Compare commits
8 Commits
master
...
lg_branch_
| Author | SHA1 | Date | |
|---|---|---|---|
| 809f46fe36 | |||
| 413abafe0f | |||
| 5d46c1e32c | |||
| 889f7ba1c3 | |||
| 1515b2d077 | |||
| b4ae3e715d | |||
|
|
6f845d32c6 | ||
|
|
a04e8878fb |
3
.gitignore
vendored
3
.gitignore
vendored
@ -1,12 +1,11 @@
|
|||||||
# SpecStory explanation file
|
# SpecStory explanation file
|
||||||
__pycache__/
|
__pycache__/
|
||||||
__OLD__/
|
__OLD__/
|
||||||
.specstory/
|
|
||||||
.history/
|
.history/
|
||||||
.cursorindexingignore
|
.cursorindexingignore
|
||||||
data
|
data
|
||||||
|
####.vscode/
|
||||||
cvttpy
|
cvttpy
|
||||||
# SpecStory explanation file
|
# SpecStory explanation file
|
||||||
.specstory/.what-is-this.md
|
.specstory/.what-is-this.md
|
||||||
results/
|
results/
|
||||||
tmp/
|
|
||||||
|
|||||||
1
.vscode/.env
vendored
1
.vscode/.env
vendored
@ -1 +0,0 @@
|
|||||||
PYTHONPATH=/home/oleg/develop
|
|
||||||
133
.vscode/launch.json
vendored
133
.vscode/launch.json
vendored
@ -1,133 +0,0 @@
|
|||||||
{
|
|
||||||
// Use IntelliSense to learn about possible attributes.
|
|
||||||
// Hover to view descriptions of existing attributes.
|
|
||||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
|
||||||
"version": "0.2.0",
|
|
||||||
"configurations": [
|
|
||||||
|
|
||||||
|
|
||||||
{
|
|
||||||
"name": "Python Debugger: Current File",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
"program": "${file}",
|
|
||||||
"console": "integratedTerminal",
|
|
||||||
"env": {
|
|
||||||
"PYTHONPATH": "${workspaceFolder}/lib:${workspaceFolder}/.."
|
|
||||||
},
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "-------- VECM --------",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CRYPTO VECM BACKTEST (optimized)",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
"program": "${workspaceFolder}/research/backtest.py",
|
|
||||||
"args": [
|
|
||||||
"--config=http://cloud16.cvtt.vpn:6789/apps/pairs_trading/backtest",
|
|
||||||
"--instruments=CRYPTO:BNBSPOT:PAIR-ADA-USDT,CRYPTO:BNBSPOT:PAIR-SOL-USDT",
|
|
||||||
"--date_pattern=20250911",
|
|
||||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm-opt.ADA-SOL.20250605.crypto_results.db",
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"PYTHONPATH": "${workspaceFolder}/..",
|
|
||||||
"CONFIG_SERVICE": "cloud16.cvtt.vpn:6789",
|
|
||||||
"MODEL_CONFIG": "vecm-opt"
|
|
||||||
},
|
|
||||||
"console": "integratedTerminal"
|
|
||||||
},
|
|
||||||
// {
|
|
||||||
// "name": "EQUITY VECM (rolling)",
|
|
||||||
// "type": "debugpy",
|
|
||||||
// "request": "launch",
|
|
||||||
// "python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
// "program": "${workspaceFolder}/research/backtest.py",
|
|
||||||
// "args": [
|
|
||||||
// "--config=${workspaceFolder}/configuration/vecm.cfg",
|
|
||||||
// "--instruments=COIN:EQUITY:ALPACA,MSTR:EQUITY:ALPACA",
|
|
||||||
// "--date_pattern=20250605",
|
|
||||||
// "--result_db=${workspaceFolder}/research/results/equity/%T.vecm.COIN-MSTR.20250605.equity_results.db",
|
|
||||||
// ],
|
|
||||||
// "env": {
|
|
||||||
// "PYTHONPATH": "${workspaceFolder}/lib"
|
|
||||||
// },
|
|
||||||
// "console": "integratedTerminal"
|
|
||||||
// },
|
|
||||||
// {
|
|
||||||
// "name": "EQUITY-CRYPTO VECM (rolling)",
|
|
||||||
// "type": "debugpy",
|
|
||||||
// "request": "launch",
|
|
||||||
// "python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
// "program": "${workspaceFolder}/research/backtest.py",
|
|
||||||
// "args": [
|
|
||||||
// "--config=${workspaceFolder}/configuration/vecm.cfg",
|
|
||||||
// "--instruments=COIN:EQUITY:ALPACA,BTC-USDT:CRYPTO:BNBSPOT",
|
|
||||||
// "--date_pattern=20250605",
|
|
||||||
// "--result_db=${workspaceFolder}/research/results/intermarket/%T.vecm.COIN-BTC.20250601.equity_results.db",
|
|
||||||
// ],
|
|
||||||
// "env": {
|
|
||||||
// "PYTHONPATH": "${workspaceFolder}/lib"
|
|
||||||
// },
|
|
||||||
// "console": "integratedTerminal"
|
|
||||||
// },
|
|
||||||
{
|
|
||||||
"name": "-------- B a t c h e s --------",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CRYPTO OLS Batch (rolling)",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
"program": "${workspaceFolder}/research/backtest.py",
|
|
||||||
"args": [
|
|
||||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
|
||||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
|
||||||
"--date_pattern=2025060*",
|
|
||||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.ols.ADA-SOL.2025060-.crypto_results.db",
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
|
||||||
},
|
|
||||||
"console": "integratedTerminal"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "CRYPTO VECM Batch (rolling)",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
"program": "${workspaceFolder}/research/backtest.py",
|
|
||||||
"args": [
|
|
||||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
|
||||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
|
||||||
"--date_pattern=2025060*",
|
|
||||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm.ADA-SOL.2025060-.crypto_results.db",
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
|
||||||
},
|
|
||||||
"console": "integratedTerminal"
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "-------- Viz Test --------",
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"name": "Viz Test",
|
|
||||||
"type": "debugpy",
|
|
||||||
"request": "launch",
|
|
||||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
|
||||||
"program": "${workspaceFolder}/tests/viz_test.py",
|
|
||||||
"args": [
|
|
||||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
|
||||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
|
||||||
"--date_pattern=20250605",
|
|
||||||
],
|
|
||||||
"env": {
|
|
||||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
|
||||||
},
|
|
||||||
"console": "integratedTerminal"
|
|
||||||
}
|
|
||||||
]
|
|
||||||
}
|
|
||||||
10
.vscode/pairs_trading.code-workspace
vendored
10
.vscode/pairs_trading.code-workspace
vendored
@ -1,10 +0,0 @@
|
|||||||
{
|
|
||||||
"folders": [
|
|
||||||
{
|
|
||||||
"path": ".."
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"settings": {
|
|
||||||
"workbench.colorTheme": "Dracula Theme"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
19
.vscode/settings.json
vendored
19
.vscode/settings.json
vendored
@ -1,19 +0,0 @@
|
|||||||
{
|
|
||||||
"python.testing.pytestEnabled": true,
|
|
||||||
"python.testing.unittestEnabled": false,
|
|
||||||
"python.testing.pytestArgs": [
|
|
||||||
"unittests"
|
|
||||||
],
|
|
||||||
"python.testing.cwd": "${workspaceFolder}",
|
|
||||||
"python.testing.autoTestDiscoverOnSaveEnabled": true,
|
|
||||||
"python.testing.pytestPath": "python3",
|
|
||||||
"python.analysis.extraPaths": [
|
|
||||||
"${workspaceFolder}",
|
|
||||||
"${workspaceFolder}/..",
|
|
||||||
"${workspaceFolder}/unittests"
|
|
||||||
],
|
|
||||||
"python.envFile": "${workspaceFolder}/.env",
|
|
||||||
"python.testing.debugPort": 3000,
|
|
||||||
"python.testing.promptToConfigure": false,
|
|
||||||
"python.defaultInterpreterPath": "/home/oleg/.pyenv/python3.12-venv/bin/python"
|
|
||||||
}
|
|
||||||
@ -1,509 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
from aiohttp import web
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from statsmodels.tsa.stattools import adfuller, coint # type: ignore
|
|
||||||
from statsmodels.tsa.vector_ar.vecm import coint_johansen # type: ignore
|
|
||||||
|
|
||||||
|
|
||||||
from cvttpy_tools.app import App
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import Config, CvttAppConfig
|
|
||||||
from cvttpy_tools.logger import Log
|
|
||||||
from cvttpy_tools.timeutils import NanoPerSec, SecPerHour, current_nanoseconds
|
|
||||||
from cvttpy_tools.web.rest_client import RESTSender
|
|
||||||
from cvttpy_tools.web.rest_service import RestService
|
|
||||||
|
|
||||||
from cvttpy_trading.trading.exchange_config import ExchangeAccounts
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate, MdSummary
|
|
||||||
|
|
||||||
from pairs_trading.apps.pair_selector.renderer import HtmlRenderer
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class InstrumentQuality(NamedObject):
|
|
||||||
instrument_: ExchangeInstrument
|
|
||||||
record_count_: int
|
|
||||||
latest_tstamp_: Optional[pd.Timestamp]
|
|
||||||
status_: str
|
|
||||||
reason_: str
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class PairStats(NamedObject):
|
|
||||||
instrument_a_: ExchangeInstrument
|
|
||||||
instrument_b_: ExchangeInstrument
|
|
||||||
pvalue_eg_: Optional[float]
|
|
||||||
pvalue_adf_: Optional[float]
|
|
||||||
pvalue_j_: Optional[float]
|
|
||||||
trace_stat_j_: Optional[float]
|
|
||||||
rank_eg_: int = 0
|
|
||||||
rank_adf_: int = 0
|
|
||||||
rank_j_: int = 0
|
|
||||||
composite_rank_: int = 0
|
|
||||||
|
|
||||||
def as_dict(self) -> Dict[str, Any]:
|
|
||||||
return {
|
|
||||||
"instrument_a": self.instrument_a_.instrument_id(),
|
|
||||||
"instrument_b": self.instrument_b_.instrument_id(),
|
|
||||||
"pvalue_eg": self.pvalue_eg_,
|
|
||||||
"pvalue_adf": self.pvalue_adf_,
|
|
||||||
"pvalue_j": self.pvalue_j_,
|
|
||||||
"trace_stat_j": self.trace_stat_j_,
|
|
||||||
"rank_eg": self.rank_eg_,
|
|
||||||
"rank_adf": self.rank_adf_,
|
|
||||||
"rank_j": self.rank_j_,
|
|
||||||
"composite_rank": self.composite_rank_,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class DataFetcher(NamedObject):
|
|
||||||
sender_: RESTSender
|
|
||||||
interval_sec_: int
|
|
||||||
history_depth_sec_: int
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
base_url: str,
|
|
||||||
interval_sec: int,
|
|
||||||
history_depth_sec: int,
|
|
||||||
) -> None:
|
|
||||||
self.sender_ = RESTSender(base_url=base_url)
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
self.history_depth_sec_ = history_depth_sec
|
|
||||||
|
|
||||||
def fetch(
|
|
||||||
self, exch_acct: str, inst: ExchangeInstrument
|
|
||||||
) -> List[MdTradesAggregate]:
|
|
||||||
rqst_data = {
|
|
||||||
"exch_acct": exch_acct,
|
|
||||||
"instrument_id": inst.instrument_id(),
|
|
||||||
"interval_sec": self.interval_sec_,
|
|
||||||
"history_depth_sec": self.history_depth_sec_,
|
|
||||||
}
|
|
||||||
response = self.sender_.send_post(endpoint="md_summary", post_body=rqst_data)
|
|
||||||
if response.status_code not in (200, 201):
|
|
||||||
Log.error(
|
|
||||||
f"{self.fname()}: error {response.status_code} for {inst.details_short()}: {response.text}"
|
|
||||||
)
|
|
||||||
return []
|
|
||||||
mdsums: List[MdSummary] = MdSummary.from_REST_response(response=response)
|
|
||||||
return [
|
|
||||||
mdsum.create_md_trades_aggregate(
|
|
||||||
exch_acct=exch_acct, exch_inst=inst, interval_sec=self.interval_sec_
|
|
||||||
)
|
|
||||||
for mdsum in mdsums
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
class QualityChecker(NamedObject):
|
|
||||||
interval_sec_: int
|
|
||||||
|
|
||||||
def __init__(self, interval_sec: int) -> None:
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
|
|
||||||
def evaluate(
|
|
||||||
self, inst: ExchangeInstrument, aggr: List[MdTradesAggregate]
|
|
||||||
) -> InstrumentQuality:
|
|
||||||
if len(aggr) == 0:
|
|
||||||
return InstrumentQuality(
|
|
||||||
instrument_=inst,
|
|
||||||
record_count_=0,
|
|
||||||
latest_tstamp_=None,
|
|
||||||
status_="FAIL",
|
|
||||||
reason_="no records",
|
|
||||||
)
|
|
||||||
|
|
||||||
aggr_sorted = sorted(aggr, key=lambda a: a.aggr_time_ns_)
|
|
||||||
|
|
||||||
latest_ts = pd.to_datetime(aggr_sorted[-1].aggr_time_ns_, unit="ns", utc=True)
|
|
||||||
now_ts = pd.Timestamp.utcnow()
|
|
||||||
recency_cutoff = now_ts - pd.Timedelta(seconds=2 * self.interval_sec_)
|
|
||||||
if latest_ts <= recency_cutoff:
|
|
||||||
return InstrumentQuality(
|
|
||||||
instrument_=inst,
|
|
||||||
record_count_=len(aggr_sorted),
|
|
||||||
latest_tstamp_=latest_ts,
|
|
||||||
status_="FAIL",
|
|
||||||
reason_=f"stale: latest {latest_ts} <= cutoff {recency_cutoff}",
|
|
||||||
)
|
|
||||||
|
|
||||||
gaps_ok, reason = self._check_gaps(aggr_sorted)
|
|
||||||
status = "PASS" if gaps_ok else "FAIL"
|
|
||||||
return InstrumentQuality(
|
|
||||||
instrument_=inst,
|
|
||||||
record_count_=len(aggr_sorted),
|
|
||||||
latest_tstamp_=latest_ts,
|
|
||||||
status_=status,
|
|
||||||
reason_=reason,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _check_gaps(self, aggr: List[MdTradesAggregate]) -> Tuple[bool, str]:
|
|
||||||
NUM_TRADES_THRESHOLD = 50
|
|
||||||
if len(aggr) < 2:
|
|
||||||
return True, "ok"
|
|
||||||
|
|
||||||
interval_ns = self.interval_sec_ * NanoPerSec
|
|
||||||
for idx in range(1, len(aggr)):
|
|
||||||
prev = aggr[idx - 1]
|
|
||||||
curr = aggr[idx]
|
|
||||||
delta = curr.aggr_time_ns_ - prev.aggr_time_ns_
|
|
||||||
missing_intervals = int(delta // interval_ns) - 1
|
|
||||||
if missing_intervals <= 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
prev_nt = prev.num_trades_
|
|
||||||
next_nt = curr.num_trades_
|
|
||||||
estimate = self._approximate_num_trades(prev_nt, next_nt)
|
|
||||||
if estimate > NUM_TRADES_THRESHOLD:
|
|
||||||
return False, (
|
|
||||||
f"gap of {missing_intervals} interval(s), est num_trades={estimate} > {NUM_TRADES_THRESHOLD}"
|
|
||||||
)
|
|
||||||
return True, "ok"
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _approximate_num_trades(prev_nt: int, next_nt: int) -> float:
|
|
||||||
if prev_nt is None and next_nt is None:
|
|
||||||
return 0.0
|
|
||||||
if prev_nt is None:
|
|
||||||
return float(next_nt)
|
|
||||||
if next_nt is None:
|
|
||||||
return float(prev_nt)
|
|
||||||
return (prev_nt + next_nt) / 2.0
|
|
||||||
|
|
||||||
|
|
||||||
class PairAnalyzer(NamedObject):
|
|
||||||
price_field_: str
|
|
||||||
interval_sec_: int
|
|
||||||
|
|
||||||
def __init__(self, price_field: str, interval_sec: int) -> None:
|
|
||||||
self.price_field_ = price_field
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
|
|
||||||
def analyze(
|
|
||||||
self, series: Dict[ExchangeInstrument, pd.DataFrame]
|
|
||||||
) -> List[PairStats]:
|
|
||||||
instruments = list(series.keys())
|
|
||||||
results: List[PairStats] = []
|
|
||||||
for i in range(len(instruments)):
|
|
||||||
for j in range(i + 1, len(instruments)):
|
|
||||||
inst_a = instruments[i]
|
|
||||||
inst_b = instruments[j]
|
|
||||||
df_a = series[inst_a][["tstamp", "price"]].rename(
|
|
||||||
columns={"price": "price_a"}
|
|
||||||
)
|
|
||||||
df_b = series[inst_b][["tstamp", "price"]].rename(
|
|
||||||
columns={"price": "price_b"}
|
|
||||||
)
|
|
||||||
merged = pd.merge(df_a, df_b, on="tstamp", how="inner").sort_values(
|
|
||||||
"tstamp"
|
|
||||||
)
|
|
||||||
stats = self._compute_stats(inst_a, inst_b, merged)
|
|
||||||
if stats:
|
|
||||||
results.append(stats)
|
|
||||||
self._rank(results)
|
|
||||||
return results
|
|
||||||
|
|
||||||
def _compute_stats(
|
|
||||||
self,
|
|
||||||
inst_a: ExchangeInstrument,
|
|
||||||
inst_b: ExchangeInstrument,
|
|
||||||
merged: pd.DataFrame,
|
|
||||||
) -> Optional[PairStats]:
|
|
||||||
if len(merged) < 2:
|
|
||||||
return None
|
|
||||||
px_a = merged["price_a"].astype(float)
|
|
||||||
px_b = merged["price_b"].astype(float)
|
|
||||||
|
|
||||||
std_a = float(px_a.std())
|
|
||||||
std_b = float(px_b.std())
|
|
||||||
if std_a == 0 or std_b == 0:
|
|
||||||
return None
|
|
||||||
|
|
||||||
z_a = (px_a - float(px_a.mean())) / std_a
|
|
||||||
z_b = (px_b - float(px_b.mean())) / std_b
|
|
||||||
|
|
||||||
p_eg: Optional[float]
|
|
||||||
p_adf: Optional[float]
|
|
||||||
p_j: Optional[float]
|
|
||||||
trace_stat: Optional[float]
|
|
||||||
|
|
||||||
try:
|
|
||||||
p_eg = float(coint(z_a, z_b)[1])
|
|
||||||
except Exception as exc:
|
|
||||||
Log.warning(
|
|
||||||
f"{self.fname()}: EG failed for {inst_a.details_short()}/{inst_b.details_short()}: {exc}"
|
|
||||||
)
|
|
||||||
p_eg = None
|
|
||||||
|
|
||||||
try:
|
|
||||||
spread = z_a - z_b
|
|
||||||
p_adf = float(adfuller(spread, maxlag=1, regression="c")[1])
|
|
||||||
except Exception as exc:
|
|
||||||
Log.warning(
|
|
||||||
f"{self.fname()}: ADF failed for {inst_a.details_short()}/{inst_b.details_short()}: {exc}"
|
|
||||||
)
|
|
||||||
p_adf = None
|
|
||||||
|
|
||||||
try:
|
|
||||||
data = np.column_stack([z_a, z_b])
|
|
||||||
res = coint_johansen(data, det_order=0, k_ar_diff=1)
|
|
||||||
trace_stat = float(res.lr1[0])
|
|
||||||
cv10, cv5, cv1 = res.cvt[0]
|
|
||||||
if trace_stat > cv1:
|
|
||||||
p_j = 0.01
|
|
||||||
elif trace_stat > cv5:
|
|
||||||
p_j = 0.05
|
|
||||||
elif trace_stat > cv10:
|
|
||||||
p_j = 0.10
|
|
||||||
else:
|
|
||||||
p_j = 1.0
|
|
||||||
except Exception as exc:
|
|
||||||
Log.warning(
|
|
||||||
f"{self.fname()}: Johansen failed for {inst_a.details_short()}/{inst_b.details_short()}: {exc}"
|
|
||||||
)
|
|
||||||
p_j = None
|
|
||||||
trace_stat = None
|
|
||||||
|
|
||||||
return PairStats(
|
|
||||||
instrument_a_=inst_a,
|
|
||||||
instrument_b_=inst_b,
|
|
||||||
pvalue_eg_=p_eg,
|
|
||||||
pvalue_adf_=p_adf,
|
|
||||||
pvalue_j_=p_j,
|
|
||||||
trace_stat_j_=trace_stat,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _rank(self, results: List[PairStats]) -> None:
|
|
||||||
self._assign_ranks(results, key=lambda r: r.pvalue_eg_, attr="rank_eg_")
|
|
||||||
self._assign_ranks(results, key=lambda r: r.pvalue_adf_, attr="rank_adf_")
|
|
||||||
self._assign_ranks(results, key=lambda r: r.pvalue_j_, attr="rank_j_")
|
|
||||||
for res in results:
|
|
||||||
res.composite_rank_ = res.rank_eg_ + res.rank_adf_ + res.rank_j_
|
|
||||||
results.sort(key=lambda r: r.composite_rank_)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _assign_ranks(results: List[PairStats], key, attr: str) -> None:
|
|
||||||
values = [key(r) for r in results]
|
|
||||||
sorted_vals = sorted([v for v in values if v is not None])
|
|
||||||
for res in results:
|
|
||||||
val = key(res)
|
|
||||||
if val is None:
|
|
||||||
setattr(res, attr, len(sorted_vals) + 1)
|
|
||||||
continue
|
|
||||||
rank = 1 + sum(1 for v in sorted_vals if v < val)
|
|
||||||
setattr(res, attr, rank)
|
|
||||||
|
|
||||||
|
|
||||||
class PairSelectionEngine(NamedObject):
|
|
||||||
config_: object
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
price_field_: str
|
|
||||||
fetcher_: DataFetcher
|
|
||||||
quality_: QualityChecker
|
|
||||||
analyzer_: PairAnalyzer
|
|
||||||
interval_sec_: int
|
|
||||||
history_depth_sec_: int
|
|
||||||
data_quality_cache_: List[InstrumentQuality]
|
|
||||||
pair_results_cache_: List[PairStats]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: Config,
|
|
||||||
instruments: List[ExchangeInstrument],
|
|
||||||
price_field: str,
|
|
||||||
) -> None:
|
|
||||||
self.config_ = config
|
|
||||||
self.instruments_ = instruments
|
|
||||||
self.price_field_ = price_field
|
|
||||||
|
|
||||||
interval_sec = int(config.get_value("interval_sec", 0))
|
|
||||||
history_depth_sec = int(config.get_value("history_depth_hours", 0)) * SecPerHour
|
|
||||||
base_url = config.get_value("cvtt_base_url", None)
|
|
||||||
assert interval_sec > 0, "interval_sec must be > 0"
|
|
||||||
assert history_depth_sec > 0, "history_depth_sec must be > 0"
|
|
||||||
assert base_url, "cvtt_base_url must be set"
|
|
||||||
|
|
||||||
self.fetcher_ = DataFetcher(
|
|
||||||
base_url=base_url,
|
|
||||||
interval_sec=interval_sec,
|
|
||||||
history_depth_sec=history_depth_sec,
|
|
||||||
)
|
|
||||||
self.quality_ = QualityChecker(interval_sec=interval_sec)
|
|
||||||
self.analyzer_ = PairAnalyzer(
|
|
||||||
price_field=price_field, interval_sec=interval_sec
|
|
||||||
)
|
|
||||||
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
self.history_depth_sec_ = history_depth_sec
|
|
||||||
|
|
||||||
self.data_quality_cache_ = []
|
|
||||||
self.pair_results_cache_ = []
|
|
||||||
|
|
||||||
async def run_once(self) -> None:
|
|
||||||
quality_results: List[InstrumentQuality] = []
|
|
||||||
price_series: Dict[ExchangeInstrument, pd.DataFrame] = {}
|
|
||||||
|
|
||||||
for inst in self.instruments_:
|
|
||||||
exch_acct = inst.user_data_.get("exch_acct") or inst.exchange_id_
|
|
||||||
aggr = self.fetcher_.fetch(exch_acct=exch_acct, inst=inst)
|
|
||||||
q = self.quality_.evaluate(inst, aggr)
|
|
||||||
quality_results.append(q)
|
|
||||||
if q.status_ != "PASS":
|
|
||||||
continue
|
|
||||||
df = self._to_dataframe(aggr, inst)
|
|
||||||
if len(df) > 0:
|
|
||||||
price_series[inst] = df
|
|
||||||
self.data_quality_cache_ = quality_results
|
|
||||||
self.pair_results_cache_ = self.analyzer_.analyze(price_series)
|
|
||||||
|
|
||||||
def _to_dataframe(
|
|
||||||
self, aggr: List[MdTradesAggregate], inst: ExchangeInstrument
|
|
||||||
) -> pd.DataFrame:
|
|
||||||
rows: List[Dict[str, Any]] = []
|
|
||||||
for item in aggr:
|
|
||||||
rows.append(
|
|
||||||
{
|
|
||||||
"tstamp": pd.to_datetime(item.aggr_time_ns_, unit="ns", utc=True),
|
|
||||||
"price": self._extract_price(item, inst),
|
|
||||||
"num_trades": item.num_trades_,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
df = pd.DataFrame(rows)
|
|
||||||
return df.sort_values("tstamp").reset_index(drop=True)
|
|
||||||
|
|
||||||
def _extract_price(
|
|
||||||
self, aggr: MdTradesAggregate, inst: ExchangeInstrument
|
|
||||||
) -> float:
|
|
||||||
price_field = self.price_field_
|
|
||||||
# MdTradesAggregate inherits hist bar with fields open_, high_, low_, close_, vwap_
|
|
||||||
field_map = {
|
|
||||||
"open": aggr.open_,
|
|
||||||
"high": aggr.high_,
|
|
||||||
"low": aggr.low_,
|
|
||||||
"close": aggr.close_,
|
|
||||||
"vwap": aggr.vwap_,
|
|
||||||
}
|
|
||||||
raw = field_map.get(price_field, aggr.close_)
|
|
||||||
return inst.get_price(raw)
|
|
||||||
|
|
||||||
def sleep_seconds_until_next_cycle(self) -> float:
|
|
||||||
now_ns = current_nanoseconds()
|
|
||||||
interval_ns = self.interval_sec_ * NanoPerSec
|
|
||||||
next_boundary = (now_ns // interval_ns + 1) * interval_ns
|
|
||||||
return max(0.0, (next_boundary - now_ns) / NanoPerSec)
|
|
||||||
|
|
||||||
def quality_dicts(self) -> List[Dict[str, Any]]:
|
|
||||||
res: List[Dict[str, Any]] = []
|
|
||||||
for q in self.data_quality_cache_:
|
|
||||||
res.append(
|
|
||||||
{
|
|
||||||
"instrument": q.instrument_.instrument_id(),
|
|
||||||
"record_count": q.record_count_,
|
|
||||||
"latest_tstamp": (
|
|
||||||
q.latest_tstamp_.isoformat() if q.latest_tstamp_ else None
|
|
||||||
),
|
|
||||||
"status": q.status_,
|
|
||||||
"reason": q.reason_,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return res
|
|
||||||
|
|
||||||
def pair_dicts(self) -> List[Dict[str, Any]]:
|
|
||||||
return [p.as_dict() for p in self.pair_results_cache_]
|
|
||||||
|
|
||||||
|
|
||||||
class PairSelector(NamedObject):
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
engine_: PairSelectionEngine
|
|
||||||
rest_service_: RestService
|
|
||||||
|
|
||||||
def __init__(self) -> None:
|
|
||||||
App.instance().add_cmdline_arg("--oneshot", action="store_true", default=False)
|
|
||||||
App.instance().add_call(App.Stage.Config, self._on_config())
|
|
||||||
App.instance().add_call(App.Stage.Run, self.run())
|
|
||||||
|
|
||||||
async def _on_config(self) -> None:
|
|
||||||
cfg = CvttAppConfig.instance()
|
|
||||||
self.instruments_ = self._load_instruments(cfg)
|
|
||||||
price_field = cfg.get_value("model/stat_model_price", "close")
|
|
||||||
|
|
||||||
self.engine_ = PairSelectionEngine(
|
|
||||||
config=cfg,
|
|
||||||
instruments=self.instruments_,
|
|
||||||
price_field=price_field,
|
|
||||||
)
|
|
||||||
|
|
||||||
self.rest_service_ = RestService(config_key="/api/REST")
|
|
||||||
self.rest_service_.add_handler("GET", "/data_quality", self._on_data_quality)
|
|
||||||
self.rest_service_.add_handler(
|
|
||||||
"GET", "/pair_selection", self._on_pair_selection
|
|
||||||
)
|
|
||||||
|
|
||||||
def _load_instruments(self, cfg: CvttAppConfig) -> List[ExchangeInstrument]:
|
|
||||||
instruments_cfg = cfg.get_value("instruments", [])
|
|
||||||
instruments: List[ExchangeInstrument] = []
|
|
||||||
assert len(instruments_cfg) >= 2, "at least two instruments required"
|
|
||||||
for item in instruments_cfg:
|
|
||||||
if isinstance(item, str):
|
|
||||||
parts = item.split(":", 1)
|
|
||||||
if len(parts) != 2:
|
|
||||||
raise ValueError(f"invalid instrument format: {item}")
|
|
||||||
exch_acct, instrument_id = parts
|
|
||||||
elif isinstance(item, dict):
|
|
||||||
exch_acct = item.get("exch_acct", "")
|
|
||||||
instrument_id = item.get("instrument_id", "")
|
|
||||||
if not exch_acct or not instrument_id:
|
|
||||||
raise ValueError(f"invalid instrument config: {item}")
|
|
||||||
else:
|
|
||||||
raise ValueError(f"unsupported instrument entry: {item}")
|
|
||||||
|
|
||||||
exch_inst = ExchangeAccounts.instance().get_exchange_instrument(
|
|
||||||
exch_acct=exch_acct, instrument_id=instrument_id
|
|
||||||
)
|
|
||||||
assert (
|
|
||||||
exch_inst is not None
|
|
||||||
), f"no ExchangeInstrument for {exch_acct}:{instrument_id}"
|
|
||||||
exch_inst.user_data_["exch_acct"] = exch_acct
|
|
||||||
instruments.append(exch_inst)
|
|
||||||
return instruments
|
|
||||||
|
|
||||||
async def run(self) -> None:
|
|
||||||
oneshot = App.instance().get_argument("oneshot", False)
|
|
||||||
while True:
|
|
||||||
await self.engine_.run_once()
|
|
||||||
if oneshot:
|
|
||||||
break
|
|
||||||
sleep_for = self.engine_.sleep_seconds_until_next_cycle()
|
|
||||||
await asyncio.sleep(sleep_for)
|
|
||||||
|
|
||||||
async def _on_data_quality(self, request: web.Request) -> web.Response:
|
|
||||||
fmt = request.query.get("format", "html").lower()
|
|
||||||
quality = self.engine_.quality_dicts()
|
|
||||||
if fmt == "json":
|
|
||||||
return web.json_response(quality)
|
|
||||||
return web.Response(
|
|
||||||
text=HtmlRenderer.render_data_quality(quality), content_type="text/html"
|
|
||||||
)
|
|
||||||
|
|
||||||
async def _on_pair_selection(self, request: web.Request) -> web.Response:
|
|
||||||
fmt = request.query.get("format", "html").lower()
|
|
||||||
pairs = self.engine_.pair_dicts()
|
|
||||||
if fmt == "json":
|
|
||||||
return web.json_response(pairs)
|
|
||||||
return web.Response(
|
|
||||||
text=HtmlRenderer.render_pairs(pairs), content_type="text/html"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
App()
|
|
||||||
CvttAppConfig()
|
|
||||||
PairSelector()
|
|
||||||
App.instance().run()
|
|
||||||
@ -1,394 +0,0 @@
|
|||||||
```python
|
|
||||||
from __future__ import annotations
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
from statsmodels.tsa.stattools import adfuller, coint
|
|
||||||
from statsmodels.tsa.vector_ar.vecm import coint_johansen
|
|
||||||
from statsmodels.tsa.vector_ar.vecm import coint_johansen # type: ignore
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
from cvttpy_tools.logger import Log
|
|
||||||
from cvttpy_tools.timeutils import NanoPerSec, SecPerHour, current_nanoseconds
|
|
||||||
from cvttpy_tools.web.rest_client import RESTSender
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate, MdSummary
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class InstrumentQuality(NamedObject):
|
|
||||||
instrument_: ExchangeInstrument
|
|
||||||
record_count_: int
|
|
||||||
latest_tstamp_: Optional[pd.Timestamp]
|
|
||||||
status_: str
|
|
||||||
reason_: str
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class PairStats(NamedObject):
|
|
||||||
instrument_a_: ExchangeInstrument
|
|
||||||
instrument_b_: ExchangeInstrument
|
|
||||||
pvalue_eg_: Optional[float]
|
|
||||||
pvalue_adf_: Optional[float]
|
|
||||||
pvalue_j_: Optional[float]
|
|
||||||
trace_stat_j_: Optional[float]
|
|
||||||
rank_eg_: int = 0
|
|
||||||
rank_adf_: int = 0
|
|
||||||
rank_j_: int = 0
|
|
||||||
composite_rank_: int = 0
|
|
||||||
|
|
||||||
def as_dict(self) -> Dict[str, Any]:
|
|
||||||
return {
|
|
||||||
"instrument_a": self.instrument_a_.instrument_id(),
|
|
||||||
"instrument_b": self.instrument_b_.instrument_id(),
|
|
||||||
"pvalue_eg": self.pvalue_eg_,
|
|
||||||
"pvalue_adf": self.pvalue_adf_,
|
|
||||||
"pvalue_j": self.pvalue_j_,
|
|
||||||
"trace_stat_j": self.trace_stat_j_,
|
|
||||||
"rank_eg": self.rank_eg_,
|
|
||||||
"rank_adf": self.rank_adf_,
|
|
||||||
"rank_j": self.rank_j_,
|
|
||||||
"composite_rank": self.composite_rank_,
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
class DataFetcher(NamedObject):
|
|
||||||
sender_: RESTSender
|
|
||||||
interval_sec_: int
|
|
||||||
history_depth_sec_: int
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
base_url: str,
|
|
||||||
interval_sec: int,
|
|
||||||
history_depth_sec: int,
|
|
||||||
) -> None:
|
|
||||||
self.sender_ = RESTSender(base_url=base_url)
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
self.history_depth_sec_ = history_depth_sec
|
|
||||||
|
|
||||||
def fetch(self, exch_acct: str, inst: ExchangeInstrument) -> List[MdTradesAggregate]:
|
|
||||||
rqst_data = {
|
|
||||||
"exch_acct": exch_acct,
|
|
||||||
"instrument_id": inst.instrument_id(),
|
|
||||||
"interval_sec": self.interval_sec_,
|
|
||||||
"history_depth_sec": self.history_depth_sec_,
|
|
||||||
}
|
|
||||||
response = self.sender_.send_post(endpoint="md_summary", post_body=rqst_data)
|
|
||||||
if response.status_code not in (200, 201):
|
|
||||||
Log.error(
|
|
||||||
f"{self.fname()}: error {response.status_code} for {inst.details_short()}: {response.text}")
|
|
||||||
return []
|
|
||||||
mdsums: List[MdSummary] = MdSummary.from_REST_response(response=response)
|
|
||||||
return [
|
|
||||||
mdsum.create_md_trades_aggregate(
|
|
||||||
exch_acct=exch_acct, exch_inst=inst, interval_sec=self.interval_sec_
|
|
||||||
)
|
|
||||||
for mdsum in mdsums
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
class QualityChecker(NamedObject):
|
|
||||||
interval_sec_: int
|
|
||||||
|
|
||||||
def __init__(self, interval_sec: int) -> None:
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
|
|
||||||
def evaluate(self, inst: ExchangeInstrument, aggr: List[MdTradesAggregate]) -> InstrumentQuality:
|
|
||||||
if len(aggr) == 0:
|
|
||||||
return InstrumentQuality(
|
|
||||||
instrument_=inst,
|
|
||||||
record_count_=0,
|
|
||||||
latest_tstamp_=None,
|
|
||||||
status_="FAIL",
|
|
||||||
reason_="no records",
|
|
||||||
)
|
|
||||||
|
|
||||||
aggr_sorted = sorted(aggr, key=lambda a: a.aggr_time_ns_)
|
|
||||||
|
|
||||||
latest_ts = pd.to_datetime(aggr_sorted[-1].aggr_time_ns_, unit="ns", utc=True)
|
|
||||||
now_ts = pd.Timestamp.utcnow()
|
|
||||||
recency_cutoff = now_ts - pd.Timedelta(seconds=2 * self.interval_sec_)
|
|
||||||
if latest_ts <= recency_cutoff:
|
|
||||||
return InstrumentQuality(
|
|
||||||
instrument_=inst,
|
|
||||||
record_count_=len(aggr_sorted),
|
|
||||||
latest_tstamp_=latest_ts,
|
|
||||||
status_="FAIL",
|
|
||||||
reason_=f"stale: latest {latest_ts} <= cutoff {recency_cutoff}",
|
|
||||||
)
|
|
||||||
|
|
||||||
gaps_ok, reason = self._check_gaps(aggr_sorted)
|
|
||||||
status = "PASS" if gaps_ok else "FAIL"
|
|
||||||
return InstrumentQuality(
|
|
||||||
instrument_=inst,
|
|
||||||
record_count_=len(aggr_sorted),
|
|
||||||
latest_tstamp_=latest_ts,
|
|
||||||
status_=status,
|
|
||||||
reason_=reason,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _check_gaps(self, aggr: List[MdTradesAggregate]) -> Tuple[bool, str]:
|
|
||||||
NUM_TRADES_THRESHOLD = 50
|
|
||||||
if len(aggr) < 2:
|
|
||||||
return True, "ok"
|
|
||||||
|
|
||||||
interval_ns = self.interval_sec_ * NanoPerSec
|
|
||||||
for idx in range(1, len(aggr)):
|
|
||||||
prev = aggr[idx - 1]
|
|
||||||
curr = aggr[idx]
|
|
||||||
delta = curr.aggr_time_ns_ - prev.aggr_time_ns_
|
|
||||||
missing_intervals = int(delta // interval_ns) - 1
|
|
||||||
if missing_intervals <= 0:
|
|
||||||
continue
|
|
||||||
|
|
||||||
prev_nt = prev.num_trades_
|
|
||||||
next_nt = curr.num_trades_
|
|
||||||
estimate = self._approximate_num_trades(prev_nt, next_nt)
|
|
||||||
if estimate > NUM_TRADES_THRESHOLD:
|
|
||||||
return False, (
|
|
||||||
f"gap of {missing_intervals} interval(s), est num_trades={estimate} > {NUM_TRADES_THRESHOLD}"
|
|
||||||
)
|
|
||||||
return True, "ok"
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _approximate_num_trades(prev_nt: int, next_nt: int) -> float:
|
|
||||||
if prev_nt is None and next_nt is None:
|
|
||||||
return 0.0
|
|
||||||
if prev_nt is None:
|
|
||||||
return float(next_nt)
|
|
||||||
if next_nt is None:
|
|
||||||
return float(prev_nt)
|
|
||||||
return (prev_nt + next_nt) / 2.0
|
|
||||||
|
|
||||||
|
|
||||||
class PairAnalyzer(NamedObject):
|
|
||||||
price_field_: str
|
|
||||||
interval_sec_: int
|
|
||||||
|
|
||||||
def __init__(self, price_field: str, interval_sec: int) -> None:
|
|
||||||
self.price_field_ = price_field
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
|
|
||||||
def analyze(self, series: Dict[ExchangeInstrument, pd.DataFrame]) -> List[PairStats]:
|
|
||||||
instruments = list(series.keys())
|
|
||||||
results: List[PairStats] = []
|
|
||||||
for i in range(len(instruments)):
|
|
||||||
for j in range(i + 1, len(instruments)):
|
|
||||||
inst_a = instruments[i]
|
|
||||||
inst_b = instruments[j]
|
|
||||||
df_a = series[inst_a][["tstamp", "price"]].rename(
|
|
||||||
columns={"price": "price_a"}
|
|
||||||
)
|
|
||||||
df_b = series[inst_b][["tstamp", "price"]].rename(
|
|
||||||
columns={"price": "price_b"}
|
|
||||||
)
|
|
||||||
merged = pd.merge(df_a, df_b, on="tstamp", how="inner").sort_values(
|
|
||||||
"tstamp"
|
|
||||||
)
|
|
||||||
stats = self._compute_stats(inst_a, inst_b, merged)
|
|
||||||
if stats:
|
|
||||||
results.append(stats)
|
|
||||||
self._rank(results)
|
|
||||||
return results
|
|
||||||
|
|
||||||
def _compute_stats(
|
|
||||||
self,
|
|
||||||
inst_a: ExchangeInstrument,
|
|
||||||
inst_b: ExchangeInstrument,
|
|
||||||
merged: pd.DataFrame,
|
|
||||||
) -> Optional[PairStats]:
|
|
||||||
if len(merged) < 2:
|
|
||||||
return None
|
|
||||||
px_a = merged["price_a"].astype(float)
|
|
||||||
px_b = merged["price_b"].astype(float)
|
|
||||||
|
|
||||||
std_a = float(px_a.std())
|
|
||||||
std_b = float(px_b.std())
|
|
||||||
if std_a == 0 or std_b == 0:
|
|
||||||
return None
|
|
||||||
|
|
||||||
z_a = (px_a - float(px_a.mean())) / std_a
|
|
||||||
z_b = (px_b - float(px_b.mean())) / std_b
|
|
||||||
|
|
||||||
p_eg: Optional[float]
|
|
||||||
p_adf: Optional[float]
|
|
||||||
p_j: Optional[float]
|
|
||||||
trace_stat: Optional[float]
|
|
||||||
|
|
||||||
try:
|
|
||||||
p_eg = float(coint(z_a, z_b)[1])
|
|
||||||
except Exception as exc:
|
|
||||||
Log.warning(f"{self.fname()}: EG failed for {inst_a.details_short()}/{inst_b.details_short()}: {exc}")
|
|
||||||
p_eg = None
|
|
||||||
|
|
||||||
try:
|
|
||||||
spread = z_a - z_b
|
|
||||||
p_adf = float(adfuller(spread, maxlag=1, regression="c")[1])
|
|
||||||
except Exception as exc:
|
|
||||||
Log.warning(f"{self.fname()}: ADF failed for {inst_a.details_short()}/{inst_b.details_short()}: {exc}")
|
|
||||||
p_adf = None
|
|
||||||
|
|
||||||
try:
|
|
||||||
data = np.column_stack([z_a, z_b])
|
|
||||||
res = coint_johansen(data, det_order=0, k_ar_diff=1)
|
|
||||||
trace_stat = float(res.lr1[0])
|
|
||||||
cv10, cv5, cv1 = res.cvt[0]
|
|
||||||
if trace_stat > cv1:
|
|
||||||
p_j = 0.01
|
|
||||||
elif trace_stat > cv5:
|
|
||||||
p_j = 0.05
|
|
||||||
elif trace_stat > cv10:
|
|
||||||
p_j = 0.10
|
|
||||||
else:
|
|
||||||
p_j = 1.0
|
|
||||||
except Exception as exc:
|
|
||||||
Log.warning(f"{self.fname()}: Johansen failed for {inst_a.details_short()}/{inst_b.details_short()}: {exc}")
|
|
||||||
p_j = None
|
|
||||||
trace_stat = None
|
|
||||||
|
|
||||||
return PairStats(
|
|
||||||
instrument_a_=inst_a,
|
|
||||||
instrument_b_=inst_b,
|
|
||||||
pvalue_eg_=p_eg,
|
|
||||||
pvalue_adf_=p_adf,
|
|
||||||
pvalue_j_=p_j,
|
|
||||||
trace_stat_j_=trace_stat,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _rank(self, results: List[PairStats]) -> None:
|
|
||||||
self._assign_ranks(results, key=lambda r: r.pvalue_eg_, attr="rank_eg_")
|
|
||||||
self._assign_ranks(results, key=lambda r: r.pvalue_adf_, attr="rank_adf_")
|
|
||||||
self._assign_ranks(results, key=lambda r: r.pvalue_j_, attr="rank_j_")
|
|
||||||
for res in results:
|
|
||||||
res.composite_rank_ = res.rank_eg_ + res.rank_adf_ + res.rank_j_
|
|
||||||
results.sort(key=lambda r: r.composite_rank_)
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _assign_ranks(
|
|
||||||
results: List[PairStats], key, attr: str
|
|
||||||
) -> None:
|
|
||||||
values = [key(r) for r in results]
|
|
||||||
sorted_vals = sorted([v for v in values if v is not None])
|
|
||||||
for res in results:
|
|
||||||
val = key(res)
|
|
||||||
if val is None:
|
|
||||||
setattr(res, attr, len(sorted_vals) + 1)
|
|
||||||
continue
|
|
||||||
rank = 1 + sum(1 for v in sorted_vals if v < val)
|
|
||||||
setattr(res, attr, rank)
|
|
||||||
|
|
||||||
|
|
||||||
class PairSelectionEngine(NamedObject):
|
|
||||||
config_: object
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
price_field_: str
|
|
||||||
fetcher_: DataFetcher
|
|
||||||
quality_: QualityChecker
|
|
||||||
analyzer_: PairAnalyzer
|
|
||||||
interval_sec_: int
|
|
||||||
history_depth_sec_: int
|
|
||||||
data_quality_cache_: List[InstrumentQuality]
|
|
||||||
pair_results_cache_: List[PairStats]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: Config,
|
|
||||||
instruments: List[ExchangeInstrument],
|
|
||||||
price_field: str,
|
|
||||||
) -> None:
|
|
||||||
self.config_ = config
|
|
||||||
self.instruments_ = instruments
|
|
||||||
self.price_field_ = price_field
|
|
||||||
|
|
||||||
interval_sec = int(config.get_value("interval_sec", 0))
|
|
||||||
history_depth_sec = int(config.get_value("history_depth_hours", 0)) * SecPerHour
|
|
||||||
base_url = config.get_value("cvtt_base_url", None)
|
|
||||||
assert interval_sec > 0, "interval_sec must be > 0"
|
|
||||||
assert history_depth_sec > 0, "history_depth_sec must be > 0"
|
|
||||||
assert base_url, "cvtt_base_url must be set"
|
|
||||||
|
|
||||||
self.fetcher_ = DataFetcher(
|
|
||||||
base_url=base_url,
|
|
||||||
interval_sec=interval_sec,
|
|
||||||
history_depth_sec=history_depth_sec,
|
|
||||||
)
|
|
||||||
self.quality_ = QualityChecker(interval_sec=interval_sec)
|
|
||||||
self.analyzer_ = PairAnalyzer(price_field=price_field, interval_sec=interval_sec)
|
|
||||||
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
self.history_depth_sec_ = history_depth_sec
|
|
||||||
|
|
||||||
self.data_quality_cache_ = []
|
|
||||||
self.pair_results_cache_ = []
|
|
||||||
|
|
||||||
async def run_once(self) -> None:
|
|
||||||
quality_results: List[InstrumentQuality] = []
|
|
||||||
price_series: Dict[ExchangeInstrument, pd.DataFrame] = {}
|
|
||||||
|
|
||||||
for inst in self.instruments_:
|
|
||||||
exch_acct = inst.user_data_.get("exch_acct") or inst.exchange_id_
|
|
||||||
aggr = self.fetcher_.fetch(exch_acct=exch_acct, inst=inst)
|
|
||||||
q = self.quality_.evaluate(inst, aggr)
|
|
||||||
quality_results.append(q)
|
|
||||||
if q.status_ != "PASS":
|
|
||||||
continue
|
|
||||||
df = self._to_dataframe(aggr, inst)
|
|
||||||
if len(df) > 0:
|
|
||||||
price_series[inst] = df
|
|
||||||
self.data_quality_cache_ = quality_results
|
|
||||||
self.pair_results_cache_ = self.analyzer_.analyze(price_series)
|
|
||||||
|
|
||||||
def _to_dataframe(self, aggr: List[MdTradesAggregate], inst: ExchangeInstrument) -> pd.DataFrame:
|
|
||||||
rows: List[Dict[str, Any]] = []
|
|
||||||
for item in aggr:
|
|
||||||
rows.append(
|
|
||||||
{
|
|
||||||
"tstamp": pd.to_datetime(item.aggr_time_ns_, unit="ns", utc=True),
|
|
||||||
"price": self._extract_price(item, inst),
|
|
||||||
"num_trades": item.num_trades_,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
df = pd.DataFrame(rows)
|
|
||||||
return df.sort_values("tstamp").reset_index(drop=True)
|
|
||||||
|
|
||||||
def _extract_price(self, aggr: MdTradesAggregate, inst: ExchangeInstrument) -> float:
|
|
||||||
price_field = self.price_field_
|
|
||||||
# MdTradesAggregate inherits hist bar with fields open_, high_, low_, close_, vwap_
|
|
||||||
field_map = {
|
|
||||||
"open": aggr.open_,
|
|
||||||
"high": aggr.high_,
|
|
||||||
"low": aggr.low_,
|
|
||||||
"close": aggr.close_,
|
|
||||||
"vwap": aggr.vwap_,
|
|
||||||
}
|
|
||||||
raw = field_map.get(price_field, aggr.close_)
|
|
||||||
return inst.get_price(raw)
|
|
||||||
|
|
||||||
def sleep_seconds_until_next_cycle(self) -> float:
|
|
||||||
now_ns = current_nanoseconds()
|
|
||||||
interval_ns = self.interval_sec_ * NanoPerSec
|
|
||||||
next_boundary = (now_ns // interval_ns + 1) * interval_ns
|
|
||||||
return max(0.0, (next_boundary - now_ns) / NanoPerSec)
|
|
||||||
|
|
||||||
def quality_dicts(self) -> List[Dict[str, Any]]:
|
|
||||||
res: List[Dict[str, Any]] = []
|
|
||||||
for q in self.data_quality_cache_:
|
|
||||||
res.append(
|
|
||||||
{
|
|
||||||
"instrument": q.instrument_.instrument_id(),
|
|
||||||
"record_count": q.record_count_,
|
|
||||||
"latest_tstamp": q.latest_tstamp_.isoformat() if q.latest_tstamp_ else None,
|
|
||||||
"status": q.status_,
|
|
||||||
"reason": q.reason_,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return res
|
|
||||||
|
|
||||||
def pair_dicts(self) -> List[Dict[str, Any]]:
|
|
||||||
return [p.as_dict() for p in self.pair_results_cache_]
|
|
||||||
```
|
|
||||||
@ -1,140 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from typing import Any, Dict, List
|
|
||||||
|
|
||||||
|
|
||||||
from cvttpy_tools.app import App
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import CvttAppConfig
|
|
||||||
|
|
||||||
|
|
||||||
class HtmlRenderer(NamedObject):
|
|
||||||
def __init__(self) -> None:
|
|
||||||
pass
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def render_data_quality(quality: List[Dict[str, Any]]) -> str:
|
|
||||||
rows = "".join(
|
|
||||||
f"<tr>"
|
|
||||||
f"<td>{q.get('instrument','')}</td>"
|
|
||||||
f"<td>{q.get('record_count','')}</td>"
|
|
||||||
f"<td>{q.get('latest_tstamp','')}</td>"
|
|
||||||
f"<td>{q.get('status','')}</td>"
|
|
||||||
f"<td>{q.get('reason','')}</td>"
|
|
||||||
f"</tr>"
|
|
||||||
for q in sorted(quality, key=lambda x: str(x.get("instrument", "")))
|
|
||||||
)
|
|
||||||
return f"""
|
|
||||||
<!DOCTYPE html>
|
|
||||||
<html>
|
|
||||||
<head>
|
|
||||||
<meta charset='utf-8'/>
|
|
||||||
<title>Data Quality</title>
|
|
||||||
<style>
|
|
||||||
body {{ font-family: Arial, sans-serif; margin: 20px; }}
|
|
||||||
table {{ border-collapse: collapse; width: 100%; }}
|
|
||||||
th, td {{ border: 1px solid #ccc; padding: 8px; text-align: left; }}
|
|
||||||
th {{ background: #f2f2f2; }}
|
|
||||||
</style>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h2>Data Quality</h2>
|
|
||||||
<table>
|
|
||||||
<thead>
|
|
||||||
<tr><th>Instrument</th><th>Records</th><th>Latest</th><th>Status</th><th>Reason</th></tr>
|
|
||||||
</thead>
|
|
||||||
<tbody>{rows}</tbody>
|
|
||||||
</table>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
||||||
"""
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def render_pairs(pairs: List[Dict[str, Any]]) -> str:
|
|
||||||
if not pairs:
|
|
||||||
body = "<p>No pairs available. Check data quality and try again.</p>"
|
|
||||||
else:
|
|
||||||
body_rows = []
|
|
||||||
for p in pairs:
|
|
||||||
body_rows.append(
|
|
||||||
"<tr>"
|
|
||||||
f"<td>{p.get('instrument_a','')}</td>"
|
|
||||||
f"<td>{p.get('instrument_b','')}</td>"
|
|
||||||
f"<td data-value='{p.get('rank_eg',0)}'>{p.get('rank_eg','')}</td>"
|
|
||||||
f"<td data-value='{p.get('rank_adf',0)}'>{p.get('rank_adf','')}</td>"
|
|
||||||
f"<td data-value='{p.get('rank_j',0)}'>{p.get('rank_j','')}</td>"
|
|
||||||
f"<td data-value='{p.get('pvalue_eg','')}'>{p.get('pvalue_eg','')}</td>"
|
|
||||||
f"<td data-value='{p.get('pvalue_adf','')}'>{p.get('pvalue_adf','')}</td>"
|
|
||||||
f"<td data-value='{p.get('pvalue_j','')}'>{p.get('pvalue_j','')}</td>"
|
|
||||||
"</tr>"
|
|
||||||
)
|
|
||||||
body = "\n".join(body_rows)
|
|
||||||
|
|
||||||
return f"""
|
|
||||||
<!DOCTYPE html>
|
|
||||||
<html>
|
|
||||||
<head>
|
|
||||||
<meta charset='utf-8'/>
|
|
||||||
<title>Pair Selection</title>
|
|
||||||
<style>
|
|
||||||
body {{ font-family: Arial, sans-serif; margin: 20px; }}
|
|
||||||
table {{ border-collapse: collapse; width: 100%; }}
|
|
||||||
th, td {{ border: 1px solid #ccc; padding: 8px; text-align: left; }}
|
|
||||||
th.sortable {{ cursor: pointer; background: #f2f2f2; }}
|
|
||||||
</style>
|
|
||||||
</head>
|
|
||||||
<body>
|
|
||||||
<h2>Pair Selection</h2>
|
|
||||||
<table id="pairs-table">
|
|
||||||
<thead>
|
|
||||||
<tr>
|
|
||||||
<th>Instrument A</th>
|
|
||||||
<th>Instrument B</th>
|
|
||||||
<th class="sortable" data-type="num">Rank-EG</th>
|
|
||||||
<th class="sortable" data-type="num">Rank-ADF</th>
|
|
||||||
<th class="sortable" data-type="num">Rank-J</th>
|
|
||||||
<th>EG p-value</th>
|
|
||||||
<th>ADF p-value</th>
|
|
||||||
<th>Johansen pseudo p</th>
|
|
||||||
</tr>
|
|
||||||
</thead>
|
|
||||||
<tbody>
|
|
||||||
{body}
|
|
||||||
</tbody>
|
|
||||||
</table>
|
|
||||||
<script>
|
|
||||||
(function() {{
|
|
||||||
const table = document.getElementById('pairs-table');
|
|
||||||
if (!table) return;
|
|
||||||
const getValue = (cell) => {{
|
|
||||||
const val = cell.getAttribute('data-value');
|
|
||||||
const num = parseFloat(val);
|
|
||||||
return isNaN(num) ? val : num;
|
|
||||||
}};
|
|
||||||
const toggleSort = (index, isNumeric) => {{
|
|
||||||
const tbody = table.querySelector('tbody');
|
|
||||||
const rows = Array.from(tbody.querySelectorAll('tr'));
|
|
||||||
const th = table.querySelectorAll('th')[index];
|
|
||||||
const dir = th.getAttribute('data-dir') === 'asc' ? 'desc' : 'asc';
|
|
||||||
th.setAttribute('data-dir', dir);
|
|
||||||
rows.sort((a, b) => {{
|
|
||||||
const va = getValue(a.children[index]);
|
|
||||||
const vb = getValue(b.children[index]);
|
|
||||||
if (isNumeric && !isNaN(va) && !isNaN(vb)) {{
|
|
||||||
return dir === 'asc' ? va - vb : vb - va;
|
|
||||||
}}
|
|
||||||
return dir === 'asc'
|
|
||||||
? String(va).localeCompare(String(vb))
|
|
||||||
: String(vb).localeCompare(String(va));
|
|
||||||
}});
|
|
||||||
tbody.innerHTML = '';
|
|
||||||
rows.forEach(r => tbody.appendChild(r));
|
|
||||||
}};
|
|
||||||
table.querySelectorAll('th.sortable').forEach((th, idx) => {{
|
|
||||||
th.addEventListener('click', () => toggleSort(idx, th.dataset.type === 'num'));
|
|
||||||
}});
|
|
||||||
}})();
|
|
||||||
</script>
|
|
||||||
</body>
|
|
||||||
</html>
|
|
||||||
"""
|
|
||||||
@ -1,169 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
from typing import Callable, Coroutine, Dict, List
|
|
||||||
import aiohttp.web as web
|
|
||||||
|
|
||||||
from cvttpy_tools.app import App
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import CvttAppConfig
|
|
||||||
from cvttpy_tools.logger import Log
|
|
||||||
from cvttpy_tools.settings.cvtt_types import BookIdT
|
|
||||||
from cvttpy_tools.web.rest_service import RestService
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate
|
|
||||||
from cvttpy_trading.trading.exchange_config import ExchangeAccounts
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.live.mkt_data_client import CvttRestMktDataClient
|
|
||||||
|
|
||||||
'''
|
|
||||||
config http://cloud16.cvtt.vpn/apps/pairs_trading
|
|
||||||
'''
|
|
||||||
|
|
||||||
HistMdCbT = Callable[[List[MdTradesAggregate]], Coroutine]
|
|
||||||
UpdateMdCbT = Callable[[MdTradesAggregate], Coroutine]
|
|
||||||
|
|
||||||
class PairTrader(NamedObject):
|
|
||||||
config_: CvttAppConfig
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
book_id_: BookIdT
|
|
||||||
|
|
||||||
live_strategy_: "PtLiveStrategy" #type: ignore
|
|
||||||
ti_sender_: "TradingInstructionsSender" #type: ignore
|
|
||||||
pricer_client_: CvttRestMktDataClient
|
|
||||||
rest_service_: RestService
|
|
||||||
|
|
||||||
latest_history_: Dict[ExchangeInstrument, List[MdTradesAggregate]]
|
|
||||||
|
|
||||||
def __init__(self) -> None:
|
|
||||||
self.instruments_ = []
|
|
||||||
self.latest_history_ = {}
|
|
||||||
|
|
||||||
App.instance().add_cmdline_arg(
|
|
||||||
"--instrument_A",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help=(
|
|
||||||
" Instrument A in pair (e.g., COINBASE_AT:PAIR-BTC-USD)"
|
|
||||||
),
|
|
||||||
)
|
|
||||||
App.instance().add_cmdline_arg(
|
|
||||||
"--instrument_B",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help=(
|
|
||||||
" Instrument B in pair (e.g., COINBASE_AT:PAIR-ETH-USD)"
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
App.instance().add_cmdline_arg(
|
|
||||||
"--book_id",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Book ID"
|
|
||||||
)
|
|
||||||
App.instance().add_call(App.Stage.Config, self._on_config())
|
|
||||||
App.instance().add_call(App.Stage.Run, self.run())
|
|
||||||
|
|
||||||
async def _on_config(self) -> None:
|
|
||||||
self.config_ = CvttAppConfig.instance()
|
|
||||||
self.book_id_ = App.instance().get_argument(name="book_id")
|
|
||||||
|
|
||||||
# ------- PARSE INSTRUMENTS -------
|
|
||||||
instr_list: List[str] = []
|
|
||||||
instr_str = App.instance().get_argument("instrument_A", "")
|
|
||||||
assert instr_str != "", "Missing insrument A"
|
|
||||||
instr_list.append(instr_str)
|
|
||||||
instr_str = App.instance().get_argument("instrument_B", "")
|
|
||||||
assert instr_str != "", "Missing insrument B"
|
|
||||||
instr_list.append(instr_str)
|
|
||||||
|
|
||||||
for instr in instr_list:
|
|
||||||
instr_parts = instr.split(":")
|
|
||||||
if len(instr_parts) != 2:
|
|
||||||
raise ValueError(f"Invalid pair format: {instr}")
|
|
||||||
exch_acct = instr_parts[0]
|
|
||||||
instrument_id = instr_parts[1]
|
|
||||||
exch_inst = ExchangeAccounts.instance().get_exchange_instrument(exch_acct=exch_acct, instrument_id=instrument_id)
|
|
||||||
assert exch_inst is not None, f"No ExchangeInstrument for {instr}"
|
|
||||||
exch_inst.user_data_["exch_acct"] = exch_acct
|
|
||||||
self.instruments_.append(exch_inst)
|
|
||||||
|
|
||||||
Log.info(f"{self.fname()} Instruments: {self.instruments_[0].details_short()} <==> {self.instruments_[1].details_short()}")
|
|
||||||
|
|
||||||
# ------- CREATE STRATEGY -------
|
|
||||||
from pairs_trading.lib.pt_strategy.live.live_strategy import PtLiveStrategy
|
|
||||||
strategy_config = CvttAppConfig.instance() #self.config_.get_subconfig("strategy_config", Config({}))
|
|
||||||
self.live_strategy_ = PtLiveStrategy(
|
|
||||||
config=strategy_config,
|
|
||||||
pairs_trader=self,
|
|
||||||
)
|
|
||||||
Log.info(f"{self.fname()} Strategy created: {self.live_strategy_}")
|
|
||||||
model_name = self.config_.get_value("model/name", "?model/name?")
