add training script

This commit is contained in:
Filip Stefaniuk 2024-09-04 15:32:22 +02:00
parent c3a03fe338
commit e6c2d4b914
5 changed files with 333 additions and 1 deletions

View File

@ -0,0 +1,66 @@
future_window:
value: 1
past_window:
value: 24
batch_size:
value: 64
max_epochs:
value: 30
data:
value:
dataset: "btc-usdt-5m:latest"
sliding_window: 4
validation: 0.2
fields:
time_index: "time_index"
target: "close_price"
group_ids: ["group_id"]
dynamic_unknown_real:
- "high_price"
- "low_price"
- "open_price"
- "close_price"
- "volume"
- "open_to_close_price"
- "high_to_close_price"
- "low_to_close_price"
- "high_to_low_price"
- "returns"
- "log_returns"
- "vol_1h"
- "macd"
- "macd_signal"
- "rsi"
- "low_bband_to_close_price"
- "up_bband_to_close_price"
- "mid_bband_to_close_price"
- "sma_1h_to_close_price"
- "sma_1d_to_close_price"
- "sma_7d_to_close_price"
- "ema_1h_to_close_price"
- "ema_1d_to_close_price"
dynamic_unknown_cat: []
dynamic_known_real: []
dynamic_known_cat:
- "hour"
static_real:
- "effective_rates"
- "vix_close_price"
- "fear_greed_index"
- "vol_1d"
- "vol_7d"
static_cat:
- "weekday"
loss:
value:
name: "Quantile"
quantiles: [0.02, 0.1, 0.5, 0.9, 0.98]
model:
value:
name: "TemporalFusionTransformer"
hidden_size: 64
dropout: 0.1
attention_head_size: 2
hidden_continuous_size: 8
learning_rate: 0.001
optimizer: "Adam"

View File

@ -0,0 +1,36 @@
program: ./scripts/train.py
project: wne-masters-thesis-testing
command:
- ${env}
- ${interpreter}
- ${program}
- "./configs/experiments/temporal-fusion-btcusdt-quantile.yaml"
method: random
metric:
goal: maximize
name: val_loss
parameters:
past_window:
distribution: int_uniform
min: 5
max: 100
batch_size:
values: [64, 128, 256]
model:
parameters:
name:
value: "TemporalFusionTransoformer"
share_single_variable_networks:
value: false
hidden_size:
values: [128, 256, 512, 1024]
dropout:
values: [0.0, 0.1, 0.2, 0.3, 0.4]
attention_head_size:
values: [1, 2, 4, 6]
hidden_continuous_size:
values: [4, 8, 16, 32]
learning_rate:
values: [0.01, 0.001, 0.0005, 0.0001]
optimizer:
values: ["Adam", "RMSProp", "Adagrad"]

0
data/.gitignore vendored Normal file
View File

View File

@ -15,7 +15,9 @@ requires-python = ">=3.9"
dependencies = [
"pytorch-forecasting==1.0.0",
"plotly==5.22.0",
"wandb==0.16.6"
"wandb==0.17.7",
"TA-lib==0.4.32",
"numpy==1.26.4"
]
[tool.pytest.ini_options]

