progress: stop signals
This commit is contained in:
parent
ca9fff8d88
commit
c776c95d69
@ -45,7 +45,6 @@ Each configuration dictionary specifies:
|
||||
- `instruments`: A list of symbols to consider for forming trading pairs.
|
||||
- `trading_hours`: Defines the session start and end times, crucial for equity markets.
|
||||
- `price_column`: The column in the data to be used as the price (e.g., "close").
|
||||
- `zero_threshold`: A small value to handle potential division by zero.
|
||||
- `dis-equilibrium_open_trshld`: The threshold (in standard deviations) of the dis-equilibrium for opening a trade.
|
||||
- `dis-equilibrium_close_trshld`: The threshold (in standard deviations) of the dis-equilibrium for closing an open trade.
|
||||
- `training_minutes`: The length of the rolling window (in minutes) used to train the model (e.g., calculate cointegration, mean, and standard deviation of the dis-equilibrium).
|
||||
|
||||
@ -7,24 +7,27 @@
|
||||
"db_table_name": "md_1min_bars",
|
||||
"exchange_id": "BNBSPOT",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
"trading_hours": {
|
||||
"begin_session": "00:00:00",
|
||||
"end_session": "23:59:00",
|
||||
"timezone": "UTC"
|
||||
},
|
||||
"price_column": "close",
|
||||
"zero_threshold": 1e-10,
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 0.5,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
|
||||
# ====== Trading Parameters ======
|
||||
"price_column": "close",
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||
"close_outstanding_positions": true,
|
||||
"trading_hours": {
|
||||
"begin_session": "06:00:00",
|
||||
"end_session": "16:00:00",
|
||||
"timezone": "America/New_York"
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "21:30:00",
|
||||
"timezone": "America/New_York"
|
||||
}
|
||||
}
|
||||
@ -7,24 +7,20 @@
|
||||
"db_table_name": "md_1min_bars",
|
||||
"exchange_id": "ALPACA",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
"trading_hours": {
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "16:00:00",
|
||||
"timezone": "America/New_York"
|
||||
},
|
||||
"price_column": "close",
|
||||
"funding_per_pair": 2000.0,
|
||||
"zero_threshold": 1e-10,
|
||||
#
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 150,
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
"exclude_instruments": ["CAN"],
|
||||
|
||||
"funding_per_pair": 2000.0,
|
||||
|
||||
# ====== Trading Parameters ======
|
||||
"price_column": "close",
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_conditions": {
|
||||
"profit": 1.0,
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
|
||||
@ -1,26 +0,0 @@
|
||||
{
|
||||
"security_type": "EQUITY",
|
||||
"data_directory": "./data/equity",
|
||||
# "datafiles": [
|
||||
# "20250604.mktdata.ohlcv.db",
|
||||
# ],
|
||||
"db_table_name": "md_1min_bars",
|
||||
"exchange_id": "ALPACA",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
"trading_hours": {
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "16:00:00",
|
||||
"timezone": "America/New_York"
|
||||
},
|
||||
"price_column": "close",
|
||||
"zero_threshold": 1e-10,
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
"fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||
"exclude_instruments": ["CAN"],
|
||||
"close_outstanding_positions": false
|
||||
|
||||
}
|
||||
@ -29,8 +29,3 @@ class PairsTradingFitMethod(ABC):
|
||||
def reset(self) -> None: ...
