pairs_trading/src/strategies.py
2025-05-29 16:21:49 -04:00

214 lines
6.8 KiB
Python

from abc import ABC, abstractmethod
import sys
from typing import Dict, Optional
import pandas as pd
# ============= statsmodels ===================
from backtest_configs import CRYPTO_CONFIG
from tools.trading_pair import TradingPair
from results import BacktestResult
NanoPerMin = 1e9
UNSET_FLOAT: float = sys.float_info.max
UNSET_INT: int = sys.maxsize
CONFIG = CRYPTO_CONFIG
# CONFIG = EQT_CONFIG
class PairsTradingStrategy(ABC):
TRADES_COLUMNS = [
"time",
"action",
"symbol",
"price",
"disequilibrium",
"scaled_disequilibrium",
"pair",
]
@abstractmethod
def run_pair(self, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]:
...
class StaticFitStrategy(PairsTradingStrategy):
def run_pair(self, pair: TradingPair, bt_result: BacktestResult) -> Optional[pd.DataFrame]: # abstractmethod
pair.get_datasets(training_minutes=CONFIG["training_minutes"])
try:
is_cointegrated = pair.train_pair()
if not is_cointegrated:
print(f"{pair} IS NOT COINTEGRATED")
return None
except Exception as e:
print(f"{pair}: Training failed: {str(e)}")
return None
try:
pair.predict()
except Exception as e:
print(f"{pair}: Prediction failed: {str(e)}")
return None
pair_trades = self.create_trading_signals(pair=pair, config=CONFIG, result=bt_result)
return pair_trades
def create_trading_signals(self, pair: TradingPair, config: Dict, result: BacktestResult) -> pd.DataFrame:
beta = pair.vecm_fit_.beta
colname_a, colname_b = pair.colnames()
predicted_df = pair.predicted_df_
open_threshold = config["dis-equilibrium_open_trshld"]
close_threshold = config["dis-equilibrium_close_trshld"]
# Iterate through the testing dataset to find the first trading opportunity
open_row_index = None
for row_idx in range(len(predicted_df)):
curr_disequilibrium = predicted_df["scaled_disequilibrium"][row_idx]
# Check if current row has sufficient disequilibrium (not near-zero)
if curr_disequilibrium >= open_threshold:
open_row_index = row_idx
break
# If no row with sufficient disequilibrium found, skip this pair
if open_row_index is None:
print(f"{pair}: Insufficient disequilibrium in testing dataset. Skipping.")
return pd.DataFrame()
# Look for close signal starting from the open position
trading_signals_df = (
predicted_df["scaled_disequilibrium"][open_row_index:] < close_threshold
)
# Adjust indices to account for the offset from open_row_index
close_row_index = None
for idx, value in trading_signals_df.items():
if value:
close_row_index = idx
break
open_row = predicted_df.loc[open_row_index]
open_tstamp = open_row["tstamp"]
open_disequilibrium = open_row["disequilibrium"]
open_scaled_disequilibrium = open_row["scaled_disequilibrium"]
open_px_a = open_row[f"{colname_a}"]
open_px_b = open_row[f"{colname_b}"]
abs_beta = abs(beta[1])
pred_px_b = predicted_df.loc[open_row_index][f"{colname_b}_pred"]
pred_px_a = predicted_df.loc[open_row_index][f"{colname_a}_pred"]
if pred_px_b * abs_beta - pred_px_a > 0:
open_side_a = "BUY"
open_side_b = "SELL"
close_side_a = "SELL"
close_side_b = "BUY"
else:
open_side_b = "BUY"
open_side_a = "SELL"
close_side_b = "SELL"
close_side_a = "BUY"
# If no close signal found, print position and unrealized PnL
if close_row_index is None:
last_row_index = len(predicted_df) - 1
# Use the new method from BacktestResult to handle outstanding positions
result.handle_outstanding_position(
pair=pair,
pair_result_df=predicted_df,
last_row_index=last_row_index,
open_side_a=open_side_a,
open_side_b=open_side_b,
open_px_a=open_px_a,
open_px_b=open_px_b,
open_tstamp=open_tstamp,
)
# Return only open trades (no close trades)
trd_signal_tuples = [
(
open_tstamp,
open_side_a,
pair.symbol_a_,
open_px_a,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
open_tstamp,
open_side_b,
pair.symbol_b_,
open_px_b,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
]
else:
# Close signal found - create complete trade
close_row = predicted_df.loc[close_row_index]
close_tstamp = close_row["tstamp"]
close_disequilibrium = close_row["disequilibrium"]
close_scaled_disequilibrium = close_row["scaled_disequilibrium"]
close_px_a = close_row[f"{colname_a}"]
close_px_b = close_row[f"{colname_b}"]
print(f"{pair}: Close signal found at index {close_row_index}")
trd_signal_tuples = [
(
open_tstamp,
open_side_a,
pair.symbol_a_,
open_px_a,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
open_tstamp,
open_side_b,
pair.symbol_b_,
open_px_b,
open_disequilibrium,
open_scaled_disequilibrium,
pair,
),
(
close_tstamp,
close_side_a,
pair.symbol_a_,
close_px_a,
close_disequilibrium,
close_scaled_disequilibrium,
pair,
),
(
close_tstamp,
close_side_b,
pair.symbol_b_,
close_px_b,
close_disequilibrium,
close_scaled_disequilibrium,
pair,
),
]
# Add tuples to data frame
return pd.DataFrame(
trd_signal_tuples,
columns=self.TRADES_COLUMNS,
)