add final evaluation after training
This commit is contained in:
parent
ffc93b0ae5
commit
dcd35508fd
@ -59,6 +59,14 @@ def get_args():
|
||||
help="Run validation every n batches."
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'-p',
|
||||
'--patience',
|
||||
default=8,
|
||||
type=int,
|
||||
help="Patience for early stopping."
|
||||
)
|
||||
|
||||
parser.add_argument('--no-wandb', action='store_true',
|
||||
help='Disables wandb, for testing.')
|
||||
|
||||
@ -191,7 +199,7 @@ def main():
|
||||
early_stopping = EarlyStopping(
|
||||
monitor="val_loss",
|
||||
mode="min",
|
||||
patience=5)
|
||||
patience=args.patience)
|
||||
|
||||
batch_size = config['batch_size']
|
||||
logging.info(f"Training batch size {batch_size}.")
|
||||
@ -223,6 +231,13 @@ def main():
|
||||
batch_size=batch_size, train=False, num_workers=3
|
||||
))
|
||||
|
||||
# Run validation with best model to log min val_loss
|
||||
# TODO: Maybe use different metric like min_val_loss ?
|
||||
ckpt_path = trainer.checkpoint_callback.best_model_path or None
|
||||
trainer.validate(model, dataloaders=valid.to_dataloader(
|
||||
batch_size=batch_size, train=False, num_workers=3),
|
||||
ckpt_path=ckpt_path)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user