# Copyright 2022-2025 MetaOPT Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """PyTree integration with :mod:`functools`.""" from __future__ import annotations import functools from typing import TYPE_CHECKING, Any, Callable, ClassVar from typing_extensions import Self # Python 3.11+ from optree import registry from optree.accessor import GetAttrEntry from optree.ops import tree_reduce as reduce from optree.typing import CustomTreeNode, T if TYPE_CHECKING: from optree.accessor import PyTreeEntry __all__ = [ 'partial', 'reduce', ] class _HashablePartialShim: """Object that delegates :meth:`__call__`, :meth:`__eq__`, and :meth:`__hash__` to another object.""" __slots__: ClassVar[tuple[str, ...]] = ('args', 'func', 'keywords', 'partial_func') func: Callable[..., Any] args: tuple[Any, ...] keywords: dict[str, Any] def __init__(self, partial_func: functools.partial, /) -> None: self.partial_func: functools.partial = partial_func def __call__(self, /, *args: Any, **kwargs: Any) -> Any: return self.partial_func(*args, **kwargs) def __eq__(self, other: object, /) -> bool: if isinstance(other, _HashablePartialShim): return self.partial_func == other.partial_func return self.partial_func == other def __hash__(self, /) -> int: return hash(self.partial_func) def __repr__(self, /) -> str: return repr(self.partial_func) # pylint: disable-next=protected-access @registry.register_pytree_node_class(namespace=registry.__GLOBAL_NAMESPACE) class partial( # noqa: N801 # pylint: disable=invalid-name,too-few-public-methods functools.partial, CustomTreeNode[T], ): """A version of :func:`functools.partial` that works in pytrees. Use it for partial function evaluation in a way that is compatible with transformations, e.g., ``partial(func, *args, **kwargs)``. (You need to explicitly opt-in to this behavior because we did not want to give :func:`functools.partial` different semantics than normal function closures.) For example, here is a basic usage of :class:`partial` in a manner similar to :func:`functools.partial`: >>> import operator >>> import torch >>> add_one = partial(operator.add, torch.ones(())) >>> add_one(torch.tensor([[1, 2], [3, 4]])) tensor([[2., 3.], [4., 5.]]) Pytree compatibility means that the resulting partial function can be passed as an argument within tree-map functions, which is not possible with a standard :func:`functools.partial` function: >>> def call_func_on_cuda(f, *args, **kwargs): ... f, args, kwargs = tree_map(lambda t: t.cuda(), (f, args, kwargs)) ... return f(*args, **kwargs) ... >>> # doctest: +SKIP >>> tree_map(lambda t: t.cuda(), add_one) optree.functools.partial(, tensor(1., device='cuda:0')) >>> call_func_on_cuda(add_one, torch.tensor([[1, 2], [3, 4]])) tensor([[2., 3.], [4., 5.]], device='cuda:0') Passing zero arguments to :class:`partial` effectively wraps the original function, making it a valid argument in tree-map functions: >>> # doctest: +SKIP >>> call_func_on_cuda(partial(torch.add), torch.tensor(1), torch.tensor(2)) tensor(3, device='cuda:0') Had we passed :func:`operator.add` to ``call_func_on_cuda`` directly, it would have resulted in a :class:`TypeError` or :class:`AttributeError`. """ __slots__: ClassVar[tuple[()]] = () func: Callable[..., Any] args: tuple[T, ...] keywords: dict[str, T] TREE_PATH_ENTRY_TYPE: ClassVar[type[PyTreeEntry]] = GetAttrEntry def __new__(cls, func: Callable[..., Any], /, *args: T, **keywords: T) -> Self: """Create a new :class:`partial` instance.""" # In Python 3.10+, if func is itself a functools.partial instance, functools.partial.__new__ # would merge the arguments of this partial instance with the arguments of the func. We box # func in a class that does not (yet) have a `func` attribute to defeat this optimization, # since we care exactly which arguments are considered part of the pytree. if isinstance(func, functools.partial): original_func = func func = _HashablePartialShim(original_func) assert not hasattr(func, 'func'), 'shimmed function should not have a `func` attribute' out = super().__new__(cls, func, *args, **keywords) func.func = original_func.func func.args = original_func.args func.keywords = original_func.keywords return out return super().__new__(cls, func, *args, **keywords) def __repr__(self, /) -> str: """Return a string representation of the :class:`partial` instance.""" args = [repr(self.func)] args.extend(repr(x) for x in self.args) args.extend(f'{k}={v!r}' for (k, v) in self.keywords.items()) return f'{self.__class__.__module__}.{self.__class__.__qualname__}({", ".join(args)})' def tree_flatten( # type: ignore[override] self, /, ) -> tuple[ tuple[tuple[T, ...], dict[str, T]], Callable[..., Any], tuple[str, str], ]: """Flatten the :class:`partial` instance to children and metadata.""" return (self.args, self.keywords), self.func, ('args', 'keywords') @classmethod def tree_unflatten( # type: ignore[override] cls, metadata: Callable[..., Any], children: tuple[tuple[T, ...], dict[str, T]], /, ) -> Self: """Unflatten the children and metadata into a :class:`partial` instance.""" args, keywords = children return cls(metadata, *args, **keywords)