2025-04-18 16:57:38 +00:00

765 lines
24 KiB
Python

"""
.. module:: volume
:synopsis: Volume Indicators.
.. moduleauthor:: Dario Lopez Padial (Bukosabino)
"""
import typing as tp
import numpy as np
import pandas as pd
from ta.utils import IndicatorMixin, _ema
class AccDistIndexIndicator(IndicatorMixin):
"""Accumulation/Distribution Index (ADI)
Acting as leading indicator of price movements.
https://school.stockcharts.com/doku.php?id=technical_indicators:accumulation_distribution_line
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool): if True, fill nan values.
"""
def __init__(
self,
high: pd.Series,
low: pd.Series,
close: pd.Series,
volume: pd.Series,
fillna: bool = False,
):
self._high = high
self._low = low
self._close = close
self._volume = volume
self._fillna = fillna
self._run()
def _run(self):
clv = ((self._close - self._low) - (self._high - self._close)) / (
self._high - self._low
)
clv = clv.fillna(0.0) # float division by zero
adi = clv * self._volume
self._adi = adi.cumsum()
def acc_dist_index(self) -> pd.Series:
"""Accumulation/Distribution Index (ADI)
Returns:
pandas.Series: New feature generated.
"""
adi = self._check_fillna(self._adi, value=0)
return pd.Series(adi, name="adi")
class OnBalanceVolumeIndicator(IndicatorMixin):
"""On-balance volume (OBV)
It relates price and volume in the stock market. OBV is based on a
cumulative total volume.
https://en.wikipedia.org/wiki/On-balance_volume
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool): if True, fill nan values.
"""
def __init__(self, close: pd.Series, volume: pd.Series, fillna: bool = False):
self._close = close
self._volume = volume
self._fillna = fillna
self._run()
def _run(self):
obv = np.where(self._close < self._close.shift(1), -self._volume, self._volume)
self._obv = pd.Series(obv, index=self._close.index).cumsum()
def on_balance_volume(self) -> pd.Series:
"""On-balance volume (OBV)
Returns:
pandas.Series: New feature generated.
"""
obv = self._check_fillna(self._obv, value=0)
return pd.Series(obv, name="obv")
class ChaikinMoneyFlowIndicator(IndicatorMixin):
"""Chaikin Money Flow (CMF)
It measures the amount of Money Flow Volume over a specific period.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
"""
def __init__(
self,
high: pd.Series,
low: pd.Series,
close: pd.Series,
volume: pd.Series,
window: int = 20,
fillna: bool = False,
):
self._high = high
self._low = low
self._close = close
self._volume = volume
self._window = window
self._fillna = fillna
self._run()
def _run(self):
mfv = ((self._close - self._low) - (self._high - self._close)) / (
self._high - self._low
)
mfv = mfv.fillna(0.0) # float division by zero
mfv *= self._volume
min_periods = 0 if self._fillna else self._window
self._cmf = (
mfv.rolling(self._window, min_periods=min_periods).sum()
/ self._volume.rolling(self._window, min_periods=min_periods).sum()
)
def chaikin_money_flow(self) -> pd.Series:
"""Chaikin Money Flow (CMF)
Returns:
pandas.Series: New feature generated.
"""
cmf = self._check_fillna(self._cmf, value=0)
return pd.Series(cmf, name="cmf")
class ForceIndexIndicator(IndicatorMixin):
"""Force Index (FI)
It illustrates how strong the actual buying or selling pressure is. High
positive values mean there is a strong rising trend, and low values signify
a strong downward trend.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:force_index
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
"""
def __init__(
self,
close: pd.Series,
volume: pd.Series,
window: int = 13,
fillna: bool = False,
):
self._close = close
self._volume = volume
self._window = window
self._fillna = fillna
self._run()
def _run(self):
fi_series = (self._close - self._close.shift(1)) * self._volume
self._fi = _ema(fi_series, self._window, fillna=self._fillna)
def force_index(self) -> pd.Series:
"""Force Index (FI)
Returns:
pandas.Series: New feature generated.
