from __future__ import annotations from dataclasses import dataclass from typing import Any, Dict, List, Optional import pandas as pd from cvttpy_tools.settings.cvtt_types import JsonDictT from cvttpy_tools.tools.base import NamedObject from cvttpy_tools.tools.logger import Log from pt_strategy.live.ti_sender import TradingInstructionsSender from pt_strategy.model_data_policy import ModelDataPolicy from pt_strategy.pt_market_data import RealTimeMarketData from pt_strategy.pt_model import Prediction from pt_strategy.trading_pair import PairState, TradingPair """ --config=pair.cfg --pair=PAIR-BTC-USDT:COINBASE_AT,PAIR-ETH-USDT:COINBASE_AT """ class TradingInstructionType(Enum): TARGET_POSITION = "TARGET_POSITION" @dataclass class TradingInstruction(NamedObject): type_: TradingInstructionType exch_instr_: ExchangeInstrument specifics_: Dict[str, Any] class PtLiveStrategy(NamedObject): config_: Dict[str, Any] trading_pair_: TradingPair model_data_policy_: ModelDataPolicy pt_mkt_data_: RealTimeMarketData ti_sender_: TradingInstructionsSender # for presentation: history of prediction values and trading signals predictions_: pd.DataFrame trading_signals_: pd.DataFrame def __init__( self, config: Dict[str, Any], instruments: List[Dict[str, str]], ti_sender: TradingInstructionsSender, ): self.config_ = config self.trading_pair_ = TradingPair(config=config, instruments=instruments) self.predictions_ = pd.DataFrame() self.trading_signals_ = pd.DataFrame() self.ti_sender_ = ti_sender import copy # modified config must be passed to PtMarketData config_copy = copy.deepcopy(config) config_copy["instruments"] = instruments self.pt_mkt_data_ = RealTimeMarketData(config=config_copy) self.model_data_policy_ = ModelDataPolicy.create( config, is_real_time=True, pair=self.trading_pair_ ) self.open_threshold_ = self.config_.get("dis-equilibrium_open_trshld", 0.0) assert self.open_threshold_ > 0, "open_threshold must be greater than 0" self.close_threshold_ = self.config_.get("dis-equilibrium_close_trshld", 0.0) assert self.close_threshold_ > 0, "close_threshold must be greater than 0" def __repr__(self) -> str: return f"{self.classname()}: trading_pair={self.trading_pair_}, mdp={self.model_data_policy_.__class__.__name__}, " async def on_mkt_data_hist_snapshot(self, aggr: JsonDictT) -> None: Log.info(f"on_mkt_data_hist_snapshot: {aggr}") await self.pt_mkt_data_.on_mkt_data_hist_snapshot(snapshot=aggr) pass async def on_mkt_data_update(self, aggr: JsonDictT) -> None: market_data_df = await self.pt_mkt_data_.on_mkt_data_update(update=aggr) if market_data_df is not None: self.trading_pair_.market_data_ = market_data_df self.model_data_policy_.advance() prediction = self.trading_pair_.run( market_data_df, self.model_data_policy_.advance() ) self.predictions_ = pd.concat( [self.predictions_, prediction.to_df()], ignore_index=True ) trading_instructions: List[TradingInstruction] = ( self._create_trading_instructions( prediction=prediction, last_row=market_data_df.iloc[-1] ) ) if len(trading_instructions) > 0: await self._send_trading_instructions(trading_instructions) # trades = self._create_trades(prediction=prediction, last_row=market_data_df.iloc[-1]) # URGENT implement this pass async def _send_trading_instructions( self, trading_instructions: pd.DataFrame ) -> None: pass def _create_trading_instructions( self, prediction: Prediction, last_row: pd.Series ) -> List[TradingInstruction]: pair = self.trading_pair_ trd_instructions: List[TradingInstruction] = [] scaled_disequilibrium = prediction.scaled_disequilibrium_ abs_scaled_disequilibrium = abs(scaled_disequilibrium) if pair.is_closed(): if abs_scaled_disequilibrium >= self.open_threshold_: trd_instructions = self._create_open_trade_instructions( pair, row=last_row, prediction=prediction ) elif pair.is_open(): if abs_scaled_disequilibrium <= self.close_threshold_: trd_instructions = self._create_close_trade_instructions( pair, row=last_row, prediction=prediction ) elif pair.to_stop_close_conditions(predicted_row=last_row): trd_instructions = self._create_close_trade_instructions( pair, row=last_row ) return trd_instructions def _create_open_trade_instructions( self, pair: TradingPair, row: pd.Series, prediction: Prediction ) -> List[TradingInstruction]: scaled_disequilibrium = prediction.scaled_disequilibrium_ if scaled_disequilibrium > 0: side_a = "SELL" trd_inst_a = TradingInstruction( type=TradingInstructionType.TARGET_POSITION, exch_instr=pair.get_instrument_a(), specifics={"side": "SELL", "strength": -1}, ) side_b = "BUY" else: side_a = "BUY" side_b = "SELL" # save closing sides pair.user_data_["open_side_a"] = side_a # used in oustanding positions pair.user_data_["open_side_b"] = side_b pair.user_data_["open_px_a"] = px_a pair.user_data_["open_px_b"] = px_b pair.user_data_["open_tstamp"] = tstamp pair.user_data_["close_side_a"] = side_b # used for closing trades pair.user_data_["close_side_b"] = side_a # create opening trades