Compare commits
8 Commits
master
...
lg_branch_
| Author | SHA1 | Date | |
|---|---|---|---|
| 809f46fe36 | |||
| 413abafe0f | |||
| 5d46c1e32c | |||
| 889f7ba1c3 | |||
| 1515b2d077 | |||
| b4ae3e715d | |||
|
|
6f845d32c6 | ||
|
|
a04e8878fb |
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,10 +1,10 @@
|
||||
# SpecStory explanation file
|
||||
__pycache__/
|
||||
__OLD__/
|
||||
.specstory/
|
||||
.history/
|
||||
.cursorindexingignore
|
||||
data
|
||||
####.vscode/
|
||||
cvttpy
|
||||
# SpecStory explanation file
|
||||
.specstory/.what-is-this.md
|
||||
|
||||
1
.vscode/.env
vendored
1
.vscode/.env
vendored
@ -1 +0,0 @@
|
||||
PYTHONPATH=/home/oleg/develop
|
||||
9
.vscode/extensions.json
vendored
9
.vscode/extensions.json
vendored
@ -1,9 +0,0 @@
|
||||
{
|
||||
"recommendations": [
|
||||
"ms-python.python",
|
||||
"ms-python.pylance",
|
||||
"ms-python.black-formatter",
|
||||
"ms-python.mypy-type-checker",
|
||||
"ms-python.isort"
|
||||
]
|
||||
}
|
||||
271
.vscode/launch.json
vendored
271
.vscode/launch.json
vendored
@ -1,271 +0,0 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
|
||||
|
||||
{
|
||||
"name": "Python Debugger: Current File",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib:${workspaceFolder}/.."
|
||||
},
|
||||
},
|
||||
{
|
||||
"name": "-------- Live Pair Trading --------",
|
||||
},
|
||||
{
|
||||
"name": "PAIRS TRADER",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/bin/pairs_trader.py",
|
||||
"console": "integratedTerminal",
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib:${workspaceFolder}/.."
|
||||
},
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/pairs_trader.cfg",
|
||||
"--pair=PAIR-ADA-USDT:BNBSPOT,PAIR-SOL-USDT:BNBSPOT",
|
||||
],
|
||||
},
|
||||
{
|
||||
"name": "-------- OLS --------",
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO OLS (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.ols.ADA-SOL.20250605.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO OLS (optimized)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/ols-opt.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.ols-opt.ADA-SOL.20250605.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
// {
|
||||
// "name": "CRYPTO OLS (expanding)",
|
||||
// "type": "debugpy",
|
||||
// "request": "launch",
|
||||
// "python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
// "program": "${workspaceFolder}/research/backtest.py",
|
||||
// "args": [
|
||||
// "--config=${workspaceFolder}/configuration/ols-exp.cfg",
|
||||
// "--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
// "--date_pattern=20250605",
|
||||
// "--result_db=${workspaceFolder}/research/results/crypto/%T.ols-exp.ADA-SOL.20250605.crypto_results.db",
|
||||
// ],
|
||||
// "env": {
|
||||
// "PYTHONPATH": "${workspaceFolder}/lib"
|
||||
// },
|
||||
// "console": "integratedTerminal"
|
||||
// },
|
||||
{
|
||||
"name": "EQUITY OLS (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,MSTR:EQUITY:ALPACA",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/equity/%T.ols.COIN-MSTR.20250605.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "EQUITY-CRYPTO OLS (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,BTC-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/intermarket/%T.ols.COIN-BTC.20250605.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- VECM --------",
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO VECM (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm.ADA-SOL.20250605.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO VECM (optimized)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm-opt.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm-opt.ADA-SOL.20250605.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
// {
|
||||
// "name": "CRYPTO VECM (expanding)",
|
||||
// "type": "debugpy",
|
||||
// "request": "launch",
|
||||
// "python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
// "program": "${workspaceFolder}/research/backtest.py",
|
||||
// "args": [
|
||||
// "--config=${workspaceFolder}/configuration/vecm-exp.cfg",
|
||||
// "--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
// "--date_pattern=20250605",
|
||||
// "--result_db=${workspaceFolder}/research/results/crypto/%T.vecm-exp.ADA-SOL.20250605.crypto_results.db",
|
||||
// ],
|
||||
// "env": {
|
||||
// "PYTHONPATH": "${workspaceFolder}/lib"
|
||||
// },
|
||||
// "console": "integratedTerminal"
|
||||
// },
|
||||
{
|
||||
"name": "EQUITY VECM (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,MSTR:EQUITY:ALPACA",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/equity/%T.vecm.COIN-MSTR.20250605.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "EQUITY-CRYPTO VECM (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,BTC-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/intermarket/%T.vecm.COIN-BTC.20250601.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- B a t c h e s --------",
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO OLS Batch (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.ols.ADA-SOL.2025060-.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO VECM Batch (rolling)",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm.ADA-SOL.2025060-.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- Viz Test --------",
|
||||
},
|
||||
{
|
||||
"name": "Viz Test",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/tests/viz_test.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/ols.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
||||
8
.vscode/pairs_trading.code-workspace
vendored
8
.vscode/pairs_trading.code-workspace
vendored
@ -1,8 +0,0 @@
|
||||
{
|
||||
"folders": [
|
||||
{
|
||||
"path": ".."
|
||||
}
|
||||
],
|
||||
"settings": {}
|
||||
}
|
||||
112
.vscode/settings.json
vendored
112
.vscode/settings.json
vendored
@ -1,112 +0,0 @@
|
||||
{
|
||||
"PythonVersion": "3.12",
|
||||
"[python]": {
|
||||
"editor.defaultFormatter": "ms-python.black-formatter"
|
||||
},
|
||||
// ===========================================================
|
||||
"workbench.activityBar.orientation": "vertical",
|
||||
// ===========================================================
|
||||
|
||||
// "markdown.styles": [
|
||||
// "/home/oleg/develop/cvtt2/.vscode/light-theme.css"
|
||||
// ],
|
||||
"markdown.preview.background": "#ffffff",
|
||||
"markdown.preview.textEditorTheme": "light",
|
||||
"markdown-pdf.styles": [
|
||||
"/home/oleg/develop/cvtt2/.vscode/light-theme.css"
|
||||
],
|
||||
"editor.detectIndentation": false,
|
||||
// Configure editor settings to be overridden for [yaml] language.
|
||||
"[yaml]": {
|
||||
"editor.insertSpaces": true,
|
||||
"editor.tabSize": 4,
|
||||
},
|
||||
"pylint.args": [
|
||||
"--disable=missing-docstring"
|
||||
, "--disable=invalid-name"
|
||||
, "--disable=too-few-public-methods"
|
||||
, "--disable=broad-exception-raised"
|
||||
, "--disable=broad-exception-caught"
|
||||
, "--disable=pointless-string-statement"
|
||||
, "--disable=unused-argument"
|
||||
, "--disable=line-too-long"
|
||||
, "--disable=import-outside-toplevel"
|
||||
, "--disable=fixme"
|
||||
, "--disable=protected-access"
|
||||
, "--disable=logging-fstring-interpolation"
|
||||
],
|
||||
|
||||
// ===== TESTING CONFIGURATION =====
|
||||
"python.testing.unittestEnabled": false,
|
||||
"python.testing.pytestEnabled": true,
|
||||
"python.testing.pytestArgs": [
|
||||
"-v",
|
||||
"--tb=short",
|
||||
"--disable-warnings"
|
||||
],
|
||||
"python.testing.envVars": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib:${workspaceFolder}/.."
|
||||
},
|
||||
"python.testing.cwd": "${workspaceFolder}",
|
||||
"python.testing.autoTestDiscoverOnSaveEnabled": true,
|
||||
"python.testing.pytestPath": "/home/oleg/.pyenv/python3.12-venv/bin/pytest",
|
||||
"python.testing.promptToConfigure": false,
|
||||
"python.testing.pytest.enabled": true,
|
||||
|
||||
|
||||
// Python interpreter settings
|
||||
"python.defaultInterpreterPath": "/home/oleg/.pyenv/python3.12-venv/bin/python3.12",
|
||||
|
||||
// Environment variables for Python execution
|
||||
"python.envFile": "${workspaceFolder}/.vscode/.env",
|
||||
"python.terminal.activateEnvironment": false,
|
||||
"python.terminal.activateEnvInCurrentTerminal": false,
|
||||
|
||||
// Global environment variables for VS Code Python extension
|
||||
"terminal.integrated.env.linux": {
|
||||
"PYTHONPATH": "/home/oleg/develop/:${env:PYTHONPATH}"
|
||||
},
|
||||
|
||||
"pylint.enabled": true,
|
||||
"github.copilot.enable": false,
|
||||
"markdown.extension.print.theme": "dark",
|
||||
"python.analysis.extraPaths": [
|
||||
"${workspaceFolder}/..",
|
||||
"${workspaceFolder}/lib"
|
||||
],
|
||||
|
||||
// Try enabling regular Python language server alongside CursorPyright
|
||||
"python.languageServer": "None",
|
||||
"python.analysis.diagnosticMode": "workspace",
|
||||
"workbench.colorTheme": "Atom One Dark",
|
||||
"cursorpyright.analysis.enable": false,
|
||||
"cursorpyright.analysis.extraPaths": [
|
||||
"${workspaceFolder}/..",
|
||||
"${workspaceFolder}/lib"
|
||||
],
|
||||
|
||||
// Enable quick fixes for unused imports
|
||||
"python.analysis.autoImportCompletions": true,
|
||||
"python.analysis.fixAll": ["source.unusedImports"],
|
||||
"python.analysis.typeCheckingMode": "basic",
|
||||
|
||||
// Enable code actions for CursorPyright
|
||||
"cursorpyright.analysis.autoImportCompletions": true,
|
||||
"cursorpyright.analysis.typeCheckingMode": "off",
|
||||
"cursorpyright.reportUnusedImport": "warning",
|
||||
"cursorpyright.reportUnusedVariable": "warning",
|
||||
"cursorpyright.analysis.diagnosticMode": "workspace",
|
||||
|
||||
// Force enable code actions
|
||||
"editor.lightBulb.enabled": true,
|
||||
"editor.codeActionsOnSave": {
|
||||
"source.organizeImports": "explicit",
|
||||
"source.fixAll": "explicit",
|
||||
"source.unusedImports": "explicit"
|
||||
},
|
||||
|
||||
// Enable Python-specific code actions
|
||||
"python.analysis.completeFunctionParens": true,
|
||||
"python.analysis.addImport.exactMatchOnly": false,
|
||||
"workbench.tree.indent": 24,
|
||||
}
|
||||
181
__DELETE__/.vscode/launch.json
vendored
181
__DELETE__/.vscode/launch.json
vendored
@ -1,181 +0,0 @@
|
||||
{
|
||||
// Use IntelliSense to learn about possible attributes.
|
||||
// Hover to view descriptions of existing attributes.
|
||||
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
|
||||
"version": "0.2.0",
|
||||
"configurations": [
|
||||
|
||||
|
||||
{
|
||||
"name": "Python Debugger: Current File",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- Z-Score (OLS) --------",
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO z-score",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "research/pt_backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/zscore.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.z-score.ADA-SOL.20250602.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "EQUITY z-score",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "research/pt_backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/zscore.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,MSTR:EQUITY:ALPACA",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/equity/%T.z-score.COIN-MSTR.20250602.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "EQUITY-CRYPTO z-score",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "research/pt_backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/zscore.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,BTC-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/intermarket/%T.z-score.COIN-BTC.20250601.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- VECM --------",
|
||||
},
|
||||
{
|
||||
"name": "CRYPTO vecm",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "research/pt_backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm.ADA-SOL.20250602.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "EQUITY vecm",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "research/pt_backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,MSTR:EQUITY:ALPACA",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/equity/%T.vecm.COIN-MSTR.20250602.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "EQUITY-CRYPTO vecm",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "research/pt_backtest.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/vecm.cfg",
|
||||
"--instruments=COIN:EQUITY:ALPACA,BTC-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/intermarket/%T.vecm.COIN-BTC.20250601.equity_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- New ZSCORE --------",
|
||||
},
|
||||
{
|
||||
"name": "New CRYPTO z-score",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest_new.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/new_zscore.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=2025060*",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.new_zscore.ADA-SOL.2025060-.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "New CRYPTO vecm",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/backtest_new.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/new_vecm.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
"--result_db=${workspaceFolder}/research/results/crypto/%T.vecm.ADA-SOL.20250605.crypto_results.db",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
},
|
||||
{
|
||||
"name": "-------- Viz Test --------",
|
||||
},
|
||||
{
|
||||
"name": "Viz Test",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"python": "/home/oleg/.pyenv/python3.12-venv/bin/python",
|
||||
"program": "${workspaceFolder}/research/viz_test.py",
|
||||
"args": [
|
||||
"--config=${workspaceFolder}/configuration/new_zscore.cfg",
|
||||
"--instruments=ADA-USDT:CRYPTO:BNBSPOT,SOL-USDT:CRYPTO:BNBSPOT",
|
||||
"--date_pattern=20250605",
|
||||
],
|
||||
"env": {
|
||||
"PYTHONPATH": "${workspaceFolder}/lib"
|
||||
},
|
||||
"console": "integratedTerminal"
|
||||
}
|
||||
]
|
||||
}
|
||||
@ -1,44 +0,0 @@
|
||||
{
|
||||
"market_data_loading": {
|
||||
"CRYPTO": {
|
||||
"data_directory": "./data/crypto",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
},
|
||||
"EQUITY": {
|
||||
"data_directory": "./data/equity",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
}
|
||||
},
|
||||
|
||||
# ====== Funding ======
|
||||
"funding_per_pair": 2000.0,
|
||||
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close", # "vwap"
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120, # TODO Remove this
|
||||
"training_size": 120,
|
||||
"fit_method_class": "pt_trading.vecm_rolling_fit.VECMRollingFit",
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -1,43 +0,0 @@
|
||||
{
|
||||
"market_data_loading": {
|
||||
"CRYPTO": {
|
||||
"data_directory": "./data/crypto",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
},
|
||||
"EQUITY": {
|
||||
"data_directory": "./data/equity",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
}
|
||||
},
|
||||
|
||||
# ====== Funding ======
|
||||
"funding_per_pair": 2000.0,
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close",
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 0.5,
|
||||
"training_minutes": 120, # TODO Remove this
|
||||
"training_size": 120,
|
||||
"fit_method_class": "pt_trading.z-score_rolling_fit.ZScoreRollingFit",
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -1,304 +0,0 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, Optional, cast
|
||||
|
||||
import pandas as pd # type: ignore[import]
|
||||
from pt_trading.fit_method import PairsTradingFitMethod
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.trading_pair import PairState, TradingPair
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
class ExpandingWindowFit(PairsTradingFitMethod):
|
||||
"""
|
||||
N O T E:
|
||||
=========
|
||||
- This class remains to be abstract
|
||||
- The following methods are to be implemented in the subclass:
|
||||
- create_trading_pair()
|
||||
=========
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def run_pair(
|
||||
self, pair: TradingPair, bt_result: BacktestResult
|
||||
) -> Optional[pd.DataFrame]:
|
||||
print(f"***{pair}*** STARTING....")
|
||||
config = pair.config_
|
||||
|
||||
start_idx = pair.get_begin_index()
|
||||
end_index = pair.get_end_index()
|
||||
|
||||
pair.user_data_["state"] = PairState.INITIAL
|
||||
# Initialize trades DataFrame with proper dtypes to avoid concatenation warnings
|
||||
pair.user_data_["trades"] = pd.DataFrame(columns=self.TRADES_COLUMNS).astype(
|
||||
{
|
||||
"time": "datetime64[ns]",
|
||||
"symbol": "string",
|
||||
"side": "string",
|
||||
"action": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"pair": "object",
|
||||
}
|
||||
)
|
||||
|
||||
training_minutes = config["training_minutes"]
|
||||
while training_minutes + 1 < end_index:
|
||||
|
||||
pair.get_datasets(
|
||||
training_minutes=training_minutes,
|
||||
training_start_index=start_idx,
|
||||
testing_size=1,
|
||||
)
|
||||
|
||||
# ================================ PREDICTION ================================
|
||||
try:
|
||||
self.pair_predict_result_ = pair.predict()
|
||||
except Exception as e:
|
||||
raise RuntimeError(
|
||||
f"{pair}: TrainingPrediction failed: {str(e)}"
|
||||
) from e
|
||||
|
||||
training_minutes += 1
|
||||
|
||||
|
||||
self._create_trading_signals(pair, config, bt_result)
|
||||
print(f"***{pair}*** FINISHED *** Num Trades:{len(pair.user_data_['trades'])}")
|
||||
|
||||
return pair.get_trades()
|
||||
|
||||
def _create_trading_signals(
|
||||
self, pair: TradingPair, config: Dict, bt_result: BacktestResult
|
||||
) -> None:
|
||||
|
||||
predicted_df = self.pair_predict_result_
|
||||
assert predicted_df is not None
|
||||
|
||||
open_threshold = config["dis-equilibrium_open_trshld"]
|
||||
close_threshold = config["dis-equilibrium_close_trshld"]
|
||||
for curr_predicted_row_idx in range(len(predicted_df)):
|
||||
pred_row = predicted_df.iloc[curr_predicted_row_idx]
|
||||
scaled_disequilibrium = pred_row["scaled_disequilibrium"]
|
||||
|
||||
if pair.user_data_["state"] in [
|
||||
PairState.INITIAL,
|
||||
PairState.CLOSE,
|
||||
PairState.CLOSE_POSITION,
|
||||
PairState.CLOSE_STOP_LOSS,
|
||||
PairState.CLOSE_STOP_PROFIT,
|
||||
]:
|
||||
if scaled_disequilibrium >= open_threshold:
|
||||
open_trades = self._get_open_trades(
|
||||
pair, row=pred_row, open_threshold=open_threshold
|
||||
)
|
||||
if open_trades is not None:
|
||||
open_trades["status"] = PairState.OPEN.name
|
||||
print(f"OPEN TRADES:\n{open_trades}")
|
||||
pair.add_trades(open_trades)
|
||||
pair.user_data_["state"] = PairState.OPEN
|
||||
pair.on_open_trades(open_trades)
|
||||
|
||||
elif pair.user_data_["state"] == PairState.OPEN:
|
||||
if scaled_disequilibrium <= close_threshold:
|
||||
close_trades = self._get_close_trades(
|
||||
pair, row=pred_row, close_threshold=close_threshold
|
||||
)
|
||||
if close_trades is not None:
|
||||
close_trades["status"] = PairState.CLOSE.name
|
||||
print(f"CLOSE TRADES:\n{close_trades}")
|
||||
pair.add_trades(close_trades)
|
||||
pair.user_data_["state"] = PairState.CLOSE
|
||||
pair.on_close_trades(close_trades)
|
||||
elif pair.to_stop_close_conditions(predicted_row=pred_row):
|
||||
close_trades = self._get_close_trades(
|
||||
pair, row=pred_row, close_threshold=close_threshold
|
||||
)
|
||||
if close_trades is not None:
|
||||
close_trades["status"] = pair.user_data_[
|
||||
"stop_close_state"
|
||||
].name
|
||||
print(f"STOP CLOSE TRADES:\n{close_trades}")
|
||||
pair.add_trades(close_trades)
|
||||
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
||||
pair.on_close_trades(close_trades)
|
||||
|
||||
# Outstanding positions
|
||||
if pair.user_data_["state"] == PairState.OPEN:
|
||||
print(f"{pair}: *** Position is NOT CLOSED. ***")
|
||||
# outstanding positions
|
||||
if config["close_outstanding_positions"]:
|
||||
close_position_row = pd.Series(pair.market_data_.iloc[-2])
|
||||
close_position_row["disequilibrium"] = 0.0
|
||||
close_position_row["scaled_disequilibrium"] = 0.0
|
||||
close_position_row["signed_scaled_disequilibrium"] = 0.0
|
||||
|
||||
close_position_trades = self._get_close_trades(
|
||||
pair=pair, row=close_position_row, close_threshold=close_threshold
|
||||
)
|
||||
if close_position_trades is not None:
|
||||
close_position_trades["status"] = PairState.CLOSE_POSITION.name
|
||||
print(f"CLOSE_POSITION TRADES:\n{close_position_trades}")
|
||||
pair.add_trades(close_position_trades)
|
||||
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
||||
pair.on_close_trades(close_position_trades)
|
||||
else:
|
||||
if predicted_df is not None:
|
||||
bt_result.handle_outstanding_position(
|
||||
pair=pair,
|
||||
pair_result_df=predicted_df,
|
||||
last_row_index=0,
|
||||
open_side_a=pair.user_data_["open_side_a"],
|
||||
open_side_b=pair.user_data_["open_side_b"],
|
||||
open_px_a=pair.user_data_["open_px_a"],
|
||||
open_px_b=pair.user_data_["open_px_b"],
|
||||
open_tstamp=pair.user_data_["open_tstamp"],
|
||||
)
|
||||
|
||||
def _get_open_trades(
|
||||
self, pair: TradingPair, row: pd.Series, open_threshold: float
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.exec_prices_colnames()
|
||||
|
||||
open_row = row
|
||||
|
||||
open_tstamp = open_row["tstamp"]
|
||||
open_disequilibrium = open_row["disequilibrium"]
|
||||
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
||||
signed_scaled_disequilibrium = open_row["signed_scaled_disequilibrium"]
|
||||
open_px_a = open_row[f"{colname_a}"]
|
||||
open_px_b = open_row[f"{colname_b}"]
|
||||
|
||||
# creating the trades
|
||||
print(f"OPEN_TRADES: {row["tstamp"]} {open_scaled_disequilibrium=}")
|
||||
if open_disequilibrium > 0:
|
||||
open_side_a = "SELL"
|
||||
open_side_b = "BUY"
|
||||
close_side_a = "BUY"
|
||||
close_side_b = "SELL"
|
||||
else:
|
||||
open_side_a = "BUY"
|
||||
open_side_b = "SELL"
|
||||
close_side_a = "SELL"
|
||||
close_side_b = "BUY"
|
||||
|
||||
# save closing sides
|
||||
pair.user_data_["open_side_a"] = open_side_a
|
||||
pair.user_data_["open_side_b"] = open_side_b
|
||||
pair.user_data_["open_px_a"] = open_px_a
|
||||
pair.user_data_["open_px_b"] = open_px_b
|
||||
|
||||
pair.user_data_["open_tstamp"] = open_tstamp
|
||||
|
||||
pair.user_data_["close_side_a"] = close_side_a
|
||||
pair.user_data_["close_side_b"] = close_side_b
|
||||
|
||||
# create opening trades
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
open_tstamp,
|
||||
pair.symbol_a_,
|
||||
open_side_a,
|
||||
"OPEN",
|
||||
open_px_a,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
signed_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
open_tstamp,
|
||||
pair.symbol_b_,
|
||||
open_side_b,
|
||||
"OPEN",
|
||||
open_px_b,
|
||||
open_disequilibrium,
|
||||
open_scaled_disequilibrium,
|
||||
signed_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
# Create DataFrame with explicit dtypes to avoid concatenation warnings
|
||||
df = pd.DataFrame(
|
||||
trd_signal_tuples,
|
||||
columns=self.TRADES_COLUMNS,
|
||||
)
|
||||
# Ensure consistent dtypes
|
||||
return df.astype(
|
||||
{
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"signed_scaled_disequilibrium": "float64",
|
||||
"pair": "object",
|
||||
}
|
||||
)
|
||||
|
||||
def _get_close_trades(
|
||||
self, pair: TradingPair, row: pd.Series, close_threshold: float
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.exec_prices_colnames()
|
||||
|
||||
close_row = row
|
||||
close_tstamp = close_row["tstamp"]
|
||||
close_disequilibrium = close_row["disequilibrium"]
|
||||
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
|
||||
signed_scaled_disequilibrium = close_row["signed_scaled_disequilibrium"]
|
||||
close_px_a = close_row[f"{colname_a}"]
|
||||
close_px_b = close_row[f"{colname_b}"]
|
||||
|
||||
close_side_a = pair.user_data_["close_side_a"]
|
||||
close_side_b = pair.user_data_["close_side_b"]
|
||||
|
||||
trd_signal_tuples = [
|
||||
(
|
||||
close_tstamp,
|
||||
pair.symbol_a_,
|
||||
close_side_a,
|
||||
"CLOSE",
|
||||
close_px_a,
|
||||
close_disequilibrium,
|
||||
close_scaled_disequilibrium,
|
||||
signed_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
(
|
||||
close_tstamp,
|
||||
pair.symbol_b_,
|
||||
close_side_b,
|
||||
"CLOSE",
|
||||
close_px_b,
|
||||
close_disequilibrium,
|
||||
close_scaled_disequilibrium,
|
||||
signed_scaled_disequilibrium,
|
||||
pair,
|
||||
),
|
||||
]
|
||||
|
||||
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
||||
df = pd.DataFrame(
|
||||
trd_signal_tuples,
|
||||
columns=self.TRADES_COLUMNS,
|
||||
)
|
||||
# Ensure consistent dtypes
|
||||
return df.astype(
|
||||
{
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"signed_scaled_disequilibrium": "float64",
|
||||
"pair": "object",
|
||||
}
|
||||
)
|
||||
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
@ -1,122 +0,0 @@
|
||||
from typing import Any, Dict, Optional, cast
|
||||
|
||||
import pandas as pd
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.rolling_window_fit import RollingFit
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
|
||||
class VECMTradingPair(TradingPair):
|
||||
vecm_fit_: Optional[VECMResults]
|
||||
pair_predict_result_: Optional[pd.DataFrame]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
market_data: pd.DataFrame,
|
||||
symbol_a: str,
|
||||
symbol_b: str,
|
||||
):
|
||||
super().__init__(config, market_data, symbol_a, symbol_b)
|
||||
self.vecm_fit_ = None
|
||||
self.pair_predict_result_ = None
|
||||
|
||||
def _train_pair(self) -> None:
|
||||
self._fit_VECM()
|
||||
assert self.vecm_fit_ is not None
|
||||
diseq_series = self.training_df_[self.colnames()] @ self.vecm_fit_.beta
|
||||
# print(diseq_series.shape)
|
||||
self.training_mu_ = float(diseq_series[0].mean())
|
||||
self.training_std_ = float(diseq_series[0].std())
|
||||
|
||||
self.training_df_["dis-equilibrium"] = (
|
||||
self.training_df_[self.colnames()] @ self.vecm_fit_.beta
|
||||
)
|
||||
# Normalize the dis-equilibrium
|
||||
self.training_df_["scaled_dis-equilibrium"] = (
|
||||
diseq_series - self.training_mu_
|
||||
) / self.training_std_
|
||||
|
||||
def _fit_VECM(self) -> None:
|
||||
assert self.training_df_ is not None
|
||||
vecm_df = self.training_df_[self.colnames()].reset_index(drop=True)
|
||||
vecm_model = VECM(vecm_df, coint_rank=1)
|
||||
vecm_fit = vecm_model.fit()
|
||||
|
||||
assert vecm_fit is not None
|
||||
|
||||
# URGENT check beta and alpha
|
||||
|
||||
# Check if the model converged properly
|
||||
if not hasattr(vecm_fit, "beta") or vecm_fit.beta is None:
|
||||
print(f"{self}: VECM model failed to converge properly")
|
||||
|
||||
self.vecm_fit_ = vecm_fit
|
||||
pass
|
||||
|
||||
def predict(self) -> pd.DataFrame:
|
||||
self._train_pair()
|
||||
|
||||
assert self.testing_df_ is not None
|
||||
assert self.vecm_fit_ is not None
|
||||
predicted_prices = self.vecm_fit_.predict(steps=len(self.testing_df_))
|
||||
|
||||
# Convert prediction to a DataFrame for readability
|
||||
predicted_df = pd.DataFrame(
|
||||
predicted_prices, columns=pd.Index(self.colnames()), dtype=float
|
||||
)
|
||||
|
||||
predicted_df = pd.merge(
|
||||
self.testing_df_.reset_index(drop=True),
|
||||
pd.DataFrame(
|
||||
predicted_prices, columns=pd.Index(self.colnames()), dtype=float
|
||||
),
|
||||
left_index=True,
|
||||
right_index=True,
|
||||
suffixes=("", "_pred"),
|
||||
).dropna()
|
||||
|
||||
predicted_df["disequilibrium"] = (
|
||||
predicted_df[self.colnames()] @ self.vecm_fit_.beta
|
||||
)
|
||||
|
||||
predicted_df["signed_scaled_disequilibrium"] = (
|
||||
predicted_df["disequilibrium"] - self.training_mu_
|
||||
) / self.training_std_
|
||||
|
||||
predicted_df["scaled_disequilibrium"] = abs(
|
||||
predicted_df["signed_scaled_disequilibrium"]
|
||||
)
|
||||
|
||||
predicted_df = predicted_df.reset_index(drop=True)
|
||||
if self.pair_predict_result_ is None:
|
||||
self.pair_predict_result_ = predicted_df
|
||||
else:
|
||||
self.pair_predict_result_ = pd.concat(
|
||||
[self.pair_predict_result_, predicted_df], ignore_index=True
|
||||
)
|
||||
# Reset index to ensure proper indexing
|
||||
self.pair_predict_result_ = self.pair_predict_result_.reset_index(drop=True)
|
||||
return self.pair_predict_result_
|
||||
|
||||
|
||||
class VECMRollingFit(RollingFit):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def create_trading_pair(
|
||||
self,
|
||||
config: Dict,
|
||||
market_data: pd.DataFrame,
|
||||
symbol_a: str,
|
||||
symbol_b: str,
|
||||
) -> TradingPair:
|
||||
return VECMTradingPair(
|
||||
config=config,
|
||||
market_data=market_data,
|
||||
symbol_a=symbol_a,
|
||||
symbol_b=symbol_b,
|
||||
)
|
||||
@ -1,85 +0,0 @@
|
||||
from typing import Any, Dict, Optional, cast
|
||||
|
||||
import pandas as pd
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.rolling_window_fit import RollingFit
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
import statsmodels.api as sm
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
|
||||
class ZScoreTradingPair(TradingPair):
|
||||
zscore_model_: Optional[sm.regression.linear_model.RegressionResultsWrapper]
|
||||
pair_predict_result_: Optional[pd.DataFrame]
|
||||
zscore_df_: Optional[pd.DataFrame]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
market_data: pd.DataFrame,
|
||||
symbol_a: str,
|
||||
symbol_b: str,
|
||||
):
|
||||
super().__init__(config, market_data, symbol_a, symbol_b)
|
||||
self.zscore_model_ = None
|
||||
self.pair_predict_result_ = None
|
||||
self.zscore_df_ = None
|
||||
|
||||
def _fit_zscore(self) -> None:
|
||||
assert self.training_df_ is not None
|
||||
symbol_a_px_series = self.training_df_[self.colnames()].iloc[:, 0]
|
||||
symbol_b_px_series = self.training_df_[self.colnames()].iloc[:, 1]
|
||||
|
||||
symbol_a_px_series, symbol_b_px_series = symbol_a_px_series.align(
|
||||
symbol_b_px_series, axis=0
|
||||
)
|
||||
|
||||
X = sm.add_constant(symbol_b_px_series)
|
||||
self.zscore_model_ = sm.OLS(symbol_a_px_series, X).fit()
|
||||
assert self.zscore_model_ is not None
|
||||
hedge_ratio = self.zscore_model_.params.iloc[1]
|
||||
|
||||
# Calculate spread and Z-score
|
||||
spread = symbol_a_px_series - hedge_ratio * symbol_b_px_series
|
||||
self.zscore_df_ = (spread - spread.mean()) / spread.std()
|
||||
|
||||
def predict(self) -> pd.DataFrame:
|
||||
self._fit_zscore()
|
||||
assert self.zscore_df_ is not None
|
||||
self.training_df_["dis-equilibrium"] = self.zscore_df_
|
||||
self.training_df_["scaled_dis-equilibrium"] = abs(self.zscore_df_)
|
||||
|
||||
assert self.testing_df_ is not None
|
||||
assert self.zscore_df_ is not None
|
||||
predicted_df = self.testing_df_
|
||||
|
||||
predicted_df["disequilibrium"] = self.zscore_df_
|
||||
predicted_df["signed_scaled_disequilibrium"] = self.zscore_df_
|
||||
predicted_df["scaled_disequilibrium"] = abs(self.zscore_df_)
|
||||
|
||||
predicted_df = predicted_df.reset_index(drop=True)
|
||||
if self.pair_predict_result_ is None:
|
||||
self.pair_predict_result_ = predicted_df
|
||||
else:
|
||||
self.pair_predict_result_ = pd.concat(
|
||||
[self.pair_predict_result_, predicted_df], ignore_index=True
|
||||
)
|
||||
# Reset index to ensure proper indexing
|
||||
self.pair_predict_result_ = self.pair_predict_result_.reset_index(drop=True)
|
||||
return self.pair_predict_result_.dropna()
|
||||
|
||||
|
||||
class ZScoreRollingFit(RollingFit):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def create_trading_pair(
|
||||
self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str
|
||||
) -> TradingPair:
|
||||
return ZScoreTradingPair(
|
||||
config=config,
|
||||
market_data=market_data,
|
||||
symbol_a=symbol_a,
|
||||
symbol_b=symbol_b,
|
||||
)
|
||||
File diff suppressed because one or more lines are too long
@ -1,101 +0,0 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import glob
|
||||
import importlib
|
||||
import os
|
||||
from datetime import date, datetime
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import hjson
|
||||
import pandas as pd
|
||||
|
||||
from tools.data_loader import get_available_instruments_from_db, load_market_data
|
||||
from pt_trading.results import (
|
||||
BacktestResult,
|
||||
create_result_database,
|
||||
store_config_in_database,
|
||||
store_results_in_database,
|
||||
)
|
||||
from pt_trading.fit_methods import PairsTradingFitMethod
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
|
||||
def run_strategy(
|
||||
config: Dict,
|
||||
datafile: str,
|
||||
fit_method: PairsTradingFitMethod,
|
||||
instruments: List[str],
|
||||
) -> BacktestResult:
|
||||
"""
|
||||
Run backtest for all pairs using the specified instruments.
