315 lines
12 KiB
Python
315 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
from abc import ABC, abstractmethod
|
|
from enum import Enum
|
|
from typing import Any, Dict, Generator, List, Optional, Type, cast
|
|
|
|
import pandas as pd
|
|
from pt_strategy.model_data_policy import ModelDataPolicy
|
|
from pt_strategy.pt_market_data import PtMarketData
|
|
from pt_strategy.pt_model import Prediction
|
|
from pt_strategy.results import (
|
|
PairResearchResult,
|
|
create_result_database,
|
|
store_config_in_database,
|
|
)
|
|
from pt_strategy.trading_pair import PairState, TradingPair
|
|
from tools.filetools import resolve_datafiles
|
|
from tools.instruments import get_instruments
|
|
|
|
|
|
class PtResearchStrategy:
|
|
config_: Dict[str, Any]
|
|
trading_pair_: TradingPair
|
|
model_data_policy_: ModelDataPolicy
|
|
pt_mkt_data_: PtMarketData
|
|
|
|
trades_: List[pd.DataFrame]
|
|
predictions_: pd.DataFrame
|
|
|
|
def __init__(
|
|
self,
|
|
config: Dict[str, Any],
|
|
datafiles: List[str],
|
|
instruments: List[Dict[str, str]],
|
|
):
|
|
from pt_strategy.model_data_policy import ModelDataPolicy
|
|
from pt_strategy.pt_market_data import PtMarketData, ResearchMarketData
|
|
from pt_strategy.trading_pair import TradingPair
|
|
|
|
self.config_ = config
|
|
self.trades_ = []
|
|
self.trading_pair_ = TradingPair(config=config, instruments=instruments)
|
|
self.model_data_policy_ = ModelDataPolicy.create(config)
|
|
self.predictions_ = pd.DataFrame()
|
|
|
|
import copy
|
|
|
|
# modified config must be passed to PtMarketData
|
|
config_copy = copy.deepcopy(config)
|
|
config_copy["instruments"] = instruments
|
|
config_copy["datafiles"] = datafiles
|
|
self.pt_mkt_data_ = PtMarketData.create(
|
|
config=config_copy, md_class=ResearchMarketData
|
|
)
|
|
self.pt_mkt_data_.load()
|
|
|
|
def outstanding_positions(self) -> List[Dict[str, Any]]:
|
|
return list(self.trading_pair_.user_data_.get("outstanding_positions", []))
|
|
|
|
def run(self) -> None:
|
|
training_minutes = self.config_.get("training_minutes", 120)
|
|
market_data_series: pd.Series
|
|
market_data_df = pd.DataFrame()
|
|
|
|
idx = 0
|
|
while self.pt_mkt_data_.has_next():
|
|
market_data_series = self.pt_mkt_data_.get_next()
|
|
new_row = pd.DataFrame([market_data_series])
|
|
market_data_df = pd.concat(
|
|
[market_data_df, new_row], ignore_index=True
|
|
)
|
|
if idx >= training_minutes:
|
|
break
|
|
idx += 1
|
|
|
|
assert idx >= training_minutes, "Not enough training data"
|
|
|
|
while self.pt_mkt_data_.has_next():
|
|
|
|
market_data_series = self.pt_mkt_data_.get_next()
|
|
new_row = pd.DataFrame([market_data_series])
|
|
market_data_df = pd.concat([market_data_df, new_row], ignore_index=True)
|
|
|
|
prediction = self.trading_pair_.run(
|
|
market_data_df, self.model_data_policy_.advance()
|
|
)
|
|
self.predictions_ = pd.concat([self.predictions_, prediction.to_df()], ignore_index=True)
|
|
assert prediction is not None
|
|
|
|
trades = self._create_trades(
|
|
prediction=prediction, last_row=market_data_df.iloc[-1]
|
|
)
|
|
if trades is not None:
|
|
self.trades_.append(trades)
|
|
|
|
trades = self._handle_outstanding_positions()
|
|
if trades is not None:
|
|
self.trades_.append(trades)
|
|
|
|
def _create_trades(
|
|
self, prediction: Prediction, last_row: pd.Series
|
|
) -> Optional[pd.DataFrame]:
|
|
pair = self.trading_pair_
|
|
trades = None
|
|
