288 lines
11 KiB
Python
288 lines
11 KiB
Python
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Any, Dict, Optional, cast
|
|
|
|
import pandas as pd # type: ignore[import]
|
|
from pt_trading.fit_method import PairsTradingFitMethod
|
|
from pt_trading.results import BacktestResult
|
|
from pt_trading.trading_pair import PairState, TradingPair
|
|
from statsmodels.tsa.vector_ar.vecm import VECM, VECMResults
|
|
|
|
NanoPerMin = 1e9
|
|
|
|
class RollingFit(PairsTradingFitMethod):
|
|
'''
|
|
N O T E:
|
|
=========
|
|
- This class remains to be abstract
|
|
- The following methods are to be implemented in the subclass:
|
|
- create_trading_pair()
|
|
=========
|
|
'''
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def run_pair(
|
|
self, pair: TradingPair, bt_result: BacktestResult
|
|
) -> Optional[pd.DataFrame]:
|
|
print(f"***{pair}*** STARTING....")
|
|
config = pair.config_
|
|
|
|
curr_training_start_idx = pair.get_begin_index()
|
|
end_index = pair.get_end_index()
|
|
|
|
pair.user_data_["state"] = PairState.INITIAL
|
|
# Initialize trades DataFrame with proper dtypes to avoid concatenation warnings
|
|
pair.user_data_["trades"] = pd.DataFrame(columns=self.TRADES_COLUMNS).astype({
|
|
"time": "datetime64[ns]",
|
|
"action": "string",
|
|
"symbol": "string",
|
|
"price": "float64",
|
|
"disequilibrium": "float64",
|
|
"scaled_disequilibrium": "float64",
|
|
"pair": "object"
|
|
})
|
|
|
|
training_minutes = config["training_minutes"]
|
|
curr_predicted_row_idx = 0
|
|
while True:
|
|
print(curr_training_start_idx, end="\r")
|
|
pair.get_datasets(
|
|
training_minutes=training_minutes,
|
|
training_start_index=curr_training_start_idx,
|
|
testing_size=1,
|
|
)
|
|
|
|
if len(pair.training_df_) < training_minutes:
|
|
print(
|
|
f"{pair}: current offset={curr_training_start_idx}"
|
|
f" * Training data length={len(pair.training_df_)} < {training_minutes}"
|
|
" * Not enough training data. Completing the job."
|
|
)
|
|
break
|
|
|
|
try:
|
|
# ================================ PREDICTION ================================
|
|
self.pair_predict_result_ = pair.predict()
|
|
except Exception as e:
|
|
raise RuntimeError(f"{pair}: TrainingPrediction failed: {str(e)}") from e
|
|
|
|
# break
|
|
|
|
curr_training_start_idx += 1
|
|
if curr_training_start_idx > end_index:
|
|
break
|
|
curr_predicted_row_idx += 1
|
|
|
|
self._create_trading_signals(pair, config, bt_result)
|
|
print(f"***{pair}*** FINISHED *** Num Trades:{len(pair.user_data_['trades'])}")
|
|
|
|
return pair.get_trades()
|
|
|
|
def _create_trading_signals(
|
|
self, pair: TradingPair, config: Dict, bt_result: BacktestResult
|
|
) -> None:
|
|
|
|
predicted_df = self.pair_predict_result_
|
|
assert predicted_df is not None
|
|
|
|
open_threshold = config["dis-equilibrium_open_trshld"]
|
|
close_threshold = config["dis-equilibrium_close_trshld"]
|
|
for curr_predicted_row_idx in range(len(predicted_df)):
|
|
pred_row = predicted_df.iloc[curr_predicted_row_idx]
|
|
scaled_disequilibrium = pred_row["scaled_disequilibrium"]
|
|
|
|
if pair.user_data_["state"] in [PairState.INITIAL, PairState.CLOSE, PairState.CLOSE_POSITION]:
|
|
if scaled_disequilibrium >= open_threshold:
|
|
open_trades = self._get_open_trades(
|
|
pair, row=pred_row, open_threshold=open_threshold
|
|
)
|
|
if open_trades is not None:
|
|
open_trades["status"] = PairState.OPEN.name
|
|
print(f"OPEN TRADES:\n{open_trades}")
|
|
pair.add_trades(open_trades)
|
|
pair.user_data_["state"] = PairState.OPEN
|
|
pair.on_open_trades(open_trades)
|
|
|
|
elif pair.user_data_["state"] == PairState.OPEN:
|
|
if scaled_disequilibrium <= close_threshold:
|
|
close_trades = self._get_close_trades(
|
|
pair, row=pred_row, close_threshold=close_threshold
|
|
)
|
|
if close_trades is not None:
|
|
close_trades["status"] = PairState.CLOSE.name
|
|
print(f"CLOSE TRADES:\n{close_trades}")
|
|
pair.add_trades(close_trades)
|
|
pair.user_data_["state"] = PairState.CLOSE
|
|
pair.on_close_trades(close_trades)
|
|
elif pair.to_stop_close_conditions(predicted_row=pred_row):
|
|
close_trades = self._get_close_trades(
|
|
pair, row=pred_row, close_threshold=close_threshold
|
|
)
|
|
if close_trades is not None:
|
|
close_trades["status"] = pair.user_data_["stop_close_state"].name
|
|
print(f"STOP CLOSE TRADES:\n{close_trades}")
|
|
pair.add_trades(close_trades)
|
|
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
|
