progress
This commit is contained in:
parent
73b7fa1aaf
commit
da6ccf2bfb
@ -1,95 +0,0 @@
|
|||||||
from typing import Any, Dict, List, Optional
|
|
||||||
|
|
||||||
|
|
||||||
# ------------------------ Configuration ------------------------
|
|
||||||
# Default configuration
|
|
||||||
CRYPTO_CONFIG: Dict = {
|
|
||||||
"security_type": "CRYPTO",
|
|
||||||
# --- Data retrieval
|
|
||||||
"data_directory": "./data/crypto",
|
|
||||||
"datafiles": [
|
|
||||||
# "20250519.mktdata.ohlcv.db",
|
|
||||||
# "20250520.mktdata.ohlcv.db",
|
|
||||||
# "20250521.mktdata.ohlcv.db",
|
|
||||||
# "20250522.mktdata.ohlcv.db",
|
|
||||||
# "20250523.mktdata.ohlcv.db",
|
|
||||||
# "20250524.mktdata.ohlcv.db",
|
|
||||||
"20250525.mktdata.ohlcv.db",
|
|
||||||
],
|
|
||||||
"db_table_name": "bnbspot_ohlcv_1min",
|
|
||||||
# ----- Instruments
|
|
||||||
"exchange_id": "BNBSPOT",
|
|
||||||
"instrument_id_pfx": "PAIR-",
|
|
||||||
"instruments": [
|
|
||||||
"BTC-USDT",
|
|
||||||
"BCH-USDT",
|
|
||||||
"ETH-USDT",
|
|
||||||
"LTC-USDT",
|
|
||||||
"XRP-USDT",
|
|
||||||
"ADA-USDT",
|
|
||||||
"SOL-USDT",
|
|
||||||
"DOT-USDT",
|
|
||||||
],
|
|
||||||
"trading_hours": {
|
|
||||||
"begin_session": "00:00:00",
|
|
||||||
"end_session": "23:59:00",
|
|
||||||
"timezone": "UTC",
|
|
||||||
},
|
|
||||||
# ----- Model Settings
|
|
||||||
"price_column": "close",
|
|
||||||
"min_required_points": 30,
|
|
||||||
"zero_threshold": 1e-10,
|
|
||||||
|
|
||||||
"dis-equilibrium_open_trshld": 2.0,
|
|
||||||
"dis-equilibrium_close_trshld": 0.5,
|
|
||||||
|
|
||||||
# "training_minutes": 120,
|
|
||||||
"training_minutes": 60,
|
|
||||||
# ----- Validation
|
|
||||||
"funding_per_pair": 2000.0, # USD
|
|
||||||
}
|
|
||||||
|
|
||||||
# ========================== EQUITIES
|
|
||||||
EQT_CONFIG: Dict = {
|
|
||||||
# --- Data retrieval
|
|
||||||
"security_type": "EQUITY",
|
|
||||||
"data_directory": "./data/equity",
|
|
||||||
"datafiles": [
|
|
||||||
# "20250508.alpaca_sim_md.db",
|
|
||||||
# "20250509.alpaca_sim_md.db",
|
|
||||||
"20250512.alpaca_sim_md.db",
|
|
||||||
# "20250513.alpaca_sim_md.db",
|
|
||||||
# "20250514.alpaca_sim_md.db",
|
|
||||||
# "20250515.alpaca_sim_md.db",
|
|
||||||
# "20250516.alpaca_sim_md.db",
|
|
||||||
# "20250519.alpaca_sim_md.db",
|
|
||||||
# "20250520.alpaca_sim_md.db"
|
|
||||||
],
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
# ----- Instruments
|
|
||||||
"exchange_id": "ALPACA",
|
|
||||||
"instrument_id_pfx": "STOCK-",
|
|
||||||
"instruments": [
|
|
||||||
"COIN",
|
|
||||||
"GBTC",
|
|
||||||
"HOOD",
|
|
||||||
"MSTR",
|
|
||||||
"PYPL",
|
|
||||||
],
|
|
||||||
"trading_hours": {
|
|
||||||
"begin_session": "9:30:00",
|
|
||||||
"end_session": "16:00:00",
|
|
||||||
"timezone": "America/New_York",
|
|
||||||
},
|
|
||||||
# ----- Model Settings
|
|
||||||
"price_column": "close",
|
|
||||||
"min_required_points": 30,
|
|
||||||
"zero_threshold": 1e-10,
|
|
||||||
"dis-equilibrium_open_trshld": 2.0,
|
|
||||||
"dis-equilibrium_close_trshld": 0.5,
|
|
||||||
"training_minutes": 120,
|
|
||||||
# ----- Validation
|
|
||||||
"funding_per_pair": 2000.0,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
