pairs_trading/lib/pt_strategy/live/live_strategy.py
2025-12-31 08:03:26 +00:00

414 lines
15 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, cast
from enum import Enum
import pandas as pd
# ---
from cvttpy_tools.base import NamedObject
from cvttpy_tools.app import App
from cvttpy_tools.config import Config
from cvttpy_tools.settings.cvtt_types import IntervalSecT
from cvttpy_tools.timeutils import SecPerHour
# ---
from cvttpy_trading.trading.instrument import ExchangeInstrument
from cvttpy_trading.trading.mkt_data.md_summary import MdTradesAggregate
# ---
from pairs_trading.lib.pt_strategy.model_data_policy import ModelDataPolicy
from pairs_trading.lib.pt_strategy.pt_model import Prediction
from pairs_trading.lib.pt_strategy.trading_pair import PairState, TradingPair
from pairs_trading.apps.pairs_trader import PairsTrader
"""
--config=pair.cfg
--pair=PAIR-BTC-USDT:COINBASE_AT,PAIR-ETH-USDT:COINBASE_AT
"""
class TradingInstructionType(Enum):
TARGET_POSITION = "TARGET_POSITION"
@dataclass
class TradingInstruction(NamedObject):
type_: TradingInstructionType
exch_instr_: ExchangeInstrument
specifics_: Dict[str, Any]
class PtLiveStrategy(NamedObject):
config_: Config
instruments_: List[ExchangeInstrument]
interval_sec_: IntervalSecT
history_depth_sec_: IntervalSecT
open_threshold_: float
close_threshold_: float
trading_pair_: TradingPair
model_data_policy_: ModelDataPolicy
pairs_trader_: PairsTrader
# ti_sender_: TradingInstructionsSender
# for presentation: history of prediction values and trading signals
predictions_df_: pd.DataFrame
trading_signals_df_: pd.DataFrame
def __init__(
self,
config: Config,
instruments: List[ExchangeInstrument],
pairs_trader: PairsTrader,
):
self.trading_pair_ = TradingPair(
config=cast(Dict[str, Any], config.data()),
instruments=[{"instrument_id": ei.instrument_id()} for ei in instruments],
)
self.predictions_df_ = pd.DataFrame()
self.trading_signals_df_ = pd.DataFrame()
self.pairs_trader_ = pairs_trader
import copy
# modified config must be passed to PtMarketData
self.config_ = Config(json_src=copy.deepcopy(config.data()))
self.instruments_ = instruments
App.instance().add_call(
stage=App.Stage.Config, func=self._on_config(), can_run_now=True
)
async def _on_config(self) -> None:
self.interval_sec_ = self.config_.get_value("interval_sec", 0)
self.history_depth_sec_ = (
self.config_.get_value("history_depth_hours", 0) * SecPerHour
)
await self.pairs_trader_.subscribe_md()
self.model_data_policy_ = ModelDataPolicy.create(
self.config_, is_real_time=True, pair=self.trading_pair_
)
self.open_threshold_ = self.config_.get_value(
"dis-equilibrium_open_trshld", 0.0
)
self.close_threshold_ = self.config_.get_value(
"dis-equilibrium_close_trshld", 0.0
)
assert (
self.open_threshold_ > 0
), "dis-equilibrium_open_trshld must be greater than 0"
assert (
self.close_threshold_ > 0
), "dis-equilibrium_close_trshld must be greater than 0"
def __repr__(self) -> str:
return f"{self.classname()}: trading_pair={self.trading_pair_}, mdp={self.model_data_policy_.__class__.__name__}, "
async def on_mkt_data_hist_snapshot(
self, hist_aggr: List[MdTradesAggregate]
) -> None:
# Log.info(f"on_mkt_data_hist_snapshot: {aggr}")
# await self.pt_mkt_data_.on_mkt_data_hist_snapshot(snapshot=aggr)
pass # URGENT PtiveStrategy.on_mkt_data_hist_snapshot()
async def on_mkt_data_update(self, aggr: MdTradesAggregate) -> None:
# if market_data_df is not None:
# self.trading_pair_.market_data_ = market_data_df
# self.model_data_policy_.advance()
# prediction = self.trading_pair_.run(
# market_data_df, self.model_data_policy_.advance()
# )
# self.predictions_ = pd.concat(
# [self.predictions_, prediction.to_df()], ignore_index=True
# )
# trading_instructions: List[TradingInstruction] = (
# self._create_trading_instructions(
# prediction=prediction, last_row=market_data_df.iloc[-1]
# )
# )
# if len(trading_instructions) > 0:
# await self._send_trading_instructions(trading_instructions)
# # trades = self._create_trades(prediction=prediction, last_row=market_data_df.iloc[-1])
pass # URGENT