|
|
||||||
self.config_.set_value("strategy_id", f"{self.live_strategy_.__class__.__name__}:{model_name}")
|
|
||||||
|
|
||||||
# # ------- CREATE PRICER CLIENT -------
|
|
||||||
self.pricer_client_ = CvttRestMktDataClient(config=self.config_)
|
|
||||||
Log.info(f"{self.fname()} MD client created: {self.pricer_client_}")
|
|
||||||
|
|
||||||
# ------- CREATE TRADER CLIENT -------
|
|
||||||
from pairs_trading.lib.live.ti_sender import TradingInstructionsSender
|
|
||||||
self.ti_sender_ = TradingInstructionsSender(config=self.config_, pairs_trader=self)
|
|
||||||
Log.info(f"{self.fname()} TI sender created: {self.ti_sender_}")
|
|
||||||
|
|
||||||
# # ------- CREATE REST SERVER -------
|
|
||||||
self.rest_service_ = RestService(
|
|
||||||
config_key=f"/api/REST"
|
|
||||||
)
|
|
||||||
|
|
||||||
# --- Strategy Handlers
|
|
||||||
self.rest_service_.add_handler(
|
|
||||||
method="POST",
|
|
||||||
url="/api/strategy",
|
|
||||||
handler=self._on_api_request,
|
|
||||||
)
|
|
||||||
|
|
||||||
async def subscribe_md(self) -> None:
|
|
||||||
from functools import partial
|
|
||||||
for exch_inst in self.instruments_:
|
|
||||||
exch_acct = exch_inst.user_data_.get("exch_acct", "?exch_acct?")
|
|
||||||
instrument_id = exch_inst.instrument_id()
|
|
||||||
|
|
||||||
await self.pricer_client_.add_subscription(
|
|
||||||
exch_acct=exch_acct,
|
|
||||||
instrument_id=instrument_id,
|
|
||||||
interval_sec=self.live_strategy_.interval_sec(),
|
|
||||||
history_depth_sec=self.live_strategy_.history_depth_sec(),
|
|
||||||
callback=partial(self._on_md_summary, exch_inst=exch_inst)
|
|
||||||
)
|
|
||||||
|
|
||||||
async def _on_md_summary(self, history: List[MdTradesAggregate], exch_inst: ExchangeInstrument) -> None:
|
|
||||||
Log.info(f"{self.fname()}: got {exch_inst.details_short()} data")
|
|
||||||
self.latest_history_[exch_inst] = history
|
|
||||||
if len(self.latest_history_) == 2:
|
|
||||||
from itertools import chain
|
|
||||||
all_aggrs = sorted(list(chain.from_iterable(self.latest_history_.values())), key=lambda X: X.aggr_time_ns_)
|
|
||||||
|
|
||||||
await self.live_strategy_.on_mkt_data_hist_snapshot(hist_aggr=all_aggrs)
|
|
||||||
self.latest_history_ = {}
|
|
||||||
|
|
||||||
async def _on_api_request(self, request: web.Request) -> web.Response:
|
|
||||||
# TODO choose pair
|
|
||||||
# TODO confirm chosen pair (after selection is implemented)
|
|
||||||
return web.Response() # TODO API request handler implementation
|
|
||||||
|
|
||||||
|
|
||||||
async def run(self) -> None:
|
|
||||||
Log.info(f"{self.fname()} ...")
|
|
||||||
while True:
|
|
||||||
await asyncio.sleep(0.1)
|
|
||||||
pass
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
App()
|
|
||||||
CvttAppConfig()
|
|
||||||
PairTrader()
|
|
||||||
App.instance().run()
|
|
||||||
186
build-dist.sh
186
build-dist.sh
@ -1,186 +0,0 @@
|
|||||||
#!/usr/bin/env bash
|
|
||||||
|
|
||||||
# ---------------- Settings
|
|
||||||
|
|
||||||
repo=git@cloud21.cvtt.vpn:/works/git/cvtt2/research/pairs_trading.git
|
|
||||||
|
|
||||||
dist_root=/home/cvttdist/software/cvtt2
|
|
||||||
dist_user=cvttdist
|
|
||||||
dist_host="cloud21.cvtt.vpn"
|
|
||||||
dist_ssh_port="22"
|
|
||||||
|
|
||||||
dist_locations="cloud21.cvtt.vpn:22 hs01.cvtt.vpn:22"
|
|
||||||
version_file="VERSION"
|
|
||||||
|
|
||||||
prj=pairs_trading
|
|
||||||
brnch=master
|
|
||||||
interactive=N
|
|
||||||
|
|
||||||
# ---------------- Settings
|
|
||||||
|
|
||||||
# ---------------- cmdline
|
|
||||||
|
|
||||||
usage() {
|
|
||||||
echo "Usage: $0 [-b <branch (master)> -i (interactive)"
|
|
||||||
exit 1
|
|
||||||
}
|
|
||||||
|
|
||||||
while getopts "b:i" opt; do
|
|
||||||
case ${opt} in
|
|
||||||
b )
|
|
||||||
brnch=$OPTARG
|
|
||||||
;;
|
|
||||||
i )
|
|
||||||
interactive=Y
|
|
||||||
;;
|
|
||||||
\? )
|
|
||||||
echo "Invalid option: -$OPTARG" >&2
|
|
||||||
usage
|
|
||||||
;;
|
|
||||||
: )
|
|
||||||
echo "Option -$OPTARG requires an argument." >&2
|
|
||||||
usage
|
|
||||||
;;
|
|
||||||
esac
|
|
||||||
done
|
|
||||||
# ---------------- cmdline
|
|
||||||
|
|
||||||
confirm() {
|
|
||||||
if [ "${interactive}" == "Y" ]; then
|
|
||||||
echo "--------------------------------"
|
|
||||||
echo -n "Press <Enter> to continue" && read
|
|
||||||
fi
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
if [ "${interactive}" == "Y" ]; then
|
|
||||||
echo -n "Enter project [${prj}]: "
|
|
||||||
read project
|
|
||||||
if [ "${project}" == "" ]
|
|
||||||
then
|
|
||||||
project=${prj}
|
|
||||||
fi
|
|
||||||
else
|
|
||||||
project=${prj}
|
|
||||||
fi
|
|
||||||
|
|
||||||
# repo=${git_repo_arr[${project}]}
|
|
||||||
if [ -z ${repo} ]; then
|
|
||||||
echo "ERROR: Project repository for ${project} not found"
|
|
||||||
exit -1
|
|
||||||
fi
|
|
||||||
echo "Project repo: ${repo}"
|
|
||||||
|
|
||||||
if [ "${interactive}" == "Y" ]; then
|
|
||||||
echo -n "Enter branch to build release from [${brnch}]: "
|
|
||||||
read branch
|
|
||||||
if [ "${branch}" == "" ]
|
|
||||||
then
|
|
||||||
branch=${brnch}
|
|
||||||
fi
|
|
||||||
else
|
|
||||||
branch=${brnch}
|
|
||||||
fi
|
|
||||||
|
|
||||||
tmp_dir=$(mktemp -d)
|
|
||||||
function cleanup {
|
|
||||||
cd ${HOME}
|
|
||||||
rm -rf ${tmp_dir}
|
|
||||||
}
|
|
||||||
trap cleanup EXIT
|
|
||||||
|
|
||||||
|
|
||||||
prj_dir="${tmp_dir}/${prj}"
|
|
||||||
|
|
||||||
cmd_arr=()
|
|
||||||
Cmd="git clone ${repo} ${prj_dir}"
|
|
||||||
cmd_arr+=("${Cmd}")
|
|
||||||
|
|
||||||
Cmd="cd ${prj_dir}"
|
|
||||||
cmd_arr+=("${Cmd}")
|
|
||||||
|
|
||||||
if [ "${interactive}" == "Y" ]; then
|
|
||||||
echo "------------------------------------"
|
|
||||||
echo "The following commands will execute:"
|
|
||||||
echo "------------------------------------"
|
|
||||||
for cmd in "${cmd_arr[@]}"
|
|
||||||
do
|
|
||||||
echo ${cmd}
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
confirm
|
|
||||||
|
|
||||||
for cmd in "${cmd_arr[@]}"
|
|
||||||
do
|
|
||||||
echo ${cmd} && eval ${cmd}
|
|
||||||
done
|
|
||||||
|
|
||||||
Cmd="git checkout ${branch}"
|
|
||||||
echo ${Cmd} && eval ${Cmd}
|
|
||||||
if [ "${?}" != "0" ]; then
|
|
||||||
echo "ERROR: Branch ${branch} is not found"
|
|
||||||
cd ${HOME} && rm -rf ${tmp_dir}
|
|
||||||
exit -1
|
|
||||||
fi
|
|
||||||
|
|
||||||
|
|
||||||
release_version=$(cat ${version_file} | awk -F',' '{print $1}')
|
|
||||||
whats_new=$(cat ${version_file} | awk -F',' '{print $2}')
|
|
||||||
|
|
||||||
|
|
||||||
echo "--------------------------------"
|
|
||||||
echo "Version file: ${version_file}"
|
|
||||||
echo "Release version: ${release_version}"
|
|
||||||
|
|
||||||
confirm
|
|
||||||
|
|
||||||
version_tag="v${release_version}"
|
|
||||||
if [ "$(git tag -l "${version_tag}")" != "" ]; then
|
|
||||||
version_tag="${version_tag}.$(date +%Y%m%d_%H%M)"
|
|
||||||
fi
|
|
||||||
version_comment="'${version_tag} ${project} ${branch} $(date +%Y-%m-%d)\n${whats_new}'"
|
|
||||||
|
|
||||||
cmd_arr=()
|
|
||||||
Cmd="git tag -a ${version_tag} -m ${version_comment}"
|
|
||||||
cmd_arr+=("${Cmd}")
|
|
||||||
|
|
||||||
Cmd="git push origin --tags"
|
|
||||||
cmd_arr+=("${Cmd}")
|
|
||||||
|
|
||||||
Cmd="rm -rf .git"
|
|
||||||
cmd_arr+=("${Cmd}")
|
|
||||||
|
|
||||||
SourceLoc=../${project}
|
|
||||||
|
|
||||||
dist_path="${dist_root}/${project}/${release_version}"
|
|
||||||
|
|
||||||
for dist_loc in ${dist_locations}; do
|
|
||||||
dhp=(${dist_loc//:/ })
|
|
||||||
dist_host=${dhp[0]}
|
|
||||||
dist_port=${dhp[1]}
|
|
||||||
Cmd="rsync -avzh"
|
|
||||||
Cmd="${Cmd} --rsync-path=\"mkdir -p ${dist_path}"
|
|
||||||
Cmd="${Cmd} && rsync\" -e \"ssh -p ${dist_ssh_port}\""
|
|
||||||
Cmd="${Cmd} $SourceLoc ${dist_user}@${dist_host}:${dist_path}/"
|
|
||||||
cmd_arr+=("${Cmd}")
|
|
||||||
done
|
|
||||||
|
|
||||||
if [ "${interactive}" == "Y" ]; then
|
|
||||||
echo "------------------------------------"
|
|
||||||
echo "The following commands will execute:"
|
|
||||||
echo "------------------------------------"
|
|
||||||
for cmd in "${cmd_arr[@]}"
|
|
||||||
do
|
|
||||||
echo ${cmd}
|
|
||||||
done
|
|
||||||
fi
|
|
||||||
|
|
||||||
confirm
|
|
||||||
|
|
||||||
for cmd in "${cmd_arr[@]}"
|
|
||||||
do
|
|
||||||
pwd && echo ${cmd} && eval ${cmd}
|
|
||||||
done
|
|
||||||
|
|
||||||
echo "$0 Done ${project} ${release_version}"
|
|
||||||
@ -1,47 +0,0 @@
|
|||||||
{
|
|
||||||
"market_data_loading": {
|
|
||||||
"CRYPTO": {
|
|
||||||
"data_directory": "./data/crypto",
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
"instrument_id_pfx": "PAIR-",
|
|
||||||
},
|
|
||||||
"EQUITY": {
|
|
||||||
"data_directory": "./data/equity",
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
"instrument_id_pfx": "STOCK-",
|
|
||||||
}
|
|
||||||
},
|
|
||||||
|
|
||||||
# ====== Funding ======
|
|
||||||
"funding_per_pair": 2000.0,
|
|
||||||
# ====== Trading Parameters ======
|
|
||||||
"stat_model_price": "close",
|
|
||||||
"execution_price": {
|
|
||||||
"column": "vwap",
|
|
||||||
"shift": 1,
|
|
||||||
},
|
|
||||||
"dis-equilibrium_open_trshld": 1.75,
|
|
||||||
"dis-equilibrium_close_trshld": 0.9,
|
|
||||||
"model_class": "pairs_trading.lib.pt_strategy.models.OLSModel",
|
|
||||||
|
|
||||||
# "model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.EGOptimizedWndDataPolicy",
|
|
||||||
# "model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.ADFOptimizedWndDataPolicy",
|
|
||||||
"model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.JohansenOptdWndDataPolicy",
|
|
||||||
"min_training_size": 60,
|
|
||||||
"max_training_size": 150,
|
|
||||||
|
|
||||||
# ====== Stop Conditions ======
|
|
||||||
"stop_close_conditions": {
|
|
||||||
"profit": 2.0,
|
|
||||||
"loss": -0.5
|
|
||||||
}
|
|
||||||
|
|
||||||
# ====== End of Session Closeout ======
|
|
||||||
"close_outstanding_positions": true,
|
|
||||||
# "close_outstanding_positions": false,
|
|
||||||
"trading_hours": {
|
|
||||||
"timezone": "America/New_York",
|
|
||||||
"begin_session": "7:30:00",
|
|
||||||
"end_session": "18:30:00",
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@ -1,47 +0,0 @@
|
|||||||
{
|
|
||||||
"market_data_loading": {
|
|
||||||
"CRYPTO": {
|
|
||||||
"data_directory": "./data/crypto",
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
"instrument_id_pfx": "PAIR-",
|
|
||||||
},
|
|
||||||
"EQUITY": {
|
|
||||||
"data_directory": "./data/equity",
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
"instrument_id_pfx": "STOCK-",
|
|
||||||
}
|
|
||||||
},
|
|
||||||
|
|
||||||
# ====== Funding ======
|
|
||||||
"funding_per_pair": 2000.0,
|
|
||||||
# ====== Trading Parameters ======
|
|
||||||
"stat_model_price": "close",
|
|
||||||
"execution_price": {
|
|
||||||
"column": "vwap",
|
|
||||||
"shift": 1,
|
|
||||||
},
|
|
||||||
"dis-equilibrium_open_trshld": 1.75,
|
|
||||||
"dis-equilibrium_close_trshld": 0.9,
|
|
||||||
"model_class": "pairs_trading.lib.pt_strategy.models.OLSModel",
|
|
||||||
|
|
||||||
"training_size": 120,
|
|
||||||
"model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.RollingWindowDataPolicy",
|
|
||||||
# "model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.OptimizedWindowDataPolicy",
|
|
||||||
# "min_training_size": 60,
|
|
||||||
# "max_training_size": 150,
|
|
||||||
|
|
||||||
# ====== Stop Conditions ======
|
|
||||||
"stop_close_conditions": {
|
|
||||||
"profit": 2.0,
|
|
||||||
"loss": -0.5
|
|
||||||
}
|
|
||||||
|
|
||||||
# ====== End of Session Closeout ======
|
|
||||||
"close_outstanding_positions": true,
|
|
||||||
# "close_outstanding_positions": false,
|
|
||||||
"trading_hours": {
|
|
||||||
"timezone": "America/New_York",
|
|
||||||
"begin_session": "7:30:00",
|
|
||||||
"end_session": "18:30:00",
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@ -1,46 +0,0 @@
|
|||||||
{
|
|
||||||
"refdata": {
|
|
||||||
"assets": @inc=http://@env{CONFIG_SERVICE}/refdata/assets
|
|
||||||
, "instruments": @inc=http://@env{CONFIG_SERVICE}/refdata/instruments
|
|
||||||
, "exchange_instruments": @inc=http://@env{CONFIG_SERVICE}/refdata/exchange_instruments
|
|
||||||
, "dynamic_instrument_exchanges": ["ALPACA"]
|
|
||||||
, "exchanges": @inc=http://@env{CONFIG_SERVICE}/refdata/exchanges
|
|
||||||
},
|
|
||||||
"market_data_loading": {
|
|
||||||
"CRYPTO": {
|
|
||||||
"data_directory": "./data/crypto",
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
"instrument_id_pfx": "PAIR-",
|
|
||||||
},
|
|
||||||
"EQUITY": {
|
|
||||||
"data_directory": "./data/equity",
|
|
||||||
"db_table_name": "md_1min_bars",
|
|
||||||
"instrument_id_pfx": "STOCK-",
|
|
||||||
}
|
|
||||||
},
|
|
||||||
# ====== Funding ======
|
|
||||||
"funding_per_pair": 2000.0,
|
|
||||||
|
|
||||||
# ====== Model =======
|
|
||||||
"model": @inc=http://@env{CONFIG_SERVICE}/apps/common/models/@env{MODEL_CONFIG}
|
|
||||||
|
|
||||||
# ====== Trading =======
|
|
||||||
"execution_price": {
|
|
||||||
"column": "vwap",
|
|
||||||
"shift": 1,
|
|
||||||
},
|
|
||||||
# ====== Stop Conditions ======
|
|
||||||
"stop_close_conditions": {
|
|
||||||
"profit": 2.0,
|
|
||||||
"loss": -0.5
|
|
||||||
}
|
|
||||||
|
|
||||||
# ====== End of Session Closeout ======
|
|
||||||
"close_outstanding_positions": true,
|
|
||||||
# "close_outstanding_positions": false,
|
|
||||||
"trading_hours": {
|
|
||||||
"timezone": "America/New_York",
|
|
||||||
"begin_session": "7:30:00",
|
|
||||||
"end_session": "18:30:00",
|
|
||||||
}
|
|
||||||
}
|
|
||||||
27
configuration/equity.cfg
Normal file
27
configuration/equity.cfg
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
{
|
||||||
|
"security_type": "EQUITY",
|
||||||
|
"data_directory": "./data/equity",
|
||||||
|
"datafiles": [
|
||||||
|
"20250618.mktdata.ohlcv.db",
|
||||||
|
],
|
||||||
|
"db_table_name": "md_1min_bars",
|
||||||
|
"exchange_id": "ALPACA",
|
||||||
|
"instrument_id_pfx": "STOCK-",
|
||||||
|
"trading_hours": {
|
||||||
|
"begin_session": "9:30:00",
|
||||||
|
"end_session": "16:00:00",
|
||||||
|
"timezone": "America/New_York"
|
||||||
|
},
|
||||||
|
"price_column": "close",
|
||||||
|
"min_required_points": 30,
|
||||||
|
"zero_threshold": 1e-10,
|
||||||
|
"dis-equilibrium_open_trshld": 2.0,
|
||||||
|
"dis-equilibrium_close_trshld": 1.0,
|
||||||
|
"training_minutes": 120,
|
||||||
|
"funding_per_pair": 2000.0,
|
||||||
|
# "fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||||
|
"fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||||
|
"exclude_instruments": ["CAN"],
|
||||||
|
"close_outstanding_positions": false
|
||||||
|
|
||||||
|
}
|
||||||
26
configuration/equity_lg.cfg
Normal file
26
configuration/equity_lg.cfg
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
{
|
||||||
|
"security_type": "EQUITY",
|
||||||
|
"data_directory": "./data/equity",
|
||||||
|
"datafiles": [
|
||||||
|
"20250602.mktdata.ohlcv.db",
|
||||||
|
],
|
||||||
|
"db_table_name": "md_1min_bars",
|
||||||
|
"exchange_id": "ALPACA",
|
||||||
|
"instrument_id_pfx": "STOCK-",
|
||||||
|
"trading_hours": {
|
||||||
|
"begin_session": "9:30:00",
|
||||||
|
"end_session": "16:00:00",
|
||||||
|
"timezone": "America/New_York"
|
||||||
|
},
|
||||||
|
"price_column": "close",
|
||||||
|
"min_required_points": 30,
|
||||||
|
"zero_threshold": 1e-10,
|
||||||
|
"dis-equilibrium_open_trshld": 2.0,
|
||||||
|
"dis-equilibrium_close_trshld": 1.0,
|
||||||
|
"training_minutes": 120,
|
||||||
|
"funding_per_pair": 2000.0,
|
||||||
|
"fit_method_class": "pt_trading.fit_methods.StaticFit",
|
||||||
|
"exclude_instruments": ["CAN"]
|
||||||
|
}
|
||||||
|
# "fit_method_class": "pt_trading.fit_methods.SlidingFit",
|
||||||
|
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
|
||||||
@ -1,21 +0,0 @@
|
|||||||
{
|
|
||||||
"strategy_config": @inc=file:///home/oleg/develop/pairs_trading/configuration/vecm-opt.cfg
|
|
||||||
"pricer_config": {
|
|
||||||
"pricer_url": "ws://localhost:12346/ws",
|
|
||||||
"history_depth_sec": 86400 #"60*60*24", # use simpleeval
|
|
||||||
"interval_sec": 60
|
|
||||||
},
|
|
||||||
"ti_config": {
|
|
||||||
"cvtt_base_url": "http://localhost:23456"
|
|
||||||
"book_id": "XXXXXXXXX",
|
|
||||||
"strategy_id": "XXXXXXXXX",
|
|
||||||
"ti_endpoint": {
|
|
||||||
"method": "POST",
|
|
||||||
"url": "/trading_instructions"
|
|
||||||
},
|
|
||||||
"health_check_endpoint": {
|
|
||||||
"method": "GET",
|
|
||||||
"url": "/ping"
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
@ -1,56 +0,0 @@
|
|||||||
{
|
|
||||||
# "refdata": {
|
|
||||||
# "assets": @inc=http://@env{CONFIG_SERVICE}/refdata/assets
|
|
||||||
# , "instruments": @inc=http://@env{CONFIG_SERVICE}/refdata/instruments
|
|
||||||
# , "exchange_instruments": @inc=http://@env{CONFIG_SERVICE}/refdata/exchange_instruments
|
|
||||||
# , "dynamic_instrument_exchanges": ["ALPACA"]
|
|
||||||
# , "exchanges": @inc=http://@env{CONFIG_SERVICE}/refdata/exchanges
|
|
||||||
# },
|
|
||||||
# "market_data_loading": {
|
|
||||||
# "CRYPTO": {
|
|
||||||
# "data_directory": "./data/crypto",
|
|
||||||
# "db_table_name": "md_1min_bars",
|
|
||||||
# "instrument_id_pfx": "PAIR-",
|
|
||||||
# },
|
|
||||||
# "EQUITY": {
|
|
||||||
# "data_directory": "./data/equity",
|
|
||||||
# "db_table_name": "md_1min_bars",
|
|
||||||
# "instrument_id_pfx": "STOCK-",
|
|
||||||
# }
|
|
||||||
# },
|
|
||||||
|
|
||||||
# # ====== Funding ======
|
|
||||||
# "funding_per_pair": 2000.0,
|
|
||||||
|
|
||||||
# ====== Trading Parameters ======
|
|
||||||
"stat_model_price": "close", # "vwap"
|
|
||||||
"execution_price": {
|
|
||||||
"column": "vwap",
|
|
||||||
"shift": 1,
|
|
||||||
},
|
|
||||||
"dis-equilibrium_open_trshld": 1.75,
|
|
||||||
"dis-equilibrium_close_trshld": 1.0,
|
|
||||||
|
|
||||||
"model_class": "pairs_trading.lib.pt_strategy.models.VECMModel",
|
|
||||||
|
|
||||||
# "training_size": 120,
|
|
||||||
# "model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.RollingWindowDataPolicy",
|
|
||||||
"model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.ADFOptimizedWndDataPolicy",
|
|
||||||
"min_training_size": 60,
|
|
||||||
"max_training_size": 150,
|
|
||||||
|
|
||||||
# # ====== Stop Conditions ======
|
|
||||||
# "stop_close_conditions": {
|
|
||||||
# "profit": 2.0,
|
|
||||||
# "loss": -0.5
|
|
||||||
# }
|
|
||||||
|
|
||||||
# # ====== End of Session Closeout ======
|
|
||||||
# "close_outstanding_positions": true,
|
|
||||||
# # "close_outstanding_positions": false,
|
|
||||||
# "trading_hours": {
|
|
||||||
# "timezone": "America/New_York",
|
|
||||||
# "begin_session": "7:30:00",
|
|
||||||
# "end_session": "18:30:00",
|
|
||||||
# }
|
|
||||||
}
|
|
||||||
@ -21,15 +21,10 @@
|
|||||||
"column": "vwap",
|
"column": "vwap",
|
||||||
"shift": 1,
|
"shift": 1,
|
||||||
},
|
},
|
||||||
"dis-equilibrium_open_trshld": 1.75,
|
"dis-equilibrium_open_trshld": 2.0,
|
||||||
"dis-equilibrium_close_trshld": 1.0,
|
"dis-equilibrium_close_trshld": 1.0,
|
||||||
"model_class": "pairs_trading.lib.pt_strategy.models.VECMModel",
|
"training_minutes": 120,
|
||||||
|
"fit_method_class": "pt_trading.vecm_rolling_fit.VECMRollingFit",
|
||||||
"training_size": 120,
|
|
||||||
"model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.RollingWindowDataPolicy",
|
|
||||||
# "model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.OptimizedWindowDataPolicy",
|
|
||||||
# "min_training_size": 60,
|
|
||||||
# "max_training_size": 150,
|
|
||||||
|
|
||||||
# ====== Stop Conditions ======
|
# ====== Stop Conditions ======
|
||||||
"stop_close_conditions": {
|
"stop_close_conditions": {
|
||||||
@ -42,7 +37,7 @@
|
|||||||
# "close_outstanding_positions": false,
|
# "close_outstanding_positions": false,
|
||||||
"trading_hours": {
|
"trading_hours": {
|
||||||
"timezone": "America/New_York",
|
"timezone": "America/New_York",
|
||||||
"begin_session": "7:30:00",
|
"begin_session": "9:30:00",
|
||||||
"end_session": "18:30:00",
|
"end_session": "18:30:00",
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -22,9 +22,8 @@
|
|||||||
},
|
},
|
||||||
"dis-equilibrium_open_trshld": 2.0,
|
"dis-equilibrium_open_trshld": 2.0,
|
||||||
"dis-equilibrium_close_trshld": 0.5,
|
"dis-equilibrium_close_trshld": 0.5,
|
||||||
"training_size": 120,
|
"training_minutes": 120,
|
||||||
"model_class": "pairs_trading.lib.pt_strategy.models.OLSModel",
|
"fit_method_class": "pt_trading.z-score_rolling_fit.ZScoreRollingFit",
|
||||||
"model_data_policy_class": "pairs_trading.lib.pt_strategy.model_data_policy.ExpandingWindowDataPolicy",
|
|
||||||
|
|
||||||
# ====== Stop Conditions ======
|
# ====== Stop Conditions ======
|
||||||
"stop_close_conditions": {
|
"stop_close_conditions": {
|
||||||
@ -37,7 +36,7 @@
|
|||||||
# "close_outstanding_positions": false,
|
# "close_outstanding_positions": false,
|
||||||
"trading_hours": {
|
"trading_hours": {
|
||||||
"timezone": "America/New_York",
|
"timezone": "America/New_York",
|
||||||
"begin_session": "7:30:00",
|
"begin_session": "9:30:00",
|
||||||
"end_session": "18:30:00",
|
"end_session": "18:30:00",
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
115
lg_notes.md
Normal file
115
lg_notes.md
Normal file
@ -0,0 +1,115 @@
|
|||||||
|
07.11.2025
|
||||||
|
pairs_trading/configuration <---- directory for config
|
||||||
|
equity_lg.cfg <-------- copy of equity.cfg
|
||||||
|
How to run a Program: TRIANGLEsquare ----> triangle EQUITY backtest
|
||||||
|
Results are in > results (timestamp table for all runs)
|
||||||
|
table "...timestamp... .pt_backtest_results.equity.db"
|
||||||
|
going to table using sqlite
|
||||||
|
> sqlite3 '/home/coder/results/20250721_175750.pt_backtest_results.equity.db'
|
||||||
|
|
||||||
|
sqlite> .databases
|
||||||
|
main: /home/coder/results/20250717_180122.pt_backtest_results.equity.db r/w
|
||||||
|
sqlite> .tables
|
||||||
|
config outstanding_positions pt_bt_results
|
||||||
|
|
||||||
|
sqlite> PRAGMA table_info('pt_bt_results');
|
||||||
|
0|date|DATE|0||0
|
||||||
|
1|pair|TEXT|0||0
|
||||||
|
2|symbol|TEXT|0||0
|
||||||
|
3|open_time|DATETIME|0||0
|
||||||
|
4|open_side|TEXT|0||0
|
||||||
|
5|open_price|REAL|0||0
|
||||||
|
6|open_quantity|INTEGER|0||0
|
||||||
|
7|open_disequilibrium|REAL|0||0
|
||||||
|
8|close_time|DATETIME|0||0
|
||||||
|
9|close_side|TEXT|0||0
|
||||||
|
10|close_price|REAL|0||0
|
||||||
|
11|close_quantity|INTEGER|0||0
|
||||||
|
12|close_disequilibrium|REAL|0||0
|
||||||
|
13|symbol_return|REAL|0||0
|
||||||
|
14|pair_return|REAL|0||0
|
||||||
|
|
||||||
|
select count(*) as cnt from pt_bt_results;
|
||||||
|
8
|
||||||
|
|
||||||
|
select * from pt_bt_results;
|
||||||
|
|
||||||
|
select
|
||||||
|
date, close_time, pair, symbol, symbol_return, pair_return
|
||||||
|
from pt_bt_results ;
|
||||||
|
|
||||||
|
select date, sum(symbol_return) as daily_return
|
||||||
|
from pt_bt_results where date = '2025-06-18' group by date;
|
||||||
|
|
||||||
|
.quit
|
||||||
|
|
||||||
|
sqlite3 '/home/coder/results/20250717_172435.pt_backtest_results.equity.db'
|
||||||
|
|
||||||
|
sqlite> select date, sum(symbol_return) as daily_return
|
||||||
|
from pt_bt_results group by date;
|
||||||
|
|
||||||
|
2025-06-02|1.29845390060828
|
||||||
|
...
