from abc import ABC, abstractmethod from enum import Enum from typing import Dict, Optional, cast import pandas as pd # type: ignore[import] from pt_trading.results import BacktestResult from pt_trading.trading_pair import TradingPair from pt_trading.fit_method import PairsTradingFitMethod NanoPerMin = 1e9 class StaticFit(PairsTradingFitMethod): def run_pair( self, config: Dict, pair: TradingPair, bt_result: BacktestResult ) -> Optional[pd.DataFrame]: # abstractmethod pair.get_datasets(training_minutes=config["training_minutes"]) try: is_cointegrated = pair.train_pair() if not is_cointegrated: print(f"{pair} IS NOT COINTEGRATED") return None except Exception as e: print(f"{pair}: Training failed: {str(e)}") return None try: pair.predict() except Exception as e: print(f"{pair}: Prediction failed: {str(e)}") return None pair_trades = self.create_trading_signals( pair=pair, config=config, result=bt_result ) return pair_trades def create_trading_signals( self, pair: TradingPair, config: Dict, result: BacktestResult ) -> pd.DataFrame: beta = pair.vecm_fit_.beta # type: ignore colname_a, colname_b = pair.colnames() predicted_df = pair.predicted_df_ if predicted_df is None: # Return empty DataFrame with correct columns and dtypes return pd.DataFrame(columns=self.TRADES_COLUMNS).astype({ "time": "datetime64[ns]", "action": "string", "symbol": "string", "price": "float64", "disequilibrium": "float64", "scaled_disequilibrium": "float64", "pair": "object" }) open_threshold = config["dis-equilibrium_open_trshld"] close_threshold = config["dis-equilibrium_close_trshld"] # Iterate through the testing dataset to find the first trading opportunity open_row_index = None for row_idx in range(len(predicted_df)): curr_disequilibrium = predicted_df["scaled_disequilibrium"][row_idx] # Check if current row has sufficient disequilibrium (not near-zero) if curr_disequilibrium >= open_threshold: open_row_index = row_idx break # If no row with sufficient disequilibrium found, skip this pair if open_row_index is None: print(f"{pair}: Insufficient disequilibrium in testing dataset. Skipping.") return pd.DataFrame() # Look for close signal starting from the open position trading_signals_df = ( predicted_df["scaled_disequilibrium"][open_row_index:] < close_threshold ) # Adjust indices to account for the offset from open_row_index close_row_index = None for idx, value in trading_signals_df.items(): if value: close_row_index = idx break open_row = predicted_df.loc[open_row_index] open_px_a = predicted_df.at[open_row_index, f"{colname_a}"] open_px_b = predicted_df.at[open_row_index, f"{colname_b}"] open_tstamp = predicted_df.at[open_row_index, "tstamp"] open_disequilibrium = open_row["disequilibrium"] open_scaled_disequilibrium = open_row["scaled_disequilibrium"] abs_beta = abs(beta[1]) pred_px_b = predicted_df.loc[open_row_index][f"{colname_b}_pred"] pred_px_a = predicted_df.loc[open_row_index][f"{colname_a}_pred"] if pred_px_b * abs_beta - pred_px_a > 0: open_side_a = "BUY" open_side_b = "SELL" close_side_a = "SELL" close_side_b = "BUY" else: open_side_b = "BUY" open_side_a = "SELL" close_side_b = "SELL" close_side_a = "BUY" # If no close signal found, print position and unrealized PnL if close_row_index is None: last_row_index = len(predicted_df) - 1 # Use the new method from BacktestResult to handle outstanding positions result.handle_outstanding_position( pair=pair, pair_result_df=predicted_df, last_row_index=last_row_index, open_side_a=open_side_a, open_side_b=open_side_b, open_px_a=float(open_px_a), open_px_b=float(open_px_b), open_tstamp=pd.Timestamp(open_tstamp), ) # Return only open trades (no close trades) trd_signal_tuples = [ ( open_tstamp, open_side_a, pair.symbol_a_, open_px_a, open_disequilibrium, open_scaled_disequilibrium, pair, ), ( open_tstamp, open_side_b, pair.symbol_b_, open_px_b, open_disequilibrium, open_scaled_disequilibrium, pair, ), ] else: # Close signal found - create complete trade close_row = predicted_df.loc[close_row_index] close_tstamp = close_row["tstamp"] close_disequilibrium = close_row["disequilibrium"] close_scaled_disequilibrium = close_row["scaled_disequilibrium"] close_px_a = close_row[f"{colname_a}"] close_px_b = close_row[f"{colname_b}"] print(f"{pair}: Close signal found at index {close_row_index}") trd_signal_tuples = [ ( open_tstamp, open_side_a, pair.symbol_a_, open_px_a, open_disequilibrium, open_scaled_disequilibrium, pair, ), ( open_tstamp, open_side_b, pair.symbol_b_, open_px_b, open_disequilibrium, open_scaled_disequilibrium, pair, ), ( close_tstamp, close_side_a, pair.symbol_a_, close_px_a, close_disequilibrium, close_scaled_disequilibrium, pair, ), ( close_tstamp, close_side_b, pair.symbol_b_, close_px_b, close_disequilibrium, close_scaled_disequilibrium, pair, ), ] # Add tuples to data frame with explicit dtypes to avoid concatenation warnings df = pd.DataFrame( trd_signal_tuples, columns=self.TRADES_COLUMNS, ) # Ensure consistent dtypes return df.astype({ "time": "datetime64[ns]", "action": "string", "symbol": "string", "price": "float64", "disequilibrium": "float64", "scaled_disequilibrium": "float64", "pair": "object" }) def reset(self) -> None: pass