"""
fi_series = self._check_fillna(self._fi, value=0)
return pd.Series(fi_series, name=f"fi_{self._window}")
class EaseOfMovementIndicator(IndicatorMixin):
"""Ease of movement (EoM, EMV)
It relate an asset's price change to its volume and is particularly useful
for assessing the strength of a trend.
https://en.wikipedia.org/wiki/Ease_of_movement
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
"""
def __init__(
self,
high: pd.Series,
low: pd.Series,
volume: pd.Series,
window: int = 14,
fillna: bool = False,
):
self._high = high
self._low = low
self._volume = volume
self._window = window
self._fillna = fillna
self._run()
def _run(self):
self._emv = (
(self._high.diff(1) + self._low.diff(1))
* (self._high - self._low)
/ (2 * self._volume)
)
self._emv *= 100000000
def ease_of_movement(self) -> pd.Series:
"""Ease of movement (EoM, EMV)
Returns:
pandas.Series: New feature generated.
"""
emv = self._check_fillna(self._emv, value=0)
return pd.Series(emv, name=f"eom_{self._window}")
def sma_ease_of_movement(self) -> pd.Series:
"""Signal Ease of movement (EoM, EMV)
Returns:
pandas.Series: New feature generated.
"""
min_periods = 0 if self._fillna else self._window
emv = self._emv.rolling(self._window, min_periods=min_periods).mean()
emv = self._check_fillna(emv, value=0)
return pd.Series(emv, name=f"sma_eom_{self._window}")
class VolumePriceTrendIndicator(IndicatorMixin):
"""Volume-price trend (VPT)
Is based on a running cumulative volume that adds or substracts a multiple
of the percentage change in share price trend and current volume, depending
upon the investment's upward or downward movements.
https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool)=False: if True, fill nan values. DO NOT RECCOMEND to set it True.
smoothing_factor(int)=None: will smooth default VPT implementation with SMA.
dropnans(bool)=False: drop nans after indicator calculated.
"""
def __init__(
self,
close: pd.Series,
volume: pd.Series,
fillna: bool = False,
smoothing_factor: tp.Optional[int] = None,
dropnans: bool = False,
):
self._close = close
self._volume = volume
self._fillna = fillna
self._smoothing_factor = smoothing_factor
self._dropnans = dropnans
self._run()
def _run(self):
self._vpt = (self._close.pct_change() * self._volume).cumsum()
if self._smoothing_factor:
min_periods = 0 if self._fillna else self._smoothing_factor
self._vpt = self._vpt.rolling(
self._smoothing_factor, min_periods=min_periods
).mean()
if self._dropnans:
self._vpt = self._vpt.dropna()
def volume_price_trend(self) -> pd.Series:
"""Volume-price trend (VPT)
Returns:
pandas.Series: New feature generated.
"""
vpt = self._check_fillna(self._vpt, value=0)
return pd.Series(vpt, name="vpt")
class NegativeVolumeIndexIndicator(IndicatorMixin):
"""Negative Volume Index (NVI)
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool): if True, fill nan values with 1000.
"""
def __init__(self, close: pd.Series, volume: pd.Series, fillna: bool = False):
self._close = close
self._volume = volume
self._fillna = fillna
self._run()
def _run(self):
price_change = self._close.pct_change()
vol_decrease = self._volume.shift(1) > self._volume
self._nvi = pd.Series(
data=np.nan, index=self._close.index, dtype="float64", name="nvi"
)
self._nvi.iloc[0] = 1000
for i in range(1, len(self._nvi)):
if vol_decrease.iloc[i]:
self._nvi.iloc[i] = self._nvi.iloc[i - 1] * (1.0 + price_change.iloc[i])
else:
self._nvi.iloc[i] = self._nvi.iloc[i - 1]
def negative_volume_index(self) -> pd.Series:
"""Negative Volume Index (NVI)
Returns:
pandas.Series: New feature generated.
