pairs_trading/lib/pt_strategy/live_strategy.py
Oleg Sheynin 73f36ddcea progress
2025-08-02 00:12:31 +00:00

332 lines
13 KiB
Python

from __future__ import annotations
from functools import partial
from typing import Any, Dict, List, Optional
import pandas as pd
from cvttpy_base.settings.cvtt_types import JsonDictT
from cvttpy_base.tools.base import NamedObject
from cvttpy_base.tools.logger import Log
from cvtt_client.mkt_data import CvttPricerWebSockClient, CvttPricesSubscription, MessageTypeT, SubscriptionIdT
from pt_strategy.model_data_policy import ModelDataPolicy
from pt_strategy.pt_market_data import PtMarketData, RealTimeMarketData
from pt_strategy.pt_model import Prediction
from pt_strategy.trading_pair import PairState, TradingPair
'''
--config=pair.cfg
--pair=PAIR-BTC-USDT:COINBASE_AT,PAIR-ETH-USDT:COINBASE_AT
'''
class PtMktDataClient(NamedObject):
live_strategy_: PtLiveStrategy
pricer_client_: CvttPricerWebSockClient
subscriptions_: List[CvttPricesSubscription]
def __init__(self, live_strategy: PtLiveStrategy):
self.live_strategy_ = live_strategy
async def start(self, subscription: CvttPricesSubscription) -> None:
pricer_url = self.live_strategy_.config_.get("pricer_url", None) #, "ws://localhost:12346/ws")
assert pricer_url is not None, "pricer_url is not found in config"
self.pricer_client_ = CvttPricerWebSockClient(url=pricer_url)
await self._subscribe()
async def _subscribe(self) -> None:
pair: TradingPair = self.live_strategy_.trading_pair_
for instrument in pair.instruments_:
await self.pricer_client_.subscribe(CvttPricesSubscription(
exchange_config_name=instrument["exchange_config_name"],
instrument_id=instrument["instrument_id"],
interval_sec=60,
history_depth_sec=60*60*24,
callback=partial(self.on_message, instrument_id=instrument["instrument_id"])
))
async def on_message(self, message_type: MessageTypeT, subscr_id: SubscriptionIdT, message: Dict, instrument_id: str) -> None:
Log.info(f"{self.fname()}: {message_type=} {subscr_id=} {instrument_id}")
aggr: JsonDictT
if message_type == "md_aggregate":
aggr = message.get("md_aggregate", {})
await self.live_strategy_.on_mkt_data_update(aggr)
# print(f"[{aggr['tstmp'][:19]}] *** RLTM *** {message}")
elif message_type == "historical_md_aggregate":
aggr = message.get("historical_data", {})
await self.live_strategy_.on_mkt_data_hist_snapshot(aggr)
# print(f"[{aggr['tstmp'][:19]}] *** HIST *** {aggr}")
else:
Log.info(f"Unknown message type: {message_type}")
async def run(self) -> None:
await self.pricer_client_.run()
class PtLiveStrategy(NamedObject):
config_: Dict[str, Any]
trading_pair_: TradingPair
model_data_policy_: ModelDataPolicy
pt_mkt_data_: RealTimeMarketData
pt_mkt_data_client_: PtMktDataClient
# for presentation: history of prediction values and trading signals
predictions_: pd.DataFrame
trading_signals_: pd.DataFrame
def __init__(
self,
config: Dict[str, Any],
instruments: List[Dict[str, str]],
):
self.config_ = config
self.trading_pair_ = TradingPair(config=config, instruments=instruments)
self.predictions_ = pd.DataFrame()
self.trading_signals_ = pd.DataFrame()
import copy
# modified config must be passed to PtMarketData
config_copy = copy.deepcopy(config)
config_copy["instruments"] = instruments
self.pt_mkt_data_ = RealTimeMarketData(config=config_copy)
self.model_data_policy_ = ModelDataPolicy.create(
config, is_real_time=True,pair=self.trading_pair_
)
async def on_mkt_data_hist_snapshot(self, aggr: JsonDictT) -> None:
Log.info(f"on_mkt_data_hist_snapshot: {aggr}")
await self.pt_mkt_data_.on_mkt_data_hist_snapshot(snapshot=aggr)
pass
async def on_mkt_data_update(self, aggr: JsonDictT) -> None:
market_data_df = await self.pt_mkt_data_.on_mkt_data_update(update=aggr)
if market_data_df is not None:
self.trading_pair_.market_data_ = market_data_df
self.model_data_policy_.advance()
prediction = self.trading_pair_.run(market_data_df, self.model_data_policy_.advance())
self.predictions_ = pd.concat([self.predictions_, prediction.to_df()], ignore_index=True)
trades = self._create_trades(prediction=prediction, last_row=market_data_df.iloc[-1])
# URGENT implement this
pass
async def run(self) -> None:
await self.pt_mkt_data_client_.run()
def _create_trades(
self, prediction: Prediction, last_row: pd.Series
) -> Optional[pd.DataFrame]:
pair = self.trading_pair_
trades = None
open_threshold = self.config_["dis-equilibrium_open_trshld"]
close_threshold = self.config_["dis-equilibrium_close_trshld"]
scaled_disequilibrium = prediction.scaled_disequilibrium_
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
if pair.user_data_["state"] in [
PairState.INITIAL,
PairState.CLOSE,
PairState.CLOSE_POSITION,
PairState.CLOSE_STOP_LOSS,
PairState.CLOSE_STOP_PROFIT,
]:
if abs_scaled_disequilibrium >= open_threshold:
trades = self._create_open_trades(
pair, row=last_row, prediction=prediction
)
if trades is not None:
trades["status"] = PairState.OPEN.name
print(f"OPEN TRADES:\n{trades}")
pair.user_data_["state"] = PairState.OPEN
pair.on_open_trades(trades)
elif pair.user_data_["state"] == PairState.OPEN:
if abs_scaled_disequilibrium <= close_threshold:
