2024-10-16 20:54:37 +02:00

580 lines
19 KiB
Python

import talib
import numpy as np
import pandas as pd
# import logging
from typing import Dict, Any
# from strategy.util import rsi_obos
EXIT_POSITION = 0
LONG_POSITION = 1
SHORT_POSITION = -1
class StrategyBase:
"""Base class for investment strategies."""
def info(self) -> Dict[str, Any]:
"""Returns general informaiton about the strategy."""
raise NotImplementedError
def run(self, data: pd.DataFrame):
"""Run strategy on data."""
raise NotImplementedError()
class BuyAndHoldStrategy(StrategyBase):
"""Simple benchmark strategy, always long position"""
NAME = "BUY_AND_HOLD"
def info(self) -> Dict[str, Any]:
return {'strategy_name': BuyAndHoldStrategy.NAME}
def run(self, data: pd.DataFrame):
return np.full_like(
data['close_price'].to_numpy(),
LONG_POSITION,
dtype=np.int32)
class MACDStrategy(StrategyBase):
"""Strategy based on Moving Average Convergence / Divergence."""
NAME = "MACD"
def __init__(
self,
fast_window_size: int = 12,
slow_window_size: int = 26,
signal_window_size: int = 9,
short_sell: bool = False):
if (fast_window_size == 1 or
slow_window_size == 1 or
signal_window_size == 1 or
fast_window_size >= slow_window_size):
raise ValueError
self.fast_window_size = fast_window_size
self.slow_window_size = slow_window_size
self.signal_window_size = signal_window_size
self.short_sell = short_sell
self.name = MACDStrategy.NAME
# f"{MACDStrategy.NAME}" +\
# "(fast={self.fast_window_size}," +\
# " slow={self.slow_window_size}," +\
# " signal={self.signal_window_size})"
def info(self) -> Dict[str, Any]:
return {
'strategy_name': self.name,
'fast_window_size': self.fast_window_size,
'slow_window_size': self.slow_window_size,
'signal_window_size': self.signal_window_size,
'short_sell': self.short_sell
}
def run(self, data: pd.DataFrame):
array = data['close_price'].to_numpy()
macd, signal, _ = talib.MACD(
array,
fastperiod=self.fast_window_size,
slowperiod=self.slow_window_size,
signalperiod=self.signal_window_size
)
result = np.full_like(array, EXIT_POSITION, dtype=np.int32)
result[macd > signal] = LONG_POSITION
if self.short_sell:
result[macd < signal] = SHORT_POSITION
# run_info = {
# 'macd': macd,
# 'signal': signal
# }
return result # , run_info
class RSIStrategy(StrategyBase):
"""Strategy based on RSI."""
NAME = "RSI"
def __init__(self,
window_size: int = 14,
enter_long=None,
exit_long=None,
enter_short=None,
exit_short=None):
self.window_size = window_size
self.enter_long = enter_long
self.exit_long = exit_long
self.enter_short = enter_short
self.exit_short = exit_short
self.name = RSIStrategy.NAME
# f"{RSIStrategy.NAME}(" +\
# "window={self.window_size}," +\
# "[{self.oversold}, {self.overbought}])"
def info(self) -> Dict[str, Any]:
return {
'strategy_name': self.name,
'window_size': self.window_size,
'enter_long': self.enter_long,
'exit_long': self.exit_long,
'enter_short': self.enter_short,
'exit_short': self.exit_short
}
def run(self, data: pd.DataFrame):
array = data['close_price'].to_numpy()
rsi = talib.RSI(array, timeperiod=self.window_size)
enter_long = rsi > (self.enter_long or np.infty)
exit_long = rsi < (self.exit_long or -np.infty)
enter_short = rsi < (
self.enter_short or -np.infty)
exit_short = rsi > (self.exit_short or np.infty)
positions = np.full(rsi.shape, np.nan)
positions[exit_long | exit_short] = EXIT_POSITION
positions[enter_long] = LONG_POSITION
positions[enter_short] = SHORT_POSITION
# Fix the first position
if np.isnan(positions[0]):
positions[0] = EXIT_POSITION
mask = np.isnan(positions)
idx = np.where(~mask, np.arange(mask.size), 0)
np.maximum.accumulate(idx, out=idx)
positions[mask] = positions[idx[mask]]
return positions.astype(np.int32)
# result = rsi_obos(rsi, self.oversold, self.overbought)
# run_info = {
# 'rsi': rsi
# }
# return result # , run_info
class BaselineReturnsStrategy(StrategyBase):
def __init__(
self,
enter_long,
exit_long,
enter_short,
exit_short):
self.enter_long = enter_long
self.exit_long = exit_long
self.enter_short = enter_short
self.exit_short = exit_short
def info(self):
return {
'strategy_name': 'Baseline predictions',
'enter_long': self.enter_long,
'exit_long': self.exit_long,
'enter_short': self.enter_short,
'exit_short': self.exit_short
}
def run(self, data):
ret = data['returns'].to_numpy()
enter_long = ret > (self.enter_long or np.infty)
exit_long = ret < (self.exit_long or -np.infty)
enter_short = ret < (
self.enter_short or -np.infty)
exit_short = ret > (self.exit_short or np.infty)
positions = np.full(ret.shape, np.nan)
positions[exit_long | exit_short] = EXIT_POSITION
positions[enter_long] = LONG_POSITION
positions[enter_short] = SHORT_POSITION
# Fix the first position
if np.isnan(positions[0]):
positions[0] = EXIT_POSITION
mask = np.isnan(positions)
idx = np.where(~mask, np.arange(mask.size), 0)
np.maximum.accumulate(idx, out=idx)
positions[mask] = positions[idx[mask]]
return positions.astype(np.int32)
class ModelPredictionsStrategyBase(StrategyBase):
"""Base class for strategies based on model predictions."""
def __init__(self,
predictions,
name: str = None,
future: int = 1,
exchange_fee: int = 0.001,
target: str = 'close_price'):
self.predictions = predictions
assert 'time_index' in self.predictions.columns
assert 'group_id' in self.predictions.columns
assert 'prediction' in self.predictions.columns
self.name = name
self.future = future
self.target = target
self.exchange_fee = exchange_fee
def info(self):
return {
'strategy_name': self.name or 'Unknown model',
'future': self.future,
'target': self.target
}
def run(self, data):
# Adds predictions to data, if prediction is unknown for a given
# item it will be nan.
merged_data = pd.merge(
data, self.predictions, on=['time_index', 'group_id'],
how='left')
return self.get_positions(merged_data)
def get_positions(self, data):
raise NotImplementedError()
class ModelGmadlPredictionsStrategy(ModelPredictionsStrategyBase):
def __init__(
self,
predictions,
enter_long=None,
exit_long=None,
enter_short=None,
exit_short=None,
future=1,
name: str = None,
):
super().__init__(
predictions,
name=name
)
self.enter_long = enter_long
self.exit_long = exit_long
self.enter_short = enter_short
self.exit_short = exit_short
self.future = future
def info(self):
return super().info() | {
'enter_long': self.enter_long,
'exit_long': self.exit_long,
'enter_short': self.enter_short,
'exit_short': self.exit_short
}
def get_positions(self, data):
# bfill() is a hack to make it work with non predicted data
arr_preds = np.stack(data['prediction'].ffill().bfill().to_numpy())
arr_preds = arr_preds[:, self.future, 0]
enter_long = arr_preds > (self.enter_long or np.infty)
exit_long = arr_preds < (self.exit_long or -np.infty)
enter_short = arr_preds < (
self.enter_short or -np.infty)
exit_short = arr_preds > (self.exit_short or np.infty)
positions = np.full(arr_preds.shape, np.nan)
positions[exit_long | exit_short] = EXIT_POSITION
positions[enter_long] = LONG_POSITION
positions[enter_short] = SHORT_POSITION
# Fix the first position
if np.isnan(positions[0]):
positions[0] = EXIT_POSITION
mask = np.isnan(positions)
idx = np.where(~mask, np.arange(mask.size), 0)
np.maximum.accumulate(idx, out=idx)
positions[mask] = positions[idx[mask]]
return positions.astype(np.int32)
class ModelQuantilePredictionsStrategy(ModelPredictionsStrategyBase):
def __init__(
self,
predictions,
quantiles,
quantile_enter_long=None,
quantile_exit_long=None,
quantile_enter_short=None,
quantile_exit_short=None,
name: str = None,
future: int = 1,
target: str = 'close_price',
exchange_fee: int = 0.001,
new_impl=True
):
super().__init__(