"""
# IDEA: There shouldn't be any na; might be better to throw exception
nvi = self._check_fillna(self._nvi, value=1000)
return pd.Series(nvi, name="nvi")
class MFIIndicator(IndicatorMixin):
"""Money Flow Index (MFI)
Uses both price and volume to measure buying and selling pressure. It is
positive when the typical price rises (buying pressure) and negative when
the typical price declines (selling pressure). A ratio of positive and
negative money flow is then plugged into an RSI formula to create an
oscillator that moves between zero and one hundred.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
"""
def __init__(
self,
high: pd.Series,
low: pd.Series,
close: pd.Series,
volume: pd.Series,
window: int = 14,
fillna: bool = False,
):
self._high = high
self._low = low
self._close = close
self._volume = volume
self._window = window
self._fillna = fillna
self._run()
def _run(self):
typical_price = (self._high + self._low + self._close) / 3.0
up_down = np.where(
typical_price > typical_price.shift(1),
1,
np.where(typical_price < typical_price.shift(1), -1, 0),
)
mfr = typical_price * self._volume * up_down
# Positive and negative money flow with n periods
min_periods = 0 if self._fillna else self._window
n_positive_mf = mfr.rolling(self._window, min_periods=min_periods).apply(
lambda x: np.sum(np.where(x >= 0.0, x, 0.0)), raw=True
)
n_negative_mf = abs(
mfr.rolling(self._window, min_periods=min_periods).apply(
lambda x: np.sum(np.where(x < 0.0, x, 0.0)), raw=True
)
)
# n_positive_mf = np.where(mf.rolling(self._window).sum() >= 0.0, mf, 0.0)
# n_negative_mf = abs(np.where(mf.rolling(self._window).sum() < 0.0, mf, 0.0))
# Money flow index
mfi = n_positive_mf / n_negative_mf
self._mfi = 100 - (100 / (1 + mfi))
def money_flow_index(self) -> pd.Series:
"""Money Flow Index (MFI)
Returns:
pandas.Series: New feature generated.
"""
mfi = self._check_fillna(self._mfi, value=50)
return pd.Series(mfi, name=f"mfi_{self._window}")
class VolumeWeightedAveragePrice(IndicatorMixin):
"""Volume Weighted Average Price (VWAP)
VWAP equals the dollar value of all trading periods divided
by the total trading volume for the current day.
The calculation starts when trading opens and ends when it closes.
Because it is good for the current trading day only,
intraday periods and data are used in the calculation.
https://school.stockcharts.com/doku.php?id=technical_indicators:vwap_intraday
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
def __init__(
self,
high: pd.Series,
low: pd.Series,
close: pd.Series,
volume: pd.Series,
window: int = 14,
fillna: bool = False,
):
self._high = high
self._low = low
self._close = close
self._volume = volume
self._window = window
self._fillna = fillna
self._run()
def _run(self):
# 1 typical price
typical_price = (self._high + self._low + self._close) / 3.0
# 2 typical price * volume
typical_price_volume = typical_price * self._volume
# 3 total price * volume
min_periods = 0 if self._fillna else self._window
total_pv = typical_price_volume.rolling(
self._window, min_periods=min_periods
).sum()
# 4 total volume
total_volume = self._volume.rolling(self._window, min_periods=min_periods).sum()
self.vwap = total_pv / total_volume
def volume_weighted_average_price(self) -> pd.Series:
"""Volume Weighted Average Price (VWAP)
Returns:
pandas.Series: New feature generated.
"""
vwap = self._check_fillna(self.vwap)
return pd.Series(vwap, name=f"vwap_{self._window}")
def acc_dist_index(high, low, close, volume, fillna=False):
"""Accumulation/Distribution Index (ADI)
Acting as leading indicator of price movements.
https://en.wikipedia.org/wiki/Accumulation/distribution_index
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
return AccDistIndexIndicator(
high=high, low=low, close=close, volume=volume, fillna=fillna
).acc_dist_index()
def on_balance_volume(close, volume, fillna=False):
"""On-balance volume (OBV)
It relates price and volume in the stock market. OBV is based on a
cumulative total volume.
https://en.wikipedia.org/wiki/On-balance_volume
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
return OnBalanceVolumeIndicator(
close=close, volume=volume, fillna=fillna
).on_balance_volume()
def chaikin_money_flow(high, low, close, volume, window=20, fillna=False):
"""Chaikin Money Flow (CMF)
It measures the amount of Money Flow Volume over a specific period.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:chaikin_money_flow_cmf
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
return ChaikinMoneyFlowIndicator(
high=high, low=low, close=close, volume=volume, window=window, fillna=fillna
).chaikin_money_flow()
def force_index(close, volume, window=13, fillna=False):
"""Force Index (FI)
It illustrates how strong the actual buying or selling pressure is. High
positive values mean there is a strong rising trend, and low values signify
a strong downward trend.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:force_index
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
return ForceIndexIndicator(
close=close, volume=volume, window=window, fillna=fillna
).force_index()
def ease_of_movement(high, low, volume, window=14, fillna=False):
"""Ease of movement (EoM, EMV)
It relate an asset's price change to its volume and is particularly useful
for assessing the strength of a trend.
