Update the strategies implementations
This commit is contained in:
parent
fc30b90451
commit
7989813534
@ -18,6 +18,8 @@ def parameter_sweep(
|
||||
params_filter: Optional[Callable] = None,
|
||||
log_every: int = 200,
|
||||
exchange_fee: float = 0.001,
|
||||
padding: int = 0,
|
||||
sort_by: str = 'mod_ir',
|
||||
interval: str = '5min') -> pd.DataFrame:
|
||||
"""Evaluates the strategy on a different sets of hyperparameters."""
|
||||
|
||||
@ -39,20 +41,24 @@ def parameter_sweep(
|
||||
data,
|
||||
exchange_fee=exchange_fee,
|
||||
interval=interval,
|
||||
padding=padding,
|
||||
include_arrays=False),
|
||||
map(
|
||||
lambda p: strategy_class(
|
||||
**p), chunk)))
|
||||
pbar.update(len(tmp))
|
||||
result += tmp
|
||||
result += list(zip(tmp, map(
|
||||
lambda p: strategy_class(
|
||||
**p), chunk)))
|
||||
|
||||
return pd.DataFrame(result)
|
||||
return sorted(result, key=lambda x: x[0][sort_by], reverse=True)
|
||||
|
||||
|
||||
def evaluate_strategy(
|
||||
data: pd.DataFrame,
|
||||
strategy: StrategyBase,
|
||||
include_arrays: bool = True,
|
||||
padding: int = 0,
|
||||
exchange_fee: float = 0.001,
|
||||
interval: str = "5min"):
|
||||
"""Evaluates a trading strategy."""
|
||||
@ -75,6 +81,12 @@ def evaluate_strategy(
|
||||
timestamps = data['close_time'].to_numpy()
|
||||
assert positions.shape[0] == timestamps.shape[0] - 1
|
||||
|
||||
# Pad the results
|
||||
positions = positions[padding:]
|
||||
timestamps = timestamps[padding:]
|
||||
long_returns = long_returns[padding:]
|
||||
short_returns = short_returns[padding:]
|
||||
|
||||
# Compute returns of the strategy.
|
||||
strategy_returns = np.zeros_like(positions, dtype=np.float64)
|
||||
strategy_returns[positions == LONG_POSITION] = \
|
||||
@ -83,9 +95,9 @@ def evaluate_strategy(
|
||||
short_returns[positions == SHORT_POSITION]
|
||||
|
||||
# Include exchange fees
|
||||
positions_changed = np.append([EXIT_POSITION], positions[:-1]) != positions
|
||||
strategy_returns[positions_changed] = (
|
||||
strategy_returns[positions_changed] + 1.0) * (1.0 - exchange_fee) - 1.0
|
||||
strategy_returns = (strategy_returns + 1.0) * (
|
||||
1.0 - exchange_fee * np.abs(np.append(
|
||||
[EXIT_POSITION], positions[:-1]) - positions)) - 1.0
|
||||
|
||||
strategy_returns = np.append([0.], strategy_returns)
|
||||
portfolio_value = np.cumprod(strategy_returns + 1)
|
||||
@ -97,9 +109,10 @@ def evaluate_strategy(
|
||||
'arc': metrics.arc(portfolio_value, interval=interval),
|
||||
'asd': metrics.asd(portfolio_value, interval=interval),
|
||||
'ir': metrics.ir(portfolio_value, interval=interval),
|
||||
'mod_ir': metrics.modified_ir(portfolio_value, interval=interval),
|
||||
'md': metrics.max_drawdown(portfolio_value),
|
||||
'n_trades': np.sum(np.append([EXIT_POSITION], positions[:-1]) !=
|
||||
np.append(positions[1:], [EXIT_POSITION])),
|
||||
'n_trades': np.sum(np.abs(np.append([EXIT_POSITION], positions[:-1]) -
|
||||
np.append(positions[1:], [EXIT_POSITION]))),
|
||||
'long_pos': np.sum(positions == LONG_POSITION) / positions.size,
|
||||
'short_pos': np.sum(positions == SHORT_POSITION) / positions.size,
|
||||
}
|
||||
|
||||
@ -6,6 +6,8 @@ from numpy.typing import NDArray
|
||||
NUM_INTERVALS = {
|
||||
'min': 365 * 24 * 60,
|
||||
'5min': 365 * 24 * 12,
|
||||
'15min': 365 * 24 * 4,
|
||||
'30min': 365 * 24 * 2,
|
||||
'hour': 365 * 24,
|
||||
'day': 365
|
||||
}
|
||||
@ -48,7 +50,12 @@ def max_drawdown(array: NDArray[Any]):
|
||||
return np.max((cummax - array) / cummax)
