add final evaluation after training
This commit is contained in:
parent
ffc93b0ae5
commit
dcd35508fd
@ -59,6 +59,14 @@ def get_args():
|
|||||||
help="Run validation every n batches."
|
help="Run validation every n batches."
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
'-p',
|
||||||
|
'--patience',
|
||||||
|
default=8,
|
||||||
|
type=int,
|
||||||
|
help="Patience for early stopping."
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument('--no-wandb', action='store_true',
|
parser.add_argument('--no-wandb', action='store_true',
|
||||||
help='Disables wandb, for testing.')
|
help='Disables wandb, for testing.')
|
||||||
|
|
||||||
@ -191,7 +199,7 @@ def main():
|
|||||||
early_stopping = EarlyStopping(
|
early_stopping = EarlyStopping(
|
||||||
monitor="val_loss",
|
monitor="val_loss",
|
||||||
mode="min",
|
mode="min",
|
||||||
patience=5)
|
patience=args.patience)
|
||||||
|
|
||||||
batch_size = config['batch_size']
|
batch_size = config['batch_size']
|
||||||
logging.info(f"Training batch size {batch_size}.")
|
logging.info(f"Training batch size {batch_size}.")
|
||||||
@ -223,6 +231,13 @@ def main():
|
|||||||
batch_size=batch_size, train=False, num_workers=3
|
batch_size=batch_size, train=False, num_workers=3
|
||||||
))
|
))
|
||||||
|
|
||||||
|
# Run validation with best model to log min val_loss
|
||||||
|
# TODO: Maybe use different metric like min_val_loss ?
|
||||||
|
ckpt_path = trainer.checkpoint_callback.best_model_path or None
|
||||||
|
trainer.validate(model, dataloaders=valid.to_dataloader(
|
||||||
|
batch_size=batch_size, train=False, num_workers=3),
|
||||||
|
ckpt_path=ckpt_path)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user