program: ./scripts/train.py name: informer-btcusdt-5m-gmadl-sweep project: wne-masters-thesis-testing command: - ${env} - ${interpreter} - ${program} - "./configs/experiments/informer-btcusdt-5m-gmadl.yaml" - "--patience" - "15" method: random metric: goal: minimize name: val_loss parameters: past_window: distribution: int_uniform min: 20 max: 120 batch_size: values: [64, 128, 256] model: parameters: name: value: "Informer" d_model: values: [256, 512, 1024] d_fully_connected: values: [256, 512, 1024] n_attention_heads: values: [1, 2, 4, 6] dropout: values: [0.05, 0.1, 0.2, 0.3] n_encoder_layers: values: [1, 2, 3] n_decoder_layers: values: [1, 2, 3] learning_rate: values: [0.001, 0.0005, 0.0001] optimizer: value: "Adam"