|
||||
"""
|
||||
bt_result: BacktestResult = BacktestResult(config=config)
|
||||
|
||||
def _create_pairs(config: Dict, instruments: List[str]) -> List[TradingPair]:
|
||||
nonlocal datafile
|
||||
all_indexes = range(len(instruments))
|
||||
unique_index_pairs = [(i, j) for i in all_indexes for j in all_indexes if i < j]
|
||||
pairs = []
|
||||
|
||||
# Update config to use the specified instruments
|
||||
config_copy = config.copy()
|
||||
config_copy["instruments"] = instruments
|
||||
|
||||
market_data_df = load_market_data(
|
||||
datafile=datafile,
|
||||
exchange_id=config_copy["exchange_id"],
|
||||
instruments=config_copy["instruments"],
|
||||
instrument_id_pfx=config_copy["instrument_id_pfx"],
|
||||
db_table_name=config_copy["db_table_name"],
|
||||
trading_hours=config_copy["trading_hours"],
|
||||
)
|
||||
|
||||
for a_index, b_index in unique_index_pairs:
|
||||
pair = fit_method.create_trading_pair(
|
||||
market_data=market_data_df,
|
||||
symbol_a=instruments[a_index],
|
||||
symbol_b=instruments[b_index],
|
||||
)
|
||||
pairs.append(pair)
|
||||
return pairs
|
||||
|
||||
pairs_trades = []
|
||||
for pair in _create_pairs(config, instruments):
|
||||
single_pair_trades = fit_method.run_pair(
|
||||
pair=pair, config=config, bt_result=bt_result
|
||||
)
|
||||
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
||||
pairs_trades.append(single_pair_trades)
|
||||
|
||||
# Check if result_list has any data before concatenating
|
||||
if len(pairs_trades) == 0:
|
||||
print("No trading signals found for any pairs")
|
||||
return bt_result
|
||||
|
||||
result = pd.concat(pairs_trades, ignore_index=True)
|
||||
result["time"] = pd.to_datetime(result["time"])
|
||||
result = result.set_index("time").sort_index()
|
||||
|
||||
bt_result.collect_single_day_results(result)
|
||||
return bt_result
|
||||
|
||||
|
||||
def main() -> None:
|
||||
# Load config
|
||||
# Subscribe to CVTT market data
|
||||
# On snapshot (with historical data) - create trading strategy with market data dateframe
|
||||
|
||||
async def on_message(message_type: MessageTypeT, subscr_id: SubscriptionIdT, message: Dict, instrument_id: str) -> None:
|
||||
print(f"{message_type=} {subscr_id=} {instrument_id}")
|
||||
if message_type == "md_aggregate":
|
||||
aggr = message.get("md_aggregate", [])
|
||||
print(f"[{aggr['tstamp'][:19]}] *** RLTM *** {message}")
|
||||
elif message_type == "historical_md_aggregate":
|
||||
for aggr in message.get("historical_data", []):
|
||||
print(f"[{aggr['tstamp'][:19]}] *** HIST *** {aggr}")
|
||||
else:
|
||||
print(f"Unknown message type: {message_type}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@ -1,105 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from functools import partial
|
||||
from typing import Dict, List
|
||||
|
||||
from cvttpy_tools.settings.cvtt_types import JsonDictT
|
||||
from cvttpy_tools.tools.app import App
|
||||
from cvttpy_tools.tools.base import NamedObject
|
||||
from cvttpy_tools.tools.config import CvttAppConfig
|
||||
from cvttpy_tools.tools.logger import Log
|
||||
from pt_strategy.live.live_strategy import PtLiveStrategy
|
||||
from pt_strategy.live.pricer_md_client import PtMktDataClient
|
||||
from pt_strategy.live.ti_sender import TradingInstructionsSender
|
||||
|
||||
# import sys
|
||||
# print("PYTHONPATH directories:")
|
||||
# for path in sys.path:
|
||||
# print(path)
|
||||
|
||||
|
||||
|
||||
# from cvtt_client.mkt_data import (CvttPricerWebSockClient,
|
||||
# CvttPricesSubscription, MessageTypeT,
|
||||
# SubscriptionIdT)
|
||||
|
||||
class PairTradingRunner(NamedObject):
|
||||
config_: CvttAppConfig
|
||||
instruments_: List[JsonDictT]
|
||||
|
||||
live_strategy_: PtLiveStrategy
|
||||
pricer_client_: PtMktDataClient
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.instruments_ = []
|
||||
|
||||
App.instance().add_cmdline_arg(
|
||||
"--pair",
|
||||
type=str,
|
||||
required=True,
|
||||
help=(
|
||||
"Comma-separated pair of instrument symbols"
|
||||
" with exchange config name"
|
||||
" (e.g., PAIR-BTC-USD:BNBSPOT,PAIR-ETH-USD:BNBSPOT)"
|
||||
),
|
||||
)
|
||||
|
||||
App.instance().add_call(App.Stage.Config, self._on_config())
|
||||
App.instance().add_call(App.Stage.Run, self.run())
|
||||
|
||||
async def _on_config(self) -> None:
|
||||
self.config_ = CvttAppConfig.instance()
|
||||
|
||||
# ------- PARSE INSTRUMENTS -------
|
||||
instr_str = App.instance().get_argument("pair", "")
|
||||
if not instr_str:
|
||||
raise ValueError("Pair is required")
|
||||
instr_list = instr_str.split(",")
|
||||
for instr in instr_list:
|
||||
instr_parts = instr.split(":")
|
||||
if len(instr_parts) != 2:
|
||||
raise ValueError(f"Invalid pair format: {instr}")
|
||||
instrument_id = instr_parts[0]
|
||||
exchange_config_name = instr_parts[1]
|
||||
self.instruments_.append({
|
||||
"exchange_config_name": exchange_config_name,
|
||||
"instrument_id": instrument_id
|
||||
})
|
||||
|
||||
assert len(self.instruments_) == 2, "Only two instruments are supported"
|
||||
Log.info(f"{self.fname()} Instruments: {self.instruments_}")
|
||||
|
||||
# ------- CREATE TI (trading instructions) CLIENT -------
|
||||
ti_config = self.config_.get_subconfig("ti_config", {})
|
||||
self.ti_sender_ = TradingInstructionsSender(config=ti_config)
|
||||
Log.info(f"{self.fname()} TI client created: {self.ti_sender_}")
|
||||
|
||||
# ------- CREATE STRATEGY -------
|
||||
strategy_config = self.config_.get_value("strategy_config", {})
|
||||
self.live_strategy_ = PtLiveStrategy(
|
||||
config=strategy_config,
|
||||
instruments=self.instruments_,
|
||||
ti_sender=self.ti_sender_
|
||||
)
|
||||
Log.info(f"{self.fname()} Strategy created: {self.live_strategy_}")
|
||||
|
||||
# ------- CREATE PRICER CLIENT -------
|
||||
pricer_config = self.config_.get_subconfig("pricer_config", {})
|
||||
self.pricer_client_ = PtMktDataClient(
|
||||
live_strategy=self.live_strategy_,
|
||||
pricer_config=pricer_config
|
||||
)
|
||||
Log.info(f"{self.fname()} CVTT Pricer client created: {self.pricer_client_}")
|
||||
|
||||
async def run(self) -> None:
|
||||
Log.info(f"{self.fname()} ...")
|
||||
pass
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
App()
|
||||
CvttAppConfig()
|
||||
PairTradingRunner()
|
||||
App.instance().run()
|
||||
27
configuration/equity.cfg
Normal file
27
configuration/equity.cfg
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
"security_type": "EQUITY",
|
||||
"data_directory": "./data/equity",
|
||||
"datafiles": [
|
||||
"20250618.mktdata.ohlcv.db",
|
||||
],
|
||||
"db_table_name": "md_1min_bars",
|
||||
"exchange_id": "ALPACA",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
"trading_hours": {
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "16:00:00",
|
||||
"timezone": "America/New_York"
|
||||
},
|
||||
"price_column": "close",
|
||||
"min_required_points": 30,
|
||||
"zero_threshold": 1e-10,
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
# "fit_method_class": "pt_trading.sliding_fit.SlidingFit",
|
||||
"fit_method_class": "pt_trading.static_fit.StaticFit",
|
||||
"exclude_instruments": ["CAN"],
|
||||
"close_outstanding_positions": false
|
||||
|
||||
}
|
||||
26
configuration/equity_lg.cfg
Normal file
26
configuration/equity_lg.cfg
Normal file
@ -0,0 +1,26 @@
|
||||
{
|
||||
"security_type": "EQUITY",
|
||||
"data_directory": "./data/equity",
|
||||
"datafiles": [
|
||||
"20250602.mktdata.ohlcv.db",
|
||||
],
|
||||
"db_table_name": "md_1min_bars",
|
||||
"exchange_id": "ALPACA",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
"trading_hours": {
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "16:00:00",
|
||||
"timezone": "America/New_York"
|
||||
},
|
||||
"price_column": "close",
|
||||
"min_required_points": 30,
|
||||
"zero_threshold": 1e-10,
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"training_minutes": 120,
|
||||
"funding_per_pair": 2000.0,
|
||||
"fit_method_class": "pt_trading.fit_methods.StaticFit",
|
||||
"exclude_instruments": ["CAN"]
|
||||
}
|
||||
# "fit_method_class": "pt_trading.fit_methods.SlidingFit",
|
||||
# "fit_method_class": "pt_trading.fit_methods.StaticFit",
|
||||
@ -1,43 +0,0 @@
|
||||
{
|
||||
"market_data_loading": {
|
||||
"CRYPTO": {
|
||||
"data_directory": "./data/crypto",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
},
|
||||
"EQUITY": {
|
||||
"data_directory": "./data/equity",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
}
|
||||
},
|
||||
|
||||
# ====== Funding ======
|
||||
"funding_per_pair": 2000.0,
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close",
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 0.5,
|
||||
"training_size": 120,
|
||||
"model_class": "pt_strategy.models.OLSModel",
|
||||
"model_data_policy_class": "pt_strategy.model_data_policy.ExpandingWindowDataPolicy",
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -1,47 +0,0 @@
|
||||
{
|
||||
"market_data_loading": {
|
||||
"CRYPTO": {
|
||||
"data_directory": "./data/crypto",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
},
|
||||
"EQUITY": {
|
||||
"data_directory": "./data/equity",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
}
|
||||
},
|
||||
|
||||
# ====== Funding ======
|
||||
"funding_per_pair": 2000.0,
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close",
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 1.75,
|
||||
"dis-equilibrium_close_trshld": 0.9,
|
||||
"model_class": "pt_strategy.models.OLSModel",
|
||||
|
||||
# "model_data_policy_class": "pt_strategy.model_data_policy.EGOptimizedWndDataPolicy",
|
||||
# "model_data_policy_class": "pt_strategy.model_data_policy.ADFOptimizedWndDataPolicy",
|
||||
"model_data_policy_class": "pt_strategy.model_data_policy.JohansenOptdWndDataPolicy",
|
||||
"min_training_size": 60,
|
||||
"max_training_size": 150,
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -1,47 +0,0 @@
|
||||
{
|
||||
"market_data_loading": {
|
||||
"CRYPTO": {
|
||||
"data_directory": "./data/crypto",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
},
|
||||
"EQUITY": {
|
||||
"data_directory": "./data/equity",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
}
|
||||
},
|
||||
|
||||
# ====== Funding ======
|
||||
"funding_per_pair": 2000.0,
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close",
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 1.75,
|
||||
"dis-equilibrium_close_trshld": 0.9,
|
||||
"model_class": "pt_strategy.models.OLSModel",
|
||||
|
||||
"training_size": 120,
|
||||
"model_data_policy_class": "pt_strategy.model_data_policy.RollingWindowDataPolicy",
|
||||
# "model_data_policy_class": "pt_strategy.model_data_policy.OptimizedWindowDataPolicy",
|
||||
# "min_training_size": 60,
|
||||
# "max_training_size": 150,
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -1,21 +0,0 @@
|
||||
{
|
||||
"strategy_config": @inc=file:///home/oleg/develop/pairs_trading/configuration/ols.cfg
|
||||
"pricer_config": {
|
||||
"pricer_url": "ws://localhost:12346/ws",
|
||||
"history_depth_sec": 86400 #"60*60*24", # use simpleeval
|
||||
"interval_sec": 60
|
||||
},
|
||||
"ti_config": {
|
||||
"cvtt_base_url": "http://localhost:23456"
|
||||
"book_id": "XXXXXXXXX",
|
||||
"strategy_id": "XXXXXXXXX",
|
||||
"ti_endpoint": {
|
||||
"method": "POST",
|
||||
"url": "/trading_instructions"
|
||||
},
|
||||
"health_check_endpoint": {
|
||||
"method": "GET",
|
||||
"url": "/ping"
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1,49 +0,0 @@
|
||||
{
|
||||
"market_data_loading": {
|
||||
"CRYPTO": {
|
||||
"data_directory": "./data/crypto",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "PAIR-",
|
||||
},
|
||||
"EQUITY": {
|
||||
"data_directory": "./data/equity",
|
||||
"db_table_name": "md_1min_bars",
|
||||
"instrument_id_pfx": "STOCK-",
|
||||
}
|
||||
},
|
||||
|
||||
# ====== Funding ======
|
||||
"funding_per_pair": 2000.0,
|
||||
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close", # "vwap"
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 1.75,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
|
||||
"model_class": "pt_strategy.models.VECMModel",
|
||||
|
||||
# "training_size": 120,
|
||||
# "model_data_policy_class": "pt_strategy.model_data_policy.RollingWindowDataPolicy",
|
||||
"model_data_policy_class": "pt_strategy.model_data_policy.ADFOptimizedWndDataPolicy",
|
||||
"min_training_size": 60,
|
||||
"max_training_size": 150,
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
"profit": 2.0,
|
||||
"loss": -0.5
|
||||
}
|
||||
|
||||
# ====== End of Session Closeout ======
|
||||
"close_outstanding_positions": true,
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -21,15 +21,10 @@
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 1.75,
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 1.0,
|
||||
"model_class": "pt_strategy.models.VECMModel",
|
||||
|
||||
"training_size": 120,
|
||||
"model_data_policy_class": "pt_strategy.model_data_policy.RollingWindowDataPolicy",
|
||||
# "model_data_policy_class": "pt_strategy.model_data_policy.OptimizedWindowDataPolicy",
|
||||
# "min_training_size": 60,
|
||||
# "max_training_size": 150,
|
||||
"training_minutes": 120,
|
||||
"fit_method_class": "pt_trading.vecm_rolling_fit.VECMRollingFit",
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
"stop_close_conditions": {
|
||||
@ -42,7 +37,7 @@
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
@ -16,14 +16,13 @@
|
||||
"funding_per_pair": 2000.0,
|
||||
# ====== Trading Parameters ======
|
||||
"stat_model_price": "close",
|
||||
# "execution_price": {
|
||||
# "column": "vwap",
|
||||
# "shift": 1,
|
||||
# },
|
||||
"execution_price": {
|
||||
"column": "vwap",
|
||||
"shift": 1,
|
||||
},
|
||||
"dis-equilibrium_open_trshld": 2.0,
|
||||
"dis-equilibrium_close_trshld": 0.5,
|
||||
"training_minutes": 120, # TODO Remove this
|
||||
"training_size": 120,
|
||||
"training_minutes": 120,
|
||||
"fit_method_class": "pt_trading.z-score_rolling_fit.ZScoreRollingFit",
|
||||
|
||||
# ====== Stop Conditions ======
|
||||
@ -37,7 +36,7 @@
|
||||
# "close_outstanding_positions": false,
|
||||
"trading_hours": {
|
||||
"timezone": "America/New_York",
|
||||
"begin_session": "7:30:00",
|
||||
"begin_session": "9:30:00",
|
||||
"end_session": "18:30:00",
|
||||
}
|
||||
}
|
||||
115
lg_notes.md
Normal file
115
lg_notes.md
Normal file
@ -0,0 +1,115 @@
|
||||
07.11.2025
|
||||
pairs_trading/configuration <---- directory for config
|
||||
equity_lg.cfg <-------- copy of equity.cfg
|
||||
How to run a Program: TRIANGLEsquare ----> triangle EQUITY backtest
|
||||
Results are in > results (timestamp table for all runs)
|
||||
table "...timestamp... .pt_backtest_results.equity.db"
|
||||
going to table using sqlite
|
||||
> sqlite3 '/home/coder/results/20250721_175750.pt_backtest_results.equity.db'
|
||||
|
||||
sqlite> .databases
|
||||
main: /home/coder/results/20250717_180122.pt_backtest_results.equity.db r/w
|
||||
sqlite> .tables
|
||||
config outstanding_positions pt_bt_results
|
||||
|
||||
sqlite> PRAGMA table_info('pt_bt_results');
|
||||
0|date|DATE|0||0
|
||||
1|pair|TEXT|0||0
|
||||
2|symbol|TEXT|0||0
|
||||
3|open_time|DATETIME|0||0
|
||||
4|open_side|TEXT|0||0
|
||||
5|open_price|REAL|0||0
|
||||
6|open_quantity|INTEGER|0||0
|
||||
7|open_disequilibrium|REAL|0||0
|
||||
8|close_time|DATETIME|0||0
|
||||
9|close_side|TEXT|0||0
|
||||
10|close_price|REAL|0||0
|
||||
11|close_quantity|INTEGER|0||0
|
||||
12|close_disequilibrium|REAL|0||0
|
||||
13|symbol_return|REAL|0||0
|
||||
14|pair_return|REAL|0||0
|
||||
|
||||
select count(*) as cnt from pt_bt_results;
|
||||
8
|
||||
|
||||
select * from pt_bt_results;
|
||||
|
||||
select
|
||||
date, close_time, pair, symbol, symbol_return, pair_return
|
||||
from pt_bt_results ;
|
||||
|
||||
select date, sum(symbol_return) as daily_return
|
||||
from pt_bt_results where date = '2025-06-18' group by date;
|
||||
|
||||
.quit
|
||||
|
||||
sqlite3 '/home/coder/results/20250717_172435.pt_backtest_results.equity.db'
|
||||
|
||||
sqlite> select date, sum(symbol_return) as daily_return
|
||||
from pt_bt_results group by date;
|
||||
|
||||
2025-06-02|1.29845390060828
|
||||
...