|
||||
|
||||
|
||||
class PairState(Enum):
|
||||
INITIAL = 1
|
||||
OPEN = 2
|
||||
CLOSED = 3
|
||||
CLOSED_POSITIONS = 4
|
||||
|
||||
@ -3,9 +3,9 @@ from enum import Enum
|
||||
from typing import Dict, Optional, cast
|
||||
|
||||
import pandas as pd # type: ignore[import]
|
||||
from pt_trading.fit_method import PairState, PairsTradingFitMethod
|
||||
from pt_trading.fit_method import PairsTradingFitMethod
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.trading_pair import CointegrationData, TradingPair
|
||||
from pt_trading.trading_pair import CointegrationData, TradingPair, PairState
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
@ -72,7 +72,7 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
curr_predicted_row_idx += 1
|
||||
|
||||
self._create_trading_signals(pair, config, bt_result)
|
||||
print(f"***{pair}*** FINISHED ... {len(pair.user_data_['trades'])}")
|
||||
print(f"***{pair}*** FINISHED *** Num Trades:{len(pair.user_data_['trades'])}")
|
||||
return pair.get_trades()
|
||||
|
||||
def _create_trading_signals(
|
||||
@ -86,24 +86,41 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
close_threshold = config["dis-equilibrium_close_trshld"]
|
||||
for curr_predicted_row_idx in range(len(pair.predicted_df_)):
|
||||
pred_row = pair.predicted_df_.iloc[curr_predicted_row_idx]
|
||||
if pair.user_data_["state"] in [PairState.INITIAL, PairState.CLOSED, PairState.CLOSED_POSITIONS]:
|
||||
open_trades = self._get_open_trades(
|
||||
pair, row=pred_row, open_threshold=open_threshold
|
||||
)
|
||||
if open_trades is not None:
|
||||
open_trades["status"] = "OPEN"
|
||||
print(f"OPEN TRADES:\n{open_trades}")
|
||||
pair.add_trades(open_trades)
|
||||
pair.user_data_["state"] = PairState.OPEN
|
||||
scaled_disequilibrium = pred_row["scaled_disequilibrium"]
|
||||
|
||||
if pair.user_data_["state"] in [PairState.INITIAL, PairState.CLOSE, PairState.CLOSE_POSITION]:
|
||||
if scaled_disequilibrium >= open_threshold:
|
||||
open_trades = self._get_open_trades(
|
||||
pair, row=pred_row, open_threshold=open_threshold
|
||||
)
|
||||
if open_trades is not None:
|
||||
open_trades["status"] = PairState.OPEN.name
|
||||
print(f"OPEN TRADES:\n{open_trades}")
|
||||
pair.add_trades(open_trades)
|
||||
pair.user_data_["state"] = PairState.OPEN
|
||||
pair.on_open_trades(open_trades)
|
||||
|
||||
elif pair.user_data_["state"] == PairState.OPEN:
|
||||
close_trades = self._get_close_trades(
|
||||
pair, row=pred_row, close_threshold=close_threshold
|
||||
)
|
||||
if close_trades is not None:
|
||||
close_trades["status"] = "CLOSE"
|
||||
print(f"CLOSE TRADES:\n{close_trades}")
|
||||
pair.add_trades(close_trades)
|
||||
pair.user_data_["state"] = PairState.CLOSED
|
||||
if scaled_disequilibrium <= close_threshold:
|
||||
close_trades = self._get_close_trades(
|
||||
pair, row=pred_row, close_threshold=close_threshold
|
||||
)
|
||||
if close_trades is not None:
|
||||
close_trades["status"] = PairState.CLOSE.name
|
||||
print(f"CLOSE TRADES:\n{close_trades}")
|
||||
pair.add_trades(close_trades)
|
||||
pair.user_data_["state"] = PairState.CLOSE
|
||||
pair.on_close_trades(close_trades)
|
||||
elif pair.to_stop_close_conditions(predicted_row=pred_row):
|
||||
close_trades = self._get_close_trades(
|
||||
pair, row=pred_row, close_threshold=close_threshold
|
||||
)
|
||||
if close_trades is not None:
|
||||
close_trades["status"] = pair.user_data_["stop_close_state"].name
|
||||
print(f"STOP CLOSE TRADES:\n{close_trades}")