@ -1,28 +1,112 @@
|
|||||||
from abc import ABC, abstractmethod
|
|
||||||
import sys
|
|
||||||
|
|
||||||
from typing import Any, Dict, List, Optional
|
from typing import Any, Dict, List
|
||||||
|
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
# ============= statsmodels ===================
|
from strategies import SlidingFitStrategy, StaticFitStrategy
|
||||||
from statsmodels.tsa.vector_ar.vecm import VECM
|
|
||||||
|
|
||||||
from backtest_configs import CRYPTO_CONFIG
|
|
||||||
from strategies import StaticFitStrategy
|
|
||||||
from tools.data_loader import load_market_data
|
from tools.data_loader import load_market_data
|
||||||
from tools.trading_pair import TradingPair
|
from tools.trading_pair import TradingPair
|
||||||
from results import BacktestResult
|
from results import BacktestResult
|
||||||
|
|
||||||
NanoPerMin = 1e9
|
|
||||||
UNSET_FLOAT: float = sys.float_info.max
|
# ------------------------ Configuration ------------------------
|
||||||
UNSET_INT: int = sys.maxsize
|
# Default configuration
|
||||||
|
CRYPTO_CONFIG: Dict = {
|
||||||
|
"security_type": "CRYPTO",
|
||||||
|
# --- Data retrieval
|
||||||
|
"data_directory": "./data/crypto",
|
||||||
|
"datafiles": [
|
||||||
|
"20250519.mktdata.ohlcv.db",
|
||||||
|
# "20250520.mktdata.ohlcv.db",
|
||||||
|
# "20250521.mktdata.ohlcv.db",
|
||||||
|
# "20250522.mktdata.ohlcv.db",
|
||||||
|
# "20250523.mktdata.ohlcv.db",
|
||||||
|
# "20250524.mktdata.ohlcv.db",
|
||||||
|
# "20250525.mktdata.ohlcv.db",
|
||||||
|
],
|
||||||
|
"db_table_name": "bnbspot_ohlcv_1min",
|
||||||
|
# ----- Instruments
|
||||||
|
"exchange_id": "BNBSPOT",
|
||||||
|
"instrument_id_pfx": "PAIR-",
|
||||||
|
"instruments": [
|
||||||
|
"BTC-USDT",
|
||||||
|
"BCH-USDT",
|
||||||
|
"ETH-USDT",
|
||||||
|
"LTC-USDT",
|
||||||
|
"XRP-USDT",
|
||||||
|
"ADA-USDT",
|
||||||
|
"SOL-USDT",
|
||||||
|
"DOT-USDT",
|
||||||
|
],
|
||||||
|
"trading_hours": {
|
||||||
|
"begin_session": "00:00:00",
|
||||||
|
"end_session": "23:59:00",
|
||||||
|
"timezone": "UTC",
|
||||||
|
},
|
||||||
|
# ----- Model Settings
|
||||||
|
"price_column": "close",
|
||||||
|
"min_required_points": 30,
|
||||||
|
"zero_threshold": 1e-10,
|
||||||
|
|
||||||
|
"dis-equilibrium_open_trshld": 2.0,
|
||||||
|
"dis-equilibrium_close_trshld": 0.5,
|
||||||
|
|
||||||
|
# "training_minutes": 120,
|
||||||
|
"training_minutes": 120,
|
||||||
|
# ----- Validation
|
||||||
|
"funding_per_pair": 2000.0, # USD
|
||||||
|
}
|
||||||
|
|
||||||
|
# ========================== EQUITIES
|
||||||
|
EQT_CONFIG: Dict = {
|
||||||
|
# --- Data retrieval
|
||||||
|
"security_type": "EQUITY",
|
||||||
|
"data_directory": "./data/equity",
|
||||||
|
"datafiles": [
|
||||||
|
"20250508.alpaca_sim_md.db",
|
||||||
|
# "20250509.alpaca_sim_md.db",
|
||||||
|
# "20250512.alpaca_sim_md.db",
|
||||||
|
# "20250513.alpaca_sim_md.db",
|
||||||
|
# "20250514.alpaca_sim_md.db",
|
||||||
|
# "20250515.alpaca_sim_md.db",
|
||||||
|
# "20250516.alpaca_sim_md.db",
|
||||||
|
# "20250519.alpaca_sim_md.db",
|
||||||
|
# "20250520.alpaca_sim_md.db"
|
||||||
|
],
|
||||||
|
"db_table_name": "md_1min_bars",
|
||||||
|
# ----- Instruments
|
||||||
|
"exchange_id": "ALPACA",