|
||||||
|
2025-06-18|-43.5084977104115 <========== ????? ==========>
|
||||||
|
2025-06-20|11.8605547517183
|
||||||
|
|
||||||
|
|
||||||
|
select
|
||||||
|
date, close_time, pair, symbol, symbol_return, pair_return
|
||||||
|
from pt_bt_results ;
|
||||||
|
|
||||||
|
select date, close_time, pair, symbol, symbol_return, pair_return
|
||||||
|
from pt_bt_results where date = '2025-06-18';
|
||||||
|
|
||||||
|
|
||||||
|
./scripts/load_equity_pair_intraday.sh -A NVDA -B QQQ -d 20250701 -T ./intraday_md
|
||||||
|
|
||||||
|
to inspect exactly what sources, formats, and processing steps you can open the script with:
|
||||||
|
head -n 50 ./scripts/load_equity_pair_intraday.sh
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
✓ Data file found: /home/coder/pairs_trading/data/crypto/20250605.mktdata.ohlcv.db
|
||||||
|
|
||||||
|
sqlite3 '/home/coder/results/20250722_201930.pt_backtest_results.crypto.db'
|
||||||
|
|
||||||
|
sqlite3 '/home/coder/results/xxxxxxxx_yyyyyy.pt_backtest_results.pseudo.db'
|
||||||
|
|
||||||
|
11111111
|
||||||
|
=== At your terminal, run these commands:
|
||||||
|
sqlite3 '/home/coder/results/20250722_201930.pt_backtest_results.crypto.db'
|
||||||
|
=== Then inside the SQLite prompt:
|
||||||
|
.mode csv
|
||||||
|
.headers on
|
||||||
|
.output results_20250722.csv
|
||||||
|
SELECT * FROM pt_bt_results;
|
||||||
|
.output stdout
|
||||||
|
.quit
|
||||||
|
|
||||||
|
cd /home/coder/
|
||||||
|
|
||||||
|
# === mode csv formats output as CSV
|
||||||
|
# === headers on includes column names
|
||||||
|
# === output my_table.csv directs output to that file
|
||||||
|
# === Run your SELECT query, then revert output
|
||||||
|
# === Open my_table.csv in Excel directly
|
||||||
|
|
||||||
|
# ======== Using scp (Secure Copy)
|
||||||
|
# === On your local machine, open a terminal and run:
|
||||||
|
scp cvtt@953f6e8df266:/home/coder/results_20250722.csv ~/Downloads/
|
||||||
|
|
||||||
|
|
||||||
|
# ===== convert cvs pandas dataframe ====== -->
|
||||||
|
import pandas as pd
|
||||||
|
# Replace with the actual path to your CSV file
|
||||||
|
file_path = '/home/coder/results_20250722.csv'
|
||||||
|
# Read the CSV file into a DataFrame
|
||||||
|
df = pd.read_csv(file_path)
|
||||||
|
# Show the first few rows
|
||||||
|
print(df.head())
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
188
lib/cvtt/mkt_data.py
Normal file
188
lib/cvtt/mkt_data.py
Normal file
@ -0,0 +1,188 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from ast import Sub
|
||||||
|
import asyncio
|
||||||
|
from functools import partial
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
import uuid
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Callable, Coroutine, Dict, List, Optional
|
||||||
|
|
||||||
|
from numpy.strings import str_len
|
||||||
|
import websockets
|
||||||
|
from websockets.asyncio.client import ClientConnection
|
||||||
|
|
||||||
|
MessageTypeT = str
|
||||||
|
SubscriptionIdT = str
|
||||||
|
MessageT = Dict
|
||||||
|
UrlT = str
|
||||||
|
CallbackT = Callable[[MessageTypeT, SubscriptionIdT, MessageT], Coroutine[None, str, None]]
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class CvttPricesSubscription:
|
||||||
|
id_: str
|
||||||
|
exchange_config_name_: str
|
||||||
|
instrument_id_: str
|
||||||
|
interval_sec_: int
|
||||||
|
history_depth_sec_: int
|
||||||
|
is_subscribed_: bool
|
||||||
|
is_historical_: bool
|
||||||
|
callback_: CallbackT
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
exchange_config_name: str,
|
||||||
|
instrument_id: str,
|
||||||
|
interval_sec: int,
|
||||||
|
history_depth_sec: int,
|
||||||
|
callback: CallbackT,
|
||||||
|
):
|
||||||
|
self.exchange_config_name_ = exchange_config_name
|
||||||
|
self.instrument_id_ = instrument_id
|
||||||
|
self.interval_sec_ = interval_sec
|
||||||
|
self.history_depth_sec_ = history_depth_sec
|
||||||
|
self.callback_ = callback
|
||||||
|
self.id_ = str(uuid.uuid4())
|
||||||
|
self.is_subscribed_ = False
|
||||||
|
self.is_historical_ = history_depth_sec > 0
|
||||||
|
|
||||||
|
|
||||||
|
class CvttPricerWebSockClient:
|
||||||
|
# Class members with type hints
|
||||||
|
ws_url_: UrlT
|
||||||
|
websocket_: Optional[ClientConnection]
|
||||||
|
subscriptions_: Dict[SubscriptionIdT, CvttPricesSubscription]
|
||||||
|
is_connected_: bool
|
||||||
|
logger_: logging.Logger
|
||||||
|
|
||||||
|
def __init__(self, url: str):
|
||||||
|
self.ws_url_ = url
|
||||||
|
self.websocket_ = None
|
||||||
|
self.is_connected_ = False
|
||||||
|
self.subscriptions_ = {}
|
||||||
|
self.logger_ = logging.getLogger(__name__)
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
async def subscribe(
|
||||||
|
self, subscription: CvttPricesSubscription
|
||||||
|
) -> str: # returns subscription id
|
||||||
|
|
||||||
|
if not self.is_connected_:
|
||||||
|
try:
|
||||||
|
self.logger_.info(f"Connecting to {self.ws_url_}")
|
||||||
|
self.websocket_ = await websockets.connect(self.ws_url_)
|
||||||
|
self.is_connected_ = True
|
||||||
|
except Exception as e:
|
||||||
|
self.logger_.error(f"Unable to connect to {self.ws_url_}: {str(e)}")
|
||||||
|
raise e
|
||||||
|
|
||||||
|
subscr_msg = {
|
||||||
|
"type": "subscr",
|
||||||
|
"id": subscription.id_,
|
||||||
|
"subscr_type": "MD_AGGREGATE",
|
||||||
|
"exchange_config_name": subscription.exchange_config_name_,
|
||||||
|
"instrument_id": subscription.instrument_id_,
|
||||||
|
"interval_sec": subscription.interval_sec_,
|
||||||
|
}
|
||||||
|
if subscription.is_historical_:
|
||||||
|
subscr_msg["history_depth_sec"] = subscription.history_depth_sec_
|
||||||
|
|
||||||
|
assert self.websocket_ is not None
|
||||||
|
await self.websocket_.send(json.dumps(subscr_msg))
|
||||||
|
|
||||||
|
response = await self.websocket_.recv()
|
||||||
|
response_data = json.loads(response)
|
||||||
|
if not await self.handle_subscription_response(subscription, response_data):
|
||||||
|
await self.websocket_.close()
|
||||||
|
self.is_connected_ = False
|
||||||
|
raise Exception(f"Subscription failed: {str(response)}")
|
||||||
|
|
||||||
|
self.subscriptions_[subscription.id_] = subscription
|
||||||
|
return subscription.id_
|
||||||
|
|
||||||
|
async def handle_subscription_response(
|
||||||
|
self, subscription: CvttPricesSubscription, response: dict
|
||||||
|
) -> bool:
|
||||||
|
if response.get("type") != "subscr" or response.get("id") != subscription.id_:
|
||||||
|
return False
|
||||||
|
|
||||||
|
if response.get("status") == "success":
|
||||||
|
self.logger_.info(f"Subscription successful: {json.dumps(response)}")
|
||||||
|
return True
|
||||||
|
elif response.get("status") == "error":
|
||||||
|
self.logger_.error(f"Subscription failed: {response.get('reason')}")
|
||||||
|
return False
|
||||||
|
return False
|
||||||
|
|
||||||
|
async def run(self) -> None:
|
||||||
|
assert self.websocket_
|
||||||
|
try:
|
||||||
|
while self.is_connected_:
|
||||||
|
try:
|
||||||
|
message = await self.websocket_.recv()
|
||||||
|
message_str = (
|
||||||
|
message.decode("utf-8")
|
||||||
|
if isinstance(message, bytes)
|
||||||
|
else message
|
||||||
|
)
|
||||||
|
await self.process_message(json.loads(message_str))
|
||||||
|
except websockets.ConnectionClosed:
|
||||||
|
self.logger_.warning("Connection closed")
|
||||||
|
self.is_connected_ = False
|
||||||
|
break
|
||||||
|
except Exception as e:
|
||||||
|
self.logger_.error(f"Error occurred: {str(e)}")
|
||||||
|
self.is_connected_ = False
|
||||||
|
await asyncio.sleep(5) # Wait before reconnecting
|
||||||
|
|
||||||
|
async def process_message(self, message: Dict) -> None:
|
||||||
|
message_type = message.get("type")
|
||||||
|
if message_type in ["md_aggregate", "historical_md_aggregate"]:
|
||||||
|
subscription_id = message.get("subscr_id")
|
||||||
|
if subscription_id not in self.subscriptions_:
|
||||||
|
self.logger_.warning(f"Unknown subscription id: {subscription_id}")
|
||||||
|
return
|
||||||
|
|
||||||
|
subscription = self.subscriptions_[subscription_id]
|
||||||
|
await subscription.callback_(message_type, subscription_id, message)
|
||||||
|
else:
|
||||||
|
self.logger_.warning(f"Unknown message type: {message.get('type')}")
|
||||||
|
|
||||||
|
|
||||||
|
async def main() -> None:
|
||||||
|
async def on_message(message_type: MessageTypeT, subscr_id: SubscriptionIdT, message: Dict, instrument_id: str) -> None:
|
||||||
|
print(f"{message_type=} {subscr_id=} {instrument_id}")
|
||||||
|
if message_type == "md_aggregate":
|
||||||
|
aggr = message.get("md_aggregate", [])
|
||||||
|
print(f"[{aggr['tstmp'][:19]}] *** RLTM *** {message}")
|
||||||
|
elif message_type == "historical_md_aggregate":
|
||||||
|
for aggr in message.get("historical_data", []):
|
||||||
|
print(f"[{aggr['tstmp'][:19]}] *** HIST *** {aggr}")
|
||||||
|
else:
|
||||||
|
print(f"Unknown message type: {message_type}")
|
||||||
|
|
||||||
|
pricer_client = CvttPricerWebSockClient(
|
||||||
|
"ws://localhost:12346/ws"
|
||||||
|
)
|
||||||
|
await pricer_client.subscribe(CvttPricesSubscription(
|
||||||
|
exchange_config_name="COINBASE_AT",
|
||||||
|
instrument_id="PAIR-BTC-USD",
|
||||||
|
interval_sec=60,
|
||||||
|
history_depth_sec=60*60*24,
|
||||||
|
callback=partial(on_message, instrument_id="PAIR-BTC-USD")
|
||||||
|
))
|
||||||
|
await pricer_client.subscribe(CvttPricesSubscription(
|
||||||
|
exchange_config_name="COINBASE_AT",
|
||||||
|
instrument_id="PAIR-ETH-USD",
|
||||||
|
interval_sec=60,
|
||||||
|
history_depth_sec=60*60*24,
|
||||||
|
callback=partial(on_message, instrument_id="PAIR-ETH-USD")
|
||||||
|
))
|
||||||
|
|
||||||
|
await pricer_client.run()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
@ -1,277 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import asyncio
|
|
||||||
from typing import Dict, Any, List, Optional, Set
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.logger import Log
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
from cvttpy_tools.timer import Timer
|
|
||||||
from cvttpy_tools.timeutils import NanosT, current_seconds
|
|
||||||
from cvttpy_tools.settings.cvtt_types import InstrumentIdT, IntervalSecT
|
|
||||||
from cvttpy_tools.web.rest_client import RESTSender
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
from cvttpy_trading.trading.accounting.exch_account import ExchangeAccountNameT
|
|
||||||
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate, MdSummary, MdSummaryCallbackT
|
|
||||||
from cvttpy_trading.trading.exchange_config import ExchangeAccounts
|
|
||||||
# ---
|
|
||||||
|
|
||||||
|
|
||||||
# class MdSummary(HistMdBar):
|
|
||||||
# def __init__(
|
|
||||||
# self,
|
|
||||||
# ts_ns: int,
|
|
||||||
# open: float,
|
|
||||||
# high: float,
|
|
||||||
# low: float,
|
|
||||||
# close: float,
|
|
||||||
# volume: float,
|
|
||||||
# vwap: float,
|
|
||||||
# num_trades: int,
|
|
||||||
# ):
|
|
||||||
# super().__init__(ts=ts_ns)
|
|
||||||
# self.open_ = open
|
|
||||||
# self.high_ = high
|
|
||||||
# self.low_ = low
|
|
||||||
# self.close_ = close
|
|
||||||
# self.volume_ = volume
|
|
||||||
# self.vwap_ = vwap
|
|
||||||
# self.num_trades_ = num_trades
|
|
||||||
|
|
||||||
# @classmethod
|
|
||||||
# def from_REST_response(cls, response: requests.Response) -> List[MdSummary]:
|
|
||||||
# res: List[MdSummary] = []
|
|
||||||
# jresp = response.json()
|
|
||||||
# hist_data = jresp.get("historical_data", [])
|
|
||||||
# for hd in hist_data:
|
|
||||||
# res.append(
|
|
||||||
# MdSummary(
|
|
||||||
# ts_ns=hd["time_ns"],
|
|
||||||
# open=hd["open"],
|
|
||||||
# high=hd["high"],
|
|
||||||
# low=hd["low"],
|
|
||||||
# close=hd["close"],
|
|
||||||
# volume=hd["volume"],
|
|
||||||
# vwap=hd["vwap"],
|
|
||||||
# num_trades=hd["num_trades"],
|
|
||||||
# )
|
|
||||||
# )
|
|
||||||
# return res
|
|
||||||
|
|
||||||
# def create_md_trades_aggregate(
|
|
||||||
# self,
|
|
||||||
# exch_acct: ExchangeAccountNameT,
|
|
||||||
# exch_inst: ExchangeInstrument,
|
|
||||||
# interval_sec: IntervalSecT,
|
|
||||||
# ) -> MdTradesAggregate:
|
|
||||||
# res = MdTradesAggregate(
|
|
||||||
# exch_acct=exch_acct,
|
|
||||||
# exch_inst=exch_inst,
|
|
||||||
# interval_ns=interval_sec * NanoPerSec,
|
|
||||||
# )
|
|
||||||
# res.set(mdbar=self)
|
|
||||||
# return res
|
|
||||||
|
|
||||||
|
|
||||||
# MdSummaryCallbackT = Callable[[List[MdTradesAggregate]], Coroutine]
|
|
||||||
|
|
||||||
|
|
||||||
class MdSummaryCollector(NamedObject):
|
|
||||||
sender_: RESTSender
|
|
||||||
exch_acct_: ExchangeAccountNameT
|
|
||||||
exch_inst_: ExchangeInstrument
|
|
||||||
interval_sec_: IntervalSecT
|
|
||||||
history_depth_sec_: IntervalSecT
|
|
||||||
|
|
||||||
history_: List[MdTradesAggregate]
|
|
||||||
|
|
||||||
callbacks_: List[MdSummaryCallbackT]
|
|
||||||
timer_: Optional[Timer]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
sender: RESTSender,
|
|
||||||
exch_acct: ExchangeAccountNameT,
|
|
||||||
instrument_id: InstrumentIdT,
|
|
||||||
interval_sec: IntervalSecT,
|
|
||||||
history_depth_sec: IntervalSecT,
|
|
||||||
) -> None:
|
|
||||||
self.sender_ = sender
|
|
||||||
self.exch_acct_ = exch_acct
|
|
||||||
|
|
||||||
exch_inst = ExchangeAccounts.instance().get_exchange_instrument(
|
|
||||||
exch_acct=exch_acct, instrument_id=instrument_id
|
|
||||||
)
|
|
||||||
assert exch_inst is not None, f"Unable to find Exchange instrument for {exch_acct}/{instrument_id}"
|
|
||||||
self.exch_inst_ = exch_inst
|
|
||||||
self.interval_sec_ = interval_sec
|
|
||||||
self.history_depth_sec_ = history_depth_sec
|
|
||||||
|
|
||||||
self.history_ = []
|
|
||||||
self.callbacks_ = []
|
|
||||||
self.timer_ = None
|
|
||||||
|
|
||||||
def add_callback(self, cb: MdSummaryCallbackT) -> None:
|
|
||||||
self.callbacks_.append(cb)
|
|
||||||
|
|
||||||
def __hash__(self):
|
|
||||||
return hash(
|
|
||||||
(
|
|
||||||
self.exch_acct_,
|
|
||||||
self.exch_inst_.instrument_id(),
|
|
||||||
self.interval_sec_,
|
|
||||||
self.history_depth_sec_,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
def rqst_data(self) -> Dict[str, Any]:
|
|
||||||
return {
|
|
||||||
"exch_acct": self.exch_acct_,
|
|
||||||
"instrument_id": self.exch_inst_.instrument_id(),
|
|
||||||
"interval_sec": self.interval_sec_,
|
|
||||||
"history_depth_sec": self.history_depth_sec_,
|
|
||||||
}
|
|
||||||
|
|
||||||
def get_history(self) -> List[MdSummary]:
|
|
||||||
response: requests.Response = self.sender_.send_post(
|
|
||||||
endpoint="md_summary", post_body=self.rqst_data()
|
|
||||||
)
|
|
||||||
if response.status_code not in (200, 201):
|
|
||||||
Log.error(
|
|
||||||
f"{self.fname()}: Received error: {response.status_code} - {response.text}"
|
|
||||||
)
|
|
||||||
return []
|
|
||||||
return MdSummary.from_REST_response(response=response)
|
|
||||||
|
|
||||||
def get_last(self) -> Optional[MdSummary]:
|
|
||||||
Log.info(f"{self.fname()}: for {self.exch_inst_.details_short()}")
|
|
||||||
rqst_data = self.rqst_data()
|
|
||||||
rqst_data["history_depth_sec"] = self.interval_sec_ * 2
|
|
||||||
response: requests.Response = self.sender_.send_post(
|
|
||||||
endpoint="md_summary", post_body=rqst_data
|
|
||||||
)
|
|
||||||
if response.status_code not in (200, 201):
|
|
||||||
Log.error(
|
|
||||||
f"{self.fname()}: Received error: {response.status_code} - {response.text}"
|
|
||||||
)
|
|
||||||
return None
|
|
||||||
res = MdSummary.from_REST_response(response=response)
|
|
||||||
Log.info(f"DEBUG *** {self.exch_inst_.base_asset_id_}: {res[-1].tstamp_}")
|
|
||||||
return None if len(res) == 0 else res[-1]
|
|
||||||
|
|
||||||
def is_empty(self) -> bool:
|
|
||||||
return len(self.history_) == 0
|
|
||||||
|
|
||||||
async def start(self) -> None:
|
|
||||||
if self.timer_:
|
|
||||||
Log.error(f"{self.fname()}: Timer is already started")
|
|
||||||
return
|
|
||||||
mdsum_hist = self.get_history()
|
|
||||||
self.history_ = [
|
|
||||||
mdsum.create_md_trades_aggregate(
|
|
||||||
exch_acct=self.exch_acct_,
|
|
||||||
exch_inst=self.exch_inst_,
|
|
||||||
interval_sec=self.interval_sec_,
|
|
||||||
)
|
|
||||||
for mdsum in mdsum_hist
|
|
||||||
]
|
|
||||||
await self.run_callbacks()
|
|
||||||
self.set_timer()
|
|
||||||
|
|
||||||
def set_timer(self):
|
|
||||||
if self.timer_:
|
|
||||||
self.timer_.cancel()
|
|
||||||
start_in = self.next_load_time() - current_seconds()
|
|
||||||
self.timer_ = Timer(
|
|
||||||
start_in_sec=start_in,
|
|
||||||
func=self._load_new,
|
|
||||||
)
|
|
||||||
Log.info(f"{self.fname()} Timer for {self.exch_inst_.details_short()} is set to run in {start_in} sec")
|
|
||||||
|
|
||||||
def next_load_time(self) -> NanosT:
|
|
||||||
ALLOW_LAG_SEC = 1
|
|
||||||
curr_sec = int(current_seconds())
|
|
||||||
return (curr_sec - curr_sec % self.interval_sec_) + self.interval_sec_ + ALLOW_LAG_SEC
|
|
||||||
|
|
||||||
async def _load_new(self) -> None:
|
|
||||||
|
|
||||||
last: Optional[MdSummary] = self.get_last()
|
|
||||||
if not last:
|
|
||||||
Log.warning(f"{self.fname()}: did not get last update")
|
|
||||||
elif not self.is_empty() and last.ts_ns_ <= self.history_[-1].aggr_time_ns_:
|
|
||||||
Log.info(
|
|
||||||
f"{self.fname()}: Received {last}. Already Have: {self.history_[-1]}"
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
self.history_.append(last.create_md_trades_aggregate(exch_acct=self.exch_acct_, exch_inst=self.exch_inst_, interval_sec=self.interval_sec_))
|
|
||||||
await self.run_callbacks()
|
|
||||||
self.set_timer()
|
|
||||||
|
|
||||||
async def run_callbacks(self) -> None:
|
|
||||||
[await cb(self.history_) for cb in self.callbacks_]
|
|
||||||
|
|
||||||
def stop(self) -> None:
|
|
||||||
if self.timer_:
|
|
||||||
self.timer_.cancel()
|
|
||||||
self.timer_ = None
|
|
||||||
|
|
||||||
|
|
||||||
class CvttRestMktDataClient(NamedObject):
|
|
||||||
config_: Config
|
|
||||||
sender_: RESTSender
|
|
||||||
collectors_: Set[MdSummaryCollector]
|
|
||||||
|
|
||||||
def __init__(self, config: Config) -> None:
|
|
||||||
self.config_ = config
|
|
||||||
base_url = self.config_.get_value("cvtt_base_url", default="")
|
|
||||||
assert base_url
|
|
||||||
self.sender_ = RESTSender(base_url=base_url)
|
|
||||||
self.collectors_ = set()
|
|
||||||
|
|
||||||
async def add_subscription(
|
|
||||||
self,
|
|
||||||
exch_acct: ExchangeAccountNameT,
|
|
||||||
instrument_id: InstrumentIdT,
|
|
||||||
interval_sec: IntervalSecT,
|
|
||||||
history_depth_sec: IntervalSecT,
|
|
||||||
callback: MdSummaryCallbackT,
|
|
||||||
) -> None:
|
|
||||||
mdsc = MdSummaryCollector(
|
|
||||||
sender=self.sender_,
|
|
||||||
exch_acct=exch_acct,
|
|
||||||
instrument_id=instrument_id,
|
|
||||||
interval_sec=interval_sec,
|
|
||||||
history_depth_sec=history_depth_sec,
|
|
||||||
)
|
|
||||||
mdsc.add_callback(callback)
|
|
||||||
self.collectors_.add(mdsc)
|
|
||||||
await mdsc.start()
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
config = Config(json_src={"cvtt_base_url": "http://cvtt-tester-01.cvtt.vpn:23456"})
|
|
||||||
# config = Config(json_src={"cvtt_base_url": "http://dev-server-02.cvtt.vpn:23456"})
|
|
||||||
|
|
||||||
async def _calback(history: List[MdTradesAggregate]) -> None:
|
|
||||||
Log.info(
|
|
||||||
f"MdSummary Hist Length is {len(history)}. Last summary: {history[-1] if len(history) > 0 else '[]'}"
|
|
||||||
)
|
|
||||||
|
|
||||||
async def __run() -> None:
|
|
||||||
Log.info("Starting...")
|
|
||||||
cvtt_client = CvttRestMktDataClient(config)
|
|
||||||
await cvtt_client.add_subscription(
|
|
||||||
exch_acct="COINBASE_AT",
|
|
||||||
instrument_id="PAIR-BTC-USD",
|
|
||||||
interval_sec=60,
|
|
||||||
history_depth_sec=24 * 3600,
|
|
||||||
callback=_calback,
|
|
||||||
)
|
|
||||||
while True:
|
|
||||||
await asyncio.sleep(5)
|
|
||||||
|
|
||||||
asyncio.run(__run())
|
|
||||||
pass
|
|
||||||
@ -1,60 +0,0 @@
|
|||||||
```python
|
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from typing import Dict
|
|
||||||
import time
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
|
|
||||||
class RESTSender(NamedObject):
|
|
||||||
session_: requests.Session
|
|
||||||
base_url_: str
|
|
||||||
|
|
||||||
def __init__(self, base_url: str) -> None:
|
|
||||||
self.base_url_ = base_url
|
|
||||||
self.session_ = requests.Session()
|
|
||||||
|
|
||||||
def is_ready(self) -> bool:
|
|
||||||
"""Checks if the server is up and responding"""
|
|
||||||
url = f"{self.base_url_}/ping"
|
|
||||||
try:
|
|
||||||
response = self.session_.get(url)
|
|
||||||
response.raise_for_status()
|
|
||||||
return True
|
|
||||||
except requests.exceptions.RequestException:
|
|
||||||
return False
|
|
||||||
|
|
||||||
def send_post(self, endpoint: str, post_body: Dict) -> requests.Response:
|
|
||||||
|
|
||||||
while not self.is_ready():
|
|
||||||
print("Waiting for FrontGateway to start...")
|
|
||||||
time.sleep(5)
|
|
||||||
|
|
||||||
url = f"{self.base_url_}/{endpoint}"
|
|
||||||
try:
|
|
||||||
return self.session_.request(
|
|
||||||
method="POST",
|
|
||||||
url=url,
|
|
||||||
json=post_body,
|
|
||||||
headers={"Content-Type": "application/json"},
|
|
||||||
)
|
|
||||||
except requests.exceptions.RequestException as excpt:
|
|
||||||
raise ConnectionError(
|
|
||||||
f"Failed to send status={excpt.response.status_code} {excpt.response.text}" # type: ignore
|
|
||||||
) from excpt
|
|
||||||
|
|
||||||
def send_get(self, endpoint: str) -> requests.Response:
|
|
||||||
while not self.is_ready():
|
|
||||||
print("Waiting for FrontGateway to start...")
|
|
||||||
time.sleep(5)
|
|
||||||
|
|
||||||
url = f"{self.base_url_}/{endpoint}"
|
|
||||||
try:
|
|
||||||
return self.session_.request(method="GET", url=url)
|
|
||||||
except requests.exceptions.RequestException as excpt:
|
|
||||||
raise ConnectionError(
|
|
||||||
f"Failed to send status={excpt.response.status_code} {excpt.response.text}" # type: ignore
|
|
||||||
) from excpt
|
|
||||||
```
|
|
||||||
@ -1,50 +0,0 @@
|
|||||||
from enum import Enum
|
|
||||||
|
|
||||||
import requests
|
|
||||||
|
|
||||||
# import aiohttp
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
from cvttpy_tools.logger import Log
|
|
||||||
from cvttpy_tools.web.rest_client import RESTSender
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.trading_instructions import TradingInstructions
|
|
||||||
# ---
|
|
||||||
from pairs_trading.apps.pair_trader import PairTrader
|
|
||||||
|
|
||||||
|
|
||||||
class TradingInstructionsSender(NamedObject):
|
|
||||||
config_: Config
|
|
||||||
sender_: RESTSender
|
|
||||||
pairs_trader_: PairTrader
|
|
||||||
|
|
||||||
class TradingInstType(str, Enum):
|
|
||||||
TARGET_POSITION = "TARGET_POSITION"
|
|
||||||
DIRECT_ORDER = "DIRECT_ORDER"
|
|
||||||
MARKET_MAKING = "MARKET_MAKING"
|
|
||||||
NONE = "NONE"
|
|
||||||
|
|
||||||
def __init__(self, config: Config, pairs_trader: PairTrader) -> None:
|
|
||||||
self.config_ = config
|
|
||||||
base_url = self.config_.get_value("cvtt_base_url", default="")
|
|
||||||
assert base_url
|
|
||||||
self.sender_ = RESTSender(base_url=base_url)
|
|
||||||
self.pairs_trader_ = pairs_trader
|
|
||||||
|
|
||||||
self.book_id_ = self.pairs_trader_.book_id_
|
|
||||||
assert self.book_id_, "book_id is required"
|
|
||||||
|
|
||||||
self.strategy_id_ = config.get_value("strategy_id", "")
|
|
||||||
assert self.strategy_id_, "strategy_id is required"
|
|
||||||
|
|
||||||
|
|
||||||
async def send_trading_instructions(self, ti: TradingInstructions) -> None:
|
|
||||||
Log.info(f"{self.fname()}: sending {ti=}")
|
|
||||||
response: requests.Response = self.sender_.send_post(
|
|
||||||
endpoint="trading_instructions", post_body=ti.to_dict()
|
|
||||||
)
|
|
||||||
if response.status_code not in (200, 201):
|
|
||||||
Log.error(
|
|
||||||
f"{self.fname()}: Received error: {response.status_code} - {response.text}"
|
|
||||||
)
|
|
||||||
|
|
||||||
@ -1,351 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from typing import Any, Dict, List, Optional
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.app import App
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
from cvttpy_tools.settings.cvtt_types import IntervalSecT
|
|
||||||
from cvttpy_tools.timeutils import NanosT, SecPerHour, current_nanoseconds, NanoPerSec, format_nanos_utc
|
|
||||||
from cvttpy_tools.logger import Log
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate
|
|
||||||
from cvttpy_trading.trading.trading_instructions import TradingInstructions
|
|
||||||
from cvttpy_trading.trading.trading_instructions import TargetPositionSignal
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.pt_strategy.model_data_policy import ModelDataPolicy
|
|
||||||
from pairs_trading.lib.pt_strategy.pt_model import Prediction
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import LiveTradingPair
|
|
||||||
from pairs_trading.apps.pair_trader import PairTrader
|
|
||||||
from pairs_trading.lib.pt_strategy.pt_market_data import LiveMarketData
|
|
||||||
|
|
||||||
|
|
||||||
class PtLiveStrategy(NamedObject):
|
|
||||||
config_: Config
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
|
|
||||||
interval_sec_: IntervalSecT
|
|
||||||
history_depth_sec_: IntervalSecT
|
|
||||||
open_threshold_: float
|
|
||||||
close_threshold_: float
|
|
||||||
|
|
||||||
trading_pair_: LiveTradingPair
|
|
||||||
model_data_policy_: ModelDataPolicy
|
|
||||||
pairs_trader_: PairTrader
|
|
||||||
|
|
||||||
# for presentation: history of prediction values and trading signals
|
|
||||||
predictions_df_: pd.DataFrame
|
|
||||||
trading_signals_df_: pd.DataFrame
|
|
||||||
allowed_md_lag_sec_: int
|
|
||||||
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: Config,
|
|
||||||
pairs_trader: PairTrader,
|
|
||||||
):
|
|
||||||
self.config_ = config
|
|
||||||
|
|
||||||
self.pairs_trader_ = pairs_trader
|
|
||||||
self.trading_pair_ = LiveTradingPair(
|
|
||||||
config=config,
|
|
||||||
instruments=self.pairs_trader_.instruments_,
|
|
||||||
)
|
|
||||||
self.model_data_policy_ = ModelDataPolicy.create(
|
|
||||||
self.config_,
|
|
||||||
is_real_time=True,
|
|
||||||
pair=self.trading_pair_,
|
|
||||||
)
|
|
||||||
assert (
|
|
||||||
self.model_data_policy_ is not None
|
|
||||||
), f"{self.fname()}: Unable to create ModelDataPolicy"
|
|
||||||
|
|
||||||
self.predictions_df_ = pd.DataFrame()
|
|
||||||
self.trading_signals_df_ = pd.DataFrame()
|
|
||||||
|
|
||||||
self.instruments_ = self.pairs_trader_.instruments_
|
|
||||||
|
|
||||||
App.instance().add_call(
|
|
||||||
stage=App.Stage.Config, func=self._on_config(), can_run_now=True
|
|
||||||
)
|
|
||||||
|
|
||||||
async def _on_config(self) -> None:
|
|
||||||
self.interval_sec_ = self.config_.get_value("interval_sec", 0)
|
|
||||||
assert self.interval_sec_ > 0, "interval_sec cannot be 0"
|
|
||||||
self.history_depth_sec_ = (
|
|
||||||
self.config_.get_value("history_depth_hours", 0) * SecPerHour
|
|
||||||
)
|
|
||||||
assert self.history_depth_sec_ > 0, "history_depth_hours cannot be 0"
|
|
||||||
|
|
||||||
self.allowed_md_lag_sec_ = self.config_.get_value("allowed_md_lag_sec", 3)
|
|
||||||
|
|
||||||
self.open_threshold_ = self.config_.get_value(
|
|
||||||
"model/disequilibrium/open_trshld", 0.0
|
|
||||||
)
|
|
||||||
self.close_threshold_ = self.config_.get_value(
|
|
||||||
"model/disequilibrium/close_trshld", 0.0
|
|
||||||
)
|
|
||||||
|
|
||||||
assert (
|
|
||||||
self.open_threshold_ > 0
|
|
||||||
), "disequilibrium/open_trshld must be greater than 0"
|
|
||||||
assert (
|
|
||||||
self.close_threshold_ > 0
|
|
||||||
), "disequilibrium/close_trshld must be greater than 0"
|
|
||||||
|
|
||||||
await self.pairs_trader_.subscribe_md()
|
|
||||||
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return f"{self.classname()}: trading_pair={self.trading_pair_}, mdp={self.model_data_policy_.__class__.__name__}, "
|
|
||||||
|
|
||||||
async def on_mkt_data_hist_snapshot(
|
|
||||||
self, hist_aggr: List[MdTradesAggregate]
|
|
||||||
) -> None:
|
|
||||||
if not self._is_md_actual(hist_aggr=hist_aggr):
|
|
||||||
return
|
|
||||||
|
|
||||||
market_data_df: pd.DataFrame = self._create_md_df(hist_aggr=hist_aggr)
|
|
||||||
if len(market_data_df) == 0:
|
|
||||||
Log.warning(f"{self.fname()} Unable to create market data df")
|
|
||||||
return
|
|
||||||
|
|
||||||
self.trading_pair_.market_data_ = market_data_df
|
|
||||||
|
|
||||||
Log.info(f"{self.fname()}: Running prediction for pair: {self.trading_pair_}")
|
|
||||||
prediction = self.trading_pair_.run(
|
|
||||||
market_data_df, self.model_data_policy_.advance()
|
|
||||||
)
|
|
||||||
self.predictions_df_ = pd.concat(
|
|
||||||
[self.predictions_df_, prediction.to_df()], ignore_index=True
|
|
||||||
)
|
|
||||||
|
|
||||||
trading_instructions: List[TradingInstructions] = (
|
|
||||||
self._create_trading_instructions(
|
|
||||||
prediction=prediction, last_row=market_data_df.iloc[-1]
|
|
||||||
)
|
|
||||||
)
|
|
||||||
if trading_instructions is not None:
|
|
||||||
await self._send_trading_instructions(trading_instructions)
|
|
||||||
|
|
||||||
def _is_md_actual(self, hist_aggr: List[MdTradesAggregate]) -> bool:
|
|
||||||
if len(hist_aggr) == 0:
|
|
||||||
Log.warning(f"{self.fname()} list of aggregates IS EMPTY")
|
|
||||||
return False
|
|
||||||
|
|
||||||
curr_ns = current_nanoseconds()
|
|
||||||
|
|
||||||
# MAYBE check market data length
|
|
||||||
|
|
||||||
# at 18:05:01 we should see data for 18:04:00
|
|
||||||
lag_sec = (curr_ns - hist_aggr[-1].aggr_time_ns_) / NanoPerSec - self.interval_sec()
|
|
||||||
if lag_sec > self.allowed_md_lag_sec_:
|
|
||||||
Log.warning(
|
|
||||||
f"{self.fname()} {hist_aggr[-1].exch_inst_.details_short()}"
|
|
||||||
f" Lagging {int(lag_sec)} > {self.allowed_md_lag_sec_} seconds:"
|
|
||||||
f"\n{len(hist_aggr)} records"
|
|
||||||
f"\n{hist_aggr[-1].exch_inst_.base_asset_id_}: {hist_aggr[-1].tstamp()}"
|
|
||||||
f"\n{hist_aggr[-2].exch_inst_.base_asset_id_}: {hist_aggr[-2].tstamp()}"
|
|
||||||
)
|
|
||||||
return False
|
|
||||||
else:
|
|
||||||
Log.info(
|
|
||||||
f"{self.fname()} {hist_aggr[-1].exch_inst_.details_short()}"
|
|
||||||
f" Lag {int(lag_sec)} <= {self.allowed_md_lag_sec_} seconds"
|
|
||||||
f"\n{len(hist_aggr)} records"
|
|
||||||
f"\n{hist_aggr[-1].exch_inst_.base_asset_id_}: {hist_aggr[-1].tstamp()}"
|
|
||||||
f"\n{hist_aggr[-2].exch_inst_.base_asset_id_}: {hist_aggr[-2].tstamp()}"
|
|
||||||
)
|
|
||||||
return True
|
|
||||||
|
|
||||||
def _create_md_df(self, hist_aggr: List[MdTradesAggregate]) -> pd.DataFrame:
|
|
||||||
"""
|
|
||||||
tstamp time_ns symbol open high low close volume num_trades vwap
|
|
||||||
0 2025-09-10 11:30:00 1757503800000000000 ADA-USDT 0.8750 0.8750 0.8743 0.8743 50710.500 0 0.874489
|
|
||||||
1 2025-09-10 11:30:00 1757503800000000000 SOL-USDT 219.9700 219.9800 219.6600 219.7000 2648.582 0 219.787847
|
|
||||||
2 2025-09-10 11:31:00 1757503860000000000 SOL-USDT 219.7000 219.7300 219.6200 219.6200 1134.886 0 219.663460
|
|
||||||
3 2025-09-10 11:31:00 1757503860000000000 ADA-USDT 0.8743 0.8745 0.8741 0.8741 10696.400 0 0.874234
|
|
||||||
4 2025-09-10 11:32:00 1757503920000000000 ADA-USDT 0.8742 0.8742 0.8739 0.8740 18546.900 0 0.874037
|
|
||||||
"""
|
|
||||||
|
|
||||||
rows: List[Dict[str, Any]] = []
|
|
||||||
|
|
||||||
for aggr in hist_aggr:
|
|
||||||
exch_inst = aggr.exch_inst_
|
|
||||||
|
|
||||||
rows.append(
|
|
||||||
{
|
|
||||||
# convert nanoseconds → tz-aware pandas timestamp
|
|
||||||
"tstamp": pd.to_datetime(aggr.aggr_time_ns_, unit="ns", utc=True),
|
|
||||||
"time_ns": aggr.aggr_time_ns_,
|
|
||||||
"symbol": exch_inst.instrument_id().split("-", 1)[1],
|
|
||||||
"exchange_id": exch_inst.exchange_id_,
|
|
||||||
"instrument_id": exch_inst.instrument_id(),
|
|
||||||
"open": exch_inst.get_price(aggr.open_),
|
|
||||||
"high": exch_inst.get_price(aggr.high_),
|
|
||||||
"low": exch_inst.get_price(aggr.low_),
|
|
||||||
"close": exch_inst.get_price(aggr.close_),
|
|
||||||
"volume": exch_inst.get_quantity(aggr.volume_),
|
|
||||||
"num_trades": aggr.num_trades_,
|
|
||||||
"vwap": exch_inst.get_price(aggr.vwap_),
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
source_md_df = pd.DataFrame(
|
|
||||||
rows,
|
|
||||||
columns=[
|
|
||||||
"tstamp",
|
|
||||||
"time_ns",
|
|
||||||
"symbol",
|
|
||||||
"exchange_id",
|
|
||||||
"instrument_id",
|
|
||||||
"open",
|
|
||||||
"high",
|
|
||||||
"low",
|
|
||||||
"close",
|
|
||||||
"volume",
|
|
||||||
"num_trades",
|
|
||||||
"vwap",
|
|
||||||
],
|
|
||||||
)
|
|
||||||
|
|
||||||
# automatic sorting
|
|
||||||
source_md_df.sort_values(
|
|
||||||
by=["time_ns", "symbol"],
|
|
||||||
ascending=True,
|
|
||||||
inplace=True,
|
|
||||||
kind="mergesort", # stable sort
|
|
||||||
)
|
|
||||||
|
|
||||||
source_md_df.reset_index(drop=True, inplace=True)
|
|
||||||
|
|
||||||
pt_mkt_data = LiveMarketData(config=self.config_, instruments=self.instruments_)
|
|
||||||
pt_mkt_data.origin_mkt_data_df_ = source_md_df
|
|
||||||
pt_mkt_data.set_market_data()
|
|
||||||
|
|
||||||
return pt_mkt_data.market_data_df_
|
|
||||||
|
|
||||||
def interval_sec(self) -> IntervalSecT:
|
|
||||||
return self.interval_sec_
|
|
||||||
|
|
||||||
def history_depth_sec(self) -> IntervalSecT:
|
|
||||||
return self.history_depth_sec_
|
|
||||||
|
|
||||||
async def _send_trading_instructions(
|
|
||||||
self, trading_instructions: List[TradingInstructions]
|
|
||||||
) -> None:
|
|
||||||
for ti in trading_instructions:
|
|
||||||
Log.info(f"{self.fname()} Sending trading instructions {ti}")
|
|
||||||
await self.pairs_trader_.ti_sender_.send_trading_instructions(ti)
|
|
||||||
|
|
||||||
def _create_trading_instructions(
|
|
||||||
self, prediction: Prediction, last_row: pd.Series
|
|
||||||
) -> List[TradingInstructions]:
|
|
||||||
trd_instructions: List[TradingInstructions] = []
|
|
||||||
pair = self.trading_pair_
|
|
||||||
|
|
||||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
||||||
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
|
|
||||||
|
|
||||||
if abs_scaled_disequilibrium >= self.open_threshold_:
|
|
||||||
trd_instructions = self._create_open_trade_instructions(
|
|
||||||
pair, row=last_row, prediction=prediction
|
|
||||||
)
|
|
||||||
|
|
||||||
elif abs_scaled_disequilibrium <= self.close_threshold_ or pair.to_stop_close_conditions(predicted_row=last_row):
|
|
||||||
trd_instructions = self._create_close_trade_instructions(
|
|
||||||
pair, row=last_row # , prediction=prediction
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
return trd_instructions
|
|
||||||
|
|
||||||
def _strength(self, scaled_disequilibrium: float) -> float:
|
|
||||||
# TODO PtLiveStrategy._strength()
|
|
||||||
return 1.0
|
|
||||||
|
|
||||||
def _create_open_trade_instructions(
|
|
||||||
self, pair: LiveTradingPair, row: pd.Series, prediction: Prediction
|
|
||||||
) -> List[TradingInstructions]:
|
|
||||||
diseqlbrm = prediction.disequilibrium_
|
|
||||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
||||||
if diseqlbrm > 0:
|
|
||||||
side_a = -1
|
|
||||||
side_b = 1
|
|
||||||
else:
|
|
||||||
side_a = 1
|
|
||||||
side_b = -1
|
|
||||||
|
|
||||||
ti_a: Optional[TradingInstructions] = TradingInstructions(
|
|
||||||
book=self.pairs_trader_.book_id_,
|
|
||||||
strategy_id=self.__class__.__name__,
|
|
||||||
ti_type=TradingInstructions.Type.TARGET_POSITION,
|
|
||||||
issued_ts_ns=current_nanoseconds(),
|
|
||||||
data=TargetPositionSignal(
|
|
||||||
strength=side_a * self._strength(scaled_disequilibrium),
|
|
||||||
exchange_id=pair.get_instrument_a().exchange_id_,
|
|
||||||
base_asset=pair.get_instrument_a().base_asset_id_,
|
|
||||||
quote_asset=pair.get_instrument_a().quote_asset_id_,
|
|
||||||
user_data={}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
if not ti_a:
|
|
||||||
return []
|
|
||||||
ti_b: Optional[TradingInstructions] = TradingInstructions(
|
|
||||||
book=self.pairs_trader_.book_id_,
|
|
||||||
strategy_id=self.__class__.__name__,
|
|
||||||
ti_type=TradingInstructions.Type.TARGET_POSITION,
|
|
||||||
issued_ts_ns=current_nanoseconds(),
|
|
||||||
data=TargetPositionSignal(
|
|
||||||
strength=side_b * self._strength(scaled_disequilibrium),
|
|
||||||
exchange_id=pair.get_instrument_b().exchange_id_,
|
|
||||||
base_asset=pair.get_instrument_b().base_asset_id_,
|
|
||||||
quote_asset=pair.get_instrument_b().quote_asset_id_,
|
|
||||||
user_data={}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
if not ti_b:
|
|
||||||
return []
|
|
||||||
return [ti_a, ti_b]
|
|
||||||
|
|
||||||
|
|
||||||
def _create_close_trade_instructions(
|
|
||||||
self, pair: LiveTradingPair, row: pd.Series
|
|
||||||
) -> List[TradingInstructions]:
|
|
||||||
ti_a: Optional[TradingInstructions] = TradingInstructions(
|
|
||||||
book=self.pairs_trader_.book_id_,
|
|
||||||
strategy_id=self.__class__.__name__,
|
|
||||||
ti_type=TradingInstructions.Type.TARGET_POSITION,
|
|
||||||
issued_ts_ns=current_nanoseconds(),
|
|
||||||
data=TargetPositionSignal(
|
|
||||||
strength=0,
|
|
||||||
exchange_id=pair.get_instrument_a().exchange_id_,
|
|
||||||
base_asset=pair.get_instrument_a().base_asset_id_,
|
|
||||||
quote_asset=pair.get_instrument_a().quote_asset_id_,
|
|
||||||
user_data={}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
if not ti_a:
|
|
||||||
return []
|
|
||||||
ti_b: Optional[TradingInstructions] = TradingInstructions(
|
|
||||||
book=self.pairs_trader_.book_id_,
|
|
||||||
strategy_id=self.__class__.__name__,
|
|
||||||
ti_type=TradingInstructions.Type.TARGET_POSITION,
|
|
||||||
issued_ts_ns=current_nanoseconds(),
|
|
||||||
data=TargetPositionSignal(
|
|
||||||
strength=0,
|
|
||||||
exchange_id=pair.get_instrument_b().exchange_id_,
|
|
||||||
base_asset=pair.get_instrument_b().base_asset_id_,
|
|
||||||
quote_asset=pair.get_instrument_b().quote_asset_id_,
|
|
||||||
user_data={}
|
|
||||||
),
|
|
||||||
)
|
|
||||||
if not ti_b:
|
|
||||||
return []
|
|
||||||
return [ti_a, ti_b]
|
|
||||||
@ -1,253 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import copy
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from typing import Any, Dict, Optional, cast
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class DataWindowParams:
|
|
||||||
training_size_: int
|
|
||||||
training_start_index_: int
|
|
||||||
|
|
||||||
|
|
||||||
class ModelDataPolicy(ABC):
|
|
||||||
config_: Config
|
|
||||||
current_data_params_: DataWindowParams
|
|
||||||
count_: int
|
|
||||||
is_real_time_: bool
|
|
||||||
|
|
||||||
def __init__(self, config: Config, *args: Any, **kwargs: Any):
|
|
||||||
self.config_ = config
|
|
||||||
self.current_data_params_ = DataWindowParams(
|
|
||||||
training_size_=config.get_value("model/training_size", 120),
|
|
||||||
training_start_index_=0,
|
|
||||||
)
|
|
||||||
self.count_ = 0
|
|
||||||
self.is_real_time_ = kwargs.get("is_real_time", False)
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def advance(self, mkt_data_df: Optional[pd.DataFrame] = None) -> DataWindowParams:
|
|
||||||
self.count_ += 1
|
|
||||||
if not self.is_real_time_:
|
|
||||||
print(self.count_, end="\r")
|
|
||||||
return self.current_data_params_
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def create(config: Config, *args: Any, **kwargs: Any) -> ModelDataPolicy:
|
|
||||||
import importlib
|
|
||||||
|
|
||||||
model_data_policy_class_name = config.get_value("model/model_data_policy_class", None)
|
|
||||||
assert model_data_policy_class_name is not None
|
|
||||||
module_name, class_name = model_data_policy_class_name.rsplit(".", 1)
|
|
||||||
module = importlib.import_module(module_name)
|
|
||||||
model_training_data_policy_object = getattr(module, class_name)(
|
|
||||||
config=config, *args, **kwargs
|
|
||||||
)
|
|
||||||
return cast(ModelDataPolicy, model_training_data_policy_object)
|
|
||||||
|
|
||||||
|
|
||||||
class RollingWindowDataPolicy(ModelDataPolicy):
|
|
||||||
def __init__(self, config: Config, *args: Any, **kwargs: Any):
|
|
||||||
super().__init__(config, *args, **kwargs)
|
|
||||||
self.count_ = 1
|
|
||||||
|
|
||||||
def advance(self, mkt_data_df: Optional[pd.DataFrame] = None) -> DataWindowParams:
|
|
||||||
super().advance(mkt_data_df)
|
|
||||||
if self.is_real_time_:
|
|
||||||
self.current_data_params_.training_start_index_ = 0
|
|
||||||
if mkt_data_df and len(mkt_data_df) > self.curren_data_params_.training_size_:
|
|
||||||
self.current_data_params_.training_start_index_ = -self.curren_data_params_.training_size_
|
|
||||||
else:
|
|
||||||
self.current_data_params_.training_start_index_ += 1
|
|
||||||
return self.current_data_params_
|
|
||||||
|
|
||||||
|
|
||||||
class OptimizedWndDataPolicy(ModelDataPolicy, ABC):
|
|
||||||
mkt_data_df_: pd.DataFrame
|
|
||||||
pair_: TradingPair # type: ignore
|
|
||||||
min_training_size_: int
|
|
||||||
max_training_size_: int
|
|
||||||
end_index_: int
|
|
||||||
prices_a_: np.ndarray
|
|
||||||
prices_b_: np.ndarray
|
|
||||||
|
|
||||||
def __init__(self, config: Config, *args: Any, **kwargs: Any):
|
|
||||||
super().__init__(config, *args, **kwargs)
|
|
||||||
assert (
|
|
||||||
kwargs.get("pair") is not None
|
|
||||||
), "pair must be provided"
|
|
||||||
assert (config.key_exists("model/max_training_size") and config.key_exists("model/min_training_size")
|
|
||||||
), "min_training_size and max_training_size must be provided"
|
|
||||||
self.min_training_size_ = cast(int, config.get_value("model/min_training_size"))
|
|
||||||
self.max_training_size_ = cast(int, config.get_value("model/max_training_size"))
|
|
||||||
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import TradingPair
|
|
||||||
self.pair_ = cast(TradingPair, kwargs.get("pair"))
|
|
||||||
|
|
||||||
if "mkt_data" in kwargs:
|
|
||||||
self.mkt_data_df_ = cast(pd.DataFrame, kwargs.get("mkt_data"))
|
|
||||||
col_a, col_b = self.pair_.colnames()
|
|
||||||
self.prices_a_ = np.array(self.mkt_data_df_[col_a])
|
|
||||||
self.prices_b_ = np.array(self.mkt_data_df_[col_b])
|
|
||||||
assert self.min_training_size_ < self.max_training_size_
|
|
||||||
|
|
||||||
|
|
||||||
def advance(self, mkt_data_df: Optional[pd.DataFrame] = None) -> DataWindowParams:
|
|
||||||
super().advance(mkt_data_df)
|
|
||||||
if mkt_data_df is not None:
|
|
||||||
self.mkt_data_df_ = mkt_data_df
|
|
||||||
|
|
||||||
if self.is_real_time_:
|
|
||||||
self.end_index_ = len(self.mkt_data_df_) - 1
|
|
||||||
else:
|
|
||||||
self.end_index_ = self.current_data_params_.training_start_index_ + self.max_training_size_
|
|
||||||
if self.end_index_ > len(self.mkt_data_df_) - 1:
|
|
||||||
self.end_index_ = len(self.mkt_data_df_) - 1
|
|
||||||
self.current_data_params_.training_start_index_ = self.end_index_ - self.max_training_size_
|
|
||||||
if self.current_data_params_.training_start_index_ < 0:
|
|
||||||
self.current_data_params_.training_start_index_ = 0
|
|
||||||
|
|
||||||
col_a, col_b = self.pair_.colnames()
|
|
||||||
self.prices_a_ = np.array(self.mkt_data_df_[col_a])
|
|
||||||
self.prices_b_ = np.array(self.mkt_data_df_[col_b])
|
|
||||||
|
|
||||||
self.current_data_params_ = self.optimize_window_size()
|
|
||||||
return self.current_data_params_
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def optimize_window_size(self) -> DataWindowParams:
|
|
||||||
...
