BtfpWz0D92al5W1Mbv7/dZFM9BFEdSYtPosRMbAMPbeHdj3HMK63ELw+ePjs5ImEn+FUUVwO10Sw+gdyHcYIs9UKj3rIobX0+UleOWlWBev+8m0ieRAOkPo2WM4u7ZOVqOogWGsSy2AXyXtluT2Auftgi++Bmiyh/f5SQWtMa+1Yt1oI3v3wUWtTNbRCF5lGcbg8PgN2n8e5zh57+zftbwDBCy84iKModEpVbtmWzco5beFdtzZ5wcKMQNjcBineZ6kQSBA5s0Pzb3NMnmVZbcl/vr9C42zXFzWpcV+29tlPN5Vcrw6v1ASf4zP+bt6079AbTv+zD/8lu+6IjcVyIXK7OrDqyxDF0Wxzl/F2dXsz3LsHyJw/irZO/ehi6L5DrPgTLTUChWvxcRfHfGeV0iP3qCy+R2Mdr1IcugCsTVWvbjeeJXlpN/zlsmfA8dOE3zlNDoYwOwd8BODa4guLUbZDiqZkteQRVJDIyjHxauuyOuK/8xoKyiDUGz26veJNoPpeCuxUNkqRbZ06ZEWQkWbaTj863Rf+As6Tv8pjUd+i0jp9hU7Z3LoIum4v7BGKYNY9Z0zzl9zMsMk+k9RVHmAkc4fA1Cz+4N5rahzMkMAWOEKlDKo2fUzeYtFzK5m988SjNbQf+0baO1SVLE/3yEJIZapoBJ/x44dA+Dy5cv8xm/8xpzbKqU4fvz4aoQl1gGjsxezq5fMG47OeL+THsDNjhIu3XZrH2t64k+XxPwvTf2Dk4k/s7MHtJ619ZsXi8qMv0KUyqCSKbxKP3nibNlM8MUTmC1toEEHrIK8+O6VxDCvjV9UvD0xYtvgejlPdIjCtNAZfxPsI/sJ/eAFAq+ewb7nELguoR++gNkzgNndSzoSxqupJPjKSbyyYlTG9lv2rVB7OjU4jHXxGhgG5rVWnP27MNu7MPqHcJobcHZtm/8gr+NVlt+qapxI3i/i72i16PLSqS2rHAezuxe3aRPmzQ7USHzu2YZiw1NjST/ZpRSkM6ixW+9l+eRVlmFdvuFXGPT04ezdOfu2460w1WgcPd4mdLFUKoW2TAgUztcZt66awJlLqNEEZns3anyep5EYw13PiT+tMbv7cbZuxm3cRPi7P8Lo6kWXxAg99TxeZRnOgWUunFinMvE2rGApVnD+mZuFJhCt9S8MVt1Bxda342SGSA7KrNpCY999EDWWJPScf+1kzcz3G+eVFgP4n48k8bcoZt8gKIVXWZ7XxF86fpNgtH7OWWFWuAIzUEQm0bYmFg+kRq8TKduJGSxm06GP0nb8D+i58GWa7vn/YZjBnJ9vtPtlui/8BYYRBGWgPZvBG9+mdu+/IlZ1x5RtR7peQCmTun3/mkT/SXou/CVGIEr19nfnPK6FstODAARC+f+8KmanlKK86c2ES7fTd/mrRMr35DskIcQyFc43ZeCjH/1ovkMQ65Hn+Rezaypxt828mjY1cg2AyOsSf+7rEn8o5a+Yu63iymzvxisrnrX1my6KYgx2LfOXELlmDPqrzryJC+yhIO7mOqzrbbh11QXZ5hP85LNy3GmrXoMvn8Js7yb9jjfKl+L1znFRtrOopJbbtIns0UP+iu/iIozuPsz+IdJvecRvRfeD57H378Ls7if9xEMELl6brNxZCYHzV9HRCKl3vMlvt3vqAl55Cem3PjLrHNb5eBVlBM5fBdsu7Ha9lWVYZy/7yclwCLO7D1wP+8AuzJsdGCNxXEn8idnYNpG//y7ZO/bi3LF38nnqFcBjxqsoQ6XSGB09c873g1sXco2ROO5SE3/J9K0EaIHwasbn/HX1Yl24itPcgHWzc90vAFOJJGosiVdXjVdXhVdeSuD0Rf+12DT8OZFrqLXgasok2uZsf1fIohV7KG96MxVb34ZSBtHyvYx0PoeTGcZaAxU7G4ZSZB++x+9q4uk19z1BFxeBYWAMx/02pWLBjL5BvPKSvC+QySRaCc/zOqeUIhRrIBNvW6Wols61k2THOqloejPgV9/V7v15Wo/9FwZa/onqHT+d0/NNJP1K6u6ndo8/C8+1x+i58Jd0nv485U1vpmr7T6GUidYeo53PUVxzN2YgSmn9A9jJbobbn6Gy+R0YRiCnsS2UkxlEGQGMwMp1kxG5EyndTtM9/ynfYQghckASf2Ldsy61YAyNkn7Hm2a9OJQevU4wWot52weRmSr+ALzqSqwLVyfnDJjt3ZPD02eii6IYY8npFVoir4yBYXTAQt/WytDZ1kToRy+jTWP+eUZ54o3Hq0bHpnxxN4ZGUKk0oe8/R/ptj0EwPx/qxcpTqfH2dot8jDr7dqLiY+MtNiHz2H149dVkKu4n/O2nCZ44h9tYj9dQh9c3gHXx+sq8bqUzWNdb/Raf0TDZ++8ke9cB/6LEMs7ljScPjMERcP1GmjpSeIk/e/d2rHNXCJ44R/aBI5jt3ehYFK+6Ah0O+YmQfAcpCpYxNAquR+D0RdwdWzAGp7+X5ctE1WHg/BUwZp/vB0Ao6D/eh5f+eFfJFDpaYO/VwQBeZRmBUxdRyRTZR+7FGBhGJcbyHdmKMrr9uYZubRUohb1/B6HnjqNDAf8zSYF+pioEmXgrJfUP5juMJTGt6JQL3BOVAcmhi5TU3ZevsMRMTJPMWx/12yuvNYaBVxLDWOZc2I3CvN7mLyoDzLYu3C2b8xqPkxkmE29b0OtcKNZIov/UKkS1POm4PxYhfFtbz1BRPZXNP0n/9W8Qqz4yZUH5ciT6To4n/e6bTPoBmIEi6g9+mOH2H9B/9e9x0kPU7f9FkkMXsdP91G3+pcljFNfdz+DN75IcOEes+nBO4losJz1EIFyBkuthQgixqvJZ8S/EystkCbx2Fmfn1jnnYaVHWwiXTP1wNlviz62uQGWyqPgYanAYlUrP2TJFF0X8Fozp7NJ/D5FzxuAwXkXplESD21iPtkzMnoGCrBSC8VWvSmGM3vblV2vUaAJnexNqLEXo6RfBy/8Qb7EyVHoi8bfIx6hS2Pcextm7newDR2618QwFyTzxEO6WzWTv9VvFeBVlqHRmMsmYS9al6wD+/KcJwcCyE4y6vMRfET4wdNuczgJ8HkdC2If3Yl1uQQ0M+xdlGuv9ivKyYtTIaL4jFAXMGB71nyuWReDVMxgDQ9Pey/JFx6LoUACzowe3pmLedtnLfbz7ib/Cme83wa2r9luJV1f4Cf1YFGOdV/yZ3f3+4ouQ397M3daEs62JzJseRJetvRaWq8XJjuJkR9bkfL+ZWMFiQrHGGdt9au3RcfpzJPpey0NkAvDfJwqoNfJiyOejBXJdf3RFRzdG/xA6FsWZpePRahlufwZlBCiuvWfebUPFTdipPlxn9vdM1x6j9dVPk032Ljkm1x77/9j77/DIrsS8E/6dG+pWLuSMzmRHks2chxwOORqNNMqSJXkUHOSR1l577d3P1ifba++uLcnetVdrf2utba0tyR4rzWgkcYI0mcM8zGQ3Oze6GzmjcrjhfH9coBpoVAEFoAoFoM/vefjM9K17bx0AFe4973nflxtv/QuS469s6vhC8iq6GcEMda3Y3rrvWYKx/Uye+884pfq8XhdGvkUocYTuYz+7qqNPCEHr4LP0nPwFMtNvM3H2P5EcfYFApG/F3JYV6SUQ6SM91byqJLs4h6FiPhUKhWLbUcKfYk8TeOcseNJ3k1TBc0sU08MEEwdXbNeNEJ5bwfG3KCBq07O+U8M0/GinKsio78rScnt70me3oc0urO5EMg3cfX3AznQKAaDryEgIkcrc3FYsIUo27r4+is88ij4xjfnmB80bo6KhlGMsN+OgEILSI/fiHF250EHGIhSfeRQZ811DS7GBdY/79DzM81dwDu+vfx+lpuG1Jnx3Tb6w2P21M52vzvEjePEo1guvITK58uIRmYipFe2KNRHzSbxYhNIDpzCuDvtx4zug3w/wxetF563XvX5k71Zf7+Wozx2G1+v/7PYJv+NQRiN7PupTn6SqPqYAAQAASURBVJjG7V32N9d1Sk89hNfd0bxB7QKWIu2s6N4Q/sCP/8zNn0cuJqMskZl6i+zM+6Qn32zSyBS7GZmIoS2o66P10EcnESWbwrNPUPiBj1H41Mc2HaFfDzy3SHLsO8T7Hkc31o+YtaL+osRieqTqPtnZMxRSV8nNb75PNDP1NoXkFSbP/TYT534bzy1u6Ph88irB+KFV7jW/V++v4TkFRt7511sW/6T0KKSvEW47sUr0W06s6z56Tv4C6em3yEy/S6LvyVVji3XdT3bmPTzP3tKYNotTmFfCn0KhUDQBJfwp9ixiPolx/ir2PcfXjBgqpK8jpUsofnjF9mqOP4IWXjyKPj2HMTLhdw2s0VviLcYx7vVJn11FyUZLZcoTlMtxD/qTLzvSKbSIF4+hLRP+lv6/F4vi9XZRuvck5oeXEfN7a2WsmF1A2k6zh9F0RL7gr9pu4GtURnznjjY7X9fz6tdGELkC9vEjdT3vEl57iy/8FUoN/f1sGU2j9NA9aMkM6Fq5C81bEkJumTBVKJbQ5pPI1gTukQN47a0I26n4XdYslsayVr9fed+tvN6l3JlRn4Db30PxmUdxD/oTmF40vPeiPgtFxOLCEJHOIjK5pk4u71ZKuXGEZmKG9o5AGm49jlOcx85NlLdJ6TF77UuAX6+gUGwULxH3r39LzREtdgv61Rt4rQk/BWMHkJp4HdfO0jrwTE37B8I9CM2kmKne85ebOwtAMVNdHFyP9PRbhFuP0XP850lPvsnwW/+iZkFMSs9Pi6oS5RkIdzFw3/+Ia2e3LP7Z+Sk8J08ofnDdfWNd99F78m8QTByuGLUc7bofzy2Qm/tw0+PZCk5xHiO4RgS8QqFQKBqCEv4UexMpCbz+Hl4sgnNi7QnmQvIqmm4RiPat2K7pIdxKwh/gdbahjU6iTc3iDFaP+QT8yWddQ2SV8LdT0OYWgJuupuW4/d1+31ZrYnsHtQFkIrrC8bf0/5c6npyTd+DFIgS+++7eERCKJQJ/+nW8Dy42eyRNR+QLSCvQ2Gg/IfDaWsvvlXphXLmB292BbGvM+8trb0FbSCEyuR0t3gN4Az04B/px9vWB4UdveYk4uJ5aKKKoijaf8r+fhKD0yGk/dWAHuarcvm5k0MLrWn9yZ0uvd9tBOC4ytPMcfwjhdyotfkbLaBhRLIG9RyaspcT69muE/uzrBL79GsaV68Biv59iQ9iFWcxg+5pOjt1GqOUOhNDJzZ8vb8tMvUUpO0brvuewC7M4xYXmDVCxK5EtMQA0FfdZHdvGuDHe9GjPJaT0WBj+OtHOezFDtS0MEZqBFemrKvxJ6ZHdovDnltLk5s8T7bqfeO9j9N/ztyhmRiimb9R0fCk3iefkCMWrd/gFwj0M3vv3cO0sk+f/y6bGCVBIXQPAiu2vaf9Y133su/8foJuRVY9ZkT4CkT4yTYj7lJ6DU0oqx59CoVA0gb1zl6G4vSkUCbzyFtrMHOAXWevjU9gP3bOmGw/8ladW7ABCrNyvquMP8Drbb7qs+tcR/oTAi4QR2crnUmw/2twC6Frl3hldJ/9j31t2/u1EvHgULZ0pi3paKu27HpZ6O3Qd+8G70cem0IfHmzjS+qGPTYHnIesdPbkLEfnitrhcltxzdUNKtOk5vN6u9ffdJF57C0iJPj61uSjUbab09COUnnq4/O9aJ7a0qVmM98+vuY9iD5IvIApFvMWV/F5XO/m//IPlRR87AW+gh/xPfaosZq/FViZyRc6/ptqJjr9bkVF/Ak5kduF1YLFE4OW3IHez71W/Poo+Po198g70iRnMdz70eyYX+/0UteMUZvecA0LTLYKJw6Qn38C1M2W3X6T9FC0DzwJ+t7pCsRG8uP99IVTcZ1X0G+PgujvmHjY39yGl3AStgx/b0HGhljtIT71Jbn71Ys9i+gZuKU2k/S5KmVGk3HinfWbmXQCinff6z5c4gtAMCunrNR1fSF4FBFb8wJr7BSK9tPQ/RSF5eVX0ca0UUtcIhLvRzfVjUmsh1nU/mSbEfTrFJEgPc4993ykUCsVuQAl/ij2BPj6NcWGI4PPfJPDiG5jffQ+3v6fcm1QNKSX55FVCFaIadCOE9GyktzpacGklu9fWUlO/jIyElONvB6HNLviOCa3KR2AjnVR1wIvHfJfE4mtKpDJ4t0z8uoO9uH3dmN99D1y3GcOsK/qIL2DKuWSTR9J8RL6ADG6P8CcyOSiW6nI+kc4iiiXczsbd9C05ofzf0c52/AH+Z82yzxsZCSMNfd2JLePydQJvn13tIJKyvi7f9c5V7+dTrIm2GN+8wpG+w7+v1kJGwqDriE30/N0U/nag4+8Wyl3PuzDuUx+fwrg4RPDrL4PtgOMSeON93IEe7IfuIf+j34N930ns0yeaPdRdiV2YwwxW7wnfrbQOfoxiZpihV36F8TP/gVJ2jLYD348ZbMWwWsknVdynYoOYBjISVj3I4MedFor+f8vu8YyhYbyudmRstdurGSyMfptg/ADBxMbi/dsP/SCh+GFG3/83q8S/7OwZNCNEov8jeG4BpzC37vkmz/9XZq58ofzv9NRbhFvuwAj4i6h8l2E/xVSNwl/qKla0D91Y//rDig3i2tlNu5wLqSGCNcR81kq06348J09ubvP9iJvBKfp/p7220EWhUCh2A0r4U+wJRCaLNA1Kj96LPjyOlslReujuNSfEcvMXGX33X+OWkoRaj656XFu8mKsU9+m1JpCmgTvYW9P4ZDSCltp9Ez57FW12YUd1Im2UJXfHUsSnlsogF1fClhHC7xDL5NCv1hZdsmOREn1kAmkYSvgDyBeQocaLWl67H8dSr54/bWrWP29HA2NeDAMv4b8XdoPjbxVCIOOxdSe2RMp3/GqTsyu2B7/4TV/srwe2Tej3v4h+rXqUkvHhJYJ/8jUl/m0T2nzSd6vvIIfflhACL7656yOx6EDbFcJfOASa2JU9f9pCCmkaiFQa64XXMc9cQGTzlB66x9/BNLHvOe5Hmyo2jO/423vCX7TzXg48+qsk+p8iO3eGSPup8iLLYOKQ6vlTbAqvZf3ro72ONjFN+LN/Svj3nif8e88T+r3nMd4/j8jl0UcncHaI2w+glB0n1HIUscEFSppu0Xf3f0cofpix9/8t+YVL5ceyc2cJtx4nuBh9uVYXIPjRoOnJ7zJ3/Sukxl/BtTPlmM/lWLH9FGqI+vQXjV8huEbM54rzRvzvxlJ247Gk0nMoZoZrjvmshUC4l0Ckj9TEq3U7Zy3YRf9eUkV9KhQKxfajhD/FnkDL5JDRCM6xw+R/9BPkf/DZyjGO+BdsY2f+PSPv/B+4do6+u36JSNvqlcpLwl/FuE9No/D9z2DfvVowrITXsdiVtVf6XXYzrou2kKrY77dbkNEwCOHHzUpZ0fEHIFvjeLFI2SWyW9Fm5/14uzsPIPOLK1xvY0S+sC2iloxHkYZet7hPfWbOf5022Im39N6Wwd0ZO+e1xBDrRX0uiv76xHR5m0hn0WbmMc9dQdThb6bfGEMUiuhD1Scr9NFJtIUU2vT6K64VW0dbSPm9eLvY5XcrMh5FpDbn+JOWCcbace47gqXI913Y3Snmk3jtrRSffgR9ZALznQ+xTxxBJmLrH6xYE88p4NrZPRt9ZgRidB75UQ49/i/pPfWZ8vZQ/BCF1PWKiSoKxVp4iRhiYXff02wV/fooMhyk+MyjFJ95FOeOAwTePkvwj/8CJDgHB5o9RMCfb3GKSQyrZVPHL4l/VuwAYx/8JnZ+FtfOUkgNEWk/iR5IoJtRipnRNc9j56fx3AJWdJDJC59lduh5AKKd963Yz4rto5Qbx3Or32NKKZm58jlK2TEiHffU9HMYwXY0I7SpPsJiZhTpOXV1/AkhaOl/isz0O9iF2Yr75JNXGD/7W3hOoeLjm8EpzKMZoZpckgqFQqGoL0r4U+wJRCZbjlLCCiCXx2DdQiF1lczUW3Qd/cvse/AflvPdb2VN4Q98YbGGDhsAt6fTd2dMVb7AUmwf2nwSpNzVwh+ahheL+K6fQhFhO1UdIDIe3fWrY/WRCWTAxD3qr64Uu1zI3CqiUNweN5sQyLYWf9FCHdCm5/AaGPO5xJKbdzviUBuBTMTQ1or6dF0/5lfXVgh/+siELzDEIgS++96WXXjGVX8VtT42CV6FDhUpy726xm53Fe8StPlkud9vr+DFomUheyP4CyB2zwSSjEZ2p+NvPoXXGscb6KH4+H14Ha0q1rNO2OXos73n+FuOboTR9JsLfoKJQ0ivVJ4Il9Ijn7yy6Q4sxe2D192BlspgXLh9HaP6yIRf57C/H3d/P/bDp8n/0HN4PZ04R/bDDkm78Jw80ithBKrPyayHplv03fUZND3I2JnfJDPzHkiPcNsphBBY0YF1BbWl3r7+e/57rGg/CyPfIpS4GfO5RDC2H6RX9Xy+6Pd55m98ja47f4pox901/QxCCD9GNL1x4a+QHkIIHStWXxdnvOdRND3Iwsi3Vj2WX7jM6Lv/F+nJ77Iw+kLdntMpzim3n0KhUDQJJfwp9gQik8OL1lZ6nBx7ETPYQaLvSYSo/hbQ9LWFv40gEzFk0EKfmNnyuRRbQ5uZ9yfHW1uaPZQ1kZ7D7NDzlLLjlR+P+5OlSxOmlRx/sLg6dhOTqjsJfWQCt68b2RLz+9t2uZC5JWzHF3q3IeoTfPdcXaI+HdeP2O1s/ATnUkTpdv2O6o2XiCOKparOVrEYi+js7/c/zxad5PrIOG5PB6WHT6NPTKNfX3sV9JoUiuijkzhH9iNKdsVFKyKVQRRtvLaE7wqsJA4q6oeUiIXUyn6/PYBMxBDZ/Ia7aLVsHhneGROctSCjYbTd5vhzXT9KfPE1595xkMKnPgYBs8kD2xssdVPtVcdfNazYPoTQKaSGAJi79mWG3/oXpMZeavLIFDsdd38/zvHDBF59B21kotnD2XZEMo2WyuAOrKwakS1xis8+TumJB5o0stU4Jb+awbC2ds2im1H67volStkJpi58Fivajxn0r/NrEf6K6euYwQ4Mq4XeU79EINxNS/9HVu0XiPYhhE6xStzn3LUvMn/jq3Te+ZO0DHx0Qz+DFR2gmN34NXkhdQ0rOoCm1fc7VzOCJPqeJDn24gpXXz55hdH3/g1WbB/xnkeZv/EXdXP9OYX52+67TqFQKHYKSvhT7H6kXHT8rV9k7do50pNvEu97Yk3RDyhHEXju1oU/hMDt6VzhzlA0ASkxLl3zHZg7OB5Meg7jZ/8Ds0PPM33ljyvu4y3Goy1FpMlYFcdfLIqWzu7eSfl8EW16DnegB3QdkYih3cYxP6Kw2Gu1TSt63a4OtGTGd5hVI19c112mzS34TtuubXD8dbdTevBuvO6Ohj9XI/Ba/Ai9ak5dbfE979x56KaT3HHRx6dx+3vwBnpwB3sJvPE+OBsTU5YwFkXD0v13+YtWhlcvQFgSA0sP3o0oFNHG1fdbVYqlDQtbtyIyOYTt7Dnhz4tH/eu49MbccCJf2BX9fkvI6O6L+hQLaf9ze4+95nYKdmEWhLbpKLzdiqaZWLF95JNXKKaHmbv2JQyrlenLf1Q1ek6hAPz+8odP4w70YH3rVUSdOqh3C/rIBGgabm9ns4eyLm5xAQB9C46/JazYIN3Hfgbp2YTbTpW3ByL9fpTnGuJUIXUDK7YPADPYyv6H/1di3Q+u2k/TTALR/oo9f55bYv7GV2nd93FaB57Z8PgD0QFKuQk8b2OVL4XUNaz4gQ0/Xy20DHwUzy2SHH8ZgPTU24y++39hxfbRf89/T/vBH8Bz8nVz/dnK8adQKBRNQwl/it1PsYRw3JtRn2uQnnwdKR0SvY+tu+9S1KdbB8cfgNfT6fcg2arTollo03NoM/M4J+9o9lCq4ot+/5Hs7BniPY+SnXmfUm5y9X5xX9DTFtLISKiqkFmeVN1lE45L6KP+il63vwcA0Z64rfs9RN53gW2b8NffDUL4kw2VyBcJfe7LGOevrHkebWoWdG17JpA1DefUnaDvXHF/LWQ86nd4ziUrPi5SGaRp4PV0lJ3k2sQ0uG55FXjpwbsRuTyB19/dVOSnfvUGbm8XhIO4Az3l9+GKfWbm8FpieL1deLEIxtDwhp/ndiH45y9gvvPhls6hzfuvB7nHoj6XYqo3EvcpFlKIuYWaFnztFLxoBFEo7qprwKXXnFelM1uxNZzCLKbVihC787tqK4QShykkrzBx/ncwwz3se/AfoRkhJs//FxX5qVgbISg+9TAyHsN69Z1mj2Zb0UcmcHs6wNz5rut6Of6WiPc8TP/pv0Pbge8tb7NiA4CkmB2reIyUHsXMDT/GcxGxRkdyMLaf4mI06HJyc2fx3CKJvic2NXYrOgDSo1RlnJXwnAKl7DjB2IFNPed6mME2Yl0PsDDyTaYu/j7jZ/4fwm0n6L/7b6HpFmaonXjv48wPf3XN3sNacQpzGMrxp1AoFE1BCX+KXY+22JlSaQJISg8p3cX/L0mOvUi0456aVtcKzUBogbpEfcKynr9ptZp1W5AS48xF3420iPHhJbx41HeP7SCkdMknrzB77csMv/0vyc68T++pX6Tr2KfRAzEWhr+x6hgvHgVPoo9N4cVj1c+9OKm6W+M+9dEJP7pxMdJNtCZ8F8JtisgvOv62q7/OCuB2tVUV/syLVxGOi3F59Y3ycrSZOdyOVtDUZce66DpeRyvaZGUHnZbK+A5fIXB7fSe5MTKOjIb9OFz8+MTiY/djXBzC+ODChp5eZHPoEzM4h/xOEXegB20+tWrxgDY150e3CoF7aNCPFt2iq21PIiVaMr216FVAzCeRAXNXudxqQYaCSNOo/TsqXyD4tZeQ0Qj2iSONHVwdWVqcttVFONrMvB+tuw1o80l/3CrasyHYhbk93+9XjWD8IHZhlmJmhJ7jP4cRiNF97GfIzX1IatGBolBUxTRw7jyANrtw+1x32A76xPSOu4ethlNMohmhFf2eWyXSdhLduLnQOxDpA6FRylS+vvLdgHms+L6azm/F9lPMjuG5pRXb01NvYUX7CYQ397u3In2AoLhsnEvzU7fi2lmcYpLc/DlAEkwc3NRz1kLr4LPY+WmSoy/QdedP0XvqM2jGzfvLtv2fwLNzFV1/UrpIWT1NKDP9DqPv/984pRSeW8K1M5jK8adQKBRNQc3AKXY9S5MolTr+pi/9IVdf+p+Yu/YV8vPnKWZGSPQ9WfO5NSNUN+FPtsSQwQC6ikPbFsRCmsAb7xP8xsvguIhsDuPaKM7xI7DGar9mMHP58wy/9S+Yv/7n6GaM/nv+NtGOu9E0k5b+p0hOvIJrr4xBk4tinza3UBb3KiGjYdC1cjzgbkObnvNXty4i2uL+e36TEYa7HZEv+K/fYGDbntMd6EUbm1w9ueK6GOeu+N1VM/NrTtzrSyKRoib8aOiZim49kcrgJfz3vNftO8n1G2P+ZNCyzzb3jgPYp48TeOsM+tXKnSWV0IdGQNdw9/f75+lbdH0ud/05Dtp8Eq/TX73rHNyHKNnVnaG3M8USuB5aKrOlBRjaQgqvNb7jvr+2jBDIWKS27yjbIfj1l8H1KD73BFjb9zm4VWTMX5y2ZmzyOoiFFNZffMd38m4D2nxKuf0aiF2YvW07j4KJI4Cgbd/3EFyMsou0nyLe+xjTlz9XdVJcoVjCa2sBz7ttFgPq41Pgeav6/XYqbinZ8BhjTTMJhLspZisvhlnq61vu+FuLYGwfSG9Fb6DnlsjOvE+08/7Nj9MIYoY6KS2e17VzDL3yK8xd+8qK/VITr3Plpf+Rqy//fxj74DfRjNCmxcZaCMYP0HX0pxm8/5dpGfjoKjekGeog3vso8ze+ivRWphUMv/1/cO21f0xq/JUVn9fSc5i+9IeMffCb5GbPMH7mP5QjnA3r9vy+UygUimZjNHsACsVWEeks0jRWTQB5nk1q4lXMYDuz155Heg5msJ1w24maz63XUfhDCH+StoqLQ1FfRN7/u2kz81jf+S5eLII0dJw7arv4306K2XEi7afou/tvrop8SvQ/xdz1r5Ace5G2/Z8ob5fRsO+e8jzf/VcNIfBi0Q3FqO0YPA8tk8NZ9vOJtgQgEck0sr2laUNrFiJfRAatbZ38dwd6CLx1Bm1yBq+vu7xdvzaKyBcofOoZrK+8gD40jHPPcQC08SkCr72LfeoOvL5uRDZXFokU6+P2dGJ+cMGP9UysdPRqqQxOV3t5P6REZPMVJ4Ps0ycQ6SzWi29SCIfwetbphbEdjItDvoi45PKxArhd7ejD4zhHD/ljmJkHKXE7/L+pbI3jtSbQr42UBUOFj8jevIbQR8ZxTmwialpKtOk5vP7u9ffdhXjxWE2iaOCN9xALKQqffLqmePedhAyH/AjfTJZNNe4uOh2F40LJ9he/NLirWFtI4hyqzSmh2DhOYY5wy9FmD6MpmMFW9j/4jwhEV35fxHseITX+CqXc5KJLRqGojNfmR0hqc/O4e+V+QEoCL76BDFrYD9694lpfH5nw72XXuufbQTjFBYw69PuthxUZWCHULaeQvo4ZbEc3a/udBaL9CKFTTN8glPCvd/2YzwKxrs0Lf+DHfS6Nc2HkmzjFeWaH/oxI+yms2CBOcYGpi79HtOM08cVKGjPYjhCN9Wm09D+95uOJ/qdJjr1Ebv4ckfa7AChmRigkrxCMH2Di3G8ze+1LWFE/JaSUm8TOTdB5x1/Ciu1j9J1/zeS53wHACCrHn0KhUDQD5fhT7Hq0bM6fALplIjw78x6ek6f31Gc48Mg/o3XwWTqO/PiGLqDq6fgD/Fi26Tlwdk/Hy25F5PxIxOJTD6FfH8U8cxHnzoM7shfBLSUxgx0Ve16MQJxY98MsjHxr5Wo7IfDivoNgvZtAGY/uyqhPkc2DlHixmzG+YulGP3l7rPC9FZEvbFu/3xKyNYEMh1a6uaTE/PASbm8XXkcb7r4+jKuLHW+eR+DVdxCFItZLbxF8/pv+ZiX81YzX7Udo6hO3LBSxHUQuXxb7fSe55Tv0eiuIekJQevx+3O52rG++glj+vimWVv5bSqwXXkfk8pTuWblAxh3oQRufKrs+tek5pKGv6Jtz+7t9l6JiBVpuMZWgJb5pR6Rx6RpaOotzeOctXKkHMh5FS67zHSUl+vUxnONHkO27cPJICGQkhEj77n2RzcFidPO6OMucjk/4k49L52kYxRIim/ddpoq6Iz0Hp7iAeZtGfQJYscFV92RLk8fFtOqMVayDaeIlouizC80eSd3Qh8cxrtzAPHsJ4/3zNx+Q0u/3G+zdNa5/Zxscf3BTUKvUDVpMX8eq0e0Hiw7CaD+FZT1/6am3CET6CUS25rRcGqfr5Jgf/jqJ/qcIRHqYOPfbSM9h8sJ/RWgm3cd+hmjH3UQ77saKNn8hnRUdJBDpIzX+WnlbauJ1dDPK4H1/n30P/iNCicN4bhHPLRIIdTJ4/9+ndfBjhFvuoPOOn6CQugqAoaI+FQqFoiko4U+x6xGZHDKyeuV3auJ1gvGDBMLdmME2Ou/4CWJd923o3JoRwnXrKPz1dIIn0aZUz1+jEbk80jJxDw5SeuQ0MmDiHD/c7GFVxCkl0dcoP28ZeBqnOE9+4dKK7TK2GPe3jvDn7VbhL+2PeennBBBBCxkK3r7CX2H7hT+EwB3sQR8eL2/SpufQZuZxTvruJffQINpCCjGXxDh3BS2VofDxJyl830eRkRBeS7zi57SiCqaJ196Cdovwt/Q+LrsAhcAd7MUZ7AWjSoiDrlP86KPIUAjray/5scdnLxL63FcI/fFfEPj2a4hMjsDr76KPTFB8+pFVblp3Xx/CcTHf+dA/5fQc3i2djV5nGyKX31KU4V5E5Px4XueOA76Qa29w4U+xhPnWGZzD+/C69qZI4MWjiFx+zUVRIpVBFIr+ddQuxYtF0OZTmN99j9AffQXr1bdrOs58+yzafIric4+XXbtaprHf6dpCCgCvtfGOjdsRpzgPSIyQWhCzHN2MYAbbKWaU8KdYH6+tBbFXhD/Xxfzue7j93dinTxB4+yz6lRto07MEv/QtRDa3qxIVnOIC+jY4/oKJw3hOnuG3fp3s7JmyACilpJC+gRXbmGs9GNtHIXkF18njeTbZmfe37PYDsKL9uHaGmStfQHo27Qe+j+5jP08xO8rIu79BduZ9uo99Gt2MrH+ybUQIQbznYTIz7+I6eaT0SE9+l1j3gwjNIBjbR8+Jv8rA6b/DwOm/Q9/d/x3B+M1ewkT/08R7H8cMdqDpuyeeXaFQKPYSKupTsesRmeyq+DK3lCY3e4aOO358S+eut+NPtsSRVgB9dHJFZJ6i/mi5vB+tBTjHj/gRddrOW+sgPQe3lF4zDsWKDvjl5flpwhwvb/fiUfTFfqQ1nyMeRcvkfLeO3thosHqipbO+S+KWSDfZEkMkU00aVXMR+eK6Qm8jcAd6MS4M+dGTVgDz7bN48agfCYnfAyctE/PcZfRrIzh3HkS2tyCBwvc/s+3j3Qu4PZ0YV2/4PX+LK7y1RTHcWyaGlx6vYULCClB89nGCX/wmoc99BSQ4dx7Aa2/FfPssxue/Ap6k9Nh9eAOr+0RkS5zSg3cTeON9v49teg7n8MrJlCVRSpuew1UibxmRzSFDQX+l/hvvo09M4Q7WHmFnvncOHAf7/lMNHGVzWXKti1QW2Vb5u1CfmF6MTN+94qeMRnz35uQ0XkscMZdc9xiRTGN+eJnSvSfw2lv9zwNda7jjT5tP+t+/t0QNK+rDUufR7ez4q4YVG1SOP0VNeO2tmMPjK66TdgtiPoVx+RrOiSPISBjj7CW0TI78s48jEzFEJov14ht+8klbgsInnlo/rn2HIKVcdPw1XvgLt95J/+n/gdmh5xl9798QarmDnuN/FSldPCdfc7/fEtGuB0hNvM61V3+FcOsJPLdAtC7C3wAAydEXaBl4BsNqwbBaaNv3Ceauf5lY90NEO+7Z8vM0glj3w8xc+RMy0+9gWq04xXli3Q/XdKwQgu5jP4t0iw0epUKhUCiqoYQ/xe5GSkQmh3fLJGN66k0AYl0Pbun0uh7CKcxt6RwrWFz1b569hNvXhdffuMLm2x2RKyBDoZsbdqDoB+CUfOfaWjdHQuiYwXbs/Er3j3tonx9duo6Y58Wj/nslnUW27J7YLpHOIiOhVX87mYij7aVIwVonLEo22uw8ThNW/Lq9naAJAt99z3csex6ljzx0c9y6jrt/AOPiEDJgUrrv5M2Dd9lkzE7B6+1EnLm4oudPpDLIgAnBZatma/z9yliEwsefwDx7CfvknWVXn3NoEPODi74rerHDrxLOyTvQMlkCr77jT0TdEt0qwyFkOOQLfwcGNvbD7mFENo+MhJDxKF4sshjXVZvwJxZSZdFnLztmlxYzaKk0bhXhTxuf8l2mOzCuu1acw/v999mpO9FHJgi8/Na6C3IC330PGQnhnLrT3yAEXiyyDcJfCi8R21WLhXYTS/cWhqUcf7diRQf9eHspEer6QbEGXnsLwnEr9iH7O3j+f+DfS+yge0Hz7EWMS9cwzl/BOXEHxoeXsE8cKd+nlR67D2kayNaEX1Wxi94LnptHuqVt6fgDiLSdINx6nNzch0xd+Cw33vxnRDv9lKeNOv4ibSc4+Og/Z+76n5McexEr2o+1xZhPACPYjqYHkdKldd/3lLe3Hfw+dCtOvEYhrRmYwTbCrXeSnngNw2olEO5e4epbDyEEwtjmtBqFQqFQlFHCn2J3UywhbGeV4yk18Trh9pMYga2tVK634w/Avv8U2kIK61uvUfjk08i2lrqeX+Ejcnl/0mqH45b8Ff/rxaGYwQ7swkqxy+to9SdC10GWJ1UzuLtM+PMquBllSxz94tCuXOF7KyKdJfj81yl+9DG8Sh1ty9Cvj4Lr4R5sgqhimrg9XejD4zh3HKB03ykIr7yJcw7tw7g4hH3vCQha2z/GPYbb1eH3/E3O4Cx+lmmpjP9+3uTrXra3+oLtckwTe7lQWw0hKD18GpHJoY9MVOxsdLva0GbquFhmDyCyebxIyI9lHejB2IA7wXznw5Wiz14laCFNo3oktZToEzM4R3Z3x6HX21n+nF+6PhHJdNXrQH1k3I/f/egjKwQ4GY34jvgGIhaSqt+vgdiFOfRAXEWfVcCK7cO1M4sdiKoTSlEdb/GzU5tdwL3lnk+bnPHjzRfjtaWhU/jRT5TTYJrKYmefc+dBZMDEPHMBGTCx77mZ6oKuYz9yb/PGuAXcYm33tvVECEGk/ST7HvyHTJ77HZJjL2JYbZuaCzKsFrru/Ena9n8vsLo7cHPj04h03I0Z7FjxuaZpJq0DOz8ZJdb9CJPnfxehm7Tt+4RalKFQKBS7iJ2z7Emh2ATaYpfQ8ijAUm6SQupqXVZOaUYIt87CH5pG8emHkbEowa+9rPqQGoTIFXbGzd06OIvC33qrIs1Q5yrHX63IcAh0fdf1/Gnp7Ip+vyW8lhi4HiLT2InP7cC4egNRtAm8/s7NVcnV9h0axu3paJrzp/TE/eR/6OOUnnhglegH4PV0UPjep3COH2nC6PYggcWev/Gb73uRSjcl6vXmAATFjz5C/lMfq/j56nW2o0/Pr/tavp0Qy2Kn3YFeRCaHWKiho7RkYwyPYR8/svddV0Ig4zG0Kt9RIpVB5Au7ut/vVpaEv6p9tUt9T72dq3qdGu74kxJtPolU/X4Nwy7MYgaV268SS5F4xcyNJo9EseMJWshIGG12fsVmkUxjfeMVvLYExY88RPHJBxGuhz4y0aSBrkTMJRH5As7BAewH7yb/I5+g8MmPgrU3FgKU722tlm1/bt2M0HvXL9F19C/TfvBTWzqXYSXq+jP0nvzrdBz+obqdbzuJdt2H0AykWyLW/dD6BygUCoVix6CEP8WuZmniw4vcdAXNXf8KmhEmUoec9EY4/gAwTYrPPQ4CrK+/DLZd/+e4nZESkc/vDuGvmAShoa+zItEMdWDnNxlvKQRePFp1UnWnIjKZyo6/pRW+k7PbPKI6IyX61WG8jla0+RTGhavV980X0cemcA8Obt/4bkFGwsi1HCBC+P0jahVo3XB7Ov1uM+mvONaSmbKDt2noejkm9Fa8zjZwXcT8+t1ltwvLhT+vx4/M1Sem1j2uqQ7fJuDFI4h05e+ovdDvt4qghQxaaFVEYH14HC2ZofTgPas+U2Us4vd9yvo4EW7F+OAComj7rmNFQ3AKcxiq368ihtWGbkZUz5+iJrz2FrTZhZsbCkWsr7+MDAYofuxx3MP7cI/sx+1qQx8eb9o4l6OPjCNNA6/b/4yVscie6lN1ikvCX3MWjwghaOl/ikTf4015/r2IboSIdT9IuPUYgXBXs4ejUCgUig2ghD/FrkZkckhDL/cdZWc/IDX+Cp1Hfrwu8TmaEUJ6JaTnbPlctyLDIQrPPYFIZ7G+9bpySNSTQhE8iazgStppuKUkhhlDiLU/js1QB56Tw7U3t8pfxqO7y/FXLCGK9qoYXwDCQdzudoyru3tSSMwn0RZS2KeP+92f75z1X7sVMK6NAOCo7rTbCq+nA5HLo1+9ASUbUSg21/G3Dl57ix9POq3iPgH/b2Y7N126ho7Xklg5SVkF42pzHb7bjUzE0JKVv6O0iWn/tbWL+/0q4SViiGSq4mPG1WG89taKIruMRX3Xe75Q9zHpV4cJvHUG+57j68ZP72aklHhO/X9/taIcf9URQmBF91HM7O5rPMX24LW3oM3N+wshHJfgN15BlGyKzz2xwkHnDvSijU/5vapNxhiZwOvr2rNufqeURDNCaLqK/d9LdB/7Gfrv+dvNHoZCoVAoNogS/hS7GpHJIqMRvzvHzjF5/r8SbjtJvPexupxfNxZX6TfC9QfI1gTFZx5FH5sk8Oo7DVu9fbshcv5kzm5x/Ok1rIg0g/4E3GZdf7vN8bfUX1RR+APcg/vQxyarCmXbRmnzbl3j6jDSMnH7uindfwo8SeDdDyvuqw/dwO3rVt15txluXzfuYC/Wd94g+OVvASDjO3hVuGHgtbWg7UThr1ha/R0rJSKdQSTTiGS67u57kfWvHWTk5neR706Yr3aIT76APj6Fe2hfXcezk/FiUV/IuvVvICX6xPSeivlcQrbEKkd9lmz0kXGcQ5Ud3t5iBHa94z61yRmsF9/AObzP72rdw8xd/zJXXvp7LIy+gNzma28pPZyicvythRUbUI4/RU147S2Ioo3I5Ai8+Aba7ALFZx9fVRXg9vcgbAdtcpPpKfWiUESbnsMd6G3uOBqIW1xYt8JCsfsQQkdoRrOHoVAoFIoNooQ/xa5Gy+TK/X7Tl/8Iz8nTfexn6lY4rOmLvTwNEv4AvL5uio/fh3FxCG2iyTcjewQtvzjZugscf04pWdPNkRny42DswiZ7/uJRv09yB6x0rYVyjG+Fjj+46XxbcsI1A5HNEf5vf4Y2Ornxg6X0O/v2D/grfkNB7HuOY5y/uqr3U2Ry6JOzVSeBFXsYXaf47OMUnnvCF610bUc7/sCP+9Smd1gMb75A6A+/hHFxaMVm/fI1Qp/7c0J//Bf+f5/787o6o0VusYc4fIvwt5Ba87O47PC9pdttL+Mt9slZ33ljReSnSGcRucKedJ95Sy7HW4Sn9WJeZcy/7q2n8Od3Yr2M29VO6fH7d3Vks5SS2aEvkk9Wjs8upoeZG/oigXAvUxc+y8TZ39pW959bSiE9B1MJf1WxovuwCzO4tupBV6yNtxj/b73wOsa1EYpPPeTHjt+CbEsgw8Gm9/zpY5MgJW5/d1PH0UicYrJpMZ8KhUKhUChWooQ/xa5GZHIUQyUmzv02qfGX6bzjx+sanaMtOf7cxgl/AO7h/SAEWpXIJ8XGKDv+Qo0R/lw7Rym3fkdTTecqpWoS/nQzgmaEt+T4AxCp+joEGoVIZ5ABEwJVot1CFm5fF/pQ81aEi3QWpMQ8c3HDx2rTc4hMboWY5xw95Pd/Da0UM/WhYdA13P19Wx6zYnfiDfRQ+MHnyP/IJ1ZEV+1E3M42X8wolsC2Mc5dXiVmbzfm+asIx8U4c/GmyCIl5plLuH3dFL73KQqfeAppmVhfe6myk1hK9EtDkK/dZSxyqxeheO2t4Elf/KuCfnXYnxS8jRy+sr2F4lMPo83ME/rjrxJ45S3Mt84QePMDP9VhD/bNeYm434mZWfn+MIbWiXk1DGQoWHbGb5l8EetrLyFDQYrPPLoj4+eklDU7wLKzHzA79GdMX/r9VW4+6TlMnPttzHAPgw/8Mr0n/wbZ2Q8Y++A3tzS+2aHnufjNv1H+b/LCZ6vuW8yMAmBaKuqzGlbMvzYqZpq3uEuxO5DhkN+XOj1H6aF7cKstmBECd6C3+cLfyAReW2JPx3g7pSS6cvwpFAqFQrEjUMKfYtciPZexwre5lPxdsrNn6LzzJ4n3PlHX59AaHPV584k0ZCS0avJHsTlELo8MWqDV9yPOtXPMXv0zhl79/3LjzX+OlFt3z9Ua9Qm+62/Twl9LHABtfmFTx283Wjrrx3yu4TpwDg6iT8w0TVRYEpj1sUnE/MZEe/3qDWQoiLc8vi5g4g70YCwXM6XEuDiEs69vz/VbKTaIppUd7juZpZX2gbfPEvr8XxB47V2sr77kC4HNwHUxzl/xnYipTNmhq41P+R2bdx/D6+nE6+2k+NwTiJKN9Y1XVjnyzLfOYL30FoHX3qn5qbXs4nfRMiFlydlWredPZHLoU7M4B28/h697aJD8j3wP9t3H0ManMa7eQJudxzm8r/oikF2MTPixvWJ53Ge+gD62fsyrjEVWOCM3jeMS/MbLCNuh+OwTO3ZhwczVL3L9jf+tLJpVQ3oOM5c/h2G1Ukhdo5C8vOLxuet/TjE7Ss/xn0PTTGLdD9B++IfIJy9tus/bcwrMD3+daNf9dB/7GRK9T5Aaewm7sDrSV0qP2aE/JRjbTyB6+zh6N0og3I3QTIqZG80eimKnIwTOsUPY957AOXnHmru6Az1oyXR9Pjs3g5TooxN7OuYTFvvrrZZmD0OhUCgUCgVK+FPsYoqzV5jTLtLR9QwHH/3ntA48U7eIzyW2TfgDvGgEkdkdbqydjsjl697vV8yMMvTqrzB34y8Itx7Fc/KUsuNbOqeU0r85qnFVpBnqxM5vLuqToIUXi+zM7i1AHxrB+uarZTeOSGfxqvT7LeHu7wddW+WQ2y5EPg+6hgwFMc9dqv1AKTGGRny33y2fWc7BfWgz8+WJYH10Ai2VwTmx9mSGQrFTkPEo0jIxzl/B7emg8PEnEbk81rdebUrUsD40gigUKT7xAF57K+aH/nvV/PAyXmsCr+emk0zGohSffQx9dh7rqy8hFl15xoWrmB9c8IX5ayNo47V9DotcfkW/n//EBl5LrKrwp1+9cXs7fE0D+94TFH70E+R//JPkf/yTlJ58sNmjaggyGgZdX5H2UGvMqxeLbD3qU0qs73wXMZ+k+NzjVTt1m838+DvMXP0zgHWvuxZGX6CUm6T/7r9FINzD/PA3yo8VUteZu/Yl2vZ9gmD8QHl7MLoP6TmbvqZLjr+MdEt0HvkJEn1P0nHHjyM0k+Tot1ftm554nULqGh13/ARCqNvwagihY0X7Vc+foibse09in16/l9Tt6/KTNZrk+tNm5hCFEu5AT1Oef7twVMefQqFQKBQ7BnXHodi1FEffR6DTescPoOmNicPSt1H4k9Ew2k51/FWIotrJiFxh9WTrFlkY/gaaEeTgo79Kz/G/CkKjkLq2pXN6dgYp3Zp7EMxgB3Zh8z2QXmcb+k4U/oolAq++jX599KYbJ51BRteZhAyYuAO9GFebMzEk8kVkKIhz7BDG5Rs1O5rEfBJRKFa88XcHe5GmUXb9GWcv4XW0VuwrUSh2JEJQfPoRCt/3UUpPP4LX303xY4+hT84SeOXtVX1mDUVKzLOXcPt7kC1x7BNH0Ecn0W+MoQ+PY588skp89zrbKTz7BCKbI/QnXyPwwusEXn0H5/hhis8+jtfZRuD1d2v6OUS28iIUr60FbW5h9QGeh3n+qt9hqhy+ex8h8BJRtIWbjr9aY15lLLqxqE8pVzoLAfON99Gvj1J66mG8ju3/jrHzM+QW1l40U8pOcuWNf0e08x50M0IpXz1m3bWzzF37Iom+J7Big7QMPktm5l3s/DROKc3Ymd/Eig3SdvD7VhxnRQcAQTGz8WsJKT0WRr5JtOt+zGAr4N87JPqeIDn2HTz3ZjSw5xaZufoFol33E25Ri3nWw4rtJ79wCSm9Zg9FsVcwTdzuTvThJgl/49NI09jT1/SeU8Bzi8rxp1AoFArFDkEJf4pdS376HGGtCxKNW1EmNAOhmbjbIvxFdqy4Zpy/QvDPvr69E7ZbwHf81a/fz3XypKa+S6LvSQwrgWYECYR7tiz8OaUkQM09CGaoE7swu+mIUa+z3XeZNMF1sxbmux+C5+G1xHw3juf5E+aLvYRr4RwYQJudb0rc55Kz1D56qBzJWQv6xAxoGl5X++oHDR13Xx/61WHEfAp9bAr7+GpxQqHYyXh93Ste315PJ8XH7sW4fL2y4NUgtMkZtLkF7BNHAHAPDiCDFoEXXkcGA1XjFL2+Lgo//HFK959CHx7HHeih9PBpEILSw6fR5pM1vd9FNl+xx8drb0XMLaz6TtVvjCGyuXXjyhR7B68lXhbktJk5P+Z1nZhPWHT85Qvg1BZPaVwcIvTHf4H1jVcQqQzGucuYZy9Revg07r7muEsnz/8Xxt77t7hO5e9vKV1G3vt3mMEW+k79NcxwD3Zusur55q59Gem5tB/6QQDiPQ+jGyHmh7/OxNn/iPRsek/9Ipq2UlT3r+m6KGxC+MvOvIedn6Z18NkV21sGnvGvHSdeK2+bv/FVXDtL5+Ef3fDz3I7Eex7FLsyQnf2g2UNR7CHcwV708ammxH3qE9N4XR11r6LYSTilBaD2e1uFQqFQKBSNZe9edSj2NFJK8pkhQrFDDZ8Q14zQNkV9hv1JnB0mygBoc0lEsdS8jqYNInIFZKh+jr/05OtIzyHe81h5WzB+kEL62pbOuyT8GYF4TfuboQ6QHk6F3pha8DrbwPO2deJ9PcR8CvPcFey7j2Hfdcx344xOgpR46zn+oCwuVIvNayQiX0CGghAK4hwaxPzwck0TCfrENG5nKxhGxcfdQ4NoyTSBV99ChoK4BwfqPXSFYttZ6rQR2cZ/ny5hnLuMl4ji9Xf7G3Qd5/hhhOPiHD20ontvFbqOc9dR8n/p+yl+7LHytYbX2YZzZD/mW2egZK/5/CKXw6vgPvfaWhCOu8qBZXx4Cbe7A6+9dWM/qGLXIhMxP+pTSgKvv4fXmqjpM38pllOka1v0oo1N+skSs/OEvvBVAq+/h33yDpxFUXy7KWZGyM2fw3MLpMZeqrhPPnmVYnaMQ/f/AroRIhDqorSG8JeZfod472PlaypNt0j0PcXCyLfILVyk9+RnMIOVnTaB6MCmYiXnh79OKHFkRXQo+Ndr0Y7TLAx/HaeUYvry55m7/hVaBz/mX8sp1iWUOEQwfoiF4a83eyiKPYRz50F/AdAb72/vE3se2uQMbs/efv87xcV72xrTbBQKhUKhUDQWJfwpdiV2agzXyRDsWj/Pf6voRgjP3R7HH7AjXX/aYs/Rdk7YbhrP8wWZOjn+pJQkR18k0n5XOcYJIBg/QDEzguduXgx1F2+O9A1EfQKb7vnz2hKga2hTOyTuU0oC330XLxrGOXlH2Y1jLt6My/j6wp+MhJBWoEnCX7H8OrPvPgZA6I+/6gsCdhVBQEq0yWm8ns6q53X7upFWAH1yFufYOuKEQrFbsAIAiEJxnR3rhJToo5M4h/evWCBkHzuMc3DAd9LWgmmsWmBk33cSUSyhD49VP85xEUW7ctRnewuwcsGCNjvvv+ebJMQomoOXiCMKJYxzl9GmZik9dE9NbpAl4U+rxbUiJfrENM6hfeR/5HuwTx/HPnEE+8G7tzr8TTM//A0Mq5VY90PMj3yzYpJBbvYMuhkl2ua/J8xwN3a+svBnF+axCzOEWu5csb1l4Gn0QIyuO/4S4dY7Kx4Lfs9fMTOM3ECyRSF1nfzCJVpucfst0brvOUq5SYZe/gckR1+gdfDjtB38VM3nV0DrvmfJzV9QXX+K+mEalB68C/36GNpY9YUE9UabnUc47prX/3sBp7gAoDr+FAqFQqHYISjhT7ErKd54GyQE9p1u+HNtl+NPRv04MJHZQGfLdrCsF0ZrQpziRhH5AkDFydbNUExfp5gZJtH35IrtwdgBkN6mOmGWcEpJdDOyKnaqGmawDYSGnd9kz5+u47W3os3sDOFPG530oywfuscXtxbdOFoyDUJUjMhbhRDV+7IajMjn8UK+8CcTMX9C9a6jmGcvEvzyC5WPWUghCiXctW78NQ33wABomh8jqlDsBTQNGQzA4md0oxHpLMJ28Dpucc8FLUpPPwKhzS8OkZEwXnsL+kj1niCRyy/uW+G7yAqU3VdLGGcvIaPhpsUuKpqDl4gBEHjjA9z9/Xh9XTUdJ0NB0DVEDT1/YiHtf+/0doJhYN9z3P/ebVKEtFNMkp58nZaBZ2jb9z04hTkyU++s2i87e4ZI+0mE8G9XA+EuXDuLa68WOwvJywCEEodXbDesFg49/r/TMvDRNcdkxQbxnDzOBnqUs7MfoJsRop2nKz4ejB+ipf9pWvd9Dwcf+1U6Dv9Qzdd7Cp9o572YwXbmletPUUfcg4O4Xe0EvvseeNvTIamNTyMNffU1yR7DLSXR9CCaUb/KDYVCoVAoFJtHCX+KXUlh8kOCog2trfGr5jQ9tD0df5EQCIG2wxx/Il9A2H6HTDN61DbKkvDn1cnxlxz7DobVSqT91IrtVrQfoZlb6vlzSqkNdSAIzcC02rALm3P8AbidbehTs5s+vp6YZy/htbfiDvaWt9lHD/kCQSRUcweG196y/Y4/10UUSiudpaaBfd9Jik88iDa3UJ74X44+MQ2awOus0O+3jNJ9Jyl88qktiRMKxU5DBoPb5vhbEtW8tsZMsrkDPeijEyt7+oolxOJn0ZJDvtoiFK/95oIFkc1hDA1jHzu8p7t/FKuRiagvwAkobcSBJwReLFpzvDRi/e+d7SI5+gIIjUTfE1ixQcKtR1cJO05xgWJmmGjHzWuvQMiP7C3lpladM5+8jBnqqhgvtyQcroUVHQSgsAFnWSF9HSu2v+r5hRB0Hf1pOg7/ELq5fmexYjVC6LQMfJT05HfLTiKFYssIgf3wabT5FMaFq9vylPrEzJ7v9wN/UauK+VQoFAqFYuewt688FHuWfPoqodjBbVmtvF2OvyWxY6dFfYqFxQ4iTdtxY6vEepOtG8Fzi6Qn3yDR98SqiR2hGVjRQQqpoU2f3y0mNxyFYoY61nX8rRVV5XW0+X/HbXLdVEMspNDHJrFPHFn5Pg4FsY8dWtsRdwtee6svSm9XhCA34wordUl63Yu9g9OrnZXaxDRuR5sfH7gWQWvHTNIqFPVChqzy4oxGo80u+N8DIash53cHehFFe8X7PPDK24Se/wba6GR5oUxFxx/+55Y2u4Dx4WWCf/o1ZMDEufNgQ8aq2MHoOm5XO6V7jpfjO2vFa2/BGBpGpNYW/7SJab/jd73vnW3A82wWxl4g0fs4uun/vC2Dz1FIXSWfvFLeLzv3ISCItJ8sbzND/nWBXaHnL79wmVDL5mNyDSuBHohvKMWhmL5BMLZv08+pqI143xMIzWRhtHKSgkKxGbyOVpxDgxjnt0H48zy0qRnfdb3HsfOzGFblLlWFQqFQKBTbz20j/L3xxhv84i/+Ik888QRHjx7l619fPzLk9ddf54d/+Ic5deoUzz33HH/8x3+8ap/PfvazPPPMM9x11138+I//OO+/v81F0bchTnaWkjNPqPP4tjyfboTxnO0RvLxoeMdFfWrJNGgCt6N1dzj+cgVfSApufbLXzk/juUXCbZW7JIPxA1t0/G18VaQZ6sBeI4rKcwoMv/VrTF74bOXHu/ybMb2CKLWdmB9eRgYt3IMDqx6zHz5N6ckHaz5XuS9rG+M+y5GyFUQFGQkjwyG0W52VUvorfvd4v4dCUQ0ZtLbR8bdQ/mxoBF5nm9/FOTwO+P28xvVRZNDC+tar6KOTSMsEo7LY4rW1IEo2gdffxd0/QP6HPl7uQVTcXhQ/+TTOPRu/pi09dA8yEMD62kvlhS/azByBF15HzPsdwkv9fhtZTNMo8smrjL33/8MtZWgZ+Fh5e6T9FIFwN3PXvlReuJSbPUMwfgAjECvvpxlBDKuV0i3Cn+vkKGZHCSW21o8ZjO2rWfhzSimc4jxWbP+WnlOxProRJtJ+F/n5C80eimKP4fV2+fe5jtPQ59HmFvzo8R3wOdxoStkxApHe9XdUKBQKhUKxLdw2wl8ul+Po0aP8k3/yT2raf3h4mM985jM8/PDD/Omf/ik/93M/xz/6R/+IF198sbzPl7/8ZX7t136Nv/k3/yZf+MIXOHbsGH/tr/01Zmd3RozeXqV4/V2QksC+e7fl+YxgK3Zhe0QSGQnvuKhPLZnCi0eRsUjZTbeTEbm8H79YBzfoUo9MtYimYPwAdn4K196cWOsUkxuK+gQwg53Y+cpRn1JKJs7/DsX0MMnRF8jMrF6IICNhZNC66VKRctv6LcoUS+hXruMcP+x3+20RGY8iTWNb4z5Fbkn4q+Lm6Wxb1aXo9ywVd8QErELRDLZN+JMSbW4Br72BXTpC4Pb3lHv+jHOXkaZB/geeRcaiGFdvIMPVe0rd3i7sU3eS/4GPUXr8fhXrq9g4QYvix59AlGysb7xC4KU3CT7/TYyhEQKvvF3uaPa/dzqaNkzXyTH63r9l+K1fxykl6bv7vyMQvtllKIRGx5EfIzt7hvTEa0jpkp37cFXEOvg9f3Z+ZdRnITkE0tuS4w/Aig5QrDHqs5i+DkBQCX/bghXbRzEzgpTbfL2q2NN47S2L1wvJhj7P7dLvJz2HUn6KQER1FSsUCoVCsVO4bYS/p556ir/7d/8uzz33XE37//7v/z4DAwP88i//MocPH+bTn/403/M938Nv//Zvl/f5z//5P/MTP/ET/OiP/ihHjhzhf/lf/heCwSCf//znG/RTKAAKE2cwtRhGx2qnUCMwQ524pRSe2/jJShmL7DjHn1hIIxNxX5TcDY6/fKEuMZ8AbmlJ+ItVfDwY92PZCulrK7ZL6THy7m+QnT27zvmTGIH4hsZkhjpw7SyuvfpvMX/jq2Sm3qLn5C8QaT/F1IX/uno/IfC62tGm59AmZwg+/02CX/jqhsawVYyLQwhP+n1+9UAIvNZEudNrOxD5RWdplRhBt7MNbWZ+haiqT06Xf/8KxW1JKIjIN/67VOTyiEKxoY4/8Hv+tLkFRCqDcWkI544DEA5SfO5xZCS0dnSjoWM/eDeykeKkYsPYhVluvPmrOMXGTgTXCxmLUvzYY+iz8+g3xig9ei+F5x5Hn5pFHxq52e/XxO+dhZFvk5s/T+/JX2D/Q/8z0Y57Vu0T7biHeM8jTF36AzLT7+A5OcJtJ1ftZ4a6Vzn+8snL6IEY5mIH4GaxovtwivM4pTRuKc3Iu7/B8Nv/B7NX/4zc/MUV+xZS19HNCEZQfZ9vB1ZsAM8trBt1r1BsBK8lDkI0PDFEn5j2P4P3eL9fKTcJ0lOOP4VCoVAodhDNL3vYobz77rs8+uijK7Y98cQT/Oqv/ioApVKJs2fP8pnPfKb8uKZpPPbYY7zzzjsbei5NE2ha47vq9gqF1FXCkQMY5tadQrUQjHYhhEDacxhWf0OfS8SjaPkChpB1cULViq5rK/53xWPpNO4dBxCRsD82jR1946IXCshoCMPY+hill0HTDALBCKKCg1CPdaObYezMdYyuu8rbs7Pnyc+fwwp3kui+a9Vx4EdySq9EINy6obGG4n0IIfCKk1ihw8ue80Nmh75Ax6Hvo7XvAaJth7n66v/M7NXP0Xfy51eepLsd460zGF/5NtIKIIolDOltT/+P5xG4cAXvyD6MWHU3TCXWep2Kzlb0kUm8OvzdaxpLsQghq+rnkOjtQHvLxUxnkIvigzE5g+xqwwipOL+9zFqv09sdEQmhFUsYumhoR6+2kEIIEF1tdfkuqMr+XoQmCL70BprtIO+603++eAT7h/2FZg19/i2gXqeVSc2+SzF9nWL6EsHIQ80eTm30dVL6sU/4UbFWAA3wDvZjvfU+sr118XunMV2X6yE9h9TYt2npe5TW/ofX3Lf3+E9x5ZUPmTz3nzECUaJth1a9ToOxHtJTr6PronxdVkxdJtJ6B+YW7wsiLfsRQlBMXWB26Cs4pSThxGGSY99i7vqX6LvrF0j0+K+JUvYGofj+LT+nojYiCf9v4+RHCMd7mj2cVajP012KoSHbEhjzSWjUd7XnoU/N4t5ztOnXA41+neYKEwghiMT70XfotY9i56M+TxW7AfU6VewmlPBXhZmZGTo6VsbidHR0kMlkKBQKJJNJXNelvX3lSs/29nauXt1YSXRbW2VRQVGZ6WgXnceepbV1jZX0dSQS3MeIrmHpmYY/p9ffjq1rtOggtunnW048vtIpJ0s2pUKRYH8nIhTE1gQtAQ2xlouhyZTsElp3D0Ydfn/ZcZtgOEFbW+WoT4CWziN4hRsrXhtzV95G1zW8wnDV10whnULXNdo6eohvYKxe/BDDhoEh5mhtvbu8ffrci8TbD3PnAz+NEBoQgft+lqG3fgv96EeJd97sKfTuPoIzOoF+7zFEIor9h39BQpdo2/Ca80ansPMFzIdObfr5bn2dArj7e3AuDhGOBBABc6vDXBdHungtUSJVfgYZtSgZOrFcFv1IP7JYojQxhX7/CaJ1/j27dp6ht/9f9t/zM5jBjUXHKhpHpdfp7Y7XmcDWBS2Wjog07vfjnM/iRUOEBjoafH0VwR7oxhubQrtzP+F9N+MLacJ3+GZQr9OVTJ69gK5rCHt0264z68ItY5XPPUrpd/4URifQH7yr7t871ZDSW7wG8Zm58RLSSXPgrk8Rjq83hgj6Q3+Di6/+n7T3n6at7WbaQvl1mt/P7BWHaKhEINSG59rY2Rt0n/yxLf+9ZMsBhq0wU+d/G8OMcNcz/5hwfAApPc5/51cpzLzGgeMfBeBafpT2wUd312tkVxNhJNqO5k7u6N+5+jzdfTgDXXgz88Qa9LryhiewPZfQsQPbcp9VC416nWbHZwlGWujo3pr7WqEA9Xmq2B2o16liN6CEvx3A3FxWOf42QOcn/jEA8/PbE4kppYknNeambkDoaIOfTMdyPZKj00i21/EXj4dIpfK47s1oQjE9R8D1yBsBkIKA65EcmUFuYrGtduka2o1xnI89uv7OWyCwkMEd1HDr8PpIL8zgidCar7VA4i4mLvwekyNXCUS68dwi09dfQw+0kpq7xuzMPJq+2uGVmx/HdT1yxcCGx6oF2pibGMJMPFjelpwZIt79AAsLN3sYjfgDCPOPGL/6Bq6xrIdGM+H7/Mkrsjks16MwOoOnNV4w0y9eR9d0csEQbPDnrvY6BRDBMAHHJXllFLkNHXrmbAoMk+waP4OZiFO6Oooz2I/+wUWMQonc4MCGf+71SE+/x9T1VzATdxPvvr+u51ZsnLVep7c7wpH+98jEPLKtcb8bY3gSEY+TXWh8PLXe3YExPEH+yEHkNl2X1AP1Ol2N5xaZnzgLUjA3cYH44O75e65GQz9+BOO9cxRaEnjb8NqUnsPQa/8bwfh+ek/8HAiNG2e/SLDlOEW3lWItYwgdo+OOv0S45Q7m57OrXqdFL4HrekyNXSPSZpFPXsUuFZDmvrrcFxjhAYrZcfru+bsrxhxsf5DxD3+XqfERhNDJZ2aQRu+23YsoQA/2MTdxmWjfzvudq8/T3YseiWCcuUx2Nt2QRBvj3QtooRA5a+P3PfWm0a/T+akhNKtHfS4qtoT6PFXsBtTrVLETqHUxnBL+qtDR0cHMzMoegZmZGaLRKMFgEE3T0HWd2dnZFfvMzs6ucgquh+dJPE9uecyKxmEEOylkp3GcBn+oWxYBBDKZxene/i8Q1/VW/Iz6bBIpwY5GQIIpwUtlcDvaNnRebXSCwAtvgJQ4TzzQuBhT2yZQKOEEQ7h1+FvZxTSaEV3z7x7pfgz96peYuvI8PSf+KqnJd3CdAl3HfpbxM/+B7MJ1QonDq44r5haQUoIe2/Drygj1kE+Plo9z7Ryl/AxGuH/VuQLh/hX7riLgv+a8hQxOb+Nfc/roFG5XO44rgc197t36OgUgFsUUGnJqHqej8Z07RjaP15pY82+ndbShjU/h2C7mmYvYBwZwLAvq/DmSnbuClJJCZpJwu7rw3ClUfJ3e5ggzgCnBzeTw4pW7U+uBOT2Pc3BwW37/zpGDuGYAp6Ot7u/t7UC9Tm+SmTmH59ok+j5CauI1bNtGiN0b5ejcdRTXsnC6Orbltbkw+hKFzBiF7Diu65DofYJ86jr99/ydDb3G4r1PA6w4Zul1qpltSAT59DhW/A7SM+dAmBih1dc/m6Hr2F9FaDp6IL7ifKH20yA+y/zoa1jRfqSUGOHt+YxR+JjhAZLjL+/o37n6PN19eC0JdNfDnV4oR/PXDdfFvDqMfeehLd331JtGvU4LmTHCrcfUe0BRF9TnqWI3oF6nit2ACqStwunTp3nttddWbHvllVc4ffo0AIFAgJMnT/Lqq6+WH/c8j1dffZV77713O4eq2AbMUAd2frrxT6RpyHAQkd4ZK+W0ZBoZDoFpQsBEBkxENr/+gcsQc0msb73mnwcQuUIjhuqfO+OPTdYpitS10+jm2pPTmmbSuv8TpCa/Syk3SXriNYKJw0Q7TiM0k0LqWsXjSrkJNN1C04MbHpcV6aOUHS//u5gd9bdHV3dQBqL95ccrIgReNIzIbMNrzvPQpmZxG+HI0zS81gTa7Hz9z10BkS8gQ2v/7dzONrRkGv3ydUQmh3PijoaMpZDy46W35TNKodgCcrFnTBSKjXuSQhGRzeO1tzbuOZYTtHCOHmpoZ6Fie8jNncUMdhDreRjplShlxpo9pK1hGDgnjmxLL7P0HOauf5lY1wP0nvzrpKfeZOyDf0cg0ke47cT6J6gRoRmYwXbs/CTF7Dhz175CrOt+hFaftaxmsBUjEF+1XTfCRDvuIT35OoX0dTQjjBlqfLqA4iZWbB9uKYlTTDZ7KIo9hNfmR+Rrc/W/f9DHphBFG+fQYN3PvdOQnoOdmyIQ6Wv2UBQKhUKhUCzjthH+stks586d49y5cwCMjIxw7tw5xsb8m/p/9a/+FX//7//98v4/+ZM/yfDwMP/yX/5Lrly5wmc/+1m+8pWv8PM///Plff7KX/kr/OEf/iFf+MIXuHLlCv/0n/5T8vk8P/IjP7KtP5ui8ZjBDuzCzPo71gEvGkFkGh9PVgtaMoWXuCl8yUgYLbuBsRWKBL/2EjIWpfjRhwEQuY0JhxtBWxSvZDRcl/M5pQx6oHq/3xKJvicxzBjTl/6Q7NyHxHseQWgGVnSQQmpo1f52fpq5G39BvPexTfVPBSK9OMU5XMf/XZYyfvRUILw6g9WK9OEU5nCd6n83GQ0jNvJ33STazDzCcfF6GzNZ5rW3oM0uNOTcK5DSF/7Cawt/XqfvjA288R5eV3v53/UdilcWl5Xwp9jxGAboOiLfOOFv6TPAq/fKfcWeRkpJdvYM4faTBGP7QGhVF+4oVpMcfwWnME/bwe/zxb8Tfx3PK9G273vq3rMZCHdTSF1n/IN/hxFso+vOn6rr+asR63mEYmaE9MTrBGP7VD/7NmNFBwAoZoabPJKNU8yMkps71+xhKCphmniJaEPuH/Srw3gtcWTr3u/fLuWnkNIlEO5t9lAUCoVCoVAs47aJ+jxz5gw/+7M/W/73r/3arwHwwz/8w/z6r/8609PTjI/fdNAMDg7y7//9v+fXfu3X+N3f/V16enr4Z//sn/Hkk0+W9/nkJz/J3Nwc/+bf/Bump6c5fvw4v/Vbv7XhqE/FzscMdWKPvYiUHkI0Vi+X0fCOcfyJZBq3t6v8bxkJbUiUNG6MIfIFCt//UaTp98dt1DG4EUQmB0KU3YVbpRbHH9x0/U1f+gOE0Il1+T1rwfgBsrNnVuwrpcfEud/FMON0HPrhTY1raTVlKTtOKHGIYmaEQKSv4op3K9K/bN/VkaMAMhpBm2/8CmptYhppGnhtLQ05v9fZhnHpGhSKELQa8hwAFEvgyXUdfzIeRVomomhTOn6kIUMpZUbx3ALBxGEl/Cl2PkIgQ1ZDHX/a3ALSNJDx9RdtKBRL2Pkp7Pw0kfZTaLqFFemjkB4iwZPrH3wbIqUE6SI0A+k5zF/3nXfW4vVJrPsBwu0n0I36LMRajhnuZmH4G2hGiH0P/AqasfHkhM0QaTuBbkYp5SaIdNyzLc+puIkZ6kAzQhQzw0TaTzV7ODUjpcfEh7+F5xQ4+NivNXs4igp4bQ1YOOg46DdGce4+dlskApSy/mJ6K6ocfwqFQqFQ7CRuG+Hv4Ycf5sKFC1Uf//Vf//WKx/zJn/zJmuf99Kc/zac//emtDk+xwzFDHUjPxi2lMKyWhj6XjEbQx3fABL7noSUzOMduChYyEkabnl3joJVo03P+SsdIGKREmkZDHX8ik8WLhutygyWlh2tn0M3aJo8TfU8yf/3PCSYOlY8Jxg+wMPJNXDuLbvrxo8nR75BfuMDA6b+36cmqQLgbECuEv0oxnwBmpAeERjEzuobwF0YMj1d8rJ7oE9N4XR0Nix1zB3pASvSxSdxD+xryHODHfALrC8xC4HW2o80lcQ9U/vtslXxqaFFsfoDpy3+E9Jy6RZ4pFI1ABq3ye+hWAq+9g3Hxpku6dP9dOCc3FpGrzczjtSZui4k2Rf3Izp5BaAbh1mOA//1dSF1v8qh2LnPXvsTctS8RjB9ED8SxC3P03f23VuzTCNEPWHSUCHpO/LXF66HtQWgGse4HWRj5lu8KVWwrQmhY0QGK6dodf05xAdfOlN2CzSAz/S7FjB+5v/x+QLFz8NpbMYfHQcqV1w7FEsEvfpPS4/fjbbCmQB8eRzguzsG9H/MJ/gJTPRCv+b5ZoVAoFArF9nDbRH0qFFthqcdjOxw1MhpG5PLoV4fRh1b+JxZSDX/+JUQ6C1Litdx0vHkbjITUpuduxhsuOvHWEv7E7AI4zmaHjMjk6hbz6Tl5kF5NUZ8Amh5g8P5/QPfRmwsBgvGDABTS1wCw8zPMXPk8if6nCLcd2/TYNN3CDHVQyo0hpUcxO0qgyqSGppkEQl2U1uj586IR34Gzhd/9unge2uQMboNiPsEX4ry2BPrIxIrtIpmGKkLDZljqqVzP8QdQeugeCs8+3jCxs5C8ghUd8J2d0sMu1C7MKxTNQIaCFR1/2sQ0xrkr2EcPUXrwbtyudozzV/yJuJpPLtHHJxsWJ6zYu+TmzhJK3IGm+25xK3aAYnYUz63NnSqlx8yVP8EuzDVymDuG7OwZrOgAupUgn7xEvPfRqguQ6k2891H2P/SPiXbcvS3Pt5xE35PogQTBRGNc/Iq1saKDG4r6nLr0Bwy/9S+x8825NpLSY+7aFzFDfnrKrWOfu/HVDQmZisbgtbcgHBeRyqzYrk/PoqUyBF59Bzzv5gO2g5hf+57cuDqM19F626QPFLNjKuZToVAoFIodiBL+FIoaMIPtgC/cNBqvrQWEwHrhdaxvr/5vu9CSaYAVNywyEkIUbbBrEIhsG20+idt1s9dMhkPVhUMpCX75W5jvbr4DQ8tkkdH6rKR1bf/mr5aozyXMUAd6ILbs351oRphC6jpSekye/x00M0Ln4R/d8vgCkT5K2XHs/DTSLa25mjkQ7aeYGav6+JJY2shuyXK/X09jo5DdgV5f+FsSC1yX4Je/TeC1d+r2HDcdf+sLfzIRQzawa6yQGiKYOLStixMUiq0ggxWiPqUk8Pq7eB2t2A/dg3P8CPZdR9FSmQ3Fb2nTc4iijTugJp8UteO5RXLzF4i0nyxvC8UPgvQopm/UdI5C6hpz179MZurNRg2zKdj5Ga69/k+xC/PlbZ5bpJi+Trz3cfpOfYbDT/wreo7//LaNSdPMpjm4rOgAh5/43zGDrU15/tsdKzpIKTeF56y/mMvzbHKzZ/HcApMX/osfT7vNZGfeo5gZofvYzyC0wAqRz7VzzFz+PHM3vrrt41KsZKmC4NbrDW1qDmnoaAspjAtX/Y2ui/W1Fwk9/3U/+r8C+o0x9OFxnCP7GzjqnUUpO65iPhUKhUKh2IEo4U+hqAFNt9ADCezCNgh/Ha3kPv1D5D79gyv+Kz16r9/DVrLXP0muQODVt8F1Nz0OkcmBrq2IM5SRRYGoBtefNu1PEnkd7cuOD6FV6fgTmRzCcTGGhlc4PEQ25/8sy1darjHmejn+3JIvfC4X8jaKEBrB2H4KqSGSYy+Sm79Az7Gfq0sfjRXppZgdK8cHrTUJZkX6KWVHq056LImlDRX+lvr92hs7WeYO9CCKJbRp33WhXx1GFIoYw+O1vXdqQOQLyIAJul6X820W185Syk0QjB/CCLYihE4pP9XUMSkU61Ep6tO4OIQ2l6T0yOlyzJbX24UMWuhXaxNewI/WklbgptNcoaiB7OwZpGcT6Thd3haI9CK0AIV0bXGf2Zn3AChmRhoxxKaRX7hEKTtW/vmAxcVMLqEW5XpTbC9+xKqs6X2Wn7+A5xboOPJj5OY+JDX+UuMHuAwpPWaHvki49Rjh1qNY0f4Vjr9C6iogyc5+gPQamLihWJ+g5ddZzM6v2KxNz+H1duHceRDznbNQKBJ48Q30mXnwJMb11Wkq2swcgRdex93Xh3OscsXCXkN6DnZuUjn+FAqFQqHYgSjhT6GoETPUsX1uGkMH01zxn7vYLaDNrB8jZVy5jnH+Kvr45kUAkcniRVb25W1I+JuZQ5oGcllUqO/4qyL8LcariEyuLNoAmB9cwDh/dd1IFRwHUSji1c3xtyj8bbGrIBg/SCF5mZnLnyfR9xHCbcfrMTwCkT6cwhyF5GX0QBwjEF9zX9fO4JYq/w5lOAhCoGWydRlbGc+DQhEKRfTxqYb2+5WfsqsdaZll15/54WVfbHQ99BvVXY8bQeQLNcV8Nhp/0sh/jQmhYYY6leNPseORIcv/XFiiWMJ8+wzO4X14nTcXiqBpuAcHMIZGqsd93rIgRB+ZwO3vUf1+ig2RmXoLK7aPQLirvE1oBlZskEJyaI0jl51jURgr1OgQ3C0sCSzZuTPlbfnkZTQjRCCi3B2K7SUQ6UUInUJq/fdlZuY9zGAHrYPPEe99nOlLf7Stcei+22+YtgPfD/huxcIyx19+4TJC6HhOjnzy8raNS1EZt6sNfXzZNbSUaDN+ZUXpvpPgSULPfwNjaITiRx7C7elctTBJpLNYX3sZ2Zqg+JGHbptrkVJ+Cild9Z2gUCgUCsUORAl/CkWNBEKd2xL1WQ2ZiCED5gpRrBr6qN9xdmvX2UbQKrjnZMR3/1Vz7a0Yw9QsXkfbLcJhyHd6VJjE1VKZxR7AIMbSjVTJRr98/ebja7DkVquf428p6nNrQmIwfgDXzqIZYTqObD3ic4mlVZXpqTfXjbxa6t0pZasIX5rm/23q6fhzHILPf4Pw7z1P+PeeRx+bami/XxkhcPt70Ecm0CZn0OYWKN13Ere7A+NqfXpURC5fU8xno8knr6IHYuWYTyX8KXYDMhhEOG45Mto8fwUcF/uBu1bt6xwcROTyaJOrv3v1G2OEfu95xOKCBZHLo80t4A70NPYHUOwpPLdIZvZ9Yp33r3osFD9Y7uhdi1JuilJ2jEj7KUq5CTy3cvzbbsQX/gS5+fN4nu+aLyQvE0ocRgh1G6nYXoRmEO28l/nhr63o35SeQ27uHFL6i0GklGRn3iPaeRohBJ1HfhzNCDI79Py2jFNKuej2O0q49U4ArNg+Srnx8udDPnmZSMc9GFZreeGAonm4A72+42+xx1sk04iSjdvZBqEg9ukTiEzO7yA+MIB7aBB9fPpmd72UWN96FWkaFD72mL+I9zZh6f4yEFGOP4VCoVAodhrqjk2hqBEzuI2Ov0oIgdfRir6e8Fey0SdmkFYAfXi8ulNivafL5Fb35WkaMhxc3/EnpR+PckvcmoyEQMpVMW8AIp3Bi0VwDg6iD42A52FcGkK4LtLQEan0uuMF6trxp5sRhNjajVswcRjDaqXn+M+hG6H1D6iRQKQHEDjFhbKwVw0z1InQTIrZ1ZE0S3ixSHkCvSpSol8bqSl21XzzA7RkmuKTD1J85lGKH3sM5/j2RN64/T1os/OYb5/FS8Tw+rv9G/SxScgX1z/BOuwYx1/yKsH4IcSiuK6EP8VuQIYsgHLPnzY6idffsyJWegmvqx0ZCVcU7fVrI4iSjfnmB/6/Fxe6uP3djRq6Yg+SnT2LdEtEu1YLf8H4Qez8NE4Vt3z5HDPvITST1n0fB+lVX2SzCylmR4l2nka6JQoLl5HSI5+8QjChYj4VzaHj8I/g2hnmr/9FedvUxd9n5N3/k+TYdwAopm/gFBeIdNwNgG6GifU84r/ft6Hr76bb71PlbVZ0oPz5ID2HQmqIUMsRIh13k51+rykdhIqbuP3+oqGlxbNLC229Dv9e1jl5B/kfeBbn5B3+v/f3gyb8e1YWI8tnFyh95CHYAfcI20Vu7hxTF3+PQKQXYwv1GAqFQqFQKBqDEv4UihoxQx04peSKFabbjdfZ7t+IrHFzqI9NgpTY9570e/OSawtm1RCZLF4F95yMhNd1holMzo/d7Fop/HnhpajQ1Y5BLZlGxqO4hwYRhSLa2BTmh5dxDgwiW+LrOv60TLbsGKwHrp1GN7d+A2MEYhx6/F/ULeJzCU23MIN+LJ4VWdvxJ4RGINJb7gOshIyE0db5u2pzC1jfeq18U1x1v9EJzHNXKD1wF+6R/bj7+3H39YFhrHlcvSjfvE/O4Jw4AkLg7Pd/R8b1rfcviVzzhT8pJYX0NYLxg+Vt5qIreWnFu0KxE5HBJeGvAI6LPj2H29NReWchcA4OrF5wICX66AReSxxjaARtYhp9ZAKvqx0Wz69Q1EJm6i2s6OCKmM8lQi3+BG9+/uLa55h5j3DrMf/zWGgU0/Vxlzcbp5jELaWIdT+MYbWSnT1DKTOK5+QJKeFP0STMUAetg88yd+Or2IU5Fka/Q3LsO1ixfcxc/jx2fobMzLtoRnjF6zTSehy3lKSUG2/o+KSUzF77IqGWm24/WEzfWPx8KKRvID2bUOII0Y57sAszlNZYnKfYBkIWXmdbeRGRPj2L1xKHgOk/LgSyveVmko0VwO3v8bvpiyXMt8/6keVd7ZXPv8fwOyyfZ+Td38CKDjJw7//Y7CEpFAqFQqGogBL+FIoaMRbj9Nbqh/CcAvPD32hYSbvX1YYoFNd0Zukj/mSoc8d+0LXNxX3aNqJYquie86LhdR1/S6sk3Y6VNz9LUaGVjhepjO/Oam/Fi0UIvPYOIpPDOXkELx4rdwAuoV+6hvnuhzePz+T889epQ853/G2t36/RBKJ+l8J6UZ8AVqR/TReCjEbWFXS12QUARHINEbZYwnrpTdzeLpzjTZoYXLx5lwET5/D+8ja3rxt9i3Gf2uQMWjbffOHPs/GcPGbwprhuhjqRno1TTDZxZArF2sig/94R+SLa9Cx4XrnDthLOoX2IYgl9dLK8TZuZQxRKlB69F6+zjcDr76KNTaqYT8WG8NwS2dn3K7r9AAyrhUC4m/xCdeHPtTPlyD5NtwiEeyhk9kbPXzHrL5SxogNE2k6SnTtDPun3kgXjB5o7OMVtTev+70Uzgkyc/S2mL/4eif6nGLz3f0IzI0ye/12yM+8Rab8Lod1ccBZMHEZoJrm5cw0dW3b2fYrpG7Qf/P4V25c+H4qZYf99pAewogOEWo+i6UEyM+83dFyK9XEHevwFtJ5XMbnmVpxDg2jTc1gvvwWOUzGyfK+Snf2A2aHnaT/4Kfrv+dtrds0rFAqFQqFoHkr4UyhqxAz6joS1ev6ycx8yfekPSI692JAxuItxI9pUlbhPKdFHJvzJT8PA7e1CH9n4yta1+vJkNIKWXjsSUpuZw4tFIHSL88IKgK7d7ENYwvPQ0llkPOp3tB0aREtn8bra8TrakPHoKsefcfkaxgcXwHUXx5z1n7NOOKU0+g6PLAmEexFCx4ysP9kdiPrCXzU3mBcN+xGsjlv1HNrsvP+/1dyXUhJ49W1wXEpPPtDUUvvSg3f7cTvmzUkf59Ag+uTM+lG1FRDZHIFvv0bwy9/Ga4njHhqs53A3jOf4P4Nm3HyPBpYWJ6i4T8VOJhgA/KhPP5baRLYmqu4u2xJ4bS0Y566Ut+kjE0jLxOtqp/TwPWhzSYTt4CjhT7EBsrNn8NwisSrCH0Co5U5yawh/2dkzID2ii5GCVnRwsRdv91PMjPrpAqEOwu0nKWXHSU1+Fyt+AE0PNHt4itsY3QjRcegHyScvY8UP0HXHX0IzgnQf+1ly8+cpZkaIdtyz4hhNDxBKHCE33zjhz+/2e55Qy52EW4+uetyKDlDIDFNYuEwofgihGWiaSbj9JNmZdxs2LkVtuAM9iJKNPjaJNp9aV/hzB/uQho5+fRT7nuMVI8v3Krm5c5ihTtoPfr/qe1UoFAqFYgejvqUVihoxrARCM9ecVLfzUwDMDv0Zrr1OX9pmCFp48SjaTGXhT8wtIPKFsuvBHehBn5yBkr2hp9EWHYUVhb941BcG3eoCkT41W/lmSQi8cGhV1KfI5EBKvLjvsHMO7QMhsBd7FLx41O+DWvo5pESbXUA4LtrEzOKYc8jI6vFuFj/qc2c7/lr6n6L7xF9B08x197UifXhusapwLRdF07VEsbLjr4rwp18dxhgaofTofXX9W2wGr7sDd3Blyby7rw80Df36xuOUrG++ij4xQ/GJByh86pmm/3yu47+H9GXCnxHqAIQS/hQ7G01DBgOQL6BNTOF1d669SEAI7BNH0EcnytHV+sgEbl83aBpeZzvOkf3ISBjZ1rI9P4NiT+DHfA4QCFfvhQy13EkpO1a15y8z/S7B+EEMqwUAKzZIMTO8JyKXS5kRApF+hNAItx4HoVFIXlExn4odQbz3cbqO/jR9d/1S2dkXaTtBou9JxKKYdivhtmPk5y82LJklv3DRd/sd+P6Kj1uxfWXH3/L3UbTjHgqpazjFhYaMS1EbXnsrMmhhvnsOpMRdR/jDNHD39/sd9Yv3rLcL+YULhFruXH9HhUKhUCgUTUUJfwpFjQihYQbb1xH+pjGDHUjPZfbaFxsyDq+zDX2qctyoPjKBNI1yv4A70AOeRB+f8t2A10fRLw2t7EqqgMjkQBMVVy4uiXMiVUXYdF202QW8zsodBzISWuX4WxKS5OK5ZUuc/E98EveAH2EpE/52LeVP+op0FmH7N+1LfXMina0YTbpZ/KjPne34M0MdxLsfqmlfK7YfoZnMXfsSskJH5JLIKxbdnPr1UcSi0OfvINHmkkjTqOj4E9kcgdfewTk02HQ3XFUCJm5XG/r4BoWxko02M0/p/lO4dxxoqpNxibLjz7wp/GmaiWG1lhcgKBQ7FRkMomVzi/1+1WM+l3APDfqTcecu+4LhzDzuwE1hv/TYfeR/4GM74r2p2B1IKcnNf0i04/Sa+y1NbOYXLq16LDn2Epnpt4kt+x4ORgeRbgk7N7lq/91GMTNSjhLXzTChxGEAQi1K+FM0HyE0WvqfXhUx2HXnT7H/of8Z3Vh9DxNuPY7nFiikhhoypuzseXQzSqi1siCy9Png2hmCy95H4bYTAOSTlxsyLkWNCIE70IM2PYc09DXTCJYoPXYfhU99DHR9Gwa4M3DtDMXMaEVXq0KhUCgUip2FEv4Uig1ghjpwilViNvGFPyu+n7YD30ty5NuUcpvo11sHr7MNbW6houPOGJnA6+su33zIWBQvEcM4fxXrKy9gffNVrJfeIvgnX0Nbo/tPZHJ40UjFSdQlcU5LV3Z9iVQWPA+vrfLNkgyvFv60VBp0bYWLarno6MWWxEb/OZecZ+7+PvThcXBcRKGIV8GhuFncUgY9sLMdfxvBCMToPvYzpCZeJTn67VWPy3AIhPAn46/cwPrmqwTe/KD8uFhIg+vi7uvzXYHLI0GlJPDiG2AYlB65dxt+ms3j9XSiTU5DBfGzGksO2/Uif7aTsvCnr5zYMkOdyvGn2PHIoIU+PAHu2v1+ZXQd59gh9EvXMBZ7Ot3+7hWPE7SqHKxQrMYpzODaWYKJg2vuZwZbMUNdq3r+kmMvM3n+v5Dof4qWgWfK262Yv/BlKe5Teg7F7MYj15uN9BxK2fEVHcKRtlOAIBQ/1LyBKRTrIDSjqovXiu1DNyPk5s835LlzCxcJtdxZNfqw/H4S2or3kW7G0PQgTmG+IeNS1M5Sao7X2VbbYiLD8KssbiOWFsKEWm4vl6NCoVAoFLsRJfwpFBvAsNqwC2sLf2aok5bBZzGsVqYvf67uY/A628CTZfGrTL6ANj1XvmFZYqmoXBRLFD7+JPkfeBYZChL82ksYZyr31ohMtmqUoQwFkaZRjly7lXJMaJW+PVkh6lNLZXxxr9oNlhVABq2y00ybnUeGQzhHDqClMr6jcY3n3CieW0R6pR3v+Nso8Z5HaB18lulLf0hu/pa/vaYhIyH0oWGsl95EhkPoE9Ow6KzU5vzJiCUXplgm/OqXr6OPT1N88oEdf/Pr9nQiijZiPlnzMdr0HDJgIhM75/Xg2r7wp5sr36eBsBL+FDsfGbIQubzf71dlkcit2EcPIzwP8+0zeB2tEAo2eJSKvUwhfR3w3fDrEW69k9z8hfK/U+OvMnn+d0n0f4SuO38KsezaRTejGFYbhfQNpJRMnPsdbnz3fy1/Zu8WSrkJpHSxov3lbS2DzzBw79/b8f3HCkU1hNAItRwlN+f3/LlOnvkbX8NzCls+t+eWyCevrimG6IEYhtWKFR1AM25+hwkhMIJt2GssLlVsD25ft19NUSW5RgG5+QuYwQ7MoPodKRQKhUKx01HCn0KxAYxgG04V4c/zbOziPIFQJ5pm0rr/e8jOfFCXm8kVz9OaAF1Dm14Z92leuIrUNZz9/Su223cdo/j0IxR+8Fm8/m5kewvFT3wEt7ezamSolslV7PcDQAhkLFLd8ZfJVo0JBZCRMFo2v8JxJVKZspOwGjIeven4m1vAa2/B7e0ETWCcv+LvUyfHn1ta7JHaQ46/JToO/wjBxBHGz/6HVZ1FXjSMPj6N291O4eNPgueVRVVtdgEZDeN2+K635XGf+tgkXmeb7zbd4Xid7X7P30TlrsNK6NNzvtCwg2IEPSePEDpCWym0mqFOSkr4U+xw5KI7z+vqqP19FQ7iHBxEOO6q/k6FYqMU0jcwrNZVMYGVCLUcXez5S5NPXvFFv97HF0W/1bdSSz1/CyPfJD35OlK6FFJXG/FjNIwlx2JgmfCn6ZaKdlPsesJtx8mnrpJbuMTwm7/K9OU/Ij399pbPm5m7jPScdd8jLf1P09L/9Krt5hr3mIptxApQePZx7BMq0rga+YWLhNR3gUKhUCgUuwIl/CkUG8AMtuHaGTy3uOoxpzAL0sMM+bFlwfhBQFLMjtZ3ELqO29Xux50tiWeui3HuCu6R/asdVyEL9+AAaMve7mJRmMtXFiVFJrume86Lx8oi3Opjc3iRcNXJXBkJ+R2DhdLNY1KZcndg9eeM+mKT9N2OXnsLmCZudyf6yMTNn2kT2IV50pNvUMr5Ipdr+z+bbu494U9oBr2nfgGkx9TF31vxmNfWgteaoPjRR5Gtcbx4FH3EjyjzxdZWCFm+43PZ31+bnsPt2iWrPg0dt7PNdzPWgpRo03M7buWv6+TQzPAKpwlAINyD5+QoZur8uaNQ1JNFt57bW0PM5zLsk3f4sZ/7+tffWaFYg2LqOlZsX037LvX8ZabeZOyD/4dg/CBdR3+6apxfMDpIPnmZ6ct/ROu+59ADcfILu6u7q5gZxQx2oBv1i1BXKHYC4dZjID1G3v7fEVoAPRDDrkM1Q2r6PLoZJhDpW3O/tgPfS6LviVXbDUsJfzsFb6BHpQpUwbWzfr+fivlUKBQKhWJXoIQ/hWIDGJbvdnKKqzsYluL1loQ/K9KHEDrF9HDdx2GfPoE2M49+5QYA+tAIolDEPl776kQZCiIKqwVMbAdRKPniXbVj41G0ZHXhby3nnYz44ly55891fYdhDcKfSKURubzf59fe6h8+2HPzvNrGPtLSU29y7bV/zNAr/4Dxs/+xLITdFP72ZpyVEYjTdedPk5l6i/TUm+Xt9kP3UPiBj5XFY3egxxdVF8VWt73FF1iXRFjwI2bTWbyOndN/tx4b6fkTmaz/euvaWT+f5+QrTsiG209hhjqZufL5JoxKoaiNsuOvln6/5ce1t5L79A/WHA+quH0pZscYfe/fMvLubzDy7m8wO/R8+TEpJcXMDYI1xHzCUs9fJ1OX/gAhBL2nPoPQjKr7W7FBpFsi3HKUjsM/QihxhHxytwl/IyvcfgrFXsEMdRFuO0HLwEcZfOCXsSIDlHKTWz5vevpDwmv0+62HivpU7Ab8vltZXhCjUCgUCoViZ6OEP4ViA5hBf/K/Us9fKT+N0AwMyxekhGYQiPRRzNyo+zi8nk6cAwME3vwAbBvzw0u4/d3IlvUjq5aQQaui8Ccyfg/N2o6/qC/cOc6qx7RMFhmtfuySK0/L5W4+n5TrOv5kPIoo2mhjvivPa2sBwB3wI9+8TcR8JkdfQGgBek99hvZDP0h+/jyunV0W9bk3hT+AaNf9RDvvY+rCf8NZ/HkRYoV46g70ILJ59OFxRMlGtrcAN0VY8GMwYbF7cpfg9nQgCiXEQmrdfbXFn8/dYcKm52TRjNUOV00z6TzyY2Rnz5CdPdOEkSkU6+P2dWOfOFL+HN8QG1zgobg9WRj5FoXUVTQjhHRLzF77Uvm73SnM4trZmh1/4LuEhNDoPfWLGNbawnO49TgtA8/Qe/KvI4ROqOUIhdQQnmdv6WfaToqZEazoQLOHoVDUHSEEA6f/B7ru/Ck0zSQQ6dmy8Oe5Npn5K4TbNh9/aAbbcEtpPLe0/s4KRZPILVz0+/1CHc0eikKhUCgUihpQsycKxQYwrBZAVIxisfPTmMGOFSs9/Z6XkYaMxX7wLkSphPXN19BmF7BPbCxyQwYtRMkG112xXctm/cfXcu0tinSV4j7XdfyFgiAEIus7/rRFAakWxx+AcW0EaQXKzkEZj+LFo8jYxmI5pZQU0jeIdt1PrOt+Er1PIKVHZvpdXDuNpgfRNHND59xNCCHoOvrTAExf/P2K+3g9nUhDx3zvHABumy9qL3f8adNzyKBVt37F7cDragdN1BT3qU3P+a+9RYfSTsF18mhVItgiHacJtRxl+vIfIb3V4rxC0WxkLIL98Okd1Zup2Dv43+XvEO99jL5Tn6H3rl8EIDP9LgCF9HWAmh1/4Pfj7nvgVwglDq27r2YE6brzJ8uLh0KJI0jPppiu/0KwRuAUk7ilpBL+FLcFgXAPdn4KKb1Nn6OQuorn2lvqwFxaOFopVUah2G4y0++ST67ups3PXyTUqtx+CoVCoVDsFpTwp1BsAN/Rl6gu/IVWxpZZ0UGKmdGGTL7LaAT7rqPoY5N48Shef/fGjl/sLrjV9SfSuXX78pZEOO1W4c92/FjENRx//rmDZeFPpDKg6+v28y0Jg/ropO8SWZowFoLic09Quv/Umsffip2fxnPy5Yk/w0oQarmDzPRbOHZmT/b73YoRiNN28PtJT7+F51Toe9R1vN4utJl5//US9l8zXjyGyBXAdhb779p21wS+YeB2tKHVIPzpU7M7MsbUs3NVu5eEEHTd8ROUshMkx17c5pEpFApFc8kvXMItpYh23g/433XhljtJT78FQDF9HcNqWde5txzdjGxaCLOiAwg9sGt6/gopf7I3GF9f5FQodjtmuBvpOdj5mU2fIzt3ASMQwdpCPO5Sqozq+VM0GyklUxc+y9z1L6/Y7vf7jaiYT4VCoVAodhFK+FMoNohhVe5gqCb8Sc+uS3dEJexTR/E627DvPblx4SXkO5hE/hbhL5P1YzPXOl/QQgbMVY4/kV2MCV3H/SUj4XLHn5bK+ELieuM3TV98khJvMXKyfL54dMMl7MXyiv+bUV+xrvvJzZ3Dzk2iB/a+8Ad+JBnSo5Aaqvi4O+B3KC7/nd90fKbRZuZwu9obPs564/V0ok/MrN3z57poc8kd1+8H4LnVHX/gu40TvY8ze+1LSOlW3U+hUCj2GpmptzCCbQTjB8vbol33k5s/j1tKU0jfwNqA22+rCM0gFD9Ul54/Oz9Dbv5iHUZVnXzyKobVihlsbejzKBQ7gUDYXzhZyk1s+hy5+QvEOo5uut8PQF9MlalUJ6FQbCd2fgqnlKSYur5ieyF1DZCEEoebMi6FQqFQKBQbRwl/CsUGMYNtq1ZjSulh52dWC38xf3V4MTPcoMEYFL7/GdxDgxs+VC5FF97q+FsnqtPfSayIe1x+LLBmxx+AFw6h3xgj+Pw30K8OrxvzWT4u4e/ntW99MqqQvoERbFvR4xftvBcpPbIz76Obe7ffbzmBcA+6Ga06IVnuUFzWxVWOXb0xjrCdXdXvt4Tb24koFBFzyar7aLML4Hk78udz7VzFjr/lJPo/gltKkW/wJLFCoVDsFKT0SE+/TazzfsSyBUXRznsByMy8SzF9fcWin+0glDhCIXllS3GCUkomzv1nJs79pzqObDWF1FWCNUSaKhR7AcNqRWgB7E0u0vTcIvnkVeIdx7c0Dk0zMQJxnAqLSxWK7SQ3fwEAp5TEKS6UtxfS19CMMGaoq0kjUygUCoVCsVGU8KdQbBAj2LZqNaZTXEB69irhTzfCmKFOiukGCX9bYEn4E/mVEY9aJruucAe++HOr40/LZMtRnmvhHD+Me2AAr60F98AA9okjtY05tiT8tdS0/1r4E38rV/wbVguhliNI6d4WUZ/gx0IGE4erRpDJaJjSw6dx7jxwc6MVQAZM9Kt+X5HXsftcAV53BzIaJvDO2ar7aNOzoGt4rbXHwW0XnlM96nMJK7YfM9hBeuqtbRqVQqHYCbh2bkvuld1MfuGyH/PZdf+K7X7c5x3MD38D185uq+MPINhyBNfObCkBIj9/gfzCJZzCfMP6W6XnUEhdJ6RiPhW3CUJoBMLdm35vzt/4KgCtfQ9seSyV7jEViu0mv3Cx3DlZWNZNW0hdIxg/sGJRjUKhUCgUip2NEv4Uig1iBNtwivMrVm3beb8rLHCL8AdLPX83Vm1vOrrux3VuxvEHlR1/6SwyEgJt7Y8Wr6eT0uP3l//zelb/3ioe15ZAWoGaHYLVkFJWjfpamixc7gTc64QSRyikrladSHROHCmLrsAKx6fXmgDT3KaR1hFdp/Tg3ejD42gjFSbIbQfj8nXcjjbQ9e0f3xpIKXGdHJq5tuNPCEG0634y02+ruE+F4jZi4sP/l5F3/jVyrSjjPUpm+i0Ma2XM5xLRrvspZccAtt/xFz8EQqOwyZ4/KSWz176IpgcBiV2Yre8AF/F7qUvK8ae4rQiEeza1WMIuzDF3/S9o2/csVqS2e5m1MCqkyigU24mUkvzCRWLdD6Gb0XI1hpSSQmqIYOxAcweoUCgUCoViQyjhT6HYIKbVhvRsXPum6OULfwIj1LFqfys2SDEzsiMn4GTQWun4cxxEoYhXi+MvFvWPte3yNpHN4cXWP3azOEcPUfih5zbeZ3gLdn4az8lVnPiLdd4HiNsm6hMg1HIEzy1SzIzUfMxS3OdOjMGsFXd/P25PB4E33gNvWfyalFgvvI5IZyk9fLpp46uGdIsgvTU7/paIdd2Pa2c2FPcppcQppbYyRIVC0SSyc2fJzn6AU1zAaZA4tFOR0iM99TaxrvsqOhKiHfcCAiOQwLBatnVsmhHEig6Qnvou05f/iBtv/iqz175c8/H5hQvkFy7ScfiHAb/rrxEUUlcRQsfaZmFUoWgmm3X8zVz5ApoRpP3gJ+syDjPYpqI+FU3Fzk/hFBcItx7Fiu0rO/6c4jxuKUUwfqC5A1QoFAqFQrEhlPCnUGwQI+gLHctXZNr5aQyrFU1b7XyyooO4dnZHruCUIWuF40+ks/72Whx/i317y+M+tUwOGVn/2E2j68jw2i6nWigu3sRUcvwZVgt9d/0S8d5Ht/w8uwUrtg+hmVV7/ioh474wupuFP4Sg9NBptGQG49wVf5uUBF5/F31kguLTjyDrECtbb1wnD7Bu1CdsLu4zNf4yQ6/8Mq6d3fQYFQrF9iOly/SlPyqLNvnU1SaPaHsppIZwS0minfdVfNywEoTbjhNsqS1evN6EW4+Tm79AevJNXDtLZurNmo+dHfoiVmwfif6PIISOXZhuyBjzyatYsX0Vr2cVir2KGe7GLSVxnVzNx+STV0lPvk7HoR9EX6dzuVYMy4/63ImLRRW3B/n5iyA0gonDBGP7y46/QuoagBL+FAqFQqHYZSjhT6HYIOai8GffIvwFwpUjXqzoIADFzM7r+SMYROQrCH81uPa8ReFnedynSNfWD9hsCunrGFYbRpU4z2jnaYxAfJtH1Tw0zSQYP1i1568SS44/dzcLf4Bsb8G58wCBN98n9AdfJPQHX8I4d4XSo/fiDfQ0e3gV8RYnpmpx/Plxn/eRmXmnprhP6TnMXvsi0nO21EW1m5i5+qekp95u9jAUii2THHuRUnac7mM/gxnqopC8vYS/3Nw5NCO0Zkxl36lfpOfYz23jqG7SfugHOPjYr3HwsV+ndfA5Stnxmrr6cvMXyS9cpP3gpxBCxwi2N9Txp2I+FbcbgYh/vWfXeN0jpWTm8uewooPEex+v2zjM4FKqTLpu51QoNkJu4SLB2D50I4QV2++nBxSTFNLXMKzWbXfLKxQKhUKh2BpK+FMoNohmRBB6YEUUSyk/hVmh3w98B5keiO1I4c93/N2M+hSpLOhaba46K4C0zJvCn+MuxoQ20PFXJ4rpGwTjKsZqOaHEEfLJyzWvMnb391F88kFky+4XSEsP3E3p/rtwjh7COXaI4tOP4BzduROfSyvSa11hHuu6H7eUJr9wad19U+Ov4hTmAT/uZ69Tyo4zd+1LTF/6fTzPXv8AhWKH4to5Zq/+GfHexwjG9hNKHKJQg+OvmBnj8nf+zqb6rXYauflzhFuPIUT12xvNCKIZwW0c1bLn1kzMYDtCCKxoP1K6Nf3ek6PfJhDpJdJ+NwBmqKMhwp9TSmHnp/0+QoXiNiIQ6gYoL3jy3GLZ4VSJQvIy+eRlOg7/0JqfNxulUqqMQrFdLPX7hVqOAje7cAvp6xRTQ8rtp1AoFArFLkQJfwrFBhFCYFo3y9ellNj56arCnz/BM0hhMSpjJyGDwVuiPjN+v1+NHXpeSwJt0u8QEpna3YLNREpJMXOjYszn7Uyo5Qju4qRfTRgG7pH9W+5b3BEETJxTd2KfPoF9+gTuwYFmj2hNNuL4A7BiBzCCbevGfUrPYe76V4h13Y8eiNf+WtjFzI98E92M4JRSpMZeavZwFIpNk556E9fJ0XHoBwEIxg9RTA/juaU1j0tOvI7n5MlMv7sNo2wcnlOgkLxKuPV4s4dSE4FoP8C63bpOKUVm+h0SfU+WewvNUGdDPp8LqSEA5fhT3HZoRhDDaqWU9YX4yXO/y/Bb/6IcrX4r88PfIBDuIdx2sq7jMK3VqTIKxXZh56dxivOEW+8EwAi2o5sRiunrFFLXlfCnUCgUCsUuRAl/CsUmMIJt5Zsyt5TEc/JVhT+ASMfdZGc+IJ+8sl1DrAkZtPyoz0WXl0hnNyTcOXfsRx+dQCTTiIwvRtTSD9hMnMIMrp0lqIS/FQTjhwCxoZ4/RXPwFieiNLO295oQgnjPo6QmXsUpVY+PSk28il2Yoe3A9xEIde35qE/XzpAaf5WWgY8R736Iuet/rlx/il1LMX2DQLi3HMMVTBxCSrfcz1MJKSXpSb9nLjt7ZjuG2TDyyUtI6RJu2x3Cn26EMYMdFDOja+6XGn8VhEa855HyNjPYgV2YqXsPWCF5BSOQwLB2d4S3QrEZAuFuSvlJ0lNvk556Ayld8gsXV+1n56fJTL9Dy+CzdXX7AWhmFKGtTJVRKLaL/MKFxX4/vwdXCIEV20968rt4boFg7GCTR6hQKBQKhWKjKOFPodgEZrCtfFOWHHsJoQUItx6run9L/9ME4weYPPc7666+305kyPJFv9LiZHcqg7cB4c89tA8ZtDDOXUbL5kCI2mJCtwEpJanxV1ZN5C85L62Yivpcjm6GsaL9NcVBKpqL6+QQmommmTUf0zr4MQQa88Nfq/i4U0wyd+0rRLvux4r2Y4a79rzjb2H0O4Ak0f8UbQc+iVNKbtr1l5s7t+XovdzcOUq5vR+vqmgMxcwwwdhg+d9WtB+hB8iv0fOXS96glJsi0nEPheSVqu6W3UBu7hyG1YYZ6mr2UGomEO1f0/EnpSQ59iLRzvvQzWh5uxnqxHPyeE62ruPJJ68STBwuOwsVituJQLiHYuo6Uxf/G5GOezCDHeTmzq3abykpIN7zcN3HIITw7zGV40+xzXieTXL0OwRjB1ZUCQRj+xYXAgosVZOhUCgUCsWuQwl/CsUmMCzf8ed5Nguj3ybe++iKSZlbEUKj+/jPYxdmmR16fhtHujYyaAEg8gWklBt2/KHrOEcPYly+jja3gIyEQNsZHyul7BgT536bzKKbYYlCcggj2IYR2P3ddPUm3Hac7Mx7O0qcVqzGs3M1x3wuoZtRWgY+SnLkW7jLXH9OMcn0pT9k6NVfwXVytB/8FABmqGtPd/xJzyE58i3iPQ9jBGIEwj3Euh7clOsvO3uGkXd/g+krn9/SmMY//E/MXfvils6huD2R0qOYGcWK3hT+hNAJxg6U4xsrMTf6OpoRpvPIjyGlW3GSe7eQmz9HuO34rhKtrOjAmsJffuECdn6KRN+TK7aboQ6Auvb8uU6eQmqIUMuRup1TodhNmOFu7MIMSJfuo3+ZcNsxcvPnV+zjOjlSYy+T6PsImm41ZBzLU2UUiu1ASsnUhf9GMTtG150/teKxpWqMQLgbfYP3HgqFQqFQKJrPzpihVyh2GWawDbeUIjX+Km4pRevgx9Y9xor00n7w+5kf/tqaK/C3ExkK+v8nX4RsHuG6yFh1AbMSzrHDCNfFuHQNbwfFfC7FFOZuienJLVwg3HJnM4a042npfxrXzpKeeL3ZQ1GsgefkVqzGrZXWwWcByq6/9OQbXHvtH5Mcf5m2/Z/g4KO/ihXpAyAQ6sK1s7h2fR0lzcR18qQmXic18RozV/8Ep5SkZfF3AtB+4JM4xQVS4y/XfM5Sborxs7+F0E3y8xeQ0tvU2JxSCreUpJC6tqnjFbc3pdwk0ithLXP8AYQShygkr1SMhJRSMjfyXWJdpwmEuwmEe8jNNS7u085PN8xF7BSTFDOjayYv7ESs6ABuKYlTSlV8PDn6IoFwD6GWO1Zsvyn81e/3mZ15H+nZRDvvrds5FYrdhBXxezc77/hLGFYL4dbjlLJjOMWF8j6psZeQnk3LwNMNG4dptamoT8W2khx7gdT4y3Qf/TTB+MoqjKVqjGBcxXwqFAqFQrEbUcKfQrEJjKDffzI79GdE2u8iEO6p6bjWfR8nEO5mYeSbjRxezZQdf4UCMum7gLwNCn8yHMI5MAiuh4xuwC3YYOy8L/wt7+dw7RzF9DChlqPNGtaOxgx1Eu08zfzI1+veHaSoH66T37DjD0APxGgZ+CgLI99m8vzvMn72PxJpv4uDj/4q7Qc/hb6sM9AM+52le8n1N/Hh/7v4339i/sZXiXbeWxY6AQKRXmLdDzJ37Ss1uf48t8j4md9EN6P0nvjruHZmTffOWpQWe75KuQlcJ7epcyhuX4rpGwArHH8AwcRhnFKy4iRyMTNCITNBvPsBACLtp8jOnm3YZ//42d9i5N3faEiP5pIrZ7f0+y1hRQeAm+//5bh2hszMOyT6nlzlYtSNMLoZqavjLzP1FsH4Qcxge93OqVDsJkKtd7Lvgf8vse6HF//tLyRY+nzxPJv54W8Q636o3KXaCJTjT7Gd5BcuM33xD2gZeIZ476OrHjeC7QQi/UTaTzVhdAqFQqFQKLaKEv4Uik1gWL7w57v9nl1n75sIoROKH945k+kBEzSByBWQyQwAMrZxQcE56UdD7SThz+/KEr7LYPEGOp+8DEjCrcrxV42WwWcpZcfJzZ1t9lAUVfCc3AqRbiO0Dj4HSFITr9N19NP0nPzr6Obq9+1ST9Z2dc7Z+emaBa/NOBGzcx+SnXmf3pO/wJGn/2+OPP1/03vqF1ft13bg+xZdf6+se87py5/Dzs/Qd9cvEW4/idADm45KXC4YFlM3NnUOxe1LMTOCGWxf9V5eWqFfqJAykJ58CyMQJrIoloXbTuIU5yllx+o+Pqe4QCE1hJ2fZmHkW3U/f27+PFa0f9dFeJuhToQWqLhgIDP9HlJ6xKr0iJmhTuxCfRx/rpMnO3eWWNf9dTmfQrEbEUIjGD9YFtqNQAwrOlj+Xk+NvYxTStJ24HsbOg5jMVWmEYskFIrlOMUFxs78e4KJQ3Qe+bGK+wghOPDwPyHW/eA2j06hUCgUCkU9UMKfQrEJjGAr4K/WDm0wWsoMd/uxXDvBUSUEMhiEQhGZTPvRn4ax4dN4HW2UHrgL5+BAAwa5OezcJOG2E8BN119+4QKG1YYR7Gjm0HY0ocQRgrH9zA9/vdlDUVTBczbe8beEHojRf8/fZt+D/5CW/o9U7cPSjRB6IN7wRQqF1BCj7/1bhl79h1x58e9x441/zvTlz1eMsHNKKaYvf46rr/wDxs/8+5qfQ0qX6Ut/RChxhGjXA2iaiaaZFX92a5nrT3pO1XO6To7U+Ku07v8EVrQfTTMJt9xJbn7zwl8wfgBND1JIV+9kUygqUUzfWOX2AzACccxQJ/nklRXbpZSk/v/s3Xd4W+X5N/Dv0Tjay3smdoad4WwygFAKDSMEKAVSKOuFsgu0rDbQQn+UllFGoYy20ABltqWMkLBp2ZAESEL2nt7b2uvonPcPRSKKty1btvz9XBcX8RnPeSQ/smzd577v+m/gyD8Cgir6nm9wlEFQifA2J7/cp7dpIyCoYMmdg5Z9b3Va2rIvFEWBr2UrjI7hle0HRAMNOnNBx4G/pm9hsI7pNJip1WclLePvuzKfDPwRHcqYMRG+1q2Q5TBa9r8DS87sHld56SutIVpxIZbJTTQQZDmMmk1PQBBUyK+4Mv67ABEREaUXBv6I+kCl0sKcMwuZY87o9IPzzojGHMiSH5Gwe4Bm1zuKXgfBH4TS5oZi7V2Zz0NJU8qh2IfO3fYhfwMMtjEQTYXwtx4M/LXugNFR1uvv2UgiCALsxQvga9mCYAflx1JFkSVUb1wKT8uuVE8l5aKlPnvf4y/GYB+fUOKyM6IhZ8Ay/mQ5jNrNS3Hgm3sQ9jcib+IlyC2/EKIpH67aL7B31e2o2/os/M7daKv+FLWbl2Lvyl/DWf0pDNZS+Nt2QpYCPbqWs+YLhLzVyB7/4x699qNZf61wdpH15677CooiwZZ/dHyb0TEB/rZdkCO9v0s/6KmCzlwEvXU0+/xRryiKgqCnsl1/vxhT1lQ4az5H0F0Z39ay/x2EfPXIGn1MfJtKpYXRUT4gff48Td/CYBuHnLJzAQho3rM8aWNHwm5IwRbobeOSNuZg0pmLEPQmvtfKkSB8LVthyp7e6XlaQ8eBP0WWULPpiS7fv9uqPkb91ufiGUWexrXRMp8GlvkkOpTRMRFSsA1Nu16FFGxDZskpA35Ng20stIZstFUOjbYQlJ4ad/wbQfd+FEy5athlyxMREVHPMfBH1EcFFVfCnDW11+dpjbkAgJCvPtlT6hPFoAMCAcDpgWIZOqU6+yMS9iESckFrzIXRUQZf23ZEJB8CnkoY7Czz2