|
||||
|
||||
|
||||
# def modified_ir(array: NDArray[Any]):
|
||||
# """Information Ratio adjusted by drawdown and ARC."""
|
||||
# return ir(array) * arc(array) * (np.sign(arc(array)) /
|
||||
# max_drawdown(array))
|
||||
def modified_ir(array: NDArray[Any], interval: str = '5min'):
|
||||
ret = (ir(array, interval=interval)
|
||||
* np.abs(arc(array, interval=interval)))
|
||||
md = max_drawdown(array)
|
||||
|
||||
if md > 0:
|
||||
ret = ret / md
|
||||
|
||||
return ret
|
||||
|
||||
@ -9,9 +9,10 @@ def plot_sweep_results(
|
||||
parameters: List[str],
|
||||
objective: str = 'value',
|
||||
top_n: int = 5,
|
||||
round: int = 2,
|
||||
title: str = "Hyperparameters search results"):
|
||||
"""Helper function for plotting results of hyperparameter search."""
|
||||
data = sweep_results[list(parameters) + [objective]].round(2)
|
||||
data = sweep_results[list(parameters) + [objective]].round(round)
|
||||
|
||||
fig = ff.create_table(
|
||||
data.sort_values(
|
||||
|
||||
@ -1,11 +1,13 @@
|
||||
import talib
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
# import logging
|
||||
from typing import Dict, Any
|
||||
# from strategy.util import rsi_obos
|
||||
|
||||
EXIT_POSITION = 0
|
||||
LONG_POSITION = 1
|
||||
SHORT_POSITION = 2
|
||||
SHORT_POSITION = -1
|
||||
|
||||
|
||||
class StrategyBase:
|
||||
@ -35,6 +37,177 @@ class BuyAndHoldStrategy(StrategyBase):
|
||||
dtype=np.int32)
|
||||
|
||||
|
||||
class MACDStrategy(StrategyBase):
|
||||
"""Strategy based on Moving Average Convergence / Divergence."""
|
||||
|
||||
NAME = "MACD"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
fast_window_size: int = 12,
|
||||
slow_window_size: int = 26,
|
||||
signal_window_size: int = 9,
|
||||
short_sell: bool = False):
|
||||
|
||||
if (fast_window_size == 1 or
|
||||
slow_window_size == 1 or
|
||||
signal_window_size == 1 or
|
||||
fast_window_size >= slow_window_size):
|
||||
raise ValueError
|
||||
|
||||
self.fast_window_size = fast_window_size
|
||||
self.slow_window_size = slow_window_size
|
||||
self.signal_window_size = signal_window_size
|
||||
self.short_sell = short_sell
|
||||
self.name = MACDStrategy.NAME
|
||||
# f"{MACDStrategy.NAME}" +\
|
||||
# "(fast={self.fast_window_size}," +\
|
||||
# " slow={self.slow_window_size}," +\
|
||||
# " signal={self.signal_window_size})"
|
||||
|
||||
def info(self) -> Dict[str, Any]:
|
||||
return {
|
||||
'strategy_name': self.name,
|
||||
'fast_window_size': self.fast_window_size,
|
||||
'slow_window_size': self.slow_window_size,
|
||||
'signal_window_size': self.signal_window_size,
|
||||
'short_sell': self.short_sell
|
||||
}
|
||||
|
||||
def run(self, data: pd.DataFrame):
|
||||
array = data['close_price'].to_numpy()
|
||||
macd, signal, _ = talib.MACD(
|
||||
array,
|
||||
fastperiod=self.fast_window_size,
|
||||
slowperiod=self.slow_window_size,
|
||||
signalperiod=self.signal_window_size
|
||||
)
|
||||
|
||||
result = np.full_like(array, EXIT_POSITION, dtype=np.int32)
|
||||
result[macd > signal] = LONG_POSITION
|
||||
|
||||
if self.short_sell:
|
||||
result[macd < signal] = SHORT_POSITION
|
||||
|
||||
# run_info = {
|
||||
# 'macd': macd,
|
||||
# 'signal': signal
|
||||
# }
|
||||
return result # , run_info
|
||||
|
||||
|
||||
class RSIStrategy(StrategyBase):
|
||||
"""Strategy based on RSI."""