|
|
||||||
|
|
||||||
class EGOptimizedWndDataPolicy(OptimizedWndDataPolicy):
|
|
||||||
'''
|
|
||||||
# Engle-Granger cointegration test
|
|
||||||
*** VERY SLOW ***
|
|
||||||
'''
|
|
||||||
def __init__(self, config: Config, *args: Any, **kwargs: Any):
|
|
||||||
super().__init__(config, *args, **kwargs)
|
|
||||||
|
|
||||||
def optimize_window_size(self) -> DataWindowParams:
|
|
||||||
# Run Engle-Granger cointegration test
|
|
||||||
last_pvalue = 1.0
|
|
||||||
result = copy.copy(self.current_data_params_)
|
|
||||||
for trn_size in range(self.min_training_size_, self.max_training_size_):
|
|
||||||
if self.end_index_ - trn_size < 0:
|
|
||||||
break
|
|
||||||
|
|
||||||
from statsmodels.tsa.stattools import coint # type: ignore
|
|
||||||
|
|
||||||
start_index = self.end_index_ - trn_size
|
|
||||||
series_a = self.prices_a_[start_index : self.end_index_]
|
|
||||||
series_b = self.prices_b_[start_index : self.end_index_]
|
|
||||||
eg_pvalue = float(coint(series_a, series_b)[1])
|
|
||||||
if eg_pvalue < last_pvalue:
|
|
||||||
last_pvalue = eg_pvalue
|
|
||||||
result.training_size_ = trn_size
|
|
||||||
result.training_start_index_ = start_index
|
|
||||||
|
|
||||||
# print(
|
|
||||||
# f"*** DEBUG *** end_index={self.end_index_}, best_trn_size={self.current_data_params_.training_size}, {last_pvalue=}"
|
|
||||||
# )
|
|
||||||
return result
|
|
||||||
|
|
||||||
class ADFOptimizedWndDataPolicy(OptimizedWndDataPolicy):
|
|
||||||
# Augmented Dickey-Fuller test
|
|
||||||
def __init__(self, config: Config, *args: Any, **kwargs: Any):
|
|
||||||
super().__init__(config, *args, **kwargs)
|
|
||||||
|
|
||||||
def optimize_window_size(self) -> DataWindowParams:
|
|
||||||
from statsmodels.regression.linear_model import OLS
|
|
||||||
from statsmodels.tools.tools import add_constant
|
|
||||||
from statsmodels.tsa.stattools import adfuller
|
|
||||||
|
|
||||||
last_pvalue = 1.0
|
|
||||||
result = copy.copy(self.current_data_params_)
|
|
||||||
for trn_size in range(self.min_training_size_, self.max_training_size_):
|
|
||||||
if self.end_index_ - trn_size < 0:
|
|
||||||
break
|
|
||||||
start_index = self.end_index_ - trn_size
|
|
||||||
y = self.prices_a_[start_index : self.end_index_]
|
|
||||||
x = self.prices_b_[start_index : self.end_index_]
|
|
||||||
|
|
||||||
# Add constant to x for intercept
|
|
||||||
x_with_const = add_constant(x)
|
|
||||||
|
|
||||||
# OLS regression: y = a + b*x + e
|
|
||||||
model = OLS(y, x_with_const).fit()
|
|
||||||
residuals = y - model.predict(x_with_const)
|
|
||||||
|
|
||||||
# ADF test on residuals
|
|
||||||
try:
|
|
||||||
adf_result = adfuller(residuals, maxlag=1, regression="c")
|
|
||||||
adf_pvalue = float(adf_result[1])
|
|
||||||
except Exception as e:
|
|
||||||
# Handle edge cases with exception (e.g., constant series, etc.)
|
|
||||||
adf_pvalue = 1.0
|
|
||||||
|
|
||||||
if adf_pvalue < last_pvalue:
|
|
||||||
last_pvalue = adf_pvalue
|
|
||||||
result.training_size_ = trn_size
|
|
||||||
result.training_start_index_ = start_index
|
|
||||||
|
|
||||||
# print(
|
|
||||||
# f"*** DEBUG *** end_index={self.end_index_},"
|
|
||||||
# f" best_trn_size={self.current_data_params_.training_size},"
|
|
||||||
# f" {last_pvalue=}"
|
|
||||||
# )
|
|
||||||
return result
|
|
||||||
|
|
||||||
class JohansenOptdWndDataPolicy(OptimizedWndDataPolicy):
|
|
||||||
# Johansen test
|
|
||||||
def __init__(self, config: Config, *args: Any, **kwargs: Any):
|
|
||||||
super().__init__(config, *args, **kwargs)
|
|
||||||
|
|
||||||
def optimize_window_size(self) -> DataWindowParams:
|
|
||||||
from statsmodels.tsa.vector_ar.vecm import coint_johansen
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
best_stat = -np.inf
|
|
||||||
best_trn_size = 0
|
|
||||||
best_start_index = -1
|
|
||||||
|
|
||||||
result = copy.copy(self.current_data_params_)
|
|
||||||
for trn_size in range(self.min_training_size_, self.max_training_size_):
|
|
||||||
if self.end_index_ - trn_size < 0:
|
|
||||||
break
|
|
||||||
start_index = self.end_index_ - trn_size
|
|
||||||
series_a = self.prices_a_[start_index:self.end_index_]
|
|
||||||
series_b = self.prices_b_[start_index:self.end_index_]
|
|
||||||
|
|
||||||
# Combine into 2D matrix for Johansen test
|
|
||||||
try:
|
|
||||||
data = np.column_stack([series_a, series_b])
|
|
||||||
|
|
||||||
# Johansen test: det_order=0 (no deterministic trend), k_ar_diff=1 (lag)
|
|
||||||
res = coint_johansen(data, det_order=0, k_ar_diff=1)
|
|
||||||
|
|
||||||
# Trace statistic for cointegration rank 1
|
|
||||||
trace_stat = res.lr1[0] # test stat for rank=0 vs >=1
|
|
||||||
critical_value = res.cvt[0, 1] # 5% critical value
|
|
||||||
|
|
||||||
if trace_stat > best_stat:
|
|
||||||
best_stat = trace_stat
|
|
||||||
best_trn_size = trn_size
|
|
||||||
best_start_index = start_index
|
|
||||||
except Exception:
|
|
||||||
continue
|
|
||||||
|
|
||||||
if best_trn_size > 0:
|
|
||||||
result.training_size_ = best_trn_size
|
|
||||||
result.training_start_index_ = best_start_index
|
|
||||||
else:
|
|
||||||
print("*** WARNING: No valid cointegration window found.")
|
|
||||||
|
|
||||||
# print(
|
|
||||||
# f"*** DEBUG *** end_index={self.end_index_}, best_trn_size={best_trn_size}, trace_stat={best_stat}"
|
|
||||||
# )
|
|
||||||
return result
|
|
||||||
@ -1,104 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
from typing import Optional
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import statsmodels.api as sm
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
from pairs_trading.lib.pt_strategy.pt_model import PairsTradingModel, Prediction
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import TradingPair
|
|
||||||
|
|
||||||
|
|
||||||
class OLSModel(PairsTradingModel):
|
|
||||||
model_: Optional[sm.regression.linear_model.RegressionResultsWrapper]
|
|
||||||
pair_predict_result_: Optional[pd.DataFrame]
|
|
||||||
zscore_df_: Optional[pd.DataFrame]
|
|
||||||
|
|
||||||
def predict(self, pair: TradingPair) -> Prediction:
|
|
||||||
self.training_df_ = pair.market_data_.copy()
|
|
||||||
|
|
||||||
zscore_df = self._fit_zscore(pair=pair)
|
|
||||||
|
|
||||||
assert zscore_df is not None
|
|
||||||
# zscore is both disequilibrium and scaled_disequilibrium
|
|
||||||
self.training_df_["dis-equilibrium"] = zscore_df[0]
|
|
||||||
self.training_df_["scaled_dis-equilibrium"] = zscore_df[0]
|
|
||||||
|
|
||||||
assert zscore_df is not None
|
|
||||||
return Prediction(
|
|
||||||
tstamp=pair.market_data_.iloc[-1]["tstamp"],
|
|
||||||
disequilibrium=self.training_df_["dis-equilibrium"].iloc[-1],
|
|
||||||
scaled_disequilibrium=self.training_df_["scaled_dis-equilibrium"].iloc[-1],
|
|
||||||
)
|
|
||||||
|
|
||||||
def _fit_zscore(self, pair: TradingPair) -> pd.DataFrame:
|
|
||||||
assert self.training_df_ is not None
|
|
||||||
symbol_a_px_series = self.training_df_[pair.colnames()].iloc[:, 0]
|
|
||||||
symbol_b_px_series = self.training_df_[pair.colnames()].iloc[:, 1]
|
|
||||||
|
|
||||||
symbol_a_px_series, symbol_b_px_series = symbol_a_px_series.align(
|
|
||||||
symbol_b_px_series, axis=0
|
|
||||||
)
|
|
||||||
|
|
||||||
X = sm.add_constant(symbol_b_px_series)
|
|
||||||
self.model_ = sm.OLS(symbol_a_px_series, X).fit()
|
|
||||||
assert self.model_ is not None
|
|
||||||
|
|
||||||
# alternate way would be to use models residuals (will give identical results)
|
|
||||||
# alpha, beta = self.model_.params
|
|
||||||
# spread = symbol_a_px_series - (alpha + beta * symbol_b_px_series)
|
|
||||||
spread = self.model_.resid
|
|
||||||
return pd.DataFrame((spread - spread.mean()) / spread.std())
|
|
||||||
|
|
||||||
|
|
||||||
class VECMModel(PairsTradingModel):
|
|
||||||
def predict(self, pair: TradingPair) -> Prediction:
|
|
||||||
self.training_df_ = pair.market_data_.copy()
|
|
||||||
assert self.training_df_ is not None
|
|
||||||
vecm_fit = self._fit_VECM(pair=pair)
|
|
||||||
|
|
||||||
assert vecm_fit is not None
|
|
||||||
predicted_prices = vecm_fit.predict(steps=1)
|
|
||||||
|
|
||||||
# Convert prediction to a DataFrame for readability
|
|
||||||
predicted_df = pd.DataFrame(
|
|
||||||
predicted_prices, columns=pd.Index(pair.colnames()), dtype=float
|
|
||||||
)
|
|
||||||
|
|
||||||
disequilibrium = (predicted_df[pair.colnames()] @ vecm_fit.beta)[0][0]
|
|
||||||
scaled_disequilibrium = (disequilibrium - self.training_mu_) / self.training_std_
|
|
||||||
return Prediction(
|
|
||||||
tstamp=pair.market_data_.iloc[-1]["tstamp"],
|
|
||||||
disequilibrium=disequilibrium,
|
|
||||||
scaled_disequilibrium=scaled_disequilibrium,
|
|
||||||
)
|
|
||||||
|
|
||||||
def _fit_VECM(self, pair: TradingPair) -> VECMResults: # type: ignore
|
|
||||||
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
|
||||||
|
|
||||||
vecm_df = self.training_df_[pair.colnames()].reset_index(drop=True)
|
|
||||||
vecm_model = VECM(vecm_df, coint_rank=1)
|
|
||||||
vecm_fit = vecm_model.fit()
|
|
||||||
|
|
||||||
assert vecm_fit is not None
|
|
||||||
|
|
||||||
# Check if the model converged properly
|
|
||||||
if not hasattr(vecm_fit, "beta") or vecm_fit.beta is None:
|
|
||||||
print(f"{self}: VECM model failed to converge properly")
|
|
||||||
|
|
||||||
diseq_series = self.training_df_[pair.colnames()] @ vecm_fit.beta
|
|
||||||
# print(diseq_series.shape)
|
|
||||||
self.training_mu_ = float(diseq_series[0].mean())
|
|
||||||
self.training_std_ = float(diseq_series[0].std())
|
|
||||||
|
|
||||||
self.training_df_["dis-equilibrium"] = (
|
|
||||||
self.training_df_[pair.colnames()] @ vecm_fit.beta
|
|
||||||
)
|
|
||||||
# Normalize the dis-equilibrium
|
|
||||||
self.training_df_["scaled_dis-equilibrium"] = (
|
|
||||||
diseq_series - self.training_mu_
|
|
||||||
) / self.training_std_
|
|
||||||
|
|
||||||
return vecm_fit
|
|
||||||
|
|
||||||
@ -1,28 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from typing import Any, Dict
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
|
|
||||||
class Prediction:
|
|
||||||
tstamp_: pd.Timestamp
|
|
||||||
disequilibrium_: float
|
|
||||||
scaled_disequilibrium_: float
|
|
||||||
|
|
||||||
def __init__(self, tstamp: pd.Timestamp, disequilibrium: float, scaled_disequilibrium: float):
|
|
||||||
self.tstamp_ = tstamp
|
|
||||||
self.disequilibrium_ = disequilibrium
|
|
||||||
self.scaled_disequilibrium_ = scaled_disequilibrium
|
|
||||||
|
|
||||||
def to_dict(self) -> Dict[str, Any]:
|
|
||||||
return {
|
|
||||||
"tstamp": self.tstamp_,
|
|
||||||
"disequilibrium": self.disequilibrium_,
|
|
||||||
"signed_scaled_disequilibrium": self.scaled_disequilibrium_,
|
|
||||||
"scaled_disequilibrium": abs(self.scaled_disequilibrium_),
|
|
||||||
# "pair": self.pair_,
|
|
||||||
}
|
|
||||||
def to_df(self) -> pd.DataFrame:
|
|
||||||
return pd.DataFrame([self.to_dict()])
|
|
||||||
|
|
||||||
@ -1,223 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from typing import Any, Dict, List, Optional
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
from cvttpy_tools.settings.cvtt_types import JsonDictT
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.tools.data_loader import load_market_data
|
|
||||||
|
|
||||||
|
|
||||||
class PtMarketData(NamedObject, ABC):
|
|
||||||
config_: Config
|
|
||||||
origin_mkt_data_df_: pd.DataFrame
|
|
||||||
market_data_df_: pd.DataFrame
|
|
||||||
stat_model_price_: str
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
symbol_a_: str
|
|
||||||
symbol_b_: str
|
|
||||||
|
|
||||||
def __init__(self, config: Config, instruments: List[ExchangeInstrument]):
|
|
||||||
self.config_ = config
|
|
||||||
self.origin_mkt_data_df_ = pd.DataFrame()
|
|
||||||
self.market_data_df_ = pd.DataFrame()
|
|
||||||
self.stat_model_price_ = self.config_.get_value("model/stat_model_price")
|
|
||||||
|
|
||||||
self.instruments_ = instruments
|
|
||||||
assert len(self.instruments_) > 0, "No instruments found in config"
|
|
||||||
self.symbol_a_ = self.instruments_[0].instrument_id().split("-", 1)[1]
|
|
||||||
self.symbol_b_ = self.instruments_[1].instrument_id().split("-", 1)[1]
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def md_columns(self) -> List[str]: ...
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def rename_columns(self, symbol_df: pd.DataFrame) -> pd.DataFrame: ...
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def tranform_df_target_colnames(self) -> List[str]: ...
|
|
||||||
|
|
||||||
def set_market_data(self) -> None:
|
|
||||||
self.market_data_df_ = pd.DataFrame(
|
|
||||||
self._transform_dataframe(self.origin_mkt_data_df_)[
|
|
||||||
["tstamp"] + self.tranform_df_target_colnames()
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
self.market_data_df_ = self.market_data_df_.dropna().reset_index(drop=True)
|
|
||||||
self.market_data_df_["tstamp"] = pd.to_datetime(self.market_data_df_["tstamp"])
|
|
||||||
self.market_data_df_ = self.market_data_df_.sort_values("tstamp")
|
|
||||||
|
|
||||||
def colnames(self) -> List[str]:
|
|
||||||
return [
|
|
||||||
f"{self.stat_model_price_}_{self.symbol_a_}",
|
|
||||||
f"{self.stat_model_price_}_{self.symbol_b_}",
|
|
||||||
]
|
|
||||||
|
|
||||||
def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
|
||||||
df_selected: pd.DataFrame = pd.DataFrame(df[self.md_columns()])
|
|
||||||
result_df = (
|
|
||||||
pd.DataFrame(df_selected["tstamp"]).drop_duplicates().reset_index(drop=True)
|
|
||||||
)
|
|
||||||
|
|
||||||
# For each unique symbol, add a corresponding stat_model_price column
|
|
||||||
symbols = df_selected["symbol"].unique()
|
|
||||||
|
|
||||||
for symbol in symbols:
|
|
||||||
# Filter rows for this symbol
|
|
||||||
df_symbol = df_selected[df_selected["symbol"] == symbol].reset_index(
|
|
||||||
drop=True
|
|
||||||
)
|
|
||||||
# Create column name like "close-COIN"
|
|
||||||
temp_df: pd.DataFrame = self.rename_columns(df_symbol)
|
|
||||||
# Join with our result dataframe
|
|
||||||
result_df = pd.merge(result_df, temp_df, on="tstamp", how="left")
|
|
||||||
result_df = result_df.reset_index(
|
|
||||||
drop=True
|
|
||||||
) # do not dropna() since irrelevant symbol would affect dataset
|
|
||||||
|
|
||||||
return result_df.dropna()
|
|
||||||
|
|
||||||
class ResearchMarketData(PtMarketData):
|
|
||||||
current_index_: int
|
|
||||||
is_execution_price_: bool
|
|
||||||
|
|
||||||
def __init__(self, config: Config, instruments: List[ExchangeInstrument]):
|
|
||||||
super().__init__(config, instruments)
|
|
||||||
self.current_index_ = 0
|
|
||||||
self.is_execution_price_ = self.config_.key_exists("execution_price")
|
|
||||||
if self.is_execution_price_:
|
|
||||||
self.execution_price_column_ = self.config_.get_value("execution_price")["column"]
|
|
||||||
self.execution_price_shift_ = self.config_.get_value("execution_price")["shift"]
|
|
||||||
else:
|
|
||||||
self.execution_price_column_ = None
|
|
||||||
self.execution_price_shift_ = 0
|
|
||||||
|
|
||||||
def has_next(self) -> bool:
|
|
||||||
return self.current_index_ < len(self.market_data_df_)
|
|
||||||
|
|
||||||
def get_next(self) -> pd.Series:
|
|
||||||
result = self.market_data_df_.iloc[self.current_index_]
|
|
||||||
self.current_index_ += 1
|
|
||||||
return result
|
|
||||||
|
|
||||||
def load(self) -> None:
|
|
||||||
datafiles: List[str] = self.config_.get_value("datafiles", [])
|
|
||||||
assert len(datafiles) > 0, "No datafiles found in config"
|
|
||||||
|
|
||||||
extra_minutes: int = self.execution_price_shift_
|
|
||||||
|
|
||||||
for datafile in datafiles:
|
|
||||||
md_df = load_market_data(
|
|
||||||
datafile=datafile,
|
|
||||||
instruments=self.instruments_,
|
|
||||||
db_table_name=self.config_.get_value("market_data_loading")[
|
|
||||||
self.instruments_[0].user_data_.get("instrument_type", "?instrument_type?")
|
|
||||||
]["db_table_name"],
|
|
||||||
trading_hours=self.config_.get_value("trading_hours"),
|
|
||||||
extra_minutes=extra_minutes,
|
|
||||||
)
|
|
||||||
self.origin_mkt_data_df_ = pd.concat([self.origin_mkt_data_df_, md_df])
|
|
||||||
|
|
||||||
self.origin_mkt_data_df_ = self.origin_mkt_data_df_.sort_values(by="tstamp")
|
|
||||||
self.origin_mkt_data_df_ = self.origin_mkt_data_df_.dropna().reset_index(
|
|
||||||
drop=True
|
|
||||||
)
|
|
||||||
self.set_market_data()
|
|
||||||
self._set_execution_price_data()
|
|
||||||
|
|
||||||
def _set_execution_price_data(self) -> None:
|
|
||||||
if not self.is_execution_price_:
|
|
||||||
return
|
|
||||||
if not self.config_.key_exists("execution_price"):
|
|
||||||
self.market_data_df_[f"exec_price_{self.symbol_a_}"] = self.market_data_df_[
|
|
||||||
f"{self.stat_model_price_}_{self.symbol_a_}"
|
|
||||||
]
|
|
||||||
self.market_data_df_[f"exec_price_{self.symbol_b_}"] = self.market_data_df_[
|
|
||||||
f"{self.stat_model_price_}_{self.symbol_b_}"
|
|
||||||
]
|
|
||||||
return
|
|
||||||
execution_price_column = self.config_.get_value("execution_price")["column"]
|
|
||||||
execution_price_shift = self.config_.get_value("execution_price")["shift"]
|
|
||||||
self.market_data_df_[f"exec_price_{self.symbol_a_}"] = self.market_data_df_[
|
|
||||||
f"{execution_price_column}_{self.symbol_a_}"
|
|
||||||
].shift(-execution_price_shift)
|
|
||||||
self.market_data_df_[f"exec_price_{self.symbol_b_}"] = self.market_data_df_[
|
|
||||||
f"{execution_price_column}_{self.symbol_b_}"
|
|
||||||
].shift(-execution_price_shift)
|
|
||||||
self.market_data_df_ = self.market_data_df_.dropna().reset_index(drop=True)
|
|
||||||
|
|
||||||
def md_columns(self) -> List[str]:
|
|
||||||
# @abstractmethod
|
|
||||||
if self.is_execution_price_:
|
|
||||||
return ["tstamp", "symbol", self.stat_model_price_, self.execution_price_column_]
|
|
||||||
else:
|
|
||||||
return ["tstamp", "symbol", self.stat_model_price_]
|
|
||||||
|
|
||||||
def rename_columns(self, selected_symbol_df: pd.DataFrame) -> pd.DataFrame:
|
|
||||||
# @abstractmethod
|
|
||||||
symbol = selected_symbol_df.iloc[0]["symbol"]
|
|
||||||
new_price_column = f"{self.stat_model_price_}_{symbol}"
|
|
||||||
if self.is_execution_price_:
|
|
||||||
new_execution_price_column = f"{self.execution_price_column_}_{symbol}"
|
|
||||||
|
|
||||||
# Create temporary dataframe with timestamp and price
|
|
||||||
temp_df = pd.DataFrame(
|
|
||||||
{
|
|
||||||
"tstamp": selected_symbol_df["tstamp"],
|
|
||||||
new_price_column: selected_symbol_df[self.stat_model_price_],
|
|
||||||
new_execution_price_column: selected_symbol_df[self.execution_price_column_],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
temp_df = pd.DataFrame(
|
|
||||||
{
|
|
||||||
"tstamp": selected_symbol_df["tstamp"],
|
|
||||||
new_price_column: selected_symbol_df[self.stat_model_price_],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return temp_df
|
|
||||||
|
|
||||||
def tranform_df_target_colnames(self):
|
|
||||||
# @abstractmethod
|
|
||||||
return self.colnames() + self.orig_exec_prices_colnames()
|
|
||||||
|
|
||||||
def orig_exec_prices_colnames(self) -> List[str]:
|
|
||||||
return [
|
|
||||||
f"{self.execution_price_column_}_{self.symbol_a_}",
|
|
||||||
f"{self.execution_price_column_}_{self.symbol_b_}",
|
|
||||||
] if self.is_execution_price_ else []
|
|
||||||
|
|
||||||
class LiveMarketData(PtMarketData):
|
|
||||||
|
|
||||||
def __init__(self, config: Config, instruments: List[ExchangeInstrument]):
|
|
||||||
super().__init__(config, instruments)
|
|
||||||
|
|
||||||
def md_columns(self) -> List[str]:
|
|
||||||
# @abstractmethod
|
|
||||||
return ["tstamp", "symbol", self.stat_model_price_]
|
|
||||||
|
|
||||||
def rename_columns(self, selected_symbol_df: pd.DataFrame) -> pd.DataFrame:
|
|
||||||
# @abstractmethod
|
|
||||||
symbol = selected_symbol_df.iloc[0]["symbol"]
|
|
||||||
new_price_column = f"{self.stat_model_price_}_{symbol}"
|
|
||||||
temp_df = pd.DataFrame(
|
|
||||||
{
|
|
||||||
"tstamp": selected_symbol_df["tstamp"],
|
|
||||||
new_price_column: selected_symbol_df[self.stat_model_price_],
|
|
||||||
}
|
|
||||||
)
|
|
||||||
return temp_df
|
|
||||||
|
|
||||||
def tranform_df_target_colnames(self):
|
|
||||||
# @abstractmethod
|
|
||||||
return self.colnames()
|
|
||||||
@ -1,30 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from typing import Any, Dict, cast
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.pt_strategy.prediction import Prediction
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import TradingPair
|
|
||||||
|
|
||||||
class PairsTradingModel(ABC):
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def predict(self, pair: TradingPair) -> Prediction: # type: ignore[assignment]
|
|
||||||
...
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def create(config: Config) -> PairsTradingModel:
|
|
||||||
import importlib
|
|
||||||
|
|
||||||
model_class_name = config.get_value("model/model_class", None)
|
|
||||||
assert model_class_name is not None
|
|
||||||
module_name, class_name = model_class_name.rsplit(".", 1)
|
|
||||||
module = importlib.import_module(module_name)
|
|
||||||
model_object = getattr(module, class_name)()
|
|
||||||
return cast(PairsTradingModel, model_object)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -1,305 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.pt_strategy.model_data_policy import ModelDataPolicy
|
|
||||||
from pairs_trading.lib.pt_strategy.pt_market_data import ResearchMarketData
|
|
||||||
from pairs_trading.lib.pt_strategy.pt_model import Prediction
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import PairState, TradingPair, ResearchTradingPair
|
|
||||||
|
|
||||||
class PtResearchStrategy:
|
|
||||||
config_: Config
|
|
||||||
trading_pair_: ResearchTradingPair
|
|
||||||
model_data_policy_: ModelDataPolicy
|
|
||||||
pt_mkt_data_: ResearchMarketData
|
|
||||||
|
|
||||||
trades_: List[pd.DataFrame]
|
|
||||||
predictions_df_: pd.DataFrame
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: Config,
|
|
||||||
instruments: List[ExchangeInstrument]
|
|
||||||
):
|
|
||||||
from pairs_trading.lib.pt_strategy.model_data_policy import ModelDataPolicy
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import TradingPair
|
|
||||||
|
|
||||||
self.config_ = config
|
|
||||||
self.trades_ = []
|
|
||||||
self.trading_pair_ = ResearchTradingPair(config=config, instruments=instruments)
|
|
||||||
self.predictions_df_ = pd.DataFrame()
|
|
||||||
|
|
||||||
import copy
|
|
||||||
|
|
||||||
# modified config must be passed to PtMarketData
|
|
||||||
config_copy = copy.deepcopy(config)
|
|
||||||
config_copy.set_value("instruments", instruments)
|
|
||||||
self.pt_mkt_data_ = ResearchMarketData(config=config_copy, instruments=instruments)
|
|
||||||
self.pt_mkt_data_.load()
|
|
||||||
self.model_data_policy_ = ModelDataPolicy.create(
|
|
||||||
config_copy, mkt_data=self.pt_mkt_data_.market_data_df_, pair=self.trading_pair_
|
|
||||||
)
|
|
||||||
|
|
||||||
def outstanding_positions(self) -> List[Dict[str, Any]]:
|
|
||||||
return list(self.trading_pair_.user_data_.get("outstanding_positions", []))
|
|
||||||
|
|
||||||
def run(self) -> None:
|
|
||||||
training_minutes = self.config_.get_value("training_minutes", 120)
|
|
||||||
market_data_series: pd.Series
|
|
||||||
market_data_df = pd.DataFrame()
|
|
||||||
|
|
||||||
idx = 0
|
|
||||||
while self.pt_mkt_data_.has_next():
|
|
||||||
market_data_series = self.pt_mkt_data_.get_next()
|
|
||||||
new_row = pd.DataFrame([market_data_series])
|
|
||||||
market_data_df = pd.concat([market_data_df, new_row], ignore_index=True)
|
|
||||||
if idx >= training_minutes:
|
|
||||||
break
|
|
||||||
idx += 1
|
|
||||||
|
|
||||||
assert idx >= training_minutes, "Not enough training data"
|
|
||||||
|
|
||||||
while self.pt_mkt_data_.has_next():
|
|
||||||
|
|
||||||
market_data_series = self.pt_mkt_data_.get_next()
|
|
||||||
new_row = pd.DataFrame([market_data_series])
|
|
||||||
market_data_df = pd.concat([market_data_df, new_row], ignore_index=True)
|
|
||||||
|
|
||||||
prediction = self.trading_pair_.run(
|
|
||||||
market_data_df, self.model_data_policy_.advance(mkt_data_df=market_data_df)
|
|
||||||
)
|
|
||||||
self.predictions_df_ = pd.concat(
|
|
||||||
[self.predictions_df_, prediction.to_df()], ignore_index=True
|
|
||||||
)
|
|
||||||
assert prediction is not None
|
|
||||||
|
|
||||||
trades = self._create_trades(
|
|
||||||
prediction=prediction, last_row=market_data_df.iloc[-1]
|
|
||||||
)
|
|
||||||
if trades is not None:
|
|
||||||
self.trades_.append(trades)
|
|
||||||
|
|
||||||
trades = self._handle_outstanding_positions()
|
|
||||||
if trades is not None:
|
|
||||||
self.trades_.append(trades)
|
|
||||||
|
|
||||||
def _create_trades(
|
|
||||||
self, prediction: Prediction, last_row: pd.Series
|
|
||||||
) -> Optional[pd.DataFrame]:
|
|
||||||
pair = self.trading_pair_
|
|
||||||
trades = None
|
|
||||||
|
|
||||||
open_threshold = self.config_.get_value("model/disequilibrium/open_trshld")
|
|
||||||
close_threshold = self.config_.get_value("model/disequilibrium/close_trshld")
|
|
||||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
||||||
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
|
|
||||||
|
|
||||||
if pair.user_data_["state"] in [
|
|
||||||
PairState.INITIAL,
|
|
||||||
PairState.CLOSE,
|
|
||||||
PairState.CLOSE_POSITION,
|
|
||||||
PairState.CLOSE_STOP_LOSS,
|
|
||||||
PairState.CLOSE_STOP_PROFIT,
|
|
||||||
]:
|
|
||||||
if abs_scaled_disequilibrium >= open_threshold:
|
|
||||||
trades = self._create_open_trades(
|
|
||||||
pair, row=last_row, prediction=prediction
|
|
||||||
)
|
|
||||||
if trades is not None:
|
|
||||||
trades["status"] = PairState.OPEN.name
|
|
||||||
print(f"OPEN TRADES:\n{trades}")
|
|
||||||
pair.user_data_["state"] = PairState.OPEN
|
|
||||||
pair.on_open_trades(trades)
|
|
||||||
|
|
||||||
elif pair.user_data_["state"] == PairState.OPEN:
|
|
||||||
if abs_scaled_disequilibrium <= close_threshold:
|
|
||||||
trades = self._create_close_trades(
|
|
||||||
pair, row=last_row, prediction=prediction
|
|
||||||
)
|
|
||||||
if trades is not None:
|
|
||||||
trades["status"] = PairState.CLOSE.name
|
|
||||||
print(f"CLOSE TRADES:\n{trades}")
|
|
||||||
pair.user_data_["state"] = PairState.CLOSE
|
|
||||||
pair.on_close_trades(trades)
|
|
||||||
elif pair.to_stop_close_conditions(predicted_row=last_row):
|
|
||||||
trades = self._create_close_trades(pair, row=last_row)
|
|
||||||
if trades is not None:
|
|
||||||
trades["status"] = pair.user_data_["stop_close_state"].name
|
|
||||||
print(f"STOP CLOSE TRADES:\n{trades}")
|
|
||||||
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
|
||||||
pair.on_close_trades(trades)
|
|
||||||
|
|
||||||
return trades
|
|
||||||
|
|
||||||
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
|
|
||||||
trades = None
|
|
||||||
pair = self.trading_pair_
|
|
||||||
|
|
||||||
# Outstanding positions
|
|
||||||
if pair.user_data_["state"] == PairState.OPEN:
|
|
||||||
print(f"{pair}: *** Position is NOT CLOSED. ***")
|
|
||||||
# outstanding positions
|
|
||||||
if self.config_.get_value("close_outstanding_positions", False):
|
|
||||||
close_position_row = pd.Series(pair.market_data_.iloc[-2])
|
|
||||||
# close_position_row["disequilibrium"] = 0.0
|
|
||||||
# close_position_row["scaled_disequilibrium"] = 0.0
|
|
||||||
# close_position_row["signed_scaled_disequilibrium"] = 0.0
|
|
||||||
|
|
||||||
trades = self._create_close_trades(
|
|
||||||
pair=pair, row=close_position_row, prediction=None
|
|
||||||
)
|
|
||||||
if trades is not None:
|
|
||||||
trades["status"] = PairState.CLOSE_POSITION.name
|
|
||||||
print(f"CLOSE_POSITION TRADES:\n{trades}")
|
|
||||||
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
|
||||||
pair.on_close_trades(trades)
|
|
||||||
else:
|
|
||||||
pair.add_outstanding_position(
|
|
||||||
symbol=pair.symbol_a(),
|
|
||||||
open_side=pair.user_data_["open_side_a"],
|
|
||||||
open_px=pair.user_data_["open_px_a"],
|
|
||||||
open_tstamp=pair.user_data_["open_tstamp"],
|
|
||||||
last_mkt_data_row=pair.market_data_.iloc[-1],
|
|
||||||
)
|
|
||||||
pair.add_outstanding_position(
|
|
||||||
symbol=pair.symbol_b(),
|
|
||||||
open_side=pair.user_data_["open_side_b"],
|
|
||||||
open_px=pair.user_data_["open_px_b"],
|
|
||||||
open_tstamp=pair.user_data_["open_tstamp"],
|
|
||||||
last_mkt_data_row=pair.market_data_.iloc[-1],
|
|
||||||
)
|
|
||||||
return trades
|
|
||||||
|
|
||||||
def _trades_df(self) -> pd.DataFrame:
|
|
||||||
types = {
|
|
||||||
"time": "datetime64[ns]",
|
|
||||||
"action": "string",
|
|
||||||
"symbol": "string",
|
|
||||||
"side": "string",
|
|
||||||
"price": "float64",
|
|
||||||
"disequilibrium": "float64",
|
|
||||||
"scaled_disequilibrium": "float64",
|
|
||||||
"signed_scaled_disequilibrium": "float64",
|
|
||||||
# "pair": "object",
|
|
||||||
}
|
|
||||||
columns = list(types.keys())
|
|
||||||
return pd.DataFrame(columns=columns).astype(types)
|
|
||||||
|
|
||||||
def _create_open_trades(
|
|
||||||
self, pair: ResearchTradingPair, row: pd.Series, prediction: Prediction
|
|
||||||
) -> Optional[pd.DataFrame]:
|
|
||||||
colname_a, colname_b = pair.exec_prices_colnames()
|
|
||||||
|
|
||||||
tstamp = row["tstamp"]
|
|
||||||
diseqlbrm = prediction.disequilibrium_
|
|
||||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
||||||
px_a = row[f"{colname_a}"]
|
|
||||||
px_b = row[f"{colname_b}"]
|
|
||||||
|
|
||||||
# creating the trades
|
|
||||||
df = self._trades_df()
|
|
||||||
|
|
||||||
print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}")
|
|
||||||
if diseqlbrm > 0:
|
|
||||||
side_a = "SELL"
|
|
||||||
side_b = "BUY"
|
|
||||||
else:
|
|
||||||
side_a = "BUY"
|
|
||||||
side_b = "SELL"
|
|
||||||
|
|
||||||
# save closing sides
|
|
||||||
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
|
|
||||||
pair.user_data_["open_side_b"] = side_b
|
|
||||||
pair.user_data_["open_px_a"] = px_a
|
|
||||||
pair.user_data_["open_px_b"] = px_b
|
|
||||||
pair.user_data_["open_tstamp"] = tstamp
|
|
||||||
|
|
||||||
pair.user_data_["close_side_a"] = side_b # used for closing trades
|
|
||||||
pair.user_data_["close_side_b"] = side_a
|
|
||||||
|
|
||||||
# create opening trades
|
|
||||||
df.loc[len(df)] = {
|
|
||||||
"time": tstamp,
|
|
||||||
"symbol": pair.symbol_a(),
|
|
||||||
"side": side_a,
|
|
||||||
"action": "OPEN",
|
|
||||||
"price": px_a,
|
|
||||||
"disequilibrium": diseqlbrm,
|
|
||||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
|
||||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
|
||||||
# "pair": pair,
|
|
||||||
}
|
|
||||||
df.loc[len(df)] = {
|
|
||||||
"time": tstamp,
|
|
||||||
"symbol": pair.symbol_b(),
|
|
||||||
"side": side_b,
|
|
||||||
"action": "OPEN",
|
|
||||||
"price": px_b,
|
|
||||||
"disequilibrium": diseqlbrm,
|
|
||||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
|
||||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
|
||||||
# "pair": pair,
|
|
||||||
}
|
|
||||||
return df
|
|
||||||
|
|
||||||
def _create_close_trades(
|
|
||||||
self, pair: ResearchTradingPair, row: pd.Series, prediction: Optional[Prediction] = None
|
|
||||||
) -> Optional[pd.DataFrame]:
|
|
||||||
colname_a, colname_b = pair.exec_prices_colnames()
|
|
||||||
|
|
||||||
tstamp = row["tstamp"]
|
|
||||||
if prediction is not None:
|
|
||||||
diseqlbrm = prediction.disequilibrium_
|
|
||||||
signed_scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
||||||
scaled_disequilibrium = abs(prediction.scaled_disequilibrium_)
|
|
||||||
else:
|
|
||||||
diseqlbrm = 0.0
|
|
||||||
signed_scaled_disequilibrium = 0.0
|
|
||||||
scaled_disequilibrium = 0.0
|
|
||||||
px_a = row[f"{colname_a}"]
|
|
||||||
px_b = row[f"{colname_b}"]
|
|
||||||
|
|
||||||
# creating the trades
|
|
||||||
df = self._trades_df()
|
|
||||||
|
|
||||||
# create opening trades
|
|
||||||
df.loc[len(df)] = {
|
|
||||||
"time": tstamp,
|
|
||||||
"symbol": pair.symbol_a(),
|
|
||||||
"side": pair.user_data_["close_side_a"],
|
|
||||||
"action": "CLOSE",
|
|
||||||
"price": px_a,
|
|
||||||
"disequilibrium": diseqlbrm,
|
|
||||||
"scaled_disequilibrium": scaled_disequilibrium,
|
|
||||||
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
|
||||||
# "pair": pair,
|
|
||||||
}
|
|
||||||
df.loc[len(df)] = {
|
|
||||||
"time": tstamp,
|
|
||||||
"symbol": pair.symbol_b(),
|
|
||||||
"side": pair.user_data_["close_side_b"],
|
|
||||||
"action": "CLOSE",
|
|
||||||
"price": px_b,
|
|
||||||
"disequilibrium": diseqlbrm,
|
|
||||||
"scaled_disequilibrium": scaled_disequilibrium,
|
|
||||||
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
|
||||||
# "pair": pair,
|
|
||||||
}
|
|
||||||
del pair.user_data_["close_side_a"]
|
|
||||||
del pair.user_data_["close_side_b"]
|
|
||||||
|
|
||||||
del pair.user_data_["open_tstamp"]
|
|
||||||
del pair.user_data_["open_px_a"]
|
|
||||||
del pair.user_data_["open_px_b"]
|
|
||||||
del pair.user_data_["open_side_a"]
|
|
||||||
del pair.user_data_["open_side_b"]
|
|
||||||
return df
|
|
||||||
|
|
||||||
def day_trades(self) -> pd.DataFrame:
|
|
||||||
return pd.concat(self.trades_, ignore_index=True)
|
|
||||||
@ -1,527 +0,0 @@
|
|||||||
import os
|
|
||||||
import sqlite3
|
|
||||||
from datetime import date, datetime
|
|
||||||
from typing import Any, Dict, List, Optional, Tuple
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.pt_strategy.trading_pair import TradingPair
|
|
||||||
|
|
||||||
# Recommended replacement adapters and converters for Python 3.12+
|
|
||||||
# From: https://docs.python.org/3/library/sqlite3.html#sqlite3-adapter-converter-recipes
|
|
||||||
def adapt_date_iso(val: date) -> str:
|
|
||||||
"""Adapt datetime.date to ISO 8601 date."""
|
|
||||||
return val.isoformat()
|
|
||||||
|
|
||||||
|
|
||||||
def adapt_datetime_iso(val: datetime) -> str:
|
|
||||||
"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""
|
|
||||||
return val.isoformat()
|
|
||||||
|
|
||||||
def convert_date(val: bytes) -> date:
|
|
||||||
"""Convert ISO 8601 date to datetime.date object."""
|
|
||||||
return datetime.fromisoformat(val.decode()).date()
|
|
||||||
|
|
||||||
def convert_datetime(val: bytes) -> datetime:
|
|
||||||
"""Convert ISO 8601 datetime to datetime.datetime object."""
|
|
||||||
return datetime.fromisoformat(val.decode())
|
|
||||||
|
|
||||||
|
|
||||||
# Register the adapters and converters
|
|
||||||
sqlite3.register_adapter(date, adapt_date_iso)
|
|
||||||
sqlite3.register_adapter(datetime, adapt_datetime_iso)
|
|
||||||
sqlite3.register_converter("date", convert_date)
|
|
||||||
sqlite3.register_converter("datetime", convert_datetime)
|
|
||||||
|
|
||||||
|
|
||||||
def create_result_database(db_path: str) -> None:
|
|
||||||
"""
|
|
||||||
Create the SQLite database and required tables if they don't exist.
|
|
||||||
"""
|
|
||||||
try:
|
|
||||||
# Create directory if it doesn't exist
|
|
||||||
db_dir = os.path.dirname(db_path)
|
|
||||||
if db_dir and not os.path.exists(db_dir):
|
|
||||||
os.makedirs(db_dir, exist_ok=True)
|
|
||||||
print(f"Created directory: {db_dir}")
|
|
||||||
|
|
||||||
conn = sqlite3.connect(db_path)
|
|
||||||
cursor = conn.cursor()
|
|
||||||
|
|
||||||
# Create the pt_bt_results table for completed trades
|
|
||||||
cursor.execute(
|
|
||||||
"""
|
|
||||||
CREATE TABLE IF NOT EXISTS pt_bt_results (
|
|
||||||
date DATE,
|
|
||||||
pair TEXT,
|
|
||||||
symbol TEXT,
|
|
||||||
open_time DATETIME,
|
|
||||||
open_side TEXT,
|
|
||||||
open_price REAL,
|
|
||||||
open_quantity INTEGER,
|
|
||||||
open_disequilibrium REAL,
|
|
||||||
close_time DATETIME,
|
|
||||||
close_side TEXT,
|
|
||||||
close_price REAL,
|
|
||||||
close_quantity INTEGER,
|
|
||||||
close_disequilibrium REAL,
|
|
||||||
symbol_return REAL,
|
|
||||||
pair_return REAL,
|
|
||||||
close_condition TEXT
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
cursor.execute("DELETE FROM pt_bt_results;")
|
|
||||||
|
|
||||||
# Create the outstanding_positions table for open positions
|
|
||||||
cursor.execute(
|
|
||||||
"""
|
|
||||||
CREATE TABLE IF NOT EXISTS outstanding_positions (
|
|
||||||
date DATE,
|
|
||||||
pair TEXT,
|
|
||||||
symbol TEXT,
|
|
||||||
position_quantity REAL,
|
|
||||||
last_price REAL,
|
|
||||||
unrealized_return REAL,
|
|
||||||
open_price REAL,
|
|
||||||
open_side TEXT
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
cursor.execute("DELETE FROM outstanding_positions;")
|
|
||||||
|
|
||||||
# Create the config table for storing configuration JSON for reference
|
|
||||||
cursor.execute(
|
|
||||||
"""
|
|
||||||
CREATE TABLE IF NOT EXISTS config (
|
|
||||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
||||||
run_timestamp DATETIME,
|
|
||||||
config_file_path TEXT,
|
|
||||||
config_json TEXT,
|
|
||||||
datafiles TEXT,
|
|
||||||
instruments TEXT
|
|
||||||
)
|
|
||||||
"""
|
|
||||||
)
|
|
||||||
cursor.execute("DELETE FROM config;")
|
|
||||||
|
|
||||||
conn.commit()
|
|
||||||
conn.close()
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error creating result database: {str(e)}")
|
|
||||||
raise
|
|
||||||
|
|
||||||
|
|
||||||
def store_config_in_database(
|
|
||||||
db_path: str,
|
|
||||||
config_file_path: str,
|
|
||||||
config: Config,
|
|
||||||
datafiles: List[Tuple[str, str]],
|
|
||||||
instruments: List[ExchangeInstrument],
|
|
||||||
) -> None:
|
|
||||||
"""
|
|
||||||
Store configuration information in the database for reference.
|
|
||||||
"""
|
|
||||||
import json
|
|
||||||
|
|
||||||
if db_path.upper() == "NONE":
|
|
||||||
return
|
|
||||||
|
|
||||||
try:
|
|
||||||
conn = sqlite3.connect(db_path)
|
|
||||||
cursor = conn.cursor()
|
|
||||||
|
|
||||||
# Convert config to JSON string
|
|
||||||
config_json = json.dumps(config.data(), indent=2, default=str)
|
|
||||||
|
|
||||||
# Convert lists to comma-separated strings for storage
|
|
||||||
datafiles_str = ", ".join([f"{datafile}" for _, datafile in datafiles])
|
|
||||||
instruments_str = ", ".join(
|
|
||||||
[
|
|
||||||
inst.details_short()
|
|
||||||
for inst in instruments
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Insert configuration record
|
|
||||||
cursor.execute(
|
|
||||||
"""
|
|
||||||
INSERT INTO config (
|
|
||||||
run_timestamp, config_file_path, config_json, datafiles, instruments
|
|
||||||
) VALUES (?, ?, ?, ?, ?)
|
|
||||||
""",
|
|
||||||
(
|
|
||||||
datetime.now(),
|
|
||||||
config_file_path,
|
|
||||||
config_json,
|
|
||||||
datafiles_str,
|
|
||||||
instruments_str,
|
|
||||||
),
|
|
||||||
)
|
|
||||||
|
|
||||||
conn.commit()
|
|
||||||
conn.close()
|
|
||||||
|
|
||||||
print(f"Configuration stored in database")
|
|
||||||
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error storing configuration in database: {str(e)}")
|
|
||||||
import traceback
|
|
||||||
|
|
||||||
traceback.print_exc()
|
|
||||||
|
|
||||||
|
|
||||||
def convert_timestamp(timestamp: Any) -> Optional[datetime]:
|
|
||||||
"""Convert pandas Timestamp to Python datetime object for SQLite compatibility."""
|
|
||||||
if timestamp is None:
|
|
||||||
return None
|
|
||||||
if isinstance(timestamp, pd.Timestamp):
|
|
||||||
return timestamp.to_pydatetime()
|
|
||||||
elif isinstance(timestamp, datetime):
|
|
||||||
return timestamp
|
|
||||||
elif isinstance(timestamp, date):
|
|
||||||
return datetime.combine(timestamp, datetime.min.time())
|
|
||||||
elif isinstance(timestamp, str):
|
|
||||||
return datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
|
|
||||||
elif isinstance(timestamp, int):
|
|
||||||
return datetime.fromtimestamp(timestamp)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unsupported timestamp type: {type(timestamp)}")
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
DayT = str
|
|
||||||
TradeT = Dict[str, Any]
|
|
||||||
OutstandingPositionT = Dict[str, Any]
|
|
||||||
class PairResearchResult:
|
|
||||||
"""
|
|
||||||
Class to handle pair research results for a single pair across multiple days.
|
|
||||||
Simplified version of BacktestResult focused on single pair analysis.
|
|
||||||
"""
|
|
||||||
trades_: Dict[DayT, pd.DataFrame]
|
|
||||||
outstanding_positions_: Dict[DayT, List[OutstandingPositionT]]
|
|
||||||
symbol_roundtrip_trades_: Dict[str, List[Dict[str, Any]]]
|
|
||||||
config_: Config
|
|
||||||
|
|
||||||
def __init__(self, config: Config) -> None:
|
|
||||||
self.config_ = config
|
|
||||||
self.trades_ = {}
|
|
||||||
self.outstanding_positions_ = {}
|
|
||||||
self.total_realized_pnl = 0.0
|
|
||||||
self.symbol_roundtrip_trades_ = {}
|
|
||||||
|
|
||||||
def add_day_results(self, day: DayT, trades: pd.DataFrame, outstanding_positions: List[Dict[str, Any]]) -> None:
|
|
||||||
assert isinstance(trades, pd.DataFrame)
|
|
||||||
self.trades_[day] = trades
|
|
||||||
self.outstanding_positions_[day] = outstanding_positions
|
|
||||||
|
|
||||||
def outstanding_positions(self) -> List[OutstandingPositionT]:
|
|
||||||
"""Get all outstanding positions across all days as a flat list."""
|
|
||||||
res: List[Dict[str, Any]] = []
|
|
||||||
for day in self.outstanding_positions_.keys():
|
|
||||||
res.extend(self.outstanding_positions_[day])
|
|
||||||
return res
|
|
||||||
|
|
||||||
def calculate_returns(self) -> None:
|
|
||||||
"""Calculate and store total returns for the single pair across all days."""
|
|
||||||
self.extract_roundtrip_trades()
|
|
||||||
|
|
||||||
self.total_realized_pnl = 0.0
|
|
||||||
|
|
||||||
for day, day_trades in self.symbol_roundtrip_trades_.items():
|
|
||||||
for trade in day_trades:
|
|
||||||
self.total_realized_pnl += trade['symbol_return']
|
|
||||||
|
|
||||||
def extract_roundtrip_trades(self) -> None:
|
|
||||||
"""
|
|
||||||
Extract round-trip trades by day, grouping open/close pairs for each symbol.
|
|
||||||
Returns a dictionary with day as key and list of completed round-trip trades.