R1LzixodHY4az5N9VTi2mo+hatuNZz1G1I9lZSTwz6o+5jx1xtaQ/aAZPzJchi1m56Ep3Ed8iZejNFz74A1/0jYCo5G3qSfovSoe5A97mx4mzeics0f0bDjJYT9jcgYdRJKj7obOeUXQFEi8B3Sv7MzEcmH5r1vwJp3JPTWkh7NT2fKhyXnCLTsf7vDrD9FUeCs+RTmrKkJfX6MjolQ5FC77KruKLKEkK8WorkIOmspA3/UK1KwDZGwBzrLqA73Z405A6IpDzUb/4pI2ANv8yY073kDWWNOhTU7MUvOlDkFvradcNZ8lrSqBHIkCF/rNpizpkGtNSOz9FQ4az/vcz/Mw8WCX+LBLJnhRjQXIeStSfhZ42vdBkUOwZw1rdPztPpshIMt7X5GBT2V8DSsQVvV/zo8r/XAB2jY8RKcdV+iduPf4mvCzDKfRO0Y7OMgqDRoq/oQltzZEE35A35NQVDBUbwA7sY1CAeaB/x6NLJ4WnbhwNqH4az5FDll58dLghMREVF6YuCPaJBFS7gICA9S76zuxDP+nP3L+BtKYsEK0ZALg70cYX8j3PXfAIrMwF8PCCoNzNkz4G3aOCRK0kbCXrTsXQEACPr4IUikH6U+e0NrzO2w5GZ/KLKE2k1PwteyBQVTfgZr/lEQhMRfRVRqHRzFC1B65F0onvlLjD3mIYw64lZklp4GtdYMrSEHGl0G/K3bur2er3kzIiE3Msf8sFfzzChdBCnQAnfDmnb7gu59CHqqYCv4XsJ20VwItdYMby/7/IV89VBkCTpTEfSWEkjBVkjBtl6NQSNX0BMtB6czd1xqW6XWoaDiKsiRAGo2/AW1m5fClDUFWWNOa3esteBo2PLno37b86jf+gzkSLDf8/O1bIEih2E6GMSyF34fGtEGZ83n/R4bAKSDH4xrhmm2ms5UFA3+H3KThbdxPURjHsSDN4p1RGvIAhQ53sM4xt8WzYp3N6xp1yOstfK/aNz1H2SMXojCadfB17oNB76+G4ochiV7ZhIfFVF6UKl10FvHAhCQUbJo0K5rzTsSKrUebVUfx7d5GtehrXro3JBHw4ssh1H57WPY/NEdkAKtyK+4CraCo7s/kYiIiIY1Bv6IBplKpYVWn4mQf6hk/OkheLxQvP60yfiLZVNqjTkw2McDAFr3vwONzhHvnUFdM2VWIBxoQthXl+qpoHnfm1DkCAz2cQiN8MCfosiQ+1nqs6dEQzYiYQ8iYW/Sxmza8zp8LZtRMOVqmDInd3msSq2DwT4e6sMeqyAIMGZM7FGATQq2QaXWQ6vP6NU8daYCGOzlHQYnnNWfQaPPiPcQ/W5eKhgdE+Ft3tKra8Uyn3TmwnhWIrP+qKeC7kqotSZodJ2vca0hC/mTL4fftQca0YK8iT9tF3AHor+f5E64AHmTLoWncR2q1z/W43l0VhbY07QeoqkAojEHQPTGEoNtXNL6V4X9TVBrTYOSBT0QdOZCAN/9HFAUGZ7mDfFAaWdiv8uEA4nlPv3OXdDqsyBLfnibvsuQdzd8g8adLyNj9MnIHHMGTBmTUTD1Z5BCTuitJdFAIhG1kzH6RGSNPRO6Qcj2i1Fp9LAVHANnzaeQpQBcdatQs/FvaNjx0oCVYKf05mlYC0/jeoydfRVKj/w/WHJ4swcREdFIwMAfUQpojTkID5VSn3odBK8/+m9L+mT8qUUr1BoDNKIFoqkA4UAzDHb29+spg70MgkoLb8vmlM4j5K2Fs+pjZJQshMFagqB/ZAf+5EgAgAK1djAy/qIf1Ccz68/ftguWnNkwZVb0axyjYwJC3mpIQWeXx0khF9R97F1iKzwG/rbtCWWZI5IfroavYMuf32HgxJgxAQH3fkghT4+vE/RWQ6PPOBi8cUAt2hj4ox4LeiqhMxd3+95mzJiIouk3onD6jd3+/LDmzUVO2Xnwt22HFHJ1Owd/207sW3Ub/G07E7Yrigxv04Z2ZdF1liIEPVVQFLnbsbsTDjRBox+e2X4AoNaaIBpz0Vb5X0TCPgRcexEJubos8wkAGr0DEFQJff4URYHfuQuWvLnQW0vgqlsFIFputXHnf2DOno7MMT+KrxVTxmSMOuJW5E26dOAeINEwZ8qcgozRJw36de1Fx0GOBFG7ZSnqtjwDa/6RUGstaNn/zqDPhYY/Z81nMGZMQNaojn9/JSIiovTEd32iFBCNuUOnx59e992/remT8XdoiSyjo/zg/1nms6ei2VZl8DZvSuk8mva8AY3OAXvxAmj1GQj5modE+dFUkcPRIP2glPo0RAN/yfpZpSgKQr46iMa8fo9lzIj2JvN1U+4zEnJC08fAnzl7BtRaM5w1n8W3OWs+gyJLsOZ3XB7J6JgIKAo2ffhb7Fn5fzjwzd3tSvEdLuSpipdpFAQBemsJAu59fZozjTxBdyV0luIeHWt0lEGrd/Ts2IMZrd29xoBoCTogmlV2qIBzNyJhD0xZ0xO268yjIEcCCUGrvgr7m6DVD+9stbzJlyPsb0T1+j/DVbcKatECvW1Ml+cIghpafWbCjRlhfwMiITcMtnGw5M2Dr3kTIiE3Wg98gEjYjayxZ7cLEOvMRV2WFCWi1NDqM2DJngVv0wZY849C7oSLkDH6JLjqVia9DDult5C3Fv62HXAUHpPqqRAREdEgY+CPKAW0hhyE/Y1Judu9vxSDPvoPjRqI/XuYC/vqIRoODfxNACDAYC9P3aSGIVNmBfxtO+J9nhRFhrd5IxQlMijXV5QIfC2bYSs8BiqVFhp9BuRICJFwz7Op0o0s+QBgUMraqTUGqEVr0j5gioTdkCU/RFP/A38a0QqduRC+1q7LfUpBJ9Q6W5+uoVJpYc07Eq7aLyHLYfidu9G8+3XYC4/tNHiiNWQht+zHcORPP5iVWAdX7ZddXifoqYLO9F1/Nr21BAHXvhEd4KaeiYR9CAeaoDP3LPDXGxqdDaKpEL5uSuoqigJP03oIghruhrUJv9e4G9ZALVrjJWxjYoHKoKey3/MMB5qgHab9/WL0llEonH49wv4GOKs/gSlzao8yMrSG7ITn0N+2CxBU0NvGwJIzGwoUtFb+Dy0H3oW96AfxcqtENDxkjTsLOWXnIXfChRAEFWwFx0CtNaN539upnhoNI86az6HWmmHOnpHqqRAREdEgY+CPKAVEYy4UOQwp0JrqqQCGaMafYLMAaVAGU1EUhPwN0B5yB7spazpGz72DH3r1kilzMhRZgq91OwDAWfMpqtc/Gv96oIU8NZAjQeitYwEA2oPl3KRuMqjSWeRg4G8wevwB0Q+Ww/7k9JMJeaP9IrVJyi4xOibC17K1ywCZFHJBI/Yt8AcAtoL5iIQ9cFZ/gtqNf4PeWorscYu7PCdj9AkYPe0i5E34CczZM+CqW9XpHCMhN6RgWzzjD4gG/mTJl7TnndKTIkuo3/YcBEENg23cgFzDlNH9ayzkq0XY3wjH6JMRCTmjwSdEf1a5ar/ssCyuRrRCI9oQdPcv8KcoMqRAy7DP+AMAvWU0CqdfD9GYC2v+UT06x5I7B76WLQgd7MXrd+6CzlQYL3NuypiMlv1vQ6XWIaNk4UBOn4gGgFafAXvR9+M/Q1VqHTJGnQR33Spm/VGPyHIYrrqVsOYfCZVam+rpEBER0SBj4I8oBWJllUL+1Jf7jJX6FOyWFM8kOeJZRYcE+QRBgM6Un8JZDU9aQy60+iz4WjYj7G9C065XAWBAAtayHG5X9s3v2gNBUENvHR2djz4DALotnZjO5Hjgb+Az/gBANOQg5EtS4M9XBwgqaA3ZSRnPmDERUrAV4S5+jkZCzj73+AMA0ZQPg70MjTtfBgQB+RVXQlBpeny+NW8ewv4GBFx7O9wf9FQDAHTmwvg2vaUEADo9h0iRJdRueQrepvXIr7gSWsPABL4MjgmQgi1dBqG9jeujH0aPXgiNzgFP4xoAgKvmcyhyGPai73d4ns5S3O+MPynYCkWJDNjjH2x6y2iUzPs9jPbxPTrekjsbatGK1sr/AQACzl0w2L8LAlvz5gEAMkt/OChZ4kQ08GyF34NKa0Jr1YepngoNA57GdYiEPbAVsMwnERHRSMTAH1EKaPQZEAQ1wkOgz1888Gczp3gmyRHrR5asrKKRTBAEmDIr4G3aiPptz0GlNUGlMUAKOZN+rabdr2H/13+ALIfj2wLOPdCZi6BSR9eoWrRApdaO6MBfRIr2+FMPVsafMRdhf31Syk6GffXQ6jOhUiXnjmODbTwEQd1pKUJFlhAJe/qV8QcA9qLjoVLrkF9xFTS9LBtqcJRDo7PDXb+6w/1BbxUElRbaQ25UUGtNB8uYDk5mLQ0viqKgbus/4G38FvkVV8KcPX3ArmW0l0VfY4eU1HXXf42gpyr+tafpWxgzJkOlFmHOmQlPw1oosoTWqg9hyZ0Djc7e4dg68ygE3Qf6Nb+wvxkAoEmDjL++UKm0sBd+H67alQh6axHy1Sdkf5pzZqFgys9gK5ifwlkSUTKp1DoYbOMQ8tameio0DDirP4PBXpaU/tpEREQ0/DDwR5QCgqCG1pAdD1KllFoN2WGDkJ+cLJxUiwZThaRlFY10xswKhANN8LVuQ+6Ei6DVZyCS5MBfJOyDq+ZzyJIP/tYd8e0B1x7obWPiXwuCANGQiXCgOanXH05kyQeVWterrLP+0JnyEQl7k/I9D/nqkvrBg0qjh942ptM+f1LIDQC9DtYdzpIzE2OO+RMMh6zFnhIEFSy5c+Gu/xqKLLXbH+3vVwBBUCds70kZUxqZIiEn3PVfIbvs3AEN+gGHvMZatgEAfK3bUbv576j69mGEA62Qgk4EXHthzpoGALBkz4IUcqJx1yuQAi1wFC/odGydpRhSyAkp5Orz/KRANEs8VgZ6JLIVHgtAQf3WfwAA9IcE/gRBBXP29B71CySi4UOjd4zosvfUM+FAC/xt22HLPzrVUyEiIqIU4V+CRCkSzaQZGj2cwmedBHV5aaqnkRQhfwO0+oykZRWNdEZHOQS1CFvBfJgyJkEt2iAF25J6DWft51CUCDSiDZ6mbwEAkbAHIV899NbEYIvOmDmiM/5kyT9oZT4BQDRFS1AGvTX9Hivkq0/6HcdGx0T4WrdDUeR2+2LByv6U+ozpz88Ta95cRMIeeFs2t9sXcO2HzjK63fZoGdOuSyzSyBT0RsvDGh0TB+V60dfYNkQkP+q3Pgu9bSwEQY3aTU/A07gWEFQwZVYAAPS2MdDoHGir+hAGezl0luJOx9WZo/v60+cvHGiGWrRBpRb7PMZwpxEtsObNRcC1F1p9JrR6R6qnREQDTKtzHCx1zJuDqHOexrUQVBqYsqeleipERESUIgz8EaWIaMwdGhl/aSbsq2eZzyRSqXUYPfu3yCk7DwCg0dkhBZOX8acoEbRVfghLzmyYc4+At2kDFEWB37kHANplWYnGzBF9l3Mk7IVqkMp8AoDWkAVBJSJ0sBddX8lyGOFAU9Jfm8aMiZAlP4Lu/e32xTKJNEkI/PWHzlwEnbkYrrpVCdtlKYCQrxZ6a0m7c7orY0ojV8hTDUEtDlpfu+hrzIeaDY9DCrmQN/ESFEy5GkFPJRp3/QcG2zioxWiP4GiG2QwAgGNU59l+QPRni0qt71efv7C/aURn+8XYD2ZWHprtR0TpS6PPgBwJxvs+E3XE3bAGxoxJ7PFKREQ0gjHwR5QiWkMOwoHmDsu/Ud9Fs4oY+Esm0ZgTLy2pEW2QQm1JG9vTsBZSMFoSzpw5DVKwFUHPAQRce6EWLe16N4mGrBGf8TeYf8ALggo6c0G/M/7C/kZAkZOe8ae3jIZKrYe3gwBZJOgEIMSDEqlkzZsLb9MGyFIgvi3gPgAocoeBv+7KmNLIFfTWHCwPOzi/wsdeY/62Hcga+yOIxhzorSXIKTsPiizFy3zG2IuOh2PUiTBlTuly3OjPlqJ+Zvw1DVoAdCjTmQqQNfYs2IuOS/VUiGgQaHQZADCib4SjroUDrQg4d8OSPSvVUyEiIqIUYuCPKEVEYy6gyNEPxCkpFEWJZgCwv9+A0ejsiIRcfS4vpCgRNO97G666VQgHWtFa+V8YHROgsxTDYB8HlcYIb+N6BJx7oLeOgSAICefrjJmQgk7IcjgZD2fYiUg+qLSDe+euaCpAyNu/jL/wwexm0ZTcwJ+g0sDgKIe/gwCZFHJCLVra9c9LBVPWNChyGH7nzvi2gHsfBLUI0ZTf4TmxEosdlTGlkSvkrYmX4B0MgkoDU+YUGOzlCYElW8HRKJr5y3bBJtGYg+xxZ/coMKmzjEpCxh8DfwCQMfqkPvUhJaLhR6OLlvQNB1tTPBMaqjyNayEIapiyWOaTiIhoJGPgjyhFYllpIfZwShpZ8kGRQ9Do7KmeStpSizYosgRZ8vbp/IBrP5r3LEPdlqex98slCLj2xsuURT9groCnaR0Crr0dfogpGqNl3SJJ7jM4XAx2xh8A6EyFCHpr+hWACvnqoNIYoNYmP/vO6JgAv3M35EgwYXsk5IJGtCX9en2hNeRAo89IKN0ZdO2D3jyq08BkV2VMFUVOyB6kkUFRZAQ90Yy/wZQ3+VIUTf9Fu2Ce0T4+ng3eFzpzMUK++j6tZVkOQwq2QWtgqU8iGlk0OhsEQQ0pyIw/6pgnVuZzkG8WJCIioqGFgT+iFFGLNqjUeoS8dameypCmyBI8Tet7dKwUivaeGyof9qcjjS763Ep9DLyFvDUABJQedS/yK65CTtlPYMqsiO83Z01H0FMNORKA3to+8Kc7+CHvSC33GQm5oBrkwJ9oLoASCSHsb+rzGNESvHntMjiTwZgxEYoswe/clbA9mvGX2v5+MYIgHMzg+y7wF3Dtg95a2uk5XZUxbd6zHAe+uXtA5kpDV9jfBEUOQTQPXsYfEC3L2Z8AX2d0lmIACoJ9yCiOlrhTmPFHRCOOIKig1tkgBZjxR+2FA63wO3fBksMyn0RERCMdA39EKSIIAkRTHkI+Bv664m3ZjJoNj/eoJGq0pxeY8TeAYkHVWJC1t0LeGojGHGj1GbDkzIS96LiELBJj5uRoBpSg6rD3WSzjbyT2NYlIPoR89dCZiwf1urqDZQVD/ejzF/LWDVjvTdGYD41og69lW8J2KeSCZogE/oBogDLoqYYUdEIKuREONHW4xmM6K2Mqy2E4az5FyFeHSLhvmbc0PMVK7g52xt9AEU35EAR1n/r8hQPRGxHY44+IRiKtLgMSS31SB74r8zk91VMhIiKiFGPgjyiFRGN+vz5MHwmkg8G8nmQbxYJRamb8DRh1POOvb4G/oKcaYhcfWqs1BhgcE6A3F0Ol1rXbr1KLUIsWhEdgeaOAax8AZdD7OKlFG9RaU5+ycoBY7816aI3J7e8XIwgCjBmJ2XRA9EaAWIbqUGB0TAAA+Fq3IejeBwBdBv5i5xxextTbuB6RsAcAEPRUDchcaWgKemug1prS5j1OpdJCa8zr08+WsL8ZEFTxXldERCOJRucYsdUvqGuexrUs80lEREQAGPgjSinRVICQtxaKoqR6KkNWJOQC0LPSjlKwDSqNESq1ONDTGrFUKi3UWlM8u7K3gt7qeAZZZ3InXIi8yZd1ul+rzxiRGX8B5x6oNEZoByhzrjPR7ORChDx9u0khEvYgEvZCHKDAHwAYHRMRdB9AJOQGEA02SiHXkAqQaEQrdOYi+Fq3IeDaB7XWDE03ZQpNmRVQZAnOms/i25w1n0FvGwtBpU154C/oqUJb9acpncNIEvJUQzQVDkjJ3FTRmYv6tI6lQBM0OvuAlCAlIhrqNCP0d2HqWiTkht+5G+bs6ameChEREQ0BDPwRpZBoyoccCbA5exdiWXxSoLlHxw6lDJ90pRbtkEJtvT5PCrkRCbkgmrsuU6fVZ3RZFlKrzxiRdzkHXHtgsI1JKI06WHSmgl5l5QTc+3Hgm7vRVv0JQp7oeQNV6hMADIdk0wGAHPFDkUNDqtQnEA1Q+lq2IuDaC721pNsAjmjMhb3oeDTtXoaQrwEhXwN8rVthLzwWoim/y4BJJOyBosjJfggJ2qo+QsP2F+Bt3jig16GooLcGukHu7zfQdOYihDzVvV6rYX8z+/sR0Yil1UdLfQ70+zwNL97mjYCiwJQ1LdVTISIioiGAgT+iFIr16Ql5a1M8k6ErlsET7kngL9gGjWgf4BmRRmfrU6nPWH8qsZuMv+5EP+wYWYE/RZEPBosGt8xnjGguQNhXD0WWenS8s/ozBD01aNj+Eqo3PApAgNaYM2Dz0+odEI258LXtAPBdpvBQyvgDon3+pGALfK3boLeU9OicrLE/gkZnQ/225+Cs+QxqrQnm7JnRgEknwdiwvxF7vrgF7vqvkjj79oKeaG+2+m0vIBL2Dei1hjNf644evYd1RZbDCPvquyyVPBzpzIWQI4EelfM+VDjQxP5+RDRiaXQOKEok/ncSEQB4mtZDby0dcje+ERERUWow8EeUQhp9BgS1yD5/XehNqc+h1tMrXWlEWzwTszeC3hoIKg3EfgaAYuWNRlKJ3LC/AZGwF3pbaUqurzMVQlEiCPnq2u07/PugKBF4mtbBXvR9jJ77fzBnTYc5ewZUKu2AztFgL4f/YOBPCkZ/bgy1nwcG2zgIghqKLEHXTX+/GJVah9wJF8HftgOtlR/AkjcPKrV4sERiNRQl0u6cxl2vQpFD8LftTPIj+I6iRBD0VMNRfAJkyY/GXf8ZsGsNd3VblqJ5zxv9GiPsq4eiRLotlTzc6MxFANBpELsjnqYNCLj2pexGCCKiVNPoo/1NpWBrimdCQ4Ush+Ft2Qwzs/2IiIjoIAb+iFJIEFQHS+gx468z0sHAX09LfQ61DJ90pNHZ+tTjL+SpgWjMhyCo+3V9rT4TciQIWUpthpEUcmH35zch6K7s1zh+5x7IkVC3xwAC9NbUBP5iWUbBQ25SiIQ9aNq9DLs/ux6u2i/j2/2tOxEJuWHJmQWdqQD5FZejYMpVAz5Hg6MMIW8tpJALkYOBafUQu+NZpdFDbxsLAND3MPAHAEZHOexFxwGKDFvBMQAAnakIihxG2NeQcKyvdQc8jWuh0TkQcO1L1tTbCfnqochhmLKmIXv8Yrhqv4C3edOAXW+4kiNBSME2eFs296skWzBWMjfNMv7Uog1qrbnHff5CvnrUbXkKpqypsBXMH+DZERENTRpdBoCe3RhJI4OvZSuUSAimbAb+iIiIKEqT6gkQjXSiMZ8Zf12IhFzQ6rPifSw662+mKAokZvwNCrUu2uNPUZRue5QdKuitTkp/Kq0++mFHW/XHsOTMgtaQ26t5JEvYV49IyA1P03roLMV9GiPorkTlmnuhFm3IGH0ybAXHQKUW2x0XcO6BaMqHWmPs77T7RK01RQNJzj1QqfXwtWyBq/ZLKJCh1Weiac9yWHLnQFBp4G5cA60+E7oelrJMFqO9DADgb90BKeSEoBKhUusHdQ49Yc6eATkS6HUZpuxxi2HLnx8vES0efC0FPdUQTfkAoiVhG3e9DL21BNb8+WjY8RLkSBAqta7X81QUBa0H3oUlZ3aHJRWD7gMAohlbBvt4uOpWoWX/ezBlVvT6WuksVuIzEnIj6D7Qq4DvoULeGmh0Dqi1qfkZMFAEQYDOXNyjwJ8sBVCz8a/QiFbkTbokJf1OiYiGArXWDEGlZcYfxXmbNkBryIZozE/1VIiIiGiI4F/MRCkmmgoQ8taOqLKFPSVHgpAjAeitpVCUSJd95WTJD0UOscffINCINiiyFM+4U2QJIV895Eiw03MURUHIU52UbBWdqQAGexma967AvlW/xb5Vt3V57YESK3fqa93a5zF8bTsgqLQwZUxC467/YN/q33a4zgOuPTDYUlvWTmcuRFvVh6jZ8Bg8jetgKzwWpUfeg/yKKyEFW+Gs/RKKIsPTuA7mnJmDHozV6OwQjbnwt+2AFHJBI1pTEhDujqP4Bxg9+7ZenyeoNAkBZo1ogUa0JQRMXLUrEXQfQPb4c2CwlgKK3OeMVCnYhqbdr6N++wsdvj8FPZXQ6rOg1hohCAKMGZMQ8lbxvewwsd51gkrTr4zIZN04MRTpzIU9Cvw17noFUqAF+VOuTtlNEEREQ4EgCNDoHCOu5zV1TFFkeJvWw5w1fUj+7ktERESpwYw/ohQTTfmQIwFIwdZ4JhNFxRrW660lcDd8DSnYAu3BnhaHiwVh1Mz4G3AanR1ANDCg1prQcuC9eP8qtWiBVp8JjT4TWn0WrPlHQmcqgBRsgRwJJCXwp9LoUDzzZshSAO76r1G//XmEvHXQW0f3e+zeiJWhDTj3QJYCUGl6n13md+6C3jIaeZMuQUbJKahcez8adryI/Iqr43+4y1IAQW8N7EXHJ3X+vZU15kcwZ8+CwT4eWkN2fH4a0QJLzhFo2f82tIZMREIumLNnpWSOBnsZfG07oLeMHhE/C3SWYgS90YCJLIfRvPcNWHJmw2AbC0WWIKhEBNz7YLCP6/XYQfd+AICvZQu8zRthzpp62P7KhECkzlyESNgLKdjW6c/pkSjsb4wG9zOnwNuyGZmlp/Z6DFftSvhatsIx6sQBmGHqieYihCv/2+XPUTkSgrv+KzhGnRjPeiUiGsm0+gyW+iQA0d/ZpJATJvb3IyIiokMw448oxWIfYIXSsM9fONCC2k1/RyTs7dP5scCK7mBptHAXff4iwTYA0Ww0Glix5zgWbPU0rIUpswJ5k34Ke9Hx0JmKIId9cNWtRM36R6OBq4P9qZKZsaLS6GHOPQIAEPLVJW3cnooEnRBUWihKBH7nzl6frygK/G274kEZ0ZiLnLLz4Gn8Fp6Gb+LHBVx7AUWGPtUZf5Zi2AqOhmjMaXc3cUbpIkiBVtRvfQ4afUbKehEa7GUIeWsQ9FSNiJ8Foum7TClXzeeQQi5kjjkdwHcZgn3t8xdw74datMDomICmXa9AkaX4PkVREPRUQmc+JPBnir62Q96e9WobKcKBJmgNWTBlViDg2tur90M5EkTd1mdRt/UZWHKOQMbokwdwpqmjMxcBiGY1dsbXshlyJABLTmpuKiAiGmo0OgekAEt9EuCu/xpqrQkG+9hUT4WIiIiGEAb+iFJMo8+AoBbTss+fv20n3A1fo3Hny306P3Iw8Ccac6HSGCEdEvhr3PUqajb+Jf51LAjFHn8DL5ZJFQm2IexvRtBTCWvekbDmzUNmySLkTrwIRTNuwKhZSyCF3Wja/RpC3hqo1HpodMnNalVrDFCLNoR99UkdtyekkBM6czE0Ogd8Lb0v9xn2NyISckJv+y4by5IzE5ac2WjY8U9IIRcUWYK3eRNUGgNEY14yp59UOlMBLDmzIAVbYcmelbIyQ4aDff6Cnspe99AbjnTmIkiBFkhBJ1r2vwtr7hyIxtz4foO1NBo47oOg+wD0ltHIHv9jhPwNaKv+JL5PCrYgEvZCZxkV36bRZ0KlMSDoZuDvUGF/E7T6LBgzJgOKDF/Llh6f27DjX3DXf43ciRcjb9IlferVOByIpnxAUMVvEOmIu2ENRFNhvJ8lEdFIp9FnsMcfwdu8Ca2V/4O96HgIgjrV0yEiIqIhhIE/ohQTBBV0xvy0zPiTDpafcdWthKdpQ+/PD7kAQQW11gytPjOhnI23aT18LdugKHL02KATKo0hbT8YHUpUKi3UWhOkkBPe5g0QBDWMmZPbHac1ZCN77Floq/4YrrqVEM2FAxIQEo25Kcn4k4JOaHQ2GDMm9qnPX8C5CwBgsCXenZtddi4gCDjwzd3Y9en1aK384GDPjqH9lp1ReipUGiOsefNSNget3gGtIQcAoB4hgT8AaNz5MqSQExklpyTut5ZEA8xhT6/GVRQFAfd+6MyjoDMXwZY/Hy373oyPE8syPDTjTxAE6Ew969U2koT9jdAasqHVO6AzF/aqz1/AuRu2gvmw5R81gDNMPZVKC9GYh6Cn436UshyGt2kDs/2IiA6h0TkghZxQlEiqp0IpEvI1oHbzUpgyK5BRsijV0yEiIqIhZmh/ikg0QoimfATTMOMvHGyBzlwMU2YFGra/gEjY16vzIyEX1FozBEEVvav1YMafFHIj5KuDHAnEM72kUNuIKO03VKhFG6SgE56m9TA4yqHWGDs8zlZ47MHyi7XxUoDJJhrzEEpBxl8k5IRGtMHomIigpxpS0Nmr8/3OXRBNhVBrTQnbNaIFeRMvgd4yGlljTseoI36D3In/L5lTHxA6UwHGHvNQQt+3VDA6oll/IyH7VzTmQhDUcDd8DUvO7HZZoXpLCQD0utynFGxDJOSK983MHHM6FDmC5r1vAohmA6q15ni/zxiduajLco0jjaIo0Yw/QxYAwJhRAW/L5vgNK12R5TBC/oak9EUdDnTmIoQ6yfjztWyBHAnAzMAfEVGcVp8BKDKkg+0OaGSRI0HUbvor1Foz8iZdOuRvECQiIqLBx98OiIYA0VSAkK8WiqKkeipJJQVaoNFnIKf8QsiRIBp3/adX50fCbmhECwAkZPwFnLvjxwTcB6LHBp3tPoSmgaMRbQj56uBv3Q5zF43kBUGF3AkXQaXWx4MIySaaooG/nnyYnkxSyAm1zgajYwIAwNe6DQAQ9NbA27yx2/MP7e93OFNmBQqmXA3HqBOht44eNn/Mp6rE56EM9nIA0eB0uhNUmmhgSFAh87BsPyCadavWmnod+At6oj9XY6U8NaIVGSWL0Fb9MYLe2nh/v8O/36K5KHpThhzu2wNKM5GQC4ocglYfDfyZMisQCbkQdHec2XaosK8eUOR4H+B0pzNHs0U7+j3I07AGoqkAOpb5JCKK0+gcADCk+vwpigxX3SpEpN7d7Em917LvHYR8jSiYcjXU2o5vwCQiIqKRbXh8kkiU5kRTPmTJn3Z3bIYDLdDqM6DVO5Ax+mS461b1KjgjBZ1Qa6Pl+rQHM/4URYHfuQsaXQa0hmwE3fsPHts2Ij7oHyo0Ojt8LVuhKBGYsqZ2eaxozEHpUffAmn/0gMxFNOZCkUOD2udEkSVEQm5oRBs0OhtEUyF8rdvgrPkMB76+CzUb/9Zl6aVY1qrB1nHgj/rOlDEJBtu4hDKU6cySOweO4hM67H0mCAJ0lhIE3Pt6NWbQtf9gRt93PTntxcdDq89E065XEHRXJvT3i9GZiwBFTsuetYfrSWm1cKAJAOIZfwbbWAgqDQKuPd2eGyv/PVJ62unMxdEsfn9jwnZZDsPTtJ5lPomIDqPRR9+jw8GWbo4cPK7alajb8jQad/yr3b7BvkEvncmRIJw1n8BWeAx05oGpqEJERETDHwN/RENArASir2VLimfSsYjkR8C1v9fnScGW+AfHoqkQihLpVTnESMgVL9en0WdAjgQhS954ppTOMiqe8SeFmPE3mNQ6GwAFOnMxtPrM7o/XmgYsa01ryAWAQe3zJ4XcAL4rJ2nKmAhX3UrUb3seemspFDmMsK+h0/NjWasM/CWfWrSgeNavoNU7Uj2VQZEx+iRkjzur0/16awkCrn29yigPuPdDZxmdkNGnUmmRNfYseJs3IhxojvcXPFQ0O01AsJOSjYMt4D7Q6xK8PeF37sauT37RbYnusP9g4O9gxp+g0kBryOnRz6qgtwYa0dauFHC60tvGQqXWw1X7ZcJ2X8sWyJKfZT6JiA6j1hig0hgGNeNPCrbB79zT4e8UshRA055l0Bpy4KpbBU/TegDRgF/99hexf/X/pV11m1SJZlX64Sg6PtVTISIioiGMgT+iIUBryIIlZzaadr8CKeRK9XTacVZ/isq190GWAj0+JyL5IEv+aP8JfJfxIB3MgOjRGGE31IeU+gSAkLcOQfd+GGzjoLeMRtB9AIoiQwo6R0RPr6Ei1k/RnD09tRNBdG0JKs2g9vmLhKLBBLUYzUg158yCWmtB3qRLUVBxJQAg6Knq9Pxo1qojfrc20UDRW0sQCbkQ7kVgPOA+AL2lfWlec/YMGOzRHoodZfypNHpoDdkIdbH2B4uiKKhZ/yiqvn2oR+9dnsZ1aKv6qAfjymjc+W8ocgjepq5L+ob9jVCLVqg0+vg20ZiLkLf770XIWzti+vsB0Q+wrQVHw1nzCeRIEED0e9hW+T/ozEUjpuQpEVFvaEQrIuHB+9uxbuuzqFxzL6rWPQhf6/aEfS3734Us+VA0/QaYMqegYdsLiIS9aNj+EpzVnyDkq0+76japoCgy2ir/B3PWdGgN2ameDhEREQ1hDPwRDRHZZecCggoN21/q9C7KyMEso8EWDjRBkcPwtW3v/uCDpIP9+GKBDe3BzL9woLnnY4Rc8VKfmoOBP0/jWihKBAbbWOgtoyFHAgi690ORQ/FgFA28WF+R7sp8DgZBUEFryIn2xBok0sHAX2zNGWxjMXb+/bDmzYVatECjs3eZ9eRv2wWDbdyQ6IlH6c1gL4NWn4nqDY8h3IOsACnYhkjI2WFgTxAE5JSfD1vB9yAaczs8X2cu6jLoPVikYCukkBMhbw3qtj3baZaBLIfRsOOfqNn4VzTs/He3H0q661Yj4NoHrT4LvtatXR4bDjTFs/1iRGNuj25SCHlrRkyZzxhH0fGIhH1w1a0GAHib1sPXug1ZY3+U4pkREQ1Naq1l0P4+DPub4GvZAlvhsZAjAVStexCVax+Er3UHwv5mtFZ+AEfxCdAaMpFTfgFkOYT9X90JZ81nyChZFB1jEKtzpCtfy2aEfHVwFP8g1VMhIiKiIY6BP6IhQiNakFN2HjyNa+FpWNNuf/32F1Gz6YkUzOy7IJ63eVOPzwnHAn8HA34qjR5qrTm+vTtyJARZ8kNzMKNKrbVAUGnhqv8aKo0Borkw/sG0p2lD9BgG/gaNKWsKCqb8DDpz++BAKojGvB5l0SSLFHQCgiqe8Xc4nbkIQW/HwQ9ZDkezVu0s80kDT60xoGjGTVCUCKrWPdhh8M/fthPe5mj2WuBg39SOMv4AQGfKR+6ECzot3RsL/KW6nFfAtQ8AkFP2E3ga1qD1wHvtjgkHWlG19n44az5D1tizIAgquBu+6XRMORJE057XYc6ZBXvRcfC37YQshzs9Puxvime7x2iNeZCCLfGstg6vI4cR8jeMqIw/ANAasmHOnoG2yv9ClsNo3PUKjBmTYcyoSPXUiIiGJLVoHbRqMc6az6HS6JE97myMOuI3KJjyM8iSD1XrHsCBb+6CSmNExuiTAQBavQM548+FFHIid8JFyCw9FYJKg6CvdlDmms5aD/wXemsJ9GwXQERERN1g4I9oCLHkzII5ZxYadryEiOSLb5cjQXia1g1qD7NDxYJ1vuZNPf4wVwq2QBDUCeU3tYasLkt9KrIUHz9y8I/YWGBFEARo9RmIhJww2MZCEFRQa03Q6rPgPRj4Y4+/waNSaWHOnj5kMtaiWTSD9/qIhJzRYHQnwQ/RXISgu+PAX8hTDUWJQNdJYIUo2bSGLBTPuBmKIqH62z8hEvbE94UDraje8Biq1z+K+u0vIuDcDbXW3OcytDpzISJhT7wcbkTyQwq2RTMJw96kPJ6eCLj3QaNzwF50HDJGn4Km3a/DWfNFfH840IqqdQ9ACrlQPHMJMkafBFPmVLjqVnU6Zuv+9xAJe5A99iwYMyZCkcMItO3u9Piwv7FdGS7RmBfd10UP0LCvAVBk6EZYxh8AOIp/gJCvDrUb/4ZwoAnZ4xcPmfcZIqKhRiNaByXjT1EicNV+AWvuXKjUOgiCAHP2dIyafRsKplwN0VSAnLKfJJS2tuYfiXHHPAxbwdEQBDW0hlyEvAz89YencR18rVthL17A90YiIiLqFgN/RENM9rgfIyL54K77Kr7N27wZSiSESMjVZXbBQJGCLTDYyxEONPc4uCIFWqDRORICIxp9JsL+jkt9KoqCvStvg6vm8+j5BwN/mkMyqmLlPg+9w1FnHY2gpzK6nz3+RizRmAsp2NplFk0ydddTUmcughRs6TDQEXDvBwQVdOaigZwiUYJo8O8mRMJe1G5eCkWRoSgKGna8CEElInvcYrhqv0TL/nehs4zq8wdKsXXtbdqI+m0vYM9nN2LPF7/Cni9+hd2f3ThoAfqgay/01hIAQOaY02HLPxr1255F3dZnEfLVo2rdA4Aio3jGzdBbo0F4a95cBN0HEPTWtBsvEvai5cD7sBcvgNaQBdFUALVo7bTcpyyHIQXbOiz1CaDL5yF08PojLeMPiL6/660l8DZvhL3ge+ztR0TUBbVoGZSMP2/TRkghJ2wFxyRsjwYAZ6B45s2w5Mxsd15Cj1vT4FbnSCeKLKFx139Qs/GvMGdPhyW7/XNNREREdDgG/oiGGK3eAXPWVDhrPo1nv3ka1kAQ1ACAyCA3RY9IPsiSH9a8eRBUWvhaNvfovHCgpV3GiFaf0WmPv2hGSAvcjdEyp5Fw9O7VQ0spag+OZzgk8Kc/WO5TpTFApdb18FFRutEezKLpSe+sZJBCzi57SsaCHx31+Qu690NnKoBKLQ7Y/Ig6ojVkI3/y5fC1bkPznmVw16+Gt2kDcidcAMeoEzBq1i3QmYthzprW52to9JlQqfWo3/48PI1rkTnmdBROuw55ky8DoCDURaZbsiiKjIBrfzzwJwgq5E68CHkTL4a7/mvsW/VbKEoERTNuSijFacqcArXW1GHWn6tuFaBE4CheEB/T6JjQaeBPCjQDUNpl/Km1JqhFSzeBv1qoRRvUWlMvH/nwJwgCMkpOhWgqQGbpaameDhHRkKYWrYiE3VAUeUCv46z5DHprKXSW4j6PoTPmI8RSnz2mKDKCniq0Vv4PlWvvQ1vlh8ge/2PkV1wNQaVJ9fSIiIhoGOBvDERDkK3ge6he/wiC7n0QTYXwNm+AJXcOXHUrEQ60tvsgcSDF+vuJpjwY7GXwNm+Kf/DZ3XntehvpsyAFmqEocrsSibFm7/62HZAjQUSCLgAC1KI5foxGnwVBpYlnZwCIl0vsKghD6S+WRRP21ceDwQMpEnJCNBV2Ph9DTrSXibcKRkdZwr6A+wDLfFLKGDMmInvsmWjc9QoEtQhL7tx4oE9nKcboObf3a3xBUCFzzOlQ5AjshcfG7/ZXFBl1W55GJOjs92PoTshXDzkSgN5SmrDdmn8UdNYStB74AJkli9q9RwkqDcw5R8BdtxpZY86Iv08pigJnzWcwZU9PyEI3Oiagvv5rRMJeqLWm6HtXyA2tIQthf7Ss9eHXAADRkNvlTQpBb82ILPMZY86aCnPW1FRPg4hoyNOIVkCRIYe9UIuWAblGONAMb/Mm5E64sF/jiKZ8REKu+HsmdU6Ww6j85h4EPVUH//Ydi6KZv4TBNibVUyMiIqJhhIE/oiHImDEJGn0GnNWfwZhZATkShKN4AVx1KyEFWwZ1LrH+fhpdBkyZFWja/SrkSLDb7LpwsAUGe2LAQ6PPhKJEIAWd0OodCfuizd4FKLIEX+t2SGEX1KI5nukIAPbCY2Gwj0+4dizIwzKfI1s0i8Y6aGUEpaALRsekTvcLKg1EUwFCnsQ+f7IcRshTDVv+0QM9RaJO2YtPQMBdCX/bDuSUnZP08Tu6OSTal9UMKTTwgb+gay8AQGdtfxOAzlSAvIn/r9NzrXnz4Kz+BP62HTA6JgAAAs7dCHlrkDM+8bkyOiYCUOBr3Q6joxxV3z6EkKcaWePOgiCoIag0HfaeFU15CLgPdDqHkK/24NhERESdU2ujwT4p7B6wwJ+rbhVUah0sOUf0axwxXp2jDgbb2GRMLW25ar9A0FuDgqnXwOiYyCohRERE1Ccs9Uk0BAmCCrb8+XA1fAVX7RfQmYuhsxRDrTVBCrQO6lykYAsEQQ2NzgZT5uR4YK4r0eBeWwelPqM9+qQOyn2GvLUQTfnQ6rPga9mMSMgFtdaacIxaa4LRPv6wbWZo9VlQM+NvxBONuR32DpHlMBQlkrTrKIqCSKjrHn8AoDMVInhY4C/kqYaiRJjxRyklCALyJv0UJfN+D7XW3P0JSaIRbYgMQi+igGsfRGMe1Bpjr8/VW8dAa8hGa+X/4qXTnDWfQWvIhsFRnnCs1pAJrSEHnoY1qPr2IUiBFljzj0TjzpfRtGcZtPrMdtntQLQ0cdjXEC/nfShFlhD2NUAcwRl/RETUM7GWCNFKKQPD0/ANTFlTE/r19YXWmAtAYJ+/bshyGC373oUl5wiYs6Yx6EdERER9xsAf0RBlzT8aiizB27wR5oPN0jW6DIQHOeNPCrRAo3NAEFTQGnKjgbnmTV2fE3QCihzvyRcTC/x11Ocv7KuDaMqHKbMC3uZNkEKuhJJqXckpPw+OUSf28BFRuhKNuQj5E8vnKYqMA1/fjX0rb4Oz+jMostTv68hhDxQl0m2wWWcuQtBTk9B3JeA+AAiqeA9AolQRBGHQP0xSi1ZIgxH4c++D3lra/YEdEAQBWWPPhLd5I+q3PY9I2AN3wzewFczvMIhnzJgId8PXkAItKJpxI3InXISCKVcDQKfBO9GYCzkSgNRBz96QvwGKEoFoKujT/ImIaOSI/a0U642ebCFfHYKealhyZvV7LJVahFafyT5/3XDVfgkp2IqMkkWpngoRERENcyz1STREafUOmDKnwNu0Pv7HlkbviPfcGyzhQEs8c08QBBgzJsLXtrPLc2JzPDzjT6XRQ601dxj4C3rrYCuYD721BG3VH0ORwzDYy9sd1xFTZkWPjqP0prOUwFn75cH+WNEPzd31XyPkrYYpcwrqt7+Alv3voGDatfH9fRErVdhtxp+5CIocQtjfGO9BGHTvh86Uz7t3aUTS6Gxd9rZLBlkOI+iuhDXvyD6PYcmZBUWWULf1GQScuwBFhjXvqI6PzZ0Df9sO5E+6LB7QN2fPQKltHCAIHZ4TK3cW9tW1K3sd8tYAwIju8UdERD0jqHUQVNoBu6nG3bAGKrUexozJSRlPNOUj5GXgrzOKLKFl3zuw5M7m7wFERETUb8z4IxrCMktPQ0bJoviHhBqdA1JwkEt9BloSMvdEcyHCvrouSyfGshI1Oke7fVp9ZrtSn5GwD5GQE6IpH0bHBAgqTbRUaA8z/ogAwJp/JLT6TDTtegVANNuvZd9bMGVOQeG06zB6zm+hyGG4aj7v13Xigb9uMv7Eg0GAoKcyvi3g3s8ynzRiaUQrIsGB7fEXK6ert5b0axxr3lzkTbwYIX8jTFnTOg30G+3jUTL3d9BZihO2q0VLp2VUoyVA1R0GQYPuA1CL1kEtwUpERMOTIAjR99YBCvx5GtbAlDklaTesiaa8QevHPRw5me1HREREScTAH9EQpreMQtaYH8a/1uoyBj3wFw62QKP7LvCnMxZAUSII+xo6PUcKtEClMUKtMbTbp9Fntsv4i5V80RnzoVLrYLBF+/ipGfijXlCptMgaexa8zZvgbd4Ed8M3CPnqkFl6GgBAZy6EMXNytz0quxMLXKi7yfjTiBaoRRuCnmoA0UykkKcaegb+aIRSizZIIVeHve2SJeDaC0FQxwPv/WHNm4dRs5Ygp/z8JMzsO4JKA60hu92Hn4oiw1X3FcxZ05J6PSIiSl9q0YpIKPmlPkO+egQ9VTAnocxnjGjMR9jfBFkOJ23MdBFw7UPT7leZ7UdERERJw8Af0TCi0TsQCXshR4KDcj1FiUQz7w7N+Dv4h0iwizIth2cJHqqjjL9ok3cBWmMOgO9Kd2pES3+mTyOQOXsGDPYyNO76D1r2vglT5pSEzB+DvQxBTxUiYW+fryGFnFBpjFCptN0eqzMXwdeyFYosIeSpgaJEoLOM6vO1iYYzjWiFIocgR/wDdo2Aay90luIevT57Qm8tHZD3ItGY1y7jz9eyGVKwBbaCY5J+PSIiSk9q0QIpnPyMv2iZT11SWypEq9goCA9w2e/hJuDah6pvH4JoKkBu+QWpng4RERGlCQb+iIaRWObdYPX5k4JOQJETgnjREmSmLhuzh4Mt7fr7xWgM0Yw/RZHj20K+Omj1mVCpdQAAU9YUAAI0+qzkPBAaMQRBQPb4HyPkrTuY7Xdqwn6jvQyAAr9zV5+vIQWd3fb3i3GMWoCgez9qNy9FwLUXEFTxPmBEI436YHncgSpJJstheJrWJ60X0UDSGnPbffDprP4MOssolgMmIqIe02gHJuMvWuZzalL7UsduIGWfv+8E3PvjQb/CaT+HSqNP9ZSIiIgoTTDwRzSMaPXRnnnhQSr3GQswHhrEEwQBojEfIU9Nl+dpdZ1n/CmylPDBb8hXC9GUF/9aNOah9Mi7YLCP7+9DoBFIbxmFjNEnwZp/NPTW0oR9WkMWtPpM+PtR7jMScnXb3y/GlDEZ+VOugrdpPRp3vwLxYDlbopEoFjCXgv0P/IV8Dajf/iIUWYpv8zZtgCz5Yc2b1+/xB5pozEM40Aw5EgIAhAOt8DRvgK3gGAiCkOLZERHRcKEWLUm5oUaOhFC/9TlUfftnVH37MIKeyqSW+QQAtdYEtWhln79DNGz/J7T6LBRO+3mHbTKIiIiI+oqBP6JhRK2zAxA6zPiTgm3Y88Wv4GvZmrTrhYMHA386R8J20VTQdcZfoPOMP60+8+Ax35X7DHlrIRoTexloDVn88JP6LGvsmcib+P863Gewl8HXtqPPY0shZzxzqSfMWdOQX3ElIEcSyo4SjTSxvq2RkLPfY3mbN8JZ/Qlcdavj21x1q6C3lkI05vZ7/IEWzXpQ0Fb1IRRFgavuSwgqDSy5c1I9NSIiGkbUojUp/XOdNZ/CWfclVGodVBoDbAXzD1ZhSS7RmMeMv4P8zt0IuPYgc8zpDPoRERFR0mlSPQEi6jmVShv9466DjD93/VeQgm1o2PkvjJ7zWwiCut/XkwItUGmM7f4QEU35cNV9CUWJtLtORPJDlnydl/o8JPBnsI2FLIcRDjQnZPwRDSSDvQyuulWIhH1Qa429Pl8KOttlEnbHnD0do2bfBjX7VtIIplLrIahESEkI/IX9jQCAln1vwZo3F7Lkh695E7LGL+732INBby2Fo/gENO1+DQHXHgTcB2DNmcMP/oiIqFei/XPDUCJBCH0sEylHQmjZ/x6seUd2euNcsugto+CqWwkp5B7x/dxbK/8L0ZgLU2byA6xEREREzPgjGma0egfCHWT8uepWQ2cZhZC3Ds7qT5NyLSnQktDfL0ZnKoAiSwj7mzo4p/ngPDM7HFOtMUCtNUHyR48L++oBRW6X8Uc0UIyOckT7/O3s9bmKIkMKtUFzMHOpN3Tmwj6dR5QuBEGARmeDlISSZGF/I0RjLsKBJrjqVsPdsAYAYMmZ3e+xB0O0H+liFEy5Gr7WHZACLbAVHpPqaRER0TCj1kaDZ/15b3XWfIZI2I2M0QuTNa1OOUafDEBA445/Dvi1hrKwvxmexnWwF/0AgsCP5YiIiCj5+BsG0TCj0WW0y/gLeqoQ9FQis/Q0WPOPQvPeFYiEvf2+VjjYccnO7xqzt+/zF/I1AAC0hpxOx9XoM+OlPkPeuoNjMuOPBodGnwmNPgP+1t6X+wx5qqFEQtBZRg3AzIjSn1q0IhJMTsafMbMC5uwZaNn/Nlx1X8KYOXnYZQ+Ys2dg9OzbkDfpp9BZSlI9HSIiGmbUulgZ7b4F/mQ5jNb978KaNw+isfO/35JFI1qRU/YTuBu+id+0MxK1VX8ItcYAa/6RqZ4KERERpSkG/oiGGY3e0a7Hn6tuNdRaM0wZk5E15odQ5DBa9r3V72tJgRZode0Df2rRBrXWhGAH/RnC/gaoNAaoteZOx9XqM+F37kLY34iQrxZq0dLl8UTJJAgCjPYy+PvQ58/XuhWCSoTeNnYAZkaU/jSirdtSnxHJj4Yd/4K3eVOH+xVFRjjQBK0hG5klpyLsb0TAtQ/W3LkDMeUBpzVkwZo3j31tiYio1zQHM/4iYXefznfWfAYp7EbG6FOSOa0umXOOgDl7Bhp2vIRIqP28+9uvcKiTpQCcNZ/DWnAMVGpdqqdDREREaYo9/oiGGa3OASnYCkVRIAgCFEWGu/4rWHKOgKDSQKOzwzF6IVr2roCt8FiIxtw+XyscaIElt33gTxAEiMb8DjP+wv4GaA3ZXX6AaS/8Pmq3PIV9q34LldbEMp806Az2crjqv+p1nz9f6zYY7OOgUmkHcHZE6UsjWuF3NnS6P+iuRO3mJxHy1cPXshnGjEntSmBJwVYosgTRkA2dpRjm7BnwtW6DKWvaQE+fiIhoSFFpTYCg6lOpT1/LVrTsXQFr7txByfaLEQQBOWXnYf9Xd2DfV7+D0V4Og30cpGArfK07EHTvh9aYB6OjDOas6TBmTBy0uQ2G1qoPoURCsBcel+qpEBERURpjxh/RMKPRZUCOBCFLPgCAv3U7pGArLHnz4sc4ihdAo7Ojcdcrfb5ORPJDlnwdlvoEANFUgFAHGX8hXwNEQ9fBRmPGRJQeeReyxp0FADDYxvV5nkR9YXSUA4oMT2PPSwzJchi+th0wOtLrwweiwaTuosefu/5rHFhzLwSViLyJFyPkq+8w6y/sbwQAaA3ZAIDc8gtQPONmqNTiwE2ciIhoCBIEFdRaS69KfSqKjOa9K1D17cPQmUche/ziAZxhxzQ6G4pm3Axb/tEIB1vQuPNlOGu/hFafiayxP4LBWgpv00ZUffsQQr66QZ/fQAl6a9Cy703YixdAq3ekejpERESUxpjxRzTMaA7+gSAFWqDWmuCqWwWtIQd6a2n8GJVaRNbYM1G7+e/wtWzt012SsT6CHZX6BKJ9/lx1K6EockI2Rtjf2KNAnkqtg6N4ARzFC3o9N6L+0hqyYM6ZhZZ978CadyQEVfdvhwHnXiiRUNrddUw0mDSiFZGQG4oSgSCo49tDvgbUbX0W5qzpyJ10MQRBg7bqj9FW+T+Ys6YmjBH2NwKCChp9JgBEy0UPs95+REREyRJ7b+2phu0vwln7BTJLT0NGySntMusHi85cCJ35RwCiN9gJgiahakxE8mH3pzfA79wD0Tj8+8ErSgT1W5+FVp+FzDGnp3o6RERElOaY8Uc0zGgOBuLCwVb4WrbB3fBNh72BzDlHQG8bi8ZdL0NR5F5fJ5bNF/tg9XA6UwEUORzPvAAAORKEFGwd1FIxRH2VWbII4UATXHWre3S8r3Ur1FozdOaiAZ4ZUfpSizYASsIHlIoio37bc9CIVuROuBAqlRaCIMBevAC+1q0IeqoSxgj7G6HVOVhyl4iICNEbYHpa6lNRZHga1yJj1MnILD01ZUG/w8Xe+w+l1hghmvIQdO1LzaSSrPXAfxFw70fuxIv5OwwRERENuKHxWx4R9ZhGZ4MgqOGu/wrVGx6DwV4Gx+iT2h0nCAJyxp+DoKcaLfvfhbPmc9RteRo1G/+G1sr/Ieip6jIg6GlcB525sNMSJKIp2pfv0HKf35VfY+CPhj6duQjm7Jlo2f82FFnq9nhfy1YYHROGzAckRMORRrQCAKSQM77NWf0J/G07kDvxIqg0+vh2S/ZMaHQOtFb+N2GMkL8xXuaTiIhopItm/PUs8Bf21SMS9sLgKBvgWSWH3lKCgHtfqqfRb2F/I5r3Loej+AQYbGNSPR0iIiIaAfjpJdEwIwgqqHU2uOu/gsE+DgVTf9bpHYN6awmsefPQvGcZ6re/gJC3FpGwG027X8X+r+5E855lHZ4nR0LwNm2AOXtWp/NQizaoNEYEvTXxbfHAHzP+aJjILD0VYX9jt1l/EcmHgHsf+/sR9VM04w/xDyjD/iY07X4N9sLvw+iYkHCsoNLAXnQ83PVfQQp+FygMM/BHREQUpxYtiIR7VurT79oLQIDeWjKgc0oWvbUEQXclZDmc6qn0i7thDSAIyCw9NdVTISIiohGCPf6IhiG9ZTQUUwHyK67qtkxIdtlPYMmbC72lFGqtEUA0sFez4fF25dNifC2bIUcCsOR0HvgTBAE6cxGC7gPxbSFfA1RqPdRa9lqi4eHQrD9r/ryEnmOH8rfuABSZ/f2I+klzsBdfLJDXvHcFVBojssae2eHxtoL5aN67HO761XCMOhGKoiDsb4Ql54hBmzMREdFQptZae1zqM+DcA9GUD7XGOMCzSg69tRSKEkHIU5XQ03648TZvgtExESq1LtVTISIiohGCGX9Ew1B+xZUomHodVGqx22PVGgNMGZPjQT8AUKlFiKY8hAMtHZ7jblgL0VQYL+fZGaOjHP627fGSoWF/A7TGnHb9GYiGsozRCxH2N8LbvKnTY3ytW6E1ZENryBrEmRGlH0GlgVprhhRyIRL2wt3wDeyF308o8XkotdYEY8ZEeJo2AADksAey5GfGHxER0UEa0QJZ8vcoKy7g2j2sSk2K5kIIghqBYdznLyL5EXDuhilzcqqnQkRERCPIiAv8vfjiizj++OMxZcoULF68GBs2bOj02HA4jMceewwLFizAlClTcPrpp+PTTz9NOMbj8eCuu+7Ccccdh6lTp+Lcc8/tckyiZBAEVb+DaxpdBqRga7vtshyGt2l9l9l+MUbHBETCXgTdlQAOBv74YSwNM3rraOitJXBWf9puXzjQjPptL8BZ/SlMmVNSMDui9KMWbYiEnHDXfwUoMqz5R3V5vDlrGvzOXYiE3AjFe8nyvYaIiAgA1Af750ZCXZf7lKUAgp4a6K3DJ/CnUmmhsxQj4Nqb6qn0ma9lKxQlAlNGRaqnQkRERCPIiAr8vf3227jnnntwzTXX4PXXX8eECRNw6aWXorm5ucPjH374Yfz73//G7bffjrfffhvnnnsurr32WmzZsiV+zG233YYvv/wS9913H1asWIGjjz4al1xyCerr6wfrYRH1iUbvgCz5EZF8Cdt9LVsgRwIw9yDwp7eWQqXWw9e6FUC01KdoyB2Q+RINJFv+MfC2bEY48N37QWvlf7Fv5W3wNK5F5pgzkDX2RymcIVH60OhskIJOOGs+hSlrGjQ6W5fHmzKnAooCb/Om73rJMvBHREQEINrjD/iuf25nosEzBfphlPEHAHpLSZ8z/oKeatRuXopI2JvcSfWCr2UTRGMeK4cQERHRoBpRgb9nnnkGP/7xj3HWWWdh3Lhx+N3vfge9Xo9XX321w+PfeOMNXHXVVTj22GNRXFyM8847D8ceeyyefvppAEAgEMD777+PX/7yl5g9ezZGjx6N6667DqNHj8ZLL700mA+NqNe0OgcAQAokZv15GtZANBVA102ZTyBass1gHw9fy1bIkRCkYCs/jKVhyZI7GyqVCFftlwCAgHs/Gne9AlvBMSg98m5kjD6JPTmIkkQjWuFv246gpxq2gmO6P15ng95aCk/TeoT9jVCLFqg1hkGYKRER0dCnEe0AgMAhvdc74nfthUpjgGjMG4RZJY/eWoKQr67dDavdiYS9qNn4F7jrv0LLvrcGaHbtBd2ViEh+AICiKPA2b4Ypk9l+RERENLhGTOAvFAph8+bNOOqo78pJqVQqHHXUUVi3bl2H54TDYYhiYg81nU6HtWvXAgAkSUIkEoFOp+v0GKKhSqPPAICEcp9yJAxPD8t8xhgzJsLv3IWQtwYAIBpzkjtRokGg0uhhyZ0DZ83nkCMh1G99FjpTIbLH/7jT3mNE1Ddq0YZI2AutPhPGjIk9OsecNQ2+ls0IeWuh1fMGEyIiohiNzgZL7hw073kdUtDZ6XEB527oraUQhOH1MZDOWgoACLr29/gcRZFRu3kpZMkHe+H30Vb1EUK+uoGaYlzQW4v939yFmg2PQ5ElhLw1kIKtMLK/HxEREQ0yTaonMFhaW1sRiUSQmZmZsD0zMxN79uzp8Jz58+fjH//4B2bPno1Ro0Zh5cqV+OCDDxCJRAAAZrMZM2bMwF/+8heMGTMGWVlZePPNN/Htt99i1KhRPZ6bSiVApepfvzai3lIbMyCoVJDDrVCro3/8SYF6KJEALNkV0Gh69gehNXsymnb9B56GVRAEAQZLXo/PJeqN2DqN/T/ZMkZ9D67az1C78VGEfLUonXsbtIfd/EHUnYFep+lANNggCAIcRcdAq+3Zr6K2vBlo3rsM3uZvYcmZxfeZfuI6peGA65SGg6GyTvMn/gR7Vv4fGne+iKJp17TrB68oCoLuvXAUHz/s3kPV1nyoNXqEvPthzelZAK1h5zL427Zi1IzrD1ao2YTmPa+hePq1AzrX2j2vQKuzIuDajeY9r0Krd0ClFmHJnABVCtfIUFmnRF3hOqXhgOuUhpMRE/jri9/85je47bbbsHDhQgiCgOLiYpx55pkJpUHvu+8+/PrXv8b3vvc9qNVqTJo0CYsWLcLmzZt7fJ2MDFO7X8yJBoPBlAlR5YXVGi2ZplFaoFarkFs4BhrR1KMxFPt41Jjs8DZ+BVFnRFZuPtczDajYek02h2MyWnaNgbdtF0ZN/hHyR00YkOvQyDBQ6zQdCIEStO7TY/SkEyAaevpeMw71tjwEPA2wZxXB4ejZedQ1rlMaDrhOaThI/To1QT37Uuxc9QgU7wZkFB+VsDfgrgVkP3KKJsM+DN9DbdnjgWB1j97/A556tFW+h5Kp56Bg3OzoxpnnY9fqx6AK74UtZ2DKbrbVbYC/dQvGz/s5wkEX9q37B7Q6KzLyK5CZZR+Qa/ZW6tcpUfe4Tmk44Dql4WDEBP4cDgfUajWam5sTtjc3NyMrq+MmyxkZGfjLX/6CYDCItrY25OTk4IEHHkBxcXH8mFGjRuGFF16Az+eDx+NBTk4Orr/++oRjutPS4mXGH6WG2gpnSx2sLj+sVgNaG/cDahPcXgHw9rwBumgph6tuNXSWYrS19a73AlFPqdUqWK0GuFx+RCLygFzDVrwIivoLGHMXoLW1568BopjBWKfDnaIbj9Kj/ghvQAdvoOevM51tCrzODyApNr4++4nrlIYDrlMaDobSOhWMk2HKmold3zwNSZUH0Zgb3+es2YxIRIakyhuW76EqfRFaa1ehpcXT7U2mLQdWQ5YF6DKOjj9WwVgB0VKKXd88h9J5v036jaqKHMHeNc9BZx0HGCZBawDMudvhrPkCtlETUv6cD6V1StQZrlMaDrhOaSjo6Y3QIybwJ4oiJk+ejJUrV2LBggUAAFmWsXLlSlxwwQVdnqvT6ZCbm4twOIz3338fCxcubHeM0WiE0WiE0+nE559/jl/+8pc9npssK5BlpXcPiCgJVKIdIX9L/M0q4K6F1pALSerdm5fePgHO2lXQ6LN7fS5Rb0Ui8oCtM72jAnmOCkRkADLXMvXdQK7TtCDoe/38GDOnoXn/+1Dre/8+RR3jOqXhgOuUhoOhsk6zxp0L/9r7se/rB1A04yaIxhyE/U1o2vc+tMYCKIJhSMyzt3TW8QjvfQc+ZyV05qIuj3U3boLeNg4yRMiHPNaM0aeh6tuH4GnZDYNtTFLn11b1CQKeGoya/WtEItHPdrLG/wRaQz5M2XOHzHM+VNYpUVe4Tmk44Dql4WDEBP4A4JJLLsGSJUtQUVGBqVOn4tlnn4Xf78eZZ54JAPjVr36F3Nxc3HTTTQCA9evXo76+HhMnTkR9fT0effRRyLKMyy67LD7mZ599BkVRUFpaigMHDuC+++7DmDFj4mMSDWVaXQa8nqr41yFfHURzz/tTxhgd0ZKIoiEnaXMjIiI6lME+HqNn3w6dpedVFYiIiEYStWhB0YwbUbXuQVStexAZJaegaffrUGuMyJ9yZaqn12cGRzlUaj08TRu6DPzJchi+1u3IHHN6h2NodHa461YlPfDnrPkElpwjoLeMjm9TqbRwjDohqdchIiIi6qkRFfg75ZRT0NLSgkceeQSNjY2YOHEili5dGi/1WVtbC5Xqu+acwWAQDz/8MCorK2E0GnHsscfivvvug9VqjR/jdrvxpz/9CXV1dbDb7TjxxBNxww03QKvVDvrjI+otjd6BcKAFiqJAURSEfA0w58zp9ThafQYyRp8Cc87MAZglERFRFIN+REREXdPo7CiacROq1j2Ihu0vwpw9A7kT/h/UWmOqp9ZnKpUWxszJ8DZ9i8ySUzo9zt+6A4ocgimzfR8/QVDBkjsXrtovkD3+xxBUyfk4TI4EEfTWwl54fFLGIyIiIkqGERX4A4ALLrig09Kezz//fMLXc+bMwdtvv93leKeccgpOOaXzXzyJhjKNLgOKHEYk7EE4EIIcCUJrzOvTWFljz0ju5IiIiIiIiKjXNDo7imb+EgHnHpiypiW9p10qmLOmoW7L05CCbdDo7B0e423ZBI3OAdGY3+F+a95ctB54D96WzTBnTUvKvIKeKkCRobP2vnIOERER0UBRdX8IEaUrrT4DACAFWuF31wBAQhN4IiIiIiIiGn40ohXm7OlpEfQDEM3iE1TwNG3o9Bhf8yaYMis6fcw6cxF05mK46lYlbV5B9wEIKg10psKkjUlERETUXwz8EY1gGp0DABAOtiDgroEgqKE1ZKV4VkRERERERETfUWvNMNjGwdu0vsP9YX8jQr76Dst8HsqSNxfepg2IhH1QFAX+tp0I+5s7PV6Ww3DVrUZb9adoq/4UvpatCfsD7v3QmQqTVjqUiIiIKBn4mwnRCKYWLRAENcKBFshyK7TGbAiCOtXTIiIiIiIiIkpgzpqGpj3LIEsBqDT6hH3e5s0QBDUMjgldjmHNnYOm3a+hec8yBDyVCDh3w5w1HQVTf9bh8c27l6G18gNAUAGKAkFQYcz8B6DWmgAAQfd+6K1jk/MAiYiIiJKEGX9EI5ggqKDROSD5WxDw1ELXx/5+RERERERERAPJlDUNihyGr3Vru33elk3Q28ZCrTF0OYZGZ4fRMQFt1R8DSgTm7JnwO3dCUeR2x/qdu9Fa+V9kjT0LZcf9DaVH3QtFicDbvAkAIEeCCHprobOwvx8RERENLQz8EY1wGn0GwsFWBNw1EE0M/BEREREREdHQIxpzIJoK4Gn8NmG7Ikvwt26HKXNyj8bJLb8ARTNuRPGsW2EvOh6RsBchT3XCMXIkhPqtz0JvLYFj1AkAAK3eAb1lNLwH+wwGPVWAIkNvGd3/B0dERESURAz8EY1wWn0GQr56BH3NEI25qZ4OERERERERUYdMmVPgbdkMRVHi2wLu/ZAjQRi7KfMZozVkweiYAEEQoLeVQlBp4WvbnnBM894VCAeakTvxYgjCdx+dmbKmwduyCYosIeg+AEFQQzQXJOfBERERESUJA39EI5xG50DAdQAAIJryUzwbIiIiIiIioo6ZMiYhEnIh5K2Jb/O37oBKre9TyU2VSgu9dQz8bTvi20K+BrRWfoDM0lOhO+xvZHPWNMiSH762HQi490M0F0Kl0vb9ARERERENAAb+iEY4jd4BIHq3pI4Zf0RERERERDRE6W1joxl6h/T587Vth8E+DoKg7tOYRkcZ/G3f9flz1n4OlVoPe9EP2h0rmoug1WfC27QeQfd+lvkkIiKiIYmBP6IRTqPLAABodRaoRXOKZ0NERERERETUMZVahME2Dr6WaOBPkSUEnLthsJf3eUyDvTze50+RJbhqv4Q1bx5UarHdsYIgwJQ1DZ7GdQh6a6Fj4I+IiIiGIAb+iEY4rc4BANCbWeaTiIiIiIiIhjZjxgT423ZEg37uA5AjQRjs4/s83nd9/nbA07QekZALtoJjOj3enDUNUrANUGTo+1BelIiIiGigMfBHNMJp9NGMP70lL8UzISIiIiIiIuqa0TERciSIgGsv/G3boVLr+xWAi/b5K4W/bQecNZ9BbxsLnbmw0+MN9vFQaQwQBDXELo4jIiIiShUG/ohGOJXGCLVogdFWkuqpEBEREREREXVJZxkFtdYEX+s2+Fp3RPv7qTT9GtPoKIevZQt8LVtg7yLbDwAElQbmrGnQWUZDpdL267pEREREA6F/vxkR0bAnCAJK5/4WWbm5cDqDqZ4OERERERERUacEQQWDvRze5k0IeWuRUXJKv8c02MvQvHcFVBoDzDmzuj0+p+w8KHK439clIiIiGgjM+CMiaPV2qPp5hyQRERERERHRYDBmTETAtRdyJACDvazf4+ltYyCotLDmzYNKrev2eJVGD7Vo6fd1iYiIiAYCP+knIiIiIiIiIqJhw+iYCABQqXX96u8Xo1JpUTzzZmiNef0ei4iIiCjVGPgjIiIiIiIiIqJhQ2vIhlafCa0xt9/9/WL01tKkjENERESUagz8ERERERERERHRsCEIAnInXgK11pjqqRARERENOQz8ERERERERERHRsGJ09L+3HxEREVE6UqV6AkRERERERERERERERETUfwz8EREREREREREREREREaUBBv6IiIiIiIiIiIiIiIiI0gADf0RERERERERERERERERpgIE/IiIiIiIiIiIiIiIiojTAwB8RERERERERERERERFRGmDgj4iIiIiIiIiIiIiIiCgNMPBHRERERERERERERERElAYY+CMiIiIiIiIiIiIiIiJKAwz8EREREREREREREREREaUBBv6IiIiIiIiIiIiIiIiI0gADf0RERERERERERERERERpgIE/IiIiIiIiIiIiIiIiojTAwB8RERERERERERERERFRGmDgj4iIiIiIiIiIiIiIiCgNMPBHRERERERERERERERElAYY+CMiIiIiIiIiIiIiIiJKAwz8EREREREREREREREREaUBBv6IiIiIiIiIiIiIiIiI0gADf0RERERERERERERERERpgIE/IiIiIiIiIiIiIiIiojTAwB8RERERERERERERERFRGhAURVFSPQkiIiIiIiIiIiIiIiIi6h9m/BERERERERERERERERGlAQb+iIiIiIiIiIiIiIiIiNIAA39EREREREREREREREREaYCBPyIiIiIiIiIiIiIiIqI0wMAfERERERERERERERERURpg4I+IiIiIiIiIiIiIiIgoDTDwR0RERERERERERERERJQGGPgjIiIiIiIiIiIiIiIiSgMM/BERERERERERERERERGlAQb+iIagF198EccffzymTJmCxYsXY8OGDe2OWbduHS666CJMnz4dM2fOxPnnn49AINDluDU1Nbjiiiswbdo0HHnkkfjjH/8ISZLi+99//31ccsklmDdvHmbOnIlzzjkHn332WZdjBoNB3HLLLTjttNMwadIk/OxnP+vy+DVr1mDSpEn44Q9/2OVxNPSl2zpdvXo1ysvL2/3X2NjYw2eEhqJ0W6cAEAqF8NBDD+G4445DRUUFjj/+eLzyyis9eDZoqEq3dXrLLbd0+PN00aJFPXxGaChKt3UKAMuXL8fpp5+OadOmYf78+bj11lvR2trag2eDhqp0XKcvvvgiFi5ciKlTp+Kkk07CsmXLun8iaEgbTut09erVuPrqqzF//nxMnz4dP/zhD7F8+fJ2x73zzjs4+eSTMWXKFJx22mn45JNPevhs0FCVbut0586duO6663D88cejvLwc//jHP3r+ZNCQlW7r9OWXX8Z5552H2bNnY/bs2bj44os7fExEPcHAH9EQ8/bbb+Oee+7BNddcg9dffx0TJkzApZdeiubm5vgx69atw2WXXYb58+fjP//5D1555RWcf/75UKk6f0lHIhFceeWVCIfD+Ne//oV7770Xr7/+Oh555JH4MV9//TWOOuooPPnkk3jttdcwd+5cXH311diyZUuX4+p0Olx44YU48sgju3xsLpcLS5Ys6fY4GvrSeZ2+++67+Pzzz+P/ZWZm9uKZoaEkXdfpL37xC6xcuRJ33XUX3n33XTz44IMoLS3t5bNDQ0U6rtPf/OY3CT9HP/nkE9jtdpx88sl9eIZoKEjHdbpmzRosWbIEZ599Nt588008/PDD2LhxI26//fY+PEM0FKTjOn3ppZfw4IMP4rrrrsNbb72Fn//85/jd736HDz/8sA/PEA0Fw22drlu3DuXl5XjkkUewfPlynHnmmViyZAk++uij+DFr167FTTfdhLPPPhvLli3DD37wA1xzzTXYsWNHP58tSpV0XKd+vx9FRUW46aabkJ2d3c9niIaCdFynq1evxqJFi/Dcc8/hX//6F/Lz8/HTn/4U9fX1/Xy2aERSiGhIOfvss5Xf/e538a8jkYgyf/585YknnohvW7x4sfLQQw/1atyPP/5YmTBhgtLY2Bjf9tJLLykzZ85UgsFgp+edcsopyqOPPtqjayxZskS5+uqrO91//fXXKw899JDyyCOPKKeffnrPJ09DTjqu01WrVillZWWK0+ns1Zxp6ErHdfrJJ58os2bNUlpbW3s1Zxq60nGdHu6DDz5QysvLlaqqqh6NS0NPOq7TpUuXKj/4wQ8Stj333HPKMccc08PZ01CTjuv0nHPOUe69996Ebffcc49y7rnn9nD2NNQM53Uac/nllyu33HJL/Otf/OIXyhVXXJFwzOLFi5Xbb7+9V+PS0JGO6/RQxx13nPLMM8/0ajwaetJ9nSqKokiSpMyYMUN5/fXXezUukaIoCjP+iIaQUCiEzZs346ijjopvU6lUOOqoo7Bu3ToAQHNzM9avX4/MzEyce+65OOqoo3DBBRfgm2++6XLsb7/9FmVlZcjKyopvmz9/PjweD3bt2tXhObIsw+v1wm639/uxvfrqq6isrMS1117b77EotdJ5nQLAGWecgfnz5+OSSy7BmjVrkjImDb50XacffvghKioqsHTpUhxzzDE46aST8Mc//rHbUiU0NKXrOj3cK6+8gqOOOgqFhYVJHZcGR7qu0+nTp6Ourg6ffPIJFEVBU1MT3nvvPRx77LH9GpdSI13XaSgUgk6nS9im0+mwceNGhMPhfo1Ngy9d1qnb7U4459tvv22XtTp//nx8++23vRqXhoZ0XaeUXkbKOvX7/ZAkCTabrVfjEgEs9Uk0pLS2tiISibQrLZiZmYmmpiYAQGVlJQDgsccew+LFi7F06VJMmjQJF198Mfbt29fp2E1NTQlvWgDiX3fWw+ypp56Cz+fDwoUL+/qQAAD79u3Dgw8+iPvvvx8ajaZfY1Hqpes6zc7Oxu9+9zs88sgjeOSRR5CXl4eLLroImzdv7te4lBrpuk4rKyuxZs0a7Ny5E48//jh+/etf47333sPvfve7fo1LqZGu6/RQ9fX1+PTTT3H22WcnbUwaXOm6TmfNmoX7778f119/PSoqKnD00UfDbDbjt7/9bb/GpdRI13U6f/58vPLKK9i0aRMURcHGjRvxyiuvIBwOsx/lMJQO6/Ttt9/Gxo0bceaZZ3Z57UMfEw0v6bpOKb2MlHX6wAMPICcnJyHASdRT/ASeaJiRZRkAcM455+Css84CAEyaNAkrV67Eq6++iptuugmXXXZZPFOpoKAAb731Vq+vs2LFCjz++OP4y1/+0q8eZ5FIBDfddBOuu+469qAaQYbbOgWAMWPGYMyYMfGvZ86cicrKSvzjH//A/fff36+xaWgajutUURQIgoAHHngAFosFAHDLLbfg5z//Of7v//4Per2+X+PT0DMc1+mhli1bBovFggULFiRtTBp6huM63bVrF+666y5cc801mD9/PhobG3Hffffh//7v/3D33Xf3a2wamobjOv3Zz36GxsZGnHPOOVAUBZmZmTjjjDOwdOnSLvsT0fA1lNfpqlWr8Otf/xp/+MMfMH78+F5fk9IH1ykNB8N9nT755JN4++238dxzz7XL/ifqCQb+iIYQh8MBtVqd0IgWiKanx+4uiTUhHjt2bMIxY8eORU1NDQDgrrvuipd9i2XYZWVlYcOGDQnnxO6CObyx8VtvvYXbbrsNf/7zn/t9V4nX68WmTZuwdetW/P73vwcQffNVFAWTJk3CU0891Wkzexqa0nGddmbKlClYu3btgIxNAytd12l2djZyc3PjQb/YfBVFQV1dHUpKSvp9DRo86bpOYxRFwauvvoof/vCHEEUxaePS4ErXdfrEE09g5syZuOyyywAAEyZMgMFgwPnnn4/rr78eOTk5/b4GDZ50Xad6vR733HMP7rzzTjQ3NyM7Oxv//ve/YTKZkJGR0e/xaXAN53X61Vdf4eqrr8att96KM844I2FfVlZWu+y+Qx8TDS/puk4pvaT7On3qqafw5JNP4plnnsGECRN6NC7R4XiLGNEQIooiJk+ejJUrV8a3ybKMlStXYsaMGQCAoqIi5OTkYO/evQnn7tu3L947Jzc3F6NHj8bo0aPj26ZPn44dO3YkvCl++eWXMJvNGDduXHzbm2++iVtvvRUPPvggvv/97/f7MZnNZqxYsQLLli2L/3fuueeitLQUy5Ytw7Rp0/p9DRpc6bhOO7Nt27Z2v9jR8JCu63TmzJloaGiA1+uNb9u7dy9UKhXy8vKScg0aPOm6TmO++uor7N+/n2U+h7l0XaeBQKBdxpRarQYQDVrT8JKu6zRGq9UiLy8ParUab7/9No477jhm/A1Dw3Wdrl69GldeeSVuvvlmnHPOOe32T58+HatWrUrY9uWXX2L69Ok9Gp+GlnRdp5Re0nmd/v3vf8df/vIXLF26FFOmTOnRuEQdUohoSHnrrbeUiooK5bXXXlN27dql3H777coRRxyhNDY2xo955plnlJkzZyrvvPOOsm/fPuWhhx5SpkyZouzfv7/TcSVJUk499VTlpz/9qbJ161bl008/VebNm6c8+OCD8WOWL1+uTJo0SXnhhReUhoaG+H8ul6vLOe/cuVPZsmWLcuWVVyoXXHCBsmXLFmXLli2dHv/II48op59+ei+eFRpq0nGdPvPMM8oHH3yg7Nu3T9m+fbvyhz/8QZkwYYLy5Zdf9uOZolRKx3Xq8XiU733ve8p1112n7Ny5U/nqq6+UE088UfnNb37Tj2eKUikd12nMzTffrCxevLgPzwoNNem4Tl999VVl0qRJyosvvqgcOHBA+eabb5QzzzxTOfvss/vxTFEqpeM63bNnj7Js2TJl7969yvr165Xrr79emTNnjlJZWdmPZ4pSabit05UrVyrTpk1THnzwwYRzWltb48esWbNGmTRpkvLUU08pu3btUh555BFl8uTJyvbt2/v3ZFHKpOM6DQaD8Z+xRx99tHLvvfcqW7ZsUfbt29e/J4tSJh3X6RNPPKFMnjxZeffddxOO8Xg8/XuyaEQSFIW3MxINNS+88AKeeuopNDY2YuLEibjtttvaZcY9+eSTePHFF+F0OjFhwgTcfPPNOOKII7oct7q6GnfccQe++uorGAwG/OhHP8JNN90UT2e/8MIL8dVXX7U770c/+hHuvffeTsc9/vjjUV1d3W779u3bOzz+0UcfxX//+1+88cYbXc6XhrZ0W6d///vf8fLLL6O+vh4GgwFlZWW45pprMG/evG6fCxq60m2dAsDu3bvxhz/8AWvXroXdbsfChQtx/fXXs7/fMJaO69TtdmP+/Pn4zW9+gx//+MddzpOGh3Rcp88//zz+9a9/oaqqChaLBfPmzcMvf/lL5ObmdjlnGrrSbZ3u3r0bN910E/bu3QuNRoO5c+fi5ptvTuhLTcPPcFqnt9xyC15//fV22+fMmYPnn38+/vU777yDhx9+GNXV1SgpKcEvf/lLHHvssd0+FzR0pds6raqqwg9+8IMuj6HhJ93WaWe/F1x77bW47rrrupwz0eEY+CMiIiIiIiIiIiIiIiJKAywKT0RERERERERERERERJQGGPgjIiIiIiIiIiIiIiIiSgMM/BERERERERERERERERGlAQb+iIiIiIiIiIiIiIiIiNIAA39EREREREREREREREREaYCBPyIiIiIiIiIiIiIiIqI0wMAfERERERERERERERERURpg4I+IiIiIiIiIiIiIiIgoDTDwR0RERERERERERERERJQGGPgjIiIiIiIiIiIiIiIiSgMM/BERERERERERERERERGlAQb+iIiIiIiIiIiIiIiIiNIAA39EREREREREREREREREaYCBPyIiIiIiIiIiIiIiIqI0wMAfERERERERERERERERURpg4I+IiIiIiIiIiIiIiIgoDTDwR0RERERERERERERERJQGGPgjIiIiIhogt9xyC44//vhUT2NAPfrooygvL0/1NLp1xx134JJLLkn1NEaEf/7zn/j+97+PUCiU0nm8/fbbmDNnDrxeb0rnkc5uuOEG/OIXv+jVOV6vF0ceeSSWL18+QLOi3hoqr1kiIiIiSg5NqidARERERDQUvfbaa7j11lvjX4uiiIKCAhx99NH42c9+hqysrBTOrnOHz1utViMzMxNHH300brjhBuTm5vZ6TL/fj6VLl2LOnDmYO3duMqfbzqOPPorHHnss/rVer0dhYSFOOOEEXH755TCbzb0es7KyEq+88gqWLl3a4f7du3fjlFNOgSiK+OKLL2C1Wtsdc+GFF+Krr74CAAiCAKPRiOzsbEydOhVnnHEGjj766E6v35PxOxL7Xr7yyiuYMmVKu/1XXnkldu7ciQ8//DC+zev14qmnnsL777+Pqqoq6HQ65OXlYfbs2bj88svj3/+OnmeHw4EJEybghBNOwGmnnQZRFAEAq1evxkUXXdSjOW/fvh1nnnkmHnvsMfzrX//q9Lznn38eDz/8MFatWoW1a9cmHKfRaJCXl4dZs2bhuuuuQ3FxcY+ufahIJIJHH30UF1xwAUwmU3x7KBTCP//5T7z++us4cOAAVCoVcnNzMXPmTFx88cUYO3Zswjg7d+7EE088gdWrV6O1tRV2ux1z587FVVddhfHjxycc2933qyu33HIL3nvvPaxbt67D/TNmzMBJJ52Ee++9N76tqqoKjz/+OL7++mvU19fDarWipKQEc+fOxc9//vP4cb1Zu4evi87MmTMHzz//PC6//HKcddZZ2LZtGyZMmNCjx/rcc8/BZDJh0aJF8W0rV67E8uXLsXbtWtTV1SErKwvz5s3DL37xC+Tk5LQbY+3atbj//vuxZcsWmM1mLFy4EDfccEPC93rDhg1YtmwZVq9ejerqatjtdkybNg3XX389SktLE8a75ZZb8Prrr7e7TmlpKd59990ePa5QKIQ///nPeOONN+ByuVBeXo7rr7++w58NoVAITz/9NJYtW4bq6mpYLBZUVFTgzjvvRF5eXrfXcrlcuP/++/HBBx8gEAhgypQpuOWWWzB58uT4Ma2trXj11Vfx0UcfYffu3ZAkCWPGjMHFF1+MU045JWG8nrxmiYiIiGj4YOCPiIiIiKgLP//5z1FUVIRQKIQ1a9bgn//8Jz755BO8+eabMBgMXZ77+9//HoqiDNJMEx0672+//Ravv/461qxZgzfffBM6na5XY/n9fjz22GO49tpr2wX+rr76alxxxRXJnDqAaIae0WiEz+fDF198gb/97W9YvXo1/vnPf0IQhF6N9dxzz6GwsBDz5s3rcP/y5cuRnZ0Np9OJ9957D4sXL+7wuLy8PNx4440Aos/J/v378cEHH2D58uVYuHAh7r//fmi12j6P31/hcBgXXHAB9uzZgzPOOAMXXHABfD4fdu7ciTfffBMnnHBCu8Bv7HkOhUKor6/H559/jl//+td49tln8cQTTyA/Px9jx47Ffffdl3Den/70JxiNRlx11VXt5qHT6XDGGWfgH//4By688MIOv18ff/wxjj766ITn68ILL8SUKVMgSRK2bNmCf//73/jkk0+wfPnyXgesP/roI+zduxfnnHNOwvaf//zn+PTTT7Fo0SIsXrwYkiRhz549+PjjjzFjxoyEwN/777+PG2+8EXa7HWeddRaKiopQXV2NV155Be+99x4eeughnHDCCb2aV7Ls378fZ599NnQ6XXxuDQ0N2LJlC/7+978nBP6Anq/dE044AaNGjYqf5/P5cMcdd+CEE05IeKyxGx8mTZqEiooKPP300+3WSEfC4TCee+45XHzxxVCr1fHt999/P5xOJ04++WSUlJSgsrISL7zwAj7++GMsW7YM2dnZ8WO3bt0aD9LecsstqKurw9NPP419+/YlBPeXLl2KtWvX4uSTT0Z5eTkaGxvx4osv4swzz8S///1vlJWVJcxNFEX84Q9/SNhmsVi6fUwxseDtRRddhJKSErz++uu44oor8Oyzz+KII45IeA6uvPJKrFu3DosXL0Z5eTlcLhfWr18Pt9vdbeBPlmVcccUV2L59Oy699FI4HA689NJLuPDCC/Haa6+hpKQEAPDtt9/i4Ycfxve+9z1cffXV0Gg0eO+993DDDTdg165dCWukJ69ZIiIiIhpGFCIiIiIiaufVV19VysrKlA0bNiRsv+eee5SysjJlxYoVnZ7r9XoHenqd6mze999/v1JWVqa89dZbvR6zublZKSsrUx555JFkTbNTjzzyiFJWVqY0NzcnbL/22muVsrIyZe3atb0aLxQKKXPnzlUeeuihDvfLsqwcd9xxyj333KNcc801ygUXXNDhcRdccIGyaNGidtslSVLuuOMOpaysTLnvvvv6PH5HOvtexlxxxRXKcccdF//67bffVsrKypTly5e3OzYQCChutzv+dWfPs6IoyhtvvKFMmDBBWbx4cadzW7RoUZePZePGjUpZWZny5Zdfttvn8/mUKVOmKK+++qqiKIqyatUqpaysTHnnnXcSjnvuueeUsrIy5W9/+1un1+nMVVddpfzkJz9J2LZ+/XqlrKxM+etf/9rueEmSlJaWlvjX+/fvV6ZNm6acfPLJ7Z6j5uZm5eSTT1amT5+uHDhwIL69u+9XV5YsWaJMnz690/3Tp09XlixZEv/6jjvuUCZNmqRUVVW1O7apqSnh676uXUXp2Wv/qaeeUqZPn654PJ5Oj4l5//33lbKyMmX//v0J27/66islEom021ZWVqb86U9/Sth+2WWXKUcffXTCen755ZeVsrIy5bPPPotvW7NmjRIMBhPO3bt3r1JRUaHcdNNNCdu7e/67E1tbS5cujW8LBALKggULlHPOOSfh2CeffFKZPHmysn79+j5d66233mr3emlublaOOOII5cYbb4xvO3DgQLv1IcuyctFFFykVFRXt3qe6es0SERER0fDCHn9ERERERL0QyxqrqqoCEM3ymDFjBg4cOIDLL78cM2bMwM033xzfd3iPP1mW8eyzz+K0007DlClTMG/ePFx66aXYuHFjwnFvvPEGzjzzTEydOhVz5szBDTfcgNra2j7PO5ZxUllZGd8WK0135plnYtasWZg+fTrOO+88rFq1Kn5MVVUVjjzySADAY489hvLycpSXl+PRRx8F0HGPP0mS8Pjjj2PBggWoqKjA8ccfjz/96U/96h916PMeCARw8skn4+STT0YgEIgf09bWhvnz5+Pcc89FJBIBAKxZswatra046qijOhx3zZo1qK6uximnnIJTTjkF33zzDerq6no8L7Vajdtuuw3jxo3Diy++CLfbndTxeyP2vZ05c2a7fTqdrsdlUk8//XQsXrwY69evxxdffNGnuVRUVMBut+N///tfu30rV65EKBTC9773vS7HOPy1tmTJEkyZMgW7d+9OOO7SSy/F7NmzUV9fDwAIBoP47LPP2n3Pu3p+1Go1HA5H/OulS5fC7/fj97//PTIyMhKOzcjIwJ133gmfz4e///3vXT6GgXLgwAHk5uaisLCw3b7MzMwejdHd2u2po446Cj6fD19++WW3x/73v/9FYWFhQlYhAMyePRsqlardNrvdjj179sS3eTwefPnllzj99NMT1vMPf/hDGI1GvPPOO/FtM2fOjJerjSkpKcH48eMTxjxUJBKBx+Pp9nEc7t1334VarU7IMNXpdDj77LOxbt26+M9uWZbx3HPPYcGCBZg6dSokSYLf7+/Vtd577z1kZWXhxBNPjG/LyMjAwoUL8b///S/+c7a4uLjd+hAEAQsWLEAoFEp4LwC6fs0SERER0fDCwB8RERERUS8cOHAAAGC32+PbJEnCpZdeiszMTCxZsiThA9nD/eY3v8Hdd9+NvLw83Hzzzbjiiiug0+mwfv36+DF//etfsWTJEowePRq33HILLrroIqxcuRLnn38+XC5Xn+ZdXV0NAAn95TweD/7zn/9gzpw5uPnmm3HttdeipaUFl112GbZu3Qog+oHyHXfcAQA44YQTcN999+G+++7rssThbbfdhkceeQSTJk3CrbfeitmzZ+OJJ57ADTfc0Ke5A4nPu16vxx//+EccOHAADz30UPyYO++8E263G/fcc0+8jOC6desgCAImTZrU4bgrVqzAqFGjMHXqVBx//PHQ6/V48803ezU3tVqNRYsWwe/3Y82aNUkfv6cKCgoAAMuWLet3idnTTz8dAPD555/3eYxJkyZh7dq17bZ/8sknmDx5crd9Mg9/rf3mN79BRkYGlixZEg/s/utf/8Lnn3+O2267LV4OdNOmTQiHw+2+57HnZ8WKFZAkqctrf/TRRygsLEwo0Xio2bNno7CwEJ988kmX4wyUwsJC1NXVYeXKlf0ap6u121Pjxo2DXq/v8Ht9uHXr1iX0oeuK1+uF1+tNCMhu374dkiShoqIi4VhRFDFx4sT4z63OKIqCpqamhDFj/H4/Zs2ahVmzZmHOnDn43e9+B6/X26O5bt26FSUlJe2C61OnTo3vB4Bdu3ahoaEB5eXluP322zF9+nRMnz4dp512WsINF91da9KkSe0CpVOmTIHf78fevXu7PL+pqQkAOnwOOnvNEhEREdHwwh5/RERERERd8Hg8aGlpQSgUwtq1a/H4449Dr9fjuOOOix8TCoVw8skn46abbupyrFWrVuG1117DhRdeiNtuuy2+/ac//Wk8UFNdXY1HH30U119/fUL/tBNPPBE/+tGP8NJLL3XYV62rea9fvx6PPfYYRFFMmLfNZsOHH36YkBXz4x//GAsXLsTzzz+Pu+++G0ajESeddBLuuOMOlJeX44c//GGX1922bRtef/11LF68ON4v6/zzz0dGRgaefvpprFq1qtNee4dyOp0AEO/x99JLLyE88uCNAAEAAElEQVQrKyseiJk2bRouu+wy/P3vf8cJJ5yApqYmvPXWW/j1r3+N0tLS+Dh79uyBzWbrMNstHA7j3XffxbnnngsA0Ov1OP7447FixQpcdtll3c7xULF+YbFgVbLH74kFCxagtLQUjzzyCF599VXMnTsXs2bNwnHHHdfjLLCY2OM5PCuoN4qLizsMInz66ac488wz2233er1oaWmBJEnYunUr7rrrLgiCEA+kW61W3HXXXbj00kvx5JNP4tRTT8Uf//hHLFiwIGFdxrK5ioqKEsafPn065syZg5dffhkffvgh5s2bh5kzZ+K4446LBwUBwO12o6GhAT/4wQ+6fHzl5eX48MMP4fF4epxNmSwXXngh3njjDVx88cWYOHEiZs+ejblz5+Loo4/utvfo4Tpau72h0WiQl5eHXbt2dXmcJEk4cOBAt89rzLPPPotwOIyFCxfGtzU2NgIAcnJy2h2fnZ3dbfBy+fLlqK+vb9cDMTs7G5dddhkmTZoERVHw2Wef4aWXXsK2bdvw/PPPQ6Pp+qOTxsbGhD6Eh44LAA0NDQCivRkB4B//+AfsdjvuvPNOAMATTzyByy67DK+88gomTJjQ7bU6CkjHnpNYYLEjbW1t+M9//oMjjjiiw+ews9csEREREQ0vDPwREREREXXh4osvTvi6sLAQDzzwQDy7KOYnP/lJt2O9//77EAQB1157bbt9giAAAD744APIsoyFCxeipaUlvj8rKwujR4/G6tWrexT462je999/P/Ly8uLb1Gp1PDNOlmW4XC7IsoyKigps2bKl22t0JJYBdckllyRs/+lPf4qnn34an3zySY8CfyeffHLC1+PHj8e9996bENS49tpr8dFHH2HJkiXw+XyYM2cOLrroooTz2traYLPZOrzGp59+ira2Npx66qnxbaeeeiquuuoq7Ny5E+PHj+92njFGoxEAEjKEkjl+T+j1evznP//BX//6V7z77rt47bXX8Nprr0GlUuG8887DkiVL2pU+7M3j6S2r1YpAIAC/3x//vu3YsQM1NTU49thj2x3/61//OuHrjIwM3HvvvZgyZUp82/z583HOOefg8ccfx3vvvQedThcPnsS0tbUBQLvvuyAIeOqpp/DUU09h+fLlePPNN/Hmm2/izjvvxMKFC3HnnXfCarXGH7PJZOry8cX2e73eQQ/8jR8/HsuWLcNf/vIXfPzxx9i6dSuee+45GI1G3Hrrrfjxj3/c47GS8b222WxobW3t8hin0wlFURKyjjvz9ddf4/HHH8fChQvjpYYBxEv7drSOdTpdQunfw+3evRt33nknZsyYgR/96EcJ+w6/aWPRokUoKSnBQw89hPfeew+LFi3qcr6BQKDTOR0679hz7PV6sWzZMuTn5wOIlrU98cQTsXTpUjzwwAN9ulZsWzAY7PA8WZZx8803w+Vy4fbbb+/wmI5es0REREQ0/DDwR0RERETUhd/+9rcoLS2FWq1GVlYWSktL25VYi2W8dOfAgQPIyclJKBN6uH379kFRlE7LhXaXeXL4vN1uN1599VV8/fXXHX5Y/Prrr+Ppp5/G3r17EQ6H49sPz5bqqerqaqhUqnY9vLKzs2G1WuMlR7vz6KOPwmw2x5/bw8cDoh9033333Tj77LOh0+lw9913xwOoh+qs7OXy5ctRVFQEURTjmTijRo2CwWDAihUrcOONN/ZorkA0MxFIDBb1dPxYFlOMxWKBXq/v8bUPP/dXv/oVfvWrX6G6uhorV67E008/jRdeeAFms7nH5VY7ejy9FXveD/2efPzxx8jKykoI5sVcc801OOKII6BSqeBwODB27NgO1/uSJUvw4YcfYuvWrXjwwQc7zWbs6PsuiiKuvvpqXH311WhoaMDXX3+N5557Du+88w40Gg0eeOCBhIBeV3oaIIwJhULxTNaYjIyMePC9O4ev7dLSUtx///2IRCLYtWsXPv74YyxduhS33347ioqKOu1rebhkfa87eu11dmxXdu/ejWuvvRbjx4+PZw3HxF4XHfULDQaDnb5uGhsbceWVV8JiseDPf/5zj57ziy++GH/+85/x5ZdfYtGiRYhEIgk3YwDRgKcoitDr9Z3O6dB5x/4/c+bMeNAPiJahnTlzJtatWxd/fJ2tlc6uFdsWCzYe7ve//z0+++wz/PGPf+w0q7Cj1ywRERERDT8M/BERERERdWHq1KkdBikOJYpiu2BgX8myDEEQ8Pe//73DD6dj2TndOXTeCxYswHnnnYebbroJ7777bvwD/jfeeAO33HILFixYEO9RqFar8cQTT/SrxCPQ/w+OjzjiCGRkZHR7XKwHXTAYxP79+1FcXJyw3263d9gX0ePx4KOPPkIwGOwwyPrmm2/ihhtu6PHj2LFjBwBg9OjRvR5//vz5CfvuuecenHnmmfEP8DvL4PH7/Z1+yA9EszzPPvtsnHDCCViwYAFWrFjR48Bf7PF0FHDtKZfLBYPBkBCM+fTTT3HMMcd0+LyWlZX1KFi1detWNDc3J8zzULHAutPp7DIgn5OTg0WLFuHEE0/EqaeeinfffRf33nsvLBYLsrOzsX379i7nsX37duTm5vY422/dunXtMlL/97//xYPDoVCowwCaoigIBoOdZmuq1WqUl5ejvLwc06dPx0UXXYQVK1b0OPB3+NrtC5fL1e35NpsNgiB02ae0trYWl156KcxmM5588sl2z+3hpTMP1djY2GH5Srfbjcsvvxxutxsvvvhiu2ztzuj1etjt9ngArra2tl2Z0ueeew5z585FdnY26uvrO5wT8F0Zztj/O+pvmZmZGe8F2NVayc7ObnezAPDdc9LRc/DYY4/hpZdewk033YQzzjij08fc0WuWiIiIiIYfBv6IiIiIiAbJqFGj8Pnnn6Otra3TrL9Ro0ZBURQUFRUl9KrrD7VajRtvvBEXXXQRXnzxRVxxxRUAgPfeew/FxcV47LHHEoINjzzySML5vQniFRYWQpZl7N+/H2PHjo1vb2pqgsvlQmFhYT8fzXe2bduGxx9/HGeeeSa2bduG2267DStWrIDFYokfM2bMGKxYsQJutzth+/vvv49gMIg77rgDDocjYdy9e/fi4Ycfxpo1azrspXW4SCSCN998EwaDAbNmzer1+M8880zC/nHjxgFAvO/c3r17O5zHvn37elQu1Gazobi4GDt37uz22Jjly5cDAI455pgen3O4qqoqjBkzJv61y+XCunXrcP755/d5TJ/Ph1tvvRXjxo3DjBkzsHTpUixYsABTp06NHxO7ZlVVVae9zg6l1WpRXl6Offv2obW1FdnZ2TjuuOPw8ssv45tvvunwuf/mm29QXV2Nc845p8dznzBhQrvvdSyQVVhYGO+Bd3gAbf/+/YhEIj167VRUVADoODDWkY7Wbm9JkoTa2locf/zxXR6n0WgwatQoVFVVdbi/tbUVP/3pTxEKhfDSSy91GMAqKyuDRqPBpk2bcMopp8S3h0IhbN26NaEfIBANml911VXYt28fnnnmmfhrqyc8Hg9aW1vjNyBkZ2e3+/7FMucmTJiA1atXt+v3uH79egDAxIkT4/PXarUdBgkbGhri1+pqrUyYMAFr1qyBLMsJN5xs2LABBoOh3fvGiy++iEcffRT/7//9v/jP/s4c/polIiIiouEpObclExERERFRt0488UQoioLH/j979x1fd13vcfx1zslJcs7J3qtN2qRtugeFMsqeBSvIUlQQBeQKKMvLUBTEASIqeEWULQgCghRki2BZZZXuPdNm73X2un+c5LQhO01yctL38/HgIfmd7/n9vif5JcHzzufz+eMfuz3W2WLtlFNOwWQy8cc//rFbS7xgMNjvHK3eLFq0iDlz5vDXv/41XEHWWVG4/3XWrFnD6tWruzy3c9ZTX5U6nTpnt/31r3/tcrzzTeyeZrsNhdfr5eabbyYrK4sf//jH3HHHHdTX1/OrX/2qy7p58+YRDAZZv359l+MvvfQSEyZM4IILLuC0007r8s8ll1yC1WrlX//6V7/78Pv9/OIXv2DHjh1ceOGF4Tf9B3P+I488sss/nYHHzJkzSU9P5x//+Ee31n5vvfUWNTU1HHPMMeFjmzdv7taKEELtV3fs2DHgIPlf//oX//jHP5g/f36X+WqDtXHjRhYsWBD+uLM684sVjoNx9913U1VVxZ133slNN91Efn4+N910U5fPz6xZszCbzd2+5rt376aysrLbOTsDyeTk5HDwcskllxAfH8+tt97a7XuuubmZW2+9FYvFwqWXXjrgvScnJ3f7WndWbHZ+Hf/2t791e96TTz7ZZQ2Egsf9W/N26pyxOZCvdW/37mBt374dt9vN/Pnz+107b968bl8XCAW63/3ud6mpqeGBBx6gqKiox+cnJiZyxBFH8NJLL9He3h4+/uKLL+JwOLrMBvX7/VxzzTWsXr2ae++9t9f9ud3uLufq9Kc//YlgMBgOv+Pi4rp9/TrnSJ522mn4/X6eeeaZ8PM9Hg///Oc/mTt3britZ0JCAscccwyrVq1ix44d4bU7duxg1apV4SrNvu6V0047jfr6et58883w8xsbG3n99dc5/vjju1SGvvrqq/ziF79g6dKl3HzzzT2+/v198XtWRERERKKTKv5EREREREbJ4YcfzplnnskTTzxBWVkZRx99NIFAgJUrV7Jo0SK++c1vMnHiRK655hp++9vfUlFRwUknnYTNZqO8vJy33nqL888/n0suuWRI17/kkku4+uqr+ec//8kFF1zAcccdx5tvvsmVV17JcccdR3l5OU8//TQlJSXhuV8QanlXUlLCa6+9RlFRESkpKUyZMoWpU6d2u0ZpaSlf+cpXeOaZZ2htbeXQQw9l3bp1vPDCC5x00kkcfvjhQ/787e/+++9n06ZNPPbYYyQkJFBaWsqVV17JPffcw2mnnRYOGA855BBSUlJYsWJFOMSqqanh448/5sILL+zx3LGxsRx99NG8/vrr3HLLLZjNZiDUMvDFF18EwOVyUVZWxr///W/27NnDGWecwdVXX31A5+9p3Q033MBNN93EOeecw+mnn05KSgqbNm3i+eefZ9q0aV0qzj744AP+7//+jxNOOIG5c+ditVopLy/n+eefx+Px8P3vf7/bNd544w2sViter5eamhref/99Pv/8c0pLS7n33nsH8qXo0fr162lubu7SGnH58uUsWLCgS+XlYKxYsYKnnnqKq666ipkzZwKhtqgXXngh99xzDzfccAMQCmgWL17MihUrwl8TCAWjP/zhDzn66KNZuHAhycnJ1NTUsGzZMmpra/nRj34UDsOLioq48847+d///V+WLl3KueeeS0FBARUVFTz33HM0NTXxu9/9rsdWqM8//zzvvfdet+MXXXRRr+Ha9OnTOe+883j88ccpKysLB0Affvghy5cv57zzzusyl+3BBx9kw4YNnHzyyeGqxo0bN7Js2TJSUlL41re+1eX8A713h+LDDz/EYrEMqLXoiSeeyIsvvsiuXbu6hJM//OEPWbt2Leeccw47duzoEorZbDZOOumk8MfXXnstX/va17jwwgs5//zzqa6u5tFHH2Xx4sVdwtE777yTt99+m+OPP57m5ubw6+905plnAqF2nF/5ylc444wzwtVu77//PsuXL+foo4/u1t6zJ3PnzuW0007jd7/7HQ0NDRQWFvLCCy9QUVHBL3/5yy5rr7vuOlasWMG3vvWtcDvPxx9/nOTkZP7nf/6n32udeuqpzJs3j5tvvpnt27eTmprK3//+d/x+f5fv8bVr13LDDTeQkpISDkv3t2DBgi6tkXv6nhURERGR6KTgT0RERERkFN1xxx1MmzaN5557jrvuuovExERmzZrVpRrlu9/9LkVFRTz22GPcd999AOTk5HDUUUf1206vL6eccgoTJ07kkUce4fzzz+fss8+mvr6eZ555hvfff5+SkhJ+85vf8Prrr/PJJ590ee4vfvELfv7zn3PHHXfg9Xq56qqregz+OtcWFBTwwgsv8NZbb5GRkcHll1/OVVddNeS972/Dhg385S9/4Zvf/GaXIPG73/0u//nPf7jlllt45ZVXSEpKIjY2lqVLl/L6669z3XXXAaEqmEAgwPHHH9/rNY4//njeeOMN3n333fAb4dXV1eFwyWq1kpWVxbx587jttts46qijws8d6vl7ctZZZ5GWlsZDDz3EQw89hNvtJjs7mwsvvJArrriiyyyuU045BbvdzgcffMBHH31ES0sLSUlJzJkzh29/+9s9hq633XYbEArLUlNTmT59Or/61a9YunRprzPlBuL1118nLy8vfM1gMMh7773Hd77znSGdr729nR//+MfMmDGjSziycOFCLrroIh599FFOOeUU5s2bB8A555zD97//faqqqsLVVoceeig/+MEPeO+993j00UdpamrCZrMxffp0fvjDH3Lqqad2ueaSJUuYPHkyDzzwAM8991y4Re+iRYu4/PLLe73///73v/d4/Oyzz+6zqu72229n6tSpPP/88/zud78DQpV7t9xyS7f2qJdffjkvv/wyn376Kf/6179wuVxkZmZyxhlncMUVV3SbdTnQe3coXn/9dU4++eQBVQwef/zxpKam8tprr3HFFVeEj2/evBkIhabPP/98l+fk5+d3Cf5mzpzJo48+yt13380dd9yBzWbj3HPPDX9/f/Gc77zzDu+88063vXQGf0lJSRx33HF8+OGHLFu2DL/fT2FhIddddx3f+c53Bjy/9a677uKee+7hpZdeoqWlhWnTpvHnP/+ZQw89tMu6kpIS/va3v3H33Xdz//33YzAYOPzww7nhhhsGNH/QZDLxwAMPcNddd/HEE0/gdruZPXs2d9xxR5c2ndu3b8fr9dLY2MiPfvSjbue54447utwnX/yeFREREZHoZQh+sX+QiIiIiIjIOLJ3716WLFnCgw8+eECtK2VgPB4PJ5xwApdddlm48mzt2rWcd955vPLKK4OaszZUfr+f008/nSVLlnDNNdeM+PUOVps2beIrX/kKL7zwQniOXX/uu+8+/vnPf/Lmm2+GKywlsnr6nhURERGR6KUZfyIiIiIiMq5NmDCBc845hwceeCDSWzkoPP/888TExHDBBRd0OX7dddeNSugHoaqoq6++mqeeegq73T4q1zwYPfDAA5x66qkDDv0ALr74YhwOB6+88soI7kwGo7fvWRERERGJTqr4ExERERERERERERERERkHVPEnIiIiIiIiIiIiIiIiMg4o+BMREREREREREREREREZBxT8iYiIiIiIiIiIiIiIiIwDCv5ERERERERERERERERExgEFfyIiIiIiIiIiIiIiIiLjgII/ERERERERERERERERkXEgJtIbEKira4v0FuQgZzQaSEuz0dhoJxAIRno7Ij3SfSrRQPepRAPdpxINdJ9KNNB9KtFA96lEA92nEg10n8pYkJmZOKB1qvgTEYxGAwaDAaPREOmtiPRK96lEA92nEg10n0o00H0q0UD3qUQD3acSDXSfSjTQfSrRRMGfiIiIiIiIiIiIiIiIyDig4E9ERERERERERERERERkHFDwJyIiIiIiIiIiIiIiIjIOKPgTERERERERERERERERGQcU/ImIiIiIiIiIiIiIiIiMAwr+RERERERERERERERERMYBBX8iIiIiIiIiIiIiIiIi44CCPxEREREREREREREREZFxQMGfiIiIiIiIiIiIiIiIyDig4E9ERERERERERERERERkHFDwJyIiIiIiIiIiIiIiIjIOKPgTEdnPuecu5dlnn4r0NkREREREREREREREBi0m0huQ8W39+rVcccWlLFp0BL/5zb1dHquqquS8874c/thisZKdncP8+Ydw/vkXMGHCxEGdrye//OVttLe3cccdv+1y/PPPP+MHP/gfXnvtHRITE/H7/Tz11BO89tq/qK6uJi4ujoKCCXz5y19h6dKzwud67bWXATCZTCQlJVNcXMJJJ53K6acvxWg0hs/blz/84c8sWLAQgNdee5mXXnqB++9/mMrKCh544E+sWrWStrZWkpNTmDatlO997wcUFhaFn//BB+/x978/wZYtmwkE/EyaVMzZZ5/H6acv7fa5ffTRJ5kyZVq/nyeAE044gfPO+xrnnntBl+MPP/wX3ntvOY89FgrDmpqaePjhP/Phh+/T1NRIYmISJSVTuPjiS5kzZx4QCs+qq6sAiI2NIy0tjenTZ3LWWedwyCGHhs/76KMP9rmn99//rNuxL36OU1JSKC2dwfe+9wOKi0sG9FoBXn31X/zhD7/l9df/2+X4gw8+jsViGfB5RERERERERERERETGCgV/MqJefvlFzjnnq7z88ovU19eRkZHZbc099/yJSZMm43K52LlzO//4x9NcfPEF/PrXv2fhwsMGfb6hePTRB3nxxX9y7bU3UFo6HbvdzpYtG2ltbeuybtGiI/nRj35KIBCgsbGRjz/+kHvv/S3//e9/uPPO3zF79lxefPH18Pp77/0tdrudH/3op+FjSUnJ4X9/773lLF58DD6fj2uvvZKJEwv55S9/Q0ZGBrW1NXz00Ye0te3bw3PPPc0f/vA7vvGNb3H99TdhNpt5773l3H33HezcuYOrrrpmWD4ffbnllhvwer3ccsvPyMvLp7GxgZUrP6W1taXLuksv/R+WLj0Lr9dHdXUlb7zxGtdccwWXXvo/fOtbl3DBBRdy1lnnhNdfdtm3ugSt/Xnqqeex2WzU19fzpz/dy//+79U888wyzGbzAb2+1NTUA3q+iIiIiIiIiIiIiEikKPiTEeNwOPjPf/7Nww8/TmNjPa+++i8uuug73dYlJyeTnp4BQH5+AUcddQxXX/097rzz5zzzzDJMJtOgzjcU77//Ll/5yrmccMJJ4WNTpkztti421hzea2ZmFtOmlTJz5myuvvp7vPbayyxdelb4cYC4uDi8Xk+XY53cbjeffvoRl19+Jbt27aCiopx7772fnJxcAHJycsMVdAA1NdX88Y/3cN55F3D55VeGj19wwTcxm2O45567Of74k5g5c9YBfz5609bWxpo1q/i///sL8+cfEt7njBndr2m1WsOvOycnh3nzFpCRkcHDD/+F448/kYkTi7BareH1RqOxy3P6k5qaRmJiIunpGZx33gXcdNN1lJXtpqRkCgBPP/03Xn31X1RWVpCUlMyRRx7NFVf8AKvVyueff8avfvUzABYvDlVffvvbl3HJJZdz7rlLOf/8Czj//K8DUF1dzT333MXKlZ9iMBhZtOgIrr32f0lLSx/iZ1FEREREREREREREZGRoxl+UqmqvZFvT1lH7p6q9ctB7fPvtf1NYWMTEiUWccsrpvPLKSwSDwX6fZzQaOe+8C6iurmLLlk0HfL6BSEtL5/PPP6OpqWnQzz3kkEMpKZnK8uVvD+p5K1d+SkZGJoWFRaSkpGI0Gnnnnf/g9/t7XP/f//4Hn8/HBRdc2O2xM888B4vFyltvvTHo/Q+GxWLBYrHy3nv/xePxDPr55533NYLBIO+9t3zY9tTe3s5//vMmQJdqP6PRyDXX/C9PPPEsP/7xbXz++af86U9/AGD27Ln84AfXY7PZePHF13nxxdd7/LwGAgFuvvk6Wltb+b//e4Df//4+Kisr+OlPbx62/YuIiIiIiIiIiIiIDBdV/EWhFnczF7/+dQLDFHoNhNFg4Nmly0iOSxnwc1555UVOOWUJAIsWHYHd3s6qVSvD8+360jnTrqqqKlxNdiDn68/3v38tP/nJjZx55qlMmjSZWbPmsHjxsRxxxFEDen5hYSE7dmwf1DVDbT6PBULVg1df/UPuv/8PPProg5SWTmfBgoWcfPJp5OcXALB37x4SEhLIyOheEWc2m8nLy2fv3rJB7WGwYmJi+PGPb+XXv/4ly5b9k2nTpjFv3iGceOIp4Uq7viQlJZOamkZVVdUB7+Xss08HwOl0ArB48TFdZiF2VuwB5Obmcdll3+Puu+/ghz8MtUhNSEjAYDD0WWG4cuUn7Ny5g2effZHs7BwAbrnlZ1x44fls2rSB6dNnHvDrEBEREREREREREREZLgr+olByXAqPnfYU7d72UbtmgjlhUKHfnj272bhxA7/61d1AKDA64YSTeeWVFwcU1HVW8hkMhgGdr7q6mgsvPC/8/Asv/Pag2oBOmjSZxx9/hi1bNrFu3RpWr17FTTddx5IlX+Kmm34ygP0CGAZ8vWAwyIcfvsvtt98ZPnbOOeezZMkZfP75SjZsWMc777zF448/yq9//VsOPfTwAZ+7P2+++Rq/+c2vwh/fffcfOOSQQwb8/OOOO5EjjljM2rWr2LBhPR999CFPPfU4N954C6efvrTf5weDwfDX9UDcd9+DxMfHs2HDeh5//BF++MMfdXn8008/5m9/e4yyst3Y7Xb8fj8ejxuXy0V8fPyArrF7926ysrLDoR+E7pWEhER2796l4E9ERERERERERERExhQFf1EqNyEv0lvo08svv4jf7+ess5aEjwWDQcxmM9deeyMJCQl9Pr+sbBcAeXl5AzpfRkYGjz76VPixpKQkAGw2G9XV3avL2tvbMZlMWCyW8DGj0cj06TOZPn0m55//dd5441V+/vOfctFF3yEvL7/f/XbudSA2btyA3+9n1qw5XY5brTYWLz6GxYuP4bvfvYLrrruKv/71EQ499HAmTJhIe3s79fV1ZGRkdnme1+ulsrJ8QKHq4sXHdJnJl5kZOpfNZqO9vXuY3N7e3u3rFRcXx6GHHs6hhx7OxRdfyp13/pyHH/5Lv8FfS0szzc1N5OYe+P2bm5tPYmIiEycW0dTUyK233sx99z0IQFVVJTfeeC1nnXUOl112BUlJSaxdu5o77/w5Xq93wMGfiIiIiIiIiIiIiEg00Yw/GXY+n4/XX3+Vq666hkcffTL8z2OPPUVGRiZvvfV6n88PBAL84x9Pk5ubz5Qp0wZ0vpiYGAoKJoT/SUpKBmDChEJ27drZbR7d1q2byc3NIyam9+y7qGgyAC6Xs8/9rlz5KTt2bOfYY08YyKcHgPffX84RRyzGZDL1usZgMFBYWBRuZXnssScSExPD3//+t25rly17HqfTyUknndrvta1WW5fPVVxcKASbNGkSmzdv6rZ+69bNTJgwsc9zFhVN6vfzBPCPfzyN0WjkmGOO63ftYJx99vns3LmD5cvfAWDLlk0EAgGuuupaZs2azcSJhdTX13V5TkyMGb8/0Od5i4qKqK2toaamOnxs166dtLe3MWnS5GF9DSIiIiIiIiIiIiIiB0oVfzLsPvzwfdraWvnSl87qVil27LEn8PLLL3HWWeeGj7W0tNDQUI/L5WLXrh08++zf2bRpA7/5zb2YTCbeffe/gzrf/k45ZQmPPfYQv/jFrXz96xeRkJDA6tWf8+yzf+eKK74fXnfLLTcwe/ZcZs2aS3p6OpWVFfzlL/cxYcJEJk4sCq/zeLw0NNQTCARobGzk448/5IknHuPII4/mtNPOGPDn6P33l3Pppf8T/njbti08/PBfOPXU0ykqmozZbGb16pW88spLfOMb3wIgJyeHK674AX/84z3ExsZy2mlnEBMTw3vv/ZcHHvgTX/vaN5k5c1aX6+zZ033m36RJxT0GnhdffDHf+MY3+OtfH+bYY08gEPDz73+/wfr1a7n++huBUMXeT35yE2ec8WWKi6dgtVrZvHkTTz31RHheYSeHw0FDQz0+n4+qqkreeOM1Xn55GZdffiUFBRMG/LkaiPj4eJYuPYtHHvkLxxxzHPn5E/D5fDz33DMcddTRrFu3hhdf/GeX5+Tm5uJ0Ovjss08oKZlKfHx8t0rAhQsXMXlyMbff/hN+8IPr8ft9/Pa3v2bevAWUls4Y1tcgIiIiIiIiIiIiB689rWX4g34mJavgQA6Mgj8Zdi+//CILFx7WYzvP4447gaeeepzt27dhs9kAuOaaK4BQeJOTk8v8+Qu54YYfh8OhgZ6vpGRKt8cTExO5774H+fOf/8hNN12H3d5Ofv4Evv/9a/nSl84MrzvssCN46603eOKJx7Db20lLS+eQQw7lO9/5bpeQ7OOPP+TMM0/DZDKRmJhESckUrrnmhyxZ8iWMxoEV0FZUlFNRUc5hhx0RPpaZmU1OTh6PPvogVVVVGAwGcnNz+c53LuerX/16eN3553+dvLx8/v73v/Hcc0/j9weYNGky118fCuO+6NZbf9Tt2D//+QpZWdndji9YsIDf//7/eOihB3j66ScxGg1MnlzCvffez+TJJQBYLFZmzJjFM888RWVlOT6fj6ysbJYuPYuLLvp2l/M99NCfeeihP2M2m0lLS2fmzNnce+/9A2pHOhTnnHM+zzzzJG+//RYnnngy3//+tTz55F/5y1/+yNy5C7j88iv5xS9uDa+fPXsuZ511DrfeejMtLS18+9uXcckll3c5p8Fg4I47fsc999zFVVddhsFgZNGiI7j22v8dkdcgIiIiIiIiIiIiB6fHNjyM0+fgjqPvjvRWJMoZgsFgMNKbONjV1bVFegsyip5++m989tkn3H33HyK9lbCYGCOpqTaamuz4fH23vxSJFN2nEg10n0o00H0q0UD3qUQD3acSDXSfSjTQfSrRYDTu0x+997+0edr4vxP/PCLnl+iXmZk4oHWa8ScyyjIzs7nwwm/3v1BEREREREREREREDgoevxenzxnpbcg4oFafIqPsxBNPjvQWRERERERERERERGQM8QY8OLz2SG9DxgFV/ImIiIiIiIiIiIiIiESQx+9RxZ8MCwV/IiIiIiIiIiIiIiIiEeQNeHH47ASDwUhvRaKcgj8REREREREREREREZEI8gQ8BIJBPAFPpLciUU7Bn4iIiIiIiIiIiIiISAR5/aHAT3P+5EAp+BMREREREREREZGo4A/4WV37eaS3ISIy7DwBLwAunyvCO5Fop+BPREREREREREREosIn1R/xv8uvpc5RF+mtiIgMq3DFn08Vf3JgFPyJiIiIiIiIiIhIVKixVwPQ6GqI8E5ERIaXN9AZ/DkjvBOJdgr+REREREREREREJCrUO0OVfk3upgjvRERk+ASCAXwBPwBOr4I/OTAK/kRERERERERERCQqdAZ/zS4FfyIyfng75vuBWn3KgRszwd+TTz7JCSecwOzZsznvvPNYu3Ztn+tfe+01TjvtNGbPns3SpUtZvnx5l8eDwSD33nsvixcvZs6cOVx88cXs3r27x3N5PB7OPPNMpk2bxqZNm3pcU1ZWxvz581m4cGGX42+++SZnn302CxcuZN68eZx55pksW7ZswK9bREREREREREREBqbOWQ9Asyr+RGQc6ZzvB+BUq085QGMi+Hv11Ve54447uPLKK3nhhRcoLS3lkksuoaGh517dn3/+Oddffz3nnnsuy5Yt48QTT+TKK69k69at4TUPPvggTzzxBLfddhvPPvssFouFSy65BLfb3e18d911F1lZWb3uz+v1ct1113UL/QCSk5P53ve+xzPPPMNLL73E2WefzY9+9CPee++9IXwmREREREREREREpDfhVp+q+BORccQT2Bf8Obyq+JMDMyaCv0cffZTzzz+fc845h5KSEn72s58RHx/P888/3+P6xx9/nKOPPppLL72U4uJirrnmGmbMmMHf/vY3IFTt9/jjj/O9732Pk046idLSUu666y5qa2t56623upxr+fLlfPDBB9x444297u+ee+5h8uTJLFmypNtjixYt4uSTT6a4uJiJEyfyrW99i2nTprFy5coD+IyIiIiIiIiIiIjI/oLBYDj4a1HFn4iMI17/vlafqviTAxXx4M/j8bBhwwaOPPLI8DGj0ciRRx7JqlWrenzO6tWrOeKII7ocW7x4MatXrwagvLycurq6LudMTExk7ty5Xc5ZX1/PT37yE+666y7i4+N7vNaKFSt4/fXXufXWW/t9LcFgkBUrVrBr1y4OPfTQfteLiIiIiIiIiIjIwLR72/D4PcQYTTQp+BORcWT/ij+nzxHBnch4EBPpDTQ1NeH3+0lPT+9yPD09nZ07d/b4nPr6ejIyMrqtr68P9fiuq6sLH+ttTTAY5KabbuJrX/sas2fPpry8vMe93XzzzfzmN78hISGh19fQ1tbGMcccg8fjwWg0cuutt3LUUUf188r3MRoNGI2GAa8XGW4mk7HL/4qMRbpPJRroPpVooPtUooHuU4kGuk8lGoy3+7SxvR6DASanFNPiaSYmZny8roPdeLtPZXwa6fs0YPBh6IgIXH6nfr7JAYl48BcpTzzxBHa7ncsvv7zXNT/5yU/40pe+1G/1ns1mY9myZTgcDlasWMGdd97JhAkTWLRo0YD2kpZmw2BQ8CeRl5RkifQWRPql+1Sige5TiQa6TyUa6D6VaKD7VKLBeLlPPe12TCYjc/Jm8d6e90hNtUV6SzKMxst9KuPbSN2nFm8MJpORxLhEgjE+/XyTAxLx4C81NRWTyURDQ0OX4w0NDd2q+jplZGSEK/d6Wp+ZmRk+lpWV1WVNaWkpAB999BGrV69m9uzZXc5zzjnnsHTpUn7961/z0Ucf8fbbb/PII48AoSrBQCDAjBkzuP322zn33HOBUGvSwsJCAKZPn86OHTt44IEHBhz8NTbaVfEnEWUyGUlKstDa6sTvD0R6OyI90n0q0UD3qUQD3acSDXSfSjTQfSrRYLzdpztqyggGIDduAvXtDTQ0tmE0qCom2o23+1TGp5G+T+ubWvD7AySYEmloa6apyT7s15DoN9BAOOLBX2xsLDNnzmTFihWcdNJJAAQCAVasWME3v/nNHp8zb948PvroIy6++OLwsQ8//JB58+YBUFBQQGZmJitWrGD69OkAtLe3s2bNGi644AIAbrnlFq655prw82tra7nkkkv4/e9/z9y5cwF45pln8Pv94TX/+c9/ePDBB3n66afJzs7u9TUFAgE8Hk+vj3dfHyQQCA54vchI8fsD+Hz6DywZ23SfSjTQfSrRQPepRAPdpxINxuJ9+ln1J7yw7Tl+sfjX6jAkwNi8T4eitr2O5NgUUmPT8QcCNDtaSIpLjvS2ZJiMl/tUxreRuk9dXjfBICSak7F7HPpekAMS8eAP4Nvf/jY33ngjs2bNYs6cOfz1r3/F6XRy9tlnA3DDDTeQnZ3N9ddfD8BFF13EhRdeyCOPPMKxxx7Lq6++yvr167n99tsBMBgMXHTRRdx///0UFhZSUFDAvffeS1ZWVjhczMvL67IHq9UKwMSJE8nJyQGguLi4y5r169djNBqZOnVq+Nhf/vIXZs2axcSJE/F4PCxfvpyXXnqJ2267bfg/USIiIiIiIiIi/Xhh23N8Uv0x9c56Mq2Zkd6OyLCpc9aSYckkJT4VgEZXo4I/ERkXPP5QIVFSXDKNzoZ+Vov0bUwEf6effjqNjY384Q9/oK6ujunTp/PQQw+FW3dWVVVhNO4r21+wYAF3330399xzD7/73e8oKirivvvu6xLIXXbZZTidTn7605/S2trKIYccwkMPPURcXNyw7t3hcPCzn/2M6upq4uPjmTx5Mr/5zW84/fTTh/U6IiIiIiIiIiL9aXW3sLLmUwB2tuxQ8CfjSoOzngxLJqlxoeCvxd0c2Q2JiAwTb8ALQHJsMuVteyO8G4l2YyL4A/jmN7/Za2vPJ554otuxJUuWsGTJkl7PZzAYuPrqq7n66qsHdP2CggK2bNnS55qzzz47XIXY6dprr+Xaa68d0DVEREREREREREbSu+XLCRIkzhTHzubtLMo9PNJbEhk2dY465mTNC1f8NbmbIrwjEZHh4fG7AUiJS8Hpc0R4NxLtxkzwJyIiIiIiIiIiB+a/e99mbuZ8fAEfO1t2RHo7IsOqwVVPpiUTW4yNGGMMzS4FfyIyPngDPgASY5NweBX8yYEx9r9ERERERERERETGugZnA2vrVnH8xJOYlFLMjubt/T4nGAzyUdUKXD7XKOxQZOicPidtnjYyLBkYDAZS4lJU8Sci44bH7ybGaMJmTsDlcxIMBiO9JYliCv5ERERERERERKJURVs5vo4qgeXlb2MymlicfzSTk4upaN+Lu6N1WG9W1a7kJ+/fxIPr/jwa2xUZsgZnPQCZliwAUuJSNeNPRMYNb8CL2RiL1WwlSOiPHUSGSsGfiIiIiIiIiEgUanW38J03vsmlb3yLFZUf8M6e/7AwZxGJsUkUp5QQCAbZ3bKrz3O8uP0FYowxvLxjGVsbt4zSzkUGr95ZB0C6JQOA1PhUmtTqU0TGCY/fg9kUizXGCij4kwOj4E9EREREREREJAo1u5sJBIMYDUZ++sGP2Ny4ieMnnABAUdIkjAZDn+0+axw1fFT1Af8z90qKkiZx7+e/JRAMjNb2RQalM/jLsGQCoYq/ZrX6FJFxwhvwEms0YzV3Bn+a8ydDFxPpDYiIiIiIiIiIyOA5Ot4U/PHhP6Xe2cCKyvc5Mu9oAOJj4slLKGBHS+/B38s7XiQ+xsLJhadRkjKVa965kld2vsTS4rNGY/sig1LvrCcxNpH4mHggVPG3vmFdj2sdXgexplhijHrrU0Sig8fvxmyKxdJR8efwKviTodNvPxERERERERGRKOTw2gGwmRMoTpnCotzDuzxenFzCruYdPT7X4/fw6q6XOaVwCVazlZkZs1gy6QweXvcAJ0w8GZvZNuL7FxmMOmcdGR1tPgGS41Jo3q/VZ3nbXv657R9sqF/HrpadLMheyK+O/g1GgxqeicjY5w34iDXGYomxAKr4kwOj33wiIiIiIiIiIlHIHg7+eg7pJqcUs7NlB8FgsNtj75a/Q6u7hS+XnBU+ds7U87F77Wxt3Dwi+xU5EPWOunCbT4C0+DScPiduvxuA+1bfy7vly5maVsrFsy5lVe1KHl3/UKS2KyIyKB6/G/N+rT4dCv7kAKjiT0REREREREQkCnUGf9aY3oK/EuxeOzWOanJsuV0ee2nHMhZkH8KExInhYxMSJxJrimVnyw7mZx8ychsXGYJ6Zx3FKSXhj5PjUgBodjWRGp/G2ro1fGvmdzh/2gUAGA1GHl73ANPSSlmcf0wktiwiMmDegJfY/Vp9quJPDoQq/kREREREREREopDDZyfOFIfJaOrx8eLkUEiy8wvtPts8rWxq2MiJE0/uctxoMDIpeTI7mnufCygSKfXOrhV/qXFpADS7m9nUsAGP38Mh2QvDj3912tdZnH8Md33yK8rb9o76fkVEBsPj92A2xhJviscAOLzOSG9JopiCPxERERERERGRKGT32sMtwXqSYckgMTaRHS1dg7wNDRsAmJUxp9tzipNL2Nmi4E/GFl/AR5OrsUvw11nx1+RuYmXtZyTFJTMpuTj8uMFg4H8PvZkYYwxvlb052lsWERmUUMWfGYPBQHyMBYfPHn6srHU3Xr83gruTaKPgT0REREREREQkCjm8dmzmhF4fNxgMTE4u6Vbxt7FhPSlxKeTa8ro9Z3JKsd5glDGnwVlPELoEfyn7tfpcVbOSBVmHYDR0favTarYyNXVat/BbRGSsCc34iwVCP7ucvlDFn9vv5nv/vpTl5W9HcnsSZRT8iYiIiIiIiIhEIYfXgTWm94o/gGlp01hfv5ZAMBA+tqF+HTMzZmMwGLqtL06Zgi/gZ29b2bDvV2So9nTcjxOT9s2kNJvMJMYmUt62h61Nm5mf1fNcyuKUEnaqfa2IjHGdM/4ALDFWHN7QjL+q9kq8AS/1zvpIbk+ijII/EREREREREZEoZPfasZltfa45PO+ojhloG4FQy8TNjZuYmT6rx/WTO1olas6fjCV7WsuINcWSZc3ucjw5LoXl5e8QCAZZkN1b8DeFWkctbZ7W0diqiMiQhGb8mQGwxlhx+jqCP3slAK3ulojtTaKPgj8RERERERERkSjk8PXd6hNgZvoskuNSWFH5PhAK9Dx+DzMzZve43mq2kmvLVWtEGVP2tJYxIXFit1aeqXGpVNuryU3II8eW2+Nzi1NKAIXZIjK2fbHir7PVZ2V7BQCt+uMFGQQFfyIiIiIiIiIiUcjutWM1993q02gwcnjuEXzQEfytr1+L2WimJGVKr8+ZnNJ9LuBICAQD/KfsTbUvk36Vte6mKKmo2/GU+FQAFvTS5hNgQuJEYk2xCv5EZEwLVfx1BH9mS7jir7Kj4q/Fo4o/GTgFfyIiIiIiIiIiUcjutWON6bvVJ8BR+UdT3raXPa1lbGzYwLS00nBVQU+KU0rY0bKDYDA4nNvtot5Zz43vXs+dn/ySB9f+acSuI9EvGAyyp62MiT0Ff3EdwV/2wl6fbzQYmZQ8me3N20ZqiyIiByxU8Rdq9Wnbr+KvqrPiT60+ZRAU/ImIiIiIiIiIRCHHAGb8QSgUiTPF8WHl+2xoWNfrfL9OxckltLpbRqwS75Oqj7n8zW+zp3U3JxaezLvl/6XR1TAi15Lo1+xuos3TxsSkwm6PpcSlYADmZc7v8xzFySXsahn5KlYRkaHy+N37Kv5irNi9dgAq2zsq/hT8ySAo+BMRERERERERiUIOn6PfVp8AcaY4Dsk+lFd2vkSDs6HX+X6dJqcUA7BzBIKST6o+5tYPb6Y0bToPnPIoV827GpMhhld2/mvYryXjQ1nrbgAKe6j4O6nwFK5deANJccl9nqM4pYSy1t14/d4R2KGIyIHbf8af1Ryq+AsEA9Q4qsiwZNCmGX8yCAr+RERERERERESiTCAYwDHAVp8AR+UvptpeDcCM9Jl9rs225mAz29g5zDPR1tev42crbmFhziJ+dtSvSI5LISE2kZMKT+HlHS/iC/iG9XoyPpS17ibGaCLPlt/tsbyEfJZMOqPfcxSnTMEX8LOnbXe3x9bVr+XH793An9f8kX/vfl0zJ0UkIjwBD2ZjqNWnJcaKw2unzlGLL+BnWtp02jytBIKBCO9SooWCPxERERERERGRKOPyuQjCgFp9AizKPQKjwUB+QgHJcSl9rjUYDKE5f8MY/O1s2cEt799Iadp0bjn8NmKMMeHHvlzyFRpdjbxXvnzYrifjx562PeQnTMBkNA35HJOSJ2MAtvdwT7+1+w02NKznw4r3uevTO/j5ip8ewG5FRIbG699X8WeJseD0OansmO9XmjadINDuaYvgDiWaKPgTEREREREREYkynbN/bOaEAa1PjkvhsNwjWJR7xIDWT0ouZkfL8AV//9z6DxJjE7n9qDuIM8V1eWxycjFzMufx0o4Xhu16Mn6Utezusc3nYFjNVvISCnoMszc3buSYguN4/PSn+e6c77GtaSv+gP+AriciMhjBYBBvwBue8Wc123D73VS0V2A0GJiaOg2AFo/m/MnAKPgTEREREREREYkydm87wIBm/HW6/chf8b15Vw1o7dTUqVS07R22mUJ1zlpKUqb2WqF4VsnZrK9fx47mbcNyPRk/ylp3MTGp8IDP01MVq8PrYHfrLqZ3tL+dkjoVb8BLefveA76eiMhAeQOh+aOxps5WnxYAdrZsJ9OSRVp8OgCtbs35k4FR8CciIiIiIiIiEmUcPgcw8FafEGrhOVBzMucRBNbWrRns1nrU4Gwg3ZLR6+NH5i0m3ZLOKztfHpbryfjQ5mml2d3MxMThCf52Nm8nGAyGj21t2kwgGKQ0bXp4DcDO5h0HfD0RkYHyBDwA+yr+Oub37mjeTm5CPslxyQC0quJPBkjBn4iIiIiIiIhIlHF0tPq0DiL4G4wcWy45thxW167qcvyOj2/nbxv/OujzNboayOgj+DMZTZxStIS39/wbl8/V45pnNj/FHR/fPuhrS/Qqay0DoDC56IDPVZwyhXZvO7WOmvCxzY2bsMRYwq1EE2OTyLRkqvJUREaV1x8K/sIz/sydFX87yLPlkRibBECLW8GfDIyCPxERERERERGRKBOe8Rcz8FafgzU3cz5r6/YFfy3uZv679202Nqwf1Hk8fg9tnjbSO1qV9WZJ0RnYvXbeK/9vj49/VvMp75b/F6fPOajrS/Qqa92N0WCgIGHCAZ9raupUDMCq2s/DxzY2bKA0bTpGw763SItTpwzrfEsRkf54Az4AzMZQq09rR6tPl89FbkIeMcYYbGabKv5kwBT8iYiIiIiIiIhEmc5WnyNV8QcwL2s+O1t20uJuBuDDyg8IBIM0uhoGdZ7O9WmWvoO/3IQ85mct4NVdPbf7LGvdhS/gZ0P9ukFdX6LXntYycm354SqYA5Ean8a8rAX8u+wNAILBIJsbN1KaPqPLuuLkErY3qeJPREaPx+8G9lX8dbb6BMi15QGQFJtEqyr+ZIAU/ImIiIiIiIiIRBmH144lxtKlUmm4zcmcD+yb89dZidfgHFzwV++sByA9vvdWn52WTPoS6+vXsaejxWOnNk8rTa4mAFbvV7El49uett1MSJo4bOc7ufBU1tatptpeRa2jhiZXE9PTvhD8pZTQ7G4edMAtIjJU3oAX2Dfjz9JR8QeQl5APQFJcMq2e1tHfnEQlBX8iIiIiIiIiIlHG7rVjNY9cm0+ALGsWuQl5rK5bRbunjVW1KylOKabZ3Yyvoy3ZQDR0Bn/9VPwBHJV/NEmxSbz2haq/Pa17AChMKurSqlHGt7KW3RR1zN8bDkflH0N8TDxvlb3JpsaNAJSmTe+ypiRlCgA7mtXuU0RGhyc846+j1ed+1fy5Cfsq/jTjTwZKwZ+IiIiIiIiISJSxe+3YzAkjfp25mfNYU7uKj6o+xBfw8+XiswFodDUO+BwNrnrMRjMJ5sR+18aaYjmp8FTeLHsDr98bPt45621p8Zlsb95Ku6dt8C9Gokqbp5U6Zx1FSZOG7ZxWs5Wj84/l32VvsKlhIzm2HFLj07qsybblYImxKPgTkVHzxYo/s9GMyWAkKTaJhI7f9UlxybSp4k8GSMGfiIiIiIiIiEiUcfjsWGNGtuIPYF7mfMpad/OvHS8yPX0G09KmAQyqDWKDs54MSwYGg2FA60+ceDKt7hY2d1RkQajlY44tj0W5RxAIBllXv3ZwL0SiTuecvZLUqcN63lOKTqOyvYJ/l73O9LSZ3R43GowUp5Qo+BORUfPFGX8GgwGr2Rau9gNIjk2hxaOKPxkYBX8iIiIiIiIiIlFmNFp9wr45fxsbNrA4/5jwnL7O9p0D0eBqIN3S/3y/TiWpU7DEWFhfvy58bE9rGROTCsmx5ZJjy1G7z4PA9uZtxJnimJA4fDP+AOZkziPLmkWbp43S9Ok9rpms4E9ERpG3o312Z8UfhOb85dnywx8nxSbRqlafMkAK/kREREREREREooxjlFp9ZlozyU8oAOCYguNIikvGZDAOquKv0dkQDgwHwmgwMjNjFuv3q+ora91NYWIhAHMz57O6duWAzyfRaUfzNianFGM0DO/bl0aDkRMLTwHoseIPQnP+ytv24PQ5h/XaIiI92VfxZw4fOyJvMUfkHRX+OCkumVZPC8FgcNT3J9FHwZ+IiIiIiIiISJRx+Byj0uoT4PC8I5iVMZscWy5Gg5G0+HTqB1nxl2ZJH9Q1Z6XPYUPDegLBAA6vg1pHLYVJRQDMz1rArpZdNA1izqBEn23N2yhJGd42n53OKjmbc6eez5Re2ohOTi4mCOxu2QWAw+sgEAyMyF5kePkCPj6p+hi71x7prYgM2Bdn/AFcNf9qjp94YvjjpNgkAsEgdm/7qO9Poo+CPxERERERERGRKGMfpYo/gO/OuYLfHHtP+OM0S/rgWn0660mPH2TwlzEbu9fO7pad7G3bA8DEjuBvbtYCANbUrR7UOSV6uHwuytv2UJIyZUTOnxafzuVzryTGGNPj40XJkzAaDLy445/c+O51nLVsCW/sfm1E9iKD89quV1jbx/f+f/f+hx+/fwPnvXQmt37wYz6t/nj0NicyRB6/B9g3468nyXHJALSo3acMgII/EREREREREZEoE2r1aRuVaxkNxi4BSXp8xoBbfTp9TuxeO+mDrPibljadGKOJ9fXr2NO6GyA86y3DksGExIl9vvkv0W1nyw4CweCIBX/9iTPFMSl5Mv8p+zdev5dsWw5rNFcy4oLBIA+uvZ9Xd73c65r19evIS8jnO7Mvo7x9L3d8/PNR3KHI0HgDXkwGY5+tjZNikwBo9bSO1rYkivX8Zy0iIiIiIiIiIjJm2b12rObRafX5RemWDDY2rBvQ2kZnKCAczIw/gPiYeKakTmN9/TqyrFlkWbO6vN7CpCIq2ysGdU6JHjuat2EyGClKnhSxPfzsyF8RCAbITcjjj6vu5bPqTyK2FwmpaC+nzdMW/rnSk40N65mbOY9zp36VxNgk7v70Tjx+T5+VVCKR5vG7MfdzjybFpQDQ4lHFn/RPFX8iIiIiIiIiIlEkEAzg9DmxxoxOxd8XpcenU9/HG+/7a3CFWoKmWwYX/AHMSp/Nuvo1lLWVMTGpsMtjWdZsahw1gz6nRIdtTVspSp4U0bAm25ZDbkIeAKVppR2hkyptImlL4yYAGnuZ79nubWd3yy5mpM8CIDUuDYAmd9PobFBkiLwBL7HGfoK/joq/NrX6lAFQ8CciIiIiIiIiEkUcPgfAqLX6/KJ0SwYt7mZ8AV+/axs6K/6GEvxlzKHeWc+6ujVMTCzq8li2LZtaRw3BYHDQ55Wxb3vzNooj1OazJ6VpMwDY2rQlwjs5uG0KB389/+HB5oaNBIGZGaHgLy0+FPw1uxT8ydjm8Xswm8x9rok1xWKJsajiTwZEwZ+IiIiIiIiISBRxeEPBX6RafabFh+b19VZ1s79GVwPxMfFYYwa/18437+1ee48Vfx6/h2ZV8ow7voCPXS07mZIyNdJbCctLyMdmtrGlcXOkt3JQ29y4EbPRTJunDY/f0+3xjQ0bSIxNpCBhAgCpHcHfQGeSikTKQCr+IFT1pxl/MhAK/kREREREREREoojd2w6AzZwQkeunWwb+ZnqDs560+HQMBsOgr5MclxIO/AqTiro8lm3NAaDWUTvo88rYVta6C1/AR3Hq2Kn4MxqMTE2dxuaOijMZfR6/hx3N2zkk51Cg558/GxvWMzN9VvjnTUpcCgagSRV/MsaFKv76D/4SY5NoVatPGQAFfyIiIiIiIiIiUSRc8TeEKrrhkB4fatvZ4Kzvd22Dq56MIbT57DQrfTYAhV+o+Mu2ZgNQqzl/48725u0YgOLkkkhvpYtpadPZ2qSKv0jZ0bwdX8DHUXlHA/vaCHcKBANsatwYnu8HYDKaSIpLoWkA1ckikeQNeDEb+271CZAcl0yLgj8ZAAV/IiIiIiIiIiJRxO61A5Gr+EuKS8ZkMA4o+Kt3NoRbgw7FyUWncWrREhJjk7ocT4xNIj4mnhpH9ZDPLWPT9qZt5CUURKyVbW9K06bT4GygzlEX6a0clLY0biLGGMPCnMOA7hV/u1t34fA6wi2CO6XGpdLoVvAnY5vH7yZ2ABV/SbHJavUpA6LgT0REREREREQkiuxr9WmLyPWNBiNp8ek0DLDVZ7pl6MHfrIzZ/PDQm7odNxgMZFmzqbGr4m+82d68lSmpY2e+X6epqaUAbGlSu89I2Ny4kZKUKaTHpxNjjOkW/G2s34DRYAh/nTqlxqeq4k/GPF/Ai3kgM/7iksOtPqvtVTyy/kECwcBIb0+ikII/EREREREREZEo4vA5MADxMfER20O6JWNAFX+NroZwa9Dhlm3NVsXfOOML+NjSuJlpaaX9Lx5lmdZM0i3pbGlUu89I2NS4iWlp0zEYDKTFp3X7w4MNDesoSZna7ediWnwazZrxJ2Oc2+8h1tR/q8+k2CRaPS0Eg0F+8+md/H3T36hsrxiFHUq0UfAnIiIiIiIiIhJF7N52LGYrRkPk3tZJi0/vVnEDUNa6m8veuJjdLaG2e06fk/QDmPHXlyxrtmb8jTM7mrfjDXi7zGkbS6amlrKlURV/o63V3UJlewXT06YDoZ8/X/zDg40NG3q8b1Lj02hUxZ+Mcb6Al5gBzvhr9bTwnz1vsrZuNRD6uSnyRQr+RERERERERESiiMPrwBYTmTafndItGT0Gfx9XrWB36y5u+/AW9rbtASBjhIK/bGuOgr9xZmPDemKMMZSkTIn0VnpUmjadrU1b1FpvlG3uqLIsTZsBdP/50+xqorK9ghnpM7s9NyUulSbN+JMxzu13E2eM63ddUmwyvoCfP63+P44tOJ50Szo7WnoP/v6y5j4+rHh/OLcqUULBn4iIiIiIiIhIFHH4HFgjNN+vU3p8OvXO7sHfhvr1FCYV0exu4pcf3QaEqnNGQrYtmzZPGw6vY0TOL6NvY8MGpqZOI9bU/6yrSJiWVorda6esdXekt3JQ2dy4kcTYRPIS8oGOiuP9fv7sbNkB0ONsyHRLOg6vA7ffPTqbFRkCX8BHjCmm33XJccnh9f8z7yqKk0vY0bStx7Uraz7lua3P8vy2Z4d1rxIdFPyJiIiIiIiIiEQRu7cdW6SDP0sGLe5mvH5v+FgwGGRDw3qOyj+amxf9lGp7FTBywV+mNRtAVX/jyKaGDUxPnxHpbfRqetpMMiwZ3Pnxz2n3tEV6OweNHc3bKUmZgsFgADr+8GC/ir/drbswG83hYHB/KXGpADSp3aeMYQOt+EuNTwPg4lmXkGHJoDh1Ctubuwd/gWCAB9fej9loZn39Wv28Oggp+BMRERERERERiSIOryPiwV9nmNfkbgofq2gvp8XdzMz02SzKPZxLZl9OYVIRVrN1RPaQbc0BoNZROyLnl9FV76ynxlHDzPTZkd5Kr6xmK3ccfTd1zjp+8sHNuHyuSG/poFBlr6AgcUL443RLBq3ulvAfHpS17GZi0sQe556mdQQlTa6mbo+JjBW+gJcYU/8z/oqSJvHb4+7lrJJzAChJmUKjq7FbsP1W2RvsaN7BDYf9iEAwyGc1n47IvmXsUvAnIiIiIiIiIhJF7N52rBGf8Rd6M73BWR8+tr5+HQZgRkZoztZXS7/Og6c8NmJ7yLBkYDIYqXFUj9g1ZPRsatgAwPQe5rSNJUXJk/jF4l+zrWkrv/zoNoLBYKS3NK4Fg0Gq7FXk2HLDx774hwe7W3dRlDSpx+enhoM/VfzJ2OX2e4gz9t/i2GAwMCdzXjjkLk4uAUJVsZ1cPhePrn+IowuO5bgJJzApeRIfV60YmY3LmKXgT0REREREREQkiti99hGrohuo9PgMABr3a7e3oWEdRcmTSDAnhI91tuYbCUaDkUxrFrUK/saFjQ3rybJmkWHJiPRW+jUjfSY/WHAtH1WtUKvZEdbsbsLlc3Vp47n/Hx4Eg0HKWndT2EvwlxyXgtFgoFHBn4xhA634+6LchDwsMZYuwd+y7c/T7G7iklnfBWBR7hF8Wv0JgWBg2PYrY5+CPxERERERERGRKOLwRb7VZ1JcMiaDsUvosaF+/ai3acyyZlNjV/AyHmxs2MCM9FmR3saAdQZNrZ7WCO9kfKtsrwQgz5YXPtZZ8dfoaqDeWY/da6couefgz2gwkhSbTJNbwZ+MXQOd8fdFRoORycnF4eDPF/DxwrbnOLXodPITCwA4LPcIWtzNbGncPKx7lrFNwZ+IiIiIiIiISBSxe9uxRjj4MxqMzMtawL92vIgv4KPV3cLetj3MzBjd4CZU8afgL9p5/B62Nm1hxhhv87m/5LhkAFo9LRHeyfhWZa8AIGe/4C85LgWTwUijq4HdrTsBKEwq6vUc6ZZ0zfiTMc0X8BFjjBnSc4tTp7C9eRsAH1V9SKOrkaXFZ4Yfn5E2k8TYRLX7PMgo+BMRERERERERiRJev5cWdzOpcWmR3gqXzfkfytv28MrOl9jQsB6AWRlzRnUP2dYczfgbB7Y3b8MX8EVVxV9ibBIArW5V/I2kyvZKUuJSurQ3NhqMpManUe+sp6x1N7Gm2C4zAL8oJS5VM/5kTPMEPMSZBl/xB1CSMoXytj04fU5e2fkS09JKKU6ZEn7cZDSxMPswBX8HGQV/IiIiIiIiIiJRosZRTSAYJC8hr//FI6w4ZQqnFC3h8Y2P8UnVR6TFp5FtzRnVPWRbc2h0NeAL+Eb1uuNdk6sRr987atfb1LABs9HM5OTiUbvmgbLGWDEZjKr4G2GV9oou8/06pcWnhyr+WnZRmFSE0dD729yp8WkK/mTMCgaDeP0eYoyDn/EHUJxcQhD4qPJDVlZ/ypcmn9ltzaLcw9nevI0GZ0P3E8i4pOBPRERERERERCRKhOdd9fBGeCRcPOtS3D4XL+98iZkZszEYDKN6/SxrFoFgkHpn3ahedzxz+Vx85/UL+Z+3LmFD/fpRuebOlh1MTinGbBraG9+RYDAYSIxN0oy/EVbVXkluD3/okGZJp9HZQFnr7j7bfAKkxafR5FarTxmb/EE/QSDOFDuk5xclT8JoMPDg2vuxmK0cO+H4bmsOzVkEwKrazw5kqxJFFPyJiIiIiIiIiESJKnsFMUYTWdbsSG8FgAxLBudPuwCAmRFo05htC1UY1tjV7nO4fFL9Ee3edszGGK5950r+tPr/8Af8I3rNdk87ybHJI3qNkZAcl6JWnyOsyl5Jrq178Jcen06DK9TqsyhpUp/nUMWfjGUevwdgyBV/saZYJiYWUees46TCU7HEWLqtSYpLJiUuJfzHQzL+KfgTEREREREREYkSle2VZFtz+2xrN9rOm/Y1Tpt0OscUdK8yGGmdAWito2bUrz1eLd/7DiUpU/jTSQ9x2Zzv8cK25/iw8v0RvabD58Bqto3oNUZCUmwSbWr1OWKcPidNribyegr+LBmUte7G6XNSmNxP8BeXitPnxOlzjtRWRYbMGwgFf0Od8QdQnFoCwBmTl/a6JtuWo9+VB5Gx81+JIiIiIiIiIiLSp9C8q8jP99ufJcbC9QtvJNOaOerXjjPFkRKXQpW9atSvPR45fU4+qvqQYyccj9Fg5LxpXyPdks7Wps0jel2H144tCoM/tfocXsFgEJfPFf64yh6qTsrtZcafr6MStaifVp+p8WkANLvU7lPGHk/HPNWhVvwBnDjxZL4y5dw+56RmWbMV/B1Exkzw9+STT3LCCScwe/ZszjvvPNauXdvn+tdee43TTjuN2bNns3TpUpYvX97l8WAwyL333svixYuZM2cOF198Mbt37+7xXB6PhzPPPJNp06axadOmHteUlZUxf/58Fi5c2OX4s88+y9e//nUOPfRQDj30UC6++OJ+9y4iIiIiIiIiMhSheVdjY77fWFGQOIGK9r2R3sa48EnVR3j8Ho4pOC58bErqNLY2bRnR69q9dqwx1hG9xkhIikuixa2Kv+Gyrm4t57y0lDpHaGZndXso0O+t1SdAfEx8v62PO4O/RrX7lDFoX8Xf0Gb8QWiG3xXzvt/nmmxrNrWO2iFfQ6LLmAj+Xn31Ve644w6uvPJKXnjhBUpLS7nkkktoaGjocf3nn3/O9ddfz7nnnsuyZcs48cQTufLKK9m6dWt4zYMPPsgTTzzBbbfdxrPPPovFYuGSSy7B7XZ3O99dd91FVlZWr/vzer1cd9113UI/gI8//pgzzjiDxx9/nKeffprc3Fy+853vUFOj9FxEREREREREhk8gGKCyvaLHtncHs/yEAsrbyiO9jXFheXmozWfefuHy1NRpbGvaSjAYHLHrOnz2KG71qYq/4VLRXo7H7+GDineBUIVznCmOtI7gbn/plgwACpOK+m193Pn8JreCPxl7DnTG30B1VvwFgoERvY6MDWMi+Hv00Uc5//zzOeeccygpKeFnP/sZ8fHxPP/88z2uf/zxxzn66KO59NJLKS4u5pprrmHGjBn87W9/A0LVfo8//jjf+973OOmkkygtLeWuu+6itraWt956q8u5li9fzgcffMCNN97Y6/7uueceJk+ezJIlS7o99tvf/pZvfOMbTJ8+neLiYn7xi18QCARYsWLFAXxGRERERERERORg5g/4+ahqBevq1oSPNTgb8Aa8XUIZCVX8VbZXjGgwdTBw+px8XLWCYyd0ndU4JXUabZ42ahzVI3Zth9eB1RyFFX+xyWr1OYw6qyffLf8vEJppmmvLw2AwdFub1lHxV5TU93w/CLVkNRoMNKnVp4xB3kCo1eeBzPgbiGxrDt6AlxZ384heR8aGmEhvwOPxsGHDBi6//PLwMaPRyJFHHsmqVat6fM7q1au5+OKLuxxbvHhxONQrLy+nrq6OI488Mvx4YmIic+fOZdWqVZxxxhkA1NfX85Of/IT77ruP+Pj4Hq+1YsUKXn/9dV588UXefPPNfl+P0+nE5/ORnJzc79pORqMBo7H7LzCR0WIyGbv8r8hYpPtUooHuU4kGuk8lGug+lWgwnPepy+fin1ufI0iQOFMcdY46/r37DZrdTaRbMnj2y//EYDBQ66rCYIAJyQXExOj7o9PE5AnYfe3Y/a2kxKdGejtjymDu088qP8Yb8HBC0Yld7q8ZGaUYDLCjdSsFycMfOvsDfjwBN4lxCVF3X6daUnD47BiMQUxGU6S3E7U67892bxsGA2xoWEeLt5FaZxX5Sfk93heZCenEmmIpSSsZwH1jJDU+jRZvU9TdYzJ2jNR/nwYMPgwGiI+NHdH7MzcpB4MB6t21ZCZkjNh1ZGyIePDX1NSE3+8nPT29y/H09HR27tzZ43Pq6+vJyMjotr6+vh6Aurq68LHe1gSDQW666Sa+9rWvMXv2bMrLu7eEaGpq4uabb+Y3v/kNCQkJA3o9d999N1lZWV1Cx/6kpdl6/MsVkdGWlGSJ9BZE+qX7VKKB7lOJBrpPJRroPpVoMBz36Vs7V/DohgdJjk/G7XNjNVs5o3QJ2bZs7v34XuymJiYkT6C1toGYGBMzJ0wl9gBmAY03MwJTMZmMtBkbmZRaEOntjEkDuU8/WfkBs3JmMnPClC7HU1Nt5CblUO7aTWrq8LfjbHW3YjIZyUnLGJHzj6T8jGxMJiNGq49US1KktxP1XNgpSiuksq2SVU2fUOeuYfHExb3eF4+d/QiTUycTH9NzQcf+cpKzcNEedfeYjD3D/d+n8U4TJpORrLRUUpNG7v4stRZjMhlxGlv1fXAQiHjwFylPPPEEdru9S6XhF/3kJz/hS1/6EoceeuiAzvnAAw/w6quv8vjjjxMXN/DS3MZGuyr+JKJMJiNJSRZaW534/erzLGOT7lOJBrpPJRroPpVooPtUosFw3qefla0iPS6Tp5c+1+V4u6edewL3snzbB5xRvJSt1TtIMadhb/Vix3tA1xxPEgJp+P0BNlZsZUJscaS3M6YM5j7dUb+L6WkzaGqyd3usKKGYVeVraJrS/bEDVW2vw+8P4HcZe7z2WGZwx+L3B9hTU4UheWTb9I1nnfdpbVsDWXE5ZMZm869Nr7KnqZyUooxe74vcmEKcbX6c9H/fJBiTqGyuibp7TMaOkfrv0/rmFvz+APY2D03+kbs/g0EjZkMs22t2syBV3wfRaqChbcSDv9TUVEwmEw0NDV2ONzQ0dKvq65SRkRGu3OtpfWZmZvhYVlZWlzWlpaUAfPTRR6xevZrZs2d3Oc8555zD0qVL+fWvf81HH33E22+/zSOPPAKEqgQDgQAzZszg9ttv59xzzw0/7+GHH+aBBx7g0UcfDV9joAKBIIGA+tBL5Pn9AXw+vbEiY5vuU4kGuk8lGug+lWig+1SiwXDcp5sbtjAlZVq388QbrRQnT2FV9eecWngG5a0V5Nry9H3xBTHEkh6fQVnLHn1uejGQ+9TpdRFrjOtxXUnKVF7Y9hxer3/Yu1a1utoIBiHOYIm6r5/VlEAwCI3OZvJt0bX3sajF1UKmJYu5mfP53Wd3AZBtGZ6feQnmJGrs1VF3j8nYM9Tf+4FggH+XvcGJE08mxrgvlnF53ASDYAqaR/z+zLLkUNWm74ODQcSbGsfGxjJz5kxWrFgRPhYIBFixYgXz58/v8Tnz5s3jo48+6nLsww8/ZN68eQAUFBSQmZnZ5Zzt7e2sWbMmfM5bbrmFF198kWXLlrFs2TIeeOABAH7/+99z7bXXAvDMM8+EH1+2bBk/+MEPsNlsLFu2jJNPPjl87gcffJA//elPPPTQQ92CRBERERERERGR3gSCAbY2bWZq6rQeH5+bOY81dasJBoNUtoeCP+kuP2ECFW3dx7jIwLl9LmJNPVetTU0tpc3TRo2jetiv6/A6ALCarcN+7pGWHJcMQJu7NcI7GR9a3S0kxSZzZN5RGDsC5ryE4fmZZzMn4PQ5huVcIkOxuvZz7v70Tj6r+bTLcY/fA0CM0Tzie8iyZo3Iz3EZeyJe8Qfw7W9/mxtvvJFZs2YxZ84c/vrXv+J0Ojn77LMBuOGGG8jOzub6668H4KKLLuLCCy/kkUce4dhjj+XVV19l/fr13H777QAYDAYuuugi7r//fgoLCykoKODee+8lKyuLk046CYC8vK6/NKzW0H9cTJw4kZycHACKi7u2h1i/fj1Go5GpU6eGjz3wwAP84Q9/4Le//S35+fnh+YJWqxWbTb1yRURERERERKR3le0VOLwOpqb1HPzNyZzHP7Y+Q5W9kip7JUflHz3KO4wOBYkFbG7cGOltRDW33028qedZaVNTQ++FbWncTI4td1ivGw7+YqLvfbTE2NBcv1aPgr/h0OJuISk2ieS4FOZmzmdN3SqyrTnDcm6b2Ybdq/aGEjlr69YAsKNpG4fnHhE+7g2Egr+4Xv7wYjhlWbPZ3LhpxK8jkTcmgr/TTz+dxsZG/vCHP1BXV8f06dN56KGHwq07q6qqMBr3FScuWLCAu+++m3vuuYff/e53FBUVcd9993UJ5C677DKcTic//elPaW1t5ZBDDuGhhx4a1Oy9gXj66afxer384Ac/6HL8qquu4vvf//6wXktERERERERExpetTZsBeq34m5UxG6PBwPsV79LmaVPFXy/yEwr4z55/EwwGh70V5cHC5XcRF9Pz+2ap8WlkWDLY1rSFYyccP6zXtXvbgVAwE21ijDFYzVZa3M2R3krUCwaDtHpaSeoIU8+eej4ZlkzMpuGpgrLGWBX8SUStq18LwPbmbV2Oe/xejAYDJqNpxPeQZc3m3fL/jvh1JPLGRPAH8M1vfpNvfvObPT72xBNPdDu2ZMkSlixZ0uv5DAYDV199NVdfffWArl9QUMCWLVv6XHP22WeHqxA7vf322wM6v4iIiIiIiIjIF21p3EKuLTdcOfRFCbGJFKdM4fVdrwKQl5A/mtuLGgWJE3D5XDS4GsiwZER6O1EnEAzg8XuI66XiD2BK6jS2NvX93tlQ2L12DIAlxjLs5x4NSbFJtKni74DZvXYCQT9JHe1TD889oktV1IGymW04vHb9cYBEhNfvZVPDBqxmK9ubt3Z9LODBbIwdlX1kW7Np87Th8Dqisr2yDFzEZ/yJiIiIiIiIiBystjVtYWpqaZ9r5mbOY2/bHmD45l2NN52BaGW75vwNReeMqfg+Ws1NTZ3G9uZtBIPBYb22w2fHarZFbRiTFJusVp/DoMXVAhCu+Btu1hgr/mAAT0dbRZHRtLVpC96Al9OKzqDaXt3ljwU8fg+xptEJ/rKs2QDUOmpG5XoSOQr+REREREREREQiIBAMsK15K1NSp/a5bm7mfAASYxN7rQw82OXa8jAaDJS3KfgbCo/fDUBcTO8Vf6Vp02nztA37fCiH14E1JnorT5LikhT8DYMWdyj4S+6o+Btu1o5Wsg61+5QIWFe/BkuMhVMnhToYbm/a1+7TG/BiNg5PS9v+ZNlCMzNrHbWjcj2JHAV/IiIiIiIiIiIRsKe1DJfPxbS0viv+Ouf8ab5f72JNsWRZs6lo3xvprUQlV2fw10fF34LsheQl5PPslr8P67UdPkc4lIlGavU5PJpdzQAkxo5M8Nc5Q1Jz/iQS1tWtYUb6TIqSJhFniusy529H8/ZwJd5Iy4jPwGgwhCv+Pq/5jEvf+BYun2tUri+jR8GfiIiIiIiIiEgEbG3aDEBJPxV/CbGJTE0tpTCpaBR2Fb3yEwpU8TdEbn/oTd/4Pmb8GQ1Gzpv6NT6oeJfytuELWB1eeziUiUaJscnhajUZus7gb6RafdrCFX+OETm/SG8CwQAbGtYzO2MuRoOR4pSS8Jw/p8/Jp9Ufc1T+0aOyF5PRRIYlk1pnKPj7++YnKWvdzdq6NaNyfRk9Cv5ERERERERERCJgS9MW8hMKSDAn9Lv2Z0f9ku/Nu2oUdhW98hMnUKEZf0Pi9nVW/PUe/AGcUnQayXEp/GPL08N2bbvXjtUcxa0+Y5No9Sj4O1AtrhZiTXHE99Fu9kBYYzqCP58q/mR07WrZgd1rZ3bmHACKU6awvXk7AJ9Vf4Lb7+bo/GNHbT9Z1mxq7dXsatnJ6trPMQCf1XwyateX0aHgT0REREREREQkArY1bWFa2rQBrU2LT9d8v34UJBRQ2V5BIBiI9Faijquj4i/WFNvnulhTLOdMPZ83y16nwdkwLNd2+OzhUCYaJccl0+ZpJRgMRnorUa3F3TJi1X5AOFxWxZ+MtnV1a4kxxlCaNgOAKalT2dtahtPn5L3y5UxOnkx+YsGo7Sfbmk2No4YXt/+TtPg0Tio8lc+qFfyNNwr+RERERERERERGmS/gY3vTNqam9j3fTwYuP2EC3oCXOkdtpLcSdcKtPgdQbfWlyV/GbDTzwrZ/DMu1HV5HVFf8JcYm4Qv4cfqckd5KVGt2NZMcNzLz/QAsMR3Bnyr+ZJStrV9Dadr08B9WTEmZShDY0riJj6o+ZHHB6FX7AWRas9nTtoe3yt5kafFZHJF3FHvb9lBjrx7VfcjIUvAnIiIiIiIiIjLKah01eANeipInRXor40ZBR8VEWWtZhHcSffa1+ozrd21CbCJLi8/k5Z0v4fK5DvjaDp8jqiv+OqvU1O7zwLS4WkY0+Is1xWI2mrF7FfzJ6AkGg6yrW8OsjDnhY4VJRcQYTTy75e84fc5RbfMJkG3NodXdgj/o54zJS5mftQCjwcCnqvobVxT8iYiIiIiIiIiMsnpnHQCZlqwI72T8yLXlkRafxpq6zyO9lajT2eqzvxl/nU6ftBS7186Hle8d8LUdXjs2czQHf6GwqtXdGuGdRLdQq8+RC/4ArGabgr8haHI18tSmJ/AH/JHeStRx+900u5spTCoMHzObzBQmTeLT6k8oSJxAYVLRqO4py5oNwLETjic1Po2E2ERK02awsubTUd2HjCwFfyIiIiIiIiIio6zeWQ9AhiUzwjsZPwwGA4dkH6pZRUPg9ocq/gbS6hMgP7GA2RlzeH3Xqwd8bbvXHtWtPpPiVPE3HJpdzeHP5Uixmq04FPwN2orKD3l0/UO8vvvAv98PNp1Bc4I5scvxkpQpABxdcCwGg2FU9zQpeTKJsYmcO+Wr4WMLcw5jVe3KQYW7Xr93JLYnw0TBn4iIiIiIiIjIKKtz1GI1W6M68BiLFuYcys6WnTQ4GyK9laji8bsxG80YDQN/q/CUoiWsrv2cGkfNkK8bCAZw+pxR3uqzo+LPo4q/A9Hsag63TR0p1hgrDp9jRK8xHlXZKwB4bP1DOLz6/A2G3dsO0K2qeUrqVIBRb/MJkGnN5Pkv/4uS1CnhYwuzD8PutbOpceOAzrG3bQ9nLltCWevuEdqlHCgFfyIiIiIiIiIio6zB1aBqvxGwIGshBmBljar+BsPlcw242q/TMQXHERcTz793vz7k6zp9ToCoDsAtMRZijCbaFPwdkBb3yM74g1D4ooq/wator2BiUiF2r51/bH060tuJKp0Vf18M/k6ceDLXHvK/4cq/0fbFKsNpaaUkxiYOuGL+w4r38Qa8rK9fNxLbk2Gg4E9EREREREREZJTVOWrJsGREehvjTkp8KiWpUzWraJDcfjdxprhBPcdqtnJMwXG8ufs1AsHAkK7bWT0UzRV/BoOBxNgkWtzR1erT7Xdz58c/p7xtb6S3gtvnxu1zkzTCwZ/VbMOuir9Bq2yvYHbGHM6Zeh7Pbvk7dY66SG8pauyr+EvocjwhNpHTJ39p1Nt89sZoMHJI9qF8Wv3xgNZ3/o7d3rR1JLclB0DBn4iIiIiIiIjIKGtw1avib4QszDmMz2o+G3IYdTBy+13EmQZX8QdwatESquxVrK9fO6Tr9tYGL9okxSZHXavPnc07+M+et/jJBzfT3vF1iJTO+YgjHfyp4m/wgsEgVfZKcm15fLX0G8THWPjrhocjva2o0VvF31i0KPdwtjZt6TfYdflcrK9fR4wxhu3N20ZpdzJYCv5EREREREREREZZqOJPwd9IWJh9KK3uFrY36Q3JgXL53cTHDK7iD2B2xlxybbm8sfu1IV23c95aNLf6BEiOS6bNE10Vf1X2SgAaXQ38+uNfRDQo76yWHPkZf7ZwECMD0+JuxuF1kJeQT4I5gS8Xn8WHle9HeltRo/N+s0ZB8Hd43lHEGGN4v2J5n+vW1q3BG/ByatESdjRvxx/wj9IOZTAU/ImIiIiIiIiIjKJAMECjZvyNmOlpM7HEWPhMc/4GzO1zETvIVp8QanN5StES3i3/b7ht52D01gYv2iTGJkVdxV+1vYqkuGR+vOg2Pq5awV83PBKxvXQGf8lxKSN6HZvZGg6bZWAqOwLivIQ8ALKtObR52vD6vZHcVtSwe9uxxFgwGsZ+DJNgTmBh9qG8V9538Ley5lMyLBmcMPEkvAEve9v2jNIOZTDG/h0nIiIiIiIiIjKONLoaCQSDZCr4GxFmk5m5WfM1528QQjP+Bt/qE+DkotNw+1y8W/7fQT83POMvyiv+kmKTaHVHV/BX2V5BjjWHw3IXceHMb/PUpidocTdHZC+doeloVPwNJaA+mFW2lwOQa8sHIDU+DYDmCN0r0cbutUdFm89ORxccy/r6tTQ4G3pds7LmUw7JPpTJKSUAbG/WnL+xSMGfiIiIiIiIiMgoanDWA6jibwQdmn0YG+rX6U3+AXL5XcQPoeIPINuazbysBbw5hHaf4VafMeMg+Iu6Vp9V5CWEwpzDcg4H6He210hpdbdgMppGPCCxmq3hKlMZmMr2SlLiUsLhfGpcKgBNrsZIbitqhIK/6KloPiLvKIwGY6/tPuscdZS17mZhzmEkmBPITchjm9pqj0kK/kRERERERERERlGdsxaADEtGhHcyfs3JnIc/GGBL46ZIbyUquH2uIVf8AZw26XTW1a+loq18UM9zeO1R0wavLynxqTS5mggGg6N+7Wp7FT9fcStuv3uQz6skx5YLQFp8OhCqRo6EVk8ryXHJGAyGEb2OzWzDF/Dh8XtG9DrjSaW9IhwQw76KvyZ3U6S2FFXs3vaoqvhLjE1iQfZC3u2l3efKmk8xAAuyDgFgSspUVfyNUdH9W1VEREREREREJMo0OOuJMcaM+Dyrg9nEpEIsMRa2NG2O9FaigtvvJi5maBV/AEfmHY3VbOXNstcH9Ty71x71bT4B8hMKcPvdNLh6b483UtbXr+Xd8v+yvn7tgJ/j9Xupc9SSawvNbUvp+FnUGIH9Q2jGX0p8yohfxxoTCmAcXvuIX2u8qGqvJLdjvh/su1dU8Tcw0dbqE+DoguNYX7+mx6/xyppPmZpWSlJcMgAlKVPY3ryNQDAw2tuUfij4ExEREREREREZRXWOWjIsGSNe3XIwMxqMTEmdxpZGBX8D4fYfWMVffEw8x084kX/vfn1QbwA7fPZwGBPNOiuiKtr2jvq1O6v0VteuGvBzahzVBIHcjoo/s8lMUlxyxIK/Vk8LyR1BwkjqDJk7W8xK/yrbK8hPKAh/bDaZSYxNpFkVfwMSba0+AY7MOwqADyre73I8EAzwec1nHJJ9aPhYSeoUHF4H1faqUd2j9E/Bn4iIiIiIiIjIKKp31Wu+3ygoTStlc+PGSG8jKrh87iHP+Ot0StES6px1rKpdOeDnOLyOcVHxl2vLw2gwUN4+uFanw6HZFQpgVtd+PuDndL5Jv38lV1pcWkQqFiE04y85fhSCv3DFn4K/gXB4HTS7m8mz5XU5nhIXam0r/Wv3tkVdxV9yXApzM+ezorJr8Fdjr6bV08rM9NnhYyUpUwDY3qw5f2ONgj8RERERERERkVFU56hT8DcKStNmUO+sp8G5L8x4cfs/+fOaP0ZwV2OT2+8iLmboFX8A09NmkJ9QwHu9zIbqicPrwBoT/cFfrCmWLGs2lREI/hrdoYq/rU2bsQ+whWWVvQqTwUimJSt8LM2SFrH2ja3u1lGp+OsMYBw+tfociCp7BQB5+1X8AaTGp6rV5wA5orDVJ8D09JndwrxdLTsBmJxSHD6WGp9GhiWDbU2a8zfWKPgTERERERERERlFDc56MiwZkd7GuDctbToQCkQAgsEgz219hs+qP43ktsYkt99N3AFW/BkMBianFFPZXjHg5zh80dcGrzcFiRPYOwKtPp/c+DjL977T6+NNrkaKU4oJBIOsG+Ccv2p7JVm2HExGU/hYanwajc5xPuOvo7p0oAHpwa6yvRKAvISuFX+pcWk0qdXngERjq0+A4pQSGl2NXQLenS07SIpNIj0+vcva0Jw/BX9jjYI/EREREREREZFREgwGqXPWquJvFGRaMkmNT2VTR7vPbU1bqbZXY/e2R3hnY4/L5yL+AGb8dcqx5lDjqBnwervXPi5afUKoKuqLoeeulp3UOeoO6Lwv7XihzyrKJlcjM9Jnk2HJYHUvbVbfKnuDdXVrwh9XtleSY83psiY9Pj1cPTjaWj2j0+qzM4BxKPgbkIr2cqxmK0mxXb82Kar4G5BgMIjd2x6VFX+Tk0NVfTtbdoSP7WrZSVHy5G7ziUtSp7KtaRvBYHBU9yh9U/AnIiIiIiIiIjKCfAEfvoAPCM378fg9Cv5GgcFgYFradLY0bgLg3fJQ1VS7gr8uAsEA3oCX2AOs+APItuVQ66gmEAwMaH2o1Wf0vSnekwkJE6hoL+/y2n/24U/47Wd3DvmcDq+DRlcjDa76Xtc0uZpIi09jXtYCVteu6vZ4naOO3372ax7b8Ej4WJW9kryE/C7r0uLTaXQ2jPqb9/6AH7vXPioVf2ajmRijCYev7xl/dY46HljzpwHfx+NVVXslebb8bkFPWrwq/gbC7XfjDwaiMvjLS8gnPiae7U372n3ubNkRDgT3NyVlKi3uZmqdtaO5RemHgj8RERERERERkRH08xW3cnfHm/91zlD1j4K/0VGaOp2tjVsIBAO8W7Ecq9mKy+cKB7ESenMaID5mOIK/XHwBf5e5in1x+MZXxZ8v4KO2o+KxydVIRXs5K2s+o6qjZeJgdc5Yq3f2XDUYCAZo9bSQEpfKvKwF7GzeTqu7pcua57Y+gy/gZ339Gto8rQSDQarsleTYcrusS41Pw+134/Q5h7TXoWr1hPY7GjP+DAYD1hhbv60+X9rxT/6x9ZlBta0djyraK7oFxAApcam0uVvwB/wR2FX06LzPorHVp9FgZHJyMbs6Kv7cfjeV7eVMSp7cbW1peqit9uaGjaO6R+mbgj8RERERERERkRFU3r6X/+75Dw3OBuodocqdDKuCv9EwLa2Udm8775Uvp6q9khMmnASgdp/78XQEf3HD1OoToMZRPaD1oYq/8RH8FSQWAKH2iAAbGzYAEGeK45WdLw3pnJ0zAxt6qcRrdjcRCAZJt6QzL3M+QWBN3erw4y3uZl7Z+RKnTTqdQDDIx1UraPe24fA6yLV1ndvWOber0TW6c/4+qHgfgAnJE0blelaztc+Kv0AwwDt7/gPsm3HXk90tu0b9czXaquwV3eb7AaTGpxIEmt3No76naNL5eyYaK/4gNOdve/N2AMpadhMIBpmc0r3iLy0+nRxbDpsaN4z2FqUPCv5EREREREREREZQs6sJfzDA67teod5Zh4F9b7LLyJqWVgrAI+sfJDE2kaPyjwbot+LnYOIKB38HXvGXZc0GoMZe1e/aYDCIw2ePymqYnmRbc4gxmijvCOs21K8jw5LBkklf4o3dr+H1e4HQ615Xv3ZAbSQ7K868AS/t3rZuj3fOWUuJSyXblkOuLZfVdfvafb6w7XkALp19OVNTp7Gi8sNwmPXF4C81Pg0Y3eCvxd3MI+sf4NRJS5ic2r2SaCTYzH1X/G1s2BCeU9lZcdmT21f8lMc3PDrs+xsrPH4PdY5a8hIKuj3Wea80R2gmZLTovM8SovRn3OTkEva2leHxe9jZsgMDUJhU1OPa0rQZbFLF35ii4E9EREREREREZIT4A37aPK1YzVZe2fkStY4aUuJTiTHGRHprB4XE2CTyEwqobK/gyLzFpMSlAtDuUcVfJ7fPBUBczIFX/FnNVpLiksPBSV9cfheBYHDctPo0GU3k2PKo6AjrNjSsZ1bGHM6YvJRmdzMfVL5HMBjk4XV/4bp3vs+q2pX9nnNv2x7MRjOwr03w/ho7gr+0jiBmXtYCPqh4l/fKl9PqbuHF7f/kS8VfJjkuhaPyj+bT6o/Z21YGQG5C11afaZbQHyMMtE3rcHh43QMEg0G+O/d/Ru2aoVafvX//v73n32RaMslNyKPK3nPFn8fvoaJ9b7giczza01pGEMjvodVnasfP0c77T3q2r+IvOoO/4pQSAsEgu1t2satlJ7kJ+VhiLD2unZ4+g21NW8N/4CCRp+BPRERERERERGSEtHpaCAJfKTmXOmcd/y57nUxLVqS3dVAp7aj6O7rguHDLtZ6qpw5W4Rl/w9DqEyDbmk31ACr+HN5Qu0VrlLbB60lB4gTK2/bg8XvY2rSFGekzKUqexOyMOby84yX+vvlvPLPl7wBUtJX3e77K9gqmp88AoMFZ3+3xZlcTsK8C6+wp55Een8HtK37KV18+G5ffxTlTvgrA4XlH4vQ5eWP36ySYE0iMTepyLluMDbPRTNMoVXFtbNjAa7te4duzLg3vfzRYzdbwvfdFvoCP5Xvf4fiJJ5KfkN9rq8+K9nICwSCV7f1/DaPV8vK3SYxNZHrazG6PhSv+Ou4/6dm+GX/R+TOuKHkSBmBnyw52tezocb5fp+lpM/EGvOzsmAkokafgT0RERERERERkhDS5Q2+MHpZ7OFNTp1HrqCXdkhHhXR1c5mUdQrolnQVZh5AQG6q8UKvPfVz+joq/YWj1CaGWlwMJ/sLVMONkxh+EqqMq2ivY1rQVX8DHjPRZAJwxeSlr6lbx6PqH+NbM74SqUPtoI9mpvG0vszPmAj1X4jW6GrGZbcSaYoHQG/X3nfQAD57yGGdPOZfvzb2KzI55opOSJpNjy2F17efk2HK7nctgMJBuSadxFCr+2r3t3LvybkpSpvCl4jNH/Hr7s8bYeg3+VtZ8RqunlRMmnkSuLZ/qXir+9rSGqibrnfXh4Hw86ZxzeEzBcZhN5m6Px5pisZqtqvjrR+fvmWj94wZLjIX8xAlsb97GrpadTE7uPt+vU3FKCTHGGDY3qt3nWKHgT0RERERERERkhHRWRKTEpbC0+CwAMq2q+BtNpxYt4Yklz2A2mbHGdFb8qdVnp+Fs9QmQY8sZUKtPh6+z4m/8BH8FCROptleypm4VcaY4ilNKgFC16cSkQi6Y/k2+Mf0ichNyqWrvOxxt87TS6mmlKHkSyXEpPVb8Nbkbw+1r91eUPInL5nyPL5d8JXzMYDBweO5RAOQm5HV7DkBafPqIhzn1znquf+f71Dpq+eGhN2I0jO7b0zazDYev5+D/nT3/pjCpiMnJJeTacqmyVxEMBrut29PRLhWgqpeqwGjWOefwhIkn9bomNS6NZrcq/vpi97ZjibGM+j0+nIqTS1hZ8ynN7uY+K/5iTbFMSZ3KpoYNo7g76Uv03nUiIiIiIiIiImNci7sFgJS4VI6bcALJcSlMSJgQ4V0dXAwGQ7hqxWQ0YYmx0O5Rq89O+1p9Dk/FX44tl1pHDYFgoM91jnAbvOicf9WT/IR8AsEgb+95i2lp08OzPGNNsTx0yl/5zqzLMBgM5Nryeq0m61Te0Qq0IGECGZZ06nuY8dfsagrP9xuII/KOBCC3h4o/CAV/I9nqc2/bHq55+wpaPa38/vg/UpwyZcSu1ZveWn26fC4+qHyfEyaehMFgIC8hH5fP1WO4tbd1Tzg87W0OYDTrnHM4K2NOr2tS41PDFe3SM7vXHrVtPjsVp5RQ3jHLsq/gD0LtPjeq4m/MUPAnIiIiIiIiIjJCmt1NmI1mLDEW4mPiefS0J8KVfxIZCeYEtfrcj7uj1WfsMLb69AV8/VaORfv8q57kJ4ZC/bLW3czMmNXlMYPBEP73nD6qyTpVtIfebM9LyCc9PoN6V/eKv0ZX46Dm483JnEeOLYfStBk9Pp4anzairT7v/vROzKZY7j3hfoqSJ43YdfpiMyeE28zub339Wlw+F0flHw3sC0d7mvO3p2038zLnE2uKpWKczfnbf85hX5VqKXGpNKnVZ59CwV90/2HD5I6q5VhTLHkJ+X2uLU2bTlV7pWY/jhEK/kRERERERERERkiTu4nU+NTwm/6JsUmYjKYI7+rgZjMnqNXnfly+UMXfsM34s+UAUGOv7nNdZ6tPyzia8ZdhyQjP25uZPrvXdbm2PJw+Jy3u5l7XlLeVkxafhtVsJd2S0WMg1+RqIiW+e6vP3sQYY3ji9Gc4uuDYHh9PH+FWn5XtFZw48WSyItju2BpjDd97+1tbv4bkuBQmJhYCkGPrrOjrOosxEAywt20vhUlF5Cfk9xgMRrP95xz2JTU+TQFPP+ze9qj/w4bOdsVFSZP6bVk6PT30BwWbGzeN+L6kfwr+RERERERERERGSIurmeS4lEhvQ/aTEJtAu1etPjt5/G7MRvOwzaHKtnYEf46+Z9hV26swG83hdpjjgdFgJL+jKmZGes9VdQB54TaR+z5Ha+tWc+/K34arACvayynoqCBMt2T02Oqz0d1Ienz6sO0/NT6NFncz/oB/2M7ZyRfw0eJuJm0Y9zsUVrMVj9+DL+DrcnxD/TpmZ8wJ/5GG1WwlJS6lW7BX66jB4/cwIbGQXFs+leOs4u/tPW+G5xz2JTU+dcTnQUa78dDqMz0+neS4lH7bfELoZ39KXAobGzXnbyxQ8CciIiIiIiIiMkKa3c2kKPgbU9TqsyuX30V8TPywnc9qtpIUm0R1HxV/y7Y9z5Mb/8opRacN23XHigmJhRQmFZEYm9Trmn3VZPtCpf+U/ZuXd77EmrpVAJS37SU/oQCA9PgMmt1NXQI5f8BPm7uFlLiBV/z1J82SThBGZHZbk6uJIKEQM5KsHUGMc7+qP4/fw6aGjczO7DrTLi8hv9sMv7LWMgAKkwpDFX/jaMZfIBjgw8oPOH7CiV1a0/YkNS6NVk9Lv7M8D2bjodWnwWDgxsN+xNdKvzGgtdPTZ7KpQXP+xgIFfyIiIiIiIiIiI6TZ3TSsb8zLgbPFJmD3qNVnJ7ffPWxtPjtlWbN7bPUZDAZ5eN0D3Lf6D5wz9Xx+sOC6Yb3uWHDp7Mu5edEtfa6xmW0kxSVTvV/F35amUHu857c+SzAYpKK9PBz8ZVgyCASDXSqsmt3NBIG0Qcz4609aXOhcIzHnr9EVOmeGJcIVfx2tZfcP/7c0bcYb8DInY16Xtbm2XKq+UPG3t62MOFMcmdYs8hIKqLFXdasejFa1jhpcPhdT06b1uzY1PpVAMNhnu9qD3Xho9QlwaM6icPVxf+ZnLWB9/Rrqnd1nksroUvAnIiIiIiIiIjJCVPE39tjMCdgjMONvff06fv/Zb0b9uv1x+1zEmYav4g8gx5ZLdQ+tPlfVruTpzU9y6ezLuXzulcPWXnQsyU3IozhlSv/rbLlUtofmx7n9bna17GRG+kw+qlrBuvo1OH3O8JvtGZZMYF94BtDUEQKmDmfw1xHKNbqHv4VjQ0cQEOlWn50VWPv/DFhXtwar2crklOIua3N7qPjb01pGQeIEjAYjeQl5BILBfudZjkU19mrK2/Z2OVbR0ba0IKH/kKfzD1pGojp0vLD7or/V52CdXHQaZmMsL25/PtJbOeiNv9+uIiIiIiIiIiJjRItbM/7GmgRzAu0RCP7+u/dtXt31Mh6/Z9Sv3ReX3018zPBW/GXbsqmx13Q7vrdtDzFGE+dN+9qwXi8a5drywjP+tjdtIxAM8t05V5Aan8ofV90DsK/VZ0cgt/+cv8YRCP5S41IxMDIVfw2uBowGQ8R/HlrNoYo/h3dfq8919WuYmT6rWxCda8ul0dWIy+cKH9vTWkZhUiEQagUKUGmvGOltD7v71/yR33726y7HKtrKMRmMZFmz+31+Z6Vps0vBX2/GQ6vPwUowJ/ClyV/mXzte7PI9JqNPwZ+IiIiIiIiIyAjw+D3YvXZS49XqcyyxmW0RCf52tewAQu30xhK3fwQq/qy51Dpqus3/qnXUkGnJGpeVfoOVm5BHdUc12bamLcQYY5iaOo2zSs5hV8suDOwLlpLjUjAZjOGqOYCmjqq84awoNhlNJMelhKsJN9Sv5/Oaz4bl3A3OetLi0yP+tbfGhCqw7B0z/vwBPxvq1zM7Y263tbkdn//OlqzBYJA9bWVMTCwCQi1tY4ymcOVmNNnTWsaulp0Eg8HwsYr2CnJseZiMpn6fn9Lxe63JNfzVoeNBMBjEMU5afQ7WWVPOxeVz8tqulyO9lYOafsuKiIiIiIiIiIyAFncLAClxw1eRIwcuwZyIw+voFkqNpGAwyM7mUPC3/1y3scDtG/4Zf9m2HLwBL01fqAaqsdeQZc0Z1mtFq1xbHnWOWrx+L5ubNjE5uRizycwZk5cSa4oly5pNrCkWAKPBSFp8OvWu/YI/VyOJsYnhNcMlLT6NBlcDNY4abnn/Rv685o/Dct4GV33E23wC4SDG0THjb0fzdpw+J7Mzewj+bHkA4XafLe5m2jxtTOyo+DMajOTY8qj8whxAj9/DisoPeGbzU2Ny/l8gGKDKXonda+8yi62yvZyCxIIBncMSYyE+Jl6tPnvhCXjwBfwHZfCXZc3iuIkn8s9t/xiT9//BIibSGxARERERERERGY+aO94QTY5LjvBOZH8JsftmfCXGJo3KNWudteEqw5qxWPEXM7wVf9m2ULhXba8Kt6kEqHFUh0OTg12uLZcgoc/J1sYtzMtaAISq+86b+jXavG1d1mdYM7tW/LmawnPWhlOaJZ06Zy13fvxz2r3tuNvcBIKBA67Ua3Q2kG7JGKZdDl2cKQ6jwRBuQ7iufg1mo5mpqdO6rU2PT8dsNIcr+va0lQEwIXFieE2eLS/c6tPlc/HHVffwbvl/cfqc4ef8cOFNGAyGEX1dvWlyNfLarlf4Wuk3wl/DWkdNOJDZ07abTGtohmR5ezmH5iwa8LlT41JV8deLzhmSB1urz07nT/0a/yn7N++Wv8MJE0+O9HYOSqr4ExEREREREREZAZ3BX4pafY4pCebO4M8+atfc1VHtF2uKpcZRPWrXHQi33038MLf6zO6o6vvia61xVIcfO9h1VpNtb95GedsepqWVhh+7eNYlfH/+NV3Wp8dnfCH4axyRNsKpcWl8UrWCjQ3r+eaMb+ENeKn6QkXbUDS46kkfAxV/BoMBmzkhHMysq1/L9PQZPVZOGgwG8hLyqeyo+NvTugejwRCevQiQl1AQDgaf2Pgob+95i3OnfpUHT3mMmw77MW/ufp0nNj42rK/BH/Dj9rsHtPa1Xa/w6PqHKG/bGz62t21P+N93t+wKn7PaXkl+R3vTgUiNT+tW1Sshnb9fDsaKP4DJKSXMzZzPW2VvRnorBy0FfyIiIiIiIiIiI6DF3QwM7wwuOXA2876Kv9Gys2UHCeYEpqWWUjPWWn36h7/Vp81sIyk2qcvsM4/fQ5OrKVwNeLDLtGZhMhh5r3w5QWBaammf69Ms6V3aMja5m0akdWa6JZ1AMMg3pn+L0yctBfZVuh2IhjFS8QdgjbGyuXETf1lzHytrPmVWxpxe1+Ym5FHdXkmNvZqPqz4k15aP2WQOP56fkE9VeyU7m7fz/NZn+cb0i7ho5rcpSp7EiYWn8J1Zl/HExsd4bdcrw7b/P666h7Nf/BJ3fvILVtWs7LNt8cdVK4DQz6BOle0VxBhNTEqexJ7W0Ne2zlmLL+DvEmr2JzU+jYb92s/KPgd78AcwNXVql8BZRpeCPxERERERERGREdDkasISYxn2UEUOTOcbse2e7sFfIBjg6c1PDns14I7m7UxOKSbLlk2Nffy3+gSYmFQYDhUg1F4QINuaPezXikZGg5FsWy4fVX1IfEx8vy1QMy2ZNLoawh83uRpHpNXnotwj+dLkL/ON6ReRYcnAEmPp8nUcCn/AT4u7eUzM+ANIikvm/Yp3eXvPWxxbcDxnTzm317W5tjw+q/mEb776VVbWfMYZk5d2fTwhH2/Ayy8++hl5CQWcN+1rXR7/Wuk3OLVoCfev/r9hm3e2p62MTEsWmxs2ccO713HtO1f1ODu0xd3M5saNQNfgr7ytnFxbPpOTi9nduqvjWCigGUzwV5Q0iR3NOwgGgwfycsalg73VJ4SqYWsc1ZrzFyGa8SciIiIiIiIiMgJa3M2q9huDOlt9tvdQ8berZQcPr3uAHFsux004YdiuuaN5OwtzDsNmtrGmdtWwnXc4uHxu4kcgnC5MKgqHDrCv7adafe6Ta8ulsr2C2Rlz+p2hlx6fTpunLVyh2eRqJC0+bdj3NCtjNrMyZoc/npA48YAr/hpdjQRhzFT8/WjRT3H7XUxOLul39t6xBcfT6m7msNwjWJR7RLcKrs7WmHvb9vDb4+7t1jLUYDCwtPgs3tj9GpsaNzK7j+rCgWpwNnBE3pF8d84VrKpdye9X/obvvvltfrDgWk6ceEr4NX1a/TGBYJDJyZPZ1bIz/PyK9r3kJxZQmDSJj6s+IhgMUtFeTozRRNYggvnS9Bk8uelxahzV5NhyD/h1jSeq+IO8hDwCwSA19mryEwceKMvwUMWfiIiIiIiIiMgIaHY3a77fGGTrI/jrnHe1/yy1A+XyuahsL6c4pYQcWy4Nznq8fu+wnf9Auf0u4oZ5xh90BEate8JtCGvsNRiADEvmsF8rWnXO+ZuaNq3ftZ2hWYOzHl/AR6unldQRCP6+6IuVm0PRWak4Fmb8ARQkTqA4ZUq/oR/AzIxZ3LToJ5ww8aQeQ5xsaw4xxhhOKTqNOZnzejzHlNSpJMYm8nnNZwe6dSD0+UyLT8dgMLAgeyH3n/wwR+Yv5tef/IqXd74YXvdx1UeUpExhYc5h4TmjAOXt5eQn5FOYVES7t50GVwMV7RXk2PIwGU0D3kdpR3vaTQ0b+1l58NkX/B3MFX+hULxiv5bPMnoU/ImIiIiIiIiIjIBmdxPJqvgbc8wmM3GmONo9bd0e62x7V++sG7br7W7dRRCYnFxMtjWbIKF5WmPFSMz4g1Bg5A14qbGHKv1qHNWkWzK6zEc72HVWSU1Lnd7v2s7gr9ZRwys7XwIYleCvMKmIPW1lB9TOsTNIT7eMjeBvOJlNZu45/j6+P//aXtcYDUbmZs4fluDP4XXg9Dm7fC4TzAncdNgtnFJ0Go+tf5h2bzv+gJ/Pqj9hUe4RTE4upsZRQ7unDV/AR429ivyECRQmFQGwp3U3le3lFAyizSdASnwqObYcNjduOuDXNd7Yve1YYiz9VvKOZ1nWbGKMJqrsCv4i4eC980RERERERERERlCTq0mtPseohNiEHuf47W7dDUD9MFb87WjejtFgoCh5UrjNZWcYNha4fC7iR2DGX2HSJADKOj6nNY5qtfn8gs65fqVp/Qd/nZWSP/3gR/xx1b0cN+EE5mctGNH9AUxMLMThddCw33zBwWpwNWA0GMbtH0JMSyvt93vokOxD2dy48YDnh+6rnuzeNvXbsy7D7Xfz901PsLFhPe3edhblHsGklGIAdrXspNpeRSAYpCChgNyEPMxGM7tbd1HeVk7eIIM/gNK0GV1a+kqI3Ws/qNt8QsccU2sule2Vkd7KQUkz/kRERERERERERkCrp4WUOLX6HIts5l6Cv445WHWO4avI29myg/yECcSZ4si0ZgFQ46gZtvMfiEAwgDfgHZFWn5mWTCwxFspad3N43pHU2mvItg18ftjBYFHuEfzhhPvJTcjrd601xkpxSjHp8Rl8e9ZllKROGYUd7gsn97TuJmOIM/oanPWkxacf1NVPC7IPIRAMsrZuNUfkHTXk83QGf2k9VE9mWDI4f9oFPL35SWodtSTHpTAtrRR/wE+M0cTOlh1k+xwA5CdOwGgwMjFpIjubd1BtrwzPKxyM0rTpfFDxHr6AjxijooZOoeDv4G3z2Sk/IZ9KVfxFxMH701ZEREREREREZASp4m/sSjAn0O7t2urT6XNSba8mLT6NBtfwVfztat7B5ORQxU2sKZZ0Szo1jrFR8efyuQBGpNWnwWAIzflrC82Hq3FUk6WKvy6MBiPT02cMaK3BYODPJz/CL4++a9RCPwjNIYwxxrC3bc+Qz9E5k+5glpeQT44th5UH2O6zwdkR/PXy+Tx36ldJiE3gv3vf5tCcwzAajJhNZiYmFrKrZScVbXsxG83hELcwqYjPaj7BHwyQnzi0ij9vwMvO/WYISqjV58Fe8QeQm5BPpWb8RYSCPxERERERERGRYeb0OXH73Qr+xiib2Ua7p73LsT2toYBqYc5h1DvrCAQDB3ydYDDIzpYdTO5otQeQbc2h2l51wOceDh6/G2BEWn1CqFpsT2sZ/oCfemedWn1GIZPRRH5CAWUd3x9D0eCs77FC7WCzIGshq2pXHtA5Glz1xMfEY42x9vi41Wzl27MuA0IVpZ0mpRSzs2UHFe3lFCQWhKsvC5MmhcPE/CG0+ixJnYLJYGRLk+b87U+tPkPyE/Kpaq8clt+nMjgK/kREREREREREhlmLuxmAlHi1+hyLEsyJtHu7Bn+7W3cBcEj2QnwBf/hreCBqHTXYvXYmp5SEj2Vbc6gdI60+3R3BX6wpdkTOX5hURFnr7o4gNUiWVa0+o1FhUlE4GB+KBlcDGT3MpDvYLMheyJ7WMuocdUM+R6MzVD1pMBh6XXNq0RJ+csTPODr/2PCxycnF7GrZyd62veQnTAgfL0wqAiDGGDOk7884UxyTU0rY1KA5f/tTq8+Q3IR8vAHvsM7NlYFR8CciIiIiIiIiMsyaO4M/VfyNSQmxCdi/GPy17CTXlht+U3w43qh8Zde/MBoMTEmZGj6Wbcumxj5GWn36O1t9jkzFX2FSEU6fkw0N6wHIsaniLxpNTCpkT9vuIT+/wVlP+hDnA44n87MWYABW1Q693Wejq4H0ftqmGg1Gjik4DpPRFD42ObkYl8/Fhvp1XWb5dQZ/uba8Ic9gLE2bweZGVfztT60+QzrvtSq1+xx1Cv5ERERERERERIZZs6sJgOQ4VfyNRTazrVvwV9a6m8LkSWRaMwGodw69Kgfg85rPeHrT3/jWzEtI36/NYbY1lzpnLf6AP7xuZ/P2A7rWULl9Ha0+Ryj4m5hYCMAn1R8BqOIvSk1MLKTJ1USbp7XXNS6fi+V73yEYDHY57u+onj3YZ/wBJMUlU5I6lc8PYM5fg6txSCFqZ7thb8BLfuK+ir+8hHzMRnOXMHCwStNK2du2h3ZPW/+LDxLtCv6AUIW70WCgQsHfqFPwJyIiIjKCgsFgn/8HWURERManzoq/5NjkyG5EemQzJ2D32rsc29Wyk6KkSaTEpWIyGKlz1A75/E2uRu74+OfMy1rA10q/0eWxLGs2gWCQemcdre4WbvvwFv6++ck+z/fFtqTDxd1Z8RcTNyLnz03Iw2w0s7L6U5LjUkZslqCMrIlJEwHY07qn1zX/3fs2v/joNp7Z8lSX442uRoKgir8OM9JnsbVp65Cf3+CsH1KImhafHq5AL9hvlp/RYGRWxmymp88c8p5K02YAsLVpy5DPMd7YPe0kmBMjvY2IizXFkmnJosqu4G+0KfgTERERGUGfVn/CBS+fq79+FBEROcg0u5tIjE3EbDJHeivSgwRzInZvO4FgAAgFa/XOeoqSijAajGRYMql3Da3VZzAY5Nef/BKAmxbd0q19Xme7yxpHNc9texanz9lndeGG+vWc99KZNLoahrSfvox0q0+jwciExAk0u5vJVrVf1CpInIgB2NPW+5y/9fVrMRoMPLr+QVbVrAwf77xv+2tPebCYlDyZiva9ePyeIT2/0dVAWnzakK8NkJ9Y0OX4Xcf+nq9Pv3BI5wQoSJyAzWzTnL8OwWCQdm8bCbGa8QehqlJV/I2+MRH8Pfnkk5xwwgnMnj2b8847j7Vr1/a5/rXXXuO0005j9uzZLF26lOXLl3d5PBgMcu+997J48WLmzJnDxRdfzO7du3s8l8fj4cwzz2TatGls2tRzL+KysjLmz5/PwoULuxzftm0b3//+9znhhBOYNm0ajz322IBfs4iIiBwcKtr34va72dmyI9JbERERkVHU7G4iSdV+Y5bNbCMQDOL0OQEoa9kNQFHyJCBUndRbxV8gGAgHhj2pcVSzsuYzrpj3gx4rczrbXW5v3saybc8TZ4rrs7pwZ8t2fAEfu1p2Dui1DYbb39nqc2Qq/gAmdswQU5vP6BVniiPHlsue1t29rtnQsJ4lk77E3Mz5/PLj26lzhMLscPBnUfAHUJQ0iUAwyN4+QtTeuHwu7F77kD+XxSklWGIspMYNLTjsjdFgZHbGHD6vXdn/4oOA0+ckEAxiMyv4g1DwV6ngb9RFPPh79dVXueOOO7jyyit54YUXKC0t5ZJLLqGhoee/Yvr888+5/vrrOffcc1m2bBknnngiV155JVu37iuRfvDBB3niiSe47bbbePbZZ7FYLFxyySW43e5u57vrrrvIysrqdX9er5frrruuW+gH4HQ6KSgo4PrrryczM3MIr15ERETGuyZ3aL7PSLxRIyIiImNXraOWTGvv7zdIZHVWYnS20NzdugujwcCEjpl0/8/efYfHVVj5w//e6b0X9W6ruFewwfReAgsBQg0E2IQNeVM3JJuQur9NIX1DyoaQBFIoISSEgAFTDBib4m5ZVu9leu/lvn9MscYzKjMaaSTrfJ6HB/vWI/lqNHPPPefoxQZYA9kVf3E2jq+/8xU8+PaXpjy2PWgHANQqanOuF/FEUAlV+NPxxxBjY7ix+WZYA5Ypk4nj3jEAwPA0bRYLFYqmWn3OXwvOmuT3wSilxN9SVi2vwYh3JOc6Z9CBEc8w1urX4b/O+BoEHD6+tufLMPkmYA1YwWEYKJNtJpe71MMFA67+vPdNJVELnZd4/cqb8I3t/w2GYQrafzpby89Eu/XIvLUlXkpSbaSp1WdCubQCY97RrPmfZH6VPPH3u9/9DjfeeCOuv/56NDU14Zvf/CZEIhGeeeaZnNs/9thj2LFjB+655x40NjbiM5/5DNra2vDHP/4RQKLa77HHHsN9992Hiy66CC0tLfj+978Ps9mMXbt2ZRxr9+7d2LNnDx544IEp4/vJT36ChoYGXH755Vnr1q5diwceeABXXnklBALBHL4LhBBCCDldOZI3fnqdPSWOhBBCCCELacw7gkpZZanDIFNI3ZD1pRJ/rn5UyKog4Cbu7+gkupztN399+BfYN/bOtA91uZLzHVUi9ZTbGCRGuMNuXNVwDVaoVyLGxuFMPjB2qnHfOABg2Ds88xeWp2Cy4k/Amb/7WjXJZGqZpHzezkHmX5W8Zsrk83FbOwBglXYNVCI1vnXWd+AJu/Hvr9yF14d2QSPSZrW8Xa6kfCkMEgMG3LkTf3E2jhf6nkckFslaZ5tj4k8n1mGjMbu4pRi2lJ2BGBvHAdMH83L8pcQbSYz5oFafCRWySgSigfTvRrIwSvqKGw6H0d7eju3bt6eXcTgcbN++HQcPHsy5z6FDh7Bt27aMZWeffTYOHToEABgZGYHFYsk4plwux7p16zKOabVa8eCDD+L73/8+RKLcTzXt3bsXO3fuxNe//vVCv0RCCCGELHPOYOIGDrX6JIQQQpYPlmUx5h1DubSi1KGQKUj5UgCAL5xI/A26+1GnqE+v14n1sAYsGRUKL/b/C3/rfhrNmhbYg7YpK/Qcyfd/SoFqyvOXScvB5/BxY/PN0IsTlaGp1oinGvelKv7ybw04k3AsBCFXOC8VQCm1yVafZVJK/C1lVfJqTPjGEI1Hs9a1245CJ9al27k2qVfgV5c8im0VZ+Go9UjBiarTVa2ibsqKvz5nL368/yEcNB/IWmcPLN62qWXSctQq6vDe+L5Sh1JyqapHGbX6BID0Q1A0529h8Up5cofDgVgsBq0288VKq9Wiry/3k1NWqxU6nS5re6s10X7BYrGkl021Dcuy+NKXvoSPfOQjWLNmDUZGssvUHQ4HvvzlL+Ohhx6CTDa/P6QcDgMOZ/7eYBEyEy6Xk/F/QhYjuk7JUpDrOnWGHeByOIn2UVzQk66k5Oj1lCwFdJ2SpWC669QZdCAYC6BaWQUej67jxUglVoBhgEDchzgTRZ+rB9euuC7972WUGRGKBRFk/ZDz5eiwHcfPDvwIH2q6BlvKt+Jrb38FvpgbalH2rCxP1AWFUA6hgD/l+W9svQnn114Ao1wPkYAPhgHsIQt4vLasbc3+CYh4Iox4h/O+nmZ6PY2wYYh4wnm9Ths1DfjvHf+DMyrOBI9DPw9LVa2qBnHEYQ2ZUCWvzljXbj+GtYZ14PO56WUqngJf3f41nF9zPoQ80bTX2HL7vd+obsTu4Tdyfk9sITMYBjAHx7PWO8M2CLgCqMTKeU3WF2pb5Ta8PPDSafu5d7bXaSDmBcMkfs/QewCgWlWdvqbX8daWOpxlo6SJv1J5/PHH4fP58PGPf3zKbR588EFcddVV2LJly7zHo9FIF+WLNVl+FApxqUMgZEZ0nZKlYPJ16o25sbpsFdrN7fBxHahR1pQwMkJOotdTshTQdUqWglzX6bCpF1wuB62VK6BWS0sQFZmJVMEHl8sBI4zhX8PPIsgGcN3aa6BWJf69msK14HI5iPB9UKvLsOvIi6hRV+FrF30FXbYucLkchPk+qNXVWccOc/wwyPXT/tufrT4j/WcVK4FYIIKf487axx1yIxD3Y0fNDrw19BaEMgYSviTvr3eq11OukIVMLJ336/QqzWXzenwy/9YIWsDlcuBkLVijbkkvD8fC6HN340OtV+a8jq5Sz/7ffrn83l9T2Ya/dj+Z8+fZP+YGl8uBO27P+n4GGC/KFAZoNIuzkuzi5gvw1+4nYYmPokXXMvMOS9RM1yljjYHL5aDaWJZuH72cqSGFQa6HPWam90QLqKSJP7VaDS6XC5vNlrHcZrNlVfWl6HS6dOVeru31en16mcFgyNimpSXxgrNv3z4cOnQIa9asyTjO9ddfj6uvvhrf+973sG/fPrz22mt49NFHASSqBOPxONra2vCtb30LH/7wh+fwlWey231U8UdKisvlQKEQw+0OIBbL3aqEkFKj65QsBadepyzLwuyx4rzKC3Fk/CgODB6BvHrxtWUhywu9npKlgK5TshRMd52eGOtBLBaHNKaGw+ErUYRkJhyWh2OjHXi2+xl8qPE6KFhd+t+LH5EiFoujZ2IQKhjwWu8buKLhSnhcIfDDEsRicfRODMLIzU78jTkmIOXI8/q3Vwu0GLAMZ+3TZU9cS2s1G/FG/24cHTqBlZrmWR8313Xqj/jR4+hGq7YNdrcbnDiPrlMyIx4rAQ8CHB/rwmrFxvTyY5ajCIZDqBOvKPg6Wm6/93XccsRicRwcPIY27aqMdf2WocTri2Ug6/s5bB+DnKdatD+vNcImCBghXj7xGoyrsl8bl7rZXqfjdgs4LA8+dwQ+ZM9qXI4a5Cvw3tAHuKlxcV67S8lsk6clTfwJBAKsWrUKe/fuxUUXXQQAiMfj2Lt3L2677bac+6xfvx779u3DnXfemV72zjvvYP369QCAqqoq6PV67N27F62trQAAr9eLw4cP4+abbwYAfPWrX8VnPvOZ9P5msxl33303fvzjH2PdunUAgCeffBKxWCy9zauvvorf/OY3eOKJJ2A0Gov1LQAAxOMs4nF25g0JmWexWBzR6On/BossbXSdkqUgdZ16I16EY2HUyOqhFmrQZevGWeXnljo8QgDQ6ylZGug6JUtBrut02DUCpUAFASOia3gRk/AkePrEU5Dwpbil+faMfyslTw2wgMlrxlHTMTiDTmw1bkc0GoeCrwYDBiavJee/rz3ggEKgyuvfXivSw+Q1Z+0z4h4FywKb9FvBssCAcwANihV5f62Tr9OnO57C79t/C7lADjFPDLlAQdcpmZVKWSWGXEMZ18sh0yEIuSLUyhrmfB0tl9/7ldIagAV67X1YqWzNWGfymsCywKhnNOt7YfFZoBFqF/H3iIONhi3YN7oXNzffXupg5s1M16k76IGEJ1nE/04Lb51uA3579P/gCwUg5ApLHc6yUPJWn3fddRceeOABrF69GmvXrsUf/vAHBAIBXHfddQCAL37xizAajfj85z8PALjjjjtw++2349FHH8W5556LF154AceOHcO3vvUtAADDMLjjjjvwy1/+ErW1taiqqsJPf/pTGAyGdHKxoiJzuLZEkiiprqmpQVlZGQCgsbExY5tjx46Bw+Fg5cqV6WXhcBi9vb3pP5tMJnR0dEAikaC2trbY3ypCCCGELDHOoAMAoBap0aBqRJ+rt8QREUIIIWQhjPlGUSGrLHUYZAZSvgzOkBN3rrobMoE8Yx2fy4dKpIbFb8aIZwgqoQqt2sT8PQ7DgUakhTVgyXlcV8iJSllVXrHoJXqYfBNZy8e9YxDzxCiTlkMtUmPIPZTXcXNptx1Fq7YN6w0b8dbIbjSp8k8kkuWpWl6LYU/mNdhuO4ZWTRu4HO4Ue5FTCblCVMiqMODqz1pnDSQ63U34xrPW2YN21Cjq5ju8OTmjfBt+9MH34Ao5oRSqSh1OSXgjHsgFilKHsahsMG5C5HAEx63HsMG4qdThLAslT/xdccUVsNvt+NnPfgaLxYLW1lY88sgj6dad4+Pj4Ewa/Ltx40b84Ac/wE9+8hP86Ec/Ql1dHR5++OGMhNy9996LQCCAr33ta3C73di0aRMeeeQRCIXFzSabzWZce+216b8/+uijePTRR7F161Y8/vjjRT0XIYQQQpYeRyiR+FMJ1WhQNmL38OsljogQQgghC2HcO4ZyWcXMG5KSUglVEPGEuKLhqpzrdWI9bAErjlqP4IzybeAwJ+9PacU62ALWnPs5gg6ohOq8YtGL9Wi3Hs1aPuEbR4WsAgzDoFpeixHPcF7HPVWcjeOEvQPXrbgBt7V9FB9bfe+cjkeWl0pZFY5YDqX/zrIsjluP4Zqm60oX1BJVp6xHf44HQ81+E8qkZZjwTcATdmckkOxBG7SixT06YkvZGWABHDDtx/k1F5Y6nJLwhr2QCRbnHMZSqVc0QClU4aDlACX+FkjJE38AcNttt03Z2jNXAu3yyy/H5ZdfPuXxGIbBpz/9aXz605+e1fmrqqrQ2dk57TbXXXddugoxn/0IIYQQsnylKv40Ig0alI14qvMJeCNeyPj0IYAQQgg5nY15R7HJuKXUYZAZfGHLlyDiiTMSepPpxHocthzCqHcE96z5eNY6WzA78ceyLFwhJ1R5VrroxQZYAxbE2XhGPOO+MRgl5QCAank1OmzteR33VCOeYXjCnnT1IiH5qJZXwx60wxfxQcqXot/dB3fYjdW6NaUObcmpU9Tjhf5/ZiyLs3FYA1acV30BJnwTmPBNpBN/4VgYnrAHWvHiTvxpxVqohCqMekdKHUrJ0Gf+bAzDYINhIw6a9gP0wMmCyP3OhhBCCCGEzJkjaAeX4UAmkKNelWgj3u/qK3FUhBBCCJlP/ogfzpATldTqc9GrkldDJ9ZNuV4vMWDUOwI+h59VoaAV62D1Zyf+vBEPYmw87xZ3eokB0XgMzmTHiJQJ3wTKZanEXw2GPcOIs4XPjeqwHwcDoFnTOuO2hJyqSl4DABj1JJI6+8begZgnxmrd2lKGtSTVKevhCDrgDrnSy1whJ6LxKNbpNwBIJP5T7EEbAECzyCv+AMAgMcLsN5U6jJLxhr2QUuIvy3rDRnQ5TsAb8ZY6lGWBEn+EEEIIIfPEEXJAJVKDw3BQI68Fj8NFn7On1GERQgghZB6N+0YBAOWU+FvydKJEUnCTcTPEPHHWulwVf86QE0BixnNe5xLrAQAW/8m5gXE2DpN/HOXSRNvYanktIvHInG6od9jaUaOoo2oUUpBKeWJ25Yg3Medvz+hb2Fy2FQKuoJRhLUl1inoAwID75Jy/1M9/vbIBEr4E496TiT9bIJn4W+QVf0Ai8WfyZ88sXS68EQ+9xuaw0bAJcZbFUcvhUoeyLFDijxBCCCFknjiC9vR8Fx6Hh1pFHVX8EUIIIae5seSN2gopzfhb6vSSRDLuzIqzstbpxDp4wh6EYqGM5alW73lX/KUSfwFzepk1YEU0HkNZ8lqqUSSqrYY9Q3kde7IT9uPU5pMUTMaXQSVUYcQzAmvAii5HJ7bn+PkgM6uSV4PH4WLANSnxl/z5N0gMKJeWY8I3nl6XqvhLPZCwmCUq/swzb3ia8kVoxl8u5bIKlEnLcMC0v9ShLAuU+COEEEIImSeOoAMakSb993plI3qp4o8QQgg5rY15RyHhS/JO/JDFp0m1EmXSspyJDW2yRah1UoUecLLiL98Zf0qhCjwOL+N4E8k2f+XSRKtPg8QIPodfcOLPH/Gj39WHVs2qgvYnBABqFLUY9gxh79gecBgGZ5RvK3VISxKPw0O1vAZ9rt70MovfDB6HB6VQBaOkHBP+zMQfj8NLz/xbzAwSA8x+E1iWLXUoJZGYgUmJv1zWGzbioJkSfwuBEn+EEEIIWfKe6XoKpkU4Q8AZcqQr/gCgUlaV8dQmIYQQQk4/474xlEsrwDBMqUMhc1SnrMfjVzwJ9aQHuVJSrTlPbffpDDnBYZi8b84zDAO9WJ9R8TeefN9Ylkz8cRgOquRVGPEM53XslC7HCcRZlir+yJxUyhLX4N6xt7FWv2FJJKIWqxXqZnQ7utJ/twTM0Iv14DAclMvKMe49+dmx39W3ZH63GKVlCMfCcCUfhFhO4mw8UfHHl5c6lEVpg2ETBt0D2Nn/Av5n37dw90t3ZMy5JMVDiT9CCCGELGnesAe/Ovww/tb1dKlDyeII2jPmu0j5Uvij/hJGlNDn6sVLAy+WOgxCCCHktDTqHUUFzfc77aUSf9bAqYk/BxQCJThM/rfc9BJDxoy/ce8YtGJtxvy0KnkNhtyFVfx12I5DwpegVlFX0P6EAInE37BnCAfNB6jN5xytVDejz9WDcCwMIDHjTy8xAADKpRUw+ScQZ+NgWRbvju/F5rKtpQx31gxiIwAsy3afgWgAcZalVp9T2GDYCAbADz/4Hgbd/bik9jLIBJQknQ+U+COEEELIkjbhSwwNf2fsrYxWIv6IH68PvVqqsAAAjpAj4wlxCV+KcCyMWDxWwqiAf3T/Df974MeIs/GM5ZFYJGsZIYQQQvIz7h1FJSX+TnsSvgRinhjWQHarz8kPfuVDL9ZnHG/CP44ySXnGNtXyGgx7Bgs6/nF7O5rVLQUlJQlJqVHUIhQLIRqPYnvF2aUOZ0lboW5GNB5Lz/mzBizpeZ9l0gpE41HYAjb0uXpgDVhx5hJpq2qUJhJ/Jv9EiSNZeN6wB0BiHibJphZp8MPzfobfX/Yn/PqS3+Gmllvod9I8oe8qIYQQQpa08eTskwnfBPpcJ+fnPd31BP7n3W+V7CnDQDSAYDQI9aRWnxKeBADgj/pKElNKj7MboVgI5lPao372jfvxl44/ligqQgghZOkLx8KwBMwol1LibznQifWwBWwZy1xBJ5TCwhJ/ulNbfXrHUCbLTPzVKephD9rzbqHHsiw6bMfRqqX5fmRuKmVVAIBGVSOM0rISR7O0NaqawGEYdDk6ASRaferSib/E93bcN4p3x/dBzBNjjW5dyWLNh0KghIAryPq8uRx4I8nEH1WxTWmNfh0q5VWlDuO0R4k/QgghhCxpY95RiHliSPlSvD36FgAgGo/iX33PAQBGPIW1QporZ9ABAKdU/CUTf5HStfuMxqPod/UBQPrJUgAIRoPodnTiuO1YqUIjhBBClrxEWzYWFbKKUodCFoBWrMuq+HOEHFAJVQUdTy8xwBqwpDswTPjGUS7NvJZWqFcCSDzIlY9x3zhcISfatKsLio2QlHJpBXgcHrZX7Ch1KEuekCtEnaIe3Y5OxNl4ouIv2eozNdtzwjeOd8f3YqNxM/hcfinDnTWGYWCQGJdlq09fJPGQL1X8kVKjxB8hhBBClrQJ3zgqZBU4s3wb3kkm/vaMvgVH0AEGwIhnuCRx2YN2AIBKNLniTwoA8JWw4m/IM4hIPAIAGHCfTPwNuPsRZ1kMFdg6ihBCCCHAmDfRiaBCRk+yLwdasTYr8ecKOaEqsOJPLzYgGo/BFXLCH/HDHrSjXJpZ8Vchq4SYJ0aPI7/EX29y+xXqFQXFRkgKn8vHj8//OW5svrnUoZwWVqib0ek4AWfIgWg8BoMk0SZTyBVCI9Kg09GJDls7zlgibT5TjBLj8qz4C3sBAFK+tMSRkOWOEn+EEEIIWdLGfWMok1Zge+UO9Ln6MO4dwz97/4HVujWokFVhxDtSkricoWTF3+RWn4ug4i9106dWUZeR+Ot1JtqkmnwTCMVCJYmNEEIIWeomfGPgcbjQiXWlDoUsAL1YD1vAmrHMGXIWXPGXavHX7+rDV99+AAKuIKtCj8Nw0KBszLviz+Q3QcAVQC3UzLwxITNo0bRCxBOVOozTwkp1Mwbd/Rj1jgI4+ToAJKr+dg2+BBbA1rIzSxRhYQzLNfGXavXJp1afpLQo8UcIIYSQJW3cN45yaTk2G7eCz+HjLyf+iMOWg7i68VpUK2pK1urTEXSAwzBQTrrxk6r4K2Xir8fZg3JZBVq1bRh0DaSX97l6wWU4YFG69qhkcfNH/OnWY4QQQnKzBW3QiLTgMHS7ZTnQifWwBa3p349xNg53yJnx/i8feknihv839z6IAXc/vn/Oj1Elr87arlG9Iv/En88Eg8QIhmEKio0QMj9WaloQjcfw3vg+AIkHClLKZRXwR/xoUq2AVqwtVYgFMUiMMC3LxJ8XQq5wybRlJacveidKCCGEkCUrzsZhSs4+kfAl2FS2BS/2/wtKoQpnV56DKllVyVp9OkJ2KATKjBt/qXYfvoi3JDEBQI+zC02qFahT1GPIM5i+UdXr6MZG42YAwKCb2n2STOFYGB9/5S58a+/XwLJsqcMhhJBFyx5IJP7I8qAV6xCNx+AOuQAk2nyyANSiwlp9KoUqCLgCSHgS/Oi8/8UqXe55fCtUKzHqGc7rYTKz3wRjsoUgIWTxaFA2gstw8M7Y2+Bz+BkPDpRJEq1+l1qbTyDR6tMVci6abjLhWHhBzuMNeyET0Hw/UnqU+COEEELIkmXxmxFj4yiTVgAAzkoOmL+8/koIuAJUyWtg8k8s2Jv8yRxBBzSizFZKqXY4gWhgweMBAJZl0evsQZNqBWoVdQjHwpjwjSPOxtHn6sVa/XpoRBoMUeKPnOL14Vcx4ZvAntG38FTnX0odDiGELFqOoB1qEbVSXC5SLflswUS7T1cyAVjojD8Ow8F3z/kh/vfCX6NOWT/ldk2qFWCRaAk6WybfRHp2GCFk8RBwBahT1mPIPQidRJ9RlVsmXbqJv9TrzWJo9zniGca1f78CA67+mTeeI2/ES20+yaJAiT9CCCGELFnjvjEAQIUskfg7u3IHdlSdi2uargMAVMurEWdZjCXnJSwkR9AO1SlPe3MYDsQ8MfxR34LHAwATvnH4Ij40qVaiVpG4mTToHoDJN4FANIAGZRNqFHUYdA+UJD6yOLEsi6c7n8CZ5dvwkZZb8eix/8MRy6FSh0UIIYtSotUnJf6WC60oMcvRkpzzl5rxrBQqCz7mGt3aGWdE1irqwONw0ePsmvVxTf4JGCVlBcdFCJk/K9UtAAC92JCx/KzKs/Hxdf+BZk1LKcKak8WU+Ht3fC8i8UheD0sUyhv2pDv9EFJKlPgjhBBCyJI17hsHA6RvYsgEcnxt27fSN0tSM1FGvAvf7tMZcuR84l/Kl5Zsxl9qFkyjqgk6sQ5SvhQDrn70unrSy2sUtRimGX9kkvcn3sOgewA3NH8Ed666G2t06/HtvV+HI2gvdWiEELLoOIJ2avW5jGhEGnAYBla/BUCi4wOArIe/io3P5aNWUTfrOX+BSACukAtGKVX8EbIYrVA3Azg55zNFLlDgwytvWpJzY3ViPRgAZr8ZQKJC+ZvvPFiSbjz7Te8DSDwAMd8SFX/U6pOU3tJ71SCEEEIISRr3jUEvMUw5OFst1EDCl5Rkzp8j6IA6R5snCV8KX6Q0FX/dzi6ohCpoxVowDINaRR0G3f3odfZAKVRBI9KgRl6DUe8wYvFYSWIki89fu57ASnUz1ujWgcvh4itnfg3eiAdvjewudWiEELKoxNk4nCEHJf6WES6HC5VQnW716Q67wOPwIOXNf7VHk2olehyzS/yZfImKG2r1ScjitDKV+Dul4m8p43P50Ii1MPkSybYnTvwRb4++ieO2YwsaRzgWxuFkt5IJ3/i8n88XoRl/ZHGgxB8hhBBClqxx71h6vl8uDMOgSlZdmsRfyJ5zvouEJylZq89eRzdWqFem/16nqMdAMvHXoGwAwzCokdciGo9hzLfw7VHJ4tPr7MZB8wF8eOVN6XkjapEGlbJqDHpoFiQhhEzmCjkRZ1lq9bnMGCTGdOWdI+iASqjKmNE1X5pUKzDg7kc0Hp1x23FP4mY3Jf4IWZzqlQ2Q8CWokdeUOpSiMkrKYPabYA/a8ObIGwCA/aYPFjSGY9YjCMfCqJBVLkjFny/ihZRm/JFFgBJ/hBBCCFmyxryjKE8OPJ9KtXzhE3/hWBj+iD/njT8JX1LSVp+NqhXpv9cq6zDkHkKPowuNqiYAQI2iDgAw5KakDgGe7X4GRokR51Sdl7G8TlGPAVd/aYIihJBFyh60AQA0Yqr4W06ubPgQ9o29g3brMThDDiiFqgU5b6N6BaLxKIZmMZt53DsODsOBTqyfcVtCyMITcAX4/WV/woW1l5Q6lKIySIww+814oe95cBketpadkW67uVAOmD6ASqjCmeXbMeGb/8SfJ+yhij+yKFDijxBCCCFL1oRvHBWyymm3qZRXY3iBZ/xNN99FwpMiEF2YxJ875MInd/07Hj74MxwwfQB70I6mSYm/OkU9IvEILAFLOvGnEWkg5Usp8UfAsiz2m97HOVXngcvhZqyrUdTO6kYjIYQsJ7ZAYvZprhm/5PR1Sd1laFQ14VeHf55o9T7P8/1SGpVNYIBZzfmb8E5AK9aBx+HNf2CEkIKoRZolOctvOgaJAeO+UTzf9w9cVHsJzq0+Hz2OLrhCzgWL4QPT+9hUtgVl0jKYfBOIs/F5PR/N+COLxen1akIIIYSQZcMb8cIddqNshoq/Klk13CEXPGH3rI5r8VvwyJFfwRv2FBxbqsIwV2wSvmReZvy9PfpmVgXWgLsfXY5OvDK4Ew+8+XkAyEj81Srq039uSCb+0rP/PANFj5EsLWa/CdaAFWv067LW1Srq4Aw5Z/Wh3R1ywR1yzUOEhBCyuDhCycRfjlbf5PTFYTj4xLpP4oS9A+9PvLtgFX8SvgQVsir0OHtm3HbcMw6jpGwBoiKEkJNSFX+2gA0farwWGwybwQI4YNq/IOd3BO3odfZgs3ELyqTliMQj6Yd050OcjcMf8UNGrT7JIkCJP0IIIYQsSabkYO7yaWb8AUB1ck7C8CzaffY4uvGp1z6OJzv/ghf6ny84tk77CYh5YlTKqrLWSXjSorf6jLNxPPT+d/CPnr9lLLcFEi3HHrv8L/j69m/jnjUfz6iQ1Ig0kAvk4HF4qJHXppdXy2uo4o/gmPUIAKBNuyprXW0eLWEfev87eOj97xQ1NkIIWYwcQTvkAjkEXEGpQyELbL1hI7ZVnIVIPALVAiX+AGCFeiXen3gXgWhg2u0mvBMwSg0LFBUhhCSk5oqu0a1Fg6oJeoketYq6BWv3edCcSDBuMGyGMRnLRPI+wnQOmQ9gzJv/zHtfxAsA1OqTLAqU+COEEELIkjTmHQOAGWf8pRJdozMk/vaNvYPPvnE/NCItNpdtwUsDL4Jl2YJi67SfwAp1c85WLRK+BP5ocSv+ehzd8Ef8sAatGcvtQRuEXCHkAgXOrjwHN7XcAoZh0utT1X21itqM1k81iloMe4bmvQ0KWTwsfgv+0vHHjGv+qPUIahS1OSsXKmVV4DIcDMzQ7pNlWXTYO9BuO1bwzxMhhCwVtoANGhHN91uu/n3tfeAu8By9m1tuhTVgwfff+59p37eNe6nijxCy8FKfxa9pui69bJNxCw6YPliQzwb7TR+gXlkPrVgLgzTxGmjyTz/nj2VZfHvfN/BU51/yPl+qsw+1+iSLASX+CCGEELIkjfvGIOaJZ2ynJOFLoBPrpp3zF46F8e19X8d6/Qb88Lyf4cMrb8KQexDHbe0FxdZpP4EWTUvueHiSolf8HbYcBADYkxV+KfagDRqRJiPZd6qbW27HR1fdnbGsRlGHYDQIS8BS1DhJtmg8iuO29pInxd4ZewuPHvtNxjV/zHoUa3Rrc27P5/JRKa/G4AyJP1vQBlfICU/YU9BTs4QQspQ4gnaa77eMVcmr8YuLfoMr6q9esHM2qJrwX2d8DXtG38Tvjj2Sc5tYPAazzwyjlBJ/hJCFVauowy8vegTnVJ2XXrbJuAWWgAXDnqF5PXevsxvvje/DJuMWAIlknFwgh8k3feJvxDsMd8gFs9+U9zm94UTFn5QSf2QRoMQfIYQQQpakCd84yqXl0ya1UqrkNem5e7mY/SaEY2Fct+IGiHlibDBsgkFiwEsDL+Qdlz1gh9lvwgp1c871Er4U/qivqImeI9bDiXMHT0382WesPNhafga2VZyVsaw22fZzaIakDpm7F/ufx6df+w88uOdLsPhLl2hNfbB9ZXAngMRcvkH3AFbr1ky5T428dsZrpHfS3KFOR8fcAyWEkEXMEbJDS4m/Za1B1QQJX7Kg59xWcRbuXXsfnjjxJ7w+9GrWekvAgjgbh0FqXNC4CCEEAJrUKzI+s6/RrwWPw5u3dp/DniF8e+/X8YlX7oGEL8WVDR9KrzNIjDNW/LVbjwEATIUk/iIeAFTxRxYHSvwRQgghZEka942hbIb5finV8uppZ5Gl2oamWpFwGA4urbsCbwy/lnd1Xoclkdxo0bTmXC/lSxBnWYRiobyOO5U4G8cxyxHoxDrYg7aMNk/2oA0acf4tx4zSMoh4IvQ5e4sSI5naBxPvo1xWgS5HJ+59+aN4c+SNksRh9psBALuHX0c4Fka7LfGBd/UUFX9A4gneAXf/tMftdXZDypeiXFqOE/YTxQuYEEIWIVvARhV/pCQ+vPImtGlX4a3R3VnrzL7EzevUfCtCCCklMU+MVdo1OGD6oOjHfm/8Xdz3yj04YT+Oz29+AI9e+jiq5NXp9WXS8hln/KXmnJt8E3k/rOsJJxJ/coE8z8gJKT5K/BFCCCFkSRr3jqNshvl+KZuMWzDoHsDesT25j+UbBY/DhV5iSC+7tO5yBKOBvBMxxy3HIRfIp5yjIuFJAaBoc/76nL3wRrw4r/oCxFkWzpAjvc4eKKzlGIfhYKW6GZ0OStTMpzgbx2HLQVxceyl+e+ljaNW24ReHflaSWEz+CbRq2+CNePHu+F4csyaSydPNA6pV1MERdMATdk+5Ta+zB42qJrRo2tBpp4o/QsjpzR6kxB8pDYZhUC2vgSX5IM9kqeoWavVJCFks1hs24Jj1aFG74Lw88CIe3PMANhg34beXPo7L6q8Al8PN2KZMWoaJGVp9Hre1Qy1SIxQLwR125RVDasYftfokiwEl/gghhBCy5LAsC2vAAsOkRN10tlecjc1lW/DwwZ8iEA1krR/zjsEoKQeHOfnWyCgtwwbjprzbfR63HEezpmXKFqSp9k/FmvN32HIQfA4f2yt3AEhUG6TYQ3ZoZ2j1OZVmdQslauZZl6MTvogPGw2bIRcosKPyPNgDNkTj0QWPxew3YZNxC1aqm/Hy4E4csx7Fat3aaVvp1irrAACD01TTJhJ/K9CsaUG3o6skXxshhCyEQDSAQDRQ8O9dQubKIDHmnEll8pmgFCkh5olLEBUhhGSrVdTBG/FmPLQ6F8/3PoeH3v8uLqu7Et/Y9t8Q8UQ5tyuTlMPkn8jokjOZO+TCsGcI51dfBCDx+pkPb8QDMU+clXAkpBQo8UcIIYSQJccb8SAUC0En1s9qe4ZhcP/6z8AetOPPHY9lrR/zjaJClt029OLaS3HMehSukHNW52FZFseticTfVKT8RMVf6mnAuTpsOYRW7SqUJ9ue2gJWAEAkFoE75Jpxxt9UmjWtMPvNWXMDSfEcNO2HmCdOXy86sR4sANsCf88jsQjsARsMEiMuqbsM74/vQ5fjxLTz/QCgSlYNDsNgcIo5f/6IH2PekXTFXyQeQb+rbx6+AkIIKT1H0A4AVPFHSsYgMcIetCMcC2csN/knUC6bXZcMQghZCKn2myOe4Tkfi2VZPHHijzi/+kJ8ZtMXpk26GaVliMajsCd/Z58qNe7ggppk4m+GeYCn8oa96c/7hJQaJf4IIYQQsuRYAhYAmHXiDwAq5VW4ufU2PN35BAZcmXPJxr1jKE/O95usQdkIABjxjMzqHNaABTa/bdrEn5iXqvibe+IvzsZxzHoE6/TroRaqwWGYdNLIkXx6stDEX2pGYSfNZZs3B8z7sVa/DjwODwCglySu51xtuuaTNWABi8Tsn/OqLwAAROOxGRN/Aq4A5dLKKRN//a4+sACaVE1oUq8Ah2FwgqpICSGnqdRNxEJ/7xIyV6n3EamHwFLMPhPKZNTmkxCyeFTKqsAAGC5C4u+EvQMmvwlXNlw9bbcS4GTLY9MU7T7brUehEWmwUt0MAVeQs4p6Ot6IFzI+zfcjiwMl/gghhBCy5Fj9iRsa+lm2+ky5qfkWlEkr8Pv236aXsSyLcd8YKqTZFX8VsioAwKh3dh9IUkmy6RJ/kmTiL1fL0Xz1u3rhCXuwTr8eXA4XKqE6fbMnVXmgFRdWeWCQGKESqpZt4i8aj+LHHzw05VzIuQrFQmi3HsUGw6b0Mr24NIm/1JOsBokRSqEKW8rPhIQvQX0y8T2dWkUdBt39Odf1OLvA43BRI6+DkCtEvbKR2scSQk5bqQp5rZgSf6Q0DBIjAMASyHwfMeGjij9CyOIi4ApglJZhxDM052O9MfwaVEIV1ujXzbhtan65yT+ec/1xWztW6daAYRgYJWUw5Z3480AmoPl+ZHGgxB8hhBBClhxLwAwOw0CTZzstAVeA82suxFHrkfQgcVvQhnAsjIocFX8ingg6sQ4j3tlV/HXaT0Ar0U5biShJtv7wR+de8XfEchg8Dg8t2jYAgFasS994TP2/0JZjDMOgRdOKTsfyTNT835Ff4oX+5/Fc77Pzcvx261FE4hFsMJ5M/En5Moh4IliTFa0LJfUkayqR/om1n8RXzvhGxszLqdQq6zA0xYy/XmcPahV14HP5ABJVpMWs+IvEIvjEKx/DIfOBoh2TEEIK5QjaweNw6Ul/UjJ6ceL3+OQKFZZlYfKbUC6nxB8hZHGpltdgeJYP2E4lzsbx5sjrOKf6/Fl9dpHypZAL5JjIUfEXiUVwwt6BVdrVAACj1DhlZeBUnEEHFAJlXvsQMl8o8UcIIYSQJccasEAt0qRbJOajWd0Cd8iVrnIa944CAMqkuW+IVMqqMTrLVp+d9hNo07VN22JEwBWAx+EVZcbfEcthtGraIOQKAQBakTZd8WcL2MBhGKiE6oKPv1LTgk77iXSSFEDGn09XrwzsxLPdf0WTagWOWo4gEosU/RwHzfuhEqpQr2hIL2MYBnqxAdZTWnTNN5PfBJVQlb6OKuVV2Fp+xqz2rVPUwRqwwhvxZq3rdfagUbUi/fcWTRuG3APwR/xFiXvIM4BeZy+e6X66KMcjhJAUlmXxp+OP4bdH/2/W+9iCNqiFmhnbjBEyX0Q8ERRCJcyTOge4Qk6EYyFq9UkIWXSq5DUYds+t4u+4rR3WgBXnVZ0/632MkrKcCb1uZxci8QhW69ae3C7PGX+WgCXvrkSEzBdK/BFCCCFkybH4zXnN95ss1YYz1cJy3DcGACjP0eoTAKrkVbNq9cmybCLxp2+bcVsJXzrn5AfLsmi3HcWqSXPYtGJdOmlkD9qgEqpn9eTjVJrVrfCEPRhLJkffGtmNj+68Jd1G9HTUaT+BH+//AS6tuxyf2fQFhGIhdDqK3+70gGk/Nhg2Zd0g1ol1WS265pvZb0q3B8tXraIOADDoGshYHovH0O/qQ6OqKb2sWdMCFkC3o7PASDP1OnsAAO+N701XuBJCyFyxLItfH3kYv2//LZ7v/cesH3ixB2zQUJtPUmJ6sT6j4m842UavVllbqpAIISSnank1JnxjiMajBR9j9/Dr0Iq1GZ+JZ1ImLcdEjlaf7dajEHKF6c8vBokxrxl/LMvC4jenxzcQUmqU+COEEELIkmMJmNPtjPKlFmmgF+vRlUzmjHnHoBFpIOKJcm5fKavCiGdkxht/w54heMIerDasnjEGCU8851afE75xOIKOjA85GpE2o9VnoW0+U1pSSVLHCQSjQfzi0M8w7h3DM11Pzem4i9nv2x9BjaIG/9/Gz6FJtQISvgSHzQeLeg5P2I1uRyc2GjdnrdNLDAve6tPkmyg48VclrwGHYTDkyWz3OewZQiQeQdOkir9aRR1EPBE67MfnFG9Kr7MXGpEGXIaHVwZeKsoxCSHLG8uy+OXhn+OZrqexreIseCPeWVdhO4L2Of/eJWSuTr1RPeDuB4fhokZZU8KoCCEkW5WsGjE2nn4QN1/pNp9Vs2vzmZJo4Zmd0Ht3fB9aNG3prkIGiQGesGfWD+z6Il4EooGCP1cRUmyU+COEEELIkmMNWOfUQqN50qyxcd9ozvl+KVXyaoRioRlv/B2zHgWH4WCtce2M55fypfDNseKv3XYUANCmOVlhqBXr4Aw5EIvHYAvaoBXNrfJAIVSiXFaBTvsJPNP1FJwhB86vvhD/6H0WrpBzTsdejOJsHB224zin6nwIuAJwOVys1a3DIUtxE39HLIfBAlhv2JC1TifWw+Jf6Io/M4zSwj6gCrlClEkrMOjuz1je6+wGADQoG9PLOAwH6w0b8fbom4UHO0mfqxdt2tU4u/IcvDTw4rJoQ0sImT+D7gF8+a0v4Nnuv+L/2/hZ3LfufgBAv6tvVvvbg/Y5/94lZK4Sib+T7yMG3AOollen5+0SQshiUSVPPJAw4ilszt8x6xHYg3acm0ebTwAok5TD5J9AnI2nlx21HsFhy0Fc0/Rv6WVGSaJF8myr/szJri2U+COLBSX+CCGEELLkJFp96grev1nTgm5HF+JsHGPesSnbfAKJij8AGPNOP+fvmPUIGlSNkAqkM55fwpPOueLvuK0d1fIaKIQnh4drxTrEWRaOkKNoLcda1K14f+JdPNH5J1zbdD3+Y/2nwLLsaTlXbdgzBF/EhxZNa3rZesNGtFuPIhwLF+08hy2HUCYtyzlXUi82wB60IRaPFe1802FZdk6tPgGgRlGLIXdmxV+Psxtl0jLIBPKM5RdUX4RO+4lZz82cCsuy6HP2oEHViMvqr8CwZwjHbe1zOiYhZHmKs3H88tDP8fGX78KYdxTfPus7uLrxWhilZRDxROh39c7qOPagDRpK/JESM0gMMPtN6YdhBlx9qFc2zLAXIYQsPJ1YBzFPnPU5Yrb2mz6ASqhCq3bmURuTtWpXIRqPZnSxeaz9d2hQNuCsyh3pZQZpKvE3u4cyLf5E1xaa8UcWC0r8EUIIIWRJ8UV8CEQDBbf6BIBmdQsC0QCG3IMY942jXDZ14q9cWgEOw2BkFom/Nfp1szq/hC+Z84y/dutRrNJlthXViRLJUFvAWrSWY82aFgx7hiDgCHBr6x1QidT4UOO1+EfP3+AJu+d8/MXkhL0DDBIVoSnrDRsQiUfQUcSk0hHLQazVr8+5TifRI86ysC/QHEVnyIFIPJJ+orUQdYo6DLgyK/66HF1oUq3M2nZbxVkQ8UR4Y/i1gs8HJKp+3WE3GpVNWG/YCIPEgJcGXpjTMQkhy9NB8378rftp3Nr2UTxy6WM4s2I7gESVcp2iHgOnVDTnEmfjcIYc1OqTlJxebEAgGoAv4gXLshhw9aNOWV/qsAghJAvDMImxGt7Mir84G8eIZxj7xt5BIBqYcn+TfwJV8uq8Z9o3a1rw4ZU34tFjv0GvsxtHLIdwyHwAt6+6K+NYOpEOHIaByT8xq+Na/GZwGIaq/8miQYk/QgghhCxqB0wf4DdHfpn+e6oNok5S+NDsFZpmAMBhy0G4Qk5UTFPxx+fyYZSUYXSaFiTWgBXjvnGs0c3c5hNIVvzNIfHni/jQ7+rDKm3mEHONOHHD0RawwhEqTsuxlmQr0TtW3ZWu3rqh+SOIxCJ4tvuZOR9/IQy4+mdVQXfCdhw1ijpI+SerNuuVjZAL5EVr9+kJu9Hn7MW6KRJ/+mQlqyWwMO0+U0+wzqXir1ZRB0vAAl8kUcUaZ+PodnSiOTkjcjIRT4SzKnfg1aFX5tSasy9ZgdOgagSH4eDSuivwxvBrc06oE0KWnwnfBBgAN7fcBgFXkLGuTlk/q1afrpATcZaFhhJ/pMRSv8/NATMcITvcYTfqKfFHCFmkquU1Ga0+Hz74M1z79ytw187b8OCeL+O1oV1T7mvxm2EosLrurtX3olZRi++8+9/4/bHfolHViLMqdmRsw+VwoRcbYJ5l4s8cMEEj0oLL4RYUEyHFRok/QgghhCxqf2h/FH/tejJ9Q98aSLbQEBee+JPxZaiSV+P1oVcBAOXTzPgDgEp5VUbFnyNoz5j5125NzNtbo1+TtW8uEr5kTq0+O2ztYIGsij+VUA0Ow2DA3Y9oPFaUlmNt2lX43jk/xNWN16aXqUUaXNFwNf7Z+/eM2QiLUTgWxn277sGL/f+acdsO+/GMNp9AouJjrX49DpuLk/hLzfebquIvdcMudZ3Pt9TMCuOcEn+JG4rDniEAwKh3BIFoACvVzTm3P7/6Igx7htDn6slaN+wZwk/3/3DG66rP2QMpX5quVLy07nKEYkHsHJj535kQQiaz+M3QiLXgcXhZ6+qVDRhyD6YfHmFZFp945WO4/rkP4f5XP45vv/MN/OCdH+Dx9j8AALX6JCWXTvz5zelq/HoVtfokhCxOVfJqDCcTf132Tvy95xlcUnc5vrPjISiFKtiDtin3ncu4AgFXgC9tfRBj3lEctR7B7W13gWGYrO2M0jKYfNkz/liWzYotkYik+X5k8aDEHyGEEEIWrQFXP47b2hFnWfQ4uwAgnXDTigqf8QckWny0244BwLQVfwBQIavC6KTE3//b9y385+7PpG8EHrUeQbmsAtpZzh2U8ObW6vO4rR0KgQJVsuqM5RyGA41Ii25H4ntVjBuQDMNgo3FzVguVsyrOhjPknFULtFKyB22IxqM4Zj2csTzVQiYlGA2i39WbrnCcbL1+Azrs7QhGg3OOZ7r5fgAg48sh4ArSla3zzew3QcgVQi5QFHyMankNGACD7gEAQJf9BABghTq71ScAbDJuhkKgyPkE7+tDr+L5vucw5h2d9px9rl40KBvTH9CN0jKcX3MRnu58oqjzGAkhpz9rwDJl+/B6RQMi8QjGfInXpB5nN3qdvdhReQ7qFPWwB214b/Q97B5+A1qxFlXyqgWMnJBsWrEWXIYDi9+EAXc/+Bw+KmZ4wI0QQkqlWl4DV8gJT9iNv5z4I8plFbhv3f3YXLYVGpEazpAz535xNj7nRFudsh6f2/yfuLDmImyvODvnNnqJIWerzzdH3sBt/7opY/SFxT/1+wlCSoESf4QQQghZtF7ofx5KoQoinggdtuMAEi0QVUIV+Fz+nI7drE60IRTzxFAKVdNuWy2rxph3FHE2jlHPCA5bDmLEM4xXh14GkJjvt1o7u2o/AJDwpfBFvAXH3m47ijbd6pxPJSYSf50AEjd/5kubbjX4HD4OmvZnLPeGPdg7tgePH/89/t++b6aTQaWSShSnkrwpLw/sxN0v3Z6uUut2diHOsmjVtmYdY71hI6LxGNptR+ccz3Tz/YBEolUvNixYq0+T3wSjtCzntTRbIp4IRmkZBpOVBV2OLpRLy6dMJvI4PJxbfT5eH3o1q7Kv094BAOnk9VR6nT2oVzVmLLu55TbYAlbsGny50C+FELIMmf0m6KdoFZaajZZq97l3bA+kfCnu3/AZfGHLl/DjC/4XT93wFJ659h944qq/zekhCkKKgcNwoBPr0xV/NYravOdfEULIQqlR1AAA9o29gz2jb+LGlTenW2UqhWq4gs6c+9kCNsTYOAxzmFMOABfVXoovnfHglJ+FjJKydIeUyd4ffw+ReAR9zt70MkvADP0cxpEQUmz0258QQgghBftn7z/SM8KKLRwLY9fgS7i07jKsVDfjRDIhYPVbprxBl4+VycRfhaxixqRHhawK0XgUZr8JOwdegJQvxZayrfjj8T/AHXKh39WLNfp1sz63hC+ZdlD5dOJsHB2241ilXZ1zvVasgyn54UQ9j7OGhFwhVunW4JD5QEZsn379k/janv/C37ufwd6xPXi+97l5i2E2Ui1YJnwTGe1Z35vYhzjL4q+dTwJItE8VcoWoU2S3w6pV1IHH4WHYPTSnWGaa75eiE+th9Vun3aZYEi1y5v7zVKuoSyd5ux2d6Z+vqZxffSEsAUu6TS6QaJnTmUxap5LXuYRiIYx6h9GobMqK4azKc/BE559mNdOREEIAwDJNxZ9apIFKqEq3TNw7tgdbys7I2RaUkMXCIDGmK/7qaL4fIWQRq5AlKuV/feSXUIs0uKTusvQ6lVA1ZcVfKhlXjM8x0zFKymALWBGJRTKWH7EcAnBy7jjLsrD4zUW5T0FIsVDijxBCCFkAY95RuEOuUodRVM6gAz878CM81v7ovBz/7dHd8IQ9uLz+KrRoWnHCfrLiTzeH+X4pTeoV4DIclEtnbn9ULU+01BxyD+GVwZ24oOYi3LPm4xj3jeMnB36IOMtitS6Pij+eFKFYqKDkRL+rF4FoAG3aVTnX65LtRqV8KYRcYd7Hz8cGw0YcthxKfx3HrEcw5B7Ef5/9Pfz1Q8/hkrrLsXfsbbAsO+OxwrEwQrFQ0WO0B2zgJBO7x5NVf3E2joOm/dCJdXh5cCdsARtO2DuwUt2ccxg7wzDQirSwBeeWjJtpvl+KTqLLqPj7YOI9vDa0CyOe4Vl9L/Nh8k2k5+TNRa2iDkOeQcTZOLqdXVO2+UxZpVsDlVCF9ybeTS8z+01whZyQ8qXomqbib8DVjzjLolHVlLXu1tY7MO4dw+6R1wr/Ygghy0bqRt10Nw7rlQ3od/XB4regx9mNbRXbFzBCQvJnkBhg8psw4OpHnYISf4SQxUvME0Mv1sMVcuK6FTdAwBWk1ymFKrhmTPzN70w9o9QIFpnz161+K0Y8iTEgvc7EzHJXyIlIPEIz/siiQok/QkhO/ogfT5z4U1YLLkJIYb6190H878GflDqMoupOztx7bWhXRm/7Ynmh719Yq1+HKnk1WjRtsAassAasid75RXiSTsgVYlvF2Vhv2DDjtgaJETwOF3/v+StsARsuq7sSDaomnFt1Pt4a2Q2lUJU1b286Ur4UAOCP+vKO+7itHVyGg2ZNdktK4OTsw2LM95vJesNGBKIBdDoSM912Db4Mo8SILWVbwTAMtlecBZPfhH5X75THiLNx7Ox/Abf+6wZ89e0vFT1GW9AKg8SIMmkZ2q2JxN8Jewe8ES8+u+mL4HP4eLb7aZywHUfLFN9TIFFJaQtMPVx+Nmaa75eiFxvSHy79ET++/s5X8J13v427dt6G65+7Gsdt7XOKYzJzoDhD6GsVdZjwTaDL0YlgNIiV6uZpt+cwHGwwbMIB0wfpZanr6MLaS9Dj7Joyydnr7AGHYXJWMTSpV2BL2Vb8ueOPRU+SEkJOP96IB6FYaNr3FfXKRvS7+vDu+F5wGAZbys5YwAgJyZ9eYkSXoxOBaAB1yuxOBoQQsphUyash48twdeO1GcsTFX+OnPuY/BOQ8qXpz9XzJfWA5OQ5fwfGEx1vtpRtTVf8WZKf3WjGH1lMKPFHCMnpoHk/fnv0/zCQnGdBCJmbcd849o7tKbi942LU4+iGiCcCizheHthZ1GOn5uhdXn8lAKBF0wYgMf/LGrBAX4SKPwD4+vZv45qm62bcjsvholxaifcn3kOjqjFdzXT7qjvBYRis1q3Ja0aamCcGkEjq5GvUO4IyacWU1Xya5Fy/hUj8NatbIOaJcch8AOFYGG+OvIELai9Oz5JZq18PMU+MvWPv5Nx/zDuKT736Cfzwg++hSl6NQ+YD6eRcsdgCNmhEWqzSrk7P6Ntveh9SvhSbjJtxdeM1+HvP32AJWNA6RRUlkPh+zqXiLxKL4JB5/4zVfkDiSX1bwIo4G8fbo7sRjoXxy4sewf/s+D4i8QiOWg4XHMdkgWgA7pCrSK0+E0m41Hy9mSr+AGCjcTN6nF3pBwc67R3QiXU4o2wbfBEfxryj6W37nD3YN/YOwrEwel09qJRVT/kzcN2KGzDoHkg/gUsIIVNJVQxMd6OuTlmPMe8I3hh+Dat1a2mOH1n0DBIDwrEwAKCeKv4IIYvcbW0fxQNnfBUSviRjuVKogjvsylmQYPabYVyA6jq9xAAGyJhbf2D8AKrk1dhk3IIBVz9i8RgsyfEn8916lJB8UOKPEJKTJ+wBAAx55jbPiBCSSO74I36EYiHsmyIBshR1O7uwUt2MHZXn4Z+9/yhqhfBR6xEAwNmV5wIA9BI9tGItDpoPwBvxpttZLqRKeWL+wKV1V6STfLWKOnxqw+dww8qP5HUsSfLJRF8BFX+ukAsqoWrK9Scr/uZvvl8Kl8PFOv16HDQfwN6xPfBFfLi49tL0egFXgK1lZ+Kdsbdz7v/kiT/DEjDjR+f9DD8872eoltfgyc4/T3m+yTP6ZsseTCT+2rSr0ePoQigWwv6J97HBsAlcDhf/tuIGxNhEq9JUgjmXQiv+9o3vxVfe+iKue+4q9Lv6sa3irBn30Yn1iLFxOIIO7Bp8GWv165OVbGegQlqBCd943nHkYvIlnlwtRsVftbwGAPD68KuolFVBJpDPuM8Gw0bEWRaHkzMyOu2daNa0YmUyaZiqKmZZFv/z7rfx4J4v48PPfQivD+3K2eYzZb1hI6R86ZTXHSGEpFj8iSf0p2shXq9sAAvgsOXgrF7DCSk1ffL3upgnprZzhJBFb61+Pc4s35a1XCVUIc6y8CbvT05m8ZsW5PVNyBXijPJt+Fffc+luIgfGD2C9YQMalI2IxCMY8Q7D7DeBx+FBOc3ndEIWGiX+CCE5ucOJWWQjnuESR0LI0peqEhJwBdg98nqJoymebkcnmlQrcXXTtRj1jmS07JurCd84tGItRDxRelmzuhV7Rt8EUJoWGlWyKvA4PFxYc3HG8qsaP4RVutV5HUvCSzzNWEjFnyvknPYDhVacSPhpxPOf+AMSSZZ261G80P9PNGta0gmglG0V29Hl6EzfXJ3smO0ozqrYgTX6deAwHNzYfDP2ju3BkHswa9sO23Hc8vz16M+zEt0WsEEj1mKVbjVibBwHTB+gw96OTcYtABIzES+pvQxl0jLoJVPf+NWJdbAH80v8xdk4vvvut2ELWnFr6x34xUW/wdmV58y4X+r67rC345D5QEYy1Sgtx4S/OIm/vWPvQMAVoEk1c3XeTCR8CYwSI9wh14xtPlOM0jJUyCpxwLQ/ORuwE83qFqhEaujFenQ7OgEAfa4eDLoHcP+GT+Om5ltQIavEWZU7pjwuj8PDlrIzKPFHCJmRJWAGl+FAK566Sr5WUZf+85nlNN+PLH6pipNaRV1eHSkIIWQxST3s6sjR7tPsN6Ufcphv16+8Ef2ufhw074cz6ECfow9r9OvSDyL2OXthCZihF+vTnW8IWQzoaiSE5OSNeAEAw57sm6+EkPxYkwmPS2ovw3vj++CL5F/ltdh4wm5M+CawUr0Sq7Vr0KBswHO9fy/a8Sf84yiTZM5Ba9W2pSu+pnsyf75ct+JG/L+zvweFUDnnY0n5MgCFJv5mW/E3/60+AWCDcRMi8QgOmPZnJKhStpafCQ7DYN94ZrWrK+TEkHsQa/Rr08suqLkIWrEWT3X+Jes4rwzuBAvkXe1mD9qgFWlRr2yEmCfGnzseR5xlsblsS3qbT274NH5y/i+mPY5GpIEn7Em3zpqNYc8QfBEf/n3tf+AjLbfOqv0lgHRF65Mn/gweh48dVeem15VLKzDuLU7i75WBl7C94uystjqFqlHUAphdm8+Ujck5fyOeYfgjfjRrWpLHaEa3I1Hxt2vwZSiFKlzVcA1ubbsDP7/w1ziv+oJpj7u94mz0OntgSrbxI4Sc/mLxWN6V4Wa/GVqxbtobdWKeGOXSclTJq1Eln/08X0JKJVUFk2sWLiGELBWph11dIWfWOpPftGBtNdfpN6BR1Yi/dj2JI8mRC+sN66EQKqET69Dn6oXZb552XjAhpUCJP0JITp5QYt7OMFX8ETJn1uSg5+tW3oBIPIJ9Y3tKHNHc9Ti6AQBN6pVgGAZXN/4b3h1/B+Zkb/u5MvtMKJOWZSxr0bSm/1yKN9V6iR4bjZuLcqxUosVfQKtPd9g1bfJRIVRivWEjVmnXFBxfPuoU9VAKVeAynJzJGLlAgTW69dh7SvVVapbfKt3JxJ+AK8C/NX0Yrw69nFEhGI1HsXs4US1rD9pnHVskFoE77E7f1G3VtuGEvQMVskqUSU8mlgVcwbTVHkCi1Wfi/LOv+uuwHQcDoHnStTsbSqEKPA4PJ+wdOLvynIyh9WXSMpj8E3Nurdtt68aAqx8X1l4yp+NMlqqKSSXvZmOjcTNGvSN4O1nNm0oarlQ3o8fZjVg8hteHX8V51ReAy+HO+rhbys8Aj8M9LV5vCSGzs3PgBdy189acLcGmknhCf+b3FNetuAG3tt4+l/AIWTAyvgxGiXHB3gsSQsh8UIvUABIPvk7mjXjhi/gWrJUxwzC4fsWNeH/iPfyz5x+oVFSm70fUKxvQ5+yBhRJ/ZBGixB8hJKfUjL8Rz3C6jzUhpDDWgBVygRzV8hq0aVfhjdOg3WeXoxMinijd1vG8mkTC593xvUU5/rhvDIZTEn8r1M1gkEhsCbiCopynVMQ8MYDCKv6cIee0FX8choOHzv1x3u1HC8VhODi3+nycX3PRlC1It1eehYPmAxlf7zHrEejF+qyh7Fc1XgMhV5Qx6++DiffgDrvBYRg4g9mtXqZiDyWShKl5h6kbYJvLts76GCmpSsp8qkk6bO2oU9ZnJO5mg2EY6JNVrRedUkVZJi1HNB4taN7gZC/2vAilUInNxi0zbzxLK9TNEHAFaFStmPU+6w0bwAD4W/dfUSGrhFygSB/LE/bgpYEXYQvYslrszkTGl2Gtfj32jL6V136EkKWr29GJYDSIt5IPEszGbG/UXbvi+qzXY0IWs99d9idcWnd5qcMghJCCSfmyxOe/U1p9WpIPGxslZbl2mxfnVV8IjUiD/aYPsKl8U3p5o6oJfa7eWT9IRMhCosQfIYuAN+zBh569LF1Bsxi4wy6IeWIEooG8W+YQQjJZg9Z0675zq8/HBxPv5vU0+mLU4+xGo7Ip3RpLxpehRdNWlDl/kVgEtoA1q9WnlC9FjaIO+uT3cinjMByIeeK8K/5CsRCC0SCURWg3Wkyf2vAZPLD1K1OuP6tiB6LxKN4a3Z1edsx2FKsnVfulSPlSfKTlVvyz91kMuPoBAK8OvYJaRR1q5HXpZN5s2JK/v7TJtqepZOgmQ/6Vm6mKQFs+iT97O1o1q/I+F5CoalUJVdh0SpVpqlJxLnP+4mwcO3t24vyaC8Hj8Ao+zqnOq74Af7j8L3klOuUCBVaom+EKOdGsPlkpuEKdSB7+vv0RlMsqMip+Z2t7xdk4YjmUbl9OCDm9pWbA7hp8edb7WPzmBWsVRshC4nP5NN+PELKkcRgOFAIlnKe0+kx1GVqoij8g8Zp6TdN1AIANZRvSy+uVjbAGrPR+gixKlPgjZBGwBCwIRAMY842WOpQ0T9iTvslGc/4ImRur35KeSbej8jzE4jHsXeLt57odXWg6ZY7XJuMWHDIfmHMLQkvADBbIavUJABfXXortFTvmdPzFQsKX5F3xl/rQoxCoih/QPDJKy7DJuBn/6nsOABCMBtHt6MRqXe4WVNetuAHl0ko8fOhn8Ef8eGfsbVxYczHUInV+FX/JtpypNp0bDJvwxS1fxhnl2/L+GmR8OfgcPmzB2SX+/BE/Blz9aNUWlvi7tul6/Mf6/y+rvWXqyVZTnrMOJztsPgSzz4yLavOropsJh+GkH3LIx0Zj4qnZyS1C1SINdGIdHEEHLqq5pKCbl9sqzkaMjeP98Xfz3pcQsrSwLItB9wBqFLU4Yjk0q9bjcTYOS8BCT+gTQgghi5RKqM6R+JsAh2FmHNVQbFc3XoOL6y7FObXnpJc1KBsBACwA/QImIgmZDUr8EbIIeMKJeXqFtHybL96IByvUK8HjcDFCc/7IMvfP3r/PqZLNGrCkEw96iR4NqkYcNB8oVngLzhfxYdQ7gpWnJP42GjfDG/Giy9E5p+NPJBMak2ewpdzUcgvuWHXXnI6/WEh4Uvgi+VX8uZPzDaZr9blYXdV4DTpsx9Hr7EanvQPReGzKxJ+AK8B96z+FQ+YDeOj97yAcC+OCmougEWngyGPGnz1gA4/DhUKQqJDkMBxcXHdZXrPiUpjkh0v7LFtsdto7wAIFVaoBwI6qc3F+zYVZyyV8CZRCFcZnmfgz+SbwTNdT+Pwbn8Z/7/0G3hh+DS/0/RNViqqCk5LFtinZbrRF05axfIW6GQBwQc1FBR3XIDGgUdWEd06ZL0kIOf1YA1b4Ij7c3HIr+Bw+Xh/aNeM+rpAT0XiUZvIQQgghi5RKpIYr6MxYZvaboBcb0t2HFopcoMCXz/wqlKKT3Xeq5TXgc/gAAEPyYW9CFgtK/BGyCLiTiT/fImpF5Q67oRSqUCGrwpBnqNThEFJST3c9iZcHdxa8vzVwsuIPANbqN+Co9XAxQiuJXmeiLfGpFX8tmlaIeeI5t/uc8E2AAU77J/AlfAkC0Xwr/hLVbkqRah4iml9nlm+HRqTBv/r+iWPWo5DypahTNky5/RnlZ+LM8m14e/RNrNatgVFaBpVIDXseiT9r0Aq1UFO0VldakQ7WWVb8ddiPQ8KXoEZRW5RzT1YmLUsnyKfz0/0/xG0v3ITfHv0/iHkijHpH8P/2fROvDu7C5U2XL5oWYOv0G/CT8x9G2ymJyPOqz8eFtRejSl5d8LE3GTejw9Y+1xAJIYvcgDvR5nOVdg3OqtyBV4dmbveZqgo83d9vEEIIIUuVSqjKUfFngjFHd6BS4HK4qFXUAQA9SEQWneIN9SCEFMyTnPXlz/MG8HyJxqPwR/xQCJSoklVTq0+y7DmDDlj8loL2jcVjcIYcpyT+1uHZ7r/C5JtYNG9Y89Ht6AKfw0etvC5jOY/DwzrDBuw3vY9bWm8v+PgT/nFoxTrwufw5Rrq4SXj5t/p0JT/0KAWLa8bfbPA4PFxWfyWe7f4rGpSNWKVdPeNTmp9Ydz8OmPfjkrrLAQBqoSZruPt07AFbutq2GLRi3awr/jrsx9GiaZ2XJ1HLpRUzJv7eGtmN5/uew91r/h1XN16bnrs37h3DIet+XLvmKsQWx9sOMAyTnr842QU1F+OCmrm1I9WJ9bAH7WBZdtEkOgkhxTfoHoCQK4RRWoYLai7C1/b8F/qcPWhQNWVsd9C0Hw2qRiiFKlgCycSfhJ7QJ4QQQhYjhVCZnvueYvabF9V9lEZVE0a8w5Dx5aUOhZAMc74T4XK58NZbb+H555/HW2+9BZfLVYy4CFlWUq3b/Hm2fJsv3mQiUi6Qo0ZRQ60+ybIWioUQiAZgDRSW+LMH7YizbEbib41uLQDgiOVQMUJccN3OLjSqmnK2S9xs3ILjtmNzal1s9k3kbPN5upHyZXCH83vf5Aq5IOQKIeKJ5imq+XVFw9UIxYJotx3D6uTPwXQq5VV44qpncFndFQAAtUgNX8SHcCw8q/PZgzZoRMWb/aAV62AL5k78HbUcxm+P/h/ibBwsy6LDdhytmvlppTlTxZ8r5MTPDvwI2yrOwk3Nt6STfgBQLqvA1U3XQCFUzEtsi41apEEkHoEvujjeYxFC5seAqx81ilpwGA42G7dCIVBg12Bm1d+TJ/6ML775Ofz84E8BABa/GXwOHyqhuhQhE0IIIWQGaqE668FPs98EwyKap3dp3eW4qfkWesiQLDoFJ/5YlsX3v/997NixA/feey++8IUv4N5778WOHTvw0EMPFTNGQk57qRl/gWigKMez+C34xjtfRTAaLCyeyMnEX5W8Bma/uWixEbLUpNpKWPxmsCyb9/6phKFu0uBppVCFOkU9Di/BxN8JewfeHdubNYsrZaNxM6LxGI5ZjxZ8joklWgmZrwpZBUa9I3nt4wq7luR8vxSjxIgtZWcAwJTz/U4lFyjSH6JUQg0AwDHLqj970FbUoe9akRa2QO5Wn091PYEnTvwJPzvwI4z7xuAKOdGmza5iKwajpBzWgAXReDTn+p8f/ClibAyf3vj5Zf8BVCNKXjN5tIglhCw9A+5+1CnqAQB8Lh8X112Kp7uexA/e/y4cQTv+3PE4Hjn6a7Rq2/DmyOsY847C4jdDJ9Ev+9dJQgghZLFSClVwh12Is3EAiY5K1oAFBvHiSfyt0a/DbW0fLXUYhGQpuNXnr371K/zhD3/APffcg8svvxw6nQ5WqxUvvvgiHnnkESgUCnz84x8vZqyEnLZSrT59Rar4O2E/jj2jb+GE/TjWGzbmvb87lEhEygUK8JJDase8I2hUrShKfIQsJc5gIsEQiUfgCbuhEObXYvFk4i+zjdRaw3q8P/FucYJcIPtN7+Mb73wVDcpG3LHqzpzbVMmqoRfrsd/0PraWn1HQeSb84wW9di01dYp6mP1m+CN+SPiSWe3jCjrzvgYXmxubb4YtYEOzpjXvfVNJHGfQAeMsnvK0BYpd8aeFL+JDMBrMqLqMxCI4bD6INu0q/Kvvn+h3JWZNtWhainbuycpl5YizLMx+EypklRnr9o7twRvDr+FLW79S1KTnUqWelPirlteUOBpCyHyIs3EMuQexo/Lc9LJ719yHCmklft/+W7w2tAuReAQfXfUx3ND8Edz6rxvx164n4Ql7aL4fIYQQsoiphCrEWRbesAcKoRLWoBVxll1UFX+ELFYFJ/6efvpp3Hfffbj//vvTy3Q6HVpaWsDn8/Hkk09S4o+QWXInK/6K1eozlUg8Ye8o6Ob5yYo/BXTJ2UhD7iFK/JFlafIgaUvAXFDij8/hQ3HKTLZ1+vV4rudZWPyWJTFbZt/4Xnzzna9go2EzHtz2rSlbTTIMg43Gzdhveh/hWBgCriCv84RjYdgCtmXR6rM2WZkw5BlEyyyTYEu94g8A1urX45cXP1LQvuo8qrdi8RhcIWdRZ/ylkoj2oC0j4dZhb0cgGsAn138aH5jew++OPYJKWdW8JWnLJImfjwnfeFbi75+9f8cq7eo5z8Y7XaiTLfwcwdnPhiSELC1mvwmBaAB1yob0Mi6Hiw81/RvOq74Afz7xOMqlFbim6ToAwHUrPow/Hv8DjNIyNM/TAxqEEEIImbvUZ19HyAGFUAmz3wQAMEjowR1CZlJwq0+LxYKNG3MnFDZs2ACLJb9ZSH/6059wwQUXYM2aNbjhhhtw5MiRabd/8cUXcdlll2HNmjW4+uqrsXv37oz1LMvipz/9Kc4++2ysXbsWd955JwYGBnIeKxwO45prrkFzczM6OjpybjM4OIgNGzZg8+bNecdCyEzSib9o4TOxJku1Du20nyhof284VfEnh1yggEqowrBnqCixEbLUTO4nb5mixd90rAELdGJdVhup1Jy/o9ZDc4pvofyj5xmsVLfgm2f9z4zz5c6q3IFB9wCu+ftl+MQrd+PPHY/P+jypN/KzqeZa6qoVieqjU4eVT8cVWvoVf3OhEqrAIDE7cyb2oB0sUPQZfwCy2n1+YHofCoECTeoVuLnlNty1+h5cv/LGop33VAaJEQyA8VPm/HnDHhw078d51RdQ67okKV8GPodPrT4JOY0NuAcAAHXK+qx1CqESn1h3fzrpBwBXN14DHoeHEc8wVfwRQgghi5gymfhzJR/IHvEMgwGWxWgQQuaq4MRfZWUl3njjjZzrdu/ejcrKypzrcnnhhRfwne98B5/85Cfx7LPPoqWlBXfffTdsNlvO7Q8cOIDPf/7z+PCHP4y///3vuPDCC/HJT34SXV1d6W1+85vf4PHHH8c3vvENPPXUUxCLxbj77rsRCoWyjvf9738fBsPUb/gjkQg+97nP5Uz6zSYWQmbiLXLFnzfiBQB02nMnsmfiDrsh4Aog5AoBANXyGkr8kWXLGXRAzBODwzCw+vN7qAVIJAhObfMJJCqXahS1OGw+VIQo59+IZxirdWvA48zcLGBbxVn4+YW/xn3rPgWFQIHHj/9+yllkpzL5JwAA5bKKOcW7FIh5YpRJyzDonn3izxlyQilQzV9QixyXw4VcqMwa8J6LPZh4H6mdh8Sf9ZTE3wHTB9ho3AwOwwHDMLil9XZc3XhN0c57Kj6XD51Yj4lTEn/vju9FNB7DWZXnzNu5lxqGYaAWqWEPUeKPkNPVoKsfYp4Yhlkm8eQCBa5ouAoAVQwQQgghi5kqnfhzAQCOWY+gQdUIMU9cwqgIWRoKTvzdeeedeOyxx/CFL3wBu3btwsGDB7Fr1y584QtfwOOPP4677rpr1sf63e9+hxtvvBHXX389mpqa8M1vfhMikQjPPPNMzu0fe+wx7NixA/fccw8aGxvxmc98Bm1tbfjjH/8IIFHt99hjj+G+++7DRRddhJaWFnz/+9+H2WzGrl27Mo61e/du7NmzBw888MCU8f3kJz9BQ0MDLr/88rxjIWQ2il3x5022+rQELLAFcifQp+MJe6AQKNJ/p8QfWc6cIQc0Ii00Ii0sAXPe+1sC1ilbDa7VrcNhy6E5Rjj/wrEwTL4JVOUxH6tZ04IPNf0bbmv7KKLxKEY8w7Pab9w7Dg7D5EyWno7qFPUYTFYqzIY7tPRbfc6VWqieZcVfMvFXxDl3Up4UQq4wfWwgUWXfZT+BTcYtRTvPbJTLKrISf2+PvoUWTeuSaB+8kFRCNVX8EXIa63f3oU5Zn1el8/UrboJKqKJRBoQQQsgiJhPIwWGY9IOfx6xHsVq3rsRREbI0FDzj7yMf+QgikQh+8Ytf4PnnnwfDMGBZFhqNBl/5yldw0003zeo44XAY7e3tGfMAORwOtm/fjoMHD+bc59ChQ7jzzjszlp199tnppN7IyAgsFgu2b9+eXi+Xy7Fu3TocPHgQV155JQDAarXiwQcfxMMPPwyRKHfbsr1792Lnzp34xz/+gZdffjnvWGaDw2HA4VA7puXME/FAK9YiEPWDxys4H5/mi3pRrajCiGcEve5OGOVnT7s9l8vJ+L8v6oFCqEjHUq2sxhsjrxYlNkIKdep1ulBcESfUYjXibBz2kDXvnwNHyIoWbUvO/TaUbcS/+p+DK2Iv6hyyYhvxjQMMUKusyfvrb9I0gWGAQW8/mrSNM25vDZqglxggEuQ3G3CxyPc6rVfX47XB2b2+xtk4vBEPNBL1sn491ko0cIedM34PnGE7uBwOtFINOEzxvl86iQ7OsD19/sNjBwEGOKNy64L+u5TLyjHsGUqfMxgN4n3Tu7hz9cdmjKNUr6elopPo4JrFNUMWl+V2nZLCDXsG0aRekdfPeLnCiL/923NzbotM1ylZCug6JUsBXackNw6UQhXcERfcEQfGfaNYZ1xXsvf1dJ2SpaTgxB8A3H777bj11lvR19cHl8sFlUqF+vp6cDizv/gdDgdisRi02synsbVaLfr6+nLuY7VaodPpsra3WhNtl1LzBXMdM7UNy7L40pe+hI985CNYs2YNRkZGcsb25S9/GQ899BBkMllBscyGRiOlOSzLWCgaQgwR1GqqcdxyHCqVZM7XQ5gJoNXYghAbxFCgD1eqL53VfgpFolQ+yglBJ9dArZYCAKq0ZQizIciVwlm1+SNkPqWu04USZH0oVxrAYThwhx3pn4vZYFkW9rANdfqqnPudLzob33mPgy5fO66ouKKYYRfVIacFXC4Ha2paoBbP/usHADWkKFeUwRQemdX3zhmzoVZTndf3eTGa7XW6prINT3c9AaGMgYQvmXZbe8AODpdBla5syX9/5qJcaYTFb5nxexDkeGGQ66HVyIt6/gplGXysO33+9qOHsELXhJWV2bOl5lOjoQ4HrR+k43i9/z3EEMGVqy6FWjm762OhX09LpUJtRJeta1n/3Cxly+U6JYWJs3GM+odx7aoPlfRnnK5TshTQdUqWArpOyakMCh3CHD8Ggt3gcjnY0XQm1NLSvq+n65QsBXO+g8/hcNDU1FSMWBbU448/Dp/Pl1FpeKoHH3wQV111FbZsmd/WTXa7jyr+ljGL34xYLA41T4tQJAyzzQkBd26VLjavA2q1Dk2KZhwYOQRH0/SzA7lcDhQKMdzuAGKxOMxuK4RcCRyOxH6ciACxWBxDpnGoRZo5xUZIoU69ThfKhNuMFk0rhBwROhyd6Z+L2XCH3PCHAhDHFTn3YyBEo2IFXu16Hdt05xYz7KLqGO+GkBEBAQEcwfxnkVZL63B0/HjG9yAcC4PH4WVVYg3Yh1Elq8rr+7yY5HudajhGxGJxHBw8hjbtqmm3HXSNIRaLgxsWLdnvTzGIIceEq33G78GQbRRKnrro3ys5V4URxxgcDh9YlsVb/Xuwo+rcBf83UTJaWLxWjFmsEPPE+FfHTtTI6iCPa2eMpVSvp6UiZmWYcJuX9c/NUrTcrlNSmBHPCPyhAPS8ipL8jNN1SpYCuk7JUkDXKZmKlCPHuMOMd4LvwSAqAy8sgSNcmvf1dJ2SxWC2D7vllfj73e9+h6uvvho6nQ6/+93vpt2WYZisFpi5qNVqcLlc2GyZc8hsNltWJV2KTqfLqqibvL1er08vMxgMGdu0tLQAAPbt24dDhw5hzZo1Gce5/vrrcfXVV+N73/se9u3bh9deew2PPvoogETlRjweR1tbG771rW/hwx/+8IyxzEY8ziIeZ2e9PTm9OAIusCygF5eBZQFXwD3n5Jor5IaEK4VWpcffup9GJBKbVRVhLBZHNBqHK+hGnbIe0Wjil5iYIwXLAg6/C3Keak6xETJXDr8Tn3/tM/jatm+hXFYx/+cLOKDgqyDlS2H2m2f98wQAJq8ZLAuoBdr0z9OpNhvPwHO9zyIciRa1HWExDToHUSmrRizGAsj/91W9ogGvDr6S8T341K7/wHrDBty79r6Mbcc8o9io3zzl92upSL2ezqRSUgOwQJ+9HyuVrdNua/c7wLKAjKdY8t+fuVAKVHAEHTN+D6w+K1RCTdG/VyqBBl32LkSjcQx7hmDymbChBNesQVwOlgV+/N4PcWXDh/DO6B5cv+LGvOKY7XW61CkFatgD9rxev8nisVyuU5I/lmXxyKH/g4grRoO8qaTXCV2nZCmg65QsBXSdklMp+CrYAw6MeEbQpl29KK4Puk7JUpBX4u973/seNm3aBJ1Oh+9973vTbjvbxJ9AIMCqVauwd+9eXHTRRQCAeDyOvXv34rbbbsu5z/r167Fv376M47/zzjtYv349AKCqqgp6vR579+5Fa2viJprX68Xhw4dx8803AwC++tWv4jOf+Ux6f7PZjLvvvhs//vGPsW5dYkjok08+iVgslt7m1VdfxW9+8xs88cQTMBqNs4qFkJl4wx4AQJm0HADgj/jnnPjzhj2QCxRoVDXBE/ZgzDuKSnnVrPf3hD1QCBTpv8uTf/YkYyWklLodXehxduO47di8J/5YloUz5IBapIZCoEQwGoQv6oOMn9n+2RG045+9/8BtbR/NSN5ZA4nW07pp5vdtLT8Tf+p4DMdt7VitW5O13hN2IxaPQSVSF+mryt+odwTV8uqC969XNsIS+DO8YQ9kAjksfgu6HJ2wBiy4e83H09+zUCwER9ABo7SsWKEveiKeCGXScgy6+2fc1hlyAgCUQuU8R7W4qUUaeMIehGPhKSvkWZaFyT+BNu3qop9fK9bCHrTBG/HiB+9/F3KBHGv0a4t+npms0q7GXavvwT97/45XBl8CAJxduWPB41gK1CINovEovBFP+j0NIWTp+3vPM9g98joe3PZNKJb570ZCCCHkdKUQKtFha4clYMZVDdeUOhxCloy8En8nTpzI+ee5uuuuu/DAAw9g9erVWLt2Lf7whz8gEAjguuuuAwB88YtfhNFoxOc//3kAwB133IHbb78djz76KM4991y88MILOHbsGL71rW8BSCQd77jjDvzyl79EbW0tqqqq8NOf/hQGgyGdXKyoyLxZLJEk5urU1NSgrCxxw7GxsTFjm2PHjoHD4WDlypXpZTPFQshMXCEXAKAseaM7EA3M6XhxNp64uc6Xo1mdqHDtdHSgXFaBXx/+BawBCz6/+YFpZ0l5wu6MG2MnE3/uOcVGSDEMuQcBAGO+sXk/ly/iRTQeg1Kogk6cqCa3+i2QKTMTf68N7cLjx3+PLWVnoFXbll5uCySq2TWizJmzk7VoWqEQKPDexL6cib+fH/wJrAEbfnjeT4vxJRVkxDOMjcbNBe9fr2wAAPS7+rBGvw77Te8DAOxBOzpsx7FKl0jODLgSya/y5IMQy0Wtsh6D7oEZt3OFnOAwDKT83HOHlwu1MPFwjDPkhEFiyFrPsiweOfor9Lv6cceqjxX9/FqRFv6IH19449Mw+Sbw3XN+CDFv4Wc8MAyDW1pvx0dabsUHE+9j3DeKemXjzDsuQ2ph4sEJe9BOiT9CThPt1mP49eGHcd2KG3BO1XmlDocQQggh80QtVMPkNwFAznsmhJDcCp7x9/7776OtrQ3SHMM0/X4/2tvbZz0b74orroDdbsfPfvYzWCwWtLa24pFHHkm3yxwfHweHc7KCYuPGjfjBD36An/zkJ/jRj36Euro6PPzwwxkJuXvvvReBQABf+9rX4Ha7sWnTJjzyyCMQCoWFfsk5zSYWQqbjCXvAADBIElWk/ujc+lT7Iz6wAOQCORRCJcplFThqOYK3R9/CntE3IeAK8cU3P4v/d/b3oBSqsvaPs3F4I4nEYYpckPizN0IVf6T0hj1DAIBx7/wn/lIVVmqhGvpk4s8SMKNOWZ+x3THrUQDAQfP+jMSfJWCGSqgCn8uf8hwchoMtZVvx3vhefGz1vVnruxxdMPkmEI1HwePMeTRv3rxhD5whJ6pkhVf8VctrwONw0efqTSf+VqhXwhaw4s2RN9KJv3/1PQedWDcvVVqLWZ2iDq8N7ZpxO1fIBYVAuWhbwi4UdbL61RG050z8/anjMTzV+QQ+se6TOLvynKKfX5us4LX4zXjo3J+gSb2i6OfIB4fhYGv5GSWNYbFLdVJwBh2oVdQBACx+C0Q8ISUCCVlC9o29g0OWA5jwTeCo5TCaNa24d+0nSh0WIYQQQuZR6t6lQqhEtbymtMEQsoQUfAfxjjvuwJNPPom1a7NbG/X19eGOO+5AR0fHrI932223Tdna8/HHH89advnll+Pyyy+f8ngMw+DTn/40Pv3pT8/q/FVVVejs7Jx2m+uuuy5dhZhPLIRMxx12QSaQp1sH+iJzS/x5I14AJ5N1LepWPN/3HPgcPr6+7b+hlxjw5bf+E599/VP47jk/zLpp6o/4EGfZ9P4AIOAKIOAK4KaKP7IIDLsTib8J3/i8n+tka0UVNCItGJys4kthWRbHrEcAAPtNH+CW1tvT62wBa7pScDpby8/Eq0O7YPFboJec3D4cC2PMO4I4y2LA1V+SBMOIdwQAUDWHVp88Dg+1ijr0u/oQZ+PYb3ofVzVeA1/Eh7dG3sAn1n0S3ogHrw69gltabi9JgrOUahV1MPvN8Ef801ZjO0POnA9sLDeqZPWWI+TIWvfP3r/jD+2P4q7V9+D6lTfOy/kbVU04s2I77lp9Dxqowm5JSCX+7EF7etlnX/8knCEnLqu/EtevuGFBZsYSQgoXi8fw7X1fh1wgR62iDufVXLgs3zMQQgghy40q+Rl4tXYNzesmJA8FPzLOsuyU6wKBAEQiUaGHJmRZ8YTdkAnkkPAT1bP+OSb+UnP4UhV7m8u2QC6Q47vn/ADbK8/GCvVK/OT8n8Mb8eDx47+bcv/JiT8AUAgUNOOPLApDniFwGQ7GfKPzfi5nMrGgFqnB5/KhEqlhCZgzthn1jsAZcmJL2VYctx1DMBoEkPg9ecD0ARpVTTOeZ7NxKzgMgw9M72UsH/YMIp78fXvCPvuHaYppJFlhWSmb/ZzQXOqUDeh39aHb0QVP2IMtxq3YUXkOLAELOh0n8ELf84izcVzRcFUxwl5SahWJCtKZ2n26KPEH4GTFnzOYmfhzhZz4zZFf4cqGqzMS8MUmFyjw7bO+Q0m/JUTCk4DP4cMRSiT+7EEbTH4TNhg34fXhV3Hnzltw2HywxFESQqYz7BlCOBbGl7c+iO+d8yN8asNnoBVP3UqdEEIIIaeHdOKP2nwSkpe8Ho87dOgQDh48+aH4n//8J/bv35+xTSgUwquvvoqGhobiREjIac4T9kDOl0PAEYDLcOCP+ud4vERVnkKYaF11ce1luLDmEnA53PQ2VfJqbDRswohnOGv/VFWfQqDMWC4XyCnxR0rOH/HD4jdjrW4DDlsOIhQLQcgtbgvnyZzBxEy1VCs4vdgAq9+Ssc0x61EwAG5t/Sjen3gPx6xHsLlsK9ptxzDuG8fnNz8w43kUQiVaNG14b3wfLq+/Mr2839UHIDHzrtPRgavwoeJ9cbM04hmBRqSZthJtNuoVDXhn9G18MPEexDwxWrWrwICBUqjC7uHX8NbIbpxXfUG6Mmc5qZbXgEEi8Te5VeypXCFn+kPPcsbj8KAQKOCYVL0FAH858UcAwF2r7ylFWGQRYxgGWrEWjmSyuMfRAwD4j3Wfgkasxcdf/hheG9qFdYYNpQyTEDKNXmc3AMzqgSpCCCGEnD4qZFWQ8WXYUkbjDQjJR16Jv7fffhs///nPASQ+QOdqwcnj8dDY2Iivf/3rxYmQkNOcO+yGUqgEwzCQ8KXwR2ZO/L0ysBMqkTrnL72TFX+J1qEMw4DLcLO2K5NW4JAl++n2VOLw1Io/uUABL7X6JCU25EpUn20tPwOHLQcx7h3LmrdXTM6QI2Ommk6sz6r4O2Y9ggZVI9q0q6ARaXDQvB+by7Zi1+BLMEgMWKNfN6tznVG+DU+c+BMisUh6JuCAqx9GiREbDJvQYW8v7hc3S6PeEVQVoY9+g6oRgWgAOwf+hXWGDenWXGdX7sDfe/6GaDyKB5uun/N5liIRT4RyWSX6XL3TbucOu+bUcvV0ohZpMlp9mv1mPNfzd3yk5VaqiiQ5qYTqdLK4x9kFKV+KMmk5GIbBGeXb8ObI62BZltoHEbJI9Ti7USYtg+yUzyiEEEIIOb1pxVr87Zrn6X06IXnKq9Xn/fffjxMnTuDEiRNgWRZPPfVU+u+p/44dO4Z//OMf2Lhx43zFTMhpxRN2p5NsUr4UvujMrT6f7noCz/c+N8XxPGCAdOvQqZTLKmAL2BCOhbP2B5CucEqR8eU044+U3KBzEACwtexMAPM/588RcqTbCgKATqKHNZBd8bdKtxYMw2CDcRMOmPYjHAtj9/DruLD2knTScCabjFsQiAZwwnGypWe/qw91yno0a1ox6B6Y1YMBxTbsGUJ1EZJNDcrEE/oTvglsNm5JLz+78hxE41G0aVehWdMy5/MsVa2aVhy3HZt2G5rxd9LkJA4A/On4HyDmS/DhlTeVMCqymKlFmkmJv240qprSNw+2lG2FNWBFv7uvlCESQqbR4+xBo2rhZx0TQgghpPQo6UdI/gqe8XfixAmsXbu2mLEQsiwlEn+JtppinnhWN/adISdM/twJD2/EA5lAPmOyoVxaDiA7ceIJu8FlOBDzxBnLqdUnWQwGnANQizSoUdSCz+Fj3DeWXhdn41mJ7LlyBZ1QCU8m/vRiPawBa/rvjqAdo94RrNYmes1vMGxCr7MbLw/shDfixUU1l8z6XCvUKyHjy3DIfCC9bMDdjzpFPVo0LYizLHqcXUX4qmaPZVmMekfmPN8PADQiDRTCxGvdZuPW9PL1ho1o0bTiltY75nyOpWyVbg16HF3pGZGnYlkWrpCLWn0mqUVq2JNJnBHPMHYO/Au3tNw255a05PSlEWnS10yPsxtNqpXpdWv16yHkCvH++LulCo8QMg2WZdHr7EYTJf4IIYQQQgiZlYITfymhUAg9PT1ob2/P+o8QMjN32A1FsrpOwpPCH5m+4o9lWbhDLoz7xsGybNZ6T9g9qxY45dJKAMB4VuLPA7lAkfU0jUKgoMQfKbkB5wBqFDXgMByUScsx5j2Z+PtHz99wz0t35Py5KJQj5MhK/HnCHgSiAQCJaj8AWK1LPAizwbAJLIDfHv01VqqbUaOonfW5OAwHa/Xr04k/X8QHs9+MOmU9ahX1EHKF6LSfKNJXNjvWgBXBaLAo7SUZhkG9ogFl0jJUyCrTy3kcHv73wl/hjPIz53yOpWyVbg1ibByd9o6c6/1RP6LxaNb81eVKLdLAGXJg2DOEr7z9APRiA65uvLbUYZFFTCVUwxlywBvxYtw7hhXqkwkEAVeADYaNeG+CEn+ELEbmgBmesIcSf4QQQgghhMxSXjP+JguHw/jGN76B5557DrFYLOc2HR25b14RQk5yh062+pTwJfBHp6/480Y8iLFx+CN+eCOerJac3rAXcv7MiT+tWAseh4eJSRVTQCIReeoxAUAmkMMTocQfKa0B1wBWyBPtICtkFRnX796xPRj3jcPkn0BZsqJ1rlwhJxpVTem/6yUGAIAtYEWVvBrHrEdRJi2DXqIHABgkBlTKqjDqHcEldZflfb6Nxk341eGfIxgNYsDVDwCoVzaAy+Fipbp5wRN/o95hACjaXLnb2z6KQDRAbTpyqFPUQ8qXot12DOsMG7LWu0JOAIBSSIk/AFAL1ZjwjeP/e/U+aMRafHfHDyDgCkodFlnENMlWn72ObgDIahm4pewM/OLQz+CL+CCdoV06IWRhTfVzSwghhBBCCMmt4Iq/hx9+GHv27MF3v/tdsCyLBx98EN/5znewbds2VFZW4le/+lUx4yTktBSMBhGJR9IVf1K+bMaKP1fIlf7zuDe73acn4oFMIJvx3ByGA6OkLKNiCsicOTiZXKCAN+wuajUVIfmIs3EMOgdRragBAJRJKzCWTPxFYhG0J+ejFTM5lqj4U6X/rhMnEnwWvxkAcNR6GKt0azL22WjcDC7DwXnVF+R9vnX6DYjGYzhmPYIBdz84DINqeaJqsFnTgk5H8R6oMfkm8B+77sVB0/4ptxnxjIDDMCiTFCeRus6wAWdWbC/KsU43HIaDNu0qHLMeybnemUz8UavPBI1Yi3AsjJWaZvz0/IdRLqsodUhkkVOLNIixcRww7wefw0eNPLMie2v5mYixcRw0T/2aSAgpjR5nNxRCJXRiXalDIYQQQgghZEkouOJv586duP/++3H55ZfjC1/4AtauXYvVq1fj2muvxQMPfdaU5QAAlpZJREFUPIDXXnsN5557bjFjJeS0k2qdmZrxJ+FJMmaW5eIIOdJ/NvknsFLTnLHeG/bMuhVchawi63yeiCediJxMLpAjzrLwR/30JDwpCZPPhHAsnE78Vcgq8ELfPxFn4zjh6EA4FgaPw0WnvQPnVp8/5/PF4jF4Qq6MVp+pxN+vDv8cZdIK9Dq7cUX91Rn73dxyG7aWnwllAQmaWkUd1CI1DpkPIBQLo0JWla5iata04q9dT8ERtEMt0hT+hSFRPfalt76AEc8w3h57CxuMm3JuN+DuR4WsCnwuf07nI7OzWrcWT3X+BXE2njWnNVXxp6DEHwDgnKrzwAGD82suAo9T8NtZsoykXjc/mHgvXUk9WZm0HFXyarw//i7OqtiBN4Zfw67Bl+CJeOANeyHhS7C94mzsqDoX1fKaUnwJhCxb3c4uNKmaqGMAIYQQQgghs1Rwxd/ExATq6+vB5XIhFArhdrvT6z70oQ9h586dRQmQkNOZJ5yo3ktV2In5Yvgj07f6TN385TBMziShO+yeVcUfkKiYOrXVpzfsyTkjMJUM9ITdWesIWQhDnkEASFdplEsrEIlHYAvYcMR8CBK+BGeUb0enozgVf+6wCywAtehk4k/AFeCu1fegWl6LSDyMjcbN2FZxVsZ+eokeZ5ZvK+icDMNgg2EjDpoPYMDdjzpFfXpdi6YVANDp6Czo2CmBaABffftL8IQ9WKffgBO241Nu2+/qRaOyacr1pLhW69bAF/FhwNWXte6w5SAUQiXUkxLRy5mYJ8bFdZdR0o/MWupnp8vRiRXqlTm32Vp2JvaO78FnX78f//PutxCMhVAjr8WWsjNglJThLyf+iI/tvB2PHvvNQoZOyLLX5+yh+X6EEEIIIYTkoeC7JXq9Pp3sq6qqwrvvvovt2xPtuwYGBooSHCGnO3cyiZZKqkl4Uvij07f6dAad6fZ/E76JrPW+iDfnjL5cyqXleGVwZ0b7Tk/Yg5XqlqxtZcm5gZ6wp2jz0wjJx7B7CAKuAEapEfFYIvEHABO+MRy2HMRa3Tq0atrwx44/5KyYylequvbUyr1bWm+f03FnssGwGW8MvwYxT4LrVtyQXm6UlEEpVKHT3lFwYhEAfvj+9zDoHsAPzv0pTtiP45eH/xfhWDhrPhrLsuhxduMjzbcWfC6Sn5XqFnAZDtptx9AwabZkNB7Fq4Ov4MKai7OqlAghszO5UrpJlTvxd0b5mfhb99NQClT43jk/xEbj5oz1oVgIP97/EF4f2oWPrb53XuMlhCS4Qy6Y/eYpf24JIYQQQggh2QpO/G3duhUffPABLrjgAtxwww34/ve/j76+PvD5fLzyyiu4+uqrZz4IIctcqtWnQpia8SedseLPHXZBLlCiXJZdrZc6pow/u4q/clkFgtEgnCEHNJBNOn6Oij8hVfyR0hpyD6JWVQsOw0Ec8XQCetA9iGPWo/jYmnuxQrUSwWgQg+4B1Csb5nQ+ZzCR+FvoCqv1hg2Isyx8ER/qlCcr/hiGQaWsMj1fsBBj3lHsHnkdn9v8RazUNIMFi2g8hm5HF1bpVmdsa/JPwB/xZySgyPwS8URYoW7GMesRXN14bXr5BxPvwRly4tK6y0oXHCFLnIQvgZArRCgWQpM6d+XQBsMm/O+Fv8IK1cqcSXYhV4gzy7fj1cFXitJ2mRAysx5nNwCgkd6PEEIIIYQQMmsFl0N89rOfxbXXXgsAuPPOO/HFL34RFosF/f39+OhHP4r/+q//KlaMhJy23GE3GADSZKJOwpciEA0gzsYBAAdMH+Ab73w1Yx9H0AGVUIVyaUVWxV+cjcMX8eVV8QcA495EApFlWXjCnpyJv1T7z1SykpCFNuwZQp2yLv13EU8EjUiD14dfRSQewTr9BqxQN4MB0GkvrN1nt6MLf2h/FHE2DmeyrW4hs/rmokxanv7ZnNzqE0i0BZ7Lz+C/+p6DjC/DBTUXAQAalI3gc/jodHRkbdvr7AFAN9oW2irdarRbj2Use2ngRTSqGtFIbc4ImRO1SA0Ow0z5YAjDMGjRtE5bWdumTTwkcdzWPi8xEkIy9Ti7IeQKUSWvLnUohBBCCCGELBkFJ/70ej1WrjzZbuPOO+/EE088gd/85jdgGAbnn39+UQIk5HTmCbshE8jTLQklPAmAxAwuAHh/4l3sGX0LwWgwvY8r5IRSqESZtAwTvvGMNp3eZEIgV+Iul7Jkq8Qx7zgAIBgLIhqP5txfypOCwzCU+CMlM+QeQp2qLmNZhawSRyyHIOPL0KhqgoQvQY2iDp327ETWbLw69DL+ePwP+MH734UjaIeAK4CYJy5C9PlZb9gIHoeHSllVxnKZQF5w1W04FsZLAztxSd3lEHKFAAA+l48V6pU4Ycud+FMIldCKtAWdjxRmtW4tTH4TzMnKTnfIhX3je3BxLVX7ETJXGpEWNfK69GtgIQwSA3RiHY7bjs28MSFkznqd3WhUNc25hTshhBBCCCHLSd6tPg8dOoRnn30W4+PjqK6uxu233466ujpYrVY8/PDD+Nvf/oZoNIorrrhiPuIl5LTiCbszqvMk/ETizx/xQ8qXYtQ7CgCwBMyoltcAAJwhB1RCNcqlFYjEI7AH7dCKtcnj5Zf4k/KlUAiVGE+2DB1Lnk+Vo7UhwzCQ8QtPOhAyF/agDY6gHY2axozlZdJyHLMexWr92vQNoWZNCzodhVX8jXnHoBFpsGvwJbw7sQ9qoRoMw8w5/nzd2Hwz1urXZVWdKARK9Di6p9xv2DOE3xz5Fb645cvpKt2UPaNvwRVy4oqGqzKWN2tasW9sT9axep09aFQ2luTrX85WJauJ/tzxGO5b/ym8PvwqWJZNV2kSQgq3veLsoiQP2rSrqeKPkAUy7htPfw4ihBBCCCGEzE5en3x3796NW265BU899RTa29vx5JNP4qabbsLu3btx5ZVX4sknn8Qll1yC559/Hg899NB8xUzIouKP+PHAm59Lt8vMhzvszkjSSXhSAIAv4gVwsgXn5Jle7rALSqEKRmkZAGDCN55e503uN9vEH5Bo95k6z0v9O6EQKrFatzbntnKBAt4IVfyRhZdq3bnakDmHrjxZtbpevyG9rFndgj5nD8KxcN7nGfOO4uyqc/G5zQ/AHXIteJvPlCp5NS6qvTRruXyGir+3RnZj79ge/PLwz7PWPd/3D6zVr0Otoi5jeYumFeO+cbiSrU1T+lw9aKLWkgtOLdLgE+s+iZcGXsQnXrkbz3Y/g63l22iWGCFFcFPLLbih+SNzPk6bdhU67ScQiUWKEBUhZDqukAuqEr0fI4QQQgghZKnKK/H361//Gq2trXjjjTewZ88evPvuu9i+fTs++clPQiKR4KmnnsJDDz2E+vr6mQ9GyGnivYl9OGDajw57/k9+u0NuKHJV/EX9iLNxjPkSFXjmSYm/1Iy/MkliBpjJfzLxl0oIyPj5JP4qMOYdRSQWwSsDO3FRzSUQcAU5t5UL5HBTxR8pgRP2DqiEahilxozlFbJk4s8wKfGnaUWMjaPH2Q1P2I0fvP9d7B5+fcZzxNk4xryjqJBW4LL6K/DA1v/Ch5r+rbhfyBwpBAp4wp6MFr+TddjaIeVL8fLATrw7vi+9fNA9gCOWw7iq4ZqsfVo1bQCAE5PmInrDHkz4JtCgaszansy/61feiF9d/FvIBXKMekdwad3lpQ6JEDJJq3YVIvEI+ly9pQ6FkNOeO+SCQqAsdRiEEEIIIYQsKXkl/np7e3HffffBaEzceJVKpfjP//xPRKNRfP7zn8fq1atnOAIhp5994+8ASCTk8uWNeE5J/CUq/vwRH2wBW7piyew3AQBYlk1W/Ckh4UugECgw4ZtI759q9Xlqi7/plMsqMO4bx5uDb8IVcuHy+iun3DZRbUQVf2Thddo70Kpty2o7ub1iBz676T/RoGxKL2tQNoLH4eHlgRfxyV3/jpcGXsTrw6/OeA5bwIZIPIIKWSUA4KLaSxddwkUukCMSjyAUC2WtY1kWx23t+LcVH8aWsq348f7vwxv24IS9Az878CMohSqcVbkja78yaTkUQiVO2I+nl6VuZjdSxV/J1Crq8JPzH8ZPL/gFtlecXepwCCGTNKlWgMfh0Zw/QuZZNB6FN+ItWQcGQgghhBBClqq8En8ulwsGgyFjWSoJWFtbW7yoCFkiYvEY3ktW1TiC9ox1XfZO/CpHu73JXCEXZJMSf1JeouIvEA1gPFntJ+VL04k/X8SLaDyW/vBbJi1Pz+cDEolEDsNAkjzObJRLK2D1W/D08afRpluNOuXUFbsztRkkZD6wLItO+wk0a1qy1kn4ElzRcFVGQpDP5aNR1YR/9f0TEr4E2yrOwohneMbzpH7mUom/xUjGT7xe5ErAj3pH4A670aZdhc9u+iIC0QA+9tLt+NSrn4AlYMHnN38xZzUvwzBoUbdkJv6cveBxeDRTp8Q4DAdt2lU0Z5GQRUbAFWClupnm/BEyz1KfO5RCqvgjhBBCCCEkH3Ofbp/E5XKLdShClozjtmPwhD0Q88Swn5L42zf+Dp7penra+S+e8KmtPlMz/nwY846BAbBGtzad+HMmZ3CphWoAicTfqRV/MoEir5vE5dJysGDxwdgHuGKaaj8AkAkU8M5Q8ceyLF4b2lXQfDVCchn1jsAb8aJF2zrrfa5p/Df824oP4yfn/wIbDZsw6h1BnI1Pu0/qZy41N3AxUghTiT9X1rpU5Umrpg16iR6f2/RFNKqa8PXt38bvL/sTtlWcNeVxW7Rt6LSfSLcQ7XF2o05RDx6HNw9fBSGELH1t2lVU8UfIPHOFEu93qNUnIYQQQggh+cn7jt5HP/rRnEmFW2+9NWM5wzDYv3//3KIjZJHbN/4OVEIVWrRtcIYyW33aAtbE/4NWlEnLc+7vCXsgn9SWk8NwIOQK4Y/64Ag6oBPrUSGrwrvjewGc/PB7suKvDF2OzLlc8jzm+wEnkxwSvgTn1Vww7bYKgWLGGX8HzfvxnXe/jW+f9R2cWbE9r1gIyaXT3gEAaNHMPvF3cd1luBiXAQAq5VWIxqMw+01T/iwCiQSjTqyfcsblYpB6UCDXz+FxWztqFXXpVr/nVp+Pc6vPn9VxWzSt8CTbgrZq29Dr7EGjqmnmHQkhZJlq067GX7uegjVghU6sK3U4hJyW3OHUZx9K/BFCCCGEEJKPvBJ/999//3zFQciStHfsHZxRvg18Dh8dk9rkAYmEHwBYA7kTf+FYGJF4JCPxByQScP6IH+PeMVTIqmCQGGD2m8CybDq5mPrwWyatgNlvQiweA5fDhSfigUwgy+tr0EsM4DI8XNxwMSR8CaLRqauiZHzZjDP+Xh16BQCyKiAJKVSnoxMVssp0tVu+Uu0qhz1D0yb+xryjqJBVFXSOhZJ6vcj1c3jcdgxt2lUFHXeNbh3qFPX40lufx5fP+BoG3QO4pO6yOcVKCCGns9bk622HrR07qs4tcTSEnJ5OPvRIiT9CCCGEEELyQYk/Qgo06hnBsGcId6/5d/Q6e7Jm/FkDqcSfJef+vogXACDlZybqJDwp/BEfRr0jWKluhkFiRCQegTvsgjPkBIPMir84y8ISMKNMWg5P2JPROnQ2OAwH3zz72zizYTMQmn5bhUCBUCyEcCycsyoqGA3irZHdAJBVAUlIoTrtHWjJMd9vtgwSI3gcHkY9I9hSdsaU2415R7FCvbLg8ywEKV8GBtkVf76IDwOufly34saCjiviifCTCx7G/+z7Jh58+0sAQBV/hBAyDZ1YB41Ig15nDyX+CJknrpALHIbJ+rxECCGEEEIImV7RZvwRstzsG38HfA4fG42boRap4Qw5MmaI2WZI/HnTiT9pxnIpXwp/1I8x3yjKZRUwSIwAALPfDFfICblAAQ6T+NFNtemc8I0DSM74y7PVJwBsrzwbWol2xu3kyaSiN5K76m/v2B4EogHIBXI4gpT4I3MXjUfR7ehCcx5tPk/FYTiolFVh2Ds85TYsy2LMN4oKWWXB51kIHIYDmUAOzymJvxP242CBgiv+gMRrz7fP/i6uW3EDVEIVGijxRwgh01IKlen3c4SQ4nOHXZBN+uxDCCGEEEIImR16B01IgfaOvYP1hg0Q88RQizSIsyzcyXY00XgUrpATwDSJv3DiRpHs1Io/vhTjvjH4I35UJlt9AoDZb4Ir5IJKpE5va5AYwQAY9Y4CAHwRT3q+13xIJf7codxz/nYNvoQ27So0KJuo4o8URb+rD5F4BM3qwhN/AFApq8KoZ+rEnzvsSv/MLXZygSIr8Xfc1g65QI4qefWcjs1hOLhv/f148upns16bCCGEZBLzJAhE/aUOg5DTlivkglJAbT4JIYQQQgjJFyX+CCkAy7LosLdjvWEjAEAt1AAAHMlklyPoAAuAwzCwBWw5j5GqmpOekqgT88TocXQDACpkFVAKVeBz+DD7TXCG7FAl23wCgIArwFr9Bvyl43F4wu5ExV+eM/7ykTq2J0fFnyNoxwem93BR7SVQi9Rzqviz+C34xCt3Y2SaRA1ZHk7YO8BlOGhSr5jTcarkVRj1jky5PpU8r5BVzOk8C0EukGfN+DtuO4ZWTVvRnoinJ+sJIWRmqbnMhJD54Qo7ab4fIYQQQgghBaA7e4QUwB/1IxwLQyfWAwA0omTiLznnzxZMtPmskdcVUPEnSc/vKpdWgsNwoJcYYPGb4Qw5oTjlqdf/3PIl+CI+/OiDhwqa8ZeP1LG94ezE3xvDr4HDcHBu1flQCdVzqvj7U8cf0OvswbBnqOBjkNNDp70DdcoGCLnCOR2nSl4Dk28C4Vg45/qxZFKwXLq4W30CiZ/DyTP+4mwcHbbjaNOuLmFUhBCy/Eh4UvijvlKHQchpyx1yZX32IYQQQgghhMyMEn+EFMCZrGZTCxNtN1PtN9OJv+R8v2ZNy5SJP1/EBw7DQMwTZyxPDa9XCVWQ8CUAEi09UzP+Jlf8AYBRWobPbf4i3h59E4FooKAZf7OVOvapbQYBYNfgy9hSdiYUQmWy4s9e0DlGPMN4sf95AEAwGiw8WHJa6HF2oVndMufjVMmqwAIYS1b2nWrMO5bxM7eYyU+Z8TfmHYUv4kOLdm7tUAkhhORHzBNTxR8h88gVclHFHyGEEEIIIQWgxB8hBUi19FQnK/3EPDFEPFF6uS1gBZfhoFHVBGvACpZls47hjXgg5cuyWupJeInEw+RZY3qxHuaAKfnhV5V1rB1V5+LqxmsAJJIC84XP5UPME2e1GXSHXOhydOKcqnMBACqhGu6wG7F4LO9z/P7Yb6ERaQEAoVho7kGTJW3CN4HyIrTfTM2+G/Hmbh875htFhWzxV/sBgFygzEj8jfvGAGBJzCckhJDTiZQvQyAaKHUYhJy23GFK/BFCCCGEEFIISvwRUoBUNZs6WemX+LMmvdwatEIj0kIvMSAaj8IVcmYdwxfxQsqXZi1PLZuc7EhU/JngDDkzzjnZx9d9Ere33Ym1+nUFf12zIePLshJ/7bZjAIA1usS5UzE6c3zd0+myd2L3yOv46Kq7wefwEYpRxd9y5o144Yv4YJSUzflYKqEaEr5kyrmR496xJZP4UwgUGT+DJp8JHIZJtx4mhBCyMMQ8MXwRb6nDIOS05Q67qdUnIYQQQgghBaDEHyEFcIac4DAM5JPm6amFatiTiT97wAatWAe92AAAsCZbf07mDXvTbT0ny1XxZ5AYYQvYEI1Hp/zwK+QKccequzJimg8KoQKeSGbi75j1CHRiHQwSI4BEkgUAnCH7pG2O4scfPJSz+hEAWJbFb4/9GtXyGlxceylEPBG1+lzmzH4TAKSvq7lgGAZVsuopE3+j3qVU8SfPmPFnDpigFenA4/BKGBUhhCw/Er6EKv4ImSeRWAT+iJ8q/gghhBBCCCkAJf4IKYAjaIdSqMpo06kWaeBMtfoMWqEV66AV6wAg55w/X8SXcx5fasbY5CSEQWJI//nUGX8LTcZXwBPKnPF31HoEa3TrwDAMgJMVf47kLEQA2Dv2Nl7ofx6D7oH/n737Do+ruvb//5mmmZE0qiPJkiVb7nKRbWxMMQYHTEIJBkJPgrkQIIRALnx/JBeSAAm5ySUhEFNCcpOYEggplEAgGG66Q7Epbrj3Jll11KWZ0ZTz+0PSGKFi9dGM3q/n8YN1Zp991hy2bWnWWWt3O+/ao+9oQ8V6XV/8ZVnMFtktdvmo+BvTKpvbEn85SYOv+JOkAleBSptKuhxvDjSr3l+n8TGU+GsNtUZa4VY2lw/ZPQIA9F2iNUneYEuPDzUBGLiOh5xSovyzDwAAABCLSPwBA1Dnr1VG+/5+HTI+1uqzxutRhiNTGY4MmU2m7iv+Ao1KTuiu4q+t1efHE39ZH0v8pTrShuItDJgrwaXGwLHEny/o057aXZrjLo4cO1bxdyzxV9ZcJkl6p/StLnP6gj79bNOjWjTuJC3OWyJJslsc8lPxN6ZVtJTLarZ0+bM2UONd3Vf8lTW17ZGXFyN75Lnaq3472n1WtFQoZwiqIgEA/ZNoS1TYMHhQCRgG9a11ktpanAMAAADoHxJ/wADU+mqV+omnT9M+1uqz2ueR2+mW2WRWhiNTVd7KLnO0Vfx1TfxNS5+hU/IWqzBlUuRYR8tQqa2laDRlJ+boQP1+hcIhSdLu2p0KhkOakzU3MsZhdchpdXaq+OtIrrxztGvi77c7n1WNr0a3zL8tUjXosNrla69owthU2VKhLGd2p8rawchPLlCdv05NH9sfr7G1Qf+7+XHZzDblx0zir61SuKG1XpJU0VyubCr+AGDEdbRnbwm0RDkSIP40+Nu+z0lljz8AAACg30j8AQNQ569VepeKv0zV++vkD/nV4K9XhiNTkuR2ZsnTbcVf93v8ZSVm6b9Pu18OqyNyLNGWGPmwP9ob3H+m8Bx5vB69e/RtSdKWqo+UZEvqlKiUpDRHeqeKv/LmMk1Jm6I9tbtV0b53mySVNB7RC7t+ryuLvqDxrmOJF7vFIf8QPUG/r26PvvDny9TY2nD8wRg1KporlJ04dAmtfFeBpLb9/KS2tfe1v9+s/fV79cMzHlRyQtfWu6NRx5PvTa2NCoaD8viqle2k4g8ARlpHe3ZvkMQfMNTqOxJ/7PEHAAAA9BuJP2AAan21XSrv0h3pChuGDtYfkCRlOo8l/rrb46+ptftWnz3JTsyWK8Eli9kyiMgHb0raNM3OnKM/7X1ZkrTV85FmZ87pUpWVbk+PVPw1tjaoKdCk5VM+J6vZonfb232GjbAe3fATuZ1uXVX0xU7nO6wO+Yao1efOmp2q8lZph2fHkMyHkVHRUq6cpKFLaI1vr+j7/rrv6No3vqib/volmUwmPXbW/2pu1vwhu85wO1bx16Bqb5XChjGk9wkA0Dcd7dmbA81RjgSIPw2t9TKbTN0+KAkAAACgdyT+gAGo9ddE9rHr0PH1ntrdkqRMpzvy3+73+GvqttVnT7ISc7q0F42WC6d+TpurNmp/3V5tq96q4qx5Xcak2Y9V/JU1te3vNzVtmk7IXqi32xN/r+59WRsrN+j2hV+X3WLvdP5QVvxVtJRLkvbU7hqS+TAyKlsqlDOEFX+JtkRdN+cGnZhzkhbnnaYVs67Vo2f9rFOlaSxItrUl/hpbG1XZXj07lPcJANA3VPwBw6fB36CUhNTINgAAAAAA+s4a7QCAWNMaalVLoEXpjs6Jv44Kv311eyRJbkdb4i+rm4q/1lCrWkOt/Ur8nTzuVE1wTRhM6EPm9PFL9XP7Y3pkw0/kDXo1213cZUy6I127anZKkspb2hJ/uUm5Wpx3uh7b+BNtqdqsX370c1009RItzFnU5XyHxRHZM3GwOpIju2p3Dsl8GH6toVbV+GqUnTi0lWxfmLliSOeLBovZomRbshr89bKa2iqAh/o+AQCOz2l1SpK8QW+UIwHiT31r/ah56BEAAACINVT8Af1U217FlmbvvMdfR8Xf3ro9spqtcrXvw+V2utUcaO70oVBzoEmS+rWn2AVTLtSNc28eVOxDxWax6YIpF2m7Z5usZqtmpBd1GdO54u9o+z6FKTpt/BIZhqFvvf1fGpeUqxuKb+r2Gnarfcgq/iqb2xJ/VPzFjqqWSklSDgmtbrkSXGoKNKqipUKp9rROe4ICAEZGRwvCju/rAAydBn8d+/sBAAAAA0TiD+inuvZ96zIcnRN/DqtDTqtT++r2yu10R9rSuJ1ZkiTPx9p9duwFk2RLGomQh8X5k5bLbDKpKGOmEiwJXV5Pd7Ql/gzDUFnzUeUm5cpkMindkaFZmXMUCLXqrpPu7jFh4bA4h2yPv4qWco1Pzle1t1oer2dI5sTw6mjPSiVb91wJKWpsbWzbB5F7BABRYTPbZDGZqfgDhkF9a71SEkj8AQAAAANB4g/op0jF3ydafUpSuiNDgXBAGY7MyLGOxF9HBZPUtr+fpH61+hxtshKz9B+zr9eFUz7X7evpjgwFwyE1BRrbE3/jI6/desLt+t5pP9T0jBk9zu8Yooq/UDikam+VTs9fKomqv1hR2f7nJSsxO8qRjE6uBJfq/fWqaC4nOQoAUWIymZRoS4o80AVg6NT766n4AwAAAAaIxB/QTx0Vf2nd7DmR3t7uM9PpjhxzJ7ZX/PmOVfw1tTZKOtYiKlZ9YeYKnTlhWbevddyfWl+typrLlJuUG3ltavo0nZR7cq9z2y0O+YYg8VftrVLYMFTsnqcUe6p2k/iLCRUt5cpwZHRbTYpjFX+VLZXKSSLxBwDRkmhNVEuwJdphAHGnwV+vFBJ/AAAAwICQ+AP6qdZXI1eCS1aztctr6e3tPzMdxxJ/dotdrgSXqj/W6rOj4i8pIbYTf73puBceb7Uqm8uVm5zXr/PtFrv8If+g46hsadvfLzsxWzPSZ2h37c4BzWMYho42lQ46HvRNRXO5cpLGRTuMUcuVkKKG1jpVtlQoJ5H7BADRkmhLVEuAxB8w1Opb65VKq08AAABgQEj8Af1U66+NJLU+KZL4c2Z2Op7pcKvKWxX5uqm1SSa1PSUerzoq/nbX7lLICGvcxyr++sJhdcg/BHv8dewVl5M0TtPSZ2hXzU4ZhtHvedaVvavr3vyian01g44Jx1fZUklCqxeuBJdKGksUCAe4TwAQRU5rorxU/OE4Gvz1JIj7oTXUKl/QR6tPAAAAYIC6liwB6FWdr7bbNp+SlN6+75/7Y60+pbb98KpbjiX+mgNNSrIly2yK39x7sq2tKnJnzQ5JUm5S/yr+HBaHQkZYgVBANottwHFUtlQqJSFFTqtTM9KL9Fv/s6r2ViurvQVrX22s3KCwYajG5+kx8YuhU9lSrhm97AE51qUkpCgQDkgSrT4BIIqSbEkkdNCrWl+Nvvj6FQqEA0pJSNGElIn6/pIfKcmWFO3QRq16f70kKSUhLbqBAAAAADEqfrMOwDCp9dcq3d5DxV/78QxH54o/tzNLVd7KyNdNgSYlx3GbT0kymUxKs6dpR802mSRlJ/YvOWG3OiRJ/kHu81fRXB659rT0tkTSngHs87e1+iNJxz6IwPAJG2FVean4601KQkrk9/39swUAGDpOa6Jags3RDgOj2Afl7ykYDuj/LfyGzp54jrZWb9GhhoPRDmtUa2itkyQq/gAAAIABIvEH9FOtr0Zp7ZV9n9TR4jPzExV/ecnjdbSpNNJisq3iL/6f8k2zp8vj9cjtzFKCJaFf59otbYk/3yD3+atoObZXnNvpVrojXbva9/nra8vPlkCL9tXtkUTibyR4vB4FwyESWr1wtSf+nFankm2uKEcDAGMXe/zheN4rW6fpGUU6f/IFuqroC5JE6/jj6Ph+m8QfAAAAMDC0+gT6qc5fp4weWj2ekL1QX53/NRW4JnQ6npc8Xs2BZjW2NijFnqqm1iYljYEP6ztan+Ym96/NpyQ5LHZJGvQ+fxUtFTpp3CmS2qoQZ6QX6cPy9xUIteqfR/4uh9WpO0/6tooyZkpqSwYebDig8cn5kWTlds9WhduThA2tJP6GW2VLhSQpmxaWPepI/OUkjpPJZIpyNAAwdiVak+QNeqMdBkapYDio9RUf6JJpl0uSUu1pMptMqvF5ohzZ6Has1SeJPwAAAGAgSPwB/RAKh9Tgr1NqD3v8OawOfW7aZV2Oj08eL0kqbSpVij1VzYEmJdviu9WnpMheeP3d30+SHFanJMkXGviHaYZhqLKlQtmJ2ZFjRRmz9PS2J1TeUq6l+Wdqd+1O3faPm/Ufs69XTmKOXtrzgvbU7tbnZ16tL825UZK0tXqLUuypspjMVPyNgIqWckmi1WcvXAltDw6wvx8ARFeiLVHNgaZoh4FRartnq5oDzTo591RJktlkVrojQzVU/PWqobVeVrNVzvafBwAAAAD0D4k/oB/qW+tkSD1W/PUkN6kt8Xe0qUQzM2epKdCkfFfBMEQ4uqS1J0gHkvizt1f8+YIDb/VZ569Va6g10upTkj437TLNzZ6vmRmzZDVbFQwH9cz2p/T01lUyJC3MOVEn556iN/b/WStmXiubxaYt1R9pTmaxyppLVU/F37CrbKlQsi15TLTDHaiOxF82yVEAiCqn1UnFH3r0XtlapdnTNC19euRYuj2DVp/HUe+vV6o9la4GAAAAwACR+AP6oeOH9DR793v89STRlqg0e5pKm0olSc2B5jGxL1ek4i85t9/nOqxte/z5QwNv9VnZUimpc+VYoi1Rxe65ka+tZqu+NOdGnVVwtkwmkyamFOpA/X59+S/X6d2jb2tx3hLt8GzTl4pvVHOgWQ1DVPFnGIbCRlgWs2VI5osnFc3lVLIdx7FWn9wnAIimtlafLTIMgyQFunivbJ1Oyj1FZpM5cizTmSkPrT57VeevVSptPgEAAIABMx9/CIAOdf46Scf2ruuP8cn5OtrclvhrCjSOiWqmjoq/cYOo+POHBl7xd6xl5PGTI4WpkzQxpVCSNCl1sua4i/Xn/a9qT91uBcIBzXHPVZo9TfXta2Cw3jy4Wjf85T+GZK54YhiGPqx4X9PTi6IdyqhmNVv1tRNu15kTzo52KAAwpiXaEhU2DPkG8aAS4lNFc7kONRyM7DXdId2RoRovib/e7K/bpwnt35cDAAAA6D8Sf0A/DLTiT5LyksfraHvFX1Nrk5IT4n+Pvylp05STmKMJrgn9Ptduaav48wUH/kFaRXO57BZ7pDqqPy6YfKE2VW7Qmwdel91i19S0aUqxp6phiFp97qrZodLGIwob4SGZL15s82xVeXO5zp74mWiHMupdOPVznfavBACMvMT2B7laAi1RjgSjzfvl62Q2mbRw3KJOxzMcmaqh4q9HYSOs/fX7NDVtWrRDAQAAAGIWiT+gH2p9tXJanZE2lP0xPjlfpU2lCoQC8of8SrbFf+JvUupk/eazzys5of9tTY+1+hxMxV+FcpLGDaj11un5n1JKQoreOPC6ZmbOltVsVao9VfVD1OqztKlUhqSWQPOQzBeLwkZYFc3lnY79/dBflOXM0pyPtWMFAGC0SrQ6JUneIIk/dPZe2VrNcc/t8j1/hiNDdf5aHv7qwdGmUnmDXk1NJ/EHAAAADBSJP6Af6vy1ShtAm0+preKvwV8faT85Fvb4GwyzySyb2TbIPf4qBrwHWoIlQZ8pPFeSInsCpia0Jf4MwxhwTB2ONpVIkhpbGwc9V6z6sPwDrVh9pTZXbpQkBUIBrSn5p5ZN/HSnvXAAABitOlq3N4/hB3nQve2ebTohe2GX4xmOTAXDITWN4e8Be7OndrckUfEHAAAADAKfrAL9UOurVfoA2nxKbYk/6dgPs2Oh1edgOayOQbX6rGwpV/YAE3+SdMHki2S32HXiuJMkSSn2VAXCAXmD3gHPKUmtoVZVtVRKGtuJvwP1+2RI+sn6H8sf8uuD8vfU2NqoZRNo8wkAiA1Oa6IkKv7QWVOgSY2tjRqfnN/ltQxHpiTJQ7vPbu2t2y23063U9r3CAQAAAPQfiT+gH+r8tQPa30+S8pLzJEm7a3dKOvaEOHpmt9jlG1TFX6VyEscN+Pzxrny9fNHrmpU5W5KUak+VpEHv83e0vc2nJDUGGgY1Vywraz6qDEeGKlsq9Oy2p/S3w3/RlLQpKkydFO3QAADok8T2xB97/OHjKttbmeckdf0+NMORIenY3uHobG/dHk1Nnx7tMAAAAICYRuIP6Ican0fpA2z16UpIUUpCinbX7pJEq8++sFsc8g+w4q8l0KLG1kblJA284k+SbBZb5PepCWmSNOh9/sqaj0Z+P5Yr/o42lWpW5hytmHWtXtj9e609+g7VfgCAmJLY/iBXS7Brq88NFR/qlr99mb3cxqCKlgpJ0rhuEn/p7Ym/Gir+ujAMQ3vr9mpaGok/AAAAYDBI/AH94PF6lOl0D/j8vOTxkVafSbT6PC6H1S5fyD+gczv2UsweRMXfJ6W0V/z1N/H3yT1cSptKZLfYZTaZxnTir6z5qPKS83TFjM+rMGWSQuGgzpxwdrTDAgCgz2xmm6xmS7dtwF/b9yftrt2len/dyAeGqCpvLpPNbFO6PaPLaw6rQ4m2RHm8JP4+qdpbrQZ/Pfv7AQAAAIM0KhJ/zz33nM466ywVFxfr8ssv10cffdTr+DfeeEPnnnuuiouLtXz5cq1Zs6bT64Zh6JFHHtGSJUs0d+5cXXvttTp48GC3c7W2tuqiiy7SjBkztGPHjsjx/fv3a8WKFVq8eLGKi4u1bNkyrVy5UoFAIDImEAjopz/9qc4++2wVFxfrwgsv1L///e+B3wiMaqFwSPX+OmU6Bp74G588Xt6gVyYdaw2FntktDvkH2Oqz40nrwbT6/KSUhBRJUkNrXZ/P2V+3V5e9eqG2VG2OHDvaVKrxyeOVbHOpsXVstvoMhAKqbKlQXnK+rGarvrv4B/r2Kd+VexCJdQAARprJZJLTmqjmQOeKv+ZAs94rWyuJlo5jUXlzuXKSxslkMnX7ero9Q7V+1sUn7a1re0BySjqJPwAAAGAwop74W716te6//37dcsstevnll1VUVKTrr79eHk/3T0Bu2LBBd9xxhy677DK98sorWrZsmW655Rbt3r07MuZXv/qVnn32WX33u9/V888/L6fTqeuvv15+f9fKoQceeEDZ2dldjttsNl188cV68skn9eabb+pb3/qWXnjhBT322GORMQ8//LD+8Ic/6J577tHq1at11VVX6dZbb9X27duH4M5gtKnx1ciQBlnxly+prS2U2RT1P36jnsPqkG+ArT4rm8tlMZmV6cwc0njsFnu/Kv6e3/U7hYyw1ld8GDlW2lSivOR8uRJSulQDxqOwEdY1b3xe/y75V+RYRUu5woahvKS2vS9zk/O0tODMKEUIAMDAJdmS1BLsvMff2qNvKxBue2CwhsTfmFPRUt5tm88Omc5M1XhZF5+0t26PXAkuZTu7/nwOAAAAoO+innl46qmndMUVV+jSSy/V1KlTdd9998nhcOill17qdvwzzzyj008/XTfccIOmTJmi22+/XbNmzdJvfvMbSW3Vfs8884xuvvlmnX322SoqKtIDDzygyspK/e1vf+s015o1a/TOO+/ozjvv7HKdgoICXXrppSoqKtL48eO1bNkyLV++XB9+eOzD+z/96U/6yle+oqVLl6qgoEBf+MIXtHTpUj355JNDeIcwWnTsw5HpGHgiKS+5LcmRbKPNZ18MruKvXFmJ2UOeYE21p6q+tW+Jv4rmcv3zyN9lM9u0zbM1cvxoU6nykvOUnJCshjFQ8Xegfp/Kmo5qffkHkWNHm9r2OcxLHh+tsAAAGBJOq1Mtgc6Jv38d+UekXSF7uY095c1lvXadyHBkkhDuxp7a3ZqaNq3HSkkAAAAAfRPVxF9ra6u2bdumxYsXR46ZzWYtXrxYGzdu7PacTZs26dRTT+10bMmSJdq0aZMkqaSkRFVVVZ3mdLlcmjdvXqc5q6urdc899+iBBx6Qw+E4bqyHDh3SW2+9pUWLFkWOBQIBJSQkdBpnt9u1YcOG486H2BNJ/A2igqyj4i+Z/f36xGFxyBcc2B5/lS2VQ7q/X4dUe5oa+ljx98c9LyrJlqyrir6oHZ5tCoaDnVpcpiSkqCnQNOQxjjbbPdskSbtrd0WOHW0qkdVsVVYiT3QDAGJbojVJ3o9V/DW2Nmh9xQc6p/A8JduSSfCMQZUtFRqXlNvj6xmOTFp9dmNf3R729wMAAACGgDWaF6+trVUoFFJmZudESmZmpvbv39/tOdXV1XK73V3GV1dXS5Kqqqoix3oaYxiG7rrrLl111VUqLi5WSUlJjzFeddVV2rZtm1pbW3XllVfqtttui7y2ZMkSPf3001q0aJEmTJigtWvX6q9//atCoVAf70Abs9kks5mnGke72laPLGazMpMyBlxFNjGtQCZTW+LPao16wW2ExWLu9N/RwpngUMDrH9C9qvRWKN+VP+T3Od2RpsZAw3HnbfA36I2Dr+my6VfolLyT9ZsdT+tg4z4l2ZJkyNCE1AJt9aSoqqVqVK2F4bC9ZqtMJulgwwEZppBsFpvKvWXKTc5Vgq3v/wyN1nUKfBzrFLGAdTq0ku1J8oW8kX/P1x1+R2EjrDMLz9Rr+19RfWtd3P9bPxxidZ02B5rVFGhUniuvx//v7qRM1fo8rIuPafDXq8pbqemZM2LqvsTqOsXYwjpFLGCdIhawThFLopr4i5Znn31Wzc3Nuummm447duXKlWpubtbOnTv1wAMP6IknntCNN94oSfr2t7+tu+++W+edd55MJpMKCgp0ySWX9NimtCcZGUm0M4kBXlOjclzZysxwDXiONCNRqc4UuV0ZSk9PGsLohkZKijPaIXSS4UrV/sbgce/V+6XvK92RrmmZx54Qrmmt0hlZpw35fc5JzVJFc8Vx53154x9kMkvXnXSNXAkuORMcOuDdrQkJE2SxmDWnYIY+9KxVScvhUbkWhtLu+h2alztXWyu3qkblKkovUk2gUlPckwb03kfbOgW6wzpFLGCdDo2M5DQ1+Bsi/6a9U75Gi/JP1NS8icpNzVGLGuL+3/rhFGvr1FNTJovFrOm5PX+fM8GdJ2+4RUkpNiVYErodM9bsKd0mi8WsRZPmKz0t9v68xNo6xdjEOkUsYJ0iFrBOEQuimvhLT0+XxWKRx9N53wuPx9Olqq+D2+2OVO51Nz4rKytyLDs7u9OYoqIiSdK6deu0adMmFRcXd5rn0ksv1fLly/WjH/0ociw3t61Fy9SpUxUKhXTvvffqS1/6kiwWizIyMvSzn/1Mfr9fdXV1ys7O1oMPPqiCgoJ+3YeammYq/mLAEc9RpVjTVFvbPKh5xidNUKLJNeh5hpLFYlZKilMNDV6FQuFohxMRbjWpoaXpuPfqnr99RzMyinTfku9LklpDraporJRL6UN+nxOMRFU2VHc7b43Xo3dK39YH5e/r/bL39JnCc2Ty2dXka9W01Blad/ADtWT5ZTassvidsobs8jTVjqq1MNQ83modqSvRF2Zcoy3lW/XBwY3KsRRoX/UBnZh7Ur/e+2hdp8DHsU4RC1inQ8sUsqq2uV61tc2q89Vq3ZH3dNvC/0+1tc1KMqfoaF15XP9bP1xidZ3uOrpPoVBYzlBKj//fE4JJCoXC2nv0sHKTe24JOpb8e+87cpidcoUzY+rPS6yuU4wtrFPEAtYpYgHrFKNBXx8qjWriLyEhQbNnz9batWt19tlnS5LC4bDWrl2rq6++uttz5s+fr3Xr1unaa6+NHHv33Xc1f/58SVJ+fr6ysrK0du1azZw5U5LU1NSkzZs36/Of/7wk6e6779btt98eOb+yslLXX3+9Vq5cqXnz5vUYr2EYCgaDCofDslgskeN2u105OTkKBAL6y1/+ovPOO69f9yEcNhQOG/06ByOvqrlKafYMBYOD+4v97pPvk92SMOh5hkMoFB5VcdlMdnmD3l5jqvZWq6K5QjbzsXta1lguw5Dcjuwhfz8ua4rqfHVd5l1f8YG+v/a7agk2a1bmHH1+xtW6eNqlkXGzMov1xv4/K82eodykPIVDUqIlWQ3+hlF1z4faRxVbZBjS3MwFKkieqJ3VO/WZCeerrKlMuc68Ab330bZOge6wThELWKdDw2FOVHNri4LBsNaWrFUoHNYp405TMBhWWkKG9tTs4T4PQqyt06MNZbKabHJZ03qMO9WWJsOQqpqrleXIGeEIR5+wEdab+9/Q0vyzFA5JYcXO/+8OsbZOMTaxThELWKeIBaxTxIKot/q87rrrdOedd2rOnDmaO3eufv3rX8vr9eqSSy6RJP3Xf/2XcnJydMcdd0iSrrnmGq1YsUJPPvmkli5dqtWrV2vr1q363ve+J0kymUy65ppr9POf/1wTJ05Ufn6+HnnkEWVnZ0eSi3l5eZ1iSExMlCRNmDBB48aNkyS9+uqrslqtmjFjhhISErRlyxY99NBDOu+882Sz2SRJmzdvVkVFhWbOnKmKigo99thjCofDuuGGG4b/xmHEeXwezcyYNeh53M7uq1nRld1ilz/k73XMDs82SdLRphK1hlqVYElQZUuFJCk7ceg/SEmxp6qhtV6GYchkMskwDP1p7x/1882PaWHOIt150reVak/rct6czLn63Y7f6IPy91SYMkmS5EpwyR/yR+KOR9s8W5SdmK2sxCxNTZ+mPbW7Ve2tViAcUG7y+GiHBwDAoCXaEtUcaJIkfVjxvqamTVO6I0OSlO5IV62vJprhYYSVt5QpOzGn1z3BMxxt+9GzNtpsqPhQ1d5qnVN4frRDAQAAAOJC1BN/559/vmpqavToo4+qqqpKM2fO1KpVqyKtO8vKymQ2H/uhacGCBXrwwQf18MMP6yc/+YkKCwv1+OOPa/r06ZExN954o7xer+699141NDRo4cKFWrVqlex2e5/jslqtWrVqlQ4cOCCpLVl49dVXd6o09Pv9evjhh3XkyBElJiZq6dKleuCBB5SSkjLIu4LRyOOtVoYzM9phjCkOq1P+oK/XMTs822SSFDYMHWk8pClp01QxjIm/VHuqwoah5kCTkhNcen7X77Rqyy906fTL9eW5X+3xQ55Z7tkySSprOqrT8pZIklwJbX9XNAUalWGJz7W13bNNszPb2ipPT5+hNUf+qcMNByVJecl5vZwJAEBscFqd8ga9ChthfVjxoc6fdEHktUxHppoCTX16yKeptVFJtmT2/o5xFc0VGpc0rtcxKfZUWUxm1fg8vY4bK/7v4BuakDJRRRkzox0KAAAAEBeinviTpKuvvrrH1p7PPvtsl2PnnXder+00TSaTbrvtNt122219un5+fr527drV6dj555+v88/v/YnDk046SatXr+7TNRDbQuGQ6v11ynRQrTeSHBa7QkZYgVBANout2zE7arZr4bhF+rD8Ax2o368padNU2VKhdEf6sFTRpSakSpLq/HVKTnDpr4f+T8smnK2vzLu11/OSbcmanDZF++r2KS85v+1YgkuS1NjaGHnyO574Q37tqd2lZRM+LUmalj5DgXBAa8veldlkUk5i7x+KAQAQCxKtSfIGW7Sndrca/PVaNO6kyGsdlX+1vhrl9JIMagm06Mo/X6LPTb1UN8z9yrDHjOFT3lymGRlFvY4xm8xKd2SoZgxW/DUHmvXYxpW6aMolmpk5S42tDXqn9C39x+wvkfQGAAAAhkjP/UcARNT4amRIyqRN54iyWx2SJH+o+6q/YDioXTU7tTBnkXISc3Swvq1Ct6KlfNiSSin2tsRfvb9eNT6PDjUc1Em5p/Tp3NnuuZKk8e0tLl22Y4m/eLS7dpeC4ZBmZc6RJE1JmyqTpH8f+aeynNlx294UADC2JNoSFTYMvV36bzmtTs3MmB15LaM98Xe8BE9581G1hlr1h12/02v7/jSs8cayipYKPbHlF/qw/H0FQoFoh9Otvn4fmu7IGJOtPn++6TH9/dBfdddbd2hXzU7968g/FDKC+nThOdEODQAAAIgbJP6APuhow5MZh1VZo5nd0pb48/Wwz9++ur0KhAOamTFbhamTdKB+v6S2FkvDlfhLbU/8NbTWa2PFeknSCdkL+3TuXPc8SVK+a4KkY60+G1sbhjrMUWF79VY5rA5NTp0iqa0VWkHKRNX565TH/n4AgDiRaEuSJP275F+an72gU5eCj1f89aa8uVySdGbBMv1040qtK1s7TNHGtrdL1uj3O3+rb771DV3+2kV6dMNKeYPeaIcV0RxoVmNrY6/VnR0yHBnyjLFWn2uPvqP/O/iGbp5/qwpTJumuf9+hl3a/oJPGnRKX3S8AAACAaCHxB/RBJPHHHn8jytlR8dfDPn87a7bLarZoWvp0FaZM0sGGtoq/ypZy5SQN/f5+kpSScKzib0Plek1KnRT5UO94Ts9fqp8u+4WyE7MlSa72Vp9NcVrxt82zVUUZs2QxWyLHpqW37cdK4g8AEC8SrU5J0tGm0k5tPiUp1Z4ms8l03Iq/suajspltuvOkb+uU3NP0/bXfUUV7MhDHVHurND45X//76VW6eOql+uuhN3XL374cefgr2ipa2v6f9eUBtAxHpmq8YyfxV+er1U8+fECn5C3W56Zeph+c/oDyksertKlEnynseRsPAAAAAP1H4g/og2pvtcwmk1LtadEOZUw5VvHX/ZPc2z1bNTVtuhIsCSpMnaTKlko1tTaqylup7MThSfxZzVYl25JV76/Txor1OiH7xD6fazaZO+35kmBJUIIlQQ1xWPFnGIa2e7Zpdnubzw7T0toSf7lJedEICwCAIZfUXvEnSSfmdE78mU1mpdnTIw+R9aS8uVzjknJlMVt050nfVoIlQX/c8+KwxBvLqr3VynS6NSVtmq6dc70eX/ZLWc0W3fr3m/RO6VvRDi+SrB2XlHvcsW17/I2dxN9jGx9WWIb+v4XfkMlkUrItWT8840H9v4Xf0OK8JdEODwAAAIgrJP6APqjxeZThyJTZxB+ZkWS32CVJvmD3rT53eLZrZmbbPjqTUidLkjZUrlcwHBq2xJ/Uts/fds82VXmrdEJO39p89jhXQoqaAk1DFNnoUdpUonp/XWR/vw7T02dIouIPABA/nNZESW3/tuUmd32wpS8JnvKWMo1rbw+ZaEvUZydfqDcO/FnNgeahD7jdO6Vv6b2ydcM2/3DweKuV9bE9tyekTNRjy36h2Zlz9My2J6MYWZuK5nLZzDalO9KPOzbTkalaX43CRngEIouupkCT3i5do2tmXdupU4YrIUXnT76gU3cIAAAAAINHFgPoA4+3mn0nosDR0eoz1LXVZ62vRmXNZZqZMUuSVOCaKLPJpPfa98TJGcbEX6o9VR+UvyeLyRzZt2+gXAmuuKz42+7ZKpOkWZmzOh0vypilz8+8Wgty+l4pCQDAaJbYnvg78RNtPjtkODKO2+qzvKlM4z5WDX/R1EsUCLfqzQOvH/f65c1lagm09CPiNr/Z/mv9dscz/T4vmqq9Vcr8WOJPantQ7PzJy7W/fn/U26OWt5QpOzGnTw8L5ibnKWSEVdlSMQKRRde26q0KG0aXilgAAAAAw4PEH9AHHm+1Mtjfb8R1VPz5Q10r/nbW7JAkzXK3VZQlWBI0PrlA77c/uZ6ddPy9VQYqNSFVgXBARRmzlGhLHNRcroQUNcVh4m9b9VZNTJmk5PZ9DDvYLDZ9ac6NndqiAQAQy1wJKZqVOVvLJny629cz2iu7emIYhspbypT7sfaQbqdbSwvO0it7X+q1IiwYDuqWv9+kP+55oV8xh42wDjce0v76fTFTcWYYhqq91XI7s7q8duK4k2QxmSMPgEVLW8vWvn0Pmp9cIEkqaTwynCGNCh9VbZTb6abjAwAAADBCSPwBfeDxeeR2uI8/EEMqssdfsGvF37bqLcpwZCjbmR05Vpg6SXX+OiXZkpRsSx62uFLsqZI0JFVryTaXGlsbBz3PaLPNs1Wz3XOOPxAAgBhnMVv0yFk/06z29uOflOHsPfFX76+TL+jrsi/cpdOuUHlzea97131UtUkN/nqVN5f1K+bKlgq1hlrlC/p0tKm0X+dGS2NrgwLhQLeJv2Rbsoqz5mtd2btRiKxN2Ahra/UWTUmb2qfxOUnjZDVbVNpUMsyRRd+myo2amzVPJpMp2qEAAAAAYwKJP6APPN7qLm2FMPyOtfrsXPEXNsJaU/JPLcxZ1OkDhMKUSZKGt82n1FbxJ2nQ+/tJba0+4y3x19TaqEMNB3v8ABQAgLEkw97W6tMwjG5fL29pa0+Zm9R5f8Bp6dM1N2ueXtz9hx7nfufo25LUa2KxOwcbDkZ+v69ub7/OjZZqb5Uk9fg9+Sm5p2pj5YYBtT0dCts921Tvr9PivNP7NN5sMisvOV8ljfGd+GsONGtv3W7NzToh2qEAAAAAYwaJP+A4QuGQ6v117PEXBWaTWTazrcsefxsr16u8uVznT17e6fik1MmShrfNpyRlJ+Yo2ZasovSZg54rHhN/2z3bJUmzM4ujHAkAANGX7shQIBxQc6Cp29fLmo5KUrctIi+Zdrm2e7Zpb+2eLq8ZhqF326sBPT5Pj9d/r2ydrn79CgVCgcixQ/UH5LA6lOnM1N66rnOPRtXetvfYXcWfJJ2ce6qC4aA2VW4YybAi1h59W2n2NM38xP7GvclLHq/Spvhu9dmxv9+8rPnRDgUAAAAYM0j8AcdR46uRoZ6fLsbwclgdXVp9rt7/Z01MKdTszM6tJAtT2yr+soe54u/8ycv1i888JZvFNui5XAkpagzEV+Jvm2eLUu1p7OMCAICkDEeGpLbvKbtT0VKuZFtyl31xJemU3MVyO9368/4/dXltd+0uVXurNTdrfq8Vf1urN6uipaJTgu9w4yFNcE3U1LRp2hczib8qmXTsfn5SvqtA+a4CrS17Z2QDU1sS9p3St3VK3mKZTX3/EbsguSDu9/jbXLVBGY4MjU/Oj3YoAAAAwJhB4g84jpr2J6gzqfiLCrvFLt/HKv5qfTV6p/TfOn/yBV32CclLGq9EW6IKkguGNaYES4KyE7OPP7APXAkuNbU29Nj+KxZt92zTrMzZ7OMCAIDaKv6knttxljeXKaeHbgUWs0XnTbpAfz/8VzUHmju99nbpv+VKcGlp/qdU569V2Ah3O8fhhsOSpO2erR87dkgTUwo1OW1qTLX6THOky2q29jjmlNxT9V7Z2h7vxXA53HhIpU0lWpy3pF/njXcVqKKlvFM1Zrz5qGqz5mWdwPeFAAAAwAgi8QccRyTx5yTxFw12i0P+j1X8/eXgmzKbLPr0xHO6jLWYLfrfs5/o0gJ0NEu2uRQ2DLUEo7MfzVALhUPaWbO9SzUmAABjVUe7+J4q/sqaj3bZ3+/jzpt0gVpDfv390F86HX+n9C2dkrtYWYnZChuG6v113Z5/pLEt8bejvRW3YRg61HBQE1MKNS1tump8Nf3eIzAaqr1VPbb57HBK7mLV+mq1p3b3CEXVZu3Rd2S32LUg58R+nZefnK+wYais+egwRRZdLYEW7a7dqbm0+QQAAABGFIk/4DiqvdUym0xKtadFO5QxyWG1yxfyS2r7oGr1gT/rjIJPyZWQ0u343OQ8JVgSRjLEQXG1t/VqbG2IciRDY3/9PvmCPs12s78fAACS5LQ6ZbfYIw+TfVJ5c3m3+/t1yErM0ql5S/Tavj9FOgQcbjikI42HtWT8GZGKwu7mD4aDOtpUIleCK1LxV+2tljfo1cSUQk1JmypJMbHPX7W36rit92e7i+VKcOkvh94coajavHv0bZ047iTZLfZ+nTfe1dalorSpZDjCirqt1Vva9vfLnh/tUAAAAIAxhcQfcBw1Po8yHJn92q8DQ8dhccrf3upzc9VGHW0q1WcnxU5F3/F0JDCbWpuiHMnQ2O7ZKqvZqunpM6IdCgAAo4LJZFKGMzNSVberZqcO1O+XJIWNsCpbyjUuKbfXOS6YfKEONhzQNs9WhY2w/nb4L7Jb7Fo4blGkotDj7Vq1V9Z8VCEjrDMnnK0qb5WqWqp0qOGAJGliSqHGJeXKaXXGRLtPj7daWcep+LOarbpixuf1532v6GD9gX7N/1HVJu2q2dnvuGp8Hu30bNfivNP6fW6mI1MOqyNu9/nbUr1J6Y505Q9zG34AAAAAnZHJAI6j1lcTeZIaI89utcvX3urzndK3lZOYoznuuVGOauh0VPw1tNZHOZKhsbV6i6anz4ipqksAAIZbhj1DNb4a/ePwX3XbP27Wd9+9W2EjrCpvlYLhkMb10upTkhbknKjc5Dz96P3v67JXL9TvdvxGSwvOlN1iV1p7V4paf9fE35H2/f3OmXieJGlHzTYdajioBEuCcpLGyWwya0qM7PNX7a0+bqtPSbpk2uUal5Snn216tM97KDcHmvXdd+/WLz/6Wb/jWnv0XZlMJp2ce2q/zzWZTBqfPD5uK/4+qtqsue757O8HAAAAjDASf8BxeIMtcloTox3GmGW3OCIVf1uqN2l+9oK4+vCgI/HXFIifir9ZmbOjHQYAAKNKuiND75Wt1f3vfV/zsk/Q0aZSvVP6liqayySp11afkmQ2mXXt7C8pJzFXF0+9VD/51KP6fwu/IUlKsCTIleDqdp++w42H5LQ6NS19unISc7SteqsONxxSgasg0s1i8ihK/L1Xtk4VzeVdjreGWtXQ2nDcVp9S2/24ef7XtLFyg94u/XefrvvynhfV2NqoXTU7FQqHuh1jGIYONxzqEtfzu36nhTmLBrwtQH7yBB2Jw4q/QCigPbW7NTNzVrRDAQAAAMYcEn/AcXiDPjmtjmiHMWY5LA75gn41tjZof90+zc2aF+2QhlSSLVkmSQ3+2N/jr6qlSpUtlZqVOSfaoQAAMKpkODPV0NqgK2ZcpR+e/pCK3XP14u4/qCyS+Ou91acknTXh03rwUw/rmtnXqThrnqxm67H5HZnyeLvu8VfSeEQFrgkymUyamTk7UvE3MaUwMmZa2nSVNB6WN+gd/BsdBMMw9IN139Wz25/u8prHWy1Jcvch8SdJp+SeqpPGnaxfbH5c/va9onvS1NqoF3f/QTMzZ8kf8mt//b5ux22p3qzr/+8avbbvT5Fjf9zzgsqbj+rLc7/ap7i6k+car6NxWPG3v36fAuGAijJI/AEAAAAjjcQfcBz+kE8OizPaYYxZdqtd/pBPW6o+kiFpbtb8aIc0pMwms5ITXGoKNEY7lEHb5tkiSZrtJvEHAMDHXTbtCn1n8X/rxrk3y2Qy6fIZV2m7Z5v+fugvSneky26xD2r+DEdGtxV/RxoPqyBlgiRpVuZs7andrYMNBzQxZVJkzJS0qTKkyL6D0VLZUiFv0Kv3y9d1adFZ7a2SJGU6+pb4k6Sb539NHl+1Xt7zYq/jXtz9vALhgL518r2ymi3a7tna7bit1W3f5/xs0yPaWr1F1d5qPbfjGV009VIVpk7q9py+KEguULW3Wi2BlgHPMRrtrNkuq9miaenTox0KAAAAMOaQ+AOOwxf0yW4d3IcxGDiHxSl/yKfNVZuUk5jTpyfiY01ygkuNrbFf8bfds025SbnKcGRGOxQAAEaV3OQ8LRl/RuTrk3NPVYFrgjZWblDucfb364sMZ6ZqfJ0r/gzD0JHGw5rgmihJmpU5R8FwUM2BZk1ImRgZNzGlUBaTWfvq9gw6jsE40HBAklTrq+3SerS6o+Iv8fh7/HXIdxXovEnL9fyu3/XYUr3BX68/7nlBF065WOOScjU1bXqPib8dNds1N2u+ZmbM1vfW3qNH1j8ou8Wha2Zd2+eYujPeVSBJKmsuHdQ8o82Omu2anDqVfZ8BAACAKCDxBxyHP+STw0rFX7Q4rHb5gj5trtqo4jhr89nBZXOpsTUOKv6qt2gW1X4AAByX2WTWZdOvlHT8/f36IsOeoZpPVPzV+WvV2NqoAldbxd+UtGNJmI+3+kywJGhcUp5KGqPbbvJg/X45rU45rU69X76u02vV3io5rA4lWZP6NecXZq6QL+jTH3e/0OW1nTU7dN/ae2TI0JUzviCpLTm63bOty1jDMLTDs11zs+bpnlPvk8Vk0bqytbq++MtKbt+veaDyk/MlKer3f6jt9OxQEfv7AQAAAFFB4g84Dm/QJ8cg2y9h4OwWh+r8ddpft1fzsk6IdjjDwpUQ+4k/X9CnfXV7NDuzONqhAAAQE86e+BllObM0KXXKoOdKd2R0qfg70nhYkiKJP6vZqhnpRbKaLcpLGt9prNuZ1eX8kXaw4YAKUydpQc6Jeq9sbafXqr3VynS4ZTKZ+jWn2+nWRVM/pxd3/0EN/vq269Qf0D3vfFNf+/tXVOev072nfk9pjnRJbe1Qy5vLu9yL8uYy1fvrNDNjttIdGfr+kh/q8zOv1jmF5w3iHbdJsafKleBSaQzv83e0qVR/3vdq5OvG1gaVNpVoZsbMKEYFAAAAjF3W4w8BxjZ/yCe7xRHtMMYsu8Uub9ArSZoXZ/v7dXAlpHR5Sj/W7K7dqZAR1uzM2dEOBQCAmJBgSdCqc54Z9P5+kpTpzJQ36JU36JWzvVPF4YbDMptMyks+luQ7OfdUWc1WWcyWTue7E92qaC4fdByDcbD+gKalT9fMjNl6ZMODavDXK11tFX4eb7Xczr63+fy4K2d8Qa/vf02/3v6UEsw2vbznRWUnjdNdJ31bZ044W2bTsWdhZ2W2dS7Y7tnWqTXrjpq2KsCijCJJ0pS0aZqSNm1A8XQn31UQSdTGmpZAi7799p0qaTyiyWlTNCtztnbW7JAkFWVQ8QcAAABEAxV/wHH4gj45rCT+oqWjzarb6Y7L/f0kKcPRdV+eWLOteqsSbYkqTJ0c7VAAAIgZibbELkm4gUi3Z0iSaj/2INGRxsPKTRrfaY+1K4u+oAeWruxyvtvhVrW3atBxDFTYCOtwwyEVpkzSonEnK2wY+qD8g8jr1d4quRPdA5o7zZGuz027TK/ufVmv7fuT/mP29Vr1mV9r2cTPdEr6SVJWYpbcTre2V3fe52+7Z7vGJ+crxZ46oBiOJy95vA43HBqWuYeTYRhauf7H7YlZt17e86KktjaqrgSXxre3MQUAAAAwskj8Acfh+9iT0xh5HW1W52Wf0O/2TrEiKzFLVS2VMgwj2qEM2DbPFs3MmNXlAzQAADD80h1tiT/Pxx4kOtJ4SAUpE/p0fqbTLY/XE7XvRY42lSoQDmhS6mRlJWZpStqUTu0+Pb5quR0DS/xJbVV/1825QU+c+6w+P/PqTsnQT5qdWdxln78dnm0qyhy+tpULshdqd+0uHW0qHbZrDIdX972sfx35h76+6C5dPuMqvVXyL1W1VGmnZ7uKMmbG7ffuAAAAwGjHJ7RAL4LhoEJGWA5afUaNvb3acq57fnQDGUZZzmz5Q341BWJzn7+wEdZ2z7ZIeywAADCyMp2ZkrpW/E1w9S3x53ZmKRAOqLG1odvXDcNQS6Bl8IH24FDDQUnSxJRJkqRF407RB2XvKWyEZRiGqgfR6lNqq6z8wswVyknMOe7YmZmztLt2lwKhgCTJH/JrX90ezcoYvnbmSwvOUrItWav3vzZs1xhKYSOs1/a9ov/d/FNdMu1ynZH/KZ1TeL4SLHa9uu9l7azZQZtPAAAAIIpI/AG98LXvLWen1WfUpNnTZDaZdEL2gmiHMmyyErMlSZUtFVGOZGBKGo+osbVRs90k/gAAiIZkm0tWszWS+POH/KpoLleBa2Kfzs90tlXT9dTu863SNbp69RWRZNhQO1h/QK4ElzLaKxdPyj1F9f56rdqwSjtrdigYDkZiHG6zMucoEA5ob90eSdLe2j0KGWHNHMZ9jO0Wu86eeI7ePPjGsN3joVLSeERf/9dtenTDSp1TeL5uKL5JkpRkS9J5ky7QH/e8oIbWBhJ/AAAAQBSR+AN64Q36JEkOC60+o6XYPU9PnfuccpPzoh3KsMlydiT+KqMcycBs82yV2WTiAx4AAKLEZDIpw5ERafV5uOGQDEkFfaz4O5b4637P4V01O9TY2qiKlvIhifeTDjYcUGHKpEhryFkZs3V24Wf09Kandctf2xJLg6n464+padNkM9v0j8N/k2EY2lGzTQmWBE0a5n2MPzt5uer9dXq79N/Dep3BaGxt0Ff/dqOqfdX68dKVun3h12Wz2CKvXzz1EgVCrZKkooyiaIUJAAAAjHnWaAcAjGb+UHviz2qPciRjl8lkUl7y+GiHMawynZmymMyqitHE3+bKDZqcOlVJtqRohwIAwJiV4chUTXvibu3Rd5RoS9S09Ol9OjfTkSmT2vbS605JY4kk6WjTUeW7CoYk3o87WH9AxVlzI19bzBZ965R7ZE826a87/qm9Nfv6/F4Gy2ax6ZrZ1+mJLb+U1FYFOSO9SFbz8P7oXJg6ScXuuXp9/2s6c8KyYb3WQH1Y/oG8Qa9WLX1G2e0dKz4uNzlPp+Yt0ZHGw0qxp0YhQgAAAAASiT+gVx2JPzt7/GEYmU1muZ1ZqvLGXuLPMAytr/hQ5xSeF+1QAAAY09IdGarxeWQYhtaU/FOL85YowZLQp3OtZqtS7Wk9tvosbWpL/JU1lw5ZvB2C4aBKmg7rgikXdnkt0ZaoMwo+pcW5Zwz5dXtzVdEXlWRL1mMbfiJD0hUzrhqR63528nL98P0fqKTxyLAkWAdrfcUHmphS2G3Sr8PXF92p5kDzCEYFAAAA4JNo9Qn0ItLqkz3+MMyyErNjsuLvQMN+1fnrtCDnxGiHAgDAmJbhyFCNr0YHGw7ocMMhLS04q1/nu51Z8ni7VvyFjXAk8Xe06eiQxPpxJY1HFAyHhr2VZn8tn3KR7j71Ptktdp2Yc9KIXPP0/E8pJSFFbxz484hcrz/aHvb6QCeOW9TrOFdCisYl5Y5QVAAAAAC6Q8Uf0Atf0CtJcljZ4w/DK8uZraoenrIfzTZWrJfNbNMc99zjDwYAAMMmw5GpWl+N/nXkH0q2JWthdv8eynE73d0m/ipbKhQMB2W32HW0PQE4lA41HJQkTUwpHPK5B+uM/E/ptLzTZTFbRuR6CZYELcg5UTtrdozI9frjUMNBVXurtTCn98QfAAAAgOij4g/ohT/klyQ5LOzxh+GVlZilypaKaIfRbxsqPtQcd3GfW4kBAIDhkeHIVJ2/Vv868g+dNv502Sy2fp2f6XR3+xDS4YbDkqQTchbqaHPPFX/eoFdhI9ynaxmGIW/QK8MwdLDhgNLsaUq1p/Ur3pEyUkm/DgWuCTrccGhEr9kXH1a8L5vZprlZ86MdCgAAAIDjIPEH9IKKP4yU7MQcVXur+vyB2WgQCAX0UfVm2nwCADAKZDozFTYMHW0q1Rn5Z/b7/J5afZY2HZHNbNP8rBNU1nS0x+9Vbvnbl/X7nc/16VpPb3tCF758ri54+TN6ftfvVDjK2nxGU4Frgur8dWpqbYx2KJ2sr/hAc7Pmyc4DkQAAAMCoR+IP6IU36JNJUoKZaiYMryxntoLhkOr8tdEOpc921GyTL+ij5RMAAKNAuiNDkuRKcGlBzsJ+n+92ZqnOX6dAKNDpeElTicYn52u8q0CBcEDV3SQHG1sbdKTxsN4pfatP11pz5J9aNO4k3VB8ky6dfoVWzPqPfscbrwpcEyRJRxqPRDmSY/whvzZXbtKJ40Zmr0MAAAAAg8Mef0Av/CGfHFanTCZTtENBnMtOzJEkVbZUKsORGeVo+mZDxXq5ElyakjY12qEAADDmdST+low/Q1Zz/3/M6/j+o8Zfo5z270skqaTxsPJdBRqfPF6SVNZUquzE7E7nHqjfL0naU7tLDf56pdhTe7xOSeMRlTaV6KZ5X9Wpeaf1O854N96VL6ntvs/MnBXlaNpsqdqsQDigE3NI/AEAAACxgIo/oBf+kJ92NhgRWYlZkqSqlsooR9J3GyvX64TshTKb+KcEAIBoczvcWphzopZPuXhg5ye6JUnVLZ33+SttLFG+K185ieNkklTaVNrl3AP1+2U2mWRI2lC5vtfrvFe2tq11aPaCAcUZ75xWp9xOt440jZ6Kvw8r3pfb6dbElMJohwIAAACgD/i0FuiFN+iVw+qIdhgYA1ISUmUz21TZUhHtUPqkKdCknTXbdUJ2/1uJAQCAoWcxW/TDMx7StPTpAzo/y9n2EJLHd6yVpz/kV2VLhcYnFyjBkqDsxByVNXef+CtMmaSJKYX6sPz9Xq/zXtlazc8+QU720O5RgWuCjjQcjnYYkiTDMPRh+QdamLOILigAAABAjCDxB/TCF/TJYeFDCQw/k8mk7MQcVXljo+Jve/U2hQ1DJ/C0PgAAcSHZ5pLNbFO191jFX2lTiQxJ+a4CSVJu8vgeK/4mpU7WwpxFWl/xgQzD6PYazYFmfVS1SSfnnjos7yFeFKRM1JHG0ZH42+7ZpkMNB3VG/pnRDgUAAABAH5H4A3rhD/lkt9LqEyMjKzFbVZ9orzVaVbSUyWIyKzc5L9qhAACAIWAymeR2uuXxHqv4K20skSTlJ7ftO5eXlKejn0j8hY1wW8Vf6mSdOG6Rqr3VOtRwsNtrrK/4QCEjTOLvOAqSC3S0qVRhIxztUPTK3pc0PjlfJ45bFO1QAAAAAPQRiT+gF1T8YSRlObNipuKvsqVSmU43+/sBABBH3M6sTom/ksYjSrYlK9WeJknKSx6vsuajnSr6Klsq5A16NTl1qord82Qz27S+4oNu53+vbK0mphRqXFLusL6PWJfvKlAgHFBFc3lU46hqqdJbJf/SRVM/x/d8AAAAQAzhu3egF96QV072+MMIaav4i43EX5W3UlnO7GiHAQAAhlCm062qjyf+mo4o31UQ2dstL3m8WgItqvfXRcYcqN8vSZqUOlkOq0Nz3MXdJv7CRljvla3TKVT7HVdBykRJ0uEot/v88/4/KcFi12cKz4tqHAAAAAD6h8Qf0At/0CeHlYo/jIzsxBzV+DwKhUPRDuW4qluqlZVI4g8AgHiS6czsUvE33pUf+TqvvcX30eajkWMH6vcr2ZYst9MtSTpx3EnaXLVJraHWTnPvqtmpen8dbT77IMuZpQRLgkqimPhrDbXq9f2v6dOF5yrJlhS1OAAAAAD0H4k/oBf+kF92C3v8YWRkObMVNgxV+6qPPzjK2ir+sqIdBgAAGEJuZ5Y8vupIK8+SphIVJE+IvJ6bNF6SdLSpJHLsQP1+TUqdHKkKPDFnkVpDrdpa/VGnud8rWytXgkuzMucM99uIeWaTWQWuAh2JYuJvzZF/qN5fp4unXhK1GAAAAAAMDIk/oBe+oFd2Wn1ihGS3V9BVtlREOZLeGYahqpZKuRNJ/AEAEE8yHW75gj41B5vV2NqgBn99p4q/RFui0uxpOtrUueKvMHVy5OtJqVOU5czSO0ff7jT3urJ3tWjcSbKYLcP/RuJAfvIEHWk8ErXr/+XQ/+mE7AUqcE04/mAAAAAAowqJP6AX3pBPTguJP4yMjtaZo32fv4bWegXCAfb4AwAgznQ81LO1eot+/MEPJUmFKZM6jclLHq+jzaWS2tpBHmk8pMmpUyKvm0wmLR5/ut4tfStSOVjVUqV9dXtp89kP+a4CHWk8FJVrG4ahPbW7ND97QVSuDwAAAGBwSPwBvfAHfVT8YcQk2ZKUaEsc9Ym/am+VJLHHHwAAccbtaNun756379Ke2l361sn3qjC1a+LvQN0+hcIhHWk8pLBhaNLHKv4kacn401Xtrdbu2l2SpPfL18lsMmnRuJNH5o3EgQkpE1Trq1VzoHnEr13eXKbmQLOmpk0f8WsDAAAAGDwSf0AvfCGfHFT8YQRlO3NU6R3dib+qlrbEn5s9/gAAiCtZidmamzVfn595tZ4451mdOWFZlzGfKlimgw0H9L2192pnzU5J6pIcLHbPU0pCit4u/bektjafszOL5UpIGf43ESfy2/dWLIlCu8+9dXskSVPTp474tQEAAAAMHok/oAeGYcgX9MphdUY7FIwh+a4CHWmITlunvqryVspiMivDkRHtUAAAwBCymq166FOP6EtzblSiLbHbMSfnnqL7TrtfH1a8r8c3PqKcxBwl2ZI6jbGYLTo17zS9U/qWWkOt2lixXiflnjISbyFu5LsKJCkq7T731O1Wmj1NGY7MEb82AAAAgMEj8Qf0IBgOKmwYcljs0Q4FY8iElIk6HKX9XPqqylulTKdbZhP/hAAAMBadknuqHjhjpRxWh6alz+h2zGnjT9eRxsN6bd8r8of8OiV38QhHGdsSbYkalzROW6u3jPi199ft1bR02nwCAAAAsYpPbYEe+EJeSaLiDyNqYkqhPF6Pmlob+3VetbdaR5tKhymqzipbKmjzCQDAGDfbPUdPnvOs/t/Cr3f7+sKcRXJYHfr1tieVk5ijiSmFIxtgHDhzwtn655G/yxv0juh199bt0ZS0aSN6TQAAAABDh8Qf0ANf0C9JsrPHH0bQxJSJkqRD/Wz3+eiGn+iH739/OELqorqlWtmJOSNyLQAAMHqlOdKVYk/t9rUES4JOGneKvEGvTs5bLJPJNMLRxb7zJ12glkCL/l3yr8gxj9ej/938UzUHmjuNrWguH5LqwFpfjTxej6aS+AMAAABiFok/oAcdFX9OK4k/jJwC10SZTSYdajjY53NC4ZA2V23U4YZDMgxj+IJrV+2tktvpHvbrAACA2Hba+NMlSSePOzXKkcSmcUm5WpCzUKv3vxY59tOND+ul3S/oxd1/iBwLG2Hdt/Ye3fGvr2nt0XcGdc29dXskicQfAAAAEMNI/AE98FPxhyhIsCQoN2l8vxJ/u2p3qiXQouZAs+r8tcMXnCTDMGj1CQAA+uSM/E/pvxZ9UyeOWxTtUGLW+ZOWa7tnmw7WH9C6o+/q7dJ/a1r6dL20+3nV++skSWuO/FN7andrenqR/nvtd7SteuuAr7evbq+cVqdyk/OG6B0AAAAAGGkk/oAeeCN7/JH4w8iakDJRhxsPdvtaKBzSds+2Tsc2VW6I/L6kqWQ4Q1Nja4MC4QCtPgEAwHFZzVZ9uvBcmU382DlQi/OWKNWepj/ueUGPbVyphTkn6n+WPCBJen7X79QaatWTW3+pU/IW66FPPaqZmbN0zzt36dW9L+s323+tRzes1L72Kr6+2Fe3V1PSpvL/DAAAAIhhfDcP9MAX7Ej8OaMcCcaaiSmFOlR/sNvXXtj9e932j69qZ82OyLENFet1QvYCSVJp4/Am/qq8lZJExR8AAMAIsFlsOqfwXL1x4HXV+mr1nwv+P6U50vW5aZfplb1/1LPbn1JlS4Wun/NlJVgSdN9p/6PcpDw9tvFh/WnvH/WXg2/o5T0v9fl6e2p3awptPgEAAICYRuIP6IE/1Nbq02GxRzkSjDUTUyaqylul5kBzp+MN/nr9fudzkqTX9r0iqW2dbvds1cm5pyo7MVulTUeGNbaqlipJUlZi9rBeBwAAAG3Om3SBLCazrp71H8pLHi9Junz6lUowJ+j3O3+rcwrPV2HqJElSsi1Zjy37X71+yV/1woV/0vmTl2tz1cY+Xacl0KKjTSXs7wcAAADEOBJ/QA+o+EO0TExp++DmSOPhTsd/t/M3ChthXTLtcv3z8N/V4K/XtuotCoQDOiFnocYn56tk2Cv+qmQ2mZThyBjW6wAAAKBNvqtAv/nsC/p80dWRY8kJLn1h5gol2ZK0YtZ1ncabTWYlWBIkSfOzTlB5c7nKm8uOe5399ftkSJqWTuIPAAAAiGUk/oAe+IJ+mU0m2cy2aIeCMabANUEmSQfrD0SOVTSX65W9f9TlM67SVUVfkCFD/3fwDW2s3KA0e5ompUxWvqtg+Cv+vJXKdLjZ9wUAAGAEuZ1umUymTscun3GVfnfBS8pK7LkFe3HWXJkkbao8ftXfvro9spotmuAqHGS0AAAAAKKJT26BHvhCXtktji4/YAPDzWF1aFxSrg43HIwce3rbE0q2JevSaVco3ZGhpfmf0mv7/6QNFR9qfvYCmUymSMVf2AgPW2xVLZW0+QQAABglnMfpTuJKSNGUtGnaVLXhuHMdajik/OQJsll48BEAAACIZaMi8ffcc8/prLPOUnFxsS6//HJ99NFHvY5/4403dO6556q4uFjLly/XmjVrOr1uGIYeeeQRLVmyRHPnztW1116rgwcPdjtXa2urLrroIs2YMUM7duyIHN+/f79WrFihxYsXq7i4WMuWLdPKlSsVCAQ6nf/000/rnHPO0dy5c7V06VL9z//8j/x+/8BuBEYVf9AvO/v7IUomphTqUHvib2fNDv390F+0Yta1SrQlSpKWT/mcypqOanftLs3PXiBJyndNUCAcUJW3atjiqmqpUpaTxB8AAECsmJ99gjZXbpRhGL2Oq/F5eq0eBAAAABAbop74W716te6//37dcsstevnll1VUVKTrr79eHo+n2/EbNmzQHXfcocsuu0yvvPKKli1bpltuuUW7d++OjPnVr36lZ599Vt/97nf1/PPPy+l06vrrr+82IffAAw8oO7vrh9g2m00XX3yxnnzySb355pv61re+pRdeeEGPPfZYZMxrr72mhx56SLfeeqtWr16tH/zgB1q9erV+8pOfDMGdQbT5Qt7jPkELDJcJKRN1uPGQWkOtevCDH2pq+nR9dvKFkddnZc7WlLQpkqQF2QslSeOTx0uSShuHr91ntbeKD4QAAABiyLzsBar2Vqu0qfe9oGt8HmU4MkcoKgAAAADDJeqJv6eeekpXXHGFLr30Uk2dOlX33XefHA6HXnrppW7HP/PMMzr99NN1ww03aMqUKbr99ts1a9Ys/eY3v5HUVu33zDPP6Oabb9bZZ5+toqIiPfDAA6qsrNTf/va3TnOtWbNG77zzju68884u1ykoKNCll16qoqIijR8/XsuWLdPy5cv14YcfRsZs3LhRCxYs0PLly5Wfn68lS5boggsuOG7FImKDN+iTw+qIdhgYowpTJqm8uVxPbPmlSpuO6OuL7pLFbIm8bjKZtGLWdTpt/OnKTc6TJI1LypXFZD7uhzoDZRiGqryVcjtJ/AEAAMSKYvdcmU2m4+7zV+urUbojY4SiAgAAADBcrNG8eGtrq7Zt26abbropcsxsNmvx4sXauLH7H0o2bdqka6+9ttOxJUuWRJJ6JSUlqqqq0uLFiyOvu1wuzZs3Txs3btRnP/tZSVJ1dbXuuecePf7443I4jp/cOXTokN566y19+tOfjhw74YQT9Oqrr+qjjz7S3LlzdeTIEa1Zs0YXXXRRn+9B23s2yWxmH7nRJmD45bQ5ZbVGPT8+7CwWc6f/IvompU+SySS9vPcFXTPnOk3PnNZlzNKJS7V04tLI11YlKM+Vp6PNpcOybhv89QqEWzXOlROVPxesU8QC1iliAesUsYB1OnRSrS4VZc7UFs8mXTzj4m7HGIahGl+N3EmZY+Lnn6HCOkUsYJ0iFrBOEQtYp4glUU381dbWKhQKKTOzczuRzMxM7d+/v9tzqqur5Xa7u4yvrq6WJFVVVUWO9TTGMAzddddduuqqq1RcXKySkp6rY6666ipt27ZNra2tuvLKK3XbbbdFXlu+fLlqa2v1hS98QYZhKBgM6qqrrtJXvvKVPt6BNhkZSTKZSPyNOtaQUhNdSk9PinYkIyYlhdamo8W85FmyWMyamjFVty7+imwWW5/Om+KerKrWsmFZt9Weo7JYzJqcMyGqfy5Yp4gFrFPEAtYpYgHrdGgsLjxFr+56VWlpid3+7NnU2qSwKaiJ7vFj6uefocI6RSxgnSIWsE4RC1iniAVRTfxFy7PPPqvm5uZOlYY9WblypZqbm7Vz50498MADeuKJJ3TjjTdKkt577z394he/0He+8x3NnTtXhw8f1g9+8AM9/vjjuuWWW/ocT01NMxV/o1BdU6NMsqq2tjnaoQw7i8WslBSnGhq8CoXC0Q4H7W6ae4sWjTtJTQ2tklr7dI7bNk7vlb07LOv2QEWJQqGwrK2JUflzwTpFLGCdIhawThELWKdDa3rybFU1PalNh7apMHVSl9cPNxxWKBRWQjBpTPz8M1RYp4gFrFPEAtYpYgHrFKNBXx/Si2riLz09XRaLRR6Pp9Nxj8fTpaqvg9vtjlTudTc+Kysrciw7O7vTmKKiIknSunXrtGnTJhUXF3ea59JLL9Xy5cv1ox/9KHIsNzdXkjR16lSFQiHde++9+tKXviSLxaJHHnlEF154oS6//HJJ0owZM9TS0qJ7771XN998s8zmvpX9hsOGwmGjT2MxcrwBr1LtaQoGx85f5KFQeEy939Hu4imXSVK//p/kJeWrtLFUvtZWWc1D+1d8VXOVDENKtaVHdZ2wThELWKeIBaxTxALW6dAoSp8ts8zaULZB+UkTu7xe1VQtw5BSbGPr55+hwjpFLGCdIhawThELWKeIBVFtSJuQkKDZs2dr7dq1kWPhcFhr167VCSec0O058+fP17p16zode/fddzV//nxJUn5+vrKysjrN2dTUpM2bN0fmvPvuu/WnP/1Jr7zyil555RX98pe/lNRW3ff//t//6zHejnae4XDbH2yfz9cluWexWCJjEdt8IZ/sFnu0wwD6JT85X2HDUHlz2ZDPXeOrkSvBpQRLwpDPDQAAgOHjtDo1PaNIH1Vt7vb1Gl+NJCnDkdnt6wAAAABiR9RbfV533XW68847NWfOHM2dO1e//vWv5fV6dckll0iS/uu//ks5OTm64447JEnXXHONVqxYoSeffFJLly7V6tWrtXXrVn3ve9+TJJlMJl1zzTX6+c9/rokTJyo/P1+PPPKIsrOzdfbZZ0uS8vLyOsWQmJgoSZowYYLGjRsnSXr11VdltVo1Y8YMJSQkaMuWLXrooYd03nnnyWZr22vrzDPP1FNPPaVZs2ZFWn0+8sgjOvPMMyMJQMQuX9Arh5WezYgt410FkqSSphLlt/9+qNT4apTuyBjSOQEAADAy5rrn6S+H3pRhGF32+avxeWS32OXk5x8AAAAg5kU98Xf++eerpqZGjz76qKqqqjRz5kytWrUq0rqzrKysU1XdggUL9OCDD+rhhx/WT37yExUWFurxxx/X9OnTI2NuvPFGeb1e3XvvvWpoaNDChQu1atUq2e19r96yWq1atWqVDhw4IKktWXj11Vfr2muvjYy5+eabZTKZ9PDDD6uiokIZGRk688wze60aROzwBX1yWh3RDgPoF7fTrQRLgkobj0i5pw7p3DVeD0+BAwAAxKi5WSfoD7t+p9JuHhCr8XmU4czskhAEAAAAEHuinviTpKuvvlpXX311t689++yzXY6dd955Ou+883qcz2Qy6bbbbtNtt93Wp+vn5+dr165dnY6df/75Ov/883s9z2q16tZbb9Wtt97ap+sgtrS1+iTxh9hiNplVmDJJr+x9SRNTCnXiuJOGbO4an0fZidnHHwgAAIBRZ7Z7jswmkzZXbeom8VejDDudHQAAAIB4ENU9/oDRzBf0yUHFH2LQXSffrezEHH3zrW/oe2vvVWNrw5DMS6tPAACA2JVkS9LUtOnaUrWpy2u1fJ8HAAAAxA0Sf0A3DMOQP+STw8IeF4g9Ba4JenDpI7rrpG/rw/L39Yedvx2SeWt8tPoEAACIZXOz5mlz1SYZhtHpeK2vRhlOvs8DAAAA4gGJP6AbgXBAYcOQw9r3fSGB0cRkMmnZxM/ojPxP6e3St7p8uNNfLYEWeYNeZfKBEAAAQMyamzVf1d5qlTeXdTru8dUokwe8AAAAgLhA4g/ohj/kkyT2+EPMW5K/VKVNJTrUcHBQ89T6aiRJ6ez9AgAAELPmuItlkvRR9ebIsWA4qAZ/Ha0+AQAAgDhB4g/ohjfYlvhjjz/EugXZC+W0OvV26b8HNU+NzyNJtIACAACIYa6EFE1Om6KPPrbPX52/ToZE4g8AAACIEyT+gG74gl5JkoOKP8S4BEuCTs49ddCJP0974o8WUAAAALGt2D2/U+Kvo7NDBp0dAAAAgLhA4g/ohj/klyQ5rM4oRwIM3pLxZ2hf3d4ue7n0R62vRjazTUm25CGMDAAAACNtbtY8lTeXq7KlUpJU05H4o7MDAAAAEBdI/AHdiFT80eoTcWDRuJNlM9sGVfVX4/Mo05kpk8k0hJEBAABgpBW750qSPqraKKnt+zyTpDR7WvSCAgAAADBkSPwB3Yjs8Weh4g+xL9GWqIXjFuntkoEn/jxejzJo8wkAABDz0hzpmphSqI+qNktq6+yQYk+T1WyNcmQAAAAAhgKJP6Ab/lB74s9qj3IkwNBYMv4MbfdslcfrGdD5NT4SfwAAAPFibta8SOLP4/Mow5Ee5YgAAAAADBUSf0A3OhJ/dgutPhEfFmSfKEPS7tqdAzq/1lejdEfG0AYFAACAqCh2z1NpU4k8Xo9qfTU84AUAAADEERJ/QDe8QZ/MJpNsZlu0QwGGRKYzU2aTSdXe6gGd7/HVKJMPhAAAAOLCvOz5kqSPqjapxuvhAS8AAAAgjpD4A7rxQfl7ykkcJ5PJFO1QgCFhNpmV4chUtbeq3+cGw0HV++uU4STxBwAAEA8yHJkan5yvLdWbVeOvUQaJPwAAACBukPgDPmF9xQdae/QdXTfnxmiHAgwptzNLngFU/NX6aiWJJ8EBAADiSMc+f7T6BAAAAOILiT/gY4LhoH626TEVu+fqUwVnRTscYEi5nVkDqvir8XkkiVafAAAAcWRu1jwdajgoX9BH4g8AAACIIyT+gI/5094/qqTxsG454T9p84m4k+l0D2iPv47EHx8IAQAAxI+5WSdEfk+rTwAAACB+kPgD2tX76/Ts9qd1/qTlmpI2LdrhAEPO7XQPqNVnja9GZpNJ6Y70YYgKAAAA0ZCdmK1xSeMk0dIdAAAAiCck/oB2H5S/p+ZAs66ZfV20QwGGhdvpVlOgSb6gr1/n1fg8SklIldnEPxkAAADxZG7WfElShpPODgAAAEC84FNcoN2e2j3KTc7jaVfErSxntiT1e5+/Gq9HmXwYBAAAEHfOyD9TU9KmKMmaFO1QAAAAAAwREn9Auz21uzQ9bUa0wwCGTabTLUmd2n16vB6tK1vb63k1vhr29wMAAIhDJ+eeov/99JPsbw4AAADEERJ/gKSwEdbeuj2ams7efohfbmeWJKnKWxk59srel/SDdd/t9bwan4fEHwAAAAAAAADEABJ/gKTSphJ5g15NT6fiD/HLYXUo2Zas6o9V/B1sOCBf0KeWQEu354TCIXm81ez7AgAAAAAAAAAxwBrtAIDRYE/tLknStPTpUY4EGF6ZTnfnxF/9fklSra9GibbEyPE3D6zWGwf+rL11e9QaatW4xNwRjxUAAAAAAAAA0D8k/gBJu2t3aVzSOLkSUqIdCjCs3E53ZI8/b9Cr8uZySVKNv0bjXfmRcb/f+ZwcVruum3ODpqfP0Bz33KjECwAAAAAAAADoOxJ/gKQ9tbs1NY1qP8Q/tzNLhxoOSpIONxyKHK/11UR+bxiGqr1VunbO9bps+pUjHSIAAAAAAAAAYIDY4w9jXtgIa2/dHvb3w5jQ1uqzSpJ0oL3Np8Vk7pT4aw42yx/yK9PhjkqMAAAAAAAAAICBoeIPY97RplK1BFrY3w9jQpYzWzU+j8JGWIcaDig3KVchIySPzxMZU93Slhh0O0n8AQAAAAAAAEAsoeIPY96e2t2SROIPY4Lb6VbYMFTrq9XBhgOamDpJ6Y6MThV/Ne1JwEwSfwAAAAAAAAAQU0j8YczbU7tL2YnZSrWnRTsUYNi5nVmSpGpvlQ7WH1BhStfEX0crUBJ/AAAAAAAAABBbSPxhzNtTt0fT2N8PY0SmM1OSdKjhgKq91SpMKVSmI1M1H0v8ebweuRJcslvs0QoTAAAAAAAAADAAJP4wptX6arS3dremk/jDGJFqT5PVbNH6ig8kSYXdtPqs9lUr00G1HwAAAAAAAADEGmu0AwCi4fGNj+rt0jWq9lZLkua4i6McETAyzCazMh1ura9YL7PJpALXRGU4tqnWV6OwEZbZZJbHWy13Iok/AAAAAAAAAIg1JP4w5tT5avXK3pd01oRlOm38GZqRXqScpHHRDgsYMZlOt7Z7tinfVaAES4LSHRkKGWE1tjYo1Z4mj7daE1MKox0mAAAAAAAAAKCfSPxhzNnm2SpJur74K8pOzI5yNMDIczuzJEmFKZMkSen2DElSja9GqfY0VXurtCDnxKjFBwAAAAAAAAAYGPb4w5izpXqzshOzSfphzIok/lLbEn+ZzkxJirT7rPF55HbS6hMAAAAAAAAAYg2JP4w5W6u3sKcfxrSOpF5HO880e7okqcbnUZ2/VmHDiCQHAQAAAAAAAACxg8Qf4kJVS5W+9dY31BJo6XWcN+jV3trdmuOeN0KRAaPPJ1t9OqwOJdoSVeOrkcfrkSRlODKjFh8AAAAAAAAAYGBI/CEu7Kvbow/K39feut29jtvp2a6QEabiD2PaSbmn6Ob5t0Yq/qS2ff5qfTWq9lZJEhV/AAAAAAAAABCDSPwhLniDXknSgfr9vY7b6tkiV4KrU8IDGGuSbEm6ZNrlMplMkWOZzkzVtlf8mU0mpTvSoxghAAAAAAAAAGAgSPwhLnQk/g41HOx13NbqjzQ7c47MJpY+8HHp9gzVtFf8ZTgy+TMCAAAAAAAAADGIT3YRF7zBtr39DtYf6HFMKBzSDs92zabNJ9BFuqMt8efxVbO/HwAAAAAAAADEKBJ/iAu+oE+SdLDhgAzD6HbMvrq98ga9muOeO5KhATEhw5HR3uqzmv39AAAAAAAAACBGkfhDXOio+GtsbVSNr6bbMVs9H8lmtml6+oyRDA2ICemODDW0Nqi8uVyZTne0wwEAAAAAAAAADACJP8QFb8gnp9UpSTrYsL/bMVurt6goY6YSLAkjGRoQEzrae5Y2HZGbxB8AAAAAAAAAxCQSf4gL3kCLClMnyWa29bjP3966PZqeQbUf0J0MR4YkKWwYVPwBAAAAAAAAQIwi8Ye44A16lWRL0sSUQh1s6Jr4aw21qqK5TBNchSMfHBAD0tsTf5Ko+AMAAAAAAACAGGWNdgDAUPCFvHJYnCpMTe+24q+k8bDChqEJKROjEB0w+qXZ02SSZEjKdJD4AwAAAAAAAIBYRMUf4oI34JXT6lRhyiQdajgowzA6vX648bAkaSKJP6BbFrNFqfY0SVT8AQAAAAAAAECsIvGHuOALeeW0JaowdbK8Qa8qWyo6vX644ZDS7GlyJaREKUJg9MtwZCjBkqAkW3K0QwEAAAAAAAAADACJP8SFlkCLnBaHClMKJUkHGw52ev1I42HafALHke7IkNuZJZPJFO1QAAAAAAAAAAADQOIPccEb9MppTVR2Yo6cVqcO1u/v9PrhhoMqcE2IUnRAbJiYMkmTUidHOwwAAAAAAAAAwABZox0AMBS8Qa8cVodMJpMKUyfpQMOxxF/YCOtI4xGdM+n8KEYIjH43zftql/0xAQAAAAAAAACxg4o/xLywEZY/5FeiLUmSNDGlUIfqD0Zer2guVyAc0AQXrT6B3phNZlnMlmiHAQAAAAAAAAAYIBJ/iHm+oE+S5LA4JElTUqfqYMMBtQRaJEmHGg9Jkia07/8HAAAAAAAAAAAQj0j8IeZ5g15JktOWKEk6JW+xguGg1pW9I6ltfz+n1aksZ1bUYgQAAAAAAAAAABhuJP4Q87zBtsq+RKtTkjQuKVczM2fpn0f+IUk63HBIBa4JMplMUYsRAAAAAAAAAABguJH4Q8w71urTGTn2qYKz9GH5e2psbdCRxsMqSJkQrfAAAAAAAAAAAABGBIk/xLyOij+n7Vji74z8MxUKh/RO6ds63HBIE1wToxUeAAAAAAAAAADAiCDxh5jn7abiz+10qzhrnl7Z+6KaAk2akELiDwAAAAAAAAAAxLdRk/h77rnndNZZZ6m4uFiXX365Pvroo17Hv/HGGzr33HNVXFys5cuXa82aNZ1eNwxDjzzyiJYsWaK5c+fq2muv1cGDB7udq7W1VRdddJFmzJihHTt2RI7v379fK1as0OLFi1VcXKxly5Zp5cqVCgQCkTErVqzQjBkzuvz68pe/PPCbgX7pruJPkj5VsEz76vZJEhV/AAAAAAAAAAAg7o2KxN/q1at1//3365ZbbtHLL7+soqIiXX/99fJ4PN2O37Bhg+644w5ddtlleuWVV7Rs2TLdcsst2r17d2TMr371Kz377LP67ne/q+eff15Op1PXX3+9/H5/l/keeOABZWdndzlus9l08cUX68knn9Sbb76pb33rW3rhhRf02GOPRcY89thjevvttyO//vznP8tisejcc88dgjuDvvAGvZIkp6Vz4u/08WfIbDLJYjIrL3l8NEIDAAAAAAAAAAAYMaMi8ffUU0/piiuu0KWXXqqpU6fqvvvuk8Ph0EsvvdTt+GeeeUann366brjhBk2ZMkW33367Zs2apd/85jeS2qr9nnnmGd188806++yzVVRUpAceeECVlZX629/+1mmuNWvW6J133tGdd97Z5ToFBQW69NJLVVRUpPHjx2vZsmVavny5Pvzww8iYtLQ0ZWVlRX698847cjgcJP5GkC/olc1sk8Vs6XQ8zZGuE7IXKt81QVazNUrRAQAAAAAAAAAAjIyoJ/5aW1u1bds2LV68OHLMbDZr8eLF2rhxY7fnbNq0SaeeemqnY0uWLNGmTZskSSUlJaqqquo0p8vl0rx58zrNWV1drXvuuUcPPPCAHA7HcWM9dOiQ3nrrLS1atKjHMS+99JI++9nPKjEx8bjzYWh4g145bd3f79sW3KFvLPrmCEcEAAAAAAAAAAAw8qJeBlVbW6tQKKTMzMxOxzMzM7V///5uz6murpbb7e4yvrq6WpJUVVUVOdbTGMMwdNddd+mqq65ScXGxSkpKeozxqquu0rZt29Ta2qorr7xSt912W7fjPvroI+3evVs/+MEPennHXZnNJpnNpn6dg2NaDZ+SbImyWrvmsQvS8qMQUeyxWMyd/guMRqxTxALWKWIB6xSxgHWKWMA6RSxgnSIWsE4RC1iniCVRT/xFy7PPPqvm5mbddNNNxx27cuVKNTc3a+fOnXrggQf0xBNP6MYbb+wy7sUXX9T06dM1d+7cfsWSkZEkk4nE34DZQkpJTFZ6elK0I4l5KSnO4w8Coox1iljAOkUsYJ0iFrBOEQtYp4gFrFPEAtYpYgHrFLEg6om/9PR0WSwWeTyeTsc9Hk+Xqr4Obrc7UrnX3fisrKzIsezs7E5jioqKJEnr1q3Tpk2bVFxc3GmeSy+9VMuXL9ePfvSjyLHc3FxJ0tSpUxUKhXTvvffqS1/6kiyWY3vKtbS06PXXX9d//ud/9uv9S1JNTTMVf4PgaaiTJZyg2trmaIcSsywWs1JSnGpo8CoUCkc7HKBbrFPEAtYpYgHrFLGAdYpYwDpFLGCdIhawThELWKcYDfpa/BT1xF9CQoJmz56ttWvX6uyzz5YkhcNhrV27VldffXW358yfP1/r1q3TtddeGzn27rvvav78+ZKk/Px8ZWVlae3atZo5c6YkqampSZs3b9bnP/95SdLdd9+t22+/PXJ+ZWWlrr/+eq1cuVLz5s3rMV7DMBQMBhUOhzsl/t588021trbqwgsv7Pc9CIcNhcNGv89Dm+bWFtnNdgWD/IU7WKFQmPuIUY91iljAOkUsYJ0iFrBOEQtYp4gFrFPEAtYpYgHrFLEg6ok/Sbruuut05513as6cOZo7d65+/etfy+v16pJLLpEk/dd//ZdycnJ0xx13SJKuueYarVixQk8++aSWLl2q1atXa+vWrfre974nSTKZTLrmmmv085//XBMnTlR+fr4eeeQRZWdnR5KLeXl5nWJITEyUJE2YMEHjxo2TJL366quyWq2aMWOGEhIStGXLFj300EM677zzZLPZOp3/4osv6uyzz1Z6evrw3Sh0yxtskdOaGO0wAAAAAAAAAAAAompUJP7OP/981dTU6NFHH1VVVZVmzpypVatWRVp3lpWVyWw+tmnmggUL9OCDD+rhhx/WT37yExUWFurxxx/X9OnTI2NuvPFGeb1e3XvvvWpoaNDChQu1atUq2e32PsdltVq1atUqHThwQFJbsvDqq6/uVGkoSfv379f69ev15JNPDuIuYKB8QZ9SklKjHQYAAAAAAAAAAEBUmQzDoMdklFVVNUY7hJj2lb9er5kZs3TbwjuiHUrMslrNSk9PUm1tM6XqGLVYp4gFrFPEAtYpYgHrFLGAdYpYwDpFLGCdIhawTjEaZGW5+jTOfPwhwOjmC/rktDqjHQYAAAAAAAAAAEBUkfhDzPMGW+Qg8QcAAAAAAAAAAMY4En+Ied6gV4m2xGiHAQAAAAAAAAAAEFUk/hDTDMOQL+iVw0LFHwAAAAAAAAAAGNtI/CGm+UN+GZISbST+AAAAAAAAAADA2EbiDzHNG2yRJDmttPoEAAAAAAAAAABjG4k/xDRf0CdJclgcUY4EAAAAAAAAAAAgukj8IaZFKv5sVPwBAAAAAAAAAICxjcQfYpqXij8AAAAAAAAAAABJJP4Q46j4AwAAAAAAAAAAaEPiDzHNG/RKkhKtzihHAgAAAAAAAAAAEF0k/hDTOir+HBYSfwAAAAAAAAAAYGwj8YeY5g16ZTVbZLPYoh0KAAAAAAAAAABAVJH4Q0zzBr1yWtnfDwAAAAAAAAAAgMQfYpo36JXD4oh2GAAAAAAAAAAAAFFH4g8xzRf0yWmj4g8AAAAAAAAAAIDEH2KaN9hCxR8AAAAAAAAAAIBI/CHGsccfAAAAAAAAAABAGxJ/iGm+oFdOmzPaYQAAAAAAAAAAAEQdiT/EtJagV04LiT8AAAAAAAAAAAASf4hpvqBXTiuJPwAAAAAAAAAAABJ/iGneoFcOEn8AAAAAAAAAAAAk/hDbvMEWKv4AAAAAAAAAAABE4g8xzhf0kfgDAAAAAAAAAAAQiT/EoL8efFMfVW2SYRjyBluUaEuMdkgAAAAAAAAAAABRZ412AEB/vVe2TmtK/qkLp35OISNMxR8AAAAAAAAAAIBI/CEGfeuUezVzzyw9seWXkiQHiT8AAAAAAAAAAAASf4g9ZpNZl06/QieOO0kv7v6DZmfOiXZIAAAAAAAAAAAAUUfiDzFrYkqh7jjxzmiHAQAAAAAAAAAAMCqYox0AAAAAAAAAAAAAgMEj8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEARJ/AAAAAAAAAAAAQBwg8QcAAAAAAAAAAADEAZNhGEa0gwAAAAAAAAAAAAAwOFT8AQAAAAAAAAAAAHGAxB8AAAAAAAAAAAAQB0j8AQAAAAAAAAAAAHGAxB8AAAAAAAAAAAAQB0j8AQAAAAAAAAAAAHGAxB8AAAAAAAAAAAAQB0j8AQAAAAAAAAAAAHGAxB8AAAAAAAAAAAAQB0j8AQAAAAAAAAAAAHGAxB8wCj333HM666yzVFxcrMsvv1wfffRRlzEbN27UNddco/nz52vBggX64he/KJ/P1+u8R48e1Ze//GXNmzdPp556qn70ox8pGAxGXv/LX/6i6667TqeccooWLFigK6+8Um+99Vavc/r9ft11111avny5Zs2apa9+9au9jl+/fr1mzZqliy66qNdxGP3ibZ2+9957mjFjRpdfVVVVfbwjGI3ibZ1KUmtrq1auXKkzzzxTc+bM0VlnnaUXX3yxD3cDo1W8rdO77rqr279PP/vZz/bxjmA0ird1KkmvvvqqLrzwQs2bN09LlizRN7/5TdXW1vbhbmC0isd1+txzz+m8887T3Llzdc455+iVV145/o3AqBZL6/S9997TzTffrCVLlmj+/Pm66KKL9Oqrr3YZ98Ybb+jcc89VcXGxli9frjVr1vTxbmC0ird1umfPHn3ta1/TWWedpRkzZujpp5/u+83AqBVv6/T555/XF77wBS1atEiLFi3Stdde2+17AvqCxB8wyqxevVr333+/brnlFr388ssqKirS9ddfL4/HExmzceNG3XDDDVqyZIleeOEFvfjii/riF78os7nnP9KhUEg33XSTAoGAfv/73+uHP/yhXn75ZT366KORMR988IEWL16sX/7yl/rjH/+ok08+WTfffLO2b9/e67x2u10rVqzQqaee2ut7a2ho0J133nnccRj94nmdvvnmm3r77bcjvzIzM/txZzCaxOs6ve2227R27Vr94Ac/0JtvvqmHHnpIkyZN6ufdwWgRj+v029/+dqe/R9esWaO0tDSde+65A7hDGA3icZ2uX79ed955py677DL9+c9/1sMPP6wtW7bonnvuGcAdwmgQj+v0t7/9rR566CF97Wtf0+uvv67//M//1H333ad//OMfA7hDGA1ibZ1u3LhRM2bM0KOPPqpXX31Vl1xyie68807985//jIzZsGGD7rjjDl122WV65ZVXtGzZMt1yyy3avXv3IO8WoiUe16nX61V+fr7uuOMOZWVlDfIOYTSIx3X63nvv6bOf/ayeeeYZ/f73v1dubq6+9KUvqaKiYpB3C2OSAWBUueyyy4z77rsv8nUoFDKWLFli/OIXv4gcu/zyy42VK1f2a95//etfRlFRkVFVVRU59tvf/tZYsGCB4ff7ezzv/PPPNx577LE+XePOO+80br755h5fv/32242VK1cajz76qHHhhRf2PXiMOvG4TtetW2dMnz7dqK+v71fMGL3icZ2uWbPGWLhwoVFbW9uvmDF6xeM6/aS//vWvxowZM4ySkpI+zYvRJx7X6apVq4xly5Z1OvbMM88Yp59+eh+jx2gTj+v0yiuvNH74wx92Onb//fcbV111VR+jx2gTy+u0w4033mjcddddka9vu+0248tf/nKnMZdffrlxzz339GtejB7xuE4/7swzzzSeeuqpfs2H0Sfe16lhGEYwGDROOOEE4+WXX+7XvIBhGAYVf8Ao0traqm3btmnx4sWRY2azWYsXL9bGjRslSR6PR5s3b1ZmZqauuuoqLV68WFdffbU+/PDDXufetGmTpk+fLrfbHTm2ZMkSNTU1ae/evd2eEw6H1dzcrLS0tEG/t5deeklHjhzRrbfeOui5EF3xvE4l6eKLL9aSJUt03XXXaf369UMyJ0ZevK7Tf/zjH5ozZ45WrVql008/Xeecc45+9KMfHbdVCUaneF2nn/Tiiy9q8eLFGj9+/JDOi5ERr+t0/vz5Ki8v15o1a2QYhqqrq/V///d/Wrp06aDmRXTE6zptbW2V3W7vdMxut2vLli0KBAKDmhsjL17WaWNjY6dzNm3a1KVqdcmSJdq0aVO/5sXoEK/rFPFlrKxTr9erYDCo1NTUfs0LSLT6BEaV2tpahUKhLq0FMzMzVV1dLUk6cuSIJOmnP/2pLr/8cq1atUqzZs3Stddeq4MHD/Y4d3V1dad/tCRFvu5pD7MnnnhCLS0tOu+88wb6liRJBw8e1EMPPaQf//jHslqtg5oL0Rev6zQrK0v33XefHn30UT366KMaN26crrnmGm3btm1Q8yI64nWdHjlyROvXr9eePXv0+OOP61vf+pb+7//+T/fdd9+g5kV0xOs6/biKigr9+9//1mWXXTZkc2Jkxes6XbhwoX784x/r9ttv15w5c3TaaacpOTlZ995776DmRXTE6zpdsmSJXnzxRW3dulWGYWjLli168cUXFQgE2I8yBsXDOl29erW2bNmiSy65pNdrf/w9IbbE6zpFfBkr6/TBBx9UdnZ2pwQn0Fd8Ag/EmHA4LEm68sordemll0qSZs2apbVr1+qll17SHXfcoRtuuCFSqZSXl6fXX3+939d57bXX9Pjjj+tnP/vZoPY4C4VCuuOOO/S1r32NPajGkFhbp5I0efJkTZ48OfL1ggULdOTIET399NP68Y9/PKi5MTrF4jo1DEMmk0kPPvigXC6XJOmuu+7Sf/7nf+o73/mOHA7HoObH6BOL6/TjXnnlFblcLp199tlDNidGn1hcp3v37tUPfvAD3XLLLVqyZImqqqr0wAMP6Dvf+Y7+53/+Z1BzY3SKxXX61a9+VVVVVbryyitlGIYyMzN18cUXa9WqVb3uT4TYNZrX6bp16/Stb31L3//+9zVt2rR+XxPxg3WKWBDr6/SXv/ylVq9erWeeeaZL9T/QFyT+gFEkPT1dFoul00a0Ult5esfTJR2bEE+ZMqXTmClTpujo0aOSpB/84AeRtm8dFXZut1sfffRRp3M6noL55MbGr7/+uu6++2498sgjg36qpLm5WVu3btWOHTv03//935La/vE1DEOzZs3SE0880eNm9hid4nGd9qS4uFgbNmwYlrkxvOJ1nWZlZSknJyeS9OuI1zAMlZeXq7CwcNDXwMiJ13XawTAMvfTSS7rooouUkJAwZPNiZMXrOv3FL36hBQsW6IYbbpAkFRUVyel06otf/KJuv/12ZWdnD/oaGDnxuk4dDofuv/9+fe9735PH41FWVpb+8Ic/KCkpSRkZGYOeHyMrltfp+++/r5tvvlnf/OY3dfHFF3d6ze12d6nu+/h7QmyJ13WK+BLv6/SJJ57QL3/5Sz311FMqKirq07zAJ/GIGDCKJCQkaPbs2Vq7dm3kWDgc1tq1a3XCCSdIkvLz85Wdna0DBw50OvfgwYORvXNycnI0ceJETZw4MXJs/vz52r17d6d/FN99910lJydr6tSpkWN//vOf9c1vflMPPfSQPvWpTw36PSUnJ+u1117TK6+8Evl11VVXadKkSXrllVc0b968QV8DIyse12lPdu7c2eUbO8SGeF2nCxYsUGVlpZqbmyPHDhw4ILPZrHHjxg3JNTBy4nWddnj//fd16NAh2nzGuHhdpz6fr0vFlMVikdSWtEZsidd12sFms2ncuHGyWCxavXq1zjzzTCr+YlCsrtP33ntPN910k77+9a/ryiuv7PL6/PnztW7duk7H3n33Xc2fP79P82N0idd1ivgSz+v0V7/6lX72s59p1apVKi4u7tO8QLcMAKPK66+/bsyZM8f44x//aOzdu9e45557jBNPPNGoqqqKjHnqqaeMBQsWGG+88YZx8OBBY+XKlUZxcbFx6NChHucNBoPGBRdcYHzpS18yduzYYfz73/82TjnlFOOhhx6KjHn11VeNWbNmGb/5zW+MysrKyK+GhoZeY96zZ4+xfft246abbjKuvvpqY/v27cb27dt7HP/oo48aF154YT/uCkabeFynTz31lPHXv/7VOHjwoLFr1y7j+9//vlFUVGS8++67g7hTiKZ4XKdNTU3GGWecYXzta18z9uzZY7z//vvGZz7zGePb3/72IO4Uoike12mHr3/968bll18+gLuC0SYe1+lLL71kzJo1y3juueeMw4cPGx9++KFxySWXGJdddtkg7hSiKR7X6f79+41XXnnFOHDggLF582bj9ttvN0466STjyJEjg7hTiKZYW6dr16415s2bZzz00EOdzqmtrY2MWb9+vTFr1izjiSeeMPbu3Ws8+uijxuzZs41du3YN7mYhauJxnfr9/sjfsaeddprxwx/+0Ni+fbtx8ODBwd0sRE08rtNf/OIXxuzZs40333yz05impqbB3SyMSSbD4HFGYLT5zW9+oyeeeEJVVVWaOXOm7r777i6Vcb/85S/13HPPqb6+XkVFRfr617+uE088sdd5S0tL9d3vflfvv/++nE6nPve5z+mOO+6IlLOvWLFC77//fpfzPve5z+mHP/xhj/OeddZZKi0t7XJ8165d3Y5/7LHH9Le//U1/+tOfeo0Xo1u8rdNf/epXev7551VRUSGn06np06frlltu0SmnnHLce4HRK97WqSTt27dP3//+97VhwwalpaXpvPPO0+23387+fjEsHtdpY2OjlixZom9/+9u64ooreo0TsSEe1+mzzz6r3//+9yopKZHL5dIpp5yib3zjG8rJyek1Zoxe8bZO9+3bpzvuuEMHDhyQ1WrVySefrK9//eud9qVG7ImldXrXXXfp5Zdf7nL8pJNO0rPPPhv5+o033tDDDz+s0tJSFRYW6hvf+IaWLl163HuB0Sve1mlJSYmWLVvW6xjEnnhbpz19X3Drrbfqa1/7Wq8xA59E4g8AAAAAAAAAAACIAzSFBwAAAAAAAAAAAOIAiT8AAAAAAAAAAAAgDpD4AwAAAAAAAAAAAOIAiT8AAAAAAAAAAAAgDpD4AwAAAAAAAAAAAOIAiT8AAAAAAAAAAAAgDpD4AwAAAAAAAAAAAOIAiT8AAAAAAAAAAAAgDlijHQAAAAAAID7MmDHjuGPuv/9+vfzyy0pMTNQvfvGLEYgKAAAAAMYOk2EYRrSDAAAAAADEvk2bNnX6+sorr9SKFSt0wQUXRI5NmDBBNTU1MpvNmjx58ghHCAAAAADxjYo/AAAAAMCQmD9/fpdjubm5XY5nZGSMTEAAAAAAMMawxx8AAAAAYEStWLFCN910U+Trxx57TCeccIK2b9+uK6+8UnPnztXnPvc5bd++XX6/X9/5zne0aNEinXHGGXr66ae7zLdx40Zdc801mj9/vhYuXKg77rhDHo9nBN8RAAAAAIwOJP4AAAAAAFEXCAR055136oorrtBjjz2mYDCoW2+9Vd/+9rflcDj08MMP6+yzz9b999+vDRs2RM7buHGjVqxYIZfLpZUrV+q///u/tWXLFn31q1+N4rsBAAAAgOig1ScAAAAAIOoCgYC+/vWva+nSpZKkcDisr3zlK5o3b56++c1vSpJOOeUUvfnmm3rzzTe1YMECSdJDDz2kOXPm6Kc//alMJpMkafr06brgggu0Zs2ayHwAAAAAMBZQ8QcAAAAAiDqz2axTTz018nVhYaEkafHixZFjFotFEyZMUHl5uSTJ6/Vqw4YNOvfccxUKhRQMBhUMBlVYWKjc3Fxt2bJlRN8DAAAAAEQbFX8AAAAAgKhzOBxKSEiIfG2z2SRJLper0zibzSa/3y9JamhoUCgU0v3336/777+/y5xlZWXDGDEAAAAAjD4k/gAAAAAAMcnlcslkMummm27S2Wef3eX19PT0KEQFAAAA4P9vz45pJISiAIq+2ZJiajoUkBCawQMdBrBARYIOPCAFGdR4oGBFTDI//Jyj4PaXdIw/AAAAHqkoimiaJo7jiLquU+cAAAAkZ/wBAADwWPM8xziOMU1T9H0f7/c7zvOMfd9jGIb4fD6pEwEAAH7G+AMAAOCx2raNbdtiXddYliWu64qyLKPruqiqKnUeAADAT73u+75TRwAAAAAAAADf+UsdAAAAAAAAAHzP+AMAAAAAAIAMGH8AAAAAAACQAeMPAAAAAAAAMmD8AQAAAAAAQAaMPwAAAAAAAMiA8QcAAAAAAAAZMP4AAAAAAAAgA8YfAAAAAAAAZMD4AwAAAAAAgAwYfwAAAAAAAJAB4w8AAAAAAAAy8A+B+K1I/odIqAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Price Statistics:\n", + " ADA-USDT: Mean=$0.68, Std=$0.01\n", + " SOL-USDT: Mean=$153.54, Std=$1.05\n", + " Price Ratio: Mean=0.00, Std=0.00\n", + " Correlation: 0.9240\n", + "Running RollingFit analysis...\n", + "\n", + "=== SLIDING FIT ANALYSIS ===\n", + "Processing first 200 iterations for demonstration...\n", + "***ADA-USDT & SOL-USDT*** STARTING....\n", + "OPEN_TRADES: 2025-06-02 15:31:00 open_scaled_disequilibrium=2.892080636255072\n", + "OPEN TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 15:31:00 ADA-USDT BUY OPEN 0.6736 -2.892081 2.892081 -2.892081 ADA-USDT & SOL-USDT OPEN\n", + "1 2025-06-02 15:31:00 SOL-USDT SELL OPEN 153.2400 -2.892081 2.892081 -2.892081 ADA-USDT & SOL-USDT OPEN\n", + "CLOSE TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 15:41:00 ADA-USDT SELL CLOSE 0.6734 0.014633 0.014633 0.014633 ADA-USDT & SOL-USDT CLOSE\n", + "1 2025-06-02 15:41:00 SOL-USDT BUY CLOSE 153.1000 0.014633 0.014633 0.014633 ADA-USDT & SOL-USDT CLOSE\n", + "OPEN_TRADES: 2025-06-02 16:44:00 open_scaled_disequilibrium=2.364778510607668\n", + "OPEN TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 16:44:00 ADA-USDT BUY OPEN 0.6712 -2.364779 2.364779 -2.364779 ADA-USDT & SOL-USDT OPEN\n", + "1 2025-06-02 16:44:00 SOL-USDT SELL OPEN 152.5100 -2.364779 2.364779 -2.364779 ADA-USDT & SOL-USDT OPEN\n", + "CLOSE TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 17:01:00 ADA-USDT SELL CLOSE 0.6744 -0.45725 0.45725 -0.45725 ADA-USDT & SOL-USDT CLOSE\n", + "1 2025-06-02 17:01:00 SOL-USDT BUY CLOSE 153.0700 -0.45725 0.45725 -0.45725 ADA-USDT & SOL-USDT CLOSE\n", + "OPEN_TRADES: 2025-06-02 17:06:00 open_scaled_disequilibrium=2.191024540541887\n", + "OPEN TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 17:06:00 ADA-USDT BUY OPEN 0.674 -2.191025 2.191025 -2.191025 ADA-USDT & SOL-USDT OPEN\n", + "1 2025-06-02 17:06:00 SOL-USDT SELL OPEN 153.030 -2.191025 2.191025 -2.191025 ADA-USDT & SOL-USDT OPEN\n", + "CLOSE TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 17:17:00 ADA-USDT SELL CLOSE 0.6743 -0.152501 0.152501 -0.152501 ADA-USDT & SOL-USDT CLOSE\n", + "1 2025-06-02 17:17:00 SOL-USDT BUY CLOSE 153.0900 -0.152501 0.152501 -0.152501 ADA-USDT & SOL-USDT CLOSE\n", + "OPEN_TRADES: 2025-06-02 17:24:00 open_scaled_disequilibrium=2.748538160528875\n", + "OPEN TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 17:24:00 ADA-USDT BUY OPEN 0.6759 -2.748538 2.748538 -2.748538 ADA-USDT & SOL-USDT OPEN\n", + "1 2025-06-02 17:24:00 SOL-USDT SELL OPEN 153.7000 -2.748538 2.748538 -2.748538 ADA-USDT & SOL-USDT OPEN\n", + "CLOSE TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 17:35:00 ADA-USDT SELL CLOSE 0.6715 -0.413061 0.413061 -0.413061 ADA-USDT & SOL-USDT CLOSE\n", + "1 2025-06-02 17:35:00 SOL-USDT BUY CLOSE 152.9900 -0.413061 0.413061 -0.413061 ADA-USDT & SOL-USDT CLOSE\n", + "OPEN_TRADES: 2025-06-02 18:02:00 open_scaled_disequilibrium=2.0472288892294728\n", + "OPEN TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 18:02:00 ADA-USDT SELL OPEN 0.6743 2.047229 2.047229 2.047229 ADA-USDT & SOL-USDT OPEN\n", + "1 2025-06-02 18:02:00 SOL-USDT BUY OPEN 153.6400 2.047229 2.047229 2.047229 ADA-USDT & SOL-USDT OPEN\n", + "CLOSE TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 18:06:00 ADA-USDT BUY CLOSE 0.6747 -0.089168 0.089168 -0.089168 ADA-USDT & SOL-USDT CLOSE\n", + "1 2025-06-02 18:06:00 SOL-USDT SELL CLOSE 153.8400 -0.089168 0.089168 -0.089168 ADA-USDT & SOL-USDT CLOSE\n", + "OPEN_TRADES: 2025-06-02 19:35:00 open_scaled_disequilibrium=2.016877535891162\n", + "OPEN TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 19:35:00 ADA-USDT BUY OPEN 0.6721 -2.016878 2.016878 -2.016878 ADA-USDT & SOL-USDT OPEN\n", + "1 2025-06-02 19:35:00 SOL-USDT SELL OPEN 152.1300 -2.016878 2.016878 -2.016878 ADA-USDT & SOL-USDT OPEN\n", + "ADA-USDT & SOL-USDT: *** Position is NOT CLOSED. ***\n", + "CLOSE_POSITION TRADES:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 22:29:00 ADA-USDT SELL CLOSE 0.6908 0.0 0.0 0.0 ADA-USDT & SOL-USDT CLOSE_POSITION\n", + "1 2025-06-02 22:29:00 SOL-USDT BUY CLOSE 156.7000 0.0 0.0 0.0 ADA-USDT & SOL-USDT CLOSE_POSITION\n", + "***ADA-USDT & SOL-USDT*** FINISHED *** Num Trades:24\n", + "Generated 24 trading signals\n", + "\n", + "Strategy execution completed!\n", + "\n", + "================================================================================\n", + "BACKTEST RESULTS\n", + "================================================================================\n" + ] + }, + { + "data": { + "text/html": [ + " \n", + " \n", + " " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "=== SLIDING FIT INTERACTIVE VISUALIZATION ===\n", + "Note: Rolling Fit strategy visualization with interactive plotly charts\n", + "Using consistent timeline with 540 timestamps\n", + "Timeline range: 2025-06-02 13:30:00 to 2025-06-02 22:30:00\n", + "\n", + "Symbol_A trades:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "0 2025-06-02 15:31:00 ADA-USDT BUY OPEN 0.6736 -2.892081 2.892081 -2.892081 ADA-USDT & SOL-USDT OPEN\n", + "2 2025-06-02 15:41:00 ADA-USDT SELL CLOSE 0.6734 0.014633 0.014633 0.014633 ADA-USDT & SOL-USDT CLOSE\n", + "4 2025-06-02 16:44:00 ADA-USDT BUY OPEN 0.6712 -2.364779 2.364779 -2.364779 ADA-USDT & SOL-USDT OPEN\n", + "6 2025-06-02 17:01:00 ADA-USDT SELL CLOSE 0.6744 -0.457250 0.457250 -0.457250 ADA-USDT & SOL-USDT CLOSE\n", + "8 2025-06-02 17:06:00 ADA-USDT BUY OPEN 0.6740 -2.191025 2.191025 -2.191025 ADA-USDT & SOL-USDT OPEN\n", + "10 2025-06-02 17:17:00 ADA-USDT SELL CLOSE 0.6743 -0.152501 0.152501 -0.152501 ADA-USDT & SOL-USDT CLOSE\n", + "12 2025-06-02 17:24:00 ADA-USDT BUY OPEN 0.6759 -2.748538 2.748538 -2.748538 ADA-USDT & SOL-USDT OPEN\n", + "14 2025-06-02 17:35:00 ADA-USDT SELL CLOSE 0.6715 -0.413061 0.413061 -0.413061 ADA-USDT & SOL-USDT CLOSE\n", + "16 2025-06-02 18:02:00 ADA-USDT SELL OPEN 0.6743 2.047229 2.047229 2.047229 ADA-USDT & SOL-USDT OPEN\n", + "18 2025-06-02 18:06:00 ADA-USDT BUY CLOSE 0.6747 -0.089168 0.089168 -0.089168 ADA-USDT & SOL-USDT CLOSE\n", + "20 2025-06-02 19:35:00 ADA-USDT BUY OPEN 0.6721 -2.016878 2.016878 -2.016878 ADA-USDT & SOL-USDT OPEN\n", + "22 2025-06-02 22:29:00 ADA-USDT SELL CLOSE 0.6908 0.000000 0.000000 0.000000 ADA-USDT & SOL-USDT CLOSE_POSITION\n", + "\n", + "Symbol_B trades:\n", + " time symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "1 2025-06-02 15:31:00 SOL-USDT SELL OPEN 153.24 -2.892081 2.892081 -2.892081 ADA-USDT & SOL-USDT OPEN\n", + "3 2025-06-02 15:41:00 SOL-USDT BUY CLOSE 153.10 0.014633 0.014633 0.014633 ADA-USDT & SOL-USDT CLOSE\n", + "5 2025-06-02 16:44:00 SOL-USDT SELL OPEN 152.51 -2.364779 2.364779 -2.364779 ADA-USDT & SOL-USDT OPEN\n", + "7 2025-06-02 17:01:00 SOL-USDT BUY CLOSE 153.07 -0.457250 0.457250 -0.457250 ADA-USDT & SOL-USDT CLOSE\n", + "9 2025-06-02 17:06:00 SOL-USDT SELL OPEN 153.03 -2.191025 2.191025 -2.191025 ADA-USDT & SOL-USDT OPEN\n", + "11 2025-06-02 17:17:00 SOL-USDT BUY CLOSE 153.09 -0.152501 0.152501 -0.152501 ADA-USDT & SOL-USDT CLOSE\n", + "13 2025-06-02 17:24:00 SOL-USDT SELL OPEN 153.70 -2.748538 2.748538 -2.748538 ADA-USDT & SOL-USDT OPEN\n", + "15 2025-06-02 17:35:00 SOL-USDT BUY CLOSE 152.99 -0.413061 0.413061 -0.413061 ADA-USDT & SOL-USDT CLOSE\n", + "17 2025-06-02 18:02:00 SOL-USDT BUY OPEN 153.64 2.047229 2.047229 2.047229 ADA-USDT & SOL-USDT OPEN\n", + "19 2025-06-02 18:06:00 SOL-USDT SELL CLOSE 153.84 -0.089168 0.089168 -0.089168 ADA-USDT & SOL-USDT CLOSE\n", + "21 2025-06-02 19:35:00 SOL-USDT SELL OPEN 152.13 -2.016878 2.016878 -2.016878 ADA-USDT & SOL-USDT OPEN\n", + "23 2025-06-02 22:29:00 SOL-USDT BUY CLOSE 156.70 0.000000 0.000000 0.000000 ADA-USDT & SOL-USDT CLOSE_POSITION\n" + ] + }, + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "line": { + "color": "green", + "width": 2 + }, + "name": "Absolute Scaled Dis-equilibrium", + "opacity": 0.8, + "type": "scatter", + "x": [ + "2025-06-02T13:30:00.000000000", + "2025-06-02T13:31:00.000000000", + "2025-06-02T13:32:00.000000000", + "2025-06-02T13:33:00.000000000", + "2025-06-02T13:34:00.000000000", + "2025-06-02T13:35:00.000000000", + "2025-06-02T13:36:00.000000000", + "2025-06-02T13:37:00.000000000", + "2025-06-02T13:38:00.000000000", + "2025-06-02T13:39:00.000000000", + "2025-06-02T13:40:00.000000000", + "2025-06-02T13:41:00.000000000", + "2025-06-02T13:42:00.000000000", + "2025-06-02T13:43:00.000000000", + "2025-06-02T13:44:00.000000000", + "2025-06-02T13:45:00.000000000", + "2025-06-02T13:46:00.000000000", + "2025-06-02T13:47:00.000000000", + "2025-06-02T13:48:00.000000000", + "2025-06-02T13:49:00.000000000", + "2025-06-02T13:50:00.000000000", + "2025-06-02T13:51:00.000000000", + "2025-06-02T13:52:00.000000000", + "2025-06-02T13:53:00.000000000", + "2025-06-02T13:54:00.000000000", + "2025-06-02T13:55:00.000000000", + "2025-06-02T13:56:00.000000000", + "2025-06-02T13:57:00.000000000", + "2025-06-02T13:58:00.000000000", + "2025-06-02T13:59:00.000000000", + "2025-06-02T14:00:00.000000000", + "2025-06-02T14:01:00.000000000", + "2025-06-02T14:02:00.000000000", + "2025-06-02T14:03:00.000000000", + "2025-06-02T14:04:00.000000000", + "2025-06-02T14:05:00.000000000", + "2025-06-02T14:06:00.000000000", + "2025-06-02T14:07:00.000000000", + "2025-06-02T14:08:00.000000000", + "2025-06-02T14:09:00.000000000", + "2025-06-02T14:10:00.000000000", + "2025-06-02T14:11:00.000000000", + "2025-06-02T14:12:00.000000000", + "2025-06-02T14:13:00.000000000", + "2025-06-02T14:14:00.000000000", + "2025-06-02T14:15:00.000000000", + "2025-06-02T14:16:00.000000000", + "2025-06-02T14:17:00.000000000", + "2025-06-02T14:18:00.000000000", + "2025-06-02T14:19:00.000000000", + "2025-06-02T14:20:00.000000000", + "2025-06-02T14:21:00.000000000", + "2025-06-02T14:22:00.000000000", + "2025-06-02T14:23:00.000000000", + "2025-06-02T14:24:00.000000000", + "2025-06-02T14:25:00.000000000", + "2025-06-02T14:26:00.000000000", + "2025-06-02T14:27:00.000000000", + "2025-06-02T14:28:00.000000000", + "2025-06-02T14:29:00.000000000", + "2025-06-02T14:30:00.000000000", + "2025-06-02T14:31:00.000000000", + "2025-06-02T14:32:00.000000000", + "2025-06-02T14:33:00.000000000", + "2025-06-02T14:34:00.000000000", + "2025-06-02T14:35:00.000000000", + "2025-06-02T14:36:00.000000000", + "2025-06-02T14:37:00.000000000", + "2025-06-02T14:38:00.000000000", + "2025-06-02T14:39:00.000000000", + "2025-06-02T14:40:00.000000000", + "2025-06-02T14:41:00.000000000", + "2025-06-02T14:42:00.000000000", + "2025-06-02T14:43:00.000000000", + "2025-06-02T14:44:00.000000000", + "2025-06-02T14:45:00.000000000", + "2025-06-02T14:46:00.000000000", + "2025-06-02T14:47:00.000000000", + "2025-06-02T14:48:00.000000000", + "2025-06-02T14:49:00.000000000", + "2025-06-02T14:50:00.000000000", + "2025-06-02T14:51:00.000000000", + "2025-06-02T14:53:00.000000000", + "2025-06-02T14:54:00.000000000", + "2025-06-02T14:55:00.000000000", + "2025-06-02T14:56:00.000000000", + "2025-06-02T14:57:00.000000000", + "2025-06-02T14:58:00.000000000", + "2025-06-02T14:59:00.000000000", + "2025-06-02T15:00:00.000000000", + "2025-06-02T15:01:00.000000000", + "2025-06-02T15:02:00.000000000", + "2025-06-02T15:03:00.000000000", + "2025-06-02T15:04:00.000000000", + "2025-06-02T15:05:00.000000000", + "2025-06-02T15:06:00.000000000", + "2025-06-02T15:07:00.000000000", + "2025-06-02T15:08:00.000000000", + "2025-06-02T15:09:00.000000000", + "2025-06-02T15:10:00.000000000", + "2025-06-02T15:11:00.000000000", + "2025-06-02T15:12:00.000000000", + "2025-06-02T15:13:00.000000000", + "2025-06-02T15:14:00.000000000", + "2025-06-02T15:15:00.000000000", + "2025-06-02T15:16:00.000000000", + "2025-06-02T15:17:00.000000000", + "2025-06-02T15:18:00.000000000", + "2025-06-02T15:19:00.000000000", + "2025-06-02T15:20:00.000000000", + "2025-06-02T15:21:00.000000000", + "2025-06-02T15:22:00.000000000", + "2025-06-02T15:23:00.000000000", + "2025-06-02T15:24:00.000000000", + "2025-06-02T15:25:00.000000000", + "2025-06-02T15:26:00.000000000", + "2025-06-02T15:27:00.000000000", + "2025-06-02T15:28:00.000000000", + "2025-06-02T15:29:00.000000000", + "2025-06-02T15:30:00.000000000", + "2025-06-02T15:31:00.000000000", + "2025-06-02T15:32:00.000000000", + "2025-06-02T15:33:00.000000000", + "2025-06-02T15:34:00.000000000", + "2025-06-02T15:35:00.000000000", + "2025-06-02T15:36:00.000000000", + "2025-06-02T15:37:00.000000000", + "2025-06-02T15:38:00.000000000", + "2025-06-02T15:39:00.000000000", + "2025-06-02T15:40:00.000000000", + "2025-06-02T15:41:00.000000000", + "2025-06-02T15:42:00.000000000", + "2025-06-02T15:43:00.000000000", + "2025-06-02T15:44:00.000000000", + "2025-06-02T15:45:00.000000000", + "2025-06-02T15:46:00.000000000", + "2025-06-02T15:47:00.000000000", + "2025-06-02T15:48:00.000000000", + "2025-06-02T15:49:00.000000000", + "2025-06-02T15:50:00.000000000", + "2025-06-02T15:51:00.000000000", + "2025-06-02T15:52:00.000000000", + "2025-06-02T15:53:00.000000000", + "2025-06-02T15:54:00.000000000", + "2025-06-02T15:55:00.000000000", + "2025-06-02T15:56:00.000000000", + "2025-06-02T15:57:00.000000000", + "2025-06-02T15:58:00.000000000", + "2025-06-02T15:59:00.000000000", + "2025-06-02T16:00:00.000000000", + "2025-06-02T16:01:00.000000000", + "2025-06-02T16:02:00.000000000", + "2025-06-02T16:03:00.000000000", + "2025-06-02T16:04:00.000000000", + "2025-06-02T16:05:00.000000000", + "2025-06-02T16:06:00.000000000", + "2025-06-02T16:07:00.000000000", + "2025-06-02T16:08:00.000000000", + "2025-06-02T16:09:00.000000000", + "2025-06-02T16:10:00.000000000", + "2025-06-02T16:11:00.000000000", + "2025-06-02T16:12:00.000000000", + "2025-06-02T16:13:00.000000000", + "2025-06-02T16:14:00.000000000", + "2025-06-02T16:15:00.000000000", + "2025-06-02T16:16:00.000000000", + "2025-06-02T16:17:00.000000000", + "2025-06-02T16:18:00.000000000", + "2025-06-02T16:19:00.000000000", + "2025-06-02T16:20:00.000000000", + "2025-06-02T16:21:00.000000000", + "2025-06-02T16:22:00.000000000", + "2025-06-02T16:23:00.000000000", + "2025-06-02T16:24:00.000000000", + "2025-06-02T16:25:00.000000000", + "2025-06-02T16:26:00.000000000", + "2025-06-02T16:27:00.000000000", + "2025-06-02T16:28:00.000000000", + "2025-06-02T16:29:00.000000000", + "2025-06-02T16:30:00.000000000", + "2025-06-02T16:31:00.000000000", + "2025-06-02T16:32:00.000000000", + "2025-06-02T16:33:00.000000000", + "2025-06-02T16:34:00.000000000", + "2025-06-02T16:35:00.000000000", + "2025-06-02T16:36:00.000000000", + "2025-06-02T16:37:00.000000000", + "2025-06-02T16:38:00.000000000", + "2025-06-02T16:39:00.000000000", + "2025-06-02T16:40:00.000000000", + "2025-06-02T16:41:00.000000000", + "2025-06-02T16:42:00.000000000", + "2025-06-02T16:43:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T16:45:00.000000000", + "2025-06-02T16:46:00.000000000", + "2025-06-02T16:47:00.000000000", + "2025-06-02T16:48:00.000000000", + "2025-06-02T16:49:00.000000000", + "2025-06-02T16:50:00.000000000", + "2025-06-02T16:51:00.000000000", + "2025-06-02T16:52:00.000000000", + "2025-06-02T16:53:00.000000000", + "2025-06-02T16:54:00.000000000", + "2025-06-02T16:55:00.000000000", + "2025-06-02T16:56:00.000000000", + "2025-06-02T16:57:00.000000000", + "2025-06-02T16:58:00.000000000", + "2025-06-02T16:59:00.000000000", + "2025-06-02T17:00:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:02:00.000000000", + "2025-06-02T17:03:00.000000000", + "2025-06-02T17:04:00.000000000", + "2025-06-02T17:05:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:07:00.000000000", + "2025-06-02T17:08:00.000000000", + "2025-06-02T17:09:00.000000000", + "2025-06-02T17:10:00.000000000", + "2025-06-02T17:11:00.000000000", + "2025-06-02T17:12:00.000000000", + "2025-06-02T17:13:00.000000000", + "2025-06-02T17:14:00.000000000", + "2025-06-02T17:15:00.000000000", + "2025-06-02T17:16:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:18:00.000000000", + "2025-06-02T17:19:00.000000000", + "2025-06-02T17:20:00.000000000", + "2025-06-02T17:21:00.000000000", + "2025-06-02T17:22:00.000000000", + "2025-06-02T17:23:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T17:25:00.000000000", + "2025-06-02T17:26:00.000000000", + "2025-06-02T17:27:00.000000000", + "2025-06-02T17:28:00.000000000", + "2025-06-02T17:29:00.000000000", + "2025-06-02T17:30:00.000000000", + "2025-06-02T17:31:00.000000000", + "2025-06-02T17:32:00.000000000", + "2025-06-02T17:33:00.000000000", + "2025-06-02T17:34:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T17:36:00.000000000", + "2025-06-02T17:37:00.000000000", + "2025-06-02T17:38:00.000000000", + "2025-06-02T17:39:00.000000000", + "2025-06-02T17:40:00.000000000", + "2025-06-02T17:41:00.000000000", + "2025-06-02T17:42:00.000000000", + "2025-06-02T17:43:00.000000000", + "2025-06-02T17:44:00.000000000", + "2025-06-02T17:45:00.000000000", + "2025-06-02T17:46:00.000000000", + "2025-06-02T17:47:00.000000000", + "2025-06-02T17:48:00.000000000", + "2025-06-02T17:49:00.000000000", + "2025-06-02T17:50:00.000000000", + "2025-06-02T17:51:00.000000000", + "2025-06-02T17:52:00.000000000", + "2025-06-02T17:53:00.000000000", + "2025-06-02T17:54:00.000000000", + "2025-06-02T17:55:00.000000000", + "2025-06-02T17:56:00.000000000", + "2025-06-02T17:57:00.000000000", + "2025-06-02T17:58:00.000000000", + "2025-06-02T17:59:00.000000000", + "2025-06-02T18:00:00.000000000", + "2025-06-02T18:01:00.000000000", + "2025-06-02T18:02:00.000000000", + "2025-06-02T18:03:00.000000000", + "2025-06-02T18:04:00.000000000", + "2025-06-02T18:05:00.000000000", + "2025-06-02T18:06:00.000000000", + "2025-06-02T18:07:00.000000000", + "2025-06-02T18:08:00.000000000", + "2025-06-02T18:09:00.000000000", + "2025-06-02T18:10:00.000000000", + "2025-06-02T18:11:00.000000000", + "2025-06-02T18:12:00.000000000", + "2025-06-02T18:13:00.000000000", + "2025-06-02T18:14:00.000000000", + "2025-06-02T18:15:00.000000000", + "2025-06-02T18:16:00.000000000", + "2025-06-02T18:17:00.000000000", + "2025-06-02T18:18:00.000000000", + "2025-06-02T18:19:00.000000000", + "2025-06-02T18:20:00.000000000", + "2025-06-02T18:21:00.000000000", + "2025-06-02T18:22:00.000000000", + "2025-06-02T18:23:00.000000000", + "2025-06-02T18:24:00.000000000", + "2025-06-02T18:25:00.000000000", + "2025-06-02T18:26:00.000000000", + "2025-06-02T18:27:00.000000000", + "2025-06-02T18:28:00.000000000", + "2025-06-02T18:29:00.000000000", + "2025-06-02T18:30:00.000000000", + "2025-06-02T18:31:00.000000000", + "2025-06-02T18:32:00.000000000", + "2025-06-02T18:33:00.000000000", + "2025-06-02T18:34:00.000000000", + "2025-06-02T18:35:00.000000000", + "2025-06-02T18:36:00.000000000", + "2025-06-02T18:37:00.000000000", + "2025-06-02T18:38:00.000000000", + "2025-06-02T18:39:00.000000000", + "2025-06-02T18:40:00.000000000", + "2025-06-02T18:41:00.000000000", + "2025-06-02T18:42:00.000000000", + "2025-06-02T18:43:00.000000000", + "2025-06-02T18:44:00.000000000", + "2025-06-02T18:45:00.000000000", + "2025-06-02T18:46:00.000000000", + "2025-06-02T18:47:00.000000000", + "2025-06-02T18:48:00.000000000", + "2025-06-02T18:49:00.000000000", + "2025-06-02T18:50:00.000000000", + "2025-06-02T18:51:00.000000000", + "2025-06-02T18:52:00.000000000", + "2025-06-02T18:53:00.000000000", + "2025-06-02T18:54:00.000000000", + "2025-06-02T18:55:00.000000000", + "2025-06-02T18:56:00.000000000", + "2025-06-02T18:57:00.000000000", + "2025-06-02T18:58:00.000000000", + "2025-06-02T18:59:00.000000000", + "2025-06-02T19:00:00.000000000", + "2025-06-02T19:01:00.000000000", + "2025-06-02T19:02:00.000000000", + "2025-06-02T19:03:00.000000000", + "2025-06-02T19:04:00.000000000", + "2025-06-02T19:05:00.000000000", + "2025-06-02T19:06:00.000000000", + "2025-06-02T19:07:00.000000000", + "2025-06-02T19:08:00.000000000", + "2025-06-02T19:09:00.000000000", + "2025-06-02T19:10:00.000000000", + "2025-06-02T19:11:00.000000000", + "2025-06-02T19:12:00.000000000", + "2025-06-02T19:13:00.000000000", + "2025-06-02T19:14:00.000000000", + "2025-06-02T19:15:00.000000000", + "2025-06-02T19:16:00.000000000", + "2025-06-02T19:17:00.000000000", + "2025-06-02T19:18:00.000000000", + "2025-06-02T19:19:00.000000000", + "2025-06-02T19:20:00.000000000", + "2025-06-02T19:21:00.000000000", + "2025-06-02T19:22:00.000000000", + "2025-06-02T19:23:00.000000000", + "2025-06-02T19:24:00.000000000", + "2025-06-02T19:25:00.000000000", + "2025-06-02T19:26:00.000000000", + "2025-06-02T19:27:00.000000000", + "2025-06-02T19:28:00.000000000", + "2025-06-02T19:29:00.000000000", + "2025-06-02T19:30:00.000000000", + "2025-06-02T19:31:00.000000000", + "2025-06-02T19:32:00.000000000", + "2025-06-02T19:33:00.000000000", + "2025-06-02T19:34:00.000000000", + "2025-06-02T19:35:00.000000000", + "2025-06-02T19:36:00.000000000", + "2025-06-02T19:37:00.000000000", + "2025-06-02T19:38:00.000000000", + "2025-06-02T19:39:00.000000000", + "2025-06-02T19:40:00.000000000", + "2025-06-02T19:41:00.000000000", + "2025-06-02T19:42:00.000000000", + "2025-06-02T19:43:00.000000000", + "2025-06-02T19:44:00.000000000", + "2025-06-02T19:45:00.000000000", + "2025-06-02T19:46:00.000000000", + "2025-06-02T19:47:00.000000000", + "2025-06-02T19:48:00.000000000", + "2025-06-02T19:49:00.000000000", + "2025-06-02T19:50:00.000000000", + "2025-06-02T19:51:00.000000000", + "2025-06-02T19:52:00.000000000", + "2025-06-02T19:53:00.000000000", + "2025-06-02T19:54:00.000000000", + "2025-06-02T19:55:00.000000000", + "2025-06-02T19:56:00.000000000", + "2025-06-02T19:57:00.000000000", + "2025-06-02T19:58:00.000000000", + "2025-06-02T19:59:00.000000000", + "2025-06-02T20:00:00.000000000", + "2025-06-02T20:01:00.000000000", + "2025-06-02T20:02:00.000000000", + "2025-06-02T20:03:00.000000000", + "2025-06-02T20:04:00.000000000", + "2025-06-02T20:05:00.000000000", + "2025-06-02T20:06:00.000000000", + "2025-06-02T20:07:00.000000000", + "2025-06-02T20:08:00.000000000", + "2025-06-02T20:09:00.000000000", + "2025-06-02T20:10:00.000000000", + "2025-06-02T20:11:00.000000000", + "2025-06-02T20:12:00.000000000", + "2025-06-02T20:13:00.000000000", + "2025-06-02T20:14:00.000000000", + "2025-06-02T20:15:00.000000000", + "2025-06-02T20:16:00.000000000", + "2025-06-02T20:17:00.000000000", + "2025-06-02T20:18:00.000000000", + "2025-06-02T20:19:00.000000000", + "2025-06-02T20:20:00.000000000", + "2025-06-02T20:21:00.000000000", + "2025-06-02T20:22:00.000000000", + "2025-06-02T20:23:00.000000000", + "2025-06-02T20:24:00.000000000", + "2025-06-02T20:25:00.000000000", + "2025-06-02T20:26:00.000000000", + "2025-06-02T20:27:00.000000000", + "2025-06-02T20:28:00.000000000", + "2025-06-02T20:29:00.000000000", + "2025-06-02T20:30:00.000000000", + "2025-06-02T20:31:00.000000000", + "2025-06-02T20:32:00.000000000", + "2025-06-02T20:33:00.000000000", + "2025-06-02T20:34:00.000000000", + "2025-06-02T20:35:00.000000000", + "2025-06-02T20:36:00.000000000", + "2025-06-02T20:37:00.000000000", + "2025-06-02T20:38:00.000000000", + "2025-06-02T20:39:00.000000000", + "2025-06-02T20:40:00.000000000", + "2025-06-02T20:41:00.000000000", + "2025-06-02T20:42:00.000000000", + "2025-06-02T20:43:00.000000000", + "2025-06-02T20:44:00.000000000", + "2025-06-02T20:45:00.000000000", + "2025-06-02T20:46:00.000000000", + "2025-06-02T20:47:00.000000000", + "2025-06-02T20:48:00.000000000", + "2025-06-02T20:49:00.000000000", + "2025-06-02T20:50:00.000000000", + "2025-06-02T20:51:00.000000000", + "2025-06-02T20:52:00.000000000", + "2025-06-02T20:53:00.000000000", + "2025-06-02T20:54:00.000000000", + "2025-06-02T20:55:00.000000000", + "2025-06-02T20:56:00.000000000", + "2025-06-02T20:57:00.000000000", + "2025-06-02T20:58:00.000000000", + "2025-06-02T20:59:00.000000000", + "2025-06-02T21:00:00.000000000", + "2025-06-02T21:01:00.000000000", + "2025-06-02T21:02:00.000000000", + "2025-06-02T21:03:00.000000000", + "2025-06-02T21:04:00.000000000", + "2025-06-02T21:05:00.000000000", + "2025-06-02T21:06:00.000000000", + "2025-06-02T21:07:00.000000000", + "2025-06-02T21:08:00.000000000", + "2025-06-02T21:09:00.000000000", + "2025-06-02T21:10:00.000000000", + "2025-06-02T21:11:00.000000000", + "2025-06-02T21:12:00.000000000", + "2025-06-02T21:13:00.000000000", + "2025-06-02T21:14:00.000000000", + "2025-06-02T21:15:00.000000000", + "2025-06-02T21:16:00.000000000", + "2025-06-02T21:17:00.000000000", + "2025-06-02T21:18:00.000000000", + "2025-06-02T21:19:00.000000000", + "2025-06-02T21:20:00.000000000", + "2025-06-02T21:21:00.000000000", + "2025-06-02T21:22:00.000000000", + "2025-06-02T21:23:00.000000000", + "2025-06-02T21:24:00.000000000", + "2025-06-02T21:25:00.000000000", + "2025-06-02T21:26:00.000000000", + "2025-06-02T21:27:00.000000000", + "2025-06-02T21:28:00.000000000", + "2025-06-02T21:29:00.000000000", + "2025-06-02T21:30:00.000000000", + "2025-06-02T21:31:00.000000000", + "2025-06-02T21:32:00.000000000", + "2025-06-02T21:33:00.000000000", + "2025-06-02T21:34:00.000000000", + "2025-06-02T21:35:00.000000000", + "2025-06-02T21:36:00.000000000", + "2025-06-02T21:37:00.000000000", + "2025-06-02T21:38:00.000000000", + "2025-06-02T21:39:00.000000000", + "2025-06-02T21:40:00.000000000", + "2025-06-02T21:41:00.000000000", + "2025-06-02T21:42:00.000000000", + "2025-06-02T21:43:00.000000000", + "2025-06-02T21:44:00.000000000", + "2025-06-02T21:45:00.000000000", + "2025-06-02T21:46:00.000000000", + "2025-06-02T21:47:00.000000000", + "2025-06-02T21:48:00.000000000", + "2025-06-02T21:49:00.000000000", + "2025-06-02T21:50:00.000000000", + "2025-06-02T21:51:00.000000000", + "2025-06-02T21:52:00.000000000", + "2025-06-02T21:53:00.000000000", + "2025-06-02T21:54:00.000000000", + "2025-06-02T21:55:00.000000000", + "2025-06-02T21:56:00.000000000", + "2025-06-02T21:57:00.000000000", + "2025-06-02T21:58:00.000000000", + "2025-06-02T21:59:00.000000000", + "2025-06-02T22:00:00.000000000", + "2025-06-02T22:01:00.000000000", + "2025-06-02T22:02:00.000000000", + "2025-06-02T22:03:00.000000000", + "2025-06-02T22:04:00.000000000", + "2025-06-02T22:05:00.000000000", + "2025-06-02T22:06:00.000000000", + "2025-06-02T22:07:00.000000000", + "2025-06-02T22:08:00.000000000", + "2025-06-02T22:09:00.000000000", + "2025-06-02T22:10:00.000000000", + "2025-06-02T22:11:00.000000000", + "2025-06-02T22:12:00.000000000", + "2025-06-02T22:13:00.000000000", + "2025-06-02T22:14:00.000000000", + "2025-06-02T22:15:00.000000000", + "2025-06-02T22:16:00.000000000", + "2025-06-02T22:17:00.000000000", + "2025-06-02T22:18:00.000000000", + "2025-06-02T22:19:00.000000000", + "2025-06-02T22:20:00.000000000", + "2025-06-02T22:21:00.000000000", + "2025-06-02T22:22:00.000000000", + "2025-06-02T22:23:00.000000000", + "2025-06-02T22:24:00.000000000", + "2025-06-02T22:25:00.000000000", + "2025-06-02T22:26:00.000000000", + "2025-06-02T22:27:00.000000000", + "2025-06-02T22:28:00.000000000", + "2025-06-02T22:29:00.000000000", + "2025-06-02T22:30:00.000000000" + ], + "xaxis": "x", + "y": { + "bdata": "AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/HeIwLPsiB0D7ZI6+zL4GQAaixX4o+vg/hf6wLTje/j/KOlUbmWsAQHLTDR2zBPw/uATLujJF9j/P618gfKP2PyVdrQZw4uw/mSHqqkxI5z9xm/fT9PeNP6byz/FGAdQ/C1vwLHfY5D8TLAxij0TvPy7ZLx00b+I/sGKIWqoB8j9M7TqLGwzQP8kGos2fB9M/hK7iO+ka2T+2NNJiQeXuPxQTd/9uZNA/3byNxIJXrD8Iki2Hq4fVP0EBjTCymlE/aRx+z7VU2j+w79xITkLZP1k0U5zQhtY/wrKku5v8kD/lI+TIIxuyP9yCErE/ZYE/VYkgN+JO5z93mU6K3ArZPzT5PulqbNw/l+MyFJ7Z2T9R5rtJmbzeP7foE2F0vuo/Q/a24nY66T8LSiSwPxvaP1Y6ZBBVseU/U31DvB/21j/c+rGOScjrPxGIAWZ1c+s/P0aQAZkk4T8C9Er0sNvjP5oUDamnFPc/hW2jpq2G+j+l+7qkqv31P70BZ6/V9PY/OmAT8FcD9D9iLZnyWxPdP7r9NLHpkM8/up+masDU0j8jSLRV0EpiPwza73ybMZs/YVbpZP0Lxj9jJ7iCAWzYP29a4DCH7Oc/qHG57zQ9vz/sYIYDJEGuP3kXI6G2moQ/s9Ur82Orwz9rOdHTvgZjP2iE08u2vsI/VVyM6TFM0z8j550TRmK2P0SzK4KaMdc/qA4qpdMe5T9fXQMfflLoP9arayVuq/E/z5vrKGxy+T9lljDXzEjzP0F4jEqhmPk/6bOnER5B/T+Jv+r+EOsCQJVO4zuk6whABSa1ZpGYCEDtSq7M9U4QQGANCTYHFw9AgifssmsKEUCp/KxbDswOQLzF806S8QtAYgPn6qXYCkCHTq5FofYFQIDjJcY8zQNAl3tTyh/KB0BAXXf35xwDQBeq5/sbzQRACwIgUAGhA0DYKA8lAj/5P0KygQMRJvE/JJIGAJRD3T+thr80mcD0P5s6MjZTiu0/aG8DxAu69z8v0E6t/qD2P/vi0t83hwFAbxsgDflcAkCBL+d3qKwCQDBlPYWc0Po/vKp6SY3H/T8ZtAdUAhjhP43MBzuPyvg/1z/ag0tN9T/cLlZZHRDuPzJma7ZdW/Y/EfOAnyf28z860WUuJYXDP8yt07Dp99Y/Dp2ILiFd5z8YbtWVeO7yPxV2LBpJmPs/OYFUHHJx8D/8RJjKuKT3P3M8OpMB/QVAmvGy2nyP+z9WExKx5X/2P8SfwAMDqvo/FnrbtlRn+z8YhZs7PTr3P1WO3coVIvQ/DPPWlE/c+j/nn3pG6ZP5P/6W7QLwsfI/p0YxD7X14T/axuM4mW/aP+P/Eo+OMMQ/dtJSGo4lwj+dqVsucIXVPx3a4VDgfdY/uNOE8Vg14D+VG+6+JQG9P51hZ49VINQ/8uX5a0TOuD+A0KLtV1DgP5/6xnfeSec/eiWWQien2z+YjgGBQZ7tP3WFjUbxjfQ/I38ZsMfG6z9ynbEeXy75P1l4HkcvNPQ/5dgk0hQj8z+FbdiFWO3wPykhzwJoSvc/hLszsduu9j/qsnXtaZrxP/Axtrx7b+g/2zXqEpZH8j/PEjwYxDnyP3RfMeQtWPI/w3CF4f3k9z8AVjWKuWAAQEi90tCJgfY/nzAazOi44T+lYZhkomPjP40uR6O+07Y/HdubnYPk3D+mGUWJuXPZP+NUFyi/geU//203TiNv4D+4WKuE/iXvP8GQlIabjtw/HZjeQF996D/97JfHkUDlP+hmFtLp2e0/kQoQ6ONW5T80cn6nOPDvP4PQ75UVEvA/eVD8KVs04T8iI3ZJf+7gPxzwa4NsLuo/pzwZ6tCG3D8wCTN+cbDPP7Y8mrw1C9Q/CMzw8cOruj+pKeiJ0CzpP8gwl8JlINQ/BP88P3iWxT+BiXyfouvQP9U7nQvjRuE/t4wwxnHh4j/aHOU+XQTsPyt+TwnQqe8/f+bHQlb95T8etrS91inSP6AYpYhmMdU/GlMKiRAajz9YZ5oIYvrTP79uc2QBpcw/vDuSi8P21j+HrxA1JbbYPxOLTF2sQNM/sWtF1yLV0D+cUdZIelbdP+GuH8Knz8I/YVPgv0gE0j+nnwNwFS/hP3NomQntItQ/6D3JAYx3wj8LvjVD0v3VP+t7K1iSP90/pGVktwzLzj+5xoEr5X/dP1rtUEyp4+k//lvc4xMv1z+SNL2ie+vkP10w3LJfiu4/OZXP1f5G6D/01EP/dE3mP93+f7Sn1ec/3oap72uk8T9lnj2bi5D2PyUR43WwufI/yMPzAdi18j+DrJDo9Df1PwlII8mTMPI/FeUTLEEr7T8GmbFpMAzYP8ll5TLBw+U/67s3II7L8D8N01hdvwHmPy/tVysPfc0/sayJBiW21D9q4Pdz6s3UP2+FFAGni+E/ehZYdDOi1D/3FQIIRWvUP6iTpl20qdY/mNiF9k9i3D/E0+4pBK3gPzUqyrPgL9c/GgIqJ5go1D9TXBqhJ0rLP9AkCmx6uNg/pisNqd8z3j+4uvOumT3FP1yb46GT270/sMNqXrjTrD8pcA7D6ePGP2HuyxMuVOc/xbD+Ijj17j/PQALl1tzoP0IrYgrPYfg/jHz51bn89z9RhIWwkCIAQJgzAOieEP0/AJqpjHF9+j9LUYMhimX5Pw1H0ml04/g/1qxDMU8SAUDSsOCVmHYBQLsC8FaFoQJACKnOHr6SA0AGliUUaG4AQNKQC2OjlQFAFwLm2ToQAEDpnmttiTsAQI88sPAmJgFAxgH0AiSt+z8ckTbf7kL7P+t/NS3PEvw/ulXPcZ6Y/T+zImkorzD3P5/H2U5zpfs/H0WYvLfT+z9uXREKwPr4PwSXzFE5z/M/ULTRznEC9z8t9dZdRGH0P1MLoIn/CfM/46INfJsC8j+9DOyiZ/zyP/d18C5M/fE/x+X+Hqbx6j/NAHppx6DsPx2542HrwfI/2eu+3YoP8z/lcQnuhxvxP6Lt/FW46fE/U4RN36ym9j9eMMMi4C/5P5UXTUG7ifo/NelTEWNn+j/jTYd7a9z2P5FJoFaQCPQ/bkSGqhgj8j+h6dFeWejtP2f44IytQOk//ohLfouI5z9CebPdWo7pP7VNlwsuzOs/syFcPEmW4z/rAkl685DvP3i5zz0lI/A/xehx3/R98D9+XHZcVDvwP3ztbJDJ+fM/equhmQUa9j8I8OI9Zx34PyzHEX3Eh/s/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/", + "dtype": "f8" + }, + "yaxis": "y" + }, + { + "line": { + "color": "darkmagenta", + "width": 