""" .. module:: volume :synopsis: Volume Indicators. .. moduleauthor:: Dario Lopez Padial (Bukosabino) """ import typing as tp import numpy as np import pandas as pd from ta.utils import IndicatorMixin, _ema class AccDistIndexIndicator(IndicatorMixin): """Accumulation/Distribution Index (ADI) Acting as leading indicator of price movements. https://school.stockcharts.com/doku.php?id=technical_indicators:accumulation_distribution_line Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool): if True, fill nan values. """ def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, volume: pd.Series, fillna: bool = False, ): self._high = high self._low = low self._close = close self._volume = volume self._fillna = fillna self._run() def _run(self): clv = ((self._close - self._low) - (self._high - self._close)) / ( self._high - self._low ) clv = clv.fillna(0.0) # float division by zero adi = clv * self._volume self._adi = adi.cumsum() def acc_dist_index(self) -> pd.Series: """Accumulation/Distribution Index (ADI) Returns: pandas.Series: New feature generated. """ adi = self._check_fillna(self._adi, value=0) return pd.Series(adi, name="adi") class OnBalanceVolumeIndicator(IndicatorMixin): """On-balance volume (OBV) It relates price and volume in the stock market. OBV is based on a cumulative total volume. https://en.wikipedia.org/wiki/On-balance_volume Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool): if True, fill nan values. """ def __init__(self, close: pd.Series, volume: pd.Series, fillna: bool = False): self._close = close self._volume = volume self._fillna = fillna self._run() def _run(self): obv = np.where(self._close < self._close.shift(1), -self._volume, self._volume) self._obv = pd.Series(obv, index=self._close.index).cumsum() def on_balance_volume(self) -> pd.Series: """On-balance volume (OBV) Returns: pandas.Series: New feature generated. """ obv = self._check_fillna(self._obv, value=0) return pd.Series(obv, name="obv") class ChaikinMoneyFlowIndicator(IndicatorMixin): """Chaikin Money Flow (CMF) It measures the amount of Money Flow Volume over a specific period. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. """ def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, volume: pd.Series, window: int = 20, fillna: bool = False, ): self._high = high self._low = low self._close = close self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): mfv = ((self._close - self._low) - (self._high - self._close)) / ( self._high - self._low ) mfv = mfv.fillna(0.0) # float division by zero mfv *= self._volume min_periods = 0 if self._fillna else self._window self._cmf = ( mfv.rolling(self._window, min_periods=min_periods).sum() / self._volume.rolling(self._window, min_periods=min_periods).sum() ) def chaikin_money_flow(self) -> pd.Series: """Chaikin Money Flow (CMF) Returns: pandas.Series: New feature generated. """ cmf = self._check_fillna(self._cmf, value=0) return pd.Series(cmf, name="cmf") class ForceIndexIndicator(IndicatorMixin): """Force Index (FI) It illustrates how strong the actual buying or selling pressure is. High positive values mean there is a strong rising trend, and low values signify a strong downward trend. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:force_index Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. """ def __init__( self, close: pd.Series, volume: pd.Series, window: int = 13, fillna: bool = False, ): self._close = close self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): fi_series = (self._close - self._close.shift(1)) * self._volume self._fi = _ema(fi_series, self._window, fillna=self._fillna) def force_index(self) -> pd.Series: """Force Index (FI) Returns: pandas.Series: New feature generated. """ fi_series = self._check_fillna(self._fi, value=0) return pd.Series(fi_series, name=f"fi_{self._window}") class EaseOfMovementIndicator(IndicatorMixin): """Ease of movement (EoM, EMV) It relate an asset's price change to its volume and is particularly useful for assessing the strength of a trend. https://en.wikipedia.org/wiki/Ease_of_movement Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. """ def __init__( self, high: pd.Series, low: pd.Series, volume: pd.Series, window: int = 14, fillna: bool = False, ): self._high = high