|
|
||||||
"""
|
|
||||||
def _symbol_return(trade1_side: str, trade1_px: float, trade2_side: str, trade2_px: float) -> float:
|
|
||||||
if trade1_side == "BUY" and trade2_side == "SELL":
|
|
||||||
return (trade2_px - trade1_px) / trade1_px * 100
|
|
||||||
elif trade1_side == "SELL" and trade2_side == "BUY":
|
|
||||||
return (trade1_px - trade2_px) / trade1_px * 100
|
|
||||||
else:
|
|
||||||
return 0
|
|
||||||
|
|
||||||
# Process each day separately
|
|
||||||
for day, day_trades in self.trades_.items():
|
|
||||||
|
|
||||||
# Sort trades by timestamp for the day
|
|
||||||
sorted_trades = day_trades #sorted(day_trades, key=lambda x: x["timestamp"] if x["timestamp"] else pd.Timestamp.min)
|
|
||||||
|
|
||||||
day_roundtrips = []
|
|
||||||
|
|
||||||
# Process trades in groups of 4 (open A, open B, close A, close B)
|
|
||||||
for idx in range(0, len(sorted_trades), 4):
|
|
||||||
if idx + 3 >= len(sorted_trades):
|
|
||||||
break
|
|
||||||
|
|
||||||
trade_a_1 = sorted_trades.iloc[idx] # Open A
|
|
||||||
trade_b_1 = sorted_trades.iloc[idx + 1] # Open B
|
|
||||||
trade_a_2 = sorted_trades.iloc[idx + 2] # Close A
|
|
||||||
trade_b_2 = sorted_trades.iloc[idx + 3] # Close B
|
|
||||||
|
|
||||||
# Validate trade sequence
|
|
||||||
if not (trade_a_1["action"] == "OPEN" and trade_a_2["action"] == "CLOSE"):
|
|
||||||
continue
|
|
||||||
if not (trade_b_1["action"] == "OPEN" and trade_b_2["action"] == "CLOSE"):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Calculate individual symbol returns
|
|
||||||
symbol_a_return = _symbol_return(
|
|
||||||
trade_a_1["side"], trade_a_1["price"],
|
|
||||||
trade_a_2["side"], trade_a_2["price"]
|
|
||||||
)
|
|
||||||
symbol_b_return = _symbol_return(
|
|
||||||
trade_b_1["side"], trade_b_1["price"],
|
|
||||||
trade_b_2["side"], trade_b_2["price"]
|
|
||||||
)
|
|
||||||
|
|
||||||
pair_return = symbol_a_return + symbol_b_return
|
|
||||||
|
|
||||||
# Create round-trip records for both symbols
|
|
||||||
funding_per_position = self.config_.get_value("funding_per_pair", 10000) / 2
|
|
||||||
|
|
||||||
# Symbol A round-trip
|
|
||||||
day_roundtrips.append({
|
|
||||||
"symbol": trade_a_1["symbol"],
|
|
||||||
"open_side": trade_a_1["side"],
|
|
||||||
"open_price": trade_a_1["price"],
|
|
||||||
"open_time": trade_a_1["time"],
|
|
||||||
"close_side": trade_a_2["side"],
|
|
||||||
"close_price": trade_a_2["price"],
|
|
||||||
"close_time": trade_a_2["time"],
|
|
||||||
"symbol_return": symbol_a_return,
|
|
||||||
"pair_return": pair_return,
|
|
||||||
"shares": funding_per_position / trade_a_1["price"],
|
|
||||||
"close_condition": trade_a_2.get("status", "UNKNOWN"),
|
|
||||||
"open_disequilibrium": trade_a_1.get("disequilibrium"),
|
|
||||||
"close_disequilibrium": trade_a_2.get("disequilibrium"),
|
|
||||||
})
|
|
||||||
|
|
||||||
# Symbol B round-trip
|
|
||||||
day_roundtrips.append({
|
|
||||||
"symbol": trade_b_1["symbol"],
|
|
||||||
"open_side": trade_b_1["side"],
|
|
||||||
"open_price": trade_b_1["price"],
|
|
||||||
"open_time": trade_b_1["time"],
|
|
||||||
"close_side": trade_b_2["side"],
|
|
||||||
"close_price": trade_b_2["price"],
|
|
||||||
"close_time": trade_b_2["time"],
|
|
||||||
"symbol_return": symbol_b_return,
|
|
||||||
"pair_return": pair_return,
|
|
||||||
"shares": funding_per_position / trade_b_1["price"],
|
|
||||||
"close_condition": trade_b_2.get("status", "UNKNOWN"),
|
|
||||||
"open_disequilibrium": trade_b_1.get("disequilibrium"),
|
|
||||||
"close_disequilibrium": trade_b_2.get("disequilibrium"),
|
|
||||||
})
|
|
||||||
|
|
||||||
if day_roundtrips:
|
|
||||||
self.symbol_roundtrip_trades_[day] = day_roundtrips
|
|
||||||
|
|
||||||
|
|
||||||
def print_returns_by_day(self) -> None:
|
|
||||||
"""
|
|
||||||
Print detailed return information for each day, grouped by day.
|
|
||||||
Shows individual symbol round-trips and daily totals.
|
|
||||||
"""
|
|
||||||
|
|
||||||
print("\n====== PAIR RESEARCH RETURNS BY DAY ======")
|
|
||||||
|
|
||||||
total_return_all_days = 0.0
|
|
||||||
|
|
||||||
for day, day_trades in sorted(self.symbol_roundtrip_trades_.items()):
|
|
||||||
|
|
||||||
print(f"\n--- {day} ---")
|
|
||||||
|
|
||||||
day_total_return = 0.0
|
|
||||||
pair_returns = []
|
|
||||||
|
|
||||||
# Group trades by pair (every 2 trades form a pair)
|
|
||||||
for idx in range(0, len(day_trades), 2):
|
|
||||||
if idx + 1 < len(day_trades):
|
|
||||||
trade_a = day_trades[idx]
|
|
||||||
trade_b = day_trades[idx + 1]
|
|
||||||
|
|
||||||
# Print individual symbol results
|
|
||||||
print(f" {trade_a['open_time'].time()}-{trade_a['close_time'].time()}")
|
|
||||||
print(f" {trade_a['symbol']}: {trade_a['open_side']} @ ${trade_a['open_price']:.2f} → "
|
|
||||||
f"{trade_a['close_side']} @ ${trade_a['close_price']:.2f} | "
|
|
||||||
f"Return: {trade_a['symbol_return']:+.2f}% | Shares: {trade_a['shares']:.2f}")
|
|
||||||
|
|
||||||
print(f" {trade_b['symbol']}: {trade_b['open_side']} @ ${trade_b['open_price']:.2f} → "
|
|
||||||
f"{trade_b['close_side']} @ ${trade_b['close_price']:.2f} | "
|
|
||||||
f"Return: {trade_b['symbol_return']:+.2f}% | Shares: {trade_b['shares']:.2f}")
|
|
||||||
|
|
||||||
# Show disequilibrium info if available
|
|
||||||
if trade_a.get('open_disequilibrium') is not None:
|
|
||||||
print(f" Disequilibrium: Open: {trade_a['open_disequilibrium']:.4f}, "
|
|
||||||
f"Close: {trade_a['close_disequilibrium']:.4f}")
|
|
||||||
|
|
||||||
pair_return = trade_a['pair_return']
|
|
||||||
print(f" Pair Return: {pair_return:+.2f}% | Close Condition: {trade_a['close_condition']}")
|
|
||||||
print()
|
|
||||||
|
|
||||||
pair_returns.append(pair_return)
|
|
||||||
day_total_return += pair_return
|
|
||||||
|
|
||||||
print(f" Day Total Return: {day_total_return:+.2f}% ({len(pair_returns)} pairs)")
|
|
||||||
total_return_all_days += day_total_return
|
|
||||||
|
|
||||||
print(f"\n====== TOTAL RETURN ACROSS ALL DAYS ======")
|
|
||||||
print(f"Total Return: {total_return_all_days:+.2f}%")
|
|
||||||
print(f"Total Days: {len(self.symbol_roundtrip_trades_)}")
|
|
||||||
if len(self.symbol_roundtrip_trades_) > 0:
|
|
||||||
print(f"Average Daily Return: {total_return_all_days / len(self.symbol_roundtrip_trades_):+.2f}%")
|
|
||||||
|
|
||||||
def get_return_summary(self) -> Dict[str, Any]:
|
|
||||||
"""
|
|
||||||
Get a summary of returns across all days.
|
|
||||||
Returns a dictionary with key metrics.
|
|
||||||
"""
|
|
||||||
if len(self.symbol_roundtrip_trades_) == 0:
|
|
||||||
return {
|
|
||||||
"total_return": 0.0,
|
|
||||||
"total_days": 0,
|
|
||||||
"total_pairs": 0,
|
|
||||||
"average_daily_return": 0.0,
|
|
||||||
"best_day": None,
|
|
||||||
"worst_day": None,
|
|
||||||
"daily_returns": {}
|
|
||||||
}
|
|
||||||
|
|
||||||
daily_returns = {}
|
|
||||||
total_return = 0.0
|
|
||||||
total_pairs = 0
|
|
||||||
|
|
||||||
for day, day_trades in self.symbol_roundtrip_trades_.items():
|
|
||||||
day_return = 0.0
|
|
||||||
day_pairs = len(day_trades) // 2 # Each pair has 2 symbol trades
|
|
||||||
|
|
||||||
for trade in day_trades:
|
|
||||||
day_return += trade['symbol_return']
|
|
||||||
|
|
||||||
daily_returns[day] = {
|
|
||||||
"return": day_return,
|
|
||||||
"pairs": day_pairs
|
|
||||||
}
|
|
||||||
total_return += day_return
|
|
||||||
total_pairs += day_pairs
|
|
||||||
|
|
||||||
best_day = max(daily_returns.items(), key=lambda x: x[1]["return"]) if daily_returns else None
|
|
||||||
worst_day = min(daily_returns.items(), key=lambda x: x[1]["return"]) if daily_returns else None
|
|
||||||
|
|
||||||
return {
|
|
||||||
"total_return": total_return,
|
|
||||||
"total_days": len(self.symbol_roundtrip_trades_),
|
|
||||||
"total_pairs": total_pairs,
|
|
||||||
"average_daily_return": total_return / len(self.symbol_roundtrip_trades_) if self.symbol_roundtrip_trades_ else 0.0,
|
|
||||||
"best_day": best_day,
|
|
||||||
"worst_day": worst_day,
|
|
||||||
"daily_returns": daily_returns
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def print_grand_totals(self) -> None:
|
|
||||||
"""Print grand totals for the single pair analysis."""
|
|
||||||
summary = self.get_return_summary()
|
|
||||||
|
|
||||||
print(f"\n====== PAIR RESEARCH GRAND TOTALS ======")
|
|
||||||
print('---')
|
|
||||||
print(f"Total Return: {summary['total_return']:+.2f}%")
|
|
||||||
print('---')
|
|
||||||
print(f"Total Days Traded: {summary['total_days']}")
|
|
||||||
print(f"Total Open-Close Actions: {summary['total_pairs']}")
|
|
||||||
print(f"Total Trades: 4 * {summary['total_pairs']} = {4 * summary['total_pairs']}")
|
|
||||||
|
|
||||||
if summary['total_days'] > 0:
|
|
||||||
print(f"Average Daily Return: {summary['average_daily_return']:+.2f}%")
|
|
||||||
|
|
||||||
if summary['best_day']:
|
|
||||||
best_day, best_data = summary['best_day']
|
|
||||||
print(f"Best Day: {best_day} ({best_data['return']:+.2f}%)")
|
|
||||||
|
|
||||||
if summary['worst_day']:
|
|
||||||
worst_day, worst_data = summary['worst_day']
|
|
||||||
print(f"Worst Day: {worst_day} ({worst_data['return']:+.2f}%)")
|
|
||||||
|
|
||||||
# Update the total_realized_pnl for backward compatibility
|
|
||||||
self.total_realized_pnl = summary['total_return']
|
|
||||||
|
|
||||||
def analyze_pair_performance(self) -> None:
|
|
||||||
"""
|
|
||||||
Main method to perform comprehensive pair research analysis.
|
|
||||||
Extracts round-trip trades, calculates returns, groups by day, and prints results.
|
|
||||||
"""
|
|
||||||
print(f"\n{'='*60}")
|
|
||||||
print(f"PAIR RESEARCH PERFORMANCE ANALYSIS")
|
|
||||||
print(f"{'='*60}")
|
|
||||||
|
|
||||||
self.calculate_returns()
|
|
||||||
self.print_returns_by_day()
|
|
||||||
self.print_outstanding_positions()
|
|
||||||
self._print_additional_metrics()
|
|
||||||
self.print_grand_totals()
|
|
||||||
|
|
||||||
def _print_additional_metrics(self) -> None:
|
|
||||||
"""Print additional performance metrics."""
|
|
||||||
summary = self.get_return_summary()
|
|
||||||
|
|
||||||
if summary['total_days'] == 0:
|
|
||||||
return
|
|
||||||
|
|
||||||
print(f"\n====== ADDITIONAL METRICS ======")
|
|
||||||
|
|
||||||
# Calculate win rate
|
|
||||||
winning_days = sum(1 for day_data in summary['daily_returns'].values() if day_data['return'] > 0)
|
|
||||||
win_rate = (winning_days / summary['total_days']) * 100
|
|
||||||
print(f"Winning Days: {winning_days}/{summary['total_days']} ({win_rate:.1f}%)")
|
|
||||||
|
|
||||||
# Calculate average trade return
|
|
||||||
if summary['total_pairs'] > 0:
|
|
||||||
# Each pair has 2 symbol trades, so total symbol trades = total_pairs * 2
|
|
||||||
total_symbol_trades = summary['total_pairs'] * 2
|
|
||||||
avg_symbol_return = summary['total_return'] / total_symbol_trades
|
|
||||||
print(f"Average Symbol Return: {avg_symbol_return:+.2f}%")
|
|
||||||
|
|
||||||
avg_pair_return = summary['total_return'] / summary['total_pairs'] / 2 # Divide by 2 since we sum both symbols
|
|
||||||
print(f"Average Pair Return: {avg_pair_return:+.2f}%")
|
|
||||||
|
|
||||||
# Show daily return distribution
|
|
||||||
daily_returns_list = [data['return'] for data in summary['daily_returns'].values()]
|
|
||||||
if daily_returns_list:
|
|
||||||
print(f"Daily Return Range: {min(daily_returns_list):+.2f}% to {max(daily_returns_list):+.2f}%")
|
|
||||||
|
|
||||||
|
|
||||||
def print_outstanding_positions(self) -> None:
|
|
||||||
"""Print outstanding positions for the single pair."""
|
|
||||||
all_positions: List[OutstandingPositionT] = self.outstanding_positions()
|
|
||||||
if not all_positions:
|
|
||||||
print("\n====== NO OUTSTANDING POSITIONS ======")
|
|
||||||
return
|
|
||||||
|
|
||||||
print(f"\n====== OUTSTANDING POSITIONS ======")
|
|
||||||
print(f"{'Symbol':<10} {'Side':<4} {'Shares':<10} {'Open $':<8} {'Current $':<10} {'Value $':<12}")
|
|
||||||
print("-" * 70)
|
|
||||||
|
|
||||||
total_value = 0.0
|
|
||||||
for pos in all_positions:
|
|
||||||
current_value = pos.get("last_value", 0.0)
|
|
||||||
print(f"{pos['symbol']:<10} {pos['open_side']:<4} {pos['shares']:<10.2f} "
|
|
||||||
f"{pos['open_px']:<8.2f} {pos['last_px']:<10.2f} {current_value:<12.2f}")
|
|
||||||
total_value += current_value
|
|
||||||
|
|
||||||
print("-" * 70)
|
|
||||||
print(f"{'TOTAL VALUE':<60} ${total_value:<12.2f}")
|
|
||||||
|
|
||||||
def get_total_realized_pnl(self) -> float:
|
|
||||||
"""Get total realized PnL."""
|
|
||||||
return self.total_realized_pnl
|
|
||||||
|
|
||||||
@ -1,226 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from abc import ABC, abstractmethod
|
|
||||||
from datetime import datetime
|
|
||||||
from enum import Enum
|
|
||||||
from typing import Any, Dict, List
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.pt_strategy.model_data_policy import DataWindowParams
|
|
||||||
from pairs_trading.lib.pt_strategy.prediction import Prediction
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class PairState(Enum):
|
|
||||||
INITIAL = 1
|
|
||||||
OPEN = 2
|
|
||||||
CLOSE = 3
|
|
||||||
CLOSE_POSITION = 4
|
|
||||||
CLOSE_STOP_LOSS = 5
|
|
||||||
CLOSE_STOP_PROFIT = 6
|
|
||||||
|
|
||||||
|
|
||||||
class TradingPair(NamedObject, ABC):
|
|
||||||
config_: Config
|
|
||||||
model_: Any # "PairsTradingModel"
|
|
||||||
market_data_: pd.DataFrame
|
|
||||||
|
|
||||||
user_data_: Dict[str, Any]
|
|
||||||
stat_model_price_: str
|
|
||||||
|
|
||||||
instruments_: List[ExchangeInstrument]
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: Config,
|
|
||||||
instruments: List[ExchangeInstrument],
|
|
||||||
):
|
|
||||||
from pairs_trading.lib.pt_strategy.pt_model import PairsTradingModel
|
|
||||||
|
|
||||||
self.config_ = config
|
|
||||||
self.model_ = PairsTradingModel.create(config)
|
|
||||||
self.user_data_ = {}
|
|
||||||
self.instruments_ = instruments
|
|
||||||
self.instruments_[0].user_data_["symbol"] = instruments[0].instrument_id().split("-", 1)[1]
|
|
||||||
self.instruments_[1].user_data_["symbol"] = instruments[1].instrument_id().split("-", 1)[1]
|
|
||||||
self.stat_model_price_ = config.get_value("model/stat_model_price")
|
|
||||||
|
|
||||||
def run(self, market_data: pd.DataFrame, data_params: DataWindowParams) -> Prediction: # type: ignore[assignment]
|
|
||||||
self.market_data_ = market_data[
|
|
||||||
data_params.training_start_index_ : data_params.training_start_index_ + data_params.training_size_
|
|
||||||
]
|
|
||||||
return self.model_.predict(pair=self)
|
|
||||||
|
|
||||||
def colnames(self) -> List[str]:
|
|
||||||
return [
|
|
||||||
f"{self.stat_model_price_}_{self.symbol_a()}",
|
|
||||||
f"{self.stat_model_price_}_{self.symbol_b()}",
|
|
||||||
]
|
|
||||||
def symbol_a(self) -> str:
|
|
||||||
return self.get_instrument_a().user_data_["symbol"]
|
|
||||||
|
|
||||||
def symbol_b(self) -> str:
|
|
||||||
return self.get_instrument_b().user_data_["symbol"]
|
|
||||||
|
|
||||||
def get_instrument_a(self) -> ExchangeInstrument:
|
|
||||||
return self.instruments_[0]
|
|
||||||
|
|
||||||
def get_instrument_b(self) -> ExchangeInstrument:
|
|
||||||
return self.instruments_[1]
|
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
|
||||||
return (
|
|
||||||
f"{self.__class__.__name__}:"
|
|
||||||
f" symbol_a={self.symbol_a()},"
|
|
||||||
f" symbol_b={self.symbol_b()},"
|
|
||||||
f" model={self.model_.__class__.__name__}"
|
|
||||||
)
|
|
||||||
|
|
||||||
class ResearchTradingPair(TradingPair):
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config: Config,
|
|
||||||
instruments: List[ExchangeInstrument],
|
|
||||||
):
|
|
||||||
assert len(instruments) == 2, "Trading pair must have exactly 2 instruments"
|
|
||||||
super().__init__(config=config, instruments=instruments)
|
|
||||||
|
|
||||||
self.user_data_ = {
|
|
||||||
"state": PairState.INITIAL,
|
|
||||||
}
|
|
||||||
|
|
||||||
def is_closed(self) -> bool:
|
|
||||||
return self.user_data_["state"] in [
|
|
||||||
PairState.CLOSE,
|
|
||||||
PairState.CLOSE_POSITION,
|
|
||||||
PairState.CLOSE_STOP_LOSS,
|
|
||||||
PairState.CLOSE_STOP_PROFIT,
|
|
||||||
]
|
|
||||||
|
|
||||||
def is_open(self) -> bool:
|
|
||||||
return not self.is_closed()
|
|
||||||
|
|
||||||
def exec_prices_colnames(self) -> List[str]:
|
|
||||||
return [
|
|
||||||
f"exec_price_{self.symbol_a()}",
|
|
||||||
f"exec_price_{self.symbol_b()}",
|
|
||||||
]
|
|
||||||
|
|
||||||
def to_stop_close_conditions(self, predicted_row: pd.Series) -> bool:
|
|
||||||
config = self.config_
|
|
||||||
if (
|
|
||||||
not config.key_exists("stop_close_conditions")
|
|
||||||
or config.get_value("stop_close_conditions") is None
|
|
||||||
):
|
|
||||||
return False
|
|
||||||
if "profit" in config.get_value("stop_close_conditions"):
|
|
||||||
current_return = self._current_return(predicted_row)
|
|
||||||
#
|
|
||||||
# print(f"time={predicted_row['tstamp']} current_return={current_return}")
|
|
||||||
#
|
|
||||||
if current_return >= config.get_value("stop_close_conditions")["profit"]:
|
|
||||||
print(f"STOP PROFIT: {current_return}")
|
|
||||||
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_PROFIT
|
|
||||||
return True
|
|
||||||
if "loss" in config.get_value("stop_close_conditions"):
|
|
||||||
if current_return <= config.get_value("stop_close_conditions")["loss"]:
|
|
||||||
print(f"STOP LOSS: {current_return}")
|
|
||||||
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_LOSS
|
|
||||||
return True
|
|
||||||
return False
|
|
||||||
|
|
||||||
def _current_return(self, predicted_row: pd.Series) -> float:
|
|
||||||
if "open_trades" in self.user_data_:
|
|
||||||
open_trades = self.user_data_["open_trades"]
|
|
||||||
if len(open_trades) == 0:
|
|
||||||
return 0.0
|
|
||||||
|
|
||||||
def _single_instrument_return(symbol: str) -> float:
|
|
||||||
instrument_open_trades = open_trades[open_trades["symbol"] == symbol]
|
|
||||||
instrument_open_price = instrument_open_trades["price"].iloc[0]
|
|
||||||
|
|
||||||
sign = -1 if instrument_open_trades["side"].iloc[0] == "SELL" else 1
|
|
||||||
instrument_price = predicted_row[f"{self.stat_model_price_}_{symbol}"]
|
|
||||||
instrument_return = (
|
|
||||||
sign
|
|
||||||
* (instrument_price - instrument_open_price)
|
|
||||||
/ instrument_open_price
|
|
||||||
)
|
|
||||||
return float(instrument_return) * 100.0
|
|
||||||
|
|
||||||
instrument_a_return = _single_instrument_return(self.symbol_a())
|
|
||||||
instrument_b_return = _single_instrument_return(self.symbol_b())
|
|
||||||
return instrument_a_return + instrument_b_return
|
|
||||||
return 0.0
|
|
||||||
|
|
||||||
def on_open_trades(self, trades: pd.DataFrame) -> None:
|
|
||||||
if "close_trades" in self.user_data_:
|
|
||||||
del self.user_data_["close_trades"]
|
|
||||||
self.user_data_["open_trades"] = trades
|
|
||||||
|
|
||||||
def on_close_trades(self, trades: pd.DataFrame) -> None:
|
|
||||||
del self.user_data_["open_trades"]
|
|
||||||
self.user_data_["close_trades"] = trades
|
|
||||||
|
|
||||||
def add_outstanding_position(
|
|
||||||
self,
|
|
||||||
symbol: str,
|
|
||||||
open_side: str,
|
|
||||||
open_px: float,
|
|
||||||
open_tstamp: datetime,
|
|
||||||
last_mkt_data_row: pd.Series,
|
|
||||||
) -> None:
|
|
||||||
assert symbol in [
|
|
||||||
self.symbol_a(),
|
|
||||||
self.symbol_b(),
|
|
||||||
], "Symbol must be one of the pair's symbols"
|
|
||||||
assert open_side in ["BUY", "SELL"], "Open side must be either BUY or SELL"
|
|
||||||
assert open_px > 0, "Open price must be greater than 0"
|
|
||||||
assert open_tstamp is not None, "Open timestamp must be provided"
|
|
||||||
assert last_mkt_data_row is not None, "Last market data row must be provided"
|
|
||||||
|
|
||||||
exec_prices_col_a, exec_prices_col_b = self.exec_prices_colnames()
|
|
||||||
if symbol == self.symbol_a():
|
|
||||||
last_px = last_mkt_data_row[exec_prices_col_a]
|
|
||||||
else:
|
|
||||||
last_px = last_mkt_data_row[exec_prices_col_b]
|
|
||||||
|
|
||||||
funding_per_position = self.config_.get_value("funding_per_pair") / 2
|
|
||||||
shares = funding_per_position / open_px
|
|
||||||
if open_side == "SELL":
|
|
||||||
shares = -shares
|
|
||||||
|
|
||||||
if "outstanding_positions" not in self.user_data_:
|
|
||||||
self.user_data_["outstanding_positions"] = []
|
|
||||||
|
|
||||||
self.user_data_["outstanding_positions"].append(
|
|
||||||
{
|
|
||||||
"symbol": symbol,
|
|
||||||
"open_side": open_side,
|
|
||||||
"open_px": open_px,
|
|
||||||
"shares": shares,
|
|
||||||
"open_tstamp": open_tstamp,
|
|
||||||
"last_px": last_px,
|
|
||||||
"last_tstamp": last_mkt_data_row["tstamp"],
|
|
||||||
"last_value": last_px * shares,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
class LiveTradingPair(TradingPair):
|
|
||||||
|
|
||||||
def __init__(self, config: Config, instruments: List[ExchangeInstrument]):
|
|
||||||
super().__init__(config, instruments)
|
|
||||||
|
|
||||||
def to_stop_close_conditions(self, predicted_row: pd.Series) -> bool:
|
|
||||||
# TODO LiveTradingPair.to_stop_close_conditions()
|
|
||||||
return False
|
|
||||||
|
|
||||||
|
|
||||||
52
lib/pt_trading/fit_method.py
Normal file
52
lib/pt_trading/fit_method.py
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from enum import Enum
|
||||||
|
from typing import Dict, Optional, cast
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from pt_trading.results import BacktestResult
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
|
NanoPerMin = 1e9
|
||||||
|
|
||||||
|
|
||||||
|
class PairsTradingFitMethod(ABC):
|
||||||
|
TRADES_COLUMNS = [
|
||||||
|
"time",
|
||||||
|
"symbol",
|
||||||
|
"side",
|
||||||
|
"action",
|
||||||
|
"price",
|
||||||
|
"disequilibrium",
|
||||||
|
"scaled_disequilibrium",
|
||||||
|
"signed_scaled_disequilibrium",
|
||||||
|
"pair",
|
||||||
|
]
|
||||||
|
@staticmethod
|
||||||
|
def create(config: Dict) -> PairsTradingFitMethod:
|
||||||
|
import importlib
|
||||||
|
fit_method_class_name = config.get("fit_method_class", None)
|
||||||
|
assert fit_method_class_name is not None
|
||||||
|
module_name, class_name = fit_method_class_name.rsplit(".", 1)
|
||||||
|
module = importlib.import_module(module_name)
|
||||||
|
fit_method = getattr(module, class_name)()
|
||||||
|
return cast(PairsTradingFitMethod, fit_method)
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def run_pair(
|
||||||
|
self, pair: TradingPair, bt_result: BacktestResult
|
||||||
|
) -> Optional[pd.DataFrame]: ...
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def reset(self) -> None: ...
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def create_trading_pair(
|
||||||
|
self,
|
||||||
|
config: Dict,
|
||||||
|
market_data: pd.DataFrame,
|
||||||
|
symbol_a: str,
|
||||||
|
symbol_b: str,
|
||||||
|
) -> TradingPair: ...
|
||||||
|
|
||||||
743
lib/pt_trading/results.py
Normal file
743
lib/pt_trading/results.py
Normal file
@ -0,0 +1,743 @@
|
|||||||
|
import os
|
||||||
|
import sqlite3
|
||||||
|
from datetime import date, datetime
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
|
|
||||||
|
# Recommended replacement adapters and converters for Python 3.12+
|
||||||
|
# From: https://docs.python.org/3/library/sqlite3.html#sqlite3-adapter-converter-recipes
|
||||||
|
def adapt_date_iso(val: date) -> str:
|
||||||
|
"""Adapt datetime.date to ISO 8601 date."""
|
||||||
|
return val.isoformat()
|
||||||
|
|
||||||
|
|
||||||
|
def adapt_datetime_iso(val: datetime) -> str:
|
||||||
|
"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""
|
||||||
|
return val.isoformat()
|
||||||
|
|
||||||
|
|
||||||
|
def convert_date(val: bytes) -> date:
|
||||||
|
"""Convert ISO 8601 date to datetime.date object."""
|
||||||
|
return datetime.fromisoformat(val.decode()).date()
|
||||||
|
|
||||||
|
|
||||||
|
def convert_datetime(val: bytes) -> datetime:
|
||||||
|
"""Convert ISO 8601 datetime to datetime.datetime object."""
|
||||||
|
return datetime.fromisoformat(val.decode())
|
||||||
|
|
||||||
|
|
||||||
|
# Register the adapters and converters
|
||||||
|
sqlite3.register_adapter(date, adapt_date_iso)
|
||||||
|
sqlite3.register_adapter(datetime, adapt_datetime_iso)
|
||||||
|
sqlite3.register_converter("date", convert_date)
|
||||||
|
sqlite3.register_converter("datetime", convert_datetime)
|
||||||
|
|
||||||
|
|
||||||
|
def create_result_database(db_path: str) -> None:
|
||||||
|
"""
|
||||||
|
Create the SQLite database and required tables if they don't exist.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Create directory if it doesn't exist
|
||||||
|
db_dir = os.path.dirname(db_path)
|
||||||
|
if db_dir and not os.path.exists(db_dir):
|
||||||
|
os.makedirs(db_dir, exist_ok=True)
|
||||||
|
print(f"Created directory: {db_dir}")
|
||||||
|
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
# Create the pt_bt_results table for completed trades
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
CREATE TABLE IF NOT EXISTS pt_bt_results (
|
||||||
|
date DATE,
|
||||||
|
pair TEXT,
|
||||||
|
symbol TEXT,
|
||||||
|
open_time DATETIME,
|
||||||
|
open_side TEXT,
|
||||||
|
open_price REAL,
|
||||||
|
open_quantity INTEGER,
|
||||||
|
open_disequilibrium REAL,
|
||||||
|
close_time DATETIME,
|
||||||
|
close_side TEXT,
|
||||||
|
close_price REAL,
|
||||||
|
close_quantity INTEGER,
|
||||||
|
close_disequilibrium REAL,
|
||||||
|
symbol_return REAL,
|
||||||
|
pair_return REAL,
|
||||||
|
close_condition TEXT
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
cursor.execute("DELETE FROM pt_bt_results;")
|
||||||
|
|
||||||
|
# Create the outstanding_positions table for open positions
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
CREATE TABLE IF NOT EXISTS outstanding_positions (
|
||||||
|
date DATE,
|
||||||
|
pair TEXT,
|
||||||
|
symbol TEXT,
|
||||||
|
position_quantity REAL,
|
||||||
|
last_price REAL,
|
||||||
|
unrealized_return REAL,
|
||||||
|
open_price REAL,
|
||||||
|
open_side TEXT
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
cursor.execute("DELETE FROM outstanding_positions;")
|
||||||
|
|
||||||
|
# Create the config table for storing configuration JSON for reference
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
CREATE TABLE IF NOT EXISTS config (
|
||||||
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||||
|
run_timestamp DATETIME,
|
||||||
|
config_file_path TEXT,
|
||||||
|
config_json TEXT,
|
||||||
|
fit_method_class TEXT,
|
||||||
|
datafiles TEXT,
|
||||||
|
instruments TEXT
|
||||||
|
)
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
cursor.execute("DELETE FROM config;")
|
||||||
|
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error creating result database: {str(e)}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
|
||||||
|
def store_config_in_database(
|
||||||
|
db_path: str,
|
||||||
|
config_file_path: str,
|
||||||
|
config: Dict,
|
||||||
|
fit_method_class: str,
|
||||||
|
datafiles: List[Tuple[str, str]],
|
||||||
|
instruments: List[Dict[str, str]],
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Store configuration information in the database for reference.
|
||||||
|
"""
|
||||||
|
import json
|
||||||
|
|
||||||
|
if db_path.upper() == "NONE":
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
# Convert config to JSON string
|
||||||
|
config_json = json.dumps(config, indent=2, default=str)
|
||||||
|
|
||||||
|
# Convert lists to comma-separated strings for storage
|
||||||
|
datafiles_str = ", ".join([f"{datafile}" for _, datafile in datafiles])
|
||||||
|
instruments_str = ", ".join(
|
||||||
|
[
|
||||||
|
f"{inst['symbol']}:{inst['instrument_type']}:{inst['exchange_id']}"
|
||||||
|
for inst in instruments
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Insert configuration record
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
INSERT INTO config (
|
||||||
|
run_timestamp, config_file_path, config_json, fit_method_class, datafiles, instruments
|
||||||
|
) VALUES (?, ?, ?, ?, ?, ?)
|
||||||
|
""",
|
||||||
|
(
|
||||||
|
datetime.now(),
|
||||||
|
config_file_path,
|
||||||
|
config_json,
|
||||||
|
fit_method_class,
|
||||||
|
datafiles_str,
|
||||||
|
instruments_str,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
print(f"Configuration stored in database")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error storing configuration in database: {str(e)}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
|
||||||
|
def convert_timestamp(timestamp: Any) -> Optional[datetime]:
|
||||||
|
"""Convert pandas Timestamp to Python datetime object for SQLite compatibility."""
|
||||||
|
if timestamp is None:
|
||||||
|
return None
|
||||||
|
if isinstance(timestamp, pd.Timestamp):
|
||||||
|
return timestamp.to_pydatetime()
|
||||||
|
elif isinstance(timestamp, datetime):
|
||||||
|
return timestamp
|
||||||
|
elif isinstance(timestamp, date):
|
||||||
|
return datetime.combine(timestamp, datetime.min.time())
|
||||||
|
elif isinstance(timestamp, str):
|
||||||
|
return datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
|
||||||
|
elif isinstance(timestamp, int):
|
||||||
|
return datetime.fromtimestamp(timestamp)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"Unsupported timestamp type: {type(timestamp)}")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class BacktestResult:
|
||||||
|
"""
|
||||||
|
Class to handle backtest results, trades tracking, PnL calculations, and reporting.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: Dict[str, Any]):
|
||||||
|
self.config = config
|
||||||
|
self.trades: Dict[str, Dict[str, Any]] = {}
|
||||||
|
self.total_realized_pnl = 0.0
|
||||||
|
self.outstanding_positions: List[Dict[str, Any]] = []
|
||||||
|
self.pairs_trades_: Dict[str, List[Dict[str, Any]]] = {}
|
||||||
|
|
||||||
|
def add_trade(
|
||||||
|
self,
|
||||||
|
pair_nm: str,
|
||||||
|
symbol: str,
|
||||||
|
side: str,
|
||||||
|
action: str,
|
||||||
|
price: Any,
|
||||||
|
disequilibrium: Optional[float] = None,
|
||||||
|
scaled_disequilibrium: Optional[float] = None,
|
||||||
|
timestamp: Optional[datetime] = None,
|
||||||
|
status: Optional[str] = None,
|
||||||
|
) -> None:
|
||||||
|
"""Add a trade to the results tracking."""
|
||||||
|
pair_nm = str(pair_nm)
|
||||||
|
|
||||||
|
if pair_nm not in self.trades:
|
||||||
|
self.trades[pair_nm] = {symbol: []}
|
||||||
|
if symbol not in self.trades[pair_nm]:
|
||||||
|
self.trades[pair_nm][symbol] = []
|
||||||
|
self.trades[pair_nm][symbol].append(
|
||||||
|
{
|
||||||
|
"symbol": symbol,
|
||||||
|
"side": side,
|
||||||
|
"action": action,
|
||||||
|
"price": price,
|
||||||
|
"disequilibrium": disequilibrium,
|
||||||
|
"scaled_disequilibrium": scaled_disequilibrium,
|
||||||
|
"timestamp": timestamp,
|
||||||
|
"status": status,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
def add_outstanding_position(self, position: Dict[str, Any]) -> None:
|
||||||
|
"""Add an outstanding position to tracking."""
|
||||||
|
self.outstanding_positions.append(position)
|
||||||
|
|
||||||
|
def add_realized_pnl(self, realized_pnl: float) -> None:
|
||||||
|
"""Add realized PnL to the total."""
|
||||||
|
self.total_realized_pnl += realized_pnl
|
||||||
|
|
||||||
|
def get_total_realized_pnl(self) -> float:
|
||||||
|
"""Get total realized PnL."""
|
||||||
|
return self.total_realized_pnl
|
||||||
|
|
||||||
|
def get_outstanding_positions(self) -> List[Dict[str, Any]]:
|
||||||
|
"""Get all outstanding positions."""
|
||||||
|
return self.outstanding_positions
|
||||||
|
|
||||||
|
def get_trades(self) -> Dict[str, Dict[str, Any]]:
|
||||||
|
"""Get all trades."""
|
||||||
|
return self.trades
|
||||||
|
|
||||||
|
def clear_trades(self) -> None:
|
||||||
|
"""Clear all trades (used when processing new files)."""
|
||||||
|
self.trades.clear()
|
||||||
|
|
||||||
|
def collect_single_day_results(self, pairs_trades: List[pd.DataFrame]) -> None:
|
||||||
|
"""Collect and process single day trading results."""
|
||||||
|
result = pd.concat(pairs_trades, ignore_index=True)
|
||||||
|
result["time"] = pd.to_datetime(result["time"])
|
||||||
|
result = result.set_index("time").sort_index()
|
||||||
|
|
||||||
|
print("\n -------------- Suggested Trades ")
|
||||||
|
print(result)
|
||||||
|
|
||||||
|
for row in result.itertuples():
|
||||||
|
side = row.side
|
||||||
|
action = row.action
|
||||||
|
symbol = row.symbol
|
||||||
|
price = row.price
|
||||||
|
disequilibrium = getattr(row, "disequilibrium", None)
|
||||||
|
scaled_disequilibrium = getattr(row, "scaled_disequilibrium", None)
|
||||||
|
if hasattr(row, "time"):
|
||||||
|
timestamp = getattr(row, "time")
|
||||||
|
else:
|
||||||
|
timestamp = convert_timestamp(row.Index)
|
||||||
|
status = row.status
|
||||||
|
self.add_trade(
|
||||||
|
pair_nm=str(row.pair),
|
||||||
|
symbol=str(symbol),
|
||||||
|
side=str(side),
|
||||||
|
action=str(action),
|
||||||
|
price=float(str(price)),
|
||||||
|
disequilibrium=disequilibrium,
|
||||||
|
scaled_disequilibrium=scaled_disequilibrium,
|
||||||
|
timestamp=timestamp,
|
||||||
|
status=str(status) if status is not None else "?",
|
||||||
|
)
|
||||||
|
|
||||||
|
def print_single_day_results(self) -> None:
|
||||||
|
"""Print single day results summary."""
|
||||||
|
for pair, symbols in self.trades.items():
|
||||||
|
print(f"\n--- {pair} ---")
|
||||||
|
for symbol, trades in symbols.items():
|
||||||
|
for trade_data in trades:
|
||||||
|
if len(trade_data) >= 2:
|
||||||
|
side, price = trade_data[:2]
|
||||||
|
print(f"{symbol} {side} at ${price}")
|
||||||
|
|
||||||
|
def print_results_summary(self, all_results: Dict[str, Dict[str, Any]]) -> None:
|
||||||
|
"""Print summary of all processed files."""
|
||||||
|
print("\n====== Summary of All Processed Files ======")
|
||||||
|
for filename, data in all_results.items():
|
||||||
|
trade_count = sum(
|
||||||
|
len(trades)
|
||||||
|
for symbol_trades in data["trades"].values()
|
||||||
|
for trades in symbol_trades.values()
|
||||||
|
)
|
||||||
|
print(f"{filename}: {trade_count} trades")
|
||||||
|
|
||||||
|
def calculate_returns(self, all_results: Dict[str, Dict[str, Any]]) -> None:
|
||||||
|
"""Calculate and print returns by day and pair."""
|
||||||
|
def _symbol_return(trade1_side: str, trade1_px: float, trade2_side: str, trade2_px: float) -> float:
|
||||||
|
if trade1_side == "BUY" and trade2_side == "SELL":
|
||||||
|
return (trade2_px - trade1_px) / trade1_px * 100
|
||||||
|
elif trade1_side == "SELL" and trade2_side == "BUY":
|
||||||
|
return (trade1_px - trade2_px) / trade1_px * 100
|
||||||
|
else:
|
||||||
|
return 0
|
||||||
|
|
||||||
|
print("\n====== Returns By Day and Pair ======")
|
||||||
|
|
||||||
|
trades = []
|
||||||
|
for filename, data in all_results.items():
|
||||||
|
pairs = list(data["trades"].keys())
|
||||||
|
for pair in pairs:
|
||||||
|
self.pairs_trades_[pair] = []
|
||||||
|
trades_dict = data["trades"][pair]
|
||||||
|
for symbol in trades_dict.keys():
|
||||||
|
trades.extend(trades_dict[symbol])
|
||||||
|
trades = sorted(trades, key=lambda x: (x["timestamp"], x["symbol"]))
|
||||||
|
|
||||||
|
print(f"\n--- {filename} ---")
|
||||||
|
|
||||||
|
self.outstanding_positions = data["outstanding_positions"]
|
||||||
|
|
||||||
|
day_return = 0.0
|
||||||
|
for idx in range(0, len(trades), 4):
|
||||||
|
symbol_a = trades[idx]["symbol"]
|
||||||
|
trade_a_1 = trades[idx]
|
||||||
|
trade_a_2 = trades[idx + 2]
|
||||||
|
|
||||||
|
symbol_b = trades[idx + 1]["symbol"]
|
||||||
|
trade_b_1 = trades[idx + 1]
|
||||||
|
trade_b_2 = trades[idx + 3]
|
||||||
|
|
||||||
|
symbol_return = 0
|
||||||
|
assert (
|
||||||
|
trade_a_1["timestamp"] < trade_a_2["timestamp"]
|
||||||
|
), f"Trade 1: {trade_a_1['timestamp']} is not less than Trade 2: {trade_a_2['timestamp']}"
|
||||||
|
assert (
|
||||||
|
trade_a_1["action"] == "OPEN" and trade_a_2["action"] == "CLOSE"
|
||||||
|
), f"Trade 1: {trade_a_1['action']} and Trade 2: {trade_a_2['action']} are the same"
|
||||||
|
|
||||||
|
# Calculate return based on action combination
|
||||||
|
trade_return = 0
|
||||||
|
symbol_a_return = _symbol_return(trade_a_1["side"], trade_a_1["price"], trade_a_2["side"], trade_a_2["price"])
|
||||||
|
symbol_b_return = _symbol_return(trade_b_1["side"], trade_b_1["price"], trade_b_2["side"], trade_b_2["price"])
|
||||||
|
|
||||||
|
pair_return = symbol_a_return + symbol_b_return
|
||||||
|
|
||||||
|
self.pairs_trades_[pair].append(
|
||||||
|
{
|
||||||
|
"symbol": symbol_a,
|
||||||
|
"open_side": trade_a_1["side"],
|
||||||
|
"open_action": trade_a_1["action"],
|
||||||
|
"open_price": trade_a_1["price"],
|
||||||
|
"close_side": trade_a_2["side"],
|
||||||
|
"close_action": trade_a_2["action"],
|
||||||
|
"close_price": trade_a_2["price"],
|
||||||
|
"symbol_return": symbol_a_return,
|
||||||
|
"open_disequilibrium": trade_a_1["disequilibrium"],
|
||||||
|
"open_scaled_disequilibrium": trade_a_1["scaled_disequilibrium"],
|
||||||
|
"close_disequilibrium": trade_a_2["disequilibrium"],
|
||||||
|
"close_scaled_disequilibrium": trade_a_2["scaled_disequilibrium"],
|
||||||
|
"open_time": trade_a_1["timestamp"],
|
||||||
|
"close_time": trade_a_2["timestamp"],
|
||||||
|
"shares": self.config["funding_per_pair"] / 2 / trade_a_1["price"],
|
||||||
|
"is_completed": True,
|
||||||
|
"close_condition": trade_a_2["status"],
|
||||||
|
"pair_return": pair_return
|
||||||
|
}
|
||||||
|
)
|
||||||
|
self.pairs_trades_[pair].append(
|
||||||
|
{
|
||||||
|
"symbol": symbol_b,
|
||||||
|
"open_side": trade_b_1["side"],
|
||||||
|
"open_action": trade_b_1["action"],
|
||||||
|
"open_price": trade_b_1["price"],
|
||||||
|
"close_side": trade_b_2["side"],
|
||||||
|
"close_action": trade_b_2["action"],
|
||||||
|
"close_price": trade_b_2["price"],
|
||||||
|
"symbol_return": symbol_b_return,
|
||||||
|
"open_disequilibrium": trade_b_1["disequilibrium"],
|
||||||
|
"open_scaled_disequilibrium": trade_b_1["scaled_disequilibrium"],
|
||||||
|
"close_disequilibrium": trade_b_2["disequilibrium"],
|
||||||
|
"close_scaled_disequilibrium": trade_b_2["scaled_disequilibrium"],
|
||||||
|
"open_time": trade_b_1["timestamp"],
|
||||||
|
"close_time": trade_b_2["timestamp"],
|
||||||
|
"shares": self.config["funding_per_pair"] / 2 / trade_b_1["price"],
|
||||||
|
"is_completed": True,
|
||||||
|
"close_condition": trade_b_2["status"],
|
||||||
|
"pair_return": pair_return
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# Print pair returns with disequilibrium information
|
||||||
|
day_return = 0.0
|
||||||
|
if pair in self.pairs_trades_:
|
||||||
|
|
||||||
|
print(f"{pair}:")
|
||||||
|
pair_return = 0.0
|
||||||
|
for trd in self.pairs_trades_[pair]:
|
||||||
|
disequil_info = ""
|
||||||
|
if (
|
||||||
|
trd["open_scaled_disequilibrium"] is not None
|
||||||
|
and trd["open_scaled_disequilibrium"] is not None
|
||||||
|
):
|
||||||
|
disequil_info = (
|
||||||
|
f' | Open Dis-eq: {trd["open_scaled_disequilibrium"]:.2f},'
|
||||||
|
f' Close Dis-eq: {trd["close_scaled_disequilibrium"]:.2f}'
|
||||||
|
)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f' {trd["open_time"].time()}-{trd["close_time"].time()} {trd["symbol"]}: '
|
||||||
|
f' {trd["open_side"]} @ ${trd["open_price"]:.2f},'
|
||||||
|
f' {trd["close_side"]} @ ${trd["close_price"]:.2f},'
|
||||||
|
f' Return: {trd["symbol_return"]:.2f}%{disequil_info}'
|
||||||
|
)
|
||||||
|
pair_return += trd["symbol_return"]
|
||||||
|
|
||||||
|
print(f" Pair Total Return: {pair_return:.2f}%")
|
||||||
|
day_return += pair_return
|
||||||
|
|
||||||
|
# Print day total return and add to global realized PnL
|
||||||
|
if day_return != 0:
|
||||||
|
print(f" Day Total Return: {day_return:.2f}%")
|
||||||
|
self.add_realized_pnl(day_return)
|
||||||
|
|
||||||
|
def print_outstanding_positions(self) -> None:
|
||||||
|
"""Print all outstanding positions with share quantities and current values."""