|
||||
|
||||
NAME = "RSI"
|
||||
|
||||
def __init__(self,
|
||||
window_size: int = 14,
|
||||
enter_long=None,
|
||||
exit_long=None,
|
||||
enter_short=None,
|
||||
exit_short=None):
|
||||
self.window_size = window_size
|
||||
self.enter_long = enter_long
|
||||
self.exit_long = exit_long
|
||||
self.enter_short = enter_short
|
||||
self.exit_short = exit_short
|
||||
self.name = RSIStrategy.NAME
|
||||
# f"{RSIStrategy.NAME}(" +\
|
||||
# "window={self.window_size}," +\
|
||||
# "[{self.oversold}, {self.overbought}])"
|
||||
|
||||
def info(self) -> Dict[str, Any]:
|
||||
return {
|
||||
'strategy_name': self.name,
|
||||
'window_size': self.window_size,
|
||||
'enter_long': self.enter_long,
|
||||
'exit_long': self.exit_long,
|
||||
'enter_short': self.enter_short,
|
||||
'exit_short': self.exit_short
|
||||
}
|
||||
|
||||
def run(self, data: pd.DataFrame):
|
||||
array = data['close_price'].to_numpy()
|
||||
|
||||
rsi = talib.RSI(array, timeperiod=self.window_size)
|
||||
enter_long = rsi > (self.enter_long or np.infty)
|
||||
exit_long = rsi < (self.exit_long or -np.infty)
|
||||
enter_short = rsi < (
|
||||
self.enter_short or -np.infty)
|
||||
exit_short = rsi > (self.exit_short or np.infty)
|
||||
|
||||
positions = np.full(rsi.shape, np.nan)
|
||||
positions[exit_long | exit_short] = EXIT_POSITION
|
||||
positions[enter_long] = LONG_POSITION
|
||||
positions[enter_short] = SHORT_POSITION
|
||||
|
||||
# Fix the first position
|
||||
if np.isnan(positions[0]):
|
||||
positions[0] = EXIT_POSITION
|
||||
|
||||
mask = np.isnan(positions)
|
||||
idx = np.where(~mask, np.arange(mask.size), 0)
|
||||
np.maximum.accumulate(idx, out=idx)
|
||||
positions[mask] = positions[idx[mask]]
|
||||
|
||||
return positions.astype(np.int32)
|
||||
# result = rsi_obos(rsi, self.oversold, self.overbought)
|
||||
|
||||
# run_info = {
|
||||
# 'rsi': rsi
|
||||
# }
|
||||
|
||||
# return result # , run_info
|
||||
|
||||
|
||||
class BaselineReturnsStrategy(StrategyBase):
|
||||
def __init__(
|
||||
self,
|
||||
enter_long,
|
||||
exit_long,
|
||||
enter_short,
|
||||
exit_short):
|
||||
self.enter_long = enter_long
|
||||
self.exit_long = exit_long
|
||||
self.enter_short = enter_short
|
||||
self.exit_short = exit_short
|
||||
|
||||
def info(self):
|
||||
return {
|
||||
'strategy_name': 'Baseline predictions',
|
||||
'enter_long': self.enter_long,
|
||||
'exit_long': self.exit_long,
|
||||
'enter_short': self.enter_short,
|
||||
'exit_short': self.exit_short
|
||||
}
|
||||
|
||||
def run(self, data):
|
||||
|
||||
ret = data['returns'].to_numpy()
|
||||
enter_long = ret > (self.enter_long or np.infty)
|
||||
exit_long = ret < (self.exit_long or -np.infty)
|
||||
enter_short = ret < (
|
||||
self.enter_short or -np.infty)
|
||||
exit_short = ret > (self.exit_short or np.infty)
|
||||
|
||||
positions = np.full(ret.shape, np.nan)
|
||||
positions[exit_long | exit_short] = EXIT_POSITION
|
||||
positions[enter_long] = LONG_POSITION
|
||||
positions[enter_short] = SHORT_POSITION
|
||||
|
||||
# Fix the first position
|
||||
if np.isnan(positions[0]):
|
||||
positions[0] = EXIT_POSITION
|
||||
|
||||
mask = np.isnan(positions)
|
||||
idx = np.where(~mask, np.arange(mask.size), 0)
|
||||
np.maximum.accumulate(idx, out=idx)
|
||||
positions[mask] = positions[idx[mask]]
|
||||
|
||||
return positions.astype(np.int32)
|
||||
|
||||
|
||||
class ModelPredictionsStrategyBase(StrategyBase):
|
||||
"""Base class for strategies based on model predictions."""
