add all new configs

This commit is contained in:
Filip Stefaniuk 2024-09-19 19:14:49 +02:00
parent 3bbd49df4a
commit 5d816cc1ff
11 changed files with 200 additions and 0 deletions

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-15m-gmadl-eval
project: wne-masters-thesis-testing
command:
- ${env}

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-15m-quantile-eval
project: wne-masters-thesis-testing
command:
- ${env}

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-30m-gmadl-eval
project: wne-masters-thesis-testing
command:
- ${env}

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-30m-quantile-eval
project: wne-masters-thesis-testing
command:
- ${env}

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-5m-gmadl-eval
project: wne-masters-thesis-testing
command:
- ${env}

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-5m-quantile-eval
project: wne-masters-thesis-testing
command:
- ${env}

View File

@ -0,0 +1,70 @@
future_window:
value: 2
past_window:
value: 28
batch_size:
value: 256
max_epochs:
value: 40
data:
value:
dataset: "btc-usdt-30m:latest"
sliding_window: 0
validation: 0.2
fields:
value:
time_index: "time_index"
target: "returns"
group_ids: ["group_id"]
dynamic_unknown_real:
- "high_price"
- "low_price"
- "open_price"
- "close_price"
- "volume"
- "open_to_close_price"
- "high_to_close_price"
- "low_to_close_price"
- "high_to_low_price"
- "returns"
- "log_returns"
- "vol_1h"
- "macd"
- "macd_signal"
- "rsi"
- "low_bband_to_close_price"
- "up_bband_to_close_price"
- "mid_bband_to_close_price"
- "sma_1h_to_close_price"
- "sma_1d_to_close_price"
- "sma_7d_to_close_price"
- "ema_1h_to_close_price"
- "ema_1d_to_close_price"
dynamic_unknown_cat: []
dynamic_known_real:
- "effective_rates"
- "vix_close_price"
- "fear_greed_index"
- "vol_1d"
- "vol_7d"
dynamic_known_cat:
- "hour"
- "weekday"
static_real: []
static_cat: []
loss:
value:
name: "GMADL"
a: 1000
b: 2
model:
value:
name: "Informer"
d_model: 256
d_fully_connected: 256
n_attention_heads: 2
dropout: 0.05
n_encoder_layers: 1
n_decoder_layers: 1
learning_rate: 0.0001
optimizer: "Adam"

View File

@ -0,0 +1,41 @@
program: ./scripts/train.py
name: informer-btcusdt-15m-quantile-sweep
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/informer-btcusdt-15m-quantile.yaml"
- "--patience"
- "15"
method: random
metric:
goal: minimize
name: val_loss
parameters:
past_window:
distribution: int_uniform
min: 20
max: 120
batch_size:
values: [64, 128, 256]
model:
parameters:
name:
value: "Informer"
d_model:
values: [256, 512, 1024]
d_fully_connected:
values: [256, 512, 1024]
n_attention_heads:
values: [1, 2, 4, 6]
dropout:
values: [0.05, 0.1, 0.2, 0.3]
n_encoder_layers:
values: [1, 2, 3]
n_decoder_layers:
values: [1, 2, 3]
learning_rate:
values: [0.001, 0.0005, 0.0001]
optimizer:
value: "Adam"

View File

@ -0,0 +1,41 @@
program: ./scripts/train.py
name: informer-btcusdt-30m-gmadl-sweep
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/informer-btcusdt-30m-gmadl.yaml"
- "--patience"
- "15"
method: random
metric:
goal: minimize
name: val_loss
parameters:
past_window:
distribution: int_uniform
min: 20
max: 120
batch_size:
values: [64, 128, 256]
model:
parameters:
name:
value: "Informer"
d_model:
values: [256, 512, 1024]
d_fully_connected:
values: [256, 512, 1024]
n_attention_heads:
values: [1, 2, 4, 6]
dropout:
values: [0.05, 0.1, 0.2, 0.3]
n_encoder_layers:
values: [1, 2, 3]
n_decoder_layers:
values: [1, 2, 3]
learning_rate:
values: [0.001, 0.0005, 0.0001]
optimizer:
value: "Adam"

View File

@ -0,0 +1,41 @@
program: ./scripts/train.py
name: informer-btcusdt-30m-quantile-sweep
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/informer-btcusdt-30m-quantile.yaml"
- "--patience"
- "15"
method: random
metric:
goal: minimize
name: val_loss
parameters:
past_window:
distribution: int_uniform
min: 20
max: 120
batch_size:
values: [64, 128, 256]
model:
parameters:
name:
value: "Informer"
d_model:
values: [256, 512, 1024]
d_fully_connected:
values: [256, 512, 1024]
n_attention_heads:
values: [1, 2, 4, 6]
dropout:
values: [0.05, 0.1, 0.2, 0.3]
n_encoder_layers:
values: [1, 2, 3]
n_decoder_layers:
values: [1, 2, 3]
learning_rate:
values: [0.001, 0.0005, 0.0001]
optimizer:
value: "Adam"

View File

@ -1,4 +1,5 @@
program: ./scripts/train.py
name: informer-btcusdt-5m-quantile-sweep
project: wne-masters-thesis-testing
command:
- ${env}