|
||||
2025-06-18|-43.5084977104115 <========== ????? ==========>
|
||||
2025-06-20|11.8605547517183
|
||||
|
||||
|
||||
select
|
||||
date, close_time, pair, symbol, symbol_return, pair_return
|
||||
from pt_bt_results ;
|
||||
|
||||
select date, close_time, pair, symbol, symbol_return, pair_return
|
||||
from pt_bt_results where date = '2025-06-18';
|
||||
|
||||
|
||||
./scripts/load_equity_pair_intraday.sh -A NVDA -B QQQ -d 20250701 -T ./intraday_md
|
||||
|
||||
to inspect exactly what sources, formats, and processing steps you can open the script with:
|
||||
head -n 50 ./scripts/load_equity_pair_intraday.sh
|
||||
|
||||
|
||||
|
||||
✓ Data file found: /home/coder/pairs_trading/data/crypto/20250605.mktdata.ohlcv.db
|
||||
|
||||
sqlite3 '/home/coder/results/20250722_201930.pt_backtest_results.crypto.db'
|
||||
|
||||
sqlite3 '/home/coder/results/xxxxxxxx_yyyyyy.pt_backtest_results.pseudo.db'
|
||||
|
||||
11111111
|
||||
=== At your terminal, run these commands:
|
||||
sqlite3 '/home/coder/results/20250722_201930.pt_backtest_results.crypto.db'
|
||||
=== Then inside the SQLite prompt:
|
||||
.mode csv
|
||||
.headers on
|
||||
.output results_20250722.csv
|
||||
SELECT * FROM pt_bt_results;
|
||||
.output stdout
|
||||
.quit
|
||||
|
||||
cd /home/coder/
|
||||
|
||||
# === mode csv formats output as CSV
|
||||
# === headers on includes column names
|
||||
# === output my_table.csv directs output to that file
|
||||
# === Run your SELECT query, then revert output
|
||||
# === Open my_table.csv in Excel directly
|
||||
|
||||
# ======== Using scp (Secure Copy)
|
||||
# === On your local machine, open a terminal and run:
|
||||
scp cvtt@953f6e8df266:/home/coder/results_20250722.csv ~/Downloads/
|
||||
|
||||
|
||||
# ===== convert cvs pandas dataframe ====== -->
|
||||
import pandas as pd
|
||||
# Replace with the actual path to your CSV file
|
||||
file_path = '/home/coder/results_20250722.csv'
|
||||
# Read the CSV file into a DataFrame
|
||||
df = pd.read_csv(file_path)
|
||||
# Show the first few rows
|
||||
print(df.head())
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -1,15 +1,17 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import argparse
|
||||
from ast import Sub
|
||||
import asyncio
|
||||
from functools import partial
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from dataclasses import dataclass
|
||||
from functools import partial
|
||||
from typing import Callable, Coroutine, Dict, Optional
|
||||
from typing import Callable, Coroutine, Dict, List, Optional
|
||||
|
||||
from numpy.strings import str_len
|
||||
import websockets
|
||||
from cvttpy_tools.settings.cvtt_types import JsonDictT
|
||||
from cvttpy_tools.tools.logger import Log
|
||||
from websockets.asyncio.client import ClientConnection
|
||||
|
||||
MessageTypeT = str
|
||||
@ -46,56 +48,22 @@ class CvttPricesSubscription:
|
||||
self.is_subscribed_ = False
|
||||
self.is_historical_ = history_depth_sec > 0
|
||||
|
||||
class CvttWebSockClient:
|
||||
|
||||
class CvttPricerWebSockClient:
|
||||
# Class members with type hints
|
||||
ws_url_: UrlT
|
||||
websocket_: Optional[ClientConnection]
|
||||
subscriptions_: Dict[SubscriptionIdT, CvttPricesSubscription]
|
||||
is_connected_: bool
|
||||
logger_: logging.Logger
|
||||
|
||||
def __init__(self, url: str):
|
||||
self.ws_url_ = url
|
||||
self.websocket_ = None
|
||||
self.is_connected_ = False
|
||||
|
||||
async def connect(self) -> None:
|
||||
self.websocket_ = await websockets.connect(self.ws_url_)
|
||||
self.is_connected_ = True
|
||||
|
||||
async def close(self) -> None:
|
||||
if self.websocket_ is not None:
|
||||
await self.websocket_.close()
|
||||
self.is_connected_ = False
|
||||
|
||||
async def receive_message(self) -> JsonDictT:
|
||||
assert self.websocket_ is not None
|
||||
assert self.is_connected_
|
||||
message = await self.websocket_.recv()
|
||||
message_str = (
|
||||
message.decode("utf-8")
|
||||
if isinstance(message, bytes)
|
||||
else message
|
||||
)
|
||||
res = json.loads(message_str)
|
||||
assert res is not None
|
||||
assert isinstance(res, dict)
|
||||
return res
|
||||
|
||||
@classmethod
|
||||
async def check_connection(cls, url: str) -> bool:
|
||||
try:
|
||||
async with websockets.connect(url) as websocket:
|
||||
result = True
|
||||
except Exception as e:
|
||||
Log.error(f"Unable to connect to {url}: {str(e)}")
|
||||
result = False
|
||||
return result
|
||||
|
||||
class CvttPricerWebSockClient(CvttWebSockClient):
|
||||
# Class members with type hints
|
||||
subscriptions_: Dict[SubscriptionIdT, CvttPricesSubscription]
|
||||
|
||||
def __init__(self, url: str):
|
||||
super().__init__(url)
|
||||
self.subscriptions_ = {}
|
||||
self.logger_ = logging.getLogger(__name__)
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
async def subscribe(
|
||||
self, subscription: CvttPricesSubscription
|
||||
@ -103,10 +71,11 @@ class CvttPricerWebSockClient(CvttWebSockClient):
|
||||
|
||||
if not self.is_connected_:
|
||||
try:
|
||||
Log.info(f"Connecting to {self.ws_url_}")
|
||||
await self.connect()
|
||||
self.logger_.info(f"Connecting to {self.ws_url_}")
|
||||
self.websocket_ = await websockets.connect(self.ws_url_)
|
||||
self.is_connected_ = True
|
||||
except Exception as e:
|
||||
Log.error(f"Unable to connect to {self.ws_url_}: {str(e)}")
|
||||
self.logger_.error(f"Unable to connect to {self.ws_url_}: {str(e)}")
|
||||
raise e
|
||||
|
||||
subscr_msg = {
|
||||
@ -140,10 +109,10 @@ class CvttPricerWebSockClient(CvttWebSockClient):
|
||||
return False
|
||||
|
||||
if response.get("status") == "success":
|
||||
Log.info(f"Subscription successful: {json.dumps(response)}")
|
||||
self.logger_.info(f"Subscription successful: {json.dumps(response)}")
|
||||
return True
|
||||
elif response.get("status") == "error":
|
||||
Log.error(f"Subscription failed: {response.get('reason')}")
|
||||
self.logger_.error(f"Subscription failed: {response.get('reason')}")
|
||||
return False
|
||||
return False
|
||||
|
||||
@ -152,20 +121,19 @@ class CvttPricerWebSockClient(CvttWebSockClient):
|
||||
try:
|
||||
while self.is_connected_:
|
||||
try:
|
||||
msg_dict: JsonDictT = await self.receive_message()
|
||||
message = await self.websocket_.recv()
|
||||
message_str = (
|
||||
message.decode("utf-8")
|
||||
if isinstance(message, bytes)
|
||||
else message
|
||||
)
|
||||
await self.process_message(json.loads(message_str))
|
||||
except websockets.ConnectionClosed:
|
||||
Log.warning("Connection closed")
|
||||
self.logger_.warning("Connection closed")
|
||||
self.is_connected_ = False
|
||||
break
|
||||
except Exception as e:
|
||||
Log.error(f"Error occurred: {str(e)}")
|
||||
self.is_connected_ = False
|
||||
await asyncio.sleep(5) # Wait before reconnecting
|
||||
|
||||
await self.process_message(msg_dict)
|
||||
|
||||
except Exception as e:
|
||||
Log.error(f"Error occurred: {str(e)}")
|
||||
self.logger_.error(f"Error occurred: {str(e)}")
|
||||
self.is_connected_ = False
|
||||
await asyncio.sleep(5) # Wait before reconnecting
|
||||
|
||||
@ -174,13 +142,13 @@ class CvttPricerWebSockClient(CvttWebSockClient):
|
||||
if message_type in ["md_aggregate", "historical_md_aggregate"]:
|
||||
subscription_id = message.get("subscr_id")
|
||||
if subscription_id not in self.subscriptions_:
|
||||
Log.warning(f"Unknown subscription id: {subscription_id}")
|
||||
self.logger_.warning(f"Unknown subscription id: {subscription_id}")
|
||||
return
|
||||
|
||||
subscription = self.subscriptions_[subscription_id]
|
||||
await subscription.callback_(message_type, subscription_id, message)
|
||||
else:
|
||||
Log.warning(f"Unknown message type: {message.get('type')}")
|
||||
self.logger_.warning(f"Unknown message type: {message.get('type')}")
|
||||
|
||||
|
||||
async def main() -> None:
|
||||
@ -188,10 +156,10 @@ async def main() -> None:
|
||||
print(f"{message_type=} {subscr_id=} {instrument_id}")
|
||||
if message_type == "md_aggregate":
|
||||
aggr = message.get("md_aggregate", [])
|
||||
print(f"[{aggr['tstamp'][:19]}] *** RLTM *** {message}")
|
||||
print(f"[{aggr['tstmp'][:19]}] *** RLTM *** {message}")
|
||||
elif message_type == "historical_md_aggregate":
|
||||
for aggr in message.get("historical_data", []):
|
||||
print(f"[{aggr['tstamp'][:19]}] *** HIST *** {aggr}")
|
||||
print(f"[{aggr['tstmp'][:19]}] *** HIST *** {aggr}")
|
||||
else:
|
||||
print(f"Unknown message type: {message_type}")
|
||||
|
||||
@ -1,346 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import pandas as pd
|
||||
from cvttpy_tools.settings.cvtt_types import JsonDictT
|
||||
from cvttpy_tools.tools.base import NamedObject
|
||||
from cvttpy_tools.tools.logger import Log
|
||||
from pt_strategy.live.ti_sender import TradingInstructionsSender
|
||||
from pt_strategy.model_data_policy import ModelDataPolicy
|
||||
from pt_strategy.pt_market_data import RealTimeMarketData
|
||||
from pt_strategy.pt_model import Prediction
|
||||
from pt_strategy.trading_pair import PairState, TradingPair
|
||||
|
||||
"""
|
||||
--config=pair.cfg
|
||||
--pair=PAIR-BTC-USDT:COINBASE_AT,PAIR-ETH-USDT:COINBASE_AT
|
||||
"""
|
||||
|
||||
|
||||
class TradingInstructionType(Enum):
|
||||
TARGET_POSITION = "TARGET_POSITION"
|
||||
|
||||
@dataclass
|
||||
class TradingInstruction(NamedObject):
|
||||
type_: TradingInstructionType
|
||||
exch_instr_: ExchangeInstrument
|
||||
specifics_: Dict[str, Any]
|
||||
|
||||
|
||||
class PtLiveStrategy(NamedObject):
|
||||
config_: Dict[str, Any]
|
||||
trading_pair_: TradingPair
|
||||
model_data_policy_: ModelDataPolicy
|
||||
pt_mkt_data_: RealTimeMarketData
|
||||
ti_sender_: TradingInstructionsSender
|
||||
|
||||
# for presentation: history of prediction values and trading signals
|
||||
predictions_: pd.DataFrame
|
||||
trading_signals_: pd.DataFrame
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
instruments: List[Dict[str, str]],
|
||||
ti_sender: TradingInstructionsSender,
|
||||
):
|
||||
|
||||
self.config_ = config
|
||||
self.trading_pair_ = TradingPair(config=config, instruments=instruments)
|
||||
self.predictions_ = pd.DataFrame()
|
||||
self.trading_signals_ = pd.DataFrame()
|
||||
self.ti_sender_ = ti_sender
|
||||
|
||||
import copy
|
||||
|
||||
# modified config must be passed to PtMarketData
|
||||
config_copy = copy.deepcopy(config)
|
||||
config_copy["instruments"] = instruments
|
||||
self.pt_mkt_data_ = RealTimeMarketData(config=config_copy)
|
||||
self.model_data_policy_ = ModelDataPolicy.create(
|
||||
config, is_real_time=True, pair=self.trading_pair_
|
||||
)
|
||||
self.open_threshold_ = self.config_.get("dis-equilibrium_open_trshld", 0.0)
|
||||
assert self.open_threshold_ > 0, "open_threshold must be greater than 0"
|
||||
self.close_threshold_ = self.config_.get("dis-equilibrium_close_trshld", 0.0)
|
||||
assert self.close_threshold_ > 0, "close_threshold must be greater than 0"
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return f"{self.classname()}: trading_pair={self.trading_pair_}, mdp={self.model_data_policy_.__class__.__name__}, "
|
||||
|
||||
async def on_mkt_data_hist_snapshot(self, aggr: JsonDictT) -> None:
|
||||
Log.info(f"on_mkt_data_hist_snapshot: {aggr}")
|
||||
await self.pt_mkt_data_.on_mkt_data_hist_snapshot(snapshot=aggr)
|
||||
pass
|
||||
|
||||
async def on_mkt_data_update(self, aggr: JsonDictT) -> None:
|
||||
market_data_df = await self.pt_mkt_data_.on_mkt_data_update(update=aggr)
|
||||
if market_data_df is not None:
|
||||
self.trading_pair_.market_data_ = market_data_df
|
||||
self.model_data_policy_.advance()
|
||||
prediction = self.trading_pair_.run(
|
||||
market_data_df, self.model_data_policy_.advance()
|
||||
)
|
||||
self.predictions_ = pd.concat(
|
||||
[self.predictions_, prediction.to_df()], ignore_index=True
|
||||
)
|
||||
|
||||
trading_instructions: List[TradingInstruction] = (
|
||||
self._create_trading_instructions(
|
||||
prediction=prediction, last_row=market_data_df.iloc[-1]
|
||||
)
|
||||
)
|
||||
if len(trading_instructions) > 0:
|
||||
await self._send_trading_instructions(trading_instructions)
|
||||
# trades = self._create_trades(prediction=prediction, last_row=market_data_df.iloc[-1])
|
||||
# URGENT implement this
|
||||
pass
|
||||
|
||||
async def _send_trading_instructions(
|
||||
self, trading_instructions: pd.DataFrame
|
||||
) -> None:
|
||||
pass
|
||||
|
||||
def _create_trading_instructions(
|
||||
self, prediction: Prediction, last_row: pd.Series
|
||||
) -> List[TradingInstruction]:
|
||||
pair = self.trading_pair_
|
||||
trd_instructions: List[TradingInstruction] = []
|
||||
|
||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
|
||||
|
||||
if pair.is_closed():
|
||||
if abs_scaled_disequilibrium >= self.open_threshold_:
|
||||
trd_instructions = self._create_open_trade_instructions(
|
||||
pair, row=last_row, prediction=prediction
|
||||
)
|
||||
elif pair.is_open():
|
||||
if abs_scaled_disequilibrium <= self.close_threshold_:
|
||||
trd_instructions = self._create_close_trade_instructions(
|
||||
pair, row=last_row, prediction=prediction
|
||||
)
|
||||
elif pair.to_stop_close_conditions(predicted_row=last_row):
|
||||
trd_instructions = self._create_close_trade_instructions(
|
||||
pair, row=last_row
|
||||
)
|
||||
|
||||
return trd_instructions
|
||||
|
||||
def _create_open_trade_instructions(
|
||||
self, pair: TradingPair, row: pd.Series, prediction: Prediction
|
||||
) -> List[TradingInstruction]:
|
||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
|
||||
if scaled_disequilibrium > 0:
|
||||
side_a = "SELL"
|
||||
trd_inst_a = TradingInstruction(
|
||||
type=TradingInstructionType.TARGET_POSITION,
|
||||
exch_instr=pair.get_instrument_a(),
|
||||
specifics={"side": "SELL", "strength": -1},
|
||||
)
|
||||
side_b = "BUY"
|
||||
else:
|
||||
side_a = "BUY"
|
||||
side_b = "SELL"
|
||||
|
||||
# save closing sides
|
||||
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
|
||||
pair.user_data_["open_side_b"] = side_b
|
||||
pair.user_data_["open_px_a"] = px_a
|
||||
pair.user_data_["open_px_b"] = px_b
|
||||
pair.user_data_["open_tstamp"] = tstamp
|
||||
|
||||
pair.user_data_["close_side_a"] = side_b # used for closing trades
|
||||
pair.user_data_["close_side_b"] = side_a
|
||||
|
||||
# create opening trades
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_a_,
|
||||
"side": side_a,
|
||||
"action": "OPEN",
|
||||
"price": px_a,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
||||
# "pair": pair,
|
||||
}
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_b_,
|
||||
"side": side_b,
|
||||
"action": "OPEN",
|
||||
"price": px_b,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
return df
|
||||
|
||||
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
|
||||
trades = None
|
||||
pair = self.trading_pair_
|
||||
|
||||
# Outstanding positions
|
||||
if pair.user_data_["state"] == PairState.OPEN:
|
||||
print(f"{pair}: *** Position is NOT CLOSED. ***")
|
||||
# outstanding positions
|
||||
if self.config_["close_outstanding_positions"]:
|
||||
close_position_row = pd.Series(pair.market_data_.iloc[-2])
|
||||
# close_position_row["disequilibrium"] = 0.0
|
||||
# close_position_row["scaled_disequilibrium"] = 0.0
|
||||
# close_position_row["signed_scaled_disequilibrium"] = 0.0
|
||||
|
||||
trades = self._create_close_trades(
|
||||
pair=pair, row=close_position_row, prediction=None
|
||||
)
|
||||
if trades is not None:
|
||||
trades["status"] = PairState.CLOSE_POSITION.name
|
||||
print(f"CLOSE_POSITION TRADES:\n{trades}")
|
||||
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
||||
pair.on_close_trades(trades)
|
||||
else:
|
||||
pair.add_outstanding_position(
|
||||
symbol=pair.symbol_a_,
|
||||
open_side=pair.user_data_["open_side_a"],
|
||||
open_px=pair.user_data_["open_px_a"],
|
||||
open_tstamp=pair.user_data_["open_tstamp"],
|
||||
last_mkt_data_row=pair.market_data_.iloc[-1],
|
||||
)
|
||||
pair.add_outstanding_position(
|
||||
symbol=pair.symbol_b_,
|
||||
open_side=pair.user_data_["open_side_b"],
|
||||
open_px=pair.user_data_["open_px_b"],
|
||||
open_tstamp=pair.user_data_["open_tstamp"],
|
||||
last_mkt_data_row=pair.market_data_.iloc[-1],
|
||||
)
|
||||
return trades
|
||||
|
||||
def _trades_df(self) -> pd.DataFrame:
|
||||
types = {
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"side": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"signed_scaled_disequilibrium": "float64",
|
||||
# "pair": "object",
|
||||
}
|
||||
columns = list(types.keys())
|
||||
return pd.DataFrame(columns=columns).astype(types)
|
||||
|
||||
def _create_open_trades(
|
||||
self, pair: TradingPair, row: pd.Series, prediction: Prediction
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.exec_prices_colnames()
|
||||
|
||||
tstamp = row["tstamp"]
|
||||
diseqlbrm = prediction.disequilibrium_
|
||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
px_a = row[f"{colname_a}"]
|
||||
px_b = row[f"{colname_b}"]
|
||||
|
||||
# creating the trades
|
||||
df = self._trades_df()
|
||||
|
||||
print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}")
|
||||
if diseqlbrm > 0:
|
||||
side_a = "SELL"
|
||||
side_b = "BUY"
|
||||
else:
|
||||
side_a = "BUY"
|
||||
side_b = "SELL"
|
||||
|
||||
# save closing sides
|
||||
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
|
||||
pair.user_data_["open_side_b"] = side_b
|
||||
pair.user_data_["open_px_a"] = px_a
|
||||
pair.user_data_["open_px_b"] = px_b
|
||||
pair.user_data_["open_tstamp"] = tstamp
|
||||
|
||||
pair.user_data_["close_side_a"] = side_b # used for closing trades
|
||||
pair.user_data_["close_side_b"] = side_a
|
||||
|
||||
# create opening trades
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_a_,
|
||||
"side": side_a,
|
||||
"action": "OPEN",
|
||||
"price": px_a,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
||||
# "pair": pair,
|
||||
}
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_b_,
|
||||
"side": side_b,
|
||||
"action": "OPEN",
|
||||
"price": px_b,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
return df
|
||||
|
||||
def _create_close_trades(
|
||||
self, pair: TradingPair, row: pd.Series, prediction: Optional[Prediction] = None
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.exec_prices_colnames()
|
||||
|
||||
tstamp = row["tstamp"]
|
||||
if prediction is not None:
|
||||
diseqlbrm = prediction.disequilibrium_
|
||||
signed_scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
scaled_disequilibrium = abs(prediction.scaled_disequilibrium_)
|
||||
else:
|
||||
diseqlbrm = 0.0
|
||||
signed_scaled_disequilibrium = 0.0
|
||||
scaled_disequilibrium = 0.0
|
||||
px_a = row[f"{colname_a}"]
|
||||
px_b = row[f"{colname_b}"]
|
||||
|
||||
# creating the trades
|
||||
df = self._trades_df()
|
||||
|
||||
# create opening trades
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_a_,
|
||||
"side": pair.user_data_["close_side_a"],
|
||||
"action": "CLOSE",
|
||||
"price": px_a,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": scaled_disequilibrium,
|
||||
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_b_,
|
||||
"side": pair.user_data_["close_side_b"],
|
||||
"action": "CLOSE",
|
||||
"price": px_b,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": scaled_disequilibrium,
|
||||
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
del pair.user_data_["close_side_a"]
|
||||
del pair.user_data_["close_side_b"]
|
||||
|
||||
del pair.user_data_["open_tstamp"]
|
||||
del pair.user_data_["open_px_a"]
|
||||
del pair.user_data_["open_px_b"]
|
||||
del pair.user_data_["open_side_a"]
|
||||
del pair.user_data_["open_side_b"]
|
||||
return df
|
||||
@ -1,85 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from functools import partial
|
||||
from typing import Dict, List
|
||||
|
||||
from cvtt_client.mkt_data import (CvttPricerWebSockClient,
|
||||
CvttPricesSubscription, MessageTypeT,
|
||||
SubscriptionIdT)
|
||||
from cvttpy_tools.settings.cvtt_types import JsonDictT
|
||||
from cvttpy_tools.tools.app import App
|
||||
from cvttpy_tools.tools.base import NamedObject
|
||||
from cvttpy_tools.tools.config import Config
|
||||
from cvttpy_tools.tools.logger import Log
|
||||
from pt_strategy.live.live_strategy import PtLiveStrategy
|
||||
from pt_strategy.trading_pair import TradingPair
|
||||
|
||||
"""
|
||||
--config=pair.cfg
|
||||
--pair=PAIR-BTC-USDT:COINBASE_AT,PAIR-ETH-USDT:COINBASE_AT
|
||||
"""
|
||||
|
||||
|
||||
class PtMktDataClient(NamedObject):
|
||||
config_: Config
|
||||
live_strategy_: PtLiveStrategy
|
||||
pricer_client_: CvttPricerWebSockClient
|
||||
subscriptions_: List[CvttPricesSubscription]
|
||||
|
||||
def __init__(self, live_strategy: PtLiveStrategy, pricer_config: Config):
|
||||
self.config_ = pricer_config
|
||||
self.live_strategy_ = live_strategy
|
||||
|
||||
App.instance().add_call(App.Stage.Start, self._on_start())
|
||||
App.instance().add_call(App.Stage.Run, self.run())
|
||||
|
||||
async def _on_start(self) -> None:
|
||||
pricer_url = self.config_.get_value("pricer_url")
|
||||
assert pricer_url is not None, "pricer_url is not found in config"
|
||||
self.pricer_client_ = CvttPricerWebSockClient(url=pricer_url)
|
||||
|
||||
|
||||
async def _subscribe(self) -> None:
|
||||
history_depth_sec = self.config_.get_value("history_depth_sec", 86400)
|
||||
interval_sec = self.config_.get_value("interval_sec", 60)
|
||||
|
||||
pair: TradingPair = self.live_strategy_.trading_pair_
|
||||
subscriptions = [CvttPricesSubscription(
|
||||
exchange_config_name=instrument["exchange_config_name"],
|
||||
instrument_id=instrument["instrument_id"],
|
||||
interval_sec=interval_sec,
|
||||
history_depth_sec=history_depth_sec,
|
||||
callback=partial(
|
||||
self.on_message, instrument_id=instrument["instrument_id"]
|
||||
),
|
||||
) for instrument in pair.instruments_]
|
||||
|
||||
for subscription in subscriptions:
|
||||
Log.info(f"{self.fname()} Subscribing to {subscription}")
|
||||
await self.pricer_client_.subscribe(subscription)
|
||||
|
||||
async def on_message(
|
||||
self,
|
||||
message_type: MessageTypeT,
|
||||
subscr_id: SubscriptionIdT,
|
||||
message: Dict,
|
||||
instrument_id: str,
|
||||
) -> None:
|
||||
Log.info(f"{self.fname()}: {message_type=} {subscr_id=} {instrument_id}")
|
||||
aggr: JsonDictT
|
||||
if message_type == "md_aggregate":
|
||||
aggr = message.get("md_aggregate", {})
|
||||
await self.live_strategy_.on_mkt_data_update(aggr)
|
||||
elif message_type == "historical_md_aggregate":
|
||||
aggr = message.get("historical_data", {})
|
||||
await self.live_strategy_.on_mkt_data_hist_snapshot(aggr)
|
||||
else:
|
||||
Log.info(f"Unknown message type: {message_type}")
|
||||
|
||||
async def run(self) -> None:
|
||||
if not await CvttPricerWebSockClient.check_connection(self.pricer_client_.ws_url_):
|
||||
Log.error(f"Unable to connect to {self.pricer_client_.ws_url_}")
|
||||
raise Exception(f"Unable to connect to {self.pricer_client_.ws_url_}")
|
||||
await self._subscribe()
|
||||
|
||||
await self.pricer_client_.run()
|
||||
@ -1,86 +0,0 @@
|
||||
import time
|
||||
from enum import Enum
|
||||
from typing import Tuple
|
||||
|
||||
# import aiohttp
|
||||
from cvttpy_tools.tools.app import App
|
||||
from cvttpy_tools.tools.base import NamedObject
|
||||
from cvttpy_tools.tools.config import Config
|
||||
from cvttpy_tools.tools.logger import Log
|
||||
from cvttpy_tools.tools.timer import Timer
|
||||
from cvttpy_tools.tools.timeutils import NanoPerSec
|
||||
from cvttpy_tools.tools.web.rest_client import REST_RequestProcessor
|
||||
|
||||
|
||||
class TradingInstructionsSender(NamedObject):
|
||||
|
||||
class TradingInstType(str, Enum):
|
||||
TARGET_POSITION = "TARGET_POSITION"
|
||||
DIRECT_ORDER = "DIRECT_ORDER"
|
||||
MARKET_MAKING = "MARKET_MAKING"
|
||||
NONE = "NONE"
|
||||
|
||||
config_: Config
|
||||
ti_method_: str
|
||||
ti_url_: str
|
||||
health_check_method_: str
|
||||
health_check_url_: str
|
||||
|
||||
def __init__(self, config: Config):
|
||||
self.config_ = config
|
||||
base_url = config.get_value("url", "ws://localhost:12346/ws")
|
||||
|
||||
self.book_id_ = config.get_value("book_id", "")
|
||||
assert self.book_id_, "book_id is required"
|
||||
|
||||
self.strategy_id_ = config.get_value("strategy_id", "")
|
||||
assert self.strategy_id_, "strategy_id is required"
|
||||
|
||||
endpoint_uri = config.get_value("ti_endpoint/url", "/trading_instructions")
|
||||
endpoint_method = config.get_value("ti_endpoint/method", "POST")
|
||||
|
||||
health_check_uri = config.get_value("health_check_endpoint/url", "/ping")
|
||||
health_check_method = config.get_value("health_check_endpoint/method", "GET")
|
||||
|
||||
|
||||
|
||||
self.ti_method_ = endpoint_method
|
||||
self.ti_url_ = f"{base_url}{endpoint_uri}"
|
||||
|
||||
self.health_check_method_ = health_check_method
|
||||
self.health_check_url_ = f"{base_url}{health_check_uri}"
|
||||
|
||||
App.instance().add_call(App.Stage.Start, self._set_health_check_timer(), can_run_now=True)
|
||||
|
||||
async def _set_health_check_timer(self) -> None:
|
||||
# TODO: configurable interval
|
||||
self.health_check_timer_ = Timer(is_periodic=True, period_interval=15, start_in_sec=0, func=self._health_check)
|
||||
Log.info(f"{self.fname()} Health check timer set to 15 seconds")
|
||||
|
||||
async def _health_check(self) -> None:
|
||||
rqst = REST_RequestProcessor(method=self.health_check_method_, url=self.health_check_url_)
|
||||
async with rqst as (status, msg, headers):
|
||||
if status != 200:
|
||||
Log.error(f"{self.fname()} CVTT Service is not responding")
|
||||
|
||||
async def send_tgt_positions(self, strength: float, base_asset: str, quote_asset: str) -> Tuple[int, str]:
|
||||
instr = {
|
||||
"type": self.TradingInstType.TARGET_POSITION.value,
|
||||
"book_id": self.book_id_,
|
||||
"strategy_id": self.strategy_id_,
|
||||
"issued_ts_ns": int(time.time() * NanoPerSec),
|
||||
"data": {
|
||||
"strength": strength,
|
||||
"base_asset": base_asset,
|
||||
"quote_asset": quote_asset,
|
||||
"user_data": {},
|
||||
},
|
||||
}
|
||||
|
||||
rqst = REST_RequestProcessor(method=self.ti_method_, url=self.ti_url_, params=instr)
|
||||
async with rqst as (status, msg, headers):
|
||||
if status != 200:
|
||||
raise ConnectionError(f"Failed to send trading instructions: {msg}")
|
||||
return (status, msg)
|
||||
|
||||
|
||||
@ -1,257 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import copy
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, cast
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataWindowParams:
|
||||
training_size: int
|
||||
training_start_index: int
|
||||
|
||||
|
||||
class ModelDataPolicy(ABC):
|
||||
config_: Dict[str, Any]
|
||||
current_data_params_: DataWindowParams
|
||||
count_: int
|
||||
is_real_time_: bool
|
||||
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
self.config_ = config
|
||||
training_size = config.get("training_size", 120)
|
||||
training_start_index = 0
|
||||
if kwargs.get("is_real_time", False):
|
||||
training_size = 120
|
||||
training_start_index = 0
|
||||
else:
|
||||
training_size = config.get("training_size", 120)
|
||||
self.current_data_params_ = DataWindowParams(
|
||||
training_size=config.get("training_size", 120),
|
||||
training_start_index=0,
|
||||
)
|
||||
self.count_ = 0
|
||||
self.is_real_time_ = kwargs.get("is_real_time", False)
|
||||
|
||||
@abstractmethod
|
||||
def advance(self, mkt_data_df: Optional[pd.DataFrame] = None) -> DataWindowParams:
|
||||
self.count_ += 1
|
||||
print(self.count_, end="\r")
|
||||
return self.current_data_params_
|
||||
|
||||
@staticmethod
|
||||
def create(config: Dict[str, Any], *args: Any, **kwargs: Any) -> ModelDataPolicy:
|
||||
import importlib
|
||||
|
||||
model_data_policy_class_name = config.get("model_data_policy_class", None)
|
||||
assert model_data_policy_class_name is not None
|
||||
module_name, class_name = model_data_policy_class_name.rsplit(".", 1)
|
||||
module = importlib.import_module(module_name)
|
||||
model_training_data_policy_object = getattr(module, class_name)(
|
||||
config=config, *args, **kwargs
|
||||
)
|
||||
return cast(ModelDataPolicy, model_training_data_policy_object)
|
||||
|
||||
|
||||
class RollingWindowDataPolicy(ModelDataPolicy):
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
super().__init__(config, *args, **kwargs)
|
||||
self.count_ = 1
|
||||
|
||||
def advance(self, mkt_data_df: Optional[pd.DataFrame] = None) -> DataWindowParams:
|
||||
super().advance(mkt_data_df)
|
||||
if self.is_real_time_:
|
||||
self.current_data_params_.training_start_index = -self.current_data_params_.training_size
|
||||
else:
|
||||
self.current_data_params_.training_start_index += 1
|
||||
return self.current_data_params_
|
||||
|
||||
|
||||
class OptimizedWndDataPolicy(ModelDataPolicy, ABC):
|
||||
mkt_data_df_: pd.DataFrame
|
||||
pair_: TradingPair # type: ignore
|
||||
min_training_size_: int
|
||||
max_training_size_: int
|
||||
end_index_: int
|
||||
prices_a_: np.ndarray
|
||||
prices_b_: np.ndarray
|
||||
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
super().__init__(config, *args, **kwargs)
|
||||
assert (
|
||||
kwargs.get("pair") is not None
|
||||
), "pair must be provided"
|
||||
assert (
|
||||
"min_training_size" in config and "max_training_size" in config
|
||||
), "min_training_size and max_training_size must be provided"
|
||||
self.min_training_size_ = cast(int, config.get("min_training_size"))
|
||||
self.max_training_size_ = cast(int, config.get("max_training_size"))
|
||||
|
||||
from pt_strategy.trading_pair import TradingPair
|
||||
self.pair_ = cast(TradingPair, kwargs.get("pair"))
|
||||
|
||||
if "mkt_data" in kwargs:
|
||||
self.mkt_data_df_ = cast(pd.DataFrame, kwargs.get("mkt_data"))
|
||||
col_a, col_b = self.pair_.colnames()
|
||||
self.prices_a_ = np.array(self.mkt_data_df_[col_a])
|
||||
self.prices_b_ = np.array(self.mkt_data_df_[col_b])
|
||||
assert self.min_training_size_ < self.max_training_size_
|
||||
|
||||
|
||||
def advance(self, mkt_data_df: Optional[pd.DataFrame] = None) -> DataWindowParams:
|
||||
super().advance(mkt_data_df)
|
||||
if mkt_data_df is not None:
|
||||
self.mkt_data_df_ = mkt_data_df
|
||||
|
||||
if self.is_real_time_:
|
||||
self.end_index_ = len(self.mkt_data_df_) - 1
|
||||
else:
|
||||
self.end_index_ = self.current_data_params_.training_start_index + self.max_training_size_
|
||||
if self.end_index_ > len(self.mkt_data_df_) - 1:
|
||||
self.end_index_ = len(self.mkt_data_df_) - 1
|
||||
self.current_data_params_.training_start_index = self.end_index_ - self.max_training_size_
|
||||
if self.current_data_params_.training_start_index < 0:
|
||||
self.current_data_params_.training_start_index = 0
|
||||
|
||||
col_a, col_b = self.pair_.colnames()
|
||||
self.prices_a_ = np.array(self.mkt_data_df_[col_a])
|
||||
self.prices_b_ = np.array(self.mkt_data_df_[col_b])
|
||||
|
||||
self.current_data_params_ = self.optimize_window_size()
|
||||
return self.current_data_params_
|
||||
|
||||
@abstractmethod
|
||||
def optimize_window_size(self) -> DataWindowParams:
|
||||
...