|
||||
|
||||
@ -74,6 +247,64 @@ class ModelPredictionsStrategyBase(StrategyBase):
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class ModelGmadlPredictionsStrategy(ModelPredictionsStrategyBase):
|
||||
def __init__(
|
||||
self,
|
||||
predictions,
|
||||
enter_long=None,
|
||||
exit_long=None,
|
||||
enter_short=None,
|
||||
exit_short=None,
|
||||
future=1,
|
||||
name: str = None,
|
||||
):
|
||||
super().__init__(
|
||||
predictions,
|
||||
name=name
|
||||
)
|
||||
|
||||
self.enter_long = enter_long
|
||||
self.exit_long = exit_long
|
||||
self.enter_short = enter_short
|
||||
self.exit_short = exit_short
|
||||
self.future = future
|
||||
|
||||
def info(self):
|
||||
return super().info() | {
|
||||
'enter_long': self.enter_long,
|
||||
'exit_long': self.exit_long,
|
||||
'enter_short': self.enter_short,
|
||||
'exit_short': self.exit_short
|
||||
}
|
||||
|
||||
def get_positions(self, data):
|
||||
# bfill() is a hack to make it work with non predicted data
|
||||
arr_preds = np.stack(data['prediction'].ffill().bfill().to_numpy())
|
||||
arr_preds = arr_preds[:, self.future, 0]
|
||||
|
||||
enter_long = arr_preds > (self.enter_long or np.infty)
|
||||
exit_long = arr_preds < (self.exit_long or -np.infty)
|
||||
enter_short = arr_preds < (
|
||||
self.enter_short or -np.infty)
|
||||
exit_short = arr_preds > (self.exit_short or np.infty)
|
||||
|
||||
positions = np.full(arr_preds.shape, np.nan)
|
||||
positions[exit_long | exit_short] = EXIT_POSITION
|
||||
positions[enter_long] = LONG_POSITION
|
||||
positions[enter_short] = SHORT_POSITION
|
||||
|
||||
# Fix the first position
|
||||
if np.isnan(positions[0]):
|
||||
positions[0] = EXIT_POSITION
|
||||
|
||||
mask = np.isnan(positions)
|
||||
idx = np.where(~mask, np.arange(mask.size), 0)
|
||||
np.maximum.accumulate(idx, out=idx)
|
||||
positions[mask] = positions[idx[mask]]
|
||||
|
||||
return positions.astype(np.int32)
|
||||
|
||||
|
||||
class ModelQuantilePredictionsStrategy(ModelPredictionsStrategyBase):
|
||||
def __init__(
|
||||
self,
|
||||
@ -86,7 +317,8 @@ class ModelQuantilePredictionsStrategy(ModelPredictionsStrategyBase):
|
||||
name: str = None,
|
||||
future: int = 1,
|
||||
target: str = 'close_price',
|
||||
exchange_fee: int = 0.001
|
||||
exchange_fee: int = 0.001,
|
||||
new_impl=True
|
||||
):
|
||||
super().__init__(
|
||||
predictions,
|
||||
@ -100,10 +332,12 @@ class ModelQuantilePredictionsStrategy(ModelPredictionsStrategyBase):
|
||||
self.quantile_exit_long = quantile_exit_long
|
||||
self.quantile_enter_short = quantile_enter_short
|
||||
self.quantile_exit_short = quantile_exit_short
|
||||
self.new_impl = new_impl
|
||||
|
||||
def info(self):
|
||||
return super().info() | {
|
||||
'quantiles': self.quantiles,
|
||||
'exchange_fee': self.exchange_fee,
|
||||
'quantile_enter_long': self.quantile_enter_long,
|
||||
'quantile_exit_long': self.quantile_exit_long,
|
||||
'quantile_enter_short': self.quantile_enter_short,
|
||||
@ -111,6 +345,58 @@ class ModelQuantilePredictionsStrategy(ModelPredictionsStrategyBase):
|
||||
}
|
||||
|
||||
def get_positions(self, data):
|
||||
if self.new_impl:
|
||||
return self.get_positions2(data)
|
||||
return self.get_positions1(data)
|
||||
|
||||
def get_positions2(self, data):
|
||||