def interval_sec(self) -> IntervalSecT:
return self.interval_sec_
def history_depth_sec(self) -> IntervalSecT:
return self.history_depth_sec_
async def _send_trading_instructions(
self, trading_instructions: List[TradingInstruction]
) -> None:
pass # URGENT implement _send_trading_instructions
def _create_trading_instructions(
self, prediction: Prediction, last_row: pd.Series
) -> List[TradingInstruction]:
pair = self.trading_pair_
trd_instructions: List[TradingInstruction] = []
scaled_disequilibrium = prediction.scaled_disequilibrium_
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
if pair.is_closed():
if abs_scaled_disequilibrium >= self.open_threshold_:
trd_instructions = self._create_open_trade_instructions(
pair, row=last_row, prediction=prediction
)
elif pair.is_open():
if abs_scaled_disequilibrium <= self.close_threshold_:
trd_instructions = self._create_close_trade_instructions(
pair, row=last_row # , prediction=prediction
)
elif pair.to_stop_close_conditions(predicted_row=last_row):
trd_instructions = self._create_close_trade_instructions(
pair, row=last_row
)
return trd_instructions
def _create_open_trade_instructions(
self, pair: TradingPair, row: pd.Series, prediction: Prediction
) -> List[TradingInstruction]:
scaled_disequilibrium = prediction.scaled_disequilibrium_
if scaled_disequilibrium > 0:
side_a = "SELL"
trd_inst_a = TradingInstruction(
type_=TradingInstructionType.TARGET_POSITION,
exch_instr_=pair.get_instrument_a(),
specifics_={"side": "SELL", "strength": -1},
)
side_b = "BUY"
else:
side_a = "BUY"
side_b = "SELL"
colname_a, colname_b = pair.exec_prices_colnames()
px_a = row[f"{colname_a}"]
px_b = row[f"{colname_b}"]
tstamp = row["tstamp"]
diseqlbrm = prediction.disequilibrium_
scaled_disequilibrium = prediction.scaled_disequilibrium_
df = self._trades_df()
# save closing sides
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
pair.user_data_["open_side_b"] = side_b
pair.user_data_["open_px_a"] = px_a
pair.user_data_["open_px_b"] = px_b
pair.user_data_["open_tstamp"] = tstamp
pair.user_data_["close_side_a"] = side_b # used for closing trades
pair.user_data_["close_side_b"] = side_a
# create opening trades
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_a_,
"side": side_a,
"action": "OPEN",
"price": px_a,
"disequilibrium": diseqlbrm,
"signed_scaled_disequilibrium": scaled_disequilibrium,
"scaled_disequilibrium": abs(scaled_disequilibrium),
# "pair": pair,
}
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_b_,
"side": side_b,
"action": "OPEN",
"price": px_b,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": abs(scaled_disequilibrium),
"signed_scaled_disequilibrium": scaled_disequilibrium,
# "pair": pair,
}
ti: List[TradingInstruction] = self._create_trading_instructions(
prediction=prediction, last_row=row
)
return ti
def _create_close_trade_instructions(
self, pair: TradingPair, row: pd.Series # , prediction: Prediction
) -> List[TradingInstruction]:
return [] # URGENT implement _create_close_trade_instructions
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
trades = None
pair = self.trading_pair_
# Outstanding positions
if pair.user_data_["state"] == PairState.OPEN:
print(f"{pair}: *** Position is NOT CLOSED. ***")
# outstanding positions
if self.config_.key_exists("close_outstanding_positions"):
close_position_row = pd.Series(pair.market_data_.iloc[-2])
# close_position_row["disequilibrium"] = 0.0
# close_position_row["scaled_disequilibrium"] = 0.0
# close_position_row["signed_scaled_disequilibrium"] = 0.0
trades = self._create_close_trades(
pair=pair, row=close_position_row, prediction=None
)
if trades is not None:
trades["status"] = PairState.CLOSE_POSITION.name
print(f"CLOSE_POSITION TRADES:\n{trades}")
pair.user_data_["state"] = PairState.CLOSE_POSITION
pair.on_close_trades(trades)
else:
pair.add_outstanding_position(
symbol=pair.symbol_a_,
open_side=pair.user_data_["open_side_a"],
open_px=pair.user_data_["open_px_a"],
open_tstamp=pair.user_data_["open_tstamp"],
last_mkt_data_row=pair.market_data_.iloc[-1],
)
pair.add_outstanding_position(
symbol=pair.symbol_b_,
open_side=pair.user_data_["open_side_b"],
open_px=pair.user_data_["open_px_b"],
open_tstamp=pair.user_data_["open_tstamp"],
last_mkt_data_row=pair.market_data_.iloc[-1],
)
return trades
def _trades_df(self) -> pd.DataFrame:
types = {
"time": "datetime64[ns]",
"action": "string",
"symbol": "string",
"side": "string",
"price": "float64",
"disequilibrium": "float64",
"scaled_disequilibrium": "float64",
"signed_scaled_disequilibrium": "float64",
# "pair": "object",
}
columns = list(types.keys())
return pd.DataFrame(columns=columns).astype(types)
def _create_open_trades(
self, pair: TradingPair, row: pd.Series, prediction: Prediction
) -> Optional[pd.DataFrame]:
colname_a, colname_b = pair.exec_prices_colnames()
tstamp = row["tstamp"]
diseqlbrm = prediction.disequilibrium_
scaled_disequilibrium = prediction.scaled_disequilibrium_
px_a = row[f"{colname_a}"]
px_b = row[f"{colname_b}"]
# creating the trades
df = self._trades_df()
print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}")
if diseqlbrm > 0:
side_a = "SELL"
side_b = "BUY"
else:
side_a = "BUY"
side_b = "SELL"
# save closing sides
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
pair.user_data_["open_side_b"] = side_b
pair.user_data_["open_px_a"] = px_a
pair.user_data_["open_px_b"] = px_b
pair.user_data_["open_tstamp"] = tstamp
pair.user_data_["close_side_a"] = side_b # used for closing trades
pair.user_data_["close_side_b"] = side_a
# create opening trades
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_a_,
"side": side_a,
"action": "OPEN",
"price": px_a,
"disequilibrium": diseqlbrm,
"signed_scaled_disequilibrium": scaled_disequilibrium,
"scaled_disequilibrium": abs(scaled_disequilibrium),
# "pair": pair,
}
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_b_,
"side": side_b,
"action": "OPEN",
"price": px_b,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": abs(scaled_disequilibrium),
"signed_scaled_disequilibrium": scaled_disequilibrium,
# "pair": pair,
}
return df
def _create_close_trades(
self, pair: TradingPair, row: pd.Series, prediction: Optional[Prediction] = None
) -> Optional[pd.DataFrame]:
colname_a, colname_b = pair.exec_prices_colnames()
tstamp = row["tstamp"]
if prediction is not None:
diseqlbrm = prediction.disequilibrium_
signed_scaled_disequilibrium = prediction.scaled_disequilibrium_
scaled_disequilibrium = abs(prediction.scaled_disequilibrium_)
else:
diseqlbrm = 0.0
signed_scaled_disequilibrium = 0.0
scaled_disequilibrium = 0.0
px_a = row[f"{colname_a}"]
px_b = row[f"{colname_b}"]
# creating the trades
df = self._trades_df()
# create opening trades
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_a_,
"side": pair.user_data_["close_side_a"],
"action": "CLOSE",
"price": px_a,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": scaled_disequilibrium,
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
# "pair": pair,
}
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_b_,
"side": pair.user_data_["close_side_b"],
"action": "CLOSE",
"price": px_b,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": scaled_disequilibrium,
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
# "pair": pair,
}
del pair.user_data_["close_side_a"]
del pair.user_data_["close_side_b"]
del pair.user_data_["open_tstamp"]
del pair.user_data_["open_px_a"]
del pair.user_data_["open_px_b"]
del pair.user_data_["open_side_a"]
del pair.user_data_["open_side_b"]
return df