|
|
open_threshold = self.config_["dis-equilibrium_open_trshld"]
|
|
close_threshold = self.config_["dis-equilibrium_close_trshld"]
|
|
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
abs_scaled_disequilibrium = abs(scaled_disequilibrium)
|
|
|
|
if pair.user_data_["state"] in [
|
|
PairState.INITIAL,
|
|
PairState.CLOSE,
|
|
PairState.CLOSE_POSITION,
|
|
PairState.CLOSE_STOP_LOSS,
|
|
PairState.CLOSE_STOP_PROFIT,
|
|
]:
|
|
if abs_scaled_disequilibrium >= open_threshold:
|
|
trades = self._create_open_trades(
|
|
pair, row=last_row, prediction=prediction
|
|
)
|
|
if trades is not None:
|
|
trades["status"] = PairState.OPEN.name
|
|
print(f"OPEN TRADES:\n{trades}")
|
|
pair.user_data_["state"] = PairState.OPEN
|
|
pair.on_open_trades(trades)
|
|
|
|
elif pair.user_data_["state"] == PairState.OPEN:
|
|
if abs_scaled_disequilibrium <= close_threshold:
|
|
trades = self._create_close_trades(
|
|
pair, row=last_row, prediction=prediction
|
|
)
|
|
if trades is not None:
|
|
trades["status"] = PairState.CLOSE.name
|
|
print(f"CLOSE TRADES:\n{trades}")
|
|
pair.user_data_["state"] = PairState.CLOSE
|
|
pair.on_close_trades(trades)
|
|
elif pair.to_stop_close_conditions(predicted_row=last_row):
|
|
trades = self._create_close_trades(pair, row=last_row)
|
|
if trades is not None:
|
|
trades["status"] = pair.user_data_["stop_close_state"].name
|
|
print(f"STOP CLOSE TRADES:\n{trades}")
|
|
pair.user_data_["state"] = pair.user_data_["stop_close_state"]
|
|
pair.on_close_trades(trades)
|
|
|
|
return trades
|
|
|
|
def _handle_outstanding_positions(self) -> Optional[pd.DataFrame]:
|
|
trades = None
|
|
pair = self.trading_pair_
|
|
|
|
# Outstanding positions
|
|
if pair.user_data_["state"] == PairState.OPEN:
|
|
print(f"{pair}: *** Position is NOT CLOSED. ***")
|
|
# outstanding positions
|
|
if self.config_["close_outstanding_positions"]:
|
|
close_position_row = pd.Series(pair.market_data_.iloc[-2])
|
|
# close_position_row["disequilibrium"] = 0.0
|
|
# close_position_row["scaled_disequilibrium"] = 0.0
|
|
# close_position_row["signed_scaled_disequilibrium"] = 0.0
|
|
|
|
trades = self._create_close_trades(
|
|
pair=pair, row=close_position_row, prediction=None
|
|
)
|
|
if trades is not None:
|
|
trades["status"] = PairState.CLOSE_POSITION.name
|
|
print(f"CLOSE_POSITION TRADES:\n{trades}")
|
|
pair.user_data_["state"] = PairState.CLOSE_POSITION
|
|
pair.on_close_trades(trades)
|
|
else:
|
|
pair.add_outstanding_position(
|
|
symbol=pair.symbol_a_,
|
|
open_side=pair.user_data_["open_side_a"],
|
|
open_px=pair.user_data_["open_px_a"],
|
|
open_tstamp=pair.user_data_["open_tstamp"],
|
|
last_mkt_data_row=pair.market_data_.iloc[-1],
|
|
)
|
|
pair.add_outstanding_position(
|
|
symbol=pair.symbol_b_,
|
|
open_side=pair.user_data_["open_side_b"],
|
|
open_px=pair.user_data_["open_px_b"],
|
|
open_tstamp=pair.user_data_["open_tstamp"],
|
|
last_mkt_data_row=pair.market_data_.iloc[-1],
|
|
)
|
|
return trades
|
|
|
|
def _trades_df(self) -> pd.DataFrame:
|
|
types = {
|
|
"time": "datetime64[ns]",
|
|
"action": "string",
|
|
"symbol": "string",
|
|
"side": "string",
|
|
"price": "float64",
|
|
"disequilibrium": "float64",
|
|
"scaled_disequilibrium": "float64",
|
|
"signed_scaled_disequilibrium": "float64",
|
|
# "pair": "object",
|
|
}
|
|
columns = list(types.keys())
|
|
return pd.DataFrame(columns=columns).astype(types)
|
|
|
|
def _create_open_trades(