arr_target = data[self.target].to_numpy()
|
||||
arr_preds = np.stack(
|
||||
# bfill() is a hack to make it work with non predicted data
|
||||
data['prediction'].ffill().bfill().to_numpy())
|
||||
|
||||
enter_long = (((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
round(1 - self.quantile_enter_long, 2))]
|
||||
if self.quantile_enter_long
|
||||
else np.full(arr_target.shape, -np.infty)))
|
||||
- arr_target) / arr_target > self.exchange_fee
|
||||
enter_short = ((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
self.quantile_enter_short)]
|
||||
if self.quantile_enter_short
|
||||
else np.full(arr_target.shape, np.infty))
|
||||
- arr_target) / arr_target < -self.exchange_fee
|
||||
exit_long = ((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
self.quantile_exit_long)]
|
||||
if self.quantile_exit_long
|
||||
else np.full(arr_target.shape, np.infty))
|
||||
- arr_target) / arr_target < -self.exchange_fee
|
||||
exit_short = ((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
round(1 - self.quantile_exit_short, 2))]
|
||||
if self.quantile_exit_short
|
||||
else np.full(arr_target.shape, -np.infty))
|
||||
- arr_target) / arr_target > self.exchange_fee
|
||||
|
||||
positions = np.full(arr_target.shape, np.nan)
|
||||
positions[exit_long | exit_short] = EXIT_POSITION
|
||||
positions[enter_long] = LONG_POSITION
|
||||
positions[enter_short] = SHORT_POSITION
|
||||
|
||||
# Fix the first position
|
||||
if np.isnan(positions[0]):
|
||||
positions[0] = EXIT_POSITION
|
||||
|
||||
mask = np.isnan(positions)
|
||||
idx = np.where(~mask, np.arange(mask.size), 0)
|
||||
np.maximum.accumulate(idx, out=idx)
|
||||
positions[mask] = positions[idx[mask]]
|
||||
|
||||
return positions.astype(np.int32)
|
||||
|
||||
def get_positions1(self, data):
|
||||
arr_preds = data['prediction'].to_numpy()
|
||||
arr_target = data[self.target].to_numpy()
|
||||
|
||||
@ -171,21 +457,123 @@ class ConcatenatedStrategies(StrategyBase):
|
||||
each on the next `window_size` data points.
|
||||
"""
|
||||
|
||||
def __init__(self, window_size, strategies, name='Concatenated Strategy'):
|
||||
def __init__(
|
||||
self,
|
||||
window_size,
|
||||
strategies,
|
||||
name='Concatenated Strategy',
|
||||
padding=0):
|
||||
self.window_size = window_size
|
||||
self.strategies = strategies
|
||||
self.name = name
|
||||
self.padding = padding
|
||||
|
||||
def info(self):
|
||||
return {'strategy_name': self.name}
|
||||
|
||||
def run(self, data):
|
||||
chunks = [data[i:i+self.window_size].copy()
|
||||
for i in range(0, data.shape[0], self.window_size)]
|
||||
chunks = [data[i-self.padding:i+self.window_size].copy()
|
||||
for i in range(
|
||||
self.padding, data.shape[0], self.window_size)]
|
||||
assert len(chunks) <= len(self.strategies)
|
||||
|
||||
positions = []
|
||||
for chunk, strategy in zip(chunks, self.strategies):
|
||||
positions.append(strategy.run(chunk))
|
||||
|
||||
positions = [
|
||||
pos if not i else pos[self.padding:]
|
||||
for i, pos in enumerate(positions)
|
||||
]
|
||||
|
||||
return np.concatenate(positions)
|
||||
|
||||
|
||||
class ModelQuantileReturnsPredictionsStrategy(ModelPredictionsStrategyBase):
|
||||
def __init__(
|
||||
self,
|
||||
predictions,
|
||||
quantiles,
|
||||
quantile_enter_long=None,