|
||||
|
||||
class EGOptimizedWndDataPolicy(OptimizedWndDataPolicy):
|
||||
'''
|
||||
# Engle-Granger cointegration test
|
||||
*** VERY SLOW ***
|
||||
'''
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
super().__init__(config, *args, **kwargs)
|
||||
|
||||
def optimize_window_size(self) -> DataWindowParams:
|
||||
# Run Engle-Granger cointegration test
|
||||
last_pvalue = 1.0
|
||||
result = copy.copy(self.current_data_params_)
|
||||
for trn_size in range(self.min_training_size_, self.max_training_size_):
|
||||
if self.end_index_ - trn_size < 0:
|
||||
break
|
||||
|
||||
from statsmodels.tsa.stattools import coint # type: ignore
|
||||
|
||||
start_index = self.end_index_ - trn_size
|
||||
series_a = self.prices_a_[start_index : self.end_index_]
|
||||
series_b = self.prices_b_[start_index : self.end_index_]
|
||||
eg_pvalue = float(coint(series_a, series_b)[1])
|
||||
if eg_pvalue < last_pvalue:
|
||||
last_pvalue = eg_pvalue
|
||||
result.training_size = trn_size
|
||||
result.training_start_index = start_index
|
||||
|
||||
# print(
|
||||
# f"*** DEBUG *** end_index={self.end_index_}, best_trn_size={self.current_data_params_.training_size}, {last_pvalue=}"
|
||||
# )
|
||||
return result
|
||||
|
||||
class ADFOptimizedWndDataPolicy(OptimizedWndDataPolicy):
|
||||
# Augmented Dickey-Fuller test
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
super().__init__(config, *args, **kwargs)
|
||||
|
||||
def optimize_window_size(self) -> DataWindowParams:
|
||||
from statsmodels.regression.linear_model import OLS
|
||||
from statsmodels.tools.tools import add_constant
|
||||
from statsmodels.tsa.stattools import adfuller
|
||||
|
||||
last_pvalue = 1.0
|
||||
result = copy.copy(self.current_data_params_)
|
||||
for trn_size in range(self.min_training_size_, self.max_training_size_):
|
||||
if self.end_index_ - trn_size < 0:
|
||||
break
|
||||
start_index = self.end_index_ - trn_size
|
||||
y = self.prices_a_[start_index : self.end_index_]
|
||||
x = self.prices_b_[start_index : self.end_index_]
|
||||
|
||||
# Add constant to x for intercept
|
||||
x_with_const = add_constant(x)
|
||||
|
||||
# OLS regression: y = a + b*x + e
|
||||
model = OLS(y, x_with_const).fit()
|
||||
residuals = y - model.predict(x_with_const)
|
||||
|
||||
# ADF test on residuals
|
||||
try:
|
||||
adf_result = adfuller(residuals, maxlag=1, regression="c")
|
||||
adf_pvalue = float(adf_result[1])
|
||||
except Exception as e:
|
||||
# Handle edge cases with exception (e.g., constant series, etc.)
|
||||
adf_pvalue = 1.0
|
||||
|
||||
if adf_pvalue < last_pvalue:
|
||||
last_pvalue = adf_pvalue
|
||||
result.training_size = trn_size
|
||||
result.training_start_index = start_index
|
||||
|
||||
# print(
|
||||
# f"*** DEBUG *** end_index={self.end_index_},"
|
||||
# f" best_trn_size={self.current_data_params_.training_size},"
|
||||
# f" {last_pvalue=}"
|
||||
# )
|
||||
return result
|
||||
|
||||
class JohansenOptdWndDataPolicy(OptimizedWndDataPolicy):
|
||||
# Johansen test
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
super().__init__(config, *args, **kwargs)
|
||||
|
||||
def optimize_window_size(self) -> DataWindowParams:
|
||||
from statsmodels.tsa.vector_ar.vecm import coint_johansen
|
||||
import numpy as np
|
||||
|
||||
best_stat = -np.inf
|
||||
best_trn_size = 0
|
||||
best_start_index = -1
|
||||
|
||||
result = copy.copy(self.current_data_params_)
|
||||
for trn_size in range(self.min_training_size_, self.max_training_size_):
|
||||
if self.end_index_ - trn_size < 0:
|
||||
break
|
||||
start_index = self.end_index_ - trn_size
|
||||
series_a = self.prices_a_[start_index:self.end_index_]
|
||||
series_b = self.prices_b_[start_index:self.end_index_]
|
||||
|
||||
# Combine into 2D matrix for Johansen test
|
||||
try:
|
||||
data = np.column_stack([series_a, series_b])
|
||||
|
||||
# Johansen test: det_order=0 (no deterministic trend), k_ar_diff=1 (lag)
|
||||
res = coint_johansen(data, det_order=0, k_ar_diff=1)
|
||||
|
||||
# Trace statistic for cointegration rank 1
|
||||
trace_stat = res.lr1[0] # test stat for rank=0 vs >=1
|
||||
critical_value = res.cvt[0, 1] # 5% critical value
|
||||
|
||||
if trace_stat > best_stat:
|
||||
best_stat = trace_stat
|
||||
best_trn_size = trn_size
|
||||
best_start_index = start_index
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
if best_trn_size > 0:
|
||||
result.training_size = best_trn_size
|
||||
result.training_start_index = best_start_index
|
||||
else:
|
||||
print("*** WARNING: No valid cointegration window found.")
|
||||
|
||||
# print(
|
||||
# f"*** DEBUG *** end_index={self.end_index_}, best_trn_size={best_trn_size}, trace_stat={best_stat}"
|
||||
# )
|
||||
return result
|
||||
@ -1,104 +0,0 @@
|
||||
from __future__ import annotations
|
||||
from typing import Optional
|
||||
|
||||
import pandas as pd
|
||||
import statsmodels.api as sm
|
||||
|
||||
|
||||
|
||||
from pt_strategy.pt_model import PairsTradingModel, Prediction
|
||||
from pt_strategy.trading_pair import TradingPair
|
||||
|
||||
|
||||
class OLSModel(PairsTradingModel):
|
||||
model_: Optional[sm.regression.linear_model.RegressionResultsWrapper]
|
||||
pair_predict_result_: Optional[pd.DataFrame]
|
||||
zscore_df_: Optional[pd.DataFrame]
|
||||
|
||||
def predict(self, pair: TradingPair) -> Prediction:
|
||||
self.training_df_ = pair.market_data_.copy()
|
||||
|
||||
zscore_df = self._fit_zscore(pair=pair)
|
||||
|
||||
assert zscore_df is not None
|
||||
# zscore is both disequilibrium and scaled_disequilibrium
|
||||
self.training_df_["dis-equilibrium"] = zscore_df[0]
|
||||
self.training_df_["scaled_dis-equilibrium"] = zscore_df[0]
|
||||
|
||||
assert zscore_df is not None
|
||||
return Prediction(
|
||||
tstamp=pair.market_data_.iloc[-1]["tstamp"],
|
||||
disequilibrium=self.training_df_["dis-equilibrium"].iloc[-1],
|
||||
scaled_disequilibrium=self.training_df_["scaled_dis-equilibrium"].iloc[-1],
|
||||
)
|
||||
|
||||
def _fit_zscore(self, pair: TradingPair) -> pd.DataFrame:
|
||||
assert self.training_df_ is not None
|
||||
symbol_a_px_series = self.training_df_[pair.colnames()].iloc[:, 0]
|
||||
symbol_b_px_series = self.training_df_[pair.colnames()].iloc[:, 1]
|
||||
|
||||
symbol_a_px_series, symbol_b_px_series = symbol_a_px_series.align(
|
||||
symbol_b_px_series, axis=0
|
||||
)
|
||||
|
||||
X = sm.add_constant(symbol_b_px_series)
|
||||
self.model_ = sm.OLS(symbol_a_px_series, X).fit()
|
||||
assert self.model_ is not None
|
||||
|
||||
# alternate way would be to use models residuals (will give identical results)
|
||||
# alpha, beta = self.model_.params
|
||||
# spread = symbol_a_px_series - (alpha + beta * symbol_b_px_series)
|
||||
spread = self.model_.resid
|
||||
return pd.DataFrame((spread - spread.mean()) / spread.std())
|
||||
|
||||
|
||||
class VECMModel(PairsTradingModel):
|
||||
def predict(self, pair: TradingPair) -> Prediction:
|
||||
self.training_df_ = pair.market_data_.copy()
|
||||
assert self.training_df_ is not None
|
||||
vecm_fit = self._fit_VECM(pair=pair)
|
||||
|
||||
assert vecm_fit is not None
|
||||
predicted_prices = vecm_fit.predict(steps=1)
|
||||
|
||||
# Convert prediction to a DataFrame for readability
|
||||
predicted_df = pd.DataFrame(
|
||||
predicted_prices, columns=pd.Index(pair.colnames()), dtype=float
|
||||
)
|
||||
|
||||
disequilibrium = (predicted_df[pair.colnames()] @ vecm_fit.beta)[0][0]
|
||||
scaled_disequilibrium = (disequilibrium - self.training_mu_) / self.training_std_
|
||||
return Prediction(
|
||||
tstamp=pair.market_data_.iloc[-1]["tstamp"],
|
||||
disequilibrium=disequilibrium,
|
||||
scaled_disequilibrium=scaled_disequilibrium,
|
||||
)
|
||||
|
||||
def _fit_VECM(self, pair: TradingPair) -> VECMResults: # type: ignore
|
||||
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
||||
|
||||
vecm_df = self.training_df_[pair.colnames()].reset_index(drop=True)
|
||||
vecm_model = VECM(vecm_df, coint_rank=1)
|
||||
vecm_fit = vecm_model.fit()
|
||||
|
||||
assert vecm_fit is not None
|
||||
|
||||
# Check if the model converged properly
|
||||
if not hasattr(vecm_fit, "beta") or vecm_fit.beta is None:
|
||||
print(f"{self}: VECM model failed to converge properly")
|
||||
|
||||
diseq_series = self.training_df_[pair.colnames()] @ vecm_fit.beta
|
||||
# print(diseq_series.shape)
|
||||
self.training_mu_ = float(diseq_series[0].mean())
|
||||
self.training_std_ = float(diseq_series[0].std())
|
||||
|
||||
self.training_df_["dis-equilibrium"] = (
|
||||
self.training_df_[pair.colnames()] @ vecm_fit.beta
|
||||
)
|
||||
# Normalize the dis-equilibrium
|
||||
self.training_df_["scaled_dis-equilibrium"] = (
|
||||
diseq_series - self.training_mu_
|
||||
) / self.training_std_
|
||||
|
||||
return vecm_fit
|
||||
|
||||
@ -1,28 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict
|
||||
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class Prediction:
|
||||
tstamp_: pd.Timestamp
|
||||
disequilibrium_: float
|
||||
scaled_disequilibrium_: float
|
||||
|
||||
def __init__(self, tstamp: pd.Timestamp, disequilibrium: float, scaled_disequilibrium: float):
|
||||
self.tstamp_ = tstamp
|
||||
self.disequilibrium_ = disequilibrium
|
||||
self.scaled_disequilibrium_ = scaled_disequilibrium
|
||||
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"tstamp": self.tstamp_,
|
||||
"disequilibrium": self.disequilibrium_,
|
||||
"signed_scaled_disequilibrium": self.scaled_disequilibrium_,
|
||||
"scaled_disequilibrium": abs(self.scaled_disequilibrium_),
|
||||
# "pair": self.pair_,
|
||||
}
|
||||
def to_df(self) -> pd.DataFrame:
|
||||
return pd.DataFrame([self.to_dict()])
|
||||
|
||||
@ -1,229 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import pandas as pd
|
||||
from cvttpy_tools.settings.cvtt_types import JsonDictT
|
||||
from tools.data_loader import load_market_data
|
||||
|
||||
|
||||
class PtMarketData():
|
||||
config_: Dict[str, Any]
|
||||
origin_mkt_data_df_: pd.DataFrame
|
||||
market_data_df_: pd.DataFrame
|
||||
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
self.config_ = config
|
||||
self.origin_mkt_data_df_ = pd.DataFrame()
|
||||
self.market_data_df_ = pd.DataFrame()
|
||||
|
||||
|
||||
class ResearchMarketData(PtMarketData):
|
||||
current_index_: int
|
||||
|
||||
is_execution_price_: bool
|
||||
|
||||
def __init__(self, config: Dict[str, Any]):
|
||||
super().__init__(config)
|
||||
self.current_index_ = 0
|
||||
self.is_execution_price_ = "execution_price" in self.config_
|
||||
if self.is_execution_price_:
|
||||
self.execution_price_column_ = self.config_["execution_price"]["column"]
|
||||
self.execution_price_shift_ = self.config_["execution_price"]["shift"]
|
||||
else:
|
||||
self.execution_price_column_ = None
|
||||
self.execution_price_shift_ = 0
|
||||
|
||||
def has_next(self) -> bool:
|
||||
return self.current_index_ < len(self.market_data_df_)
|
||||
|
||||
def get_next(self) -> pd.Series:
|
||||
result = self.market_data_df_.iloc[self.current_index_]
|
||||
self.current_index_ += 1
|
||||
return result
|
||||
|
||||
def load(self) -> None:
|
||||
datafiles: List[str] = self.config_.get("datafiles", [])
|
||||
instruments: List[Dict[str, str]] = self.config_.get("instruments", [])
|
||||
assert len(instruments) > 0, "No instruments found in config"
|
||||
assert len(datafiles) > 0, "No datafiles found in config"
|
||||
self.symbol_a_ = instruments[0]["symbol"]
|
||||
self.symbol_b_ = instruments[1]["symbol"]
|
||||
self.stat_model_price_ = self.config_["stat_model_price"]
|
||||
|
||||
extra_minutes: int
|
||||
extra_minutes = self.execution_price_shift_
|
||||
|
||||
for datafile in datafiles:
|
||||
md_df = load_market_data(
|
||||
datafile=datafile,
|
||||
instruments=instruments,
|
||||
db_table_name=self.config_["market_data_loading"][instruments[0]["instrument_type"]]["db_table_name"],
|
||||
trading_hours=self.config_["trading_hours"],
|
||||
extra_minutes=extra_minutes,
|
||||
)
|
||||
self.origin_mkt_data_df_ = pd.concat([self.origin_mkt_data_df_, md_df])
|
||||
|
||||
self.origin_mkt_data_df_ = self.origin_mkt_data_df_.sort_values(by="tstamp")
|
||||
self.origin_mkt_data_df_ = self.origin_mkt_data_df_.dropna().reset_index(drop=True)
|
||||
self._set_market_data()
|
||||
|
||||
def _set_market_data(self, ) -> None:
|
||||
if self.is_execution_price_:
|
||||
self.market_data_df_ = pd.DataFrame(
|
||||
self._transform_dataframe(self.origin_mkt_data_df_)[["tstamp"] + self.colnames() + self.orig_exec_prices_colnames()]
|
||||
)
|
||||
else:
|
||||
self.market_data_df_ = pd.DataFrame(
|
||||
self._transform_dataframe(self.origin_mkt_data_df_)[["tstamp"] + self.colnames()]
|
||||
)
|
||||
|
||||
self.market_data_df_ = self.market_data_df_.dropna().reset_index(drop=True)
|
||||
self.market_data_df_["tstamp"] = pd.to_datetime(self.market_data_df_["tstamp"])
|
||||
self.market_data_df_ = self.market_data_df_.sort_values("tstamp")
|
||||
self._set_execution_price_data()
|
||||
|
||||
def _transform_dataframe(self, df: pd.DataFrame) -> pd.DataFrame:
|
||||
df_selected: pd.DataFrame
|
||||
if self.is_execution_price_:
|
||||
execution_price_column = self.config_["execution_price"]["column"]
|
||||
|
||||
df_selected = pd.DataFrame(
|
||||
df[["tstamp", "symbol", self.stat_model_price_, execution_price_column]]
|
||||
)
|
||||
else:
|
||||
df_selected = pd.DataFrame(
|
||||
df[["tstamp", "symbol", self.stat_model_price_]]
|
||||
)
|
||||
|
||||
result_df = pd.DataFrame(df_selected["tstamp"]).drop_duplicates().reset_index(drop=True)
|
||||
|
||||
# For each unique symbol, add a corresponding stat_model_price column
|
||||
symbols = df_selected["symbol"].unique()
|
||||
|
||||
|
||||
|
||||
for symbol in symbols:
|
||||
# Filter rows for this symbol
|
||||
df_symbol = df_selected[df_selected["symbol"] == symbol].reset_index(
|
||||
drop=True
|
||||
)
|
||||
|
||||
# Create column name like "close-COIN"
|
||||
new_price_column = f"{self.stat_model_price_}_{symbol}"
|
||||
if self.is_execution_price_:
|
||||
new_execution_price_column = f"{self.execution_price_column_}_{symbol}"
|
||||
|
||||
# Create temporary dataframe with timestamp and price
|
||||
temp_df = pd.DataFrame(
|
||||
{
|
||||
"tstamp": df_symbol["tstamp"],
|
||||
new_price_column: df_symbol[self.stat_model_price_],
|
||||
new_execution_price_column: df_symbol[execution_price_column],
|
||||
}
|
||||
)
|
||||
else:
|
||||
temp_df = pd.DataFrame(
|
||||
{
|
||||
"tstamp": df_symbol["tstamp"],
|
||||
new_price_column: df_symbol[self.stat_model_price_],
|
||||
}
|
||||
)
|
||||
|
||||
# Join with our result dataframe
|
||||
result_df = pd.merge(result_df, temp_df, on="tstamp", how="left")
|
||||
result_df = result_df.reset_index(
|
||||
drop=True
|
||||
) # do not dropna() since irrelevant symbol would affect dataset
|
||||
|
||||
return result_df.dropna()
|
||||
|
||||
def _set_execution_price_data(self) -> None:
|
||||
if "execution_price" not in self.config_:
|
||||
self.market_data_df_[f"exec_price_{self.symbol_a_}"] = self.market_data_df_[f"{self.stat_model_price_}_{self.symbol_a_}"]
|
||||
self.market_data_df_[f"exec_price_{self.symbol_b_}"] = self.market_data_df_[f"{self.stat_model_price_}_{self.symbol_b_}"]
|
||||
return
|
||||
execution_price_column = self.config_["execution_price"]["column"]
|
||||
execution_price_shift = self.config_["execution_price"]["shift"]
|
||||
self.market_data_df_[f"exec_price_{self.symbol_a_}"] = self.market_data_df_[f"{execution_price_column}_{self.symbol_a_}"].shift(-execution_price_shift)
|
||||
self.market_data_df_[f"exec_price_{self.symbol_b_}"] = self.market_data_df_[f"{execution_price_column}_{self.symbol_b_}"].shift(-execution_price_shift)
|
||||
self.market_data_df_ = self.market_data_df_.dropna().reset_index(drop=True)
|
||||
|
||||
def colnames(self) -> List[str]:
|
||||
return [
|
||||
f"{self.stat_model_price_}_{self.symbol_a_}",
|
||||
f"{self.stat_model_price_}_{self.symbol_b_}",
|
||||
]
|
||||
|
||||
def orig_exec_prices_colnames(self) -> List[str]:
|
||||
return [
|
||||
f"{self.execution_price_column_}_{self.symbol_a_}",
|
||||
f"{self.execution_price_column_}_{self.symbol_b_}",
|
||||
]
|
||||
|
||||
def exec_prices_colnames(self) -> List[str]:
|
||||
return [
|
||||
f"exec_price_{self.symbol_a_}",
|
||||
f"exec_price_{self.symbol_b_}",
|
||||
]
|
||||
|
||||
class RealTimeMarketData(PtMarketData):
|
||||
|
||||
def __init__(self, config: Dict[str, Any], *args: Any, **kwargs: Any):
|
||||
super().__init__(config, *args, **kwargs)
|
||||
|
||||
async def on_mkt_data_hist_snapshot(self, snapshot: JsonDictT) -> None:
|
||||
# URGENT
|
||||
# create origin_mkt_data_df_ from snapshot
|
||||
# verify that the data for both instruments are present
|
||||
|
||||
# transform it to market_data_df_ tstamp, close_symbolA, close_symbolB
|
||||
'''
|
||||
# from cvttpy/exchanges/binance/spot/mkt_data.py
|
||||
values = {
|
||||
"time_ns": time_ns,
|
||||
"tstamp": format_nanos_utc(time_ns),
|
||||
"exchange_id": exch_inst.exchange_id_,
|
||||
"instrument_id": exch_inst.instrument_id(),
|
||||
"interval_ns": interval_sec * 1_000_000_000,
|
||||
"open": float(kline[1]),
|
||||
"high": float(kline[2]),
|
||||
"low": float(kline[3]),
|
||||
"close": float(kline[4]),
|
||||
"volume": float(kline[5]),
|
||||
"num_trades": kline[8],
|
||||
"vwap": float(kline[7]) / float(kline[5]) if float(kline[5]) > 0 else 0.0 # Calculate VWAP
|
||||
}
|
||||
'''
|
||||
|
||||
|
||||
pass
|
||||
|
||||
async def on_mkt_data_update(self, update: JsonDictT) -> Optional[pd.DataFrame]:
|
||||
# URGENT
|
||||
# make sure update has both instruments
|
||||
# create DataFrame tmp1 from update
|
||||
# transform tmp1 into temp. datframe tmp2
|
||||
# add tmp1 to origin_mkt_data_df_
|
||||
# add tmp2 to market_data_df_
|
||||
# return market_data_df_
|
||||
'''
|
||||
class MdTradesAggregate(NamedObject):
|
||||
def to_dict(self) -> Dict[str, Any]:
|
||||
return {
|
||||
"time_ns": self.time_ns_,
|
||||
"tstamp": format_nanos_utc(self.time_ns_),
|
||||
"exchange_id": self.exch_inst_.exchange_id_,
|
||||
"instrument_id": self.exch_inst_.instrument_id(),
|
||||
"interval_ns": self.interval_ns_,
|
||||
"open": self.exch_inst_.get_price(self.open_),
|
||||
"high": self.exch_inst_.get_price(self.high_),
|
||||
"low": self.exch_inst_.get_price(self.low_),
|
||||
"close": self.exch_inst_.get_price(self.close_),
|
||||
"volume": self.exch_inst_.get_quantity(self.volume_),
|
||||
"vwap": self.exch_inst_.get_price(self.vwap_),
|
||||
"num_trades": self.exch_inst_.get_quantity(self.num_trades_),
|
||||
}
|
||||
'''
|
||||
|
||||
return pd.DataFrame()
|
||||
@ -1,27 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Any, Dict, cast
|
||||
|
||||
from pt_strategy.prediction import Prediction
|
||||
|
||||
|
||||
class PairsTradingModel(ABC):
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, pair: TradingPair) -> Prediction: # type: ignore[assignment]
|
||||
...
|
||||
|
||||
@staticmethod
|
||||
def create(config: Dict[str, Any]) -> PairsTradingModel:
|
||||
import importlib
|
||||
|
||||
model_class_name = config.get("model_class", None)
|
||||
assert model_class_name is not None
|
||||
module_name, class_name = model_class_name.rsplit(".", 1)
|
||||
module = importlib.import_module(module_name)
|
||||
model_object = getattr(module, class_name)()
|
||||
return cast(PairsTradingModel, model_object)
|
||||
|
||||
|
||||
|
||||
@ -1,303 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import pandas as pd
|
||||
from pt_strategy.model_data_policy import ModelDataPolicy
|
||||
from pt_strategy.pt_market_data import ResearchMarketData
|
||||
from pt_strategy.pt_model import Prediction
|
||||
from pt_strategy.trading_pair import PairState, TradingPair
|
||||
|
||||
|
||||
class PtResearchStrategy:
|
||||
config_: Dict[str, Any]
|
||||
trading_pair_: TradingPair
|
||||
model_data_policy_: ModelDataPolicy
|
||||
pt_mkt_data_: ResearchMarketData
|
||||
|
||||
trades_: List[pd.DataFrame]
|
||||
predictions_: pd.DataFrame
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
datafiles: List[str],
|
||||
instruments: List[Dict[str, str]],
|
||||
):
|
||||
from pt_strategy.model_data_policy import ModelDataPolicy
|
||||
from pt_strategy.trading_pair import TradingPair
|
||||
|
||||
self.config_ = config
|
||||
self.trades_ = []
|
||||
self.trading_pair_ = TradingPair(config=config, instruments=instruments)
|
||||
self.predictions_ = pd.DataFrame()
|
||||
|
||||
import copy
|
||||
|
||||
# modified config must be passed to PtMarketData
|
||||
config_copy = copy.deepcopy(config)
|
||||
config_copy["instruments"] = instruments
|
||||
config_copy["datafiles"] = datafiles
|
||||
self.pt_mkt_data_ = ResearchMarketData(config=config_copy)
|
||||
self.pt_mkt_data_.load()
|
||||
self.model_data_policy_ = ModelDataPolicy.create(
|
||||
config, mkt_data=self.pt_mkt_data_.market_data_df_, pair=self.trading_pair_
|
||||
)
|
||||
|
||||
def outstanding_positions(self) -> List[Dict[str, Any]]:
|
||||
return list(self.trading_pair_.user_data_.get("outstanding_positions", []))
|
||||
|
||||
def run(self) -> None:
|
||||
training_minutes = self.config_.get("training_minutes", 120)
|
||||
market_data_series: pd.Series
|
||||
market_data_df = pd.DataFrame()
|
||||
|
||||
idx = 0
|
||||
while self.pt_mkt_data_.has_next():
|
||||
market_data_series = self.pt_mkt_data_.get_next()
|
||||
new_row = pd.DataFrame([market_data_series])
|
||||
market_data_df = pd.concat([market_data_df, new_row], ignore_index=True)
|
||||
if idx >= training_minutes:
|
||||
break
|
||||
idx += 1
|
||||
|
||||
assert idx >= training_minutes, "Not enough training data"
|
||||
|
||||
while self.pt_mkt_data_.has_next():
|
||||
|
||||
market_data_series = self.pt_mkt_data_.get_next()
|
||||
new_row = pd.DataFrame([market_data_series])
|
||||
market_data_df = pd.concat([market_data_df, new_row], ignore_index=True)
|
||||
|
||||
prediction = self.trading_pair_.run(
|
||||
market_data_df, self.model_data_policy_.advance(mkt_data_df=market_data_df)
|
||||
)
|
||||
self.predictions_ = pd.concat(
|
||||
[self.predictions_, prediction.to_df()], ignore_index=True
|
||||
)
|
||||
assert prediction is not None
|
||||
|
||||
trades = self._create_trades(
|
||||
prediction=prediction, last_row=market_data_df.iloc[-1]
|
||||
)
|
||||
if trades is not None:
|
||||
self.trades_.append(trades)
|
||||
|
||||
trades = self._handle_outstanding_positions()
|
||||
if trades is not None:
|
||||
self.trades_.append(trades)
|
||||
|
||||
def _create_trades(
|
||||
self, prediction: Prediction, last_row: pd.Series
|
||||
) -> Optional[pd.DataFrame]:
|
||||
pair = self.trading_pair_
|
||||
trades = None
|
||||
|
||||
open_threshold = self.config_["dis-equilibrium_open_trshld"]
|
||||
close_threshold = self.config_["dis-equilibrium_close_trshld"]
|
||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
|
||||
|
||||
if pair.user_data_["state"] in [
|
||||
PairState.INITIAL,
|
||||
PairState.CLOSE,
|
||||
PairState.CLOSE_POSITION,
|
||||
PairState.CLOSE_STOP_LOSS,
|
||||
PairState.CLOSE_STOP_PROFIT,
|
||||
]:
|
||||
if abs_scaled_disequilibrium >= open_threshold:
|
||||
trades = self._create_open_trades(
|
||||
pair, row=last_row, prediction=prediction
|
||||
)
|
||||
if trades is not None:
|
||||
trades["status"] = PairState.OPEN.name
|
||||
print(f"OPEN TRADES:\n{trades}")
|
||||
pair.user_data_["state"] = PairState.OPEN
|
||||
pair.on_open_trades(trades)
|
||||
|
||||
elif pair.user_data_["state"] == PairState.OPEN:
|
||||
if abs_scaled_disequilibrium <= close_threshold:
|
||||
trades = self._create_close_trades(
|
||||
pair, row=last_row, prediction=prediction
|
||||
)
|
||||
if trades is not None:
|
||||
trades["status"] = PairState.CLOSE.name
|
||||
print(f"CLOSE TRADES:\n{trades}")
|
||||
pair.user_data_["state"] = PairState.CLOSE
|
||||
pair.on_close_trades(trades)
|
||||
elif pair.to_stop_close_conditions(predicted_row=last_row):
|
||||
trades = self._create_close_trades(pair, row=last_row)
|
||||
if trades is not None:
|
||||
trades["status"] = pair.user_data_["stop_close_state"].name
|
||||
print(f"STOP CLOSE TRADES:\n{trades}")
|
||||
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
||||
pair.on_close_trades(trades)
|
||||
|
||||
return trades
|
||||
|
||||
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
|
||||
trades = None
|
||||
pair = self.trading_pair_
|
||||
|
||||
# Outstanding positions
|
||||
if pair.user_data_["state"] == PairState.OPEN:
|
||||
print(f"{pair}: *** Position is NOT CLOSED. ***")
|
||||
# outstanding positions
|
||||
if self.config_["close_outstanding_positions"]:
|
||||
close_position_row = pd.Series(pair.market_data_.iloc[-2])
|
||||
# close_position_row["disequilibrium"] = 0.0
|
||||
# close_position_row["scaled_disequilibrium"] = 0.0
|
||||
# close_position_row["signed_scaled_disequilibrium"] = 0.0
|
||||
|
||||
trades = self._create_close_trades(
|
||||
pair=pair, row=close_position_row, prediction=None
|
||||
)
|
||||
if trades is not None:
|
||||
trades["status"] = PairState.CLOSE_POSITION.name
|
||||
print(f"CLOSE_POSITION TRADES:\n{trades}")
|
||||
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
||||
pair.on_close_trades(trades)
|
||||
else:
|
||||
pair.add_outstanding_position(
|
||||
symbol=pair.symbol_a_,
|
||||
open_side=pair.user_data_["open_side_a"],
|
||||
open_px=pair.user_data_["open_px_a"],
|
||||
open_tstamp=pair.user_data_["open_tstamp"],
|
||||
last_mkt_data_row=pair.market_data_.iloc[-1],
|
||||
)
|
||||
pair.add_outstanding_position(
|
||||
symbol=pair.symbol_b_,
|
||||
open_side=pair.user_data_["open_side_b"],
|
||||
open_px=pair.user_data_["open_px_b"],
|
||||
open_tstamp=pair.user_data_["open_tstamp"],
|
||||
last_mkt_data_row=pair.market_data_.iloc[-1],
|
||||
)
|
||||
return trades
|
||||
|
||||
def _trades_df(self) -> pd.DataFrame:
|
||||
types = {
|
||||
"time": "datetime64[ns]",
|
||||
"action": "string",
|
||||
"symbol": "string",
|
||||
"side": "string",
|
||||
"price": "float64",
|
||||
"disequilibrium": "float64",
|
||||
"scaled_disequilibrium": "float64",
|
||||
"signed_scaled_disequilibrium": "float64",
|
||||
# "pair": "object",
|
||||
}
|
||||
columns = list(types.keys())
|
||||
return pd.DataFrame(columns=columns).astype(types)
|
||||
|
||||
def _create_open_trades(
|
||||
self, pair: TradingPair, row: pd.Series, prediction: Prediction
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.exec_prices_colnames()
|
||||
|
||||
tstamp = row["tstamp"]
|
||||
diseqlbrm = prediction.disequilibrium_
|
||||
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
px_a = row[f"{colname_a}"]
|
||||
px_b = row[f"{colname_b}"]
|
||||
|
||||
# creating the trades
|
||||
df = self._trades_df()
|
||||
|
||||
print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}")
|
||||
if diseqlbrm > 0:
|
||||
side_a = "SELL"
|
||||
side_b = "BUY"
|
||||
else:
|
||||
side_a = "BUY"
|
||||
side_b = "SELL"
|
||||
|
||||
# save closing sides
|
||||
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
|
||||
pair.user_data_["open_side_b"] = side_b
|
||||
pair.user_data_["open_px_a"] = px_a
|
||||
pair.user_data_["open_px_b"] = px_b
|
||||
pair.user_data_["open_tstamp"] = tstamp
|
||||
|
||||
pair.user_data_["close_side_a"] = side_b # used for closing trades
|
||||
pair.user_data_["close_side_b"] = side_a
|
||||
|
||||
# create opening trades
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_a_,
|
||||
"side": side_a,
|
||||
"action": "OPEN",
|
||||
"price": px_a,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
||||
# "pair": pair,
|
||||
}
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_b_,
|
||||
"side": side_b,
|
||||
"action": "OPEN",
|
||||
"price": px_b,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
||||
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
return df
|
||||
|
||||
def _create_close_trades(
|
||||
self, pair: TradingPair, row: pd.Series, prediction: Optional[Prediction] = None
|
||||
) -> Optional[pd.DataFrame]:
|
||||
colname_a, colname_b = pair.exec_prices_colnames()
|
||||
|
||||
tstamp = row["tstamp"]
|
||||
if prediction is not None:
|
||||
diseqlbrm = prediction.disequilibrium_
|
||||
signed_scaled_disequilibrium = prediction.scaled_disequilibrium_
|
||||
scaled_disequilibrium = abs(prediction.scaled_disequilibrium_)
|
||||
else:
|
||||
diseqlbrm = 0.0
|
||||
signed_scaled_disequilibrium = 0.0
|
||||
scaled_disequilibrium = 0.0
|
||||
px_a = row[f"{colname_a}"]
|
||||
px_b = row[f"{colname_b}"]
|
||||
|
||||
# creating the trades
|
||||
df = self._trades_df()
|
||||
|
||||
# create opening trades
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_a_,
|
||||
"side": pair.user_data_["close_side_a"],
|
||||
"action": "CLOSE",
|
||||
"price": px_a,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": scaled_disequilibrium,
|
||||
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
df.loc[len(df)] = {
|
||||
"time": tstamp,
|
||||
"symbol": pair.symbol_b_,
|
||||
"side": pair.user_data_["close_side_b"],
|
||||
"action": "CLOSE",
|
||||
"price": px_b,
|
||||
"disequilibrium": diseqlbrm,
|
||||
"scaled_disequilibrium": scaled_disequilibrium,
|
||||
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
||||
# "pair": pair,
|
||||
}
|
||||
del pair.user_data_["close_side_a"]
|
||||
del pair.user_data_["close_side_b"]
|
||||
|
||||
del pair.user_data_["open_tstamp"]
|
||||
del pair.user_data_["open_px_a"]
|
||||
del pair.user_data_["open_px_b"]
|
||||
del pair.user_data_["open_side_a"]
|
||||
del pair.user_data_["open_side_b"]
|
||||
return df
|
||||
|
||||
def day_trades(self) -> pd.DataFrame:
|
||||
return pd.concat(self.trades_, ignore_index=True)
|
||||
@ -1,532 +0,0 @@
|
||||
import os
|
||||
import sqlite3
|
||||
from datetime import date, datetime
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import pandas as pd
|
||||
from pt_strategy.trading_pair import TradingPair
|
||||
|
||||
|
||||
# Recommended replacement adapters and converters for Python 3.12+
|
||||
# From: https://docs.python.org/3/library/sqlite3.html#sqlite3-adapter-converter-recipes
|
||||
def adapt_date_iso(val: date) -> str:
|
||||
"""Adapt datetime.date to ISO 8601 date."""
