future_window: value: 5 past_window: value: 22 batch_size: value: 64 max_epochs: value: 30 data: value: # in_sample_artifact_name: "btc-5m-features-in_sample:latest" # Reverted # out_of_sample_artifact_name: "btc-5m-features-out_of_sample:latest" # Reverted dataset: "btc-5m-features-full:latest" # Use a single artifact name sliding_window: 0 validation: 0.2 # This likely controls the in-sample vs out-of-sample split in train.py fields: value: time_index: "time_index" target: "returns" group_ids: ["group_id"] dynamic_unknown_real: - "high_price" - "low_price" - "open_price" - "close_price" - "volume" - "open_to_close_price" - "high_to_close_price" - "low_to_close_price" - "high_to_low_price" - "returns" - "log_returns" - "vol_1h" - "macd" - "macd_signal" - "rsi" - "low_bband_to_close_price" - "up_bband_to_close_price" - "mid_bband_to_close_price" - "sma_1h_to_close_price" - "sma_1d_to_close_price" - "sma_7d_to_close_price" - "ema_1h_to_close_price" - "ema_1d_to_close_price" dynamic_unknown_cat: [] dynamic_known_real: - "effective_rates" - "vix_close_price" - "fear_greed_index" - "vol_1d" - "vol_7d" dynamic_known_cat: - "hour" - "weekday" static_real: [] static_cat: [] loss: value: name: "Quantile" quantiles: [0.01, 0.02, 0.03, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.97, 0.98, 0.99] model: value: name: "Informer" d_model: 256 d_fully_connected: 512 n_attention_heads: 2 dropout: 0.05 n_encoder_layers: 1 n_decoder_layers: 1 learning_rate: 0.0001 optimizer: "Adam"