|
||||
quantile_exit_long=None,
|
||||
quantile_enter_short=None,
|
||||
quantile_exit_short=None,
|
||||
name: str = None,
|
||||
future: int = 1,
|
||||
target: str = 'returns',
|
||||
exchange_fee: int = 0.001,
|
||||
new_impl=True
|
||||
):
|
||||
super().__init__(
|
||||
predictions,
|
||||
name=name,
|
||||
future=future,
|
||||
target=target,
|
||||
exchange_fee=exchange_fee)
|
||||
|
||||
self.quantiles = quantiles
|
||||
self.quantile_enter_long = quantile_enter_long
|
||||
self.quantile_exit_long = quantile_exit_long
|
||||
self.quantile_enter_short = quantile_enter_short
|
||||
self.quantile_exit_short = quantile_exit_short
|
||||
self.new_impl = new_impl
|
||||
|
||||
def info(self):
|
||||
return super().info() | {
|
||||
'quantiles': self.quantiles,
|
||||
'exchange_fee': self.exchange_fee,
|
||||
'quantile_enter_long': self.quantile_enter_long,
|
||||
'quantile_exit_long': self.quantile_exit_long,
|
||||
'quantile_enter_short': self.quantile_enter_short,
|
||||
'quantile_exit_short': self.quantile_exit_short
|
||||
}
|
||||
|
||||
def get_positions(self, data):
|
||||
arr_target = data[self.target].to_numpy()
|
||||
arr_preds = np.stack(
|
||||
# bfill() is a hack to make it work with non predicted data
|
||||
data['prediction'].ffill().bfill().to_numpy())
|
||||
|
||||
enter_long = (((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
round(1 - self.quantile_enter_long, 2))]
|
||||
if self.quantile_enter_long
|
||||
else np.full(arr_target.shape, -np.infty)))
|
||||
> self.exchange_fee)
|
||||
enter_short = ((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
self.quantile_enter_short)]
|
||||
if self.quantile_enter_short
|
||||
else np.full(arr_target.shape, np.infty))
|
||||
< -self.exchange_fee)
|
||||
exit_long = ((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
self.quantile_exit_long)]
|
||||
if self.quantile_exit_long
|
||||
else np.full(arr_target.shape, np.infty))
|
||||
< -self.exchange_fee)
|
||||
exit_short = ((arr_preds[
|
||||
:, self.future - 1, self.get_quantile_idx(
|
||||
round(1 - self.quantile_exit_short, 2))]
|
||||
if self.quantile_exit_short
|
||||
else np.full(arr_target.shape, -np.infty))
|
||||
> self.exchange_fee)
|
||||
|
||||
positions = np.full(arr_target.shape, np.nan)
|
||||
positions[exit_long | exit_short] = EXIT_POSITION
|
||||
positions[enter_long] = LONG_POSITION
|
||||
positions[enter_short] = SHORT_POSITION
|
||||
|
||||
# Fix the first position
|
||||
if np.isnan(positions[0]):
|
||||
positions[0] = EXIT_POSITION
|
||||
|
||||
mask = np.isnan(positions)
|
||||
idx = np.where(~mask, np.arange(mask.size), 0)
|
||||
np.maximum.accumulate(idx, out=idx)
|
||||
positions[mask] = positions[idx[mask]]
|
||||
|
||||
return positions.astype(np.int32)
|
||||
|
||||
def get_quantile_idx(self, quantile):
|
||||
return self.quantiles.index(quantile)
|
||||
|
||||
118
src/strategy/util.py
Normal file
118
src/strategy/util.py
Normal file
@ -0,0 +1,118 @@
|
||||
import wandb
|
||||
import os
|
||||
import torch
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from numba import jit
|
||||
from numba import int32, float64, optional
|
||||
|
||||
|
||||
def get_sweep_data_windows(sweep_id):
|
||||
"""Get all data windows evaluated during sweep moving window eval."""