|
||||||
|
"instrument_id_pfx": "STOCK-",
|
||||||
|
"instruments": [
|
||||||
|
"COIN",
|
||||||
|
"GBTC",
|
||||||
|
"HOOD",
|
||||||
|
"MSTR",
|
||||||
|
"PYPL",
|
||||||
|
],
|
||||||
|
"trading_hours": {
|
||||||
|
"begin_session": "9:30:00",
|
||||||
|
"end_session": "16:00:00",
|
||||||
|
"timezone": "America/New_York",
|
||||||
|
},
|
||||||
|
# ----- Model Settings
|
||||||
|
"price_column": "close",
|
||||||
|
"min_required_points": 30,
|
||||||
|
"zero_threshold": 1e-10,
|
||||||
|
"dis-equilibrium_open_trshld": 2.0,
|
||||||
|
"dis-equilibrium_close_trshld": 0.5,
|
||||||
|
"training_minutes": 120,
|
||||||
|
# ----- Validation
|
||||||
|
"funding_per_pair": 2000.0,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
CONFIG = CRYPTO_CONFIG
|
# CONFIG = CRYPTO_CONFIG
|
||||||
# CONFIG = EQT_CONFIG
|
CONFIG = EQT_CONFIG
|
||||||
|
STRATEGY = StaticFitStrategy()
|
||||||
|
|
||||||
|
# CONFIG = CRYPTO_CONFIG
|
||||||
|
# STRATEGY = SlidingFitStrategy()
|
||||||
|
|
||||||
def run_all_pairs(config: Dict, datafile: str, price_column: str, bt_result: BacktestResult) -> None:
|
def run_all_pairs(config: Dict, datafile: str, price_column: str, bt_result: BacktestResult) -> None:
|
||||||
|
|
||||||
@ -44,12 +128,11 @@ def run_all_pairs(config: Dict, datafile: str, price_column: str, bt_result: Bac
|
|||||||
)
|
)
|
||||||
pairs.append(pair)
|
pairs.append(pair)
|
||||||
return pairs
|
return pairs
|
||||||
|
|
||||||
|
|
||||||
pairs_trades = []
|
pairs_trades = []
|
||||||
strategy = StaticFitStrategy()
|
|
||||||
for pair in _create_pairs(config):
|
for pair in _create_pairs(config):
|
||||||
single_pair_trades = strategy.run_pair(pair=pair, config=CONFIG, bt_result=bt_result)
|
single_pair_trades = STRATEGY.run_pair(pair=pair, config=CONFIG, bt_result=bt_result)
|
||||||
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
||||||
pairs_trades.append(single_pair_trades)
|
pairs_trades.append(single_pair_trades)
|
||||||
# Check if result_list has any data before concatenating
|
# Check if result_list has any data before concatenating
|
||||||
@ -99,9 +182,10 @@ def main() -> None:
|
|||||||
|
|
||||||
# BacktestResults.print_results_summary(all_results)
|
# BacktestResults.print_results_summary(all_results)
|
||||||
bt_results.calculate_returns(all_results)
|
bt_results.calculate_returns(all_results)
|
||||||
|
|
||||||
# Print grand totals
|
# Print grand totals
|
||||||
bt_results.print_grand_totals()
|
bt_results.print_grand_totals()
|
||||||
bt_results.print_outstanding_positions()
|
bt_results.print_outstanding_positions()
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
||||||
@ -1,4 +1,5 @@
|
|||||||
from abc import ABC, abstractmethod
|
from abc import ABC, abstractmethod
|
||||||
|
from enum import Enum
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
from typing import Dict, Optional
|
from typing import Dict, Optional
|
||||||
@ -22,10 +23,10 @@ class PairsTradingStrategy(ABC):
|
|||||||
]
|
]
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def run_pair(self, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]:
|
def run_pair(self, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]:
|
||||||
...