|
|
self, pair: TradingPair, row: pd.Series, prediction: Prediction
|
|
) -> Optional[pd.DataFrame]:
|
|
colname_a, colname_b = pair.exec_prices_colnames()
|
|
|
|
tstamp = row["tstamp"]
|
|
diseqlbrm = prediction.disequilibrium_
|
|
scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
px_a = row[f"{colname_a}"]
|
|
px_b = row[f"{colname_b}"]
|
|
|
|
# creating the trades
|
|
df = self._trades_df()
|
|
|
|
print(f"OPEN_TRADES: {row["tstamp"]} {scaled_disequilibrium=}")
|
|
if diseqlbrm > 0:
|
|
side_a = "SELL"
|
|
side_b = "BUY"
|
|
else:
|
|
side_a = "BUY"
|
|
side_b = "SELL"
|
|
|
|
# save closing sides
|
|
pair.user_data_["open_side_a"] = side_a # used in oustanding positions
|
|
pair.user_data_["open_side_b"] = side_b
|
|
pair.user_data_["open_px_a"] = px_a
|
|
pair.user_data_["open_px_b"] = px_b
|
|
pair.user_data_["open_tstamp"] = tstamp
|
|
|
|
pair.user_data_["close_side_a"] = side_b # used for closing trades
|
|
pair.user_data_["close_side_b"] = side_a
|
|
|
|
# create opening trades
|
|
df.loc[len(df)] = {
|
|
"time": tstamp,
|
|
"symbol": pair.symbol_a_,
|
|
"side": side_a,
|
|
"action": "OPEN",
|
|
"price": px_a,
|
|
"disequilibrium": diseqlbrm,
|
|
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
|
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
|
# "pair": pair,
|
|
}
|
|
df.loc[len(df)] = {
|
|
"time": tstamp,
|
|
"symbol": pair.symbol_b_,
|
|
"side": side_b,
|
|
"action": "OPEN",
|
|
"price": px_b,
|
|
"disequilibrium": diseqlbrm,
|
|
"scaled_disequilibrium": abs(scaled_disequilibrium),
|
|
"signed_scaled_disequilibrium": scaled_disequilibrium,
|
|
# "pair": pair,
|
|
}
|
|
return df
|
|
|
|
def _create_close_trades(
|
|
self, pair: TradingPair, row: pd.Series, prediction: Optional[Prediction] = None
|
|
) -> Optional[pd.DataFrame]:
|
|
colname_a, colname_b = pair.exec_prices_colnames()
|
|
|
|
tstamp = row["tstamp"]
|
|
if prediction is not None:
|
|
diseqlbrm = prediction.disequilibrium_
|
|
signed_scaled_disequilibrium = prediction.scaled_disequilibrium_
|
|
scaled_disequilibrium = abs(prediction.scaled_disequilibrium_)
|
|
else:
|
|
diseqlbrm = 0.0
|
|
signed_scaled_disequilibrium = 0.0
|
|
scaled_disequilibrium = 0.0
|
|
px_a = row[f"{colname_a}"]
|
|
px_b = row[f"{colname_b}"]
|
|
|
|
# creating the trades
|
|
df = self._trades_df()
|
|
|
|
# create opening trades
|
|
df.loc[len(df)] = {
|
|
"time": tstamp,
|
|
"symbol": pair.symbol_a_,
|
|
"side": pair.user_data_["close_side_a"],
|
|
"action": "CLOSE",
|
|
"price": px_a,
|
|
"disequilibrium": diseqlbrm,
|
|
"scaled_disequilibrium": scaled_disequilibrium,
|
|
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
|
# "pair": pair,
|
|
}
|
|
df.loc[len(df)] = {
|
|
"time": tstamp,
|
|
"symbol": pair.symbol_b_,
|
|
"side": pair.user_data_["close_side_b"],
|
|
"action": "CLOSE",
|
|
"price": px_b,
|
|
"disequilibrium": diseqlbrm,
|
|
"scaled_disequilibrium": scaled_disequilibrium,
|
|
"signed_scaled_disequilibrium": signed_scaled_disequilibrium,
|
|
# "pair": pair,
|
|
}
|
|
del pair.user_data_["close_side_a"]
|
|
del pair.user_data_["close_side_b"]
|
|
|
|
del pair.user_data_["open_tstamp"]
|
|
del pair.user_data_["open_px_a"]
|
|
del pair.user_data_["open_px_b"]
|
|
del pair.user_data_["open_side_a"]
|
|
del pair.user_data_["open_side_b"]
|
|
return df
|
|
|
|
def day_trades(self) -> pd.DataFrame:
|
|
return pd.concat(self.trades_, ignore_index=True)
|