|
||||
return val.isoformat()
|
||||
|
||||
|
||||
def adapt_datetime_iso(val: datetime) -> str:
|
||||
"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""
|
||||
return val.isoformat()
|
||||
|
||||
|
||||
def convert_date(val: bytes) -> date:
|
||||
"""Convert ISO 8601 date to datetime.date object."""
|
||||
return datetime.fromisoformat(val.decode()).date()
|
||||
|
||||
|
||||
def convert_datetime(val: bytes) -> datetime:
|
||||
"""Convert ISO 8601 datetime to datetime.datetime object."""
|
||||
return datetime.fromisoformat(val.decode())
|
||||
|
||||
|
||||
# Register the adapters and converters
|
||||
sqlite3.register_adapter(date, adapt_date_iso)
|
||||
sqlite3.register_adapter(datetime, adapt_datetime_iso)
|
||||
sqlite3.register_converter("date", convert_date)
|
||||
sqlite3.register_converter("datetime", convert_datetime)
|
||||
|
||||
|
||||
def create_result_database(db_path: str) -> None:
|
||||
"""
|
||||
Create the SQLite database and required tables if they don't exist.
|
||||
"""
|
||||
try:
|
||||
# Create directory if it doesn't exist
|
||||
db_dir = os.path.dirname(db_path)
|
||||
if db_dir and not os.path.exists(db_dir):
|
||||
os.makedirs(db_dir, exist_ok=True)
|
||||
print(f"Created directory: {db_dir}")
|
||||
|
||||
conn = sqlite3.connect(db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Create the pt_bt_results table for completed trades
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS pt_bt_results (
|
||||
date DATE,
|
||||
pair TEXT,
|
||||
symbol TEXT,
|
||||
open_time DATETIME,
|
||||
open_side TEXT,
|
||||
open_price REAL,
|
||||
open_quantity INTEGER,
|
||||
open_disequilibrium REAL,
|
||||
close_time DATETIME,
|
||||
close_side TEXT,
|
||||
close_price REAL,
|
||||
close_quantity INTEGER,
|
||||
close_disequilibrium REAL,
|
||||
symbol_return REAL,
|
||||
pair_return REAL,
|
||||
close_condition TEXT
|
||||
)
|
||||
"""
|
||||
)
|
||||
cursor.execute("DELETE FROM pt_bt_results;")
|
||||
|
||||
# Create the outstanding_positions table for open positions
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS outstanding_positions (
|
||||
date DATE,
|
||||
pair TEXT,
|
||||
symbol TEXT,
|
||||
position_quantity REAL,
|
||||
last_price REAL,
|
||||
unrealized_return REAL,
|
||||
open_price REAL,
|
||||
open_side TEXT
|
||||
)
|
||||
"""
|
||||
)
|
||||
cursor.execute("DELETE FROM outstanding_positions;")
|
||||
|
||||
# Create the config table for storing configuration JSON for reference
|
||||
cursor.execute(
|
||||
"""
|
||||
CREATE TABLE IF NOT EXISTS config (
|
||||
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
||||
run_timestamp DATETIME,
|
||||
config_file_path TEXT,
|
||||
config_json TEXT,
|
||||
datafiles TEXT,
|
||||
instruments TEXT
|
||||
)
|
||||
"""
|
||||
)
|
||||
cursor.execute("DELETE FROM config;")
|
||||
|
||||
conn.commit()
|
||||
conn.close()
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error creating result database: {str(e)}")
|
||||
raise
|
||||
|
||||
|
||||
def store_config_in_database(
|
||||
db_path: str,
|
||||
config_file_path: str,
|
||||
config: Dict,
|
||||
datafiles: List[Tuple[str, str]],
|
||||
instruments: List[Dict[str, str]],
|
||||
) -> None:
|
||||
"""
|
||||
Store configuration information in the database for reference.
|
||||
"""
|
||||
import json
|
||||
|
||||
if db_path.upper() == "NONE":
|
||||
return
|
||||
|
||||
try:
|
||||
conn = sqlite3.connect(db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Convert config to JSON string
|
||||
config_json = json.dumps(config, indent=2, default=str)
|
||||
|
||||
# Convert lists to comma-separated strings for storage
|
||||
datafiles_str = ", ".join([f"{datafile}" for _, datafile in datafiles])
|
||||
instruments_str = ", ".join(
|
||||
[
|
||||
f"{inst['symbol']}:{inst['instrument_type']}:{inst['exchange_id']}"
|
||||
for inst in instruments
|
||||
]
|
||||
)
|
||||
|
||||
# Insert configuration record
|
||||
cursor.execute(
|
||||
"""
|
||||
INSERT INTO config (
|
||||
run_timestamp, config_file_path, config_json, datafiles, instruments
|
||||
) VALUES (?, ?, ?, ?, ?)
|
||||
""",
|
||||
(
|
||||
datetime.now(),
|
||||
config_file_path,
|
||||
config_json,
|
||||
datafiles_str,
|
||||
instruments_str,
|
||||
),
|
||||
)
|
||||
|
||||
conn.commit()
|
||||
conn.close()
|
||||
|
||||
print(f"Configuration stored in database")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error storing configuration in database: {str(e)}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
|
||||
def convert_timestamp(timestamp: Any) -> Optional[datetime]:
|
||||
"""Convert pandas Timestamp to Python datetime object for SQLite compatibility."""
|
||||
if timestamp is None:
|
||||
return None
|
||||
if isinstance(timestamp, pd.Timestamp):
|
||||
return timestamp.to_pydatetime()
|
||||
elif isinstance(timestamp, datetime):
|
||||
return timestamp
|
||||
elif isinstance(timestamp, date):
|
||||
return datetime.combine(timestamp, datetime.min.time())
|
||||
elif isinstance(timestamp, str):
|
||||
return datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
|
||||
elif isinstance(timestamp, int):
|
||||
return datetime.fromtimestamp(timestamp)
|
||||
else:
|
||||
raise ValueError(f"Unsupported timestamp type: {type(timestamp)}")
|
||||
|
||||
|
||||
|
||||
DayT = str
|
||||
TradeT = Dict[str, Any]
|
||||
OutstandingPositionT = Dict[str, Any]
|
||||
class PairResearchResult:
|
||||
"""
|
||||
Class to handle pair research results for a single pair across multiple days.
|
||||
Simplified version of BacktestResult focused on single pair analysis.
|
||||
"""
|
||||
trades_: Dict[DayT, pd.DataFrame]
|
||||
outstanding_positions_: Dict[DayT, List[OutstandingPositionT]]
|
||||
symbol_roundtrip_trades_: Dict[str, List[Dict[str, Any]]]
|
||||
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config_ = config
|
||||
self.trades_ = {}
|
||||
self.outstanding_positions_ = {}
|
||||
self.total_realized_pnl = 0.0
|
||||
self.symbol_roundtrip_trades_ = {}
|
||||
|
||||
def add_day_results(self, day: DayT, trades: pd.DataFrame, outstanding_positions: List[Dict[str, Any]]) -> None:
|
||||
assert isinstance(trades, pd.DataFrame)
|
||||
self.trades_[day] = trades
|
||||
self.outstanding_positions_[day] = outstanding_positions
|
||||
|
||||
# def all_trades(self) -> List[TradeT]:
|
||||
# """Get all trades across all days as a flat list."""
|
||||
# all_trades_list: List[TradeT] = []
|
||||
# for day_trades in self.trades_.values():
|
||||
# all_trades_list.extend(day_trades.to_dict(orient="records"))
|
||||
# return all_trades_list
|
||||
|
||||
def outstanding_positions(self) -> List[OutstandingPositionT]:
|
||||
"""Get all outstanding positions across all days as a flat list."""
|
||||
res: List[Dict[str, Any]] = []
|
||||
for day in self.outstanding_positions_.keys():
|
||||
res.extend(self.outstanding_positions_[day])
|
||||
return res
|
||||
|
||||
def calculate_returns(self) -> None:
|
||||
"""Calculate and store total returns for the single pair across all days."""
|
||||
self.extract_roundtrip_trades()
|
||||
|
||||
self.total_realized_pnl = 0.0
|
||||
|
||||
for day, day_trades in self.symbol_roundtrip_trades_.items():
|
||||
for trade in day_trades:
|
||||
self.total_realized_pnl += trade['symbol_return']
|
||||
|
||||
def extract_roundtrip_trades(self) -> None:
|
||||
"""
|
||||
Extract round-trip trades by day, grouping open/close pairs for each symbol.
|
||||
Returns a dictionary with day as key and list of completed round-trip trades.
|
||||
"""
|
||||
def _symbol_return(trade1_side: str, trade1_px: float, trade2_side: str, trade2_px: float) -> float:
|
||||
if trade1_side == "BUY" and trade2_side == "SELL":
|
||||
return (trade2_px - trade1_px) / trade1_px * 100
|
||||
elif trade1_side == "SELL" and trade2_side == "BUY":
|
||||
return (trade1_px - trade2_px) / trade1_px * 100
|
||||
else:
|
||||
return 0
|
||||
|
||||
# Process each day separately
|
||||
for day, day_trades in self.trades_.items():
|
||||
|
||||
# Sort trades by timestamp for the day
|
||||
sorted_trades = day_trades #sorted(day_trades, key=lambda x: x["timestamp"] if x["timestamp"] else pd.Timestamp.min)
|
||||
|
||||
day_roundtrips = []
|
||||
|
||||
# Process trades in groups of 4 (open A, open B, close A, close B)
|
||||
for idx in range(0, len(sorted_trades), 4):
|
||||
if idx + 3 >= len(sorted_trades):
|
||||
break
|
||||
|
||||
trade_a_1 = sorted_trades.iloc[idx] # Open A
|
||||
trade_b_1 = sorted_trades.iloc[idx + 1] # Open B
|
||||
trade_a_2 = sorted_trades.iloc[idx + 2] # Close A
|
||||
trade_b_2 = sorted_trades.iloc[idx + 3] # Close B
|
||||
|
||||
# Validate trade sequence
|
||||
if not (trade_a_1["action"] == "OPEN" and trade_a_2["action"] == "CLOSE"):
|
||||
continue
|
||||
if not (trade_b_1["action"] == "OPEN" and trade_b_2["action"] == "CLOSE"):
|
||||
continue
|
||||
|
||||
# Calculate individual symbol returns
|
||||
symbol_a_return = _symbol_return(
|
||||
trade_a_1["side"], trade_a_1["price"],
|
||||
trade_a_2["side"], trade_a_2["price"]
|
||||
)
|
||||
symbol_b_return = _symbol_return(
|
||||
trade_b_1["side"], trade_b_1["price"],
|
||||
trade_b_2["side"], trade_b_2["price"]
|
||||
)
|
||||
|
||||
pair_return = symbol_a_return + symbol_b_return
|
||||
|
||||
# Create round-trip records for both symbols
|
||||
funding_per_position = self.config_.get("funding_per_pair", 10000) / 2
|
||||
|
||||
# Symbol A round-trip
|
||||
day_roundtrips.append({
|
||||
"symbol": trade_a_1["symbol"],
|
||||
"open_side": trade_a_1["side"],
|
||||
"open_price": trade_a_1["price"],
|
||||
"open_time": trade_a_1["time"],
|
||||
"close_side": trade_a_2["side"],
|
||||
"close_price": trade_a_2["price"],
|
||||
"close_time": trade_a_2["time"],
|
||||
"symbol_return": symbol_a_return,
|
||||
"pair_return": pair_return,
|
||||
"shares": funding_per_position / trade_a_1["price"],
|
||||
"close_condition": trade_a_2.get("status", "UNKNOWN"),
|
||||
"open_disequilibrium": trade_a_1.get("disequilibrium"),
|
||||
"close_disequilibrium": trade_a_2.get("disequilibrium"),
|
||||
})
|
||||
|
||||
# Symbol B round-trip
|
||||
day_roundtrips.append({
|
||||
"symbol": trade_b_1["symbol"],
|
||||
"open_side": trade_b_1["side"],
|
||||
"open_price": trade_b_1["price"],
|
||||
"open_time": trade_b_1["time"],
|
||||
"close_side": trade_b_2["side"],
|
||||
"close_price": trade_b_2["price"],
|
||||
"close_time": trade_b_2["time"],
|
||||
"symbol_return": symbol_b_return,
|
||||
"pair_return": pair_return,
|
||||
"shares": funding_per_position / trade_b_1["price"],
|
||||
"close_condition": trade_b_2.get("status", "UNKNOWN"),
|
||||
"open_disequilibrium": trade_b_1.get("disequilibrium"),
|
||||
"close_disequilibrium": trade_b_2.get("disequilibrium"),
|
||||
})
|
||||
|
||||
if day_roundtrips:
|
||||
self.symbol_roundtrip_trades_[day] = day_roundtrips
|
||||
|
||||
|
||||
def print_returns_by_day(self) -> None:
|
||||
"""
|
||||
Print detailed return information for each day, grouped by day.
|
||||
Shows individual symbol round-trips and daily totals.
|
||||
"""
|
||||
|
||||
print("\n====== PAIR RESEARCH RETURNS BY DAY ======")
|
||||
|
||||
total_return_all_days = 0.0
|
||||
|
||||
for day, day_trades in sorted(self.symbol_roundtrip_trades_.items()):
|
||||
|
||||
print(f"\n--- {day} ---")
|
||||
|
||||
day_total_return = 0.0
|
||||
pair_returns = []
|
||||
|
||||
# Group trades by pair (every 2 trades form a pair)
|
||||
for idx in range(0, len(day_trades), 2):
|
||||
if idx + 1 < len(day_trades):
|
||||
trade_a = day_trades[idx]
|
||||
trade_b = day_trades[idx + 1]
|
||||
|
||||
# Print individual symbol results
|
||||
print(f" {trade_a['open_time'].time()}-{trade_a['close_time'].time()}")
|
||||
print(f" {trade_a['symbol']}: {trade_a['open_side']} @ ${trade_a['open_price']:.2f} → "
|
||||
f"{trade_a['close_side']} @ ${trade_a['close_price']:.2f} | "
|
||||
f"Return: {trade_a['symbol_return']:+.2f}% | Shares: {trade_a['shares']:.2f}")
|
||||
|
||||
print(f" {trade_b['symbol']}: {trade_b['open_side']} @ ${trade_b['open_price']:.2f} → "
|
||||
f"{trade_b['close_side']} @ ${trade_b['close_price']:.2f} | "
|
||||
f"Return: {trade_b['symbol_return']:+.2f}% | Shares: {trade_b['shares']:.2f}")
|
||||
|
||||
# Show disequilibrium info if available
|
||||
if trade_a.get('open_disequilibrium') is not None:
|
||||
print(f" Disequilibrium: Open: {trade_a['open_disequilibrium']:.4f}, "
|
||||
f"Close: {trade_a['close_disequilibrium']:.4f}")
|
||||
|
||||
pair_return = trade_a['pair_return']
|
||||
print(f" Pair Return: {pair_return:+.2f}% | Close Condition: {trade_a['close_condition']}")
|
||||
print()
|
||||
|
||||
pair_returns.append(pair_return)
|
||||
day_total_return += pair_return
|
||||
|
||||
print(f" Day Total Return: {day_total_return:+.2f}% ({len(pair_returns)} pairs)")
|
||||
total_return_all_days += day_total_return
|
||||
|
||||
print(f"\n====== TOTAL RETURN ACROSS ALL DAYS ======")
|
||||
print(f"Total Return: {total_return_all_days:+.2f}%")
|
||||
print(f"Total Days: {len(self.symbol_roundtrip_trades_)}")
|
||||
if len(self.symbol_roundtrip_trades_) > 0:
|
||||
print(f"Average Daily Return: {total_return_all_days / len(self.symbol_roundtrip_trades_):+.2f}%")
|
||||
|
||||
def get_return_summary(self) -> Dict[str, Any]:
|
||||
"""
|
||||
Get a summary of returns across all days.
|
||||
Returns a dictionary with key metrics.
|
||||
"""
|
||||
if len(self.symbol_roundtrip_trades_) == 0:
|
||||
return {
|
||||
"total_return": 0.0,
|
||||
"total_days": 0,
|
||||
"total_pairs": 0,
|
||||
"average_daily_return": 0.0,
|
||||
"best_day": None,
|
||||
"worst_day": None,
|
||||
"daily_returns": {}
|
||||
}
|
||||
|
||||
daily_returns = {}
|
||||
total_return = 0.0
|
||||
total_pairs = 0
|
||||
|
||||
for day, day_trades in self.symbol_roundtrip_trades_.items():
|
||||
day_return = 0.0
|
||||
day_pairs = len(day_trades) // 2 # Each pair has 2 symbol trades
|
||||
|
||||
for trade in day_trades:
|
||||
day_return += trade['symbol_return']
|
||||
|
||||
daily_returns[day] = {
|
||||
"return": day_return,
|
||||
"pairs": day_pairs
|
||||
}
|
||||
total_return += day_return
|
||||
total_pairs += day_pairs
|
||||
|
||||
best_day = max(daily_returns.items(), key=lambda x: x[1]["return"]) if daily_returns else None
|
||||
worst_day = min(daily_returns.items(), key=lambda x: x[1]["return"]) if daily_returns else None
|
||||
|
||||
return {
|
||||
"total_return": total_return,
|
||||
"total_days": len(self.symbol_roundtrip_trades_),
|
||||
"total_pairs": total_pairs,
|
||||
"average_daily_return": total_return / len(self.symbol_roundtrip_trades_) if self.symbol_roundtrip_trades_ else 0.0,
|
||||
"best_day": best_day,
|
||||
"worst_day": worst_day,
|
||||
"daily_returns": daily_returns
|
||||
}
|
||||
|
||||
|
||||
def print_grand_totals(self) -> None:
|
||||
"""Print grand totals for the single pair analysis."""
|
||||
summary = self.get_return_summary()
|
||||
|
||||
print(f"\n====== PAIR RESEARCH GRAND TOTALS ======")
|
||||
print('---')
|
||||
print(f"Total Return: {summary['total_return']:+.2f}%")
|
||||
print('---')
|
||||
print(f"Total Days Traded: {summary['total_days']}")
|
||||
print(f"Total Open-Close Actions: {summary['total_pairs']}")
|
||||
print(f"Total Trades: 4 * {summary['total_pairs']} = {4 * summary['total_pairs']}")
|
||||
|
||||
if summary['total_days'] > 0:
|
||||
print(f"Average Daily Return: {summary['average_daily_return']:+.2f}%")
|
||||
|
||||
if summary['best_day']:
|
||||
best_day, best_data = summary['best_day']
|
||||
print(f"Best Day: {best_day} ({best_data['return']:+.2f}%)")
|
||||
|
||||
if summary['worst_day']:
|
||||
worst_day, worst_data = summary['worst_day']
|
||||
print(f"Worst Day: {worst_day} ({worst_data['return']:+.2f}%)")
|
||||
|
||||
# Update the total_realized_pnl for backward compatibility
|
||||
self.total_realized_pnl = summary['total_return']
|
||||
|
||||
def analyze_pair_performance(self) -> None:
|
||||
"""
|
||||
Main method to perform comprehensive pair research analysis.
|
||||
Extracts round-trip trades, calculates returns, groups by day, and prints results.
|
||||
"""
|
||||
print(f"\n{'='*60}")
|
||||
print(f"PAIR RESEARCH PERFORMANCE ANALYSIS")
|
||||
print(f"{'='*60}")
|
||||
|
||||
self.calculate_returns()
|
||||
self.print_returns_by_day()
|
||||
self.print_outstanding_positions()
|
||||
self._print_additional_metrics()
|
||||
self.print_grand_totals()
|
||||
|
||||
def _print_additional_metrics(self) -> None:
|
||||
"""Print additional performance metrics."""
|
||||
summary = self.get_return_summary()
|
||||
|
||||
if summary['total_days'] == 0:
|
||||
return
|
||||
|
||||
print(f"\n====== ADDITIONAL METRICS ======")
|
||||
|
||||
# Calculate win rate
|
||||
winning_days = sum(1 for day_data in summary['daily_returns'].values() if day_data['return'] > 0)
|
||||
win_rate = (winning_days / summary['total_days']) * 100
|
||||
print(f"Winning Days: {winning_days}/{summary['total_days']} ({win_rate:.1f}%)")
|
||||
|
||||
# Calculate average trade return
|
||||
if summary['total_pairs'] > 0:
|
||||
# Each pair has 2 symbol trades, so total symbol trades = total_pairs * 2
|
||||
total_symbol_trades = summary['total_pairs'] * 2
|
||||
avg_symbol_return = summary['total_return'] / total_symbol_trades
|
||||
print(f"Average Symbol Return: {avg_symbol_return:+.2f}%")
|
||||
|
||||
avg_pair_return = summary['total_return'] / summary['total_pairs'] / 2 # Divide by 2 since we sum both symbols
|
||||
print(f"Average Pair Return: {avg_pair_return:+.2f}%")
|
||||
|
||||
# Show daily return distribution
|
||||
daily_returns_list = [data['return'] for data in summary['daily_returns'].values()]
|
||||
if daily_returns_list:
|
||||
print(f"Daily Return Range: {min(daily_returns_list):+.2f}% to {max(daily_returns_list):+.2f}%")
|
||||
|
||||
|
||||
def print_outstanding_positions(self) -> None:
|
||||
"""Print outstanding positions for the single pair."""
|
||||
all_positions: List[OutstandingPositionT] = self.outstanding_positions()
|
||||
if not all_positions:
|
||||
print("\n====== NO OUTSTANDING POSITIONS ======")
|
||||
return
|
||||
|
||||
print(f"\n====== OUTSTANDING POSITIONS ======")
|
||||
print(f"{'Symbol':<10} {'Side':<4} {'Shares':<10} {'Open $':<8} {'Current $':<10} {'Value $':<12}")
|
||||
print("-" * 70)
|
||||
|
||||
total_value = 0.0
|
||||
for pos in all_positions:
|
||||
current_value = pos.get("last_value", 0.0)
|
||||
print(f"{pos['symbol']:<10} {pos['open_side']:<4} {pos['shares']:<10.2f} "
|
||||
f"{pos['open_px']:<8.2f} {pos['last_px']:<10.2f} {current_value:<12.2f}")
|
||||
total_value += current_value
|
||||
|
||||
print("-" * 70)
|
||||
print(f"{'TOTAL VALUE':<60} ${total_value:<12.2f}")
|
||||
|
||||
def get_total_realized_pnl(self) -> float:
|
||||
"""Get total realized PnL."""