|
||||||
|
if not self.get_outstanding_positions():
|
||||||
|
print("\n====== NO OUTSTANDING POSITIONS ======")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"\n====== OUTSTANDING POSITIONS ======")
|
||||||
|
print(
|
||||||
|
f"{'Pair':<15}"
|
||||||
|
f" {'Symbol':<10}"
|
||||||
|
f" {'Side':<4}"
|
||||||
|
f" {'Shares':<10}"
|
||||||
|
f" {'Open $':<8}"
|
||||||
|
f" {'Current $':<10}"
|
||||||
|
f" {'Value $':<12}"
|
||||||
|
f" {'Disequilibrium':<15}"
|
||||||
|
)
|
||||||
|
print("-" * 100)
|
||||||
|
|
||||||
|
total_value = 0.0
|
||||||
|
|
||||||
|
for pos in self.get_outstanding_positions():
|
||||||
|
# Print position A
|
||||||
|
print(
|
||||||
|
f"{pos['pair']:<15}"
|
||||||
|
f" {pos['symbol_a']:<10}"
|
||||||
|
f" {pos['side_a']:<4}"
|
||||||
|
f" {pos['shares_a']:<10.2f}"
|
||||||
|
f" {pos['open_px_a']:<8.2f}"
|
||||||
|
f" {pos['current_px_a']:<10.2f}"
|
||||||
|
f" {pos['current_value_a']:<12.2f}"
|
||||||
|
f" {'':<15}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Print position B
|
||||||
|
print(
|
||||||
|
f"{'':<15}"
|
||||||
|
f" {pos['symbol_b']:<10}"
|
||||||
|
f" {pos['side_b']:<4}"
|
||||||
|
f" {pos['shares_b']:<10.2f}"
|
||||||
|
f" {pos['open_px_b']:<8.2f}"
|
||||||
|
f" {pos['current_px_b']:<10.2f}"
|
||||||
|
f" {pos['current_value_b']:<12.2f}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Print pair totals with disequilibrium info
|
||||||
|
print(
|
||||||
|
f"{'':<15}"
|
||||||
|
f" {'PAIR TOTAL':<10}"
|
||||||
|
f" {'':<4}"
|
||||||
|
f" {'':<10}"
|
||||||
|
f" {'':<8}"
|
||||||
|
f" {'':<10}"
|
||||||
|
f" {pos['total_current_value']:<12.2f}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Print disequilibrium details
|
||||||
|
print(
|
||||||
|
f"{'':<15}"
|
||||||
|
f" {'DISEQUIL':<10}"
|
||||||
|
f" {'':<4}"
|
||||||
|
f" {'':<10}"
|
||||||
|
f" {'':<8}"
|
||||||
|
f" {'':<10}"
|
||||||
|
f" Raw: {pos['current_disequilibrium']:<6.4f}"
|
||||||
|
f" Scaled: {pos['current_scaled_disequilibrium']:<6.4f}"
|
||||||
|
)
|
||||||
|
|
||||||
|
print("-" * 100)
|
||||||
|
|
||||||
|
total_value += pos["total_current_value"]
|
||||||
|
|
||||||
|
print(f"{'TOTAL OUTSTANDING VALUE':<80} ${total_value:<12.2f}")
|
||||||
|
|
||||||
|
def print_grand_totals(self) -> None:
|
||||||
|
"""Print grand totals across all pairs."""
|
||||||
|
print(f"\n====== GRAND TOTALS ACROSS ALL PAIRS ======")
|
||||||
|
print(f"Total Realized PnL: {self.get_total_realized_pnl():.2f}%")
|
||||||
|
|
||||||
|
def handle_outstanding_position(
|
||||||
|
self,
|
||||||
|
pair: TradingPair,
|
||||||
|
pair_result_df: pd.DataFrame,
|
||||||
|
last_row_index: int,
|
||||||
|
open_side_a: str,
|
||||||
|
open_side_b: str,
|
||||||
|
open_px_a: float,
|
||||||
|
open_px_b: float,
|
||||||
|
open_tstamp: datetime,
|
||||||
|
) -> Tuple[float, float, float]:
|
||||||
|
"""
|
||||||
|
Handle calculation and tracking of outstanding positions when no close signal is found.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
pair: TradingPair object
|
||||||
|
pair_result_df: DataFrame with pair results
|
||||||
|
last_row_index: Index of the last row in the data
|
||||||
|
open_side_a, open_side_b: Trading sides for symbols A and B
|
||||||
|
open_px_a, open_px_b: Opening prices for symbols A and B
|
||||||
|
open_tstamp: Opening timestamp
|
||||||
|
"""
|
||||||
|
if pair_result_df is None or pair_result_df.empty:
|
||||||
|
return 0, 0, 0
|
||||||
|
|
||||||
|
last_row = pair_result_df.loc[last_row_index]
|
||||||
|
last_tstamp = last_row["tstamp"]
|
||||||
|
colname_a, colname_b = pair.exec_prices_colnames()
|
||||||
|
last_px_a = last_row[colname_a]
|
||||||
|
last_px_b = last_row[colname_b]
|
||||||
|
|
||||||
|
# Calculate share quantities based on funding per pair
|
||||||
|
# Split funding equally between the two positions
|
||||||
|
funding_per_position = self.config["funding_per_pair"] / 2
|
||||||
|
shares_a = funding_per_position / open_px_a
|
||||||
|
shares_b = funding_per_position / open_px_b
|
||||||
|
|
||||||
|
# Calculate current position values (shares * current price)
|
||||||
|
current_value_a = shares_a * last_px_a * (-1 if open_side_a == "SELL" else 1)
|
||||||
|
current_value_b = shares_b * last_px_b * (-1 if open_side_b == "SELL" else 1)
|
||||||
|
total_current_value = current_value_a + current_value_b
|
||||||
|
|
||||||
|
# Get disequilibrium information
|
||||||
|
current_disequilibrium = last_row["disequilibrium"]
|
||||||
|
current_scaled_disequilibrium = last_row["scaled_disequilibrium"]
|
||||||
|
|
||||||
|
# Store outstanding positions
|
||||||
|
self.add_outstanding_position(
|
||||||
|
{
|
||||||
|
"pair": str(pair),
|
||||||
|
"symbol_a": pair.symbol_a_,
|
||||||
|
"symbol_b": pair.symbol_b_,
|
||||||
|
"side_a": open_side_a,
|
||||||
|
"side_b": open_side_b,
|
||||||
|
"shares_a": shares_a,
|
||||||
|
"shares_b": shares_b,
|
||||||
|
"open_px_a": open_px_a,
|
||||||
|
"open_px_b": open_px_b,
|
||||||
|
"current_px_a": last_px_a,
|
||||||
|
"current_px_b": last_px_b,
|
||||||
|
"current_value_a": current_value_a,
|
||||||
|
"current_value_b": current_value_b,
|
||||||
|
"total_current_value": total_current_value,
|
||||||
|
"open_time": open_tstamp,
|
||||||
|
"last_time": last_tstamp,
|
||||||
|
"current_abs_term": current_scaled_disequilibrium,
|
||||||
|
"current_disequilibrium": current_disequilibrium,
|
||||||
|
"current_scaled_disequilibrium": current_scaled_disequilibrium,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Print position details
|
||||||
|
print(f"{pair}: NO CLOSE SIGNAL FOUND - Position held until end of session")
|
||||||
|
print(f" Open: {open_tstamp} | Last: {last_tstamp}")
|
||||||
|
print(
|
||||||
|
f" {pair.symbol_a_}: {open_side_a} {shares_a:.2f} shares @ ${open_px_a:.2f} -> ${last_px_a:.2f} | Value: ${current_value_a:.2f}"
|
||||||
|
)
|
||||||
|
print(
|
||||||
|
f" {pair.symbol_b_}: {open_side_b} {shares_b:.2f} shares @ ${open_px_b:.2f} -> ${last_px_b:.2f} | Value: ${current_value_b:.2f}"
|
||||||
|
)
|
||||||
|
print(f" Total Value: ${total_current_value:.2f}")
|
||||||
|
print(
|
||||||
|
f" Disequilibrium: {current_disequilibrium:.4f} | Scaled: {current_scaled_disequilibrium:.4f}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return current_value_a, current_value_b, total_current_value
|
||||||
|
|
||||||
|
def store_results_in_database(
|
||||||
|
self, db_path: str, day: str
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Store backtest results in the SQLite database.
|
||||||
|
"""
|
||||||
|
if db_path.upper() == "NONE":
|
||||||
|
return
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Extract date from datafile name (assuming format like 20250528.mktdata.ohlcv.db)
|
||||||
|
date_str = day
|
||||||
|
|
||||||
|
# Convert to proper date format
|
||||||
|
try:
|
||||||
|
date_obj = datetime.strptime(date_str, "%Y%m%d").date()
|
||||||
|
except ValueError:
|
||||||
|
# If date parsing fails, use current date
|
||||||
|
date_obj = datetime.now().date()
|
||||||
|
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
# Process each trade from bt_result
|
||||||
|
trades = self.get_trades()
|
||||||
|
|
||||||
|
for pair_name, _ in trades.items():
|
||||||
|
|
||||||
|
# Second pass: insert completed trade records into database
|
||||||
|
for trade_pair in sorted(self.pairs_trades_[pair_name], key=lambda x: x["open_time"]):
|
||||||
|
# Only store completed trades in pt_bt_results table
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
INSERT INTO pt_bt_results (
|
||||||
|
date, pair, symbol, open_time, open_side, open_price,
|
||||||
|
open_quantity, open_disequilibrium, close_time, close_side,
|
||||||
|
close_price, close_quantity, close_disequilibrium,
|
||||||
|
symbol_return, pair_return, close_condition
|
||||||
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
||||||
|
""",
|
||||||
|
(
|
||||||
|
date_obj,
|
||||||
|
pair_name,
|
||||||
|
trade_pair["symbol"],
|
||||||
|
trade_pair["open_time"],
|
||||||
|
trade_pair["open_side"],
|
||||||
|
trade_pair["open_price"],
|
||||||
|
trade_pair["shares"],
|
||||||
|
trade_pair["open_scaled_disequilibrium"],
|
||||||
|
trade_pair["close_time"],
|
||||||
|
trade_pair["close_side"],
|
||||||
|
trade_pair["close_price"],
|
||||||
|
trade_pair["shares"],
|
||||||
|
trade_pair["close_scaled_disequilibrium"],
|
||||||
|
trade_pair["symbol_return"],
|
||||||
|
trade_pair["pair_return"],
|
||||||
|
trade_pair["close_condition"]
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store outstanding positions in separate table
|
||||||
|
outstanding_positions = self.get_outstanding_positions()
|
||||||
|
for pos in outstanding_positions:
|
||||||
|
# Calculate position quantity (negative for SELL positions)
|
||||||
|
position_qty_a = (
|
||||||
|
pos["shares_a"] if pos["side_a"] == "BUY" else -pos["shares_a"]
|
||||||
|
)
|
||||||
|
position_qty_b = (
|
||||||
|
pos["shares_b"] if pos["side_b"] == "BUY" else -pos["shares_b"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Calculate unrealized returns
|
||||||
|
# For symbol A: (current_price - open_price) / open_price * 100 * position_direction
|
||||||
|
unrealized_return_a = (
|
||||||
|
(pos["current_px_a"] - pos["open_px_a"]) / pos["open_px_a"] * 100
|
||||||
|
) * (1 if pos["side_a"] == "BUY" else -1)
|
||||||
|
unrealized_return_b = (
|
||||||
|
(pos["current_px_b"] - pos["open_px_b"]) / pos["open_px_b"] * 100
|
||||||
|
) * (1 if pos["side_b"] == "BUY" else -1)
|
||||||
|
|
||||||
|
# Store outstanding position for symbol A
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
INSERT INTO outstanding_positions (
|
||||||
|
date, pair, symbol, position_quantity, last_price, unrealized_return, open_price, open_side
|
||||||
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
||||||
|
""",
|
||||||
|
(
|
||||||
|
date_obj,
|
||||||
|
pos["pair"],
|
||||||
|
pos["symbol_a"],
|
||||||
|
position_qty_a,
|
||||||
|
pos["current_px_a"],
|
||||||
|
unrealized_return_a,
|
||||||
|
pos["open_px_a"],
|
||||||
|
pos["side_a"],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store outstanding position for symbol B
|
||||||
|
cursor.execute(
|
||||||
|
"""
|
||||||
|
INSERT INTO outstanding_positions (
|
||||||
|
date, pair, symbol, position_quantity, last_price, unrealized_return, open_price, open_side
|
||||||
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
||||||
|
""",
|
||||||
|
(
|
||||||
|
date_obj,
|
||||||
|
pos["pair"],
|
||||||
|
pos["symbol_b"],
|
||||||
|
position_qty_b,
|
||||||
|
pos["current_px_b"],
|
||||||
|
unrealized_return_b,
|
||||||
|
pos["open_px_b"],
|
||||||
|
pos["side_b"],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
conn.commit()
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error storing results in database: {str(e)}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
317
lib/pt_trading/rolling_window_fit.py
Normal file
317
lib/pt_trading/rolling_window_fit.py
Normal file
@ -0,0 +1,317 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from enum import Enum
|
||||||
|
from typing import Any, Dict, Optional, cast
|
||||||
|
|
||||||
|
import pandas as pd # type: ignore[import]
|
||||||
|
from pt_trading.fit_method import PairsTradingFitMethod
|
||||||
|
from pt_trading.results import BacktestResult
|
||||||
|
from pt_trading.trading_pair import PairState, TradingPair
|
||||||
|
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
||||||
|
|
||||||
|
NanoPerMin = 1e9
|
||||||
|
|
||||||
|
|
||||||
|
class RollingFit(PairsTradingFitMethod):
|
||||||
|
"""
|
||||||
|
N O T E:
|
||||||
|
=========
|
||||||
|
- This class remains to be abstract
|
||||||
|
- The following methods are to be implemented in the subclass:
|
||||||
|
- create_trading_pair()
|
||||||
|
=========
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def run_pair(
|
||||||
|
self, pair: TradingPair, bt_result: BacktestResult
|
||||||
|
) -> Optional[pd.DataFrame]:
|
||||||
|
print(f"***{pair}*** STARTING....")
|
||||||
|
config = pair.config_
|
||||||
|
|
||||||
|
curr_training_start_idx = pair.get_begin_index()
|
||||||
|
end_index = pair.get_end_index()
|
||||||
|
|
||||||
|
pair.user_data_["state"] = PairState.INITIAL
|
||||||
|
# Initialize trades DataFrame with proper dtypes to avoid concatenation warnings
|
||||||
|
pair.user_data_["trades"] = pd.DataFrame(columns=self.TRADES_COLUMNS).astype(
|
||||||
|
{
|
||||||
|
"time": "datetime64[ns]",
|
||||||
|
"symbol": "string",
|
||||||
|
"side": "string",
|
||||||
|
"action": "string",
|
||||||
|
"price": "float64",
|
||||||
|
"disequilibrium": "float64",
|
||||||
|
"scaled_disequilibrium": "float64",
|
||||||
|
"pair": "object",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
training_minutes = config["training_minutes"]
|
||||||
|
curr_predicted_row_idx = 0
|
||||||
|
while True:
|
||||||
|
print(curr_training_start_idx, end="\r")
|
||||||
|
pair.get_datasets(
|
||||||
|
training_minutes=training_minutes,
|
||||||
|
training_start_index=curr_training_start_idx,
|
||||||
|
testing_size=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(pair.training_df_) < training_minutes:
|
||||||
|
print(
|
||||||
|
f"{pair}: current offset={curr_training_start_idx}"
|
||||||
|
f" * Training data length={len(pair.training_df_)} < {training_minutes}"
|
||||||
|
" * Not enough training data. Completing the job."
|
||||||
|
)
|
||||||
|
break
|
||||||
|
|
||||||
|
try:
|
||||||
|
# ================================ PREDICTION ================================
|
||||||
|
self.pair_predict_result_ = pair.predict()
|
||||||
|
except Exception as e:
|
||||||
|
raise RuntimeError(
|
||||||
|
f"{pair}: TrainingPrediction failed: {str(e)}"
|
||||||
|
) from e
|
||||||
|
|
||||||
|
# break
|
||||||
|
|
||||||
|
curr_training_start_idx += 1
|
||||||
|
if curr_training_start_idx > end_index:
|
||||||
|
break
|
||||||
|
curr_predicted_row_idx += 1
|
||||||
|
|
||||||
|
self._create_trading_signals(pair, config, bt_result)
|
||||||
|
print(f"***{pair}*** FINISHED *** Num Trades:{len(pair.user_data_['trades'])}")
|
||||||
|
|
||||||
|
return pair.get_trades()
|
||||||
|
|
||||||
|
def _create_trading_signals(
|
||||||
|
self, pair: TradingPair, config: Dict, bt_result: BacktestResult
|
||||||
|
) -> None:
|
||||||
|
|
||||||
|
predicted_df = self.pair_predict_result_
|
||||||
|
assert predicted_df is not None
|
||||||
|
|
||||||
|
open_threshold = config["dis-equilibrium_open_trshld"]
|
||||||
|
close_threshold = config["dis-equilibrium_close_trshld"]
|
||||||
|
for curr_predicted_row_idx in range(len(predicted_df)):
|
||||||
|
pred_row = predicted_df.iloc[curr_predicted_row_idx]
|
||||||
|
scaled_disequilibrium = pred_row["scaled_disequilibrium"]
|
||||||
|
|
||||||
|
if pair.user_data_["state"] in [
|
||||||
|
PairState.INITIAL,
|
||||||
|
PairState.CLOSE,
|
||||||
|
PairState.CLOSE_POSITION,
|
||||||
|
PairState.CLOSE_STOP_LOSS,
|
||||||
|
PairState.CLOSE_STOP_PROFIT,
|
||||||
|
]:
|
||||||
|
if scaled_disequilibrium >= open_threshold:
|
||||||
|
open_trades = self._get_open_trades(
|
||||||
|
pair, row=pred_row, open_threshold=open_threshold
|
||||||
|
)
|
||||||
|
if open_trades is not None:
|
||||||
|
open_trades["status"] = PairState.OPEN.name
|
||||||
|
print(f"OPEN TRADES:\n{open_trades}")
|
||||||
|
pair.add_trades(open_trades)
|
||||||
|
pair.user_data_["state"] = PairState.OPEN
|
||||||
|
pair.on_open_trades(open_trades)
|
||||||
|
|
||||||
|
elif pair.user_data_["state"] == PairState.OPEN:
|
||||||
|
if scaled_disequilibrium <= close_threshold:
|
||||||
|
close_trades = self._get_close_trades(
|
||||||
|
pair, row=pred_row, close_threshold=close_threshold
|
||||||
|
)
|
||||||
|
if close_trades is not None:
|
||||||
|
close_trades["status"] = PairState.CLOSE.name
|
||||||
|
print(f"CLOSE TRADES:\n{close_trades}")
|
||||||
|
pair.add_trades(close_trades)
|
||||||
|
pair.user_data_["state"] = PairState.CLOSE
|
||||||
|
pair.on_close_trades(close_trades)
|
||||||
|
elif pair.to_stop_close_conditions(predicted_row=pred_row):
|
||||||
|
close_trades = self._get_close_trades(
|
||||||
|
pair, row=pred_row, close_threshold=close_threshold
|
||||||
|
)
|
||||||
|
if close_trades is not None:
|
||||||
|
close_trades["status"] = pair.user_data_[
|
||||||
|
"stop_close_state"
|
||||||
|
].name
|
||||||
|
print(f"STOP CLOSE TRADES:\n{close_trades}")
|
||||||
|
pair.add_trades(close_trades)
|
||||||
|
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
||||||
|
pair.on_close_trades(close_trades)
|
||||||
|
|
||||||
|
# Outstanding positions
|
||||||
|
if pair.user_data_["state"] == PairState.OPEN:
|
||||||
|
print(f"{pair}: *** Position is NOT CLOSED. ***")
|
||||||
|
# outstanding positions
|
||||||
|
if config["close_outstanding_positions"]:
|
||||||
|
close_position_row = pd.Series(pair.market_data_.iloc[-2])
|
||||||
|
close_position_row["disequilibrium"] = 0.0
|
||||||
|
close_position_row["scaled_disequilibrium"] = 0.0
|
||||||
|
close_position_row["signed_scaled_disequilibrium"] = 0.0
|
||||||
|
|
||||||
|
close_position_trades = self._get_close_trades(
|
||||||
|
pair=pair, row=close_position_row, close_threshold=close_threshold
|
||||||
|
)
|
||||||
|
if close_position_trades is not None:
|
||||||
|
close_position_trades["status"] = PairState.CLOSE_POSITION.name
|
||||||
|
print(f"CLOSE_POSITION TRADES:\n{close_position_trades}")
|
||||||
|
pair.add_trades(close_position_trades)
|
||||||
|
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
||||||
|
pair.on_close_trades(close_position_trades)
|
||||||
|
else:
|
||||||
|
if predicted_df is not None:
|
||||||
|
bt_result.handle_outstanding_position(
|
||||||
|
pair=pair,
|
||||||
|
pair_result_df=predicted_df,
|
||||||
|
last_row_index=0,
|
||||||
|
open_side_a=pair.user_data_["open_side_a"],
|
||||||
|
open_side_b=pair.user_data_["open_side_b"],
|
||||||
|
open_px_a=pair.user_data_["open_px_a"],
|
||||||
|
open_px_b=pair.user_data_["open_px_b"],
|
||||||
|
open_tstamp=pair.user_data_["open_tstamp"],
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_open_trades(
|
||||||
|
self, pair: TradingPair, row: pd.Series, open_threshold: float
|
||||||
|
) -> Optional[pd.DataFrame]:
|
||||||
|
colname_a, colname_b = pair.exec_prices_colnames()
|
||||||
|
|
||||||
|
open_row = row
|
||||||
|
|
||||||
|
open_tstamp = open_row["tstamp"]
|
||||||
|
open_disequilibrium = open_row["disequilibrium"]
|
||||||
|
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
||||||
|
signed_scaled_disequilibrium = open_row["signed_scaled_disequilibrium"]
|
||||||
|
open_px_a = open_row[f"{colname_a}"]
|
||||||
|
open_px_b = open_row[f"{colname_b}"]
|
||||||
|
|
||||||
|
# creating the trades
|
||||||
|
# use outer single quotes so we can reference DataFrame keys with double quotes inside
|
||||||
|
print(f'OPEN_TRADES: {open_tstamp} open_scaled_disequilibrium={open_scaled_disequilibrium}')
|
||||||
|
if open_disequilibrium > 0:
|
||||||
|
open_side_a = "SELL"
|
||||||
|
open_side_b = "BUY"
|
||||||
|
close_side_a = "BUY"
|
||||||
|
close_side_b = "SELL"
|
||||||
|
else:
|
||||||
|
open_side_a = "BUY"
|
||||||
|
open_side_b = "SELL"
|
||||||
|
close_side_a = "SELL"
|
||||||
|
close_side_b = "BUY"
|
||||||
|
|
||||||
|
# save closing sides
|
||||||
|
pair.user_data_["open_side_a"] = open_side_a
|
||||||
|
pair.user_data_["open_side_b"] = open_side_b
|
||||||
|
pair.user_data_["open_px_a"] = open_px_a
|
||||||
|
pair.user_data_["open_px_b"] = open_px_b
|
||||||
|
|
||||||
|
pair.user_data_["open_tstamp"] = open_tstamp
|
||||||
|
|
||||||
|
pair.user_data_["close_side_a"] = close_side_a
|
||||||
|
pair.user_data_["close_side_b"] = close_side_b
|
||||||
|
|
||||||
|
# create opening trades
|
||||||
|
trd_signal_tuples = [
|
||||||
|
(
|
||||||
|
open_tstamp,
|
||||||
|
pair.symbol_a_,
|
||||||
|
open_side_a,
|
||||||
|
"OPEN",
|
||||||
|
open_px_a,
|
||||||
|
open_disequilibrium,
|
||||||
|
open_scaled_disequilibrium,
|
||||||
|
signed_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
(
|
||||||
|
open_tstamp,
|
||||||
|
pair.symbol_b_,
|
||||||
|
open_side_b,
|
||||||
|
"OPEN",
|
||||||
|
open_px_b,
|
||||||
|
open_disequilibrium,
|
||||||
|
open_scaled_disequilibrium,
|
||||||
|
signed_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
# Create DataFrame with explicit dtypes to avoid concatenation warnings
|
||||||
|
df = pd.DataFrame(trd_signal_tuples, columns=self.TRADES_COLUMNS)
|
||||||
|
# Ensure consistent dtypes
|
||||||
|
return df.astype(
|
||||||
|
{
|
||||||
|
"time": "datetime64[ns]",
|
||||||
|
"action": "string",
|
||||||
|
"symbol": "string",
|
||||||
|
"price": "float64",
|
||||||
|
"disequilibrium": "float64",
|
||||||
|
"scaled_disequilibrium": "float64",
|
||||||
|
"signed_scaled_disequilibrium": "float64",
|
||||||
|
"pair": "object",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_close_trades(
|
||||||
|
self, pair: TradingPair, row: pd.Series, close_threshold: float
|
||||||
|
) -> Optional[pd.DataFrame]:
|
||||||
|
colname_a, colname_b = pair.exec_prices_colnames()
|
||||||
|
|
||||||
|
close_row = row
|
||||||
|
close_tstamp = close_row["tstamp"]
|
||||||
|
close_disequilibrium = close_row["disequilibrium"]
|
||||||
|
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
|
||||||
|
signed_scaled_disequilibrium = close_row["signed_scaled_disequilibrium"]
|
||||||
|
close_px_a = close_row[f"{colname_a}"]
|
||||||
|
close_px_b = close_row[f"{colname_b}"]
|
||||||
|
|
||||||
|
close_side_a = pair.user_data_["close_side_a"]
|
||||||
|
close_side_b = pair.user_data_["close_side_b"]
|
||||||
|
|
||||||
|
trd_signal_tuples = [
|
||||||
|
(
|
||||||
|
close_tstamp,
|
||||||
|
pair.symbol_a_,
|
||||||
|
close_side_a,
|
||||||
|
"CLOSE",
|
||||||
|
close_px_a,
|
||||||
|
close_disequilibrium,
|
||||||
|
close_scaled_disequilibrium,
|
||||||
|
signed_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
(
|
||||||
|
close_tstamp,
|
||||||
|
pair.symbol_b_,
|
||||||
|
close_side_b,
|
||||||
|
"CLOSE",
|
||||||
|
close_px_b,
|
||||||
|
close_disequilibrium,
|
||||||
|
close_scaled_disequilibrium,
|
||||||
|
signed_scaled_disequilibrium,
|
||||||
|
pair,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||||
|
df = pd.DataFrame(
|
||||||
|
trd_signal_tuples,
|
||||||
|
columns=self.TRADES_COLUMNS,
|
||||||
|
)
|
||||||
|
# Ensure consistent dtypes
|
||||||
|
return df.astype(
|
||||||
|
{
|
||||||
|
"time": "datetime64[ns]",
|
||||||
|
"action": "string",
|
||||||
|
"symbol": "string",
|
||||||
|
"price": "float64",
|
||||||
|
"disequilibrium": "float64",
|
||||||
|
"scaled_disequilibrium": "float64",
|
||||||
|
"signed_scaled_disequilibrium": "float64",
|
||||||
|
"pair": "object",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
def reset(self) -> None:
|
||||||
|
curr_training_start_idx = 0
|
||||||
380
lib/pt_trading/trading_pair.py
Normal file
380
lib/pt_trading/trading_pair.py
Normal file
@ -0,0 +1,380 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from enum import Enum
|
||||||
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
|
import pandas as pd # type:ignore
|
||||||
|
|
||||||
|
|
||||||
|
class PairState(Enum):
|
||||||
|
INITIAL = 1
|
||||||
|
OPEN = 2
|
||||||
|
CLOSE = 3
|
||||||
|
CLOSE_POSITION = 4
|
||||||
|
CLOSE_STOP_LOSS = 5
|
||||||
|
CLOSE_STOP_PROFIT = 6
|
||||||
|
|
||||||
|
class CointegrationData:
|
||||||
|
EG_PVALUE_THRESHOLD = 0.05
|
||||||
|
|
||||||
|
tstamp_: pd.Timestamp
|
||||||
|
pair_: str
|
||||||
|
eg_pvalue_: float
|
||||||
|
johansen_lr1_: float
|
||||||
|
johansen_cvt_: float
|
||||||
|
eg_is_cointegrated_: bool
|
||||||
|
johansen_is_cointegrated_: bool
|
||||||
|
|
||||||
|
def __init__(self, pair: TradingPair):
|
||||||
|
training_df = pair.training_df_
|
||||||
|
|
||||||
|
assert training_df is not None
|
||||||
|
from statsmodels.tsa.vector_ar.vecm import coint_johansen
|
||||||
|
|
||||||
|
df = training_df[pair.colnames()].reset_index(drop=True)
|
||||||
|
|
||||||
|
# Run Johansen cointegration test
|
||||||
|
result = coint_johansen(df, det_order=0, k_ar_diff=1)
|
||||||
|
self.johansen_lr1_ = result.lr1[0]
|
||||||
|
self.johansen_cvt_ = result.cvt[0, 1]
|
||||||
|
self.johansen_is_cointegrated_ = self.johansen_lr1_ > self.johansen_cvt_
|
||||||
|
|
||||||
|
# Run Engle-Granger cointegration test
|
||||||
|
from statsmodels.tsa.stattools import coint # type: ignore
|
||||||
|
|
||||||
|
col1, col2 = pair.colnames()
|
||||||
|
assert training_df is not None
|
||||||
|
series1 = training_df[col1].reset_index(drop=True)
|
||||||
|
series2 = training_df[col2].reset_index(drop=True)
|
||||||
|
|
||||||
|
self.eg_pvalue_ = float(coint(series1, series2)[1])
|
||||||
|
self.eg_is_cointegrated_ = bool(self.eg_pvalue_ < self.EG_PVALUE_THRESHOLD)
|
||||||
|
|
||||||
|
self.tstamp_ = training_df.index[-1]
|
||||||
|
self.pair_ = pair.name()
|
||||||
|
|
||||||
|
def to_dict(self) -> Dict[str, Any]:
|
||||||
|
return {
|
||||||
|
"tstamp": self.tstamp_,
|
||||||
|
"pair": self.pair_,
|
||||||
|
"eg_pvalue": self.eg_pvalue_,
|
||||||
|
"johansen_lr1": self.johansen_lr1_,
|
||||||
|
"johansen_cvt": self.johansen_cvt_,
|
||||||
|
"eg_is_cointegrated": self.eg_is_cointegrated_,
|
||||||
|
"johansen_is_cointegrated": self.johansen_is_cointegrated_,
|
||||||
|
}
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return f"CointegrationData(tstamp={self.tstamp_}, pair={self.pair_}, eg_pvalue={self.eg_pvalue_}, johansen_lr1={self.johansen_lr1_}, johansen_cvt={self.johansen_cvt_}, eg_is_cointegrated={self.eg_is_cointegrated_}, johansen_is_cointegrated={self.johansen_is_cointegrated_})"
|
||||||
|
|
||||||
|
|
||||||
|
class TradingPair(ABC):
|
||||||
|
market_data_: pd.DataFrame
|
||||||
|
symbol_a_: str
|
||||||
|
symbol_b_: str
|
||||||
|
stat_model_price_: str
|
||||||
|
|
||||||
|
training_mu_: float
|
||||||
|
training_std_: float
|
||||||
|
|
||||||
|
training_df_: pd.DataFrame
|
||||||
|
testing_df_: pd.DataFrame
|
||||||
|
|
||||||
|
user_data_: Dict[str, Any]
|
||||||
|
|
||||||
|
# predicted_df_: Optional[pd.DataFrame]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Dict[str, Any],
|
||||||
|
market_data: pd.DataFrame,
|
||||||
|
symbol_a: str,
|
||||||
|
symbol_b: str,
|
||||||
|
):
|
||||||
|
self.symbol_a_ = symbol_a
|
||||||
|
self.symbol_b_ = symbol_b
|
||||||
|
self.stat_model_price_ = config["stat_model_price"]
|
||||||
|
self.user_data_ = {}
|
||||||
|
self.predicted_df_ = None
|
||||||
|
self.config_ = config
|
||||||
|
|
||||||
|
self._set_market_data(market_data)
|
||||||
|
|
||||||
|
def _set_market_data(self, market_data: pd.DataFrame) -> None:
|
||||||
|
self.market_data_ = pd.DataFrame(
|
||||||
|
self._transform_dataframe(market_data)[["tstamp"] + self.colnames()]
|
||||||
|
)
|
||||||
|
|
||||||
|
self.market_data_ = self.market_data_.dropna().reset_index(drop=True)
|
||||||
|
self.market_data_["tstamp"] = pd.to_datetime(self.market_data_["tstamp"])
|
||||||
|
self.market_data_ = self.market_data_.sort_values("tstamp")
|
||||||
|
self._set_execution_price_data()
|
||||||
|
pass
|
||||||
|
|
||||||
|
def _set_execution_price_data(self) -> None:
|
||||||
|
if "execution_price" not in self.config_:
|
||||||
|
self.market_data_[f"exec_price_{self.symbol_a_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_a_}"]
|
||||||
|
self.market_data_[f"exec_price_{self.symbol_b_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_b_}"]
|
||||||
|
return
|
||||||
|
execution_price_column = self.config_["execution_price"]["column"]
|
||||||
|
execution_price_shift = self.config_["execution_price"]["shift"]
|
||||||
|
self.market_data_[f"exec_price_{self.symbol_a_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_a_}"].shift(-execution_price_shift)
|
||||||
|
self.market_data_[f"exec_price_{self.symbol_b_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_b_}"].shift(-execution_price_shift)
|
||||||
|
self.market_data_ = self.market_data_.dropna().reset_index(drop=True)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def get_begin_index(self) -> int:
|
||||||
|
if "trading_hours" not in self.config_:
|
||||||
|
return 0
|
||||||
|
assert "timezone" in self.config_["trading_hours"]
|
||||||
|
assert "begin_session" in self.config_["trading_hours"]
|
||||||
|
start_time = (
|
||||||
|
pd.to_datetime(self.config_["trading_hours"]["begin_session"])
|
||||||
|
.tz_localize(self.config_["trading_hours"]["timezone"])
|
||||||
|
.time()
|
||||||
|
)
|
||||||
|
mask = self.market_data_["tstamp"].dt.time >= start_time
|
||||||
|
return int(self.market_data_.index[mask].min())
|
||||||
|
|
||||||
|
def get_end_index(self) -> int:
|
||||||
|
if "trading_hours" not in self.config_:
|
||||||
|
return 0
|
||||||
|
assert "timezone" in self.config_["trading_hours"]
|
||||||
|
assert "end_session" in self.config_["trading_hours"]
|
||||||
|
end_time = (
|
||||||
|
pd.to_datetime(self.config_["trading_hours"]["end_session"])
|
||||||
|
.tz_localize(self.config_["trading_hours"]["timezone"])
|
||||||
|
.time()
|
||||||
|
)
|
||||||
|
mask = self.market_data_["tstamp"].dt.time <= end_time
|
||||||
|
return int(self.market_data_.index[mask].max())
|
||||||
|
|
||||||
|
def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||||
|
# Select only the columns we need
|
||||||
|
df_selected: pd.DataFrame = pd.DataFrame(
|
||||||
|
df[["tstamp", "symbol", self.stat_model_price_]]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Start with unique timestamps
|
||||||
|
result_df: pd.DataFrame = (
|
||||||
|
pd.DataFrame(df_selected["tstamp"]).drop_duplicates().reset_index(drop=True)
|
||||||
|
)
|
||||||
|
|
||||||
|
# For each unique symbol, add a corresponding close price column
|
||||||
|
|
||||||
|
symbols = df_selected["symbol"].unique()
|
||||||
|
for symbol in symbols:
|
||||||
|
# Filter rows for this symbol
|
||||||
|
df_symbol = df_selected[df_selected["symbol"] == symbol].reset_index(
|
||||||
|
drop=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create column name like "close-COIN"
|
||||||
|
new_price_column = f"{self.stat_model_price_}_{symbol}"
|
||||||
|
|
||||||
|
# Create temporary dataframe with timestamp and price
|
||||||
|
temp_df = pd.DataFrame(
|
||||||
|
{
|
||||||
|
"tstamp": df_symbol["tstamp"],
|
||||||
|
new_price_column: df_symbol[self.stat_model_price_],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Join with our result dataframe
|
||||||
|
result_df = pd.merge(result_df, temp_df, on="tstamp", how="left")
|
||||||
|
result_df = result_df.reset_index(
|
||||||
|
drop=True
|
||||||
|
) # do not dropna() since irrelevant symbol would affect dataset
|
||||||
|
|
||||||
|
return result_df.dropna()
|
||||||
|
|
||||||
|
def get_datasets(
|
||||||
|
self,
|
||||||
|
training_minutes: int,
|
||||||
|
training_start_index: int = 0,
|
||||||
|
testing_size: Optional[int] = None,
|
||||||
|
) -> None:
|
||||||
|
|
||||||
|
testing_start_index = training_start_index + training_minutes
|
||||||
|
self.training_df_ = self.market_data_.iloc[
|
||||||
|
training_start_index:testing_start_index, :training_minutes
|
||||||
|
].copy()
|
||||||
|
assert self.training_df_ is not None
|
||||||
|
self.training_df_ = self.training_df_.dropna().reset_index(drop=True)
|
||||||
|
|
||||||
|
testing_start_index = training_start_index + training_minutes
|
||||||
|
if testing_size is None:
|
||||||
|
self.testing_df_ = self.market_data_.iloc[testing_start_index:, :].copy()
|
||||||
|
else:
|
||||||
|
self.testing_df_ = self.market_data_.iloc[
|
||||||
|
testing_start_index : testing_start_index + testing_size, :
|
||||||
|
].copy()
|
||||||
|
assert self.testing_df_ is not None
|
||||||
|
self.testing_df_ = self.testing_df_.dropna().reset_index(drop=True)
|
||||||
|
|
||||||
|
def colnames(self) -> List[str]:
|
||||||
|
return [
|
||||||
|
f"{self.stat_model_price_}_{self.symbol_a_}",
|
||||||
|
f"{self.stat_model_price_}_{self.symbol_b_}",
|
||||||
|
]
|
||||||
|
|
||||||
|
def exec_prices_colnames(self) -> List[str]:
|
||||||
|
return [
|
||||||
|
f"exec_price_{self.symbol_a_}",
|
||||||
|
f"exec_price_{self.symbol_b_}",
|
||||||
|
]
|
||||||
|
|
||||||
|
def add_trades(self, trades: pd.DataFrame) -> None:
|
||||||
|
if self.user_data_["trades"] is None or len(self.user_data_["trades"]) == 0:
|
||||||
|
# If trades is empty or None, just assign the new trades directly
|
||||||
|
self.user_data_["trades"] = trades.copy()
|
||||||
|
else:
|
||||||
|
# Ensure both DataFrames have the same columns and dtypes before concatenation
|
||||||
|
existing_trades = self.user_data_["trades"]
|
||||||
|
|
||||||
|
# If existing trades is empty, just assign the new trades
|
||||||
|
if len(existing_trades) == 0:
|
||||||
|
self.user_data_["trades"] = trades.copy()
|
||||||
|
else:
|
||||||
|
# Ensure both DataFrames have the same columns
|
||||||
|
if set(existing_trades.columns) != set(trades.columns):
|
||||||
|
# Add missing columns to trades with appropriate default values
|
||||||
|
for col in existing_trades.columns:
|
||||||
|
if col not in trades.columns:
|
||||||
|
if col == "time":
|
||||||
|
trades[col] = pd.Timestamp.now()
|
||||||
|
elif col in ["action", "symbol"]:
|
||||||
|
trades[col] = ""
|
||||||
|
elif col in [
|
||||||
|
"price",
|
||||||
|
"disequilibrium",
|
||||||
|
"scaled_disequilibrium",
|
||||||
|
]:
|
||||||
|
trades[col] = 0.0
|
||||||
|
elif col == "pair":
|
||||||
|
trades[col] = None
|
||||||
|
else:
|
||||||
|
trades[col] = None
|
||||||
|
|
||||||
|
# Concatenate with explicit dtypes to avoid warnings
|
||||||
|
self.user_data_["trades"] = pd.concat(
|
||||||
|
[existing_trades, trades], ignore_index=True, copy=False
|
||||||
|
)
|
||||||
|
|
||||||
|
def get_trades(self) -> pd.DataFrame:
|
||||||
|
return (
|
||||||
|
self.user_data_["trades"] if "trades" in self.user_data_ else pd.DataFrame()
|
||||||
|
)
|
||||||
|
|
||||||
|
def cointegration_check(self) -> Optional[pd.DataFrame]:
|
||||||
|
print(f"***{self}*** STARTING....")
|
||||||
|
config = self.config_
|
||||||
|
|
||||||
|
curr_training_start_idx = 0
|
||||||
|
|
||||||
|
COINTEGRATION_DATA_COLUMNS = {
|
||||||
|
"tstamp": "datetime64[ns]",
|
||||||
|
"pair": "string",
|
||||||
|
"eg_pvalue": "float64",
|
||||||
|
"johansen_lr1": "float64",
|
||||||
|
"johansen_cvt": "float64",
|
||||||
|
"eg_is_cointegrated": "bool",
|
||||||
|
"johansen_is_cointegrated": "bool",
|
||||||
|
}
|
||||||
|
# Initialize trades DataFrame with proper dtypes to avoid concatenation warnings
|
||||||
|
result: pd.DataFrame = pd.DataFrame(
|
||||||
|
columns=[col for col in COINTEGRATION_DATA_COLUMNS.keys()]
|
||||||
|
) # .astype(COINTEGRATION_DATA_COLUMNS)
|
||||||
|
|
||||||
|
training_minutes = config["training_minutes"]
|
||||||
|
while True:
|
||||||
|
print(curr_training_start_idx, end="\r")
|
||||||
|
self.get_datasets(
|
||||||
|
training_minutes=training_minutes,
|
||||||
|
training_start_index=curr_training_start_idx,
|
||||||
|
testing_size=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
if len(self.training_df_) < training_minutes:
|
||||||
|
print(
|
||||||
|
f"{self}: current offset={curr_training_start_idx}"
|
||||||
|
f" * Training data length={len(self.training_df_)} < {training_minutes}"
|
||||||
|
" * Not enough training data. Completing the job."
|
||||||
|
)
|
||||||
|
break
|
||||||
|
new_row = pd.Series(CointegrationData(self).to_dict())
|
||||||
|
result.loc[len(result)] = new_row
|
||||||
|
curr_training_start_idx += 1
|
||||||
|
return result
|
||||||
|
|
||||||
|
def to_stop_close_conditions(self, predicted_row: pd.Series) -> bool:
|
||||||
|
config = self.config_
|
||||||
|
if (
|
||||||
|
"stop_close_conditions" not in config
|
||||||
|
or config["stop_close_conditions"] is None
|
||||||
|
):
|
||||||
|
return False
|
||||||
|
if "profit" in config["stop_close_conditions"]:
|
||||||
|
current_return = self._current_return(predicted_row)
|
||||||
|
#
|
||||||
|
# print(f"time={predicted_row['tstamp']} current_return={current_return}")
|
||||||
|
#
|
||||||
|
if current_return >= config["stop_close_conditions"]["profit"]:
|
||||||
|
print(f"STOP PROFIT: {current_return}")
|
||||||
|
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_PROFIT
|
||||||
|
return True
|
||||||
|
if "loss" in config["stop_close_conditions"]:
|
||||||
|
if current_return <= config["stop_close_conditions"]["loss"]:
|
||||||
|
print(f"STOP LOSS: {current_return}")
|
||||||
|
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_LOSS
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def on_open_trades(self, trades: pd.DataFrame) -> None:
|
||||||
|
if "close_trades" in self.user_data_:
|
||||||
|
del self.user_data_["close_trades"]
|
||||||
|
self.user_data_["open_trades"] = trades
|
||||||
|
|
||||||
|
def on_close_trades(self, trades: pd.DataFrame) -> None:
|
||||||
|
del self.user_data_["open_trades"]
|
||||||
|
self.user_data_["close_trades"] = trades
|
||||||
|
|
||||||
|
def _current_return(self, predicted_row: pd.Series) -> float:
|
||||||
|
if "open_trades" in self.user_data_:
|
||||||
|
open_trades = self.user_data_["open_trades"]
|
||||||
|
if len(open_trades) == 0:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
def _single_instrument_return(symbol: str) -> float:
|
||||||
|
instrument_open_trades = open_trades[open_trades["symbol"] == symbol]
|
||||||
|
instrument_open_price = instrument_open_trades["price"].iloc[0]
|
||||||
|
|
||||||
|
sign = -1 if instrument_open_trades["side"].iloc[0] == "SELL" else 1
|
||||||
|
instrument_price = predicted_row[f"{self.stat_model_price_}_{symbol}"]
|
||||||
|
instrument_return = (
|
||||||
|
sign
|
||||||
|
* (instrument_price - instrument_open_price)
|
||||||
|
/ instrument_open_price
|
||||||
|
)
|
||||||
|
return float(instrument_return) * 100.0
|
||||||
|
|
||||||
|
instrument_a_return = _single_instrument_return(self.symbol_a_)
|
||||||
|
instrument_b_return = _single_instrument_return(self.symbol_b_)
|
||||||
|
return instrument_a_return + instrument_b_return
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
def __repr__(self) -> str:
|
||||||
|
return self.name()
|
||||||
|
|
||||||
|
def name(self) -> str:
|
||||||
|
return f"{self.symbol_a_} & {self.symbol_b_}"
|
||||||
|
# return f"{self.symbol_a_} & {self.symbol_b_}"
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def predict(self) -> pd.DataFrame: ...
|
||||||
|
|
||||||
|
# @abstractmethod
|
||||||
|
# def predicted_df(self) -> Optional[pd.DataFrame]: ...
|
||||||
193
lib/pt_trading/vecm_rolling_fit.py
Normal file
193
lib/pt_trading/vecm_rolling_fit.py
Normal file
@ -0,0 +1,193 @@
|
|||||||
|
# original script moved to vecm_rolling_fit_01.py
|
||||||
|
|
||||||
|
# 09.09.25 Added GARCH model - predicting volatility
|
||||||
|
|
||||||
|
# Rule of thumb:
|
||||||
|
# alpha + beta ≈ 1 → strong volatility clustering, persistence.
|
||||||
|
# If much lower → volatility mean reverts quickly.
|
||||||
|
# If > 1 → model is unstable / non-stationary (bad).
|
||||||
|
|
||||||
|
# the VECM disequilibrium (mean reversion signal) and
|
||||||
|
# the GARCH volatility forecast (risk measure).
|
||||||
|
# combine them → e.g., only enter trades when:
|
||||||
|
|
||||||
|
# high_volatility = 1 → persistence > 0.95 or volatility > 2 (rule of thumb: unstable / risky regime).
|
||||||
|
# high_volatility = 0 → stable regime.
|
||||||
|
|
||||||
|
|
||||||
|
# VECM disequilibrium z-score > threshold and
|
||||||
|
# GARCH-forecasted volatility is not too high (avoid noise-driven signals).
|
||||||
|
# This creates a volatility-adjusted pairs trading strategy, more robust than plain VECM
|
||||||
|
|
||||||
|
# now pair_predict_result_ DataFrame includes:
|
||||||
|
# disequilibrium, scaled_disequilibrium, z-scores, garch_alpha, garch_beta, garch_persistence (α+β rule-of-thumb)
|
||||||
|
# garch_vol_forecast (1-step volatility forecast)
|
||||||
|
|
||||||
|
# Would you like me to also add a warning flag column
|
||||||
|
# (e.g., "high_volatility" = 1 if persistence > 0.95 or vol_forecast > threshold)
|
||||||
|
# so you can easily detect unstable regimes?
|
||||||
|
|
||||||
|
# VECM/GARCH
|
||||||
|
# vecm_rolling_fit.py:
|
||||||
|
from typing import Any, Dict, Optional, cast
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from typing import Any, Dict, Optional
|
||||||
|
from pt_trading.results import BacktestResult
|
||||||
|
from pt_trading.rolling_window_fit import RollingFit
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
||||||
|
from arch import arch_model
|
||||||
|
|
||||||
|
NanoPerMin = 1e9
|
||||||
|
|
||||||
|
class VECMTradingPair(TradingPair):
|
||||||
|
vecm_fit_: Optional[VECMResults]
|
||||||
|
pair_predict_result_: Optional[pd.DataFrame]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Dict[str, Any],
|
||||||
|
market_data: pd.DataFrame,
|
||||||
|
symbol_a: str,
|
||||||
|
symbol_b: str,
|
||||||
|
):
|
||||||
|
super().__init__(config, market_data, symbol_a, symbol_b)
|
||||||
|
self.vecm_fit_ = None
|
||||||
|
self.pair_predict_result_ = None
|
||||||
|
self.garch_fit_ = None
|
||||||
|
self.sigma_spread_forecast_ = None
|
||||||
|
self.garch_alpha_ = None
|
||||||
|
self.garch_beta_ = None
|
||||||
|
self.garch_persistence_ = None
|
||||||
|
self.high_volatility_flag_ = None
|
||||||
|
|
||||||
|
def _train_pair(self) -> None:
|
||||||
|
self._fit_VECM()
|
||||||
|
assert self.vecm_fit_ is not None
|
||||||
|
|
||||||
|
diseq_series = self.training_df_[self.colnames()] @ self.vecm_fit_.beta
|
||||||
|
self.training_mu_ = float(diseq_series[0].mean())
|
||||||
|
self.training_std_ = float(diseq_series[0].std())
|
||||||
|
|
||||||
|
self.training_df_["disequilibrium"] = diseq_series
|
||||||
|
self.training_df_["scaled_disequilibrium"] = (
|
||||||
|
diseq_series - self.training_mu_
|
||||||
|
) / self.training_std_
|
||||||
|
|
||||||
|
def _fit_VECM(self) -> None:
|
||||||
|
assert self.training_df_ is not None
|
||||||
|
vecm_df = self.training_df_[self.colnames()].reset_index(drop=True)
|
||||||
|
vecm_model = VECM(vecm_df, coint_rank=1)
|
||||||
|
vecm_fit = vecm_model.fit()
|
||||||
|
self.vecm_fit_ = vecm_fit
|
||||||
|
|
||||||
|
# Error Correction Term (spread)
|
||||||
|
ect_series = (vecm_df @ vecm_fit.beta).iloc[:, 0]
|
||||||
|
|
||||||
|
# Difference the spread for stationarity
|
||||||
|
dz = ect_series.diff().dropna()
|
||||||
|
|
||||||
|
if len(dz) < 30:
|
||||||
|
print("Not enough data for GARCH fitting.")