|
||||
sweep = wandb.Api().sweep(sweep_id)
|
||||
sweep_dataset = sweep.config[
|
||||
'parameters']['data']['parameters']['dataset']['value']
|
||||
sliding_window_min = sweep.config[
|
||||
'parameters']['data']['parameters']['sliding_window']['min']
|
||||
slidinw_window_max = sweep.config[
|
||||
'parameters']['data']['parameters']['sliding_window']['max']
|
||||
|
||||
return get_data_windows(
|
||||
sweep.project,
|
||||
sweep_dataset,
|
||||
min_window=sliding_window_min,
|
||||
max_window=slidinw_window_max)
|
||||
|
||||
|
||||
def get_data_windows(project, dataset_name, min_window=0, max_window=5):
|
||||
artifact_name = f"{project}/{dataset_name}"
|
||||
artifact = wandb.Api().artifact(artifact_name)
|
||||
base_path = artifact.download()
|
||||
name = artifact.metadata['name']
|
||||
|
||||
result = []
|
||||
for i in range(min_window, max_window+1):
|
||||
in_sample_name =\
|
||||
f"in-sample-{i}"
|
||||
in_sample_data = pd.read_csv(os.path.join(
|
||||
base_path, name + '-' + in_sample_name + '.csv'))
|
||||
out_of_sample_name =\
|
||||
f"out-of-sample-{i}"
|
||||
out_of_sample_data = pd.read_csv(os.path.join(
|
||||
base_path, name + '-' + out_of_sample_name + '.csv'))
|
||||
result.append((in_sample_data, out_of_sample_data))
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_sweep_window_predictions(sweep_id, part):
|
||||
result = []
|
||||
for run in wandb.Api().sweep(sweep_id).runs:
|
||||
window_num = run.config['data']['sliding_window']
|
||||
|
||||
window_prediction = list(
|
||||
filter(lambda x: (
|
||||
x.type == 'prediction'
|
||||
and x.name.startswith(f'prediction-{part}')),
|
||||
run.logged_artifacts()))
|
||||
|
||||
assert len(window_prediction) == 1
|
||||
window_prediction = window_prediction[0]
|
||||
|
||||
artifact_path = window_prediction.download()
|
||||
index = torch.load(os.path.join(
|
||||
artifact_path, 'index.pt'), map_location=torch.device('cpu'))
|
||||
preds = torch.load(os.path.join(
|
||||
artifact_path, 'predictions.pt'), map_location=torch.device('cpu'))
|
||||
|
||||
result.append((window_num, index, preds.numpy()))
|
||||
|
||||
result = sorted(result, key=lambda x: x[0])
|
||||
return result
|
||||
|
||||
|
||||
def get_predictions_dataframe(*window_predictions):
|
||||
result = []
|
||||
for _, idx, preds in window_predictions:
|
||||
df = pd.DataFrame(idx)
|
||||
df['prediction'] = list(preds)
|
||||
result.append(df)
|
||||
|
||||
result = pd.concat(result).sort_values(by='time_index')
|
||||
|
||||
assert 'time_index' in result.columns
|
||||
assert 'group_id' in result.columns
|
||||
assert 'prediction' in result.columns
|
||||
|
||||
return result
|
||||
|
||||
|
||||
@jit((float64[:], int32, int32), nopython=True)
|
||||
def rsi_obos(rsi_arr, oversold, overbought):
|
||||
moves = np.zeros(rsi_arr.size, dtype=np.int32)
|
||||
for i in range(1, rsi_arr.size):
|
||||
moves[i] = 1 if rsi_arr[i - 1] < oversold and rsi_arr[i] > oversold \
|
||||
else 0 if rsi_arr[i - 1] > overbought and rsi_arr[i] < overbought \
|
||||
else moves[i - 1]
|
||||
return moves
|
||||
|
||||
|
||||
# @jit((
|
||||
# float64[:],
|
||||
# optional(int32),
|
||||
# optional(int32),
|
||||
# optional(int32),
|
||||
# optional(int32)), nopython=True)
|
||||
# def quantile_model_pos(
|
||||
# preds,
|
||||
# enter_long,
|
||||
# exit_long,
|
||||
# enter_short,
|
||||
# exit_short):
|
||||
# return None
|
||||
# # moves = np.zeros(preds.size, dtype=np.int32)
|
||||
# # for i in range(1, preds.size):
|
||||
|
||||
|
||||
# if __name__ == '__main__':
|
||||
# quantile_model_pos(np.array([0.2, 0.1, 0.3]), 2, 5, None, None)
|
||||
Loading…
x
Reference in New Issue
Block a user