|
||||
return self.total_realized_pnl
|
||||
|
||||
@ -1,199 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from datetime import datetime
|
||||
from enum import Enum
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import pandas as pd
|
||||
|
||||
from pt_strategy.model_data_policy import DataWindowParams
|
||||
from pt_strategy.prediction import Prediction
|
||||
|
||||
|
||||
class PairState(Enum):
|
||||
INITIAL = 1
|
||||
OPEN = 2
|
||||
CLOSE = 3
|
||||
CLOSE_POSITION = 4
|
||||
CLOSE_STOP_LOSS = 5
|
||||
CLOSE_STOP_PROFIT = 6
|
||||
|
||||
|
||||
def get_symbol(instrument: Dict[str, str]) -> str:
|
||||
if "symbol" in instrument:
|
||||
return instrument["symbol"]
|
||||
elif "instrument_id" in instrument:
|
||||
instrument_id = instrument["instrument_id"]
|
||||
instrument_pfx = instrument_id[:instrument_id.find("-") + 1]
|
||||
symbol = instrument_id[len(instrument_pfx):]
|
||||
instrument["symbol"] = symbol
|
||||
instrument["instrument_id_pfx"] = instrument_pfx
|
||||
return symbol
|
||||
else:
|
||||
raise ValueError(f"Invalid instrument: {instrument}, missing symbol or instrument_id")
|
||||
|
||||
class TradingPair:
|
||||
config_: Dict[str, Any]
|
||||
market_data_: pd.DataFrame
|
||||
instruments_: List[Dict[str, str]]
|
||||
symbol_a_: str
|
||||
symbol_b_: str
|
||||
|
||||
stat_model_price_: str
|
||||
model_: PairsTradingModel # type: ignore[assignment]
|
||||
|
||||
user_data_: Dict[str, Any]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
instruments: List[Dict[str, str]],
|
||||
):
|
||||
|
||||
from pt_strategy.pt_model import PairsTradingModel
|
||||
|
||||
assert len(instruments) == 2, "Trading pair must have exactly 2 instruments"
|
||||
|
||||
self.config_ = config
|
||||
self.instruments_ = instruments
|
||||
self.symbol_a_ = get_symbol(instruments[0])
|
||||
self.symbol_b_ = get_symbol(instruments[1])
|
||||
self.model_ = PairsTradingModel.create(config)
|
||||
self.stat_model_price_ = config["stat_model_price"]
|
||||
self.user_data_ = {
|
||||
"state": PairState.INITIAL,
|
||||
}
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return (
|
||||
f"{self.__class__.__name__}:"
|
||||
f" symbol_a={self.symbol_a_},"
|
||||
f" symbol_b={self.symbol_b_},"
|
||||
f" model={self.model_.__class__.__name__}"
|
||||
)
|
||||
|
||||
def is_closed(self) -> bool:
|
||||
return self.user_data_["state"] in [
|
||||
PairState.CLOSE,
|
||||
PairState.CLOSE_POSITION,
|
||||
PairState.CLOSE_STOP_LOSS,
|
||||
PairState.CLOSE_STOP_PROFIT,
|
||||
]
|
||||
def is_open(self) -> bool:
|
||||
return self.user_data_["state"] == PairState.OPEN
|
||||
|
||||
def colnames(self) -> List[str]:
|
||||
return [
|
||||
f"{self.stat_model_price_}_{self.symbol_a_}",
|
||||
f"{self.stat_model_price_}_{self.symbol_b_}",
|
||||
]
|
||||
|
||||
def exec_prices_colnames(self) -> List[str]:
|
||||
return [
|
||||
f"exec_price_{self.symbol_a_}",
|
||||
f"exec_price_{self.symbol_b_}",
|
||||
]
|
||||
|
||||
def to_stop_close_conditions(self, predicted_row: pd.Series) -> bool:
|
||||
config = self.config_
|
||||
if (
|
||||
"stop_close_conditions" not in config
|
||||
or config["stop_close_conditions"] is None
|
||||
):
|
||||
return False
|
||||
if "profit" in config["stop_close_conditions"]:
|
||||
current_return = self._current_return(predicted_row)
|
||||
#
|
||||
# print(f"time={predicted_row['tstamp']} current_return={current_return}")
|
||||
#
|
||||
if current_return >= config["stop_close_conditions"]["profit"]:
|
||||
print(f"STOP PROFIT: {current_return}")
|
||||
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_PROFIT
|
||||
return True
|
||||
if "loss" in config["stop_close_conditions"]:
|
||||
if current_return <= config["stop_close_conditions"]["loss"]:
|
||||
print(f"STOP LOSS: {current_return}")
|
||||
self.user_data_["stop_close_state"] = PairState.CLOSE_STOP_LOSS
|
||||
return True
|
||||
return False
|
||||
|
||||
def _current_return(self, predicted_row: pd.Series) -> float:
|
||||
if "open_trades" in self.user_data_:
|
||||
open_trades = self.user_data_["open_trades"]
|
||||
if len(open_trades) == 0:
|
||||
return 0.0
|
||||
|
||||
def _single_instrument_return(symbol: str) -> float:
|
||||
instrument_open_trades = open_trades[open_trades["symbol"] == symbol]
|
||||
instrument_open_price = instrument_open_trades["price"].iloc[0]
|
||||
|
||||
sign = -1 if instrument_open_trades["side"].iloc[0] == "SELL" else 1
|
||||
instrument_price = predicted_row[f"{self.stat_model_price_}_{symbol}"]
|
||||
instrument_return = (
|
||||
sign
|
||||
* (instrument_price - instrument_open_price)
|
||||
/ instrument_open_price
|
||||
)
|
||||
return float(instrument_return) * 100.0
|
||||
|
||||
instrument_a_return = _single_instrument_return(self.symbol_a_)
|
||||
instrument_b_return = _single_instrument_return(self.symbol_b_)
|
||||
return instrument_a_return + instrument_b_return
|
||||
return 0.0
|
||||
|
||||
def on_open_trades(self, trades: pd.DataFrame) -> None:
|
||||
if "close_trades" in self.user_data_:
|
||||
del self.user_data_["close_trades"]
|
||||
self.user_data_["open_trades"] = trades
|
||||
|
||||
def on_close_trades(self, trades: pd.DataFrame) -> None:
|
||||
del self.user_data_["open_trades"]
|
||||
self.user_data_["close_trades"] = trades
|
||||
|
||||
def add_outstanding_position(
|
||||
self,
|
||||
symbol: str,
|
||||
open_side: str,
|
||||
open_px: float,
|
||||
open_tstamp: datetime,
|
||||
last_mkt_data_row: pd.Series,
|
||||
) -> None:
|
||||
assert symbol in [self.symbol_a_, self.symbol_b_], "Symbol must be one of the pair's symbols"
|
||||
assert open_side in ["BUY", "SELL"], "Open side must be either BUY or SELL"
|
||||
assert open_px > 0, "Open price must be greater than 0"
|
||||
assert open_tstamp is not None, "Open timestamp must be provided"
|
||||
assert last_mkt_data_row is not None, "Last market data row must be provided"
|
||||
|
||||
exec_prices_col_a, exec_prices_col_b = self.exec_prices_colnames()
|
||||
if symbol == self.symbol_a_:
|
||||
last_px = last_mkt_data_row[exec_prices_col_a]
|
||||
else:
|
||||
last_px = last_mkt_data_row[exec_prices_col_b]
|
||||
|
||||
|
||||
funding_per_position = self.config_["funding_per_pair"] / 2
|
||||
shares = funding_per_position / open_px
|
||||
if open_side == "SELL":
|
||||
shares = -shares
|
||||
|
||||
if "outstanding_positions" not in self.user_data_:
|
||||
self.user_data_["outstanding_positions"] = []
|
||||
|
||||
self.user_data_["outstanding_positions"].append({
|
||||
"symbol": symbol,
|
||||
"open_side": open_side,
|
||||
"open_px": open_px,
|
||||
"shares": shares,
|
||||
"open_tstamp": open_tstamp,
|
||||
"last_px": last_px,
|
||||
"last_tstamp": last_mkt_data_row["tstamp"],
|
||||
"last_value": last_px * shares,
|
||||
})
|
||||
|
||||
|
||||
def run(self, market_data: pd.DataFrame, data_params: DataWindowParams) -> Prediction: # type: ignore[assignment]
|
||||
self.market_data_ = market_data[data_params.training_start_index:data_params.training_start_index + data_params.training_size]
|
||||
return self.model_.predict(pair=self)
|
||||
|
||||
|
||||
|
||||
@ -195,16 +195,6 @@ def convert_timestamp(timestamp: Any) -> Optional[datetime]:
|
||||
raise ValueError(f"Unsupported timestamp type: {type(timestamp)}")
|
||||
|
||||
|
||||
class PairResarchResult:
|
||||
pair_: TradingPair
|
||||
trades_: Dict[str, Dict[str, Any]]
|
||||
outstanding_positions_: List[Dict[str, Any]]
|
||||
def __init__(self, config: Dict[str, Any], pair: TradingPair, trades: Dict[str, Dict[str, Any]], outstanding_positions: List[Dict[str, Any]]):
|
||||
self.config = config
|
||||
self.pair_ = pair
|
||||
self.trades_ = trades
|
||||
self.outstanding_positions_ = outstanding_positions
|
||||
|
||||
|
||||
class BacktestResult:
|
||||
"""
|
||||
@ -216,7 +206,7 @@ class BacktestResult:
|
||||
self.trades: Dict[str, Dict[str, Any]] = {}
|
||||
self.total_realized_pnl = 0.0
|
||||
self.outstanding_positions: List[Dict[str, Any]] = []
|
||||
self.symbol_roundtrip_trades_: Dict[str, List[Dict[str, Any]]] = {}
|
||||
self.pairs_trades_: Dict[str, List[Dict[str, Any]]] = {}
|
||||
|
||||
def add_trade(
|
||||
self,
|
||||
@ -344,7 +334,7 @@ class BacktestResult:
|
||||
for filename, data in all_results.items():
|
||||
pairs = list(data["trades"].keys())
|
||||
for pair in pairs:
|
||||
self.symbol_roundtrip_trades_[pair] = []
|
||||
self.pairs_trades_[pair] = []
|
||||
trades_dict = data["trades"][pair]
|
||||
for symbol in trades_dict.keys():
|
||||
trades.extend(trades_dict[symbol])
|
||||
@ -379,7 +369,7 @@ class BacktestResult:
|
||||
|
||||
pair_return = symbol_a_return + symbol_b_return
|
||||
|
||||
self.symbol_roundtrip_trades_[pair].append(
|
||||
self.pairs_trades_[pair].append(
|
||||
{
|
||||
"symbol": symbol_a,
|
||||
"open_side": trade_a_1["side"],
|
||||
@ -401,7 +391,7 @@ class BacktestResult:
|
||||
"pair_return": pair_return
|
||||
}
|
||||
)
|
||||
self.symbol_roundtrip_trades_[pair].append(
|
||||
self.pairs_trades_[pair].append(
|
||||
{
|
||||
"symbol": symbol_b,
|
||||
"open_side": trade_b_1["side"],
|
||||
@ -427,24 +417,26 @@ class BacktestResult:
|
||||
|
||||
# Print pair returns with disequilibrium information
|
||||
day_return = 0.0
|
||||
if pair in self.symbol_roundtrip_trades_:
|
||||
if pair in self.pairs_trades_:
|
||||
|
||||
print(f"{pair}:")
|
||||
pair_return = 0.0
|
||||
for trd in self.symbol_roundtrip_trades_[pair]:
|
||||
for trd in self.pairs_trades_[pair]:
|
||||
disequil_info = ""
|
||||
if (
|
||||
trd["open_scaled_disequilibrium"] is not None
|
||||
and trd["open_scaled_disequilibrium"] is not None
|
||||
):
|
||||
disequil_info = f" | Open Dis-eq: {trd['open_scaled_disequilibrium']:.2f},"
|
||||
f" Close Dis-eq: {trd['open_scaled_disequilibrium']:.2f}"
|
||||
disequil_info = (
|
||||
f' | Open Dis-eq: {trd["open_scaled_disequilibrium"]:.2f},'
|
||||
f' Close Dis-eq: {trd["close_scaled_disequilibrium"]:.2f}'
|
||||
)
|
||||
|
||||
print(
|
||||
f" {trd['open_time'].time()}-{trd['close_time'].time()} {trd['symbol']}: "
|
||||
f" {trd['open_side']} @ ${trd['open_price']:.2f},"
|
||||
f" {trd["close_side"]} @ ${trd["close_price"]:.2f},"
|
||||
f" Return: {trd['symbol_return']:.2f}%{disequil_info}"
|
||||
f' {trd["open_time"].time()}-{trd["close_time"].time()} {trd["symbol"]}: '
|
||||
f' {trd["open_side"]} @ ${trd["open_price"]:.2f},'
|
||||
f' {trd["close_side"]} @ ${trd["close_price"]:.2f},'
|
||||
f' Return: {trd["symbol_return"]:.2f}%{disequil_info}'
|
||||
)
|
||||
pair_return += trd["symbol_return"]
|
||||
|
||||
@ -651,7 +643,7 @@ class BacktestResult:
|
||||
for pair_name, _ in trades.items():
|
||||
|
||||
# Second pass: insert completed trade records into database
|
||||
for trade_pair in sorted(self.symbol_roundtrip_trades_[pair_name], key=lambda x: x["open_time"]):
|
||||
for trade_pair in sorted(self.pairs_trades_[pair_name], key=lambda x: x["open_time"]):
|
||||
# Only store completed trades in pt_bt_results table
|
||||
cursor.execute(
|
||||
"""
|
||||
@ -188,7 +188,8 @@ class RollingFit(PairsTradingFitMethod):
|
||||
open_px_b = open_row[f"{colname_b}"]
|
||||
|
||||
# creating the trades
|
||||
print(f"OPEN_TRADES: {row["tstamp"]} {open_scaled_disequilibrium=}")
|
||||
# use outer single quotes so we can reference DataFrame keys with double quotes inside
|
||||
print(f'OPEN_TRADES: {open_tstamp} open_scaled_disequilibrium={open_scaled_disequilibrium}')
|
||||
if open_disequilibrium > 0:
|
||||
open_side_a = "SELL"
|
||||
open_side_b = "BUY"
|
||||
@ -237,10 +238,7 @@ class RollingFit(PairsTradingFitMethod):
|
||||
),
|
||||
]
|
||||
# Create DataFrame with explicit dtypes to avoid concatenation warnings
|
||||
df = pd.DataFrame(
|
||||
trd_signal_tuples,
|
||||
columns=self.TRADES_COLUMNS,
|
||||
)
|
||||
df = pd.DataFrame(trd_signal_tuples, columns=self.TRADES_COLUMNS)
|
||||
# Ensure consistent dtypes
|
||||
return df.astype(
|
||||
{
|
||||
@ -316,4 +314,4 @@ class RollingFit(PairsTradingFitMethod):
|
||||
)
|
||||
|
||||
def reset(self) -> None:
|
||||
pass
|
||||
curr_training_start_idx = 0
|
||||
@ -119,8 +119,8 @@ class TradingPair(ABC):
|
||||
return
|
||||
execution_price_column = self.config_["execution_price"]["column"]
|
||||
execution_price_shift = self.config_["execution_price"]["shift"]
|
||||
self.market_data_[f"exec_price_{self.symbol_a_}"] = self.market_data_[f"{execution_price_column}_{self.symbol_a_}"].shift(-execution_price_shift)
|
||||
self.market_data_[f"exec_price_{self.symbol_b_}"] = self.market_data_[f"{execution_price_column}_{self.symbol_b_}"].shift(-execution_price_shift)
|
||||
self.market_data_[f"exec_price_{self.symbol_a_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_a_}"].shift(-execution_price_shift)
|
||||
self.market_data_[f"exec_price_{self.symbol_b_}"] = self.market_data_[f"{self.stat_model_price_}_{self.symbol_b_}"].shift(-execution_price_shift)
|
||||
self.market_data_ = self.market_data_.dropna().reset_index(drop=True)
|
||||
|
||||
|
||||
193
lib/pt_trading/vecm_rolling_fit.py
Normal file
193
lib/pt_trading/vecm_rolling_fit.py
Normal file
@ -0,0 +1,193 @@
|
||||
# original script moved to vecm_rolling_fit_01.py
|
||||
|
||||
# 09.09.25 Added GARCH model - predicting volatility
|
||||
|
||||
# Rule of thumb:
|
||||
# alpha + beta ≈ 1 → strong volatility clustering, persistence.
|
||||
# If much lower → volatility mean reverts quickly.
|
||||
# If > 1 → model is unstable / non-stationary (bad).
|
||||
|
||||
# the VECM disequilibrium (mean reversion signal) and
|
||||
# the GARCH volatility forecast (risk measure).
|
||||
# combine them → e.g., only enter trades when:
|
||||
|
||||
# high_volatility = 1 → persistence > 0.95 or volatility > 2 (rule of thumb: unstable / risky regime).
|
||||
# high_volatility = 0 → stable regime.
|
||||
|
||||
|
||||
# VECM disequilibrium z-score > threshold and
|
||||
# GARCH-forecasted volatility is not too high (avoid noise-driven signals).
|
||||
# This creates a volatility-adjusted pairs trading strategy, more robust than plain VECM
|
||||
|
||||
# now pair_predict_result_ DataFrame includes:
|
||||
# disequilibrium, scaled_disequilibrium, z-scores, garch_alpha, garch_beta, garch_persistence (α+β rule-of-thumb)
|
||||
# garch_vol_forecast (1-step volatility forecast)
|
||||
|
||||
# Would you like me to also add a warning flag column
|
||||
# (e.g., "high_volatility" = 1 if persistence > 0.95 or vol_forecast > threshold)
|
||||
# so you can easily detect unstable regimes?
|
||||
|
||||
# VECM/GARCH
|
||||
# vecm_rolling_fit.py:
|
||||
from typing import Any, Dict, Optional, cast
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from typing import Any, Dict, Optional
|
||||
from pt_trading.results import BacktestResult
|
||||
from pt_trading.rolling_window_fit import RollingFit
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
||||
from arch import arch_model
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
class VECMTradingPair(TradingPair):
|
||||
vecm_fit_: Optional[VECMResults]
|
||||
pair_predict_result_: Optional[pd.DataFrame]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
market_data: pd.DataFrame,
|
||||
symbol_a: str,
|
||||
symbol_b: str,
|
||||
):
|
||||
super().__init__(config, market_data, symbol_a, symbol_b)
|
||||
self.vecm_fit_ = None
|
||||
self.pair_predict_result_ = None
|
||||
self.garch_fit_ = None
|
||||
self.sigma_spread_forecast_ = None
|
||||
self.garch_alpha_ = None
|
||||
self.garch_beta_ = None
|
||||
self.garch_persistence_ = None
|
||||
self.high_volatility_flag_ = None
|
||||
|
||||
def _train_pair(self) -> None:
|
||||
self._fit_VECM()
|
||||
assert self.vecm_fit_ is not None
|
||||
|
||||
diseq_series = self.training_df_[self.colnames()] @ self.vecm_fit_.beta
|
||||
self.training_mu_ = float(diseq_series[0].mean())
|
||||
self.training_std_ = float(diseq_series[0].std())
|
||||
|
||||
self.training_df_["disequilibrium"] = diseq_series
|
||||
self.training_df_["scaled_disequilibrium"] = (
|
||||
diseq_series - self.training_mu_
|
||||
) / self.training_std_
|
||||
|
||||
def _fit_VECM(self) -> None:
|
||||
assert self.training_df_ is not None
|
||||
vecm_df = self.training_df_[self.colnames()].reset_index(drop=True)
|
||||
vecm_model = VECM(vecm_df, coint_rank=1)
|
||||
vecm_fit = vecm_model.fit()
|
||||
self.vecm_fit_ = vecm_fit
|
||||
|
||||
# Error Correction Term (spread)
|
||||
ect_series = (vecm_df @ vecm_fit.beta).iloc[:, 0]
|
||||
|
||||
# Difference the spread for stationarity
|
||||
dz = ect_series.diff().dropna()
|
||||
|
||||
if len(dz) < 30:
|
||||
print("Not enough data for GARCH fitting.")
|
||||
return
|
||||
|
||||
# Rescale if variance too small
|
||||
if dz.std() < 0.1:
|
||||
dz = dz * 1000
|
||||
# print("Scale check:", dz.std())
|
||||
|
||||
try:
|
||||
garch = arch_model(dz, vol="GARCH", p=1, q=1, mean="Zero", dist="normal")
|
||||
garch_fit = garch.fit(disp="off")
|
||||
self.garch_fit_ = garch_fit
|
||||
|
||||
# Extract parameters
|
||||
params = garch_fit.params
|
||||
self.garch_alpha_ = params.get("alpha[1]", np.nan)
|
||||
self.garch_beta_ = params.get("beta[1]", np.nan)
|
||||
self.garch_persistence_ = self.garch_alpha_ + self.garch_beta_
|
||||
|
||||
# print (f"GARCH α: {self.garch_alpha_:.4f}, β: {self.garch_beta_:.4f}, "
|
||||
# f"α+β (persistence): {self.garch_persistence_:.4f}")
|
||||
|
||||
# One-step-ahead volatility forecast
|
||||
forecast = garch_fit.forecast(horizon=1)
|
||||
sigma_next = np.sqrt(forecast.variance.iloc[-1, 0])
|
||||
self.sigma_spread_forecast_ = float(sigma_next)
|
||||
# print("GARCH sigma forecast:", self.sigma_spread_forecast_)
|
||||
|
||||
# Rule of thumb: persistence close to 1 or large volatility forecast
|
||||
self.high_volatility_flag_ = int(
|
||||
(self.garch_persistence_ is not None and self.garch_persistence_ > 0.95)
|
||||
or (self.sigma_spread_forecast_ is not None and self.sigma_spread_forecast_ > 2)
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
print(f"GARCH fit failed: {e}")
|
||||
self.garch_fit_ = None
|
||||
self.sigma_spread_forecast_ = None
|
||||
self.high_volatility_flag_ = None
|
||||
|
||||
def predict(self) -> pd.DataFrame:
|
||||
self._train_pair()
|
||||
assert self.testing_df_ is not None
|
||||
assert self.vecm_fit_ is not None
|
||||
|
||||
# VECM predictions
|
||||
predicted_prices = self.vecm_fit_.predict(steps=len(self.testing_df_))
|
||||
predicted_df = pd.merge(
|
||||
self.testing_df_.reset_index(drop=True),
|
||||
pd.DataFrame(predicted_prices, columns=pd.Index(self.colnames()), dtype=float),
|
||||
left_index=True,
|
||||
right_index=True,
|
||||
suffixes=("", "_pred"),
|
||||
).dropna()
|
||||
|
||||
# Disequilibrium and z-scores
|
||||
predicted_df["disequilibrium"] = (
|
||||
predicted_df[self.colnames()] @ self.vecm_fit_.beta
|
||||
)
|
||||
predicted_df["signed_scaled_disequilibrium"] = (
|
||||
predicted_df["disequilibrium"] - self.training_mu_
|
||||
) / self.training_std_
|
||||
predicted_df["scaled_disequilibrium"] = abs(
|
||||
predicted_df["signed_scaled_disequilibrium"]
|
||||
)
|
||||
|
||||
# Add GARCH parameters + volatility forecast
|
||||
predicted_df["garch_alpha"] = self.garch_alpha_
|
||||
predicted_df["garch_beta"] = self.garch_beta_
|
||||
predicted_df["garch_persistence"] = self.garch_persistence_
|
||||
predicted_df["garch_vol_forecast"] = self.sigma_spread_forecast_
|
||||
predicted_df["high_volatility"] = self.high_volatility_flag_
|
||||
|
||||
# Save results
|
||||
if self.pair_predict_result_ is None:
|
||||
self.pair_predict_result_ = predicted_df
|
||||
else:
|
||||
self.pair_predict_result_ = pd.concat(
|
||||
[self.pair_predict_result_, predicted_df], ignore_index=True
|
||||
)
|
||||
|
||||
return self.pair_predict_result_
|
||||
|
||||
|
||||
class VECMRollingFit(RollingFit):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def create_trading_pair(
|
||||
self,
|
||||
config: Dict,
|
||||
market_data: pd.DataFrame,
|
||||
symbol_a: str,
|
||||
symbol_b: str,
|
||||
) -> TradingPair:
|
||||
return VECMTradingPair(
|
||||
config=config,
|
||||
market_data=market_data,
|
||||
symbol_a = symbol_a,
|
||||
symbol_b = symbol_b,
|
||||
)
|
||||
124
lib/pt_trading/z-score_rolling_fit.py
Normal file
124
lib/pt_trading/z-score_rolling_fit.py
Normal file
@ -0,0 +1,124 @@
|
||||
from typing import Any, Dict, Optional
|
||||
|
||||
import pandas as pd
|
||||
import statsmodels.api as sm
|
||||
|
||||
from pt_trading.rolling_window_fit import RollingFit
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
NanoPerMin = 1e9
|
||||
|
||||
|
||||
class ZScoreTradingPair(TradingPair):
|
||||
"""TradingPair implementation that fits a hedge ratio with OLS and
|
||||
computes a standardized spread (z-score).
|
||||
|
||||
The class stores training spread mean/std and hedge ratio so the model
|
||||
can be applied to testing data consistently.
|
||||
"""
|
||||
|
||||
zscore_model_: Optional[sm.regression.linear_model.RegressionResultsWrapper]
|
||||
pair_predict_result_: Optional[pd.DataFrame]
|
||||
zscore_df_: Optional[pd.Series]
|
||||
hedge_ratio_: Optional[float]
|
||||
spread_mean_: Optional[float]
|
||||
spread_std_: Optional[float]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Dict[str, Any],
|
||||
market_data: pd.DataFrame,
|
||||
symbol_a: str,
|
||||
symbol_b: str,
|
||||
):
|
||||
super().__init__(config, market_data, symbol_a, symbol_b)
|
||||
self.zscore_model_ = None
|
||||
self.pair_predict_result_ = None
|
||||
self.zscore_df_ = None
|
||||
self.hedge_ratio_ = None
|
||||
self.spread_mean_ = None
|
||||
self.spread_std_ = None
|
||||
|
||||
def _fit_zscore(self) -> None:
|
||||
"""Fit OLS on the training window and compute training z-score."""