2 + }, + "name": "Scaled Dis-equilibrium", + "opacity": 0.8, + "type": "scatter", + "x": [ + "2025-06-02T13:30:00.000000000", + "2025-06-02T13:31:00.000000000", + "2025-06-02T13:32:00.000000000", + "2025-06-02T13:33:00.000000000", + "2025-06-02T13:34:00.000000000", + "2025-06-02T13:35:00.000000000", + "2025-06-02T13:36:00.000000000", + "2025-06-02T13:37:00.000000000", + "2025-06-02T13:38:00.000000000", + "2025-06-02T13:39:00.000000000", + "2025-06-02T13:40:00.000000000", + "2025-06-02T13:41:00.000000000", + "2025-06-02T13:42:00.000000000", + "2025-06-02T13:43:00.000000000", + "2025-06-02T13:44:00.000000000", + "2025-06-02T13:45:00.000000000", + "2025-06-02T13:46:00.000000000", + "2025-06-02T13:47:00.000000000", + "2025-06-02T13:48:00.000000000", + "2025-06-02T13:49:00.000000000", + "2025-06-02T13:50:00.000000000", + "2025-06-02T13:51:00.000000000", + "2025-06-02T13:52:00.000000000", + "2025-06-02T13:53:00.000000000", + "2025-06-02T13:54:00.000000000", + "2025-06-02T13:55:00.000000000", + "2025-06-02T13:56:00.000000000", + "2025-06-02T13:57:00.000000000", + "2025-06-02T13:58:00.000000000", + "2025-06-02T13:59:00.000000000", + "2025-06-02T14:00:00.000000000", + "2025-06-02T14:01:00.000000000", + "2025-06-02T14:02:00.000000000", + "2025-06-02T14:03:00.000000000", + "2025-06-02T14:04:00.000000000", + "2025-06-02T14:05:00.000000000", + "2025-06-02T14:06:00.000000000", + "2025-06-02T14:07:00.000000000", + "2025-06-02T14:08:00.000000000", + "2025-06-02T14:09:00.000000000", + "2025-06-02T14:10:00.000000000", + "2025-06-02T14:11:00.000000000", + "2025-06-02T14:12:00.000000000", + "2025-06-02T14:13:00.000000000", + "2025-06-02T14:14:00.000000000", + "2025-06-02T14:15:00.000000000", + "2025-06-02T14:16:00.000000000", + "2025-06-02T14:17:00.000000000", + "2025-06-02T14:18:00.000000000", + "2025-06-02T14:19:00.000000000", + "2025-06-02T14:20:00.000000000", + "2025-06-02T14:21:00.000000000", + "2025-06-02T14:22:00.000000000", + "2025-06-02T14:23:00.000000000", + "2025-06-02T14:24:00.000000000", + "2025-06-02T14:25:00.000000000", + "2025-06-02T14:26:00.000000000", + "2025-06-02T14:27:00.000000000", + "2025-06-02T14:28:00.000000000", + "2025-06-02T14:29:00.000000000", + "2025-06-02T14:30:00.000000000", + "2025-06-02T14:31:00.000000000", + "2025-06-02T14:32:00.000000000", + "2025-06-02T14:33:00.000000000", + "2025-06-02T14:34:00.000000000", + "2025-06-02T14:35:00.000000000", + "2025-06-02T14:36:00.000000000", + "2025-06-02T14:37:00.000000000", + "2025-06-02T14:38:00.000000000", + "2025-06-02T14:39:00.000000000", + "2025-06-02T14:40:00.000000000", + "2025-06-02T14:41:00.000000000", + "2025-06-02T14:42:00.000000000", + "2025-06-02T14:43:00.000000000", + "2025-06-02T14:44:00.000000000", + "2025-06-02T14:45:00.000000000", + "2025-06-02T14:46:00.000000000", + "2025-06-02T14:47:00.000000000", + "2025-06-02T14:48:00.000000000", + "2025-06-02T14:49:00.000000000", + "2025-06-02T14:50:00.000000000", + "2025-06-02T14:51:00.000000000", + "2025-06-02T14:53:00.000000000", + "2025-06-02T14:54:00.000000000", + "2025-06-02T14:55:00.000000000", + "2025-06-02T14:56:00.000000000", + "2025-06-02T14:57:00.000000000", + "2025-06-02T14:58:00.000000000", + "2025-06-02T14:59:00.000000000", + "2025-06-02T15:00:00.000000000", + "2025-06-02T15:01:00.000000000", + "2025-06-02T15:02:00.000000000", + "2025-06-02T15:03:00.000000000", + "2025-06-02T15:04:00.000000000", + "2025-06-02T15:05:00.000000000", + "2025-06-02T15:06:00.000000000", + "2025-06-02T15:07:00.000000000", + "2025-06-02T15:08:00.000000000", + "2025-06-02T15:09:00.000000000", + "2025-06-02T15:10:00.000000000", + "2025-06-02T15:11:00.000000000", + "2025-06-02T15:12:00.000000000", + "2025-06-02T15:13:00.000000000", + "2025-06-02T15:14:00.000000000", + "2025-06-02T15:15:00.000000000", + "2025-06-02T15:16:00.000000000", + "2025-06-02T15:17:00.000000000", + "2025-06-02T15:18:00.000000000", + "2025-06-02T15:19:00.000000000", + "2025-06-02T15:20:00.000000000", + "2025-06-02T15:21:00.000000000", + "2025-06-02T15:22:00.000000000", + "2025-06-02T15:23:00.000000000", + "2025-06-02T15:24:00.000000000", + "2025-06-02T15:25:00.000000000", + "2025-06-02T15:26:00.000000000", + "2025-06-02T15:27:00.000000000", + "2025-06-02T15:28:00.000000000", + "2025-06-02T15:29:00.000000000", + "2025-06-02T15:30:00.000000000", + "2025-06-02T15:31:00.000000000", + "2025-06-02T15:32:00.000000000", + "2025-06-02T15:33:00.000000000", + "2025-06-02T15:34:00.000000000", + "2025-06-02T15:35:00.000000000", + "2025-06-02T15:36:00.000000000", + "2025-06-02T15:37:00.000000000", + "2025-06-02T15:38:00.000000000", + "2025-06-02T15:39:00.000000000", + "2025-06-02T15:40:00.000000000", + "2025-06-02T15:41:00.000000000", + "2025-06-02T15:42:00.000000000", + "2025-06-02T15:43:00.000000000", + "2025-06-02T15:44:00.000000000", + "2025-06-02T15:45:00.000000000", + "2025-06-02T15:46:00.000000000", + "2025-06-02T15:47:00.000000000", + "2025-06-02T15:48:00.000000000", + "2025-06-02T15:49:00.000000000", + "2025-06-02T15:50:00.000000000", + "2025-06-02T15:51:00.000000000", + "2025-06-02T15:52:00.000000000", + "2025-06-02T15:53:00.000000000", + "2025-06-02T15:54:00.000000000", + "2025-06-02T15:55:00.000000000", + "2025-06-02T15:56:00.000000000", + "2025-06-02T15:57:00.000000000", + "2025-06-02T15:58:00.000000000", + "2025-06-02T15:59:00.000000000", + "2025-06-02T16:00:00.000000000", + "2025-06-02T16:01:00.000000000", + "2025-06-02T16:02:00.000000000", + "2025-06-02T16:03:00.000000000", + "2025-06-02T16:04:00.000000000", + "2025-06-02T16:05:00.000000000", + "2025-06-02T16:06:00.000000000", + "2025-06-02T16:07:00.000000000", + "2025-06-02T16:08:00.000000000", + "2025-06-02T16:09:00.000000000", + "2025-06-02T16:10:00.000000000", + "2025-06-02T16:11:00.000000000", + "2025-06-02T16:12:00.000000000", + "2025-06-02T16:13:00.000000000", + "2025-06-02T16:14:00.000000000", + "2025-06-02T16:15:00.000000000", + "2025-06-02T16:16:00.000000000", + "2025-06-02T16:17:00.000000000", + "2025-06-02T16:18:00.000000000", + "2025-06-02T16:19:00.000000000", + "2025-06-02T16:20:00.000000000", + "2025-06-02T16:21:00.000000000", + "2025-06-02T16:22:00.000000000", + "2025-06-02T16:23:00.000000000", + "2025-06-02T16:24:00.000000000", + "2025-06-02T16:25:00.000000000", + "2025-06-02T16:26:00.000000000", + "2025-06-02T16:27:00.000000000", + "2025-06-02T16:28:00.000000000", + "2025-06-02T16:29:00.000000000", + "2025-06-02T16:30:00.000000000", + "2025-06-02T16:31:00.000000000", + "2025-06-02T16:32:00.000000000", + "2025-06-02T16:33:00.000000000", + "2025-06-02T16:34:00.000000000", + "2025-06-02T16:35:00.000000000", + "2025-06-02T16:36:00.000000000", + "2025-06-02T16:37:00.000000000", + "2025-06-02T16:38:00.000000000", + "2025-06-02T16:39:00.000000000", + "2025-06-02T16:40:00.000000000", + "2025-06-02T16:41:00.000000000", + "2025-06-02T16:42:00.000000000", + "2025-06-02T16:43:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T16:45:00.000000000", + "2025-06-02T16:46:00.000000000", + "2025-06-02T16:47:00.000000000", + "2025-06-02T16:48:00.000000000", + "2025-06-02T16:49:00.000000000", + "2025-06-02T16:50:00.000000000", + "2025-06-02T16:51:00.000000000", + "2025-06-02T16:52:00.000000000", + "2025-06-02T16:53:00.000000000", + "2025-06-02T16:54:00.000000000", + "2025-06-02T16:55:00.000000000", + "2025-06-02T16:56:00.000000000", + "2025-06-02T16:57:00.000000000", + "2025-06-02T16:58:00.000000000", + "2025-06-02T16:59:00.000000000", + "2025-06-02T17:00:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:02:00.000000000", + "2025-06-02T17:03:00.000000000", + "2025-06-02T17:04:00.000000000", + "2025-06-02T17:05:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:07:00.000000000", + "2025-06-02T17:08:00.000000000", + "2025-06-02T17:09:00.000000000", + "2025-06-02T17:10:00.000000000", + "2025-06-02T17:11:00.000000000", + "2025-06-02T17:12:00.000000000", + "2025-06-02T17:13:00.000000000", + "2025-06-02T17:14:00.000000000", + "2025-06-02T17:15:00.000000000", + "2025-06-02T17:16:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:18:00.000000000", + "2025-06-02T17:19:00.000000000", + "2025-06-02T17:20:00.000000000", + "2025-06-02T17:21:00.000000000", + "2025-06-02T17:22:00.000000000", + "2025-06-02T17:23:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T17:25:00.000000000", + "2025-06-02T17:26:00.000000000", + "2025-06-02T17:27:00.000000000", + "2025-06-02T17:28:00.000000000", + "2025-06-02T17:29:00.000000000", + "2025-06-02T17:30:00.000000000", + "2025-06-02T17:31:00.000000000", + "2025-06-02T17:32:00.000000000", + "2025-06-02T17:33:00.000000000", + "2025-06-02T17:34:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T17:36:00.000000000", + "2025-06-02T17:37:00.000000000", + "2025-06-02T17:38:00.000000000", + "2025-06-02T17:39:00.000000000", + "2025-06-02T17:40:00.000000000", + "2025-06-02T17:41:00.000000000", + "2025-06-02T17:42:00.000000000", + "2025-06-02T17:43:00.000000000", + "2025-06-02T17:44:00.000000000", + "2025-06-02T17:45:00.000000000", + "2025-06-02T17:46:00.000000000", + "2025-06-02T17:47:00.000000000", + "2025-06-02T17:48:00.000000000", + "2025-06-02T17:49:00.000000000", + "2025-06-02T17:50:00.000000000", + "2025-06-02T17:51:00.000000000", + "2025-06-02T17:52:00.000000000", + "2025-06-02T17:53:00.000000000", + "2025-06-02T17:54:00.000000000", + "2025-06-02T17:55:00.000000000", + "2025-06-02T17:56:00.000000000", + "2025-06-02T17:57:00.000000000", + "2025-06-02T17:58:00.000000000", + "2025-06-02T17:59:00.000000000", + "2025-06-02T18:00:00.000000000", + "2025-06-02T18:01:00.000000000", + "2025-06-02T18:02:00.000000000", + "2025-06-02T18:03:00.000000000", + "2025-06-02T18:04:00.000000000", + "2025-06-02T18:05:00.000000000", + "2025-06-02T18:06:00.000000000", + "2025-06-02T18:07:00.000000000", + "2025-06-02T18:08:00.000000000", + "2025-06-02T18:09:00.000000000", + "2025-06-02T18:10:00.000000000", + "2025-06-02T18:11:00.000000000", + "2025-06-02T18:12:00.000000000", + "2025-06-02T18:13:00.000000000", + "2025-06-02T18:14:00.000000000", + "2025-06-02T18:15:00.000000000", + "2025-06-02T18:16:00.000000000", + "2025-06-02T18:17:00.000000000", + "2025-06-02T18:18:00.000000000", + "2025-06-02T18:19:00.000000000", + "2025-06-02T18:20:00.000000000", + "2025-06-02T18:21:00.000000000", + "2025-06-02T18:22:00.000000000", + "2025-06-02T18:23:00.000000000", + "2025-06-02T18:24:00.000000000", + "2025-06-02T18:25:00.000000000", + "2025-06-02T18:26:00.000000000", + "2025-06-02T18:27:00.000000000", + "2025-06-02T18:28:00.000000000", + "2025-06-02T18:29:00.000000000", + "2025-06-02T18:30:00.000000000", + "2025-06-02T18:31:00.000000000", + "2025-06-02T18:32:00.000000000", + "2025-06-02T18:33:00.000000000", + "2025-06-02T18:34:00.000000000", + "2025-06-02T18:35:00.000000000", + "2025-06-02T18:36:00.000000000", + "2025-06-02T18:37:00.000000000", + "2025-06-02T18:38:00.000000000", + "2025-06-02T18:39:00.000000000", + "2025-06-02T18:40:00.000000000", + "2025-06-02T18:41:00.000000000", + "2025-06-02T18:42:00.000000000", + "2025-06-02T18:43:00.000000000", + "2025-06-02T18:44:00.000000000", + "2025-06-02T18:45:00.000000000", + "2025-06-02T18:46:00.000000000", + "2025-06-02T18:47:00.000000000", + "2025-06-02T18:48:00.000000000", + "2025-06-02T18:49:00.000000000", + "2025-06-02T18:50:00.000000000", + "2025-06-02T18:51:00.000000000", + "2025-06-02T18:52:00.000000000", + "2025-06-02T18:53:00.000000000", + "2025-06-02T18:54:00.000000000", + "2025-06-02T18:55:00.000000000", + "2025-06-02T18:56:00.000000000", + "2025-06-02T18:57:00.000000000", + "2025-06-02T18:58:00.000000000", + "2025-06-02T18:59:00.000000000", + "2025-06-02T19:00:00.000000000", + "2025-06-02T19:01:00.000000000", + "2025-06-02T19:02:00.000000000", + "2025-06-02T19:03:00.000000000", + "2025-06-02T19:04:00.000000000", + "2025-06-02T19:05:00.000000000", + "2025-06-02T19:06:00.000000000", + "2025-06-02T19:07:00.000000000", + "2025-06-02T19:08:00.000000000", + "2025-06-02T19:09:00.000000000", + "2025-06-02T19:10:00.000000000", + "2025-06-02T19:11:00.000000000", + "2025-06-02T19:12:00.000000000", + "2025-06-02T19:13:00.000000000", + "2025-06-02T19:14:00.000000000", + "2025-06-02T19:15:00.000000000", + "2025-06-02T19:16:00.000000000", + "2025-06-02T19:17:00.000000000", + "2025-06-02T19:18:00.000000000", + "2025-06-02T19:19:00.000000000", + "2025-06-02T19:20:00.000000000", + "2025-06-02T19:21:00.000000000", + "2025-06-02T19:22:00.000000000", + "2025-06-02T19:23:00.000000000", + "2025-06-02T19:24:00.000000000", + "2025-06-02T19:25:00.000000000", + "2025-06-02T19:26:00.000000000", + "2025-06-02T19:27:00.000000000", + "2025-06-02T19:28:00.000000000", + "2025-06-02T19:29:00.000000000", + "2025-06-02T19:30:00.000000000", + "2025-06-02T19:31:00.000000000", + "2025-06-02T19:32:00.000000000", + "2025-06-02T19:33:00.000000000", + "2025-06-02T19:34:00.000000000", + "2025-06-02T19:35:00.000000000", + "2025-06-02T19:36:00.000000000", + "2025-06-02T19:37:00.000000000", + "2025-06-02T19:38:00.000000000", + "2025-06-02T19:39:00.000000000", + "2025-06-02T19:40:00.000000000", + "2025-06-02T19:41:00.000000000", + "2025-06-02T19:42:00.000000000", + "2025-06-02T19:43:00.000000000", + "2025-06-02T19:44:00.000000000", + "2025-06-02T19:45:00.000000000", + "2025-06-02T19:46:00.000000000", + "2025-06-02T19:47:00.000000000", + "2025-06-02T19:48:00.000000000", + "2025-06-02T19:49:00.000000000", + "2025-06-02T19:50:00.000000000", + "2025-06-02T19:51:00.000000000", + "2025-06-02T19:52:00.000000000", + "2025-06-02T19:53:00.000000000", + "2025-06-02T19:54:00.000000000", + "2025-06-02T19:55:00.000000000", + "2025-06-02T19:56:00.000000000", + "2025-06-02T19:57:00.000000000", + "2025-06-02T19:58:00.000000000", + "2025-06-02T19:59:00.000000000", + "2025-06-02T20:00:00.000000000", + "2025-06-02T20:01:00.000000000", + "2025-06-02T20:02:00.000000000", + "2025-06-02T20:03:00.000000000", + "2025-06-02T20:04:00.000000000", + "2025-06-02T20:05:00.000000000", + "2025-06-02T20:06:00.000000000", + "2025-06-02T20:07:00.000000000", + "2025-06-02T20:08:00.000000000", + "2025-06-02T20:09:00.000000000", + "2025-06-02T20:10:00.000000000", + "2025-06-02T20:11:00.000000000", + "2025-06-02T20:12:00.000000000", + "2025-06-02T20:13:00.000000000", + "2025-06-02T20:14:00.000000000", + "2025-06-02T20:15:00.000000000", + "2025-06-02T20:16:00.000000000", + "2025-06-02T20:17:00.000000000", + "2025-06-02T20:18:00.000000000", + "2025-06-02T20:19:00.000000000", + "2025-06-02T20:20:00.000000000", + "2025-06-02T20:21:00.000000000", + "2025-06-02T20:22:00.000000000", + "2025-06-02T20:23:00.000000000", + "2025-06-02T20:24:00.000000000", + "2025-06-02T20:25:00.000000000", + "2025-06-02T20:26:00.000000000", + "2025-06-02T20:27:00.000000000", + "2025-06-02T20:28:00.000000000", + "2025-06-02T20:29:00.000000000", + "2025-06-02T20:30:00.000000000", + "2025-06-02T20:31:00.000000000", + "2025-06-02T20:32:00.000000000", + "2025-06-02T20:33:00.000000000", + "2025-06-02T20:34:00.000000000", + "2025-06-02T20:35:00.000000000", + "2025-06-02T20:36:00.000000000", + "2025-06-02T20:37:00.000000000", + "2025-06-02T20:38:00.000000000", + "2025-06-02T20:39:00.000000000", + "2025-06-02T20:40:00.000000000", + "2025-06-02T20:41:00.000000000", + "2025-06-02T20:42:00.000000000", + "2025-06-02T20:43:00.000000000", + "2025-06-02T20:44:00.000000000", + "2025-06-02T20:45:00.000000000", + "2025-06-02T20:46:00.000000000", + "2025-06-02T20:47:00.000000000", + "2025-06-02T20:48:00.000000000", + "2025-06-02T20:49:00.000000000", + "2025-06-02T20:50:00.000000000", + "2025-06-02T20:51:00.000000000", + "2025-06-02T20:52:00.000000000", + "2025-06-02T20:53:00.000000000", + "2025-06-02T20:54:00.000000000", + "2025-06-02T20:55:00.000000000", + "2025-06-02T20:56:00.000000000", + "2025-06-02T20:57:00.000000000", + "2025-06-02T20:58:00.000000000", + "2025-06-02T20:59:00.000000000", + "2025-06-02T21:00:00.000000000", + "2025-06-02T21:01:00.000000000", + "2025-06-02T21:02:00.000000000", + "2025-06-02T21:03:00.000000000", + "2025-06-02T21:04:00.000000000", + "2025-06-02T21:05:00.000000000", + "2025-06-02T21:06:00.000000000", + "2025-06-02T21:07:00.000000000", + "2025-06-02T21:08:00.000000000", + "2025-06-02T21:09:00.000000000", + "2025-06-02T21:10:00.000000000", + "2025-06-02T21:11:00.000000000", + "2025-06-02T21:12:00.000000000", + "2025-06-02T21:13:00.000000000", + "2025-06-02T21:14:00.000000000", + "2025-06-02T21:15:00.000000000", + "2025-06-02T21:16:00.000000000", + "2025-06-02T21:17:00.000000000", + "2025-06-02T21:18:00.000000000", + "2025-06-02T21:19:00.000000000", + "2025-06-02T21:20:00.000000000", + "2025-06-02T21:21:00.000000000", + "2025-06-02T21:22:00.000000000", + "2025-06-02T21:23:00.000000000", + "2025-06-02T21:24:00.000000000", + "2025-06-02T21:25:00.000000000", + "2025-06-02T21:26:00.000000000", + "2025-06-02T21:27:00.000000000", + "2025-06-02T21:28:00.000000000", + "2025-06-02T21:29:00.000000000", + "2025-06-02T21:30:00.000000000", + "2025-06-02T21:31:00.000000000", + "2025-06-02T21:32:00.000000000", + "2025-06-02T21:33:00.000000000", + "2025-06-02T21:34:00.000000000", + "2025-06-02T21:35:00.000000000", + "2025-06-02T21:36:00.000000000", + "2025-06-02T21:37:00.000000000", + "2025-06-02T21:38:00.000000000", + "2025-06-02T21:39:00.000000000", + "2025-06-02T21:40:00.000000000", + "2025-06-02T21:41:00.000000000", + "2025-06-02T21:42:00.000000000", + "2025-06-02T21:43:00.000000000", + "2025-06-02T21:44:00.000000000", + "2025-06-02T21:45:00.000000000", + "2025-06-02T21:46:00.000000000", + "2025-06-02T21:47:00.000000000", + "2025-06-02T21:48:00.000000000", + "2025-06-02T21:49:00.000000000", + "2025-06-02T21:50:00.000000000", + "2025-06-02T21:51:00.000000000", + "2025-06-02T21:52:00.000000000", + "2025-06-02T21:53:00.000000000", + "2025-06-02T21:54:00.000000000", + "2025-06-02T21:55:00.000000000", + "2025-06-02T21:56:00.000000000", + "2025-06-02T21:57:00.000000000", + "2025-06-02T21:58:00.000000000", + "2025-06-02T21:59:00.000000000", + "2025-06-02T22:00:00.000000000", + "2025-06-02T22:01:00.000000000", + "2025-06-02T22:02:00.000000000", + "2025-06-02T22:03:00.000000000", + "2025-06-02T22:04:00.000000000", + "2025-06-02T22:05:00.000000000", + "2025-06-02T22:06:00.000000000", + "2025-06-02T22:07:00.000000000", + "2025-06-02T22:08:00.000000000", + "2025-06-02T22:09:00.000000000", + "2025-06-02T22:10:00.000000000", + "2025-06-02T22:11:00.000000000", + "2025-06-02T22:12:00.000000000", + "2025-06-02T22:13:00.000000000", + "2025-06-02T22:14:00.000000000", + "2025-06-02T22:15:00.000000000", + "2025-06-02T22:16:00.000000000", + "2025-06-02T22:17:00.000000000", + "2025-06-02T22:18:00.000000000", + "2025-06-02T22:19:00.000000000", + "2025-06-02T22:20:00.000000000", + "2025-06-02T22:21:00.000000000", + "2025-06-02T22:22:00.000000000", + "2025-06-02T22:23:00.000000000", + "2025-06-02T22:24:00.000000000", + "2025-06-02T22:25:00.000000000", + "2025-06-02T22:26:00.000000000", + "2025-06-02T22:27:00.000000000", + "2025-06-02T22:28:00.000000000", + "2025-06-02T22:29:00.000000000", + "2025-06-02T22:30:00.000000000" + ], + "xaxis": "x", + "y": { + "bdata": "AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/HeIwLPsiB8D7ZI6+zL4GwAaixX4o+vi/hf6wLTje/r/KOlUbmWsAwHLTDR2zBPy/uATLujJF9r/P618gfKP2vyVdrQZw4uy/mSHqqkxI579xm/fT9PeNP6byz/FGAdQ/C1vwLHfY5D8TLAxij0TvPy7ZLx00b+I/sGKIWqoB8j9M7TqLGwzQP8kGos2fB9O/hK7iO+ka2T+2NNJiQeXuPxQTd/9uZNC/3byNxIJXrD8Iki2Hq4fVv0EBjTCymlE/aRx+z7VU2r+w79xITkLZv1k0U5zQhtY/wrKku5v8kD/lI+TIIxuyP9yCErE/ZYE/VYkgN+JO5793mU6K3ArZvzT5PulqbNw/l+MyFJ7Z2T9R5rtJmbzev7foE2F0vuq/Q/a24nY66b8LSiSwPxvav1Y6ZBBVseW/U31DvB/21r/c+rGOScjrvxGIAWZ1c+u/P0aQAZkk4b8C9Er0sNvjv5oUDamnFPe/hW2jpq2G+r+l+7qkqv31v70BZ6/V9Pa/OmAT8FcD9L9iLZnyWxPdv7r9NLHpkM+/up+masDU0r8jSLRV0Epivwza73ybMZu/YVbpZP0Lxr9jJ7iCAWzYP29a4DCH7Oc/qHG57zQ9vz/sYIYDJEGuP3kXI6G2moS/s9Ur82Orwz9rOdHTvgZjP2iE08u2vsK/VVyM6TFM0z8j550TRmK2P0SzK4KaMde/qA4qpdMe5b9fXQMfflLov9arayVuq/G/z5vrKGxy+b9lljDXzEjzv0F4jEqhmPm/6bOnER5B/b+Jv+r+EOsCwJVO4zuk6wjABSa1ZpGYCMDtSq7M9U4QwGANCTYHFw/AgifssmsKEcCp/KxbDswOwLzF806S8QvAYgPn6qXYCsCHTq5FofYFwIDjJcY8zQPAl3tTyh/KB8BAXXf35xwDwBeq5/sbzQTACwIgUAGhA8DYKA8lAj/5v0KygQMRJvG/JJIGAJRD3b+thr80mcD0v5s6MjZTiu2/aG8DxAu6978v0E6t/qD2v/vi0t83hwHAbxsgDflcAsCBL+d3qKwCwDBlPYWc0Pq/vKp6SY3H/b8ZtAdUAhjhv43MBzuPyvi/1z/ag0tN9b/cLlZZHRDuvzJma7ZdW/a/EfOAnyf287860WUuJYXDv8yt07Dp99a/Dp2ILiFd578YbtWVeO7yvxV2LBpJmPu/OYFUHHJx8L/8RJjKuKT3v3M8OpMB/QXAmvGy2nyP+79WExKx5X/2v8SfwAMDqvq/FnrbtlRn+78YhZs7PTr3v1WO3coVIvS/DPPWlE/c+r/nn3pG6ZP5v/6W7QLwsfK/p0YxD7X14b/axuM4mW/av+P/Eo+OMMQ/dtJSGo4lwr+dqVsucIXVvx3a4VDgfda/uNOE8Vg14L+VG+6+JQG9v51hZ49VINS/8uX5a0TOuL+A0KLtV1DgP5/6xnfeSec/eiWWQien2z+YjgGBQZ7tP3WFjUbxjfQ/I38ZsMfG6z9ynbEeXy75P1l4HkcvNPQ/5dgk0hQj8z+FbdiFWO3wPykhzwJoSvc/hLszsduu9j/qsnXtaZrxP/Axtrx7b+g/2zXqEpZH8j/PEjwYxDnyP3RfMeQtWPI/w3CF4f3k9z8AVjWKuWAAQEi90tCJgfY/nzAazOi44T+lYZhkomPjP40uR6O+07a/HdubnYPk3L+mGUWJuXPZv+NUFyi/geU//203TiNv4D+4WKuE/iXvP8GQlIabjtw/HZjeQF996D/97JfHkUDlP+hmFtLp2e0/kQoQ6ONW5T80cn6nOPDvP4PQ75UVEvA/eVD8KVs04T8iI3ZJf+7gPxzwa4NsLuo/pzwZ6tCG3D8wCTN+cbDPP7Y8mrw1C9Q/CMzw8cOruj+pKeiJ0Czpv8gwl8JlINS/BP88P3iWxb+BiXyfouvQv9U7nQvjRuG/t4wwxnHh4r/aHOU+XQTsvyt+TwnQqe+/f+bHQlb95b8etrS91inSv6AYpYhmMdU/GlMKiRAaj79YZ5oIYvrTP79uc2QBpcw/vDuSi8P21j+HrxA1JbbYPxOLTF2sQNM/sWtF1yLV0L+cUdZIelbdv+GuH8Knz8K/YVPgv0gE0r+nnwNwFS/hP3NomQntItQ/6D3JAYx3wj8LvjVD0v3VP+t7K1iSP90/pGVktwzLzj+5xoEr5X/dP1rtUEyp4+k//lvc4xMv1z+SNL2ie+vkP10w3LJfiu4/OZXP1f5G6D/01EP/dE3mP93+f7Sn1ec/3oap72uk8T9lnj2bi5D2PyUR43WwufI/yMPzAdi18j+DrJDo9Df1PwlII8mTMPI/FeUTLEEr7T8GmbFpMAzYP8ll5TLBw+U/67s3II7L8D8N01hdvwHmPy/tVysPfc0/sayJBiW21L9q4Pdz6s3Uv2+FFAGni+G/ehZYdDOi1L/3FQIIRWvUv6iTpl20qdY/mNiF9k9i3D/E0+4pBK3gPzUqyrPgL9c/GgIqJ5go1L9TXBqhJ0rLP9AkCmx6uNg/pisNqd8z3j+4uvOumT3FP1yb46GT272/sMNqXrjTrL8pcA7D6ePGv2HuyxMuVOe/xbD+Ijj17r/PQALl1tzov0IrYgrPYfi/jHz51bn8979RhIWwkCIAwJgzAOieEP2/AJqpjHF9+r9LUYMhimX5vw1H0ml04/i/1qxDMU8SAcDSsOCVmHYBwLsC8FaFoQLACKnOHr6SA8AGliUUaG4AwNKQC2OjlQHAFwLm2ToQAMDpnmttiTsAwI88sPAmJgHAxgH0AiSt+78ckTbf7kL7v+t/NS3PEvy/ulXPcZ6Y/b+zImkorzD3v5/H2U5zpfu/H0WYvLfT+79uXREKwPr4vwSXzFE5z/O/ULTRznEC978t9dZdRGH0v1MLoIn/CfO/46INfJsC8r+9DOyiZ/zyv/d18C5M/fG/x+X+Hqbx6r/NAHppx6Dsvx2542HrwfK/2eu+3YoP87/lcQnuhxvxv6Lt/FW46fG/U4RN36ym9r9eMMMi4C/5v5UXTUG7ifq/NelTEWNn+r/jTYd7a9z2v5FJoFaQCPS/bkSGqhgj8r+h6dFeWejtv2f44IytQOm//ohLfouI579CebPdWo7pv7VNlwsuzOu/syFcPEmW47/rAkl685Dvv3i5zz0lI/C/xehx3/R98L9+XHZcVDvwv3ztbJDJ+fO/equhmQUa9r8I8OI9Zx34vyzHEX3Eh/u/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/AAAAAAAA+H8AAAAAAAD4fwAAAAAAAPh/", + "dtype": "f8" + }, + "yaxis": "y" + }, + { + "line": { + "color": "blue", + "width": 2 + }, + "name": "ADA-USDT (Normalized)", + "opacity": 0.8, + "type": "scatter", + "x": [ + "2025-06-02T13:30:00.000000000", + "2025-06-02T13:31:00.000000000", + "2025-06-02T13:32:00.000000000", + "2025-06-02T13:33:00.000000000", + "2025-06-02T13:34:00.000000000", + "2025-06-02T13:35:00.000000000", + "2025-06-02T13:36:00.000000000", + "2025-06-02T13:37:00.000000000", + "2025-06-02T13:38:00.000000000", + "2025-06-02T13:39:00.000000000", + "2025-06-02T13:40:00.000000000", + "2025-06-02T13:41:00.000000000", + "2025-06-02T13:42:00.000000000", + "2025-06-02T13:43:00.000000000", + "2025-06-02T13:44:00.000000000", + "2025-06-02T13:45:00.000000000", + "2025-06-02T13:46:00.000000000", + "2025-06-02T13:47:00.000000000", + "2025-06-02T13:48:00.000000000", + "2025-06-02T13:49:00.000000000", + "2025-06-02T13:50:00.000000000", + "2025-06-02T13:51:00.000000000", + "2025-06-02T13:52:00.000000000", + "2025-06-02T13:53:00.000000000", + "2025-06-02T13:54:00.000000000", + "2025-06-02T13:55:00.000000000", + "2025-06-02T13:56:00.000000000", + "2025-06-02T13:57:00.000000000", + "2025-06-02T13:58:00.000000000", + "2025-06-02T13:59:00.000000000", + "2025-06-02T14:00:00.000000000", + "2025-06-02T14:01:00.000000000", + "2025-06-02T14:02:00.000000000", + "2025-06-02T14:03:00.000000000", + "2025-06-02T14:04:00.000000000", + "2025-06-02T14:05:00.000000000", + "2025-06-02T14:06:00.000000000", + "2025-06-02T14:07:00.000000000", + "2025-06-02T14:08:00.000000000", + "2025-06-02T14:09:00.000000000", + "2025-06-02T14:10:00.000000000", + "2025-06-02T14:11:00.000000000", + "2025-06-02T14:12:00.000000000", + "2025-06-02T14:13:00.000000000", + "2025-06-02T14:14:00.000000000", + "2025-06-02T14:15:00.000000000", + "2025-06-02T14:16:00.000000000", + "2025-06-02T14:17:00.000000000", + "2025-06-02T14:18:00.000000000", + "2025-06-02T14:19:00.000000000", + "2025-06-02T14:20:00.000000000", + "2025-06-02T14:21:00.000000000", + "2025-06-02T14:22:00.000000000", + "2025-06-02T14:23:00.000000000", + "2025-06-02T14:24:00.000000000", + "2025-06-02T14:25:00.000000000", + "2025-06-02T14:26:00.000000000", + "2025-06-02T14:27:00.000000000", + "2025-06-02T14:28:00.000000000", + "2025-06-02T14:29:00.000000000", + "2025-06-02T14:30:00.000000000", + "2025-06-02T14:31:00.000000000", + "2025-06-02T14:32:00.000000000", + "2025-06-02T14:33:00.000000000", + "2025-06-02T14:34:00.000000000", + "2025-06-02T14:35:00.000000000", + "2025-06-02T14:36:00.000000000", + "2025-06-02T14:37:00.000000000", + "2025-06-02T14:38:00.000000000", + "2025-06-02T14:39:00.000000000", + "2025-06-02T14:40:00.000000000", + "2025-06-02T14:41:00.000000000", + "2025-06-02T14:42:00.000000000", + "2025-06-02T14:43:00.000000000", + "2025-06-02T14:44:00.000000000", + "2025-06-02T14:45:00.000000000", + "2025-06-02T14:46:00.000000000", + "2025-06-02T14:47:00.000000000", + "2025-06-02T14:48:00.000000000", + "2025-06-02T14:49:00.000000000", + "2025-06-02T14:50:00.000000000", + "2025-06-02T14:51:00.000000000", + "2025-06-02T14:53:00.000000000", + "2025-06-02T14:54:00.000000000", + "2025-06-02T14:55:00.000000000", + "2025-06-02T14:56:00.000000000", + "2025-06-02T14:57:00.000000000", + "2025-06-02T14:58:00.000000000", + "2025-06-02T14:59:00.000000000", + "2025-06-02T15:00:00.000000000", + "2025-06-02T15:01:00.000000000", + "2025-06-02T15:02:00.000000000", + "2025-06-02T15:03:00.000000000", + "2025-06-02T15:04:00.000000000", + "2025-06-02T15:05:00.000000000", + "2025-06-02T15:06:00.000000000", + "2025-06-02T15:07:00.000000000", + "2025-06-02T15:08:00.000000000", + "2025-06-02T15:09:00.000000000", + "2025-06-02T15:10:00.000000000", + "2025-06-02T15:11:00.000000000", + "2025-06-02T15:12:00.000000000", + "2025-06-02T15:13:00.000000000", + "2025-06-02T15:14:00.000000000", + "2025-06-02T15:15:00.000000000", + "2025-06-02T15:16:00.000000000", + "2025-06-02T15:17:00.000000000", + "2025-06-02T15:18:00.000000000", + "2025-06-02T15:19:00.000000000", + "2025-06-02T15:20:00.000000000", + "2025-06-02T15:21:00.000000000", + "2025-06-02T15:22:00.000000000", + "2025-06-02T15:23:00.000000000", + "2025-06-02T15:24:00.000000000", + "2025-06-02T15:25:00.000000000", + "2025-06-02T15:26:00.000000000", + "2025-06-02T15:27:00.000000000", + "2025-06-02T15:28:00.000000000", + "2025-06-02T15:29:00.000000000", + "2025-06-02T15:30:00.000000000", + "2025-06-02T15:31:00.000000000", + "2025-06-02T15:32:00.000000000", + "2025-06-02T15:33:00.000000000", + "2025-06-02T15:34:00.000000000", + "2025-06-02T15:35:00.000000000", + "2025-06-02T15:36:00.000000000", + "2025-06-02T15:37:00.000000000", + "2025-06-02T15:38:00.000000000", + "2025-06-02T15:39:00.000000000", + "2025-06-02T15:40:00.000000000", + "2025-06-02T15:41:00.000000000", + "2025-06-02T15:42:00.000000000", + "2025-06-02T15:43:00.000000000", + "2025-06-02T15:44:00.000000000", + "2025-06-02T15:45:00.000000000", + "2025-06-02T15:46:00.000000000", + "2025-06-02T15:47:00.000000000", + "2025-06-02T15:48:00.000000000", + "2025-06-02T15:49:00.000000000", + "2025-06-02T15:50:00.000000000", + "2025-06-02T15:51:00.000000000", + "2025-06-02T15:52:00.000000000", + "2025-06-02T15:53:00.000000000", + "2025-06-02T15:54:00.000000000", + "2025-06-02T15:55:00.000000000", + "2025-06-02T15:56:00.000000000", + "2025-06-02T15:57:00.000000000", + "2025-06-02T15:58:00.000000000", + "2025-06-02T15:59:00.000000000", + "2025-06-02T16:00:00.000000000", + "2025-06-02T16:01:00.000000000", + "2025-06-02T16:02:00.000000000", + "2025-06-02T16:03:00.000000000", + "2025-06-02T16:04:00.000000000", + "2025-06-02T16:05:00.000000000", + "2025-06-02T16:06:00.000000000", + "2025-06-02T16:07:00.000000000", + "2025-06-02T16:08:00.000000000", + "2025-06-02T16:09:00.000000000", + "2025-06-02T16:10:00.000000000", + "2025-06-02T16:11:00.000000000", + "2025-06-02T16:12:00.000000000", + "2025-06-02T16:13:00.000000000", + "2025-06-02T16:14:00.000000000", + "2025-06-02T16:15:00.000000000", + "2025-06-02T16:16:00.000000000", + "2025-06-02T16:17:00.000000000", + "2025-06-02T16:18:00.000000000", + "2025-06-02T16:19:00.000000000", + "2025-06-02T16:20:00.000000000", + "2025-06-02T16:21:00.000000000", + "2025-06-02T16:22:00.000000000", + "2025-06-02T16:23:00.000000000", + "2025-06-02T16:24:00.000000000", + "2025-06-02T16:25:00.000000000", + "2025-06-02T16:26:00.000000000", + "2025-06-02T16:27:00.000000000", + "2025-06-02T16:28:00.000000000", + "2025-06-02T16:29:00.000000000", + "2025-06-02T16:30:00.000000000", + "2025-06-02T16:31:00.000000000", + "2025-06-02T16:32:00.000000000", + "2025-06-02T16:33:00.000000000", + "2025-06-02T16:34:00.000000000", + "2025-06-02T16:35:00.000000000", + "2025-06-02T16:36:00.000000000", + "2025-06-02T16:37:00.000000000", + "2025-06-02T16:38:00.000000000", + "2025-06-02T16:39:00.000000000", + "2025-06-02T16:40:00.000000000", + "2025-06-02T16:41:00.000000000", + "2025-06-02T16:42:00.000000000", + "2025-06-02T16:43:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T16:45:00.000000000", + "2025-06-02T16:46:00.000000000", + "2025-06-02T16:47:00.000000000", + "2025-06-02T16:48:00.000000000", + "2025-06-02T16:49:00.000000000", + "2025-06-02T16:50:00.000000000", + "2025-06-02T16:51:00.000000000", + "2025-06-02T16:52:00.000000000", + "2025-06-02T16:53:00.000000000", + "2025-06-02T16:54:00.000000000", + "2025-06-02T16:55:00.000000000", + "2025-06-02T16:56:00.000000000", + "2025-06-02T16:57:00.000000000", + "2025-06-02T16:58:00.000000000", + "2025-06-02T16:59:00.000000000", + "2025-06-02T17:00:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:02:00.000000000", + "2025-06-02T17:03:00.000000000", + "2025-06-02T17:04:00.000000000", + "2025-06-02T17:05:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:07:00.000000000", + "2025-06-02T17:08:00.000000000", + "2025-06-02T17:09:00.000000000", + "2025-06-02T17:10:00.000000000", + "2025-06-02T17:11:00.000000000", + "2025-06-02T17:12:00.000000000", + "2025-06-02T17:13:00.000000000", + "2025-06-02T17:14:00.000000000", + "2025-06-02T17:15:00.000000000", + "2025-06-02T17:16:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:18:00.000000000", + "2025-06-02T17:19:00.000000000", + "2025-06-02T17:20:00.000000000", + "2025-06-02T17:21:00.000000000", + "2025-06-02T17:22:00.000000000", + "2025-06-02T17:23:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T17:25:00.000000000", + "2025-06-02T17:26:00.000000000", + "2025-06-02T17:27:00.000000000", + "2025-06-02T17:28:00.000000000", + "2025-06-02T17:29:00.000000000", + "2025-06-02T17:30:00.000000000", + "2025-06-02T17:31:00.000000000", + "2025-06-02T17:32:00.000000000", + "2025-06-02T17:33:00.000000000", + "2025-06-02T17:34:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T17:36:00.000000000", + "2025-06-02T17:37:00.000000000", + "2025-06-02T17:38:00.000000000", + "2025-06-02T17:39:00.000000000", + "2025-06-02T17:40:00.000000000", + "2025-06-02T17:41:00.000000000", + "2025-06-02T17:42:00.000000000", + "2025-06-02T17:43:00.000000000", + "2025-06-02T17:44:00.000000000", + "2025-06-02T17:45:00.000000000", + "2025-06-02T17:46:00.000000000", + "2025-06-02T17:47:00.000000000", + "2025-06-02T17:48:00.000000000", + "2025-06-02T17:49:00.000000000", + "2025-06-02T17:50:00.000000000", + "2025-06-02T17:51:00.000000000", + "2025-06-02T17:52:00.000000000", + "2025-06-02T17:53:00.000000000", + "2025-06-02T17:54:00.000000000", + "2025-06-02T17:55:00.000000000", + "2025-06-02T17:56:00.000000000", + "2025-06-02T17:57:00.000000000", + "2025-06-02T17:58:00.000000000", + "2025-06-02T17:59:00.000000000", + "2025-06-02T18:00:00.000000000", + "2025-06-02T18:01:00.000000000", + "2025-06-02T18:02:00.000000000", + "2025-06-02T18:03:00.000000000", + "2025-06-02T18:04:00.000000000", + "2025-06-02T18:05:00.000000000", + "2025-06-02T18:06:00.000000000", + "2025-06-02T18:07:00.000000000", + "2025-06-02T18:08:00.000000000", + "2025-06-02T18:09:00.000000000", + "2025-06-02T18:10:00.000000000", + "2025-06-02T18:11:00.000000000", + "2025-06-02T18:12:00.000000000", + "2025-06-02T18:13:00.000000000", + "2025-06-02T18:14:00.000000000", + "2025-06-02T18:15:00.000000000", + "2025-06-02T18:16:00.000000000", + "2025-06-02T18:17:00.000000000", + "2025-06-02T18:18:00.000000000", + "2025-06-02T18:19:00.000000000", + "2025-06-02T18:20:00.000000000", + "2025-06-02T18:21:00.000000000", + "2025-06-02T18:22:00.000000000", + "2025-06-02T18:23:00.000000000", + "2025-06-02T18:24:00.000000000", + "2025-06-02T18:25:00.000000000", + "2025-06-02T18:26:00.000000000", + "2025-06-02T18:27:00.000000000", + "2025-06-02T18:28:00.000000000", + "2025-06-02T18:29:00.000000000", + "2025-06-02T18:30:00.000000000", + "2025-06-02T18:31:00.000000000", + "2025-06-02T18:32:00.000000000", + "2025-06-02T18:33:00.000000000", + "2025-06-02T18:34:00.000000000", + "2025-06-02T18:35:00.000000000", + "2025-06-02T18:36:00.000000000", + "2025-06-02T18:37:00.000000000", + "2025-06-02T18:38:00.000000000", + "2025-06-02T18:39:00.000000000", + "2025-06-02T18:40:00.000000000", + "2025-06-02T18:41:00.000000000", + "2025-06-02T18:42:00.000000000", + "2025-06-02T18:43:00.000000000", + "2025-06-02T18:44:00.000000000", + "2025-06-02T18:45:00.000000000", + "2025-06-02T18:46:00.000000000", + "2025-06-02T18:47:00.000000000", + "2025-06-02T18:48:00.000000000", + "2025-06-02T18:49:00.000000000", + "2025-06-02T18:50:00.000000000", + "2025-06-02T18:51:00.000000000", + "2025-06-02T18:52:00.000000000", + "2025-06-02T18:53:00.000000000", + "2025-06-02T18:54:00.000000000", + "2025-06-02T18:55:00.000000000", + "2025-06-02T18:56:00.000000000", + "2025-06-02T18:57:00.000000000", + "2025-06-02T18:58:00.000000000", + "2025-06-02T18:59:00.000000000", + "2025-06-02T19:00:00.000000000", + "2025-06-02T19:01:00.000000000", + "2025-06-02T19:02:00.000000000", + "2025-06-02T19:03:00.000000000", + "2025-06-02T19:04:00.000000000", + "2025-06-02T19:05:00.000000000", + "2025-06-02T19:06:00.000000000", + "2025-06-02T19:07:00.000000000", + "2025-06-02T19:08:00.000000000", + "2025-06-02T19:09:00.000000000", + "2025-06-02T19:10:00.000000000", + "2025-06-02T19:11:00.000000000", + "2025-06-02T19:12:00.000000000", + "2025-06-02T19:13:00.000000000", + "2025-06-02T19:14:00.000000000", + "2025-06-02T19:15:00.000000000", + "2025-06-02T19:16:00.000000000", + "2025-06-02T19:17:00.000000000", + "2025-06-02T19:18:00.000000000", + "2025-06-02T19:19:00.000000000", + "2025-06-02T19:20:00.000000000", + "2025-06-02T19:21:00.000000000", + "2025-06-02T19:22:00.000000000", + "2025-06-02T19:23:00.000000000", + "2025-06-02T19:24:00.000000000", + "2025-06-02T19:25:00.000000000", + "2025-06-02T19:26:00.000000000", + "2025-06-02T19:27:00.000000000", + "2025-06-02T19:28:00.000000000", + "2025-06-02T19:29:00.000000000", + "2025-06-02T19:30:00.000000000", + "2025-06-02T19:31:00.000000000", + "2025-06-02T19:32:00.000000000", + "2025-06-02T19:33:00.000000000", + "2025-06-02T19:34:00.000000000", + "2025-06-02T19:35:00.000000000", + "2025-06-02T19:36:00.000000000", + "2025-06-02T19:37:00.000000000", + "2025-06-02T19:38:00.000000000", + "2025-06-02T19:39:00.000000000", + "2025-06-02T19:40:00.000000000", + "2025-06-02T19:41:00.000000000", + "2025-06-02T19:42:00.000000000", + "2025-06-02T19:43:00.000000000", + "2025-06-02T19:44:00.000000000", + "2025-06-02T19:45:00.000000000", + "2025-06-02T19:46:00.000000000", + "2025-06-02T19:47:00.000000000", + "2025-06-02T19:48:00.000000000", + "2025-06-02T19:49:00.000000000", + "2025-06-02T19:50:00.000000000", + "2025-06-02T19:51:00.000000000", + "2025-06-02T19:52:00.000000000", + "2025-06-02T19:53:00.000000000", + "2025-06-02T19:54:00.000000000", + "2025-06-02T19:55:00.000000000", + "2025-06-02T19:56:00.000000000", + "2025-06-02T19:57:00.000000000", + "2025-06-02T19:58:00.000000000", + "2025-06-02T19:59:00.000000000", + "2025-06-02T20:00:00.000000000", + "2025-06-02T20:01:00.000000000", + "2025-06-02T20:02:00.000000000", + "2025-06-02T20:03:00.000000000", + "2025-06-02T20:04:00.000000000", + "2025-06-02T20:05:00.000000000", + "2025-06-02T20:06:00.000000000", + "2025-06-02T20:07:00.000000000", + "2025-06-02T20:08:00.000000000", + "2025-06-02T20:09:00.000000000", + "2025-06-02T20:10:00.000000000", + "2025-06-02T20:11:00.000000000", + "2025-06-02T20:12:00.000000000", + "2025-06-02T20:13:00.000000000", + "2025-06-02T20:14:00.000000000", + "2025-06-02T20:15:00.000000000", + "2025-06-02T20:16:00.000000000", + "2025-06-02T20:17:00.000000000", + "2025-06-02T20:18:00.000000000", + "2025-06-02T20:19:00.000000000", + "2025-06-02T20:20:00.000000000", + "2025-06-02T20:21:00.000000000", + "2025-06-02T20:22:00.000000000", + "2025-06-02T20:23:00.000000000", + "2025-06-02T20:24:00.000000000", + "2025-06-02T20:25:00.000000000", + "2025-06-02T20:26:00.000000000", + "2025-06-02T20:27:00.000000000", + "2025-06-02T20:28:00.000000000", + "2025-06-02T20:29:00.000000000", + "2025-06-02T20:30:00.000000000", + "2025-06-02T20:31:00.000000000", + "2025-06-02T20:32:00.000000000", + "2025-06-02T20:33:00.000000000", + "2025-06-02T20:34:00.000000000", + "2025-06-02T20:35:00.000000000", + "2025-06-02T20:36:00.000000000", + "2025-06-02T20:37:00.000000000", + "2025-06-02T20:38:00.000000000", + "2025-06-02T20:39:00.000000000", + "2025-06-02T20:40:00.000000000", + "2025-06-02T20:41:00.000000000", + "2025-06-02T20:42:00.000000000", + "2025-06-02T20:43:00.000000000", + "2025-06-02T20:44:00.000000000", + "2025-06-02T20:45:00.000000000", + "2025-06-02T20:46:00.000000000", + "2025-06-02T20:47:00.000000000", + "2025-06-02T20:48:00.000000000", + "2025-06-02T20:49:00.000000000", + "2025-06-02T20:50:00.000000000", + "2025-06-02T20:51:00.000000000", + "2025-06-02T20:52:00.000000000", + "2025-06-02T20:53:00.000000000", + "2025-06-02T20:54:00.000000000", + "2025-06-02T20:55:00.000000000", + "2025-06-02T20:56:00.000000000", + "2025-06-02T20:57:00.000000000", + "2025-06-02T20:58:00.000000000", + "2025-06-02T20:59:00.000000000", + "2025-06-02T21:00:00.000000000", + "2025-06-02T21:01:00.000000000", + "2025-06-02T21:02:00.000000000", + "2025-06-02T21:03:00.000000000", + "2025-06-02T21:04:00.000000000", + "2025-06-02T21:05:00.000000000", + "2025-06-02T21:06:00.000000000", + "2025-06-02T21:07:00.000000000", + "2025-06-02T21:08:00.000000000", + "2025-06-02T21:09:00.000000000", + "2025-06-02T21:10:00.000000000", + "2025-06-02T21:11:00.000000000", + "2025-06-02T21:12:00.000000000", + "2025-06-02T21:13:00.000000000", + "2025-06-02T21:14:00.000000000", + "2025-06-02T21:15:00.000000000", + "2025-06-02T21:16:00.000000000", + "2025-06-02T21:17:00.000000000", + "2025-06-02T21:18:00.000000000", + "2025-06-02T21:19:00.000000000", + "2025-06-02T21:20:00.000000000", + "2025-06-02T21:21:00.000000000", + "2025-06-02T21:22:00.000000000", + "2025-06-02T21:23:00.000000000", + "2025-06-02T21:24:00.000000000", + "2025-06-02T21:25:00.000000000", + "2025-06-02T21:26:00.000000000", + "2025-06-02T21:27:00.000000000", + "2025-06-02T21:28:00.000000000", + "2025-06-02T21:29:00.000000000", + "2025-06-02T21:30:00.000000000", + "2025-06-02T21:31:00.000000000", + "2025-06-02T21:32:00.000000000", + "2025-06-02T21:33:00.000000000", + "2025-06-02T21:34:00.000000000", + "2025-06-02T21:35:00.000000000", + "2025-06-02T21:36:00.000000000", + "2025-06-02T21:37:00.000000000", + "2025-06-02T21:38:00.000000000", + "2025-06-02T21:39:00.000000000", + "2025-06-02T21:40:00.000000000", + "2025-06-02T21:41:00.000000000", + "2025-06-02T21:42:00.000000000", + "2025-06-02T21:43:00.000000000", + "2025-06-02T21:44:00.000000000", + "2025-06-02T21:45:00.000000000", + "2025-06-02T21:46:00.000000000", + "2025-06-02T21:47:00.000000000", + "2025-06-02T21:48:00.000000000", + "2025-06-02T21:49:00.000000000", + "2025-06-02T21:50:00.000000000", + "2025-06-02T21:51:00.000000000", + "2025-06-02T21:52:00.000000000", + "2025-06-02T21:53:00.000000000", + "2025-06-02T21:54:00.000000000", + "2025-06-02T21:55:00.000000000", + "2025-06-02T21:56:00.000000000", + "2025-06-02T21:57:00.000000000", + "2025-06-02T21:58:00.000000000", + "2025-06-02T21:59:00.000000000", + "2025-06-02T22:00:00.000000000", + "2025-06-02T22:01:00.000000000", + "2025-06-02T22:02:00.000000000", + "2025-06-02T22:03:00.000000000", + "2025-06-02T22:04:00.000000000", + "2025-06-02T22:05:00.000000000", + "2025-06-02T22:06:00.000000000", + "2025-06-02T22:07:00.000000000", + "2025-06-02T22:08:00.000000000", + "2025-06-02T22:09:00.000000000", + "2025-06-02T22:10:00.000000000", + "2025-06-02T22:11:00.000000000", + "2025-06-02T22:12:00.000000000", + "2025-06-02T22:13:00.000000000", + "2025-06-02T22:14:00.000000000", + "2025-06-02T22:15:00.000000000", + "2025-06-02T22:16:00.000000000", + "2025-06-02T22:17:00.000000000", + "2025-06-02T22:18:00.000000000", + "2025-06-02T22:19:00.000000000", + "2025-06-02T22:20:00.000000000", + "2025-06-02T22:21:00.000000000", + "2025-06-02T22:22:00.000000000", + "2025-06-02T22:23:00.000000000", + "2025-06-02T22:24:00.000000000", + "2025-06-02T22:25:00.000000000", + "2025-06-02T22:26:00.000000000", + "2025-06-02T22:27:00.000000000", + "2025-06-02T22:28:00.000000000", + "2025-06-02T22:29:00.000000000", + "2025-06-02T22:30:00.000000000" + ], + "xaxis": "x2", + "y": { + "bdata": "AAAAAAAA8D9Vl7oORgTwPwDGLyzSDPA/z4vw4DUM8D9hOq7CCg7wP/Poa6TfD/A/SYAmsyUU8D96umX+wRTwP5I6HTp5G/A/hl1ZsoYe8D+q9KRJXhXwP1Vd6joYEfA/z4vw4DUM8D/z6Guk3w/wPxhG52eJE/A/qvSkSV4V8D/Pi/DgNQzwP3r0NdLvB/A/GIC3O7cG8D+2CzmlfgXwPxi6hw/l+e8/GLqHD+X57z8YuocP5fnvPwsXlFsg8O8/57kYmHbs7z9sixLyWPHvP7ZFCXms+O8/bIsS8ljx7z/O/5CIkfLvP2yLEvJY8e8/znMxMO3Y7z/DXJ3UzOjvPxi6hw/l+e8/JF17w6kD8D+S6I21AvXvP/5zoKdb5u8/eaKmTXnh7z/O/5CIkfLvP9qihDxW/O8/nYuBacf+7z+GRZoBPuvvP4ZFmgE+6+8/GLqHD+X57z8xdA8fyvPvP7ZFCXms+O8/JNEbawXq7z+S6I21AvXvP0guly6v7e8/nYuBacf+7z8Mo/OzxAnwP6oudR2MCPA/bRdySv0K8D8kI6vvexDwPyQjq+97EPA/MQBvd24N8D8AjF9YpBnwP1UjGmfqHfA/AIxfWKQZ8D/bLuSU+hXwP0mAJrMlFPA/PaNiKzMX8D/oC6gc7RLwP+gLqBztEvA/PaNiKzMX8D/zrpvQsRzwPwCMX1ikGfA/nxfhwWsY8D8MaSPglhbwP8OuLFlDD/A/evQ10u8H8D/DrixZQw/wP2E6rsIKDvA/z4vw4DUM8D+G0flZ4gTwPwAAAAAAAPA/MTo/S5wA8D8LF5RbIPDvP87/kIiR8u8/hkWaAT7r7z/zXAxMO/bvP2HoHj6U5+8/bIsS8ljx7z9V0Yric/fvP1XRiuJz9+8/AAAAAAAA8D/D6PwscQLwP1WXug5GBPA/kq694dQB8D8Mo/OzxAnwPzEAb3duDfA/GIC3O7cG8D8kXXvDqQPwP9qihDxW/O8/kuiNtQL17z8YuocP5fnvPzF0Dx/K8+8/hkWaAT7r7z9h6B4+lOfvP2HoHj6U5+8/JNEbawXq7z8xdA8fyvPvP5LojbUC9e8/tgs5pX4F8D/zIjx4DQPwP8Po/CxxAvA/eS4Gph377z8AAAAAAADwP1WXug5GBPA/Sbr2hlMH8D+2CzmlfgXwP8Po/CxxAvA/htH5WeIE8D969DXS7wfwPxhG52eJE/A/kjodOnkb8D+q9KRJXhXwP+gLqBztEvA/8+hrpN8P8D+SdO0Npw7wP/Poa6TfD/A/knTtDacO8D8kI6vvexDwP20Xckr9CvA/Sbr2hlMH8D969DXS7wfwPz3dMv9gCvA/Sbr2hlMH8D/baLRoKAnwP6oudR2MCPA/MQBvd24N8D/z6Guk3w/wP8OuLFlDD/A/8+hrpN8P8D+30WjRUBLwPxhG52eJE/A/t9Fo0VAS8D+GlymGtBHwPyQjq+97EPA/bRdySv0K8D89o2IrMxfwPwxpI+CWFvA/2y7klPoV8D8MaSPglhbwPz2jYiszF/A/qvSkSV4V8D+GlymGtBHwPyQjq+97EPA/SYAmsyUU8D96umX+wRTwP7fRaNFQEvA/SYAmsyUU8D+q9KRJXhXwP8OuLFlDD/A/MQBvd24N8D9VXeo6GBHwPz3dMv9gCvA/6EV48BoG8D+2CzmlfgXwPwDGLyzSDPA/qi51HYwI8D/Pi/DgNQzwPz3dMv9gCvA/22i0aCgJ8D969DXS7wfwP6oudR2MCPA/evQ10u8H8D/baLRoKAnwP8+L8OA1DPA/qi51HYwI8D9JuvaGUwfwP8+L8OA1DPA/22i0aCgJ8D9Vl7oORgTwP4bR+VniBPA/JF17w6kD8D+qohXF5+7vP1XRiuJz9+8/eS4Gph377z95LgamHfvvP5LojbUC9e8/CxeUWyDw7z9V0Yric/fvPzF0Dx/K8+8/eS4Gph377z/zIjx4DQPwP7YLOaV+BfA/8yI8eA0D8D+2CzmlfgXwP7YLOaV+BfA/VZe6DkYE8D8kXXvDqQPwP4bR+VniBPA/8yI8eA0D8D+di4Fpx/7vP5KuveHUAfA/MTo/S5wA8D893TL/YArwPxiAtzu3BvA/YXR+ljgB8D+Srr3h1AHwP1WXug5GBPA/Sbr2hlMH8D/baLRoKAnwP8OuLFlDD/A/MQBvd24N8D/oC6gc7RLwP9su5JT6FfA/hpcphrQR8D8kI6vvexDwP4aXKYa0EfA/2y7klPoV8D+q9KRJXhXwPxhG52eJE/A/VV3qOhgR8D8YRudniRPwP4aXKYa0EfA/6AuoHO0S8D8xAG93bg3wP4aXKYa0EfA/PaNiKzMX8D8YRudniRPwPwDGLyzSDPA/tgs5pX4F8D+G0flZ4gTwP4bR+VniBPA/22i0aCgJ8D893TL/YArwP3q6Zf7BFPA/bd2hds8X8D8xxp6jQBrwP89RIA0IGfA/hpcphrQR8D/PUSANCBnwP8N0XIUVHPA/hl1ZsoYe8D8AjF9YpBnwP6r0pEleFfA/DGkj4JYW8D/bLuSU+hXwP7fRaNFQEvA/YTquwgoO8D8kI6vvexDwP3r0NdLvB/A/qi51HYwI8D+Srr3h1AHwPyRde8OpA/A/GIC3O7cG8D+qLnUdjAjwPwyj87PECfA/kq694dQB8D8xOj9LnADwP2F0fpY4AfA/nYuBacf+7z8kXXvDqQPwP/MiPHgNA/A/VZe6DkYE8D+2CzmlfgXwPxiAtzu3BvA/AMYvLNIM8D+eUbGVmQvwPzEAb3duDfA/AMYvLNIM8D9VXeo6GBHwP5J07Q2nDvA/8+hrpN8P8D+GlymGtBHwP6r0pEleFfA/6AuoHO0S8D8YRudniRPwP9su5JT6FfA/PaNiKzMX8D8YRudniRPwP3q6Zf7BFPA/z1EgDQgZ8D8AjF9YpBnwPwxpI+CWFvA/PaNiKzMX8D/PUSANCBnwP58X4cFrGPA/GEbnZ4kT8D/oC6gc7RLwP7fRaNFQEvA/VV3qOhgR8D/bLuSU+hXwP89RIA0IGfA/Mcaeo0Aa8D9hAN7u3BrwP/Oum9CxHPA/hl1ZsoYe8D8ML1MMaSPwPwBSj4R2JvA/DPWCODsw8D+GI4neWCvwP3pGxVZmLvA/qoAEogIv8D8xUv775DPwP+iXB3WRLPA/hiOJ3lgr8D/zdMv8gynwP5IATWZLKPA/VelJk7wq8D+GI4neWCvwP4Yjid5YK/A/JK8KSCAq8D8AUo+EdibwP8M6jLHnKPA/qrrUdTAi8D89aZJXBSTwP7eXmP0iH/A/GAwXlFsg8D89aZJXBSTwP+jR10i/H/A/SUZW3/cg8D8YDBeUWyDwP/Oum9CxHPA/t5eY/SIf8D+SOh06eRvwPwCMX1ikGfA/kjodOnkb8D/DdFyFFRzwP4ZdWbKGHvA/866b0LEc8D/PUSANCBnwP89RIA0IGfA/qvSkSV4V8D89o2IrMxfwPxhG52eJE/A/GEbnZ4kT8D89o2IrMxfwP89RIA0IGfA/JOnaG04d8D8ML1MMaSPwP5IATWZLKPA/MYzOzxIn8D9V6UmTvCrwP1XpSZO8KvA/DC9TDGkj8D9JRlbf9yDwP6q61HUwIvA/hl1ZsoYe8D9t3aF2zxfwP7fRaNFQEvA/JCOr73sQ8D8kI6vvexDwP8OuLFlDD/A/6AuoHO0S8D+q9KRJXhXwP58X4cFrGPA/bd2hds8X8D/PUSANCBnwPzHGnqNAGvA/YQDe7twa8D8MaSPglhbwP23doXbPF/A/bd2hds8X8D+fF+HBaxjwP6r0pEleFfA/SYAmsyUU8D9JgCazJRTwPxhG52eJE/A/t9Fo0VAS8D+eUbGVmQvwPz3dMv9gCvA/htH5WeIE8D/oRXjwGgbwP0m69oZTB/A/Sbr2hlMH8D8kXXvDqQPwP5KuveHUAfA/tkUJeaz47z9sixLyWPHvP3kuBqYd++8/VdGK4nP37z8YuocP5fnvPzF0Dx/K8+8/VdGK4nP37z8YuocP5fnvPwAAAAAAAPA/VZe6DkYE8D969DXS7wfwP0m69oZTB/A/22i0aCgJ8D969DXS7wfwP6oudR2MCPA/z4vw4DUM8D/Pi/DgNQzwP55RsZWZC/A/knTtDacO8D+SdO0Npw7wPxhG52eJE/A/PaNiKzMX8D8xxp6jQBrwP5I6HTp5G/A/83TL/IMp8D+f3RDuPSXwPySvCkggKvA/6JcHdZEs8D/olwd1kSzwP5+jQBoQMvA/qkY0ztQ78D96DPWCODvwP24vMftFPvA/z6OvkX4/8D8A3u7cGkDwP2FSbXNTQfA/koysvu9B8D/DxusJjELwP6oMZPqmSPA/6CNnzTVG8D9hUm1zU0HwP5KMrL7vQfA/SZjlY25H8D+36SeCmUXwPxhephjSRvA/hq/oNv1E8D9hUm1zU0HwPzEYLii3QPA/koysvu9B8D/0ACtVKEPwP+gjZ801RvA/hq/oNv1E8D9uLzH7RT7wP0nStTecOvA/9Dr7KFY28D9Wr3m/jjfwP/Q6+yhWNvA/ksZ8kh018D8kdTp08jbwP3oM9YI4O/A/n2lwRuI+8D96DPWCODvwP0nStTecOvA/PfXxr6k98D+faXBG4j7wPz318a+pPfA/egz1gjg78D9Wr3m/jjfwP3oM9YI4O/A/qkY0ztQ78D/DALzduTXwPwAYv7BIM/A/MVL+++Qz8D89L8KD1zDwP5+jQBoQMvA/YYw9R4E08D/P3X9lrDLwP6pGNM7UO/A/bi8x+0U+8D+faXBG4j7wP5KMrL7vQfA/Pbsh3HtK8D8NgeKQ30nwP8OMGzZeT/A/6OmW+QdT8D96mFTb3FTwPzGkjYBbWvA/n/XPnoZY8D8Aak41v1nwP0leFZBAVPA/JQGazJZQ8D8ApB4J7UzwP1Y72RczUfA/VjvZFzNR8D+3r1eua1LwP1Y72RczUfA/q9KTJnlV8D8lAZrMllDwP3rSJK8KSPA/GF6mGNJG8D/0ACtVKEPwP8PG6wmMQvA/VnWp62BE8D9WdanrYETwP3rSJK8KSPA/6CNnzTVG8D960iSvCkjwP6oMZPqmSPA/SZjlY25H8D9JmOVjbkfwP+gjZ801RvA/etIkrwpI8D/oI2fNNUbwP/QAK1UoQ/A/egz1gjg78D8Mu7JkDT3wP+gjZ801RvA/Md5dVIlN8D/Pad+9UEzwP8OMGzZeT/A/ny+gcrRL8D9JmOVjbkfwP/QAK1UoQ/A/6CNnzTVG8D960iSvCkjwP0mY5WNuR/A/SZjlY25H8D960iSvCkjwP3rSJK8KSPA/etIkrwpI8D+SUtzqwU7wPwCkHgntTPA/Md5dVIlN8D8ApB4J7UzwP271YCcYS/A/Pbsh3HtK8D89uyHce0rwP89p371QTPA/VjvZFzNR8D+GdRhjz1HwPzGkjYBbWvA/3NICnudi8D9JJEW8EmHwP8QYe44CafA/JY35JDtq8D/P9T4W9WXwP+h19lGsbPA/9FK62Z5p8D+rXvN+HW/wP2JqLCScdPA/hgF4u3Nr8D8A9q2NY3PwPxiwNZ1IbfA/DdNxFVZw8D+rXvN+HW/wPw3TcRVWcPA/MTDt2P9z8D/cmDLKuW/wP2JqLCScdPA/Vo1onKl38D/Pu25Cx3LwP9yYMsq5b/A/9FK62Z5p8D/Pu25Cx3LwPxh2ZckaevA/ALzduTWA8D+fR18j/X7wPxh2ZckaevA/6Dsmfn558D9JsKQUt3rwP+g7Jn5+efA/", + "dtype": "f8" + }, + "yaxis": "y2" + }, + { + "line": { + "color": "orange", + "width": 