https://en.wikipedia.org/wiki/Ease_of_movement
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
return EaseOfMovementIndicator(
high=high, low=low, volume=volume, window=window, fillna=fillna
).ease_of_movement()
def sma_ease_of_movement(high, low, volume, window=14, fillna=False):
"""Ease of movement (EoM, EMV)
It relate an asset's price change to its volume and is particularly useful
for assessing the strength of a trend.
https://en.wikipedia.org/wiki/Ease_of_movement
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
return EaseOfMovementIndicator(
high=high, low=low, volume=volume, window=window, fillna=fillna
).sma_ease_of_movement()
def volume_price_trend(
close, volume, fillna=False, smoothing_factor: tp.Optional[int] = None, dropnans: bool = False
):
"""Volume-price trend (VPT)
Is based on a running cumulative volume that adds or substracts a multiple
of the percentage change in share price trend and current volume, depending
upon the investment's upward or downward movements.
https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool)=False: if True, fill nan values. DO NOT RECCOMEND to set it True.
smoothing_factor(int)=None: will smooth default VPT implementation with SMA.
dropnans(bool)=False: drop nans after indicator calculated.
Returns:
pandas.Series: New feature generated.
"""
return VolumePriceTrendIndicator(
close=close,
volume=volume,
fillna=fillna,
smoothing_factor=smoothing_factor,
dropnans=dropnans,
).volume_price_trend()
def negative_volume_index(close, volume, fillna=False):
"""Negative Volume Index (NVI)
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:negative_volume_inde
The Negative Volume Index (NVI) is a cumulative indicator that uses the
change in volume to decide when the smart money is active. Paul Dysart
first developed this indicator in the 1930s. [...] Dysart's Negative Volume
Index works under the assumption that the smart money is active on days
when volume decreases and the not-so-smart money is active on days when
volume increases.
The cumulative NVI line was unchanged when volume increased from one
period to the other. In other words, nothing was done. Norman Fosback, of
Stock Market Logic, adjusted the indicator by substituting the percentage
price change for Net Advances.
This implementation is the Fosback version.
If today's volume is less than yesterday's volume then:
nvi(t) = nvi(t-1) * ( 1 + (close(t) - close(t-1)) / close(t-1) )
Else
nvi(t) = nvi(t-1)
Please note: the "stockcharts.com" example calculation just adds the
percentange change of price to previous NVI when volumes decline; other
sources indicate that the same percentage of the previous NVI value should
be added, which is what is implemented here.
Args:
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
fillna(bool): if True, fill nan values with 1000.
Returns:
pandas.Series: New feature generated.
See also:
https://en.wikipedia.org/wiki/Negative_volume_index
"""
return NegativeVolumeIndexIndicator(
close=close, volume=volume, fillna=fillna
).negative_volume_index()
def money_flow_index(high, low, close, volume, window=14, fillna=False):
"""Money Flow Index (MFI)
Uses both price and volume to measure buying and selling pressure. It is
positive when the typical price rises (buying pressure) and negative when
the typical price declines (selling pressure). A ratio of positive and
negative money flow is then plugged into an RSI formula to create an
oscillator that moves between zero and one hundred.
http://stockcharts.com/school/doku.php?id=chart_school:technical_indicators:money_flow_index_mfi
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
indicator = MFIIndicator(
high=high, low=low, close=close, volume=volume, window=window, fillna=fillna
)
return indicator.money_flow_index()
def volume_weighted_average_price(
high: pd.Series,
low: pd.Series,
close: pd.Series,
volume: pd.Series,
window: int = 14,
fillna: bool = False,
):
"""Volume Weighted Average Price (VWAP)
VWAP equals the dollar value of all trading periods divided
by the total trading volume for the current day.
The calculation starts when trading opens and ends when it closes.
Because it is good for the current trading day only,
intraday periods and data are used in the calculation.
https://school.stockcharts.com/doku.php?id=technical_indicators:vwap_intraday
Args:
high(pandas.Series): dataset 'High' column.
low(pandas.Series): dataset 'Low' column.
close(pandas.Series): dataset 'Close' column.
volume(pandas.Series): dataset 'Volume' column.
window(int): n period.
fillna(bool): if True, fill nan values.
Returns:
pandas.Series: New feature generated.
"""
indicator = VolumeWeightedAveragePrice(
high=high, low=low, close=close, volume=volume, window=window, fillna=fillna
)
return indicator.volume_weighted_average_price()