pairs_trading/lib/tools/viz/viz_trades.py
2025-07-30 20:11:25 +00:00

508 lines
20 KiB
Python

from __future__ import annotations
import os
from typing import Any, Dict
from pt_strategy.results import (PairResearchResult, create_result_database,
store_config_in_database)
from pt_strategy.trading_strategy import PtResearchStrategy
from tools.filetools import resolve_datafiles
from tools.instruments import get_instruments
def visualize_trades(strategy: PtResearchStrategy, results: PairResearchResult, trading_date: str) -> None:
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import plotly.offline as pyo
from IPython.display import HTML
from plotly.subplots import make_subplots
pair = strategy.trading_pair_
trades = results.trades_[trading_date].copy()
origin_mkt_data_df = strategy.pt_mkt_data_.origin_mkt_data_df_
mkt_data_df = strategy.pt_mkt_data_.market_data_df_
TRD_DATE = f"{trading_date[0:4]}-{trading_date[4:6]}-{trading_date[6:8]}"
SYMBOL_A = pair.symbol_a_
SYMBOL_B = pair.symbol_b_
print(f"\nCreated trading pair: {pair}")
print(f"Market data shape: {pair.market_data_.shape}")
print(f"Column names: {pair.colnames()}")
# Configure plotly for offline mode
pyo.init_notebook_mode(connected=True)
# Strategy-specific interactive visualization
assert strategy.config_ is not None
print("=== SLIDING FIT INTERACTIVE VISUALIZATION ===")
print("Note: Rolling Fit strategy visualization with interactive plotly charts")
# Create consistent timeline - superset of timestamps from both dataframes
all_timestamps = sorted(set(mkt_data_df['tstamp']))
# Create a unified timeline dataframe for consistent plotting
timeline_df = pd.DataFrame({'tstamp': all_timestamps})
# Merge with predicted data to get dis-equilibrium values
timeline_df = timeline_df.merge(strategy.predictions_[['tstamp', 'disequilibrium', 'scaled_disequilibrium', 'signed_scaled_disequilibrium']],
on='tstamp', how='left')
# Get Symbol_A and Symbol_B market data
colname_a, colname_b = pair.colnames()
symbol_a_data = mkt_data_df[['tstamp', colname_a]].copy()
symbol_b_data = mkt_data_df[['tstamp', colname_b]].copy()
norm_a = symbol_a_data[colname_a] / symbol_a_data[colname_a].iloc[0]
norm_b = symbol_b_data[colname_b] / symbol_b_data[colname_b].iloc[0]
print(f"Using consistent timeline with {len(timeline_df)} timestamps")
print(f"Timeline range: {timeline_df['tstamp'].min()} to {timeline_df['tstamp'].max()}")
# Create subplots with price charts at bottom
fig = make_subplots(
rows=4, cols=1,
row_heights=[0.3, 0.4, 0.15, 0.15],
subplot_titles=[
f'Dis-equilibrium with Trading Thresholds ({TRD_DATE})',
f'Normalized Price Comparison with BUY/SELL Signals - {SYMBOL_A}&{SYMBOL_B} ({TRD_DATE})',
f'{SYMBOL_A} Market Data with Trading Signals ({TRD_DATE})',
f'{SYMBOL_B} Market Data with Trading Signals ({TRD_DATE})',
],
vertical_spacing=0.06,
specs=[[{"secondary_y": False}],
[{"secondary_y": False}],
[{"secondary_y": False}],
[{"secondary_y": False}]]
)
# 1. Scaled dis-equilibrium with thresholds - using consistent timeline
fig.add_trace(
go.Scatter(
x=timeline_df['tstamp'],
y=timeline_df['scaled_disequilibrium'],
name='Absolute Scaled Dis-equilibrium',
line=dict(color='green', width=2),
opacity=0.8
),
row=1, col=1
)
fig.add_trace(
go.Scatter(
x=timeline_df['tstamp'],
y=timeline_df['signed_scaled_disequilibrium'],
name='Scaled Dis-equilibrium',
line=dict(color='darkmagenta', width=2),
opacity=0.8
),
row=1, col=1
)
# Add threshold lines to first subplot
fig.add_shape(
type="line",
x0=timeline_df['tstamp'].min(),
