743 lines
28 KiB
Python
743 lines
28 KiB
Python
import os
|
|
import sqlite3
|
|
from datetime import date, datetime
|
|
from typing import Any, Dict, List, Optional, Tuple
|
|
|
|
import pandas as pd
|
|
from pt_trading.trading_pair import TradingPair
|
|
|
|
|
|
# Recommended replacement adapters and converters for Python 3.12+
|
|
# From: https://docs.python.org/3/library/sqlite3.html#sqlite3-adapter-converter-recipes
|
|
def adapt_date_iso(val: date) -> str:
|
|
"""Adapt datetime.date to ISO 8601 date."""
|
|
return val.isoformat()
|
|
|
|
|
|
def adapt_datetime_iso(val: datetime) -> str:
|
|
"""Adapt datetime.datetime to timezone-naive ISO 8601 date."""
|
|
return val.isoformat()
|
|
|
|
|
|
def convert_date(val: bytes) -> date:
|
|
"""Convert ISO 8601 date to datetime.date object."""
|
|
return datetime.fromisoformat(val.decode()).date()
|
|
|
|
|
|
def convert_datetime(val: bytes) -> datetime:
|
|
"""Convert ISO 8601 datetime to datetime.datetime object."""
|
|
return datetime.fromisoformat(val.decode())
|
|
|
|
|
|
# Register the adapters and converters
|
|
sqlite3.register_adapter(date, adapt_date_iso)
|
|
sqlite3.register_adapter(datetime, adapt_datetime_iso)
|
|
sqlite3.register_converter("date", convert_date)
|
|
sqlite3.register_converter("datetime", convert_datetime)
|
|
|
|
|
|
def create_result_database(db_path: str) -> None:
|
|
"""
|
|
Create the SQLite database and required tables if they don't exist.
|
|
"""
|
|
try:
|
|
# Create directory if it doesn't exist
|
|
db_dir = os.path.dirname(db_path)
|
|
if db_dir and not os.path.exists(db_dir):
|
|
os.makedirs(db_dir, exist_ok=True)
|
|
print(f"Created directory: {db_dir}")
|
|
|
|
conn = sqlite3.connect(db_path)
|
|
cursor = conn.cursor()
|
|
|
|
# Create the pt_bt_results table for completed trades
|
|
cursor.execute(
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS pt_bt_results (
|
|
date DATE,
|
|
pair TEXT,
|
|
symbol TEXT,
|
|
open_time DATETIME,
|
|
open_side TEXT,
|
|
open_price REAL,
|
|
open_quantity INTEGER,
|
|
open_disequilibrium REAL,
|
|
close_time DATETIME,
|
|
close_side TEXT,
|
|
close_price REAL,
|
|
close_quantity INTEGER,
|
|
close_disequilibrium REAL,
|
|
symbol_return REAL,
|
|
pair_return REAL,
|
|
close_condition TEXT
|
|
)
|
|
"""
|
|
)
|
|
cursor.execute("DELETE FROM pt_bt_results;")
|
|
|
|
# Create the outstanding_positions table for open positions
|
|
cursor.execute(
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS outstanding_positions (
|
|
date DATE,
|
|
pair TEXT,
|
|
symbol TEXT,
|
|
position_quantity REAL,
|
|
last_price REAL,
|
|
unrealized_return REAL,
|
|
open_price REAL,
|
|
open_side TEXT
|
|
)
|
|
"""
|
|
)
|
|
cursor.execute("DELETE FROM outstanding_positions;")
|
|
|
|
# Create the config table for storing configuration JSON for reference
|
|
cursor.execute(
|
|
"""
|
|
CREATE TABLE IF NOT EXISTS config (
|
|
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
|
run_timestamp DATETIME,
|
|
config_file_path TEXT,
|
|
config_json TEXT,
|
|
fit_method_class TEXT,
|
|
datafiles TEXT,
|
|
instruments TEXT
|
|
)
|
|
"""
|
|
)
|
|
cursor.execute("DELETE FROM config;")
|
|
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
except Exception as e:
|
|
print(f"Error creating result database: {str(e)}")
|
|
raise
|
|
|
|
|
|
def store_config_in_database(
|
|
db_path: str,
|
|
config_file_path: str,
|
|
config: Dict,
|
|
fit_method_class: str,
|
|
datafiles: List[str],
|
|
instruments: List[Dict[str, str]],
|
|
) -> None:
|
|
"""
|
|
Store configuration information in the database for reference.