|
||||
pair.add_trades(close_trades)
|
||||
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
||||
pair.on_close_trades(close_trades)
|
||||
|
||||
# Outstanding positions
|
||||
if pair.user_data_["state"] == PairState.OPEN:
|
||||
@ -112,16 +129,17 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
)
|
||||
# outstanding positions
|
||||
if config["close_outstanding_positions"]:
|
||||
close_position_trades = self._get_close_position_trades(
|
||||
close_position_trades = self._get_close_trades(
|
||||
pair=pair,
|
||||
row=pred_row,
|
||||
close_threshold=close_threshold,
|
||||
)
|
||||
if close_position_trades is not None:
|
||||
close_position_trades["status"] = "CLOSE_POSITION"
|
||||
close_position_trades["status"] = PairState.CLOSE_POSITION.name
|
||||
print(f"CLOSE_POSITION TRADES:\n{close_position_trades}")
|
||||
pair.add_trades(close_position_trades)
|
||||
pair.user_data_["state"] = PairState.CLOSED_POSITIONS
|
||||
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
||||
pair.on_close_trades(close_position_trades)
|
||||
else:
|
||||
if pair.predicted_df_ is not None:
|
||||
bt_result.handle_outstanding_position(
|
||||
@ -154,9 +172,6 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
open_px_a = open_row[f"{colname_a}"]
|
||||
open_px_b = open_row[f"{colname_b}"]
|
||||
|
||||
if open_scaled_disequilibrium < open_threshold:
|
||||
return None
|
||||
|
||||
# creating the trades
|
||||
print(f"OPEN_TRADES: {row["tstamp"]} {open_scaled_disequilibrium=}")
|
||||
if open_disequilibrium > 0:
|
||||
@ -237,8 +252,6 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
close_side_a = pair.user_data_["close_side_a"]
|
||||
close_side_b = pair.user_data_["close_side_b"]
|
||||
|
||||
if close_scaled_disequilibrium > close_threshold:
|
||||
return None
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
close_tstamp,
|
||||
@ -276,61 +289,114 @@ class SlidingFit(PairsTradingFitMethod):
|
||||
"pair": "object"
|
||||
})
|
||||
|
||||
def _get_close_position_trades(
|
||||
self, pair: TradingPair, row: pd.Series, close_threshold: float
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.colnames()
|
||||
# def _get_stop_close_trades(
|
||||
# self, pair: TradingPair, row: pd.Series, close_threshold: float
|
||||
# ) -> Optional[pd.DataFrame]:
|
||||
# colname_a, colname_b = pair.colnames()
|
||||
# assert pair.predicted_df_ is not None
|
||||
# if len(pair.predicted_df_) == 0:
|
||||
# return None
|
||||
|
||||
assert pair.predicted_df_ is not None
|
||||
if len(pair.predicted_df_) == 0:
|
||||
return None
|
||||
# stop_close_row = row
|
||||
# stop_close_tstamp = stop_close_row["tstamp"]
|
||||
# stop_close_disequilibrium = stop_close_row["disequilibrium"]
|
||||
# stop_close_scaled_disequilibrium = stop_close_row["scaled_disequilibrium"]
|
||||
# stop_close_px_a = stop_close_row[f"{colname_a}"]
|
||||
# stop_close_px_b = stop_close_row[f"{colname_b}"]
|
||||
|
||||
close_position_row = row
|
||||
close_position_tstamp = close_position_row["tstamp"]
|
||||
close_position_disequilibrium = close_position_row["disequilibrium"]
|
||||
close_position_scaled_disequilibrium = close_position_row["scaled_disequilibrium"]
|
||||
close_position_px_a = close_position_row[f"{colname_a}"]
|
||||
close_position_px_b = close_position_row[f"{colname_b}"]
|
||||
# stop_close_side_a = pair.user_data_["close_side_a"]
|
||||
# stop_close_side_b = pair.user_data_["close_side_b"]
|
||||
|
||||