|
...
|
||||||
|
|
||||||
class StaticFitStrategy(PairsTradingStrategy):
|
class StaticFitStrategy(PairsTradingStrategy):
|
||||||
|
|
||||||
def run_pair(self, config: Dict, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]: # abstractmethod
|
def run_pair(self, config: Dict, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]: # abstractmethod
|
||||||
pair.get_datasets(training_minutes=config["training_minutes"])
|
pair.get_datasets(training_minutes=config["training_minutes"])
|
||||||
try:
|
try:
|
||||||
@ -42,7 +43,7 @@ class StaticFitStrategy(PairsTradingStrategy):
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"{pair}: Prediction failed: {str(e)}")
|
print(f"{pair}: Prediction failed: {str(e)}")
|
||||||
return None
|
return None
|
||||||
|
|
||||||
pair_trades = self.create_trading_signals(pair=pair, config=config, result=bt_result)
|
pair_trades = self.create_trading_signals(pair=pair, config=config, result=bt_result)
|
||||||
|
|
||||||
return pair_trades
|
return pair_trades
|
||||||
@ -199,42 +200,205 @@ class StaticFitStrategy(PairsTradingStrategy):
|
|||||||
columns=self.TRADES_COLUMNS,
|
columns=self.TRADES_COLUMNS,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
class PairState(Enum):
|
||||||
|
INITIAL = 1
|
||||||
|
OPEN = 2
|
||||||
|
CLOSED = 3
|
||||||
|
|
||||||
class SlidingFitStrategy(PairsTradingStrategy):
|
class SlidingFitStrategy(PairsTradingStrategy):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.curr_training_start_idx_ = 0
|
self.curr_training_start_idx_ = 0
|
||||||
|
|
||||||
def run_pair(self, config: Dict, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]:
|
def run_pair(self, config: Dict, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]:
|
||||||
pair.user_data_['is_position_open'] = False
|
print(f"***{pair}*** STARTING....")
|
||||||
|
|
||||||
|
pair.user_data_['state'] = PairState.INITIAL
|
||||||
|
pair.user_data_["trades"] = pd.DataFrame(columns=self.TRADES_COLUMNS)
|
||||||
|
pair.user_data_["is_cointegrated"] = False
|
||||||
|
|
||||||
|
open_threshold = config["dis-equilibrium_open_trshld"]
|
||||||
|
close_threshold = config["dis-equilibrium_open_trshld"]
|
||||||
|
|
||||||
training_minutes = config["training_minutes"]
|
training_minutes = config["training_minutes"]
|
||||||
while True:
|
while True:
|
||||||
|
print(self.curr_training_start_idx_, end='\r')
|
||||||
pair.get_datasets(
|
pair.get_datasets(
|
||||||
training_minutes=training_minutes,
|
training_minutes=training_minutes,
|
||||||
training_start_index=self.curr_training_start_idx_,
|
training_start_index=self.curr_training_start_idx_,
|
||||||
testing_size=1
|
testing_size=1
|
||||||
)
|
)
|
||||||
|
|
||||||
if len(pair.training_df_) < training_minutes:
|
if len(pair.training_df_) < training_minutes:
|
||||||
print(f"{pair}: Not enough training data. Completing the job.")