|
|
"""
|
|
import json
|
|
|
|
if db_path.upper() == "NONE":
|
|
return
|
|
|
|
try:
|
|
conn = sqlite3.connect(db_path)
|
|
cursor = conn.cursor()
|
|
|
|
# Convert config to JSON string
|
|
config_json = json.dumps(config, indent=2, default=str)
|
|
|
|
# Convert lists to comma-separated strings for storage
|
|
datafiles_str = ", ".join(datafiles)
|
|
instruments_str = ", ".join(
|
|
[
|
|
f"{inst['symbol']}:{inst['instrument_type']}:{inst['exchange_id']}"
|
|
for inst in instruments
|
|
]
|
|
)
|
|
|
|
# Insert configuration record
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO config (
|
|
run_timestamp, config_file_path, config_json, fit_method_class, datafiles, instruments
|
|
) VALUES (?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(
|
|
datetime.now(),
|
|
config_file_path,
|
|
config_json,
|
|
fit_method_class,
|
|
datafiles_str,
|
|
instruments_str,
|
|
),
|
|
)
|
|
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
print(f"Configuration stored in database")
|
|
|
|
except Exception as e:
|
|
print(f"Error storing configuration in database: {str(e)}")
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
|
|
|
|
def convert_timestamp(timestamp: Any) -> Optional[datetime]:
|
|
"""Convert pandas Timestamp to Python datetime object for SQLite compatibility."""
|
|
if timestamp is None:
|
|
return None
|
|
if isinstance(timestamp, pd.Timestamp):
|
|
return timestamp.to_pydatetime()
|
|
elif isinstance(timestamp, datetime):
|
|
return timestamp
|
|
elif isinstance(timestamp, date):
|
|
return datetime.combine(timestamp, datetime.min.time())
|
|
elif isinstance(timestamp, str):
|
|
return datetime.strptime(timestamp, "%Y-%m-%d %H:%M:%S")
|
|
elif isinstance(timestamp, int):
|
|
return datetime.fromtimestamp(timestamp)
|
|
else:
|
|
raise ValueError(f"Unsupported timestamp type: {type(timestamp)}")
|
|
|
|
|
|
|
|
class BacktestResult:
|
|
"""
|
|
Class to handle backtest results, trades tracking, PnL calculations, and reporting.
|
|
"""
|
|
|
|
def __init__(self, config: Dict[str, Any]):
|
|
self.config = config
|
|
self.trades: Dict[str, Dict[str, Any]] = {}
|
|
self.total_realized_pnl = 0.0
|
|
self.outstanding_positions: List[Dict[str, Any]] = []
|
|
self.pairs_trades_: Dict[str, List[Dict[str, Any]]] = {}
|
|
|
|
def add_trade(
|
|
self,
|
|
pair_nm: str,
|
|
symbol: str,
|
|
side: str,
|
|
action: str,
|
|
price: Any,
|
|
disequilibrium: Optional[float] = None,
|
|
scaled_disequilibrium: Optional[float] = None,
|
|
timestamp: Optional[datetime] = None,
|
|
status: Optional[str] = None,
|
|
) -> None:
|
|
"""Add a trade to the results tracking."""
|
|
pair_nm = str(pair_nm)
|
|
|
|
if pair_nm not in self.trades:
|
|
self.trades[pair_nm] = {symbol: []}
|
|
if symbol not in self.trades[pair_nm]:
|
|
self.trades[pair_nm][symbol] = []
|
|
self.trades[pair_nm][symbol].append(
|
|
{
|
|
"symbol": symbol,
|
|
"side": side,
|
|
"action": action,
|
|
"price": price,
|
|
"disequilibrium": disequilibrium,
|
|
"scaled_disequilibrium": scaled_disequilibrium,
|
|
"timestamp": timestamp,
|
|
"status": status,
|
|
}
|
|
)
|
|
|
|
def add_outstanding_position(self, position: Dict[str, Any]) -> None:
|
|
"""Add an outstanding position to tracking."""
|
|
self.outstanding_positions.append(position)
|
|
|
|
def add_realized_pnl(self, realized_pnl: float) -> None:
|
|
"""Add realized PnL to the total."""