close_position_side_a = pair.user_data_["close_side_a"]
|
||||
close_position_side_b = pair.user_data_["close_side_b"]
|
||||
# trd_signal_tuples = [
|
||||
# (
|
||||
# stop_close_tstamp,
|
||||
# stop_close_side_a,
|
||||
# pair.symbol_a_,
|
||||
# stop_close_px_a,
|
||||
# stop_close_disequilibrium,
|
||||
# stop_close_scaled_disequilibrium,
|
||||
# pair,
|
||||
# ),
|
||||
# (
|
||||
# stop_close_tstamp,
|
||||
# stop_close_side_b,
|
||||
# pair.symbol_b_,
|
||||
# stop_close_px_b,
|
||||
# stop_close_disequilibrium,
|
||||
# stop_close_scaled_disequilibrium,
|
||||
# pair,
|
||||
# ),
|
||||
# ]
|
||||
# df = pd.DataFrame(
|
||||
# trd_signal_tuples,
|
||||
# columns=self.TRADES_COLUMNS,
|
||||
# )
|
||||
# # Ensure consistent dtypes
|
||||
# return df.astype({
|
||||
# "time": "datetime64[ns]",
|
||||
# "action": "string",
|
||||
# "symbol": "string",
|
||||
# "price": "float64",
|
||||
# "disequilibrium": "float64",
|
||||
# "scaled_disequilibrium": "float64",
|
||||
# "pair": "object"
|
||||
# })
|
||||
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
close_position_tstamp,
|
||||
close_position_side_a,
|
||||
pair.symbol_a_,
|
||||
close_position_px_a,
|
||||
close_position_disequilibrium,
|
||||
close_position_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
close_position_tstamp,
|
||||
close_position_side_b,
|
||||
pair.symbol_b_,
|
||||
close_position_px_b,
|
||||
close_position_disequilibrium,
|
||||
close_position_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
# def _get_close_position_trades(
|
||||
# self, pair: TradingPair, row: pd.Series, close_threshold: float
|
||||
# ) -> Optional[pd.DataFrame]:
|
||||
# colname_a, colname_b = pair.colnames()
|
||||
|
||||
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||
df = pd.DataFrame(
|
||||
trd_signal_tuples,
|
||||
columns=self.TRADES_COLUMNS,
|
||||
)
|
||||
# Ensure consistent dtypes
|
||||
return df.astype({
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"pair": "object"
|
||||
})
|
||||
# assert pair.predicted_df_ is not None
|
||||
# if len(pair.predicted_df_) == 0:
|
||||
# return None
|
||||
|
||||
# close_position_row = row
|
||||
# close_position_tstamp = close_position_row["tstamp"]
|
||||
# close_position_disequilibrium = close_position_row["disequilibrium"]
|
||||
# close_position_scaled_disequilibrium = close_position_row["scaled_disequilibrium"]
|
||||
# close_position_px_a = close_position_row[f"{colname_a}"]
|
||||
# close_position_px_b = close_position_row[f"{colname_b}"]
|
||||
|
||||
# close_position_side_a = pair.user_data_["close_side_a"]
|
||||
# close_position_side_b = pair.user_data_["close_side_b"]
|
||||
|
||||
# trd_signal_tuples = [
|
||||
# (
|
||||
# close_position_tstamp,
|
||||
# close_position_side_a,
|
||||
# pair.symbol_a_,
|
||||
# close_position_px_a,
|
||||
# close_position_disequilibrium,
|
||||
# close_position_scaled_disequilibrium,
|
||||
# pair,
|
||||
# ),
|
||||
# (
|
||||
# close_position_tstamp,
|
||||
# close_position_side_b,
|
||||
# pair.symbol_b_,
|
||||
# close_position_px_b,
|
||||
# close_position_disequilibrium,
|
||||
# close_position_scaled_disequilibrium,
|
||||
# pair,
|
||||
# ),
|
||||
# ]
|
||||
|
||||
# # Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||
# df = pd.DataFrame(
|
||||
# trd_signal_tuples,
|
||||
# columns=self.TRADES_COLUMNS,
|
||||
# )
|
||||
# # Ensure consistent dtypes
|
||||
# return df.astype({
|
||||
# "time": "datetime64[ns]",
|
||||