x1=timeline_df['tstamp'].max(),
y0=strategy.config_['dis-equilibrium_open_trshld'],
y1=strategy.config_['dis-equilibrium_open_trshld'],
line=dict(color="purple", width=2, dash="dot"),
opacity=0.7,
row=1, col=1
)
fig.add_shape(
type="line",
x0=timeline_df['tstamp'].min(),
x1=timeline_df['tstamp'].max(),
y0=-strategy.config_['dis-equilibrium_open_trshld'],
y1=-strategy.config_['dis-equilibrium_open_trshld'],
line=dict(color="purple", width=2, dash="dot"),
opacity=0.7,
row=1, col=1
)
fig.add_shape(
type="line",
x0=timeline_df['tstamp'].min(),
x1=timeline_df['tstamp'].max(),
y0=strategy.config_['dis-equilibrium_close_trshld'],
y1=strategy.config_['dis-equilibrium_close_trshld'],
line=dict(color="brown", width=2, dash="dot"),
opacity=0.7,
row=1, col=1
)
fig.add_shape(
type="line",
x0=timeline_df['tstamp'].min(),
x1=timeline_df['tstamp'].max(),
y0=-strategy.config_['dis-equilibrium_close_trshld'],
y1=-strategy.config_['dis-equilibrium_close_trshld'],
line=dict(color="brown", width=2, dash="dot"),
opacity=0.7,
row=1, col=1
)
fig.add_shape(
type="line",
x0=timeline_df['tstamp'].min(),
x1=timeline_df['tstamp'].max(),
y0=0,
y1=0,
line=dict(color="black", width=1, dash="solid"),
opacity=0.5,
row=1, col=1
)
# Add normalized price lines
fig.add_trace(
go.Scatter(
x=mkt_data_df['tstamp'],
y=norm_a,
name=f'{SYMBOL_A} (Normalized)',
line=dict(color='blue', width=2),
opacity=0.8
),
row=2, col=1
)
fig.add_trace(
go.Scatter(
x=mkt_data_df['tstamp'],
y=norm_b,
name=f'{SYMBOL_B} (Normalized)',
line=dict(color='orange', width=2),
opacity=0.8,
),
row=2, col=1
)
# Add BUY and SELL signals if available
if trades is not None and len(trades) > 0:
# Define signal groups to avoid legend repetition
signal_groups = {}
# Process all trades and group by signal type (ignore OPEN/CLOSE status)
for _, trade in trades.iterrows():
symbol = trade['symbol']
side = trade['side']
# status = trade['status']
action = trade['action']
# Create signal group key (without status to combine OPEN/CLOSE)
signal_key = f"{symbol} {side} {action}"
# Find normalized price for this trade
trade_time = trade['time']
if symbol == SYMBOL_A:
closest_idx = mkt_data_df['tstamp'].searchsorted(trade_time)
if closest_idx < len(norm_a):
norm_price = norm_a.iloc[closest_idx]
else:
norm_price = norm_a.iloc[-1]
else: # SYMBOL_B
closest_idx = mkt_data_df['tstamp'].searchsorted(trade_time)
if closest_idx < len(norm_b):
norm_price = norm_b.iloc[closest_idx]
else:
norm_price = norm_b.iloc[-1]
# Initialize group if not exists
if signal_key not in signal_groups:
signal_groups[signal_key] = {
'times': [],
'prices': [],
'actual_prices': [],
'symbol': symbol,
'side': side,
# 'status': status,
'action': trade['action']
}
# Add to group
signal_groups[signal_key]['times'].append(trade_time)
signal_groups[signal_key]['prices'].append(norm_price)
signal_groups[signal_key]['actual_prices'].append(trade['price'])
# Add each signal group as a single trace
for signal_key, group_data in signal_groups.items():
symbol = group_data['symbol']
side = group_data['side']
# status = group_data['status']
# Determine marker properties (same for all OPEN/CLOSE of same side)
is_close: bool = (group_data['action'] == "CLOSE")
if 'BUY' in side:
marker_color = 'green'
marker_symbol = 'triangle-up'
marker_size = 14
else: # SELL
marker_color = 'red'
marker_symbol = 'triangle-down'
marker_size = 14
# Create hover text for each point in the group
hover_texts = []
for i, (time, norm_price, actual_price) in enumerate(zip(group_data['times'],
group_data['prices'],