|
|
self.total_realized_pnl += realized_pnl
|
|
|
|
def get_total_realized_pnl(self) -> float:
|
|
"""Get total realized PnL."""
|
|
return self.total_realized_pnl
|
|
|
|
def get_outstanding_positions(self) -> List[Dict[str, Any]]:
|
|
"""Get all outstanding positions."""
|
|
return self.outstanding_positions
|
|
|
|
def get_trades(self) -> Dict[str, Dict[str, Any]]:
|
|
"""Get all trades."""
|
|
return self.trades
|
|
|
|
def clear_trades(self) -> None:
|
|
"""Clear all trades (used when processing new files)."""
|
|
self.trades.clear()
|
|
|
|
def collect_single_day_results(self, pairs_trades: List[pd.DataFrame]) -> None:
|
|
"""Collect and process single day trading results."""
|
|
result = pd.concat(pairs_trades, ignore_index=True)
|
|
result["time"] = pd.to_datetime(result["time"])
|
|
result = result.set_index("time").sort_index()
|
|
|
|
print("\n -------------- Suggested Trades ")
|
|
print(result)
|
|
|
|
for row in result.itertuples():
|
|
side = row.side
|
|
action = row.action
|
|
symbol = row.symbol
|
|
price = row.price
|
|
disequilibrium = getattr(row, "disequilibrium", None)
|
|
scaled_disequilibrium = getattr(row, "scaled_disequilibrium", None)
|
|
if hasattr(row, "time"):
|
|
timestamp = getattr(row, "time")
|
|
else:
|
|
timestamp = convert_timestamp(row.Index)
|
|
status = row.status
|
|
self.add_trade(
|
|
pair_nm=str(row.pair),
|
|
symbol=str(symbol),
|
|
side=str(side),
|
|
action=str(action),
|
|
price=float(str(price)),
|
|
disequilibrium=disequilibrium,
|
|
scaled_disequilibrium=scaled_disequilibrium,
|
|
timestamp=timestamp,
|
|
status=str(status) if status is not None else "?",
|
|
)
|
|
|
|
def print_single_day_results(self) -> None:
|
|
"""Print single day results summary."""
|
|
for pair, symbols in self.trades.items():
|
|
print(f"\n--- {pair} ---")
|
|
for symbol, trades in symbols.items():
|
|
for trade_data in trades:
|
|
if len(trade_data) >= 2:
|
|
side, price = trade_data[:2]
|
|
print(f"{symbol} {side} at ${price}")
|
|
|
|
def print_results_summary(self, all_results: Dict[str, Dict[str, Any]]) -> None:
|
|
"""Print summary of all processed files."""
|
|
print("\n====== Summary of All Processed Files ======")
|
|
for filename, data in all_results.items():
|
|
trade_count = sum(
|
|
len(trades)
|
|
for symbol_trades in data["trades"].values()
|
|
for trades in symbol_trades.values()
|
|
)
|
|
print(f"{filename}: {trade_count} trades")
|
|
|
|
def calculate_returns(self, all_results: Dict[str, Dict[str, Any]]) -> None:
|
|
"""Calculate and print returns by day and pair."""