|
||||||
|
return
|
||||||
|
|
||||||
|
# Rescale if variance too small
|
||||||
|
if dz.std() < 0.1:
|
||||||
|
dz = dz * 1000
|
||||||
|
# print("Scale check:", dz.std())
|
||||||
|
|
||||||
|
try:
|
||||||
|
garch = arch_model(dz, vol="GARCH", p=1, q=1, mean="Zero", dist="normal")
|
||||||
|
garch_fit = garch.fit(disp="off")
|
||||||
|
self.garch_fit_ = garch_fit
|
||||||
|
|
||||||
|
# Extract parameters
|
||||||
|
params = garch_fit.params
|
||||||
|
self.garch_alpha_ = params.get("alpha[1]", np.nan)
|
||||||
|
self.garch_beta_ = params.get("beta[1]", np.nan)
|
||||||
|
self.garch_persistence_ = self.garch_alpha_ + self.garch_beta_
|
||||||
|
|
||||||
|
# print (f"GARCH α: {self.garch_alpha_:.4f}, β: {self.garch_beta_:.4f}, "
|
||||||
|
# f"α+β (persistence): {self.garch_persistence_:.4f}")
|
||||||
|
|
||||||
|
# One-step-ahead volatility forecast
|
||||||
|
forecast = garch_fit.forecast(horizon=1)
|
||||||
|
sigma_next = np.sqrt(forecast.variance.iloc[-1, 0])
|
||||||
|
self.sigma_spread_forecast_ = float(sigma_next)
|
||||||
|
# print("GARCH sigma forecast:", self.sigma_spread_forecast_)
|
||||||
|
|
||||||
|
# Rule of thumb: persistence close to 1 or large volatility forecast
|
||||||
|
self.high_volatility_flag_ = int(
|
||||||
|
(self.garch_persistence_ is not None and self.garch_persistence_ > 0.95)
|
||||||
|
or (self.sigma_spread_forecast_ is not None and self.sigma_spread_forecast_ > 2)
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"GARCH fit failed: {e}")
|
||||||
|
self.garch_fit_ = None
|
||||||
|
self.sigma_spread_forecast_ = None
|
||||||
|
self.high_volatility_flag_ = None
|
||||||
|
|
||||||
|
def predict(self) -> pd.DataFrame:
|
||||||
|
self._train_pair()
|
||||||
|
assert self.testing_df_ is not None
|
||||||
|
assert self.vecm_fit_ is not None
|
||||||
|
|
||||||
|
# VECM predictions
|
||||||
|
predicted_prices = self.vecm_fit_.predict(steps=len(self.testing_df_))
|
||||||
|
predicted_df = pd.merge(
|
||||||
|
self.testing_df_.reset_index(drop=True),
|
||||||
|
pd.DataFrame(predicted_prices, columns=pd.Index(self.colnames()), dtype=float),
|
||||||
|
left_index=True,
|
||||||
|
right_index=True,
|
||||||
|
suffixes=("", "_pred"),
|
||||||
|
).dropna()
|
||||||
|
|
||||||
|
# Disequilibrium and z-scores
|
||||||
|
predicted_df["disequilibrium"] = (
|
||||||
|
predicted_df[self.colnames()] @ self.vecm_fit_.beta
|
||||||
|
)
|
||||||
|
predicted_df["signed_scaled_disequilibrium"] = (
|
||||||
|
predicted_df["disequilibrium"] - self.training_mu_
|
||||||
|
) / self.training_std_
|
||||||
|
predicted_df["scaled_disequilibrium"] = abs(
|
||||||
|
predicted_df["signed_scaled_disequilibrium"]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Add GARCH parameters + volatility forecast
|
||||||
|
predicted_df["garch_alpha"] = self.garch_alpha_
|
||||||
|
predicted_df["garch_beta"] = self.garch_beta_
|
||||||
|
predicted_df["garch_persistence"] = self.garch_persistence_
|
||||||
|
predicted_df["garch_vol_forecast"] = self.sigma_spread_forecast_
|
||||||
|
predicted_df["high_volatility"] = self.high_volatility_flag_
|
||||||
|
|
||||||
|
# Save results
|
||||||
|
if self.pair_predict_result_ is None:
|
||||||
|
self.pair_predict_result_ = predicted_df
|
||||||
|
else:
|
||||||
|
self.pair_predict_result_ = pd.concat(
|
||||||
|
[self.pair_predict_result_, predicted_df], ignore_index=True
|
||||||
|
)
|
||||||
|
|
||||||
|
return self.pair_predict_result_
|
||||||
|
|
||||||
|
|
||||||
|
class VECMRollingFit(RollingFit):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def create_trading_pair(
|
||||||
|
self,
|
||||||
|
config: Dict,
|
||||||
|
market_data: pd.DataFrame,
|
||||||
|
symbol_a: str,
|
||||||
|
symbol_b: str,
|
||||||
|
) -> TradingPair:
|
||||||
|
return VECMTradingPair(
|
||||||
|
config=config,
|
||||||
|
market_data=market_data,
|
||||||
|
symbol_a = symbol_a,
|
||||||
|
symbol_b = symbol_b,
|
||||||
|
)
|
||||||
124
lib/pt_trading/z-score_rolling_fit.py
Normal file
124
lib/pt_trading/z-score_rolling_fit.py
Normal file
@ -0,0 +1,124 @@
|
|||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
import statsmodels.api as sm
|
||||||
|
|
||||||
|
from pt_trading.rolling_window_fit import RollingFit
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
|
NanoPerMin = 1e9
|
||||||
|
|
||||||
|
|
||||||
|
class ZScoreTradingPair(TradingPair):
|
||||||
|
"""TradingPair implementation that fits a hedge ratio with OLS and
|
||||||
|
computes a standardized spread (z-score).
|
||||||
|
|
||||||
|
The class stores training spread mean/std and hedge ratio so the model
|
||||||
|
can be applied to testing data consistently.
|
||||||
|
"""
|
||||||
|
|
||||||
|
zscore_model_: Optional[sm.regression.linear_model.RegressionResultsWrapper]
|
||||||
|
pair_predict_result_: Optional[pd.DataFrame]
|
||||||
|
zscore_df_: Optional[pd.Series]
|
||||||
|
hedge_ratio_: Optional[float]
|
||||||
|
spread_mean_: Optional[float]
|
||||||
|
spread_std_: Optional[float]
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
config: Dict[str, Any],
|
||||||
|
market_data: pd.DataFrame,
|
||||||
|
symbol_a: str,
|
||||||
|
symbol_b: str,
|
||||||
|
):
|
||||||
|
super().__init__(config, market_data, symbol_a, symbol_b)
|
||||||
|
self.zscore_model_ = None
|
||||||
|
self.pair_predict_result_ = None
|
||||||
|
self.zscore_df_ = None
|
||||||
|
self.hedge_ratio_ = None
|
||||||
|
self.spread_mean_ = None
|
||||||
|
self.spread_std_ = None
|
||||||
|
|
||||||
|
def _fit_zscore(self) -> None:
|
||||||
|
"""Fit OLS on the training window and compute training z-score."""
|
||||||
|
assert self.training_df_ is not None
|
||||||
|
|
||||||
|
# Extract price series for the two symbols from the training frame.
|
||||||
|
px_df = self.training_df_[self.colnames()]
|
||||||
|
symbol_a_px = px_df.iloc[:, 0]
|
||||||
|
symbol_b_px = px_df.iloc[:, 1]
|
||||||
|
|
||||||
|
# Align indexes and fit OLS: symbol_a ~ const + symbol_b
|
||||||
|
symbol_a_px, symbol_b_px = symbol_a_px.align(symbol_b_px, join="inner")
|
||||||
|
X = sm.add_constant(symbol_b_px)
|
||||||
|
self.zscore_model_ = sm.OLS(symbol_a_px, X).fit()
|
||||||
|
|
||||||
|
# Hedge ratio is the slope on symbol_b
|
||||||
|
params = self.zscore_model_.params
|
||||||
|
self.hedge_ratio_ = float(params.iloc[1]) if len(params) > 1 else 0.0
|
||||||
|
|
||||||
|
# Training spread and its standardized z-score
|
||||||
|
spread = symbol_a_px - self.hedge_ratio_ * symbol_b_px
|
||||||
|
self.spread_mean_ = float(spread.mean())
|
||||||
|
self.spread_std_ = float(spread.std(ddof=0)) if spread.std(ddof=0) != 0 else 1.0
|
||||||
|
self.zscore_df_ = (spread - self.spread_mean_) / self.spread_std_
|
||||||
|
|
||||||
|
def predict(self) -> pd.DataFrame:
|
||||||
|
"""Apply fitted hedge ratio to the testing frame and return a
|
||||||
|
dataframe with canonical columns:
|
||||||
|
- disequilibrium: signed z-score
|
||||||
|
- scaled_disequilibrium: absolute z-score
|
||||||
|
- signed_scaled_disequilibrium: same as disequilibrium (keeps sign)
|
||||||
|
"""
|
||||||
|
# Fit on training window
|
||||||
|
self._fit_zscore()
|
||||||
|
assert self.zscore_df_ is not None
|
||||||
|
assert self.hedge_ratio_ is not None
|
||||||
|
assert self.spread_mean_ is not None and self.spread_std_ is not None
|
||||||
|
|
||||||
|
# Keep training columns for inspection
|
||||||
|
self.training_df_["disequilibrium"] = self.zscore_df_
|
||||||
|
self.training_df_["scaled_disequilibrium"] = self.zscore_df_.abs()
|
||||||
|
|
||||||
|
# Apply model to testing frame
|
||||||
|
assert self.testing_df_ is not None
|
||||||
|
test_df = self.testing_df_.copy()
|
||||||
|
px_test = test_df[self.colnames()]
|
||||||
|
a_test = px_test.iloc[:, 0]
|
||||||
|
b_test = px_test.iloc[:, 1]
|
||||||
|
a_test, b_test = a_test.align(b_test, join="inner")
|
||||||
|
|
||||||
|
# Compute test spread and standardize using training mean/std
|
||||||
|
test_spread = a_test - self.hedge_ratio_ * b_test
|
||||||
|
test_zscore = (test_spread - self.spread_mean_) / self.spread_std_
|
||||||
|
|
||||||
|
# Attach canonical columns
|
||||||
|
# Align back to test_df index if needed
|
||||||
|
test_zscore = test_zscore.reindex(test_df.index)
|
||||||
|
test_df["disequilibrium"] = test_zscore
|
||||||
|
test_df["signed_scaled_disequilibrium"] = test_zscore
|
||||||
|
test_df["scaled_disequilibrium"] = test_zscore.abs()
|
||||||
|
|
||||||
|
# Reset index and accumulate results across windows
|
||||||
|
test_df = test_df.reset_index(drop=True)
|
||||||
|
if self.pair_predict_result_ is None:
|
||||||
|
self.pair_predict_result_ = test_df
|
||||||
|
else:
|
||||||
|
self.pair_predict_result_ = pd.concat(
|
||||||
|
[self.pair_predict_result_, test_df], ignore_index=True
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pair_predict_result_ = self.pair_predict_result_.reset_index(drop=True)
|
||||||
|
return self.pair_predict_result_.dropna()
|
||||||
|
|
||||||
|
|
||||||
|
class ZScoreRollingFit(RollingFit):
|
||||||
|
def __init__(self) -> None:
|
||||||
|
super().__init__()
|
||||||
|
|
||||||
|
def create_trading_pair(
|
||||||
|
self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str
|
||||||
|
) -> TradingPair:
|
||||||
|
return ZScoreTradingPair(
|
||||||
|
config=config, market_data=market_data, symbol_a=symbol_a, symbol_b=symbol_b
|
||||||
|
)
|
||||||
@ -1,12 +1,12 @@
|
|||||||
import hjson
|
import hjson
|
||||||
from typing import Dict
|
from typing import Dict
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
# ---
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
|
|
||||||
|
|
||||||
def load_config(config_path: str) -> Config:
|
def load_config(config_path: str) -> Dict:
|
||||||
return Config(json_src=f"file://{config_path}")
|
with open(config_path, "r") as f:
|
||||||
|
config = hjson.load(f)
|
||||||
|
return dict(config)
|
||||||
|
|
||||||
|
|
||||||
def expand_filename(filename: str) -> str:
|
def expand_filename(filename: str) -> str:
|
||||||
|
|||||||
@ -1,10 +1,9 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import sqlite3
|
import sqlite3
|
||||||
from typing import Any, Dict, List, Tuple, cast
|
from typing import Dict, List, cast
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
|
|
||||||
def load_sqlite_to_dataframe(db_path:str, query:str) -> pd.DataFrame:
|
def load_sqlite_to_dataframe(db_path:str, query:str) -> pd.DataFrame:
|
||||||
df: pd.DataFrame = pd.DataFrame()
|
df: pd.DataFrame = pd.DataFrame()
|
||||||
@ -46,17 +45,19 @@ def convert_time_to_UTC(value: str, timezone: str, extra_minutes: int = 0) -> st
|
|||||||
|
|
||||||
def load_market_data(
|
def load_market_data(
|
||||||
datafile: str,
|
datafile: str,
|
||||||
instruments: List[ExchangeInstrument],
|
instruments: List[Dict[str, str]],
|
||||||
db_table_name: str,
|
db_table_name: str,
|
||||||
trading_hours: Dict = {},
|
trading_hours: Dict = {},
|
||||||
extra_minutes: int = 0,
|
extra_minutes: int = 0,
|
||||||
) -> pd.DataFrame:
|
) -> pd.DataFrame:
|
||||||
|
|
||||||
|
insts = [
|
||||||
inst_ids = ['"' + exch_inst.instrument_id() + '"' for exch_inst in instruments]
|
'"' + instrument["instrument_id_pfx"] + instrument["symbol"] + '"'
|
||||||
instrument_ids = list(set(inst_ids))
|
for instrument in instruments
|
||||||
|
]
|
||||||
|
instrument_ids = list(set(insts))
|
||||||
exchange_ids = list(
|
exchange_ids = list(
|
||||||
set(['"' + instrument.exchange_id() + '"' for instrument in instruments])
|
set(['"' + instrument["exchange_id"] + '"' for instrument in instruments])
|
||||||
)
|
)
|
||||||
|
|
||||||
query = "select"
|
query = "select"
|
||||||
|
|||||||
@ -1,37 +0,0 @@
|
|||||||
import os
|
|
||||||
import glob
|
|
||||||
from typing import Dict, List, Tuple
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.config import Config
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
|
|
||||||
DayT = str
|
|
||||||
DataFileNameT = str
|
|
||||||
|
|
||||||
def resolve_datafiles(
|
|
||||||
config: Config, date_pattern: str, instruments: List[ExchangeInstrument]
|
|
||||||
) -> List[Tuple[DayT, DataFileNameT]]:
|
|
||||||
resolved_files: List[Tuple[DayT, DataFileNameT]] = []
|
|
||||||
for exch_inst in instruments:
|
|
||||||
pattern = date_pattern
|
|
||||||
inst_type = exch_inst.user_data_.get("instrument_type", "?instrument_type?")
|
|
||||||
data_dir = config.get_value(f"market_data_loading/{inst_type}/data_directory")
|
|
||||||
if "*" in pattern or "?" in pattern:
|
|
||||||
# Handle wildcards
|
|
||||||
if not os.path.isabs(pattern):
|
|
||||||
pattern = os.path.join(data_dir, f"{pattern}.mktdata.ohlcv.db")
|
|
||||||
matched_files = glob.glob(pattern)
|
|
||||||
for matched_file in matched_files:
|
|
||||||
import re
|
|
||||||
match = re.search(r"(\d{8})\.mktdata\.ohlcv\.db$", matched_file)
|
|
||||||
assert match is not None
|
|
||||||
day = match.group(1)
|
|
||||||
resolved_files.append((day, matched_file))
|
|
||||||
else:
|
|
||||||
# Handle explicit file path
|
|
||||||
if not os.path.isabs(pattern):
|
|
||||||
pattern = os.path.join(data_dir, f"{pattern}.mktdata.ohlcv.db")
|
|
||||||
resolved_files.append((date_pattern, pattern))
|
|
||||||
return sorted(list(set(resolved_files))) # Remove duplicates and sort
|
|
||||||
|
|
||||||
@ -1,79 +0,0 @@
|
|||||||
from pairs_trading.lib.pt_strategy.research_strategy import PtResearchStrategy
|
|
||||||
|
|
||||||
|
|
||||||
def visualize_prices(strategy: PtResearchStrategy, trading_date: str) -> None:
|
|
||||||
# Plot raw price data
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
# Set plotting style
|
|
||||||
import seaborn as sns
|
|
||||||
|
|
||||||
pair = strategy.trading_pair_
|
|
||||||
SYMBOL_A = pair.symbol_a()
|
|
||||||
SYMBOL_B = pair.symbol_b()
|
|
||||||
TRD_DATE = f"{trading_date[0:4]}-{trading_date[4:6]}-{trading_date[6:8]}"
|
|
||||||
|
|
||||||
plt.style.use('seaborn-v0_8')
|
|
||||||
sns.set_palette("husl")
|
|
||||||
plt.rcParams['figure.figsize'] = (15, 10)
|
|
||||||
|
|
||||||
# Get column names for the trading pair
|
|
||||||
colname_a, colname_b = pair.colnames()
|
|
||||||
price_data = strategy.pt_mkt_data_.market_data_df_.copy()
|
|
||||||
|
|
||||||
# Create separate subplots for better visibility
|
|
||||||
fig_price, price_axes = plt.subplots(2, 1, figsize=(18, 10))
|
|
||||||
|
|
||||||
# Plot SYMBOL_A
|
|
||||||
price_axes[0].plot(price_data['tstamp'], price_data[colname_a], alpha=0.7,
|
|
||||||
label=f'{SYMBOL_A}', linewidth=1, color='blue')
|
|
||||||
price_axes[0].set_title(f'{SYMBOL_A} Price Data ({TRD_DATE})')
|
|
||||||
price_axes[0].set_ylabel(f'{SYMBOL_A} Price')
|
|
||||||
price_axes[0].legend()
|
|
||||||
price_axes[0].grid(True)
|
|
||||||
|
|
||||||
# Plot SYMBOL_B
|
|
||||||
price_axes[1].plot(price_data['tstamp'], price_data[colname_b], alpha=0.7,
|
|
||||||
label=f'{SYMBOL_B}', linewidth=1, color='red')
|
|
||||||
price_axes[1].set_title(f'{SYMBOL_B} Price Data ({TRD_DATE})')
|
|
||||||
price_axes[1].set_ylabel(f'{SYMBOL_B} Price')
|
|
||||||
price_axes[1].set_xlabel('Time')
|
|
||||||
price_axes[1].legend()
|
|
||||||
price_axes[1].grid(True)
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
|
|
||||||
# Plot individual prices
|
|
||||||
fig, axes = plt.subplots(2, 1, figsize=(18, 12))
|
|
||||||
|
|
||||||
# Normalized prices for comparison
|
|
||||||
norm_a = price_data[colname_a] / price_data[colname_a].iloc[0]
|
|
||||||
norm_b = price_data[colname_b] / price_data[colname_b].iloc[0]
|
|
||||||
|
|
||||||
axes[0].plot(price_data['tstamp'], norm_a, label=f'{SYMBOL_A} (normalized)', alpha=0.8, linewidth=1)
|
|
||||||
axes[0].plot(price_data['tstamp'], norm_b, label=f'{SYMBOL_B} (normalized)', alpha=0.8, linewidth=1)
|
|
||||||
axes[0].set_title(f'Normalized Price Comparison (Base = 1.0) ({TRD_DATE})')
|
|
||||||
axes[0].set_ylabel('Normalized Price')
|
|
||||||
axes[0].legend()
|
|
||||||
axes[0].grid(True)
|
|
||||||
|
|
||||||
# Price ratio
|
|
||||||
price_ratio = price_data[colname_a] / price_data[colname_b]
|
|
||||||
axes[1].plot(price_data['tstamp'], price_ratio, label=f'{SYMBOL_A}/{SYMBOL_B} Ratio', color='green', alpha=0.8, linewidth=1)
|
|
||||||
axes[1].set_title(f'Price Ratio Px({SYMBOL_A})/Px({SYMBOL_B}) ({TRD_DATE})')
|
|
||||||
axes[1].set_ylabel('Ratio')
|
|
||||||
axes[1].set_xlabel('Time')
|
|
||||||
axes[1].legend()
|
|
||||||
axes[1].grid(True)
|
|
||||||
|
|
||||||
plt.tight_layout()
|
|
||||||
plt.show()
|
|
||||||
|
|
||||||
# Print basic statistics
|
|
||||||
print(f"\nPrice Statistics:")
|
|
||||||
print(f" {SYMBOL_A}: Mean=${price_data[colname_a].mean():.2f}, Std=${price_data[colname_a].std():.2f}")
|
|
||||||
print(f" {SYMBOL_B}: Mean=${price_data[colname_b].mean():.2f}, Std=${price_data[colname_b].std():.2f}")
|
|
||||||
print(f" Price Ratio: Mean={price_ratio.mean():.2f}, Std={price_ratio.std():.2f}")
|
|
||||||
print(f" Correlation: {price_data[colname_a].corr(price_data[colname_b]):.4f}")
|
|
||||||
|
|
||||||
@ -1,502 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
|
|
||||||
from pairs_trading.lib.pt_strategy.results import (PairResearchResult)
|
|
||||||
from pairs_trading.lib.pt_strategy.research_strategy import PtResearchStrategy
|
|
||||||
|
|
||||||
|
|
||||||
def visualize_trades(strategy: PtResearchStrategy, results: PairResearchResult, trading_date: str) -> None:
|
|
||||||
|
|
||||||
import pandas as pd
|
|
||||||
import plotly.express as px
|
|
||||||
import plotly.graph_objects as go
|
|
||||||
import plotly.offline as pyo
|
|
||||||
from IPython.display import HTML
|
|
||||||
from plotly.subplots import make_subplots
|
|
||||||
|
|
||||||
|
|
||||||
pair = strategy.trading_pair_
|
|
||||||
trades = results.trades_[trading_date].copy()
|
|
||||||
origin_mkt_data_df = strategy.pt_mkt_data_.origin_mkt_data_df_
|
|
||||||
mkt_data_df = strategy.pt_mkt_data_.market_data_df_
|
|
||||||
TRD_DATE = f"{trading_date[0:4]}-{trading_date[4:6]}-{trading_date[6:8]}"
|
|
||||||
SYMBOL_A = pair.symbol_a()
|
|
||||||
SYMBOL_B = pair.symbol_b()
|
|
||||||
|
|
||||||
|
|
||||||
print(f"\nCreated trading pair: {pair}")
|
|
||||||
print(f"Market data shape: {pair.market_data_.shape}")
|
|
||||||
print(f"Column names: {pair.colnames()}")
|
|
||||||
|
|
||||||
# Configure plotly for offline mode
|
|
||||||
pyo.init_notebook_mode(connected=True)
|
|
||||||
|
|
||||||
# Strategy-specific interactive visualization
|
|
||||||
assert strategy.config_ is not None
|
|
||||||
|
|
||||||
print("=== SLIDING FIT INTERACTIVE VISUALIZATION ===")
|
|
||||||
print("Note: Rolling Fit strategy visualization with interactive plotly charts")
|
|
||||||
|
|
||||||
|
|
||||||
# Create consistent timeline - superset of timestamps from both dataframes
|
|
||||||
all_timestamps = sorted(set(mkt_data_df['tstamp']))
|
|
||||||
|
|
||||||
|
|
||||||
# Create a unified timeline dataframe for consistent plotting
|
|
||||||
timeline_df = pd.DataFrame({'tstamp': all_timestamps})
|
|
||||||
|
|
||||||
# Merge with predicted data to get dis-equilibrium values
|
|
||||||
timeline_df = timeline_df.merge(strategy.predictions_df_[['tstamp', 'disequilibrium', 'scaled_disequilibrium', 'signed_scaled_disequilibrium']],
|
|
||||||
on='tstamp', how='left')
|
|
||||||
|
|
||||||
# Get Symbol_A and Symbol_B market data
|
|
||||||
colname_a, colname_b = pair.colnames()
|
|
||||||
symbol_a_data = mkt_data_df[['tstamp', colname_a]].copy()
|
|
||||||
symbol_b_data = mkt_data_df[['tstamp', colname_b]].copy()
|
|
||||||
|
|
||||||
norm_a = symbol_a_data[colname_a] / symbol_a_data[colname_a].iloc[0]
|
|
||||||
norm_b = symbol_b_data[colname_b] / symbol_b_data[colname_b].iloc[0]
|
|
||||||
|
|
||||||
print(f"Using consistent timeline with {len(timeline_df)} timestamps")
|
|
||||||
print(f"Timeline range: {timeline_df['tstamp'].min()} to {timeline_df['tstamp'].max()}")
|
|
||||||
|
|
||||||
# Create subplots with price charts at bottom
|
|
||||||
fig = make_subplots(
|
|
||||||
rows=4, cols=1,
|
|
||||||
row_heights=[0.3, 0.4, 0.15, 0.15],
|
|
||||||
subplot_titles=[
|
|
||||||
f'Dis-equilibrium with Trading Thresholds ({TRD_DATE})',
|
|
||||||
f'Normalized Price Comparison with BUY/SELL Signals - {SYMBOL_A}&{SYMBOL_B} ({TRD_DATE})',
|
|
||||||
f'{SYMBOL_A} Market Data with Trading Signals ({TRD_DATE})',
|
|
||||||
f'{SYMBOL_B} Market Data with Trading Signals ({TRD_DATE})',
|
|
||||||
],
|
|
||||||
vertical_spacing=0.06,
|
|
||||||
specs=[[{"secondary_y": False}],
|
|
||||||
[{"secondary_y": False}],
|
|
||||||
[{"secondary_y": False}],
|
|
||||||
[{"secondary_y": False}]]
|
|
||||||
)
|
|
||||||
|
|
||||||
# 1. Scaled dis-equilibrium with thresholds - using consistent timeline
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=timeline_df['tstamp'],
|
|
||||||
y=timeline_df['scaled_disequilibrium'],
|
|
||||||
name='Absolute Scaled Dis-equilibrium',
|
|
||||||
line=dict(color='green', width=2),
|
|
||||||
opacity=0.8
|
|
||||||
),
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=timeline_df['tstamp'],
|
|
||||||
y=timeline_df['signed_scaled_disequilibrium'],
|
|
||||||
name='Scaled Dis-equilibrium',
|
|
||||||
line=dict(color='darkmagenta', width=2),
|
|
||||||
opacity=0.8
|
|
||||||
),
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add threshold lines to first subplot
|
|
||||||
fig.add_shape(
|
|
||||||
type="line",
|
|
||||||
x0=timeline_df['tstamp'].min(),
|
|
||||||
x1=timeline_df['tstamp'].max(),
|
|
||||||
y0=strategy.config_.get_value('model/disequilibrium/open_trshld'),
|
|
||||||
y1=strategy.config_.get_value('model/disequilibrium/open_trshld'),
|
|
||||||
line=dict(color="purple", width=2, dash="dot"),
|
|
||||||
opacity=0.7,
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_shape(
|
|
||||||
type="line",
|
|
||||||
x0=timeline_df['tstamp'].min(),
|
|
||||||
x1=timeline_df['tstamp'].max(),
|
|
||||||
y0=-strategy.config_.get_value('model/disequilibrium/open_trshld'),
|
|
||||||
y1=-strategy.config_.get_value('model/disequilibrium/open_trshld'),
|
|
||||||
line=dict(color="purple", width=2, dash="dot"),
|
|
||||||
opacity=0.7,
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_shape(
|
|
||||||
type="line",
|
|
||||||
x0=timeline_df['tstamp'].min(),
|
|
||||||
x1=timeline_df['tstamp'].max(),
|
|
||||||
y0=strategy.config_.get_value('model/disequilibrium/close_trshld'),
|
|
||||||
y1=strategy.config_.get_value('model/disequilibrium/close_trshld'),
|
|
||||||
line=dict(color="brown", width=2, dash="dot"),
|
|
||||||
opacity=0.7,
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_shape(
|
|
||||||
type="line",
|
|
||||||
x0=timeline_df['tstamp'].min(),
|
|
||||||
x1=timeline_df['tstamp'].max(),
|
|
||||||
y0=-strategy.config_.get_value('model/disequilibrium/close_trshld'),
|
|
||||||
y1=-strategy.config_.get_value('model/disequilibrium/close_trshld'),
|
|
||||||
line=dict(color="brown", width=2, dash="dot"),
|
|
||||||
opacity=0.7,
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_shape(
|
|
||||||
type="line",
|
|
||||||
x0=timeline_df['tstamp'].min(),
|
|
||||||
x1=timeline_df['tstamp'].max(),
|
|
||||||
y0=0,
|
|
||||||
y1=0,
|
|
||||||
line=dict(color="black", width=1, dash="solid"),
|
|
||||||
opacity=0.5,
|
|
||||||
row=1, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add normalized price lines
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=mkt_data_df['tstamp'],
|
|
||||||
y=norm_a,
|
|
||||||
name=f'{SYMBOL_A} (Normalized)',
|
|
||||||
line=dict(color='blue', width=2),
|
|
||||||
opacity=0.8
|
|
||||||
),
|
|
||||||
row=2, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=mkt_data_df['tstamp'],
|
|
||||||
y=norm_b,
|
|
||||||
name=f'{SYMBOL_B} (Normalized)',
|
|
||||||
line=dict(color='orange', width=2),
|
|
||||||
opacity=0.8,
|
|
||||||
),
|
|
||||||
row=2, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add BUY and SELL signals if available
|
|
||||||
if trades is not None and len(trades) > 0:
|
|
||||||
# Define signal groups to avoid legend repetition
|
|
||||||
signal_groups = {}
|
|
||||||
|
|
||||||
# Process all trades and group by signal type (ignore OPEN/CLOSE status)
|
|
||||||
for _, trade in trades.iterrows():
|
|
||||||
symbol = trade['symbol']
|
|
||||||
side = trade['side']
|
|
||||||
# status = trade['status']
|
|
||||||
action = trade['action']
|
|
||||||
|
|
||||||
# Create signal group key (without status to combine OPEN/CLOSE)
|
|
||||||
signal_key = f"{symbol} {side} {action}"
|
|
||||||
|
|
||||||
# Find normalized price for this trade
|
|
||||||
trade_time = trade['time']
|
|
||||||
if symbol == SYMBOL_A:
|
|
||||||
closest_idx = mkt_data_df['tstamp'].searchsorted(trade_time)
|
|
||||||
if closest_idx < len(norm_a):
|
|
||||||
norm_price = norm_a.iloc[closest_idx]
|
|
||||||
else:
|
|
||||||
norm_price = norm_a.iloc[-1]
|
|
||||||
else: # SYMBOL_B
|
|
||||||
closest_idx = mkt_data_df['tstamp'].searchsorted(trade_time)
|
|
||||||
if closest_idx < len(norm_b):
|
|
||||||
norm_price = norm_b.iloc[closest_idx]
|
|
||||||
else:
|
|
||||||
norm_price = norm_b.iloc[-1]
|
|
||||||
|
|
||||||
# Initialize group if not exists
|
|
||||||
if signal_key not in signal_groups:
|
|
||||||
signal_groups[signal_key] = {
|
|
||||||
'times': [],
|
|
||||||
'prices': [],
|
|
||||||
'actual_prices': [],
|
|
||||||
'symbol': symbol,
|
|
||||||
'side': side,
|
|
||||||
# 'status': status,
|
|
||||||
'action': trade['action']
|
|
||||||
}
|
|
||||||
|
|
||||||
# Add to group
|
|
||||||
signal_groups[signal_key]['times'].append(trade_time)
|
|
||||||
signal_groups[signal_key]['prices'].append(norm_price)
|
|
||||||
signal_groups[signal_key]['actual_prices'].append(trade['price'])
|
|
||||||
|
|
||||||
# Add each signal group as a single trace
|
|
||||||
for signal_key, group_data in signal_groups.items():
|
|
||||||
symbol = group_data['symbol']
|
|
||||||
side = group_data['side']
|
|
||||||
# status = group_data['status']
|
|
||||||
|
|
||||||
# Determine marker properties (same for all OPEN/CLOSE of same side)
|
|
||||||
is_close: bool = (group_data['action'] == "CLOSE")
|
|
||||||
|
|
||||||
if 'BUY' in side:
|
|
||||||
marker_color = 'green'
|
|
||||||
marker_symbol = 'triangle-up'
|
|
||||||
marker_size = 14
|
|
||||||
else: # SELL
|
|
||||||
marker_color = 'red'
|
|
||||||
marker_symbol = 'triangle-down'
|
|
||||||
marker_size = 14
|
|
||||||
|
|
||||||
# Create hover text for each point in the group
|
|
||||||
hover_texts = []
|
|
||||||
for i, (time, norm_price, actual_price) in enumerate(zip(group_data['times'],
|
|
||||||
group_data['prices'],
|
|
||||||
group_data['actual_prices'])):
|
|
||||||
# Find the corresponding trade to get the status for hover text
|
|
||||||
trade_info = trades[(trades['time'] == time) &
|
|
||||||
(trades['symbol'] == symbol) &
|
|
||||||
(trades['side'] == side)]
|
|
||||||
if len(trade_info) > 0:
|
|
||||||
action = trade_info.iloc[0]['action']
|
|
||||||
hover_texts.append(f'<b>{signal_key} {action}</b><br>' +
|
|
||||||
f'Time: {time}<br>' +
|
|
||||||
f'Normalized Price: {norm_price:.4f}<br>' +
|
|
||||||
f'Actual Price: ${actual_price:.2f}')
|
|
||||||
else:
|
|
||||||
hover_texts.append(f'<b>{signal_key}</b><br>' +
|
|
||||||
f'Time: {time}<br>' +
|
|
||||||
f'Normalized Price: {norm_price:.4f}<br>' +
|
|
||||||
f'Actual Price: ${actual_price:.2f}')
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=group_data['times'],
|
|
||||||
y=group_data['prices'],
|
|
||||||
mode='markers',
|
|
||||||
name=signal_key,
|
|
||||||
marker=dict(
|
|
||||||
color=marker_color,
|
|
||||||
size=marker_size,
|
|
||||||
symbol=marker_symbol,
|
|
||||||
line=dict(width=2, color='black') if is_close else None
|
|
||||||
),
|
|
||||||
showlegend=True,
|
|
||||||
hovertemplate='%{text}<extra></extra>',
|
|
||||||
text=hover_texts
|
|
||||||
),
|
|
||||||
row=2, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# -----------------------------
|
|
||||||
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=symbol_a_data['tstamp'],
|
|
||||||
y=symbol_a_data[colname_a],
|
|
||||||
name=f'{SYMBOL_A} Price',
|
|
||||||
line=dict(color='blue', width=2),
|
|
||||||
opacity=0.8
|
|
||||||
),
|
|
||||||
row=3, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Filter trades for Symbol_A
|
|
||||||
symbol_a_trades = trades[trades['symbol'] == SYMBOL_A]
|
|
||||||
print(f"\nSymbol_A trades:\n{symbol_a_trades}")
|
|
||||||
|
|
||||||
if len(symbol_a_trades) > 0:
|
|
||||||
# Separate trades by action and status for different colors
|
|
||||||
buy_open_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('BUY', na=False)) &
|
|
||||||
(symbol_a_trades['action'].str.contains('OPEN', na=False))]
|
|
||||||
buy_close_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('BUY', na=False)) &
|
|
||||||
(symbol_a_trades['action'].str.contains('CLOSE', na=False))]
|
|
||||||
|
|
||||||
sell_open_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('SELL', na=False)) &
|
|
||||||
(symbol_a_trades['action'].str.contains('OPEN', na=False))]
|
|
||||||
sell_close_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('SELL', na=False)) &
|
|
||||||
(symbol_a_trades['action'].str.contains('CLOSE', na=False))]
|
|
||||||
|
|
||||||
# Add BUY OPEN signals
|
|
||||||
if len(buy_open_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=buy_open_trades['time'],
|
|
||||||
y=buy_open_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_A} BUY OPEN',
|
|
||||||
marker=dict(color='green', size=12, symbol='triangle-up'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=3, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add BUY CLOSE signals
|
|
||||||
if len(buy_close_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=buy_close_trades['time'],
|
|
||||||
y=buy_close_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_A} BUY CLOSE',
|
|
||||||
marker=dict(color='green', size=12, symbol='triangle-up'),
|
|
||||||
line=dict(width=2, color='black'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=3, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add SELL OPEN signals
|
|
||||||
if len(sell_open_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=sell_open_trades['time'],
|
|
||||||
y=sell_open_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_A} SELL OPEN',
|
|
||||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=3, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add SELL CLOSE signals
|
|
||||||
if len(sell_close_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=sell_close_trades['time'],
|
|
||||||
y=sell_close_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_A} SELL CLOSE',
|
|
||||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
|
||||||
line=dict(width=2, color='black'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=3, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# 4. Symbol_B Market Data with Trading Signals
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=symbol_b_data['tstamp'],
|
|
||||||
y=symbol_b_data[colname_b],
|
|
||||||
name=f'{SYMBOL_B} Price',
|
|
||||||
line=dict(color='orange', width=2),
|
|
||||||
opacity=0.8
|
|
||||||
),
|
|
||||||
row=4, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add trading signals for Symbol_B if available
|
|
||||||
symbol_b_trades = trades[trades['symbol'] == SYMBOL_B]
|
|
||||||
print(f"\nSymbol_B trades:\n{symbol_b_trades}")
|
|
||||||
|
|
||||||
if len(symbol_b_trades) > 0:
|
|
||||||
# Separate trades by action and status for different colors
|
|
||||||
buy_open_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('BUY', na=False)) &
|
|
||||||
(symbol_b_trades['action'].str.startswith('OPEN', na=False))]
|
|
||||||
buy_close_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('BUY', na=False)) &
|
|
||||||
(symbol_b_trades['action'].str.startswith('CLOSE', na=False))]
|
|
||||||
|
|
||||||
sell_open_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('SELL', na=False)) &
|
|
||||||
(symbol_b_trades['action'].str.contains('OPEN', na=False))]
|
|
||||||
sell_close_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('SELL', na=False)) &
|
|
||||||
(symbol_b_trades['action'].str.contains('CLOSE', na=False))]
|
|
||||||
|
|
||||||
# Add BUY OPEN signals
|
|
||||||
if len(buy_open_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=buy_open_trades['time'],
|
|
||||||
y=buy_open_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_B} BUY OPEN',
|
|
||||||
marker=dict(color='darkgreen', size=12, symbol='triangle-up'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=4, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add BUY CLOSE signals
|
|
||||||
if len(buy_close_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=buy_close_trades['time'],
|
|
||||||
y=buy_close_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_B} BUY CLOSE',
|
|
||||||
marker=dict(color='green', size=12, symbol='triangle-up'),
|
|
||||||
line=dict(width=2, color='black'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=4, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add SELL OPEN signals
|
|
||||||
if len(sell_open_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=sell_open_trades['time'],
|
|
||||||
y=sell_open_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_B} SELL OPEN',
|
|
||||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=4, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add SELL CLOSE signals
|
|
||||||
if len(sell_close_trades) > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=sell_close_trades['time'],
|
|
||||||
y=sell_close_trades['price'],
|
|
||||||
mode='markers',
|
|
||||||
name=f'{SYMBOL_B} SELL CLOSE',
|
|
||||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
|
||||||
line=dict(width=2, color='black'),
|
|
||||||
showlegend=True
|
|
||||||
),
|
|
||||||
row=4, col=1
|
|
||||||
)
|
|
||||||
|
|
||||||
# Update layout
|
|
||||||
fig.update_layout(
|
|
||||||
height=1600,
|
|
||||||
title_text=f"Strategy Analysis - {SYMBOL_A} & {SYMBOL_B} ({TRD_DATE})",
|
|
||||||
showlegend=True,
|
|
||||||
template="plotly_white",
|
|
||||||
plot_bgcolor='lightgray',
|
|
||||||
)
|
|
||||||
|
|
||||||
# Update y-axis labels
|
|
||||||
fig.update_yaxes(title_text="Scaled Dis-equilibrium", row=1, col=1)
|
|
||||||
fig.update_yaxes(title_text=f"{SYMBOL_A} Price ($)", row=2, col=1)
|
|
||||||
fig.update_yaxes(title_text=f"{SYMBOL_B} Price ($)", row=3, col=1)
|
|
||||||
fig.update_yaxes(title_text="Normalized Price (Base = 1.0)", row=4, col=1)
|
|
||||||
|
|
||||||
# Update x-axis labels and ensure consistent time range
|
|
||||||
time_range = [timeline_df['tstamp'].min(), timeline_df['tstamp'].max()]
|
|
||||||
fig.update_xaxes(range=time_range, row=1, col=1)
|
|
||||||
fig.update_xaxes(range=time_range, row=2, col=1)
|
|
||||||
fig.update_xaxes(range=time_range, row=3, col=1)
|
|
||||||
fig.update_xaxes(title_text="Time", range=time_range, row=4, col=1)
|
|
||||||
|
|
||||||
# Display using plotly offline mode
|
|
||||||
# pyo.iplot(fig)
|
|
||||||
fig.show()
|
|
||||||
|
|
||||||
else:
|
|
||||||
print("No interactive visualization data available - strategy may not have run successfully")
|
|
||||||
|
|
||||||
print(f"\nChart shows:")
|
|
||||||
print(f"- {SYMBOL_A} and {SYMBOL_B} prices normalized to start at 1.0")
|
|
||||||
print(f"- BUY signals shown as green triangles pointing up")
|
|
||||||
print(f"- SELL signals shown as orange triangles pointing down")
|
|
||||||
print(f"- All BUY signals per symbol grouped together, all SELL signals per symbol grouped together")
|
|
||||||
print(f"- Hover over markers to see individual trade details (OPEN/CLOSE status)")
|
|
||||||
|
|
||||||
if trades is not None and len(trades) > 0:
|
|
||||||
print(f"- Total signals displayed: {len(trades)}")
|
|
||||||
print(f"- {SYMBOL_A} signals: {len(trades[trades['symbol'] == SYMBOL_A])}")
|
|
||||||
print(f"- {SYMBOL_B} signals: {len(trades[trades['symbol'] == SYMBOL_B])}")
|
|
||||||
else:
|
|
||||||
print("- No trading signals to display")
|
|
||||||
|
|
||||||
169
lib/utils/db_inspector.py
Normal file
169
lib/utils/db_inspector.py
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Database inspector utility for pairs trading results database.
|
||||||
|
Provides functionality to view all tables and their contents.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sqlite3
|
||||||
|
import sys
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
from typing import List, Dict, Any
|
||||||
|
|
||||||
|
def list_tables(db_path: str) -> List[str]:
|
||||||
|
"""List all tables in the database."""
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
cursor.execute("""
|
||||||
|
SELECT name FROM sqlite_master
|
||||||
|
WHERE type='table'
|
||||||
|
ORDER BY name
|
||||||
|
""")
|
||||||
|
|
||||||
|
tables = [row[0] for row in cursor.fetchall()]
|
||||||
|
conn.close()
|
||||||
|
return tables
|
||||||
|
|
||||||
|
def view_table_schema(db_path: str, table_name: str) -> None:
|
||||||
|
"""View the schema of a specific table."""
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
cursor.execute(f"PRAGMA table_info({table_name})")
|
||||||
|
columns = cursor.fetchall()
|
||||||
|
|
||||||
|
print(f"\nTable: {table_name}")
|
||||||
|
print("-" * 50)
|
||||||
|
print("Column Name".ljust(20) + "Type".ljust(15) + "Not Null".ljust(10) + "Default")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
for col in columns:
|
||||||
|
cid, name, type_, not_null, default_value, pk = col
|
||||||
|
print(f"{name}".ljust(20) + f"{type_}".ljust(15) + f"{bool(not_null)}".ljust(10) + f"{default_value or ''}")
|
||||||
|
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
def view_config_table(db_path: str, limit: int = 10) -> None:
|
||||||
|
"""View entries from the config table."""