|
print(f"{pair}: {self.curr_training_start_idx_} Not enough training data. Completing the job.")
|
||||||
|
if pair.user_data_["state"] == PairState.OPEN:
|
||||||
|
print(f"{pair}: {self.curr_training_start_idx_} Position is not closed.")
|
||||||
|
# outstanding positions
|
||||||
|
# last_row_index = self.curr_training_start_idx_ + training_minutes
|
||||||
|
|
||||||
|
bt_result.handle_outstanding_position(
|
||||||
|
pair=pair,
|
||||||
|
pair_result_df=pair.predicted_df_,
|
||||||
|
last_row_index=0,
|
||||||
|
open_side_a=pair.user_data_["open_side_a"],
|
||||||
|
open_side_b=pair.user_data_["open_side_b"],
|
||||||
|
open_px_a=pair.user_data_["open_px_a"],
|
||||||
|
open_px_b=pair.user_data_["open_px_b"],
|
||||||
|
open_tstamp=pair.user_data_["open_tstamp"],
|
||||||
|
)
|
||||||
break
|
break
|
||||||
|
|
||||||
try:
|
try:
|
||||||
is_cointegrated = pair.train_pair()
|
is_cointegrated = pair.train_pair()
|
||||||
if not is_cointegrated:
|
|
||||||
print(f"{pair} IS NOT COINTEGRATED")
|
|
||||||
return None
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"{pair}: Training failed: {str(e)}")
|
raise Exception(f"{pair}: Training failed: {str(e)}") from e
|
||||||
return None
|
|
||||||
|
if pair.user_data_["is_cointegrated"] != is_cointegrated:
|
||||||
|
pair.user_data_["is_cointegrated"] = is_cointegrated
|
||||||
|
if not is_cointegrated:
|
||||||
|
if pair.user_data_["state"] == PairState.OPEN:
|
||||||
|
print(f"{pair} {self.curr_training_start_idx_} LOST COINTEGRATION. Consider closing positions...")
|
||||||
|
else:
|
||||||
|
print(f"{pair} {self.curr_training_start_idx_} IS NOT COINTEGRATED. Moving on")
|
||||||
|
else:
|
||||||
|
print('*' * 80)
|
||||||
|
print(f"Pair {pair} ({self.curr_training_start_idx_}) IS COINTEGRATED")
|
||||||
|
print('*' * 80)
|
||||||
|
if not is_cointegrated:
|
||||||
|
self.curr_training_start_idx_ += 1
|
||||||
|
continue
|
||||||
|
|
||||||
try:
|
try:
|
||||||
pair.predict()
|
pair.predict()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(f"{pair}: Prediction failed: {str(e)}")
|
raise Exception(f"{pair}: Prediction failed: {str(e)}") from e
|
||||||
return None
|
|
||||||
|
if pair.user_data_["state"] == PairState.INITIAL:
|
||||||
|
|
||||||
|
open_trades = self._get_open_trades(pair, open_threshold=open_threshold)
|
||||||
|
if open_trades is not None:
|
||||||
|
pair.user_data_["trades"] = open_trades
|
||||||
|
pair.user_data_["state"] = PairState.OPEN
|
||||||
|
elif pair.user_data_["state"] == PairState.OPEN:
|
||||||
|
close_trades = self._get_close_trades(pair, close_threshold=close_threshold)
|
||||||
|
if close_trades is not None:
|
||||||
|
pair.user_data_["trades"] = pd.concat([pair.user_data_["trades"], close_trades], ignore_index=True)
|
||||||
|
pair.user_data_["state"] = PairState.CLOSED
|
||||||
|
break
|
||||||
|
|
||||||
|
self.curr_training_start_idx_ += 1
|
||||||
|
|
||||||
|
print(f"***{pair}*** FINISHED ... {len(pair.user_data_['trades'])}")
|
||||||
|
return pair.user_data_["trades"]
|
||||||
|
|
||||||
|
def _get_open_trades(self, pair: TradingPair, open_threshold: float) -> Optional[pd.DataFrame]:
|
||||||
|
colname_a, colname_b = pair.colnames()
|
||||||
|
|
||||||
|
predicted_df = pair.predicted_df_
|
||||||
|
|
||||||
|
open_row = predicted_df.loc[0]
|