|
|
def _symbol_return(trade1_side: str, trade1_px: float, trade2_side: str, trade2_px: float) -> float:
|
|
if trade1_side == "BUY" and trade2_side == "SELL":
|
|
return (trade2_px - trade1_px) / trade1_px * 100
|
|
elif trade1_side == "SELL" and trade2_side == "BUY":
|
|
return (trade1_px - trade2_px) / trade1_px * 100
|
|
else:
|
|
return 0
|
|
|
|
print("\n====== Returns By Day and Pair ======")
|
|
|
|
trades = []
|
|
for filename, data in all_results.items():
|
|
pairs = list(data["trades"].keys())
|
|
for pair in pairs:
|
|
self.pairs_trades_[pair] = []
|
|
trades_dict = data["trades"][pair]
|
|
for symbol in trades_dict.keys():
|
|
trades.extend(trades_dict[symbol])
|
|
trades = sorted(trades, key=lambda x: (x["timestamp"], x["symbol"]))
|
|
|
|
print(f"\n--- {filename} ---")
|
|
|
|
self.outstanding_positions = data["outstanding_positions"]
|
|
|
|
day_return = 0.0
|
|
for idx in range(0, len(trades), 4):
|
|
symbol_a = trades[idx]["symbol"]
|
|
trade_a_1 = trades[idx]
|
|
trade_a_2 = trades[idx + 2]
|
|
|
|
symbol_b = trades[idx + 1]["symbol"]
|
|
trade_b_1 = trades[idx + 1]
|
|
trade_b_2 = trades[idx + 3]
|
|
|
|
symbol_return = 0
|
|
assert (
|
|
trade_a_1["timestamp"] < trade_a_2["timestamp"]
|
|
), f"Trade 1: {trade_a_1['timestamp']} is not less than Trade 2: {trade_a_2['timestamp']}"
|
|
assert (
|
|
trade_a_1["action"] == "OPEN" and trade_a_2["action"] == "CLOSE"
|
|
), f"Trade 1: {trade_a_1['action']} and Trade 2: {trade_a_2['action']} are the same"
|
|
|
|
# Calculate return based on action combination
|
|
trade_return = 0
|
|
symbol_a_return = _symbol_return(trade_a_1["side"], trade_a_1["price"], trade_a_2["side"], trade_a_2["price"])
|
|
symbol_b_return = _symbol_return(trade_b_1["side"], trade_b_1["price"], trade_b_2["side"], trade_b_2["price"])
|
|
|
|
pair_return = symbol_a_return + symbol_b_return
|
|
|
|
self.pairs_trades_[pair].append(
|
|
{
|
|
"symbol": symbol_a,
|
|
"open_side": trade_a_1["side"],
|
|
"open_action": trade_a_1["action"],
|
|
"open_price": trade_a_1["price"],
|
|
"close_side": trade_a_2["side"],
|
|
"close_action": trade_a_2["action"],
|
|
"close_price": trade_a_2["price"],
|
|
"symbol_return": symbol_a_return,
|
|
"open_disequilibrium": trade_a_1["disequilibrium"],
|
|
"open_scaled_disequilibrium": trade_a_1["scaled_disequilibrium"],
|
|
"close_disequilibrium": trade_a_2["disequilibrium"],
|
|
"close_scaled_disequilibrium": trade_a_2["scaled_disequilibrium"],
|
|
"open_time": trade_a_1["timestamp"],
|
|
"close_time": trade_a_2["timestamp"],
|
|
"shares": self.config["funding_per_pair"] / 2 / trade_a_1["price"],
|
|
"is_completed": True,
|
|
"close_condition": trade_a_2["status"],
|
|
"pair_return": pair_return
|
|
}
|
|
)
|
|
self.pairs_trades_[pair].append(
|
|
{
|
|
"symbol": symbol_b,
|
|
"open_side": trade_b_1["side"],
|
|
"open_action": trade_b_1["action"],
|
|
"open_price": trade_b_1["price"],
|
|
"close_side": trade_b_2["side"],
|
|
"close_action": trade_b_2["action"],
|
|
"close_price": trade_b_2["price"],
|
|
"symbol_return": symbol_b_return,
|
|
"open_disequilibrium": trade_b_1["disequilibrium"],
|
|
"open_scaled_disequilibrium": trade_b_1["scaled_disequilibrium"],
|
|
"close_disequilibrium": trade_b_2["disequilibrium"],
|
|
"close_scaled_disequilibrium": trade_b_2["scaled_disequilibrium"],
|
|
"open_time": trade_b_1["timestamp"],
|
|
"close_time": trade_b_2["timestamp"],
|
|
"shares": self.config["funding_per_pair"] / 2 / trade_b_1["price"],
|
|
"is_completed": True,
|
|
"close_condition": trade_b_2["status"],
|
|
"pair_return": pair_return
|
|
}
|
|
)
|
|
|
|
|
|
# Print pair returns with disequilibrium information
|
|
day_return = 0.0
|
|
if self.pairs_trades_[pair]:
|
|
|
|
print(f"{pair}:")
|
|
pair_return = 0.0
|
|
for trd in self.pairs_trades_[pair]:
|
|
disequil_info = ""
|
|
if (
|
|
trd["open_scaled_disequilibrium"] is not None
|
|
and trd["open_scaled_disequilibrium"] is not None
|
|
):
|
|
disequil_info = f" | Open Dis-eq: {trd['open_scaled_disequilibrium']:.2f},"
|
|
f" Close Dis-eq: {trd['open_scaled_disequilibrium']:.2f}"
|
|
|
|
print(
|
|
f" {trd['open_time'].time()} {trd['symbol']}: "
|
|
f" {trd['open_side']} @ ${trd['open_price']:.2f},"
|
|
f" {trd["close_side"]} @ ${trd["close_price"]:.2f},"
|
|
f" Return: {trd['symbol_return']:.2f}%{disequil_info}"
|
|
)
|
|
pair_return += trd["symbol_return"]
|
|
|
|
print(f" Pair Total Return: {pair_return:.2f}%")
|
|
day_return += pair_return
|
|
|
|
# Print day total return and add to global realized PnL
|
|
if day_return != 0:
|
|
print(f" Day Total Return: {day_return:.2f}%")
|
|
self.add_realized_pnl(day_return)
|
|
|
|
def print_outstanding_positions(self) -> None:
|
|
"""Print all outstanding positions with share quantities and current values."""