group_data['actual_prices'])):
# Find the corresponding trade to get the status for hover text
trade_info = trades[(trades['time'] == time) &
(trades['symbol'] == symbol) &
(trades['side'] == side)]
if len(trade_info) > 0:
action = trade_info.iloc[0]['action']
hover_texts.append(f'<b>{signal_key} {action}</b><br>' +
f'Time: {time}<br>' +
f'Normalized Price: {norm_price:.4f}<br>' +
f'Actual Price: ${actual_price:.2f}')
else:
hover_texts.append(f'<b>{signal_key}</b><br>' +
f'Time: {time}<br>' +
f'Normalized Price: {norm_price:.4f}<br>' +
f'Actual Price: ${actual_price:.2f}')
fig.add_trace(
go.Scatter(
x=group_data['times'],
y=group_data['prices'],
mode='markers',
name=signal_key,
marker=dict(
color=marker_color,
size=marker_size,
symbol=marker_symbol,
line=dict(width=2, color='black') if is_close else None
),
showlegend=True,
hovertemplate='%{text}<extra></extra>',
text=hover_texts
),
row=2, col=1
)
# -----------------------------
fig.add_trace(
go.Scatter(
x=symbol_a_data['tstamp'],
y=symbol_a_data[colname_a],
name=f'{SYMBOL_A} Price',
line=dict(color='blue', width=2),
opacity=0.8
),
row=3, col=1
)
# Filter trades for Symbol_A
symbol_a_trades = trades[trades['symbol'] == SYMBOL_A]
print(f"\nSymbol_A trades:\n{symbol_a_trades}")
if len(symbol_a_trades) > 0:
# Separate trades by action and status for different colors
buy_open_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('BUY', na=False)) &
(symbol_a_trades['action'].str.contains('OPEN', na=False))]
buy_close_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('BUY', na=False)) &
(symbol_a_trades['action'].str.contains('CLOSE', na=False))]
sell_open_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('SELL', na=False)) &
(symbol_a_trades['action'].str.contains('OPEN', na=False))]
sell_close_trades = symbol_a_trades[(symbol_a_trades['side'].str.contains('SELL', na=False)) &
(symbol_a_trades['action'].str.contains('CLOSE', na=False))]
# Add BUY OPEN signals
if len(buy_open_trades) > 0:
fig.add_trace(
go.Scatter(
x=buy_open_trades['time'],
y=buy_open_trades['price'],
mode='markers',
name=f'{SYMBOL_A} BUY OPEN',
marker=dict(color='green', size=12, symbol='triangle-up'),
showlegend=True
),
row=3, col=1
)
# Add BUY CLOSE signals
if len(buy_close_trades) > 0:
fig.add_trace(
go.Scatter(
x=buy_close_trades['time'],
y=buy_close_trades['price'],
mode='markers',
name=f'{SYMBOL_A} BUY CLOSE',
marker=dict(color='green', size=12, symbol='triangle-up'),
line=dict(width=2, color='black'),
showlegend=True
),
row=3, col=1
)
# Add SELL OPEN signals
if len(sell_open_trades) > 0:
fig.add_trace(
go.Scatter(
x=sell_open_trades['time'],
y=sell_open_trades['price'],
mode='markers',
name=f'{SYMBOL_A} SELL OPEN',
marker=dict(color='red', size=12, symbol='triangle-down'),
showlegend=True
),
row=3, col=1
)
# Add SELL CLOSE signals
if len(sell_close_trades) > 0:
fig.add_trace(
go.Scatter(
x=sell_close_trades['time'],
y=sell_close_trades['price'],
mode='markers',
name=f'{SYMBOL_A} SELL CLOSE',
marker=dict(color='red', size=12, symbol='triangle-down'),
line=dict(width=2, color='black'),
showlegend=True
),
row=3, col=1
)
# 4. Symbol_B Market Data with Trading Signals
fig.add_trace(
go.Scatter(
x=symbol_b_data['tstamp'],
y=symbol_b_data[colname_b],
name=f'{SYMBOL_B} Price',
line=dict(color='orange', width=2),
opacity=0.8
),
row=4, col=1
)
# Add trading signals for Symbol_B if available
symbol_b_trades = trades[trades['symbol'] == SYMBOL_B]
print(f"\nSymbol_B trades:\n{symbol_b_trades}")
if len(symbol_b_trades) > 0:
# Separate trades by action and status for different colors
buy_open_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('BUY', na=False)) &
(symbol_b_trades['action'].str.startswith('OPEN', na=False))]
buy_close_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('BUY', na=False)) &
(symbol_b_trades['action'].str.startswith('CLOSE', na=False))]
sell_open_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('SELL', na=False)) &
(symbol_b_trades['action'].str.contains('OPEN', na=False))]
sell_close_trades = symbol_b_trades[(symbol_b_trades['side'].str.contains('SELL', na=False)) &
(symbol_b_trades['action'].str.contains('CLOSE', na=False))]
# Add BUY OPEN signals
if len(buy_open_trades) > 0:
fig.add_trace(
go.Scatter(
x=buy_open_trades['time'],
y=buy_open_trades['price'],
mode='markers',
name=f'{SYMBOL_B} BUY OPEN',
marker=dict(color='darkgreen', size=12, symbol='triangle-up'),
showlegend=True
),
row=4, col=1
)
# Add BUY CLOSE signals
if len(buy_close_trades) > 0:
fig.add_trace(
go.Scatter(
x=buy_close_trades['time'],
y=buy_close_trades['price'],
mode='markers',
name=f'{SYMBOL_B} BUY CLOSE',
marker=dict(color='green', size=12, symbol='triangle-up'),
line=dict(width=2, color='black'),
showlegend=True
),
row=4, col=1
)
# Add SELL OPEN signals
if len(sell_open_trades) > 0:
fig.add_trace(
go.Scatter(
x=sell_open_trades['time'],
y=sell_open_trades['price'],
mode='markers',
name=f'{SYMBOL_B} SELL OPEN',
marker=dict(color='red', size=12, symbol='triangle-down'),
showlegend=True
),
row=4, col=1
)
# Add SELL CLOSE signals
if len(sell_close_trades) > 0:
fig.add_trace(
go.Scatter(
x=sell_close_trades['time'],
y=sell_close_trades['price'],
mode='markers',
name=f'{SYMBOL_B} SELL CLOSE',
marker=dict(color='red', size=12, symbol='triangle-down'),
line=dict(width=2, color='black'),
showlegend=True
),
row=4, col=1
)
# Update layout
fig.update_layout(
height=1600,
title_text=f"Strategy Analysis - {SYMBOL_A} & {SYMBOL_B} ({TRD_DATE})",
showlegend=True,
template="plotly_white",
plot_bgcolor='lightgray',
)
# Update y-axis labels
fig.update_yaxes(title_text="Scaled Dis-equilibrium", row=1, col=1)
fig.update_yaxes(title_text=f"{SYMBOL_A} Price ($)", row=2, col=1)
fig.update_yaxes(title_text=f"{SYMBOL_B} Price ($)", row=3, col=1)
fig.update_yaxes(title_text="Normalized Price (Base = 1.0)", row=4, col=1)
# Update x-axis labels and ensure consistent time range
time_range = [timeline_df['tstamp'].min(), timeline_df['tstamp'].max()]
fig.update_xaxes(range=time_range, row=1, col=1)
fig.update_xaxes(range=time_range, row=2, col=1)
fig.update_xaxes(range=time_range, row=3, col=1)
fig.update_xaxes(title_text="Time", range=time_range, row=4, col=1)
# Display using plotly offline mode
# pyo.iplot(fig)
fig.show()
else:
print("No interactive visualization data available - strategy may not have run successfully")
print(f"\nChart shows:")
print(f"- {SYMBOL_A} and {SYMBOL_B} prices normalized to start at 1.0")
print(f"- BUY signals shown as green triangles pointing up")
print(f"- SELL signals shown as orange triangles pointing down")
print(f"- All BUY signals per symbol grouped together, all SELL signals per symbol grouped together")
print(f"- Hover over markers to see individual trade details (OPEN/CLOSE status)")
if trades is not None and len(trades) > 0:
print(f"- Total signals displayed: {len(trades)}")
print(f"- {SYMBOL_A} signals: {len(trades[trades['symbol'] == SYMBOL_A])}")
print(f"- {SYMBOL_B} signals: {len(trades[trades['symbol'] == SYMBOL_B])}")
else:
print("- No trading signals to display")