trades = self._create_close_trades(
pair, row=last_row, prediction=prediction
)
if trades is not None:
trades["status"] = PairState.CLOSE.name
print(f"CLOSE TRADES:\n{trades}")
pair.user_data_["state"] = PairState.CLOSE
pair.on_close_trades(trades)
elif pair.to_stop_close_conditions(predicted_row=last_row):
trades = self._create_close_trades(pair, row=last_row)
if trades is not None:
trades["status"] = pair.user_data_["stop_close_state"].name
print(f"STOP CLOSE TRADES:\n{trades}")
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
pair.on_close_trades(trades)
return trades
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
trades = None
pair = self.trading_pair_
# Outstanding positions
if pair.user_data_["state"] == PairState.OPEN:
print(f"{pair}: *** Position is NOT CLOSED. ***")
# outstanding positions
if self.config_["close_outstanding_positions"]:
close_position_row = pd.Series(pair.market_data_.iloc[-2])
# close_position_row["disequilibrium"] = 0.0
# close_position_row["scaled_disequilibrium"] = 0.0
# close_position_row["signed_scaled_disequilibrium"] = 0.0
trades = self._create_close_trades(
pair=pair, row=close_position_row, prediction=None
)
if trades is not None:
trades["status"] = PairState.CLOSE_POSITION.name
print(f"CLOSE_POSITION TRADES:\n{trades}")
pair.user_data_["state"] = PairState.CLOSE_POSITION
pair.on_close_trades(trades)
else:
pair.add_outstanding_position(
symbol=pair.symbol_a_,
open_side=pair.user_data_["open_side_a"],
open_px=pair.user_data_["open_px_a"],
open_tstamp=pair.user_data_["open_tstamp"],
last_mkt_data_row=pair.market_data_.iloc[-1],
)
pair.add_outstanding_position(
symbol=pair.symbol_b_,
open_side=pair.user_data_["open_side_b"],
open_px=pair.user_data_["open_px_b"],
open_tstamp=pair.user_data_["open_tstamp"],
last_mkt_data_row=pair.market_data_.iloc[-1],
)
return trades
def _trades_df(self) -> pd.DataFrame:
types = {
"time": "datetime64[ns]",
"action": "string",
"symbol": "string",
"side": "string",
"price": "float64",
"disequilibrium": "float64",
"scaled_disequilibrium": "float64",
"signed_scaled_disequilibrium": "float64",
# "pair": "object",
}
columns = list(types.keys())
return pd.DataFrame(columns=columns).astype(types)
def _create_open_trades(
self, pair: TradingPair, row: pd.Series, prediction: Prediction
) -> Optional[pd.DataFrame]:
colname_a, colname_b = pair.exec_prices_colnames()
tstamp = row["tstamp"]
diseqlbrm = prediction.disequilibrium_
scaled_disequilibrium = prediction.scaled_disequilibrium_
px_a = row[f"{colname_a}"]
px_b = row[f"{colname_b}"]
# creating the trades
df = self._trades_df()
print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}")
if diseqlbrm > 0:
side_a = "SELL"
side_b = "BUY"
else:
side_a = "BUY"
side_b = "SELL"
# save closing sides
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
pair.user_data_["open_side_b"] = side_b
pair.user_data_["open_px_a"] = px_a
pair.user_data_["open_px_b"] = px_b
pair.user_data_["open_tstamp"] = tstamp
pair.user_data_["close_side_a"] = side_b # used for closing trades
pair.user_data_["close_side_b"] = side_a
# create opening trades
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_a_,
"side": side_a,
"action": "OPEN",
"price": px_a,
"disequilibrium": diseqlbrm,
"signed_scaled_disequilibrium": scaled_disequilibrium,
"scaled_disequilibrium": abs(scaled_disequilibrium),
# "pair": pair,
}
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_b_,
"side": side_b,
"action": "OPEN",
"price": px_b,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": abs(scaled_disequilibrium),
"signed_scaled_disequilibrium": scaled_disequilibrium,
# "pair": pair,
}
return df
def _create_close_trades(
self, pair: TradingPair, row: pd.Series, prediction: Optional[Prediction] = None
) -> Optional[pd.DataFrame]:
colname_a, colname_b = pair.exec_prices_colnames()
tstamp = row["tstamp"]
if prediction is not None:
diseqlbrm = prediction.disequilibrium_
signed_scaled_disequilibrium = prediction.scaled_disequilibrium_
scaled_disequilibrium = abs(prediction.scaled_disequilibrium_)
else:
diseqlbrm = 0.0
signed_scaled_disequilibrium = 0.0
scaled_disequilibrium = 0.0
px_a = row[f"{colname_a}"]
px_b = row[f"{colname_b}"]
# creating the trades
df = self._trades_df()
# create opening trades
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_a_,
"side": pair.user_data_["close_side_a"],
"action": "CLOSE",
"price": px_a,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": scaled_disequilibrium,
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
# "pair": pair,
}
df.loc[len(df)] = {
"time": tstamp,
"symbol": pair.symbol_b_,
"side": pair.user_data_["close_side_b"],
"action": "CLOSE",
"price": px_b,
"disequilibrium": diseqlbrm,
"scaled_disequilibrium": scaled_disequilibrium,
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
# "pair": pair,
}
del pair.user_data_["close_side_a"]
del pair.user_data_["close_side_b"]
del pair.user_data_["open_tstamp"]
del pair.user_data_["open_px_a"]
del pair.user_data_["open_px_b"]
del pair.user_data_["open_side_a"]
del pair.user_data_["open_side_b"]
return df