|
|
if not self.get_outstanding_positions():
|
|
print("\n====== NO OUTSTANDING POSITIONS ======")
|
|
return
|
|
|
|
print(f"\n====== OUTSTANDING POSITIONS ======")
|
|
print(
|
|
f"{'Pair':<15}"
|
|
f" {'Symbol':<10}"
|
|
f" {'Side':<4}"
|
|
f" {'Shares':<10}"
|
|
f" {'Open $':<8}"
|
|
f" {'Current $':<10}"
|
|
f" {'Value $':<12}"
|
|
f" {'Disequilibrium':<15}"
|
|
)
|
|
print("-" * 100)
|
|
|
|
total_value = 0.0
|
|
|
|
for pos in self.get_outstanding_positions():
|
|
# Print position A
|
|
print(
|
|
f"{pos['pair']:<15}"
|
|
f" {pos['symbol_a']:<10}"
|
|
f" {pos['side_a']:<4}"
|
|
f" {pos['shares_a']:<10.2f}"
|
|
f" {pos['open_px_a']:<8.2f}"
|
|
f" {pos['current_px_a']:<10.2f}"
|
|
f" {pos['current_value_a']:<12.2f}"
|
|
f" {'':<15}"
|
|
)
|
|
|
|
# Print position B
|
|
print(
|
|
f"{'':<15}"
|
|
f" {pos['symbol_b']:<10}"
|
|
f" {pos['side_b']:<4}"
|
|
f" {pos['shares_b']:<10.2f}"
|
|
f" {pos['open_px_b']:<8.2f}"
|
|
f" {pos['current_px_b']:<10.2f}"
|
|
f" {pos['current_value_b']:<12.2f}"
|
|
)
|
|
|
|
# Print pair totals with disequilibrium info
|
|
print(
|
|
f"{'':<15}"
|
|
f" {'PAIR TOTAL':<10}"
|
|
f" {'':<4}"
|
|
f" {'':<10}"
|
|
f" {'':<8}"
|
|
f" {'':<10}"
|
|
f" {pos['total_current_value']:<12.2f}"
|
|
)
|
|
|
|
# Print disequilibrium details
|
|
print(
|
|
f"{'':<15}"
|
|
f" {'DISEQUIL':<10}"
|
|
f" {'':<4}"
|
|
f" {'':<10}"
|
|
f" {'':<8}"
|
|
f" {'':<10}"
|
|
f" Raw: {pos['current_disequilibrium']:<6.4f}"
|
|
f" Scaled: {pos['current_scaled_disequilibrium']:<6.4f}"
|
|
)
|
|
|
|
print("-" * 100)
|
|
|
|
total_value += pos["total_current_value"]
|
|
|
|
print(f"{'TOTAL OUTSTANDING VALUE':<80} ${total_value:<12.2f}")
|
|
|
|
def print_grand_totals(self) -> None:
|
|
"""Print grand totals across all pairs."""
|
|
print(f"\n====== GRAND TOTALS ACROSS ALL PAIRS ======")
|
|
print(f"Total Realized PnL: {self.get_total_realized_pnl():.2f}%")
|
|
|
|
def handle_outstanding_position(
|
|
self,
|
|
pair: TradingPair,
|
|
pair_result_df: pd.DataFrame,
|
|
last_row_index: int,
|
|
open_side_a: str,
|
|
open_side_b: str,
|
|
open_px_a: float,
|
|
open_px_b: float,
|
|
open_tstamp: datetime,
|
|
) -> Tuple[float, float, float]:
|
|
"""
|
|
Handle calculation and tracking of outstanding positions when no close signal is found.