||||||
|
open_tstamp = open_row["tstamp"]
|
||||||
|
open_disequilibrium = open_row["disequilibrium"]
|
||||||
|
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
||||||
|
open_px_a = open_row[f"{colname_a}"]
|
||||||
|
open_px_b = open_row[f"{colname_b}"]
|
||||||
|
|
||||||
|
if open_scaled_disequilibrium < open_threshold:
|
||||||
|
return None
|
||||||
|
|
||||||
|
# creating the trades
|
||||||
|
if open_disequilibrium > 0:
|
||||||
|
open_side_a = "SELL"
|
||||||
|
open_side_b = "BUY"
|
||||||
|
close_side_a = "BUY"
|
||||||
|
close_side_b = "SELL"
|
||||||
|
else:
|
||||||
|
open_side_a = "BUY"
|
||||||
|
open_side_b = "SELL"
|
||||||
|
close_side_a = "SELL"
|
||||||
|
close_side_b = "BUY"
|
||||||
|
|
||||||
|
# save closing sides
|
||||||
|
pair.user_data_["open_side_a"] = open_side_a
|
||||||
|
pair.user_data_["open_side_b"] = open_side_b
|
||||||
|
pair.user_data_["open_px_a"] = open_px_a
|
||||||
|
pair.user_data_["open_px_b"] = open_px_b
|
||||||
|
|
||||||
|
pair.user_data_["open_tstamp"] = open_tstamp
|
||||||
|
|
||||||
|
pair.user_data_["close_side_a"] = close_side_a
|
||||||
|
pair.user_data_["close_side_b"] = close_side_b
|
||||||
|
|
||||||
|
|
||||||
|
# create opening trades
|
||||||
|
trd_signal_tuples = [
|
||||||
|
(
|
||||||
|
open_tstamp,
|
||||||
|
open_side_a,
|
||||||
|
pair.symbol_a_,
|
||||||
|
open_px_a,
|
||||||
|
open_disequilibrium,
|
||||||
|
open_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
(
|
||||||
|
open_tstamp,
|
||||||
|
open_side_b,
|
||||||
|
pair.symbol_b_,
|
||||||
|
open_px_b,
|
||||||
|
open_disequilibrium,
|
||||||
|
open_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
return pd.DataFrame(
|
||||||
|
trd_signal_tuples,
|
||||||
|
columns=self.TRADES_COLUMNS,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_close_trades(self, pair: TradingPair, close_threshold: float) -> Optional[pd.DataFrame]:
|
||||||
|
colname_a, colname_b = pair.colnames()
|
||||||
|
|
||||||
|
close_row = pair.predicted_df_.loc[0]
|
||||||
|
close_tstamp = close_row["tstamp"]
|
||||||
|
close_disequilibrium = close_row["disequilibrium"]
|
||||||
|
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
|
||||||
|
close_px_a = close_row[f"{colname_a}"]
|
||||||
|
close_px_b = close_row[f"{colname_b}"]
|
||||||
|
|
||||||
|
close_side_a = pair.user_data_["close_side_a"]
|
||||||
|
close_side_b = pair.user_data_["close_side_b"]
|
||||||
|
|
||||||
|
if close_scaled_disequilibrium > close_threshold:
|
||||||
|
return None
|
||||||
|
|
||||||
|
trd_signal_tuples = [
|
||||||
|
(
|
||||||
|
close_tstamp,
|
||||||
|
close_side_a,
|
||||||
|
pair.symbol_a_,
|
||||||
|
close_px_a,
|
||||||
|
close_disequilibrium,
|
||||||
|
close_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
(
|
||||||
|
close_tstamp,
|
||||||
|
close_side_b,
|
||||||
|
pair.symbol_b_,
|
||||||
|
close_px_b,
|
||||||
|
close_disequilibrium,
|
||||||
|
close_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Add tuples to data frame
|
||||||
|
return pd.DataFrame(
|
||||||
|
trd_signal_tuples,
|
||||||
|
columns=self.TRADES_COLUMNS,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
pair_trades = self.create_trading_signals(pair=pair, config=config, result=bt_result)
|
|
||||||
|
|
||||||
return pair_trades
|
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