|
||||
assert self.training_df_ is not None
|
||||
|
||||
# Extract price series for the two symbols from the training frame.
|
||||
px_df = self.training_df_[self.colnames()]
|
||||
symbol_a_px = px_df.iloc[:, 0]
|
||||
symbol_b_px = px_df.iloc[:, 1]
|
||||
|
||||
# Align indexes and fit OLS: symbol_a ~ const + symbol_b
|
||||
symbol_a_px, symbol_b_px = symbol_a_px.align(symbol_b_px, join="inner")
|
||||
X = sm.add_constant(symbol_b_px)
|
||||
self.zscore_model_ = sm.OLS(symbol_a_px, X).fit()
|
||||
|
||||
# Hedge ratio is the slope on symbol_b
|
||||
params = self.zscore_model_.params
|
||||
self.hedge_ratio_ = float(params.iloc[1]) if len(params) > 1 else 0.0
|
||||
|
||||
# Training spread and its standardized z-score
|
||||
spread = symbol_a_px - self.hedge_ratio_ * symbol_b_px
|
||||
self.spread_mean_ = float(spread.mean())
|
||||
self.spread_std_ = float(spread.std(ddof=0)) if spread.std(ddof=0) != 0 else 1.0
|
||||
self.zscore_df_ = (spread - self.spread_mean_) / self.spread_std_
|
||||
|
||||
def predict(self) -> pd.DataFrame:
|
||||
"""Apply fitted hedge ratio to the testing frame and return a
|
||||
dataframe with canonical columns:
|
||||
- disequilibrium: signed z-score
|
||||
- scaled_disequilibrium: absolute z-score
|
||||
- signed_scaled_disequilibrium: same as disequilibrium (keeps sign)
|
||||
"""
|
||||
# Fit on training window
|
||||
self._fit_zscore()
|
||||
assert self.zscore_df_ is not None
|
||||
assert self.hedge_ratio_ is not None
|
||||
assert self.spread_mean_ is not None and self.spread_std_ is not None
|
||||
|
||||
# Keep training columns for inspection
|
||||
self.training_df_["disequilibrium"] = self.zscore_df_
|
||||
self.training_df_["scaled_disequilibrium"] = self.zscore_df_.abs()
|
||||
|
||||
# Apply model to testing frame
|
||||
assert self.testing_df_ is not None
|
||||
test_df = self.testing_df_.copy()
|
||||
px_test = test_df[self.colnames()]
|
||||
a_test = px_test.iloc[:, 0]
|
||||
b_test = px_test.iloc[:, 1]
|
||||
a_test, b_test = a_test.align(b_test, join="inner")
|
||||
|
||||
# Compute test spread and standardize using training mean/std
|
||||
test_spread = a_test - self.hedge_ratio_ * b_test
|
||||
test_zscore = (test_spread - self.spread_mean_) / self.spread_std_
|
||||
|
||||
# Attach canonical columns
|
||||
# Align back to test_df index if needed
|
||||
test_zscore = test_zscore.reindex(test_df.index)
|
||||
test_df["disequilibrium"] = test_zscore
|
||||
test_df["signed_scaled_disequilibrium"] = test_zscore
|
||||
test_df["scaled_disequilibrium"] = test_zscore.abs()
|
||||
|
||||
# Reset index and accumulate results across windows
|
||||
test_df = test_df.reset_index(drop=True)
|
||||
if self.pair_predict_result_ is None:
|
||||
self.pair_predict_result_ = test_df
|
||||
else:
|
||||
self.pair_predict_result_ = pd.concat(
|
||||
[self.pair_predict_result_, test_df], ignore_index=True
|
||||
)
|
||||
|
||||
self.pair_predict_result_ = self.pair_predict_result_.reset_index(drop=True)
|
||||
return self.pair_predict_result_.dropna()
|
||||
|
||||
|
||||
class ZScoreRollingFit(RollingFit):
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
|
||||
def create_trading_pair(
|
||||
self, config: Dict, market_data: pd.DataFrame, symbol_a: str, symbol_b: str
|
||||
) -> TradingPair:
|
||||
return ZScoreTradingPair(
|
||||
config=config, market_data=market_data, symbol_a=symbol_a, symbol_b=symbol_b
|
||||
)
|
||||
@ -1,33 +0,0 @@
|
||||
import os
|
||||
import glob
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
DayT = str
|
||||
DataFileNameT = str
|
||||
|
||||
def resolve_datafiles(
|
||||
config: Dict, date_pattern: str, instruments: List[Dict[str, str]]
|
||||
) -> List[Tuple[DayT, DataFileNameT]]:
|
||||
resolved_files: List[Tuple[DayT, DataFileNameT]] = []
|
||||
for inst in instruments:
|
||||
pattern = date_pattern
|
||||
inst_type = inst["instrument_type"]
|
||||
data_dir = config["market_data_loading"][inst_type]["data_directory"]
|
||||
if "*" in pattern or "?" in pattern:
|
||||
# Handle wildcards
|
||||
if not os.path.isabs(pattern):
|
||||
pattern = os.path.join(data_dir, f"{pattern}.mktdata.ohlcv.db")
|
||||
matched_files = glob.glob(pattern)
|
||||
for matched_file in matched_files:
|
||||
import re
|
||||
match = re.search(r"(\d{8})\.mktdata\.ohlcv\.db$", matched_file)
|
||||
assert match is not None
|
||||
day = match.group(1)
|
||||
resolved_files.append((day, matched_file))
|
||||
else:
|
||||
# Handle explicit file path
|
||||
if not os.path.isabs(pattern):
|
||||
pattern = os.path.join(data_dir, f"{pattern}.mktdata.ohlcv.db")
|
||||
resolved_files.append((date_pattern, pattern))
|
||||
return sorted(list(set(resolved_files))) # Remove duplicates and sort
|
||||
|
||||
@ -1,21 +0,0 @@
|
||||
import argparse
|
||||
from typing import Dict, List
|
||||
|
||||
def get_instruments(args: argparse.Namespace, config: Dict) -> List[Dict[str, str]]:
|
||||
|
||||
instruments = [
|
||||
{
|
||||
"symbol": inst.split(":")[0],
|
||||
"instrument_type": inst.split(":")[1],
|
||||
"exchange_id": inst.split(":")[2],
|
||||
"instrument_id_pfx": config["market_data_loading"][inst.split(":")[1]][
|
||||
"instrument_id_pfx"
|
||||
],
|
||||
"db_table_name": config["market_data_loading"][inst.split(":")[1]][
|
||||
"db_table_name"
|
||||
],
|
||||
}
|
||||
for inst in args.instruments.split(",")
|
||||
]
|
||||
return instruments
|
||||
|
||||
@ -1,79 +0,0 @@
|
||||
from pt_strategy.research_strategy import PtResearchStrategy
|
||||
|
||||
|
||||
def visualize_prices(strategy: PtResearchStrategy, trading_date: str) -> None:
|
||||
# Plot raw price data
|
||||
import matplotlib.pyplot as plt
|
||||
# Set plotting style
|
||||
import seaborn as sns
|
||||
|
||||
pair = strategy.trading_pair_
|
||||
SYMBOL_A = pair.symbol_a_
|
||||
SYMBOL_B = pair.symbol_b_
|
||||
TRD_DATE = f"{trading_date[0:4]}-{trading_date[4:6]}-{trading_date[6:8]}"
|
||||
|
||||
plt.style.use('seaborn-v0_8')
|
||||
sns.set_palette("husl")
|
||||
plt.rcParams['figure.figsize'] = (15, 10)
|
||||
|
||||
# Get column names for the trading pair
|
||||
colname_a, colname_b = pair.colnames()
|
||||
price_data = strategy.pt_mkt_data_.market_data_df_.copy()
|
||||
|
||||
# Create separate subplots for better visibility
|
||||
fig_price, price_axes = plt.subplots(2, 1, figsize=(18, 10))
|
||||
|
||||
# Plot SYMBOL_A
|
||||
price_axes[0].plot(price_data['tstamp'], price_data[colname_a], alpha=0.7,
|
||||
label=f'{SYMBOL_A}', linewidth=1, color='blue')
|
||||
price_axes[0].set_title(f'{SYMBOL_A} Price Data ({TRD_DATE})')
|
||||
price_axes[0].set_ylabel(f'{SYMBOL_A} Price')
|
||||
price_axes[0].legend()
|
||||
price_axes[0].grid(True)
|
||||
|
||||
# Plot SYMBOL_B
|
||||
price_axes[1].plot(price_data['tstamp'], price_data[colname_b], alpha=0.7,
|
||||
label=f'{SYMBOL_B}', linewidth=1, color='red')
|
||||
price_axes[1].set_title(f'{SYMBOL_B} Price Data ({TRD_DATE})')
|
||||
price_axes[1].set_ylabel(f'{SYMBOL_B} Price')
|
||||
price_axes[1].set_xlabel('Time')
|
||||
price_axes[1].legend()
|
||||
price_axes[1].grid(True)
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
# Plot individual prices
|
||||
fig, axes = plt.subplots(2, 1, figsize=(18, 12))
|
||||
|
||||
# Normalized prices for comparison
|
||||
norm_a = price_data[colname_a] / price_data[colname_a].iloc[0]
|
||||
norm_b = price_data[colname_b] / price_data[colname_b].iloc[0]
|
||||
|
||||
axes[0].plot(price_data['tstamp'], norm_a, label=f'{SYMBOL_A} (normalized)', alpha=0.8, linewidth=1)
|
||||
axes[0].plot(price_data['tstamp'], norm_b, label=f'{SYMBOL_B} (normalized)', alpha=0.8, linewidth=1)
|
||||
axes[0].set_title(f'Normalized Price Comparison (Base = 1.0) ({TRD_DATE})')
|
||||
axes[0].set_ylabel('Normalized Price')
|
||||
axes[0].legend()
|
||||
axes[0].grid(True)
|
||||
|
||||
# Price ratio
|
||||
price_ratio = price_data[colname_a] / price_data[colname_b]
|
||||
axes[1].plot(price_data['tstamp'], price_ratio, label=f'{SYMBOL_A}/{SYMBOL_B} Ratio', color='green', alpha=0.8, linewidth=1)
|
||||
axes[1].set_title(f'Price Ratio Px({SYMBOL_A})/Px({SYMBOL_B}) ({TRD_DATE})')
|
||||
axes[1].set_ylabel('Ratio')
|
||||
axes[1].set_xlabel('Time')
|
||||
axes[1].legend()
|
||||
axes[1].grid(True)
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
# Print basic statistics
|
||||
print(f"\nPrice Statistics:")
|
||||
print(f" {SYMBOL_A}: Mean=${price_data[colname_a].mean():.2f}, Std=${price_data[colname_a].std():.2f}")
|
||||
print(f" {SYMBOL_B}: Mean=${price_data[colname_b].mean():.2f}, Std=${price_data[colname_b].std():.2f}")
|
||||
print(f" Price Ratio: Mean={price_ratio.mean():.2f}, Std={price_ratio.std():.2f}")
|
||||
print(f" Correlation: {price_data[colname_a].corr(price_data[colname_b]):.4f}")
|
||||
|
||||
@ -1,507 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
|
||||
from pt_strategy.results import (PairResearchResult, create_result_database,
|
||||
store_config_in_database)
|
||||
from pt_strategy.research_strategy import PtResearchStrategy
|
||||
from tools.filetools import resolve_datafiles
|
||||
from tools.instruments import get_instruments
|
||||
|
||||
|
||||
def visualize_trades(strategy: PtResearchStrategy, results: PairResearchResult, trading_date: str) -> None:
|
||||
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
import plotly.offline as pyo
|
||||
from IPython.display import HTML
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
|
||||
pair = strategy.trading_pair_
|
||||
trades = results.trades_[trading_date].copy()
|
||||
origin_mkt_data_df = strategy.pt_mkt_data_.origin_mkt_data_df_
|
||||
mkt_data_df = strategy.pt_mkt_data_.market_data_df_
|
||||
TRD_DATE = f"{trading_date[0:4]}-{trading_date[4:6]}-{trading_date[6:8]}"
|
||||
SYMBOL_A = pair.symbol_a_
|
||||
SYMBOL_B = pair.symbol_b_
|
||||
|
||||
|
||||
print(f"\nCreated trading pair: {pair}")
|
||||
print(f"Market data shape: {pair.market_data_.shape}")
|
||||
print(f"Column names: {pair.colnames()}")
|
||||
|
||||
# Configure plotly for offline mode
|
||||
pyo.init_notebook_mode(connected=True)
|
||||
|
||||
# Strategy-specific interactive visualization
|
||||
assert strategy.config_ is not None
|
||||
|
||||
print("=== SLIDING FIT INTERACTIVE VISUALIZATION ===")
|
||||
print("Note: Rolling Fit strategy visualization with interactive plotly charts")
|
||||
|
||||
|
||||
# Create consistent timeline - superset of timestamps from both dataframes
|
||||
all_timestamps = sorted(set(mkt_data_df['tstamp']))
|
||||
|
||||
|
||||
# Create a unified timeline dataframe for consistent plotting
|
||||
timeline_df = pd.DataFrame({'tstamp': all_timestamps})
|
||||
|
||||
# Merge with predicted data to get dis-equilibrium values
|
||||
timeline_df = timeline_df.merge(strategy.predictions_[['tstamp', 'disequilibrium', 'scaled_disequilibrium', 'signed_scaled_disequilibrium']],
|
||||
on='tstamp', how='left')
|
||||
|
||||
# Get Symbol_A and Symbol_B market data
|
||||
colname_a, colname_b = pair.colnames()
|
||||
symbol_a_data = mkt_data_df[['tstamp', colname_a]].copy()
|
||||
symbol_b_data = mkt_data_df[['tstamp', colname_b]].copy()
|
||||
|
||||
norm_a = symbol_a_data[colname_a] / symbol_a_data[colname_a].iloc[0]
|
||||
norm_b = symbol_b_data[colname_b] / symbol_b_data[colname_b].iloc[0]
|
||||
|
||||
print(f"Using consistent timeline with {len(timeline_df)} timestamps")
|
||||
print(f"Timeline range: {timeline_df['tstamp'].min()} to {timeline_df['tstamp'].max()}")
|
||||
|
||||
# Create subplots with price charts at bottom
|
||||
fig = make_subplots(
|
||||
rows=4, cols=1,
|
||||
row_heights=[0.3, 0.4, 0.15, 0.15],
|
||||
subplot_titles=[
|
||||
f'Dis-equilibrium with Trading Thresholds ({TRD_DATE})',
|
||||
f'Normalized Price Comparison with BUY/SELL Signals - {SYMBOL_A}&{SYMBOL_B} ({TRD_DATE})',
|
||||
f'{SYMBOL_A} Market Data with Trading Signals ({TRD_DATE})',
|
||||
f'{SYMBOL_B} Market Data with Trading Signals ({TRD_DATE})',
|
||||
],
|
||||
vertical_spacing=0.06,
|
||||
specs=[[{"secondary_y": False}],
|
||||
[{"secondary_y": False}],
|
||||
[{"secondary_y": False}],
|
||||
[{"secondary_y": False}]]
|
||||
)
|
||||
|
||||
# 1. Scaled dis-equilibrium with thresholds - using consistent timeline
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=timeline_df['tstamp'],
|
||||
y=timeline_df['scaled_disequilibrium'],
|
||||
name='Absolute Scaled Dis-equilibrium',
|
||||
line=dict(color='green', width=2),
|
||||
opacity=0.8
|
||||
),
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=timeline_df['tstamp'],
|
||||
y=timeline_df['signed_scaled_disequilibrium'],
|
||||
name='Scaled Dis-equilibrium',
|
||||
line=dict(color='darkmagenta', width=2),
|
||||
opacity=0.8
|
||||
),
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
# Add threshold lines to first subplot
|
||||
fig.add_shape(
|
||||
type="line",
|
||||
x0=timeline_df['tstamp'].min(),
|
||||
x1=timeline_df['tstamp'].max(),
|
||||
y0=strategy.config_['dis-equilibrium_open_trshld'],
|
||||
y1=strategy.config_['dis-equilibrium_open_trshld'],
|
||||
line=dict(color="purple", width=2, dash="dot"),
|
||||
opacity=0.7,
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
fig.add_shape(
|
||||
type="line",
|
||||
x0=timeline_df['tstamp'].min(),
|
||||
x1=timeline_df['tstamp'].max(),
|
||||
y0=-strategy.config_['dis-equilibrium_open_trshld'],
|
||||
y1=-strategy.config_['dis-equilibrium_open_trshld'],
|
||||
line=dict(color="purple", width=2, dash="dot"),
|
||||
opacity=0.7,
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
fig.add_shape(
|
||||
type="line",
|
||||
x0=timeline_df['tstamp'].min(),
|
||||
x1=timeline_df['tstamp'].max(),
|
||||
y0=strategy.config_['dis-equilibrium_close_trshld'],
|
||||
y1=strategy.config_['dis-equilibrium_close_trshld'],
|
||||
line=dict(color="brown", width=2, dash="dot"),
|
||||
opacity=0.7,
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
fig.add_shape(
|
||||
type="line",
|
||||
x0=timeline_df['tstamp'].min(),
|
||||
x1=timeline_df['tstamp'].max(),
|
||||
y0=-strategy.config_['dis-equilibrium_close_trshld'],
|
||||
y1=-strategy.config_['dis-equilibrium_close_trshld'],
|
||||
line=dict(color="brown", width=2, dash="dot"),
|
||||
opacity=0.7,
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
fig.add_shape(
|
||||
type="line",
|
||||
x0=timeline_df['tstamp'].min(),
|
||||
x1=timeline_df['tstamp'].max(),
|
||||
y0=0,
|
||||
y1=0,
|
||||
line=dict(color="black", width=1, dash="solid"),
|
||||
opacity=0.5,
|
||||
row=1, col=1
|
||||
)
|
||||
|
||||
# Add normalized price lines
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=mkt_data_df['tstamp'],
|
||||
y=norm_a,
|
||||
name=f'{SYMBOL_A} (Normalized)',
|
||||
line=dict(color='blue', width=2),
|
||||
opacity=0.8
|
||||
),
|
||||
row=2, col=1
|
||||
)
|
||||
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=mkt_data_df['tstamp'],
|
||||
y=norm_b,
|
||||
name=f'{SYMBOL_B} (Normalized)',
|
||||
line=dict(color='orange', width=2),
|
||||
opacity=0.8,
|
||||
),
|
||||
row=2, col=1
|
||||
)
|
||||
|
||||
# Add BUY and SELL signals if available
|
||||
if trades is not None and len(trades) > 0:
|
||||
# Define signal groups to avoid legend repetition
|
||||
signal_groups = {}
|
||||
|
||||
# Process all trades and group by signal type (ignore OPEN/CLOSE status)
|
||||
for _, trade in trades.iterrows():
|
||||
symbol = trade['symbol']
|
||||
side = trade['side']
|
||||
# status = trade['status']
|
||||
action = trade['action']
|
||||
|
||||
# Create signal group key (without status to combine OPEN/CLOSE)
|
||||
signal_key = f"{symbol} {side} {action}"
|
||||
|
||||
# Find normalized price for this trade
|
||||
trade_time = trade['time']
|
||||
if symbol == SYMBOL_A:
|
||||
closest_idx = mkt_data_df['tstamp'].searchsorted(trade_time)
|
||||
if closest_idx < len(norm_a):
|
||||
norm_price = norm_a.iloc[closest_idx]
|
||||
else:
|
||||
norm_price = norm_a.iloc[-1]
|
||||
else: # SYMBOL_B
|
||||
closest_idx = mkt_data_df['tstamp'].searchsorted(trade_time)
|
||||
if closest_idx < len(norm_b):
|
||||
norm_price = norm_b.iloc[closest_idx]
|
||||
else:
|
||||
norm_price = norm_b.iloc[-1]
|
||||
|
||||
# Initialize group if not exists
|
||||
if signal_key not in signal_groups:
|
||||
signal_groups[signal_key] = {
|
||||
'times': [],
|
||||
'prices': [],
|
||||
'actual_prices': [],
|
||||
'symbol': symbol,
|
||||
'side': side,
|
||||
# 'status': status,
|
||||
'action': trade['action']
|
||||
}
|
||||
|
||||
# Add to group
|
||||
signal_groups[signal_key]['times'].append(trade_time)
|
||||
signal_groups[signal_key]['prices'].append(norm_price)
|
||||
signal_groups[signal_key]['actual_prices'].append(trade['price'])
|
||||
|
||||
# Add each signal group as a single trace
|
||||
for signal_key, group_data in signal_groups.items():
|
||||
symbol = group_data['symbol']
|
||||
side = group_data['side']
|
||||
# status = group_data['status']
|
||||
|
||||
# Determine marker properties (same for all OPEN/CLOSE of same side)
|
||||
is_close: bool = (group_data['action'] == "CLOSE")
|
||||
|
||||
if 'BUY' in side:
|
||||
marker_color = 'green'
|
||||
marker_symbol = 'triangle-up'
|
||||
marker_size = 14
|
||||
else: # SELL
|
||||
marker_color = 'red'
|
||||
marker_symbol = 'triangle-down'
|
||||
marker_size = 14
|
||||
|
||||
# Create hover text for each point in the group
|
||||
hover_texts = []
|
||||
for i, (time, norm_price, actual_price) in enumerate(zip(group_data['times'],
|
||||
group_data['prices'],
|
||||
group_data['actual_prices'])):
|
||||
# Find the corresponding trade to get the status for hover text
|
||||
trade_info = trades[(trades['time'] == time) &
|
||||
(trades['symbol'] == symbol) &
|
||||
(trades['side'] == side)]
|
||||
if len(trade_info) > 0:
|
||||
action = trade_info.iloc[0]['action']
|
||||
hover_texts.append(f'<b>{signal_key} {action}</b><br>' +
|
||||
f'Time: {time}<br>' +
|
||||
f'Normalized Price: {norm_price:.4f}<br>' +
|
||||
f'Actual Price: ${actual_price:.2f}')
|
||||
else:
|
||||
hover_texts.append(f'<b>{signal_key}</b><br>' +
|
||||
f'Time: {time}<br>' +
|
||||
f'Normalized Price: {norm_price:.4f}<br>' +
|
||||
f'Actual Price: ${actual_price:.2f}')
|
||||
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=group_data['times'],
|
||||
y=group_data['prices'],
|
||||
mode='markers',
|
||||
name=signal_key,
|
||||
marker=dict(
|
||||
color=marker_color,
|
||||
size=marker_size,
|
||||
symbol=marker_symbol,
|
||||
line=dict(width=2, color='black') if is_close else None
|
||||
),
|
||||
showlegend=True,
|
||||
hovertemplate='%{text}<extra></extra>',
|
||||
text=hover_texts
|
||||
),
|
||||
row=2, col=1
|
||||
)
|
||||
|
||||
# -----------------------------
|
||||
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=symbol_a_data['tstamp'],
|
||||
y=symbol_a_data[colname_a],
|
||||
name=f'{SYMBOL_A} Price',
|
||||
line=dict(color='blue', width=2),
|
||||
opacity=0.8
|
||||
),
|
||||
row=3, col=1
|
||||
)
|
||||
|
||||
# Filter trades for Symbol_A
|
||||
symbol_a_trades = trades[trades['symbol'] == SYMBOL_A]
|
||||
print(f"\nSymbol_A trades:\n{symbol_a_trades}")
|
||||
|
||||
if len(symbol_a_trades) > 0:
|
||||
# Separate trades by action and status for different colors
|
||||
buy_open_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('BUY', na=False)) &
|
||||
(symbol_a_trades['action'].str.contains('OPEN', na=False))]
|
||||
buy_close_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('BUY', na=False)) &
|
||||
(symbol_a_trades['action'].str.contains('CLOSE', na=False))]
|
||||
|
||||
sell_open_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('SELL', na=False)) &
|
||||
(symbol_a_trades['action'].str.contains('OPEN', na=False))]
|
||||
sell_close_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('SELL', na=False)) &
|
||||
(symbol_a_trades['action'].str.contains('CLOSE', na=False))]
|
||||
|
||||
# Add BUY OPEN signals
|
||||
if len(buy_open_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=buy_open_trades['time'],
|
||||
y=buy_open_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_A} BUY OPEN',
|
||||
marker=dict(color='green', size=12, symbol='triangle-up'),
|
||||
showlegend=True
|
||||
),
|
||||
row=3, col=1
|
||||
)
|
||||
|
||||
# Add BUY CLOSE signals
|
||||
if len(buy_close_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=buy_close_trades['time'],
|
||||
y=buy_close_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_A} BUY CLOSE',
|
||||
marker=dict(color='green', size=12, symbol='triangle-up'),
|
||||
line=dict(width=2, color='black'),
|
||||
showlegend=True
|
||||
),
|
||||
row=3, col=1
|
||||
)
|
||||
|
||||
# Add SELL OPEN signals
|
||||
if len(sell_open_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=sell_open_trades['time'],
|
||||
y=sell_open_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_A} SELL OPEN',
|
||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
||||
showlegend=True
|
||||
),
|
||||
row=3, col=1
|
||||
)
|
||||
|
||||
# Add SELL CLOSE signals
|
||||
if len(sell_close_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=sell_close_trades['time'],
|
||||
y=sell_close_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_A} SELL CLOSE',
|
||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
||||
line=dict(width=2, color='black'),
|
||||
showlegend=True
|
||||
),
|
||||
row=3, col=1
|
||||
)
|
||||
|
||||
# 4. Symbol_B Market Data with Trading Signals
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=symbol_b_data['tstamp'],
|
||||
y=symbol_b_data[colname_b],
|
||||
name=f'{SYMBOL_B} Price',
|
||||
line=dict(color='orange', width=2),
|
||||
opacity=0.8
|
||||
),
|
||||
row=4, col=1
|
||||
)
|
||||
|
||||
# Add trading signals for Symbol_B if available
|
||||
symbol_b_trades = trades[trades['symbol'] == SYMBOL_B]
|
||||
print(f"\nSymbol_B trades:\n{symbol_b_trades}")
|
||||
|
||||
if len(symbol_b_trades) > 0:
|
||||
# Separate trades by action and status for different colors
|
||||
buy_open_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('BUY', na=False)) &
|
||||
(symbol_b_trades['action'].str.startswith('OPEN', na=False))]
|
||||
buy_close_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('BUY', na=False)) &
|
||||
(symbol_b_trades['action'].str.startswith('CLOSE', na=False))]
|
||||
|
||||
sell_open_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('SELL', na=False)) &
|
||||
(symbol_b_trades['action'].str.contains('OPEN', na=False))]
|
||||
sell_close_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('SELL', na=False)) &
|
||||
(symbol_b_trades['action'].str.contains('CLOSE', na=False))]
|
||||
|
||||
# Add BUY OPEN signals
|
||||
if len(buy_open_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=buy_open_trades['time'],
|
||||
y=buy_open_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_B} BUY OPEN',
|
||||
marker=dict(color='darkgreen', size=12, symbol='triangle-up'),
|
||||
showlegend=True
|
||||
),
|
||||
row=4, col=1
|
||||
)
|
||||
|
||||
# Add BUY CLOSE signals
|
||||
if len(buy_close_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=buy_close_trades['time'],
|
||||
y=buy_close_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_B} BUY CLOSE',
|
||||
marker=dict(color='green', size=12, symbol='triangle-up'),
|
||||
line=dict(width=2, color='black'),
|
||||
showlegend=True
|
||||
),
|
||||
row=4, col=1
|
||||
)
|
||||
|
||||
# Add SELL OPEN signals
|
||||
if len(sell_open_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=sell_open_trades['time'],
|
||||
y=sell_open_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_B} SELL OPEN',
|
||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
||||
showlegend=True
|
||||
),
|
||||
row=4, col=1
|
||||
)
|
||||
|
||||
# Add SELL CLOSE signals
|
||||
if len(sell_close_trades) > 0:
|
||||
fig.add_trace(
|
||||
go.Scatter(
|
||||
x=sell_close_trades['time'],
|
||||
y=sell_close_trades['price'],
|
||||
mode='markers',
|
||||
name=f'{SYMBOL_B} SELL CLOSE',
|
||||
marker=dict(color='red', size=12, symbol='triangle-down'),
|
||||
line=dict(width=2, color='black'),
|
||||
showlegend=True
|
||||
),
|
||||
row=4, col=1
|
||||
)
|
||||
|
||||
# Update layout
|
||||
fig.update_layout(
|
||||
height=1600,
|
||||
title_text=f"Strategy Analysis - {SYMBOL_A} & {SYMBOL_B} ({TRD_DATE})",
|
||||
showlegend=True,
|
||||
template="plotly_white",
|
||||
plot_bgcolor='lightgray',
|
||||
)
|
||||
|
||||
# Update y-axis labels
|
||||
fig.update_yaxes(title_text="Scaled Dis-equilibrium", row=1, col=1)
|
||||
fig.update_yaxes(title_text=f"{SYMBOL_A} Price ($)", row=2, col=1)
|
||||
fig.update_yaxes(title_text=f"{SYMBOL_B} Price ($)", row=3, col=1)
|
||||
fig.update_yaxes(title_text="Normalized Price (Base = 1.0)", row=4, col=1)
|
||||
|
||||
# Update x-axis labels and ensure consistent time range
|
||||
time_range = [timeline_df['tstamp'].min(), timeline_df['tstamp'].max()]
|
||||
fig.update_xaxes(range=time_range, row=1, col=1)
|
||||
fig.update_xaxes(range=time_range, row=2, col=1)
|
||||
fig.update_xaxes(range=time_range, row=3, col=1)
|
||||
fig.update_xaxes(title_text="Time", range=time_range, row=4, col=1)
|
||||
|
||||
# Display using plotly offline mode
|
||||
# pyo.iplot(fig)
|
||||
fig.show()
|
||||
|
||||
else:
|
||||
print("No interactive visualization data available - strategy may not have run successfully")
|
||||
|
||||
print(f"\nChart shows:")
|
||||
print(f"- {SYMBOL_A} and {SYMBOL_B} prices normalized to start at 1.0")
|
||||
print(f"- BUY signals shown as green triangles pointing up")
|
||||
print(f"- SELL signals shown as orange triangles pointing down")
|
||||
print(f"- All BUY signals per symbol grouped together, all SELL signals per symbol grouped together")
|
||||
print(f"- Hover over markers to see individual trade details (OPEN/CLOSE status)")
|
||||
|
||||
if trades is not None and len(trades) > 0:
|
||||
print(f"- Total signals displayed: {len(trades)}")
|
||||
print(f"- {SYMBOL_A} signals: {len(trades[trades['symbol'] == SYMBOL_A])}")
|
||||
print(f"- {SYMBOL_B} signals: {len(trades[trades['symbol'] == SYMBOL_B])}")
|
||||
else:
|
||||
print("- No trading signals to display")
|
||||
|
||||
169
lib/utils/db_inspector.py
Normal file
169
lib/utils/db_inspector.py
Normal file
@ -0,0 +1,169 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Database inspector utility for pairs trading results database.
|
||||
Provides functionality to view all tables and their contents.
|
||||
"""
|
||||
|
||||
import sqlite3
|
||||
import sys
|
||||
import json
|
||||
import os
|
||||
from typing import List, Dict, Any
|
||||
|
||||
def list_tables(db_path: str) -> List[str]:
|
||||
"""List all tables in the database."""
|
||||
conn = sqlite3.connect(db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
cursor.execute("""
|
||||
SELECT name FROM sqlite_master
|
||||
WHERE type='table'
|
||||
ORDER BY name
|
||||
""")
|
||||
|
||||
tables = [row[0] for row in cursor.fetchall()]
|
||||
conn.close()
|
||||
return tables
|
||||
|
||||
def view_table_schema(db_path: str, table_name: str) -> None:
|
||||
"""View the schema of a specific table."""
|
||||
conn = sqlite3.connect(db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
cursor.execute(f"PRAGMA table_info({table_name})")
|
||||
columns = cursor.fetchall()
|
||||
|
||||
print(f"\nTable: {table_name}")
|
||||
print("-" * 50)
|
||||
print("Column Name".ljust(20) + "Type".ljust(15) + "Not Null".ljust(10) + "Default")
|
||||
print("-" * 50)
|
||||
|
||||
for col in columns:
|
||||
cid, name, type_, not_null, default_value, pk = col
|
||||
print(f"{name}".ljust(20) + f"{type_}".ljust(15) + f"{bool(not_null)}".ljust(10) + f"{default_value or ''}")
|
||||
|
||||
conn.close()
|
||||
|
||||
def view_config_table(db_path: str, limit: int = 10) -> None:
|
||||
"""View entries from the config table."""
|
||||
conn = sqlite3.connect(db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
cursor.execute(f"""
|
||||
SELECT id, run_timestamp, config_file_path, fit_method_class,
|
||||
datafiles, instruments, config_json
|
||||
FROM config
|
||||
ORDER BY run_timestamp DESC
|
||||
LIMIT {limit}
|
||||
""")
|
||||
|
||||
rows = cursor.fetchall()
|
||||
|
||||
if not rows:
|
||||
print("No configuration entries found.")
|
||||
return
|
||||
|
||||
print(f"\nMost recent {len(rows)} configuration entries:")
|
||||
print("=" * 80)
|
||||
|
||||
for row in rows:
|
||||
id, run_timestamp, config_file_path, fit_method_class, datafiles, instruments, config_json = row
|
||||
|
||||
print(f"ID: {id} | {run_timestamp}")
|
||||
print(f"Config: {config_file_path} | Strategy: {fit_method_class}")
|
||||
print(f"Files: {datafiles}")
|
||||
print(f"Instruments: {instruments}")
|
||||
print("-" * 80)
|
||||
|
||||
conn.close()
|
||||
|
||||
def view_results_summary(db_path: str) -> None:
|
||||
"""View summary of trading results."""
|
||||
conn = sqlite3.connect(db_path)
|
||||
cursor = conn.cursor()
|
||||
|
||||
# Get results summary
|
||||
cursor.execute("""
|
||||
SELECT date, COUNT(*) as trade_count,
|
||||
ROUND(SUM(symbol_return), 2) as total_return
|
||||
FROM pt_bt_results
|
||||
GROUP BY date
|
||||
ORDER BY date DESC
|
||||
""")
|
||||
|
||||
results = cursor.fetchall()
|
||||
|
||||
if not results:
|
||||
print("No trading results found.")
