add config

This commit is contained in:
Filip Stefaniuk 2024-09-14 20:30:44 +02:00
parent f9b17473cb
commit a00f9caaf7
5 changed files with 226 additions and 0 deletions

View File

@ -0,0 +1,24 @@
program: ./scripts/train.py
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/informer-btcusdt-15m-quantile.yaml"
- "--patience"
- "10"
- "--store-predictions"
method: grid
metric:
goal: minimize
name: val_loss
parameters:
data:
parameters:
dataset:
value: "btc-usdt-15m:latest"
validation:
value: 0.2
sliding_window:
min: 0
max: 5

View File

@ -0,0 +1,24 @@
program: ./scripts/train.py
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/informer-btcusdt-30m-quantile.yaml"
- "--patience"
- "10"
- "--store-predictions"
method: grid
metric:
goal: minimize
name: val_loss
parameters:
data:
parameters:
dataset:
value: "btc-usdt-30m:latest"
validation:
value: 0.2
sliding_window:
min: 0
max: 5

View File

@ -0,0 +1,69 @@
future_window:
value: 5
past_window:
value: 48
batch_size:
value: 64
max_epochs:
value: 30
data:
value:
dataset: "btc-usdt-15m:latest"
sliding_window: 0
validation: 0.2
fields:
value:
time_index: "time_index"
target: "close_price"
group_ids: ["group_id"]
dynamic_unknown_real:
- "high_price"
- "low_price"
- "open_price"
- "close_price"
- "volume"
- "open_to_close_price"
- "high_to_close_price"
- "low_to_close_price"
- "high_to_low_price"
- "returns"
- "log_returns"
- "vol_1h"
- "macd"
- "macd_signal"
- "rsi"
- "low_bband_to_close_price"
- "up_bband_to_close_price"
- "mid_bband_to_close_price"
- "sma_1h_to_close_price"
- "sma_1d_to_close_price"
- "sma_7d_to_close_price"
- "ema_1h_to_close_price"
- "ema_1d_to_close_price"
dynamic_unknown_cat: []
dynamic_known_real:
- "effective_rates"
- "vix_close_price"
- "fear_greed_index"
- "vol_1d"
- "vol_7d"
dynamic_known_cat:
- "hour"
- "weekday"
static_real: []
static_cat: []
loss:
value:
name: "Quantile"
quantiles: [0.02, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.98]
model:
value:
name: "Informer"
d_model: 256
d_fully_connected: 512
n_attention_heads: 2
dropout: 0.1
n_encoder_layers: 2
n_decoder_layers: 1
learning_rate: 0.001
optimizer: "Adam"

View File

@ -0,0 +1,69 @@
future_window:
value: 5
past_window:
value: 48
batch_size:
value: 64
max_epochs:
value: 1
data:
value:
dataset: "btc-usdt-30m:latest"
sliding_window: 0
validation: 0.2
fields:
value:
time_index: "time_index"
target: "close_price"
group_ids: ["group_id"]
dynamic_unknown_real:
- "high_price"
- "low_price"
- "open_price"
- "close_price"
- "volume"
- "open_to_close_price"
- "high_to_close_price"
- "low_to_close_price"
- "high_to_low_price"
- "returns"
- "log_returns"
- "vol_1h"
- "macd"
- "macd_signal"
- "rsi"
- "low_bband_to_close_price"
- "up_bband_to_close_price"
- "mid_bband_to_close_price"
- "sma_1h_to_close_price"
- "sma_1d_to_close_price"
- "sma_7d_to_close_price"
- "ema_1h_to_close_price"
- "ema_1d_to_close_price"
dynamic_unknown_cat: []
dynamic_known_real:
- "effective_rates"
- "vix_close_price"
- "fear_greed_index"
- "vol_1d"
- "vol_7d"
dynamic_known_cat:
- "hour"
- "weekday"
static_real: []
static_cat: []
loss:
value:
name: "Quantile"
quantiles: [0.02, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.98]
model:
value:
name: "Informer"
d_model: 256
d_fully_connected: 512
n_attention_heads: 2
dropout: 0.1
n_encoder_layers: 2
n_decoder_layers: 1
learning_rate: 0.001
optimizer: "Adam"

View File

@ -0,0 +1,40 @@
program: ./scripts/train.py
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/informer-btcusdt-5m-quantile.yaml"
- "--patience"
- "10"
method: random
metric:
goal: minimize
name: val_loss
parameters:
past_window:
distribution: int_uniform
min: 20
max: 120
batch_size:
values: [64, 128, 256]
model:
parameters:
name:
value: "Informer"
dmodel:
values: [256, 512, 1024]
d_fully_connected:
values: [256, 512, 1024]
n_attention_heads:
values: [1, 2, 4, 6]
dropout:
values: [0.05, 0.1, 0.2, 0.3]
n_encoder_layers:
values: [1, 2, 4, 6]
n_decoder_layers:
values: [1, 2]
learning_rate:
values: [0.001, 0.0005, 0.0001]
optimizer:
value: "Adam"