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
cursor.execute(f"""
|
||||||
|
SELECT id, run_timestamp, config_file_path, fit_method_class,
|
||||||
|
datafiles, instruments, config_json
|
||||||
|
FROM config
|
||||||
|
ORDER BY run_timestamp DESC
|
||||||
|
LIMIT {limit}
|
||||||
|
""")
|
||||||
|
|
||||||
|
rows = cursor.fetchall()
|
||||||
|
|
||||||
|
if not rows:
|
||||||
|
print("No configuration entries found.")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"\nMost recent {len(rows)} configuration entries:")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
for row in rows:
|
||||||
|
id, run_timestamp, config_file_path, fit_method_class, datafiles, instruments, config_json = row
|
||||||
|
|
||||||
|
print(f"ID: {id} | {run_timestamp}")
|
||||||
|
print(f"Config: {config_file_path} | Strategy: {fit_method_class}")
|
||||||
|
print(f"Files: {datafiles}")
|
||||||
|
print(f"Instruments: {instruments}")
|
||||||
|
print("-" * 80)
|
||||||
|
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
def view_results_summary(db_path: str) -> None:
|
||||||
|
"""View summary of trading results."""
|
||||||
|
conn = sqlite3.connect(db_path)
|
||||||
|
cursor = conn.cursor()
|
||||||
|
|
||||||
|
# Get results summary
|
||||||
|
cursor.execute("""
|
||||||
|
SELECT date, COUNT(*) as trade_count,
|
||||||
|
ROUND(SUM(symbol_return), 2) as total_return
|
||||||
|
FROM pt_bt_results
|
||||||
|
GROUP BY date
|
||||||
|
ORDER BY date DESC
|
||||||
|
""")
|
||||||
|
|
||||||
|
results = cursor.fetchall()
|
||||||
|
|
||||||
|
if not results:
|
||||||
|
print("No trading results found.")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"\nTrading Results Summary:")
|
||||||
|
print("-" * 50)
|
||||||
|
print("Date".ljust(15) + "Trades".ljust(10) + "Total Return %")
|
||||||
|
print("-" * 50)
|
||||||
|
|
||||||
|
for date, trade_count, total_return in results:
|
||||||
|
print(f"{date}".ljust(15) + f"{trade_count}".ljust(10) + f"{total_return}")
|
||||||
|
|
||||||
|
# Get outstanding positions summary
|
||||||
|
cursor.execute("""
|
||||||
|
SELECT COUNT(*) as position_count,
|
||||||
|
ROUND(SUM(unrealized_return), 2) as total_unrealized
|
||||||
|
FROM outstanding_positions
|
||||||
|
""")
|
||||||
|
|
||||||
|
outstanding = cursor.fetchone()
|
||||||
|
if outstanding and outstanding[0] > 0:
|
||||||
|
print(f"\nOutstanding Positions: {outstanding[0]} positions")
|
||||||
|
print(f"Total Unrealized Return: {outstanding[1]}%")
|
||||||
|
|
||||||
|
conn.close()
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
if len(sys.argv) < 2:
|
||||||
|
print("Usage: python db_inspector.py <database_path> [command]")
|
||||||
|
print("Commands:")
|
||||||
|
print(" tables - List all tables")
|
||||||
|
print(" schema - Show schema for all tables")
|
||||||
|
print(" config - View configuration entries")
|
||||||
|
print(" results - View trading results summary")
|
||||||
|
print(" all - Show everything (default)")
|
||||||
|
print("\nExample: python db_inspector.py results/equity.db config")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
db_path = sys.argv[1]
|
||||||
|
command = sys.argv[2] if len(sys.argv) > 2 else "all"
|
||||||
|
|
||||||
|
if not os.path.exists(db_path):
|
||||||
|
print(f"Database file not found: {db_path}")
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
|
try:
|
||||||
|
if command in ["tables", "all"]:
|
||||||
|
tables = list_tables(db_path)
|
||||||
|
print(f"Tables in database: {', '.join(tables)}")
|
||||||
|
|
||||||
|
if command in ["schema", "all"]:
|
||||||
|
tables = list_tables(db_path)
|
||||||
|
for table in tables:
|
||||||
|
view_table_schema(db_path, table)
|
||||||
|
|
||||||
|
if command in ["config", "all"]:
|
||||||
|
if "config" in list_tables(db_path):
|
||||||
|
view_config_table(db_path)
|
||||||
|
else:
|
||||||
|
print("Config table not found.")
|
||||||
|
|
||||||
|
if command in ["results", "all"]:
|
||||||
|
if "pt_bt_results" in list_tables(db_path):
|
||||||
|
view_results_summary(db_path)
|
||||||
|
else:
|
||||||
|
print("Results table not found.")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error inspecting database: {str(e)}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
66
pyproject.toml
Normal file
66
pyproject.toml
Normal file
@ -0,0 +1,66 @@
|
|||||||
|
[build-system]
|
||||||
|
requires = ["setuptools>=45", "wheel"]
|
||||||
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
|
[project]
|
||||||
|
name = "pairs-trading"
|
||||||
|
version = "0.1.0"
|
||||||
|
description = "Pairs Trading Backtesting Framework"
|
||||||
|
requires-python = ">=3.8"
|
||||||
|
|
||||||
|
[tool.black]
|
||||||
|
line-length = 88
|
||||||
|
target-version = ['py38']
|
||||||
|
include = '\.pyi?$'
|
||||||
|
extend-exclude = '''
|
||||||
|
/(
|
||||||
|
# directories
|
||||||
|
\.eggs
|
||||||
|
| \.git
|
||||||
|
| \.hg
|
||||||
|
| \.mypy_cache
|
||||||
|
| \.tox
|
||||||
|
| \.venv
|
||||||
|
| build
|
||||||
|
| dist
|
||||||
|
)/
|
||||||
|
'''
|
||||||
|
|
||||||
|
[tool.flake8]
|
||||||
|
max-line-length = 88
|
||||||
|
extend-ignore = ["E203", "W503"]
|
||||||
|
exclude = [
|
||||||
|
".git",
|
||||||
|
"__pycache__",
|
||||||
|
"build",
|
||||||
|
"dist",
|
||||||
|
".venv",
|
||||||
|
".mypy_cache",
|
||||||
|
".tox"
|
||||||
|
]
|
||||||
|
|
||||||
|
[tool.mypy]
|
||||||
|
python_version = "3.8"
|
||||||
|
warn_return_any = true
|
||||||
|
warn_unused_configs = true
|
||||||
|
disallow_untyped_defs = true
|
||||||
|
disallow_incomplete_defs = true
|
||||||
|
check_untyped_defs = true
|
||||||
|
disallow_untyped_decorators = true
|
||||||
|
no_implicit_optional = true
|
||||||
|
warn_redundant_casts = true
|
||||||
|
warn_unused_ignores = true
|
||||||
|
warn_no_return = true
|
||||||
|
warn_unreachable = true
|
||||||
|
strict_equality = true
|
||||||
|
|
||||||
|
[[tool.mypy.overrides]]
|
||||||
|
module = [
|
||||||
|
"numpy.*",
|
||||||
|
"pandas.*",
|
||||||
|
"matplotlib.*",
|
||||||
|
"seaborn.*",
|
||||||
|
"scipy.*",
|
||||||
|
"sklearn.*"
|
||||||
|
]
|
||||||
|
ignore_missing_imports = true
|
||||||
24
pyrightconfig.json
Normal file
24
pyrightconfig.json
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
{
|
||||||
|
"include": [
|
||||||
|
"lib"
|
||||||
|
],
|
||||||
|
"exclude": [
|
||||||
|
"**/node_modules",
|
||||||
|
"**/__pycache__",
|
||||||
|
"**/.*",
|
||||||
|
"results",
|
||||||
|
"data"
|
||||||
|
],
|
||||||
|
"ignore": [],
|
||||||
|
"defineConstant": {},
|
||||||
|
"typeCheckingMode": "basic",
|
||||||
|
"useLibraryCodeForTypes": true,
|
||||||
|
"autoImportCompletions": true,
|
||||||
|
"autoSearchPaths": true,
|
||||||
|
"extraPaths": [
|
||||||
|
"lib"
|
||||||
|
],
|
||||||
|
"stubPath": "./typings",
|
||||||
|
"venvPath": ".",
|
||||||
|
"venv": "python3.12-venv"
|
||||||
|
}
|
||||||
214
requirements.txt
214
requirements.txt
@ -61,7 +61,7 @@ protobuf>=3.12.4
|
|||||||
psutil>=5.9.0
|
psutil>=5.9.0
|
||||||
ptyprocess>=0.7.0
|
ptyprocess>=0.7.0
|
||||||
pycurl>=7.44.1
|
pycurl>=7.44.1
|
||||||
pyelftools>=0.27
|
# pyelftools>=0.27
|
||||||
Pygments>=2.11.2
|
Pygments>=2.11.2
|
||||||
pyparsing>=2.4.7
|
pyparsing>=2.4.7
|
||||||
pyrsistent>=0.18.1
|
pyrsistent>=0.18.1
|
||||||
@ -69,7 +69,7 @@ python-debian>=0.1.43 #+ubuntu1.1
|
|||||||
python-dotenv>=0.19.2
|
python-dotenv>=0.19.2
|
||||||
python-magic>=0.4.24
|
python-magic>=0.4.24
|
||||||
python-xlib>=0.29
|
python-xlib>=0.29
|
||||||
pyxdg>=0.27
|
# pyxdg>=0.27
|
||||||
PyYAML>=6.0
|
PyYAML>=6.0
|
||||||
reportlab>=3.6.8
|
reportlab>=3.6.8
|
||||||
requests>=2.25.1
|
requests>=2.25.1
|
||||||
@ -78,119 +78,117 @@ scipy<1.13.0
|
|||||||
seaborn>=0.13.2
|
seaborn>=0.13.2
|
||||||
SecretStorage>=3.3.1
|
SecretStorage>=3.3.1
|
||||||
setproctitle>=1.2.2
|
setproctitle>=1.2.2
|
||||||
simpleeval>=1.0.3
|
|
||||||
six>=1.16.0
|
six>=1.16.0
|
||||||
soupsieve>=2.3.1
|
soupsieve>=2.3.1
|
||||||
ssh-import-id>=5.11
|
ssh-import-id>=5.11
|
||||||
statsmodels>=0.14.4
|
statsmodels>=0.14.4
|
||||||
texttable>=1.6.4
|
# texttable>=1.6.4
|
||||||
tldextract>=3.1.2
|
tldextract>=3.1.2
|
||||||
tomli>=1.2.2
|
tomli>=1.2.2
|
||||||
######## typed-ast>=1.4.3
|
######## typed-ast>=1.4.3
|
||||||
types-aiofiles>=0.1
|
# types-aiofiles>=0.1
|
||||||
types-annoy>=1.17
|
# types-annoy>=1.17
|
||||||
types-appdirs>=1.4
|
# types-appdirs>=1.4
|
||||||
types-atomicwrites>=1.4
|
# types-atomicwrites>=1.4
|
||||||
types-aws-xray-sdk>=2.8
|
# types-aws-xray-sdk>=2.8
|
||||||
types-babel>=2.9
|
# types-babel>=2.9
|
||||||
types-backports-abc>=0.5
|
# types-backports-abc>=0.5
|
||||||
types-backports.ssl-match-hostname>=3.7
|
# types-backports.ssl-match-hostname>=3.7
|
||||||
types-beautifulsoup4>=4.10
|
# types-beautifulsoup4>=4.10
|
||||||
types-bleach>=4.1
|
# types-bleach>=4.1
|
||||||
types-boto>=2.49
|
# types-boto>=2.49
|
||||||
types-braintree>=4.11
|
# types-braintree>=4.11
|
||||||
types-cachetools>=4.2
|
# types-cachetools>=4.2
|
||||||
types-caldav>=0.8
|
# types-caldav>=0.8
|
||||||
types-certifi>=2020.4
|
# types-certifi>=2020.4
|
||||||
types-characteristic>=14.3
|
# types-characteristic>=14.3
|
||||||
types-chardet>=4.0
|
# types-chardet>=4.0
|
||||||
types-click>=7.1
|
# types-click>=7.1
|
||||||
types-click-spinner>=0.1
|
# types-click-spinner>=0.1
|
||||||
types-colorama>=0.4
|
# types-colorama>=0.4
|
||||||
types-commonmark>=0.9
|
# types-commonmark>=0.9
|
||||||
types-contextvars>=0.1
|
# types-contextvars>=0.1
|
||||||
types-croniter>=1.0
|
# types-croniter>=1.0
|
||||||
types-cryptography>=3.3
|
# types-cryptography>=3.3
|
||||||
types-dataclasses>=0.1
|
# types-dataclasses>=0.1
|
||||||
types-dateparser>=1.0
|
# types-dateparser>=1.0
|
||||||
types-DateTimeRange>=0.1
|
# types-DateTimeRange>=0.1
|
||||||
types-decorator>=0.1
|
# types-decorator>=0.1
|
||||||
types-Deprecated>=1.2
|
# types-Deprecated>=1.2
|
||||||
types-docopt>=0.6
|
# types-docopt>=0.6
|
||||||
types-docutils>=0.17
|
# types-docutils>=0.17
|
||||||
types-editdistance>=0.5
|
# types-editdistance>=0.5
|
||||||
types-emoji>=1.2
|
# types-emoji>=1.2
|
||||||
types-entrypoints>=0.3
|
# types-entrypoints>=0.3
|
||||||
types-enum34>=1.1
|
# types-enum34>=1.1
|
||||||
types-filelock>=3.2
|
# types-filelock>=3.2
|
||||||
types-first>=2.0
|
# types-first>=2.0
|
||||||
types-Flask>=1.1
|
# types-Flask>=1.1
|
||||||
types-freezegun>=1.1
|
# types-freezegun>=1.1
|
||||||
types-frozendict>=0.1
|
# types-frozendict>=0.1
|
||||||
types-futures>=3.3
|
# types-futures>=3.3
|
||||||
types-html5lib>=1.1
|
# types-html5lib>=1.1
|
||||||
types-httplib2>=0.19
|
# types-httplib2>=0.19
|
||||||
types-humanfriendly>=9.2
|
# types-humanfriendly>=9.2
|
||||||
types-ipaddress>=1.0
|
# types-ipaddress>=1.0
|
||||||
types-itsdangerous>=1.1
|
# types-itsdangerous>=1.1
|
||||||
types-JACK-Client>=0.1
|
# types-JACK-Client>=0.1
|
||||||
types-Jinja2>=2.11
|
# types-Jinja2>=2.11
|
||||||
types-jmespath>=0.10
|
# types-jmespath>=0.10
|
||||||
types-jsonschema>=3.2
|
# types-jsonschema>=3.2
|
||||||
types-Markdown>=3.3
|
# types-Markdown>=3.3
|
||||||
types-MarkupSafe>=1.1
|
# types-MarkupSafe>=1.1
|
||||||
types-mock>=4.0
|
# types-mock>=4.0
|
||||||
types-mypy-extensions>=0.4
|
# types-mypy-extensions>=0.4
|
||||||
types-mysqlclient>=2.0
|
# types-mysqlclient>=2.0
|
||||||
types-oauthlib>=3.1
|
# types-oauthlib>=3.1
|
||||||
types-orjson>=3.6
|
# types-orjson>=3.6
|
||||||
types-paramiko>=2.7
|
# types-paramiko>=2.7
|
||||||
types-Pillow>=8.3
|
# types-Pillow>=8.3
|
||||||
types-polib>=1.1
|
# types-polib>=1.1
|
||||||
types-prettytable>=2.1
|
# types-prettytable>=2.1
|
||||||
types-protobuf>=3.17
|
# types-protobuf>=3.17
|
||||||
types-psutil>=5.8
|
# types-psutil>=5.8
|
||||||
types-psycopg2>=2.9
|
# types-psycopg2>=2.9
|
||||||
types-pyaudio>=0.2
|
# types-pyaudio>=0.2
|
||||||
types-pycurl>=0.1
|
# types-pycurl>=0.1
|
||||||
types-pyfarmhash>=0.2
|
# types-pyfarmhash>=0.2
|
||||||
types-Pygments>=2.9
|
# types-Pygments>=2.9
|
||||||
types-PyMySQL>=1.0
|
# types-PyMySQL>=1.0
|
||||||
types-pyOpenSSL>=20.0
|
# types-pyOpenSSL>=20.0
|
||||||
types-pyRFC3339>=0.1
|
# types-pyRFC3339>=0.1
|
||||||
types-pysftp>=0.2
|
# types-pysftp>=0.2
|
||||||
types-pytest-lazy-fixture>=0.6
|
# types-pytest-lazy-fixture>=0.6
|
||||||
types-python-dateutil>=2.8
|
# types-python-dateutil>=2.8
|
||||||
types-python-gflags>=3.1
|
# types-python-gflags>=3.1
|
||||||
types-python-nmap>=0.6
|
# types-python-nmap>=0.6
|
||||||
types-python-slugify>=5.0
|
# types-python-slugify>=5.0
|
||||||
types-pytz>=2021.1
|
# types-pytz>=2021.1
|
||||||
types-pyvmomi>=7.0
|
# types-pyvmomi>=7.0
|
||||||
types-PyYAML>=5.4
|
# types-PyYAML>=5.4
|
||||||
types-redis>=3.5
|
# types-redis>=3.5
|
||||||
types-requests>=2.25
|
# types-requests>=2.25
|
||||||
types-retry>=0.9
|
# types-retry>=0.9
|
||||||
types-seaborn>0.13.2
|
# types-selenium>=3.141
|
||||||
types-selenium>=3.141
|
# types-Send2Trash>=1.8
|
||||||
types-Send2Trash>=1.8
|
# types-setuptools>=57.4
|
||||||
types-setuptools>=57.4
|
# types-simplejson>=3.17
|
||||||
types-simplejson>=3.17
|
# types-singledispatch>=3.7
|
||||||
types-singledispatch>=3.7
|
# types-six>=1.16
|
||||||
types-six>=1.16
|
# types-slumber>=0.7
|
||||||
types-slumber>=0.7
|
# types-stripe>=2.59
|
||||||
types-stripe>=2.59
|
# types-tabulate>=0.8
|
||||||
types-tabulate>=0.8
|
# types-termcolor>=1.1
|
||||||
types-termcolor>=1.1
|
# types-toml>=0.10
|
||||||
types-toml>=0.10
|
# types-toposort>=1.6
|
||||||
types-toposort>=1.6
|
# types-ttkthemes>=3.2
|
||||||
types-ttkthemes>=3.2
|
# types-typed-ast>=1.4
|
||||||
types-typed-ast>=1.4
|
# types-tzlocal>=0.1
|
||||||
types-tzlocal>=0.1
|
# types-ujson>=0.1
|
||||||
types-ujson>=0.1
|
# types-vobject>=0.9
|
||||||
types-vobject>=0.9
|
# types-waitress>=0.1
|
||||||
types-waitress>=0.1
|
#types-Werkzeug>=1.0
|
||||||
types-Werkzeug>=1.0
|
#types-xxhash>=2.0
|
||||||
types-xxhash>=2.0
|
|
||||||
typing-extensions>=3.10.0.2
|
typing-extensions>=3.10.0.2
|
||||||
Unidecode>=1.3.3
|
Unidecode>=1.3.3
|
||||||
urllib3>=1.26.5
|
urllib3>=1.26.5
|
||||||
|
|||||||
@ -1,139 +0,0 @@
|
|||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import os
|
|
||||||
from typing import Any, Dict, List, Tuple
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_tools.app import App
|
|
||||||
from cvttpy_tools.base import NamedObject
|
|
||||||
from cvttpy_tools.config import CvttAppConfig
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from cvttpy_trading.trading.instrument import ExchangeInstrument
|
|
||||||
from cvttpy_trading.settings.instruments import Instruments
|
|
||||||
|
|
||||||
# ---
|
|
||||||
from pairs_trading.lib.pt_strategy.results import (
|
|
||||||
PairResearchResult,
|
|
||||||
create_result_database,
|
|
||||||
store_config_in_database,
|
|
||||||
)
|
|
||||||
from pairs_trading.lib.pt_strategy.research_strategy import PtResearchStrategy
|
|
||||||
from pairs_trading.lib.tools.filetools import resolve_datafiles
|
|
||||||
|
|
||||||
InstrumentTypeT = str
|
|
||||||
|
|
||||||
|
|
||||||
class Runner(NamedObject):
|
|
||||||
def __init__(self):
|
|
||||||
App()
|
|
||||||
CvttAppConfig()
|
|
||||||
|
|
||||||
# App.instance().add_cmdline_arg(
|
|
||||||
# "--config", type=str, required=True, help="Path to the configuration file."
|
|
||||||
# )
|
|
||||||
App.instance().add_cmdline_arg(
|
|
||||||
"--date_pattern",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Date YYYYMMDD, allows * and ? wildcards",
|
|
||||||
)
|
|
||||||
App.instance().add_cmdline_arg(
|
|
||||||
"--instruments",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Comma-separated list of instrument symbols (e.g., COIN:EQUITY,GBTC:CRYPTO)",
|
|
||||||
)
|
|
||||||
App.instance().add_cmdline_arg(
|
|
||||||
"--result_db",
|
|
||||||
type=str,
|
|
||||||
required=True,
|
|
||||||
help="Path to SQLite database for storing results. Use 'NONE' to disable database output.",
|
|
||||||
)
|
|
||||||
|
|
||||||
App.instance().add_call(stage=App.Stage.Config, func=self._on_config())
|
|
||||||
App.instance().add_call(stage=App.Stage.Run, func=self.run())
|
|
||||||
|
|
||||||
async def _on_config(self) -> None:
|
|
||||||
# Resolve data files (CLI takes priority over config)
|
|
||||||
instruments: List[ExchangeInstrument] = self._get_instruments()
|
|
||||||
datafiles = resolve_datafiles(
|
|
||||||
config=CvttAppConfig.instance(),
|
|
||||||
date_pattern=App.instance().get_argument("date_pattern"),
|
|
||||||
instruments=instruments,
|
|
||||||
)
|
|
||||||
|
|
||||||
days = list(set([day for day, _ in datafiles]))
|
|
||||||
print(f"Found {len(datafiles)} data files to process:")
|
|
||||||
for df in datafiles:
|
|
||||||
print(f" - {df}")
|
|
||||||
|
|
||||||
# Create result database if needed
|
|
||||||
if App.instance().get_argument("result_db").upper() != "NONE":
|
|
||||||
create_result_database(App.instance().get_argument("result_db"))
|
|
||||||
|
|
||||||
# Initialize a dictionary to store all trade results
|
|
||||||
all_results: Dict[str, Dict[str, Any]] = {}
|
|
||||||
is_config_stored = False
|
|
||||||
# Process each data file
|
|
||||||
|
|
||||||
results = PairResearchResult(config=CvttAppConfig.instance())
|
|
||||||
for day in sorted(days):
|
|
||||||
md_datafiles = [datafile for md_day, datafile in datafiles if md_day == day]
|
|
||||||
if not all([os.path.exists(datafile) for datafile in md_datafiles]):
|
|
||||||
print(f"WARNING: insufficient data files: {md_datafiles}")
|
|
||||||
exit(1)
|
|
||||||
print(f"\n====== Processing {day} ======")
|
|
||||||
|
|
||||||
if not is_config_stored:
|
|
||||||
store_config_in_database(
|
|
||||||
db_path=App.instance().get_argument("result_db"),
|
|
||||||
config_file_path=App.instance().get_argument("config"),
|
|
||||||
config=CvttAppConfig.instance(),
|
|
||||||
datafiles=datafiles,
|
|
||||||
instruments=instruments,
|
|
||||||
)
|
|
||||||
is_config_stored = True
|
|
||||||
|
|
||||||
CvttAppConfig.instance().set_value("datafiles", md_datafiles)
|
|
||||||
pt_strategy = PtResearchStrategy(
|
|
||||||
config=CvttAppConfig.instance(),
|
|
||||||
instruments=instruments,
|
|
||||||
)
|
|
||||||
pt_strategy.run()
|
|
||||||
results.add_day_results(
|
|
||||||
day=day,
|
|
||||||
trades=pt_strategy.day_trades(),
|
|
||||||
outstanding_positions=pt_strategy.outstanding_positions(),
|
|
||||||
)
|
|
||||||
|
|
||||||
results.analyze_pair_performance()
|
|
||||||
|
|
||||||
def _get_instruments(self) -> List[ExchangeInstrument]:
|
|
||||||
res: List[ExchangeInstrument] = []
|
|
||||||
|
|
||||||
for inst in App.instance().get_argument("instruments").split(","):
|
|
||||||
instrument_type = inst.split(":")[0]
|
|
||||||
exchange_id = inst.split(":")[1]
|
|
||||||
instrument_id = inst.split(":")[2]
|
|
||||||
exch_inst: ExchangeInstrument = Instruments.instance().get_exch_inst(
|
|
||||||
exch_id=exchange_id, inst_id=instrument_id, src=f"{self.fname()}"
|
|
||||||
)
|
|
||||||
exch_inst.user_data_["instrument_type"] = instrument_type
|
|
||||||
res.append(exch_inst)
|
|
||||||
|
|
||||||
return res
|
|
||||||
|
|
||||||
async def run(self) -> None:
|
|
||||||
|
|
||||||
if App.instance().get_argument("result_db").upper() != "NONE":
|
|
||||||
print(
|
|
||||||
f'\nResults stored in database: {App.instance().get_argument("result_db")}'
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
print("No results to display.")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
Runner()
|
|
||||||
App.instance().run()
|
|
||||||
127
research/cointegration_test.py
Normal file
127
research/cointegration_test.py
Normal file
@ -0,0 +1,127 @@
|
|||||||
|
import argparse
|
||||||
|
import glob
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
from datetime import date, datetime
|
||||||
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from tools.config import expand_filename, load_config
|
||||||
|
from tools.data_loader import get_available_instruments_from_db
|
||||||
|
|
||||||
|
from pt_trading.results import (
|
||||||
|
BacktestResult,
|
||||||
|
create_result_database,
|
||||||
|
store_config_in_database,
|
||||||
|
store_results_in_database,
|
||||||
|
)
|
||||||
|
|
||||||
|
from pt_trading.fit_method import PairsTradingFitMethod
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
|
from research.research_tools import create_pairs, resolve_datafiles
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--config", type=str, required=True, help="Path to the configuration file."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--datafile",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="Market data file to process.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--instruments",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help = "Comma-separated list of instrument symbols (e.g., COIN,GBTC). If not provided, auto-detects from database.",
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
config: Dict = load_config(args.config)
|
||||||
|
|
||||||
|
# Resolve data files (CLI takes priority over config)
|
||||||
|
datafile = resolve_datafiles(config, args.datafile)[0]
|
||||||
|
|
||||||
|
if not datafile:
|
||||||
|
print("No data files found to process.")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"Found {datafile} data files to process:")
|
||||||
|
|
||||||
|
# # Create result database if needed
|
||||||
|
# if args.result_db.upper() != "NONE":
|
||||||
|
# args.result_db = expand_filename(args.result_db)
|
||||||
|
# create_result_database(args.result_db)
|
||||||
|
|
||||||
|
# # Initialize a dictionary to store all trade results
|
||||||
|
# all_results: Dict[str, Dict[str, Any]] = {}
|
||||||
|
|
||||||
|
# # Store configuration in database for reference
|
||||||
|
# if args.result_db.upper() != "NONE":
|
||||||
|
# # Get list of all instruments for storage
|
||||||
|
# all_instruments = []
|
||||||
|
# for datafile in datafiles:
|
||||||
|
# if args.instruments:
|
||||||
|
# file_instruments = [
|
||||||
|
# inst.strip() for inst in args.instruments.split(",")
|
||||||
|
# ]
|
||||||
|
# else:
|
||||||
|
# file_instruments = get_available_instruments_from_db(datafile, config)
|
||||||
|
# all_instruments.extend(file_instruments)
|
||||||
|
|
||||||
|
# # Remove duplicates while preserving order
|
||||||
|
# unique_instruments = list(dict.fromkeys(all_instruments))
|
||||||
|
|
||||||
|
# store_config_in_database(
|
||||||
|
# db_path=args.result_db,
|
||||||
|
# config_file_path=args.config,
|
||||||
|
# config=config,
|
||||||
|
# fit_method_class=fit_method_class_name,
|
||||||
|
# datafiles=datafiles,
|
||||||
|
# instruments=unique_instruments,
|
||||||
|
# )
|
||||||
|
|
||||||
|
# Process each data file
|
||||||
|
stat_model_price = config["stat_model_price"]
|
||||||
|
|
||||||
|
print(f"\n====== Processing {os.path.basename(datafile)} ======")
|
||||||
|
|
||||||
|
# Determine instruments to use
|
||||||
|
if args.instruments:
|
||||||
|
# Use CLI-specified instruments
|
||||||
|
instruments = [inst.strip() for inst in args.instruments.split(",")]
|
||||||
|
print(f"Using CLI-specified instruments: {instruments}")
|
||||||
|
else:
|
||||||
|
# Auto-detect instruments from database
|
||||||
|
instruments = get_available_instruments_from_db(datafile, config)
|
||||||
|
print(f"Auto-detected instruments: {instruments}")
|
||||||
|
|
||||||
|
if not instruments:
|
||||||
|
print(f"No instruments found in {datafile}...")
|
||||||
|
return
|
||||||
|
# Process data for this file
|
||||||
|
try:
|
||||||
|
cointegration_data: pd.DataFrame = pd.DataFrame()
|
||||||
|
for pair in create_pairs(datafile, stat_model_price, config, instruments):
|
||||||
|
cointegration_data = pd.concat([cointegration_data, pair.cointegration_check()])
|
||||||
|
|
||||||
|
pd.set_option('display.width', 400)
|
||||||
|
pd.set_option('display.max_colwidth', None)
|
||||||
|
pd.set_option('display.max_columns', None)
|
||||||
|
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
|
||||||
|
print(f"cointegration_data:\n{cointegration_data}")
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print(f"Error processing {datafile}: {str(err)}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
File diff suppressed because one or more lines are too long
16
research/notebooks/pt_pair_backtest.ipynb
Normal file
16
research/notebooks/pt_pair_backtest.ipynb
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
{
|
||||||
|
"cells": [],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"name": "python",
|
||||||
|
"version": "3.12.5"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
||||||
7398
research/notebooks/pt_sliding.ipynb
Normal file
7398
research/notebooks/pt_sliding.ipynb
Normal file
File diff suppressed because one or more lines are too long
6832
research/notebooks/single_pair_test.ipynb
Normal file
6832
research/notebooks/single_pair_test.ipynb
Normal file
File diff suppressed because one or more lines are too long
6685
research/notebooks/single_pair_test_lg.ipynb
Normal file
6685
research/notebooks/single_pair_test_lg.ipynb
Normal file
File diff suppressed because one or more lines are too long
232
research/pt_backtest.py
Normal file
232
research/pt_backtest.py
Normal file
@ -0,0 +1,232 @@
|
|||||||
|
import argparse
|
||||||
|
import glob
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
from datetime import date, datetime
|
||||||
|
from typing import Any, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from research.research_tools import create_pairs
|
||||||
|
from tools.config import expand_filename, load_config
|
||||||
|
from pt_trading.results import (
|
||||||
|
BacktestResult,
|
||||||
|
create_result_database,
|
||||||
|
store_config_in_database,
|
||||||
|
)
|
||||||
|
from pt_trading.fit_method import PairsTradingFitMethod
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
|
DayT = str
|
||||||
|
DataFileNameT = str
|
||||||
|
|
||||||
|
def resolve_datafiles(
|
||||||
|
config: Dict, date_pattern: str, instruments: List[Dict[str, str]]
|
||||||
|
) -> List[Tuple[DayT, DataFileNameT]]:
|
||||||
|
resolved_files: List[Tuple[DayT, DataFileNameT]] = []
|
||||||
|
for inst in instruments:
|
||||||
|
pattern = date_pattern
|
||||||
|
inst_type = inst["instrument_type"]
|
||||||
|
data_dir = config["market_data_loading"][inst_type]["data_directory"]
|
||||||
|
if "*" in pattern or "?" in pattern:
|
||||||
|
# Handle wildcards
|
||||||
|
if not os.path.isabs(pattern):
|
||||||
|
pattern = os.path.join(data_dir, f"{pattern}.mktdata.ohlcv.db")
|
||||||
|
matched_files = glob.glob(pattern)
|
||||||
|
for matched_file in matched_files:
|
||||||
|
import re
|
||||||
|
match = re.search(r"(\d{8})\.mktdata\.ohlcv\.db$", matched_file)
|
||||||
|
assert match is not None
|
||||||
|
day = match.group(1)
|
||||||
|
resolved_files.append((day, matched_file))
|
||||||
|
else:
|
||||||
|
# Handle explicit file path
|
||||||
|
if not os.path.isabs(pattern):
|
||||||
|
pattern = os.path.join(data_dir, f"{pattern}.mktdata.ohlcv.db")
|
||||||
|
resolved_files.append((date_pattern, pattern))
|
||||||
|
return sorted(list(set(resolved_files))) # Remove duplicates and sort
|
||||||
|
|
||||||
|
|
||||||
|
def get_instruments(args: argparse.Namespace, config: Dict) -> List[Dict[str, str]]:
|
||||||
|
|
||||||
|
instruments = [
|
||||||
|
{
|
||||||
|
"symbol": inst.split(":")[0],
|
||||||
|
"instrument_type": inst.split(":")[1],
|
||||||
|
"exchange_id": inst.split(":")[2],
|
||||||
|
"instrument_id_pfx": config["market_data_loading"][inst.split(":")[1]][
|
||||||
|
"instrument_id_pfx"
|
||||||
|
],
|
||||||
|
"db_table_name": config["market_data_loading"][inst.split(":")[1]][
|
||||||
|
"db_table_name"
|
||||||
|
],
|
||||||
|
}
|
||||||
|
for inst in args.instruments.split(",")
|
||||||
|
]
|
||||||
|
return instruments
|
||||||
|
|
||||||
|
|
||||||
|
def run_backtest(
|
||||||
|
config: Dict,
|
||||||
|
datafiles: List[str],
|
||||||
|
fit_method: PairsTradingFitMethod,
|
||||||
|
instruments: List[Dict[str, str]],
|
||||||
|
) -> BacktestResult:
|
||||||
|
"""
|
||||||
|
Run backtest for all pairs using the specified instruments.
|
||||||
|
"""
|
||||||
|
bt_result: BacktestResult = BacktestResult(config=config)
|
||||||
|
# if len(datafiles) < 2:
|
||||||
|
# print(f"WARNING: insufficient data files: {datafiles}")
|
||||||
|
# return bt_result
|
||||||
|
|
||||||
|
if not all([os.path.exists(datafile) for datafile in datafiles]):
|
||||||
|
print(f"WARNING: data file {datafiles} does not exist")
|
||||||
|
return bt_result
|
||||||
|
|
||||||
|
pairs_trades = []
|
||||||
|
|
||||||
|
pairs = create_pairs(
|
||||||
|
datafiles=datafiles,
|
||||||
|
fit_method=fit_method,
|
||||||
|
config=config,
|
||||||
|
instruments=instruments,
|
||||||
|
)
|
||||||
|
for pair in pairs:
|
||||||
|
single_pair_trades = fit_method.run_pair(pair=pair, bt_result=bt_result)
|
||||||
|
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
||||||
|
pairs_trades.append(single_pair_trades)
|
||||||
|
print(f"pairs_trades:\n{pairs_trades}")
|
||||||
|
# Check if result_list has any data before concatenating
|
||||||
|
if len(pairs_trades) == 0:
|
||||||
|
print("No trading signals found for any pairs")
|
||||||
|
return bt_result
|
||||||
|
|
||||||
|
bt_result.collect_single_day_results(pairs_trades)
|
||||||
|
return bt_result
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--config", type=str, required=True, help="Path to the configuration file."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--date_pattern",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Date YYYYMMDD, allows * and ? wildcards",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--instruments",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Comma-separated list of instrument symbols (e.g., COIN:EQUITY,GBTC:CRYPTO)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--result_db",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to SQLite database for storing results. Use 'NONE' to disable database output.",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
config: Dict = load_config(args.config)
|
||||||
|
|
||||||
|
# Dynamically instantiate fit method class
|
||||||
|
fit_method = PairsTradingFitMethod.create(config)
|
||||||
|
|
||||||
|
# Resolve data files (CLI takes priority over config)
|
||||||
|
instruments = get_instruments(args, config)
|
||||||
|
datafiles = resolve_datafiles(config, args.date_pattern, instruments)
|
||||||
|
|
||||||
|
days = list(set([day for day, _ in datafiles]))
|
||||||
|
print(f"Found {len(datafiles)} data files to process:")
|
||||||
|
for df in datafiles:
|
||||||
|
print(f" - {df}")
|
||||||
|
|
||||||
|
# Create result database if needed
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
args.result_db = expand_filename(args.result_db)
|
||||||
|
create_result_database(args.result_db)
|
||||||
|
|
||||||
|
# Initialize a dictionary to store all trade results
|
||||||
|
all_results: Dict[str, Dict[str, Any]] = {}
|
||||||
|
is_config_stored = False
|
||||||
|
# Process each data file
|
||||||
|
|
||||||
|
for day in sorted(days):
|
||||||
|
md_datafiles = [datafile for md_day, datafile in datafiles if md_day == day]
|
||||||
|
if not all([os.path.exists(datafile) for datafile in md_datafiles]):
|
||||||
|
print(f"WARNING: insufficient data files: {md_datafiles}")
|
||||||
|
continue
|
||||||
|
print(f"\n====== Processing {day} ======")
|
||||||
|
|
||||||
|
if not is_config_stored:
|
||||||
|
store_config_in_database(
|
||||||
|
db_path=args.result_db,
|
||||||
|
config_file_path=args.config,
|
||||||
|
config=config,
|
||||||
|
fit_method_class=config["fit_method_class"],
|
||||||
|
datafiles=datafiles,
|
||||||
|
instruments=instruments,
|
||||||
|
)
|
||||||
|
is_config_stored = True
|
||||||
|
|
||||||
|
# Process data for this file
|
||||||
|
try:
|
||||||
|
fit_method.reset()
|
||||||
|
|
||||||
|
bt_results = run_backtest(
|
||||||
|
config=config,
|
||||||
|
datafiles=md_datafiles,
|
||||||
|
fit_method=fit_method,
|
||||||
|
instruments=instruments,
|
||||||
|
)
|
||||||
|
|
||||||
|
if bt_results.trades is None or len(bt_results.trades) == 0:
|
||||||
|
print(f"No trades found for {day}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Store results with day name as key
|
||||||
|
filename = os.path.basename(day)
|
||||||
|
all_results[filename] = {
|
||||||
|
"trades": bt_results.trades.copy(),
|
||||||
|
"outstanding_positions": bt_results.outstanding_positions.copy(),
|
||||||
|
}
|
||||||
|
|
||||||
|
# Store results in database
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
bt_results.calculate_returns(
|
||||||
|
{
|
||||||
|
filename: {
|
||||||
|
"trades": bt_results.trades.copy(),
|
||||||
|
"outstanding_positions": bt_results.outstanding_positions.copy(),
|
||||||
|
}
|
||||||
|
}
|
||||||
|
)
|
||||||
|
bt_results.store_results_in_database(db_path=args.result_db, day=day)
|
||||||
|
|
||||||
|
print(f"Successfully processed {filename}")
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print(f"Error processing {day}: {str(err)}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
# Calculate and print results using a new BacktestResult instance for aggregation
|
||||||
|
if all_results:
|
||||||
|
aggregate_bt_results = BacktestResult(config=config)
|
||||||
|
aggregate_bt_results.calculate_returns(all_results)
|
||||||
|
aggregate_bt_results.print_grand_totals()
|
||||||
|
aggregate_bt_results.print_outstanding_positions()
|
||||||
|
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
print(f"\nResults stored in database: {args.result_db}")
|
||||||
|
else:
|
||||||
|
print("No results to display.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
93
research/research_tools.py
Normal file
93
research/research_tools.py
Normal file
@ -0,0 +1,93 @@
|
|||||||
|
import glob
|
||||||
|
import os
|
||||||
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
import pandas as pd
|
||||||
|
from pt_trading.fit_method import PairsTradingFitMethod
|
||||||
|
|
||||||
|
def resolve_datafiles(config: Dict, cli_datafiles: Optional[str] = None) -> List[str]:
|
||||||
|
"""
|
||||||
|
Resolve the list of data files to process.
|
||||||
|
CLI datafiles take priority over config datafiles.
|
||||||
|
Supports wildcards in config but not in CLI.
|
||||||
|
"""
|
||||||
|
if cli_datafiles:
|
||||||
|
# CLI override - comma-separated list, no wildcards
|
||||||
|
datafiles = [f.strip() for f in cli_datafiles.split(",")]
|
||||||
|
# Make paths absolute relative to data directory
|
||||||
|
data_dir = config.get("data_directory", "./data")
|
||||||
|
resolved_files = []
|
||||||
|
for df in datafiles:
|
||||||
|
if not os.path.isabs(df):
|
||||||
|
df = os.path.join(data_dir, df)
|
||||||
|
resolved_files.append(df)
|
||||||
|
return resolved_files
|
||||||
|
|
||||||
|
# Use config datafiles with wildcard support
|
||||||
|
config_datafiles = config.get("datafiles", [])
|
||||||
|
data_dir = config.get("data_directory", "./data")
|
||||||
|
resolved_files = []
|
||||||
|
|
||||||
|
for pattern in config_datafiles:
|
||||||
|
if "*" in pattern or "?" in pattern:
|
||||||
|
# Handle wildcards
|
||||||
|
if not os.path.isabs(pattern):
|
||||||
|
pattern = os.path.join(data_dir, pattern)
|
||||||
|
matched_files = glob.glob(pattern)
|
||||||
|
resolved_files.extend(matched_files)
|
||||||
|
else:
|
||||||
|
# Handle explicit file path
|
||||||
|
if not os.path.isabs(pattern):
|
||||||
|
pattern = os.path.join(data_dir, pattern)
|
||||||
|
resolved_files.append(pattern)
|
||||||
|
|
||||||
|
return sorted(list(set(resolved_files))) # Remove duplicates and sort
|
||||||
|
|
||||||
|
|
||||||
|
def create_pairs(
|
||||||
|
datafiles: List[str],
|
||||||
|
fit_method: PairsTradingFitMethod,
|
||||||
|
config: Dict,
|
||||||
|
instruments: List[Dict[str, str]],
|
||||||
|
) -> List:
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
from tools.data_loader import load_market_data
|
||||||
|
|
||||||
|
all_indexes = range(len(instruments))
|
||||||
|
unique_index_pairs = [(i, j) for i in all_indexes for j in all_indexes if i < j]
|
||||||
|
pairs = []
|
||||||
|
|
||||||
|
# Update config to use the specified instruments
|
||||||
|
config_copy = config.copy()
|
||||||
|
config_copy["instruments"] = instruments
|
||||||
|
|
||||||
|
market_data_df = pd.DataFrame()
|
||||||
|
extra_minutes = 0
|
||||||
|
if "execution_price" in config_copy:
|
||||||
|
extra_minutes = config_copy["execution_price"]["shift"]
|
||||||
|
|
||||||
|
for datafile in datafiles:
|
||||||
|
md_df = load_market_data(
|
||||||
|
datafile = datafile,
|
||||||
|
instruments = instruments,
|
||||||
|
db_table_name = config_copy["market_data_loading"][instruments[0]["instrument_type"]]["db_table_name"],
|
||||||
|
trading_hours=config_copy["trading_hours"],
|
||||||
|
extra_minutes=extra_minutes,
|
||||||
|
)
|
||||||
|
market_data_df = pd.concat([market_data_df, md_df])
|
||||||
|
|
||||||
|
if len(set(market_data_df["symbol"])) != 2: # both symbols must be present for a pair
|
||||||
|
print(f"WARNING: insufficient data in files: {datafiles}")
|
||||||
|
return []
|
||||||
|
|
||||||
|
for a_index, b_index in unique_index_pairs:
|
||||||
|
symbol_a=instruments[a_index]["symbol"]
|
||||||
|
symbol_b=instruments[b_index]["symbol"]
|
||||||
|
pair = fit_method.create_trading_pair(
|
||||||
|
config=config_copy,
|
||||||
|
market_data=market_data_df,
|
||||||
|
symbol_a=symbol_a,
|
||||||
|
symbol_b=symbol_b,
|
||||||
|
)
|
||||||
|
pairs.append(pair)
|
||||||
|
return pairs
|
||||||
221
strategy/pair_strategy.py
Normal file
221
strategy/pair_strategy.py
Normal file
@ -0,0 +1,221 @@
|
|||||||
|
import argparse
|
||||||
|
import asyncio
|
||||||
|
import glob
|
||||||
|
import importlib
|
||||||
|
import os
|
||||||
|
from datetime import date, datetime
|
||||||
|
from typing import Any, Dict, List, Optional
|
||||||
|
|
||||||
|
import hjson
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
from tools.data_loader import get_available_instruments_from_db, load_market_data
|
||||||
|
from pt_trading.results import (
|
||||||
|
BacktestResult,
|
||||||
|
create_result_database,
|
||||||
|
store_config_in_database,
|
||||||
|
store_results_in_database,
|
||||||
|
)
|
||||||
|
from pt_trading.fit_methods import PairsTradingFitMethod
|
||||||
|
from pt_trading.trading_pair import TradingPair
|
||||||
|
|
||||||
|
|
||||||
|
def run_strategy(
|
||||||
|
config: Dict,
|
||||||
|
datafile: str,
|
||||||
|
fit_method: PairsTradingFitMethod,
|
||||||
|
instruments: List[str],
|
||||||
|
) -> BacktestResult:
|
||||||
|
"""
|
||||||
|
Run backtest for all pairs using the specified instruments.
|
||||||
|
"""
|
||||||
|
bt_result: BacktestResult = BacktestResult(config=config)
|
||||||
|
|
||||||
|
def _create_pairs(config: Dict, instruments: List[str]) -> List[TradingPair]:
|
||||||
|
nonlocal datafile
|
||||||
|
all_indexes = range(len(instruments))
|
||||||
|
unique_index_pairs = [(i, j) for i in all_indexes for j in all_indexes if i < j]
|
||||||
|
pairs = []
|
||||||
|
|
||||||
|
# Update config to use the specified instruments
|
||||||
|
config_copy = config.copy()
|
||||||
|
config_copy["instruments"] = instruments
|
||||||
|
|
||||||
|
market_data_df = load_market_data(
|
||||||
|
datafile=datafile,
|
||||||
|
exchange_id=config_copy["exchange_id"],
|
||||||
|
instruments=config_copy["instruments"],
|
||||||
|
instrument_id_pfx=config_copy["instrument_id_pfx"],
|
||||||
|
db_table_name=config_copy["db_table_name"],
|
||||||
|
trading_hours=config_copy["trading_hours"],
|
||||||
|
)
|
||||||
|
|
||||||
|
for a_index, b_index in unique_index_pairs:
|
||||||
|
pair = fit_method.create_trading_pair(
|
||||||
|
market_data=market_data_df,
|
||||||
|
symbol_a=instruments[a_index],
|
||||||
|
symbol_b=instruments[b_index],
|
||||||
|
)
|
||||||
|
pairs.append(pair)
|
||||||
|
return pairs
|
||||||
|
|
||||||
|
pairs_trades = []
|
||||||
|
for pair in _create_pairs(config, instruments):
|
||||||
|
single_pair_trades = fit_method.run_pair(
|
||||||
|
pair=pair, config=config, bt_result=bt_result
|
||||||
|
)
|
||||||
|
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
||||||
|
pairs_trades.append(single_pair_trades)
|
||||||
|
|
||||||
|
# Check if result_list has any data before concatenating
|
||||||
|
if len(pairs_trades) == 0:
|
||||||
|
print("No trading signals found for any pairs")
|
||||||
|
return bt_result
|
||||||
|
|
||||||
|
result = pd.concat(pairs_trades, ignore_index=True)
|
||||||
|
result["time"] = pd.to_datetime(result["time"])
|
||||||
|
result = result.set_index("time").sort_index()
|
||||||
|
|
||||||
|
bt_result.collect_single_day_results(result)
|
||||||
|
return bt_result
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--config", type=str, required=True, help="Path to the configuration file."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--datafiles",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="Comma-separated list of data files (overrides config). No wildcards supported.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--instruments",
|
||||||
|
type=str,
|
||||||
|
required=False,
|
||||||
|
help="Comma-separated list of instrument symbols (e.g., COIN,GBTC). If not provided, auto-detects from database.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--result_db",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="Path to SQLite database for storing results. Use 'NONE' to disable database output.",
|
||||||
|
)
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
config: Dict = load_config(args.config)
|
||||||
|
|
||||||
|
# Dynamically instantiate fit method class
|
||||||
|
fit_method_class_name = config.get("fit_method_class", None)
|
||||||
|
assert fit_method_class_name is not None
|
||||||
|
module_name, class_name = fit_method_class_name.rsplit(".", 1)
|
||||||
|
module = importlib.import_module(module_name)
|
||||||
|
fit_method = getattr(module, class_name)()
|
||||||
|
|
||||||
|
# Resolve data files (CLI takes priority over config)
|
||||||
|
datafiles = resolve_datafiles(config, args.datafiles)
|
||||||
|
|
||||||
|
if not datafiles:
|
||||||
|
print("No data files found to process.")
|
||||||
|
return
|
||||||
|
|
||||||
|
print(f"Found {len(datafiles)} data files to process:")
|
||||||
|
for df in datafiles:
|
||||||
|
print(f" - {df}")
|
||||||
|
|
||||||
|
# Create result database if needed
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
create_result_database(args.result_db)
|
||||||
|
|
||||||
|
# Initialize a dictionary to store all trade results
|
||||||
|
all_results: Dict[str, Dict[str, Any]] = {}
|
||||||
|
|
||||||
|
# Store configuration in database for reference
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
# Get list of all instruments for storage
|
||||||
|
all_instruments = []
|
||||||
|
for datafile in datafiles:
|
||||||
|
if args.instruments:
|
||||||
|
file_instruments = [
|
||||||
|
inst.strip() for inst in args.instruments.split(",")
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
file_instruments = get_available_instruments_from_db(datafile, config)
|
||||||
|
all_instruments.extend(file_instruments)
|
||||||
|
|
||||||
|
# Remove duplicates while preserving order
|
||||||
|
unique_instruments = list(dict.fromkeys(all_instruments))
|
||||||
|
|
||||||
|
store_config_in_database(
|
||||||
|
db_path=args.result_db,
|
||||||
|
config_file_path=args.config,
|
||||||
|
config=config,
|
||||||
|
fit_method_class=fit_method_class_name,
|
||||||
|
datafiles=datafiles,
|
||||||
|
instruments=unique_instruments,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process each data file
|
||||||
|
|
||||||
|
for datafile in datafiles:
|
||||||
|
print(f"\n====== Processing {os.path.basename(datafile)} ======")
|
||||||
|
|
||||||
|
# Determine instruments to use
|
||||||
|
if args.instruments:
|
||||||
|
# Use CLI-specified instruments
|
||||||
|
instruments = [inst.strip() for inst in args.instruments.split(",")]
|
||||||
|
print(f"Using CLI-specified instruments: {instruments}")
|
||||||
|
else:
|
||||||
|
# Auto-detect instruments from database
|
||||||
|
instruments = get_available_instruments_from_db(datafile, config)
|
||||||
|
print(f"Auto-detected instruments: {instruments}")
|
||||||
|
|
||||||
|
if not instruments:
|
||||||
|
print(f"No instruments found for {datafile}, skipping...")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Process data for this file
|
||||||
|
try:
|
||||||
|
fit_method.reset()
|
||||||
|
|
||||||
|
bt_results = run_strategy(
|
||||||
|
config=config,
|
||||||
|
datafile=datafile,
|
||||||
|
fit_method=fit_method,
|
||||||
|
instruments=instruments,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Store results with file name as key
|
||||||
|
filename = os.path.basename(datafile)
|
||||||
|
all_results[filename] = {"trades": bt_results.trades.copy()}
|
||||||
|
|
||||||
|
# Store results in database
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
store_results_in_database(args.result_db, datafile, bt_results)
|
||||||
|
|
||||||
|
print(f"Successfully processed {filename}")
|
||||||
|
|
||||||
|
except Exception as err:
|
||||||
|
print(f"Error processing {datafile}: {str(err)}")
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
# Calculate and print results using a new BacktestResult instance for aggregation
|
||||||
|
if all_results:
|
||||||
|
aggregate_bt_results = BacktestResult(config=config)
|
||||||
|
aggregate_bt_results.calculate_returns(all_results)
|
||||||
|
aggregate_bt_results.print_grand_totals()
|
||||||
|
aggregate_bt_results.print_outstanding_positions()
|
||||||
|
|
||||||
|
if args.result_db.upper() != "NONE":
|
||||||
|
print(f"\nResults stored in database: {args.result_db}")
|
||||||
|
else:
|
||||||
|
print("No results to display.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(main())
|
||||||
Loading…
x
Reference in New Issue
Block a user