|
|
|
|
Args:
|
|
pair: TradingPair object
|
|
pair_result_df: DataFrame with pair results
|
|
last_row_index: Index of the last row in the data
|
|
open_side_a, open_side_b: Trading sides for symbols A and B
|
|
open_px_a, open_px_b: Opening prices for symbols A and B
|
|
open_tstamp: Opening timestamp
|
|
"""
|
|
if pair_result_df is None or pair_result_df.empty:
|
|
return 0, 0, 0
|
|
|
|
last_row = pair_result_df.loc[last_row_index]
|
|
last_tstamp = last_row["tstamp"]
|
|
colname_a, colname_b = pair.colnames()
|
|
last_px_a = last_row[colname_a]
|
|
last_px_b = last_row[colname_b]
|
|
|
|
# Calculate share quantities based on funding per pair
|
|
# Split funding equally between the two positions
|
|
funding_per_position = self.config["funding_per_pair"] / 2
|
|
shares_a = funding_per_position / open_px_a
|
|
shares_b = funding_per_position / open_px_b
|
|
|
|
# Calculate current position values (shares * current price)
|
|
current_value_a = shares_a * last_px_a * (-1 if open_side_a == "SELL" else 1)
|
|
current_value_b = shares_b * last_px_b * (-1 if open_side_b == "SELL" else 1)
|
|
total_current_value = current_value_a + current_value_b
|
|
|
|
# Get disequilibrium information
|
|
current_disequilibrium = last_row["disequilibrium"]
|
|
current_scaled_disequilibrium = last_row["scaled_disequilibrium"]
|
|
|
|
# Store outstanding positions
|
|
self.add_outstanding_position(
|
|
{
|
|
"pair": str(pair),
|
|
"symbol_a": pair.symbol_a_,
|
|
"symbol_b": pair.symbol_b_,
|
|
"side_a": open_side_a,
|
|
"side_b": open_side_b,
|
|
"shares_a": shares_a,
|
|
"shares_b": shares_b,
|
|
"open_px_a": open_px_a,
|
|
"open_px_b": open_px_b,
|
|
"current_px_a": last_px_a,
|
|
"current_px_b": last_px_b,
|
|
"current_value_a": current_value_a,
|
|
"current_value_b": current_value_b,
|
|
"total_current_value": total_current_value,
|
|
"open_time": open_tstamp,
|
|
"last_time": last_tstamp,
|
|
"current_abs_term": current_scaled_disequilibrium,
|
|
"current_disequilibrium": current_disequilibrium,
|
|
"current_scaled_disequilibrium": current_scaled_disequilibrium,
|
|
}
|
|
)
|
|
|
|
# Print position details
|
|
print(f"{pair}: NO CLOSE SIGNAL FOUND - Position held until end of session")
|
|
print(f" Open: {open_tstamp} | Last: {last_tstamp}")
|
|
print(
|
|
f" {pair.symbol_a_}: {open_side_a} {shares_a:.2f} shares @ ${open_px_a:.2f} -> ${last_px_a:.2f} | Value: ${current_value_a:.2f}"
|
|
)
|
|
print(
|
|
f" {pair.symbol_b_}: {open_side_b} {shares_b:.2f} shares @ ${open_px_b:.2f} -> ${last_px_b:.2f} | Value: ${current_value_b:.2f}"
|
|
)
|
|
print(f" Total Value: ${total_current_value:.2f}")
|
|
print(
|
|
f" Disequilibrium: {current_disequilibrium:.4f} | Scaled: {current_scaled_disequilibrium:.4f}"
|
|
)
|
|
|
|
return current_value_a, current_value_b, total_current_value
|
|
|
|
def store_results_in_database(
|
|
self, db_path: str, datafile: str
|
|
) -> None:
|
|
"""
|
|
Store backtest results in the SQLite database.