# "action": "string",
|
||||
# "symbol": "string",
|
||||
# "price": "float64",
|
||||
# "disequilibrium": "float64",
|
||||
# "scaled_disequilibrium": "float64",
|
||||
# "pair": "object"
|
||||
# })
|
||||
|
||||
def reset(self) -> None:
|
||||
curr_training_start_idx = 0
|
||||
|
||||
@ -1,9 +1,18 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import pandas as pd # type:ignore
|
||||
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults # type:ignore
|
||||
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
||||
|
||||
class PairState(Enum):
|
||||
INITIAL = 1
|
||||
OPEN = 2
|
||||
CLOSE = 3
|
||||
CLOSE_POSITION = 4
|
||||
CLOSE_STOP_LOSS = 5
|
||||
CLOSE_STOP_PROFIT = 6
|
||||
|
||||
class CointegrationData:
|
||||
EG_PVALUE_THRESHOLD = 0.05
|
||||
@ -288,13 +297,6 @@ class TradingPair:
|
||||
/ self.training_std_
|
||||
)
|
||||
|
||||
# print("*** PREDICTED DF")
|
||||
# print(predicted_df)
|
||||
# print("*" * 80)
|
||||
# print("*** SELF.PREDICTED_DF")
|
||||
# print(self.predicted_df_)
|
||||
# print("*" * 80)
|
||||
|
||||
predicted_df = predicted_df.reset_index(drop=True)
|
||||
if self.predicted_df_ is None:
|
||||
self.predicted_df_ = predicted_df
|
||||
@ -343,6 +345,49 @@ class TradingPair:
|
||||
curr_training_start_idx += 1
|
||||
return result
|
||||
|
||||
def to_stop_close_conditions(self, predicted_row: pd.Series) -> bool:
|
||||
config = self.config_
|
||||
if ("stop_close_conditions" not in config or config["stop_close_conditions"] is None) :
|
||||
return False
|
||||
if "profit" in config["stop_close_conditions"]:
|
||||
current_return = self._current_return(predicted_row)
|
||||
#
|
||||
# print(f"time={predicted_row['tstamp']} current_return={current_return}")
|
||||
#
|
||||
if current_return >= config["stop_close_conditions"]["profit"]:
|
||||
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_PROFIT
|
||||
return True
|
||||
if "loss" in config["stop_close_conditions"]:
|
||||
if current_return <= config["stop_close_conditions"]["loss"]:
|
||||
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_LOSS
|
||||
return True
|
||||
return False
|
||||
|
||||
def on_open_trades(self, trades: pd.DataFrame) -> None:
|
||||
if "close_trades" in self.user_data_: del self.user_data_["close_trades"]
|
||||
self.user_data_["open_trades"] = trades
|
||||
|
||||
def on_close_trades(self, trades: pd.DataFrame) -> None:
|
||||
del self.user_data_["open_trades"]
|
||||
self.user_data_["close_trades"] = trades
|
||||
|
||||
def _current_return(self, predicted_row: pd.Series) -> float:
|
||||
if "open_trades" in self.user_data_:
|
||||
open_trades = self.user_data_["open_trades"]
|
||||
if len(open_trades) == 0:
|
||||
return 0.0
|
||||
def _stock_return(stock: str) -> float:
|
||||
stock_open_trades = open_trades[open_trades["symbol"] == stock]
|
||||
stock_sign = -1 if stock_open_trades["action"].iloc[0] == "SELL" else 1
|
||||
stock_price = predicted_row[f"{self.price_column_}_{stock}"]
|
||||
stock_return = stock_sign * (stock_price - stock_open_trades["price"].iloc[0]) / stock_open_trades["price"].iloc[0]
|
||||
return float(stock_return)
|
||||
|
||||
stock_a_return = _stock_return(self.symbol_a_)
|
||||
stock_b_return = _stock_return(self.symbol_b_)
|
||||
return (stock_a_return + stock_b_return) * 100.0
|
||||
return 0.0
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return self.name()
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
Loading…
x
Reference in New Issue
Block a user