predictions,
name=name,
future=future,
target=target,
exchange_fee=exchange_fee)
self.quantiles = quantiles
self.quantile_enter_long = quantile_enter_long
self.quantile_exit_long = quantile_exit_long
self.quantile_enter_short = quantile_enter_short
self.quantile_exit_short = quantile_exit_short
self.new_impl = new_impl
def info(self):
return super().info() | {
'quantiles': self.quantiles,
'exchange_fee': self.exchange_fee,
'quantile_enter_long': self.quantile_enter_long,
'quantile_exit_long': self.quantile_exit_long,
'quantile_enter_short': self.quantile_enter_short,
'quantile_exit_short': self.quantile_exit_short
}
def get_positions(self, data):
if self.new_impl:
return self.get_positions2(data)
return self.get_positions1(data)
def get_positions2(self, data):
arr_target = data[self.target].to_numpy()
arr_preds = np.stack(
# bfill() is a hack to make it work with non predicted data
data['prediction'].ffill().bfill().to_numpy())
enter_long = (((arr_preds[
:, self.future - 1, self.get_quantile_idx(
round(1 - self.quantile_enter_long, 2))]
if self.quantile_enter_long
else np.full(arr_target.shape, -np.infty)))
- arr_target) / arr_target > self.exchange_fee
enter_short = ((arr_preds[
:, self.future - 1, self.get_quantile_idx(
self.quantile_enter_short)]
if self.quantile_enter_short
else np.full(arr_target.shape, np.infty))
- arr_target) / arr_target < -self.exchange_fee
exit_long = ((arr_preds[
:, self.future - 1, self.get_quantile_idx(
self.quantile_exit_long)]
if self.quantile_exit_long
else np.full(arr_target.shape, np.infty))
- arr_target) / arr_target < -self.exchange_fee
exit_short = ((arr_preds[
:, self.future - 1, self.get_quantile_idx(
round(1 - self.quantile_exit_short, 2))]
if self.quantile_exit_short
else np.full(arr_target.shape, -np.infty))
- arr_target) / arr_target > self.exchange_fee
positions = np.full(arr_target.shape, np.nan)
positions[exit_long | exit_short] = EXIT_POSITION
positions[enter_long] = LONG_POSITION
positions[enter_short] = SHORT_POSITION
# Fix the first position
if np.isnan(positions[0]):
positions[0] = EXIT_POSITION
mask = np.isnan(positions)
idx = np.where(~mask, np.arange(mask.size), 0)
np.maximum.accumulate(idx, out=idx)
positions[mask] = positions[idx[mask]]
return positions.astype(np.int32)
def get_positions1(self, data):
arr_preds = data['prediction'].to_numpy()
arr_target = data[self.target].to_numpy()
positions = [EXIT_POSITION]
for i in range(len(arr_preds)):
# If strategy does not have prediction
# keep the current position.
if np.isnan(arr_preds[i]).any():
# logging.warning(f"Missing value for time index {i}.")
positions.append(positions[-1])
continue
target = arr_target[i]
prediction = arr_preds[i][self.future - 1]
# Enter long position
if (self.quantile_enter_long and
(prediction[self.get_quantile_idx(
round(1 - self.quantile_enter_long, 2)
)] - target)
/ target > self.exchange_fee):
positions.append(LONG_POSITION)
# Enter short position
elif (self.quantile_enter_short and
(prediction[self.get_quantile_idx(
self.quantile_enter_short)] - target)
/ target < -self.exchange_fee):
positions.append(SHORT_POSITION)
# Exit long position
elif (self.quantile_exit_long and
(prediction[self.get_quantile_idx(
self.quantile_exit_long)] - target)
/ target < -self.exchange_fee):
positions.append(EXIT_POSITION)
# Exit short postion
elif (self.quantile_exit_short and
(prediction[self.get_quantile_idx(
round(1 - self.quantile_exit_short, 2)
)] - target) / target > self.exchange_fee):
positions.append(EXIT_POSITION)
else:
positions.append(positions[-1])
return np.array(positions[1:], dtype=np.int32)
def get_quantile_idx(self, quantile):
return self.quantiles.index(quantile)
class ConcatenatedStrategies(StrategyBase):
"""
Evaluates multiple strategies,
each on the next `window_size` data points.