self._low = low self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): self._emv = ( (self._high.diff(1) + self._low.diff(1)) * (self._high - self._low) / (2 * self._volume) ) self._emv *= 100000000 def ease_of_movement(self) -> pd.Series: """Ease of movement (EoM, EMV) Returns: pandas.Series: New feature generated. """ emv = self._check_fillna(self._emv, value=0) return pd.Series(emv, name=f"eom_{self._window}") def sma_ease_of_movement(self) -> pd.Series: """Signal Ease of movement (EoM, EMV) Returns: pandas.Series: New feature generated. """ min_periods = 0 if self._fillna else self._window emv = self._emv.rolling(self._window, min_periods=min_periods).mean() emv = self._check_fillna(emv, value=0) return pd.Series(emv, name=f"sma_eom_{self._window}") class VolumePriceTrendIndicator(IndicatorMixin): """Volume-price trend (VPT) Is based on a running cumulative volume that adds or substracts a multiple of the percentage change in share price trend and current volume, depending upon the investment's upward or downward movements. https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool)=False: if True, fill nan values. DO NOT RECCOMEND to set it True. smoothing_factor(int)=None: will smooth default VPT implementation with SMA. dropnans(bool)=False: drop nans after indicator calculated. """ def __init__( self, close: pd.Series, volume: pd.Series, fillna: bool = False, smoothing_factor: tp.Optional[int] = None, dropnans: bool = False, ): self._close = close self._volume = volume self._fillna = fillna self._smoothing_factor = smoothing_factor self._dropnans = dropnans self._run() def _run(self): self._vpt = (self._close.pct_change() * self._volume).cumsum() if self._smoothing_factor: min_periods = 0 if self._fillna else self._smoothing_factor self._vpt = self._vpt.rolling( self._smoothing_factor, min_periods=min_periods ).mean() if self._dropnans: self._vpt = self._vpt.dropna() def volume_price_trend(self) -> pd.Series: """Volume-price trend (VPT) Returns: pandas.Series: New feature generated. """ vpt = self._check_fillna(self._vpt, value=0) return pd.Series(vpt, name="vpt") class NegativeVolumeIndexIndicator(IndicatorMixin): """Negative Volume Index (NVI) http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool): if True, fill nan values with 1000. """ def __init__(self, close: pd.Series, volume: pd.Series, fillna: bool = False): self._close = close self._volume = volume self._fillna = fillna self._run() def _run(self): price_change = self._close.pct_change() vol_decrease = self._volume.shift(1) > self._volume self._nvi = pd.Series( data=np.nan, index=self._close.index, dtype="float64", name="nvi" ) self._nvi.iloc[0] = 1000 for i in range(1, len(self._nvi)): if vol_decrease.iloc[i]: self._nvi.iloc[i] = self._nvi.iloc[i - 1] * (1.0 + price_change.iloc[i]) else: self._nvi.iloc[i] = self._nvi.iloc[i - 1] def negative_volume_index(self) -> pd.Series: """Negative Volume Index (NVI) Returns: pandas.Series: New feature generated. """ # IDEA: There shouldn't be any na; might be better to throw exception nvi = self._check_fillna(self._nvi, value=1000) return pd.Series(nvi, name="nvi") class MFIIndicator(IndicatorMixin): """Money Flow Index (MFI) Uses both price and volume to measure buying and selling pressure. It is positive when the typical price rises (buying pressure) and negative when the typical price declines (selling pressure). A ratio of positive and negative money flow is then plugged into an RSI formula to create an oscillator that moves between zero and one hundred. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. """ def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, volume: pd.Series, window: int = 14, fillna: bool = False, ): self._high = high self._low = low self._close = close self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): typical_price = (self._high + self._low + self._close) / 3.0 up_down = np.where( typical_price > typical_price.shift(1), 1, np.where(typical_price < typical_price.shift(1), -1, 0), ) mfr = typical_price * self._volume * up_down # Positive and negative money flow with n periods min_periods = 0 if self._fillna else self._window n_positive_mf = mfr.rolling(self._window, min_periods=min_periods).apply( lambda x: np.sum(np.where(x >= 0.0, x, 0.0)), raw=True ) n_negative_mf = abs( mfr.rolling(self._window, min_periods=min_periods).apply( lambda x: np.sum(np.where(x < 0.0, x, 0.0)), raw=True ) ) # n_positive_mf = np.where(mf.rolling(self._window).sum() >= 0.0, mf, 0.0) # n_negative_mf = abs(np.where(mf.rolling(self._window).sum() < 0.0, mf, 0.0)) # Money flow index mfi = n_positive_mf / n_negative_mf self._mfi = 100 - (100 / (1 + mfi)) def money_flow_index(self) -> pd.Series: """Money Flow Index (MFI) Returns: pandas.Series: New feature generated. """ mfi = self._check_fillna(self._mfi, value=50) return pd.Series(mfi, name=f"mfi_{self._window}") class VolumeWeightedAveragePrice(IndicatorMixin): """Volume Weighted Average Price (VWAP) VWAP equals the dollar value of all trading periods divided by the total trading volume for the current day. The calculation starts when trading opens and ends when it closes. Because it is good for the current trading day only, intraday periods and data are used in the calculation. https://school.stockcharts.com/doku.php?id=technical_indicators:vwap_intraday Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ def __init__( self, high: pd.Series, low: pd.Series, close: pd.Series, volume: pd.Series, window: int = 14, fillna: bool = False, ): self._high = high self._low = low self._close = close self._volume = volume self._window = window self._fillna = fillna self._run() def _run(self): # 1 typical price typical_price = (self._high + self._low + self._close) / 3.0 # 2 typical price * volume typical_price_volume = typical_price * self._volume # 3 total price * volume min_periods = 0 if self._fillna else self._window total_pv = typical_price_volume.rolling( self._window, min_periods=min_periods ).sum() # 4 total volume total_volume = self._volume.rolling(self._window, min_periods=min_periods).sum() self.vwap = total_pv / total_volume def volume_weighted_average_price(self) -> pd.Series: """Volume Weighted Average Price (VWAP) Returns: pandas.Series: New feature generated. """ vwap = self._check_fillna(self.vwap) return pd.Series(vwap, name=f"vwap_{self._window}") def acc_dist_index(high, low, close, volume, fillna=False): """Accumulation/Distribution Index (ADI) Acting as leading indicator of price movements. https://en.wikipedia.org/wiki/Accumulation/distribution_index Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return AccDistIndexIndicator( high=high, low=low, close=close, volume=volume, fillna=fillna ).acc_dist_index() def on_balance_volume(close, volume, fillna=False): """On-balance volume (OBV) It relates price and volume in the stock market. OBV is based on a cumulative total volume. https://en.wikipedia.org/wiki/On-balance_volume Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return OnBalanceVolumeIndicator( close=close, volume=volume, fillna=fillna ).on_balance_volume() def chaikin_money_flow(high, low, close, volume, window=20, fillna=False): """Chaikin Money Flow (CMF) It measures the amount of Money Flow Volume over a specific period. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return ChaikinMoneyFlowIndicator( high=high, low=low, close=close, volume=volume, window=window, fillna=fillna ).chaikin_money_flow() def force_index(close, volume, window=13, fillna=False): """Force Index (FI) It illustrates how strong the actual buying or selling pressure is. High positive values mean there is a strong rising trend, and low values signify a strong downward trend. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:force_index Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return ForceIndexIndicator( close=close, volume=volume, window=window, fillna=fillna ).force_index() def ease_of_movement(high, low, volume, window=14, fillna=False): """Ease of movement (EoM, EMV) It relate an asset's price change to its volume and is particularly useful for assessing the strength of a trend. https://en.wikipedia.org/wiki/Ease_of_movement Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return EaseOfMovementIndicator( high=high, low=low, volume=volume, window=window, fillna=fillna ).ease_of_movement() def sma_ease_of_movement(high, low, volume, window=14, fillna=False): """Ease of movement (EoM, EMV) It relate an asset's price change to its volume and is