pair.on_close_trades(close_trades)
|
|
|
|
# Outstanding positions
|
|
if pair.user_data_["state"] == PairState.OPEN:
|
|
print(
|
|
f"{pair}: *** Position is NOT CLOSED. ***"
|
|
)
|
|
# outstanding positions
|
|
if config["close_outstanding_positions"]:
|
|
close_position_trades = self._get_close_trades(
|
|
pair=pair,
|
|
row=pred_row,
|
|
close_threshold=close_threshold,
|
|
)
|
|
if close_position_trades is not None:
|
|
close_position_trades["status"] = PairState.CLOSE_POSITION.name
|
|
print(f"CLOSE_POSITION TRADES:\n{close_position_trades}")
|
|
pair.add_trades(close_position_trades)
|
|
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
|
pair.on_close_trades(close_position_trades)
|
|
else:
|
|
if predicted_df is not None:
|
|
bt_result.handle_outstanding_position(
|
|
pair=pair,
|
|
pair_result_df=predicted_df,
|
|
last_row_index=0,
|
|
open_side_a=pair.user_data_["open_side_a"],
|
|
open_side_b=pair.user_data_["open_side_b"],
|
|
open_px_a=pair.user_data_["open_px_a"],
|
|
open_px_b=pair.user_data_["open_px_b"],
|
|
open_tstamp=pair.user_data_["open_tstamp"],
|
|
)
|
|
|
|
def _get_open_trades(
|
|
self, pair: TradingPair, row: pd.Series, open_threshold: float
|
|
) -> Optional[pd.DataFrame]:
|
|
colname_a, colname_b = pair.colnames()
|
|
|
|
open_row = row
|
|
open_tstamp = open_row["tstamp"]
|
|
open_disequilibrium = open_row["disequilibrium"]
|
|
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
|
|
open_px_a = open_row[f"{colname_a}"]
|
|
open_px_b = open_row[f"{colname_b}"]
|
|
|
|
# creating the trades
|
|
print(f"OPEN_TRADES: {row["tstamp"]} {open_scaled_disequilibrium=}")
|
|
if open_disequilibrium > 0:
|
|
open_side_a = "SELL"
|
|
open_side_b = "BUY"
|
|
close_side_a = "BUY"
|
|
close_side_b = "SELL"
|
|
else:
|
|
open_side_a = "BUY"
|
|
open_side_b = "SELL"
|
|
close_side_a = "SELL"
|
|
close_side_b = "BUY"
|
|
|
|
# save closing sides
|
|
pair.user_data_["open_side_a"] = open_side_a
|
|
pair.user_data_["open_side_b"] = open_side_b
|
|
pair.user_data_["open_px_a"] = open_px_a
|
|
pair.user_data_["open_px_b"] = open_px_b
|
|
|
|
pair.user_data_["open_tstamp"] = open_tstamp
|
|
|
|
pair.user_data_["close_side_a"] = close_side_a
|
|
pair.user_data_["close_side_b"] = close_side_b
|
|
|
|
# create opening trades
|
|
trd_signal_tuples = [
|
|
(
|
|
open_tstamp,
|
|
open_side_a,
|
|
pair.symbol_a_,
|
|
open_px_a,
|
|
open_disequilibrium,
|
|
open_scaled_disequilibrium,
|
|
pair,
|
|
),
|
|
(
|
|
open_tstamp,
|
|
open_side_b,
|
|
pair.symbol_b_,
|
|
open_px_b,
|
|
open_disequilibrium,
|
|
open_scaled_disequilibrium,
|
|
pair,
|
|
),
|
|
]
|
|
# Create DataFrame with explicit dtypes to avoid concatenation warnings
|
|
df = pd.DataFrame(
|
|
trd_signal_tuples,
|
|
columns=self.TRADES_COLUMNS,
|
|
)
|
|
# Ensure consistent dtypes
|
|
return df.astype({
|
|
"time": "datetime64[ns]",
|
|
"action": "string",
|
|
"symbol": "string",
|
|
"price": "float64",
|
|
"disequilibrium": "float64",
|
|
"scaled_disequilibrium": "float64",
|
|
"pair": "object"
|
|
})
|
|
|
|
def _get_close_trades(
|
|
self, pair: TradingPair, row: pd.Series, close_threshold: float
|
|
) -> Optional[pd.DataFrame]:
|
|
colname_a, colname_b = pair.colnames()
|
|
|
|
close_row = row
|
|
close_tstamp = close_row["tstamp"]
|
|
close_disequilibrium = close_row["disequilibrium"]
|
|
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
|
|
close_px_a = close_row[f"{colname_a}"]
|
|
close_px_b = close_row[f"{colname_b}"]
|
|
|
|
close_side_a = pair.user_data_["close_side_a"]
|
|
close_side_b = pair.user_data_["close_side_b"]
|
|
|
|
trd_signal_tuples = [
|
|
(
|
|
close_tstamp,
|
|
close_side_a,
|
|
pair.symbol_a_,
|
|
close_px_a,
|
|
close_disequilibrium,
|
|
close_scaled_disequilibrium,
|
|
pair,
|
|
),
|
|
(
|
|
close_tstamp,
|
|
close_side_b,
|
|
pair.symbol_b_,
|
|
close_px_b,
|
|
close_disequilibrium,
|
|
close_scaled_disequilibrium,
|
|
pair,
|
|
),
|
|
]
|
|
|
|
# Add tuples to data frame with explicit dtypes to avoid concatenation warnings
|
|
df = pd.DataFrame(
|
|
trd_signal_tuples,
|
|
columns=self.TRADES_COLUMNS,
|
|
)
|
|
# Ensure consistent dtypes
|
|
return df.astype({
|
|
"time": "datetime64[ns]",
|
|
"action": "string",
|
|
"symbol": "string",
|
|
"price": "float64",
|
|
"disequilibrium": "float64",
|
|
"scaled_disequilibrium": "float64",
|
|
"pair": "object"
|
|
})
|
|
|
|
def reset(self) -> None:
|
|
curr_training_start_idx = 0
|
|
|