View File

@ -0,0 +1,228 @@
import argparse
import logging
import wandb
import pprint
import os
import pandas as pd
import lightning.pytorch as pl
from lightning.pytorch.utilities.model_summary import ModelSummary
from lightning.pytorch.callbacks.early_stopping import EarlyStopping
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint
from pytorch_forecasting.data.timeseries import TimeSeriesDataSet
from pytorch_forecasting.metrics import MAE, RMSE
from pytorch_forecasting import QuantileLoss
from pytorch_forecasting.models.temporal_fusion_transformer import TemporalFusionTransformer
def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
"config", help="Experiment configuration file in yaml format.")
parser.add_argument(
"-p",
"--project",
default="wne-masters-thesis-testing",
help="W&B project name.")
parser.add_argument(
"-l",
"--log-level",
default=logging.INFO,
type=int,
help="Sets the log level.")
parser.add_argument(
"-s",
"--seed",
default=42,
type=int,
help="Random seed for the training.")
parser.add_argument(
"-n",
"--log-interval",
default=100,
type=int,
help="Log every n steps."
)
parser.add_argument(
'-v',
'--val-check-interval',
default=300,
type=int,
help="Run validation every n batches."
)
parser.add_argument('--no-wandb', action='store_true',
help='Disables wandb, for testing.')
return parser.parse_args()
def get_dataset(config, project):
artifact_name = f"{project}/{config['data']['dataset']}"
artifact = wandb.Api().artifact(artifact_name)
base_path = artifact.download()
logging.info(f"Artifacts downloaded to {base_path}")
name = artifact.metadata['name']
part_name = f"in-sample-{config['data']['sliding_window']}"
data = pd.read_csv(os.path.join(
base_path, name + '-' + part_name + '.csv'))
logging.info(f"Using part: {part_name}")
# TODO: Fix in dataset
data['weekday'] = data['weekday'].astype('str')
data['hour'] = data['hour'].astype('str')
validation_part = config['data']['validation']
logging.info(f"Using {validation_part} of in sample part for validation.")
train_data = data.iloc[:int(len(data) * (1 - validation_part))]
val_data = data.iloc[len(train_data) - config['past_window']:]
logging.info(f"Trainin part size: {len(train_data)}")
logging.info(
f"Validation part size: {len(val_data)} "
+ f"({len(data) - len(train_data)} + {config['past_window']})")
logging.info("Building time series dataset for training.")
train = TimeSeriesDataSet(
train_data,
time_idx=config['data']['fields']['time_index'],
target=config['data']['fields']['target'],
group_ids=config['data']['fields']['group_ids'],
min_encoder_length=config['past_window'],
max_encoder_length=config['past_window'],
min_prediction_length=config['future_window'],
max_prediction_length=config['future_window'],
static_reals=config['data']['fields']['static_real'],
static_categoricals=config['data']['fields']['static_cat'],
time_varying_known_reals=config['data']['fields']['dynamic_known_real'],
time_varying_known_categoricals=config['data']['fields']['dynamic_known_cat'],
time_varying_unknown_reals=config['data']['fields']['dynamic_unknown_real'],
time_varying_unknown_categoricals=config['data']['fields']['dynamic_unknown_cat'],
randomize_length=False
)
logging.info("Building time series dataset for validation.")
val = TimeSeriesDataSet.from_dataset(
train, val_data, stop_randomization=True)
return train, val
def get_loss(config):
loss_name = config['loss']['name']
if loss_name == 'Quantile':
return QuantileLoss(config['loss']['quantiles'])
raise ValueError("Unknown loss")
def get_model(config, dataset, loss):
model_name = config['model']['name']
if model_name == 'TemporalFusionTransformer':
return TemporalFusionTransformer.from_dataset(
dataset,
hidden_size=config['model']['hidden_size'],
dropout=config['model']['dropout'],
attention_head_size=config['model']['attention_head_size'],
hidden_continuous_size=config['model']['hidden_continuous_size'],
learning_rate=config['model']['learning_rate'],
share_single_variable_networks=False,
loss=loss,
logging_metrics=[MAE(), RMSE()]
)
raise ValueError("Unknown model")
def main():
args = get_args()
logging.basicConfig(level=args.log_level)
pl.seed_everything(args.seed)
run = wandb.init(
project=args.project,
config=args.config,
job_type="train",
mode="disabled" if args.no_wandb else "online"
)
config = run.config
logging.info("Using experiment config:\n%s", pprint.pformat(config))
# Get time series dataset
train, valid = get_dataset(config, args.project)
logging.info("Train dataset parameters:\n" +
f"{pprint.pformat(train.get_parameters())}")
# Get loss
loss = get_loss(config)
logging.info(f"Using loss {loss}")
# Get model
model = get_model(config, train, loss)
logging.info(f"Using model {config['model']['name']}")
logging.info(f"{ModelSummary(model)}")
logging.info(
"Model hyperparameters:\n" +
f"{pprint.pformat(model.hparams)}")
# Checkpoint for saving the model
checkpoint_callback = ModelCheckpoint(
monitor='val_loss',
save_top_k=3,
mode='min',
)
# Logger for W&B
wandb_logger = WandbLogger(
project=args.project,
experiment=run,
log_model="all") if not args.no_wandb else None
early_stopping = EarlyStopping(
monitor="val_loss",
mode="min",
patience=5)
batch_size = config['batch_size']
logging.info(f"Training batch size {batch_size}.")
epochs = config['max_epochs']
logging.info(f"Training for {epochs} epochs.")
trainer = pl.Trainer(
accelerator="auto",
max_epochs=epochs,
logger=wandb_logger,
callbacks=[
checkpoint_callback,
early_stopping
],
log_every_n_steps=args.log_interval,
val_check_interval=args.val_check_interval
)
if epochs > 0:
logging.info("Starting training:")
trainer.fit(
model,
train_dataloaders=train.to_dataloader(
batch_size=batch_size,
num_workers=3,
),
val_dataloaders=valid.to_dataloader(
batch_size=batch_size, train=False, num_workers=3
))
if __name__ == '__main__':
main()