pairs_trading/lib/tools/viz/viz_prices.py
2025-07-30 20:11:25 +00:00

80 lines
3.0 KiB
Python

from pt_strategy.trading_strategy import PtResearchStrategy
def visualize_prices(strategy: PtResearchStrategy, trading_date: str) -> None:
# Plot raw price data
import matplotlib.pyplot as plt
# Set plotting style
import seaborn as sns
pair = strategy.trading_pair_
SYMBOL_A = pair.symbol_a_
SYMBOL_B = pair.symbol_b_
TRD_DATE = f"{trading_date[0:4]}-{trading_date[4:6]}-{trading_date[6:8]}"
plt.style.use('seaborn-v0_8')
sns.set_palette("husl")
plt.rcParams['figure.figsize'] = (15, 10)
# Get column names for the trading pair
colname_a, colname_b = pair.colnames()
price_data = strategy.pt_mkt_data_.market_data_df_.copy()
# Create separate subplots for better visibility
fig_price, price_axes = plt.subplots(2, 1, figsize=(18, 10))
# Plot SYMBOL_A
price_axes[0].plot(price_data['tstamp'], price_data[colname_a], alpha=0.7,
label=f'{SYMBOL_A}', linewidth=1, color='blue')
price_axes[0].set_title(f'{SYMBOL_A} Price Data ({TRD_DATE})')
price_axes[0].set_ylabel(f'{SYMBOL_A} Price')
price_axes[0].legend()
price_axes[0].grid(True)
# Plot SYMBOL_B
price_axes[1].plot(price_data['tstamp'], price_data[colname_b], alpha=0.7,
label=f'{SYMBOL_B}', linewidth=1, color='red')
price_axes[1].set_title(f'{SYMBOL_B} Price Data ({TRD_DATE})')
price_axes[1].set_ylabel(f'{SYMBOL_B} Price')
price_axes[1].set_xlabel('Time')
price_axes[1].legend()
price_axes[1].grid(True)
plt.tight_layout()
plt.show()
# Plot individual prices
fig, axes = plt.subplots(2, 1, figsize=(18, 12))
# Normalized prices for comparison
norm_a = price_data[colname_a] / price_data[colname_a].iloc[0]
norm_b = price_data[colname_b] / price_data[colname_b].iloc[0]
axes[0].plot(price_data['tstamp'], norm_a, label=f'{SYMBOL_A} (normalized)', alpha=0.8, linewidth=1)
axes[0].plot(price_data['tstamp'], norm_b, label=f'{SYMBOL_B} (normalized)', alpha=0.8, linewidth=1)
axes[0].set_title(f'Normalized Price Comparison (Base = 1.0) ({TRD_DATE})')
axes[0].set_ylabel('Normalized Price')
axes[0].legend()
axes[0].grid(True)
# Price ratio
price_ratio = price_data[colname_a] / price_data[colname_b]
axes[1].plot(price_data['tstamp'], price_ratio, label=f'{SYMBOL_A}/{SYMBOL_B} Ratio', color='green', alpha=0.8, linewidth=1)
axes[1].set_title(f'Price Ratio Px({SYMBOL_A})/Px({SYMBOL_B}) ({TRD_DATE})')
axes[1].set_ylabel('Ratio')
axes[1].set_xlabel('Time')
axes[1].legend()
axes[1].grid(True)
plt.tight_layout()
plt.show()
# Print basic statistics
print(f"\nPrice Statistics:")
print(f" {SYMBOL_A}: Mean=${price_data[colname_a].mean():.2f}, Std=${price_data[colname_a].std():.2f}")
print(f" {SYMBOL_B}: Mean=${price_data[colname_b].mean():.2f}, Std=${price_data[colname_b].std():.2f}")
print(f" Price Ratio: Mean={price_ratio.mean():.2f}, Std={price_ratio.std():.2f}")
print(f" Correlation: {price_data[colname_a].corr(price_data[colname_b]):.4f}")