"""
def __init__(
self,
window_size,
strategies,
name='Concatenated Strategy',
padding=0):
self.window_size = window_size
self.strategies = strategies
self.name = name
self.padding = padding
def info(self):
return {'strategy_name': self.name}
def run(self, data):
chunks = [data[i-self.padding:i+self.window_size].copy()
for i in range(
self.padding, data.shape[0], self.window_size)]
assert len(chunks) <= len(self.strategies)
positions = []
for chunk, strategy in zip(chunks, self.strategies):
positions.append(strategy.run(chunk))
positions = [
pos if not i else pos[self.padding:]
for i, pos in enumerate(positions)
]
return np.concatenate(positions)
class ModelQuantileReturnsPredictionsStrategy(ModelPredictionsStrategyBase):
def __init__(
self,
predictions,
quantiles,
quantile_enter_long=None,
quantile_exit_long=None,
quantile_enter_short=None,
quantile_exit_short=None,
name: str = None,
future: int = 1,
target: str = 'returns',
exchange_fee: int = 0.001,
new_impl=True
):
super().__init__(
predictions,
name=name,
future=future,
target=target,
exchange_fee=exchange_fee)
self.quantiles = quantiles
self.quantile_enter_long = quantile_enter_long
self.quantile_exit_long = quantile_exit_long
self.quantile_enter_short = quantile_enter_short
self.quantile_exit_short = quantile_exit_short
self.new_impl = new_impl
def info(self):
return super().info() | {
'quantiles': self.quantiles,
'exchange_fee': self.exchange_fee,
'quantile_enter_long': self.quantile_enter_long,
'quantile_exit_long': self.quantile_exit_long,
'quantile_enter_short': self.quantile_enter_short,
'quantile_exit_short': self.quantile_exit_short
}
def get_positions(self, data):
arr_target = data[self.target].to_numpy()
arr_preds = np.stack(
# bfill() is a hack to make it work with non predicted data
data['prediction'].ffill().bfill().to_numpy())
enter_long = (((arr_preds[
:, self.future - 1, self.get_quantile_idx(
round(1 - self.quantile_enter_long, 2))]
if self.quantile_enter_long
else np.full(arr_target.shape, -np.infty)))
> self.exchange_fee)
enter_short = ((arr_preds[
:, self.future - 1, self.get_quantile_idx(
self.quantile_enter_short)]
if self.quantile_enter_short
else np.full(arr_target.shape, np.infty))
< -self.exchange_fee)
exit_long = ((arr_preds[
:, self.future - 1, self.get_quantile_idx(
self.quantile_exit_long)]
if self.quantile_exit_long
else np.full(arr_target.shape, np.infty))
< -self.exchange_fee)
exit_short = ((arr_preds[
:, self.future - 1, self.get_quantile_idx(
round(1 - self.quantile_exit_short, 2))]
if self.quantile_exit_short
else np.full(arr_target.shape, -np.infty))
> self.exchange_fee)
positions = np.full(arr_target.shape, np.nan)
positions[exit_long | exit_short] = EXIT_POSITION
positions[enter_long] = LONG_POSITION
positions[enter_short] = SHORT_POSITION
# Fix the first position
if np.isnan(positions[0]):
positions[0] = EXIT_POSITION
mask = np.isnan(positions)
idx = np.where(~mask, np.arange(mask.size), 0)
np.maximum.accumulate(idx, out=idx)
positions[mask] = positions[idx[mask]]
return positions.astype(np.int32)
def get_quantile_idx(self, quantile):
return self.quantiles.index(quantile)