|
||||
return
|
||||
|
||||
print(f"\nTrading Results Summary:")
|
||||
print("-" * 50)
|
||||
print("Date".ljust(15) + "Trades".ljust(10) + "Total Return %")
|
||||
print("-" * 50)
|
||||
|
||||
for date, trade_count, total_return in results:
|
||||
print(f"{date}".ljust(15) + f"{trade_count}".ljust(10) + f"{total_return}")
|
||||
|
||||
# Get outstanding positions summary
|
||||
cursor.execute("""
|
||||
SELECT COUNT(*) as position_count,
|
||||
ROUND(SUM(unrealized_return), 2) as total_unrealized
|
||||
FROM outstanding_positions
|
||||
""")
|
||||
|
||||
outstanding = cursor.fetchone()
|
||||
if outstanding and outstanding[0] > 0:
|
||||
print(f"\nOutstanding Positions: {outstanding[0]} positions")
|
||||
print(f"Total Unrealized Return: {outstanding[1]}%")
|
||||
|
||||
conn.close()
|
||||
|
||||
def main() -> None:
|
||||
if len(sys.argv) < 2:
|
||||
print("Usage: python db_inspector.py <database_path> [command]")
|
||||
print("Commands:")
|
||||
print(" tables - List all tables")
|
||||
print(" schema - Show schema for all tables")
|
||||
print(" config - View configuration entries")
|
||||
print(" results - View trading results summary")
|
||||
print(" all - Show everything (default)")
|
||||
print("\nExample: python db_inspector.py results/equity.db config")
|
||||
sys.exit(1)
|
||||
|
||||
db_path = sys.argv[1]
|
||||
command = sys.argv[2] if len(sys.argv) > 2 else "all"
|
||||
|
||||
if not os.path.exists(db_path):
|
||||
print(f"Database file not found: {db_path}")
|
||||
sys.exit(1)
|
||||
|
||||
try:
|
||||
if command in ["tables", "all"]:
|
||||
tables = list_tables(db_path)
|
||||
print(f"Tables in database: {', '.join(tables)}")
|
||||
|
||||
if command in ["schema", "all"]:
|
||||
tables = list_tables(db_path)
|
||||
for table in tables:
|
||||
view_table_schema(db_path, table)
|
||||
|
||||
if command in ["config", "all"]:
|
||||
if "config" in list_tables(db_path):
|
||||
view_config_table(db_path)
|
||||
else:
|
||||
print("Config table not found.")
|
||||
|
||||
if command in ["results", "all"]:
|
||||
if "pt_bt_results" in list_tables(db_path):
|
||||
view_results_summary(db_path)
|
||||
else:
|
||||
print("Results table not found.")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error inspecting database: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -16,8 +16,7 @@
|
||||
"autoImportCompletions": true,
|
||||
"autoSearchPaths": true,
|
||||
"extraPaths": [
|
||||
"lib",
|
||||
".."
|
||||
"lib"
|
||||
],
|
||||
"stubPath": "./typings",
|
||||
"venvPath": ".",
|
||||
|
||||
213
requirements.txt
213
requirements.txt
@ -61,7 +61,7 @@ protobuf>=3.12.4
|
||||
psutil>=5.9.0
|
||||
ptyprocess>=0.7.0
|
||||
pycurl>=7.44.1
|
||||
pyelftools>=0.27
|
||||
# pyelftools>=0.27
|
||||
Pygments>=2.11.2
|
||||
pyparsing>=2.4.7
|
||||
pyrsistent>=0.18.1
|
||||
@ -69,7 +69,7 @@ python-debian>=0.1.43 #+ubuntu1.1
|
||||
python-dotenv>=0.19.2
|
||||
python-magic>=0.4.24
|
||||
python-xlib>=0.29
|
||||
pyxdg>=0.27
|
||||
# pyxdg>=0.27
|
||||
PyYAML>=6.0
|
||||
reportlab>=3.6.8
|
||||
requests>=2.25.1
|
||||
@ -78,118 +78,117 @@ scipy<1.13.0
|
||||
seaborn>=0.13.2
|
||||
SecretStorage>=3.3.1
|
||||
setproctitle>=1.2.2
|
||||
simpleeval>=1.0.3
|
||||
six>=1.16.0
|
||||
soupsieve>=2.3.1
|
||||
ssh-import-id>=5.11
|
||||
statsmodels>=0.14.4
|
||||
texttable>=1.6.4
|
||||
# texttable>=1.6.4
|
||||
tldextract>=3.1.2
|
||||
tomli>=1.2.2
|
||||
######## typed-ast>=1.4.3
|
||||
types-aiofiles>=0.1
|
||||
types-annoy>=1.17
|
||||
types-appdirs>=1.4
|
||||
types-atomicwrites>=1.4
|
||||
types-aws-xray-sdk>=2.8
|
||||
types-babel>=2.9
|
||||
types-backports-abc>=0.5
|
||||
types-backports.ssl-match-hostname>=3.7
|
||||
types-beautifulsoup4>=4.10
|
||||
types-bleach>=4.1
|
||||
types-boto>=2.49
|
||||
types-braintree>=4.11
|
||||
types-cachetools>=4.2
|
||||
types-caldav>=0.8
|
||||
types-certifi>=2020.4
|
||||
types-characteristic>=14.3
|
||||
types-chardet>=4.0
|
||||
types-click>=7.1
|
||||
types-click-spinner>=0.1
|
||||
types-colorama>=0.4
|
||||
types-commonmark>=0.9
|
||||
types-contextvars>=0.1
|
||||
types-croniter>=1.0
|
||||
types-cryptography>=3.3
|
||||
types-dataclasses>=0.1
|
||||
types-dateparser>=1.0
|
||||
types-DateTimeRange>=0.1
|
||||
types-decorator>=0.1
|
||||
types-Deprecated>=1.2
|
||||
types-docopt>=0.6
|
||||
types-docutils>=0.17
|
||||
types-editdistance>=0.5
|
||||
types-emoji>=1.2
|
||||
types-entrypoints>=0.3
|
||||
types-enum34>=1.1
|
||||
types-filelock>=3.2
|
||||
types-first>=2.0
|
||||
types-Flask>=1.1
|
||||
types-freezegun>=1.1
|
||||
types-frozendict>=0.1
|
||||
types-futures>=3.3
|
||||
types-html5lib>=1.1
|
||||
types-httplib2>=0.19
|
||||
types-humanfriendly>=9.2
|
||||
types-ipaddress>=1.0
|
||||
types-itsdangerous>=1.1
|
||||
types-JACK-Client>=0.1
|
||||
types-Jinja2>=2.11
|
||||
types-jmespath>=0.10
|
||||
types-jsonschema>=3.2
|
||||
types-Markdown>=3.3
|
||||
types-MarkupSafe>=1.1
|
||||
types-mock>=4.0
|
||||
types-mypy-extensions>=0.4
|
||||
types-mysqlclient>=2.0
|
||||
types-oauthlib>=3.1
|
||||
types-orjson>=3.6
|
||||
types-paramiko>=2.7
|
||||
types-Pillow>=8.3
|
||||
types-polib>=1.1
|
||||
types-prettytable>=2.1
|
||||
types-protobuf>=3.17
|
||||
types-psutil>=5.8
|
||||
types-psycopg2>=2.9
|
||||
types-pyaudio>=0.2
|
||||
types-pycurl>=0.1
|
||||
types-pyfarmhash>=0.2
|
||||
types-Pygments>=2.9
|
||||
types-PyMySQL>=1.0
|
||||
types-pyOpenSSL>=20.0
|
||||
types-pyRFC3339>=0.1
|
||||
types-pysftp>=0.2
|
||||
types-pytest-lazy-fixture>=0.6
|
||||
types-python-dateutil>=2.8
|
||||
types-python-gflags>=3.1
|
||||
types-python-nmap>=0.6
|
||||
types-python-slugify>=5.0
|
||||
types-pytz>=2021.1
|
||||
types-pyvmomi>=7.0
|
||||
types-PyYAML>=5.4
|
||||
types-redis>=3.5
|
||||
types-requests>=2.25
|
||||
types-retry>=0.9
|
||||
types-selenium>=3.141
|
||||
types-Send2Trash>=1.8
|
||||
types-setuptools>=57.4
|
||||
types-simplejson>=3.17
|
||||
types-singledispatch>=3.7
|
||||
types-six>=1.16
|
||||
types-slumber>=0.7
|
||||
types-stripe>=2.59
|
||||
types-tabulate>=0.8
|
||||
types-termcolor>=1.1
|
||||
types-toml>=0.10
|
||||
types-toposort>=1.6
|
||||
types-ttkthemes>=3.2
|
||||
types-typed-ast>=1.4
|
||||
types-tzlocal>=0.1
|
||||
types-ujson>=0.1
|
||||
types-vobject>=0.9
|
||||
types-waitress>=0.1
|
||||
types-Werkzeug>=1.0
|
||||
types-xxhash>=2.0
|
||||
# types-aiofiles>=0.1
|
||||
# types-annoy>=1.17
|
||||
# types-appdirs>=1.4
|
||||
# types-atomicwrites>=1.4
|
||||
# types-aws-xray-sdk>=2.8
|
||||
# types-babel>=2.9
|
||||
# types-backports-abc>=0.5
|
||||
# types-backports.ssl-match-hostname>=3.7
|
||||
# types-beautifulsoup4>=4.10
|
||||
# types-bleach>=4.1
|
||||
# types-boto>=2.49
|
||||
# types-braintree>=4.11
|
||||
# types-cachetools>=4.2
|
||||
# types-caldav>=0.8
|
||||
# types-certifi>=2020.4
|
||||
# types-characteristic>=14.3
|
||||
# types-chardet>=4.0
|
||||
# types-click>=7.1
|
||||
# types-click-spinner>=0.1
|
||||
# types-colorama>=0.4
|
||||
# types-commonmark>=0.9
|
||||
# types-contextvars>=0.1
|
||||
# types-croniter>=1.0
|
||||
# types-cryptography>=3.3
|
||||
# types-dataclasses>=0.1
|
||||
# types-dateparser>=1.0
|
||||
# types-DateTimeRange>=0.1
|
||||
# types-decorator>=0.1
|
||||
# types-Deprecated>=1.2
|
||||
# types-docopt>=0.6
|
||||
# types-docutils>=0.17
|
||||
# types-editdistance>=0.5
|
||||
# types-emoji>=1.2
|
||||
# types-entrypoints>=0.3
|
||||
# types-enum34>=1.1
|
||||
# types-filelock>=3.2
|
||||
# types-first>=2.0
|
||||
# types-Flask>=1.1
|
||||
# types-freezegun>=1.1
|
||||
# types-frozendict>=0.1
|
||||
# types-futures>=3.3
|
||||
# types-html5lib>=1.1
|
||||
# types-httplib2>=0.19
|
||||
# types-humanfriendly>=9.2
|
||||
# types-ipaddress>=1.0
|
||||
# types-itsdangerous>=1.1
|
||||
# types-JACK-Client>=0.1
|
||||
# types-Jinja2>=2.11
|
||||
# types-jmespath>=0.10
|
||||
# types-jsonschema>=3.2
|
||||
# types-Markdown>=3.3
|
||||
# types-MarkupSafe>=1.1
|
||||
# types-mock>=4.0
|
||||
# types-mypy-extensions>=0.4
|
||||
# types-mysqlclient>=2.0
|
||||
# types-oauthlib>=3.1
|
||||
# types-orjson>=3.6
|
||||
# types-paramiko>=2.7
|
||||
# types-Pillow>=8.3
|
||||
# types-polib>=1.1
|
||||
# types-prettytable>=2.1
|
||||
# types-protobuf>=3.17
|
||||
# types-psutil>=5.8
|
||||
# types-psycopg2>=2.9
|
||||
# types-pyaudio>=0.2
|
||||
# types-pycurl>=0.1
|
||||
# types-pyfarmhash>=0.2
|
||||
# types-Pygments>=2.9
|
||||
# types-PyMySQL>=1.0
|
||||
# types-pyOpenSSL>=20.0
|
||||
# types-pyRFC3339>=0.1
|
||||
# types-pysftp>=0.2
|
||||
# types-pytest-lazy-fixture>=0.6
|
||||
# types-python-dateutil>=2.8
|
||||
# types-python-gflags>=3.1
|
||||
# types-python-nmap>=0.6
|
||||
# types-python-slugify>=5.0
|
||||
# types-pytz>=2021.1
|
||||
# types-pyvmomi>=7.0
|
||||
# types-PyYAML>=5.4
|
||||
# types-redis>=3.5
|
||||
# types-requests>=2.25
|
||||
# types-retry>=0.9
|
||||
# types-selenium>=3.141
|
||||
# types-Send2Trash>=1.8
|
||||
# types-setuptools>=57.4
|
||||
# types-simplejson>=3.17
|
||||
# types-singledispatch>=3.7
|
||||
# types-six>=1.16
|
||||
# types-slumber>=0.7
|
||||
# types-stripe>=2.59
|
||||
# types-tabulate>=0.8
|
||||
# types-termcolor>=1.1
|
||||
# types-toml>=0.10
|
||||
# types-toposort>=1.6
|
||||
# types-ttkthemes>=3.2
|
||||
# types-typed-ast>=1.4
|
||||
# types-tzlocal>=0.1
|
||||
# types-ujson>=0.1
|
||||
# types-vobject>=0.9
|
||||
# types-waitress>=0.1
|
||||
#types-Werkzeug>=1.0
|
||||
#types-xxhash>=2.0
|
||||
typing-extensions>=3.10.0.2
|
||||
Unidecode>=1.3.3
|
||||
urllib3>=1.26.5
|
||||
|
||||
@ -1,106 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
|
||||
from pt_strategy.results import (
|
||||
PairResearchResult,
|
||||
create_result_database,
|
||||
store_config_in_database,
|
||||
)
|
||||
from pt_strategy.research_strategy import PtResearchStrategy
|
||||
from tools.filetools import resolve_datafiles
|
||||
from tools.instruments import get_instruments
|
||||
|
||||
|
||||
def main() -> None:
|
||||
import argparse
|
||||
|
||||
from tools.config import expand_filename, load_config
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||
parser.add_argument(
|
||||
"--config", type=str, required=True, help="Path to the configuration file."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--date_pattern",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Date YYYYMMDD, allows * and ? wildcards",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--instruments",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Comma-separated list of instrument symbols (e.g., COIN:EQUITY,GBTC:CRYPTO)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--result_db",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to SQLite database for storing results. Use 'NONE' to disable database output.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config: Dict = load_config(args.config)
|
||||
|
||||
# Resolve data files (CLI takes priority over config)
|
||||
instruments = get_instruments(args, config)
|
||||
datafiles = resolve_datafiles(config, args.date_pattern, instruments)
|
||||
|
||||
days = list(set([day for day, _ in datafiles]))
|
||||
print(f"Found {len(datafiles)} data files to process:")
|
||||
for df in datafiles:
|
||||
print(f" - {df}")
|
||||
|
||||
# Create result database if needed
|
||||
if args.result_db.upper() != "NONE":
|
||||
args.result_db = expand_filename(args.result_db)
|
||||
create_result_database(args.result_db)
|
||||
|
||||
# Initialize a dictionary to store all trade results
|
||||
all_results: Dict[str, Dict[str, Any]] = {}
|
||||
is_config_stored = False
|
||||
# Process each data file
|
||||
|
||||
results = PairResearchResult(config=config)
|
||||
for day in sorted(days):
|
||||
md_datafiles = [datafile for md_day, datafile in datafiles if md_day == day]
|
||||
if not all([os.path.exists(datafile) for datafile in md_datafiles]):
|
||||
print(f"WARNING: insufficient data files: {md_datafiles}")
|
||||
continue
|
||||
print(f"\n====== Processing {day} ======")
|
||||
|
||||
if not is_config_stored:
|
||||
store_config_in_database(
|
||||
db_path=args.result_db,
|
||||
config_file_path=args.config,
|
||||
config=config,
|
||||
datafiles=datafiles,
|
||||
instruments=instruments,
|
||||
)
|
||||
is_config_stored = True
|
||||
|
||||
pt_strategy = PtResearchStrategy(
|
||||
config=config, datafiles=md_datafiles, instruments=instruments
|
||||
)
|
||||
pt_strategy.run()
|
||||
results.add_day_results(
|
||||
day=day,
|
||||
trades=pt_strategy.day_trades(),
|
||||
outstanding_positions=pt_strategy.outstanding_positions(),
|
||||
)
|
||||
|
||||
|
||||
results.analyze_pair_performance()
|
||||
|
||||
|
||||
if args.result_db.upper() != "NONE":
|
||||
print(f"\nResults stored in database: {args.result_db}")
|
||||
else:
|
||||
print("No results to display.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@ -9,18 +9,19 @@ import pandas as pd
|
||||
|
||||
from tools.config import expand_filename, load_config
|
||||
from tools.data_loader import get_available_instruments_from_db
|
||||
|
||||
from pt_trading.results import (
|
||||
BacktestResult,
|
||||
create_result_database,
|
||||
store_config_in_database,
|
||||
store_results_in_database,
|
||||
)
|
||||
|
||||
from pt_trading.fit_method import PairsTradingFitMethod
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
from research.research_tools import create_pairs, resolve_datafiles
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||
parser.add_argument(
|
||||
File diff suppressed because one or more lines are too long
16
research/notebooks/pt_pair_backtest.ipynb
Normal file
16
research/notebooks/pt_pair_backtest.ipynb
Normal file
@ -0,0 +1,16 @@
|
||||
{
|
||||
"cells": [],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"name": "python",
|
||||
"version": "3.12.5"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
||||
7398
research/notebooks/pt_sliding.ipynb
Normal file
7398
research/notebooks/pt_sliding.ipynb
Normal file
File diff suppressed because one or more lines are too long
6832
research/notebooks/single_pair_test.ipynb
Normal file
6832
research/notebooks/single_pair_test.ipynb
Normal file
File diff suppressed because one or more lines are too long
6685
research/notebooks/single_pair_test_lg.ipynb
Normal file
6685
research/notebooks/single_pair_test_lg.ipynb
Normal file
File diff suppressed because one or more lines are too long
@ -5,7 +5,6 @@ from typing import Dict, List, Optional
|
||||
import pandas as pd
|
||||
from pt_trading.fit_method import PairsTradingFitMethod
|
||||
|
||||
|
||||
def resolve_datafiles(config: Dict, cli_datafiles: Optional[str] = None) -> List[str]:
|
||||
"""
|
||||
Resolve the list of data files to process.
|
||||
221
strategy/pair_strategy.py
Normal file
221
strategy/pair_strategy.py
Normal file
@ -0,0 +1,221 @@
|
||||
import argparse
|
||||
import asyncio
|
||||
import glob
|
||||
import importlib
|
||||
import os
|
||||
from datetime import date, datetime
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import hjson
|
||||
import pandas as pd
|
||||
|
||||
from tools.data_loader import get_available_instruments_from_db, load_market_data
|
||||
from pt_trading.results import (
|
||||
BacktestResult,
|
||||
create_result_database,
|
||||
store_config_in_database,
|
||||
store_results_in_database,
|
||||
)
|
||||
from pt_trading.fit_methods import PairsTradingFitMethod
|
||||
from pt_trading.trading_pair import TradingPair
|
||||
|
||||
|
||||
def run_strategy(
|
||||
config: Dict,
|
||||
datafile: str,
|
||||
fit_method: PairsTradingFitMethod,
|
||||
instruments: List[str],
|
||||
) -> BacktestResult:
|
||||
"""
|
||||
Run backtest for all pairs using the specified instruments.
|
||||
"""
|
||||
bt_result: BacktestResult = BacktestResult(config=config)
|
||||
|
||||
def _create_pairs(config: Dict, instruments: List[str]) -> List[TradingPair]:
|
||||
nonlocal datafile
|
||||
all_indexes = range(len(instruments))
|
||||
unique_index_pairs = [(i, j) for i in all_indexes for j in all_indexes if i < j]
|
||||
pairs = []
|
||||
|
||||
# Update config to use the specified instruments
|
||||
config_copy = config.copy()
|
||||
config_copy["instruments"] = instruments
|
||||
|
||||
market_data_df = load_market_data(
|
||||
datafile=datafile,
|
||||
exchange_id=config_copy["exchange_id"],
|
||||
instruments=config_copy["instruments"],
|
||||
instrument_id_pfx=config_copy["instrument_id_pfx"],
|
||||
db_table_name=config_copy["db_table_name"],
|
||||
trading_hours=config_copy["trading_hours"],
|
||||
)
|
||||
|
||||
for a_index, b_index in unique_index_pairs:
|
||||
pair = fit_method.create_trading_pair(
|
||||
market_data=market_data_df,
|
||||
symbol_a=instruments[a_index],
|
||||
symbol_b=instruments[b_index],
|
||||
)
|
||||
pairs.append(pair)
|
||||
return pairs
|
||||
|
||||
pairs_trades = []
|
||||
for pair in _create_pairs(config, instruments):
|
||||
single_pair_trades = fit_method.run_pair(
|
||||
pair=pair, config=config, bt_result=bt_result
|
||||
)
|
||||
if single_pair_trades is not None and len(single_pair_trades) > 0:
|
||||
pairs_trades.append(single_pair_trades)
|
||||
|
||||
# Check if result_list has any data before concatenating
|
||||
if len(pairs_trades) == 0:
|
||||
print("No trading signals found for any pairs")
|
||||
return bt_result
|
||||
|
||||
result = pd.concat(pairs_trades, ignore_index=True)
|
||||
result["time"] = pd.to_datetime(result["time"])
|
||||
result = result.set_index("time").sort_index()
|
||||
|
||||
bt_result.collect_single_day_results(result)
|
||||
return bt_result
|
||||
|
||||
|
||||
def main() -> None:
|
||||
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||
parser.add_argument(
|
||||
"--config", type=str, required=True, help="Path to the configuration file."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--datafiles",
|
||||
type=str,
|
||||
required=False,
|
||||
help="Comma-separated list of data files (overrides config). No wildcards supported.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--instruments",
|
||||
type=str,
|
||||
required=False,
|
||||
help="Comma-separated list of instrument symbols (e.g., COIN,GBTC). If not provided, auto-detects from database.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--result_db",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to SQLite database for storing results. Use 'NONE' to disable database output.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config: Dict = load_config(args.config)
|
||||
|
||||
# Dynamically instantiate fit method class
|
||||
fit_method_class_name = config.get("fit_method_class", None)
|
||||
assert fit_method_class_name is not None
|
||||
module_name, class_name = fit_method_class_name.rsplit(".", 1)
|
||||
module = importlib.import_module(module_name)
|
||||
fit_method = getattr(module, class_name)()
|
||||
|
||||
# Resolve data files (CLI takes priority over config)
|
||||
datafiles = resolve_datafiles(config, args.datafiles)
|
||||
|
||||
if not datafiles:
|
||||
print("No data files found to process.")
|
||||
return
|
||||
|
||||
print(f"Found {len(datafiles)} data files to process:")
|
||||
for df in datafiles:
|
||||
print(f" - {df}")
|
||||
|
||||
# Create result database if needed
|
||||
if args.result_db.upper() != "NONE":
|
||||
create_result_database(args.result_db)
|
||||
|
||||
# Initialize a dictionary to store all trade results
|
||||
all_results: Dict[str, Dict[str, Any]] = {}
|
||||
|
||||
# Store configuration in database for reference
|
||||
if args.result_db.upper() != "NONE":
|
||||
# Get list of all instruments for storage
|
||||
all_instruments = []
|
||||
for datafile in datafiles:
|
||||
if args.instruments:
|
||||
file_instruments = [
|
||||
inst.strip() for inst in args.instruments.split(",")
|
||||
]
|
||||
else:
|
||||
file_instruments = get_available_instruments_from_db(datafile, config)
|
||||
all_instruments.extend(file_instruments)
|
||||
|
||||
# Remove duplicates while preserving order
|
||||
unique_instruments = list(dict.fromkeys(all_instruments))
|
||||
|
||||
store_config_in_database(
|
||||
db_path=args.result_db,
|
||||
config_file_path=args.config,
|
||||
config=config,
|
||||
fit_method_class=fit_method_class_name,
|
||||
datafiles=datafiles,
|
||||
instruments=unique_instruments,
|
||||
)
|
||||
|
||||
# Process each data file
|
||||
|
||||
for datafile in datafiles:
|
||||
print(f"\n====== Processing {os.path.basename(datafile)} ======")
|
||||
|
||||
# Determine instruments to use
|
||||
if args.instruments:
|
||||
# Use CLI-specified instruments
|
||||
instruments = [inst.strip() for inst in args.instruments.split(",")]
|
||||
print(f"Using CLI-specified instruments: {instruments}")
|
||||
else:
|
||||
# Auto-detect instruments from database
|
||||
instruments = get_available_instruments_from_db(datafile, config)
|
||||
print(f"Auto-detected instruments: {instruments}")
|
||||
|
||||
if not instruments:
|
||||
print(f"No instruments found for {datafile}, skipping...")
|
||||
continue
|
||||
|
||||
# Process data for this file
|
||||
try:
|
||||
fit_method.reset()
|
||||
|
||||
bt_results = run_strategy(
|
||||
config=config,
|
||||
datafile=datafile,
|
||||
fit_method=fit_method,
|
||||
instruments=instruments,
|
||||
)
|
||||
|
||||
# Store results with file name as key
|
||||
filename = os.path.basename(datafile)
|
||||
all_results[filename] = {"trades": bt_results.trades.copy()}
|
||||
|
||||
# Store results in database
|
||||
if args.result_db.upper() != "NONE":
|
||||
store_results_in_database(args.result_db, datafile, bt_results)
|
||||
|
||||
print(f"Successfully processed {filename}")
|
||||
|
||||
except Exception as err:
|
||||
print(f"Error processing {datafile}: {str(err)}")
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
# Calculate and print results using a new BacktestResult instance for aggregation
|
||||
if all_results:
|
||||
aggregate_bt_results = BacktestResult(config=config)
|
||||
aggregate_bt_results.calculate_returns(all_results)
|
||||
aggregate_bt_results.print_grand_totals()
|
||||
aggregate_bt_results.print_outstanding_positions()
|
||||
|
||||
if args.result_db.upper() != "NONE":
|
||||
print(f"\nResults stored in database: {args.result_db}")
|
||||
else:
|
||||
print("No results to display.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(main())
|
||||
@ -1,111 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
from typing import Any, Dict
|
||||
|
||||
from pt_strategy.results import (PairResearchResult, create_result_database,
|
||||
store_config_in_database)
|
||||
from pt_strategy.research_strategy import PtResearchStrategy
|
||||
from tools.filetools import resolve_datafiles
|
||||
from tools.instruments import get_instruments
|
||||
from tools.viz.viz_trades import visualize_trades
|
||||
|
||||
|
||||
def main() -> None:
|
||||
import argparse
|
||||
|
||||
from tools.config import expand_filename, load_config
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run pairs trading backtest.")
|
||||
parser.add_argument(
|
||||
"--config", type=str, required=True, help="Path to the configuration file."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--date_pattern",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Date YYYYMMDD, allows * and ? wildcards",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--instruments",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Comma-separated list of instrument symbols (e.g., COIN:EQUITY,GBTC:CRYPTO)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--result_db",
|
||||
type=str,
|
||||
required=False,
|
||||
default="NONE",
|
||||
help="Path to SQLite database for storing results. Use 'NONE' to disable database output.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config: Dict = load_config(args.config)
|
||||
|
||||
# Resolve data files (CLI takes priority over config)
|
||||
instruments = get_instruments(args, config)
|
||||
datafiles = resolve_datafiles(config, args.date_pattern, instruments)
|
||||
|
||||
days = list(set([day for day, _ in datafiles]))
|
||||
print(f"Found {len(datafiles)} data files to process:")
|
||||
for df in datafiles:
|
||||
print(f" - {df}")
|
||||
|
||||
# Create result database if needed
|
||||
if args.result_db.upper() != "NONE":
|
||||
args.result_db = expand_filename(args.result_db)
|
||||
create_result_database(args.result_db)
|
||||
|
||||
# Initialize a dictionary to store all trade results
|
||||
all_results: Dict[str, Dict[str, Any]] = {}
|
||||
is_config_stored = False
|
||||
# Process each data file
|
||||
|
||||
results = PairResearchResult(config=config)
|
||||
for day in sorted(days):
|
||||
md_datafiles = [datafile for md_day, datafile in datafiles if md_day == day]
|
||||
if not all([os.path.exists(datafile) for datafile in md_datafiles]):
|
||||
print(f"WARNING: insufficient data files: {md_datafiles}")
|
||||
continue
|
||||
print(f"\n====== Processing {day} ======")
|
||||
|
||||
if not is_config_stored:
|
||||
store_config_in_database(
|
||||
db_path=args.result_db,
|
||||
config_file_path=args.config,
|
||||
config=config,
|
||||
datafiles=datafiles,
|
||||
instruments=instruments,
|
||||
)
|
||||
is_config_stored = True
|
||||
|
||||
pt_strategy = PtResearchStrategy(
|
||||
config=config, datafiles=md_datafiles, instruments=instruments
|
||||
)
|
||||
pt_strategy.run()
|
||||
results.add_day_results(
|
||||
day=day,
|
||||
trades=pt_strategy.day_trades(),
|
||||
outstanding_positions=pt_strategy.outstanding_positions(),
|
||||
)
|
||||
|
||||
|
||||
results.analyze_pair_performance()
|
||||
|
||||
|
||||
visualize_trades(pt_strategy, results, day)
|
||||
|
||||
|
||||
if args.result_db.upper() != "NONE":
|
||||
print(f"\nResults stored in database: {args.result_db}")
|
||||
else:
|
||||
print("No results to display.")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
x
Reference in New Issue
Block a user