2 + }, + "name": "SOL-USDT (Normalized)", + "opacity": 0.8, + "type": "scatter", + "x": [ + "2025-06-02T13:30:00.000000000", + "2025-06-02T13:31:00.000000000", + "2025-06-02T13:32:00.000000000", + "2025-06-02T13:33:00.000000000", + "2025-06-02T13:34:00.000000000", + "2025-06-02T13:35:00.000000000", + "2025-06-02T13:36:00.000000000", + "2025-06-02T13:37:00.000000000", + "2025-06-02T13:38:00.000000000", + "2025-06-02T13:39:00.000000000", + "2025-06-02T13:40:00.000000000", + "2025-06-02T13:41:00.000000000", + "2025-06-02T13:42:00.000000000", + "2025-06-02T13:43:00.000000000", + "2025-06-02T13:44:00.000000000", + "2025-06-02T13:45:00.000000000", + "2025-06-02T13:46:00.000000000", + "2025-06-02T13:47:00.000000000", + "2025-06-02T13:48:00.000000000", + "2025-06-02T13:49:00.000000000", + "2025-06-02T13:50:00.000000000", + "2025-06-02T13:51:00.000000000", + "2025-06-02T13:52:00.000000000", + "2025-06-02T13:53:00.000000000", + "2025-06-02T13:54:00.000000000", + "2025-06-02T13:55:00.000000000", + "2025-06-02T13:56:00.000000000", + "2025-06-02T13:57:00.000000000", + "2025-06-02T13:58:00.000000000", + "2025-06-02T13:59:00.000000000", + "2025-06-02T14:00:00.000000000", + "2025-06-02T14:01:00.000000000", + "2025-06-02T14:02:00.000000000", + "2025-06-02T14:03:00.000000000", + "2025-06-02T14:04:00.000000000", + "2025-06-02T14:05:00.000000000", + "2025-06-02T14:06:00.000000000", + "2025-06-02T14:07:00.000000000", + "2025-06-02T14:08:00.000000000", + "2025-06-02T14:09:00.000000000", + "2025-06-02T14:10:00.000000000", + "2025-06-02T14:11:00.000000000", + "2025-06-02T14:12:00.000000000", + "2025-06-02T14:13:00.000000000", + "2025-06-02T14:14:00.000000000", + "2025-06-02T14:15:00.000000000", + "2025-06-02T14:16:00.000000000", + "2025-06-02T14:17:00.000000000", + "2025-06-02T14:18:00.000000000", + "2025-06-02T14:19:00.000000000", + "2025-06-02T14:20:00.000000000", + "2025-06-02T14:21:00.000000000", + "2025-06-02T14:22:00.000000000", + "2025-06-02T14:23:00.000000000", + "2025-06-02T14:24:00.000000000", + "2025-06-02T14:25:00.000000000", + "2025-06-02T14:26:00.000000000", + "2025-06-02T14:27:00.000000000", + "2025-06-02T14:28:00.000000000", + "2025-06-02T14:29:00.000000000", + "2025-06-02T14:30:00.000000000", + "2025-06-02T14:31:00.000000000", + "2025-06-02T14:32:00.000000000", + "2025-06-02T14:33:00.000000000", + "2025-06-02T14:34:00.000000000", + "2025-06-02T14:35:00.000000000", + "2025-06-02T14:36:00.000000000", + "2025-06-02T14:37:00.000000000", + "2025-06-02T14:38:00.000000000", + "2025-06-02T14:39:00.000000000", + "2025-06-02T14:40:00.000000000", + "2025-06-02T14:41:00.000000000", + "2025-06-02T14:42:00.000000000", + "2025-06-02T14:43:00.000000000", + "2025-06-02T14:44:00.000000000", + "2025-06-02T14:45:00.000000000", + "2025-06-02T14:46:00.000000000", + "2025-06-02T14:47:00.000000000", + "2025-06-02T14:48:00.000000000", + "2025-06-02T14:49:00.000000000", + "2025-06-02T14:50:00.000000000", + "2025-06-02T14:51:00.000000000", + "2025-06-02T14:53:00.000000000", + "2025-06-02T14:54:00.000000000", + "2025-06-02T14:55:00.000000000", + "2025-06-02T14:56:00.000000000", + "2025-06-02T14:57:00.000000000", + "2025-06-02T14:58:00.000000000", + "2025-06-02T14:59:00.000000000", + "2025-06-02T15:00:00.000000000", + "2025-06-02T15:01:00.000000000", + "2025-06-02T15:02:00.000000000", + "2025-06-02T15:03:00.000000000", + "2025-06-02T15:04:00.000000000", + "2025-06-02T15:05:00.000000000", + "2025-06-02T15:06:00.000000000", + "2025-06-02T15:07:00.000000000", + "2025-06-02T15:08:00.000000000", + "2025-06-02T15:09:00.000000000", + "2025-06-02T15:10:00.000000000", + "2025-06-02T15:11:00.000000000", + "2025-06-02T15:12:00.000000000", + "2025-06-02T15:13:00.000000000", + "2025-06-02T15:14:00.000000000", + "2025-06-02T15:15:00.000000000", + "2025-06-02T15:16:00.000000000", + "2025-06-02T15:17:00.000000000", + "2025-06-02T15:18:00.000000000", + "2025-06-02T15:19:00.000000000", + "2025-06-02T15:20:00.000000000", + "2025-06-02T15:21:00.000000000", + "2025-06-02T15:22:00.000000000", + "2025-06-02T15:23:00.000000000", + "2025-06-02T15:24:00.000000000", + "2025-06-02T15:25:00.000000000", + "2025-06-02T15:26:00.000000000", + "2025-06-02T15:27:00.000000000", + "2025-06-02T15:28:00.000000000", + "2025-06-02T15:29:00.000000000", + "2025-06-02T15:30:00.000000000", + "2025-06-02T15:31:00.000000000", + "2025-06-02T15:32:00.000000000", + "2025-06-02T15:33:00.000000000", + "2025-06-02T15:34:00.000000000", + "2025-06-02T15:35:00.000000000", + "2025-06-02T15:36:00.000000000", + "2025-06-02T15:37:00.000000000", + "2025-06-02T15:38:00.000000000", + "2025-06-02T15:39:00.000000000", + "2025-06-02T15:40:00.000000000", + "2025-06-02T15:41:00.000000000", + "2025-06-02T15:42:00.000000000", + "2025-06-02T15:43:00.000000000", + "2025-06-02T15:44:00.000000000", + "2025-06-02T15:45:00.000000000", + "2025-06-02T15:46:00.000000000", + "2025-06-02T15:47:00.000000000", + "2025-06-02T15:48:00.000000000", + "2025-06-02T15:49:00.000000000", + "2025-06-02T15:50:00.000000000", + "2025-06-02T15:51:00.000000000", + "2025-06-02T15:52:00.000000000", + "2025-06-02T15:53:00.000000000", + "2025-06-02T15:54:00.000000000", + "2025-06-02T15:55:00.000000000", + "2025-06-02T15:56:00.000000000", + "2025-06-02T15:57:00.000000000", + "2025-06-02T15:58:00.000000000", + "2025-06-02T15:59:00.000000000", + "2025-06-02T16:00:00.000000000", + "2025-06-02T16:01:00.000000000", + "2025-06-02T16:02:00.000000000", + "2025-06-02T16:03:00.000000000", + "2025-06-02T16:04:00.000000000", + "2025-06-02T16:05:00.000000000", + "2025-06-02T16:06:00.000000000", + "2025-06-02T16:07:00.000000000", + "2025-06-02T16:08:00.000000000", + "2025-06-02T16:09:00.000000000", + "2025-06-02T16:10:00.000000000", + "2025-06-02T16:11:00.000000000", + "2025-06-02T16:12:00.000000000", + "2025-06-02T16:13:00.000000000", + "2025-06-02T16:14:00.000000000", + "2025-06-02T16:15:00.000000000", + "2025-06-02T16:16:00.000000000", + "2025-06-02T16:17:00.000000000", + "2025-06-02T16:18:00.000000000", + "2025-06-02T16:19:00.000000000", + "2025-06-02T16:20:00.000000000", + "2025-06-02T16:21:00.000000000", + "2025-06-02T16:22:00.000000000", + "2025-06-02T16:23:00.000000000", + "2025-06-02T16:24:00.000000000", + "2025-06-02T16:25:00.000000000", + "2025-06-02T16:26:00.000000000", + "2025-06-02T16:27:00.000000000", + "2025-06-02T16:28:00.000000000", + "2025-06-02T16:29:00.000000000", + "2025-06-02T16:30:00.000000000", + "2025-06-02T16:31:00.000000000", + "2025-06-02T16:32:00.000000000", + "2025-06-02T16:33:00.000000000", + "2025-06-02T16:34:00.000000000", + "2025-06-02T16:35:00.000000000", + "2025-06-02T16:36:00.000000000", + "2025-06-02T16:37:00.000000000", + "2025-06-02T16:38:00.000000000", + "2025-06-02T16:39:00.000000000", + "2025-06-02T16:40:00.000000000", + "2025-06-02T16:41:00.000000000", + "2025-06-02T16:42:00.000000000", + "2025-06-02T16:43:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T16:45:00.000000000", + "2025-06-02T16:46:00.000000000", + "2025-06-02T16:47:00.000000000", + "2025-06-02T16:48:00.000000000", + "2025-06-02T16:49:00.000000000", + "2025-06-02T16:50:00.000000000", + "2025-06-02T16:51:00.000000000", + "2025-06-02T16:52:00.000000000", + "2025-06-02T16:53:00.000000000", + "2025-06-02T16:54:00.000000000", + "2025-06-02T16:55:00.000000000", + "2025-06-02T16:56:00.000000000", + "2025-06-02T16:57:00.000000000", + "2025-06-02T16:58:00.000000000", + "2025-06-02T16:59:00.000000000", + "2025-06-02T17:00:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:02:00.000000000", + "2025-06-02T17:03:00.000000000", + "2025-06-02T17:04:00.000000000", + "2025-06-02T17:05:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:07:00.000000000", + "2025-06-02T17:08:00.000000000", + "2025-06-02T17:09:00.000000000", + "2025-06-02T17:10:00.000000000", + "2025-06-02T17:11:00.000000000", + "2025-06-02T17:12:00.000000000", + "2025-06-02T17:13:00.000000000", + "2025-06-02T17:14:00.000000000", + "2025-06-02T17:15:00.000000000", + "2025-06-02T17:16:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:18:00.000000000", + "2025-06-02T17:19:00.000000000", + "2025-06-02T17:20:00.000000000", + "2025-06-02T17:21:00.000000000", + "2025-06-02T17:22:00.000000000", + "2025-06-02T17:23:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T17:25:00.000000000", + "2025-06-02T17:26:00.000000000", + "2025-06-02T17:27:00.000000000", + "2025-06-02T17:28:00.000000000", + "2025-06-02T17:29:00.000000000", + "2025-06-02T17:30:00.000000000", + "2025-06-02T17:31:00.000000000", + "2025-06-02T17:32:00.000000000", + "2025-06-02T17:33:00.000000000", + "2025-06-02T17:34:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T17:36:00.000000000", + "2025-06-02T17:37:00.000000000", + "2025-06-02T17:38:00.000000000", + "2025-06-02T17:39:00.000000000", + "2025-06-02T17:40:00.000000000", + "2025-06-02T17:41:00.000000000", + "2025-06-02T17:42:00.000000000", + "2025-06-02T17:43:00.000000000", + "2025-06-02T17:44:00.000000000", + "2025-06-02T17:45:00.000000000", + "2025-06-02T17:46:00.000000000", + "2025-06-02T17:47:00.000000000", + "2025-06-02T17:48:00.000000000", + "2025-06-02T17:49:00.000000000", + "2025-06-02T17:50:00.000000000", + "2025-06-02T17:51:00.000000000", + "2025-06-02T17:52:00.000000000", + "2025-06-02T17:53:00.000000000", + "2025-06-02T17:54:00.000000000", + "2025-06-02T17:55:00.000000000", + "2025-06-02T17:56:00.000000000", + "2025-06-02T17:57:00.000000000", + "2025-06-02T17:58:00.000000000", + "2025-06-02T17:59:00.000000000", + "2025-06-02T18:00:00.000000000", + "2025-06-02T18:01:00.000000000", + "2025-06-02T18:02:00.000000000", + "2025-06-02T18:03:00.000000000", + "2025-06-02T18:04:00.000000000", + "2025-06-02T18:05:00.000000000", + "2025-06-02T18:06:00.000000000", + "2025-06-02T18:07:00.000000000", + "2025-06-02T18:08:00.000000000", + "2025-06-02T18:09:00.000000000", + "2025-06-02T18:10:00.000000000", + "2025-06-02T18:11:00.000000000", + "2025-06-02T18:12:00.000000000", + "2025-06-02T18:13:00.000000000", + "2025-06-02T18:14:00.000000000", + "2025-06-02T18:15:00.000000000", + "2025-06-02T18:16:00.000000000", + "2025-06-02T18:17:00.000000000", + "2025-06-02T18:18:00.000000000", + "2025-06-02T18:19:00.000000000", + "2025-06-02T18:20:00.000000000", + "2025-06-02T18:21:00.000000000", + "2025-06-02T18:22:00.000000000", + "2025-06-02T18:23:00.000000000", + "2025-06-02T18:24:00.000000000", + "2025-06-02T18:25:00.000000000", + "2025-06-02T18:26:00.000000000", + "2025-06-02T18:27:00.000000000", + "2025-06-02T18:28:00.000000000", + "2025-06-02T18:29:00.000000000", + "2025-06-02T18:30:00.000000000", + "2025-06-02T18:31:00.000000000", + "2025-06-02T18:32:00.000000000", + "2025-06-02T18:33:00.000000000", + "2025-06-02T18:34:00.000000000", + "2025-06-02T18:35:00.000000000", + "2025-06-02T18:36:00.000000000", + "2025-06-02T18:37:00.000000000", + "2025-06-02T18:38:00.000000000", + "2025-06-02T18:39:00.000000000", + "2025-06-02T18:40:00.000000000", + "2025-06-02T18:41:00.000000000", + "2025-06-02T18:42:00.000000000", + "2025-06-02T18:43:00.000000000", + "2025-06-02T18:44:00.000000000", + "2025-06-02T18:45:00.000000000", + "2025-06-02T18:46:00.000000000", + "2025-06-02T18:47:00.000000000", + "2025-06-02T18:48:00.000000000", + "2025-06-02T18:49:00.000000000", + "2025-06-02T18:50:00.000000000", + "2025-06-02T18:51:00.000000000", + "2025-06-02T18:52:00.000000000", + "2025-06-02T18:53:00.000000000", + "2025-06-02T18:54:00.000000000", + "2025-06-02T18:55:00.000000000", + "2025-06-02T18:56:00.000000000", + "2025-06-02T18:57:00.000000000", + "2025-06-02T18:58:00.000000000", + "2025-06-02T18:59:00.000000000", + "2025-06-02T19:00:00.000000000", + "2025-06-02T19:01:00.000000000", + "2025-06-02T19:02:00.000000000", + "2025-06-02T19:03:00.000000000", + "2025-06-02T19:04:00.000000000", + "2025-06-02T19:05:00.000000000", + "2025-06-02T19:06:00.000000000", + "2025-06-02T19:07:00.000000000", + "2025-06-02T19:08:00.000000000", + "2025-06-02T19:09:00.000000000", + "2025-06-02T19:10:00.000000000", + "2025-06-02T19:11:00.000000000", + "2025-06-02T19:12:00.000000000", + "2025-06-02T19:13:00.000000000", + "2025-06-02T19:14:00.000000000", + "2025-06-02T19:15:00.000000000", + "2025-06-02T19:16:00.000000000", + "2025-06-02T19:17:00.000000000", + "2025-06-02T19:18:00.000000000", + "2025-06-02T19:19:00.000000000", + "2025-06-02T19:20:00.000000000", + "2025-06-02T19:21:00.000000000", + "2025-06-02T19:22:00.000000000", + "2025-06-02T19:23:00.000000000", + "2025-06-02T19:24:00.000000000", + "2025-06-02T19:25:00.000000000", + "2025-06-02T19:26:00.000000000", + "2025-06-02T19:27:00.000000000", + "2025-06-02T19:28:00.000000000", + "2025-06-02T19:29:00.000000000", + "2025-06-02T19:30:00.000000000", + "2025-06-02T19:31:00.000000000", + "2025-06-02T19:32:00.000000000", + "2025-06-02T19:33:00.000000000", + "2025-06-02T19:34:00.000000000", + "2025-06-02T19:35:00.000000000", + "2025-06-02T19:36:00.000000000", + "2025-06-02T19:37:00.000000000", + "2025-06-02T19:38:00.000000000", + "2025-06-02T19:39:00.000000000", + "2025-06-02T19:40:00.000000000", + "2025-06-02T19:41:00.000000000", + "2025-06-02T19:42:00.000000000", + "2025-06-02T19:43:00.000000000", + "2025-06-02T19:44:00.000000000", + "2025-06-02T19:45:00.000000000", + "2025-06-02T19:46:00.000000000", + "2025-06-02T19:47:00.000000000", + "2025-06-02T19:48:00.000000000", + "2025-06-02T19:49:00.000000000", + "2025-06-02T19:50:00.000000000", + "2025-06-02T19:51:00.000000000", + "2025-06-02T19:52:00.000000000", + "2025-06-02T19:53:00.000000000", + "2025-06-02T19:54:00.000000000", + "2025-06-02T19:55:00.000000000", + "2025-06-02T19:56:00.000000000", + "2025-06-02T19:57:00.000000000", + "2025-06-02T19:58:00.000000000", + "2025-06-02T19:59:00.000000000", + "2025-06-02T20:00:00.000000000", + "2025-06-02T20:01:00.000000000", + "2025-06-02T20:02:00.000000000", + "2025-06-02T20:03:00.000000000", + "2025-06-02T20:04:00.000000000", + "2025-06-02T20:05:00.000000000", + "2025-06-02T20:06:00.000000000", + "2025-06-02T20:07:00.000000000", + "2025-06-02T20:08:00.000000000", + "2025-06-02T20:09:00.000000000", + "2025-06-02T20:10:00.000000000", + "2025-06-02T20:11:00.000000000", + "2025-06-02T20:12:00.000000000", + "2025-06-02T20:13:00.000000000", + "2025-06-02T20:14:00.000000000", + "2025-06-02T20:15:00.000000000", + "2025-06-02T20:16:00.000000000", + "2025-06-02T20:17:00.000000000", + "2025-06-02T20:18:00.000000000", + "2025-06-02T20:19:00.000000000", + "2025-06-02T20:20:00.000000000", + "2025-06-02T20:21:00.000000000", + "2025-06-02T20:22:00.000000000", + "2025-06-02T20:23:00.000000000", + "2025-06-02T20:24:00.000000000", + "2025-06-02T20:25:00.000000000", + "2025-06-02T20:26:00.000000000", + "2025-06-02T20:27:00.000000000", + "2025-06-02T20:28:00.000000000", + "2025-06-02T20:29:00.000000000", + "2025-06-02T20:30:00.000000000", + "2025-06-02T20:31:00.000000000", + "2025-06-02T20:32:00.000000000", + "2025-06-02T20:33:00.000000000", + "2025-06-02T20:34:00.000000000", + "2025-06-02T20:35:00.000000000", + "2025-06-02T20:36:00.000000000", + "2025-06-02T20:37:00.000000000", + "2025-06-02T20:38:00.000000000", + "2025-06-02T20:39:00.000000000", + "2025-06-02T20:40:00.000000000", + "2025-06-02T20:41:00.000000000", + "2025-06-02T20:42:00.000000000", + "2025-06-02T20:43:00.000000000", + "2025-06-02T20:44:00.000000000", + "2025-06-02T20:45:00.000000000", + "2025-06-02T20:46:00.000000000", + "2025-06-02T20:47:00.000000000", + "2025-06-02T20:48:00.000000000", + "2025-06-02T20:49:00.000000000", + "2025-06-02T20:50:00.000000000", + "2025-06-02T20:51:00.000000000", + "2025-06-02T20:52:00.000000000", + "2025-06-02T20:53:00.000000000", + "2025-06-02T20:54:00.000000000", + "2025-06-02T20:55:00.000000000", + "2025-06-02T20:56:00.000000000", + "2025-06-02T20:57:00.000000000", + "2025-06-02T20:58:00.000000000", + "2025-06-02T20:59:00.000000000", + "2025-06-02T21:00:00.000000000", + "2025-06-02T21:01:00.000000000", + "2025-06-02T21:02:00.000000000", + "2025-06-02T21:03:00.000000000", + "2025-06-02T21:04:00.000000000", + "2025-06-02T21:05:00.000000000", + "2025-06-02T21:06:00.000000000", + "2025-06-02T21:07:00.000000000", + "2025-06-02T21:08:00.000000000", + "2025-06-02T21:09:00.000000000", + "2025-06-02T21:10:00.000000000", + "2025-06-02T21:11:00.000000000", + "2025-06-02T21:12:00.000000000", + "2025-06-02T21:13:00.000000000", + "2025-06-02T21:14:00.000000000", + "2025-06-02T21:15:00.000000000", + "2025-06-02T21:16:00.000000000", + "2025-06-02T21:17:00.000000000", + "2025-06-02T21:18:00.000000000", + "2025-06-02T21:19:00.000000000", + "2025-06-02T21:20:00.000000000", + "2025-06-02T21:21:00.000000000", + "2025-06-02T21:22:00.000000000", + "2025-06-02T21:23:00.000000000", + "2025-06-02T21:24:00.000000000", + "2025-06-02T21:25:00.000000000", + "2025-06-02T21:26:00.000000000", + "2025-06-02T21:27:00.000000000", + "2025-06-02T21:28:00.000000000", + "2025-06-02T21:29:00.000000000", + "2025-06-02T21:30:00.000000000", + "2025-06-02T21:31:00.000000000", + "2025-06-02T21:32:00.000000000", + "2025-06-02T21:33:00.000000000", + "2025-06-02T21:34:00.000000000", + "2025-06-02T21:35:00.000000000", + "2025-06-02T21:36:00.000000000", + "2025-06-02T21:37:00.000000000", + "2025-06-02T21:38:00.000000000", + "2025-06-02T21:39:00.000000000", + "2025-06-02T21:40:00.000000000", + "2025-06-02T21:41:00.000000000", + "2025-06-02T21:42:00.000000000", + "2025-06-02T21:43:00.000000000", + "2025-06-02T21:44:00.000000000", + "2025-06-02T21:45:00.000000000", + "2025-06-02T21:46:00.000000000", + "2025-06-02T21:47:00.000000000", + "2025-06-02T21:48:00.000000000", + "2025-06-02T21:49:00.000000000", + "2025-06-02T21:50:00.000000000", + "2025-06-02T21:51:00.000000000", + "2025-06-02T21:52:00.000000000", + "2025-06-02T21:53:00.000000000", + "2025-06-02T21:54:00.000000000", + "2025-06-02T21:55:00.000000000", + "2025-06-02T21:56:00.000000000", + "2025-06-02T21:57:00.000000000", + "2025-06-02T21:58:00.000000000", + "2025-06-02T21:59:00.000000000", + "2025-06-02T22:00:00.000000000", + "2025-06-02T22:01:00.000000000", + "2025-06-02T22:02:00.000000000", + "2025-06-02T22:03:00.000000000", + "2025-06-02T22:04:00.000000000", + "2025-06-02T22:05:00.000000000", + "2025-06-02T22:06:00.000000000", + "2025-06-02T22:07:00.000000000", + "2025-06-02T22:08:00.000000000", + "2025-06-02T22:09:00.000000000", + "2025-06-02T22:10:00.000000000", + "2025-06-02T22:11:00.000000000", + "2025-06-02T22:12:00.000000000", + "2025-06-02T22:13:00.000000000", + "2025-06-02T22:14:00.000000000", + "2025-06-02T22:15:00.000000000", + "2025-06-02T22:16:00.000000000", + "2025-06-02T22:17:00.000000000", + "2025-06-02T22:18:00.000000000", + "2025-06-02T22:19:00.000000000", + "2025-06-02T22:20:00.000000000", + "2025-06-02T22:21:00.000000000", + "2025-06-02T22:22:00.000000000", + "2025-06-02T22:23:00.000000000", + "2025-06-02T22:24:00.000000000", + "2025-06-02T22:25:00.000000000", + "2025-06-02T22:26:00.000000000", + "2025-06-02T22:27:00.000000000", + "2025-06-02T22:28:00.000000000", + "2025-06-02T22:29:00.000000000", + "2025-06-02T22:30:00.000000000" + ], + "xaxis": "x2", + "y": { + "bdata": "AAAAAAAA8D9/SODthwTwP53nNmQQBfA/98Q6x6kG8D8bMBdSmAnwP/6QwNsPCfA/lKxxK7oL8D+xS8ihQgzwP7/j08oOEfA/xq9Z33QT8D/KjdgnVQHwPxJ2inGs8u8/F1QJuozg7z8l7BTjWOXvP4ry5ErO9O8/uJiGDhPx7z9Ci2tZ4eXvP47QY5Ou4u8/ZghBGErU7z+WHSIAf8fvP+FiGjpMxO8/tiu4mve+7z8eoccmXcXvPwPg7/i0su8/fFxK0ta07z/FMgPos7rvP/TYpKv4tu8/In9Gbz2z7z9AHp3lxbPvPyJ/Rm89s+8/CL5uQZWg7z8U5zpGca7vP3xcStLWtO8/eH7LifbG7z/Tyg4RgL/vPwPg7/i0su8/Q43cCbaq7z+K9FX7ornvP4QW17LCy+8/0FvP7I/I7z8RePshgbfvP9Y5TjVwtu8/xMPDw8PD7z8fEAdLTbzvP0dp6qHB0+8/aua/YCrC7z9nd4A8OsvvPxAJvP2QwO8/vuVEe+PV7z/orWf2R+TvPwm8/ZDA2+8/6K1n9kfk7z9BHCw18e7vP167gqt57+8/9kVzHxTp7z9a3QNjmQHwP/D4tLJDBPA/DpgLKcwE8D/hYKmJd//vP/Jn9NYz++8/HZ9WdogA8D8Bbz8k8PbvP7UpR+oi+u8/aeROsFX97z8bMBdSmAnwP6t/Qo3cCfA/573vee0K8D/g8WllhwjwPx2fVnaIAPA/bFOO1EX07z8AAAAAAADwP8qN2CdVAfA/4WCpiXf/7z8wFeHnNPPvP5n5L5iK8O8/5z4o0lft7z/orWf2R+TvP9oVXM173+8/N2KfVAXY7z/rHKcaONvvPzxAHp3lxe8/wVSEn9PM7z+ktS0pS8zvP/D6JWMYye8/oUbuBFvV7z+Dp5eO0tTvP5E/o7ee2e8/DCs9tbDS7z8mW1QHSdzvP/m0skME4O8//pIxjOTN7z/e89oVXM3vP9PKDhGAv+8/AnGw1MS77z/xaWWHCMDvP7YruJr3vu8/1jlONXC27z/mQJmCLLLvP7oJN+PXrO8/bsQ+qQqw7z+pAuyVG7HvP2tV/4Qaue8/OdHeePXO7z94fsuJ9sbvP9Bbz+yPyO8/Pa9dwdW87z/FMgPos7rvPx6hxyZdxe8/GzKIAm3O7z/e89oVXM3vPyo5008pyu8/StgpxrHK7z9mCEEYStTvP8Ywkjff9e8/4WCpiXf/7z98WtkhAvDvP6oAe+VG7O8/QotrWeHl7z9TkramneHvP6xvugk34+8/6K1n9kfk7z/Zphypi+jvP5E/o7ee2e8/3vPaFVzN7z/+kjGM5M3vPznR3nj1zu8/StgpxrHK7z+yTTlSF9HvP3UPjGUG0O8/gDhYauLd7z/5tLJDBODvPzTzXzAV4e8/F1QJuozg7z/aFVzNe9/vP/m0skME4O8/NPNfMBXh7z9yoExBFtnvP7JNOVIX0e8/0FvP7I/I7z+9dgVX897vP47QY5Ou4u8/jtBjk67i7z+caG+8eufvP6xvugk34+8/vXYFV/Pe7z+RP6O3ntnvPyZbVAdJ3O8/U5K2pp3h7z/orWf2R+TvPyZbVAdJ3O8/JltUB0nc7z/dhJvxa9bvPxsyiAJtzu8/VQH2yo3Y7z/orWf2R+TvP6/e+S0n2u8/7YvmPijS7z850d549c7vP2YIQRhK1O8/0FvP7I/I7z/BVISf08zvP5Ou4tuO0O8/Wd90E27G7z/hYho6TMTvP0tHaeqhwe8//wFxsNTE7z+lJG1NO8PvP/6SMYzkze8/KjnTTynK7z9Z33QTbsbvP8/sj8if0e8/GzKIAm3O7z+HhRbXssLvP8TDw8PDw+8/xMPDw8PD7z/YqI1ZYK3vPwPg7/i0su8/t5r3vue17z8RePshgbfvPwPg7/i0su8/fsuJ9sar7z/j0VlePLvvP/TYpKv4tu8/Pa9dwdW87z94fsuJ9sbvP+FiGjpMxO8/h4UW17LC7z//AXGw1MTvP1nfdBNuxu8/EAm8/ZDA7z+XjGEkb77vP8TDw8PDw+8/lh0iAH/H7z/Tyg4RgL/vP0tHaeqhwe8/8WllhwjA7z91D4xlBtDvP9Bbz+yPyO8/xTID6LO67z9rVf+EGrnvP5eMYSRvvu8/Z3eAPDrL7z/BVISf08zvP3KgTEEW2e8/6xynGjjb7z9gKsLPaebvPzOEIAwl6u8/F1QJuozg7z+AOFhq4t3vPxdUCbqM4O8/f8kYRvLm7z/aFVzNe9/vP4A4WGri3e8/vuVEe+PV7z9yoExBFtnvP92Em/Fr1u8/Y5kB9Fnd7z/7I/Jn9NbvPwm8/ZDA2+8/jtBjk67i7z+9dgVX897vP0dp6qHB0+8/s7x4dgfI7z+lJG1NO8PvP3h+y4n2xu8/3vPaFVzN7z91D4xlBtDvPxdUCbqM4O8/2aYcqYvo7z9BHCw18e7vP0EcLDXx7u8/2aYcqYvo7z8wFeHnNPPvP5iK8HOa+e8/HZ9WdogA8D8Bbz8k8PbvPyJ91b5o7u8/uJiGDhPx7z8wFeHnNPPvP7UpR+oi+u8/QRwsNfHu7z/WN92Em/HvP9mmHKmL6O8/9kVzHxTp7z9jmQH0Wd3vP+scpxo42+8/cTENHSbi7z+caG+8eufvP41hJG++6+8/Cbz9kMDb7z/7I/Jn9NbvP/m0skME4O8/r975LSfa7z+AOFhq4t3vP/m0skME4O8/gDhYauLd7z/orWf2R+TvPwTefkjg7e8/mIrwc5r57z/z1jP7I/LvP/Jn9NYz++8/1MidYKv67z/DwVIT7/7vP0xF+DnN/O8/re6BscwA8D/KjdgnVQHwP9FZXjy7A/A/yo3YJ1UB8D/hYKmJd//vP0MKMwF3A/A/DpgLKcwE8D/yZ/TWM/vvP4eDpSbe/e8/QwozAXcD8D8sN2KfVAXwPyRr3IruAvA/8Pi0skME8D9K1rgV3QXwP53nNmQQBfA/w8FSE+/+7z8dn1Z2iADwP49PKztEAPA/1MidYKv67z+WG7FPqgLwP53nNmQQBfA/nec2ZBAF8D+WG7FPqgLwP7S6B8YyA/A/nec2ZBAF8D8LKcwE3A3wP8avWd90E/A/Hh4eHh4e8D8XUpgJuBvwP3j7IYG3H/A/ePshgbcf8D8zgq9bUCXwP3EvnGxRHfA/xEAau4Qc8D/bE+scpxrwP2pjFljrGvA/ywygz+oe8D9CifqoDCHwP+LfcDENHfA/LiVpa9oZ8D+v3Ih9UhXwP+saNmpjFvA/ZQbQZ3UP8D8wlKiPyhDwP8/qHhjLDPA/sUvIoUIM8D8pyCJ7ZA7wPxswF1KYCfA/dQ0btTEL8D8bMBdSmAnwP2GpiXf/A/A/Wt0DY5kB8D8+rewQAfjvP2xTjtRF9O8/AW8/JPD27z9NtDdevfPvP9TInWCr+u8/IA6Wmnj37z9eu4Kree/vP7iYhg4T8e8/rG+6CTfj7z9gKsLPaebvP5/XruBq3u8/jtBjk67i7z+caG+8eufvP27Czfg16+8/TbQ3Xr3z7z8+rewQAfjvPy+mocNE/O8/uJiGDhPx7z+1KUfqIvrvPzAV4ec08+8/NPNfMBXh7z8mW1QHSdzvP5/XruBq3u8/r975LSfa7z+WHSIAf8fvP08l6DKCr+8/nWrgbE+s7z8k7oWTLarvP37LifbGq+8/mvugSF+17z/02KSr+LbvP+PRWV48u+8/49FZXjy77z9LR2nqocHvP3h+y4n2xu8/PEAeneXF7z//AXGw1MTvP9Bbz+yPyO8/HqHHJl3F7z+WHSIAf8fvP6iTrHEruu8/9Nikq/i27z/WOU41cLbvP/TYpKv4tu8/1jlONXC27z+dauBsT6zvPxZWemphpe8/VQNne2Kd7z819dDg6aXvP9iojVlgre8/bsQ+qQqw7z+dauBsT6zvP1KUJ1dypu8/j9LUQ4On7z+v4Gre+57vP9sXzX1QpO8/j9LUQ4On7z+P0tRDg6fvPwi+bkGVoO8/YCwzgD6r7z8yhpG8+a7vP51q4GxPrO8/QB6d5cWz7z/02KSr+LbvPwJxsNTEu+8/ee0Krua97z9q5r9gKsLvP4eFFteywu8/4WIaOkzE7z/w+iVjGMnvP4QW17LCy+8/DCs9tbDS7z9yoExBFtnvP5/XruBq3u8/2hVczXvf7z9xMQ0dJuLvPwZNvmzQ5O8/5z4o0lft7z+O0GOTruLvP8if0VvP7O8/p5E7wVb17z8Bbz8k8PbvP+ksL57dAfA/QZvz3IYM8D9IZ3nx7A7wP3Oe25BBFPA/inGs8mMS8D8ZwdctqBLwP146SlMPDfA/IvycZv4L8D9YbsQ+qQrwPynIIntkDvA/4PFpZYcI8D/BUhPv/gfwPxRkkT0yB/A/QZvz3IYM8D91DRu1MQvwPynIIntkDvA/fNmgyZcN8D9Roj4qQwjwPzMD6LO6B/A/573vee0K8D8i/Jxm/gvwPzCUqI/KEPA/g6Um3v0P8D8pyCJ7ZA7wP+6JdY5TDfA/pLO8eHYH8D8bMBdSmAnwP8FSE+/+B/A/GzAXUpgJ8D8bMBdSmAnwP7gXTraoDvA/9VX7orkP8D/1VfuiuQ/wP0hnefHsDvA/CynMBNwN8D+iRH1UhhDwP2UG0Gd1D/A/sUvIoUIM8D+rf0KN3AnwP1huxD6pCvA/lKxxK7oL8D8bMBdSmAnwP/fEOsepBvA/GzAXUpgJ8D/+kMDbDwnwP/6QwNsPCfA/q39CjdwJ8D/g8WllhwjwP2zSVXzbEfA/okR9VIYQ8D8wlKiPyhDwPzdgLqQwE/A/emphpacW8D+YCbgbMBfwPy4laWvaGfA/F1KYCbgb8D/S2CXkUCHwP4aTLaqDJPA/Qon6qAwh8D8OF9PQYSLwP0KJ+qgMIfA/90MCbz8k8D8l6qMyhCDwP7sFVYIuI/A/f8enlR0i8D/gcDENHSbwPxXjWOXHJPA//g+Ig6Um8D+Gky2qgyTwP4gCbc5zG/A/vXSUph4a8D8Juozg6xbwP7aoDpK4F/A/F1KYCbgb8D8Af8enlR3wP4/O8uLZHfA/ywygz+oe8D/pq/ZFcx/wPzXx7n9AHPA/+bJBky8b8D+IAm3OcxvwP2pjFljrGvA/iAJtznMb8D8XUpgJuBvwP1zLCi8fFvA/okR9VIYQ8D/1VfuiuQ/wP7aoDpK4F/A/NfHuf0Ac8D8XUpgJuBvwPyy2KUfqIvA/Qon6qAwh8D8eHh4eHh7wP+LfcDENHfA/WlzLCi8f8D8OF9PQYSLwP/dDAm8/JPA/SVWAvXIj8D9o9NYz+yPwP+Y8tyGDKPA/jF+zvukm8D/Qaea/YCrwP6v+CTVyJ/A/OU41cLYn8D+MX7O+6SbwP9mkq/i2I/A/4HAxDR0m8D/+D4iDpSbwPzlONXC2J/A/7Qg9Nukq8D/AYptypC7wP0xDh4n4N/A/0lfti+Y+8D9hpxjHKj/wP+Dv+LSyQ/A/0lfti+Y+8D966ShNPTTwPxfRX7FNOfA/25KyxDw48D/Li2d3gDzwPyfYqv4JNfA/zvqmm3Az8D9q4t3/gDjwPy6kMBNwN/A/NXC2J9Y58D/iXjjZojrwP3GuYxTnOvA/lhlAn9U98D9xrmMU5zrwPzMBdwPmQvA/q33R3AdF8D9nc57bkEHwP39Gbz2zP/A/Hp3lxbM78D+ksUvIoULwP+6HBN5+SPA/r9oXzX1Q8D/NeW5DBlHwP2zQ5MsGTfA/5Uw/pShP8D96aPD00lHwP6/aF819UPA/", + "dtype": "f8" + }, + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "green", + "size": 14, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "ADA-USDT BUY OPEN", + "showlegend": true, + "text": [ + "ADA-USDT BUY OPEN OPEN
Time: 2025-06-02 15:31:00
Normalized Price: 1.0036
Actual Price: $0.67", + "ADA-USDT BUY OPEN OPEN
Time: 2025-06-02 16:44:00
Normalized Price: 0.9999
Actual Price: $0.67", + "ADA-USDT BUY OPEN OPEN
Time: 2025-06-02 17:06:00
Normalized Price: 1.0043
Actual Price: $0.67", + "ADA-USDT BUY OPEN OPEN
Time: 2025-06-02 17:24:00
Normalized Price: 1.0069
Actual Price: $0.68", + "ADA-USDT BUY OPEN OPEN
Time: 2025-06-02 19:35:00
Normalized Price: 1.0015
Actual Price: $0.67" + ], + "type": "scatter", + "x": [ + "2025-06-02T15:31:00", + "2025-06-02T16:44:00", + "2025-06-02T17:06:00", + "2025-06-02T17:24:00", + "2025-06-02T19:35:00" + ], + "xaxis": "x2", + "y": [ + 1.0035772842450439, + 0.9998509464897897, + 1.0043225517960948, + 1.0068564614696676, + 1.0014905351021017 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "red", + "size": 14, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "SOL-USDT SELL OPEN", + "showlegend": true, + "text": [ + "SOL-USDT SELL OPEN OPEN
Time: 2025-06-02 15:31:00
Normalized Price: 0.9966
Actual Price: $153.24", + "SOL-USDT SELL OPEN OPEN
Time: 2025-06-02 16:44:00
Normalized Price: 0.9921
Actual Price: $152.51", + "SOL-USDT SELL OPEN OPEN
Time: 2025-06-02 17:06:00
Normalized Price: 0.9949
Actual Price: $153.03", + "SOL-USDT SELL OPEN OPEN
Time: 2025-06-02 17:24:00
Normalized Price: 0.9992
Actual Price: $153.70", + "SOL-USDT SELL OPEN OPEN
Time: 2025-06-02 19:35:00
Normalized Price: 0.9890
Actual Price: $152.13" + ], + "type": "scatter", + "x": [ + "2025-06-02T15:31:00", + "2025-06-02T16:44:00", + "2025-06-02T17:06:00", + "2025-06-02T17:24:00", + "2025-06-02T19:35:00" + ], + "xaxis": "x2", + "y": [ + 0.9966163456533055, + 0.9921264966163456, + 0.9949245184799583, + 0.9992191566892243, + 0.9890031233732431 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "red", + "line": { + "color": "black", + "width": 2 + }, + "size": 14, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "ADA-USDT SELL CLOSE", + "showlegend": true, + "text": [ + "ADA-USDT SELL CLOSE CLOSE
Time: 2025-06-02 15:41:00
Normalized Price: 1.0039
Actual Price: $0.67", + "ADA-USDT SELL CLOSE CLOSE
Time: 2025-06-02 17:01:00
Normalized Price: 1.0054
Actual Price: $0.67", + "ADA-USDT SELL CLOSE CLOSE
Time: 2025-06-02 17:17:00
Normalized Price: 1.0025
Actual Price: $0.67", + "ADA-USDT SELL CLOSE CLOSE
Time: 2025-06-02 17:35:00
Normalized Price: 1.0004
Actual Price: $0.67", + "ADA-USDT SELL CLOSE CLOSE
Time: 2025-06-02 22:29:00
Normalized Price: 1.0300
Actual Price: $0.69" + ], + "type": "scatter", + "x": [ + "2025-06-02T15:41:00", + "2025-06-02T17:01:00", + "2025-06-02T17:17:00", + "2025-06-02T17:35:00", + "2025-06-02T22:29:00" + ], + "xaxis": "x2", + "y": [ + 1.003875391265464, + 1.0053659263675658, + 1.0025339096735728, + 1.0004471605306304, + 1.029959755552243 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "green", + "line": { + "color": "black", + "width": 2 + }, + "size": 14, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "SOL-USDT BUY CLOSE", + "showlegend": true, + "text": [ + "SOL-USDT BUY CLOSE CLOSE
Time: 2025-06-02 15:41:00
Normalized Price: 0.9961
Actual Price: $153.10", + "SOL-USDT BUY CLOSE CLOSE
Time: 2025-06-02 17:01:00
Normalized Price: 0.9969
Actual Price: $153.07", + "SOL-USDT BUY CLOSE CLOSE
Time: 2025-06-02 17:17:00
Normalized Price: 0.9941
Actual Price: $153.09", + "SOL-USDT BUY CLOSE CLOSE
Time: 2025-06-02 17:35:00
Normalized Price: 0.9958
Actual Price: $152.99", + "SOL-USDT BUY CLOSE CLOSE
Time: 2025-06-02 22:29:00
Normalized Price: 1.0200
Actual Price: $156.70" + ], + "type": "scatter", + "x": [ + "2025-06-02T15:41:00", + "2025-06-02T17:01:00", + "2025-06-02T17:17:00", + "2025-06-02T17:35:00", + "2025-06-02T22:29:00" + ], + "xaxis": "x2", + "y": [ + 0.9960957834461218, + 0.9969416970327954, + 0.9941436751691827, + 0.995770432066632, + 1.0199765747006766 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "red", + "size": 14, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "ADA-USDT SELL OPEN", + "showlegend": true, + "text": [ + "ADA-USDT SELL OPEN OPEN
Time: 2025-06-02 18:02:00
Normalized Price: 1.0048
Actual Price: $0.67" + ], + "type": "scatter", + "x": [ + "2025-06-02T18:02:00" + ], + "xaxis": "x2", + "y": [ + 1.0047697123267252 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "green", + "size": 14, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "SOL-USDT BUY OPEN", + "showlegend": true, + "text": [ + "SOL-USDT BUY OPEN OPEN
Time: 2025-06-02 18:02:00
Normalized Price: 0.9994
Actual Price: $153.64" + ], + "type": "scatter", + "x": [ + "2025-06-02T18:02:00" + ], + "xaxis": "x2", + "y": [ + 0.9994143675169183 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "green", + "line": { + "color": "black", + "width": 2 + }, + "size": 14, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "ADA-USDT BUY CLOSE", + "showlegend": true, + "text": [ + "ADA-USDT BUY CLOSE CLOSE
Time: 2025-06-02 18:06:00
Normalized Price: 1.0055
Actual Price: $0.67" + ], + "type": "scatter", + "x": [ + "2025-06-02T18:06:00" + ], + "xaxis": "x2", + "y": [ + 1.005514979877776 + ], + "yaxis": "y2" + }, + { + "hovertemplate": "%{text}", + "marker": { + "color": "red", + "line": { + "color": "black", + "width": 2 + }, + "size": 14, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "SOL-USDT SELL CLOSE", + "showlegend": true, + "text": [ + "SOL-USDT SELL CLOSE CLOSE
Time: 2025-06-02 18:06:00
Normalized Price: 1.0007
Actual Price: $153.84" + ], + "type": "scatter", + "x": [ + "2025-06-02T18:06:00" + ], + "xaxis": "x2", + "y": [ + 1.0007157730348775 + ], + "yaxis": "y2" + }, + { + "line": { + "color": "blue", + "width": 2 + }, + "name": "ADA-USDT Price", + "opacity": 0.8, + "type": "scatter", + "x": [ + "2025-06-02T13:30:00.000000000", + "2025-06-02T13:31:00.000000000", + "2025-06-02T13:32:00.000000000", + "2025-06-02T13:33:00.000000000", + "2025-06-02T13:34:00.000000000", + "2025-06-02T13:35:00.000000000", + "2025-06-02T13:36:00.000000000", + "2025-06-02T13:37:00.000000000", + "2025-06-02T13:38:00.000000000", + "2025-06-02T13:39:00.000000000", + "2025-06-02T13:40:00.000000000", + "2025-06-02T13:41:00.000000000", + "2025-06-02T13:42:00.000000000", + "2025-06-02T13:43:00.000000000", + "2025-06-02T13:44:00.000000000", + "2025-06-02T13:45:00.000000000", + "2025-06-02T13:46:00.000000000", + "2025-06-02T13:47:00.000000000", + "2025-06-02T13:48:00.000000000", + "2025-06-02T13:49:00.000000000", + "2025-06-02T13:50:00.000000000", + "2025-06-02T13:51:00.000000000", + "2025-06-02T13:52:00.000000000", + "2025-06-02T13:53:00.000000000", + "2025-06-02T13:54:00.000000000", + "2025-06-02T13:55:00.000000000", + "2025-06-02T13:56:00.000000000", + "2025-06-02T13:57:00.000000000", + "2025-06-02T13:58:00.000000000", + "2025-06-02T13:59:00.000000000", + "2025-06-02T14:00:00.000000000", + "2025-06-02T14:01:00.000000000", + "2025-06-02T14:02:00.000000000", + "2025-06-02T14:03:00.000000000", + "2025-06-02T14:04:00.000000000", + "2025-06-02T14:05:00.000000000", + "2025-06-02T14:06:00.000000000", + "2025-06-02T14:07:00.000000000", + "2025-06-02T14:08:00.000000000", + "2025-06-02T14:09:00.000000000", + "2025-06-02T14:10:00.000000000", + "2025-06-02T14:11:00.000000000", + "2025-06-02T14:12:00.000000000", + "2025-06-02T14:13:00.000000000", + "2025-06-02T14:14:00.000000000", + "2025-06-02T14:15:00.000000000", + "2025-06-02T14:16:00.000000000", + "2025-06-02T14:17:00.000000000", + "2025-06-02T14:18:00.000000000", + "2025-06-02T14:19:00.000000000", + "2025-06-02T14:20:00.000000000", + "2025-06-02T14:21:00.000000000", + "2025-06-02T14:22:00.000000000", + "2025-06-02T14:23:00.000000000", + "2025-06-02T14:24:00.000000000", + "2025-06-02T14:25:00.000000000", + "2025-06-02T14:26:00.000000000", + "2025-06-02T14:27:00.000000000", + "2025-06-02T14:28:00.000000000", + "2025-06-02T14:29:00.000000000", + "2025-06-02T14:30:00.000000000", + "2025-06-02T14:31:00.000000000", + "2025-06-02T14:32:00.000000000", + "2025-06-02T14:33:00.000000000", + "2025-06-02T14:34:00.000000000", + "2025-06-02T14:35:00.000000000", + "2025-06-02T14:36:00.000000000", + "2025-06-02T14:37:00.000000000", + "2025-06-02T14:38:00.000000000", + "2025-06-02T14:39:00.000000000", + "2025-06-02T14:40:00.000000000", + "2025-06-02T14:41:00.000000000", + "2025-06-02T14:42:00.000000000", + "2025-06-02T14:43:00.000000000", + "2025-06-02T14:44:00.000000000", + "2025-06-02T14:45:00.000000000", + "2025-06-02T14:46:00.000000000", + "2025-06-02T14:47:00.000000000", + "2025-06-02T14:48:00.000000000", + "2025-06-02T14:49:00.000000000", + "2025-06-02T14:50:00.000000000", + "2025-06-02T14:51:00.000000000", + "2025-06-02T14:53:00.000000000", + "2025-06-02T14:54:00.000000000", + "2025-06-02T14:55:00.000000000", + "2025-06-02T14:56:00.000000000", + "2025-06-02T14:57:00.000000000", + "2025-06-02T14:58:00.000000000", + "2025-06-02T14:59:00.000000000", + "2025-06-02T15:00:00.000000000", + "2025-06-02T15:01:00.000000000", + "2025-06-02T15:02:00.000000000", + "2025-06-02T15:03:00.000000000", + "2025-06-02T15:04:00.000000000", + "2025-06-02T15:05:00.000000000", + "2025-06-02T15:06:00.000000000", + "2025-06-02T15:07:00.000000000", + "2025-06-02T15:08:00.000000000", + "2025-06-02T15:09:00.000000000", + "2025-06-02T15:10:00.000000000", + "2025-06-02T15:11:00.000000000", + "2025-06-02T15:12:00.000000000", + "2025-06-02T15:13:00.000000000", + "2025-06-02T15:14:00.000000000", + "2025-06-02T15:15:00.000000000", + "2025-06-02T15:16:00.000000000", + "2025-06-02T15:17:00.000000000", + "2025-06-02T15:18:00.000000000", + "2025-06-02T15:19:00.000000000", + "2025-06-02T15:20:00.000000000", + "2025-06-02T15:21:00.000000000", + "2025-06-02T15:22:00.000000000", + "2025-06-02T15:23:00.000000000", + "2025-06-02T15:24:00.000000000", + "2025-06-02T15:25:00.000000000", + "2025-06-02T15:26:00.000000000", + "2025-06-02T15:27:00.000000000", + "2025-06-02T15:28:00.000000000", + "2025-06-02T15:29:00.000000000", + "2025-06-02T15:30:00.000000000", + "2025-06-02T15:31:00.000000000", + "2025-06-02T15:32:00.000000000", + "2025-06-02T15:33:00.000000000", + "2025-06-02T15:34:00.000000000", + "2025-06-02T15:35:00.000000000", + "2025-06-02T15:36:00.000000000", + "2025-06-02T15:37:00.000000000", + "2025-06-02T15:38:00.000000000", + "2025-06-02T15:39:00.000000000", + "2025-06-02T15:40:00.000000000", + "2025-06-02T15:41:00.000000000", + "2025-06-02T15:42:00.000000000", + "2025-06-02T15:43:00.000000000", + "2025-06-02T15:44:00.000000000", + "2025-06-02T15:45:00.000000000", + "2025-06-02T15:46:00.000000000", + "2025-06-02T15:47:00.000000000", + "2025-06-02T15:48:00.000000000", + "2025-06-02T15:49:00.000000000", + "2025-06-02T15:50:00.000000000", + "2025-06-02T15:51:00.000000000", + "2025-06-02T15:52:00.000000000", + "2025-06-02T15:53:00.000000000", + "2025-06-02T15:54:00.000000000", + "2025-06-02T15:55:00.000000000", + "2025-06-02T15:56:00.000000000", + "2025-06-02T15:57:00.000000000", + "2025-06-02T15:58:00.000000000", + "2025-06-02T15:59:00.000000000", + "2025-06-02T16:00:00.000000000", + "2025-06-02T16:01:00.000000000", + "2025-06-02T16:02:00.000000000", + "2025-06-02T16:03:00.000000000", + "2025-06-02T16:04:00.000000000", + "2025-06-02T16:05:00.000000000", + "2025-06-02T16:06:00.000000000", + "2025-06-02T16:07:00.000000000", + "2025-06-02T16:08:00.000000000", + "2025-06-02T16:09:00.000000000", + "2025-06-02T16:10:00.000000000", + "2025-06-02T16:11:00.000000000", + "2025-06-02T16:12:00.000000000", + "2025-06-02T16:13:00.000000000", + "2025-06-02T16:14:00.000000000", + "2025-06-02T16:15:00.000000000", + "2025-06-02T16:16:00.000000000", + "2025-06-02T16:17:00.000000000", + "2025-06-02T16:18:00.000000000", + "2025-06-02T16:19:00.000000000", + "2025-06-02T16:20:00.000000000", + "2025-06-02T16:21:00.000000000", + "2025-06-02T16:22:00.000000000", + "2025-06-02T16:23:00.000000000", + "2025-06-02T16:24:00.000000000", + "2025-06-02T16:25:00.000000000", + "2025-06-02T16:26:00.000000000", + "2025-06-02T16:27:00.000000000", + "2025-06-02T16:28:00.000000000", + "2025-06-02T16:29:00.000000000", + "2025-06-02T16:30:00.000000000", + "2025-06-02T16:31:00.000000000", + "2025-06-02T16:32:00.000000000", + "2025-06-02T16:33:00.000000000", + "2025-06-02T16:34:00.000000000", + "2025-06-02T16:35:00.000000000", + "2025-06-02T16:36:00.000000000", + "2025-06-02T16:37:00.000000000", + "2025-06-02T16:38:00.000000000", + "2025-06-02T16:39:00.000000000", + "2025-06-02T16:40:00.000000000", + "2025-06-02T16:41:00.000000000", + "2025-06-02T16:42:00.000000000", + "2025-06-02T16:43:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T16:45:00.000000000", + "2025-06-02T16:46:00.000000000", + "2025-06-02T16:47:00.000000000", + "2025-06-02T16:48:00.000000000", + "2025-06-02T16:49:00.000000000", + "2025-06-02T16:50:00.000000000", + "2025-06-02T16:51:00.000000000", + "2025-06-02T16:52:00.000000000", + "2025-06-02T16:53:00.000000000", + "2025-06-02T16:54:00.000000000", + "2025-06-02T16:55:00.000000000", + "2025-06-02T16:56:00.000000000", + "2025-06-02T16:57:00.000000000", + "2025-06-02T16:58:00.000000000", + "2025-06-02T16:59:00.000000000", + "2025-06-02T17:00:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:02:00.000000000", + "2025-06-02T17:03:00.000000000", + "2025-06-02T17:04:00.000000000", + "2025-06-02T17:05:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:07:00.000000000", + "2025-06-02T17:08:00.000000000", + "2025-06-02T17:09:00.000000000", + "2025-06-02T17:10:00.000000000", + "2025-06-02T17:11:00.000000000", + "2025-06-02T17:12:00.000000000", + "2025-06-02T17:13:00.000000000", + "2025-06-02T17:14:00.000000000", + "2025-06-02T17:15:00.000000000", + "2025-06-02T17:16:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:18:00.000000000", + "2025-06-02T17:19:00.000000000", + "2025-06-02T17:20:00.000000000", + "2025-06-02T17:21:00.000000000", + "2025-06-02T17:22:00.000000000", + "2025-06-02T17:23:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T17:25:00.000000000", + "2025-06-02T17:26:00.000000000", + "2025-06-02T17:27:00.000000000", + "2025-06-02T17:28:00.000000000", + "2025-06-02T17:29:00.000000000", + "2025-06-02T17:30:00.000000000", + "2025-06-02T17:31:00.000000000", + "2025-06-02T17:32:00.000000000", + "2025-06-02T17:33:00.000000000", + "2025-06-02T17:34:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T17:36:00.000000000", + "2025-06-02T17:37:00.000000000", + "2025-06-02T17:38:00.000000000", + "2025-06-02T17:39:00.000000000", + "2025-06-02T17:40:00.000000000", + "2025-06-02T17:41:00.000000000", + "2025-06-02T17:42:00.000000000", + "2025-06-02T17:43:00.000000000", + "2025-06-02T17:44:00.000000000", + "2025-06-02T17:45:00.000000000", + "2025-06-02T17:46:00.000000000", + "2025-06-02T17:47:00.000000000", + "2025-06-02T17:48:00.000000000", + "2025-06-02T17:49:00.000000000", + "2025-06-02T17:50:00.000000000", + "2025-06-02T17:51:00.000000000", + "2025-06-02T17:52:00.000000000", + "2025-06-02T17:53:00.000000000", + "2025-06-02T17:54:00.000000000", + "2025-06-02T17:55:00.000000000", + "2025-06-02T17:56:00.000000000", + "2025-06-02T17:57:00.000000000", + "2025-06-02T17:58:00.000000000", + "2025-06-02T17:59:00.000000000", + "2025-06-02T18:00:00.000000000", + "2025-06-02T18:01:00.000000000", + "2025-06-02T18:02:00.000000000", + "2025-06-02T18:03:00.000000000", + "2025-06-02T18:04:00.000000000", + "2025-06-02T18:05:00.000000000", + "2025-06-02T18:06:00.000000000", + "2025-06-02T18:07:00.000000000", + "2025-06-02T18:08:00.000000000", + "2025-06-02T18:09:00.000000000", + "2025-06-02T18:10:00.000000000", + "2025-06-02T18:11:00.000000000", + "2025-06-02T18:12:00.000000000", + "2025-06-02T18:13:00.000000000", + "2025-06-02T18:14:00.000000000", + "2025-06-02T18:15:00.000000000", + "2025-06-02T18:16:00.000000000", + "2025-06-02T18:17:00.000000000", + "2025-06-02T18:18:00.000000000", + "2025-06-02T18:19:00.000000000", + "2025-06-02T18:20:00.000000000", + "2025-06-02T18:21:00.000000000", + "2025-06-02T18:22:00.000000000", + "2025-06-02T18:23:00.000000000", + "2025-06-02T18:24:00.000000000", + "2025-06-02T18:25:00.000000000", + "2025-06-02T18:26:00.000000000", + "2025-06-02T18:27:00.000000000", + "2025-06-02T18:28:00.000000000", + "2025-06-02T18:29:00.000000000", + "2025-06-02T18:30:00.000000000", + "2025-06-02T18:31:00.000000000", + "2025-06-02T18:32:00.000000000", + "2025-06-02T18:33:00.000000000", + "2025-06-02T18:34:00.000000000", + "2025-06-02T18:35:00.000000000", + "2025-06-02T18:36:00.000000000", + "2025-06-02T18:37:00.000000000", + "2025-06-02T18:38:00.000000000", + "2025-06-02T18:39:00.000000000", + "2025-06-02T18:40:00.000000000", + "2025-06-02T18:41:00.000000000", + "2025-06-02T18:42:00.000000000", + "2025-06-02T18:43:00.000000000", + "2025-06-02T18:44:00.000000000", + "2025-06-02T18:45:00.000000000", + "2025-06-02T18:46:00.000000000", + "2025-06-02T18:47:00.000000000", + "2025-06-02T18:48:00.000000000", + "2025-06-02T18:49:00.000000000", + "2025-06-02T18:50:00.000000000", + "2025-06-02T18:51:00.000000000", + "2025-06-02T18:52:00.000000000", + "2025-06-02T18:53:00.000000000", + "2025-06-02T18:54:00.000000000", + "2025-06-02T18:55:00.000000000", + "2025-06-02T18:56:00.000000000", + "2025-06-02T18:57:00.000000000", + "2025-06-02T18:58:00.000000000", + "2025-06-02T18:59:00.000000000", + "2025-06-02T19:00:00.000000000", + "2025-06-02T19:01:00.000000000", + "2025-06-02T19:02:00.000000000", + "2025-06-02T19:03:00.000000000", + "2025-06-02T19:04:00.000000000", + "2025-06-02T19:05:00.000000000", + "2025-06-02T19:06:00.000000000", + "2025-06-02T19:07:00.000000000", + "2025-06-02T19:08:00.000000000", + "2025-06-02T19:09:00.000000000", + "2025-06-02T19:10:00.000000000", + "2025-06-02T19:11:00.000000000", + "2025-06-02T19:12:00.000000000", + "2025-06-02T19:13:00.000000000", + "2025-06-02T19:14:00.000000000", + "2025-06-02T19:15:00.000000000", + "2025-06-02T19:16:00.000000000", + "2025-06-02T19:17:00.000000000", + "2025-06-02T19:18:00.000000000", + "2025-06-02T19:19:00.000000000", + "2025-06-02T19:20:00.000000000", + "2025-06-02T19:21:00.000000000", + "2025-06-02T19:22:00.000000000", + "2025-06-02T19:23:00.000000000", + "2025-06-02T19:24:00.000000000", + "2025-06-02T19:25:00.000000000", + "2025-06-02T19:26:00.000000000", + "2025-06-02T19:27:00.000000000", + "2025-06-02T19:28:00.000000000", + "2025-06-02T19:29:00.000000000", + "2025-06-02T19:30:00.000000000", + "2025-06-02T19:31:00.000000000", + "2025-06-02T19:32:00.000000000", + "2025-06-02T19:33:00.000000000", + "2025-06-02T19:34:00.000000000", + "2025-06-02T19:35:00.000000000", + "2025-06-02T19:36:00.000000000", + "2025-06-02T19:37:00.000000000", + "2025-06-02T19:38:00.000000000", + "2025-06-02T19:39:00.000000000", + "2025-06-02T19:40:00.000000000", + "2025-06-02T19:41:00.000000000", + "2025-06-02T19:42:00.000000000", + "2025-06-02T19:43:00.000000000", + "2025-06-02T19:44:00.000000000", + "2025-06-02T19:45:00.000000000", + "2025-06-02T19:46:00.000000000", + "2025-06-02T19:47:00.000000000", + "2025-06-02T19:48:00.000000000", + "2025-06-02T19:49:00.000000000", + "2025-06-02T19:50:00.000000000", + "2025-06-02T19:51:00.000000000", + "2025-06-02T19:52:00.000000000", + "2025-06-02T19:53:00.000000000", + "2025-06-02T19:54:00.000000000", + "2025-06-02T19:55:00.000000000", + "2025-06-02T19:56:00.000000000", + "2025-06-02T19:57:00.000000000", + "2025-06-02T19:58:00.000000000", + "2025-06-02T19:59:00.000000000", + "2025-06-02T20:00:00.000000000", + "2025-06-02T20:01:00.000000000", + "2025-06-02T20:02:00.000000000", + "2025-06-02T20:03:00.000000000", + "2025-06-02T20:04:00.000000000", + "2025-06-02T20:05:00.000000000", + "2025-06-02T20:06:00.000000000", + "2025-06-02T20:07:00.000000000", + "2025-06-02T20:08:00.000000000", + "2025-06-02T20:09:00.000000000", + "2025-06-02T20:10:00.000000000", + "2025-06-02T20:11:00.000000000", + "2025-06-02T20:12:00.000000000", + "2025-06-02T20:13:00.000000000", + "2025-06-02T20:14:00.000000000", + "2025-06-02T20:15:00.000000000", + "2025-06-02T20:16:00.000000000", + "2025-06-02T20:17:00.000000000", + "2025-06-02T20:18:00.000000000", + "2025-06-02T20:19:00.000000000", + "2025-06-02T20:20:00.000000000", + "2025-06-02T20:21:00.000000000", + "2025-06-02T20:22:00.000000000", + "2025-06-02T20:23:00.000000000", + "2025-06-02T20:24:00.000000000", + "2025-06-02T20:25:00.000000000", + "2025-06-02T20:26:00.000000000", + "2025-06-02T20:27:00.000000000", + "2025-06-02T20:28:00.000000000", + "2025-06-02T20:29:00.000000000", + "2025-06-02T20:30:00.000000000", + "2025-06-02T20:31:00.000000000", + "2025-06-02T20:32:00.000000000", + "2025-06-02T20:33:00.000000000", + "2025-06-02T20:34:00.000000000", + "2025-06-02T20:35:00.000000000", + "2025-06-02T20:36:00.000000000", + "2025-06-02T20:37:00.000000000", + "2025-06-02T20:38:00.000000000", + "2025-06-02T20:39:00.000000000", + "2025-06-02T20:40:00.000000000", + "2025-06-02T20:41:00.000000000", + "2025-06-02T20:42:00.000000000", + "2025-06-02T20:43:00.000000000", + "2025-06-02T20:44:00.000000000", + "2025-06-02T20:45:00.000000000", + "2025-06-02T20:46:00.000000000", + "2025-06-02T20:47:00.000000000", + "2025-06-02T20:48:00.000000000", + "2025-06-02T20:49:00.000000000", + "2025-06-02T20:50:00.000000000", + "2025-06-02T20:51:00.000000000", + "2025-06-02T20:52:00.000000000", + "2025-06-02T20:53:00.000000000", + "2025-06-02T20:54:00.000000000", + "2025-06-02T20:55:00.000000000", + "2025-06-02T20:56:00.000000000", + "2025-06-02T20:57:00.000000000", + "2025-06-02T20:58:00.000000000", + "2025-06-02T20:59:00.000000000", + "2025-06-02T21:00:00.000000000", + "2025-06-02T21:01:00.000000000", + "2025-06-02T21:02:00.000000000", + "2025-06-02T21:03:00.000000000", + "2025-06-02T21:04:00.000000000", + "2025-06-02T21:05:00.000000000", + "2025-06-02T21:06:00.000000000", + "2025-06-02T21:07:00.000000000", + "2025-06-02T21:08:00.000000000", + "2025-06-02T21:09:00.000000000", + "2025-06-02T21:10:00.000000000", + "2025-06-02T21:11:00.000000000", + "2025-06-02T21:12:00.000000000", + "2025-06-02T21:13:00.000000000", + "2025-06-02T21:14:00.000000000", + "2025-06-02T21:15:00.000000000", + "2025-06-02T21:16:00.000000000", + "2025-06-02T21:17:00.000000000", + "2025-06-02T21:18:00.000000000", + "2025-06-02T21:19:00.000000000", + "2025-06-02T21:20:00.000000000", + "2025-06-02T21:21:00.000000000", + "2025-06-02T21:22:00.000000000", + "2025-06-02T21:23:00.000000000", + "2025-06-02T21:24:00.000000000", + "2025-06-02T21:25:00.000000000", + "2025-06-02T21:26:00.000000000", + "2025-06-02T21:27:00.000000000", + "2025-06-02T21:28:00.000000000", + "2025-06-02T21:29:00.000000000", + "2025-06-02T21:30:00.000000000", + "2025-06-02T21:31:00.000000000", + "2025-06-02T21:32:00.000000000", + "2025-06-02T21:33:00.000000000", + "2025-06-02T21:34:00.000000000", + "2025-06-02T21:35:00.000000000", + "2025-06-02T21:36:00.000000000", + "2025-06-02T21:37:00.000000000", + "2025-06-02T21:38:00.000000000", + "2025-06-02T21:39:00.000000000", + "2025-06-02T21:40:00.000000000", + "2025-06-02T21:41:00.000000000", + "2025-06-02T21:42:00.000000000", + "2025-06-02T21:43:00.000000000", + "2025-06-02T21:44:00.000000000", + "2025-06-02T21:45:00.000000000", + "2025-06-02T21:46:00.000000000", + "2025-06-02T21:47:00.000000000", + "2025-06-02T21:48:00.000000000", + "2025-06-02T21:49:00.000000000", + "2025-06-02T21:50:00.000000000", + "2025-06-02T21:51:00.000000000", + "2025-06-02T21:52:00.000000000", + "2025-06-02T21:53:00.000000000", + "2025-06-02T21:54:00.000000000", + "2025-06-02T21:55:00.000000000", + "2025-06-02T21:56:00.000000000", + "2025-06-02T21:57:00.000000000", + "2025-06-02T21:58:00.000000000", + "2025-06-02T21:59:00.000000000", + "2025-06-02T22:00:00.000000000", + "2025-06-02T22:01:00.000000000", + "2025-06-02T22:02:00.000000000", + "2025-06-02T22:03:00.000000000", + "2025-06-02T22:04:00.000000000", + "2025-06-02T22:05:00.000000000", + "2025-06-02T22:06:00.000000000", + "2025-06-02T22:07:00.000000000", + "2025-06-02T22:08:00.000000000", + "2025-06-02T22:09:00.000000000", + "2025-06-02T22:10:00.000000000", + "2025-06-02T22:11:00.000000000", + "2025-06-02T22:12:00.000000000", + "2025-06-02T22:13:00.000000000", + "2025-06-02T22:14:00.000000000", + "2025-06-02T22:15:00.000000000", + "2025-06-02T22:16:00.000000000", + "2025-06-02T22:17:00.000000000", + "2025-06-02T22:18:00.000000000", + "2025-06-02T22:19:00.000000000", + "2025-06-02T22:20:00.000000000", + "2025-06-02T22:21:00.000000000", + "2025-06-02T22:22:00.000000000", + "2025-06-02T22:23:00.000000000", + "2025-06-02T22:24:00.000000000", + "2025-06-02T22:25:00.000000000", + "2025-06-02T22:26:00.000000000", + "2025-06-02T22:27:00.000000000", + "2025-06-02T22:28:00.000000000", + "2025-06-02T22:29:00.000000000", + "2025-06-02T22:30:00.000000000" + ], + "xaxis": "x3", + "y": { + "bdata": "ZF3cRgN45T+Sy39Iv33lP/Cnxks3ieU/Dk+vlGWI5T+0WfW52orlP1pkO99PjeU/idLe4AuT5T9rK/aX3ZPlPyL99nXgnOU/jLlrCfmg5T9NhA1Pr5TlPx4Wak3zjuU/Dk+vlGWI5T9aZDvfT43lP6d5xyk6kuU/TYQNT6+U5T8OT6+UZYjlP9/gC5OpguU/Gy/dJAaB5T9Wfa62Yn/lP/mgZ7Pqc+U/+aBns+pz5T/5oGez6nPlP+jZrPpcbeU/Qs9m1edq5T/KMsSxLm7lPxdIUPwYc+U/yjLEsS5u5T+si9toAG/lP8oyxLEubuU/IEHxY8xd5T+cxCCwcmjlP/mgZ7Pqc+U/sHJoke185T9xPQrXo3DlP9cS8kHPZuU/T6+UZYhj5T+si9toAG/lP71SliGOdeU/gQTFjzF35T9gdk8eFmrlP2B2Tx4WauU/+aBns+pz5T+P5PIf0m/lPxdIUPwYc+U/fh04Z0Rp5T9xPQrXo3DlPyQofoy5a+U/gQTFjzF35T+F61G4HoXlP8E5I0p7g+U/SZ2AJsKG5T88vVKWIY7lPzy9UpYhjuU/0gDeAgmK5T988rBQa5rlP6pgVFInoOU/fPKwUGua5T8v3SQGgZXlP4nS3uALk+U/845TdCSX5T/FILByaJHlP8UgsHJokeU/845TdCSX5T/mriXkg57lP3zysFBrmuU/uECC4seY5T8RNjy9UpblP3gLJCh+jOU/3+ALk6mC5T94CyQofozlP7RZ9bnaiuU/Dk+vlGWI5T90JJf/kH7lP2Rd3EYDeOU/Rrbz/dR45T/o2az6XG3lP6yL22gAb+U/YHZPHhZq5T9TliGOdXHlP7prCfmgZ+U/yjLEsS5u5T817zhFR3LlPzXvOEVHcuU/ZF3cRgN45T/swDkjSnvlP5LLf0i/feU/CmgibHh65T+F61G4HoXlP9IA3gIJiuU/Gy/dJAaB5T+wcmiR7XzlP71SliGOdeU/cT0K16Nw5T/5oGez6nPlP4/k8h/Sb+U/YHZPHhZq5T+6awn5oGflP7prCfmgZ+U/fh04Z0Rp5T+P5PIf0m/lP3E9CtejcOU/Vn2utmJ/5T/OGVHaG3zlP+zAOSNKe+U/2/l+arx05T9kXdxGA3jlP5LLf0i/feU//Yf029eB5T9Wfa62Yn/lP+zAOSNKe+U/dCSX/5B+5T/f4AuTqYLlP6d5xyk6kuU/Iv32deCc5T9NhA1Pr5TlP8UgsHJokeU/WmQ730+N5T+WsgxxrIvlP1pkO99PjeU/lrIMcayL5T88vVKWIY7lP0mdgCbChuU//Yf029eB5T/f4AuTqYLlP2dEaW/wheU//Yf029eB5T+jkjoBTYTlP8E5I0p7g+U/0gDeAgmK5T9aZDvfT43lP3gLJCh+jOU/WmQ730+N5T/jx5i7lpDlP6d5xyk6kuU/48eYu5aQ5T8Ab4EExY/lPzy9UpYhjuU/SZ2AJsKG5T/zjlN0JJflPxE2PL1SluU/L90kBoGV5T8RNjy9UpblP/OOU3Qkl+U/TYQNT6+U5T8Ab4EExY/lPzy9UpYhjuU/idLe4AuT5T9rK/aX3ZPlP+PHmLuWkOU/idLe4AuT5T9NhA1Pr5TlP3gLJCh+jOU/0gDeAgmK5T8eFmpN847lP2dEaW/wheU/OdbFbTSA5T9Wfa62Yn/lP/Cnxks3ieU/wTkjSnuD5T8OT6+UZYjlP2dEaW/wheU/o5I6AU2E5T/f4AuTqYLlP8E5I0p7g+U/3+ALk6mC5T+jkjoBTYTlPw5Pr5RliOU/wTkjSnuD5T/9h/Tb14HlPw5Pr5RliOU/o5I6AU2E5T+Sy39Iv33lP3Qkl/+QfuU/sHJoke185T8GgZVDi2zlPzXvOEVHcuU/2/l+arx05T/b+X5qvHTlP3E9CtejcOU/6Nms+lxt5T817zhFR3LlP4/k8h/Sb+U/2/l+arx05T/OGVHaG3zlP1Z9rrZif+U/zhlR2ht85T9Wfa62Yn/lP1Z9rrZif+U/kst/SL995T+wcmiR7XzlP3Qkl/+QfuU/zhlR2ht85T+BBMWPMXflPwpoImx4euU/Rrbz/dR45T9nRGlv8IXlPxsv3SQGgeU/KA8LtaZ55T8KaCJseHrlP5LLf0i/feU//Yf029eB5T+jkjoBTYTlP3gLJCh+jOU/0gDeAgmK5T/FILByaJHlPy/dJAaBleU/AG+BBMWP5T88vVKWIY7lPwBvgQTFj+U/L90kBoGV5T9NhA1Pr5TlP6d5xyk6kuU/HhZqTfOO5T+neccpOpLlPwBvgQTFj+U/xSCwcmiR5T/SAN4CCYrlPwBvgQTFj+U/845TdCSX5T+neccpOpLlP/Cnxks3ieU/Vn2utmJ/5T90JJf/kH7lP3Qkl/+QfuU/o5I6AU2E5T9nRGlv8IXlP2sr9pfdk+U/1edqK/aX5T9eS8gHPZvlP5qZmZmZmeU/AG+BBMWP5T+amZmZmZnlPwRWDi2yneU/jLlrCfmg5T988rBQa5rlP02EDU+vlOU/ETY8vVKW5T8v3SQGgZXlP+PHmLuWkOU/tFn1udqK5T88vVKWIY7lP9/gC5OpguU/wTkjSnuD5T8KaCJseHrlP7ByaJHtfOU/Gy/dJAaB5T/BOSNKe4PlP4XrUbgeheU/CmgibHh65T9GtvP91HjlPygPC7WmeeU/gQTFjzF35T+wcmiR7XzlP84ZUdobfOU/kst/SL995T9Wfa62Yn/lPxsv3SQGgeU/8KfGSzeJ5T8r9pfdk4flP9IA3gIJiuU/8KfGSzeJ5T8eFmpN847lP5ayDHGsi+U/WmQ730+N5T8Ab4EExY/lP02EDU+vlOU/xSCwcmiR5T+neccpOpLlPy/dJAaBleU/845TdCSX5T+neccpOpLlP2sr9pfdk+U/mpmZmZmZ5T988rBQa5rlPxE2PL1SluU/845TdCSX5T+amZmZmZnlP7hAguLHmOU/p3nHKTqS5T/FILByaJHlP+PHmLuWkOU/HhZqTfOO5T8v3SQGgZXlP5qZmZmZmeU/XkvIBz2b5T9ApN++DpzlP+auJeSDnuU/jLlrCfmg5T+dgCbChqflPwg9m1Wfq+U/KcsQx7q45T8ZBFYOLbLlP4PAyqFFtuU/ZRniWBe35T924JwRpb3lP921hHzQs+U/GQRWDi2y5T9y+Q/pt6/lP65H4XoUruU/Nqs+V1ux5T8ZBFYOLbLlPxkEVg4tsuU/VFInoImw5T8IPZtVn6vlP5Cg+DHmruU/2c73U+Ol5T9/2T15WKjlP28Sg8DKoeU/M8SxLm6j5T9/2T15WKjlP1FrmnecouU/FR3J5T+k5T8zxLEubqPlP+auJeSDnuU/bxKDwMqh5T8i/fZ14JzlP3zysFBrmuU/Iv32deCc5T8EVg4tsp3lP4y5awn5oOU/5q4l5IOe5T+amZmZmZnlP5qZmZmZmeU/TYQNT6+U5T/zjlN0JJflP6d5xyk6kuU/p3nHKTqS5T/zjlN0JJflP5qZmZmZmeU/yAc9m1Wf5T+dgCbChqflP65H4XoUruU/6pWyDHGs5T82qz5XW7HlPzarPldbseU/nYAmwoan5T8VHcnlP6TlP9nO91PjpeU/jLlrCfmg5T/V52or9pflP+PHmLuWkOU/PL1SliGO5T88vVKWIY7lP3gLJCh+jOU/xSCwcmiR5T9NhA1Pr5TlP7hAguLHmOU/1edqK/aX5T+amZmZmZnlP15LyAc9m+U/QKTfvg6c5T8RNjy9UpblP9Xnaiv2l+U/1edqK/aX5T+4QILix5jlP02EDU+vlOU/idLe4AuT5T+J0t7gC5PlP6d5xyk6kuU/48eYu5aQ5T8r9pfdk4flP2dEaW/wheU/dCSX/5B+5T851sVtNIDlP/2H9NvXgeU//Yf029eB5T+wcmiR7XzlPwpoImx4euU/F0hQ/Bhz5T/KMsSxLm7lP9v5fmq8dOU/Ne84RUdy5T/5oGez6nPlP4/k8h/Sb+U/Ne84RUdy5T/5oGez6nPlP2Rd3EYDeOU/kst/SL995T/f4AuTqYLlP/2H9NvXgeU/o5I6AU2E5T/f4AuTqYLlP8E5I0p7g+U/Dk+vlGWI5T8OT6+UZYjlPyv2l92Th+U/lrIMcayL5T+WsgxxrIvlP6d5xyk6kuU/845TdCSX5T9eS8gHPZvlPyL99nXgnOU/cvkP6bev5T9Ei2zn+6nlP1RSJ6CJsOU/3bWEfNCz5T/dtYR80LPlP9DVVuwvu+U/8WPMXUvI5T8PC7WmecflP3rHKTqSy+U/PnlYqDXN5T8g0m9fB87lP+SDns2qz+U/xty1hHzQ5T+oNc07TtHlP32utmJ/2eU/9UpZhjjW5T/kg57Nqs/lP8bctYR80OU/ufyH9NvX5T8T8kHPZtXlP9ejcD0K1+U/MZkqGJXU5T/kg57Nqs/lPwIrhxbZzuU/xty1hHzQ5T+KjuTyH9LlP/VKWYY41uU/MZkqGJXU5T96xyk6ksvlPy2yne+nxuU//kP67evA5T/D9Shcj8LlP/5D+u3rwOU/OpLLf0i/5T/gnBGlvcHlPw8LtaZ5x+U/XCBB8WPM5T8PC7WmecflPy2yne+nxuU/mG4Sg8DK5T9cIEHxY8zlP5huEoPAyuU/Dwu1pnnH5T/D9Shcj8LlPw8LtaZ5x+U/8WPMXUvI5T8c6+I2GsDlP5SHhVrTvOU/duCcEaW95T8LJCh+jLnlP9DVVuwvu+U/WDm0yHa+5T+yLm6jAbzlP/FjzF1LyOU/escpOpLL5T9cIEHxY8zlP8bctYR80OU/JLn8h/Tb5T9CYOXQItvlPzSAt0CC4uU/gZVDi2zn5T8noImw4enlPxrAWyBB8eU/dLUV+8vu5T84Z0Rpb/DlP0VHcvkP6eU/+THmriXk5T+sHFpkO9/lP9uK/WX35OU/24r9Zffk5T+fPCzUmublP9uK/WX35OU/CfmgZ7Pq5T/5MeauJeTlP5tVn6ut2OU/16NwPQrX5T+KjuTyH9LlP6g1zTtO0eU/T0ATYcPT5T9PQBNhw9PlP5tVn6ut2OU/9UpZhjjW5T+bVZ+rrdjlP32utmJ/2eU/ufyH9NvX5T+5/If029flP/VKWYY41uU/m1Wfq63Y5T/1SlmGONblP4qO5PIf0uU/Dwu1pnnH5T+1FfvL7snlP/VKWYY41uU/jnVxGw3g5T/Kw0Ktad7lPzSAt0CC4uU/6Gor9pfd5T+5/If029flP4qO5PIf0uU/9UpZhjjW5T+bVZ+rrdjlP7n8h/Tb1+U/ufyH9NvX5T+bVZ+rrdjlP5tVn6ut2OU/m1Wfq63Y5T9SJ6CJsOHlP6wcWmQ73+U/jnVxGw3g5T+sHFpkO9/lPwYSFD/G3OU/JLn8h/Tb5T8kufyH9NvlP8rDQq1p3uU/24r9Zffk5T+94xQdyeXlPxrAWyBB8eU/eJyiI7n85T/RkVz+Q/rlP00VjErqBOY/Ece6uI0G5j/iWBe30QDmP5kqGJXUCeY/L26jAbwF5j8ijnVxGw3mPxSuR+F6FOY/1XjpJjEI5j9Q/Bhz1xLmP3uDL0ymCuY/5j+k374O5j8ijnVxGw3mP+Y/pN++DuY/MlUwKqkT5j8E54wo7Q3mPxSuR+F6FOY/f2q8dJMY5j9uowG8BRLmPwTnjCjtDeY/L26jAbwF5j9uowG8BRLmPwfOGVHaG+Y/3EYDeAsk5j8YldQJaCLmPwfOGVHaG+Y/JXUCmggb5j/pJjEIrBzmPyV1ApoIG+Y/", + "dtype": "f8" + }, + "yaxis": "y3" + }, + { + "marker": { + "color": "green", + "size": 12, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "ADA-USDT BUY OPEN", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T15:31:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T19:35:00.000000000" + ], + "xaxis": "x3", + "y": { + "bdata": "PL1SliGO5T8KaCJseHrlP8UgsHJokeU/jLlrCfmg5T/9h/Tb14HlPw==", + "dtype": "f8" + }, + "yaxis": "y3" + }, + { + "line": { + "color": "black", + "width": 2 + }, + "marker": { + "color": "green", + "size": 12, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "ADA-USDT BUY CLOSE", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T18:06:00.000000000" + ], + "xaxis": "x3", + "y": { + "bdata": "845TdCSX5T8=", + "dtype": "f8" + }, + "yaxis": "y3" + }, + { + "marker": { + "color": "red", + "size": 12, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "ADA-USDT SELL OPEN", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T18:02:00.000000000" + ], + "xaxis": "x3", + "y": { + "bdata": "ayv2l92T5T8=", + "dtype": "f8" + }, + "yaxis": "y3" + }, + { + "line": { + "color": "black", + "width": 2 + }, + "marker": { + "color": "red", + "size": 12, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "ADA-USDT SELL CLOSE", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T15:41:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T22:29:00.000000000" + ], + "xaxis": "x3", + "y": { + "bdata": "eAskKH6M5T9NhA1Pr5TlP2sr9pfdk+U/sHJoke185T8ldQKaCBvmPw==", + "dtype": "f8" + }, + "yaxis": "y3" + }, + { + "line": { + "color": "orange", + "width": 2 + }, + "name": "SOL-USDT Price", + "opacity": 0.8, + "type": "scatter", + "x": [ + "2025-06-02T13:30:00.000000000", + "2025-06-02T13:31:00.000000000", + "2025-06-02T13:32:00.000000000", + "2025-06-02T13:33:00.000000000", + "2025-06-02T13:34:00.000000000", + "2025-06-02T13:35:00.000000000", + "2025-06-02T13:36:00.000000000", + "2025-06-02T13:37:00.000000000", + "2025-06-02T13:38:00.000000000", + "2025-06-02T13:39:00.000000000", + "2025-06-02T13:40:00.000000000", + "2025-06-02T13:41:00.000000000", + "2025-06-02T13:42:00.000000000", + "2025-06-02T13:43:00.000000000", + "2025-06-02T13:44:00.000000000", + "2025-06-02T13:45:00.000000000", + "2025-06-02T13:46:00.000000000", + "2025-06-02T13:47:00.000000000", + "2025-06-02T13:48:00.000000000", + "2025-06-02T13:49:00.000000000", + "2025-06-02T13:50:00.000000000", + "2025-06-02T13:51:00.000000000", + "2025-06-02T13:52:00.000000000", + "2025-06-02T13:53:00.000000000", + "2025-06-02T13:54:00.000000000", + "2025-06-02T13:55:00.000000000", + "2025-06-02T13:56:00.000000000", + "2025-06-02T13:57:00.000000000", + "2025-06-02T13:58:00.000000000", + "2025-06-02T13:59:00.000000000", + "2025-06-02T14:00:00.000000000", + "2025-06-02T14:01:00.000000000", + "2025-06-02T14:02:00.000000000", + "2025-06-02T14:03:00.000000000", + "2025-06-02T14:04:00.000000000", + "2025-06-02T14:05:00.000000000", + "2025-06-02T14:06:00.000000000", + "2025-06-02T14:07:00.000000000", + "2025-06-02T14:08:00.000000000", + "2025-06-02T14:09:00.000000000", + "2025-06-02T14:10:00.000000000", + "2025-06-02T14:11:00.000000000", + "2025-06-02T14:12:00.000000000", + "2025-06-02T14:13:00.000000000", + "2025-06-02T14:14:00.000000000", + "2025-06-02T14:15:00.000000000", + "2025-06-02T14:16:00.000000000", + "2025-06-02T14:17:00.000000000", + "2025-06-02T14:18:00.000000000", + "2025-06-02T14:19:00.000000000", + "2025-06-02T14:20:00.000000000", + "2025-06-02T14:21:00.000000000", + "2025-06-02T14:22:00.000000000", + "2025-06-02T14:23:00.000000000", + "2025-06-02T14:24:00.000000000", + "2025-06-02T14:25:00.000000000", + "2025-06-02T14:26:00.000000000", + "2025-06-02T14:27:00.000000000", + "2025-06-02T14:28:00.000000000", + "2025-06-02T14:29:00.000000000", + "2025-06-02T14:30:00.000000000", + "2025-06-02T14:31:00.000000000", + "2025-06-02T14:32:00.000000000", + "2025-06-02T14:33:00.000000000", + "2025-06-02T14:34:00.000000000", + "2025-06-02T14:35:00.000000000", + "2025-06-02T14:36:00.000000000", + "2025-06-02T14:37:00.000000000", + "2025-06-02T14:38:00.000000000", + "2025-06-02T14:39:00.000000000", + "2025-06-02T14:40:00.000000000", + "2025-06-02T14:41:00.000000000", + "2025-06-02T14:42:00.000000000", + "2025-06-02T14:43:00.000000000", + "2025-06-02T14:44:00.000000000", + "2025-06-02T14:45:00.000000000", + "2025-06-02T14:46:00.000000000", + "2025-06-02T14:47:00.000000000", + "2025-06-02T14:48:00.000000000", + "2025-06-02T14:49:00.000000000", + "2025-06-02T14:50:00.000000000", + "2025-06-02T14:51:00.000000000", + "2025-06-02T14:53:00.000000000", + "2025-06-02T14:54:00.000000000", + "2025-06-02T14:55:00.000000000", + "2025-06-02T14:56:00.000000000", + "2025-06-02T14:57:00.000000000", + "2025-06-02T14:58:00.000000000", + "2025-06-02T14:59:00.000000000", + "2025-06-02T15:00:00.000000000", + "2025-06-02T15:01:00.000000000", + "2025-06-02T15:02:00.000000000", + "2025-06-02T15:03:00.000000000", + "2025-06-02T15:04:00.000000000", + "2025-06-02T15:05:00.000000000", + "2025-06-02T15:06:00.000000000", + "2025-06-02T15:07:00.000000000", + "2025-06-02T15:08:00.000000000", + "2025-06-02T15:09:00.000000000", + "2025-06-02T15:10:00.000000000", + "2025-06-02T15:11:00.000000000", + "2025-06-02T15:12:00.000000000", + "2025-06-02T15:13:00.000000000", + "2025-06-02T15:14:00.000000000", + "2025-06-02T15:15:00.000000000", + "2025-06-02T15:16:00.000000000", + "2025-06-02T15:17:00.000000000", + "2025-06-02T15:18:00.000000000", + "2025-06-02T15:19:00.000000000", + "2025-06-02T15:20:00.000000000", + "2025-06-02T15:21:00.000000000", + "2025-06-02T15:22:00.000000000", + "2025-06-02T15:23:00.000000000", + "2025-06-02T15:24:00.000000000", + "2025-06-02T15:25:00.000000000", + "2025-06-02T15:26:00.000000000", + "2025-06-02T15:27:00.000000000", + "2025-06-02T15:28:00.000000000", + "2025-06-02T15:29:00.000000000", + "2025-06-02T15:30:00.000000000", + "2025-06-02T15:31:00.000000000", + "2025-06-02T15:32:00.000000000", + "2025-06-02T15:33:00.000000000", + "2025-06-02T15:34:00.000000000", + "2025-06-02T15:35:00.000000000", + "2025-06-02T15:36:00.000000000", + "2025-06-02T15:37:00.000000000", + "2025-06-02T15:38:00.000000000", + "2025-06-02T15:39:00.000000000", + "2025-06-02T15:40:00.000000000", + "2025-06-02T15:41:00.000000000", + "2025-06-02T15:42:00.000000000", + "2025-06-02T15:43:00.000000000", + "2025-06-02T15:44:00.000000000", + "2025-06-02T15:45:00.000000000", + "2025-06-02T15:46:00.000000000", + "2025-06-02T15:47:00.000000000", + "2025-06-02T15:48:00.000000000", + "2025-06-02T15:49:00.000000000", + "2025-06-02T15:50:00.000000000", + "2025-06-02T15:51:00.000000000", + "2025-06-02T15:52:00.000000000", + "2025-06-02T15:53:00.000000000", + "2025-06-02T15:54:00.000000000", + "2025-06-02T15:55:00.000000000", + "2025-06-02T15:56:00.000000000", + "2025-06-02T15:57:00.000000000", + "2025-06-02T15:58:00.000000000", + "2025-06-02T15:59:00.000000000", + "2025-06-02T16:00:00.000000000", + "2025-06-02T16:01:00.000000000", + "2025-06-02T16:02:00.000000000", + "2025-06-02T16:03:00.000000000", + "2025-06-02T16:04:00.000000000", + "2025-06-02T16:05:00.000000000", + "2025-06-02T16:06:00.000000000", + "2025-06-02T16:07:00.000000000", + "2025-06-02T16:08:00.000000000", + "2025-06-02T16:09:00.000000000", + "2025-06-02T16:10:00.000000000", + "2025-06-02T16:11:00.000000000", + "2025-06-02T16:12:00.000000000", + "2025-06-02T16:13:00.000000000", + "2025-06-02T16:14:00.000000000", + "2025-06-02T16:15:00.000000000", + "2025-06-02T16:16:00.000000000", + "2025-06-02T16:17:00.000000000", + "2025-06-02T16:18:00.000000000", + "2025-06-02T16:19:00.000000000", + "2025-06-02T16:20:00.000000000", + "2025-06-02T16:21:00.000000000", + "2025-06-02T16:22:00.000000000", + "2025-06-02T16:23:00.000000000", + "2025-06-02T16:24:00.000000000", + "2025-06-02T16:25:00.000000000", + "2025-06-02T16:26:00.000000000", + "2025-06-02T16:27:00.000000000", + "2025-06-02T16:28:00.000000000", + "2025-06-02T16:29:00.000000000", + "2025-06-02T16:30:00.000000000", + "2025-06-02T16:31:00.000000000", + "2025-06-02T16:32:00.000000000", + "2025-06-02T16:33:00.000000000", + "2025-06-02T16:34:00.000000000", + "2025-06-02T16:35:00.000000000", + "2025-06-02T16:36:00.000000000", + "2025-06-02T16:37:00.000000000", + "2025-06-02T16:38:00.000000000", + "2025-06-02T16:39:00.000000000", + "2025-06-02T16:40:00.000000000", + "2025-06-02T16:41:00.000000000", + "2025-06-02T16:42:00.000000000", + "2025-06-02T16:43:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T16:45:00.000000000", + "2025-06-02T16:46:00.000000000", + "2025-06-02T16:47:00.000000000", + "2025-06-02T16:48:00.000000000", + "2025-06-02T16:49:00.000000000", + "2025-06-02T16:50:00.000000000", + "2025-06-02T16:51:00.000000000", + "2025-06-02T16:52:00.000000000", + "2025-06-02T16:53:00.000000000", + "2025-06-02T16:54:00.000000000", + "2025-06-02T16:55:00.000000000", + "2025-06-02T16:56:00.000000000", + "2025-06-02T16:57:00.000000000", + "2025-06-02T16:58:00.000000000", + "2025-06-02T16:59:00.000000000", + "2025-06-02T17:00:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:02:00.000000000", + "2025-06-02T17:03:00.000000000", + "2025-06-02T17:04:00.000000000", + "2025-06-02T17:05:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:07:00.000000000", + "2025-06-02T17:08:00.000000000", + "2025-06-02T17:09:00.000000000", + "2025-06-02T17:10:00.000000000", + "2025-06-02T17:11:00.000000000", + "2025-06-02T17:12:00.000000000", + "2025-06-02T17:13:00.000000000", + "2025-06-02T17:14:00.000000000", + "2025-06-02T17:15:00.000000000", + "2025-06-02T17:16:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:18:00.000000000", + "2025-06-02T17:19:00.000000000", + "2025-06-02T17:20:00.000000000", + "2025-06-02T17:21:00.000000000", + "2025-06-02T17:22:00.000000000", + "2025-06-02T17:23:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T17:25:00.000000000", + "2025-06-02T17:26:00.000000000", + "2025-06-02T17:27:00.000000000", + "2025-06-02T17:28:00.000000000", + "2025-06-02T17:29:00.000000000", + "2025-06-02T17:30:00.000000000", + "2025-06-02T17:31:00.000000000", + "2025-06-02T17:32:00.000000000", + "2025-06-02T17:33:00.000000000", + "2025-06-02T17:34:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T17:36:00.000000000", + "2025-06-02T17:37:00.000000000", + "2025-06-02T17:38:00.000000000", + "2025-06-02T17:39:00.000000000", + "2025-06-02T17:40:00.000000000", + "2025-06-02T17:41:00.000000000", + "2025-06-02T17:42:00.000000000", + "2025-06-02T17:43:00.000000000", + "2025-06-02T17:44:00.000000000", + "2025-06-02T17:45:00.000000000", + "2025-06-02T17:46:00.000000000", + "2025-06-02T17:47:00.000000000", + "2025-06-02T17:48:00.000000000", + "2025-06-02T17:49:00.000000000", + "2025-06-02T17:50:00.000000000", + "2025-06-02T17:51:00.000000000", + "2025-06-02T17:52:00.000000000", + "2025-06-02T17:53:00.000000000", + "2025-06-02T17:54:00.000000000", + "2025-06-02T17:55:00.000000000", + "2025-06-02T17:56:00.000000000", + "2025-06-02T17:57:00.000000000", + "2025-06-02T17:58:00.000000000", + "2025-06-02T17:59:00.000000000", + "2025-06-02T18:00:00.000000000", + "2025-06-02T18:01:00.000000000", + "2025-06-02T18:02:00.000000000", + "2025-06-02T18:03:00.000000000", + "2025-06-02T18:04:00.000000000", + "2025-06-02T18:05:00.000000000", + "2025-06-02T18:06:00.000000000", + "2025-06-02T18:07:00.000000000", + "2025-06-02T18:08:00.000000000", + "2025-06-02T18:09:00.000000000", + "2025-06-02T18:10:00.000000000", + "2025-06-02T18:11:00.000000000", + "2025-06-02T18:12:00.000000000", + "2025-06-02T18:13:00.000000000", + "2025-06-02T18:14:00.000000000", + "2025-06-02T18:15:00.000000000", + "2025-06-02T18:16:00.000000000", + "2025-06-02T18:17:00.000000000", + "2025-06-02T18:18:00.000000000", + "2025-06-02T18:19:00.000000000", + "2025-06-02T18:20:00.000000000", + "2025-06-02T18:21:00.000000000", + "2025-06-02T18:22:00.000000000", + "2025-06-02T18:23:00.000000000", + "2025-06-02T18:24:00.000000000", + "2025-06-02T18:25:00.000000000", + "2025-06-02T18:26:00.000000000", + "2025-06-02T18:27:00.000000000", + "2025-06-02T18:28:00.000000000", + "2025-06-02T18:29:00.000000000", + "2025-06-02T18:30:00.000000000", + "2025-06-02T18:31:00.000000000", + "2025-06-02T18:32:00.000000000", + "2025-06-02T18:33:00.000000000", + "2025-06-02T18:34:00.000000000", + "2025-06-02T18:35:00.000000000", + "2025-06-02T18:36:00.000000000", + "2025-06-02T18:37:00.000000000", + "2025-06-02T18:38:00.000000000", + "2025-06-02T18:39:00.000000000", + "2025-06-02T18:40:00.000000000", + "2025-06-02T18:41:00.000000000", + "2025-06-02T18:42:00.000000000", + "2025-06-02T18:43:00.000000000", + "2025-06-02T18:44:00.000000000", + "2025-06-02T18:45:00.000000000", + "2025-06-02T18:46:00.000000000", + "2025-06-02T18:47:00.000000000", + "2025-06-02T18:48:00.000000000", + "2025-06-02T18:49:00.000000000", + "2025-06-02T18:50:00.000000000", + "2025-06-02T18:51:00.000000000", + "2025-06-02T18:52:00.000000000", + "2025-06-02T18:53:00.000000000", + "2025-06-02T18:54:00.000000000", + "2025-06-02T18:55:00.000000000", + "2025-06-02T18:56:00.000000000", + "2025-06-02T18:57:00.000000000", + "2025-06-02T18:58:00.000000000", + "2025-06-02T18:59:00.000000000", + "2025-06-02T19:00:00.000000000", + "2025-06-02T19:01:00.000000000", + "2025-06-02T19:02:00.000000000", + "2025-06-02T19:03:00.000000000", + "2025-06-02T19:04:00.000000000", + "2025-06-02T19:05:00.000000000", + "2025-06-02T19:06:00.000000000", + "2025-06-02T19:07:00.000000000", + "2025-06-02T19:08:00.000000000", + "2025-06-02T19:09:00.000000000", + "2025-06-02T19:10:00.000000000", + "2025-06-02T19:11:00.000000000", + "2025-06-02T19:12:00.000000000", + "2025-06-02T19:13:00.000000000", + "2025-06-02T19:14:00.000000000", + "2025-06-02T19:15:00.000000000", + "2025-06-02T19:16:00.000000000", + "2025-06-02T19:17:00.000000000", + "2025-06-02T19:18:00.000000000", + "2025-06-02T19:19:00.000000000", + "2025-06-02T19:20:00.000000000", + "2025-06-02T19:21:00.000000000", + "2025-06-02T19:22:00.000000000", + "2025-06-02T19:23:00.000000000", + "2025-06-02T19:24:00.000000000", + "2025-06-02T19:25:00.000000000", + "2025-06-02T19:26:00.000000000", + "2025-06-02T19:27:00.000000000", + "2025-06-02T19:28:00.000000000", + "2025-06-02T19:29:00.000000000", + "2025-06-02T19:30:00.000000000", + "2025-06-02T19:31:00.000000000", + "2025-06-02T19:32:00.000000000", + "2025-06-02T19:33:00.000000000", + "2025-06-02T19:34:00.000000000", + "2025-06-02T19:35:00.000000000", + "2025-06-02T19:36:00.000000000", + "2025-06-02T19:37:00.000000000", + "2025-06-02T19:38:00.000000000", + "2025-06-02T19:39:00.000000000", + "2025-06-02T19:40:00.000000000", + "2025-06-02T19:41:00.000000000", + "2025-06-02T19:42:00.000000000", + "2025-06-02T19:43:00.000000000", + "2025-06-02T19:44:00.000000000", + "2025-06-02T19:45:00.000000000", + "2025-06-02T19:46:00.000000000", + "2025-06-02T19:47:00.000000000", + "2025-06-02T19:48:00.000000000", + "2025-06-02T19:49:00.000000000", + "2025-06-02T19:50:00.000000000", + "2025-06-02T19:51:00.000000000", + "2025-06-02T19:52:00.000000000", + "2025-06-02T19:53:00.000000000", + "2025-06-02T19:54:00.000000000", + "2025-06-02T19:55:00.000000000", + "2025-06-02T19:56:00.000000000", + "2025-06-02T19:57:00.000000000", + "2025-06-02T19:58:00.000000000", + "2025-06-02T19:59:00.000000000", + "2025-06-02T20:00:00.000000000", + "2025-06-02T20:01:00.000000000", + "2025-06-02T20:02:00.000000000", + "2025-06-02T20:03:00.000000000", + "2025-06-02T20:04:00.000000000", + "2025-06-02T20:05:00.000000000", + "2025-06-02T20:06:00.000000000", + "2025-06-02T20:07:00.000000000", + "2025-06-02T20:08:00.000000000", + "2025-06-02T20:09:00.000000000", + "2025-06-02T20:10:00.000000000", + "2025-06-02T20:11:00.000000000", + "2025-06-02T20:12:00.000000000", + "2025-06-02T20:13:00.000000000", + "2025-06-02T20:14:00.000000000", + "2025-06-02T20:15:00.000000000", + "2025-06-02T20:16:00.000000000", + "2025-06-02T20:17:00.000000000", + "2025-06-02T20:18:00.000000000", + "2025-06-02T20:19:00.000000000", + "2025-06-02T20:20:00.000000000", + "2025-06-02T20:21:00.000000000", + "2025-06-02T20:22:00.000000000", + "2025-06-02T20:23:00.000000000", + "2025-06-02T20:24:00.000000000", + "2025-06-02T20:25:00.000000000", + "2025-06-02T20:26:00.000000000", + "2025-06-02T20:27:00.000000000", + "2025-06-02T20:28:00.000000000", + "2025-06-02T20:29:00.000000000", + "2025-06-02T20:30:00.000000000", + "2025-06-02T20:31:00.000000000", + "2025-06-02T20:32:00.000000000", + "2025-06-02T20:33:00.000000000", + "2025-06-02T20:34:00.000000000", + "2025-06-02T20:35:00.000000000", + "2025-06-02T20:36:00.000000000", + "2025-06-02T20:37:00.000000000", + "2025-06-02T20:38:00.000000000", + "2025-06-02T20:39:00.000000000", + "2025-06-02T20:40:00.000000000", + "2025-06-02T20:41:00.000000000", + "2025-06-02T20:42:00.000000000", + "2025-06-02T20:43:00.000000000", + "2025-06-02T20:44:00.000000000", + "2025-06-02T20:45:00.000000000", + "2025-06-02T20:46:00.000000000", + "2025-06-02T20:47:00.000000000", + "2025-06-02T20:48:00.000000000", + "2025-06-02T20:49:00.000000000", + "2025-06-02T20:50:00.000000000", + "2025-06-02T20:51:00.000000000", + "2025-06-02T20:52:00.000000000", + "2025-06-02T20:53:00.000000000", + "2025-06-02T20:54:00.000000000", + "2025-06-02T20:55:00.000000000", + "2025-06-02T20:56:00.000000000", + "2025-06-02T20:57:00.000000000", + "2025-06-02T20:58:00.000000000", + "2025-06-02T20:59:00.000000000", + "2025-06-02T21:00:00.000000000", + "2025-06-02T21:01:00.000000000", + "2025-06-02T21:02:00.000000000", + "2025-06-02T21:03:00.000000000", + "2025-06-02T21:04:00.000000000", + "2025-06-02T21:05:00.000000000", + "2025-06-02T21:06:00.000000000", + "2025-06-02T21:07:00.000000000", + "2025-06-02T21:08:00.000000000", + "2025-06-02T21:09:00.000000000", + "2025-06-02T21:10:00.000000000", + "2025-06-02T21:11:00.000000000", + "2025-06-02T21:12:00.000000000", + "2025-06-02T21:13:00.000000000", + "2025-06-02T21:14:00.000000000", + "2025-06-02T21:15:00.000000000", + "2025-06-02T21:16:00.000000000", + "2025-06-02T21:17:00.000000000", + "2025-06-02T21:18:00.000000000", + "2025-06-02T21:19:00.000000000", + "2025-06-02T21:20:00.000000000", + "2025-06-02T21:21:00.000000000", + "2025-06-02T21:22:00.000000000", + "2025-06-02T21:23:00.000000000", + "2025-06-02T21:24:00.000000000", + "2025-06-02T21:25:00.000000000", + "2025-06-02T21:26:00.000000000", + "2025-06-02T21:27:00.000000000", + "2025-06-02T21:28:00.000000000", + "2025-06-02T21:29:00.000000000", + "2025-06-02T21:30:00.000000000", + "2025-06-02T21:31:00.000000000", + "2025-06-02T21:32:00.000000000", + "2025-06-02T21:33:00.000000000", + "2025-06-02T21:34:00.000000000", + "2025-06-02T21:35:00.000000000", + "2025-06-02T21:36:00.000000000", + "2025-06-02T21:37:00.000000000", + "2025-06-02T21:38:00.000000000", + "2025-06-02T21:39:00.000000000", + "2025-06-02T21:40:00.000000000", + "2025-06-02T21:41:00.000000000", + "2025-06-02T21:42:00.000000000", + "2025-06-02T21:43:00.000000000", + "2025-06-02T21:44:00.000000000", + "2025-06-02T21:45:00.000000000", + "2025-06-02T21:46:00.000000000", + "2025-06-02T21:47:00.000000000", + "2025-06-02T21:48:00.000000000", + "2025-06-02T21:49:00.000000000", + "2025-06-02T21:50:00.000000000", + "2025-06-02T21:51:00.000000000", + "2025-06-02T21:52:00.000000000", + "2025-06-02T21:53:00.000000000", + "2025-06-02T21:54:00.000000000", + "2025-06-02T21:55:00.000000000", + "2025-06-02T21:56:00.000000000", + "2025-06-02T21:57:00.000000000", + "2025-06-02T21:58:00.000000000", + "2025-06-02T21:59:00.000000000", + "2025-06-02T22:00:00.000000000", + "2025-06-02T22:01:00.000000000", + "2025-06-02T22:02:00.000000000", + "2025-06-02T22:03:00.000000000", + "2025-06-02T22:04:00.000000000", + "2025-06-02T22:05:00.000000000", + "2025-06-02T22:06:00.000000000", + "2025-06-02T22:07:00.000000000", + "2025-06-02T22:08:00.000000000", + "2025-06-02T22:09:00.000000000", + "2025-06-02T22:10:00.000000000", + "2025-06-02T22:11:00.000000000", + "2025-06-02T22:12:00.000000000", + "2025-06-02T22:13:00.000000000", + "2025-06-02T22:14:00.000000000", + "2025-06-02T22:15:00.000000000", + "2025-06-02T22:16:00.000000000", + "2025-06-02T22:17:00.000000000", + "2025-06-02T22:18:00.000000000", + "2025-06-02T22:19:00.000000000", + "2025-06-02T22:20:00.000000000", + "2025-06-02T22:21:00.000000000", + "2025-06-02T22:22:00.000000000", + "2025-06-02T22:23:00.000000000", + "2025-06-02T22:24:00.000000000", + "2025-06-02T22:25:00.000000000", + "2025-06-02T22:26:00.000000000", + "2025-06-02T22:27:00.000000000", + "2025-06-02T22:28:00.000000000", + "2025-06-02T22:29:00.000000000", + "2025-06-02T22:30:00.000000000" + ], + "xaxis": "x4", + "y": { + "bdata": "9ihcj8I1Y0AzMzMzMztjQKRwPQrXO2NA9ihcj8I9Y0DhehSuR0FjQHE9CtejQGNApHA9CtdDY0AUrkfhekRjQArXo3A9SmNAhetRuB5NY0CPwvUoXDdjQPYoXI/CLWNAexSuR+EiY0D2KFyPwiVjQNejcD0KL2NAzczMzMwsY0CuR+F6FCZjQFyPwvUoJGNA7FG4HoUbY0CkcD0K1xNjQFK4HoXrEWNAH4XrUbgOY0DD9ShcjxJjQI/C9ShcB2NAcT0K16MIY0Bcj8L1KAxjQFK4HoXrCWNASOF6FK4HY0AAAAAAAAhjQEjhehSuB2NAFK5H4Xr8YkDNzMzMzARjQHE9CtejCGNA7FG4HoUTY0DXo3A9Cg9jQI/C9ShcB2NAw/UoXI8CY0DsUbgehQtjQGZmZmZmFmNAFK5H4XoUY0AK16NwPQpjQJqZmZmZCWNAmpmZmZkRY0CF61G4Hg1jQDMzMzMzG2NAcT0K16MQY0CuR+F6FBZjQEjhehSuD2NAFK5H4XocY0CF61G4HiVjQAAAAAAAIGNAhetRuB4lY0DsUbgehStjQKRwPQrXK2NAAAAAAAAoY0BI4XoUrjdjQHsUrkfhOmNA7FG4HoU7Y0A9CtejcDVjQHsUrkfhMmNAZmZmZmY2Y0C4HoXrUTBjQArXo3A9MmNAXI/C9Sg0Y0DhehSuR0FjQJqZmZmZQWNAexSuR+FCY0AAAAAAAEBjQGZmZmZmNmNAH4XrUbguY0D2KFyPwjVjQI/C9ShcN2NAPQrXo3A1Y0CuR+F6FC5jQBSuR+F6LGNAw/UoXI8qY0CF61G4HiVjQArXo3A9ImNA9ihcj8IdY0BI4XoUrh9jQHsUrkfhEmNA16NwPQoXY0AfhetRuBZjQM3MzMzMFGNAXI/C9SgcY0CkcD0K1xtjQB+F61G4HmNAw/UoXI8aY0C4HoXrUSBjQMP1KFyPImNASOF6FK4XY0CPwvUoXBdjQNejcD0KD2NAzczMzMwMY0CPwvUoXA9jQB+F61G4DmNAmpmZmZkJY0DXo3A9CgdjQKRwPQrXA2NA9ihcj8IFY0BmZmZmZgZjQDMzMzMzC2NAuB6F61EYY0DsUbgehRNjQBSuR+F6FGNAPQrXo3ANY0Bcj8L1KAxjQMP1KFyPEmNAAAAAAAAYY0CPwvUoXBdjQD0K16NwFWNA9ihcj8IVY0DsUbgehRtjQEjhehSuL2NAPQrXo3A1Y0Bcj8L1KCxjQFK4HoXrKWNArkfhehQmY0DsUbgehSNjQBSuR+F6JGNAhetRuB4lY0BI4XoUridjQB+F61G4HmNAj8L1KFwXY0BI4XoUrhdjQLgehetRGGNA9ihcj8IVY0CamZmZmRljQClcj8L1GGNA4XoUrkchY0DD9ShcjyJjQDMzMzMzI2NAexSuR+EiY0AK16NwPSJjQMP1KFyPImNAMzMzMzMjY0BmZmZmZh5jQJqZmZmZGWNAFK5H4XoUY0BSuB6F6yFjQFyPwvUoJGNAXI/C9SgkY0DXo3A9CidjQBSuR+F6JGNAUrgeheshY0AfhetRuB5jQLgehetRIGNA7FG4HoUjY0CF61G4HiVjQLgehetRIGNAuB6F61EgY0DNzMzMzBxjQAAAAAAAGGNArkfhehQeY0CF61G4HiVjQNejcD0KH2NACtejcD0aY0C4HoXrURhjQOxRuB6FG2NAFK5H4XoUY0DXo3A9ChdjQOF6FK5HGWNAMzMzMzMTY0BSuB6F6xFjQLgehetREGNACtejcD0SY0DhehSuRxFjQEjhehSuF2NAPQrXo3AVY0AzMzMzMxNjQFK4HoXrGWNAAAAAAAAYY0ApXI/C9RBjQJqZmZmZEWNAmpmZmZkRY0Bcj8L1KARjQI/C9ShcB2NA4XoUrkcJY0AK16NwPQpjQI/C9ShcB2NAMzMzMzMDY0AUrkfhegxjQFK4HoXrCWNAPQrXo3ANY0DsUbgehRNjQFK4HoXrEWNAKVyPwvUQY0AK16NwPRJjQDMzMzMzE2NASOF6FK4PY0BmZmZmZg5jQJqZmZmZEWNApHA9CtcTY0DXo3A9Cg9jQLgehetREGNAj8L1KFwPY0ApXI/C9RhjQBSuR+F6FGNAXI/C9SgMY0AzMzMzMwtjQGZmZmZmDmNArkfhehQWY0DXo3A9ChdjQGZmZmZmHmNASOF6FK4fY0BmZmZmZiZjQHE9CtejKGNAexSuR+EiY0DhehSuRyFjQHsUrkfhImNAH4XrUbgmY0AK16NwPSJjQOF6FK5HIWNAFK5H4XocY0BmZmZmZh5jQM3MzMzMHGNAKVyPwvUgY0CF61G4Hh1jQAAAAAAAIGNAXI/C9SgkY0BSuB6F6yFjQDMzMzMzG2NAXI/C9SgUY0DhehSuRxFjQOxRuB6FE2NAj8L1KFwXY0ApXI/C9RhjQHsUrkfhImNASOF6FK4nY0DsUbgehStjQOxRuB6FK2NASOF6FK4nY0CuR+F6FC5jQFK4HoXrMWNAZmZmZmY2Y0C4HoXrUTBjQDMzMzMzK2NAzczMzMwsY0CuR+F6FC5jQArXo3A9MmNA7FG4HoUrY0CF61G4Hi1jQEjhehSuJ2NAAAAAAAAoY0ApXI/C9SBjQEjhehSuH2NApHA9CtcjY0DXo3A9CidjQJqZmZmZKWNAAAAAAAAgY0CF61G4Hh1jQMP1KFyPImNA16NwPQofY0DhehSuRyFjQMP1KFyPImNA4XoUrkchY0CF61G4HiVjQHsUrkfhKmNAUrgehesxY0A9CtejcC1jQHsUrkfhMmNAw/UoXI8yY0CF61G4HjVjQKRwPQrXM2NAH4XrUbg2Y0CPwvUoXDdjQArXo3A9OmNAj8L1KFw3Y0A9CtejcDVjQFK4HoXrOWNA7FG4HoU7Y0B7FK5H4TJjQBSuR+F6NGNAUrgehes5Y0Bcj8L1KDxjQOF6FK5HOWNAexSuR+E6Y0DNzMzMzDxjQKRwPQrXO2NAhetRuB41Y0BmZmZmZjZjQK5H4XoUNmNAw/UoXI8yY0ApXI/C9ThjQKRwPQrXO2NApHA9Ctc7Y0ApXI/C9ThjQJqZmZmZOWNApHA9Ctc7Y0BmZmZmZkZjQIXrUbgeTWNAUrgehetZY0DXo3A9CldjQKRwPQrXW2NApHA9CtdbY0DD9Shcj2JjQClcj8L1WGNAAAAAAABYY0D2KFyPwlVjQK5H4XoUVmNAexSuR+FaY0A9CtejcF1jQHE9CtejWGNAzczMzMxUY0CPwvUoXE9jQHE9CtejUGNAuB6F61FIY0BSuB6F60ljQIXrUbgeRWNAFK5H4XpEY0DXo3A9CkdjQOF6FK5HQWNAMzMzMzNDY0DhehSuR0FjQMP1KFyPOmNASOF6FK43Y0ApXI/C9TBjQB+F61G4LmNAuB6F61EwY0BmZmZmZi5jQMP1KFyPMmNAcT0K16MwY0CkcD0K1ytjQM3MzMzMLGNAFK5H4XokY0BmZmZmZiZjQJqZmZmZIWNAXI/C9SgkY0DXo3A9CidjQOF6FK5HKWNAZmZmZmYuY0ApXI/C9TBjQOxRuB6FM2NAzczMzMwsY0AK16NwPTJjQK5H4XoULmNAMzMzMzMjY0C4HoXrUSBjQJqZmZmZIWNA16NwPQofY0CkcD0K1xNjQD0K16NwBWNA7FG4HoUDY0AK16NwPQJjQDMzMzMzA2NAKVyPwvUIY0BSuB6F6wljQBSuR+F6DGNAFK5H4XoMY0C4HoXrURBjQOxRuB6FE2NAexSuR+ESY0AK16NwPRJjQBSuR+F6FGNAw/UoXI8SY0CkcD0K1xNjQKRwPQrXC2NAUrgehesJY0CamZmZmQljQFK4HoXrCWNAmpmZmZkJY0DsUbgehQNjQI/C9Shc/2JAw/UoXI/6YkBI4XoUrv9iQFyPwvUoBGNA9ihcj8IFY0DsUbgehQNjQAAAAAAAAGNAcT0K16MAY0DsUbgehftiQB+F61G4/mJAcT0K16MAY0BxPQrXowBjQBSuR+F6/GJAexSuR+ECY0CF61G4HgVjQOxRuB6FA2NAAAAAAAAIY0BSuB6F6wljQM3MzMzMDGNArkfhehQOY0BxPQrXoxBjQClcj8L1EGNAUrgehesRY0DNzMzMzBRjQGZmZmZmFmNAw/UoXI8aY0BmZmZmZh5jQJqZmZmZIWNACtejcD0iY0CkcD0K1yNjQD0K16NwJWNAw/UoXI8qY0Bcj8L1KCRjQArXo3A9KmNAj8L1KFwvY0C4HoXrUTBjQAAAAAAAOGNAzczMzMxEY0BI4XoUrkdjQK5H4XoUTmNApHA9CtdLY0Bcj8L1KExjQD0K16NwRWNAXI/C9ShEY0DD9Shcj0JjQNejcD0KR2NAAAAAAABAY0CPwvUoXD9jQGZmZmZmPmNAzczMzMxEY0AzMzMzM0NjQNejcD0KR2NArkfhehRGY0BI4XoUrj9jQNejcD0KP2NAexSuR+FCY0Bcj8L1KERjQFK4HoXrSWNAKVyPwvVIY0DXo3A9CkdjQPYoXI/CRWNAH4XrUbg+Y0DhehSuR0FjQI/C9ShcP2NA4XoUrkdBY0DhehSuR0FjQI/C9ShcR2NAcT0K16NIY0BxPQrXo0hjQEjhehSuR2NAZmZmZmZGY0CamZmZmUljQLgehetRSGNAFK5H4XpEY0CamZmZmUFjQMP1KFyPQmNApHA9CtdDY0DhehSuR0FjQPYoXI/CPWNA4XoUrkdBY0BxPQrXo0BjQHE9CtejQGNAmpmZmZlBY0AAAAAAAEBjQDMzMzMzS2NAmpmZmZlJY0BSuB6F60ljQM3MzMzMTGNAKVyPwvVQY0CamZmZmVFjQM3MzMzMVGNA16NwPQpXY0D2KFyPwl1jQJqZmZmZYWNAPQrXo3BdY0DXo3A9Cl9jQD0K16NwXWNA4XoUrkdhY0DNzMzMzFxjQAAAAAAAYGNAH4XrUbheY0DsUbgehWNjQFK4HoXrYWNAXI/C9ShkY0CamZmZmWFjQB+F61G4VmNAhetRuB5VY0DhehSuR1FjQArXo3A9UmNA16NwPQpXY0DhehSuR1ljQJqZmZmZWWNAexSuR+FaY0DsUbgehVtjQEjhehSuV2NAZmZmZmZWY0AfhetRuFZjQK5H4XoUVmNAH4XrUbhWY0DXo3A9CldjQLgehetRUGNAmpmZmZlJY0BxPQrXo0hjQArXo3A9UmNASOF6FK5XY0DXo3A9CldjQEjhehSuX2NAPQrXo3BdY0BSuB6F61ljQHE9CtejWGNAMzMzMzNbY0DXo3A9Cl9jQOF6FK5HYWNAuB6F61FgY0ApXI/C9WBjQGZmZmZmZmNAFK5H4XpkY0BxPQrXo2hjQIXrUbgeZWNAPQrXo3BlY0AUrkfhemRjQHE9CtejYGNA7FG4HoVjY0Bcj8L1KGRjQD0K16NwZWNA4XoUrkdpY0D2KFyPwm1jQClcj8L1eGNA4XoUrkeBY0CamZmZmYFjQNejcD0Kh2NA4XoUrkeBY0AUrkfhenRjQMP1KFyPemNA4XoUrkd5Y0BmZmZmZn5jQD0K16NwdWNA7FG4HoVzY0CamZmZmXljQLgehetReGNAMzMzMzN7Y0Bcj8L1KHxjQBSuR+F6fGNAAAAAAACAY0AUrkfhenxjQK5H4XoUhmNAcT0K16OIY0AUrkfheoRjQArXo3A9gmNAPQrXo3B9Y0D2KFyPwoVjQM3MzMzMjGNAZmZmZmaWY0DXo3A9CpdjQArXo3A9kmNAzczMzMyUY0AAAAAAAJhjQGZmZmZmlmNA", + "dtype": "f8" + }, + "yaxis": "y4" + }, + { + "marker": { + "color": "darkgreen", + "size": 12, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "SOL-USDT BUY OPEN", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T18:02:00.000000000" + ], + "xaxis": "x4", + "y": { + "bdata": "FK5H4Xo0Y0A=", + "dtype": "f8" + }, + "yaxis": "y4" + }, + { + "line": { + "color": "black", + "width": 2 + }, + "marker": { + "color": "green", + "size": 12, + "symbol": "triangle-up" + }, + "mode": "markers", + "name": "SOL-USDT BUY CLOSE", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T15:41:00.000000000", + "2025-06-02T17:01:00.000000000", + "2025-06-02T17:17:00.000000000", + "2025-06-02T17:35:00.000000000", + "2025-06-02T22:29:00.000000000" + ], + "xaxis": "x4", + "y": { + "bdata": "MzMzMzMjY0AK16NwPSJjQHsUrkfhImNASOF6FK4fY0BmZmZmZpZjQA==", + "dtype": "f8" + }, + "yaxis": "y4" + }, + { + "marker": { + "color": "red", + "size": 12, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "SOL-USDT SELL OPEN", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T15:31:00.000000000", + "2025-06-02T16:44:00.000000000", + "2025-06-02T17:06:00.000000000", + "2025-06-02T17:24:00.000000000", + "2025-06-02T19:35:00.000000000" + ], + "xaxis": "x4", + "y": { + "bdata": "SOF6FK4nY0C4HoXrURBjQClcj8L1IGNAZmZmZmY2Y0Bcj8L1KARjQA==", + "dtype": "f8" + }, + "yaxis": "y4" + }, + { + "line": { + "color": "black", + "width": 2 + }, + "marker": { + "color": "red", + "size": 12, + "symbol": "triangle-down" + }, + "mode": "markers", + "name": "SOL-USDT SELL CLOSE", + "showlegend": true, + "type": "scatter", + "x": [ + "2025-06-02T18:06:00.000000000" + ], + "xaxis": "x4", + "y": { + "bdata": "exSuR+E6Y0A=", + "dtype": "f8" + }, + "yaxis": "y4" + } + ], + "layout": { + "annotations": [ + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Dis-equilibrium with Trading Thresholds (2025-06-02)", + "x": 0.5, + "xanchor": "center", + "xref": "paper", + "y": 1, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "Normalized Price Comparison with BUY/SELL Signals - ADA-USDT&SOL-USDT (2025-06-02)", + "x": 0.5, + "xanchor": "center", + "xref": "paper", + "y": 0.6940000000000001, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "ADA-USDT Market Data with Trading Signals (2025-06-02)", + "x": 0.5, + "xanchor": "center", + "xref": "paper", + "y": 0.306, + "yanchor": "bottom", + "yref": "paper" + }, + { + "font": { + "size": 16 + }, + "showarrow": false, + "text": "SOL-USDT Market Data with Trading Signals (2025-06-02)", + "x": 0.5, + "xanchor": "center", + "xref": "paper", + "y": 0.123, + "yanchor": "bottom", + "yref": "paper" + } + ], + "height": 1600, + "plot_bgcolor": "lightgray", + "shapes": [ + { + "line": { + "color": "purple", + "dash": "dot", + "width": 2 + }, + "opacity": 0.7, + "type": "line", + "x0": "2025-06-02T13:30:00", + "x1": "2025-06-02T22:30:00", + "xref": "x", + "y0": 2, + "y1": 2, + "yref": "y" + }, + { + "line": { + "color": "purple", + "dash": "dot", + "width": 2 + }, + "opacity": 0.7, + "type": "line", + "x0": "2025-06-02T13:30:00", + "x1": "2025-06-02T22:30:00", + "xref": "x", + "y0": -2, + "y1": -2, + "yref": "y" + }, + { + "line": { + "color": "brown", + "dash": "dot", + "width": 2 + }, + "opacity": 0.7, + "type": "line", + "x0": "2025-06-02T13:30:00", + "x1": "2025-06-02T22:30:00", + "xref": "x", + "y0": 0.5, + "y1": 0.5, + "yref": "y" + }, + { + "line": { + "color": "brown", + "dash": "dot", + "width": 2 + }, + "opacity": 0.7, + "type": "line", + "x0": "2025-06-02T13:30:00", + "x1": "2025-06-02T22:30:00", + "xref": "x", + "y0": -0.5, + "y1": -0.5, + "yref": "y" + }, + { + "line": { + "color": "black", + "dash": "solid", + "width": 1 + }, + "opacity": 0.5, + "type": "line", + "x0": "2025-06-02T13:30:00", + "x1": "2025-06-02T22:30:00", + "xref": "x", + "y0": 0, + "y1": 0, + "yref": "y" + } + ], + "showlegend": true, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "white", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "white", + "width": 0.5 + }, + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "#C8D4E3", + "linecolor": "#C8D4E3", + "minorgridcolor": "#C8D4E3", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "histogram": [ + { + "marker": { + "pattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "fillpattern": { + "fillmode": "overlay", + "size": 10, + "solidity": 0.2 + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermap": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermap" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "white", + "showlakes": true, + "showland": true, + "subunitcolor": "#C8D4E3" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "white", + "polar": { + "angularaxis": { + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", + "ticks": "" + }, + "bgcolor": "white", + "radialaxis": { + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", + "gridwidth": 2, + "linecolor": "#EBF0F8", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#EBF0F8" + }, + "yaxis": { + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", + "gridwidth": 2, + "linecolor": "#EBF0F8", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#EBF0F8" + }, + "zaxis": { + "backgroundcolor": "white", + "gridcolor": "#DFE8F3", + "gridwidth": 2, + "linecolor": "#EBF0F8", + "showbackground": true, + "ticks": "", + "zerolinecolor": "#EBF0F8" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", + "ticks": "" + }, + "baxis": { + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", + "ticks": "" + }, + "bgcolor": "white", + "caxis": { + "gridcolor": "#DFE8F3", + "linecolor": "#A2B1C6", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#EBF0F8", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "#EBF0F8", + "linecolor": "#EBF0F8", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "#EBF0F8", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Strategy Analysis - ADA-USDT & SOL-USDT (2025-06-02)" + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "range": [ + "2025-06-02T13:30:00", + "2025-06-02T22:30:00" + ] + }, + "xaxis2": { + "anchor": "y2", + "domain": [ + 0, + 1 + ], + "range": [ + "2025-06-02T13:30:00", + "2025-06-02T22:30:00" + ] + }, + "xaxis3": { + "anchor": "y3", + "domain": [ + 0, + 1 + ], + "range": [ + "2025-06-02T13:30:00", + "2025-06-02T22:30:00" + ] + }, + "xaxis4": { + "anchor": "y4", + "domain": [ + 0, + 1 + ], + "range": [ + "2025-06-02T13:30:00", + "2025-06-02T22:30:00" + ], + "title": { + "text": "Time" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0.754, + 1 + ], + "title": { + "text": "Scaled Dis-equilibrium" + } + }, + "yaxis2": { + "anchor": "x2", + "domain": [ + 0.366, + 0.6940000000000001 + ], + "title": { + "text": "ADA-USDT Price ($)" + } + }, + "yaxis3": { + "anchor": "x3", + "domain": [ + 0.183, + 0.306 + ], + "title": { + "text": "SOL-USDT Price ($)" + } + }, + "yaxis4": { + "anchor": "x4", + "domain": [ + 0, + 0.123 + ], + "title": { + "text": "Normalized Price (Base = 1.0)" + } + } + } + }, + "text/html": [ + "
\n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Chart shows:\n", + "- ADA-USDT and SOL-USDT prices normalized to start at 1.0\n", + "- BUY signals shown as green triangles pointing up\n", + "- SELL signals shown as orange triangles pointing down\n", + "- All BUY signals per symbol grouped together, all SELL signals per symbol grouped together\n", + "- Hover over markers to see individual trade details (OPEN/CLOSE status)\n", + "- Total signals displayed: 24\n", + "- ADA-USDT signals: 12\n", + "- SOL-USDT signals: 12\n", + "================================================================================\n", + "PAIRS TRADING BACKTEST SUMMARY\n", + "================================================================================\n", + "\n", + "Pair: ADA-USDT & SOL-USDT\n", + "Fit Method: RollingFit\n", + "Configuration: /home/oleg/develop/pairs_trading/configuration/zscore.cfg\n", + "Trading date: 2025-06-02\n", + "\n", + "Strategy Parameters:\n", + " Training window: 120 minutes\n", + " Open threshold: 2\n", + " Close threshold: 0.5\n", + " Funding per pair: $2000\n", + "\n", + "Rolling Window Analysis:\n", + " Total data points: 540\n", + " Maximum iterations: 420\n", + " Analysis type: Dynamic rolling window\n", + "\n", + "Trading Signals: 24 generated\n", + " Unique trade times: 12\n", + " BUY signals: 12\n", + " SELL signals: 12\n", + "\n", + "First few trading signals:\n", + " 1. BUY ADA-USDT @ $0.67 at 2025-06-02 15:31:00\n", + " 2. SELL SOL-USDT @ $153.24 at 2025-06-02 15:31:00\n", + " 3. SELL ADA-USDT @ $0.67 at 2025-06-02 15:41:00\n", + " 4. BUY SOL-USDT @ $153.10 at 2025-06-02 15:41:00\n", + " 5. BUY ADA-USDT @ $0.67 at 2025-06-02 16:44:00\n", + " 6. SELL SOL-USDT @ $152.51 at 2025-06-02 16:44:00\n", + " ... and 18 more signals\n", + "\n", + "================================================================================\n", + "\n", + "Detailed Trading Signals:\n", + "Time Action Symbol Price Scaled Dis-eq Status \n", + "------------------------------------------------------------------------------------------\n", + "2025-06-02 15:31:00 OPEN ADA-USDT $0.67 2.892 OPEN \n", + "2025-06-02 15:31:00 OPEN SOL-USDT $153.24 2.892 OPEN \n", + "2025-06-02 15:41:00 CLOSE ADA-USDT $0.67 0.015 CLOSE \n", + "2025-06-02 15:41:00 CLOSE SOL-USDT $153.10 0.015 CLOSE \n", + "2025-06-02 16:44:00 OPEN ADA-USDT $0.67 2.365 OPEN \n", + "2025-06-02 16:44:00 OPEN SOL-USDT $152.51 2.365 OPEN \n", + "2025-06-02 17:01:00 CLOSE ADA-USDT $0.67 0.457 CLOSE \n", + "2025-06-02 17:01:00 CLOSE SOL-USDT $153.07 0.457 CLOSE \n", + "2025-06-02 17:06:00 OPEN ADA-USDT $0.67 2.191 OPEN \n", + "2025-06-02 17:06:00 OPEN SOL-USDT $153.03 2.191 OPEN \n", + "... and 14 more trading signals\n", + "\n", + " -------------- Suggested Trades \n", + " symbol side action price disequilibrium scaled_disequilibrium signed_scaled_disequilibrium pair status\n", + "time \n", + "2025-06-02 15:31:00 ADA-USDT BUY OPEN 0.6736 -2.892081 2.892081 -2.892081 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 15:31:00 SOL-USDT SELL OPEN 153.2400 -2.892081 2.892081 -2.892081 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 15:41:00 ADA-USDT SELL CLOSE 0.6734 0.014633 0.014633 0.014633 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 15:41:00 SOL-USDT BUY CLOSE 153.1000 0.014633 0.014633 0.014633 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 16:44:00 ADA-USDT BUY OPEN 0.6712 -2.364779 2.364779 -2.364779 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 16:44:00 SOL-USDT SELL OPEN 152.5100 -2.364779 2.364779 -2.364779 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 17:01:00 ADA-USDT SELL CLOSE 0.6744 -0.457250 0.457250 -0.457250 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 17:01:00 SOL-USDT BUY CLOSE 153.0700 -0.457250 0.457250 -0.457250 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 17:06:00 ADA-USDT BUY OPEN 0.6740 -2.191025 2.191025 -2.191025 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 17:06:00 SOL-USDT SELL OPEN 153.0300 -2.191025 2.191025 -2.191025 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 17:17:00 ADA-USDT SELL CLOSE 0.6743 -0.152501 0.152501 -0.152501 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 17:17:00 SOL-USDT BUY CLOSE 153.0900 -0.152501 0.152501 -0.152501 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 17:24:00 ADA-USDT BUY OPEN 0.6759 -2.748538 2.748538 -2.748538 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 17:24:00 SOL-USDT SELL OPEN 153.7000 -2.748538 2.748538 -2.748538 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 17:35:00 ADA-USDT SELL CLOSE 0.6715 -0.413061 0.413061 -0.413061 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 17:35:00 SOL-USDT BUY CLOSE 152.9900 -0.413061 0.413061 -0.413061 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 18:02:00 ADA-USDT SELL OPEN 0.6743 2.047229 2.047229 2.047229 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 18:02:00 SOL-USDT BUY OPEN 153.6400 2.047229 2.047229 2.047229 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 18:06:00 ADA-USDT BUY CLOSE 0.6747 -0.089168 0.089168 -0.089168 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 18:06:00 SOL-USDT SELL CLOSE 153.8400 -0.089168 0.089168 -0.089168 ADA-USDT & SOL-USDT CLOSE\n", + "2025-06-02 19:35:00 ADA-USDT BUY OPEN 0.6721 -2.016878 2.016878 -2.016878 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 19:35:00 SOL-USDT SELL OPEN 152.1300 -2.016878 2.016878 -2.016878 ADA-USDT & SOL-USDT OPEN\n", + "2025-06-02 22:29:00 ADA-USDT SELL CLOSE 0.6908 0.000000 0.000000 0.000000 ADA-USDT & SOL-USDT CLOSE_POSITION\n", + "2025-06-02 22:29:00 SOL-USDT BUY CLOSE 156.7000 0.000000 0.000000 0.000000 ADA-USDT & SOL-USDT CLOSE_POSITION\n", + "\n", + "================================================================================\n", + "\n", + "====== Returns By Day and Pair ======\n", + "\n", + "--- 20250602-ADA-USDT & SOL-USDT ---\n", + "ADA-USDT & SOL-USDT:\n", + " 15:31:00-15:41:00 ADA-USDT: BUY @ $0.67, SELL @ $0.67, Return: -0.03% | Open Dis-eq: 2.89,\n", + " 15:31:00-15:41:00 SOL-USDT: SELL @ $153.24, BUY @ $153.10, Return: 0.09% | Open Dis-eq: 2.89,\n", + " 16:44:00-17:01:00 ADA-USDT: BUY @ $0.67, SELL @ $0.67, Return: 0.48% | Open Dis-eq: 2.36,\n", + " 16:44:00-17:01:00 SOL-USDT: SELL @ $152.51, BUY @ $153.07, Return: -0.37% | Open Dis-eq: 2.36,\n", + " 17:06:00-17:17:00 ADA-USDT: BUY @ $0.67, SELL @ $0.67, Return: 0.04% | Open Dis-eq: 2.19,\n", + " 17:06:00-17:17:00 SOL-USDT: SELL @ $153.03, BUY @ $153.09, Return: -0.04% | Open Dis-eq: 2.19,\n", + " 17:24:00-17:35:00 ADA-USDT: BUY @ $0.68, SELL @ $0.67, Return: -0.65% | Open Dis-eq: 2.75,\n", + " 17:24:00-17:35:00 SOL-USDT: SELL @ $153.70, BUY @ $152.99, Return: 0.46% | Open Dis-eq: 2.75,\n", + " 18:02:00-18:06:00 ADA-USDT: SELL @ $0.67, BUY @ $0.67, Return: -0.06% | Open Dis-eq: 2.05,\n", + " 18:02:00-18:06:00 SOL-USDT: BUY @ $153.64, SELL @ $153.84, Return: 0.13% | Open Dis-eq: 2.05,\n", + " 19:35:00-22:29:00 ADA-USDT: BUY @ $0.67, SELL @ $0.69, Return: 2.78% | Open Dis-eq: 2.02,\n", + " 19:35:00-22:29:00 SOL-USDT: SELL @ $152.13, BUY @ $156.70, Return: -3.00% | Open Dis-eq: 2.02,\n", + " Pair Total Return: -0.16%\n", + " Day Total Return: -0.16%\n", + "\n", + "====== GRAND TOTALS ACROSS ALL PAIRS ======\n", + "Total Realized PnL: -0.16%\n", + "\n", + "====== NO OUTSTANDING POSITIONS ======\n" + ] + } + ], "source": [ "setup()\n", "load_config_from_file()\n", @@ -1268,7 +6809,8 @@ "run_analysis()\n", "visualization()\n", "summary() \n", - "performance_results()\n" + "performance_results()\n", + "print_summary()\n" ] } ], diff --git a/research/pt_backtest.py b/research/pt_backtest.py index b5608d2..cc87b19 100644 --- a/research/pt_backtest.py +++ b/research/pt_backtest.py @@ -69,7 +69,6 @@ def get_instruments(args: argparse.Namespace, config: Dict) -> List[Dict[str, st def run_backtest( config: Dict, datafiles: List[str], - price_column: str, fit_method: PairsTradingFitMethod, instruments: List[Dict[str, str]], ) -> BacktestResult: @@ -90,7 +89,6 @@ def run_backtest( pairs = create_pairs( datafiles=datafiles, fit_method=fit_method, - price_column=price_column, config=config, instruments=instruments, ) @@ -156,7 +154,6 @@ def main() -> None: all_results: Dict[str, Dict[str, Any]] = {} is_config_stored = False # Process each data file - price_column = config["price_column"] for day in sorted(days): md_datafiles = [datafile for md_day, datafile in datafiles if md_day == day] @@ -183,7 +180,6 @@ def main() -> None: bt_results = run_backtest( config=config, datafiles=md_datafiles, - price_column=price_column, fit_method=fit_method, instruments=instruments, ) diff --git a/research/research_tools.py b/research/research_tools.py index e40d06b..4506667 100644 --- a/research/research_tools.py +++ b/research/research_tools.py @@ -48,7 +48,6 @@ def resolve_datafiles(config: Dict, cli_datafiles: Optional[str] = None) -> List def create_pairs( datafiles: List[str], fit_method: PairsTradingFitMethod, - price_column: str, config: Dict, instruments: List[Dict[str, str]], ) -> List: @@ -85,7 +84,6 @@ def create_pairs( market_data=market_data_df, symbol_a=symbol_a, symbol_b=symbol_b, - price_column=price_column, ) pairs.append(pair) return pairs diff --git a/strategy/pair_strategy.py b/strategy/pair_strategy.py index fb1b690..a7f7604 100644 --- a/strategy/pair_strategy.py +++ b/strategy/pair_strategy.py @@ -23,7 +23,6 @@ from pt_trading.trading_pair import TradingPair def run_strategy( config: Dict, datafile: str, - price_column: str, fit_method: PairsTradingFitMethod, instruments: List[str], ) -> BacktestResult: @@ -56,7 +55,6 @@ def run_strategy( market_data=market_data_df, symbol_a=instruments[a_index], symbol_b=instruments[b_index], - price_column=price_column, ) pairs.append(pair) return pairs @@ -161,7 +159,6 @@ def main() -> None: ) # Process each data file - price_column = config["price_column"] for datafile in datafiles: print(f"\n====== Processing {os.path.basename(datafile)} ======") @@ -187,7 +184,6 @@ def main() -> None: bt_results = run_strategy( config=config, datafile=datafile, - price_column=price_column, fit_method=fit_method, instruments=instruments, )