particularly useful for assessing the strength of a trend. https://en.wikipedia.org/wiki/Ease_of_movement Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ return EaseOfMovementIndicator( high=high, low=low, volume=volume, window=window, fillna=fillna ).sma_ease_of_movement() def volume_price_trend( close, volume, fillna=False, smoothing_factor: tp.Optional[int] = None, dropnans: bool = False ): """Volume-price trend (VPT) Is based on a running cumulative volume that adds or substracts a multiple of the percentage change in share price trend and current volume, depending upon the investment's upward or downward movements. https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool)=False: if True, fill nan values. DO NOT RECCOMEND to set it True. smoothing_factor(int)=None: will smooth default VPT implementation with SMA. dropnans(bool)=False: drop nans after indicator calculated. Returns: pandas.Series: New feature generated. """ return VolumePriceTrendIndicator( close=close, volume=volume, fillna=fillna, smoothing_factor=smoothing_factor, dropnans=dropnans, ).volume_price_trend() def negative_volume_index(close, volume, fillna=False): """Negative Volume Index (NVI) http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde The Negative Volume Index (NVI) is a cumulative indicator that uses the change in volume to decide when the smart money is active. Paul Dysart first developed this indicator in the 1930s. [...] Dysart's Negative Volume Index works under the assumption that the smart money is active on days when volume decreases and the not-so-smart money is active on days when volume increases. The cumulative NVI line was unchanged when volume increased from one period to the other. In other words, nothing was done. Norman Fosback, of Stock Market Logic, adjusted the indicator by substituting the percentage price change for Net Advances. This implementation is the Fosback version. If today's volume is less than yesterday's volume then: nvi(t) = nvi(t-1) * ( 1 + (close(t) - close(t-1)) / close(t-1) ) Else nvi(t) = nvi(t-1) Please note: the "stockcharts.com" example calculation just adds the percentange change of price to previous NVI when volumes decline; other sources indicate that the same percentage of the previous NVI value should be added, which is what is implemented here. Args: close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. fillna(bool): if True, fill nan values with 1000. Returns: pandas.Series: New feature generated. See also: https://en.wikipedia.org/wiki/Negative_volume_index """ return NegativeVolumeIndexIndicator( close=close, volume=volume, fillna=fillna ).negative_volume_index() def money_flow_index(high, low, close, volume, window=14, fillna=False): """Money Flow Index (MFI) Uses both price and volume to measure buying and selling pressure. It is positive when the typical price rises (buying pressure) and negative when the typical price declines (selling pressure). A ratio of positive and negative money flow is then plugged into an RSI formula to create an oscillator that moves between zero and one hundred. http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ indicator = MFIIndicator( high=high, low=low, close=close, volume=volume, window=window, fillna=fillna ) return indicator.money_flow_index() def volume_weighted_average_price( high: pd.Series, low: pd.Series, close: pd.Series, volume: pd.Series, window: int = 14, fillna: bool = False, ): """Volume Weighted Average Price (VWAP) VWAP equals the dollar value of all trading periods divided by the total trading volume for the current day. The calculation starts when trading opens and ends when it closes. Because it is good for the current trading day only, intraday periods and data are used in the calculation. https://school.stockcharts.com/doku.php?id=technical_indicators:vwap_intraday Args: high(pandas.Series): dataset 'High' column. low(pandas.Series): dataset 'Low' column. close(pandas.Series): dataset 'Close' column. volume(pandas.Series): dataset 'Volume' column. window(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ indicator = VolumeWeightedAveragePrice( high=high, low=low, close=close, volume=volume, window=window, fillna=fillna ) return indicator.volume_weighted_average_price()