|
|
||||||
from typing import List, Optional
|
from typing import Any, Dict, List, Optional
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
from statsmodels.tsa.vector_ar.vecm import VECM
|
from statsmodels.tsa.vector_ar.vecm import VECM
|
||||||
|
|
||||||
@ -16,6 +16,8 @@ class TradingPair:
|
|||||||
testing_df_: Optional[pd.DataFrame]
|
testing_df_: Optional[pd.DataFrame]
|
||||||
|
|
||||||
vecm_fit_: Optional[VECM]
|
vecm_fit_: Optional[VECM]
|
||||||
|
|
||||||
|
user_data_: Dict[str, Any]
|
||||||
|
|
||||||
def __init__(self, market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str):
|
def __init__(self, market_data: pd.DataFrame, symbol_a: str, symbol_b: str, price_column: str):
|
||||||
self.symbol_a_ = symbol_a
|
self.symbol_a_ = symbol_a
|
||||||
@ -23,12 +25,13 @@ class TradingPair:
|
|||||||
self.price_column_ = price_column
|
self.price_column_ = price_column
|
||||||
self.market_data_ = self._transform_dataframe(market_data)[["tstamp"] + self.colnames()]
|
self.market_data_ = self._transform_dataframe(market_data)[["tstamp"] + self.colnames()]
|
||||||
|
|
||||||
|
|
||||||
self.training_mu_ = None
|
self.training_mu_ = None
|
||||||
self.training_std_ = None
|
self.training_std_ = None
|
||||||
self.training_df_ = None
|
self.training_df_ = None
|
||||||
self.testing_df_ = None
|
self.testing_df_ = None
|
||||||
self.vecm_fit_ = None
|
self.vecm_fit_ = None
|
||||||
|
|
||||||
|
self.user_data_ = {}
|
||||||
|
|
||||||
def _transform_dataframe(self, df: pd.DataFrame):
|
def _transform_dataframe(self, df: pd.DataFrame):
|
||||||
# Select only the columns we need
|
# Select only the columns we need
|
||||||
@ -57,7 +60,9 @@ class TradingPair:
|
|||||||
|
|
||||||
return result_df
|
return result_df
|
||||||
def get_datasets(self, training_minutes: int, training_start_index: int = 0, testing_size: Optional[int] = None) -> None:
|
def get_datasets(self, training_minutes: int, training_start_index: int = 0, testing_size: Optional[int] = None) -> None:
|
||||||
self.training_df_ = self.market_data_.iloc[training_start_index:training_minutes - 1, :].copy()
|
|
||||||
|
testing_start_index = training_start_index + training_minutes
|
||||||
|
self.training_df_ = self.market_data_.iloc[training_start_index:testing_start_index, :].copy()
|
||||||
self.training_df_ = self.training_df_.dropna().reset_index(drop=True)
|
self.training_df_ = self.training_df_.dropna().reset_index(drop=True)
|
||||||
|
|
||||||
testing_start_index = training_start_index + training_minutes
|
testing_start_index = training_start_index + training_minutes
|
||||||
@ -101,7 +106,7 @@ class TradingPair:
|
|||||||
return False
|
return False
|
||||||
pass
|
pass
|
||||||
|
|
||||||
print('*' * 80 + '\n' + f"**************** {self} IS COINTEGRATED ****************\n" + '*' * 80)
|
# print('*' * 80 + '\n' + f"**************** {self} IS COINTEGRATED ****************\n" + '*' * 80)
|
||||||
self.fit_VECM()
|
self.fit_VECM()
|
||||||
diseq_series = self.training_df_[self.colnames()] @ self.vecm_fit_.beta
|
diseq_series = self.training_df_[self.colnames()] @ self.vecm_fit_.beta
|
||||||
self.training_mu_ = diseq_series.mean().iloc[0]
|
self.training_mu_ = diseq_series.mean().iloc[0]
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user