df.loc[len(df)] = { "time": tstamp, "symbol": pair.symbol_a_, "side": side_a, "action": "OPEN", "price": px_a, "disequilibrium": diseqlbrm, "signed_scaled_disequilibrium": scaled_disequilibrium, "scaled_disequilibrium": abs(scaled_disequilibrium), # "pair": pair, } df.loc[len(df)] = { "time": tstamp, "symbol": pair.symbol_b_, "side": side_b, "action": "OPEN", "price": px_b, "disequilibrium": diseqlbrm, "scaled_disequilibrium": abs(scaled_disequilibrium), "signed_scaled_disequilibrium": scaled_disequilibrium, # "pair": pair, } return df def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]: trades = None pair = self.trading_pair_ # Outstanding positions if pair.user_data_["state"] == PairState.OPEN: print(f"{pair}: *** Position is NOT CLOSED. ***") # outstanding positions if self.config_["close_outstanding_positions"]: close_position_row = pd.Series(pair.market_data_.iloc[-2]) # close_position_row["disequilibrium"] = 0.0 # close_position_row["scaled_disequilibrium"] = 0.0 # close_position_row["signed_scaled_disequilibrium"] = 0.0 trades = self._create_close_trades( pair=pair, row=close_position_row, prediction=None ) if trades is not None: trades["status"] = PairState.CLOSE_POSITION.name print(f"CLOSE_POSITION TRADES:\n{trades}") pair.user_data_["state"] = PairState.CLOSE_POSITION pair.on_close_trades(trades) else: pair.add_outstanding_position( symbol=pair.symbol_a_, open_side=pair.user_data_["open_side_a"], open_px=pair.user_data_["open_px_a"], open_tstamp=pair.user_data_["open_tstamp"], last_mkt_data_row=pair.market_data_.iloc[-1], ) pair.add_outstanding_position( symbol=pair.symbol_b_, open_side=pair.user_data_["open_side_b"], open_px=pair.user_data_["open_px_b"], open_tstamp=pair.user_data_["open_tstamp"], last_mkt_data_row=pair.market_data_.iloc[-1], ) return trades def _trades_df(self) -> pd.DataFrame: types = { "time": "datetime64[ns]", "action": "string", "symbol": "string", "side": "string", "price": "float64", "disequilibrium": "float64", "scaled_disequilibrium": "float64", "signed_scaled_disequilibrium": "float64", # "pair": "object", } columns = list(types.keys()) return pd.DataFrame(columns=columns).astype(types) def _create_open_trades( self, pair: TradingPair, row: pd.Series, prediction: Prediction ) -> Optional[pd.DataFrame]: colname_a, colname_b = pair.exec_prices_colnames() tstamp = row["tstamp"] diseqlbrm = prediction.disequilibrium_ scaled_disequilibrium = prediction.scaled_disequilibrium_ px_a = row[f"{colname_a}"] px_b = row[f"{colname_b}"] # creating the trades df = self._trades_df() print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}") if diseqlbrm > 0: side_a = "SELL" side_b = "BUY" else: side_a = "BUY" side_b = "SELL" # save closing sides pair.user_data_["open_side_a"] = side_a # used in oustanding positions pair.user_data_["open_side_b"] = side_b pair.user_data_["open_px_a"] = px_a pair.user_data_["open_px_b"] = px_b pair.user_data_["open_tstamp"] = tstamp pair.user_data_["close_side_a"] = side_b # used for closing trades pair.user_data_["close_side_b"] = side_a # create opening trades df.loc[len(df)] = { "time": tstamp, "symbol": pair.symbol_a_, "side": side_a, "action": "OPEN", "price": px_a, "disequilibrium": diseqlbrm, "signed_scaled_disequilibrium": scaled_disequilibrium, "scaled_disequilibrium": abs(scaled_disequilibrium), # "pair": pair, } df.loc[len(df)] = { "time": tstamp, "symbol": pair.symbol_b_, "side": side_b, "action": "OPEN", "price": px_b, "disequilibrium": diseqlbrm, "scaled_disequilibrium": abs(scaled_disequilibrium), "signed_scaled_disequilibrium": scaled_disequilibrium, # "pair": pair, } return df def _create_close_trades( self, pair: TradingPair, row: pd.Series, prediction: Optional[Prediction] = None ) -> Optional[pd.DataFrame]: colname_a, colname_b = pair.exec_prices_colnames() tstamp = row["tstamp"] if prediction is not None: diseqlbrm = prediction.disequilibrium_ signed_scaled_disequilibrium = prediction.scaled_disequilibrium_ scaled_disequilibrium = abs(prediction.scaled_disequilibrium_) else: diseqlbrm = 0.0 signed_scaled_disequilibrium = 0.0 scaled_disequilibrium = 0.0 px_a = row[f"{colname_a}"] px_b = row[f"{colname_b}"] # creating the trades df = self._trades_df() # create opening trades df.loc[len(df)] = { "time": tstamp, "symbol": pair.symbol_a_, "side": pair.user_data_["close_side_a"], "action": "CLOSE", "price": px_a, "disequilibrium": diseqlbrm, "scaled_disequilibrium": scaled_disequilibrium, "signed_scaled_disequilibrium": signed_scaled_disequilibrium, # "pair": pair, } df.loc[len(df)] = { "time": tstamp, "symbol": pair.symbol_b_, "side": pair.user_data_["close_side_b"], "action": "CLOSE", "price": px_b, "disequilibrium": diseqlbrm, "scaled_disequilibrium": scaled_disequilibrium, "signed_scaled_disequilibrium": signed_scaled_disequilibrium, # "pair": pair, } del pair.user_data_["close_side_a"] del pair.user_data_["close_side_b"] del pair.user_data_["open_tstamp"] del pair.user_data_["open_px_a"] del pair.user_data_["open_px_b"] del pair.user_data_["open_side_a"] del pair.user_data_["open_side_b"] return df