|
|
"""
|
|
if db_path.upper() == "NONE":
|
|
return
|
|
|
|
try:
|
|
# Extract date from datafile name (assuming format like 20250528.mktdata.ohlcv.db)
|
|
filename = os.path.basename(datafile)
|
|
date_str = filename.split(".")[0] # Extract date part
|
|
|
|
# Convert to proper date format
|
|
try:
|
|
date_obj = datetime.strptime(date_str, "%Y%m%d").date()
|
|
except ValueError:
|
|
# If date parsing fails, use current date
|
|
date_obj = datetime.now().date()
|
|
|
|
conn = sqlite3.connect(db_path)
|
|
cursor = conn.cursor()
|
|
|
|
# Process each trade from bt_result
|
|
trades = self.get_trades()
|
|
|
|
for pair_name, _ in trades.items():
|
|
|
|
# Second pass: insert completed trade records into database
|
|
for trade_pair in sorted(self.pairs_trades_[pair_name], key=lambda x: x["open_time"]):
|
|
# Only store completed trades in pt_bt_results table
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO pt_bt_results (
|
|
date, pair, symbol, open_time, open_side, open_price,
|
|
open_quantity, open_disequilibrium, close_time, close_side,
|
|
close_price, close_quantity, close_disequilibrium,
|
|
symbol_return, pair_return, close_condition
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(
|
|
date_obj,
|
|
pair_name,
|
|
trade_pair["symbol"],
|
|
trade_pair["open_time"],
|
|
trade_pair["open_side"],
|
|
trade_pair["open_price"],
|
|
trade_pair["shares"],
|
|
trade_pair["open_scaled_disequilibrium"],
|
|
trade_pair["close_time"],
|
|
trade_pair["close_side"],
|
|
trade_pair["close_price"],
|
|
trade_pair["shares"],
|
|
trade_pair["close_scaled_disequilibrium"],
|
|
trade_pair["symbol_return"],
|
|
trade_pair["pair_return"],
|
|
trade_pair["close_condition"]
|
|
),
|
|
)
|
|
|
|
# Store outstanding positions in separate table
|
|
outstanding_positions = self.get_outstanding_positions()
|
|
for pos in outstanding_positions:
|
|
# Calculate position quantity (negative for SELL positions)
|
|
position_qty_a = (
|
|
pos["shares_a"] if pos["side_a"] == "BUY" else -pos["shares_a"]
|
|
)
|
|
position_qty_b = (
|
|
pos["shares_b"] if pos["side_b"] == "BUY" else -pos["shares_b"]
|
|
)
|
|
|
|
# Calculate unrealized returns
|
|
# For symbol A: (current_price - open_price) / open_price * 100 * position_direction
|
|
unrealized_return_a = (
|
|
(pos["current_px_a"] - pos["open_px_a"]) / pos["open_px_a"] * 100
|
|
) * (1 if pos["side_a"] == "BUY" else -1)
|
|
unrealized_return_b = (
|
|
(pos["current_px_b"] - pos["open_px_b"]) / pos["open_px_b"] * 100
|
|
) * (1 if pos["side_b"] == "BUY" else -1)
|
|
|
|
# Store outstanding position for symbol A
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO outstanding_positions (
|
|
date, pair, symbol, position_quantity, last_price, unrealized_return, open_price, open_side
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(
|
|
date_obj,
|
|
pos["pair"],
|
|
pos["symbol_a"],
|
|
position_qty_a,
|
|
pos["current_px_a"],
|
|
unrealized_return_a,
|
|
pos["open_px_a"],
|
|
pos["side_a"],
|
|
),
|
|
)
|
|
|
|
# Store outstanding position for symbol B
|
|
cursor.execute(
|
|
"""
|
|
INSERT INTO outstanding_positions (
|
|
date, pair, symbol, position_quantity, last_price, unrealized_return, open_price, open_side
|
|
) VALUES (?, ?, ?, ?, ?, ?, ?, ?)
|
|
""",
|
|
(
|
|
date_obj,
|
|
pos["pair"],
|
|
pos["symbol_b"],
|
|
position_qty_b,
|
|
pos["current_px_b"],
|
|
unrealized_return_b,
|
|
pos["open_px_b"],
|
|
pos["side_b"],
|
|
),
|
|
)
|
|
|
|
conn.commit()
|
|
conn.close()
|
|
|
|
except Exception as e:
|
|
print(f"Error storing results in database: {str(e)}")
|
|
import traceback
|
|
|
|
traceback.print_exc()
|
|
|